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Abstract 

The Middle to Late Miocene (15.97 – 5.33 Ma) is considered a time interval that was warmer 

than today. It is also a time interval of significant cooling. The aim of this study is to provide a 

new global view of this 10 Ma interval of global warmth and climate change, through the use 

of vegetation, mammals and modelling. The study begins in the UK and uses palynology to 

assign, the previously poorly constrained, Brassington Formation to the Tortonian. The pollen 

of the Brassington Formation shows the existence of a warm-temperate mixed forest in the 

UK with a mean annual temperature of 16°C – roughly twice the modern mean annual 

temperature. Using this fossil site, as well as 633 others, the global biome distributions are 

determined for the Langhian, Seravallian, Tortonian and Messinian stages. The data show that 

the Langhian represents a world significantly warmer than today. Cooling occurred through 

the Seravallian and Tortonian and by the Messinian, this cooling trend had eliminated warm – 

temperate mixed forests from the western USA and Australia and had formed mid – latitude 

deserts. Using the palaeobotanical data for the Tortonian age a data – model hybrid 

vegetation map has been made, suitable for use in palaeoclimate modelling studies. This is 

then used as a boundary condition in the HadAM3 climate model to show influence of 

vegetation on the Tortonian climate. Finally the palaeoecology of Late Miocene mammals is 

investigated to develop a new proxy for vegetation. The co–occurrence technique uses the 

biome tolerances of Late Miocene mammals to reconstruct regional vegetation. This has been 

successfully used to add further details to the vegetation maps from palaeobotanical data. 

This study presents a new approach to exploring vegetation and climate during the Miocene 

and provides novel details on this dynamic epoch. 
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Chapter 1 

Introduction 

 

“Everything is related to everything else,” – Waldo Tobler 

 

1.1 Project rational 

As a result of anthropogenic emissions of greenhouse gases it has been predicted that by the 

end of the 21st Century average global surface temperatures would have increased by 1.8 to 

4°C (Meehl et al., 2007). This increase in surface temperature will lead to a global climate that 

has not been experienced by modern civilisation. Predicting the wider implications of these 

higher surface temperatures is in the realm of General Circulation Models (GCMs). These 

numerical representations of the many systems and feedbacks of the planet are a primary 

source of climate change information. Understanding the full implications of this future 

warming is vital for providing policy makers with the evidence that they need to make society 

wide decisions (Füssel, 2007). However there is inherent uncertainty in many GCM 

predictions, which limits how useful they are to adaptation planning (Füssel, 2007; Gagnon-

Lebrun and Agrawala, 2006). 

Preserved within the geological record are a myriad of climates and transitional events. These 

events offer a unique view on the wider implications of different climates; especially relevant 

are those described as “warmer worlds”. The Miocene (23.03 – 5.33 Ma) reflects one such 

warmer world. The Miocene was not only a warmer world but has been described as the 

“making of the modern world” (Potter and Szatmari, 2009). During the 17.7 million years of 

the Miocene there was: major uplift of modern mountain chains, the initiation of bipolar 

glaciations, the origin of modern ocean currents, the aridification of the continental interiors, 

an overall cooling trend of the global climate and a reduction in atmospheric CO2 levels 

(Beerling and Royer, 2011; Potter and Szatmari, 2009; Zachos et al., 2008). This interplay of 

elements of the Earth system has created a complex story of evolving global climate. This 

makes the Miocene an ideal epoch for observing climates significantly different from modern 

and changes in climate. This thesis will provide evidence about the warmer-than-modern 

Miocene climates through a global study of the terrestrial biota. This will provide an improved 
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understanding of this warmer world that is becoming more commonly used to test the 

predictive ability of GCMs (Herold et al., 2010; Micheels et al., 2007). In order to gauge the 

extent and nature of the Miocene warmth, global vegetation will be used as a proxy for 

climate. Today, the global distribution of vegetation is mainly controlled by temperature and 

precipitation, as well as, soil type, seasonality, fire and biogeographic history (Schulze et al., 

2010). Vegetation is also an important component of the Earth System, mainly impacting on 

surface albedo (Bonan et al., 1992; de Noblet et al., 1996; Hoffmann and Jackson, 2000) and 

regional precipitation patterns (Shukla et al., 1990). The understanding of global vegetation, 

for a geological time interval, provides a view of global climate (Salzmann et al., 2008; Wolfe, 

1985), a method to assess GCMs (Bradshaw et al., 2010; Herold et al., 2010; Micheels et al., 

2007; Salzmann et al., 2009) and an important boundary condition for palaeoclimate 

modelling (Herold et al., 2010; Salzmann et al., 2008). These three main palaeoclimate uses 

for global vegetation will be explored within this thesis. 

 

1.2. The Earth as a system and its dynamics during the Miocene 

The idea of the Earth as a system and that all its components and processes are interrelated 

developed from a growing awareness that historically distinct scientific disciplines overlapped 

(Committee on Earth System Science, 1988). To look at the modern Earth system there are 

three possible techniques: 1) a macroscopic view; leaving the planet and observing it, 2) 

Digital mimicry; mathematically modelling the Earth using computers and 3) the Lilliput 

process; the construction of a fully working mini Earth (Schellnhuber, 1999). The third 

technique proved to be unsuccessful when attempted (Beardsley, 1995; Cohen and Tilman, 

1996; Schellnhuber, 1999) and so the best options are to combine a macroscopic view with 

advanced computer simulations (Schellnhuber, 1999). This combination of a macroscopic 

view (typically from satellites) and GCM simulations is now common practice to explore the 

modern Earth system (e.g. Quaas et al., 2009). Applying this combination technique to Earth 

systems of the geological record is more challenging. Firstly, there is the trouble of getting a 

macroscopic view of a temporally distant planet and secondly, there is the difficulty of 

successfully simulating an Earth system we cannot observe! These two obstacles would seem 

to suggest that to investigate the Earth system in geological time would be a fruitless 

endeavour, but there are valuable objectives in palaeoclimate research. These include 

providing evidence about climates significantly different from modern, providing a longer 

term view of the Earth System and the evaluation of GCMs. 
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It is possible to argue that the evaluation of a GCM’s performance of simulating modern 

climate using datasets that were used in model development may not be the strictest 

assessment (Haywood et al., 2011). A more rigorous evaluation would be to use GCMs 

developed with modern datasets and attempt to simulate climates of the geological past 

(Haywood et al., 2011; Valdes, 2011). These can then be assessed with data from the 

geological record and areas of data – model inconsistency should promote better model 

development (e.g. Lunt et al., 2008; Salzmann et al., 2009). In reality this in itself is a 

monumental task, comparing data with models requires first that the data are comparable to 

the model (e.g. Salzmann et al., 2008) and then that all the uncertainty (in both data and 

models) is understood (Haywood et al., 2011). 

The geological record also provides an opportunity to potentially identify an “analogue” to 

future anthropogenic climate change (Haywood et al., 2011; Zeebe, 2011). This would be of 

great societal benefit as it could provide information on regional changes in climate and 

environment, which could be used to direct adaptation policy in the future (Haywood et al., 

2011). However, the likelihood of identifying a true analogue is unlikely due to the nature of 

our dynamic planet; ever changing components that modify processes in the Earth system 

(Haywood et al., 2011). Possibly more relevant to palaeoclimates is the concept of Earth 

system sensitivity (Haywood et al., 2011; Lunt et al., 2010). Earth system sensitivity looks at 

the changes in mean surface temperature, from a forcing of CO2, with long time scale 

feedbacks (Lunt et al., 2010). This differs from Charney sensitivity which looks at the change 

in surface temperature, from a forcing of CO2, with only short timescale feedbacks (Haywood 

et al., 2011; Lunt et al., 2010; Meehl et al., 2007). Many of these long term feedbacks are not 

considered in understanding anthropogenic climate change, as most studies are only 

concerned with the coming century (Meehl et al., 2007). But the effects of these long term 

feedbacks do not suddenly occur after a preconceived amount of time and there are 

observations that some are already in operation (Sturm et al., 2001). One of these “long term 

feedbacks”, in Earth system sensitivity, is vegetation (Cox et al., 2000; Salzmann et al., 2009). 

I will fully introduce vegetation as a component of the Earth system in Section 1.4, for now I 

would like to start off with a general introduction to the other components of the Miocene 

Earth system before focussing on the theme of this thesis. In the following sub-sections I will 

introduce what is known about some of the more important components of the Earth system 

during the Miocene. 
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1.2.1. Miocene chronology 

Before introducing the components of the Miocene world it would be sensible to define the 

Miocene chronologically. The Miocene Epoch (meaning “less recent” in Greek) begins at the 

Paleogene – Neogene boundary (23.03 Ma) and continues until the start of the Pliocene at 

5.33 Ma (Fig. 1.1). It originated as one of Sir Charles Lyell’s three divisions of the “Tertiary” 

based on his travels through southern France and Italy (Lyell, 1833). In current chronology the 

Miocene is the second longest epoch of the Cenozoic and is composed of six ages (Gradstein 

et al., 2004).The first age in the Miocene is the Aquitanian (23.03 – 20.43 Ma) and was named 

for the Aquitaine region of France (Mayer-Eymar, 1858). Following the Aquitanian is the 

Burdigalian (20.43 – 15.97 Ma) named after the Latin for the city of Bourdeux, France 

(Depéret, 1892). The Aquitanian and Burdigalian can be combined to form the Early Miocene 

(Gradstein et al., 2004). Following the end of the Burdigalian is the Langhian (15.97 – 13.65 

Ma), which was named for the Langhe area of northern Italy (Pareto, 1864). The Seravallian 

(13.65 – 11.61 Ma) follows the Langhian and was named for the town of Serravalle Scrivia, 

also in northern Italy (Pareto, 1864). Together the Langhian and Seravallian form the Middle 

Miocene (Gradstein et al., 2004).The Tortonian age (11.61 – 7.25 Ma), named after the Italian 

city of Tortona, follows the Seravallian (Mayer-Eymar, 1858). The final age of the Miocene is 

the Messinian (7.25 – 5.33 Ma) and was named for the city of Messina, Italy (Mayer-Eymar, 

1858). Together the Tortonian and Messinian constitute the Late Miocene (Gradstein et al., 

2004). The Global Boundary Stratotype Sections (GSSP) for the Aquitanian, Seravallian, 

Tortonian and Messinian are all well established and defined from the Mediterranean region 

(Hilgen et al., 2000; 2005; 2009; Steininger et al., 1997). Whilst the Burdigalian and Langhian 

GSSPs still need to be ratified, they are likely to be from the Mediterranean as well (Turco et 

al., 2011). In oceanic settings the defined boundaries fall on or near to first or last occurrence 

datums of plankton, boundaries of polarity chronozones or oxygen isotope events (Hilgen et 

al., 2000; 2005; 2009; Steininger et al., 1997; Turco et al., 2011). Miocene terrestrial deposits 

are commonly dated using regional mammal stratigraphy (Agusti et al., 2001; Flynn and 

Swisher, 1995; Qiu and Qiu, 1995; Woodburne, 1987) or palynology (e.g. Partridge, 2006). 

These regional stratigraphies are tied to the international ages through correlation with more 

complete marine sections, magnetostratigraphy and radiometric dating. For consistency in 

this thesis I will refer only to the timescale of Gradstein et al. (2004). 
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Figure 1.1. Key events in the evolution of the Miocene Earth System. References for specific events are 
presented in Section 1.2. 
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1.2.2 Tectonics and ocean circulation 

During the Miocene the distribution of the continents is similiar to the modern configuration, 

with some exceptions: There was more land in the high northern latitudes and a series of 

large lakes and seaways in South America (Aceñolaza and Sprechmann, 2002; Markwick, 

2007). The collision of the African, Anatolian and Arabian plates with the Eurasian plate closed 

the remnant Tethys Ocean creating the modern Aral, Azoz, Black, Caspian, Marmara and 

Mediterranean Seas (Harzhauser and Piller, 2007; Potter and Szatmari, 2009). During the 

Early Miocene the Western Tethys Ocean connected the Atlantic and Indian Oceans, but by 

the Middle Miocene this had been closed to the Indian Ocean and became the Mediterranean 

Sea (Harzhauser and Piller, 2007). Parallel to the Western Tethys Ocean there existed the 

Central and Eastern Paratethys, covering most of Europe during the Early Miocene. These 

gradually became more restricted through the Miocene and by the Late Miocene the Central 

Paratethys became isolated and referred to as Lake Pannon (Harzhauser and Piller, 2007; 

Kern et al., 2011). During the Miocene land bridges linked Southeast Asia with Indonesia and 

an intermittent land bridge in the Bering straits linked North America and Eurasia (Johnson et 

al., 2006; Markwick, 2007; Scotese, 2004). 

The Miocene bore witness to the onset of modern oceanic currents through the collision of 

tectonic plates and the closure of oceanic gateways (Fig. 1.1). During the Paleogene, a circum 

– equatorial current dominated global water movement (Potter and Szatmari, 2009). This 

form of ocean circulation started to lose dominance before the Miocene, between 41 – 33 

Ma the Drake Passage (South America – Antarctica ocean gateway) and the Tasmanian 

Gateway (Australia – Antarctica ocean gateway) opened (Kennett and Exon, 2004; Potter and 

Szatmari, 2009; Scher and Martin, 2006). This isolated Antarctica through the formation of 

the Antarctic Circumpolar Current (ACC) and may represent the onset of deep water 

formation around this continent (Potter and Szatmari, 2009; Strugnell et al., 2008). By the 

latest Oligocene (ca. 25 Ma) the Australian tectonic plate had collided with the Eurasian plate, 

by the late Early Miocene this had blocked deep water exchange between the Pacific and 

Indian Oceans and restricted deep water movement along  the circum – equatorial current 

(Kuhnt et al., 2004; Potter and Szatmari, 2009). By the Middle Miocene the Arabian plate - 

Eurasian plate collision had closed this Early Paleogene seaway to such an extent, allowing 

only intermittent water exchange until a complete closure at 11 – 10 Ma (Allen and  

Armstrong, 2008; Potter and Szatmari, 2009; Rögl, 1999). The final seal on the circum – 

equatorial current was the collision of North and South America at 12.8 Ma (Coates et al., 

2004). Before 12.8 Ma, deep water could exchange between the Pacific and Atlantic Oceans. 

After 12.8 Ma the Central American Seaway gradually shallowed, until its final closure at 3.5 – 
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2.7 Ma (Coates et al., 2004; Webb, 2006). From the late Middle Miocene the Greenland – 

Scotland Ridge gradually subsided, bringing cold Arctic water into contact with the North 

Atlantic Ocean (Wright, 1998). The Messinian witnessed a temporary ocean gateway closure 

when, between 5.95 – 5.70 Ma, the Straits of Gibraltar sealed (Clauzon et al., 1996; Londeix 

et al., 2007). This isolated the Mediterranean Sea and allowed the deposition of thick 

successions of evaporates (Krijsman et al., 1999). 

The closure and opening of these oceanic gateways established a more modern circulation 

pattern, associated with Antarctic ice sheet expansion from ca. 15 Ma (Flower and Kennet, 

1994; Lewis et al., 2008; Shevenhell et al., 2004) and northern hemisphere ice sheet 

expansion in the Late Miocene (Thiede and Myhre, 1996; Warnke and Hansen, 1977) 

intensified deepwater circulation and oceanic turnover (Diekmann et al., 2004; Flower and 

Kennett, 1994; Potter and Szatmari, 2009). As well as completely reorganising ocean 

circulation, Miocene tectonics also uplifted global mountain chains. 

1.2.3. Mountains 

The Miocene was a key interval for mountain construction with all the world’s major 

orographic regions uplifting (Fig. 1.1), not only altering topography but reorganising global 

river directions and forming biogeographic boundaries (Potter and Hamblin, 2005; Potter and 

Szatmari, 2009). The Rocky Mountains of western North America are a product of several 

orogenic events, the most recent of which was the Laramide Orogeny which is dated to the 

Late Cretaceous to Paleogene (English and Johnston, 2004). Subsequent to this major event 

there has been considerable dynamics in topography but this is poorly constrained (Aslan et 

al., 2010). It is known that the Colorado Plateau has been uplifted by nearly 2 km since the 

Cretaceous (Spencer, 1996). Estimates on the exact timing of the uplift and the rate are still 

unresolved but recent work suggests a change in the dynamic topography of 400-1100 m has 

occurred in the last 30 Ma (Flowers et al., 2008; Moucha et al., 2009; Wolfe et al., 1997). 

The Andes may have been at half their modern height by 10.7 Ma (ca. 1800 m) and have since 

been uplifting at 0.2-0.3 mm per year (Gregory-Wodzicki, 2000). Erosional surfaces in the 

Western Andes show that considerable uplift occurred during the Middle and Late Miocene 

(Tosdal et al., 1984), whilst isotopic studies of Bolivian caliches show strong uplift in the Late 

Miocene (Ghosh et al., 2006; Grazione et al., 2008; Poage and Chamberlin, 2006). The 

changing topography of South America altered river direction and wetland terrains (Diaz de 

Gamero, 1996; Parnaud et al., 1995; Wesselingh and Salo, 2006). 

On Eurasia the main development of the Alps occurred in the Early and Middle Miocene and 

the Carpathians have not been uplifted since 11 Ma (Frisch et al., 2000; Kuhlemann et al., 
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2001; Potter and Szatmari, 2009). Though the Alps have been raised steadily since the Middle 

Miocene from 1600 to 3000m above sea level at 16 – 14 Ma, to 2500 – 3500m at around 8 

Ma (Jiménez-Moreno et al., 2008; Kuhlemann, 2007). The Tibetan Plateau and the Himalayas 

uplifted at an increased rate during the Middle and Late Miocene as suggested by a rise in 

sediment flux into the Indian Ocean after 15 Ma (Potter and Szatmari, 2009; Rea, 1992). At 15 

Ma the mean maximum altitude of the region was between 3775m and 6570m (Currie et al., 

2005; Spicer et al., 2003), at 11 – 9 Ma the mean maximum altitude for the region is 

estimated to have been between 3200m and 6630m (Garzione et al., 2000a; Garzione et al., 

2000b; Harrison and Yin, 2004) and areas over 7000m existed by 5 Ma (Molnar et al., 2010; 

Rowley et al., 2001). 

 

1.2.4. Ice sheets 

During the Miocene ice sheets expanded in both hemispheres (Fig. 1.1). In the northern 

hemisphere perennial sea ice has been present in the Arctic Ocean since the start of the 

Miocene (Moran et al., 2006). Evidence for the Greenland ice sheet comes from Ice Rafted 

Debris (IRD), which appears in the Greenland Sea between 10.8 - 5.5 Ma (Thiede and Myhre, 

1996; Warnke and Hansen, 1977) and the Norwegian Sea between 7 - 5 Ma (Talwani et al., 

1976). In Alaska tillites are found in the Wrangell Mountains at 1200m. These are interbedded 

with lava flows dated to around 10 Ma (Denton and Armstrong, 1969). 

In Prydz Bay, East Antarctica ODP Site 1165 records four intervals of glacial advance and 

retreat during the Miocene (Hannah, 2006). At 22-19 Ma there was a minimum Amery ice 

shelf and thriving Leiosphaeridia (acritarch cyst), the ice shelf expanded between 19–17 Ma 

and the climate is suggested to be colder due to a reduced biota in the bay. The warmest 

interval is recorded between 17-15 Ma with an inferred minimum of the ice shelf and 

maximum planktonic and benthic biota. After 15 Ma the only preserved biota are reworked 

palynomorphs; representing a major climatic deterioration and large growth of ice (Hannah, 

2006). The absence of in-situ palynomorphs has also been recorded from the Olympus Range, 

Antarctica and the Antarctic Peninsula, but after 14-12 Ma (Anderson et al., 2011; Lewis et al., 

2008). This disappearance of biological evidence coincides with Mg/Ca ratios from the 

Southwest Pacific (55°S), which show a drop in temperature of six or seven degrees Celsius 

between 14.2 and 13.8 Ma (Flower and Kennett, 1994; Shevenhell et al., 2004). Whilst, relic 

tundra may have survived on the James Ross Peninsula until 12.8 Ma, showing that the 

Antarctic glaciers were not at their present extent (Anderson et al., 2011). By 12 Ma glacial 
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sediments were being deposited on the James Ross Peninsula showing further growth of ice 

sheets (Dingle and Lavelle, 1998; Marenssi et al., 2010). 

In Argentina glacial till is present layered between lavas K/Ar dated to 7.14 – 5.56 Ma (Mercer 

and Sutter, 1982). These sediments suggest the Neogene glacier had a greater extent than 

today and the local climate may have been colder (Mercer and Sutter, 1982). 

 

1.2.5. Climate of the Miocene 

The Miocene is classically thought of as a transitional epoch from the greenhouse climate of 

the Paleogene, to the icehouse conditions of the Quaternary (Steppuhn et al., 2006; Zachos et 

al., 2008). Our present understanding of the Miocene climate comes from two distinct 

sources: climate proxies and GCM experiments. One of the most complete views of one 

aspect of the Miocene climate system comes from the compilation of bottom water oxygen 

isotope studies (Zachos et al., 2001; 2008). This compilation shows the evolution of bottom 

water temperatures and global ice volume (Zachos et al., 2001). Overall there is a downward 

trend towards colder temperatures and more ice through the Miocene (Fig. 1.2). This is 

punctuated by the Middle Miocene Climatic Optimum (MMCO) roughly between 17 and 14 

Ma (Fig. 1.2), which represents a significantly warmer interval than the preceding Early 

Miocene and the remainder of the Miocene (Zachos et al., 2008). Following the MMCO is a 

steady reduction of temperature and/or increase in ice volume known as the Middle Miocene 

Climate Transition (MMCT) (Flower and Kennett, 1994; Zachos et al., 2001). The MMCT is a 

period of rapid climate cooling shown by a Ca. 1‰ δ18O increase, IRD deposition in the 

Southern Ocean and eustatic sea level drop, all of which reflects a significant growth in the 

Antarctic ice sheet (Shevenhell et al., 2004; Zachos et al., 2001). By the Late Miocene the rate 

of cooling and/or ice growth had slowed (Fig. 1.2) creating a more modest downward trend 

than during the MMCT (Zachos et al., 2001; 2008). Numerous other studies have also shown 

this same change in the global climate; a general cooling trend punctuated by the MMCO (e.g. 

Donders et al., 2009). These proxy based studies have provided a view of the changes in the 

Miocene climate. But to look at the global pattern of climate (for example the distribution of 

precipitation) it is necessary to utilise GCMs. 
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Figure 1.2. The benthic 
δ18

O curve for the Miocene. The grey dots represent individual data points whilst 
the black line is a 5 point running average (replotted from Zachos et al., 2008). 

 

Modelling experiments on Miocene time slabs indicate a world that is both warmer and 

wetter than the pre-industrial (Lunt et al., 2008; Micheels et al., 2007; Steppuhn et al., 2007). 

The degree of warming, relative to the pre – industrial is largely dependent on CO2 

concentration (Bradshaw et al., 2010; Micheels et al., 2009a; Tong et al., 2009), topographic 

changes (Micheels et al., 2011), palaeogeography (Barron, 1985; Fluteau et al., 1999) and 

vegetation (Dutton and Barron, 1997). The increase in precipitation, within each modelling 

experiment, appears to be directly related to the change in Mean Annual Temperature (MAT), 

relative to the pre-industrial (Fig. 1.3). This would be related to increased evaporation due to 

higher temperatures, an intensification of the Hadley Cell and a reduced latitudinal 

temperature gradient due to more heat being exported from the tropics to the poles by 

greater Hadley Cell activity (Micheels et al., 2011; Rind, 1998). Changes in the atmospheric 

Hadley Cell have also been shown to displace subtropical jet streams and storm tracks in 

Miocene GCM experiments (Herold et al., 2011). 

Overall proxy evidence and GCM experiments show that Miocene climate was warmer and 

wetter than the pre-industrial. In the following section I will introduce some of the ideas 

behind the cause of this warmth. 
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Figure 1.3. A compilation of Miocene modelling studies showing the change in temperature (ΔT) and 
precipitation (ΔP) relative to today. The graph shows a near linear relationship between changing 
temperature and precipitation (Data from: Bradshaw et al., 2010; 2012; Lunt et al., 2008; 
Micheels et al., 2007; 2009b; 2011; Steppuhn et al., 2006; 2007; Tong et al., 2009). 

 

1.3. Driving forces and evolution of Miocene climate 

It has proven difficult for an agreement to be reached in the literature about the driving 

forces of Miocene climate (Knorr et al., 2011; Kürschner et al., 2008; Mosbrugger et al., 2005; 

Pagani et al., 2005; Shevenell et al., 2004). This uncertainty in the driving force of Miocene 

climate stems from the inconsistency of reconstructed atmospheric CO2 records (Fig. 1.4). 

This has promoted the search for other factors that may be behind Miocene warmth (Pagani 

et al., 2005; Royer et al., 2001). In this section I will present what is known about Miocene 

CO2 levels and the other ideas responsible for forcing Miocene climate. 

 

1.3.1. Atmospheric concentrations of CO2 during the Miocene 

Despite recent claims that Cenozoic CO2 levels are coming into agreement (Beerling and 

Royer, 2011) this does not appear to be the case for the Miocene (Fig. 1.4). Miocene CO2 

levels have been reconstructed using numerous techniques and each differs in both 

atmospheric concentration and in trend through time (Fig. 1.4). Reconstructions are based on 

alkenones (Pagani et al., 2005; 2010), boron isotopes (Pearson and Palmer, 2000), B/Ca ratio 

(Tripati et al., 2009), pedogenic carbonates (Ekart et al., 1999; Retallack, 2009) and stomatal 
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indices (Beerling et al., 2009b; Kürschner et al., 1996; 2008; Stults et al., 2011). Through the 

Middle Miocene to the end of the Miocene the alkenone based reconstructions place 

atmospheric CO2 levels between 190 – 360 ppmv reaching a peak at around 6 - 7 Ma of ca. 

360 ppmv (Pagani et al., 2005; 2010). The reconstructed atmospheric CO2 concentrations 

from boron isotopes show a range from 137 – 305 ppmv with a peak in CO2 at ca. 16 Ma and 

ca. 6 Ma (Pearson and Palmer, 2000). The stomatal indices reconstructions are very different 

to those based on boron isotopes and alkenones. A range over the Middle to end Miocene of 

270 – 564 ppmv has been reconstructed, with a peak at ca. 16 Ma of between 460 – 564 

ppmv (Beerling et al., 2009b; Kürschner et al., 2008). These records then show a fall in 

atmospheric CO2 concentration to between 270 – 370 ppmv for the rest of the Miocene 

(Beerling et al., 2009b; Kürschner et al., 1996; 2008; Stults et al., 2011). The B/Ca ratio shows 

a peak of 433 ppmv at 15 Ma and then drops to concentrations of between 206 – 304 ppmv 

by 10 Ma (Tripati et al., 2009). The pedogenic carbonate reconstructions could be described 

as more erratic, fluctuating from very low to as high as 1170 ppmv (Ekart et al., 1999). More 

recent work on pedogenic carbonates, across the Middle Miocene, has shown a peak in 

concentration at 15.6 Ma of 852 ppmv (Retallack, 2009). This then drops rapidly to 116 ppmv 

at 14.6 Ma and rises to 433 ppmv by 12.8 Ma (Retallack, 2009). Overall, the apparent low 

atmospheric levels of Miocene CO2 have led to disagreements over how much Miocene 

climate was influenced by this greenhouse gas (Kürschner et al., 2008; Mosbrugger et al., 

2005; Pagani et al., 2005; Shevenell et al., 2004). 
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Figure 1.4. Miocene atmospheric CO2 reconstructions from various sources. 
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1.3.2. Other climate forcing agents and their importance in the Miocene 

From the previous subsection it is easy to see how some authors have suggested that the 

Miocene was a warm period in Earth history, where climate was decoupled from CO2 (e.g. 

Pagani et al., 2005). This has led to studies focussing on why Miocene CO2 was low and what 

else could be contributing to the warmth and climate changes seen in the fossil proxy record.  

Mountains affect climate by altering atmospheric circulation, changing patterns of 

precipitation and seasonal heating and may increase rates of chemical weathering (Broccoli 

and Manabe, 1997; Hay, 1996; Raymo and Ruddiman, 1992; Ruddiman and Kutzbach, 1989). 

As the Miocene is a key period for mountain uplift an increase in chemical weathering, during 

Miocene uplift of Tibet, has been connected to some of the low CO2 reconstructions (Fig. 1.4) 

as this would draw CO2 out of the atmosphere, cooling global temperatures and causing ice 

sheet growth (Raymo and Ruddiman, 1992). Challenging this idea of increased silicate rock 

weathering driving Miocene climate is the 
10

Be/
9
Be proxy (Willenbring and von Blanckenburg, 

2010). Using the 10Be/9Be proxy shows constant weathering rates from 12 Ma to today, 

suggesting elevated weathering was not responsible for later Neogene cooling (Willenbring 

and von Blanckenburg, 2010). But this disagrees with the strontium isotopes, which suggest 

continuous increases in weathering since 40 Ma (Raymo and Ruddiman, 1992). 

The silicate weathering hypothesis raises an issue: as none of the CO2 reconstructions show 

the atmosphere devoid of this important greenhouse gas. Yet mountain uplift has been 

continuous since ca. 15 Ma, so there must be a feedback which prevents CO2 levels from 

dropping too low (Fig. 1.1; 1.4). This has been suggested to be a vegetation – weathering 

feedback, which occurs when CO2 levels drop below a threshold (Beerling et al., 2012; Pagani 

et al., 2009). Below this unknown threshold level the productivity of forests fall allowing the 

expansion of grasslands (Pagani et al., 2009). Grasses have shallow roots and do not produce 

certain organic acids that facilitate rock weathering (Pagani et al., 2009). Theoretically, if 

during periods of very low reconstructed CO2 levels (Fig. 1.4) there is an expansion of 

grasslands, then this feedback kicks in preventing atmospheric concentrations falling any 

further (Beerling et al., 2012; Pagani et al., 2009). Retallack (2001) considers grasslands a 

larger carbon sink than any other vegetation type and when grassland soils are eroded, they 

are unusually rich in organic matter. Grasslands also encourage export of bicarbonate and 

nutrient cations to lakes and oceans, where they stimulate productivity and C burial 

(Retallack, 2001). So in the view of Retallack (2001) grasslands should actually contribute to a 

draw-down of CO2, rather than preventing it. From a global study of paleosols, their carbon 

isotopes and the evolution of grazing mammals Retallack (2001) concludes that the evolution 

of climate is more related to grasslands and grazers than to tectonics. 
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The Monterey Excursion is a broad increase in δ
13

C with several distinct maxima between 17 

and 13.5 Ma, showing a large scale increase in organic carbon deposition around the Pacific 

Ocean rim (Flower and Kennett, 1994; Vincent and Berger, 1985; Woodruff and Savin, 1991). 

This increased carbon burial was thought to have been made possible through global cooling 

increasing upwelling and zones of productivity (Kender et al., 2009; Vincent and Berger, 

1985). This original hypothesis does not take into account two recent observations; 1) the 

increasing δ
13

C with increasing global temperatures, prior to 16 Ma (Kender et al., 2009; 

Zachos et al., 2001) and 2) the deposition of C would require the drawdown of large amounts 

of CO2, which according to some proxies were not present in the atmosphere at this time 

(Kender et al., 2009; Pagani et al., 2005). The Monterey Excursion has recently been linked 

with the Columbia River Flood Basalts (CRFB), these eruptions mostly took place between 

16.1 and 15 Ma (Kender et al., 2009). They are estimated to have emitted 672 Gt of CO2 

(Kender et al., 2009) and more than 1000 Gt of SO2 (Blake et al., 2010). This would have not 

only increased atmospheric CO2 concentrations by ca. 80 ppmv, but also induced periods of 

volcanic winter that could have enhanced offshore winds and oceanic productivity (Blake et 

al., 2010; Kender et al., 2009). Therefore, the CRFB could have provided the necessary 

conditions for the Monterey Excursion (Kender et al., 2009). 

A reorganisation of ocean circulation has been suggested as another potential mechanism 

that could have driven Miocene climate (Shevenhell et al., 2004; Tian et al., 2009). The 

closure of key equatorial gateways, as introduced in section 1.2.1, would have segmented the 

oceanic area that could absorb solar radiation (Potter and Szatmari, 2009; Smith and 

Pickering, 2003). Analysis of foraminifera Mg/Ca values has led to the idea that orbitally 

paced intensification of the ACC, perhaps by increasing circumpolar winds may have driven 

Antarctic ice sheet growth and global climate evolution through the MMCT (Shevenhell et al., 

2004). This theory has been expanded by carbon isotope results from the South China Sea 

(Tian et al., 2009). An observed reversal in benthic foraminifera δ13C values indicates a 

reorganisation of bottom water currents which may have reduced the sensitivity of Antarctica 

to lower latitude derived heat (Tian et al., 2009). 

Linked to both the idea of mountain uplift and the reorganisation of oceanic currents, is the 

concept that plate tectonics drove Miocene cooling (Potter and Szatmari, 2009). The Miocene 

contains numerous tectonic scale events that in combination could have influenced Miocene 

climate (Potter and Szatmari, 2009). The positioning of Eurasia and North America within the 

high northern latitudes would have enhanced global cooling (Smith and Pickering, 2003). 

Though it could be said that these continents have occupied the high northern latitudes since 

at least the Cretaceous (Markwick, 2007). Behind the mountain uplift and oceanic gateway 
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closure is a larger driving force; superplumes (Potter and Szatmari, 2009). A superplume is a 

broad area of mantle upwelling, typically thousands of kms in extent (Larson, 1991). There 

were two such superplumes in the Miocene; the African and the Pacific and their acceleration 

of plate tectonics, causing palaeogeographic changes may have driven global climate 

evolution (Potter and Szatmari, 2009).  

The ideas around the evolution of Miocene climate are complex. Part of this complexity 

revolves around the idea of having lower than modern atmospheric CO2 levels with warmer 

than modern climate (Pagani et al., 2005; Shevenhell et al., 2004). However, the greatest 

assumption in all of this argument is that the global CO2 reconstructions are accurate. 

Ruddiman (2010) recently suggested that one of the possibilities for apparent low CO2 levels 

during the Miocene, whilst climate has fluctuated considerably, could be the incorrect 

calculation of CO2 from proxies. Further proof of the inaccuracies in some CO2 proxy records 

comes from seemingly ignoring the CRFB and the emissions that would have come with it 

(Kender et al., 2009). 

 

1.4. Vegetation in the Earth system and our present understanding of Miocene 

global vegetation 

Vegetation is an important part of the Earth System. The global distribution of vegetation is a 

product of the ambient climate, but vegetation can also influence climate (Fig. 1.5). 

Vegetation is readily preserved in the geological record and its role both as a climate observer 

and as a climate controller makes it an ideal proxy to study in palaeoclimates. In this section I 

will first introduce vegetation in the Earth System, then the distribution of modern 

vegetation. Finally, introducing what is currently known on the global scale about Miocene 

vegetation. 
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Figure 1.5. Summary of climate – vegetation feedbacks (redrawn from Notaro et al., 2006). 

 

1.4.1. Vegetation in the Earth system 

Climate ultimately controls the global distribution of vegetation (Fig. 1.6), but the distribution 

of vegetation also feedbacks to climate (Fig. 1.5). One of the largest vegetation to climate 

feedbacks is altering surface albedo (Notaro et al., 2006). This alteration of surface albedo 

(the amount of solar radiation absorbed or reflected) is most pronounced when changing 

white or pale coloured land covers to darker colours (Bonan, 2002; Bonan et al., 1992; Notaro 

et al., 2006). For example current anthropogenic warming is allowing forests to expand 

northwards (Sturm et al., 2001). This replaces snow (high albedo, low solar radiation 

absorption) with boreal forests (low albedo, high solar radiation absorption), which in turn 

forces more warming allowing further forest expansion; a positive feedback (Notaro et al., 

2006). Changing one biome type to another and the impact on climate has been further 

explored in modelling studies. Using the fully coupled atmosphere – ocean – land model 

FOAM-LPJ the feedbacks of changing boreal forest into grassland across Asiatic Russia was 

assessed (Notaro and Liu, 2008). In an ensemble of simulations the boreal forest was initially 

reduced and replaced with grassland. As a Dynamic Global Vegetation Model (DGVM) was 

used the forests were capable of growing back should the climate be suitable. It was found 
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that the replacement of forests by grassland created a positive feedback on climate; lowering 

MAT and Mean Annual Precipitation (MAP), which favoured the grassland biome. The change 

in biome caused an increase in surface albedo, prolonged the snow season, reduced surface 

air temperature, increased atmospheric stability and enhanced low cloud cover. Changes to 

the hydrological cycle included a diminished rate of evapotranspiration and moisture 

recycling (Notaro et al., 2008). 

Vegetation – climate interactions are currently not fully understood (Notaro et al., 2006), but 

a summary of known interactions are presented in Figure 1.5. From what we understand 

about the feedbacks from vegetation to climate it is obviously an important component in the 

Earth System. This has been applied previously to palaeoclimates with aspects of past warmth 

related to the differences in global vegetation and its feedback on global climate (e.g. Knorr et 

al., 2011; Salzmann et al., 2009). 

 

1.4.2. Present day distribution of vegetation 

Present day vegetation (without anthropogenic alteration) is predominantly controlled by 

temperature, precipitation, seasonality, solar irradiance, soil conditions, CO2 concentrations 

and biogeographical history (Notaro et al., 2006; Woodward, 1987; Woodward et al., 2004). 

At a global scale the easiest way to visualise the distribution of vegetation is through biomes 

(Fig. 1.6). Terrestrial biomes are the world’s major biological communities, classified by their 

vegetation and defined by their ambient climate (Cramer, 2002). Today most biomes have 

very limited extent due to being converted to “anthromes” (anthropogenic biomes) and so 

we rely on what is termed the “present day potential natural vegetation” (Fig. 1.6), or what 

would grow if all of human society were removed from the planet (Ellis, 2011; Kaplan, 2001). 

As biomes are climatically controlled, the present day potential natural vegetation shows a 

pattern comparable to the distribution of MAT, MAP and seasonality (the variation in 

temperature and precipitation through the year). In fact biomes are so intricately linked to 

the macroclimatic regime, that before the advent of widespread weather stations the type of 

vegetation was used to infer the local climatic character (Darwin 1845; Köppen, 1884). 

 



- 35 - 

 

Figure 1.6. The present day potential natural vegetation simulated by the mechanistic vegetation model 
BIOME4 (Kaplan, 2001). This was simulated using the boundary conditions of the Palaeoclimate 
Modelling Intercomparison Project (PMIP) with present sea surface temperatures and a CO2 
concentration of 324 ppmv (Bonfils et al., 1998). 

 

Today along the equator lies the tropical forests and moving poleward the forests change to 

warm – temperate, temperate, cool temperate, cool and cold, finally becoming tundra at the 

high latitudes (Fig. 1.6). This change in temperature type also occurs up mountains. This is 

further complicated by the non – uniform distribution of rainfall, both spatially and 

temporally. Meaning that as precipitation becomes less evenly distributed in the year, biomes 

change from evergreen forests, to deciduous forests, to woodlands, to savannas, to 

grasslands, to shrublands and finally deserts (Fig. 1.6). This change in biome type is ultimately 

related to the growing season; how long a plant can sustain adequate photosynthesis to 

facilitate growth and reproduction (Schulze et al., 2010). The growing season is further 

complicated at the high latitudes by the unusual light regime; periods of the year with no 

sunlight and times of continuous sunlight (Schulze et al., 2010). 

Further studies have shown that although biomes are controlled by the macroclimate it is 

often specific bioclimatic controls of plant growth, development and survival that determines 

biome boundaries (Cramer, 2002). Examples of these include the absolute minimum 

temperature in the year, the length of the dry season or the number of growing days (Cramer, 

2002). This is ultimately related to the idea that many biotic and abiotic factors form 
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ecological gradients within the environment; these are n-dimensional ecological spaces 

where the axes are resources or environmental variables (Futuyma and Moreno, 1988; 

Hutchinson, 1957). 

 

1.4.3. Current knowledge of Miocene vegetation 

As the previous two subsections have introduced, modern day vegetation is intimately linked 

with ambient climate. This means that a good understanding of the distribution of past 

vegetation can provide a powerful view of past climate (e.g. Salzmann et al., 2008). Previous 

work on the Miocene vegetation has mainly been conducted on a regional (e.g. Favre et al., 

2007) to continental scale (Utescher et al., 2011b). Global studies of vegetation have been 

based on small numbers of data sites either by extrapolation (Wolfe, 1985) or by combination 

with a vegetation model (Micheels, 2003; Micheels et al., 2007). Wolfe (1985) presented a 

broad overview of the evolution of global Miocene vegetation, based on the data available at 

the time. This study showed that the Miocene was warmer, particularly the first half of the 

time period where limited sites suggested cool mixed forests bordered the Arctic (Wolfe, 

1985). More recently regional studies have provided improved insight into Africa (Jacobs et 

al., 2010), Asia (Wang, 1994; Yao et al., 2011), Australia (Macphail, 2007), Europe (Bruch et 

al., 2006; Favre et al., 2007; Jiménez-Moreno and Suc, 2007; Utescher et al., 2007), North 

America (Retallack, 2007; Yang et al., 2011) and South America (Barreda et al., 2007). All of 

these regional studies show the same general trend in climate induced vegetation changes 

through time. The Early Miocene had a vegetation pattern that was warmer and wetter than 

today (Wolfe, 1985). As the climate warmed into the MMCO the regional palaeobotanical 

studies show that the vegetation responded, creating the warmest and wettest interval of the 

Miocene (Macphail, 2007; Retallack, 2007; Wolfe, 1985). From the start of the MMCO to the 

end of the Miocene it appears, at the regional level that vegetation responded to a cooling 

and drying climate (Barreda et al., 2007; Favre et al., 2007; Jacobs et al., 2010; Wang, 1994). 

Despite the large amount of regional studies undertaken, especially in Europe, very little is 

known about the UK during the Miocene (e.g. Bruch et al., 2006; Utescher et al., 2007). 

By 10 Ma all modern plant genera had evolved (Traverse, 1982). During the Miocene the key 

event in the evolution of plants was that of the C4 photosynthetic pathway (Cerling et al., 

1997; Osborne, 2008; Osborne and Sack, 2012; Vincentini et al., 2008). Plants using the C4 

photosynthetic pathway have a CO2 pump that concentrates carbon dioxide around Rubisco, 

an enzyme that provides the first step in carbon fixation (Crawley, 1997; Kanai and Edwards, 

1999; Sage, 2004). As CO2 can be concentrated around Rubisco, plants with the C4 
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photosynthetic pathway do not need to have their stomata open to the same degree as C3 

plants. This gives the plants using the C4 photosynthetic pathway an advantage at high 

temperatures, arid conditions and saline habitats, where evapotranspiration is higher and 

opening stomata is a more costly exercise than in other habitats (Sage, 2001; Lunt et al., 

2007). Recent phylogenetic work using molecular dating has revealed an Oligocene origin for 

the C4 photosynthetic pathway apparently corresponding to a drop in carbon dioxide levels at 

around 30Ma (Christin et al., 2008; Vincentini et al., 2008). However it has been widely 

acknowledged that the expansion of the C4 grasslands only came in the late Neogene (Cerling 

et al., 1997; Osbourne, 2008; Osborne and Sack, 2012). Plants using the C4 photosynthetic 

pathway fractionate carbon isotopes differently, meaning they can be detected in the 

geological record (Cerling et al., 1997). Carbon isotope studies show that the C4 pathway is 

first recorded between eight and six million years ago, but only becomes dominant in the 

isotopic signal during the Pliocene (Cerling et al., 1997; Fox and Koch, 2004; Latorre et al., 

1997; Yang et al., 1999). It has been thought that the expansion of C4 grasses was mainly 

linked to the apparent low levels of CO2 (Fig. 1.4) in the Late Miocene (Cerling et al. 1997). 

However, this CO2 hypothesis best explains competition between C3 and C4 grasses not 

competition with woodlands (Keeley and Rundel, 2005; Osborne, 2008; Osborne and Sack, 

2012). As in time woodland would outgrow the grasses, creating a canopy and preventing 

savanna/ grassland development (Keeley and Rundel, 2005; Osbourne, 2008). For C4 

savannas/ grassland to gain dominance over woodland, disturbance is required. This is 

achieved in the modern world by fire, drought and animals (Fensham et al., 2009; Keeley and 

Rundel, 2005; Osbourne, 2008; Trollope et al., 1998). The levels of wildfire and drought are 

linked to the seasonality of rainfall and so the expansion of C4 grasses is not only due to falling 

CO2 levels, but also to the changing climate and the apparent increase in seasonality in the 

Late Miocene (Keeley and Rundel, 2005; Osbourne, 2008). 

 

1.5. Vegetation as a proxy for climate 

Vegetation is an excellent proxy for climate (Kohfield and Harrison, 2000; Valdes, 2000). It is 

readily and widely preserved in both marine and terrestrial environments (Traverse, 1982). In 

the form of wood, leaves, seeds, fruits, spores and pollen, making it an accessible and global 

source of climate information (e.g. Salzmann et al., 2008; Utescher et al., 2011b). 

Quantitative estimates of temperature and precipitation can be reconstructed from 

palaeobotanical sites using techniques such as the co – existence approach (Mosbrugger and 
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Utescher, 1997) and Climate Leaf Analysis Multivariate Program (CLAMP) (Spicer et al., 2009; 

Wolfe, 1979), the estimates can then be compared directly to the climate produced by a 

GCM. The co – existence approach uses a Nearest Living Relative (NLR); the climate tolerance 

of a fossil taxon’s closest extant relative is likely to be comparable to that of the fossil 

(Mosbrugger and Utescher, 1997). From this idea an assemblage of fossils can be compared 

to find the overlapping climate space that all taxa could have survived in, based on the 

climate tolerances of each fossil’s nearest living relative (Mosbrugger and Utescher, 1997; 

Utescher and Mosbrugger, 2010). CLAMP is the latest iteration of the plant physiognomy that 

has been known for almost a century; plants vary their structure with climate, in a non – 

random way (Bailey and Sinnott, 1915; Holdridge, 1947). Growth rings in wood, drip tips on 

leaves and leaf margins can all provide important climate information (Holdridge, 1947; 

Wolfe, 1979). CLAMP uses leaf morphology to reconstruct quantitative climate information 

using “training sets” from undisturbed modern day floras (Spicer et al., 2009; Yang et al., 

2011). 

Both techniques provide quantitative climate information but both have limitations. Errors in 

the co – existence approach come from; the NLR may have a different climate tolerance to 

the fossil taxon, the NLR may be miss-identified, the NLR occupies only part of its climate 

range, the climate data taken for the NLR might be inaccurate (Mosbrugger and Utescher, 

1997). However, errors in the coexistence approach can usually be identified as outliers when 

the technique is applied (Mosbrugger and Utescher 1997). Despite these four sources of error 

the co – existence approach can be applied to any palaeobotanical fossil, so long as it can be 

identified to a taxonomic level (Mosbrugger and Utescher, 1997). Conversely, CLAMP can 

only be applied to leaf floras (Wolfe, 1979). The quality of results from CLAMP can also be 

influenced by taphonomic processes (Burnham et al., 2001; Spicer et al., 2005) and the 

number of training sets available to evaluate a fossil flora against (Spicer et al., 2011). Despite 

these issues CLAMP benefits from not needing taxonomic information, which can be difficult 

to decipher in leaves to higher levels (e.g. genus or species) and limits the applicability of the 

co - existence approach to leaf floras (Mosbrugger and Utescher, 1997). Estimates from both 

these methods can then be compared directly to the climate produced by a GCM, providing 

clues on the pattern of global climate. However, the direct comparison of GCM climate 

parameters with those reconstructed from palaeobotanical sites need to take into account 

error margins. Both from the technique used to reconstruct the climate estimates from the 

fossil vegetation and from the boundary condition and physics uncertainties that are a 

challenge to fully explore with GCMs. 
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Alternatively, qualitative climate information can be gained by translating a fossil vegetation 

datum into a biome (Fig. 1.6). The fossil biomes can then be compared to a model predicted 

biome distribution using biome models, such as BIOME4, that are driven by the climate 

generated by a GCM (Kaplan, 2001; Prentice et al., 1992; 1998). By reconstructing a biome 

and comparing it to model generated biomes a simple and relatively quick comparison can be 

achieved (Haywood et al. 2009; Pope et al., 2011; Salzmann et al., 2008). However, biomes 

reconstructed from palaeobotanical sites need to be directly comparable to model output, 

this can be achieved by using the classification scheme of the chosen model. This raises the 

issue that biome models, such as BIOME4, have been developed using modern biomes and 

how comparable these are to fossil biomes has yet to be fully explored. Despite this the 

technique has been successfully applied to the Pleistocene (Prentice et al., 1998), the 

Pliocene (Pope et al., 2011; Salzmann et al., 2008) and the Miocene (Micheels et al., 2007). 

All of this means that fossil vegetation can be used to examine climate from a single locality, 

providing a valuable pin – point view of the ambient conditions during deposition. To a 

regional or global view of climate using larger datasets of fossil vegetation distribution and 

finally, combining the data with GCMs to look at dynamic climate and vegetation patterns 

through time. 

 

1.6. Aims and Objectives 

The aim of this project is to provide a global view on Middle to Late Miocene vegetation and 

climate evolution through time. This period of the Cenozoic had a complex Earth System and 

would provide an ideal “significantly different world to modern” to test GCM experiments 

against. However, before the Miocene can be used as a period to test GCMs, the 

environments and climates need to be more thoroughly understood. Through the study of 

terrestrial biotas this thesis will provide this information. To achieve this aim the following 

objectives will be completed: 

 

 To document climate and vegetation at a global scale, biomes will be reconstructed 

from the palaeobotanical literature. This will provide a uniform classification to the 

diverse palaeobotanical literature, allowing vegetation change through Miocene time 

to be analysed. 
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 To supplement the palaeobotanical literature, the Miocene vegetation of the UK will 

be investigated through the palynology of the Brassington Formation. 

 Once a comprehensive dataset of Middle to Late Miocene biomes has been 

developed, it will be possible to compare and combine the data with GCM 

experiments. This will provide a broader view of Miocene climate, giving information 

on areas where palaeobotanical data are absent and allowing global differences to be 

presented. 

 As vegetation is a component of the Earth System, the application of the global 

datasets of palaeobotanical biomes to GCM experiments will allow the impact on 

climate from the Miocene vegetation to be quantified. 

 Regional studies on Miocene vegetation show that palaeobotanical data are not 

evenly distributed across the globe. Would it therefore be possible to improve global 

vegetation reconstructions by using fossil mammals? This will be investigating, firstly 

through the distribution of Miocene mammals and if they were controlled by 

vegetation. Then, if it has been shown that Miocene mammals were specialised for 

specific biomes, then it should be possible to reconstruct biomes based on the 

presence or absence of specialist taxa.  

 

1.7. Structure of thesis 

The rest of this thesis is divided into seven chapters. Chapter 2 explores the Miocene 

vegetation and climate of the UK geological record. Chapter 3 presents global vegetation for 

the Middle to Late Miocene and Chapter 4 uses some of this data to generate a data - model 

hybrid for the Tortonian age. Chapter 5 presents the impact of vegetation on the HadAM3 

GCM using the hybrid global vegetation map produced in Chapter 4. Chapter 6 uses the data 

from Chapter 3 to explore the biome preferences of Late Miocene mammals .Whilst chapter 

7 takes this mammal biome preference data and investigates the potential of Late Miocene 

mammals to be a proxy for vegetation. Chapter 8 will attempt to bring Chapters 2 – 7 all 

together, discuss what this thesis presents on Middle to Late Miocene terrestrial biotas and 

climate and how this fits into our understanding of Miocene palaeoclimates. 
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Chapter 2 

 The Miocene vegetation of the UK from the palynoflora of the 

Brassington Formation, Derbyshire. 

 

Miocene formations, in the ordinary sense of the term, are almost entirely absent from the 

British Islands. – Encyclopaedia Britannica, 1889 

 

2.1. Introduction 

In Chapter 1, it was stated that the UK has not been previously used in Miocene regional 

vegetation or climate studies (e.g. Utescher et al., 2011b). In this chapter, this is remedied by 

Miocene climate information calculated using the coexistence approach (Mosbrugger and 

Utescher, 1997; Utescher and Mosbrugger, 2010) via new palynological data from the English 

Midlands. 

Onshore Miocene deposits in the UK are extremely sparse and include the St. Agnes Outlier, 

Cornwall and the dissolution pipe fills at Trwyn y Parc, Anglesey, both of which are very small 

in extent and poorly dated (Walsh et al., 1987; 1996). Another possible onshore Miocene 

succession was discovered in the Mochras Farm Borehole, Gwynedd, but this is not firmly 

dated (Herbert-Smith, 1971). However, relatively extensive Neogene sands, gravels and clays 

deposited via solution-subsidence into karstic cavities from around Brassington, Friden and 

the Weaver Hills in Derbyshire and Staffordshire, central England were termed the 

Brassington Formation (Boulter et al., 1971). The Brassington Formation appears to have 

formed a continuous pre-subsidence sheet of sediment which was >220 km2, >70 m thick in 

places and approximately 10 km3 in volume (Walsh et al., 1980). This unit was assigned a Late 

Miocene to Early Pliocene age by Boulter and Chaloner (1970), Boulter (1971a,b) and Walsh 

et al. (1996) based on floral comparisons with Germany and The Netherlands. This 

contribution aims to reassess the age of the Brassington Formation based on a restudy of the 

original data of Boulter (1971b) and new material from Kenslow Top Pit near Friden, 

Derbyshire (Fig. 2.1). 
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Figure 2.1. Sketch geological map of the southern part of the main Carboniferous Limestone outcrop of 
Derbyshire and Staffordshire illustrating the distribution of karstic hollows which contain the 
Brassington Formation and the location of Kenslow Top Pit (modified from Ford and King 1968, 
fig. 49). 

 

2.2. The geological setting of the Brassington Formation 

The Brassington Formation is a Neogene siliciclastic unit which is up to 70 m thick and is 

confined to over 60 infills of steep-sided collapsed karst solution cavities in Derbyshire and 

Staffordshire, UK. These collapsed infills are highly variable in areal extent and depth. This 

unit was referred to as “pocket deposits” by Howe (1897) and was formally defined by 

Boulter et al. (1971) who recognised three subdivisions: the Kirkham, Bees Nest and Kenslow 

members. These sands, gravels and clays represent a stratigraphically-coherent, fining-

upwards succession (Ijtaba, 1973), which typically forms synclinal structures, especially in the 

larger cavities. The majority of these karstic fillings are present in a relatively narrow 

northwest-southeast belt within the limestone plateau from Carsington Pastures to Parsley 

Hay and beyond, which is approximately 19 km long and typically associated with the highly 

porous dolomitised Carboniferous Limestone. However the Brassington Formation occupies 

an area approximately 30 km wide (Fig. 2.1). Approximately 60 of the “pocket deposits” have 

been quarried between around 1900 to the early 1970s for silica sands and fireclay in order to 

manufacture refractory bricks used for lining furnaces (Yorke, 1954). This industry was 

stimulated by the relatively low transport costs to centres of the steel industry such as 

Sheffield, and production has ceased due to the decline in this sector. 



- 43 - 

The origin of the Brassington Formation has been extensively debated. The consensus is that 

the succession was initially deposited via fluviatile and lacustrine processes throughout much 

of the southern part of the Carboniferous Limestone outcrop. Small outcrops of these 

sediments subsequently slumped into karstic cavities thereby protecting them from glacial 

erosion during the Quaternary (Walsh et al., 1972). Clastic sands of the Kirkham Member are 

dominantly erosion products derived from the Triassic Sherwood Sandstone Group that were 

shed onto the plateau, which was at least partially covered by the Carboniferous (Serpukovian 

to Early Bashkirian) Bowland Shale Formation (formerly the Namurian Edale Shales) at the 

time, from the retreating sandstone escarpments. The Kirkham Member contains many 

bleached quartzite pebbles which were clearly derived from the Sherwood Sandstone Group. 

Sheets of pebbly sand were created by extensive small scale drainage onto the limestone and 

shale from the Triassic scarp slopes, and much of this material would have been incorporated 

onto rivers draining eastwards towards the North Sea. The Bees Nest and Kenslow members 

of the Brassington Formation represent lacustrine and shallow lacustrine/swampy 

palaeoenvironments respectively, and were deposited after significant erosive retreat of the 

Sherwood Sandstone Group from this area. 

The Triassic escarpments have now retreated to the west, south and east of the Derbyshire 

Massif; the closest one is now about 8 km to the south. Because the Brassington Formation 

infillings are relatively uniform, the eroded Triassic sands must have formed a largely 

continuous sheet over at least the southern part of the Peak District. In several of the “pocket 

deposits”, the lowermost sediments, especially around the walls of the cavities, comprise a 

coarse chert gravel and/or blocks of black Bowland Shale Formation. The chert gravel 

represents an insoluble residue derived from the weathering of the limestone which originally 

covered the karst cavities. The shale blocks were derived from the former cover of Bowland 

Shale Formation and some of these show evidence of intensive weathering. 

Today, the Brassington Formation lies between 300-360 m above sea-level. During 

deposition, this area must have been between 150 m and 250 m lower in elevation in order 

to allow eroded Triassic material to be washed onto it. The clastic material is interpreted as 

being derived from the north (Hughes, 1952) and/or the south (Ford and King, 1969). 

However, the palaeocurrent studies of Walsh et al. (1980) represent persuasive evidence that 

the source area was to the south. Hence the southern Pennines must have been significantly 

uplifted since Kenslow Member times (Walsh et al., 1980). This would mean that, if the flora 

were of Early Pliocene age, an average rate of uplift of 0.1-0.13 mm yr-1 must have occurred 

to bring the southern Pennines to their present elevation (Walsh et al., 1980; Westaway, 

2009). 
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The age of the Brassington Formation has proved controversial. It was originally thought to be 

Middle Carboniferous (Scott, 1927) and Kent (1957) assigned this unit to the Permian-Triassic 

on heavy mineral evidence. The Kenslow Member has yielded a flora that has been 

confidently assigned to the Late Miocene to Early Pliocene (Boulter, 1971b). However, the 

age of the formation has subsequently been quoted as being Late Miocene (Bott and Bott, 

2004; Walsh et al., 1996) and Early Pliocene (Ford, 1972; Westaway, 2009) not based on any 

specific stratigraphical evidence. 

 

2.3. Previous research on the palaeobotany and palynology of the Brassington 

Formation 

Boulter (1971a) recorded a diverse flora of 75 taxa of leaves, pollen, seeds, spores and wood 

from the Kenslow Member (Tab. 2.1). Although the majority of these are pollen and spores, 

Actinidia, Cryptomeria anglica, Cyrilla thompsoni, Eurya, Hypnodendron, Smilax and Trapa 

were only recorded as macrofossils (Boulter, 1969; 1971a). The Kenslow Member flora has 

been recovered from lignite and coloured clays from Bees Nest, Heathcote, Hindlow, Kenslow 

Top, Kirkham’s, Minninglow and Mountain Ash pits (Walsh et al., 1980). The most abundant 

and best preserved of these floras are from Bees Nest and Kenslow Top pits (Boulter, 1971b). 

However, these two pits have yielded the same overall flora but with significantly different 

proportions of pollen and spores. Bees Nest Pit is dominated by Pinus (28%), 

Tricolpopollenites microhenrici (10%), Sciadopitys (9%) and Tricolporollenites margaritatus 

(8%) (Boulter, 1971b). By contrast, the Kenslow Top Pit flora predominantly comprises 

Ericaceae (10-37%) and triporate pollen grains (15-30%) (Boulter, 1971b). Varying conditions 

of deposition, climate variability and fire dynamics may have influenced these marked 

differences in floral proportions (Boulter, 1971b). 
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Order Family Taxa Order Family Taxa 

Fu
n

gi
 Dothideomycetes Callimothallus sp. 

A
n

gi
o

sp
er

m
a 

Actinidiaceae Actinidia sp. 

 
Microthalittites sp. Aquifoliaceae Tricolporopollenites iliacus 

Ascomycetes Sphaerites areolatus 
 

T. margaritatus 

B
ry

o
p

h
yt

a Hypnodendraceae Hypnodendron sp. Araliaceae Hedera sp. 

Sphagnaceae Stereisporites crucis 
 

Tricolpopollenites edumundi 

 
S. germanicus rheanus Betulaceae Alnus sp. 

 
S. granisteroides 

 
Carpinus sp. 

 
S. magnoides 

 
Corylus sp. 

 
S. microzonales 

 
Trivestibulopollenites betuloides 

 
S. minimoides Cyrillaceae cf. Cyrilla thompsoni 

 
S. minor microstereis Ericaceae Calluna sp. 

 
S. pliocenious pliocenious 

 
Empetrum sp. 

 
S. semigranulus 

 
Erica sp. 

 
S. stereoides stereoides 

 
Rhododendron sp. 

 
S. wehningensis Fabaceae Tricolpopollenites ipilenses 

P
te

ri
d

o
p

h
yt

a Lycopodiaceae Lycopodium sp. 
 

T. liblarensis fallax 

Gleicheniaceae Gleicheniidites senonicus 
 

T. liblarensis liblarensis 

Osmundaceae Osmunda sp. Fagaceae Tricolporopollenites microhenrici 

Polypodiaceae Laevigatosporites haardti Hamamelidaceae Liquidambar sp. 

 
Verrucatosporites favus Icacinaceae Compositoipollenites rizophorus 

Polypodiaceae (?) Leiotrilites wolffi brevis Juglandaceae Carya sp. 

 
Triplanosporites microsinuosus 

 
Juglans sp. 

Shizaeaceae (?) Leiotriletes wolffi wolffi Liliaceae Periporopollenites echinatus 

G
ym

n
o

sp
er

m
a Cupressaceae Cryptomeria anglica 

 
Smilax sp. 

 
C. sp. Myricaceae Myrica sp. 

 
Inaperturopollenites hiatus Nyssaceae Nyssa sp. 

 
I. dubius Onagraceae Corsinipollenites maii 

Pinaceae Abies sp. Pentaphylacaceae Eurya sp. 

 
Cedrus sp. Poaceae Graminidites media 

 
Keteleeria sp. Salicaceae Salix sp. 

 
Picea sp. 

 
Tricolpopollenites retiformis 

 
Pinus sylvestris – type Sapotaceae Tetracolporopollenites 

sapotoides 

 
P. haploxylon – type Symplocaceae Porocolpopollenites rotundus 

 
P. sp. 

 
P. vestibulum 

 
Tsuga canadensis – type Trapaceae cf. Trapa sp. 

 
T. diversifolia – type Ulmaceae Ulmus sp. 

 
T. sp. 

  Podocarpaceae (?) Podocarpoidites libellus 

  Sciadopityaceae Sciadopitys sp. 

  

Table 2.1. The flora of the Kenslow Member of the Brassington Formation taken from Boulter (1969; 
1971a). 
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2.4. Material and methods 

New sample material from the Kenslow Member at Kenslow Top Pit was recently collected by 

the author. The Kirkham Member of Kenslow Top Pit was worked for silica sand by DSF 

Refractories and Minerals Limited (formerly Derbyshire Silica Firebrick Limited), but has been 

disused for several decades and is now heavily overgrown (Fig. 2.2). The pit is located at 

latitude 53° 09’ 00’’ N and longitude 01° 43’ 40’’ W, approximately 0.5 km east of the minor 

road between Friden and Middleton-by-Youlgreave (Fig. 2.1). 

 

 

Figure 2.2. Field photograph of the east end of Kenslow Top Pit near Friden. The arrow indicates the 
location where the Kenslow Member succession was sampled. 

 

During the work on the Brassington Formation by Boulter et al. (1971), a lignite bed was 

recorded at the top of the Kenslow Member. This lignite is no longer present at Kenslow Top 

Pit, having apparently been removed during quarrying operations. The grey clays of the 

Kenslow Member, which directly underlie the lignite, are the youngest part of the Brassington 

Formation now exposed at Kenslow Top Pit. These clays were sampled for this study. Twelve 

bulk samples were taken at approximately 30 cm intervals from the base of the Quaternary 

Till through the grey and coloured clays of the Kenslow Member (Fig. 2.3, 2.4). The samples 

were processed using the sodium hexametaphosphate technique of Riding and Kyffin-Hughes 

(2004; 2006). Of the twelve samples collected, only one (MPA 60995) yielded moderately 

abundant pollen and spores (Fig. 2.3, 2.4). These are relatively well-preserved, but pale in 

colour and thus were stained using saffranine (Plate 1). The remaining 11 samples proved 

barren or virtually barren of palynomorphs. This is consistent with Boulter (1971b), who 

reported very erratic pollen/spore content within the Kenslow Member, from 25 to 500 

palynomorphs per equal unit of dry sediment measured to the nearest milligram (Boulter, 

1971b). This variability and the relative sparseness of pollen and spores in the Kenslow 

Member may be due to hydrothermal alteration of these clays. The remaining Brassington 

Formation in Kenslow Top Pit lies close to the steep limestone walls and there is sporadic 

mottling with manganese oxides and halloysite (Ford, 1972; 2001). The source of the 



- 47 - 

manganese oxides is probably the weathered dolomitised limestone (Ford, 2001), whereas 

halloysite is typically formed by the hydrothermal alteration of clay minerals (Kerr, 1972). 

Hydrothermal processes would tend to destroy sedimentary organic material including 

palynomorphs (Traverse, 2007). 

 

 

Figure 2.3. Field photograph of the uppermost part of the Kenslow Member at the southeast corner of 
Kenslow Top Pit near Friden. The dashed line represents the contact between the Kenslow 
Member and the overlying Quaternary till. The star indicates the location of BGS sample MPA 
60995, the single palynologically productive sample in this study. Note the brown-grey mottled 
or lens-like nature of the majority of the Kenslow Member. 
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Figure 2.4. A graphic log of the uppermost five metres of the Kenslow Member at Kenslow Top Pit 
which were sampled at the site shown in Figure 2.2. The productive sample MPA 60995 at 3 m 
from the top of the succession is marked and the other 11 barren samples are indicated by the 
small arrows. 
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2.5. Palynostratigraphy 

2.5.1. A revised palynostratigraphy of the data in Boulter (1971a,b) 

Boulter (1971a,b) and Boulter et al. (1971) assigned the Brassington Formation to the Late 

Miocene to Early Pliocene interval based on the occurrence of both Miocene and Pliocene 

floral elements within the so-called Neogene Component of Von der Brelie (1959; 1967) and 

Zagwijn (1960). This was based on material from the uppermost, plant-bearing dark grey clays 

of the Kenslow Member, which are apparently no longer exposed (Boulter et al., 1971, fig. 3). 

The key age-diagnostic taxa were summarised by Boulter (1971a, tab. 2.2), who commented 

that forms within the ‘Miocene Element’ in Europe disappear from the record in this region 

due to southerly floral migrations in response to a cooling palaeoclimatic trend (Leopold, 

1968). It is generally agreed that, in the Neogene of Europe, the principal floral changes are 

due to migrations as opposed to evolutionary factors such as extinctions. Some of the 

‘Pliocene elements’ mentioned by Boulter (1971a, tab. 2.2) such as Liquidambar, Nyssa, 

Sciadopitys and Tsuga are common in the Miocene of central Europe, e.g. the Czech Republic 

(Konzalová, 1976), Germany (Thiele-Pfeiffer, 1980), the Polish lowland (Piwocki and 

Ziembińska-Tworzydło, 1997) and Slovakia (Planderová, 1972). 

 The pollen assemblages described by Boulter (1971a,b) from the uppermost Kenslow 

Member represent a mixture of closed/forest types (e.g. Pinus and Quercus [= 

Tricolporopollenites spp.]) and open/herbaceous types (e.g. Ericaceae and Poaceae). Boulter 

(1971a, figs. 5, 6) indicated that grass pollen (Poaceae) and ‘cold’ temperate forms are 

subordinate to forest types. This is corroborated by the present study, and is indicative of the 

Miocene rather than the Pliocene (Boulter, 1971a). The proportions of Poaceae and other 

‘cold’ temperate forms such as herbs increased markedly in the Pliocene due to the 

deteriorating climate in Europe (Klotz et al., 2006; Mosbrugger et al., 2005; Sadowska, 1994; 

Traverse, 2007). This palaeoclimatic trend has recently been quantified and age-calibrated, 

resulting in a climatic cooling from around 27 °C to ca. 14 °C between 17 and 5 Ma ago and 

punctuated by short-term variations (Donders et al., 2009). 

 Based on pollen biostratigraphical evidence, the Brassington Formation of Kenslow 

and Bees Nest pits is considered herein to be of Tortonian (Late Miocene) age. The key pollen 

grains are Symplocos spp. (i.e. Porocolpopollenites rotundus and Symplocoipollenites 

vestibulum), Tricolpopollenites liblarensis and Tricolporopollenites microhenrici. Despite there 

being no extensive terrestrial floral extinctions at the Miocene/Pliocene transition, these are 

typically subtropical taxa that are abundant in the Miocene pollen floras of continental 

Europe. Symplocos spp. and Tricolporopollenites microhenrici have not been recorded from 
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the Pliocene of Bulgaria, The Netherlands, Poland, Slovakia, Turkey and the UK (Donders et 

al., 2009; Head, 1998; Ivanov, 2004; Ivanov et al., 2010; Kuhlmann et al., 2006; Planderová, 

1990; Stuchlik, 1994; Traverse, 2007; Wazynska, 1998). Furthermore, Tricolpopollenites 

liblarensis has been recorded from the Miocene, but not the Pliocene, of Poland (Stuchlik, 

1994). A Mid Miocene age is precluded by the relatively low pollen diversity, the lack of high 

proportions of Carya (see Larsson et al., 2011) and the absence of palm pollen (Donders et al., 

2009; Piwocki and Ziembińska-Tworzydło, 1997). Palm pollen is rare and typically absent in 

the Late Miocene and Pliocene (Larsson et al., 2011; Sadowska, 1994). 

 

Figure 2.5. Pollen diagram for BGS sample MPA 60995, the single palynologically productive sample of 
the Kenslow Member in this study. 
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Order Family Taxon name of Boulter (1971b) Number of grains % 

Bryophyta Sphagnaceae Stereisporites 125 11.58 

Pteridophyta Indeterminate Spores 5 0.46 

 Osmundaceae Osmunda 19 1.76 

 Polypodiaceae Verrucatosporites favus 3 0.28 

Gymnospermae Cupressaceae Cryptomeria 4 0.37 

  Inaperturopollenites dubius 8 0.74 

 Pinaceae Abies 19 1.76 

  Cedrus 29 2.69 

  Bisaccate pollen 47 4.36 

  Picea 33 3.06 

  Pinus 112 10.38 

  Tsuga 8 0.74 

Angiospermae Araliaceae Hedera 8 0.74 

 Asteraceae (Compositae) Compositae 4 0.37 

 Betulaceae Alnus 15 1.39 

  Carpinus 28 2.59 

  Corylus 1 0.09 

  Trivestibulopollenites betuloides 46 4.26 

 Caryophyllaceae Caryophyllaceae 39 3.61 

 Ericaceae Ericaceae 85 7.88 

 Fabaceae? Tricolpopollenites ipilensis 1 0.09 

  Tricolpopollenites liblarensis 13 1.20 

 Fagaceae? Tricolporopollenites microhenrici 10 0.93 

 Icacinaceae Compositoipollenites rizophorus 217 20.11 

 Hamamelidaceae Liquidambar 11 1.02 

 Indeterminate Other Tricolpopollenites pollen 14 1.30 

 Juglandaceae Carya 1 0.09 

  Juglans 6 0.56 

 Liliaceae Periporopollenites echinatus 14 1.30 

 Myricaceae Myrica 6 0.56 

 Plumbaginaceae Armeria 14 1.30 

  Limonium 31 2.87 

 Poaceae Poaceae 39 3.61 

 Polemoniaceae Polemonium 10 0.93 

 Polygonaceae Polygonum 13 1.20 

 Sapindaceae Aesculus 1 0.09 

 Saxifragaceae Saxifraga 1 0.09 

 Symplocaceae Symplocos 9 0.83 

 Ulmaceae Ulmus 30 2.78 

Total   1079 100.00 

Table 2.2. The palynomorph content of BGS sample MPA 60995 from the Kenslow Member of the 
Brassington Formation of Kenslow Top Pit. 

 

 



- 52 - 

2.5.2. The palynostratigraphy of the Kenslow Member of Kenslow Top Pit 

From the palynomorph-yielding clay of the Kenslow Member at Kenslow Top Pit, a total of 

1079 pollen grains were counted. The dominant elements of the flora are 

Compositoipollenites rizophorus (20.1%), Stereisporites spp. (11.6%), Pinus spp. (10.4%), 

Ericaceae (7.9%) and Trivestibulopollenites betuloides (4.3%) (Fig. 2.5, tab. 2.2). The presence 

of Symplocos (Plate 1, figure 6), Tricolpopollenites liblarensis (Plate 1, figure 3) and 

Tricolporopollenites microhenrici (Plate 1, figure 4) confirm a Late Miocene, rather than 

Pliocene age, for the Kenslow Member. An older date for the Kenslow Member is precluded 

based on the sparsity of Carya and the absence of palm pollen. The palynoflora recovered 

here is broadly comparable to that reported from the Kenslow Member by Boulter (1971b). 

However, taxa unique to this study were recognised, for example Armeria, Caryophyllaceae, 

Eucommia (Plate 1, figure 9), Limonium (Plate 1, figure 11), Polemonium, Polygonum (Plate 1, 

figure 5) and Saxifraga. Conversely, there are forms which were reported by Boulter (1971b) 

that were not found herein (Tab. 2.1, 2.2). These subtle palynofloral differences may be 

related to the depositional setting of the Kenslow Member. The coloured clays of the Kenslow 

Member contain lens-like structures (Fig. 2.3) that may represent occasional slumping of 

material into the karstic hollow, and thus contain slightly different pollen assemblages. This 

however would imply that, although the deposition of the Brassington Formation was largely 

continuous, there may have been some breaks in sedimentation followed by subsidence. The 

Kirkham Member could have subsided as a single depositional unit, but the Kenslow and Bees 

Nest members may represent the final filling of the karstic cavities and thus may include 

lenses of material slumped into the hollow or into a lacustrine setting (Fig. 2.3; Kent, 1957; 

Ford and King, 1969). A lacustrine regime would be consistent with the now absent lignite bed 

at the top of the Kenslow Member at this locality which represented a wetland or marshy 

environment in the hollow before it was completely infilled and then partially eroded by 

glacial processes during the Quaternary. 
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Plate 1. Selected pollen grains from the Kenslow Member at Kenslow Top Pit. Figures 1, 2, 5, 6, 10 and 
11 are from BGS sample MPA 60995 and the specimens are curated in the ‘MPK’ collection of the 
British Geological Survey, Keyworth, Nottingham, UK. Figures 3, 4, 7, 8 and 9 (prefixed with V) are 
from the material of Boulter (1971b) and curated in the collections of the Natural History 
Museum, London. The scale bar refers to all specimens. 1. Pinus (V55662), 2. Limonium (MPK 
14213), 3. Tricolpopollenites liblarensis (V55661), 4. Tricolporopollenites microhenrici (V55635), 5. 
Polygonum (MPK 14214), 6. Symplocos (V55659), 7. Symplocos (V55659), 8. Polemonium 
(MPA60995D), 9. Eucommia (V55635), 10. Compositoipollenites rizophorus (MPK 14216), 11. 
Ericaceae (MPK 14217). 
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2.6. The Late Miocene palaeoecology and palaeoclimate of Derbyshire 

The Kenslow Member palynoflora was interpreted by Boulter (1971b) as representing two 

communities, a dominant lowland forest assemblage and a distal Ericaceous heathland from 

the hills to the north. We agree with the presence of a mixed lowland forest, but not the 

distal Ericaceous heathland. In Europe, Ericaceae during the Miocene ranged from 1 to 17% of 

the overall floras, and heathers are often interpreted as forming part of the understory 

vegetation (E.M. Friis personal communication, 2011; Harzhauser et al., 2008; von der Brelie 

and Wolf, 1981;). However the presence of Armeria, Limonium, Polemonium and Saxifraga, 

together with significant Poaceae, represent more open and/or disturbed conditions, possibly 

with some local salt water influence, at the time of clay deposition relative to the overlying 

peat deposit. In particular, the occurrence of Armeria indicates a possible maritime influence 

(Tutin et al., 1972), possibly suggesting that this part of Derbyshire was relatively close to sea 

level during the Miocene. However, Armeria is known to grow inland on rocky or lead rich 

soils and therefore does not have to indicate maritime influence (Mabey, 1996). The Kenslow 

Member forest was likely to have been of warm-temperate character, containing taxa 

comparable with other European Late Miocene warm-temperate forests such as Abies, 

Cedrus, Keteleeria, Liquidambar, Symplocos and Tricolporopollenites microhenrici (? = 

Quercus) (Blanc et al., 1974; Boulter, 1971b; Nagy, 1967; Utescher et al., 2011a; Worobiec et 

al., 2009). 

Using the coexistence approach of Mosbrugger and Utescher (1997) and Utescher and 

Mosbrugger (2010), a mean annual temperature (MAT) of 15.7 to 16.5°C has been calculated 

for the total Kenslow Member flora (Fig. 2.6a; Tab. 2.1, 2.2). Simply using the palynoflora 

recovered from sample MPA 60995 (Tab. 2.2) to calculate the MAT gives a range of 15.6 to 

18.4°C (Fig. 2.6b). Despite the differences in the range of possible MATs from the full flora 

and the one productive sample in this study, the median value of both ranges is 

approximately 16°C. This is around twice the current MAT for this part of Derbyshire (Cramer 

and Leemans, 2001). A coexistence approach of only the macrofossils also yields a MAT of 

16.2±2.6°C. This consistency in reconstructed MAT between the full flora, sample MPA 60995 

and the macrofossils is a good indicator that the result is reliable. Especially as each of the 

different coexistence approaches has different taxa defining the climate envelope: The full 

flora is controlled by Keteleeria, Lycopodium and Sciadopitys; sample MPA 60995 is controlled 

by Cedrus, Inaperturopollenites and Symplocos; and the macrofossil coexistence approach is 

controlled by Cyrilla and Smilax. Of note is the presence of three outliers in the coexistence 

approach; Empetrum sp., Pinus sylvestris – type (Fig. 2.6a) and Saxifraga (Fig. 2.6b). These 

outliers require colder MAT values than the rest of the flora and are likely to reflect errors in 
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the coexistence approach. Errors such as the assignment of a fossil taxon to the wrong NLR 

and the database not containing complete climate information on NLR taxa (Mosbrugger and 

Utescher, 1997; Utescher and Mosbrugger, 2010). 

A MAT for the Tortonian of 18 to 21°C in the Netherlands was recently suggested by Donders 

et al. (2009); this is slightly warmer than has been reconstructed for the Kenslow Member 

flora and may be due to the Netherlands being further south than Derbyshire. The 

temperatures derived by Donders et al. (2009) are regarded as reliable; however there may 

be a calibration or seasonality skew of the archeal membrane lipid-based proxy (Sinninghe 

Damsté et al., 2008) despite the calibration to a global dataset of MAT. Further palaeoclimatic 

information can be derived from the presence of Eucommia, which may indicate a mean 

spring temperature of between 13 and 21°C because this is the controlling factor for 

germination (Wang et al., 2003). 
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Figure 2.6. The coexistence approach results for the Kenslow flora, Brassington Formation. A. The 
original flora from Boulter (1969; 1971a). B. The palynoflora recovered from sample MPA 60995. 
Green box indicates the envelope of coexistence. Taxa without MAT estimates are not available 
in the original dataset (Utescher and Mosbrugger, 2010). 

 



- 57 - 

2.7. Conclusions 

This revised pollen biostratigraphy of the Kenslow Member clearly demonstrates that the 

Brassington Formation of Derbyshire and Staffordshire is of Tortonian (Late Miocene) age. 

Because the underlying Kirkham and Bees Nest members are unequivocally part of the same 

genetic depositional succession, with no hiatuses, the three members of the Brassington 

Formation are interpreted as being both conformable and of the same origin (Ford, 1972; 

Ijtaba, 1973). Therefore the entire Brassington Formation is considered to be of Tortonian 

age. This refines the Late Miocene-Early Pliocene interpretation of Boulter and Chaloner 

(1970) and Boulter (1971a,b) to a stage-specific level. An Early Pliocene age is precluded due 

to the presence of the pollen taxa Symplocos, Tricolpopollenites liblarensis and 

Tricolpopollenites microhenrici, which are all absent from the Pliocene of northwest and 

central Europe. The Late Miocene age of the Brassington Formation indicates that the rates of 

uplift of the southern Pennines structural block during the Pliocene/Early Pleistocene interval 

were significantly lower than has been recently suggested (Westaway, 2009). Based on this 

revised age, and assuming the Kenslow Member was deposited near sea level (Walsh et al., 

1980; Westaway, 2009), a continuous uplift rate for the southern Pennines would be 0.03-

0.06 mm yr
-1

; this is considerably lower than previous estimates of 0.1-0.13 mm yr
-1

 

(Westaway, 2009). Using the coexistence approach for the Kenslow Member palynofloras, a 

median value for the MAT is around 16°C. Derbyshire during the Tortonian was inhabited by a 

warm – temperate mixed lowland forest (Fig 2.7). There is evidence for more open areas in 

the form of herbaceous taxa and even possible salt water influence from the presence of 

Armeria. 

 

 

Figure 2.7. The forest preserved in the Kenslow Member may have been similar to the warm – 
temperate forest of Doi Inthanon mountain, Doi Inthanon National Park, Thailand. The warm - 
temperate forest of Doi Inthanon is found at 2500 meters above sea level and is mainly 
composed of Quercus – Castanopsis – Pinus with a fern – shrub understory and abundant 
Sphagnum. 
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Chapter 3 

Global vegetation dynamics and latitudinal temperature gradients 

during the mid to Late Miocene (15.97 - 5.33 Ma) 

 

Vegetation is the visible crystallised climate – Vladimir Köppen, 1936 

 

3.1. Introduction 

In the previous chapter I presented the vegetation of a single point on the globe, during a 

specific time. That point was Derbyshire, UK and the time was 9 – 7.25 Ma. During the time it 

took for the sands clays and lignite of the Brassington Formation to be deposited in this part 

of central England, a warm – temperate mixed forest grew under an ambient MAT of 16°C. 

This already provides valuable insight into how much warmer and wetter this part of the 

world was during the late Tortonian, as the MAT of Derbyshire today is around 8°C and the 

potential natural vegetation would be temperate deciduous broadleaf woodland (Fig. 1.6). 

However, it is but a single dot on a map and one occurrence in the archives of the geological 

records of the Miocene. 

In Chapter 1 I introduced the common technique, to study modern global patterns, of using 

satellite imagery. This is of course impossible for geological time, but through the synthesis of 

global data it should be possible to get a “pseudo” satellite view of vegetation. This chapter 

will present such a synthesis, providing a view of the global evolution of vegetation and 

climate from the Langhian to the Messinian. 

Within this chapter I present a 634 site palaeobotanical dataset for the Middle and Late 

Miocene. This is the most comprehensive dataset of its kind suitable for use in palaeoclimate 

and palaeoecology studies. Within the paper the dataset is used to explore the climate that is 

reconstructed from the fossil vegetation. The climate inferred from the distribution of 

vegetation for the Langhian, Seravallian, Tortonian and Messinian is then compared to the 

various CO2 proxies. This is an attempt to better understand Miocene climate and CO2 

evolution. By seeing if major climate changes, recorded as major biome changes, match the 

dynamics of reconstructed atmospheric CO2 levels. The vegetation has been reconstructed 

using the 28 biome scheme of the BIOME4 vegetation model (Fig. 1.6; Table 3.1), which 

makes it suitable for data – model comparison studies. The presented data can also be used 
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to generate global vegetation maps in combination with vegetation models to explore the 

impacts of Miocene vegetation on climate (Salzmann et al., 2008). This will be the subject of 

the following two chapters, whereas this chapter focuses on a review of available 

palaeobotanical data. Within this chapter the latitudinal temperature gradients are also 

explored to gain an insight into how much warmer, than pre – industrial, the Miocene was. 

For the pre – industrial era the latitudinal temperature gradients were relatively steep: warm 

temperatures at the equator cooling rapidly to the poles. For warmer intervals in the 

geological record it has been proposed that the latitudinal temperature gradient was much 

shallower (Ballantyne et al., 2010). 

 

 

Figure 3.1. Distribution of Langhian (N = 184) (A) and Seravallian (N = 205) (B) palaeobotanical locations. 
The references for the locations are listed in Appendices A and B. 
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Figure 3.2. Distribution of Tortonian (N = 326) (A) and Messinian (N = 252) (B) palaeobotanical locations. 
The references for the locations are listed in Appendices A and B. 

 

3.2. Methods 

3.2.1. Constructing the vegetation database 

Using TEVIS (Tertiary Environments Vegetation Information System) (Salzmann et al., 2008), 

which is a Microsoft Access and ArcGIS 9 based database, 634 Middle to Late Miocene 

vegetation sites (Fig. 3.1; 3.2) have been collected from the literature and recorded in an 

internally consistent manner. Using the author’s interpretation of the fossil assemblage, the 

reconstructed palaeovegetation has been translated into biomes using the classification 

scheme of the BIOME4 mechanistic vegetation model (Kaplan, 2001). TEVIS not only records 

the vegetation of the palaeobotanical site but also the latitude and longitude, sedimentology, 

method used to date the sample and a quality indicator – to ascertain the resolution of the 

chronology. Where available from literature, numerical climatic parameters such as MAT and 
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MAP are also recorded in TEVIS. Extracting climatic parameters from fossil assemblages can 

be achieved by a number of techniques and the majority of the estimates in the TEVIS 

database come from either the co-existence approach (Bruch et al., 2006) or CLAMP (Spicer, 

2007; Spicer et al., 2009; Wolfe, 1979; 1993), both of these were introduced in Chapter 1. 

It has been possible to confidently assign all literature-based vegetation reconstructions to a 

corresponding BIOME4 classification (Fig. 1.6). However, it should be noted that although the 

BIOME4 classification represents biomes of the modern world these are not identical, in 

species composition, to those of the Miocene and in some regions the Miocene biome has no 

modern analogue. The correspondence between a Miocene biome and a modern analogue 

becomes more uncertain with increasing age. By the Langhian some biomes, particularly 

those of the high northern latitudes, begin to show a species assemblage not seen in the 

modern world. An excellent example of this is the high latitude (>69°N) forests from the 

Middle Miocene of North America. These forests had a composition of Fagus, Glyptostrobus, 

Liquidambar, Metasequoia, Picea, Pinus, Quercus, Taxodium and Ulmus (White and Ager, 

1994; White et al., 1997; Williams et al., 2008). This is a very different assemblage to the 

modern flora of boreal and arctic North America (Barbour and Billings, 2000). Despite the 

taxonomic differences between this Middle Miocene flora and the modern floras of North 

America, the structure and estimated productivity of this forest is comparable to modern 

biomes (Williams et al., 2008). 

 

3.2.2. Bioclimatic zones 

To gain a better insight into the latitudinal temperature gradients of the Middle to Late 

Miocene the latitudinal vegetation distribution can be compared to the pre - industrial 

potential vegetation distribution. The pre - industrial potential natural vegetation shows 

progressively colder biomes from the equator, as latitude increases. In simple terms this 

reflects the latitudinal temperature gradient, which is highest at the equator and lowest at 

the poles. This requires a simplified scheme to provide an understandable view of the 

latitudinal temperature gradients for the Langhian, Seravallian, Tortonian and Messinian 

stages. To facilitate this each fossil site, within TEVIS, is assigned to one of seven megabiomes 

and one of six bioclimatic zones (Table 3.1), as well as assigning each fossil site to one of the 

28 biomes of the BIOME4 classification (Salzmann et al., 2009). The bioclimatic zone 

classifications are based on the seven megabiome classification scheme presented in 

Salzmann et al., (2009). Megabiomes are broader categories grouping numerous biomes. The 

six bioclimatic zones are; tropical, subtropical/warm-temperate, temperate, boreal, tundra 
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and ice. These classifications reflect a simplified qualitative view of the temperature range of 

the 28 biomes used in the BIOME4 model. However certain biomes can be included in 

multiple bioclimatic zones, for example the temperate deciduous broadleaf savanna biome. 

This biome is referred to as a temperate vegetation type (Gnibidenko et al., 1999) and a 

warm – temperate vegetation type (Thomasson, 2005). To avoid complications from biomes 

that are more climatically controlled by seasonality and precipitation than they are by 

temperature, only forest, woodland or tundra biomes were used in the construction of the 

bioclimatic zone gradients (Table 3.1). 

 

Biome code 
BIOME4 Vegetation type 

(Kaplan, 2001) 
Megabiome type 

(Salzmann et al., 2009) 
Bioclimatic Zone 

 

1* Tropical evergreen broadleaf forest Tropical forest Tropical 
2* Tropical semi-evergreen broadleaf forest Tropical forest Tropical 

3* 
Tropical deciduous broadleaf forest and 

woodland 
Tropical forest Tropical 

4* 
Warm - temperate evergreen broadleaf 

and mixed forest 
Warm - temperate 

forest 
Subtropical/ Warm - temperate 

5* Temperate deciduous broadleaf forest Temperate forest Temperate 
6* Temperate evergreen needleleaf forest Temperate forest Temperate 
7* Cool - temperate mixed forest Temperate forest Temperate 
8* Cool evergreen needleleaf forest Temperate forest Temperate 

9* 
Cool-temperate evergreen needleleaf and 

mixed forest 
Temperate forest Temperate 

10* Cold evergreen needleleaf forest Boreal forest Boreal 
11* Cold deciduous forest Boreal forest Boreal 

12 Tropical savanna 
Savanna and dry 

woodland 
Tropical 

13 Tropical xerophytic shrubland 
Savanna and dry 

woodland 
Tropical 

14 Temperate xerophytic shrubland 
Savanna and dry 

woodland 
Temperate 

15* 
Temperate sclerophyll woodland and 

shrubland 
Savanna and dry 

woodland 
Temperate 

16 Temperate deciduous broadleaf savanna 
Savanna and dry 

woodland 
Temperate 

17 
Temperate evergreen needleleaf open 

woodland 
Savanna and dry 

woodland 
Temperate 

18 Cold parkland 
Savanna and dry 

woodland 
Boreal 

19 Tropical grassland Grassland Tropical 
20 Temperate grassland Grassland Temperate 

22* Graminoid and forb tundra Tundra Tundra 
23* Low and high-shrub tundra Tundra Tundra 
24* Erect dwarf-shrub tundra Tundra Tundra 
25* Prostrate dwarf-shrub tundra Tundra Tundra 
26* Cushion-forb, lichen, and moss tundra Tundra Tundra 
21 Desert Desert N/A 

28* Ice Land Ice Ice 

Table 3.1. A summary of the BIOME4 vegetation scheme (Kaplan, 2001), its translation into the seven 
megabiome scheme (Salzmann et al., 2009) and the six bioclimatic zone scheme. An * denotes 
that the biome was suitable to be used in the bioclimatic zone gradients. 

 

Two transects were chosen to reconstruct the latitudinal bioclimatic zonal gradients. The 

west Pacific transect (WPT) and the west Atlantic transect (WAT) (Fig. 3.3) were selected due 

to the good data coverage, not only spatially but also temporally. These transects also avoid 
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most of the major mountain regions (though the Himalayas may have influenced part of the 

WPT), which minimises the complicating factor of altitude. 

Using the latitudinal transects in Figure 3.3 the maximum pole - ward extent of each 

bioclimatic zone has been plotted, for each of the four studied time slabs. These have been 

compared to the maximum pole ward extent of pre - industrial potential natural vegetation 

generated using the BIOME4 model (Kaplan, 2001), driven by observed climate (Fig. 1.6). The 

methodology does not provide numerical climate data to reconstruct the latitudinal 

temperature gradient, but does compare the maximum pole ward extent of bioclimatic 

zones. The method shows the relative change in the qualitative bioclimatic zones over time 

and provides an insight into how different the latitudinal temperature gradient would have 

been during the studied geological stages. 

 

 

Figure 3.3. The location of the latitudinal transects used for reconstructing the latitudinal distribution of 
bioclimatic zones. 
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Figure 3.4. The vegetation distribution of the Langhian (A) and Seravallian (B) from 
palaeobotanical data, translated into the 28 biome scheme of the BIOME4 model. 
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Figure 3.5. The vegetation distribution of the Tortonian (A) and Messinian (B) from palaeobotanical 
data, translated into the 28 biome scheme of the BIOME4 model. 
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3.3. Global vegetation change from Langhian to Messinian 

3.3.1. Global biome distributions through time 

The plotted biomes, from the 634 fossil vegetation sites in TEVIS, provide an insight into 

Middle to Late Miocene vegetation and climate. The Langhian stage is represented by 184 

fossil sites (Fig. 3.4A), the Seravallian by 205 sites (Fig. 3.4B), the Tortonian by 326 sites (Fig. 

3.5A) and the Messinian by 252 sites (Fig. 3.5B). Some of these sites cover multiple time 

stages whilst others may be better dated and correspond to an interval smaller than the 

assigned geological stage. The ages assigned to the geological stages follows Gradstein et al. 

(2004). There is excellent data coverage, for all stages, in temperate and tropical Eurasia. 

North and South America also have good data coverage. Whilst the high northern latitudes, 

Africa and central Australia have poor data coverage. All the data points are presented in the 

supplementary information with their modern day latitude – longitude, age range, biome and 

megabiome code and references (Appendices A and B).  

The vegetation change shown by the 634 palaeobotanical sites indicates a global cooling 

trend from the Langhian to the Messinian. During the Middle Miocene (Langhian and 

Seravallian) cool - temperate mixed forests were above 60°N with no evidence for boreal 

forests. By the Late Miocene (Tortonian and Messinian) boreal forests are abundant above 

60°N, though in places temperate biomes are still present. The cooling trend is also indicated 

by the subtropical/warm temperate megabiome, which is most widely distributed during the 

Langhian. Through the remaining Miocene it gradually becomes more restricted, being 

displaced by cooler and/or drier biomes. Linked with this cooling and drying trend is the 

expansion of deserts. During the Langhian there is evidence for an Atacama Desert in South 

America, by the Messinian there is evidence for a Sahara (Africa) and Taklimakan (Asia) 

desert. 

In the following section the global vegetation pattern, distribution and changes from the 

Middle Miocene to the Messinian will be discussed by regions (Fig. 3.6). Specific fossil 

localities will be referred to using the site numbers (Fig. 3.1; 3.2) in parentheses with a prefix 

denoting the geological stage it has been assigned to (L = Langhian; S = Seravallian; T = 

Tortonian; M = Messinian). Climatic data are also presented below in the form of Mean 

Annual Temperature (MAT) in °C and Mean Annual Precipitation (MAP) in mm per year. The 

climatic data are also presented in Tables 3.2, 3.3, 3.4, 3.5. 
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Figure 3.6. The distribution of the 20 regions used to discuss the global vegetation changes through 
time. 

 

3.3.1.1. Northern North America 

Overall this region changes from being dominated by cool - temperate forests in the Middle 

Miocene, to an area dominated by boreal forests in the Messinian. This cooling trend is 

associated with an increase in biome types but a reduction in taxa diversity and a loss of more 

thermophilic elements, except in southern coastal Alaska (Reinink-Smith and Leopold, 2005). 

In northern North America (above 60°N) reported Middle to Late Miocene fossil floras are 

restricted to Alaska and north-west Canada. During the Langhian a cool - temperate mixed 

forest is found on Banks Island (74°N), the Mackenzie Delta (69.5°N) and at numerous sites in 

Alaska (Sites L1 – L6) (Fig. 3.4A). This cool - temperate mixed forest was taxonomically diverse 

with Fagus, Glyptostrobus, Liquidambar, Metasequoia, Picea, Pinus, Quercus, Taxodium and 

Ulmus and has a reconstructed MAT of 8 - 9°C (Table 3.2) (White and Ager, 1994; White et al., 

1997; Williams et al., 2008). The cool - temperate mixed forest biome still dominated this 

region during the Seravallian (Sites S1 – S4) (Fig. 3.4B), although CLAMP derived climate 

estimates suggest a climatic cooling lowered regional MAT to as low as 4°C by 12 Ma (Table 

3.3) (White et al., 1997). 

By the Tortonian northern North America showed a more diverse array of biomes (Fig. 3.5A). 

The cool - temperate mixed forest which dominated the region during the Middle Miocene 

was still present between 60°N at Homer (Site T1) and 65°N at Coal Creek (Site T7). The Coal 

Creek flora changed biome type at around 9 Ma to a cool evergreen needleleaf forest. This 

biome is also preserved at Tatlinaka Creek (Site T4) which has a pollen assemblage dominated 

by Betula and Pinus spp., with an estimated MAT of 5°C (Table 3.4) (Leopold and Liu, 1994; 
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Wahrhaftig et al., 1969). During the Tortonian a cold evergreen needleleaf forest was also 

present in the northern North America region (Site T2, T3 & T6), this can be considered to 

have been a taxonomically richer form of the present day boreal forests, with a MAT of 4±1°C 

(Wolfe, 1994a; Wolfe and Leopold, 1967). During the Messinian the biome distribution of 

north-west North America appears to reflect a continued cooling (Fig. 3.5B). The cool - 

temperate mixed forest was still present but only up to 59°N (Site M2). North of 60°N the 

vegetation was a mix of cool evergreen needleleaf forests (Sites M3, M4 & M6) and cold 

evergreen needleleaf forests (Sites M1 & M5) (Fig. 3.5B). The cold evergreen needleleaf 

forest preserved at Lava Camp, Alaska is dominated by Larix and Pinus monticola, the regional 

MAT for this biome is reconstructed to be between -10 to +6°C (Table 3.5) (Matthews Jr. and 

Ovenden, 1990; White et al., 1997). 

 

3.3.1.2. Western North America 

During the Langhian this region was dominated by a warm – temperate evergreen broadleaf 

and mixed forest. Through the Seravallian and Tortonian a drier climate caused the warm-

temperate mixed biome to gradually become more restricted and was replaced by more open 

biomes. By the Messinian the warm-temperate biome was replaced by a north to south 

pattern of progressively drier biomes. 

During the Langhian western North America was dominated by a warm – temperate 

evergreen broadleaf and mixed forest biome between 40°N and 54°N (Fig. 3.4A). At Purple 

Mountain (Site L23), a late Langhian to early Seravallian locality, the warm – temperate 

evergreen broadleaf and mixed forest biome is estimated to have had a MAT of 11.5°C and a 

MAP of 825±65mm (Axelrod, 1995). There is evidence for drier biomes at Pyramid (Site L22) 

and Tenachapi (Site L24), which have been reconstructed as a temperate deciduous broadleaf 

forest and temperate xerophytic shrubland, respectively. These biomes located south of 40°N 

suggest a drier climate regime existed in the south-west of North America. During the 

Seravallian the vegetation of western North America was much less uniform when compared 

to the Langhian. Whilst areas of warm – temperate evergreen broadleaf and mixed forest still 

existed these had become separated by areas of drier and/or cooler biome types (Fig. 3.4B). 

At Esmeralda (Site S20) a diverse palaeobotanical fossil assemblage records an oak – juniper 

woodland (temperate deciduous broadleaf forest) estimated to have grown under a MAP of 

406±51mm (Axelrod, 1940; Berry, 1927). At Cougar Point (Site S15) a pollen flora dominated 

by Artemisia and Poaceae shows the existence of a xerophytic shrubland at ca. 12 Ma (Davis 

and Ellis, 2010). 
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By the Tortonian palaeobotanical evidence suggests that the extensive warm – temperate 

evergreen broadleaf and mixed forest of the Langhian, that began to fragment in the 

Seravallian, had become even more restricted. During the Tortonian the warm – temperate 

evergreen broadleaf and mixed forest was present between 43°N and 48°N (Sites T13 – T17, 

T19 & T26) and along the coast between 31°N and 33°N (Sites T30 – T32) (Fig. 3.5A). A drill 

hole in Willamette Valley, Oregon (Site T17) yielded a rich palynomorph assemblage derived 

from the warm – temperate evergreen broadleaf and mixed forest biome, the assemblage 

contains Carya, Castanea, Cedrus, Fagus, Liquidambar, Nyssa, Platanus, Pterocarya, Sequoia 

and Ulmus (Roberts and Whitehead, 1984). Climate estimates from the warm – temperate 

evergreen broadleaf and mixed forest biome suggests it existed under an MAT of 11 - 19°C 

and a MAP of 617.5 – 1250mm (Table 3.4). The lower MAP estimate of 617.5mm seems 

rather too low to support the warm – temperate evergreen broadleaf and mixed forest biome 

but this reflects an unusual setting of one palaeobotanical site (Site T30) which may have 

been a forest supported by summer fog (Axelrod, 2000). Separating the two areas of warm – 

temperate evergreen broadleaf and mixed forests during the Tortonian there was a mixture 

of temperate deciduous broadleaf forest, temperate deciduous broadleaf savanna and 

temperate sclerophyll woodland and shrubland. Further south there was temperate 

xerophytic shrubland (Sites 22, 24, 29, 31 & 33). These biomes are estimated to have had a 

MAT comparable to the warm – temperate evergreen broadleaf and mixed forest but with a 

lower MAP (Table 3.4). North of 48°N there was a temperate deciduous broadleaf forest 

(Sites T11 – T13) and temperate evergreen needleleaf forest (Site T10) further north. At 

Skonun Point (Site 9) a pollen assemblage reminiscent of the high latitude Langhian cool - 

temperate mixed forest biome with abundant Alnus, Pinus, Quercus and Taxodiaceae (Martin 

and Rouse, 1966; White et al., 1994) represents the southernmost evidence for the biome 

seen in Alaska (Sites T1 & T7) during this stage. 

By the Messinian the warm – temperate evergreen broadleaf and mixed forest was gone 

from western North America. The drier biomes, that had been gradually replacing the warm – 

temperate evergreen broadleaf and mixed forests, were present continuously from 31°N to 

48°N. On Queen Charlotte Island the cool - temperate mixed forests (Sites M7 & M8), present 

during the Tortonian, still inhabited the region – suggesting little change in MAT between the 

Tortonian and Messinian. Further south from Queen Charlotte Island at 48°N evidence exists 

for a temperate deciduous broadleaf forest (Sites M9, M10 & M12) with similarities to the 

modern eastern American deciduous forests (Sparks et al., 1972). South of this a mixture of 

temperate xerophytic shrubland (M11, M13 & M15) and temperate sclerophyll woodland and 
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shrubland (Site M14) inhabited what would have been a much drier region than existed 

during the Langhian. 

 

3.3.1.3. Central North America 

Palaeobotanical evidence for the Langhian is limited for this region. Kleinfelder Farm, Canada 

(Site L25) shows the presence of temperate grassland at 49°N, 107°W. Gabel et al (1998) 

suggested that the region has been vegetated with savanna and grasslands since at least the 

Middle Miocene. There is evidence for a temperate deciduous broadleaf savanna (Sites S35 & 

S36) in this region during the Seravallian, Tortonian (Sites T35 – T38) and Messinian (Sites 

M18 – M20). At Minium Quarry, USA a diverse fossil assemblage records a temperate 

deciduous broadleaf savanna estimated to have had a MAT of 19°C and a MAP of 

875±125mm (Thomasson et al., 1990). 

 

3.3.1.4. Eastern North America 

Three sites (L26 - L28) show that during the Langhian the vegetation of eastern North America 

consisted of warm – temperate evergreen broadleaf and mixed forest from at least 29°N to, 

at least, 39°N. At Martha’s Vineyard (Site L26) a pollen bearing locality dated to the Middle 

Miocene has been estimated to have been deposited under a MAT of 13.3±5°C (Axelrod, 

2000; Frederiksen, 1984). The warm – temperate evergreen broadleaf and mixed forest 

continued to be the dominant biome during the Seravallian (S27 – S31). During the Tortonian 

the warm – temperate evergreen broadleaf and mixed forest continued to be dominant (Fig. 

3.5A) but there is also evidence for tropical semi-evergreen forest in Louisiana during this 

time (Site T40), that was rich in ferns and palm trees (Wrenn et al., 2003). Further inland, at 

86°W the Pipe Creek sinkhole (Site T41) contains diverse macrofloral fossils with common 

Platanus leaves and a pollen assemblage dominated by Juglandaceae and Pinaceae; this has 

been interpreted to represent a temperate deciduous broadleaf savanna (Farlow et al., 2001; 

Shunk, 2009). During the Tortonian the warm – temperate evergreen broadleaf and mixed 

forest that dominated the eastern USA is estimated to have had a MAT of 15±9°N and a MAP 

of 1270mm. Palaeobotanical evidence can only confirm the warm – temperate evergreen 

broadleaf and mixed forest between 36°N and 38°N during the Messinian (Fig. 3.5B). At Gray 

Fossil Site (Site M21) a palynological assemblage records the presence of a temperate 

deciduous broadleaf forest dominated by Carya, Pinus and Quercus (DeSantis and Wallace, 

2008). 
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3.3.1.5. Central America and the Caribbean 

Palaeobotanical evidence from Central America and the Caribbean is limited. During the 

Langhian stage, two sites (Sites L30 – L31) located between 17°N and 7°N provide evidence 

for a tropical climate in Central America. A third site (Site L29) records a temperate deciduous 

broadleaf forest which is interpreted to have been derived from altitude to explain the 

presence of a temperate biome in the tropics (Lenhardt et al., 2006). Further south at the 

Panama Canal (Site L31) a leaf flora records the presence of a tropical semi-evergreen 

broadleaf forest with a MAT of 15.5±4.9°C and MAP of 658.2±483.8mm (Retallack and Kirby, 

2007). During the Seravallian the well dated site of Panolta (Site S32) shows the presence of a 

tropical evergreen broadleaf forest at 18°N (Castañeda-Posadas et al., 2009). Again there is 

evidence of quite diverse palaeoaltitude in this region with a pollen spectrum at Jalapa (Site 

S33) reflecting a warm Liquidambar - Quercus forest rather than a tropical rainforest 

(Graham, 1975). During the Tortonian and Messinian there was also a warm – temperate 

evergreen broadleaf and mixed forest (with palms) preserved as a palynological assemblage 

at Location B, Guatamala (Graham, 1998). On the islands of Haiti and Cuba tropical deciduous 

broadleaf woodland and a tropical evergreen broadleaf forest are present, respectively (Site 

T51 & T52). These contrast with the prominence of warm – temperate evergreen broadleaf 

and mixed forest preserved on mainland Central America at similar latitudes. 

 

3.3.1.6. Northern South America 

In the northern half of South America, all palaeobotanical sites indicate a tropical evergreen 

broadleaf forest during the Langhian (Fig. 3.4A). In the Seravallian the tropical evergreen 

broadleaf forest continued to exist with an estimated MAP of 1750±250mm at La Venta (Kay 

and Madden, 1997). However, the western most three sites (Sites S37 – S39) record a tropical 

deciduous broadleaf forest and woodland suggesting a lower rainfall than at La Venta. During 

the Tortonian more open biomes became abundant(Fig. 3.5A) with tropical savanna between 

5°S and 12°S (Sites T61, T66 & T67) and tropical deciduous broadleaf forest and woodland 

further south (Sites T71 & T72). This southern forest is estimated to have had a MAT of 

between 16.1 – 23.5°C and a MAP of 550±180mm (Gregory-Wodzicki, 2002; Gregory-

Wodzicki et al., 1998). During the Messinian a mixture of tropical evergreen broadleaf forest 

and tropical savanna existed in this region (Fig. 3.5B). At Pislepampa, Bolivia (Site M41) the 

tropical evergreen broadleaf forest is estimated to have grown under a MAT of 20±5°C and a 

MAP of 1250±250mm (Graham et al., 2001). 
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3.3.1.7. Southern South America 

The western side of southern South America between 26°S and 35°S contained arid type 

biomes during the Langhian (Fig. 3.4B). There may have been an Atacama desert present (Site 

L41) with temperate xerophytic shrubland and temperate sclerophyll woodland and 

shrubland further south. On the east side south of 35°S there was a mixture of warm – 

temperate evergreen broadleaf and mixed forest and temperate grassland (Sites L46 – L51). 

At 55°S a warm – temperate evergreen broadleaf and mixed forest inhabited Tierra del Fuego 

(Site L53) and the Falkland Islands (Site L52) during the Langhian (Fig. 3.4A). The 

palaeobotanical bearing deposits on the Falklands have not been well dated (Macphail and 

Cantrill, 2006). The better dated deposits on Tierra del Fuego are of a comparable biome type 

suggesting they may be coeval, however the Falkland Island site has still been included in the 

younger datasets until its age has been confirmed. The Forest Beds of the Falkland Islands 

show a flora dominated by Dacrydium, Lagarostrobos, Nothofagus and Podocarpus, this 

forest community that had a MAT of 12±1°C and a MAP of around 1200mm (Macphail and 

Cantrill, 2006). There is very little difference in the biome types of southern South America 

between the Langhian and the Seravallian (Fig. 3.4); this is mostly due to the uncertainty in 

the resolution of dating of sites in this region. 

By the Tortonian there were more humid biomes to the south of the Atacama Desert (Fig. 

3.5A). Tropical evergreen broadleaf forest inhabited mountain slopes and areas with 

adequate moisture (Sites T74 & T75), whilst tropical savanna dominated the lowlands (Sites 

T76 - T78). Between 31°S and 44°S, a mixture of temperate sclerophyll woodland and 

shrubland, temperate xerophytic shrubland and isolated coastal warm – temperate evergreen 

broadleaf and mixed forests were present (Fig. 3.5A). These warm – temperate evergreen 

broadleaf and mixed forests were replaced by temperate deciduous broadleaf savanna during 

the Messinian. Other than the loss of the warm – temperate evergreen broadleaf and mixed 

forests there is very little difference between the Tortonian and the Messinian and this is due 

to the age uncertainties of the localities used in the reconstruction. There is evidence for 

glaciers being present at 47°S (Site M62) during the Messinian (Mercer and Sutter, 1982). 

 

3.3.1.8. North Atlantic islands 

For the Langhian and Seravallian the only vegetation evidence for this region comes from 

Iceland (Fig. 3.4A,B). During the Middle Miocene Iceland was inhabited by a warm – 

temperate evergreen broadleaf and mixed forest with taxa such as Betulaceae, Glyptostrobus, 
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Fagus, Fraxinus, Magnolia, Sequoia and Ulmus (Grimsson et al., 2007). During the Tortonian 

Iceland continued to have warm – temperate evergreen broadleaf and mixed forests until 10 

– 9 Ma when temperate deciduous broadleaved forests and cool - temperate mixed forests 

become the main biome type of the island. The early Tortonian warm – temperate evergreen 

broadleaf and mixed forest grew under a MAT of 7.7±0.1°C and a MAP of 1075±0.5mm (Denk 

et al., 2005). Other evidence for the North Atlantic comes from Ocean Drilling Project (ODP) 

and Deep Sea Drilling Project (DSDP) sites. Off the southern tip of Greenland a pollen 

assemblage has been recovered showing the existence of warm – temperate evergreen 

broadleaf and mixed forests on Greenland during the Tortonian (Site T95). North of Iceland, 

between 67°N and 69°N pollen assemblages provide evidence of a cool - temperate mixed 

forest on either Greenland, northern Eurasia or both (Sites T100 & T102). Further north at 

78°N a cold evergreen needleleaf forest was present (Site T101). By the Messinian the warm – 

temperate evergreen broadleaf and mixed forests were gone from the region, the last fossil 

evidence being from offshore southern Greenland at 6.5 Ma (Site M66). Between 58°N and 

68°N pollen recovered from marine cores shows that the predominant biome of this region 

was cool - temperate mixed forest with cold evergreen needleleaf forest at 78°N (Fig. 3.5B). 

 

3.3.1.9. Europe 

From the Langhian to the Messinian the vegetation of Europe shows a gradual response to a 

cooling and drying climate. The dominance of warm – temperate evergreen broadleaf and 

mixed forests present throughout the Langhian begins to be broken up by areas of cooler and 

drier biomes. This pattern is particularly evident in the east of Europe where temperate 

deciduous broadleaf savanna becomes a major biome during the Late Miocene breaking up 

the extensive warm – temperate evergreen broadleaf and mixed forest (Akgün and Akyol, 

1999). 

On the Iberian Peninsula during the Langhian warm – temperate evergreen broadleaf and 

mixed forest dominated the landscape (Fig. 3.4A). At Rubielos de Mora, Spain (Site L62) a 

pollen and macro-fossil assemblage shows that the warm – temperate evergreen broadleaf 

and mixed forest was chiefly composed of Acer, Betula, Carya, Corylus, Fraxinus, 

Glyptostrobus, Juglans, Quercus, Salix and Sequoia (Ramis and Marron, 1994). On the 

southern coast of the Iberian Peninsula there was an arid region of temperate xerophytic 

shrubland (Sites L63 – L66) and on the eastern coast there was an area of temperate 

deciduous broadleaf savanna (Site L61). To the north and east of the Pyrenees 

palaeobotanical evidence shows the presence of a warm – temperate evergreen broadleaf 
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and mixed forest throughout Europe between the latitudes of 36°N and 53°N and the 

longitudes of 1°W and 47°E (Fig. 3.4A). This warm – temperate evergreen broadleaf and 

mixed forest is estimated to have grown under a MAT of 13.6 - 21°C and a MAP of 823 – 

2500mm, in Turkey the MAT is estimated to have been slightly higher with a range of 16. 5 – 

21.3°C (Table 3.2) (Akgün and Akyol, 1999; Akgün et al., 2007; Kayseri and Akgün, 2010). The 

only exception to this widespread warm – temperate evergreen broadleaf and mixed forest 

was a small area of temperate sclerophyll woodland and shrubland in southern Germany 

(Sites L82 – L83), which is estimated to have had a MAT comparable to the warm – temperate 

evergreen broadleaf and mixed forest but a lower MAP (Table. 2) (Böhme et al., 2007). 

During the Seravallian the warm – temperate evergreen broadleaf and mixed forest biome 

continued to dominate Europe but some areas had begun to develop drier biomes (Fig. 3.4B). 

On the Iberian Peninsula a vegetation pattern similar to that of the Langhian existed (Fig. 

3.4A), with the exception of evidence for a temperate sclerophyll woodland in central Spain 

(Site S64). In southern France there is evidence for temperate deciduous broadleaf savanna 

(Sites S80 & S91) as well as warm – temperate evergreen broadleaf and mixed forest. Further 

disruption to the warm – temperate evergreen broadleaf and mixed forest occurs in southern 

Germany where temperate deciduous broadleaf forest occurred (Fig. 3.4B) and east of 28°E 

where more open areas of temperate deciduous broadleaf savanna (Sites S118, S124 & S127) 

occupied drier regions. The warm – temperate evergreen broadleaf and mixed forest during 

the Seravallian is estimated to have grown under a MAT and MAP comparable to that of the 

Langhian (Table 3.2). The temperate deciduous broadleaf savanna found east of 28°E is 

estimated to have had a MAT of 9.5±4.9°C and a MAP of 951±216mm (Syabryaj et al., 2007), 

showing that not only was this biome drier than the dominant warm – temperate evergreen 

broadleaf and mixed forests but also colder. 

The expansion of colder and drier biomes continued into the Tortonian, although large areas 

of warm – temperate evergreen broadleaf and mixed forest still dominated much of Europe 

(Fig. 3.5A). The Iberian Peninsula during the Tortonian had a vegetation pattern similar to that 

of the Seravallian (Fig. 3.5A). Climate estimates from the Tagus Basin, Portugal suggests the 

MAT of the warm – temperate evergreen broadleaf and mixed forests was around 11°C. The 

warm – temperate evergreen broadleaf and mixed forests were still dominant across Europe 

until 23°E, where more open biomes began to intermingle with the warm – temperate 

evergreen broadleaf and mixed forest (Fig. 3.5A). The warm – temperate evergreen broadleaf 

and mixed forests were typically composed of Abies, Betula, Cedrus, Craigia, Engelhardtia, 

Keteleeria, Liquidambar, Myrica Pinus, Quercus and Taxodium as well as other taxa and 

occasionally palms (Blanc et al., 1974; Kvacek et al., 2002; Nagy, 1967; Chapter 2). 
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Reconstructed climate of this warm – temperate evergreen broadleaf and mixed forest for 

the Tortonian provides a MAT range of 11.6 – 18.4°C and a MAP of around 1153mm (Table 

3.4) (Bruch et al., 2006). West of 23°E a small area of cool - temperate mixed forests of Fagus, 

Liquidambar and Quercus inhabited a small area of southern Germany, possibly indicating an 

area of palaeo-altitude (Gregor et al., 1989). East of 23°E a mixture of warm – temperate 

evergreen broadleaf and mixed forests, temperate evergreen needleleaf forests and 

temperate deciduous broadleaf savanna was found (Fig. 3.5A). In Turkey, the warm – 

temperate evergreen broadleaf and mixed forest inhabited a region warmer than that in the 

rest of Europe with a reconstructed MAT of 15.6 – 21.3°C and a MAP of 823 – 1574mm (Table 

3.4) (Akgün et al., 2007). The temperate deciduous broadleaf savanna of Turkey had a 

comparable reconstructed climate (Table 3.4). 

During the Messinian the vegetation patterns that had developed in the Tortonian continued 

(Fig. 3.5B). The warm – temperate evergreen broadleaf and mixed forest continued to 

dominate Europe up to 23°E, with a reconstructed MAT of 9 – 19.8°C and a MAP of 700 – 

1759mm (Table 3.5) (Bruch et al., 2006). Evidence from the Iberian Peninsula is limited, 

though it still shows the presence of temperate xerophytic shrubland along the southern 

coast and warm – temperate evergreen broadleaf and mixed forests in the Pyrenees (Fig. 

3.5B). Some palaeobotanical sites show evidence for areas of temperate deciduous broadleaf 

forest (Sites M76 &M106), temperate evergreen needleleaf forest (Sites M101 & M102) and 

temperate xerophytic shrubland (Site M94). These had MATs comparable to the warm – 

temperate evergreen broadleaf and mixed forests of around 15°C but with lower MAP, below 

1000mm (Table 3.5). East of 23°E there was a mixture of warm – temperate evergreen 

broadleaf and mixed forests and temperate deciduous broadleaf savanna, similar to the 

Tortonian (Fig. 3.5A). 

 

3.3.1.10. North Africa and the Middle East 

Evidence for the Langhian and Seravallian is very scarce for this region. The only evidence 

comes from Enfidha, Tunisia (Site L77; S91) and Jabal Barakah, UAE (Site L104). At Enfidha, a 

warm – temperate evergreen broadleaf and mixed forest dominated by Carya and 

Myricaceae inhabited this region (Planderová, 1971). At Jabal Barakah, a high proportion of 

grass pollen, as well as, Alchornea, Celtis, Myrtiaceae and Palm indicate a tropical deciduous 

broadleaf woodland with mangroves along the coast (Jacobs et al., 2010; Whybrow and 

McClure, 1980). By the Tortonian numerous sites show the existence of tropical savanna, 

tropical grassland, tropical xerophytic shrubland and temperate sclerophyll woodland and 
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shrubland throughout North Africa and the Middle-East (Fig. 3.5A). This pattern continues 

into the Messinian with the addition of evidence for desert conditions starting at around 7 Ma 

(Site M144). Although the origin of these deposits has come under contest (Kroepelin, 2006; 

Schuster et al., 2006a,b; Swezey, 2006) and wider sedimentary evidence shows that the 

Sahara region was predominantly fluvial in deposition before the major onset of northern 

hemisphere glaciations (Swezey, 2009). 

 

 

Region and biome type Location MAT MAP 

North-west North America       

Cool temperate mixed forest 3, 4, 5 7 - 9   

Western North America       

Warm-temperate mixed forest 20, 23 11.5 760 - 890 

Temperate xerophytic shrubland 24 0 - 37 381 - 635 

Eastern North America       

Warm-temperate mixed forest 26 8.3 - 18.3   

Central America       

Tropical semi-evergreen broadleaf forest 31 10.6 - 20.4 174.5 - 1142 

South America       

Warm-temperate mixed forest 52 11 - 13 1200 

Europe       

Warm-temperate mixed forest 
67, 68, 69, 88 ,91 ,92, 94, 96, 97, 

98 
13.6 - 21 823 - 2500 

Temperate sclerophyll woodland and shrubland 82, 83, 84 15.8 - 20.8 828 - 1362 

Turkey       

Warm-temperate mixed forest 99, 100 16.5 - 21.3 1182.5 - 1321.5 

Russia - Omsk    

Temperate deciduous broadleaf savanna 114, 115, 116 8 - 10 700 

South-east Asia       

Warm-temperate mixed forest 132, 133 9 - 15 1000 

Australia       

Warm-temperate mixed forest 178, 179 19 1500 - 2200 

Table 3.2. Climate data derived from palaeobotanical evidence for the Langhian. Mean annual 
temperature (°C) and mean annual precipitation (mm/year) are presented for regions of the 
world (Fig. 3.6) subdivided by biome type. Mean annual temperature and mean annual 
precipitation estimates are derived from CLAMP (Wolfe, 1979; Spicer, 2007), Coexistence 
Approach (Mosbrugger and Utescher, 1997) and other techniques described in the source 
literature. Site numbers refer to Fig. 3.1A. References for the sites and the climatic data from 
them can be found in Appendices A, B. 
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Region and biome type Location MAT MAP 

North-west North America       

Cool temperate mixed forest 2, 4 9   

Western North America       

Warm-temperate mixed forest 11, 18 10 - 14 760 - 1250  

Temperate xerophytic shrubland 21 0 - 37 381 - 635 

Eastern North America       

Warm-temperate mixed forest 31 8.3 - 18.3   

South America       

Tropical evergreen broadleaf forest 36   1500 - 2000 

Europe       

Warm-temperate mixed forest 
74, 76, 82, 83, 89, 94, 96, 97, 98, 
99, 100, 101, 102, 103, 104, 105, 
106, 107, 108, 109, 110 114, 119 

13.5 - 21 823 - 2500 

Temperate evergreen needleleaf forest 126 15.6 1304 - 1356 

Temperate deciduous broadleaf savanna 118 4.6 - 14.4 735 - 1167 

Turkey       

Warm-temperate mixed forest 120, 122, 125, 128, 129, 130, 131 16.7 - 21.3 629 - 1520 

Africa       

Tropical evergreen broadleaf forest 139 21.9   

Russia – Omsk       

Temperate deciduous broadleaf savanna 145, 147 8 - 10 700 

South-east Asia       

Warm-temperate mixed forest 160 9 - 15 1000 

Australia       

Warm-temperate mixed forest 201 19 1500 - 2200 

Table 3.3. Climate data derived from palaeobotanical evidence for the Seravallian. Mean annual 
temperature (°C) and mean annual precipitation (mm/year) are presented for regions of the 
world (Fig. 3.6) subdivided by biome type. Mean annual temperature and mean annual 
precipitation estimates are derived from CLAMP (Wolfe, 1979; Spicer, 2007), Coexistence 
Approach (Mosbrugger and Utescher, 1997) and other techniques described in the source 
literature. Site numbers refer to Fig. 3.1B. References for the sites and the climatic data from 
them can be found in Appendices A, B. 

 

3.3.1.11. Equatorial Africa 

Data for this region is restricted to a narrow band between 1°S and 12°N and records the 

changes between tropical closed and tropical open vegetation. During the Langhian, the 

region of Africa to the west of the Niger Delta was dominated by tropical evergreen broadleaf 

forest (Site L105), whilst pollen assemblages from the Niger Delta record the existence of 

regional tropical savanna (Fig. 3.4A). In East Africa tropical deciduous broadleaf woodland is 

recorded at 12°N (Site L108) and tropical evergreen broadleaf forest at 0.2°S (Site L109). 

South of the tropical evergreen broadleaf forest a younger site; Fort Ternan and Sondu, Kenya 

(Sites L110 & L111) shows evidence for tropical savanna. The Seravallian is only represented 

by four sites for this region which shows a vegetation pattern comparable to the Langhian 

(Sites S137 – S140). At Kabasuro, Kenya the MAT of the tropical evergreen broadleaf forest is 

estimated to be around 21.9°C (Jacobs and Deino, 1996; Jacobs and Kabuye, 1989). 
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During the Tortonian, in western Equatorial Africa tropical evergreen broadleaf forest 

dominated from 16°W to 8°E, up to 12°N. At 6°N, 8°E pollen from Oku Lake shows the 

presence of tropical savanna dominated by Cyperaceae and Poaceae (Médus et al., 1988). 

Drill cores from the Niger Delta show a predominance of tropical evergreen broadleaf forests 

growing along its source rivers until 7.6 Ma when there was a shift to tropical savanna 

suggesting a possible drying of the region (Sites T188 – T190). In east equatorial Africa a 

mixture of tropical evergreen broadleaf forest (Sites T196 & T200), tropical savanna (Site 

T199) and tropical grassland (Sites T197 & T198) inhabited the region. By the Messinian, 

tropical evergreen broadleaf forest continued to inhabit the western part of equatorial Africa 

from 16°W to 4°W, the Niger Delta was inhabited by tropical savanna during the Messinian 

(Fig. 3.5B). In east equatorial Africa a pattern similar to the Tortonian existed except south of 

1°N. Here tropical deciduous broadleaf woodland (Sites M149 & M150) with a MAT of 

21.7±2.5°C and a MAP of 1045±200mm (Bonnefille, 2010; Jacobs and Deino, 1996) was 

present close to tropical evergreen broadleaf forest (Site M151). 

 

3.3.1.12. Southern Africa 

As with much of Africa data is scarce for southern Africa and only allows the difference 

between the Middle and Late Miocene to be determined. During the Middle Miocene 

(Langhian and Seravallian) the vegetation of South Africa was tropical (Fig. 3.4A,B). Evidence 

exists for tropical savanna (Sites L113; S143) and tropical semi-evergreen broadleaf forest 

(Sites L112; S142). By the Late Miocene (Tortonian and Messinian) the vegetation of South 

Africa suggests a cooler climate with temperate evergreen needleleaf forest along the 

western coast. Offshore Namibia, DSDP Site 530A contains a pollen assemblage showing the 

presence of tropical xerophytic shrubland in modern day Namibia during the Late Miocene 

(van Zinderen Bakker Sr., 1980). Other evidence suggests that the Namib Desert may have 

been present since the Early Miocene (Senut et al., 2009). 
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Region and biome type Location MAT MAP 

North-west North America       

Cool temperate mixed forest 1 0 - 20   

Cool evergreen needleleaf forest 5, 8 5   

Cold evergreen needleleaf forest 2 3 - 5   

Western North America       

Warm-temperate mixed forest 19, 30 11 - 19 616.5 - 1250 

Temperate deciduous broadleaf forest 20 14 508 - 762 

Temperate sclerophyll woodland and shrubland 18 10 - 15 800 - 1000 

Cool temperate mixed forest 25 7 - 15 1143 - 1270 

Eastern North America       

Warm-temperate mixed forest 46, 47 6 - 24 1270 

South America       

Tropical deciduous broadleaf forest and woodland 71,72 16.1 - 23.5 370 - 730 

Iceland       

Warm-temperate mixed forest 99 7.6 - 7.8 1075 - 1076 

Iberian Peninsula       

Warm-temperate mixed forest 105 11   

Europe       

Warm-temperate mixed forest 
103, 104, 119, 120, 140, 148, 

151, 153, 157, 159, 161, 165, 170 
11.6 - 18.4 579 - 1929 

Temperate deciduous broadleaf savanna 163 12 - 18 559 - 760 

Turkey       

Warm-temperate mixed forest 180 15.6 - 21.3 823 - 1574 

Temperate deciduous broadleaf savanna 179 16.5 - 20.8 887 - 1520 

South-east Asia       

Tropical evergreen broadleaf forest 283, 302 13.3 - 27.15 
803.55 - 
1254.75 

Warm-temperate mixed forest 284 16.7 - 19.1 1215 - 1639 

Australia       

Warm-temperate mixed forest 312   1500 

Temperate sclerophyll woodland and shrubland 303, 307   600 - 1500 

Table 3.4. Climate data derived from palaeobotanical evidence for the Tortonian. Mean annual 
temperature (°C) and mean annual precipitation (mm/year) are presented for regions of the 
world (Fig. 3.6) subdivided by biome type. Mean annual temperature and mean annual 
precipitation estimates are derived from CLAMP (Wolfe, 1979; Spicer, 2007), Coexistence 
Approach (Mosbrugger and Utescher, 1997) and other techniques described in the source 
literature. Site numbers refer to Fig. 3.2A. References for the sites and the climatic data from 
them can be found in Appendices A, B. 
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Region and biome type Location MAT MAP 

North-west North America       

Cool temperate mixed forest 2 0 - 20   

Cool evergreen needleleaf forest 3 5   

Cold evergreen needleleaf forest 1, 6 -10 - 5   

Western North America       

Temperate deciduous broadleaf forest 12 14 508 - 762 

Temperate sclerophyll woodland and shrubland 14 13.3 1016 

Temperate xerophytic shrubland 11 10 - 15 200 - 600 

Central North America       

Temperate deciduous broadleaf savanna 19   750 - 1000 

South America       

Tropical evergreen broadleaf forest 41 15 - 25 1000 - 1500 

Europe       

Warm-temperate mixed forest 
83, 90, 99, 100, 104, 105, 108, 

114 
9 - 19.8 700 - 1759 

Temperate deciduous broadleaf forest 106 12 - 18 370 - 1500 

Temperate evergreen needleleaf forest 101 12 - 16 840 - 1010 

Africa       

Tropical deciduous broadleaf forest and woodland 149, 150 19.2 - 24.2 845 - 1245 

South-east Asia       

Tropical evergreen broadleaf forest 215 13.3 - 20.9 
803.55 - 
1254.75 

Australia       

Temperate sclerophyll woodland and shrubland 233, 236   600 - 1500 

Table 3.5. Climate data derived from palaeobotanical evidence for the Messinian. Mean annual 
temperature (°C) and mean annual precipitation (mm/year) are presented for regions of the 
world (Fig. 3.6) subdivided by biome type. Mean annual temperature and mean annual 
precipitation estimates are derived from CLAMP (Wolfe, 1979; Spicer, 2007), Coexistence 
Approach (Mosbrugger and Utescher, 1997) and other techniques described in the source 
literature. Site numbers refer to Fig. 3.2B. References for the sites and the climatic data from 
them can be found in Appendices A, B. 

 

3.3.1.13. West Asia 

During the Langhian a latitudinal south to north drying and cooling trend existed for this 

region. Between 41°N and 46°N a warm – temperate evergreen broadleaf and mixed forest 

inhabited the region, with a composition of mainly Betula, Carpinus, Carya, Fagus, Juglans, 

Liquidambar, Magnolia, Quercus, Pinus and Zelkova (Liu and Leopold, 1994; Sun and Zhang, 

2008). North of the warm – temperate evergreen broadleaf and mixed forest at 48°N a 

temperate deciduous broadleaf forest was present and north of this between 56°N and 57°N 

temperate deciduous broadleaf savanna, with an estimated MAT of 9±1°C and a MAP of 

around 700mm (Gnibidenko et al., 1999) existed (Fig. 3.4A). The pattern is still present in the 

Seravallian, though the warm – temperate evergreen broadleaf and mixed forest was 

restricted to 41°N (Fig. 3.4B). By the Tortonian the warm – temperate evergreen broadleaf 

and mixed forests were replaced by temperate deciduous broadleaf savanna from 45°N to 
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57°N. From Travolzhansky, Russia (Site T206), a pollen flora shows that the temperate 

deciduous broadleaf savanna was composed of Alnus, Betula, Carpinus, Carya, Compositae, 

Gramineae, Picea, Quercus, Tsuga and Ulmus (Volkova et al., 1986). By the Messinian this 

region had desert at 38°N (Site M159). North of the desert, between 45°N and 53°N, there 

existed a region of temperate deciduous broadleaf forest and temperate deciduous broadleaf 

savanna (Fig. 3.5B). Further north at 68°N a cool-temperate mixed forest was present (Fig. 

3.5B) containing; Ilex, Juglandaceae, Myrtaceae, Nyssa and Taxodiaceae (Belkin, 1964). 

 

3.3.1.14. Northeast Asia 

During the Langhian this region was vegetated with cool - temperate biomes (Fig. 3.4A). The 

main biome was a cool - temperate mixed forest (Sites L125, L128, L129 & L131), these 

forests were dominated by conifers but contained angiosperms such as Alnus, Betula, Juglans, 

Quercus and Tilia (Baranova et al., 1970; Lavrushin and Alekseev, 2005). Also present during 

the Langhian were cool evergreen needleleaf forests dominated by Larix and other 

gymnosperms, but containing some angiosperms (Site L130). During the Seravallian the cool – 

temperate mixed forest continued to be the dominant biome between 61°N and 77°N with 

no evidence for other biomes being present (Fig. 3.4B). By the Tortonian the main biome in 

the northeast Asian region was cold evergreen needleleaf forest between 61°N and 70°N (Fig. 

3.5A). South of the cold evergreen needleleaf forest a cool – temperate evergreen needleleaf 

and mixed forest inhabited the coast (Site T215). This forest was mainly composed of 

Fagaceae, Larix, Picea and Taxodiaceae (Nikitin, 2007). During the Messinian the cold 

evergreen needleleaf forest continued to dominate the northeast Asian region (Sites M163, 

M164, M166 & M167) with smaller amounts of cool – temperate evergreen needleleaf and 

mixed forest along the coast (Fig. 3.5B). 

 

3.3.1.15. Eastern Asia 

During the Langhian this region was principally vegetated by the warm – temperate 

evergreen broadleaf and mixed forest from 21°N to 56°N (Fig. 3.4A). This biome contained a 

diverse assemblage of both gymnosperms and angiosperms including Carya, Castanea, 

Corylus, Engelhardtia, Keteleeria, Liquidambar, Metasequoia, Pinus, Quercus, Sequoia, 

Taxodium and Zelkova (Kong, 2000; Liu and Leopold, 1994). Climatic estimates for this biome, 

north of 36°N, indicate a MAT of 12±3°C and a MAP of around 1000mm (Table. 2) (Liu and 

Leopold, 1994; Sun et al., 2002; Tao, 1997). Along the coast between 31°N and 33°N a tropical 



- 82 - 

evergreen broadleaf forest exisited (Sites L146 – L148). West of 111°E a drier region 

vegetated by a mixture of temperate deciduous broadleaf forest, temperate evergreen 

needleleaf open woodland and temperate evergreen needleleaf forest existed during the 

Langhian (Fig. 3.4A). During the Seravallian the warm – temperate evergreen broadleaf and 

mixed forest continued to dominate the region, between 22°N and 50°N (Fig. 3.4B). Tropical 

evergreen broadleaf forest was still present between 31°N and 33°N (Sites S168 – S170), as 

was the drier region west of 111°E (Fig. 3.4B). Drying in this region had continued from the 

Langhian and at 90°E a pollen assemblage from Quaidam, China (Site S149) shows that a 

temperate xerophytic shrubland inhabited this region from around 14 Ma. 

By the Tortonian the warm – temperate evergreen broadleaf and mixed forest was still 

present from 20°N to 48°N but had become more restricted in its distribution longitudinally 

(Fig. 3.5A). Climatic estimates for the warm – temperate evergreen broadleaf and mixed 

forest, at 23°N, show it grew under a MAT of 17.9±1.2°C with a MAP of 1427±212mm (Xia et 

al., 2009). The drier biomes, present in the Middle Miocene as far east as 111°E, now spread 

as far east as 118°E (Fig. 3.5A). The major dry biome was a temperate deciduous broadleaf 

savanna, which was present from 28°N to 55°N throughout inland eastern Asia. Within this 

extensive temperate deciduous broadleaf savanna there were isolated areas of more humid 

warm – temperate evergreen broadleaf and mixed forest and drier regions of temperate 

xerophytic shrubland (Fig. 3.5A). At Sikouzi, China (Sites T227 – T230) a high resolution pollen 

sequence shows that in this region the vegetation changes from temperate evergreen 

needleleaf open woodland at 11.35 Ma to temperate xerophytic shrubland, this then changes 

again at 8.3 Ma to a more humid temperate deciduous broadleaf savanna and finally changes 

back to temperate xerophytic shrubland at 8.05 Ma (Jiang and Ding, 2008). 

By the Messinian the dominant biome in eastern Asia was the temperate deciduous broadleaf 

savanna (Fig. 3.5B). The warm – temperate evergreen broadleaf and mixed forest was 

restricted to the coast to as far north as 39°N (Site M179) and possibly as far north as 50°N 

(Sites M168 – M169), though these sites would only represent the earliest Messinian (Ca. 7 

Ma). Further west, away from the coastal warm – temperate evergreen broadleaf and mixed 

forests, within the more extensive temperate deciduous broadleaf savanna isolated areas of 

temperate xerophytic shrubland existed (Site M171). 

 

3.3.1.16. The Indian subcontinent 

For the Langhian all palaeobotanical evidence shows that the Indian subcontinent was 

vegetated by a tropical evergreen broadleaf forest (Fig. 3.4A). This dominance of tropical 



- 83 - 

evergreen broadleaf forest, on the Indian subcontinent, continued into the Seravallian (Fig. 

3.4B). The Langhian and Seravallian tropical evergreen broadleaf forests were composed 

mainly of Bursera, Dialium Dipterocarpus, Dracontomelum, Sterculia and abundant ferns 

(Prasad, 1993; Sarkar and Singh, 1994). By the Tortonian the tropical evergreen broadleaf 

forests continued to be dominant on the southern tip of the Indian subcontinent, however in 

the north, more biomes were present (Fig. 3.5A). On the Himalayan Front a mixture of 

tropical evergreen broadleaf forest (Sites T258, T262, T264, T266 & T267), tropical semi – 

evergreen broadleaf forest (Site T263), warm – temperate evergreen broadleaf and mixed 

forest (Sites T256, T260, T261 & T268), temperate evergreen needleleaf forest (Site T257) and 

temperate grassland existed at around 8 Ma (Site T265). This mixture of biomes in such close 

proximity probably reflects the regional topography at the time, with tropical forests on the 

lowlands and the warm – temperate and temperate biomes at altitude. This diversity of 

biomes continued into the Messinian along the Himalayan Front, but with the tropical forests 

2° further south than during the Tortonian (Fig. 3.5B). Tropical evergreen broadleaf forests 

continued to dominate the Indian subcontinent Peninsula (Site M202 – M208). 

 

3.3.1.17. South-east Asia 

During the Langhian the vegetation of south-east Asia was tropical evergreen broadleaf forest 

(Fig. 3.4A). The tropical evergreen broadleaf forest continued to dominate south-east Asia 

during the Seravallian, but isolated areas of tropical savanna (Site S186) and tropical 

deciduous broadleaf forest and woodland (Site S189) shows that some drying of the region 

had occurred. By the Tortonian the once extensive tropical evergreen broadleaf forest had 

become more disjointed with regions of tropical deciduous broadleaf forest and woodland, 

tropical grassland and warm – temperate evergreen broadleaf and mixed forest occupying 

much of the region between 12°N and 20°N (Fig. 3.5A). This pattern is also seen in the 

Messinian though this may be related to uncertainties in dating of some of the sites. When 

the coexistence approach is applied to the tropical evergreen broadleaf forests of Sarawak 

(Site T302), a MAT of 27.15 ± 0.55°C is reconstructed. 

 

3.3.1.18. Australia and New Zealand 

For the Langhian data is only available for east Australia. In the North a tropical evergreen 

broadleaf forest (Site L169) existed to as far south as 28°S, below 28°S a warm – temperate 

evergreen broadleaf and mixed forest inhabited the region (Fig. 3.4A). This warm – temperate 
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evergreen broadleaf and mixed forest grew under a MAT of around 19°C and a MAP of 

between 1500 and 2200mm (Holdgate et al., 2007; Kershaw, 1997).During the Langhian New 

Zealand was also dominated by the warm – temperate evergreen broadleaf and mixed forest 

with isolated regions of drier temperate sclerophyll woodland and shrubland (Fig. 3.4A). 

During the Seravallian data only exists to confirm the presence of a warm – temperate 

evergreen broadleaf and mixed forest in south – east Australia (Fig. 3.4B), growing under a 

climate similar to that of the Langhian (Table 3.2). New Zealand also shows a biome 

distribution comparable to that of the Langhian (Fig. 3.4B). By the Tortonian a dramatic drying 

of Australia had begun. The main biome on the continent was now the temperate sclerophyll 

woodland and shrubland (Fig. 3.5A), estimated from Lake Tay (Site T307) to have grown 

under a MAP of between 600 and 1500mm (Macphail, 1997). There were still isolated 

patches of warm – temperate evergreen broadleaf and mixed forests in the south-east of the 

continent (Site T312) with a MAP of at least 1500mm and areas of temperate deciduous 

broadleaf savanna (Site T311). Along the northeast coast a temperate evergreen needleleaf 

forest existed (Fig. 3.5A). New Zealand continued to be dominated by a warm – temperate 

evergreen broadleaf and mixed forest, but evidence exists to suggest cool – temperate mixed 

forests may have inhabited higher altitudes (Fig. 3.5A). During the Messinian the drying and 

the expansion of the temperate sclerophyll woodland and shrubland continued (Fig. 3.5B). No 

palaeobotanical data show the existence of major areas of warm – temperate evergreen 

broadleaf and mixed forest during the Messinian, though this biome was still dominant on 

New Zealand (Fig. 3.5B). 

 

3.3.1.19. Antarctica and the surrounding islands 

During the Langhian low- and high– shrub tundra and prostrate dwarf – shrub tundra were 

present on the fringes of Antarctica (Fig. 3.4A). ODP Site 696 (Site L54) contains evidence that 

South Georgia and the South Sandwich Islands (62°S) were vegetated by a temperate 

deciduous broadleaf forest rich in ferns, Podocarpaceae and Nothofagus (Mohr, 2001). By the 

end of the Seravallian vegetation was probably extinct on Antarctica (Anderson et al., 2011; 

Lewis et al., 2008). Except for isolated communities of limited tundra on the Antarctic 

Peninsula, which may have survived until 12.8 Ma (Site S57) (Anderson et al., 2011). By 

around 12 Ma glaciers may have been at their present extent, shown by glacial deposits on 

the Antarctic Peninsula (Dingle and Lavelle, 1998; Marenssi et al., 2010). Although vegetation 

was probably gone from Antarctica after the Langhian the islands in the Southern Ocean 

provide some insight into the climate during the Late Miocene. On Heard Island at 51°S (Site 
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T326; M252) a temperate grassland existed with a composition comparable to that seen on 

islands at 40°S in the present day. 

 

3.3.2. Latitudinal temperature gradients derived from megabiome distribution 

By grouping biomes into megabiomes and bioclimatic zones (Table 3.1) an easily accessible 

view of the latitudinal temperature gradient throughout the Middle to Late Miocene has been 

achieved. Although no estimate of absolute temperatures or temperature change can be 

currently applied, the pattern shows that throughout the Middle to Late Miocene the world 

was warmer than at present day. The pattern of bioclimatic zones (Fig. 3.7; 3.8) shows that 

the latitudinal temperature gradient was much shallower in the Langhian and became 

progressively steeper throughout the remaining Miocene. However the gradient did not 

change uniformly in both the northern and southern hemispheres. From the vegetation data 

it appears that the southern hemisphere latitudinal temperature gradient became more 

modern-like by the Seravallian (Fig. 3.7; 3.8). Conversely the northern hemisphere latitudinal 

temperature gradient appears to have become more modern at a slower pace; cold 

evergreen needleleaf forests were still at higher latitudes during the Messinian than they are 

today (Fig. 3.7; 3.8). 

During the Langhian the latitudinal distribution of bioclimatic zones indicates a latitudinal 

temperature gradient very different from the modern world (Fig. 3.7A; 3.8A). Along both the 

west Pacific transect (WPT) (Fig. 3.7) and the west Atlantic transect (WAT) (Fig. 3.8) all the 

bioclimatic zones, in both hemispheres, are at higher than modern latitude. This is also the 

case in the Seravallian, although not by much in the southern hemisphere (Fig. 3.7B, 3.8B). By 

the Tortonian, the southern hemisphere latitudinal distribution of bioclimatic zones appears 

comparable to modern (Fig. 3.7C, 3.8C). The northern hemisphere however still shows 

vegetation at higher latitudes than in the modern potential natural vegetation especially 

along the WAT (Fig. 3.8C). During the Messinian the WPT shows a latitudinal vegetation 

gradient very comparable to that of the present day potential natural vegetation (Fig. 3.7D), 

however along the WAT, in the northern hemisphere, the Messinian latitudinal vegetation 

distribution was still higher than that of the present day (Fig. 3.8D). 

 



- 86 - 

 

Figure 3.7. West Pacific transect (WPT) of maximum poleward distribution of bioclimatic zones for the 
Langhian (A), Seravallian (B), Tortonian (C) and Messinian (D). The X-axis shows degrees latitude 
from the South Pole (-90°) to the North Pole (90°). The Y-axis represents the bioclimatic zone: 1) 
Ice, 2) Tundra, 3) Boreal, 4) Temperate, 5) Warm-temperate, 6) Tropical. Blue squares are pre - 
industrial potential natural vegetation, red squares represent poleward - most fossil evidence for 
that vegetation zone. 

 

 

Figure 3.8. West Atlantic transect (WAT) of maximum poleward distribution of bioclimatic zones for the 
Langhian (A), Seravallian (B), Tortonian (C) and Messinian (D). The X-axis shows degrees latitude 
from the South Pole (-90°) to the North Pole (90°). The Y-axis represents the bioclimatic zone: 1) 
Ice, 2) Tundra, 3) Boreal, 4) Temperate, 5) Warm-temperate, 6) Tropical. Blue squares are pre - 
industrial potential natural vegetation, red squares represent poleward - most fossil evidence for 
that vegetation zone. 
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3.4. Discussion 

3.4.1. Middle to Late Miocene vegetation evolution and CO2 

From 634 palaeobotanical sites, translated into the 28 biome scheme of the BIOME4 model, it 

can be seen that there is a global cooling and drying trend from the Langhian to the 

Messinian. This is in accordance with the results of different proxies reported in numerous 

other studies (e.g. Zachos et al., 2008). 

During the Langhian (15.97 – 13.65 Ma), the period of time referred to as the Mid – Miocene 

Climatic Optimum (MMCO) was ending. The MMCO was a significant warm interval recorded 

in the deep sea records (Flower and Kennett, 1994; Zachos et al., 2008) and in the Antarctic 

(Anderson et al., 2011; Lewis et al., 2008; Williams et al., 2008). The MMCO and the Langhian 

also correspond to a peak in atmospheric CO2 concentration, stomatal indices indicate 

atmospheric concentrations of between 460 and 564 ppmv (Beerling et al., 2009b; Kürschner 

et al., 2008) whilst estimates from boron isotopes suggest 300 ppmv (Pearson and Palmer, 

2000) and alkenone based estimates place it at a more modest 220 ppmv (Pagani et al., 

2005). Although the 300 ppmv recorded in the boron isotopic record does not appear to be 

“high”, it does represent a peak in that particular CO2 reconstruction. The alkenone record 

does not present the MMCO as a period of elevated CO2 within the rest of the Miocene 

(Pagani et al., 1999). These elevated levels of CO2, in all the records except the alkenone 

based reconstruction, and the warming recognised in the benthic oxygen isotope curve during 

the Langhian are reflected in the biome pattern; cool – temperate forests at the high 

northern latitudes, extensive warm – temperate evergreen broadleaf and mixed forests in the 

middle latitudes, a broader tropical zone and tundra on Antarctica (Fig. 3.4A). 

During the Seravallian (13.65 – 11.61 Ma) the biome pattern is still similar to that of the 

Langhian however changes had occurred. The benthic oxygen isotope curve shows from 

about 14 Ma to around 10 Ma either the bottom water temperature was dropping, significant 

land ice was developing or a combination of the two (Flower and Kennett, 1994; Zachos et al., 

2008). The CO2 proxies also record falling atmospheric concentrations to; 300 – 330 ppmv 

from the stomatal indices (Beerling et al., 2009b; Kürschner et al., 2008); 268 – 290 ppmv 

from boron isotopes (Pearson and Palmer, 2000) and alkenone estimates of 194 – 252 ppmv 

concentration (Pagani et al., 2005). The biome distribution still shows cool – temperate mixed 

forest at the high northern latitudes, though not as high as it was during the Langhian. Whilst 

in the middle latitudes the warm-temperate evergreen broadleaf and mixed forest had begun 
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to be replaced by drier and cooler biomes (Fig. 3.4B). In the tropics too, drier biomes had 

begun to spread and on Antarctica, current records suggest extensive tundra was no longer 

present (Fig. 3.4B).  

The biome pattern of the Tortonian (11.61 – 7.25 Ma) is markedly different from that of the 

Seravallian. In terms of the benthic oxygen isotopic record the Late Miocene shows relative 

stability, after the warming of the MMCO and the cooling seen in the late Langhian and 

Seravallian, with isotopic levels reflecting an increased (ice free world) bottom water 

temperature range of 0 to +2°C (Zachos et al., 2008). The CO2 reconstructions give mixed 

estimates of the atmospheric concentration of this greenhouse gas during the Tortonian. The 

stomatal indices show an increase of CO2 from the Seravallian to 350 – 370 ppmv (Kürschner 

et al., 1996; Stultz et al., 2011), whilst the boron isotopes record a fall in CO2 from the 

Seravallian to between 212 – 236 ppmv (Pearson and Palmer, 2000) and the alkenone based 

reconstructions show that CO2 concentrations fluctuated between 190 – 330 ppmv with a 

general increasing trend towards the end of the Tortonian (Pagani et al., 2005; 2010). The 

biome pattern of the Tortonian reflects a cooler and drier world than that of the Seravallian. 

Cold evergreen needleleaf forests are found at the high northern latitudes for the first time 

during the Middle to Late Miocene (Fig. 3.5A). In the middle latitudes the warm – temperate 

evergreen broadleaf and mixed forest continued to be restricted and replaced by drier and 

cooler biomes (Fig. 3.5A). In the tropics the major change from the Seravallian was the 

appearance of tropical savanna in South America. The changes in biome distribution from the 

Seravallian to the Tortonian would appear to agree with the boron isotope reconstructed CO2 

trend more than the stomatal indices. However, the distribution of Tortonian palaeobotanical 

data compares best against GCM simulated vegetation that is driven by climate under higher 

atmospheric levels of CO2 than both these reconstructions suggest (Micheels et al., 2007; 

2009a). 

During the Messinian (7.25 – 5.33 Ma) the biome distribution was similar to that of the 

Tortonian. The benthic oxygen isotope records also resemble the Tortonian records, with 

increased amplitude between the peaks and troughs of the record (Zachos et al., 2008). CO2 

reconstructions are also comparable to the Tortonian with stomatal indices showing 

atmospheric concentrations of 270 – 360 ppmv (Kürschner et al., 1996), boron isotopes 

indicating levels of between 268 – 305 ppmv (Pearson and Palmer, 2000) and alkenone based 

reconstructions showing atmospheric concentrations of 230 – 360 ppmv (Pagani et al., 2005; 

2010). Although biome distribution was similar to the Tortonian, during the Messinian, some 

important regional changes had occurred. Warm – temperate evergreen broadleaf and mixed 

forest was no longer present in western North America or Australia (Fig. 3.5B), indicating 
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progressing aridification. Further evidence for a global drying comes from the expansion of 

desert in North Africa and central Asia (Fig. 3.5B). Again during the Messinian both the 

stomatal indices and boron isotope reconstructions differ. The stomatal indices show a 

decrease from the Tortonian whilst the boron isotopes increase. The global distribution of 

biomes appears to support the stomatal indices more than the boron isotope based 

reconstructions due to regional extinctions of warm – temperate evergreen broadleaf and 

mixed forests, an expansion of deserts and temperate biomes not reaching as far north (Fig. 

3.5B) 

So far the alkenone records have not been mentioned with regard to the observed changes in 

global biome distribution. This is because the atmospheric CO2 levels reconstructed from 

alkenones show very little trend from the Langhian to the end of the Messinian. According to 

the alkenone based reconstructions the atmospheric concentration of CO2 fluctuated from as 

low as 190 ppmv to as high as 360 ppmv (Pagani et al., 2005; 2010). This would suggest that 

either the alkenone based CO2 reconstruction requires further study, or that the changes in 

global biome distribution were not related to changes in the atmospheric CO2 levels. This 

would contradict the two other main CO2 reconstructions, which show that the cooling and 

drying trend seen in the palaeobotanical record from the Langhian through to the Messinian 

is accompanied by falling atmospheric concentrations of CO2 and by the pattern in the 

bottom water oxygen isotopes (Zachos et al., 2008). As the changes of biomes, during the 

Middle to Late Miocene, are happening at a global scale it requires a forcing agent that can 

operate at all latitudes; the most likely candidate would be a greenhouse gas, such as CO2. 

 

3.4.2. Middle to Late Miocene latitudinal gradients 

In the Langhian stage the latitudinal bioclimatic gradient shows a significantly flatter equator 

to pole temperature gradient in both hemispheres, than pre - industrial (Fig. 3.7A; 3.8A). This, 

coupled with the distribution of biomes (Fig. 3.4A) must reflect a significantly warmer planet 

associated with elevated atmospheric CO2 levels, seen in the stomatal indices and boron 

isotope reconstructions, associated with the end of the MMCO. The high northern latitudes 

had a MAT around 14°C higher than the pre – industrial (White and Ager, 1994), whilst the 

MAT of the temperate zone may have been around 9°C warmer than the pre – industrial 

(Table 3.2). Estimates of climate parameters from the tropics, for the Langhian, are limited at 

the moment but from the global distribution of tropical evergreen broadleaf forests the 

tropics likely occupied a greater latitudinal extent and may not have had a significantly 

different MAT from pre – industrial. By the Seravallian the latitudinal vegetation gradient had 
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changed significantly in the southern hemisphere due to a global cooling and the full 

glaciation of Antarctica indicated by the absence of vegetation evidence and the presence of 

glacial deposits (Fig. 3.4B). The northern hemisphere gradient still reflects a significantly 

warmer world, whilst the latitudinal vegetation distribution of the southern hemisphere was 

more similar to the pre – industrial. This cooling continued into the Late Miocene and with it 

the latitudinal distribution of biomes continued to become more pre – industrial like (Fig. 3.7; 

3.8). 

For the Tortonian the available palaeobotanical data suggests the latitudinal distribution of 

vegetation in the southern hemisphere was almost identical to the pre – industrial. However 

MAT estimates from Upper Jakokkota, Bolivia suggest that this site was around 9°C warmer in 

the Tortonian than during the pre – industrial (Gregory-Wodzicki, 2002). This significant 

difference in MAT may, in part, be explained by the uplift of the Andes, which is estimated to 

have proceeded at a rate of 0.2 – 0.3 mm/year (Gregory-Wodzicki, 2000). The vegetation 

gradient of the northern hemisphere continued, in the Tortonian, to be greater than during 

the pre – industrial. MAT estimates for the Tortonian suggests the high northern latitudes 

may have been up to 10°C warmer than pre – industrial and Europe may have been 5 - 8°C 

warmer than pre – industrial (Table 3.4). Recent work in the Netherlands has reconstructed a 

MAT for Europe of 18 - 21°C for the Tortonian (Donders et al., 2009). Estimates of cold month 

mean temperature, using the co – existence approach, suggests the high latitudes of Asia 

were 9 - 40°C warmer in the Tortonian than the pre – industrial and the warm month mean 

temperature was 7 - 20°C warmer than pre – industrial (Utescher et al., 2011b). The 

latitudinal vegetation distribution of the Messinian was very comparable to the pre – 

industrial. The southern hemisphere as in the Tortonian, was essentially pre – industrial in 

latitudinal distribution of biomes, whilst the northern hemisphere continued to be warmer 

than the pre – industrial as shown by the latitudinal distribution of biomes. In the high 

northern latitudes MAT may have been 5 - 6°C higher than pre – industrial, whilst Europe may 

have been between 1 - 11°C warmer than pre – industrial (Table 3.4). 

 

3.5. Conclusions 

The palaeobotanical changes from the Langhian to the Messinian reflect a global cooling and 

drying of the planet, linked to falling atmospheric CO2 concentrations. The biome distribution 

of the studied 10 Ma period reflects a warmer and wetter world, when compared to the pre – 

industrial era. 
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The Langhian shows the warmest biome distribution with cool – temperate mixed forests at 

the high northern latitudes, extensive warm – temperate mixed forests in the middle 

latitudes and tundra on Antarctica. Significant cooling had occurred by the Seravallian and 

current records suggest extensive vegetation was no longer present on Antarctica. The warm 

– temperate evergreen broadleaf and mixed forests were partly replaced by cooler and drier 

temperate biomes. This cooling of global climate continued into the Tortonian with the first 

sign of cold evergreen needleleaf forests in the high northern latitudes. Within the mid – 

latitudes the warm – temperate evergreen broadleaf and mixed forest continued to be 

replaced by cooler and drier biomes. Whilst tropical savanna expanded in northern South 

America at the expense of tropical evergreen broadleaf forest. By the Messinian the global 

distribution of biomes reflects a significant cooling from the Langhian. Cold evergreen 

needleleaf forests occupied the high latitudes and an expanse of drier and cooler biomes had 

replaced much of the warm – temperate mixed forests in the middle latitudes. 

The distribution of biomes and their change in distribution through time reflects the changes 

in the benthic oxygen isotope record, showing that it is a global signal. The changing biome 

distribution and the changing climate inferred from this reflects the changes in the CO2 

concentrations, reconstructed from the stomatal indices and boron isotopes more than the 

alkenone based reconstruction. The latitudinal bioclimatic gradients show that the Langhian 

gradient was significantly flatter than the pre – industrial. By the Seravallian the southern 

hemisphere bioclimatic gradient was more modern whilst the northern hemisphere 

bioclimatic gradient was still flatter. The northern hemisphere gradient continued to steepen 

through the Late Miocene, but was still shallower than the pre – industrial during the 

Messinian. The latitudinal bioclimatic gradients presented within this chapter provide an 

initial view of the information the terrestrial realm maybe able to contribute to the 

understanding of the evolution of the latitudinal temperature gradient through time. 

This comprehensive biome dataset is now suitable for further palaeoclimate studies including 

the incorporation into and assessment of GCM simulations of the Miocene climate. This will 

be explored in the following chapter were the Tortonian data will be used to evaluate a suite 

of GCM simulations. 
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Chapter 4 

A data – model hybrid map of vegetation for the Tortonian age 

 

The whole is more than the sum of its parts. – Aristotle 

 

4.1. Introduction 

In the preceding two chapters I have presented the Miocene vegetation and palaeoclimate of 

Derbyshire using palynology and of the world by synthesising global palaeobotanical data. 

This has provided a dataset of 634 vegetation localities for the Langhian to Messinian stages. 

However, these vegetation sites are not uniformly distributed across the globe, leaving 

significant gaps in our understanding of Miocene vegetation and climate (Fig. 3.4; 3.5). 

Previously, data based global vegetation reconstructions have relied on extrapolating biome 

boundaries from the limited distribution of palaeobotanical sites (e.g. Wolfe, 1985). More 

recently the ability to generate vegetation using the climate generated by a GCM has led to 

global biome maps using a combination of data and models (e.g. Salzmann et al., 2008). 

Within the data presented in the previous chapter, the Tortonian has the greatest number of 

vegetation localities making it an obvious choice to be used in generating a data – model 

hybrid biome map. A hybrid global vegetation map uses the output from a vegetation model 

to fill in the gaps where no Tortonian palaeobotanical data has been reported. By first 

evaluating a suite of model outputs with the data, the model experiment with the best fit to 

the palaeobotanical record can be used. Previous global maps of Tortonian vegetation have 

been generated using unpublished data sets (François et al., 2006) or vegetation 

reconstructed from a small (<50) number of palaeobotanical sites (Micheels, 2003; Micheels 

et al., 2007). These reconstructions have also been based on a modern geography, instead of 

the appropriate Tortonian palaeogeography, and have classified Tortonian vegetation into a 

small (maximum 14) number of biome types. The reconstruction presented here builds and 

improves on these by using the 326-site palaeobotanical dataset (Chapter 3), combined with 

a state of the art GCM driven vegetation model experiment, to form a global vegetation 

reconstruction based on a 27 biome classification scheme (Prentice et al., 1992; Kaplan, 

2001). 
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4.2. Methods 

4.2.1. Description of the HadAM3 GCM and BIOME4 models 

A suite of Late Miocene atmosphere-only General Circulation Model (AGCM) runs have been 

carried out using the Hadley Centre Atmospheric Model Version 3 (HadAM3; Lunt et al., 2008; 

Pope et al., 2000) and the climatologies used to run the mechanistic vegetation model 

BIOME4 (Kaplan 2001). A brief outline of the model and boundary conditions used in the 

simulations can be found below. A fuller description of the modelling methodology can be 

found in Lunt et al. (2008). 

HadAM3 has a horizontal resolution of 2.5° latitude × 3.75° longitude, this equates to a spatial 

resolution of 278 × 417 km at the equator. The model has 19 vertical layers, a time step of 30 

minutes and includes the Edwards and Slingo (1996) radiation scheme, the Gregory et al. 

(1997) convection scheme, a sea ice model that is largely the same as in HadAM2 (Cattle and 

Crossley, 1995) and MOSES (Cox et al., 1999) a land surface scheme capable of simulating 

freezing and melting of soil moisture (Pope et al., 2000). HadAM3 has been successfully 

applied to numerous palaeoclimate intervals of the pre-Quaternary (e.g. Haywood and 

Valdes, 2006; Haywood et al., 2009).  

The Late Miocene palaeogeography, orography and ice sheet extent were derived from 

Markwick (2007). Crucially this gives a significant decrease in altitude of the Tibetan Plateau 

relative to the present day, as well as the western cordillera of North and South America. The 

land surface scheme was set to globally homogeneous values (in this case shrubland). 

Shrubland was chosen to initialise the model as its physical characteristics are least biasing in 

terms of climate prediction. Atmospheric CO2 levels were set at 395 ppmv which is at the 

higher end of available estimates yet it should be noted that given prescribed sea surface 

temperatures in this model the exact CO2 value chosen does not have a large effect on the 

climate predicted by the model. 

In the absence of diagenetically unaltered proxy sea surface temperature estimates (SSTs) 

(Williams et al., 2005), the Late Miocene SST distribution was derived from a pre-industrial 

surface temperature distribution, T*pre-industrial, in the following way (Lunt et al., 2008): 

 

 

 



- 94 - 

Where m is the number of the month (January=1), Φ is the latitude, A is a measure of the 

global mean warming relative to the pre - industrial, B is a measure of the reduction in the 

meridional temperature gradient relative to the pre - industrial, and C is a measure of the 

reduction in seasonality relative to the pre – industrial (Lunt et al., 2008). The precise 

numbers for these parameters are provided in Lunt et al. (2008; Table 1). T*pre-industrial is 

derived from the means from years 1870–1900 of the Hadley Centre sea surface temperature 

(SST) and sea ice climatologies (HadISST, Rayner et al., 2003). This formulation allows the 

sensitivity of the global warming, the amount of polar warmth, the seasonality of the polar 

warmth, and the form of the latitudinal gradient of warming, to be tested using just 4 key 

parameters; A, B, C, and f(Φ).We address the inherent uncertainty associated with the 

prescribed boundary conditions by carrying out a suite of seven Late Miocene simulations, 

with different values of A, B, C and f (Lunt et al., 2008, table 1). The resulting distributions, 

from this calculation, are illustrated in and summarised in Lunt et al. (2008; Fig.2, table 2). The 

prescribed SSTs all have a lower equator to pole temperature gradient than the pre-industrial, 

in agreement with proxy data (e.g. Pearson et al., 2007), with a maximum change in Northern 

Hemisphere winter. This is also consistent with the idea that the current strength of the 

thermohaline circulation developed through the Miocene (e.g. Jakobsson et al., 2007). These 

seven distributions are identical to those contemplated by Gladstone et al. (2007) in relation 

to the hydrological budget in the Mediterranean of the Late Miocene. For all simulations, 

where the value of SSTLateMiocene is below the freezing point of ocean water, Tfreeze, sea ice is 

allowed to form. In these instances, the SST is set to Tfreeze, and the surface temperature is no 

longer prescribed but is computed by the sea ice component of HadAM3. Certain coastal SSTs 

had to be extrapolated due to the difference between the modern and Late Miocene land–

sea masks, but this is a minor effect. 

BIOME4 (Kaplan, 2001) is a mechanistic equilibrium vegetation model which predicts global 

biome distribution from monthly averages of temperature, precipitation, cloudiness and 

absolute minimum temperature. Biomes are predicted based on the bioclimatic tolerances of 

12 Plant Functional Types (PFT) ranging from cushion forbs to tropical evergreen trees 

(Prentice et al., 1992). At the core of the model is a coupled carbon-water flux scheme which 

maximises Net Primary Productivity (NPP) for any given PFT through the determination of 

Leaf Area Index (LAI). This is calculated on a daily simulation of the soil water balance, canopy 

conductance, photosynthesis and respiration. The woody PFT that achieves the highest 

annual NPP at its maximised LAI for a given grid square is considered dominant. This however 

is not the case for grass-tree areas such as savannas; here a weighted NPP is calculated and 

inferred fire risks are both used to determine the forest-grassland boundary. The model then 
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orders all the PFTs that could exist under ambient conditions in a grid cell based on NPP, LAI 

and mean annual soil moisture. It then uses semi-empirical rules to decide on which of the 27 

biomes should be plotted in the cell (Kaplan 2001). For the Late Miocene simulations BIOME4 

was run in anomaly mode. This is a standard technique that removes known systematic errors 

in the climate prediction of HadAM3 and has been employed in numerous modern and 

palaeoclimate/palaeobotanical studies (e.g. Haxeltine and Prentice, 1996; Salzmann et al., 

2008; Texier et al., 1997). 

 

  Cohen's Kappa Statistic Data comparison (r2) Sea Surface Temperature (°C) by latitude 

Model 27 biome 7 Megabiome MAT MAP -60 -40 -20 0 20 40 60 

Pre-industrial - - - - -2.36 14.47 25.49 27.7 23.93 18.07 8.16 

Mioc1 0.114 0.241 0.734 0.057 1.9 18.46 28.38 28.7 29.07 26.28 18.33 

Mioc2 0.112 0.237 0.731 0.049 -1.94 15.9 27.01 28.7 29.07 26.28 18.33 

Mioc3 0.185 0.284 0.720 0.069 -0.16 16.46 26.38 26.7 27.07 24.28 16.33 

Mioc4 0.096 0.181 0.663 0.027 1.9 18.46 28.38 28.7 30.43 28.86 21.79 

Mioc5 0.137 0.295 0.761 0.043 1.9 18.46 28.38 28.7 26.99 24.16 17.25 

Table 4.1. Cohen’s Kappa statistic for the data – model comparison using both the 27 biome scheme 
and 7 megabiome scheme. The comparison between model predicted MAT/MAP and the values 
reconstructed proxy data (Table 4.2). Also shown are the sea surface temperatures along a 
latitudinal profile at 30°W, prescribed to the AGCM from Lunt et al. (2008). 

 

4.2.2. Coupling of the data and model 

To provide a global vegetation reconstruction it is necessary to fill the regions with limited 

palaeobotanical data (Fig. 3.5) with vegetation. In this study the technique of Salzmann et al. 

(2008), using a state-of-the-art model simulation and merging this with the palaeobotanical 

data is employed. Before the process of merging the data and model into a hybrid 

reconstruction of global Tortonian vegetation it was first necessary to determine which Late 

Miocene HadAM3 experiment was best suited for this purpose. The original HadAM3 

experiments presented in Lunt et al. (2008; Mioc1-Mioc7) were all used to produce BIOME4 

vegetation predictions. Mioc1-Mioc7 represent seven HadAM3 experiments with different 

SST gradient profiles, generated with the equation described in subsection 4.2.1. The resulting 

BIOME4 estimates were compared to the Tortonian data collected in Chapter 3, using ArcGIS9 

software. Before comparison could begin the palaeobotanical data were first palaeo-rotated 

to its Tortonian latitude and longitude (using the palaeo-rotation codes of Paul Markwick 
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ensuring consistency between our data and the Tortonian palaeogeography used in HadAM3). 

To aid comparison and selection, Cohen’s Kappa statistic (Cohen, 1960) was used to highlight 

the statistically most comparable BIOME4 model simulation (Table 4.1). Cohen’s Kappa 

statistic measures the agreement between two sets of categorizations while taking into 

account chance agreements between categories, where 0 means the agreement is no better 

than chance and 1 shows a perfect fit (Cohen, 1960; Jenness and Wynne, 2005). BIOME4 

simulations Mioc1 – Mioc7 were compared using both the full and mega biome classification 

schemes of the BIOME4 model. The use of the broader mega biome scheme, following 

Harrison and Prentice (2003) and Salzmann et al. (2009) (Table 3.1), was necessary to avoid 

the Kappa statistic becoming meaningless due to some categories containing a low number of 

sample points for the full biome scheme. Of the experiments, Mioc5 compared most 

favourably to the palaeobotanical data (i.e. achieved the highest Kappa score using the mega 

biome scheme) and this experiment was therefore chosen for use in the construction of the 

data-model hybrid. Mioc5 also compared most favourably to the MAT reconstructions from 

the palaeobotanical data (Table 4.1). Mioc5 represents a reduced equator to pole gradient in 

the Northern Hemisphere, with SSTs around 9°C warmer at 60°N (compared to the pre-

industrial). The equator to pole gradient in the Southern Hemisphere is slightly reduced when 

compared to the pre-industrial gradient but with SSTs 3 - 4°C higher. Equatorial SSTs are 1°C 

warmer than in the pre-industrial (Table 4.1). 

The strategy used to join the databased vegetation with model predicted vegetation is 

summarised in Fig. 4.1 and based on the techniques used in Salzmann et al. (2008). The 

merger was undertaken on a grid by grid basis; examining each model predicted grid cell and, 

if necessary, correcting it using available palaeobotanical data. This is most visible in Fig. 5, 

which shows the consistency of the data – model comparison and the degree of correction. 

Areas with low or no palaeobotanical data are left unchanged as model predicted vegetation. 
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Figure 4.1. Flow diagram explaining the data-model comparison approach. The “model” branch of the 
process is from Lunt et al., 2008. The “data” branch of the flow diagram was presented in 
Chapter 3. Adapted from Salzmann et al. (2008). 

 

 

Figure 4.2. A map of the Tortonian world illustrating the degree of consistency between the 
HadAM3/BIOME4-predicted vegetation and the palaeoecological data. The map also shows the 
degree to which the model predicted vegetation was corrected by the palaeoecological data. 
“Small change” represents a relatively minor change in biome type (e.g. tropical evergreen 
broadleaf forest to tropical semi-evergreen broadleaf forest) and a “Large change” represents a 
significant change in biome type (e.g. tropical xerophytic shrubland to warm-temperate 
evergreen broadleaf and mixed forest) 
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4.3. Global data-model hybrid Tortonian vegetation reconstruction 

The plotted biomes, based on the 326 TEVIS data points from Chapter 3, provide an insight 

into Late Miocene vegetation and climate. There is good data coverage in western USA, 

Europe, India, southeast Asia and western South America, allowing a confident vegetation 

reconstruction for these regions. Data coverage also allows a confident reconstruction of 

Alaska, central Africa, parts of Asia and southern Australia. However, data coverage is not 

uniform and thus areas lacking adequate coverage rely on modelled vegetation for the 

reconstruction. These areas include most of the high latitude Northern Hemisphere including 

much of Canada and northeast USA, Greenland, Scandinavia and Russia. Other areas of poor 

coverage also include eastern South America, southern Africa and northern Australia. 

The Tortonian vegetation reconstruction from both the palaeobotanical data and the BIOME4 

model prediction show a warmer and wetter world (Fig.6A). The following section describes 

and highlights regional vegetation patterns from the Tortonian world. As with the previous 

chapter numbers in parentheses refer to palaeobotanical site location numbers (Fig. 3.2). All 

references for specific sites, and the biome code assigned to each has been made available as 

supplementary information (Appendices A, B). Climatic data are also presented below in the 

form of MAT in °C and MAP in mm per year. The climatic data is also presented in Table 4.2. 

 

4.3.1. Polar and boreal regions 

During the Tortonian the polar and boreal regions (>60°N, >60°S) were dominated by cold 

evergreen coniferous forests and temperate grasslands. In Eurasia and Greenland there is also 

an extension of temperate deciduous broadleaved forests from the temperate region. 

Antarctica is not vegetated in this reconstruction, which is in agreement with the apparent 

extinction of tundra from Antarctica during the late Middle Miocene (Anderson et al., 2011; 

Lewis et al., 2008). The ANDRILL AND-2A core, drilled in McMurdo Sound, yielded a 

palynological assemblage showing the presence of tundra vegetation between 15.7-15.5 Ma. 

Following this warm period the content of palynomorphs decreases sharply until they are 

absent before the start of the Tortonian (Anderson et al., 2011; Warny et al., 2009). On 

Seymour Island and James Ross Island, Antarctic Peninsula the Hobbs Glacier formation has 

been dated as Late Miocene (Dingle and Lavelle, 1998; Marenssi et al., 2010).This succession 

of glacial diamictites is considered to have been deposited close to a glacier terminus 

suggesting the West Antarctic Ice Sheet was almost at its present extent on the Antarctic 

Peninsula, though with evidence for interglacial events and considerable ice dynamics 

(Smellie et al., 2006; Marenssi et al., 2010; Nelson et al., 2009). Previously tundra vegetation 
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had been reported from the Pliocene of the Transantarctic Mountains (Ashworth and Cantrill, 

2004). The dating of these deposits was based on the assemblage of reworked marine 

diatoms (Harwood, 1986), more recent work has suggested an age >5.1 Ma and likely much 

older (Ackert and Kurz, 2004; Ashworth et al., 2007). The growing body of evidence from 

Antarctica suggests that by the Tortonian the continent was largely glaciated. 

The polar and boreal realms are not well constrained in the Tortonian reconstruction. A 

scarcity of Tortonian palaeobotanical data in Canada, Scandinavia and northern Russia (Fig. 

4.3), combined with an extension of the continent into the modern Arctic Ocean north of 

Scandinavia and the Novosibirsk Islands extending to Svalbard in the palaeogeography means 

much of the high latitude biomes are model-defined. Likewise Antarctica is defined as having 

near-modern ice sheet cover in the model boundary conditions, meaning that the BIOME4 

model would not predict vegetation on the Antarctic continent. There are some locations that 

provide evidence of vegetation at the high latitudes during the Tortonian. In Alaska, around 

the Cook Inlet and Nenana Coal Field (Sites T1-T6) there was a cool mixed forest to 61°N and 

a mix of cool needleleaf and cold evergreen needleleaf forest further north. Three of the five 

sites give a mean annual temperature of 4.5±1.5°C, 4±1°C and 10±10°C (Reinink-Smith and 

Leopold, 2005; White et al., 1997; Wolfe, 1994b); this is 4-10°C warmer than present. The 

palaeobotanical data and model agreed well on the position of the cold evergreen needleleaf 

forests but differed on the position of the cool mixed forest. In the BIOME4 model simulation 

the area with cool mixed forest palaeobotanical data is reconstructed to have temperate 

deciduous broadleaved forest and warm-temperate evergreen and mixed forest biomes. This 

discrepancy between the BIOME4 predictions and the palaeobotanical data is related to the 

SST profile used in the model boundary conditions. 

In the North Atlantic (Sites T101-T102), ocean cores provide evidence of terrestrial biomes 

during the Tortonian. DSDP 338 provides evidence of a temperate forest dominated by 

coniferous trees at 67°N offshore Norway (Koreneva et al., 1976). ODP Leg 151 contains a 

pollen assemblage showing the presence of a swampy taiga at 77°N on the Hovgård Ridge 

(Boulter and Manum, 1997). In Russia there is evidence of the evergreen taiga forest at 70°N 

(Site T210) and a temperate evergreen forest at 59°N (Site T215). The model successfully 

predicts the presence of the cold evergreen needleleaf forest at 77°N, but does not predict 

the presence of the temperate evergreen needleaf forest seen at DSDP 338. Whether this 

relates to problems in the model prescribed SSTs or is due to the sample coming from an 

oceanic core rather than a terrestrial deposit will need to be explored in future work. 

As data are scarce for the boreal and polar realms, these regions rely heavily on the BIOME4 

model for the Tortonian reconstruction. Across North America, BIOME4 predicts a direct 
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transition from boreal taiga to temperate grasslands at 60°N in central Canada and 68°N in 

western Canada (Fig. 4.3). In northernmost North America, BIOME4 predicts a mixture of 

temperate grassland, boreal taiga and temperate xerophytic shrubland. In northeast Russia, 

the model predicts extensive temperate grasslands from 66°N to 78°N with temperate 

deciduous broadleaved forest reaching 78°N between the longitudes of 25°E and 36°E. This 

then changes to cool needleleaf forest at 78°N, whereas, for most of the polar boreal region 

temperate grassland is predicted to change directly into boreal taiga forest, much as it does in 

North America (Fig. 4.3). There are also minor areas of cool mixed forest, cool needleleaf 

forests and temperate xerophytic shrubland within the extensive temperate grassland region, 

these same minor biomes are also found on the west coast. At 60°N the BIOME4 model 

predicts the presence of warm-temperate forest on the east coast of Eurasia (Fig. 4.3). In 

eastern Russia and the Kamchatka Peninsula the boreal taiga is predicted by BIOME4 to have 

had a much lower southern extent at 55°N and changes directly to temperate grassland. 

BIOME4 shows the presence of boreal forest mixed with some areas of temperate grassland 

and in the northernmost area, a small region of deciduous boreal taiga. Along the southern 

coast of the Kamchatka Peninsula, the model predicts a mix of cool mixed and cool needleleaf 

forest (Fig. 4.3). 

Currently there are no published palaeobotanical sites for the Tortonian of Greenland. The 

BIOME4 model predicts a large expanse of temperate grassland in the northwest and central 

areas with temperate forests in the south and east. In the far northeast and northwest, small 

areas of temperate xerophytic shrubland are predicted to have existed (Fig. 4.3). In the 

boundary conditions of the GCM experiment, based on the palaeogeography (Markwick, 

2007), the east Greenland highlands are covered by an ice-sheet and thus were not 

vegetated. Despite the lack of data on Greenland, good data coverage on Iceland (Sites T96-

T99) shows a warm-temperate to temperate climate during the Tortonian. ODP Site 646, 

located off the southern point of Greenland shows a similar flora to those from Iceland. This 

provides some evidence to support temperate forest on Greenland at this latitude during the 

Tortonian. There are no model-predicted biomes for Antarctica because the palaeogeography 

used in the model boundary conditions has a modern Antarctic ice sheet. 
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Figure 4.3. The palaeobotanical data sites (circles), from Chapter 3, overlaying the Mioc5 model 
predicted biome distribution. Biome colours are the same as Figures 1.6, 3.4 and 3.5. 

 

 

Figure 4.4. The vegetation and palaeogeography of the Tortonian. The merger of data and model 
creating the hybrid Tortonian vegetation reconstruction. Biome colours are the same as Figures 
1.6, 3.4 and 3.5. 

 

 

4.3.2. Temperate zones 

The BIOME4 model predicts a considerable extension of the temperate zone into what is 

present boreal and polar regions. Data coverage in the temperate zone (23.5-60°N/°S) is 

good. Notable areas of absence are the Appalachians in the eastern USA, north Mexico, 

Australia and southernmost South America. Broadly the reconstruction shows a spread of 
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warm-temperate evergreen broadleaved and mixed forest into Europe, Southeast Asia, 

eastern USA and areas of western USA and an expansion of temperate deciduous 

broadleaved savanna in Eurasia and central USA. 

On the west of the Rocky Mountains, a mixture of forest, woodland and savanna occurred 

until 38°N, below this the area was dominated by temperate xerophytic shrubland with some 

coastal forests. At 55°N on what is now the Queen Charlotte Islands, Canada, there was a 

cool-temperate mixed forest (Site T9). To the south of this there was temperate needleleaf 

forest (Site T10) near the coast and temperate deciduous broadleaved forest further inland 

(Site T11). South of this at between 43°N and 48°N, many locations show the presence of a 

warm-temperate evergreen and mixed forest (Sites T13-T16, T17, T19, T26 and T27). The 

forest at Musselshell Creek (Baghai and Jorstad, 1995) had a MAT of 12.5±1.5°C and a MAP of 

1250 mm (Site T19), this is 7°C warmer than at present and nearly 500 mm/yr wetter. South 

of this was temperate broadleaved savanna near the coast at Kimble Homestead (Site T18), 

which is estimated to have a MAT of 12.5±2.5°C, comparable to the warm-temperate 

evergreen and mixed forest but, with a MAP of 900±100 mm (Retallack et al., 2002). Further 

inland there was a mix of temperate broadleaved deciduous forest (Site T20) and temperate 

sclerophyll woodland and shrubland (Sites T21, T23). The former having a MAT of 14°C and a 

MAP of 635±180 mm (Dorf, 1938) and the latter estimated to have a MAT of 13.4±7.8°C and a 

MAP of 762 mm (Beuchler et al., 2007; Smith, 1941). For this area the climate data provided 

by the palaeobotanical locations suggests an increase in MAT of 7-8°C and an increase in MAP 

of 50-200 mm/yr compared to modern information. The model disagrees with the 

palaeobotanical data within this region on the amount of MAP, causing the model to predict 

much drier biomes. The Rocky Mountains are shown to have had some areas of cool mixed 

forest (Site T25) and areas of temperate needleleaf open woodland (Fig. 4.3, 4.4). South of 

38°N, an open vegetation of temperate xerophytic shrubland is predicted by the BIOME4 

model and supported by numerous palaeobotanical records (Sites T31, T29, T33 and T34). 

This open vegetation extended south to the tropical zone, apart from a coastal forest with a 

warm-temperate evergreen and mixed character (Sites T30, T32) at 31-33°N (Fig. 4.3, 4.4). 

The warm-temperate evergreen and mixed forest is estimated to have had a MAT of 15±4°C 

and a MAP of 679±62.5 mm (Axelrod, 2000); although the level of precipitation is rather low 

to support this type of forest, Axelrod (2000) compared it to cloud forests of Pacific Islands, 

suggesting it may have required extensive summer fogs. The modelled biomes and the 

palaeobotanical data agree well with the distribution and extent of the temperate xerophytic 

shrubland and the presence of coastal warm-temperate forest. 
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East of the open temperate xerophytic shrubland, the BIOME4 model and the 

palaeobotanical data agree on the presence of a mixture of temperate needleleaf forest and 

temperate deciduous broadleaved savanna (Sites T35-T38). Along the Gulf Coast there was a 

mixture of warm-temperate evergreen and mixed forest (Site T39) and tropical semi-

deciduous broadleaved forest (Site T40). In Florida, mammalian fossils and pollen at the Moss 

Acres Racetrack site show the presence of a temperate to warm-temperate, deciduous 

broadleaved savanna (Lambert, 1994; 1997). On the east coast of the USA there was a warm-

temperate evergreen mixed forest until 46°N (Sites T42-T43 and T46-T47). Further inland 

where the palaeobotanical data are absent, the BIOME4 model predicts a mixture of 

temperate deciduous broadleaved forests, temperate deciduous broadleaved savanna and 

temperate grasslands (Fig. 4.3, 4.4). The warm-temperate evergreen and mixed forest on the 

east coast, the warm-temperate evergreen and mixed forest biome at Martha’s Vineyard and 

preserved in the Legler Lignite is predicted to have a MAT of between 13.3±5°C and 15±9°C 

with a MAP of 1270 mm (Axelrod, 2000; Frederiksen, 1984; Greller and Rachele, 1983). 

In Europe the palaeobotanical data indicate a vast swathe of warm-temperate evergreen and 

mixed forest with subtropical elements, from 8°W to 51°E and from 38°N to 60°N (Sites T114-

T130, T134-T154, T156-T159, T164-T167 and T169-T173). Within the warm-temperate 

evergreen and mixed forest biome, which is considered most comparable to the warm-

temperate forests of southeast China, climate estimates for the Tortonian from the fossil 

remains are predicted to have had a MAT of 14.85±0.95°C – 16.8±1.2°C and a MAP of 

between 988.5±9.5 mm and 1242.5±55.5 mm (Bruch et al., 2006; Erdei et al., 2009; Figueiral 

et al., 1999; Ivanov et al., 2002; Kvacek et al., 2002; Syabryaj et al., 2007). The MAT is around 

6.3°C warmer than at present (the range of difference is -2.4°C – +8.5°C) and the difference in 

MAP is between 159 mm to 740 mm when compared to modern data. Areas of difference to 

the widespread warm-temperate evergreen and mixed forest biome are the Iberian Peninsula 

and the land to the south of the Paratethys Sea in Turkey. In Turkey, the warm-temperate 

evergreen and mixed forest opened up into a region of temperate deciduous broadleaved 

savanna (Site T174, T178-T179) and BIOME4 predicted temperate needleleaf forest. Further 

east the vegetation returned to warm-temperate evergreen and mixed forest (Sites T180-

T181). Continuing east from here there was a region of temperate deciduous broadleaved 

savanna (Brunet and Heintz, 1983), and BIOME4 predicted temperate needleleaf forest 

extending to 62°E (Fig. 4.3, 4.4). The model and palaeobotanical data agrees well for eastern 

Europe around the Panonnian Lake. However, the model makes western Europe anomalously 

dry when compared to the palaeobotanical data. 
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The Iberian Peninsula also had drier open vegetation than the rest of Europe. On the south 

coast there was a region of tropical xerophytic shrubland (Site T109), and along the west 

coast there was a small amount of temperate sclerophyll woodland and shrubland (Site 

T107). The modern Sahara was greatly reduced, if not absent altogether (Fig. 4.3, 4.4). 

Temperate sclerophyll woodland and shrubland (Sites T110-T111) and tropical savanna 

(Arambourg, 1959) inhabited coastal regions of northwest Africa (Tunisia, Morocco and 

Algeria). Further inland there is no vegetation data and the BIOME4 model predicts tropical 

xerophytic shrubland and small areas of desert (Fig. 4.3, 4.4). The mix of predominantly 

tropical xerophytic shrubland and desert continued east across the modern Sahara region 

until 21°E, from here until the east coast of the Arabian Peninsula there was extensive 

tropical xerophytic shrubland and an absence of desert. The area around the modern Nile 

delta had tropical savanna along the coast (Site T193). The BIOME4 model agrees with the 

palaeobotanical data in that the Iberian Peninsula has more open vegetation than the rest of 

Europe. However, there is some disagreement as to which biome types are present. The 

BIOME4 model also fails to predict the coastal vegetation of North Africa; this may be a 

problem with the model or a question of scale. The palaeobotanical data may reflect 

vegetation restricted to the coast whereas the model has predicted the overall biome for the 

grid cell; this will require further study to investigate the palaeobotany further inland. 

Along the east coast of the Paratethys Sea, the BIOME4 model predicts a mixture of 

temperate xerophytic shrubland and temperate needleleaf forests (Fig. 4.3). The temperate 

needleleaf forests are predicted by BIOME4 to continue, in isolated patches, until 81°E. These 

forest patches are within an extensive temperate deciduous broadleaved savanna (Sites 

T205-T206, T208) which existed from 35°N to 58°N in Asia. At the northern extent of the 

savanna area it is bordered by temperate deciduous woodland which inhabited some of the 

boreal realm during the Tortonian (Fig. 4.3, 4.4). At its southern limit, the BIOME4 model 

predicts that the temperate savanna blended into temperate needleleaf forest and 

temperate needleleaf parkland. The palaeobotanical data shows that the model simulation 

for this region produces a biome pattern with anomalously high levels of forest. 

South of the Himalayas on the Indian subcontinent a band of warm-temperate evergreen and 

mixed forest ran longitudinally between 28°N and 33°N (Sites T259, T269). Below this there 

was a mixture of tropical evergreen broadleaved forest, tropical deciduous forest and tropical 

savanna (Sites T262-T266, T268), and the tropical evergreen broadleaved forest, tropical 

deciduous forest and tropical savanna biome types continued into the tropical zone (Fig. 4.3, 

4.4). In China and southeast Asia, the warm-temperate forests continued in the longitudinal 

band between 23.5°N and 33°N (Sites T281, T284). Fossils from the Xiolongtan coal mine in 
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China are estimated to have lived with a MAT of 17.9±1.2°C with a MAP of 1427±212 mm (Xia 

et al., 2009), both the MAT and MAP are nearly at modern levels for this region. As this band 

of warm-temperate evergreen and mixed forest reached the east coast of Asia it followed it 

north, reaching 48°N (Sites T218-T219, T234, T237, T249, T239). In Japan, many fossil sites 

indicate the warm-temperate evergreen and mixed forest biome also existed there (Sites 

T240, T244, T246, T247). Throughout India and southeast Asia the model compares very well 

to the palaeobotanical data and only required slight alterations to create the hybrid 

reconstruction. 

On the Himalayan Plateau and further north a patchwork of temperate xerophytic shrubland 

(Site T230), temperate deciduous broadleaved savanna (Sites T211-T213, T221-T223, T231-

T233, T236), temperate deciduous broadleaved forest (Site T209) was present during the 

Tortonian. At the northern limit of the temperate zone, BIOME4 predicted cool needleleaf 

forest existed at this time (Fig. 4.3, 4.4). The mixture of temperate xerophytic shrubland, 

temperate deciduous broadleaved savanna and temperate deciduous broadleaved forest 

biome types continued north until it bordered an extensive temperate grassland predicted by 

BIOME4. In north central Asia the transition from temperate biomes to the cold evergreen 

needleleaf forest biome occurred as far south as 55°N (Fig. 4.3, 4.4); currently there is no 

available data to confirm the transition. This region in the BIOME4 simulation is heavily 

influenced by the orography which is the reason for minor differences with the 

palaeobotanical data. For the majority of this region the model predicted temperate 

grassland or temperate deciduous broadleaved forest, whereas the palaeobotanical data 

reflected a temperate deciduous broadleaved savanna. 

In South America, the temperate zone contains many sites along the western side and sparse 

data along the east. On the east coast BIOME4 predicts a continuation of tropical vegetation 

into the temperate zone, this is mainly tropical xerophytic shrubland with some areas of semi-

deciduous to deciduous tropical forest (Fig. 4.3, 4.4). At Taubate, Brazil (Site T69) pollen 

provides evidence of a subtropical to warm-temperate forest along the coast (Garcia et al., 

2008). On the west side of the South American temperate zone, tropical xerophytic shrubland 

changed to tropical savanna (Sites T76, T78) and a proto-Atacama desert (Site T73) at 24-

26°S. South of this, an area of temperate xerophytic shrubland occupied a narrow band (Site 

T79) before changing into temperate sclerophyll woodland and shrubland (Site T80). South of 

this area there is scarce data, apart from an area of temperate xerophytic shrubland (Sites 64-

66) between 39°S and 46°S. For the rest of southern South America, BIOME4 predicts a 

mixture of warm-temperate to cool-temperate forests (Fig. 4.3, 4.4). The palaeobotanical 

data and BIOME4 model compare well for temperate South America. Model-predicted 



- 106 - 

biomes that required altering for the hybrid reconstruction were either too dry or too wet. 

This seemingly contradictory statement is probably related to the uncertainty estimating the 

orography; both within the model boundary conditions and in terms of the altitude the 

palaeobotanical data is derived from. 

The temperate zone of southern Africa is small and poorly-covered by data. The temperate 

zone is predicted, by BIOME4, to start with a continuation of the tropical xerophytic 

shrubland until 28°S to 31°S where tropical semi-deciduous and deciduous forests are 

predicted to begin. The nearest data points to this model predicted transition are at 34°S, 

from western South Africa and they show the presence of a temperate needleleaf forest 

(Sites T203-T204). For the South African Cape, BIOME4 predicts a warm-temperate evergreen 

and mixed forest (Fig. 4.3, 4.4). The model-predicted biomes around the South African Cape 

were too dry to match the limited palaeobotanical data for the area. This shows there is some 

problem in the amount of precipitation generated by the model for this region. 

In Australia, the temperate zone was dominated by temperate sclerophyll woodland and 

shrubland during the Tortonian (Sites T306-T307, T310, T313-T314). Location T307 at Lake 

Tay predicts this biome to have had a MAP of 1375±125 mm (Macphail, 1997), which is an 

increase of around 1100 mm/yr when compared to modern data. A small area of temperate 

grassland was present in southeast Australia (Site T311) and BIOME4 predicts coastal warm-

temperate evergreen and mixed forest and temperate needleleaf forest along the east coast 

(Fig. 4.3, 4.4). In central Australia, the model also predicts an area of tropical grassland. On 

New Zealand, many data points agree with the BIOME 4 prediction of warm-temperate 

evergreen and mixed forest (Sites T316, T318, T321). Overall the palaeobotanical data and 

model-generated biomes for temperate Australia compare well in places, but broadly the 

model predicts biomes that are too dry 
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Region Site 
Mean Annual Temperature °C 

Present Model 
Palaeo - 

data 

Southern Alaska 
    

Cool mixed forest 1 1.7 3.4 10.0±10.0 

Cool evergreen needleleaf forest 5, 8 -6.9 0.6 5 

Cold evergreen needleleaf forest 2 -3.2 0.4±0.4 4±1 

Western U.S.A. 
    

Warm-temperate evergreen mixed forest 19, 30 5 8.6 15±4 

Temperate deciduous broadleaved forest 20 5.5 10.8 14 

Temperate schlerophyll woodland and shrubland 18 6.3 15.2 12.5±2.5 

Temperate xerophytic shrubland 21, 23 6 11.4 13.4±7.8 

Cool temperate mixed forest 25 6.4 12.2 11±4 

Eastern U.S.A. 
    

Warm-temperate evergreen mixed forest 46, 47 10.5±0.4 19.4±0.4 14.2±0.8 

Europe 
    

Warm-temperate evergreen mixed forest 
103, 104, 105, 119, 120, 140, 148, 
151, 153, 157, 159, 161, 165, 170 

7.8±1.4 18.5±2.5 14.8±3.2 

Temperate deciduous broadleaved savanna 163 10.9 19.9 15±3 

Turkey 
    

Warm-temperate evergreen mixed forest 180 9 17.7 18.4±2.9 

Temperate deciduous broadleaved savanna 179 7 16.7 18.6±2.2 

South-east China 
    

Tropical evergreen broadleaved forest 283 13.6 14.5 17.1±3.8 

Warm-temperate evergreen mixed forest 284 16.6 16.6 17.9±1.2 

Indonesia 

    Tropical evergreen broadleaved forests 302 26.86 27.8 27.15±0.55 

Australia 
    

Warm-temperate evergreen mixed forests 312 

   Temperate schlerophyll woodland and shrubland 303, 307 - - - 

Table 4.2. Climate data derived from palaeobotanical evidence. Mean annual temperature (°C) and 
mean annual precipitation (mm/year) is presented for various regions of the world subdivided by 
biome type. The palaeo data is from Table 3.4 and is compared to the average Mioc5 climate for 
each region and the average modern climate. 
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Region Site 
Mean Annual Precipitation mm/yr 

Present Model Palaeo - data 

Southern Alaska 
    

Cool mixed forest 1 - - - 

Cool evergreen needleleaf forest 5, 8 

   Cold evergreen needleleaf forest 2 - - - 

Western U.S.A. 
    

Warm-temperate evergreen mixed 
forest 

19, 30 801.4 681.12 933.3±316.8 

Temperate deciduous broadleaved 
forest 

20 582.1 612 635.0±180.0 

Temperate schlerophyll woodland and 
shrubland 

18 985.5 912.5 900.0±100.0 

Temperate xerophytic shrubland 21, 23 499.3 555.5 762 

Cool temperate mixed forest 25 454.8 478.2 1206.5±63.5 

Eastern U.S.A. 
    

Warm-temperate evergreen mixed 
forest 

46, 47 1104.5 1005.8 1270.0 

Europe 
    

Warm-temperate evergreen mixed 
forest 

103, 104, 105, 119, 120, 140, 148, 
151, 153, 157, 159, 161, 165, 170 

734.4±34.9 1146.60±691.6 1141.9±100.6 

Temperate deciduous broadleaved 
savanna 

163 500.4 541.8 659.5±100.5 

Turkey 
    

Warm-temperate evergreen mixed 
forest 

180 594.7 477.7 1198.5±375.5 

Temperate deciduous broadleaved 
savanna 

179 533.2 535.7 1203.5±316.5 

South-east China 
    

Tropical evergreen broadleaved forest 283 1053.4 1005.8 1029.2 

Warm-temperate evergreen mixed 
forest 

284 1611.6 974.2 1427.0±212.0 

Indonesia 

    Tropical evergreen broadleaved 
forests 

302 

   Australia 
    

Warm-temperate evergreen mixed 
forests 

312 804.83 1534.83 1500.0 

Temperate schlerophyll woodland and 
shrubland 

303, 307 427.4±155.1 329.8±77.2 1212.0±163.0 

Table 4.2. Cont. Climate data derived from palaeobotanical evidence. Mean annual 
temperature (°C) and mean annual precipitation (mm/year) is presented for various 
regions of the world subdivided by biome type. The palaeo data is from Table 3.4 and is 
compared to the average Mioc5 climate for each region and the average modern 
climate. 

 

4.3.3. Tropical zones 

The tropical zones (23.5°S – 23.5°N) have good data coverage. Notable exceptions are 

southern Africa, Central America, eastern South America and northern Australia. In general 
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there is an opening up of the tropical forests of South America, an expansion of tropical 

vegetation into the Sahara Desert in Africa, extensive tropical forests in India and southeast 

Asia and open biomes in Australia. 

In Central America, palaeobotanical data show the presence of a warm-temperate evergreen 

and mixed forest (Site T48) at Jalapa, Mexico (Graham, 1975) where a warm Liquidambar – 

Quercus forest bordered mangroves. Further south, near Rio Honda, Mexico (Site T49) a 

tropical evergreen broadleaf forest occupied the region during the Tortonian (Graham, 1998). 

Apart from these sites the rest of Central America is predicted by BIOME4 (Fig. 4.3, 4.4). In 

the north, tropical xerophytic shrubland and temperate sclerophyll woodland and shrubland 

continued into the tropical zone from the temperate zone. Below 20°N a patchwork mixture 

of tropical savanna, tropical deciduous woodland and tropical semi-evergreen forest is 

predicted to have existed. At the Panama Seaway, BIOME4 predicts a tropical evergreen 

broadleaved forest (Fig. 4.3, 4.4). The limited palaeobotanical data for Central America make 

a comprehensive data-model comparison difficult, but based on the available evidence the 

model appears to simulate vegetation here well. 

In northern South America, a broad expanse of predominantly tropical evergreen 

broadleaved forest (Sites T53, T58, T54-T55, T60, T62-63) with some isolated areas of tropical 

deciduous woodland (Sites T56-T57, T59) was present. Along the edges of this forest BIOME4 

predicts tropical semi-evergreen forest and tropical deciduous woodland . This forest opened 

up into tropical savanna (Sites T61, T66-T67) which continued east across South America to 

between 46°W-38°W where, in an absence of data, BIOME4 predicts tropical xerophytic 

shrubland (Fig. 4.3, 4.4). Some evidence for tropical evergreen broadleaved forest along the 

coast is present on Outeiro Island, Brazil (Site T65). Near 23.5°S on the east side of South 

America there is a lack of data and BIOME4 predicts an area of tropical deciduous woodland 

within the extensive tropical savanna. In eastern South America, at this latitude there is 

evidence for tropical deciduous woodland (Sites T71-T72). The eastern tropical deciduous 

forest biome is estimated to have a MAT of 19.8±3.7°C – 21.5±2.5°C and a MAP of 550±180 

mm at Upper Jakokkota (Gregory-Wodzicki, 2002). This is an increase of 9-10°C when 

compared to the modern MAT, but a reduction in MAP of about 570 mm. The BIOME4 model 

generated biomes and palaeobotanical data for tropical South America compare very well. 

The majority of the palaeobotanical data are grouped in the west and shows the extent of the 

tropical forest successfully predicted by the model to be accurate. It also clearly indicates the 

areas with tropical savanna and tropical deciduous forest predicted by the model and 

supported by the palaeobotanical data. In the east of tropical South America there is only a 

single, coastal data point. This pollen record however shows the model is anomalously dry in 
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this region and the model generated biomes required modification for the hybrid 

reconstruction. 

The tropical zone of Africa, south of the Sahara was an extensive tropical xerophytic 

shrubland during the Tortonian (Fig. 4.3, 4.4). This turned into tropical savanna at between 

15-20°N (Site T192), except on the Arabian Peninsula where xerophytic shrubland is the 

dominant biome with minor amounts of tropical grasslands along rivers and the coast (Site 

120). In West Africa, tropical forests began at 16°N (Sites T185-T186) but were mainly 

restricted to coastal grid squares and tropical savanna is found as far south as 6°N (Site T191). 

In central Africa, the tropical forests occupied a region comparable to the modern forests. 

Data for this comes from the Niger Delta in the west (Sites T188-T189) and Kenya in the east 

(Site T200) with BIOME4 supporting the data and showing the extent of the forest (Fig. 4.3, 

4.4). Climatic estimates for the tropical forest in Kenya give a MAT of 21.7±2°C and a MAP of 

1045±200 mm (Jacobs and Deino, 1996); this is comparable to modern levels. Around 

Ethiopia and Sudan, an area of tropical evergreen forest was present (Site T196) surrounded 

by tropical savanna (Site T199) and tropical grassland (Sites T197-T198). Apart from the sites 

mentioned, there is an absence of other data points for tropical Africa and so the 

reconstruction relies on BIOME4. Between 1°S and 6°S, the tropical forests opened up into 

tropical savanna with isolated patches of tropical deciduous woodland. At around 19°S this 

gave way to tropical xerophytic shrubland and a small Namib Desert. Along the east coast of 

Africa BIOME4 predicts tropical xerophytic shrubland (Fig. 4.3, 4.4). From the palaeobotanical 

data available for tropical Africa it is clear that the data and model compare closely. 

Modifications to the model-predicted biomes was mainly restricted to the savanna-

xerophytic shrubland boundary which mammalian sites showed was too far south by the 

distance of a grid cell. 

In tropical India, palaeobotanical data are confined to the south and northeast of the 

subcontinent and indicate the presence of a tropical evergreen broadleaved forest (Sites 

T271-T280). Away from these regions the vegetation is predicted by BIOME4 (Fig. 4.3, 4.4). 

The biomes predicted show a mixture of tropical evergreen, semi-evergreen and deciduous 

forests along the coast and tropical savanna inland. Moving east, data from Vietnam show the 

warm-temperate evergreen and mixed forest as far south as 18°N (Sites T285-T291). This 

forest opened up to tropical savanna and tropical grassland (Site T294) along the west of the 

southeast Asian peninsula. On the east side, a mixture of warm-temperate evergreen and 

mixed forest (Sites T295, 297) and tropical evergreen broadleaved forest (Site T296) existed. 

Below 11°N, an absence of data means the vegetation is predicted by BIOME4. From 11°N to 

5°N, the model predicts an area of semi-evergreen tropical forest with isolated tropical 



- 111 - 

savanna, below 5°N BIOME4 predicts the presence of tropical evergreen broadleaved forest 

(Fig. 4.3, 4.4). This is supported by a pollen assemblage from Brunei (Site T300). As in the 

temperate zone, the model predicted tropical zone of India and southeast Asia compares well 

to palaeobotanical data requiring only minor modifications for the hybrid reconstruction. 

Palaeobotanical sites for the Australian tropical zone are exceedingly sparse. ODP 765 (Site 

T303), located immediately off the west coast, suggests the presence of a temperate 

sclerophyll woodland with an estimated MAP of 1050±450 mm (Martin and McMinn, 1994; 

MacPhail, 1997). On the east coast, there was a coastal temperate needleleaf forest (Site 

T305), which continued south into the temperate zone. The rest of tropical Australia is 

predicted by BIOME4 to be coastal tropical savanna and tropical xerophytic shrubland until 

the temperate zone (Fig. 4.3, 4.4). Limited data for the tropical zone of Australia means the 

hybrid reconstruction relies on the model defined biomes. The available palaeobotanical data 

shows that, as with the temperate zone of Australia, the tropical zone is too dry in places. 

 

 

4.4. Discussion 

4.4.1. Tortonian vegetation and climate 

The Tortonian palaeobotanical data show agreement with the predictions of the BIOME4 

model, with higher than pre-industrial SSTs and atmospheric CO2 levels at 395 ppmv. The 

reconstruction of Tortonian biome distribution shows significant differences compared to the 

present-day potential natural vegetation, in the high latitudes and temperate realms (Fig. 

4.4). Differences are also seen in the tropics but these involve the change in distribution of 

modern tropical biomes, rather than the movement of biomes into regions where they do not 

exist today. Of these significant vegetation shifts, the northwards shift of boreal taiga, 

temperate deciduous forest and temperate grasslands are the most pronounced. Potential 

natural (i.e. without human influence) present day biome distribution (Fig. 1.6) shows the 

boreal forests (cold evergreen needleleaf and cold deciduous forests of BIOME4) have a 

southern limit of ca. 45°N in east Eurasia and a northern limit of ca. 70°N in northern Russia 

and Canada (Kaplan, 2001). During the Tortonian, the evergreen boreal forests reached at 

least 77°N (Site T101) and in the reconstruction it extends to 80°N. Reconstructing the 

southern limit is difficult due to a lack of data from the polar region. In Alaska it is at 61°N 

(Site T3) and minimally at 70°N in Russia (Site T210). In the hybrid reconstruction, the BIOME4 

model indicates the lowest occurrence of the boreal taiga forests is in east Eurasia at 55°N. 
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This dramatic shift of the boreal taiga by up to 10° indicates significant high latitude warming 

relative to today. Accompanying this northward shift of the boreal taiga was a loss of tundra 

biomes (Fig. 4.4). The northward shift of the boreal forests has been shown to be a 

vegetation–climate positive feedback; with the treeline moving north altering the surface 

albedo and carbon budget of the high latitudes (de Noblet et al. 1996; Sturm et al. 2001). 

Inclusion of this Tortonian vegetation reconstruction, as a boundary condition in future 

modelling studies, may help to increase high northern latitude MATs and the simulation of a 

reduced pole to equator gradient. In this study the HadAM3-driven BIOME4 vegetation model 

was able to predict the northward shift of forest biomes but this required a significant 

increase in SSTs (Table 4.1). These high SSTs could also be responsible for making model-

predicted biomes for areas of western Europe, western USA, Australia, South Africa and 

eastern South America too dry, when compared to the biomes reconstructed from the 

palaeobotanical data. Although higher SSTs will create a more active hydrological cycle, the 

Mioc5 AGCM experiment has a global MAP increase of only 126.7 mm/year relative to the 

pre-industrial scenario. From the number of regions showing model-generated biomes that 

are too dry compared to palaeobotanical data, the increase in global precipitation is either 

not enough or is occurring in the wrong regions. These discrepancies in regions that current 

experiments make too dry will form part of future model simulations. These future 

simulations will include the Tortonian vegetation reconstruction presented here as a 

boundary condition instead of the global shrublands used by Lunt et al. (2008). This should 

show to what extent a “best fit” global vegetation reconstruction can impact on precipitation. 

Following the cold taiga forests northwards were the temperate forests and temperate 

grassland biomes (Fig. 4.3, 4.4). The extensive temperate grasslands predicted by BIOME4 are 

not supported by any palaeobotanical data points. The data and BIOME4 model predictions 

agree on the presence of a warm-temperate evergreen and mixed forest in Europe bordering 

the Paratethys Sea, however in western Europe BIOME4 predicts a much more fragmentary 

biome pattern than indicated by palaeobotany. In places, the model predicts temperate 

evergreen needleleaf forests and tropical xerophytic shrublands. This suggests the model 

interprets western Europe as too dry, and is most likely related to the increased MATs from 

the higher SSTs. This is because there is only a slight difference in the modelled MAP between 

the Late Miocene and the pre-industrial model experiments (Fig. 4.5). Considering the 

differences in climate between the Late Miocene model and those derived from 

palaeobotanical data for this biome; the model predicts slightly higher MATs (within the 

range of the fossil data) and a MAP comparable to that estimated from the data (Table 4.2). 

The climatic data suggests the Tortonian MAT in Europe was at least 5-8°C warmer than the 
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pre-industrial age and received around 400 mm/year more precipitation. This warm-wet 

climate across Europe during the Tortonian is in agreement with studies using other proxies 

(Böhme et al., 2008). 

 

Figure 4.5. Climate maps for the Mioc5 AGCM experiment minus the present day, shown on modern 
geography. A) Mean annual temperature (°C), B) Mean annual precipitation (mm/day). Both 
plots show the difference with the pre-industrial. 

 

The palaeobotanical data and BIOME4 predictions for the western USA differ. In this region, 

the model predicts a mixture of temperate grassland, temperate xerophytic shrubland and 

temperate needleleaf forest. The palaeobotanical data also suggests a mixture of biomes; 
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warm-temperate evergreen and mixed forest, temperate deciduous broadleaved savanna, 

temperate sclerophyll woodland and shrubland and temperate deciduous broadleaved forest. 

The differences between BIOME4 and the data relates to the orography. It is a common 

problem for model-data discrepancies in mountainous regions due to both the model 

resolution and preservation bias of the fossil record (Salzmann et al., 2008). In the BIOME4 

model, each 2.5° x 3.75° grid cell has its biome calculated based on the climate generated by 

the AGCM and the average altitude of the cell. In comparison, the palaeobotanical data 

comes from a single locality. This locality is within an area of deposition, typically lowland 

areas such as valley bottoms, which means that the palaeobotanical evidence for mountain 

regions is often biased towards valley and low altitude habitats and not the regional 

vegetation. This hampers a meaningful data-model comparison within mountainous regions 

(Salzmann et al., 2008). 

In the reconstruction, there is a relatively small Sahara Desert, mainly based on the BIOME4 

reconstruction. The model predicts an expansion of tropical xerophytic shrubland across most 

of the modern Sahara and the Arabian Peninsula; desert areas were restricted to the north 

and northeast of the modern Sahara region (Fig. 4.4). The palaeobotanical and mammalian 

evidence shows that along the Mediterranean coast, a mixture of temperate sclerophyll 

woodland and shrubland and tropical savanna existed. Tropical grasslands are reconstructed 

for the east coast of the Arabian Peninsula and tropical savanna was present along the 

modern southern margin of the Sahara desert. Evidence for desert conditions in North Africa 

comes from sedimentological evidence in Chad. Here wind-blown sandstones conformably 

underlie a mammal-bearing horizon dated as 7.4-6 Ma (Schuster et al., 2006a; Vignaud et al., 

2002). Across the Sahara region there are however vertebrate fossil sites that suggest more 

vegetated conditions. Fossil bushbabies (Galago farafraensis) from Egypt provide evidence of 

a habitat with trees and an estimated rainfall of 500-1200 mm/year (Pickford et al., 2006); 

crocodiles from Tunisia also indicate more humid conditions (Agrasar, 2003; Pickford, 2000). 

In South America, southeast Asia and tropical Africa the palaeobotanical data and BIOME4 

predictions are consistent (Fig. 4.2). However in the Amazonian basin and Africa south of the 

equator, the absence of palaeobotanical data means the reconstruction relies entirely on 

BIOME4 (Fig. 4.2). In East Africa south of the equator the model predicts tropical xerophytic 

shrubland, this is the same biome predicted for this region in the Piacenzian (Salzmann et al., 

2008). The difference between this Tortonian reconstruction and the Piacenzian 

reconstruction is the presence of palaeobotanical data in this region during the Piacenzian, 

allowing the reconstruction of tropical savanna rather than tropical xerophytic shrubland. The 

difference for the Piacenzian between the AGCM and palaeobotanical data was due to the 
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modelling of rainfall patterns possibly related to the Somali Jet, which controls precipitation 

in this region today (Salzmann et al., 2008). If this is a problem in the model then the same 

error may exist in the Tortonian simulations, further palaeobotanical exploration in the Horn 

of Africa and south along the east side may help to prove or disprove the Tortonian 

vegetation reconstruction. 

Of the available Tortonian AGCM experiments from Lunt et al. (2008), Mioc5 compared most 

favourably to the 326 palaeobotanical data points. Statistically Mioc4 compared more 

favourably in the full biome scheme, but this model predicted a desert in the Amazonian 

Basin. Mioc5 achieved a higher Kappa score for the mega biome scheme and did not predict 

the desert in Amazonian Basin. Choosing the experiment with the best megabiome score 

increases our confidence in the statistical test applied since; having a large number of 

categories with a low sample in each is less robust than having fewer categories with more 

samples in each. A minimum of 50 samples per category should be used, and 75-100 samples 

for more than 12 categories (Congalton and Green, 1999; Jenness and Wynne, 2005). This is 

difficult for palaeontological studies where sample sizes are restricted by many factors such 

as deposition, taphonomy, preservation and limited exposure. This makes the mega biome 

Kappa scores more statistically robust than that for the full biome classification. Combining 

the palaeobotanical data with the Mioc5-driven BIOME4 vegetation model required some 

model defined areas to be modified (Fig. 4.2). These include western USA, western temperate 

South America, western Europe, central Asia, South Africa and Australia. All these regions are 

in the temperate zone which may indicate the SST gradient used in the experiment was 

unsuitable. Some of the regions are also heavily influenced by orography which, as previously 

discussed, confounds palaeobotanical data and model comparisons. Areas that compared 

favourably included eastern and central USA, tropical South America, central Europe, tropical 

Africa and southeast Asia. These areas also include regions in the temperate zone but mainly 

those in the tropics, showing that the SSTs for the tropical zone were correctly defined. The 

limited palaeobotanical data available in the polar zone provides evidence that the prescribed 

SSTs for this climatic zone were well-defined, perhaps even too warm around Alaska where 

the Mioc5 driven BIOME4 model predicts temperate to warm-temperate biomes. 

Palaeobotanical data for this region shows the presence of a cool mixed forest, a biome that 

is colder than those predicted by the model. Overall, the prescribed SST gradient for the 

Mioc5 GCM experiment that generated the model-defined biome distribution best matches 

the available palaeobotanical data. However, the areas of data-model discrepancy show that 

further work is required to correctly simulate the Tortonian climate. 
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4.4.2. A comparison of the vegetation of the Late Miocene and the Pliocene 

Examining trends in vegetation patterns of a warmer world, the Tortonian reconstruction 

presented here is compared with the vegetation of the Piacenzian (3.6-2.6 Ma), created using 

the same methodology (Salzmann et al., 2008). Both reconstructions show boreal forests 

migrating towards the poles, followed by temperate forests and grasslands. The spread of 

warm-temperate evergreen mixed forests in Europe and southeast Asia are evident in both 

reconstructions, though this biome spreads more in North America in the Late Miocene than 

in the Piacenzian. Both reconstructions show a reduction in the extent of the Sahara Desert, 

though more-so in the Late Miocene. Both reconstructions show an opening up of the tropical 

forest in South America when compared to present day natural vegetation. In temperate 

South America however the reconstructions differ, with the Late Miocene having drier 

conditions than those of the Piacenzian. In tropical Africa the biome distribution is 

comparable with slightly more tropical evergreen broadleaved forest in the Tortonian. Below 

the equator, the Piacenzian reconstruction benefits from better data coverage and thus the 

reconstructed biomes differ. Similar biomes are predicted in both reconstructions for Asia 

behind the Himalayan Front. In the Piacenzian a mixture of temperate grasslands, temperate 

xerophytic shrubland and temperate forests existed, whilst in the Tortonian temperate 

savanna dominates with patches of temperate forests and temperate xerophytic shrublands. 

South of the Himalayan Front, both reconstructions show a mixture of warm-temperate 

forest, tropical forests and tropical savanna in Southeast Asia. In Australia both 

reconstructions show much wetter vegetation than that of the present-day potential 

vegetation; the main difference is where the woodland and forest biomes are distributed. In 

the Piacenzian forests woodland and savanna are distributed in the east of the continent, 

whereas in the Tortonian a large area of temperate sclerophyll woodland and shrubland is 

present across the south of the continent (Salzmann et al., 2008). 

Both reconstructions, despite the difference in age, show similar patterns of biome changes 

relating to both being warmer worlds than present. The reconstructions show a spread of 

boreal forests polewards followed by temperate biomes. Both show an expansion of warm-

temperate forests with subtropical taxa in the temperate realms of Eurasia and both show a 

reduction of deserts. Different continental configuration, orography and ice-sheet extent are 

most likely to account for differences between the two reconstructions. These broad 

vegetation patterns are also seen in future climate simulations, as a result of anthropogenic 

CO2 emmisions (Salzmann et al., 2009). 
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4.4.3. Comparison to previously published Tortonian vegetation reconstructions 

The Tortonian reconstruction presented here, using a 27 biome classification of 326 

palaeobotanical sites and a state-of-the-art AGCM shows similarities and differences to 

previously published Tortonian vegetation reconstructions (François et al., 2006; Micheels et 

al., 2007). Both of these studies used an AGCM with a resolution of 3.75°x3.75°. In François et 

al. (2006) a modern palaeogeography was populated with vegetation based on an 

unpublished palaeobotanical database and predicted vegetation from BIOME1 (Prentice et 

al., 1992). This 14 biome reconstruction shows the same spread of boreal forests in the high 

latitudes. However in North America, Iceland, and east Eurasia, the boreal forests extended 

southwards into regions with palaeobotanical data showing the presence of other biomes 

(Fig. 4.3, 4.4). In the temperate region both the reconstructions presented here, and that of 

François et al. (2006), indicate a spread of warm-temperate evergreen mixed forests 

[temperate broadleaved evergreen forest in François et al. (2006)] in Europe and the eastern 

USA. For the rest of North America, the Tortonian reconstructions differ, with palaeobotanical 

evidence suggesting temperate savanna where François et al., (2006) predicted tropical 

seasonal forest and temperate forests (Fig. 4.3, 4.4). In Eurasia, both reconstructions predict a 

patchwork of vegetation on the Himalayan Plateau, François et al., (2006) predicted 

grassland, semi-desert and minor savanna leading directly into boreal forests at ca. 45°N. The 

reconstruction herein (Fig. 4.3, 4.4) shows predominantly temperate savanna with minor 

areas of temperate xerophytic shrubland, temperate deciduous broadleaved forest and 

temperate evergreen needleleaf forest. This then changed to temperate grassland at 45°N 

before a transition to boreal forest at ca. 55°N. In South America, the reconstruction of 

François et al. (2006) predicted tropical rain forest extending into the temperate realm to 

about 40°S and a tropical seasonal forest occupying the Atacama Desert. The palaeobotanical 

evidence presented here indicates that the temperate zone of South America was a mixture 

of temperate xerophytic shrubland and tropical savanna with a reduced Atacama Desert (Fig. 

4.3, 4.4). These discrepancies in South America may relate to differences in geography, 

because a seaway was present in much of modern Argentina (Fig. 4.3, 4.4). Differences also 

occurred in tropical South America where palaeobotanical evidence suggests an opening up 

of the modern rainforest to create an area of tropical savanna, whereas François et al. (2006) 

presented an extensive area of tropical forest. In Africa, the reconstructions appear 

comparable except in the Sahara where BIOME4 predicts small areas of desert and in 

southern Africa where BIOME4 predicts a mixture of tropical savanna and tropical xerophytic 

shrubland. Again the reconstructions compare favourably in southeast Asia, both predicting 

tropical forests. On Australia the reconstructions differ again though this may be more related 
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to different classification schemes; as temperate sclerophyll woodland and shrubland is not 

represented in the scheme used by François et al. (2006). Overall, some of the differences 

between the reconstruction of François et al. (2006) and the one presented here may be 

related to differences in CO2, geography and the use of a smaller number of biomes. 

The reconstruction of Micheels et al., (2007) is again on a modern land-sea mask, and was 

based on a 36 site proxy dataset (Micheels, 2003) translated into a classification scheme of 13 

biomes. Comparing the reconstruction presented here and that of Micheels et al. (2007) 

there are similarities in the poleward shift of boreal forests. However in Micheels et al., 

(2007), the boreal forest consistently changed into cool conifer forests; in the reconstruction 

here this is only observed in Alaska (Fig. 4.3, 4.4). Continuing into the temperate realms, the 

two reconstructions differ significantly in North America. In the west, palaeobotanical data 

indicate warm-temperate mixed forests at a slightly higher latitude than reconstructed in 

Micheels et al. (2007). At the latitude of the warm mixed forest of Micheels et al. (2007), 

palaeobotanical data show the presence of coastal warm-temperate mixed forest but 

temperate xerophytic shrubland further inland (Fig. 4.3, 4.4); these differences may be 

related to spatial resolution. In the central USA, palaeobotany provides evidence of 

temperate savanna mixed with BIOME4-predicted temperate needleleaf forests; in Micheels 

et al. (2007) this region is completely forested. The eastern coast of the USA compares 

favourably in both reconstructions. 

The Iberian Peninsula in this reconstruction shows a higher vegetational diversity than in 

Micheels et al. (2007) (Fig. 4.3, 4.4). Moving east across Europe, both reconstructions are 

comparable, although the reconstruction presented here has a greater expanse of warm-

temperate forest. This forest occupied significantly less area in southeast Asia; this is 

comparable to the reconstruction of Micheels et al. (2007). On the Himalayan Plateau and 

north of it, the reconstruction herein shows more vegetational variation, this is due to using a 

larger biome scheme. The reconstruction of Micheels et al. (2007) also presented a polar 

desert on the Tibetan Plateau, which is not recognised here. 

The most significant difference between the Tortonian reconstruction herein (Fig. 4.3, 4.4) 

and the reconstruction of Micheels et al. (2007) is in South America and Australia. In South 

America, the reconstruction of Micheels et al. (2007) shows latitudinal bands of tropical rain 

forest, tropical seasonal forest and warm mixed forest to 23.5°S, whereas palaeobotanical 

data shows tropical savanna separating areas of tropical forest (Fig. 4.3, 4.4). In temperate 

South America, the reconstructions differ mainly in the absence of the Atacama Desert in 

Micheels et al. (2007), whereas sedimentological evidence shows that it was present (Alonso 

et al., 1991; Clarke, 2006). In Australia, Micheels et al. (2007) interpreted vegetation in 
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longitudinal bands becoming more humid to the northeast. In the present reconstruction, the 

palaeobotanical data show a dominance of temperate sclerophyll woodland and shrubland 

along the south of the continent and the predictions of BIOME4 indicate that the vegetation 

became moister to the southeast (Fig. 4.3, 4.4). 

In Africa, the reconstruction presented in this chapter and that of Micheels et al. (2007) are 

comparable. The vegetation distributions differ mainly in the areas predicted by BIOME4 in 

the reconstruction presented herein. Micheels et al. (2007) reconstructed the Tortonian 

Sahara as a mixture of warm grassland and savanna. In this reconstruction, BIOME4 predicts 

most of the Sahara desert to be tropical xerophytic shrubland with isolated areas of desert 

(Fig. 4.3, 4.4). BIOME4 also predicts a mixture of savanna and xerophytic shrubland in 

southern Africa (Fig.6); in the reconstruction of Micheels et al., (2007) savanna changed to 

warm mixed forest towards the Cape. The differences between the new reconstruction and 

that of Micheels et al. (2007) could be related to the use of a Tortonian land-sea mask and a 

larger palaeobotanical data set in the study presented here. 

This study has refined previous Tortonian vegetation reconstructions. Previous work used 

limited palaeobotanical data which was not cited (François et al., 2006; Micheels et al., 2007). 

Here we present a 326 point palaeobotanical and vertebrate-based data set for the Tortonian 

in a format which is readily compatible with a state-of-the-art mechanistic vegetation model. 

This allows it to be easily used for data-model comparisons, and permits it to be used as a 

boundary condition in future modelling studies. The methodology used to generate the global 

vegetation reconstruction also uses a novel approach, previously only applied to the 

Piacenzian (Salzmann et al. 2008). The 326 point palaeobotanical data set has been merged 

with a “best-fit” Tortonian model generated biome distribution map. This has meant that 

areas lacking palaeobotanical data have been filled with vegetation that most closely suits the 

climate that fits best with regions with a large amount of palaeobotanical data. This is instead 

of inferring biome distribution or filling gaps with modern vegetation. Hence an advanced 

Tortonian biome distribution map has been constructed, which will be used in future 

modelling studies. 

 

4.5. Conclusions 

The Tortonian vegetation reconstruction presented in this chapter, created using 

palaeobotanical data and a mechanistic vegetation model forced by HadAM3, suggests that 

this interval was warmer and wetter than present. The Tortonian vegetation distribution 
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shows significant differences to the modern, such as a spread of boreal forests and temperate 

biomes to much higher latitudes than today. An expansion of warm-temperate evergreen 

mixed forests in Europe, southeast Asia and parts of North America; due to higher 

temperatures. The replacement of most arid desert regions by shrubland, grassland, savanna 

and woodland biomes, indicating increased rainfall. There was also a considerable expansion 

of temperate savanna in Central USA, the Middle East and on and north of the Himalayan 

Plateau, during the Tortonian. 

In the following chapter I will continue to explore Tortonian climate through the use of the 

AGCM HadAM3 and the mechanistic vegetation model BIOME4. The data-model hybrid global 

vegetation map, presented in this chapter, will form part of this investigation. This will allow 

the impact of Tortonian vegetation on climate to be investigated. 
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Chapter 5 

The impact of vegetation on modelling the Tortonian climate 

 

A model is a lie that allows you to see the truth – Robert MacArthur 

 

5.1. Introduction 

In the previous chapter I presented a data-model hybrid global vegetation reconstruction for 

the Tortonian. At the end of the chapter I proposed that this could be used as a boundary 

condition in modelling experiments and this will be the focus of this chapter. Building on the 

experiments of Lunt et al. (2008) this chapter will use the atmosphere-only model HadAM3 to 

explore the impacts of Tortonian vegetation on climate. In Lunt et al. (2008) this GCM was 

used to generate a suite of Tortonian climates from different SST profiles (Table 4.1), which 

were then used to drive the BIOME4 mechanistic vegetation model. In the previous chapter 

these HadAM3-BIOME4 experiments were evaluated with palaeobotanical data (Table 4.1) 

and the most comparable, to the palaeobotanical data, was used to create the global hybrid 

vegetation reconstruction (Fig. 4.4). In these experiments (Mioc1 – Mioc5) the initial 

vegetation, used as a model boundary condition, was kept constant as global shrublands 

(Lunt et al., 2008). Although the evidence presented within chapters 2 and 3 would suggest 

this was unsatisfactory, the benefit of homogenous shrublands as a boundary condition is 

that they have the least biasing effect on climate (Lunt et al., 2008). This meant that in the 

absence of a suitable Tortonian vegetation reconstruction the climates derived were not 

influenced by the choice of land cover. Now that a suitable Tortonian reconstruction is 

available it is possible to explore the effects of vegetation on the Tortonian climate. 

The influence of vegetation on Miocene palaeoclimate has been the subject of many 

modelling studies (e.g. Dutton and Barron, 1997; Lohmann et al., 2006; Micheels et al., 2007). 

Using the coarse resolution (4.5 x 7.5°) AGCM GENESIS, Dutton and Barron (1997) showed 

that the change from modern to Early Miocene vegetation (Wolfe, 1985) could provide an 

additional 2°C warming globally. In a Tortonian modelling study using ECHAM4 and an ocean 

circulation model it was found that although open ocean gateways (e.g. CAS) reduced North 

Atlantic equator to pole circulation (Lohmann et al., 2006; Steppuhn et al., 2006), the 

inclusion of a Tortonian vegetation reconstruction (Micheels, 2003) compensates by altering 
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subtropical winds and increasing evaporation (Lohmann et al., 2006). Using the ECHAM4/ML 

AGCM the climate of the Tortonian was simulated with a palaeovegetation reconstruction on 

modern geography (Micheels, 2003; Micheels et al., 2007). The simulated climate was 0.6°C 

warmer and 0.06 mm/day wetter than the pre–industrial (Micheels et al., 2007). This modest 

warming, at comparable CO2 levels, is significantly less than the ca. 4.5°C reported by Lunt et 

al. (2008) for the Mioc5 simulation, which compared most favourably to palaeobotanical data 

(Chapter 4). Micheels et al. (2011) modelled the Tortonian using the COSMOS AOGCM and 

found a global increase in temperature of 1.5°C and an increase in precipitation of 0.12 

mm/day. This experiment used the same vegetation reconstruction, CO2 concentrations and 

orography as Micheels et al. (2007), but changed the geography to a representative Tortonian 

one (Micheels et al., 2011). This combination of a fully coupled model and the changes in 

geography has allowed a further 0.9°C warming on the pre-industrial. The experiments also 

showed a zonal mean meridional temperature gradient with a shape comparable to their 

modern control experiment, just with a slight increase in temperature at all latitudes 

(Micheels et al., 2011). The distribution of bioclimatic zones, presented in Chapter 3, showed 

that the Tortonian had a weaker than modern latitudinal temperature gradient especially in 

the northern hemisphere. Recently the impact of vegetation on Tortonian climate has been 

claimed to resolve the long standing “warmer world – low CO2 paradox” (Knorr et al., 2011). 

Using the AOGCM ECHAM5 – MPIOM Knorr et al. (2011) found that with a CO2 concentration 

of 278 ppmv the strongest forcing agent on the warming was vegetation. The vegetation 

reconstruction used was from Micheels (2003), which could mean the modelling study was 

preconceived to achieve this result. The global biome map of Micheels (2003) was generated 

using a proxy dataset of 36 points and the output from an AGCM driven BIOME3 model. This 

climate model used a CO2 concentration of 360 ppmv, producing a global vegetation in 

equilibrium with a 360 ppmv earth system (Micheels, 2003). The Micheels(2003) global 

vegetation map then applied to a low CO2 AOGCM could produce the required forcing of 

climate to create a warmer world with low CO2. If the experiment had allowed the vegetation 

to adjust to the 278 ppmv earth system of their modelling study the forcing of climate may 

not have been as strong. 

From the previous modelling studies of the Tortonian there is a discrepancy between the 

experiments with global shrublands (Lunt et al., 2008) and those using Tortonian vegetation 

(Micheels et al., 2011). This discrepancy suggests that the application of a more realistic 

palaeovegetation to a modelling study actually reduces the difference in global average MAT 

between the Tortonian and the pre-industrial. However, in other modelling studies it has 

been shown that the application of a palaeovegetation increases this difference in MAT (e.g. 
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Dutton and Barron, 1997). As has been discussed in section 4.4.3, previous Tortonian 

vegetation reconstructions were not entirely compatible with palaeobotanical data. This was 

due to a combination of small, geographically restricted datasets and extrapolation to fill 

areas not covered by data. Could the application of the up to date reconstruction presented 

in Chapter 4, developed using the extensive palaeobotanical database presented in Chapter 3, 

provide a more realistic Tortonian climate simulation? 

 

5.2. Methods 

5.2.1. The Tort experiment series 

Using the atmosphere only GCM HadAM3 introduced in the previous chapter, a suite of 

experiments were designed and run to explore the role of vegetation on the Tortonian 

climate. This suite of Tortonian experiments builds on the initial Mioc series of simulations 

(Mioc1 - Mioc5). Within the Mioc series the vegetation boundary condition was set as global 

shrublands (Lunt et al., 2008). This limited the amount of vegetation – climate feedbacks (as 

shrubs are the least biasing land surface cover), allowing the impacts of the various SST 

profiles to be explored (Lunt et al., 2008). The series of model experiments presented in this 

chapter are referred to as Tort1 – Tort4 (Table 5.1). The experiments are based on the Mioc5 

simulation from Lunt et al. (2008) as this proved to be the most comparable to 

palaeobotanical data (Chapter 4). 

Each of the four new Tort experiments uses identical boundary conditions to Mioc5 (Lunt et 

al., 2008) with the exception of the land surface scheme, which is changed to investigate the 

impacts of vegetation on climate. The GCM HadAM3 was introduced in Chapter 4 as were the 

Mioc5 boundary conditions. The new experiment Tort1 is identical to Mioc5, which allows 

any differences between computer systems to be understood. Mioc5 was simulated at the 

University of Bristol, whereas Tort1 – Tort4 were run at the University of Leeds. Different 

computer systems can produce slightly different climates due to system – specific model fixes 

and differences in computer architecture (S.J. Hunter, 2012 Pers. Comm.). As Tort1 is a 

replication of Mioc5 it is initiated with global shrublands and will form the control 

experiment. All the other experiments can then be compared against this control to 

understand the impacts on climate of changing vegetation. Tort2 changes the initial 

vegetation, from the global shrublands of Tort1, to global forests (Table 5.1). This will provide 

an opposing view to global shrublands as forests should have a strong feedback on climate 

(Notaro et al., 2006). Tort3 introduces the global vegetation hybrid from Chapter 4 into the 
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model. This experiment seeks to explore the impact of realistic vegetation on modelling the 

Tortonian climate. Tort4 returns to having global shrublands as the model boundary condition 

but changes the land surface exchange scheme from MOSES 1 (Cox et al., 1999) to MOSES 2 

(Essery et al., 2001). The differences between the two land surface exchange schemes will be 

presented in the following sub-section. 

 

Experiment Description 

Mioc5 Original (Lunt et al., 2008) 

Tort1 Replicant of Mioc5 run on University of Leeds computer 

Tort2 Tort1 + global forests 

Tort3 Tort1 + Tortonian vegetation reconstruction (Chapter 4) 

Tort4 Tort1 + MOSES 2 

Table 5.1. The details of AGCM experiments Tort1 – Tort4. 

 

5.2.2. MOSES1 and MOSES2 

The Met Office Surface Exchange Scheme (MOSES) calculates the surface to atmosphere 

fluxes of heat and water (Cox et al., 1999). It also updates the surface and subsurface 

variables, which influence these fluxes (Cox et al., 1999). MOSES 1 uses a land cover 

classification scheme of 23 different types (although seven of which are anthropogenic and 

not applicable to palaeoclimates) and three soil textures: fine, medium and course (Cox et al., 

1999). Each land cover classification has nine surface parameters: root depth, snow-free 

albedo, cold deep-snow albedo, surface resistance, roughness length, canopy water capacity, 

surface infiltration enhancement factor, leaf area index and canopy height. Whilst the three 

soil textures are defined by relative fractions of clay, silt and sand. Each soil texture then has 

eight parameters controlling soil temperature and hydrology (Cox et al., 1999). It is this 

combination of surface and soil parameters that drives a single surface energy balance for 

each GCM grid cell through sub-grid cell processes such as surface heat flux, surface runoff 

and transpiration etc. (Cox et al., 1999). MOSES 2 built on MOSES 1 by introducing 

heterogeneity (Essery et al., 2001). In MOSES 2 this heterogeneity is achieved by allowing 

each grid cell to be tiled; containing a fraction of the eight land cover types or ice. Each grid 

cell contains a proportion of each land cover type and so eight different surface energy 

balances are calculated and contribute towards the overall grid cell level exchanges with the 

atmosphere (Essery et al., 2001). Several other improvements were made on MOSES 1, 
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including a better representation of snowfall (Essery and Clark, 2003). Overall the 

modifications made to MOSES 1 to create MOSES 2 have led to more realistic model 

simulations of modern climate (Essery and Clark, 2003). 

5.3. Results 

Overall the Tort1 – Tort4 simulations show a globally warmer and wetter world than the pre-

industrial (Table 5.2). Globally the MAT is 4.5 – 4.9 °C warmer than the pre-industrial and 0.31 

– 0.38 mm/day wetter (Table 5.2). In the following sub-sections each model simulation will be 

described in terms of its differences with Tort1 to highlight the impact of vegetation on the 

climate system. Globally Tort1 is slightly cooler (0.07°C) and drier (0.09 mm/day) than Mioc5. 

The comparison of Tort2 to Tort1 shows the impacts of initialising a GCM experiment with the 

climatologically opposite of global shrublands: global forests. Comparing Tort3 to Tort1 shows 

the effects of including a realistic Tortonian vegetation reconstruction on climate. The 

comparison of Tort4 to Tort1 shows the differences in simulated climate between MOSES2 

and MOSES1. Each experiment will then be compared to the quantitative climate data, 

reconstructed from palaeobotanical sources (Chapter 3), in an attempt to show any 

improvements towards the modelling of the Tortonian climate. 

 

Measurement Unit 
Pre-
industrial Mioc5 Tort1 Tort2 Tort3 Tort4 

Global Mean 
MAT (°C) 13.77 18.21 18.14 18.32 18.26 18.63 

MAP (mm/day) 2.88 3.23 3.19 3.26 3.24 3.19 

Land only mean 
MAT (°C) 7.18 11.88 11.54 12.16 11.98 13.21 

MAP (mm/day) 2.26 2.57 2.42 2.77 2.62 2.17 

Difference with pre-
industrial global mean 

ΔMAT (°C) - 4.44 4.37 4.55 4.49 4.86 

ΔMAP (mm/day) - 0.35 0.31 0.38 0.36 0.31 

Difference with pre-
industrial land only mean 

ΔMAT (°C) - 4.7 4.36 4.98 4.8 6.03 

ΔMAP (mm/day) - 0.31 0.16 0.51 0.36 -0.09 

Difference with tdaua 
global mean 

ΔMAT (°C) -4.37 0.07 - 0.18 0.12 0.49 

ΔMAP (mm/day) -0.31 0.04 - 0.07 0.05 0 

Difference with tdaua 
land only mean 

ΔMAT (°C) -4.36 0.34 - 0.62 0.44 1.67 

ΔMAP (mm/day) -0.16 0.15 - 0.35 0.2 -0.25 

Table 5.2. The climate details (MAT and MAP) of the experiments Tort1 – Tort4. Differences with pre-
industrial are based on the same experiment presented in table 4.1. 
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5.3.1. Tort2 – global forests 

Compared to Tort1 the application of global forests in Tort 2 provides an atmospheric 

warming of 0.18°C globally and 0.62°C over the land (Table 5.2). Annually this warming is 

mostly restricted to the northern hemisphere, particularly in north eastern North America 

and north eastern Eurasia where the difference with Tort1 is ≥4°C (Fig. 5.1). Across the rest of 

the northern hemisphere there is a warming of around 3°C at the high latitudes and 1-2°C in 

the mid-latitudes (Fig. 5.1). In the southern hemisphere there is a warming of 1-2°C in 

southern Australia and isolated parts of southern Africa and South America (Fig. 5.1). In the 

tropics there is mostly little or no difference in global annual MAT, except for areas of a 1-3°C 

cooling in North Africa and northern South America (Fig. 5.1). Seasonally, December-January-

February (DJF) shows areas of up to 4°C warming (North America, north of the Paratethys 

central and east Asia and Australia) and areas of up to 4°C cooling (Alaska, central high 

latitude Eurasia, northern South America, North Africa, north India and northern south-east 

Asia) when compared to Tort1 (Fig. 5.2). There is significant warming in the northern 

hemisphere during March-April-May (MAM) of up to 11°C, particularly in the north eastern 

areas of the continents (Fig. 5.3). During June-July-August (JJA) Tort2 continues to show a 

warming on Tort1, especially at the high latitudes (Fig. 5.4). There is also significant cooling of 

up to 5°C in isolated parts of the tropics during JJA (Fig. 5.4). The strong warming in the north 

eastern part of the northern hemisphere continents continues into September-October-

November (SON) (Fig. 5.5). There is also warming in southern Australia of up to 3°C (Fig. 5.5). 

Most changes in precipitation between Tort2 and Tort1 occur within the tropics (Fig. 5.6). 

MAP increases globally by 0.07 mm/day and terrestrial MAP by 0.35 mm/day (Table 5.2). The 

strongest increases in MAP occur; west of Central America, northern South America, across 

north and west Africa, Arabian Peninsula and northern Australia (Fig. 5.6). Significant 

decreases in MAP are found offshore west India and either side of the Southeast Asian 

peninsula (Fig. 5.6). Seasonally there are increases of rainfall of up to 8 mm/day in parts of 

northern South America, equatorial West Africa and northern Australia during DJF (Fig. 5.7). 

There is a much more uniform increase in precipitation during MAM across most areas of 

land, typically of 1-2 mm/day (Fig. 5.8). JJA shows significant increases in precipitation of up 

to 13 mm/day in isolated regions such as; offshore west Central America and northern India/ 

Pakistan (Fig. 5.9). Decreases in precipitation, of up to 6 mm/day occur across India and 

Southeast Asia during SON (Fig. 5.10). Whilst there are increases of up to 6 mm/day across 

Africa and offshore Central America (5.10). 
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Figure 5.1. Global mean annual surface air temperature anomaly with Tort1. 
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Figure 5.2. Global DJF surface air temperature anomaly with Tort1. 
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Figure 5.3. Global MAM surface air temperature anomaly with Tort1. 
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Figure 5.4. Global JJA surface air temperature anomaly with Tort1. 
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Figure 5.5. Global SON surface air temperature anomaly with Tort1. 
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5.3.2. Tort3 – Tortonian hybrid vegetation 

Compared to the global shrublands of Tort1 the application of the Tortonian global vegetation 

reconstruction (Chapter 4) shows a global increase in MAT of 0.12°C and an increase across 

the land of 0.44°C (Table 5.2). Geographically, most of this warming occurs in the northern 

hemisphere especially at the high latitudes, where parts of Arctic North America show an 

increase in MAT of 4°C (Fig. 5.1). There is also significant warming in north eastern Eurasia 

and subtle warming across southern Australia (Fig. 5.1). The tropical regions show no change 

or a slight decrease in MAT, of around 1-2 °C (Fig. 5.1). During DJF the strongest differences in 

temperature are a strong warming (up to 6.7°C) across central and eastern Eurasia and a 

warming across north eastern North America (Fig. 5.2). Significant cooling of up to 5°C is 

found across North Africa and other isolated parts of the tropics (Fig. 5.2). There is a warming 

in the northern hemisphere of up to 10°C during MAM and up to 9°C during JJA (Fig. 5.3, Fig. 

5.4). During JJA there is also significant cooling (up to 6°C) in the tropics (Fig. 5.4). During SON 

there is a much more mixed warming and cooling pattern, compared to Tort1 (Fig. 5.5). 

Warming of up to 3°C occurs across northern North America, Greenland and northeast 

Eurasia, central and eastern Eurasia and southern Australia (Fig. 5.5). Cooling, of up to 3°C, is 

found in Alaska, mid – latitude North America, central north Eurasia and areas of the tropics 

(Fig. 5.5). 

The application of a more realistic Tortonian vegetation shows an overall increase in MAP of 

0.05 mm/day globally and 0.2 mm/day across the land (Table 5.2). Globally there are 

increases in MAP: offshore west Central America, northern South America, West Africa, 

northern India and offshore north Australia (Fig. 5.6). Significant decreases in MAP are found 

offshore of west India and either side of the Southeast Asian peninsula (Fig. 5.6). During DJF 

increases in precipitation of up to 6 mm/day occur in isolated regions of the tropics (Fig. 5.7). 

There is very little difference in precipitation during MAM, between Tort3 and Tort1 (Fig. 5.8). 

During JJA there are large differences in precipitation, with large increases (up to 8 mm/day) 

offshore west Central America, northern South America and northern India. There are strong 

decreases in precipitation offshore west India and either side of the Southeast Asian 

peninsula (Fig. 5.9). These patterns in the differences in precipitation are also seen during 

SON, but with a larger extent to the area of reduced precipitation in India and Southeast Asia 

(Fig. 5.10). 
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Figure 5.6. Global mean annual precipitation anomaly with Tort1. 
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Figure 5.7. Global DJF precipitation anomaly with Tort1. 
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Figure 5.8. Global MAM precipitation anomaly with Tort1. 
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Figure 5.9. Global JJA precipitation anomaly with Tort1. 

 



- 137 - 

 

Figure 5.10. Global SON precipitation anomaly with Tort1. 

 

5.3.3. Tort4 – MOSES2 with global shrublands 

Compared to MOSES1, used in Tort1, the implementation of MOSES2 in Tort4 shows a global 

increase in MAT of 0.49°C and an increase of 1.67°C across the land (Table 5.2). There is 

warming on all continents of up to 5.8°C, except north western Eurasia and Antarctica (Fig. 

5.1). During DJF there is significant cooling, of up to 6°C, on Antarctica and north western 
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Eurasia (Fig. 5.2). Other areas of the world show considerable warming of up to 10°C (Fig. 

5.2). The areas of strongest warming are Alaska, Greenland, northern South America, central 

and southern Africa, central and eastern Asia and Australia. The difference between Tort4 and 

Tort1 is large during MAM, with warming of up to 8°C in the high northern latitudes (Fig. 5.3). 

All continental regions show a warming except Antarctica and Australia (Fig. 5.3). During JJA 

there is a warming across the northern latitudes, except in regions with prescribed land ice 

(Fig. 5.4). There is warming of up to 9°C northward of 10°S, particularly in east North America, 

Europe, east Asia and northern South America (Fig. 5.4). In the southern hemisphere there is 

little or no change between Tort4 and Tort1 (Fig. 5.4). During SON in Tort4 the northern 

hemisphere shows a warming of up to 6°C in northern North America and Greenland, but 

little or no warming in high latitude Eurasia (Fig. 5.5). There is also significant warming in the 

tropics and the southern hemisphere, when compared to Tort1 (Fig. 5.5). In the southern 

hemisphere South America and Australia show warming of up to 6°C (Fig. 5.5). 

There is no difference in globally averaged MAP, however across the land there is a reduction 

in precipitation of 0.25 mm/day (Table 5.2). In Tort4 most continental regions show a 

reduction in MAP of up to 3 mm/day (Fig. 5.6). During DJF there is an increase in 

precipitation, of up to 7.4 mm/day offshore northern Australia (Fig. 5.7). However, western 

North America, northern South America and Madagascar show a decrease in rainfall of up to 

5 mm/day. There is no significant increase in precipitation across any continental regions 

during MAM, but considerable decrease in northern South America and North Africa (Fig. 5.8). 

JJA shows a general reduction in precipitation across the continents of up to 9.6 mm/day (Fig. 

5.9). However, there are moderate increases in precipitation across the Arabian Peninsula 

and the CAS (Fig. 5.9). There is a reduction in precipitation, of up to 9.6 mm/day in North 

Africa and Southeast Asia (Fig. 5.9). During SON offshore Southeast Asia shows has an 

increase in precipitation of up to 4.4 mm/day (Fig. 5.10). However, across the continents 

there is either no increase, or a decrease in rainfall of as much as 3.8 mm/day (Fig. 5.10). 

 

 

5.3.4. Data – model comparison 

Using the data presented in Table 3.4 the experiments Tort1 to Tort4 have been compared to 

the MAT and MAP estimates from palaeobotanical reconstructions (Table 3.4). To compare 

temperatures between data and models, the modelled mean annual Surface Air Temperature 

(SAT) has been used rather than the surface temperature (i.e. the skin temperature). The SAT 

is measured at 2m above ground level and should represent the ambient temperature 
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surrounding vegetation. Therefore MAT reconstructions from palaeobotanical data should 

correspond to this. Comparing the SATs predicted in the Tort series of experiments with the 

estimates of MAT from palaeobotanical reconstructions, shows that there is a reasonable 

agreement in MAT for all experiments (Fig. 5.11). The experiment Tort3 shows the highest r
2
 

value (0.79), whilst Tort2 has the lowest (r
2
 = 0.71). Both experiments Tort1 and Tort4 have r

2
 

values of 0.77 (Fig. 5.11). In all the experiments the palaeobotanical temperature 

reconstructions compare well to the model predicted SATs in the tropics (Fig. 5.12). There is 

considerable variability in performance in the mid-latitudes, with examples of sites where 

either the models are either too warm or too cold (Fig. 5.12). At the high latitudes the SATs 

simulated by the models are too cold when compared to the reconstructions from 

palaeobotancial data (Fig. 5.12). 

 

 

Figure 5.11. Comparison of model predicted mean annual SAT (Y-axes) with reconstructions from 
palaeobotanical data (X-axes) (Table 3.4). A. Tort1, B. Tort2, C. Tort3, D. Tort4. 
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Figure 5.12. The geographical and latitudinal SAT differences between model and data. The circles on 
the map represent palaeobotanical data points with numerical MAT estimates. These circles are 
coloured based on the difference between the model and the data, where red shows the model 
was ≥6°C warmer and dark blue shows the model was ≤15° colder than the data. The graphs 
show the latitudinal distribution of SAT differences including any errors associated with the 
palaeobotanical estimates. A. Tort1, B. Tort2, C. Tort3, D. Tort4. 
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Figure 5.12. cont. The geographical and latitudinal SAT differences between model and data. The circles 
on the map represent palaeobotanical data points with numerical MAT estimates. These circles 
are coloured based on the difference between the model and the data, where red shows the 
model was ≥6°C warmer and dark blue shows the model was ≤15° colder than the data. The 
graphs show the latitudinal distribution of SAT differences including any errors associated with 
the palaeobotanical estimates. A. Tort1, B. Tort2, C. Tort3, D. Tort4.. 
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There are differences in the SAT data – model comparison between each of the Tort 

experiments. Comparison of SATs in Tort1 to palaeobotanical data shows that the high 

latitudes, northwest Europe and south of the Paratethys Sea were simulated as being too cold 

(Fig. 5.12a). The high latitude sites in the North Atlantic shows that the model generated SATs 

are 10.0 – 15.8°C too cold, in Alaska the model is 1 - 6°C too cold and in northwest Europe the 

model is 2 - 6°C too cold(Fig. 5.12a). In the mid – latitudes of North America, the Iberian 

Peninsula, Greece-Turkey region and Southeast Asia the model generates SATs 1 - 6°C higher 

than those predicted by palaeobotanical data (Fig. 5.12a). There are sites of good model – 

data agreement in the mid and low latitudes. When the error margins on the data and the 

standard deviation of the experiment is taken into account it can be seen that the greatest 

data – model mismatch is at the high latitudes (Fig. 5.12a). In experiment Tort2 the high 

latitudes again show the largest data model mismatch, but it is not as great as in Tort1 (Fig. 

5.12b). In the North Atlantic the model generated SATs are 10.0 – 13.5°C colder than 

reconstructed from the palaeobotanical vegetation (Fig. 5.12b). Taking into account the error 

margins on the data reconstructions does not make these SATs comparable (Fig. 5.12b). In 

Alaska there is greater disparity between the SATs modelled in Tort2 and those reconstructed 

from data than there was in Tort1 (Fig. 5.12b). In Europe the pattern in temperature 

difference is similar between Tort1 and Tort2, with the exception of southeast Europe where 

Tort2 is slightly warmer (Fig. 5.12b). This greater warmth in southeast Europe brings some 

areas closer to the data reconstructed MATs, but makes others too warm (Fig. 5.12b). 

Southeast Asia also shows little improvement when compared to Tort1 (Fig. 5.12). Tort3 

shows a comparable pattern of data – model temperature differences to Tort2 (Fig. 5.12c). 

Comparing the SATs from Tort4 to the MATs reconstructed from palaeobotanical data, shows 

that most sites in the low and mid – latitudes were simulated as too warm (Fig. 5.12d). This 

over-warming of the low and mid - latitudes ranges from: 0.7 – 3.8°C in North America, 0.6 – 

6.7°C in Europe and up to 6°C in Southeast Asia (Fig. 5.12d). The higher latitudes are still too 

cold in Tort4 but the degree of miss-match is highly variable. In Alaska two data sites are 

colder than the SATs predicted by Tort4 by up to 2.2°C and three palaeobotanical sites are 

warmer than model derived SATs by as much as 2.9°C (Fig. 5.12d). However, when the error 

on the data reconstructions is taken into account Tort4 performs well in the Alaska region 

(Fig. 5.12d). In the North Atlantic the model generated SATs are too cold to compare 

favourably to the data, even when the errors are taken into account (5.12d). The model SATs 

are too cold in Northwest Europe as well, but when the range of possible MATs reconstructed 
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by palaeobotanical data is taken into account the temperatures are comparable (Fig. 5.12d). 

Figure 5.13 shows that for experiments Tort2 and Tort3 57% of data model comparisons 

show between 0 and ±2°C difference. This drops to 54% for Tort1 and 47% for Tort4 (Fig. 

5.13). Looking at the extreme differences (greater than ±4°C) between data and model 

generated SATs Tort2 has the highest proportion of large data model differences: 23% (Fig. 

5.13). Tort4 has 19% of data-model comparisons greater than ±4°C, Tort1 and Tort3 both 

have 16% of the model predicted SATs showing a large difference with MATs reconstructed 

from palaeobotanical data (Fig. 5.13). 

Comparison between model-predicted MAP and those reconstructed from palaeobotanical 

data shows considerably less agreement (Fig. 5.14). Experiment Tort3 shows the highest r2 

value however, this is only 0.08 and not significant. The other experiments have r
2
 values of 

≤0.07 showing very little comparability between model-predicted MAP and the estimates 

from palaeobotanical data (Fig. 5.14). All the Tort experiments are too dry, when compared 

to the reconstructed MAP from palaeobotanical data. There are exceptions to this where 

exceptionally wet regions of the simulated world do not compare to drier proxy 

reconstructions (Fig. 5.14). 

 

 

Figure 5.13. The percentage of data sites grouped into difference with model temperature increments. 
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Figure 5.14. Comparison of model predicted MAP (Y-axes) with reconstructions from palaeobotanical 
data (X-axes) (Table 3.4). A. Tort1, B. Tort2, C. Tort3, D. Tort4. 

5.4. Discussion 

5.4.1. The impacts of changing the land surface boundary conditions on Tortonian climate 

The GCM experiments presented in this chapter show that changing the initial global 

vegetation and using a different land surface scheme warms the global Tortonian climate by 

0.18 - 0.49°C and warms SAT over the land by 0.44-1.67°C (Table 5.2). The greatest change in 

global and land-only MAT is achieved by applying the MOSES2 land surface scheme, whilst 

keeping the initial vegetation as global shrublands (Tort4) (note that the Tortonian hybrid 

vegetation was not incorporated into MOSES2). Experiment Tort2, which used MOSES1 and 

global forests had the second greatest warming (Table 5.2). Finally the experiment using the 

hybrid global vegetation reconstruction presented in Chapter 4 (Tort3) had the smallest 

increase in MAT when compared to Tort1. However, despite having the smallest increase in 

MAT on Tort1, Tort3 compares best to the reconstructed MATs presented in Chapter 3 (Fig. 

5.11). Experiment Tort4 also shows an improvement in the fit to proxy reconstructions, whilst 

Tort2 compares less well to the palaeobotanical based MAT reconstructions than Tort1 (Fig. 

5.11). Compared to Mioc5 all but experiment Tort2 compare more favourably to proxy based 

MAT reconstructions (Fig. 5.11; Table 4.1). 

The strong warming in Tort4, when compared to Tort1, will be due to the improved snow 

albedo, snow hydrology and snow interaction with vegetation canopy parameters in MOSES2 
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(Essery and Clark, 2003). The global warming has allowed MATs at the high latitudes to get 

closer to those reconstructed from palaeobotanical data (though many are still too cold), but 

has also warmed the tropical and warm-temperate zones above the temperatures suggested 

from palaeobotanical data (Fig. 5.12). However, this warming is not present globally in every 

season. During the northern hemisphere winter (DJF) there is a strong cooling signal in high 

latitude Eurasia, which is likely the result of albedo from the improved snowfall scheme in 

MOSES2 (Essery and Clark, 2003). Both Tort2 and Tort3 show annual MAT increases at the 

high latitudes compared to Tort1 (Fig. 5.1). As Tort1, Tort2 and Tort3 all used MOSES1, this 

warming in Tort2 and Tort3 is related to the presence of trees decreasing surface albedo 

(Notaro et al., 2006). This signal is especially pronounced in Tort3, where high latitude zones 

of temperate grassland are clearly visible as areas with smaller MAT differences compared to 

Tort1, highlighting the strong warming of high latitude forests (Figs. 4.4, 5.1). In general, the 

patterns in the MAT difference with Tort1 are comparable between Tort2 and Tort3 (Fig. 5.1). 

This is related to the change from homogenous shrub PFTs, used in Tort1, to having trees 

globally in Tort2 and realistically distributed in Tort3. These results, as well as the 

improvement in the data-model comparison between the palaeobotanical data in Chapter 3 

and the climate of Tort3 shows the importance of vegetation boundary conditions in 

promoting high latitude temperature increases whilst having little impact on tropical climates 

(Fig. 5.1). Overall, the initialisation of a Tortonian AGCM experiment with a realistic 

vegetation generates a climate most comparable to estimates reconstructed from 

palaeobotanical data. This shows that the model is interpreting the forcings from a realistic 

vegetation in a beneficial way. Therefore if the Tortonian hybrid was incorporated into 

MOSES2 then the data-model fit would be expected to improve. However, it should be noted 

that in an AGCM the primary control on temperature is the SSTs prescribed to the model. This 

means that any further improvement in the data – model comparison is likely to come from a 

better understanding of Tortonian SST distributions (Wood et al., 2012). 

In the Tort series of experiments there is little similarity between the GCM generated MAP 

and those reconstructed from palaeobotanical data (Fig. 5.14). The most comparable 

experiment is Tort3 (MOSES1; Hybrid vegetation) and the least comparable is Tort4 (MOSES2; 

global shrublands). This shows the benefit of implementing a Tortonian modelling study with 

an accurate vegetation boundary condition. Interestingly the large MAT increase in Tort4 co-

occurs with no change in global MAP (Table 5.2). This may relate to both Tort1 and Tort4 

being initialised with global shrublands, whereas the experiments Tort2 and Tort3 contained 

more forested regions and experienced an increase in global MAP (Table 5.2). This could be 

the converse result from previous studies that showed the replacement of forests by more 
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open vegetation types reduces precipitation (Notaro and Liu, 2008; Shukla et al., 1990). When 

comparing model generated precipitation to proxy reconstructed values we should be 

mindful that it is a well reported problem that GCMs struggle to reproduce precipitation 

quantities recorded in the fossil record (Haywood et al., 2009). This however, could stem 

from multiple problems including model boundary conditions such as soils, lakes and 

orography. 

 

5.4.2. Comparison to other Tortonian modelling studies 

In the introduction to this chapter it was suggested that the inclusion of Tortonian vegetation 

as a boundary condition into GCM experiments actually led to a smaller increase in MAT 

compared to pre-industrial. This was based on published Tortonian AOGCM modelling studies 

such as Micheels et al. (2011) where the inclusion of a Tortonian vegetation reconstruction 

(from Micheels, 2003) led to a 1.50°C warming compared to their pre-industrial simulation. 

Using the same global vegetation but an AGCM, Micheels et al. (2007) created a Tortonian 

climate 0.6°C warmer than their pre-industrial control experiment. Whereas, the Mioc5 

simulation with global shrublands, rather than Tortonian vegetation, had a +4.44°C MAT 

difference with pre-industrial (Lunt et al., 2008). These differences may be related to 

prescribed CO2 differences, the Micheels et al. (2011) study used 360 ppmv, whilst the Mioc5 

experiment had CO2 set to 395 ppmv (Lunt et al., 2008). In a separate study Micheels et al. 

(2009a) simulated Tortonian climate at different atmospheric concentrations of CO2 using 

boundary conditions similar to Micheels et al. (2011). Using an Earth Simulator of 

Intermediate Complexity (EMIC) Micheels et al. (2009a) performed CO2 sensitivity studies 

using atmospheric concentrations of 360 and 460 ppmv; these yielded MAT increases on pre-

industrial of 3.00 and 3.70°C respectively. These MAT increases on pre-industrial are greater 

than Micheels et al. (2011) but still lower than reported for Mioc5 (Lunt et al., 2008). A recent 

modelling study using an AOGCM and a dynamic vegetation model simulated a climate with a 

MAT 2.88°C warmer than the pre-industrial (Bradshaw et al., 2012). This model was also 

initiated with global shrublands like the Mioc5 simulation (Lunt et al., 2007). This experiment 

with an AOGCM used an atmospheric CO2 concentration of 400 ppmv (Bradshaw et al., 2012), 

which shows that using global shrublands does not always produce MATs significantly greater 

than when using a Tortonian global vegetation (e.g. Micheels et al., 2009a). Within this 

chapter the three experiments Tort2 – Tort4 all produced climates substantially warmer than 

the pre-industrial (Table 5.2). These experiments were run with global forests, global 

shrublands and the hybrid global vegetation presented in Chapter 4. Of the three experiments 
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designed to test the impact of vegetation on climate, the experiment with the realistic 

Tortonian global vegetation (Tort3) produced the lowest MAT difference with pre-industrial 

(Table 5.2). Tort3 however compared most favourably to MAT and MAP values reconstructed 

from palaeobotanical data (Chapter 3). Interestingly, changing the land surface scheme from 

MOSES1 to MOSES2 can have a large impact on global temperatures comparable to changing 

the actual prescribed vegetation cover. However, as has been previously stated, the main 

driving force on MAT in an AGCM is the prescribed SSTs. It could be that these prescribed 

SSTs are artificially generating the higher MAT differences with the pre-industrial. Further to 

this all of the previously mentioned modelling experiments use different models; COSMOS 

(Micheels et al., 2011), ECHAM4 (Micheels et al., 2007), HadAM3 (Lunt et al., 2007; this 

study), HadCM3L (Bradshaw et al., 2012) and Planet Simulator (Micheels et al., 2009a). To 

properly understand these differences in simulated Tortonian climate, especially those using 

realistic Tortonian vegetation, a proper model intercomparison project would be required 

where the models are initialised with comparable boundary conditions (Haywood et al., 

2010). 

 

5.5. Conclusions 

From the data model comparison it is clear that the inclusion of realistic Tortonian vegetation 

into an atmosphere-only GCM provides a more robust fit to the palaeobotanical MAT 

reconstructions. This chapter has also shown that a considerable warming on pre-industrial 

can be achieved through using a different land surface scheme with global shrublands, but 

this may be detrimental to global precipitation. It can also be concluded that using global 

shrublands provides a reasonable fit to proxy data when global vegetation is unknown. 

However, when a suitable global vegetation reconstruction is available this should be 

included in future modelling studies. 

Further experiments should repeat Tort3 with MOSES2 rather than MOSES1 to see what 

affects the more up-to-date land surface scheme would have on the data-model comparison. 

A more comprehensive data model comparison could be achieved by using the biomes 

presented in Chapter 3 and using the climates of the Tort series to produce biome maps using 

BIOME4. This would provide a more meaningful comparison as it inadvertently takes into 

account multiple climate parameters such as the degree of seasonality. The importance of 

this can be best explained by considering two hypothetical areas of the Earth, both of which 

have an MAT of 10°C. However, area one is highly seasonal and fluctuates from -15°C in the 
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winter to 25°C in the summer. Whereas area two has limited seasonal fluctuation in 

temperature and only changes from a low of 8°C in the winter to a summer temperature of 

12°C. These two areas would have totally distinct vegetation types but this wouldn’t be 

apparent in the MAT. By comparing the biomes presented in Chapter 3 to BIOME4 output a 

more thorough data – model comparison could be achieved. 
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Chapter 6 

The global biogeography and biome specialisation of Late Miocene 

mammals 

 

Who can explain why one species ranges widely and is very numerous, and why another allied 

species has a narrow range and is rare? – Charles Darwin, 1859 

 

6.1. Introduction 

In the previous four chapters I have shown Middle to Late Miocene global vegetation and 

climate from palaeobotanical data (Chapters 2 and 3), data – model hybridisation (Chapter 4) 

and climate modelling (Chapter 5). This has provided an unequalled view of global vegetation, 

which can now be used to explore the ecology and biogeography of Late Miocene mammals 

(this Chapter). In particular this chapter will focus on the biome preferences of mammals 

during the Late Miocene. Most modern mammals are restricted to one or two biomes 

(Cantalapiedra et al., 2011; Hernández Fernández & Vrba, 2005; Moreno Bofarull et al., 2008). 

If this was also true of mammals during the Late Miocene then understanding their 

palaeoecology in terms of biome preferences, will enable mammal faunas to be used to 

reconstruct vegetation biomes (Chapter 7). This would allow mammal faunas to be used to 

improve the geographic spread of biomes, providing more complete data maps (Fig. 3.5) and 

improved data-model hybrid maps (Fig. 4.4). The ultimate aim over the next two chapters is 

to expand our knowledge of Late Miocene global vegetation using mammals. The current 

chapter will explore whether the geographic distribution of Late Miocene mammal taxa is 

related to the distribution of biomes. 

Today the distribution of life is not uniform, but varies in a non-random and often predictable 

manner (Lomolino et al., 2006). The present day distribution and diversity of mammals is the 

result of ambient environmental conditions and the evolutionary and geographical history of 

each taxon (Bush, 1994; Lomolino et al., 2006; Moreno Bofarull et al., 2008). It has long been 

established that many abiotic and biotic factors form ecological gradients within the 

environment; these are n-dimensional ecological spaces where the axes are resources or 

environmental variables (Hutchinson, 1957; Futuyma & Moreno, 1988). Every species can 

survive within an envelope of environmental conditions. Some species have narrow 
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envelopes (stenotopic), whilst others are more tolerant (eurytopic). These ranges of 

environmental conditions are bordered by areas of physiological stress, where a species 

survival is more difficult (Lehman & Fleagle, 2006). Where n-dimensional ecological spaces 

are defined for many species within a habitat they are defined as niches (Hutchinson, 1957). 

For example, two hypothetical nut eating rodents live in the same forest. The first rodent has 

powerful jaws but lacks the ability to climb, whilst the second rodent can climb but has weak 

jaws. Plotting canopy height against thickness of nut shells consumed would show these two 

rodents occupy different envelopes within n-dimensional space: The two rodents occupy 

different niches in this hypothetical forest. This type of resource partitioning has been 

observed in modern mammals and allows animals to have different life strategies to avoid 

competition (Dueser and Shugart Jr., 1978). Reconstructing a fossil mammals ecological niche 

is complex and often relies on a proxy such as range size (DeSantis et al., 2012). 

Reconstructing fossil niches is further complicated by the observation that one modern taxon 

can occupy multiple niches (Foley et al., 2010; Kerosky et al., 2008). Using Late Miocene 

mammal niches to facilitate the reconstruction of vegetation would be complex, potentially 

very fine scale (reconstructing habitats rather than biomes) and require multiple steps of 

interpretation. 

Macroevolutionary habitat theory (Vrba, 1992; 1995; 1999) states that the main promoters of 

speciation and extinction are physical and environmental changes. Part of this theory is the 

resource use hypothesis, which stresses the degree of specialization to within biome specific 

resources (Vrba, 1980; 1987). Biome resources include moisture, temperature, substrate, 

vegetation cover, food items and any other environmental components that can be utilized 

by an organism (Vrba, 1987; Moreno Bofarull et al., 2008). The resource use hypothesis 

allows the identification of stenobiomic (inhabits a particular biome) and eurybiomic (inhabits 

multiple biomes) species (Hernández Fernández and Vrba, 2005; Moreno Bofarull et al., 

2008). It is thought that stenobiomic species, being specialist and more susceptible to 

removal of a resource, have a higher speciation and extinction rate than eurybiomic species 

(Hernández Fernández and Vrba, 2005; Moreno Bofarull et al., 2008). From this Hernández 

Fernández and Vrba (2005) made four predictions based on the resource use hypothesis: (1) 

specialists should be more numerous than generalists, i.e. there should be a higher degree of 

stenobiomic species than eurybiomic; (2) certain taxonomic groups of animals should be 

more eurybiomic than others, as their resources are more widespread; (3) biomes that have 

been fragmented due to past climatic changes should contain a higher proportion of 

stenobiomic species than those that have not undergone extensive fragmentation; and finally 

(4) from the previous prediction, it should be expected that certain combinations of biomes 
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are more commonly inhabited than others. These combinations must be those that include 

few biomes (Hernández Fernández & Vrba, 2005; Moreno Bofarull et al., 2008). The first 

prediction of Hernández Fernández and Vrba, (2005): that biome specialists should be more 

numerous than biome generalists, would allow fossil mammals to be used as a new proxy for 

biomes. If the geographic distribution of a mammal can be overlain onto a biome map then 

the Biome Specialisation Index (BSI) can be calculated and compared to others (Hernández 

Fernández & Vrba, 2005; Moreno Bofarull et al., 2008). The BSI is a simple metric that counts 

the number of biomes that a taxon inhabits and allows stenobiomic (BSI of 1 or 2) and 

eurybiomic (BSI >5) taxa to be defined (Hernández Fernández and Vrba, 2005). Work on 

modern mammal faunas has shown that the majority of mammals are stenobiomic, with 

most only inhabiting a single biome (Cantalapiedra et al., 2011; Hernández Fernández & Vrba, 

2005; Moreno Bofarull et al., 2008). This is despite Monte Carlo statistics predicting that most 

species should inhabit two or three biomes (Cantalapiedra et al., 2011; Moreno Bofarull et al., 

2008). When looking at the order level there are greater differences. For example the 

Rodents and Lipotyphla show a high proportion of strongly stenobiomic taxa (Moreno 

Bofarull et al., 2008), whereas the Carnivora contains a higher than expected number of 

eurybiomic species (Hernández Fernández & Vrba, 2005; Moreno Bofarull et al., 2008). It is 

postulated that the reason the Rodents and Lipotyphla contain a greater number than 

predicted of stenobiomic species, is due to the typically small body size which limits dispersal 

(Moreno Bofarull et al., 2008). The Carnivora probably contains a higher than expected 

number of eurybiomic taxa because the availability of prey is unlikely to be controlled by a 

biome (Hernández Fernández & Vrba, 2005; Moreno Bofarull et al., 2008). Herbivores show 

mixed results, some orders are stenobiomic others are eurybiomic (Cantalapiedra et al., 2011; 

Hernández Fernández & Vrba, 2005; Moreno Bofarull et al., 2008). Mean BSIs of 2 – 3.5 are 

typical for modern herbivore orders (Cantalapiedra et al., 2011; Hernández Fernández & Vrba, 

2005; Moreno Bofarull et al., 2008). Eurybiomic herbivore orders are typically those with low 

numbers of species such as the Proboscidea (Hernández Fernández & Vrba, 2005). So far this 

work has focussed on modern faunas and has yet to be applied to the palaeontological 

record, despite the conclusion of Hernández Fernández and Vrba (2005) that the key to 

macroecological patterns is to be found in the past. 

Part of the reason that global scale mammal palaeoecology studies have not been attempted 

is a long held view that the terrestrial fossil record is more incomplete than the marine, but 

this is contentious (Benton, 2001; Benton et al., 2011; Lloyd et al., 2011). Global 

completeness studies on the Late Miocene mammal fossil record are not reported in the 

literature. However, work on the Neogene basins of the Iberian Peninsula has shown that 
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with extensive sampling and favourable preservation conditions the mammalian fossil record 

can be 90% complete at the generic level (Alba et al., 2001). Conversely recent work on the 

Chiroptera has estimated that over the whole Cenozoic only 12% of bat genera are preserved 

as fossils (Eiting & Gunnell, 2009). Studies on sediment successions have shown that some of 

the most complete successions are terrestrial (Sadler, 1981; Schindel, 1982). Reviewing the 

literature on the completeness of the terrestrial fossil record led Benton (2001) to conclude 

that: diversity and macroecological studies are possible from the terrestrial fossil record.  

This chapter undertakes a macroecological study of global Late Miocene mammals to 

discover if they fit into the first prediction of the resource use hypothesis: more taxa should 

be biome specialists than generalists. If this can be shown then Late Miocene mammals can 

be used as a proxy for vegetation. Through the combination of a 407 locality mammal 

dataset, and the global biome data presented in Chapter 3, the Biomic Specialisation Index 

(BSI) has been calculated for Late Miocene mammals. 

 

6.2. Methods 

6.2.1. The mammal data 

Using published literature, the Neogene Old World Mammal database (Fortelius, 2011) and 

the Paleobiology database (Alroy, 2011) 407 mammal localities have been synthesised in a 

new database termed MAD (Miocene Animal Database; Appendix C). This database records 

palaeo-rotated vertebrate fossil sites and the original author’s inferred habitat as well as 

taxonomic data. MAD also records information about the sedimentary facies, age and dating 

method, nearest living relative life habit, specimen completeness and any taphonomic 

information provided. The 407 localities have an almost global distribution although there is 

only one reported Late Miocene terrestrial mammal site in Australia (Alroy, 2011; Myers et 

al., 2001) and no fossil localities at latitudes north of 55°N or south of 40°S (Fig. 6.1). The 407 

localities contain 5370 terrestrial mammal occurrences. These occurences are divided into 

1576 named species, in 969 genera, within 119 families, contained within 23 orders. There 

are also 568 accounts of known genus but unidentifiable species; if a fossil’s genus was 

uncertain then it was not recorded in MAD. The taxonomy within MAD has been made 

internally consistent using the recent taxonomic revisions of McKenna and Bell (1997) and 

Alroy (2011). 
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Figure 6.1. The distribution of the 407 Late Miocene mammal localities. A. North America, B. South 
America, C. Western Europe, D. Eastern Europe, E. Africa and F. Asia. Numbers refer to 
Appendices C and D. 
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Figure 6.1. Cont. The distribution of the 407 Late Miocene mammal localities. A. North America, B. 
South America, C. Western Europe, D. Eastern Europe, E. Africa and F. Asia. Numbers refer to 
Appendices C and D. 
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6.2.2. The vegetation data 

The Late Miocene vegetation dataset is taken from Chapter 3 providing 326 biome localities 

for the Tortonian and 252 for the Messinian. As each data point represents an isolated flora, 

whether it came from a borehole or a widely distributed sedimentary unit, comparing the 

mammalian fossil sites with the palaeobotanical fossil sites requires some degree of 

extrapolation. Except where a palaeobotanical assemblage is found at the same locality as a 

mammalian fauna (e.g. Combémorel et al., 1970). From the palaeobotanical sites, gridded 

vegetation maps of the world were generated for roughly two million year intervals (Fig. 6.2). 

These time interval maps are: the early Tortonian (11.6 – 9 Ma), late Tortonian (9 – 7.25 Ma) 

and the Messinian (7.25 – 5.33 Ma).To grid the palaeobotanical data the continents have 

been divided up into grid cells that are 2.5° X 3.75° in size, this size is commonly used in 

palaeoclimate modelling studies (e.g. Lunt et al., 2008). This large grid size does mean that 

some grid cells contain multiple palaeobotanical sites. In some cases these multiple sites in a 

single grid cell are of different biomes. In this event a grid cell has been assigned multiple 

possible biomes, though the location of the biome within a grid cell does not relate to the 

position of the data site within the grid cell. This has been done to not bias the gridcells. For 

example one grid cell in India contains four palaeobotanical sites each indicating the presence 

of a different biome. Rather than bias the methodology by choosing which of these multiple 

biomes a mammal inhabited, any mammal occurring in a multiple biome grid cell was 

recorded as potentially residing in any of the biomes. This might have been avoided with 

smaller grid cells, but this proved to limit the comparisons between mammals and 

palaeobotanical data. It was decided that a larger dataset for comparisons, that might 

artificially create more eurybiomic taxa, was more desirable than a limited dataset. The 

gridded palaeobotanical data shows the occurrence of 18 different biomes from tropical 

evergreen broadleaf forest to desert (Fig. 6.2). 
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Figure 6.2. The gridded vegetation of the Late Miocene, from Chapter 3. a) early Tortonian, b) late 

Tortonian and c) Messinian. 
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Figure 6.2. Cont. The gridded vegetation of the Late Miocene, from Chapter 3. a) early Tortonian, b) late 

Tortonian and c) Messinian. 

 

 

6.2.3. Calculating the biome preferences of Late Miocene mammals 

Using the palaeobotanical based vegetation maps (Fig. 6.2) and the 407 faunal localities (Fig. 

6.1) the biome preferences of Late Miocene mammals have been evaluated.  A Late Miocene 

mammal’s biome preferences were decided using the BSI (Hernández Fernández & Vrba, 

2005; Moreno Bofarull et al., 2008). Each mammal species and genus was evaluated for their 

distribution across the vegetation maps (Fig. 6.2). Using the genus level overcomes the 

difficult question of what is a species in the fossil record, when it is reportedly difficult to 

identify an extant one (Hey, 2001; Kamilar, 2006; Sites & Marshall, 2003). Species level BSI 

data will be presented in Section 6.3, but not discussed at length. The BSI is a simple but 

powerful tool that rates a taxon based on the number of biomes it inhabits, where a score of 

one is a strongly stenobiomic mammal only able to survive in a single biome type. Whereas a 

BSI score of five or more means that the animal in question is a biome generalist and able to 
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tolerate a diverse array of vegetation types and/or climate zones (Hernández Fernández & 

Vrba, 2005). 

With a BSI score applied to each of the 969 genera in MAD, the data were filtered for single 

occurrence taxa. A single occurrence taxon is a mammal that even after exhaustive data 

mining currently only appears once in the Late Miocene fossil record. In total, 29.1% of 

mammal genera in MAD only occur once. For each mammal order, the value is typically 

between 20 – 35% of genera only occurring once in MAD. Some orders in MAD contain 

considerably more genera that only occur once, Late Miocene South American orders contain 

a high proportion (>70%) of genera that have only ever been reported once from the fossil 

record. The Primates also contain a high proportion of genera only reported once (58%). 

Genera that only occur once in MAD could skew the BSI to show more stenobiomic mammals 

than actually existed during the Late Miocene. For example if a genus only occurs once in the 

entire MAD database, and it is located in a grid cell containing only a single biome, then it 

would receive a BSI score of 1. When a genus occurs many times in MAD, and is only found in 

grid cells containing the same biome, then it can be stated with more confidence that this 

genus is a stenobiomic and contains only stenobiomic species. To avoid this possible skewing 

of the BSI scores, it was decided to omit both genera and species that only occur once. In 

general if single occurrence taxa had been included, the proportion of stenobiomic mammals 

would have been much higher in all orders. 

 

6.3. Late Miocene mammalian BSI 

A comparision of 407 Late Miocene mammalian faunas with the palaeobotanical biome data 

suggests that the majority of Late Miocene mammals inhabited only one or two biomes 

(69.7%) (Fig. 6.3; Tab. 6.1). Further 15.8% of Late Miocene genera occupied three biomes and 

13.1% are found in four to six biomes (Tab. 6.1). Only 1.41% of Late Miocene mammalian 

genera could occupy 7 or more biomes. Finally, 16% of the genera have a BSI of zero because 

they do not occur in a grid cell containing palaeobotanical data. The data shows that during 

the Late Miocene the Mammalia had a mean BSI at the genus level of 2.23 and 1.73 at the 

species level (Fig. 6.3; Tab. 6.1). In the following sub-sections the BSI results for each 

mammalian order will be presented and the biome preferences of individual genera will be 

reported. This will provide evidence that individual mammal taxa can be used to infer biomes 

and present new information on an aspect of Late Miocene mammal palaeoecology. 
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Figure 6.3. The Biomic Specialisation Index (BSI) of Late Miocene Mammals. Showing the percentage of 
mammal genera (blue) and species (red) inhabiting each BSI classifiaction. 

 

 
Late Miocene (Global) Modern 

BSI Species Number % Genera Number % South America % Africa % 

1 392 54.52 205 42.53 41.54 34.29 

2 192 26.70 129 26.76 24.40 33.06 

3 94 13.07 76 15.77 21.34 13.88 

4 26 3.62 32 6.64 8.29 5.71 

5 11 1.53 17 3.53 1.14 7.76 

6 2 0.28 16 3.32 1.70 1.63 

7 0 0.00 4 0.83 0.45 3.27 

8 2 0.28 1 0.21 0.68 0.41 

9 
 

0.00 1 0.21 0.45 0.00 

10 
 

0.00 0 0.00 0.00 0.00 

11 
 

0.00 0 0.00 0.00 0.00 

12 
 

0.00 1 0.21 0.00 0.00 

Table 6.1. The Biomic Specialisation Index (BSI) of the Mammalia for the Late Miocene (Global), modern 
South America (Moreno Bofarull et al., 2008) and Africa (Hernández Fernández & Vrba, 2005). 
The modern values have been calculated based on species distribution whilst the Late Miocene 
values are from the distribution of mammals at the genus level excluding single occurrence taxa. 

 

6.3.1. The Rodentia 

The Late Miocene Rodentia is the most taxonomically diverse group in MAD (Number of fossil 

occurrences in MAD [N] = 1306) (Tab. 6.2). The order has a mean BSI of 1.89 showing it is 

strongly stenobiomic. It has a maximum BSI of 6 (Fig. 6.4a) from the genera Hystrix (N = 28) 

and Myocricetodon (N = 26). Both of these are found in a variety tropical to temperate 
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forests, woodlands and more open biomes. In contrast to the previously mentioned 

eurybiomic genera a total of 76.5% of Late Miocene rodents only inhabit one or two biomes 

(Fig. 6.4a). 

At the family level the Rodentia show a preference for two or fewer biomes (Tab. 6.3). The 

family with the most diverse number of genera in MAD is the Cricetidae (N = 318), which 

were a stenobiomic family (mean BSI = 1.83), although the family does include the eurybiomic 

genus Myocricetodon. The Hystricidae (N = 36) had a mean BSI of 3.33 showing the family to 

be eurybiomic. The families Castoridae (N = 94), Eomyidae (N = 42), Heteromyidae (N = 28), 

Muridae (N = 229) and Zapodidae (N = 17) also show a mean BSI of over two (Tab. 6.3). 

Within the Castoridae, the genera show a preference for warm – temperate to temperate 

forests, woodlands, savannas and shrublands, except for the genus Monosaulax (N = 4) which 

may have inhabited tropical evergreen forests. The genus Dipoides (N = 25) shows the most 

eurybiomic distribution (BSI = 5) inhabiting warm – temperate to temperate forests, 

woodlands, shrublands and savannas. Within the Eomyidae the genera Keramidomys (N = 12) 

and Leptodontomys (N = 9) have a BSI of 3. These genera were found in forest and savanna 

biomes in the tropical and warm – temperate regions, whilst Eomyops (N = 15) only inhabited 

warm – temperate mixed forests. The Heteromyidae show a preference for more open 

biomes in the temperate realm, though some taxa may have inhabited warm – temperate 

and temperate forests. The Muridae are the second most diverse rodent family recorded 

during the Late Miocene (Tab. 6.3). The family has a mean BSI of 2.29 and a maximum BSI of 4 

for the genera Apodemus (N = 34), Occitanomys (N = 26) and Paraethomys (N = 11). 

Apodemus and Occitanomys inhabited warm – temperate forests, savanna and shrubland, 

whilst Paraethomys also inhabited tropical shrublands. Other Muridae genera were 

stenobiomic and found in only one or two of biomes (Fig. 6.2A). The Zapodidae contains only 

five Late Miocene genera (Tab. 6.3) and only two of these, Eozapus (N = 9) and Pliozapus (N = 

5), occur at more than one location, both of these had a preference for temperate to warm – 

temperate forests, woodlands and savanna. The other genera, although only recorded at a 

single locality, each show a similar biome preference. 

The third most taxonomically diverse rodent family in MAD is the Sciuridae (N = 183), which 

have a mean BSI of 1.93. Within the family most genera were stenobiomic, inhabiting only 

one biome (e.g. Spermophilinus (N = 31), which is only recorded in warm – temperate mixed 

forests), two biomes (e.g. Albanesia (N = 7) and Sciurotamias (N = 4), both of which inhabited 

tropical and warm – temperate forests) or three biomes (e.g. Atlantoxerus (N = 10) and 

Pliopetaurista (N = 15), both of which inhabited forests, savannas and shrublands). Only the 

North American Spemophilus (N = 33) shows a strong degree of eurybiomic distribution, 
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inhabiting five biomes ranging through warm – temperate to temperate forests, woodland, 

shrubland and savanna. 

 

6.3.2. The Lagomorpha 

The Lagomorpha (N = 139) of the Late Miocene are a relatively small group with only 22 

genera in MAD, of which only 11 occur more than once. The Lagomorpha has a mean BSI of 

2.00 (Tab. 6.2) and a maximum BSI of 5 from the genera Alilepus (N = 14) and Hypolagus (N = 

40). Alilepus inhabited forests, woodlands and savannas in the tropical and temperate realm, 

whilst Hypolagus was abundant in most warm – temperate to temperate biomes. At the 

genus level the Lagomorpha show an unusual pattern of BSI: 72.7% are strongly stenobiomic, 

being found in only a single biome type. The remainder of the Lagomorpha were eurybiomic 

and inhabited four or five different biomes (Fig. 6.4b). The two Lagomorph families Leporidae 

(N = 71) and Ochotonidae (N = 68) are both represented by 11 genera in MAD (Tab. 6.3). 

During the Late Miocene the Ochotonidae were more stenobiomic than the Leporidae (Tab. 

6.3). Within the Ochotonidae only Prolagus (N = 35) was eurybiomic (BSI = 4). 

 

 Late Miocene Modern 

Order 
Global South America Africa 

No. species Mean BSI No. Genera Mean BSI Mean BSI Mean BSI 

Rodentia 183 1.62 147 1.91 1.81 0.00 

Lagomorpha 19 1.84 11 2.00 5.00 0.00 

Lipotyphla 55 1.38 38 1.89 2.00 0.00 

Carnivora 128 1.91 88 2.47 3.83 3.10 

Proboscidea 30 2.10 16 3.06 0.00 6.00 

Tubulidentata 2 2.00 1 3.00 0.00 5.00 

Artiodactlyla 165 1.85 114 2.26 3.33 2.10 

Primates 6 1.50 5 2.00 1.41 1.80 

Hyracoidea 2 1.50 2 1.50 0.00 3.20 

Perissodactyla 101 1.66 37 2.78 2.67 2.30 

Chiroptera 5 2.00 5 2.20 2.73 0.00 

Litopterna 0 0.00 2 1.00 0.00 0.00 

Xenarthra 17 1.41 22 1.36 2.48 0.00 

Notoungulata 4 1.00 5 1.60 0.00 0.00 

Didelphimorpha 2 1.00 1 1.00 2.00 0.00 

Table 6.2. The Biomic Specialisation Index (BSI) of the Mammalia at the order level for both species and 
genera. The number of species and genera is for taxa with more than one occurrence in MAD. 
The values for modern South America and Africa are provided for comparison (Hernández 
Fernández & Vrba, 2005; Moreno Bofarull et al., 2008). 
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6.3.3. The Lipotyphla 

The Late Miocene Lipotyphla (N = 333) had a mean BSI of 1.89, showing this order is strongly 

stenobiomic (Tab. 6.2). At the genus level 73.7% of the Lipotyphla inhabited only one or two 

biomes (Fig. 6.4c). During the Late Miocene the order had a maximum BSI of 5 from two 

genera Scapanus (N = 11) and Sorex (N = 11). Scapanus was found throughout temperate 

biomes in North America, whilst Sorex inhabited temperate and tropical biomes. These two 

eurybiomic genera were also the only members of the Lipotyphla that inhabited arid 

shrublands. At the family level the Soricidae (N = 109) have the highest mean BSI of 2.07, this 

highlights the strongly stenobiomic nature of the Lipotyphla (Tab. 6.3). Within the Soricidae 

the Eurasian genus Paenelimnoecus (N = 12) shows an occurrence only in warm – temperate 

mixed forests. Apart from this genus the majority of genera in the Soricidae inhabited two or 

three biomes. The Soricidae inhabited temperate to warm – temperate forests, woodlands 

and savannas; Anourosorex (N = 5), Blarinella (N = 3) and Crocidura (N = 5) were also found in 

tropical evergreen forests. The Talpidae (N = 105) had a mean BSI of 2.00 (Tab. 6.3) and apart 

from Scapanus most of the genera inhabited three or less forest, woodland, shrubland or 

savanna biomes. The Erinaceidae (N = 87) is strongly stenobiomic with a mean BSI of 1.86 

(Tab. 6.3). Within the Erinaceidae the highest BSI score is 3 for Erinaceus (N = 5) and 

Schizogalerix (N = 18), both of which inhabited warm – temperate and temperate forest and 

savanna biomes. Most of the genera in the Erinaceidae inhabited one or two tropical or warm 

– temperate forest biomes during the Late Miocene. The Dimylidae (N = 14), though not 

taxonomically diverse, were strongly stenobiomic (Tab. 6.3). Both the genera Metacordylodon 

(N = 2) and Plesiodimylus (N = 12) were only found to occur in grid cells containing warm – 

temperate mixed forests. A similar pattern is observed in the Heterosoricidae (N = 12); 

Dinosorex (N = 10) was only found in warm – temperate mixed forests, whilst Heterosorex (N 

= 2) was only found to occur in tropical evergreen forests. 

 

6.3.4. The Carnivora 

The Carnivora (excluding the Phocidae) (N = 864) of the Late Miocene had a mean BSI of 2.47 

calculated at the genus level showing this order was moderately eurybiomic (Tab. 6.2). 

Despite this 64.8% of all Carnivora genera were only recorded inhabiting one or two biomes 

(Fig. 6.4d). The strongest eurybiomic genera during the Late Miocene were Machairodus (BSI 

= 9; N = 52), Plesiogulo (BSI = 7; N = 24), Adcrocuta (N = 42), Borophagus (N = 37), Felis (N = 

24), Hyaenictitherium (N = 22), Indarctos (N = 29), Metailurus (N = 22) and Simocyon (N = 11) 

(all of which had a BSI of 6). These genera were found in a variety of biome types. At the 
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family level the Ailuridae (BSI = 4.00; N = 15), Felidae (BSI = 3.23; N = 170) and Ursidae (BSI = 

3.20; N = 72) are all strongly eurybiomic, whereas the Amphicyonidae (BSI = 1.60; N = 21), 

Barbourofelidae (BSI = 1.50; N = 12) and the Procyonidae (BSI = 1.25; N = 11) were all strongly 

stenobiomic families (Tab. 6.3). The Ailuridae contains only four genera in MAD and only two 

of these Protursus (N = 2) and Simocyon are found at more than one fossil locality. Protursus 

was associated with tropical to warm temperate forests, whilst Simocyon was much more 

eurybiomic inhabiting tropical to temperate forests, woodlands, shrublands and savannas. 

The Felidae is strongly eurybiomic with 63.6% of genera occupying three or more biomes. 

Most genera in the Felidae show no preference for any biome type, a notable exception to 

this is the genus Nimravides (N = 12) which may have been a savanna specialist. The Ursidae 

contains five genera that occur in grid cells with palaeobotanical data. Three of these five 

genera have a BSI of greater than three; Agriotherium (BSI = 4; N = 18), Indarctos (BSI = 6) and 

Ursavus (BSI = 3; N = 16). Much like the Felidae the Ursidae appear to have no preference for 

any biome type. 

The Amphicyonidae has a maximum BSI of 4 from the genus Amphicyon (N = 12), although 

this is related to the grid cell on the Indian subcontinent with four possible biomes in it. This 

means that the relatively high BSI of Amphicyon might be related to the uncertainties in the 

palaeobotanial reconstruction. This is further supported by the rest of the Amphicyonidae, 

whom show a preference for tropical evergreen forests or warm – temperate mixed forests. 

The Barbourofelidae contains three genera, of these only two genera occur in grid cells with 

palaeobotanical data; Barbourofelis (N = 7) and Sansanosmilus (N = 4). Sansanosmilus shows a 

preference for warm – temperate mixed forests, whilst Barbourofelis shows preference for an 

unusual combination of biomes; warm – temperate mixed forests and temperate xerophytic 

shrubland. The Procyonidae shows a preference for open biomes such as temperate savanna 

and temperate xerophytic shrubland. 

The other Carnivora families have a mean BSI between 2 and 3. The Hyaenidae (N = 202) has 

a mean BSI of 2.93 and has 41.2% of eurybiomic genera. Its stenobiomic genera such as: 

Crocuta (N = 6) preferred warm – temperate mixed forests; Miohyaenatherium (N = 4) was 

found in warm – temperate to temperate forests; whilst Plioviverrops (N = 8) and 

Protictitherium (N = 17) are found occurring where palaeobotanical data reconstructs warm – 

temperate mixed forests or temperate savanna. The Mustelidae (N = 212) is the most 

taxonomically diverse Carnivora family recorded in MAD (Tab. 6.3). The family had a mean BSI 

of 2.03 showing that although it contains strongly eurybiomic genera such as Plesiogulo, as a 

family it is more stenobiomic. Of all the Mustelidae genera recorded in MAD 80% only occupy 

one or two biomes. However, the Mustelidae suffer from a poor fossil record due to their 
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small size and low population densities (Pasitschniak-Arts and Larivière, 1995). This poor fossil 

record is also seen in MAD as there appears to be a positive correlation between the number 

of occurrences in MAD and the number of inhabited biomes. The other “small carnivore 

family” the Viverridae (N = 25) had a mean BSI of 2.20 during the Late Miocene showing the 

group to be stenobiomic (Tab. 6.3). However, like the previously discussed Mustelidae, the 

Viverridae may suffer from a poor fossil record: the most common genera are only found at 

six localities in MAD. Despite this, as a family the Viverridae show a preference for tropical 

biomes and warm – temperate to temperate forests. The Canidae (N = 111) during the Late 

Miocene had a mean BSI of 2.50 (Tab. 6.3). The Canidae shows a strong preference for the 

temperate savanna biome. It is only the more eurybiomic genera Borophagus, Epicyon (N = 

25) and Eucyon (N = 12) that are found in a diverse array of tropical to temperate biomes. 

 

6.3.5. The Proboscidea 

At the order level the Proboscidea (N = 280) have the highest mean BSI score, both for 

species (2.10) and genera (3.06) showing the group as strongly eurybiomic (Tab. 6.2). The 

maximum BSI in the Proboscidea is 8 for the genus Deinotherium (N = 54) and 7 for the genus 

Anancus (N = 20). There is also a relatively even spread through the BSI scores of one to four 

at the genus level, showing a mixture of stenobiomic and eurybiomic taxa. Whilst looking at 

the species level the Proboscidea as an order are more stenobiomic (Fig. 6.4e). 

At the family level the Deinotheridae (N = 57) and Mammutidae (N = 32) have a BSI greater 

than 4 (Tab. 6.3). The Late Miocene Mammutidae comprises of two genera: Mammut (BSI = 

5; N = 21) and Zygolophodon (BSI = 3; N = 11). The genus Zygolophodon inhabited tropical 

evergreen forests, warm – temperate mixed forests and temperate savannas, whilst Mammut 

was found in tropical and temperate forests, shrublands and savannas. The Late Miocene 

Gomphotheridae (N = 153) has a mean BSI of 3.86 (Tab. 6.3). Within the Gomphotheridae 

85.7% of genera occupied 3 or more biomes ranging from forests, woodlands, shrublands and 

savannas in the tropical and temperate realm. The Elephantidae (N = 38) during the Late 

Miocene had a mean BSI of 2.00 (Tab. 6.3). The most eurybiomic genera were Stegodon (N = 

8) and Stegotetrabelodon (N = 9), both of which inhabited three biomes. Stegodon and 

Stegotetrabelodon both inhabited tropical deciduous woodlands, warm – temperate forest 

and grasslands. The other genera inhabited tropical, warm – temperate and temperate 

forests, woodlands and grasslands. 
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6.3.6. The Tubulidentata 

The Late Miocene Tubulidentata (N = 19) order only contains a single genus that occurs at 

more than one locality (Tab. 6.2, 3, Fig. 6.4f). Orycteropus (N = 18) had a BSI of 3.00 and was 

found in warm – temperate mixed forest, temperate savanna and tropical grassland biomes. 

The diversity of biome types from closed forests to open grasslands shows the genus to be 

eurybiomic, much as it is today (Vrba, 1987). 

 

6.3.7. The Artiodactyla 

The Late Miocene Artiodactyla (N = 1217) (Fig. 6.4g) had a mean BSI of 2.26 at the genus 

level, a maximum BSI of 7 (Gazella (N = 89) and Samotherium(N = 26)) and contains 66.7% 

strongly stenobiomic genera (BSI of one or two). At the family level only Gelocidae (N = 7) and 

Tragulidae (N = 40) were eurybiomic with a mean BSI over 3.00 (Tab. 6.3). Four families were 

strongly stenobiomic with mean BSI scores below 2.00; Hippopotamidae (N = 19), 

Merycoidodontidae (N = 6), Moschidae (N = 17) and Palaeomerycidae (N = 28).  

Within the Gelocidae there are only two reported genera during the Late Miocene. Of these 

two genera only Pseudoceras (N = 6) occurs at more than one locality. The genus Pseudoceras 

inhabited tropical to warm – temperate forests and temperate savannas. The Tragulidae 

contains three genera during the Late Miocene (Tab. 6.3). Only two of these, Dorcabune (N = 

8) and Dorcatherium (N = 31), are found at more than one locality. Both Dorcabune and 

Dorcatherium were eurybiomic with BSI scores of 4 and 6 respectively. However, Dorcabune 

and Dorcatherium both occur in the grid cell on the Indian subcontinent with four biomes in 

it. The Tragulidae as a family inhabited tropical to warm – temperate forests, woodlands and 

temperate savanna. Both the Gelocidae and Tragulidae may be eurybiomic due to the low 

number of genera in the families and in the case of the Tragulidae, the complex vegetation 

pattern preserved in the Himalayan foothills. 

The Hippopotamidae contains three genera Hexaprotodon (N = 13), Hippopotamus (N = 3) 

and Kenyapotamus (N = 3) (Tab. 6.3). All three genera prefered open biomes and especially 

occur where palaeobotanical data reconstructs the tropical savanna biome. However, as all 

three were aquatic herbivores (Alroy, 2011; Pickford, 1983) the presence of suitable water 

bodies may have been more important than a biome type. The Merycoidontidae family 

contains two genera during the Late Miocene Merychus (N = 4) and Ustatochoerus (N = 2), 

both of which have a BSI score of 1 and inhabited temperate savanna. The Family Moschidae 

contains five genera of which three occur at more than one locality (Tab. 6.3). Hispanomeryx 

(N = 2), Micromeryx (N = 11) and Moschus (N = 2) all show a preference for tropical to 
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temperate forests. Whilst Blastomeryx (N = 280) and Longirostromeryx (N = 280) only occur 

once in MAD, they show that the family may have also inhabited temperate savanna. The 

Palaeomerycidae contains five genera in MAD (Tab. 6.3), all of which occur at more than one 

fossil site. Unfortunately two of the genera do not occur in a grid cells containing 

palaeobotanical data. Despite this the remaining genera show that Cranioceras (N = 3) and 

Pediomeryx (N = 10) preferred open biomes (temperate xerophytic shrubland and temperate 

savanna), whilst Palaeomeryx (N = 6) preferred forested biomes.  

The Anthracotheriidae (N = 14) contains four genera, three of which have more than one 

occurrence in MAD and the family has a mean BSI of 2.67 (Tab. 6.3). Libycosaurus (N = 4) and 

Merycopotamus (N = 5) were stenobiomic, inhabiting tropical savanna and grassland. The 

genus Hemimeryx (N = 4) is more eurybiomic (BSI = 5) and inhabited tropical forests, tropical 

savanna, tropical grassland, warm – temperate forest and temperate grassland. The 

Antilocapridae (N = 37) has a mean BSI of 2.20 and contains seven genera with more than one 

occurrence in MAD (Tab. 6.3). The family is mainly stenobiomic apart from the genus 

Plioceros (N = 5). Plioceros has a BSI score of 4 and inhabited warm temperate to temperate 

forests, woodlands and shrublands. 

The Bovidae (N = 485) contains the greatest number of Late Miocene Artiodactyla genera in 

MAD (Tab. 6.3). The family is strongly stenobiomic with 71.7% of genera inhabiting only one 

or two biomes. Eurybiomic members of the Bovidae include Gazella (BSI = 7), Miotragocerus 

(BSI = 6; N = 33), Pachyportax (BSI = 5; N = 6), Palaeoryx (BSI = 5; N = 25) and Prostrepsicerus 

(BSI = 6; N = 25) all of which could inhabit a diverse range of tropical and temperate forests, 

woodlands, shrublands and savannas. The Camelidae (N = 95) has a mean BSI of 2.43 and a 

total of ten genera during the Late Miocene (Tab. 6.3). Unfortunately only seven of these 

occur at more than one fossil locality. The Camelidae is moderately stenobiomic with no 

genera inhabiting more than three biomes. The genera Alforjas (N = 9) and Hemiauchenia (N = 

33) inhabited warm – temperate mixed forests, temperate savanna and temperate xerophytic 

shrublands. Megacamelus (N = 3) also had a BSI score of 3 occupying temperate sclerophyll 

woodland, savanna and shrubland. Whereas Megatylopus (N = 25), Procamelus (N = 12) and 

Protolabis (N = 2) were more typically found in tropical evergreen forests, warm – temperate 

mixed forests and in the case of Megatylopus and Procamelus temperate savanna as well. 

The Cervidae (N = 109) had a mean BSI of 2.17 showing the group to be stenobiomic. The 

most eurybiomic genera were Metacervulus (N = 6) and Muntiacus (N = 10), which both had a 

BSI of 4 and inhabited tropical and warm – temperate forests, temperate savanna and 

temperate grassland. The other Cervidae genera were mainly found in warm – temperate 

mixed forests and temperate savanna. The Giraffidae (N = 159) has a mean BSI of 2.83 and 
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contains a relatively even mix of stenobiomic and eurybiomic genera (Tab. 6.3). The 

eurybiomic genera include Samotherium (BSI = 7), Palaeotragus (BSI = 5; N = 62), Bohlinia (N = 

13) and Giraffokeryx (N = 6) (both had a BSI score of 4). Overall the Giraffidae show no 

preference for particular biome types: inhabiting forests, woodlands, savannas, shrublands 

and savannas. The Suidae (N = 173) contains 17 genera that occur in more than one fossil 

assemblage. The family has a mean BSI of 2.31 and 69.2% of genera occur in only one or two 

biomes. The most eurybiomic genera were Nyanzachoerus (N = 28) and Propotamochoerus (N 

= 21), both of which had a BSI of 6 and inhabited a variety of forest, woodland, shrubland, 

savanna and grassland in the tropical and temperate realm. Chleuastochoerus (N = 8) was 

slightly eurybiomic (BSI = 4), but was restricted to warm – temperate to temperate biomes. 

The Tayassuidae (N = 28) had a mean BSI of 2.33 during the Late Miocene (Tab. 6.3). The 

family contains seven genera unfortunately only four are known from more than one locality. 

Prosthennops (N = 14) is the only eurybiomic genus and has a BSI score of 5; it was found in 

tropical and temperate forests, woodland and savanna. Catagonus(N = 5) and Platygonus (N = 

3) were both stenobiomic genera, inhabiting temperate savannah. 

 

6.3.8. The Primates 

The Primate order (N = 64) during the Late Miocene had a mean BSI of 2.00 (Tab. 6.2).This 

low mean BSI score shows that the Primates were stenobiomic, with 60% of genera inhabiting 

two or less biomes (Fig. 6.4h). MAD records eight Primate families during the Late Miocene 

four of these: the Adapidae, Atelidae, Cebidae and Galagidae have such poor fossil records 

that they could not be used in the BSI study. The Cercopithecidae (N = 27) are the most 

eurybiomic of the Late Miocene Primates (BSI = 3). However, the family contains only one 

genus which occurs in multiple fossil assemblages and within grid cells containing 

palaeobotanical data. This genus: Mesopithecus (N = 16) inhabited warm – temperate to 

temperate forests and savanna. Other Cercopithecidae genera that only occur at single sites 

include Libypithecus, which was found in tropical savanna and Paracolobus found in tropical 

evergreen forests. 

The Homindae (N = 30) has a mean BSI of 2.00 and contains 12 genera during the Late 

Miocene (Tab. 6.2). Unfortunately only a quarter of these are found at more than one fossil 

locality. Dryopithecus (N = 10) is the most eurybiomic genus with a BSI score of 3; it inhabited 

warm – temperate mixed forests, temperate savanna and temperate grassland biomes. 

Sivapithecus (N = 7) and Udabnopithecus (N = 2) were more stenobiomic and were only found 
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in forest biomes. Udabnopithecus was only found in warm – temperate mixed forests, whilst 

Sivapithecus occurred in tropical evergreen forests and warm – temperate mixed forests. 

The Pliopithecidae (N = 7) has a mean BSI of 1.00 and contains three genera during the Late 

Miocene (Tab. 6.3). As a family the Pliopithecidae show a preference for forest biomes. 

Anapithecus (N = 4) was found in warm – temperate mixed forests and Laccopithecus, though 

only occurring once in MAD, inhabited tropical evergreen forests. The genus Pliopithecus (N = 

2) does not co-occur in any grid cell with palaeobotanical data. The Sivaladapidae family also 

has a mean BSI of 1.00 but only two genera are recorded in MAD for the Late Miocene (Tab. 

6.3). Of these two genera only Sinoadapsis occurs more than once in MAD, but at the same 

locality. This locality co-occurs in a grid cell containing palaeobotanical evidence for a tropical 

evergreen forest. 

 

6.3.9. The Hyracoidea 

The Hyracoidea order (N = 14) is strongly stenobiomic showing a mean BSI of 1.50 during the 

Late Miocene (Tab. 6.2; Fig. 6.4i). The order contains two families, the Pliohyracidae (N = 9) 

and the Procaviidae (N = 5). The Pliohyracidae is the slightly more eurybiomic with a mean BSI 

of 2.00 from a single genus; Pliohyrax (N = 8), which occurs at multiple fossil localities co-

occurring with palaeobotanical evidence for warm – temperate mixed forests or temperate 

savanna. The Procaviidae had a mean BSI of 1.00 again from a single genus Procavia (N = 2). 

The genus Dendrohyrax conversely occurs at a single locality but has a BSI score of 2, due to 

the grid cell containing palaeobotanical evidence for both the tropical evergreen forest biome 

and the tropical deciduous woodland biome. A limited fossil record (14 recorded occurrences 

in MAD, many of which are single occurrences of taxa) inhibits much to be resolved from the 

distribution of Late Miocene Procaviidae, today the family are found throughout sub - 

Saharan Africa in a diverse range of biomes (Wilson & Reeder, 2005). 
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Order & family No. 

species 

Mean 

BSI 

No. 

Genera 

Mean 

BSI 

Order & family No. 

species 

Mean 

BSI 

No. 

Genera 

Mean 

BSI Rodentia     Proboscidea     

Abrocomidae 1 2.00 1 2.00 Deinotheridae 8 2.33 2 4.50 

Anomalomyidae 4 1.00 1 1.00 Elephantidae 22 1.13 7 2.00 

Aplodontidae 5 0.00 3 1.00 Gomphotheriidae 35 2.40 12 3.86 

Castoridae 29 1.46 12 2.13 Mammutidae 8 2.75 2 4.00 

Caviidae 6 1.25 5 1.33 Tubulidentata     

Chinchillidae 2 2.00 2 2.00 Orycteropodidae 9 2.00 2 3.00 

Cricetidae 160 1.57 59 1.83 Artiodactlyla     

Ctenodactylidae 8 1.00 3 1.00 Anthracotheriidae 8 2.33 4 2.67 

Dinomyidae 10 1.50 6 1.67 Antilocapridae 18 2.00 8 2.20 

Dipodidae 28 1.50 11 1.33 Bovidae 196 1.79 87 2.11 

Echimyidae 4 1.00 3 1.00 Camelidae 22 1.73 10 2.43 

Eomyidae 18 1.33 6 2.25 Cervidae 52 1.76 22 2.17 

Geomyidae 11 1.50 7 1.40 Gelocidae 3 1.50 2 3.00 

Gerbillidae 8 0.00 5 2.00 Giraffidae 43 2.24 21 2.83 

Gliridae 48 1.25 20 1.36 Hippopotamidae 14 2.00 3 2.00 

Heteromyidae 18 1.67 6 2.60 Merycoidodontidae 2 1.00 2 1.00 

Hydrochoeridae 3 0.00 3 0.00 Moschidae 10 1.00 5 1.33 

Hystricidae 10 2.75 4 3.33 Palaeomerycidae 11 1.50 5 1.67 

Muridae 102 1.69 43 2.29 Suidae 64 1.68 23 2.31 

Mylagaulidae 7 2.00 3 2.00 Tayassuidae 11 2.25 7 2.33 

Neoepiblemidae 6 0.00 2 1.00 Tragulidae 13 2.67 3 5.00 

Nesomyidae 3 2.00 3 2.00 Primates     

Octodontidae 5 2.00 4 1.50 Cercopithecidae 12 1.67 9 3.00 

Sciuridae 75 1.64 33 1.93 Hominidae 23 1.50 12 2.00 

Siphneidae 4 1.00 1 1.00 Pliopithecidae 5 1.00 3 1.00 

Spalacidae 8 1.00 5 1.50 Sivaladapidae 3 1.00 2 1.00 

Thryonomyidae 8 2.00 4 2.00 Hyracoidea     

Zapodidae 7 2.50 5 2.50 Pliohyracidae 5 2.00 2 2.00 

Lipotyphla     Procaviidae 4 1.00 3 1.00 

Dimylidae 4 1.00 2 1.00 Perissodactyla     

Erinaceidae 34 1.20 13 1.86 Chalicotheriidae 14 2.00 5 3.33 

Heterosoricidae 6 1.00 2 1.00 Equidae 122 1.55 15 2.92 

Soricidae 51 1.59 30 2.07 Rhinocerotidae 78 1.82 27 2.55 

Talpidae 42 1.59 22 2.00 Tapiridae 12 1.67 4 4.00 

Lagomorpha     Chiroptera     

Leporidae 26 2.00 11 2.60 Hipposideridae 2 0.00 2 0.00 

Ochotonidae 27 1.63 11 1.50 Rhinolophidae 4 1.00 1 2.00 

Carnivora     Vespertilionidae 17 2.67 11 2.25 

Ailuridae 9 2.67 4 4.00 Litopterna     

Amphicyonidae 11 1.75 7 1.60 Macraucheniidae 3 0.00 3 0.00 

Barbourofelidae 6 1.00 3 1.50 Proterotheriidae 6 0.00 5 1.00 

Canidae 29 1.57 11 2.50 Xenarthra     

Felidae 50 2.50 20 3.23 Dasypodidae 26 1.50 15 1.55 

Hyaenidae 65 2.08 18 2.93 Glyptodontidae 14 1.25 11 1.14 

Mustelidae 111 1.63 55 2.03 Megalonychidae 10 1.50 4 1.50 

Percrocutidae 8 1.50 2 2.00 Mylodontidae 15 1.00 10 1.00 

Procyonidae 10 2.00 4 1.25 Notoungulata     

Ursidae 22 1.69 7 3.20 Hegetotheriidae 6 1.00 4 2.00 

Viverridae 13 2.25 7 2.20 Mesotheriidae 3 1.00 2 1.50 

Didelphimorpha     Toxodontidae 14 1.00 14 1.00 

Didelphidae 9 1.00 7 1.00 
 

    

Table 6.3. The number of species, number of genera and mean BSI for each Late Miocene mammal 
family recorded in MAD. 
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Figure 6.4. The Biomic Specialisation Index scores of mammal orders. The blue represents the 
proportion of genera in each biome score and the red represents the proportion of species. The 
x-axis is the BSI score and the y-axis is the percentage of taxa. 
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6.3.10. The Perissodactyla 

The Late Miocene Perissodactyla (N = 780) (Fig. 6.4j) had a mean BSI of 2.78 (Tab. 6.2) and a 

large proportion of stenobiomic genera - 52.5% inhabiting only one or two biomes. However 

the Perissodactyla does contain the most eurybiomic genus in the study: Hipparion (BSI = 12; 

N = 166). However, this genus contains 53 named species, of which 26 occur more than once 

in MAD and 50% of these inhabited only a single biome. The Late Miocene Perissodactyla 

contains four families: Chalicotheridae (mean BSI = 3.33; N = 47), Equidae (mean BSI = 2.92; N 

= 420), Rhinocerotidae (mean BSI = 2.55; N = 283) and the Tapiridae (mean BSI = 4.00; N = 

30). 

The Chalicotheriidae contains five genera during the Late Miocene (Tab. 6.3). Two of these 

Kalimantsia and Metaschizotherium are each only known from a single fossil occurrence, 

though both of the fossil localities are found within warm – temperate mixed forests. 

Anisodon (N = 2) was a stenobiomic genus also found in warm – temperate mixed forests. 

Ancylotherium (N = 16) and Chalicotherium (N = 27) were eurybiomic genera with BSI scores 

of 5 and 4 respectively. Ancylotherium inhabited tropical to temperate forests and temperate 

savanna, whilst Chalicotherium inhabited warm – temperate to temperate forests, savanna 

and grassland. This slight difference in biomes inhabited also means that Ancylotherium and 

Chalicotherium are only found co-occurring at a single fossil locality at Hadjidimovo, Bulgaria 

(Fortelius, 2011; Kostopoulos et al., 2001). 

The Equidae contains 15 genera, of which two (Plesihipparion and Sivalhipparion) are each 

only known from a single locality. Anchitherium (N = 5), though known from multiple fossil 

localities, does not occur in a grid cells containing palaeobotanical data. As previously 

mentioned Hipparion is the most eurybiomic genus within the Equidae and occurred in most 

biomes in the study. Cremohipparion (BSI = 4; N = 18) and Dinohippus (BSI = 5; N = 36) were 

also eurybiomic, the former inhabited tropical savanna, warm – temperate mixed forests, 

temperate deciduous forests and temperate savanna, whilst the latter was found to occur in 

warm – temperate to temperate forest, woodland, shrubland or savanna. Pliohippus (N = 11) 

has a BSI score of 3 showing that it was fairly eurybiomic and was found in tropical evergreen 

forests, warm – temperate mixed forests or temperate savanna. The other Equidae genera 

are stenobiomic with Astrohippus (N = 10), Hippotherium (N = 59), Nannipus (N = 32) and 

Neohipparion (N = 37) inhabiting warm – temperate mixed forests and temperate savanna. 

Calippus (N = 13), Protohippus (N = 9) and Pseudhipparion (N = 10) are only found in grid cells 

which contain palaeobotanical evidence for temperate savanna. Eurygnathohippus inhabited 

tropical evergreen forest and tropical deciduous biomes. 
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The Rhinocerotidae contains 27 genera recorded in MAD, of this total five genera only occur 

in a single fossil assemblage and another two do not co-occur in grid cells with 

palaeobotanical data. Excluding these seven genera, the Rhinocerotidae contains 57.9% of 

genera that only occur in one or two biomes. Common vegetation occurrences for strongly 

stenobiomic genera include: temperate savanna; Aphelops (N = 19), Ningxiatherium (N = 2), 

Shansirhinus (N = 2) and Stephanorhinus (N = 4) and warm – temperate mixed forest; Diceros 

(N = 7) and Lartetotherium (N = 3). Other stenobiomic genera occur in two biomes, such as 

Dicerorhinus (N = 17) which inhabited warm temperate mixed forests and temperate 

deciduous forests, Sinotherium (N = 5) which occurred in temperate savanna and grasslands 

and Hoploaceratherium (N = 3) which was found in tropical deciduous woodland and warm – 

temperate mixed forests. Aceratherium (BSI = 5; N = 42), Brachypotherium (BSI = 6; N = 18) 

and Teleoceras (BSI = 6; N = 40) represent the most eurybiomic genera within the 

Rhinocerotidae. Aceratherium inhabited tropical to temperate forests, woodland and 

savanna, whilst Brachypotherium occupied these and tropical to temperate grasslands. 

Teleoceras was found to occur in tropical to temperate forests, woodland, savanna and 

shrubland. 

The Tapiridae, during the Late Miocene, contained four genera (Tab. 6.3), two of which 

(Protapirus and Tapiravus) only occur once in MAD and another genus (Tapiriscus; N = 3) does 

not co - occur with vegetation data. This leaves Tapirus (N = 25) as the sole genus in MAD 

with sufficient data coverage to provide biome preference information on the Tapiridae. The 

genus Tapirus has a BSI of 4 suggesting the genus is eurybiomic. These biomes include tropical 

to temperate forests and temperate savanna. This is in agreement with the modern Lowland 

Tapir (Tapirus terrestris) in South America (Bodmer & Brooks, 1997; de Thoisy et al., 2010). 

However, it should be noted that it is only an occurrence of Tapirus sp. in North America that 

co-occurs with palaeobotanical evidence for temperate savanna (Voorhies, 1990). The 

Eurasian species; T. balkaniscus (N = 1), T. jeanpiveteaui (N = 1), T. priscus (N = 13) and T. 

yunnanensis (N = 2) were only found in forested habitats, which has been their established 

palaeoecology for some time (Guerin & Eisenmann, 1993). 

 

6.3.11. The Chiroptera 

The Chiroptera order (N = 42) during the Late Miocene had a mean BSI of 2.20, showing the 

order to be stenobiomic (Fig. 6.4k, Tab. 6.2). MAD records three Chiroptera families for the 

Late Miocene (Tab. 6.3) the Hipposideridae (mean BSI = 0; N = 3), Rhinolophidae (BSI = 2.00; 

N = 8) and the Vespertilionidae (BSI = 2.25; N = 31). The Rhinolophidae, recorded in MAD, 
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contains only a single genus Rhinolophus (N = 8), which has been recorded occurring in warm 

– temperate mixed forest and temperate xerophytic shrubland. The Vespertilionidae is 

represented by 11 genera (Tab. 6.3), of which only four genera occur at more than one fossil 

locality. The genus Eptesicus (N = 6) is the most eurybiomic with a BSI score of 4, - occurring in 

tropical evergreen forests, warm – temperate mixed forests, temperate conifer forests and 

temperate xerophytic shrubland. Myotis (N = 14) is recorded in tropical evergreen forest, 

warm – temperate mixed forest and temperate xerophytic shrubland. Paleptiscus (N = 2) and 

Plecotus (N = 2) are both only recorded from a single biome, the former from warm – 

temperate mixed forests and the latter from tropical evergreen mixed forests. 

 

6.3.12. The Litopterna 

The Late Miocene mammals of the Litopterna order (N = 10) have a mean BSI of 1.00 (Tab. 

6.2) and are strongly stenobiomic (Fig. 6.4l). However, the order is not very well represented 

in MAD with eight genera and only two of these occurring at more than one fossil locality. 

One of these genera, Promacrauchenia (N = 2) of the Macraucheniidae, does not occur in a 

grid cell containing palaeobotanical data. The only Macraucheniidae genus to be found in the 

same grid cell as palaeobotanical data was Culinia (N = 1), which inhabited tropical savannas. 

The Proterotheriidae contains five genera and only Proterotherium (N = 2) is found at more 

than one fossil locality containing tropical savanna. Diadiaphorus (N = 1) also inhabited 

tropical savanna but, as it is only recorded at a single locality it is not possible to say if it 

occurred in other biomes. 

 

6.3.13. The Xenarthra 

The Xenarthra order (N = 98) had a mean BSI of 1.36 during the Late Miocene (Tab. 6.2). The 

order was strongly stenobiomic with 95.5% of genera inhabiting one or two biomes (Fig. 

6.4m). The most eurybiomic genus, within the Xenarthra, was Proeuphractus (N = 5) with a 

BSI of 3. The Dasypodidae (N = 39) had a mean BSI of 1.55, during the Late Miocene. This 

family contains 15 genera, four of which are only recorded in MAD at a single fossil locality. 

The Dasypodidae show a preference for open biomes with all genera being found in one of, or 

a combination of, tropical savanna, temperate savanna and temperate xerophytic shrubland.  

The Glyptodontidae (N = 18) contained 11 genera (Tab. 6.3) during the Late Miocene, seven 

of which occur more than once in MAD. The family has a mean BSI of 1.14 showing it is 

strongly stenobiomic, only a single genus Eosclerocalyptus (N = 2) is found in two biomes. Like 
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the Dasypodidae family the Glyptodontidae show a preference for open biomes, with genera 

inhabiting tropical savanna, temperate savanna and temperate xerophytic shrubland. 

The Megalonychidae (N = 23) had a mean BSI of 1.50 during the Late Miocene (Tab. 6.3). The 

family contains four genera, two of which, Megalonyx (N = 11) and Pliomorphus (N = 2), are 

found in grid cells containing palaeobotanical evidence. Megalonyx had a BSI of 2 inhabiting 

temperate xerophytic shrubland and temperate savanna, whereas Pliomorphus only occurred 

in tropical savanna. 

The fourth and final Xenarthra family recorded in the Late Miocene MAD is the Mylodontidae 

(N = 15). The Mylodontidae contained ten genera and had a mean BSI of 1.00, showing the 

group to be strongly stenobiomic (Tab. 6.3). Of these ten genera, five only occur once and a 

further three do not occur in grid cells containing palaeobotanical data. The other two 

genera: Elassotherium (N = 2) and Urumacotherium (N = 2) only inhabited a single biome. 

Elassotherium inhabited temperate savanna, whereas Urumacotherium occurred in tropical 

savanna. 

 

6.3.14. The Notoungulata 

The Notoungulata order (N = 28) had a mean BSI of 1.60 during the Late Miocene (Tab. 6.2; 

Fig. 6.4n). Three families are recorded in MAD: the Hegetotheriidae (N = 8), Mesotheriidae (N 

= 4) and the Toxodontidae (N = 16). The Hegetotheriidae contains four genera and is the least 

stenobiomic of the three Notoungulata families, with a mean BSI of 2.00 (Tab.3). Of the four 

genera Pseudohegetotherium and Tremacyllus are only recorded at a single fossil locality 

each. Hemihegetotherium (N = 2) and Paedotherium (N = 4) are both recorded at multiple 

fossil sites and both have a BSI of 2. Hemihegetotherium inhabited tropical savanna and 

temperate xerophytic shrubland, whereas Paedotherium occurred in both tropical and 

temperate savanna. 

 The Mesotheriidae contained two genera in the Late Miocene and had a mean BSI of 1.50 

(Tab. 6.3). Pseudotypotherium (N = 2) occurred in tropical savanna and temperate xerophytic 

shrubland and is the more eurybiomic genus (BSI = 2). The other genus in the Mesotheriidae, 

Typotheriopsis (N = 2), was only found in tropical savanna (BSI = 1). 

The Toxodontidae, during the Late Miocene, had a mean BSI of 1.00 and has 14 genera 

recorded in MAD (Tab. 6.3). However, only one of these 14 genera occurs at multiple fossil 

sites and within grid cells containing palaeobotanical data. Xotodon (N = 2) had a BSI of 1 and 

inhabited tropical savanna. A preference for tropical savanna can be seen in the genera that 
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are only recorded from a single fossil site, except for Calchaquitherium which is found within 

a grid cell containing palaeobotanical data for both tropical evergreen forest and tropical 

savanna. 

 

6.3.15. The Didelphimorpha 

The Didelphimorpha order (N = 11) had a mean BSI of 1.00 for the Late Miocene (Tab. 6.2). 

The order is strongly stenobiomic (Fig. 6.4O). However, this may be an artefact of a group 

with a poor fossil record. The order contains a single family the Didelphidae, which in turn 

contains seven genera (Tab. 6.3). Of these seven genera only Thylatherium (N = 5) occurs at 

more than one fossil site and is associated with temperate savanna only. 

 

6.4. Could mammals be used to reconstruct biomes? 

The aim of this chapter was to investigate whether Late Miocene mammal distributions were 

controlled by biomes.The combination of a 407 locality mammal data set with a gridded 

version of the palaeobotanical data presented in Chapter 3, has shown that the global 

distribution of Late Miocene mammals was controlled by the distribution of biomes. Overall 

69.7% of Late Miocene mammal genera inhabited only one or two biomes and a further 

15.8% were found to co-occur with three biomes. These results match the first prediction of 

Hernández Fernández & Vrba (2005); that stenobiomic taxa should be more numerous than 

eurybiomic ones. This high proportion of stenobiomic taxa is comparable to the results of 

modern studies (Fig. 6.4). Although modern studies have focussed on Africa and South 

America the general proportion of taxa in each BSI classification is comparable to this current 

global study of the Late Miocene (Fig. 6.4). At the species level the Late Miocene shows a 

greater proportion of taxa inhabiting one biome than either of the modern studies (Fig. 6.4). 

Whether this is an artefact of the fossil record or related to sampling a larger geographic area 

will require future research. 
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Figure 6.5. The percentage of mammals in each Biomic Specialisation Index category for the Late 
Miocene genera, species and for modern extant species. The extant species data is re plotted 
from Moreno Bofarull et al. (2008) and Hernández Fernández and Vrba (2005). 

 

As most Late Miocene mammals are stenobiomic, to differing degrees, they have a good 

potential to be a new proxy for biomes. Some taxa will be more useful than others in 

reconstructing biomes. Based on the results presented in Section 6.3 members of the 

Artiodactyla, Lagomorpha, Lipotyphla, Primates, Rodentia and Xenarthra will be the most 

useful in reconstructing biomes, as these orders contain the greatest proportion of 

stenobiomic taxa. Within these orders certain families will be more useful in reconstructing 

biomes than other families. For example in the Rodentia the Cricetidae and Gliridae will 

probably be the most useful due to their low mean BSI scores and high number of taxa (Table 

6.3). Whereas the Muridae has a large number of taxa but a slightly higher mean BSI score, 

implying that this family might not be as useful as others. At the opposite end of the BSI are 

taxa from the Carnivora, Perissodactyla and Proboscidea orders. These will probably be less 

definite in reconstructing biomes due to them containing more eurybiomic taxa (Table 6.2). 

The results of undertaking a BSI survey of Late Miocene mammals suggests that it should be 

possible to use them to reconstruct biomes where palaeobotanical data does not exist. This is 

due to the high number of taxa specialised to one or two biomes. However, the degree of 

usefulness of using mammals to reconstruct biomes needs to be evaluated. For example if all 

the strongly stenobiomic taxa are specialised to the warm – temperate mixed forest. Then it 

is likely that using this data will result in a greatly improved geographic spread of the warm – 

temperate forest, but limited improvement towards our knowledge of other biome 
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distributions. Overall the results presented in this chapter show there is a strong preference 

for mammals to only occupy a single biome (Table 6.4, Fig. 6.5). Of all the biomes the warm – 

temperate mixed forest contains the most stenobiomic genera (18.6%) followed by 

temperate savanna (15%), which is probably partly related to the excellent mammal and 

palaeobotanical data available from Eurasia and North America (Fig. 6.1, Fig. 6.2A). There is 

also a high proportion of stenobiomic taxa in the tropical savannah biome (Table 6.4). It 

should be expected that a higher proportion of stenobiomic genera would be present in 

tropical evergreen forest than were found in this study (Hernández Fernández & Vrba, 2005). 

Only 1.2% of all the global genera are restricted to tropical evergreen forest and only 6.3% of 

genera that inhabit this biome are restricted to it (Tab. 6.4). This is certainly an artefact of the 

fossil record. Within the Late Miocene mammalian fossil record there is a strong bias towards 

latitudes between 26°N and 55°N (Fig. 6.6). This means that of the current 407 localities in 

MAD only 10.5% occur between 25°S and 25°N, which represents the area occupied by the 

majority of the tropical biomes (Fig. 6.6). Thus the current Late Miocene mammalian fossil 

record is under – sampled in the tropical realm. However, the vast majority of Late Miocene 

mammal sites occupied a latitudinal belt between 26°N and 55°N, which contains a high 

number of biomes (Fig. 6.6). The only biomes not found in this latitudinal belt are the high 

latitude forests, tropical deciduous woodland and desert biomes (Fig. 6.7). Since the 

proportions of stenobiomic to eurybiomic taxa, in the Late Miocene, are comparable to the 

modern studies then this shows that the distribution of Late Miocene mammals were, partly, 

controlled by vegetation distribution (Fig. 6.5). This suggests that although the tropical realm 

is currently under-sampled, the results from this study are robust especially between the 

latitudes of 26°N and 55°N. In the next chapter a methodology will be developed to use these 

results to reconstruct Late Miocene biomes. 
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Biome combinations % of mammal genera 

Tropical evergreen forest 1.19 

Tropical evergreen forest, Tropical deciduous woodland 2.57 

Tropical evergreen forest, Warm - temperate mixed forest 2.77 

Tropical evergreen forest, Warm - temperate mixed forest, Temperate deciduous broadleaf 

savanna 
1.78 

Tropical savanna 5.73 

Tropical savanna, Temperate xerophytic shrubland 1.98 

Tropical savanna, Temperate deciduous broadleaf savanna 2.17 

Temperate xerophytic shrubland, Temperate deciduous broadleaf savanna 2.96 

Temperate deciduous broadleaf savanna 15.02 

Tropical grassland 0.99 

Temperate deciduous forest, Temperate sclerophyll woodland, Temperate deciduous 

broadleaf savanna 
1.38 

Temperate deciduous forest, Warm - temperate mixed forest 0.99 

Temperate deciduous forest, Warm - temperate mixed forest, Temperate deciduous 

broadleaf savanna 
3.95 

Temperate needleleaf forest 0.99 

Warm - temperate mixed forest 18.58 

Warm - temperate mixed forest, Temperate xerophytic shrubland 1.19 

Warm - temperate mixed forest, Temperate xerophytic shrubland, Temperate deciduous 

broadleaf savanna 
2.37 

Warm - temperate mixed forest, Temperate deciduous broadleaf savanna 7.71 

Warm - temperate mixed forest, Temperate deciduous broadleaf savanna, Temperate 

grassland 
1.19 

Table 6.4. Common biome combinations of Late Miocene mammals. This table only shows 
combinations of biomes that are inhabited by five (= 0.99%) or more genera. This accounts for 
75% of the studied mammal genera, the other 25% of genera occupy less common biome 
combinations. 

 



- 179 - 

 

Figure 6.6. The Late Miocene latitudinal distribution of global biomes (Top) plotted from data presented 
in Chapter 3 compared to the latitudinal distribution of the 407 mammal fossil sites in the MAD 
(bottom). The distribution of mammal fossil sites is plotted in 10° latitude bins. This figure shows 
that although the majority of fossil mammal assemblages are concentrated between 25°N and 
55°N, this is also an area of considerable biome diversity. However, it should also be noted that 
the low number of mammal sites in the tropics may limit the potential for identifying tropical 
stenobiomic taxa. The vertical scale for the biome distributions is semi-quantitative with warmest 
at the top to coldest at the bottom.  
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6.5. Conclusions 

This chapter aimed to investigate whether Late Miocene mammal distributions were 

controlled by vegetation. Through the combination of 407 mammal localities and the 

vegetation data presented in Chapter 3, it has been shown that most Late Miocene mammals 

were controlled by vegetation. In total 69.7% of Late Miocene mammals inhabited only one 

or two biomes. This is a good indication that Late Miocene mammals can be used as a new 

means to reconstruct biomes. Increasing the available data with which model output can be 

evaluated and improving data – model hybrid vegetation maps. 

In the following chapter a methodology will be developed to use the data presented here for 

the purpose of reconstructing biomes. The following chapter will also investigate if the 

proportion of stenobiomic taxa within each biome would have changed in response to 

climate. 
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Chapter 7 

The use of Late Miocene mammals to reconstruct biomes 

 

Tenrecs are unique to Madagascar, and striped tenrecs are only found in the eastern 
rainforests – David Attenborough 

 

7.1. Introduction 

In the previous chapter Late Miocene mammals were investigated to understand their 

palaeoecology and biome preferences. This showed that the majority (69.7%) of Late 

Miocene mammals were stenobiomic; inhabiting only one or two biomes. This high 

proportion of specialised mammals indicates that these fossils could be a valuable proxy for 

biomes. Chapter 3 showed that the palaeobotanical record for the Late Miocene contains 

significant geographical gaps. Despite this the data for the Tortonian was combined with 

output from HadAM3 – BIOME4 in Chapter 4, to produce a hybrid global vegetation map. 

Substantial areas of this map relied on model output. This could have introduced areas of 

model bias, which can result from inadequate boundary conditions. Within this chapter I 

present a novel technique to use fossil mammal assemblages to fill in geographical gaps in the 

palaeobotanical record. This will provide additional information of global vegetation 

distribution and from this a better understanding of Late Miocene climate. 

Understanding the ecology of fossil mammals has come from understanding their diet and 

the environment within which they lived. This has often meant providing some information, 

for terrestrial mammals at least, on the local vegetation (e.g. Lambert, 1994; Lambert, 1997). 

Previously, techniques that have been used to reconstruct vegetation from mammals include: 

comparison to modern faunas (Guerin and Eisenmann, 1993; Solounias et al., 2010), isotopic 

studies (Cerling et al., 1997; Fox and Fisher, 2004; MacFadden, 1998), tooth wear analysis 

(Hayek et al., 1992; Merceron et al., 2010; Solounias et al., 2010; Townsend and Croft, 2008) 

and morphological relationships (Kaiser et al., 2003). Comparisons to modern examples range 

from single taxa e.g. Tapirs as forest dwellers (Guerin and Eisenmann, 1993) to facets of a 

fauna e.g. comparison of ungulate diversity to modern faunas (Solounias et al., 2010) to 

whole faunas e.g. the now obsolete view of the Pikermian fauna representing a savanna 

(Solounias and Dawson-Saunders, 1986 and references within). Isotopic studies have typically 

focused on carbon to estimate the amount of C4 graze consumed by a mammal and how 
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much grass was present in the local environment (Cerling et al., 1997; Fox and Fisher, 2004). 

Both macro- and meso- tooth wear analysis have been successfully employed to understand 

fossil mammal feeding habits and from this the vegetation that must have formed the habitat 

(Merceron et al., 2010; Solounias et al., 2010; Townsend and Croft, 2008). The morphological 

relationship between herbivorous mammal tooth height (hypsodonty) and the aridity of the 

local environment has been successfully employed in palaeoclimate studies (Fortelius et al., 

2002; Tang et al., 2011). This technique does not provide information on vegetation but is a 

palaeoprecipitation proxy (Fortelius et al., 2002). It was believed that hypsodont dentition 

(high crowns) was related to the consumption of abrasive vegetation, whilst brachyodont 

dentitions (low crowns) was indicative of a browsing herbivore (Janis et al., 2004; Janis and 

Fortelius, 1988; Van Valen, 1960). However, recent work suggests that the degree of 

hypsodonty may relate to the amount of dust and grit consumed unintentionally, along with 

the food, which would still make this a palaeoprecipitation indicator (Hummel et al., 2010). 

The new technique presented within this chapter uses the biome preferences of Late 

Miocene mammals (Chapter 6). By comparing the biome preference of each taxon within a 

fauna a biome, or combination of biomes, can be predicted for each mammal assemblage. 

This new technique provides biome information in regions were palaeobotanical data is 

lacking or absent. 

 

7.2. The co-occurrence approach 

Through the combination of TEVIS (Chapter 3) and MAD (Chapter 6) the biome preferences of 

969 Late Miocene mammal genera has been determined (Chapter 6). Each Late Miocene 

mammal genus has a preference for a particular biome combination (Chapter 6). The majority 

(69.7%) of Late Miocene mammals were stenobiomic; inhabiting only one or two biomes 

(Chapter 6). These specialist genera are the most useful in reconstructing a mammal 

assemblage’s biome habitat, as they have the most restrictive preferences. By comparing the 

biome preferences of all stenobiomic mammal genera (BSI of 1-4) in an assemblage a biome 

combination that all taxa can co – occur in can be derived (Fig. 7.1). This will be the smallest 

possible number of biomes, typically reflecting the most stenobiomic taxa preserved in an 

assemblage (Appendix E). For sites with only eurybiomic taxa, the biome preferences of these 

have been presented to suggest which biomes might have inhabited that area. This co – 

occurrence technique provides a method that is independent of morphology and nearest 

living relative. 
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Within this chapter the co – occurrence technique is applied to 233 Late Miocene localities 

that occur in regions lacking palaeobotanical data. These sites are divided into three, roughly 

equal, time slabs representing the early Tortonian (11.6 -9 Ma), late Tortonian (9 – 7.35 Ma) 

and the Messinian (7.35 – 5.33 Ma). Each site has had a biome combination reconstructed 

using the co – occurrence technique, these are plotted as either single biomes (where 

possible), or as multiple and/or biome combinations, where the co – occurrence of mammals 

reconstructs multiple biomes (Fig. 7.2). The biome classification scheme, used in this study, 

comes from the BIOME4 vegetation model (Kaplan, 2001). Using the BIOME4 27 biome 

classification scheme allows the data generated from mammals to be used in future 

palaeoclimate model evaluation studies of the same age. 

 

 

Figure 7.1. The co-occurrence technique of Turlock Lake, California (MAD Location ID 28; Wagner, 
1976). The biome preferences for each stenobiomic mammal genus are shown and an arrow 
indicates the biome within which they could all co-occur. 
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Figure 7.2. The mammal based biome reconstructions. A. The early Tortonian (11.6 – 9 Ma), B. The late 
Tortonian (9 – 7.35), C. The Messinian (7.35 – 5.33 Ma). The biomes are presented in the BIOME4 
classification scheme (Kaplan, 2001). 
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7.3. Results 

7.3.1. Testing the ability of mammals to be a proxy for vegetation 

Of the 233 mammal assemblages subjected to the co-occurrence technique 76% 

reconstructed only one or two biomes (Fig. 7.3). This shows that by combining 

palaeobotanical data and fossil mammal data, mammals can be a proxy for vegetation. A 

further 15% reconstructed three or four biomes and the final 9% reconstructed between five 

and nine biomes (Fig. 7.3). There is little correlation between the number of mammalian taxa 

in a locality and the number of biomes reconstructed from them (Fig. 7.4). Although for 

mammal localities with fewer than five reported taxa the range of reconstructed biomes 

ranges from nought to nine, whereas when more than five taxa are reported the range drops 

to a maximum of six possible biomes (Fig. 7.4). Logically the number of reconstructed biomes 

shouldn’t be related to the number of reported taxa. For example if three stenobiomic 

mammals are found at one locality then it will have a more accurate biome reconstruction 

than a locality with 50 eurybiomic taxa. However, as Chapter 6 showed there are considerably 

more stenobiomic Late Miocene mammals than eurybiomic ones. Of course the higher the 

number of reported taxa from a locality then the more complete a fauna should be. Both in 

terms of eurybiomic and stenobiomic taxa and this is reflected in the present results; only 

16% of faunas with over 30 reported mammal genera reconstruct more than two biomes (Fig. 

7.4). 

 

Figure 7.3. A graph to show the number of localities that reconstruct one or multiple biomes. 
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Figure 7.4. A graph to show the number of biomes reconstructed compared to the number of mammal 
genera in each assemblage. 

 

In this chapter the 233 mammal localities reconstructed 13 biomes out of the BIOME4 27 

biome classification scheme (Kaplan, 2001). Although this is only half the biomes in the 

BIOME4 classification scheme, the distribution of Late Miocene mammal fossil localities 

excludes the six cold biome types (e.g. cold evergreen needleleaf forest). Five tundra biomes 

are also excluded due to the limited distribution of tundra during the Late Miocene (Chapters 

3 and 4). The three remaining biomes not reconstructed by the co-occurence approach are 

cool mixed forest, temperate evergreen needleleaf woodland and desert. The first of these, 

cool mixed forest, mainly inhabited higher latitudes during the Late Miocene, whilst the other 

two do not occur commonly in the Late Miocene (Chapter 3). 

The most commonly reconstructed biomes, using the co-occurrence of mammals, are the 

warm – temperate mixed forest, temperate broadleaf savanna and tropical savanna (Fig. 7.2). 

These three biomes are commonly reconstructed as the only possible biome a mammal fauna 

could co-occur in (Fig. 7.2). To these three biomes, the temperate deciduous broadleaf forest, 

temperate evergreen needleaf forest, temperate sclerophyll woodland, temperate xerophytic 

shrubland, temperate grassland, tropical evergreen broadleaf forest, tropical deciduous 

broadleaf woodland and tropical grassland are added to the reconstruction at fossil mammal 

localities where the fauna could co-occur in either or both of two biomes (Fig. 7.2). Finally, 

tropical semi-evergreen broadleaf forests and tropical xerophytic shrubland are only 
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reconstructed at mammal localities where co-occurrence could have been in more than two 

biomes. 

 

7.3.2. Late Miocene mammal distributions and derived global vegetation patterns 

This section will present the vegetation patterns reconstructed using the co-occurrence of 

Late Miocene mammals (Fig. 7.2). Each mammal assemblage contains a co-occurrence of 

biome specialists and generalists (Chapter 6). The reconstructed vegetation represents the 

minimum number of biomes where all taxa at a locality could have co-occurred. 

 

7.3.2.1. North America 

During the early Tortonian in North America, the co-occurrence of mammals has 

reconstructed mainly the temperate broadleaf savanna biome (Fig. 7.2A). On the west side of 

North America (west of 108°W) the biomes reconstructed from mammals are more diverse, 

north of 42°N the reconstructed biomes are a combination of temperate deciduous forest, 

temperate xerophytic shrubland, temperate sclerophyll woodland and temperate broadleaf 

savanna (Fig. 7.2A). Between 38° - 42°N the reconstructed biomes are a combination of warm 

– temperate mixed forest, temperate broadleaf savanna and temperate xerophytic shrubland 

(Fig. 7.2A). South of 38°N the biomes return to a combination of temperate deciduous forest, 

temperate broadleaf savanna, temperate sclerophyll and temperate xerophytic shrubland 

(Fig. 7.2A). By the late Tortonian the biomes reconstructed using mammalian faunas show a 

strong signal towards the temperate broadleaf savanna biome (Fig. 7.2B). North of 45°N, and 

between 108 - 112°W, the mammal based reconstructions show the presence of warm – 

temperate mixed forest and temperate deciduous savanna (Fig. 7.2B). South of 45°N and 

west of 112°W the co-occurrence of mammalian genera indicates the presence of temperate 

deciduous savanna and minor amounts of warm – temperate mixed forest and temperate 

xerophytic shrubland (Fig. 7.2B). During the Messinian the vegetation reconstructed from the 

co-occurrence of mammals shows that west of 114°W temperate deciduous savanna was 

dominant to 39°N with areas of temperate xerophytic shrubland further south (Fig. 7.2C). East 

of 114°W to 104°W, the reconstructed biomes are a combination of warm – temperate mixed 

forests and temperate deciduous savanna (Fig. 7.2C). 

In central North America between 103°W and 93°W the vegetation reconstructed from 

mammals shows that temperate deciduous broadleaf savanna was the dominant vegetation 

type, for all three studied time slabs (Fig. 7.2). There is also evidence for a drier area of 
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temperate xerophytic shrubland south of 36°N from 9 Ma (Fig. 7.2B). The temperate 

deciduous savanna biome was also present in the south-east region of North America (Fig. 

7.2). The vegetation reconstruction, based on the mammal co-occurrence technique, also 

shows the presence of warm – temperate mixed forests south of 30°N (Fig. 7.2) and possibly 

more diverse biomes on the Late Miocene Florida Peninsula (Fig. 7.2B). 

 

7.3.2.2. South America 

Reconstructions of vegetation, using the co-occurrence technique, are concentrated in 

southern South America, except for one site in the north (Fig. 7.2). All mammal based 

vegetation reconstructions in South America show either tropical savanna or temperate 

deciduous broadleaf savanna (Fig. 7.2). 

 

7.3.2.3. Eurasia, west of the Paratethys Sea 

During the early Tortonian in western Eurasia, mammal based vegetation reconstructions are 

dominated by the warm – temperate mixed forest biome from 10°W to 33°E (Fig. 7.2A). 

Other biome combinations reconstructed by the mammal co-occurrence technique show the 

possible presence of temperate deciduous broadleaf savanna east of 33°E (Fig. 7.2A). The 

mammal reconstructed combination of tropical evergreen broadleaf forest and/or warm – 

temperate mixed forest reflects mammal genera that require dense, warm and wet forests, 

rather than suggesting the presence of tropical evergreen broadleaf forest in Europe during 

the early Tortonian (Fig. 7.2A). 

The mammal based vegetation reconstructions for the late Tortonian show more diverse 

biome combinations than during the preceding time slab (Fig. 7.2B). The Iberian Peninsula 

now contained temperate xerophytic shrubland as well as the warm – temperate mixed 

forest, the shrubland biome is also present in southern France during the late Tortonian (Fig. 

7.2B). East of 9°E temperate deciduous broadleaf forest and savanna are also reconstructed 

from the co-occurrence of mammals (Fig. 7.2B). 

By the Messinian the reconstructed biome combinations are showing further change from the 

warm – temperate mixed forests that dominated during the early Tortonian (Fig. 7.2C). The 

main differences from the late Tortonian are the presence of temperate xerophytic shrubland 

and/or temperate deciduous broadleaf savanna in central France and central Italy (Fig. 7.2C). 

In the region of Turkey, Iraq and Iran mammal faunas consistently reconstruct a combination 
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of warm – temperate mixed forest, temperate deciduous broadleaf forest, temperate 

deciduous broadleaf savanna and/ or temperate grassland (Fig. 7.2C). 

 

7.3.2.4. North Africa 

The majority of data for North Africa comes from coastal Morocco, Algeria and Tunisia (Fig. 

7.2). During the early Tortonian the vegetation reconstructed from mammal assemblages 

shows a diverse combination of biomes including tropical savanna, tropical grassland, 

temperate deciduous broadleaf forest and temperate evergreen conifer forest (Fig. 7.2A). 

Despite this wide ranging combination of climate and vegetation types there is one consistent 

biome between all the mammal based reconstructions; the warm – temperate mixed forest 

biome is always reconstructed (Fig. 7.2A). A similar pattern can be seen during the late 

Tortonian (Fig. 7.2B). However, by the Messinian the mammal based vegetation 

reconstructions show the presence of more xerophytic shrubland (Fig. 7.2C). 

Other sites in North Africa, during the oldest time slab studied, show evidence for warm – 

temperate mixed forest and/or temperate deciduous broadleaf savanna at 28°N, an area that 

is desert today (Fig. 7.2A). At 26°N, in Egypt a microvertebrate mammal assemblage 

reconstructs tropical evergreen broadleaf forest, tropical deciduous broadleaf woodland, 

warm – temperate mixed forest and/or temperate xerophytic shrubland (Fig. 7.2A). A 

mammal assemblage from 14°N shows the presence of tropical savanna and/or tropical 

grassland during the Late Miocene (Fig. 7.2). 

 

7.3.2.5. Central and southern Africa 

There are very few mammal sites in central and southern Africa (Fig. 7.2). During the early 

Tortonian the results from the co-occurrence technique shows evidence for tropical 

evergreen broadleaf forest, tropical deciduous broadleaf forest and tropical savanna around 

the equator (Fig. 7.2A). Further south in Namibia two microvertebrate assemblages show 

evidence for the presence of tropical or warm – temperate forests and/or temperate 

deciduous broadleaf savanna (Fig. 7.2A). In South Africa a mammal assemblage has provided 

evidence for temperate evergreen conifer forest and/or tropical grassland (Fig. 7.2A). 

The late Tortonian and the Messinian both have only two mammal assemblages each. The 

older of the two has one mammal assemblage near the equator that reconstructs tropical 

evergreen broadleaf forest and/or tropical deciduous broadleaf woodland and a second in 

South Africa that shows the presence of temperate evergreen conifer forest and tropical 
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grassland (Fig. 7.2B). The younger has one site at 4°S that reconstructs tropical deciduous 

broadleaf woodland or tropical savanna and another in South Africa evidence for temperate 

evergreen conifer forest and tropical grassland (Fig. 7.2C). 

 

7.3.2.6. Eurasia, east of the Paratethys Sea 

During the 11 – 9 Ma time slab there is mammal based evidence between 57 - 68°E and east 

of 104°E (Fig. 7.2A). The vegetation, reconstructed from mammal assemblages, between 57 - 

68°E shows the presence of warm – temperate mixed forest, temperate deciduous broadleaf 

forest and temperate deciduous broadleaf savanna (Fig. 7.2A). East of 104°E the mammal 

based vegetation reconstructions show the presence of warm – temperate mixed forests and 

temperate deciduous broadleaf savanna (Fig. 7.2A). 

The data for the late Tortonian covers a slightly larger geographic area than the preceding 

time slab, and there is only a gap between 74°E and 102°E (Fig. 7.2B). All the mammal 

assemblages reconstruct warm – temperate mixed forest, temperate deciduous broadleaf 

forest and temperate deciduous broadleaf savanna across the eastern portion of Eurasia (Fig. 

7.2B). This is the same for the Messinian except that there is evidence for warm – temperate 

mixed forests and temperate deciduous broadleaf savanna at 84°E (Fig. 7.2C). 

 

7.3.2.7. The Indian subcontinent and South-east Asia 

During the early Tortonian vegetation reconstructions from mammal assemblages show the 

presence of tropical evergreen broadleaf forest, warm – temperate mixed forest, temperate 

deciduous broadleaf savanna and tropical grassland north of 28°N (Fig. 7.2A). South of 28°N 

there was tropical grassland in south - east Asia and warm – temperate mixed forest and/ or 

grassland on the Indian subcontinent (Fig. 7.2A). This pattern is largely the same for the late 

Tortonian except there is no evidence in south-east Asia south of 26°N, where a mammal 

assemblage reconstructs warm – temperate mixed forest and temperate deciduous broadleaf 

savanna (Fig. 7.2B). During the Messinian the pattern on the Indian subcontinent is again the 

same, this is most likely due to low resolution dating of the assemblages used in the 

reconstruction technique. In south – east Asia a mammal assemblage reconstructs tropical 

evergreen broadleaf forest, warm – temperate mixed forest and/or tropical savanna (Fig. 

7.2C). 
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Figure 7.5. The global change in the percentage of stenobiomic mammal genera within four biome 
types. A. All non – carnivore genera, B. Macrovertebrate genera (Orders: Artiodactyla + 
Lagomorpha + Perissodactyla + Proboscidea) and C. Microvertebrate genera (Orders: Lipotyphla 
+ Rodentia). 

 

7.3.3. Changes in biome preferences of mammal genera during the Late Miocene 

Through the three time slabs of the Late Miocene, used in this study, there are changes in the 

proportion of stenobiomic genera in each biome (Fig. 7.5). Looking at all stenobiomic 
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mammal genera, excluding the Carnivora and Chiroptera orders, there is a decrease in forest 

adapted genera and an increase in savanna specialists (Fig. 7.5A). There is also a very small 

increase in the number of shrubland specialists (Fig. 7.5A). The Carnivora have been excluded 

from this analysis as, not only do they contain a very high proportion of eurybiomic genera, 

but the Mustelidae and Viverridae families are underrepresented in the fossil record 

(Pasitschniak-Arts and Larivière, 1995; Chapter 6). The Chiroptera were also excluded because 

they to have a poor fossil record (Eiting and Gunnell, 2009). 

During the early Tortonian time slab around 60% of stenobiomic mammal genera were 

specialised for forests (Fig. 7.5A). By the late Tortonian the proportion of stenobiomic 

mammals specialised for forests had reduced, whilst the amount of mammals adapted for 

savanna biomes had increased to a comparable level to forest specialists (Fig. 7.5A). This 

trend continued through the Messinian. However, there were now 53% of stenobiomic 

genera adapted for savanna biomes and only 37% of genera specialised for forest biomes. If 

the stenobiomic genera are divided into macromammals (Artiodactyla, Lagomorpha, 

Perissodactyla and Proboscidea) and micromammals (Lipotyphla and Rodentia) then the 

overall trend remains the same but the timing of the change differs (Fig. 7.5B,C). The 

macromammals show a slower change from being predominantly forest biome specialists to 

being savanna biome specialists (Fig. 7.5B). Whereas, the micromammals show this change 

from the forest biome stenobiomic genera to savanna biome specialists during the late 

Tortonian (Fig. 7.5C). 

This change from more mammal genera being specialised for forest biomes did not occur 

uniformly across the world (Fig. 7.6). In Western Europe the stenobiomic mammal genera 

remain predominantly forest specialists throughout the Late Miocene (Fig. 7.6). However, 

there is a reduction in the number of forest biome specialist mammal genera from 92% to 

74%, whilst there is an increase in the amount of stenobiomic mammal genera adapted for 

savanna, shrubland and grassland biomes (Fig. 7.6). In the region of Greece, Turkey and the 

Middle East the amount of stenobiomic genera, adapted for forest biomes, drops from 65% in 

the early Tortonian to 47% in the Messinian. Whilst the amount of savanna biome specialists 

increases from 21% in the early Tortonian to 41% in the Messinian (Fig. 7.6). The East Asia 

region shows that in the early Tortonian the proportion of stenobiomic genera in forest and 

savanna biomes was almost even (Fig. 7.6). By the late Tortonian the savanna biomes 

contained more stenobiomic genera than the forest biomes. This increased to 55% of 

stenobiomic mammals inhabiting savanna biomes in East Asia, whilst only 35% were 

specialised for forest biomes, during the Messinian (Fig. 7.6). On the Indian subcontinent 

there continued to be more stenobiomic mammals inhabiting forest biomes, than savanna or 
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grassland, throughout the Late Miocene (Fig. 7.6). However, there appears to be a gradual 

decrease in the proportion of forest specialists and an increase in specialists of the other 

biome types (Fig. 7.6). Africa shows a similar pattern to many other regions in the world; in 

that during the early Tortonian forest biome specialists are more numerous. By the late 

Tortonian the proportion of forest and savanna stenobiomic mammals is almost equal and, 

although there is a slight increase in forest specialists during the Messinian, this trend 

continues through to the end of the Miocene (Fig. 7.6). The one region that shows a 

dramatically different trend, when compared to the rest of the studied regions, is North 

America (Fig. 7.6). In North America, savanna biome specialists are the dominant stenobiomic 

mammals (92 – 93%) throughout the Late Miocene (Fig. 7.6). 

 

 

Figure 7.6. The regional changes in the percentage of all non - carnivore stenobiomic mammal genera 
within four biome types. Blue: North America, Green: Europe, Purple: Greece – Turkey – Middle 
East, Yellow: East Eurasia, Red: Indian subcontinent and Orange: Africa. 
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7.4. Discussion of mammal based biome reconstructions and comparison with 

global vegetation patterns 

From the co-occurrence of mammalian genera within an assemblage from 233 localities Late 

Miocene vegetation has been reconstructed. The vegetation reconstructed from mammalian 

assemblages shows change from the early Tortonian to the Messinian. Both in terms of the 

reconstructed biomes (Fig. 7.2) and the proportion of stenobiomic genera specialised for 

particular biome types (Fig. 7.6). The co-occurrence biome reconstructions are based on the 

distribution of mammal genera and the distribution of palaeobotanical data (Chapters 3 and 

6). The 233 localities used in this study did not overlap with palaeobotanical data and thus 

have provided information on the gaps in this important climate proxy record. Since the 

mammal based biome reconstructions have been done in the BIOME4 classification scheme 

(Kaplan, 2001) it is easy to compare them to and incorporate them into future data – model 

hybrid vegetation reconstructions (Micheels, 2003; Salzmann et al., 2008; Chapter 4). 

Overall the pattern of Late Miocene vegetation is one that is warmer and wetter than the pre 

– industrial and modern potential natural (Micheels et al., 2007). During the Late Miocene 

there is a cooling and drying of the global vegetation with reduction in forests, particularly the 

warm – temperate mixed forest, and an expansion of savanna, grasslands, shrublands and 

desert (Potter and Szatmari, 2009; Sun et al., 2009; Chapter 3). These global patterns of 

vegetation, from palaeobotanical data and modelling studies, are also seen in the mammal 

based vegetation reconstructions (Fig. 7.2) and in the proportion of specialist mammals 

adapted to different biome types (Fig. 7.6). 

At a regional scale the mammal based vegetation reconstructions compare well to 

reconstructions from palaeobotanical data and to modelling studies. In west North America 

mammal based reconstructions show the presence of diverse biomes ranging from warm – 

temperate mixed forests to temperate xerophytic shrublands (Fig. 7.2). This diverse 

patchwork biome pattern in western North America is also seen in the palaeobotanical data 

(Chapter 3). Furthermore, this mosaic environment shows a reduction in forest biomes and 

an increase in drier and/or cooler biomes from the Tortonian through the Messinian (Chapter 

3). This is also seen in the mammal based reconstructions; the early Tortonian contains more 

reconstructed forest biomes than the late Tortonian and the Messinian (Fig. 7.2). In central 

and eastern North America, the palaeobotanical data shows the presence of a large region of 

temperate savanna, with temperate forests towards the Rocky Mountains and warm – 

temperate mixed forest along the south and east coasts (Chapter 3). In contrast, vegetation 

modelling studies tend to reconstruct a greater degree of forests in this region (François et 

al., 2006; Micheels et al., 2007; Chapter 4). The mammal based vegetation reconstructions 
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show a similar pattern to the palaeobotanical data; a large region of temperate deciduous 

broadleaf savanna, possibly with temperate xerophytic shrublands south of 35°N, with forest 

type biomes towards the south and east coasts (Fig. 7.2) (Gabel et al., 1998; McCartan et al., 

1990; Schiebout et al., 1996; Chapter 3). In South America, mammal assemblages reconstruct 

temperate and tropical savanna biomes (Fig. 7.2). This is in agreement with the 

palaeobotanical data (Barreda et al., 2007; Chapter 3). However, model based 

reconstructions either have too much forest type biomes (François et al., 2006; Micheels et 

al., 2007) or too great an expanse of xerophytic shrublands (Chapter 4). 

In Western Europe, during the early Tortonian, the mammal based vegetation reconstructions 

show a predominance of warm – temperate mixed forests (Fig. 7.2A). From the late Tortonian 

drier and more open biomes become more commonly reconstructed (Fig. 7.2B). Though 

based on the stenobiomic mammals, Western Europe remains predominantly forest 

throughout the Late Miocene, as the proportion of forest specialist mammals remains greater 

than other biome types (Fig. 7.6). This is consistent with palaeobotanical data from the 

younger Piacenzian Age, which shows the warm – temperate mixed forest still present in 

Western Europe between 3.6 – 2.6 Ma (Salzmann et al., 2008). The change in biomes 

reconstructed from mammals is consistent with hypothesised vegetation change based on 

herbivore tooth wear analysis; the study showed a slight increase in overall diet abrasiveness 

and a significant increase in microwear from the early to the late Tortonian (Merceron et al., 

2010). 

Comparing the mammal based biome reconstructions with the regional palaeobotanical data 

shows a good agreement. The palaeobotanical data in Western Europe during the Late 

Miocene was predominantly warm – temperate mixed forests (Chapters 3) and vegetation 

modelling studies agree with this (François et al., 2006; Micheels et al., 2007). The pollen 

assemblages of these warm – temperate mixed forests often contain a significant herbaceous 

and grass component, these are believed to be from the forest understory, small open areas 

or disturbed ground (Harzhauser et al. 2008; von der Brelie and Wolf 1981; Chapter 2). 

Although the mammals do reconstruct warm – temperate mixed forests in Western Europe 

they also reconstruct more open biomes such as temperate savanna, temperate grassland 

and temperate xerophytic shrubland (Fig. 7.2). This would seem to contradict the 

palaeobotanical data however, it may well be a question of scale; do mammals reconstruct 

regional vegetation, as pollen does (Moore et al., 1992), or do they reconstruct more local 

environments? It is beyond the scope of this study to answer this question, but a combined 

study of mammals, palaeobotany, palynology and sedimentology, at the basin to regional 

scale, might provide some insights into this uncertainty. 
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In the region of Greece, Turkey and the Middle East, mammal based vegetation 

reconstructions show the presence of a mosaic environment, composed of warm – temperate 

mixed forest, temperate deciduous broadleaf forest, temperate evergreen conifer forest, 

temperate deciduous broadleaf savanna and temperate grassland (Fig. 7.2). This region also 

shows dramatic change in the proportion of stenobiomic genera specialised for particular 

biome types; in the early Tortonian the majority of stenobiomic taxa are adapted for forests, 

by the Messinian it is an even split between forest and savanna biome specialists (Fig. 7.6). 

Palaeobotanical data shows a mosaic of warm – temperate mixed forests and temperate 

deciduous savanna, with minor amounts of temperate deciduous broadleaf forest (Solounias 

and Dawson-Saunders, 1986; Chapter 3). There is a reasonable agreement from modelling 

studies which also reconstruct a mosaic of biomes in this region (François et al., 2006; 

Micheels et al., 2007). 

The North African region has a sparse palaeobotanical record for the Late Miocene (Chapter 

3). The mammal based vegetation records thus provide a valuable source of biome 

information for this region. The limited palaeobotanical information available for the Late 

Miocene of North Africa shows the presence of tropical savanna, tropical xerophytic 

shrubland and temperate sclerophyll woodland (Favre et al., 2007; Chapter 3). Despite the 

limited palaeobotanical information for North Africa the sedimentology of the region was 

predominantly fluvial during the Late Miocene (Swezey, 2009), suggesting more active 

hydrology in the region. Model based studies of the Late Miocene reflect this by 

reconstructing limited, or no, regions of desert (François et al., 2006; Micheels et al., 2007). 

The mammal based reconstructions are mostly around the coast of this region and show a 

mixture of forest, woodland, savanna and shrubland biome types (Fig. 7.2). The co-occurrence 

of mammals sometimes reconstructs multiple possible biomes in North Africa (Fig. 7.2). 

Despite this source of uncertainty, most likely from the small number of taxa preserved at 

each locality, there is drying trend from the early Tortonian to the Messinian with drier more 

open biomes being reconstructed towards the Messinian (Fig. 7.2). This is also confirmed by 

the proportion of stenobiomic taxa in this region that are adapted to savanna and shrubland 

biomes; 40% in the early Tortonian, increasing to >80% from the late Tortonian. 

Central and southern Africa have limited palaeobotanical information for the Late Miocene 

and the co – occurrence of mammals could provide useful biome reconstructions (Jacobs et 

al., 2010; Chapter 3). In Central Africa the mammal based biome reconstructions show the 

presence of tropical evergreen broadleaf forests, tropical savanna and tropical grassland (Fig. 

7.2). The reconstruction of warm – temperate mixed forest could be erroneous, and maybe 

related to a mammal that inhabits warm and humid forests. Palaeobotanical evidence for 
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Central Africa shows the presence of tropical forest biomes, tropical savanna and tropical 

grassland (Jacobs et al., 2010; Chapter 3). This is in good agreement with the biomes that 

have been reconstructed from the co - occurrence of mammals (Fig. 7.2). Mammal sites from 

Southern Africa reconstruct tropical evergreen broadleaf forest, warm – temperate mixed 

forest and temperate deciduous broadleaf savanna in Namibia (Fig. 7.2). In South Africa 

temperate evergreen conifer forest and tropical grassland has been reconstructed from the 

co – occurrence of Late Miocene mammals (Fig. 7.2). The reconstructions in Namibia are not 

in agreement with the palaeobotanical information gained from DSDP Leg 75, which showed 

the presence of xerophytic shrubland in Namibia during the Late Miocene (van Zinderen 

Bakker Sr., 1980) This would also contradict the history of the Namib desert, which is 

considered to have been arid from Ca. 16 Ma (Senut et al., 2009). However, the fossil 

mammals used in the co – occurrence approach are from the Otavi Mountains, Namibia 

(Mein et al., 2000; Rasmussen et al., 1996). Today this region is one of the wettest places in 

Namibia (Cramer and Leemans, 2001) and so the reconstruction from the mammal fauna may 

represent a local vegetation signal, whereas that recovered from DSDP Leg 75 may be a more 

regional signal. In South Africa palaeobotanical information shows the presence of temperate 

evergreen conifer forest biome, which is in good agreement with the mammal based 

reconstructions (Chapter 3). 

On the Indian sub continent the co – occurrence of Late Miocene mammals reconstructs 

tropical evergreen broadleaf forest, warm – temperate mixed forest, tropical grassland and 

temperate grassland biomes (Fig. 7.2). The reconstructed forests are from the foothills of the 

Himalayas and are in good agreement with palaeobotanical data (Banerjee, 1968; Chapter 3; 

Prasad and Pradhan, 1998). The fossil mammal sites located further south, which reconstruct 

the presence of grassland, come from a region with poor palaeobotanical data (Chapter 3). 

However, the presence of some areas of grassland has been suggested from stable carbon 

isotope analysis, showing the spread of C4 grasses during the late Tortonian through Pliocene 

(Cerling et al., 1997; Sanyal et al., 2010). Modelling studies have shown the Indian 

subcontinent as, a mixture of warm grassland, tropical seasonal forest and tropical evergreen 

forest (Micheels et al., 2007), or as predominantly tropical seasonal forest (François et al., 

2006). The former would appear to be more compatible with both the palaeobotanical data 

and the co – occurrence of mammal results. 

Mammal based reconstructions for eastern Eurasia show the presence of warm – temperate 

mixed forests and temperate deciduous broadleaf savanna north of 28°N, with tropical 

evergreen forest, warm – temperate mixed forest, tropical savanna and tropical grassland 

further south (Fig. 7.2). Palaeobotanical information is very good for this region and shows a 
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biome distribution and change through the Late Miocene that is mirrored by the mammal 

based reconstructions (Wang, 1992; Chapter 3). In this region the change in Late Miocene 

biomes shows the expansion of drier, more open vegetation at the expense of forests (Wang, 

1992; Chapter 3). Not only is this reflected in the mammal based co – occurrence 

reconstructions, but the proportion of stenobiomic taxa in each biome type changes from 

forest to savanna dominated (Fig. 7.6). Model based vegetation reconstructions show this 

region as being mainly forested, which is not in agreement with palaeobotanical information, 

nor the mammal based reconstructions (François et al., 2006; Micheels et al., 2007). 

 

7.5. Summary and conclusions 

The co – occurrence of mammals, at a fossil site, can be used to reconstruct vegetation. From 

the biome preferences of each mammal genus the vegetation under which all the assemblage 

could co - habit has been calculated (Fig. 7.2). This technique when applied to 233 Late 

Miocene localities, in areas without palaeobotanical information, reconstructed one or two 

biomes for 76% of the mammal assemblages (Fig. 7.3). The technique does not require a large 

number of taxa to be found, though for assemblages with fewer than five genera the number 

of reconstructed biomes can be large (Fig. 7.4). In this study the biome reconstructions from 

the co – occurrence of mammal genera has provided valuable information on vegetation from 

regions that have poor palaeobotanical information (Fig. 7.2). In regions that do have 

palaeobotanical information the biome reconstructions from the co – occurrence of 

mammals is complimentary. However, at some localities the mammal based reconstructions 

may provide a more local rather than regional biome signal. In this study examples of this 

local rather than regional scale are rare, but future work should investigate this anomaly at 

the basin to inter – basin level. Not only do the biome reconstructions from the co – 

occurrence of mammals compare well to regional palaeobotanical data, when possible. But 

the change in the proportion of stenobiomic taxa adapted for a particular biome type changes 

through time, reflecting the global changes in vegetation (Fig. 7.6). 

This technique provides another tool to reconstruct fossil mammal palaeoenvironments, to 

provide more information for global vegetation studies and more data to evaluate 

palaeoclimate modelling studies. This novel technique is complimentary to previous 

techniques that relied on morphology (Fortelius et al., 2002; Tang et al., 2011), isotopes 

(Cerling et al., 1997; Fox and Fisher, 2004) and tooth wear (Merceron et al., 2010; Solounias 

et al., 2010). It should however be of more use to compare fossil mammals with 
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palaeobotanical information, than to compare fossil mammal assemblages with modern 

equivalents because not only is the majority of the modern world anthropogenically altered 

(Ellis, 2011) but millions of years of the evolution created a modern world with a biosphere as 

unique as any in the geological past. Though inferences of diet and habitat can be made on 

nearest living relatives it should be used with caution. For example the modern world 

contains a strong bias towards ruminant grazers, this does not necessarily mean that every 

member of these clades has been a grazer in the geological past (Janis, 2008). 

The co – occurrence of fossil mammal genera in an assemblage can be used to reconstruct 

the biome that they inhabited. Applying this technique to global faunas from the Late 

Miocene provides new information on global vegetation and biome change through time. 

This information is of particular importance in regions with limited palaeobotanical 

information, such as North Africa. The mammal based biome reconstructions show a 

progressive cooling and drying from the early Tortonian to the Messinian. This is 

accompanied by faunal turnover; changing the proportion of stenobiomic genera in many 

regions, from mainly forest adapted animals to those more suited to open biome types. This 

novel technique provides a new method to reconstruct vegetation and palaeoenvironments 

that can be used to further our understanding of the terrestrial biosphere. 

 

 



- 200 - 

Chapter 8 

Final discussion, conclusions and outlook 

 

Everything is transformed by nature and forced into new paths. One thing dwindles....another 

waxes strong - Titus Lucretius Carus 58 B.C. 

 

8.1. Introduction 

At the outset of this thesis it was introduced that the Miocene was a time interval both 

warmer and wetter than the present day (Chapter 1). Through the study of the terrestrial 

biosphere, at a global level, this thesis has shown this statement to be true and has 

demonstrated how much warmer and wetter the Miocene was, through the use of climate 

modelling (Chapters 4 and 5), which suggests the Tortonian global average MAT was 4.5°C 

warmer than pre – industrial and 131.4 mm/yr wetter. From the co-existence of plants 

preserved as pollen in Derbyshire (Chapter 2) showing that the UK was 8°C warmer than 

present day MAT. This also indicates a shallower than modern latitudinal temperature 

gradient (Chapter 3). The affect of this warmer and wetter climate has been shown to alter 

the distribution of global biomes. The distribution of biomes has come from palaeobotanical 

sources (Chapters 3 and 4) and from the newly developed co-occurrence technique (Chapters 

6 and 7). Both these sources of information have shown a poleward shift of all the world’s 

major biome types. As well as showing the response of vegetation to the changing climate 

from the Langhian to the Messinian (Chapter 3 and 7). In this discussion I will attempt to draw 

together the results and discussion presented in the preceding seven chapters and tie this 

into what is known about Miocene climates and terrestrial ecosystems. 

 

8.2. The vegetation and climate of the UK during the Miocene 

In Chapter 1 it was stated that despite the large number of regional studies undertaken, 

especially in Europe, very little is known about the UK during the Miocene (e.g. Bruch et al., 

2006; Utescher et al., 2007). In section 2.1 the absence of the UK in regional Miocene 

vegetation and climate studies was shown to result from a sparse onshore rock record 

(Woodcock and Strachan, 2000). The scarcity of Miocene strata is not the only problem in the 
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UK. Dating and correlation of the rocks once they are identified is also problematic. Several 

deposits have been reported in the literature as “Miocene”, “Neogene” or “Tertiary” (e.g. 

Allen, 1981; Herbert-Smith, 1971; Walsh et al., 1987; 1996), the accurate dating of UK 

Neogene has been hindered by the lack of datable palaeontological remains and the sparse, 

often karstic nature of the deposits (Walsh, 2001). In Chapter 2, the Kenslow Member of the 

Brassington Formation was more accurately dated to the late Tortonian. The Kenslow 

Member had previously been assigned to the Late Miocene – Early Pliocene (Boulter, 1971a), 

leading to liberal interpretations of the deposits age in the literature (e.g. Westaway, 2009). 

The revised age was based on a re-study of the original flora (Boulter, 1971a), extraction of 

fresh material from Kenslow Top Pit and the comparison of these to the Neogene floras of 

continental Europe. With the Kenslow Member flora more chronologically constrained it has 

been possible to involve it in regional and global patterns of vegetation (Chapter 3). The 

pollen preserved in the Kenslow Member shows that during the late Tortonian a warm – 

temperate mixed forest inhabited modern Derbyshire. Using the co-existence approach 

(Mosbrugger and Utescher, 1997; Utescher and Mosbrugger, 2010) a MAT of ca. 16°C has 

been reconstructed showing that the climate of Derbyshire was 8°C warmer than it is today. 

The vegetation and climate reconstructed from the palynology of Kenslow Top Pit is in good 

agreement with continental Europe. During the Late Miocene Europe had a shallow east – 

west temperature gradient, MATs in Turkey were around 18°C (Akgün et al., 2007), whilst in 

Northwest Europe MATs were 14 - 17°C (Bruch et al., 2007; Larsson et al., 2011). As the data 

presented in Chapter 3 shows, Europe during the Late Miocene was dominated by the warm 

– temperate evergreen broadleaf and mixed forest. The pollen recovered from Kenslow Top 

Pit shows many taxonomic similarities to other European Palynomorph bearing sites and 

represents the same swathe of warm – temperate forest that dominated Europe. 

As well as providing the first accurately dated biome and climate reconstruction, the re-dating 

of Kenslow Top Pit has implications for understanding the development of the Pennines and 

the possibility of bringing this portion of the British stratum out of what S.W. Wooldridge 

referred to as “ a neglected ‘Dark Age’ in the geological history of Britain” (Walsh, 2001). The 

myth that the UK lacks Miocene deposits really only exists because the rocks do not form 

easily visited outcrops and as such have received limited attention. A brief literature survey 

reveals a wealth of understudied “possible Miocene”, “Neogene” or “Tertiary” onshore 

deposits (Allen, 1981; Herbert-Smith, 1979; Walsh, 2001; Walsh and Brown, 1971), as well as 

the extensive fluvio-lacustrine basins of Cardigan Bay, the Irish Sea and the Bristol Channel 

(Holford et al., 2008; Tappin et al., 1994). As was mentioned in Chapter 2, Kenslow Top Pit is 

only one of around 60 karstic hollows containing the Brassington Formation (Ford and King, 
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1968). Although many of these are now overgrown (J.B. Riding Personal Communication, 

2011) there has previously been reports of the Kenslow Member flora occurring in at least 

seven pits (Walsh et al., 1980). Further work on the Brassington Formation could provide 

additional evidence on the vegetation and climate of the UK during the Late Miocene. The 

possibility also exists that the stratigraphically lower Kirkham Member may yield 

palynomorphs (Walsh et al., 1980), which could provide further control on the age of these 

important deposits and test the hypothesis that the whole Brassinton Formation is Tortonian 

in age. 

The revision of the Brassington Formation’s age to a stage specific level opens up the 

possibility of refining the ages of other UK late Cenozoic deposits. An important starting point 

to this would be the Mochras Farm Borehole, Wales. The Mochras Farm Borehole cut through 

ca. 500m of “Tertiary” sediments and an initial report on the palynology failed to apply an age 

more secure than “late Tertiary” (Herbert-Smith, 1971). However, it was noted that the floras 

bared resemblance to those reported from the Brassington Formation and the Neogene of 

Germany, whilst the early Tertiary was excluded due to the absence of strongly tropical pollen 

(Herbert-Smith, 1979). This ambiguity in dating has led to a situation similar to that of the 

Brassington Formation, whereby the diagnosed age has been refined in more recent works 

with little or no evidence to support this. For example in several works the “late Tertiary” 

sediments of Herbert-Smith (1979) have been quoted as being Middle Oligocene to Early 

Miocene (Tappin et al., 1994) and Early Miocene (Holford et al., 2008).Walsh (2001) reports 

that the sediments of the Mochras Borehole are Chattian. This age assignment was based on 

the work of Wilkinson (1979), Wilkinson and Boulter (1980) and Wilkinson et al. (1980) who 

attempted to correlate a series of deposits in south west England, Wales and Northern 

Ireland. Using the presence of Mediopollenites (Santaceae) it was deemed that at 408m depth 

the Mochras Borehole correlated with the Upper Bovey Formation, giving it an age in the 

region of middle to Late Oligocene (Wilkinson and Boulter, 1980; Wilkinson et al., 1980). The 

Bovey Formation, Bovey basin, Devon was dated based on comparison to the Lough Neagh 

Clays, Northern Ireland (Wilkinson et al., 1980). The Lough Neagh Clays have been dated 

based on their palynology (Wilkinson et al., 1980). Principally the presence of Boehlensipollis 

(Elaeagnaceae?), which was considered a form genus restricted to the Oligocene (Wilkinson 

et al., 1980). More recently Boehlensipollis has been reported from the Maastrichtian (Nichols 

and Johnson, 2002) and the Miocene (Teodoridis, 2003). Examination of the Mochras core 

shows sediments remarkably similar to those preserved in the karstic hollows of Derbyshire 

(Personnel Observation, 2012). The list of taxa reported from Mochras shows similarity to 

those of the Kenslow Member flora, as was originally suggested by Herbert-Smith (1979). The 
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presence of Symplocos spp. in the Mochras borehole indicates an age of at least Late Miocene 

and the presence of pollen grains attributable to Palmae at a depth of 408m suggests an age 

of at least Middle Miocene for this depth (Herbert-Smith, 1979; Wilkinson and Boulter, 1980). 

However, the published taxa list is short and it is not possible to refine the age any further 

without processing new material (Herbert-Smith, 1979). Initial processing begun by myself 

has already built on the original study by finding palynomorphs below 525m; the maximum 

depth the original study found pollen (Herbert-Smith, 1979). 

As has been alluded to in the previous paragraph the sediments of the Mochras Borehole do 

not exist in isolation. Late Cenozoic aged sediments are known onshore from Cornwall and 

Devon (Walsh et al., 1987; Wilkinson and Boulter, 1980; Wilkinson et al., 1980), southern 

Wales (Allen, 1981; Tappin et al., 1994), north-east Wales (Walsh and Brown, 1971) and 

Northern Ireland (Wilkinson et al., 1980). Offshore, geophysics and boreholes in the Bristol 

Channel and Irish Sea have revealed extensive sedimentary basins with Cenozoic strata of 

more than 1.5km thickness (Boulter and Craig, 1979; Tappin et al., 1994). The age of these 

sediments, both onshore and offshore, could prove key to understanding the 

geomorphological development and palaeogeography of the UK (M. Rowberry Personnel 

Communication, 2012; Walsh, 2001). As the age of these deposits is of such importance, 

further work should be undertaken to refine the date of each core, outlier and subsidence fill. 

Allowing each to be placed in stratigraphic order and finally revealing the poorly understood 

late Cenozoic geological history of the British Isles. 

 

8.3. The evolution and nature of Miocene climate 

In chapter 1 the Miocene was introduced as a time period warmer and wetter than the pre-

industrial and today, this idea was based on many sources of evidence from individual fossil 

localities (e.g. Blanc et al., 1974), regional studies (e.g. Utescher et al., 2011a) and from 

isotopic global signals (e.g. Zachos et al., 2008). From marine proxies, it is widely accepted 

that MMCO was the warmest time interval of the whole Neogene, followed by a reduction in 

global MAT during the MMCT leading into the Late Miocene (Shevenell et al., 2004; Zachos et 

al., 2008). Both these hypotheses are supported by the findings of this thesis. Further to this 

the work presented within this thesis has shown what the terrestrial world looked like and 

how it responded to the changing climate. Despite there being good agreement in the 

literature on the general trend of Miocene climate through time, the mechanisms controlling 

this trend are not. The complex evolution of the Earth System through the Miocene (Fig. 1.1) 
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and the apparent decoupling of climate from CO2 (Pagani et al., 2005) has led to many 

alternative suggestions to the driving force of Miocene climate evolution. These suggestions 

include mountain uplift (Raymo and Ruddiman, 1992), the expansion of grasslands (Retallack, 

2001), the Colombia River basalts (Kender et al., 2009), changes in ocean circulation 

(Shevenhell et al., 2004; Smith and Pickering, 2003), superplume activity (Potter and Szatmari, 

2009) and galactic cosmic ray flux (Shaviv and Veizer, 2003). Ultimately all of these factors 

may have had an impact on the global climate and it is easy to relate many of these ideas into 

a larger view of climate evolution over the MMCO, MMCT and the Late Miocene. For example 

the idea that elevated CO2, partly caused by the Colombia River Basalts (Kender et al., 2009), 

along with significantly lower than modern mountain heights created the warmth of the 

MMCO allowing a poleward expanse of global biomes (Chapter 3) and a reduced Antarctic ice 

sheet (Lewis et al., 2008) causing a positive feedback in terms of surface albedo. In an 

AOGCM study of the MMCO it was found that surface albedo was a primary cause for 

warming of the northern hemisphere and one of many for the southern hemisphere (Herold 

et al., 2011). 

Following the warmth of the MMCO, bottom water oxygen isotopes show a period of 

relatively rapid global cooling and/or ice accumulation (Zachos et al., 2008). The MMCT could 

originate from increased mountain uplift (Potter and Szatmari, 2009), accelerating the 

chemical weathering of silicate rocks and lowering atmospheric CO2 levels (Raymo and 

Ruddiman, 1992). As global mountain uplift has not ceased since around 15 Ma then a 

feedback must have kicked in to prevent complete atmospheric CO2 drawdown. This could be 

due to an expansion of grasslands during the MMCT, inhibiting the biospheres contribution to 

global chemical weathering (Beerling et al., 2012; Pagani et al., 2009) and preventing 

atmospheric CO2 from falling any lower than 100 ppmv. However, the palaeobotanical data 

presented in Chapter 3 shows there is no major expansion of savannas and grassland during 

the Seravallian (Fig. 3.1B). Rather both palaeobotanical (Fig. 3.2) and mammalian evidence 

(Fig. 7.5) shows that grass dominated biomes only begin to expand in the Late Miocene. This 

is further supported by studies into the expansion of C4 grasses from carbon isotopes. These 

studies show that the isotopic signal for the C4 photosynthetic pathway appears globally 

between 8-6 Ma but only comes to dominate during the Pliocene (Cerling et al., 1997; Fox 

and Koch, 2004; Latorre et al., 1997; Yang et al., 1999). However, before the lack of grassland 

in the reconstructions presented in Chapter 3 is taken as evidence of absence, it would be 

prudent to investigate the global distribution of paleosols during the Miocene. As paleosols 

may reconstruct more arid biomes than palaeobotanical data would alone (G. Retallack 

Personnel Communication, 2011). 
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8.3.1. Tortonian vegetation, climate and CO2 levels: A case study for the Miocene 

Of the four geological ages studied in this thesis the Tortonian is the best understood. The 

Brassington Formation yielded a palynoflora showing the presene of warm – temperate 

mixed forests in the UK during the Tortonian (Chapter 2). The Tortonian has the most 

numerous palaeobotanical sites with which to understand the global distribution of biomes 

(Chapter 3). The biomes reconstructed from palaeobotanical data have been used to assess 

GCM simulations and develop a data-model hybrid vegetation map (Chapter 4). Modelling 

experiments have investigated the impacts of vegetation on the Tortonian climate (Chapter 

5). The biome preferences of Tortonian mammals have been reported (Chapter 6) and these 

have been used to expand the distributions biomes (Chapter 7). As the terrestrial biosphere 

and climate have been intensively investigated in this thesis, this subsection will use it as a 

case study to discuss in more depth the ideas about climate and CO2 during the Miocene. All 

the evidence presented in this thesis, concerning the Tortonian, suggests that it was a globally 

warmer world than at present. This global warming requires a forcing agent that can operate 

at all latitudes, an increase in CO2 or other greenhouse gases relative to the pre-industrial 

would be the most likely cause. This is not the only study that has shown these changes in the 

vegetation during the Tortonian relate to a warmer world (François et al., 2006; Micheels et 

al., 2007). However estimates of CO2 levels for the Tortonian are between the Last Glacial 

Maximum and mid 20th Century concentrations (Kürschner et al., 1996, 2008; Berner and 

Kothavala, 2001; Pearson and Palmer, 2004; Pagani et al., 2005; Tripati et al., 2009). This has 

led to the suggestion that Tortonian climate was decoupled from CO2 (Shevenell et al., 2004; 

Pagani et al., 2005; Mosbrugger et al., 2005). However recent work by Tripati et al. (2009) has 

shown that climate is highly sensitive to ρCO2 and for the last 20 Ma major climatic changes 

were synchronous with changes in ρCO2. Ruddiman (2010) recently suggested that one of the 

possibilities for apparent low CO2 levels over the past 22 Ma, whilst climate has fluctuated 

considerably, could be the incorrect calculation of CO2 from proxies. Recently CO2 estimates 

for the Pliocene have been recalculated using the alkenone proxy, which placed atmospheric 

CO2 levels for 4.5 Ma at between 370-420 ppmv (Pagani et al., 2010). Previous alkenone 

estimates for the latest Miocene (5.37 Ma) range from 247-340 ppmv (Pagani et al., 2005). 

Taking the upper estimates for both alkenone records requires an increase in atmospheric 

CO2 of 80 ppmv across the Miocene-Pliocene boundary. Whilst using the lower estimates 

requires an increase of 123 ppmv over a period of 0.87 Ma, this is not compatible with other 

estimates of CO2 levels (Kürschner et al., 1996; Pearson and Palmer, 2000). Nor would it be 

compatible with the bottom water δ18O records, which show continued climatic cooling 
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and/or ice sheet growth across the Miocene – Pliocene boundary. If we assume a connection 

between global climate and greenhouse gases, falling temperatures and/or ice sheet growth 

would suggest falling atmospheric CO2 levels (Zachos et al., 2008). 

It has been shown that vegetation has a positive feedback on global temperatures through 

altering surface albedo (Notaro et al., 2006). Could this then mean that the more poleward 

distribution of Tortonian biomes, as shown in Chapters 2, 3, 4 and 7 is a cause of the global 

MAT increase on modern, rather than being just a consequence? This has been proposed 

following an AOGCM experiment to explore whether Tortonian global warmth can be 

generated with low atmospheric CO2 levels. The study found that with a CO2 concentration of 

278 ppmv the strongest forcing agent on the warming was vegetation (Knorr et al., 2011). 

Globally their experiment was +3°C warmer than the pre-industrial and appears to show that 

it is possible to have a warm Tortonian with low CO2 levels (Knorr et al., 2011). However, this 

experiment may have been destined to achieve this result from the outset because the 

utilized global biome reconstruction relied heavily on the climate of a world with an 

atmospheric CO2 concentration of 353 ppmv (Knorr et al., 2011; Micheels, 2003). This means 

that the fixed vegetation boundary condition was not in equilibrium with the 278 ppmv CO2 

climate and could not respond to it either. Comparison of the global vegetation 

reconstruction used in the previously mentioned study and the palaeobotanical data 

presented in Chapter 3 shows some differences and these have been discussed in Chapter 

4.The results of Chapters 4 and 5 show that higher CO2 concentrations (395 ppmv) are 

required to generate a modelled climate comparable to that reconstructed from 

palaeobotanical data (Chapter 3). However, it is worth noting here that a primary driver of 

temperature in an AGCM, such as the one used in these chapters, is the prescribed SSTs. This 

could mean that, until we have an accurate SST profile, varying the CO2 concentrations in 

these model experiments might have little impact on the climate and hence the comparison 

with palaeobotanical reconstructions. Recent work using the AOGCM HadCM3L has also 

shown that at high CO2 levels the data model comparison is more accurate than at low CO2 

levels (Bradshaw et al., 2010; 2012). Although current estimates of CO2 for the Tortonian do 

not match the warming relative to pre-industrial seen in the palaeobotanical data, it would 

appear to be the most likely driving force for a global increase in MAT. It may seem an 

obvious statement to suggest that the uncertainties surrounding the reconstruction of CO2 

might be the issue in the “low CO2 warm Miocene” paradox (Ruddiman, 2010). However, the 

CO2 proxies are often taken as definite values (e.g. Knorr et al., 2011; LaRiviere et al., 2012) 

and stronger communication of potential uncertainties in these proxies is required from this 

research community to the wider palaeoclimate one. 
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8.3.2. Modelling the Miocene: State of the art and future progress 

As part of this thesis has been dedicated to using a climate model to understand the impact 

of Tortonian vegetation on the climate (Chapter 5), it seems important to discuss the results 

of this chapter further and suggest some directions for future research. The experiments built 

on those presented in Lunt et al. (2008) who used an AGCM to explore the meridional SST 

and its influence on Tortonian climate. One of the Lunt et al. (2008) experiments was chosen 

to develop a data – model hybrid global vegetation reconstruction (Chapter 4). In Chapter 5 

this Tortonian hybrid vegetation was used in one of the experiments to determine the impact 

of Tortonian vegetation on climate. The other experiments in Chapter 5 presented the 

impacts on climate of global forests (the opposite to the commonly used global shrublands, 

see Chapter 5 for further discussion) and the influence of different land surface schemes 

(MOSES1 vs. MOSES2). The main results were that the experiment using the realistic 

Tortonian vegetation reconstruction compared most accurately to MAT estimates from 

palaeobotanical data (Fig. 5.11). This experiment also showed that the vegetation contributed 

to a further 0.12°C warming on the pre-industrial (Table 5.2). Although this appears relatively 

insignificant, it is important to remember that the primary driving force of temperature in an 

AGCM is the prescribed SSTs. A future experiment should repeat experiment Tort3 (Table 5.1) 

but using an AOGCM. The experiment Tort4 showed that it was possible to achieve an 

additional warming on the pre-industrial just by changing to the MOSES2 land surface scheme 

(Table 5.2). However, it showed the least robust comparison to palaeobotanical based MAP 

reconstructions (Fig. 5.12d). It would be beneficial to repeat Tort4 but substituting the global 

vegetation hybrid for the global shrublands used in Tort4. This would allow a statement to be 

made about whether it is best to the use of either MOSES1 or MOSES2 for modelling the 

Tortonian climate with HadAM3. 

Despite the inclusion of a realistic vegetation reconstruction in Tort3 the data - model 

comparison of MAT and especially MAP was still not perfect (Figs. 5.11; 5.12). Although this 

may relate to the SST profile used in the AGCM, data-model inconsistencies are still present in 

Tortonian climate model studies that use fully coupled AOGCMs (e.g. Bradshaw et al., 2012; 

Micheels et al., 2011). Before these data – model inconsistencies can be assigned to problems 

in the models it is important to explore the accuracy of boundary conditions. These are 

important components of the model initialisation and if incorrectly prescribed could misguide 

the model to generate a climate less comparable to that shown by the palaeontological 

record. There are many boundary conditions used in modelling studies that could be 
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inaccurately represented such as bathymetry (e.g. Dowsett et al., 2011) or completely absent 

from modelling studies such as lakes (e.g. Haywood et al., 2010). Lakes may be an important 

boundary condition for improving the comparison of model simulated precipitation and the 

records reconstructed from the palaeobotanical record. So called mega – lakes (due to their 

substantial size!) have been shown to increase local to regional precipitation in Quaternary 

and Holocene modelling experiments (Burrough et al., 2009; Sepulchre et al., 2008). There is 

a considerable amount of literature for Miocene mega – lakes. In Africa for example there 

may have been lakes with surface areas of two million km2 in the regions of Lake Chad 

(Griffin, 2006) and in the Congo Basin (Peters and O'Brien, 2001). In Australia as well, there is 

evidence for large lakes in the Tarkarooloo Basin and Billa Kalina Basin, both in South 

Australia (Ambrose and Flint, 1980; Callen, 1977) and the Lake Eyre Basin, which covers large 

parts of Queensland, the Northern Territory and South Australia (Alley, 1998). Inclusion of 

these mega – lakes into a GCM experiment may increase the amount of precipitation in 

continental interiors and arid regions – potentially improving the data – model comparison. 

Sloan (1994) found that when simulating the Early Eocene of North America, the addition of a 

lake had as much impact on the climate of the continental interior as the 1680 ppmv CO2 in 

the models atmosphere. The addition of the lake (a modest one, compared to true mega – 

lakes, with a surface area of 15000 km2) deflected the winter freezing line north and 

improved data – model winter temperature comparisons (Sloan, 1994). 

 

8.4. Mammals an important component of the terrestrial biosphere 

There are many components of the biosphere from single celled bacteria to colossal animals. 

Each operates between and within the other spheres of the Earth system, making the 

biosphere a record of all the changes that have occurred on this dynamic planet. As the 

continents have moved and climates changed, organisms have recorded these events (e.g. 

Deng et al., 2011; Webb, 2006). This “ability” of the biosphere to record changes in the other 

Earth system components is one of the key pieces of palaeoclimatological data. Whether this 

is recording a change in oceanic chemistry (e.g. Shevenhall et al., 2004), atmospheric 

composition (e.g. Kurschner et al., 2008) or changes in habitable ecospace (e.g. Chapter 3) the 

information recorded by the biosphere is invaluable in understanding the past. As well as 

responding to the other spheres of the Earth system there is growing evidence and ideas for 

the biosphere influencing other components (Chapter 5; Hayden, 1998; Wilkinson et al., 

2012). Vegetation is the most obvious component of the biosphere that influences both the 

lithosphere (e.g. Pagani et al., 2009) and the atmosphere (e.g. Notaro and Liu, 2008). But 
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what of the other organisms of the biosphere? There is a growing body of literature on 

modern animals as ecosystem engineers (Jones et al., 1994; Wright and Jones, 2006). This is 

the concept that life does not simply inhabit space, but willingly or inadvertently modifies the 

environment. Humans being the ultimate in ecosystem engineer (Ellis, 2011; Jones et al., 

1994). In the following two subsections I will firstly recap the results and discussion from 

Chapters 6 and 7, integrating them with other work that uses mammals as a proxy. Following 

that I will discuss mammals as ecosystem engineers and their possible impacts on the Earth 

system that may influence climates. 

 

8.4.1. Mammals as a proxy in palaeoclimates 

This thesis has been the first to attempt to use the palaeoecology and biome preferences of 

mammals as a global proxy in Miocene palaeoclimate studies (Chapters 6 and 7). Through the 

use of the Biome Specialisation Index (BSI) it has been shown that Late Miocene mammals 

had a similar proportion of stenobiomic and eurybiomic taxa as extant modern mammals 

(Chapter 6). During the Late Miocene the majority of mammal genera were specialised to 

only one or two biomes (Fig. 6.3). As most Late Miocene mammal genera were stenobiomic, 

rather than eurybiomic, they are able to be used to reconstruct biomes in regions where 

palaeobotanical data is absent (Chapter 7). These mammal based biome reconstructions are 

in good agreement with the regional and global biome distributions from Chapters 3 and 4. 

Previous attempts to reconstruct vegetation from Miocene mammals relied on comparisons 

to nearest living relative habitat preferences (Guerin and Eisenmann, 1993), inferences of diet 

from morphology (Fortelius et al., 2002), isotopic studies to estimate the proportion of C3 to 

C4 plants (Cerling et al., 1997) and tooth wear analysis to understand actual food 

consumption (Merceron et al., 2010). Each of these previous techniques has value in 

understanding fossil mammal ecology, but is limited for inferring large scale biome 

distributions. Comparing a fossil mammal with its extant descendant, though based on 

uniformitarianism, is probably the least reliable in reconstructing vegetation. A key issue with 

using a mammal’s nearest living relative to infer a fossil mammal’s habitat is that it relies on 

no adaptive evolution having occurred. For example if we look at modern species of the 

Bovidae most are adapted to be grazers (Janis, 2008). Therefore when we look back at Late 

Miocene Bovidae species, we would be inclined to infer each of these was a grazer. 

Reconstructing savanna and grasslands where ever bovid specis are preserved (de Bonis et al., 

1990; 1998), even when palaeobotanical data shows the presence of forest (Ivanov, 2002; 

Velitzelos and Gregor, 1990). This is a major problem in the understanding of Miocene 
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palaeoenvironments and has led to the “savanna myth” (Solounias et al., 1999). This can be 

best highlighted by the Late Miocene deposits of Greece and Turkey; most fossil mammals of 

this region are relatives of modern species only found on the African savanna (Solounias et 

al., 1999). Although nearest living relative comparisons can provide some information on a 

mammal’s ecology and the regional vegetation, these inferences should be used cautiously. 

Otherwise, we ignore the idea of adaptation and evolution in response to environmental 

changes (Benton, 2009; Bozinovic et al., 2011). This thesis has provided evidence that Late 

Miocene mammals were evolving in response to changing vegetation (Fig. 7.4; 7.5) and this 

should be fully explored in the future. Further caution should come from the idea we know 

the true distribution of modern mammals. The degree to which the planet has been modified 

through agriculture, civilisation, domestication and recent extinctions means we may have a 

limited idea about what a truly natural world should look like today (Ellis, 2011; Newmark, 

1995; Turvey et al., 2007). 

Tooth functional morphology is a cornerstone of understanding fossil mammal diets (Ungar 

and Williamson, 2000). From the modern families to the earliest morganucodontans tooth 

form in mammals is intimately related to diet (Gill et al., 2009; Janis and Fortelius, 1988; 

Pough et al., 2009; Clemens, 2011). This well established fact has been utilised in the 

hypsodonty of herbivorous mammals (Fortelius et al., 2002). As introduced in Chapter 1, 

hypsodonty is the relative height to width ratio of mammalian molars and is an evolutionary 

adaptation to abrasive food (Fortelius et al., 2002; Janis and Fortelius, 1988). A hypsodont 

mammal is one which has a molar tooth higher than it is wide and are typically considered 

grazers, whereas a brachyodont mammal has a molar that is wider than it is high and are 

browsers (Fortelius et al., 2002). Of course not all modern hypsodont mammals are grazers 

and not all extant grazers have a hypsodont dentition (Cerling et al. 2003; Fortelius et al., 

2002; Sponheimer et al. 2003). In palaeoclimate studies the hypsodonty index has commonly 

been used as a quasi-quantitative aridity indicator; more hypsodont mammals indicates 

greater aridity (Fortelius et al., 2002). A combination of the hypsodonty index and the co-

occurrence technique could provide some interesting information for understanding 

palaeoprecipitation and biomes. For example studies on European faunas has shown that 

there is a major expansion of hypsodont mammals at the start of the Late Miocene, whereas 

Europe is dominated by brachyodont mammals before 11 Ma (Fortelius et al., 2002). The 

vegetation data shows a dominance of the warm-temperate evergreen broadleaf and mixed 

forest in Europe throughout the Middle to Late Miocene, with some more open areas in the 

Iberian Peninsula (Fig. 3.4; 3.5). Reconstructed MAP data indicates that there is a reduction in 

precipitation from the Langhian to the Messinian (Tables 3.2-3.5). Ranges of MAP change 
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from 823-2500 mm/yr in the Langhian to 700-1759 mm/yr in the Messinian. These upper 

values are still able to maintain evergreen rainforest, but these values provide no indication 

of seasonality. A combination of the co-occurrence technique (which does indicate more 

seasonal biomes in Europe during the Messinian), palaeobotanical data and the hypsodonty 

index could be used to refine our knowledge of precipitation and seasonality - evolution 

during the Miocene.  

Isotopic study of mammal teeth studies have been used to infer vegetation based on the 

inferred proportion of C3 to C4 plants. These studies assume that any indication of the C4 

photosynthetic pathway shows the presence of grasses (Macfadden and Cerling, 1996). 

Overall 61% of all C4 plants are from the family Poaceae, this means that not all C4 plants are 

grasses. In fact, 550 species of the Chenopodiaceae and 250 species of the Amaranthaceae 

use the C4 photosynthetic pathway (Kadereit et al., 2003). As well as these two families of 

predominantly shrubs, examples of C4 pathway using plants are also found in 14 other dicot 

families (Kadereit et al., 2003; Sage and Monson, 1999). Although the majority of C4 plants 

are grasses (61%) there is still a large proportion of non-grass C4 plants. This may mean that 

carbon isotope studies from mammal teeth, which reconstruct amounts of grass in the 

ecosystem (e.g. Macfadden and Cerling, 1996), may not actually reflect the proportion of 

Poaceae in the environment. Though this argument maybe more valid in the Pliocene as 

many of the C4 dicots are thought to be younger than 5 Ma (Sage, 2004). 

Tooth wear analysis reconstructs an animal’s diet based on the damage left on teeth through 

feeding (Merceron et al., 2010; Townsend and Croft, 2008). From the understanding of an 

animal’s diet it is possible to infer a habitat. Using microwear analysis Townsend and Croft 

(2008) demonstrated that Early Miocene hypsodont mammals from South America were 

actually browsers. They concluded that hypsodont herbivores do not always necessarily mean 

an open and arid environment. Microwear analysis on the Molayan locality, Afghanistan 

suggested the presence of an open arid environment with C3 grass, evergreen shrubs and 

trees (Merceron et al., 2004). This is in good agreement with the reconstructions from the co-

occurrence approach, which although it reconstructed a possible four biomes, two of these 

were dry and open and the other two were evergreen (Fig. 7.1). Ultimately our best 

understanding of the Miocene terrestrial world, using mammals to support the 

palaeobotanical record, will come from an integrated proxy approach. Using the co-

occurrence technique to predict a biome and testing this with hypsodonty analysis, isotopic 

studies and tooth wear analysis. 
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8.4.2. Ecosystem engineers: Mammals as a component of the earth system 

An ecosystem engineer is an organism that directly or indirectly modulates the availability of 

resources (other than themselves) to other species (Jones et al., 1994; Wright and Jones, 

2006). Direct provision of resource such as food web transfers and decomposition are not 

forms of ecosystem engineering (Jones et al., 1994; Wright and Jones, 2006). Some 

organisms, such as plants, are autogenic ecosystem engineers. Autogenic ecosystem 

engineers change the environment with their own physical structure (Jones et al., 1994). The 

impact of plants, the archetypal autogenic ecosystem engineer, on the climate is well 

documented and has been discussed extensively throughout this thesis. The other type of 

ecosystem engineering is an allogenic organism; these modify their environment by 

transforming living or non-living materials from one physical state to another (Jones et al., 

1994). This type of ecosystem engineer will be discussed in this section using the examples of 

the habitat modifying elephant and the habitat creating beaver (Jones et al., 1994). Not only 

are the beaver and elephant two of the most important modern ecosystem engineers, but 

both have greater diversity and geographic distribution during the Miocene (Chapter 6). 

Therefore if these mammals were ecosystem engineers during the Miocene, their impacts on 

the environment would have been much greater than their modern relatives. This subsection 

will introduce the elephant and the beaver as allogenic ecosystem engineers and explore the 

possibility of their impacts on the Miocene world. 

African Bush Elephants (Loxodonta africana) are one of the largest living land mammals and 

are an important element in maintaining woodland – savannah – grassland dynamics (Haynes, 

2012; Laws, 1970; Naiman, 1988). Studies on forest elephants (Loxodonta cyclotis) as 

ecosystem engineers are limited, but they are assumed to contribute to forest complexity by 

spreading seed and maintaining open areas (Short, 1981). These allogenic ecosystem 

engineers modify vegetation structure through physical disturbance and destruction of trees 

(Jones et al., 1994; Naiman, 1988). This has influences on the local fire regime, food supply to 

other animals, populations of other animals and the physical structure of the regional 

environment (Baxter and Getz, 2005; Jones et al., 1994; Laws, 1970; Naiman, 1988; Pringle, 

2008). Due to the vulnerable nature of the species and the human – elephant conflict for 

space, elephants are often geographically restricted through fencing (Riddle et al., 2009). This 

unnatural range restriction has been suggested to lead to the high degrees of woody plant 

destruction and ecosystem engineering suggested by some authors (Guldemond and van 

Aarde, 2007; Laws, 1970; Mosugelo et al., 2002; Wiseman et al., 2004). This however would 

be difficult to prove, as the interactions between a natural elephant population and unaltered 

vegetation is an impossible observation in the modern world. 
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Figure 8.1. Geographic distribution of potential Late Miocene ecosystem engineer families. Coloured 
shapes represent an occurrence of a family, whilst the black stars show the position of all the 
mammal localities recorded in MAD. 



- 214 - 

 

Figure 8.1. Cont. Geographic distribution of potential Late Miocene ecosystem engineer families. 
Coloured shapes represent an occurrence of a family, whilst the black stars show the position of 
all the mammal localities recorded in MAD. 

 

The ecosystem engineering that has been observed in elephants may have implications to 

biome reconstructions during the Miocene. The opening up of an area of Kruger National 

Park, South Africa permitted elephants into woodland they had been excluded from for 32 

years (Hiscocks, 1999). A transect survey five years after the removal of the fence showed 

that over 700 trees had been damaged and a further 300 were dead, opening up the 

woodland (Hiscocks, 1999). Other research in Kruger National Park has shown that a 

combination of elephants and fire can modify tall woodland to short woodland (Trollope et 

al., 1998). Observations showed that this degree of change did not happen with fire operating 

alone (Trollope et al., 1998). During the Late Miocene the Proboscidea were considerably 

more diverse both taxonomically (30 species in 16 genera compared to 2 species in 2 genera 
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today) and geographically (all continents except Antarctica and Australia during the Late 

Miocene). In terms of their biome specialism, Late Miocene Proboscidea were more specialist 

than the modern genus Loxodonta, but as an order they show a similar biome flexibility; 

inhabiting biomes as diverse as tropical forests to temperate xerophytic shrublands (Chapter 

6; Hernández Fernández and Vrba, 2005). With considerably more elephantine herbivores, 

could more of the biomes reconstructed as forests actually be structurally more like 

woodlands and woodlands more like savannas? Ultimately, the geographical range and 

density of Late Miocene elephants would determine their impacts on vegetation. MAD 

contains 282 individual records of Proboscideans, distributed in all regions that fossil 

mammals are reported from (Fig. 8.1). The Gomphotheriidae family were the most 

widespread (Fig. 8.1a). Gomphothere elephants were found in the tropical to temperate 

realm of North America, Eurasia and Africa. Gomphotheres even reached South America 

before the final closure of the CAS (Cozzuol, 2006). The mammutidae were distributed across 

the temperate and tropical realms of Eurasia and North America (Fig. 8.1b). The 

Deinotheriidae and Elephantidae were both distributed throughout Africa and Eurasia (Fig. 

8.1c,d). This wide distribution of Proboscidean families is much greater than modern 

elephants and shows that any ecosystem engineer effects would be geographically large. 

Estimating population density of fossil mammals is complex. For a given community; species 

with greater body mass have lower population densities, due to each individual requiring a 

greater share of the habitats available resources (Damuth, 1981; 1982). Based on this it 

should be expected that Late Miocene Proboscidean population densities should not exceed 

modern, unless habitats were more productive. Modern population densities in the seasonal 

areas of South Africa are around 3 km-2, though this estimate maybe slightly high due to the 

ongoing recovery of South Africa’s elephant population and is estimated to fall to around 2.4 

km-2 (Hall-Martin, 1992). Based on these modern population densities, a 2.5° x 3.75° grid cell 

could conceivably contain 240000 – 300000 individuals – a considerable number of 

destructive herbivores. 

The modern Beavers (Castor canadensis and C. fibre) are the archetypal allogenic ecosystem 

engineers. Beavers are notable for their water management and landscaping activities, which 

impact on many aspects of the local habitat (Naiman et al., 1988). These modifications alter 

the river discharge regime, decreasing current velocity, giving the channel a stepped profile, 

expanding the area of flooded soils and increasing the retention of soil and organic matter 

(Naiman et al., 1988). Beavers typically dam first to fourth order streams as larger water 

courses typically destroy dams through freshets. Beavers dam rivers to create beaver ponds, 

these provide protection from predators, a means to transport food and, in regions where 
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winter temperatures fall below freezing point, a means to store food (Jenkins and Busher, 

1979; Naiman et al., 1988). As well as creating a wetland typically in the region of 1 km
2
, 

though the largest known beaver pond covers >51 km2 (Haynes, 2012), a colony of beavers 

(four to eight individuals) will fell about a metric ton of wood from around the pond 

(McGinley and Witham, 1985; Naiman et al., 1988). Regionally, this creates a mosaic 

environment that is structurally more complex and has a greater diversity of species than 

would exist without beavers (Naiman et al., 1988).  

During the Late Miocene there were 29 species of beaver in 12 genera (Chapter 6). But did 

any of them, including the Miocene species of Castor, build dams and produce beaver ponds? 

Evidence exists from the Early Miocene of France for a fossilised beaver lodge (Hugueney and 

Escuillie, 1996). The locality of Montaigu-le-Blin contains the remains of ten Steneofiber 

within a distinct pocket of sediment, which based on size and tooth development can be 

divided into two mature adults, three juveniles and five kits – almost the exact demographic 

structure of the modern Castor colony (Hugueney and Escuillie, 1996). Further evidence to 

support an early origin for modern beaver life strategy comes from the morphology of 

Steneofiber which possessed “combing claws” these are used in extant beavers to groom the 

fur to maintain waterproofing (Hugueney and Escuillie, 1996). Steneofiber was effectively a 

modern beaver. The fossil evidence from Montaigu-le-Blin shows it followed a similar k-

selection life strategy as Castor based on the family unit, all it lacked was the paddle like tail 

(Hugueney and Escuillie, 1996). Xu (1994) considered Steneofiber the direct ancestor of the 

modern genus Castor. Whereas Korth (2001) placed them in the same clade (Castorinae) but 

made no comment on the evolutionary relationships. Within the Castorinae there are three 

genera present in the Late Miocene: Castor, Chalicomys (= Palaeomys) and Steneofiber (Korth, 

2001). Based on the evidence from Montaigu-le-Blin we can assume that, as Steneofiber is the 

oldest genus in the subfamily (present in the Early Miocene), all genera in the Castorinae had 

a life strategy focussed around the lodge and the beaver pond. Another branch of Castoridae 

evolution has also left fossil evidence of dam building activity. From the, aptly named, 

Pliocene Beaver Pond locality, Canada evidence exists for “beaver-cut” sticks (Hutchison and 

Harington, 2002; Tedford and Harrington, 2003). The beaver present at this site was Dipoides 

cf. intermedius (= Procastoroides intermedius) from the Castoroidinae subfamily (Korth, 2001; 

Tedford and Harrington, 2003; Zakrzewski, 1969). As a distinctly different clade than the one 

containing Castor was also tree felling to engineer the environment this means that it may be 

an ancestral trait, as suggested by Hugueney and Escuillie (1996). This would mean that all the 

Late Miocene members of the Castoridae were building dams and lodges. The MAD database 

records 102 occurrences of the Castoridae family during the Late Miocene in the warm – 
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temperate and temperate realm (Chapter 6; Fig. 8.1e). Modern beaver population densities 

are between 0.1 – 2 colonies km
-2

 (Anderson et al., 2009; Naiman et al., 1988). Each colony 

producing a beaver pond typically 1 km2 in surface area, that would be occupied for a few 

centuries before being allowed to slowly regenerate to the natural vegetation, whilst another 

beaver pond is created. So as well as the Proboscideans creating heterogeneic habitats 

through their destructive remodelling of wooded biomes, the Late Miocene Castoridae were 

also generating mosaic environments and increasing surface water. 

Beaver ponds are also significant carbon sinks, typically holding three times as much carbon 

than the unaltered environment would and as they are wetlands, a source of methane 

(Blodau, 2002; Naiman et al., 1988; 1991; Yavitt et al., 1990). Estimates from the literature for 

the amount of methane released from beaver ponds ranges from <1 – 511 g m
-2

 yr
-1

 (Naiman 

et al., 1991; Yavitt et al., 1990). The large range in the amount of methane released from 

beaver ponds is partly related to the limited number of measurements and also a function of 

the net ecosystem productivity of a region. Net ecosystem productivity has been shown to 

have a positive correlation with the amount of methane released to the atmosphere (Whiting 

and Chanton, 1993). Methane released from beaver ponds and other wetlands is rarely in 

“bubbling events” but a constant diffusion into the atmosphere (Blondau, 2002; Yavitt et al., 

1990). Methane is a significant greenhouse gas, which leaves little or no trace in the 

geological record (Beerling et al., 2009a; Kuechler et al., 2012). Using a two dimensional 

model Beerling et al. (2009a) estimated that Miocene methane atmospheric concentrations 

would have been relatively modest and contributed less than a degree centigrade to global 

MATs. They did however stress that their estimates were first order and likely to be built 

upon in future studies (Beerling et al., 2009a). This model was based on estimates of coal 

deposition in wetlands (Beerling et al., 2009a). However, not all wetlands produce peat and 

coal (Greb et al., 2006). This may mean that the estimates of CH4 from coal deposition rates 

may be underestimates. As a significant creator of wetlands Late Miocene beavers may have 

contributed to atmospheric CH4. The population recovery of Castor canadensis in North 

America since 1945 has been linked to 1% of methane emissions across the continent 

(Naiman et al., 1991). If North American beavers were to return to all their potential boreal 

habitats it is estimated that the annual methane flux would be 2.18 Tg of carbon, not bad for 

a rodent (Naiman et al., 1991). As there is a positive correlation between methane flux and 

ecosystem productivity (Whiting and Chanton, 1993), then the Miocene methane fluxes from 

beaver ponds are likely to be greater than modern estimates. The greater warmth and 

humidity of the Miocene, shown by the biome distributions presented in Chapter 3, and the 

amounts of lignite and coal deposited (Bartley et al., 2010; Durska, 2008; Föllmi et al., 2005; 
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Holdgate et al., 2007; Lücke et al., 1999) suggests the Miocene had a considerable global 

primary productivity. The Miocene is also a crucial period for the evolution of Sphagnum 

(Shaw et al., 2010). Today Sphagnum dominated peatlands account for 5-10% of methane 

emissions (Blodau, 2002).  There exists the possibility that a combination of beaver created 

habitats, “normal” wetlands and Sphagnum bogs could contribute considerable amounts of 

CH4 to the Miocene atmosphere and this warrants future investigation. 

 

8.5. Summary conclusions 

This thesis investigated Middle to Late Miocene terrestrial biota and climate, primarily from 

vegetation but also using mammals. The thesis has investigated life on land and climate at the 

site level (Chapter 2) and the global level (Chapters 3 – 7). The terrestrial biota and climate of 

the Middle to Late Miocene has been investigated using palynogy (Chapter 2), biome 

distributions (Chapters 3 & 4), GCMs (Chapters 4 & 5) and the global distribution and ecology 

of mammals (Chapters 6 & 7). 

 The Middle to Late Miocene was a time period that was globally warmer and wetter 

than the pre-industrial or modern worlds. This is shown by the biome distributions 

presented in Chapters 3, 4 and 7. The distribution of biomes shows that the Langhian 

was the warmest interval during the studied time period. Following this the biome 

distribution shows a global cooling and drying trend. The southern hemisphere 

appears to have cooled quicker than the northern hemisphere; this may be related to 

the growth of the Antarctic ice sheet following the end of the MMCO. 

 During the Late Miocene the UK had vegetation similar to mainland Europe. This 

warm – temperate evergreen broadleaf and mixed forest grew under an ambient 

MAT of around 16°C. The evidence presented in Chapter 2 is the first accurately dated 

onshore Miocene deposit in the UK and the only information on the terrestrial 

environment during this time period. 

 The evidence presented in Chapters 4 and 5 shows that the level and nature of 

Tortonian warming (Δ+4.44°C compared to pre-industrial) reconstructed through the 

combination of palaeobotanical data and modelling study requires a climatic forcing 

mechanism operating on a global scale (i.e. CO2). However, published Tortonian 

atmospheric CO2 levels from a variety of proxies range between the Last Glacial 

Maximum, pre-industrial and mid-20th Century levels. Before Miocene climate is 

assumed to be decoupled from atmospheric CO2, it is first necessary to reconcile this 
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miss-match between terrestrial proxy and climate model evidence with available 

techniques used to reconstruct palaeo-atmospheric CO2. 

 The use of a Tortonian global vegetation hybrid reconstruction (Chapter 4) in an 

AGCM experiment, improves data – model comparison. It also contributes to a small 

degree of the global warmth. MAP is marginally improved in an AGCM experiment 

with an accurate palaeo-vegetation but there is still very little similarity between data 

derived MAP reconstructions and model generated MAP estimates. 

 Using the biome distributions reconstructed in Chapter 3 the biome specialism of Late 

Miocene mammals was investigated (Chapter 6). Using the BSI it has been shown that 

mammals were as specialised to individual biomes during the Late Miocene as they 

are today despite 5.33 million years of evolution, extinction and migrations. 

 As the majority of Late Miocene mammals were biome specialists it has been possible 

to develop the co-occurrence approach. This is a technique which allows an 

assemblage of mammals to be translated into a biome type. The biome types 

reconstructed in Chapter 7, using Late Miocene mammals, show the same regional 

scale biome patterns as palaeobotanical data. This now means that mammals can be 

used to expand our knowledge of terrestrial ecosystems. This will enable more 

accurate biome reconstructions for palaeoclimate modelling studies and provide 

more data with which to compare model output. 

 

8.6. Outlook 

This thesis has provided the most up-to-date and complete view of Middle to Late Miocene 

terrestrial biotas and the climates they existed in. However, this should only be viewed as a 

beginning. The Miocene represents an interesting epoch for palaeoclimate research, it will 

never provide a geological analog to future anthropogenic climate change, but it can be used 

as a unique challenge for GCMs and an opportunity to look at how life responds to a 

spectacular re-design of the Earth system. As was introduced in Chapter 1 the Miocene 

represents the making of the modern world; mountains uplifted, seaways opened and closed, 

glaciers advanced and retreated and the terrestrial biosphere continued to evolve. It is likely 

that the Miocene climate, recorded in the fossil record, is a factor of all of these changes, 

other events such as the Colombia River Basalt eruptions and greenhouse gases. I will now 

outline a few points I feel would significantly improve our understanding of palaeoclimates in 

the Miocene and other parts of the Cenozoic. 
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 The data presented in this thesis provides what the author hopes will be the 

beginning of a much larger dataset. One that will incorporate all aspects of the Earth 

system and allow a far more complete understanding of the Earth system during the 

Miocene. This would not only aid the data community but could form a set of 

boundary conditions with which modelling of the Miocene could be improved. 

 The Brassington Formation is now the most accurately dated onshore Miocene in the 

UK. The success at redating these challenging deposits should allow many more of the 

UK’s “Tertiary” deposits to be re-explored. This would not only benefit the 

understanding of the changes that have occurred in this small part of northwest 

Europe but provide valuable insight into other aspects of Cenozoic climate evolution. 

For example, today the climate of the UK is partly controlled by the North Atlantic 

Current. A clear stratigraphy and related sequence of palaeontological events in the 

UK could provide direct evidence for the development of this important part of the 

modern Earth system. 

 The next stage of modelling experiments on the Tortonian should use AOGCMs with 

the global hybrid vegetation reconstruction so that global MATs are not directly 

related to prescribed SSTs. The use of a dynamic vegetation model could provide 

interesting results; would the vegetation predicted by the model compare to the 

input vegetation? If not which regions would the model alter? If it were to modify 

regions well constrained by palaeobotanical data then we could conceivably say that 

there was some error in the model set up (most likely another boundary condition). If 

it modified one of the poorly constrained regions this would have implications for the 

data-model hybrid vegetation reconstruction and any model experiment using it. 

Experiments such as these could lead to a version two of the global vegetation hybrid 

vegetation. 

 Miocene CO2 reconstructions should be fully explored before this epoch is truely 

considered de-coupled from this important greenhouse gas. It could also be an 

interesting avenue of research to explore CH4 during the Miocene and its contribution 

to Miocene warmth. 

 Linking in with the exploration of CH4 during the Miocene is the concept of animals as 

ecosystem engineers. The two most prolific ecosystem engineers of the modern 

world were a lot more diverse and widely distributed during the Miocene. Although it 

is unlikely to be one of the main controllers of global climate the role of animals in 

environmental modifications should no longer be excluded from palaeoclimate 

research. We are likely to be mislead by the modern world: current animal 
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distributions have been, and still are, significantly hampered by civilisation. 

Unfortunately modern observations will only take us so far in the understanding of 

the ancient biosphere. 

 

Fin..... for now! 
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List of Abbreviations 

ACC – Antarctic Circumpolar Current 

AGCM – Atmosphere only Global Climate Model 

AOGCM – Atmosphere and Ocean Global Climate Model 

BSI – Biomic Specialisation Index 

CAM-CLM – Community Atmosphere Model – Community Land Model 

CAS – Central American Seaway 

CCSM3 – Community Climate System Model 3 

CRFB – Colombia River Flood Basalt 

DGVM – Dynamic Global Vegetation Model 

DSDP – Deep Sea Drilling Project 

ECHAM4 – European Centre atmosphere model Hamburg version 4 

ECHAM5 – European Centre atmospheric model Hamburg version 5 

EMIC – Earth systems Model of Intermediate Complexity 

GCM – Global Climate Model / General Circulation Model 

HadAM3 – Hadley Centre Atmosphere Model version 3 

HadCM3L – Hadley Centre Coupled atmosphere – ocean Model version 3 Low resolution 

ocean 

IRD – Ice Rafted Debris 

LAI – Leaf Area Index 

MAD – Miocene Animal Database 

MAP – Mean Annual Precipitation 

MAT – Mean Annual Temperature 

MMCO – Middle Miocene Climatic Optimum 

MMCT – Middle Miocene Climate Transition 

MOSES – Met Office Surface Exchange Scheme 



- 269 - 

MPIOM – Max Planck Institute Ocean Model 

NLR – Nearest Living Relative 

NPP – Net Primary Productivity 

PFT – Plant Functional Type 

ODP – Ocean Drilling Project 

OGCM – Ocean only Global Circulation Model 

SAT – Surface Air Temperature (in modelling terms this is measured at 2m above surface 
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SST – Sea Surface Temperature 

TEVIS – Tertiary Environments and Vegetation Information Systems 

TRIFFID - Top-down Representation of Interactive Foliage and Flora Including Dynamics 

 



- 270 - 

Appendix A 

Reference and biome code to the palaeobotanical sites presented in 

Chapter 3 

The following four tables contain the data from TEVIS that has been presented in Chapter 3. 

Each age has its own table. The biome and megabiome numbers are presented in Table 3.1 

and the full references to the literature are in Appendix B. The latitude and longitude are for 

the modern location of the site; the presented age range presents the maximum when all 

published uncertainty is taken into account. The Quality (Q) measure is a subjective measure 

of the robustness of the data. This mainly reflects the age uncertainty as this is the greatest 

source of error when producing large syntheses. A score of 1 reflects excellent age control, 

whereas a score of 5 suggests limited or no apparent age control. 

 

Langhian (15.97 – 13.65 Ma) 

 

Location 
number 

Literature latitude longitude Biome 
number 

Megabiom
e number 

Oldest 
age  

Youngest 
age Q 

1 Williams et al., 2008 74.3 -123.033 7 6 16 14 
3 

2 Norris, 1997 69.5 -135.75 7 6 15.97 10.4 
4 

3 White and Ager, 1994 67.333 -141.333 7 6 15.3 15.1 
1 

4 Liu and Leopold, 1994 63.9 -148.941 7 6 17 14 
3 

5 Leopold and Liu, 1994; 
Grimaldi and Triplehorn, 2008 

63.85 -148.376 7 6 16 13 
3 

6 White et al., 1997 63.9 -148.9 7 6 15.5 15 
2 

7 Piel, 1977 53.921 -122.778 4 2 16 11.61 
3 

8 Mathews and Rouse, 1984 51.505 -122.232 4 2 17 13.5 
3 

9 Read, 2000 51.193 -120.936 4 2 15.97 11.61 
3 

10 Manchester et al., 1991 49.622 -115.636 4 2 16.5 14.5 
2 

11 Manchester et al., 1991 48.166 -119.087 4 2 16.5 14.5 
2 

12 Manchester et al., 1991 47.732 -117.348 4 2 16.5 14.5 
2 

13 Manchester et al., 1991 47.188 -116.222 4 2 16.5 14.5 
2 

14 Manchester et al., 1991 47.023 -115.771 4 2 16.5 14.5 
2 
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15 Manchester et al., 1991 46.726 -115.925 4 2 16.5 14.5 
2 

16 Manchester et al., 1991 46.437 -116.563 4 2 16.5 14.5 
2 

17 Manchester et al., 1991 46.309 -115.582 4 2 16.5 14.5 
2 

18 Manchester et al., 1991 45.803 -115.663 4 2 16.5 14.5 
2 

19 Oliver, 1936 44.414 -119.086 4 2 16.3 15.79 
4 

20 Chaney, 1925 44.435 -119.294 4 2 16 14.7 
3 

21 Axelrod and Schorn, 1994 40.66 -118.306 4 2 15.9 14.9 
2 

22 Axelrod, 1992 39.883 -119.574 5 6 15.6 14.8 
1 

23 Axelrod, 1995 39.593 -119.373 4 2 14.8 12.4 
1 

23 Bartley et al., 2010 39.781 -123.235 4 2 15.97 11.61 
3 

24 Axelrod, 1939 35.214 -118.336 14 3 15.5 11.8 
4 

25 Stott and Aitken, 1993; 
Holman, 1971 

49.086 -107.798 20 4 16.3 13.6 
3 

26 Frederiksen, 1984; Axelrod, 
2000 

41.323 -70.813 4 2 16 11 
4 

27 Berry, 1909; Godfrey and 
Barnes, 2008 

37.533 -77.467 4 2 19 14 
4 

28 Jarzen et al., 2010 30.469 -84.986 4 2 18 15 
3 

29 Lenhardt et al., 2006 18.996 -99.101 5 6 22 14.5 
3 

30 Martínez-Hernández, E., 1992 16.803 -92.906 1 1 15.97 5.33 
4 

31 Retallack and Kirby, 2007 9.083 -79.625 2 1 17.5 14.5 
3 

32 Wijninga, 1996 4.667 -74.333 1 1 15.97 11.61 
3 

33 Hoorn, 1994 -3.387 -71.825 1 1 14.8 12.6 
3 

34 Hoorn, 1994 -3.692 -73.221 1 1 14.8 12.6 
3 

35 Goillot et al., 2007 -4.023 -73.16 1 1 15.97 13.75 
3 

36 Goillot et al., 2007 -4.225 -73.364 1 1 15.97 13.75 
3 

37 Regali et al., 1974; Jaramillo et 
al., 2010 

1.361 -49.339 1 1 15.97 5.33 
5 

38 Behling and Costa, 2004 -1.264 -48.446 1 1 15.97 5.33 
5 

39 Regali et al., 1974; Jaramillo et 
al., 2010 

-16.129 -38.616 1 1 15.97 5.33 
5 

40 Regali et al., 1974; Jaramillo et 
al., 2010 

-24.492 -45.51 1 1 15.97 5.33 
5 

41 Alpers and Brimhall, 1988 -24.297 -69.068 26 5 15 13 
3 

42 Quattrocchio et al., 2003 -24.862 -65.409 14 3 16 13 
4 

43 Barreda et al., 2006 -28.917 -67.516 15 3 14 11.61 
4 
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44 Barreda et al., 2003 -29.539 -68.929 14 3 17.1 14 
5 

45 Ottone et al., 1998 -32.044 -69.793 14 3 23.03 11.61 
5 

46 Barreda et al., 2008 -38.67 -61.266 4 2 15.97 11.61 
3 

47 Quattrocchio and Guerstein, 
1989 

-39.286 -60.895 20 4 15.97 11.61 
3 

48 Quattrocchio and Guerstein, 
1989 

-38.912 -62.145 20 4 15.97 11.61 
3 

49 Barreda et al., 2008 -39.36 -62.672 4 2 15.97 11.61 
3 

50 Guerstein et al., 1995 -40.346 -62.91 20 4 15.97 11.61 
3 

51 Barreda et al., 2008 -40.723 -64.4 4 2 15.97 11.61 
3 

52 Macphail and Cantrill, 2006 -51.353 -60.692 4 2 15.97 5.33 
5 

53 Zamaloa, 2000; Zamaloa and 
Romero, 2005 

-52.724 -68.606 4 2 18 14 
4 

54 Mohr, 2001 -60.896 -42.615 5 6 15.8 14.2 
4 

55 Anderson et al., 2011 -63.26 -53.04 24 8 16 12.8 
3 

56 Warny et al., 2009 -77.75 -165.283 22 8 15.7 15.5 
3 

57 Grimsson and Denk, 2007; 
Grimsson et al., 2007 

65.773 -24.083 4 2 15 15 
1 

58 Bratseva, 1980 65.755 -24.021 4 2 16 13 
3 

59 Alcalá et al., 1996 42.144 -7.761 4 2 14 11.61 
4 

60 Gardère and Pais, 2007 43.928 -0.181 4 2 15.97 12 
3 

61 Jiménez-Moreno and Suc, 2007 41.174 1.102 16 3 15.97 13.65 
4 

62 Alvarez Ramis and Fernandez 
Marron, 1994 

40.187 -0.664 4 2 15.97 11.61 
3 

63 Jiménez-Moreno and Suc, 2007 37.369 -2.969 14 3 15.97 13.65 
4 

64 Favre et al., 2007; Jiménez-
Moreno and Suc, 2007 

36.663 -2.614 14 3 14 10.2 
4 

65 Favre et al., 2007; Jiménez-
Moreno and Suc, 2007 

36.519 -4.105 14 3 14.2 11.61 
4 

66 Jiménez-Moreno and Suc, 2007 36.38 -4.519 14 3 14 11.61 
4 

67 Larsson et al., 2011 55.83 8.42 4 2 15.97 14.9 
3 

68 Larsson et al., 2011 55.83 8.42 4 2 14.9 13.6 
3 

69 Ferguson et al., 1998 50.758 6.447 4 2 15.97 11.61 
4 

70 Sittler, 1958 47.07 5 4 2 16 14 
 

71 Meon-Vilain, 1968 46.947 7.444 4 2 17 15 
5 

72 Châteauneuf et al., 2006 44.011 6.216 4 2 16.57 15.8 
3 

73 Bialkowski et al., 2006 44.028 6.234 4 2 15.97 13.75 
3 
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74 Jiménez-Moreno and Suc, 2007 44.03 5.976 4 2 16.8 13.2 
4 

75 Bessedik, 1984 43.67 5.529 4 2 14 12 
3 

76 Jiménez-Moreno and Suc, 2007 43.536 4.928 4 2 17 15.5 
4 

77 Planderová, 1971 36.134 10.375 4 2 16.4 13 
3 

78 Gregor et al., 1989 48.848 10.857 4 2 16 13.7 
3 

79 Kovar-Eder et al., 1998 50.197 12.567 4 2 16.9 13.7 
3 

80 Kovar-Eder et al., 1998 49.311 12.173 4 2 16.9 12.75 
3 

81 Gregor et al., 1989 48.976 11.954 4 2 16 13.7 
3 

82 Böhme et al., 2007 48.55 11.9833 15 3 14.3 13.8 
3 

83 Böhme et al., 2007 48.55 12.05 15 3 14.3 13.8 
3 

84 Böhme et al., 2007 48.55 12.75 15 3 14.3 13.8 
3 

85 Gregor et al., 1989 48.577 13.423 4 2 16 13.7 
3 

86 Kovar-Eder et al., 1998 49.059 14.715 4 2 16 11.1 
3 

87 Durska, 2008 52.362 18.471 4 2 16 14 
3 

88 Kováčová et al., 2009 47.988 16.23 4 2 14.7 14.2 
2 

89 Jiménez-Moreno et al., 2008 43.867 16.483 4 2 15.97 14 
2 

90 Holcová et al., 1996 48.225 19.578 4 2 16.3 15 
3 

91 Erdei et al., 2007 48.182 19.525 4 2 15 13.6 
2 

92 Jiménez-Moreno, 2006 46.533 18.717 4 2 15.97 13.65 
1 

93 Jiménez-Moreno, 2006 46.166 18.513 4 2 15.97 13.65 
2 

94 Syabryaj et al., 2007 48.08 23.03 4 2 14 12.7 
3 

95 Ercegovac et al., 1997 44.717 21.233 4 2 16.3 11.6 
4 

96 Ivanov et al., 2002 44.029 22.765 4 2 15 12.2 
3 

97 Ivanov et al., 2002 43.886 22.756 4 2 14.2 12.2 
3 

98 Ivanov et al., 2007 43.493 28.246 4 2 14.9 11.61 
3 

99 Akgün and Akyol, 1999; Akgün 
et al., 2007 

37.77 27.929 4 2 15.97 13.65 
3 

100 Kayseri and Akgün, 2010 37.043 28.045 4 2 15.97 13.7 
3 

101 Yakubovskaya and  Iosifova, 
1968 

52.664 41.43 4 2 15.97 12 
3 

102 Bekker-Migdisova, 1967 45.044 41.972 4 2 15.97 11.61 
3 

103 Dzhabarova, 1980 40.354 47.704 4 2 14.1 12.4 
3 
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104 Whybrow and McClure, 1980 23.931 52.268 3 1 15 14 
3 

105 Simon et al., 1984 5.356 -3.495 1 1 15.97 11.61 
4 

106 Oboh, 1992 4.656 5.953 12 3 15.97 11.61 
3 

107 Oboh, 1995 4.78 6.254 12 3 15.97 13.65 
3 

108 Wheeler et al., 2007 4.573 36.396 3 1 16 14 
3 

109 Behrensmeyer et al., 2002 0.756 35.772 1 1 15.8 15.6 
1 

110 Dugas and Retallack, 1993 -0.236 35.42 12 3 15.1 12.6 
2 

111 Wynn and Retallack, 2001 -0.39 35.01 12 3 15.1 13 
2 

112 De Wit and Bamford, 1993 -30.772 20.415 2 1 15.97 11.61 
3 

113 Coetzee and Rogers, 1982 -32.923 18.134 12 3 16.95 11.6 
4 

114 Gnibidenko et al., 1999 56.057 74.79 16 3 15.97 11.61 
3 

115 Gnibidenko et al., 1999 55.638 73.653 16 3 15.97 11.61 
3 

116 Gnibidenko et al., 1999 54.93 73.362 16 3 15.97 11.61 
3 

117 Abusiarova, 1966 42.05 70.125 4 2 15.97 11.61 
5 

118 Il'inskaya, 1962 48.036 84.092 5 6 15.97 5.33 
5 

119 Sun and Zhang, 2008 44.1 86.333 4 2 18 15 
4 

120 Sun and Wang, 2005 36.567 101.733 6 6 15.97 11.61 
3 

121 Gu et al., 1992 36.118 102.801 20 4 20 13.7 
4 

122 Jiang and Ding, 2008 36.379 106.099 16 3 20.13 14.25 
2 

123 Jiang and Ding, 2008 36.379 106.099 17 3 14.25 11.35 
2 

124 Sun and Wang, 2005 43.65 111.967 16 3 16 5.33 
4 

125 Baranova et al., 1970; Nikitin, 
2007 

63.552 128.459 7 6 15.97 13.65 
3 

126 Kezina and Ol'kin, 2000 54.132 128.239 4 2 15.97 13.75 
3 

127 Zyryanov, 1992 75.89 142.43 7 6 16 14 
5 

128 Lavrushin and Alekseev, 2005 75.351 139.036 7 6 15.97 11.7 
4 

129 Laukhin and Rybakova, 1981 70.197 146.181 7 6 15.97 5.33 
4 

130 Verkhovskaya and Kundyshev, 
1991 

68.692 158.7 8 6 16 14 
4 

131 Nikitin, 2007 64.818 168.664 7 6 15.97 13.65 
3 

132 Tao, 1997 42.5 119.25 4 2 15.97 11.61 
4 

133 Liu and Leopold, 1994; Sun et 
al., 2002 

36.553 118.786 4 2 17 14 
3 
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134 Zheng et al., 1981 33.345 120.166 4 2 15.97 5.33 
4 

135 Yi, 1998 35.306 123.35 4 2 23.02 11.61 
3 

136 Kong, 2000 42.483 130.085 4 2 15.97 11.61 
4 

137 Kong, 2000 40.683 128.593 4 2 15.97 11.61 
4 

138 Kong, 2000 38.709 127.81 4 2 15.97 11.61 
4 

139 Klimova, 1988 45 135 4 2 15.97 11.61 
4 

140 Lopatina, 2001; 2004 47.491 138.609 4 2 17 15 
5 

141 Igarashi et al., 2000 43.211 144.126 4 2 15.97 11.61 
4 

142 Fuji, 1969 37.114 136.811 4 2 15.97 11.61 
3 

143 Yamanoi, 1984 36.585 137.358 4 2 15.9 15.5 
3 

144 Matsuoka, 1990 34.658 136.029 4 2 16.1 14.3 
2 

145 Chung and Koh, 2005 36.085 129.31 4 2 15 14.7 
2 

146 Hu and Sarjeant, 1992 30.421 126.437 1 1 15.97 11.61 
4 

147 Hu and Sarjeant, 1992 29.365 124.818 1 1 15.97 11.61 
4 

148 Hu and Sarjeant, 1992 27.976 125.819 1 1 15.97 11.61 
4 

149 Ling, 1965; Ho, 1966 25.132 121.706 4 2 15.97 11.61 
3 

150 Lakhanpal and Guleria, 1986 31.95 76.267 1 1 15.97 11.61 
3 

151 Prasad, 1993 29.5 78.733 1 1 15.97 11.61 
4 

152 Prasad et al., 2004 29.267 79.517 1 1 15.97 11.61 
3 

153 Srivastava and Awasthi, 1994 8.857 76.616 1 1 15.97 11.61 
3 

154 Varma et al., 1986 8.625 76.95 1 1 23.03 11.61 
3 

155 Antal and Prasad, 1997 26.913 88.507 1 1 15.97 11.61 
3 

156 Aswal, 1993 24.245 93.107 1 1 15.97 11.61 
3 

157 Wang, 1988 24.123 107.259 2 1 17 11.61 
3 

158 Lei, 1985 22.174 113.551 4 2 15.97 5.33 
3 

159 Dzanh, 1990 21.098 105.783 4 2 15.97 11.61 
3 

160 Zhao et al., 2004 21.4 97.817 4 2 23.03 11.61 
5 

161 Vozenin-Serra et al., 1989 19.149 100.274 1 1 15.97 11.61 
3 

162 Songtham et al., 2003 17.836 99.292 1 1 15.97 11.61 
4 

163 Nielsen et al., 2007 13.158 108.711 1 1 13.9 10 
4 



- 276 - 

164 Highton et al., 1997 10.19 102.19 1 1 15.97 12 
4 

165 Watanasak et al., 1995 8.024 98.882 1 1 15.97 11.61 
3 

166 Daneshian et al., 2007 12.136 93.114 1 1 15.97 14 
3 

167 Konzalova, 2005 1.85 113.62 1 1 16 5.33 
5 

168 Morley and Morley, 2011 -0.06 118.58 1 1 15.97 13.65 
3 

169 Archer et al., 1991 -20.55 139.595 1 1 16 14 
3 

170 Beeston et al., 1994 -21.382 147.204 4 2 17 14 
3 

171 Beeston et al., 1994 -21.819 148.036 4 2 17 14 
3 

172 Martin, 1997 -30.184 145.793 4 2 16 7.3 
3 

173 Martin, 1993 -34.428 140.662 4 2 15.97 11.61 
4 

174 Martin, 1993 -34 141.744 4 2 15.97 11.61 
4 

175 Martin, 1993 -34.751 143.416 4 2 15.97 11.61 
4 

176 Martin, 1993 -34.044 144.52 4 2 15.97 11.61 
4 

177 Martin, 1993 -35.421 144.859 4 2 15.97 11.61 
4 

178 Kershaw, 1997 -38.185 146.354 4 2 16 15 
3 

179 Holdgate et al., 2007 -38.189 146.319 4 2 16 11.61 
3 

180 Moore and Wallace, 2000 -36.86 175.434 4 2 16 13 
4 

181 Pole, 2003 -45.314 168.996 15 3 14 12 
4 

182 Field et al., 2009 -45.96 167.554 4 2 15.34 14.44 
3 

183 Mildenhall and Pocknall, 1984 -45.873 167.696 4 2 18 13 
3 

184 Lewis et al., 2008 -77.5 161.25 24 8 14.12 13.82 
1 

 

Seravallian 

 

Location 
number 

Literature latitude longitude Biome 
number 

Megabiome 
number 

Oldest 
age 

Youngest 
age Q 

1 Norris, 1997 69.5 -135.75 7 6 15.97 10.4 
4 

2 Leopold and Liu, 1994; 
Grimaldi and Triplehorn, 2008 

63.85 -148.376 7 6 16 13 
3 

3 Leopold and Liu, 1994; 
Grimaldi and Triplehorn, 2008 

63.85 -148.376 7 6 13 9 
3 

4 White et al., 1997 63.9 -148.9 7 6 13.6 11.6 
2 

5 Piel, 1977 53.921 -122.778 4 2 16 11.61 
3 
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6 Rouse and Mathews, 1979 52.974 -122.498 6 6 13 11 
4 

7 Mathews and Rouse, 1963 51.011 -121.358 5 6 12 8 
1 

8 Mathews and Rouse, 1984 51.505 -122.232 4 2 17 13.5 
3 

9 Read, 2000 51.193 -120.936 4 2 15.97 11.61 
3 

10 Sparks et al., 1972 46.929 -124.055 5 6 12 5 
4 

11 Baghai and Jorstad, 1995 46.45 -115.67 4 2 12 10.5 
1 

12 Prakash et al., 1962 45.857 -111.474 4 2 11.8 9 
4 

13 Dorf, 1938 44.29 -117.092 5 6 11.8 6 
4 

14 Smith, 1941 43.68 -115.832 15 3 12 10 
4 

15 Davis and Ellis, 2010 41.951 -116.914 14 3 11.92 11.86 
1 

16 Axelrod, 1964; Leopold and 
Denton, 1987 

42.097 -113.889 7 6 11.8 9 
4 

17 Bartley et al., 2010 39.781 -123.235 4 2 15.97 11.61 
3 

18 Axelrod, 1995 39.593 -119.373 4 2 14.8 12.4 
1 

19 Scott, 1926 37.664 -121.731 5 6 11.8 8.7 
3 

20 Berry, 1927; Axelrod, 1940 37.783 -117.361 5 6 12.9 12.5 
2 

21 Axelrod, 1939 35.214 -118.336 14 3 15.5 11.8 
4 

22 Gray, 1960 34.605 -112.495 14 3 11.8 9 
3 

23 Axelrod, 2000 36.479 -121.372 4 2 12 10 
3 

24 Martin and Gray, 1962 33.78 -118.261 4 2 13.6 10.3 
3 

25 Macginitie, 1962; Gabel et al., 
1998 

42.817 -101.083 16 3 13 10 
4 

26 Macginitie, 1962; Gabel et al., 
1998 

43.083 -99.833 16 3 13 10 
4 

27 Schiebout et al., 1996 31.047 -93.206 4 2 12 10 
3 

28 Pazzaglia et al., 1997 39.602 -76.038 4 2 12 9 
4 

29 McLaughlin et al., 2008 38.548 -75.063 4 2 12 10 
3 

30 Godfrey and Barnes, 2008; 
McLaughlin et al., 2008 

38.548 -75.063 4 2 13 12 
3 

31 Frederiksen, 1984; Axelrod, 
2000 

41.323 -70.813 4 2 16 11 
4 

32 Castañeda-Posadas et al., 2009 19.327 -98.306 1 1 13 13 
4 

33 Graham, 1975 19.526 -96.905 4 2 12 10 
4 

34 Martínez-Hernández, 1992 16.803 -92.906 1 1 15.97 5.33 
4 

35 Wijninga, 1996 4.667 -74.333 1 1 15.97 11.61 
3 
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36 Kay and Madden, 1997 3.219 -74.602 1 1 13.5 11.8 
2 

37 Burnham and Carranco, 2004 -2.757 -78.85 3 1 12.3 8.6 
4 

38 Burnham and Carranco, 2004 -2.757 -78.85 3 1 13 10.2 
5 

39 Burnham and Carranco, 2004 -3.991 -79.19 3 1 12.3 8.6 
5 

40 Hoorn, 1994 -3.692 -73.221 1 1 14.8 12.6 
3 

41 Hoorn, 1994 -3.387 -71.825 1 1 14.8 12.6 
3 

42 Regali et al., 1974; Jaramillo et 
al., 2010 

1.361 -49.339 1 1 15.97 5.33 
5 

43 Behling and Costa, 2004 -1.264 -48.446 1 1 15.97 5.33 
5 

44 Regali et al., 1974; Jaramillo et 
al., 2010 

-16.129 -38.616 1 1 15.97 5.33 
5 

45 Regali et al., 1974; Jaramillo et 
al., 2010 

-24.492 -45.51 1 1 15.97 5.33 
5 

46 Alpers and Brimhall, 1988 -24.297 -69.068 26 5 15 13 
3 

47 Quattrocchio et al., 2003 -24.862 -65.409 14 3 16 13 
4 

48 Barreda et al., 2006 -28.917 -67.516 15 3 14 11.61 
4 

49 Ottone et al., 1998 -32.044 -69.793 14 3 23.03 11.61 
5 

50 Barreda et al., 2008 -38.67 -61.266 4 2 15.97 11.61 
3 

51 Quattrocchio and Guerstein, 
1989 

-39.286 -60.895 20 4 15.97 11.61 
3 

52 Quattrocchio and Guerstein, 
1989 

-38.912 -62.145 20 4 15.97 11.61 
3 

53 Barreda et al., 2008 -39.36 -62.672 4 2 15.97 11.61 
3 

54 Guerstein et al., 1995 -40.346 -62.91 20 4 15.97 11.61 
3 

55 Barreda et al., 2008 -40.723 -64.4 4 2 15.97 11.61 
3 

56 Macphail and Cantrill, 2006 -51.353 -60.692 4 2 15.97 5.33 
5 

57 Anderson et al., 2011 -63.26 -53.04 24 8 16 12.8 
3 

58 Marenssi et al., 2010 -64.167 -57.75 28  12.4 10 
4 

59 Denk et al., 2005; Grımsson 
and Denk, 2007 

65.792 -23.252 4 2 12 12 
1 

60 Bratseva, 1980 65.755 -24.021 4 2 16 13 
3 

61 Grimsson et al., 2007 65.499 -23.295 4 2 13.5 13.5 
1 

62 Alcalá et al., 1996 42.144 -7.761 4 2 14 11.61 
4 

63 Antunes et al., 1997 38.469 -9.175 4 2 13 11.5 
3 

64 Rivas-Carballo et al., 1994 41.661 -4.784 15 3 13 11.6 
3 

65 Gardère and Pais, 2007 43.928 -0.181 4 2 15.97 12 
3 
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66 Gómez-Gras et al., 2001 41.411 2.07 4 2 13.75 11.61 
3 

67 Alvarez Ramis and Fernandez 
Marron, 1994 

40.187 -0.664 4 2 15.97 11.61 
3 

68 Jiménez-Moreno and Suc, 2007 36.38 -4.519 14 3 14 11.61 
4 

69 Favre et al., 2007; Jiménez-
Moreno and Suc, 2007 

36.519 -4.105 14 3 14.2 11.61 
4 

70 Favre et al., 2007; Jiménez-
Moreno and Suc, 2007 

36.663 -2.614 14 3 14 10.2 
4 

71 Ermolli, 1991 50.251 4.604 4 2 13.65 11.61 
3 

72 Ermolli, 1991 50.296 4.782 4 2 13.65 11.61 
3 

73 Ermolli, 1991 50.252 4.841 4 2 12 10 
3 

74 Ferguson et al., 1998 50.758 6.447 4 2 15.97 11.61 
4 

75 Mosbrugger et al., 1994 50.911 6.502 4 2 13.65 11.61 
3 

76 Figueiral et al., 1999 50.911 6.501 4 2 12 10 
4 

77 Jiménez-Moreno and Suc, 2007 47.056 6.747 4 2 13.4 13.2 
4 

78 Jiménez-Moreno and Suc, 2007 45.841 5.566 4 2 12.6 12.2 
4 

79 Bialkowski et al., 2006 44.028 6.234 16 3 13.75 11.61 
3 

80 Jiménez-Moreno and Suc, 2007 44.03 5.976 4 2 16.8 13.2 
4 

81 Bessedik, 1984 43.67 5.529 4 2 14 12 
3 

82 Larsson et al., 2011 55.83 8.42 4 2 13.6 11.61 
3 

83 Larsson et al., 2011 55.83 8.42 4 2 14.9 13.6 
3 

84 Kovar-Eder et al., 1998 49.311 12.173 4 2 16.9 12.75 
3 

85 Gregor et al., 1989 48.456 11.524 5 6 12.75 11.6 
3 

86 Gregor et al., 1989 48.468 10.965 5 6 12.75 11.6 
3 

87 Gregor et al., 1989 48.313 9.919 5 6 12.75 11.6 
3 

88 Gregor et al., 1989 47.763 10.141 4 2 13.7 12.75 
3 

89 Uhl et al., 2003 47.699 9.293 4 2 13 11.61 
3 

90 Jiménez-Moreno and Suc, 2007 42.659 9.387 16 3 12.9 12.2 
4 

91 Planderová, 1971 36.134 10.375 4 2 16.4 13 
3 

92 Kovar-Eder et al., 1998 49.059 14.715 4 2 16 11.1 
3 

93 Sadowska, 1997 50.3 18.666 4 2 13.6 12.6 
3 

94 Jiménez-Moreno, 2006 46.533 18.717 4 2 13.65 11.61 
1 

95 Jiménez-Moreno, 2006 46.166 18.513 4 2 13.65 11.61 
2 
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96 Erdei et al., 2007 48.238 21.231 4 2 12.7 11.6 
3 

97 Erdei et al., 2007 48.268 21.357 4 2 12.7 11.6 
3 

98 Syabryaj et al., 2007 48.25 23 4 2 12.7 11.61 
3 

99 Syabryaj et al., 2007 48.08 23.03 4 2 14 12.7 
3 

100 Pantic and Mihajlovic, 1977 44.794 20.488 4 2 12.7 11.6 
3 

101 Stevanovic and Pantic, 1954; 
Utescher et al., 2007 

44.6 20.289 4 2 13 12.4 
3 

102 Pantic, 1956; Utescher et al., 
2007 

44.271 19.89 4 2 12.7 12.4 
3 

103 Pantic, 1956; Utescher et al., 
2007 

44.368 20.737 4 2 13 12.7 
3 

104 Pantic, 1956; Utescher et al., 
2007 

44.217 20.853 4 2 13 12.4 
3 

105 Milovanovic and Mihajlovic, 
1984; Utescher et al., 2007 

44.066 21.522 4 2 13.65 12.4 
3 

106 Pantic, 1956; Utescher et al., 
2007 

43.91 21.505 4 2 13.65 13.3 
3 

107 Ivanov et al., 2002 44.029 22.765 4 2 15 12.2 
3 

108 Ivanov et al., 2002 43.886 22.756 4 2 14.2 12.2 
3 

109 Chirilă and Tabără, 2008 47.343 26.226 4 2 13 12 
3 

110 Chirilă and Tabără, 2010 47.446 26.419 4 2 12.7 12 
3 

111 Brânzilă and Ţabără, 2005 47.6 27.15 4 2 12.6 11.6 
3 

112 Brânzilă and Ţabără, 2005 47.467 27.217 4 2 12.6 11.6 
3 

113 Brânzilă and Ţabără, 2005 47.519 27.449 4 2 12.6 11.6 
3 

114 Chirilă, 2010 47.028 27.127 4 2 13 11 
3 

115 Brânzilă and Ţabără, 2005 47.068 27.777 4 2 12.6 11.6 
3 

116 Iamandei and Iamandei, 2010 46.764 27.8 4 2 12.7 11.61 
3 

117 Horaicu, 1989; Erdei et al., 
2007 

46.291 26.563 4 2 12.7 11.61 
3 

118 Syabryaj et al., 2007 46.75 30.52 16 3 12.7 11.61 
3 

119 Ivanov et al., 2007 43.493 28.246 4 2 14.9 11.61 
3 

120 Akgün et al., 2007 39.112 27.575 4 2 13.65 12 
3 

121 Ioakim and Solounias, 1985 37.72 26.863 4 2 11.9 10.48 
1 

122 Akgün et al., 2007 38.952 28.117 4 2 13.65 12 
3 

123 Karayiğit et al., 1999 38.366 28.571 4 2 13 12.4 
3 

124 Akgün and Akyol, 1999 37.974 28.844 16 3 12 10 
3 

125 Akgün et al., 2007 37.323 28.321 4 2 13.65 12 
3 
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126 Syabryaj et al., 2007 45.27 33.43 6 6 13.3 12.7 
3 

127 Filipova, 2002 45.124 36.685 16 3 13.6 11.61 
3 

128 Akgün et al., 2007 40.167 31.921 4 2 13.65 12 
3 

129 Akgün et al., 2007 37.626 31.922 4 2 13.65 12 
3 

130 Akgün et al., 2007 40.929 35.201 4 2 13.65 12 
3 

131 Akgün et al., 2007 38.926 34.337 4 2 13.65 12 
3 

132 Yakubovskaya and Iosifova, 
1968 

52.664 41.43 4 2 15.97 12 
3 

133 Bekker-Migdisova, 1967 45.044 41.972 4 2 15.97 11.61 
3 

134 Fataliyev, 1970 41.547 46.76 4 2 12.7 11.61 
4 

135 Dzhabarova, 1980 40.354 47.704 4 2 14.1 12.4 
3 

136 Dzhabarova, 1980 40.354 47.704 14 3 12.4 11.61 
3 

137 Simon et al., 1984 5.356 -3.495 1 1 15.97 11.61 
4 

138 Oboh, 1992 4.656 5.953 12 3 15.97 11.61 
3 

139 Jacobs and Kabuye, 1989; 
Jacobs and Deino, 1996 

0.883 35.8 1 1 12.6 12.6 
1 

140 Dugas and Retallack, 1993 -0.236 35.42 12 3 15.1 12.6 
2 

141 Wynn and Retallack, 2001 -0.39 35.01 12 3 15.1 13 
2 

142 De Wit and Bamford, 1993 -30.772 20.415 2 1 15.97 11.61 
3 

143 Coetzee and Rogers, 1982 -32.923 18.134 12 3 16.95 11.6 
4 

144 Arkhipov et al., 2005 56.746 61.772 16 3 12 9 
3 

145 Gnibidenko et al., 1999 56.057 74.79 16 3 15.97 11.61 
3 

146 Gnibidenko et al., 1999 55.638 73.653 16 3 15.97 11.61 
3 

147 Gnibidenko et al., 1999 54.93 73.362 16 3 15.97 11.61 
3 

148 Abusiarova, 1966 42.05 70.125 4 2 15.97 11.61 
5 

149 Wang; 1996; Wang et al., 2010 38.219 92.683 14 3 14.5 7.2 
4 

150 Sun and Wang, 2005 36.567 101.733 6 6 15.97 11.61 
3 

151 Jiang and Ding, 2008 36.379 106.099 17 3 14.25 11.35 
2 

152 Sun and Wang, 2005 43.65 111.967 16 3 16 5.33 
4 

153 Lavrushin and Alekseev, 2005 75.351 139.036 7 6 15.97 11.7 
4 

154 Laukhin and Rybakova, 1981 70.197 146.181 7 6 15.97 5.33 
4 

155 Nikitin, 2007 59.994 142.872 7 6 13.65 11.61 
3 
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156 Lopatina, 2001; 2004 48.588 139.724 4 2 12 5.33 
5 

157 Liu et al., 1996 46.593 131.333 4 2 12 7 
3 

158 Klimova, 1988 45 135 4 2 15.97 11.61 
4 

159 Igarashi et al., 2000 43.211 144.126 4 2 15.97 11.61 
4 

160 Tao, 1997 42.5 119.25 4 2 15.97 11.61 
4 

161 Kong, 2000 42.483 130.085 4 2 15.97 11.61 
4 

162 Kong, 2000 40.683 128.593 4 2 15.97 11.61 
4 

163 Kong, 2000 38.709 127.81 4 2 15.97 11.61 
4 

164 Fuji, 1969 37.114 136.811 4 2 15.97 11.61 
3 

165 Wang et al., 2001 36.93 137.029 4 2 13 9.2 
1 

166 Liu, 1986 36.599 118.57 4 2 12 10 
4 

167 Zheng et al., 1981 33.345 120.166 4 2 15.97 5.33 
4 

168 Hu and Sarjeant, 1992 30.421 126.437 1 1 15.97 11.61 
4 

169 Hu and Sarjeant, 1992 29.365 124.818 1 1 15.97 11.61 
4 

170 Hu and Sarjeant, 1992 27.976 125.819 1 1 15.97 11.61 
4 

171 Ling, 1965; Ho, 1966 25.132 121.706 4 2 15.97 11.61 
3 

172 Nandi, 1980 32.215 75.854 1 1 13.1 11.1 
3 

173 Sarkar and Singh, 1994 31.041 76.718 1 1 13.6 10 
3 

174 Lakhanpal and Guleria, 1986 31.95 76.267 1 1 15.97 11.61 
3 

175 Prasad, 1993 29.5 78.733 1 1 15.97 11.61 
4 

176 Prasad et al., 2004 29.267 79.517 1 1 15.97 11.61 
3 

177 Srivastava and Awasthi, 1994 8.857 76.616 1 1 15.97 11.61 
3 

178 Varma et al., 1986 8.625 76.95 1 1 23.03 11.61 
3 

179 Antal and Prasad, 1997 26.913 88.507 1 1 15.97 11.61 
3 

180 Aswal, 1993 24.245 93.107 1 1 15.97 11.61 
3 

181 Wang, 1988 24.123 107.259 2 1 17 11.61 
3 

182 Lei, 1985 22.174 113.551 4 2 15.97 5.33 
3 

183 Dzanh, 1990 21.098 105.783 4 2 15.97 11.61 
3 

184 Dzanh, 1996 21.023 105.855 4 2 13.7 11.1 
4 

185 Vozenin-Serra et al., 1989 19.149 100.274 1 1 15.97 11.61 
3 



- 283 - 

186 Sepulchre et al., 2010 18.933 100.233 12 3 12.4 12.2 
2 

187 Sepulchre et al., 2010 18.317 99.683 1 1 13.3 13.1 
2 

188 Songtham et al., 2003 17.836 99.292 1 1 15.97 11.61 
4 

189 Prakash, 1973 17.04 95.221 3 1 12 4 
5 

190 Watanasak et al., 1995 8.024 98.882 1 1 15.97 11.61 
3 

191 Nielsen et al., 2007 13.158 108.711 1 1 13.9 10 
4 

192 Naih, 2008 7.191 115.098 1 1 13.65 11.61 
4 

193 Konzalova, 2005 1.85 113.62 1 1 16 5.33 
5 

194 Morley and Morley, 2011 -0.06 118.58 1 1 13.65 11.61 
3 

195 Martin, 1997 -30.184 145.793 4 2 16 7.3 
3 

196 Martin, 1993 -34.428 140.662 4 2 15.97 11.61 
4 

197 Martin, 1993 -34 141.744 4 2 15.97 11.61 
4 

198 Martin, 1993 -34.751 143.416 4 2 15.97 11.61 
4 

199 Martin, 1993 -34.044 144.52 4 2 15.97 11.61 
4 

200 Martin, 1993 -35.421 144.859 4 2 15.97 11.61 
4 

201 Holdgate et al., 2007 -38.189 146.319 4 2 16 11.61 
3 

202 Moore and Wallace, 2000 -36.86 175.434 4 2 16 13 
4 

203 Mildenhall and Pocknall, 1984; 
Mildenhall et al., 2003 

-41.686 174.128 4 2 12 5.33 
3 

204 Pole, 2003 -45.314 168.996 15 3 14 12 
4 

205 Mildenhall and Pocknall, 1984 -45.873 167.696 4 2 18 13 
3 

 

 

 

 

 

 

 

Tortonian 

 

Location 
number 

Literature latitude longitude Biome 
number 

Megabiome 
number 

Oldest 
age 

Youngest 
age Q 
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1 Reinink-Smith and 
Leopold,2005 

59.667 -151.682 7 6 10 5 
2 

2 Wolfe, 1994 61.221 -151.196 10 7 11.3 8 
2 

3 Wolfe and Leopold, 1967 60.1 -149.44 10 7 11.3 8 
4 

4 Wahrhaftig et al., 1969; 
Grimaldi and Triplehorn, 2008 

64.032 -148.215 8 6 8.1 6.7 
2 

5 Leopold and Liu, 1994; 
Grimaldi and Triplehorn, 2008 

63.85 -148.376 8 6 9 5.4 
3 

6 White et al., 1997 63.9 -148.9 10 7 11.6 6 
2 

7 Leopold and Liu, 1994; 
Grimaldi and Triplehorn, 2008 

63.85 -148.376 7 6 13 9 
3 

8 Leopold and Liu, 1994; 
Grimaldi and Triplehorn, 2008 

63.302 -144.573 8 6 9 5.4 
2 

9 Martin and Rouse, 1966; White 
et al., 1994 

54.028 -132.033 7 6 9 5.33 
4 

10 Rouse and Mathews, 1979 52.974 -122.498 6 6 13 11 
4 

11 Mathews and Rouse, 1963 51.011 -121.358 5 6 12 8 
1 

12 Sparks et al., 1972 46.929 -124.055 5 6 12 5 
4 

13 Sparks et al., 1972 47.232 -123.176 5 6 11.6 5.33 
3 

14 Smiley, 1963 48.026 -120.339 4 2 10.5 9.5 
4 

15 Berry, 1931; Smiley, 1963 47.894 -119.19 4 2 10.5 9.5 
5 

16 Smiley, 1963 46.602 -120.506 4 2 10.5 9.5 
4 

17 Roberts and Whitehead, 1984 44.314 -123.297 4 2 11.6 7.25 
4 

18 Retallack et al., 2002 44.5 -119.633 16 3 7.5 7.3 
1 

19 Baghai and Jorstad, 1995 46.45 -115.67 4 2 12 10.5 
1 

20 Dorf, 1938 44.29 -117.092 5 6 11.8 6 
4 

21 Beuchler et al., 2007 43.053 -116.468 15 3 10 8.5 
1 

22 Davis and Ellis, 2010 42.138 -116.914 14 3 9 7 
2 

23 Smith, 1941 43.68 -115.832 15 3 12 10 
4 

24 Davis and Ellis, 2010 42.313 -114.259 14 3 10.61 10.43 
1 

25 Axelrod, 1964; Leopold and 
Denton, 1987 

42.097 -113.889 7 6 11.8 9 
4 

26 Prakash et al., 1962 45.857 -111.474 4 2 11.8 9 
4 

27 Barnosky, 1984 43.684 -110.69 6 6 9.2 8.9 
1 

28 Scott, 1926 37.664 -121.731 5 6 11.8 8.7 
3 

29 Tidwell and Nambudiri, 1989 35.368 -117.908 14 3 10 9 
2 

30 Axelrod, 2000 36.479 -121.372 4 2 12 10 
3 
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31 Ballog and Malloy, 1981; 
Axelrod, 2000 

33.85 -120.758 14 3 10 5.33 
2 

32 Martin and Gray, 1972 33.78 -118.261 4 2 13.6 10.3 
3 

33 Davis and Moutoux, 1998 34.5 -112 14 3 7.5 2.5 
2 

34 Gray, 1960 34.605 -112.495 14 3 11.8 9 
3 

35 Macginitie, 1962; Gabel et al., 
1998 

43.083 -99.833 16 3 13 10 
4 

36 Macginitie, 1962; Gabel et al., 
1998 

42.817 -101.083 16 3 13 10 
4 

37 Thomasson, 2005 41.324 -102.132 16 3 10.3 6 
3 

38 Thomasson, 2005 38.511 -100.935 16 3 10.3 6 
3 

39 Schiebout et al., 1996 31.047 -93.206 4 2 12 10 
3 

40 Wrenn et al., 2003 31.847 -91.656 2 1 8.65 7.88 
2 

41 Farlow et al., 2001; Shunk, 
2009 

40.5 -85.8 16 3 9.9 8.9 
3 

42 McCartan et al., 1990 38.685 -76.846 4 2 10 6 
3 

43 Pazzaglia et al., 1997 39.602 -76.038 4 2 12 9 
4 

44 McLaughlin et al., 2008 38.548 -75.063 4 2 10 9 
3 

45 McLaughlin et al., 2008 38.548 -75.063 4 2 12 10 
3 

46 Greller and Rachele, 1983 40.034 -74.333 4 2 11.5 10.5 
4 

47 Frederiksen, 1984; Axelrod, 
2000 

41.323 -70.813 4 2 16 11 
4 

48 Graham, 1975 19.526 -96.905 4 2 12 10 
4 

49 Graham, 1998 14.752 -89.484 4 2 11.6 5.33 
5 

50 Martínez-Hernández, 1992 16.803 -92.906 1 1 15.97 5.33 
4 

51 Berry, 1939 23.061 -81.583 1 1 11.6 5.33 
4 

52 Graham, 1990 19.172 -72.724 3 1 11.6 4 
5 

53 Berry, 1937 10.174 -61.538 1 1 11.6 5.33 
5 

54 Hoorn, 1994; 2006 -0.334 -70.241 1 1 9 6.5 
3 

55 Hoorn, 1994; 2006 -0.418 -70.299 1 1 9 6.5 
3 

56 Burnham and Carranco, 2004 -2.757 -78.85 3 1 12.3 8.6 
4 

57 Burnham and Carranco, 2004 -2.757 -78.85 3 1 13 10.2 
5 

58 Berry, 1929 -4.011 -79.271 1 1 11.6 5.33 
4 

59 Burnham and Carranco, 2004 -3.991 -79.19 3 1 12.3 8.6 
5 

60 Rebata-H et al., 2006 -4.5 -73.583 1 1 10 8 
3 
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61 Hoorn, 1994; Latrubesse et al., 
2007 

-4.498 -71.446 12 3 9 6.5 
3 

62 Hoorn, 1994; Latrubesse et al., 
2007 

-4.4 -70.991 1 1 9 7 
4 

63 Leite, unpublished; Leite et al., 
unpublished; Pound et al., 
2011 

-5.25 -71.55 1 1 9.7 8.2 
4 

64 Regali et al., 1974; Jaramillo et 
al., 2010 

1.361 -49.339 1 1 15.97 5.33 
5 

65 Behling and Costa, 2004 -1.264 -48.446 1 1 15.97 5.33 
5 

66 Hoorn, 1994; Latrubesse et al., 
2007 

-10.155 -67.817 12 3 9 6.5 
3 

67 Hoorn, 1994; Latrubesse et al., 
2007 

-10.923 -69.927 12 3 9 6.5 
3 

68 Regali et al., 1974; Jaramillo et 
al., 2010 

-16.129 -38.616 1 1 15.97 5.33 
5 

69 Garcia et al., 2008 -23.031 -45.545 4 2 11.6 3 
4 

70 Regali et al., 1974; Jaramillo et 
al., 2010 

-24.492 -45.51 1 1 15.97 5.33 
5 

71 Gregory-Wodzicki, 2002 -17.257 -69.441 3 1 10.5 10.5 
1 

72 Gregory-Wodzicki et al., 1998; 
Gregory-Wodzicki, 2002 

-17.335 -69.135 3 1 10.72 10.6 
1 

73 Alonso et al., 1991; Clarke, 
2006 

-24.634 -66.707 26 5 8 6 
2 

74 Acevedo et al., 1997 -25.389 -66.093 1 1 9 5.2 
3 

75 Starck and Anzótegui, 2001 -25.606 -66.134 1 1 9 4 
3 

76 Anzótegui and Cuadrado, 1996; 
Barreda et al., 2007 

-25.711 -66.045 12 3 11.6 5.33 
3 

77 Mautino and Anzótegui, 2002a; 
2002b 

-27.2 -66.733 12 3 11.6 5.33 
3 

78 Anzótegui et al., 2007; Barreda 
et al., 2007 

-27.801 -66.937 12 3 11.6 5.33 
3 

79 Anzótegui et al., 2007; Barreda 
et al., 2007 

-29.739 -68.014 14 3 11.6 5.33 
3 

80 Troncoso and Encinas, 2006 -33.958 -71.871 15 3 11 5.33 
3 

81 Barreda et al., 2008 -38.67 -61.266 15 3 11.61 5.33 
3 

82 Quattrocchio and Guerstein, 
1989 

-38.912 -62.145 4 2 11.61 8 
3 

83 Barreda et al., 2008 -39.36 -62.672 15 3 11.61 5.33 
3 

84 Guler et al., 2001 -39.937 -60.845 14 3 11.6 5.33 
3 

85 Guerstein et al., 1995 -40.346 -62.91 4 2 11.61 7.25 
3 

86 Barreda et al., 2008 -40.642 -62.799 15 3 11.61 5.33 
3 

87 Barreda et al., 2008 -40.723 -64.4 15 3 11.6 5.33 
3 

88 Barreda et al., 2007 -40.529 -65.451 14 3 11.6 5.33 
3 

89 Barreda et al., 2008 -42.541 -64.284 15 3 11 9 
2 

90 Barreda, V., Palazzesi, L., 2007; 
Barreda et al., 2007 

-42.681 -63.907 14 3 11.6 5.33 
3 
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91 Macphail and Cantrill, 2006 -51.353 -60.692 4 2 15.97 5.33 
5 

92 Marenssi et al., 2010 -64.167 -57.75 28  12.4 10 
4 

93 Marenssi et al., 2010 -64.167 -57.75 0  10 9 
4 

94 Marenssi et al., 2010 -64.167 -57.75 28  9 5.33 
4 

95 Head et al., 1989 59.532 -47.783 4 2 9 6.5 
3 

96 Denk et al., 2005 65.4 -21.777 5 6 9 8 
1 

97 Denk et al., 2005 65.663 -21.94 4 2 10 10 
1 

98 Denk et al., 2005 65.637 -15.038 5 6 9 8 
1 

99 Denk et al., 2005 65.059 -14.058 4 2 10 10 
1 

100 Koreneva et al., 1976 69.005 -7.708 7 6 10 5.5 
3 

101 Boulter and Manum, 1997 79.414 2.264 10 7 11 9 
5 

102 Koreneva et al., 1976 67.785 5.388 7 6 11.6 10.5 
4 

103 Boulter, 1971; Pound et al., 
2012 

53.15 -1.73 4 2 9 7.25 
3 

104 Larsson et al., 2011 55,83 8.42 4 2 11.61 7.25 
3 

105 Antunes and Pais, 1984 38.699 -9.083 4 2 11.1 9.7 
5 

106 Antunes et al., 1997 38.469 -9.175 4 2 13 11.5 
3 

107 Rivas-Carballo et al., 1994 40.661 -4.786 15 3 11.6 7.25 
4 

108 Barrón, E., 1997 42.381 -1.851 4 2 10 9 
3 

109 Jiménez-Moreno and Suc, 
2007; Favre et al., 2007 

36.663 -2.614 14 3 14 10.2 
4 

110 Bachiri Taoufiq and Barhoun, 
2001 

34.259 -3.734 4 2 8 7.5 
3 

111 Bachiri Taoufiq and Barhoun, 
2001 

34.206 -3.732 15 3 8 7.5 
3 

112 Bugnicourt et al., 1988 43.109 0.323 4 2 11.6 5.33 
3 

113 Barrón, 1999a;1999b 42.445 1.698 4 2 11.6 9 
3 

114 Barrón and Diéguez, 2005 42.331 1.768 4 2 11.6 9 
3 

115 Agustí et al., 2003 41.561 2.011 4 2 9.2 9 
2 

116 Porta et al., 1977 41.184 1.471 4 2 9 7.5 
3 

117 Ermolli, 1991 50.252 4.841 4 2 12 10 
3 

118 van Der Burgh, 1987 50.817 6.271 4 2 11.6 5.33 
5 

119 Figueiral et al., 1999 50.911 6.501 4 2 12 10 
4 

120 Kvacek et al., 2002; Bruch et 
al., 2006 

50.917 6.417 4 2 9 7.25 
4 
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121 van der Burgh, 1994 50.499 7.233 4 2 11.6 5.33 
5 

122 Sittler, 1958 47.24 6.03 4 2 11.6 5.33 
3 

123 Mai, 1995 45.771 3.119 4 2 8.7 6 
3 

124 Jan du Chene, 1974 46.358 4.908 4 2 11.6 7.2 
3 

125 Jan du Chene, 1974 46.475 5.158 4 2 11.6 7.2 
3 

126 Jan du Chene, 1974 46.308 5.044 4 2 11.6 7.2 
3 

127 Jan du Chene, 1974 46.247 5.222 4 2 11.6 7.2 
3 

128 Jan du Chene, 1974 46.494 5.392 4 2 11.6 7.2 
3 

129 Blanc et al., 1974 46.05 5.313 4 2 10 9 
3 

130 Combémorel et al., 1970 46.006 5.288 4 2 11.6 9 
3 

131 Gregor et al., 1989 48.17 11.618 7 6 9.7 7.7 
3 

132 Gregor et al., 1989 48.466 12.362 7 6 11.6 7.7 
3 

133 Gregor et al., 1989 48.239 12.859 7 6 11.6 7.7 
3 

134 Harrison and Harrison, 1989 42.791 11.365 4 2 9 8.5 
3 

135 Bertini, 2002 43.166 11.598 4 2 11.61 6 
3 

136 Bertini, 1994 43.468 13.368 4 2 8.2 5.33 
3 

137 Bertini, 2002 38.703 16.023 4 2 11.61 6 
3 

138 Kovar-Eder et al., 1998 49.059 14.715 4 2 16 11.1 
3 

139 Gabrielová and Planderová, 
1967 

49.131 14.704 4 2 11.61 7.25 
3 

140 Mai, 1995; Bruch et al., 2006 48.12 16.339 4 2 11.7 8.7 
3 

141 Harzhauser et al., 2008 48.101 16.353 4 2 10 9 
3 

142 Erdei et al., 2007 47.234 16.51 4 2 11.6 8.9 
4 

143 Hofmann and Zetter, 2005 47.202 16.373 4 2 9 8.2 
3 

144 Worobiec et al., 2009 51.811 18.285 4 2 11.6 5.33 
3 

145 Worobiec and Lesiak, 1998; 
Worobiec and Worobiec, 2005 

51.237 19.328 4 2 10 7 
4 

146 Kita, 1963 49.992 20.3 4 2 11.61 7.25 
3 

147 Oszlast, 1967 50.568 21.655 4 2 11.6 7.25 
3 

148 Nagy, 1967; Bruch et al., 2006 46.166 18.513 4 2 11.6 7.25 
4 

149 Nagy, 1984 47.322 18.962 4 2 11.6 7.25 
3 

150 Nagy, 1984 47.743 20.07 4 2 11.6 7.25 
3 
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151 Erdei et al., 2009; Bruch et al., 
2006 

48.083 20.5 4 2 7.7 6.3 
3 

152 Erdei et al., 2007 47.926 21.09 4 2 11.6 8.9 
3 

153 Syabryaj et al., 2007 48.23 22.67 4 2 11.5 7.1 
3 

154 Rybakova, 1966 48.417 23.367 4 2 11.6 9 
3 

155 Rybakova, 1966 48.417 23.367 6 6 9 6.2 
3 

156 Guşă et al., 1998 47.401 26.299 4 2 11.6 9 
3 

157 Chirilă, 2010 47.028 27.127 4 2 13 11 
3 

158 Mai, 1995 46.843 29.64 4 2 9.6 8.7 
3 

159 Pantic, 1956; Utescher et al., 
2007 

44.495 20.603 4 2 8.55 7.25 
3 

160 Baltes, 1967 44.794 23.278 6 6 11.6 7.25 
4 

161 Ivanov et al., 2002 43.5 23.2 4 2 10 7.25 
3 

162 Ivanov and Lazarova, 2005 42.202 26.546 4 2 9.7 7.75 
3 

163 Ivanov et al., 2007 43.493 28.246 16 3 11.6 10 
3 

164 Gjani et al., 2003 41.332 19.831 4 2 11.6 7.25 
3 

165 Velitzelos and Gregor, 1990 40.682 21.709 4 2 11.6 5.33 
4 

166 Velitzelos and Gregor, 1990 40.147 22.012 4 2 11.6 5.33 
4 

167 Solounias and Dawson-
Saunders, 1988 

38.001 23.939 4 2 9 6.5 
3 

168 Orgetta, 1979 38.006 23.946 16 3 11.61 5.33 
4 

169 Zidianakis et al., 2007 35.37 24.204 4 2 7.5 6 
3 

170 Sachse and Mohr, 1996; Bruch 
et al., 2006 

35.063 25.722 4 2 8 7 
3 

171 Ioakim et al., 1997 35.195 26.182 4 2 11.61 7.25 
3 

172 Sauvage, 1977 36.799 27.103 4 2 11.6 5 
5 

173 Ioakim and Solounias, 1985 37.72 26.863 4 2 11.9 10.48 
1 

174 Akgün and Akyol, 1999 37.974 28.844 16 3 12 10 
3 

175 Akyol and Akgün, 1990; Helvacı 
and Alaca, 1991 

39.392 28.131 16 3 11 5.33 
5 

176 Filipova, 2002 45.124 36.685 4 2 10 8.5 
3 

177 Filipova, 2002 45.124 36.685 16 3 8.5 7 
3 

178 Akgün et al., 2002 40.617 37.488 16 3 8.65 7.25 
3 

179 Akgün et al., 2007 39.853 37.384 16 3 9.9 9.9 
3 

180 Akgün et al., 2007 38.675 39.223 4 2 10.6 10.6 
4 
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181 Shatilova and Ramishvili, 1984 42.552 41.554 4 2 8 6 
5 

182 Dzhabarova, 1980 40.354 47.704 4 2 11.6 5.33 
3 

183 van Der Burgh, 1987 52.483 43.017 4 2 11.6 5.33 
5 

184 Alvarez Ramis et al., 2000 28.713 -17.886 4 2 11.6 4 
4 

185 Medus, 1975 12.618 -16.288 1 1 11.6 5.33 
4 

186 Medus, 1975 13.762 -13.688 1 1 11.6 5.33 
4 

187 Báldi-Beke et al., 1987 5.259 -3.969 1 1 10 5.33 
3 

188 Poumot, 1989 4 6 1 1 10 10 
3 

189 Morley and Richards, 1993 4.461 5.951 1 1 8.2 7.6 
2 

190 Morley and Richards, 1993 4.461 5.951 12 3 7.6 7.25 
2 

191 Médus et al., 1988 7.933 8.8 12 3 11.6 5.33 
4 

192 Vignaud et al., 2002 15.263 16.335 19 4 7.4 6 
4 

193 Poumot and Suc, 1984 31.72 31.116 12 3 11.6 7.25 
3 

194 Horowitz and Horowitz, 1985 33.05 35.6 13 3 10 7.1 
4 

195 Kingston and Hill, 1999 24.007 52.333 19 4 8 6 
3 

196 Yemane et al., 1985; 1987 12.583 37.1 1 1 9.8 5.33 
4 

197 Eisawi and Schrank, 2008 10.137 33.004 19 4 11.6 5.33 
3 

198 Eisawi and Schrank, 2008 8.526 33.502 19 4 11.6 5.33 
3 

199 Lemoigne, 1978 8.068 37 12 3 11.6 5.33 
5 

200 Kingston et al., 2002 0.942 35.952 1 1 7.8 6.7 
1 

201 Cronk, 1990 -15.958 -5.698 4 2 10.1 8.5 
1 

202 van Zinderen Bakker Sr, 1980 -19.188 9.386 13 3 11.25 6 
5 

203 Coetzee, 1978 -33.011 18.143 6 6 11.6 5.33 
5 

204 Coetzee, 1978 -34.061 18.701 6 6 11.6 5.33 
5 

205 Arkhipov et al., 2005 56.746 61.772 16 3 12 9 
3 

206 Volkova et al., 1986 55.35 70.151 16 3 11.5 9 
4 

207 Kulkova and Volkova, 1997 52.299 76.95 16 3 7.5 5.5 
3 

208 Abusiarova, 1966 44.143 79.142 16 3 11.6 5.33 
5 

209 Il'inskaya, 1962 48.036 84.092 5 6 15.97 5.33 
3 

210 Zyryanov et al., 1992; Fradkina 
et al., 2005 

69.286 101.066 10 7 8.9 8.4 
3 
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211 Chernyaeva et al., 2007 53.838 111.996 16 3 11.6 8.5 
1 

212 Wang, 1990 43.646 111.976 16 3 11.6 9 
3 

213 Sun and Wang, 2005 43.65 111.967 16 3 16 5.33 
4 

214 Nikitin, 2007 59.824 149.607 10 7 11.6 5.33 
3 

215 Nikitin, 2007 58.369 159.177 6 6 11.6 5.33 
5 

216 Nikitin, 2007 65.623 173.452 10 7 11.6 5.33 
3 

217 Lopatina, 2001; 2004 48.588 139.724 4 2 12 5.33 
5 

218 Liu et al., 1996 46.593 131.333 4 2 12 7 
3 

219 Korotky and Demidova, 1977; 
Korotky et al., 2005 

42.708 133.073 4 2 11 10 
3 

220 Wang, 1996; Wang et al., 2010 38.219 92.683 14 3 14.5 7.2 
4 

221 Liu, 1988 37.263 94.472 16 3 11.6 5.33 
3 

222 Sun and Wang, 2005 39.717 98.533 4 2 11.6 8.6 
5 

223 Liu, 1986 39.733 98.492 16 3 11.6 5.33 
3 

224 Sun and Wang, 2005 39.717 98.533 20 4 8.6 8.4 
5 

225 Sun and Wang, 2005 39.717 98.533 16 3 8.4 6.93 
5 

226 Gu et al., 1992 36.045 101.978 20 4 11.1 8.7 
3 

227 Jiang and Ding, 2008 36.379 106.099 17 3 14.25 11.35 
2 

228 Jiang and Ding, 2008 36.379 106.099 14 3 11.35 8.3 
2 

229 Jiang and Ding, 2008 36.379 106.099 16 3 8.3 8.05 
2 

230 Jiang and Ding, 2008 36.379 106.099 14 3 8.05 5.5 
2 

231 Liu, 1988 38.481 119.211 16 3 11.6 5.33 
3 

232 Ma et al., 2005 35.068 107.114 16 3 8.1 6.73 
2 

233 Liu, 1988 34.262 108.954 16 3 11.6 5.33 
3 

234 Li et al., 2006 34.633 105.917 4 2 11.67 7.7 
3 

235 Li et al., 2006 34.633 105.917 16 3 7.7 6 
3 

236 Liu, 1988 30.644 104.071 16 3 11.6 5.33 
3 

237 Liu, 1986 36.599 118.57 4 2 12 10 
4 

238 Chung and Koh, 2005 36.05 129.361 5 6 10.5 9.5 
3 

239 Takahashi and Kim, 1979 36.006 129.383 4 2 11.6 7.25 
4 

240 Wang et al., 2001 36.93 137.029 4 2 13 9.2 
1 
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241 Heusser, 1992 40.195 138.241 4 2 9 8 
3 

242 Fuji, 1969 37.066 136.925 4 2 11.6 5.33 
3 

243 Ozaki, 1991 36.69 138.772 7 6 11.6 7 
4 

244 Ozaki, 1991 36.346 138.879 4 2 11.6 6.4 
1 

245 Ozaki, 1991 36.451 138.038 5 6 10.5 7.9 
2 

246 Ozaki, 1991 36.139 139.34 4 2 9 7 
4 

247 Ozaki, 1991 35.217 137.086 4 2 9 8 
3 

248 Liu, 1988 34.219 120.104 16 3 11.6 5.33 
3 

249 Zheng et al., 1981 33.345 120.166 4 2 15.97 5.33 
4 

250 Li et al., 1987 32.121 118.723 4 2 11.6 9 
3 

251 Hu and Sarjeant, 1992 30.421 126.437 4 2 11.61 5.33 
4 

252 Hu and Sarjeant, 1992 29.365 124.818 4 2 11.61 5.33 
4 

253 Hu and Sarjeant, 1992 27.976 125.819 4 2 11.61 5.33 
4 

254 Canright, 1974 25.158 121.766 4 2 11.6 5.33 
3 

255 Gu et al., 1992 27.06 117.18 16 3 8.7 5.33 
3 

256 Nandi, 1980 32.215 75.854 4 2 11.1 5.33 
3 

257 Banerjee, 1968 31.417 76.433 6 6 10.6 6.8 
5 

258 Nandi, 1980 32.215 75.854 1 1 13.1 11.1 
3 

259 Banerjee, 1968 31.417 76.433 4 2 11 10.6 
5 

260 Sarkar and Singh, 1994 31.041 76.718 4 2 13.6 10 
3 

261 Nandi, 1980 30.047 77.891 4 2 11.1 5.33 
3 

262 Sarkar et al., 1994 29.973 78.157 1 1 11 4.1 
4 

263 Awasthi and Prasad, 1990; 
Mugnier et al., 1999 

28.955 80.254 2 1 11.6 7 
3 

264 Prasad and Pradhan, 1998 28.65 81.5 1 1 11 7 
4 

265 Hoorn et al., 2000 27.763 82.777 20 4 8 6.5 
3 

266 Prasad and Pradhan, 1998 28.133 81.667 1 1 11 7 
4 

267 Prasad and Awasthi, 1996; 
Mugnier et al., 1999 

27.777 82.834 1 1 11 7 
3 

268 Hoorn et al., 2000 27.763 82.777 4 2 11.5 8 
3 

269 Li and Guo, 1976 29.679 89.091 4 2 11.6 5.33 
4 

270 Antal et al., 1996; Mugnier et 
al., 1999 

26.87 88.623 1 1 11 7 
5 
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271 Awasthi and Srivastava, 1990; 
Guleria, 1992 

12.011 75.306 1 1 11.6 4.33 
4 

272 Ramanujam, 1987; Guleria, 
1992 

9.49 76.326 1 1 11.6 4.33 
4 

273 Guleria, 1992; Srivastava and 
Awasthi, 1994 

8.878 76.589 1 1 11.6 4.33 
4 

274 Awasthi and Ahuja, 1982; 
Guleria, 1992 

8.727 76.71 1 1 11.6 4.33 
4 

275 Saxerna, 1992; Rao et al., 2009 11.517 79.455 1 1 11 5.33 
4 

276 Saxerna, 1992; Rao et al., 2009 11.589 79.517 1 1 11 5.33 
4 

277 Chandra and Kumar, 1997; 
Saxena et al., 1998 

8.007 86.283 1 1 11 5.33 
4 

278 Awasthi et al., 1994 23.458 91.797 1 1 11.6 5.33 
4 

279 Prakash et al., 1994 24.463 92.707 1 1 10 6 
5 

280 Prakash et al., 1994 25.78 93.239 1 1 10 6 
5 

281 Banerjee et al., 1973; Uddin 
and Lundberg, 1999 

26.983 94.63 4 2 10 6 
5 

282 Prakash et al., 1994 27.213 95.392 1 1 10 6 
5 

283 Xu et al., 2008 25.167 101.367 1 1 11.25 5.33 
4 

284 Xia et al., 2009 23.813 103.198 4 2 11.6 9 
3 

285 Dzanh, 1996 22.327 104.518 4 2 11.1 5.33 
4 

286 Dzanh, 1996 22.682 106.241 4 2 11.1 5.33 
4 

287 Dzanh, 1996 22.255 106.471 4 2 11.1 5.33 
4 

288 Dzanh, 1996 21.702 106.968 4 2 11.1 5.33 
4 

289 Dzanh, 1996 21.023 105.855 4 2 13.7 11.1 
4 

290 Dzanh, 1996 21.637 104.827 4 2 11.1 5.33 
4 

291 Dzanh, 1996 18.93 105.098 4 2 11.1 5.33 
4 

292 Li and Zhang, 1998 18.716 111.46 4 2 10.5 5.33 
2 

293 Prakash, 1973 17.04 95.221 3 1 12 4 
5 

294 Chaimanee et al., 2006 15.026 102.281 19 4 9 6 
4 

295 Dzanh, 1996 13.782 108.249 4 2 11.1 5.33 
4 

296 Nielson et al., 2007 13.158 108.711 1 1 13.9 10 
4 

297 Dzanh, 1996 11.547 107.817 4 2 11.1 5.33 
4 

298 Highton et al., 1997 10.19 102.09 1 1 10 5.33 
4 

299 Naih, 2008 7.191 115.098 1 1 11.61 5.33 
4 

300 Anderson and Muller, 1975 4.942 114.943 1 1 11.6 5.33 
5 
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301 Konzalova, 2005 1.85 113.62 1 1 16 5.33 
5 

302 Morley and Morley, 2011 -0.06 118.58 1 1 11.61 7.25 
3 

303 Martin and Mcminn, 1994; 
Macphail, 1997 

-15.291 119.241 15 3 10.5 5.2 
4 

304 Leopold, 1969 -11.668 162.187 2 1 11 6 
4 

305 Martin and McMinn, 1993 -19.124 149.399 6 6 10 6 
4 

306 Hekel, 1972; Martin and 
McMinn, 1993 

-22.561 152.578 15 3 11.6 5.33 
4 

307 Macphail, 1997 -32.919 120.798 15 3 10.5 5.2 
4 

308 Stoian, 2004 -30.976 135.101 15 3 10 5.33 
3 

309 Stoian and Cooper, 2003; 
Stoian et al., 2005 

-33.712 134.495 15 3 10.5 5 
3 

310 Martin, 1990 -30.593 139.598 15 3 10.5 5 
4 

311 Macphail, 1999 -34.12 144.589 16 3 8 5 
4 

312 Martin, 1997 -30.184 145.793 4 2 16 7.3 
3 

313 Martin, 1991 -33.517 148.33 15 3 10 5.5 
4 

314 Macphail, 1997 -37.713 147.45 15 3 10.5 5.2 
5 

315 Couper and McQueen, 1954; 
Hornibrook, 1958 

-36.296 175.473 4 2 10 4.8 
3 

316 Moore and Wallace, 2000 -37.114 175.686 4 2 9 8 
2 

317 Moore and Wallace, 2000 -36.86 175.649 4 2 11 10 
2 

318 Mildenhall and Pocknall, 1984; 
Mildenhall et al., 2003 

-41.749 171.482 4 2 11.6 3.5 
3 

319 Couper and McQueen, 1954; 
Hornibrook, 1958 

-46.231 167.23 4 2 10 4.8 
3 

320 Couper and McQueen, 1954; 
Hornibrook, 1958 

-46.587 168.368 4 2 10 4.8 
3 

321 Mildenhall and Pocknall, 1984; 
Mildenhall et al., 2003 

-41.686 174.128 4 2 12 5.33 
3 

322 Mildenhall and Pocknall, 1984; 
Mildenhall et al., 2003 

-45.043 169.196 7 6 10 5 
3 

323 Couper and McQueen, 1954; 
Cotton, 1958 

-41.558 175.423 4 2 10 4.8 
3 

324 Couper and McQueen, 1954; 
Hornibrook, 1958 

-45.855 170.51 4 2 10 4.8 
3 

325 Heusser, 1986 -45.899 175.607 4 2 11.6 5.33 
3 

326 Truswell et al., 2005 -53.021 73.303 20 4 10 5 
4 
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Messinian 

 

Location 
number 

Literature latitude longitude Biome 
number 

Megabiome 
number 

Oldest 
age 

Youngest 
age Q 

1 Matthews Jr. and Ovenden, 
1990; White et al., 1997 

65.883 -163.117 10 7 5.9 5.5 
2 

2 Reinink-Smith and 
Leopold,2005 

59.667 -151.682 7 6 10 5 
2 

3 Leopold and Liu, 1994; 
Grimaldi and Triplehorn, 2008 

63.85 -148.376 8 6 9 5.4 
3 

4 Wahrhaftig et al., 1969; 
Grimaldi and Triplehorn, 2008 

64.032 -148.215 8 6 8.1 6.7 
2 

5 White et al., 1997 63.9 -148.9 10 7 6 5 
2 

6 Wahrhaftig et al., 1969; 
Grimaldi and Triplehorn, 2008 

63.302 -144.573 8 6 9 5.4 
2 

7 White et al., 1994 54.023 -131.794 7 6 7.25 6.5 
3 

8 Martin and Rouse, 1966; White 
et al., 1994 

54.028 -132.033 7 6 9 5.33 
4 

9 Sparks et al., 1972 47.232 -123.176 5 6 11.6 5.33 
3 

10 Sparks et al., 1972 46.929 -124.055 5 6 12 5 
4 

11 Retallack et al., 2002 44.5 -119.633 14 3 7.2 7.1 
1 

12 Dorf, 1938 44.29 -117.092 5 6 11.8 6 
4 

13 Davis and Ellis, 2010 42.138 -116.914 14 3 9 7 
2 

14 Axelrod, 1980 38.508 -120.029 15 3 7 7 
1 

15 Davis and Moutoux, 1998 34.5 -112 14 3 7.5 2.5 
2 

16 Axelrod, 1950 33.855 -117.016 16 3 7 7 
4 

17 Ballog and Malloy, 1981; 
Axelrod, 2000 

33.85 -120.758 14 3 10 5.33 
2 

18 Thomasson, 2005 41.324 -102.132 16 3 10.3 6 
3 

19 Thomasson et al., 1990 39.399 -100.143 16 3 7 6 
3 

20 Thomasson, 2005 38.511 -100.935 16 3 10.3 6 
3 

21 Shunk et al., 2006; DeSantis 
and Wallace, 2008 

36.5 -82.5 5 6 7 4.5 
3 

22 Groot et al., 1990; Groot, 1991 37.214 -77.394 4 2 6 5 
3 

23 Groot et al., 1990; Groot, 1991 38.594 -76.751 4 2 6 5 
3 

24 McCartan et al., 1990 38.685 -76.846 4 2 10 6 
3 

25 Groot et al., 1990; Groot, 1991 38.48 -75.174 4 2 6 5 
3 

26 Berry, 1939 23.061 -81.583 1 1 11.6 5.33 
4 

27 Graham, 1990 19.172 -72.724 3 1 11.6 4 
5 
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28 Martínez-Hernández, 1992 16.803 -92.906 1 1 15.97 5.33 
4 

29 Graham, 1998 14.752 -89.484 4 2 11.6 5.33 
5 

30 Berry, 1937 10.174 -61.538 1 1 11.6 5.33 
5 

31 Berry, 1945 6.041 -69.84 1 1 6 5 
4 

32 Hoorn, 1994; 2006 -0.334 -70.241 1 1 9 6.5 
3 

33 Hoorn, 1994; 2006 -0.418 -70.299 1 1 9 6.5 
3 

34 Berry, 1929 -4.011 -79.271 1 1 11.6 5.33 
4 

35 Hoorn, 1994; Latrubesse et al., 
2007 

-4.498 -71.446 12 3 9 6.5 
3 

36 Hoorn, 1994; Latrubesse et al., 
2007 

-4.4 -70.991 1 1 9 7 
4 

37 Regali et al., 1974; Jaramillo et 
al., 2010 

1.361 -49.339 1 1 15.97 5.33 
5 

38 Behling and Costa, 2004 -1.264 -48.446 1 1 15.97 5.33 
5 

39 Hoorn, 1994; Latrubesse et al., 
2007 

-10.155 -67.817 12 3 9 6.5 
3 

40 Hoorn, 1994; Latrubesse et al., 
2007 

-10.923 -69.927 12 3 9 6.5 
3 

41 Graham et al., 2001 -17.183 -66.033 1 1 7 6 
3 

42 Regali et al., 1974; Jaramillo et 
al., 2010 

-16.129 -38.616 1 1 15.97 5.33 
5 

43 Garcia et al., 2008 -23.031 -45.545 4 2 11.6 3 
4 

44 Regali et al., 1974; Jaramillo et 
al., 2010 

-24.492 -45.51 1 1 15.97 5.33 
5 

45 Alonso et al., 1991; Clarke, 
2006 

-24.634 -66.707 26 5 8 6 
2 

46 Acevedo et al., 1997 -25.389 -66.093 1 1 9 5.2 
3 

47 Starck and Anzótegui, 2001 -25.606 -66.134 1 1 9 4 
3 

48 Anzótegui and Cuadrado, 1996; 
Barreda et al., 2007 

-25.711 -66.045 12 3 11.6 5.33 
3 

49 Mautino and Anzótegui, 2002a; 
2002b 

-27.2 -66.733 12 3 11.6 5.33 
3 

50 Anzótegui et al., 2007; Barreda 
et al., 2007 

-27.801 -66.937 12 3 11.6 5.33 
3 

51 Anzótegui et al., 2007; Barreda 
et al., 2007 

-29.739 -68.014 14 3 11.6 5.33 
3 

52 Troncoso and Encinas, 2006 -33.958 -71.871 15 3 11 5.33 
3 

53 Barreda et al., 2008 -38.67 -61.266 15 3 11.61 5.33 
3 

54 Quattrocchio and Guerstein, 
1989 

-39.286 -60.895 16 3 7.25 5.33 
3 

55 Barreda et al., 2008 -39.36 -62.672 15 3 11.61 5.33 
3 

56 Guerstein et al., 1995 -40.346 -62.91 16 3 7.25 5.33 
3 

57 Barreda et al., 2007 -40.529 -65.451 14 3 11.6 5.33 
3 
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58 Barreda et al., 2008 -40.723 -64.4 15 3 11.6 5.33 
3 

59 Barreda et al., 2008 -40.642 -62.799 15 3 11.61 5.33 
3 

60 Guler et al., 2001 -39.937 -60.845 14 3 11.6 5.33 
3 

61 Barreda, V., Palazzesi, L., 2007; 
Barreda et al., 2007 

-42.681 -63.907 14 3 11.6 5.33 
3 

62 Mercer and Sutter, 1982 -46.767 -71.667 28  7.14 5.56 
1 

63 Macphail and Cantrill, 2006 -51.353 -60.692 4 2 15.97 5.33 
5 

64 Marenssi et al., 2010 -64.167 -57.75 28  9 5.33 
4 

65 Head et al., 1989 59.532 -47.783 7 6 6.5 5 
3 

66 Head et al., 1989 59.532 -47.783 4 2 9 6.5 
3 

67 Denk et al., 2005; Grimsson et 
al., 2008 

64.75 -21.6 7 6 7 6 
4 

68 Denk et al., 2005 66.2 -15.133 7 6 7 6 
1 

69 Koreneva et al., 1976 69.005 -7.708 7 6 10 5.5 
3 

70 Boulter and Manum, 1996 79.039 -1.782 10 7 7.25 5.33 
3 

71 Zagwijn, 1967 50.947 6.008 4 2 7.25 5.33 
3 

72 van Der Burgh, 1987 50.817 6.271 4 2 11.6 5.33 
5 

73 van der Burgh, 1994 50.499 7.233 4 2 11.6 5.33 
5 

74 Sittler, 1958 47.24 6.03 4 2 11.6 5.33 
3 

75 Mai, 1995 45.771 3.119 4 2 8.7 6 
3 

76 Roiron, 1991 45.115 2.866 5 6 5.64 5.04 
1 

77 Bugnicourt et al., 1988 43.109 0.323 4 2 11.6 5.33 
3 

78 Agustí et al., 2006 42.283 1.917 4 2 7 5.3 
3 

79 Suc and Cravatte, 1982; Favre 
et al., 2007 

41.167 2.024 4 2 7.25 5.96 
3 

80 Bessais and Cravatte, 1988; 
Favre et al., 2007 

40.843 1.146 4 2 6.7 5.4 
4 

81 Planderová and Gregor, 1992 44.676 4.674 4 2 6.1 5.33 
3 

82 Naud and Suc, 1975 44.656 4.577 4 2 7.25 5.33 
2 

83 Martinetto et al., 2007 44.717 8.1 4 2 6 5.7 
4 

84 Bertini, 2002 44.539 8.085 4 2 6 5.33 
3 

85 Bertini, 2002 44.736 11.133 4 2 7.25 5.33 
3 

86 Bertolani Marchetti, 1984 44.436 11.406 4 2 7.25 5.33 
3 

87 Bertini, 1994 44.364 11.574 4 2 7.25 5.5 
3 
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88 Bertini, 1994 43.468 13.368 4 2 8.2 5.33 
3 

89 Ghetti et al., 2002 43.002 11.551 4 2 7.25 5.96 
3 

90 Bertini, 2002 42.996 11.556 4 2 7.25 5.33 
3 

91 Bertini, 2002 43.166 11.598 4 2 11.61 6 
3 

92 Bertini, 2002 41.78 13.915 4 2 6 5.33 
3 

93 Bertini, 2002 38.703 16.023 4 2 11.61 6 
3 

94 Suc et al., 1995 37.557 14.389 14 3 7.25 6 
2 

95 Kohlman-Adamska et al., 2004 51.093 16.759 4 2 7.25 5.33 
4 

96 Worobiec et al., 2009 51.811 18.285 4 2 11.6 5.33 
3 

97 Worobiec and Lesiak, 1998; 
Worobiec and Worobiec, 2005 

51.237 19.328 4 2 10 7 
4 

98 Oszlast and Stuchlik, 1977 49.42 20.015 4 2 7.25 5.33 
3 

99 Bruch et al., 2006; Erdei et al., 
2009 

48.083 20.5 4 2 7.7 6.3 
3 

100 Syabryaj et al., 2007 48.23 22.67 4 2 11.5 7.1 
3 

101 Syabryaj et al., 2007 48.23 22.67 6 6 7.1 5.4 
3 

102 Rybakova, 1966 48.417 23.367 6 6 9 6.2 
3 

103 Rybakova, 1966 48.417 23.367 4 2 6.2 5.33 
3 

104 Petrescu, 1992 44.588 22.839 4 2 6 5.6 
3 

105 Ivanov et al., 2002 43.5 23.2 4 2 7.25 5.2 
3 

106 Utescher et al., 2009 43.056 22.928 5 6 6.4 5.2 
3 

107 Ivanov, 2002 41.032 21.339 4 2 7 5.33 
3 

108 Velitzelos and Gregor, 1990 40.682 21.709 4 2 11.6 5.33 
4 

109 Velitzelos and Gregor, 1990 40.147 22.012 4 2 11.6 5.33 
4 

110 Mohr and Redenius, 1985 39.246 23.236 4 2 7.25 5.33 
3 

111 Solounias and Dawson-
Saunders, 1988 

38.001 23.939 4 2 9 6.5 
3 

112 Orgetta, 1979 38.006 23.946 16 3 11.61 5.33 
4 

113 Zidianakis et al., 2007 35.37 24.204 4 2 7.5 6 
3 

114 Sachse and Mohr, 1996; Bruch 
et al., 2006 

35.063 25.722 4 2 8 7 
3 

115 Ioakim et al., 1997 35.195 26.182 14 3 7.25 5.33 
3 

116 Sauvage, 1977 36.799 27.103 4 2 11.6 5 
5 

117 Guernet et al., 1976 36.872 27.328 4 2 7.25 5.33 
4 
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118 Akyol and Akgün, 1990; Helvacı 
and Alaca, 1991 

39.392 28.131 16 3 11 5.33 
5 

119 Popescu, 2006 42.1 29.617 4 2 7.25 5.96 
3 

120 Filipova, 2002 45.124 36.685 16 3 8.5 7 
3 

121 Filipova, 2002 45.124 36.685 4 2 7 5.7 
3 

122 Filipova, 2002 45.124 36.685 16 3 5.7 5.33 
3 

123 van Der Burgh, 1987 52.483 43.017 4 2 11.6 5.33 
5 

124 Ramishvili, 1961 43.232 40.34 4 2 7 6 
3 

125 Shatilova and Ramishvili, 1984 42.552 41.554 4 2 8 6 
5 

126 Dzhabarova, 1980 40.354 47.704 4 2 11.6 5.33 
3 

127 Alvarez Ramis et al., 2000 28.713 -17.886 4 2 11.6 4 
4 

128 Bachiri Taoufiq et al., 2001 33.913 -5.875 13 3 7 6.7 
3 

129 Jiménez-Moreno and Suc, 
2007; Favre et al., 2007 

36.519 -4.105 14 3 7.25 5.96 
4 

130 Jiménez-Moreno and Suc, 
2007; Favre et al., 2007 

36.663 -2.614 14 3 7.25 5.96 
4 

131 Chikhi, 1992; Favre et al., 2007 35.453 -0.561 15 3 6.1 5.96 
3 

132 Chikhi, 1992; Fauquette et al., 
2006 

35.589 -0.09 15 3 6.1 5.96 
3 

133 Dechamps and Maes, 1987 30.169 20.096 12 3 7.25 5.33 
3 

134 Poumot and Suc, 1984 31.72 31.116 12 3 7.25 5.33 
3 

135 Horowitz and Horowitz, 1985 33.05 35.6 13 3 10 7.1 
4 

136 Kingston and Hill, 1999 24.007 52.333 19 4 8 6 
3 

137 Medus, 1975 12.618 -16.288 1 1 11.6 5.33 
4 

138 Medus, 1975 13.762 -13.688 1 1 11.6 5.33 
4 

139 Báldi-Beke et al., 1987 5.259 -3.969 1 1 10 5.33 
3 

140 Durugbo et al., 2010 4.55 4.267 12 3 6 5 
3 

141 Dunay et al., 1999 3.66 7.993 12 3 7.25 5.33 
3 

142 Médus et al., 1988 7.933 8.8 12 3 11.6 5.33 
4 

143 Vignaud et al., 2002 15.263 16.335 19 4 7.4 6 
4 

144 Schuster et al., 2006 16.317 18.683 26 5 7 5 
4 

145 Yemane et al., 1985; 1987 12.583 37.1 1 1 9.8 5.33 
4 

146 Eisawi and Schrank, 2008 10.137 33.004 19 4 11.6 5.33 
3 

147 Eisawi and Schrank, 2008 8.526 33.502 19 4 11.6 5.33 
3 
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148 Lemoigne, 1978 8.068 37 12 3 11.6 5.33 
5 

149 Bonnefille, 2010 1.163 30.378 3 1 6 5.5 
3 

150 Jacobs and Deino, 1996 0.917 35.833 3 1 7.2 6.7 
1 

151 Kingston et al., 2002 0.942 35.952 1 1 7.8 6.7 
1 

152 van Zinderen Bakker Sr, 1980 -19.188 9.386 13 3 11.25 6 
5 

153 Coetzee, 1978 -33.011 18.143 6 6 11.6 5.33 
5 

154 Coetzee, 1978 -34.061 18.701 6 6 11.6 5.33 
5 

155 Belkin, 1964 67.5 64.033 7 6 7.25 5.33 
3 

156 Kulkova and Volkova, 1997 52.299 76.95 16 3 7.5 5.5 
3 

157 Il'inskaya, 1962 48.036 84.092 5 6 15.97 5.33 
3 

158 Abusiarova, 1966 44.143 79.142 16 3 11.6 5.33 
5 

159 Sun et al., 2009 38.433 81.083 26 5 7 7 
3 

160 Liu, 1988 37.263 94.472 16 3 11.6 5.33 
3 

161 Sun and Wang, 2005 39.717 98.533 16 3 8.4 6.93 
5 

162 Liu, 1986 39.733 98.492 16 3 11.6 5.33 
3 

163 Nikitin, 2007 59.824 149.607 10 7 11.6 5.33 
3 

164 Nikitin, 2007 68.054 162.006 10 7 7.25 5.33 
4 

165 Nikitin, 2007 58.369 159.177 9 6 11.6 5.33 
5 

166 Nikitin, 2007 65.623 173.452 10 7 11.6 5.33 
3 

167 Nikitin, 2007 64.758 175.046 10 7 7.25 5.33 
4 

168 Lopatina, 2001; 2004 48.588 139.724 4 2 12 5.33 
5 

169 Liu et al., 1996 46.593 131.333 4 2 12 7 
3 

170 Liu, 1988 38.481 119.211 16 3 11.6 5.33 
3 

171 Jiang and Ding, 2008 36.379 106.099 14 3 8.05 5.5 
2 

172 Liu, 1988 34.262 108.954 16 3 11.6 5.33 
3 

173 Ma et al., 2005 35.068 107.114 16 3 6.73 5.67 
2 

174 Ma et al., 2005 35.068 107.114 16 3 8.1 6.73 
2 

175 Ma et al., 2005 35.068 107.114 20 4 5.67 3.71 
2 

176 Li et al., 2006 34.633 105.917 16 3 7.7 6 
3 

177 Liu, 1988 30.644 104.071 16 3 11.6 5.33 
3 



- 301 - 

178 Liu, 1988 34.219 120.104 16 3 11.6 5.33 
3 

179 Fuji, 1969 37.066 136.925 4 2 11.6 5.33 
3 

180 Ozaki, 1991 36.69 138.772 7 6 11.6 7 
4 

181 Ozaki, 1991 36.346 138.879 4 2 11.6 6.4 
1 

182 Ozaki, 1991 36.139 139.34 4 2 9 7 
4 

183 Ozaki, 1991 36.1 138.8 7 6 6.29 3.1 
2 

184 Hu and Sarjeant, 1992 30.421 126.437 4 2 11.61 5.33 
4 

185 Hu and Sarjeant, 1992 29.365 124.818 4 2 11.61 5.33 
4 

186 Hu and Sarjeant, 1992 27.976 125.819 4 2 11.61 5.33 
4 

187 Gu et al., 1992 27.06 117.18 16 3 8.7 5.33 
3 

188 Canright, 1974 25.158 121.766 4 2 11.6 5.33 
3 

189 Nandi, 1980 32.215 75.854 4 2 11.1 5.33 
3 

190 Banerjee, 1968 31.417 76.433 6 6 10.6 6.8 
5 

191 Nandi, 1980 30.047 77.891 4 2 11.1 5.33 
3 

192 Sarkar et al., 1994 29.973 78.157 1 1 11 4.1 
4 

193 Awasthi and Prasad, 1990; 
Mugnier et al., 1999 

28.955 80.254 2 1 11.6 7 
3 

194 Prasad and Pradhan, 1998 28.65 81.5 1 1 11 7 
4 

195 Prasad and Awasthi, 1996; 
Mugnier et al., 1999 

27.777 82.834 2 1 7 5.33 
3 

196 Hoorn et al., 2000 27.763 82.777 20 4 8 6.5 
3 

197 Prasad and Pradhan, 1998 28.133 81.667 1 1 11 7 
4 

198 Prasad and Awasthi, 1996; 
Mugnier et al., 1999 

27.777 82.834 1 1 11 7 
3 

199 Lukose, 1968 26.983 84.85 1 1 6.15 5.33 
3 

200 Li and Guo, 1976 29.679 89.091 4 2 11.6 5.33 
4 

201 Antal et al., 1996; Mugnier et 
al., 1999 

26.87 88.623 1 1 11 7 
5 

202 Awasthi and Srivastava, 1990; 
Guleria, 1992 

12.011 75.306 1 1 11.6 4.33 
4 

203 Ramanujam, 1987; Guleria, 
1992 

9.49 76.326 1 1 11.6 4.33 
4 

204 Guleria, 1992; Srivastava and 
Awasthi, 1994 

8.878 76.589 1 1 11.6 4.33 
4 

205 Awasthi and Ahuja, 1982; 
Guleria, 1992 

8.727 76.71 1 1 11.6 4.33 
4 

206 Saxerna, 1992; Rao et al., 2009 11.589 79.517 1 1 11 5.33 
4 

207 Saxerna, 1992; Rao et al., 2009 11.517 79.455 1 1 11 5.33 
4 
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208 Chandra and Kumar, 1997; 
Saxena et al., 1998 

8.007 86.283 1 1 11 5.33 
4 

209 Handique and Dutta, 1981 27.083 95.289 4 2 6.2 5.33 
3 

210 Prakash et al., 1994 27.213 95.392 1 1 10 6 
5 

211 Banerjee et al., 1973; Uddin 
and Lundberg, 1999 

26.983 94.63 4 2 10 6 
5 

212 Prakash et al., 1994 25.78 93.239 1 1 10 6 
5 

213 Prakash et al., 1994 24.463 92.707 1 1 10 6 
5 

214 Awasthi et al., 1994 23.458 91.797 1 1 11.6 5.33 
4 

215 Xu et al., 2008 25.167 101.367 1 1 11.25 5.33 
4 

216 Dzanh, 1996 22.327 104.518 4 2 11.1 5.33 
4 

217 Dzanh, 1996 22.682 106.241 4 2 11.1 5.33 
4 

218 Dzanh, 1996 22.255 106.471 4 2 11.1 5.33 
4 

219 Dzanh, 1996 21.702 106.968 4 2 11.1 5.33 
4 

220 Dzanh, 1996 21.637 104.827 4 2 11.1 5.33 
4 

221 Dzanh, 1996 18.93 105.098 4 2 11.1 5.33 
4 

222 Li and Zhang, 1998 18.716 111.46 4 2 10.5 5.33 
2 

223 Prakash, 1973 17.04 95.221 3 1 12 4 
5 

224 Chaimanee et al., 2006 15.026 102.281 19 4 9 6 
4 

225 Dzanh, 1996 13.782 108.249 4 2 11.1 5.33 
4 

226 Dzanh, 1996 11.547 107.817 4 2 11.1 5.33 
4 

227 Highton et al., 1997 10.19 102.09 1 1 10 5.33 
3 

228 Naih, 2008 7.191 115.098 1 1 11.61 5.33 
4 

229 Anderson and Muller, 1975 4.942 114.943 1 1 11.6 5.33 
5 

230 Konzalova, 2005 1.85 113.62 1 1 16 5.33 
5 

231 Morley and Morley, 2011 -0.06 118.58 1 1 7.25 5.33 
3 

232 Leopold, 1969 -11.668 162.187 2 1 11 6 
4 

233 Martin and Mcminn, 1994; 
Macphail, 1997 

-15.291 119.241 15 3 10.5 5.2 
4 

234 Martin and McMinn, 1993 -19.124 149.399 6 6 10 6 
4 

235 Hekel, 1972; Martin and 
McMinn, 1993 

-22.561 152.578 15 3 11.6 5.33 
4 

236 Macphail, 1997 -32.919 120.798 15 3 10.5 5.2 
4 

237 Stoian and Cooper, 2003; 
Stoian et al., 2005 

-33.712 134.495 15 3 10.5 5 
3 
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238 Stoian, 2004 -30.976 135.101 15 3 10 5.33 
3 

239 Martin, 1990 -30.593 139.598 15 3 10.5 5 
5 

240 Macphail, 1999 -34.12 144.589 16 3 8 5 
3 

241 Martin, 1991 -33.517 148.33 15 3 10 5.5 
3 

242 Macphail, 1997 -37.713 147.45 15 3 10.5 5.2 
3 

243 Couper and McQueen, 1954; 
Hornibrook, 1958 

-36.296 175.473 4 2 10 4.8 
3 

244 Mildenhall and Pocknall, 1984; 
Mildenhall et al., 2003 

-41.749 171.482 4 2 11.6 3.5 
3 

245 Couper and McQueen, 1954; 
Hornibrook, 1958 

-46.231 167.23 4 2 10 4.8 
3 

246 Couper and McQueen, 1954; 
Hornibrook, 1958 

-46.587 168.368 4 2 10 4.8 
3 

247 Mildenhall and Pocknall, 1984; 
Mildenhall et al., 2003 

-41.686 174.128 4 2 12 5.33 
3 

248 Mildenhall and Pocknall, 1984; 
Mildenhall et al., 2003 

-45.043 169.196 7 6 10 5 
3 

249 Couper and McQueen, 1954; 
Cotton, 1958 

-41.558 175.423 4 2 10 4.8 
3 

250 Couper and McQueen, 1954; 
Hornibrook, 1958 

-45.855 170.51 4 2 10 4.8 
3 

251 Heusser, 1986 -45.899 175.607 4 2 11.6 5.33 
3 

252 Truswell et al., 2005 -53.021 73.303 20 4 10 5 
4 
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Appendix C 

The fossil mammal localities presented in Chapter 6 

 

The following table presents the 407 mammal localities recorded in MAD and used in 

Chapters 6 and 7. The latitude and longitude represent the present day location, whilst the 

age range represents the maximum range when all uncertainty is taken into account. The Q 

rating is the same as was presented in Appendix A. The full references for the mammal 

localities can be found in Appendix D. 

 

Location 
number 

Location name Latitude Longitude Oldest 
age 

Youngest 
age 

References 
Q 

1 Courtney Pit 51.50 -112.30 9 7 Burns and 
Young, 1988 3 

2 Westend Blowout, OR 45.80 -119.30 7.4 7 Shotwell, 1958 
3 

3 McKay Reservoir, OR 45.50 -118.80 10 8 Shotwell, 1956 
3 

4 Intermediary Gulch, MT 46.21 -112.75 7.5 6.7 Carrasco et al., 
2005 3 

5 Gravel Pit, MT 46.22 -112.84 7.5 6.7 Carrasco et al., 
2005 3 

6 Dempsey Creek, MT 46.40 -112.80 9.4 7.9 Konizeski, 1957 
3 

7 Johnson Gulch, MT 46.22 -112.73 9 7.5 Carrasco et al., 
2005 3 

8 Little Valley, OR 43.60 -117.50 9.9 9.7 Shotwell, 1970 
3 

9 Juniper Creek, OR 43.60 -117.50 10.9 9.1 Shotwell, 1970 
3 

10 Rome, OR 43.60 -117.50 11.5 11.3 Wilson, 1937 
3 

11 Stroud claim, ID 43.00 -114.90 11.3 11.1 Malde and 
Powers, 1962 3 

12 Rockland Valley Quarry, 
ID 

42.80 -112.90 7.6 7.2 Gillette, 1999 
3 

13 Rockland Mole, ID 42.80 -112.90 10.4 7 Tedrow, 1997 
3 

14 Otis Basin, OR 42.70 -118.70 10 8.8 Shotwell, 1970 
3 

15 Bartlett Mountain, OR 42.70 -118.70 10.4 10.3 Shotwell, 1970 
3 

16 Star Valley, ID 42.00 -117.00 8 7.9 Becker and 
McDonald, 
1998 

3 

17 Thousand Creek, NV 41.10 -117.80 10 9 Stirton, 1940 
3 

18 Nightingale Road, NV 39.86 -119.00 11.7 7.5 Macdonald, 
1956 3 
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19 Hazen, NV 39.56 -119.11 9.81 9.81 Emry et al., 
2005 1 

20 Churchill Butte, NV 39.00 -119.20 9.7 9.4 Kelly and 
Lugaski, 1999 3 

21 Smiths Valley, NV 39.00 -119.20 10.9 10.8 Macdonald, 
1959 3 

22 Smiths Valley, NV 38.80 -119.32 10.9 8 Macdonald and 
Macdonald, 
1976 

3 

23 Silver Springs, NV 39.30 -118.90 6.2 6.1 Kelly, 1998 
3 

24 Washoe, NV 38.80 -119.50 7.4 4.6 Kelly, 1997 
3 

25 Bollinger Canyon 37.82 -122.06 13.6 10.3 Edwards, 1982 
3 

26 Black Hawk Ranch, CA 38.04 -122.18 9.7 9 Stirton, 1939; 
Tseng et al., 
2010; White, 
1991 

3 

27 Siphon Canal, CA 37.60 -120.80 8.35 8.03 Hirschfeld, 
1981 1 

28 Turlock Lake, CA 37.60 -120.80 7.7 7.6 Wagner, 1976 
3 

29 Point Reyes Peninsula, CA 37.90 -122.72 6.8 6 Zeigler et al., 
1997 3 

30 Warren, CA 35.30 -118.50 7.3 5.3 Reynolds et al., 
1991 3 

31 Powerline Road Tom 
Quarry, CA 

35.37 -117.99 9.3 9.2 Wang et al., 
2005; Whistler 
and Burbank, 
1992 

1 

32 Kam's False Cat Locality 35.33 -118.08 10.2 8.4 Tseng et al., 
2010 2 

33 Sycamore, CA 35.30 -118.50 10.8 9.6 Reynolds and 
Czaplewski, 
1989 

3 

34 Lava Mountains, CA 34.80 -117.00 10.8 10.7 Reynolds et al., 
1991 3 

35 Golgotha Hill, UT 38.10 -114.17 5.89 5.23 Carrasco et al., 
2005; Reynolds 
and Lindsay, 
1999 

0 

36 42SVO66V, UT 38.62 -112.32 10.3 7 Korth and 
Blieux, 2010 3 

37 Pinole Junction 1,CA 37.89 -112.09 9.2 9.1 Korth and 
Blieux, 2010; 
Stirton, 1939 

3 

38 White Cone, AZ 35.61 -110.07 6.85 5.3 Baskin, 1979; 
Carraway, 2010 2 

39 Rio Arriba, NM 36.50 -107.00 10.1 8.9 MacFadden, 
1977 3 

40 Espanola Basin 36.21 -106.07 11 10.5 Fox and Fisher, 
2004 3 

41 Gabaldon Badlands, NM 34.80 -106.90 11.6 11.4 Lozinsky and 
Tedford, 1991 3 

42 The Pits, NE 42.40 -103.80 10.7 10.6 Skinner et al., 
1977 3 

43 ZXBar, NE 42.40 -103.80 10.5 10.4 Skinner et al., 
1977 3 

44 Rock Ledge Mastodon 
Quarry, NE 

42.52 -100.50 10.5 9.5 Fox and Fisher, 
2004 3 

45 Mefferdi Quarry, NE 42.70 -100.90 11.8 10.4 Mook, 1946 
3 
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46 Rick Irwin Site, NE 42.80 -99.60 9.2 9.1 Tucker, 2003 
3 

47 Honey Creek, NE 42.70 -98.80 8.7 7.7 Voorhies, 1990 
3 

48 Santee, NE 42.80 -97.80 7.3 7.2 Voorhies, 1990 
3 

49 Mailbox, NE 42.40 -98.10 8.4 8.2 Voorhies, 1990 
3 

50 Verdigre Creek, NE 42.39 -98.12 11 10 Voorhies and 
Thomasson, 
1979 

3 

51 Kepler Quarry, NE 41.92 -103.05 11.8 9 Lambert, 2007; 
Voorhies, 1990 3 

52 Lemoyne Quarry, NE 41.29 -101.84 10.3 4.9 Bown, 1980 
3 

53 Uptegrove, NE 41.10 -103.00 10.6 7.4 Voorhies, 1984 
3 

54 Beecher Island, CO 40.10 -102.20 9.4 9.2 Frye et al., 
1956 3 

55 Found Quarry, KS 38.90 -101.70 8.6 8.4 Bennett,  1979 
3 

56 Lost Quarry, KS 38.90 -101.70 8.4 7.6 Bennett,  1979 
3 

57 Minium Quarry Unit 5, KS 39.40 -100.14 7 6 Thomasson et 
al., 1990 3 

58 Jack Swayze Quarry, KS 39.06 -100.76 8.5 7.5 Fox and Fisher, 
2004 3 

59 Amebelodon fricki 
Quarry, NE 

40.50 -100.50 11.2 11 Voorhies, 1990 
3 

60 Long Island Quarry, KS 39.80 -99.40 11.1 10.1 Zakrzewski, 
1988 3 

61 Buis Ranch, OK 36.80 -100.50 6.6 6.5 Hibbard, 1954 
3 

62 Optima, OK 36.70 -101.40 9 8 Hesse, 1936; 
Savage, 1941 3 

63 Coffee Ranch, TX 35.90 -100.20 9 7 Dalquest, 1980 
3 

64 Cole Highway Pit, TX 36.32 -100.07 9.5 8.5 Fox and Fisher, 
2004 3 

65 Lipscomb Pit 1, TX 36.10 -100.10 10.3 4.9 Lim et al., 2001; 
Schultz, 1990 3 

66 Port of Entry Pit, OK 36.03 -99.96 11.2 7.5 Fox and Fisher, 
2001; Schultz, 
1990 

3 

67 Arnett, OK 36.14 -99.94 11.9 9 Kitts, 1957 
3 

68 Beckerdite, KS 37.20 -99.90 11.7 8.8 Liggett, 1997 
3 

69 Whisenhunt Quarry, OK 36.78 -100.04 12.7 10.7 Dalquest et al., 
1996; Smith, 
2005 

3 

70 Higgins Quarry,TX 36.40 -98.40 9.3 9 Dalquest and 
Patrick, 1989; 
Schultz, 1990 

3 

71 Pipe Creek Sinkhole, IN 40.50 -85.80 9.9 8.9 Farlow et al., 
2001; Martin et 
al., 2002 

3 

72 Gray Fossil Site, TN 36.40 -82.50 10.1 9.9 Wallace and 
Wang, 2004 3 

73 Lee Creek Mine, NC 35.40 -76.80 6.5 6.4 Tedford and 
Hunter, 1984 3 

74 Sunken Meadow Pond, 
VA 

37.20 -76.90 11.6 7.2 Baum and 
Wheeler, 1977; 3 
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Godfrey and 
Barnes, 2008 

75 John Seyfried beach, MD 38.40 -76.41 10 9 Fuller and 
Godfrey, 2007 3 

76 Cove Point, MD 38.35 -76.40 10 9 Godfrey and 
Barnes, 2008 3 

77 Love Bone Bed, FL 29.55 -82.52 9.9 9.5 Baskin, 1980, 
1981, 1986, 
2005; Hulbert-
Jr., 2005; 
MacFadden 
and Cerling, 
1996; Webb et 
al., 1981 

3 

78 Moss Acres Racetrack, FL 29.30 -82.35 9 8.9 Hulbert Jr., 
1988; Lambert, 
1997 

3 

79 Phosphate Pit, Polk 
County, FL 

27.90 -81.80 10.3 4.9 Olsen, 1960; 
Webb, 1969 3 

80 Payne Creek, FL 27.90 -81.80 7.9 7.8 Berta and 
Morgan, 1985; 
Hulbert, 1987 

3 

81 Palmetto Washer, FL 27.76 -81.98 7.9 7.8 Webb, 1969; 
Wright and 
Webb, 1984 

3 

82 Tiger Bay Mine, FL 27.90 -81.80 6.5 6.4 Webb, 1981 
3 

83 Withlacouchee 4a, FL 29.00 -82.26 7 6 Berta and 
Morgan, 1985; 
Hulbert, 1993; 
Tedford et al., 
1987; Webb, 
1969 

3 

84 Mauvilla, AL 30.81 -88.19 10.3 9 Hulbert Jr. and 
Whitmore Jr., 
1997; 
MacFadden 
and Dobie, 
1998 

3 

85 Chicasabogue Creek, AL 30.80 -88.10 10.3 4.9 Isphording and 
Lamb, 1971 3 

86 Tunica Hills, LA 30.60 -91.30 10 5.7 Manning and 
MacFadden, 
1989 

3 

87 Lepara Creek, TX 28.60 -97.70 12 11 Prothero and 
Manning, 1987 3 

88 Screw Bean, TX 29.29 -103.07 9 7.5 Carrasco et al., 
2005 3 

89 Redington, AZ 32.42 -110.50 6.25 5.21 Jacobs, 1977 
1 

90 Mount Eden, CA 33.90 -117.00 7 6 Baskin, 1982; 
Frick, 1921 3 

91 Lawrence Canyon, CA 33.20 -117.40 7.25 5.33 Berta and 
Morgan, 1985; 
Domning and 
Demere, 1984 

3 

92 Yepomera 28.80 -108.00 5.8 5.7 Lindsay, 1984; 
MacFadden, 
1984 

3 

93 Rancho el Ocote 21.11 -100.70 10.1 6.3 Carranza-
Castaneda and 
Ferrusquía-
Villafranca, 
1979; Carranza-
Castaneda and 
Miller, 1996 

2 

94 Rancho el Ocote 21.11 -100.70 5.7 5.6 Carranza-
Castaneda and 
Ferrusquía-
Villafranca, 

2 
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1979 

95 La Rinconada 21.10 -100.80 10.1 6.3 Miller and 
Carranza-
Castaneda, 
1998 

3 

96 Gracias 14.64 -88.59 11.8 8 Webb and 
Perrigo, 1984 4 

97 Tio Gregorio 11.25 -70.31 11.6 5.33 Aguilera et al., 
2006; Carlini et 
al., 2006a,b,c; 
Domning and 
Aguilera, 2008; 
Negri and 
Ferigolo, 2004; 
Riff and 
Aguilera, 2008; 
Sanchez-
Villagra et al., 
2003 

3 

98 Huila 3.30 -75.20 11.61 5.33 Miller, 1953 
3 

99 Acre State -8.18 -70.48 9 6.8 Cozzuol, 2006 
3 

100 Talisma -8.20 -70.50 11.61 5.33 Cozzuol, 2006 
3 

101 Sud Sacaco -15.58 -74.82 6 6 Gregory 
McDonald and 
de Muizon, 
2002 

4 

102 Sud Sacaco -15.58 -74.82 5 5 Gregory 
McDonald and 
de Muizon, 
2002 

4 

103 Aguada de Lomas -15.54 -74.73 8 7 de Muizon et 
al., 2003; 
Muizon and De 
Vries, 1985 

3 

104 Achiri -17.21 -69.00 9 6.8 Saint-André, 
1996; Villarroel 
and Marshall, 
1983 

3 

105 Muyu Huasi -19.00 -65.30 11.61 5.33 Villarroel and 
Marshall, 1989 3 

106 Petaca -17.80 -63.20 11.61 5.33 Marshall and 
Sempere, 1991 3 

107 Estanques de Copec -27.03 -70.80 8.9 6.3 Canto et al., 
2008 1 

108 Caldera -27.10 -70.90 11.6 5.33 Walsh and 
Naish, 2002 3 

109 Chiquimil -26.31 -66.78 9 6.8 Magdalena 
Candela, 2004 3 

110 El Cajon Valley -26.61 -66.38 9 6.8 Nasif et al., 
2000 3 

111 Tiopunca -26.66 -66.04 12 10.7 Herbst et al., 
2000; Kleinert 
and Strecker, 
2001 

3 

112 Villavil -27.19 -66.89 10.7 9.3 Herbst et al., 
2000; Muruaga 
et al., 2003 

3 

113 Sierra de Velasco -28.30 -67.00 11.61 5.33 Tauber, 2005 
3 

114 Arroyo La Petra -33.28 -65.94 9 6.8 Cerdeño et al., 
2008 3 

115 Telen -36.27 -65.51 9 6.8 Montalvo et al., 
2008 3 
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116 Bajada de los Toros -38.61 -63.00 10 9 Deschamps et 
al., 2007 3 

117 Villarino -40.61 -63.11 10 9 Marshall, 1976; 
Zárate et al., 
2007 

3 

118 Salias Grandes de Hidalgo -37.40 -61.30 9 6.8 Vizcaíno and 
Fariña, 1999. 3 

119 Grubein -38.80 -62.20 11.61 5.33 Deschamps, 
2005 3 

120 Barrancas del rio Parana -33.70 -59.30 11.61 7.25 Marshall, 1977 
3 

121 Entre Rios -33.70 -59.30 10.7 7.14 Herbst et al., 
2000; Muruaga 
et al., 2003 

3 

122 Entre Rios -33.70 -59.30 12 10.7 Herbst et al., 
2000; Muruaga 
et al., 2003 

3 

123 Kiyu Beach -34.68 -56.80 9 6.8 Rinderknecht et 
al., 2010 3 

124 Kiyu Beach -34.74 -56.84 9 6.8 Rinderknecht et 
al., 2007 3 

125 Bahia de Colonia -34.50 -57.80 11.61 5.33 Verde and 
Perea, 1992 3 

126 La Plata -34.62 -56.92 11.6 5.33 Vizcaino et al., 
2003 3 

127 Asseiceira 39.25 -9.08 9.5 9 Fortelius, 2011 
3 

128 Freiria do Rio Major 39.32 -9.07 9.5 9 Fortelius, 2011 
3 

129 Ampudia 41.92 -4.78 11.2 9.5 Fortelius, 2011; 
Rossner and 
Heissig, 1999 

0 

130 Ampudia 41.92 -4.78 9.5 9 Fortelius, 2011; 
Rossner and 
Heissig, 1999 

0 

131 Alfacar 37.23 -3.57 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

3 

132 Arenas del Rey 36.97 -3.90 7.1 5.33 Fortelius, 2011 
3 

133 Salobrena 36.50 -3.50 7.25 5.33 Aguilar et al., 
1984 3 

134 Los Mansuetos 40.30 -2.60 9 5.33 de Bruijn and 
Mein, 1968 3 

135 Batallones-1 40.65 -1.72 8.994 8.958 Fortelius, 2011; 
Sanchéz et al., 
2009 

2 

136 Concud3 40.38 -1.15 9 5.3 Forsten, 1979; 
Fortelius, 2011 3 

137 Venta del Moro 39.50 -1.30 9 5.33 Mathisen and 
Morales, 1981 3 

138 Crevillente 2 38.29 -0.79 8.7 8 Fortelius, 2011; 
Freudenthal et 
al., 1991; 
Montoya et al., 
2001; van der 
Made et al., 
1992 

3 

139 Santa Margarita 39.70 3.10 11.61 7.25 Colom and 
Bauza, 1949 3 

140 San Caprasio 41.74 -0.45 11 10 Agusti et al., 
1994 3 

141 Los Valles de Fuentiduena 41.42 -0.30 11.2 9.5 Alberdi, 1981; 
Alberdi et al., 
1981; Ginsburg 
et al., 1981; 

3 
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Hoyos et al., 
1981; Mazo, 
1981; Morales 
et al., 1981;  
Morales and 
Soria, 1981; 
Sese Benito and 
Lopez Martinez, 
1981 

142 Orignac 43.12 0.17 9.5 9 Fortelius, 2011; 
Rossner and 
Heissig, 1999 

3 

143 El Firal 42.37 1.45 11.2 9.5 Fortelius, 2011; 
Rossner and 
Heissig, 1999 

3 

144 Estevar 42.47 2.00 11.2 9.5 Rossner and 
Heissig, 1999 3 

145 Baixas 42.50 2.50 11.61 7.25 Aguilar et al., 
1986 3 

146 Can Ponsic 1 41.60 2.08 10.6 10.58 Agusti et al., 
1997; Fortelius, 
2011; 
Hartenberger 
and Crusafont, 
1979 

3 

147 Can llobateres 41.53 2.10 9.7 9.5 Agusti et al., 
1997; Fortelius, 
2011; Golpe-
Posse and 
Crusafont-
Pairo, 1982; 
Moya-Sola and 
Kohler, 1996; 
Petter, 1967; 
Robles et al., 
2010 

3 

148 Montredon 43.33 2.89 10 9 Aguilar, 1982; 
Aguilar and 
Crochet, 1982; 
Crochet and 
Green, 1982; 
de Beaumont, 
1988; 
Eisenmann, 
1988; Ginsburg, 
1988; Ginsburg 
and Thomas, 
1988; Guérin, 
1988; Lopez 
Martinez, 1988; 
Sen, 1988; 
Tobien, 1988 

3 

149 Bretagne 47.50 -2.50 11.61 7.25 Plusquellec and 
Racheboeuf, 
2000 

3 

150 Doue-la-Fontaine 47.20 -0.30 11.2 9.5 Ginsburg et al., 
1979 3 

151 Esveres 47.30 0.30 11.2 9.5 Fortelius, 2011; 
Ginsburg, 1990 3 

152 La Tour 47.30 2.75 7.1 5.33 Fortelius, 2011; 
Rossner and 
Heissig, 1999 

3 

153 Deurne 51.20 4.50 11.61 7.25 Lambert, 2005 
3 

154 Groenlo 52.00 6.60 11.61 5.33 van Deinse, 
1931 3 

155 Esbjerg 55.47 8.45 11.6 8 Pyenson and 
Hoch, 2007 3 

156 Amberieu 1 45.96 5.36 8.7 7.75 Farjanel and 
Mein, 1984; 3 
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Fortelius, 2011 

157 Amberieu 2A 45.96 5.36 9.7 8.7 Farjanel and 
Mein, 1984; 
Fortelius, 2011 

3 

158 Amberieu 2C 45.96 5.36 9.7 8.7 Farjanel and 
Mein, 1984; 
Fortelius, 2011 

3 

159 Amberieu 3 45.96 5.36 8.7 7.75 Farjanel and 
Mein, 1984; 
Fortelius, 2011 

3 

160 La Grive-St. Albans 45.60 5.23 12.75 11.1 Freudenthal 
and Mein, 1989 3 

161 Mollon 45.57 5.15 9 8.2 Fortelius, 2011 
3 

162 Priay 46.01 5.29 11.6 9 Combémorel et 
al., 1970 3 

163 Soblay 46.10 5.35 9.7 8.7 Rossner and 
Heissig, 1999; 
Viret, 1949 

3 

164 Cucuron 43.78 5.43 7.75 7 Ballesio et al., 
1979; Fortelius, 
2011; Mein and 
Michaux, 1979;  

3 

165 Charmoille 47.43 7.22 11.2 9.5 Kälin, 1997; 
Fortelius, 2011 3 

166 Nebelbergweg 47.40 7.61 11.2 9.5 Fortelius, 2011; 
Rossner and 
Heissig, 1999 

3 

167 Wissberg 49.85 8.01 11.6 9 Tobien, 1980 
3 

168 Gau-Weinheim 49.85 8.05 11.6 9 Tobien, 1980 
3 

169 Steinberg 49.88 8.00 11.6 9 Tobien, 1980 
3 

170 Dintesheim 49.71 8.14 11.6 9 Tobien, 1980 
3 

171 Bermersheim 49.78 8.10 11.6 9 Tobien, 1980 
3 

172 Westhofen 49.70 8.25 11.6 9 Tobien, 1980 
3 

173 Dorn-Durkheim 1 49.77 8.27 9 8.2 Kaiser et al., 
2003 3 

174 Eppelsheim 49.72 8.98 9.7 9.5 Franzen et al., 
2003 3 

175 Hammerschmiede 47.90 10.60 11.1 9.7 Mayr and 
Fahlbusch, 
1975 

3 

176 Stirone River 44.84 9.96 11.6 7.25 Bisconti, 2010 
3 

177 Baccinello V1 42.80 11.40 9 5.33 Fortelius, 2011; 
Hurzeler, 1987; 
Hurzeler and 
Engesser, 1976  

3 

178 Baccinello V2 42.70 11.10 8.2 7.1 Fortelius, 2011; 
Hurzeler, 1987; 
Hurzeler and 
Engesser, 1976 

3 

179 Baccinello V3 42.70 11.10 7.1 5.33 Fortelius, 2011; 
Hurzeler, 1987; 
Hurzeler and 
Engesser, 1976 

3 

180 Baccinello-Cinigiano Basin 42.78 11.25 7.58 7.52 Delfino and 
Rook, 2008; 
Fortelius, 2011 

1 

181 Fosso-Cassoto 43.00 11.55 7.25 5.96 Ghetti et al., 
2002 3 
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182 Roccamorice 42.40 14.00 11.61 5.33 Koretsky, 2001 
3 

183 Gargano 41.80 15.40 6 5 Delfino et al., 
2007; Fortelius, 
2011 

3 

184 Cessaniti 38.66 16.03 9 5.33 Markov, 2008 
3 

185 Tropea 38.68 15.90 11.61 7.25 Bagnato et al., 
2000 3 

186 Blancone 1 45.90 15.50 11.61 5.33 Freudenthal 
and Martin-
Suarez, 2006 

3 

187 Mariathal 48.60 16.10 11.2 9.5 Bernor et al., 
1996; Fortelius, 
2011 

3 

188 Richardhof 48.10 16.30 11.1 9.7 Ziegler, 2006 
3 

189 Gotzendorf 47.99 16.63 11.1 9.7 Bernor et al., 
1993; Fortelius, 
2011 

3 

190 Kohfidisch 47.15 16.35 8.7 7.75 Bernor et al., 
1996; Markov, 
2008 

3 

191 Baltavar 47.00 17.00 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

3 

192 Sumeg 46.98 17.28 9.7 8.7 Fortelius, 2011; 
Mészáros, 1998 3 

193 Tardosbanya 47.66 18.45 7.75 7.1 Fortelius, 2011; 
Mészáros, 1998 3 

194 Csakvar 47.39 18.46 8.7 7.75 Fortelius, 2011; 
Mészáros, 1998 3 

195 Polgardi-4 47.05 18.31 7.1 5.33 Fortelius, 2011; 
Mészáros, 1998 3 

196 Pestszentlorinez 47.50 19.04 9 5.33 Bernor et al., 
1996; Markov, 
2008 

3 

197 Rudabanya 48.39 20.64 11 10 Fortelius, 2011; 
Kordos and 
Begun, 1997; 
2002 

3 

198 FT3/8 47.97 20.40 11.5 9.7 Hír and Kókay, 
2010 3 

199 Kreka 44.42 18.45 9 5.3 van der Made 
and Stefanovic, 
2006 

3 

200 Mala Miliva 44.10 21.40 11.61 7.25 Petronijevic, 
1967 3 

201 Belka 50.82 28.18 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

3 

202 Grytsiv 49.59 27.12 11.2 9.5 van der Made 
et al., 1999 3 

203 FT3/10 47.98 26.40 11.4 9.7 Hír and Kókay, 
2010 3 

204 Pogana 46.32 27.57 9 6.1 Codrea et al., 
2010; Fortelius, 
2011 

3 

205 Kishinev 47.00 28.83 12 11 Fortelius, 2011; 
Kazár and 
Grigorescu, 
2005 

3 

206 Cimislia 46.50 28.80 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

3 

207 Taraklia 46.50 29.00 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

3 
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208 Orekhovka 45.66 28.95 7.1 5.33 Nesin and 
Storch, 2004 3 

209 Frunzovka-2 47.28 29.70 8.7 7.7 Nesin and 
Storch, 2004 3 

210 Grebbeniki 46.88 29.82 9.5 9 Bernor et al., 
1996; Markov, 
2008 

3 

211 Novoclizavetovka-2 47.25 30.32 8.7 7.7 Nesin and 
Storch, 2004 3 

212 Novodizavetovka-3 47.17 30.33 7.7 7.1 Nesin and 
Storch, 2004 3 

213 Protopopovka-3 46.88 30.07 7.7 7.1 Nesin and 
Storch, 2004 3 

214 Novoukrainka-1 46.84 30.15 7.1 5.33 Nesin and 
Storch, 2004 3 

215 Novoukrainka-2 46.70 30.11 7.7 7.1 Nesin and 
Storch, 2004 3 

216 Novaya Emetovka 46.65 30.60 9.75 9 Vangengeim 
and Tesakov, 
2008 

2 

217 Novaya Emetovka 46.65 30.60 8.7 8.1 Vangengeim 
and Tesakov, 
2008 

2 

218 Cherevichnoe-3 46.67 30.64 7.7 7.1 Nesin and 
Storch, 2004 3 

219 Vinogradovka-1 46.58 30.70 7.1 5.33 Nesin and 
Storch, 2004 3 

220 Odessa 46.47 30.73 7.1 5.33 Nesin and 
Storch, 2004; 
Fortelius, 2011 

3 

221 Mikhailovka 47.58 31.26 9.7 7.7 Nesin and 
Nadachowski, 
2001; Nesin 
and Storch, 
2004 

3 

222 Andreevka 46.89 31.37 7.1 5.33 Fortelius, 2011; 
Nesin and 
Storch, 2004 

3 

223 Dolni Disan 41.33 21.97 9 5.33 Bernor et al., 
1996; Markov, 
2008 

3 

224 Hrabarsko 42.80 23.06 7.25 5.33 Fortelius, 2011; 
Spassov and 
Ginsburg, 1999 

3 

225 Dytiko 40.86 22.53 7 5.5 Bouvrain and 
de Bonis, 2007; 
de Bonis et al., 
1995; Koufos, 
1988 

3 

226 Pentalaphos 1 40.74 22.85 11.9 9 de Bonis et al., 
1992; 1994; 
Geraads and 
Koufos, 1990; 
Koufos, 2000 

3 

227 Ravin de la Pluie 40.85 22.96 11.6 9 de Bonis et al., 
1992; 1998; 
Fortelius, 2011; 
Geraads, 1979; 
Koufos, 1984 

3 

228 Kalimantsi 41.42 23.33 11.6 9 Geraads et al., 
2001; 
Kostopoulos et 
al., 2001 

3 

229 Kalimantsi 41.42 23.33 9 7 Geraads et al., 
2001; 
Kostopoulos et 
al., 2001; Liu et 
al., 2004 

3 
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230 Thermopigi 41.29 23.36 9 5.3 Fortelius, 2011; 
Geraads et al., 
2007 

3 

231 Maramena 41.20 23.50 9 5.33 de Bruijn, 1989 
3 

232 Lefkon 41.10 23.50 9.7 8.7 Armour-Brown 
et al., 1977 3 

233 Hadjidimovo 41.52 23.85 7.75 7 Fortelius, 2011; 
Kostopoulos et 
al., 2001 

3 

234 Vathylakkos-2 41.00 23.00 7.75 7 Koufos et al., 
2004 3 

235 Ahmatovo 42.11 25.05 9 5.33 Bernor et al., 
1996; Markov, 
2008 

3 

236 Ezerovo 42.02 25.30 9 5.33 Kostopoulos et 
al., 2001 3 

237 Perivolaki 39.41 22.66 7.3 7.1 Kostopoulos, 
2006; 
Kostopoulos 
and Koufos, 
2006b; Koufos, 
2006a,b; 
Koufos et al., 
2006; 
Sylvestrou and 
Kostopoulos, 
2006; 
Sylvestrou and 
Koufos, 2006; 
Vlachou and 
Koufos, 2006 

2 

238 Perivolaki 39.30 22.74 7.3 7.1 Kostopoulos 
and Koufos, 
2006a 

3 

239 Kerassia - 3 38.85 23.32 7.75 7 Giaourtsakis et 
al., 2006 3 

240 Halmyropotamos 38.50 24.20 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

3 

241 Chomateri 38.01 23.96 7.7 7 Fortelius, 2011; 
Roussiakis, 
2009 

4 

242 Pikermi 38.02 23.99 8.7 7.1 Fortelius, 2011; 
Roussiakis, 
2009 

3 

243 Pikermi-Valley 1 38.01 23.95 9 7 Theodorou et 
al., 2010 3 

244 Kastellios-K1 35.05 25.25 9.6 9.2 Fortelius, 2011 
3 

245 Maronia 35.14 26.08 11.6 5.33 Athanassiou, 
2004 3 

246 Gela 35.21 26.10 9 8 Poulakakis et 
al., 2005 3 

247 Gulpinar 39.53 26.12 9.5 9 Geraads and 
Güleç, 1999 3 

248 Gulpinar-1 39.53 26.09 9 7.1 Fortelius, 2011 
3 

249 Gulpinar-2 39.52 26.09 8.2 7.1 Fortelius, 2011 
3 

250 Esendere 38.59 26.56 9 7 Kaya et al., 
2005 3 

251 Manisa 38.58 27.20 8.2 7.1 Geraads and 
Güleç, 1999 3 

252 Mytilinii 37.73 26.91 7.75 7.2 Kostopoulos et 
al., 2003; 
Solounias, 1981 

2 
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253 Amasya 37.80 28.30 7 4.9 Engesser, 1980 
3 

254 Serefkoy 37.35 28.22 8.2 7.1 Geraads and 
Güleç, 1999 0 

255 Bayir 37.20 27.97 8.2 7.1 Fortelius, 2011; 
Geraads and 
Güleç, 1999 

3 

256 Kemiklitepe 37.50 29.00 9 8.2 Geraads and 
Güleç, 1999 3 

257 Burgas 42.50 27.47 9 5.33 Bernor et al., 
1996; Markov, 
2008 

3 

258 Yulafli 41.37 27.60 8.7 7 Geraads et al., 
2005; Kaya and 
Heissig, 2001 

3 

259 Kucukcekmece West 40.98 28.77 11.2 9 Rossner and 
Heissig, 1999 3 

260 Kucukcekmece 40.98 28.77 9 8.2 Sickenburg, 
1975 3 

261 Garkin 38.42 30.32 9 8.2 Geraads and 
Güleç, 1999 3 

262 Kavakdere 37.22 30.80 8.2 7.1 Geraads and 
Güleç, 1999 3 

263 Kayadibi 40.23 32.40 9 8.2 Geraads and 
Güleç, 1999 3 

264 Cobanpinar 41.16 32.53 6.3 5.8 Fortelius, 2011; 
van der Made 
et al., 2002 

3 

265 Kavurca 41.00 34.00 7 4.9 Engesser, 1980 
3 

266 Akkasdagi 39.49 33.66 7.2 7 Antoine and 
Saraç, 2005; de 
Bonis, 2005; 
Kazancı et al., 
2005; 
Kostopoulos, 
2005; 
Kostopoulos 
and Saraç, 
2005; Koufos 
and Vlachou, 
2005; Liu and 
Kostopoulos, 
2005; Saraç and 
Sen, 2005; 
Tassy, 2005; 
Valli, 2005 

3 

267 Hayranli-3 39.74 36.81 9.5 8.2 Fortelius, 2011 
3 

268 Sivas 39.71 36.93 9 7 Bibi and Güleç, 
2008 3 

269 Duzyayla 40.62 37.49 8.65 7.25 Akgun et al., 
2000; Fortelius, 
2011 

3 

270 Kangal 39.03 37.35 7.25 5.33 Fortelius, 2011; 
Kaya and 
Forsten, 1999 

3 

271 Sevastopol 44.50 33.60 11 9.88 Fortelius, 2011 
3 

272 Kertch 45.36 36.52 9 5.33 Bernor et al., 
1996; Markov, 
2008 

3 

273 Morskaya 2 47.29 39.10 7.75 7 Rossina et al., 
2006; Titov et 
al., 2006 

3 

274 Rustavi 45.08 41.55 9 5.33 Fortelius, 2011 
3 
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275 Iaghludja 41.71 44.80 9.7 8.7 Vekua and 
Lordkipanidze, 
2008 

3 

276 Udabno 41.50 45.40 8.7 7.8 Fortelius, 2011; 
Vekua and 
Lordkipanidze, 
2008 

3 

277 Dzedzvtakhevi 41.68 45.75 7.75 7 Vekua and 
Lordkipanidze, 
2008 

3 

278 El'dar 41.00 45.70 9.7 8.7 Beliaeva, 1962 
3 

279 Eldari 41.18 46.73 9.7 8.7 Vekua and 
Lordkipanidze, 
2008 

3 

280 Ivand-1 38.35 46.13 8 7 Fortelius, 2011; 
Sen and 
Purabrishemi, 
2010 

3 

281 Maragheh 37.33 46.41 9.5 7 Bernor, 1986; 
Fortelius, 2011 1 

282 Karatchok Dagh 37.06 42.23 9 5.33 Astre, 1936 
3 

283 Bakhtiari 34.50 44.60 11.61 9 Thomas et al., 
1980 3 

284 Injana 33.49 44.41 10 9 Brune and 
Heintz, 1983; 
Geraads and 
Güleç, 1999 

3 

285 Bekaa Valley 33.66 35.76 9 5.33 Malez and 
Forsten, 1989 3 

286 Afoud 1,2,8 31.03 -6.57 7.1 5.33 Benammi, 
1997; Fortelius, 
2011 

3 

287 Afoud 5 31.03 -6.57 8.2 7.1 Benammi, 
1997; Fortelius, 
2011 

3 

288 Menacer 36.44 2.62 9 5.33 Thomas and 
Petter, 1986 3 

289 Afoud 6 31.03 -6.57 11.2 9.5 Benammi, 
1997; Fortelius, 
2011 

3 

290 d'Amama 36.22 6.03 10 9 Jaeger, 1977 
0 

291 Afoud 7 31.03 -6.57 9.5 9 Benammi, 1997 
3 

292 d'Amama 36.22 6.03 7.8 6.6 Jaeger, 1977 
0 

293 Oued-Tabia 31.17 -6.50 11.2 9 Fortelius, 2011 
3 

294 L'oued Zra 33.71 -4.60 11.6 10 Jaeger, 1977 
3 

295 Khendek-el-Ouaich 34.08 -3.36 8.6 6.2 Jaeger, 1977 
3 

296 Oued el Atheuch 33.40 -1.10 11.61 5.33 Bernor and 
Jaeger, 1982 3 

297 Raz el Ain 35.70 -0.60 7.25 5.33 Muizon, 1981 
3 

298 L'Oued el Hammam 35.18 -0.10 11.6 7.25 Arambourg, 
1959; Ouda and 
Ameur, 1978 

1 

299 Sidi Salem 35.12 0.08 11.6 9 Fortelius, 2011; 
Jaeger, 1977 3 

300 Jebel Semmene 36.93 9.44 11.8 10.5 Jaeger, 1977 
3 
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301 Oued Mellegue 36.36 8.75 11.6 8.5 Robinson and 
Black, 1974 3 

302 Beglia 34.35 8.34 10 10 Agrasar, 2003; 
Fortelius, 2011; 
Pickford, 2000 

5 

303 El Menia 29.28 4.63 11.6 9 Amard et al., 
1992 3 

304 Oued Mya 1 28.93 4.20 11.6 9 Sudre and 
Hartenberger, 
1992 

3 

305 Sahabi 30.08 20.75 7.1 5.33 Boaz et al., 
1987; Markov, 
2008 

3 

306 Sheikh Abdallah 27.74 28.46 11 10 Mein and 
Pickford, 2010; 
Pickford et al., 
2006 

3 

307 Wadi El Natrun 30.46 30.36 9 7 James and 
Slaughter, 1974 3 

308 Shuwaihat 24.10 52.44 8 6 Barry, 1999; 
Bishop and Hill, 
1999; de Bruijn, 
1999; 
Eisenmann and 
Whybrow, 
1999; Gentry, 
1999a,b; Rauhe 
et al., 1999; 
Tassy, 1999 

3 

309 N885 15.53 5.72 11 5 Pickford et al., 
2009 4 

310 Toros Menalla 15.26 16.34 7.4 6 Boisserie et al., 
2005; Brunet et 
al., 2002; de 
Bonis et al., 
2005; Geraads 
et al., 2008; 
Hautier et al., 
2009; 2007; 
2010; Lehmann 
et al., 2006; 
Likius et al., 
2007; Peigné et 
al., 2005a,b; 
2008a,b; 
Vignaud et al., 
2002 

4 

311 Adu-Asa 10.17 40.33 5.8 5.2 Haile-Selassie, 
2001; Haile-
Selassie et al., 
2004; 
WoldeGabriel 
et al., 2001  

1 

312 Alaya VPL2 10.03 40.30 5.8 5.5 Haile-Selassie 
and 
WoldeGabriel, 
2009; Vrba and 
Haile-Selassie, 
2006 

1 

313 Oromiya (Belticha) 8.90 40.30 10.5 10 Fortelius, 2011; 
Suwa et al., 
2007 

1 

314 Albertine 1 2.00 31.00 7.25 5.33 Fortelius, 2011; 
Senut et al., 
1994 

3 

315 Albertine 1C 1.33 30.25 7.25 5.33 Fortelius, 2011; 
Senut et al., 
1994 

3 

316 Albertine 14 1.00 30.08 7.25 5.33 Fortelius, 2011; 
Senut et al., 
1994 

3 
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317 Albertine 7 1.08 30.42 7.25 5.33 Fortelius, 2011; 
Senut et al., 
1994 

3 

318 Albertine 6 1.17 30.50 11.61 7.25 Fortelius, 2011; 
Senut et al., 
1994 

3 

319 Albertine 11 0.17 30.00 7.25 5.33 Fortelius, 2011; 
Senut et al., 
1994 

3 

320 Sinda-Mohari 1.50 31.00 7 4.5 Aoki, 1992; Van 
Neer, 1994 4 

321 Lothagam 2.91 36.07 7.49 6.5 Fortelius, 2011; 
Weston, 2000 2 

322 SH22 1.31 36.58 9.79 9.25 Ishida and 
Pickford, 1997; 
Tsujikawa, 
2005a,b 

1 

323 Nakali 1.18 36.40 10 9 Aguirre and 
Leakey, 1974; 
Fortelius, 2011; 
Flynn and 
Sabatier, 1984; 
Morales and 
Pickford, 2006 

3 

324 Cheboit 0.85 35.86 6.1 5.9 Fortelius, 2011; 
Guérin and 
Pickford, 2005 

5 

325 Site 2/49A 0.90 35.90 12 9 Maglio, 1974 
2 

326 Lemudong'o -1.11 35.74 6.1 6.04 Fortelius, 2011; 
Howell and 
Garcia, 2007 

1 

327 Manonga Valley-1 -3.90 33.73 7.1 5.33 Harrison, 1997 
3 

328 Harasib 3a -19.45 17.92 11.1 9.7 Fortelius, 2011; 
Mein et al., 
2000 

3 

329 Berk Aukas 1-31 -19.50 18.30 11.1 9.7 Conroy et al., 
1992; 
Rasmussen et 
al., 1996 

3 

330 Swarthintjies-2 -30.30 17.30 11.6 5.33 Pickford and 
Senut, 1997 3 

331 Groenrivier -30.83 17.57 7.1 5.33 Fortelius, 2011 
3 

332 E Quarry -32.97 18.15 6 5 Hendey, 1981 
4 

333 Shetirgiz 48.80 60.00 11.2 5.33 Kordikova, 
1998 3 

334 Ashut 50.17 66.67 11.2 5.33 Fortelius, 2011; 
Kordikova, 
1998 

3 

335 Petropavlovska 54.80 69.20 11.2 5.33 Kordikova, 
1998 3 

336 Selety-1A 52.41 73.12 7.1 5.33 Fortelius, 2011; 
Vislobokova 
and Lavrov, 
2009 

3 

337 Pavlodar 52.30 77.03 7.1 5.33 Fortelius, 2011; 
Vislobokova 
and Lavrov, 
2009 

3 

338 Pavlodar 52.30 77.03 7.75 7.1 Fortelius, 2011; 
Vislobokova 
and Lavrov, 
2009 

3 

339 Sor 39.27 67.65 8.2 7.1 Forsten and 
Sharapov, 2000 3 
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340 Marmar 39.33 67.83 9 5.33 Forsten and 
Sharapov, 2000 3 

341 Magian 39.20 67.89 8 7 Sotnikova et al., 
1997 3 

342 Pedjikent 39.47 68.09 8 7 Fortelius, 2011; 
Sotnikova et al., 
1997 

3 

343 Molayan 36.32 69.42 8 7.5 Brunet et al., 
1984; Heintz et 
al., 1981; 
Merceron et al., 
2004; Sen, 
2001 

3 

344 Y311, Potwar Plateau 33.88 72.38 10.4 8.6 Lihoreau et al., 
2004; Pilbeam 
et al., 1979; 
1990 

3 

345 Daraispon 38.52 70.62 9 8 Sotnikova et al., 
1997 3 

346 Ortok 42.38 74.92 8 7 Fortelius, 2011; 
Sotnikova et al., 
1997 

3 

347 Kalmakpay 47.63 84.46 7 6 Fortelius, 2011; 
Sotnikova et al., 
1997 

3 

348 Taralyk Cher 51.90 95.60 7.75 7 Vislobokova, 
2009a,b 3 

349 CD9805 37.22 96.75 11 9 Dong, 2007 
3 

350 Tsaidam 37.00 97.00 11.2 9.5 Qiu and Qiu, 
1995 3 

351 Olkhon Island 53.19 107.57 7.5 6.5 Vislobokova 
and Lavrov, 
2009 

3 

352 Qunke 36.05 101.98 11.1 8.7 Gu et al., 1992 
3 

353 Songshan 36.96 103.27 7.1 5.33 Fortelius, 2011 
3 

354 Songshan 80007 37.10 103.50 9 5.33 Zheng, 1982 
3 

355 Songshan 80008 37.00 103.50 9 5.33 Zheng, 1982 
3 

356 Jinchanggou 35.60 103.22 11.1 4.9 Wang and Qiu, 
2004 3 

357 Guonigou 35.64 103.27 11.1 11.1 Deng, 2007; 
Fortelius, 2011 3 

358 Hezheng Area 35.50 103.50 9 5.33 Liu et al., 2004 
3 

359 Wuzhong 38.00 106.20 11.2 9.5 Qiu and Qiu, 
1995 3 

360 Longjiagou Valley 33.40 104.92 9 5.3 Xiang-Xu and  
Coombs, 1985; 
Xue et al., 2006 

3 

361 Yaodian 34.63 105.92 10.54 10.3 Li et al., 2006; 
Sahni, 1979 3 

362 Taohuapo Hill 35.12 107.35 7 6 Xue et al., 2006 
4 

363 Qingyang 36.08 108.25 7.1 5.33 Qiu and Qiu, 
1995 3 

364 Bahe 33.40 109.10 11.6 9 Calandra et al., 
2008; Qiu and 
Qiu, 1995 

3 

365 Wangdaifuliang 39.00 111.10 11.61 9 Qiu, 1990 
3 
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366 Lamagou 39.26 110.95 8 7 Xue et al., 2006 
4 

367 Miaoliang 39.26 110.95 6 5.3 Xue et al., 2006 
4 

368 Pao-te-lok 43 39.02 111.09 7.23 5.34 Fortelius, 2011 
3 

369 Amuwusu 42.37 112.74 11.2 9.5 Qiu and Qiu, 
1995 3 

370 Harr Obo 41.91 114.07 7 5.33 Fahlbusch, 
1987; 1992; 
Fahlbusch and 
Moser, 2004; 
Qiu, 1985; 
1987; 1991; 
2003; Storch, 
1987; 1995; 
Storch and Qiu, 
1983; Wu, 
1985; 1991;  

3 

371 Ertemte 41.89 114.06 7 5.33 Fahlbusch, 
1987; 1992; 
Fahlbusch and 
Moser, 2004; 
Qiu, 1985; 
1987; 1991; 
2003; Storch, 
1987; 1995; 
Storch and Qiu, 
1983; Wu, 
1985; 1991; 

3 

372 Baogeda Ula 44.14 114.59 8 7 Tseng and 
Wang, 2007 3 

373 Baogedawula 44.63 114.98 7.59 6.63 Fortelius, 2011; 
Storch and Ni, 
2002 

3 

374 Zibo-Zhangdian 37.75 118.08 9 5.3 Fortelius, 2011 
3 

375 Zhangqiu 36.67 117.47 9 5.3 Fortelius, 2011 
3 

376 Ichibangawa River 43.40 141.62 12 10 Kohno, 2006 
2 

377 Zephyreduncinus 36.27 139.00 11.41 9 Kimura and 
Hasegawa, 
2010 

3 

378 Nishikoiso Coast 35.96 139.30 8.6 6.6 Zin-Maung-
Maung-Thein et 
al., 2009 

3 

379 Xiadongshan 27.06 117.18 8.7 5.33 Gu et al., 1992 
3 

380 Leilao 25.83 101.75 9 7 Dong et al., 
2004; Pickford 
et al., 2004; 
Storch and Ni, 
2002 

3 

381 Lufeng 25.17 102.67 8.2 7.1 Qiu and Qiu, 
1995; Qiu and 
Storch, 1990; 
Storch and Qiu, 
1991; Yuerong, 
1988 

3 

382 Xiaolongtan 23.58 103.25 12.5 11.1 Qiu and Qiu, 
1995 3 

383 Hangmon 20.93 104.02 10.3 5.4 Covert et al., 
2001 3 

384 Charlem Prakieat 15.03 102.28 9 7 Chaimanee et 
al., 2004, 2006; 
Fortelius, 2011 

3 
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385 Tha Sang Sand Pit 8 15.08 102.33 7.4 5.9 Fortelius, 2011; 
Hanta et al., 
2008 

4 

386 Tebingan Village 19.96 95.14 11.6 9 Fortelius, 2011; 
Thaung-Htike et 
al., 2007 

3 

387 Chaungsong 21.22 94.47 11.6 9 Thaung-Htike et 
al., 2007 3 

388 Chaing Zauk 21.51 94.60 7.25 5.33 Fortelius, 2011 
3 

389 Bulong 31.57 93.83 9.5 9 Qiu and Qiu, 
1995 3 

390 Jilong 28.87 85.18 8.2 7.1 Qiu and Qiu, 
1995 3 

391 Tinau Khola 27.70 83.45 11.5 6.5 Hoorn et al., 
2000; West et 
al., 1991 

4 

392 Dang Valley 27.84 82.53 11.5 6.5 Hoorn et al., 
2000; West et 
al., 1991 

4 

393 Piram Island 21.60 72.36 7.25 5.33 Fortelius, 2011; 
Prasad, 1971; 
Sahni, 1979 

3 

394 Dera Bugti Sartaaf 29.03 69.15 9.5 5.33 Welcomme et 
al., 1997 3 

395 Zinda 30.07 70.07 11.2 5.33 Raza et al., 
2002 3 

396 Minanwali 32.90 71.70 11.61 7.25 Hussain and 
West, 1979; 
Moonen et al., 
1978 

3 

397 Chinji 33.03 72.48 10.8 10.8 Pickford, 2007; 
Pilbeam et al., 
1979, 1990 

3 

398 Chinji 33.03 72.48 9.3 9.3 Pilbeam et al., 
1979, 1990 3 

399 Nagri 32.80 72.50 11.61 5.33 Moonen et al., 
1978 3 

400 Ramanagar 32.82 72.37 13.1 11.1 Basu, 2004; 
Pickford, 2007; 
Vasishat et al., 
1979 

3 

401 Potwar Plateau 33.25 72.75 12.1 10.5 Baskin, 1996; 
Pilbeam et al., 
1979 

3 

402 Potwar Plateau 33.25 72.75 9.75 9.1 Baskin, 1996; 
Pilbeam et al., 
1979 

3 

403 Potwar Plateau 33.25 72.75 7.3 7.3 Baskin, 1996; 
Pilbeam et al., 
1979 

3 

404 Jalalpur 32.67 73.42 11 10 Cheema et al., 
2000 3 

405 Sangaum Village 32.74 75.09 11 10 Pickford and 
Gupta,  2001 3 

406 Ladhyani 31.53 76.67 8 6 Pickford, 2007; 
Sahni and 
Khare, 1977 

3 

407 Dera Gopipur 31.88 76.21 13 10 Gupta et al., 
1982 3 

Location 
number 

Location name Latitude Longitude Oldest 
age 

Youngest 
age 

References 

1 Courtney Pit 51.50 -112.30 9 7 Burns & Young, 
1988 

2 Westend Blowout, OR 45.80 -119.30 7.4 7 Shotwell, 1958 

3 McKay Reservoir, OR 45.50 -118.80 10 8 Shotwell, 1956 

4 Intermediary Gulch, MT 46.21 -112.75 7.5 6.7 Carrasco et al., 
2005 
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5 Gravel Pit, MT 46.22 -112.84 7.5 6.7 Carrasco et al., 
2005 

6 Dempsey Creek, MT 46.40 -112.80 9.4 7.9 Konizeski, 1957 

7 Johnson Gulch, MT 46.22 -112.73 9 7.5 Carrasco et al., 
2005 

8 Little Valley, OR 43.60 -117.50 9.9 9.7 Shotwell, 1970 

9 Juniper Creek, OR 43.60 -117.50 10.9 9.1 Shotwell, 1970 

10 Rome, OR 43.60 -117.50 11.5 11.3 Wilson, 1937 

11 Stroud claim, ID 43.00 -114.90 11.3 11.1 Malde & 
Powers, 1962 

12 Rockland Valley Quarry, 
ID 

42.80 -112.90 7.6 7.2 Gillette, 1999 

13 Rockland Mole, ID 42.80 -112.90 10.4 7 Tedrow, 1997 

14 Otis Basin, OR 42.70 -118.70 10 8.8 Shotwell, 1970 

15 Bartlett Mountain, OR 42.70 -118.70 10.4 10.3 Shotwell, 1970 

16 Star Valley, ID 42.00 -117.00 8 7.9 Becker & 
McDonald, 
1998 

17 Thousand Creek, NV 41.10 -117.80 10 9 Stirton, 1940 

18 Nightingale Road, NV 39.86 -119.00 11.7 7.5 Macdonald, 
1956 

19 Hazen, NV 39.56 -119.11 9.81 9.81 Emry et al., 
2005 

20 Churchill Butte, NV 39.00 -119.20 9.7 9.4 Kelly & Lugaski, 
1999 

21 Smiths Valley, NV 39.00 -119.20 10.9 10.8 Macdonald, 
1959 

22 Smiths Valley, NV 38.80 -119.32 10.9 8 Macdonald & 
Macdonald, 
1976 

23 Silver Springs, NV 39.30 -118.90 6.2 6.1 Kelly, 1998 

24 Washoe, NV 38.80 -119.50 7.4 4.6 Kelly, 1997 

25 Bollinger Canyon 37.82 -122.06 13.6 10.3 Edwards, 1982 

26 Black Hawk Ranch, CA 38.04 -122.18 9.7 9 Stirton, 1939; 
White, 1991; 
Tseng et al., 
2010 

27 Siphon Canal, CA 37.60 -120.80 8.35 8.03 Hirschfeld, 
1981 

28 Turlock Lake, CA 37.60 -120.80 7.7 7.6 Wagner 1976 

29 Point Reyes Peninsula, CA 37.90 -122.72 6.8 6 Zeigler et al., 
1997 

30 Warren, CA 35.30 -118.50 7.3 5.3 Reynolds et al., 
1991 

31 Powerline Road Tom 
Quarry, CA 

35.37 -117.99 9.3 9.2 Whistler & 
Burbank, 1992; 
Wang et al., 
2005 

32 Kam's False Cat Locality 35.33 -118.08 10.2 8.4 Tseng et al., 
2010 

33 Sycamore, CA 35.30 -118.50 10.8 9.6 Reynolds & 
Czaplewski, 
1989 

34 Lava Mountains, CA 34.80 -117.00 10.8 10.7 Reynolds et al., 
1991 

35 Golgotha Hill, UT 38.10 -114.17 5.89 5.23 Reynolds & 
Lindsay, 1999; 
Carrasco et al., 
2005 

36 42SVO66V, UT 38.62 -112.32 10.3 7 Korth & Blieux, 
2010 

37 Pinole Junction 1,CA 37.89 -112.09 9.2 9.1 Stirton, 1939; 
Korth & Blieux, 
2010 

38 White Cone, AZ 35.61 -110.07 6.85 5.3 Baskin, 1979; 
Carraway, 2010 

39 Rio Arriba, NM 36.50 -107.00 10.1 8.9 MacFadden, 
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1977 

40 Espanola Basin 36.21 -106.07 11 10.5 Fox & Fisher, 
2004 

41 Gabaldon Badlands, NM 34.80 -106.90 11.6 11.4 Lozinsky & 
Tedford, 1991 

42 The Pits, NE 42.40 -103.80 10.7 10.6 Skinner et al., 
1977 

43 ZXBar, NE 42.40 -103.80 10.5 10.4 Skinner et al., 
1977 

44 Rock Ledge Mastodon 
Quarry, NE 

42.52 -100.50 10.5 9.5 Fox & Fisher, 
2004 

45 Mefferdi Quarry, NE 42.70 -100.90 11.8 10.4 Mook, 1946 

46 Rick Irwin Site, NE 42.80 -99.60 9.2 9.1 Tucker, 2003 

47 Honey Creek, NE 42.70 -98.80 8.7 7.7 Voorhies, 1990 

48 Santee, NE 42.80 -97.80 7.3 7.2 Voorhies, 1990 

49 Mailbox, NE 42.40 -98.10 8.4 8.2 Voorhies, 1990 

50 Verdigre Creek, NE 42.39 -98.12 11 10 Voorhies & 
Thomasson, 
1979 

51 Kepler Quarry, NE 41.92 -103.05 11.8 9 Voorhies, 1990; 
Lambert, 2007 

52 Lemoyne Quarry, NE 41.29 -101.84 10.3 4.9 Bown, 1980 

53 Uptegrove, NE 41.10 -103.00 10.6 7.4 Voorhies, 1984 

54 Beecher Island, CO 40.10 -102.20 9.4 9.2 Frye et al., 
1956 

55 Found Quarry, KS 38.90 -101.70 8.6 8.4 Bennett,  1979 

56 Lost Quarry, KS 38.90 -101.70 8.4 7.6 Bennett,  1979 

57 Minium Quarry Unit 5, KS 39.40 -100.14 7 6 Thomasson et 
al., 1990 

58 Jack Swayze Quarry, KS 39.06 -100.76 8.5 7.5 Fox & Fisher, 
2004 

59 Amebelodon fricki 
Quarry, NE 

40.50 -100.50 11.2 11 Voorhies, 1990 

60 Long Island Quarry, KS 39.80 -99.40 11.1 10.1 Zakrzewski, 
1988 

61 Buis Ranch, OK 36.80 -100.50 6.6 6.5 Hibbard, 1954 

62 Optima, OK 36.70 -101.40 9 8 Hesse, 1936; 
Savage, 1941 

63 Coffee Ranch, TX 35.90 -100.20 9 7 Dalquest, 1980 

64 Cole Highway Pit, TX 36.32 -100.07 9.5 8.5 Fox & Fisher, 
2004 

65 Lipscomb Pit 1, TX 36.10 -100.10 10.3 4.9 Schultz, 1990; 
Lim et al., 2001 

66 Port of Entry Pit, OK 36.03 -99.96 11.2 7.5 Schultz, 1990; 
Fox & Fisher, 
2001 

67 Arnett, OK 36.14 -99.94 11.9 9 Kitts, 1957 

68 Beckerdite, KS 37.20 -99.90 11.7 8.8 Liggett, 1997 

69 Whisenhunt Quarry, OK 36.78 -100.04 12.7 10.7 Dalquest et al., 
1996; Smith, 
2005 

70 Higgins Quarry,TX 36.40 -98.40 9.3 9 Dalquest & 
Patrick, 1989; 
Schultz, 1990 

71 Pipe Creek Sinkhole, IN 40.50 -85.80 9.9 8.9 Farlow et al., 
2001; Martin et 
al., 2002 

72 Gray Fossil Site, TN 36.40 -82.50 10.1 9.9 Wallace & 
Wang, 2004 

73 Lee Creek Mine, NC 35.40 -76.80 6.5 6.4 Tedford & 
Hunter, 1984 

74 Sunken Meadow Pond, 
VA 

37.20 -76.90 11.6 7.2 Baum & 
Wheeler, 1977; 
Godfrey & 
Barnes, 2008 
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75 John Seyfried beach, MD 38.40 -76.41 10 9 Fuller & 
Godfrey, 2007 

76 Cove Point, MD 38.35 -76.40 10 9 Godfrey & 
Barnes, 2008 

77 Love Bone Bed, FL 29.55 -82.52 9.9 9.5 Baskin, 1980, 
1981, 1986, 
2005; Webb et 
al., 1981; 
MacFadden & 
Cerling, 1996; 
Hulbert-Jr., 
2005 

78 Moss Acres Racetrack, FL 29.30 -82.35 9 8.9 Hulbert Jr., 
1988; Lambert, 
1997 

79 Phosphate Pit, Polk 
County, FL 

27.90 -81.80 10.3 4.9 Olsen, 1960; 
Webb, 1969 

80 Payne Creek, FL 27.90 -81.80 7.9 7.8 Berta & 
Morgan, 1985; 
Hulbert, 1987 

81 Palmetto Washer, FL 27.76 -81.98 7.9 7.8 Webb, 1969; 
Wright & 
Webb, 1984 

82 Tiger Bay Mine, FL 27.90 -81.80 6.5 6.4 Webb, 1981 

83 Withlacouchee 4a, FL 29.00 -82.26 7 6 Webb, 1969; 
Berta & 
Morgan, 1985; 
Tedford et al., 
1987; Hulbert, 
1993;  

84 Mauvilla, AL 30.81 -88.19 10.3 9 Hulbert Jr. & 
Whitmore Jr., 
1997; 
MacFadden & 
Dobie, 1998 

85 Chicasabogue Creek, AL 30.80 -88.10 10.3 4.9 Isphording & 
Lamb, 1971 

86 Tunica Hills, LA 30.60 -91.30 10 5.7 Manning & 
MacFadden, 
1989 

87 Lepara Creek, TX 28.60 -97.70 12 11 Prothero & 
Manning, 1987 

88 Screw Bean, TX 29.29 -103.07 9 7.5 Carrasco et al., 
2005 

89 Redington, AZ 32.42 -110.50 6.25 5.21 Jacobs, 1977 

90 Mount Eden, CA 33.90 -117.00 7 6 Frick, 1921; 
Baskin, 1982 

91 Lawrence Canyon, CA 33.20 -117.40 7.25 5.33 Domning & 
Demere, 1984; 
Berta & 
Morgan, 1985 

92 Yepomera 28.80 -108.00 5.8 5.7 Lindsay, 1984; 
MacFadden, 
1984 

93 Rancho el Ocote 21.11 -100.70 10.1 6.3 Carranza-
Castaneda & 
Ferrusquía-
Villafranca, 
1979; Carranza-
Castaneda & 
Miller, 1996 

94 Rancho el Ocote 21.11 -100.70 5.7 5.6 Carranza-
Castaneda & 
Ferrusquía-
Villafranca, 
1979 

95 La Rinconada 21.10 -100.80 10.1 6.3 Miller & 
Carranza-
Castaneda, 
1998 

96 Gracias 14.64 -88.59 11.8 8 Webb & 
Perrigo, 1984 
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97 Tio Gregorio 11.25 -70.31 11.6 5.33 Sanchez-
Villagra et al., 
2003; Negri & 
Ferigolo, 2004; 
Aguilera et al., 
2006; Carlini et 
al., 2006a,b,c; 
Domning & 
Aguilera, 2008;  
Riff & Aguilera, 
2008;  

98 Huila 3.30 -75.20 11.61 5.33 Miller, 1953 

99 Acre State -8.18 -70.48 9 6.8 Cozzuol, 2006 

100 Talisma -8.20 -70.50 11.61 5.33 Cozzuol, 2006 

101 Sud Sacaco -15.58 -74.82 6 6 Gregory 
McDonald & de 
Muizon, 2002 

102 Sud Sacaco -15.58 -74.82 5 5 Gregory 
McDonald & de 
Muizon, 2002 

103 Aguada de Lomas -15.54 -74.73 8 7 Muizon & De 
Vries, 1985; de 
Muizon et al., 
2003 

104 Achiri -17.21 -69.00 9 6.8 Villarroel & 
Marshall, 1983; 
Saint-André, 
1996 

105 Muyu Huasi -19.00 -65.30 11.61 5.33 Villarroel & 
Marshall, 1989 

106 Petaca -17.80 -63.20 11.61 5.33 Marshall & 
Sempere, 1991 

107 Estanques de Copec -27.03 -70.80 8.9 6.3 Canto et al., 
2008 

108 Caldera -27.10 -70.90 11.6 5.33 Walsh & Naish, 
2002 

109 Chiquimil -26.31 -66.78 9 6.8 Magdalena 
Candela, 2004 

110 El Cajon Valley -26.61 -66.38 9 6.8 Nasif et al., 
2000 

111 Tiopunca -26.66 -66.04 12 10.7 Herbst et al., 
2000; Kleinert 
& Strecker, 
2001 

112 Villavil -27.19 -66.89 10.7 9.3 Herbst et al., 
2000; Muruaga 
et al., 2003 

113 Sierra de Velasco -28.30 -67.00 11.61 5.33 Tauber, 2005 

114 Arroyo La Petra -33.28 -65.94 9 6.8 Cerdeño et al., 
2008 

115 Telen -36.27 -65.51 9 6.8 Montalvo et al., 
2008 

116 Bajada de los Toros -38.61 -63.00 10 9 Deschamps et 
al., 2007 

117 Villarino -40.61 -63.11 10 9 Marshall, 1976; 
Zárate et al., 
2007 

118 Salias Grandes de Hidalgo -37.40 -61.30 9 6.8 Vizcaíno & 
Fariña, 1999. 

119 Grubein -38.80 -62.20 11.61 5.33 Deschamps, 
2005 

120 Barrancas del rio Parana -33.70 -59.30 11.61 7.25 Marshall, 1977 

121 Entre Rios -33.70 -59.30 10.7 7.14 Herbst et al., 
2000; Muruaga 
et al., 2003 

122 Entre Rios -33.70 -59.30 12 10.7 Herbst et al., 
2000; Muruaga 
et al., 2003 

123 Kiyu Beach -34.68 -56.80 9 6.8 Rinderknecht et 
al., 2010 
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124 Kiyu Beach -34.74 -56.84 9 6.8 Rinderknecht et 
al., 2007 

125 Bahia de Colonia -34.50 -57.80 11.61 5.33 Verde & Perea, 
1992 

126 La Plata -34.62 -56.92 11.6 5.33 Vizcaino et al., 
2003 

127 Asseiceira 39.25 -9.08 9.5 9 Fortelius, 2011 

128 Freiria do Rio Major 39.32 -9.07 9.5 9 Fortelius, 2011 

129 Ampudia 41.92 -4.78 11.2 9.5 Rossner & 
Heissig, 1999; 
Fortelius, 2011 

130 Ampudia 41.92 -4.78 9.5 9 Rossner & 
Heissig, 1999; 
Fortelius, 2011 

131 Alfacar 37.23 -3.57 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

132 Arenas del Rey 36.97 -3.90 7.1 5.33 Fortelius, 2011 

133 Salobrena 36.50 -3.50 7.25 5.33 Aguilar et al., 
1984 

134 Los Mansuetos 40.30 -2.60 9 5.33 de Bruijn & 
Mein, 1968 

135 Batallones-1 40.65 -1.72 8.994 8.958 Sanchéz et al., 
2009; Fortelius, 
2011 

136 Concud3 40.38 -1.15 9 5.3 Forsten, 1979; 
Fortelius, 2011 

137 Venta del Moro 39.50 -1.30 9 5.33 Mathisen & 
Morales, 1981 

138 Crevillente 2 38.29 -0.79 8.7 8 Freudenthal et 
al., 1991; van 
der Made et al., 
1992; Montoya 
et al., 2001; 
Fortelius, 2011 

139 Santa Margarita 39.70 3.10 11.61 7.25 Colom & Bauza, 
1949 

140 San Caprasio 41.74 -0.45 11 10 Agusti et al., 
1994 

141 Los Valles de Fuentiduena 41.42 -0.30 11.2 9.5 Alberdi, 1981; 
Alberdi et al., 
1981; Ginsburg 
et al., 1981; 
Hoyos et al., 
1981; Mazo, 
1981; Morales 
et al., 1981;  
Morales & 
Soria, 1981; 
Sese Benito & 
Lopez Martinez, 
1981 

142 Orignac 43.12 0.17 9.5 9 Rossner & 
Heissig, 1999; 
Fortelius, 2011 

143 El Firal 42.37 1.45 11.2 9.5 Rossner & 
Heissig, 1999; 
Fortelius, 2011 

144 Estevar 42.47 2.00 11.2 9.5 Rossner & 
Heissig, 1999 

145 Baixas 42.50 2.50 11.61 7.25 Aguilar et al., 
1986 

146 Can Ponsic 1 41.60 2.08 10.6 10.58 Hartenberger & 
Crusafont, 
1979; Agusti et 
al., 1997; 
Fortelius, 2011 

147 Can llobateres 41.53 2.10 9.7 9.5  Petter, 1967; 
Golpe-Posse & 
Crusafont-
Pairo, 1982; 
Moya-Sola & 
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Kohler, 1996; 
Agusti et al., 
1997; Robles et 
al., 2010; 
Fortelius, 2011 

148 Montredon 43.33 2.89 10 9 Aguilar, 1982; 
Aguilar & 
Crochet, 1982; 
Crochet & 
Green, 1982; 
de Beaumont, 
1988; 
Eisenmann, 
1988; Ginsburg, 
1988; Ginsburg 
& Thomas, 
1988; Guérin, 
1988; Lopez 
Martinez, 1988; 
Sen, 1988; 
Tobien, 1988 

149 Bretagne 47.50 -2.50 11.61 7.25 Plusquellec & 
Racheboeuf, 
2000 

150 Doue-la-Fontaine 47.20 -0.30 11.2 9.5 Ginsburg et al., 
1979 

151 Esveres 47.30 0.30 11.2 9.5 Ginsburg, 1990; 
Fortelius, 2011 

152 La Tour 47.30 2.75 7.1 5.33 Rossner & 
Heissig, 1999; 
Fortelius, 2011 

153 Deurne 51.20 4.50 11.61 7.25 Lambert, 2005 

154 Groenlo 52.00 6.60 11.61 5.33 van Deinse, 
1931 

155 Esbjerg 55.47 8.45 11.6 8 Pyenson & 
Hoch, 2007 

156 Amberieu 1 45.96 5.36 8.7 7.75 Farjanel & 
Mein, 1984; 
Fortelius, 2011 

157 Amberieu 2A 45.96 5.36 9.7 8.7 Farjanel & 
Mein, 1984; 
Fortelius, 2011 

158 Amberieu 2C 45.96 5.36 9.7 8.7 Farjanel & 
Mein, 1984; 
Fortelius, 2011 

159 Amberieu 3 45.96 5.36 8.7 7.75 Farjanel & 
Mein, 1984; 
Fortelius, 2011 

160 La Grive-St. Albans 45.60 5.23 12.75 11.1 Freudenthal & 
Mein, 1989 

161 Mollon 45.57 5.15 9 8.2 Fortelius, 2011 

162 Priay 46.01 5.29 11.6 9 Combémorel et 
al., 1970 

163 Soblay 46.10 5.35 9.7 8.7 Viret, 1949; 
Rossner & 
Heissig, 1999 

164 Cucuron 43.78 5.43 7.75 7 Ballesio et al., 
1979; Mein & 
Michaux, 1979; 
Fortelius, 2011 

165 Charmoille 47.43 7.22 11.2 9.5 Kälin, 1997; 
Fortelius, 2011 

166 Nebelbergweg 47.40 7.61 11.2 9.5 Rossner & 
Heissig, 1999; 
Fortelius, 2011 

167 Wissberg 49.85 8.01 11.6 9 Tobien, 1980 

168 Gau-Weinheim 49.85 8.05 11.6 9 Tobien, 1980 

169 Steinberg 49.88 8.00 11.6 9 Tobien, 1980 

170 Dintesheim 49.71 8.14 11.6 9 Tobien, 1980 

171 Bermersheim 49.78 8.10 11.6 9 Tobien, 1980 
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172 Westhofen 49.70 8.25 11.6 9 Tobien, 1980 

173 Dorn-Durkheim 1 49.77 8.27 9 8.2 Kaiser et al., 
2003 

174 Eppelsheim 49.72 8.98 9.7 9.5 Franzen et al., 
2003 

175 Hammerschmiede 47.90 10.60 11.1 9.7 Mayr & 
Fahlbusch, 
1975 

176 Stirone River 44.84 9.96 11.6 7.25 Bisconti, 2010 

177 Baccinello V1 42.80 11.40 9 5.33 Hurzeler & 
Engesser, 1976; 
Hurzeler, 1987; 
Fortelius, 2011 

178 Baccinello V2 42.70 11.10 8.2 7.1 Hurzeler & 
Engesser, 1976; 
Hurzeler, 1987; 
Fortelius, 2011 

179 Baccinello V3 42.70 11.10 7.1 5.33 Hurzeler & 
Engesser, 1976; 
Hurzeler, 1987; 
Fortelius, 2011 

180 Baccinello-Cinigiano Basin 42.78 11.25 7.58 7.52 Delfino & Rook, 
2008; Fortelius, 
2011 

181 Fosso-Cassoto 43.00 11.55 7.25 5.96 Ghetti et al., 
2002 

182 Roccamorice 42.40 14.00 11.61 5.33 Koretsky, 2001 

183 Gargano 41.80 15.40 6 5 Delfino et al., 
2007; Fortelius, 
2011 

184 Cessaniti 38.66 16.03 9 5.33 Markov, 2008 

185 Tropea 38.68 15.90 11.61 7.25 Bagnato et al., 
2000 

186 Blancone 1 45.90 15.50 11.61 5.33 Freudenthal & 
Martin-Suarez, 
2006 

187 Mariathal 48.60 16.10 11.2 9.5 Bernor et al., 
1996; Fortelius, 
2011 

188 Richardhof 48.10 16.30 11.1 9.7 Ziegler, 2006 

189 Gotzendorf 47.99 16.63 11.1 9.7 Bernor et al., 
1993; Fortelius, 
2011 

190 Kohfidisch 47.15 16.35 8.7 7.75 Bernor et al., 
1996; Markov, 
2008 

191 Baltavar 47.00 17.00 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

192 Sumeg 46.98 17.28 9.7 8.7 Mészáros, 
1998; Fortelius, 
2011 

193 Tardosbanya 47.66 18.45 7.75 7.1 Mészáros, 
1998; Fortelius, 
2011 

194 Csakvar 47.39 18.46 8.7 7.75 Mészáros, 
1998; Fortelius, 
2011 

195 Polgardi-4 47.05 18.31 7.1 5.33 Mészáros, 
1998; Fortelius, 
2011 

196 Pestszentlorinez 47.50 19.04 9 5.33 Bernor et al., 
1996; Markov, 
2008 

197 Rudabanya 48.39 20.64 11 10 Kordos & 
Begun, 1997; 
2002; Fortelius, 
2011 

198 FT3/8 47.97 20.40 11.5 9.7 Hír & Kókay, 
2010 
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199 Kreka 44.42 18.45 9 5.3 van der Made 
& Stefanovic, 
2006 

200 Mala Miliva 44.10 21.40 11.61 7.25 Petronijevic, 
1967 

201 Belka 50.82 28.18 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

202 Grytsiv 49.59 27.12 11.2 9.5 van der Made 
et al., 1999 

203 FT3/10 47.98 26.40 11.4 9.7 Hír & Kókay, 
2010 

204 Pogana 46.32 27.57 9 6.1 Codrea et al., 
2010; Fortelius, 
2011 

205 Kishinev 47.00 28.83 12 11 Kazár & 
Grigorescu, 
2005; Fortelius, 
2011 

206 Cimislia 46.50 28.80 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

207 Taraklia 46.50 29.00 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

208 Orekhovka 45.66 28.95 7.1 5.33 Nesin & Storch, 
2004 

209 Frunzovka-2 47.28 29.70 8.7 7.7 Nesin & Storch, 
2004 

210 Grebbeniki 46.88 29.82 9.5 9 Bernor et al., 
1996; Markov, 
2008 

211 Novoclizavetovka-2 47.25 30.32 8.7 7.7 Nesin & Storch, 
2004 

212 Novodizavetovka-3 47.17 30.33 7.7 7.1 Nesin & Storch, 
2004 

213 Protopopovka-3 46.88 30.07 7.7 7.1 Nesin & Storch, 
2004 

214 Novoukrainka-1 46.84 30.15 7.1 5.33 Nesin & Storch, 
2004 

215 Novoukrainka-2 46.70 30.11 7.7 7.1 Nesin & Storch, 
2004 

216 Novaya Emetovka 46.65 30.60 9.75 9 Vangengeim & 
Tesakov, 2008 

217 Novaya Emetovka 46.65 30.60 8.7 8.1 Vangengeim & 
Tesakov, 2008 

218 Cherevichnoe-3 46.67 30.64 7.7 7.1 Nesin & Storch, 
2004 

219 Vinogradovka-1 46.58 30.70 7.1 5.33 Nesin & Storch, 
2004 

220 Odessa 46.47 30.73 7.1 5.33 Nesin & Storch, 
2004; Fortelius, 
2011 

221 Mikhailovka 47.58 31.26 9.7 7.7 Nesin & 
Nadachowski, 
2001; Nesin & 
Storch, 2004 

222 Andreevka 46.89 31.37 7.1 5.33 Nesin & Storch, 
2004; Fortelius, 
2011 

223 Dolni Disan 41.33 21.97 9 5.33 Bernor et al., 
1996; Markov, 
2008 

224 Hrabarsko 42.80 23.06 7.25 5.33 Spassov & 
Ginsburg, 1999; 
Fortelius, 2011 

225 Dytiko 40.86 22.53 7 5.5 Koufos, 1988; 
de Bonis et al., 
1995; Bouvrain 
& de Bonis, 
2007 

226 Pentalaphos 1 40.74 22.85 11.9 9 Geraads & 
Koufos, 1990; 
de Bonis et al., 
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1992; 1994; 
Koufos, 2000 

227 Ravin de la Pluie 40.85 22.96 11.6 9 Geraads, 1979; 
Koufos, 1984; 
de Bonis et al., 
1992; 1998; 
Fortelius, 2011 

228 Kalimantsi 41.42 23.33 11.6 9 Geraads et al., 
2001; 
Kostopoulos et 
al., 2001 

229 Kalimantsi 41.42 23.33 9 7 Geraads et al., 
2001; 
Kostopoulos et 
al., 2001; Liu et 
al., 2004 

230 Thermopigi 41.29 23.36 9 5.3 Geraads et al., 
2007; Fortelius, 
2011 

231 Maramena 41.20 23.50 9 5.33 de Bruijn, 1989 

232 Lefkon 41.10 23.50 9.7 8.7 Armour-Brown 
et al., 1977 

233 Hadjidimovo 41.52 23.85 7.75 7 Kostopoulos et 
al., 2001; 
Fortelius, 2011 

234 Vathylakkos-2 41.00 23.00 7.75 7 Koufos et al., 
2004 

235 Ahmatovo 42.11 25.05 9 5.33 Bernor et al., 
1996; Markov, 
2008 

236 Ezerovo 42.02 25.30 9 5.33 Kostopoulos et 
al., 2001 

237 Perivolaki 39.41 22.66 7.3 7.1 Kostopoulos, 
2006; 
Kostopoulos & 
Koufos, 2006b; 
Koufos, 
2006a,b; 
Koufos et al., 
2006; 
Sylvestrou & 
Kostopoulos, 
2006; 
Sylvestrou & 
Koufos, 2006; 
Vlachou & 
Koufos, 2006 

238 Perivolaki 39.30 22.74 7.3 7.1 Kostopoulos & 
Koufos, 2006a 

239 Kerassia - 3 38.85 23.32 7.75 7 Giaourtsakis et 
al., 2006 

240 Halmyropotamos 38.50 24.20 8.2 7.1 Bernor et al., 
1996; Markov, 
2008 

241 Chomateri 38.01 23.96 7.7 7 Roussiakis, 
2009; Fortelius, 
2011 

242 Pikermi 38.02 23.99 8.7 7.1 Roussiakis, 
2001; Fortelius, 
2011 

243 Pikermi-Valley 1 38.01 23.95 9 7 Theodorou et 
al., 2010 

244 Kastellios-K1 35.05 25.25 9.6 9.2 Fortelius, 2011 

245 Maronia 35.14 26.08 11.6 5.33 Athanassiou, 
2004 

246 Gela 35.21 26.10 9 8 Poulakakis et 
al., 2005 

247 Gulpinar 39.53 26.12 9.5 9 Geraads & 
Güleç, 1999 

248 Gulpinar-1 39.53 26.09 9 7.1 Fortelius, 2011 

249 Gulpinar-2 39.52 26.09 8.2 7.1 Fortelius, 2011 
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250 Esendere 38.59 26.56 9 7 Kaya et al., 
2005 

251 Manisa 38.58 27.20 8.2 7.1 Geraads & 
Güleç, 1999 

252 Mytilinii 37.73 26.91 7.75 7.2 Solounias, 
1981; 
Kostopoulos et 
al., 2003 

253 Amasya 37.80 28.30 7 4.9 Engesser, 1980 

254 Serefkoy 37.35 28.22 8.2 7.1 Geraads & 
Güleç, 1999 

255 Bayir 37.20 27.97 8.2 7.1 Geraads & 
Güleç, 1999; 
Fortelius, 2011 

256 Kemiklitepe 37.50 29.00 9 8.2 Geraads & 
Güleç, 1999 

257 Burgas 42.50 27.47 9 5.33 Bernor et al., 
1996; Markov, 
2008 

258 Yulafli 41.37 27.60 8.7 7 Kaya & Heissig, 
2001; Geraads 
et al., 2005 

259 Kucukcekmece West 40.98 28.77 11.2 9 Rossner & 
Heissig, 1999 

260 Kucukcekmece 40.98 28.77 9 8.2 Sickenburg, 
1975 

261 Garkin 38.42 30.32 9 8.2 Geraads & 
Güleç, 1999 

262 Kavakdere 37.22 30.80 8.2 7.1 Geraads & 
Güleç, 1999 

263 Kayadibi 40.23 32.40 9 8.2 Geraads & 
Güleç, 1999 

264 Cobanpinar 41.16 32.53 6.3 5.8 van der Made 
et al., 2002; 
Fortelius, 2011 

265 Kavurca 41.00 34.00 7 4.9 Engesser, 1980 

266 Akkasdagi 39.49 33.66 7.2 7 Antoine & 
Saraç, 2005; de 
Bonis, 2005; 
Kazancı et al., 
2005; 
Kostopoulos, 
2005; 
Kostopoulos & 
Saraç, 2005; 
Koufos & 
Vlachou, 2005; 
Liu & 
Kostopoulos, 
2005; Saraç & 
Sen, 2005; 
Tassy, 2005; 
Valli, 2005 

267 Hayranli-3 39.74 36.81 9.5 8.2 Fortelius, 2011 

268 Sivas 39.71 36.93 9 7 Bibi & Güleç, 
2008 

269 Duzyayla 40.62 37.49 8.65 7.25 Akgun et al., 
2000; Fortelius, 
2011 

270 Kangal 39.03 37.35 7.25 5.33 Kaya & Forsten, 
1999; Fortelius, 
2011 

271 Sevastopol 44.50 33.60 11 9.88 Fortelius, 2011 

272 Kertch 45.36 36.52 9 5.33 Bernor et al., 
1996; Markov, 
2008 

273 Morskaya 2 47.29 39.10 7.75 7 Rossina et al., 
2006; Titov et 
al., 2006 

274 Rustavi 45.08 41.55 9 5.33 Fortelius, 2011 
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275 Iaghludja 41.71 44.80 9.7 8.7 Vekua & 
Lordkipanidze, 
2008 

276 Udabno 41.50 45.40 8.7 7.8 Vekua & 
Lordkipanidze, 
2008; Fortelius, 
2011 

277 Dzedzvtakhevi 41.68 45.75 7.75 7 Vekua & 
Lordkipanidze, 
2008 

278 El'dar 41.00 45.70 9.7 8.7 Beliaeva, 1962 

279 Eldari 41.18 46.73 9.7 8.7 Vekua & 
Lordkipanidze, 
2008 

280 Ivand-1 38.35 46.13 8 7 Sen & 
Purabrishemi, 
2010; Fortelius, 
2011 

281 Maragheh 37.33 46.41 9.5 7 Bernor, 1986; 
Fortelius, 2011 

282 Karatchok Dagh 37.06 42.23 9 5.33 Astre, 1936 

283 Bakhtiari 34.50 44.60 11.61 9 Thomas et al., 
1980 

284 Injana 33.49 44.41 10 9 Brune & Heintz, 
1983; Geraads 
& Güleç, 1999 

285 Bekaa Valley 33.66 35.76 9 5.33 Malez & 
Forsten, 1989 

286 Afoud 1,2,8 31.03 -6.57 7.1 5.33 Benammi, 
1997; Fortelius, 
2011 

287 Afoud 5 31.03 -6.57 8.2 7.1 Benammi, 
1997; Fortelius, 
2011 

288 Menacer 36.44 2.62 9 5.33 Thomas & 
Petter, 1986 

289 Afoud 6 31.03 -6.57 11.2 9.5 Benammi, 
1997; Fortelius, 
2011 

290 d'Amama 36.22 6.03 10 9 Jaeger, 1977 

291 Afoud 7 31.03 -6.57 9.5 9 Benammi, 1997 

292 d'Amama 36.22 6.03 7.8 6.6 Jaeger, 1977 

293 Oued-Tabia 31.17 -6.50 11.2 9 Fortelius, 2011 

294 L'oued Zra 33.71 -4.60 11.6 10 Jaeger, 1977 

295 Khendek-el-Ouaich 34.08 -3.36 8.6 6.2 Jaeger, 1977 

296 Oued el Atheuch 33.40 -1.10 11.61 5.33 Bernor & 
Jaeger, 1982 

297 Raz el Ain 35.70 -0.60 7.25 5.33 Muizon, 1981 

298 L'Oued el Hammam 35.18 -0.10 11.6 7.25 Arambourg, 
1959; Ouda & 
Ameur, 1978 

299 Sidi Salem 35.12 0.08 11.6 9 Jaeger, 1977; 
Fortelius, 2011 

300 Jebel Semmene 36.93 9.44 11.8 10.5 Jaeger, 1977 

301 Oued Mellegue 36.36 8.75 11.6 8.5 Robinson & 
Black, 1974 

302 Beglia 34.35 8.34 10 10 Pickford, 2000; 
Agrasar, 2003; 
Fortelius, 2011 

303 El Menia 29.28 4.63 11.6 9 Amard et al., 
1992 

304 Oued Mya 1 28.93 4.20 11.6 9 Sudre & 
Hartenberger, 
1992 

305 Sahabi 30.08 20.75 7.1 5.33 Boaz et al., 
1987; Markov, 
2008 

306 Sheikh Abdallah 27.74 28.46 11 10 Pickford et al., 
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2006; Mein & 
Pickford, 2010 

307 Wadi El Natrun 30.46 30.36 9 7 James & 
Slaughter, 1974 

308 Shuwaihat 24.10 52.44 8 6 Barry, 1999; 
Bishop & Hill, 
1999; de Bruijn, 
1999; 
Eisenmann & 
Whybrow, 
1999; Gentry, 
1999a,b; Rauhe 
et al., 1999; 
Tassy, 1999 

309 N885 15.53 5.72 11 5 Pickford et al., 
2009 

310 Toros Menalla 15.26 16.34 7.4 6 Brunet et al., 
2002; Vignaud 
et al., 2002; 
Boisserie et al., 
2005; de Bonis 
et al., 2005; 
2007; 2010; 
Peigné et al., 
2005a,b; 
2008a,b; 
Lehmann et al., 
2006; Likius et 
al., 2007;  
Geraads et al., 
2008; Hautier 
et al., 2009 

311 Adu-Asa 10.17 40.33 5.8 5.2 Haile-Selassie, 
2001; 
WoldeGabriel 
et al., 2001; 
Haile-Selassie 
et al., 2004 

312 Alaya VPL2 10.03 40.30 5.8 5.5 Vrba & Haile-
Selassie, 2006; 
Haile-Selassie & 
WoldeGabriel, 
2009 

313 Oromiya (Belticha) 8.90 40.30 10.5 10 Suwa et al., 
2007; Fortelius, 
2011 

314 Albertine 1 2.00 31.00 7.25 5.33 Senut et al., 
1994; Fortelius, 
2011 

315 Albertine 1C 1.33 30.25 7.25 5.33 Senut et al., 
1994; Fortelius, 
2011 

316 Albertine 14 1.00 30.08 7.25 5.33 Senut et al., 
1994; Fortelius, 
2011 

317 Albertine 7 1.08 30.42 7.25 5.33 Senut et al., 
1994; Fortelius, 
2011 

318 Albertine 6 1.17 30.50 11.61 7.25 Senut et al., 
1994; Fortelius, 
2011 

319 Albertine 11 0.17 30.00 7.25 5.33 Senut et al., 
1994; Fortelius, 
2011 

320 Sinda-Mohari 1.50 31.00 7 4.5 Aoki, 1992; Van 
Neer, 1994 

321 Lothagam 2.91 36.07 7.49 6.5 Weston, 2000; 
Fortelius, 2011 

322 SH22 1.31 36.58 9.79 9.25 Ishida & 
Pickford, 1997; 
Tsujikawa, 
2005a,b 

323 Nakali 1.18 36.40 10 9 Aguirre & 
Leakey, 1974; 
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Flynn & 
Sabatier, 1984; 
Morales & 
Pickford, 2006; 
Fortelius, 2011 

324 Cheboit 0.85 35.86 6.1 5.9 Guérin & 
Pickford, 2005; 
Fortelius, 2011 

325 Site 2/49A 0.90 35.90 12 9 Maglio, 1974 

326 Lemudong'o -1.11 35.74 6.1 6.04 Howell & 
Garcia, 2007; 
Fortelius, 2011 

327 Manonga Valley-1 -3.90 33.73 7.1 5.33 Harrison, 1997 

328 Harasib 3a -19.45 17.92 11.1 9.7 Mein et al., 
2000; Fortelius, 
2011 

329 Berk Aukas 1-31 -19.50 18.30 11.1 9.7 Conroy et al., 
1992; 
Rasmussen et 
al., 1996 

330 Swarthintjies-2 -30.30 17.30 11.6 5.33 Pickford & 
Senut, 1997 

331 Groenrivier -30.83 17.57 7.1 5.33 Fortelius, 2011 

332 E Quarry -32.97 18.15 6 5 Hendey, 1981 

333 Shetirgiz 48.80 60.00 11.2 5.33 Kordikova, 
1998 

334 Ashut 50.17 66.67 11.2 5.33 Kordikova, 
1998; Fortelius, 
2011 

335 Petropavlovska 54.80 69.20 11.2 5.33 Kordikova, 
1998 

336 Selety-1A 52.41 73.12 7.1 5.33 Vislobokova & 
Lavrov, 2009; 
Fortelius, 2011 

337 Pavlodar 52.30 77.03 7.1 5.33 Vislobokova & 
Lavrov, 2009; 
Fortelius, 2011 

338 Pavlodar 52.30 77.03 7.75 7.1 Vislobokova & 
Lavrov, 2009; 
Fortelius, 2011 

339 Sor 39.27 67.65 8.2 7.1 Forsten & 
Sharapov, 2000 

340 Marmar 39.33 67.83 9 5.33 Forsten & 
Sharapov, 2000 

341 Magian 39.20 67.89 8 7 Sotnikova et al., 
1997 

342 Pedjikent 39.47 68.09 8 7 Sotnikova et al., 
1997; Fortelius, 
2011 

343 Molayan 36.32 69.42 8 7.5 Heintz et al., 
1981; Brunet et 
al., 1984; Sen, 
2001;  
Merceron et al., 
2004 

344 Y311, Potwar Plateau 33.88 72.38 10.4 8.6 Pilbeam et al., 
1979; 1990; 
Lihoreau et al., 
2004 

345 Daraispon 38.52 70.62 9 8 Sotnikova et al., 
1997 

346 Ortok 42.38 74.92 8 7 Sotnikova et al., 
1997; Fortelius, 
2011 

347 Kalmakpay 47.63 84.46 7 6 Sotnikova et al., 
1997; Fortelius, 
2011 

348 Taralyk Cher 51.90 95.60 7.75 7 Vislobokova, 
2009a,b 

349 CD9805 37.22 96.75 11 9 Dong, 2007 
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350 Tsaidam 37.00 97.00 11.2 9.5 Qiu & Qiu, 1995 

351 Olkhon Island 53.19 107.57 7.5 6.5 Vislobokova & 
Lavrov, 2009 

352 Qunke 36.05 101.98 11.1 8.7 Gu et al., 1992 

353 Songshan 36.96 103.27 7.1 5.33 Fortelius, 2011 

354 Songshan 80007 37.10 103.50 9 5.33 Zheng, 1982 

355 Songshan 80008 37.00 103.50 9 5.33 Zheng, 1982 

356 Jinchanggou 35.60 103.22 11.1 4.9 Wang & Qiu, 
2004 

357 Guonigou 35.64 103.27 11.1 11.1 Deng, 2007; 
Fortelius, 2011 

358 Hezheng Area 35.50 103.50 9 5.33 Liu et al., 2004 

359 Wuzhong 38.00 106.20 11.2 9.5 Qiu & Qiu, 1995 

360 Longjiagou Valley 33.40 104.92 9 5.3 Xiang-Xu &  
Coombs, 1985; 
Xue et al., 2006 

361 Yaodian 34.63 105.92 10.54 10.3 Sahni, 1979; Li 
et al., 2006 

362 Taohuapo Hill 35.12 107.35 7 6 Xue et al., 2006 

363 Qingyang 36.08 108.25 7.1 5.33 Qiu & Qiu, 1995 

364 Bahe 33.40 109.10 11.6 9 Qiu & Qiu, 
1995; Calandra 
et al., 2008 

365 Wangdaifuliang 39.00 111.10 11.61 9 Qiu, 1990 

366 Lamagou 39.26 110.95 8 7 Xue et al., 2006 

367 Miaoliang 39.26 110.95 6 5.3 Xue et al., 2006 

368 Pao-te-lok 43 39.02 111.09 7.23 5.34 Fortelius, 2011 

369 Amuwusu 42.37 112.74 11.2 9.5 Qiu & Qiu, 1995 

370 Harr Obo 41.91 114.07 7 5.33 Storch & Qiu, 
1983; Qiu, 
1985; 1987; 
1991; 2003; 
Wu, 1985; 
1991; 
Fahlbusch, 
1987; 1992; 
Storch, 1987; 
1995; 
Fahlbusch & 
Moser, 2004 

371 Ertemte 41.89 114.06 7 5.33 Storch & Qiu, 
1983; Qiu, 
1985; 1987; 
1991; 2003; 
Wu, 1985; 
1991; 
Fahlbusch, 
1987; 1992; 
Storch, 1987; 
1995; 
Fahlbusch & 
Moser, 2004 

372 Baogeda Ula 44.14 114.59 8 7 Tseng & Wang, 
2007 

373 Baogedawula 44.63 114.98 7.59 6.63 Storch & Ni, 
2002; Fortelius, 
2011 

374 Zibo-Zhangdian 37.75 118.08 9 5.3 Fortelius, 2011 

375 Zhangqiu 36.67 117.47 9 5.3 Fortelius, 2011 

376 Ichibangawa River 43.40 141.62 12 10 Kohno, 2006 

377 Zephyreduncinus 36.27 139.00 11.41 9 Kimura & 
Hasegawa, 
2010 

378 Nishikoiso Coast 35.96 139.30 8.6 6.6 Zin-Maung-
Maung-Thein et 
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al., 2009 

379 Xiadongshan 27.06 117.18 8.7 5.33 Gu et al., 1992 

380 Leilao 25.83 101.75 9 7 Storch & Ni, 
2002; Dong et 
al., 2004; 
Pickford et al., 
2004 

381 Lufeng 25.17 102.67 8.2 7.1 Yuerong, 1988; 
Qiu & Storch, 
1990; Storch & 
Qiu, 1991; Qiu 
& Qiu, 1995 

382 Xiaolongtan 23.58 103.25 12.5 11.1 Qiu & Qiu, 1995 

383 Hangmon 20.93 104.02 10.3 5.4 Covert et al., 
2001 

384 Charlem Prakieat 15.03 102.28 9 7 Chaimanee et 
al., 2004, 2006; 
Fortelius, 2011 

385 Tha Sang Sand Pit 8 15.08 102.33 7.4 5.9 Hanta et al., 
2008; Fortelius, 
2011 

386 Tebingan Village 19.96 95.14 11.6 9 Thaung-Htike et 
al., 2007; 
Fortelius, 2011; 

387 Chaungsong 21.22 94.47 11.6 9 Thaung-Htike et 
al., 2007 

388 Chaing Zauk 21.51 94.60 7.25 5.33 Fortelius, 2011 

389 Bulong 31.57 93.83 9.5 9 Qiu & Qiu, 1995 

390 Jilong 28.87 85.18 8.2 7.1 Qiu & Qiu, 1995 

391 Tinau Khola 27.70 83.45 11.5 6.5 West et al., 
1991; Hoorn et 
al., 2000 

392 Dang Valley 27.84 82.53 11.5 6.5 West et al., 
1991; Hoorn et 
al., 2000 

393 Piram Island 21.60 72.36 7.25 5.33 Prasad, 1971; 
Sahni, 1979; 
Fortelius, 2011 

394 Dera Bugti Sartaaf 29.03 69.15 9.5 5.33 Welcomme et 
al., 1997 

395 Zinda 30.07 70.07 11.2 5.33 Raza et al., 
2002 

396 Minanwali 32.90 71.70 11.61 7.25 Moonen et al., 
1978; Hussain 
& West, 1979 

397 Chinji 33.03 72.48 10.8 10.8 Pilbeam et al., 
1979, 1990; 
Pickford, 2007 

398 Chinji 33.03 72.48 9.3 9.3 Pilbeam et al., 
1979, 1990 

399 Nagri 32.80 72.50 11.61 5.33 Moonen et al., 
1978 

400 Ramanagar 32.82 72.37 13.1 11.1 Vasishat et al., 
1979; Basu, 
2004; Pickford, 
2007 

401 Potwar Plateau 33.25 72.75 12.1 10.5 Pilbeam et al., 
1979; Baskin, 
1996 

402 Potwar Plateau 33.25 72.75 9.75 9.1 Pilbeam et al., 
1979; Baskin, 
1996 

403 Potwar Plateau 33.25 72.75 7.3 7.3 Pilbeam et al., 
1979; Baskin, 
1996 

404 Jalalpur 32.67 73.42 11 10 Cheema et al., 
2000 

405 Sangaum Village 32.74 75.09 11 10 Pickford & 
Gupta,  2001 

406 Ladhyani 31.53 76.67 8 6 Sahni & Khare, 
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1977; Pickford, 
2007 

407 Dera Gopipur 31.88 76.21 13 10 Gupta et al., 
1982 
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Appendix E 

Stenobiomic Late Miocene mammals 

This appendix presents a list of Late Miocene stenobiomic mammal genera (BSI = 1 or 2) and 

their biome preferences. 

 

Artiodactyla 

Aepycamelus Temperate deciduous broadleaf savanna 

Amphiprox Warm - temperate evergreen broadleaf and mixed forest 

Antilope Temperate deciduous broadleaf savanna 

Bramatherium Temperate grassland 

Catagonus Temperate deciduous broadleaf savanna 

Cervus Warm - temperate evergreen broadleaf and mixed forest 

Cranioceras Temperate deciduous broadleaf savanna 

Criotherium Warm - temperate evergreen broadleaf and mixed forest 

Decennatherium Warm - temperate evergreen broadleaf and mixed forest 

Dicoryphochoerus Warm - temperate evergreen broadleaf and mixed forest 

Dorcadoryx Temperate deciduous broadleaf savanna 

Dystychoceras Warm - temperate evergreen broadleaf and mixed forest 

Dytikodorcas Tropical savanna 

Eotragus Warm - temperate evergreen broadleaf and mixed forest 

Helladorcas Warm - temperate evergreen broadleaf and mixed forest 

Hexobelomeryx  Warm - temperate evergreen broadleaf and mixed forest 

Hippopatamodon Tropical grassland 

Hippopotamus Tropical savanna 

Hippotragus Tropical savanna 

Hispanodorcas Warm - temperate evergreen broadleaf and mixed forest 
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Hispanomeryx Warm - temperate evergreen broadleaf and mixed forest 

Hyotherium Tropical evergreen broadleaf forest 

Kenyapotamus Tropical savanna 

Kobus Tropical savanna 

Listriodon Warm - temperate evergreen broadleaf and mixed forest 

Lucentia Warm - temperate evergreen broadleaf and mixed forest 

Merychyus Temperate deciduous broadleaf savanna 

Merycopotamus Tropical grassland 

Mesembriacerus Warm - temperate evergreen broadleaf and mixed forest 

Moschus Tropical evergreen broadleaf forest 

Nisidorcas Warm - temperate evergreen broadleaf and mixed forest 

Orasius Temperate deciduous broadleaf savanna 

Ouzocerus Warm - temperate evergreen broadleaf and mixed forest 

Pachytragus Warm - temperate evergreen broadleaf and mixed forest 

Palaeogiraffa Warm - temperate evergreen broadleaf and mixed forest 

Parabos  Temperate xerophytic shrubland 

Parachleuastochoerus Warm - temperate evergreen broadleaf and mixed forest 

Paraoioceros Warm - temperate evergreen broadleaf and mixed forest 

Pavlodaria Temperate deciduous broadleaf savanna 

Platygonus Temperate deciduous broadleaf savanna 

Protragocerus Warm - temperate evergreen broadleaf and mixed forest 

Pseudotragus Warm - temperate evergreen broadleaf and mixed forest 

Samokeros Warm - temperate evergreen broadleaf and mixed forest 

Selenoportax Tropical evergreen broadleaf forest 

Shaanxispira Temperate deciduous broadleaf savanna 

Simatherium Temperate evergreen needleleaf forest 

Sivachoerus Tropical savanna 

Tetraconodon Tropical grassland 
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Tragocerus Warm - temperate evergreen broadleaf and mixed forest 

Tragoreas Warm - temperate evergreen broadleaf and mixed forest 

Ustatochoerus Temperate deciduous broadleaf savanna 

 

Lagomorpha 

Amphilagus Warm - temperate evergreen broadleaf and mixed forest 

Eurolagus Warm - temperate evergreen broadleaf and mixed forest 

Ochotona Temperate deciduous broadleaf savanna 

Ochotonoides Temperate deciduous broadleaf savanna 

Proochotona Temperate deciduous broadleaf savanna 

Lepoides Temperate deciduous broadleaf savanna 

Notolagus Warm - temperate evergreen broadleaf and mixed forest 

Pronotolagus Temperate deciduous broadleaf savanna 

 

Lipotyphla 

Alluvisorex Temperate deciduous broadleaf savanna 

Amphechinus Warm - temperate evergreen broadleaf and mixed forest 

Anouroneomys Temperate deciduous broadleaf savanna 

Asoriculus Warm - temperate evergreen broadleaf and mixed forest 

Dinosorex Warm - temperate evergreen broadleaf and mixed forest 

Gaillardia Temperate deciduous broadleaf savanna 

Hesperoscalops Temperate deciduous broadleaf savanna 

Heterosorex Tropical evergreen broadleaf forest 

Lemoynea Temperate deciduous broadleaf savanna 

Metacordylodon Warm - temperate evergreen broadleaf and mixed forest 

Mysorex Temperate evergreen needleleaf forest 

Paenelimnoecus Warm - temperate evergreen broadleaf and mixed forest 

Paranourosorex Temperate deciduous broadleaf savanna 
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Parasorex Warm - temperate evergreen broadleaf and mixed forest 

Plesiodimylus Warm - temperate evergreen broadleaf and mixed forest 

Postpalerinaceus Warm - temperate evergreen broadleaf and mixed forest 

Proscapanus Warm - temperate evergreen broadleaf and mixed forest 

Scalopoides Temperate deciduous broadleaf savanna 

 

Notoungulata 

Typotheriopsis Tropical savanna 

Xotodon Tropical savanna 

 

Perissodactyla 

Anisodon Warm - temperate evergreen broadleaf and mixed forest 

Aphelops Temperate deciduous broadleaf savanna 

Calippus Temperate deciduous broadleaf savanna 

Chilotheridium Tropical grassland 

Diceros Warm - temperate evergreen broadleaf and mixed forest 

Lartetotherium Warm - temperate evergreen broadleaf and mixed forest 

Ningxiatherium Temperate deciduous broadleaf savanna 

Protohippus Temperate deciduous broadleaf savanna 

Pseudhipparion Temperate deciduous broadleaf savanna 

Shansirhinus Temperate deciduous broadleaf savanna 

Sinohippus Warm - temperate evergreen broadleaf and mixed forest 

Stephanorhinus  Temperate deciduous broadleaf savanna 

 

Proboscidea 

Amebelodon Tropical savanna 

Loxodonta Tropical grassland 

Mammuthus Temperate evergreen needleleaf forest 
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Prodeinotherium Warm - temperate evergreen broadleaf and mixed forest 

 

Rodentia 

Anomalomys Warm - temperate evergreen broadleaf and mixed forest 

Baiomys Temperate deciduous broadleaf savanna 

Blackia Warm - temperate evergreen broadleaf and mixed forest 

Blancomys Temperate deciduous broadleaf savanna 

Brachyrhizomys  Tropical evergreen broadleaf forest 

Brachyscirtetes Temperate deciduous broadleaf savanna 

Cardiomys Tropical savanna 

Castillomys Temperate xerophytic shrubland 

Castromys Temperate deciduous broadleaf savanna 

Ceratogaulus Temperate deciduous broadleaf savanna 

Chalicomys Warm - temperate evergreen broadleaf and mixed forest 

Collimys Warm - temperate evergreen broadleaf and mixed forest 

Cricetulodon Warm - temperate evergreen broadleaf and mixed forest 

Democricetodon Warm - temperate evergreen broadleaf and mixed forest 

Dryomys Warm - temperate evergreen broadleaf and mixed forest 

Eomyops Warm - temperate evergreen broadleaf and mixed forest 

Epimeriones Warm - temperate evergreen broadleaf and mixed forest 

Eucastor Temperate deciduous broadleaf savanna 

Eumyarion Warm - temperate evergreen broadleaf and mixed forest 

Euroxenomys Warm - temperate evergreen broadleaf and mixed forest 

Fahlbuschia Warm - temperate evergreen broadleaf and mixed forest 

Geomys Temperate deciduous broadleaf savanna 

Glis Warm - temperate evergreen broadleaf and mixed forest 

Graphiurops Warm - temperate evergreen broadleaf and mixed forest 

Gyriabrus Tropical savanna 
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Hispanomys Warm - temperate evergreen broadleaf and mixed forest 

Huerzelerimys Warm - temperate evergreen broadleaf and mixed forest 

Irhoudia Tropical savanna 

Kanisamys Warm - temperate evergreen broadleaf and mixed forest 

Liodontia Temperate deciduous broadleaf savanna 

Marmota Temperate deciduous broadleaf savanna 

Megacricetodon Warm - temperate evergreen broadleaf and mixed forest 

Microtocricetus  Warm - temperate evergreen broadleaf and mixed forest 

Microtodon Temperate deciduous broadleaf savanna 

Microtoscoptes Temperate deciduous broadleaf savanna 

Miodryomys Warm - temperate evergreen broadleaf and mixed forest 

Myoglis  Warm - temperate evergreen broadleaf and mixed forest 

Mystromys Temperate evergreen needleleaf forest 

Neoepiblema Tropical savanna 

Neotoma Temperate deciduous broadleaf savanna 

Paenemarmota Temperate deciduous broadleaf savanna 

Palaeocavia Temperate deciduous broadleaf savanna 

Pampamys Temperate deciduous broadleaf savanna 

Paraglirulus Warm - temperate evergreen broadleaf and mixed forest 

Paraglis  Warm - temperate evergreen broadleaf and mixed forest 

Paralactaga Temperate deciduous broadleaf savanna 

Parapliosaccomys Temperate deciduous broadleaf savanna 

Phoberomys Tropical savanna 

Phtoramys Tropical savanna 

Pliogeomys Temperate deciduous broadleaf savanna 

Pliosaccomys Temperate deciduous broadleaf savanna 

Promimomys Warm - temperate evergreen broadleaf and mixed forest 

Prosomys Temperate deciduous broadleaf savanna 



- 415 - 

Prospalax Warm - temperate evergreen broadleaf and mixed forest 

Prosiphneus Temperate deciduous broadleaf savanna 

Protalactaga Temperate deciduous broadleaf savanna 

Protatera Temperate xerophytic shrubland 

Ramys Warm - temperate evergreen broadleaf and mixed forest 

Reigechimys Temperate deciduous broadleaf savanna 

Rhinocerodon Temperate deciduous broadleaf savanna 

Rotundomys Warm - temperate evergreen broadleaf and mixed forest 

Scirtodipus Temperate deciduous broadleaf savanna 

Spermophilinus  Warm - temperate evergreen broadleaf and mixed forest 

Stephanomys Temperate xerophytic shrubland 

Stertomys Warm - temperate evergreen broadleaf and mixed forest 

Vasseuromys Warm - temperate evergreen broadleaf and mixed forest 

 

Xenarthra 

Acantharodeia Tropical savanna 

Aspidocalyptus Temperate deciduous broadleaf savanna 

Coscinocercus Temperate deciduous broadleaf savanna 

Doellotatus Temperate deciduous broadleaf savanna 

Elassotherium Temperate deciduous broadleaf savanna 

Hoplophractus Temperate deciduous broadleaf savanna 

Macroeuphractus Temperate deciduous broadleaf savanna 

Neoglyptatelus Tropical savanna 

Paleuphractus Tropical savanna 

Parahoplophorus Tropical savanna 

Pliomorphus Tropical savanna 

Plohophorus Tropical savanna 

Stromaphorus Tropical savanna 
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Urumacotherium Tropical savanna 

Vassallia Tropical savanna 
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