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Abstract

Cosmic-rays are highly energetic particles originating from outer space. Ultra-

high energy cosmic-rays (UHECRs) are defined as those above 1018 eV. The Pierre

Auger Observatory is a hybrid detector comprising a surface array of over 1660

water-Cherenkov detectors and 27 nitrogen-fluorescence detectors, the data from

which can be studied separately or combined in hybrid mode. Data-taking began

in 2004, with construction of the array completed in 2008.

The mass-composition of UHECR, in particular the flux of photons, is cur-

rently unknown. UHECR photons are expected from the interaction of protons

with energies greater than ∼ 3× 1019 eV with the cosmic microwave background.

Previous limits on the fraction of UHECR photons from surface array data are

of the order of a few % above 1019 eV.

Surface array data have been used to update and improve a mass-sensitive

shower-timing parameter, 〈∆〉, derived from the signal risetimes of individual

detectors. A complete overhaul of this method has been performed, providing a

more robust parameter sensitive to the mass-composition of UHECR. The change

of 〈∆〉 with energy has been investigated and a correlation between 〈∆〉 and

another mass-sensitive parameter - the depth of maximum, Xmax, has been found.

A study of the mass-sensitivity of 〈∆〉 has been made by comparison to photon

and hadronic simulations. From this comparison it is found that the composition

of UHECRs, on average, tends towards heavier primaries with increasing energy.

Ten events have been identified as potential photon-initiated air showers. Con-

servative integral upper limits to the flux of UHE photons have been computed

at 8.7 × 10−3, 4.7 × 10−3, 2.8 × 10−3 and 2.3 × 10−3 km−2 sr−1 yr−1 above 10, 20,

30 and 40 EeV respectively. Integral upper limits to the fraction of photons have

also been found at 1.5%, 3.2%, 4.9% and 9.1% above these energies. These new

limits improve upon previous works and exclude all ‘top-down’ models for photon



production except the Z-burst model, which is strongly disfavoured. These limits

do not yet probe the GZK region.

The arrival directions of these photon-candidates have been compared to the

positions of nearby AGN from the VCV and Swift-BAT catalogues. No obvious

sources have been found for these events and none of the photon-candidate arrival

directions lie close to Cen A.

The differences between those events above 5 × 1019 eV that correlate with

AGN from the VCV catalogue, or originate from within 18◦ angular separation

of Centaurus A, to those that do not, have been studied using the 〈∆〉 parameter.

No significant differences in their average 〈∆〉 have been found, nor is a systematic

change in 〈∆〉 observed as a function of angular distance from Cen A.

Finally, the azimuthal asymmetry on the risetimes has been reviewed as a

potential mass-sensitive parameter in relation to previous works. A possible al-

ternative method for determining the dependence of the asymmetry on the energy

has been explored with limited success. This new method is in the early stages

of development and further study is required.
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Chapter 1

Cosmic-Ray Astrophysics

1.1 Introduction

It has been a century since Victor Hess first discovered cosmic-rays. Since then,

there has been an abundance of discoveries in particle physics and cosmic-ray as-

trophysics. Yet there are still many unanswered questions surrounding the enigma

of cosmic-rays, including the ultimate: where do cosmic-rays come from? The

main science goals of the Pierre Auger Observatory are to determine the origins,

propagation, composition and energy spectrum of ultra-high energy cosmic-rays

(UHECR) with energies greater than 1018 eV. The flux of UHECR is extremely

low (∼ 1 km−2 year−1 above 1018 eV); therefore the construction of a cosmic-ray

observatory roughly twice the size of Greater London has been necessary to de-

tect a sufficiently large number of showers that the highest energy cosmic-rays

might be probed. Located in Malargüe, Argentina, the Pierre Auger Observatory

is a hybrid detector comprising 24 nitrogen fluorescence detectors and over 1600

water-Cherenkov detectors covering an area of 3000 km2, and has been collecting

data since the beginning of January 2004.

1.2 Thesis Outline

The work presented in this thesis utilises the data recorded by the surface array

of the Pierre Auger Observatory to determine a new and more stringent limit on

1



1. Cosmic-Ray Astrophysics

both the flux and the fraction of UHECR photons above 1019 eV. Presented in this

chapter is an introduction to the field of cosmic-ray astrophysics, including a brief

overview of the most important historic discoveries, the propagation of cosmic-

rays through galactic and intergalactic space, and potential sources. Primarily

the discussion will focus on ultra-high energy cosmic-rays.

Chapter 2 gives a technical description of the Pierre Auger Observatory and

the reconstruction techniques employed to determine key shower parameters such

as the energy, arrival direction, depth of maximum development and shower tim-

ing parameters. A brief review of the major results published by the collaboration

will also be given.

Chapter 3 describes the re-analysis of a method that uses the time-spread of

shower particles at ground as a mass composition indicator. This includes several

substantial changes to the method. Pierre Auger Observatory data from January

2004 to December 2010 has been analysed with this new method. Chapter 4

outlines the application of the updated method described in chapter 3 to photon,

proton and iron simulations. New, more stringent limits to the fraction and flux

of UHECR photons are also presented.

Chapter 5 uses the method and results from chapters 3 and 4 to analyse the

timing information of the highest energy events detected by the Pierre Auger

Observatory in relation to their proximity to AGN from the Veron-Cetty-Veron

catalogue and to Centaurus A. The positions of potential photon-candidate events

in relation to astrophysical objects are also remarked upon. In chapter 6, the

potential for two new mass-sensitive variables to be created from the asymmetry

in the timing information are investigated. Concluding remarks are given in

chapter 7.

1.3 A Century of Cosmic-Ray Astrophysics

In 1912 Victor Hess flew in a balloon to a height of over 16,000 feet (5 km). The

experiment on board the balloon was designed to measure the rate of discharge of

an electroscope with increasing altitude. At the time it was believed that most of

2



1.3 A Century of Cosmic-Ray Astrophysics

the natural background radiation that caused electroscopes to discharge was from

radioactive elements in the ground (1). Therefore Hess expected that the rate

of discharge would decrease with increasing altitude. However, Hess found that

above a height of 1 km the rate of discharge of the electroscope increased with

altitude. Hess concluded that the source of the radiation that caused electroscopes

to discharge came from outside the Earth’s atmosphere.

With this discovery and its publication by Hess (2), the field of cosmic-ray

astrophysics was created. However, the term ‘cosmic-ray’ was not used until 1925

after Millikan’s series of experiments in Lakes Muir and Arrowhead in Southern

California which measured the rate of discharge of electroscopes at increasing

depths (1). As the most penetrating form of radiation known at the time was

Gamma-radiation from radioactive substances, the assumption was made that

cosmic-rays were merely far more energetic Gamma-rays, hence the misnomer.

In 1929 Bothe and Kolhörster used newly invented Geiger counters to ‘count’

individual cosmic-rays. They noticed that two Geiger counters placed one above

the other a short distance apart would discharge simultaneously. Such coinci-

dences must be due to a charged particle passing through both Geiger counters

as coincidence measurements were unlikely to come from multiple Compton col-

lisions of a single photon traversing both detectors. This lead to the hypothesis

that, at sea level, cosmic-rays were primarily a combination of photons and elec-

trons, possibly from higher energy photons that had interacted with the atmo-

sphere (1).

Compton and Alvarez, and Johnson (in 1933) independently observed an in-

creased flux of particles (≃ 10%) from the west compared to the east - the ‘East-

West’ effect (3). Two years later, Clay demonstrated that the flux of cosmic-rays

decreased by 15% between Amsterdam and the equator (4), (5). These two ex-

periments showed that a significant component of positively charged particles

existed in the cosmic-ray flux.

In 1935 Compton and Getting predicted the increase in energy and intensity

of cosmic-rays detected on Earth due to the motion of the Earth around the

3



1. Cosmic-Ray Astrophysics

Sun and of the solar system in the galaxy, thus generating a small anisotropy in

cosmic-ray arrival directions (6). Firm detection of this effect at all energies has

yet to be made. Compton and Bennet also predicted variations to the cosmic-ray

flux from the Earth’s rotation on its axis (7).

The measurement of a larger than expected number of simultaneous detections

(coincidences) in detectors separated by up to 300 m was made by Pierre Auger

et. al. in 1938. This led to the concept of extensive air showers (EAS) and hence

the discovery of primary cosmic-rays of energy greater than 1015 eV, then seen as

inconceivably energetic particles (8). The development of a photon-initiated air

shower in the atmosphere was first described in a theoretical paper by Bhabha

and Heitler in the same year (9). Hadrons from protons to iron nuclei were also

identified as components of the cosmic-ray flux. During the late 1940s and 1950s

a wealth of new particles, for example pions, muons and kaons, were identified.

These discoveries allowed the bones of cascade theory to be fleshed out.

The discovery of the cosmic microwave background (CMB) by Penzias and

Wilson in 1965 (10) prompted Zatespin and Kuzmin, and independently Greisen,

to predict the interaction of the highest energy cosmic-rays with the CMB, now

known as the ‘GZK effect’. This placed limits on the propagation distance of

cosmic-rays and predicted a sharp steepening of the cosmic-ray flux spectrum

above ≃ 3 × 1019 eV, and thus an end to the energy spectrum (11). At the time,

the highest energy cosmic-ray, recorded at Volcano Ranch four years previously,

had an energy of 1020 eV. Further detections of events above 3×1019 eV, including

seven events above 1020 eV by AGASA in the 1990s, cast doubts on the existence

of the GZK cut-off (12).

Since the 1960s many instruments have been built to try and answer fun-

damental questions about both Very- and Ultra-High Energy Cosmic-Rays, for

example the mass composition and flux spectrum. These experiments have ex-

ploited a variety of detection techniques, for example using water-Cherenkov,

Scintillation and Fluorescence detectors, to increase our understanding of the

finer details of air shower physics. The Pierre Auger Observatory is the largest

4



1.4 The Energy Spectrum of Cosmic-Rays

and most recent observatory constructed to investigate cosmic-rays above 1018 eV.

As the study of cosmic-rays reaches its 100th birthday, the wealth of information

gathered has been vast and the techniques used diverse. As far as the highest en-

ergy cosmic-rays are concerned, our increasing knowledge of the mass-composition

of UHECR and confirmation of the GZK steepening will take us ever closer to

the ultimate goal: the discovery of the sources of the highest energy cosmic-rays.

1.4 The Energy Spectrum of Cosmic-Rays

The cosmic-ray energy spectrum extends over 12 orders of magnitude, from below

109 eV to beyond 1020 eV. Below 1010 eV cosmic-rays are modulated by the solar

wind. Above 1010 eV, the flux follows an almost continuous power law spectrum

with only a few changes in the slope (figure 1.1) (13). The cosmic-ray spectrum

is described by:
dN

dE
= kE−α (1.1)

where k is a constant and α describes the slope of the spectrum. A change in

the slope occurs at ≃ 3 × 1015 eV from α ≃ 2.7 to α ≃ 3.0 - called the ‘knee’.

The flux at the knee is ≃ 1 m−2 yr−1. Another change in slope is apparent at

3 × 1018 eV, called the ‘ankle’, where the slope changes from α ≃ 3.0 to α ≃ 2.5

(and the flux is ≃ 1 km−2 yr−1). The origin of the knee and ankle are not yet

settled. Changes in source acceleration mechanisms, source type, interaction and

propagation mechanisms have all been considered. Cosmic-rays with energies be-

low the knee are predominantly protons and light nuclei accelerated by diffusive

shock acceleration in supernovae within the Milky Way Galaxy (14), (15). Other

elements are represented in the composition of cosmic-rays, which roughly fol-

lows solar system abundances (except for lithium, beryllium and boron due to

spallation).

Due to deflections by galactic magnetic fields, galactic cosmic-rays with TeV

to PeV energies become trapped within the galaxy for many thousands of years.

Thus it is possible (in terms of the observed flux) for galactic supernovae that

5



1. Cosmic-Ray Astrophysics

Figure 1.1: Observed spectrum of cosmic-rays. This spectrum follows a power

law with small deviations at the points labelled ‘knee’ and ‘ankle’ (13). The

equivalent centre-of-mass energy for proton-proton collisions at the LHC is also

shown.

exploded thousands of years ago to be the sources of cosmic-rays (16). The flux

of cosmic-rays that escape from the galaxy can then easily be replenished by new

supernova explosions, of which 3 ten-solar-mass supernovae occur per century on
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average. Scattering by the galactic magnetic field makes it impossible to trace

lower energy cosmic-rays back to their specific sources. There is evidence for

a gradual change in the composition of cosmic-rays around the knee to heavier

nuclei, probably due to lighter elements reaching the required rigidity to allow

their escape from the galaxy (17).

The ankle could represent a transition between galactic and extragalactic

sources, or occur due to pair production as a result of the interaction of protons

with the CMB (18), (19):

p + γ → p + e+ + e− (1.2)

Observation of the mass composition of cosmic-rays around the ankle will help

determine the correct interpretation of the spectral features and, ultimately, the

source model. If the cosmic-rays at energies below the ankle are predominantly

iron then galactic to extragalactic source transition models are favoured. How-

ever, a proton dominated composition below the ankle favours the pair-production

scenario.

At energies above the ankle observations of cosmic-rays become very difficult

due to their small fluxes (less than 1 km−2 century−1 above 1019 eV), necessitat-

ing detectors spanning several km2 such as the Pierre Auger Observatory. The

sources of these cosmic-rays must be some of the most active and turbulent places

in the universe (20). Objects such as the cores, jets and hot-spots of active galac-

tic nuclei (AGN) (21), and gamma-ray bursts (GRBs) (22) are being discussed

as possible sources. Figure 1.2 shows the differential flux spectrum (multiplied

by E−3) for data from the Pierre Auger Observatory (23). This highlights the

change in the slope of the flux spectrum at the ‘ankle’ and indicates a significant

downturn in the spectrum at 3 × 1019 eV, where the index α becomes ≃ 4.0.

This steepening of the spectrum is widely believed to be due to the GZK effect -

i.e. the interaction of UHECR with the CMB - although it could simply be the

energy above which sources are no longer able to accelerate cosmic-ray particles.

Experimental evidence supporting any of the above theories is still inconclusive.
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1.5 Sources of Cosmic-Rays

The exact mechanisms that accelerate cosmic-rays are still uncertain. For cosmic-

rays in the region of tens to hundreds of TeV, diffusive shock acceleration in

supernova shocks is a likely candidate as a spectrum with index α ≃ 2− 2.5 can be

produced. Diffusive shock acceleration is also a plausible acceleration mechanism

for much higher energy cosmic-rays, provided the size of the acceleration region

and associated magnetic fields are large enough. Particles are swept up by a

passing shock front, deflect off magnetic field irregularities within the shock, and

ricochet back across the shock front. The number of crossings is proportional

to the energy of the shock. After a large number of crossings, the accelerated

particle will escape via the trailing edge of the shock having been significantly

boosted in energy (25). This mechanism appears to be efficient at accelerating

particles to high energies with up to 10% of the shock energy transferred to the

Figure 1.2: Differential flux spectrum (multiplied by E−3) of cosmic-rays above

1018 eV as detected by the Pierre Auger Observatory (24).

8
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1.5 Sources of Cosmic-Rays

particles. If the magnetic fields in the shock front have been driven into tight

spirals by stellar winds then the amount of particle acceleration will be larger

(26). The maximum energy a particle can take from the shock is given by:

Emax = kZeBβsR (1.3)

where βs is the shock velocity, B the magnetic field strength, R the size of the

shock region, Z the atomic number of the particle being accelerated and e the

charge on an electron.

Few sources are capable of accelerating cosmic-rays to the highest energies

observed. The criteria laid down by Hillas in 1984 describe the size and strength

of the magnetic field required to accelerate cosmic-rays by Fermi acceleration

processes to a given energy (27). The average size and magnetic field of some po-

tential sources are shown in figure 1.3. The minimum diameter of the acceleration

region is given by twice the Larmor radius of a particle of charge Z and energy E

in a magnetic field B (27). Particles with a Larmor radius greater than the size

of the acceleration region will be able to escape the source. Protons are less easy

to accelerate than iron nuclei due to their charge. Figure 1.3 illustrates a large

difference between proton and iron requirements (dashed and dot-dashed lines)

assuming a shock speed βs = 1. For slower shock speeds the requirements are

larger. Determination of the cosmic-ray composition will thus enable the range

of required source sizes and magnetic fields to be constrained.

At the highest energies the most extreme environments are required for such

acceleration to occur. Active galactic nuclei and associated radio jets, galaxy

clusters, magnetars, gamma-ray bursts and various ‘top-down’ mechanisms have

all been suggested as sources of UHECR. It is likely that a combination of such

sources could contribute to the total flux above 1018 eV. However, even the most

optimistic model predictions of currently known astrophysical objects have not

been able to explain the origin of the highest energy cosmic-rays known (those

above ≃ 1020 eV).

One object of particular interest is the radio galaxy Centaurus A (Cen A or

NGC 5128, figure 1.4) as this is the closest radio galaxy potentially capable of
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Figure 1.3: The Hillas plot showing the magnetic field strength of some astro-

physical objects as a function of their size. The diagonal lines represent the range

of minimum magnetic fields and source radii required to accelerate a cosmic-ray

proton (solid and dashed lines) and iron nuclei (dot-dashed line) to 1020 eV. The

equivalent position of the LHC is also shown. Adapted from (27) and (28).

accelerating UHECRs and is within the field of view of the Pierre Auger Obser-

vatory. Cen A contains a (0.5− 1.2)× 108 solar-mass black hole at its centre and

has two radio lobes spanning 10◦ in a North-South orientation (29). At 3.7 Mpc

away in the southern sky, Cen A is well within the GZK horizon - a limit to the

maximum distance a cosmic-ray can travel due to the GZK effect. Estimated at

50−100 Mpc for cosmic-rays above 3×1019 eV the GZK horizon severely reduces

the number of possible UHECR sources. Deflections of cosmic-rays from Cen

A in intergalactic magnetic fields are expected to be small (≤ 6◦ for protons)

compared to those from more distant sources.
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Figure 1.4: Centaurus A in the optical, sub-millimetre and X-ray. Credit:

ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Sub-millimetre);

NASA/CXC/CfA/R.Kraft et al. (X-ray). The radio jets span ≃ 10◦.

Recent attempts have been made by the Pierre Auger Collaboration to de-

termine the flux and composition of cosmic-rays above 55 EeV coming from the

vicinity of Cen A (30). Two UHECR events above 57 EeV have been observed to

come from within 3◦ of Cen A (30). However, no definite conclusion has yet been

made whether these events originate from Cen A or from the Centaurus cluster

behind (at ≃ 45 Mpc).

Many models have been created to determine whether Cen A is capable of

accelerating cosmic-rays to ultra-high energies (21), (31). Scepticism remains as

to whether protons could be accelerated to more than 1019 eV in the jets of radio

galaxies (29). In the context of a multi-wavelength approach, Cen A has been

observed by a multitude of instruments across all wavelengths, most recently by

the Fermi-LAT at GeV energies (32) and by H.E.S.S. in the TeV γ-ray regime

(29). Comparison of these observations to model predictions (normalised to the

Pierre Auger Observatory results) have led to the hypothesis by Kachelriess et
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al. that the region around the core of Cen A and the inner radio lobes form

the acceleration region, if any, for UHECR (33). However, this hypothesis relies

heavily on many assumptions concerning the acceleration model and injection

spectrum. It remains possible that cosmic-rays from the direction of Cen A

originate from an unknown source behind Cen A or, if they are iron nuclei, have

been subjected to greater deflections by galactic magnetic fields and therefore

come from other nearby sources. In the northern sky the Virgo super-cluster has

also been suggested as a potential source of UHECR.

Gamma-Ray Bursts (GRBs) have been suggested as another potential source

of UHECR. Despite their numerous detections, relatively little is known about

GRBs. The ‘Fireball Model’ may describe the acceleration of particles within

GRBs. In this model a compact source releases energy over a short timescale

creating a series of relativistic shock fronts and producing beamed emission. The

out-flowing material in internal shock fronts have different Γ-factors whilst the

external shock is due to collisions with the surrounding medium. It is proposed

that UHECR could be accelerated first by the external shock and then by the

internal shocks through some Fermi acceleration mechanism (22). Such a model

appears to favour mixed compositions (34), although some authors (e.g. (35))

disagree. If GRBs are sources of UHECR this could explain the low observed

anisotropy and imply a mixture of galactic and extragalactic cosmic-rays incident

upon Earth.

1.6 The Propagation of Cosmic-Rays

1.6.1 Deflection by Magnetic Fields

To reach Earth, cosmic-rays must travel through the galactic magnetic field and, if

from an extragalactic source, through extragalactic magnetic fields. The amount

a charged particle is deflected by is dependent on its charge, energy, magnetic field

strength and angle to the magnetic field. Lower energy cosmic-rays are deflected

more than higher energy cosmic-rays. Likewise, heavier nuclei are deflected more
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than lighter nuclei due to their greater charges. Photons are not deflected by

magnetic fields.

To calculate the magnitude of the deflection and so attempt to track a cosmic-

ray back to its source region, the strength, direction and coherence length - the

scale over which the magnetic field strength and direction are the same - of the

relevant field must be known. Unfortunately, relatively little is known about the

detailed magnetic field structure in our galaxy and even less about extragalactic

magnetic fields.

The nearby large scale structure of the magnetic field within the disk has

been probed using the rotation measures of pulsars and by observing the Zeeman

splitting of the 21 cm line in neutral hydrogen (HI regions). If the magnetic

field is parallel to the observer’s line of sight, the Zeeman effect is observed as

two circularly polarized components of the spectral line. In the case of neutral

hydrogen these components are separated by ≃ 28 GHz T−1.

Magnetic field lines in the Milky Way roughly follow the optical spiral arms

and are believed to reverse direction between them (36). This is known as the

Bi-symmetric spiral model and is illustrated in figure 1.5. The magnetic field

strength is thought to average 3µG and is stronger in localised areas such as star

forming regions. The coherence length of the galactic magnetic field is believed to

be of the order of ≃ 1 kpc. The coherence length and the strengths of small scale

fields are the main source of uncertainty when mapping the galactic magnetic

field. The magnetic field strength in the galactic halo is more difficult to observe.

However, it is believed to be approximately 1
10

of that in the disk and has an

orientation analogous to the magnetic field of a bar magnet placed at the galactic

centre, perpendicular to the galactic disk (36).

The gyro-radius of a charged particle of energy E, mass m and charge q in a

magnetic field B is given by:

r =
E

qv × B
(1.4)

Using current estimates for the galactic magnetic field strength a 1019 eV

proton travelling in the galactic disk will have a gyro-radius of approximately 10

13
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Figure 1.5: An illustration of the magnetic field lines in the disk of the Milky

Way Galaxy. The magnetic field lines (red arrows) roughly follow the spiral arms

(dotted lines) and reverse direction between them. Crosses represent positive

rotation measures, open circles represent negative rotation measures. Figure

from (36).

kpc, much greater than the disk thickness (100 pc), and suffers minimal deflections

(≃ 1◦ over the thickness of the galactic disk). In contrast, a proton of energy

1015 eV will have a gyro-radius of ≃ 1 pc - much less than the disk thickness.

Hence cosmic-rays with gyro-radii smaller than the size of the galactic disk cannot

be tracked back to their source region. Deflections of cosmic-rays in the galactic

halo are expected to be of the same order as those in the galactic disk for the

same energy.

Cosmic-rays from extragalactic sources will be affected by extragalactic mag-

netic fields. The extragalactic magnetic field strength has been estimated at

≃ 1 nG over a coherence length of 1 − 10 Mpc (37), providing significant deflec-

tions for cosmic-rays. A 1019 eV cosmic-ray proton propagating to Earth from a

distance of 3.8 Mpc (the distance to Cen A) is expected to be deflected by . 6◦

assuming a magnetic field perpendicular to the line of sight.
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1.6.2 The GZK Effect

The GZK effect is the interaction of cosmic-rays of energy greater than ≃ 5 ×
1019 eV with cosmic microwave background (CMB) photons and predicts the ex-

istence of UHECR photons and a steepening in the cosmic-ray spectrum (38).

The original model predicted a sharp cut-off in the spectrum, however it is now

believed to merely cause a steepening of the cosmic-ray spectrum (11). There are

several possible interactions involved in the GZK mechanism which depend upon

the specific cosmic-ray source composition. If the cosmic-rays at the source are

protons then interaction with the CMB will result in a ∆+ resonance that decays

after a mean rest frame lifetime of 10−23 s to a proton and a neutral pion:

p + γCMB → ∆+ → p + π0 (1.5)

After an average lifetime of 8.4 × 10−17 s, times the Lorentz factor Γ, the

resulting pion decays to two photons with a combined energy of ≃ 1
6

that of the

primary cosmic-ray proton.

The GZK mechanism also predicts the production of neutrons and charged

pions from the interaction of protons with the CMB, and the creation of neutrons

or protons and lighter nuclei from the photo-disintegration of heavier nuclei by

CMB photons (38):

p + γCMB → ∆+ → n + π+

A + γCMB → (A − 1) + n
(1.6)

Importantly, neither of these two interactions produce photons. Therefore the

only channel by which photons can be directly produced is the decay of the π0

in equation 1.5. Theoretically it is possible that a proton from the decay of a

neutron produced by either channel in equation 1.6 could have sufficient energy

to interact again with the CMB (as in equation 1.5), thereby producing photons.

However, the likelihood of this is small. The GZK effect is predicted to occur for

cosmic-rays above a threshold energy of ≃ 5× 1019 eV, assuming a CMB photon

energy of 10−4 eV.
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Many factors involved in the calculation of the flux of photons from the GZK

model are uncertain. First, the energy of the cosmic-rays at their source is un-

known and dependent upon the power of the source and the acceleration mech-

anisms involved (38). Second, the exact shape of the proton spectrum at the

source is uncertain. Third, the propagation distances of photons from the source

to the Earth vary due to further (energy dependent) interaction with the CMB

and radio background; the latter of which is also uncertain (38). Finally the

mass composition is unknown and likely to be a mixture of many different types

of nuclei, as implied by e.g. (39). Further, the CMB is a black-body spectrum at

2.7 K. This implies the possibility for the interaction of lower energy cosmic rays

(down to ≃ 3× 1019 eV) with the high-frequency tail of the CMB spectrum (11).

The observed steepening of the flux spectrum at 3 × 1019 eV is believed to

be evidence of the GZK effect (see figure 1.2). It could, however, simply be an

indication of a lack of sources capable of accelerating particles to higher ener-

gies. The detection of photons above the GZK threshold would imply a proton

component in the source spectrum, thus constraining the fraction of cosmic-ray

protons and the required size and magnetic field strengths of sources. Accurate

determination of the photon component of UHECRs would therefore provide an

indication of the nature of underlying acceleration mechanisms and improve our

understanding of potential sources.

The GZK horizon can be calculated as a function of energy for hadronic pri-

maries, thus limiting the range of possible source locations. A proton with energy

≥ 3 × 1019 eV detected at Earth cannot have travelled more than ≃ 100 Mpc,

otherwise interaction with the CMB would have occurred (11), (34). For an iron

nucleus this distance is approximately the same. The products of the GZK mech-

anism are able to further interact with the CMB and other background radiation

fields, provided their energy is still sufficient to do so. The interaction of a pho-

ton with a background radiation field creates electron-positron pairs. These are

free to interact again with background radiation fields, initiating an electromag-

netic cascade which propagates for several Mpc through the intergalactic medium.
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Figure 1.6 shows the propagation distance of UHECR photons as a function of

energy. The propagation distance of photons that interact with the optical, UV

and cosmic microwave background fields are relatively well quantified (40). Less

certain is the distance travelled by photons that interact with the radio back-

ground. To be observed on Earth, 1019 eV photons must therefore originate from

protons from sources much closer than 50 − 100 Mpc (40). The nearest radio

galaxies potentially capable of accelerating protons to energies above 1019 eV are

a few Mpc from Earth, of which Cen A is one of the closest.

Figure 1.6: The mean free path of UHE photons and protons as a function of

energy due to their interaction with background radiation fields (40). Dot-dashed

lines a, b, c and dashed lines 1, 2, 3 indicate predictions from different IR and

radio background models respectively.

UHE neutrinos are also expected to be created if the product of a GZK in-

teraction of a proton with the CMB involves a charged pion (equation 1.5). The

pion will subsequently decay to a muon and a muon neutrino. Further decay of
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the muon to an electron would produce two further UHE neutrinos:

π± → µ± + νµ(ν̄µ) → e± + νe(ν̄e) + νµ(ν̄µ) (1.7)

The interaction of a neutron with the CMB would also yield electron neutrinos

via similar particle cascades (41). No UHE neutrinos have been observed to date.

Upper limits to the UHE neutrino flux have been imposed using data from the

Pierre Auger Observatory (42).

1.6.3 Top-Down Models

Many theories involving ‘new’ physics, popular when AGASA was in opera-

tion, were created to explain the lack of a downturn in the cosmic-ray spec-

trum reported by AGASA (43). These models avoid the difficulties encountered

in ‘bottom-up’ acceleration models where the size of the acceleration region,

the magnetic field strength and energy losses experienced by the propagation

of cosmic-rays place serious constraints on the maximum attainable cosmic-ray

energy and fail to explain the most energetic cosmic-rays. Top-down models

include relic particle decays from super-heavy dark-matter (SHDM), topological

defects and the Z-burst model (44). A common theme is the decay or annihilation

of super-heavy (≥ 1022 eV/c2) hypothetical particles to produce large fractions

of photons and neutrinos above 1018 eV from nearby sources (e.g. ≥ 40% at

3× 1019 eV for SHDM) (45). As a result, top-down models predict a much flatter

spectrum and different particle composition above a few times 1019 eV compared

to the GZK mechanism (46).

Recent strong evidence (≥ 20σ) of the steepening of the flux spectrum above

1019 eV, combined with current constraints on the UHECR photon flux (47),

(48) makes the majority of top-down models unlikely at best, with only the Z-

burst model not yet excluded by limits to the flux and photon fraction. The

Z-burst model predicts photons from the interaction of UHECR neutrinos with

the massive (≃ 0.1 eV) relic neutrino background. Z-bursts are predicted close

to large concentrations of matter due to their gravitational attraction. Gamma-

ray photons are subsequently emitted from the decay of the Z0 particle (which
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has a lifetime of 10−25 s) creating relativistic beamed particles; a ‘Z-burst’ (49).

However, the necessary fluxes of ultra high energy neutrinos given in this model

are improbable given constraints from lower energy measurements with the LEP

(44).

Thus far no UHECR photons have been detected. Improved limits from the

accumulation of new data and the refinement of existing parameters capable of

distinguishing photon from hadron-initiated air showers will, in the near future,

begin to extend down into the predicted GZK-region and detections of photons

may be possible.

1.7 Physics of Air Showers

When an ultra high energy cosmic-ray impacts the Earth’s atmosphere it interacts

with atmospheric molecules creating particle cascades or ‘extensive air showers’

(EAS) which spread laterally over several square kilometres as they evolve. The

size of these particle cascades are dependent upon the energy and type of incident

primary particle. Cosmic-ray primaries with energy greater than 100 TeV are able

to produce cascades which penetrate down to sea level and thus can be observed

by ground based arrays. Due to the attenuation of particles in the atmosphere,

lower energy air showers do not reach ground level.

Key to the determination of the incoming primary particle type is the mea-

surement of observables that describe the significant differences between photon

and hadron-initiated air showers. These include: the depth of shower maximum,

the time spread of the shower, the shape of the shower front, muon content, and

the lateral spread of the shower. It is the aim of mass-composition studies, in-

cluding photon limit work, to distinguish different primary types using a variety

of different techniques. This is most easily done between hadrons and photons

where the differences are greatest. Thus far such differences have only been deter-

mined on an average basis, not on an event-by-event basis (47). The development

of photon and hadron-initiated air showers are described in the following sections.

19
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1.7.1 Photon Primaries

UHECR photons interact with the Earth’s atmosphere to form an electromagnetic

cascade. An electron-positron pair is created from the interaction of the primary

photon with electric fields in atmospheric nuclei after a mean free path length

λ = 37 g cm−2 has been traversed (9). The electron (or positron) will travel an

average distance d = X0ln2 (g cm−2), where X0 = 9/7λ is the radiation length,

before emitting photons via bremsstrahlung radiation. Bremsstrahlung photons

produced in air showers can, after travelling a further mean free path length λ,

produce electron-positron pairs which may in turn interact with nuclear electric

fields, emitting more bremsstrahlung radiation. This is illustrated in figure 1.7.

Figure 1.7: A schematic of the early stages of EAS development for a photon-

initiated cascade (Not to scale.) (50).

This process continues until the energy of a given particle falls below a crit-

ical energy ǫc, at which the rate of energy loss to particle production (from

bremsstrahlung processes) is equal to the rate of energy loss by ionisation. ǫc =

84 MeV for electrons in air. Particles whose energies fall below the critical energy
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1.7 Physics of Air Showers

continue to propagate towards the ground until they are either attenuated by the

atmosphere or impact the ground.

In this simplified model (the ‘Heitler model’), the number of particles pro-

duced in a photon initiated air shower after N interactions is ∼ 2N and each

particle has on average an energy E = E0

2N , where E0 is the initial energy of the

incident photon (51). Using more realistic, detailed models that include quan-

tum electrodynamics, the total number of particles in a 1018 eV photon initiated

shower is of the order of 1010 particles at shower maximum.

The depth of maximum, Xmax, is defined as the depth (in g cm−2) from the top

of the atmosphere to the point at which, on average across all shower particles,

the rate of energy loss by ionisation equals the rate of energy loss by interaction

(51). This is also the depth at which the number of particles in the cascade is

maximum. In this model, Xmax can be approximated by:

Xmax = X0 ln(Nmax) = 2.3X0 log10(
E0

ǫc

) (1.8)

where Nmax is the number of particles at shower maximum and X0 the radiation

length.

The depth of maximum increases almost linearly with log energy, at a rate of

≃ 85 g cm−2 per decade in energy, between 1014 and 1018 eV. This is illustrated

by the black line in figure 1.8. Whilst the ‘Heitler model’ is a very simplified

model to illustrate the concept of air-showers, full Monte-Carlo simulations of

photon initiated air-showers using QED theory are possible and have been used

to predict the elongation rate shown in figure 1.8.

Above 1018 eV the elongation rate (rate of change of Xmax with log energy)

increases rapidly until ≃ 1020 eV due to a process known as the LPM effect. The

LPM (Landau, Pomeranchuk and Migdal) effect is the suppression of the interac-

tion cross section for both pair production and bremsstrahlung radiation due to

quantum mechanical interference (52), (53), (54). Interaction cross sections de-

scribe the interaction probability, which relates directly to the interaction length.

Interaction lengths of photons with energies above ≃ 1019 eV are therefore longer

than at lower energies, hence shower particles interact less frequently with the
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Figure 1.8: The average depth of maximum simulated for photons, protons and

iron nuclei with energy. The top of the atmosphere is at 0 g cm−2 by convention.

The LPM and pre-showering effect are also labelled for photon primaries (see text

for definitions) (48).

atmosphere and so a deeper depth of maximum is achieved. This suppression

of the cross section is also theoretically possible for hadronic showers (54). The

energies at which the LPM effect is predicted to occur in hadronic air showers

is well in excess of 1023 eV, much higher than the energy of any cosmic-ray ob-

served to date; therefore only the LPM effect for photon initiated EAS need be

considered.

At energies larger than ∼ 1020 eV the elongation rate decreases again due to

pre-showering. Pre-showering can be thought of conceptually as an air shower

that begins early - well above the atmosphere. At energies above ∼ 1020 eV an

incoming photon can interact with the Earth’s magnetic field before reaching the

atmosphere, pair producing electrons and positrons. These electrons can then

interact with the Earth’s magnetic field. These two interactions can happen a

number of times before the top of the atmosphere is reached. Instead of one pho-
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ton of energy E0 initiating a shower at the top of the atmosphere, N simultaneous

photon and electron initiated showers each of energy ≃ E/N are created. The

result of pre-showering is to reduce the depth of maximum (55). Pre-showering

cannot happen for hadronic primaries.

Photon initiated showers are dominated by secondary photons and electrons

in the approximate ratio 10:1. The production of muons from the interaction

of photons with protons in atmospheric nuclei via the creation of neutrons and

charged pions is also possible:

p + γ → n + π+ → n + µ+ + ν̄ (1.9)

However, this is suppressed by a factor of more than 200.

1.7.2 Hadronic Primaries

The development of hadronic showers in the atmosphere is substantially different

to that of photons. A proton interacts in an inelastic collision with atmospheric

nuclei, losing about half its initial energy and producing pions (see, for example,

(51) for a simple introduction). On average equal numbers of all three types of

pions are produced. A leading particle carrying most of the initial proton’s energy

is also produced, which can continue to interact with atmospheric nuclei, produc-

ing more pions. This process continues until the energy of the leading particle

falls below the critical energy for pion production (ǫc = 140 GeV). Typically for

a 1018 eV primary particle around 1012 secondaries are produced.

Resulting neutral pions (π0) decay after a mean lifetime of 8.4× 10−17 s times

the Lorentz factor, Γ to pairs of photons which then initiate electromagnetic sub-

showers as described in section 1.7.1. These sub-showers will continue to cascade

until the energy losses due to ionisation exceed those due to bremsstrahlung, when

particle multiplication stops and attenuation dominates. The average energy of

the photons which initiate each sub-shower can be approximated by:

Eγ =
κE0

6Nπ

(1.10)
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where E0 is the energy of the primary particle, Nπ is the number of pions and κ

is the inelasticity (51).

Charged pions can interact again with atmospheric nuclei (with an interaction

length of λI = 120 g cm−2) to produce hadronic sub-showers consisting primarily

of lower energy pions. Pions can also decay to muons in a mean rest-frame lifetime

of 2.6 × 10−8 s. At ground, the average ratio of photons to electrons and muons

is 100:10:1 for hadronic EAS. The muonic component is thus substantially larger

for hadronic than for photon initiated showers, with approximately 10% of the

primary particle energy converted to muons and neutrinos whilst the remainder

goes into the electromagnetic component (56).

This model for proton primaries can be extended to heavier nuclei. The

development of a cascade initiated by a nucleus with A nucleons and energy E0

can be approximated by A simultaneous proton-initiated showers of initial energy

E0

A
. Using this assumption, the depth of maximum for a hadronic primary can

be approximated by (51):

Xmax = λI + 2.3λrlog10(
κE0

6ANπǫc

) (1.11)

where λI = 80 g cm−2 is the interaction length of a proton.

From equation 1.11 it can be seen that Xmax, and hence the elongation rate,

depends upon the mass of the primary particle. Therefore a change in the elonga-

tion rate implies a change in the mass of the primary particle, assuming that the

interaction cross section and particle physics does not change significantly at high

energies (39). Figure 1.8 shows different model predictions for the elongation rate

of both iron and proton initiated cascades. These predictions have been obtained

from full Monte-Carlo simulations of hadronic EAS.

The above description for the development of hadronic air showers is a good

general description but contains a number of simplifications. Detailed models,

however, do not exactly match data for a number of reasons. Firstly, the proton-

air interaction cross section is not known at these energies and has been ex-

trapolated from collider data for much lower energy (proton-proton) collisions.

Secondly, the pion multiplicity Nπ and the inelasticity κ are not well known due
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Figure 1.9: A schematic of the early stages of EAS development for a cascade

initiated by an iron nucleus (Not to scale!), Image credit: Bernlöhr 1999.

to discrepancies in the fine details of hadronic interaction models. Measurements

with the LHC, in particular the LHCf experiment which studies the interaction

of neutral particles in the forward direction, will increase our understanding of

these parameters at higher energies and constrain current interaction models at

energies of order 1017 eV (
√

S = 104 GeV).

For both hadronic and photon-initiated showers, the different geometries of

each interaction cause the shower to be spread both laterally and in time. As a

result, the leading edge of the shower (the shower front) is close to spherical about

the shower axis. The lateral distribution, time-spread of the shower particles

and curvature of the shower-front can be measured and have been shown to be

sensitive to the mass of the primary particle. Each of these observables will be

discussed further in chapter 2.
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1.8 Cosmic-Rays: The Unanswered Questions

The field of cosmic-ray astrophysics is varied and complex. The energy spectrum

is roughly power-law in shape and covers 12 orders of magnitude. A steepening of

the spectrum is observed at around 3× 1019 eV which could indicate the coveted

GZK effect (57). Concerning the highest energy cosmic-rays, the composition

both at source and at Earth are uncertain, although recent results imply a mixed

composition above 3 × 1018 eV, provided our current understanding of particle

physics is correct (39).

Three major factors indicate that our understanding of the underlying parti-

cle physics is inadequate. Model predictions currently significantly underestimate

(≃ 20%) the muon content of hadronic EAS. The energy reconstructed using

(calorimetric) fluorescence detection techniques is also less than the true energy

of simulated showers. Finally, recent data from the LHC indicates that our knowl-

edge of particle production mechanisms, including interaction cross-sections, is

far from complete.

If the sources of cosmic-rays lie within the nearby universe - within the GZK

horizon for example - and have a primarily proton-dominated composition, then

an anisotropic distribution of UHECRs is expected. A heavier composition will

incur more deflections within galactic and extragalactic magnetic fields and there-

fore a more isotropic distribution is expected. Determination of the composition

may enable the extent of the deflections in galactic and extragalactic magnetic

fields to be estimated and provide better constraints on the sources of ultra-high

energy cosmic-rays. The detection of a photon component above 1019 eV, and the

determination of the photon flux will determine whether or not the GZK effect

exists as predicted. Until then, limits imposed on the photon flux will constrain

some of the more exotic models for their creation. The improvement of mass-

sensitive parameters and the addition of a larger data set to impose new limits

on the photon fraction forms the focus of this thesis.
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Chapter 2

The Pierre Auger Observatory

2.1 Introduction

Located in Malargüe, Argentina, at an altitude of 1.4 km (atmospheric depth

875 g cm−2), the Pierre Auger Observatory consists of 27 fluorescence telescopes

(FD) at four locations overlooking an array of 1660 water-Cherenkov detectors

(SD) covering an area of 3000 km2. The Observatory also includes extensive

atmospheric monitoring equipment necessary for calibration and the reduction

of measurement uncertainties. The layout of the Observatory and the nearest

principal town are shown in figure 2.1. Over 300 scientists from 19 countries

form the Pierre Auger Collaboration.

The Pierre Auger Observatory was designed to study the flux, mass compo-

sition and arrival directions of cosmic-rays above 1018 eV with high statistical

precision (58). Air showers detected simultaneously by both the fluorescence and

surface detectors (hybrid events) can be used to obtain a high-quality data set

with better core position reconstruction, energy and Xmax than FD or SD mea-

surements alone. Additionally, the high-statistics provided by surface array data

can be used on its own. This makes the Pierre Auger Observatory a unique hybrid

detector. The large area covered by the Observatory is beneficial for the detec-

tion of small fluxes of UHECRs and the accumulation of unprecedented statistics.

Data taking started in January 2004 with completion of the array in June 2008.
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2. The Pierre Auger Observatory

Figure 2.1: The layout of the Pierre Auger Observatory. Closed circles indicate

the position of 1600 surface detectors covering an area of 3000 km2 (shaded blue).

Green lines indicate the field of view of each fluorescence telescope. The nearest

principal town, Malargüe, is shown in the bottom left hand corner. Extensions to

the original design (AMIGA, HEAT, AERA) and atmospheric monitoring stations

are not shown.

Since 2009 a number of new components have been added to study cosmic-

rays down to 1017 eV, including a muon scintillator and water-Cherenkov infill

array (AMIGA), three high elevation fluorescence telescopes (HEAT) and an

engineering radio array (AERA). These components are still in the construction

and initial data taking phases (see references (59), (60) and (61) for more details).

The two main components of the Pierre Auger Observatory and some important

recent results are described in this chapter.
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2.2 The Fluorescence Detectors

Electrons within atmospheric nitrogen molecules are excited by passing charged

secondary cosmic-ray particles. The de-excitation of these electrons causes flu-

orescence light photons to be emitted. Nitrogen fluorescence light is emitted

isotropically at a number of discrete wavelengths between 300 and 400 nm (near-

UV) corresponding to the molecular band structure of nitrogen (62). Fluorescence

telescopes are used to detect this light.

Each fluorescence telescope consists of a 1.7 m diameter diaphragm with a ring

of Schmidt optic corrector elements attached to the outer edge. This increases

the effective aperture to 2.2 m. A 300 − 400 nm (UV) filter located behind the

diaphragm blocks out unwanted ambient background light, thus increasing the

signal to noise ratio. Fluorescence light is collected by a 3.5 m× 3.5 m segmented

mirror focused onto a camera containing 440 hexagonal photomultiplier tubes

(PMTs). Each PMT is 45 mm in diameter and has a quantum efficiency of ≃ 25%.

A schematic of a fluorescence telescope is shown in figure 2.2. Each telescope

is housed in an individual bay within the associated FD building and can be

operated and monitored either on-site or from a control centre in Malargüe.

(a) (b)

Figure 2.2: Left: Photograph and Right: A schematic of a fluorescence telescope

(58).
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The four FD sites are located on hills between 40 and 150 m in elevation at

the edge of the array. Each fluorescence telescope has a field of view of 30◦ × 30◦

and an elevation of 2◦ above the horizontal (63). Fluorescence light signals in the

PMTs are digitised using a Fast Analogue to Digital Converter (FADC) with a

readout rate of 10 MHz. Prior to the energy and direction reconstruction, a second

level trigger requires groups of at least 5 adjacent PMTs to be triggered in close

succession. A third level trigger, T3, selects shower candidates and performs

a quick preliminary reconstruction to eliminate false triggers from background

objects such as stars. If the T3 reconstruction is good, the data are sent to the

Central Data Acquisition System (CDAS) and stored. At this stage information

from the surface array can also be included to form a hybrid event. An example

of a fluorescence light profile and an image of a cosmic-ray track are given in

figure 2.3.

(a) (b)

Figure 2.3: Left: Image of a fluorescence light track observed by two adjacent

telescopes. Colours show the time evolution of the shower across the camera from

purple (early) to red (late). Right: The corresponding longitudinal profile with

a Gaisser-Hillas fit (red line). The shower energy is derived from the integrated

energy profile and Xmax is given by the position of the peak. By convention, the

top of the atmosphere is at 0 gcm−2
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2.2.1 Fluorescence Energy and Xmax Reconstruction

The intensity of light in each pixel as a function of time and position on the camera

is used for the geometrical reconstruction of the shower and determination of the

shower energy and depth of maximum. This is a two-stage process. The geometry

of the shower axis with respect to the camera plane and the core location on the

ground are identified from the light track across the camera. Timing information

is used to determine the distance to the shower axis, Rp, the orientation of the

shower axis to the camera, χ0, and the time of closest approach to the telescope,

t0, by fitting to the function:

ti = t0 +
Rp

c
tan(

χ0 − χi

2
) (2.1)

where ti is the trigger time (time of arrival of the light) and χi the viewing

direction of the shower from the ith pixel (figure 2.4) (58).

Figure 2.4: Schematic illustrating the geometrical reconstruction of an air shower

observed by the fluorescence detectors (see text).

The energy deposited as a function of atmospheric depth is determined from

the FADC traces for each camera pixel. Corrections are made for Cherenkov light

contamination and Mie/Rayleigh scattering. These corrections depend upon the
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shower geometry relative to the telescope and have a systematic uncertainty of

10%. The energy carried by neutrinos and muons must be accounted for when

estimating the total shower energy. Corrections for this ‘undetected energy’ are

estimated to be of the order of 15 ± 5% (63).

The corrected longitudinal energy deposit profile is then fitted with a Gaisser-

Hillas function, the tail of which may be extrapolated for very deeply penetrating

showers that reach the ground shortly after shower maximum. The shower energy

is proportional to the integrated signal multiplied by the fluorescence yield and

is independent of the shower development and primary type:

E = Fy

∫

SdX (2.2)

where E is the total shower energy in eV, S is the fluorescence signal for a given

depth dX and Fy is the fluorescence yield in units of photons per electron per

metre.

The fluorescence yield is dependent on atmospheric conditions and the wave-

length of light received and is given by:

Fy = ǫλ(ρ, T )
λρair

hc

dE

dX
(2.3)

where ǫλ(ρ, T ) is the fluorescence efficiency for a given wavelength λ as a function

of atmospheric density and temperature, ρair is the density of air and dE
dX

is the

energy deposit at a given depth (63). The fluorescence yield is of the order of 5

fluorescence photons per metre per ionising particle (64). This gives a calorimetric

estimation of the shower energy. The depth of shower maximum, Xmax, is also

determined directly from the longitudinal profile and is the atmospheric depth

at which the fluorescence signal (and hence the number of secondary particles) is

largest.

Due to the small flux of fluorescence light, fluorescence detectors only operate

during moonless nights. Minimal cloud cover is required to reduce atmospheric

absorption. Given these requirements, the duty cycle of the fluorescence de-

tectors is limited to ∼ 12%. The major advantages of the calorimetric energy
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reconstruction, the ability to determine Xmax directly and the calibration of the

surface detector energy reconstruction using hybrid events outweighs the limited

performance time.

2.2.2 Fluorescence Detector Calibration and Atmospheric

Monitoring

Calibration of the fluorescence detectors is performed in two ways: a drum cali-

bration and a sequence of dedicated telescope calibration runs. The ‘drum calibra-

tion’ is performed by placing a diffuse light source over each telescope diaphragm.

The ratio of the detected to emitted light intensity is used as an absolute cali-

bration to determine the detector response (signal from the PMTs) as a function

of light intensity (65) and is performed only once every few years.

Prior to each night of telescope operation, three dedicated calibration runs are

performed. A 375 nm wavelength light source is directed in turn from the mirror

centre onto the camera (Cal. A), from the camera edges onto the mirror (Cal.

B) and from behind the camera onto reflective targets on the inner shutter edges

(Cal. C). The total charge detected by the camera from each of these calibration

runs is compared to the drum calibration to determine the performance of the

telescopes during each shift.

A detailed understanding of the atmosphere above the Observatory is critical

for the accurate reconstruction of shower parameters. The development of an

air shower depends on the atmospheric density and temperature, both of which

evolve as a function of altitude and the time of day and year. Further, both

nitrogen fluorescence and Cherenkov light undergo Mie and Rayleigh scattering,

the extent of which is critical for the energy reconstruction.

Atmospheric monitoring is performed by back-scatter Light Detection and

Ranging (LIDAR) stations (adjacent to each FD building) and the Central Laser

Facility (CLF) to ensure that the most up-to-date information on the local at-

mosphere is available (66). Installed at the centre of the array, the CLF shines
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laser light into the atmosphere at a predetermined sequence of zeniths and di-

rections every hour throughout telescope operation. The reconstructed direction

and energy is compared to the laser output and direction. Typically there is

a discrepancy of ≃ 15% in energy due to scattering and absorption (65). CLF

‘shot’ timing is used to calibrate the GPS timings of the fluorescence and surface

detectors.

Similarly, a beam of laser light is directed into the atmosphere from the LI-

DARs at periodic intervals. The intensity of the returning light collected by the

LIDAR mirrors as a function of time is compared to the laser output and used to

quantify optical transmission conditions in the vicinity of the fluorescence detec-

tors (67). Infra-red cloud cameras and meteorological weather stations are also

used to measure conditions at each FD site.

2.3 The Surface Array

The surface array comprises 1600 water-Cherenkov detectors spaced 1.5 km apart

in a hexagonal arrangement. Much of the technology used for the surface detec-

tors was pioneered at the Haverah Park Array which operated in the UK between

1968 and 1987 (68). Each detector consists of a cylindrical, rotationally-moulded

polyethylene tank 1.5 m in height and 3.6 m in diameter, giving a surface area

of 10 m2 for the top of the tank. Twelve tonnes of purified water are contained

within each tank, inside a Tyvek liner. The purpose of the Tyvek liner is twofold:

as a water-tight container to seal out external light; and to reflect and diffuse

Cherenkov light created within the detector, which it does with ≃ 98% efficiency.

Three 22.5 cm (9′′) hemispherical PMTs situated at the top of the detector point

down into the water to collect Cherenkov light. Signals from both the anode and

the last dynode in each PMT are extracted and digitised using FADCs with a

sampling rate of 40 MHz. The signal is amplified 32× between the anode and last

dynode (58).

Each station is equipped with its own power supply in the form of a 12 V

battery recharged by two solar panels mounted on top of the tank. GPS units
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at each detector establish the timing of the FADC signals with a resolution of

7.2 ns. A radio antenna transmits signals to a communications tower situated at

the nearest FD site. Signals are then relayed to the Central Data Acquisition

Station (CDAS). A photograph and schematic of a surface detector are given in

figure 2.5.

(a) (b)

Figure 2.5: Left: Photograph of a surface detector (foreground) and the Los

Leones fluorescence detector building and a communications tower (background).

Right: Schematic illustrating the components of a surface detector and the path

of Cherenkov light within the detector.

Cherenkov light inside the surface detectors is reflected and diffused off the

Tyvek walls several times prior to entering the PMTs. This spreads the signal

from an individual particle in time. Signals from surface stations are converted

into units of VEM. A VEM (Vertical Equivalent Muon) is defined in both ‘peak’

and ‘charge’ units. A ‘Peak-VEM’ is the signal deposited by a vertical muon

in one time-bin of a single PMT (from the dynode signal). A ‘Charge-VEM’ is

the integrated signal, averaged over all 3 PMTs, produced by a muon travelling

vertically through the entire depth of the tank and is equivalent to 240 MeV.

Unless otherwise specified, ‘VEM’ refers to ‘Charge-VEM’.

Surface station electronics include programmable logic devices used to deter-

mine whether local trigger conditions have been passed. The trigger system for
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the surface array is a five-step process and is independent of the FD trigger sys-

tem. The first level, the T1 trigger condition, is local to the detector and requires

that either at least 1.75 Peak-VEM is recorded in any one time-bin for all three

PMTs in a tank (Single Trigger Condition, STC), or that the signal remains over

0.2 VEM in any 12 out of 120 time bins (0.3 µs in every 3 µs time window) for

at least 2 PMTs (Time Over Threshold, ToT) (58). The single trigger condition

results in a trigger rate of ≃ 100 Hz while the ToT condition gives a rate of 1.6 Hz.

All T1 ToT triggers and any T1 STC triggers over 3 VEM are promoted to the

second trigger level, T2.

A ‘T2’ trigger is used to alert the central computer to a potential air-shower

signal. On receipt of a T2 trigger, a search is made for similar triggers coincident

within ±25 µs from nearby stations, including adjacent and second- or third-

nearest neighbours (69). If three or more time and spatially correlated triggers

are received, the T3 trigger condition is passed and 20µs of signal, including 6µs

prior to the trigger time, are sent from the stations concerned and stored by the

CDAS computer (58). Two example FADC traces are shown in figure 2.6.

(a) (b)

Figure 2.6: Examples of typical FADC traces. Left: from an event with a zenith

angle of 5◦ and Right: from an event with a zenith angle of 43◦. Both traces

are from stations approximately 1 km from the shower core and from events with

similar energies.
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2.3 The Surface Array

The remaining two trigger levels are ‘off-line’ triggers. The T4 trigger ensures

that the event geometry, core position and energy can be satisfactorily recon-

structed by checking the configuration of detectors within the event. For vertical

or near-vertical events, at least 3 ToT stations must be arranged in triangular

configurations and not separated by un-triggered detectors. For more inclined

events, this requirement increases to a minimum of 4 ToT stations. Aligned con-

figurations (i.e. detectors in a straight line) are not flagged as T4 and hence are

not used in the standard analysis, regardless of the number of triggered detectors

(58). Examples of allowed trigger configurations are given in figure 2.7.

Figure 2.7: Allowed configurations of triggered detectors for the T4 trigger. Top:

Configurations of 3 triggered detectors. Bottom: Configurations of 4 triggered

detectors. Symmetrical transformations of these configurations are also valid.

Finally, a physics-level trigger (T5) is used to select a subset of high-quality

events for further analysis. The reconstructed core position must be within the

triangle created by the three stations with the largest signals, these three stations

must not be on the edge of the array and the station with the largest signal must

be surrounded by at least 5 fully operational neighbouring detectors at the time

of the event. Stations passing this criteria are flagged 5T5 or 6T5 (58).
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2. The Pierre Auger Observatory

2.3.1 Calibration of the Surface Detectors

Atmospheric muons provide a well-understood background that can be used to

calibrate stations across the entire array (70). The signal deposited by one vertical

muon traversing the full depth of the detector, and the response of this in the

electronic readout, is compared to that from scintillators placed centrally above

and below one of the surface detectors. Coincidence measurements from the

scintillators are used to select muons that traverse the full depth of the detector.

The response from the PMTs inside the surface detector is then compared to the

signal from the scintillators to determine the average response from a (240 MeV)

vertical muon. The PMTs in each detector are gain-matched by adjusting the

voltage supplied until the trigger rate above a threshold of 3 VEM is stable at

100 Hz. Evolution of the gain is monitored using deviations in the T1 (STC) rate.

For individual PMTs that drift away from the expected trigger rates, the local

station computer can be used to recalculate an internal PMT-specific definition

of a VEM and so correct for the deviation.

The Peak-VEM (from the dynode signal) and Charge-VEM (integrated over

500 ns) are monitored and stored for all signals that just pass the T1 single trigger

threshold (peak signal = 1.75 VEM). From their ratio the charge associated with

1 VEM is calculated. For signals between 8 and 20 VEM, the integrated dynode

to anode ratio is calculated for cross-calibration purposes. A small number of

‘twin tanks’, located 11 m apart, are used to measure the GPS timing resolution

and fluctuations in air-shower signals (58).

The evolution of T2 triggers with time and position is used for array monitor-

ing (71). Unusually low or high T2 trigger rates indicate detector malfunctions,

detector off-time for scheduled maintenance, communications or power failure,

and computer error. Events recorded during such periods are flagged as ‘bad

period’ events and can be discarded in off-line analysis. The growth of the array

as a function of time (until June 2008) and fluctuations in the trigger rate due

to weather effects can also be seen. This has to be taken into account when

calculating the active array area and hence the aperture.
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2.3 The Surface Array

2.3.2 Core Position and Energy Reconstruction

The shower geometry of a surface event is reconstructed from the timing infor-

mation and then the core position and shower energy estimate are calculated in

an iterative procedure. A rough estimate of the core position is found within

the triangle bounded by the three stations with the largest signal. An initial

determination of the shower direction is made from the start-time information

in each detector, approximating the leading edge of the shower as a plane front.

From this, the zenith angle and direction with respect to geographic north can

be determined. The core location and axis direction are then refined in an iter-

ative manner assuming a spherical shower front. The actual shape of the shower

front is not precisely known: a spherical approximation is used for the geometric

reconstruction as this is more accurate than using a plane front. The angular

resolution of the surface array is better than 2.2◦ for events with three stations

and improves for larger multiplicities. The surface array is fully efficient above

3 × 1018 eV for events with incidence angles less than 60◦.

The energy deposited by shower particles as a function of distance (the lateral

distribution) can be found by fitting a modified NKG-type function of the form:

S(r) = S(ropt)(
r

ropt

)β(
r + 700

ropt + 700
)β+γ (2.4)

to the total signal S(r) in each detector as a function of distance r in the shower

plane from the core position (see figure 2.8). β and γ are θ-dependent slope

parameters and S(ropt) is the signal at a given reference distance.

The reference distance, or optimum distance as it is more usually known,

is the distance at which the fluctuations in the signal due to uncertainties in

the slope parameter β are smallest (≤ 5%). The optimum distance is primarily

dependent upon the array geometry with only a minor dependence (of the order

of tens of metres) on the energy and zenith of the shower and is ≃ 1000 m for the

Pierre Auger Observatory (72), although ropt can be up to several hundred metres

larger for showers with saturated stations. Saturated stations (S ≥ 800 VEM)

occur when the shower core falls very close to a detector, typically within 600 m.
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2. The Pierre Auger Observatory

(a) (b)

Figure 2.8: Left: The lateral distribution of an inclined shower and Right: the

corresponding layout of triggered detectors. The central detector in this event is

saturated and has been recovered.

Algorithms have been devised for the treatment of saturated stations to improve

the LDF fit and energy reconstruction. The recovered signal from a saturated

station is shown in figure 2.8. Hereafter ropt = 1000 m and S(ropt) = S(1000).

Due to the number of parameters involved in the reconstruction of surface

events, less than 7% can be accurately fitted with β and γ as free parameters

(72). Instead a parametrisation of the form:

β = − 3.35 − 0.125 lg(S(1000))

+ (1.33 − 0.324 lg(S(1000)) secθ

− (0.191 + 0.00573 lg(S(1000)) sec2θ

γ = 0

(2.5)

is used.

S(1000) is then converted to a reference signal S38(1000) by normalising to

the mean zenith angle of 38◦. This is done using the constant intensity cut

method (73), which involves the parametrisation of S(1000) as a function of

zenith angle for showers of constant intensity and accounts for attenuation in
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2.4 The Pierre Auger Observatory as a Hybrid Detector

showers of different incidence angles due to the depth of atmosphere traversed

(74).

The exact slope of the lateral distribution function (LDF) is dependent on the

zenith angle, energy and the mass of the primary particle as well as fluctuations in

the shower development. The LDF becomes flatter for showers at larger zeniths

as the shower has traversed more atmosphere (74). Less energetic showers have

a flatter LDF than more energetic showers as they are more developed. Photon-

initiated showers have a steeper LDF than hadronic ones, with iron-initiated

showers being the flattest. In principle the mass composition could be inferred

from the slope parameter β. In practice this is extremely difficult as an adequate

number of signals regularly spaced over a range of several hundred metres, thereby

allowing β to be fitted as a free parameter, is rarely achieved.

2.4 The Pierre Auger Observatory as a Hybrid

Detector

Previous experiments using surface arrays, for example the Haverah Park and

AGASA detectors, relied on air-shower simulations to estimate the shower energy

from S(ropt) (68). This leads to large uncertainties on the energy estimation due

to the extrapolation of particle physics from collider measurements well below 1017

eV. The hybrid functionality of the Pierre Auger Observatory permits calibration

via the calorimetric energies from fluorescence detector measurements using a

subset of high-quality hybrid events.

Hybrid events are those observed simultaneously by both types of detectors.

The estimated shower impact time and core position from the fluorescence event

are used to search for spatially coincident stations triggered within 20 µs of the

impact time. Signals from surface detectors that pass the T2 trigger and this

additional criteria are merged with T3-triggered fluorescence events to form the

hybrid event set (58). Construction of the hybrid set is performed off-line at the

end of each night of FD operation.
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Hybrid events are used to calibrate the shower energy reconstruction of the

surface array data. Fluorescence energy estimates are compared to S38(1000) for

well-reconstructed hybrid events with at least three triggered surface stations and

fluorescence energy EFD ≥ 3×1018 eV (figure 2.9). This relation is well described

by a power law of the form:

EFD = aSb
38 (2.6)

where a = (1.68 ± 0.05) × 1017 eV and b = 1.035 ± 0.009 and S38 is in VEM.

Figure 2.9: S38 as a function of reconstructed fluorescence energy for 839 well-

reconstructed hybrid events (73). The most energetic event has an energy of

approximately 75 EeV.

Determination of the shower geometry from fluorescence detector measure-

ments alone is not trivial and leads to large uncertainties on the core position.

Inclusion of a signal by at least one surface detector allows a much improved

determination of the arrival direction - to better than 1◦ (73). The detection of

a shower by fluorescence detectors at more than one site (a stereo event) will

improve the core position reconstruction but does not imply hybrid status.
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2.5 Review of Recent Results

2.5.1 The UHECR Energy Spectrum

The energy spectrum of events with incidence angles ≤ 60◦ has been determined

using hybrid events observed between November 2005 and September 2010 and

for surface array data taken between January 2004 and December 2010 (24). For

this period the surface array has an exposure of 20, 464 km2 sr yr, nearly four

times that of HiRes and seven times that of AGASA.

A suppression of the flux has been observed at energies greater than 2.9 ×
1019 eV. The slope of the spectrum has been determined from a broken power-law

fit to be α = 2.55 ± 0.02 below and α = 4.3 ± 0.2 above this energy (24). The

‘ankle’ is at 4.1× 1018 eV and appears more pronounced than in an earlier HiRes

result. The total systematic uncertainty in the energy reconstruction is estimated

to be 22% and the energy resolution is better than 16% (73).

This spectrum is shown in figure 2.10, multiplied by E3 to show the spectral

features. While there is a clear suppression above 3 × 1019 eV, it cannot be con-

clusively said that the GZK mechanism exists and is responsible for the observed

suppression. It remains possible that there is simply a lack of particles accelerated

to these, and higher, energies. Measurements of the anisotropy of cosmic-rays,

the correlation of arrival directions with nearby extragalactic sources and the

mass composition at these energies are required before further conclusions can be

drawn.

2.5.2 Correlation Studies

Protons and nuclei above 3 × 1019 eV are expected to interact with the CMB

via photo-pion or photo-disintegration processes (the GZK effect). This limits

their propagation distance to within ≃ 100 Mpc, hence limiting the number and

type of nearby sources. If the highest energy cosmic-rays are protons, they can

be tracked back to their sources as deflections by magnetic fields are small. A
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Figure 2.10: The combined hybrid and SD energy spectrum. The ankle and a

suppression at 3×1019 eV can clearly be seen in the discontinuous slope. A broken

power law fit (dashed lines) and a smooth power law fit (solid lines) are shown.

Appriximately 64, 000 events have been used (24).

correlation of the highest energy cosmic-rays with astrophysical objects may yield

clues as to their origins.

The correlation of the arrival directions of cosmic-rays with astrophysical ob-

jects within 75 Mpc has been investigated by the Pierre Auger Collaboration. In

reference (30), 14 of the highest energy events with zenith angles smaller than

60◦ detected prior to May 2006 (Period I) were used to perform an exploratory

scan to determine the optimal search parameters for a correlation to be observed.

The lower energy threshold (Emin), maximum distance from Earth (zmax) and

maximum angular separation (φ) between an AGN position and a cosmic-ray

arrival direction were determined. AGN in the 12th Veron-Cetty-Veron cata-

logue were used for this scan. The largest number of correlations were found for

Emin = 56 × 1018 eV, zmax = 0.018 and φ = 3.1◦. Events used for the exploratory
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scan were then excluded from further analysis and the above parameters applied,

in an a priori manner, to a further 13 events in the period from June 2006 to

August 2007 (Period II). Nine events were found to correlate, with 2.7 expected

from isotropy, corresponding to a chance probability of 1.7 × 10−3. Therefore it

was concluded that AGN may be the sources of UHECRs.

An update to the correlation study, given in (75), includes a further 42 events

to the end of December 2009 (Period III). Periods II and III have been combined

in the updated result. Events from period I are still excluded. Using the same

selection criteria found from the exploratory scan, 21/55 events now correlate with

AGN, with 11.6 expected from an isotropic distribution. The degree of correlation

has decreased from 69+10
−13% to 38+7

−6% with 21% expected from isotropy. Arrival

directions of events from all three periods are shown in figure 2.11 with AGN

from the VCV catalogue within 75 Mpc. The time-ordered correlation is shown

in figure 2.12. The five highest energy UHECR do not correlate with AGN from

this catalogue. None of the highest energy cosmic-rays appear to originate from

the galactic disk region, implying extragalactic origins.

This result must be treated with caution. First, the VCV catalogue used

is known to be incomplete and a more complete catalogue may yield a better

correlation. Second, cosmic-rays may not necessarily come from AGN but from

a collection of objects with a similar distribution on the sky. As the AGN in

the VCV catalogue trace out the matter distribution within the universe, this

is possible. Third, the mass composition and hence the degree of deflection of

cosmic-rays is still unknown. Finally, re-analysis of HiRes (which observes the

northern sky) data, found only 2/13 events correlated when using the same se-

lection criteria and does not corroborate the above results.

A similar study has been conducted on the same set of events using different

catalogues in an a posteriori manner (75). Galaxies from the 2MRS survey and

AGN from the 58-month Swift-BAT catalogue were used to identify possible

correlations. These catalogues also indicate the presence of anisotropy which

suggests cosmic-ray sources follow the distribution of matter in the local universe
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Figure 2.11: Hammer-Aitoff projection of the arrival directions (black dots) of

cosmic-rays with θ ≤ 60◦, and 318 AGN from the VCV catalogue within 75 Mpc

(blue points). The solid line shows the edge of the field of view of the Pierre

Auger Observatory. The blue shading indicates the relative exposure (darker =

more exposure). The exposure weighted fraction of these AGN is 21% (75).

- assuming minimal deflections by magnetic fields.

The number of events as a function of angular distance from Cen A has been

analysed and is shown in figure 2.13. The largest deviation from isotropy occurs

for events within an 18◦ radius of Cen A. Of the 69 events above 56 EeV, 13 lie

within 18◦ while 3.2 are expected from isotropy (75). Two of these events correlate

within 3.1◦ of Cen A. This indicates that either Cen A, or a source behind Cen A

such as the Centaurus cluster, may be responsible for a large fraction of UHECRs

arriving at Earth.

2.5.3 Large Scale Anisotropies

The transition of galactic to extragalactic cosmic-rays may create a dipole anisotropy

in the arrival directions of UHECR (76). The phase and amplitude of the first

harmonic modulation in the right ascension distribution have been measured

using two techniques - the East-West method and Rayleigh analysis. Well-

46

Chapter2/Chapter2Figs/EPS/VCVhammer.eps


2.5 Review of Recent Results

Total number of events (excluding exploratory scan)
10 20 30 40 50

da
ta

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

= 0.21
iso

p

Data

68% CL

95% CL

99.7% CL

Total number of events (excluding exploratory scan)
10 20 30 40 50

da
ta

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.12: The degree of correlation (pdata) of data from periods II and III

with AGN as a function of time. Shaded areas indicate 68.3%, 95.5% and 99.7%

confidence levels. The expected correlation from isotropic sources is 0.21 (dashed

line). The current correlation is 38+7
−6% (75).

reconstructed events with zenith angles less than 60◦ recorded between January

2004 and December 2009 have been used. The exposure of the array for this pe-

riod is 16, 323 km2 sr yr. Corrections for seasonal variations due to weather effects

have been made before applying the Rayleigh analysis to events above 1018 eV

detected by the surface array. The differential East-West method is applied to

events below 1018 eV (76).

If dipole anisotropy is present, a modulation in the arrival distribution of

UHECRs is expected with a period equal to one sidereal day. There is no evidence

for anisotropy from amplitude measurements but the phase indicates interesting

features as shown in figure 2.14. If the sources are isotropic, the phases should be

distributed randomly. However, there is a clear smooth transition with energy.

As the energy increases, the phase turns towards 90◦ from 270◦ (i.e. away from

the galactic centre location) and the uncertainty on this measurement decreases.

A transition in the phase could signal the transition from galactic to extragalactic

cosmic-rays. However, at least twice as many events are needed to clarify this
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2. The Pierre Auger Observatory

Figure 2.13: The cumulative number of events as a function of angular distance

from the direction of Cen A (black line). The white dashed line shows the ex-

pected isotropic value and the coloured bands indicate 68.3%, 95.5% and 99.7%

confidence levels. Thirteen events lie within 18◦ while 3.2 are expected from

isotropy (75).

measurement at a 90% confidence level (76). The predicted Compton-Getting

effect due to the movement of the solar system around the galactic centre would

give lower amplitudes than currently detectable, at about 0.6% with a phase of

168◦.

2.5.4 Mass Composition

The composition of ultra high energy cosmic-rays, and its evolution with energy,

are important to understand the origin of cosmic-rays, their acceleration and

propagation, and to clarify the origin of the ankle and cut-off. cosmic-rays could

be any mixture of nuclei. Contributions from photons and neutrinos have been

shown to be less than 2% at 1019 eV (42), (77).

The depth of maximum development is sensitive to the primary cosmic-ray

composition and can be measured directly by the fluorescence detectors. Figure
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Figure 2.14: The phase of the first harmonic as a function of energy from two

different analysis methods: The East-West (blue dots) and Rayleigh analysis (red

dots). The dashed line is an empirical fit (76). The galactic centre is at a phase

angle of 268.4◦.

2.15 shows the evolution of Xmax and its fluctuations with energy. Predictions

from iron and proton simulations are shown for comparison. These results im-

ply that the composition changes with energy from proton-dominated to iron-

dominated (39). However, the models used in this work describe only a small

subset of possible extrapolations from accelerator data at lower energies. These

models have large uncertainties surrounding them and a change of model, for ex-

ample due to an unexpected change in the interaction cross section, multiplicity

or inelasticity, may yield a vastly different interpretation. These results have yet

to be verified by other collaborations (for example, the Telescope Array) or using

other mass-sensitive parameters deduced from surface array measurements.

2.5.5 Neutrino Limits

Neutrinos are not deflected by magnetic fields and so their arrival directions at

Earth can be used as a tracer for cosmic-ray sources. UHE neutrinos are expected
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(a) (b)

Figure 2.15: Left: Average depth of shower maximum (Xmax) and Right: Fluc-

tuations in Xmax as a function of energy using data from 2004 to 2009 inclusive

(black points). Expectations from proton (red lines) and iron (blue lines) simula-

tions are also shown. A transition from predominantly protons to heavier nuclei

is seen in the data above 4 × 1018 eV (39).

from the decay of charged pions produced in interactions of protons with the CMB

and of cosmic-rays within their source regions. Predicted neutrino fluxes are very

uncertain as they depend strongly on the primary source composition but are

expected to be of the order of 1% of the UHECR flux (78).

Although not a dedicated neutrino experiment, the Pierre Auger Observatory

is sensitive to neutrino-initiated air showers. Neutrino-initiated EAS will be ob-

served as very inclined (θ ≥ 75◦), very deeply penetrating showers with a large EM

component compared to proton showers at this slant depth, and caused by down-

going neutrinos or by Earth-skimming (up-going) tau neutrinos. Such showers

are expected to have a large electromagnetic component, large asymmetry and

broad time-structure compared to very inclined hadronic showers. However, de-

tection of neutrinos against the background of cosmic-rays is challenging. Limits

have been placed on the flux of UHE tau neutrinos at 9× 10−8 GeV cm−2 s−1 sr−1

(42). This limit is about an order of magnitude larger than the predictions for

GZK neutrinos. No UHE neutrinos have been detected to date.
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2.5.6 Photon Limits

The fraction and flux of photon-initiated cosmic-rays for both FD and SD data

have been investigated using techniques that exploit the differences in photon and

hadronic air shower development (see section 1.7). Measurements of Xmax from

hybrid events satisfying a selection of fiducial cuts have been compared to the

predicted Xmax from simulations. The number of well-reconstructed events whose

Xmax are larger than the median value of the photon distribution were determined

for both the data and hadron simulations (77). Eight photon candidate events

were found from the data in the lowest energy bin, within expectations from

the hadronic background. Conservative limits to the fraction of photons in the

cosmic-ray spectrum have been derived assuming these candidates are photons,

yielding a photon fraction of 3.8%, 2.4%, 3.5% and 11.7% at 2, 3, 5 and 10 ×
1018 eV respectively (77). These limits disfavour the possibility of a large fraction

of cosmic-ray photons and hence the majority of top-down models.

Whilst these limits begin to constrain some top-down models at lower energies,

the larger statistics supplied by the surface array permit more stringent limits at

higher energies and exploration of the GZK region. Use of the surface array

data to this end is challenging as Xmax cannot be directly measured. Alternative

mass-sensitive parameters must therefore be used. Measurements of the photon

fraction using a combination of the shower risetime at 1000 m (t1/2(1000)) and

the radius of shower front curvature, both derived from SD timing information,

have allowed more stringent limits to be placed above 1019 eV (47).

The risetime is the time taken for the signal in a given detector to increase from

10% to 50% of the total signal in that detector (79). The risetime as a function of

distance from the shower core is therefore a measure of the spread in the arrival

times of shower particles from a fixed segment of shower evolution. Risetimes

were first shown to be a mass-sensitive variable in 1974 (79) and have since been

shown to correlate with Xmax (80). From geometric arguments, photon-initiated

air showers will have a larger risetime than hadronic showers of the same energy

due to their deeper development. Additionally, muons are scattered less than the
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electromagnetic component and so arrive earlier (see figure 2.16). Hence risetimes

from hadronic showers are expected to be shorter than those from photon-initiated

showers.

In (47), the risetimes in detectors where the signal is larger than 10 VEM have

been combined into one parameter describing each event - t1/2(1000) - using the

relation:

t1/2(r) = 40 + ar + br2 (2.7)

where 40 ns is the smallest measurable risetime in the water-Cherenkov detectors

due to the single particle response and a and b are free parameters particular to

each shower. t1/2(1000) is then the expected risetime at 1000 m.

Figure 2.16: Illustration of the concept of the risetime in relation to the mass-

composition. The deeper developing photon shower has a longer risetime than the

hadronic shower due to the time differences along different path lengths traversed

by particles at different stages of shower development (b + c > a). Blue lines

indicate the shower axis and black dashed lines show the relative position of

Xmax. The electromagnetic component (green dotted lines) arrives later than the

muonic component (red dashed lines) due to scattering.

The time residuals, tres, describe the difference between the arrival times of

the first shower particles and the arrival time of particles at the core of the shower

52

Chapter2/Chapter2Figs/EPS/Risetime_Illustration.eps


2.5 Review of Recent Results

at ground level. The curvature of the shower front is thus obtained from the fit

of a spherical function to the time residuals as a function of distance from the

shower axis, and is strongly related to the shower geometry. Particles created in

the early stages of air shower development form the leading edge of the shower,

which can be approximated as an expanding spherical shell. The radius of this

shell is the radius of curvature, denoted Rc, and is strongly influenced by the

depths of the first few interactions and the depth of shower maximum. Like the

risetimes, the curvature is sensitive to different primary particles, with photons

having a smaller radius of curvature (larger curvature) than hadrons.

Combining results from two or more mass-sensitive parameters may allow dif-

ferent primary particles to be more easily distinguished. In (47), photon limits

were derived using multi-parameter analysis techniques on the risetime and ra-

dius of curvature. No photon-like events were found and 95% confidence limits

were placed at 2%, 5.1% and 31% above 10, 20 and 40 EeV, respectively. The

limit at 10 EeV is ∼ 6 times smaller than that achievable with current FD data

due to the ∼ 10 times larger statistics from the surface array and the different

selection criteria used. These limits are shown in figure 2.17 for both FD and

SD data, together with the predicted contribution from four top-down models

and the GZK mechanism. Limits from previous experiments are also shown.

Systematic uncertainties on the reconstructed cosmic-ray energy and proton-air

cross-section, which would be severely affected by the presence of a substantial

photon component, are also reduced by these limits (77).

An upper limit to the integral photon flux has also been derived for the first

time in (47). A flux of 3.8, 2.5 and 2.2×10−3 km−2sr−1yr−1 has been found above

10, 20 and 40 EeV, respectively. These results strongly disfavour the possibility of

a significant photon fraction and hence most top-down models. Only the Z-burst

model and the GZK mechanism are not constrained (47).

With ∼ 3.5 times more statistics available since the SD photon limits were

first produced, coupled with an improved analysis technique (described in chapter

3), a significant improvement on the current limits can be made, such that the
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Figure 2.17: Upper limits to the photon fraction for the cosmic-ray flux above

1018 eV from different experiments: AGASA (A1, A2), AGASA-Yakutsk (AY),

Yakutsk (Y), Haverah Park (HP), Auger SD and Auger Hybrid (HYB). The

shaded region shows the expected GZK photon fraction (from (81)) and the lines

indicate predictions from different top-down models. Figure and caption adapted

from (77).

Z-burst model and GZK predictions can be probed.

2.6 Conclusion

The Pierre Auger Observatory has been taking data since January 2004. The

surface array of 1600 water Cherenkov detectors and the 24 fluorescence telescopes

were completed during 2008. This makes the Pierre Auger Observatory the largest

cosmic-ray detector in operation. The array exposure is now over 20, 500 km2 sr yr.

World-leading results have been published on all major science goals, including

mass composition and UHECR photon searches. Several extensions to the initial

design are now in the construction or initial data taking phase. Future results

are eagerly awaited.
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Chapter 3

A Method to Use Shower

Risetimes for Mass-Composition

Studies

3.1 Motivation

The measurement of the composition of ultra high energy cosmic-rays is an im-

portant area of cosmic-ray research. Knowledge of the composition will aid our

understanding of the origin, acceleration and propagation of UHECRs. Discrim-

ination between photon and hadron initiated showers is easier than between dif-

ferent hadronic primaries due to the larger differences in shower development.

Determination of the flux and fraction of UHECR photons will probe models

predicting their existence - in particular the GZK model. Current limits imposed

on the flux and fraction of UHECR photons already exclude many models for the

composition and origin of UHECR (47), (77). The challenge is to further restrict

photon flux limits such that the GZK region may be probed. A positive detection

of photons would move this research to exciting new levels.

A flux of photons greater than a few percent will bias the energy reconstruc-

tion of cosmic-rays, particularly at the highest energies. Due to their steeper

LDF and smaller number of secondary muons, photon-initiated showers yield a

much smaller signal (by up to 75% - as will be shown in chapter 4 for photon
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simulations) than hadronic primaries, thus affecting their energy reconstruction.

A second motivation to determine the flux of UHECR photons is therefore to

prevent the underestimation (by a factor ≥ 2) of UHE photon energies.

The direct measurement of Xmax and its fluctuations for the purpose of com-

position measurements (including the study of photons) is at an advanced stage.

While direct observation of Xmax is most desirable, the small duty cycle of the

FDs (≃ 12%) severely limits the available statistics, which is further reduced by

the strict quality cuts necessary for good observations. A mass-sensitive parame-

ter derived from surface detector measurements is thus required to investigate the

composition of this larger data set. Ideally such a parameter will also correlate

with Xmax so that results from the two parameters can be compared.

The focus of this thesis is on the shower risetime, t1/2, derived from surface de-

tector measurements. As the risetime is calculated for each individual detector, a

method of combining the risetime information into one parameter representing the

whole shower is necessary. Two such methods exist: the aforementioned risetime

at 1000 m (t1/2(1000)), from which photon limits have been found and published

(47); and the ‘〈∆〉-method’ developed in Leeds (28), (82). The 〈∆〉-method is

designed to reflect the differences in shower development more accurately than

t1/2(1000) via the determination of a benchmark representing the average risetime

as a function of distance for a given energy and zenith angle. 〈∆〉 is then the

average deviation of shower risetimes from this benchmark after accounting for

measurement uncertainties. A complete re-analysis of the 〈∆〉-method has been

undertaken and several substantial changes have been made to the original 〈∆〉-
method (detailed in (28)). These changes are described in detail in this chapter,

with comparison to the earlier work where appropriate.

3.1.1 Data Selection

Data from January 2004 to December 2010, which passes the 5T5 trigger condi-

tion and which is not part of a ‘bad-period’ (as defined in section 2.3), has been

used in this work. The period from March to November 2009 has been excluded
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due to a problem with the communications network across a significant portion of

the site, causing information from many stations to be lost, at random, resulting

in the possibility of incomplete and mis-reconstructed events (83). Only events

with energies greater than 3 EeV - above which energy the array becomes fully

efficient - have been used. In total, 48,324 good-quality SD events have been used

in this analysis - 3.5 times more events than were used in (28) and (82).

The Pierre Auger Observatory reconstruction software, ‘Offline’, is used to

reconstruct events as described in chapter 2. Several updates to the ‘Offline’

software have been implemented since the 〈∆〉-Method was developed. The most

relevant changes affecting this work have been to the definitions of the start and

stop-times of an air shower signal within the FADC trace, and to the baseline

subtraction algorithm. The version of Offline used in this work is version v2r7p2.

3.1.2 Calculation of Signal Start and Stop-times

In late 2009 a problem with the calculation of the risetimes using a new version of

the Offline software was observed (84). This was first observed as an unexpected

decrease in the 〈∆〉 parameter - the average difference in the risetime, after ac-

counting for measurement uncertainties, from a benchmark - with energy above

1019 eV. This was in conflict with results from earlier works (28), (82). Investi-

gation into the cause of this decrease indicated an underlying problem with the

calculation of the stop-times of shower signals and thus with the baseline, used

to estimate the heights of the FADC traces. This problem particularly affected

events where the low-gain FADC trace had been used due to saturation in the

high-gain signal (∼ 15% of all events). This problem has since been dubbed the

‘stop-time’ problem and is illustrated in figures 3.1 and 3.2.

Traces affected by the stop-time problem had anomalous risetimes, caused

by a miscalculation of the signal stop-time, leading to an overestimation of the

baseline and hence an underestimation in the total signal. This is illustrated in

figure 3.1 where it can be seen that the cumulative signal reaches maximum at
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Figure 3.1: The cumulative signal in a detector affected by the stop-time problem

(black points). Due to an incorrect stop-time and overestimated baselines, the

signal peaks at around 1000 ns and decreases thereafter. The total signal, 50%

and 10% of the total signal are marked for the peak signal (labelled ‘peak’) and

that calculated using the incorrect stop-times are shown. A 14 ns difference is

observed between the risetime calculated using the ‘total signal’ (‘Smax’, blue

lines) and that using the maximum signal (‘peak Smax’, red lines).

∼ 1.0 µs and then decreases thereafter. Figure 3.2(a) indicates the overestimation

of the baseline in this trace.

To appreciate why the stop-times were incorrectly calculated and the solution

to this problem, the way in which the start-time and baselines are calculated must

first be understood. The section(s) of the FADC trace containing the shower

signal are determined by systematically scanning the FADC bins searching for

‘segments’ and ‘gaps’. A shower ‘segment’ is defined as a set of Nseg consecutive

bins with signal greater than a threshold value Smin, separated by a ‘gap’ (‘flat’

section of trace) of Ngap bins with signal below Smin, as illustrated in figure 3.3

(85). The entire FADC trace is searched, from ≃ 250 ns prior to the recorded
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(a)

(b)

Figure 3.2: Example showing a portion of the baseline for a single PMT in one

detector. The FADC signal (red line), the baseline (blue line) and the sections of

signal used to calculate the baseline (green boxes) are shown. The upper and lower

panels show the baseline calculated using the old and new stop-times respectively.

A significant change in the baseline can be seen between ∼ 250 − 325 ns.

trigger time to the end of the trace, ≃ 6 µs later. The start-time is the position

of the first time bin in the largest segment - the only segment for the major-

ity of traces. The stop time is thus the end of the main segment. Secondary

segments are attributed to ‘accidental’ signal from e.g. coincident muons. The

‘gaps’ (sections of ‘flat’ trace surrounding each segment) are used to calculate the

baseline.

The baseline is that part of the FADC trace not directly attributable to the air

shower signal or coincident muons. The baseline is a combination of an artificial
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Figure 3.3: Determination of the start and stop times in an FADC trace by

determination of shower ‘segments’. The main shower segment in each example is

marked by vertical black dashed lines, secondary segments by vertical red dashed

lines. Sections of trace between segments are called ‘gaps’. The y-axis scale is

arbitrary in this illustration. Figure and caption taken from (85).

constant off-set from zero (thus allowing signal fluctuations to be measured),

fluctuations due to electronic noise and the undershoot. The undershoot is a

drop in the voltage that restores over time, is caused by high currents flowing

through the PMTs, and should be corrected for in a time dependent manner.
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In sections of ‘flat’ trace either side of a ‘segment’, the baseline is simply the

average of the recorded signal. The baseline corresponding to each ‘segment’ is

then an interpolation of the baseline between surrounding flat sections with a

time-dynamic correction for the undershoot, as illustrated in figure 3.2. If the

baseline is incorrectly calculated for one section of ‘flat’ trace then the interpo-

lation of the baseline and undershoot correction for adjacent segments will also

be incorrect. To correctly calculate the baseline, the correct start and stop times

must be found.

In detectors where the high-gain trace is saturated, the low-gain trace is used

to find the start and stop-times. Examination of such events highlighted the

incorrect determination of the stop-times. The tail of the event signal had mis-

takenly been included as part of the next ‘gap’ rather than part of a ‘segment’ in

both the low and the high-gain trace. The level of baseline to be subtracted was

therefore overestimated, creating negative signals in FADC bins towards the end

of the trace, thus underestimating the cumulative signal and the risetime. This

is illustrated in figure 3.1. The stop-time problem predominantly affected ≃ 15%

of signals in the highest energy events - where the low-gain trace had been used

- typically by ∼ 3% but by as much as 10% difference in signal in extreme cases

(84). The change in the magnitude of the risetimes is of the order of tens of ns.

Due to the complex nature of this problem, a solution has only recently been

found (84). Prior to this solution, a re-analysis of the risetime method described

in (28) was performed by the author and which made use of up-to-date software

but with the old stop-time and baseline algorithms. This interim work utilised

all data between January 2004 and July 2010 inclusive. It was shown that the

〈∆〉-method and results discussed in (28) could be satisfactorily reproduced.

A solution to the stop-time problem has now been found (84). Once the end

of a ‘flat’ section of trace is reached, the end of the previous ‘segment’ is checked

by working backwards through the FADC bins (using a lower signal threshold)

to ensure that the end of the signal has not been mistaken for part of the ‘flat’

trace. Where this does occur, the stop-time and the size of the ‘flat’ section are
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recalculated to ensure the tail of the signal is included in the signal ‘segment’. As

a result, the baseline is no longer overestimated (e.g. figure 3.2 (bottom panel))

and the risetime can be correctly calculated. Note that the equations governing

the baseline calculation and subtraction have not been altered but that the values

input into this calculation have changed. Figure 3.4 indicates the effect of using

the old and new stop-time algorithms on the cumulative signal.

The remainder of this chapter and the next will concentrate on new results and

important updates to the 〈∆〉-method utilising the new baseline and stop-time

algorithms.
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Figure 3.4: The cumulative signal found using the old (black points) and new

(blue points) stop-times for one detector. The total signal, 50% and 10% of the

total signal are marked for both results. A 29 ns difference is observed in the

risetimes. Note that the value of the ‘new Smax’ is not the same as that labelled

‘peak Smax’ from fig. 3.1 due to the re-calculation of the baseline and undershoot

correction.
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3.2 The 〈∆〉-Method

3.2.1 Direct Light Removal

In a number of detectors a significantly larger signal has been recorded in one or

two time bins in one PMT compared to the corresponding time bins for the other

two PMTs. This is known as ‘direct light contamination’ and is illustrated in fig-

ure 3.5(a). The reasons for direct light contamination are not fully understood.

Possible reasons include the edge of the Cherenkov light cone shining directly

onto a PMT (for very inclined showers), particles striking the PMT directly and

causing Cherenkov emission in the glass, after-pulsing in the PMT or Cherenkov

emission from electrons from the decay of muons such that the Cherenkov cone is

directly incident on the PMT. Any of these effects could cause a disproportion-

ately large energy deposit to be observed in just one or two time bins.

(a) (b)

Figure 3.5: An example of an FADC trace affected by direct light. Left: FADC

traces from the three PMTs. A large energy deposit is observed at ∼ 1.9 µs in

one PMT which is not observed in the other two. Right: The average time trace

for the same detector before (red) and after (black) direct light removal. Prior

to direct light removal, the total signal (averaged over all PMTs) was 582 VEM

and t1/2 = 255 ns. After direct light removal this reduces to S = 557 VEM and

t1/2 = 248 ns.
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An algorithm was created by C. Wileman to correct for direct light effects

(28). Direct light contamination is identified where the signal in a given time

bin for a single PMT deviates by more than 1σ above the corresponding bin

average for all three PMTs. The outlying signal in the affected time bin has been

removed and a new bin average calculated from the remaining signals (see fig.

3.5(b)). Direct light is found to occur in 88% of unsaturated detectors that record

a total signal S ≥ 15 VEM, although the change in the average signal after direct

light removal is less than 5% for the majority of cases. For detectors where the

change in signal is significant (≥ 5%), a spike of several VEM from late in the

FADC trace has been removed (e.g. fig. 3.5(a)). For a handful of these detectors

(< 1% of all detectors), one PMT has malfunctioned and records many times

the signal of the other two detectors in nearly every time bin (‘raining PMTs’).

This is equivalent to having direct light in nearly every time bin. The direct light

removal procedure effectively discards the malfunctioning PMT signal, allowing

an accurate risetime to be calculated from the other two PMT traces. In such

cases, the change in the PMT-averaged total signal can be as much as 200 VEM.

In detectors where one or two PMT traces are missing, direct light removal

cannot be implemented. Therefore the average of the signals from the remaining

PMTs are used. Direct light removal has been implemented throughout this

analysis.

3.2.2 Deconvolution

The FADC trace is a convolution of the time-spread from particles incident on a

detector with the time-smearing due to the multiple reflections of Cherenkov light

on the detector walls and the responses from the PMT and associated electronics.

This time-smearing is known as the single particle response (SPR) and is given

by (86):

S(t) = A(e
−t
67 − e

−t
13 ) (3.1)

where t is the time in ns and A = 1. The width of the SPR is ∼ 60 ns, with a

peak at ∼ 40 ns. The Gold Deconvolution Algorithm (GDA) was used in (28)
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and (82) to unfold the smearing, using the SPR, and obtain the time distribution

of the incoming particles, thus providing a more accurate determination of the

risetime. An example of an FADC trace before and after deconvolution is shown

in figure 3.6.

Signals close to the shower core and those for inclined events are affected most

by the deconvolution as the smearing due to the SPR dominates in fast risetimes.

The smearing from the SPR limits even the fastest risetimes to a minimum of

∼ 40 ns.

Figure 3.6: The average FADC trace from Event 762238 (158) before (red shad-

ing) and after (solid black) deconvolution.

Whilst the deconvolution stage was used in (28) and (82), concerns over the

necessity and stability of the GDA have led to its exclusion from the 〈∆〉-method.

The GDA requires that there are no negative signals in any time bin. With the

very first (pre-2008) baseline definitions - which were a simple subtraction of a

constant signal, negative fluctuations of the signal in individual time bins were

not possible. Due to the re-definition of the baseline to be a dynamic subtraction

(post 2008, with or without correct stop-times), it is now possible for baseline-
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subtracted signals to be negative in some bins due to signal fluctuations. To

comply with the constraints of the GDA will therefore introduce artificial signal

in some time bins, thus adversely affecting the risetimes.

Figure 3.7: Average risetimes as a function of distance for events from 01/01/2004

to 30/06/2007 with E ≥ 1018 eV, θ ≤ 25◦ and S ≥ 15 VEM. Risetimes before

(green) and after deconvolution (black) are shown.

The stability of any deconvolution routine is also a concern. Although the

GDA was chosen as the most stable routine, such routines are extremely sensitive

to errors in measured data and to statistical fluctuations. Further, uncertainties

on the SPR - a measured quantity - are not accounted for. Uncertainties due to

the GDA are therefore not quantifiable.

That the deconvolution stage has a significant effect only on fast risetimes

close to the shower core is clear from figure 3.7, which shows vertical events

recorded between January 2004 and July 2007. These results agree with those

in (28). Cuts on signals, distances and risetimes, as required by the asymmetry

correction and uncertainty parameterization later in the 〈∆〉-method (see sections
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3.2.3 and 3.2.4), virtually eliminate all risetimes for which the deconvolution plays

a significant part. Given this, the deconvolution stage has been removed - with

little effect on the overall analysis (≤ 10% change in 〈∆〉 for vertical showers).

This has an additional advantage in that a dramatic speed-up to this method

is achieved. A new cut on risetimes less than 40 ns (the average of the SPR) is

required. This changes the number of events by less than 50 (from a set of nearly

50,000 events) compared to when a 25 ns cut (equal to the FADC bin-width) was

used on the deconvolved risetimes.

3.2.3 Corrections for the Asymmetry in the Risetimes

The risetime-asymmetry is the change in the risetime as a function of azimuthal

angle about the shower core. Asymmetry occurs in inclined showers due to the

shower geometry relative to the ground and the development of the electromag-

netic component at different slant depths (87). The azimuthal position (ζ) of

a detector relative to the vertical projection of the shower axis on the ground

(ζ = 0◦) defines whether the detector is triggered before (early detector, small

azimuth) or after (late detector, large azimuth) the core hits the ground, as illus-

trated in figure 3.8.

The geometric component of the asymmetry is caused by the angle of the

shower with respect to the ground, the layout of the array with respect to the

shower core, the detector effective area seen by the shower particles and differences

in the path length of particles on either side of the shower. The attenuation of the

shower on different sides of the axis also gives rise to a component of asymmetry

in the risetimes. Electromagnetic particles incident upon a ‘late’ detector will

have traversed a greater depth of atmosphere than particles entering an ‘early’

detector. Therefore a smaller signal and risetime will be measured in the ‘late’

detector as more attenuation has occurred. A small geomagnetic component due

to deflections of muons and electrons in the Earth’s magnetic field is also present

(88).
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To quantify the effect of shower asymmetry on the risetime, the distribution of

risetimes as a function of azimuth for different bands of distance and zenith angle

have been found and fitted with a cosine function. An example of the asymmetry

for one zenith angle and seven distances is shown in figure 3.9. The magnitude of

the asymmetry is comparable to that in (28) for distances less than 1200 m but

∼ 10% smaller at larger distances.

The amplitude of the asymmetry (g), taken from the cosine fit to the risetime

with azimuth in figure 3.9, has a dependence on the distance to the shower core:

g = mr2 (3.2)

Figure 3.10 shows the asymmetry parameter m as a function of zenith angle.

The maximum asymmetry, at ∼ 42◦, is comparable to that found in previous

Figure 3.8: Schematic indicating the origin of the asymmetry in the risetimes of

inclined showers. Left: the path of particles on either side of the shower axis from

two different stages of development (red and blue lines) to detectors equidistant

from the core. Due to the shower geometry, particles on the right of the axis

have less far to travel and so arrive earlier than particles on the left. The angle

subtended by particles entering the ‘early’ station (α) (and, by implication, the

risetime) is larger than for particles entering the ‘late’ station (β). Right: top-

view indicating the azimuthal angle ζ with respect to the vertical projection of

the shower axis (thick line). Figures adapted from (82).

68

Chapter3/Chapter3Figs/EPS/AsymmetrySchematic1.eps
Chapter3/Chapter3Figs/EPS/AsymmetrySchematic2.eps


3.2 The 〈∆〉-Method

Entries  1525
 / ndf 2χ     91 / 70

f         0.5±   109 
g         0.7±  15.2 

ζ
-150 -100 -50 0 50 100 150

 (
n

s
)

1
/2

t

0
100
200
300
400
500
600
700
800
900 Entries  1525

 / ndf 2χ     91 / 70
f         0.5±   109 
g         0.7±  15.2 

 < 1.42θ sec ≤1.35 
 r < 600 m≤200 

Entries  1821
 / ndf 2χ   83.3 / 70

f         0.7±   162 
g         0.9±  31.8 

ζ
-150 -100 -50 0 50 100 150

 (
n

s
)

1
/2

t

0
100
200
300
400
500
600
700
800
900 Entries  1821

 / ndf 2χ   83.3 / 70
f         0.7±   162 
g         0.9±  31.8 

 r < 800 m≤600 

Entries  2157
 / ndf 2χ   47.3 / 70

f         1.1±   209 
g         1.5±  51.9 

ζ
-150 -100 -50 0 50 100 150

 (
n

s
)

1
/2

t

0
100
200
300
400
500
600
700
800
900 Entries  2157

 / ndf 2χ   47.3 / 70
f         1.1±   209 
g         1.5±  51.9 

 r < 1000 m≤800 
Entries  1476

 / ndf 2χ    108 / 70
f         1.7±   247 
g         2.4±  73.6 

ζ
-150 -100 -50 0 50 100 150

 (
n

s
)

1
/2

t

0
100
200
300
400
500
600
700
800
900 Entries  1476

 / ndf 2χ    108 / 70
f         1.7±   247 
g         2.4±  73.6 

 r < 1200 m≤1000 

Entries  604
 / ndf 2χ    257 / 70

f         2.4±   289 
g         3.3±    90 

ζ
-150 -100 -50 0 50 100 150

 (
n

s
)

1
/2

t

0
100
200
300
400
500
600
700
800
900 Entries  604

 / ndf 2χ    257 / 70
f         2.4±   289 
g         3.3±    90 

 r < 1400 m≤1200 
Entries  236

 / ndf 2χ    269 / 58
f         3.4±   342 
g         4.8±   130 

ζ
-150 -100 -50 0 50 100 150

 (
n

s
)

1
/2

t

0
100
200
300
400
500
600
700
800
900 Entries  236

 / ndf 2χ    269 / 58
f         3.4±   342 
g         4.8±   130 

 r < 1600 m≤1400 

Entries  79
 / ndf 2χ   19.5 / 8

f         11.9±   395 
g         18.8±   162 

ζ
-150 -100 -50 0 50 100 150

 (
n

s
)

1
/2

t

0
100
200
300
400
500
600
700
800
900 Entries  79

 / ndf 2χ   19.5 / 8
f         11.9±   395 
g         18.8±   162 

 r < 1800 m≤1600 

Figure 3.9: The average risetime as a function of azimuthal angle for showers at

zenith angles 1.35 ≤ secθ < 1.42 (42◦ ≤ θ < 45◦). Seven different distances are

shown. Each figure has been fitted with a function of the form t1/2 = f + gcosθ.

69

Chapter3/Chapter3Figs/EPS/Asymmetry_RTvsZeta_OneZenith_NewStopTimes.eps


3. A Method to Use Shower Risetimes for Mass-Composition

Studies

work (28), (89), (90). For showers inclined more than ∼ 50◦, geometric effects

dominate the asymmetry as the electromagnetic part is largely attenuated.
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Figure 3.10: The asymmetry parameter m as a function of zenith angle (Black

points). Two fit functions are shown. Black dashed line and text: That used in

(28), Red solid line and text: This work (see text for details).

In (28), the parameter m was described by a function of the form:

m = (asecθ + bsec3θ + c)(secθ − 1) (3.3)

This is shown by the black line in figure 3.10. Due to a combination of new

stop-times, better core positions (which caused azimuth angles and distances

to change), and the removal of the deconvolution stage, equation 3.3 no longer

adequately describes the asymmetry. It has been found that the inclusion of a

square-root to the last term of equation 3.3 describes the asymmetry better. The
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new parameterization is thus:

m = (asecθ + bsec3θ + c)
√

(secθ − 1)

where :

a = (−3.96 ± 2.37) × 10−5 ns m−2

b = (−1.94 ± 0.38) × 10−5 ns m−2

c = (2.01 ± 0.22) × 10−4 ns m−2

(3.4)

and is shown by the red line in figure 3.10. The reduced χ2s from both functions

are also given, indicating that equation 3.4 gives the superior fit.

A correction to the risetimes (to ζ = 90◦) has been made by subtracting the

expected average asymmetry as calculated using the parameterization in equation

3.4:

tcorrected
1/2 = t1/2 − m(θ) r2cosζ (3.5)

The distributions of the raw and asymmetry-corrected risetimes are shown in

figure 3.11 for all detectors with S ≥ 15 VEM and secθ ≤ 1.7. There is, on average,

a slight shift (∼ 2%) to longer risetimes upon correction for the asymmetry for

all risetimes larger than ∼ 50 ns. The appearance of some risetimes smaller

than 40 ns is also seen due to the asymmetry correction. Asymmetry-corrected

risetimes will be used for the remainder of this work. No dependence of the

asymmetry on the signal size has been found for any zenith angle or distance

range. This is in agreement with (28).

3.2.4 Analysis of the Uncertainty on the Risetimes

Knowledge of the uncertainty in the risetime is important if the effect of shower-

to-shower fluctuations on the ability to distinguish particles of different mass

is to be determined. There are three primary sources of uncertainty on the

risetime measurements: sampling effects, detector electronics and digitisation

procedures, and uncertainties introduced during reconstruction. The propagation

of uncertainties during the asymmetry correction and direct light removal stages

must also be considered.
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Figure 3.11: Distribution of asymmetry-corrected (red) and raw (black) risetimes

for all detectors with S ≥ 15 VEM from events in the range 1.0 ≤ secθ ≤ 1.7.

It is inadvisable to use simulations to estimate the uncertainty on the data as

the extrapolation of particle physics from much lower energies and the technique

of thinning, where only a subset of particles are tracked to reduce the strain on

computing requirements (see section 4.2), introduce more complex uncertainties

which cannot be accurately quantified. Instead, the empirical uncertainty on the

risetime has been parametrised by comparing the risetimes in ‘pairs’ of detectors.

A ‘pair’ is defined as any two detectors in the same shower whose difference in

distance to the shower core (r1 − r2) is less than 100 m, irrespective of azimuthal

angle. Additionally, the total signal in each pair must differ by no more than

±25% from the pair average.

The data have been divided into seven bins of zenith angle in the range 1.0 <

secθ < 1.7, then subdivided into seven bins of distance (to the centre of each

pair) in 200 m intervals from 400 m to 1800 m. Finally a further subdivision into

ten bins of signal in steps of 10 VEM up to 100 VEM, plus a final bin with all

unsaturated signals larger than 100 VEM has been made.
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For events with zenith angles less than 37◦, there are no pairs in the distance

range 400 − 600 m due to the array geometry. Detectors in the surface array

form equilateral triangles of side length 1500 m. While the shower core may fall

anywhere within such a triangle, the definition of a ‘pair’ restricts the midpoint of

the closest pair to a distance of 1500
2

cosθ m from the shower core. Only for zenith

angles greater than 37◦ does the first distance bin play a part in the uncertainty

estimation. In (28) it is implied (and indicated in several figures therein) that

pairs have been found within 600 m of the shower core for zenith angles less

than 37◦. This is clearly erroneous. Further, there is a disagreement between

C. Wileman (28) and B. Smith (82) over the form of the parameterization of

the uncertainty and the number of pairs found. A complete re-analysis of the

uncertainty has therefore been necessary. With the increased data set a total of

146,387 pairs have now been found.

The uncertainty in the risetime of each pair has been calculated using (91):

σtpair
1/2

=

√
π

2
〈|t(1)1/2 − t

(2)
1/2|〉 (3.6)

where 〈|t(1)1/2−t
(2)
1/2|〉 is the average absolute difference between pairs of asymmetry-

corrected risetimes for a given signal bin. A correction has then been made to

compensate for the difference in distance between each detector in the pair, σ∆r:

σt1/2
= σtpair

1/2

− σ∆r (3.7)

where:

σ∆r =
∂

∂r
〈t1/2(r)〉 〈|r1 − r2|〉

=
∂

∂r
(40 +

√

(A2 + Br2) − A) 〈|r1 − r2|〉

=
1

√

(A2 + Br2)
Br 〈|r1 − r2|〉

(3.8)

Where A and B are parameters from a fit to the average risetime as a function of

distance, 〈t1/2(r)〉 (see section 3.2.5 or (28) for details). 〈|r1 − r2|〉 is the absolute
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average difference between the two detector-core distances and r is the average

distance of the pair to the shower core.

Figure 3.12 shows the average uncertainty in risetimes between pairs of de-

tectors for three different zenith angles, including the most vertical events. A

minimum of 10 pairs in any zenith angle/distance/signal bin combination has

been required to avoid large statistical fluctuations. The uncertainty increases

as 1/
√

S for all zenith angles and distance ranges and reflects the increase in

Poissonian fluctuations due to the decreasing number of particles present.

The form of the uncertainty parameterization used in either (28) or (82) is

no longer satisfactory. By parametrising the uncertainty as a function of the

square root of the signal (rather than simply the signal) the uncertainty is better

described:

σt1/2
=

J(r, θ)√
S

+ K(r, θ) (3.9)

where:

K =aK(θ) + bK(θ)r

J =aJ(θ) + bJ(θ)r
(3.10)

The four parameters aK , bK , aJ and bJ show a linear dependence with θ (figure

3.13).

The uncertainty on the risetime is now much smaller (due to the
√

S term)

than in (28) or (82), which will introduce a larger spread on 〈∆〉 than in previous

works. A cut on the signal at 15 VEM is introduced to limit the impact of the

fluctuations from detectors with few incident particles on the calculation of 〈∆〉
and has been used throughout this work.
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Figure 3.12: The uncertainty on the risetime as a function of signal size for three

zenith angle ranges (Top panel: 0 − 20◦, Middle: 28 − 34◦, Bottom: 45 − 47◦).

The uncertainties have been calculated from ‘pairs’ of detectors equidistant from

the shower core. Each colour represents a different distance range (as indicated

in the bottom panel) and each point is the average of at least 10 pairs. The fit

function used is σt1/2
= J(r,θ)√

S
+ K(r, θ).
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(a) (b)

Figure 3.13: Left: The uncertainty parameters aK and bK and Right: The uncer-

tainty parameters aJ and bJ as a function of zenith angle.

3.2.5 Derivation of a Benchmark from the Data

The risetime is dependent upon the energy, zenith angle, signal size and dis-

tance from the shower core. A higher-energy shower produces more secondary

particles, of which a larger proportion will reach ground, than a lower energy

shower. A more energetic event implies a deeper shower development, on aver-

age, which in turn implies a larger risetime at a given distance due to an increase

in the path-length difference traversed by particles from different stages of shower

development.

The composition and lateral distribution of secondary particles plays a role

in the time spread of the signal. This was first observed by Linsley and Scarsi in

1962 (92). With the exception of electrons from the decay of muons close to the

observation level and the shower axis, electrons are scattered more than muons

and so arrive later. The early part of the shower therefore predominantly consists

of muonic signal, from which the risetimes are calculated.

A benchmark has been derived which represents the average risetime for a
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given distance, zenith angle and energy. The range of zenith angles, signals and

distances used to calculate the benchmark must be carefully chosen to avoid

bias. Risetimes from detectors with signals less than 15 VEM have already been

excluded from this analysis, as are saturated stations (S ≥ 800 VEM) where the

risetime cannot be properly ascertained.

Unsaturated signals with risetimes less than 40 ns are problematic. Such rise-

times are shorter than the average time smearing introduced by the diffusion of

light inside the water-Cherenkov detectors and therefore cannot be accurately

measured. From figure 3.11 it can be seen that the main reason for a rise-

time ≤ 40 ns is due to the asymmetry correction of raw risetimes in the range

40 ≤ r < 60 ns. Such risetimes are usually from detectors with large signal sizes,

small distances and large zenith angles. The risetime tends to 40 ns in showers

inclined by more than ≃ 45◦ and in detectors less than 650 m from the shower

core, where the uncertainty on the risetime is not properly quantified due to in-

sufficient statistics from the pairs method. To avoid biases from very inclined

showers due to this and inaccuracies in the asymmetry correction, only events

with zenith angles smaller than 45◦ have been used.

A lower limit to the distance has been implemented at 650 m to prevent biases

due to the removal of saturated stations. An upper limit on the distance has been

imposed at 1400 m as the uncertainty on the risetime is poorly defined for larger

distances (see figure 3.12). This is a reduction from the 1600 m cut used in

(28). Whilst this upper distance cut may be more strict than necessary in the

case of the data, it will be seen later that the risetimes in photon simulations at

larger distances are not well-measured. To allow future, consistent, comparison

to photon simulations and to err on the side of caution, the stricter cut at 1400 m

has been adopted. The number of risetimes removed by each of these cuts are

indicated in table 3.1.

Whilst the 〈∆〉-method can in principle be used in events where only 3 detec-

tors are triggered, in this work events with a minimum of 5 detectors are required

- of which at least two must survive the cuts described above. This ensures that
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Cut Detectors Remaining % Remaining

E ≥ 3 EeV & θ ≤ 60◦ 244969 100

θ ≤ 45◦ 168155 68

S ≥ 15 VEM 81517 33

S ≤ 800 VEM 74354 30

r ≥ 650 m 59053 24

r ≤ 1400 m 55231 23

t1/2 ≥ 40 ns 55181 23

Table 3.1: The number and percentage of risetimes surviving each detector-level

cut used in the 〈∆〉-method, in the order they are applied. After these cuts, a

total of 10,961 events above 3 EeV (22.7%) have a calculable 〈∆〉.

only events with well-reconstructed core positions and energies are used and will

also be necessary in future photon searches if the long-term goal of combining

〈∆〉 and the radius of curvature in a multi-parameter analysis are to be achieved.

Of the 48,324 events with E ≥ 3 EeV and θ ≤ 60◦, 10,961 events (22.7%) have a

calculable 〈∆〉.
Events with energies 10 ≤ E < 15 EeV have been used to create a benchmark

in 10 bins of zenith angle in the range 1.0 ≤ secθ < 1.5. This is well above the

energy at which the surface array becomes fully efficient and contains sufficient

events to calculate a robust benchmark against which all other events can be

compared. Only those risetimes satisfying the above quality cuts have been used

to derive the benchmark. The benchmark is derived by fitting the function:

t1/2 = 40 +
√

(A(θ)2 + B(θ)r2) − A(θ) (3.11)

to the asymmetry-corrected risetimes as a function of distance in each zenith

angle bin (figure 3.14 top panel). Whilst the generic form of this fit remains

the same as in (28), the intercept - which represents the minimum measurable

risetime - has been changed from 10 to 40 ns to compensate for the removal of the

deconvolution stage. Risetimes deviant by more than 2σ from this preliminary

benchmark have been discarded and the remaining data binned in 15 distance
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bins between 650 m and 1400 m. The benchmark function was then re-fitted to

the binned data as shown in figure 3.14 (lower panel).

Figure 3.14: Derivation of the benchmark from the risetimes as a function of

distance for the zenith angle range 1.10 ≤ secθ < 1.15 and energy 10 ≤ E ≤
15 EeV. Top: All risetimes passing the quality cuts (see text); Bottom: risetimes

within 2σ of the benchmark derived in the top panel and in bins of 50 m. The

benchmark fit is indicated by the red line in each panel.

The benchmark parameters A and B decrease exponentially with zenith angle

as:

A =(27.1 ± 20.7) + (4.1 ± 5.1) × 105 e(−6.6±1.2) secθ

B =(1.9 ± 1.1) × 10−2 + (190 ± 140) e(−6.0±0.7) secθ
(3.12)

This is illustrated in figure 3.15. These benchmarks represent the average risetime

within a given zenith angle and energy band and will be used to form a 〈∆〉-
parameter describing the time structure of an individual shower as discussed in

the next section.
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Figure 3.15: Benchmark parameters as a function of zenith angle.

3.2.6 Derivation of the 〈∆〉-Parameter

The aim of the 〈∆〉-method is to combine risetimes from individual detectors into

one parameter representing a single event. 〈∆〉 is defined as the average deviation

of risetimes within an event from the expected average risetime (the benchmark),

after accounting for measurement uncertainties. The expected risetime, tbench
1/2 , for

a particular detector at a distance r in an event with zenith angle θ is calculated

using the benchmark parameterization from the previous section. The expected

risetime is then subtracted from the measured risetime and divided by the mea-

surement uncertainty, giving a δi for each detector. 〈∆〉 is then the average of all

the δi within the same event:

〈∆〉 =
Σδi

Ni

=
Σ(

(t1/2−tbench
1/2

)

σt1/2

)

Ni

(3.13)

The derivation of 〈∆〉 is illustrated in figure 3.16.
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Figure 3.16: Schematic illustrating the derivation of 〈∆〉 from the risetimes. The

expected risetime at a given distance and zenith using the benchmark function

(blue line) is subtracted from the measured risetime (red points) and divided by

the measurement uncertainty (black error bars). 〈∆〉 is then the average over all

risetimes used in the event. Reproduced from (82).

Events with larger than average risetimes have a positive 〈∆〉. The distribu-

tion of 〈∆〉 for events within the benchmark energy range (10−15 EeV) is shown

in figure 3.17. By definition the average, 〈∆〉, for events within the benchmark

energy range should be zero. For the events used in this work, 〈∆〉 is 0.004±0.010,

consistent with expectations.

The benchmark function derived in section 3.2.5 is used to calculate 〈∆〉 for

all events, regardless of the energy of the event studied. The distributions of 〈∆〉
are shown for 11 energy bins above 3×1018 eV in figure 3.19 and the distribution

of all events above 10 EeV is given in figure 3.18. 〈∆〉 shifts to larger values with

increasing energy, as expected. In all cases, the distribution of 〈∆〉 is asymmetric

about the mean with a slight skew towards positive 〈∆〉, and therefore larger

risetimes.
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Figure 3.17: Distribution of 〈∆〉 for the benchmark energies 10 ≤ E ≤ 15 EeV

and zenith angles ≤ 45◦.
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Figure 3.18: Distribution of 〈∆〉 for all events with E ≥ 10 EeV and θ ≤ 45◦.
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3.3 Inspection of Outliers in 〈∆〉
Events for which 〈∆〉 lies in the tails of the distribution shown in figure 3.18 have

been individually inspected. Whilst care has been taken to select the highest

quality events available, some anomalous events may remain that need to be

dealt with appropriately. Forty-seven events with 〈∆〉 outside the range −1.5 ≤
〈∆〉 ≤ 1.5 and with energies ≥ 3 EeV have been inspected, of which 34 have

energies above 10 EeV.

The ground-plan, risetimes (without correction for asymmetry) and FADC

traces from a well-reconstructed event with a very large 〈∆〉 = 2.52 ± 0.44 are

shown in figure 3.20 and 3.21. The energy of this event is 56.9 ± 0.27 EeV at a

zenith angle of 11.4±0.2◦. This event comprises ten triggered detectors, of which

only three have been used in the calculation of 〈∆〉. These are shown in figure

3.21.

(a) (b)

Figure 3.20: Ground plan and risetimes for a well-reconstructed event (Event ID

= 10612476) with a large 〈∆〉 = 2.52 ± 0.44. (a): Layout of triggered detectors

(red dots) and direction of shower axis (black line). (b): Risetimes (prior to

asymmetry-correction) (blue squares) and residuals in the start-time (red points)

relative to the impact time of the shower core (blue line at t = 0) as a function

of distance. The green line is a fit of a spherical function to the time-residuals.
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(a)

(b)

(c)

Figure 3.21: FADC traces of the detectors used to calculate 〈∆〉 for a well-

reconstructed event (Event ID = 10612476) with a large 〈∆〉 = 2.52 ± 0.44 in

order of increasing distance from the shower core. The distances shown are 1136,

1317 and 1387 m respectively. The detector closest to the core (not shown) is

saturated and has not been used to calculate 〈∆〉.
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Although one cannot be completely certain at this stage, it seems unlikely on

visual inspection that this event is a photon due to the ‘spikiness’ or ‘raggedness’

of the traces, indicating the presence of a substantial muon component. Photons

are expected to produce long, relatively smooth traces due to the electromagnetic

component. By contrast, hadronic showers are expected to yield shorter traces

with muon spikes evident.

A well-reconstructed event with a very small 〈∆〉 is shown in figures 3.22 and

3.23. This event has a 〈∆〉 of −1.74±0.35, an energy of E = 27.7±1.4 EeV and a

zenith angle of θ = 28.0± 0.2◦. Nine detectors have been triggered, of which four

have been used to calculate 〈∆〉. The detector closest to the core is saturated. It

can be seen that the traces are very short in comparison to those in figure 3.21,

implying a shallower shower development. However, without direct comparison

to expectations from hadronic simulations it is impossible to determine the nature

of the primary particle in this event.

(a) (b)

Figure 3.22: Ground plan and risetimes for a well-reconstructed event (Event

ID = 1682549) with a very small 〈∆〉 = −1.74 ± 0.35. (a): Layout of triggered

detectors (red dots) and direction of shower axis (black line), (b): Risetimes

(prior to asymmetry-correction) (blue squares) and residuals in the start-time

(red points) relative to the impact time of the shower core (blue line at t = 0)

as a function of distance. The green line is a fit of a spherical function to the

time-residuals.

86

Chapter3/Chapter3Figs/EPS/Event1682549_Groundplan.eps
Chapter3/Chapter3Figs/EPS/Event1682549_Residuals.eps


3.3 Inspection of Outliers in 〈∆〉

(a)

(b)

(c)

(d)

Figure 3.23: FADC traces of the detectors used to calculate 〈∆〉 for an event

(Event ID = 1682549) with a very small 〈∆〉 = −1.74±0.35 in order of increasing

distance from the shower core. The distances shown are: 1233, 1245, 1326 and

1375 m respectively.
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Nine outliers with energies above, and one with energy below 10 EeV have

been identified as mis-reconstructed and removed. Reasons for considering these

events for rejection include: the presence of traces with large, late energy deposits

(≥ 1 VEM) which yield abnormal risetimes; traces with incorrect start-times;

‘raining’ PMTs (where one or more PMTs in the same detector records a large

signal in all time bins and the characteristic signal shape is obscured) and mis-

reconstructed core positions. All events identified as mis-reconstructed in this

sample have a saturated station and nearly all have a muon arriving late at ground

in at least one other detector. Whilst a large number of events have saturated

detectors, and more events with saturated stations than without appear in the

tails of the distribution, there is no evidence of a bias of such events towards

either very high or low 〈∆〉, as indicated in figure 3.24.
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Figure 3.24: Normalised distribution of 〈∆〉 for events above 10 EeV with (red)

and without (black) saturated stations. The risetimes from saturated stations

are not used in the calculation of 〈∆〉.
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3.3 Inspection of Outliers in 〈∆〉

An anomalous and thus mis-reconstructed event with a 〈∆〉 = 2.35 ± 0.87

is shown in figures 3.25 and 3.26. The reconstructed energy of this event is

E = 43.8 ± 2.0 EeV and the zenith angle is 42.1 ± 0.1◦. Fifteen detectors have

been triggered, of which four have been used to calculate 〈∆〉. The detector

closest to the core is saturated. This event has incorrect start-times and time-

residuals in many of the detectors (as shown in figure 3.25(b)), which leads to

erroneous risetimes.

Figure 3.26(a) shows a detector from this event where one PMT records a very

different time to the other two, more than reasonably expected from direct light

effects. This is obviously due to a PMT malfunction. Two other detectors shown

are lacking a signal in at least one PMT. In itself this is not a problem as the

risetime can be calculated from the existing traces, although direct light effects

cannot be accounted for. Figure 3.26(c) shows a late energy deposit of ≃ 1 VEM

which may also be affecting the calculated 〈∆〉 and which is not removed via the

direct light removal algorithm as one PMT in this detector has not triggered.
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(a) (b)

Figure 3.25: Ground plan and risetimes for a mis-reconstructed event (Event ID

= 10689921) with a large 〈∆〉 = 2.35 ± 0.87. (a): Layout of triggered detectors

(red dots) and direction of shower axis (black line). The size of the red dots

relates to the different signal sizes in each detector. (b): Risetimes (prior to

asymmetry-correction) (blue squares) and residuals in the start-time (red points)

relative to the impact time of the shower core (blue line at t = 0) as a function

of distance. The green line represents a typical projection of the time-residuals

as a function of distance.
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3.3 Inspection of Outliers in 〈∆〉

(a)

(b)

(c)

(d)

Figure 3.26: FADC traces of the detectors used to calculate 〈∆〉 for a mis-

reconstructed event with a 〈∆〉 of 2.35 ± 0.87 in order of increasing distance

from the shower core. The distances shown are 923, 1097, 1251 and 1386 m

respectively.
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3.4 〈∆〉 as a function of Energy and Xmax

The dependence of the average 〈∆〉 on the energy, zenith angle and Xmax, has

been investigated. 〈∆〉 shows no dependence on zenith angle, as expected since

the benchmark is defined for each zenith angle. As anticipated, 〈∆〉 increases with

energy above ≃ 5 EeV as indicated in figure 3.27. Below 5 EeV there appears to

be little or no dependence of 〈∆〉 on energy. Also indicated in figure 3.27 are the

results from (82). The results from this work are compatible with the previous

results for events above ≃ 5 EeV, despite the numerous changes to the method

and software. Deductions on the mass composition cannot be made by studying

figure 3.27 without some comparison to simulations, which will be described in

chapter 4.

Figure 3.27: Average 〈∆〉 as a function of energy. Black squares: This work; Blue

triangles: from (82).

The distributions of 〈∆〉 for each energy bin were shown in figure 3.19. A

large spread in 〈∆〉 is observed for the 37 events above 60 EeV due to the outliers
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3.4 〈∆〉 as a function of Energy and Xmax

at 〈∆〉 = −1.52 and 1.25, both of which have been inspected. No unusual or

mis-reconstructed traces were observed.

A set of high-quality hybrid events have been used to compare 〈∆〉 to Xmax.

These hybrid events have been selected according to the requirements of the 〈∆〉-
method - including that the number of triggered detectors is ≥ 5. Additionally,

the selection criteria from (39) has been used to ensure the FD counterpart is

well-reconstructed. Events during periods of high cloud coverage and large at-

mospheric aerosol content have not been used. The longitudinal profile fit must

have a χ2/NDF ≤ 2.5 and the depth of maximum must be within the field of

view of the telescopes. Fluorescence events with a large Cherenkov contamination

(≥ 20%) have been removed and fiducial cuts on the shower geometry have been

applied. After these cuts, 508 ‘golden hybrid’ events recorded between Decem-

ber 2004 and December 2010 with E ≥ 3 × 1018 eV and sec θ ≤ 1.41 have been

selected. A correlation can be seen in figure 3.28 between 〈∆〉 and Xmax, with a

correlation coefficient of 0.28. A linear fit to this data gives:

〈∆〉 = (−4.7 ± 0.1) + (0.0063 ± 0.0002)Xmax (3.14)

This compares to:

〈∆〉 = (−3.9 ± 0.5) + (0.0053 ± 0.0007)Xmax (3.15)

from the work in (82).

Equation 3.14 has been used to convert 〈∆〉 to Xmax for the remainder of the

surface array data, thus deriving a new parameter, X
〈∆〉
max. The average X

〈∆〉
max as

a function of energy for 10,961 events with zenith angles less than 45◦ is shown

in figure 3.29 and tabulated in table 3.2. Results from hybrid events and pre-

dictions from simulations previously published in (39) are shown for comparison.

There is a good agreement between the two sets of data, which appear to show

an increasingly heavier composition with energy above ≃ 3 EeV. It remains pos-

sible that inaccuracies in the extrapolation of particle physics from low energies

introduce systematic uncertainties in the simulations and therefore a pure proton

composition cannot be ruled out.
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Figure 3.28: 〈∆〉 as a function of Xmax for hybrid events with E ≥ 3 EeV and

sec θ ≤ 1.41 which pass a selection of fiducial cuts (see text). The correlation

coefficient for this data is 0.28.

Log E (eV) 18.5 18.6 18.7 18.9 19.0 19.2 19.3 19.5 19.6 19.8

N 1513 1549 3385 1297 1669 689 522 189 126 22

X
〈∆〉
max 740 741 738 746 751 752 755 759 761 775

σXmax 1.2 1.40 1.11 2.1 1.9 3.4 3.8 6.6 10.2 29.2

Table 3.2: Table of values of X
〈∆〉
max (in g cm−2) and the associated number of

events from figure 3.29.
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3.5 Conclusion

Figure 3.29: Xmax as a function of energy from data (brown triangles) and sim-

ulations (red: Protons, blue: Iron) from (39). The average Xmax as a function of

energy from 10,961 events with zenith angles less than 45◦, calculated using the

〈∆〉-method and the conversion given in equation 3.14 and denoted X
〈∆〉
max, have

been overlaid on the same axes (black squares).The number of events associated

with each point are listed in table 3.2.

3.5 Conclusion

The risetime 〈∆〉-method first discussed in (28) and (82) has been updated using

the latest Pierre Auger Observatory software. An additional 3.5 times more data

recorded by the surface array has been included since the method’s conception.

Some long-standing problems associated with the stop-times and baselines of the

FADC traces have now been resolved, allowing meaningful results using the 〈∆〉-
method to be presented.

As a consequence of these problems and various upgrades to the analysis soft-

ware, it has been necessary to re-analyse and re-parametrise each stage of the
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〈∆〉-method. The deconvolution procedure is no longer used and the parame-

terization for both the asymmetry correction and empirical uncertainties on the

risetimes have been substantially altered. A new set of cuts has been imposed

on the data, based on those in the original method and on physical reasoning.

These alterations have been discussed in detail in this chapter.

Outliers in the distribution of this new, improved, 〈∆〉-parameter have been

identified and inspected. Nine mis-reconstructed events have been removed from

the tails of the 〈∆〉-distribution. Events with larger than average 〈∆〉 have slow

risetimes and therefore a deeper development. It has been shown that 〈∆〉 in-

creases with energy in a manner similar to that in (82). A correlation of 〈∆〉 with

Xmax has been observed for a subset of well-reconstructed hybrid events, allow-

ing a conversion between 〈∆〉 and Xmax to be applied to the remaining SD-only

events.

A comparison of X
〈∆〉
max has been made to published work that measured Xmax

directly from hybrid data. The results in this work are consistent with those

in (39) and imply a mixed hadronic composition that gets heavier with energy,

assuming the results from simulations are reasonable. No direct comparison of

〈∆〉 has yet been made to predictions from simulations. This will be described

in chapter 4.
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Chapter 4

Updated Photon Limits Using

Shower Timing Parameters

4.1 Introduction

To determine the flux and fraction of photons, or to impose limits on these quan-

tities, a comparison with photon simulations must be performed. The expected

contamination of the photon sample from a background of hadrons is also of in-

terest. In this chapter the predictions obtained from applying the 〈∆〉-Method

to photon, proton and iron simulations are described. These are then compared

to the data. An example of the 〈∆〉-distributions from the data and photon sim-

ulations are indicated in figure 4.1 for all events with E ≥ 10 EeV . The 〈∆〉s of

ten events identified as most likely to be photons (the ‘photon-candidates’) are

also marked. The steps taken to achieve this result, and those at other energies,

are described in this chapter. From these results upper limits to the photon flux

and fraction have been calculated and are given at the end of this chapter.

4.2 Photon Simulations

For photon-limit studies it is preferable to compare the data to photon simulations

rather than hadronic simulations as the underlying physics, described by quantum

electrodynamics (QED), is better understood than hadronic interactions at the
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Figure 4.1: An example of the normalised distribution of 〈∆〉 for data and photon

simulations with photon energy Eγ ≥ 10 EeV and in the zenith angle range 30◦ ≤
θ < 45◦. The area under each distribution is equal to 1. The benchmarks derived

from the data have been used to compare both photons and data. The 〈∆〉s of

the ten photon-candidates are indicated (offset on the y-axis for clarity). The

median of the photon distribution is at 1.47 ± 0.04 (blue dashed line).

energies concerned. Hadronic simulations suffer from large uncertainties due to

the extrapolation of particle physics from much lower energies. Comparison of

photon simulations to the data is therefore expected to be more reliable and so

more suited to the analysis of the UHECR photon flux and fraction.

Due to their deeper development, smaller multiplicities and almost entirely

electromagnetic composition, the differences between the risetimes of photon and

hadron-initiated air showers are expected to be larger than between different

species of hadronic primaries. On average, photons are expected to have larger

risetimes (and hence a larger 〈∆〉) than their hadronic counterparts, with very

little overlap between the two distributions of 〈∆〉. Where this overlap occurs,

photon-initiated events in the data can be determined by inspecting events whose

98

Chapter4/Chapter4Figs/EPS/DeltaDistribution_WithCandidates_Integral10EeVBin.eps


4.2 Photon Simulations

〈∆〉 are larger than the median of the photon distribution.

A total of 5373 photon simulations have been reconstructed in Offline. These

photons were simulated using the QGSJetII hadronic interaction model and the

CORSIKA (version 6.97) simulation package. A Malargüe seasonal atmospheric

model has been used, providing more realistic simulations than with the US

standard model (93). A continuous range of energies from 3 EeV to 300 EeV

and a continuous spread of zenith angles from 0 to 60◦ have been simulated, the

distributions of which are indicated in figure 4.2 before and after reconstruction.

This represents a ∼ 2.5 times larger set of photons than were used in (28) and

(82). Photons with pre-showering simulated have not been used.

Figure 4.2: Left: Distribution of energies and Right: Distribution of zenith angles

for simulated photons (Red: Monte-Carlo (MC) inputs, Black: Reconstructed

using the standard reconstruction procedure).

The complete simulation of an air shower of energy greater than 1018 eV in-

volves the simulation of over 1010 secondary particles, requiring many terabytes of

disk space and taking several months to complete. To reduce the strain on com-

puting resources and time requirements, a statistical technique called ‘thinning’,

first introduced by Hillas (94), is applied to simulations. Air showers are simu-

lated in full until the energy of individual particles falls below a given threshold.

Below this threshold, only a representative subset of particles are tracked (95).

A statistical weight is assigned to each particle in the surviving subset which ac-

counts for the number of un-tracked particles of the same type and similar energy
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within a sampling area surrounding the tracked particle. The ‘surviving’ particles

from this process are then followed to ground level. An illustration of the concept

of thinning is given in figure 4.3.

Figure 4.3: Schematic illustrating the concept of ‘thinning’ in simulations. The

dashed lines represent particles not actually followed, the solid lines represent

tracked particles, with a width proportional to the weight. Figure from (96).

Immediately prior to the simulation of detector responses, the shower is ‘re-

sampled’ by regenerating particles according to the energy, timing, position and

relative weights of the particles that were tracked to ground level (96). The num-

ber of re-sampled particles is determined using a Poissonian distribution centred

on the relative weight of the tracked particle. The spread of the re-sampled par-

ticles over the sampling area, which is larger than the detector area, is uniform.

Whilst shower observables are preserved on an average basis, the thinning

and re-sampling procedures can introduce artificial fluctuations in individual rise-

times, particularly at large distances from the core where particle densities are low

(95). Further, as different particle types are thinned and re-sampled separately,

correlations between them can be inadvertently modified.

The level of thinning chosen is a compromise between the computing resources

available and the minimisation of artificial fluctuations introduced by the thinning

and re-sampling procedures. A larger thinning level (smaller fraction of particles

kept) leads to larger fluctuations in the re-sampling (95). A thinning level of 10−6
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4.3 Construction of a Photon Energy Estimator

is typically used for air showers with E ≥ 1018 eV and is used for all simulations

in this work.

Simulation of the detector response to the photon showers is implemented us-

ing the GEANT4 package available in Offline. Simulated showers were ‘dropped’

at random locations on the surface array. After simulation of the detector re-

sponse, the standard offline reconstruction procedure (as used for real data) has

been used to reconstruct the showers. As for the data, the new stop-time and

baseline algorithms have been utilised.

4.3 Construction of a Photon Energy Estimator

The distributions of Monte-Carlo (MC) and reconstructed energies for photon

simulations were shown in figure 4.2, where it can be seen that the standard

energy reconstruction underestimates the energy of photon-initiated air showers

by up to 75%. A photon-initiated shower will produce a smaller signal in a given

detector than a hadron-initiated shower of the same energy due to the steeper

LDF and smaller muon content. The response of the surface detectors therefore

differs for photon and hadron-initiated showers. Whilst the FD energy provides

a calorimetric estimate, the calibration used to convert between S38(1000) and

EFD (figure 2.9) will systematically under-estimate the energy of photon-initiated

showers recorded by the surface array. Any photon-initiated air shower existing

in the data will also have an incorrectly reconstructed energy, which may cause

the event to be rejected by the energy cuts used to find the photon limits, thereby

remaining undiscovered.

A method for estimating photon energies has been derived to combat these

problems. This method was first discussed in (97) and was incorporated into

previous photon studies. Updated parameterizations have since been provided

which describe photon showers more accurately and which use the reconstructed

S(1000) rather than the Monte-Carlo S(1000) (98). This updated method can

therefore be applied to both data and simulations.
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To determine the photon energy, the stage of development attained by a pho-

ton shower reaching the detectors must be considered. This depends upon the

slant depth: X =
XAuger

cosθ
, where XAuger = 875 g cm−2 is the vertical depth from

the top of the atmosphere to the detectors. From photon simulations, the av-

erage Xmax = 1000 g cm−2 at 1019 eV. Photons with zenith angles less than

θ = cos−1(875/1000) = 29◦ will thus reach the observation level before their

depth of maximum is reached. In the following search for photons, only events

with a zenith angle greater than 30◦ are used to prevent a biased 〈∆〉 distribution

caused by showers that have not yet reached their maximum.

The photon energy estimation is calculated in an iterative manner starting

with twice the standard reconstructed energy (Eprim[0] = 2Erec (EeV)) (98). An

approximation to the depth of maximum is then calculated using:

Xmax = 847 + 131 log10(Eprim) (4.1)

It should be noted that the value of Xmax derived in this method is not

suitable for mass composition measurements (98). The difference, ∆X, between

Xmax and the slant depth corresponding to the zenith angle of the shower under

consideration is then found:

∆X =
XAuger

cosθ
− Xmax (4.2)

Finally the photon energy is found using:

S(1000)

Eprim[i]
= 1.99 × 1 + ∆X−100

1846

1 + (∆X−100
335

)2
(4.3)

in units of VEM/EeV (98). S(1000) and θ are taken from the standard recon-

struction procedure.

This procedure is iterated until the photon energies converge, typically within

3 - 5 iterations. Events where ∆X ≤ −50 g cm−2, or where the photon energies

have not converged within 10 iterations are considered to have an incalculable

photon energy and discarded. Using the above method, the energy resolution is

18% for photon simulations whose photon energy converges (98).
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For the determination of the number of photon-candidates, photon energies

are calculated for both the data and simulations. Hereafter, the photon energy

will be denoted Eγ to avoid confusion with the standard reconstruction Erec

or the Monte-Carlo energy EMC . Any event in the data considered a photon-

candidate (see section 4.5) will retain its photon energy estimate, Eγ, whilst all

non-candidates will be re-assigned their original energy, Erec, as determined from

the standard offline reconstruction procedure.

4.4 Application of the 〈∆〉-method to Photon

Simulations

4.4.1 Asymmetry in the Risetimes of Photon Simulations

It was first shown in (28) that there exists a significant asymmetry in the risetimes

of simulated photon showers. In a manner similar to that described in section

3.2.3, the risetime as a function of azimuth for events in bins of zenith angle and

distance has been fitted with a cosine function of the form t1/2 = f + g cosζ.

The magnitude of the asymmetry in photon simulations is much larger than

for the data, as illustrated in figure 4.4, where the amplitude of the asymmetry in

photon showers with zenith angles of 40−45◦ at a distance of 1 km from the shower

axis is approximately twice that of the data. The amplitude of the asymmetry,

g, has been parametrised as a function of distance and zenith angle. Unlike the

data, it is found that g varies with the cube of the distance: g = m(θ) r3, whereas

the data show a quadratic dependence.

The result in (28) claimed that the asymmetry parameter m as a function of

zenith angle for simulated photon showers was best described by a quadratic func-

tion for zenith angles greater than 25◦ and a linear function for smaller zenith

angles. Using this larger set of photons, it is found that the function used to

describe the data in section 3.2.3 will also adequately describe the photon simu-
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Figure 4.4: Comparison of the asymmetry in the risetimes for the data (black)

and photon simulations (green) for zenith angles 1.3 ≤ secθ < 1.4 (40− 45◦) and

distances of 1000 ≤ r < 1200 m. The fit-function is of the form t1/2 = f + g cosζ.

lations, namely:

m = (asecθ + bsec3θ + c)
√

(secθ − 1)

where, forphotonsimulations :

a = (3.0 ± 0.9) × 10−7 ns m−3

b = (−7.7 ± 0.2) × 10−8 ns m−3

c = (−2.7 ± 0.9) × 10−8 ns m−3

(4.4)

This is illustrated in figure 4.5. Using this fit, the angle at which the asymmetry

is largest is at 46◦, compared to 42◦ for the data (see figure 3.10 for comparison).

An asymmetry correction to azimuths of ζ = 90◦ of the form:

tCorrected
1/2 = t1/2 − mr3cosζ (4.5)

using the above parameterization of m has been applied to the photon risetimes.

The asymmetry corrected risetimes are used for the remainder of this work.
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Figure 4.5: The asymmetry parameter m as a function of zenith angle for pho-

ton simulations. The fitted function is of the form: m = (a secθ + b sec3θ +

c)
√

(secθ − 1).

4.4.2 Uncertainty on the Risetimes from Photon Simula-

tions

The uncertainty on the risetimes of photon simulations has also been updated and

re-parametrised. Following the method described in section 3.2.4, the uncertainty

on the photon risetimes has been parametrised as a function of zenith angle,

distance and signal size using ‘pairs’ of detectors located within concentric rings

of 100 m separation. Over 2600 pairs have been found. The uncertainty as a

function of signal size for three different zenith angles and a range of distances

are shown in figure 4.6. Due to the requirement that at least 10 pairs are used per

zenith angle/distance/signal combination, not all bins have a calculated average

uncertainty. For those that do, the uncertainty is ∼ 1.5− 2 times larger than for

the equivalent point in the data. This is most likely due to larger fluctuations

in the signals between pairs of detectors caused by the thinning and re-sampling

procedures during the shower simulation. Limitations from statistics may also
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play a role.

For each distance where three or more signal bins have an average uncertainty

from more than 10 pairs of risetimes, a function of the form σt1/2
= J(θ)√

S
+ K(θ)

has been fitted. The parameters J and K as a function of zenith angle are:

K = aK(θ) + bK(θ)r

J = aJ(θ) + bJ(θ)r
(4.6)

where:

aK = (2.4 ± 0.4) × 103 + (−1.9 ± 0.3) × 103 secθ

bK = (−2.6 ± 0.4) + (2.2 ± 0.3) secθ

aJ = (−1.03 ± 0.04) × 104 + (7.7 ± 0.3) × 103 secθ

bJ = (−12.3 ± 0.3) + (−9.3 ± 0.3) secθ

(4.7)

As for the data, only risetimes from detectors with signal S ≥ 15 VEM are used

in the rest of this analysis to reduce the effect of fluctuations on the analysis.

4.4.3 The Photon Benchmark and 〈∆γ〉

A set of benchmarks of the form:

t1/2 = 40 +
√

A(θ)2 + B(θ) r2 − A(θ) (4.8)

corresponding to the average risetime for the photon simulations, have been pro-

duced. The parameterization of the photon-benchmark parameters A and B as

a function of zenith angle differs from that of the data. Whilst an exponential

function was used for the data, here a quadratic function is found to describe

the photons better. This is likely to be a consequence of the number of simu-

lations used rather than a more fundamental reason associated with the physics

of photon-initiated EAS. Figure 4.7 shows the parameterization of the photon

benchmark parameters A and B with zenith angle.

The photon benchmarks for each zenith angle are shown in figure 4.8 together

with those from the data for comparison. It is clear from this figure that both the

average risetime for the photons and the corresponding uncertainty as a function
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Figure 4.6: The uncertainty on the risetime as a function of signal size for photon

simulations at three zenith angles for different distance ranges. Each colour rep-

resents a different distance. A fit of the form σt1/2
= J√

S
+ K has been applied to

each distance range where three or more signal bins have an average uncertainty

from more than 10 pairs of risetimes.
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4. Updated Photon Limits Using Shower Timing Parameters

Figure 4.7: The benchmark parameters A and B as a function of zenith angle for

photon simulations.

of distance are larger than that for the data. The difference between the two

benchmarks increases for larger distances and zenith angles. To give clarity to

later work, the notation 〈∆γ〉 indicates use of the photon-benchmark whereas the

notation 〈∆〉 indicates use of the benchmark derived from the data.

The photon benchmark has been used to calculate 〈∆γ〉 for the photon sim-

ulations using equation 3.13. This gives an average 〈∆γ〉 of −0.23 ± 0.09 for the

energy range 10 ≤ Eγ < 20 EeV - lower than expected for the benchmark energy

as it should be zero by construction. The average 〈∆γ〉 shows no dependence on

zenith angle and increases with energy (figure 4.10). The distribution of 〈∆γ〉 for

each energy bin is shown in figure 4.9.
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Figure 4.10: Average 〈∆γ〉 as a function of energy, Eγ, for photon simulations.
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4.4.4 Outliers in the Photon 〈∆γ〉 Distribution

Due to the nature of simulated events, mis-reconstructed photons are not ex-

pected, unlike in the data. However, outliers in 〈∆γ〉 distribution have been

inspected such that the differences between photons with very large and very

small 〈∆γ〉 may be understood. Such differences are primarily due to differences

in the development of showers of different primary energies. Random fluctuations

due to the simulation procedure - including the thinning and re-sampling of the

showers may also be present. The FADC traces, layout of triggered detectors and

risetimes with distance for a photon with a very large 〈∆γ〉, and one with a very

small 〈∆γ〉 are illustrated in figures 4.11 to 4.13.

(a) (b)

Figure 4.11: (a): Layout of triggered detectors and (b): uncorrected risetimes

(blue) and residuals in the start-time (red) as a function of distance for a simulated

photon with a small 〈∆γ〉 = −4.36 ± 2.41. The (MC) energy of this event is

5.9 × 1019 eV at a zenith angle of 44.1◦. The corresponding FADC signals from

the detectors used to calculate 〈∆γ〉 are shown in figure 4.12.
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(a)

(b)

(c)

Figure 4.12: FADC traces of the detectors used to calculate 〈∆γ〉 for a photon

with a small 〈∆γ〉 = −4.36±2.41. The distances shown are (from top to bottom):

705, 1261 and 1311 m. The station closest to the core (not shown) is saturated.
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4. Updated Photon Limits Using Shower Timing Parameters

(a) (b)

(c)

(d)

Figure 4.13: (a): Layout of triggered detectors and (b): uncorrected risetimes

(blue) and residuals in the start-time (red) as a function of distance for a simulated

photon with a large 〈∆γ〉 = 2.83 ± 0.85. The (MC) energy of this event is

4.8 × 1019 eV at a zenith angle of 35.5◦. The FADC traces of the two detectors

used to calculate 〈∆γ〉 are given in panels (c) and (d). The distances shown are

989 and 1024 m.
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4.4 Application of the 〈∆〉-method to Photon Simulations

Twelve photon simulations have been discovered that exhibit strange “double-

peaks” in one or more detectors. These events all have 〈∆γ〉 ≥ 2.0. The size of the

second peak and its position relative to the first peak varies from event to event,

with some traces having a clear double-peak and others having a large energy

deposit or ‘bump’ where the signal is expected to be in decline. An example of

such an event is given in figures 4.14 and 4.15.

These double-peaks generally occur in the 2nd or 3rd detector closest to the

core, with the exception of the event shown where a double-peak is also seen in

the fourth-furthest detector (panel 4.15(c)). No particular trend in the distance

or signal size of the affected traces is observed and all except two of the affected

photon events have EMC ≥ 1020 eV. This is worrying as photon simulations are

believed to be the most reliable of all simulated primary types and are assumed

to closely match reality.

It is not currently known whether this anomalous behaviour is due to, say,

the thinning and re-sampling procedure or some more fundamental problem with

the simulation of either the showers or the simulated detector responses. In an

attempt to find the cause of this problem, the affected simulated events have

been ‘dropped’ ten times each at random locations on the array and the resulting

time-traces inspected visually. On average, 26% of the ‘drops’ produce double-

peaks or anomalous large, late energy deposits. That this behaviour is not seen

in every drop indicates that the cause of the problem may be either due to or

exacerbated by the re-sampling procedure and detector simulation procedures.

A smaller level of thinning would retain more shower particles and thus be less

prone to fluctuations and unwanted effects during the re-sampling stage, which

may resolve this problem. In future, consideration could be given to the effect of

thinning on photon simulations with regard to the risetimes and 〈∆〉. Thorough

investigation into the cause of these ‘double-peaks’ would be an interesting area

of further study. This double-peaked behaviour is not seen in the data, nor in

the set of proton and iron simulations used later in this work (section 4.6).
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The number of photons found with this strange behaviour is small and lim-

ited to the very largest energies, above those seen in the data. An inspection

of a random sub-sample of ∼ 50 simulated photons at different energies, zenith

angles and 〈∆γ〉 s has not uncovered any more such events. Therefore it has been

decided to simply exclude these 12 simulations from further analysis. The median

of the photon distribution does not show a significant change and the number of

photon-candidates found in the data (see section 4.5) remains unchanged regard-

less whether these 12 events are included or excluded. However, the remainder

of this analysis must be treated with some caution until such time as follow-up

studies to determine the cause of these double-peaks have been performed.

(a) (b)

Figure 4.14: (a): Layout of triggered detectors and (b) uncorrected risetimes

(blue) and residuals in the start-time (red) as a function of distance for a simulated

photon where double-peaks are observed. This simulated event has (MC) energy

1.7 × 1020 eV, zenith angle 43.4◦ and 〈∆γ〉 = 3.70 ± 1.09. The corresponding

FADC signals from the detectors used to calculate 〈∆γ〉 are shown in figure 4.15.

116

Chapter4/Chapter4Figs/EPS/PhotonSim34928_GroundPlan.eps
Chapter4/Chapter4Figs/EPS/PhotonSim34928_Risetimes.eps


4.4 Application of the 〈∆〉-method to Photon Simulations

(a)

(b)

(c)

Figure 4.15: FADC traces of the detectors used to calculate 〈∆γ〉 = 3.70 ± 1.09

for a photon where double-peaks are observed. The distances shown are (from

top to bottom): 959, 1123 and 1150 m. The traces in panels (a) and (c) clearly

show a double-peak due to the late arrival of a portion of the electromagnetic

component. The detector closest to the shower core is saturated and not shown

here.
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4.5 Comparison of Photon Simulations to the

Data using 〈∆〉
To determine the number of events in the data which could be from photon

primaries, the data and photon simulations must be compared against a single

set of criteria. For this comparison, the same benchmark must be used for both

sets of risetimes. It is believed that the data benchmark is more robust than the

photon benchmark due to the larger number of risetimes involved in its creation,

and smaller uncertainties - as shown in figure 4.8. Thus the formulation:

〈∆〉 =
Σ(

t1/2−tdata bench
1/2

σt1/2

)

N
(4.9)

where tdata bench
1/2 is the expected risetime from the data benchmark using the bench-

mark parameters given in section 3.2.5 is now applied to both the data and photon

simulations.

The normalised distributions of 〈∆〉 for the data and photons for four dif-

ferent energy thresholds are displayed in figure 4.16. It can be seen that the

overlap between the data and photon 〈∆〉 distributions is small, indicating that

the majority of the data are not photon-initiated. The photon energies, Eγ, as

defined in section 4.3 have been used for both data and simulations. To make

the comparisons shown here, the photon energy spectrum has been re-scaled to

that of a power-law spectrum with index α = −2 by re-weighting the simulated

spectrum. The true photon energy spectrum is unknown but it is likely to be a

steeply falling power-law spectrum. Only events with zenith angles in the range

30 − 45◦ have been used. The 〈∆〉-method is not well-defined for larger zenith

angles due to large uncertainties in the asymmetry correction and uncertainty

parameterization, especially for photon simulations. For zenith angles smaller

than 30◦, the slant depth from the top of the atmosphere to the observation level

is less than the average Xmax expected for photons and may bias results.

To determine the number of photon-candidates in the data above a given

energy threshold, a cut has been placed at the median value of the corresponding
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(a) (b)

(c) (d)

Figure 4.16: Normalised distributions of 〈∆〉 for data and photon simulations

above four different energy thresholds and in the zenith angle range 30◦ ≤ θ < 45◦.

The benchmarks derived from the data have been used here and the photons

have been adjusted to an E−2 spectrum. The 〈∆〉s of the photon-candidates

above each energy threshold (red points, offset on the y-axis for clarity) and the

corresponding photon-median (blue lines) are indicated.

photon 〈∆〉-distribution - represented by the vertical dashed line in each panel of

figure 4.16. The photon median changes depending on the energy threshold used:

at Eγ ≥ 10 EeV, ∆med = 1.47 ± 0.04. The efficiency of finding photons using the

median value as a threshold is 0.5.

Ten, five, two and one candidates have been found above 10, 20, 30 and 40 EeV

respectively. The 〈∆〉 of these candidates are marked in the corresponding panels
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of figure 4.16. The uncertainty on 〈∆〉 has been fully calculated by propagating

the uncertainties on each stage of the 〈∆〉-method. A scatter-plot showing the

〈∆〉s for the data and photon simulations as a function of energy is shown in

figure 4.17, the 〈∆〉s of the photon-candidates are also highlighted in that figure.

Details of the photon-candidates are given in table 4.1.

 (eV)
γ

Log E
19 19.2 19.4 19.6 19.8 20 20.2 20.4
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Figure 4.17: 〈∆〉 as a function of Eγ for the data (black points) and pho-

ton simulations (red stars). The 10 photon-candidates above 10EeV (where

〈∆〉median = 1.47) found in this work are also marked (blue stars).

The photon-candidates have been inspected visually. All of these candidates

have between 5 and 10 detectors, of which an average of 3 detectors have been

used to determine 〈∆〉. Four candidates have a saturated detector. Most of the

FADC traces have a spiky appearance more typical of the rest of the data than of

the traces observed from the photon simulations. That all these candidates lie in

a narrow range of 〈∆〉 close to the threshold suggests they may be from the tail

of a hadronic distribution where fluctuations in the shower development have led
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ID θ Log Erec (eV) Log Eγ (eV) Ntotal Nused 〈∆〉
9333599 43.0 18.7 19.10 6 2 1.49 ± 0.17

1768669 40.2 18.9 19.27 7 2 1.74 ± 0.17

1998796 34.1 19.3 19.27 9 2 1.65 ± 0.23

6784159 44.0 19.0 19.36 5 3 1.49 ± 0.15

1813111 38.9 19.0 19.39 6 4 1.79 ± 0.17

3343182 35.2 19.0 19.39 8 2 1.52 ± 0.29

6637103 40.0 19.1 19.46 8 3 1.57 ± 0.17

2248206 43.6 19.2 19.50 10 3 1.70 ± 0.16

8938022 32.1 19.1 19.62 10 3 1.71 ± 0.23

10450239 38.5 19.3 19.73 9 3 1.61 ± 0.25

Table 4.1: Table of photon-candidates found using the 〈∆〉-method for events

with Eγ ≥ 10, EeV and 30◦ ≤ θ < 45◦. Ntotal is the total number of detectors

in that event and Nused is the number of detectors used to calculate 〈∆〉. The

energies from the standard reconstruction have also been included for reference.

to the large risetimes observed. If these were all photons, then a larger spread of

〈∆〉 would be expected. An attempt to quantify this statement using hadronic

simulations is given in section 4.6.2.

In the event that the true 〈∆〉 of each of these photon-candidates fluctuates

to the extreme left hand-end of the associated error bar (i.e. 〈∆〉 − σ〈∆〉), only 4,

2, 0, 0 events would pass the photon-median above energy thresholds of 10, 20,

30 and 40 EeV respectively. However, the possibility that all of these candidate

events are photons cannot be ruled out.

The most photon-like of these candidates (the one with the largest 〈∆〉) is

event 1813111 with 〈∆〉 = 1.79 ± 0.17. The 〈∆〉 of this event is larger than the

photon median at all energy thresholds considered in this work. The risetimes as

a function of distance and the FADC traces from this event are shown in figures

4.18 and 4.19.

Five of the photon-candidates are from the period originally investigated in

(28), where no photon-candidates were found, indicating that the separation be-

121



4. Updated Photon Limits Using Shower Timing Parameters

tween the data and photon distributions is not as large as originally presented in

(28). This is due to the following reasons. Firstly, the new stop-time and baseline

calculations have a small but significant effect on every FADC trace (see section

3.1.2) which acts non-trivially to increase the signals and risetimes. Secondly,

the asymmetry correction and the uncertainty parameterizations have changed

substantially, which may widen both the data and photon distributions. Thirdly,

the number of simulated photons, the simulation package used and the range of

photon energies and zenith angles considered are completely different to those

used in (28). This could decrease the photon median, with the consequence of

candidates now being observed where there were none before. The parameteriza-

tions used to calculate the photon energies have also changed since the original

work on 〈∆〉 (98).

(a) (b)

Figure 4.18: Layout of triggered detectors and risetimes with distance for the

most photon-like event in the data (i.e. with the largest 〈∆〉). This event is

inclined at 39◦ and has a photon energy Eγ = 24.5 EeV (Erec = 9.7 EeV) and

〈∆〉 = 1.79 ± 0.17. The FADC traces corresponding to this event are shown in

figure 4.19.
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(a)

(b)

(c)

(d)

Figure 4.19: FADC traces of the detectors used to calculate 〈∆〉 for the photon-

candidate with the largest 〈∆〉. The distances shown are (from top to bottom):

1183, 1197, 1256 and 1278 m. The station closest to the core (not shown) is

saturated.
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4. Updated Photon Limits Using Shower Timing Parameters

Given that the set of photons used in (28) were at a few discrete energies

and not a continuous spectrum, it would have been inadvisable to convert the

simulated spectrum to a more realistic one - for example to an E−2 spectrum

as performed here - as such a conversion would introduce large uncertainties

into the analysis. The photon median will therefore have been larger in that

work, reducing the likelihood of finding photon candidates. If an un-weighted

(i.e. ‘flat’) spectrum of photons is used for this work, the photon median is much

larger, at 〈∆〉 = 1.63 ± 0.04 and only 5 candidates are found above 10 EeV. In

contrast, use of a steeper photon spectrum, for example α = −2.5, decreases the

photon median and increases the number of photon candidates by (1,1,1,0) above

10, 20, 30 and 40 EeV respectively.

4.6 〈∆〉 From Hadronic Simulations

To determine whether the photon-candidates found in the data are really photons,

or simply the tail of a hadronic distribution, the number of candidates expected

from proton and iron simulations are desirable. Additionally, the ability of the

〈∆〉-method to distinguish protons from iron nuclei - even on an average basis -

has not yet been tested.

A set of 7900 protons and 8200 iron showers with energies between 3 and

300 EeV and a continuous distribution of zenith angles ≤ 55◦ have been simu-

lated using CORSIKA 6.97 and QGSJetII, with a 10−6 thinning level and the

Malargüe atmospheric model (93), and processed in Offline. The Monte-Carlo

and reconstructed energies and zenith angles are indicated in figure 4.20. The

standard energy reconstruction (as used for the data) gives energies ∼ 20 − 25%

lower than the original Monte-Carlo energy. This discrepancy in energy may be

due to a deficiency of muons in hadronic simulations.

Analysis of each stage of the 〈∆〉-method reveals that the asymmetry, uncer-

tainty and benchmark functions needed for the hadronic simulations are of the

same form as those used for the data. The asymmetry in both the iron and pro-

ton simulations is of a similar order of magnitude to that of the data as can be
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log E (eV)
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Figure 4.20: Left: Distribution of energies and Right: Distribution of zenith

angles for proton (top panels) and iron (lower panels) simulations (Red: Proton

MC inputs, Blue: Iron MC inputs, Black: from the standard reconstruction).

seen from figures 4.21 and 4.22, indicating that the data is more akin to hadronic

showers than photons (see figs. 4.4 and 4.5 for comparison). The amplitude

of the asymmetry parameter m from the photon simulations is many orders of

magnitude smaller than for the data and hadronic simulations.

Both the proton and iron simulations have a larger amplitude to the asym-

metry as a function of zenith angle than seen in the data - as shown in figure

4.22, which may be due to thinning and re-sampling effects. The position of

maximum asymmetry increases with decreasing mass composition from ∼ 41◦ for

iron nuclei, through ∼ 44◦ for protons to ∼ 46◦ for the photon simulations. This

compares to ∼ 42◦ from the data and is broadly consistent with the results in

(89), where the asymmetry is used to study the mass composition at different en-

ergies. A more comprehensive study of the asymmetry as a potential parameter

for mass-composition measurements is given in chapter 6.
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4. Updated Photon Limits Using Shower Timing Parameters
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Figure 4.21: Comparison of the asymmetry in the risetimes of proton (red) and

iron (blue) simulations and the data (black) for zenith angles 1.3 ≤ secθ < 1.4

(40◦ − 45◦) and distances of 800 ≤ r < 1000 m. The fitted function has the form

t1/2 = f + gcosζ.
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Figure 4.22: The asymmetry parameter m as a function of zenith angle for protons

(red), iron (blue) and the data (black). The fitted function is of the form: m =

(a secθ + b sec3θ + c)
√

(secθ − 1).

126

Chapter4/Chapter4Figs/EPS/ProtonVsDataAndIron_RisetimeVsZeta_NewStopTimes.eps
Chapter4/Chapter4Figs/EPS/ProtonVsDataAndIron_AsymmetryVsTheta_NewStopTimes.eps


4.6 〈∆〉 From Hadronic Simulations

The uncertainty on the hadronic simulations has been compared to that of the

data and photons and is found to decrease with increasing signal size according

to σt1/2
= J/

√
S + K, where J and K are functions of distance and zenith

angle. Due to the thinning and re-sampling procedures it was expected that the

uncertainty would be larger for protons and iron than for the data. However,

this is not the case - indicating that the thinning and re-sampling procedures

may have little effect on the uncertainty on the risetime. The uncertainty on the

hadronic simulations is comparable to that for the data for signal sizes between ∼
40−90 VEM, whilst at lower signals the uncertainty is smaller. This is illustrated

in figure 4.23 for one zenith angle and distance. The uncertainty on the photon

simulations is much larger than that for either the hadronic simulations or the

data.

Figure 4.23: Comparison of the uncertainty on the risetime for simulations and

the data at 800 < r < 1000 m and 1.2 ≤ secθ < 1.3 (34 ≤ θ < 40◦). The

fit-function applied to each set of points is of the form σt1/2
= J√

S
+ K.

A rigorous study of the uncertainty on the risetimes of different primaries

could provide an estimate of the effect of the thinning and re-sampling procedures
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4. Updated Photon Limits Using Shower Timing Parameters

by comparison to un-thinned showers or showers with different thinning levels.

As the uncertainty on the risetimes of hadronic simulations is similar to that

of the data, the effect of thinning and re-sampling will be small. Due to the

limitations of statistics provided by the simulations used here, many signal bins

do not contain adequate numbers of events, therefore such a study is not possible

at this time.

The benchmarks for iron and proton simulations with reconstructed energies

10 ≤ Erec ≤ 15 EeV have been found and compared to that from the data (figure

4.24). The form of the benchmark function is the same as that used for the data,

namely t1/2 = 40 +
√

A(θ)2 + B(θ)r2 − A(θ). The benchmark for the data falls

between that of the proton and iron simulations at all zenith angles. No con-

clusive statement from figure 4.24 can be made regarding the mass-composition

of individual events, although a mixed average composition can be tentatively

suggested.

The benchmark parameters A and B as a function of zenith angle for the

proton simulations are:

A =(−516 ± 2370) + (3.68 ± 8.21) × 103 exp[(−1.29 ± 4.4) secθ]

B =(−0.17 ± 0.19) + (6.8 ± 7.8) exp[(−2.33 ± 1.34) secθ]
(4.10)

and for the iron simulations they are:

A =(2.41 ± 20.1) + (2.0 ± 2.9) × 105 exp[(−6.2 ± 1.4) secθ]

B =(5.3 ± 11.2) × 10−3 + (79.1 ± 63.1) exp[(−5.43 ± 0.76) secθ]
(4.11)

The distributions of 〈∆〉 for proton and iron simulations found using their

respective benchmarks are shown for different bins in energy in figures 4.25 and

4.26. The symbol 〈∆P 〉 represents calculations using the proton-benchmark and

〈∆Fe〉 represents calculations using the iron-benchmark. As expected, no re-

construction problems or anomalies have been found on inspection of simulated

events in the tails of these distributions.
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4. Updated Photon Limits Using Shower Timing Parameters
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4. Updated Photon Limits Using Shower Timing Parameters

4.6.1 Comparison of Simulations and Data Using 〈∆〉

The average 〈∆〉s as a function of energy for the data and simulations have been

compared using the benchmarks derived from the data in section 3.2.5. As shown

in figure 4.27, the average 〈∆〉s for the iron simulations do not increase linearly

with energy - instead appearing to flatten off above ∼ 1.6 × 1019 eV (log E =

19.2 eV). The highest-energy bin for the photon simulations contains only 5

entries and has fluctuated to lower 〈∆〉. The data lies between the expectations

for protons and iron nuclei at all energies and tends towards heavier compositions

above ∼ 1.6 × 1019 eV.

Figure 4.27: Comparison of 〈∆〉 with energy for the data and simulations. The

standard energy reconstruction, Erec, has been used for all three simulated pri-

mary types and the data. The highest-energy bin for the photon simulations

contains only 5 entries and has fluctuated to lower 〈∆〉.

A conversion has been made between 〈∆〉 and X
〈∆〉
max for both the data and

simulations using the parameterization derived in section 3.4 from hybrid events.

The results are shown in figure 4.28, top panel. The lower panel of this figure
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4.6 〈∆〉 From Hadronic Simulations

shows the Xmax result from (39) for comparison. The proton X
〈∆〉
max is at consis-

tently larger values than the direct Xmax result for the same interaction model

(QGSJETII) but agrees remarkably well with the direct Xmax result from the

EPOS interaction model. The iron X
〈∆〉
max do not agree with the direct Xmax re-

sult from any interaction model. Both figures appear to indicate an increasing

mass-composition, although this appears more extreme from the X
〈∆〉
max result. Due

to the poor separation between proton and iron primaries, and the uncertainties

surrounding hadronic simulations, an in-depth study of the mass-composition for

individual events is not possible with the 〈∆〉-method.

4.6.2 Estimation of the Number of Photon-Candidates

Expected from Hadronic Simulations

The number of photon-candidates expected from proton and iron primaries has

been determined. This provides an indication of whether the photon-candidates

found in the data are really photons or simply some contamination from the tail

of a set of hadron-initiated showers. The distributions of 〈∆〉 for proton and

iron have been compared to that of the photons and are shown in figure 4.29.

Both the iron and the protons have been re-weighted and normalised from their

simulated spectra to match the flux measured for the data. As for the data, a

photon energy, Eγ, has been calculated for each simulated event. The number of

candidates is then the number of simulated events above a given (photon) energy

threshold with 〈∆〉 larger than the median of the photon distribution.

The number of photon-candidates found above four different energy thresholds

from proton and iron simulations are listed in table 4.2, along with the number

found from the data. The number of candidates from the data is well within the

number expected from a pure proton composition in the first two energy bins

but larger (by 1 or 2 events) in the two highest energy bins. The number of

candidates from the data is larger than the number expected from a pure iron

composition at all energies.
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4. Updated Photon Limits Using Shower Timing Parameters

Figure 4.28: Top: Average X
〈∆〉
max and Bottom: the average XFD

max from (39), as

a function of energy from the data and simulations. 〈∆〉 has been converted to

X
〈∆〉
max for the data and all simulations using the conversion given in section 3.4.

The effect of shifting the threshold for finding photon-candidates by minus

(plus) the uncertainty on the median of the photon distribution increases (de-

creases) the number of photon-candidates from the data by 1, 2, 0, 0 (2, 2, 2, 1)

events above 10, 20, 30 and 40 EeV respectively.
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4.6 〈∆〉 From Hadronic Simulations

(a) (b)

(c) (d)

Figure 4.29: The normalised distributions of 〈∆〉 for iron, proton and photon

simulations for four different energy thresholds. The proton and iron have been

weighted such that their energy spectra matches that of the data. The photon

simulations have been weighted to an E−2 spectrum. The benchmarks derived

from the data have been used to calculate 〈∆〉 in all cases.

Ethreshold Photon Median N total
data N cand

data N cand
proton N cand

iron

10 1.47 ± 0.04 5373 10 19 2

20 1.54 ± 0.05 2366 5 6 2

30 1.67 ± 0.05 1153 2 0 0

40 1.69 ± 0.06 622 1 0 0

Table 4.2: The number of photon-candidates found from the data, proton and

iron simulations. The total number of events from the data above Eγ = Ethreshold

and the median of the photon distribution are also shown.
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4. Updated Photon Limits Using Shower Timing Parameters

The effect of changing the simulated photon spectrum has also been investi-

gated. For an E−2.5 photon spectrum, the photon median is shifted to smaller

〈∆〉, increasing the number of photon-candidates in the data by (1,1,1,0) events.

A similar increase is observed for the proton and iron simulations in all cases.

4.7 Photon Limits

Recent new constraints on the proton-proton cross-section from the LHC (99)

and the proton-air cross-section from the Pierre Auger Observatory (100) indicate

modifications to the QGSJetII interaction model are needed to accurately describe

UHECR air showers. This may resolve the discrepancy between the simulated and

reconstructed energies in hadronic simulations (see, for example, figure 4.20) and

increase the muon multiplicity in simulated showers. Comparisons to hadronic

simulations in this work can therefore only be considered a useful indication of

the current situation and cannot be used to confirm or refute the number of

events believed to be photon-candidates. Nor is a study of the composition of

individual events possible. Robust upper limits to the photon flux and fraction

are still achievable with current models as the physics behind photon-initiated

EAS is well-known.

Conservative integral upper limits have been placed on the flux and fraction

of UHECR photons assuming all 10 candidates found here are photons. All non-

candidate events are assumed to be hadronic in composition. Photon-candidate

events will retain their photon energies, Eγ whilst all non-candidates are reas-

signed their energies from the standard energy reconstruction, Erec. The number

of events above each energy threshold is listed in table 4.3.

The integral upper limit to the flux of photons is given by:

Φ =
Λ95

γ

ǫǫγfT
(4.12)

and the integral upper limit to the fraction of photons in the data is:

Γ =
Λ95

γ

ǫǫγfNtotal(E ≥ Elim)
(4.13)
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where: f is the photon-candidate cut efficiency (0.5 by construction), Ntotal(E ≥
Elim) is the total number of events, including photon-candidates, above a given

energy threshold Elim and θ ≤ 60◦. The efficiency of the 〈∆〉-method for the

zenith angles and energies considered here is denoted by ǫ and the integral photon

reconstruction efficiency by ǫγ. The array exposure, T , is 6083 km2 sr yr.

The expected number of photons at a 95% confidence level, Λ95
γ , given Ncand

candidates has been found by considering the Poissonian tail of a distribution

where n events have been studied. The values of Λ95
γ corresponding to the number

of photon candidates found in this work are given in table 4.3 for each energy

threshold. Had a firm detection of photons been made, a definite flux could have

been obtained. In this case Λ95
γ would be replaced by Ncand in equations 4.12 and

4.13.

Elim(EeV) Ntotal n Ncand ǫ ǫγ Λ95
γ Φ (km−2sr−1yr−1) Γ(%)

10 3542 1669 10 0.96 0.67 17.0 0.0087 1.5

20 898 462 5 0.95 0.77 10.5 0.0047 3.2

30 348 184 2 0.90 0.81 6.3 0.0028 4.9

40 154 81 1 0.82 0.82 4.7 0.0023 9.1

Table 4.3: Integral upper limits to the flux (Φ) and fraction (Γ) of UHE photons

for four different energy thresholds. Ntotal is the total number of events with

Erec ≥ Elim and θ ≤ 60◦ before cuts, n is the number of events with Erec ≥ Elim

which pass all the 〈∆〉-method cuts and Ncand is the number of photon-candidates

above the same energy threshold. For the explanation of other values, see text.

The differential photon reconstruction efficiency is shown in figure 4.30. At

1019 eV, the average photon efficiency is 0.20±0.02. For the calculation of integral

photon limits, the integral photon efficiencies (ǫγ) must be used and have been

calculated from figure 4.30. These are given in table 4.3 for the corresponding

energy thresholds.

Using the formula given in equations 4.12 and 4.13, new upper limits to the

photon flux and fraction have been calculated and are given in table 4.3. These
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4. Updated Photon Limits Using Shower Timing Parameters

Figure 4.30: Differential photon selection efficiencies corresponding to the set

of photons and cuts described in this work. Warmer colours indicate higher

efficiencies.

limits are shown in figures 4.31 and 4.32, together with a selection of model

predictions and previous results from the Pierre Auger Observatory.

The new limits to the photon fraction, shown in figure 4.32, indicate a signif-

icant improvement over previous limits at all energies. Only at 10 EeV does this

limit remain above the prediction for the Z-burst model. None of these limits

probes the predicted GZK region.

Larger flux limits above 10 and 20 EeV have been found compared to those

presented in (47). This does not indicate a failure of the 〈∆〉-method as the

work in (47) utilised a combination of the risetime (t1/2(1000)) and the radius

of curvature in a multi-parameter study, whereas this work does not. The anal-

ysis in (47) was conducted to give a preliminary idea of the performance of a

multi-parameter analysis technique given limited statistics. The 〈∆〉-method was

developed to give a more rigorous analysis using only a single parameter. A sim-
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Figure 4.31: Integral upper limits to the flux of UHECR photons found in this

work (black arrows). Previous limits made by the Pierre Auger Observatory (grey

arrows) (47) and from (28) (blue arrows) (offset slightly on the x-axis for clarity)

and model predictions from the GZK mechanism (pink line - upper limit), Top-

down (green line), SHDM (magenta and blue lines) and Z-Burst (mauve) models

are also shown.

ilar, rigorous analysis has not been conducted on the radius of curvature which

currently has very poor discrimination power between primary types.

Significant doubt has also been cast on the limits presented in (47). A recent

re-analysis of this earlier work has not managed to successfully reproduce the

published limits (101) - instead achieving significantly larger limits (Φ = 8.1 ×
10−3 km−2s−1yr−1 at 10 EeV for the same period). An incorrect calculation of the

photon efficiencies is cited as a primary cause of this discrepancy. A re-analysis

of the t1/2(1000)-Curvature method is ongoing (101).

Calculation of the flux of photons (rather than the upper-limits) for the

number of candidate events found in this work gives Φ = (5.1 ± 0.5) × 10−3,
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Figure 4.32: Integral upper limits to the fraction of UHECR photons found in

this work (black arrows). Previous limits made by the Pierre Auger Observatory

(grey and orange arrows) (47), (48) and from (28) (blue arrows) (offset slightly

on the x-axis for clarity) and model predictions for the GZK mechanism (pink

shading), Top-down (green line), SHDM (magenta and blue lines) and Z-Burst

models (mauve line) are also shown.

(2.3 ± 0.1) × 10−3, (0.90 ± 0.08) × 10−3 and (0.48 ± 0.02) × 10−3 above 10, 20,

30 and 40 EeV respectively. The fraction of photons above these energies is

(0.88 ± 0.08)%, (1.52 ± 0.08)%, (1.56 ± 0.13)% and (1.92 ± 0.08)% respectively.

All these numbers are tantalisingly close to the GZK region shown in figures 4.31

and 4.32 and are smaller-valued than limits from previous works. However, in

the absence of a positive detection of photons, the 95% confidence upper limits

to the flux and fraction must be used.
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4.8 Conclusion

4.8 Conclusion

In this work a large set of photon simulations with a continuous distribution

of energies and zenith angles were analysed using the 〈∆〉-method described in

chapter 3. Previously, only a much smaller set (∼ 1/3 of the current number) of

photons at discrete energies and zenith angles had been studied. Additionally, for

the first time, the 〈∆〉-method has been applied to a large number of proton and

iron simulations, also with a continuous energy and zenith angle distribution.

Using the benchmark derived from the data, the distribution of 〈∆〉 from

photon simulations has been compared to the data. An E−2 energy spectrum

has been assumed for the photons. The number of photon-candidates has been

determined by examining events with a 〈∆〉 larger than the median of the photon

distribution. Ten, five, two and one photon-candidates have been found above

10, 20, 30 and 40 EeV respectively.

The number of photon-candidates expected from a pure proton and pure iron

composition, with the same flux spectrum as the data, has been determined.

Whilst the number of photon-candidates from the data is well within the number

expected from protons, these candidate events cannot conclusively be dismissed

as part of a hadronic tail in the data. This is predominantly due to uncertainties

surrounding the simulation of hadronic showers. With this in mind, new 95%-

confidence level upper limits to the integral flux and fraction of UHE photons

above 10, 20, 30 and 40 EeV have been calculated assuming that the observed

candidate events are photons. This gives flux limits of 8.7×10−3, 4.7×10−3, 2.8×
10−3 and 2.3×10−3 km−2 sr−1 yr−1 above 10, 20, 30 and 40 EeV respectively. The

corresponding limits to the fractions of photons are 1.5%, 3.2%, 4.9% and 9.1%.

For the photon fraction this represents a significant improvement to the photon

limits, ruling out the Z-burst model at all energies except 10 EeV. Examination

of the average 〈∆〉 as a function of energy from hadronic simulations and the

data indicates an increase in mass with increasing energy - provided hadronic

interaction models are correct.
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4. Updated Photon Limits Using Shower Timing Parameters

Future attempts to determine limits to the photon flux and fraction will

achieve better separation between photons and hadrons by using multi-parameter

analysis techniques - for example, combining the 〈∆〉-method and the radius of

shower front curvature. This will push limits down into the GZK region and

determine whether the observed candidates are truly photons or just a tail to a

hadronic distribution. Better discrimination between proton and iron primaries

may also be achieved, allowing the mass-composition of UHECR to be probed.

An increase in statistics from both the data and simulations will also aid this

goal, thereby allowing uncertainties to be reduced.
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Chapter 5

Application of the 〈∆〉-Method to

the Search for UHECR Sources

5.1 Introduction

In this chapter the results of the 〈∆〉-method are applied to the search for UHECR

sources. Firstly, the position on the sky of the photon candidate events found

in chapter 4 are determined and compared to the positions of 318 AGN from

the VCV catalogue. Secondly, the difference in 〈∆〉 for the highest energy events

that correlate or do not correlate with AGN from the VCV catalogue used in (75)

is investigated. Similarly, the distribution of 〈∆〉 for the highest energy events

originating from within an 18◦ region centred on Cen A are also investigated and

compared to events with larger angular separations.

5.2 A Search for the Sources of the Photon-

Candidate Events

Photons are not deflected by magnetic fields and can therefore be traced back to

their source locations. A correlation of photon-initiated air showers with sources

from a given catalogue could give an indication of the nature of the accelerators

capable of producing ultra high energy cosmic-rays. The arrival directions of

the photon-candidates found using the 〈∆〉-method in chapter 4 are indicated
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in figure 5.1, together with the positions of 318 AGN with red-shifts closer than

z = 0.018 (r ≤ 75 Mpc), taken from the VCV catalogue used in (75). The arrival

directions of these events are determined from the zenith and azimuthal angles,

GPS timing of the event and the location of the shower core on the array. The

angular resolution of the arrival directions is defined as the region around the

real arrival direction in which 98% of the reconstructed shower directions fall and

is better than 0.9◦ for SD events with at least 6 triggered detectors (75). From

these arrival directions, the right ascension (α) and declination (δ) of each event

has been calculated and then converted into to the galactic coordinate system

(l, b) and plotted using a Hammer-Aitoff projection (figure 5.1). All coordinate

transformations correspond to the J2000 epoch. The galactic coordinates and

〈∆〉s of the photon-candidate events are listed in table 5.1. The position of 106

cosmic rays with energy E ≥ 55 EeV and θ ≤ 60◦ recorded between 1/1/2004 and

31/11/2011 are also shown in figure 5.1.

ID l b Log Eγ (eV) 〈∆〉
9333599 -170.2 -63.3 19.10 1.49 ± 0.17

6784159 -137.9 -12.0 19.36 1.49 ± 0.15

1813111 -137.1 -58.1 19.39 1.79 ± 0.17

8938022 -138.8 -30.4 19.62 1.71 ± 0.23

2248206 -62.1 -39.3 19.50 1.70 ± 0.16

6637103 -35.1 -38.7 19.46 1.57 ± 0.17

1768669 -20.2 -10.4 19.27 1.74 ± 0.17

1998796 -26.4 -9.2 19.27 1.65 ± 0.23

3343182 27.6 6.6 19.39 1.52 ± 0.29

10450239 156.3 -54.9 19.73 1.61 ± 0.25

Table 5.1: Positions of the photon-candidate events in galactic coordinates in

order of increasing longitude. The corresponding 〈∆〉 and photon-energies are

also given.

None of the photon candidates found in this work appear within the 18◦ region

around Centaurus A, indicating that Cen A is not a source of the observed photon-
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5. Application of the 〈∆〉-Method to the Search for UHECR

Sources

candidates. Only one photon candidate event (event 3343182) is at latitudes

greater than 0◦, indicating a possible lack of sources of UHECR in this region

that give rise to GZK-protons, such that photons may be observed at Earth.

Similarly, only one other photon-candidate event is observed at positive galactic

longitudes. That these events are not grouped in one region of the sky indicates

that the photon-candidate events do not all originate from the same source, if

these events are indeed photons. If these events were proton primaries rather

than photons, the observed distribution on the sky still indicates more than one

source is present, given current knowledge of intergalactic and galactic magnetic

fields.

Two photon candidates appear close together on the sky - at (20.2, -10.4) and

(26.4, -9.2) and are within 3◦ of AGN from the VCV catalogue. If photons, these

two events could potentially come from the same source, or from sources within

a few degrees on the sky. The event at (156.3, -54.9) also lies close to an AGN

from this catalogue. Three other photon candidates appear within 20◦ of small,

sparse ‘clusters’ of the highest energy events - in the regions surrounding (-140,

-30) and (-140, -60) respectively, However, neither of these regions contain AGN

within 75 Mpc from the VCV catalogue. The remainder of the photon-candidates

do not have arrival directions close to those of the highest energy cosmic-rays or

AGN within redshift z = 0.018 from the VCV catalogue.

The arrival directions of the photon-candidate events have also been compared

to the positions of 373 AGN within 200 Mpc from the Swift-BAT catalogue used

in (75). Using this catalogue, the events at (-138.8, -30.3) and (-137.1, -58.1) have

an AGN within 3◦ of their respective locations. No other photon-candidate events

have arrival directions close to nearby AGN from the Swift-BAT catalogue.

The lack of correlation with AGN from the VCV or Swift-BAT catalogues

indicate that either the photon-candidate events found in chapter 4 are not pho-

tons and therefore are deflected from their sources by a significant amount or

that the sources of UHECR are not the AGN listed in these catalogues. The

lack of apparent correlation between the highest energy events, where deflections
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should be minimal, and the photon-candidate events implies either that these

candidate events are not photons, or that the highest energy events are strongly

deflected by magnetic fields. In the case of the highest energy events, this could

be due to the presence of iron primaries, or that the extragalactic magnetic field

is much stronger than previously believed, causing the highest energy events to

be deflected more than hitherto assumed. Comparison of the photon candidates

to hadronic simulations in chapter 4 indicated the possibility that these photon-

candidates might actually be from the tail of a hadronic distribution. The results

in this section add to that argument, although the possibility of a proportion of

these events being photon primaries cannot be eliminated. The sources of these

events therefore remain unknown.

5.3 The Risetimes of the Highest Energy Events

The highest energy events have previously been investigated for correlations with

nearby extragalactic objects (30), (75). In the latter of these two works, only

29/69 events (42%) with E ≥ 55 EeV and θ ≤ 60◦ were observed to correlate with

AGN within 3◦ (including those used in the initial prescription) (75). Further,

the six events with the highest energies do not appear to correlate with AGN.

An additional 37 events with E ≥ 55 EeV have been recorded since, bringing

the total to 106 events as of 31/11/2011. The arrival directions of these events

are indicated in figure 5.1. Using this updated set of events, the total number

that correlate with AGN is now 36/106 (34%) - including those from the initial

prescription.

Recent work on the composition using Xmax (39), which finds a steadily in-

creasing average mass-composition with energy, raises the possibility that events

uncorrelated with AGN may be heavy primaries that have suffered large deflec-

tions from their original direction. If those events that do not correlate with

AGN have a much heavier composition than those that do, their lack of correla-

tion could be explained by large deflections in galactic magnetic fields, thus AGN

could still be sources of UHECR. If, on the other hand, the events that correlate
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with AGN are from heavier primaries, then those events correlate by chance and

other types of object must be considered as the sources of UHECR.

The correlation study in (75) used the first 14 events (those recorded prior

to 26/05/06, ‘Period I’) in an exploratory scan to determine the maximum sep-

aration between arrival directions and AGN that minimised chance correlations.

These events were then discarded and future events (Periods II and III) were used

to determine the degree of correlation of cosmic rays and AGN. In the following

sections the events from period I have not been discarded in this a posteriori

analysis.

5.3.1 Events That Correlate With AGN

The highest energy events that correlate with AGN have been compared to those

that do not using the 〈∆〉-parameter. 〈∆〉 is calculated as described in chapter 3

for all events with θ ≤ 45◦. The cut on events with θ ≤ 30◦ used for the photon

searches in chapter 4 has been relaxed for this analysis. Twenty-nine events which

do, and 41 events which do not correlate with AGN, have an available 〈∆〉. The

distribution of 〈∆〉 for these events are shown in the top panel of figure 5.2. A

larger value of 〈∆〉 indicates a deeper developing shower (larger Xmax) or a lighter

composition. Ten of these events are hybrid events with a reliable Xmax, of which

2 that do and 5 that do not correlate with AGN have a calculable 〈∆〉. Of the

remaining 36 events with no available 〈∆〉, 24 have a zenith angle larger than

θ ≤ 45◦ and 12 events do not have at least two detectors which pass the cuts on

distance, signal and risetime.

It can be seen from figure 5.2 that the average 〈∆〉 appears to be the same,

within uncertainties, for events that correlate with AGN and for those that do

not correlate. If the outlier at 〈∆〉 = −2.6 ± 2.9 is removed, the mean values

of these two distributions differ by only 0.02. The distribution of zenith angles

and energies of those events which do and do not correlate with AGN and which

survive the 〈∆〉-method cuts are also the same within uncertainties. The outlying

event at 〈∆〉 = −2.6 ± 2.9 has been inspected and, with the exception of short
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5.3 The Risetimes of the Highest Energy Events

traces as indicated by its value of 〈∆〉, no unusual features are observed. The

values of 〈∆〉 with energy for these events are shown in the lower panel of figure

5.2. No difference in the 〈∆〉 of each set of events as a function of energy is

observed.

The composition of any of these highest energy events cannot be precisely

determined due to the large overlap between the 〈∆〉-distributions of proton and

iron simulations, except to note that, at first glance, the average 〈∆〉 is larger

than expectations from iron simulations but smaller than for proton simulations

above the same energy, as seen from figure 5.2. None of these events are photon-

candidates.

5.3.2 Events Within the Centaurus A Region

As the closest radio galaxy potentially capable of accelerating UHECR, and being

well within the GZK region at a distance of 3.5 Mpc, Centaurus A (Cen A or NGC

5128) is obviously of some interest. In (75), the most significant departure from

isotropy for the cumulative number of events with E ≥ 55 EeV as a function of

angular distance from Cen A was found to be 18◦. In this section a comparison of

the 〈∆〉s of events within 18◦ of Cen A and those outside this region is discussed.

〈∆〉 has been found for 13/15 of the highest energy events that lie within and

57/91 events outside this this 18◦ region. As stated in the previous section, 24

events - of which all are outside the 18◦ region - have zenith angles larger than 45◦,

where 〈∆〉 is undefined. A further 12 events do not have at least two detectors

which pass the selection criteria from the 〈∆〉-method.

The two distributions of 〈∆〉 are shown in figure 5.3, where it can be seen

that the average 〈∆〉 of those events within the Cen A region is smaller than that

of events which lie further afield (−0.25 ± 0.24 compared to 0.18 ± 0.08). Since

these means are not the same, a two-tailed students t-test has been performed

to determine the likelihood that these two samples are drawn from the same

population. The student’s t value given by :

t =
|µA − µB|

S
√

1/NA + 1/NB

(5.1)
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Figure 5.2: Top: Distribution of 〈∆〉 for events which do (shaded red) and do

not (black) correlate with AGN. Bottom: 〈∆〉 as a function of energy for events

which do (red) and do not (black) correlate with AGN. The average 〈∆〉 from

proton (red dashed line) and iron (blue dashed line) simulations with energies

above 55 EeV are also indicated in both figures at 0.53 ± 0.05 and −0.03 ± 0.01,

respectively. A larger 〈∆〉 implies a deeper development and lighter composition.
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where the sample variance, S, is:

S =

√

(NA − 1) σ2
A + (NB − 1) σ2

B

NA + NB − 2
(5.2)

and NA and NB are the number of events with a calculable 〈∆〉 within and outside

18◦ respectively. σA and σB are the corresponding uncertainties on the means,

µA and µB. The value for t has been found to be 11.7, indicating that these two

distributions are the same at the 95% confidence level. In other words, there is

no significant difference between the 〈∆〉 distribution for events within the Cen A

region and for those events with larger angular separations. The distribution of

〈∆〉 as a function of energy for these events is given in figure 5.4, where it can be

seen that there is no bias in the distributions of 〈∆〉 as a function of energy. The

average 〈∆〉 expected from proton and iron simulations with E ≥ 55 EeV are also

shown. As in the previous section, no deductions about the mass-composition of

these events can be given.

Figure 5.3: Distribution of 〈∆〉 for events that lie within an 18◦ region around Cen

A (red, shaded) compared to those that do not (black). The average 〈∆〉 from

proton (dark red dashed line) and iron (blue dashed line) simulations with energies

above 55 EeV are also indicated at 0.53 ± 0.05 and −0.03 ± 0.01, respectively.
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Figure 5.4: 〈∆〉 as a function of energy for events that lie within an 18◦ region

around Cen A compared to those that do not. The average 〈∆〉 from proton (red

dashed line) and iron (blue dashed line) simulations with energies above 55 EeV

are also indicated at 0.53 ± 0.05 and −0.03 ± 0.01, respectively.

If Cen A were to be the sole source of UHECR arriving at Earth, then an

increase in mass-composition with increasing angular distance is necessary to

explain the observed distribution of arrival directions. This requires that 〈∆〉
shows a decrease with increasing angular distance from Cen A, modified perhaps

by the increase of 〈∆〉 with energy and fluctuations due to the development of air

showers in the atmosphere. A plot of 〈∆〉 as a function of angular distance from

Cen A is shown in figure 5.5. The average 〈∆〉 from proton and iron simulations

are also shown. The data are consistent with there being no dependence of 〈∆〉
on angular distance (as shown by fitting a linear function to the data). Thus,

no trend towards a shallower shower development and hence heavier composition

with increasing distance from Cen A exists in the data for the very highest energy

events. This strongly implies that UHECR come from more than one nearby

source, of which Cen A may be the closest.
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Figure 5.5: 〈∆〉 as a function of angular distance from Cen A for the highest

energy events. The solid black line is a linear fit to the data. The average 〈∆〉 from

proton (red dashed line) and iron (blue dashed line) simulations with energies

above 55 EeV are also indicated at 0.53 ± 0.05 and −0.03 ± 0.01, respectively.

5.4 Conclusion

The arrival directions of the photon candidates found in chapter 4 have been com-

pared to the positions of 318 AGN within a distance of 75 Mpc from the VCV

catalogue, to the positions of 373 AGN within 200 Mpc from the Swift-BAT cata-

logue and to the updated set of highest energy events (now numbering 106 events

to the end of November 2011) using the prescriptions from previous correlation

studies. No photon candidates lie in the vicinity of Cen A or correlate with the

AGN from this catalogue. Two photon candidates lie within 20◦ of sparse ‘clus-

ters’ of the highest energy events in areas well away from AGN from the VCV

catalogue, although a possible correlation with an AGN from the Swift-BAT cat-

alogue is found in either case. That the photon candidates are distributed across

all galactic latitudes below +10◦ indicates more than one source is responsible for

the observed flux of UHECRs. The possibility that these events are not photons
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still remains. The lack of correlation with the highest energy events implies either

that these candidate events are not photons, or that the highest energy events

are strongly deflected by magnetic fields. The possible sources of these events

remain unknown.

The average 〈∆〉 for the updated set of high energy events has been investi-

gated in two ways. The average 〈∆〉 of 29 events which correlate with AGN from

the VCV catalogue has been compared to the average of 41 events that do not

correlate with AGN and are the same within uncertainties. Similarly, the average

〈∆〉s of 13 events within an 18◦ radius around Centaurus A have been compared

to 57 events outside this region. Again, no statistically significant difference be-

tween the two distributions has been found. The possibility of a gradual change

in 〈∆〉 as a function of angular distance from Cen A has also been investigated.

However, no such change has been found, thereby implying no systematic change

of mass composition. Thus Cen A is unlikely to be the sole source of UHECR.

Due to the extreme overlap of 〈∆〉 from proton and iron simulations it has

not been possible to determine the individual mass-composition of the highest

energy events. However, in all four distributions investigated above, the average

of the 〈∆〉-distribution has fallen between the values expected from proton and

iron simulations of energy greater than 55 EeV. None of the 106 highest energy

events are photon-candidates.
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Chapter 6

The Asymmetry on the Risetimes

as a Mass-Sensitive Parameter

6.1 Introduction

As discussed in chapter 3, the timing parameters of inclined showers are subject to

asymmetry effects due to the geometry of the shower with respect to the ground

and the development of the electromagnetic component at different slant depths.

The asymmetry in the risetime as a function of distance and zenith angle was

parametrised for the data (for all energies above E ≥ 3 EeV) in chapter 3.2.3

such that a correction for the asymmetry effect could be made to the risetimes

to obtain a reliable and unbiased 〈∆〉-parameter. The zenith angle at which the

maximum asymmetry occurs was found to be ∼ 42◦ for events with E ≥ 3 EeV.

This compared to ∼ 41◦ for iron simulations, ∼ 44◦ for protons and ∼ 46◦ for

photon simulations, thus indicating a possible mass-sensitivity in the value of

maximum asymmetry from which the average mass-composition of UHECR might

be determined.

A recent study, described in (90) and (89) attempted to utilise the asymmetry

in the risetimes as a mass-sensitive variable. Several concerns have arisen over

the reliability of this method and the interpretation of the results, including

some of their basic assumptions, which are being reviewed by the Pierre Auger
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collaboration. This chapter reviews the method in (89) and (90), and examines

a potential alternative.

6.2 Summary of Previous work

The average asymmetry on the risetime as a function of energy and zenith angle

was studied in (89) and (90) using data recorded between January 2004 and

December 2009. This analysis has been updated to include events to the end

of December 2010. Risetimes from events with E ≥ 3 EeV and θ ≤ 65◦ and

from detectors with signals and distances in the range 10 ≤ S ≤ 800 VEM and

500 ≤ r < 2000 m were used. After these cuts nearly 105 risetimes from 19051

events are available. In (89) and (90) the old (pre-2011) stop-times and baseline

subtractions were utilised. Their method has been re-examined using the new

stop-times and baseline subtraction (as described in section 3.1.2), which accounts

for slight variations from the results of the original work.

In (89) and (90) it is argued that as the risetime increases linearly with dis-

tance from the shower core within the range of distances studied, the asymmetry

in the risetime must also follow this relationship, allowing the parameter t1/2/r

(risetime divided by the distance from the shower core) to be created in an at-

tempt to eliminate the dependence of the distance on the risetimes. The data

have been subdivided into bins of energy and zenith angle and the average
t1/2

r

plotted as a function of azimuthal angle (the angle the detector makes to the ver-

tical projection of the shower axis on the ground at the shower core) and fitted

with a cosine function:

〈t1/2

r
〉 = a + bcosζ (6.1)

Example results are shown in figure 6.1 and table 6.1 for events at four different

zenith angle ranges in the energy range 19.2 ≤ log E < 19.5. These results are in

reasonable agreement to those in (89), despite the implementation of new stop-

times and baseline corrections.

The quantity b
a

is used to describe the amplitude of the asymmetry. The

variation of b
a

with ln(secθ) has been studied and is symmetric about a maximum
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Figure 6.1: 〈 t1/2

r
〉 as a function of azimuthal angle for detectors in showers at four

different zenith angles in the energy range 19.2 ≤ logE < 19.5. Reproduced using

the method from (89) and the new stop-time algorithms (section 3.1.2).

Zenith Angle from (89) This Work

a (ns m−1) b(ns m−1) a (ns m−1) b (ns m−1)

32 0.30 ± 0.003 0.084 ± 0.004 0.32 ± 0.002 0.066 ± 0.002

45 0.20 ± 0.003 0.082 ± 0.003 0.24 ± 0.002 0.073 ± 0.003

53 0.13 ± 0.002 0.050 ± 0.003 0.14 ± 0.002 0.043 ± 0.003

60 0.08 ± 0.002 0.026 ± 0.002 0.10 ± 0.001 0.021 ± 0.002

Table 6.1: Comparison of a and b from figure 6.1 (where the new baseline and

stop-time parameterizations discussed in section 3.1.2 have been utilised) and

from (89) for four zenith angles and in the energy range 19.2 ≤ logE < 19.5.

value for each energy bin and is well-described by a Gaussian function. The

parameter Amax is defined as the maximum value of b
a

from this Gaussian function,

and the zenith angle at which this occurs is (secθ)max. These two parameters

describe the maximum asymmetry for a given energy (see figure 6.2 and table

6.2). Both Amax and (secθ)max were investigated in (89) for different proton/iron

fractions in steps of 10% and found to be dependent upon the mass composition.
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The width of the Gaussian distributions were also studied but no sensitivity of

this parameter to different primaries has been found. In (89), (secθ)max was found

to increase linearly with Xmax.

Figure 6.2: The asymmetry parameter b
a

as a function of ln(secθ) for four dif-

ferent energies, reproduced using the method from (89). The angle of maximum

asymmetry, (secθ)max is given in each case. The new stop-time algorithms (section

3.1.2) have been applied here.

Due to the nature of this method, it is not possible to use the asymmetry of the

shower for photon-limit studies, or for detailed event-by-event mass-composition

work as it is not possible to analyse the asymmetry on the risetimes on an event-

by-event basis. The study of the asymmetry can therefore only provide an indi-

cation of the average mass-composition as a function of energy or Xmax.

Whilst this method is advantageous for its simplicity, aspects of this study

are contentious for several reasons. The argument that as the risetime is approxi-
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Energy from (89) This Work

(secθ)max Amax (secθ)max Amax

18.55 1.532 ± 0.008 0.27 ± 0.02 1.516 ± 0.009 0.25 ± 0.004

18.70 1.540 ± 0.008 0.28 ± 0.02 1.542 ± 0.010 0.27 ± 0.005

18.85 1.538 ± 0.009 0.30 ± 0.02 1.516 ± 0.011 0.29 ± 0.006

19.00 1.530 ± 0.010 0.31 ± 0.02 1.527 ± 0.010 0.31 ± 0.006

19.20 1.514 ± 0.012 0.32 ± 0.02 1.514 ± 0.011 0.35 ± 0.007

19.50 1.527 ± 0.019 0.34 ± 0.02 1.536 ± 0.015 0.35 ± 0.01

Table 6.2: (secθ)max and Amax for each energy. Values from (89) are given for

reference.

mately linear with distance (for the range of distances considered), the asymmetry

must also be linear (89) is viewed as one of the more contentious aspects. No

evidence has been presented in (89) (or references therein) to support this theory.

It does not neccessarily follow that the asymmetry will have the same relationship

as the risetime with distance. In fact, there is plenty of evidence that the two

parameters do not have the same relationship with distance. This can be seen

by comparing the function used to describe the average risetime with distance

and the correction applied to the risetimes to compensate for the asymmetry in

each of the different risetime studies given in references (28), (47), (82), (102)

and chapter 3 of this thesis. In all these works the amplitude of the asymmetry

has an r2 dependence:

t1/2 =f + gcosζ

where : g =n(θ) + m(θ)r2
(6.2)

for both the data and hadronic simulations (n(θ) = 0 in the 〈∆〉-method). More-

over, in the 〈∆〉-method the amplitude of the asymmetry for photon simulations

was found to have a cubic dependence on distance (see section 4.4.1).

Additional proof that the use of 〈 t1/2

r
〉 for asymmetry studies does not remove

all dependence on distance can easily be found by plotting 〈 t1/2

r
〉 and the asym-

metry parameter b
a

as a function of r. This is shown in figures 6.3 and 6.4 for

several different zenith angles. In both figures it can be seen that the respec-
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tive parameters are not independent of distance, as implied in reference (89).

This is particularly evident in figure 6.4. In figure 6.3, it can be seen that 〈 t1/2

r
〉

increases with r for ln(secθ) ≤ 0.29 (θ ≤ 41◦) and decreases with r for larger

zenith angles. This is true even when the data are subdivided into different bins

in energy, although the scatter on the points is larger due to a smaller number

of times per bin. This change of the dependence of 〈 t1/2

r
〉 vs r with increasing

zenith angle could be due to the assumption that t1/2 = p(θ)r when, in fact, from

the 〈∆〉-method, the risetime depends on distance in a more complex fashion:

t1/2 = 40 +
√

p2 + qr2 − p, where p and q are both functions of zenith angle.

The zenith angle at which the maximum asymmetry occurs for each individual

distance shown in figure 6.4 has been investigated. The data have been divided

into four energy bins, of which two are shown in figure 6.5. Due to the limitations

of statistics it has been necessary to halve the number of distance bins used.

Figure 6.5 indicates that both Amax and (secθ)max vary with distance. This is

better illustrated in figure 6.6, where all four energy bins are shown. A clear

increase in Amax and decrease in (secθ)max with distance can be seen for each

energy, indicating these parameters are still dependent on distance.

In (89) strong arguments are also presented suggesting that the cause of the

asymmetry in the risetimes for zenith angles larger than ∼ 30◦ is solely due to the

attenuation of the shower and that there exists no geometric component above this

zenith angle. These arguments have been re-examined and found to be inaccurate

and therefore misleading (103). Whilst it is true that the attenuation plays a

significant part in the asymmetry and that the magnitude of the asymmetry

should decrease at zenith angles where the electromagnetic component is fully

attenuated, it has also been shown that the geometry of the shower with respect

to the ground and the detectors are important (if not the predominant effect)

at all zenith angles (104), (105). This is illustrated in figure 6.7 where two

showers of different zenith angles but similar energy have been chosen such that

the atmospheric overburden for the ‘late’ particles in the more vertical shower

is the same as for the ‘early’ particles in the more inclined shower at the same
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Figure 6.3: 〈 t1/2

r
〉 as a function of distance for 10 different zenith angles and

energy E ≥ 3 EeV. The same θ binning as in figure 6.2 is used.
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Figure 6.4: Asymmetry parameter b
a

as a function of distance for 10 different

zenith angles and energy E ≥ 3 EeV. The same θ binning as in figure 6.2 is used.
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6.2 Summary of Previous work
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Figure 6.5: Asymmetry parameter b
a

as a function of zenith angle for 3 different

distances and two energies.
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6. The Asymmetry on the Risetimes as a Mass-Sensitive Parameter

Figure 6.6: (secθ)max and Amax as a function of distance for four different energies.

distance from the shower axis. The signals from each are clearly different - with

the early signal having a much longer tail and hence a larger risetime (by ∼ 90 ns).

If the asymmetry were solely due to attenuation, these risetimes should be the

same within uncertainties.

An unthinned proton shower at 45◦ has been studied to determine the inci-

dence angles of particles onto detectors either side of the shower axis (103). For

both the early and late detectors, the majority of particles incident on the detec-

tor do so at angles between 30− 60◦. However, in the early detector a significant

contribution of late particles incident on the detector between angles of 0 − 30◦

and a smaller contribution from even later particles incident at -30 − 0◦ are also

present, thus lengthening the risetime. The asymmetry is, therefore, due to a

combination of the geometry of the shower in relation to the detectors, the solid

angle from which the detectors can receive shower particles and the attenuation

of the electromagnetic component for showers at all zenith angles.
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6.3 Exploration of an Alternative Method to Determine the

Asymmetry for Mass-Composition Studies

(a)

(b) (c)

Figure 6.7: Illustration of the geometric component of the asymmetry for two in-

clined showers. Top: Two inclined showers of similar energy but different zenith

angles have been chosen such that the atmospheric depth is the same (red dot-

ted lines). Bottom: The time traces from the two stations shown in red (Left:

Detector A (late), Right: Detector D (early)). The ∼ 90 ns difference in the two

risetimes is due to geometric effects, not attenuation. Adapted from (103).

6.3 Exploration of an Alternative Method to

Determine the Asymmetry for Mass-

Composition Studies

Given the concerns raised in the previous section over the reliability of the asym-

metry parameters calculated in (89), and recognising that there still exists a

potential for the asymmetry to be used in mass-composition measurements, a

new method for its calculation has been investigated. This method is based on

the asymmetry parameterization discussed in chapter 3.2.3, adapted to determine
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6. The Asymmetry on the Risetimes as a Mass-Sensitive Parameter

the angle and amplitude of maximum asymmetry as a function of energy. In this

method, no a priori assumptions concerning the parameterization of the risetime

with distance have been made.

Events with energies ≥ 3 EeV and zenith angles ≤ 60◦ have been used. A

cut on the signal and distance of individual detectors has been made to ensure

the robust calculation of the risetimes. Unsaturated signals with a minimum of

15 VEM have been used in this study. This cut is larger than in the previous

asymmetry work but has been chosen to reduce the effect of fluctuations on

the risetime in detectors with small signals. A cut at t1/2 = 40 ns has also been

imposed to eliminate risetimes less than the average of the single particle response

and which cannot have been properly measured. Detectors in the distance range

250 ≤ r ≤ 1650 m have been selected to reduce the potential for biases from

the signal cut. Insufficient detectors exist at larger distances for robust analysis.

A total of 95753 detectors meet these criteria. Direct light removal and trace

cleaning procedures have been implemented on all traces as described in chapter

3.2.1.

The data have been divided into 8 bins in energy and then subdivided into 10

equal bins of sec θ. Next, the data have been subdivided into 6 distance bins, with

the first bin covering the range 250 ≤ r < 650 m and then in bins of 200 m width

up to 1650 m. For each energy/zenith angle/distance combination containing

more than 20 entries, the risetime has been plotted as a function of azimuthal

angle and fitted with a cosine function of the form:

t1/2 = f + gcosζ (6.3)

An example of typical results for one energy and zenith angle bin is shown in

figure 6.8 for each distance bin.

The parameter g has been plotted as a function of distance. This is fitted

with a quadratic function of the form g = M(θ, E)r2. An example for one energy

and zenith angle range is given in figure 6.9.

Next, the parameter M has been plotted as a function of zenith angle for each

energy band, as illustrated in figure 6.10 for four different energies, and fitted with
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Asymmetry for Mass-Composition Studies

Figure 6.8: The risetime as a function of azimuth for six distances in the energy

range 18.9 ≤ log(E) < 19.1 and zenith angle range 1.3 ≤ secθ < 1.4. The fit-

function is t1/2 = f + g cos(ζ) in each case. No fit can be reliably performed for

the largest distance shown and thusit is excluded from further analysis.

a function of the form:

M = (asecθ + bsec3θ + c)
√

(secθ − 1) (6.4)

in the range 1.0 ≤ secθ < 1.8.

The zenith angle (in terms of secθ) at which the parameter M is maximum,

denoted (secθ)max, has been found for each energy range. The maximum ampli-

tude is denoted Mmax. These values are plotted as a function of energy in figure

6.11. There seems to be little dependence of (secθ)max on energy while Mmax

increases with energy.

167

Chapter6/Chapter6Figs/EPS/RiseTimeVsZeta_Data_1Energy_1Zenith_6Dists.eps
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Figure 6.9: Asymmetry parameter g as a function of distance in the energy range

18.9 ≤ logE < 19.1 and zenith angle range 1.3 ≤ secθ < 1.4. The fit-function is

g = Mr2.

If these new parameters are to be used for mass-composition studies, it is

desirable for a correlation with Xmax to be present. This has been attempted

using the set of high-quality hybrid events recorded between December 2004 and

December 2010. Hybrid events have been selected according to the requirements

of the above asymmetry method. Additional criteria have been applied to ensure

the FD counterpart is well-reconstructed, following the selection criteria in (39).

Events during periods of high cloud coverage and large atmospheric aerosol con-

tent have not been used. The longitudinal profile fit must have a χ2/NDF ≤ 2.5

and the depth of maximum must be within the field of view of the telescopes.

Fluorescence events with a large Cherenkov contamination (≥ 20%) have been

removed and fiducial cuts on the shower geometry have been applied. After these

cuts, 4388 risetimes from around 1000 ‘golden hybrid’ events have been obtained.

The data have been split into seven bins in Xmax rather than in energy. A

finer binning is not possible due to the limitations of statistics. The angle and

amplitude of maximum asymmetry as a function of Xmax, are shown in figure
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6.3 Exploration of an Alternative Method to Determine the

Asymmetry for Mass-Composition Studies

(a) (b)

(c) (d)

Figure 6.10: Asymmetry parameter m as a function of zenith angle for four

different energies. The fit-function is M = (asecθ + bsec3θ + c)
√

(secθ − 1) in

each case. The value of M where the fitted curves reach their maximum is the

maximum amplitude Mmax. The zenith angle at which this occurs is (secθ)max.

6.12. A weak, positive correlation is evident in both plots.

In principle, the maximum angle and amplitude of the asymmetry can be

converted to new parameters, denoted X
(secθ)
max and XM

max, from the correlation with

Xmax (figure 6.12). These new parameters would be another way of representing

the longitudinal development of showers measured using the surface array. In

practice, the correlation between either (secθ)max or Mmax and Xmax is very weak,

with a large variations in the points. This implies little or no Xmax sensitivity

and will thus lead to unacceptably large uncertainties on X
(secθ)
max and XM

max.
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6. The Asymmetry on the Risetimes as a Mass-Sensitive Parameter

(a) (b)

Figure 6.11: Left: (secθ)max and Right: Mmax, as a function of energy for the

data.

(a) (b)

Figure 6.12: Left: (secθ)max and Right: Mmax as a function of Xmax for the data.

Numbers below each point in the left hand figure indicate the number of risetimes

in that Xmax bin.

To comment on the composition, the data must be compared to proton and

iron simulations. This has been done and is shown in figure 6.13. Values of

(secθ)max lie the range 1.3 ≤ secθ < 1.45 (40◦ − 46◦) for the data, much smaller

and with a larger spread than in (89), where (secθ)max values lay between 1.45

and 1.55 (46◦ − 49◦). For the simulations, (secθ)max decreases with energy whilst
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6.3 Exploration of an Alternative Method to Determine the

Asymmetry for Mass-Composition Studies

little change is seen in the data, contrary to the results from (89). It was expected

that the asymmetry should increase with energy for events incident at the same

zenith angle because the difference in path lengths travelled by particles from

different stages in the shower development (and hence risetime) increases with

energy. Further, in more inclined events the difference in the attenuation of

shower particles on either side of the shower axis will be more significant in more

energetic events due to their deeper development. Lower energy events are more

likely to have attenuated out most of their electromagnetic component. Therefore

the angle at which the component of the asymmetry due to the attenuation of

shower particles tends to zero (i.e. all the particles attenuate out) should increase

with increasing energy.

A significant scatter in (secθ)max from the proton simulations is observed,

possibly due to a lack of sufficient statistics in individual energy/zenith an-

gle/distance bins causing poor fits in M vs secθ and thus a poor determination

of the true position and amplitude of maximum asymmetry. Examination of

the risetime with azimuth, g with distance and m with secθ for the simulations

supports this theory, particularly at the highest energies. From the upper panel

of figure 6.13, no conclusions concerning the mass-composition of the data can

currently be made.

The amplitude of maximum asymmetry may, however, be usable for mass-

composition studies. The lower panel in figure 6.13 shows a clear separation

between proton and iron simulations. Further, the amplitudes for the data appear

to lie along the fit to the iron simulations at all energies. This is interesting for

the mass-composition as it does not agree with results from Xmax where the

composition slowly changes from proton to iron. As Xmax is measured directly

from fluorescence detector information, this implies that the sensitivity of this

method to the mass-composition may be very poor. This asymmetry analysis has

been applied to photon simulations, however no maximum is found for several

energy bins therefore no sensible deductions can be made.
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(a)

(b)

Figure 6.13: Top: (secθ)max and Bottom: Mmax, as a function of energy for the

data (black triangles), proton (red squares) and iron (blue dots) simulations.
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6.3 Exploration of an Alternative Method to Determine the

Asymmetry for Mass-Composition Studies

In an attempt to test the sensitivity of the maximum asymmetry as a function

of energy to different methods, the asymmetry parameter M (from figure 6.9) has

been plotted as a function of ln(secθ) for each energy bin and fitted with a

Gaussian, giving a more symmetric distribution about (secθ)max. The results

from these fits are shown in figure 6.14 and the corresponding angle of maximum

asymmetry as a function of energy for data and simulations is shown in figure

6.15. The value of (secθ)max is noticably larger in each energy bin compared to

those shown in figure 6.13, particularly for the simulations at the highest energies.

Both the proton simulations and the data now show very little dependence on

energy, whilst (secθ)max for the iron simulations decreases with energy less rapidly

than in figure 6.13. The values of Mmax are also larger in the lower panel of

figure 6.15 than in figure 6.13, although the difference is less pronounced. Such

a change illustrates a significant sensitivity to the chosen model and hence large

uncertainties - much more than the 0.1%-level systematics quoted in (89). The

(secθ)max values are still much smaller than the results in (89).
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(a) (b)

(c) (d)

Figure 6.14: Asymmetry parameter m as a function of ln(secθ) for four different

energies. A Gaussian function has been fitted in each case. The value of M where

the fitted curves reach their maximum is the maximum amplitude Mmax. The

zenith angle at which this occurs is (secθ)max.

6.4 Conclusion

The asymmetry on the risetimes has been studied as a mass-sensitive parameter

and results from previous works critically assessed. It has been determined that

the asymmetry does not follow the same trend with distance as the risetime,

therefore to attempt to eliminate the distance dependence (by dividing by r) in

some previous works is not a valid approach. An alternative method to calculate

the angle and amplitude at which the maximum asymmetry occurs as a function
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6.4 Conclusion

(a)

(b)

Figure 6.15: Results from the Gaussian fits to m vs ln(secθ). Top: (secθ)max and

Bottom: Mmax, as a function of energy for the data (black triangles), proton (red

squares) and iron (blue dots) simulations.

of energy has been discussed. This method is based on the asymmetry correction

first seen in chapter 3. With these new parameters, denoted (secθ)max and Mmax,

a weak linear correlation with Xmax is observed for a set of good-quality hybrid
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6. The Asymmetry on the Risetimes as a Mass-Sensitive Parameter

events. Large fluctuations in these parameters as a function of Xmax make a

conversion between either (secθ)max or Mmax and Xmax difficult without impos-

ing large uncertainties. Little dependence is seen on (secθ)max with energy for

the data whilst Mmax increases with energy. Unexpectedly, (secθ)max decreases

rapidly with increasing shower energy for hadronic simulations, although large

fluctuations are present.

Given the large systematic uncertainties presented above, the poor correlation

with Xmax, the resulting inability to create a robust XSD
max from (secθ)max, and

the poor separation between proton and iron simulations, this new (secθ)max is

not currently in a form where reliable estimations of the mass composition may

be made. Use of the maximum amplitude of the asymmetry, Mmax, is more

promising and could be investigated in more depth and for different proton/iron

fractions and a larger set of simulations. However, the usefulness of a method

where all information about individual events is lost is questionable. There are

no means by which the asymmetry can be used on an event-by-event basis, unlike

parameters such as Xmax and 〈∆〉 - the rigorous analysis of which should be of

high priority for mass-composition and photon studies.
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Chapter 7

Summary and Conclusions

The Pierre Auger Observatory has been taking data since January 2004. The

surface array of 1600 water Cherenkov detectors and the 24 fluorescence telescopes

were completed during 2008. The total array exposure (to 31st December 2010)

is now over 20, 500 km2 sr yr, making the Pierre Auger Observatory the largest

cosmic-ray detector in operation. World-leading results have been published on

all major science goals, including the mass-composition and UHE photon searches.

The mass-composition of UHECR is still unknown. Recent measurements of the

depth of maximum development (Xmax) of air showers suggest, on average, an

increasingly heavier composition above ∼ 3 × 1018 eV.

UHE photons are predicted to originate from the interaction of UHECR pro-

tons with the cosmic microwave background via the ∆+ resonance - one channel

of the GZK mechanism:

p + γCMB → ∆+ → p + π0 → p + 2 γ (7.1)

If the UHECR flux is dominated by heavier nuclei, for example iron nuclei, then a

photon component is not expected. Previous limits to the photon fraction are of

the order of a few % above 1019 eV. This is close to, but still above, the fraction

of photons predicted from the GZK mechanism. Most top-down models for the

origins of UHECR predict much larger fractions of photons and have already been

excluded.
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7.1 Update to the 〈∆〉-method for Mass-

Composition Studies

7.1.1 Application to Data

An update of a pre-existing method (called the 〈∆〉-method) to determine the

mass-composition of UHECR using the risetime has been performed. An addi-

tional 3.5 years worth of surface array data has been included since the 〈∆〉-
method’s conception. The 〈∆〉-method combines the risetimes from individual

detectors triggered by an air shower into one mass-sensitive parameter describing

the whole event. This parameter, 〈∆〉, represents the average deviation of the

risetimes within an event from a benchmark (the average risetime as a function

of distance and zenith angle), after accounting for the uncertainty on individual

risetimes:

〈∆〉 =
Σδi

Ni

=
Σ(

(t1/2−tbench
1/2

)

σt1/2

)

Ni

(7.2)

Accurate determination of the risetime is critical for the 〈∆〉-method. Whilst

the essence of this method is not new, substantial changes have been made to

yield a more robust mass-sensitive parameter suitable for use in photon-limit and

mass-composition studies.

Robust determination of the risetimes was affected by a number of problems

caused by the incorrect determination of signal stop-times in the FADC traces

from surface detectors. This resulted in the overestimation of the baseline, the

underestimation of the total signal and hence incorrect risetimes. This was most

obvious in detectors where the low-gain trace had been used to determine the

signal start and stop-times. These problems have now been resolved, enabling

a robust re-analysis of the 〈∆〉-method. Subsequent concerns over the reliabil-

ity, stability and necessity of one stage of the 〈∆〉-method - the deconvolution

procedure - have led to its removal. This also achieves a significant speed-up to

the analysis. Given these substantial changes, it has been necessary to conduct a

thorough re-analysis and re-parametrisation of all stages of the 〈∆〉-method. New
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cuts have been imposed, based on those in the original method and on physical

reasoning, to minimise measurement inaccuracies and biases. These alterations

were discussed in detail in Chapter 3. After implementation of these new cuts,

10,961 events above 3 EeV (23% of the original data set) have an available 〈∆〉.
Showers with a deeper development in the atmosphere have slower risetimes

and therefore a larger than average 〈∆〉. It has been shown that 〈∆〉 increases

with energy and correlates with the depth of shower maximum, Xmax. This

correlation with Xmax has permitted a conversion between 〈∆〉 and Xmax to form

a new parameter, X
〈∆〉
max. A comparison of X

〈∆〉
max has been made to previous work

that measured Xmax directly from hybrid data (39). The results in this thesis are

consistent with that work and indicate a mixed hadronic composition that gets

heavier with energy, assuming that predictions from simulations are reasonably

correct.

7.1.2 Photon Limits

Results from the application of this improved 〈∆〉-method to the data have been

compared to predictions from simulations. More than 5000 CORSIKA photons

were simulated over a continuous range of energies and zenith angles. Ten, five,

two and one events above 10, 20, 30 and 40 EeV respectively have been found

whose 〈∆〉s are larger than the corresponding median of the 〈∆〉 distribution for

photon simulations. However, upon closer examination of these individual events

it is likely that they may actually be from the tail of a distribution of hadronic

primaries, although this cannot be completely confirmed.

The ability of the 〈∆〉-method to distinguish between photons and a pure pro-

ton and pure iron composition has been investigated for the first time using over

7500 proton and 8000 iron simulations with QGSJetII as the hadronic interaction

model. It is found that, on an average basis, there exists a clear separation in

the average 〈∆〉 as a function of energy between hadronic and photon primaries.

Comparison with the data indicates an increasing average mass-composition with

energy, provided that hadronic interaction models are correct. The number of
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photon-candidates found in the data are well within the number expected from a

pure proton composition and larger than the number expected from a pure iron

composition. Uncertainties in the underlying physics of hadronic air showers do

not permit these photon-candidates to be conclusively dismissed as the tail of a

hadronic distribution.

New, more robust, 95% confidence-level upper limits to the integral flux and

fraction of UHE photons above 10, 20, 30 and 40 EeV have been calculated as-

suming that the observed candidate events are photons. This gives fluxes of

8.7× 10−3, 4.7× 10−3, 2.8× 10−3 and 2.3× 10−3 km−2 sr−1 yr−1 above 10, 20, 30

and 40 EeV respectively. The corresponding upper limits to the photon-fraction

are 1.5%, 3.2%, 4.9% and 9.1%. This represents a significant improvement to the

photon limits, ruling out the Z-burst model at all energies except 10 EeV. Other

‘top-down’ models predicting larger fractions and fluxes of photons have already

been excluded. These results are not yet sufficiently small as to probe the region

of GZK predictions. Due to a large overlap between the distributions of 〈∆〉 for

protons and iron, it is not possible to perform an event-by-event study of the

mass-composition of UHECR.

Examination of the position of the photon-candidates found in this thesis in

relation to the positions of 318 AGN within 75 Mpc from the VCV catalogue, to

373 AGN within 200 Mpc from the Swift-BAT catalogue and to the 106 high-

est energy events (above 55 EeV and used in correlation studies) has been per-

formed. The angular resolution on these arrival directions is better than 1◦. No

photon candidates lie close to Centaurus A or correlate with AGN from these cat-

alogues. Two photon-candidates lie within 20◦ of a sparse ‘cluster’ of the highest

energy events. The possibility that these events are lower energy protons that

have suffered large deflections may be a reason for the lack of correlation. The

sources of these events therefore remains a mystery. The observed distribution

of these photon-candidates indicates either that more than one nearby source

is responsible for UHECR and/or that these events are not photons but very

deeply-developing proton-initiated events.
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7.1.3 Examination of the Highest Energy Events

Using 〈∆〉

The 〈∆〉-method has been used to comment on the differences between those

events with E ≥ 55 EeV that correlate with AGN or lie within 18◦ of Centaurus A

to those events found to not correlate, or which lie outside this region, respectively.

After cuts, 〈∆〉 has been determined for 70 of the 106 events above 55 EeV. No

significant difference has been found between the average 〈∆〉 for events that

correlate with AGN and those that do not correlate. This indicates that events

in this energy range are either all from the same type of primary particle or

that a good mixture of primaries exists and that the sources of UHECR may

not be AGN from the two catalogues studied here. There is also no statistically

significant difference in 〈∆〉 for events within 18◦ of Cen A and those outside this

region, nor is any systematic change in 〈∆〉 observed as a function of angular

distance from Cen A. This implies that Cen A is not the only source of UHECR,

although it may still be a source. No clues to the exact mass-composition of these

events are possible due to the extreme overlap from proton and iron simulations

and the low statistics in this sample.

7.2 Other Mass-Sensitive Parameters

Finally, the azimuthal asymmetry on the risetimes has been reviewed as a poten-

tial mass-sensitive parameter in relation to previous works. Following a critical

review of the method and results in references (89) and (90) regarding the use of

the asymmetry on the risetimes as a mass-sensitive parameter, an attempt has

been made to adapt the asymmetry analysis from the 〈∆〉-method to create a

new mass-sensitive parameter, capable of determining the mass-composition of

UHECR on an average basis.

It has been proven that the asymmetry on the risetime of both the data

and hadronic simulations has a clear quadratic dependence on the distance from

the shower core that must be accounted for. Assumptions that the asymmetry
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in the risetime will follow the same or similar dependence on distance as the

risetime itself are therefore incorrect. Thus dividing the risetime by the distance

to eliminate the distance dependence on the asymmetry, as performed in previous

works, is not a valid approach.

The asymmetry in the risetimes as a function of distance and zenith angle has

been studied and the angle, (secθ)max, and amplitude, (A)max, of maximum asym-

metry have been analysed using both the data and hadronic simulations. Due to

the nature of its construction, it is not possible to use these two parameters for

photon studies, nor for the determination of the mass-composition of individual

cosmic-rays. This is a significant drawback to the long-term future of these pa-

rameters. However, both the angle and amplitude of maximum asymmetry on

the risetimes can potentially be used to determine the average mass-composition

of UHECR.

This new method appears to indicate little or no dependence of the angle

and amplitude of maximum asymmetry from the data on either energy or Xmax.

Further, a decrease in the angle of maximum asymmetry with increasing energy

for both data and hadronic simulations is observed. This result is not currently

understood. Given large systematic uncertainties and the inability of the asym-

metry parameters to describe the development of individual showers, the future

of these asymmetry parameters as mass-sensitive variables remains uncertain.

7.3 Outlook

The ability to positively identify photons in the data, and to probe the GZK

region is on the horizon and creeping ever closer. Analysis of the risetimes as a

mass-sensitive parameter, and as a surrogate to Xmax, is at an advanced stage.

Future attempts to determine limits to the flux and fraction of photons will

achieve better separation between photons and hadrons through the use of multi-

parameter analysis techniques, for example combining 〈∆〉 and the radius of

shower front curvature, Rc. However, accurate determination of Rc is not trivial

and substantial work is required before this can be used as a robust mass-sensitive
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parameter. A plethora of other mass-sensitive variables such as the slope of the

LDF and muon counting methods are also being refined.

What is now needed for the future of the 〈∆〉-method is a rigorous, detailed

Monte-Carlo study of photon and hadronic simulations such that systematics

and statistical uncertainties may be understood or reduced. The behaviour of

the 〈∆〉-parameter using different interaction models, such as EPOS or Sybill,

and with different primary compositions (e.g. a 50/50 proton/iron mix) needs to

be performed and will prove an interesting line of future investigation. It is also

hoped that this updated 〈∆〉-method will, now that many problems have been re-

solved, be included as an analysis module into the Offline reconstruction software

to complement the existing t1/2(1000) module, thus allowing future comparisons

of these two methods and speedy updates to include more data.

A century on from the discovery of cosmic-rays, and nearly 50 years since

the prediction of the GZK mechanism, the sources and composition of UHECR

remain elusive. Future improvements to techniques for mass-composition mea-

surements will assist greatly in the determination of possible source locations, by

constraining the size of the deflections experienced by UHECR as they propagate

to Earth. The gradual accumulation of data will assist with the reduction of

uncertainties on such techniques and push photon limits down into the GZK re-

gion. A number of enhancements to the Pierre Auger Observatory will enable the

study of UHECR down to 1017 eV (HEAT and AMIGA), allow measurement of

the muon component of showers (AMIGA), and use the detection of radio signals

to provide innovative and complimentary techniques to established methods for

the study of UHECR (AERA). These new components are already being built at

the Pierre Auger Observatory or in the early stages of data taking. It is hoped

that the mass-composition of UHECR and hence their origins will be determined

in the near future. New results and discoveries are eagerly awaited.
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