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ABSTRACT

The aim of present investigation is to elucidate the complex stem cell (SC)

dynamics within prostate cancer, which can be exploited to design novel diagnostic

and therapeutic strategies for the management of prostate cancer. In order to

determine the precise transcriptional and microRNA regulatory mechanisms

modulating SC self-renewal and differentiation, unique cellular assays have been

developed in our lab. These assays utilise homogeneous cell sub-populations

enriched from patient-derived prostate cultures. Occasionally, cell line models and

patient-derived mouse prostate cancer xenografts were also employed.

Using a prospective bioinformatic analysis of gene expression data from Birnie et.

al., 2008, we have identified LCN2, CEACAM6, and S100p as candidate genes for

regulation of prostate SC differentiation. These genes are over-expressed in

differentiated cells, compared to SC, and have a more similar expression pattern

with each other than with any other gene. Since their promoters have binding sites

for 32 common transcription factors, the genes may therefore form a co-regulated

network and/or have similar functions. Retinoic acid treatment can also induce the

expression of all these genes, suggesting that LCN2, CEACAM6, and S100p may

play an important role in retinoic acid-mediated prostate epithelial SC differentiation.

The genes could also be so-regulated by miR-128, miR-188, and miR-548c, based

on an analysis of the miRNA expression by microarray generated in this work.

Patient-derived prostate epithelial sub-populations enriched from PrEC, BPH, PCa,

and CRPC were profiled for the expression of 766 miRNAs. This analysis identified

a very specific prostate cancer SC miRNA signature, and showed that miRNA

expression can distinguish between PCa and CRPC. The integration of this miRNA

microarray data with gene expression microarray data showed that pathways

regulating both the cell cycle (SC quiescence) and cell-cell interaction (SC-stromal

niche interaction) could be significantly influenced by miRNAs during differentiation.

A lack of telomerase expression/activity in prostate cancer SCs, in contrast to their

differentiated progeny also points towards the quiescent nature of these cells. The

telomerase studies further revealed that BPH is a disease sustained by progenitor

proliferation and that inhibition of telomerase in BPH derived SCs can suppress their

self-renewal; while cancer SC self-renewal is not affected by telomerase inhibition.

We anticipate that these results, with further functional studies, will comprehensively

establish a detailed knowledge base for regulatory mechanisms active in prostate
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SC and prostate cancer SC differentiation. This data will be invaluable in formulating

efficient management strategies for prostate cancer.
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‘….. in science and all its applications, what is crucial is not that technical

ability, but it is imagination in all of its applications. The ability to form

concepts with images of entities and processes pictured by intuition’

--E. O. Wilson, American biologist, researcher, theorist, naturalist and author.

‘Our whole theory of education is based on the absurd notion that we must
learn to swim on land before tackling the water’

--Henry Miller, American writer and painter.
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1. INTRODUCTION

The human prostate is a small walnut sized exocrine gland of the male genitourinary

system. It is located at the neck of urinary bladder surrounding the urethra. In post-

pubertal males, the prostate secretes an acidic fluid containing proteins and zinc,

which ensure optimal sperm functionality in the female genital tract (Aumuller,

1983). Although prostate dysfunction rarely contributes to infertility, with advancing

age it can suffer from prostatitis, benign prostatic hyperplasia (BPH), and prostate

cancer. These disorders are very common; for example, the incidence of BPH by

the age of 40 years is about 23% of the total population, and it increases roughly by

10% every decade thereafter (Cunha et al., 1987). Prostate cancer is the

commonest cancer among males in the UK (Cancer Research UK report, 2012).

Therefore, a better understanding of prostate homeostasis is essential to improve

the management of these disorders.

1.1 The anatomy of the prostate:

The human prostate can be divided into four zones (Figure 1.1). Each of these

zones has a specific location and a variable content of exocrine acini and fibro-

muscular stroma (McNeal, 1981, Fine and Reuter, 2012).

 The peripheral zone (PZ) is the largest zone of the prostate, containing

about 70% of the glandular prostate. It surrounds the urethra and is the most

common site of origin of prostate cancer.

 The central zone (CZ) is the second largest zone. It contains the ejaculatory

ducts – about 20% of prostate cancers arise from this zone.

 The transitional zone (TZ) also surrounds the urethra and is the exclusive

site of BPH origin.

 The anterior zone (AZ) is a fibro-muscular zone, which lacks glands.
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This anatomical arrangement is remarkably different from the rodent prostate, which

is the commonest animal model for investigations of prostate physiology and

pathology. In rodents, the prostate does not have zones, but very distinct lobes

(Marker et al., 2003).

Figure 1.1: Schematic diagram showing zonal architecture of human prostate,

sagittal view (Zhai et al., 2010).

1.2 Prostate histology:

The human prostate has a high level of organisation. It has bilayered epithelial acini

and fibro-muscular stroma, separated from each other by a basement membrane

(Figure 1.2). Three phenotypically distinct cell types can be identified within the

epithelial bilayer: the basal cell, the neuroendocrine cell, and the luminal cell.

Figure 1.2: Schematic representation of the prostrate acinus. Adapted from (Rane

et al., 2012).
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 Basal cells: These cells form a relatively proliferative, androgen-independent

but androgen responsive cell layer (English et al., 1987, Kyprianou et al.,

1996, van Leenders et al., 2000). Basal cells are in a direct contact with the

basement membrane, which provides a structural barrier between the

epithelium and the stroma. The majority of investigations show that the basal

cells are the non-secretory precursors of the luminal cells in adult prostate

(Isaacs and Coffey, 1989, Robinson et al., 1998, Hudson et al., 2000,

Richardson et al., 2004, Frame et al., 2010, Ousset et al., 2012), however,

the contradictory evidence also exists (Wang et al., 2009, Choi et al., 2012).

Basal cells can be characterised by the expression of P63 (Signoretti et al.,

2000), CD44 (Liu et al., 1997), c-MET (van Leenders et al., 2003), oestrogen

receptor β (Aumuller, 1983), and cytokeratin 5/14 (Verhagen et al., 1992). 

This cell layer also displays variable expression of mitosis suppressor p27Kip1

expression (7-10%) (De Marzo et al., 1998). The prospective prostate

epithelial stem cells are suggested to reside in the basal layer of the human

prostate (Richardson et al., 2004, Goldstein et al., 2008, Garraway et al.,

2010) and in the rodent prostate (Burger et al., 2005, Lawson et al., 2007,

Goldstein et al., 2008, Leong et al., 2008, Burger et al., 2009).

 Neuroendocrine cells: These rare cells are located in the basal epithelial

layer. These androgen insensitive cells secrete peptide hormones and

biogenic amines, such as chromogranin-A, serotonin, bombesin, calcitonin,

and parathyroid hormone-related peptide (Abrahamsson and di

Sant'Agnese, 1993, Nakada et al., 1993, Rumpold et al., 2002). The precise

origin and the function of these cells in the prostate, is however still unclear.

 Luminal cells: These are the terminally differentiated columnar cells that are

responsible for producing prostatic secretions. These secretions are

composed of enzymes and metal elements, such as prostatic acid

phosphatase (PAP), prostate specific antigen (PSA) and zinc. Luminal cells
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have no proliferative potential and are characterised by the near universal

expression of androgen receptor (AR) (Nakada et al., 1993, Wang et al.,

2006a), NKX3.1 (Wang et al., 2009), CD57 (Signoretti et al., 2000), CD24

(Liu and True, 2002, Lawson et al., 2007), and cytokeratin 8/18 (Verhagen et

al., 1992, Robinson et al., 1998, van Leenders et al., 2000). Almost all of the

luminal cells (85-100%) express a marker for non-proliferating cells p27Kip1

and a correspondingly negative expression of proliferation markers PCNA

and Ki-67 (De Marzo et al., 1998).

1. 3 Disorders of the prostate:

The prostate is a common site of inflammatory and tumorigenic lesions. There are

three distinct prostate pathologies: prostatitis, benign prostatic hyperplasia, and

prostate cancer.

1.3.1 Prostatitis:

This is the most common disorder of the prostate. Prostatitis (predominantly

inflammation of the central zone) presents as an acute or chronic (most common

presentation) lower abdominal pain with increased urinary frequency, or it could also

remain asymptomatic (Sharp et al., 2010). The retrograde transmission of infectious

agents (less often) and damage caused by passing urinary toxins, stress,

autoimmunity, and physical trauma in the central zone are some of the most

common aetiological factors for prostatitis (Krieger, 2004, Sharp et al., 2010).

Chronic prostatitis is widely considered as a risk factor for the development of BPH

and even prostate cancer (Lee and Peehl, 2004, Kramer and Marberger, 2006,

Kramer et al., 2007, Nickel, 2008, Sciarra et al., 2008). Recent semen analysis

studies have found that about 20-30% of young healthy men (18-25 years of age)

have some degree of stroma-driven asymptomatic inflammatory prostatitis,

suggesting that there could be a prolonged inflammatory insult to the prostate
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epithelium (Carver et al., 2003, Korrovits et al., 2008). This could lead to repeated

attrition of the luminal layer, prompting reactionary hyperplasia.

1.3.2 Benign prostatic hyperplasia (BPH):

BPH is a non-malignant nodular hyperplasia of both the stroma and the epithelium

of the prostate, almost exclusively arising from periurethral transitional zone (Nickel

and Roehrborn, 2008). Age-related deregulation in a balance between androgenic

and peptide growth factor signalling (e.g. IGF-1) is considered as the prime

aetiological factor for the development of BPH (Thorpe and Neal, 2003, Roehrborn

and McConnell, 2007). It is often a slow growing lesion and usually presents after

the age of 50 years, with symptoms such as, dribbling at the end of urinating,

urinary hesitancy, dysuria, and urinary retention (Roehrborn, 2011). The severity of

symptoms and personal preference of patients determine the treatment choice

(Thorpe and Neal, 2003, Roehrborn, 2011). For mild symptoms, watchful waiting

along with 5-α-reductase inhibitors is usually recommended. Minimally invasive 

operations, such as laser prostatectomy are available for patients with more severe

symptoms. However, the commonest treatment is trans-urethral resection of

prostate (TURP) (Roehrborn, 2011). TURP cures BPH patients in about 95% of the

cases (Varkarakis et al., 2004). The remaining patients need a second operative

procedure. It is widely accepted that BPH is not a precancerous lesion, although it

increases the coincidental diagnosis of incipient prostate cancer (Orsted et al.,

2011, Chang et al., 2012).

1.3.3 Prostate cancer:

Prostate cancer accounts for every fourth patient diagnosed with cancer in the UK

(Cancer Research UK report, 2012). The vast majority of these cancers are

adenocarcinomas (99%), with minimal presence of ductal carcinoma (0.141%),

mucinous adenocarcinoma (0.103%), small cell carcinoma (0.056%),
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carcinosarcoma (0.07%) and embryonal carcinosarcoma (0.06%) variants (Kendal

and Mai, 2010). Therefore henceforth, prostate cancer will be discussed only in

relation to the prostate adenocarcinoma.

1.3.3.1 Aetiology and risk factors:

 Age: Advancing age is by far the most well-established risk factor for the

development of prostate cancer (Crawford, 2003). The incidence of prostate

cancer increases with advancing age, and at the age of 90 almost all males

have at least histological evidence of prostate cancer (Cancer Research UK

report, 2012). However, the differences in the age at diagnosis, heterogeneity in

geographical incidence, histology, progression, and treatment response suggest

that there are additional contributory risk factors.

 Ethnicity: The incidence and disease aggressiveness is seen more in the

patients of African ancestry compared to white Americans/Europeans and the

Hispanics and those of Asian origin, who appear to be less susceptible to the

development of prostate cancer (Brawley, 2012).

 Inflammation: There is no conclusive data, but compelling evidence is

accumulating for the co-relation between the presence of chronic inflammation,

proliferative inflammatory atrophy of the prostate, and mutations or epigenetic

alterations in the genes important in the inflammatory pathways (e.g. RNASEL,

MSR1, and GSTP1) with the subsequent/concurrent diagnosis of prostate

cancer (Nelson et al., 2004, Goldstraw et al., 2007). Inflammation inducing

chemical agents, such as the charred meat carcinogen PhIP (2-amino-1methyl-

6phenylimidazo-[4,5-b]-pyridine), are strongly implicated in the initiation and

progression of prostate cancer (Shirai et al., 1997, Tang et al., 2007). PhIP is

even being used to generate pre-neoplastic prostate cancer lesion (prostatic

intraepithelial neoplasia-PIN) in rodent models (Borowsky et al., 2006).
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 Environmental and dietary factors: The relationship between most of the

environmental and dietary factors is associative and there is insufficient data to

confirm any causal relationship. An excessive intake of red meat (Joshi et al.,

2012), high fat diet (Kristal et al., 2010), and calcium is proposed to increase the

risk of having high grade prostate cancer; whereas, intake of food with vitamin-

like molecules lycopenes (present in tomatoes, watermelon etc.) could be

protective against prostate cancer. Multiple clinical trials evaluating the role of

dietary supplement with food containing lycopenes and other vitamins (beta-

carotene, folates, retinol and vitamin E) have however failed to identify

significant prostate cancer preventive effects (Beilby et al., 2010, Kristal et al.,

2011).

 Genetic and epigenetic changes: Causal hereditary genetic and epigenetic

alterations are relatively uncommon in prostate cancer. Familial predisposition

for prostate cancer is seen in only about 10% of the total cases (Stanford and

Ostrander, 2001). In familial prostate cancer, 3 successive generations or 2

siblings have diagnosed prostate cancer at the age <55 years. The rest of cases

demonstrate some recurrent genomic alterations in addition to genetic and

epigenetic abnormalities (Table 1.1 and Figure 1.3). It has been proposed that

about 42% of the risk of prostate cancer can be attributed to genetic influences

(Hsing and Chokkalingam, 2006). Changes in the expression of genes with

some other less frequent abnormalities interfere with several key signalling

pathways, such as, mTOR/AKT pathway, NF-κB signalling pathway, MAPK 

pathway, the EZH2 mediated signalling pathway, and developmental signalling

pathways (Shen and Abate-Shen, 2010). However, a direct causal role of these

anomalies ‘in isolation’ has not been conclusively demonstrated. Recent studies

have indicated that miRNA deregulation could also be critical for the

pathogenesis of prostate cancer (Please refer to SECTION III).
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Figure 1.3: Common genetic alterations in prostate cancer. Net frequency of

autosomal genes with two or more mutations deletion and/or amplification in

prostate cancer. Significantly mutated genes are indicated (Barbieri et al., 2012).

Gene Chromosome Event Function
NKX3.1 8p Inactivation Cell

growth/differentiation
c-MYC 8q Genomic amplification Cell

growth/differentiation
PTEN 10q Inactivation Cell

growth/differentiation
GSTP1 11q Promoter methylation Oxidative stress

response
RB 13q LOH, mutation Cell cycle regulation

P53 17p LOH, Mutation Cell cycle regulation,
apoptosis, DNA
damage repair

ETS
genes

21q Fusion with AR
targeted genes
(TMPRSS2)

Cell
growth/differentiation

AR Xq Mutation, genomic
amplification

Cell
growth/differentiation

Table 1.1: Common genetic and epigenetic alterations found in the prostate cancer.

Adapted from (Koochekpour, 2011).

 Androgen signalling: Paracrine androgen signalling mediated by stroma is

essential for the development and maintenance of the prostate epithelium

(Kurita et al., 2001, Gao et al., 2006). Both the context and cell-type dependent

gain and loss of function in AR expression are implicated in the progression of
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prostate cancer (Shen and Abate-Shen, 2010). However, recent reports in

rodent and human cell culture models indicate that prostate cancer stem cells

could be AR-responsive, but AR independent (Collins et al., 2005, Goldstein et

al., 2010, Lawson et al., 2010, Qin et al., 2012). This suggests that AR signalling

could be essential for cell proliferation leading to increased tumour mass, but

may not be necessary for tumour initiation.

1.3.3.2 Clinical presentation - symptoms and signs:

With routine PSA screening (in USA) and increased awareness, the majority of

cases of prostate cancer is diagnosed even before the development of urinary tract

symptoms (Miller et al., 2003). In other cases, it may present with increased urinary

frequency, hematuria, and decreased urine stream (Fitzpatrick et al., 1998, Chen,

2001). Patients with advanced and metastatic disease may present with weight loss,

anaemia, and bone pain (Chen, 2001, Heidenreich et al., 2011). The symptoms are

associated with signs, such as bone marrow suppression, a hard mass on digital

rectal examination, and high PSA.

1.3.3.3 Diagnosis:

The widespread incidence and relative ease in treatment of localised disease has

prompted a call for routine serum prostate specific antigen (PSA) screening. PSA is

a serine protease, which maintains the fluidity of seminal fluid (Lilja, 1985). An

increase in serum PSA is considered as an indicator of increasing prostate gland

volume and prostate cancer progression (Hudson et al., 1989). Routine serum PSA

screening is however performed in very few countries (e.g. the USA and Austria),

but most European countries do not recommend it (Heidenreich et al., 2011). The

principal reasons for this hesitancy in European countries could be due to: (i) high

levels of false positivity with PSA testing and (ii) the inability of PSA to distinguish

between aggressive and indolent cancers (Schroder et al., 2009, Andriole et al.,

2012). The utilisation of newer, more specific and sensitive biomarkers, such as
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PCA3 and circulating tumour cells, could be a more promising option for the

screening and risk stratification of prostate cancer (de Kok et al., 2002, Hessels et

al., 2003, Danila et al., 2007). However, determination of serum PSA levels is still

vital for the diagnosis and the evaluation of treatment response.

The main tools to diagnose prostate cancer include digital rectal examination, serum

PSA concentration, and transrectal ultrasound-guided biopsies (Heidenreich et al.,

2011). Conclusive diagnosis of prostate cancer can only be established after

histological examination of biopsies (van der Kwast et al., 2003). The histological

features are graded according to the Gleason grading (Gleason, 1966, Gleason,

1992). Prostate cancer can be graded from 1 to 5, based on the histological

architecture of the prostate gland and differentiation status of the tumour (grade 1

being closer to the normal histology and 5 being the most disrupted archetecture)

(Figure 1.4). For the final report, the score of the two most prevalent grades is

added together to give a Gleason score between two and ten. For example, for

Gleason score 7 could be (4+3) or (3+4). In the 4+3 case, the most prevalent grade

is 4 and the second most prevalent grade is 3. In 3+4 case, the most prevalent

grade is 3 and the second most prevalent grade is 4. According to the system

adopted in 2005, the following information should also be mentioned to aid

treatment choice: (i) for each biopsy site, the proportion of biopsies positive for

carcinoma, (ii) the proportion (percentage) or length (in millimetres) of tumour

involvement per biopsy, (iii) the presence of high-grade PIN and perineural invasion

(Epstein et al., 2005). About half of the patients are diagnosed at a very early stage

of the disease, with Gleason grade ≤ 6 (Brawley, 2012). Tumour TNM staging is 

also necessary, before deciding on the appropriate treatment, where T(0-4): Tumour

localisation with respect to the prostate gland, N(0/1): lymph node status, and

M(0/1): presence of distant metastasis (Schroder et al., 1992). The presentation

pattern of cancers in UK is described in Table 1.2.



Figure 1.4: Schematic representation of the Gleason grading of prostate cancer

(Gleason, 1966, Gleason, 1992).
Table 1.2: The extent of prostate cancer

the UK (The British Association of Urolo

diagnosis B: Extent of tumour growth at

1.3.3.4 Treatment:

Any decision for therapy depends upon

of the tumour and the patient choice. T

1.3.

Gleason
grade at

diagnosis

% of
cases

< 6 ~2%

6-7 ~75%

8-10 ~23%

A B
 Extent of tumour
spread at
diagnosis

% of
cases

Organ confined
cancer

~70%

Local and systemic ~30%
32

growth and aggressiveness at diagnosis in

gical Surgeons, 2010). A: Gleason grade at

diagnosis.

the stage of the disease, histological grade

he options available are described in Table

spread
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Table 1.3: Treatment options for prostate cancer management. Compiled from (Heidenreich et al., 2011, Schroder et al., 2012). PCa: prostate

cancer, TURP: transurethral resection of prostate, PSA: prostate specific antigen, RP: radical prostatectomy, LHRH: Luteinising hormone

releasing hormone, GnRH: Gonadotropin releasing hormone.

Treatment option Indications Comment

Active surveillance

 Clinically confined PCa (T1–T2)
 Gleason score ≤ 6 
 Three or fewer biopsies involved with cancer
 ≤ 50% of each biopsy involved with cancer 
 PSA < 10 ng/ml

Annual surveillance re-biopsies are
recommended in addition to PSA testing

Radical
prostatectomy (RP)

 Low- and intermediate-risk localised PCa (cT1a–T2b)
 Gleason score 2–7
 PSA ≤ 20 ng/ml 
 A life expectancy >10 yr

The prostate gland is removed. Lymph nodes
near the prostate may be removed.

Radiotherapy

 Patients who refuse surgical intervention
 An option for patients with cT1–T2a, Gleason score <7, PSA ≤ 

10 ng/ml, prostate volume ≤ 50 ml, without a previous TURP 
 Immediate postoperative external irradiation after RP for patients

with pathologic tumour stage T3 N0 M0
 Immediate postoperative external irradiation after RP for patients

with positive surgical margins
 Concurrent admission with hormonal therapy for metastatic

disease

Intensity modulated radiotherapy (IMRT), an
optimised form of three dimensional conformal
radiotherapy (3D-CRT) is the gold standard

Androgen
deprivation therapy
(ADT) and
chemotherapy

 Advanced metastatic prostate cancer
 Recurrent prostate cancer

 ADT: Anti-androgens (e.g. Bicalutamide),
LHRH-agonist (e.g. Zoladex), Oestrogen
treatment (e.g. Stilbestrol), GnRH-antagonist
(e.g. Finasteride).

 Chemotherapeutic drugs (e.g. Docetaxel)
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In addition to the treatment options mentioned in the table, cryosurgical ablation of

the prostate (CSAP) (Babaian et al., 2008) and high-intensity focussed ultrasound

(HIFU) (Warmuth et al., 2010) have emerged as alternative therapeutic options in

patients with clinically localised prostate cancer. A regular follow-up is necessary

after any of these treatments. Disease progression can be monitored by regular

PSA testing and digital rectal examination with CT/MRI scans (if necessary) to

detect systemic spread (Heidenreich et al., 2011). However, about 20% of

advanced cancers fail to respond to androgen deprivation therapy, known as

castration resistant prostate cancers (CRPCs). It is unclear why such an androgen

dependent tumour fails to respond to androgen deprivation. One of the hypotheses

is that androgen deprivation leads to the accumulation of androgen independent

stem and basal cells (Shen and Abate-Shen, 2010, Rane et al., 2012). These cells

can then drive further tumour progression. The pathophysiology and treatment

options are discussed in the ‘genetic regulation of prostate stem cell differentiation’

introduction section (SECTION I).

The development of CRPC, over-representation of basal cells in the CRPCs, and

the analysis of normal prostate epithelium have suggested that the prostate

epithelium is arranged into a hierarchy, which is composed of relatively functionally

distinct cell sub-populations (Maitland and Collins, 2008b). Selection of pure and

homogeneous cell sub-populations would help to explore only the fundamental

causes of heterogeneity, minimising the noise created by differences in cellular

differentiation and the variable cellular composition of the tumour mass (differential

content of luminal, basal, endothelial, stromal, and inflammatory cells).
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1.4 Adult stem cells and cellular hierarchy of adult tissues:

Similar to the development of an entire organism from a single fertilised egg, organs

such as prostate are believed to be derived from stem cell driven cellular hierarchy

(Isaacs and Coffey, 1989). This cellular hierarchy can be described as a pyramid of

functionally heterogeneous cells, in which a rare stem cell population residing at the

apex generates all the differentiated populations (Table 1.4). The categorisation of

cells is based upon spatial and functional foundations, where stem cells are defined

as long-living cells that reside at particular micro-environmental niche and possess

the ability to self-renew, proliferate and differentiate into all the cell lineages that

constitute the tissue (van der Kooy and Weiss, 2000) (Table 1.4). Several lines of

evidence stress the importance of a stem cell niche, e.g. niche disruption leads to

haematopoietic stem cell differentiation (Kirstetter et al., 2006) and an ageing niche

affects muscle stem cell functionality, even in vivo (Chakkalakal et al., 2012). As cell

lines grown in 2-D culture for a prolonged time lack tissue homeostasis, spatial

localisation of cells (niche), and are under continuous selection pressure mainly on

the basis of proliferative potential (not the principal selection criteria in tissue); a cell

line model is not likely to fulfil the functional criteria for the establishment of a

hierarchy. Long-term culture of cells in serum-containing media can also induce

chromosomal changes (Lee et al., 2006, Izadpanah et al., 2008) and DNA

hypermethylation (Antequera et al., 1990). Therefore, stem cell related data

exclusively or heavily relying only on cell line models are not discussed here.
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Stem cell attribute Comment

Rarity Exceptions are noted (e.g. Melanoma)

Pluripotency
Can differentiate into all the cell lineages

identifiable in the tissue

Quiescence
Slowly cycling cells but have a large

proliferative potential

Self-renewal
Can divide asymmetrically to form one

differentiated and another stem cell

Long living cells

Their ability to self-renew and remain

quiescent enables stem cell to provide

cell reserves that exceeds the lifetime of

the individual

Specific location in the niche

Attachment with the basement

membrane and contact with the niche

cells is essential to maintain above

mentioned characteristics

Table 1.4: Characteristics of stem cells. Adapted from (Miller et al., 2005).

The concept of stem cells gained its first major supportive evidence in early 1960’s,

when pioneering work of Till and McCulloch with spleen colony forming assays

demonstrated for the first time that a rare population of cells exists in mouse bone

marrow that satisfy the above mentioned stem cell criteria (Till and Mc, 1961,

Becker et al., 1963). In next 3 decades, stem cells were isolated and characterised

from several adult animal and human organs, such as haematopoietic system

(Spangrude et al., 1988, Bernstein et al., 1994), brain (Temple, 1989, Reynolds and

Weiss, 1992), skin (Cotsarelis et al., 1990, Lyle et al., 1998), and breast (Kordon

and Smith, 1998, Welm et al., 2002, Shackleton et al., 2006). In late 1980’s, based

on classical serial prostate involution-regeneration experiment in rats, the existence

of prostate epithelial stem cells was also proposed, indicating a hierarchical

arrangement within the prostate epithelium (English et al., 1987, Isaacs and Coffey,

1989).
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1.4.1 Hierarchy in normal prostate epithelium

Ever-improving molecular and cellular techniques are providing enticing glimpses of

the structural and functional architecture of the prostate epithelium. Over the last

few years, series of experiments performed in rodents has established beyond

reasonable doubt that a self-renewing population of stem cells exists in the basal

prostate epithelial layer. The initial indications came from cyclical ablation-

regeneration of the rat ventral prostate (English et al., 1987, Kyprianou and Isaacs,

1988, Walensky et al., 1993) (Figure 1.5). These experiments showed that the

prostate gland can regenerate itself even after prolonged androgen ablation. Two

experiments conducted during the last decade, further showed that transplantation

of even a single clonogenic prostate epithelial cell with embryonic mesenchyme

could regenerate an entire prostate in mice (Xin et al., 2003, Azuma et al., 2005).

Additional experiments have also identified long-term BrdU-label retaining

infrequent cells in the basal epithelial layer of the proximal duct region (Tsujimura et

al., 2002). Taken together, these evidences suggested the presence of a population

of long surviving cells with stem cell characteristics in the basal prostate epithelial

layer of the proximal duct region of a rodent prostate. Subsequently, cells that were

clonogenic and could reconstitute prostate were precisely isolated by enriching

basal epithelial cells for SCA-1 (Burger et al., 2005), TROP2 (Goldstein et al.,

2008), and ALDH (Burger et al., 2009) cell surface molecules. Further experiments

demonstrating distinct lineage differentiation of rare mouse prostatic basal epithelial

cells with an expression profile Lin−Sca-1+CD49fhi or Lin−Sca-1+

CD133+CD44+CD117+, is clearly strengthening the prostate stem cell hypothesis

(Lawson et al., 2007, Leong et al., 2008). However, Wang and colleagues recently

identified a second distinct population of stem cells in the mouse luminal cell layers

(Wang et al., 2009). They showed that luminal castration-resistant NKX3.1 positive

cells exhibited self-renewal and in-vivo prostate reconstruction ability at a single cell
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level. Two recent lineage-tracking studies marked the K5/14/8 expressing cells and

found that both basal and luminal progenitor cells exist in mouse prostate

epithelium, with some additional evidence for basal cell differentiation into luminal

cells (Choi et al., 2012, Ousset et al., 2012). Even though there is no consensus on

the location and number of stem cells in the murine prostate, these testable models

have immensely contributed to fine-tune concepts and techniques that can be

applied for the investigations of human prostate epithelium.

Figure 1.5: Schematic representation of serial androgen ablation and regeneration

of a rodent prostate. Adapted from (Maitland, 2012, Rane et al., 2012)

The identification of human prostate epithelial stem cells was however seriously

hampered due to technical challenges involved in maintaining human prostate

epithelial cultures and isolating pure and homogeneous cell sub-populations. On the

basis of immunoprofiling with Ki-67, PCNA, and MIB1, initial experiments showed

that the proliferative compartment of normal prostate lies in the basal epithelial layer

(Bonkhoff et al., 1994). However, only 1 in 200 of basal cells were found to generate

compact colonies reminiscent of colonies derived from stem cells in two-

dimensional culture and structures similar to normal prostate epithelium in three-
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dimensional matrigel culture (Hudson et al., 2000). Later, Hoechst 33342 exclusion

flow-cytometry experiments suggested that a putative rare stem cell population,

which is predominantly basal and quiescent, could be enriched from the tail region

of a side population (Bhatt et al., 2003). These experiments implied the existence of

stem cells in the basal layer of the human prostate epithelium, but the surface

marker and molecular profile of prostate stem cells still remained elusive. A basal

cell fraction enriched for α2β1-integrin and CD133 was then shown to exhibit high

proliferative capacity under appropriate culture conditions and an ability to

reconstitute prostate glands in vivo (Collins et al., 2001, Richardson et al., 2004). An

obvious morphogenesis and epithelial cytodifferentiation was noted when α2β1-

integrinhi/CD133+ cells were transplanted with prostate stroma in athymic nude

mice, with some acini having well-defined lumen and distinct basal and luminal

layers (Richardson et al., 2004). Subsequent identification of a sphere forming basal

cell sub-population enriched for TROP2 and CD49f that can self-renew and had

differentiation potential in vivo again pointed towards the existence of basal stem

cell population in human prostate (Goldstein et al., 2008, Garraway et al., 2010).

Therefore, now it has been widely accepted that prostate stem cells reside in the

basal epithelial layer and drive a dynamic human prostate epithelial hierarchy.

Distinct basal and luminal layers can be distinguished on the basis of morphology,

differential cytokeratin and surface marker expression, and expression of some cell

specific proteins such as P63 for basal cells and PSA for luminal cells (McDonnell et

al., 1992, Liu et al., 1997, Signoretti et al., 2000, Patrawala et al., 2006). The human

prostate stem cell resides in the basal epithelial layer, close to the basement

membrane and can differentiate into committed basal cells, which in turn terminally

differentiate into luminal cells (Robinson et al., 1998, Collins et al., 2001, Goldstein

et al., 2008, Maitland and Collins, 2008a). However, differentiation from stem cells

to basal cells is a gradual process and a noticeable intermediary transit amplifying
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cell population can be identified in mouse and human prostate epithelia (Isaacs and

Coffey, 1989, Hudson et al., 2000, Richardson et al., 2004) (Figure 1.6). These

cells cannot self-renew, but can proliferate significantly and express basal cell

markers. On differentiation into committed basal cells, the transit-amplifying cells

lose their significant proliferation potential. When these basal cells move down the

hierarchy by terminally differentiating into the luminal cells, they move away from

the basement membrane into the luminal layer. The cells with intermediate basal

and luminal phenotype beautifully capture this transition on electron microscopy

(Brandes, 1966). These intermediate cells predominantly reside in the basal layer,

but express some of the classical luminal markers, such as AR (Nakada et al.,

1993, Wang et al., 2006a), NKX3.1 (Wang et al., 2009), and cytokeratin 8/18

(Verhagen et al., 1992, Robinson et al., 1998, van Leenders et al., 2000).

Furthermore, recent lentivirus lineage tracking experiments clearly demonstrated

the ability of human prostate basal cells to differentiate into luminal cells (Frame et

al., 2010). Taken together, these findings suggest that the prostate epithelium has a

hierarchical architecture. Interestingly, along with normal prostate epithelium,

prostate cancer has also been suggested to exhibit cellular hierarchy.

Figure 1.6: Hierarchy in the normal prostate epithelium (Maitland et al., 2006).
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1.5 Hierarchy in prostate cancer

Only a rare population of ‘cancer stem cells’ (CSCs) has been proposed to possess

the ability to self-renew, differentiate into heterogeneous cell lineages, and to

reconstitute the tumour in vivo (Maitland and Collins, 2005, Clarke et al., 2006).

Even though the existence of these CSCs in cancer was proposed in the nineteenth

century by Rudolf Virchow, CSCs were only recently identified and characterised in

multiple human malignancies, such as leukaemia (Bonnet and Dick, 1997), and

cancer of brain (Singh et al., 2003), breast (Al-Hajj et al., 2003), and colon (O'Brien

et al., 2007). In the prostate, the propagation and prolonged serial passaging of

primary and metastatic prostate cancer tissue in immune deficient mice gave the

first indication that prostate cancer may also harbour a CSC population (Wainstein

et al., 1994, Pinthus et al., 2000, Corey et al., 2003). Subsequently, a pure and

homogeneous putative CSC population with a basal cell phenotype that have

proliferative capacity in vitro, and the ability to differentiate in vivo was successfully

enriched using cell surface profile CD44+/α2β1integrinhi/CD133+ from primary human

prostate cancer samples (Collins et al., 2005). CSC-like cells were also successfully

characterised from human xenograft tumours using CD44 and α2β1integrin

(Patrawala et al., 2006, Patrawala et al., 2007) and TRA-1-60, CD151 and CD16

(Rajasekhar et al., 2011) as markers. Although there is no clear consensus so far,

the cell of origin of these CSCs is considered to be within the basal epithelial layer

(Goldstein et al., 2010, Lawson et al., 2010, Maitland et al., 2011). Moreover, the

general opinion is tending more towards the hypothesis that the human prostate

cancer also has a hierarchical structure similar to normal prostate epithelium and it

is driven by CSCs.

Multiple studies point out that CSCs possess certain advantageous traits such as

quiescence, residence in a specialised niche, special DNA repair mechanisms, and

immune modulation. These properties are absent in their differentiated progeny. As
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a consequence, CSCs can mount a successful barrier against conventional anti-

cancer drugs to which, their differentiated progeny is susceptible (Zhou et al.,

2009a, Alison et al., 2011). Treatment of cancer with conventional anti-cancer drugs

could therefore result in selective loss of differentiated cells, leading to a response

similar to wound healing, causing rebound increase in number of CSCs. The

phenomenon of enrichment of CSCs after chemotherapeutic treatment has been

indeed observed in cancers of breast (Gupta et al., 2009, Hoey et al., 2009),

pancreas (Mueller et al., 2009), liver (Ma et al., 2008), lung (Levina et al., 2008),

and colon (Dylla et al., 2008). These CSCs then underpin subsequent development

of more aggressive cancer phenotype. Therefore, it has become evident that a

combination of drugs targeting CSCs with conventional anti-neoplastic treatments is

necessary for efficient cancer management.

In order to investigate the prostate hierarchy, and the mechanisms responsible for

prostate cancer progression, multiple models such as cell lines, patient-derived

epithelial cultures (primary cultures), and mouse models are in use. All of these

models have their own advantages and limitations. These models are discussed in

brief in the next section.

1.6 Models for investigating prostate biology:

1.6.1 The primary patient-derived prostate epithelial culture model:

In our lab, most of the investigations rely heavily on patient-derived primary prostate

epithelial cultures (PPECs) with supplementary use of cell lines and mouse

xenografts established from patient-derived tissue. PPECs provide a near-to-patient

model for investigating prostate epithelial cells from benign or malignant origin.

However, there are several limitations to PPECs: (i) it is difficult to establish cultures

from patient samples, (ii) these cultures have a limited life span (about 10 passages
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in culture), (iii) cells show increasing cultural adaptation with each increasing

passage such increase cell surface area, (iv) they are relatively difficult to

manipulate (e.g. transfection) and (v) the luminal cells cannot be cultured. In spite of

these limitations, PPECs can more faithfully replicate patient prostate scenarios

(Peehl, 2005) and the luminal cells can still be investigated by their isolation prior to

culture. We utilised CD133, CD44, CD24, and α2β1 integrin as cell surface markers

to enrich prostate epithelial subpopulations (Collins et al., 2001, Richardson et al.,

2004, Collins et al., 2005) (Figure 1.7). The same marker profile was used for the

isolation of cell sub-populations from PPECs derived from cancer and benign

patient samples.

Figure 1.7: Enrichment of prostate epithelial sub-populations from primary prostate

epithelial culture.

Characteristics of PPECs:

Features of stem cells (benign and malignant) enriched from PPECs:

 Rare (< 0.01%) (Richardson et al., 2004, Collins et al., 2005)

 Pluripotent (Richardson et al., 2004, Collins et al., 2005)
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 Self-renewal (Richardson et al., 2004, Collins et al., 2005)

 Quiescence (Frame et al., in preparation)

 Radioresistant and chemoresistant (Frame et al., in preparation, Klein et al.,

in preparation)

 Distinct mRNA levels profile (Birnie et al., 2008)

 Higher heterochromatin content compared to differentiated cells (Frame et

al., in preparation)

Features of cancer-derived cultures/tissue (compared to BPH-derived cultures):

 More proliferative and invasive (Collins et al., 2005)

 Distinct mRNA levels (Birnie et al., 2008)

 Exhibit characteristic TMPRSS2-ERG fusion in 50% of the cases (Polson et

al., submitted)

 Form subcutaneous (Maitland et al., 2011) and orthotopic (Collins et al., in

preparation) xenografts in immunocompromised mice

The presence of these characteristic features confirms that the majority of cells in

cancer biopsies are indeed prostate cancer cells and we can reliably enrich prostate

epithelial stem cells.

1.6.2 The cell line models of prostate:

Almost all the techniques used in this project were first validated in a panel of

prostate cell lines. The cell lines also provide an attractive model for investigating

molecular and cellular mechanisms in detail. The cell lines used in this project are

summarised in Table 1.5.
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Cell Line Origin Method of
immortalisation

Reference

PNT1a Normal prostate cells SV40 large T
antigen

(Berthon et al.,
1995)PNT2c2

BPH-1 BPH tissue SV40 large T
antigen

(Hayward et al.,
1995)

P4E6 Gleason 4, organ
confined prostate
cancer

human
papillomavirus-16
E6 gene

(Maitland et al.,
2001).

RC165N/
hTERT

Primary benign
tissue for a patient
with prostate cancer

Overexpression of
telomerase via
hTERT transfection

(Miki et al.,
2007).

R92a-
N/hTERT

Primary prostate
cancer, non-
metastatic

Overexpression of
telomerase via
hTERT transfection

(Miki et al.,
2007).

PC346C Primary prostate
cancer, non-
metastatic

Selection after
growing as a
xenograft, retroviral
immortalisation

(Marques et al.,
2006)

LNCaP Prostate cancer
lymph node
metastasis

Spontaneous
immortalisation

(Horoszewicz et
al., 1980)

VCaP Prostate cancer brain
metastasis

Cells were
passaged in SCID
mice and then
established as a
continuous in vitro
cell line

(Korenchuk et
al., 2001)

DU145 Prostate cancer brain
metastasis
(Patient also had
leukemic brain
metastasis)

Cells were
passaged 60 times
in nude mice and
then established as
a continuous in vitro
cell line

(Mickey et al.,
1977)

PC3 Prostate cancer bone
metastasis

Spontaneous
immortalisation

(Kaighn et al.,
1979)

Table 1.5: Commonly used prostate epithelial cell lines.

1.6.3 Animal models for prostate cancer:

There are two types of animal models: (1) xenograft mouse models: human prostate

cancer tissue is transplanted subcutaneously or orthotopically in

immunocompromised mouse (Liu et al., 1996, Maitland et al., 2011) and (2)

transgenic rodent prostate cancer models: prostate specific mutation in one or more

key genes (e.g. PTEN) involved in prostate carcinogenesis leading to rodent
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prostate cancer (Shen and Abate-Shen, 2010). These in vivo models provide a

perspective of epithelial growth in relation with surrounding stroma. They also

provide a good model for lineage tracking of cells to determine cell of origin of

cancer and the stem cell phenotype (Lawson et al., 2010, Choi et al., 2012, Ousset

et al., 2012). However, differences in rodent and human prostates must also be

considered before interpreting results obtained from transgenic mouse models: (i)

rodents do not develop spontaneous prostate cancer (Shen and Abate-Shen, 2010),

(ii) distinct lobes present in the rodent prostate are absent in the human prostate

(Roy-Burman et al., 2004), (iii) the rodent prostate does not exhibit classical

bilayered epithelial architecture (El-Alfy et al., 2000, Roy-Burman et al., 2004), and

(iv) stroma is sparse in the rodent prostate (Tsujimura et al., 2002).

This thesis is divided into three sections:

 Section I: The genetic regulation of prostate epithelial differentiation

 Section II: The identification of the role of telomerase in BPH and prostate

cancer

 Section III: miRNA profiling of prostate epithelial sub-populations

The specific introduction for each section is described at the beginning of respective

section.
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2. AIMS AND OBJECTIVES

Two main objectives are driving prostate cancer research at this moment: (i)

biomarker discovery - identification of biomarkers, which can distinguish between

indolent and aggressive prostate cancer, early diagnostic biomarkers, and

biomarkers that can be used to evaluate therapy response; and (ii) the design of

novel therapeutic strategies, which could be useful for the management of

advanced prostate cancer. In this project, we focussed on the second problem with

specific emphasis on the cancer stem cell hypothesis, which proposes that the

relatively rare cancer stem cells are the principal drivers of the cancer progression

and should be specifically targeted for more efficient cancer management. Our lab

has established a technique to enrich for prostate cancer stem cells and their

differentiated progeny (transit amplifying cells, committed basal cells, and luminal

cells) from patient-derived tissue material. Utilisation of these sub-populations

enabled us to design experiments on tissue material closest to that of patients,

focussing on individual prostate epithelial cell sub-types. With these pure and

homogeneous prostate epithelial sub-populations, we wanted to investigate specific

genetic and epigenetic (miRNA mediated) regulatory machineries essential for

prostate cancer stem cell maintenance. Identification of such pathways would permit

designing of prostate cancer stem cell-targeted therapeutic/diagnostic/prognostic

approaches.

2.1 Objectives:

1. Identification of transcription factors, which can regulate prostate cancer

stem cell differentiation.

2. Investigation of the role of telomerase in the maintenance of prostate cancer

stem cells
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3. Establishment of a miRNA profile for prostate epithelial sub-populations

enriched from PrEC, BPH, treatment naïve cancers, and castration resistant

prostate cancers, which can subsequently be exploited for the identification

of therapeutic/diagnostic/prognostic miRNA candidate targets.
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3. MATERIALS AND METHODS

3.1 Bioinformatic analyses:

3.1.1 mRNA microarray data reanalysis

The previously published microarray data from our lab (Birnie et al., 2008) was

reanalysed by robust multi-array averaging (RMA) as opposed to MAS5.0 in the

original paper. The gene expression was plotted as log2 expression. The

expression in different prostate epithelial sub-populations was compared using a

paired two-tailed t-test. Dr. Alastair Droop performed this analysis.

3.1.2 Promoter analysis:

The MatInspector software suite from Genomatix was utilised to identify potential

binding sites for transcription factors in the promoters of candidate genes (Quandt et

al., 1995, Cartharius et al., 2005). MatInspector is a tool, which utilises a library of

matrix descriptions for transcription factor binding sites to locate matches in the

promoter sequence. A large library of predefined matrix descriptions for transcription

factor binding sites, based upon direct wet-lab confirmation data, exists within the

software resource base. The software used a pre-defined sequence of a gene and

promoter region, which is known or predicted to occupy binding sites for regulatory

transcription factors.

3.1.3 Identification of CpG islands:

Regions of genomic sequence spanning 10,000 bp promoter and an entire genomic

region of the LCN2, CEACAM6, S100p, and SPRR3 were analysed for the

presence of CpG islands (regions that were rich in CG dinucleotides) The EMBOSS

CpGPlot software was utilised for this analysis

(http://www.ebi.ac.uk/Tools/emboss/cpgplot/index.html). The presence and location



50

of CpG islands fitting specific criteria within each gene and their promoters was

determined:

 The observed-to-expected CpG ratio was greater than 0.6.

 The percentage of CG dinucleotides was greater than 50%.

 The CpG island was greater than 50 bp in length.

3.2 Models used for prostate epithelial analysis

Patient-derived primary prostate samples obtained from York District Hospital, York

or Castle Hill Hospital, Hull were utilised for the majority of investigations. For each

sample, the BPH or cancer diagnosis was confirmed first by histological

examination. The patient sample collection (TURP or radical prostatectomy) was

carried out as per the guidelines mentioned in an ethical permission (R0609-

07/H1304/121) granted to Prof. Norman Maitland with informed consent from

patients.

3.2.1 Establishment of patient-derived prostate epithelial cultures

(primary cultures)

3.2.1.1 Processing of patient-derived tissue sample

Epithelial cultures from primary prostate samples were established according to the

protocol established in our lab (Richardson et al., 2004). Before processing, a piece

from each sample was snap frozen [in OCT (Sakura Finetech)] and then stored at -

800C. Another piece was fixed in 10% formalin and paraffin embedded (for

histological and molecular analysis, if necessary). Part of some of the cancer

samples was kept aside for xenografting. The remaining tissue was then chopped

into fine pieces (each piece less than ~ 3x3 mm) with a scalpel and subjected to

overnight collagenase I (Lorne Laboratories) treatment at 370C in 2.5 ml
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Keratinocyte Serum-Free Medium (KSFM with 5 ng/ml human EGF and 50 µg/ml

bovine pituitary extract supplements (Invitrogen) and 5 ml Roswell Park Memorial

Institute-1640 medium (RPMI, Invitrogen), supplemented with 10% foetal calf serum

(PAA Laboratories Ltd.), 100 U/ml antibiotic/antimycotic solution and 2 mM L-

Glutamine (Invitrogen) with shaking at 80 RPM. When luminal cell selection was

planned, the above mixture was additionally supplemented with 10nM

dihydrotestosterone (DHT) (Sigma).

The next day, the digestion was triturated by passing through a 5ml syringe (BD

Biosciences) with a 21G blunt needle (Monoject) and cells collected by centrifuging

at 2000 RPM for 10 minutes. The supernatant was removed and the pellet was

washed twice with 10 ml of PBS to remove collagenase. Then, the pellet was

suspended in 10 ml of R10 (RPMI media supplemented with 10% foetal calf serum

(FCS) (PAA) and 2mM L-Glutamine), and both the stroma and the epithelium was

separated by multiple centrifugations at 800 RPM for 1 minute. Stromal cells float in

the supernatant while the epithelium (acini) form a loose pellet at the bottom.

Stromal cell separation was not done with cancer core biopsies as we noted that

there was extremely limited amount of stroma in them and in an attempt to separate

it, we used to significantly lose epithelial acini. The pellet containing epithelial acini

was then washed with 10 ml of PBS and centrifuged at 1800 RPM for 5 minutes.

The supernatant was discarded and the pellet was further disrupted by suspending

it into 5ml of 0.05% (v/v) trypsin-EDTA in PBS (Invitrogen) for 30 minutes at 370C at

80 RPM. Trypsin was then neutralised by 10 ml of R10 and the pellet containing

prostate epithelial cells was collected by centrifuging the mix at 1400 RPM for 4

minutes.

The pellet was then suspended in 5 ml of stem cell medium (SCM) composed of

Keratinocyte Serum-Free Medium, 5 ng/ml human EGF, 50 µg/ml bovine pituitary

extract, 2 ng/ml leukaemia inhibitory factor (Chemicon), 100 ng/ml cholera toxin
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(Sigma), 1 ng/ml granulocyte macrophage colony stimulating factor (Miltenyi

Biotec), 2 ng/ml stem cell factor (First Link UK Ltd) and 2 mM L-Glutamine. The

cells in SCM were plated on 10 cm type 1 collagen-coated dishes (BD Biosciences)

with irradiated mouse embryonic fibroblasts cells (STO) as a feeder layer. The cells

in these cultures were of a basal prostate epithelial phenotype. These cells were

incubated at 37oC with 5% CO2 and needed 2-3 weeks to reach the first confluency.

Thereafter cells were sub-cultured by splitting at a ratio of 1:3 on a weekly basis.

However, there is a significant heterogeneity in the growth kinetics of samples.

These prostate epithelial cells could be maintained in culture for about 10 passages.

Similar cultures are referred to as primary cultures or primary prostate epithelial

cultures (PPECs) in further description. The normal prostate epithelial cells, PrEC

cells (Lonza), were cultured in SCM and maintained in a similar fashion as prostate

epithelial cells established in our lab.

3.2.1.2 Enrichment of hierarchical sub-populations from primary cultures:

Four sub-populations at different differentiation stages can be enriched from

prostate epithelium. The luminal cell sub-population, which can’t be cultured, was

enriched before cells were plated in type1 collagen-coated plates. A CD24 indirect

magnetic-activated cell sorting (MACS) method (Miltenyi Biotec) was utilised to

enrich CD24+ luminal cells, using the manufacturer’s protocol during this

enrichment. The other three populations [committed basal cells (CB), transit-

amplifying cells (TA), and stem cells (SC)] were enriched from primary cultures,

although they can be enriched from uncultured epithelium as well (if they are

enriched from uncultured epithelium, the number of stem cells is usually <1000

cells: not sufficient for most of the experiments). The majority of cells used in this

investigation were cultured for 2 passages after which SC, TA, and CB cells were

enriched.
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Enrichment of cells expressing higher levels of α2β1 integrin was performed by a

rapid collagen adhesion method. Cells were grown up to 80% confluency and

harvested with 0.05% trypsin-EDTA. Type1 collagen-coated 10 cm plates were

blocked with 0.3% BSA (0.3% bovine serum albumin in PBS, heat-denatured at

80°C for 5 min) for 1 hour at 37°C. Harvested cells from up to three 80% confluent

plates were suspended in 3 ml of SCM and plated out on to blocked plates and

incubated at 37°C for 20 minutes. Media was collected with the unattached cells

and other loosely attached cells were removed by multiple PBS washes. Cells in the

pellet collected from media and PBS washes were classified as α2β1
lo committed

basal cells. Cells attached to blocked collagen coated plates (α2β1
hi) then

trypsynised and subjected to further CD133 selection.

The direct CD133 Cell Isolation Kit (Miltenyi Biotec) was used to enrich CD133+

cells from α2β1
hi cells. Up to 108 cells were re-suspended in 300 µl magnetic-

activated cell sorting (MACS) buffer (2 mM EDTA, 0.5% (v/v) FCS in PBS), 100 µL

FcR blocking reagent (Miltenyi Biotec) and 100 µL CD133 beads (Miltenyi Biotec)

and incubated at 4C for 30 min. Cells were then washed with 3 ml MACS buffer,

centrifuged at 1500 RPM for 5 min and the pellet was re-suspended in 500 µl MACS

buffer. Separation of CD133 expressing cells on MACS MS columns was then

performed according to the manufacturer’s instruction. The CD133+ cells were

collected first by passing CD133 labelled α2β1
hi cells through MS MACS columns.

CD133 cells collected from columns were further enriched by passing them again

through another MS MACS column. This dual column use ensures about 95% purity

of CD133+ populations. Cells that are not labelled for CD133 in this selection were

classified as CD133-α2β1
hi transit amplifying cells. Thus we could enrich four distinct

prostate epithelial subpopulations (Table 3.1). These cells were plated out or used

to collect RNA/proteins for further analysis.
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Cell sub-population Surface marker profile
Stem cells (SC) CD133+α2β1

hi

Transit amplifying cells (TA) CD133-α2β1
hi

Committed basal cells (CB) CD133-α2β1
lo

Luminal cells (LC) CD24+

Table 3.1: Surface marker profile used to enrich prostate epithelial sub-populations

from primary patient prostate samples (Richardson et al., 2004, Collins et al., 2005).

3.2.1.3 Enrichment of hierarchical sub-populations from xenografts:

A similar method was used to enrich prostate epithelial sub-populations from

xenografts (Maitland et al., 2011). Dr. Anne Collins with assistance from Mr. Paul

Berry from our lab has established a patient-derived xenograft model where, a

prostate tissue or a specific sub-population of epithelial cells was directly placed at a

sub-cutaneous location in immunocompromised Rag2-/-γC-/- mice. The Rag2-/-γC-/-

mice are severely immunocompromised mice, which also lack natural killer cell

activity. Before enriching prostate epithelial sub-populations using the surface

markers as mentioned in Table 3.2, mouse cells and endothelial cells were depleted

by removing cells expressing mouse haematopoietic lineage markers (Lin+ cells)

and an endothelial marker (CD31+ cells) using MACS sorting. These cells do not

demonstrate rapid collagen adhesion properties (most probably due to adaptation

necessary for survival in a xeno-environment). Therefore α2β1-integrin selection

cannot be employed for xenograft-derived cell sorting.

Cell sub-population Surface marker profile
Stem cells (SC) CD133+

Transit amplifying and basal cells CD44+

Luminal cells (LC) CD24+

Table 3.2: Surface marker profile used to enrich prostate epithelial sub-populations

from xenografts. The MACS sorting method as described for primary culture

fractionation was also used for enrichment of xenograft sub-populations.
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3.2.1.4 Preparation of STO feeder cells:

STO cells were used as a feeder layer in primary cultures. These cells are mouse

embryonic fibroblasts and were inactivated by γ-irradiating them with a dose of 60 

Gy. Cells could be stored at 4°C for up to 5 days before use. Caty Hyde, Sandra

Klein, or Richard Bingham prepared STO feeder cells.

3.2.2 Maintenance of prostate cell lines

Established cell lines were purchased either from the American Type Culture

Collection (ATCC, USA) or the European Collection of Animal cell culture (ECACC,

UK), except for PNT1A, PNT2C2 and P4E6 cells, which were established in our

laboratory. PC346C cells were kindly provided by Dr. Robert Kraaij (Erasmus

Medical Centre, The Netherlands). BPH-1 cells were kindly given by Dr. Simon

Hayward and RC165N/hTERT and RC92a/hTERT by Prof. John Rhim. All the

plasticware used in cell culture was purchased from Corning and cells were cultured

at 37°C with 5% CO2. All the cell lines were regularly DNA fingerprinted and

checked for MYCoplasma contamination to ensure their suitability for experiments

(by Hannah Walker and Paul Berry).

Table 3.3 below summarises the culture conditions for prostate cell lines used.

Cell line Origin Culture media

Approx.
freq. of

sub-
culture

Maximum
passage

PNT2c2

A sub-clone of
PNT2 cells
(PNT2 cells

were prepared
by

immortalisation
of normal

prostate cells by
transfection with

SV40)

R10
(RPMI media

supplemented with
10% foetal calf serum

(FCS) and 2mM L-
Glutamine)

3-4
days

130

PNT1a

Normal prostate
epithelium

immortalised
with SV40

R10 3-4
days

80
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BPH-1
Benign prostatic

hyperplasia

R5
(RPMI media

supplemented with 5%
foetal calf serum

(FCS) and 2mM L-
Glutamine)

3-4
days

70

P4E6

Early stage well-
differentiated

prostate cancer
immortalised by

retroviral
delivery of the

HPV16-E6 gene

K2
(Keratinocyte Serum-
Free Medium, 5 ng/ml
human EGF, 50 µg/ml
bovine pituitary extract
and 2mM L-Glutamine

with 2% FCS)

A week 55

RC165N/hTERT

hTERT-
immortalised

primary benign
prostate tissue

KSFM
(Keratinocyte Serum-
Free Medium, 5 ng/ml
human EGF, 50 µg/ml
bovine pituitary extract

and 2mM L-
Glutamine)

A week 40

RC92a/hTERT

hTERT-
immortalised

primary human
prostate tumour

KSFM A week 40

PC-3

Human prostatic
adenocarcinoma
metastatic site in

bone

H7
(Ham’s F-12 medium
+ 7% FCS + 2mM L-
Glutamine)

4-5
days

50

LNCaP

Human prostatic
adenocarcinoma
metastatic site in
supra-clavicular

lymph node

R10 A week 50

VCaP

Mouse xenograft
established from

hormone
refractory

prostate cancer
bone metastasis

R10 10 days 80

DU145

Human prostatic
adenocarcinoma
metastatic site in

brain

R10 A week 150

PC346c
Human prostate

carcinoma
xenograft

1:1 mix of Dulbecco’s
Modified Eagle’s

Medium (DMEM) and
Ham’s F-12 medium,

100 µg/ml
streptoMYCin, 100

U/ml penicillin G, 2%
FCS, 0.01% (w/v) BSA

(Sigma), 10 ng/ml
EGF (Sigma), 1% (v/v)

2-3
weeks

Upper
limit not

assigned
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ITS-G (GIBCO), 0.1
nM R1881 (DuPont-

New England
Nuclear), 1.4 µM
hydrocortisone
(Sigma), 1 nM

triiodothyronine
(Sigma), 0.1 mM

phosphoethanolamine
(Sigma), 50 ng/ml

cholera toxin (Sigma),
0.1 µg/ml fibronectin

(Sigmg/ml fetuin
(Sigma)

Table 3.3: Prostate epithelial cell lines used in this investigation.

3.2.3 Cryopreservation of mammalian cells

For long-term storage in liquid nitrogen, cells were collected after trypsinisation. A

standard 1 ml freezing media (10% DMSO and 20% FCS in RPMI) was used to re-

suspend cells (~1-2 x 106) in cryovials. These vials were placed in containers at -

80oC for 4 hours and then transferred into liquid nitrogen. While thawing cells for

culture, vials were thawed as quickly as possible by placing it into a 37oC water bath

and then the growth media was added to dilute the freezing media drop by drop.

This was to avoid rapid change in cellular osmolality, which can affect cell integrity.

Cells were then pelleted by centrifugation at 1300 RPM for 4 minutes and plated in

an appropriate media.

3.2.4 Live cell counting

In order to determine live cell count, 30µl of cell suspension was added to an equal

volume of diluted Trypan Blue stain (Sigma-Aldrich). The live cells were counted

using a haemocytometer (Neubauer). Total live cell count was determined by the

following formula:

Total number of cells/ml of cell suspension = (Total no. of cells in 4 quadrants/4) *

10,000
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3.2.5 Foetal calf serum hormone depletion

2 g of Norvid A charcoal (Sigma) was added to 100 ml FCS and incubated at 4°C

overnight. The mixture was centrifuged at 5000 RPM for 10 min to sediment the

charcoal, and the supernatant re-centrifuged repeatedly at 5000 RPM for 10 min

until the supernatant cleared (about 5 centrifugations). The FCS was then filtered

using a 0.2 µM filter and stored at 4°C until use. This process removes steroid

hormones and other lipid-based hormones and growth factors.

3.3 Extraction and analysis of RNA

RNA analysis was routinely performed on freshly collected primary cells or cell lines

and on cell pellets frozen at -800C.

3.3.1 RNA extraction

To ensure isolation of pure, uncontaminated RNA, bench and relevant equipments

were cleaned with 70% ethanol. Dedicated filter tips were also used for RNA

extraction purpose and samples were kept on ice all the time. RNA was extracted

using either QIAGEN RNeasy Mini kit (QIAGEN) or the mirVana kit (Invitrogen).

3.3.1.1 The RNA extraction using QIAGEN RNeasy Mini kit

The QIAGEN RNeasy kit protocol utilises selective binding properties of a silica-

based membrane and microspin technology with high-salt based system to purify

RNA. Cells were lysed with specified amount of buffer by vortexing and then up to

350µl cell lysate was processed per column. First, the cell lysate was homogenised

by passing it through QIAshredder column and then RNA was purified by serial

buffer washes in QIAGEN RNeasy Mini columns. For maximum RNA elution, 30µl of

nuclease free water (Sigma) was placed in a column and a column was centrifuged

after 1 min. The same eluate was passed through the column again to collect
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leftover RNA. On occasions, if the stem cell number was less than 2000, RNA was

eluted in 15µl water.

3.3.1.2 The RNA extraction using mirVana kit

The mirVana kit utilises acid:phenol-chloroform extraction followed by

immobilisation of RNA on glass-fibre filter to purify RNA. 300µl of cell lysate was

used per column and total RNA was eluted in 30µL of 95oC heated nuclease free

water (Sigma) as per the kit protocol.

3.3.1.3 The preparation of concentrated RNA

Sometimes, if concentrated total RNA is required (eg. For miRNA microarray), total

RNA was concentrated using ethanol precipitation method. The RNA sample was

mixed with 0.1 volumes 3M-sodium acetate (pH 5.2) and vortexed for 10s. 2.2

volumes of cold 100% ethanol was added to it. After thorough mixing, samples were

incubated at -80oC for 2 hours. Later, the samples were centrifuged at 13,000 g for

10 minutes and supernatant was removed. The pellets were then re-suspended in

cold 70% ethanol and spun at 13,000 g for 10 minutes. The ethanol was then

removed and pellets were vacuum dried at 45oC for 1 hour with a vacuum centrifuge

concentrator (Eppendorf). The dried pellets were re-suspended in the desired

quantity of RNase-free water.

3.3.1.4 The quality control of extracted RNA

The extracted RNA was quantified and its quality assessed, in all the cases, by

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies). Only the RNA

samples with optical density (OD) ratio of about 2.00 at A260/A280 and A260/A230

were used for future experiments. The A230/A260 ratio was sometimes very low for

stem cells derived RNA, but these samples were still included in analysis if the ratio

was above 1. This is because: (i) stem cells-derived RNA concentrations varied

between 2-5ng/µl, which was at about the threshold of spectrophotometer detection
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levels and at that level, the accuracy in determination of OD may vary significantly

and (ii) sometimes, it was extremely difficult to get pure RNA from stem cells even

after best possible precautions. After quality confirmation, the RNA samples were

labelled and stored at -80oC.

3.3.2 Preparation of cDNA from mRNA

3.3.2.1 Method 1:

First strand cDNA synthesis was carried out by mixing up to 2 µg of RNA, 100ng

random hexamer primer (Invitrogen), 1µl of 10mM dNTPs (Invitrogen) in RNase free

water (Sigma) per sample, making a total volume of 12µl. The mixture was

incubated at 65oC for 5 minutes, and snap cooled on ice for 2 minutes. Components

shown in Table 3.4 were added in the mix and the mix was incubated at 25oC for 10

minutes, followed by 42oC for 50 minutes, and the reaction was terminated at

heating it 70oC for 15 minutes in a PCR machine (GeneAmp PCR system 9700).

Component Amount per sample
5x first strand buffer (Invitrogen) 4µl
0.1M DTT (Invitrogen) 2µl
RNaseOUT (Invitrogen) 1µl
Superscript II (Invitrogen) 1µl

Total 8µl

Table 3.4: Components used to prepare cDNA

The cDNA fragments obtained were then purified using QIAquick PCR Purification

Kit (QIAGEN). This kit applies a silica-based membrane, which removes

nucleotides, mineral oil, and other impurities from DNA. The DNA was eluted in

30µL of nuclease free water. The prepared cDNA was quantified and analysed by

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies) similar to that of

RNA. The cDNA samples were labelled and stored at -20oC.
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3.3.2.2 Method 2:

At times, when the starting RNA amount was lower (e.g. for stem cells); a different

method was employed to prepare cDNA, which involved an ethanol precipitation

step. In this method, about 50ng of RNA was diluted in 15µl of nuclease free water

and 0.75µl of random hexamer primers (3µg/µl, Invitrogen) were added per sample.

The mix was incubated at 70oC for 10 min. and then snap cooled on ice for 5 min. A

reaction mix as shown in Table 3.5 was prepared and added to each sample

reaction, which was then incubated at 45oC for 2 hrs. Thereafter, using serial

ethanol precipitation, first by pre-cooled analytical grade 100% ethanol and then by

70% pre-cooled ethanol, cDNA was resuspended in 30 µl of nuclease free water.

Component Amount per sample
Water 0.75µl
5x first strand buffer (Invitrogen) 6µl
0.1M DTT (Invitrogen) 3µl
10mM dNTPs (Invitrogen) 3µl
Superscript III (Invitrogen) 1.5µl

Total 14.25µl

Table 3.5: Reaction mix for ethanol precipitation method for cDNA preparation.

It was noted that the ethanol precipitation method needed significantly more

reagents, but it also gave reliable, reproducible, and higher cDNA yields.

3.3.3 Quantitative reverse-transcriptase PCR (qRT-PCR)

In a 96-well plate, a 10µl PCR reaction was prepared using constituents as shown in

Table 3.6. Each sample was assayed in triplicate with non-template control and

water only control for each gene. The plate was sealed with thermoclear film lid and

a qRT-PCR was performed using ABI-70000/7700 (Thermal profile: Table 3.7A) or

Bio-Rad C1000 thermal cycler (Thermal profile: Table 3.7B). The probes used in

this process were described in Table 3.8.
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Component Amount per sample
2X Master mix (ABI/Biorad) 5µl
20X TaqMan assay mix (Applied Biosystems) 0.5µl
cDNA + water 4.5µl

Total 10µl

Table 3.6: Reaction mix for qRT-PCR

B Temperature (oC) Duration

1 95 2 min
2 95 5 sec

3 60 5sec
40 cycles for step (2+3)

Table 3.7: Thermal profile for ABI thermocycler (A) and for Bio-Rad thermocycler

(B) for qRT-PCR.

Gene TaqMan Probe ID

LCN2 Hs00194353_m1

CEACAM6 Hs00366002_m1

S100p Hs00195584_m1

SPRR3 Hs00271304_m1

RPLP0 Hs99999902_m1

hTERT Hs00972656_m1

Table 3.8: TaqMan gene probes used for qRT-PCR (Applied Biosystems).

The gene expression was quantified relative to RPLP0 internal control gene using

either the ddCt method (Livak and Schmittgen, 2001) or the standard curve method

(Larionov et al., 2005).

3.3.4 Quantitative reverse-transcriptase PCR (qRT-PCR) for miRNA

For miRNA qRT-PCR, total RNA from cells was extracted using mirVana kit.

TaqMan small RNA assay was employed for qRT-PCR that uses a stem-looped

primer for reverse transcription and amplification of an individual miRNA and a

sequence specific TaqMan probe to detect mature miRNA. Reverse transcription

A Temperature (oC) Duration

1 50 15 min
2 95 2 min

3 95 15sec
4 60 30 sec

40 cycles for step (3+4)
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(RT) was performed using TaqMan MicroRNA Reverse Transcription Kit employing

manufacturer’s protocol (Life Technologies). The RT mix was prepared as described

in Table 3.9 and incubated on ice for 5 minutes and placed in a thermal cycler

programmed as described in Table 3.10.

Component Master mix volume per 15-μL 
reaction

100mM dNTPs (with dTTP)  0.15 μL 
MultiScribe™ Reverse Transcriptase,
50 U/μL  

1.00 μL 

10✕ Reverse Transcription Buffer 1.50 μL 

RNase Inhibitor, 20 U/μL 0.19 μL 
Nuclease-free water 4.16 μL 
5X RT primer 3.00 μL 
Total RNA (1-10ng) 5.00 μL 

Total volume 15.00 μL

Table 3.9: Component of RT master mix for miRNA reverse transcription reaction

Table 3.10: Thermal profile for miRNA reverse transcription reaction

The reverse transcription reaction final product was used to determine expression of

miRNA under consideration. The reaction mix for qPCR was prepared as mentioned

in Table 3.11 and the plate was loaded in a thermocycler using the protocol

described in Table 3.12.

Component Volume (μL)

TaqMan® Small RNA Assay (20✕) 1

Product from RT reaction 1.33

TaqMan® Universal PCR Master Mix II (2✕), no UNG 10.00

Nuclease-free water 7.67
Total 20

Table 3.11: Components of miRNA qPCR reaction mix.

Step Time Temperature (oC)
Hold 30 min 16
Hold 30 min 42
Hold 5 min 85
Hold ∞ 4 
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Table 3.12: Thermal profile for miRNA qPCR reaction.

The dCt method was used to analyse qPCR data and the expression was plotted

relative to the expression of an internal control (RNU6b).

3.4 Protein analysis

Results obtained at the RNA level were confirmed at protein levels by various

protein expression assays.

3.4.1 Extraction of proteins

Freshly harvested cells or cell pellets stored at -80oC were used to extract proteins.

An appropriate amount of CytoBuster (Novagen) was added and the mixture was

incubated at room temperature for 5 minutes. If pellets were used to extract

proteins, after adding CytoBuster, the pellet was dissociated by brief vortexing. The

extract was centrifuged for 5 min at 16,000 x g at 4oC and aliquoted in 50 µl tubes

with 1X protease inhibitor (Roche).

3.4.2 Measurement of protein concentration

Protein concentration was measured using Bicinchoninic acid assay (BCA) protein

assay kit (Thermo Scientific) following the manufacturer’s instructions. 25 µl of BSA

standards and samples (unknown) were pipetted in triplicate into a 96 well plate.

After adding 200 µl of working reagent to each well, the plate was mixed on a plate

shaker for 30 seconds and then incubated at 37°C for 30 min. After cooling the plate

to room temperature, the absorbance was measured at 562 nm on a POLARstar

OPTIMA microplate reader (BMG Labtech). The protein concentration in the

Step Temperature (oC) Time
Enzyme activation 95 10 min
PCR (40 cycles) 95 15 s

60 60 s
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unknown samples was determined according to the BSA standard curve of

concentration vs. absorbance.

3.4.3 Western blot analysis

Western blot analysis was performed using 10 or 12% polyacrylamide gels. Protein

lysate (usually 20µg) was mixed with 4X SDS loading buffer (10% (v/v) glycerol,

62.5 mM Tris-HCl pH 6.8, 1% (w/v) SDS, 65 mM DTT and bromophenol blue to

colour) in 1:4 (v/v) ratio. The mixture was briefly vortexed for 10 seconds and

heated to 100°C for 15 min in a QBD2 heating block (Grant). After re-vortexing and

centrifugation for 10 seconds each, samples were cooled on ice for 2 minutes and

loaded (maximum volume of 50 µl) onto a 10-12% Tris-SDS polyacrylamide gel,

using the Bio-Rad Protean II system. For each gel, a single marker lane was also

run with 5 µl of Kaleidoscope Pre-stained Standards (Bio-Rad) and 2 µl of

Bioatenylated Protein Ladder (Cell Signaling). The samples were then run on a gel,

first at 60V for 30 min and then 80-90V for about 2 hours in SDS running buffer (25

mM tris, 0.19 M glycine and 3.5 mM SDS). In order to transfer proteins from the gel

to an Immobilon-P membrane (Millipore) membrane (pre-activated in methanol and

equilibrated in a transfer buffer), a transfer cassette was assembled with a gel and a

membrane sandwiched between pre-soaked Whatmann filter papers and

ScotchBrite foam pad. This assembly was run overnight at 4oC at 40V or for 1hr at

RT at 100V in a transfer buffer (48 mM tris, 39 mM glycine and 10% (v/v) methanol).

While assembling a transfer cassette, special attention was given to remove any air-

bubble trapped between various layers. If necessary, the membrane was dried and

stored at 4oC between filter papers for later use.

Membrane with freshly transferred proteins or previously air-dried membranes were

re-wet with methanol and washed twice in TBS (150 mM NaCl and 50 mM Tris-HCl

at pH 7.4) and then probed for required proteins. All the washes and incubations

during this process were performed on a rocker. The membranes were first blocked
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with 1% Marvel in TBST buffer (150 mM NaCl, 50 mM Tris-HCl and 0.1% (v/v)

Tween-20, pH 7.4) for 1hr at RT. The primary antibody was added in 1% Marvel and

the membranes were incubated in a plastic sandwich box (Table 3.13). After

washing 4 times in TBST, membranes were incubated with the respective

peroxidase-labelled secondary antibodies (1:5000 (v/v); Cell Signalling

Technologies/Boehringer) and 1:5000 (v/v) anti-biotin-HRP (Cell signalling

technologies) diluted in 1% (w/v) marvel in TBST were added for 1 hour at RT. After

another washing step (4x, 10 min each), the strength of the signal was detected

using chemiluminescence method with Kodak®BioMaxTM system (GBX developer,

GBX fixer) and Amersham Hyperfilm ECL (GE Healthcare).

Primary
antibody

Species Origin
Working
dilution

Incubatio
n time

LCN2 Mouse
Abcam -
ab23477

1:50 overnight

CEACAM6 Rabbit
Abcam -
ab56234

1:1000 overnight

S100p Mouse
BD-

610307
1:100 overnight

SPRR3 Mouse
Abcam -
ab58233

1:100 overnight

SPRR3 Rabbit
Sigma -

HPA0444
67-100UL

1:100 overnight

β-actin Mouse Sigma 1:5000 1 h 

Table 3.13: Antibodies utilised in western blot analysis.

3.4.4 Immunofluorescence

In order to obtain further information about the quantification of Ki67 protein

expression, immunofluorescence was performed using 8-well collagen 1 coated

slides (BD Biosciences). About 5000 cells were plated per well in 200 µl media. The

next day, cells were washed with PBS twice and fixed in 4% PFA in PBS for 15 min.

After 3 PBS washes, cells were permeabilised using 1% Triton-X in PBS for 10

minutes and blocked with 200ul of blocking solution [10% goat serum in PBS] for 1
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hour. Later, the cells were incubated at 4o C overnight with primary antibody in 10%

goat serum solution in PBS (Table 3.14). The next morning, after 0.5% BSA/PBS

washes, secondary antibody in 10% goat serum in PBS was added for 1 hour at RT.

Slides were mounted using Vectashield with DAPI (Vector laboratories), which also

counterstained cell nuclei. Slides were stored at 4°C until visualisation on a Nikon

Eclipse TE300 fluorescent microscope (Nikon).

Experiment 1o antibody 2o antibody

Ki-67 staining
ab16667 (1:500), Abcam

(1 hour RT)

Alexa Fluor 568 goat
anti—rabbit (1:1000),

Invitrogen

Table 3.14: Concentrations of Ki-67 antibody used for immunofluorescence.

3.5 Senescence staining for acidic β-galactosidase: 

To identify senescent cells after telomerase inhibition, β-galactosidase staining of 

cells was performed. The senescence β-galactosidase staining kit (Cell Signaling) 

detects β-galactosidase activity at pH 6, which is a characteristic of senescent cells. 

Along with β-galactosidase staining, changes in cell morphology were also noted to 

corroborate the presence of senescence.

To stain for β-galactosidase, cells were washed with PBS and fixed with 1x fixative 

solution (10X solution: 20% fomaldehyde, 2% glutaraldehyde in 10X PBS, further

diluted with distilled water to prepare 1X solution) from the kit for 10-15 min at RT.

Fixative solution was washed with PBS and the cells were incubated at 37oC

overnight in a dry incubator with β-galactosidase staining solution at pH 6: for each

35 mm well to be stained, the following was combined in a polypropylene container

to prepare a staining solution:

a. 930 μl 1X Staining Solution (10x solution: 400 mM citric acid/sodium phosphate 

(pH 6.0), 1.5 M NaCl, 20 mM MgCl2, diluted with distilled water to prepare 1X

solution)
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b. 10 μl Staining Supplement A (500 mM potassium ferrocyanide) 

c. 10 μl Staining Supplement B (500 mM potassium ferricyanide) 

d. 20 μl 50 mg/ml X-gal (Promega) 

Cells were then observed at either 10X, 20X, or 40X magnifications for the

development of blue colour with an Evos light microscope (AMG).

3.6 Colony forming assay:

A colony forming assay or clonogenic recovery assay was performed to determine

self-renewing capacity of cells. This assay is a primary indicator of the stem cell

characteristics of a given cell type. After transfecting cells with test (hTERT) and

control siRNA for 7 days, the cells were trypsinised and about 200 cells were plated

in each well of the 6-well Collagen-I coated plates (BD Biosciences). These cells

could either be a whole population, or the selected epithelial sub-populations and

were plated in triplicates with 2 ml of stem cell media and 500 µl of irradiated STO

feeder cells per well. The cells were then incubated at 37oC and the medium was

changed every 2-3 days. Clonal colonies were counted at the end of a suitable end

point (usually 10-15 days, when the observed colonies were of a significant size of

about >32 cells, representing more than 5 population doubling).

3.7 Transfection of cells with siRNAs

Transient (up to a week) loss-of-function studies were performed using siRNA

mediated gene knock-down. siRNAs predominantly inhibit protein translation and

promote mRNA degradation. siRNAs (Applied Biosystems) were aliquoted in 50nM

final concentration and stored at -80oC. For control, Applied Biosystems control

siRNA #5 was used (In a test analysis conducted by Dr. Richard Birnie at ProCure

therapeutics Ltd. with PPECs and control siRNAs, control siRNA #5 was found to be
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the one that least influenced cell viability and gene expression. On day 1, cells were

plated in a relevant growth media (generally, ~20000 cells/cm2) and incubated

overnight at 37oC (Table 3.15).

96-well plate 24-well plate 6-well plate 10 cm dish
Cells/well 1 X 104 5 X 104 2 X 105 1.5 X 106

Media 0.1 ml 0.5 ml 2 ml 5 ml

Table 3.15: The number of cells plated and media used for siRNA experiments.

On day 2, in separate tubes for 50nM final siRNA concentration, appropriate amount

of siRNA (Tube 1) and the appropriate amount of Oligofectamine transfection

reagent (Invitrogen) (Tube 2) were diluted in serum-free Opti-MEM serum free

medium (Invitrogen) (Table 3.16). The contents in both tubes were mixed by

pipetting and incubated for 10 min at RT. Then the contents from both tubes were

mixed with each other and incubated for 25 min at RT. Cells were washed with Opti-

MEM media and incubated at 37oC in 5% CO2 with the siRNA/Oligofectamine mix

for 4 hours. Growth media was added and cells were incubated under the same

conditions for 4 more hours. Later, the transfection mix was aspirated and cells

were washed twice with 1X PBS and then incubated in the growth media for

required time.

Tube 1 Tube 2 Was
h

Opti-
MEM

siRNA/
Oli

Medi
a

96 well 0.2 µl siRNA +
25 µl Opti-

MEM

0.2 µl Oli +
6.8 µl Opti-

MEM

100
µl

17.5 µl 32.5 µl 200
µl

24 well 0.5 µl siRNA +
62.5 µl Opti-

MEM

0.5 µl Oli + 17
µl Opti-MEM

250
µl

44 µl 81 µl 500
µl

6 well 2 µl siRNA +
250 µl Opti-

MEM

2 µl Oli + 68
µl Opti-MEM

1 ml 175 µl 325 µl 2 ml

10cm 2 µl siRNA
+250 µl Opti-

MEM

16 µl Oli +
544 µl Opti-

MEM

8 ml 1400 µl 2600 µl 5 ml

Table 3.16: siRNA reagents for 50nM siRNA transfection. SiRNA stock solution:

50nM.
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3.8 miRNA transfection of cells

mirVana miRNA mimics were ordered from Applied Biosystems and used to

transfect cells with the same protocol as for siRNA transfection.

3.9 Chemical treatment of prostate cell lines or primary

prostate epithelium

Short-term (6hr-1week) treatments with chemical modifiers were performed in order

to investigate specific effect of perturbation of certain pathway or regulatory

mechanism on prostate epithelium (Table 3.17).

Chemical agent Mechanism
of action

Conc. /
range

(Routine
conc.)

Duration Special comment

5-Aza-2-deoxy-
cytidine (Azt)
treatment of
prostate cell lines

Inhibition of
DNA
methylation

1μM 4 days Concentration 
previously validated
in the lab [by D.
Pellacani (Pellacani
et al., 2011) and E.
Oldridge- PhD
thesis 2012]

Trichostatin-A
(TSA) treatment of
prostate cell lines

Inhibition of
histone
acetylation

0.6μM 2 days Concentration 
previously validated
in the lab [by D.
Pellacani (Pellacani
et al., 2011) and E.
Oldridge- PhD
thesis 2012]

All-trans retinoic
acid (Sigma)
treatment of
prostate cell lines
and PPECs

Stimulation of
RAR and
RXR
receptors

10-
1000nM
(100nM)

6 hrs-1
week

Cells lines grown in
charcoal-stripped
media

9-cis-retinoic acid
(Sigma) treatment
of PPECs

Selective
stimulation of
RXR
receptors

100nM 6hrs-1
week

Cell lines grown in
charcoal-stripped
media

1,25-
dihydroxyvitamin D3
(Sigma) treatment
of PPECs

Stimulation of
VDR
receptors

10nM 6hrs-1
week

Cell lines grown in
charcoal-stripped
media

Table 3.17: Chemical agents used to assess pathway functioning.
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3.10 Telomere repeat amplification protocol (TRAP) assay

A mini-TRAP assay, which can be performed with as few as 50 cells, was employed

to assess telomerase enzyme activity in prostate epithelial hierarchical sub-

populations. Either freshly selected sub-populations or snap-frozen cell pellets were

used for this assay. TRAPEZE® RT Telomerase Detection Kit (Millipore) was used

to determine telomerase activity by qRT-PCR. First, a standard curve was created

by using serial dilutions of TSR8 (quantitation control template). For each sample,

2500 cells were suspended in 10µL CHAPS lysis buffer and incubated on ice for 30

min. The suspension was centrifuged at 12,000g for 20 min at 4oC and the

supernatant was used for further analysis. TSR8 serial dilutions, P4E6 and cells

provided with the kit were used as a positive control and heat inactivated (85oC for

15 minutes) test cell extract was used as a negative control. Samples were kept on

ice all of the time.

The following reagents were used to set up qRT-PCR reaction (Table 3.18):

Reagent Volume (µL
5X TRAPeze RT reaction mix 5.0
Titanium® Taq DNA Polymerase (Clontech: 639208) (5unnit/µL) 0.4
Nuclease free water 17.6
Sample/control 2.0

Total 25

Table 3.18: Reagents used to set up qRT-PCR reaction for TRAP assay.

The reaction was run on ABI PRISM® 7700 Real Time PCR System using following
set up (Table 3.19):

Temperature (oC) Duration Cycle
30 30 min 1 cycle
90 2 min 1 cycle
45 cycles
94 15 s
59 60 s
45* 60 s

* Temperature at which reading was taken

Table 3.19: Thermocycler profile setting used for TRAP assay.



72

The relative test sample telomerase activity was quantified by comparing its Ct

value with that of TSR8 template serial dilutions (As recommended by the

manufacturer).

3.11 miRNA microarray analysis:

A microarray experiment was performed to determine global miRNA expression in

prostate epithelial hierarchical sub-populations enriched from normal (PrEC cells,

1), BPH (5), treatment naïve cancers (5), and castration resistant cancers (3). For

this purpose, an Agilent human miRNA microarray Kit (V3), 8x15K (Agilent,

G4470C), which has 866 human miRNA probes printed was employed. RNA from

frozen cell pellets (Stored at -70oC) was extracted using MirVana kit, as described in

the RNA extraction section. Using NanoDrop 2000, the quality of RNA samples was

tested.

For miRNA microarray, ‘miRNA Microarray System with miRNA Complete Labeling

and Hyb Kit’ (Agilent) protocol was employed as suggested by the manufacturer. In

order to distinguish significant biological data from processing issues, the labelling

and hybridisation spike-in solutions were prepared and mixed with test RNA

samples subsequently. These ‘spike-in solutions’ produce control labelled

luminescent spots with known intensity. The analysis of intensity of these points

enables the assessment of labelling and hybridization efficiency.

To prepare test samples for miRNA, the following protocol was used:

3.11.1 Step 1: Preparation of the labelling reaction:

This step involves the ligation of one Cyanine 3-pCp molecule to the 3' end of a

RNA molecule with greater than 90% efficiency. After removing 5´ phosphates from

RNA by calf intestinal phosphatase (to avoid self-ligation), the T4 ligase catalyses

this ligation.
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2µl of total RNA (50ng/µl) was added to 2µl calf intestinal alkaline phosphatase

(CIP) master mix (Table 3.20). The total mix of 4µl was mixed gently and incubated

at 37oC in a circulating water bath for 30 minutes. The samples were stored at -80oC

after incubation.

Component Volume (µl) per reaction

10X Calf Intestinal Phosphatase Buffer 0.4

Labelling Spike-In 1.1

Calf Intestinal Phosphatase 0.5

Total 2

Table 3.20: Components of calf intestinal alkaline phosphatase (CIP) master mix

The next day, after thawing the samples, 2.8µl of 100% DMSO was added to each

sample and incubated in a circulating water bath at 100oC for 5-10 minutes. After

this, samples were immediately transferred on to an ice-water bath. Later, 4.5µl of

ligation master mix for T4 ligase (Table 3.21) was added and the mixture was

incubated at 16oC for 2 hours in a circulating water bath.

Component Volume (µl) per reaction

10X T4 RNA Ligase
Buffer

1

Cyanine3-pCp 3

T4 RNA Ligase 0.5

Total 4.5

Table 3.21: Components of ligation master mix for T4 ligase

3.11.2 Step 2: Drying the samples

Removal of residual DMSO was essential, as it may interfere with the hybridisation

reaction. For this, after the 16°C labelling reaction, the samples were dried

completely using a vacuum concentrator at 45 to 55°C or on the medium-high heat

setting for about 1 hour. To check for sample dryness, the tube was flicked hard to

check for pellet strength.
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3.11.3 Step 3: Preparation of 10X blocking agent

10X GE blocking agent was mixed with 125µl of nuclease free water and incubated

for 4-5 minutes at 37oC. After dissolving the blocking agent completely, the tube was

centrifuged at 15,000 g for 5-10s. This was stored at -20oC till further use.

The labelled miRNAs were hybridised with the miRNA probes attached on miRNA

microarray slides in next two steps.

3.11.4 Step 4: Preparation for hybridisation of samples

Dried pellets were then re-suspended in 18µl and mixed with the hybridisation mix

(Table 3.22). The samples were then incubated at 100oC for 5 minutes and placed

in ice-water bath for 5 minutes. After a quick centrifugation (10,000g for 20s),

samples were loaded on the microarray slides for hybridisation.

Component Volume (µl) per reaction
Hyb Spike-In 1

10X GE Blocking Agent 4.5
2X Hi-RPM Hybridization Buffer 22.5

Total 28

Table 3.22: Components of hybridisation mix

3.11.5 Step 5: Preparation of the hybridisation assembly

A clean gasket slide (Agilent,) was loaded on to an Agilent SureHyb chamber base

with the label facing up so that barcode label was on the left. Samples were loaded

from left to right slowly and carefully to avoid the introduction of bubbles. The array

slide with the active side down was placed on the SureHyb slide and SureHyb

chamber was closed firmly. The mobility of bubbles (if any) was confirmed by

vertically rotating the slide before placing the slides into the hybridisation chamber

at 55oC with 20rpm rotation for 24 hours. After hybridisation, microarray slides were

removed from the SureHyb chambers, labelled, and washed with wash buffer 1 and
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2. Dried slides were placed in slide holder covered with aluminium foil and either

scanned immediately or stored in an ozone-free chamber for later use.

3.11.6 Scanning and feature extraction from hybridised miRNA

microarray slides

The data was extracted using Agilent SureScan scanner and Feature Extraction

program (v 10.7.3). Default grid template and miRNA_107_Sept09 protocol was

used for this purpose and the scan setting used was described in Table 3.23. This

program generated a .txt file as result readout.

Scan setting Values
Scan region Scan Area (61 x 21.6 mm)
Scan resolution (µM) 5
5 µM scanning mode Single pass
eXtended Dynamic range Selected
Dye channel Green
Green PMT XDR Hi 100%, XDR Lo 5%

Table 3.23: Scan setting for 8X15K Agilent human miRNA microarray scanning.

3.11.7 miRNA microarray data analysis:

This analysis was performed by Dr. Antti Ylipää, from Tampere University of

Technology, Tampere, Finland. The output data was mapped to the latest genome

database, zero or negative intensities were replaced with the lowest positive

intensity values, the data were quantile normalized, and RMA summarized. Lists

were prepared, which compared miRNA expression among various populations and

ranked by p-values generated from a paired two-tailed t-test and the Wilcoxon rank

sum test.
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SECTION I: Genetic regulation of
prostate epithelial differentiation
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SECTION I: 1. Introduction

According to the recent predictions released by the American Cancer Society, about

240,000 Americans will be newly diagnosed with prostate cancer in 2012 (Siegel et

al., 2012). The number of newly diagnosed cancers in the UK in 2010 was about

41,000 (Cancer Research UK report, 2012). These facts establish prostate cancer

as the commonest cancer diagnosed in males in these countries. The majority of

these cancers are organ confined cancers and can be cured by surgery. The rest

are treated with hormone therapy or radiotherapy. Among them, 10-20% of cancers

develop a castration-resistant prostate cancer phenotype (CRPC) within 1-3 years

of hormonal treatment initiation (Kirby et al., 2011). These patients have a median

life expectancy of less than two-years (Saad et al., 2002, Petrylak et al., 2004,

Tannock et al., 2004, Carducci et al., 2007, Nilsson et al., 2007, Attard et al., 2009,

Sternberg et al., 2009, Kantoff et al., 2010, Ning et al., 2010, Scher et al., 2010, Yap

et al., 2011). Several approaches, such as an autologous dendritic cell vaccine

Sipuleucel-T and novel androgen signalling blocking agents such as abiraterone

acetate and Enzalutamide (MDV3100) are now improving the outlook of CRPC

management (Cheever and Higano, 2011, de Bono et al., 2011, Scher et al., 2012a)

(Table I1.1). However, in spite of these novel and expensive options, the survival of

CRPC patients remains very low (Beltran et al., 2011, de Bono et al., 2011, Yap et

al., 2011, NICE, 2012). This suggests that, at least in advanced prostate cancers,

apart from hormone responsive hyper-proliferation, other targets, such as cancer

stem cells (CSCs), must be considered.
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Anti-neoplastic
drug

Mechanism of action Median survival

Current options

Docetaxel
(Tannock et al.,
2004)

Inhibition of
microtubule formation

18.9 months for docetaxel
(every 3 weeks) vs. 15.6
months for mitoxantrone

Radium 223
chloride (Parker et
al., 2011)

Radiation induced
apoptosis

14.0 months for radium-223 vs.
11.2 months for placebo

Cabazitaxel (de
Bono et al., 2010)

tubulin-binding taxane
drug

15.1 months in cabazitaxel
group vs. 12.7 months in the
mitoxantrone group

Next Generation therapies

Abiraterone (de
Bono et al., 2011)

Irreversible and
selective inhibition of
Cyp17

14.8 months in the abiraterone
acetate–prednisone group vs.
10.9 months in the placebo–
prednisone group

Sipuleucel-T
(Kantoff et al.,
2010)

Autologous dendritic
cell vaccine

25.8 months in the sipuleucel-T
group vs. 21.7 months in the
placebo group

(MDV3100)
Enzalutamide
(Scher et al.,
2012a)

Androgen receptor
antagonist

18.4 months in MDV3100
group vs. 13.6 months on
placebo

Table I1.1: Current treatment options for the management of advanced stage

prostate cancer. Modified from (Rane et al., 2012).

I1.1 Pathological changes during cancer development:

The CSCs, similar to normal prostate stem cells, exhibit characteristic stem cell

attributes, such as self-renewal. However in cancer, the homeostatic balance

between processes maintaining hierarchy such as self-renewal, differentiation, and

proliferation is lost, resulting in tumour propagation. Progressive telomeric

shortening and expression of apoptosis suppressing oncoprotein BCL-2 in luminal
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cells in prostatic intraepithelial neoplasia (PIN) suggested that the acquisition of

proliferative potential and loss of senescence could be the obvious initial

hierarchical perturbations in prostate cancer (Colombel et al., 1993, Meeker et al.,

2002). On the other hand, disruptions in regulation of differentiation are subtler in

initial stages, where prostate architecture is fairly well maintained. However, these

changes gradually become evident in later stages of cancer and certainly in

metastatic and castration resistant cancer where basal and luminal cell phenotypes

are ill defined (Gleason, 1977). These interruptions in the hierarchical processes are

suggested to be primarily responsible for cancer progression, loss of tissue

architecture, and altered cellular composition (Collins and Maitland, 2006, Grisanzio

and Signoretti, 2008). Therefore, careful consideration of the cellular composition of

cancer mass is essential to appreciate differentiation-related perturbations in

prostate epithelial hierarchies.

I1.2 Limitations of anti-proliferative/anti-androgenic

treatments as a monotherapy

It has been proposed that anti-proliferative/anti-androgenic therapies can remove

only differentiated cells and fail to remove undifferentiated cancer cells, such as

cancer stem cells (CSCs), which are responsible for subsequent relapse (Hill and

Milas, 1989, Liu et al., 2006, Yaromina et al., 2007, Baumann et al., 2008, Maitland

and Collins, 2008b, Qin et al., 2012). Targeting undifferentiated cancer cells using

differentiation therapy could form such an additional adjuvant approach for better

cancer management. Multiple studies now point out that CSCs possess

advantageous traits, such as quiescence, immune evasion, enhanced DNA damage

response, expression of drug export channels, and an ability to alter their

microenvironment, which render them therapy resistant (Frank et al., 2010). As a

consequence, unlike their differentiated progeny, CSCs can successfully defend
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themselves against conventional anti-neoplastic drugs (Zhou et al., 2009a, Alison et

al., 2011). Putting this in the perspective of prostate cancer, treatment of advanced

prostate cancer with anti-androgenic drugs would selectively remove only the

differentiated luminal cells. As luminal cells form more than 99% of prostate cancer

mass, destroying them would reduce tumour size and serum PSA levels

significantly. However, it may also lead to rebound enrichment of CSCs, which are

non-proliferating androgen independent cells (Gil-Diez de Medina et al., 1998, van

Leenders et al., 2001b, Rizzo et al., 2005, Qin et al., 2012). The relative CSC

enrichment after chemotherapeutic treatment was also noted in cancers of the

breast (Gupta et al., 2009, Hoey et al., 2009), pancreas (Mueller et al., 2009), liver

(Ma et al., 2008), lung (Levina et al., 2008), and colon (Dylla et al., 2008). Recent

analysis in mouse glioblastoma conclusively demonstrated that CSCs are indeed

resistant to conventional therapy and are directly responsible for tumour relapse

(Chen et al., 2012a). It is possible that the CSCs in prostate cancer are also

responsible for prostate cancer relapse and even for the development of the

castration-resistant phenotype. Targeting these CSCs, along with their actively

proliferating differentiated progeny, is therefore essential for efficient prostate

cancer management. One such approach could be the induction of differentiation in

resistant CSCs and then targeting the treatment-responsive differentiated progeny

by hormone therapy or anti-proliferative drugs.

I1.3 Differentiation therapy

Differentiation therapy is based on the principle that CSCs can be forced towards a

terminally differentiated phenotype by the application of intrinsic or extrinsic

chemical factors (Pierce and Speers, 1988). Differentiation of CSCs would obliterate

the reservoir CSC population, resulting in inhibition of further tumour growth, relapse

or metastasis. Pushing CSCs towards a more differentiated phenotype would
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increase tumour responsiveness to conventional therapy, as the differentiated cells

remain hardwired to undergo cell death have a limited proliferative potential. For

example, in prostate, androgen independent CSCs can be forced to differentiate

into androgen responsive luminal cells. These luminal cells then can be targeted by

drugs that block androgen signalling, or chemo/ radiotherapeutic approaches.

Therefore, the use of the differentiation therapy would be synergistic to the pre-

existing treatment options (Figure I1.1). The combination therapy with these two

approaches has a potential to significantly enhance the efficiency of prostate cancer

management regimes.

Figure I1.1: Combination therapy (differentiation therapy + current therapies) for

efficient prostate cancer management. A cyclical treatment of a prostate cancer with

therapy targeting differentiated luminal cells (PSA expressing cells or androgen

responsive cells) with subsequent CSC targeting differentiation therapy could prove

more beneficial for advanced prostate cancer management. Adapted from (Rane et

al., 2012).
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I1.4 Differentiation therapy for prostate

I1.4.1 Differentiation therapy for prostate cancer management:

Literature review

The conceptually interesting differentiation therapy approach has however failed in

pre-clinical assessments in prostate cancer. Limitations in the experimental design

and a lack of detailed knowledge about prostate epithelial differentiation have

probably caused these failures.

The experimental designs for assessing the pre-clinical and very limited clinical

prostate cancer differentiation therapy studies revolved around the evaluation of

less than ideal models and experimental end points. The LNCaP cell line was by far

the commonest model used for the assessment of drugs that can induce

differentiation (Esquenet et al., 1996, Gleave et al., 1998, Hisatake et al., 2000).

Since the predominant phenotype in LNCaP cells is a terminally differentiated

luminal cells with an less than 1% of relatively undifferentiated cells (Hurt et al.,

2008), the effect of any differentiation inducing drug would therefore be insignificant.

Ideally, a model cells for differentiation therapy evaluations should contain a

significant number of undifferentiated cells. Any reduction in the undifferentiated cell

content and increase in the expression of markers of terminally differentiated

luminal cells should then be assessed as a treatment end-point. However, with

some exceptions (Hedlund et al., 1997, Floryk and Huberman, 2006, Floryk and

Thompson, 2008), the majority of studies used ‘decrease’ in PSA (a marker of

terminally differentiated luminal cells) as their primary or only evaluation end-point

(Debruyne et al., 1998, Denis et al., 1998, Hisatake et al., 2000, Mueller et al., 2000,

Woo et al., 2005). During differentiation therapy, PSA expression is in fact expected

to rise initially, as induction of differentiation to PSA expressing luminal cells is the

prime objective of the therapy. Apart from these pre-clinical studies, the clinical trials
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assessing the efficiency of the differentiation therapy also had limited scope. One

phase II trial was actually designed for the evaluation of type 2 diabetes mellitus and

the assessment of the effect on prostate cancer progression was done

retrospectively (Mueller et al., 2000). The second was just a case study (Hisatake et

al., 2000), whereas the third one lacked any control arm (Woo et al., 2005). These

observations clearly stress the need for a more thoughtful approach to the

evaluation of prostate cancer differentiation therapy. It seems that the lack of the

precise knowledge about prostate epithelial differentiation has restrained the choice

and dose of drugs, hampering the progress of any differentiation therapy.

I1.4.2 The regulation of prostate epithelial differentiation

Relatively few studies have investigated prostate epithelial differentiation at the

molecular level. Prostate development begins at the 15.5 days post-coitum (dpc) in

mouse, when endodermal outgrowth from the prostatic urethra invades into the

FGF10-expressing surrounding mesenchyme, explicitly after stimulation by

testosterone (Donjacour et al., 2003, Meeks and Schaeffer, 2010). Distinct duct-like

structures are then formed from the endodermal outgrowths, which is at least partly

directed by HOX13 paralogs (Economides and Capecchi, 2003). Further

development of the duct system is delicately balanced through a positive regulation

exerted by Notch, retinoic acid, and PI3-AKT pathways, and negative regulation

through WNT, SHH, and BMP pathways (Lamm et al., 2001, Pu et al., 2004, Wang

et al., 2006a, Wang et al., 2006b, Allgeier et al., 2008, Vezina et al., 2008).

Additional insights into epithelial lineage specification were offered by mouse knock

out experiments, which suggested the role of P63 in basal cell specification;

whereas NKX3.1, SOX9, FOXA1 were all found to regulate luminal cell

differentiation (Bieberich et al., 1996, Gao et al., 2005, Signoretti et al., 2005,

Thomsen et al., 2008b). However, these experiments were performed using the

developing prostate of rodents as a model, and most of them did not provide a
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detailed functional characterisation. The conclusions obtained from these

investigations may not be directly applied to adult human prostate epithelium, as the

human prostate is functionally and anatomically distinct from the rodent prostate

(Shappell et al., 2004). There are extremely limited investigations, which assessed

the regulation of normal/cancer ‘adult’ human prostate epithelial differentiation. This

lack of clear information about adult human prostate epithelial differentiation has

therefore resulted in the application of untested differentiation inducing agents with

a questionable role in prostate epithelial differentiation in pre-clinical and clinical

studies.

I1.4.3 Differentiation inducing agents used in prostate cancer

A wide range of differentiation inducers, such vitamin A and D modulators

(Debruyne et al., 1998, Denis et al., 1998, Pasquali et al., 2006, Swami et al., 2011),

PPARγ agonists (Kubota et al., 1998), sodium phenylacetate (Samid et al., 1993) 

and MYCophenolic acid (Floryk and Huberman, 2006), have been evaluated as

differentiation inducers in the treatment of prostate cancer. None of these agents

have clear or even convincing background data to suggest that they can induce

prostate epithelial differentiation. Therefore, not surprisingly, their use as

differentiation inducers failed to match with expectations. The risk with the use of

these unproven differentiation inducers was illustrated by two recent investigations,

which examined the role of PPARγ in prostate cancer management. The first study 

assumed that PPARγ agonists can induce prostate epithelial differentiation 

(Leibowitz and Kantoff, 2003), but two recent studies demonstrated that the PPARγ 

agonist troglitazone induced apoptosis and inhibited proliferation in prostate cancer

C4-2 and PC3 cells by altering c-MYC and BCL-xL/BCL-2 signalling via a PPARγ-

independent mechanism respectively (Shiau et al., 2005, Akinyeke and Stewart,

2011). There was no evidence for differentiation. A parallel, but more striking

example also exists in glioblastoma multiforme (GBM) regarding the use of bone
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morphogenic proteins (BMPs) for GBM CSC-targeted differentiation therapy

(Piccirillo et al., 2006, Lee et al., 2008a). Piccirillo et al showed that BMPs did

induce differentiation in GBM CSCs, and hence, inhibited their tumorigeneic

potential (Piccirillo et al., 2006). However, Lee et al. subsequently showed that BMP

receptors are epigenetically silenced in the majority of GBM, and the utilisation of

BPM agonist in such cases could result in CSC proliferation instead of differentiation

(Lee et al., 2008a). This data emphasizes the importance of detailed analysis and

functional evaluation of a pathway before its utilisation for the therapeutic purposes.

Failure to do so can also result in employment of inappropriate drug doses in pre-

clinical studies. For example, compounds such as retinoic acid (RA) analogues

were used over a 100,000-fold range, even though it was known that RA analogues

have dose-specific effects (Crowe et al., 2003). Studies in last few years have

considered some of these issues and have come up with more positive outlooks for

prostate cancer differentiation therapy.

I1.4.4 New developments

Three recent investigations provide more direct evidence suggesting that disruption

of key molecules/pathways that regulate differentiation could be successfully

employed to target prostate CSCs. Two of these studies investigated the

interference in the PTEN/PI3K/AKT pathway (Dubrovska et al., 2010) and the CD44

cell surface molecule (Liu et al., 2011). Both of these were previously shown to be

critical for the maintenance of prostate stem cells (Charrad et al., 1999, Patrawala et

al., 2006, Dubrovska et al., 2009). These studies showed that a significant reduction

in the number of CD44+ prostate CSCs, enriched from prostate cancer cell lines,

can be achieved by treatment with the PI3K/mTOR modulator NVP-BEZ235

(Dubrovska et al., 2010) and with microRNA miR-34a overexpression (Liu et al.,

2011), respectively. More remarkably, a study elucidating the effect of vitamin E

derivative γ-tocotrienol on CSCs enriched from PC3 and DU145 cells indicated a 
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classical response to a differentiation-inducing drug (Luk et al., 2011). The authors

of this paper did not stress the role of differentiation, but the results showed typical

consequences of induction of CSC differentiation, such as a decrease in the

markers of stem cells (CD133 and CD44), prostatosphere formation ability and

tumorigenicity in vivo. This result seems somewhat at odds with the outcome of the

SELECT trial, where vitamin E increased the total number of all tumours, without

changing the natural history of the disease (Klein et al., 2011). A discrepancy like

this clearly demonstrates the critical need to identify exact doses of selective

prostate CSC differentiating agents in order to make differentiation therapy a

success.

In our lab, we can enrich pure prostate epithelial sub-populations from patient

samples. The stem cells and any of their differentiated progeny can now be

specifically probed to investigate the functional effects of any drug and the

regulation of the stem cell maintenance can be studied in cells closely resembling to

the patient. The microarray expression analysis performed using these cells in 2008

have identified some critical pathways, which could be important for prostate stem

cell maintenance, such as the IL-6 and NF-κB pathways (Birnie et al., 2008).  
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SECTION I: 2. Aims

With the emerging role of cancer stem cells in the progression and relapse of

cancer, there is an intense interest in cancer stem cells targeted therapies. The

differentiation of treatment-resistant CSCs to treatment sensitive differentiated cells

is one of the promising options for targeting CSCs. However, apart from androgen-

mediated prostate epithelial differentiation, we do not have a detailed analysis of

prostate stem cell differentiation. Therefore, we wanted to investigate the regulation

of adult human prostate stem cell differentiation using pure and homogeneous

patient-derived prostate epithelial sub-populations. In this analysis, we utilised

previously published microarray data (Birnie et al., 2008), assessing the expression

profile of stem cells and committed basal cells enriched from BPH and high

Gleason-grade treatment naïve prostate cancers (PCa), to identify genes that can

regulate prostate cancer stem cell differentiation. Ultimately these pathways (or key

nodes in these pathways) can be therapeutically targeted for the development of

next generation prostate cancer differentiation therapy.
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SECTION I: 3.Results

I3.1 Reanalysis of published microarray data

The published microarray study evaluated the differential gene expression states in

pure and homogeneous stem (SC) and committed basal (CB) cell populations

isolated from 6 benign and 12 PCa samples (Birnie et al., 2008). The reanalysis of

this data was performed because it is suggested that RMA is more specific and

sensitive for differential gene expression analysis on microarray dataset comprising

of multiple chips thus providing a consistent fold-change across all the microarray

chips (Irizarry et al., 2003, Harr and Schlotterer, 2006). Dr. Alastair Droop performed

this analysis. A similar trend of RNA degradation plots in all the microarray chips

and homogeneous probe level model (PLM) chip images (Fig. I3.1) again confirmed

the good quality of the raw data. The statistical output of the RMA analyses was a

list of 900 genes that are specifically over-expressed in committed basal cells

enriched from benign and malignant samples with p < 0.01 (by paired two-tailed t-

test) (first 50 genes are mentioned in Appendix 1), from which candidate genes

were chosen. We decided to choose genes that are overexpressed in committed

basal cells, instead of genes that are overexpressed in stem cells for three main

reasons: (i) Very limited number of genes were up-regulated in stem cells, and

although the differences in expression were significant, the magnitude of differences

was minimal and (ii) in our experience, it was extremely difficult to perform loss of

function studies in stem cells (due to the technical challenges owing to the limited

number of stem cells), and (iii) some of the genes over-expressed in stem cells

were being investigated in another project.
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Figure I3.1: Raw microarray data analysis. A: Probe level model (PLM) images
before normalisation, showing lack of bubbles and large over/under hybridised
areas in microarray chips. Each of the small squares is one microarray chip. B:
Boxplots created by log2 transformed probe intensity values that compare the probe
intensity levels between the arrays of a dataset, showing that the average
hybridisation intensity on each microarray chip is similar. Either end of the box
represents the upper and lower quartile. The black line in the middle of the box
represents the median. (Diagrams prepared by Dr. Alastair Droop). Small
inconsistencies seen here were then eliminated by RMA normalisation.
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The next objective was to check if the differentially expressed probes match to any

of the known or novel chromosomal changes related to epithelial differentiation. For

examples, during epidermal stem cell differentiation, the expression of about 27

genes clustered on 1q21 (EDC cluster) changes during differentiation (Marenholz et

al., 2001). In order to check for such changes, the differentially expressed probes

between stem cells and committed basal cells in this analysis were mapped to their

chromosomal locations by Dr. Alastair Droop (Figure I3.2). No specific localisation

to any particular chromosomal locus was found. A possible small cluster was

detected on chromosome 6p, but it did not correspond to any known differentiation

associated co-regulated cluster.
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Figure I3.2: Location of differentially expressed genes in stem vs. committed cells (irrespective of pathological origin). The first
column of numbers indicates chromosome number and the second column indicates number of differentially expressed genes
located on that chromosome with p<0.01 by paired two-tailed t-test. Chromosomal length represents their actual length. Genes
that are differentially expressed in stem cells are represented by red lines, whereas grey lines represent position of all probes in
present on the Affymetrix microarray slide. (Diagram prepared by Dr. Alastair Droop)
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I3.2 Selection of candidate genes:

Although we already had some data about the embryonic development of

human prostate, the regulators of adult prostate epithelial stem cell fate still

remain to be identified. In order to identify these regulators, we picked genes,

which were over-expressed in committed basal cells compared stem cells

(Figure I3.3, Table I3.1 and I3.2).

Figure I3.3: Selection of the candidate genes. A watershed graph showing
probes that were significantly differentially expressed between SC and CB cells.
Using the criteria mentioned in the figure, CEACAM6, LCN2, S100p, and
SPRR3 were chosen as candidate genes. The graph was made by D. Pellacani.

Gene Mean
expression SC

Mean
expression CB

CB/SC P value

LCN2 9.39 11.18 1.79 0.00026
CEACAM6 6.99 10.07 3.08 0.00001
S100p 8.62 11.18 2.56 0.00007
SPRR3 6.91 9.89 2.98 0.00008

Table I3.1: Relative log2 expression of the candidate genes in the combined
microarray data (BPH and PCa). SC: stem cells, CB: committed basal cells. P
values are calculated using paired two-tailed t-test.
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Gene
name

Cellular
location

Protein family
domain

Functions attributed

LCN2
(24p3,
NGAL)

secreted Binding protein,
iron transporter

Role in apoptosis, innate
immunity and renal
development, NF-kB
dependent up-regulation in
PCa (Kehrer, 2010, Li and
Chan, 2011)

CEACAM6
(NCA,
CEAL,
CD66c)

Cell
membrane

Extracellular
domain, Ig-
domain, N-
terminal domain

Cell-cell signalling, elevated
in many solid tumours,
including prostate cancer
(Blumenthal et al., 2007, Han
et al., 2008)

S100p Cytoplasm
, Nucleus

Ca++, Zn++, and
Mg++ transporter,
EF hand

Cell cycle progression and
differentiation, Androgen
dependent up-regulation in
PCa, hypomethylated in PCa
(Basu et al., 2008, Jiang et
al., 2012)

SPRR3 Cytoplasm Protein binding,
structural
constituent of
cytoskeleton

Up-regulated during
epidermal differentiation and
in multiple cancers (Koizumi
et al., 1996, Fischer et al.,
1999, Kim et al., 2012a)

Table I3.2: Brief information about the candidate genes, which may regulate
prostate epithelial differentiation.

I3.3 Candidate gene expression:

I3.3.1 Expression in PPEC derived sub-populations

In spite of quality control on the raw microarray data, sometimes microarray data

may not represent the true biological expression pattern. This is due to cross

hybridisation of probes or other instrumental/data processing errors. This

necessitates direct confirmation of the microarray results. The primary prostate

epithelial cells are cultured with irradiated mouse STOs feeder cells, and while

selecting SC, TA, and CB cells; STO cells often contaminate CB cell population.

Therefore, we first assessed the expression of the candidate genes in STO cells

to rule out any significant impact on final analysis due to STO contamination.

The expression of all the candidate genes was not detected or detected at
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extremely low levels in STOs compared to primary prostate epithelial cultures,

suggesting that differential STO contamination in SC, TA, and CB cells won’t

alter the candidate genes’ expression analysis (Figure I3.4).

qRT-PCR analysis of candidate genes’ expression in sub-populations enriched

from BPH (n=6) and treatment naïve cancer (n=6) derived PPECs showed that

the mRNAs of LCN2, CEACAM6, S100p, and SPRR3 were significantly over-

expressed in CB cells compared to SC and TA cells (Fig. I3.5-8). In spite of

large inter-sample variations, the expression of the candidate genes in CB cells

was significantly different from SC and TA cells in both BPH and PCa. The

differential expression was however less marked in sub-populations enriched

from castration resistant prostate cancers (CR-PCa, n=2) for all 4 candidate

genes. The differential expression was less marked in CR-PCa samples but the

trend of expression was similar to that observed in BPH and PCa derived

PPECs.
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Figure I3.4: qRT-PCR analysis for the expression of the candidate genes and
RPLP0 (qRT-PCR internal control) BPH derived primary prostate epithelial
cultures (PPECs, n=3) and STOs. ND: not detected

Figure I3.5: Expression of LCN2 mRNA, as analysed by qRT-PCR, in stem cells
(SC), transit amplifying cells (TA), and committed basal cells (CB) enriched from
benign prostatic hyperplasia (BPH, n=6), treatment naïve prostate cancer (PCa,
n=6), and castration resistant prostate cancer (CR-PCa, n=2). RPLP0 was used
as an internal control for qRT-PCR and expression was normalised to the
expression in prostate cancer P4E6 cell line. Each dot indicates individual
patient sample and horizontal line indicates mean. *p<0.05 by paired two-tailed
t-test
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Figure I3.6: Expression of CEACAM6 mRNA, as analysed by qRT-PCR, in stem
cells (SC), transit amplifying cells (TA), and committed basal cells (CB) enriched
from benign prostatic hyperplasia (BPH, n=6), treatment naïve prostate cancer
(PCa, n=6), and castration resistant prostate cancer (CR-PCa, n=2). RPLP0 was
used as an internal control for qRT-PCR and expression was normalised to the
expression in prostate cancer P4E6 cell line. Each dot indicates individual
patient sample and horizontal line indicates mean. *p<0.05 and **p<0.01 by
paired two-tailed t-test.

Figure I3.7: Expression of S100p mRNA, as analysed by qRT-PCR, in stem
cells (SC), transit amplifying cells (TA), and committed basal cells (CB) enriched
from benign prostatic hyperplasia (BPH, n=6), treatment naïve prostate cancer
(PCa, n=6), and castration resistant prostate cancer (CR-PCa, n=2). RPLP0 was
used as an internal control and expression was normalised to the expression in
prostate cancer P4E6 cell line. Each dot indicates individual patient sample and
horizontal line indicates mean. *p<0.05 and **p<0.01 by paired two-tailed t-test.
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Figure I3.8: Expression of SPRR3 mRNA, as analysed by qRT-PCR, in stem
cells (SC), transit amplifying cells (TA), and committed basal cells (CB) enriched
from benign prostatic hyperplasia (BPH, n=6), treatment naïve prostate cancer
(PCa, n=6), and castration resistant prostate cancer (CR-PCa, n=2). RPLP0 was
used as an internal control for qRT-PCR and expression was normalised to the
expression in prostate cancer P4E6 cell line. Each dot indicates individual
patient sample and horizontal line indicates mean. *p<0.05 and **p<0.01 by
paired two-tailed t-test.
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I3.3.2 Expression at protein level

The differential mRNA levels were then confirmed at the protein level by western

blot analysis. Because of the limited number of stem cells available per sample

(~3000/sample), western blot analysis in stem cells could not be carried out.

Therefore, the protein expression of the candidate genes was evaluated in TA

and CB cells (TA cells being surrogate for SC) (Figure I3.9). The

overexpression in CB cells was apparent in CB cells derived from BPH and

PCa, but not in CR-PCa derived CB cells. S100p was detected at twice the

published monomeric molecular weight, suggesting that it may exist as a dimer

in primary prostate epithelium. The expression was also compared to the

expression in P4E6, PC3, and LNCaP prostate cancer cell lines for future

reference (if needed). Expression of all the genes was higher in P4E6, mid in

PC3 and lowest in LNCaP cells. Unfortunately, none of the three SPRR3

antibodies tested could detect SPRR3 expression. Since subsequent findings

implied that SPRR3 might have a different regulation of gene expression

compared to the other three candidate genes, SPRR3 expression analysis was

not pursued further.

Together, mRNA and protein data showed that LCN2, CEACAM6, SPRR3, and

S100p are overexpressed at mRNA levels in differentiated cells as compared to

stem cells, confirming the microarray findings. LCN2, CEACAM6, and possibly

S100p are overexpressed in CB cells compared to TA cells at protein levels as

well.
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Figure I3.9: Representative image of protein expression of the candidate genes
in primary prostate epithelial cultures (PPECs). Western blot analysis was
performed on transit amplifying cells (TA) and committed basal cells (CB) from
BPH (n=3), PCa (n=3) and CRPC (n=3) derived PPECs and P4E6, PC3, and
LNCaP prostate cancer cell lines.
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I3.3.3 Expression of the candidate genes in luminal cells

Luminal cells are terminally differentiated prostate epithelial cells. We wanted to

investigate if the overexpression of the candidate genes was restricted to the

committed basal cells or it was a common feature of all the differentiated

progeny. Therefore, luminal cells were enriched from fresh samples before

culture and the mRNA levels of the candidate genes was assessed (Figure

I3.10). The expression of LCN2, CEACAM6, and S100p in luminal cells was

similar to that in committed basal cells but the expression of SPRR3 was

suppressed by almost 10 fold to that in committed basal cells. This suggests that

SPRR3 is involved in the early differentiation process, whereas the other three

candidate genes may be necessary for early SC/TA differentiation into

committed basal cells and terminal luminal cell differentiation.



101

L
C

N
2

e
xp

re
s
s
io

n
re

la
tiv

e
to

R
P

L
P

0

0.0

0.2

0.4

1.0

1.2

LC LC P4E6

BPH PCa

C
E

A
C

A
M

6
e

xp
re

s
s
io

n
re

la
tiv

e
to

R
P

L
P

0

0

2

4

6

8

10

12

14

LC LC P4E6

BPH PCa

S
1

0
0

p
e

xp
re

s
s
io

n
re

la
tiv

e
to

R
P

L
P

0

0

2

4

6

8

10

12

14

LC LC P4E6

BPH PCa

S
P

R
R

3
e

xp
re

s
s
io

n
re

la
tiv

e
to

R
P

L
P

0

0

20

40

60

80

LC LC P4E6

BPH PCa

Figure I3.10: Expression of the candidate genes in luminal cells. qRT-PCR
analysis was performed on luminal cells enriched from benign prostatic
hyperplasia (BPH, n=3) and treatment naïve (PCa, n=3) samples. RPLP0 was
used as an internal control for qRT-PCR and expression was normalised to the
expression in prostate cancer P4E6 cell line. Each dot indicates individual
patient sample. The axes were kept similar to the axes used for that particular
gene in previous graphs to aid comparison.
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I3.3.4 Expression of the candidate genes in prostate cancer

xenografts

Prostate cancer xenografts generated from patient samples provide a good

model to investigate the disease progression in vivo. This model may also

provide a way to assess the effect of the manipulation of the candidate genes on

the cancer stem cell properties and in vivo tumour initiation and progression.

Therefore, we assessed the expression of the candidate genes in the sub-

populations enriched from prostate cancer xenografts. However, xenografting of

prostate tissue into immunocompromised mice provides a completely different

environment for cells. This xeno-environment may affect the process of

differentiation. When expression of the candidate genes was assessed in the

prostate epithelial sub-populations enriched from xenografts, we noticed several

changes in the expression pattern compared to the expression in the cultures

(Figure I3.11). First, expression of all the genes exhibited relatively larger inter-

sample variations. Second, the up-regulation in a CD44+ population (equivalent

to TA and CB cell combined) was minimal compared to CD133+ (equivalent to

SC) population, except for CEACAM6. The average expression of SPRR3 was

even higher in the CD133+ population than the CD44+ population. Thirdly, the

CD24+ luminal-like cell population exhibited extremely low expression of the

candidate genes, except SPRR3. This pattern of expression is completely

distorted from what was observed in BPH and treatment naïve cancer-derived

PPEC sub-populations, suggesting that normal differentiation (especially luminal

differentiation) is disrupted in the xenografts.
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Figure I3.11: Expression of the candidate genes in the prostate epithelial sub-
populations enriched from prostate cancer xenografts. qRT-PCR analysis was
performed on CD133 (equivalent to SC), CD44 (equivalent to TA and CB cell
combined), and CD24 (equivalent to luminal cells) positive cell sub-populations
enriched from freshly resected xenografts (n=3). RPLP0 was used as an internal
control for qRT-PCR and expression was normalised to the expression in
prostate cancer metastatic cell line PC3. The expression of the candidate genes
in one of the primary culture derived committed basal cell population was also
plotted for comparison. Each dot indicates individual xenograft sample.

CD133
CD44

CD24
PC3

Y040/10CB
C

E
A

C
A

M
6

e
xp

re
s
s
io

n
re

la
tiv

e
to

R
P

L
P

0

0

50

100

150

200

250

300

CD133
CD44

CD24
PC3

Y040/10CB

L
C

N
2

e
xp

re
s

s
io

n
re

la
tiv

e
to

R
P

L
P

0

0

2

4

6

8

CD133
CD44

CD24
PC3

Y040/10CB

S
1

0
0

p
e

xp
re

s
s

io
n

re
la

tiv
e

to
R

P
L

P
0

0

20

40

60

80

100

CD133
CD44

CD24
PC3

Y040/10CB

S
P

R
R

3
e

xp
re

s
s

io
n

re
la

tiv
e

to
R

P
L

P
0

0

200

400

600

800

1000

1200

1400



104

I3.3.5 Expression in prostate cell lines

Cell lines provide an additional model to investigate regulatory pathways in

depth. They can also be used as a control to compare the newly generated data

with previous related data in the same cell line. The data from primary samples

suggested that expression of the candidate genes was not significantly different

in benign and cancer samples. Expression was also not significantly affected by

basal (CB) or luminal (LC) cell phenotype. We wanted to check whether this was

also the case with prostate cell lines. Therefore, the expression of the candidate

genes was assessed in 7 prostate epithelial cell lines. 2 of these cell lines

(PNT1A and PNT2c2) were derived from normal prostate and the rest (P4E6,

PC3, LNCaP, VCaP, and PC346c) were prostate cancer-derived cell lines. 4 of

the cell lines had a predominantly basal phenotype (PNT1A, PNT2c2, P4E6,

and PC3), whereas other 3 (LNCaP, VCaP, and PC346c) had a predominantly

luminal phenotype.

There were no obvious differences in benign vs. malignant cell lines, but the cell

lines with a basal phenotype had significantly higher expression of the candidate

genes than cell lines with a more luminal phenotype (10-1000 fold difference)

(Figure I3.12). The exception was SPRR3. This pattern was completely different

from that observed in the primary samples, where basal and luminal cells had

almost similar expression. This suggests that, the basal and luminal phenotypes

in cell lines may not represent gene expression status is patient-derived basal

and luminal cells in all cases.
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Figure I3.12: Expression of the candidate genes in prostate epithelial cell lines.
The expression of LCN2, CEACAM6, S100p, and SPRR3 was assessed by
qRT-PCR in prostate epithelial cell lines. Green bars represent cell lines with
predominantly basal phenotype and blue bars represent cell line with
predominantly luminal phenotype. RPLP0 was used as a qRT-PCR internal
control gene. Expression of each gene was normalised to expression in cell line
with lowest expression: LCN2 (VCaP), CEACAM6 (LNCaP), S100p (PC346c),
and SPRR3 (LNCaP). Experiment done thrice, with three replicates each time.
Error bars represent standard error of mean.
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I3.4 Expression of candidate genes in other human tissues:

Our analysis showed that the candidate genes were repressed in stem cells and

were up-regulated in the differentiated cells. Similar repression of these genes

was also seen in other human epithelial tissues. For example, LCN2 and

SPRR3 is suppressed in epidermal stem cells and overexpressed in

differentiated epidermis (Koizumi et al., 1996, Mallbris et al., 2002). In addition,

LCN2, S100p and CEACAM6 were all among the top 25 up-regulated genes

after retinoic acid treatment of sebaceous epithelium (Nelson et al., 2008).

These findings suggested that the candidate genes may have similar expression

patterns across multiple epithelial cells and may respond to certain common

transcription factors (such as retinoic acid) in a similar way.

To test this hypothesis, we assessed the expression of the candidate genes in

data generated from 806 human microarray experiments. These microarrays

represent global gene expression of all the human primary tissues and some cell

lines. The microarrays contained cells with normal, malignant, or any other

pathological phenotype with and without any drug treatment. In summary, this

assembled microarray data provided a snapshot of global gene expression

patterns across all the normal and pathological human tissues. This analysis

was performed by Dr. Alastair Droop.

We wanted to assess the expression pattern of our candidate genes across all

these microarray experiments and to compare the pattern of expression of one

candidate gene with other candidate genes. To our surprise, we found that the

expression of S100p was more related to that of CEACAM6 and LCN2 than any

other gene in the human genome (Figure I3.13 and I3.14). This suggested that

LCN2, CEACAM6, and S100p had similar expression patterns in almost all

human tissues, and respond to drug treatments in a similar way. Thus, they may
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perform similar functions and share common regulatory mechanisms. The fourth

candidate gene (SPRR3) did not have a similar expression pattern to the

previous 3 genes, but it did have similar expression pattern to genes that form a

part of epidermal differentiation cluster along with SPRR3 (Figure I3.13). In

brief, LCN2, CEACAM6, and S100p could be co-regulated and may have similar

functions as they had remarkably similar expression pattern in almost all human

tissues.

To confirm this finding in other dataset, we used UCSC genome database. This

analysis revealed that LCN2, CEACAM6, and S100p also had very similar

expression patterns:

http://genome.ucsc.edu/cgi-

bin/hgNear?hgsid=301950779&near_search=uc003gjl.3

http://genome.ucsc.edu/cgi-bin/hgNear?hgsid=301950779&near_search=uc003gjl.3
http://genome.ucsc.edu/cgi-bin/hgNear?hgsid=301950779&near_search=uc003gjl.3


(A)
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Figure I3.13: Expression pattern of the candidate genes in the 806 microarray
experiments. A: Top panel shows the schematic representation of the
expression pattern of LCN2, CEACAM6 (2 probes), and S100p at randomly
chosen 50 microarray slides from the data analysed. The bottom panel shows
the expression pattern of S100p and other randomly chosen gene at the same
50 slides. B: List of genes that had similar expression pattern as that of S100p
and SPRR3. The blue arrows point at the genes that are involved in epidermal
differentiation along with SPRR3.

(B)
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Figure I3.14: Representation of the expression pattern of gene probes in the
806 microarray experiments. Nearly 25,000 slides from 806 human Affymetrix
microarrays were assessed for the expression of LCN2, CEACAM6, S100p, and
SPRR3. The pattern of expression was plotted in 2D graph, where each axis
represents log2 expression of the genes concerned. A: Two probes of
CEACAM6 plotted against each other with 97% correlation. B: Correlation
between S100p and LCN2 (63%). C: Correlation between S100p and
CEACAM6 (67%) D: Correlation between S100p and SPRR3 (17%). Diagram
prepared by Dr. A. P. Droop
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I3.5 Bioinformatic analysis of candidate genes’ promoters

Our analysis in prostate and the subsequent analysis of assembled microarray

data implied that the candidate genes, especially LCN2, CEACAM6, and S100p

could be co-regulated; hence, we decided to assess the promoters of these

genes. We hypothesised that if these genes were co-regulated, then they should

have binding sites for common transcription factors within the promoter regions.

We found that the promoters of all these genes had binding sites for 8 common

transcription factors at their promoters with consensus sequence homology >

80% and P < 0.001 and 40 transcription factors had binding sites on the

promoters of at least 3 candidate genes with consensus sequence homology >

80% and P < 0.001 (Figure I3.15 and I3.16).

Some of these transcription factors such as AR, VDR-RXR, SOX9, BCL2,

STAT1/3, and NF-κB have been proposed to play a significant role in prostate 

epithelial differentiation and carcinogenesis (McDonnell et al., 1992, Peehl and

Feldman, 2004, Paule et al., 2007, Thomsen et al., 2008a, He and Young, 2009,

Rajasekhar et al., 2011). There is a particularly large amount of evidence

implying a role for retinoic acid control (Gudas and Wagner, 2011). Therefore,

we investigate the potential of retinoic acid signalling in the regulation of

expression of candidate genes.



111

Figure I3.15: Transcription factors that can potentially bind to the promoters of
the candidate gens, as determined MatInspector software. Bottom row of 8
transcription factors had binding sites for all the 4 candidate genes. X indicates
the presence of at least one binding site for the transcription factor on the
promoter.
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Figure I3.16: The location of androgen responsive elements (ARE),
glucocorticoid responsive elements (GRE), Retinoid X receptor (RXR), and
STAT3 on the promoters of the candidate genes, as predicted by MatInspector
software. A: Three splice variants of LCN2 showing binding sites for ARE/GRE,
RXR, and STAT3. B: CEACAM6 promoter C: S100p splice variants D: SPRR3
promoter. Note that SPRR3 promoter does not have a binding site for STAT3.
Red arrows indicate transcription start sites.
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I3.6 Retinoic acid mediated regulation of candidate genes

Retinoic acid (RA) is a metabolite of vitamin A. It was proposed more than 2

decades ago that the retinoic acid receptor-mediated transcriptional regulation

could be instrumental in promoting prostate epithelial differentiation (Peehl et al.,

1993). Retinoic acid acts through two types of receptors: retinoic acid receptors

(RARs) and retinoid X receptors (RXRs). Each of these receptors had 3

isotypes: α, β, and γ. RARα is also referred to as RARA and RARβ as RARB 

etc. In order to identify whether RA regulates the expression of candidate genes,

we first determined the expression status of these receptors in prostate cell

lines, and primary prostate epithelial cultures.

I3.6.1 Expression of retinoic acid receptors in prostate cell lines

and primary prostate epithelial cultures

All the prostate cancer cell lines (benign, malignant, metastatic cell lines) exhibit

similar RA receptor expression patterns (Figure I3.17A). RXRA had the highest

expression in all the cell lines compared to all other RA receptor sub-types,

whereas RXRB and RXRG had insignificant expression. On average, the

expression of RA receptors was lower in cancer cell lines (P4E6, PC3, LNCaP,

VCaP, and DU145) compared to benign/normal cell lines (PNT2c2, PNT1a, and

BPH1). No such difference in the primary benign and malignant prostate

epithelial cultures was however observed (Figure I3.17B). RARG and RXRA

had higher expression in primary cultures compared to the other receptors. The

expression of RXRB and RXRG was also insignificant in the primary cultures.

The expression of RA receptors was also present at the protein level in prostate

cell lines and in primary cultures (Rivera-Gonzalez et al., 2012) and (E. Oldridge

PhD thesis 2012).These data imply that RA-mediated signalling could be
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predominantly mediated by RXRA in prostate cell lines and in primary cultures,

although RARA and RARG could also have functional roles.

Figure I3.17: Expression of retinoic acid (RA) receptors at mRNA level in
prostate epithelial cell lines and primary prostate epithelial cultures. A: qRT-PCR
analysis for RA receptors in benign/normal cell lines (PNT2c2, PNT1a, and
BPH1) and in malignant cell lines (P4E6, PC3, LNCaP, VCaP, and DU145). B:
qRT-PCR analysis for RA receptors in primary prostate epithelial cultures
derived from benign (n=3) and treatment naïve malignant (n=3) samples.
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I3.6.2 Effect of stimulation of retinoic acid receptors on the

expression of candidate genes

I3.6.2.1 Cell lines:

Once we had confirmed that retinoic acid receptors are expressed in prostate

cell lines and primary prostate epithelial cultures, we investigated the effect of

stimulation of RA receptors by all trans-retinoic acid (ATRA). RA receptors exist

as homodimers or heterodimers. Homodimers are more common with RARs,

whereas RXR form heterodimers with several other related receptors, more

often with one of the RARs or with the vitamin D receptor (VDR) (Lefebvre et al.,

2010). ATRA is an agonist for both of these receptors (RARs and RXRs).

We first investigated the effect of ATRA treatment on candidate genes’

expression using prostate cell lines. Normal (PNT2c2) and malignant (LnCaP

and PC3) cell lines were treated with ATRA at three different concentrations

(10nM, 100nM, and 1000nM) for up to 7 days. A relatively modest but significant

(2-5 fold) (with paired two-tailed t-test) dose dependent up-regulation of LCN2,

CEACAM6, and S100p was observed; whereas SPRR3 expression was

significantly downregulated over 7 days in all 3 cell lines (Figure I3.18-20). The

pattern of up-regulation of LCN2, CEACAM6, and S100p was different: LCN2

showed gradual up-regulation over the period of 7 days, CEACAM6 showed

peak up-regulation after 3 days, and significant up-regulation in S100p

expression was observed only after 7 days of treatment. None of these three

genes was up-regulated significantly within 1 day after treatment, indicating that

ATRA mediated gene activation may not be a direct activation. SPRR3

expression was however significantly downregulated even after 1 day of ATRA

treatment, suggesting that it ATRA can supress SPRR3 expression directly. No
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obvious morphological changes were observed in any of the cell lines, at any

time of treatment.

These results supported the findings of the bioinformatic analysis, which

discovered that only LCN2, CEACAM6, and S100p had a similar expression

pattern among the candidate genes (Figure I3.13).
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Figure I3.18: Treatment of PNT2C2, PC3 and LNCaP prostate cell lines with 10nM all-trans retinoic acid (at-RA). Three prostate
cell lines were treated with 10nM ATRA or an equimolar ethanol control for up to 7 days. New drug in fresh media was added every
day. The expression of LCN2, CEACAM6, S100p, and SPRR3 was measured before the start of experiment (time 0) and after 1, 3,
and 7 days of treatment initiation by qRT-PCR. RPLP0 was used an internal qRT-PCR control.
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Figure I3.19: Treatment of PNT2C2, PC3 and LNCaP prostate cell lines with 100nM all-trans retinoic acid (at-RA). Three prostate
cell lines were treated with 100nM ATRA or an equimolar ethanol control for up to 7 days. New drug in fresh media was added
every day. The expression of LCN2, CEACAM6, S100p, and SPRR3 was measured before the start of experiment (time 0) and
after 1, 3, and 7 days of treatment initiation by qRT-PCR. RPLP0 was used an internal qRT-PCR control.
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Figure I3.20: Treatment of PNT2C2, PC3 and LNCaP prostate cell lines with 1000nM all-trans retinoic acid (at-RA). Three
prostate cell lines were treated with 1000nM ATRA or an equimolar ethanol control for up to 7 days. New drug in fresh media was
added every day. The expression of LCN2, CEACAM6, S100p, and SPRR3 was measured before the start of experiment (time 0)
and after 1, 3, and 7 days of treatment initiation by qRT-PCR. RPLP0 was used an internal qRT-PCR control.
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I3.6.2.2 Primary prostate epithelial cultures:

Based on the cell line data, previously published work and work performed by E.

Oldridge in our lab, we used a 100nM concentration of ATRA to assess RA-

mediated regulation of the candidate genes in primary prostate epithelial

cultures (PPECs). In addition to ATRA treatment, PPECs were also treated with

a combination of 9-cis-RA and 1α, 25-dihydroxyvitamin D3. As the promoters of

the candidate genes had binding sites for VDR-RXR receptors, the combination

of 9-cis-RA and 1α, 25-dihydroxyvitamin D3 could specifically activate VDR-RXR

receptor and would be more potent than ATRA. The dose of 9-cis-RA (100nM)

and 1α, 25-dihydroxyvitamin D3 (10nM) was selected based on the literature

analysis (Brown et al., 1994, Zhao et al., 1997). The pattern of up-regulation of

expression of the candidate genes in PPECs remained similar to that observed

in cell lines with ATRA and also with a combination of 9-cis-RA and 1α, 25-

dihydroxyvitamin D3, but the magnitude of change was larger (5-25 in PPECs

fold vs. 2-5 fold in cell lines) (Figure I3.21). Up-regulation of LCN2, CEACAM6,

and S100p was observed as in cell lines but the induction was not immediate. In

contrast, expression of SPRR3 was downregulated significantly, even after only

24 hours of treatment. When the PPECs were fractionated into SC, TA, and CB

sub-populations, the same pattern of change in the expression of the candidate

genes was observed, although the overexpression of S100p failed to reach

statistical significance (Figure I3.22). Similar to cell lines, no obvious

morphological changes were observed in any sample, at any time of treatment.

In summary, retinoic acid receptor agonists can up-regulate the expression of

LCN2, CEACAM6, and S100p, and supress the expression of SPRR3; without

causing any overt morphological changes in cell phenotype. As the SPRR3

expression pattern was different from other candidate genes, we did not

investigate SPRR3 expression in our next experiment.
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Figure I3.21: Treatment of primary prostate epithelial cultures (PPECs) with all-trans retinoic acid (at-RA) and a 9-cis-RA and 1α, 
25-dihydroxyvitamin D3 (RXR+D3) combination. Three BPH-derived PPECs were treated with 100nM ATRA or 100nMRXR+10nM
D3 or an equimolar ethanol control for up to 7 days. New drug in fresh media was added every day. The expression of LCN2,
CEACAM6, S100p, and SPRR3 was measured before the start of experiment (time 0) and after 6 hours, 1, 3, and 7 days of
treatment initiation by qRT-PCR. RPLP0 was used an internal qRT-PCR control. *p<0.05, **p<0.01, ***p<0.001 by paired two-tailed
t-test.
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Figure I3.22: Treatment of primary prostate epithelial cultures (PPECs) with all-trans retinoic acid (at-RA). Three BPH-derived

PPECs (filled symbols) and 2 cancer-derived PPECs (hollow symbols) were treated with 100nM ATRA or an equimolar ethanol

control for 3 days. New drug in fresh media was added every day. Sub-populations were enriched after treatment and the

expression was by qRT-PCR. RPLP0 was used an internal qRT-PCR control. *p<0.05 and **p<0.01 by paired two-tailed t-test.
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I3.7 Epigenetic regulation of the expression of the candidate

genes

Epigenetic mechanisms often work on a genome-wide scale, influencing

expression of several genes at a time. Therefore, we decided to investigate the

possible role of DNA methylation and histone acetylation on the expression of

the candidate genes. First, we located CpG islands at the promoters of

candidate genes using EMBL-EBI EMBOSS cpgplot software (Rice et al., 2000).

This analysis revealed that the promoters of LCN2, CEACAM6, and S100p do

possess CpG islands, but they were not as large as CpG islands seen in

classical DNA methylation regulated genes, such as GSTP1 (Millar et al., 1999)

(Figure I3.23 and I3.24). The promoter of SPRR3 did not have a single CpG

island with length more than 50 CpGs.
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Thereafter, a panel of 8 prostate cell lines was treated with 5-aza-

2′deoxycytidine (Azt) and trichostatin-A (TSA). Azt inhibits DNA methylation, and 

hence, promotes re-expression of genes repressed by hypermethylation. TSA

inhibits histone-deacetylating enzymes, effectively promoting open chromatin.

This change also promotes gene expression by allowing transcription factors to

bind at gene promoters. If the genes are regulated with either DNA methylation

or histone acetylation, remarkable changes (100-1000 fold) in gene expression

are observed (Lin et al., 2001). We did not notice consistent and significant

changes of that magnitude in gene expression after treatment with these agents

for any of the genes in prostate cell lines (Figure I3.25 and I3.26). The pattern

of gene up-regulation was relatively consistent and larger for S100p in Azt

treated cell lines and in TSA treated cell lines for CEACAM6, suggesting that

epigenetic regulation by DNA methylation and histone acetylation may be

playing a partial role in their regulation. However, as we obtained much more

promising results with studies involving the analysis of common regulation by

transcription factors, and therefore, we did no further investigations related to

the possibility of epigenetic regulation for the candidate genes’ expression.
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Figure I3.25: Treatment of prostate cell lines with 5-
Azt. A panel of 7 prostate cell lines was treated with
1μM 5-aza-2′deoxycytidine (Azt) or DMSO control for
96 hours and then analysed by qRT-PCR. Media was
changed daily with new Azt. Calibrator: LCN2 VCaP
DMSO, Internal control: RPLP0. SPRR3 was not
included in the analysis as it did not have any putative
CpG island. Cont: DMSO control
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Figure I3.26: Treatment of prostate cell lines with TSA.
A panel of 7 prostate cell lines was treated with 0.6μM
Trichostain-A or DMSO control for 48 hours and then
analysed by qRT-PCR. Media was changed daily with
new TSA. Calibrator: LCN2 VCaP DMSO, Internal
control: RPLP0. SPRR3 was not included in the
analysis. Cont: DMSO control
128
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I3.8 MicroRNA mediated regulation of the candidate genes

MicroRNAs are often suggested to negatively regulate a ‘process’, such as

differentiation, by targeting multiple transcription factors (TFs) (Ambros, 2004).

As the initial analysis suggested that LCN2, CEACAM6, and S100p could be co-

regulated, we hypothesized that these three genes may be regulated by a single

miRNA. However, there was no miRNA that could bind to the 3’UTRs of these 3

genes [according to analysis performed using ElMMo miRNA target prediction

server (http://www.mirz.unibas.ch/ElMMo3/). Therefore, we attempted to identify

miRNAs that can target majority of TFs that were predicted to bind on the

promoters of all the candidate genes. Based on literature analysis and protein

expression patterns (using the human protein atlas as a guide) (Uhlen et al.,

2010), these common TFs fell into two categories: Group1 (Figure I3.27): those

that potentially influence candidate gene expression positively (RXR, GR,

STAT3, TAZ, VDR, SRF, PAX3, DMP1, and HSF1) and Group 2 (Figure I3.28):

that potentially influence the candidate gene expression negatively (KLF4,

KLF15, ZNF239, PAX6, MAZ, MZF-1, KCNIP3, and RREB1). Using ElMMo

miRNA target prediction server (http://www.mirz.unibas.ch/ElMMo3/), it was

identified that miR-548c can target all of the TFs from Group 1, whereas miR-

188 can target RXR, VDR, GR, TAZ, and SRF (Gaidatzis et al., 2007). Our

miRNA microarray analysis has indeed shown that these two miRNAs are

repressed when the candidate genes are over-expressed. miR-128 can target

the majority of TFs from the Group 2. This miRNA is over-expressed when the

candidate genes are also over-expressed.
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Figure I3.27: Expression pattern of miRNAs falling in Group 1. These miRNAs
can inhibit the expression of transcription factors, which can positively regulate
the expression of all the candidate genes. miR-548c and miR-188 fall in this
category.

Figure I3.28: Expression pattern of miRNAs falling in Group 2. These miRNAs
can inhibit the expression of transcription factors, which can negatively regulate
the expression of all the candidate genes. miR-128 falls in this category.
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In order to assess the effect of miR-188 and miR-548c on the expression of the

candidate genes, committed basal cells enriched from 2 PPECs were

transfected with respective miRNA mimics. The viable cells increased by about

60% 3 days after transfection of miR-188, whereas there was no significant

effect on cells transfected with miR-548c (Figure I3.29). On the contrary, only

miR-548c inhibited the expression of all the candidate genes significantly (45-

90%) (Figure I3.30). Gene expression in scrambled siRNA control transfected

samples was 3-5 fold lower than mock control sample, suggesting that the

transfection protocol could be toxic to cells or transfection may have non-specific

effects or there could be experimental errors. This experiment needs repetition

to confirm the results and determine the cause of such an effect of mock/siRNA

transfection.

Figure I3.29: Transfection of BPH-derived PPECs with miR-188 and miR-548c
mimics. 2 BPH-derived PPECs were transfected with 50nM of either miR-188 or
miR-548c or with 30nM miR-188 and 30nM of miR-548c. Viable cell count was
measured by trypan blue exclusion test after 3 days of transfection. Mock: mock
transfected control, Scr: scrambled siRNA transfected control, N=1.
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Figure I3.30: Transfection of BPH-derived PPECs with miR-188 and miR-548c mimics. A BPH-derived PPEC was transfected with
50nM of either miR-188 or miR-548c or with 30nM miR-188 and 30nM of miR-548c. Candidate gene expression was measured by
qRT-PCR after 3 days of transfection. Mock: mock transfected control, scr: scrambled siRNA transfected control. Internal control:
RPLP0.
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I3.9 siRNA mediated knock-down of candidate genes

Functional studies were necessary to conclusively demonstrate the role of

candidate genes in prostate stem cell regulation. To assess whether knockdown

of these genes in differentiated committed basal cells leads to a change in cell

fate, we first assessed the feasibility of siRNA-mediated knockdown of these

genes in PPECs. We were able to obtain a significant reduction (40-60%) in the

expression of all the candidate genes by 24 hours; however, the repression was

most marked after 72 hours of transfection for all the genes (Figure I3.31 and

32). Knock down of these genes was then confirmed at the protein level by a

western blot analysis (Figure I3.33). Interestingly, there were no significant

differences in the mock and scrambled siRNA transfected samples in this

experiment, even when similar reagents were used as those for miRNA

transfection. This implied that controls used in the miRNA transfection studies

need further confirmation to eliminate the possibility of experimental errors.
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Figure I3.31: Transfection of BPH-derived PPEC with siRNAs for LCN2 and CEACAM6. A BPH-derived PPEC was transfected
with 50nM of for LCN2 or CEACAM6 siRNA. The candidate genes’ expression was measured by qRT-PCR after 24, 48 and 72
hours of transfection. Mock (M): mock transfected control, Scrambled (S): scrambled siRNA transfected control. Internal control:
RPLP0
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Figure I3.32: Transfection of BPH-derived PPEC with siRNAs for S100p and SPRR3. A BPH-derived PPEC was transfected with
50nM of for S100p or SPRR3 siRNA. The candidate genes’ expression was measured by qRT-PCR after 24, 48 and 72 hours of
transfection. Mock (M): mock transfected control, Scrambled (S): scrambled siRNA transfected control. Internal control: RPLP0
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Figure I3.33: Transfection of BPH-derived PPECs with siRNAs for candidate genes.
BPH-derived PPECs (n=3) were transfected with 50nM siRNAs for candidate genes
and the candidate genes’ expression was measured by qRT-PCR and western blot
after 72 hours of transfection. Mock: mock transfected control, Scrambled:
scrambled siRNA transfected control. Internal control: RPLP0.

Further assays investigating cell fate, such as more stem cell relevant changes in

colony forming efficiency could now be employed to assess effects of knockdown of

individual/all the candidate genes on differentiation.
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SECTION I: 4. Discussion

In this investigation, we set out to identify genes that can regulate prostate stem cell

differentiation. Selecting the candidate genes from the microarray data, we have

discovered that LCN2, CEACAM6, and S100p may form a part of a co-regulated

network. We therefore investigated the transcription factor mediated and epigenetic

regulation of expression of these genes. The functional characterisation of LCN2,

CEACAM6, and S100p can link transcriptional and miRNA-mediated prostate stem

cell differentiation regulatory circuitry.

Identification of the candidate genes was based on a microarray experiment

performed in our lab a few years ago (Birnie et al., 2008). The microarray process is

a multi-step process. Each of these steps may suffer from technical and manual

inadequacies, seriously damaging the quality of the raw microarray data. This could

result in mis-reproduction of actual biological data during microarray statistical

analysis (Cohen Freue et al., 2007). Therefore, it is essential to identify and

eliminate arrays with low quality. For this purpose, we reanalysed previously

published data from our lab, which compared gene expression profile of stem and

differentiated committed basal cells enriched from benign and treatment naïve

prostate cancer patients (Birnie et al., 2008). This data was reprocessed using the

robust multi-array averaging (RMA) method as opposed to the MAS5.0 method

used in the original paper, after confirming the good quality of all the microarray

chips. It has been suggested that RMA is more consistent, specific and sensitive for

differential gene expression analysis on microarray dataset comprising of multiple

chips (Irizarry et al., 2003, Harr and Schlotterer, 2006) and therefore, it was

preferred over MAS5.0. We used this reprocessed data and hypothesised that the

differentiated cells over-express genes that are relevant for differentiation, to identify

genes regulating prostate stem cell differentiation.
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LCN2, CEACAM6, S100p, and SPRR3 genes were found to be among the top 35

over-expressed genes in differentiated cells and were chosen as candidate

differentiation regulatory genes. All these genes are suppressed in stem and transit

amplifying cells. The over-expression of these genes in committed basal cells and

also in terminally differentiated luminal cells, suggests that these genes could be

necessary for the initiation and the maintenance of differentiated phenotypes. The

loss of this expression pattern in CRPC-derived primary prostate epithelial sub-

populations and xenograft-derived sub-populations, where the differentiation

process is aberrant (Gleave et al., 2005, Bonkhoff and Berges, 2010, Maitland et al.,

2011), further indicate that these genes could be involved in the regulation of

differentiation. The overexpression in luminal cells was also not preserved in

prostate cell lines, suggesting that the expression in cell lines may not always match

with primary sample derived sub-populations and the candidate genes could have

diverse regulation and functions in cell lines. Nevertheless, the expression profile

from primary prostate derived sub-populations strongly implicates LCN2,

CEACAM6, S100p, and SPRR3 in prostate epithelial differentiation.

There is some evidence in other cell types and tissue models to indicate that these

genes could be instrumental in the regulation of differentiation of normal and cancer

stem cells. In mice, differentiating epithelial lens and kidney cells showed up-

regulation of LCN2; whereas, SPRR3 was found to be up-regulated during

epidermal differentiation during the process of skin repair (Hohl et al., 1995, Mishra

et al., 2004, Medvedovic et al., 2006). LCN2 was also shown to be over-expressed

precisely at the time of keratinocyte differentiation during mouse embryonic

development (Mallbris et al., 2002). On the other hand, rat neuronal stem cells were

suggested to have lower expression of S100p than their differentiated progeny

(Sueoka and Droms, 1986) and indeed, lower expression of CEACAM6 has been

proposed as a marker for human urothelial normal and cancer stem cells (He et al.,
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2009). These findings, even though they did not explore detailed functional

mechanisms, provided corroboration of the involvement of the candidate genes in

the process of epithelial stem cell differentiation.

Similar to normal tissues, the overexpression of candidate genes was also

correlated with the differentiation status of tumours. Literature reports showed that

LCN2, CEACAM6, S100p, and SPRR3 are usually over-expressed in multiple

human tumours (Arumugam et al., 2005, Han et al., 2007, Bolignano et al., 2010).

But it is well established that in most early stage cancers, there is over-

representation of the differentiated cell compartment. For example, the percentage

of terminally differentiated cells in normal prostate is about 50%, whereas they

constitute more than 99% mass of treatment naïve prostate tumour (Nagle et al.,

1987, El-Alfy et al., 2000, Humphrey, 2007). The over-expression of candidate

genes in such cases could merely be the consequence of an excessive content of

differentiated cells. A more precise search of literature indeed revealed that only

well differentiated tumours showed a higher expression of these genes, whereas

matched poorly differentiated and aggressive tumours exhibited significantly lower

expression (Scholzel et al., 2000, Moniaux et al., 2008, Cho and Kim, 2009).

Additionally, LCN2 was found to be down-regulated in rat glioblastoma cells, where

it was linked to the acquisition of chemoresistance (Zheng et al., 2009), suggesting

the transformation of differentiated glioblastoma cells into more stem-like treatment

resistant cells. Rapidly proliferating T47D breast cancer cells were also shown to

acquire quiescence on S100p down-regulation (Ishii et al., 2005). Therefore, it is

possible that LCN2, CEACAM6, S100p, and SPRR3 could be important for the

maintenance of epithelial hierarchy in a wide variety of tissues in physiological and

pathological scenarios.
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LCN2, CEACAM6, S100p, and SPRR3 belong to diverse families of proteins, which

mediate several cellular processes, ranging from immune regulation to cell

differentiation. However, none of these genes are evolutionary conserved nor do

their mouse knockout models (available only for LCN2) (Berger et al., 2006) show

significant or obvious developmental defects. These observations suggest that

these genes could individually be redundant, but together, may perform vital

functions as a part of network regulated by key transcription factor/s. Literature

analysis also pointed in this direction. For example, a retinoic acid agonist was

shown to up-regulate LCN2, CEACM6, and S100p expression in sebaceous

epithelium (Nelson et al., 2008). S100p can promote NF-kappa B signalling in

NIH3T3 cells (Arumugam et al., 2004), whereas NF-kappa B-mediated signalling

pathway positively influenced LCN2 expression in prostate cancer cell lines

(Mahadevan et al., 2011). The overexpression of MMP9 was directly linked with

overexpression of LCN2 (Coles et al., 1999, Nuntagowat et al., 2010), CEACAM6

(Duxbury et al., 2004), and S100p (Namba et al., 2009) in various cancer models.

Such findings, together with our expression pattern analysis of these genes in

published microarray experiments, indeed imply that LCN2, CEACAM6, and S100p

could have similar functions and may also be co-regulated.

The analysis assessing transcription factor binding sites at the promoters of these

genes further hinted towards the possibility of co-regulation. The promoters of all 4

genes contain androgen responsive elements (ARE), glucocorticoid responsive

elements (GRE), and TEA domain family member 1 (TEAD1), which have well

documented roles in differentiation and carcinogenesis, including the prostate (Long

et al., 2005, McDevitt et al., 2007, Knight et al., 2008). VDR-RXR also has a binding

site on the promoters of all of the candidate genes. It has been shown to be

instrumental in the differentiation multiple epithelial and mesenchymal tissues

(Botling et al., 1996, Bikle et al., 2003). The genes, which were suggested be co-
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regulated in the compendium microarray analysis, LCN2, CEACAM6, and S100p,

had binding sites for 22 common transcription factors at their promoters with

consensus sequence homology > 80% and P < 0.001. Interestingly, the majority of

transcription factors identified in this analysis were pro-differentiation transcription

factors, such as androgen receptor (AR) (Long et al., 2005), vitamin D receptor-

retinoic acid X receptor heterodimer (VDR-RXR) (Gudas and Wagner, 2011), GR

(McDevitt et al., 2007), INSM1 (Lan and Breslin, 2009), BCL6 (Diehl et al., 2008),

CEBPβ (Sankpal et al., 2006), MEF (Chen et al., 2000), and PAX6 (St-Onge et al., 

1997). Analysis had also identified other transcription factors, which can regulate

stem cell maintenance [NANOG (Cavaleri and Scholer, 2003) and GKLF/KLF4 (Kim

et al., 2012b)], cell proliferation in normal and cancer tissue [SOX9 (Thomsen et al.,

2008a), NF-κB (Rajasekhar et al., 2011), STAT1/3 (Lou et al., 2000, Kovacic et al., 

2006), BACH2 (Green et al., 2009), and TEAD (Liu-Chittenden et al., 2012)], cancer

cell metastasis [RREB1 (Melani et al., 2008)], chromatin status [SMARCA3

(Debauve et al., 2006) and RFX1 (Zhao et al., 2010)], and immune response

[NFAT/NFAT5 (Pan et al., 2012)]. There is at least one paper for all these

transcription factors that also implicates them directly in the regulation of stem cell

differentiation. These findings indicate that, in addition to other functions, the

candidate genes could be instrumental causal and/or effector genes in the

regulation of the prostate epithelial differentiation.

Among all these transcription factors, retinoic acid (RA) receptors are particularly of

greater interest, because: (i) there is a clear evidence for RA receptor binding sites

on the promoters of all the genes, (ii) RA agonists can stimulate LCN2, CEACAM6,

and S100p (Nelson et al., 2008), (iii) RA mediated signalling is instrumental in

epithelial differentiation (Gudas and Wagner, 2011) and (iv) RXRγ null mice 

develops prostate epithelial metaplasia (Lohnes et al., 1995). Treatment with all-

trans retinoic acid (ATRA) can also independently induce the expression of either of
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LCN2 (Garay-Rojas et al., 1996, Cheepala et al., 2009), CEACAM6 (Ozeki and

Shively, 2008), or S100p (Shyu et al., 2003) in other epithelial models. RA agonists

can also promote prostate epithelial differentiation, as demonstrated by an increase

in the luminal marker NKX3.1 in LNCaP cells (Jiang et al., 2006) and P21 in TRAMP

mouse prostate (Huss et al., 2004). Furthermore, studies in rat prostate implied that

RA and vitamin D3-mediated prostate epithelial differentiation could be mediated

through autocrine production of TGF-β (Danielpour, 1996). Our results provide 

further evidence for the contribution of RA signalling, with or without Vitamin D3-

mediated signalling, in the regulation of patient-derived prostate epithelial stem cell

differentiation, via the candidate genes. However there are three important issues,

which should be considered in relation to RA-mediated candidate gene regulation.

First, the effect of ATRA or a 9-cis-RA+1,25-dihydroxyvitamin D3 combination on the

expression of LCN2, CEACAM6, and S100p was not immediate (within 24 hours),

suggesting that these agents may influence their expression through some

intermediate. RA can, in fact, interact with other transcription factors, such as

STAT1, which also have binding sites on the promoters of LCN2, CEACAM6, and

S100p. There is clear direct evidence for ATRA mediated STAT1 transcriptional

regulation (Gianni et al., 1997, Chelbi-Alix and Pelicano, 1999), and also for STAT1-

RXRα functional complex formation (Trusca et al., 2012). The need for recruitment 

of such intermediates would delay the ultimate response. A second reason could be

that the compounds used may not be sufficiently potent to elicit an immediate

response. For example, it was shown that retinol could bind more strongly to the

mouse LCN2 promoter than its hydrophilic counterpart retinoic acid (Chu et al.,

1998). Additionally, the vitamin D3 analogue EB1089 inhibits LNCaP cell growth

more effectively than 1,25-dihydroxyvitamin D3 and also formed a more synergistic

combination with 9-cis-RA (Blutt et al., 1997). These possibilities remain to be

explored. And the final issue is the remarkable SPRR3 downregulation after ATRA
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or 9-cis-RA+1,25-dihydroxyvitamin-D3 combination treatment. This observation

clearly indicates that SPRR3 belongs to a different regulatory circuit than the other 3

candidate genes, and may have different regulation. Therefore, the focus on SPRR3

was reduced in further investigations assessing epigenetic regulation.

Another proposition to explain the common regulation for all of these genes was that

they could be regulated by common epigenetic mechanisms. It is often noted that

epigenetic alterations, such as DNA methylation and histone acetylation, play a

major role in lineage specification (Hemberger et al., 2009). Previous studies have

already established that S100p can be regulated by DNA methylation in prostate

(Wang et al., 2007) and LCN2 in urothelial cell lines (Dokun et al., 2008). Treatment

with DNA methyltransferase inhibitor (Azt) did not produce significant change in the

expression of any of the candidate genes in a panel of prostate cell lines, with

exception of S100p. Similarly; inhibition of histone acetylation could alter only

CEACAM6 expression. As these investigations failed to provide a promising basis

for co-regulation of LCN2, CEACAM6, and S100p, this line of investigation was

discontinued.

Next, we attempted to investigate whether miRNAs could co-regulate candidate

genes. The prediction algorithms however could not detect any common miRNA

which could regulate LCN2, CEACAM6, and S100p expression. We then discovered

that relatively unexplored (in prostate) miRNAs, miR-128, miR-188, and miR-548c

could regulate most of the transcription factors, which we previously proposed for

the regulation of the expression of candidate genes. Pilot experiments with miR-188

and miR-548c suggested that these miRNAs can indeed inhibit the expression of

LCN2, CEACAM6, and S100p and transfection of these miRNAs into BPH PPECs

could increase their proliferation. It is possible that after miR-188 transfection, the

expression of LCN2, CEACAM6, and S100p is suppressed, pushing them towards

the proliferating transit-amplifying phenotype from committed basal phenotype.
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Detailed investigation of the role of miR-188 and miR-548c in prostate epithelial

differentiation is therefore necessary to identify functional roles of these miRNAs.

Nevertheless, these initial results implied that miRNA mediated regulation could

play an important role in the regulation of the candidate genes.

Our investigations so far implied the association between the candidate genes and

prostate stem cell differentiation. The conclusive functional evidence could only be

obtained by assessing the effects of loss- or gain-of-function of these genes on

prostate epithelial differentiation. Here, we provide evidence that these genes can

be successfully knocked down by siRNA transfection in primary prostate epithelium.

The absence of any obvious effect on cell morphology and cell growth kinetics

suggested that knockdown of individual candidate genes may not be sufficient or

efficient enough to alter cell fate. However, any specific impact in differentiation

status was not tested directly, beyond on observations of morphology.

In summary, this project has identified a potentially interesting retinoic acid

regulated gene-network of LCN2, CEACAM6, and S100p along with 3 miRNAs

(miR-128, miR-188, and miR-548c), which probably can control prostate epithelial

stem cell differentiation (Figure I4.1). Interference in regulatory pathway of these

genes and miRNAs may be potentially exploited for prostate cancer differentiation

therapy.
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Figure I4.1: Hypothesis depicting one of the potentially important pathways in
prostate stem cell differentiation.

Future work:

The regulation by RA receptors can be conclusively shown by chromatin

immunoprecipitation. The co-regulation can also be further assessed by co-

immunoprecipitation and chromosome conformation capture. The direct effect on

prostate epithelial cell fate by modulating the expression of these genes or their

regulators would conclusively establish the role of LCN2, CEACAM6, and S100p in

the regulation of prostate epithelial differentiation.
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Section II: The identification of the
role of telomerase in BPH and

prostate cancer
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SECTION II: 1. Introduction

Since its discovery in 1984, telomerase has been an integral part of basic and

translational research, with particular focus on aging, cancer, and stem cell

behaviour (Greider and Blackburn, 1985, Blasco, 2005). Human telomerase is a

ribonucleoprotein reverse transcriptase enzyme complex, which adds TTAGGG

repeats to the 3’end of chromosomes (telomere regions) (Morin, 1989). Telomerase

mediated telomere maintenance protects every chromosome against chromosomal

fusion, recombination, and terminal DNA degradation (Blackburn, 2001). The

majority of normal somatic cells do not express telomerase (Kim et al., 1994), and in

these cells telomeres undergo cell division dependent erosion, subsequently leading

to replicative senescence (Bodnar et al., 1998). This phenomenon of replicative

senescence is one of the most important contributors in ageing. However cell types

that have unlimited proliferative potential, such as germ cells and embryonic stem

cells, circumvent the problem of replicative senescence by overexpressing

telomerase (Flores et al., 2006). Often, precisely the same machinery is hijacked by

cancer cells to acquire prolonged proliferative potential (Kim et al., 1994). Indeed,

investigations exploring telomerase expression and functions in depth are becoming

increasingly essential to understand these normal and pathological events.

II1.1 Telomerase enzyme complex: biogenesis and catalytic

activation

Assembly of the active human telomerase ribonucleoprotein (henceforth, just

telomerase) can be divided into three steps: (i) human telomeric RNA (hTR) and

human telomerase reverse transcriptase (hTERT) synthesis and maturation, (ii)

hTR-hTERT assembly leading to the catalytic activation, and (iii) recruitment to

telomeres. The process of biogenesis is complex and can involve the interaction of
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more than 30 proteins (Cohen et al., 2007). Only the major aspects of this process

are described here.

The precursor of hTR is transcribed and undergoes internal modification after

processing at its 3' end and capping on its 5' end to generate the mature and

functional hTR (Feng et al., 1995, Collins, 2006). In addition to these modifications,

the cellular accumulation of mature hTR also requires the binding of proteins such

as dyskerin at 3’end (Mitchell et al., 1999, Pogacic et al., 2000, Meier, 2005). The 5’

end folds into the tertiary pseudoknot (core) domain containing a template for

telomere repeat addition and is also necessary for binding with the catalytic subunit

of hTERT (Theimer et al., 2005). Until further structural conformations, the hTR

accumulates in sub-nuclear Cajal bodies (Jady et al., 2004, Gallardo and Chartrand,

2008). The Cajal body localisation is instrumental role in the formation of hTR-

hTERT complex and further recruitment of telomerase to telomeres (Cristofari et al.,

2007).

The majority of tissues express hTR at various levels, but do not possess

telomerase activity. Therefore, the availability of hTERT is considered as the rate-

limiting step in telomerase activity (Meyerson et al., 1997, Weinrich et al., 1997).

The lack of hTERT mRNA guarantees an absence of telomerase catalytic activity,

but hTERT mRNA levels alone is not sufficient for the telomerase function. The

hTERT mRNA is transcribed from the gene locus 5p15.33 and is subsequently

spliced into at least 10 splice variants, some of which can have a dominant negative

effect (Kilian et al., 1997, Colgin et al., 2000, Lincz et al., 2008). The active hTERT

protein, unlike hTR, displays more diverse cell-cycle dependent sub-nuclear

localisation, ranging from nucleolus to nucleoplasmic foci distinct from Cajal bodies

(Yang et al., 2002, Tomlinson et al., 2006). Apart from the nucleus, 10-20% of the

hTERT protein is also located in the mitochondria, proportion that can increase up

to 80% under oxidative stress (Ahmed et al., 2008, Sharma et al., 2012).
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Assembly of hTR-hTERT ribonucleoprotein and its recruitment to the telomeres is a

very intricate process, which results in a compact hTR tertiary fold within the

functional telomerase ribonucleoprotein complex. Moreover, post-translational

hTERT modifications, such as phosphorylation, also influence telomerase catalytic

activation (Liu et al., 2001b). The telomerase enzyme complex accumulates in the

distinct nuclear bodies adjacent to Cajal bodies, which co-localise with telomeres in

S phase of cell cycle (Jady et al., 2004, Tomlinson et al., 2006). Overall, at least 32

proteins can interact with telomerase enzyme components that may participate in its

biogenesis, trafficking, activation, telomere recruitment and degradation (Cohen et

al., 2007). However, the catalytically active human telomerase is composed of only

two molecules each of hTERT, hTR, and dyskerin (Cohen et al., 2007). The

activated telomerase enzyme is recruited to telomeres with the help of TCAB1

protein to add TTAGGG repeats to the telomeres by employing reverse transcription

(Zhao et al., 2009) (Figure II1.1). The hTERT dependent reverse transcriptase

activity is also present during mitochondrial DNA elongation. It was very recently

shown that mitochondrial hTERT can function as hTR-independent reverse

transcriptase; using mitochondrial tRNAs as template for reverse transcription

(Sharma et al., 2012). These findings clearly suggest the multi-faceted role of

telomerase in the overall development of an organism.
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Figure II1.1: Schematic representation of telomerase ribonucleoprotein complex.

The functional telomerase enzyme complex is composed of TERT, TR, and

Dyskerin proteins and is located in sub-nuclear Cajal bodies. The TCAB1 protein

facilitates the recruitment of telomerase to the telomeric ends of the chromosomes.

Figure modified from (Noel and Wellinger, 2012).

II1.2 Functions of telomerase

Generation of telomerase null animal models and the consideration of human

disorders due to telomerase insufficiency provided significant clues regarding

functions of telomerase (Table II1.1). These studies showed that telomerase is not

essential for survival of model organisms. However, homozygous telomerase

mutations have not been observed in humans so far, suggesting that it may be

essential for human survival. Nevertheless, investigations in all the organisms

demonstrated defects in tissue homeostasis and cell proliferation. The interactions

of telomerase with multiple signalling pathways highlight the tight regulation and

widespread impact of telomerase mediated functions (Table II1.2). Here, the

molecular basis for these observations is discussed.
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Species Homozygous null (-/-)
Heterozygous

(-/+)
References

Budding yeast Viable for up to many
(>10) generations

No overt
phenotype

Reviewed in
(Lundblad, 2002)

Fission yeast Delayed growth defect No overt
phenotype

(Haering et al.,
2000)

Caenorhabditis
elegans

Viable for up to 6
generations

No overt
phenotype

(Cheung et al.,
2006)

Arabidopsis Viable for up to 10
generations

No overt
phenotype

(Fitzgerald et al.,
1999)

Mouse Viable for up to 6
generations

No overt
phenotype

(Liu et al., 2000)

Human Not known (lethal?) Various disorders
including
Dyskeratosis
Congenita, aplastic
anaemia and
pulmonary fibrosis.
Cancer
predisposition

(Vulliamy et al.,
2001, Fogarty et
al., 2003,
Yamaguchi et al.,
2005, Armanios et
al., 2007, Calado
and Young, 2008)

Table II1.1: Summary of phenotypes generated by homozygous and heterozygous

TERT deletion. Table taken from (Lansdorp, 2009).

Transcription

factor
Role

Transcription

factor
Role

AP-1 Repressor TGF-β Repressor 

BRCA-1 Repressor WT-1 Repressor

MAD1 Repressor E2F-1 Repressor/Activator

MDM2 Repressor Estrogen Activator
Menin Repressor SP1 Activator

MZF-2 Repressor STAT3 Activator

P53 Repressor c-MYC Activator

RAK/BRIT1 Repressor U2F1/2 Activator

SIP-1 Repressor Survivin Activator

TAX Repressor

Table II1.2: Transcription factors which can regulate hTERT expression. Table

modified from (Flores et al., 2006).

II1.2.1 Maintenance of telomeres

The primary function of telomerase is to maintain telomeric repeats at the end of

human chromosomes. Telomeres are placed in position to avoid chromosomal

abnormalities that can result from the end replication problem. The lagging strand is

oriented in 5’-3’ direction, so the replicating fork on the strand moves in the same
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direction. However, the DNA replicating enzyme, DNA polymerase III, can function

only in the opposite 3’-5’ direction. So, replication on the lagging strand is initiated

by multiple RNA primers, which are extended to Okazaki fragments and then joined

together after removal of RNA primers (Sakabe and Okazaki, 1966, Ogawa and

Okazaki, 1980). This method fails to replicate the gap left by the distal-most RNA

primer, leaving daughter strand shorter (Figure II1.2) (Watson, 1972). In a context

of regulation of cell-doubling potential, Olovnikov also independently proposed that

daughter chromosomes lose terminal DNA sequences during replication (Olovnikov,

1973). He hypothesised that non-coding telogenes are located at the ends of the

chromosomes. He also suggested that the exhaustion of these telogenes during

repeated cell division underpin the eventual loss of cell division ability in culture, as

suggested by Hayflick (Hayflick and Moorhead, 1961). Now, it is recognised that

there are no telogenes, but rather evolutionary conserved guanine-rich TTAGGG

DNA hexameric repeats (telomeres) exist to protect the ends of chromosomes and

regulate cell division potential (Shampay et al., 1984, Moyzis et al., 1988, Allshire et

al., 1989, Blackburn, 2000).

Figure II1.2: The end replication problem. During DNA replication, the lagging

strand is initiated by multiple RNA primers. The extended products of RNA primers

(Okazaki fragments) are then joined together to fill gaps. However the terminal

primer gap can’t be filled, leading to loss of terminal DNA sequences.
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II1.2.1.1 The human telomeres

Human telomeres are nucleoprotein complexes of variable length. The length

ranges from 5-15 kb, mainly based on age and organ (Moyzis et al., 1988, Allshire

et al., 1989, Cross et al., 1989, Wright and Shay, 2005). Even in a single cell,

telomere length varies significantly. The telomere length on chromosomal arms 17p,

19p, and 20q have been reported to be the shortest, whereas 5p, 3p, 4q, and 1p

possess among the longest telomeres (Martens et al., 1998, Perner et al., 2003,

Mayer et al., 2006, Samassekou et al., 2009). Furthermore, the length variations

were also observed between homologous chromosomes, which can differ by up to

6kb in senescing cells (Surralles et al., 1999, Londono-Vallejo et al., 2001, Baird et

al., 2003). The basis for these variable lengths is not understood so far.

Nevertheless, at the end of each and every telomere, there is a single-stranded (ss)

3′ protrusion of ~12-300 bases, called the G-overhang (Wright et al., 1997, Zhao et 

al., 2008). These ss G-overhang curl back and are inserted into the double stranded

(ds) telomeres to form a t-loop (Figure II1.3) (Griffith et al., 1999, Stansel et al.,

2001). This arrangement protects the telomere end from being recognized as

damaged DNA. The shelterin proteins are also instrumental in facilitating interaction

of a plethora of other proteins with telomeres that can influence chromosomal end

integrity (de Lange, 2005). Even though these proteins can protect telomeres from

getting recognised as damaged DNA, 50-100bp of telomere is inevitably lost during

each cell replication due to end replication problem (Harley et al., 1990). The

average yearly telomere loss in adult human tissues is about 40-60 bp, which

indicate extremely slow replication, or replication of very small subset of cells

(Takubo et al., 2002).
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Figure II1.3: A schematic representation of the telomeric t-loop. When single

stranded (ss) DNA of telomeric overhangs invade into double stranded (ds)

telomeric DNA, t-loop is formed. It prevents telomeric DNA from recognised as

damaged DNA. Modified from (de Lange, 2005)

II1.2.1.2 Regulation of telomere length

To control replication-associated telomere shortening, telomeres are subjected to a

strict feedback regulation. The focus of this section is limited to what is known or

hypothesized for human telomeres, as the positive and negative feedback loops that

regulates telomere length can exhibit remarkable evolutionary flexibility (Palm and

de Lange, 2008).

The t-loops (Wang et al., 2004), the RNA product of telomere transcription (Maicher

et al., 2012), and sub-telomeric DNA methylation (Vera et al., 2008) has been

proposed to variably regulate telomere length. But the central role in telomere

regulation rests with the shelterin proteins (comprised of TRF1, TRF2, TIN2, RAP1,

TPP1, and POT1) (de Lange, 2005). These proteins can only bind to the area of

DNA where ss DNA and ds DNA lie in close proximity (Choi et al., 2011). This

limitation gives them a clear specificity for telomeres. Proteins involved in DNA

damage response, such ATM, Ku proteins and MRX complex interact with shelterin

proteins to control the access of telomerase to telomeres (O'Connor et al., 2004, de

Lange, 2005, Wu et al., 2007). The amount of shelterin proteins is directly

proportional to the telomere length. So, on longer telomeres, these shelterin

proteins can physically block the access of telomerase to the telomere end (Figure
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II1.4) (de Lange, 2005). Once recruited, the telomerase enzyme complex contained

in the Cajal body, associates itself with telomeres for about 10-40 minutes in the S-

phase of cell cycle (Jady et al., 2004, Tomlinson et al., 2006). The ss G-overhang

provides an anchor for telomerase RNA subunit to bind and extend telomeres.

During this time, the enzyme successfully adds ~50-60bp in human cancer cell lines

(Figure II1.5) (HeLa cells - cervical cancer cell line and H1299 cell – lung

adenocarcinoma cell line) (Zhao et al., 2009, Zhao et al., 2011). This recent report

demonstrating telomerase recruitment at about 70-100% of telomeres is in contrast

with previous findings, which suggested that the recruitment occurs at only the

shortest telomeres in the cells (Ouellette et al., 2000, Steinert et al., 2000, Bianchi

and Shore, 2008). These investigations also showed that the length of shortest

telomere, and not the average telomere length, determines the propensity for

chromosomal instability and senescence.

Figure II1.4: Shelterin proteins regulate telomerase recruitment to telomeres. Long

telomeres have more shelterin proteins bound to it. These proteins prevent the entry

of telomerase enzyme in the t-loop physically and through feedback-loop regulation

(A). Once, telomeres become short, the amount of shelterin proteins bound to it also

decreases allowing telomere-telomerase interaction (B). Modified from (de Lange,

2005).
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Figure II1.5: Telomere elongation by telomerase. Telomerase enzyme complex,

which is accumulated in Cajal bodies, is recruited to telomeres with the help of

TCAB1 protein. The TERT subunit binds with TPP1 protein of shelterin complex and

telomeric RNA overhang provide anchorage for the TR component. Once

telomerase-telomere come in proximity to each other, this association can last for

about half-an-hour. Modified from (Noel and Wellinger, 2012).

II1.2.1.3 Consequences of telomere shortening

In the majority of adult somatic human cells, telomerase is absent. It is believed that

when one or more telomeres in a cell are reduced to a critical length, cells undergo

replicative senescence (Cong and Shay, 2008). In senescence, the damaged

telomeres signal through ATM kinase mediated P53 activation (Figure II1.6). This

process culminates in the up-regulation of the cell cycle inhibitors P21, p16 and Rb.

The final outcome is an irreversible cell cycle arrest, which leads to senescence

(Ouellette et al., 2011). This phenotype can also be induced by oxidative stress,

certain oncogenes, and DNA damage signals. Senescent cells, while in arrest,

remain metabolically active and even produce paracrine secretory factors to

influence the surrounding tissue (Shay and Wright, 2005). The classical features of

senescence are mentioned in (Figure II1.7). The lysosomal fraction of the cell,

which contains β-galactosidase enzyme, increases significantly in senescent cells. 

Detection of this intense β-galactosidase staining under acidic conditions is the 

commonest marker for the detection of the senescence (Schmitt, 2007). Reduction
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of telomere length to the critical level induces senescence, but the critical length

determination depends on multiple factors. The variation in ‘critical length’ of

telomeres that has to be maintained also varies upon the availability of sheltering

proteins (Karlseder et al., 2002). In pathological cases, where cells continue to

divide even in the presence of critically short telomeres, cells go through a crisis

period. The outcome of this crisis depends upon successful re-expression of

telomerase. If it is expressed, cells undergo immortalisation or oncogenic

transformation, and if not, death by apoptosis.

Figure II1.6. Induction of senescence and crisis as a function of telomere attrition.

With every cell division, telomeres lose 50-100bps and shelterin proteins (grey)

bound to them. This leads to unwinding of t-loop. The shorter and linear telomere is

then recognised as a ds-DNA break. In the absence of any mutation in cell cycle

checkpoints, this activates cell cycle inhibitors and the senescence pathway. When

one of these mutations is present, the cell can ignore DNA damage signals.

Telomeres serve as substrate for NHEJ break-bridge-break cycle and chromosomal

fusion. This crisis is characterised by P53 independent apoptosis. Rarely, one of the

clones in crisis acquires stability by expressing telomerase. Modified from (Ouellette

et al., 2011).
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Figure II1.7: Characteristics of senescent cells. A: Schematic representation of

senescent cells with classical features. B: senescent cells stained for β-

galactosidase marker (blue). Modified from (Schmitt, 2007).

II.2.1.4 Relationship between telomere length, telomerase activity and

proliferative potential of cells

Overall, it is quite clear that telomerase is essential for maintaining telomere length,

which in turn is instrumental in the regulation of cell proliferation potential. However,

multiple lines of evidence suggest that telomere length and telomerase activity do

not always correlate. First, no direct correlation was found between telomerase

activity, telomere length and the proliferative potential of human tissues (Hiyama et

al., 1996, Wynn et al., 1998, Yui et al., 1998, Hodes et al., 2002, Masutomi et al.,

2003, Yanada et al., 2006). Second, multiple investigations failed to find any

correlation between telomere length and telomerase activity in newly established

hES cell lines e.g. (Amit et al., 2000). Third, 10-15% of tumours with a very high

proliferation index did not show any telomerase activity. And lastly, highly

proliferative induced pluripotent stem (iPS) cells with long telomeres could be

successfully generated from cells that lacked telomerase activity due to mutated

hTERT/hTR (Agarwal et al., 2010, Batista et al., 2011). These observations led to

the conclusion that the presence of detectable telomerase activity is neither
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sufficient nor necessary for unlimited or immortal cell replication via telomere

elongation. In cases where telomerase is barely detectable, telomerase may just

temporarily extend proliferative potential or perform some extra-telomeric function.

Cells can utilise the non-telomerase mechanisms, called alternative lengthening of

telomeres (ALT), in the absence of telomerase.

II1.2.1.5 Alternative lengthening of telomeres (ALT)

The ALT has been observed in many in vitro cell culture models, but the precise

mechanisms underlying it remain unknown (Cesare and Reddel, 2010, Shay et al.,

2012). Recombination based telomere elongation (Dunham et al., 2000, Henson et

al., 2009, Muntoni et al., 2009) and telomeric sister-chromatid exchange (Bailey et

al., 2004) are two of the likely propositions for ALT (Figure II1.8). The telomeres of

ALT cells retain most of the characteristic canonical telomeric attributes, but display

one or more of the following features: heterogeneous telomere lengths (Bryan et al.,

1995), increased numbers of DNA damage response foci at telomeres (Cesare et

al., 2009), an abundance of extra-chromosomal telomeric DNA (ds t-circles, ss

circles, and linear DNA) (Tokutake et al., 1998, Wang et al., 2004, Cesare et al.,

2009), the presence of ALT-associated promyelocytic leukemia bodies containing

telomeric DNA (Yeager et al., 1999), and a reduction in the binding saturation of

shelterin proteins at telomeres (Cesare and Reddel, 2010). The simultaneous

presence of ALT and telomerase has also been noted in human cells in culture

(Cerone et al., 2001, Johnson et al., 2005), but the functional co-existence of these

two mechanisms in vivo has not been identified so far. There are some hints that

shelterin proteins (Celli et al., 2006, Wu et al., 2006) and methylation of sub-

telomeric regions (Blasco, 2007) may inhibit ALT in the presence of telomerase.

Interestingly, experiments with the ALT immortalised GM847 cell line showed that

ectopic expression of mutated hTERT, which was unable to form a functional

telomerase complex, was necessary for oncogenic transformation (Stewart et al.,
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2002). This and similar other investigations indicated that telomerase (or hTERT)

may have some significant extra-telomeric functions.

Figure II1.8: The mechansims for alternative lengthening of telomeres (ALT). In

ALT a telomeric DNA (red) template is copied. The template may come from

nonhomologous chromosome, or it could include extrachromosomal telomeric DNA.

The extrachromosomal telomeric DNA can be in circular (illustrated) or linear form

and can be derived from another region of the same telomere via loop formation, or

the telomere of a sister chromatid. Modified from (Shay et al., 2012)

II1.2.2 Extra-telomeric functions of telomerase

Telomerase is not just an enzyme that can elongate telomeres, but its subunits can

also perform a multitude of cellular functions. These functions are independent of its

telomere maintaining activity and are primarily carried out by the TERT subunit. It is

essential to consider extra-telomeric functions of telomerase in detail, to

comprehend the role of telomerase in cancer and aging more clearly.

II.1.2.2.1 Telomerase and DNA damage response

Telomerase, especially the hTERT subunit, is intimately linked to the DNA damage

response. Cells lacking hTERT exhibit higher radiosensitivity, reduced DNA repair

ability, and fragmented chromosomes (Masutomi et al., 2005). Telomerase is

physically associated with proteins that are instrumental in DNA damage response.

The enzyme also interacts with the DNA replication protein primase, which is
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associated with DNA repair (Ray et al., 2002). Telomerase can also add telomere

hexamers to join broken DNA ends (Schulz and Zakian, 1994, Myung et al., 2001).

These associations and observations indirectly suggest an important role for

telomerase in DNA repair. Additional gain-of-function studies demonstrated a more

direct relationship between telomerase and DNA repair. The ectopic overexpression

of hTERT enhanced genomic stability and DNA repair in these studies (Sharma et

al., 2003). Correspondingly, telomerase inhibition resulted in impairment of cellular

response to DNA double strand breaks and nucleotide excision repair capacity

(Masutomi et al., 2003, Shin et al., 2004). One of these investigations also showed

that telomerase is expressed transiently in S-phase of cell cycle to protect

karyotypic stability by capping chromosomes and resetting chromatin, without

adding even a single telomere repeat (Masutomi et al., 2003). This can explain

telomerase expression in adult human tissues, where cell division dependent

telomere shortening is observed even in the presence of telomerase. The DNA

repair function of telomerase is under the regulation of DNA damage response

pathway itself, for example via Pif1, to prevent unwarranted healing of broken DNA

ends (Makovets and Blackburn, 2009). Support for the role of telomerase in DNA

repair is increasing day by day, but not all studies agree with this notion (Kampinga

et al., 2004, Bates et al., 2005), suggesting that this aspect of telomerase function

needs additional direct functional evidence.

II1.2.2.2 Telomerase and gene regulation

Multiple lines of evidence signify that telomerase regulates processes such as

metabolism, cell cycle, and proliferation. Several independent transcriptional

analyses with multiple human cell lines have revealed that hTERT over-expression

or inhibition seriously affect gene expression patterns (Cong and Shay, 2008).

Telomerase can influence gene expression patterns by: (i) direct influence on key

genes (ii) chromatin manipulation (iii), interaction with signalling pathways, and (iv)
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endogenous siRNA production. Gene set enrichment analysis revealed that TERT

controls tissue progenitor cells via transcriptional regulation that converge on the c-

MYC and WNT pathways (Choi et al., 2008). Indeed, hTERT can function as a

cofactor in the β-catenin transcriptional complex to modulate WNT targets in human 

cancer cells (HeLa cells) (Park et al., 2009) and can also up-regulate c-MYC

expression (Wang et al., 2000). Overexpression of the hTERT subunit also results

in concurrent inhibition of P53, P21, and TGF-β signalling pathway, in addition to 

activation of the E2F/RB pathway and DNA methyl transferase 1 (Xiang et al., 2002,

Young et al., 2003, Geserick et al., 2006). The hTERT mediated positive regulation

of WNT and MYC pathways and inhibition of P53 strongly suggest that

overexpression of telomerase favours cell survival and proliferation. Interestingly,

some of these genes and epigenetic mechanisms can also regulate hTERT

expression, resulting in auto-regulatory feedback loops. Recent investigation

showed that WNT itself could regulate TERT expression in several different stem

cell types (Hoffmeyer et al., 2012). Similarly, c-MYC (Wang et al., 1998), P53 (Cong

et al., 2002), TGF-β signalling pathway (Cassar et al., 2010), and histone 

methyltransferase (SMYD3) (Liu et al., 2007a) all can regulate hTERT transcription.

An additional mechanism by which telomerase could regulate gene expression is

the synthesis of ds DNA, which can be converted into siRNAs by endogenous small

interfering RNA (siRNA) processing machinery. The TERT subunit with the RNA

component of mitochondrial RNA processing endoribonuclease (RMRP) can act as

an RNA dependent RNA polymerase (RDRP) to produce ds DNA (Maida et al.,

2009). The Dicer enzyme processes this ds DNA into siRNA, which controls RMRP

levels. It is likely that the TERT–RMRP complex may amplify other small non-coding

RNAs and thereby regulate wider gene expression. This RDRP activity can

potentially also be vital for telomerase-mediated mitochondrial DNA repair and

apoptosis resistance.
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II1.2.2.3 Telomerase and apoptosis

It has been widely reported that telomerase inhibition can induce cell death through

telomere attrition, but recent investigations have identified non-telomeric functions of

telomerase that can influence apoptosis. Two clear lines of thought exist, proposing

telomerase to be pro-apoptotic or anti-apoptotic (Cong and Shay, 2008). For the

pro-apoptotic role, it was shown that oxidative stress induces nuclear export of

TERT, probably to mitochondria (Haendeler et al., 2004). Telomerase in

mitochondria can sensitise mitochondrial DNA to oxidative damage, leading to

apoptosis (Santos et al., 2004). Mutations in the N-terminal peptide responsible for

mitochondrial localisation of TERT resulted in the loss of mitochondrial oxidative

damage, without affecting telomere elongation ability of telomerase (Santos et al.,

2006). However, the molecular mechanisms for this pro-apoptotic action have not

been identified so far. At the same time, other evidence supports the anti-apoptotic

role of telomerase. For example, human fibroblasts overexpressing telomerase

resist apoptosis but not senescence (Gorbunova et al., 2002, Lee et al., 2008b).

This may be due to inhibition of the mitochondrial apoptotic pathway via Bax

activation (Zhang et al., 2003a, Massard et al., 2006). More recent evidence

augments the support for non-telomere dependent role of telomerase in the direct

inhibition of apoptosis (Lee et al., 2008b). Apart from BAX activation, the other

possible mechanism for the anti-apoptotic function could be telomerase-mediated

synthesis of mtDNA that can minimise the impact of oxidative damage (Sharma et

al., 2012). Due to this role, oxidative stress can induce nuclear export of TERT to

mitochondria. In summary, more compelling evidence exists for anti-apoptotic

function of telomerase, but two independent opposing pathways may also exist for

telomerase-mediated apoptosis regulation.

In summary, maintenance of telomeres is the primary function of telomerase.

Multiple transcription factors can also interact and modulate telomerase expression,



164

which in turn can influence several key signalling cascades. These interactions

result in a widespread impacts on cell proliferative potential through telomere

maintenance, DNA repair, apoptosis and stem cell maintenance. The higher

expression of telomerase in hES cells (Thomson et al., 1998) and in 90% of the

cancers (Shay and Wright, 2006) reinnforces the notion that telomeric and extra-

telomeric function of telomerase converge to regulate stem cell behaviour and cell

proliferation. The identity and location of telomerase expressing cells provide further

evidence for the role of telomerase in the regulation of these processes.

II1.3 Telomerase expression and activity

In the early stages of telomerase research, a very sensitive telomeric repeat

amplification protocol (TRAP) assay was developed to measure telomerase activity

even from 1-10 cells (Wright et al., 1995). The TRAP assay involves the preparation

of a protein extract by cell lysis and addition of a primer and dNTPs. If telomerase is

present in the protein extract, it uses the primer as an artificial chromosome and

adds telomeric repeats to it. The reaction product is then amplified by PCR and

detected by qPCR, ELISA or gel based techniques (Fajkus, 2006). Some novel

modifications and other approaches such as in-cell TRAP assay (Ohyashiki et al.,

1998), in-situ hybridisation analysis for hTR (Paradis et al., 1999), and

immunohistochemical staining for hTERT (Frost et al., 2000), in addition to qRT-

PCR based detection of hTR/hTERT mRNA, were also developed to determine

telomerase activity or expression. These techniques enabled the quantitative and

semi-quantitative determination of telomerase activity/expression in wide variety of

tissue samples.
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II1.3.1 Telomerase expression/activity in development

During mammalian development, both telomerase activity and telomere length vary

drastically on either side of the fertilisation process. The mature human gametes

have short telomeres and no telomerase activity, but both of them increase

dramatically after fertilisation (Wright et al., 1996). It was demonstrated that, in early

stages of human embryonic cleavage, a recombination-based mechanism

elongates telomeres (Liu et al., 2007b). From the blastocyst stage onwards, these

elongated telomeres are then maintained by telomerase, without any further

appreciable increase in length. Indeed, human embryonic stem (hES) cells isolated

from the inner cell mass of the blastocyst invariably display high telomerase activity

and long telomeres (Thomson et al., 1998, Reubinoff et al., 2000, Xu et al., 2001).

Induced pluripotent stem (iPS) cells share almost all the functional properties of hES

cells (Robinton and Daley, 2012). These cells can be derived from differentiated

cells (telomerase negative cells) by forced expression of certain genes (e.g. OCT4,

SOX2, c-MYC, and KLF4) or their proteins (Takahashi et al., 2007, Zhou et al.,

2009b). During this transformation, the iPS cells acquire hTERT expression and

telomerase activity equivalent to that in hES cells (Takahashi et al., 2007, Yu et al.,

2007). The hES and iPS cell data indicate that higher telomerase expression is

essential for the maintenance of stem cell characteristics, such as pluripotency, self-

renewal and sell proliferation. However, fully functional iPS cells lacking fully

functional telomerase activity due to haploinsufficiency were also successfully

generated from Dyskeratosis Congenita patients, who lack telomerase activity due

to a mutation in one allele of the hTERT or hTR genes (Agarwal et al., 2010, Batista

et al., 2011). These iPS cells can then acquire telomerase expression in culture by

upregulating the normal allele. These findings show that telomerase is not obligatory

for the formation of iPS cells but is essential for their maintenance in culture.
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Coming back to the cells in blastocyst, the telomerase activity in these cells

gradually gets compartmentalised (Figure II1.9).

Figure II1.9: Telomerase activity during development. Unlike germ cells, mature

ovum and sperm do not possess telomerase activity. The fertilised ovum rapidly

acquires telomerase activity during the blastocyst stage. The embryonic stem cells

(ESs), which have very high telomerase expression, differentiate into tissue-specific

stem cells in the next 10-20 weeks of intrauterine life. These tissue stem cells have

variable telomerase expression. After birth, only selected adult stem cells retain

significant telomerase activity, which increases further on differentiation to transit

amplifying cells. In an adult life, only very few terminally differentiated cells exhibit

telomerase activity (e.g. T lymphocytes). All other somatic differentiated cells lack

telomerase activity. Adapted from (Hiyama and Hiyama, 2007)

II1.3.2 Telomerase expression/activity in adult human tissues

Very few tissues exhibit detectable telomerase activity later than in embryonic life.

At 16 weeks of intrauterine life, only liver and intestine display high telomerase

activity. At the same time, lung, skin, kidney, and adrenal glands show marginally

detectable telomerase activity; whereas, brain, bone and muscle tissues have lost
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all detectable telomerase expression (Wright et al., 1996). This tissue-specific

telomerase activity in foetal life is likely to be regulated by a combination of

epigenetic modifications, direct transcriptional repression and alternative splicing of

the hTERT subunit (Ulaner et al., 1998, Lopatina et al., 2003, Flores et al., 2006).

The same mechanisms further restrict telomerase expression in adult life.

Initially, it was suggested that none of the normal human somatic tissues possess

telomerase activity (Kim et al., 1994) and the only cells with telomerase activity were

germ cells from testes and ovary (Wright et al., 1996). However, subsequent

investigations identified detectable telomerase activity in: (i) normal peripheral

lymphocytes and lymphocytes in bone marrow (Counter et al., 1995), (ii) the lower

third of the normal human intestinal mucosa (Hiyama et al., 1996), (iii) the

regenerative basal layer of the epidermis in 45% of samples (Harle-Bachor and

Boukamp, 1996), (iv) proliferating cervical epithelium (Yasumoto et al., 1996), (v)

23% of normal oesophageal mucosa (Takubo et al., 1997), (vi) 95% of samples

from the proliferative-phase of normal endometrium (Kyo et al., 1997), and (vii)

haematopoietic cells in bone marrow (Yui et al., 1998). The puzzling observation

with these studies was that detection of telomerase activity was always very

unpredictable even in the same tissue. More notably, proliferation-dependent

shortening of telomeres and senescence was observed in many of these tissues,

most notably in intestinal mucosa (Hiyama et al., 1996), haematopoietic cells in

marrow (Yui et al., 1998), peripheral lymphocytes (Wynn et al., 1998, Hodes et al.,

2002) and in cultured fibroblasts (Masutomi et al., 2003) even in the presence of

detectable telomerase activity. On the other hand, telomeres were maintained in

cultured human mesenchymal stem cells even in the presence of negligible

telomerase activity (Yanada et al., 2006). These observations led to the conclusion

that, at least in adult human somatic tissue, the presence of detectable telomerase

activity is neither sufficient nor necessary for unlimited or immortal cell replication
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(Campisi, 1997). There are several propositions to explain these findings: (i) in

cases where telomerase failed to maintain telomeres, telomerase may just extend

proliferative potential by temporarily maintaining telomeres above critical length, (ii)

extra-telomeric functions of telomerase are prominent in these tissues and, (iii)

telomerase activity may be restricted to a specific small sub-population of cells.

II1.3.3 Telomerase expression/activity in adult stem cells

Subsequent studies showed that telomerase expression is restricted to such a small

sub-population of cells where, both telomeric and extra-telomeric functions are

being carried out by telomerase. Telomerase expression is associated with a stage

of differentiation, whereby adult stem cells and terminally differentiated cells lacked

telomerase activity, but the transit-amplifying cells displayed high telomerase

activity. In the hematopoietic system, only the rapidly cycling transit amplifying cells

exhibited high telomerase activity, which decreased upon terminal differentiation

(Chiu et al., 1996, Yui et al., 1998, Brummendorf and Balabanov, 2006). Similar

observations were also made in human epidermis, where telomerase activity was

restricted to transit amplifying progenitor cells and was absent in stem cells and

terminally differentiated cells (Bickenbach et al., 1998). It should be noted that both

of these tissues have very high proliferation rate. Perhaps, telomerase activity is

seen in adult cells only when they undergo proliferation at such a high rate.

Surprisingly, there are insufficient telomerase expression studies in hierarchical sub-

populations in human tissues (Table II1.3) to generalise these conclusions.

However, it can be broadly concluded that human adult tissue stem cells possess

minimal or no telomerase activity. This may be due to infrequent replication of these

stem cells (Li and Bhatia, 2011). Once stem cells exit a quiescent state and

differentiate into a rapidly proliferating, transit amplifying phenotype, they require

more telomerase to maintain rapidly eroding telomeres. Probably for this reason,

telomerase is also overexpressed in the majority of tumours.
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Stem cell type Telomerase Telomeres Reference

Embryonic High Maintained
(Thomson et al.,
1998, Amit et al.,
2000)

Mesenchymal Low Not maintained
(Yanada et al.,
2006)

Haematopoietic Detectable but low Not maintained
(Brummendorf and
Balabanov, 2006)

Epidermal Absent Not maintained
(Bickenbach et al.,
1998)

Neuronal Absent/low Not maintained

(Wright et al.,
2006, Varghese et
al., 2008, Castelo-
Branco et al.,
2011)

Table II1.3: Telomerase activity in normal human adult stem cells. Table modified

from (Hiyama and Hiyama, 2007)

II1.3.4 Telomerase expression/activity in cancer and cancer stem

cells

The role of telomerase in cancer is ubiquitous and complex. About 80-90% of all

cancers express high levels of telomerase, including cancers of prostate, breast,

pancreas, liver, lung, brain, and intestine (Kim et al., 1994, Shay and Bacchetti,

1997). This acquisition of high levels of telomerase is a two-stage process (Figure

II1.10) (Finkel et al., 2007). In an incipient tumour, cancer cells proliferate rapidly

leading to telomere erosion. This telomere erosion activates cell cycle

arrest/apoptosis/senescence pathways. In rare conditions, alternative lengthening of

telomeres (ALT) mechanisms elongate telomeres and enable overt tumour growth

(Heaphy et al., 2011). However in the majority of cases, aided by mutations in one

or more cell cycle and DNA damage regulatory checkpoints, these cells acquire

significant telomerase expression and the tumour reaches a homeostatic status

(Artandi et al., 2000, Artandi and DePinho, 2010). At this point, telomerase actively

promotes rapid tumour growth by maintaining shortened telomeres (not elongating

them) and by activating cancer promoting pathways, such as WNT and c-MYC
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pathways (as previously discussed in telomerase function section). However, it

should be noted that telomerase is not a classical oncogene, as activation of

telomerase alone does not cause oncogenic transformation (Jiang et al., 1999,

Morales et al., 1999).

Figure II1.10: The role of telomerase in cell transformation. Adult somatic cells

undergo telomere attrition with each division. When the critical telomere length is

reached, senescence is triggered. In rare circumstances, aided by mutations in cell

cycle and DNA damage repair checkpoints, cells continue to proliferate. This leads

to genomic instability, due to the presence of unsustainably short and damaged

telomeres. In most cases, this leads to apoptosis, but a rare clone may acquire

telomerase activity and form a frank cancer. Cells can acquire “immortality” any time

if telomerase is upregulated without the acquisition of mutations in key regulatory

genes. Adapted from (Shay and Wright, 2006)

Apart from this umbrella role in all cancer cells, an additional layer of complexity for

telomerase biology in cancer was identified recently. Several studies proposed that

cancer stem cells (CSCs), which drive tumour progression, exhibit significantly

higher telomerase expression than differentiated cancer cells (Joseph et al., 2010,

Marian et al., 2010, Beck et al., 2011, Castelo-Branco et al., 2011, Serrano et al.,

2011, Xu et al., 2011b). Telomerase can maintain this cancer stem-like cell state

through telomere maintenance and activation of signalling pathways, such as
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TERT-BRG1-NS/GNL3L transcriptional network and EGFR signalling (Shay and

Wright, 2010, Beck et al., 2011, Okamoto et al., 2011). However, other studies

suggested that stem-like cells in cancers exhibit very low telomerase expression,

even in the same tissue where higher expression is also reported (Shervington et

al., 2009). It is possible that the CSC telomerase expression status depends on

individual tumour characteristics. Still, as most of these investigations rely heavily

on ‘stem cells’ derived from cancer cell lines, they need further confirmation by

analysis of actual human tumour derived fractionated cell sub-populations and

robust in-vivo validation, to draw valid conclusions. Overall it can be concluded that,

although telomerase is not an oncogene in a classical sense, it plays vital role in

cancer progression.

II1.4 Telomerase in prostate and prostate cancer

Prostate epithelium is a very slowly cycling epithelium, where an adult epithelial cell

divides, on average, every 200 days in the rat prostate (Isaacs and Coffey, 1989).

The rate of cell division increases dramatically during benign or malignant

transformation of the prostate epithelium. Ki-67 staining of human prostate tissue

sections demonstrated about 2-3 fold increase in the proliferative index in BPH,

while cancer displayed a 4-7 fold increase compared to normal tissue (Bubendorf et

al., 1996, Kyprianou et al., 1996). Therefore it was hypothesised that telomerase,

which is one of the principal regulators of cell proliferation, should be upregulated in

prostate tumours. Indeed, investigations over the years consistently shown that

about 80-90% of prostate cancers exhibit not only high telomerase activity but also

short telomeres compared to normal prostate (Table II1.4).
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Normal

Normal

tissue

adjacent to

cancer

BPH

BPH

tissue

adjacent

to cancer

PIN Cancer Reference

0/25 -- 0/10 3/25 --
21/25

(84%)

(Sommerfeld

et al., 1996)

-- 5/20 -- -- --
14/30

(47%)

(Engelhardt et

al., 1997)

-- -- 2/13 -- --
14/18

(78%)

(Kallakury et

al., 1997)

0/10 -- 0/10 1/10 --
28/31

(90%

(Lin et al.,

1997)

0/11 -- -- 6/16 -- 8/9 (89%)
(Scates et al.,

1997)

-- 2/19 -- -- --
18/22

(82%)

(Takahashi et

al., 1997)

-- 0/2 -- 0/1 4/25
9/13

(69%)

(Koeneman et

al., 1998)

0/124
39/42

(93%)

(Lin et al.,

1998)

-- 4/11 0/16 13/26 11/15
80/87

(92%)

(Zhang et al.,

1998)

-- 3/9 2/8 17/37 --
45/50

(90%)

(Wullich et al.,

1999)

-- -- 2/17 -- --
11/19

(58%)

(Wymenga et

al., 2000)

0/18 -- -- -- --
17/18

(94%)

(Liu et al.,

2001a)

1/8 -- -- -- --
32/35

(91%)

(Wang et al.,

2001)

Table II1.4: Previous published studies, which assessed telomerase expression/

activity in patient-derived treatment naïve prostate tissue.

II1.4.1 Telomere and telomerase in BPH and PIN lesions

First, some key aspects that will help to comprehend the role of telomerase in

prostate cancer were introduced by analysing telomerase expression in BPH and

prostatic intraepithelial neoplasia (PIN). Telomerase expression has never been

detected in normal prostate and is only rarely detected in BPH samples (Table

II1.4). It is not clear why some BPH samples demonstrated telomerase expression

and not others. Also, it is ironic that BPH does not display any telomerase
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considering that the BPH is a long-standing hyperproliferative disorder with 2-3 fold

higher proliferation index than normal prostate (Bubendorf et al., 1996, Kyprianou et

al., 1996). This discrepancy in BPH telomerase expression may be partially

explained by the observation that only 1-20% of nuclei from BPH tissue show

hTERT expression by immunohistochemistry (Iczkowski et al., 2002). All of the cells

with nuclear telomerase expression in these samples were basal cells. So, only a

fraction of BPH basal cells express telomerase and therefore the content of such

cells in a sample to be analysed may dictate the telomerase status of the sample as

a whole. It is interesting to note that weak to moderate telomerase expression was

found in about 10-15% of tissue with normal histology and about 10-50% of benign

tissue adjacent to cancer (Table II1.4). Additionally, the average telomere length in

BPH samples was equivalent to that of normal prostate epithelial telomere length;

whereas the average telomere length in normal or BPH tissue specimens adjacent

to cancer was significantly reduced and was similar to that in cancer specimens

(Heaphy et al., 2010). These observations suggest that the histologically normal and

BPH tissue specimens adjacent to cancer may contain cells with early oncogenic

transformation and do not represent the pure normal or BPH tissue. Therefore, it is

not surprising to find that PIN lesions, which are considered precursors for prostate

cancer and often seen in a vicinity of it, show telomerase and a telomere pattern

closer to cancer.

Initial studies revealed that about 65-75% of PIN specimens are telomerase positive

by TRAP assay (Kim et al., 1994, Zhang et al., 1998). Later, using laser capture

microdissection and TRAP assay, Koeneman et al. found telomerase in 4/25 (16%)

of PIN lesions (Koeneman et al., 1998). This inconsistency continued when a more

recent study, which found that hTERT was upregulated in almost all the high-grade

PINs by in situ hybridisation (Bettendorf et al., 2003). These disagreements may

well be due to the use of different techniques, which require variable sample
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preparations. However, all the investigators who studied telomere length agreed

that telomeres are shortened in the PIN lesions (Paradis et al., 1999, Meeker et al.,

2002, Vukovic et al., 2003, Joshua et al., 2007, Heaphy et al., 2010). Vukovic et al.

also showed that higher rate of telomere shortening was observed in PIN foci

situated near (within 2 mm) adenocarcinoma (Vukovic et al., 2003). These findings

provide additional strength for the belief that PIN is in fact a premalignant lesion that

can develop into prostate cancer. Telomere shortening and telomerase upregulation

in PIN lesions suggest that telomere shortening is an early event in the prostate

carcinogenesis.

Telomere shortening on its own cannot cause cancer and it should be accompanied

with cell cycle or DNA repair checkpoint abnormalities for frank malignant

transformation. One such checkpoint could be 14-3-3sigma, which is downregulated

in almost all prostate cancer foci compared to normal tissue (Lodygin et al., 2004).

14-3-3sigma is normally induced by P53 in response to DNA damage (Hermeking,

2003). The interesting point is that 14-3-3sigma downregulation (Lodygin et al.,

2004) and telomere shortening in one of the studies (Meeker et al., 2002) was

predominantly observed only in the PIN luminal cells. The luminal cells are

terminally differentiated cells and therefore are least adaptable to cell proliferation

seen during malignant transformation. For this reason, telomere-related

abnormalities might be apparent earlier and in a more dramatic fashion in luminal

cells, suggesting that the differentiation status of the cell should be considered while

interpreting telomerase and cancer related results. However, it should be noted that

no such luminal predisposition was reported in any of the other studies (Paradis et

al., 1999, Vukovic et al., 2003, Joshua et al., 2007, Heaphy et al., 2010).

II1.4.2 Activation of telomerase in PIN lesions with short telomeres

The shortening of telomeres in PIN and morphologically normal surrounding tissue

may represent areas of risk for prostate carcinogenesis. An inverse correlation
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between the length of telomeres in normal-appearing prostate tissue adjacent to a

tumour, and a 72-month recurrence-free survival indicate that telomere shortening

precedes telomerase activation and frank cancer formation in the prostate (Fordyce

et al., 2005). Both genetic instability and end-to-end chromosome fusions resulting

from short telomeres may then contribute towards prostate oncogenesis. Once

natural selection selects the clones with favourable mutations providing robust

malignancy potential, telomerase is overexpressed in the SC clones (Campbell,

2012). So in effect, telomerase stabilises the genomic crisis state generated by

telomere shortening to produce tumour homeostasis. A recent report by Ding et al.

elucidates this phenomenon in a prostate cancer mouse model (Ding et al., 2012).

They generated P53/PTEN null mice with inducible mTERT to investigate the role of

telomerase activation after telomere shortening. The P53/PTEN null mice invariably

develop invasive prostate adenocarcinoma by 24 weeks of age in the presence of

telomerase. The P53/PTEN null mice lacking telomerase could only develop much

smaller, less invasive and less aggressive tumours. The tumours lacking telomerase

possess irreparably damaged short telomeres with non-sustainable chromosomal

fusions. In such cases, the disadvantages of continued genomic instability outweigh

any potential gains from further genomic evolution. When telomerase is re-

expressed in these tumours, they readily transform into a highly aggressive,

invasive phenotype. The re-expression of hTERT not only restores telomeres and

hence, genomic stability but also contributes towards carcinogenesis via non-

telomere dependent activation of TGFβ-SMAD4 pathway. The observation that 

P53/PTEN mutations are necessary for prostate carcinogenesis in addition to

telomerase overexpression, along with similar observations using primary human

prostate epithelial cells (Burger et al., 1998), reaffirm that prostate tumorigenesis is

a multistep process and telomerase activation alone is not sufficient for malignant

transformation of prostate.
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II1.4.3 Telomerase in prostate cancer

In over 80% of prostate cancers, overexpression of telomerase was detected.

Owing to the high telomerase expression in prostate cancer, several studies

investigated telomerase as a marker for prostate cancer diagnosis, prognosis or as

a therapeutic target. In order to increase the ease of detection in a clinical setting

and to improve sensitivity and specificity of the detection, several methods of

telomerase detection were assessed. First, the TRAP assay was performed on

tumour needle biopsy samples (Sommerfeld et al., 1996, Kallakury et al., 1997,

Takahashi et al., 1997). Later, when it was noted that the tumour biopsy cancer

content varied significantly and that this affected telomerase levels drastically

(Engelhardt et al., 1997), targeted laser capture microdisection was employed to

maximise tumour content of the tissue (Liu et al., 2001a). In addition, tissue material

obtained from touch imprinted biopsies (Chieco et al., 2001), fine needle aspiration

cytology of tumours (Wang et al., 2002), cells collected after prostatic massage

(Vicentini et al., 2004), exfoliated cells from urine (Botchkina et al., 2005), and even

circulating plasma/serum (Dasi et al., 2006, Dalle Carbonare et al., 2011, March-

Villalba et al., 2012) were all investigated to improve the usability of bedside

telomerase detection. The TRAP assay still remains the gold-standard for

telomerase detection, but techniques such as qPCR (Liu et al., 2001a, Botchkina et

al., 2005), PCR-ELISA (Wang et al., 2002), immunohistochemistry (Iczkowski et al.,

2002), in-situ hybridisation (Kamradt et al., 2003) were also employed with variable

success. Paradoxically in all these studies, any association between telomerase

levels and prostate cancer prognosis was mixed. A positive correlation between

telomerase and tumour aggressiveness was noted in at least 5 studies (Lin et al.,

1998, Wullich et al., 1999, Wymenga et al., 2000, Wang et al., 2001, Athanassiadou

et al., 2003), but an almost equal number of studies could not find such correlation

(Kallakury et al., 1997, Zhang et al., 1998, Bettendorf et al., 2003, Kamradt et al.,
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2003, Pfitzenmaier et al., 2006). There could be several explanations for this

disagreement. First, some investigations, such as Wullich et al., showed that

telomerase expression is heterogeneous in prostate cancers, especially in cancers

with Gleason grade less than 7 (Wullich et al., 1999). The intra-tumour

heterogeneity and high telomerase in PIN lesions may lead to false positive or false

negative telomerase detection results, and could have partly contributed to the

above variable correlations. Secondly, the relative content of inflammatory infiltrate,

which has detectable telomerase activity (Liu et al., 1999), could confound the

correlation between telomerase expression and indicators of tumour prognosis.

Isolation of pure and homogeneous primary prostate cancer cells seems probably

the best way to obtain reliable and representative results. Nevertheless, high

telomerase expression in prostate cancer attracted multiple attempts to discover an

efficient telomerase inhibitor for the treatment of the prostate cancer.

II1.5 Targeting telomerase as a therapy for prostate cancer

Therapeutic targeting of telomerase in prostate cancer has been at the forefront of

the research associated. From steroid hormones to natural molecules and

oligonucleotides to targeted virus-mediated therapy; many options have been tested

in last few years (Table II1.5). Attempts were made to link androgen ablation

therapy and estrogen manipulation with telomerase inhibition, but it resulted in

equivocal results. Half of the studies indicated a positive relationship between

androgen/estrogen and telomerase expression, while the other half showed the

opposite. The same was true for plant isoflavone, Genistein. On the other hand

significant inhibition of telomerase activity was achieved in predominantly prostate

cell line models by decreasing hTERT/hTR transcription or via direct enzymatic

inhibition (Table II1.5). A synthetic compound imetelstat, which inhibits telomerase

enzyme activity, is one of the most promising current telomerase inhibitors. It is in
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phase-I/II clinical trials for the management of other cancers, such as breast cancer

and multiple myeloma and was also proposed to be effective in prostate cancer

models (Asai et al., 2003, Marian et al., 2010, Roth et al., 2010). However, none of

these agents have been registered for clinical trials for the management of prostate

cancer so far. Because most of these studies were performed in cell lines, the

specificity and actual efficacy of these agents in patients is completely unknown.

The precise direct mechanism of action for the majority of proposed interventions

also remains to be evaluated. Therefore, the use of telomerase inhibitors for the

management of prostate cancers is still speculative.

Agent Model
Proposed

mechanism
Reference

Activation of telomerase

Zinc DU145 ?
(Nemoto et

al., 2000)

Insulin-like growth

factor-1

PC3, DU145,

LAPC-4

AKT-mediated

increase in hTERT

transcription

(Wetterau et

al., 2003)

Inhibition of telomerase

Vitamin D3 LNCaP ? Differentiation
(Hisatake et

al., 1999)

Nerve growth factor DU145 and PC3 ?
(Sigala et al.,

1999)

2-5A-anti-hTR: hTR

small molecule

inhibitor

PC3, DU145, and

PC3 xenografts
Inhibition of hTR

(Kondo et al.,

2000)

9-nitrocamptothecin DU145 xenografts
Inhibition of hTERT,

c-MYC and BCL2

(Chatterjee et

al., 2000)

Antisense

phosphorothioate

oligonucleotides

(PTO)

DU145
Inhibition of hTERT

transcription

(Schindler et

al., 2001)

Dominant negative

hTERT

LNCaP, DU-145,

and PC3

xenografts

Inhibition of hTERT

transcription

(Guo et al.,

2001)

Trichostatin A

(inhibitor of Histone

deacetylases)

PC3, LNCaP ? No direct link
(Suenaga et

al., 2002)
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Vitamin D3 + 9-cis-

retinoic acid
PC3

Inhibition of hTERT

transcription

(Ikeda et al.,

2003)

Silibinin LNCaP
Inhibition of hTERT

transcription

(Thelen et al.,

2004)

2'-O-methyl-RNA

phosphorothioate

oligonucleotides

DU145

Decrease in full-

length hTERT and

concomitant increase

in dominant negative

splice variant

(Brambilla et

al., 2004)

Anti-sense nucleotide

for hTR
PC3 Inhibition of hTR

(Shariftabrizi

et al., 2005)

Small molecule

antisense

oligonucleotide-based

inhibitor (ISIS 125628)

alone or in various

combinations

C4-2/C4–2B
hTR template

antagonist

(Canales et

al., 2006)

OBP-301

(Telomelysin, a

telomerase-specific

replication-competent

adenovirus with

hTERT promoter)

LNCaP xenografts

Direct lysis of

telomerase

expressing prostate

cancer cells.

(Huang et al.,

2008)

Imetelstat
DU145, C4-2 and

LNCaP

hTR template

antagonist

(Asai et al.,

2003, Marian

et al., 2010)

Ambiguous results

Androgen

Rat prostate

epithelium

Inhibition of

telomerase activity

(Meeker et

al., 1996)

LNCaP
(Soda et al.,

2000)

PC3 and PC3-AR

cells

(Moehren et

al., 2008)

LNCaP and

CWR22 xenograft

Enhancement of

telomerase activity

(Guo et al.,

2003)

Prostate cancer

patients

(Iczkowski et

al., 2004)

LNCaP
(Thelen et al.,

2004)

LNCaP
(Geier et al.,

2010)

Estrogen

LNCaP
Inhibition of

telomerase activity

(Stettner et

al., 2007)

LNCaP
(Geier et al.,

2010)

Human normal Enhancement of (Nanni et al.,
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prostate epithelial

cells, fresh

explants from

benign prostatic

hyperplasia,

prostate cancer

explants, and

prostate cell lines

telomerase activity 2002)

PC3
(Chen et al.,

2009)

Genistein

DU145 and

LNCaP

Inhibition of hTERT,

c-MYC and

upregulation of P21

(Ouchi et al.,

2005)

Repression of

hTERT

transcriptional activity

via c-MYC and

posttranslational

modification of

hTERT via AKT

(Jagadeesh

et al., 2006)

STAT3 mediated

hTERT activation

(Chau et al.,

2007)

Table II1.5: Chemical agents used to modify telomerase expression/activity in

prostate.

With the emerging evidence for the role of cancer stem cells/tumour initiating cells in

progression and relapse of multiple cancer, the investigation of telomerase

expression and activity in this specific cell type has become instrumental (Maitland

and Collins, 2008b, Visvader and Lindeman, 2008, Clevers, 2011). It has been

proposed that cancer stem cells are primarily responsible for prostate cancer

relapse after any treatment, for instance androgen ablation therapy for prostate

cancer (Rizzo et al., 2005, Collins and Maitland, 2009, Qin et al., 2012). Therefore,

it is critical to assess the possibility of telomerase targeting agents specifically on

the survival of these cells. Previous studies have suggested that hTR mRNA is

expressed in the normal basal cells, where normal stem cells also reside (Paradis et

al., 1999). However, hTR is ubiquitously expressed in most of the human tissues

and cannot be taken as a surrogate for telomerase activity. Two recent
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investigations did attempt to analyse telomerase expression in prostate cancer stem

cells, but their findings do not match with each other (Marian et al., 2010, Xu et al.,

2011b). As of now, telomerase biology in normal and cancer prostate stem cells

remains to be explored in detail.
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SECTION II: 2. Aims and objectives

Telomerase is overexpressed in majority (>80%) prostate cancers and is

undetectable in normal or BPH tissue (Zhang et al., 1998). Data obtained from

human cell lines and mouse models of prostate cancer further demonstrate that

telomerase is beneficial for prostate cancer growth, not only for its telomere

maintenance function, but also for its non-telomeric functions. With this data,

telomerase represents a valid target for prostate cancer management. Two recent

studies endeavour to prove that telomerase inhibition could also abolish the CSC

population in prostate cancer (Marian et al., 2010, Xu et al., 2011b). However, there

are still several important questions:

1. Do normal stem cells express telomerase?

2. As BPH is a hyperproliferative disorder and telomerase is a principal

regulator of cell proliferation, why does BPH not display ‘any’ telomerase

reactivity?

3. What is the telomerase expression status in enriched primary prostate

epithelial hierarchical cancer populations (including CSCs)?

4. Can telomerase inhibition abolish CSCs and/or their tumour inducing

function?

5. What is the telomerase expression status in castration resistant prostate

cancer?

6. Why do telomerase inhibition therapies fail to abolish tumours completely in

some cancer models?

To answer these questions definitively in relation with prostate cancer, we assessed

expression/activity and functional effects of telomerase in primary pure and

homogeneous primary prostate epithelial sub-populations enriched from normal,

BPH, treatment naïve cancer, and castration resistant prostate cancer patients.
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SECTION II: 3. Results

II3.1 Assessment of telomerase expression in prostate

epithelium

II3.1.1 Determination of hTERT mRNA levels prostate cell lines

In order to have a comparison reference point and validate the experimental set-up

by confirming previously published telomerase expression results (Marian and

Shay, 2009), mRNA levels of the hTERT subunit of the telomerase enzyme was

measured by qRT-PCR using a TaqMan probe in prostate epithelial cell lines

(Figure II3.1). Normal and benign prostate cell lines (PNT2c2, PNT1a, and BPH1)

showed minimal hTERT expression compared to cancer cell lines (DU145, LNCaP,

and VCaP). The benign (RC-165N/hTERT) and malignant (RC-92a/hTERT)

prostate cell lines, which had been immortalised using hTERT transfection

understandably, displayed significantly higher hTERT expression. Of note, the P4E6

cancer cell line, which was derived from very early stage prostate cancer (Maitland

et al., 2001) and the highly tumorigenic PC3 cell line (Zhang et al., 2003b), exhibited

hTERT expression similar to normal/benign cell lines. In summary, hTERT is

overexpressed in the majority of prostate cancer cell lines as compared to

normal/benign cell lines.
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Figure II3.1: hTERT mRNA levels in prostate epithelial cell lines. Expression of

hTERT subunit of telomerase was determined in prostate epithelial cell lines by

qRT-PCR analysis. Expression was normalised to internal control RPLP0 and

plotted relative P4E6 hTERT expression.
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II3.1.2 Determination of hTERT mRNA levels in patient-derived

primary prostate epithelial cultures

Subsequent analysis of telomerase expression was performed in epithelial cultures

(primary cultures) obtained from patient-derived prostate samples for two main

reasons: (i) primary cultures represent patient prostate tumours more closely than

cell lines (Peehl, 2005), and (ii) long-term cell line maintenance in culture alter

telomerase expression in cell lines, which may be very different from that in the

tissue of origin (Lin et al., 1997, Soda et al., 2000). For this analysis, the cell line

phenotypically closest to the primary epithelial cultures, P4E6, was chosen as a

reference point (Maitland et al., 2001). The cell line with one of the highest hTERT

expression (RC-165N/hTERT) was used for additional comparisons.

The telomerase expression pattern was determined by analysing hTERT mRNA

levels in cultures derived from BPH (n=3), cancer (n=3), and castration resistant

prostate cancer samples (CR-PCa, n=3) at passage 2 in culture (Figure II3.2).

Expression in one of the BPH cultures was undetectable, while the rest had

significantly lower expression than the cancer cultures. The highest hTERT

expression was observed in CR-PCa derived cultures, which was significantly

higher than in the treatment naïve cancer cultures. Comparison of hTERT

expression in primary cultures with reference to telomerase expression in the

reference cell lines (P4E6 and RC-165/hTERT) revealed that all the primary cultures

all expressed significantly less hTERT than the routinely used cell lines (P4E6 cell

line had the lowest hTERT mRNA levels among all the cell lines tested, Figure

II3.1). In brief, CR-PCa and cancer cultures displayed significantly higher hTERT

expression than BPH cultures.

These observations demonstrated that the expression pattern of intact tissue

samples (which is composed of basal and luminal cells) was preserved in primary
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cultures (which contain only basal cells) (Richardson et al., 2004, Collins et al.,

2005). However, prostate epithelial tissues were shown to be composed of

populations with distinct proliferation and self-renewal properties (Collins et al.,

2001, Collins et al., 2005). As telomerase was predicted to heavily influence both of

these properties (Shay and Wright, 2010), we hypothesised that telomerase would

be differentially expressed in these populations.

Figure II3.2: hTERT mRNA levels in primary prostate epithelial cultures. Expression

of hTERT subunit of telomerase was determined in BPH (n=3), cancer (n=3) and

CR-PCa (n=3) cultures (passage 2) by qRT-PCR analysis. Expression was

normalised to internal control RPLP0 and plotted relative P4E6 hTERT expression.

The horizontal bars indicate the mean expression. [BPH: benign prostatic

hyperplasia, PCa: prostate cancer, CR-PCa: castration resistant prostate cancer,

**p<0.01- unpaired Student’s t-test, ND: not-detected]
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II3.1.3 Determination of hTERT mRNA levels in individual sub-

populations enriched from patient-derived primary prostate

epithelial cultures

Telomerase is known to influence both proliferation potential and self-renewal,

either through telomere length maintenance or through the interactions with

signalling pathways, such as WNT and NOTCH (Park et al., 2009, Shay and Wright,

2010). Epithelial hierarchical sub-populations enriched from the prostate display

significant variations in these properties, for example stem cells exhibit significantly

more proliferative and self-renewal potential than differentiated committed basal

cells (Richardson et al., 2004, Collins et al., 2005, Garraway et al., 2010, Qin et al.,

2012) . In order to check whether telomerase expression informed about active self-

renewal and proliferative potential, the hTERT mRNA levels status was measured in

the hierarchical sub-populations enriched from the primary normal, benign and

cancer samples.

We found that none of the normal primary epithelial sub-populations had detectable

hTERT expression (Figure II3.3A). The undifferentiated sub-populations derived

from BPH cultures (SC and TA) expressed significantly higher hTERT mRNA than

committed basal cells (Figure II3.3A). The BPH-derived CB sub-population showed

undetectable hTERT expression in 4/5 cases. In cancer samples, hTERT

expression was undetectable in stem cells, but was significantly higher in TA and

CB cells. Finally, the hTERT expression in luminal cells was undetectable in 6/7

non-cancer cases but was always present in cancer derived luminal cells (Figure

II3.3B)
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II3.2 Assessment of telomerase activity in prostate epithelium

The hTERT subunit is the rate-limiting catalytic sub-unit of the telomerase enzyme.

In the majority of the cases, hTERT expression status accurately informs about

telomerase activity of most samples (Ito et al., 1998, Wu et al., 1999, Kirkpatrick et

al., 2003, Li et al., 2003). However, the telomerase enzyme needs assistance from

at least 32 other proteins while performing its function and post-translational hTERT

modifications may inhibit its functionalities (Aisner et al., 2002, Kim et al., 2005,

Cohen et al., 2007). Therefore, hTERT mRNA levels alone may not necessarily

represent telomerase activity in all circumstances (Ramakrishnan et al., 1998,

Snijders et al., 1998, Tahara et al., 1999). In order to measure direct telomerase

functionality, we determined telomerase activity using an ultra-sensitive (can

measure telomerase activity in about 10-100 cells accurately – necessary for

determining activity in a very small number of cells such as stem cells) mini-TRAP

assay (Kim et al., 1994, Herbert et al., 2006). Owing to its technical simplicity, the

newly developed qPCR based mini-TRAP assay protocol was preferred to widely

utilised gel-based TRAP assay (Herbert et al., 2006).

It was noted that, in BPH (n=5), telomerase activity in undifferentiated cells (SC and

TA cells) was significantly higher than in differentiated CB cells (Figure II3.4). In

cancer (n=6), the undifferentiated SCs exhibited extremely low to non-detectable

telomerase activity, while TA and CB cells displayed significantly higher telomerase

activity. In contrast, the spread of the data in BPH-derived subpopulations was

minimal, while it was much bigger in cancer. This spread reflected higher

heterogeneity in cancer than BPH. The wider spread in cancer-derived sub-

populations (especially TA and CB cells) probably signifies the heterogeneous

nature and patient specific variations in prostate cancer.
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The synopsis is that, in prostate epithelial cultures, hTERT qRT-PCR expression

reflected the telomerase activity with fair accuracy. Both of these measurements

were quantitatively comparable, and therefore for further experiments, only hTERT

qRT-PCR expression was measured and taken as a surrogate for telomerase

activity.

Figure II3.4: Telomerase enzymatic activity in sub-populations enriched from

primary prostate epithelial cultures. Endogenous telomerase activity was

determined in individual cell sub-populations derived from cultured benign (n=5) and

cancerous (n=6) primary prostate epithelial cells (passage 2) by qPCR using mini-

TRAP assay. Expression was plotted relative P4E6 telomerase activity and the

horizontal bars indicate mean expression. [BPH: benign prostatic hyperplasia, PCa:

prostate cancer, SC: stem cells, TA: transit amplifying cells, CB: committed basal

cells, *p<0.05, **p<0.01 - paired two-tailed t-test, PC: positive control in the kit, HIc:

heat inactivated control, ND: not-detected]
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II3.3 Assessment of telomerase expression under cellular stress

One of the most intriguing results of the last two experiments was that cancer stem

cells (CSCs) did not display telomerase expression and activity. As it is possible that

the microenvironment may also influence the telomerase expression in CSCs/CSC-

like cells (and other sub-populations), telomerase expression was next measured in

epithelial sub-populations enriched from CR-PCa and xenografts. It is very likely

that these two conditions assert severe pro-proliferative stress on CSCs, in addition

to challenges for adjusting to the vastly modified microenvironment.

We found that hTERT mRNA levels in all of the sub-populations from CR-PCa and

xenografts (Figure II3.5) was higher than treatment naive cancers (compare to

Figure II3.3). The undifferentiated SC population from CR-PCa and CD133+ sub-

population from xenografts also exhibited hTERT expression of a similar magnitude

as other sub-populations. This was in stark contrast with SC population hTERT

expression in SC populations enriched from treatment naïve samples (compare to

Figure II3.3).

This suggested that the SC population can acquire hTERT expression and the

telomerase expression is at least partly dependent on the pathological status and

tumour microenvironment in prostate epithelial sub-populations.
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Figure II3.5: Telomerase mRNA levels in sub-populations enriched from castration

resistant prostate cancers (CRPCa) and xenografts. Expression of hTERT subunit

of telomerase was determined in individual cell sub-populations derived from

cultured CRPCa primary epithelial cells (n=3, passage 2) and mouse lineage

depleted prostate xenograft tissue (n=3, 2 of them were derived from CRPCa

primary tumours) by qRT-PCR analysis. Expression was normalised to the internal

control RPLP0 and plotted relative P4E6 hTERT expression. The horizontal bars

indicate the mean expression. [SC: stem cells, TA: transit amplifying cells, CB:

committed basal cells]
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II3.4 Functional assessments after telomerase inhibition

So far, it was clear that the telomerase is differentially expressed in primary prostate

epithelial sub-populations. Previous investigations in other laboratories also showed

that telomerase could regulate stem cell self-renewal, in addition to the regulation of

cell proliferation (Chapman et al., 2008, Kirwan and Dokal, 2009, Pech and Artandi,

2011). Considering the fact that telomerase is critical for the maintenance of

proliferation, together with the above two findings, we hypothesized that telomerase

could be essential for the maintenance and cell fate determination of prostate

epithelial sub-populations. A functional assessment that specifically probes the role

of telomerase inhibition in primary prostate cells was therefore essential to identify

cues regarding the therapeutic potential of telomerase inhibition for the

management of prostate cancer (and indeed BPH). Therefore, to investigate the

functional role of the telomerase in BPH and cancer cultures, loss-of-function

studies were performed.

For telomerase loss of function studies, hTERT expression was inhibited using

directed and specific siRNA. This approach had following advantages: (i) it was a

validated, efficient, and specific method, (ii) it was possible to reach high

transfection efficiency (due to the small size of the siRNA) without compromising the

viability of the primary samples, and (iii) therefore did not require selection of the

transfected cells. Selection processes were avoided as they could indeed affect the

cell identity and their telomerase expression due to cellular stress during selection.

Alternative approaches were the use of small molecule telomerase inhibitors or

short hairpin RNAs (shRNAs). But they were not readily available and their

specificity and effects were not validated. The shRNA transfection efficiency of

primary samples was also limited at the time (Thesis of S. Jacoby, 2011).
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II3.4.1 Validation of siRNA mediated telomerase inhibition

The efficiency of siRNA-mediated telomerase inhibition was assessed by analysing

hTERT mRNA levels and telomerase activity 3 and 7 days after transfection. As

unfractionated BPH cultures have minimal or no telomerase activity, in order to have

a precise measurement of telomerase inhibition, BPH progenitor cells (SC and TA

cells) were selected after siRNA treatment and used for this experiment, while

cancer cultures were unfractionated. At 50nM concentration, telomerase activity, as

determined by mini-TRAP assay, was decreased by about 70% in BPH and cancer

cells (Figure II3.6). Based on this information, BPH and cancer-derived cultures

were transfected with 50nM of siRNA and functional effects were assessed after a

week of transfection using multiple cell fate assays (viable cell count, senescence,

proliferation, apoptosis, and colony forming efficiency assay).
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Figure II3.6: Telomerase inhibition by hTERT directed siRNA. BPH-derived
progenitor cells (n=3) and cancer-derived cultures were transfected with 50nM
scrambled/hTERT siRNA. The telomerase activity on day 3 and 7 was detected by
qRT-PCR based TRAP assay.

0

20

40

60

80

100

120

140

160

3-days 7-days

R
el

et
iv

e
te

lo
m

er
as

e
ac

ti
vi

ty BPH

Mock

Scr

hTERT siR

0

20

40

60

80

100

120

140

160

3-days 7-days

R
el

at
iv

e
te

lo
m

er
as

e
ac

ti
vi

ty Cancer

Mock

Scr

hTERT siR



196

II3.4.2 Effect of telomerase inhibition on cell survival

Inhibition of the hTERT sub-unit of telomerase is known to inhibit cell survival in

multiple cell types, including prostate cell lines (Folini et al., 2005). To check

whether the same is true for primary prostate epithelial samples, viable cells were

counted over a period of 7 days after hTERT siRNA mediated telomerase inhibition

(Figure II3.7). Since the cancer-derived cultures used in the experiment were

growing at a rapid rate, this experiment was started with 25,000 cancer derived

epithelial cells, whereas for BPH, 40,000 cells were plated in each well of a 6-well

collagen I coated plate. This was necessary to minimise passaging of cells during

the experiment. The analysis by Trypan blue dye exclusion test showed that the

viable cell count in BPH derived cultures reduced significantly by day 5 and 7 as

compared to scrambled and mock transfected controls. Although a reduction in

viable cell count was also seen in cancer samples after 5 and 7 days of hTERT

inhibition, the magnitude of the reduction was not as marked as in BPH and was

statistically insignificant. Inhibition of telomerase is known to induce a reduction in

viable cell count predominantly via one or more of the following mechanisms:

induction of senescence, reduction in cell proliferation and induction of apoptosis

(Shay and Wright, 2006, Ouellette et al., 2011). Therefore, these parameters were

investigated in further analysis.
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II3.4.3 Effect of telomerase inhibition on cellular senescence

Induction of replicative senescence is one of the prime effects of telomerase

depletion (Asai et al., 2003). This mechanism constitutes the most important

rationale for using telomerase inhibition in cancer management. Upon induction of

senescence, endogenous lysosomal β-galactosidase is overexpressed, 

accumulates and can be specifically detected at acidic pH (Campisi, 1997, Shay

and Wright, 2005). Although this is a semi-quantitative method, it is the most

commonly used and accepted method for the detection of senescence. After 7 days

of hTERT or scrambled siRNA transfection, cells were fixed and stained for β-

galactosidase overnight. The blue/green stained cells were divided into intensely

stained cells and weakly stained cells and counted manually to quantify

senescence. Application of this method revealed a significant increase in the

number of senescent cells in BPH cultures, but not in cancer cultures. Also the

hTERT siRNA-treated BPH cells were visibly less confluent than control (Figure 8B).

These cells were flatter and contained a large number of vacuoles, other

senescence indicators (Campisi, 1997). This suggested that induction of

senescence is one of the contributory factors for the reduction in viable cell-count in

BPH-derived cultures after telomerase inhibition (Figure II3.8).
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Figure II3.8: Detection of induction of senescence in primary prostate epithelial

cultures after telomerase knock-down. Primary BPH (n=5) and cancer (n=3) derived

prostate epithelial cells were transfected with scrambled siRNA (Scr) and hTERT

siRNA. β-galactosidase staining was performed after 7 days of transfection to detect 

senescence. Arrows indicate some of the β-galactosidase stained cells. A: β-

galactosidase staining of BPH derived culture transfected with scrambled siRNA. B:

β-galactosidase staining of BPH derived culture transfected with hTERT siRNA. C:

quantification of β-galactosidase stained cells in BPH derived cultures. D: β-

galactosidase staining of cancer derived culture transfected with scrambled siRNA.

E: β-galactosidase staining of cancer derived culture transfected with hTERT 

siRNA. F: quantification of β-galactosidase stained cells in cancer-derived cultures. 

**p<0.01 – paired two-tailed t-test
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II3.4.4 Effect of telomerase inhibition on cell proliferation

Another contributory factor towards the reduction of viable cell counts could be a

reduction in cell proliferation. To determine the mechanism of telomerase-mediated

reduction in cell proliferation after telomerase inhibition for 7 days, Ki-67

immunostaining was used. Ki67 is present only in actively cycling cells (Cattoretti et

al., 1992). The positively stained cells were counted manually in 10 20X fields

(about 100-125 cells) for quantification (Figure II3.9). A slight decrease in number

of proliferating cells was observed in BPH culture, whereas a modest increase was

noted in cancer cultures after 7-day telomerase inhibition. This difference was not

statistically significant. This result suggested that telomerase inhibition for 7 days

did not influence cell proliferation in prostate epithelial cultures.
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Figure II3.9: Detection of changes in proliferation in primary prostate epithelial

cultures after telomerase knock-down. Primary BPH (n=3) and cancer (n=3) derived

prostate epithelial cells were transfected with scrambled siRNA (Scr) and hTERT

siRNA. Ki-67 staining was performed after 7 days of transfection to label actively

cycling cells. Representative images: A: DAPI staining. B: Ki67 staining. C: merge

of DAPI and Ki67. D: Secondary antibody only control. E: Quantification of Ki67

staining in siRNA treated BPH-derived PPECs. F: Quantification of Ki67 staining in

siRNA treated BPH-derived PPECs. Note that the percentage of Ki67 positive cells

are about 20% more in cancer samples compared to BPH samples.
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II3.4.5 Effect of telomerase inhibition on colony forming efficiency

Since telomerase was differentially expressed in the SC population enriched from

BPH and cancer cultures (Figure II3.3 and 3.4), we wished to determine whether its

activity was necessary or sufficient for stem cell self-renewal, as indicated by colony

forming efficiency. For this purpose, BPH and cancer cultures were transfected with

hTERT and control siRNAs. On day 7, 200 cells were plated in 6-well collagen

coated plates with irradiated STO’s as feeders to assess their colony forming ability.

After 2 weeks, colonies were counted under manually light-microscope. Unlike

cancer cultures, hTERT siRNA transfected cells derived from BPH cultures formed

significantly fewer colonies than that of controls (Figure II3.10). Colonies of more

than 32 cells indicated more than 5 population doublings, a characteristic of stem

cells (Richardson et al., 2004). Colonies with lower number of cells could indicate

either a lag in stem cell proliferation or colonies formed by transit-amplifying cells.

This result linked telomerase expression to the stem cell self-renewal.
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Figure II3.10: Colony forming efficiency of BPH and PCa-derived epithelial cells
after hTERT siRNA knock-down for 7 days. Colony forming efficiency of BPH (A,
n=4) and cancer (B, n=5) cultures after 7-day telomerase inhibition. 200 cells from
each of the mock/scrambled/hTERT siRNA transfected cultures were plated in a 6-
well plate with irradiated STOs. Colonies were counted on day 14 under light
microscope. *p<0.05, **p<0.01 - paired two-tailed t-test
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SECTION II: 4. Discussion

In this investigation, we have linked telomerase expression with functional

properties of hierarchical subpopulations enriched from normal and pathological

primary prostate tissue. The data now sheds light not only the therapeutic

usefulness of telomerase in the management of prostate tumours, but also

illustrates the contribution of individual hierarchical sub-populations towards

prostate tumorigenesis. More specifically, our studies indicate that the BPH is a

condition solely sustained by the progenitor compartment hyper-proliferation, and

that the acquisition of proliferative potential by differentiated cells is the hallmark of

prostate cancer. The stem cell compartment in prostate cancer probably remains

quiescent, but can gain telomerase expression/activity when exposed to conditions

imparting severe proliferation-driven cellular stress (e.g. CRPCs). Finally, the

functional experiments suggest that the non-telomeric role of hTERT could be more

predominant in the regulation of telomerase mediated prostate stem cell function.

Overall, this analysis, which is performed on pure and homogeneous primary

prostate epithelial subpopulations, provides the most definitive and direct

assessment of the role of telomerase in prostate tumorigenesis to date.

Telomerase is one of the major players in anti-cancer research owing to its vital

location at the crossroads of cancer, stem cell maintenance and differentiation

processes (Flores et al., 2006). Therefore, it has been considered as an ideal target

for anti-neoplastic therapies. Telomerase is also overexpressed in the vast majority

of prostate cancers (80-90%) and was investigated for its therapeutic efficiency in

pre-clinical studies (Meeker, 2006). Two recent investigations (published after we

started our project) further implied that both prostate cancer stem cells and rest of

the tumour bulk cells could be depleted by telomerase inhibition, as the activity was

high in the prostate cancer stem cell compartment (Marian et al., 2010, Xu et al.,
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2011b). These investigations had some limitations and focussed only on CSCs

derived from treatment naïve cancers or cell lines. Therefore, we wanted to explore

telomerase expression in all (not just in CSCs) of the prostate epithelial hierarchical

subpopulations enriched from normal and pathological (BPH, treatment naïve

cancers, and castration resistant cancers) employing patient-derived prostate tissue

to obtain a more comprehensive and definitive understanding of the role of

telomerase in the prostate epithelial maintenance.

A variety of model systems have been utilised to investigate telomerase in relation

to prostate cancer and stem cells. Mouse models have played a vital part in

understanding basic telomerase biology and the roles of telomerase in

carcinogenesis. But mouse (or rodent) prostate is anatomically, histologically, and

functionally very distinct from the human prostate (Shappell et al., 2004).

Furthermore mice never develop spontaneous prostate cancers. Differences also

exist between human and mouse average telomere lengths and telomerase

functionalities. The average telomere length in the majority of established lab mouse

strains was found to be considerably longer than wild-derived mice or indeed

humans (~30-200kb vs. <20kb) (Zijlmans et al., 1997, Hemann and Greider, 2000,

Wright and Shay, 2005). Almost all the TERT knockout mice models also failed to

consistently demonstrate the non-telomeric effects of telomerase/TERT at any

generation (Blasco et al., 1997, Rudolph et al., 1999, Hao et al., 2005, Majerska et

al., 2011, Sahin et al., 2011, Strong et al., 2011). Unlike humans, significant

telomerase activity was detected in almost all of the mouse tissues (Prowse and

Greider, 1995, Martin-Rivera et al., 1998), and lastly, the DNA damage foci resulting

from short dysfunctional telomeres, which increase with age in humans, were not

seen in mice (Wright and Shay, 2000, Sedivy, 2007). This suggested that mice

might not use telomere shortening as a counting mechanism towards aging.

Therefore, in order to comprehend the complete spectrum of human telomerase



206

functions and draw clinically relevant conclusions, mouse models alone cannot be

relied completely. It is absolutely essential to extend functional telomerase

investigations to human cell models.

Telomerase activity was also investigated in human prostate cell lines. But this

experimental system presented several other challenges. First, the established

prostate cell lines have been in culture for years, where they have undergone an

intense selection pressure-based on proliferation. As telomerase is one of the most

important regulators of cell proliferation, it may be remarkably overexpressed in cell

lines and thus may not faithfully represent the original tissue. Telomerase

expression in prostate cell lines was indeed found to be significantly higher than in

primary tissue (Lin et al., 1997, Soda et al., 2000). Secondly, telomerase expression

and telomere length in prostate cancer cell lines have a variable relationship. For

example, a comparison between telomerase activity and telomere length in PC3

and LNCaP cells indicated that the cell line with shorter telomeres exhibited the

higher telomerase activity (Marian and Shay, 2009, Marian et al., 2010), while, a

similar comparison between DU145 and C4-2 cells indicated the exact opposite

correlation (Marian et al., 2010). This suggests that the relationship between

telomerase activity and telomere length is variable in these cell lines and it is difficult

to predict which one better represents that in patient-derived tissue. Lastly, stem

cells or TICs isolated from cell lines probably do not represent true cancer stem

cells/TICs due to many reasons (as explained in detail in common introduction,

page 36). One of them is a lack of tissue homeostasis or niche interaction in cell

lines for a prolonged period, which is vital for the identity of stem cells/TICs

(Scadden, 2006). For these reasons, we utilised patient-derived primary prostate

epithelial cultures (PPECs) for our analysis with occasional comparison with cell

lines.
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The PPECs were isolated from freshly resected patient tumours by a combination of

mechanical and enzymatic separation. These cells were then grown on collagen I-

coated dishes for 2 passages. The media used for culture actively promotes the

maintenance of basal prostate epithelial cells and removes luminal, endothelial and

haematopoietic cells (Collins et al., 2001, Richardson et al., 2004). The cells with

stem cell phenotype are extremely rare (~0.1%) in these cultures, so to obtain

sufficient number of stem cells (~3000), it was essential to expand cells in culture

for 2 passages. But before investigating telomerase in the epithelial sub-

populations, we confirmed previous findings in cell lines and made comparisons

with unfractionated PPECs.

First, we determined hTERT mRNA levels in several normal, benign, malignant, and

hTERT immortalised cell lines. The over-expression of telomerase in prostate

cancer cell lines compared to cell lines derived from benign or normal epithelium

suggested that telomerase could be important for prostate tumorigenesis. However,

the most interesting observation was that not all prostate cancer cell lines had

higher telomerase expression than normal cell lines. For example, P4E6 and PC3

cancer cell lines exhibited hTERT expression levels equivalent to that of normal

PNT2c2 cell line. The lower expression of hTERT in PC3 compared to LNCaP was

also noted in previous investigations (Marian and Shay, 2009). So, as per the

commonly held belief, the tumours generated by the cells with low telomerase

should be less aggressive and self-confined (Meeker, 2006). But PC3 cells generate

by far the most aggressive tumours in immunodefficient mice with higher

effectiveness compared to cell lines having relatively higher telomerase expression

(e.g. LNCaP cells) (Wu et al., 1994, Mercatelli et al., 2008). These findings

emphasise that the higher telomerase expression in prostate cell lines need not

necessarily represent higher tumorigenic potential (and vice versa). In addition,

androgen dependent cell lines (LNCaP, and VCaP) did not show distinctly different
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telomerase expression compared to androgen independent cell lines (PNT2c2,

PNT1a, BPH1, P4E6, PC3, and DU145). So in summary, our prostate cell lines

analysis showed that hTERT expression cannot be taken as a sole surrogate for

tumorigeneic potential and there was no correlation between androgen dependence

and telomerase expression.

The analysis of hTERT mRNA levels in PPECs gave a more reliable distinction

between different pathological patterns observed in prostate tumours. The PPECs

represent mainly the basal compartment of prostate, which is about 50% in BPH

and less than 1% in treatment naïve cancer. Even then, the hTERT expression in

PPECs faithfully replicated whole tissue analysis findings, ie. hTERT expression in

BPH derived PPECs was minimal to absent, but was significantly higher in

treatment naïve cancers, and even higher in castration-resistant cancers. The high

hTERT expression in CRPC cultures is probably indicative of high proliferation

turnover and cellular stress compared to treatment naïve cancers. CRPCs may

respond to repeated and prolonged partial ablation of tumours by upregulating

hTERT expression to manage added survival challenges. To our knowledge, this is

the first investigation assessing telomerase expression in primary CRPC cultures.

On further comparisons with cell lines, stark differences between PPECs and the

cell lines were evident. PPECs derived from CRPCs exhibited the highest hTERT

expression in the primary samples analysis, but this was still lower than hTERT

expression in P4E6, the cell line with the lowest hTERT expression in our analysis.

This again emphasizes that telomerase is significantly overexpressed in prostate

cell lines and may not realistically represent the tissue of origin. Unfortunately, due

to limited sample analysis, additional correlations such as with Gleason grade were

not possible. Overall, these results confirm the previous expression pattern

observed in BPH and cancer samples and also provide additional insights into the

telomerase expression in CRPCs. This analysis formed the basis on which we
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performed the assessment in the individual hierarchical sub-populations, which

identified more subtle features.

We next investigated differential telomerase expression in prostate epithelial

hierarchical cell populations. In normal prostate samples, hTERT mRNA levels was

undetectable in all sub-populations (SC, TA, and CB), probably depicting the very

slow cycling nature of the normal human prostate epithelium. The average division

time of an adult rat prostate epithelial cell is about 200 days/cell division (Isaacs and

Coffey, 1989) and likely to be slower in human prostate as well. In this scenario,

after puberty, normal human prostate epithelial cells, including stem and transit

amplifying cells, will undergo fewer cell divisions to maintain the prostate epithelium

compared to highly proliferative epithelia like skin or colon. Fewer cell divisions

mean a slower telomere attrition rate. It is likely that, at this slower rate of cell

division and telomere attrition, normal prostate epithelial cells do not need to

activate telomerase, as their telomeres will not reach a critical length. However, this

homeostatic arrangement is probably disrupted in BPH, where accelerated cell

proliferation exists for a prolonged duration.

The telomerase expression pattern in sub-populations derived from BPH PPECs

indicated that BPH could be a disease sustained by the progenitor compartment. In

BPH, only the progenitor compartment (SC and TA cells) had elevated hTERT

mRNA levels and telomerase activity. In benign lesions, the cells that naturally

possess high proliferative potential (SC ad TA cells) (Richardson et al., 2004)

proliferate for extended time (years) and maybe at a slightly higher than usual pace.

Owing to this prolonged and high proliferation rate, these cells may erode their

telomeres, which can then activate telomerase expression. If this hypothesis is

correct, then SC and TA populations from BPH should have shorter telomeres.

Alternatively, telomerase and hTERT expression have been shown to be necessary

for progenitor cell maintenance in multiple systems (Hiyama and Hiyama, 2007,
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Choudhary et al., 2012). The rapid increase in progenitor cell pool in BPH may

require hTERT and telomerase expression at the very beginning of the pathology.

High telomerase activity can then prevent proliferation dependent telomere

shortening. In this scenario, the telomeres in progenitor cells could be near to

normal length. Unfortunately at this moment, there is no information about the

telomere length in BPH derived epithelial sub-populations to support any of the

above hypotheses. Determination of telomere length in BPH-derived epithelial sub-

populations in future analysis would provide a substantial supportive evidence for

this hypothesis. Based on this hypothesis, it could be assumed that the progenitor

compartment is expanded in BPH. These cells then give rise to more differentiated

cells and the differentiated cells per se, do not exhibit any pathological proliferation.

The acquisition of hTERT expression and proliferative capacity by terminally

differentiated luminal cells is perhaps indicative of cancer development.

Indeed, the differentiated cell sub-populations (CB and LC) enriched from primary

treatment naïve cancer samples exhibited high telomerase expression and activity.

In normal tissues, these cells have minimal, or no proliferative potential, but in

cancer, these cells are highly proliferative (Tu et al., 1996). The gain of hTERT

expression in differentiated cells seems to be a distinctive feature of cancer, where

cells that are not programmed to proliferate acquire an abnormal proliferative

potential. The cancer TA sub-population also exhibits telomerase expression and

activity. So in cancer, all the sub-populations except stem cells have active

telomerase and presumably can proliferate significantly. In such a scenario, more

than 99% of cancer cells possess abnormal and independent proliferative potential.

Therefore, stem cells do not remain under any obligation to provide a cellular pool

for the maintenance of the expanding cancer mass. The increasing number of

differentiated cells may also send a negative feedback to stem cells to inhibit their

proliferation. This may force cancer stem cells into quiescence where no telomerase
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expression or activity is required. In fact, the quiescent nature of cancer stem cells

is proposed as one of the important contributory factors for their drug resistance

(LaBarge, 2010, Li and Bhatia, 2011, Borst, 2012).

Our results are at odds with several previously published findings, where the

investigators suggested that telomerase activity in prostate cancer stem cells is

equivalent (Marian et al., 2010) or significantly higher (Xu et al., 2011b) than non-

CSC populations. Marian et al. demonstrated that telomerase inhibition by imetelstat

can target prostate TICs and non-TICs effectively (Marian et al., 2010). They utilised

the established prostate cancer cell lines (DU145, C4-2, and LNCaP) to isolate

prostate TICs based on cell surface marker expression (CD44, integrin α2β1, and

CD133 – the same markers as used in our analysis), Hoechst 33342 dye exclusion,

and holoclone formation assay. Telomerase activity was found to be 10-15% lower

in TICs vs. non-TICs and in holoclones (colonies generated by TIC-like cells)

generated from DU145 cells compared to colonies generated from whole

population. The authors showed that survival of both of these populations could be

significantly inhibited (~90% reduction) by treatment with telomerase inhibitor

imetelstat for 72 hrs. Interestingly, the authors found that the telomere length in

TICs and non-TICs was similar but the telomere length in holoclones was shorter

than that of whole population. This discrepancy was not discussed in the paper.

Additionally, the authors showed that all the TICs exhibited a high telomerase

activity, but they could only abolish 50% of the TICs even after prolonged

telomerase inhibition (for 110 days). Again, the possible mechanisms behind this

result were not explained. Based on these results, the authors conclude that: “In

summary, this preclinical study shows that telomerase inhibition has a great

potential for the treatment of prostate cancer and may be able to target the TICs

that contribute to relapse and metastasis (Marian et al., 2010).” This conclusion was

solely based on the data generated using cell line models, and the publication had



212

few unexplained questions (as discussed above). Therefore, this investigation may

not accurately represent telomerase biology in primary patient prostate cancer.

On the other hand, the study from Xu et al., analysed primary human prostate

cancer cells for telomerase expression in TICs. This data leads to very different

conclusions (Xu et al., 2011b). In their analysis, they provided evidence for high

telomerase expression and activity specifically in TICs, using patient derived tissue

material and an in vivo mouse model (Xu et al., 2011b). This is in contrast with the

findings from Marian et al. where they showed that progenitor cells (TICs) have 15-

20% less telomerase activity than the rest of the tumour cells. The authors suggest

that telomerase is specifically overexpressed in cancer progenitor cells and it can be

successfully targeted to significantly inhibit tumour growth in vivo. Although

interesting, this study leaves some unanswered or unexplained questions. The

concerns about this study are: (i) cells were isolated directly from tumours, without

culturing. In our experience, this method limits the purity of cells as some luminal

and inflammatory cells invariably piggyback to progenitor cells. (ii) The authors used

1 hr collagen adhesion, whereas, the original investigators recommend 5-20 min of

adhesion for α2β1
hi selection. This again limits the purity of progenitor cells and was

evident in their experiments, where more than half of their progenitor cells failed to

form colonies or demonstrate invasion. (iii) Xu et al. proposed that only progenitor

cells (which formed 0.7–9.2% of the total mass in their samples) expressed

telomerase. This did not explain the widespread hTERT tumour immunoreactivity

demonstrated in previous study (Iczkowski et al., 2002). Also, the telomerase

expression in fewer than 10 % of cells failed to explain how this restricted

expression can impart strong positivity to the entire cancer sample. The lower

expression of telomerase in the non-progenitor population also did not match with

the previous investigation (Marian et al., 2010). (iv) The authors could not explain

the similarity between telomere length observed in progenitor and non-progenitor
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cells even when they displayed a remarkable difference in telomerase expression.

(v) It seems unlikely that mutant telomerase can induce apoptosis in 4 days through

telomere attrition, suggesting that this action may be mediated by non-telomeric

function of hTERT. This possibility was not discussed and therefore, remains

unexplored. (vi) The mutant hTERT transfected xenografts showed an extraordinary

long lag period (about 66 days compared to 35 days in control arm), suggesting that

the mutant hTERT may have also inhibited stem cell self-renewal. This possibility

also remains unexplored in both models.

One or more of the above-mentioned concerns, also hampered investigations in

other organs that showed higher telomerase activity in CSCs. At least four

independent studies involving brain, pancreas, breast, and lung cancer proposed

that telomerase is over-expressed CSC population and that these cells can be

depleted by inhibition of telomerase (Joseph et al., 2010, Beck et al., 2011, Castelo-

Branco et al., 2011, Serrano et al., 2011). All of these investigations were based

upon CSCs enriched from cell lines, and the results were not validated in patient-

derived tissue material. The contrasting results of telomerase expression in

neuronal CSCs also emphasised the inability of cell line models to deliver consistent

and comparable results in this field (Shervington et al., 2009, Castelo-Branco et al.,

2011). Due to the limitations of cell lines in investigations of telomerase biology (as

discussed before), the above-mentioned studies need further validation in patient-

derived tissue material and/or in animal models. Therefore, in contrast to these

investigations, we have based our analysis on tissue material from patients and

supplemented it with human tissue-derived mouse xenograft analysis.

Our analysis further showed that telomerase is significantly over-expressed when

cells have to proliferate under alien or stressful conditions e.g. in xenografts and

CRPC (environment probably similar to cell lines!). hTERT expression was

significantly up-regulated in all the sub-populations derived from CRPC PPECs and
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xenografts. Androgen ablation therapy continuously and repeatedly ablates

androgen expressing differentiated luminal cells, in a process that inevitably leads to

CRPC. This probably sends feedback signals to trigger proliferation of quiescent

cancer stem cells. An expansion of the stem cell compartment has indeed been

noted in the skin epithelium after wounding (Blanpain and Fuchs, 2009, Lu et al.,

2012) and in multiple cancers after conventional chemotherapeutic treatments

(Dylla et al., 2008, Ma et al., 2008, Gupta et al., 2009, Hoey et al., 2009, Mueller et

al., 2009, Calcagno et al., 2010). Even in prostate cancer, an increase in the basal

cell content (that harbours stem cells) was observed after androgen ablation (Gil-

Diez de Medina et al., 1998, van Leenders et al., 2001a, Maitland et al., 2011). So

in CRPCs, the rapidly proliferating, telomerase positive and AR negative

populations (SC, TA, and CB) perhaps attempt to compensate for the continual loss

of differentiated cells. When prostate cells are engrafted subcutaneously into

immunocompromised mice, the progenitor compartment is probably similarly forced

to proliferate. Owing to their advantageous traits, such as significant proliferative

potential, self-renewal ability, niche adaptability, and defences against DNA

damaging agents; the progenitor cells are probably better equipped to adapt to an

alien environment (Wennersten et al., 2006, Dylla et al., 2008). The commonest

phenotype observed in xenografts generated in our lab is indeed composed of

undifferentiated cells (Maitland et al., 2011). The severe proliferation dependent

selection pressure forces all the sub-populations enriched from CRPCs and

xenografts, including stem cells, to proliferate at a higher pace. The differentiated

cells may not cope with the interventions or the surrounding foreign environment,

leading to aberrant differentiation and relative expansion of the progenitor

compartment. These results signify that the microenvironment of cells can

significantly influence telomerase expression.
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The functional experiments conducted on the BPH and PCa-derived PPECs

showed that telomerase inhibition for 7 days could significantly inhibit unfractionated

BPH PPEC growth and colony forming efficiency, and induce senescence

irrespective of lower telomerase expression and activity in them (compared to PCa-

derived PPECs). Telomere attrition usually requires telomerase inhibition for weeks

to months (Marian et al., 2010, Roth et al., 2010), whereas non-telomere related

effects of hTERT are likely to be apparent within a week of hTERT inhibition. We did

not perform a correlation with telomere length in our studies, but because the above

mentioned effects in BPH-derived PPECs were observed within a week of

telomerase inhibition, it is very likely that these effects could primarily be mediated

through non-telomeric functions of the hTERT subunit. A comparison of telomerase

expression/activity data with these functional studies suggested that the observed

functional changes could be mediated through interference in hTERT in prostate

epithelial progenitor cells.

The expression/activity analysis has demonstrated that telomerase is expressed

only in the progenitor compartment (SC and TA cells) of BPH. These cells constitute

less than 5% of the cells the tissue and about 20-30% of PPECs, and are principally

responsible for the growth of BPH PPECs in a monolayer (Collins et al., 2001,

Richardson et al., 2004). On inhibition of telomerase, we predicted that the

proliferative potential of these progenitor cells was likely to be reduced. In fact, a

40% reduction in the number of viable cells was observed after 7-days of

telomerase inhibition. This reduction could at least partly be due to the induction of

senescence and partly due to reduction in their colony forming efficiency. There was

also a small decrease in the proliferating cells, but the reduction was not statistically

significant. These findings indicate that telomerase, and more specifically hTERT, is

necessary for BPH progenitor cell proliferation and self-renewal. During a week, the

BPH PPECs undergo 2-4 cell divisions (approximate personal observation) and
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therefore, the absence of telomerase for 7 days is unlikely to reduce telomeres to

the critical length to cause telomere-mediated senescence. So, we propose that the

observed effects of telomerase inhibition in BPH PPECs are mediated through non-

telomeric functions of hTERT. The inhibition of hTERT may interfere with

mitochondrial free radical scavenging pathway, increasing the levels of intra-cellular

free radicals (Sahin et al., 2011). This continued oxidative insult may then result

induction of senescence (Cristofalo et al., 2004). In addition, disruption of hTERT

interactions with several signalling pathways (e.g. WNT and TGF-β) is capable of 

reducing stem cell self-renewal capacity and proliferation (Cong and Shay, 2008).

The telomere independent effects of hTERT inhibition on stem cells and

mitochondria have indeed been well studied in multitude of systems (Park et al.,

2009, Sahin et al., 2011, Sharma et al., 2012). Therefore, although these lines of

evidence need to be confirmed by a direct demonstration of telomere-independent

hTERT association with the key pathways involved, it seems more than plausible

that non-telomeric functions of hTERT are essential for BPH derived SC

maintenance.

On the other hand, treatment naïve cancer derived PPECs were not affected by

telomerase inhibition. The viable cell count decreased marginally, and there was

minimal induction of senescence. The reduction in cell proliferation and colony

forming efficiency was not observed as well. There could be two explanations for

these observations. First, the number of cells expressing telomerase in cancer,

together with the overall telomerase activity, is much higher than in BPH. In a

situation where we used similar concentration of siRNA for equal number of BPH

and cancer PPECs, the effect of the siRNA could be diluted in cancer PPECs. The

percentage reduction in telomerase levels, in cancer PPEC was similar to that

observed BPH PPEC. However, due to the initial higher expression in cancer

PPECs, the residual telomerase expression after knockdown was still quantitatively



217

higher. This relatively high telomerase expression after siRNA transfection may

have stifled the effects of hTERT inhibition in cancer PPECs. Second, treatment

naïve cancer stem cells do not exhibit telomerase expression. So telomerase

inhibition would not affect these cells. The inhibition of telomerase in the rest of the

cell populations may result in rebound stem cell division, giving rise to more

telomerase negative proliferating cells. These cells may compensate for the dying

(not senescent) differentiated cells. It should be noted that there is 1.1-1.15 fold

increase in the proportion of proliferating cells in cancer PPECs after telomerase

inhibition. This increase could be partly due to the relative increase in rebound

proliferating stem cells, but more focussed experiments are necessary in order to

dissect this response. These results, along with lack of telomerase

expression/activity in CSC population enriched from PCa, suggested that

telomerase inhibition would not be an efficient treatment in treating treatment naïve

prostate cancers. These results also indicate that telomerase expression is not

essential for prostate CSC survival. Hence, although CSCs enriched from CRPCs

express high telomerase, they may not be effectively eliminated by telomerase

inhibition.

To conclude, telomerase inhibition for 7 days has contrasting effects on BPH and

treatment naïve cancer PPECs. Considering that BPH stem cells express

telomerase and cancer stem cells do not, the failure of telomerase inhibition to

influence cancer PPECs suggest that the effects seen in BPH could be mainly due

to the impact on BPH stem cells (Figure II4.1). The hTERT subunit can interact and

influence pathways such as WNT, TGF-β, Notch, c-MYC, and STAT3 that can 

regulate stem cell fate (Flores et al., 2006, Jones and Wagers, 2008). We

hypothesize that inhibition of these non-telomeric interactions underpin the effects

seen in BPH PPECs. These results also suggest that telomerase inhibition, as a

stand-alone therapeutic tool, may not work in cancer, as cancer stem cells won’t be
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targeted. Telomerase inhibition could represent a valid strategy in patients with

CRPCs, but it is important to confirm the dependence of CRPC CSCs on

telomerase. However, all these propositions need further investigations to obtain

direct evidence for the underlying mechanisms.

Figure II4.1: Working hypothesis explaining telomerase expression/activity and its
possible impact on cellular dynamics in prostate pathologies.

Future work:

It would be interesting to identify the precise mechanism of action of hTERT-

mediated regulation of self-renewal of stem cells enriched from BPH PPECs. For

that purpose, correlation with telomere length and with non-telomeric hTERT

interacting pathways (especially TGF-β and WNT signaling pathways) would 

provide additional insights. In order to assess the impact of telomerase inhibition on
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telomere length, long-term telomerase inhibition by a proven specific and potent

small molecular inhibitor, such as imetelstat, would probably be more suitable than

multiple siRNA or even shRNA transfection (We have spoken with Prof. Jerry Shay,

who has kindly agreed to help us in this regard). The identification of precise effect

of telomerase inhibition on individual epithelial sub-population enriched from BPH,

PCa, and CPRC in relation with stromal co-cultural (to account for stromal influence

on telomerase signalling) would certainly increase our understanding of telomerase

biology in prostate pathologies.
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Section III: miRNA profiling of
prostate epithelial sub-populations
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SECTION III: 1. Introduction

Two key research priorities in aggressive prostate cancer management are the

identification of aggressive cancers at diagnosis and the design of efficient and

individualised treatment plans. Novel therapeutics like Abiraterone acetate and

MDV3100 and prognostic indicators (changes in circulating tumour cell count, PSA

progression free interval etc.) are beneficial in a sub-set of patients (de Bono et al.,

2011, Armstrong et al., 2012, Scher et al., 2012b); however, it has not been

possible to identify these sub-sets at or before the start of the treatment. In this

scenario, the emerging role of microRNAs (miRNAs) in therapeutics and prognosis

make them prime candidates for investigation. miRNAs are well conserved,

endogenously encoded, single-stranded small (21-23 nucleotides) non-coding

RNAs (Bartel, 2004). They play essential roles in development and disease by

regulating gene expression (Ambros, 2004). miRNAs are also secreted in body

fluids, are stable, and have a tissue-specific expression patterns (Soifer et al.,

2007). These properties of miRNAs can be readily exploited to develop targeted

therapies with minimal side effects and relatively easily detectable biomarkers for

disease progression and treatment response.

During the last two decades, miRNAs have attained prominence owing to their

critical role in post-transcriptional gene regulation. Ambros and colleagues were the

first to discover that the LIN-4 gene product, which regulates lineage specification

through lin-14, did not code for a protein in C. elegans (Lee et al., 1993). Instead,

lin-4 encodes for 61 nucleotide (nt.) long precursor RNA with a stem loop structure

and a smaller ~22 nt. long functional RNA. The smaller lin-4 RNA product had anti-

sense complementarity for multiple sites in the 3’ untranslated region (UTR) of lin-14

mRNA and could reduce lin-14 protein expression without reducing lin-14 mRNA

levels (Lee et al., 1993, Wightman et al., 1993). These initial studies conclusively
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established that lin-4 could regulate gene expression by antisense RNA-RNA

interaction, also known as RNA interference (RNAi). The ~22 nt. long lin-4 RNA is

now considered the founding member of the miRNA family of small non-coding

RNAs.

III1.1 miRNA biogenesis, maturation and degradation

The transcription of miRNAs from miRNA genes is only slightly different from

classical protein-coding mRNA transcription and is conserved in the animal kingdom

with minimal differences. There are about 1600 annotated human miRNAs

(miRBase, 2012). The location of miRNA coding genes is variable, ranging from

intergenic region (in introns or exons), antisense orientation to neighbouring genes,

or as a solo miRNA gene (Cai et al., 2004, Lee et al., 2004, Rodriguez et al., 2004,

Kim and Kim, 2007). Several miRNAs can also be synthesised from the same

miRNA gene. miRNA genes may have (i) their own promoters, (ii) a common

promoter for clustered miRNAs, or (iii) they can be transcribed along with the

surrounding host gene (Kim and Kim, 2007, Ozsolak et al., 2008, Berezikov, 2011).

The origin of miRNAs as a part of polycistronic cluster does not necessarily mean

that the mature miRNAs of a cluster will be homologous in structure and function

(Altuvia et al., 2005). All these miRNAs are transcribed as double-stranded stem-

loop precursor miRNA (pri-miRNA) with 5’ cap and 3’ poly-A tail by RNA polymerase

II (Cai et al., 2004, Lee et al., 2004, Zhou et al., 2007). The pri-miRNAs then

undergo a series of post-transcriptional modifications to form the mature single

stranded miRNAs.

The processing of pri-miRNA is a three-step process (Figure III1.1). First, a

member of the RNase III family of enzymes, Drosha, cleaves the pri-miRNA at the

base of stem loop (Denli et al., 2004). Drosha exists as a part of the microprocessor

complex, which identifies its substrate (pri-miRNA) owing to its tertiary structure
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(Lee et al., 2003, Zeng et al., 2005). The cleavage product of this complex is a ~70-

nt. precursor miRNA (pre-miRNA) (Lee et al., 2003, Denli et al., 2004). The 5’ and 3’

remnants of the cleavage process are thought to be degraded in the nucleus. The

clustered miRNAs that are transcribed together as a common pri-miRNA also get

cleaved in the nucleus into individual pre-miRNAs, although, the exact mechanism

for this is yet to be explored. Some miRNAs that are embedded within the short

introns of protein coding mRNAs, mirtrons, bypass the Droasha cleavage (Okamura

et al., 2007, Ruby et al., 2007). The pre-miRNAs for these mirtrons are formed

during the splicing of the concerned mRNA introns. Once the pre-miRNA is formed

through any of these methods, it is then transported to the cytoplasm through an

interaction with Ran-GTP and exportin-5, (Bohnsack et al., 2004).

Figure III1.1: miRNA biogenesis and maturation. miRNA is transcribed as primary
miRNA (pri-miRNA), which is first cleaved into precursor miRNA (pre-miRNA) in the
nucleus by a microprocessor complex containing Drosha. After nuclear export, Dicer
containing complex cleaves pre-miRNA into 2 mature single stranded miRNAs. One
of the miRNA strands gets incorporated in Argonaute containing RISC complex to
regulate mRNA levels (Kai and Pasquinelli, 2010).
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In a second step, a multi-protein pre-miRNA processing complex containing Dicer

cleaves the pre-miRNA into two complementary single stranded mature miRNA

strands (Bernstein et al., 2001, Hutvagner et al., 2001, Knight and Bass, 2001).

Although alternative pathways exist for pre-miRNA cleavage, Dicer incises the vast

majority of the pre-miRNAs near the terminal loop to form transcripts of about 22 nt.

length (Cheloufi et al., 2010, Cifuentes et al., 2010). One of these strands with

relatively higher thermodynamic stability was considered as a dominant guide

miRNA strand, whereas the remaining strand was considered redundant (Kim et al.,

2009). The redundant passenger strand was denoted by the * sign; for example, the

redundant strand for miR-1 is miR-1*. However, recent evidence showed that in

some cases, the passenger strands (miR* sequences) also have a functional role

(Czech and Hannon, 2011, Yang et al., 2011). The miRNA nomenclature has been

changed to adapt to these findings, whereby miRNA strands are now referred to as

miR-x-3p and miR-x-5p, based on their orientation (miRBase, 2011). Both

nomenclatures are currently in use.

The third and the final step in the miRNA processing is the incorporation of the

mature single stranded miRNA strand into the RNA-induced silencing complex

(RISC). The multi-protein pre-miRNA processing complex forms a vital component

of the RISC loading complex. One of the mature miRNA strands (the guide strand),

selected on its thermodynamic stability and position within the stem loop, is

incorporated in the RISC assembly (Khvorova et al., 2003, Schwarz et al., 2003,

Krol et al., 2004, Lin et al., 2005). The RISC loading assembly incorporates the

preferred miRNA strand on the core RISC effector protein, Argonaute-2 (Ago2) (Liu

et al., 2004, Meister et al., 2004). RISC with the incorporated miRNA is sometimes

referred to as the miRISC assembly, which determines the fate of target mRNAs.

The abundance and stability of miRNAs depend upon transcriptional regulation,
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post-transcriptional modifications, such as RNA editing, and numerous feedback

loops involving miRNA and their target mRNAs (Kim et al., 2009).

III1.2 Mechanism of action of miRNAs

The miRISC complex interacts with specific target mRNAs to prevent their

translation. The identification of target mRNAs is largely determined by a partial

miRNA sequence homology with the 3’ UTR of the mRNAs (Bartel, 2009). A perfect

complementarity between the full miRNA sequence and the target mRNA 3’-UTR

(for example, between miR-196 and HOXB8 mRNA) is seen in extremely rare cases

in animals (Yekta et al., 2004). However, the vast majority of miRNA-mRNA

interactions are determined by perfect binding between 3’ UTR of mRNA and

nucleotides 2 to 7 at the 5′ end of the miRNA, called the 'seed' region (Lewis et al., 

2005). Some experiments show that the seed pairing is necessary and sufficient for

miRNA-mediated mRNA regulation (Doench and Sharp, 2004). Multiple

bioinformatic prediction algorithms, such as TargetScan, miRanda etc., can now

identify prospective mRNA targets based upon seed sequence directed miRNA-

mRNA interactions (Bartel, 2009). Recent investigations demonstrate even more

flexibility in miRNA-mRNA interactions, where extensive binding outside the seed

region can compensate for imperfect seed sequence pairing (Reinhart et al., 2000,

Slack et al., 2000, Shin et al., 2010). Other studies even suggested that miRNAs

could regulate mRNA fate by binding outside the 3’ UTR (Tay et al., 2008).

Flexibility created by these mechanisms results in the existence of thousands of

potential mRNA targets for one miRNA and a possibility for a single mRNA to be

targeted by multiple miRNAs.

The precise mechanism used by mammalian miRNAs to regulate target mRNAs are

still hotly debated, as there is evidence for multiple mechanisms (Huntzinger and

Izaurralde, 2011):
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 Inhibition of translational initiation

 Inhibition of translational progression

 Deadenylation and degradation

 Endonucleolytic cleavage

 Stimulation of translation/transcription

A rare perfect pairing of a miRNA with its target site on the mRNA results in

Argonaute-mediated mRNA endonucleolytic cleavage (Llave et al., 2002, Yekta et

al., 2004); while degradation of the target mRNA is probably the commonest

mechanism for miRNA-mediated gene silencing (Huntzinger and Izaurralde, 2011).

Specific miRNA-target association studies and general transcriptome analysis

demonstrating target mRNA downregulation after miRNA transfection, suggested

that miRNAs could induce targeted mRNA degradation (Bagga et al., 2005, Selbach

et al., 2008, Hendrickson et al., 2009). In these cases, miRNAs direct their target

mRNAs to 5’-to-3’ mRNA decay pathway, where mRNAs are degraded after

removal of the poly(A) tail and decapping (Rehwinkel et al., 2005, Behm-Ansmant et

al., 2006). miRNA-mediated gene silencing can also be achieved by repression of

mRNA translation before or after translational initiation and mRNA destabilisation

(Nottrott et al., 2006, Mathonnet et al., 2007). Some isolated reports also indicate

that miRNAs can promote gene expression by inducing translation (Vasudevan and

Steitz, 2007) and by direct interaction with the target mRNA promoter (Place et al.,

2008). In summary, miRNAs mainly repress gene expression to influence a wide

variety of cellular events.

III1.3 miRNAs in development and disease

miRNAs are proposed to regulate expression of more than 60% of the proteins and

thereby, can influence almost every cellular process in mammals (Friedman et al.,

2009). They preferentially target genes involved in signalling processes over genes
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with housekeeping functions, and orchestrate temporal developmental programs by

regulating genes involved in particular biological functions (Zhang et al., 2009). It

was proposed a few years ago that miRNAs can either switch targets off or fine tune

their expression (Bartel and Chen, 2004). Switching off targets could change cell

fate, whereas fine-tuning target expression may smooth out fluctuations in their

expression and can also direct dose-dependent effects (Mansfield et al., 2004).

Fine-tuning target mRNA levels appears to be the commonest mode of miRNA

function, as mutations in relatively few miRNA genes produced robust abnormal

phenotypes in C. elegans (Miska et al., 2007). Using these two mechanisms,

miRNAs can direct several vital developmental activities such as: (i) embryonic

survival, (ii) patterning and morphogenesis, (iii) defining and maintaining lineage

specification, and (iv) proliferation and apoptosis (Bushati and Cohen, 2007). Often,

miRNAs are also involved in a feedback/feedforward loop with their targets, and

transcriptional regulators of miRNA expression to ensure precision in the regulation

of these vital events (Tsang et al., 2007, Botchkareva, 2012). Imbalance in these

delicate arrangements frequently results in developmental defects and diseases.

III1.4 miRNA alterations in prostate cancer

miRNAs are an intense area of research in the prostate. However, the focus is

mostly on prostate cancer, and there is no or minimal information about the role of

miRNAs in the normal human prostate development and homeostasis.

Alterations in miRNA copy number and changes in miRNA epigenetic regulation are

observed in almost all cancers, including prostate cancer (Zhang et al., 2006, Ryan

et al., 2010). The up-regulation of the miRNA processing enzyme Dicer in a stage

and Gleason-grade dependent manner in prostate cancer possibly imply that

gradual and considerable global miRNA expression changes could take place

during prostate carcinogenesis (Chiosea et al., 2006). Several studies in the last 5-7
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years produced a wealth of data that highlight a critical role for specific miRNAs in

prostate cancer initiation, progression and relapse (Figure III1.2). These

investigations ascertained the oncogenic and tumour-suppressor nature of certain

miRNAs and also pinpointed the potential of miRNAs as personalised therapeutic

targets and diagnostic/prognostic indicators.

Figure III1.2: The role of miRNAs in prostate cancer. miRNAs can alter any of the
processes involved in carcinogenesis to positively on negatively impact on tumour
initiation, progression and metastasis. In this diagram, miRNAs are indicated by
squares and their mRNA targets by ovals. Green colour indicates a tumour-
suppressor nature and orange colour indicates an oncogenic function. The direction
of the arrows indicates expression status in cancer compared to the normal prostate
tissue. Adapted from (Coppola et al., 2010).

Two principal approaches were taken to identify the functions of miRNAs in prostate

cancer: (i) candidate miRNA-specific detailed functional studies and (ii) genome

wide assessment using miRNA microarrays. Investigation of a specific miRNA can

identify its functional effects in detail, but the scope of such investigations remains
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seriously restricted and may be biased towards ‘favourite’ miRNA analysis.

Microarray studies, on the other hand, can provide unbiased genome-wide

information about the alteration in miRNA machinery in cells. However,

transcriptome-wide miRNA microarray studies in prostate cancer are not precisely

informative, as there is a wide disagreement between miRNA microarray data

generated by different laboratories (Porkka et al., 2007, Ambs et al., 2008, Ozen et

al., 2008, Tong et al., 2009, Schaefer et al., 2010a, Szczyrba et al., 2010, Catto et

al., 2011, Martens-Uzunova et al., 2012). These variations could be due to

differences in study design, underestimated treatments of patients, methods of

sample collection, degrees of tissue heterogeneity, and the differential sensitivity

and specificity of microarray platforms used (Coppola et al., 2010). As miRNAs have

distinct cell-type specific expression patterns, the differences in differentiation states

of tumours, epithelium/stroma ratio, and presence of contaminating cells such as

normal prostate epithelial cells, fibroblasts, endothelial cells, and inflammatory

exudates may have seriously affected the microarray profiles in these

investigations. In spite of these differences, there is a relative consensus about the

role of certain miRNAs in prostate carcinogenesis. These miRNAs are discussed in

next sections.

III1.4.1 Oncogenic miRNAs (oncomiRs) in prostate cancer

miRNAs, such as miR-221, miR-222, miR-21, and miR-125b, which can inhibit

apoptosis or promote cell multiplication, are upregulated in prostate cancer (Catto et

al., 2011). These miRNAs can also promote prostate cancer metastasis (Catto et

al., 2011). The common feature of most of the oncogenic miRNAs in prostate is that

they are proposed to be regulated by androgens, but at the same time, are up-

regulated in androgen refractory setting (as described below). Another recurring

feature is that none of these miRNAs could be definitively labelled as oncogenic

miRNAs in prostate cancer, as contradictory data almost always exists (Coppola et
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al., 2010). This suggest that these miRNAs have yet unidentified regulators and

downstream targets.

miR-221 and miR-222 are often considered together, due to their sequence

homology and overlapping functions. These two miRNAs are over-expressed in

multiple cancers, such as glioblastoma, melanoma, and cancers of liver, thyroid,

kidney and bladder, stomach, and pancreas (Coppola et al., 2010). The up-

regulation of miR-221 and miR-222 was also noted in treatment naïve prostate

cancer (Galardi et al., 2007, Mercatelli et al., 2008, Sun et al., 2009) and in

castration resistant xenografts and CRPCs (Sun et al., 2012) compared to BPH

samples. They potentially promote prostate epithelial proliferation through inhibition

of P27Kip1, P57Kip2, and ARHI (Galardi et al., 2007, Sun et al., 2009, Chen et al.,

2011) and cell migration and invasion through inhibition of DVL2, a WNT signalling

mediator in prostate cancer cell line models (Zheng et al., 2012). It was also shown

that androgens could directly suppress the expression of miR-221 and miR-222

(Ambs et al., 2008). Treatment naïve prostate cancer almost always has activated

androgen signalling (Dehm and Tindall, 2005). In this scenario, concurrent

overexpression of androgens and miR-221/-222 is puzzling. Further confusion was

created by studies showing downregulation of these miRNAs in a subset of prostate

cancers, including TMPRSS2:ERG fusion positive cancers (Gordanpour et al.,

2011, Jalava et al., 2012). Detailed functional evaluation in patient-derived tissue

and in in-vivo models may assist in identifying the exact role and mRNA mediators

of these miRNAs in the development and progression of prostate cancer.

Another oncogenic miRNA in prostate cancer is miR-21. This miRNA is more

consistently up-regulated in prostate cancer (Coppola et al., 2010). The principal

processes promoted by miR-21 overexpression are apoptosis resistance and cell

migration (Hassan et al., 2012). It can influence the expression of tumour

suppressors such as TPM1, PDCD4, MARCKS, SPRY1, and RECK in prostate
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cancer cell lines; consequently inhibiting apoptosis and promoting growth in vitro

and in vivo (Li et al., 2009, Darimipourain et al., 2011, Li et al., 2012, Reis et al.,

2012). It is also one of the prime androgen regulated miRNA in the prostate (Wang

et al., 2008a, Ribas et al., 2009, Jalava et al., 2012); however, overexpression of

miR-21 in castration-resistant cancers suggests that non-androgenic regulators can

also increase miR-21 expression (Ribas and Lupold, 2010).

miR-125b is one of the more ambiguous oncogenic miRNAs in prostate cancer. The

depletion of miR-125b in PC3 cells resulted in severe proliferation defects (Lee et

al., 2005) and stable transfection of miR-125b into PC346C cells promoted their

growth when xenografted (Shi et al., 2011). This androgen-regulated miRNA can

promote cell proliferation by inhibiting the pro-apoptotic BAK1 protein, MUC-1 and

ELF4EBP1 (Shi et al., 2007, Ozen et al., 2008, Rajabi et al., 2011). Nevertheless,

the oncogenic role of miR-125b needs further substantiation as it has also been

shown to be downregulated in prostate cancer (Porkka et al., 2007, Ozen et al.,

2008, Tong et al., 2009, Sun et al., 2011). miR-125b can inhibit the expression of

HER2 (Scott et al., 2007), which was previously shown to promote prostate

carcinogenesis (Craft et al., 1999). These findings put miR-125b in the tumour-

suppressor category. Evidence is also accumulating for the critical role of miR-125b

in the regulation of epithelial stem cell differentiation (Shi et al., 2010, Cui et al.,

2012, Wong et al., 2012, Wu et al., 2012). Any differences in expression of miR-

125b levels in prostate cancer studies may therefore merely indicate differences in

differentiation status of the samples analysed rather than an actual oncogenic role.

In summary, all these miRNAs need further evaluation in cells closer to patients

(primary cells) and identification of all the potential targets in a cell-type specific

manner in physiological miRNA doses to attest their precise role in prostate

carcinogenesis.
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III1.4.2 Tumour-suppressor miRNAs in prostate cancer

Several well-established tumour suppressor miRNAs such as miR-143, miR-145,

and the miR-15a-16 cluster have also been implicated in prostate cancer.

miR-143 and miR-145 are probably the most studied miRNAs in relation to prostate

cancer. These miRNAs are consistently down-regulated at all stages of prostate

cancer, irrespective of the models used (Coppola et al., 2010, Szczyrba et al., 2010,

Zaman et al., 2010, Leite et al., 2011). miR-143 underexpression can promote

KRAS, cyclin D1, KLK10, and ERK signalling pathways to promote cell proliferation

and migration (Clape et al., 2009, Xu et al., 2011a, White et al., 2012).

Overexpression of miR-145 in PC3 and DU145 cells suppressed cell proliferation,

migration and invasion through inhibition of FSCN1 and SWAP70 (Chiyomaru et al.,

2011, Fuse et al., 2011). miR-145 transfection into PC3 cells can also induce

apoptosis and G2/M cell cycle arrest by inhibiting TNFSF10 (Zaman et al., 2010).

The major clinically relevant role of these two miRNAs is in the regulation of

prostate cancer bone metastasis. Lower expression of these miRNAs was found in

bone metastasis and forced overexpression of any one of these miRNAs reduced

bone metastasis in PC3 prostate cancer mouse xenograft models (Peng et al.,

2011, Watahiki et al., 2011). The increase in metastatic ability could be due to the

initiation of epithelial to mesenchymal transition (EMT) and/or induction of a cancer

stem-like phenotype (Peng et al., 2011, Huang et al., 2012). Promoter DNA

methylation and, to a certain extent, P53 status can regulate the expression of these

two miRNAs and hence, prostate carcinogenesis (Zaman et al., 2010, Suh et al.,

2011). Thus, miR-143 and miR-145 could form a vital link between genetic and

epigenetic alterations responsible for prostate carcinogenesis.

In addition to miR-143/-145 miRNAs, the miR-15a~16-1 cluster is also

downregulated at almost all the stages of prostate cancer (Hassan et al., 2012).

Bonci and colleagues were the first to show that miR-15a~16-1 expression is
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downregulated in prostate cancer patients (Bonci et al., 2008). They also showed

that miRNAs belonging to the miR-15a~16-1 cluster inhibit the expression of

CCND1 and WNT3A and restoration of miR-15a~16-1 in LNCaP cells can induce

apoptosis and growth arrest, whereas their inhibition in RWPE-1/2 cells imparts

tumorigenic properties to these cells. The downregulation of this cluster could most

likely be due to frequent homozygous deletion of 13q14 locus in a subset of prostate

cancer patients, where the genes for miR-15a~16-1 cluster are located (Porkka et

al., 2011). The miR-15a~16-1 cluster can also influence cell cycle through the

regulation of CDK1/2 and cell proliferation through granulin in prostate cancer cell

line models (Takeshita et al., 2010, Wang et al., 2010). The tumour-suppressor role

of these miRNAs is further exemplified by the finding that systemic delivery of these

miRNAs can significantly reduce tumour growth in a mouse PC3-M prostate cancer

xenograft (Takeshita et al., 2010). Considering that miRNAs have cell-specific

expression patterns and preferential function, it is unusual to find that the miR-

15a~16-1 cluster could also be functionally important in prostate stroma. The lower

expression of the miR-15a~16-1 cluster in prostate cancer-associated fibroblasts

(CAFs) was shown to assist prostate cancer cell survival, proliferation, and

migration, promoting FGF2-FGFR1 signalling (Musumeci et al., 2011). Thus, this

cluster can coordinate between prostate cancer epithelial cells and CAFs to regulate

prostate carcinogenesis.

Several additional miRNAs, such as miR-32 and the miR-106b-25-93 cluster have

been proposed as oncomiRs and miR-101, miR-126*, miR-146a, miR-141, miR-200

family, miR-23, miR-330, miR-34, and miR-488 have been proposed as tumour-

suppressor miRNAs. But the direct functional evidence for any of them is

inconsistent in prostate cancer and needs further evaluation (Coppola et al., 2010,

Pang et al., 2010, Hassan et al., 2012).



234

III1.4.3 The role of miRNAs in the process of epithelial to

mesenchymal transition (EMT) in prostate cancer

Several recent studies have suggested that EMT may play a crucial role in cancer

metastasis (Voulgari and Pintzas, 2009). Some investigators also believe that EMT

can generate cancer stem-like cells from a differentiated progeny (Mani et al., 2008,

Singh and Settleman, 2010). If this were true, then the knowledge of miRNA-driven

regulation of EMT would be vital to understand cancer initiation and metastasis. The

EMT process is characterised by loss of cell-cell junctions and epithelial markers,

such as E-cadherin, ZO1, and occludin (Hay, 1995, Thiery, 2002). At the same time,

cells acquire expression of mesenchymal markers such as vimentin, fibronectin,

snail, slug, ZEB1/2, alpha-smooth muscle actin, beta-catenin, and various matrix

metalloproteinases (MMPs) (Hay, 1995, Thiery, 2002). The process of EMT can be

triggered by growth factors and cytokines, WNT and NOTCH signalling, stress, free

radicals, hypoxia etc. (Voulgari and Pintzas, 2009). miRNAs that can alter any of

these molecular pathways or processes can potentially promote or reverse the

process of EMT.

Although several miRNAs can potentially regulate EMT, there is direct evidence for

relatively few miRNAs in the regulation of EMT in prostate cancer. Peng et al,

showed that upregulation of miR-143 and miR-145 can repress multiple

mesenchymal markers while increasing epithelial markers in the PC3 and LNCaP

cells (Peng et al., 2011). The restoration/overexpression of miR-205/miR-203 and

miR-29b can also promote the epithelial phenotype over the mesenchymal

phenotype by upregulating E-cadherin and downregulating ZEB2 in the PC3 and

DU145 prostate cancer cell lines (Gandellini et al., 2009, Saini et al., 2011, Ru et al.,

2012, Tucci et al., 2012). Similar downregulation of mesenchymal markers ZEB1/2

and Snail and upregulation of epithelial markers was also seen with downregulation

of miR-200 and let-7 family members in the PC3 PDGF-D and ARCaPM cells (Kong
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et al., 2009, Kong et al., 2010). These studies also showed that miR-143, miR-145,

miR-205/miR-203, and miR-29b expression was downregulated and miR-200 and

let-7 family was overexpressed in metastatic prostate cancer. A similar pattern of

expression of miRNAs was also reported in various prospective normal and cancer

stem cells (Peter, 2009, Wang et al., 2011b, Huang et al., 2012, Peng et al., 2012).

These data suggest that miRNAs can be crucial for the regulation of prostate

metastasis through EMT and may act to maintain the prostate cancer stem cell

phenotype.

III1.4.4 miRNAs in prostate cancer stem cells

The tissue-specific expression and important role of miRNAs in lineage specification

suggested the possibility of a distinct prostate cancer stem cell (CSC) specific

miRNA expression profile. However, there is a very limited number of studies that

have assessed prostate cancer stem cell miRNA expression in detail. One of the

few miRNAs investigated for its specific role in the maintenance of prostate cancer

stem cells is miR-34a (Liu et al., 2011). This investigation suggested that cancer

stem cell-driven tumour growth and metastasis can be suppressed by miR-34a

overexpression. They showed that miR-34a can inhibit CD44 expression in prostate

CSCs derived from DU145 and LAPC4 prostate cancer cells. Using a similar model

system, Saini and colleagues showed that miR-708 can also suppress CD44

expression and re-expression of miR-708 in prostate CSCs can lead to decreased

tumorigenicity in vitro and in vivo, probably through direct inhibition of

serine/threonine kinase AKT2 (Saini et al., 2012). Several other studies identified

associations, rather than direct causal relationships between miRNAs and the

prostate CSC-like phenotype. For example, let-7 overexpression can inhibit both

prostate cancer cell proliferation and clonal expansion in vitro, and tumour

regeneration in vivo using cell line models, without identifying any underlying

mechanism (Liu et al., 2012). Over-expression of miR-101, miR-181a, miR-181b,
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miR-200a, miR-200b, miR-200c, and miR-203 was also found to inhibit sphere

formation by suppressing EZH2 in DU145 cells, suggesting their role in prostate

CSC maintenance (Cao et al., 2011). Loss of miR-8/200 can potentiate NOTCH

signalling in the PC3 prostate cancer cell line (Vallejo et al., 2011), which in turn can

maintain prostate CSCs (Ceder et al., 2008). A modest reduction in both sphere

formation ability and classical stem cell markers (such as CD133, CD44 and KLF4)

was also seen after miR-143/145 overexpression in PC3 cells (Huang et al., 2012).

Similar observations were also made in mouse models, where members of miR-200

family (miR-200a, miR-200b, miR-200c, miR-141, and miR-429) and miR-203 were

found to be specifically suppressed in the stem/basal (Lin-Sca-1+CD49fhigh) cell

compartment (Zhang et al., 2010). However, these associations may not guarantee

the functional utility of these miRNAs. Furthermore, identification of just one or a few

targets may not be enough to assess the full functional potential of miRNAs.

Detection of miRNAs and the majority of their functional targets that are specific and

critical for prostate CSC maintenance could bring about personalised, specific, and

efficient management strategy for prostate cancer. In order to realise the true

therapeutic potential of miRNAs, a more robust functional assessment in near-

patient models, such as primary prostate epithelial cultures and in-vivo validation is

essential.

III1.4.5 miRNAs as a biomarkers in prostate cancer

The prostate cancer field has long been suffering from a lack of specific and

sensitive biomarkers for disease diagnosis and prognosis. Prostate specific antigen

(PSA) is widely used, but its employment results in significant over-diagnosis and it

is not an ideal predictor for therapy response and prognosis (Schroder et al., 2009,

Andriole et al., 2012). Recent investigations have shown that the detection of

circulating tumour cells (CTCs) could be a better biomarker for prostate cancer

prognosis (Danila et al., 2007, Garcia et al., 2007, Scher et al., 2009). miRNAs are
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relatively stable and can also be detected in CTCs, plasma, and serum (Schaefer et

al., 2010b, Gordanpour et al., 2012). Bryant and colleagues recently demonstrated

that the expression of miRNAs can be also be reliably detected in the urinary

exosomes (Bryant et al., 2012). About 10 investigations have now assessed the

suitability of relatively non-invasive detection of miRNAs for the prognosis of

prostate cancer (Table III1.1). The standout miRNAs in these analyses are miR-141

and miR-375. The overexpression of these miRNAs can differentiate between

normal and cancerous prostate, in addition to distinguishing aggressive cancers and

CRPC from low risk prostate cancer (Table III1.1).

miRNA Sample origin Expression in cancer
(compared to normal/BPH

tissue)

Reference

miR-141 Human plasma Up (Mitchell et al.,
2008)

Human serum Up (Brase et al.,
2011)

Human plasma Up (Gonzales et
al., 2011)

Human plasma Higher in metastatic vs.
localized disease

(Yaman
Agaoglu et al.,
2011)

TRAMP mouse serum Up (Selth et al.,
2012)

Human serum derived
exosomes and
microvescicles

Up in patients with
metastasis than patients
without metastasis

(Bryant et al.,
2012)

Human plasma Up in CRPC (Nguyen et al.,
2012)

miR-375 Human serum Up (Brase et al.,
2011)

TRAMP mouse serum Up (Selth et al.,
2012)

Human serum derived
exosomes and
microvescicles

Up in patients with
metastasis than patients
without metastasis

(Bryant et al.,
2012)

Human plasma Up in CRPC (Nguyen et al.,
2012)

miR-21 Human plasma Up in cancer and in
metastatic vs. localized
disease

(Yaman
Agaoglu et al.,
2011)

Human plasma Up in patients with high
risk CAPRA score

(Shen et al.,
2012)
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miR-30c Human serum Down in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

Human serum Down (Chen et al.,
2012b)

let-7c Human serum Down (Chen et al.,
2012b)

let-7e Human serum Down (Chen et al.,
2012b)

miR-20a Human plasma Up in patients with high
risk CAPRA score

(Shen et al.,
2012)

miR-24 Human serum Down in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

miR-26b Human serum Down in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

miR-26a Human serum Up (Mahn et al.,
2011)

miR-93 Human serum Up in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

miR-
106a

Human serum Up in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

miR-107 Prostate cells in urine Up (Bryant et al.,
2012)

miR-221 Human plasma Up in cancer and in
metastatic vs. localized
disease

(Yaman
Agaoglu et al.,
2011)

miR-223 Human serum Down in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

miR-298 TRAMP mouse serum Up (Selth et al.,
2012)

miR-
378*

Human plasma Up in CRPC (Nguyen et al.,
2012)

miR-
409-3p

Human plasma Down in CRPC (Nguyen et al.,
2012)

miR-451 Human serum Up in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

miR-
574-3p

Prostate cells in urine Up (Bryant et al.,
2012)

miR-622 Human serum Up (Chen et al.,
2012b)

miR-874 Human serum Up in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

miR-
1207-5p

Human serum Up in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

miR-
1274a

Human serum Up in patients with high
risk CAPRA score

(Moltzahn et al.,
2011)

miR-
1285

Human serum Up (Chen et al.,
2012b)

Table III1.1: miRNAs secreted in body fluids, which can be used as diagnostic

and/or prognostic biomarkers for prostate cancer.
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However, the functions of these miRNAs and of CSC-specific miRNAs have not

been investigated in detail. Sufficient information about the possible utility of

miRNAs to predict/evaluate treatment response is also not available. Moreover, the

overexpression/suppression of any of these miRNAs is not prostate cancer-specific.

We also do not know whether miRNAs in Table III1.1 are expressed in prostate

CSCs. If they are not, then recurrence caused by CSCs would be difficult to detect.

Clearly, miRNAs could be the long-sought ‘ideal’ biomarkers for prostate cancer; but

this needs further evaluation.
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SECTION III: 2. Aims and objectives

mRNA levels profiling on hierarchical patient-derived prostate epithelial sub-

populations have yielded a wealth of data, but no such resource exists for miRNA

expression (Birnie et al., 2008, Shepherd et al., 2008). Previous miRNA microarray

studies in cell lines have already suggested that prostate stem and differentiated

cell have distinctly different miRNA expression profiles (Liu et al., 2012). This study

in cell lines was restricted to cancer cell lines only, and a detailed miRNA

expression profile of normal, BPH, and CRPC-derived sub-populations is not

available. Previous microarray studies on primary tissue samples also suffered from

wild variations in the expression profiles generated. Considering the enormous

potential of miRNAs in developing therapeutic/diagnostic/prognostic strategies for

the management of prostate cancer, establishment of consistent miRNA expression

profile in patient-derived primary prostate epithelial subpopulations derived from

normal, BPH, treatment naïve prostate cancers (PCa), and CRPCs was essential.

Therefore, we decided to profile the expression pattern of miRNAs in stem cells,

transit-amplifying cells, and committed basal cells enriched from PrEC (normal),

BPH, PCa, and CRPC derived primary prostate epithelial cultures. The data

obtained from such an investigation then could be paired with previous mRNA

microarray profiles obtained on the similar hierarchical primary prostate epithelial

sub-populations in our lab (Birnie et al., 2008) to ascertain genome-wide miRNA-

mRNA alterations in prostate epithelial differentiation and prostate carcinogenesis.

The output from this integrated dataset could be exploited to identify cancer stem

cell directed therapeutic targets in addition to prognostic and diagnostic biomarkers.
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SECTION III: 3. Results

The emerging role of miRNAs in cancer risk stratification, diagnosis, and prognosis

prompted us to profile miRNA expression in cultured primary prostate epithelial sub-

populations. Using Agilent v3 microarrays, expression of nearly 860 miRNAs was

assessed in stem cells (SC), transit-amplifying cells (TA), and committed basal cells

(CB) enriched from PrEC (n=1), benign (n=5), treatment naïve cancer (n=5), and

castration resistant cancers (n=3). The array results were validated by qRT-PCR

and prospective candidate miRNAs with potentially important roles in prostate stem

cell differentiation were chosen. In addition, the miRNA expression data was

integrated with previously generated mRNA levels data from our lab (Birnie et al.,

2008) on a genome-wide scale, the first of its kind, to identify direct correlations

between miRNA and target mRNAs expression in primary prostate epithelium. The

entire investigation was performed in collaboration with Prof. Tapio Visakorpi from

University of Tampere, Finland and Mr. Antti Ylipää from Tampere Technical

University, Finland.

III3.1 Microarray for miRNA expression

III3.1.1 Microarray data quality control

The latest Agilent array design compatible with the local instruments was employed

to assess expression profile of 866 miRNAs in normal and pathological primary

prostate epithelial cultures. The microarray analysis was carried out on 100 ng of

total RNA extracted from each of the 42 epithelial sub-populations. The assessment

of Agilent internal quality control parameters and the distributions of summarized

expression values for each sample ascertained the uniformity of labelling and

hybridisation (Figure III3.1).
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Figure III3.1: Quality assessment for miRNA microarray procedure. A: A report from
Agilent’s internal quality control program showing the parameters assessed fall in
either excellent or good range. B: A virtual image of representative of the hybridised
array chip. Each dot indicates hybridised miRNA probe. C: Boxplots created by log2
transformed probe intensity values that compare the probe intensity levels between
the arrays of a dataset. Either end of the box represents the upper and lower
quartile. The red line in the middle of the box represents the median (Fig.3. C:
Prepared by Mr. Antti Ylipää).
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III3.1.2 Heatmaps generated from microarray data

The raw microarray data was quantile normalised and RMA summarised (by Mr.

Antti Ylipää). Lists were prepared that compared miRNA expression among various

populations and ranked by p-values generated from paired two-tailed t-test and

Wilcoxon rank sum test. The heatmaps generated from the non-normalised (Figure

III3.2) and normalised (Figure III3.3) microarray output data showed two interesting

phenomena suggestive of a principal role for miRNA in prostate epithelial

differentiation: a distinct, cell type specific, miRNA expression pattern and global

miRNA expression down-regulation during differentiation. The most undifferentiated

cells (stem cells-SC) had much higher miRNA expression than the most

differentiated cells in the analysis (committed basal cells-CB) (Figure III3.2). The

miRNA expression pattern in transit-amplifying (TA) cells, which have functional

characteristics intermediate between SC and CB, also had an intermediate miRNA

expression pattern. In addition, stem cells, irrespective of their pathological status,

had a higher total miRNA expression than the differentiated committed basal cells.

Both of these patterns were suppressed in CRPC derived sub-populations (Figure

III3.2), where the normal differentiation process is perturbed, again stressing the

significant role of miRNAs in prostate epithelial differentiation.
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Figure III3.2: Supervised clustering of non-normalised expression of all the miRNAs
represented as a heatmap. The 42 samples were clustered according to cell-type:
stem cells (SC), transit-amplifying cells (TA), and committed basal cells (CB). In
each cell cluster, cells are arranged as PrEC (n=1) first then BPH (n=5), PCa (n=5)
and CRPC (n=3) at the end. The raw expression values were plotted to generate a
heatmap using the Agilent software.
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Figure III3.3: Unsupervised hierarchical clustering of miRNA microarray expression
data after Robust Multi-array Average (RMA) normalisation. The raw output data
was mapped to the latest genome database, zero or negative intensities were
replaced with the lowest positive intensity values, the data were quantile
normalized, and RMA summarized [By Mr. Antti Ylipää, from Tampere University of
Technology, Tampere, Finland]. Prostate Samples are arranged from top to bottom
and miRNAs horizontally. Each colour (blue/red/green) on the left hand side
represents samples with similar miRNA expression profile.
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III3.2 Validation of miRNA microarray data

We validated the array data by qRT-PCR using 5 randomly chosen samples (2 BPH

and 3 cancers) from the samples that were used for the original arrays. The

miRNAs for validation were chosen from miRNAs for which probes were already

available in the lab and had some supporting literature for their role in prostate

carcinogenesis. These miRNAs have different expression patterns, for example, let-

7i, miR-29b, miR-143, miR145, and miR-32 were overexpressed with differentiation,

mi-200c was overexpressed in TA cells compared to SC and CB cells, and miR-100

was not differentially expressed in any of the sub-populations in a microarray data.

For normalisation of qRT-PCR data, RNU6b was used as an internal control, as it is

the most commonly used internal control for miRNA qRT-PCR normalisation (Jung

et al., 2009, Fridman et al., 2010, Snowdon et al., 2012). Although fold changes

between the expressions of miRNAs in sub-populations were slightly different, the

overall trend of expression was closely matched to that found in the array data

(Figure III3.4 and III3.5). On confirmation of the accuracy, miRNA associated with

differentiation and cancer in miRNA expression was assessed.
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Figure III3.4: qRT-PCR validation of microarray results. The expression of 7
representative miRNAs qRT-PCR for 7 miRNAs tested in 5 randomly selected
patient samples (2 BPH and 3 cancers). [* p<0.05, ** p<0.01 with paired two-tailed
t-test and Wilcoxon rank sum test]
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III3.3 Prostate stem cell miRNA signature

We have identified 135 miRNAs that had detectable expression (>20 arbitrary units)

and showed a greater than 3-fold change in expression between stem cells and

differentiated committed basal cells (Heatmap Figure III3.6). All these miRNAs were

significantly differentially expressed (p<0.01) with paired two-tailed t-test and

Wilcoxon rank sum test. The 3-fold difference threshold was chosen to shorten the

list of differentially expressed miRNAs between SC and CB populations (combined

from all the pathological states) from 459 to 135. These differentially expressed

miRNAs are listed in Appendix 2 and 3.

Some of these miRNAs have been implicated in the maintenance of wide variety of

stem cells (e.g. let-7 family) (Liu et al., 2012), but some others had no known

association with epithelial stem cell behaviour. Some of these miRNAs could

represent novel and prostate-specific stem cell regulating miRNAs. Identification of

direct mRNA targets for all the differentially expressed miRNAs in our analysis can

link the miRNA with the known and novel genetic drivers of prostate stem cell

behaviour.
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Figure III3.6: Supervised clustering of differentially expressed miRNAs in prostate
epithelial sub-populations after Robust Multi-array Average (RMA) normalisation.
The normalised expression of miRNAs in three different sub-populations (stem cells
–SC, transit amplifying cells-TA, and committed basal cells-CB) was compared with
each other. 135 miRNAs showed more than 3-fold difference in stem cells and
committed basal cell expression with p<0.05 with Wilcoxon rank sum test and
paired two-tailed t-test. These miRNAs are represented in this heatmap. Prostate
Samples are arranged horizontally and miRNAs from top to bottom. [By Mr. Antti
Ylipää, from Tampere University of Technology, Tampere, Finland].
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III3.4 miRNAs associated with prostate cancer

A comparison was made to identify miRNAs that specifically characterised

treatment naïve prostate cancer (PCa) and CRPC. The average miRNA expression

of all the sub-populations enriched from BPH was compared with the average

miRNA expression of all the sub-populations enriched from PCa or CRPC. The

paired two-tailed t-test and Wilcoxon rank sum test were applied to determine

significance. It should be remembered that the comparison in this study involves

assessment of differential miRNA expression in the basal compartment of the

respective pathology, as luminal cells do not grow in culture. Hence, the results

obtained in our analysis were not directly comparable with the previously published

whole unfractionated PCa and BPH sample comparisons (Coppola et al., 2010,

Martens-Uzunova et al., 2012). Even if when we assessed this restricted (but

probably therapeutically more relevant) sub-set of cells, we identified 7 miRNAs that

were significantly differentially expressed in PCa compared to BPH (Table III3.1)

and 16 miRNAs were significantly differentially expressed in CRPCs compared to

PCa (Table III3.2).

miRNA PCa/BPH

Upregulated

hsa-miR-411* 4.71

hsa-miR-886-3p 3.93

hsa-miR-629 2.91

hsa-miR-1208 2.88

hsa-miR-1271 1.75

hsa-miR-423-3p 1.57

Downregulated

hsa-miR-299-5p -2.42

Table III3.1: Differentially expressed miRNAs in treatment naïve prostate cancer
(PCa) compared to benign prostatic hyperplasia (BPH). Each fold change is
statistically significant with p<0.05 using paired two-tailed t-test and Wilcoxon rank
sum test.
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miRNA CRPC/PCa miRNA CRPC/PCa

Upregulated Downregulated

hsa-miR-146a 5.09 hsa-miR-1247 -34.54

hsa-miR-521 4.14 hsa-miR-125b-2* -3.93

hsa-miR-576-5p 3.26 hsa-miR-375 -3.45

hsa-miR-302c 3.09 hsa-miR-203 -3.23

hsa-miR-924 2.88 hsa-miR-886-3p -2.76

hsa-miR-520g 2.55 hsa-miR-193a-5p -2.22

hsa-miR-520f 2.54 hsa-miR-200c* -2.14

hsa-miR-221 1.62 hsa-miR-200b* -1.71

Table III3.2: Differentially expressed miRNAs in castration resistant prostate cancer
(CRPC) compared to treatment naïve prostate cancer (PCa). Each fold change is
statistically significant with p<0.05 using paired two-tailed t-test and Wilcoxon rank
sum test.

III3.5 Prostate cancer stem cell miRNA signature

Recently, the interest in identifying microRNA that are specifically deregulated in

cancer stem cells has grown exponentially, as these miRNAs can be readily

exploited for diagnostic/prognostic/therapeutic purposes. In order to identify a

cancer stem cell specific miRNA signature, we first identified two sets of miRNAs: (i)

miRNAs that were significantly differentially expressed between BPH-derived stem

cells (SC) and differentiated cells and (ii) miRNAs that were significantly

differentially expressed between treatment naïve cancer-derived stem cells (CSC)

and differentiated cells (with p<0.05 using paired two-tailed t-test and Wilcoxon rank

sum test). The miRNAs significantly differentially expressed in CSCs compared to

nSCs were then identified (with p<0.01 using paired two-tailed t-test). In effect, the

miRNAs listed in Table III3.3 are either over- or under-expressed in cancer stem

cells compared to normal or BPH stem cells, and at the same time, differentially

expressed in cancer stem vs. cancer differentiated cells.
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miRNA CSC/SC Comment
UPREGULATED
miR-323-3p 161.31 No previous known relationship with cancer/stem

cell regulation
miR-411 27.98 Proposed serum biomarker for breast cancer (van

Schooneveld et al., 2012)
miR-33a 14.74 Cell cycle regulation (via cyclins and CDKs), and

Involved in lipid metabolism, insulin signalling,
and development of metabolic syndrome (Ibrahim
et al., 2011, Rayner et al., 2011, Cirera-Salinas et
al., 2012, Wijesekara et al., 2012)

miR-532-3p 10.60 Implicated in neuronal stem cell differentiation
(Hamada et al., 2012)

miR-181a-2 8.65 Proposed therapeutic/prognostic role in gastric,
head & neck, neural, skin, pancreatic and
haematopoietic cancers (Seoudi et al., 2012)

miR-1271 3.03 Up-regulated in head & neck cancers (Nurul-
Syakima et al., 2011)

miR-487b 2.68 Proposed biomarker for relapse in neuroblastoma
(Gattolliat et al., 2011)

DOWNREGULATED
miR-302c -5.97 Regulate cell cycle and DNA damage response,

prognostic and therapeutic role in breast cancer
(Yoshimoto et al., 2011, Dolezalova et al., 2012)

miR-1181 -4.67 No previous known relationship with cancer/stem
cell regulation

miR-519c-3p -4.40 Associated with rectal cancer prognosis
(Kheirelseid et al., 2012)

miR-574-5p -2.41 Early stage biomarker for non-small cell lung
cancer, chromatin modifier, and negatively
regulate WNT signalling to promote colorectal
cancer (Foss et al., 2011, Ji et al., 2012, Meyers-
Needham et al., 2012)

Table III3.3: MicroRNA signature of prostate cancer stem cells: Table shows most
highly over expressed and repressed miRNAs in prostate CSCs compared to BPH-
derived SCs. All changes were statistically significant (p<0.01 with paired two-tailed
t-test)

III3.6 Identification of candidate miRNAs, which can regulate

prostate stem cell differentiation

In order to complement the transcriptional regulation of prostate stem cell

differentiation analysis, we decided to identify miRNAs that can regulate prostate

stem cell differentiation. We decided to choose 4 candidate miRNAs that can
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regulate prostate epithelial stem cell differentiation. The criteria for this selection

included:

 2 miRNAs, which are significantly overexpressed in prostate epithelial stem

cells (in all PrEC, BPH and PCa-derived stem cells) compared to CB cells.

 2 miRNAs, which are significantly repressed in prostate epithelial stem cells

(in all PrEC, BPH and PCa-derived stem cells) compared to CB cells.

 One miRNA from each of the above two groups should have a relatively

well-established role in epithelial differentiation.

 The other miRNA from each of the two groups was chosen purely on the

speculative basis. The selection was aided by the predicted targets of the

miRNAs.

Based on these criteria, we chose miR-10a, miR-125b, miR-494, and miR-766 as

candidate miRNAs, which could regulate primary prostate epithelial stem cell

differentiation. Two of the miRNAs (miR-125b and miR-10a) were repressed in the

stem cell compartment enriched from all the samples (normal, BPH, and treatment

naïve cancer) and other two (miR-494 and miR-766) were upregulated in stem cell

fraction. miR-125b was previously found to be significantly over-expressed during

mammalian neuronal and retinal epithelial differentiation (Smirnova et al., 2005,

Ferretti et al., 2008, Le et al., 2009). Concurrently, it was down-regulated in

undifferentiated cutaneous melanomas (Glud et al., 2010) and hepatoblastomas

(Cairo et al., 2010), and indeed, specifically in glioma stem cells (Shi et al., 2010).

miR-125b also exhibited androgen dependent up-regulation in a differentiated

prostate cancer cell line (Shi et al., 2007). These literature reports indirectly

suggest that the down-regulation of miR-125b is necessary for maintaining stem cell

self-renewal and quiescence by allowing expression of its targets, such as MYC,

p53, and p21. On the other hand, miR-494 was expressed abundantly in the stem

cell sub-population. Phosphatase and tensin homolog (PTEN) is one of the principal
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target mRNAs inhibited by miR-494 (Yang et al., 2008, Liu et al., 2010b). It has

been reported that inhibition of PTEN is necessary to maintain prostate stem cell

self-renewal and their colony forming efficiency through prolonged activation of

PI3/Akt pathway (Dubrovska et al., 2009, Hill and Wu, 2009). Over-expression of

PTEN has also been linked with prostate cancer development and metastasis in

mouse models (Wang et al., 2003). Therefore, we have decided to take miR-125b

and miR-494 forward to assess their precise role in prostate stem cell differentiation.

miR-10a and miR-766 were speculatively chosen on the basis of their predicted

mRNA targets, such as TEAD, CEACAM6, and S100p (CEACAM6 and S100p are

candidates genes investigated in SECTION I for their role in prostate stem cell

differentiation, and TEAD has a binding site on the promoters of all the candidate

genes under study for transcriptional regulation of prostate stem cell differentiation).

The expression of these candidate miRNAs was then confirmed in 4 BPH and 4

PCa samples (Figure III3.7). These samples were different from those used to

establish expression by microarray analysis.
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Figure III3.7: qRT-PCR analysis of miR-494, miR-766, miR-125b, and miR-10a in
prostate epithelial sub-populations enriched from BPH and treatment naïve prostate
cancer derived epithelial cultures. *p<0.05, **p<0.01, ***p<0.001 with two tailed t-
test.
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III3.7 miRNA-mRNA microarray Data integration

miRNAs influence multiple genes and hence, multiple signalling pathways.

Determination of all these interactions is essential to understand the complete

spectrum of miRNA effects. We therefore decided to integrate miRNA and mRNA

microarray data, to identify genome-wide correlations between miRNAs and their

respective target mRNAs in similar prostate epithelial samples, across both

differentiation and carcinogenesis. Taking advantage of an already available mRNA

microarray analysis performed in our lab (Birnie et al., 2008), we integrated the

mRNA and miRNA microarray data results. The majority of mRNAs targeted by

miRNAs showed a small but consistent reduction in steady-state levels due to

mRNA destabilisation and degradation (Baek et al., 2008, Guo et al., 2010). Any

negative correlation between miRNA expression and changes in the expression of

their predicted mRNA targets could therefore identify direct miRNA functional

effects. The pathways and processes which could be primarily regulated by miRNAs

were then be detected by pathway and gene ontology analysis on all of the

significantly correlated mRNA targets. The following parameters were set to obtain

unbiased results:

 Filter out mRNA and miRNA that are not expressed in our datasets (348

miRNAs).

 Filter out those miRNAs that do not change between the subsets that are

being compared.

 The mRNA targets of all the differentially expressed miRNAs in stem vs.

committed basal cells with p<0.05 (paired two-tailed t-test and Wilcoxon rank

sum test) were determined using the 5 prediction algorithms (miRanda,

miRDB, RNA2, miRWalk, and TargetScan).

 Only the common mRNA targets predicted by all of the 5 prediction

programs were then analysed for gene ontology and pathway analysis
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 If there are no or very few common predicted targets, then choose the first

25 targets that have highest prediction values.

 From the chosen targets, filter out those targets that are not expressed in

our mRNA microarray.

 Make a list of miRNAs and their targets (positive and negative correlation)

that show a significant correlation.

 Perform GO and pathway analysis along with Gene Set Enrichment Analysis

(GSEA).

 Carry out this analysis for SC vs. CB.

Mr. Antti Ylipää performed this analysis. In this analysis, we found that a significant

number of miRNA targets were correspondingly downregulated in the prostate

epithelial sub-populations. This strong correlation between miRNA and mRNA levels

suggested that miRNAs may have a heavy influence on the regulation of several

prostate epithelial differentiation related pathways. The pathway and GO analysis

performed on correlated mRNA targets of differentially expressed miRNAs identified

that cell cycle and epithelial-stromal (niche) related pathways could be mainly under

miRNA regulation (Table III3.4).
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Pathway P value

1 Mitotic cell cycle 7.79E-07

2 Cell cycle process 9.12E-06

3 Aurora B signaling 1.79E-05

4 Establishment of protein localization 5.18E-05

5 Signaling by Aurora kinases 5.55E-05

6 Protein localization 9.22E-05

7 Intracellular protein transport 0.000158

8 Cell cycle phase 0.000181

9 Protein import 0.000186

10 Endothelins 0.000192

11 Role of Calcineurin-dependent NFAT signaling in
lymphocytes

0.000213

12 IL1-mediated signaling events 0.000218

13 Cell cycle 0.000221

14 Protein transport 0.000224

15 Macromolecule localization 0.000235

16 Class I PI3K signaling events 0.000247

17 Protein targeting 0.000267

18 Establishment of cellular localization 0.000325

19 Cell Cycle: Mitotic 0.00034

20 TRAIL signaling pathway 0.00034

21 IFN-gamma pathway 0.000376

22 Regulation of i-κB kinase NF-κB cascade  0.000392 

23 Actin filament based process 0.000442

24 Cellular localization 0.000465

25 Cytoskeleton organization and biogenesis 0.000476

26 TNF alpha/NF-kB 0.000648

27 TGF-beta receptor signaling 0.001613

28 Regulation of nuclear SMAD2/3 signaling 0.001613

29 BMP receptor signaling 0.00241

30 G1/S Transition 0.004429

31 α6β4 Integrin Signaling Pathway 0.005445

Table III3.4: Pathways principally regulated by miRNAs during primary prostate
epithelial differentiation. mRNA targets of miRNAs, which change significantly and
consistently during differentiation were determined using 5 prediction algorithms.
The corresponding negative expression of these predicted targets was assessed in
mRNA microarray data. The gene ontology and pathway analysis was performed on
the target mRNAs that significantly correlated to the corresponding miRNA
expression.



III3.8 Identification of a prostate specific miRNA

Finally, we wanted to investigate whether any of the miRNA in our analysis is

preferentially expressed in the prostate epithelium. Such miRNA may then be

employed in prostate-specific therapeutic and diagnostic strategies. miR-720 had

the highest expression levels among all the miRNAs tested in our microarrays and,

at the time of investigation, no other miRNA microarray analysis had demonstrated

high miR-720 expression in any other tissue. So, we hypothesised that miR-720

could be a prostate specific miRNA. To test this, miR-720 expression was assessed

in a panel of commercially available 20 normal human tissues from Lonza (Figure

III3.8). However this analysis showed that miR-720 is not a prostate specific miRNA

and its expression was higher in 16 other tissues than in prostate. Previous studies

did not identify miR-720 expression in any tissue, because it was not represented

on the older version of miRNA platforms.
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Figure III3.8: miR-720 expression in a panel of 20 human primary tissues. miR-720
expression was assessed by qRT-PCR. The expression was normalised to RNU6b
and then plotted with reference to the expression in the prostate.
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miR-720 also showed the least variability among all the samples tested in

microarray analysis (Appendix 4: list of miRNAs with high expression and minimal

variance) Together with high expression, a miRNA with the least variation across

samples can be a good candidate as an internal control (or reference miRNA) for

microRNA qRT-PCR studies. The small nucleolar RNAs, such as RNU6b,

commonly used for this purpose have different kinetics and isolation efficiency

compared to miRNAs (Peltier and Latham, 2008, Jung et al., 2010). The miRNAs

are also considerably more stable than small nucleolar RNAs (Jung et al., 2010).

So, we assessed the variability of miR-720 to that of RNU6b by comparing the

variability of these small RNAs with respect to a standard curve and by calculating

variability with the formula: std. dev./average *100 (Figure III3.9 and Table III3.5).

First, the expression of miR-720 was about 15 fold higher than that of RNU6b. The

higher expression of any internal control miRNA is beneficial to prepare a standard

curve and in deltaCt method of the qRT-PCR analysis (Livak and Schmittgen,

2001). Secondly, the variability of miR-720 was slightly lower in all the sub-

populations compared to that of RNU6b. The changes in the expression of RNU6b

and miR-720 were also assessed when primary prostate epithelial cultures were

transfected with hTERT siRNA. The expression of RNU6b and miR-720 did not

change significantly after transfection (Figure III3.10). These findings suggest that

miR-720 could be a better internal control miRNA for miRNA qRT-PCR analysis on

primary prostate epithelial sub-populations. Comparisons could also be made with

RNU6, but it has not been used extensively in prostate cancer miRNA studies.
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SECTION III: 4. Discussion

In this study, primary prostate epithelial culture-derived homogeneous cellular sub-

populations were employed to produce an expression profile of 866 human miRNAs

in the stem cells and their differentiated progeny (TA and CB cells). We have now

generated a consistent and statistically significant dataset, in which we can compare

expression levels, disease association and differentiation driven control of miRNA

expression in the patient-derived prostate tissue.

III4.1 miRNAs and differentiation

Numerous previous studies indicate that miRNAs perform important roles in cellular

differentiation. Mice lacking the miRNA processing enzyme Dicer suffer

developmental arrest during gastrulation (Bernstein et al., 2003), whereas haplo-

insufficiency of Dicer results in increased tumorigenicity. Conditional Dicer knockout

mouse embryonic stem cells also displayed severe defects in differentiation, both in

vitro and in vivo (Kanellopoulou et al., 2005). Furthermore, mammalian stem cells

and their differentiated progeny revealed notably discrete miRNA expression

patterns (Chen et al., 2004, Krichevsky et al., 2006, Goff et al., 2008, Hildebrand et

al., 2011). These findings together with reports illustrating induction of differentiation

or dedifferentiation (iPS cell generation) by specific miRNAs, strongly indicate that

miRNAs are critical regulators of stem cell differentiation (Lin et al., 2008, Tay et al.,

2008, Li et al., 2011, Yi and Fuchs, 2011) suggesting that miRNA expression is very

much cell-type dependent. We therefore carried out miRNA profiling in individual

prostate epithelial sub-populations, rather than analysing the whole tissue mass

(which contains all the epithelial sub-populations, stroma, immune infiltrate and

endothelial cells).
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The latest (at the time of investigation) microarray chips compatible with available

processing platform were used to analyse miRNA expression in normal, benign,

treatment naïve, and castration-resistant prostate samples. The newer version of

arrays used in this analysis (v3) contains about 150 more miRNA probes than the

previous version of Agilent arrays (v2). Visualisation of all the miRNA raw data

generated from these arrays in the form of heatmap revealed that miRNA

expression decreases with differentiation in the prostate epithelium. The stem cell

population, irrespective of their pathological status, had a higher total miRNA

expression than differentiated cells. As miRNAs repress mRNA levels, relatively

higher miRNA expression in stem cells should result into relatively lower mRNA

levels in stem cells compared to differentiated committed basal cells. This was

indeed observed in mRNA microarray analysis performed in our lab in 2008. These

differences in total miRNA expression were lost during normalisation, as robust

multichip average (RMA) analysis assumes that all the samples have an equal RNA

expression and therefore, averages the expression in all the analysed array chips

for normalisation (Bolstad et al., 2003). However, even after normalisation,

unsupervised heatmap clustered samples clearly on the basis of their differentiation

status and not on their pathological status. The differences in expression levels

during differentiation were masked in epithelial sub-populations derived from CRPC

cultures, suggesting that differentiation is grossly aberrant in CRPCs.

III4.2 Prostate stem cell miRNA signature

We found that 135 miRNAs were significantly differentially expressed in stem and

differentiated committed basal cells. This differentiation-influenced cell type-specific

miRNA expression pattern has also been noted in a very limited number of studies

performed on human tissue-specific stem cells and their differentiated progeny,

although, none was as discrete as we have derived (Lee et al., 2011). The prostate
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epithelial stem cell miRNA profile mirrored the profile of human embryonic stem

cells and other epithelial adult stem cells to some extent (Table III4.1). In agreement

with previous investigations, miR-143/145, let-7, miR-203, miR-200 family, miR-101,

and miR-181a/b were also downregulated in prostate epithelial stem cells in our

analysis (Zhang et al., 2010, Cao et al., 2011, Huang et al., 2012, Liu et al., 2012).

We have also identified additional miRNAs such as miR-125b (Shi et al., 2010,

Zhang et al., 2011) and miR-494 that could potentially regulate epithelial stem cell

differentiation (Yang et al., 2008, Dubrovska et al., 2009). Some of the other

miRNAs that we have identified have no clear functions ascribed so far, for example

miR-10a and miR-766. Exploration of their functions could lead to identification of

completely novel regulatory mechanisms active in prostate epithelial differentiation.

MiRNA Expression Known function

miR-302
(family)

Upregulated in
SC by 2.5-15 fold

Associated with the induction of pluripotency in
fibroblasts, to the extent that miR-302 family on its
own can transform cancer fibroblasts to induced
pluripotent stem cells state (Lin et al., 2008)

miR-145 Downregulated in
SC 26.5 fold

Maintenance of prostate, embryonic, corneal and
smooth muscle stem cell self-renewal and
pluripotency prostate cancer bone metastases and
EMT (Cordes et al., 2009, Xu et al., 2009, Lee et
al., 2011, Peng et al., 2011, Huang et al., 2012)

Let-7
(Family)

Downregulated in
SC by 3-9 fold

Repress ‘stemness’ by inhibiting self-renewal and
promotion of differentiation (Bussing et al., 2008)

miR-8
(family)

Downregulated in
SC by 1.5-5 fold

Repress ‘stemness’ by inhibiting self-renewal and
promotion of differentiation (Lin et al., 2009)

miR-17
(family)

Downregulated in
SC by 2-12 fold

Repress ‘stemness’ by inhibiting self-renewal and
promotion of differentiation (Foshay and Gallicano,
2009).

Table III4.1: Classical miRNAs that are differentially expressed in stem vs.

differentiated CB cells. Multiple investigations show that these miRNA/miRNA

families are crucial for human embryonic stem cell maintenance.
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III4.3 miRNA characterising prostate cancer

The comparisons between disease association and miRNA expression suggested

that changes in miRNA expression during prostate carcinogenesis are subtle, unlike

obviously overt changes during differentiation. Even when changes were subtle in

some of our comparisons, we obtained consistent and statistically significant results.

Most of the miRNAs that were over-expressed in PCa cultures are known to

promote tumour growth. For example, miR-886-3p was found to promote cell

proliferation and migration in thyroid cancer (Xiong et al., 2011). Investigations in

head and neck cancers (Nurul-Syakima et al., 2011) and hepatocellular carcinoma

(Lin et al., 2011) showed that miR-1271 and miR-423-3p respectively were

upregulated in those cancers compared to normal tissue. Unlike the above

mentioned miRNAs, miR-1208 and miR-629 may have a closer and direct

relationship with prostate cancer. miR-1208 is located at 8q24, a locus that is

frequently mutated in prostate cancer (Witte, 2007). Direct up-regulation of miR-629

by the IL6-STAT3 pathway has been shown to contribute to liver carcinogenesis

(Hatziapostolou et al., 2011). This pathway is also frequently active in prostate

cancer (Lou et al., 2000) and was shown to be significantly activated in prostate

cancer stem cells (Paula Kroon’s PhD thesis, 2012) and (Birnie et al., 2008),

suggesting a possible role of miR-629 in prostate carcinogenesis. The only

significantly downregulated miRNA in PCa was miR-299-5p. This miRNA has been

investigated in detail in breast cancer, where it is also under-expressed. The lower

expression of miR-299-5p was shown to be necessary for maintaining cell

proliferation and metastasis in breast cancer (Shevde et al., 2010, van Schooneveld

et al., 2012, Yan et al., 2012). Overall, our analysis has identified several interesting

miRNAs that can be instrumental in carcinogenesis. These miRNAs may be

performing similar functions to maintain prostate cancer.
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III4.4 Prostate cancer stem cell miRNA signature

On further comparison of cancer stem cells enriched from treatment naïve cancers

with normal or benign stem cells; a clear prostate cancer stem cell signature was

identified. Functional effects of none of these miRNAs have been investigated in

detail in relation to cancer stem cell fate to date; but they are predicted to regulate

key processes such as (i) chromatin modification (miR-33a*, miR-181a-2*, and miR-

532-3p: through HDACs and SMARCs), (ii) cell cycle and proliferation (miR-487b,

miR-323-3p and miR-1181: through MAPK and KRAS pathways), (iii) cell adhesion

(miR-33a* and miR-181a-2* through cadherins), and (iv) ion transport (miR-181a-2*,

miR-411*, and miR-33a* through ABC and Na+-K+ transporters) (by miRNA target

prediction algorithms). Imbalance in any of these processes is known to cause

carcinogenic transformations (Umbas et al., 1992, Johnson et al., 2001, Gottesman

et al., 2002, Johnstone, 2002, Wagner and Nebreda, 2009). In a recent 2011

publication, Liu et al identified under-expression of miR-34a in prostate cancer stem

cells (Liu et al., 2011). Using cell line models, they showed that overexpression of

miR-34a can inhibit CD44 and hence, prostate cancer stem cells. This miRNA is

also under-expressed in our analysis in cancer stem cells, but the down-regulation

was not statistically significant. Another study by the same group also attempted to

identify a prostate cancer stem cell miRNA signature using PPC-1, PC3, LNCaP,

and Du145 prostate cell line in addition to LAPC9 xenograft model (Liu et al., 2012).

The miRNA signature of cancer stem cells obtained in each of their models was

very heterogeneous and the fold changes in differentially expressed miRNAs were

minimal. They could identify only 2 differentially expressed miRNAs (overexpression

of miR-301 and miR-452 in cancer stem cell population vs. non-cancer stem cell

population) common for all the 5 cell types analysed. The observed differences in

the cancer stem cell signature in all these models and the subsequent identification

of only 2 differentially expressed miRNAs could be predominantly due to analysis of
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a limited number of miRNAs (only 310) and inherently very distinct miRNA

expression profile cell-types used for analysis. The authors also did not compare

their cancer stem cell miRNA signature with a normal or benign stem cell signature.

Thus, the cancer stem cell signature in Liu et al study could be a common stem cell

miRNA signature and not a specific prostate cancer stem cell miRNA signature.

III4.5 miRNA characterising CRPCs

We have also identified a specific castration-resistant prostate cancer (CRPC)

miRNA signature. One of the potential oncogenic candidate miRNA in CRPCs is

miR-146a. Investigations in anaplastic thyroid cancer and cervical cancers also

found miR-146a to be oncogenic (Wang et al., 2008b, Pacifico et al., 2010).

However, in gastric and pancreatic cancers miR-146a is considered as a tumour

suppressor (Kogo et al., 2011, Labbaye and Testa, 2012). Xu et al investigated the

expression of miR-146a in human CRPCs and noted that miR-146a is down-

regulated in a subset of CRPCs (Xu et al., 2012). The authors showed that miR-

146a could inhibit the expression of ROCK1 in prostate cell lines, which in turn

inhibits cell proliferation and metastasis. These contrasting findings suggest that

miR-146a may have tissue specific functions and can influence several signalling

pathways. Recent investigations in glioblastoma added extra complexity to the role

of miR-146a. Mei and colleagues showed that miR-146a forms a part of an internal

feedback regulatory loop to control tumour growth. Activated EGFR signalling and

mutated PTEN, which drive glioblastoma growth, can also stimulate miR-146a

expression (Mei et al., 2011). Increased miR-146a then inhibited NOTCH1

expression to curtail further growth of the glioblastoma. So even if miR-146a is

overexpressed in glioblastoma, it is actually a tumour suppressor miRNA. At least a

subset of CRPCs also exhibit high NF-kB activity (Sweeney et al., 2004, Domingo-

Domenech et al., 2006), mutated PTEN (Mulholland et al., 2006) and activated
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EGFR signalling (Di Lorenzo et al., 2002). Thus, miR-146a sits at the junction of

several key pathways that are important in CRPC progression. Its overexpression in

the CRPC cultures from our study can signify alterations in any of these or all of

these pathways, suggesting that rather than focussing on a one specific target,

assessing the genome-wide effects of miRNA expression alteration in a tissue

specific manner is vital to obtain the complete spectrum of miRNA functionality.

Another potentially oncogenic miRNA, miR-221, provides more compelling evidence

for its oncogenic functions in multiple cancers. Although two investigations indicated

the association of miR-221 down-regulation with PCa and CRPC (Ambs et al., 2008,

Jalava et al., 2012), other microarray studies and functional investigations showed

that miR-221 is necessary for androgen independent growth in vitro and in vivo

(Mercatelli et al., 2008, Siva et al., 2009, Sun et al., 2009, Zheng et al., 2012). miR-

221 can inhibit p27kip1 and can also alter androgen signalling to promote androgen

independent growth in prostate cancer (Galardi et al., 2007, Sun et al., 2012). Data

from other epithelial cancers, especially breast cancer, indicated that over-

expression of miR-221 and down-regulation of the miR-200 family imparts an

epithelial to mesenchymal transition (EMT) phenotype (Howe et al., 2012). The

over-expression of miR-221 and down-regulation of two miR-200 family members

(miR-220b* and miR-200c*) in CRPCs in our analysis imply the occurrence of an

EMT in CRPCs. The presence of EMT phenotype is indeed linked to the

aggressiveness of multiple cancers, including prostate cancer (Nauseef and Henry,

2011).

miR-1247 has emerged as a prime potential tumour suppressor miRNA from

CRPCs in our investigation. This miRNA is usually silenced by DNA methylation in

colon cancer (Yan et al., 2011). Ectopic overexpression of miR-1247 in colon cancer

cell lines resulted in inhibition of growth and migration (Yan et al., 2011). ADAM15 is

one of the important predicted targets of miR-1247, which is considered important
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for prostate cancer metastasis (Najy et al., 2008). Identifying the functions of miR-

1247 and its relationship with ADAM15 can potentially elucidate miRNA-mediated

prostate cancer metastasis pathways. Another miRNA down-regulated in CRPCs is

miR-375. It is also consistently down-regulated in lung (Nishikawa et al., 2011), liver

(Liu et al., 2010a), cervical (Wang et al., 2011a), head and neck (Avissar et al.,

2009), and gastric (Tsukamoto et al., 2010) cancers. In these studies, miR-375

inhibited tumour progression by targeting diverse transcription factors such as,

YAP1, SP1, 14-3-3ζ, and PDK1. These findings again illustrates that miRNA can 

alter multiple pathways and genome-wide correlations should be made to gain

complete insight.

III4.6 miRNA-mRNA integrative dataset

The change in miRNA expression, especially during differentiation, was large and

involved hundreds of miRNAs. Choosing just a few candidate miRNAs for further

evaluation may not elucidate the entire pattern of gene regulation. From the prostate

cancer and CRPC signatures, it is clear that multiple miRNAs affect select pathways

and processes, e.g. cell fate, chromatin modification, cell adhesion, and ion

transport. We reasoned that direct genome-wide correlation between miRNA and

mRNA levels would identify signalling pathways principally regulated by miRNAs.

Similar integration analyses were performed in prostate and other cancers

previously (Enerly et al., 2011). But these studies compared expression of selected

miRNAs (usually less than 20) and their mRNA targets in any given tissue.

Our integration analysis revealed that several pathways regulating cell cycle,

prostate epithelial-niche interaction, and cell survival could be principally controlled

by miRNAs during primary prostate epithelial differentiation. Cell cycle regulation

was by far the most common process regulated by miRNAs, suggesting that stem

and differentiated committed basal cells have very different cell cycle profiles. It is



272

indeed noted that adult stem cells in general are relatively quiescent, including

prostate epithelial stem cells (Richardson et al., 2004, Collins et al., 2005, Li and

Bhatia, 2011). Our integration analysis implies that this quiescence may be mainly

regulated by miRNAs in the prostate. This analysis has also identified miRNA-

regulated pathways that are instrumental in the regulation of stem cell

differentiation, such as estrogen signalling (Hussain et al., 2012) and P38 MAP

kinase signalling (Oeztuerk-Winder and Ventura, 2012). Moreover, miRNAs can

influence differentiation through regulation of paracrine signalling pathways (IL-1)

and niche associated signalling (integrin, BMP, Smad4 and TGF-β pathways). The 

identification of PI3 kinase, NF-κB, and TRAIL-TNF-α signaling pathways as 

principal targets of miRNAs in this differentiation associated analysis, might link

prostate carcinogenesis with differentiation (An et al., 2003, Paule et al., 2007,

Dubrovska et al., 2010). This knowledge can be used to design more specific

therapeutic interventions. A more focused approach that can identify key miRNAs

affecting several important signaling networks can help to design more specific

therapeutic strategies. Several algorithms such as Sigterms, CORNA, and MMIA

can help in identification of such key targets (Gunaratne et al., 2010). Thus, our

miRNA-mRNA genome wide integration can provide a multi-dimensional view of the

regulation of prostate stem cell differentiation.

III4.7 miR-720 as an internal control for qRT-PCR miRNA

analysis

Detection of miRNA expression by qRT-PCR is the commonest technique used for

the analysis of miRNA expression. In order to normalise expression of miRNAs in

multiple samples, a good internal control (or reference gene) is essential. Recent

reports suggest that RNU6b may not be an ideal internal control as it has some

functional roles, e.g. regulation of cell proliferation, and can endure a significant
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change in expression in cancer, more notably in urological cancers (Wotschofsky et

al., 2011, Ratert et al., 2012). It would be ideal to identify a miRNA with high

expression and low variance between samples to be analysed by qRT-PCR to use

as an internal control. Therefore, we looked into miRNAs that had high expression

and low variance among all the miRNA samples. miR-720 had the highest

expression and least variance. After ruling out the prostate specificity of miR-720,

we confirmed that miR-720 could be a better internal control for miRNA qRT-PCR

analysis on primary prostate epithelial cultures. This is the first study that identifies a

particular miRNA as a suitable internal control for miRNA-related primary prostate

epithelial investigations.

In summary, this miRNA analysis has created a statistically significant and

consistent miRNA microarray database. This database could be enhanced by

adding the normal and cancerous luminal cell miRNA profile. Together with the

integrated mRNA database, novel and specific targets for diagnosis/prognosis and

management of prostate cancer could now be identified.
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4. CONCLUSIONS

The main purpose of this investigation was to delineate critical pathways, which

are responsible for the maintenance of prostate epithelial hierarchy in patient-

derived prostate tissue. Three distinct but converging approaches were used: a

transcriptional regulatory approach, telomerase-mediated regulation, and

miRNA-mediated microarray analyses have identified novel regulatory

mechanisms. The output of these investigations not only provided direct

information about basic pathophysiology of human adult prostate epithelial stem

cell maintenance but can also potentially be used for diagnostic, prognostic, and

therapeutic purposes.

Multiple lines of evidence in our analyses suggested that prostate cancer stem

cells (CSCs) are quiescent. The foremost evidence came from the observation

of undetectable telomerase expression and activity in prostate CSCs. This

observation is supported by independent finding of significantly lower Ki-67

immunostaining in prostate CSCs compared to their differentiated progeny

(Frame et al., in preparation). Investigations from other labs also suggested that

prostate CSCs or cells similar to prostate CSCs in their models could be

quiescent (Palapattu et al., 2009, Qin et al., 2012). The interesting fact is that

the differentiated progeny of prostate cancer stem cells (transit amplifying cells,

committed basal cells, and luminal cells) express relatively high levels of

telomerase, indicating a proliferative nature. There could be three possible

explanations for this differential telomerase expression. First, the differentiated

prostate cancer cells lose contact with stromal niche. TGF-β signalling, one of 

the pathways in this niche, is known to directly regulate hTERT expression

(Tsujimura et al., 2002, Geserick et al., 2006, Cassar et al., 2010). Changes in

similar stromal niche influences can therefore dictate differential telomerase
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expression. Second, there could be differential post-transcriptional or epigenetic

regulation of hTERT or one of its critical interaction partners. Our miRNA-mRNA

analysis has indeed showed that pathways regulating cell quiescence and

proliferation (including TGF-β signalling) could be under strict miRNA control 

(Table III3.5). And third, there could be a change in expression of one of the

critical hTERT interaction partners or transcriptional factors regulating hTERT

expression during differentiation. For example, WNT and hTERT are likely to be

involved in a negative feedback loop (Park et al., 2009, Hoffmeyer et al., 2012)

and one of the WNT ligand (WNT5a) is differentially expressed between

prostate cancer stem cells and their differentiated progeny (Birnie et al., 2008),

which may influence hTERT functionality. Similar mechanisms may also be

responsible for differential telomerase expression in sub-populations enriched

from benign prostatic hyperplasia. Further exploration of these possibilities is

essential to determine more precise regulation of prostate cancer stem cell

quiescence and proliferative potential of other hierarchical sub-populations.

The majority of the remaining investigations were focused on prostate stem cell

differentiation. These investigations indicated that prostate stem cell

differentiation could be a process delicately controlled by a mRNA-miRNA

network. The data based on mRNA microarrays provided a compelling initial

evidence for a retinoic acid regulated network of LCN2, CEACAM6, and S100p

in the regulation of prostate epithelial stem cells enriched from BPH and

treatment naïve prostate cancer-derived cultures. One additional feature of the

LCN2, CEACAM6, and S100p gene group is that they all can be regulated by a

common group of 24 transcription factors, most of which can in turn be regulated

by only three miRNAs (miR128, miR-188, and miR-548c). This observation

suggested that these 3 miRNAs along with LCN2, CEACAM6, and S100p could

be important for the regulation of prostate epithelial stem cell differentiation.
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Apart from this, prostate epithelial stem cells also exhibit a classical human

embryonic stem cell-like miRNA signature in addition to a prostate stem cell-

specific miRNA signature. All this information suggested that several genes and

miRNAs participate in the regulation of prostate epithelial stem cell

differentiation. Thus, choosing just one or two ‘promising’ target genes/miRNAs

may not capture the central regulatory circuitry in its entirety. We have created a

genome-wide integrative dataset composed of miRNAs over- or under-

expressed in stem cells, compared to their differentiated progeny, and related

this to the correspondingly inversely expressed mRNA targets of these miRNAs

to provide a powerful and unbiased approach for the identification of novel

pathways responsible for prostate epithelial stem cell maintenance. This

integrative dataset has the ability to identify key nodes (miRNAs and mRNAs)

that can be targeted to perturb prostate epithelial stem cell regulation, which can

potentially be exploited to develop specific and efficient prostate stem cell

targeting therapies.

Finally, a note on the prostate epithelial hierarchy in castration-resistant prostate

cancer (CRPC) and patient-derived prostate xenograft in immunocompromised

mice. Our investigations of the expression of the candidate genes (LCN2,

CEACAM6, and S100p) and telomerase consistently showed that their

expression magnitude and pattern was noticeably different in the prostate

epithelial sub-populations enriched from CRPCs and patient-derived prostate

xenografts, compared to BPH or treatment naïve prostate cancer-derived sub-

populations. Even the miRNA expression pattern in sub-populations enriched

from CRPCs was remarkably different. These findings suggest that the prostate

epithelial hierarchy is significantly disorganised in CRPCs and xenografts and/or

a modified set of surface-markers is necessary to enrich pure and homogeneous

hierarchical sub-populations from these two systems. In any case, our findings
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suggest that the CRPCs and patient derived xenografts are more similar to each

other, but differ remarkably from treatment naïve prostate cancers.

In summary, we have identified potentially novel miRNA and mRNA-mediated

prostate stem cell regulatory pathways, in addition to the identification of cell and

microenvironment specific telomerase expression pattern in the prostate

epithelial sub-populations.
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5. APPENDICES

Appendix 1:

Top 50 genes, which are significantly overexpressed in committed basal cells

(CB) compared to stem cells (SC). Expression mean is mentioned as log2.

Symbol Description
mean

(SC)

mean

(CB)

difference

in means

1 CEACAM6

carcinoembryonic antigen-

related cell adhesion

molecule 6 (non-specific

cross reacting antigen)

6.99151 10.0672 3.07568

2 SPRR1A
small proline-rich protein

1A
8.10551 11.1592 3.05369

3 SPRR3 small proline-rich protein 3 6.91313 9.891 2.97787

4 CEACAM5

carcinoembryonic antigen-

related cell adhesion

molecule 5

6.05929 8.94361 2.88433

5 CEACAM6

carcinoembryonic antigen-

related cell adhesion

molecule 6 (non-specific

cross reacting antigen)

7.43453 10.2339 2.79939

6 RARRES1

retinoic acid receptor

responder (tazarotene

induced) 1

4.16271 6.87451 2.7118

7 KRT13 keratin 13 7.11128 9.76094 2.64965

8 S100P
S100 calcium binding

protein P
8.62272 11.177 2.55424

9 CALB1 calbindin 1, 28kDa 5.46743 7.96813 2.50069

10 SPINK7
serine peptidase inhibitor,

Kazal type 7 (putative)
5.95419 8.32059 2.3664

11 CALB1 calbindin 1, 28kDa 6.24066 8.56515 2.32449

12 SLC6A14

solute carrier family 6

(amino acid transporter),

member 14

8.57649 10.8768 2.30031

13 S100A7
S100 calcium binding

protein A7
5.20657 7.47894 2.27237

14 CEACAM7

carcinoembryonic antigen-

related cell adhesion

molecule 7

4.95722 7.22583 2.2686

15 PIP prolactin-induced protein 6.39722 8.66163 2.2644

16 GCNT3
glucosaminyl (N-acetyl)

transferase 3, mucin type
6.72717 8.98091 2.25374

17 SERPINB3 serpin peptidase inhibitor, 8.01811 10.2594 2.24127
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clade B (ovalbumin),

member 3

18 SERPINB3

serpin peptidase inhibitor,

clade B (ovalbumin),

member 3

8.78593 11.0193 2.23342

19 HPGD
hydroxyprostaglandin

dehydrogenase 15-(NAD)
5.80864 8.03769 2.22904

20 SERPINB4

serpin peptidase inhibitor,

clade B (ovalbumin),

member 4

4.35602 6.5467 2.19068

21 HPGD
hydroxyprostaglandin

dehydrogenase 15-(NAD)
4.9533 7.02639 2.07309

22 HOPX HOP homeobox 7.0089 9.04912 2.04022

23 RARRES1

retinoic acid receptor

responder (tazarotene

induced) 1

3.91068 5.93452 2.02384

24 DHRS9
dehydrogenase/reductase

(SDR family) member 9
7.8965 9.88951 1.99302

25 DHRS9
dehydrogenase/reductase

(SDR family) member 9
7.84488 9.83075 1.98587

26 7.34314 9.25366 1.91052

27 CRCT1 cysteine-rich C-terminal 1 6.86493 8.74567 1.88074

28 SERPINB13

serpin peptidase inhibitor,

clade B (ovalbumin),

member 13

5.7174 7.59684 1.87944

29 PI3
peptidase inhibitor 3, skin-

derived
8.72965 10.5821 1.85249

30 SPRR3 small proline-rich protein 3 6.27342 8.11858 1.84515

31 SPRR1A
small proline-rich protein

1A
8.49782 10.3273 1.8295

32 LCN2 lipocalin 2 9.38905 11.1813 1.79226

33 TCN1

transcobalamin I (vitamin

B12 binding protein, R

binder family)

7.48053 9.24031 1.75978

34 PI3
peptidase inhibitor 3, skin-

derived
8.24627 10.0002 1.75397

35 HPGD
hydroxyprostaglandin

dehydrogenase 15-(NAD)
4.06631 5.8156 1.74928

36 SPRR1B
small proline-rich protein

1B (cornifin)
9.74324 11.4762 1.73293

37 TMEM45B
transmembrane protein

45B
6.97697 8.68186 1.70489

38 SERPINB13

serpin peptidase inhibitor,

clade B (ovalbumin),

member 13

5.21592 6.89262 1.6767

39 NEBL nebulette 5.07518 6.6585 1.58332

40 DHRS9 dehydrogenase/reductase 9.95676 11.5048 1.54799
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(SDR family) member 9

41 CXCL17
chemokine (C-X-C motif)

ligand 17
6.25709 7.79884 1.54175

42 AGR2
anterior gradient homolog

2 (Xenopus laevis)
6.54235 8.04734 1.50499

43 SCEL sciellin 7.30742 8.81141 1.50399

44 GDF15
growth differentiation

factor 15
7.82598 9.31014 1.48416

45 KLK7
kallikrein-related peptidase

7
7.24742 8.72544 1.47803

46 CAPN14 calpain 14 4.00898 5.48083 1.47185

47 MUC20
mucin 20, cell surface

associated
5.4347 6.8867 1.452

48 5.67062 7.12034 1.44972

49 MAL
mal, T-cell differentiation

protein
5.13578 6.5784 1.44263

50 KLK7
kallikrein-related peptidase

7
7.55934 8.98312 1.42379
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Appendix 2

miRNA significantly upregulated in stem cells (SC) compared to differentiated

committed basal cells (CB): Fold difference >3, mean expression > 20 arbitrary

units in microarrays, and p > 0.01, t-test: paired two-tailed t-test and u-test:

Wilcoxon rank-sum test.

miRNA p (t-test) p (u-test) SC/CB

1 hsa-miR-513a-5p 0.003627 0.000125 207.6097

2 hsa-miR-572 0.00011 7.47E-06 98.84424

3 hsa-miR-638 2.48E-05 7.47E-06 95.58457

4 hsa-miR-765 0.005706 2.14E-05 85.85846

5 hsa-miR-663 0.001224 0.000125 76.67911

6 hsa-miR-1321 0.001839 7.02E-05 72.03593

7 hsa-miR-345 0.003128 0.00018 55.84791

8 hsa-miR-630 4.92E-05 9.25E-06 47.3539

9 hsa-miR-483-5p 0.006555 0.004717 42.91736

10 hsa-miR-648 0.0044 7.04E-05 38.39434

11 hsa-miR-1915 0.000224 7.47E-06 33.91599

12 hsa-miR-494 9.51E-05 0.000125 33.67538

13 hsa-miR-940 0.001041 7.47E-06 29.71811

14 hsa-miR-1826 0.000409 0.000125 26.76884

15 hsa-miR-1246 0.000353 9.25E-06 26.02523

16 hsa-miR-566 0.008334 0.001926 23.26418

17 hsa-miR-874 0.001973 0.000125 21.43633

18 hsa-miR-1207-5p 0.000124 0.000125 18.54786

19 hsa-miR-1228 0.00789 0.000103 16.63887

20 hsa-miR-631 0.006428 0.001198 13.79996

21 hsa-miR-766 0.000975 7.47E-06 13.28816

22 hsa-miR-1275 0.000716 0.000181 13.07876

23 hsa-miR-617 4.72E-06 7.47E-06 12.64253

24 hsa-miR-92b 0.007817 1.14E-05 12.62047

25 hsa-miR-636 0.00394 9.25E-06 12.30161

26 hsa-miR-574-5p 0.000295 7.47E-06 12.12288

27 hsa-miR-220c 0.003996 2.35E-05 11.71661

28 hsa-miR-653 0.004335 0.00091 10.67538

29 hsa-miR-1825 0.004024 7.47E-06 10.62787

30 hsa-miR-634 0.00836 2.62E-05 9.161396

31 hsa-miR-623 0.001985 3.92E-05 9.006261

32 hsa-miR-662 0.001176 0.004082 8.602362

33 hsa-miR-1290 0.006363 0.007189 8.346788

34 hsa-miR-939 0.000445 0.000125 7.664512

35 hsa-miR-1272 0.000864 0.002618 7.618045

36 hsa-miR-659 0.001258 0.000522 7.318321

37 hsa-miR-1202 0.000908 0.000259 5.476692
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38 hsa-miR-935 0.000895 0.001235 4.892814

39 hsa-miR-665 0.001007 1.14E-05 4.315723
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Appendix 3:

miRNA significantly upregulated in differentiated committed basal cells (CB)

compared to stem cells (SC): Fold difference >3, mean expression > 20 arbitrary

units in microarrays, and p > 0.01, t-test: paired two-tailed t-test and u-test:

Wilcoxon rank-sum test

Mir name p (t-test) p (u-test) CB/SC

1 hsa-miR-153 3.71E-08 3.82E-06 169676.6

2 hsa-miR-143 2.80E-08 7.34E-06 137.9731

3 hsa-miR-340 4.22E-09 7.32E-06 124.7923

4 hsa-miR-335 1.79E-07 7.26E-06 118.2251

5 hsa-miR-532-3p 1.13E-09 7.38E-06 91.92148

6 hsa-miR-542-3p 1.91E-08 7.47E-06 54.82151

7 hsa-miR-652 2.25E-11 7.30E-06 40.71522

8 hsa-miR-218 1.68E-10 7.47E-06 40.70796

9 hsa-miR-152 5.36E-09 7.45E-06 39.07096

10 hsa-miR-362-3p 3.28E-09 7.47E-06 36.42715

11 hsa-miR-181c 2.41E-09 7.40E-06 36.41657

12 hsa-miR-194 3.92E-10 7.47E-06 34.42391

13 hsa-miR-195 3.53E-11 7.47E-06 32.55667

14 hsa-miR-199b-5p 1.45E-09 7.47E-06 29.75735

15 hsa-miR-532-5p 1.59E-10 7.47E-06 29.58983

16 hsa-miR-145 1.19E-08 7.47E-06 24.66274

17 hsa-miR-132 2.67E-09 7.38E-06 23.77544

18 hsa-miR-450a 4.92E-09 7.47E-06 23.63056

19 hsa-miR-214 4.33E-10 7.38E-06 23.09888

20 hsa-miR-219-5p 7.72E-09 7.47E-06 22.89941

21 hsa-miR-744 1.15E-09 7.47E-06 22.68216

22 hsa-miR-193a-3p 1.09E-08 7.47E-06 22.46801

23 hsa-miR-10a 1.17E-10 7.47E-06 22.119

24 hsa-miR-199a-5p 2.31E-12 7.47E-06 21.73395

25 hsa-miR-301a 8.60E-14 7.47E-06 21.38827

26 hsa-miR-30e 1.80E-12 7.47E-06 20.80675

27 hsa-miR-25 6.22E-10 7.47E-06 19.9304

28 hsa-miR-34c-5p 5.60E-11 7.47E-06 19.91615

29 hsa-miR-497 1.16E-10 7.45E-06 19.55311

30 hsa-miR-582-5p 7.56E-10 7.47E-06 19.53977

31 hsa-miR-106b 1.69E-10 7.47E-06 19.0844

32 hsa-miR-101 7.20E-18 7.47E-06 19.07501

33 hsa-miR-10b 1.81E-09 7.47E-06 17.49733

34 hsa-miR-185 5.85E-16 7.47E-06 17.49473

35 hsa-miR-93 1.18E-10 7.47E-06 17.23883
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36 hsa-miR-128 2.29E-11 7.45E-06 16.58712

37 hsa-miR-30a* 9.87E-13 7.45E-06 16.57182

38 hsa-miR-33a 3.95E-10 7.47E-06 15.98261

39 hsa-miR-99b 5.18E-10 7.47E-06 15.56193

40 hsa-miR-99a 4.06E-13 7.47E-06 15.24409

41 hsa-miR-28-5p 4.61E-15 7.47E-06 14.66839

42 hsa-miR-32 1.78E-09 7.47E-06 14.09838

43 hsa-miR-374b 8.33E-15 7.47E-06 13.77631

44 hsa-miR-30a 8.37E-16 7.47E-06 13.02261

45 hsa-miR-30c 1.47E-07 7.47E-06 12.42804

46 hsa-miR-148b 7.16E-16 7.47E-06 12.06068

47 hsa-miR-18a 1.64E-12 9.25E-06 11.95384

48 hsa-miR-542-5p 7.07E-09 7.43E-06 11.43153

49 hsa-miR-324-5p 3.67E-12 7.47E-06 11.35735

50 hsa-miR-30b 6.52E-17 7.47E-06 11.23044

51 hsa-miR-342-3p 3.65E-13 9.25E-06 10.87114

52 hsa-miR-96 2.04E-11 7.47E-06 10.86863

53 hsa-miR-151-5p 6.23E-16 7.47E-06 10.84536

54 hsa-miR-126 8.20E-13 7.47E-06 10.55507

55 hsa-miR-502-3p 1.62E-10 7.47E-06 10.45076

56 hsa-miR-98 8.34E-13 7.47E-06 10.42639

57 hsa-miR-17* 1.01E-10 1.14E-05 10.3463

58 hsa-let-7i 7.33E-11 7.47E-06 9.234769

59 hsa-miR-183 3.08E-11 9.25E-06 8.676576

60 hsa-miR-130a 9.11E-15 7.47E-06 8.389286

61 hsa-miR-378 1.15E-12 7.47E-06 8.155129

62 hsa-miR-130b 2.41E-10 9.25E-06 7.929966

63 hsa-miR-15b 2.04E-12 7.47E-06 7.504631

64 hsa-miR-425 4.90E-10 9.23E-06 7.02421

65 hsa-miR-186 1.34E-11 7.47E-06 6.991253

66 hsa-miR-16 4.78E-12 7.47E-06 6.707356

67 hsa-let-7e 1.85E-11 7.47E-06 6.6934

68 hsa-miR-18b 1.39E-10 7.47E-06 6.400111

69 hsa-miR-125b 3.91E-15 7.47E-06 6.118902

70 hsa-let-7d 4.89E-14 7.47E-06 6.102874

71 hsa-miR-26a 3.78E-14 7.47E-06 5.675824

72 hsa-miR-224 3.28E-11 7.47E-06 5.613235

73 hsa-miR-26b 3.09E-12 7.47E-06 5.55756

74 hsa-miR-361-5p 1.37E-09 2.14E-05 5.479726

75 hsa-miR-487b 1.60E-07 2.62E-05 5.35076

76 hsa-miR-500* 1.57E-10 7.47E-06 5.278184

77 hsa-miR-19a 1.32E-10 7.47E-06 5.197589

78 hsa-miR-29a 1.24E-15 7.47E-06 5.041888

79 hsa-miR-20b 1.00E-11 7.47E-06 4.930728
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80 hsa-miR-21 1.09E-11 9.25E-06 4.810083

81 hsa-miR-423-5p 3.24E-10 7.47E-06 4.62981

82 hsa-miR-182 1.20E-08 3.92E-05 4.611759

83 hsa-miR-29c 7.33E-11 7.47E-06 4.393718

84 hsa-let-7g 1.08E-10 7.47E-06 4.30273

85 hsa-miR-221* 3.60E-07 7.05E-05 4.19019

86 hsa-miR-29b 1.23E-11 7.47E-06 4.176767

87 hsa-miR-21* 1.88E-09 9.25E-06 4.003028

88 hsa-miR-107 1.08E-08 9.25E-06 3.936753

89 hsa-miR-15a 6.28E-09 2.62E-05 3.814922

90 hsa-miR-22 2.27E-09 1.14E-05 3.762419

91 hsa-miR-34b* 1.53E-08 2.62E-05 3.718489

92 hsa-miR-210 7.45E-09 1.74E-05 3.649707

93 hsa-miR-31 4.53E-11 7.47E-06 3.485603

94 hsa-miR-181b 1.14E-09 1.41E-05 3.268455

95 hsa-miR-23b 7.74E-08 1.41E-05 3.254016

96 hsa-miR-27b 1.62E-08 1.74E-05 3.23319

97 hsa-miR-212 5.71E-09 1.41E-05 3.178387

98 hsa-miR-222 2.74E-07 4.78E-05 3.097119

99 hsa-miR-19b 1.06E-07 1.14E-05 3.041002
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Appendix 4:

miRNAs with high expression and low variations

miRNA Mean expression (log 10) Variance
hsa-let-7a 3.320 0.116
hsa-let-7b 3.176 0.042
hsa-let-7c 2.919 0.098
hsa-miR-15a 2.276 0.142
hsa-miR-34a 2.407 0.101
hsa-miR-221 2.443 0.125
hsa-miR-125a-5p 2.047 0.194
hsa-miR-365 2.403 0.083
hsa-miR-324-3p 2.199 0.049
hsa-miR-320b 2.072 0.115
hsa-miR-1202 2.321 0.170
hsa-miR-1260 3.407 0.099
hsa-miR-1274b 3.856 0.136
hsa-miR-1280 2.299 0.089
hsa-miR-1308 2.320 0.107
hsa-miR-720 4.239 0.040
hsa-miR-320d 2.039 0.073
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6. ABBREVIATIONS

µg
µl
µM
µm
5-Azt
ADT
ALT
AR
ARHI
ATCC
at-RA
AZ
BCA
bp
BPH
BSA
CB
CD
cDNA
CEACAM6
ChIP
CK
CO2

CpG
CRPC
CR-PCa
CRU
CSC
Ct

CTC
CZ
D10
DAPI
ddH20
dH2O
DHT
DMEM
DMSO
DNA
dNTPS
ECACC
ECL
ECM
EDTA
EGF
ELISA
EMBOSS
EMT
ERG
ES
EtOH

Microgram
Microlitre
Micromolar
Micrometre
5-Aza-2’-deoxycytidine
Androgen deprivation therapy
Alternative lengthening of telomeres
Androgen receptor
Aplasia Ras homolog member I
American type culture collection
All-trans retinoic acid
Anterior Zone
Bicinchoninic acid
Base pairs
Benign Prostatic Hyperplasia
Bovine serum albumin
Committed basal
Cluster of differentiation
Complimentary DNA
Carcinoembryonic antigen-related cell adhesion molecule 6
Chromatin Immunoprecipitation
Cytokeratin
Carbon dioxide
Cytosine-phosphate-guanine
Castrate resistant prostate cancer
Castrate resistant prostate cancer
Cancer research unit
Cancer stem cell
Threshold cycle
Circulating tumour cell
Central zone
DMEM + 10% FCS
4',6-diamidino-2-phenylindole
Double distilled water
Distilled water
Dihydrotestosterone
Dulbecco’s modified eagle medium
Dimethyl sulfoxide
Deoxyribonucleic acid
Deoxyribonucleotide triphosphate
European collection of cell cultures
Enhanced chemiluminescence
Extracellular matrix
Ethylenediaminetetraacetic acid
Epidermal growth factor
Enzyme-linked immunosorbent assay
European molecular biology open software suite
Epithelial-to-mesenchymal transition
V-ets erythroblastosis virus E26 oncogene homolog
Embryonic stem
Ethanol
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FCS
FDA
FGF
FISH
g
G0
G1
G2/M
GAPDH
GnRH
GY

H7
HCl
HDAC
hES
hTERT
hTR
IgG
kB
KCl
kDa
Ki67 (MKI67)
KSFM
LA
LB
LCN2
LIF
LRP
MACS
MAPK
MgCl2
Min
MiRNA
ml
mM
mm
MMP
mRNA
NaCl
NaOH
ND
ng
NKX3.1
nM
NP-40
P21
P27KIP
P53
P63
PAGE
PAP
PBS
PCa
PCR
PI3K

Fetal calf serum
Food and Drug Administration
Fibroblast growth factor
Florescent in situ hybridisation
Gram
G zero phase
Gap 1 phase
Gap 2 phase/mitosis
Glyceraldehyde 3-phosphate dehydrogenase
Gonadotrophin-releasing hormone
Gray
Ham’s F-12 medium + 7% FCS
Hydrogen chloride
Histone deacetylase
Human embryonic stem
Human telomerase reverse transcriptase
Human telomerase RNA
Immunoglobulin G
Kilobase
Potassium chloride
Kilo Dalton
Antigen identified by monoclonal antibody Ki-67
Keratinocyte serum free medium
Left apex
Left base
Lipocalin 2
Leukaemia inhibitory factor
Laparoscopic radical prostatectomy
Magnetic-activated cell sorting
Mitogen-activated protein kinase
Magnesium chloride
Minute
Micro RNA
Millilitre
Millimolar
millimetre
Matrix metallopeptidase
Messenger RNA
Sodium chloride
Sodium hydroxide
Non-detectable
Nanogram
NK3 transcription factor related, locus 1
Nanomolar
Tergitol-type NP-40
Cyclin-dependent kinase inhibitor 1A
Cyclin-dependent kinase inhibitor 1B(CDKN1B)
Tumour protein 53
Tumour protein 63
Polyacrylamide gel electrophoresis
Prostatic acid phosphatase
Phosphate-buffered saline
Treatment naïve prostate cancer
Polymerase chain reaction
Phosphoinositide 3-kinase
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PIN
PSA
PSAPb
qPCR
qRT-PCR
R10
R1881
R5
RA
Rag2
RAR
RARα 
RARβ 
RARγ 
RISC
RNA
RPLP0
RPM
RPMI
RT
RXR
RARα 
RARβ 
RARγ 
S100P
SC
SCM
Scr
SDS
siRNA
SPRR3
SV40
TA
TAE
Taq
TBS
TBST
TE
TERT
TF
TMPRSS2
TR
TRAP
TSA
TSS
TURP
TX-100
TZ
UK
V
v/v
w/v
WNT
β-actin 

Prostatic intraepithelial neoplasia
Prostate-specific antigen
PSA-probasin
Quantitative PCR
Quantitative real-time PCR
RPMI + 10% FCS
Metribolone
RPMI + 5% FCS
Retinoic acid
Recombination activating gene 2
Retinoic acid receptor
RAR alpha
RAR beta
RAR gamma
RNA-induced silencing complex
Ribonucleic acid
Ribosomal protein, large, P0
Revolutions per minute
Roswell Park Memorial Institute medium
Room temperature
Retinoid X receptor
RXR alpha
RXR beta
RXR gamma
S100 calcium binding protein P
Stem cell
Stem cell medium
Scrambled siRNA
Sodium dodecyl sulphate
Small interfering RNA
Small proline-rich protein 3
Simian vacuolating virus 40 Tag
Transit-amplifying cell
Tris base, acetic acid and EDTA buffer
Thermus aquaticus
Tris-buffered saline
Tris-buffered saline with Tween-20
Tris EDTA buffer
Telomerase reverse transcriptase
Transcription factor
Transmembrane protease, serine 2
Telomerase RNA
Telomeric repeat amplification protocol
Trichostatin A
Transcription start site
Transurethral resection of the prostate
Triton X-100
Transitional zone
United Kingdom
Volts
Volume per volume
Weight per volume
Wingless-type MMTV integration site family
Beta actin
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