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Abstract

This PhD thesis employs and further develops the current input-output techniques

from different approaches to explore the opportunities for quantitative research on

sustainable development in developing countries, particularly applied to the case of

the fastest growing economy - China.

China's economic success can be confirmed by showing a continuous annual Gross

Domestic Production growth rate of over 8% since 1980; being the world's fourth

strongest economy since 2005 and the second largest exporter in 2006. China's

economic structure has been transformed from agricultural to industrial based while

the tertiary sectors are gaining increasing importance. Much of China's population has

been experiencing a transition from poverty to adequate food and clothes, and a

growing part of populations are changing to "western lifestyles". The economic

reform also creates unbalanced regional development, which has resulted in

significant income gaps between rural and urban areas, coastal and interior China.

All these developments have left deep marks on China's environment. On the other

hand, deteriorated eco-systems have the potential to affect the continuity of

development and in some regions, as for example North China. This thesis

investigates the interrelationships and interactions between the economy and the

environment in order to identify the major drivers of environmental degradation for

the fast developing economies in the "South".

Chapter 4 designs a hydro-economic accounting framework to demonstrate how water

has been involved in production, then discharged to the natural environment with

degraded quality and its impacts to the regional hydro-systems. By applying the

framework to North China which is characterised as water scarce, the water demand

was 96% of its annual available water resources, mostly for the water and emission

intensive sectors. Chapter 5 takes a different angel by assessing virtual water flows

between North and South China. It uses international trade theory as a starting point to

address its inability to treat natural resources properly as a factor of production. Both
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Chapters 4 and 5 suggest that it is important 'to design' an economic structure as well

as trade patterns at the beginning of industrialisation process, especially for newly

industrializing countries in the "south", from the perspective of sustainable

development. Chapter 6 conducts an IPAT-IO structural decomposition analysis on

China's C02 emission to picture a race between consumption growth and technology

improvements over the past 20 years. It also points out that it is vital to establish

policies to switch westernising consumption trend to more sustainable consumption

patterns to reduce C02 emissions. This might be the case for many other developing

countries as well.
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Chapter 1: Introduction

1.1 Research motivation

Ever increasing production and consumption is putting a strain on the environment,

polluting the earth and damaging ecosystems. Large-scale economic development in

the North occurring in the first half of last century has left deep marks on natural

resources' availability and quality. These are dangerous side-effect of the

development model the North follows and the South emulates. In recent decades,

changing lifestyles and consumption patterns has been a common feature of most

developing nations. Increasing income provides their citizens with more options;

people's lifestyle choices largely determine what impact economic growth has on the

environment. As nations develop and their economies grow, so too does the

consumption of resources. Nevertheless, over-consumption may not only be the result

of too many humans competing over a limited resource base but also economic elites

using that resource base excessively and.abusively to the detriment of other sectors of

society, poorer nations, future generations and other species.

Water and energy are essential inputs used throughout the whole production chain of

economic goods and services. Until recently, people almost have felt free to use

environmental resources such as water and rarely give the desired economic respect to

the resources until it became scarce in many countries and regions. Consumers

allocate their incomes to purchase goods and services to maximise their satisfaction;

producers or businesses withdraw scarce resource (e.g. labour, capital, water and

energy) in a variety of productive activities to maximise their profits; and societies

allocate resources and products to consumers in such a manner as to achieve the 'end'

- maximise welfare of the societies (Rogers 1997). Traditional macroeconomists

rarely took natural resources into consideration and thus water and energy are usually

not recognised as factors of production. But in reality both water and energy are

primary inputs to all goods and services either directly or indirectly; and its available

quantity and quality can affect output of products and thus influences the level of

economic activities especially in agricultural societies and as one will see also to some

extend in industrialising and modernising economies such as China.
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Water quality is selected as an environmental indicator to study the interactions

between the economy and the ecosystem, particularly to account the environmental

degradations due to pollution discharges. Energy and its related emission (C02) are

used as environmental indicators to analyse the driving forces of the trends In

environmental degradation due to energy consumption over the past two decades.

1.2 An impressive story: China's "economic miracle"

China occupies almost entire East Asian landmass of about 9.6 million square

kilometres; habitats 115of world population of 1.3 billion by 7% of world's arable

land, and 6% of fresh water resources (Fischer et al. 1998). China is rich in human

resources and diversified natural resources, but lacks technology and suffers from low

per capita availability of resources.

Nevertheless, the latter half of the 20th century was the period of the 'economic

miracle' for East Asia. East Asian countries including Japan and Korea achieved a

high annual growth rate of GDP (Gross Domestic Product) averaging about 8%

during the 1960s and 1970s. They achieved industrialisation, urbanisation,

electrification, and motorisation in a short time period of about 20 - 30 years.

However, at the same time China was engaged in 'socialists' movements', especially.

the ultra leftists of the 'Great Leap Forward' and 'Cultural Revolution', which

severely stagnated China's economic development for 30 years. China accelerated its

economic development with an annual GDP growth rate of almost 10% after

economic reforms were started in 1978. In comparison the world average was 3.3%

during the same period (Hubacek et al. 2007). By 2005, China's GDP had reached

1.13 trillion US dollars, which put China among the four largest economies or even

the second largest economy if counted in purchasing power parity (PPP). China's

economic reform has created very competitive and favourable circumstances for

domestic and foreign investors in terms of cheap labour costs, a huge domestic market,

low workers safety standards and environmental criterions (Guan and Hubacek 2007).

As a result, large amounts of capital have been flowing into China, especially in the

southern and eastern parts, which has made China one of the largest manufacturers

and exporters in the world (Guan and Hubacek 2007). However, Deng's 'ladder-up'

strategy of economic developments has increased regional income inequality, for

example, between the more affluent coastal urban areas and mainly rural western
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China and also between southern and northern regions, which can be shown by the

Gini coefficient of 0.43, and is also reflected in differing development regional

policies economic production structures, the scale of foreign direct investment and

people's lifestyles pattern (Guan and Hubacek 2004).

The most direct and significant result of China's economic growth is the amazing

improvement in quality of life for Chinese people. China's population has

experienced a transition from 'poverty' to 'adequate food and clothing'; today

growing parts of the population are getting closer to 'well to do' lifestyles. These

segments of society are not only satisfied with enough food and clothes, but also are

willing to obtain a quality life of high nutrient food, comfortable livings, health care,

and other quality services.

At the same time one could also witness a gradual transformation of China's

economic structure of a shifting dominance from agriculture to growing shares of

industrial and service sectors, along with the availability of a wider range of products .

the consumption patterns changed. By 2003, the second and tertiary industries

contributed approximately 85% of the national GDP (Guan and Hubacek 2004).

However many of China's industries are still characterised as labour- and resources-

intensive. Those industries, especially heavy industries were spatially allocated in

terms of geo-political reasons and less consideration of natural resource availability.

1.3 Behind the story: competing demand for natural resources

The change of production and consumption patterns directly relates to the allocation

and consumption of natural resources. Along with the large-scale industrialisation and

urbanisation since 1980, domestic, municipal, and industrial sectors started to

compete for the resources, which accelerate the exploitation and exhaustion of the

natural resources. From the perspective of energy consumption, the per capita

consumption grew from 264.3 kgce ' in 1965 to 614.4 kgce in 1980, and further

increased to 1707.9 kgce in 2005 which was 6.5 times more than 1965's level (Guan

and Hubacek 2004). The tale of self-sufficient energy supply has been broken in 1993.

Until 2005, 40% of China's energy consumption is supplied by foreign importers.

1 kgce: kilogram coal equivalent
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Furthermore, the categories of residential energy consumption has been transforming

from cheap but less efficient biomass fuels to more commercial energy (e.g. coal, oil

& gas). In fact, China's rapid industrialisation was built upon high intensive energy

consumption. China is trying to escape from that and to move towards more efficient

energy production and consumption (Peters et al. 2007).

A similar situation can be found with regards to water resources, it is already

considered as the most critical natural resource in the regions of China in terms of the

low availability of per capita volume, 2,300 rrr', about 113of the world average value.

During the 1990s, in every year, on average 26.6 million hectares of land experienced

drought (Wiberg 2003). The water shortage was 30 billion m3 in irrigation areas and 6

billion m3 in the cities (Wiberg 2003). Along with the large-scale industrialisation and

urbanisation since the early 1980s, domestic, municipal, and industrial water

consumption joined the competition for limited water resources, which accelerates the

exploitation and exhaustion of water resources (Hubacek and Sun 2001).

A growing part of the population lives in cities and together with large-scale

industries infringes on the best agricultural land, which lies on the plains in the eastern

part of the country (Wiberg 2002). About half of China's population lives on about

one third of the country along the coastal areas and Eastern part of the country. At the

same time China's water resources are unevenly distributed as well. Generally

speaking, the South is rich in water while the North is short in supply. North China

has only about 20% of total water resources in China, which results in the per capita

water availability in North China of as little as 225 m3 (less than 1000 m3 per capita is

considered water scarce), 1110 of the national level and 1/25 of the world average

(Hubacek et al. 2007). Furthermore, there are seasonal variations of water resources

and inter-annual disparities with frequent flood and drought disasters.

Furthermore, the quality of the water is degraded due to the large-scale

industrialisation and urbanisation, which further burdens the ability of water supply.

Water is contaminated by untreated residential and industrial waste, leakages from

outdated waste-treatment systems, and due to increasing uses of agricultural fertilizers

and pesticides. About 80% of the wastewater is untreated. The concentrations of water

pollutants are among the highest in the world, causing damage to human health and

lost agricultural productivity (Ministry of Water Resources 1998). The severe

pollution and water shortages have become one of the bottlenecks for economic

development of some of the regional economies (Guan and Hubacek 2007).



5

In terms of water consumption patterns, its allocation has been shifting from

traditional agricultural irrigation to larger shares for industrial and domestic uses.

However, agriculture is still the main consumer in water consumption, although its

total consumption fell from 97% to 69% during the last 50 years. Industrial and

domestic users raised their shares from 2% to 21% and 1% to 10%, respectively

(Hubacek et a1.2007).

1.4 Assessing structural change with input-output analysis

Economists have become increasingly aware of the interactions between economic

activities and natural environment in their theorising and model building. Input-output

analysis is one of the most effective tools to model flows between the two systems.

An input-output table demonstrates a detailed flow of goods and services between

producers and consumers and the intermediate linkages (inter-industry analysis)

between all producing sectors in a given year. Input-output analysis has been

developed and applied in many countries as a policy tool to quantify the mutual

interrelationships among their production and consumption sectors of economic

systems, which was developed by Wassily Leontiefin the late 1930s. He was awarded

the Nobel Prize in Economics in 1973 due to his contribution for the development of

the input-output model. Since the 1960s, many western countries have started to

produce input-output tables on a regular basis to research their economic structural

changes. China commenced to create input-output tables at the end of the 1970s.

China edited three trial versions for 1976, 1981 and 1985. But the first national table

with 117 production sectors for 1987 was published in April 1991. Since then, China

officially publishes comprehensive benchmark input-output tables once every five

years with more than 110 sectors; and during the five years, China published an

extended input-output table in years with last digit being '0' or '5', with less than 40

sectors. The latest table was released in September 2006 for year 2002 with 124

sectors.

Over the past few decades, the input-output model has been extended and applied in

many environment studies to quantify the environmental impacts caused by economic

growth (Leontiefand Ford 1972; Victor 1972; Chen 1973; Forsund 1985; Duchin et al.

1993; Marcotullio et al. 2005; Peters and Hertwich 2006), as well as estimating future
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environmental challenges (e.g. Duchin and Lange 1994; Hubacek and Sun 2000, 2001,

2005). This research is designed to further develop various approaches of input-output

analysis and apply these to the Chinese economy in order to investigate the impacts of

economic structural transitions and people lifestyles changes to water and energy

resources and their related emissions. This thesis's input-output discussion is based

on (comparative) static input-output analysis.

1.5 Research purpose and objectives

This research aims to investigate the driving forces of natural resources exhaustion

and environmental degradations using China as a case study. China has been engaging

in large-scale economic 'experiments' (e.g. establishing special economic

development zones) and structural economic and social transformations at great costs

for its environment. By doing so, many other countries in the "south" could learn

from the experiences from both past western and current Chinese developments to

leapfrog to a more sustainable development. The specific objectives of this research

are:

» Providing a historical review starting in 1949 on China's economic development,

and describing people's lifestyle changes and its influences on water and energy

consumption (Chapter 2).

» Describing the evolvements of input-output analysis and its variations and

applications to environmental studies (Chapter 3).

» Developing a hydro-economic accounting framework to investigate the

interactions between economic production and the hydro-ecosystem (Chapter 4).

» Introducing and further developing the concept of virtual water flows with critical

discussion on international trade theory and its applications to regional trade in

China by adopting and further developing a hydro-economic accounting

framework (Chapter 5).

» Incorporating the IPATmodel into structural decomposition analysis to assess the

changes in CO2 emissions triggered by population growth, lifestyle changes,

economic structure transitions and technology improvements (Chapter 6).
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1.6 Thesis outline

The document has been divided into seven chapters. Chapter 2 provides the

background of this research, which gives an overview of the past 50 years of China's

economic development influenced by policies, people's lifestyle changes, and shows

their influences on water and energy consumption. Chapter 3 is a literature review

chapter on input-output analysis, which comprehensively explores the developments

of input-output techniques and the applications to water and energy research,

especially with regards to China. Furthermore, section 3.3.2 discusses the evolvement

of the economic-ecological model which provides the background for development of

the hydro-economic water accounting framework in Chapter 4. Section 3.3.6

discusses the applications of input-output techniques in China which partly serves the

needs of Chapter 5's research on virtual water flows in China. Section 3.3.7 explains

the linkage between IPAT and structural decomposition analysis, which paves the

roads for the construction of IPAT-10 SDA in Chapter 6.

Chapters 4 - 7 are the results sections. Each chapter discusses a separate topic with

specific method section based on various input-output techniques, application of the

respective approach, followed by discussion of results and conclusions.

Chapter 4 develops a hydro-economic accounting framework by combing economic-

ecological input-output technique with a mass balanced hydrological model to

evaluate the impacts of economic production to hydro-ecosystems.

Chapter 5 uses this hydro-economic accounting framework developed in Chapter 4 to

assess China's regional ''virtual water flows" via trade flows with critical discussion

on international trade theories.

Chapter 6 presents a new methodological approach to establish the' structural

decomposition analysis by incorporating the IPAT model into the input-output

framework; and further applies the framework to eight consecutive Chinese national

input-output tables with 18 sectors, covering the years from 1981 to 2002 represented

in constant producers' prices, to investigate the main drivers of energy consumption

and related C02 emissions. At the end of this chapter, the author sets up a simple

experiment to investigate what level of technology China would require by continuing

the race with consumption growth.
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Chapter 7 summarises the main findings and lessons from the above case studies with

policy recommendations on sustainable consumption in a developing country's

context.
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Chapter 2: A Co-Evolution of Production Possibilities

and Consumption Patterns'

This chapter gives an overview of changing lifestyles influenced by different policies

over more than 5 decades of China's volatile development, then picks a few key areas

such as diet, housing, education, water and energy consumption to exemplify these

changes and discuss some of their causes. In particular, this chapter is designed to

1. investigate how changing policy foci directed economic development and

resource allocation;

2. describe lifestyle changes under different stages of economic development

with special consideration of urban - rural disparities.

3. generate historical trends for domestic resource consumption along with

lifestyle changes, particularly for energy and water consumption.

This chapter uses general statistics to describe people's lifestyle changes starting at

procommunist China of 1949 until today 2005 and environmental implications are

exemplified through energy and water consumption statistics.

2.1 A brief review of pre -1949: rich versus poor: lavish lifestyles

contrasted by plain survival

Before 1949, most parts of China were experiencing unrest and turbulence due to

warfare. Over 80% of the total population lived in rural areas. They were engaged in

traditional agricultural production.

In rural China, 91% of villagers (peasants) lived on rented land from rural feudal lords

(Yang 1986). More than half of the surplus products produced were used to pay

2 Some results of Chapter 2 have been published in Futures: The Journal of Policy, Planning,
and Futures Studies, entitled "Changing Lifestyles and Consumption Patterns in Developing
Countries: A Scenario Analysis in China and India" (Hubacek et al. 2007). Other parts of
Chapter 2 are part of a submission to Energy Policy co-authored with Feng, K and K.
Hubacek. In addition, the results of this chapter have been presented inInternational
Workshop on Driving Forces for and Barriers to Sustainable Consumption. OS -06, March
2004.Leeds, UK.
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extremely high rents and loan interests to the landlords (Gabriel 1998). Therefore,
there were two completely different lifestyles in rural China. Peasants worked hard for
the whole year and produced the agricultural outputs, but they were living under dire

poverty and struggling to feed themselves. The daily diet structure for peasants was

coarse bran with cheap vegetables, and meat consumption the exception. In contrast,
the feudal lords obtained a large income mainly from rents and loan interests. Their

lifestyle was much more lavish than the peasants' .

In urban areas, the first industrialisation took place around 1842 after the Opium War

when western capitalists encroached the land to build factories and drove the original

small economy bankrupt (Lu 2003). As a result, urban workers had to be employed in

capitalist enterprises, for which they received little wages but worked over 12 hours

per day. Although the some artisans could work independently, the products could

only be sold to the large-scale merchants with price setting power (Gabriel 1998).

Consequently, they also received unfair payments. For most urban residents, their

lifestyles were as plain as for the rural peasants. Figure 2.1 clearly describes the

'starvation' throughout China demonstrating that the majority of income (e.g. 88.2%)

was spent on staple food and clothing simply for survival.

Figure 2.1The consumption pattern of Chinese people prior to 1949

.Food

• Clothing

• Rent 'or house

• Fuel & l'ght
Misce laneous

Data source: (Yang 1986)

Generally speaking, people's demands on natural resources were very basic.

However, the category of resource consumption was much different in terms of the

income classes of the populations. The rural landlords and urban capitalists were

living in luxury houses with heating supplied by burning coal and firewood; some

even had electricity for lighting, however, this was only available for a very small part

of the total population (Guan and Hubacek 2004). Most Chinese just acquired free or

cheap resources for their livelihoods; water was only for drinking and cooking, stalks
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were the main source for heating and cooking, and kerosene was the only commercial
energy for lighting (Guan and Hubacek 2004).

2.2 Beginning of communism (1949-1957): recovery of the economy

and improving lifestyles

The premier task after the New China was established was to recover from the

damage done during the war and to generate new economic development. Due to

geopolitical reasons, China created a Soviet-style 'Socialist Planning System' giving

priority to heavy industry development in cities.

2.2.1 Planning economy and stimulating productivity

Under the socialist planning system, the central government planned the quantities of

output command and allocated resources and materials. Public ownership of "Means

of Production" is a significant characteristic of this kind of planning economics. The

huge income disparities of the feudal era were drastically reduced during this time

period.

In rural China, the redistribution of land'' effectively stimulated China's agricultural

aggregate output that increased by 25% in real terms from 1952 to 1957, and with it

grew the income and the consumption of peasants (State Statistical Bureau of China

1982).

In cities, the central government redistributed the unequal regional development from

coastal to interior areas which were closer in proximity to raw materials and energy

resources. This stimulated industrial productivity and worker's motivations to produce

increasing outputs. Even though industry made remarkable efforts on urban

constructions, the industrial sector only contributed 7% of annual GDP on average as

compared to the primary sector, which produced 74% of GDP (Demurger 2001).

However, 90% of China's capital was concentrated in the urban industrialisation,

which foreshadowed the significant economic developments in cities.

3 LandReformof 1950was implementedthroughoutChina's rural areas,whichdemolished
the old rural landlordsystemand replacedby a self-exploitingdirectproductionsystem,
whichwas completedin 1952(Gabriel 1998)
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2.2.2 Steady improvement of people's living situation

The effective beginning of 'new' China's economic development contributed to the

growth of people's net income levels. Figure 2.2 shows people's annual consumption

expenditures increased by 2.3% in countryside and 3.2% in cites respectively. Those

increases led to some improvements and poverty reduction. The figure of poverty

population decreased from 71.9% prior to 1950 to 64.4% by the end of the 1950s (Hu

2003). From the perspective of people's consumption pattern during the first Five

Year Plan (FYP), food and cloth still dominated the majority of people's income as

shown in Figure 2.3., and one can see that there was no significant difference between

urban and rural lifestyles.

Figure 2.2: Residents' consumption levels in 1950s Figure 2.3: Peasant's consumption pattern in 1957

1953 1954 1955 1956 1957
Urban ~ural -+-Average

-Food

- Clothing

- ousing

- Fuel & light

- Dailv use

Recreation

Data source: (State Statistical Bureau of China 1987) Data source: (Yang 1986)

In terms of food consumption, people's dietary structure changed from surviving to

increasing consumption of higher quality and more diverse food products such as

pork, fruits, milk products and eggs; the total calorie intake and material consumption

grew rapidly, for example, grain consumption increased by more than three times and

cloth consumption more than doubled (Table 2.1).

Table 2.1: Per capita consumption of selected goods

Grain (kg) Pork (kg) Fresh Eggs

(kg)

Cloth (piece)

Pro-1949 61.0 2.0 0.2 3.2

1957 203.0 5.1 1.3 6.8

Data Source: (Yang 1986)

4 The dataof pro-1949was estimatedby Yang (1986)



13

Housing was another important category establishing significant differences between

urban and rural lifestyles. Although the types of houses were similar (bungalows),

urban residents enjoyed their houses, as 'welfare benefits" while rural peasants had to

pay for the houses by themselves (Taylor 1996).

2.2.3 Biomass for villagers, coal for city dwellers

There was a substantial difference in residential energy consumption pattern between

urban and rural households. Urban residential energy was more commercial energy

based, while biomass fuels dominated energy consumption in villages, accounting

86% of the total household energy usage (State Statistical Bureau of China 1982). For

example, coal and firewood were purchased for cooking and heating in cities, in

contrast crop residues and stalks were used in rural cooking and heating because this

was free and convenient to acquire. In addition, about 90% of Chinese cities had been

provided with electricity for residential lighting by the end of 1950s (Luo 1998),

while most rural people still kept the traditional way for lighting by using candles and

kerosene".

2.2.4 Queuing for wells

China's water withdrawal was mainly used for agricultural irrigation, which

accounted for 97.1 % of the total water consumption in 1949. The amount of industry

water consumption increased four times from 2.4 billion m3 in 1949 to 9.6 billion m3

in 1957, as shown in Table 2.2, because of the large-scale industrial developments in

urban China during the first Five Year Plan (FYP) (Ministry of Water Resources of

China 2000). Meanwhile, per capita residential water usage for urban households

slowly increased from 28.5 to 38.4 litres per day", The main reason was that most

people still got their water from a source near their home for daily drinking, cooking

and washing in rural China. Showering or bathing were rare activities for Chinese

people at that time. This was different to urban China as the infrastructure of the water

5 Housing commercialization was restricted at that time. The houses were provided by
government or State-owned employer and came as a part of their jobs.
6 The governmental provided 1kg kerosene for each rural household per year for lighting
(Zheng 1998).
7 The figures were calculated based on the data provided by Ministry of Water Resources of
China (1999) by the author.
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supply system was quickly expanded in order to ensure the industrial output during

the first FYP. The urban water supply system only covered 60 cities prior to 1949, and

expanded to more than 150 cities by the end of 1950s, which created great gap of

residential water usage between urban and rural China.

Table 2.2: Water use in China 1949 -1957

1949 1957
billon m percentage billon m percentage

Agriculture 100.1 97.1% 193.8 94.6%
Industry 2.4 2.3% 9.6 4.7%
Domestic 0.6 0.6% 14 0.7%
Total 103.1 100% 204.8 100%

Data source: (Ministry a/Water Resources a/China 1999,2000)

2.3 A tumultuous period: political conflicts and economic stagnation:

1958-1978

Economic recovery stopped in the following years. Instead, the radical left took

possession of governmental politics and their ideas quickly spread to all areas of

social and economic life.

2.3.1 A crash industrialisation program - 'Great Leap Forward':1958-

1960

In early 1958, Mao called on China to 'walk on two legs', which further emphasised

the importance of heavy industry, especially iron and steel productions (Lu 2003).

Thousands of small steel-making furnaces were set up in rural ChinaS throughout the

country in response to Mao's call of 'steel as the key link'. Ironically, 90% of these

types of steel products could not be utilised and had to be remelted which obviously

resulted in am extreme low energy efficiency". As a significant number of peasants

switched to industrial production, particularly to steel production, natural disasters

8 The household registration system was implemented to ensure the control of steel outputs.
Households were the basic unit of producer communities.
9 The annual growth rate of energy consumption was 26.7% during the Great Leap Forward
period, but the annual average change of GDP growth was -2.0% (State Statistical Bureau of
China 1987).



15

resulted in the dramatic decreases of agricultural output causing serious starvation for

large parts of the population in the early 1960s.

The decline in GDP directly influenced people's livelihoods. As shown in Figure 2.4,

the average value of consumption level decreased from 125 Yuan in 1958 to 104

Yuan in 1962, the value reached the lowest point of 99.4 Yuan in 1961, which

completely negated the economic efforts during the first FYP (State Statistical Bureau

of China 1987).

Figure 2.4: People's consumption level 1958-1978

so ~--=--------------------
1958 1963 1968 1973 1978

-+-Average ~uraJ urban

Data source: (State Statistical Bureau of China 1982, 1987)

2.3.2 Economic disaster - "Cultural Revolution": 1966 -1976

Although the failure of the Great Leap Forward was disastrous, Mao still believed

leftist politics could be used to achieve a circumstance of equalitarianism in China's

society. By contrast, Liu Shaoqi and Deng Xiaoping believed that the socialist society

had to be built based on a sound economic base. They believed that some income

inequality is a product of an effective economic development, which should be

reduced to acceptable levels but not minimised or annihilated. Due to the

inconsistency in political opinions, Mao launched the 'Cultural Revolution' against

any kind of Western or capitalist ideology. The government concentrated all their

energy in large-scale political movements; China's economy reached the brink of

collapse at the end of the 1960s. The annual growth rate of GDP per capita declined

for two years by -5.7% in 1967 and -4.1% in 1968 respectively (State Statistical

Bureau of China 1987).

The radical movement almost ended in 1972. Chinese government returned to normal

and started to re-construct the national economy under the national work plan of
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'increasing equipment imports and enlarging economic exchange' (Lu 2003), which

resulted in a 2.7% annual growth rate ofGDP per capita from 1970 - 1978.

During these 20 years, China's population grew by 50% from 660 million in 1958 to

963 million in 1978 putting further strain on the already limited resources (State

Statistical Bureau of China 2000). The average annual growth rate of GDP per capita

was 3.2% over the two decades while other Asian countries (i.e. Japan) were

developing fast with economic growth rates of about 8% (Guan and Hubacek 2004).

2.3.3 Basic livelihood and traditional lifestyle

The devious economic development during this period resulted in a stagnation of

improvements in people's livelihoods. During the "Great Leap Forward", people's

consumption levels significantly declined both in urban and rural China. Therefore,

China had to use the next three years (1961 - 1964) to restore people's consumption

standard to levels prior to 1957. At that point, the consumption level started to grow

again; the 20 year period following 1966 the average consumption growth rates were

2.9% in cities and only 1.37% in rural areas. Table 2.3 illustrates the consumption

pattern of Chinese peasants; food and cloth still dominated the majority of people's

consumption expenditures without any notable changes in other consumption

categories, which at least demonstrated that peasant's lifestyles were the same as

usual. Meanwhile, many urban residents escaped from poverty and shifted to fairly

'adequate levels of food and clothing' (Lu 2003).

During these 20 years, the policies were designed to fight against everything that

could be related to Western- or 'capitalist' links. The government prohibited Western

influences from flowing into China. Therefore, people had no opportunity to realise

how huge the differences were between themselves and Western people. Many

Chinese thought their lifestyles had been dramatically improved compared to the

standard prior to 1949. Moreover, they were not motivated to further change because

all the other people had the same.
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Table 2.3: Peasants' expenditure categories (1957 - 1978)

Years Food ('Iolhlll~ Fuel ();lIly lI~C Recreation l louxuu; lotul

C:\pCIl~C~

1957

1963

1965

67.8% 13.4%

63.3% 11.2%

68.5% 10.5%

10.0% 6.9%

9.3% 8.8%

8.3% 7.2%

1.7%

2.7%

2.7%

2.1%

4.7%

2.8%

100

100

100

1978 67.8% 12.7% 7.1% 6.6% 2.7% 3.2% 100

Data Source: (State Statistical Bureau of China 1987), (Yang 1986)

2.3.4 Less biomass for rural households, more coal for urban residents,

During the 20 years, per capita residential energy consumption barely increased in

neither urban nor rural China, mainly due to small changes in people's life styles.

However, the energy consumption pattern switched towards more commercial energy

sources.

Before the 1970s, peasants had to seek energy sources for their residential use by

themselves because rural energy infrastructure constructions were excluded from the

national plan. Until 1975, the government allowed small local coalmines to be

developed to meet peasants' increasing residential energy demands, which resulted in

rapid increase of coal consumption in rural areas, from 9.73 in 1965 to 95 million tons

in 1978 (Zheng 1998). However, many peasants were still struggling against poverty,

and preferred to save for better food and clothes rather than buy fuels (e.g. coal).

Therefore, biomass fuels still occupied 85% of total rural energy consumption, but

some commercial energy started to be consumed as shown in Figure 2.5.

Figure 2.5: Rural residential energy consumption pattern prior to 1978

1.2%
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• Oil Products
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• f're\Jood
Manure

Data source: China's Rural Statistics Yearbook, 2000
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Cities were granted favourable policies in construction of energy infrastructure.

Prioritising all resources to cities provided sufficient energy to industries and also to

cities dwellers. Each urban resident consumed 774 kgce'" commercial energy per year

(70% was coal for heating and cooking), which was about 6 times more than rural

people (Pan 2002). By 1978, electricity became a popular energy source for lighting

in 90% of urban households while peasants generally were still using kerosene lights.

2.3.5 Wells in rural China but tap water in urban China

Similarly, the development of water infrastructure did not happen in rural China.

People had to acquire their living water from wells, which did not allow for

significant increases in rural household's water consumption.

By contrast, per capita residential water consumption in cities grew at an outstanding

rate of 4.7% annually during those 20 years due to the tap water system being

established for almost 90% of the cities. By 1980, the per capita residential water

usage for urban households was 97.3 litres per day (Ministry of Water Resources of

China 1999). The figure includes the daily usage (e.g. cooking, drinking and washing),

and other regular activities, such as horticultures and showering and bathing in public

bathing places.

2.4 A stirring period: new policies, booming economy and

diversifying lifestyles since 1980

In December 1978, Deng Xiaoping launched the economic reforms and established

the 'open-door policy' at the Third Plenum of the Eleventh Party Congress. Since

then, China's economic system has fundamentally changed from a central planning

economy to a mixed system with elements of central planning and market

mechanisms. By following that, China succeeded in achieving an annual growth rate

of GDP per capita of 8.6% in real terms!' for more than 20 years. People's living

standards rapidly improved and their lifestyles diversified.

10 kgce: kilogram coal equivalent.
11 The GDP per capita is calculated at 1995 constant prices. Tibet and Hainan was not
included due to missing data for GDP components. The data source is (State Statistical
Bureau of China 2002).
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2.4.1 Deng's "open-door" policy

In rural China, the government decided to change rural agricultural policies in 1978 to

guarantee higher levels of agricultural output. The 'Household Responsibility System'

was therefore established throughout the country. Under this system, peasants could

independently arrange, produce and sell their products, which effectively stimulated

peasants' motivations and responsibility and was enthusiastically accepted. As a

result, agricultural outputs grew to almost four times the pre-reform level by 1997

while productivity increased 1.5 times during the same period (Fan 2002).

Another important government activity in rural China was the opening up of the rural

economy. The rural enterprises have therefore been dramatically developed during the

past two decades. In the early 1980s, employment in the agricultural sector accounted

for 97% of total rural labour, but this figure declined to 60% in 2005 (State Statistical

Bureau of China 2006), which is still a considerable share. The new rural economic

structure led to a growth in peasants' net income from 133 Yuan in 1978 to 521 Yuan

in 2005 in 1978's price; the annual growth rate was 5.2% in real terms (State

Statistical Bureau of China 2006).

In cities, the real reform did not actually start until the end of 1984 (Hu 2003). The

central government granted more autonomy to local authorities, which formed the

basis for domestic competition between provinces (Hu 2003). The direct consequence

from this competitive mechanism was an increase in industrial productivity resulting

in rapid GDP growth. In addition, China started to intensively attract foreign direct

investments and an increasing share of international trade relationships since the early

1990s, which not only made a significant contribution to China's economic growth

but also brought advanced technology and management systems to Chinese

enterprises (Fan 2002). Consequently, city dwellers' net income increased as an

annual growth rate of 6.2%. By 2005, the average income for each urban resident was

10,493 Yuan in absolute price and 1727 Yuan in 1978's price, three times more than

peasant's level. People did not only settle for sufficient food any more; and started to

purchase high-quality goods and adopted more diverse lifestyles.

2.4.2 Rapid consumption growth

Figure 2.6 and 2.7 illustrate the changes of consumption pattern from 1980 to 2005

for the average rural and urban residents respectively. All the numbers in both figures
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are In 1978 pnces. The proportion of expenditures on food and cloth steadily

decreased while the proportion of other items' increased. The figures for food,

housing, education expenditures, and water and energy expenditures significantly

changed; therefore those indicators are selected to reveal people's lifestyle changes

since the early 1980s.

Figure 2.6: Rural consumption expenditure
patterns
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Figure 2.7: Urban consumption expenditure
patterns
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2.4.2.1 Diet change:

Although food and cloth still dominated people's expenditure both in urban and rural

areas, the share has been progressively decreasing since 1978 (see Figure 2.6&2.7).

From the perspective of food structure, people's diet contained more meat and

nutritious food (e.g. eggs and aquatic products), but less cereal products. Figure 2.8

illustrates the decline of grain consumption in both rural but mainly in urban China in

recent 10 years. The decline of grain ,consumption does not mean the total calorie

intake decreased, but rather that one can observe a switch to more diverse diets with

higher share of meat, fish, fruits, etc.

In fact, there is a substantial gap in the consumption patterns of urban and rural

consumers due to the inequality of income levels. For example, per capita grain

consumption in 2005 by rural households (209 kg) was almost treble that by urban

households (77 kg). Meanwhile, urban per capita consumption of pork, red meat,

poultry, eggs and aquatic products were much greater than rural consumption, as

showed in Figure 2.10 and 2.11. But the saturation of the pork market in urban China

is narrowing this gap between urban and rural pork consumption (Wu 2003).
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The significant increase of availability of meat and other dairy products boosted the

development of livestock production, and other agricultural products (Hubacek and

Sun 2001). As a result, diversified agriculture emerged in rural China, as many

peasants shifted from the traditional agriculture of crop cultivation to more

commercial agriculture. As Figure 2.9 shows, the share of livestock output almost

doubled from 16% to 30% in 1970 - 2000. The fishery production even grew at a

higher rate. One of the outstanding features in the changes of agricultural structure is

that the share of grain drastically declined from 78% to 50% (Gale 2002). Along with

the emergence of diversified food and changing demand, the industry of food

processing and manufacturing has been flourishing since the reform.

Figure 2.8: Grain consumption 1978-2005
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Figure 2.9: Share in agricultural output
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Figure 2.10: Rural non-cereal consumption
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Figure 2.11: Urban non-cereal consumption
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2.4.2.2 Housing and household appliances

The outstanding increase of expenditure on housing during the time period from 1978
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to 1990 both for rural and urban households (as shown in Figure 2.6 & 2.7) could

reveal people's willingness to improve their living conditions. Many rural households
rebuilt and extended their bungalows by using building materials of concrete bricks

and tiles instead of marl and wood. At the same time, per capita living space expanded

from 8.1 m2 to 24.2 m2
, and the lifespan of houses extended by more than 20 years

(State Statistical Bureau of China 2002).

In urban China, the problem of housing shortage was much more serious than in rural

areas. The per capita net living space for urban residents was only 3.6 m2 prior to

1978, mainly because of restrictions on private house ownership. Cities dwellers

urged the development of housing. Since 1981, the Housing Reform Policy was

introduced to solve the problems of urban housing shortages and poor housing

conditions. This policy encouraged private ownership and people buying their own

apartments. Meanwhile, the government, state owned enterprises, individuals and

overseas developers invested significant funds into the urban housing development.

Lin (1991) estimated that the total housing investment between 1979 and 1990 was

6.8% of total GDP. As a result, city dwellers started to move from previously tiny

bungalows or apartments to new Multi-stories apartment blocks or even high-rise

buildings, and per capita net living space increased to an average of 15.5 m2 in 2001

(State Statistical Bureau of China 2002).

People settled in more spacious living places that allowed them to shift their attention

to household appliances and other durable goods. For example, since the 1980s, urban

residents spent increasing amounts on large durable furniture (e.g. wardrobes, beds

and sofa etc). Household appliances have kept a constant share of urban household

expenditures for investment since 1985 (shown in Figure 2.7), while the categories of

household appliances have been changed. This development was also enabled by an

increasing rate of household electrification since 1990. Therefore, household electrical

appliances purchased by people quickly increased in both quantity and category

during the past ten years (as showed in Figure 2.12). For example, purchase of

refrigerator and colour TV in urban areas has both doubled in 2005 compared with

1990. Colour TVs have already covered over half of rural China, and other categories

of electric appliances have also rapidly spread through China.

Similarly, the latest consumer items such as air conditioners, personal computer,

mobile phones and automobile, were previously the sign of the wealthy, increased

significantly as well. Air-conditioners and personal computers have become essential
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household items for many families. Mobile phones are popularised in urban China;

every household had on average 1.37 sets in 2005 (State Statistical Bureau of China
2006). The dream of owning a car is a reality for only a few households but it is still a

far away goal to the mid/low income households.
The changes in consumption structure find also reflection in the production structure.
For example, the popularisation of household electrification dramatically boosted

household appliances industries. The electronic industry has become the largest

industry in China, which contributed about 8-10% of GDP, and 30% of export profits

(State Statistical Bureau of China 2006).

Figure 2.12: Urban Household Appliances
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2.4.2.3 Education

With the unfolding of the reforms and liberalisation, more and more peasants have

realised that increased education would make them more productive and employable.

Therefore, they are willing to pay more for education, especially for their children.

Rural residents view schooling as a means to migrate to an urban job; the people with

the highest level of education and skill are the most likely to enter non-agricultural

work, leaving the less skilled in farming (Gale 2002). As a result, almost 60% of the

youth population in rural China could complete the nine years compulsory education,

and 15% of them could be sent to colleges for further studies by 2001. Meanwhile,

almost 20% adult peasants joined part-time courses to learn about and acquire new

agricultural technology. Although the above figures are not outstanding, it is pleasing

to see the transformation of turning peasants into modern peasants, which speeds up

the commercialisation and modernisation in rural China.

In cities, people's ideology is progressively opening up to the West as they admit to

and try to reduce the disparity between themselves and Western lifestyles. It not only
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shows in spending on general living conditions, but also in the gradually increasing

investment in education and medical care. 'Go abroad to study or work' for the youth

generation (age: 19_36)12has become a popular topic in urban China today. The total

number of overseas people dramatically increased in the past couple of years. For

example in 1978, only 860 people, most of which were sponsored by government

went abroad to study or work, the figure leaped to 84.0 thousand in 2000, and doubled

again in 2001. By 2005, the total amount reached 118.5 thousand, 93% of them

financed by themselves (State Statistical Bureau of China 2006). Although 'Go

abroad' could not happen to everyone, it accelerates the process of people's

realisation of the West, and stimulates urban households to further aspire "Western"

lifestyles.

2.4.2.4 Diverse energy sources in villages and cleaner energy in cities

Adequate energy support is the basis of China's rapid economic development and

household modernisation.

Even to date, non-commercial energy like biomass still dominates rural residential

energy consumption patterns. For example, bio-gas, stalks, firewood and other non-

commercial energy sources contributed approximate 85% of rural residential energy

in 1980, and 74% in 2004. The overuse of biomass energy caused problems such as

land degradation of cultivated land and forest resources. Since the policy of biomass

energy conservation and forestation were established in the middle of the 1990s, the

absolute amount of biomass energy consumption has fallen from 250 Mtce" in 1995

to around 200 Mtce in 2000. However, the total amount of residential energy is

continuously growing, with major increases from commercial sources. The total

amount of commercial energy consumption grew remarkably by 3.6 times, from 41

Mtce in 1980 to 198 Mtce in 2005. Therefore, it is interesting to note that commercial

energy for rural residential uses seems to gradually replace biomass energy and

become the major energy source in the future. Coal consumption shows a descending

tendency after 1988, which demonstrates that coal is no longer the favourite source

for rural household daily use. In addition, the government encouraged people to use

fuel-saving stoves to replace the traditional ones since 1986. The fuel-saving stoves

could increase the thermal efficiency by 25% - 30% (Zheng 1998), as contributes to a

12 Theseare either self-supportedor supportedby theirparents/relatives.
13 Mtce: Million tons coal equivalent
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reduction of coal consumption. By the end of 1997, the fuel-saving stoves had been

installed in 180 million rural households, which accounted for 89% of rural

households (Wang 1998).

The improvement of urban people's living conditions significantly changed urban

residential energy consumption pattern. In terms of heating, most urban areas still

keep the traditional way of heating by burning coal". The increase of per capita net

living space is likely to result in more coal being consumed. However, the previous

type of individual heating has been switched to large-scale central heating as people

moved from bungalows to apartment blocks, which effectively enhanced energy

efficiency. Furthermore, many rich cites (e.g. Beijing) have introduced the 'home heat

control system' of heat supply to allow individual regulation of the heat. Furthermore,

the government provides LPG (liquefied petroleum gas) or gas pipelines for people's

daily cooking instead of traditional cooking by burning coal, to reduce urban coal

consumption. Per capita coal consumption for urban residential use rapidly declined

from 348.5kglyear in 1985 to 88.2kglyear in 1999, and further to 48.lkglyear by 2004.

But in contrast, the per capita residential electricity consumption increased more than

four times during the same period due to increased purchase of a variety of electronic

household appliances. Electricity has become the dominant energy consumed in all

Chinese cities, accounting for 59% of the whole household energy consumption (State

Statistical Bureau of China 2001).

2.4.2.5 Water reform invillages, potential scarcity in cities

Reflecting changes in lifestyles, also residential demand for water has significantly

grown since 1978, although it remains a relatively small share of total water

consumption, which is 3.8% in cities and 6.8% in the countryside (Ministry of Water

Resources 1997)

The per capita water consumption in rural area was 89 litres per day and 244 litres in

urban area in 2000. The reason of this noticeable gap is due to the lack of water

infrastructure in rural China (especially tap-water supply). Many rural residents still

need to extract water from wells. However, this indicates that rural residents would

have great potential demand once the infrastructure is constructed. According to the

1997 census of agriculture, only 17% of rural households had access to tap water

(USDA 2000). With the increase of peasant's net income level an increasing demand

14 Household heating mainly happens to the northern China.
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for water related household appliances such as kitchen sinks, washing machines, and

shower heads (standard urban amenities) is evident but hard to achieve due to the poor

water supply situation. Therefore, the demand for improving rural water infrastructure

has progressively increased in recent years. The Chinese government invested 4

billion Yuan in 2000 in order to construct water tap supply systems in rural China,

which has already covered 41% of the whole countryside by the end of 2002.

More and more efforts have been made in improving housing conditions in cities. If

one compares the present housing design standard with previous ones, now, over 70%

of the new apartments have flush toilets, kitchen sinks, showers and other basic

facilities, but only 34% of households had flush toilets prior to 1980 (Zhang 2003).

Many household appliances such as washing machines, dishwashers, refrigerators and

water heaters which were novelties in the early 1980's are now popular among urban

households. For each 100 families, 92 had washing machines, 52 had water heaters by

2001 (State Statistical Bureau of China 2002). All those housing improvements

contributed to the increase of per capita daily household water consumption from less

than 100 litres in 1980 to 244 litres in 2000, with the expectation to be further

increased to 280 litres per day by 2010. However, compared with American daily use

with some 400 litres per capita, one can see enormous potential for further increases

of residential water demand as lifestyles change.

2.5 Conclusion

China's case is an interesting example of how consumption patterns have been

changing in a relatively short period of time. A large share of the population (almost

70%) is still living in rural China following rural lifestyles. Often there is no adequate

infrastructure to provide for electricity and water and people have to gather their own

energy sources and collect their water from wells. The changing of their lifestyles

depends on the opportunities provided by income and availability of products and

infrastructure. The story of changes in lifestyles in China is still mainly a story of

economic development and of catching up with the rest of the world. People mainly in

urban areas are closer to a "Western Ideal" in terms of consumption of products and

services. Sustainability in consumption is not quite an issue yet. The first goal is to

achieve a certain standard before thinking about the environmental side effects.
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Environmental destruction in China has reached enormous scales already increasing

awareness and pressure on policy makers and production facilities. China has proven

to quickly develop from a developing country to an important economic player.

Maybe in terms of sustainability one can hope for a similar quick development. Given

the size of the economy and China's population one would hope so.

This chapter selected energy and water as environmental indicators to assess change

of people's consumption patterns and their direct impacts on natural resources over

the past five decades. The following chapters adopt input-output analysis to evaluate

the indirect impacts to energy and water resources and their related emissions.
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Chapter 3: Input-output Method and Tables

This chapter provides selective literature review on input-output analysis using key

articles and examples from the origin of the input-output concept, to the later

developments by Wassily Leontief, and more recent applications to environmental

studies.

Firstly section 3.1 traces the concept of production of circular flows back as early as

the 17th century by William Petty and Richard Cantillon, which can be regarded as

early conceptualisations of input-output systems designed to portray the relationships

of production in the economy. Then the author briefly discusses the Tableau

Economique developed by Francois Quesnay in 1750s and Wassily Leontief's later

contributions to the input-output method. Secondly section 3.2 describes the structure

of basic Leontief's input-output tables and its related mathematical meanings for

quantitative analysis. Thirdly section 3.3 introduces several more recent developments

based on Leontief's input-output techniques for environmental research, which

consists of "environmental extended input-output analysis", "economic-ecological

model", Leontief's pollution-abatement model", "hybrid input-output model",

"physical input-output model", input-output analysis to water research and finally

"structural decomposition analysis on energy issues".

3.1 Origin of input-output analysis

3.1.1 Early contributions

An input-output analysis is an analytical quantitative framework to investigate the

complex interdependences within an economy, which was developed by Wassily

Leontief in the late 1930s. However during the development, input-output analysis

borrowed some economic concepts from the earlier classical political economy such

as, productive interdependences within an economy (William Petty), social surplus

(William Petty) and general equilibrium analysis (Leon Walras). For example,

Leontief (1928) in his PhD dissertation stated that "Economic analysis should rather
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focus on the concept of circular flow which expresses one of the fundamental

'objective'features of economic life" (quoted after Kurz et al. 1998). In fact, the other

concepts can also be found in much earlier research. William Petty (1662) coined the

famous dictum "Labour is the Father and active principle of Wealth, as Lands are the

Mother" indicated the productive interdependence between different producers in a

system characterised by the division of labour and that of normal cost of production.

Petty believed the production, distribution and disposal of the wealth of a country are

well intertwined, and the problem of value as reflecting the interrelationship among

these aspects. Furthermore, -Petty (1662) put forward a concept of social surplus. He

expressed the agricultural surplus as com output minus necessary com input,

including the subsistence of labourers measured in terms of com, and identified it

with the rent of land (quoted after Kurz et al. 1998).

More than a century later, Richard Cantillon was greatly influenced by Petty's work.

He put forward a tripartite distribution of products between the proprietors of land,

farmers or undertakers, and assistants or mechanics (Cantillon 1755). Moreover,

Cantillon (1755) emphasised that all members in the society relied on the basis of the

production of land; and he also had a very clear concept of reproduction for the first

time (quoted after Kurz et al. 1998).

However, it can hardly conclude that these early researches in the seventeenth and

eighteenth century are the origins of systematic economic analysis or input-output

analysis.

3.1.2 Franeois Quesnay's tableau economique

Francois Quesnay, a French economist illustrated a two-sector expression, proposing

that the production of commodities relies on commodities, in his publication of

"Tableau Economique" in 1758. Containing a detailed example, his following

publication, named "Analyse de la formule arithmetique du Tableau Economique de

la distribution des depenses annuelles d'une Nation agricole", was published in 1766,

in the Journal de l'agriculture, du commerce et des finances. Marx appraised the

Tableau" ... an extremely brilliant conception ..."; (Marx 1956, p.344), quoted after

Kurz and Salvadori (2000). The Tableau was the foil against which Marx developed

his own schemes of reproduction (Kurz and Salvadori 2000). Leontief also praised

Quesnay's work in his 1936 paper that "The statistical study presented ... may be best
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defined as an attempt to construct, on the basis of available statistical materials, a

Tableau Economique of the United States for 1919 and 1929" (Leontief 1936, p.l05)

quoted after Kurz and Salvadori (2000).

The Tableau Economique portrays a circulated process of commodities and money

between the economic categories of production, distributions and expenditure which

is regarded as a reproduction process. The fundamental aim for Quesnay to design the

Tableau was to trace the origin of national revenue and the other factors which can

affect its size - factors which can be manipulated by economic policy aimed at

fostering national wealth and power (Kurz et al. 1998).

Quesnay identified two goods (grains and crafts) flows between three distinct classes

according to people's different economic role in the reproduction process:

(1) the productive class (fanners and agricultural labourers)

(2) the proprietary class (landlords or other natural resources owners)

(3) the sterile class (artisans and merchants)

The productive class, for example fanners who work in agriculture, usually produces

value in commodities that exceeds the cost of production. The difference between

t?tal proceeds and total costs by productive class is then distributed to the proprietary

class (e.g. landlords) as rent. The sterile class represents the employees who are

working in industrial and manufacturing sectors, for example the artisans; however

they do not generate a revenue or surplus". The prices of manufactures cover just

costs of production, including the means of subsistence of artisans. One of Quesnay's

important contributions is that he pointed out the intersectoral flows between

economic sectors (Kurz 'and Salvadori 2000). For example, farmers produce

agricultural goods but buy industrial products as means of production, artisans

purchase food and raw materials, and the landlords receive money as rent but need to

pay for agricultural and industrial goods and so on (Miller and Blair 1985). Both

agricultural and industrial commodities enter either directly or indirectly into the

production of both commodities. Quesnay emphasised that agriculture could generate

surplus, therefore fanners are the productive class, and manufacturing and commerce,

on the other hand, were considered unproductive, hence the expressions of Quesnay's

'classe sterile'are non-productive class. However, industry or manufacturing was

regarded as productive sectors later by Torrens (1821) and Marx «1894) 1967).

15 Quesnay is a physiocrat who believed that only agriculture can generate a surplus, a
produit net (Kurz et al. 1998)
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However services were always considered with suspicion and referred to as 'luxuries':

stated that "this surplus, or profit of ten per cent, they (i.e. the cultivators and

manufacturers) might employ either in setting additional labourers to work, or in

purchasing luxuries for immediate enjoyment" (Torrens 1821).The Tableau was very

inspirational for many economists especially also in today's discussion of the circular

economy and the environmental discussion. On the other hand Quesnay's work had

many shortcomings. The Tableau Economique did not separate producers and

consumers, and the physical flows and monetary flows were mixed in one table,

which cannot be operated as a mathematical model to clearly demonstrate the

economic flows in the economy (Miller and Blair 1985).

Another important theorist of the time was Karl Marx. He discovered that Quesnay's

Tableau was not restricted to the problem of quantities and growth: it also provided a

much needed general framework to determine the general rate of profit consistently

(Kurz and Salvadori 2000). This rate of profit was important for his political

economic vision. Marx clarified that a "determination of the rate of profit and relative

prices presupposes taking into account the total social capital and its distribution in

the different spheres of production" (Marx (1894) 1967 p.158 and 163), quoted after

Kurz and Salvadori (2000). Marx proposed a two-step procedure to determine the rate

of profit. Firstly, he specified the general rate of profit as the ratio between the value

(e.g. labour) of the economy's surplus product and the value (e.g. labour) of capital,

consisting of a constant capital (means of production) and a variable capital (wages).

In a second step this (value) rate of profit was then used to calculate prices (Kurz and

Salvadori 2000). Karl Marx based his theoretical observations on the value theory of

labour. According to his theory of value, labour is the only source of exchange value:

Commodities, therefore, in which equal quantities of labour are embodied, or which

can be produced in the same time, have equal value.

In addition and often forgotten, he was a serious student of agriculture. He realised

that production requires both labour and nature. The labour process for Marx is the

transformation of natural resources into objects of utility for humans (Perelman 1979).

Both Marx and Quesnay developed important ideas in their theories that reverberated

within the economics profession during their time and even until today. Many

classical economists in the 19th century believed only labour and/or capital are the

factor of production but neglected the inputs from the environment (for a discussion

see Hubacek and van den Bergh 2006); but other classical theorists such as Marx and
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Quesnay were very aware of the role of the environment and elements of their

theories can be found in modem ecological economics approaches.

3.1.3 Walrasian general equilibrium theory and input-output analysis

More than a century after Quesnay, another French economist, LOOnWalras (1874)

developed a theory of general eq~librium in economics. In his model, the economy

consists of consumers (residents) who intend to achieve the maximum utilisation and

the producers (firms) who maximise the profits. Labours and fixed capitals are

provided by residents for firms to produce goods which will be purchased by residents.

All the activities can be achieved in markets. Walras utilised a set of productions

coefficients that related the quantities of factors required to produce a unit of a

particular product to levels of total production of that product (Miller and Blair 1985),

which is very similar to the technology coefficients in Leontief's input-output model.

In the literature, on input-output analysis, one frequently encounters the view whether

Leontief's input-output model is an offspring ofWalrasian general equilibrium model.

In terms of Kurz and Salvadori (2000), Leontief also stressed at times that the general

equilibrium is the theoretical background of input-output analysis, his analysis and

that of Walras' are compatible with one another (e.g. Leontief 1941, 1966; Leontief

1986). However, there existing some differences between the two approaches.

Both approaches concerned the mutual interdependence between national income and

product 16 (Davar 2005). In Walras' approach this interdependence is directly

expressed, i.e., the prices of factors and commodities are adjusted by the change in

quantities. This is based on the supply curves of the factors and the demand curves of

commodities, assuming that prices are uniform and are measured in monetary terms.

The equilibrium equality required two types of price for commodities: the supply

(cost of production) and demand (consumption). However Leontief adopted a

naturalistic or material point of view to investigate the economy. He focused on

"directly observable basic structural relationships" (Leontief 1987, p860) and not,

like Walras's general equilibrium theory, on utility, demand functions etc., which

cannot be directly observed in the economy. In Leontief's input-output approach, this

16 The national income is determined as the value of used primary factors (quantities
multiplied by their prices) and the national product is determined as the value of demanded
commodities (quantities multiplied by their prices).
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interdependence is relatively implicitly expressed. Input and output is described in

money terms where prices and physical quantities are amalgamated in one magnitude

(Davar 2000). In other words, Leontiefs input-output model has one uniform

measurement, which is in monetary terms. It has to be pointed out that Walras's price

distinction between production factors and commodities can reflect better today's

economics.

Furthermore Leontief also enriched Walrasian general equilibrium model by adding

public sector and exports on in consumption (final demand) side, and taxation and

imports on the supply (primary input) side (Davar 2005). From that moment forward,

Leontief applied input-output analysis to various economic topics: dynamic aspect of

the economy, the choice of technology, world trade, environmental pollution and so

forth.

3.2 Leontief's basic input-output table

3.2.1 Structure of the input-output table

The significant step of a systematic input-output analysis was achieved by Wassily

Leontief in 1930, which was initially applied to determination of direct and indirect

input requirements for U.S. industrial sectors. After the Second World War, the

techniques of input-output analysis have been significantly enhanced while the

approach was spreading out to many fields (e.g. energy, materials flows and

environmental pollution) and applied in many other countries, regional or even village

or company level. And many multi-regional input-output models have been

constructed in recent years.

An input-output model or table demonstrates a detailed flow of goods and services

between producers and consumers. In other words, all economic activities could be

assigned to production and consumption sectors. As shown in Table 3.1, the basic

structure of an input-output table is divided into four quadrants, which are

intermediate transactions, final demand, and the primary inputs for production and

primary requirements to final demand. The quadrant of intermediate transactions

illustrates the intermediate deliveries between production sectors in an economy. The
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final demand quadrant describes the sales to the final consumers such as households,

governments and exports. Furthermore, an input-output table contains information of

primary inputs, which describes not only those necessary inputs for production such

as the fixed capitals, compensation of employees and taxes etc (the third quadrant). It

also describes the primary inputs to the final consumption (the fourth quadrant).

The core perspective of input-output analysis is that the technology of production of

goods and services are determined by final demand generated by users of those

products (Duchin and Lange 1994). The structure of an economy would be

coordinated or transformed in terms of the changes of people's consumption patterns

as people's lifestyle improves.

Table 3.1: Structure of Leontief's input-output table

Monetaryunit e.g.:Yuan

Activities Final Demand Total
Intermediate Households I Governments I Exports Output
Demand

Activities
Intermediate (Quadrant I) (Quadrant II)

Inputs
Primary Inputs (Quadrant lID (Quadrant IV)

Imports I
Total Inputs I

Modifiedfrom Bouhia (2001)

3.2.2 Mathematical representation of input-output analysis

The following section and the later chapters will concerns many mathematical

symbols, formulas and equations. Hereby, for clarity, matrices are indicated by bold,

upright capital letters (e.g. X); vectors by bold, upright lower case letters (e.g. x), and

scalars by italicised lower case letters (e.g. x). Vectors are columns by definition, so

that row vectors are obtained by transposition, indicated by a prime (e.g. x'). A

diagonal matrix with the elements of vector x on its main diagonal and all other

entries equal to zero are indicated by a circumflex (e.g. i ).

The mathematical structure of an input-output system consists of n linear equations in

n unknowns, as shown in Equation 3.1. The equation depicts that the value of total

production is equal to the intermediate deliveries plus final demand for each sector.

XI = ZII + zl2 +...+ zin + yp i = 1, 2, ... n

n: the number of economic sectors of an economy;

(3.1)
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Xi: the total output of sector i;

Yi the total final demand for sector i's product;
Zin: the intermediate delivery from ith sector to the nth sector.

A fundamental assumption in input-output analysis is that the inter-industry flows

from i to j (Miller and Blair 1985), represented as zij. By dividing zij by Xj (the total

output of /h sector) one can obtain the ratio of input to output z;jxh denoted as av,
which reflects the production efficiency with present technology. It so-called technical

coefficient or direct requirement coefficient that depicts that the requirement from

economic sector i to produce one monetary unit of product in economic sector j.

Zij

aij =- (3.2)
Xj

A aij is a fixed relationship between a sectors outputs to its inputs. Thus, there is an

explicit definition of a linear relationship between input and output and there are no

economies of scale, rather the Leontief model represents constant returns to

scale. Thus, doubling inputs will double outputs; reducing inputs by half will reduce

outputs by half. In essence, the coefficients represent the trade from economic sector

i to economic sector j. By accepting the notion of technical coefficients, Equations

(3.1) can be rewritten, replacing each zij by aijxj, as showed in Equation (3.3)

Xl =allxl +a12x2 +···+aljxj +···+alnXn + Yl

X2 = a21x1+ a22x2 + ... + a2jXj + ... + a2nXn +Y2

(3.3)

Xn = an1xl + an2x2 + ... + anjXj + ... + annXn +Yn

In matrix notion (Equation 3.4), A represents the nxn matrix of technical coefficients

(aij) and x and y is the corresponding nxl vector:

x=Ax+y
Byre-arranging above Equation 3.4 to get Equation 3.5:

(3.4)

(3.5)

where the term of (I - Art is. usually written as L= (I - Art which is the so-called

Leontief inverse matrix. Matrix L accounts for the total accumulative effects
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including both direct and indirect effects on sectoral output by the changes in final

demand. In other words, in order that every sector delivers one unit of final demand,

every sector has to produce not only its own final demand, but also the direct and

indirect requirements needed for its own and the other final demand. The direct

requirements in monetary term means the gross revenues received by producers for

final purchases of goods and services by consumers, government, and exports; and the

indirect requirements are the expenditures on factors of production to input supply

sectors triggered by the direct requirements.

Matrix L also reflects technical change in the economy, which are changes in the

input-output relations of economic sectors.

3.2.3 Leontiefs price model
The early version of Leontiefs input-output model was a ''physical model"

represented in monetary units. Leontief was the first to study the interdependence of

prices within an inter-industry framework for the US economy, which he labelled as

the "cost-price structure" formulation or Leontief price model (Bazzazan and Batey

(2003).

p=A'p+v

where p is a column vector representing the price of products, A' is the transpose

matrix of the technical coefficients matrix - A; v is the row vector of value added.

However, Leontief's price model has some problems when modelling the price

change in the real world. Firstly, the model assumed that all entrepreneurs always

expect prices to remain constant (Bazzazan and Batey 2003), which cannot be always

true in real world. Secondly, one may get different price equations if one evaluates the

factor of price changes over time without technological improvements by assuming

that the entrepreneur always maximises the profits and minimises the losses

(Morishima 1958; Solow 1959), quoted after Bazzazan and Batey (2003). Thirdly,

most of the developed price models are based on assumption that wages are a part of

value added, but in the case of Leontief's price model, value added is fixed even if the

price of goods has been changed (Bazzazan and Batey 2003).

Nevertheless, Leontiefs price model has been applied to interesting research such as

modeling long term economic structural changes (Johansen 1978; Duchin and Lange

1992 etc.). This model had also been applied by Leontief himself in addressing the

LEEDS~RS1TY LIBRARY
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environmental costs due to the economic activities already in the 1970s (Leontief's

pollution-abatement model). Both the model and its weaknesses are discussed in

section 3.3.3.

3.3 Input-output model applications for environmental analysis

Input-output analysis has been applied not only in economic and financial accounting,

but has also been extended to account for environmental pollution and abatement

associated with inter-industry activities. These studies have been conducted since the

second half of 1960s. Since then, many scholars have been devoted to extending

input-output analysis to the research of environmental problems. Now, the input-

output analyses have been diversified to many aspects and applied to various

economic-environmental related studies. The following texts discuss several extended

environmental input-output models, including both historical approaches and

contemporary developments. Following sections 3.3.1 and 3.3.2.2, and part of

contents in 3.3.2.1 are summarised based on Gloria (2000).

3.3.1 Cumberland's monetary environmental input-output model

The input-output analysis was applied for the first time to environmental issues by

Cumberland (1966). Cumberland's approach was to add rows and columns to an

input-output table in order to identify environmental benefits and costs resulted of

economic development and to distribute these to each economic sector. His model is

shown in Table 3.2. Row vector q and c measures the monetary estimates of any

environmental benefits or costs by sector correspondingly. Then, row vector r = q-c

which is the overall effects of any economic activity or development to the

environment. Column b represents the costs which would be required by the public

and private sectors to eliminate the environmental emissions and restore the

environment to its base period quality levels (Gloria 2000). Cumberland's model

adopts monetary values on environmental effects rather than measuring the emission

in physical terms. For many cases, the environmental impacts are hardly estimated in

monetary terms, and difficult to implement based on the qualitative nature of

environmental impacts (Richardson 1972), quoted after Gloria (2000). One of the key
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limitations of this model is that it does not incorporate the flows from the environment

into the economy and vice versa (Richardson 1972).. Cumberland's model is much

closer to a "cost-benefit" analysis of environmental effects than to an analysis of

studying the interdependences and interactions between the economy and the

environment (Richardson 1972).

Table 3.2: Cumberland's environmental input-output table

A Y X Costof
V Environmental
x' Restoration

EnvironmentalBenefit b
q (+)

EnvironmentalCost
c (-)

EnvironmentalBalance
r =tu-e)

Source: Modified/rom (Richardson 1972)

where, A is the Leontief technique matrix; V is the value added matrix; x is the

column vector of total output; x' is the row vector of total inputs; and y is the column

vector of final demand.

3.3.2 Economic-ecological model

3.3.2.1 Daly's and Isard's approaches and related discussions

Both Daly (1968) and Isard (1972) developed similar approaches to integrate

economic activities and environmental processes into Leontief's input-output

framework, so-called as "economic-ecological model". The model can picture

interactions both within the economic and the environmental system, as well as

between them.

As shown in Table 3.3, Daly's model (1968) employed a highly aggregated industry-

by-industry characterisation of the economic sub-matrix (agriculture, industry, and

households) and a classification of ecosystem processes, including life processes such

as plants' and animals and non-life processes such as chemical reactions in the

atmosphere, which could be captured in the sub-matrix of ''flows within the

ecosystem" (Daly 1968; Miller and Blair 1985), quoted after Gloria (2000). In order

to calculate technical coefficients Daly summed up across the rows adding up
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economic and ecological commodities. His model, however, had been criticised for

using non-comparable units by incorporating ecological commodities, with no market

prices, and economic commodities, which do have such prices.

Table 3.3: Daly's model

Industry Ecological
processes

~ Flows from.... Flows between'" industry to the= industries"Cl= ecosystem-- '"5 Q,I Flows from the.Q = Flows withinCl Q,I ecosystem to_ Col

the ecosystemCl e industry
~ Q"

Table 3.4: Isard's model

Industry Ecological
processes

C)....
S

'" s An Axe
Q,I 0
~ C)

:a r.t.l
Cla -e tU

C)Cl ·SoU 0 Aex Ace-0
C)

~

Source: Modified from (Miller and Blair 1985)

At the same time, Walter Isard (Isard 1972) developed a similar model as Daly did for

the economic-ecologic model, as showed in Table 3.4. The essential difference is that

Isard uses the coefficients of production directly from technical data (Miller and Blair

1985). Furthermore, Isard uses a rectangular matrix for his ecological system, which

allows for several ecological commodities per sector. He also included in his

"ecological sectors" biotic and abiotic substances, such as amounts of water, nutrients

or light, and amounts of organisms. Isard defined regions, land, water bodies, and air,

which are characterised by definite ecological processes and physical flows that are

mutually dependent. Inboth Daly and Isards' models, a wide variety of elements such

as land, water, chemical reactions in the air had been included and fully implemented.

Their models are the most comprehensive ones even in present days. However, the

data shortages concerning the environmental subsystem and the interaction between

the subsystems appear to be the most ambitious point (Richardson, 1972, Victor 1972,

Isard et at, 1971).

Besides the data problem, there are two additional issues regarding the above two

tables. Firstly, both models assumed linear relationships within the ecological system.

However, ecological processes are often non-linear and exponential in nature (Gloria

2000). Based on similar ideas, Steenge (1977) identified the feasibility of

mathematically formulating a viable ecosystem by using a classical activity analysis

approach - von Neumann's model. He agreed that extreme complexity is an essential

characteristic of most natural systems (Steenge 1977 p.98). However, there would be
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a remarkable state of equilibrium: "it is generally agreed that the same species are

found in the same habitat during the same seasons for many years in succession and

that they occur in numbers which are of the same order of magnitude" (Pimentel

1966), quoted after Steenge (1977 p.99). A von Neumann's approach allows one to

identify the stable, balanced development over time of a certain interrelated system.

However Steenge's approach performs well without interruption by human- or

economic-activities, such as pollution. Steenge stated" ... if their compositions would

be altered, or if they would disappear altogether, the system under study will easily be

changed or break down ... "(Steenge 1977 p.l04).

Secondly both Daly and Isard assumed that 'free' environmental resources remain

stable over time. Both Daly's and Isard's model could not capture the issue of

resource degradation, which may cause the change of the production functions (Kapp

1970; Richardson 1972; Guan and Hubacek 2007).

Since the Agenda 21 (United Nations 1992), a reflection of the overall environmental

quality has gradually become one of the vital indicators for evaluating a country's

competitiveness. The conventional indicator of the "gross national income" (GNI) is

not able to accurately assess a country's welfare of the general public taking the

natural resources depletions and degradations into account. Therefore, a reliable

"Green Accounting" has risen to become a vital instrument that can correctly reflect

the state of the environment and economy (Jao 2000). Keuning and Steenge (1999

p.6) stated that "a correct estimation of Green National Income thus requires a re-

calculation of National Income, simulating what would have been its size if the

economy had been sustainable". In recent years many developed countries, including

the United States, Germany, Canada, Japan, and the Netherlands have compiled the

green GNP account while some developing countries like Philippines, Mexico,

Indonesia, India, Thailand, South Korea and China have undertaken pilot runs under

the System of Integrated Environmental and Economic Accounting (SEEA) led by the

United Nations and the World Bank (Jao 2000). However, the "green GNP

accounting" lacks a ''fully developed" methodology to conduct such accounts (Denes

2002). The commonly adopted way to implement green accounting by imputing

artificial cost to environmental assets and adjusting GNP would be inappropriate

(Denes 2002). For example, Keuning and Steenge (1999) drew a parallel: "nobody

seriously proposes to value the 'cost' of unemployment and to 'subtract' this from

GDP'. Furthermore, they also pointed out that it would be fundamentally wrong to
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deduct the environmental costs from GDP, because the units are not the same as

claimed, thus such an algebraic operation is not justified, quoted after Denes (2002).

GDP is in "real money" that actually entered transactions - real dollars, whereas

imputed environmental costs are in a "hypothetical money unit' - imputed dollars

(Denes 2002). Chapter 4 designs a hydro-economic accounting model, which

indicates that it may make more sense to account the environmental resource and its

degradation from the perspective of physical availability in future green GNI

accounting developments.

3.3.2.2 Victor's approach

Daly's and Isard's models were too comprehensive to be practical enough to model.

Victor (1972) presented an approach that limited the scope of their models to accounts

only for flows of ecological commodities (free goods in Victor's model) from the

environment into the economy and of the waste products from the economy into the

environment (Gloria 2000). Victor believed that the information of Aee matrix in

Isard's model (e.g. Table 3.4) was too difficult to obtain. Instead, he adopted the

commodity-by-industry implementation approach which allows for multiple outputs,

the ability to express economic data in monetary units and ecological data inphysical

units (Victor 1972; Miller and Blair 1985), quoted after Gloria (2000).

Victor's work was the first study in which comprehensive estimates of material flows

were used to extend input-output analysis in order to quantify some of the more

obvious links between the economy and the environment of a country. Thus, the

model was represented by commodities, industries and their associated activities

(Victor 1972), as shown in Table 3.5.

Table 3.5: Victor's model

Commodities Industries Household Total Ecological
Consumption Output Commodities

Commodities U e q R

Industries V x S

Value added W

Total Inputs q' x'
Ecological p M

Commodities
Source. Modifiedfrom (Miller and Blair 1985)
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In terms of Gloria (2000), the definition of the elementsinTable 3.5 is below:

Economic sectors:
U = inputs of economic commodities by industries, and is referred to as the 'use'

matrix;
V = outputs of economic commodities by industries, and is referred to as the 'make'

matrix;

e = the vector of final demand;
q = The vector of economic commodity gross outputs,

x = the vector of industry total outputs;
q' = the sums of columns of matrix V showing total output by economic commodities,

x' = the sums of columns of matrices U and W showing total economic inputs of

industries.

Ecological Sectors:
R = outputs of ecological commodities discharged as a result of final demand for

economic commodities,
S = discharges of ecological commodities by industries,
P = inputs of ecological commodities used in conjunction with the final demand for

economic commodities,
M = inputs of ecological commodities used by industries.

Victor pointed out that all economic activity requires inputs of raw materials (Gloria

2000). These inputs might be provided by privately owned parts of the environment,

such as coal from mines, or rival but non exclusive environmental goods without

specific property rights, such as the atmosphere and the oceans. A material flowed

into the economy to support either production or consumption is referred to as an

ecological commodity. However, once a material is processed for further use or is

satisfying for people's consumptions, it is then referred to as an economic commodity.

When it is discarded by either producer or consumer and leaves the economy, it

becomes once again an ecologicalcommodity with degraded quality (e.g. emissions)

(Victor 1972), quoted after Gloria (2000). However, Vietor did not solve the issue of

resources quality degradations.
The Victor model is a commodity-by-industry table with additional rows of ecological

commodities inputs P and M, and columns of ecological commodities outputs R and

S, as shown in Table 3.5. Here the ecological outputs are equal to the ecological

inputs consistent with the materials balance assumption (Gloria 2000). This assumes
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that the model is a closed economy and there is no accumulation of mass in the

economy itself (Victor 1972), quoted after (Gloria 2000).

3.3.2.3 Later developments on the economic-ecological model

Since the early attempts by Isard and Daly, the economic-ecological has been

extended to incorporate the full range of sectors in linked ecosystems (see e.g.Clark

1976; Bockstael et al. 1995; Lange 1998). Very recently, Jin et al. (2003) developed

an economic-ecological model by merging an input-output model of a coastal

economy with a model of a marine food web, and applied it to the marine ecosystem

in New England. Their modelling approach links the workings of an economy, with a

so-called matrix of economic exchanges, with those of a related ecosystem, known as

matrix of ecological exchanges. In order to make this model feasible, they paid careful

attention to characterise and study the linkages between the two types of systems.

They linked the economic and ecological systems by using two matrices of

coefficients. The first one is a matrix of ecological to economic exchanges, which

suggests that trophic levels in the marine ecosystem can be treated as analogies of the

industrial sectors of an economy (Jin et al. 2003). The second one is called matrix of

economic to ecological exchanges, which can make the external effects of industrial

activities on the ecosystem more apparent. They also developed natural measures of

the ecosystem impacts of changes on final economic demand (so called "resource

multipliers") that incorporate these linkages explicitly.

3.3.3 Leontief's pollution-abatement model and extension

Leontief (1970) developed the pollution-abatement model to account the

environmental emissions. The model is shown in Table 3.6. The row vector of

pollution represents the amount of emission each sector generated for its production.

Its delivery to final demand is the amount of pollutants households are willing to

accept. In order to balance the table, the 'anti-pollution' column was introduced to

account for the total eliminated emissions by pollution abatement industries. With this

model he was able to estimate the direct cost of abatement, the amount of pollution

abated, and the indirect impact on gross output (Rose and Miernyk 1989). This

extended model has been extensively discussed by Leontief and Ford (1972), Chen

(1973), Leontief(1973), Steenge (1978), Lowe (1979), Qayum (1991), Arrous (1994)
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and Luptacik and Bohm (1999). But it was also criticised for its sole focus on the

emission side and for ignoring the material balance principle (Victor 1972).

Another key weakness of Leontief's pollution abatement model is related to the price

aspect of the model (Steenge 1978, 1999). The emitted pollution in Leontief's

pollution abatement model is endogenised (Steenge 1978). According to Steenge

(1999), there is a duality between price effects and the real world. The equilibrium

price can be calculated by identifying appropriate information. However if there are

any externality effects in the system, the simple duality would break down. Instead,

one needs to seek other options to allocate the costs of the abatement of pollution such

as the ''polluter pays principle" (Steenge 1978, 1999). The polluter pays principle has

been debated for over four decades, the main reason is that it hardly identifies who is

the' ''polluter'' as the economic system is interdependent from the perspective of the

input-output approach. The polluter pays principle is basically based on "direct

pollution" (Steenge 1999). But recently, the concept of "shared responsibility has

been advocated (see Lenzen et al. 2007). Furthermore, Steenge (2004) created a link

between the concept' of shared responsibility, and the Coase Theorem (Coase 1960).

By adopting the Leontief's pollution abatement model, Steenge (2004) confirms

Coase's original idea that overall allocation of resources will be efficient independent

of allocation of property rights by using a numerical example, given no income effects

and zero transaction cost (Lenzen et al. (2007).

Ayres and Kneese (1969) presented a similar extension to Leontiefs pollution

abatement model, one that incorporates residual flows and pollution abatement. The

major difference in the Ayres-Kneese model is that it includes a further elaboration to

deal explicitly with raw materials extracted from the environment as well as waste

materials returned to the environment (Ayres 1978). The fundamental idea of the

model is that of materials balance.

Table 3.6: Leontief's pollution abatement model

Monetary unit e.g.: dollars

Manufacturing Services Pollution Final Total
Abatement Demand Output

Manufacturing
Services
Pollution
Generation

Source: Modified from (Miller and Blair 1985)
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3.3.4 Hybrid input-output models

Environmental goods such as energy or water in traditional input-output analysis will

be attributed to the final demand sectors via intermediate deliveries. The prices are the

key element to handle the allocation. However, one of the basic assumptions of input-

output analysis is price uniformity of products sales (Bullard and Herendeen 1975).

For example, in an energy input-output analysis different production or final demand

sectors would pay the same price but in reality different prices per unit of energy.

Thus the deliveries from the energy sectors, in monetary terms does not correspond to

real physical deliveries (Bullard and Herendeen 1975; Wilting 1996; Hubacek and

Giljum 2004). The problem was first recognised by Bullard and Herendeen (1975),

who developed the 'physical units' method (or so-called hybrid or hybrid-unit model)

as a solution for energy deliveries, which represents the deliveries of the energy

sectors in the input-output table in physical units. The hybrid input-output table

extended the Leontief's input-output table by adding energy sector(s) in physical units

such as British thermal units, barrels of oil, or kilowatt. Therefore, the whole hybrid

input-output table and its related technology coefficients can be mixed with monetary

and physical units (not necessarily in the same physical units). For example, in the

two-sector case, where the first sector is an energy sector and the second is a non-

energy sector, the calculation of the matrix A* (where * refers to mixed units) gives

the following hybrid units (Bullard and Herendeen 1975):

A*=[!; Bi]
Btu $

The invention of the hybrid input-output table was for accounting energy

requirements for the commodities. From a lifecycle analysis point of view energy is

consumed not only in the production process, but also in transport and waste disposal.

Therefore, the hybrid 10 framework was used to compute total energy consumption,

including both directly and indirect energy requirements (Bullard and Herendeen

1975). The hybrid method complies with two key principles, mass balance (e.g. the

weight of a product should equal the total weight of the materials of which the product

is composed of plus the waste) and the financial balance principles for the monetary

sections of the table. The applications of the hybrid method have been spread to a

variety of environmental accounting, including land and water pollutants (Johnson
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and Bennet 1981; Duchin et al. 1993), indicators of air pollution, C02, S02, NOx etc.

(Duchin and Lange 1994), and specific materials such as plastics (Duchin and Lange

1998). Nakamura and Kondo (2002) developed a hybrid input-output model to deal

with waste treatment and management from the perspective of lifecycle assessment.

The core of their waste input-output model is to deal with the dynamic nature of waste

treatments by incorporating an engineering process model of waste management. For

engineering models of waste management, the level and composition of waste

feedstock entering into the system are "exogenously" given. Integrated into their

waste input-output model, these variables become "endogenous" and can be

determined by the interaction between goods production and waste treatment for a

given level and composition of the final demand.

Since the price of energy differs across the sectors and household consumption, the

hybrid input-output approach is usually better than the monetary approach when one

needs to study or project sectoral energy consumptions. However when one conducts

structural decomposition analysis'", the hybrid model would induce arbitrary results

(Dietzenbacher and Stage 2006). Structural decomposition analysis usually

distinguishes the changes of final demand between structure (Y.) and total volume (yv).

Itwould be problematic if one evaluates the changes of the total final demand volume

(yv) by using a mixed-units hybrid model, because an economically meaningless sum

of monetary and energy units would occur for the factor of Yv, which Dietzenbacher

and Stage (2006) referred as mixing oil and water. Therefore, the stability of monetary

input-output model may be better than the hybrid one in implementing structural

decomposition analysis. This thesis, Chapter 6 conducts an IPAT-IO structural

decomposition analysis by using monetary unit input-output tables and only an

extended row representing C02 emissions in physical units.

3.3.5 Physical input-output models

PlOTs have been discussed on a theoretical level for quite a while (e.g. Georgescu-

Roegen 1979; Strassert 2001) and have been empirically used in biology (e.g. Hannon

and Ruth 1997) and applied to ecosystems studies. Only in recent years one has

witnessed the publications of physical input-output tables representing material flows

17 Pleasereferto section3.3.7andChapter6 for detailsof literaturesandmathematical
principleof structuraldecompositionanalysis(SDA).
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in economies (Kratterl and Kratena 1990; Kratena et al. 1992; Stahmer et al. 1997;

Pedersen 1999; Stahmer 2000). The physical input-output tables record all the flows

and transactions of goods and services in physical units (e.g. kilowatts)

(Dietzenbacher 2005). PlOTs seem to be a powerful tool in current input-output

analysis, especially in the fields of material flow accounting, energy accounting, land

use and their implications to pollution diversion and resources management.

The basic theory of PlOTs is the material/energy balance principle which is expressed

in such way that net material accumulation is equal to the excess of total inputs over

total outputs. Therefore in terms of this principle, in a PlOT, the sum of all physical

inputs and outputs has to be equal for each economic sector as well as for

consumption activities of private households (Hubacek and Giljum 2004).

Generally speaking, a PlOT comprises not only the production flows as the traditional

input-output table does, but also material flows between the natural environment and

the economy. In addition, a PlOT opens the black box that remains in Material Flow

Accounting (MFA) and illustrates the flows between the different sectors and to

various types of final consumption within an economic system (Hubacek and Giljum

2004). The following figure makes the comparison between monetary input-output

table and physical input-output table. According to the information in the 1st quadrant

of the intermediate activities with the economy, the PlOT is directly comparable to

the MIOT, but with physical units instead of monetary units (Hubacek and Giljum

2004). The major difference between the two tables is that the environmental sector in

the PlOT can be seen as a source of raw materials on the input side (3rdquadrant) and

as a sink for residuals (solid waste and emissions to air and water) on the output side

of the economy (2nd quadrant) (Stahmer et al. 1997). In other words, in a PlOT the

environmental products enter the economic system as primary inputs from the nature

whereas in a MIOT environmental products are generated and used for production

within the economy (Hubacek and Giljum 2004).
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MIOT
(in monetary terms)

PlOT
(In physical terms)

Although there are many similarities between a MIOT and PlOTs, they are two

different systems of input-output analysis. Furthermore, it cannot be converted

between these two tables even if with the detailed information of prices provided

(Stahmer et al. 1997; Hubacek and Giljum 2003; Giljum et al. 2004; Dietzenbacher et

al. 2007). In statistical publications each product has a corresponding uniform price.

However, in published input-output tables, this price is even further from reality since

economic sectors in the 10 table are comprised of many sub-sectors (depending on the

level of aggregation). For example, a factory may produce several products, but it will

be classified in a certain economic sector in terms of its major/primary product.

Furthermore, even the same product can be sold at different prices, e.g. cheaper prices

(discounts) for consumers oflarge quantities (Dietzenbacher et al. 2007).

PlOT has the same problem as MIOT as it uses one unit to aggregate very different

qualities. MIOT uses $ and PlOT uses tons. The discussion in Hubacek and Giljum

(2003) versus Suh (2004) and Giljum, Hubacek and Sun (2004), Giljum and Hubacek

(2004) and (2007), Dietzenbacher et al. (2007) was that the structure of a PlOT

despite the aggregation problem is closer to biophysical realities (and thus

environmental problems) than the MIOT.

1· quadrant 2ndquadrant

Interindustry Final
deliveries demand

3111quldrant

vatueadded
Imports

1"quadrant 2ndq_uadrant

Interindustry Final demand
deliveries Residuals

3'" quadrant
PrImary

NIOUrcelnputs
Imports

3.3.6 Input-output analysis and water consumption and pollution

The applications of input-output analysis to water issues were relatively rare in the

last few decades. One of the earliest water input-output model was conducted by

Carter and Ireri (1970) who developed an interregional 10model extended by water

Source.from (Hubacek and Gi/jum 2003)
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use coefficients to calculate water embodied in product flows between California and

Arizona. Harris and Rea (1984) studied how to effectively allocate water resources

among the economic sectors in order to maximise value added, and determined the

marginal value of water for different users. Duchin and Lange used water use

coefficients for Indonesia (1993) and on a global level (Duchin and Lange 1994).

Lange (1997) in her work on Namibia shows how natural resource accounts (NRA)

comprising six categories of water supply and its uses can be applied to economic

analysis. Lange (1998) in her study on Indonesia shows how NRAs together with

input-output modelling can be used to evaluate different policies such as food self-

sufficiency given changes in economy and society and given a certain resource

endowment. Since the late 1990s, a number of studies evaluated the internal and

induced effects to water resources resulting from economic production and domestic

demand, especially in water scarce regions and countries (e.g. Y00 and Yang 1999;

Lenzen and Foran 2001; Duarte et al. 2002; Leistritz et al. 2002; Wang et al. 2005).

Bouhia (2001) developed a hydro-economic model by combining a water resource

allocation model based on a linear programming model with a static input-output

model. Water is represented in monetary and physical terms balanced in material

balance accounts. Bouhia developed a set of water multipliers allowing her to assess

the effects of different development scenarios of water demand. She also added a

column of 'change in the Natural Stock of Water' in final demand quadrant of the

input-output table to deal with wastewater. In her assumption, wastewater is deposited

after the first production process and withdrawal by other sectors afterwards. By

doing this the wastewater flows back to the whole economy again.

Only a handful of input-output studies were conducted with regards to water issues in

China. For example, Xie Mei et al. (1991) applied input-output modelling to the

Beijing urban water systems. Chen (2000) inserted three water sectors (fresh, recycle

and waste water) into the intermediate demand section of input-output model to

estimate the economic value of water in Shanxi province. Hubacek and Sun (2005)

adopted input-output techniques to conduct a scenario analysis forecasting the water

consumption for China's economy in 2025. There innovation was to match watershed

boundaries with regional input-output boundaries with the help of a hydrological

model that allowed them to reallocate water flows.

Despite of all of these advances, water resources need to be assessed in terms of both

water quantity and water quality, Existing studies have rarely taken water quality
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aspects into consideration. There are only very few exceptions including water

degradation into input-output frameworks. For example, Thoss and Wiik (1974)

developed a generalised 10model for residuals management, which was applied for

water pollution in the Ruhr. Fersund and Stram (1985) developed a macro-economic

model accounting for water pollution at a national level for Norway.

For the case of China, Ni et al. (2001) conducted a regional study on one of the fast-

growing economic zones, Shenzhen, South China; they added a pollution sector into

the input-output tables, aimed to adjust the economic structure for minimising the

COD (Chemical Oxygen Demand) level in industrial wastewater by giving a predicted

maximised GDP. Okadera et al. (2006) accounted for water demand and pollution

discharge (carbon, nitrogen and phosphorus) based on input-output analysis for the

city of Chongqing, China. Most of these studies add consumption coefficients and/or

a set of pollution coefficients for the respective economic sector (and in some cases

for households as well) but the linkages between consumption of water dependent on

the available water quality on the input side and the pollution on the output side has

not been explored. This necessitates an approach similar to the ones developed in

integrated ecological economic input-output models, following the definitions in

Miller and Blair (1985, pp.236)18,which allow accounting of water flows throughout

economic and hydrological systems. Chapter 4 will follow up the discussion and

develop an integrated hydro-economic framework to account for both flows of water

quantities and qualities between the economy and the environment.

3.3.7 Linking IPAT with structural decomposition analysis

The Impact = Population x Affluence x Technology or IPAT equation was developed

to a further a debate between Paul Ehrlich and John Holdren, on one side, and Barry

Commoner, on the other side, on which driver is the most important in contributing to

environmental degradation. Ehrlich and Holdren (1971) initialised the construction of

the framework by emphasising that population was a major driver to the

environmental crisis, showing as: I = P x F, where I is total environment impact, Pis

population size, and F is the impact per capita. Commoner and his colleague (1971) at

18 "Economic-Ecologicalmodelsresult fromextendingthe interindustryframeworkto include
ecosystemsectors,where flowswillbe recordedbetweeneconomicand ecosystemsectors
alongthe linesof an interregionalinput-outputmodel" (MillerandBlair 1985,pp.236)
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the first time used the IPAT notion to quantify the pollution triggered by economic

development in the United States since the post-war. In the following year,

Commoner (1972) designed a model of I = Population x Economic good/Population

x Pollutant/Economic good, population represents the U.S. population quantity in a

given year or the alteration in population over a defined period. Economic good refers

to the quantity of a specific good produced or used during a given year also referred to

as "affluence". Pollutant refers to the quantity of a particular pollutant discharged and

therefore estimates "the environmental impact generated per unit of production (or

consumption), which reflects the nature of the productive technology" (Commoner

1972), quoted after Chertow (2001). Commoner criticised Ehrlich's and Holdren's

opinion that population growth is the dominant driver in environmental degradation.

He argued that neither the growth of population nor affluence could explain the pace

of environmental degradation in the U.S. since the Second World War. He concluded

that technology is a key driver in environmental degradation.

Thereafter, the IPAT identity is regarded as an easily understandable, frequently and

widely utilised framework for analysing the driving forces of environmental changes

(e.g. Harrison 1993; Dietz and Rosa 1994; Raskin 1995; Dietz and Rosa 1997;

Chertow 2001; York et al. 2002; Hubacek et al. 2007). In recent years, much research

was done to further develop the IPAT framework by incorporating more factors into

the equation. For example, Waggoner and Ausubel (2002) using a modified IPAT

equation to assess the potential actions and policy levers to alter CO2 emissions; they

further disaggregated the technology ("T') in the IPAT equation into energy

consumption per unit GDP (C) and C02 emissions per unit of energy consumption (1)

to form a modified identity of I=PACT. Similarly, Schulze (2002) pointed out that

personal behavioural choices significantly affect environmental impacts, therefore the

equation should be extended to I=PBAT. However, the driving force of ''behaviour''

(B) was not mathematically defined in Schulze's letter to editor, it can make its

applications problematic (Diesendorf 2002; Roca 2002; York et al. 2003).

Furthermore, Rosa and Dietz (1998) reformulated the IPAT equation into a stochastic

model, calling it STIRP AT for Stochastic Impacts by Regression on Population,

Affluence and Technology; and this model has been further improved by York et al.

(2003). The major contribution of STIRPAT model is to allow accounting for non-

monotonic or non-proportional effects from each driving forces (York et al. 2003).

The main strengths of IPAT and other varieties are that it identifies precisely the
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relationship between the driving forces and environmental impacts by a neat

specification; further, it accounts an integrated impact by all of the driving forces as

changes in one factor are multiplied by the other factors. In the other word, the JPAT

identity implies that no one factor can be held singularly responsible for

environmental impacts (York et al. 2003).

One of the key limitations of JPAT and its varieties is that it can only account for the

direct impacts to the environment by the driving forces. Furthermore, it is too

aggregated to clearly distinguish or allocate the sources of emissions are actually from

which particular industry in the economy. Input-output modelling is a much more

suitable tool to evaluate both direct and indirect environmental impacts by examining

the flow of goods and services and all intermediate transaction among the producing

and purchasing sectors of a country or a region (Leontief 1986). The JPAT approach

can also be referred to as a decomposition tool as it decomposed impact into a number

of contributing factors.

Decomposition analysis based on input-output techniques is usually referred to as

structural decomposition analysis (SDA) (Hoekstra 200S). Rose and Casler (1996,

pp34) define SDA as an "analysis of economic change by means of a set of

comparative static changes in key parameters in an input-output table." SDA has

been applied to analyse people's demand, technology improvements and other driving

forces to contribute the environmental changes. An important feature of the 10 SDA

is its capability to distinguish the direct and indirect components of the observed

sectoral changes or driving forces (e.g. changes in final demand, productivity changes

etc) (Hoekstra and van der Bergh 2002). SDA is a particularly powerful method to

account for the indirect effects on one production sector of structural and productivity

changes that take place in the other production sectors and are transmitted through the

intermediate transactions. For example, Hulten (1978) has emphasised the distinction

between "productivity change originating in a sector and the impact of productivity

change on the sector through intermediate inputs coming from other sectors" (see

Hulten 1978, pSll). Casler and Rose (1998) claimed that SDA has become a popular

methodology for several reasons. First, it overcomes many of the static features of 1-0

models and enables the evaluation of changes over time in technical coefficients and

sectoral mix. Secondly, SDA enables the analyst to examine responses to price

changes, which are only implicit even in value-based 1-0 tables. Thirdly, SOA is a

pragmatic alternative to econometric estimation, which requires a long time series of
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data; in contrast, SDA requires only at least two 1-0 tables, one for the initial year and

one for the terminal year of the analysis.

The first application of SDA to environmental issues can be traced back to the

beginning of the 1970s. Leontief and Ford (1972) studied ordinary air pollutants (e.g.

Particulates, SOx,CO, hydrocarbons and NOx) produced by the US economic growth

since the end of 1950s. They utilised a set of emission coefficients appended to

Leontief's augmented environmental 10 model in order to generate the preliminary

findings that the growth effect was more prominent than structural shifts or aggregate

technological change (quoted after Casler and Rose 1998). Most of earlier SDA

studies have been focused on energy consumption in the developed countries or

regions (see e.g. Ploger 1984; Gould and Kulshreshtha 1986; Gowdy and Miller 1987;

Chen and Rose 1990; Rose and Chen 1991; Chen and Wu 1994; Han and

Lakshmanan 1994; Jacobson 2000)19.

Since the early of the 1990s, some researches have been extended to examine the

major drivers of changes in green houses gases (GHGs) emissions such as CO2, S02

or NOx. For example, Common and Salma (1992) adopted the Leontief monetary 10

model to derive the changes of C02 emission in Australia over four time periods.

They decomposed the changes of CO2 emission into three driving forces, changes in

households' final demand, fuel-mix changes and technological improvements. A

similar type of analysis was implemented by Proops et al. (1993) for Germany with

comparison of the U.K. Casler and Rose (1998) used hybrid 10 model to analyse the

impact of various influences on C02 emissions for the U.S. economy over 1972-1982.

Some SDA studies on China have also been performed previously, but have used

different methods and addressed different issues. An earlier study by Lin and

Polenske (1995) analysed the changes in Chinese energy consumption between 1981

and 1987. They found that consumption growth outweighed efficiency improvements

and that structural changes were relatively small. Increased expenditure on capital

products was the main factor increasing emissions, followed by households, with the

emissions avoided by imports growing faster than the emissions embodied in exports.

Garbaccio et al. (1999) analysed the changes in the energy-output ratio from 1987 and

1992 and Andresosso-O'Callaghan and Vue (2002) analysed the changes in economic

19 This summaryis basedonHoekstra's summarytable of environmentalSDAstudies
(Hoekstra2005).
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output from 1987 to 1997. Both studies found efficiency improvements were most

important with only minor structural changes.

One can see that there are significant overlaps between the decomposition analyses by

[PAT and SDA. For example, the drivers in [PAT equation, affluence could be

represented by final demand; technology can be better described by the Leontief

inverse matrix. Chapter 6 illustrates the combination between [PAT and SDA, then

describes theoretical backgrounds and mathematical principles of IPAT-10 structural

decomposition analysis. Then the author applies eight time-series input-output tables

and relative data to the IPAT-10 SDA model to assess the drivers of C02 emission

since the economic reform.
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Chapter 4: Development and Implications of a Hydro-

Economic Accounting and Analytical Framework for

Water Resources: a case study for North China20

Water problems in China have been investigated in depth in a number of studies,

especially with regards to the disparities of regional water availability (Wang and

Davis 2000; Wiberg 2002; Wiberg 2003) and direct consumptions (see the literature

review in section 3.3.6). However most of previous studies have emphasised the

amount of water withdrawn but rarely take water quality into consideration. In other

words, the water output side (return flows) has mainly been ignored. The quality of

the return flows usually changes; the water quality being lower than when it entered

the production process initially. It is especially important to measure the impacts of

wastewater to the hydro-ecosystem after it is discharged. Thus, water consumption

should not only account for the amount of water inputs but also the amount of water

contaminated in the hydro-ecosystem by the discharged wastewater.

This chapter firstly introduces China's water situation. Then an integrated economic-

ecologic model is proposed by merging the regional input-output tables of China with

a mass balanced hydrological model. This method creates the links and interactions

between the economy and the hydro-ecosystem. Furthermore this chapter further track

water consumption on the input side including rainfall, surface and ground water;

assign qualities for wastewater leaving the economy to different hydrological sectors

(e.g. surface and ground water bodies); and measure the amount of contaminated

water within the hydro-ecosystems. Finally the author applies the model to the case of

North China where has been considered as one of the most water scarce regions in the

world in order to evaluate the amount of water consumed and contaminated by

economic activities.

20 The majority of this chapter has been published in Journal of Environmental Management,
entitled "A New Integrated Hydro-economic Accounting and Analytical Framework for
Water Resource Consumption: A Case Study for North China" (Guan and Hubacek 2007). In
addition, this chapter has been presented in the Intermediate International Input-output
Conference, 26-28.July 2006, Sendai Japan.
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4.1 A synopsis of China's water situation

China is geographically large yet relatively poor in terms of water resources per capita,

1/3 of the world average. At the same time China's water resources are unevenly

distributed. Due to considerable regional differences in water supply and demand and

for the purposes of this chapter, it is necessary to model water consumption on a

regional level. Therefore China is divided into eight hydro-economic regions " to

establish water accounts (shown in Figure 4.1) based on watersheds and provincial

level administrative boundaries (see Hubacek and Sun 2001,2005.).

Figure 4.1: Hydrological- Economic Regions in China
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For example, North China has only about 20% of total water resources in China.

Generally speaking, in those areas with more water resources, the total water

consumption is also high. However, in China, due to the diverse climate types,

production structure, total water consumption styles and uneven distribution of

population, the water utilisation situation does not coincide with the distribution of

21 The eight hydro-economic regions were distinguished in the "Land Use Change (LUC)"
model, conducted by the LUC Group, International Institute for Applied Systems Analysis
(IIASA). The eight regions are as follows: North, including Beijing, Tianjin, Hebei, Henan,
Shangdong, and Shanxi; Northeast, including Liaoning, Jilin, and Heilongjiang; East,
including Shanghai, Jiangsu, Zhejiang, and Anhui; Central including Jiangxi, Hubei, and
Hunan; South, including Fujian, Guangdong, Guangxi, and Hainan; Southwest including,
Sichuang, Guizhou, and Yunnan; Northwest, including Nei Mongol, Shananxi, Gansu,
Ningxia, and XinJiang; and Plateau, representing Tibet and Qinghai.
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water resources. However, the main water consumers and polluters, such as irrigated

agricultural production, paper making and chemistry are mainly located in the

northern part, which causes the tremendous demand for total water consumption in the

northern basins and enormous impacts on local hydro-ecosystem, especially in the

Haihe River, Huanghe River and Huaihe River Basins. Table 4.1 lists and compares

the per capita water availability for each of the economic regions. The total fresh

water resource in North China is 84, 350 million rrr', surface water accounts 65% of

total, 55,151 million m3; and groundwater takes the rest 35%, 45,252 million m
3
. In

addition, the quality of the water is degraded due to the large-scale industrialisation

and urbanisation, which further burdens the ability of water supply. Ministry of

Hydrology (1997) reports that about 65%-80% of rivers in North China no longer

support any economic activities.

Table 4.1: Availability of Water Resource Distribution

Region Total freshwater resource
(108m3

)

Populationin2000 Per capitawater
(in 1000s) (inm')

North
Northeast

East
Central
South

Southwest
Northwest

843.5
1,529
1,926.2
2,761.2
5,190.8
6,389.8
2,115.6

311,100 271.1
106,334 1,437.9
198,149 972.1
167,256 1,650.9
129,942 3,994.7
243,414 2,625.1
111,128 1,903.8
ChinaAverage 2,271.0
WorldAverage 6,981.0

Source: (State Statistical Bureau of China 2001; Wiberg 2002)

4.2 Construction of a hydro-economic accounting framework

The core of the structure of this model is the combination of a water quality model

with an ecological-economic input-output model. In order to set up the framework of

a water accounting model, it is important to firstly understand how water flows in

nature.

4.2.1 Hydrological cycle and water demand

Water exists in the sea, in the air, on the surface or under the ground and in different

forms, liquid, solid or gas. Water movement can be perceived as a closed system of
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water circulation, called hydrological cycle, as shown in Figure 4.2. Water is mainly

extracted from two sources: surface water from rivers, lakes, steams and reservoirs,

recharged from precipitation and snow melting; and groundwater from porous layers

of underground soil or rock, which serve as aquifers; it is renewed through rain and

snow melt that infiltrates the soil.

Figure 4.2: Hydrological Cycle
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Figure 4.3: Water Demand for the Economy
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As mentioned previously, water is one of the primary inputs and involved the whole

economic productions chain. Figure 5.2 shows the water allocation to different users

and the return flows discharges back to the original supply sources after the

consumption activities. Agriculture is the major water consumer, particularly for

irrigation, 74% of the total amount of water consumption is used for irrigations in

China. Water is also consumed by industrial and domestic usage, of which wastewater

is either recycled or reused for other sectors, or return back to the surface water.

Traditionally, the term of 'water demand' for the economy only consists of the

amount of net water consumed for economic production and domestic usage; however

the polluted water resources resulting from the return flows after economic activities

back into the ecosystem are usually not accounted for. The quality of the return flows

usually changes; the water quality being lower than when it entered the production

process initially. The entered pollutants would mix and spread in the water bodies to

develop a dynamic process causing indirect pollution in the same and sometimes other

economic regions. For example, the pollutants in the discharged wastewater will

infiltrate into groundwater or mix with surface water and flow downstream where it

contaminates other freshwater resources thus being unavailable for other users and

next round(s) of economic production and consumption. Furthermore, the sources of

polluting substances can be from precipitation (e.g. acid rain), which may also result

in the degradation of the water quality in both surface and ground water. The hydro-

ecosystem has the ability to self-purify the waste, but this ability is determined by the

hydro- or geographic conditions and biological, physical or chemical characters of the

pollutants. For example the pollutant discharged from heavy industries (e.g. paper

making) usually contains large amounts of toxic chemicals which are hardly purified

by nature in any economically relevant time span. Therefore, it is necessary to extend

the definition of 'water demand' for the economy by integrating notions of water

quality into the water accounting framework and quantifying the impacts of

discharged wastewater to regional hydrological environments, as shown in Equation

4.1. The author assign the name of 'hydro-ecosystem water' to account for both

natural water losses (e.g. evaporation or infiltration into the soil) and the amount of

water that exists in the hydro-ecosystem but is ineligible for any economic purposes

as its quality is degraded by discharged pollution.
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Water demand = Net water consumption -

Discharged wastewater +

Unavailable water

Generally speaking, a hydrological cycle is accounted for a fixed time period (Bouhia

2001), in this chapter the year of 1997 is selected to account China's regional water

(4.1)

budget, to match the availability of economic and hydrological data.

4.2.2 Structure of the hydrological-economic accounting model

The traditional 10 table is an n x n matrix describing the flows of goods between

economic sectors in monetary units. The matrix to (n + m) x (n + m) is extended by

adding water sectors in physical units. The hydro-economic water accounting

framework is further developed based on the economic- ecological model so as to

represent the interrelationship between economic activities and hydrological processes

(shown in Table 4.2).

Table 4.2: Extended Hydro-economy Input-output Table

Xi} Yi}

Imports
Total Inputs Xj

Surface iii bid
loo water
~

Ground....~
water Matrix F Matrix B

Rainfall

Economic
Activities

Final DemandActivities
Intermediate
Demand

Total
Output Surface

waterHousehold Exports

Matrix A

Matrix A (n x n) represents the economic flows among economic sectors. Matrix F

(m x n) represents the primary water inputs (e.g. from surface, ground water or rainfall)

to production sectors. Matrix R (nx m) quantifies the outputs of each economic sector

to natural water resources (e.g. pollution). Matrix B (m xm) captures the hydrological

changes after the production wastewater that is discharged in the ecosystem. The
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following sections 3.3 - 3.6 give detailed explanations for the linkage within and

between the four matrices.

4.2.3 The economic system

As discussed in section 3.2.2, from the input-output approach, an economic structure

can be described by Equation 3.5: x = (I - Arly.

4.2.4 Water inputs to economic sectors

As mentioned previously, water is a primary input involved in production of goods

and services. This connection can be captured in the m x n F matrix. The water input

for production consists of three sources, surface water, groundwater and rainfall. The

direct water consumption coefficient.ji, (unit: m3Nuan) is defined in Equation (4.5),

I' _ gkj
J ki -

g X.
J

(4.2)

where gkj (unit: m3/year) is the amount of water supplied from the k hydro-ecological

sectors consumed in economic sector t. Xj (unit: Yuan/year) is the total economic

output of the /h sector. This coefficient represents the direct or the first round effects

of the sectoral interaction in the economy (Bouhia 2001; Hubacek and Sun 2005).

However, water is not only consumed directly but also indirectly. For instance, to

produce paper necessary inputs are wood, chemicals, electricity and water (direct

consumption). But also the production processes of each of these inputs need water

(indirect consumption). Therefore, in order to combine both direct and indirect water

consumption, the total water consumption multipliers matrix (S) needs to be

calculated by multiplying the diagonalised matrix of direct water consumption

coefficients ]22 with Leontiefmultiplier matrix (I-Art. which represents an indicator

22 This study attempts to assess the fresh water input to the economy from three hydro-sectors.
During the modelling manipulation, the author deals with the water input from different
hydro-sector separately. In other words, three individual direct water consumption

coefficients matrix: ] surface-water, ] ground-water, ] rain-water have been employed for accounting
the water inputs from each hydro-sector, correspondingly. For example, the author firstly
assigns the direct water consumption for each production sector with the distinction among
surface, ground and rain water. Then, the author calculates three direct water coefficients
matrices (1 x n) for different hydro sectors respectively. Finally, the author diagnolises every
direct water coefficients matrix for the purpose of multiplication with other factors in
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of the total amount of water used up throughout the production chain for each sector.

By pre-multiplying Equation (4.2) with the water consumption matrix S one receives

Equation (4.3) describing the direct and indirect effects of water inputs by increasing

a unit of final consumption, named as 'Net water consumption'.

NetWater Consumption =j (I - Arl y (4.3)

4.2.5 Flows from the economic to the hydrological system

The wastewater after the production and domestic discharge will leave the economy

and flow back to original water resources (e.g. rivers, lakes or groundwater).

Generally speaking, its quality gets degraded. Often the discharged wastewater carries

large amount of noxious pollutants infused to surface or ground water. The output

(wastewater) of each production sector to the water supply sources shall be captured

in the R matrix with dimensions nxm. Similarly to the process of determining fresh

water consumption coefficients, the direct final wastewater coefficient ru - the

amount of wastewater to the th water supply sources in order to produce a unit of

economic output in the ;Ch production sector. The calculation is shown in Equation

(4.4).

(4.4)

By multiplying the diagonalised matrix of direct wastewater coefficient ,.' with the

Leontief multiplier matrix (I-Arl, one will obtain the total wastewater coefficient

matrix (T) which identifies the total contribution of each production sector to the

environment by discharging sewage into natural water resources. Multiplying matrix

R with Equation (4.4), one gets Equation (4.5) representing the total amount of

wastewater generated in an economy by final consumption, referred to as 'Discharged

wastewater' .

Discharged Wastewater = ,.' (I- Arl y (4.5)

Equation 4.3. The similar calculation process has been applied in calculating the amount of
wastewater flows out from the economy after the economic activities.
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4.2.6 Water flows within the hydro-ecosystem

When the polluting substances carried by rainfall or wastewater are discharged back

to the original surface water sources or infiltrates into the groundwater, a series of

complex physical and biochemical processes will occur. However these can be

summarised as two major counteracting processes: one is the degradation process of

water from a given to a lesser quality; the other is the self-purification process leading

to improvement of the water quality. The two processes run simultaneously and are

interacting with each other. The outcomes of these processes depend on the

composition of the wastewater and the receiving water body. Many pollutants such as

heavy metals cannot be easily purified by nature and will result in the degradation of

the entire hydrological region. Once the pollution disperses, the availability of eligible

water for certain consumers (e.g. downstream users) would be reduced. The B matrix

identifies the water flows within the hydrological ecosystem and the impacts of

discharged wastewater to the freshwater resources. In the other words, it measures the

natural water consumption in the hydrology (e.g. evaporation loss), and also

quantifies the amount of freshwater sources necessary to dilute the pollutants in the

discharged wastewater to a respective standard rate (that is e.g. stated in the regulation

of water quality and management). This chapter adopts COD23 (Chemical Oxygen

Demand) as water quality indicator measured in gram/m', The following linear

formulation is developed to capture the impacts to the hydro-ecosystem when

contaminated wastewater enters to the water bodies as well as the natural evaporation

process.

b, = LVkI +ek• k = 1,... m; l=l, ...m
I (4.6)

where hk is the total freshwater required by the ecosystem in the lI' hydrological

sector, including both natural water loss (et) and the amount of water needed for

diluting pollution (VkI). To better capture the interactions between the pollution and

freshwater resources within the hydro-ecosystem, the author further decompose the

freshwater needed for diluting pollution (Vkl)

alternatively, b = vkI
kI h

I
(4.7)

23 This chapter selects COD as the pollutant indicator as its data is the most available one,
actually the pollutant can also be any other water pollutant indicator, such as BOD (Biological
Oxygen Demand) or several of ones.
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where bkl (unit: m3/m3) is the hydro-ecosystem exchanges coefficient", which refers

to the amount of freshwater inputs required in the f(h hydrological sector to dilute the

discharged pollution (e.g. COD level) from the Zth hydrological sector to a standard

level; hI (unit: rrr') is the amount of pollution discharged to the th hydrological sector.

Therefore one can obtain the Equation (4.11) by combing the Equation (4.9) and

(4.10),

hk = Ibldhl +ek, k = 1... ,m
1 (4.8)

The Equation (4.11) can be also re-written as

(I-B)h = e (4.9)
where h is a m vector denoting the total freshwater required by the hydro-ecosystem,

including both natural water loss and the amount of water needed for diluting

pollution; e is a m x 1 vector denoting the natural losses in the ecosystem; B is a m xm

matrix referred to as the hydro-ecosystem exchange matrix. The above Equation (4.12)

can also be re-arranged as followed,

(4.10)25

If one combines the Equation (4.6), (4.8) and (4.l3) to formulate the relationship as

shown in Equation (4.1), the integrated water demand can be described as,

Extended Water Demand = (Jk -'1 )(1 - Art y + (I - Brte (4.11)

where Jk is the diagonalised matrix of direct freshwater coefficient; ~ is the

diagonalised matrix of direct wastewater coefficient; (I-Art is the Leontief multiplier

matrix; y is the n x 1 vector denoting final demand; (I-Bri is the hydro-ecosystem

exchange multiplier matrix; e is the m x 1 vector denoting the natural water loss within

the ecosystem.

24 The term of "exchanges coefficient" is similar to Hannon (1973)'s study on the structure of
ecosystem. He used "ecological coefficient" to describe the energy flows between trophic
levels.
25 To do matrix inverse, the figures on the diagonal of the matrix, for example in this case (1_
B), have to be positive. In other words, bid needs to be less than '1'. However in this study, by
employing the mass balanced water quality model (Equation 4.13), the value of blrj is always
larger than '1', which means (I-Br1 as the hydro-ecosystem exchange multiplier matrix is
ineligible in this case. However it would not affect the evaluation of ecosystem degradation,
but the coefficient, bid will not be standardised until a better solution is discovered. Jin et a1.
(2003) faced similar problem when they assessed the marine ecosystem degradations due to
human activities. They claimed that there is no methodological solution to solve the problem
unless a different ecological model is applied, such as Hannon (1973).
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Equation (4.14) consists of two major parts: the first term, the traditional water

demand, accounts for the amount of water withdrawal for economy and emission

discharge after the production and consumption; the second term quantifies the

amount of degraded water and losses caused by wastewater and hydro-ecosystem

effects.

The process of defining the element of B, bkl concerns physical water flows in nature.

In the following, section 4.3 describes a simple model capturing the process of mixing

between wastewater and freshwater in both surface and ground water. In other words,

the following water quality model (e.g. Equation 4.16) provides the simply method of

quantifying bkl. The natural processes of infiltration and natural runoff exchange

between surface and ground water can be also captured in the B matrix.

4.3 Mixing pollution in water bodies

In order to identify the element bkj in matrix B in Equation 4.11, we employ the

following water quality model (Equation 4.12) which is constructed based on a mass

balance approach (concentration = mass / volume, or c = m / q)26. It calculates the

concentration of pollutants in the water body after the mixing processes of the

discharged wastewater from economic sectors into the original water resources.

Equation 4.12 is a simply water quality model, however for a large watershed, the

effectiveness is similar to the sophisticated model in estimating water pollution

dispersion (Xie 1996).

(4.12)

Parameters:
Cmixed pollutant concentration after mixture processes
Co - initial pollutant concentration in the water body
cp - pollutant concentration in wastewater

261n termsofmassbalanceprinciple,the primaryformulationof Equation4.12 is:
c mixed (q + v) = q 0 • Co + qp . cp. Herebyv is the additionalfreshwateris used to dilutethe
concentrationof dischargedemission;v can be '0' if there is no additionalfreshwater
resourcesavailablein the environment.
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q - runoff rate after completion of the mixing process"
qo - initial runoff rate (e.g. the amount of water in a river per year)
qp - wastewater discharge rate (e.g. the amount of wastewater discharged per

year to a river)
v - the amount of freshwater flows in to a water body
k1 - total reaction rate of pollutants after entering the water bodies (e.g.

natural self-cleaning ability)
k2 - pollution purification rate before entering to the water bodies (e.g. filler

effect of soils)

Most countries, including China, have implemented water quality regulations using

standards for the quality of wastewater and for the receiving water bodies. In order to

avoid water pollution, the pollutant concentration in the water body after the mixing

processes needs to be less than the standard rate of the respective standard (i.e.

Cstandard ~ Cmixed). If one replaces the Cmixed by Cstandard, the Equation 4.12 can be re-

written as follows:

(4.13)
q=qo +qp

Hereby, the scalar v is the amount of freshwater in the hydro-ecosystem needed to

dilute pollutants in the discharged wastewater in order to reduce the pollution

concentration level to the standard rate. In other words, v can be also regarded as the

amount of surface or ground water being contaminated by wastewater pollution

dispersion and assimilation.

The pollutants in the air (e.g. acid rain) can intervene with other water pollutants.

However, their impacts are usually difficult to quantify. This could be done by tracing

the air pollutants to specific economic units; measuring the ascertained pollution

carried by acid rains and dissolved in water bodies. On the other hand, its impacts on

water quality are usually less significant than the impacts from discharged wastewater.

Therefore this study ignores air borne emission to water bodies; their treatment would

be beyond the scope of this study.

Xie (1996) monitored the water quality of surface run-offs in North China Plain since

1980, and calculated the parameter of natural surface run-offs self-purification for

COD in North China in his three-dimensional surface run-off water quality model. He

27 Runoff is categorized as surface runoff and sub-surface runoff for surface and ground water
respectively. The unit of runoff is usually described m3/second; in this case, it is million m3

per year.
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also estimated the parameter (kJ) for above simplified one dimension water quality

model. When the author conducts the calculation for the impact of surface water due

to wastewater discharges, Xie's estimation of 'kJ=3.64' is employed for Equation 4.1?

Similarly, another group of hydrologists, Zhang et al. (2003) measured the

groundwater self-purification parameter for COD is 1.7 on average. They also

developed a series of experiments to measure the filtering effects of soil layers when

the pollutants enter the groundwater body by using different soil types28• This study

employs 'kJ=2.BO' and 'k2=0.82' in Equation 4.13 when the author calculates the

pollution discharged into groundwater bodies.

The advantage of this simple water quality model is that it requires much less

hydrological data which is always difficult to obtain so that the feasibility of many

macro-level water researches can be significantly enhanced. On the other hand, this

model can only represent an individual pollutant or pollution indicator (e.g.

CODIBOD29) each time so that it cannot catch the interactions between the pollutants.

However, a more sophisticated water quality model can be easily incorporated into the

accounting framework to replace then current one-dimension mass balance model.

4.4 Hydro-economic regions and datasets

The dataset for this chapter consists of two categories: detailed economic data (input-

output tables) - to investigate the flow of goods and services between producers and

consumers and the linkages between all production sectors; and hydrological data -

comprising four sub-categories: water availability; fresh water consumption

coefficients for each of the economic sectors; wastewater discharge coefficients for

each of the economic sectors; and the hydraulics parameters in the water quality

model (e.g. kJ and k2 in the Equation 4.13).

28 This chapteremploysthe resultofloess soilsas k2 inEquation4.13 as there are over 75%
of areaare coveredby loess soils inNorthChinaPlain.
29 BOD:BiologicalOxygenDemand
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4.4.1 Economic data

The author generated the regional input-output table for North China by merging the

six provincial input-output tables for 1997 in terms of the classification of

hydrological-economic regions (shown above, Figure 4.2). North China includes

Beijing, Tianjin, Hebei, Henan, Shangdong, and Shanxi provinces. The provincial

input-output tables, each representing 40 economic sectors, were compiled by the

State Statistical Bureau of China and published in 2000. The details of classification

of economic sectors are illustrated in Appendix A-I. The ''value-added'' categories in

the table include: capital depreciation, labour compensation, taxes, and profits. "Final

use" at the national level comprises six categories: rural households, urban

households, government consumption, fixed investment, inventory changes, and net

exports.

4.4.2 Hydrological data

The dataset for water availability is extracted from "China's Regional Water

Bulietins30" in 1997. The ministry of hydrology in China provides detailed water

availability data annually for both surface and ground water for all provinces.

The calculation of freshwater consumption coefficients concerns the usage of two

datasets: the total volume of net water consumption for each economic sector; and the

total output in monetary term for each sector correspondingly. The dataset of net

water consumption for each sector was taken from "China's Regional Water

Bulletins" in 1997, Regional Water Statistics Yearbook in 199~J and annual reports

on hydrology from various provincial hydrology-ministries. The data of total outputs

for each economic sector is given in the input-output tables.

The calculation of final wastewater discharge coefficients also concerns two datasets:

the total volume of wastewater discharge from each economic sector with level of

COD concentrations; and the total output in monetary term for each sector. The

dataset of wastewater discharge is extracted from the "Third National Industrial

Survey" in 1995, "Regional Water Statistics Yearbook in 1999" and various

authoritative sources (Dong 2000; Zhang 2000; Weng 2002; Li 2003). The average

level of pollution in this case, COD (gram/m"), was not available for all economic

30 Published annually by the Ministry of Hydrology in China
31 State Statistical Bureau (1999), State Statistical Publishing House, Beijing, China
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sectors. However, the regional hydrological offices annually implement the surveys of

discharged COD in physical unit (e.g. tons) for industry and domestic sectors. The

dataset can be found in "China's Environment Yearbook"; "China's Environmental

Statistical Bulletins" in 2000; "Regional Water Statistics Yearbook" in 1999. In terms

of amount of discharged COD and wastewater, one is able to calculate the average

concentration of COD level in discharged wastewater for each economic sector. The

values and sources of the parameters in Equation 4.13 are list below:

Cstandard = 40gramlm3 (State Environmental Protection Administration of China 2002);
Co = 30 gram/m' (Ministry of Hydrology 1997)

cp = 442 gram/m' for discharged wastewater to surface water body, and 34lgramlm3

to groundwater body (Ministry of Hydrology 1997);

qo = 76,396 million m3 for surface water body and 62,684 million m3 for groundwater

body (Ministry of Hydrology 1997).

qp = 12,301 million m3 discharged to surface water body and 3,487 million m3

discharged to groundwater body (Ministry of Hydrology 1997).

kJ=3.64 for surface water self-purification (Xie 1996) and kJ=2.8 for groundwater

(Zhang et al. 2003);

k]=0.82 (Zhang et al. 2003).

4.5 An application to water demand inNorth China

This section uses North China as a case study and employs the above method to

perform the water accounting.

4.5.1 Matrix of economic flows

By employing the Equation 4.3, one can calculate the technical coefficients for the

China's economy in 1997. The dimension of the technical coefficients matrix (A) is

40 x 40. It allows to generate the Leontief multiplier matrix - (I-Arl.



72

4.5.2 Matrix of Water Inputs to the Economy

By employing Equation 4.6 - Net Water Consumption = j (I - Art Y, one is able

to quantify the total amount of water that has been consumed up in the production

chain is thus not available for water consumption for other purposes within that

region, including both direct and indirect consumption. As shown in Appendix A-I,

the dimension of the "net water consumption" matrix is 40 production sectors with 2

final demand sectors by 3 hydro-sectors (surface, ground and rainfall water), which

accounts the total water consumption by each economic production and households

sectors, including both direct and indirect water consumption. The rows represent

economic sectors, and the columns of water consumption represent the amount of

standard quality freshwater withdrawn from hydrological sectors (e.g. surface, ground

and rain water). The added column explains the quality of consumed freshwater (COD

concentration) in each economic sector 32. Moreover in this study, agriculture is

distinguished in rainfed and irrigated agriculture. Rainfall is regarded as the water

input for rainfed agriculture only.

Figure 4.4 shows the net water consumption in North China for 6 aggregated sectors,

agriculture, manufacturing, energy generation, construction, transport and posting and

services; and two final demand sectors, urban and rural households. In 1997, North

China's net water consumption among all production sectors was 49,165 million rrr'.

The total households' net water consumption is 6,469 million nr', 35% from urban

households and 65% from rural households (Ministry of Hydrology 1997). Hence

overall net water consumption is 55,634 million m3 (excluding precipitations for

rainfed agricultures) in comparison to the total freshwater availability of 84,350

million rrr'. In other words, about 66% of available fresh water resources are used up.

As shown in Figure 4.4, irrigated agriculture is the largest water consumer, which

accounts for almost 74% of net water consumption. Households are ranked as the

second largest water consumer with 12%. Manufacturing sectors (including food

processing, textiles and chemicals etc) accounts for about 10% of net water

32 This chapter assumes that the quality of consumed water is same for the consumers within
the same economic sector. The water input quality is taken from China's "Environment
Quality Standard for Surface/Ground Water Resources" (State Environmental Protection
Administration of China 2002), and assumed to be 40gram/m3 of COD level for irrigated
agriculture; 30grarnim3 for industries; and 20grarnim3 for services and domestic usages.
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consumption, and construction, energy generation and all services sectors shared the

remaining 4% of net water consumption.

Figure 4.5 distinguishes the net water consumption by water supply sources.

Groundwater supply plays an important role in North China's economy, especially in

service sectors and for rural households' consumption. The increasing reliance on

groundwater has accelerated its exhaustion in North China. During 1997, an estimated

99,900 wells were abandoned as they ran dry, and 221,900 wells were drilled (Brown

2001). The deep wells drilled around Beijing now have to reach up to 1,000 m to tap

fresh water (Brown 2001), which has seriously damage the underground hydro-

ecosystem through depletion and salt water intervention in the costal areas.

Figure 4.4: Net water consumption in 1997 in Figure 4.5: The Pattern of Net Water Consumption
North China by Hydro Sectors
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Note: aggregation is based on 40 production sectors and 2 final demand sectors as shown in - Appendix A - 1.
Source: Own calculation

4.5.3 Matrix of discharged wastewater from the economy

The Equation 4.8 - Discharged Wastewater = f (I- Art Y, allows ones to quantify

wastewater flows triggered by final demand in North China. The dimensions of the

"discharged wastewater" matrix are 3 hydro-sectors (e.g. surface, ground and natural

loss water) by 40 production sectors with 2 households sector 33, as shown in

Appendix A-2. Columns stand for economic sectors; the rows of wastewater flow

stands for the amount of wastewater discharged from the corresponding economic

33 The statistics of households wastewater discharge only consists of urban areas. Therefore
this chapter assumes that per rural person wastewater discharge is 1/3 of urban residents' level
as rural person consumed 87 litres of freshwater per day with comparison of 220 litres per day
for every urban resident. The COD concentration of discharged wastewater from rural
households is assumed to be same as urban households' level.
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sectors; and the column of wastewater quality stands for the concentration of COD

levels in the discharged wastewater, measured in gram/m".

Pollution can further contribute to water scarcity and is a major source for diseases,

particularly for the poor. Figure 4.6 shows the wastewater discharge pattern in North

China in 1997. Due to its low COD levels the wastewater calculations exclude the

amount of discharged cooling water from electricity generation plants. The total

wastewater discharge was 15,739 million m'. Agriculture, manufacturing and

households were the major polluters, which contributed about 39.1%, 24% and 31.9%

respectively, and services, constructions and transport and posting share the rest of

5% of pollution discharge. Although agriculture was the largest discharger, its

concentration of COD level was much lower than the pollution level in many

industrial and domestic sectors, such as paper making, chemical production and

households (see Appendix A-2). Furthermore, about 60% of agricultural wastewater is

infiltrated under ground (Zhang et al. 2003). The majority portion of wastewater from

industries and households was released into surface water bodies, as shown in Figure

4.7.

Figure 4.6: Wastewater Discharge in North China Figure 4.7: The Discharged Wastewater into HYdro-
in 1997 Sectors
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Note: aggregation is based on 40 production sectors and 2final demand sectors as shown in AppendixA-2.
Source: Own calculation

4.5.4 Matrix of water exchange within hydrological ecosystem

By employing Equation (4.10), one can form the B matrix and define its elements -

the hydrological exchange coefficient, bk[, which refers to the amount of freshwater in

the Idh hydrological sector required to dilute the COD concentration of the wastewater

discharged into the r hydrological sector to a standard level. It flows within the 3
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hydrological sectors. Due to lack of data, this study is not able to quantify the mutual

pollution exchanges between the surface and ground water bodies. This study assumes

that only discharged wastewater from the economy would impact on the hydro-

ecosystem.

In 1997, the economic sectors have released 12,747 million m3 of wastewater to

surface water bodies. During the process of discharging, there was water loss of about

3.5% due to evaporation (data is estimated based on Xie 1996); the rest of 12,301

million m3 of wastewater with the COD concentration of 426gramlm3 had been mixed

with surface water bodies. By applying the water quality model of Equation (4.13):

one calculates that the surface water body would provide 33,998 million m3 of

freshwater to dilute the COD level in the wastewater to the lowest standard rate of

40gramlm3, which would be eligible for the purpose of agricultural irrigation

according to China's Environment Quality Standard for Surface Water Resources

(State Environmental Protection Administration of China 2002). By dividing the

hydro-ecosystem dilution water (33,998 million m") with the discharged wastewater

to (12,301 million m"), one therefore obtains the surface-surface exchanges

coefficient, bsurjace-surjace which was 2.76m3/m3 (see Appendix A-3). This means that

every cubic metre of wastewater discharged into surface water from economic sectors

would require 2.76m3 of freshwater to dilute to the level of eligible usage for other

consumers or next round economic production.

The amount of wastewater discharged from the economy into groundwater was 4,384

million rrr' with an average COD concentration of 341gramlm3 (see Appendix A-2).

However, about 30% of wastewater was retained in the soil layers during the

infiltration process or "lost" in other natural hydrological exchanges (Zhang et al.

2003). Hence, about 3,486 million m3 of wastewater would have infiltrated and mixed

with ground water bodies, of which 74% wastewater is from agriculture and 12% is

from rural households. Furthermore during the infiltration, the soil layers would also

purify the wastewater before it reaches the groundwater bodies. Similarly to the

process of defining surface-surface exchange coefficient, considering soil-purification,

k2=O.82 (Zhang et al. 2003), as well as the groundwater self-purification, kJ=2.80

(Zhang et al. 2003), one is able to calculate that there was 7,462 million m3 of

groundwater required, i.e. 16% of groundwater resources in North China, to dilute the

pollutants in the wastewater discharged underground. Similar to the above calculation
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process of bsurface-surface, one can get the ground-ground exchange coefficient, bground-

ground which was calculated to be 2.14 m3/m3•

Applying all elements into Equation 4.14, one can calculate the extended water

demand comprising both net water consumption and polluted water for North China

in 1997 with 81,307 million rrr'. In comparing this with the total availability of 84,350

million m3, the water demand was almost 96% of total annual available water

resources.

The extended water demand from surface water was 47,043 million rrr', 58% of the

total. The availability of surface water in North China was only 55,151 million m',

which means about 85% of surface water bodies had been either consumed up by the

economy or extremely polluted so as to be ineligible for any purpose of usage. The

results can be matched with the official report from the Ministry of Hydrology (1997)

stating that "about 65%-80% of rivers in North China (e.g. Huaihe, Haihe, Huanghe

River) have no longer support any economic activities".

4.6 Conclusion

This chapter has advocated re-defining the term of ''water demand" to "extended

water demand" which should not only account for the amount of water inputs to the

economy but also measure the impacts of wastewater on the regional hydro-ecosystem.

Therefore, a hydro-economic accounting framework has been developed following in

the tradition of economic-ecological modelling. This framework is designed to

evaluate the linkages or interactions between the economy and the hydro-ecosystem,

which is achieved by integrating regional input-output model with a mass-balanced

water quantity and quality model. The accuracy of this accounting framework could

be further improved by incorporating a more complex water quality model with

parameters of biophysical or hydro-conditions. However mathematical water quality

models usually require large amount of detailed hydrological data which would not be

available from statistical agencies. This framework, is designed for hydro-economic

accounting on regional basis, which is able, to track the sources of water inputs to

every economic sector; to account for the amount of return flows of different qualities

to the respective hydro-sectors; and to quantify the amount of freshwater been

contaminated in the regional hydro-ecosystem.
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The hydro-economic accounting framework has been applied to the region of North

China which has been characterised as water scarce. The result shows that North

China consumed up to 55,634 million m3 of freshwater and discharged 15,787 million

m3 of wastewater (after evaporations) that contaminated 41,461 million m' of

freshwater in the hydrological environment. In 1997, the extended water demand for

North China was 81,308 million m3, which occupies 96% of its total annual water

availability. Agriculture, energy generation and households were the most water-

intensive consumers, but paper makings and chemical production took the prime

responsibility for the degradation of the hydro-ecosystem. From the point of views of

water conservation and sustainability, a water scarce region like North China may

develop less water-intensive industries (e.g. services), and strictly control and monitor

the development of polluted industries (e.g. paper production).
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Chapter 5: Assessing Regional Trade and Virtual Water

Flows in China34

Previous chapters described China as poor of water resources in terms of per capita

value. Furthermore, due to the unevenly distributions, North China is poor in water

resources availability, but South China is relatively rich in water. Flourishing trade

activities on both domestic and international levels has resulted in significant amounts

of 'virtual water', i.e. water embedded in products and used in the whole production

chain, are traded between regions or exported to other countries. Hence the overall

aim of this chapter is to evaluate the current inter-regional trade structure between

North and South China and its effects on water consumption and pollution via 'virtual

water flows' by referring to the international trade theory, particularly the Leontief's

paradox.

Firstly, this chapter introduces the origin of the concept of virtual water flows and

distinguishes the concepts between fresh and waste virtual water flows. Secondly, it

illustrates that the virtual water needs to be seen as a factor of production by

reviewing the previous studies on international trade theory, Leontief's paradox and

the relevant discussion on environmental issues. Thirdly, using the hydro-economic

account framework developed in Chapter 4, the author generates both virtual fresh

and waste water flows for North and South China with discussion referring to the

international trade theories. Lastly, the author points out that the current trade

structure in China is not very favourable from the point view of water resource

allocation and efficiency because water should be but has not been regarded as a

factor of production and virtual water need to be incorporated into decision makings

for trading industries.

34 Themajorityof this chapterhas beenpublishedinEcological Economics, entitled
"Assessmentof RegionalTradeandVirtualWaterFlows inChina"(GuanandHubacek
2007),someparts of this chapterare publishedinHandbook on Sustainability Research,
entitled"An analysisof China's waterproblems:A longtermperspective"(Hubaceket al.
2005). Inaddition,this chapterhas beenpresentedin the 15th International Input-output
Conference, 27 June - 01 July 2005,Beijing,China
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5.1 China's trade and virtual water flows

China's economic reform has created a very competitive circumstance for domestic

and foreign investors comparing to other countries in terms of cheap labour costs,

huge market and low environmental standards of pollution discharge. As a result,

large amount of capitals have been flowing in China, especially in northern and

eastern parts, which put China to be one of the largest manufacturers and exporters in

the world. This stimulated regional economic prosperity while brought huge impacts

to the ecosystem and the exhaustion of water resources.

Due to the flourishing trade activities, significant amount of 'virtual water', i.e. water

embedded in products or used in the whole production chain, was traded between

regions or exported to other countries. The idea of virtual water was derived from the

concept of 'embedded water' applied to Israel by Gideon Fishelson et al. (1989)

(Gideon and Shuval 1994). Their study pointed out that exporting Israeli water

embedded in water intensive crops was not sustainable. The term of virtual water was

firstly proposed in London in 1994 by J.A. Allan (Allan 1996), but most studies have

only emphasised on the amount of water is embedded in different agricultural

products and transported through trade. There are quite a number of studies on virtual

water flows with discussion on food security or related issues.

Allan (1998; 2002) defines virtual water as the water used to produce food crops that

are traded internationally. He found out that a few countries characterised as water-

scarce have ensured their food supply by importing water-intensive food products,

rather than producing all of their food supply with inadequate water resources. Most

of the studies on virtual water flows have been conducted in drought areas such as

Middle East and North Africa (e.g. Knott 1998). In some of the countries with large

population and scarce water resources, significant loads of food have to be imported

as they cannot achieve self-sufficient supplies even if all water resources were

committed to producing food for domestic consumption (Lofgren and Richards 2003).

Hence, it does make sense for those countries to explicitly implementing a virtual,
water strategy (Yang and Zehnder 2001; Allan 2002; Yang and Zehnder 2002).

Actually, the concept of virtual water is more important for the nations or regions like

eastern China where is still much better off in terms of water resources in comparison

to Middle East and North Africa. The limited water should be used efficiently by not

allocating majority of the water resources in production of water-intensive products
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(e.g. crops, paper etc.) but water should be also made available for other economic

purposes that can contribute more to the region by consuming the same unit of water.

In many developing countries, agricultural irrigation is still occupying the majority

portion of water use, which is 62% in China. However, along with the large-scale

industrialisation and urbanisation since 1980, domestic, municipal, and industrial

water consumption joined the competition for the limited water resources. Many

industrial products also cause substantial amounts of virtual 'fresh water' as well as

'wastewater' for the productions of paper, fertiliser and cement, have been produced

and transported in other regions or countries. Therefore, one can extend the concept of

virtual water flow to comprise all types of commodities including agricultural goods,

industrial products and services. Whilst one can distinguish the virtual water into two

categories, freshwater and wastewater: the virtual freshwater is amount of freshwater

is consumed during the production, and flows to other places. The virtual wastewater

is amount of polluted water is discharged to the ecosystem after production, which

accounts for the amount of emissions generated and left in this region in order to feed

consumption in other regions or countries.

5.2 Virtual water as a factor of production

The notion of virtual water as necessary input to production and consumption

activities leads to the notion of factors of production or factor endowments. Wichelns

(200 I) describes ''virtual water as an application of comparative advantage, with

particular emphasis on water resources". Allan (2003) states that "virtual water is

something of a descendant of the concept of comparative advantage," while Lant

(2003) suggests that "like comparative advantage, virtual water is also an application

of basic principles of economic geography," which recommend that economic

activities requiring inputs with low values per unit of weight should be located close

to the sources of those inputs (Wichelns 2003). This chapter focuses on water as a

special input to production but is also interested in the question of how production and

associated trade structures affect the availability of water resources. Early economic

theorists such as Adam Smith and David Ricardo were concerned with differences in

factor endowment, 'the comparative advantage', as one of the main reasons for trade

and regional inequalities and as a source for the wellbeing of nations. The focus
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shifted to the negative sides of trade; and only rather recently, scholars started to

advocate re-designing trade structures from the perspectives of social and

environmental sustainability. The following texts look at certain selected key

publications to see how factor endowment and environmental resources have been

treated in the trade literature and how that links to this research.

Heckscher (1919) and Ohlin (1933) incorporated the endowment of factors of

production into the principle of comparative advantage, and consequently was

referred to as the Heckscher-Ohlin (HO) theorem. The HO theory of international

trade was able to explain that the differences of productivity in various countries are

dependent on relative factor endowments. Leontief (Leontief 1951, 1954) calculated

the labour and capital content of the exports of the United States to test the HO theory.

The US seemed to be endowed with more capital relative to labour than any other

country at that time. Therefore in terms of the HO theory, the US should have

exported capital-intensive products and imported labour-intensive commodities.

However, Leontief's test surprised the academic field as he reached a paradoxical

conclusion that the US exported relatively more labour-intensive commodities and

imported capital-intensive goods. These results received a great deal of attention and

became known as the Leontief Paradox and have led to numerous studies discussing

and critiquing the approach (see, for example, Stolper and Roskamp 1961; Bharawaj

1962).

By applying classical trade theory to environmental studies, a country may have a

comparative advantage if it is endowed with certain resources or if it can produce a

product with relatively low costs to the environment. Since the 1970s, numerous

theoretical studies have been conducted to research the linkage of trade and the

environment by adopting the principle of comparative advantage. For example, Pethig

(1976), Siebert (1977), McGuire (1982) and Brander and Taylor (1997) treated a

country's emission / resource management standards as factor endowment, and their

results showed that countries with less stringent environmental policies could increase

their comparative advantage in the production of pollution and natural resource-

intensive products (quoted after Huang and Labys 2001). However this view is

challenged by more recent research. Porter and van der Linde (1995) argued that strict

environmental policies may not be a comparative disadvantage, in contrast, it may be

an advantage to drive the producers and the whole economy to become more

competitive in world markets by improving efficiency or innovating better
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environmental technologies. These conflicting views have led to a heated debate, and

the empirical results are ambiguous (e.g. Huang and Labys 2001).

The important point to emphasise here is that environmental goods and services such

as available water resources can be a factor of production and therefore a source of

comparative advantage. Thus, if a region is well endowed with environmental

resources such as water resources in this study, one could assume that this region's

exports will have a larger share of water-intensive products. Applied to China, one

would assume that water scarce North China would import water-intensive products

and the water-rich South China would export products which would need lots of water

inputs. The followings will test this hypothesis and investigate if these Chinese

regions take full advantage of virtual water flows. This chapter will specifically build

on the work of Leontief and use the input-output approach to assess regional and trade

flows in China and their effects on virtual water flows.

5.3 Virtual water flows: an input-output approach

This section utilise Matrix F and R in the hydro-economic accounting framework

which is described in Chapter 4, in order to quantify the virtual fresh and waste water

flows respectively. This study is based on the year of 1997, therefore the required

dataset for is very similar to Chapter 4. Besides, it requires the input-output table for

South China which only consists of Guangdong due to the lack of data availability.

However, it would not significantly influence on the results as the rest two provinces

(Guangxi and Fujian) have very similar in terms of economic, social and hydrological

characteristics. In addition, this chapter also requires the trade data which can be

found at the "net exports" column of two regional input-output tables respectively.

5.3.1 Virtual freshwater flows

By employing Equation (4.6) with replacing the total final demand y by net flows 'Y-

Total Water Consumption = j {I- Ar1'Y, one can quantify virtual freshwater flows

between economic sectors triggered by trade between various regions in China and

abroad. Thus one can show how much water is necessary to produce certain goods

that are then exported to other regions, including both direct and indirect water
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consumption for producing the exports. This amount of water used in the production

chain is thus not available for water consumption for other purposes within that

region. Similarly, the import of certain goods into the respective region causes water

withdrawal and consumption in other regions or outside of China. The calculation of

virtual water flows is conducted by multiplying the net exports vector (I') and the total
A

fresh water consumption coefficient matrix (/). The results are shown in Table 5.1

for North China and Table 5.2 for Guangdong.

The column of 'net flow of goods and services' in both Table 5.1 and 5.2 provides

details of the commercial trade activities in the respective regional economy. The

column of 'direct freshwater coefficient' gives the comparison of the direct water

consumption levels for each production sector. For example, the coefficient for paper

production measures the amount of freshwater directly consumed by paper-making

industries to produce 10,000 Yuan of paper products. One can see from the tables that

agriculture in both regions is the most water-intensive sector; and food processing,

paper and textiles require more water per unit of output than the other industrial

sectors. The column of 'virtual freshwater net exports' shows the amount of

freshwater embedded in goods and services and exported to other regions or countries

via trade. The term 'value added/per unit of water' in the last column of both tables

assesses the amount each economic sector contributes to GDP per cubic meter of

freshwater.

Based on above calculations, one can find that North China imported a number of

water intensive products and services. For example, North China spent 35.89 billion

Yuan to purchase extra electricity from other regions in 1997, which means a virtual

import of 147.9 million cubic meters of water which is withdrawn and used up in

production processes in other regions. Another example is agriculture: North China

received 44.67 billion Yuan through the export of agricultural products, and with it

7,339.3 million cubic meters of virtual water have been transported to other regions.
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Table 5.1: Total Water Import / Export in North China

Net 11m\ s or Direct Ircsh« atcr \' irtual V aluc
Region: NOl1h China goods and Coefficient freshwater added Water

SL'nICL's (111' HU)O() Nct lxpons (Yuan 111')

(I(),UOO Yuan) Yuan) (1\1IIllOn 111 ')

Rainfed Agriculture 1,859,505
862.0

3,055.1
8.1

Irrigated Agriculture 2,607,575 4,284.2
Coal mining and processing 1,359,847 5.2 2.3 441.7
Petroleum and natural gas 864,149 5.1 1.5 428.8
Metal ore mining 546,304 4.8 0.4 344.7
Non-ferrous mineral mining -2,430,346 4.7 -12.9 256.9
Food and tobacco processing 2,944,350 10.5 57.7 111.3
Textile goods 3,060,261 12.2 67.4 84.8
Wearing 2,431,617 4.0 11.6 308.0
Sawmills and furniture 619,342 5.0 3.8 348.3
Paper and products 993,460 18.0 28.6 83.3
Petroleum processing -1,647,543 1.1 -2.5 693.6

. Chemicals -347,419 17.8 18.8 51.4
Non-metal mineral products 2,304,248 4.5 7.2 421.9
Metals smelting and pressing -406,689 8.8 -17 98.2
Metal products 2,443,533 2.5 5.1 416.1
Machinery and equipment -4,825,647 7.5 -53.3 167.7
Transport equipment -312,987 3.2 -2 237.9
Electric equipments -1,183,115 2.1 -9.6 201.2
Telecom equipment -2,858,957 1.9 -31.5 104.1
Instruments -552,792 2.3 -4.3 149.4
Maintenance machinery -1,118,056 2.1 -5.9 116.3
Other manufacturing 2,742,628 8.5 25.9 215.7
Scrap and waste -411,395 8.5 -3.7 355.7
Electricity -3,589,807 41.5 -147.9 45.5
Gas production and supply -49,679 10.0 -0.6 77.2
Water production and supply -522,085 5.7 -5.5 181.9
Construction -2,517,219 5.0 -12.1 503.7
Transport and warehousing 260,878 3.1 0.7 470.1
Post and telecommunication 245,262 2.4 1.4 881.8
Wholesale and retail trade -1,749,342 2.2 -4.4 428.6
Eating and drinking places 47,464 2.2 0.2 877.5
Passenger transport 295,368 3.2 1.1 746.3
Finance and insurance 3,938,707 2.2 16.6 872.4
Real estate -203,528 2.2 -0.2 1,251.7
Social services 278,293 1.8 2.1 723.3
Health services, social welfare -182,955 3.3 -0.5 784.9
Education and culture -1,341,098 3.1 -5.3 1,087.7
Scientific research -12,857 2.4 -0.4 700.6
General technical services 1,533,501 4.0 6.5 1,321.3
Public and other services 205,888 5.0 1.7 815.0
Total Exports 4545.0
Total Imports -319.6
Net Virtual Freshwater Exports 4225.4
Note: the negative figures represent the inflows (imports) for both monetary and freshwater
terms, and positive figures mean outflows (exports) for both monetary and freshwater terms.
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Table 5.2: Total Water Import / Export in South China

Net flows of Direct freshwater Virtual Value
Region: Guangdong goods and ('o~niclent Ircsh« atcr added \\ ;11

sen ices (Ill' Io.ooo Net I xports Cl'

(IO'()()() Yuan) Yuan) (i\ldllonll1') (Yuan 111 )

Ramfed Agnculture
Irrigated Agriculture
Coal mining and processing
Petroleum and natural gas
Metal ore mining
Non-ferrous mineral mining
Food and tobacco processing
Textile goods
Wearing
Sawmills and furniture
Paper and products
Petroleum processing
Chemicals
Non-metal mineral products
Metals smelting and pressing
Metal products
Machinery and equipment
Transport equipment
Electric equipments
Telecommunication
equipment
Instruments
Maintenance machinery
Other manufacturing
Scrap and waste
Electricity
Gas production and supply
Water production and supply
Construction
Transport and warehousing
Post and telecommunication
Wholesale and retail trade
Eating and drinking places
Passenger transport
Finance and insurance
Real estate
Social services
Health services, social welfare
Education and culture
Scientific research
General technical services
Public and other services

-642,700.5
-982,407.5
-1,507,207
-227,718
-369,356
-622,501
1,138,328
-1,827,158
11,054,187
-892,070

2,920,391
-2,950,551
-3,848,076

333,439
-6,187,180
1,332,070
-1,276,310

802,771
7,150,944

1,263,254

2,108,399
-8,916

-517,380
11,115

160,907
-3,290

-11,741
o

-2,900,271
101,923
-111,226
337,216
530,143
-1,289

o
791,523

o
o
o
o
o

784.0

4.4
4.9
4.2
4.0
9.9
11.3
3.9
4.9
16.8
1.3

16.7
4.9
8.2
2.7
6.9
2.9
1.9

-228.9
-349.4

-6
-9.6
-3

-2.7
15.8
39.7
46.6
-2.7
77.6
-3.1
0.1
2

-48.3
4.7
-8.9
2.7

40.5

21.6

11.3
0.1
1.5
0.9
5.3
o

0.3
1.1

-11.1
1.5
7.7
3.9
2.4
2.5
2.2
4.8
-0.2

o
0.3
o
o

8.8

27.3
223.0
96.5

443.8
133.4
112.4
537.2
167.2
67.0

426.2
42.4

383.8
37.9

507.0
88.3

544.7
263.8

74.2
193.8
413.5
280.9
495.5
38.9

133.8
206.5
566.7
331.8
693.3
453.3
548.3
911.9
614.6
958.0
753.0
675.4

1,258.6
505.5
702.9
592.3

I Total Export 296.7 I
~T-o-t-a-Ihn~p~o-rt--------------------------~----------~~----4-4--4.8----~--------J

Net Virtual freshwater Ex ort -148.1---

1.7
2.1
1.6
7.9
7.5

37.9
9.3
5.7
4.8
2.7
2.8
2.3
2.3
2.7
2.1
2.8
1.9
3.2
2.8
2.2
3.6
4.6

Note: the negative figures represent the inflows (imports) for both monetary and freshwater
terms, and positive figures mean outflows (exports) for both monetary and freshwater terms.
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However, one has to consider that much of the agricultural land is rainfed in North

China, which produces about 42% of total agricultural outputs35. The amount of

rainwater embedded in agricultural products would not be readily available for any

other economic production even if crops were not grown on this land. Therefore, the

effective exportation of virtual water in agricultural sector only consists of irrigated

water, which is 4,284.2 million cubic meters. Annually, 4,545.0 million cubic meters

of fresh water virtually flow out of North China (which is used in the production of

exports) excluding rainwater in the agricultural production. On the other hand, the

import of virtual water was only 319.6 million cubic meters, which reduces the net

flow to other regions to 4,225.4 million cubic meters. From a water conservation point

of view, North China, characterised as water-scarce, should import water-intensive

products rather than produce them. According to this analysis, North China used up

more than 5% of its total water resources for producing exports to other regions,

mainly through the trade of water-intensive commodities such as agricultural crops,

processed food, textiles and chemical products. By contrast, Guangdong is endowed

with rich water resources, but virtually imported 444.8 million m3 of freshwater, 79%

of which are through the trade of water-intensive products (e.g. irrigated agricultural

products). On the other hand, Guangdong exports relatively water non-intensive

commodities such as electric equipment and many commercial and social services.

By summarising the virtual freshwater flows of both North and South China, one can

find that the trade patterns are apparently inconsistent with the original hypothesis:

water-scarce regions in China produce and export water-intensive products but import

water non-intensive commodities. Meanwhile, water-abundant South China imports

water-intensive goods. One of the possible explanations could be that water has not

been recognised as an important factor of production in China's economy as there are

very low costs associated with the utilisation of water resources for most of the

production. Another reason could lie in the fact that North China has suitable climatic

condition, soil and land for many agricultural crops (Heilig et al. 2000). A third reason

refers to the design of economic policies: Guangdong is subject to more favourable

policies and better circumstances for investments in industry and services sectors than

other regions. Since the economic reform in 1978, many locations in South China

(including Guangdong) have been established as "Special Economic Development

35 In this study,the authorassumesthat the amountof waterrequiredby agriculturalproducts
is samebetweenrainfedand irrigatedagriculture.
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Zone", which brought many commercial opportunities and triggered a regional

economic boom. This is also reflected in changing water consumption patterns. These

economic incentives led to a restructuring of the regional economy to higher value

added products with relatively lower levels of resource inputs. Thus Guangdong

imports and exports of virtual water reflect the economic structure of the more

developed regional economies within these special economic zones. On the other

hand, North China has a relatively lower economic growth rate and stronger focus on

low value added and high water intensive production without these special policies.

If one consider multiple factors relevant for the existing production and trade structure

such as environmental endowment (e.g. soil quality), land prices and other socio-

economic or political factors, one can see that North China has a 'comparative

advantage' for producing and exporting agricultural products. In terms of water

conservation it is important to effectively balance these factors. North China may

sustain the export of rainfed agricultural goods as rainwater cannot be effectively used

by other production sectors. On the other hand, North China might want to reconsider

the level of exports of irrigated agricultural products in order to make the scarce water

resources (e.g. surface or ground water) available for other purposes which can

contribute more to the economy and society in terms of value added and jobs.

From a water efficiency point of view, North China with limited water resources,

should produce and export the commodities which have high value added per unit of

water. By looking at the column of 'value added/water' in Tables 5.1 and 5.2 North

China has a comparative advantage in the production sectors of coal mining and

processing, production of sawmill and furniture, machinery equipment, and many

service sectors. Meanwhile, Guangdong has the advantage on producing agriculture,

textiles, and metal products. Obviously this statement needs to be qualified by looking

at other factors such as the availability of skilled labour and other essential factors of

production, but the focus on water can provide a useful starting point.

5.3.2 Virtual wastewater flows

Similar to the virtual freshwater flows, wastewater is also created through trade

related production. The pollutants and wastewater generated for producing exported

goods will stay in or pass through the exporting region leading to negative effects in

terms of water availability and quality. In other words, the exporting region virtually
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accepts the discharge of wastewater from other regions by exporting goods. Similarly

to virtual freshwater flows, one can calculate virtual wastewater flows consumed by

producing exports for both North China and Guangdong. By employing Equation (4.8)

with replacing total final demand y with net flows 'Y- Total Wastewater Generation

= r (I - Ar1'Y, one is able to quantify virtual wastewater flows triggered by imports

and exports between various regions in China and abroad. The direct wastewater

coefficient refers to the amount of wastewater per unit of output. The results are

shown in Table 5.3 for North China and in Table 5.4 for Guangdong.

A number of pollution-intensive industries (e.g. metal mining, paper and chemical

production) are concentrated in North China. Imports of North China lead to the

generation of 149.7 million m3 of wastewater in other regions where the commodities

were produced while North China's exports resulted in 520.7 million m3 of

wastewater in North China, of which 32% is industrial wastewater and 68% is

agricultural wastewater. Hence the net wastewater balance for North China was 371.0

million m'. The discharge of high-concentrated pollution to surface flows from

pollution-intensive production sectors (e.g. paper, chemicals and textiles) has led to

the fact that many major rivers in North China no longer support any type of usage

due to the low water quality levels; and more than 50% of groundwater has been

seriously degraded due to the overuse of fertilizers and pesticides (Dong 2000).

Looking at the situation in the southern provinces, Guangdong virtually exports

(externalises) 149.4 million m3 of agricultural wastewater and 141.3 million m3 of

wastewater from industrial and service sectors to pollute other regions' hydrological

ecosystems. The industrial wastewater is mainly contributed from paper, textiles and

electric equipment production sectors. On the other hand, Guangdong accepts 213.1

million m3 of wastewater by producing exports for other regions' consumption. Hence

the water-rich Guangdong region has a net wastewater balance of 77.6 million m3

being virtually discharged to other regions.

Thus from above figures, one can find a similar trade contradiction as with the virtual

freshwater flows. The wastewater virtually flows out from water-rich region such as

Guangdong which externalises the problems of wastewater production to other

regions through importing wastewater intensive products and water-shortage regions

such as provinces in North China are threatening their own water resources through

the creation of waste water for producing exports.
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Table 5.3: Total Wastewater Import / Export in North China

Ne! flows or Direct wastewater Virtual Value
Region: North China goods and Coefficient wastewater added

sen lCCS (111' IO.O()O Y uan) \iC\\ flo» s wastc« utcr
_ (I O.()()()Y LI<1l1) _ _ (1\1 ill ion n~') _JY 1I,1l1 m ')

Agriculture 4,467,080 79.4 354.8
-

125.9r---
Coal mining and processing 1,359,847 10.2 4.7 220.8
Petroleum and natural gas 864,149 10.6 3.0 214.4
Metal ore mining 546,304 21.6 1.6 82.1
Non-ferrous mineral mining -2,430,346 4.2 -10.4 321.1
Food and tobac~processing 2,944,350 4.2 20.1 320.0
Textile goods 3,060,261 6.9 39.9 143.4
Wearing 2,431,617 1.9 3.3 1071.3
Sawmills and furniture 619,342 1.3 2.5 539.1
Paper and products 993,460 19.2 27.2 87.7
Petroleum processing -1,647,543 3.2 -5.0 346.8
Chemicals -347,419 18.8 16.9 57.1
Non-metal mineral products 2,304,248 2.9 4.2 730.1
Metals smelting and pressing -406,689 10.8 -15 111.6
Metal products 2,443,533 6.9 3.1 693.4
Machinery and equipment -4,825,647 9.3 -49.8 179.5

f---- --
Transport equipment -312,987 4.6 -0.7 706.5
Electric equipments -1,183,115 3.4 -5.4 357.0
Telecommunication -2,858,957 -17.7
equipment 3.4 184.7
Instruments -552,792 5.2 -4.2 155.0
Maintenance machinery -1,118,056 2.6 -2.3 304.6
Other manufacturing 2,742,628 6.6 18.9 295.7
Scrap and waste -411,395 6.7 -2.7 480.0
f---'
Electricity -3,589,807 0 0 0.0
Gas production and su£ply -49,679 16.2 -1.0 47.1~. -
Water production and supply -522,085 16.9 -9.0 110.9-Construction -2,517,219 8.3 -19.6 312.1
Transport and warehousing 260,878 4.4 I 0.6 534.2
Post and telecommunication 245,262 4.4 1.2 1002.0
Wholesale and retail trade -1,749,342 2.5 I -2.4 793.7
Eating and dri~ng places 47,464 2.9 0.2 1300.0
Passenger transport 295,368 2.6 I 0.7 1105.7

t----

Finance and insurance 3,938,707 2.3 11.2 1292.4
Real estate -203,528 2.1 -0.2 1854.3
Social services 278,293 2.1 I 1.4 1071.6
Health and social services -182,955 2.6 -0.4 1162.8
Education and culture -1,341,098 1fT -3.6 1611.4
Scientific research -12,857 2.1 -0.3 1037.9
General technical services 1,533,501 1.8 4.4 1957.4
Public and other services 205,888 2.1 0.8 1811.2
Total virtually accepted wastewater for other regions' consumption 520.7
Total virtually generated wastewater left in other regions I -149.7
Net virtual wastewater left for exports 371.0
Note: the negative figures represent the imports for monetary flows but the amount of
wastewater is generated for producing such imports, and positive figures mean the export for
monetary flows but the amount of wastewater is generated for producing such exports.
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Table 5.4: Total Wastewater Import / Export in South China

Note: the negative figures represent the imports for monetary flows but the amount of
wastewater is generated for producing such imports, and positive figures mean the export for
monetary flows but the amount of wastewater is generated for producing such exports.
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5.4 Conclusion

The economic success in China has come at the expense of over exploitation of

natural resources and huge impacts on the environment and especially water

resources. In North China, water scarcity has become one of the bottlenecks for

regional economic development. This chapter has looked at the economic and trade

structure of the water-scarce northern regions of China and the water abundant

southern regions of China, and assessed the implications for water resources in those

regions.

This study was one of the very first to use the concept of virtual water flows not only

for agricultural products but also industrial and service production. In addition this

chapter accounted also for waste water flows and distinguished between rainfed and

irrigated agriculture, which is of special significance with regards to water use. But

one of the major shortcomings is the homogenous treatment of very different qualities

of water inputs and wastewater categories.

The starting point was the assumption that from a water conservation point of view, a

region/country that is endowed with vast amounts of water resources should export

relatively more water-intensive/polluted products such as agricultural crops, paper and

chemicals. However, the generated results of virtual freshwater flows show that

water-scarce North China predominantly produces and exports water-intensive

products but imports non-water intensive commodities. In comparison, water-

abundant Guangdong (South China) imports water-intensive goods but exports non

water-intensive products. A similar situation can be found when considering

wastewater: the water-scarce North creates more waste water for export production

than is virtually created through its imports; and similarly, the water-abundant South

externalises waste water problems by importing waste water-intensive products from

other regions.

With regards to the actual extent of the virtual water flows, the results seem to

indicate that the current structure of economy and trade do not pose so much of a

problem in terms of freshwater consumption as in North China only about 5% of total

available water can be attributed to net virtual water flows, which is relatively minor

in comparison to major water consumers such as water losses due to infrastructural

inefficiencies. In other words, the water-scarce North China does not take full
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advantage of the possibilities of importing water-intensive products to ameliorate its

own water problems. The same seems to be true for the wastewater situation.

To reflect on a more theoretical level, economic production and consumption use

inputs of materials and resources from the environment, however, environmental

resources are currently highly undervalued as there are often little or no costs

associated with their consumption. Therefore, water usually does currently not playa

sufficiently important factor in production and consumption decisions. This is also

reflected in current trade theories largely ignoring the environment as a factor of

production. The same is true from a policy point of view; export-oriented policies

often directly conflict with water-saving policies leading to so-called perverse

incentives. On the other hand, given the relative inflexibility in changing production

structures in comparison to technical improvements these findings emphasise the need

for increased investments in water transportation infrastructure and water treatment

plants. However from a sustainability point of view it is important to emphasise that

direct and indirect (virtual water) consumption needs to be incorporated in decision-

making processes and public policies, especially for water-scarce regions such as

North China, in order to achieve sustainable consumption and production in the

future.
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Chapter 6: Great Leap Forward in Consumption or

Technology? -An Approach of IPAT-IO Structural

Decomposition Analysis on China's CO2 Emissions36

China is the most populous country in the world, accounting 22% of the world total.

The recent rapid economic growth is bringing wealth and prosperity but China's

energy supply are struggling to keep pace. Between 1981 and 2002, China's total final

energy consumption has grown by 4.2% annually from 17,445 Petajoule (PJ) to

40,956 PJ while C02 emissions grew by 3.8% per year from 1,537 million metric tons

(MMT) to 3,371 MMT.

In a global context, China is the second-largest contributor to C02 emissions emitting

17% of global C02 in 2004, up from 8% in 1980 (USEPA 2006), and China is

predicted to become the world's largest emitter by as early as 2009 (lEA 2006).

The increasing discharge of C02 will directly cause global warming, which would

have negative impacts on the environment, economy and society such as lowering

production of rice, wheat, and cotton, raising temperature, increasing soil evaporation,

and more frequent and severe storms. Particularly in recent years, the threatening to

costal China from rising sea level has alarmed China's policy makers in controlling

the C02 discharges. Over the past 50 years, China's sea level along the costal areas

averagely rises up 2.5 millimetre per year, which is about 1.4 times higher than the

world average of 1.8 centimetres per year (IPCC 2001). In terms of the recently

released IPCC (2007) on "Impacts, Adaptation and Vulnerability", by estimation

China's sea level will continue to increase by 9-38 centimetres in the next decade if

China keeps the same pace in generating C02. In case the sea level increases by 30

centimetres, as a result, 90% of China's special economic development zones along

the coast, in other words the most developed areas, will be flooded. The total flooded

36 The majority of this chapter is in preparation and going to be submitted to the Proceedings
of the National Academy of Science or Global Environmental Changes. The last section on
setting up experiments has been published in Futures: The Journal of Policy, Planning, and
Futures Studies, entitled "Changing Lifestyles and Consumption Patterns inDeveloping
Countries: A Scenario Analysis in China and India" (Hubacek et al. 2007); and in Scenarios
and Indicators for Sustainable Development, entitled 90 years lifestyle changes and C02
emission in China and India (Hubacek et al. 2007).
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land areas are equal to 2.3% of China's territory. There will also results in 21 million

migrants from costal to inner China.

Therefore, understanding the key drivers behind China's growing energy consumption

and associated emissions is critical for both Chinese and global climate and energy

policy. In addition it is likely that other developing countries such as Vietnam and

India are adopting similar growth paths as China, and the lessons learned by analysing

China's changing energy consumption may provide guidance towards a low emission

development way for other countries (Peters et al. 2007).

Section 3.6 gives a detailed review on both IPAT and structural decomposition

analysis, and indicates the possibility of the combination of both models; therefore

this chapter introduces the mathematical principle of the combination of the newly

developed IPAT-IO SDA framework to analyse the causes of China's growth in

energy consumption and associated emissions over the past 20 years.

This study is one of the very first studies to employs all major available China's lOTs

including the most recent released 2002 lOT and energy data to establish structural

decomposition analysis and thus allows insights into the driving forces in the most

interesting period of China's economic growth since the reforms in 1978.

6.1 IPAT-10 structural decomposition analytical framework

The driving forces in many previous SDA in studying GHGs emission, which are

referred to the causes of change of environmental emission (e.g. C02 emission in this

study), usually consists of four factors: the change of CO2 intensity, production

technology improvements, people's consumption changes in terms of both patterns

and volumes. The changes of population size have always been ignored. On the other

hand, the driving forces of CO2 emission in IPAT consist of population, affluence and

technology at a much higher level of aggregation. Most of the driving forces in the

two frameworks overlap. The structural decomposition can be further strengthened by

combining all elements into one framework, as IPAT -10 SDA. For example, the

technology in the IPAT can be replaced with the C02 intensity matrix in input-output

modelling, which significantly improves the aggregation level of technology in the

IPAT equation. Similarly the aggregation level of affiuences in IPATcan be expanded

by replacing with final demand categories in lOT. In this study, the affiuence level is
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disaggregated into seven final demand categories with distinction of urban and rural

resident consumptions in order to implement a more precise analysis in investigating

the major contributor to the C02 emission. Furthermore, by adding the population

factor in the IPAT equation into the SDA can make more sense for many populous

countries, such as China. Therefore the IPAT-IO SDA framework can be used to

evaluate the change of environmental emissions, triggered by population growth, the

change of CO2 intensity, production technology improvements, people's consumption

structure changes, and per capita growth of consumption volumes.

The following sections 6.2.1 - 6.2.3 provide the theoretical background and

mathematical principles for the most commonly accepted approaches in structural

decomposition analysis, which are based on the studies conducted by Heokstra and

van der Bergh (2003), Rermose and Olsen (2005) and de Boer (2006).

6.1.1 IPAT-10 SDA theoretical background

The principal idea of SDA can be illustrated as shown in Equation (6.1) in the case of

a two determinant multiplicative function.

(6.1)

The change of Y (~y) can be decomposed between two time points, t and t-I into

changes of the driving forces, Xl and X2 • However there is no unique solution for the

decomposition. For example, one can start the decomposition from the base year (e.g.

t-1), which is referred to the Lasperyres index, whereas one can also begin the process

from the target year (e.g. t), which is referred to as the Paasche index, as shown in

Equation (6.2). Together using both Lasperyres and Paasche indices for

decomposition analysis is referred to as so-called polar decompositions (de Boer

2006). Heokstra and van den Bergh (2003) examined that neither of the polar

decompositions would lead to a complete decomposition (e.g. no residual terms), and

the usual solution for this is to combine the two perspectives, so either Lasperyres-

Paasche or Paasche- Lasperyres index.

~Y = Yt - Yt-l = ~(Xl ·x2)

or, (6.2)
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Furthermore, the change of XI can be expressed as' Llx = X - X • similarly
• I 1(/) 1(/-1), ,

One of the possibilities is to decompose Equation (6.2) is by using Lasperyres-

Paasche index as shown in Equation (6.3):

(6.3)

However, the other possibility to decompose Equation 6.2 is by using Paasche-

Lasperyres index as shown in Equation 6.4:

~(XI . x2) = ~I • X2(t-I) + x1(t) •Sx, (6.4)

Hereby, the core question is to examine whether the above two terms are congruent

with the requirements of decomposition, which comprises the following three

conditions in terms of Hoekstra and van der Bergh (2003) and de Boer (2006).

complete, which means there are no residual terms

"0" robust, which means it can deal with "0" values in the calculation

time reversal, which means the decomposition produces a reverse result if the

time period has been reversed, for example ~Y = Y/ - Y/_I = -(Yt-I - Yt) .

The method to examine the "complete" condition can be simple illustrated in Figure

•
•
•

6.1; Equation (6.3) covers the areas of "hdeg + bcda" with residual term "0" while the

areas of Equation (6.4) covering is the "hafg + beef" with residual term of "0"., Both

decompositions cover the required areas (filled with dashed lines), which means they

are qualified with the requirements of 'complete' and the condition of "0" robust for

implementing calculations (Hoekstra and van der Bergh 2003; de Boer 2006).

Equations (6.3) and (6.4) follow from each other by reverting base and comparison

period. However neither of the above expressions satisfies the requirement of time

reversal. A common approach is to take the average of these two equations to satisfy

this requirement. Equation (6.3) and (6.4) is a "mirror pair" decomposition, which is

the pair of permutations where the time period indication on the coefficients attached

to each difference term is exactly the opposite (Dietzenbacher and Los 1998).
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Figure 6.1: Additive decomposition of y = XI . X2, discrete time

e

x, t-l)

Source: (Hoekstra and van der Bergh 2002; Rermose and Olsen 2005)

As mentioned previously, either Lasperyres - Paasche or Paasche - Lasperyres index

would fulfil the requirement of the "complete" requirement. The two approaches are

equivalent and there is no reason why one of them should be preferred to the other

(Rermose and Olsen 2005). Therefore, the decomposition of y is not unique; however

the result (e.g. the covered areas in Figure 6.1) is unique in this two determinants case.

The problem is a so-called non-uniqueness which means that there exist a number of

different decomposition forms and that it cannot be decided which one to prefer.

Usually, the factors in SDA studies are more than three, Dietzenbacher and Los (1998)

proved that in the case of n factors, the number of possible "complete"

decompositions (without any residual terms) is equal to nl . For example, this chapter

assesses five determinants in the change of C02 emissions, so the possible

decompositions are 51 = 120.

h

6.1.2 IPAT-IO SDA ofe02 emission driving by five factors

In general, a country's energy demand and associated emissions change over time for

a variety of reasons-population growth, increases in economic output, changes in

trade structure, infrastructure investment, technical change and efficiency

improvements, and changes in the production and consumption systems. This chapter
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will adopt five factors to assess the change of CO2 emissions with application of the

IPAT-IO SDA framework, and one of the 51=120 "complete" decomposition function

is shown in Equation (6.5):

~C02 = ~C02(1)- ~C02(t-l)

= Pt!) . F(!) • L(t) • Y I(!) • Y v(l) - p(t-l) • F(I_I) . L(I_I) . Y 1(1-1) • Yv(t-I)

One of the 120 possible decomposition is:

(6.S)

= IIp. F(,) . L(,) . Ys(t) • YV(I) + p(t-1) •AF· L(,) . Y1(1) • YV(I) + p(t-1) •F(t-1) . AL· Y8(1) • Y,

+ p(t-1) ·F(t_l) ·L(t-1) ·Ays• YV(I) + p(t-1) ·F(I_I) ·L(I_I) ·YI(I_I) ·Ayv

where,

P - is a scalar, population
F - is the diagonalised C02 emission coefficient matrix
L - is the Leontief inverse matrix, L=(I-Arl
Ys - is a column vector representing per capita consumption patterns
Yv - is a scalar representing the total consumption volume

Equation (6.5) comprises five terms in total; each term represents the contribution to

change in CO2 emissions, 0CO2 triggered by one driving force with keeping the rest

of factors constant, correspondingly. The first term represents population growth, P;

the second term represents the aggregated changes in the emission intensities

(efficiency), F; the third term represents changes in the production structure, L; the

fourth term represents changes in the consumption structure, Ys; and the fifth term

represents changes in the consumption volume (GDP), Yv.

6.1.3 "Weights" in IPAT-IO structural decomposition equations

As Equation (6.5) shows, the change of CO2 emission is decomposed into five terms,

and each term represents the contribution of the changing factor ("Afactor") of the

total change of CO2 emission. One can perceive a logical pattern that the "Afactor" is

placed at each term in turn from left to right; and the other constant factors on the left

side of the "Afactor" are in base year value (year "t-1"); and the ones on the right side

of the "Afactor" are in target year value (year "t"). Therefore, by extracting the

constant values in each term Equation (6.5) can be re-written as Equation (6.6):

(6.6)
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where the wP , wF , wL
, wY' and W· is the so-called ''weight'' or "coefficient" for

each "Afactor" respectively. The calculation of these weights or "coefficients" are

usually done via econometric methods; alternatively, they can be generated via a more

straight forward way by deriving them with the structural decomposition method

(Hoekstra and van der Bergh 2002).

As mentioned earlier, Equation (6.5) is not a unique decomposition equation, which is

only one of the 120 decomposition equations by assuming the order of the driving

forces of '~·F·L·yv·Ys".However, the order can also be "F·p·L·yv·ys" or "L·F Yv·Ys·p"

and so on. Although each decomposition equation would produce exactly the same

result for ile02, de Haan (2001) found that the size of the contribution of each

"Afactor" significantly differs across the equations. In other words, the "coefficient"

(w) of each "ilfactor" is varied in different equations.

Due to the non-uniqueness issue, Dietzenbacher and Los (1998) suggested to take the

average of all the n! (5f in this case) decomposition equations. In order to do so, all

the 120 equations need to be sorted into a standard order, for example, every term in

the equation needs to be re-arranged to the order of'~·F·L·yv·ys", and the "afactor" is

in turn placed from the first factor of "p" in the first term of the equation to the last

factor of'y, in the last (fifth) term. Then, all the equations have been re-arranged in the

same pattern. For example, the first term of every equation contains the information of

contribution of population growth (f¥J) to the change of C(h (aC~) with keeping

other factors constant. The constant values are the "coefficient" for Sp. The

"coefficient" F(t_l).L(t_l).YI(t-I).Yv(t-I)appears 24 times, and same as the "coefficient"

F(t).L(t).YI(t).Yv(t)does. de Haan (2001) and Seibel (2003) found that each term in the

equation always has 2(n-l) different "coefficients" attached to the "afactor", 2(5-1) = 16

different "coefficients" to every" afactor" in this case.

Next one can calculate the ''weights'' of the "coefficients" which is attached to the

"afactor". The easiest way is via observations, to count how many cases of "afactor"

are attached to the same "coefficient". For example as mentioned previously, the

"coefficient" F(t_l)·L(t_l).Y.(I-i) . YV(I-l) appears 24 times in the 120 equations, and

therefore its weight is 24. However, the observation method could be difficult in large

number of decomposition equations with more than 5 factors.

Seibel (2003) proposed a mathematic method to deal with this. Firstly, let k represent

the number of subscript "t-I" (base year) in a coefficient; k runs from "0" to "n-l";
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therefore, the number of subscript "t" (target year) would be "n-l-/C'. Secondly, for

each k, the number of different coefficients attached to the "Afactor" can be calculated

by Equation 6.7:

(n -1)/
(n -1- k)/· k! (6.7)

In this study, n is set to 5 (five factors). So when k=0 or 4, there is only one

coefficient for each case; when k=1 or 3, the number of different coefficients are 4

respectively; when k=2, there would be 6 different coefficients. Thirdly, Equation (6.8)

calculates how many times each of these coefficients is repeated as "weights" for each

"Afactor" term in every equation of n!. The results for Equation (6.7) and (6.8) are

shown in Table 6.1 for the case of n=5.

(n -1- k)!· k! (6.8)

Table 6.1: Subscripts for the components of "Afactor's" coefficients and their weights

Subscript for the components in the coefficients
k Weightfirst second third fourth

0 t-l z-I t-l t-l 24
t t-l t-l t-l

1 t-l t t-l t-l
6t-l z-l t z-I

t-l t-l t-l t
t t t-l t-l
t t-l t t-l

2 t z-I t-l t
4t-l t t t-l

t-l t t-l t
t-l z-I t t
t-l t t t

3 t t-l t t
6t t t-l t

t t t t-l
4 t t t t 24

Source: Modified/rom (Rermose and Olsen 2005)

Therefore, each "w" attached to the "Afactor" in Equation 6.6 can be defined, for

example,

1
w p ~p = 120 [( 24 . ~p . F (I-I) . L (/-1) • Ys(t-I) . YV(I-I») +

(6· ~p .F(I) . L(t-I) . Y s(t-I) . Yv(t-I») +

(6 . Sp . F(t-J) •L (I) • Ys(t-J) •Yv(l-I) ) +
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(6· Sp- F(H) •LU-I) . YS(I) . Yv(H)) +

(6· Sp- FU-I) • LU-1) . Ys(H) . YvU)) +

(4 ·l1p . F(t) .L (I) •Ys(H) . Y v(H) ) +

(4 . I1p . F(t) . L (H) •YS(I) •Y v(I-I) ) +

(4 . I1p . F(I) .L (H) .Ys(H) . Y vU)) +

(4·l1p·F(H) ·L(t) 'YS(I)' Yv(H))+

(4·l1p·F(t_l) ·L(t) 'Ys(H)' YV(I))+

(4 ·l1p . F(t-l) . L(t-l) . Y s(t) . Yv(t)) +

(6 ·l1p· F(t_l) . L(I) .Y s(t) . Yv(t)) +

(6·l1p·F(t) ·L(H) 'Ys(t) 'Yv(t))+

(6 ·l1p· F(t) . L(I) . Y s(H) . YV(I)) +

(6·l1p·F(t) ·L(I) 'YS(I) 'YV(H))+

(24· /1p . F(t) . L(I) •Y S(I) •YV(I))]

and it is similar to the other "w"s in Equation 6.6. The simplified full five factors

decomposition equation with assigned weights is shown in Appendix B, which is used

to generate the results in section 6.4.

6.2 Data

This study requires two-sets of data. One set are time-series input-output tables and

the corresponding energy and CO2 emission data.

6.2.1 Input-output tables

The time-series input-output tables (lOT) used in this study contain eight different

years: 1981 (State Statistical Bureau of China 1983), 1987 (State Statistical Bureau of

China 1989), 1990 (State Statistical Bureau of China 1992), 1992 (State Statistical

Bureau of China 1996), 1995 (State Statistical Bureau of China 1997), 1997 (State

Statistical Bureau of China 2000), 2000 (State Statistical Bureau of China 2002) and

2002 (State Statistical Bureau of China 2006). All the tables were in current prices.
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The different years had different industry classifications - 26 sectors for 1981; 33

sectors for 1987, 1990 and 1995; 40 sectors for 1997 and 2000; and 42 sectors for

2002 - however, there was considerable overlap in the classifications. All the tables

are aggregated to a uniform classification with 18 sectors. The final demand consists

of 6 categories: urban households, rural household, government expenditures, fixed

capitals investments, change of stock and net flows.

This study uses the classification categories of the State Statistical Bureau of 'non-

peasants' for urban population and 'peasants' for rural population. Unfortunately,

there are gross inconsistencies in the State Statistic Bureau's classification system for

urban, rural, and city population, because the system mixes territorial and functional

definitions. The definitions have also been changed over time and non-recorded

migration from rural to urban areas further distorts the actual residency (Heilig et al.

2000; Hubacek and Sun 2001).

6.2.1.1 Double deflation process

For the IPAT-IO SDA, all the lOTs are converted from current price into 1997

constant prices using the double deflation method (de Boer and Broesterhuizen 1991;

Durand 1994; Folloni and Miglierina 1994). This method has been widelyaccepted

and is advocated by the United Nations (United Nations 1999). The double deflation

method is described as follows,

The lOT in current prices can be represented as

Z y I x I
v'
x'

where the n x n matrix Z denotes the intermediate deliveries between production

sectors; the vector of y is the total final demand (including urban households, rural

households, government, gross capital formation, changes in stocks, and net export);

the vector x represents the total sectoral output; v' is a row vector of total value added.

The lOT in constant prices obtained by using double deflation is

Zd= elZ Yd= ely I
A

IXd= dx

Vd'

Xd'
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The subscript d is used to indicate that the corresponding matrices and vectors are in

constant prices after the deflation by using the double deflation method. Let Pi denote

the ratio of the current price and the base year price, for product i. Thus, 100Pi is the

price index. This study sets 1997 as the base year, and the price indices are adopted

from official Chinese price statistics (National Bureau of Statistics 2005). The price

indices are available for four agricultural sectors, 15 industrial sectors, and eight

services sectors. Since there is a total of 95 sectors in the lOT, the same index is

applied to similar sectors when there was not a direct correspondence. The element d,

of the vector d denotes the deflator in sector i,which is defined as the reciprocal price

ratio (d, =jlpi). Therefore, Zd is obtained by multiplying the a with Z. One can

calculate Yd and Xtt in a similar way. The value added vector Vd' is then obtained from

the balancing equation,

Vd' = Xtt' - e'(D)Zd

where e'(n) is a row vector of ones used for summation of Zd.

The double-deflation method is used to compile the input-output tables in constant

prices. Although the double deflation method is widely accepted, there are three

drawbacks related to this approach. Firstly, by adopting this method, most sectors are

assumed to produce one homogeneous product, each sector's gross output and

intermediate and final demand are deflated by this sector's price index (Dietzenbacher

and Hoen 1998). However, most sectors consist of more than one good, therefore to

use the price index of certain goods to represent the entire sector is not always

appropriate (Sevaldson 1976). Secondly, value-added is obtained as the difference

between the total input and intermediate input in each sector. Consequently, it is not

accurate to use value-added to balance the input-output table after the deflation (Wolff

1994). Thirdly problem arises from sectoral aggregation: a deflated 10 table may be

obtained in two alternative ways. The first way is to aggregate after deflation, which

means that the original table is deflated first, resulting in a value added vector in

constant prices, which then is aggregated. The other way, deflation after aggregation,

means that the original table is first aggregated and then deflated. The two methods

may produce different results unless very stringent conditions are satisfied (Kymn

1990; Dietzenbacher and Hoen 1998). However, the available constant price indices

comprise 17 sectors thus the same price index is applied to similar economic sectors

to match the 10 tables of 18 sectors.
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6.2.1.2 Treatment of the "Other" column

The Chinese lOTs follow most standard formats except for a column which is in

addition to the final demand columns called "Others". This column appears in all the

years except 1995. The GDP derived by summing the value added matches the GDP

derived by summing final demand only if "Others" is included. The error in

aggregated GDP by not including "Others" is small «1 %). However, on a sector-by-

sector basis "Others" can represent up to 8% of output or even totally dominate final

demand (Peters et al. 2007). This suggests considerable caution is needed if using

"Others" as a final demand. Since "Others" plays a dominant role in some sectors,

there is no obvious treatment of "Others" to avoid spurious results.

According to the State Statistical Bureau of China (2000) the "Others" column

primarily represents different reported data, particularly related to trade. Thus,

"Others" is interpreted as an estimate of an error term representing different data

sources. It should not include the error in the calculation of output, thus output, Xtotah

is given as the sum of the intermediate flows and the final demand not including

"Others". This output is then used to normalise the lOT and emissions data, which is

described in the following section 6.3.2.

6.2.1.3 Net flows column

The later versions of Chinese lOTs separated the exports and imports. Exports are

regarded as a category of final demand and imports are treated as primary inputs; this

is done for the lOTs 1997, 2000 and 2002. However the earlier tables had only a ''net

flows" column as one of the final demand categories. According to the information

note of China's input-output table 1992 (State Statistical Bureau of China 1996), the

net flows are calculated as exports minus imports. Therefore in order to make all eight

lOTs consistent for later calculations, the author manually generated the "net flows"

column for lOTs 1997, 2000 and 2002. Following this approach some information

would get lost. In lOA the same product can be exported and imported. From the

information of "net flows", it is not possible to determine if it is the exports, imports,

or both that are changing. For example, if the net trade increases between 1992 and

2002 it can hardly be known if exports have increased, imports decreased, or a

combination of both. Since both exports and imports data are available for 1997-2002,

section 6.3.2.5 also discusses the embedded CO2 emission via exports, and avoided

emission through imports from other countries.
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6.2.2 Energy and CO2 emission data

The energy data were extracted from "China Energy Databook", version 6.0

published by Lawrence Berkeley National Laboratory in June, 2004 (Lawrence

Berkeley National Laboratory 2004). The complete dataset for this study consists of

18 types of fuels, heat and electricity consumption in physical unit. Then, C02

emissions including both the combustion of fuels and industrial processes are

calculated in terms of the IPCC reference approach (IPCC 1996); the detailed method

description is provided by Peters et al. (2006) generated. The energy and emissions

data for all years comprise 37 production sectors and 2 households sectors (urban and

rural). This requires the process of normalisation to match the sectors between lOTs

and the energy and C02 emission data when performing the analysis.

This study follows the standard procedures for normalisation of the lOTs and the

energy and emissions data,

A Z" -1= X total

where A is the inter-industry requirements matrix which represents the technology of

the Chinese economy. Since the constant price lOT has 18 sectors and the energy and

emission data has 37 sectors one needs a mapping between the 10 sectors and the

energy sectors. To normalise the total energy and emissions data, T, one needs firstly

aggregate the energy and emissions data to the sector classification used in the lOTs

and then normalise,

where P represents the mapping between 10 sectors and energy sectors. The post-

multiplication by P converts F into an 18 sector row vector". This procedure assumes

that all 10 sectors that map to the one energy sector have the same emission intensity.

Since the lOT and energy intensities now have the same industry classification, one

can perform all calculations at the 18 sector detail,

c == F(I - Arly

where y the final demand under investigation, A is the inter-industry requirements

matrix which represents the technology of the Chinese economy, F is the emission

intensity in each sector, and e is the energy consumption or C~ emissions required to

produce the final demand.

37 In this studyF andT are rowvectors,but in generalF andT arematriceswhereeach row
representsa differentenvironmentalstressoror valueaddedcomponent.
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6.3 A Race between increasing consumption and efficiency gain

During the past 21 years since China opened up its economy, China has become the

second largest CO2 emitter in the world, after the u.s. China's production-related CO2
has been increasing from 1,319 million metric tons (MMT) in 1981 to 3,209 MMT in

2002 with an growth rate of 143% overall, and 4.3% per year.

6.3.1 The contribution of the different drivers in the IPAT-IO SDA to the

change of CO2 emission

The IPAT-10 SDA results show that per capita consumption volume drives most of

the increase of CO2 emission over the past two decades. In contrast, the efficiency

improvement is the strongest player in offsetting the emissions. As shown in Figure

6.2, the per capita consumption volume, "~Yv" (Pink line) would drive the increase of

total CO2 emissions by 411% if the population, efficiency improvement, economic

structure and people's consumption pattern stayed constant. While the efficiency

improvements (green line) would cause a decrease of total CO2 emissions by 384% if

the rest of the factors remained the same to 1981' s value. The change of population

(blue line) would lead to a 62% of increase of total C02 emission; the structure

change of consumption pattern (red line) would increase 50% and the structural

change of economic production (light blue line) would decrease by 1% of total CO2
emissions. In total, by 2002 the CO2emissions (the black line) had increased by 143%

from 1981's level. Looking at Figure 6.2, one can find that the pace of per capita

consumption volume in the recent years (since 2000) is much more rapid than it in

1990s which again had been quicker compared with its 1980s' value. Meanwhile, one

also notices that the efficiency gains since 1990s are more notable than during the

1980s probably due to increasing inflows of FDI and joint ventures.



109

Figure 6.2: The Drivers of CO2 Emission - IPAT-IO SDA Perspective
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Below section 6.3.2 demonstrates the increasing fixed capital investments and urban

household consumption volume are the main drivers in contributing to the increase of

C02 emissions; and section 6.3.4 investigates whether this efficiency improvement is

caused by the under-reporting of Chinese coal consumption from 1996 to 2003.

6.3.2 The contribution of final demand sectors to IPAT-IO SDA

Figure 6.3 shows an allocation of the total emission increase to the separate final

demand categories. Of the 1,890 MMT (143%) increase in C02 emissions from 1981

to 2002, 863 MMT (46%) was due to fixed capital investments; 897 MMT (46%) was

due to households with a 795 MMT (42%) is from urban households and 74 MMT

(4%) is from rural households; 172MMT (9%) was due to government expenditure; 3

MMT (less than 1%) is due to net trade, and 18 MMT (-1%) decrease in change of

stocks. Figure 6.3 clearly shows the significant disparity between the urban and rural

household in causing CO2 emission over the past two decades. The urban household

consumption generated more than 10 times in CO2 emission than rural household did.
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Figure 6.3 also picks the two final demand sectors - urban households and fixed

capital which are most responsible for the change of CO2 emission.

Figure 6.3: The Contribution of Different Final Demand to the Change of CO2 Emission

-10%
• Construction materials
• Electricity,water and gas $U

• Transport, post and Telecommunication
• Wnolesales, restaurants, services
• Other sectors

50%

40%

• rore5try Indu!itry
.Ughtmachinery
• Construction
• Wnolesales, restaurants, services
• Othersectors

The following sections, section 6.4.2.1 to 6.4.2.6, demonstrate the sectoral

breakdowns in contributing CO2 emission in each final demand category, respectively.

6.3.2.1 Fixed capitals

The right side pie chart of Figure 6.3 and Table 6.2 illustrates the top four sectors

causing increases in C02 emissions in fixed capital investment. The referred sector

which produces the capital may not necessarily be the sector that uses the capital. For

instance, the light machinery produces a glass container for the purpose of laboratory

experiments which is used by the chemistry sector and not the light machinery sector.

Of the 863 MMT increase in CO2 emission caused by fixed capital investment, 58% is

due to the production in light machinery sector; 31% is due to wholesales, restaurants

and other social services; 25% is due to forestry industry.

As Table 6.2 shows, the increased CO2 emission from light machinery resulted from a

7,562% increase in per capita demand for light machinery products, which is mainly

due to the significant growth of light machinery production triggered by foreign direct

investments (FDI) in electrical and electronic production in China since the early

1990s. This figure can also indicate that many Chinese enterprises are in the process

of office modernisation as a significant percentage of their fixed capital are formed by

light machinery products such as computers, telephones and many other electrical

appliances. Furthermore, the increase is further extended by 784% due to population
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growth and 1,141% due to the change of the production structure. On the other hand,

the overall increase was tempered by a 6,915% improvement in efficiency due to the

technology transfer by foreign direct investment especially in electrical and electronic

sectors during the 1990s.

The tertiary industry excluding transport, post and telecommunication in China has

been booming over the recent 20 years. The GDP share of the tertiary industry has

been growing from 5% in 1981 to 16% in 2002. The share of service sectors are

increasingly playing a significant role in the economy (Hubacek et al. 2007). This also

leads to a rapid increase of fixed capital investments in service sectors such as

computers, paper, tables and all office related products; thus the services sector is

ranked as second in causing CO2 emissions.

Table 6.2: The top four sectors causing increases in CO2 emissions from fixed capital

Unit:%
1981-2002 Op OF OL 0Yv

Lightmachinery
Wholesales,Restaurantsandother socialservices

2572.0 783.6 -6914.7 1141.3 7561.8
1371.8 301.1 -2276.3 848.2 2498.8

Forestryindustry
Construction

1122.9 249.6 -1871.5 732.6
217.4 89.3 -665.1 129.4

2012.3
663.8

Fixed capital formation is formed by fixed capital investments and change of stocks.

However, the portion of the CO2 contribution by "Change of Stock" is too small

compared to fixed capital investments. Therefore, this chapter is not going into further

detail on these investments.

6.3.2.2 Urban households

The left pie chart of Figure 6.3 illustrates the top four sectors causing increases in CO2

emissions in urban household consumption. Of the 795 MMT increase of CO2

emission due to urban household consumption, 36% is from construction materials,

18% from energy and water usage, 15% from transport, posting and

telecommunication services, 10% from general services and the remaining 21% are

from other sectors.

As Table 6.3 shows, China's urban household's demand on construction materials,

mainly indirectly, would result in an increase of7,880% in CO2 emission over 1981 -

2002. This is due to the privatisation process of the housing sector in the early 1980s

and the boost of housing construction for urban residents since the 1990s. For

example, as section 2.4.2.2 discussed, the per capita net living space for Chinese
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urban residents was only 3.6 m2 prior to 1978, mainly because of restrictions on

private house ownership. Cities dwellers urged the development of housing. Until

1981, the commercialisation of the housing sector brought about by the Housing

Reform Policy, which had been introduced to solve the problems of urban housing

shortages and poor housing conditions. A great amount of money flows in housing

construction sector in urban China, the total figure counts for about 7% of total GDP.

As a result, many new houses have been built. City dwellers started to move from

previously tiny bungalows or apartments to new multi-stories apartment blocks or

even high-rise buildings, and per capita net living space increased to an average of

15.5 m2 in 2001 (State Statistical Bureau of China 2002). The emissions have been

increased mainly by population growth and change in the production structure, but

largely offset by efficiency gains of 5,255%.

The extended living space for urban Chinese both direct and indirectly results in the

increase of energy and water consumption that drives 3,202% growth of CO2emission.

The direct emissions are from daily heating, cooking and the electricity usage of

household appliances. For example as section 2.4.2.2 described, household electrical

appliances purchased by people quickly increased in both quantity and category since

1990 (as shown in Figure 2.12). For example, purchase of refrigerator and colour TV

in urban areas has both doubled in 2005 compared to 1990. Air-conditioners and

personal computers have become essential household items for many urban families.

Urban residents' increasing demand on electronic appliances also leads to rapid

growth of indirect CO2 emission during the production processes.

It is also interesting to look at urban residents' consumption of goods from the

transport, post and telecommunication sector. Per capita demand would drive 3,906%

of increase of C02 emission, and it is further expanded 436% by urban population

growth and 956% by change of structural production, but the overall figure is offset

by 3,542% in improvement of production technology. The proportion of the postal

services is relatively small in this aggregated sector. In terms of transportation, the

dream of owning a car is a reality for only a few households but it is still an

unachievable goal for low to mid income households. But despite this fact, one can

already observe a trend of the car replacing traditional ways of commuting (e.g.

walking, cycling, or by bus). This would result in a boom of car production and other

car-related sectors, which will inevitably cause a further increase of CO2 emissions

both from the usage of car and the increased economic production due to the
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structural effects of car production. In similar situation is observable for

telecommunication services; for example mobile phones are popularised in urban

China; every household has on average 1.37 sets in 2005 (State Statistical Bureau of

China 2006). The usage of mobile phones causes direct emissions from electricity

consumption, and indirect emission from production of handsets as well as from the

operation of telecommunication service sector.

Table 6.3: The top four sectors causing increases in COl emission from urban household

Unit: %

1981-2002 Dp OF OL
Construction materials
Electricity, water and gas supply
Transport, post and Telecommunication
Wholesales, Restaurants and other social services

4480.6 860.8 -5255.0
2234.3 370.9 -1561.9
1845.1 435.8 -3452
1287.6 284.6 -2149.6

994.6
223.2
955.5
802.5

7880.2
3202.1
3905.8
2350.1

6.3.2.3 Rural household

Rural households are responsible for 75 MMT or 4% of the increase of CO2 emission

during 1981-2002. Table 6.4 illustrates the top four sectors contributing to the

increase of C02 emissions. Of the 75 MMT, 79% are from metal and non-metal

materials mining and processing sectors (mainly non-metal materials mining and

processing such as limestone or marble etc), 10% from wholesales, restaurants and

other social services, 6% from energy and water supplies, 4% from transport, post and

telecommunication and 1% is from other sectors.

As discussed in section 2.4.2.2, rural residents rebuilt and extended their houses by

using building materials, which indirectly resulted in the increase of C02 emission in

non-metal materials mining and processing by 9,100%. The emission is tempered by

5,540% of efficiency gains and 240% of changes in the economic structure.

Table 6.4: The top four sectors causing increases in CO2 emission from rural household

Unit: %

1981-2002. Dp OF DL
Metal and non-metal materials mining & processing
Electricity, water and gas supply
Transport, post and Telecommunication
Wholesales, Restaurants and other social services

4260
340
230
580

940
80
80
150

-5540
-330
-630

-1090

-240
50
190
420

9100
540
590
1110

If one compares the increases of sectoral CO2 emission triggered by household

consumption between urban and rural China, the top sectors are very similar; the first

sector is always triggered by housing improvements, followed by energy, transport
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and services sectors. This reflects that both urban and rural people's lifestyles have

been changing in remarkably similar ways. On the other hand in terms of magnitude

of the emission, urban household obviously are responsible for more than 10 times of

C02 than rural households. However these results indicate that rural residents are

progressively changing their lifestyles towards urban lifestyles, which will bring

another boost of CO2 emission in the very near future, especially considering that

57% of Chinese populations are still living in rural areas.

6.3.2.4 Government consumption

Government consumption is responsible for 172 MMT or 9% of the increase of CO2

emissions from 1981-2002. Table 6.5 lists the top two sectors contributing to the

changes in government consumption. As expected this list is topped by services,

which is reflected also in increased household expenditure in these sectors.

Table 6.5: The top four sectors causing increases in CO2 emission from government

Unit: %

1981-2002 Op OF DL
Wholesales, Restaurants and other social services
Transport, post and Telecommunication

12721 2517 -19363
88 53 -385

7019
121

22548
300

6.3.2.5 Net trade

Net trade, measured as exports minus imports, contributed very little to changes in

China's overall environmental impacts, though this may vary on a regional basis

(Streets et al. 2006). There is a rough balance between C02 emissions from the

production of exports and emissions avoided by imports. Despite this balance, there

has been strong absolute growth in both exports and imports since the beginning of

the economic reforms. For most of the years, the lOTs only consists of net-exports, it

is meaningless to see a sectoral emission breakdown for those years.

Exports and Imports: the export and imports data in lOTs are available for 1997-2002;

therefore the following paragraph provides discussion on embedded C02 emission.

In 1997 the C02 emissions embodied in exports was 726 MMT, 23% of China's total

emissions, but 681 MMT, 22% of the total CO2 emissions were avoided by imports.

These figures grew to 29% for exports and 31% for imports for 2002. It is interesting

to point out that China had been a net C02 emission exporter until 1997, except for

1987; and became a net emission importer for 1997 and 2000, and switched back to

an exporter in 2002. Actually, given data availability, the correct method to calculate
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the emissions embodied in the production of imports is through multi-regional input-

output analysis (Turner et al. 2007; Wiedmann et al. 2007). Unfortunately, the

necessary data is not available for China. This issue can be avoided by assuming the

imports are produced with Chinese technology and then interpreting the emissions

embodied in imports as the "emissions avoided in China by importing products and

services" (Peters et al. 2007). While this is a shift in interpretation, it is in fact

misleading. Since China's trading partners generally have a cleaner energy mix, then

it is expected that the emissions embodied in China's imports are actually smaller than

the emissions avoided by China not producing the imports. This is supported for 2001

where the C02 emissions embodied in China's exports were 26%, while the C02

emissions embodied in China's imports were 9% (Peters and Hertwich 2006).

Consequently, China is actually a net exporter of CO2emissions to other countries.

6.3.3 A decrease of direct CO2 emission

Production-related C02 emission represents 90-95% of total China's CO2 emission.

However, direct household C02 emissions such as the fuel used in daily cooking,

heating, power supplies for household appliances and private transportation cannot be

ignored. The amount of total direct C02 emissions had firstly increased from 182

MMT in 1981 to 261 MMT in 1990, and gradually decreased to 162 MMT by 2002.

Figure 6.3 distinguishes the direct CO2 emissions in per capita value between rural

and urban residents, which clearly shows a significant decrease of per capita C~

emissions in urban China since the end of the 1980s. This is mainly caused by the

gradually abandonment of coal consumption in urban areas. For example, since the

end of the 1980s, urban residents started to move from bungalows, with heating and

cooking based on coal, to the multi-story blocks which are supplied by district heating

systems and coal- or natural- gas for cooking. These led to rapid decline of per capita

coal consumption for urban residential from 348.5kglyear in 1985 to 88.2kglyear in

1999, further to 48.1kglyear by 2004 (also see section 2.4.2.4).

On the other hand, Figure 6.4 shows that per capita household C02 emission in rural

China stayed almost constant before 1997, which indicates that the energy

consumption structure in most of rural China had not been changed much. The slight

decline of per capita emissions in recent years reflects a trend that the energy

consumption pattern in rural China has been slowly diversified with gradually
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abandoning coal and biomass. In fact, this study does not consider biomass energy

consumption for rural households. Stalks, bio-gases and firewood provided 85% of

resident energy consumption in 1985, and the figure has been reduced to 74% by 2004.

Figure 6.4: Per capita CO2 emission from residential energy consumption
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6.3.4 Under-reporting of coal consumption

Despite increases in Chinese CO2 emissions, official energy statistics show a

significant decrease in coal consumption from 1996 to 2000 (State Statistical Bureau

of China 2006). According to official statistics, from 1996 to 2000 China's coal

consumption declined substantially and then rapidly increased from 2000 to 2004

back to the historic trends, as shown in Figure 6.5. During this time period non coal-

based energy increased in line with historical trends. Some have argued that the

decrease was realistic and resulted from successful Chinese policies aimed at

structural change and efficiency improvements (Sinton and Fridley 2000; Streets et al.

2001; Fisher-Vanden et al. 2004; Wu et al. 2005). However, recent satellite data

suggests that there was significant under-reporting of coal consumption and that the

official statistics should not be used for emission inventories (Akimoto et al. 2006).

Poor statistics may be due to a number of highly dispersed users---such as smaller

often rural enterprises and households---using coal from small and inefficient coal

mines. Further, the policy to close these small mines has probably been less successful

than thought as many continue production illegally (Horii 2001; Sinton 2001). Three

of the data points in this analysis are affected by the unusual coal consumption, but

only 2000 and 2002 differ substantially from the historic trend (see Figure 6.5). To

account for the potential under-reporting for 2000 and 2002 the author performs a

scenario which scaled up the coal consumption to reflect the historic trend.
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With the modified coal data, Chinese CO2 emissions grew 2,457 MMT (186%) from

1981 to 2002 instead of 1,890 (MMT) 143% in the un-modified data. The

contribution of GDP growth to increased emissions was 427%, up from 411% in the

un-modified data; efficiency improvements reduced emissions 333%, a considerable

decrease from 384% in the un-modified data; and structural changes were unaffected.

Despite these changes, the general form of Figure 6.2 remains unchanged suggesting

that even though coal consumption was under-reported, there were still significant

improvements in energy efficiency between 1997 and 2002 (Sinton and Fridley 2000).

Figure 6.5: Historical energy consumption with modified coal consumption scenario
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6.4 Conclusions and Outlook

Capital investments such as in infrastructure are an important motor for economic

growth in many developing countries (Yu 1998; Crosthwaite 2000), but the downside

is increased pollution through the production of cement, steel and glass especially

needed for building infrastructure and buildings. Since the importance of construction

decreases as a country develops (Crosthwaite 2000), it is likely that the environmental

impacts will decrease as well. As a country initially develops, relatively high pollution

levels may be unavoidable, but once the capital stock for infrastructure is in place,

decreases in construction activity may decrease related emissions. On the other hand,

infrastructure may lead to increased use-phase emissions. For instance, the emissions

from personal car transportation are likely to increase rapidly as infrastructure is put
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in place (Marcotullio et al. 2005). One potential strategy to avoid this and similar

scenarios is to leapfrog straight to low emission technologies (Perkins 2003).

Examples include avoiding the need for fixed telephone infrastructure by leapfrogging

straight to mobile technologies (Davison et al. 2000) and moving to natural gas for

transportation skipping limited efficiency improvements in gasoline or other liquid

fuels.

Increases m CO2 emissions related to household consumption are driven by a

combination of urbanisation and increased expenditure of urban households. Despite

a positive structural shift toward consumption of less energy-intensive services,

increased consumption of energy-intensive products such as electricity and appliances

at the household level and construction activities at the national level mostly offset

efficiency gains. It is likely that the environmental pressures from increased

household consumption, urbanisation, and population will continue with China's

economic goals (Liu et al. 2003; Peters et al. 2006; Hubacek et al. 2007).

International trade has been an important driver for China's economic growth (Yu

1998). The increased economic activity for the production of exports may have a

significant regional impact for local pollutants (Streets et al. 2006), but for global

pollutants such as CO2 the impacts may balance. While this analysis determined the

emissions avoided by imports and found a rough trade balance for emissions, using

more realistic assumptions China is a net exporter of C02 emissions (Peters and

Hertwich 2006). This raises the question of where goods should be produced from an

environmental perspective (Peters and Hertwich 2006). While Chinese production

may have several advantages for the global economy due to its low labour cost

structure, given its inefficiencies in terms of resource use it causes greater

environmental impacts than the production of these goods in other countries (Liu and

Diamond 2005).

Much of the previous research (e.g. Cole et al. 1973; Lecomber 1975; Chertow 2001)

has investigated whether technology improvements are the solution to prevent

environmental degradation while the economy develops, which has drawn great

attention by policy makers and economic theorists alike. This section conducts a

simple experiment based on Hubacek and Guan et al. (2007) to see what level of

technology China would need in 2050 (e.g. TChina-2050) in order to maintain the same
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amount of C02 emission in 2000 (C02 China _2000)38 given growing population (PChina-

2050) and a growing economy (AChina_2050)39 by using the simple IPATidentity.

The result shows that in order to satisfy the rapid consumption increase, Chinese

technology would have to be improved by 98% in the next 50 years in order to be on

track with current CO2 agreements. In comparison, historical data show that China

had achieved 78% of efficiency gains over the last 40 years (1960-2000) by reducing

per capita CO2 emission (Hubacek et al. 2007). This evidence suggests technological

improvements alone are unlikely to stabilise emissions. While efficiency and

technology improvements will remain important, strong policies are required to

capture the still-untapped potential to reduce emissions through structural changes in

consumption systems.

In addition, national averages often obscure the similarities among different

consumption classes across state borders. The United Nations Human Development

Program (1992) divided world economic activities into five income categories. The

richest fifth accounts for 85% of global income, trade exchange, and savings. After

that these indicators drop dramatically forming the so-called "champagne glass"

figure. The remaining three fifths contribute considerably to global population but

relatively little to the global economy. Acknowledging these differences between

countries Alan Durning (1992) categorised the world's population not by country but

by consumption classes for 1992; he forms three broad socio-ecologica1 classes based

on consumption patterns and the degree of environmental impact (Kaza 2000). The

author follows Durning's method to update the world consumption classes to 2006, as

shown in Figure 6.6

Consumption has shown to be of considerable importance in this analysis. But a

variety of consumption models exist. For example, in comparing income and

consumption levels between Japan and the US one finds that despite relatively similar

per capita income levels the average US consumes more resources as her fellow

consumer in Japan. Examples of sustainable consumption and production patterns in

other developed countries could therefore help the US to leapfrog to a higher level of

38 Hitherto,Chinahas not committedthemselvesso any internationalagreementsto CO2

reductionthus the authorassumesthat in the long-runChinawouldwant to committo future
roundsof internationalagreements.In the absenceof these the authorassumesa CO2 levelof
2000.
39C02 China-2000 = P China -2050 X AChina -2050 X T China-2050 which is then reformulated to
TChina-2050 = C02 China-2000 / (PChina-2050 X AChina-2050)
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well being with lower pollution and resource consumption. This might be even easier

to achieve for developing countries. Wasteful infrastructure, institutions and habits

have not been developed to the same extent as in the resource addictive 'North'.

Similarly technological and institutional leapfrogging could help the 'under-

consumers' to achieve higher level of consumptions but given the links or

dependencies created through global trade, foreign direct investments and marketing

in these emerging economies the possibilities for developing countries to successfully

contribute to global efforts for sustainable production and consumption might be

difficult.

Figure 6.6: World Consumption Classes in 2006

• High ConSlJmers
1.3 billion

• Middle Consumers
3.9 billion

• Under Consumers
1.3 billion

Source: Modified from Alan Durning (1992)

From technological and energy efficiency points of view much in this direction is

already going on in some of the more advantaged areas such as the coastal areas in

China driven by high levels of foreign direct investment and improved efficiency

rates. With regards to the consumption side, this is much more difficult in developing

or transition countries trying to emulate Western lifestyles. Even though influencing

consumers is difficult but this is routinely done by companies and marketing agencies

and thus why should 'green campaigns' not be able to achieve the same. On the other

hand, one has to notice the huge differences in money and resources that is spent on

marketing for consumption items and in comparison the miniscule amounts available

for e.g. recycling campaigns, a problem shared by public agencies and non-

governmental organisations (NGOs) in developed and developing countries alike.



121

Chapter 7: Achievements and Conclusions

This thesis studies one of the fastest growing economies - China - to explore new

opportunities for quantitative research on sustainability. This thesis builds on the

methodological framework of input-output analysis to assess both direct and indirect

natural resources consumption and related emissions triggered by economic growth,

changes of people's lifestyles, population migration, urbanisation production

structures and trade patterns. This chapter firstly summaries the findings and

conclusions from the above case studies (Chapter 4-6), secondly overviews

methodological contribution of this PhD research to environmental input-output

analysis, finally, presents some limitations of this thesis with the possibilities of

further research.

7.1 Summarising thoughts on the case studies

China's economic growth, industrialisation, urbanisation and rapid increase in

people's consumption volume and diversification of consumables has brought about

enormous changes to China's economy and society but also left deep marks on

China's ecosystems and availability of resources. On the other hand, the damaged

environment would affect the continuity of development in the long run, and in some

regions this has become a bottleneck to economic growth. Generally speaking, a

newly industrialised country or region, initially, always engages in labour- and

resources-intensive production. From the perspective of a sustainable development, it

is important to ensure that an efficient economic structure and trade pattern is fostered

already at the beginning of the industrialisation process, in terms of allocation of

production facilities considering the availability of resources and with an effective

environmental monitoring and management system.

Only very recently Chinese authorities, aware of the deterioration of the environment,

have started to promote more balanced patterns of development, using concepts such

as "harmonious society", "scientific development" and "circular economy". One of

their core responses to these concepts is to give high priority to environmental and
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natural resources management with planning for national economic and social

development (OECD 2006). In order to guarantee a concordant "plan", it would

require a full understanding of the interrelationships between the economy and the

environment, and find the major drivers damaging the environment.

Economic production and consumption use inputs of water from the environment,

however, water resources are currently highly undervalued as there are often little or

no costs associated with their consumption. Even North China, characterised as

serious water scarce, requires 96% of its annual available water resources, mostly for

the water and emission intensive sectors such as agriculture, energy generation, paper

making and production of chemicals. Since agriculture was and will remain the

dominating water consumer in North China, the irrigation efficiency can be improved

by properly pricing the water resources with reasonable cost recovery mechanism

(Hubacek et al. 2007). The preservation of irrigation will depend critically on

transfers from the Yangtze, in other words, it is hard to see how these basins can

survive without them (Wang et al. 1999). However, Hubacek, Guan et al. (2007)

projected that the total water demand in 2020 in North China would be 1.5 times more

than the total availability with the consideration of transferred water from Yangze

river. A water scarce region like North China should change its economic structure by

developing less water- or pollution-intensive production such as electrical and

electronical appliances or services. Actually the lack of technology and investments in

water transportation infrastructure and water treatment plants is the barrier to

decelerate the process of economic transition in many-water shortage regions.

Similarly, by using CO2emissions as an environmental indicator, Chapter 6 pictures a

race between per capita's consumption and efficiency gain in contributing or

alleviating the growth of C02 emissions. Unfortunately, the pace of technology

improvement has not been able to cope with the rapid increase of consumption related

emissions with very important global climate implications. The results show that a

boost of urban consumption is primarily responsible for the increase of CO2emission,

which may be also true for much of the other environmental pollution in China. In the

near future, it is likely that China will pursue continued economic growth in an

attempt to reduce poverty and improve quality of life (Ravallion and Chen 2007). As

in most countries, China has improved energy efficiency and this effectively reduced

China's CO2 emissions by 80-90% since 1960. There is the potential to reduce

emissions further through efficiency changes by continued energy conservation, fuel
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switching, renewable energy, carbon capture and sequestration, and so on (Gielen and

Changhong 2001; Pacala and Socolow 2004). However, the simple experiment at the

end of Chapter 6 gives some indication that there will be a continuation of the race

between increasing consumption and technology improvements for China's future

C02 emissions. Furthermore, the required technology level can hardly be achieved by

China itself, which would require extensive technology leapfrogging and imports and

FDI from developed countries.

To address the (over) consumption and guide towards more sustainable consumption

is more difficult in a developing country's context, where wealth is unevenly

distributed. There are still large segments of the population who life under conditions

of poverty (e.g. interior rural residents) and thus different sets of policies are

necessary for different income classes to achieve a sustainable consumption.

7.2 Methodological achievements

This PhD thesis adopts environmental input-output analysis as the primary method to

investigate the economy-environment interrelationships in China. However the author

further develops the techniques in several case studies to better address the respective

research questions. The methodological achievements can be summarised in the

following three main points:

Hydro-economic accounting framework and analysis tool

Chapter 4 presented a new methodological accounting and analytical approach based

on economic input-output modelling combined with a mass balanced hydrological

model that links interactions in the economic system with interactions in the

hydrological system. By following the tradition of integrated economic-ecologic

input-output modelling the hydro-economic accounting framework and analysis tool

allows tracking water consumption on the input side, water pollution leaving the

economic system and water flows passing through the hydrological system thus

enabling one to deal with water resources of different qualities in different spheres. In

particular, the framework tracks water consumption on the input side including

rainfall, surface and ground water; assigns qualities for wastewater leaving the

economy to different hydrological sectors (e.g. surface and ground water bodies); and
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measures the amount of contaminated water within the hydro-ecosystems.

Furthermore, Chapter 4 proposes that the traditional term of water demand needs to be

modified by incorporating the ineligible water polluted by production and

consumption into the water accounting framework.

Virtual Water flows

Chapter 5 evaluated the current inter-regional trade structure and its effects on water

consumption and pollution via virtual water flows. Most of the studies on virtual

water flows have been conducted in drought areas such as the Middle East and North

Africa and have emphasised the amount of water embedded in different agricultural

products related to food security, with agriculture being the largest water consumer.

With increasing importance of other industrial products and services and their effects

on water consumption, this study extends the concept of virtual water flows to

comprise all types of commodities including agricultural goods, industrial products

and services. Furthermore, the term of virtual water as used in this thesis distinguishes

between freshwater and wastewater. In addition, for agriculture there are two supply

sources: rain water and natural flows. Therefore, this study differentiates between

rainfed and irrigated agricultural products as rain water used for agricultural products

would not be readily available for any other economic production; an important

distinction that has been all too often overlooked.

IPAT -I0 Structural Decomposition Analysis

Chapter 6 discovered significant overlaps between the frequently used IPAT equation

and structural decomposition analysis (SDA). Certain differences remain: IPAT can

only account for the direct impacts to the environment created by the driving forces -

population, affluence and technology. In addition, the technology term had frequently

been criticised for being a catch all residual, which is difficult to interpret. Related to

this point is that the technology term is too aggregated to clearly distinguish or track

the sources of emissions and allocate them to particular industries. Similarly, lifestyles

are only represented in the very simple A=affluence term of the IPATwhereas the 10

tables have very detailed final demand accounts. On the other hand, many previous

SDA studies ignored the factor of population growth and migration, but it is important

to many populous developing countries such as China and India. The combination of
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the SDA and IPAT enriches both approaches and allows to link to the various

discourses held in either one or the other 'tradition'.

7.3 Limitations and future research possibilities

Each of the results chapters of this thesis (Chapter 4 - 6) has its own sets of

limitations in terms of data collection and methodological shortcomings. In the

following the author firstly discusses broader sets of limitations than those already

discussed in the respective chapter, and then provides the reader with some ideas or

speculations to further extend and overcome these shortcomings within an input-

output approach.

The author used a relatively simple mass-balanced water quality model in developing

the hydro-economic accounting framework in Chapter 4. The current model is

appropriate for the purpose at hand, which is to assess the water flows for a meso- and

macro-level representation of the economy. But the accuracy of the framework could

be further improved by combining a more sophisticated water quality model. Input-

output model offers great sectoral detail of production and allows allocation of

impacts to consumption and production activities. But one important limitation

especially with regards to modelling pollution is the 'non-spatiality' of input-output

analysis. This is of less important for a global pollutant such as C~ but can be very

significant for water pollutants and other local and regional pollutants with the threat

of contributing to hot spot pollution areas. Only a very few studies have attempted to

conceptualise spatially explicit input-output models and combinations with spatially

explicit datasets. In addition, this research indicates that the current methodological

developments for green GNI accounting should distinguish between economic assets

and environmental assets. Under the green GNI accounting framework, one can set up

two sets of sub accounting systems with two sets of ''prices'': one is for economic

achievements with monetary price; the other is for natural resources with ''physical

price". For example, the physical price can be defined as the amount of fresh

(unpolluted) resources (e.g. freshwater) is required to upgrade (the degraded /

contaminated resources). The linkage between the two sub-accounting systems would

be the monetary value of per unit resource in a fresh/uncontaminated condition.
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Chapter 5 investigates a "paradox" of virtual water flows via trade. Referring to

international trade theories, the author points out that water resources have not been

regarded as a factor of production and consumption. In fact, decision-making on

supporting a certain production structure should involve a comprehensive study

considering environmental factors as well as labour, capital, social economic factors.

For example, in the case of North China, one can see severe water scarcity but at the

same time exports of water intensive products. Thus one can observe a contradiction

of water saving policies and export policies. At the same time, this region has a

comparative advantage in excellent soils that are ideal for agricultural production and

therefore exports of agricultural goods. However the challenge is which factor has the

highest priority in the decision, and what principle one should follow to ascertain the

relative importance of factors of production including non-priced environmental

resources. Therefore, there is some space to test the feasibility of combining input-

output analysis with multi-criteria decision analysis to support such analyses.

The experiment at the end of Chapter 6 does not use the IPAT-IO SDA framework.

This is because of time constrains and many uncertainties in projecting the change for

each factor, particularly the C02 emission coefficients and Leontief's technical matrix

(A). For future research, the projection of CO2 emission coefficients can use scenario

of "business as usual" based on a continuation of historical data. The projection of the

A matrix can be achieved by using RAS technique in combination of more

sophisticated scenario tools (Duchin and Lange 1994; Hubacek and Sun 2001, 2005).

The author conducted an analysis to evaluate the ecological and water footprints for

China's 2020 using a similar combined approach, which has not been included in the

write up of the thesis (Hubacek et al. 2007),

Secondly, another important aspect especially for the C02 case study is the discussion

of whether China is a net CO2 emission exporter or importer. The reason for this

shortcoming is that it would involve knowing the economic structure and energy

efficiency in producing the goods China imported from other countries. This can be

done by setting up a multi-regional input-output table linking China with several

regions in the world. The author is currently involved in a DEFRA funded project:

UKMRIO to construct a multi-regional input-output tables linking UK with three

regions - OECD Europe, OECD non-Europe and the rest of world. The assumption is

to use an average or standard economic structure and energy coefficients for every

region. A similar method can be applied in China and other developing countries in
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order to investigate on earth whether the "north" generously helps the "south" to

leapfrog or sees it as a pollution heaven. A number of attempts building multi-

regional world models are ongoing (e.g. the EU-projects EXIOPOL: A New

Environmental Accounting Framework Using Externality Data and Input-Output

Tools for Policy Analysis; MOSUS: Modelling opportunities and limits for

restructuring Europe towards sustainability). These advances should make this type of

analysis much easier in the future.
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Appendix A

Appendix A-I: North China's Net Water Consumption in 1997

Surface water Ground water Rainfall Water Quality
(million nr') (million m') (million m3) (COD gram/m3)

1 Rainfed Agriculture 0.00 0.00 29,681.84 N/A
Irrigated Agriculture 23,773.74 17,215.46 0.00 40

2 Coal mining and processing 88.98 54.54 0.00 30
3 Petroleum and natural gas 42.48 29.52 0.00 30
4 Metal ore mining 34.70 33.34 0.00 30
5 Non-ferrous mineral mining 27.47 39.54 0.00 30
6 Food and tobacco processing 267.29 594.93 0.00 30
7 Textile goods 144.91 281.30 0.00 30
8 Wearing 40.41 38.83 0.00 30
9 Sawmills and furniture 34.38 12.08 0.00 30
10 Paper and products 107.71 341.09 0.00 30
11 Petroleum processing 14.14 21.21 0.00 30
12 Chemicals 833.24 978.15 0.00 30
13 Non-metal mineral products 76.54 110.14 0.00 30
14 Metals smelting and pressing 205.28 283.48 0.00 30
15 Metal products 31.75 35.81 0.00 30
16 Machinery and equipment 137.97 256.22 0.00 30
17 Transport equipment 46.11 42.57 0.00 30
18 Electric equipments 38.28 74.30 0.00 30
19 Telecommunication equipment 73.47 101.46 0.00 30
20 Instruments 11.43 12.89 0.00 30
21 Maintenance machinery 17.70 19.18 0'.00 30
22 Other manufacturing 37.93 56.89 0.00 30
23 Scrap and waste 11.95 8.31 0.00 30
24 Electricity 840.82 280.27 0.00 30
25 Gas production and supply 4.17 1.79 0.00 30
26 Water production and supply 16.03 5.06 0.00 30
27 Construction 90.42 135.63 0.00 30
28 Transport and warehousing 63.33 94.99 0.00 20
29 Post and telecommunication 11.74 17.61 0.00 20
30 Wholesale and retail trade 126.97 190.46 0.00 20
31 Eating and drinking places 14.89 22.33 0.00 20
32 Passenger transport 16.72 25.08 0.00 20
33 Finance and insurance 50.08 75.11 0.00 20
34 Real estate 15.12 22.68 0.00 20
35 Social services 31.75 47.63 0.00 20
36 Health services, social welfare 10.89 16.34 0.00 20
37 Education and culture 19.89 29.84 0.00 20
38 Scientific research 3.73 5.59 0.00 20
39 General technical services 9.73 14.60 0.00 20
40 Public and other services 33.99 50.99 0.00 20
41 Urban households 921.89 1,362.11 0.00 20
42 Rural households 209.25 3,975.75 0.00 20

Total 25,346.31 30,258.07 29,681.84
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Appendix A-2: North China's Discharged Wastewater and its Quality in

1997
Surface water Ground water Natural loss Water Quality
(million m') (million m') (million m') (COD gram/m')

1 Agriculture 2459.35 3689.03 1192.79 290
2 Coal mining and processing 229.63 57.41 25.26 201
3 Petroleum and natural gas 115.19 28.80 12.67 201
4 Metal ore mining 163.29 40.82 17.96 265
5 Non-ferrous mineral mining 42.89 10.72 4.72 324
6 Food and tobacco processing 272.91 26.99 17.65 469
7 Textile goods 236.90 15.12 12.83 419
8 Wearing 18.68 4.10 1.88 307
9 Sawmills and furniture 25.21 4.80 2.32 214
10 Paper and products 1131.00 215.43 104.21 1023
11 Petroleum processing 58.68 12.02 5.66 314
12 Chemicals 886.68 109.59 63.91 756
13 Non-metal mineral products 92.76 15.10 7.78 317
14 Metals smelting and pressing 387.10 43.01 26.45 317
15 Metal products 36.48 4.05 2.49 317
16 Machinery and equipment 313.17 55.27 27.54 317
17 Transport equipment 25.08 4.78 2.31 317
18 Electric equipments 59.01 4.44 3.40 285
19 Telecommunication equipment 91.70 6.90 5.28 285
20 Instruments 18.52 4.92 2.12 285
21 Maintenance machinery 12.67 1.41 0.87 285
22 Other manufacturing 56.71 12.45 5.72 346
23 Scrap and waste 12.31 2.70 1.24 423
24 Electricity 0.00 0.00 0.00 0
25 Gas production and supply 8.40 1.37 0.70 165
26 Water production and supply 29.75 4.84 2.49 105
27 Construction 127.49 8.14 6.90 423
28 Transport and warehousing 139.32 0.00 4.88 362
29 Post and telecommunication 25.83 0.00 0.90 362
30 Wholesale and retail trade 171.41 0.00 6.00 362
31 Eating and drinking places 25.12 0.00 0.88 362
32 Passenger transport 28.22 0.00 0.99 362
33 Finance and insurance 84.50 0.00 2.96 362
34 Real estate 25.52 0.00 0.89 362
35 Social services 53.58 0.00 1.88 362
36 Health services, social welfare 18.38 0.00 0.64 362
37 Education and culture 33.56 0.00 1.17 362
38 Scientific research 6.29 0.00 0.22 362
39 General technical services 16.42 0.00 0.57 362
40 Public and other services 38.24 0.00 1.34 362
41 Urban households 3777.31 0.00 132.21 362
42 Rural households 1391.87 596.51 48.72 362

Total 12747.15 4384.21 1761.42

Average COD concentration 426.94 341.13
(gramlm~. (gramlm~
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Appendix A-3: The B Matrix: Water flows amongst hydrological sectors

Surface water Ground water Natural loss

Surface water 33998 (million m") 446 (million m')(coefficient: 2.76 m3/ m3) 0

Groundwater 7462 (million m') 1494 (million m')0 (coefficient: 2.14 m3
/ m')

Rainfall 0 0 0
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Appendix B

Each of the following function set represents the full mathematical relationship of the

weight assigned to each factor on the right side of Equation 6.6.

1
w P Sp = 120 [( 24 . I:lp . F (H) •L (H) •Y_(H) • Y v(t-I) ) +

(6 .I:lp . F(t) •L (1-1) • Y1(1-1) • YV(H» +

(6·1:lp· F(t-I) •L(t) •Y1(1-1) • YV(H» +

(6·1:lp· F(t-l) •L(t-I) •Yset)•Yv(t-I) +

(6 .I:lp .F(I_I) •L(I_I) •Y1(1-1) • YV(I» +

(4 -Sp .F(I) •L (I) •YI(H) •Y v(I-I» +

(4 -bp .F(I) •L (H) •Y.(I} •YV(H» +

(4 .I:lp .F(t) •L (t-I) •Ys(H) •YV(I» +

(4 -Sp .F(H) •L (I) •Y1(1) • Yv(H» +

(4 -bp .F(I_I) •L (I) •Ys(l-I) •Yv(t» +

(4·1:lp .F(H) •L(t-I) •Y 1(1) • Yv(t» +

(6·1:lp· F(I_I) •L(t) •YI(t) •Yv(t) +

(6·1:lp .F(t) •L(I_I) •Y1(1) • Yv(t» +

(6 -Sp . F(t) •L(t) •Y I(H) •Yv(t» +

(6 .I:lp . F(t) •L(t) •Y.(t) •Yv(t-1» +

(24·1:lp· F(I) •L(t) •Y.(t) •Yv(t»]

F 1
w I:lF = 120 [(24·1:lF· P(t-I) •L(I_I) •Y.(I-I) •Yv(t-I) +

(6 . I:lF .P (t) • L (H) •Y-(I-I) .Yv(t-I) +

(6 ·I:lF· P(t-I) •L(t) . YI(t-I) •Yv(t-1» +

(6·I:lF· P(t-I) ·L(t-I) ·Y.(t)· Yv(I-I»+

(6 .1:lF . P(I-l) . L (I-I) •Y.(I-1) •Y vet)) +

(4 ·I:lF •Pet) •L(I) •Y.(I-l) •Yv(t-l» +
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(4· ~F .PU) .L(t-l) •Y1(1) • Yv(I-I» +

(4· ~F· P(I) . L(I-I) •Y.(/-I) •YV(I» +

(4· ~F . PU-I) . L(I) •Y5(1) • YV(I-I» +

(4· ~F· P(I_I) . L(I) • Y.(I-I) •YV(I» +

(4· ~F· P(t-l) . L(I_I) •Y5(1) • YV(I» +

(6· ~F· P(t-I) . L(I) •Y0(1) • YV(I» +

(6· ~F .P(I) . L(I_I) •Y5(1) • Yv(I» +

(6· ~F· P(I) .L(t) •Y5(1-1) • YV(I» +

(6· ~F . P(I) . L(I) •YS(I) •YV(I-I» +

(24· ~F .P(I) . L(I) •Y.(I) .Yv(I»]

wL ~L = _1_ [(24 .~L .P (1-1) • F(I_I) •Y5(/-1) • YV(I-I» +
120

(6· ~L· P{t) .F(t_l) •Y.(I-I) •YV(I-I» +

(6·L1L· P(t-I) ·F(I) ·Y.(I-I)· Yv(t-l»+

(6·~L· P(I_I) ·F(t_l) ·Y'(I)· YV(I-I»+

(6 . ~L . P(t-I) . F(I_I) •Y5(1-1) • YV(I» +

(4 .~L .P(I) . F(I) • Y.(I-I) •YV(I-I» +

(4 .~L .P(I) . F(I_I) •Y.(I) •Yv(I-I» +

(4· L1L .P(I) . F(I_1).Ya(l-I) •YV(I» +

(4· L1L . P(I_I) . F(I) •Y 5(1) • YV(I-I» +

(4· L1L .P(t-I) . F(I) •Y0(1-1) • YV(I» +

(4 .~L .P(I_I) . F(I_1)•Ya(l) •Y.(I» +

(6·~L·p(I_I) ·F(I) ·Y.(I) ·YV(I»+

(6·~L.p(t) .F(I_I) ·Y.(I) ·YV(I»+

(6· a·P(I) . F(I) •Y 5(1-1) • YV(I» +

(6·a·P(I) . F(I) •Y.(t) •YV(I-I» +

(24·a.P(I) . F(I) •Y.(I) •YV(I»]
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1
wY'L\ys = 120[(24·L\ys· P(t-I) .F(t_l) ·L(t_l)· YV(t-I)+

(6· L\ys . P(t) . F(t_l) . L(t_1) . Yv(t-l» +

(6· L\ys . P(t-I) . F(t) . L(t_l) . Yv(t-I» +

(6· L\y5 • P(t-I) . F(t-I) . L(t) . Yv(t-I» +

(6 .I:l.ys . P(t-I) . F(t_l) . L(t-I) . Yv(t» +

(4 .I:l.y5 • P(t) . F(t_l) . L(t) . Yv(t-I) +

(4·l:l.y.· Pet) ·F(t-I) ·L(t_I)· Yv(t»+

(4 .I:l.y.: p(t-1) . F(t) . L(t) . Yv(t-I» +

(4 .I:l.ys . P(t-I) . F(t) . L(t-l) . Yv(t» +

(4 .I:l.yI • p(t-1) . F(t-I) . L(t) . Yv(t» +

(6· L\ys . P(t-I) . F(t) . L(t) . Yv(t» +

(6·L\y.· Pet) ·F(t-I) ·L(t)· Yv(t»+

(6·l:l.y. 'p(t) .F(t) ·L(t-l) 'Yv(t»+

(6·l:l.y,· Pet) ·F(t) ·L(t)· Yv(t-I»+

(24·L\y.· Pet) ·F(t) ·L(t)· Yv(t»]

1
wYv L\yv = 120 [(24· L\y•. P(t-I) . F(t_l) . L(t_l) . y,(t-I) +

(6·L\yv 'p(t) .F(t_l) .L(t-1) 'YI(t-l»+

(4· L\yv . P(t) . F(t-J) . L(t) . Y.(t-I) +

(4·L\yv 'p(t) .F(t_l) .L(t_l) 'Y'(t»+

(4· L\yv . p(t-J) . F(t) • L(t) .Y'(H) +

(4· L\yv . P(t-I) . F(t) . L(t_J) . Y'(t» +
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(4· ~ v • P(t-l) . F(t-l) . L(I) . YS(I) +

(6· ~Yv .P(t-l) . F(t) .L(I) . YS(I»)+

(6·~yv ·P(t) ·F(t-l) .L(I) ·Ys(t»)+

(6·~yv ·P(t) ·F(I) ·LU-1) ·YS(I)+

(6· ~Yv . Pet) . F(t) .L(t) . YS(t-l) +

(24· ~Yv . p(t) .F(I) . L(I) •Y S(I»)]
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The success of China's economic development has left deep marks on resource availability
and quality. Some regions in China are relatively poor with regards to water resources. This
problem is exacerbated by economic growth. Flourishing trade activities on both domestic
and intemationallevels have resulted in significant amounts of water withdrawal and water
pollution. Hence the goal of this paper is to evaluate the current inter-regional trade structure
and its effects on water consumption and pollution via 'virtual water flows'. Virtual water is
the water embedded in products and used in the whole production chain, and that is traded
between regions or exported to other countries. Forthis assessment of trade flows and effects
on water resources, we have developed an extended regional input-output model for eight
hydro-economic regions in China to account for virtual water flows between North and South
China. The findings show that the current trade structure in China is not very favorable with
regards to water resource allocation and efficiency. North China as a water scarce region
virtually exports about 5% of its total available freshwater resources while accepting large
amounts of wastewater for other regions' consumption. By contrast, South China a region
with abundant water resources is virtually importing water from other regions while their
imports are creating waste water polluting other regions' hydro-ecosystems.
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1. The 'economic miracle' and virtual water
flows

1.1. Water shortage and its competing usage

The latter half of the 20th century is considered the period of the
'economic miracle' for East Asia, achieving industrialization and
urbanization in a relatively short time period. China, in
particular, accelerated its economic development with an
annual GDP growth rate of almost 10% after economic reforms
were started in 1978. In comparison, the world average was 3.3%
during the same period. By 2005, China's GDP had reached 1.13
trillion US dollars, which put China among the four largest
economies in the world. China's economic reform has created
very competitive and favorable circumstances for domestic and
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foreign investors in terms of cheap labor costs, a huge domestic
market, low workers safety standards and environmental
standards. These and other reasons, such as the undervalued
Yuan, have led to large amounts of capital flowing into China,
especially in the southern and eastern parts, which has made
China one of the largest manufacturers and exporters in the
world. However, Deng's 'ladder-up' strategy of economic
development has increased income inequality between regions
and urban and rural areas. This is also reflected in differing
regional development policies, economic production structures,
unequal spread of foreign direct investment, and huge differ-
ences in people's lifestyles pattern.

These developments have left deep marks on China's
natural resource availability and especially with regards to
water resources. China is trying to support the needs and
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wants of a population of1.3billion. This amounts to 22%of the
total world population with only 7%of the world's arable land,
and 6%of the world's fresh water resources. Water is already
considered the most critical natural resource in many parts of
China in terms of the low availability ofper capita volume. The
average water availability is about 2300m", which is roughly
about 1/3 of the world's average value. But China's water
resources are also unevenly distributed: North China has only
about 20%of total water resources in China, but is supporting
more than half of the total population. As a result, per capita
water availability in North China is as little as 271m3 or 1/8 of
the national level and 1/25 of the world average. Furthermore
the rapid economic development in this region has been
extracting significant amount ofwater from the environment,
and it is also discharging pollution to the water supply sources,
which further contributes to water-scarcity. Flourishing trade
activities on both domestic and international levels have
contributed to ever increasing levels of water consumption.

These socio-economic and environmental issues facing
China in the 21st century call for careful evaluation of China's
resource consumption caused by its present production and
consumption and associated trade structure. Due to these
trade activities, significant amounts of 'virtual water', Le.
water embedded in products and used in the whole produc-
tion chain, are traded between regions or exported to other
countries. Hence the goal of this paper is to evaluate the
current regional economic structure and the resulting inter-
regional trade patters in China and its effects on water
consumption and pollution via 'virtual water flows'.

1.2. Virtual water flows

The idea of virtual water was derived from the concept of
'embedded water' applied to agriculture in Israel by Fishelson
(1994).Their study pointed out that exporting Israeli water
embedded in water intensive-crops was not sustainable. The
term 'virtual water' was first proposed in 1994by J. Anthony
Allan (Allan, 1994).Allan defines virtual water as the water
used to produce food crops that are traded internationally. He
found that a few countries characterized as water-scarce have
secured their food supply by importing water-intensive food
products, rather than producing all of their food supply with
inadequate water resources. Limited water resources should
be used efficiently by not allocating the majority of the water
resources to the production of water-intensive products (e.g.
crops, paper etc.)but rather water should be made available for
other economic purposes that can contribute more to regional
value added by consuming less water (Allan,1998,2002).

Most of the studies on virtual water flows have been
conducted for drought areas such as the Middle East and
North Africa and have emphasized the amount of water
embedded in different agricultural products related to food
security, with agriculture being the largest water consumer.

Similarly, in China, agricultural irrigation has accounted
for the majority ofwater use in the past, however, along with
the large-scale industrialization and urbanization since 1980,
domestic, municipal, and industrial water consumption
joined the competition for limited water resources. Many
industrial products also carry substantial amounts of virtual
'freshwater' as well as contaminated 'wastewater' from the

production of paper, fertilizer and cement, which are then
exported to other regions or countries.

Due to increasing importance of other industrial products
and services and their effects on water consumption, we
extend the concept ofvirtual water flows to comprise all types
of commodities including agricultural goods, industrial pro-
ducts and services. We distinguish between two categories of
virtual water: freshwater and wastewater. Virtual freshwater
is the amount of freshwater consumed during the production
for exports. Virtual wastewater is the amount of polluted
water discharged to the ecosystem, i.e. the amount of
emissions generated and left in the respective region in
order to feed consumption in other regions or countries. Due
to the importance of the agricultural sector in terms of water
consumption we further differentiate between rainfed and
irrigated agricultural products. This is based on the rationale
that rain water used for agricultural products would not be
readily available for any other economic production.

1.3. Virtual water as a factor of production

The notion of virtual water as necessary input to production
and consumption activities leads us to the notion of factors of
production or factor endowments. In our case we focus on
water as a special input to production but are also interested in
the question of how production and associated trade struc-
tures affect the availability ofwater resources. Earlyeconomic
theorists such as Adam Smith (1909)and DavidRicardo(1817)
were concerned with differences in factor endowment, 'the
comparative advantage', as one of the main reasons for trade
and regional inequalities and as a source for the wellbeing of
nations. The focus shifted to the negative sides of trade; and
only rather recently, scholars started to advocate re-designing
trade structures from the perspectives of social and environ-
mental sustain ability. In the followingwe will look at certain
selected key publications to see how factor endowment and
environmental resources have been treated in the trade
literature and how that links to our question.

Heckscher (1919)and Ohlin (1933)incorporated the endow-
ment of factors ofproduction into the principle of comparative
advantage, and consequently was referred to as the
Heckscher-Ohlin (HO)theorem. The HOtheory of internation-
al trade was able to explain that the differences ofproductivity
in various countries are dependent on relative factor endow-
ments. Leontief (1951 and 1954) calculated the labor and
capital content of the exports of the United States to test the
HOtheory. The USseemed to be endowed with more capital
relative to labor than any other country at that time. Therefore
in terms of the HO theory, the US should have exported
capital-intensive products and imported labor-intensive com-
modities. However, Leontiefs test surprised the academic
field as he reached a paradoxical conclusion that the US
exported relatively more labor-intensive commodities and
imported capital-intensive goods. These results received a
great deal of attention and became known as the Leontief
Paradox and have led to numerous studies discussing and
critiquing the approach (see, for example, Stolper and
Roskamp, 1961;Bharawaj, 1962).

If we apply classical trade theory to environmental
studies, a country may have a comparative advantage if it
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Table 1- Extended water input-output table
Activities

intermediate
demand

Final demand Total
output

Waste
water

ExportsHouseholds and governments

Economic activities
Primary inputs
Imports
Total inputs
Fresh water (net consumption)

T,

is endowed with certain resources or if it can produce a
product with relatively low costs to the environment. Since
the 1970s, numerous theoretical studies have been con-
ducted to research the linkage of trade and the environment
by adopting the principle of comparative advantage. For
example, Pethig (1976), Siebert (1977), McGuire (1982) and
Brander and Taylor (1997) treated a country's emission!
resource management standards as factor endowment, and
their results showed that countries with less stringent
environmental policies could increase their comparative
advantage in the production of pollution and natural
resource-intensive products (quoted after Huang and Labys,
2001). However this view is challenged by more recent
research. Porter and van der Linde (1995) argued that strict
environmental policies may not be a comparative disadvan-
tage. in contrast. it may be an advantage to drive the
producers and the whole economy to become more com-
petitive in world markets by improving efficiency or
innovating better environmental technologies. These
conflicting views have led to a heated debate, and the
empirical results are ambiguous (e.g. Huang and Labys,
2001).

The important point to emphasize here is that environ-
mental goods and services such as available water resources
can be a factor of production and therefore a source of
comparative advantage. Thus. if a region is well endowed
with environmental resources and in our case water
resources, one could assume that this region's exports will
have a larger share of water-intensive products. Applied to
China. we would assume that water scarce North China
would import water-intensive products and the water-rich
South China would export products which would need lots
of water inputs. In the following we will test this hypothesis
and investigate if these Chinese regions take full advantage
of virtual water flows. We will specifically build on the work
of Leontief and use the input-output approach to assess
regional and trade flows in China and their effects on virtual
water flows.

2. Virtual water flows accounting and
modeling framework

2.1. Structure of the water input-output model

The fundamental purpose of the input-output model is to
analyze the interdependence of economic sectors. Its exten-
sions include social institutions (Stone. 1971) and the envi-
ronment (Leontief, 1970;Victor. 1972;Duchin and Lange. 1994).

Frequently input-output analysis has been applied to water
consumption and pollution issues (see, for example, Thoss
and Wiik. 1974;Bouhia, 2001;Hubacek and Sun, 2005).

The traditional 10 table is an n xn matrix describing the
flows of goods between economic sectors in monetary units.
We extend the table by adding 1 row in physical units! to
measure the amounts of freshwater consumed and by 1
column to represent wastewater discharged by economic
production processes.

The extended water 10 table is presented in Table 1. It
provides a detailed economic accounting scheme for econom-
ic activities (x), primary inputs (v). households and govern-
mental final consumption (y). trade flows (e). net water
consumption (f) and wastewater discharges (r).

As mentioned previously, water as a primary input is
involved in economic production. This connection can be
captured in freshwater consumption coefficients for each
industrial sector. The direct freshwater consumption coeffi-
cient, Ii is calculated by dividing the total amount of
consumed water of the jth sector by total input to that sector
Xj' Therefore. the unit for the coefficient of fresh water
consumption is m3/Yuan. This coefficient represents the
direct or the first round effects of the sectoral interaction in
the economy (Bouhia, 2001;Hubacek and Sun. 2005).Howev-
er. water is not only consumed directly but also indirectly. For
instance. to produce paper necessary inputs are wood.
chemicals. electricity and water (direct consumption). But
also the production processes of each of these inputs need
water (indirect consumption). Therefore. in order to combine
both direct and indirect water consumption. we generate the
total water consumption multipliers by multiplying direct
water consumption coefficients f with the Leontief inverse
(I-A,-t. which represents an indicator of the total water
consumption throughout the production chain for each
sector. shown in Eq. (1)

Total Water Consumption = itT-Arty (I)

Similarly, we employ the direct wastewater coefficient r, to
represent the amount of wastewater released to produce a
unit of output in the ith production sector. Therefore. we
obtain Eq. (2) to measure the total amount of wastewater

1 For clarity, matrices are indicated by bold. upright capital
letters; vectors by bold. upright lower case letters. and scalars by
italicized lower case letters. Vectors are columns by definition. so
that row vectors are obtained by transposition. indicated by a
prime (e.g.x'). Adiagonal matrix with the elements ofvector x on
its main diagonal and all other entries equal to zero are indicated
by a circumflex (e.g.x).
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Fig. 1- Hydro-economic regions in China. (Source: Land Use Change Group at IlASA (2001) - International Institute of Applied
System Analysis, Laxenburg, Austria).

generated in an economy by increasing one unit of final
consumption:

Total Wastewater Generation = r(I-Ar1y

This represents the flows from the economy to water
resources (e.g. rivers, lakes or groundwater), i.e. the emissions
of wastewater after production activities. These discharged
wastewater flows from agricultural and industrial production
can contain large amounts of noxious pollutants which
damage the hydrological system.

2.2. Hydro-economic regions and datasets

Due to considerable regional differences in water supply and
demand, and the need to assess regional trade flows, it is
necessary to model water consumption on a regional level.
Therefore we divide China into eight hydro-economic regions
to establish water accounts for each region (shown in Fig. 1)
based on watersheds and provincial level administrative
boundaries/ (see Hubacek and Sun, 2001). In this paper, we

2 The eight hydro-economic regions were distinguished in the
"Land Use Change (LUC)"model, conducted by the LUCGroup,
International Institute for Applied Systems Analysis (IIASA).The
eight regions are as follows: North, including Beijing, Tianjin,
Hebei, Henan, Shangdong, and Shanxi; Northeast, including
Liaoning, Jilin, and Heilongjiang; East, including Shanghai,
Jiangsu, Zhejiang, and Anhui; Central including Iiangxi, Hubei,
and Hunan; South, including Fujian, Guangdong, Guangxi, and
Hainan; Southwest including, Sichuang, Guizhou, and Yunnan;
Northwest, including Nei Mongol, Shananxi, Gansu, Ningxia, and
Xinjiang; and Plateau, representing Tibet and Qinghai.

(2)

calculate and analyze the virtual water flows for two of China's
regions: North China, which is characterized as water scarce,
and South China which is abundant of water resources."

The dataset for this study consists of two categories:
detailed economic data (input-output tables) - to investigate
the flow of goods and services between producers and
consumers and the linkages between all production sectors;
and hydrological data - comprising four sub-categories:
water availability, fresh water utilization and fresh water
consumption coefficients and wastewater discharge coeffi-
cients for each of the economic sectors.

2.2.1. Economic data
In our analysis we generate two regional input-output tables4
(North and South China) by merging seven provincial input-
output Tables'' for 1997 in terms of the classification of hydro-
economic regions (shown above, Fig. 1). The provincial input-
output tables, each representing 40 economic sectors, were
compiled by the State Statistical Bureau of China and
published in 2000. The "value-added" categories in the table
include: capital depreciation, labor compensation, taxes, and
profits. "Final use" at the national level comprises six

3 South China consists Guangdong, Fujian and Guangxi, but we
had only access to the data in Guangdong. Therefore we have to
use Guangdong to represent South China.
4 Due to the lack of data, we could not construct a regional

input-output table for the Plateau region.
5 Six provincial input-output tables for North China and one in

South China (Guangdong).
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Table 2 - Availability of water resource distribution

Region Total fresh water Population in Per capita
resource (108 m") 2000 (in 1000s) water (in

m3)

North 843.5 311,100 271.1
Northeast 1529 106,334 1437.9
East 1926.2 198,149 972.1
Central 2761.2 167,256 1650.9
South 5190.8 129,942 3994.7
Southwest 6389.8 243,414 2625.1
Northwest 2115.6 111,128 1903.8

China average 2271.0
world average 6981.0

(Source:Wiberg,2002 and China's Statistical Yearbook 2001).

categories: rural households, urban households, and govern-
ment consumption, investment, inventory changes, and net
exports.

2.3. Hydrological data

The dataset for water availability of different regions is
generated by employing a hydrological model, Climate and
Human Activities - sensitive Runoff Model (CHARM),developed
by Wiberg and Strzepek (2000). A basic problem in modeling
water use within an economic framework arises from the
discrepancy between economic regions and watershed
regions. Demand figures for water use are based on economic
boundaries and are derived from the input-output tables. The
water supply figures have to be based on hydrological
conditions. The hydrological model - CHARM is used to
redistribute the water resources from watershed regions to
economic regions. CHARMis applied to the nine major water
resource regions of China to estimate the natural available
water supply which is then reallocated to the respective
economic regions. The resulting water supply figures are an
essential part of the regional water accounting tables and are
also used to characterize the respective hydro-economic
regions with regards to their water availability (see Table 2).

To calculate the water consumption side we need to know
the amount of net water consumption from fresh water
sources to produce a unit of output of a product or service -
so-called fresh water consumption coefficients. Therefore in
order to calculate the coefficients, this dataset consists of two
sub-datasets: the total volume of net water consumption for
each economic sector between seven regions; and the total
output in monetary term for each sector correspondingly. The
data of total output for each sector is given in the input-output
tables. The dataset of water withdrawn for each sector was
taken from "China's Regional Water Bullets" in 1997, Regional
Water Statistics Yearbook in 19996 and annual reports on
hydrology from various provincial hydrology-ministries. The
economic sectors in the survey can be matched with the
categories in the 10 tables and updated to match the
respective years.

6 State Statistical Bureau (1999), State Statistical Publishing
House, Beijing, China.

In a similar fashion we proceed to calculate the effects on
the wastewater side. Final wastewater discharge coefficients
represent the amount of wastewater discharged to produce
10,000 Yuan of a certain product or service. The wastewater
dataset is extracted from the "Third National Industrial
Survey" in 1995 and "Regional Water Statistics Yearbook in
1999" and various other authoritative sources (Dong, 2000;
Zhang, 2000; Li, 2003).

3. Interregional virtual water flows in China

Water problems in China have been investigated in depth in a
number of studies, especially with regards to the disparities of
regional water availability in China (Wang and Davis, 2000;
Wiberg, 2002, 2003). Table 2 lists and compares the per capita
water availability for each of the economic regions. Generally
speaking, anything below one thousand cubic meters per
capita is considered as a seriously water scarce region.

The northern part of China is not endowed with abundant
water resources, and thus from a resource conservation point
of view, North China should import more water-intensive
goods such as agricultural products and export less water-
intensive goods in order to maintain a favorable trade balance
while optimizing the utilization of water resources. Following
this idea, we will look at North China, the most water-
constraint region and compare it with South China, a region
with abundant water resources," by tracing the virtual water
flows created by the interregional trade patterns in China.

3.1. Virtual freshwater flows

By employing Eq. (1) - Total Water Consumption= j (I-Ar1 e,
we are able to quantify virtual freshwater flows between
economic sectors triggered by trade between various
regions in China and abroad." Thus we can show how
much water is necessary to produce certain goods that are
then exported to other regions, including both direct and
indirect water consumption for producing the exports. This
amount of water used in the production chain is thus not
available for water consumption for other purposes within
that region. Similarly, the import of certain goods into the
respective region causes water withdrawal and consump-
tion in other regions or outside of China. The calculation of
virtual water flows is conducted by multiplying the net
exports vector (e) and the total fresh water consumption
coefficient matrix (j(I-Ar1). The results are shown in Table
3 for North China and Table 4 for Guangdong.

The column of 'net flows of goods and services' in both
Tables 3 and 4 provides details of the commercial trade
activities in the respective regional economy. The column of

7 For South China we had only the data for Guangdong province;
however it will not affect the general tendency of the results as
the remaining two provinces (Fujian and Hainan) are in a similar
situation as Guangdong with regards to economic conditions,
trade patterns and water availability.
8 Where, J represents the diagonalized vector containing fresh-

water consumption coefficients. And the final demand (e)
represents the net exports of goods and services.



164 ECOLOGICAL ECONOMICS 61 (2007) 159-170

Table 3 - Total water import/export in North China

Region: North China Net flows of goods and Direct freshwater coefficient Virtual freshwater net Value added!
services (10,000 Yuan) (m3/10,OOOYuan) exports (million rrr') water (Yuan/rrr'j

Rainfed agriculture 1,859,505 862.0 3055.1 8.1
Irrigated agriculture 2,607,575 4284.2
Coal mining and processing 1,359,847 5.2 2.3 441.7
Petroleum and natural gas 864,149 5.1 1.5 428.8
Metal ore mining 546,304 4.8 0.4 344.7
Non-ferrous mineral mining -2,430,346 4.7 -12.9 256.9
Food and tobacco processing 2,944,350 10.5 57.7 111.3
Textile goods 3,060,261 12.2 67.4 84.8
Wearing 2,431,617 4.0 11.6 308.0
Sawmills and furniture 619,342 5.0 3.8 348.3
Paper and products 993,460 18.0 28.6 83.3
Petroleum processing -1,647,543 1.1 -2.5 693.6
Chemicals -347,419 17.8 18.8 51.4
Non-metal mineral products 2,304,248 4.5 7.2 421.9
Metals smelting and pressing -406,689 8.8 -17 98.2
Metal products 2,443,533 2.5 5.1 416.1
Machinery and equipment -4,825,647 7.5 -53.3 167.7
Transport equipment -312,987 3.2 -2 237.9
Electric equipment -1,183,115 2.1 -9.6 201.2
Telecommunication -2,858,957 1.9 -31.5 104.1
equipment

Instruments -552,792 2.3 -4.3 149.4
Maintenance machinery -1,118,056 2.1 -5.9 116.3
Other manufacturing 2,742,628 8.5 25.9 215.7
Scrap and waste -411,395 8.5 -3.7 355.7
Electricity -3,589,807 41.5 -147.9 45.5
Gas production and supply -49,679 10.0 -0.6 77.2
Water production and supply -522,085 5.7 -5.5 181.9
Construction -2,517,219 5.0 -12.1 503.7
Transport and warehousing 260,878 3.1 0.7 470.1
Post and telecommunication 245,262 2.4 1.4 881.8
Wholesale and retail trade -1,749,342 2.2 -4.4 428.6
Eating and drinking places 47,464 2.2 0.2 877.5
Passenger transport 295,368 3.2 1.1 746.3
Finance and insurance 3,938,707 2.2 16.6 872.4
Real estate -203,528 2.2 -0.2 1251.7
Social services 278,293 1.8 2.1 723.3
Health services, social welfare -182,955 3.3 -0.5 784.9
Education and culture -1,341,098 3.1 -5.3 1087.7
Scientific research -12,857 2.4 -0.4 700.6
General technical services 1,533,501 4.0 6.5 1321.3
Public and other services 205,888 5.0 1.7 815.0
Total exports 4545.0
Total imports -319.6
Net virtual freshwater exports 4225.4

The negative figures represent the inflows (imports) for both monetary and freshwater terms, and positive figures mean outflows (exports) for
both monetary and freshwater terms.

'direct freshwater coefficient' gives the comparison of the
direct water consumption levels for each production sector.
For example, the coefficient for paper production measures
the amount of freshwater directly consumed by paper-
making industries to produce 10,000 Yuan of paper products.
We can see from the tables that agriculture in both regions
is the most water-intensive sector; and food processing,
paper and textiles require more water per unit of output
than the other industrial sectors. The column of 'virtual
freshwater net exports' shows the amount of freshwater
embedded in goods and services and exported to other
regions or countries via trade. The term 'value added/per
unit of water' in the last column of both tables assesses the

amount each economic sector contributes to GDP per cubic
meter of freshwater.

Based on our calculations we find that North China
imported a number of water intensive products and services.
For example, North China spent 35.89 billion Yuan to purchase
extra electricity from other regions in 1997, which means a
virtual import of 147.9 million cubic meters of water which is
withdrawn and used up in production processes in other
regions. Another example is agriculture: North China received
44.67 billion Yuan through the export of agricultural products,
and with it 7339.3 million cubic meters of virtual water have
been transported to other regions. However, we have to
consider that much of the agricultural land is rainfed in
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Table 4 - Total water import/export in South China

Region: Guangdong Net flows of goods and Direct freshwater coefficient Virtual freshwater net Value added!
services (10,000 Yuan) (m3/10,000 Yuan) exports (million m3) water (Yuan/m3)

Rainfed agriculture -642,700.5 784.0 -228.9 8.8
Irrigated agriculture -982,407.5 -349.4
Coal mining and processing -1,507,207 4.4 -6 27.3
Petroleum and natural gas -227,718 4.9 -9.6 223.0
Metal ore mining -369,356 4.2 -3 96.5
Non-ferrous mineral mining -622,501 4.0 -2.7 443.8
Food and tobacco processing 1,138,328 9.9 15.8 133.4
Textile goods -1,827,158 11.3 39.7 112.4
Wearing 11,054,187 3.9 46.6 537.2
Sawmills and furniture -892,070 4.9 -2.7 167.2
Paper and products 2,920,391 16.8 77.6 67.0
Petroleum processing -2,950,551 1.3 -3.1 426.2
Chemicals -3,848,076 16.7 0.1 42.4
Non-metal mineral products 333,439 4.9 2 383.8
Metals smelting and pressing -6,187,180 8.2 -48.3 37.9
Metal products 1,332,070 2.7 4.7 507.0
Machinery and equipment -1,276,310 6.9 -8.9 88.3
Transport equipment 802,771 2.9 2.7 544.7
Electric equipment 7,150,944 1.9 40.5 263.S
Telecommunication 1,263,254 1.7 21.6 74.2

equipment
Instruments 2,10S,399 2.1 11.3 193.S
Maintenance machinery -8916 1.6 0.1 413.5
Other manufacturing -517,380 7.9 1.5 280.9
Scrap and waste 11,115 7.5 0.9 495.5
Electricity 160,907 37.9 5.3 38.9
Gas production and supply -3290 9.3 0 133.8
Water production and supply -11,741 5.7 0.3 206.5
Construction 0 4.8 1.1 566.7
Transport and warehousing -2,900,271 2.7 -11.1 331.S
Post and telecommunication 101,923 2.8 1.5 693.3
Wholesale and retail trade -111,226 2.3 7.7 453.3
Eating and drinking places 337,216 2.3 3.9 548.3
Passenger transport 530,143 2.7 2.4 911.9
Finance and insurance -1289 2.1 2.5 614.5
Real estate 0 2.8 2.2 958.0
Social services 791,523 1.9 4.8 753.0
Health services, social welfare 0 3.2 -0.2 675.4
Education and culture 0 2.8 0 1258.6
Scientific research 0 2.2 0.3 505.5
General technical services 0 3.6 0 702.9
Public and other services 0 4.6 0 592.3
Total export 296.7
Total import -444.8
Net virtual freshwater export -148.1

The negative figures represent the inflows (imports) for both monetary and freshwater terms, and positive figures mean outflows (exports) for
both monetary and freshwater terms.

North China, which produces about 42% of total agricultural
outputs. The amount of rainwater embedded in agricultural
products would not be readily available for any other
economic production even if crops were not grown on this
land. Therefore, the effective export of virtual water in the
agricultural sector only consists of irrigated water, which is
4284.2 million cubic meters. Annually, 4545.0 million cubic
meters of fresh water virtually flow out of North China (which
is used in the production of exports) excluding rainwater in
the agricultural production. On the other hand, the import of
virtual water was only 319.6 million cubic meters, which
reduces the net flow to other regions to 4225.4 million cubic
meters. From a water conservation point of view, North China,

characterized as water-scarce, should import water-intensive
products rather than produce them. According to this
analysis, North China used up more than 5% of its total
water resources for producing exports to other regions, mainly
through the trade of water-intensive commodities such as
agricultural crops, processed food, textiles and chemical
products. By contrast, Guangdong is endowed with rich
water resources, but virtually imported 444.8 million m3 of
freshwater, 79% of which are through the trade of water-
intensive products (e.g. irrigated agricultural products). On the
other hand, Guangdong exports relatively water non-intensive
commodities such as electric equipment and many commer-
cial and social services.
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By summarizing the virtual freshwater flows of both
North and South China, we find that the trade patterns are
apparently inconsistent with our original hypothesis: water-
scarce regions in China produce and export water-intensive
products but import water non-intensive commodities.
Meanwhile, water-abundant South China imports water-
intensive goods. One of the possible explanations could be
that water has not been recognized as an important factor of
production in China's economy as there are very low costs
associated with the utilization of water resources for most
production processes. Another reason could lie in the fact

that North China has suitable climatic condition, soil and
land for many agricultural crops (Heilig et al., 2000). A third
reason refers to the design of economic policies: Guangdong
is subject to more favorable policies and better circum-
stances for investments in industry and services sectors
than other regions. Since the economic reform in 1978, many
locations in South China (including Guangdong) have been
established as "Special Economic Development Zone", which
brought many commercial opportunities and triggered a
regional economic boom. This is also reflected in changing
water consumption patterns. These economic incentives led

Table 5 - Total wastewater import/export in North China

Region: North China Net flows of goods Direct wastewater Virtual wastewater Value
and services coefficient new flows added/wastewater
(10,000 Yuan) (m3/lO,OOO Yuan) (Million m3) (Yuan! rrr')

Agriculture 4,467,080 79.4 354.8 125.9
Coal mining and processing 1,359,847 10.2 4.7 220.8
Petroleum and natural gas 864,149 10.6 3.0 214.4
Metal ore mining 546,304 21.6 1.6 82.1
Non-ferrous mineral mining -2,430,346 4.2 -10.4 321.1
Food and tobacco processing 2,944,350 4.2 20.1 320.0
Textile goods 3,060,261 6.9 39.9 143.4
Wearing 2,431,617 1.9 3.3 1071.3
Sawmills and furniture 619,342 1.3 2.5 539.1
Paper and products 993,460 19.2 27.2 87.7
Petroleum processing -1,647,543 3.2 -5.0 346.8
Chemicals -347,419 18.8 16.9 57.1
Non-metal mineral products 2,304,248 2.9 4.2 730.1
Metals smelting and pressing -406,689 10.8 -15 111.6
Metal products 2,443,533 6.9 3.1 693.4
Machinery and equipment -4,825,647 9.3 -49.8 179.5
Transport equipment -312,987 4.6 -0.7 706.5
Electric equipments -1,183,115 3.4 -5.4 357.0
Telecommunication equipment -2,858,957 3.4 -17.7 184.7
Instrumen ts -552,792 5.2 -4.2 155.0
Maintenance machinery -1,118,056 2.6 -2.3 304.6
Other manufacturing 2,742,628 6.6 18.9 295.7
Scrap and waste -411,395 6.7 -2.7 480.0
Electricity -3,589,807 0 0 0.0
Gas production and supply -49,679 16.2 -1.0 47.1
Water production and supply -522,085 16.9 -9.0 110.9
Construction -2,517,219 8.3 -19.6 312.1
Transport and warehousing 260,878 4.4 0.6 534.2
Post and telecommunication 245,262 4.4 1.2 1002.0
Wholesale and retail trade -1,749,342 2.5 -2.4 793.7
Eating and drinking places 47,464 2.9 0.2 1300.0
Passenger transport 295,368 2.6 0.7 1105.7
Finance and insurance 3,938,707 2.3 11.2 1292.4
Real estate -203,528 2.1 -0.2 1854.3
Social services 278,293 2.1 1.4 1071.6
Health services, social welfare -182,955 2.6 -0.4 1162.8
Education and culture -1,341,098 1.7 -3.6 1611.4
Scientific research -12,857 2.1 -0.3 1037.9
General technical services 1,533,501 1.8 4.4 1957.4
Public and other services 205,888 2.1 0.8 1811.2
Total virtually accepted wastewater 520.7
for other regions' consumption

Total virtually generated wastewater -149.7
left in other regions

Net virtual wastewater left for exports 371.0

The negative figures represent the imports for monetary flows but the amount of wastewater is generated for producing such imports, and
positive figures mean the export for monetary flows but the amount of wastewater is generated for producing such exports.
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to a restructuring of the regional economy to higher value
added products with relatively lower levels of resource
inputs. Thus Guangdong imports and exports of virtual
water reflect the economic structure of the more developed
special economic zones. On the other hand, North China has
a relatively lower economic growth rate and stronger focus
on low value added and high water intensive production
without these special policies.

If we consider multiple factors relevant for the existing
production and trade structure such as environmental en-
dowment (e.g. soil quality), land prices and other socio-
economic or political factors we see that North China has a
'comparative advantage' for producing and exporting agricul-
tural products. In terms of water conservation it is important
to effectively balance these factors. North China may sustain
the export of rain fed agricultural goods as rainwater cannot be

Table 6 - Total wastewater import/export in South China

Region: Guangdong Net flows of Total wastewater Virtual wastewater Value
goods and services coefficien t new flows added/wastewater

(10,000 Yuan) (m3/10,000 Yuan) (Million m3) (Yuan/rrr')

Agriculture -1,652,108 70.1 -149.4 142.5
Coal mining' and processing -1,507,207 9.5 -15,1 10.9
Petroleum and natural gas -227,718 9.7 -23.9 89.2
Metal ore mining -369,356 19.9 -15.8 18.4
Non-ferrous mineral mining -622,501 3.5 -2.7 443.8
Food and tobacco processing 1,138,328 3,3 6.3 333.5
Textile goods -1,827,158 6,4 27.0 165.3
Wearing 11,054,187 1.9 15.3 1634.9
Sawmills and furniture -892,070 1.6 -2,5 181,2
Paper and products 2,920,391 17.3 86.7 59.9
Petroleum processing -2,950,551 2.9 -9.3 142.1
Chemicals -3,848,076 17,9 0.1 35.4
Non-metal mineral products 333,439 2.9 1.5 516.6
Metals smelting and pressing -6,187,180 9.6 -53.2 34.4
Metal products 1,332,070 6.7 3,6 676.0
Machinery and equipment ':'1,276,310 8.9 -8.9 88.2
Transport equipment 802,771 4.6 1.0 1510.0
Electric equipments 7,150,944 3.5 25,1 425.5
Telecommunication 1,263,254 3,7 13.4 119.7

equipment
Instruments 2,108,399 4.9 12.0 182.8
Maintenance machinery -8,916 2.7 0 984.5
Other manufacturing -517,380 6.2 1.9 226.5
Scrap and waste 1115 6.5 0.7 629.2
Electricity 160,907 0.0 0 0.0
Gas production arid supply -3,290 14.7 0 73.5
Water production and supply -11,741 15.4 0.5 113.3
Construction ° 7.6 1.7 351.1
Transport and warehousing -2,900,271 4.0 -9,8 377.0
Post and telecommunication 101,923 4.1 1.3 787.9
Wholesale and retail trade -111,226 2.6 4.2 839.4
Eating and drinking places 337,216 2.7 2.6 812.3
Passenger transport 530,143 2.9 1.6 1351.0
Finance and insurance -1,289 2.1 1.7 910.6
Real estate 0 1.9 1.5 1419,3
Social services 791,523 1.9 3.2 1115.6
Health services, social welfare 0 2,4 -0.1 1000.5
Education and culture 0 1.5 0 1864.5
Scientific research 0 1.9 0.2 748.8
General technical services 0 1.6 0 1041.3
Public and other services 0 1.9 0 1316.2
Total virtually accepted 213.1

wastewater for other regions'
consumption

Total virtually generated -290.7
wastewater left in other
regions

Net virtual wastewater left for exports -77.6

The negative figures represent the imports for monetary flows but the amount of wastewater is generated for producing such imports, and
positive figures mean the export for monetary flows but the amount of wastewater is generated for producing such exports.
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effectively used by other production sectors. On the other
hand, North China might want to reconsider the level of
exports of irrigated agricultural products in order to make the
scarce water resources (e.g. surface or ground water) available
for other purposes which can contribute more to the economy
and society in terms of value added and jobs.

From a water efficiency point of view, North China with
limited water resources, should produce and export the
commodities which have high value added per unit of water.
By looking at the column of 'value added/water' in Tables 4
and 5 North China has a comparative advantage in the
production sectors of coal mining and processing, production
of sawmill and furniture, machinery equipment, and many
service sectors. Meanwhile, Guangdong has the advantage on
producing agriculture, textiles, and metal products. Obviously
this statement needs to be qualified by looking at other factors
such as the availability of skilled labor and other essential
factors of production, but the focus on water can provide a
useful starting point.

3.2. Virtual wastewaterflows

Similar to the virtual freshwater flows, wastewater is also
created through trade related production. The pollutants and
wastewater generated for producing exported goods will stay
in or pass through the exporting region leading to negative
effects in terms of water availability and quality. In other
words, the exporting region virtually accepts the discharge of
wastewater from other regions by exporting goods. Similarly
to virtual freshwater flows, we can calculate virtual wastewa-
ter flows consumed by producing exports for both North China
and Guangdong. By employing Eq. (2) - Total Wastewater
Generation=r(I-Ar1e, we are able to quantify virtual waste-
water flows triggered by imports and exports between various
regions in China and abroad. The direct wastewater coefficient
refers to the amount of wastewater per unit of output. The
results are shown in Table 5 for North China and in Table 6 for
Guangdong.

A number of pollution-intensive industries (e.g. metal
mining, paper and chemical production) are concentrated in
North China. Imports of North China lead to the generation of
149.7 million m3 of wastewater in other regions where the
commodities were produced while North China's exports
resulted in 520.7million m3 of wastewater in North China, of
which 32% is industrial wastewater and 68% is agricultural
wastewater. Hence the net wastewater balance for North
China was 371.0 million m3• The discharge of high-concen-
trated pollution to surface flows from pollution-intensive
production sectors (e.g. paper, chemicals and textiles) has led
to the fact that many major rivers in North China no longer
support any type of usage due to the low water quality levels;
and more than 50% of groundwater has been seriously
degraded due to the overuse of fertilizers and pesticides
(Dong, 2000).

Looking at the situation in the southern provinces we see
that Guangdong virtually exports (externalizes) 149.4
million m3 of agricultural wastewater and 141.3 million m3

of wastewater from industrial and service sectors to pollute
other regions' hydrological ecosystems. The industrial waste-
water is mainly contributed from paper, textiles and electric

equipment production sectors. On the other hand, Guangdong
accepts 213.1 million m3 of wastewater by producing exports
for other regions' consumption. Hence the water-rich Guang-
dong region has a net wastewater balance of 77.6 million m3

being virtually discharged to other regions.
Thus from above figures, we can find a similar trade

contradiction as with the virtual freshwater flows. The waste-
water virtually flows out from water-rich regions such as
Guangdong which externalizes the problems of wastewater
production to other regions through importing wastewater
intensive products and water-shortage regions such as pro-
vinces in North China are threatening their own water resources
through the creation of waste water for producing exports.

4. Conclusion

The economic success in China has come at the expense of
over exploitation of natural resources and huge impacts on
the environment and especially water resources. In North
China, water scarcity has become one of the bottlenecks for
regional economic development. In this paper we have looked
at the economic and trade structure of the water-scarce
northern regions of China and the water abundant southern
regions of China, and we assessed the implications for water
resources in those regions.

This assessment was done by employing an extended
regional input-output model for the hydro-economic regions
in China. This study was one of the very first to use the
concept of virtual water flows not only for agricultural
products but also industrial and service products. In addition
we accounted also for waste water flows and distinguished
between rainfed and irrigated agriculture, which is of special
significance with regards to water use. But one of the major
shortcomings is the homogenous treatment of very different
qualities of water inputs and wastewater categories.

Our starting point was the assumption that from a water
conservation point of view, a region/country that is endowed
with vast amounts of water resources should export
relatively more water-intensive/polluted products such as
agricultural crops, paper and chemicals. However, the
generated results of virtual freshwater flows show that
water-scarce North China predominantly produces and
exports water-intensive products but imports non-water
intensive commodities. In comparison, water-abundant
Guangdong (South China) imports water-intensive goods
but exports non-water-intensive products. A similar situa-
tion can be found when considering wastewater: the water-
scarce North creates more waste water for export production
than what is virtually created through its imports; and
similarly, the water-abundant South externalizes waste
water problems by importing waste water-intensive pro-
ducts from other regions.

With regards to the actual extent of the virtual water flows,
our results seem to indicate that the current structure of the
economy and trade do not pose so much of a problem in terms
of freshwater consumption as in North China only about 5%of
total available water can be attributed to net virtual water
flows, which is relatively minor in comparison to major water
consumers such as water losses due to infrastructural
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inefficiencies. In other words, the water-scarce North China
does not take full advantage of the possibilities of importing
water-intensive products to ameliorate its own water pro-
blems. The same seems to be true for the wastewater
situation.

To reflect on a more theoretical level, economic production
and consumption use inputs of materials and resources from
the environment, however, environmental resources are
currently highly undervalued as there are often little or no
costs associated with their consumption. Therefore, water
usually does currently not playa sufficiently important factor
in production and consumption decisions. This is also
reflected in current trade theories largely ignoring the
environment as a factor of production. The same is true
from a policy point of view; export-oriented policies often
directly conflict with water-saving policies leading to so-called
perverse incentives. On the other hand, given the relative
inflexibility in changing production structures in comparison
to technical improvements these findings emphasize the need
for increased investments in water transportation infrastruc-
ture and water treatment plants. However from a sustainabil-
ity point of view it is important to emphasize that direct and
indirect (virtual water) consumption needs to be incorporated
in decision-making processes and public policies, especially
for water-scarce regions such as North China, in order to
achieve sustainable consumption and production in the
future.
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