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Summary 
 
The production of chemical energy from light energy is arguably the most important 

reaction known. Nearly all life depends on energy derived from light and it is by this 

process that the atmosphere of our planet was oxygenated. Chlorophyll is the pigment 

that absorbs light and donates an electron initiating the process of photosynthesis. This 

highly complex molecule is the result of many chemical reactions collectively known 

as chlorophyll biosynthesis. Chlorophyll is a modified tetrapyrrole and shares a 

common synthetic pathway to vitamin B12, Siroheam and haem.  

 

Photosynthetic organisms need both chlorophyll and haem, and the branch point they 

share, committing to the production of either is thought to be highly regulated. The 

common precursor to both pigments is protoporphyrin IX and the fate of the 

macrocycle depends on which divalent metal ion is inserted into the tetrapyrrole. The 

insertion of Fe2+ by ferrochelatase commits to the production of haem whereas the 

insertion of Mg2+ by magnesium chelatase commits to the production of chlorophyll. 

 

The magnesium chelatase is comprised of three subunits that are all essential for 

activity and are known as ChlH (~150 kDa), ChlD (~75 kDa) and ChlI (~40 kDa). It is 

known that the H protein binds both the tetrapyrrole substrate and product of the 

reaction. The I and D subunits are thought to be the catalytic element of the enzyme 

and once a H•substrate complex is formed, this binds with an ID complex to initiate 

the reaction.  
 
This work will focus on the structural and functional characteristics of a thermophilic 

magnesium chelatase (from Thermosynechococcus elongatus) which have never been 

previously studied. 
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CHAPTER 1 

 

Introduction 
 

1.1. Photosynthesis 
 

All life depends on photosynthesis either directly or indirectly, excluding only 

chemolithoautotrophs, making it the most important chemical reaction in nature 

mankind. Photosynthesis is the process of light-driven carbon fixation to form 

carbohydrates. Life is dependent on the energy stored from photosynthesis and it is 

likely that photosynthesis is responsible for the oxygen in Earth’s atmosphere, 

allowing subsequent aerobic life to develop (Buick, 2008). Photosynthesis is used by 

plants, some bacteria and cyanobacteria to produce chemical energy from solar energy, 

through electrochemical energy, in the reaction: 

           Light 

2H2A + CO2 → (CH2O)n + H2O +2A   (van Niel, 1962) 

 

Here CO2 is reduced by H2A to form carbohydrate and A is the oxidation product. 

Oxygenic photosynthesis is performed by plants and cyanobacteria to produce 

chemical energy with the reaction: 

             Light 

    2H2O + CO2 → (CH2O)n + O2 + H2O 

 

In this reaction water is used to provide the electrons that reduce carbon dioxide to a 

carbohydrate. This results in the release of O2 as the oxidation product, hence the name 

oxygenic photosynthesis. In all other photosynthetic bacteria, photosynthesis occurs 

but water is not used as the electron donor. A number of reductants can be used 

examples being molecular hydrogen, succinate and hydrogen sulphide. This process 

results in oxidation products that differ from those for oxygenic photosynthesis and is 

thus termed anoxygenic. 

 

Photosynthesis occurs in two separate stages known as the light-dependent and light-

independent stages. In the light-dependent stages photons excite electrons in pigments 
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to a higher energy state. When the electron returns to its original energy state this 

energy is used to drive ATP and NAD(P)H production. The products of the light-

dependent reaction power the fixation of carbon dioxide to carbohydrate in reactions 

similar to that of oxidative phosphorylation and in plants are known as the calvin 

cycle. 

 

Energy capture is performed by pigments that absorb light at specific wavelengths. 

Chlorophyll (Chl) is the most abundant pigment on Earth and can be seen from outer 

space. Other pigments such as carotenoids and phycobilins also absorb light at specific 

wavelengths, which are often tuned by the proteins they associate with. Most 

wavelengths of light in the red and near-UV are collected by photosynthetic 

organisms. This is due to the high abundance of relatively low energy red light and the 

low abundance of relatively high energy near-UV light. The green reflected light of 

plants and cyanobacteria is in neither high enough abundance nor high enough energy 

to make it worthwhile to be utilised. 

 

Photosynthesis is becoming an increasingly important topic of scientific debate. With 

the current global population growth and global energy demand soon to increase 

rapidly, current energy production may not supply demand. The concept of harvesting 

energy through sunlight using organisms is not new but increasingly interesting and 

within reach. At present cyanobacteria harvest just 0.2 - 0.3% of the solar energy 

available to Earth (Waterbury et al., 1979). This translates to around 25 times the 

current human consumption of energy and it is clear that if humans were able to tap 

into just a fraction of this energy efficiently it may provide sustainable green energy 

for our growing society. 
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1.2. Photosynthetic bacteria 
 

Bacteria that can photosynthesise are usually found in either fresh water or marine 

environments. There are four major groups into which they can be categorised all 

utilising the environments that make up their distinct habitat. The four major groups 

are below: (Fig. 1, A) 

1. Purple bacteria can be divided into two groups: 

a. Purple sulphur bacteria (Chromatiales) use hydrogen sulphide as an 

electron source for photosynthesis. 

b. Purple non-sulphur bacteria (Rhodospirillaceae) use organic 

compounds as an electron source for photosynthesis. The bacteria 

Rhodobacter sphaeroides and Rhodobacter capsulatus are classed 

within this group. 

2. Green bacteria, which are subdivided into sulphur (Chlorobiaceae) and non-

sulphur (Chloroflexi) bacteria. Green sulphur bacteria are non-motile obligate 

anaerobes that use sulphide as an electron source for photosynthesis. The green 

non-sulphur bacteria are facultative anaerobes and use reduced carbon 

compounds as a source of electrons in photosynthesis.  

3. Cyanobacteria are oxygenic phototrophes and contain the species 

Synechocystis, Thermosynechococcus elongates and Cyanothece. 

4. Heliobacteria, obligate anaerobes that utilise organic carbon compounds as 

electron donors.  

Due to differing metabolic requirements photosynthetic bacteria are able to inhabit 

different niches. This results in each group developing specific optimum light 

harvesting signatures (Fig. 1, B). 
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1.3. Synechocystis 
 

Cyanobacteria are also referred to as “blue-green algae” and comprise a group 

containing over 1500 species. Synechocystis sp. PCC6803 (from hereon 

Synechocystis) is a cyanobacterium capable of both phototrophic growth when grown 

in the light and heterotrophic growth when grown in the dark with a carbon source 

such as glucose. They are spherical, unicellular Gram-negative fresh water organisms 

that were first isolated in 1968 and it is widely accepted that cyanobacteria became 

chloroplasts in an endosymbiotic event as seen in Archaeplastida where the plastids are 

surrounded by just two membranes indicating they are the result of a primary 

endocytic event. In all other groups the plastids contain three or more membranes (Adl 

et al., 2005). 

 

Some cyanobacteria have the ability to fix nitrogen but due to the oxygenic nature of 

photosynthesis the two processes cannot coincide. Nitrogenase activity is strongly 

inhibited even in microaerobic environments and in oxygenic phototrophs the two 

should not be able to operate together. The circadian clock is a cellular ability to 

monitor time over a ~24 hour period. This gives the ability to monitor and adapt to 

temporal changes in the environment, for example temperature or light, and circadian 

clocks were thought to exist in eukaryotic cells only. Traditionally the circadian clock 

was thought to only exist in cells with a doubling time that is longer than that of the 

clock itself. Kondo et al., (1997) were the first to provide evidence of a circadean 

clock in Synechococcus, a cyanobacterium with a doubling time of just 8 hours. It has 

been postulated that the circadian clock in cyanobacteria gives rise to the ability to 

both photosynthesise and fix nitrogen due to the expression of photosynthetic genes 

during daylight and nitrogen fixing activity limited to night time (Johnson et al., 1999; 

Kucho et al., 2005).  

 



 16 

 

Figure 1 - Taxonomy and absorption spectra of photosynthetic bacteria 

A) Taxonomy of phototrophic bacteria. 

B) Absorption spectra of living photosynthetic organisms. 
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Synechocystis has been studied intensively as a model organism for photosynthesis. In 

general, cyanobacteria are suitable as model organisms for the study of plant plastids 

because of the highly similar organisation of their photosynthetic apparatus to that of 

plants and unlike other photosynthetic bacteria they perform oxygenic photosynthesis. 

The genome of Synechocystis was one of the first to be sequenced and it was the first 

phototrophic organism to be mapped (Kaneko and Tabata, 1997). The simplified 

prokaryotic genetic material is also a benefit to study this organism as opposed to 

plants. 

 

1.4. Thermosynechococcus elongatus 
 

Thermosynechococcus elongatus BP-1 (from here on T. elongatus) is a 

cyanobacterium capable of both phototrophic and heterotrophic growth. It was isolated 

from a hot spring near Beppu, a northern city on the most southern of Japan’s main 

islands. It is a unicellular rod-shaped cyanobacterium with an optimum growth 

temperature of 55 °C and the genome has been sequenced (Nakamura et al., 2002). T. 

elongatus has long been used as a model organism for photosynthesis, mostly for the 

same reasons as Synechocystis but also due to thermostable nature of the organism and 

the advantages in structural studies with regard to the increased stability of proteins 

during purification. Using gene products from this organism successful attempts to 

obtain X-ray structural information of proteins and protein complexes have been 

documented (Zouni et al., 2001; Jordan et al., 2001; Ferreira et al., 2004; Davison et 

al., 2005).  

 

1.5. Structure of chlorophylls and bacteriochlorophylls 
 

Tetrapyrroles function in energy capture and comprise an extensive group of 

compounds. They are composed of four pyrrole subunits (C4H4NH) connected by 

methine bridges, excluding corrins which have only three connecting methine bridges. 

Porphyrins are cyclic arrangements of the pyrrole groups and form the macrocycle of 

Chls and haems, although pyrroles can also be arranged linearly in phycobilins and 

bilanes. 
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Figure 2 - Structure of the 
most common chlorophyll 

The IUPAC numbering system 

for the carbon skeleton is 

shown on the structure of 

chlorophyll a. 

 

Chlorins are a discrete group of pigments to 

which Chls belong. They are modified 

tetrapyrroles identifiable by the presence of a 

fifth isocyclic ring E, and a long-chain 

esterifying alcohol at position C17. The most 

abundant chlorins are Chl a (Fig. 2) and Chl b  

but there are many other derivatives of Chl all 

with a Mg2+ ion coordinated through pyrrole-

derived nitrogens, with differing functional 

side-chain groups. Both Synechocystis and T. 

elongatus use only Chl a for energy transfer. 

 

The formation of δ-aminolaevulinic acid is the 

first committed step in the synthesis of 

tetrapyrroles. Haem and Chl follow the same 

biosynthetic pathway up until the chelation of 

the metal ion. This branch point determines the 

path of the macrocycle to the formation of 

either haem or Chl and it is likely that this 

branch point has a role in regulation.   

 

1.6. Tetrapyrrole biosynthesis 

 

1.6.1. Formation of δ-aminolaevulinic acid 
 

The formation of δ-aminolaevulinic acid (ALA) is the first committed step of 

tetrapyrrole biosynthesis and ALA is the first specific precursor. There are two 

pathways known that make ALA, the C4 or Shemin pathway and the C5 pathway. The 

Shemin pathway is found in animals, fungi, protozoa and the α-proteobacteria group of 

bacteria. ALA is made from the condensation of glycine with succinyl-coenzyme A by 

the enzyme ALA synthase (Gibson et al., 1958; Kikuchi et al., 1958). 
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In the C5 pathway ALA is formed through a three-step mechanism starting with the 

activation of glutamate with ATP and Mg2+ performed by the enzyme glutamyl-tRNA 

synthetase (GluRS). NADPH or NADH reduces glutamate to glutamate-1-

semialdehyde (GSA) by the glutamyl-tRNA reductase (GluRT) and finally a 

transamination reaction by the glutamate-1-semialdehyde aminotransferase (GSAT) 

forms ALA from GSA. It was discovered that ALA was synthesised in E. coli via the  

C5 pathway and this allowed a major foothold to allow the elucidation of the processes 

more easily (Li et al., 1989);(O'Neill et al., 1989). Bacteria that use the C5 pathway 

lack an α-ketoglutarate-dehydrogenase that enables the formation of succinyl-

coenzyme A. This may indicate that the C5 pathway may be older that the Shemin 

pathway and this supports the proposed origin of chloroplasts because cyanobacteria 

and plants both utilise this pathway. 

 

GluRS performs the first reaction in the formation of ALA in the C5 pathway. It was 

first discovered when activity was abolished in cell free extracts by the pre-incubation 

of RNAase A. Activity could be reconstituted upon the addition of a ribonuclease 

inhibitor and tRNA (Kannangara et al., 1988; Huang and Wang, 1986a). Glutamate is 

activated by ligation with tRNAGlu in the presence of Mg2+ and ATP. This glutamyl-

tRNAGlu complex is the substrate for the following reaction (Kannangara et al., 1988; 

Huang et al., 1984). The UUC anticodon for glutamate and the 3`-terminal CCA 

sequence are found in both the tRNAGlu involved in ALA synthesis and in protein 

translation and this has led to the suggestion that tRNAGlu performs the same job in 

both roles (Schön et al., 1986). Many GluRS have been isolated and it has been 

suggested that they may associate as homodimers in nature (Beale, 1999). 
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Figure 3 - The Shemin and C5 pathways 

A) The Shemin pathway, showing the formation of ALA by the condensation of glycine 

and succinyl coenzyme A, catalysed by ALA synthase.  

B) The C5 pathway, showing the formation of ALA from glutamate. 
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The reaction catalysed by GluTR is the NADPH-dependent reduction of glutamyl-

tRNAGlu to form GSA and is the second committed step of ALA synthesis. Using an 

ALA auxotroph in E. coli, hemA, GluTR activity was abolished leading to suggestions 

that hemA encodes GluTR (Avissar and Beale, 1989a). In a study by Chen et al., 

(1994) the hemA gene product is overexpressed and is able to complement the 

auxotrophic phenotype of hemA. When cell-free extracts of the overexpressed cultures 

were applied to a gel filtration column, the eluted fractions were assayed for GluTR 

activity, and a fraction with an estimated MW of 126 kDa exhibited activity. In 

addition the cell free cultures were analysed using native PAGE and a band at 117 kDa 

was observed. When both the gel filtration GluTR active eluate and the 117 kDa band 

from native PAGE were analysed using denaturing PAGE a band of 46 kDa was 

observed. It was proposed that the high MW expressed products are homo-oligomers 

or as proposed previously by Jahn (1992) a complex formed with GluRS and tRNAGlu 

(Chen et al., 1996). GluTR has been purified as homo-oligomers of eight 39 kDa 

subunits from Synechocystis (Rieble and Beale, 1991) and five 54 kDa subunits from 

barley (Pontoppidan and Kannangara, 1994). An X-ray structure of GluTR as a 

homodimer is available showing a V-shaped arrangement (Moser et al., 2001).  
 

The third reaction in the formation of ALA, the transamination of GSA, can occur 

spontaneously at physiological pH providing GSA is in a high enough concentration 

(Beale et al., 1990) and the initial committed step of ALA synthesis is performed by 

the same enzyme in protein synthesis. This strongly implies that it is the GluTR step 

that is regulated and it has been proposed by de Armas-Ricard et al. (2011) that haem 

regulates the GluTR enzyme. These authors also show that haem binds only to the 

dimeric form of GluTR in a ratio of 1:1 haem:GluTR dimer suggesting the dimer is the 

active form of the enzyme. Both the GluRS and the GluTR need a divalent metal ion to 

be functional. GluRS requires Mg2+ or Mn2+ and the GluTR needs either of these or 

Ca2+. The GluTR is inhibited by Zn2+ even at micromolar levels (Mayer et al., 1994). 
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Figure 4 - The common tetrapyrrole pathway from δ-aminolaevulinic acid to 

protoporphyrin IX 

The enzymes catalysing each step are shown in blue. Magenta shading indicates the 

groups modified at each stage. 
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The GSAT has been purified to give a molecular weight between 60-100 kDa. Many 

of the plant and bacterial enzymes show high homology when compared to the 

aspartate aminotransferase family (Elliot et al., 1990; Mehta and Christen, 1994). 

Avissar and Beale (1989) showed that the aminotransferase from the species Chlorella 

vulgaris is dependent on a cofactor for its function. Pyrixodal phosphate (PLP) was 

discovered as a possible cofactor when activity of the enzyme was inhibited with the 

addition of PLP inhibitors aminooxyacetate and gabaculine (Hoober et al., 1988; Soper 

and Manning, 1982). Avissar and Beale purified the aminotransferase and excluded 

PLP from the buffers and demonstrated the dependence of the enzyme on PLP. The 

structure of the aminotransferase from the Synechococcus was solved by Hennig et al., 

(1997). 

 

1.6.2. δ-aminolaevulinic acid to porphobilinogen 
 

The next reaction is a condensation reaction where two ALA molecules form 

porphobilinogen (PBG), the first step common to all known tetrapyrrole biosynthetic 

pathways. PBG is the first pyrrole molecule in the pathway and forms the building 

blocks for the formation of the remainder of the tetrapyrrole. The reaction is catalysed 

by ALA dehydratase (ALAD), also known as porphobilinogen synthase, a highly 

conserved protein of ~35 kDa (Jaffe, 2004). The gene that encodes ALAD is hemB. 

ALADs have a requirement for divalent metal ions and can be categorised into two 

main groups; those that are dependent on Zn2+; and those that are dependent on Mg2+ 

to function (Senior et al., 1996). X-ray structural information is available for the yeast 

and E. coli ALADs showing a barrel like homo-octamer holoenzyme made up of four 

homo-dimers (Erskine et al., 1999a; Erskine et al., 1999b). 

 

The ALADs that are dependent on Zn2+ comprise the mammalian, yeast and E. coli 

enzymes. ALAD from bovine liver functions as a homo-octamer, each subunit having 

one active site with two conserved lysine residues, and one zinc ion bound per subunit 

through the thiol side group of three conserved cysteines (Erskine et al., 1999; 

Tsukamoto et al., 1979). Loss of this coordinated zinc resulted in significant but not 

complete loss of activity (Tsukamoto et al., 1979). All ALADs that are zinc-dependent 

appear to have varied optimum pH ranging from 6.3 to 9.8 (Senior et al., 1996). They 

are extremely sensitive to oxidation and have thiol groups that are involved in zinc 

coordination. Mg2+-dependent ALADs include higher plants and have pH optima of 
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between 8.0 - 8.5. These also appear to be functional as homo-octomers and are less 

sensitive to oxidation than the Zn2+ dependent ALADs but they are more dependent on 

the coordinated metal ion resulting in complete loss of activity in their absence. The 

cysteine residues and therefore thiol groups are not involved in the metal ion 

coordination of Mg2+-dependent ALADs and this may explain their reduced sensitivity 

to oxidation (Senior et al., 1996). 

 

1.6.3. Porphobilinogen to hydroxymethylbilane 
 

The hemC encodes porphobilinogen deaminase (PBGD), that catalyses the third 

committed step of tetrapyrrole biosynthesis. PBGDs are monomeric and have 

molecular mass between 34 – 44 kDa (Witty et al., 1993). The formation of 

hydroxymethylbilane (HMB) proceeds through four deamination reactions of 

porphobilinogen to form a linear tetrapyrrole. PBGDs utilise a cofactor, 

dipyrromethane, which binds to PBGD through a cysteine-242 that is conserved across 

many divergent species (Warren and Jordan, 1988; Hart et al., 1988; Witty et al., 

1993). The dipyrromethane functions as a primer to which PBG can attach and after 

four serial reactions a hexapyrrole intermediate is formed (Jordan and Warren, 1987; 

Miller et al., 1988). The second function of the dipyrromethane appears to be a 

mechanism to limit the total number of ligated PBG miolecules to six thus limiting the 

product of the reaction to a tetrapyrrole. The next PBG to bind stimulates hydrolytic 

cleavage and the release of hydroxymethylbilane (Battersby et al., 1983). The protein-

cofactor complex is permanent and the cofactor is required for the protein stability. 

The structure of PBGD from E. coli has been determined to a resolution of 1.76 Å 

(Louie et al., 1992). It has been shown that only one active site exists in the protein 

due to the absence of structural repeats that would indicate several catalytic sites of 

similar function. In a mutagenic study Asp84 replaced with Glu abolished activity by 

99% and replacement with a non-acidic residue completely abolished activity (Louie et 

al., 1996). Steady-state levels of hemC mRNA have been shown to be linked to 

enzymatic activity of the PBGD and light has a strong effect on the induction of the 

gene (Witty et al., 1993). 

 

HMB is extremely unstable as a molecule and if the subsequent enzyme in the 

pathway, uroporphyrinogen III synthase, is inactive or absent the molecule will 

spontaneously cyclise to form uroporphrinogen III (Battersby et al., 1979a). In patients 
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with congenital porphyria (patients deficient in uroporphyrinogen III synthase) the 

oxidation product of Urogen I, Uro I, is found in urine samples (Rimington and Miles, 

1951). When uroporphyrinogen III synthase is active HMB is converted to 

uroporphyrinogen III (Battersby et al., 1979b). 

 

1.6.4. Hydroxymethylbilane to uroporphyrinogen III 
 

The formation of urogen III from HMB is catalysed by the urogen III synthase. The 

reaction performed is the spontaneous cyclisation by inversion of the ring D with the 

formation of an intermediate spiro-pyrrolenine product (Leeper et al., 1994). The 

product of the reaction, urogen III, is the first cyclic macrocycle biosynthetic precursor 

for all tetrapyrroles. 

 

It has been postulated that urogen III and PBGD may form a complex in vivo and the 

ability to shuttle the molecule from one enzyme directly to the next would be highly 

beneficial to the system due to the instability of the product/substrate (Higuchi and 

Bogorad, 1975). Battersby et al., (1979a) have also shown that the Km of urogen III 

synthase for PGB is altered upon the incubation with PGBD. 

 

The structure of urogen III synthase has been solved to 1.85 Å and shows a bi-lobed 

structure where domains 1 and 2 are connected by two anti-parallel β-sheets and each 

lobe has parallel β-sheets with α-helices between them (Shoolingin-Jordan, 1995). The 

structure has been solved with substrate bound (Schubert et al., 2008) but mutational 

studies have yet to identify any residues that are vital for activity (Mathews et al., 

2001) The . 

 

1.6.5. Uroporphyrinogen III to coproporphyrinogen III 
 

The fourth step of tetrapyrrole biosynthesis is the first branchpoint determining the fate 

of the macrocycle into several final products. Decarboxylation of urogen III by urogen 

III decarboxylase commits metabolism to the formation of Chl, Bchl or protohaem, 

shown in Fig. 4. In the other branch sirohaem synthase catalyses the formation of 

sirohaem (Murphy and Sigel, 1973) and a third branch, through further modifications 

of urogen III, vitamin B12 is formed (Battersby, 1994). Decarboxylation of all four of 
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the acetate groups of urogen III by urogen III decarboxylase starts on the D ring and 

continues clockwise until all the groups are decarboxylated (Luo and Lim, 1993) to 

form coproporphyrinogen III (Coprogen III). In plants urogen III decarboxylase is 

located in the plastids and as a result the plant decarboxylase sequence have an N-

terminal translocation sequence to direct transport to the plastids. The first structural 

information of urogen III decarboxylase by X-ray diffraction was for the human 

enzyme and showed that it has one active site and is assembled as a dimer, which may 

be important for catalysis (Whitby et al., 1998). Phillips et al., (2003) solved the 

urogen III decarboxylase structure with the substrate bound and showed the 

importance of Asp86 in binding the substrate to the active site through hydrogen bonds 

between the NH groups in the pirrole and a carboxylate oxygen atom. A point 

mutation of Asp86 to Asn results in near complete inhibition of wild type activity and 

the structure of this mutant showed an empty active site cleft. A mutation exchanging 

Asp86 for Glycine significantly reduced activity to below 5% of the WT level but still 

bound substrate; Asp86 to Glu retained up to 10% activity (Philips et al., 2003). The 

X-ray structural data produced by Martins et al., (2001) for the plant enzyme confirms 

that previously solved for human urogen III decarboxylase. 

 

Urogen III, like other tetrapyrrole intermediates, is highly sensitive to light and if it is 

not stabilised by a protein chaperone can lead to the formation of reactive oxygen 

species which can be highly detrimental to the cell. Accumulation of urogen III in 

plants either due to a carboxylase mutation or due to problems with expression has 

been shown to result in the formation of necrotic lesions in leaves (Hu et al., 1998; 

Mock and Grimm, 1997; Mock et al., 1998). 

 

1.6.6. Coproporphyrinogen III to protoporphyrinogen IX 
 

Protoporphyrinogen IX (Protogen) is formed from Coprogen III by oxidative 

decarboxylation to form vinyl groups from the propionate groups of rings A and B. 

The enzyme that catalyses this reaction is Coprogen III oxidase and in plants it is 

found solely in the plastids (Smith et al., 1993). Unlike expression of other enzymes in 

the pathway the expression of Coprogen III oxidase is not linked to light levels or 

circadian rhythms, but is determined by a number of factors such as the stage of 

differentiation (Kruse at al., 1995a; Papenbrock et al., 1999). In tobacco 

transformation with an antisense Copragen III oxiades gene led to accumulation of the 
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enzyme substrate, resulting in leaf necrosis that was dependent on light intensity 

(Kruse et al., 1995b). In Coprogen III oxidase-deficient plants several responses 

against reactive oxygen species (ROS) were observed but failed to prevent cell death 

due to a reduction in antioxidants when compared to wild type (Kruse et al., 1995b; 

Mock et al., 1998). This was shown in the Arabidopsis mutant lin2 which necrotic 

lesions due to a defective Coprogen III oxidase gene (Ishikawa et al., 2001). 

 

1.6.7. Protoporphyrinogen IX to protoporphyrin IX 
 

Protogen oxidase (PPO) is the last enzyme that is common to both haem and Chl 

biosynthesis and it catalyses the flavin-dependent conversion of protoporphyrinogen 

IX (Protogen) to protoporphyrin IX (Proto). The reaction involves the six-electron 

oxidation of the macrocycle. In plants the reaction can be catalysed by two different 

gene products, PPOI and PPOII that show relatively low similarity to one another in 

the same species, typically with an amino acid identity of around 28%. When the 

enzyme isoforms are compared with other organisms, each isofrom shares around 70% 

identity (Lermontova et al., 1997; Watanabe et al., 2001). PPO is the first enzyme 

involved in tetrapyrrole metabolism to be located in two different subcellular locations, 

the mitochondria and plastids, but only one isoform is found in each cell (Jacobs and 

Jacobs, 1981; Smith et al., 1993). In bacteria the reaction is catalysed by an oxygen-

dependent enzyme encoded by the gene hemY; and an oxygen-independent enzyme 

encoded by the gene hemG (Kato et al., 2010).  

 

PPO has been shown to be important in the function of some herbicides. The chemical 

compound Phthalimide was shown to cause the accumulation of protoporphyrin IX 

(Proto), a Chl precursor with high photolability (Scalla et al., 1990; Duke et al., 1991). 

Exposure of Proto to high light results in the formation of singlet oxygen that often 

results in lipid peroxidation and finally cell death (Matringe and Scalla, 1988). It was 

shown that PPO was inhibited and accumulation of Proto, the substrate of PPO, was in 

fact due to the initial accumulation of Protogen which is oxidised by peroxidases 

bound to plasma membranes to form Proto. Protogen is an intermediate of haem, 

which is negative feedback regulator of its own synthesis. The absence of haem results 

in the upregulation of tetrapyrrole synthesis and the blocking at the PPO step results in 

the accumulation of Protogen and therefore Proto.  
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Recently a third PPO gene named hemJ has been found in the cyanobacterium 

Synechocystis, whichs lack both hemY and hemG. The predicted sequences of hemY 

and hemG show no similarity to hemJ and structural predictions indicate that the 

encoded protein may have transmembrane helices and may not be flavin-dependent 

(Boynton et al., 2011; Kato et al., 2010). Another gene essential for tetrapyrrole 

synthesis has been discovered in Gram-positive bacteria. A proposed peroxidase gene 

hemQ found adjacent to genes encoding PPO has also been shown to be essential for 

PPO activity. The role of the enzyme has been attributed to the need for the breakdown 

of toxic hydrogen peroxide produced by the reaction (Dailey et al., 2010). 

 

The crystal structure of mitochondrial PPO from tobacco is available and shows a 

dimeric arrangement. The structure also suggests that PPO can shuttle Proto to 

ferrochelatase limiting the exposure to light (Koch et al., 2004). 

 

1.6.8. The branch point of tetrapyrrole biosynthesis 
 

After the formation of Proto the next step involves the chelation of two possible 

divalent metal ions. The path which produces protohaem or haem B is catalysed by 

ferrochelatase inserting an Fe2+ ion into the macrocycle. This is the last reaction and 

the product can be utilised in cytochromes or for a protein in the peroxidase family. 

The ferrochelatase does not have a requirement for energy and although the reaction is 

energetically favourable it cannot spontaneously occur. The result of the second 

possible metal insertion event is the production of chlorophyll, initially committed by 

the chelation of a magnesium ion into the tetrapyrrole. Magnesium chelatase is a 

complex three-subunit enzyme with an absolute requirement for ATP due to the 

unfavourable nature of the reaction. It has been proposed that this is due to the high 

energy requirements of removing the hydration shell form the magnesium ion to allow 

chelation (Reid and Hunter, 2004). 

 

In photosynthetic cells both protohaem and chlorophyll are essential but in different 

quantities depending on the time of year and organism. It is of paramount importance 

for each cell to regulate the shuttling of Proto down the required pathway with absolute 

precision. As mentioned earlier ferrochelatase is involved in the regulation of the haem 

pathway and it is obvious that the magnesium chelatase will too have a role in the 

regulation of the branch point. 
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1.6.9. Ferrochelatase 
 

Ferrochelatase (FeCH) performs the ATP-independent chelation of Fe2+ into Proto 

forming haem (haem B). The gene product of hemH, FeCH is a membrane-associated 

protein of ~55 kDa and is found as either a monomer or homo dimer. The X-ray 

structure of a FeCH was first elucidated in 1997 by Al-Karadaghi et al., from Bacillus 

subtilis (B. subtilis) and was followed by the human FeCH structure (Wu et al., 2001). 

Soon after a model proposing a mechanism for porphyrin binding was proposed for B. 

subtilis FeCH highlighting the distortion of the porphyrin ring of N-

methylmesoporphyrin IX (an FeCH inhibitor) giving a tilt of around 5° to pyrrole rings 

B, C and D and and a 36° tilt to ring A. It was suggested that this larger tilt of ring A 

was associated with ferrous iron chelation (Lecerof et al., 2000). This was however 

disputed by Medlock et al., (2007) where, in the human FeCH structure, they showed 

porphyrin binding with a 100° rotation relative to that previously published and the 

macrocycle was buried an additional 4.5 Å deeper within the enzyme. A further 

publication by the Al-Karadaghi group showed that their work describing porphyrin 

binding in B. subtilis was indeed correct (Karlberg et al., 2008). This suggests that 

although porphyrin binding differs in a physical manner between (at least) these two 

species the same method of chelation appears to be shared. The chelation reaction 

appears to mainly conserved between bacterial and human FeCH but the solubility, 

size and isolation as either a monomer or homodimer differ between species and the 

presence of a [2Fe-2S] cluster appears to be involved in dimer stability (Dailey et al, 

2000).  The activity of plant FeCH was first demonstrated in both the mitochondria and 

in plastids (Porra and Lascelles, 1968). The insertion of Fe2+ into Proto has been 

described as a two-step process. Firstly, fast porphyrin binding step takes place and the 

reaction is completed with a, slow, irreversible chelation step (Hoggins et al, 2007). 

 

 It has been proposed that there are two types of FeCH in plants, type-I and type-II, 

which differ in gene sequence and in expression characteristics. It was shown that 

type-I was localized in both the mitochondria and chloroplast whereas type-II was 

solely imported into chloroplasts (Chow at al., 1997, 1998; Suzuki et al., 2000, 2002). 

Chow et al., (1998) proposed that the type-I was a mitochondrial FeCH and type-II 

was chloroplastic. Supporting work showed that a homologous type-I FeCH, found in 

cucumber, was expressed in a light-independent manner in non-photosynthetic tissues 

and was not found in cotyledons (Suzuki et al., 2002). The expression of type-II FeCH 
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in cucumber was shown to be strongly linked to illumination. It was also reported that 

type-I FeCH could be translocated into mitochondrion and the type-II FeCH was 

mainly translocated into thylakoid membranes and to a limited extent into the envelope 

(Suzuki et al., 2000, 2002). The two types of FeCH are reported to be involved in 

haem biosynthesis for different cellular requirements. In the case of type-I FeCH, 

photoprotective molecules and cytochromes are formed in non-photosynthetic tissues. 

Photosynthetic tissues with the type-II FeCH have to balance the formation of haem 

and Chl (Singh et al., 2002; Suzuki et al., 2002). 

 

Roper and Smith (1997) described the localisation of FeCH to both the envelope and 

thylakoid membranes in pea chloroplasts indicating that regulation between the ion 

chelating branch in tertapyrrole biosynthesis is not by sublocalisation of enzymes. 

Papenbrock et al., (2001), however, reduced type-II FeCH activity through the use of 

antisense RNA expression, which did not reduce type-I FeCH activity but neither was it 

able to compensate for the loss of activity in plastids. The excess Proto destined for haem 

biosynthesis was not channeled into Chl production. Sobotka et al., (2005) have shown 

that the C-terminal extension of FeCH found exclusively in oxygenic phototrophs is 

involved in Chl binding and regulation of Chl biosynthesis. This C-terminal extension is 

also essential for FeCH activity and analysis of the role of this C-terminal domain suggests 

a role for FeCH in Proto regulation (Sobotka et al., 2008; 2011), consistent with the 

proposal that haem availability decreases tetrapyrrole synthesis (Beck and Grimm, 2006) 

possibly due to downregulation of GluTR activity (Srivastava and Beale, 2005). 

 

1.6.10. Magnesium chelation into protoporphyrin IX 
 

The next step is the chelation of a divalent metal ion into the macrocycle. This 

commits to the formation of either haem or Chl depending on which ion is inserted. 

Fe2+ by ferrochelatase commits to haem synthesis and is energetically favourable, so 

the reaction is ATP-independent. The weter shell that exists around Mg2+ makes the 

reaction energetically unfavourable and so studies into the enzyme that catalyses this 

reaction show there to be a requirement for ATP (Gibson et al., 1995; Jensen et al., 

1996a). 
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Three genes bchI, bchD and bchH in of Rba. capsulatus and Rba. sphaeroides were 

discovered to be essential for MgCH activity as mutation in these genes resulted in 

abolition of MgProto synthesis (Coomber et al., 1990; Suzuki et al., 1997; Naylor et 

al., 1999) and accumulation of Proto (Bollivar et al., 1994a). Gibson et al., (1995) 

overexpressed the genes in E. coli and in vitro assays demonstrated that BchI, BchD 

and BchH were the essential subunits of active MgCH. The homologous genes ChlI, 

ChlD and ChlH were also discovered to be the essential MgCH genes in Synechocystis 

using the same technique (Jensen et al., 1996a). These studies provided the first direct 

evidence that three different protein subunits were required for Mg chelation, and 

showed that the enzyme was well conserved between purple bacteria and 

cyanobacteria.  

 

Using purified subunits from Rba. sphaeroides and Synechocystis stoichiometries of 

36BchH:4BchI:1BchD and 4ChlH:2ChlI:1ChlD respectively, were found to be 

optimum for in vitro steady-state assays (Gibson et al., 1999; Jensen et al., 1999a). 

Studies have been performed using enzyme from tobacco (Papenbrock et al., 1997) 

and recently rice (Zhou et al., 2012). 

 

The Mg chelatase subunits, Chl/BchH, Chl/BchI and Chl/BchD, have predicted 

molecular masses of 120-155 kDa, 37-46 kDa and 60-87 kDa, respectively. Walker 

and Willows (1997) have shown that across various species the protein sequence 

identity vary from 38-86% for the H subunit, 50-90% for the I subunit and 28-58% for 

the D subunit. The N-terminus of the D subunit shares around 40 % identity to BchI 

and ChlI. This has led to the proposal that through the process of evolution there was a 

duplication of the I subunit and a gene fusion forming D (Jensen et al., 1996a). 

 

With the overexpression and purification of active MgCH subunits it has been possible 

to assign roles to each protein despite the actual mechanism of chelation remaining 

unknown. The H subunit has been shown to bind both the substrate and product of the 

MgCH reaction (Karger et al., 2001) but does not exhibit ATPase activity (Sirijovski 

et al., 2006). The I and D subunits were first shown to form a complex dependent on 

the presence of ATP and Mg2+ by Gibson et al., (1999). This was quickly followed by 

evidence to show that the I subunit has ATPase activity, is a member of the ATPases 

Associated with carious cellular Activities (AAA+) family of proteins (Jensen et al., 

1999; Neuwald et al., 1999) and formed complexes with an estimated MW of 290 kDa 
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in the presence of ATP (Jensen et al., 1998). The D subunit has a Metal Ion Dependent 

Adhesion Site (MIDAS) that has been proposed to be associated with divalent metal 

ion binding (Jensen et al., 1996; Axelsson et al., 2006). I and D preincubation in the 

absence of ChlH was able to reduce the lag phase in the MgCH reaction that has been 

observed (Jensen et al., 1998; Reid et al., 2003). The I subunit has also been shown to 

be capabale of binding Mg2+ and ATP hydrolysis only occurs on the binding of a 

second magnesium. The I•D subunit has significantly reduced ATP hydrolysis when 

compared to the full MgCH complex or the I subunit alone. Most kinetic analyses of 

MgCH show a cooperative response to Mg2+ (Jensen et al., 1998; Gibson et al., 1999). 

Reid et al., (2003) have shown that the I subunit will isomerise upon binding to 

nucleotide changing its affitity for Mg2+. 15 MgATP molecules are hydrolysed for 

each MgCH reaction turnover and Mg2+ bound enzyme is more effective as a catalyst 

confirming the notion of Mg2+ positive cooperativity. 

 

AAA+ proteins form oligomeric complexes and Reid et al., (2003) have shown that the 

I subunit from Synechocystis forms a heptameric complex and hexamers have been 

seen in BchI complexes (Fodje et al., 2001; Willows et al., 2004). The structure of 

BchI has been solved to 2.1 Å (Fodje et al., 2001). Karger et al. (2001) observed red 

shifts in both porphyrin fluorescence excitation and emission when BchH bound 

tetrapyrrole, which is consistent with non-planar distortion of the macrocycle. This 

suggests a conformational change occurs in H when binding tetrapyrrole. The only 

structural information available for the H subunit is a negative stain EM 3D single 

particle reconstruction from Rba. capsulatus. The model confirms a conformational 

change in the H subunit upon the binding of Proto shown in Fig. 5 (Sirijovski et al., 

2008). 

 

Sawicki and Willows (2008) show that when the BchH•proto complex is formed it will 

bind tightly, with no evidence of chelation. Pre-incubation of BchD and BchI appear to 

form a complex, expected to be double hexamer. This complex appears to interact with 

BchH in a transient fashion whereby BchH undergoes a conformational change, 

perhaps distorting the protoporphyrin in a similar fashion to that of ferrochelatase 

described by Al-Karadaghi et al., (2006). Al-Karadaghi et al., (2006) infer that this 

distortion of the porphyrin macromolecule is to specify which metal is to be chelated 

into the ring structure, and so it can be assumed that the degree of distortion enables 

this specificity. Although no mechanistic evidence has been published, models have 
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been proposed for the interaction between the MgCH subunits. As well as D having N-

terminal homology to I (which may catagorise D in the AAA+ family) it also contains 

an integrin I domain at the C-terminus. H and I have also been proposed to contain 

integrin I binding motifs which could indicate sites of interaction (Fodje et al., 2001). 

Sawicki and Willows (2008) have devised a scheme whereby BchH undergoes a 

conformational change to BchH* in the presence of the BchI•BchD complex. Here it is 

possible to predict a bend in the porphyrin, consequent chelation of a metal ion and 

disassociation of the BchI•BchD complex and BchH. An additional transient 

interaction between the BchI•BchD complex and BchH exchanges Mg-protoporphyrin 

IX for Proto (if available) and the cycle continues (Fig. 6). 

 

It appears that the rate limiting step in this reaction is the interaction and binding of 

BchH and Proto, the hydrolysis of ATP by BchI•BchD is ~40 fold greater. It must also 

be noted that post chelation, ATP hydrolysis does not stop, even in the absence of 

Proto. This indicates that in vivo there must be some interaction with another protein or 

molecule that inhibits ATPase activity. A possible suggested inhibitor could be the 

next enzyme in the pathway, Mg-protoporphyrin methyltransferase (ChlM/BchM) due 

to their previous observed interaction (Pontier et al., 2007; Shepherd, McLean and 

Hunter, 2005). 

 

In addition to being the MgCH Proto binding protein ChlH has also been associated 

with other functions. The plant hormone abscisic acid (ABA) has been shown to be 

bound by ChlH (Zhang et al., 2002; Shen et al., 2006) but Müller and Hansson (2009) 

questioned these results as they were unable to observe binding in barley ChlH. ChlH 

has also be postulated to have a role in sugar catabolism by regulating the anti-sigma 

factor, SigE (Osanai et al., 2009).  
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Figure 5 - Electron microscopy negative stain single particle 3D reconstruction of 

BchH 

Grey represents the N terminal domain of BchH. Yellow show apo BchH and red 

indicates BchH•Proto complex. The N- and C-terminal domains fuse upon substrate 

binding of the substrate (Sirijovski et al., 2008). 
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Figure 6 – A mechanism explaining one possible scenario of Mg2+ chelation of 

protoporphyrin IX by MgCH 

A proposed method for the MgCH reaction based on current understanding of the 

enzyme. H binds Proto preventing photooxidation and the creation of singlet oxygen 

radicals. Energy is probably used to remove the hydration shell from Mg2+(Heyes and 

Hunter, 2009). 
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Figure 7 - Magnesium protoporphyrin IX to chlorophyll a 

The enzymes catalysing each step are shown in blue. Magenta shading indicates the 

groups modified at each stage. 
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1.6.11. Gun4 
 

Signalling between the plastid and nucleus allows the regulation of genes expressing 

proteins with photosynthetic function. It was discovered that tetrapyrroles are involved 

in signalling with the identification of gun (genome uncoupled) mutants in Arabidopsis 

found to have derepressed levels of Lhcb transcripts (Mochizuki et al., 2001). These 

mutants had the expression of nuclear encoded genes uncoupled from the 

physiological state of the plastid. Of the gun genes that were identified, gun2 encoded 

haem oxygenase, gun3 encoded phytochromobilin synthase and gun5 was identified as 

encoding the H subunit of Mg-chelatase (Mochizuki et al., 2001).  Due to the gun 

mutants effect on tetrapyrrole biosynthesis the amount of MgPIX in tetrapyrrole 

biosynthesis was lowered. To check for a change in the expression of ChlH, ChlI 

mutants were used but had no effect. Through binding of the substrate and/or product 

of the MgCH reaction ChlH has been proposed to regulate synthesis of both haem and 

Chl (Gibson et al., 1996). The change in nuclear gene expression indicated that ChlH 

signalling had been uncoupled from the nucleus. 

 

When the gun5 gene was cloned from Arabidopsis a substitution mutation of A990V 

in a region conserved throughout H homologues was discovered (Mochizuki et al., 

2001) and this mutation reduced Chl levels by around 25 % of WT (Strand et al., 

2003). Another gun mutant Gun4 was shown to be necessary for Chl accumulation but 

not its synthesis. When Gun4 was analysed by gel filtration a soluble protein of 22 kDa 

was isolated and co-purified with ChlH (Larkin et al., 2003). In light of this, a 

gun4gun5 double mutant was produced which showed severe Chl deficiency 

(Mochizuki et al., 2001).  

 

Gun4 has been shown to be non essential to the MgCH chelation reaction both in vivo 

and in vitro. It does however dramatically increase the rate at which the enzyme can 

work. Gun4 also binds MgPIX more tightly than ChlH suggesting a role of chaperoning 

Chl intermediates to the next enzyme in the pathway or sequestering the product until 

needed (Larkin et al., 2003). Davison et al. (2005) performed more detailed kinetic 

analysis of the effect of Gun4 on MgCH activity and noted the lowered concentration 

of Mg2+ required for activity. The cooperativity for Mg2+ shown by MgCH means that 

in the dark when magnesium levels in the chloroplast are low (~0.5 mM) MgCH is  
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Figure 8 - The structure of Gun4 from T. elongatus  

1.5 Å structure of the Thermosynechococcus elongatus Gun4. The Green domain is the 

Gun4 domain which is conserved between T. elongatus and Arabidopsis and the blue 

domain is unconserved. The red loop contains many invariant residues and is thought 

to have a role in ligand binding (Davison et al., 2005). 
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inactive. During the day the [Mg2+] rises (~6 mM) and so the MgCH is active and it 

would appear that the role of Gun4 is to act as a switch to allow Chl synthesis in 

lowered Mg2+ or PIX conditions (Reid and Hunter, 2004; Davison et al., 2005). Recent 

studies have shown that Gun4 also has the capacity to revive the cch and gun5 mutants 

in Synechocystis to WT levels (Davison and Hunter, 2011). Structures of both the 

Synechocystis and T. elongatus Gun4 (Fig. 8) proteins have been solved showing a 

two-domain, highly helical protein with invariant residues clustered in a patch on the 

surface providing the proposed porphyrin binding region within a small hydrophobic 

cleft (Verdecia et al 2005; Davison et al., 2005). 

 

1.6.12. Magnesium protoporphyrin IX to magnesium 

protoporphyrin IX monomethyl ester 
 

ChlM/BchM is the succeeding enzyme in the pathway after the chlorophyll/haem 

branch. ChlM/BchM is a methyltransferase and methylates Mg-protoporphyrin to Mg-

protoporphyrin monomethylester (MgPME), using S-adenosyl-L-methionine (SAM) as 

a co-factor and methyl group donor (Jensen et al., 1999).  Pontier et al., (2007) show 

that ChlM/BchM is absolutely essential in chlorophyll metabolism and chloroplast 

assembly. In ChlM/BchM absent mutants there is evidence to show an accumulation of 

Mg-protoporphyrin that cannot progress through the following steps of the pathway. 

 

(Bacterio)chlorophyll metabolism is a highly regulated process, with key steps 

managing the flux of intermediates down the pathway (Masuda, 2008). Pontier et al., 

(2007) describe a ChlM/BchM deficient mutant where, as a result, the light harvesting 

chlorophyll-binding protein (LHCB) mRNA concentration is greatly reduced. This 

indicates that the substrate, Mg-protoporphyrin, acts as a negative effector and its 

accumulation reduces the translation of genes of the photosynthetic machinery. 

Conversely, Mg-protoporphyrin monomethylester may act as a positive effector and its 

absence in the cell prevents the correct signals reaching the nucleus through retrograde 

signalling (Pesaresi et al., 2006; Pontier et al., 2007). 

 

Furthermore it appears that ChlM/BchM has activity involving the formation of 

cytochrome b6f which has a role in the formation of charge separation through the 

electron transport chain (Pontier et al., 2007). 
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1.6.13. Formation of the isocyclic ring 
 

The Mg-protoporphyrin monomethylester cyclase (MgCy) is an enzymatic complex 

that is involved in the conversion of Mg-protoporphyrin monomethylester to 3,8-

divinyl protochlorophyllide (Pchlide). This occurs through the incorporation of oxygen 

in position 13 of the 13-methyl propionic acid side chain forming a keto group and the 

isocyclic ring (ring E) that makes up the fifth ring of chlorophyll. The keto group is 

functionally essential for active chlorophyll; there is currently no evidence of a 

functional chlorophyll molecule without this group located at position 13 (Rudiger, 

1997). The MgCy in higher plants and Synechocystis has been shown to have both 

soluble and membrane bound components whereas the C. reinhardtii MgCy appears to 

be found exclusively in the thylakoids (Beale, 1999; Bollivar and Beale, 1996). 

Cyanobacteria and purple bacteria have both oxygen dependent and independent forms 

of the MgCy (Minamizaki et al., 2007; Peter et al., 2009). 

 

The MgCy has never been successfully purified despite attempts for over 50 years and 

consequently is the least understood enzyme of the chlorophyll biosynthesis pathway. 

Despite the absence of any hard evidence, a number of theoretical assumptions have 

developed since pioneering experimentation by Granick. In 1969, Ellsworth and 

Aronoff identified intermediates of cyclic ring formation that correlated with Granick’s 

suggestion that the formation followed a similar fashion to the β-oxidation of fatty 

acids. These oxygen independent intermediates have been described as acrylate, β-

hydroxy and β-keto, the oxygen dependent pathways do not appear to involve the 

acrylate intermediate. 

 

Walker et al., (1989) studied the MgCy in higher plants investigating the origin of the 

incorporated oxygen in the isocyclic ring. Through their studies, using 18O2 labelling, 

strong evidence suggests that oxygen is derived from the atmosphere, through 

identification using mass spectrometry. A number of additional studies confirm these 

observations in higher plants and in green algae (Spiller et al., 1982; Chereskin et al., 

1983; Bollivar and Beale, 1995). However, in purple bacteria, a similar experiment 

was performed using 18O2 in either the atmosphere or in water (H2
18O). Their results 

showed that oxygen for the isocyclic ring was derived exclusively from water (Porra et 

al., 1996). 
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Because Synechocystis and higher plants have both a soluble and membrane 

requirement to the function of MgCy it is evident there are at least two subunits that 

are essential. It has been suggested that the membrane fraction may incorporate a 

heavy element, whereas the soluble component has a mass >30 kDa and may have 

interaction with porphyrins. Bollivar and Beale (1996) showed that NADPH and non-

heme Fe are both important for the reaction, as the inclusion of Fe chelators inhibited 

the cyclase reaction. bchE from R. capsulatus (Bollivar et al., 1994) and R. 

sphaeroides (Naylor et al., 1999) and acsF from R. gelatinosus (Pinta et al., 2002) and 

Synechocystis (Minamizaki et al., 2007) with newly discovered ycf54 (Hollingshead et 

al., 2012) remain the only genes to be identified. In these studies, a knockout of either 

gene resulted in the accumulation of Mg-protoporphyrin monomethylester, resulting in 

a blockage in the pathway. bchE encodes a protein with a predicted molecular weight 

of ~66kDa. In a proposed mechanism for the anaerobic reaction bchE uses a cobalamin 

co-factor, where adenosylcobalamin uses an adenosyl radical which results in a 131-

radical of MgPME and a subsequent 131-cation. 131-hydroxy intermediate of MgPME 

results from reaction with a hydroxyl ion and Pchlide is formed from the loss of 3 

hydrogen atoms (Bollivar et al., 1994) 

. 

 

This reaction is ultimately what changes the colour of the tetrapyrrole from red to 

green and consequently give plants and algae their characteristic colour. 

 

1.6.14. Reduction of the 8-vinyl group 
 

The 8-vinyl group of the B ring is reduced at some point in the biosynthesis and is an 

essential step for the formation of chlorophyll. It is however not currently known at 

which specific stage it is reduced. There is evidence for a number of specific 

intermediates, but they appear to be influenced by environmental conditions and the 

species of organism. It has been further proposed that there may be several enzymes 

capable of following several pathways and even one enzyme that have a broad degree 

of substrate specificity for the many intermediates (Shioi and Takamiya, 1992); (Rebeiz 

et al., 1994);(Tripathy and Rebeiz, 1986); (Tripathy and Rebeiz, 1988). 
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1.6.15. Reduction of protochlorophyllide to chlorophyllide 
 

1.6.15.1. POR 
 

After the reduction of the 8-vinyl group of ring B, Pchlide is reduced via the addition 

of a hydrogen atom across the C17-C18 double bond of the D ring. This results in the 

formation of chlorophyllide, or Chlide. There are two separate enzymes that can 

catalyse this reaction, one is dependent on light and the other is not. NADPH-Pchlide 

oxidoreductase is the light-dependent enzyme and is found in all chlorophyll 

producing organisms, whereas the light independent Pchlide oxidoreductase ((dark) 

DPOR) appears to be absent in angiosperms but present in all other photosynthetic 

organisms. Bacteriochlorophyll producing organisms appear to only have the light 

independent enzymes (Suzuki and Bauer, 1995). 

 

The light dependent enzyme POR shares its dependency for light with only one other 

enzyme, DNA photolyase. The reaction mechanism works through the use of NADPH 

as a co-factor, where in the dark a ternary complex of Pchlide-POR-NADPH forms.  

On illumination of the photoreceptor complex, the hydride molecule is transferred 

quickly to the Pchlide molecule forming Chlide (Heyes and Hunter, 2005). 

 

Using 4R and 4S 3H-labelled isomers detailed information has been obtained 

determining the essential processes. The pro-S hydride from the nicotinamide ring 

found in NADPH is transferred to the C17 in Pchlide. It is thought that a lysine 

(Lys193, in Synechocystis) enables a tyrosine residue (Tyr 189 in Synechocystis) to 

become de-protonated, by lowering the pKa and therefore able to donate a proton in 

much the same way as a general acid, to C18 (Heyes and Hunter, 2005; Wilks and 

Timko, 1995). The Tyr and Lys residues appear to be highly conserved across all 

species The photoreductive process that they enable is very important and inherent to 

the assembly of the photosynthetic machinery. 

 

Recent studies show that it is essential for POR to be pre-bound to NADPH to allow 

substrate binding. The binding of NADPH to POR is itself intricate with three probable 

kinetic phases. These phases are characterised with structural changes in the protein to 
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allow correct docking and this seems to be further consistent with the continuation of 

structural changes in POR. It is therefore not surprising that the initial formation of the 

ternary complex is the rate limiting process of the formation of Chlide from Pchlide 

(Heyes et al., 2008). 

 

1.6.15.2. DPOR 
 

Three genes have been identified that are essential to the light independent reduction 

of Pchlide. They are known as bchL, bchN and bchB in R. capsulatus and the 

homologous genes in cyanobacteria and a variety of other species including some of 

the red and green algae and liverwort known as chlL, chlN and chlB. These prove to be 

extremely similar in peptide sequence to the nitrogenase subunits NifH, NifD and 

NifK. Between the NifH and BchL/ChlL, four Cys residue are highly conserved and in 

the NifH subunit these are located in an ATP-binding domain and would suggest the 

likely possibility of an ATP dependent electron transfer role in DPOR (Nomata et al., 

2006). Fujita and Bauer (2000) observed co-purification of the BchN and BchB 

subunits, suggesting a tight complex formation between the two. Recently active BchL 

and BchN/BchB complex have been purified in E. coli and potentially promise the 

further elucidation of crystal structures and kinetic information (Yamamoto, Nomata 

and Fuita, 2008).   

 

In all bacteriochlorophyll and most chlorophyll containing organisms, both the POR 

and DPOR systems are available for the reduction of Pchlide to Chlide. Only 

angiosperms remain totally dependent on light for the production of chlorophyll. This 

raises questions as to why both mechanisms, that appear to be independently regulated, 

evolved in parallel. It has been observed in Plectonema boryanum that in high light 

intensities POR contribution to the reduction of Pchlide is greater (Yamazaki et al., 

2006). It could be that in the higher light intensities it is preferential to convert more of 

the chlorophyll intermediates to the more stable chlorophyll to prevent and reduce the 

extent of photooxidative damage. 
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1.6.16. Esterification of (bacterio)chlorophyllide to 

(bacterio)chlorophyll 
 

The last reaction is the addition of a phytol tail to Chlide to produce Chl. After 

esterfication, numerous hydrogenation reactions follow. The ring D is esterified with 

phytol by the product of the bchG/chlG genes, Chl synthase, origionally found in Rba. 

sphaeroides by Bollivar et al., 1994. As a result of this, holologues were found in 

Synechocystis (Kaneko et al., 1995), Rba. sphaeroides (Naylor et al., 1999) and 

Arabidopsis (Gaubier et al., 1995). BchG/ChlG is a membrane bound protein, likly to 

have nine trans-membrane helices, explaining failed attempts topurify soluble active 

protein (Rüdiger et al., 1980; Schmid et al., 2001). Geranylgeranyl-Chlide is formed 

form the addition of geranylgeranyl phosphate to Chlide.  

 

The increased hydrophobicity by the esterfication significantly helps the assembly of 

the light-harvesting complexes. The tails are also involved in the orientation of the 

transition dipoles of the tetrapyrrole rings that allows rapid energy transfer (Freer et 

al., 1996). 

 

Active recombinant Synechocystis ChlG, purified from E. coli, was able to esterify 

Chlide but not bChlide, and Rba capsulatus BchG was able to perform the converse 

(Oster et al., 1997). 

 

Geranylgeraniol-Chl reductase encoded by the gene chlP and its homologous 

counterpart bchP, engages in a three step reduction to form a phytyl group form the 

geranylgerany group (Addlesee and Hunter, 1999; Warren and Smith, 2009). Unlike 

BchG/ChlG, a Rba sphaeroides non-active bchP mutant could be complemented with 

a Synechocystis chlP gene, the result was BChls esterified with phytol. All the steps in 

the pathway after the chelation of Mg into protoporphyrin are shown in Fig. 7. 

 

 

 

 

 



 45 

1.7. Photosystem II 
 

Oxygenic photosynthesis occurs through two photosystems knows as photosystem I 

(PSI) and photosystem II (PSII). Energy flow through this system typically travels 

from PSII to PSI via an electron transport pathway. The electrons are derived from the 

splitting of water generating O2 as a by product. The reduction of NADP+ to NADPH 

and the formation of ATP from the proton gradient formed through this process allows 

the Calvin cycle to reduce CO2 to carbohydrates. 

 

The D1 and D2 proteins in PSII bind the cofactors involved in energy transfer like the 

L and M proteins do in the in the bacterial reaction centre. Absorption of light by the 

“special pair” of electrons in PSII (a pair of chlorophyll molecules that behave as a 

dimer), referred to as P680 due to the wavelength of light they absorb, transfer an 

electron to a nearby pheophytin. Pheophytin, a chlorophyll molecule without a Mg2+ 

ion and with two H+ ions instead, in turn donate an electron to plastoquinone at site 

QA. This electron is then transferred to plastoquinone site QB and with the uptake of 

two protons from the stromal side of the thylakoid membrane results in the species 

known as QH2. 

 

The PSII special pair left is a strong oxidant (P680+
) from the loss of the electron. This 

electron is replaced by the splitting of water at the oxygen-evolving complex, 

consisting of four manganese ions, a calcium ion, a chloride ion and a tyrosine residue. 

mitThe manganese cluster, of the oxygen-evolving complex, is stripped of an electron 

by P680+ leaving it reduced. Manganese, with its ability to form strong bonds with 

oxygen, is able to oxidise two molecules of water in this reduced state, forming O2, the 

four resulting H+ remain in the thylakoid lumen creating a proton gradient. (Bricker, 

1990; Metz et al., 1989; Barber et al., 1997). 

  

Zouni et al. (2001) solved the PSII structure from T. elongatus to 3.8 Å (figure 9). It 

clearly shows that PSII is a homodimer and accounts for most of the polypeptides and 

cofactors including the Mn4 cluster. 

 

The reduced plastoquinol made from the excitation of P680 and the splitting of water 

is transferred to oxidised plastocyanin, reducing it, via the Fe-S protein of the 
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cytochrome bf complex. The oxidation of plastoquinol initiates the release of the 

protons, initially taken up from the chloroplast stroma, into the thylakoid lumen further 

adding to the proton gradient generated from the splitting of water. 

 

1.8. Photosystem I 
 

The special pair of chlorophylls in PSI, known as P700 for the same reason as for 

P680, absorb light and transfer an electron to a 4Fe-4S cluster via a quinone. This 

electron goes on to reduce ferredoxin. The oxidised P700+ gains an electron from the 

reduced plastocyanin from the reactions of PSII.  

 

Two reduced ferredoxin proteins have their electrons removed by the enzyme 

ferredoxin-NADP+ reductase. The sequential uptake of the electrons by ferredoxin-

NADP+ reductase reduces the enzyme which then drives the transfer of H- to NADP+ 

forming NADPH that goes on to be used in the Calvin cycle. The uptake of a proton in 

the formation of NADPH further increases the proton gradient. The proton gradient 

that is formed drives the enzyme ATP synthase, found in the thylakoid membrane 

between the proton gradient, and forms the ATP needed for the Calvin cycle. 

 

Photosynthesis relies on the absorption of photons by pigment molecules. For efficient 

transduction of energy it is essential that the pigment is in close proximity with a 

quinone molecule and thus the electron can be transferred. This would however result 

in photon energy located outside the photosystem reaction centres to be lost. Structural 

arrays of light capturing pigments have evolved to surround reaction centres energy is 

then transferred to reaction centres often via a number of intermediate pigments. 

Chlorophyll absorbs at wavelength spectra of ~440 and ~680nm (Shen et al., 1993) 

and exhibits initial limitations to any energy outside of these two specific wavelengths. 

Cyanobacteria have evolved a method to circumvent this limitation in the formation of 

phycobilisomes, protein complexes of phycobiliproteins connected together through 

linker polypeptides. Phycobilisomes range in their structure and can absorb light in a 

vast range, 500–650 nm, which is transferred to photosystem II. It has been suggested 

(Liu et al., 2005) that the specific tuning of these specific absorbance wavelengths are 

perhaps due to the combination of phycobiliproteins and their associated linker 

peptides. 
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Figure 9 - The structure of the PSII dimer from Thermosynechococcus elongatus  

A) Side view along the plane of the membrane  

B) View from the lumenal face. D1 and D2 refer to the RC subunits and the circles 

labelled CP43/CP47 refer to the core antenna. CP43/CP47 on the other half of the 

dimer have been omitted. The following cofactors are shown with their colours in 

brackets: Chlorophyll a (green), haem (red), manganese cluster (yellow), non-haem 

iron (cyan) phaeophytin (purple), plastoquinone (orange) Tyr2 (black) (adapted from 

Zouni et al., 2001). 
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1.9. Project Aims 
 

1. Devise a protocol for the purification of T. elongatus ChlH that is of a high 

enough quality for structural studies. Devise a method that allows the 

observation that ChlH is either bound or unbound to the substrate DIX. 

 

2. Collect single particle images of highly pure apo and substrate bound ChlH 

using electron microscopy. Using the single particles collected; create a 3D 

model of the protein in both states with collaboration with Dr. Pu Qian. 

 

3. Investigate any interesting characteristics of the ChlH structure for functional 

properties. 

 

4. Characterise the kinetic parameters of the thermophilic MgCH from T. 

elongatus. 

 

5. Try to obtain any evidence for the interaction of MgCH in vivo using FLAG-

tagged MgCH subunits in Synechocystis.  
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2.  
3. CHAPTER 2 

 

Materials and Methods 
 

3.1. Materials 
 

Unless otherwise stated, chemicals were obtained from Sigma Chemical Co. and were 

of analytical grade. Glutathione, benzamidine, chelating, anion exchange and size 

exclusion Sepharose was purchased from GE Healthcare. All porphyrins were 

purchased from Frontier Scientific Porphyrin Products. All chemicals for acrylamide 

electrophoresis were purchased from Novagen. 

 

3.2. Standard Buffers, Reagents and Media 
 

All buffers and culture media were prepared as described in Sambrook et al. (1989), 

unless otherwise stated. Growth media were prepared using deionised water. Buffers 

and solutions for DNA work were prepared using distilled water, which was further 

purified by passage through a Milli-Q system (Millipore) (QH2O). Analytical-grade 

reagents were used for DNA work. Growth media, buffers and solutions used for DNA 

work were sterilised by autoclaving at 15 p.s.i. for 20 min, or by filtration through 

0.2 µm filters. Heat-labile solutions, such as antibiotics, were only added to culture 

media once they had cooled to below 50°C. 

 

3.3. Escherichia coli strains and plasmids 
 

 

All E. coli strains and plasmids used in this work are listed at the end of this chapter. 

Strains were routinely grown in Luria-Bertani (LB) medium, and when grown in liquid 

were agitated at 300 rpm. When antibiotic selection was required, the following 

concentrations were used; 30 µg ml-1 neomycin, 150 µg ml-1 ampicillin, 8.5 µg ml-1, 
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chloramphenicol. Stocks of E. coli strains were stored at -80°C in 50:50 LB 

medium:glycerol (v/v). 

 

3.4. Synechocystis strains 
 

All strains of Synechocystis sp. PCC 6803 described in this thesis, detailed in Chapter 

4, were derived from the WT strain of Prof. Wim Vermaas (Arizona State University), 

donated by Dr. Roman Sobotka (Institute of Microbiology, Třeboň, Czech Republic). 

Strains were routinely grown in BG-11 medium (Rippka et al, 1979), and when grown 

in liquid were agitated at 150 rpm. Stocks of Synechocystis strains were stored at -

80°C in 3:1 BG-11 medium:40% DMSO (v/v). 

 

3.5. Production of competent E. coli cells 
  

3.5.1. Chemically competent E.coli cells 
 

All E. coli strains were treated as described by Hanahan (1985). E. coli cells were 

grown in 50 ml LB medium at 37°C until the OD600 of the cultures had reached 

between 0.4 and 0.5. The cells were pelleted by centrifugation, resuspended in 67 ml 

RF1 (0.1 M RbCl, 50 mM MnCl2, 30 mM potassium acetate, 10 mM CaCl2, 15% (v/v) 

glycerol, pH 5.8) and incubated on ice for 15 min. The cells were then centrifuged 

again and the pellet resuspended in 17 ml of RF2 (10 mM RbCl, 75 mM CaCl2, 

10 mM MOPS, 15% (v/v) glycerol, pH 6.8). The competent cells were stored as 100 µl 

aliquots at -80°C. Transformation efficiencies were routinely between 106 and 107 

colony forming units per µg of DNA. 

 

3.5.2. Electrocompetent E. coli cells 
 

All E. coli strains were treated as described by Ausubel et al., (1987). E. coli cells 

were grown in 500 ml LB medium at 37°C until the OD600 of the cultures had reached 

between 0.5 and 0.7 and incubated on ice for 25 min. The cells were pelleted by 

centrifugation and resuspended in 500 ml 10% (v/v) glycerol pH 7.0. Further 

centrifugation and resuspension steps were carried out using 250 ml, 50 ml and 1 ml 
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10% (v/v) glycerol pH 7.0 respectively. The cells were frozen in liquid nitrogen and 

stored as 50 µl aliquots at -80°C. Transformation efficiencies were routinely between 

109 and 1011 colony forming units per µg of DNA. 

 

3.6. Genetic transformation of cells 

 

3.6.1. Chemical transformation of E. coli 
 

An aliquot of chemically competent E. coli cells (prepared as in section 2.5.1) was 

thawed on ice. 10-50 ng of plasmid DNA in QH2O was added to 100 µl of the cell 

suspension in a 1.5 ml microcentrifuge tube. After incubation on ice for 30 min, the 

cells were heat-shocked at 42°C for 45 s and incubated on ice for 5 min.  1 ml of LB 

medium was then added to the suspension. The cells were incubated at 37°C for 1 h, 

harvested by centrifugation, resuspended in 50 μl LB medium and spread on an LB 

agar plate with the appropriate selection. Colonies were allowed to grow overnight at 

37°C. 

 

3.6.2. Electroporation of E. coli 
 

Electroporation was carried out as described by Miller and Nickoloff (1995). An 

aliquot of electrocompetent E. coli cells (prepared as in section 2.5.2) was thawed on 

ice.  A precipitated ligation reaction (see section 2.7.1), dissolved in 10 µl QH2O was 

added to 50 µl of the cell suspension in a 1.5 ml microcentrifuge tube. After incubation 

on ice for 2 min, the cells were transferred to an electroporation cuvette. An electric 

current was applied to the cuvette, 1 ml SOC medium was immediately added and the 

cells transferred to a 1.5 ml microcentrifuge tube. The cells were incubated at 37°C for 

1 h, harvested by centrifugation, resuspended in 50 μl LB medium and spread on an 

LB agar plate with the appropriate selection. Colonies were allowed to grow overnight 

at 37°C. 
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3.7. Nucleic acid manipulation 

 

3.7.1. Precipitation of DNA 
 

Removal of chemical contaminants from DNA solutions was achieved by adding 

1/10th volume 70% glycogen or 3 M sodium acetate pH 5.2 followed by 2 volumes 

96% ethanol. The DNA was then precipitated at -80°C for 2 h. The precipitated DNA 

was pelleted by centrifugation, washed in 200 µl 70% ethanol and repelleted. The 

DNA was then dissolved in a desired volume of QH2O.   

 

3.7.2. Small-scale preparation of plasmid DNA (mini-prep) 
 

Small quantities of plasmid DNA were prepared using the FastPlasmid Miniprep DNA 

purification system (Eppendorf), according to the manufacturer’s instructions, a copy 

of which can be downloaded from www.eppendorf.com. Transformed E. coli cultures 

were grown overnight in sterile plastic 7 ml universals containing 3 ml of LB medium 

with the appropriate antibiotic selection at 37°C in an orbital shaker (300 rpm). The 

DNA pellets were resuspended in 50 µl of QH2O and stored at -20°C.  The yield was 

typically about 5 µg of plasmid DNA per mini-prep. 

 

3.7.3. Larger-scale preparation of plasmid DNA (midi-prep) 
 

Larger quantities of plasmid DNA were prepared using the Hi-Speed Plasmid Midi Kit 

(Qiagen), according to the manufacturer’s instructions, a copy of which can be 

downloaded from www.qiagen.com. Transformed E. coli cultures were grown 

overnight in 250 ml conical flasks containing 50 ml of LB medium with the 

appropriate antibiotic selection at 37°C in an orbital shaker (300 rpm). The DNA 

pellets were resuspended in 500 µl of QH2O and stored at -20°C. The yield was 

typically about 50 µg of plasmid DNA per midi-prep. 
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3.7.4. Polymerase chain reaction (PCR) 

 
Reactions were performed in a total volume of 50 µl containing 25 µl of 2x reaction 

mix (2.5 units of ACCUZYME, 2 mM dNTPs, 4 mM MgCl2) (Bioline) 125 ng of each 

primer (table 2.4), and 100 ng of template DNA. Primers were produced by Sigma and 

resuspended in QH2O to 125 ng µl-1. Reactions were carried out using conditions 

appropriate to the Tm of the primers and the length of the fragment to be amplified, as 

specified in the Accuzyme instruction manual, a copy of which can be downloaded 

from www.bioline.com. Primers were denatured for 3 min at 95°C followed by 30 

cycles of amplification using a touchdown PCR method where the annealing 

temperature was reduced by 2 °C every two cycles starting initially at 80 °C and 

finishing at 45 °C (e.g. 96°C, 1 min; 60°C, 45 s; 72°C, 2 min kb-1) with a final 

extension for 10 min at 72°C in a PHC-3 Thermal Cycler (Techne). Following 

amplification, PCR reactions were cleaned up via gel purification (2.7.9.). 

 

3.7.5. Restriction enzyme digestions 
 

Restriction enzymes were purchased from Promega, and the suppliers’ instructions 

followed with regard to reaction buffers and incubation temperatures. The DNA was 

then gel-purified (2.7.9). 

 

3.7.6. Dephosphorylation of DNA 
 

The 5’-phosphate groups were removed from the ends of DNA fragments, where 

necessary, by the addition of 1 unit of calf intestinal phosphatase (Boehringer 

Mannheim) to a restriction digest at the end of the digestion period. Incubation was 

continued for a further 30 min at 37°C. The reaction was then incubated at 65°C for 10 

min prior to DNA gel purification (2.7.9). 
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3.7.7. Filling in recessed 3’ ends of DNA fragments 
 

Recessed 3’ ends of DNA fragments were made blunt using the Klenow fragment of  

E. coli DNA polymerase I (Boehringer Mannheim). This was added to restriction 

enzyme digests after the reactions were complete, or to purified DNA fragments. 

MgCl2 was added to purified fragments to a final concentration of 5 mM prior to the 

addition of Klenow fragment and dNTPs. Typically 1 unit of Klenow was added per 

μg of DNA and each dNTP was added to a final concentration of 0.1 mM. Reactions 

were incubated for 15 min at room temperature and then stopped by incubation at 65°C 

for 10 min. 

 

3.7.8. Agarose gel electrophoresis of DNA 
 

Restriction enzyme digests, PCR reaction products and purified DNA fragments were 

routinely analysed by electrophoresis through 0.8% agarose gels in 1 x TAE (40 mM 

Tris-acetate, 1 mM EDTA) running buffer containing 0.5 µg ml-1 ethidium bromide 

(Sambrook et al., 1989). 6x gel loading buffer (0.03% bromophenol blue, 0.03% 

xylene cyanol, 60% glycerol, 60 mM EDTA in 10 mM Tris-HCl, pH 7.6) was added to 

DNA samples, and 10-500 ng of DNA were typically loaded per lane; 200 ng of 1kb 

DNA ladder (Fermentas) was run as a marker alongside the samples in order to 

estimate the sizes of DNA fragments. DNA was visualised by exposure to a source of 

254 nm ultraviolet light. 

 

3.7.9. Recovery of DNA from agarose gels 
 

DNA fragments requiring purification were electrophoresed through low-melting-point 

agarose gels in 1x TAE. The desired fragment was excised from the gel and the gel 

slice incubated at 65°C for 5-10 min.  The DNA was extracted from the melted agarose 

using the QiaQuick Gel Extraction Kit (Qiagen), according to the manufacturer’s 

instructions, a copy of which can be downloaded from www.qiagen.com. 
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3.7.10. Ligation of DNA fragments 
 

In-Fusion® Advantage PCR Cloning was performed as according to the user manual 

available from (www.clontech.com) and then transformed into electrocompetent E. 

coli DH5α cells as described in 2.6.2. 

 

3.7.11. DNA sequencing 
 

A sample of plasmid DNA prepared by midi-prep (2.7.3) was diluted to give 15 µl at a 

concentration of 100 ng µl-1. Samples were sent to Lark Technologies Inc. for 

sequencing. Results were returned by email and sequences analysed using the DNA 

Star software programme. 

 

3.8. Protein expression 
 

3.8.1. Protein overexpression in E. coli 
 

Genes which had been cloned into expression vectors were transformed into E. coli 

strain BL21 (DE3). The resulting transformants were grown at 37°C in 500 ml LB 

medium containing the relevant antibiotic until the OD600 of the cultures had reached 

0.3. The temperature was then decreased to 25°C until the cultures reached an OD600 of 

between 0.6 and 0.8. Protein synthesis was induced by the addition of IPTG to a final 

concentration of 0.4 mM and the cells were grown for a further 16 h at 20°C before 

harvesting by centrifugation at 4000 x g for 20 min.  The synthesis of proteins in 

E. coli was monitored by removing 1 ml samples prior to and after IPTG induction, 

with analysis by SDS-PAGE.  Harvested cells were stored at -80°C. 

 

3.8.2. Protein expression in Synechocystis 
 

Synechocystis mutants were grown photoautotrophically in 1.25 L BG-11 medium at 

30°C. Protein synthesis was induced by growth under high light conditions (50 µmol 

photons m-2 s-1). Cultures were grown until they reached an OD730 of 1.0 before being 
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harvested by centrifugation at 10,000 x g for 20 min. Harvested cells were stored at -

80°C. 

 

3.9. Protein analysis 
 

3.9.1. Determination of protein concentration 
 

Protein concentrations were determined by applying the following equation to 

absorbance readings at 280nm in a suitable resuspension buffer: 

 

A280 (1mg ml-1) = (5960nTrp + 1280nTyr + 120nCys) / Mr  

 

where nTrp, nTyr and nCys are the numbers of tryptophan, tyrosine and cysteine residues 

respectively, and Mr is the predicted molecular mass  of the protein (Gill and von 

Hippel, 1989).  Protein concentrations were also determined using the Bradford protein 

assay (Biorad), according to the manufacturer’s instructions, which are available to 

download from www.bio-rad.com. Bovine serum albumin (BSA) was used to obtain a 

standard curve. 

 

3.9.2. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
 

Protein samples were separated by SDS-polyacrylamide gel electrophoresis using the 

buffer system of Laemmli (1970), and the protocol of Sambrook et al. (1989). A 5% 

stacking gel and a 12%, 10% or 8% separating gel were used in all cases.  All samples 

were boiled for 5 min prior to loading; 10-20µl were loaded per well.  Protein bands 

were visualised by staining gels with Coomassie Brilliant Blue R250. Kaleidoscope or 

Precision Plus Prestained Standards (Biorad) were used as a molecular weight marker. 

 

3.9.3. Western analysis of proteins 
 

Western analysis of SDS-PAGE gels was essentially performed as described by 

Sambrook et al. (1989). Following electrophoresis the gels were equilibrated for 

approximately 15 min in transfer buffer (10 mM NaHCO3, 3 mM Na2CO3, 10% 

methanol).  Under complete saturation of transfer buffer, a sandwich consisting of the 
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gel, two porous pads, sheets of Whatman 3 mm paper and nitrocellulose or 

polyvinylidene difluoride (PVDF) transfer membrane was constructed. The layers 

were pressed together within a transfer cassette, such that the transfer membrane was 

in direct contact with the gel.  This was placed in the blotting apparatus (Biorad) at 

40 mA overnight, with the blotting membrane placed between the gel and the anode of 

the blotting tank. Upon completion of transfer the membrane was removed from the 

cassette and stored in TBS buffer (50 mM Tris/HCl pH 7.6, 150 mM NaCl). 

 

3.9.4. Immunodetection 
 

Following Western blotting, the nitrocellulose membrane was blocked for 60 min at 

room temperature in 30 ml blocking buffer (0.2% Tween 20 in TBS) with shaking. The 

membrane was then incubated with a 1/2500-1/4000 dilution of the relevant primary 

antibody, raised in rabbit, in 30 ml antibody buffer (0.05% Tween 20 in TBS) for 4 h 

at room temperature with shaking.  The membrane was washed with antibody buffer 

for 3 x 5 min and then incubated with a 1/10,000 dilution of peroxidase-conjugated 

goat anti-rabbit IgG secondary antiserum in 30 ml antibody buffer for 60 min at room 

temperature with shaking. Finally, the membrane was washed for 3 x 5 min in 

antibody buffer before the immunoreactive bands were detected with Amersham ECL 

Western blotting luminol and enhancer solutions (GE Healthcare) as described by 

Sambrook et al. (1989). 

 

3.9.5. Native-polyacrylamide gel electrophoresis (Clear Native-

PAGE) 

 
Protein samples were separated by native-polyacrylamide gel electrophoresis using the 

buffer system of Laemmli (1970) based on the Clear Native Polyacrylamide Gel 

Electrophoresis technique, developed by Schägger (1994), using precast 3-8 % 

NativePAGE NOVEX (Invitrogen).  Gels were set up as detailed by the manufacturers’ 

instructions (available from www.invitrogen.com), using Tris-Glycine buffer in both 

upper and lower chambers of the of the system. 20 µl of protein sample were prepared 

with an equal volume of 2x sample buffer and loaded onto the gel alongside 10 µl of 

NativeMark unstained native protein marker (Invitrogen).  The gels were run at 150 
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mV for 120 min at 4 °C and protein bands were visualised using Coomassie brilliant 

blue G250. 

 

3.10. Protein purification 
 

3.10.1. Purification of His6-tagged proteins 
 

Protein synthesis was induced by IPTG in 500 ml cultures of E. coli BL21 (DE3) cells 

containing pET9a derivatives, as described in section 2.8.1. The cells were harvested 

by centrifugation and pellets from 1-3 l of culture were resuspended in 20ml chilled 

binding buffer (50 mM sodium phosphate pH 7.4, 300 mM NaCl, 10 mM imidazole) 

containing protease inhibitor. The cells were disrupted by sonication for 6 x 20 s and 

the cell debris removed by centrifugation at 48,000 x g for 20 min at 4°C. The 

supernatant was passed through a 0.2 µm filter and loaded onto a 10 ml pre-

equilibrated Chelating Sepherose™ Fast Flow column pre-charged with one column 

volume of 100 mM nickel sulphate and allowed to bind under gravity flow. The 

column was washed with 50 ml wash buffer (50 mM sodium phosphate pH7.4, 300 

mM NaCl, 50 mM imidazole), repeated three times with a final 10 ml wash with buffer 

containing 100 mM imidazole. A280/260 spectra was taken to ensure all unbound protein 

and any DNA had been washed from the column. His6-tagged proteins were eluted 

from the column with 20 ml elution buffer (50 mM sodium phosphate pH7.4, 300 mM 

NaCl, 300 mM imidazole). Imidazole was removed from the sample by diafiltration 

using an ultrafiltration concentrator. 

 

3.10.2. Purification of GST-tagged proteins 
 

Protein synthesis was induced by IPTG in 500 ml cultures of E. coli BL21 (DE3) cells 

containing pGEX-4T-1, as described in section 2.8.1. The cells were harvested by 

centrifugation and pellets from 1-3 l of culture were resuspended in 20 ml chilled PBS 

buffer pH 7.3 (140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) 

containing protease inhibitor. The cells were disrupted by sonication for 6 x 20 s and 

the cell debris removed by centrifugation at 48,000 x g for 20 min at 4°C. The 

supernatant was passed through a 0.2 µm filter and loaded onto a pre-equilibrated 1 ml 

Glutathione Sepharose column. The column was washed with 10 column volumes of 
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PBS buffer. The GST-tag was cleaved by loading 1 ml of PBS containing 80 units of 

thrombin onto the column and incubating for 16 h at 20°C. Cleaved proteins were 

eluted from the column with 3ml PBS. Thrombin was removed from the sample by 

loading onto a pre-equilibrated 1ml Benzamidine Sepharose column. The column was 

washed with 10 column volumes of low salt buffer (15.5 mM Na2HPO4, 4.5 mM 

NaH2PO4, 150 mM NaCl). Proteins were eluted with 10 column volumes of high salt 

buffer (15.5 mM Na2HPO4, 4.5 mM NaH2PO4, 1 M NaCl). Salt was removed from 

the sample by diafiltration using an ultrafiltration concentrator, and the sample was 

dispersed in PBS buffer pH 7.3.  

 

3.10.3. Further purification of proteins 
 

3.10.3.1. Ion exchnage 
 

After initial purification procedures proteins would be purified further using ion 

exchange chromatography. Protein was buffer exchanged into 90:10, buffer A:B and 

loaded onto a ResourceQ anion exchange column (GE Healthcare) pre-equilibrated 

with  90:10, buffer A:B (Buffer A, 50 mM Tricine pH 7.9, 0.3 M glycerol, 1 mM 

dithiothreitol (DTT); Buffer B is buffer A with 1 M NaCl). The column was washed 

with 5 column wolumes of 90:10, buffer A:B and then eluted with a NaCl linear 

gradient of 10% - 35 % buffer B. 

 

3.10.3.2. Gel Filtration 
 

Size exclusion chromatography was performed either preparatively on an FPLC 

(ÄKTA - FPLC, GE Healthcare) using a HiLoad 16/60 Superdex 200 PG column (GE 

Healthcare) or analytically on an HPLC (Agilent 1200) using a BioSeph-Sec-4000 

column (Phenomenex). Gel filtration buffer was 50 mM Tricine, 0.3 M NaCl, 0.3 M 

glycerol, 1 mM DTT. Protein elution was detected by monitoring the UV absorbance 

at 280 nm except when DDM or ATP was used in the buffer / sample and tryptophan 

fluorescence was measured with an excitation wavelength of 290 nm and an emission 

wavelength of 350 nm. 
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3.10.4. Purification of FLAG-tagged proteins 
 

Protein synthesis was induced by growing 1.25 L cultures of Synechocystis strains 

under high light conditions as described in section 2.8.2. The cells were harvested by 

centrifugation and pellets from 3-5 L of culture were resuspended in 10 ml thylakoid 

buffer containing protease inhibitor. The cells were disrupted by bead beating for 9 x 1 

min. The soluble and thylakoid fractions were separated by centrifugation at 48,000 x 

g for 20 min at 4°C. Proteins contained in the thylakoid fraction were solubilised by 

rotation for 1 h at 4°C in 10 ml thylakoid buffer containing n-Dodecyl β-D-maltoside 

(β-DDM) at a final concentration of 2% (w/v). The solubilised and insoluble fractions 

were separated by centrifugation at 48,000 x g for 20 min at 4°C. Depending on the 

localisation of the FLAG-tagged protein of interest, either the soluble or solubilised 

thylakoid fraction was passed through a 0.2 µm filter and loaded onto a pre-

equilibrated 1 ml Anti-FLAG M2 Affinity gel column. The column was washed with 

15 column volumes of thylakoid buffer containing 0.04% DDM (w/v). FLAG-tagged 

proteins were eluted by adding 100 µg pure FLAG peptide dissolved in 1 ml thylakoid 

buffer containing 0.04% DDM (w/v) to the plugged column, transferring the 

suspended resin to a cryovial and rotating for 1 h at 20°C. The protein was separated 

from the resin by centrifugation at 1500 x g for 5 min in a Costar Spin-X centrifuge 

tube containing a cellulose acetate membrane with 0.22 µm pores. 

 

3.11. Buffer exchange of aggregated protein 
 

Aggregated protein was diluted into the desired buffer incubated in a sonication water 

bath at room temperature for 3 min and concentrated using an ultrafiltration 

concentrator. 

 

3.12. Substrate preparation 

 

3.12.1. Porphyrin preparation 
 

Approximately 5 mg of porphyrin was dissolved in chelatase buffer (50 mM 

MOPS/KOH pH 7.7, 0.3 M glycerol, 1 mM DTT). The solution was centrifuged to 

remove any insoluble porphyrin and transferred to a sterile black microcentrifuge tube. 
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Pigment concentrations were determined in 0.1 M HCl using extinction coefficient 

(ε399 = 433000 M-1cm-1) from Falk (1964). 

 

3.12.2. ATP preparation 
 

Approximately 250 mg of adenosine 5’-triphosphate disodium salt (ATP) or 5’-O-(3-

thiotri-phosphate) tetralithium salt (ATPγS) were dissolved in 1 ml of QH2O with 

adjustment of pH to 7 using KOH. The concentrations were determined in water using 

the extinction coefficient (ε259 = 15400 M-1cm-1) from Dawson (1969). 

 

3.13. Fluorescence and absorbance spectroscopy 
 

Fluorescence spectra were recorded on a Jobin Yvon spectrofluorimeter fitted with a 

temperature-controlled cuvette holder set to 34°C at a scan speed of 2 nm s-1. All 

samples (1ml) were in 50 mM MOPS/KOH pH 7.7, 0.3 M glycerol, 1 mM DTT and 

were incubated for at least 5 minutes at 34°C before transfer to a clean 1 ml quartz 

cuvette. Protein fluorescence was monitored using an excitation wavelength of 295 nm 

and an emission wavelength of 340 nm. Excitation and emission slit widths 

corresponding to 4.5 nm and 18 nm, respectively were used for excitation scans. For 

emission scans both slits were set at 4.5 nm. Spectra were corrected by subtraction of 

buffer-only samples. Absorbance spectra were recorded on a Cary50 UV-Vis 

spectrophotometer (Varian) at room temperature. The buffers used were the same as 

for fluorescence spectroscopy. 

 

3.14. Steady-state assays of magnesium chelatase 
 

Reactions were carried out in 50 mM MOPS/ KOH pH 7.7, 0.3 M glycerol, 1 mM 

DTT at the specified temperature and fixed ionic strength I = 0.1, in a total volume of 

100 µl.  A Bio-Tek F2 microplate reader with excitation through a 420 ± 25 nm filter 

and emission observed through a 590 ± 17.5 nm filter was used to detect MgDIX 

evolution over a period of one hour. Protein concentrations were 0.1 µM ChlD, 0.2 µM 

ChlI, 1 µM ChlH (except where stated) and substrate concentrations were 5 mM 

MgATP2-, 10 mM Mg2+ and 5 µM DIX (except where stated). The maximum rate 

during an assay was taken as the steady-state rate and generally occurred after 12 
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minute lag phase.  Known concentrations of MgDIX were analysed in the same way to 

produce a standard curve. 

 

Steady-state rates were calculated from chelatase progress curves using the instrument 

software, fitting to a linear slope after the initial lag.  All Vss values were plotted 

against substrate concentration or subunit concentration and these data were fitted to 

equations as detailed through the chapters using unweighted nonlinear regression 

(Sigmaplot 8, SPSS.). 

 

3.15. Nanogold labelling of His6 tagged protein 
 

Protein was buffer exchanged into nanogold binding buffer (20 mM Tris, 300 mM 

NaCl, 0.2% Tween 20, 5 mM imidazole). Protein was then added to nickel-

nitrilotriacetic acid-Nanogold (Nanoprobes, Inc.) to give equimolar concentrations and 

was incubated at room temperature for 5 min. The solution was applied to an EM grid 

and imaged as described previously. 

 

3.16. Circular Dichroism Spectroscopy 
 

CD spectra of proteins (2-10 µM) were recorded on a Jasco J-810 spectropolarimeter 

at room temperature for 5 min.  The machine was flushed with nitrogen at 3 L min-1 

for 30 min, prior to turning the lamp on.  All samples were in 50 mM Tricine/NaOH 

pH 7.9, 1mM DTT.  Buffer-only measurements showed that this buffer did not mask 

the protein signal, with no absorption in the region of interest. 
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Table 1 - Escherichia coli strains 
 

Strain Properties Source/Reference 

DH5α supE44 ∆lacU169 (Φ80lacZ∆M15) 

hsdR17 recA1 endA1 gyrA96 thi-1 

relA1 

Hanahan, 1985 

BL21 (DE3) (F- ompT rB
-
 mB

-) + bacteriophage 

DE3 

Studier and Moffat, 1986 

BL21 (DE3) 

pLysS 
F- ompT hsdSB (rB

- mB
-) dcm gal λ(DE3) 

pLysS (CmR) 

Novagen 

 

 

Table 2 – Comercial Plasmids 
 

Plasmid Properties Source/Reference 

pET9a pBR322-based expression vector with 

the T7 promoter and terminator, NmR 

Novagen 

pET9aHis pET9a derivative containing the XbaI-

NdeI DNA fragment of pET14b 

containing the ribosome binding site 

and His6-tag encoding region, NmR 

Jensen et al., 1996a 

pGEX-4T-1 pBR322-based expression vector with 

the T7 promoter and terminator, N-

terminally encoded GST-tag and 

thrombin cleavage site, NmR 

Fermentas 

pBluescript II KS pUC-based cloning vector containing 

a lacI promoter, AmpR 

Fermentas 
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Table 3 – Plasmids encoding genes described in this thesis 
 
 
Plasmid[gene] Protein  Organism  

pET9a-His6[TchlH] ChlH T. elongatus 

pET9a-His6[ΔN160H] ΔN-terminal160 ChlH T. elongatus 

pET9a-His6[TchlI] ChlI T. elongatus 

pET9a-His6[TchlD] ChlD T. elongatus 

pGEX[TchlD] ChlD T. elongatus 

 
 

Table 4 – Primers 

 
Plasmid Forward primer Reverse primer 

pET9a-

His6[TchlD] 
5`-CGCGGCAGCCATATGACGC 

TCGCGATCGCCCCCTTTCCC-3` 

5`-TTAGCAGCCGGATCCCTAA 

AATTGCAGGGCGTTCTGGG-3` 

pGEX[TchlD] 5`-GATCCCCAGGAATTCATGACG 

CTCGCGATCGCCCCCTTTCCC-3` 

5`-TCACGATGCGGCCGCCTAA                

AATTGCAGGGCGTTCTGGG-3` 
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4. CHAPTER 3 

 

The structural characterisation of the ChlH subunit of 

the enzyme magnesium chelatase from 

Thermosynechococcus elongatus 
 

4.1. Summary 
 

Magnesium protoporphyrin IX chelatase (Mg-chelatase) catalyses the insertion of a 

Mg2+ ion into protoporphyrin IX (Proto). The H subunit of the multi-subunit enzyme 

has been identified as the porphyrin-binding subunit as it binds Proto as well as the 

product Mg-protoporphyrin IX (MgProto) in the absence of the other Mg-chelatase 

subunits (Karger et al., 2001). Recently a low resolution structure has become 

available for the Rba. capsulatus BchH (Sirijovski et al., 2008). It was shown that 

BchH undergoes a conformational change upon the binding of Proto and it appears that 

two lobes of the tri-lobed protein come together perhaps forming a more enclosed 

environment for the binding of Proto. Because the similarity of the H subunit between 

oxygenic photosynthetic organisms is high it would be interesting to map the structure 

of a cyanobacterial or plant protein. This chapter documents the purification of ChlH 

from T. elongatus and presents a basic characterisation of the protein as the porphyrin-

binding subunit of magnesium chelatase. A low resolution EM-3D reconstruction of 

the protein is shown with ChlH in both apo and bound states. The protein appears to 

have a multi-lobed structure with a large body, and a small head region with an 

estimated MW of 15.7 kDa. The 3D reconstruction is similar to the small angle X-ray 

scattering (SAXS) structure for ChlH from Synechocystis (Qian et al., 2012). Finally 

the N-terminal domain of the T. elongatus protein is identified using Ni2+-

nitrilotriacetic acid (NTA)-nanogold particles bound to the N-terminal His6 tag on the 

protein and subsequent EM imaging of negatively stained ChlH particles. Future 

possibilities for obtaining structural information for a complex between ChlH and the 

magnesium chelatase enhancer protein Gun4 is discussed following the possible 

isolation of a ChlH•Gun4 complex. 
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4.2. Introduction 
 

Haems and chlorophylls share the same common biosynthetic pathway from the 

formation of aminolaevulinic acid through to protoporphyrin. The next enzymatic step 

involves the chelation of a divalent metal ion into the macrocycle. The chelation of 

iron commits to the production of haem, which is vital for cyto/phytochromes and 

haemoglobin and this step is catalysed by a 38 - 51 kDa ATP-independent 

ferrochelatase (Hunter et al., 2011). The alternative branch is the insertion of 

magnesium into Proto committing to the biosynthesis of chlorophyll. This ATP-driven 

process is catalysed by magnesium chelatase (MgCH), a far more complex enzyme 

when compared to ferrochelatase. MgCH consists of three essential subunits 

designated ChlH/BchH, ChlI/BchI and ChlD/BchD depending on whether the subunits 

are from oxygenic or non-oxygenic organisms, respectively. A fourth gene, gun4 

(genome uncoupled), encodes an additional protein that acts as an enhancer to the 

enzyme (Larkin et al., 2003 and Davison et al., 2005). The chelation reaction requires 

Mg2+ and Proto with energy from ATP (Gibson et al 1995; Jensen et al., 1996). 

 

The I subunit is a ~40 kDa ATPase (Jensen et al., 1998) from the AAA+ (ATPases 

Associated with diverse cellular Activities) family and the structure from Rba. 

capsulatus has been solved to 2.1 Å resolution (Fodje et al., 2001). AAA+ proteins 

often form oligomeric rings (Fodje et al., 2001; Hansson et al., 2002) and Willows et 

al., (2004) show evidence that BchI can form hexameric complexes in the presence of 

ATP. Heptameric complexes have also been observed from Synechocystis ChlI (Reid 

et al., 2003). 

 

The D subunit has a molecular weight of ~70 kDa and its N-terminal half has 

homology to the I subunit and also contains a MIDAS motif that is suggested to be 

associated with metal ion binding (Jensen et al., 1996; Axelsson et al., 2006). The I 

and D subunits can form a complex in the presence of Mg2+ and ATP (Gibson et al., 

1999; Jensen et al., 1999a). Lundqvist et al., (2010) have published a cryo-EM 3D 

reconstruction of the BchI•BchD complex as a hexameric double ring. Because D can 

form oligomeric complexes independent of ATP or magnesium (Axelsson et al., 2006) 

it has been proposed that the D ring assembles to form a scaffold on which I can then 
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associate. It may be that D binds magnesium and then assembles with I and this 

complex interacts with the rest of the enzyme to enable activity. 

 

The H subunit is the largest subunit of MgCH and has a molecular weight of ~140 

kDa. H has been shown to be the tetrapyrrole binding subunit and it binds both the 

substrate and product of the reaction (Karger et al., 2001). The dissociation constant, 

Kd, of H for DIX was calculated to be 1.22 ± 0.42 μM for ChlH and 0.53 ± 0.12 μM for 

BchH. The Kd for MgDIX was calculated to be 2.43 ± 0.46 μM for ChlH and 0.22 ± 

0.038 μM for BchH (Karger et al., 2001). H appears to be catalytically inactive and it 

has been suggested that it has a role in distorting the porphyrin ring and enabling the 

insertion of magnesium (Al-Karadaghi et al., 2006). 

 

ChlH is a multifunctional protein and it is apparently involved in a variety of other 

processes not associated with chlorophyll biosynthesis. SigE, an anti-sigma factor, 

regulates sugar catabolism and ChlH has been shown to repress SigE 

posttranslationally by binding it to prevent transcription (Osanai et al., 2009). 

Interestingly sugar catabolism is regulated in what appears to be a light/dark sensitive 

manner and H regulates SigE through magnesium fluctuations during light/dark cycles 

(Osanai et al., 2009). Abscisic acid (ABA) is a plant hormone that regulates many 

processes under stressful conditions. In broad bean a ~45 kDa protein was shown to be 

a mediator in abscisic acid binding and thus signaling. This protein was found to be a 

770 amino acid C-terminal fragment of ChlH and in Arabidopsis full size ChlH was 

shown to bind ABA (Zhang et al., 2002; Shen et al., 2006). Further work indicated that 

in Arabidopsis the ChlH C-terminal domain was important in ABA binding whereas 

the N-terminal domain appears not to be, supporting previous work (Wu et al., 2009). 

These results conflict with other work in barley (Müller and Hansson, 2009; Tsuzuki et 

al., 2011). There is no detailed structural information for any Mg chelatase H subunit 

and when bioinformatic searches are used there are no structures available for any H-

like protein. There is a low resolution structure for BchH obtained from negative stain 

electron microscopy 3D reconstruction (Sirijovski et al., 2008). This structure reveals a 

three-lobed protein with lobe I containing the “thumb” and lobe III sporting a “finger”. 

Upon binding of substrate there is a conformational change whereby the finger and 

thumb come together perhaps providing a hydrophobic environment for the 

hydrophobic Proto to reside to enable catalysis. It may also be that in this more 
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hydrophobic environment the hydration shell is removed from the hydrated 

magnesium to form the divalent cation.  

 

Table 1 shows the similarity between various H subunits from different species and the 

large subunit of the cobalt chelatase, a three-subunit enzyme performing the insertion 

of cobalt into hydrogenobyrinic acid a,c-diamide, in a reaction similar to that of 

MgCH (Brindley et al., 2003). The sequence homologies of H proteins are high, 

particularly between Chl-producing organisms. It is clear that there is a large drop in 

similarity between ChlH and BchH proteins and inspection of Fig. 1 shows a sequence 

(cyan bar) that is present in oxygenic photosynthetic organisms but absent from 

anaerobic photosynthetic organisms. 
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Table 1 - Percentage sequence identities among Mg-chelatase H subunits from a 

selection of plants, cyanobacteria and photosynthetic bacteria. Abbreviations 

explained below: 

HV.H, Hordeum vulgare ChlH; AT.H, Arabidopsis thaliana ChlH; CR.H, 

Chlamydomonas reinhardtii ChlH; SYN.H, Synechocystis ChlH; TE.H, 

Thermosynechococcus elongatus ChlH; PM.H, Prochlorococcus marinus ChlH; 

RC.H, Rhodobacter capsulatus BchH; PV.H, Prosthecochloris vibrioformis BchH; 

COBN, Pseudomonas denitrificans cobaltochelatase subunit N. 

 
 

 

HV. 

ChlH 

AT. 

ChlH 

CR. 

ChlH 

SYN. 

ChlH  

TE. 

ChlH 

PM. 

ChlH 

RC. 

BchH 

PV. 

BchH 

COBN 

HV. ChlH 100 82 67 67 67 64 38 33 28 

AT. ChlH  100 68 66 66 65 38 32 28 

CR. ChlH   100 66 66 64 39 33 29 

SYN. ChlH    100 78 71 38 33 29 

TE. ChlH      100 69 38 34 34 

PM. ChlH      100 38 35 33 

RC. BchH       100 34 34 

PV. BchH        100 26 

COBN         100 
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Figure 1 - Alignment of Mg-chelatase porphyrin binding subunits from selected 

purple bacteria, cyanobacteria and a higher plant 

According to the characteristics of the amino acid side chains.  Color annotation: 

black, histidine; blue, positively charged; green, polar; magenta, cysteine; red, 

negatively charged; yellow, non-polar.  Compiled using Geneious software 

(Drummond et al., 2010). The cyan bar indicates a region of ChlH proteins found in 

oxygenic phototrophs but not in purple photosynthetic bacteria. 
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4.3. Results 
 

 

4.3.1. Purification and functional analysis of the ChlH protein 
 

The pET9a-His6 plasmid containing the chlH gene was a kind gift from Dr. Paul 

Davison. E. coli BL21 (DE3) cells were transformed with the construct containing the 

ChlH gene and the cells were induced overnight with 0.4 mM IPTG. ChlH, ChlI and 

ChlD were purified as in section 2.10 and a typical purification of T. elongatus ChlH 

can be seen in the inset in Fig. 2, A shows HPLC gel filtration traces of apo-ChlH (top 

trace) and ChlH that has been incubated with 10 μM DIX, a water-soluble substitute for 

protoporphyrin (bottom trace). The apo-ChlH trace shows that recombinant ChlH does 

not significantly co-purify with endogenous Proto from E. coli, as shown by the large 

protein absorbance at 280 nm but the negligible tetrapyrrole peak (398 nm).  The 

preincubated ChlH•DIX shows large peaks for both the protein and tetrapyrrole. This 

confirms that the apo-ChlH sample was free of porphyrin and that in the preincubated 

samples, the substrate was indeed bound. The retention time of 38 minutes correlated 

with an estimated molecular weight of 150 kDa. Fig. 2, B shows magnesium chelatase 

assays of Synechocystis ChlH and T. elongatus ChlH incubated with ChlI, ChlD, 

magnesium, ATP and DIX. The negative control without ChlH shows that it is essential 

for the MgCH activity and that that the suspected T. elongatus chlH gene does indeed 

encode the large subunit of magnesium chelatase. As perhaps expected a lower activity 

is seen when compared to that of Synechocystis ChlH due to possible incompatibilities 

between the proteins from different species. 

 

4.3.2. Porphyrin binding studies 
 

Having performed the functional analysis of T. elongatus ChlH, the detection of both 

apo-ChlH sample and a ChlH•DIX sample was possible but the percentage of substrate 

bound in the ChlH•DIX sample was not determined. Estimation of the dissociation 

constant (Kd) between T. elongatus ChlH and DIX would guide the incubations needed 

(10x Kd) to ensure that the majority of proteins imaged would indeed be bound to 

tetrapyrrole. 
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Figure 2 - Proto binding and enzyme activity of the magnesium chelatase ChlH 

subunit from T. elongates 

A, the purity of the apo-ChlH subunit is indicated by the elution trace from the HPLC 

gel filtration column (black line, detection of absorption at 280 nm; red line, detection 

at 398 nm), and the SDS-PAGE analysis (inset). The two lower traces show the 

analysis of the sample where ChlH and DIX were premixed prior to gel filtration. B, 

plot of ChlH fluorescence at 350 nm in arbitrary units (A.U.) as a function of DIX 

concentration. B, Mg chelatase assays run in duplicate with H, I, and D subunits from 

Synechocystis as a positive control (blue), and I and D subunits alone as a negative 

control (green). The data in red show the progress of a Mg chelatase reaction with the 

T. elongatus ChlH subunit mixed with the Synechocystis ChlI and ChlD subunits. 
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The disassociation constants for ChlH and DIX/MgDIX were determined using the 

methodology described in 2.13 (Karger et al., 2001). Fig. 3 displays plots of integrated 

ChlH fluorescence as a function of tetrapyrrole concentration. In each case the binding 

titration data were fitted to equation 1, in which a single type of binding site is 

assumed (Karger et al., 2001). 

 

 

   

                            (Equation 1) 

Fobs is the observed fluorescence, F0 is initial fluorescence, Fmax is the maximum 

amplitude of fluorescence quenching, [L]T is the total ligand concentration, [E]T is the 

total concentration of protein and Kd is the disassociation constant.  

 

The calculated Kd of T. elongatus ChlH for DIX and MgDIX were 1.48 ± 0.3 μM and 

2.12 ± 0.2 μM respectively. The data prented are from single titrations and the errors 

reflect the error in the Kd obtained using the equation. These calculations are in good 

agreement with the previously published Kd values for Synechocystis ChlH for DIX and 

MgDIX of 1.22 ± 0.42 μM and 2.43 ± 0.46 μM. 

 

4.3.3. Electron microscopy and 3D reconstruction of negatively 

stained apo-ChlH and ChlH-DIX particle 
 

Purified proteins were adsorbed onto freshly glow-discharged carbon-coated copper 

grids that were subsequently negatively stained.  Fig. 4, A and D, shows the electron 

micrographs of apo-ChlH and ChlH•DIX samples, respectively. Under such conditions, 

about 70 particles with a clear background could be picked from a single 1K × 1K 

micrograph. Fig. 4, B and E, show representative boxed images of single molecules of 

apo-ChlH and ChlH•DIX samples, respectively, with the presence of several domains 

within ChlH already evident from these images. Initial reference-free classifications 

were run on the data sets that contained 15930 particles of apo-ChlH and 12310 

particles of the ChlH•DIX complex. The top rows of Fig. 4, C and F, show six selected 

averaged two-dimensional classes. Below are the 3D reconstructions viewed at the 

corresponding Euler angles, and the bottom rows show the corresponding reprojections 

from the 3D models, which are consistent with the averaged classes in each top row. 
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Figure 3 - ChlH fluorescence change upon binding of tetrapyrrole 

Fluorescence quenching data for ChlH with reference to its substrate and product. The 

curve fits the experimental data to a single substrate binding model. 
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The resolution of the apo-ChlH and ChlH•DIX structures was calculated as 27Å and 28 

Å, respectively. The final 3D structural models are shown in Fig. 5, A and B, rotated 

successively by 90° about the z axis, and both filtered to 30 Å resolution for 

comparison. Apo-ChlH (Figure Fig. 5 A, cyan) shows a hollow structure with an 

internal cavity of ~100 nm3 and a small globular domain connected to the rest of the 

protein by a narrow neck. Comparison with the ChlH•DIX complex (Fig. 5 B, red) 

shows that there is little observable effect of substrate binding at this resolution. Fig. 5 

also compares the 3D models of ChlH with the apo- and porphyrin-bound structures of 

BchH (C and D, respectively), taken from the earlier work of Sirijovsky et al. (2008). 

The larger size of ChlH is apparent, mainly attributable to the region of ~100 residues 

indicated by the cyan bar in Fig. 1. The length of the body and head domain of ChlH 

appears to be around 12 nm in total. 

 

 

Figure 4 - Electron microscopy and 3D reconstruction of negatively stained apo-

ChlH and ChlH-DIX particles 

A and D, electron micrographs of apo-ChlH and ChlH-DIX samples, respectively. 

Scale bar = 100 nm (A and D). B and E, 36 boxed single molecules of apo-ChlH and 

ChlH•DIX samples, respectively. The box size is 25 nm × 25 nm. C, reconstruction of 

apo-ChlH. Top row, six selected averaged 2D classes; centre row, 3D reconstructions 

viewed at Euler angles corresponding to those assigned to the class averages above; 

bottom row, corresponding reprojections from the 3D models. F, reconstruction of 

apo-ChlH with details as for C. 
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Figure 5 - A and B, 3D models of apo-ChlH (cyan) and the ChlH-DIX complex 

(red), calculated at a cutoff resolution of 30 Å 

The threshold value of each model was adjusted to correspond to the molecular mass 

of ChlH. In the centre and bottom rows, the molecules are rotated successively by 90° 

about the z axis. The handedness for each of the apo-ChlH and ChlH•DIX models that 

gave the best fit to the SAXS model in Figs. 5 and 6 was chosen. C and D, 3D models 

of BchH taken from Sirijovski et al. (2008). The apo-BchH structure is in cyan (C), and 

the porphyrin complex is in red (D). In the centre and bottom rows, the molecules are 

rotated successively by 90° about the z axis. Scale bar 10 nm. The 3D models were 

generated using Chimera (Pettersen et al., 2004). 
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4.3.4. Identification of the N-terminal of ChlH 
 

To identify the N-terminal domain in these reconstructions, we exploited the 

availability of the N-terminal His6 tag and used 5 nm-diameter NTA-nanogold 

particles as a labelling reagent. Fig. 6 shows a gallery of labelled apo-ChlH proteins, 

with the electron-dense nanogold particles clearly visible in each case. In each image, 

ChlH appears to be joined to the nanogold by the globular head region, so it is 

suggested that this is the N-terminal domain. 

 

4.3.5. Extraction and visualisation of ChlH direct from native 

PAGE 
 

Protein complexes that arise from loose associations are difficult to isolate especially if 

they are able to form a series of complexes of variable stoichiometry. ChlH associates 

with the enhancer Gun4 (Larkin et al., 2003; Davison and Hunter, 2011)) and 

structural information to elucidate the nature of association between the two would be 

of significant interest. Knispel et al. (2012) have shown that it is possible to isolate 

protein complexes on to pre-glow discharged copper EM grids direct from native 

PAGE protein bands. Because it is now possible to identify ChlH using EM it is 

possible to evaluate the efficiency of the method demonstrated by Knispel et al. (2012) 

for protein and therefore complex isolation. 

 

T. elongatus ChlH was run on native PAGE and a unstained gel slice with the same 

migration size as that of the stained band was excised and placed onto an EM grid. 

ChlH successfully diffused from the gel and adsorbed onto the grid (Fig. 7)  
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Figure 6 - Nanogold labeling of purified magnesium chelatase H-subunit 

The box size in the gallery is 30 × 30 nm. Gold particles are in black because of heavy 

scattering against electron beam, and magnesium chelatase H-subunits are in white. 
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Figure 7 - EM images of ChlH extracted directly from native-PAGE 

A, Native-PAGE of T. elongatus ChlH stained with Coomassie blue. An adjacent lane 

contained the same sample and was not stained. The gel was used as a reference 

indicating where protein should be extracted. B, EM grid of protein transferred 

directly from a native gel to the EM grid, as in Knispel et al. (2012). 
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4.3.6. Discussion 
 

The Mg chelatase H subunit plays an essential role in (B)Chl biosynthesis by binding 

Proto prior to the insertion of Mg2+. The H subunit must therefore form a transient 

complex with the I and D subunits of Mg chelatase. Once formed, the HID complex 

catalyses the formation of MgProto, a reaction that requires 14 MgATP2+ (Reid and 

Hunter, 2004). The transient state kinetic study by Viney et al. (2007) showed that the 

key step in formation of a protein-bound MgProto product state is primarily the 

binding of MgATP2+ as opposed to its hydrolysis. These kinetic experiments did not 

monitor release of MgProto, so perhaps it is this process that is coupled to nucleotide 

hydrolysis, rather than insertion of Mg2+. The Kd data collected for T. elongatus ChlH 

for both substrate and product are similar to that of the Synechocystis homologue. The 

Kd for the substrate is higher than that of the product, which is to be expected. ChlH 

will preferentially bind DIX and release the MgDIX so it can be shuttled further along 

the pathway. Fig. 8 shows the T. elongatus ChlH EM structure that has been 

superimposed with the SAXS data on Synechocystis ChlH from Qian et al. (2012). The 

SAXS and EM data show that ChlH forms an extended, asymmetric molecular 

assembly. The radius of gyration, Rg, for the structure from the SAXS data is 46.9 Å 

(Qian et al., 2012), similar to the Rg value of 47.8 Å determined for ribulose 1,5-

bisphosphate carboxylase/oxygenase (Meisenberger et al., 1984) a compact, globular 

protein of much greater molecular mass, 534 kDa (Knight, Andersson and Brändén, 

1990). Although Rg values require a clear context to be interpretable in the form of a 

3D molecular shape, this comparison supports the notion of ChlH as an open, 

asymmetrical structure. 

 

The low resolution structural studies performed in this work cannot provide any direct 

mechanistic information, although it is interesting to note on the one hand the 

existence of a ~100 nm3 cavity within the ChlH structure and on the other the likely 

need for an active site environment that promotes the Mg chelation reaction. This 

process has been studied in detail using density functional calculations, modelling the 

successive exchange of water molecules from the solvation shell surrounding the Mg2+ 

ion with the pyrrole nitrogens of the Proto substrate, deprotonation of the Proto, and 

distortion of the porphyrin ring (Shen and Ryde, 2005). It is possible that the ChlH 

protein helps to catalyze MgProto formation by exerting some control over the 

immediate solvation environment of porphyrin substrates and products, 
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accommodating distortion of the porphyrin ring and facilitating the deprotonation of 

the pyrrole nitrogens. The theoretical study of Shen and Ryde (2005) found that water 

is an unsuitable proton acceptor, which might necessitate the screening of that part of 

the active site involved in deprotonation from the bulk aqueous solvent. This presents a 

demanding requirement because Mg chelatase is a soluble complex located in the 

aqueous cytoplasmic compartment of the cell, or possibly at the interface between the 

membrane and cytoplasm. As already noted by Sirijovski et al. (2008) BchH proteins, 

such as that from R. capsulatus, also have the potential to form an enclosing structure 

(see Fig. 5 for a comparison with ChlH). Single particle reconstruction of this protein 

showed that apo-BchH has three lobes, with the “thumb” and “finger” domains coming 

into contact upon binding of Proto (Sirijovski et al., 2008). It was postulated that 

residues from both the N- and C-terminal regions are involved in binding Proto and 

that the majority of the porphyrin-binding residues are located within the N- terminus. 

Proteolysis studies identified a flexible linker region, proposed to lie at the junction 

between the N- and C-terminal domains and flanking Gly-734 (Sirijovski et al., 2008). 

The apo-ChlH and ChlH•DIX structures, both filtered to 30 Å for ease of comparison in 

Fig. 5 do not show any evidence of large-scale alterations in conformation upon 

porphyrin binding, and a more detailed structural analysis is required to examine this 

point further. The one feature of ChlH of T. elongatus that can be identified is the N-

terminal domain. This is the “head” region, assigned on the basis of labelling with a 

NTA-nanogold particle that binds to the N-terminal His6 tag (Fig. 6). From estimates 

of the fraction of ChlH represented by the head domain, it has a molecular mass of 

15.7 kDa, corresponding to ~152 amino acids at the N terminus followed by a short 

linker of a few residues. The large error in this estimation gives a range of 14.1–17.3 

kDa for the molecular mass of this domain, which corresponds to the sequences 

running from the N terminus to either Gly-127 or Phe-156. In this region ChlH has the 

following sequence:  

 

G127SFSLAQIG135QSKSVIANFMKKRKEKSG153AG155F 

 

Gly-127 is conserved in all Mg chelatase H subunits, and a counterpart is also found in 

the CobN cobaltochelatase subunit from Pseudomonas denitrificans (Lundqvist et al., 

2009). Although the positions of the other Gly residues vary slightly, ChlH sequences 

from diverse organisms contain in this region, in addition to a Gly-127 equivalent, two 

to four other Gly residues. 
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Although the overall isoelectric point for ChlH is 5.30, the sequence between Gly-127 

and Phe-156 has a pI of 10.6. Such contrasting values are predicted for other ChlH 

sequences, and it is possible that this Gly-127-Phe-156 region controls the binding of 

ChlH to other subunits or to the membrane or is involved in mobility of the head 

domain, possibly opening or closing the cavity within ChlH. Having identified the N-

terminal head region it would be fair to assume that the C-terminal fragment would 

constitute part of the cage domain. Shen et al., (2006) have shown that ABA/DIX 

binding are independent of each other and a 45 kDa C-terminal fragment appears to be 

particularly important in ABA binding whereas the N-has a potential role in signal 

regulation (Wu et al., 2009). It has also been shown that a C-terminal fragment 

(residues 631 to 999) is essential for chlorophyll biosynthesis (Wu et al., 2009). It 

would be interesting to know if the N-terminal head region plays an important role in 

the magnesium chelatase activity of ChlH; this interesting proposal will be addressed 

in Chapter 4. 

 

The lumen enclosed by ChlH is ~100 nm3 in volume, equivalent to a sphere 4.7 nm in 

diameter and much larger than required to sequester a Proto molecule of 1.4 × 1.4 nm. 

This discrepancy could arise from a pooling of negative stain in this cavity, which 

would lead to an overestimation of the enclosed volume, as seen in an EM and X-ray 

crystallographic analysis of the glycerol dehydrogenase complex (Ruzheinikov et al., 

2001). Given the binding of ABA/Proto in the C-terminal domain it may be that the 

cage domain is involved in the binding of both ligands and may explain the apparently 

large volume of the lumen. Binding Proto in the cage may provide a stable 

environment for the photosensitive substrate. It is interesting to note that the hole 

adjacent to the flexible head domain is easily large enough to allow access of Proto to 

the lumen or exit of the MgProto product, so it is possible that the movement of the 

head domain of ChlH could play an important role in the catalytic cycle. 

 

The multiple functions for the Mg chelatase H subunit could well necessitate a large, 

multidomain protein. Apart from its main role as the porphyrin-binding subunit of Mg 

chelatase, the H subunit is likely to play a regulatory role by virtue of its position at the 

branch point between heme and BChl biosynthesis. The need for regulatory 

mechanisms is clear because the levels of these pigments have to be carefully metered 

to ensure that they are neither deficient, which would  impair assembly and repair of 
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the photosynthetic apparatus, nor overproduced, which could result in light-induced 

photodamage to the cell. The metabolic versatility of some photosynthetic bacteria 

imposes an additional regulatory load on the cell because several species can shift 

between aerobic/respiratory and anaerobic/photosynthetic growth modes, which 

require a reversible switching of flux down the heme and Bchl pathways. As an 

example, Willows et al. (2003) demonstrated that BchH is inactivated by light and 

oxygen as cells of R. capsulatus switch to aerobic growth. Furthermore, BchH 

increases the activity of the next enzyme in the Bchl pathway, S-adenosyl-L-

methionine (magnesium protoporphyrin IX methyltransferase) (Hinchigeri et al, 1997; 

Johnson and Schmidt-Dannert, 2008), although this stimulation was not found in other 

work (Sawicki and Willows, 2007). BchH of R. capsulatus forms a complex with 

either BchM or BchJ proteins (Sawicki and Willows, 2010). Finally, green sulphur 

bacteria such as Chlorobaculum tepidum possess three homologs of BchH, designated 

as BchH, S, and T, no doubt linked to the more complicated pigment biosynthetic 

pathways in such bacteria, which lead to Chl a, Bchl a, and Bchl c (Gomez Maqueo 

Chew et al., 2009; Chew and Bryant, 2007). It was proposed that the three BchH 

homologs apportion the amounts of each pigment produced by the cell (Chew and 

Bryant, 2007). A detailed in vitro enzymological study of these C. tepidum BchH 

homologs, combined with BchI and D, showed that their Mg chelatase activity varied 

over 5 orders of magnitude. Moreover, two of the BchH homologs increased activity 

of the MgProto methyltransferase, but one of them decreased it (Johnson and Schmidt-

Dannert, 2008).  

 

ChlH in oxygenic photosynthetic organisms does not have to contend with multiple 

Chl/Bchl pathways in the same cell as in Chlorobaculum nor switches between 

aerobic/respiratory and anaerobic/photosynthetic growth as in Rhodobacter. The task 

of regulating flux down the Chl pathway remains, particularly in view of the 

fluctuating demands on the pathway placed by diurnal rhythms, variations in light 

intensity (Gibson et al., 1996; Harmer et al., 2000), and repair of damaged 

photosystem II complexes. A regulatory role for ChlH in higher plants was proposed 

several years ago (Gibson et al., 1996; Hudson et al., 1993), and it is established that 

ChlH stimulates activity of Mg Proto methyltransferase in Synechocystis (Shepherd 

and Hunter, 2004; Shepherd et al., 2003; Shepherd et al., 2005) and in tobacco 

(Alawady et al., 2005). As already noted, the Gun4 protein in higher plants and 

cyanobacteria can form a complex with ChlH (Larkin et al., 2003; Wilde et al., 2004; 
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Alhikari et al., 2011), a process that heavily influences the activity of Mg chelatase 

(Davison et al., 2005). A wider role for Gun4 has been proposed, including regulation 

of 5-aminolevulinic acid synthesis and in photoprotection (Peter and Grimm, 2009). It 

is possible that these multiple regulatory and catalytic functions could account for the 

increased size and structural complexity of ChlH with respect to BchH apparent in the 

comparison of these structures in Fig. 5. The extra size and complexity of ChlH might 

confer properties on ChlH subunits from oxygenic photosynthetic organisms that are 

absent in BchH subunits. We propose that ChlH has adopted a caged structure, in 

comparison with BchH, as a response to the intracellular environment of Mg chelatase 

in T. elongatus, an oxygen-evolving photosynthetic organism. In view of the lability of 

MgProto, we suggest that ChlH encloses this product of magnesium chelation and 

chaperones it to the active site of the methyltransferase to ensure both efficient 

handover of MgProto and its protection from photooxidation. Given the sequence 

homology of the T. elongatus ChlH to the Mg chelatase H subunits of higher plants 

and algae, it is likely that an enclosed structure is required to discharge the catalytic, 

chaperoning, and regulatory functions of this H subunit in all oxygenic photosynthetic 

organisms. 

 

The isolation of ChlH directly from Native-PAGE is a tantalising result for future 

work in this field. It is clear that Gun4 and ChlH form some type of complex (Larkin et 

al., 2003; Wilde et al., 2004; Alhikari et al., 2011) and this complex may be transient 

like that of I and D. Isolation from a gel and negative stain/cryo EM of these samples 

would give a good insight into the stimulation of MgCH by Gun4.  
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Figure 8 – Superposition of Synechocystis apo-ChlH SAXS representational model 

(yellow) with the 3D reconstruction of apo-ChlH from T. elongatus (cyan) from EM 

analysis  

The superposition is viewed from three angles to emphasize the similarity between the 

two structural models. The handedness of the 3D reconstruction was selected 

arbitrarily for the best fit (Qian et al., 2012). 
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5. CHAPTER 4 
 

Structural and functional characterisation of a mutant 

of the Thermosynechococcus elongatus ChlH protein 

with a deletion of the 15 kDa N-terminal domain. 
 

5.1. Summary 
 

Qian et al. (2012) recently solved the structure of a cyanobacterial magnesium 

chelatase H subunit at low resolution, using EM and SAXS. The reconstituted model 

shows a bi-lobed protein with a small ~15 kDa head region connected to the rest of the 

ChlH protein via a linker sequence. The flexibility of this linker region is suggested by 

the presence of several glycine residues, one of which is conserved amongst ChlH 

homologues. This linker region is connected to a globular body with a large lumen that 

is more than sufficient to accommodate a Proto molecule. Due to the number of 

different processes and functions proposed for ChlH it would be of much interest to 

elucidate the importance of the head region, at least in relation to its central role as the 

Proto binding subunit of magnesium chelatase. In this chapter T. elongatus chlH has 

been cloned in order to N-terminally truncate the native protein by the 160 residues 

that correspond to the proposed ~15 kDa head region. The structural and biochemical 

properties of this mutant have been investigated, with particular interest paid to 

porphyrin binding, catalysis of the MgCH reaction, association and binding with the 

Gun4 MgCH enhancer protein and the resulting structural changes that arise from this 

N-terminal deletion. 

 

5.2. Introduction 
 

MgCH is situated at the branchpoint of chlorophyll biosynthesis. It consists of three 

essential subunits; ChlI (~40 kDa), ChlD (~70 kDa) and ChlH (~140 kDa). I and D 

have been shown to form a double hexameric ring (Lundqvist et al., 2010) and I is the 

catalytic subunit known to be an ATPase of the AAA+ (ATPases Associated with a 

variety of cellular Activities) family of proteins (Fodje et al., 2001). The N-terminus of 
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the D subunit is homologous to I and also contains a MIDAS (metal ion-dependent 

adhesion site) that has been suggested to be involved in divalent metal binding (Jensen 

et al., 1996). It has been suggested that the role of D in MgCH is to maintain a 

platform upon which I can coordinate with to initiate function (Axelsson et al., 2006). 

 

The identification of the genes encoding MgCH was achieved by combining cell free 

extracts from three E. coli transformants overexpressing the product of each gene 

(Gibson et al., 1995). Subsequent characterisation of purified recombinant proteins 

enabled the elucidation of the role of ChlH and ChlI/ChlD as porphyrin binding and 

ATP/Mg2+ binding subunits respectively (Willows et al., 1996; Jensen et al., 1998). 

The H protein has also been shown to stimulate the next enzyme along in the 

chlorophyll biosynthetic pathway MgProto methyltransferase (Shepherd et al., 2005; 

Alawady et al., 2005). Gun4, a protein involved in nuclear gene control, is a potential 

fourth subunit of the MgCH reaction. It binds ChlH and enhances the reaction through 

a method still yet to be resolved. It should be noted that Gun4 binds the substrate and 

product of the reaction (Larkin et al., 2003; Davison et al., 2005) and it may be 

through this that the reaction is enhanced. 

 

Mutagenesis has been a crucial tool for identifying important residues and domains of 

enzymes with respect to activity, functionality and stability. In relation to MgCH 

subunits, Jensen et al. (2000) showed that cysteine residues in ChlI are important for 

ATPase activity and the formation of a ChlH•Proto complex. Olsson et al. (2004) 

characterised mutations in the xantha-f gene that encodes the ChlH subunit from 

barley, some of which were amino acid substitutions that led to lowered expression 

and downregulated chlorophyll biosynthesis. Other frameshift mutations resulted in 

truncated and, as a result, highly degraded proteins. The missense mutations found in 

barley, xantha-f 26 (M632R) and xantha-f 60 (P393L) were introduced into an H 

homologue from Rba. capsulatus (xantha-f 26 M591R and xantha-f 60 P341L) and the 

Mg chelatase activity of the purified recombinant protein was reduced by 52 % and 

33% respectively (Olsson et al., 2004). The discovery of a gun5 mutant in Arabidopsis 

has assigned a possible role of ChlH in plastid-to-nucleus signalling (Mochizuki et al., 

2001) and the gun5-1 and cch mutants, amino acid substitutions A990V and P642L 

respectively, showed weak phenotypes of decreased greening when compared to wild-

type (Mochizuki et al., 2001). These mutations were made in the Synechocystis chlH 

(A942V and P595L, respectively) and cloned into an E. coli expression vector; both 
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mutant ChlHs retained WT porphyrin binding but resulted in a loss of MgCH activity 

in vitro that could be resurrected to WT levels by the addition of Gun4 (Davison and 

Hunter, 2011). Qian et al. (2012) showed that T. elongatus ChlH is a multi-lobed 

protein with a large globular body and a smaller lobe attached through a linker region. 

The linker is likely to be flexible due to a number of glycine residues which are 

typically associated with mobility and one residue (Gly127) is conserved throughout 

all H proteins sequenced to date. It has been postulated that the flexible linker region 

and head may have a role in the catalytic function of the H subunit (Qian et al., 2012). 

As in gun5-1 and cch a large-scale truncation of the N-terminus of ChlH, by 63.2 kDa, 

maintained porphyrin binding to near WT levels but demonstrated abolition of MgCH 

activity (Qian et al., 2012). It can be assumed that structurally, tetrapyrrole binding in 

ChlH is much more robust than catalytic activity.  

 

There is no high resolution structural information available for ChlH or any similar 

protein. A number of crystal trials have been conducted, by the Hunter group and 

collaborators, but ChlH appears to crystallise poorly under the conditions explored so 

far, with no diffraction. The possible flexibility of the linker region may prevent 

protein lattice formation and it may be argued that the head might prevent the protein 

packing to form crystals. If the head region was removed and the globular body 

domain retained its folded structure it may form crystals more easily and as a result 

give a higher chance of yielding highly-diffracting crystals. Whether or not this 

becomes possible, deletion of the head region should help to elucidate its structural and 

functional roles. 

 

In this chapter an N-terminal 160-residue truncation of ChlH (hereafter ΔN160H with 

the sequence of the deleted region indicated by the cyan bar in Fig. 1) was constructed 

and the recombinant protein was purified. The porphyrin binding and enzymatic 

properties were studied along with the association with the enhancer protein Gun4. 

Finally structural properties of this ChlH deletion are discussed, and the potential for 

the acquisition of more detailed structural information. 
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Figure 1 – Amino acid alingnment of Mg-chelatase ChlH/BchH porphyrin binding 

subunits  

Amino acids are aligned according to their characteristics. Black, histidine; blue, 

positively charged; green, polar; magenta, cysteine; red, negatively charged; yellow, 

non-polar. The cyan bar indicates the proposed 160 residue N-terminal truncation. 

Compiled using Geneious software (Drummond, et al., (2010) Geneious v5.3, 

http://www.geneious.com). 
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5.3. Results 
 

5.3.1. Overexpression and purification of T. elongatus ΔN160H 
 

The pET9aHis[ΔN160H] (Table 2) construct, kindly donated by Dr. Amanda Brindley, 

was transformed into E. coli BL21 (DE3) cells and liquid cultures of this strain were 

induced to produce recombinant protein. SDS-PAGE of soluble and insoluble fractions 

from the culture showed that ΔN160H was found in both fractions. Wild-type ChlH, 

produced by overnight expression of the encoding gene, is primarily found in the 

soluble fraction of broken cells and the presence of insoluble and soluble ΔN160H 

indicates the formation of large protein aggregates. To enable large-scale purification 

of pure biochemically viable protein it is important to maximize soluble protein 

production. Expression trials (Fig. 2) were performed to limit production of insoluble 

protein possibly caused by the aggregation of high levels of truncated protein. Cells 

induced for 2 h, 4 h and overnight, together with cells grown overnight without 

induction, ΔN160H were harvested, disrupted then separated into soluble and insoluble 

fractions. Analysis of these fractions using SDS-PAGE shows that 2 hr induction of 

expression gives very limited protein production, as did overnight growth without 

induction. 4 hr and overnight induction produces high levels of ΔN160H protein 

ΔN160H in both soluble and insoluble fractions, highlighted with the red boxes in Fig. 

2. Because of the tendency of ΔN160H to aggregate, a 4 hr induction was chosen to 

limit protein aggregation in both soluble and insoluble fractions. 

 

Purification of ΔN160H from cells induced for 4 hrs was performed as described in 

section 2.10.1. Gel filtration chromatography indicated that the protein eluted in large 

soluble aggregates and this was confirmed by viewing the eluate using EM (Fig. 3); 

the uneven background is the result of non-specific negative staining. In an attempt to 

yield a homogenous population of protein molecules, the ΔN160H eluate was 

exchanged into buffers with a range of pH values, as described in section 2.11. 

Analytical HPLC gel filtration was performed to see if pH changes affected protein 

aggregation (Fig. 4). pH appears to have a limited effect on the aggregation of 

ΔN160H. The green trace, indicating a pH of 9.0, has the most positive effect on 

increasing the monomeric population of ΔN160H but a high number of other species 

of protein aggregates were also present. 
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Truncation of 160 residues from the N-terminus of ChlH may have exposed a 

hydrophobic patch that could promote aggregation. A detergent, n-Octyl-β-D-

Glucoside (BOG), was used in an attempt to mitigate this effect; ΔN160H was 

exchanged (section 2.11) into buffer containing BOG, both above and below its a 

critical micellar concentration (CMC) of 20 – 25 mM. 2.5 mM BOG had little effect 

on aggregation of ΔN160H but 80 mM appeared to greatly increase the monomeric 

state of ΔN160H (Fig. 5). It is apparent from analytical gel filtration that detergent 

appears to have an effect on the aggregation states of ΔN160H. ChlH was also 

exchanged into buffer containing 0.75 mM n-dodecyl-β-D-maltopyranoside (DDM); 

0.75 mM was chosen because DDM has a low CMC of 0.15 mM and the effects of 

BOG were only observed above the CMC. DDM appears to have a greater effect on 

the monomerisation of ΔN160H so after separation of soluble and membrane fractions 

it was added to the supernatant and to all buffers to a final concentration of 0.75 mM. 

In all the detergent trials the molecular weight appears to be slightly larger than WT 

ChlH and this is most likely the due to the interaction between the detergent and the 

protein. Fig. 6 shows a typical ΔN160H purification with 0.75 mM DDM and as 

expected ΔN160H is clearly smaller than the wild-type protein standard. 
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Figure 2 - Overexpression trials of ΔN160H  

E. coli containing pET9a-His[ΔN160H] was grown at 37°C to an O.D.600 of 0.7 

and then incubated at 20°C for various periods of time, some induced with 0.4 

mM IPTG. The insoluble (I) and soluble (S) fractions were separated by SDS-

PAGE. ΔN160H has a predicted MW of 135 kDa. Induction with IPTG for 2 h 

does not result in the accumulation of recombinant ΔN160H protein in either the 

soluble or insoluble fraction. 4 h and overnight (O/N) induction with IPTG shows 

strong production in both insoluble and insoluble fractions. Growth overnight 

without IPTG induction shows no protein production. 
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Figure 3 - Electron micrograph of ΔN160H aggregates 

Electron micrograph of initial recombinant ΔN160H purified from an E. coli 

soluble fraction by steps including gel filtration. Monomeric WT ChlH has a 

maximum dimension of 12 nm; the sizes of these proteins indicates that 

aggregation has occurred. 
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Figure 4 - Trials to prevent aggregation of ΔN160H by varying buffer pH 

Analysis was performed using HPLC gel filtration chromatography, 

monitoring protein fluorescence. The green bars indicate the aggregated or 

monomeric protein populations. WT ChlH was purified using buffers with a 

pH of 7.8. 
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Figure 5 - Trials to prevent aggregation of ΔN160H by addition of detergent to 

buffers. 

Analysis was performed using HPLC gel filtration chromatography monitoring 

protein fluorescence. Green bars indicate protein elution population as 

aggregated or monomeric. 
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Figure 6 - SDS-PAGE demonstrating the purification of T. elongatus ΔN160H 

E. coli containing the pET9a-His[ΔN160H] was grown at 37°C to an O.D.600 of 0.7 

and then incubated for 4 h at 20°C in medium supplemented with 0.4 mM IPTG. Cells 

were broken and the insoluble and soluble fractions separated. DDM was added to 

the supernatant to a final concentration of 0.75 mM. The soluble fraction was applied 

to Ni2+, anion exchange and size exclusion chromatography columns sequentially 

(buffers all contained 0.75 mM DDM). WT ChlH was included to demonstrate a 

decrease in MW for the deletion mutant. 
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5.3.2. Single particle analysis of the ΔN160H protein  
 

Purified ΔN160H was absorbed onto freshly glow-discharged carbon-coated copper 

grids that were subsequently negatively stained as described in Qian et al. (2012). Fig. 

7A shows typical raw data for the clearly monomeric ΔN160H protein. Approximately 

70 particles could be identified within a single 1K × 1K micrograph, and 20236 were 

picked in total. The particles were then treated using the IMAGIC-5 software package 

(van Heel et al. 1996). All particles were band-pass filtered to suppress low spatial 

frequencies according to values suggested in the IMAGIC-5 operation manual. The 

filtered particles were masked, normalized and centred for reference-free 2D 

classification (van Heel et al., 1981). After a few cycles of multi-reference alignment 

(MRA), a set of 25 characteristic 2D classes was built and used for consequent rounds 

of MRA (van Heel et al., 1985). A few iterations were performed until a stable 2D 

classification was obtained. 1349 2D classes were selected for Euler angle assignment 

and 3D reconstruction afterwards. An initial 3D model was produced, which was used 

for calculation of the Euler angles for the 2D classification data set. A mismatch 

between the calculated and assigned angles indicates an inaccurate model, so a new 

model was produced from the data set and re-projected so new Euler angles could be 

re-assigned. This iteration continued until a stable 3D model is generated; this model 

was visualised by UCFS Chimera (Pettersen et al., 2004). The threshold value for the 

volume of the reconstructed 3D model was adjusted to its predicted molecular weight, 

135 kDa. In Fig. 7D, the 3D model generated from the averaged 2D classes has been 

rotated successively 90 degrees about the Z axis.  

 

The ΔN160H structure shows a hollow globular protein with three connected lobes 

with a large open lumen. The lobes are connected to one another via linker regions and 

at least three large apertures are visible in the structures. Fig. 8 shows the superposition 

of the ΔN160H mutant with the previously published T. elongatus ChlH model (Qian 

et al., 2012). Both globular body regions are of a similar size and show evidence of 

openings into the hollow lumen in the same positions; ΔN160H appears to be missing 

the ‘head’ region observed in ChlH. The two models are not identical in their globular 

regions, which may be the result of a slight alteration in folding or it may be attributed 

to the 10 % error associated with negative staining. 
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Figure 7 - Electron microscopy, classifications, reprojections and 3D model of 

negatively stained apo-ΔN160H 

A, electron micrographs of ΔN160H. Scale bar = 50nm. B, 100 boxed single 

molecules of ΔN160H. The box size is 25 nm × 25 nm.  C, Top two rows, 20 

averaged 2D classes of apo-ΔN160H, bottom two rows, corresponding 

reprojections from the 3D model. D, 3D model of the MgCH ΔN160H mutant, 

calculated at a cutoff resolution of 30 Å. 
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5.3.3. Porphyrin binding studies 
 

To identify if the ΔN160H mutant retains porphyrin binding functionality the 

dissociation constants between protein, substrate and product were determined using 

methodology described in 2.13. (Karger et al., 2001). Fig. 9 displays plots of 

integrated fluorescence as a function of tetrapyrrole concentration. In each case the 

binding titration data were fitted to equation 1, Chapter 3, in which a single type of 

binding site is assumed (Karger et al., 2001). 

 

The calculated Kd values of ΔN160H for DIX and MgDIX were 1.06 ± 0.09 μM and 1.64 

± 0.08 μM respectively. These calculations are consistent with the published 

disassociation constants for wild-type T. elongatus ChlH of 1.48 ± 0.3 μM for DIX and 

2.12 ± 0.2 μM for MgDIX (Qian et al., 2012). The data prented are from single 

titrations and the errors reflect the error in the Kd obtained using the equation. 

 

 

 

Figure 8 - Superposition of negatively stained apo-ΔN160H and WT apo-ChlH 

Superimposition of single particle 3D reconstruction models. The hollow wire 

model represents the WT ChlH from T. elongatus and the solid green model 

represents the ΔN160H mutant. 
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5.3.4. Assaying the relationship between ΔN160H and Gun4 
 

To ascertain if ΔN160H can form protein complexes with T. elongatus Gun4 clear 

native PAGE was used to identify any protein-protein interactions. 5 μM ChlH, 30 μM 

Gun4 and ChlH, Gun4 mixtures in molar ratios of 1:1, 1:2, 1:4 and 1:6 maintaining 5 

μM ChlH were incubated at 50°C for ten minutes in native loading buffer and run on a 

gel at 4°C for 3 hours.  Fig. 10A clearly shows monomeric ChlH just below the 242 

kDa marker. The red boxes indicate high molecular weight complexes. ChlH forms an 

oligomeric complex with a MW of around 700 kDa.  Given the MW of ChlH is ~150 

kDa this would indicate that either a 4 or 5 × ChlH protein complex of 600 or 750 kDa 

respectively.  In the samples with increasing Gun4 there is an increasing shift of this 

high MW band, although it is difficult to estimate the extent of this shift.  It is also 

noteworthy that Gun4 forms high MW aggregates of approximately 500 kDa.  The 

same conditions were used for ΔN160H and again analysed on native PAGE.  

ΔN160H also runs as a monomeric protein and another band is visible indicated by the 

arrow; the predicted MW of ~300 kDa is consistent with a dimer.  ΔN160H does not 

appear to form the same high MW band that ChlH forms, though in Fig. 10B, lane 8 

there is evidence of a high MW band with 

a similar migration to the complex seen 

with a 1:1 ratio of ChlH:Gun4.  There is no 

difference in the migration between the 

ΔN160H:Gun4 in either the 1:4 or 1:6 

ratio. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 - ΔN160H fluorescence 

change upon porphyrin binding 

Fluorescence quenching data for 

ΔN160H and the substrate, 

deuteroporphyrin IX (A) and product, 

Mg-deuteroporphyrin IX (B). The 

curve fits the experimental data to a 

single substrate binding model. 
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Figure 10 – Native gels showing complex formation between ChlH•Gun4 and 
ΔN160H•Gun4 
3 – 8 % clear native PAGE. A, Lane 1, markers; Lane 2, T. elongatus ChlH; lane 3, 

T. elongatus Gun4 (30 μM): lanes 4 – 7, ChlH (5 μM) with increasing Gun4. B, as 

A, with ΔN160H rather than ChlH. Red boxes indicate visible protein complexes 

after Coomassie Brilliant Blue staining. The arrow indicates the appearance of 

another band only seen in ΔN160H native samples. 
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5.3.5. Kinetic Studies of ΔN160H 
 

Qian et al., (2012) have shown that ChlH from T. elongatus is active in a MgCH assay 

with Synechocystis I and D subunits. Because the constructs for protein overexpression 

in E. coli are available for Synechocystis I and D and more importantly the production 

of active proteins has been proven (Jensen et al., 1998) it was decided to monitor 

ΔN160H MgCH activity using this heterologous system.  

 

Recombinant proteins ChlI and ChlD from Synechocystis and ChlH and Gun4 form T. 

elongatus were purified following the protocol in Chapter 2.10, and the purity of the 

resulting preparations was analysed by SDS-PAGE (Fig. 11).  ChlH and ΔN160H, 

with Synechocystis MgCH subunits ChlI and ChlD, were assayed for in vitro MgCH 

activity continuously for 1h whilst monitoring product fluorescence with an excitation 

wavelength of 420 nm and emission of 575 nm, as in Qian et al., (2012). The assays 

were performed with increasing concentrations of T. elongatus Gun4, and at two 

different temperatures as the proteins being assayed were native to two different 

species with different optimum growth temperatures. 34°C was chosen as this is the 

optimum temperature for Synechocystis subunits and 40°C was also chosen as this may 

allow the thermophilic T. elongatus porphyrin binding subunit and the Gun4 enhancer 

to achieve greater activity while avoiding denaturation of Synechocystis subunits. It 

was particularly important to have the higher temperature to allow ΔN160H the best 

possible chance of activity considering the extensive mutation. 

 

Fig. 12A shows the steady-state rates for the ChlH (solid circles), I and D subunits at 

34°C with increasing concentration of Gun4. As expected from previously published 

work on the effect of Gun4 on MgCH activity (Davison and Hunter, 2011) Gun4 

increased the rate of reaction by around 3-fold. At 40°C the unenhanced rate is slightly 

higher than at 34°C, as would be expected, and at 1 μM Gun4 the rate is increased to 

~0.4 μM min-1 of product (Fig. 12B). The ΔN160H mutant (Fig. 9, open circles) can be 

considered as inactive at both 34°C and 40°C in the absence of Gun4. ΔN160H is 

however revived with the addition of 1 μM Gun4 to a level that around half that of 

Gun4-free ChlH activity at 34°C and at 40°C the Gun4-assisted ΔN160H rate 

surpasses that of Gun4-free ChlH. 
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Figure 11 - Purification of various MgCH subunits for ΔN160H kinetic 

analysis 

12 % SDS-PAGE analysis of MgCH subunits after purification. 
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Figure 12 - Steady-state rate of ΔN160H compared to ChlH as a function of Gun4 

concentration 

Kinetic analysis of Synechocystis ChlI and ChlD incubated with 5 mM ATP, 15 mM 

MgCl2, 8 μM DIX and T. elongatus ChlH (solid circles) or ΔN160H (open circles) 

with increasing amounts of T. elongatus Gun4. Assays were performed at 34°C (A) 

and 40°C (B). 
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5.4. Discussion 
 

Single particle reconstruction of ChlH reveals that the majority of the protein forms a 

hollow globular domain, which is attached to an N-terminal 160 residue ‘head’ domain 

(Qian et al., 2012).  A truncation of ChlH (Fig. 1) was constructed to assess the role of 

this N-terminal domain. ChlH binds both the substrate and product of the MgCH 

reaction (Karger et al., 2001), but it has also been implicated in plastid-to-nucleus 

signalling (Mochizuki et al., 2001) and it stimulates the next enzyme along in the 

chlorophyll biosynthetic pathway (Shepherd et al., 2005; McLean and Hunter, 2009). 

A large N-terminal truncation of ChlH that removed the first 565 residues 

demonstrated the importance of the N-terminal third of ChlH for kinetic activity 

although normal tetrapyrrole binding was retained (Qian et al., 2012). Wu et al., 

(2009) have shown that a C-terminal fragment, residues 631 – 999, of ChlH in 

Arabidopsis is essential for MgCH activity. Creating an ΔN160H mutant would 

provide a number of insights into the role of the H subunit as the porphyrin binding 

subunit of MgCH. From the truncation, information regarding the validity of the N-

terminal assignment by Qian et al., (2012) would be feasible as well as assigning a role 

in porphyrin and Gun4 binding or catalytic functioning. 

 

From initial expression trials, ΔN160H appeared to express in both the soluble and 

insoluble fractions. Unlike highly stable ChlH, which is produced mainly in the soluble 

fraction from cultures induced overnight, a 4 h induction time was chosen to obtain the 

maximum yield of soluble protein. Preliminary purification of ΔN160H showed that 

deletion of the first 160 residues resulted in protein that elutes from size exclusion 

chromatography in the void volume. Soluble but highly aggregated clusters were seen 

when the sample was viewed using EM (Fig. 3). This aggregation is most likely due to 

the truncation exposing a hydrophobic patch and as a result the aggregation was only 

reduced when adding detergent (Figs. 4 and 5). 

 

The reconstructed 3D model of ΔN160H reveals a globular hollow protein (Fig. 7) that 

is easily superimposed over the ChlH model. There is good similarity with the globular 

body and the head region is clearly missing in ΔN160H (Fig. 8). This observation 

provides confirmation that that the head domain is indeed encoded by a ~15 kDa N-

terminal fragment. Moreover it is important to note that ΔN160H appears to maintain 

its hollow globular structure and the protein appears to be correctly folded. Any 
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significant change in functional properties is most likely to be due to the removal of 

the head region although it must be noted that such a significant truncation may alter 

the conformation of the rest of the protein to a certain degree. 

 

The significantly higher number of 2D averaged classes obtained for ΔN160H (1349) 

when compared to ChlH (apo-ChlH, 75; substrate-bound ChlH, 92) (Qian et al., (2012) 

can be explained by the absence of the “head” region. This allows greater possible 3D 

distribution of the protein orientations compared with the asymmetric ChlH, where a 

several orientations and classes are excluded because of the head domain. 

 

From the H•Gun4 binding assays it appears that the level of interaction between 

ΔN160H and Gun4 is considerably reduced when compared to ChlH. Lone ChlH is 

able to form a high MW complex of between 4 and 5 ChlH molecules, whereas 

ΔN160H forms a dimeric complex. It appears that when 4/5 ChlH molecules are in a 

complex the association with Gun4 is possible whereas dimeric ΔN160H does not 

show any interaction with Gun4. A ΔN160H•Gun4 complex does form when mixed in 

molar ratios of 1:4 and 1:6 and perhaps it is not until high concentrations of Gun4 are 

present that complexes are encouraged to form. Considering the ratio of H•Gun4 

needed to form a complex is 1:4 and when taking into account the band size of 720 

kDa, an H trimer with each ChlH binding ~4 Gun4 molecules fits best. However, a 

large complex comprising hollow ChlH proteins most likely contains fewer protein 

molecules than expected. 

 

Fig. 12 (closed circles) shows assays for MgCH activity of T. elongatus ChlH and 

Gun4 with Synechocystis ChlI and ChlD. The increasing concentration of Gun4 

significantly enhanced steady state chelation rates, as shown by Larkin et al., (2003) 

and Davison et al. (2005). The rates as a function of Gun4 concentration at 34°C and 

40°C (Fig. 12A and B respectively) did not differ greatly which could be a result of a 

rate-limiting effect by mixing proteins from different species, or due to Synechocystis 

subunits having reached maximum activity at their optimum growth temperature of 

34°C. ΔN160H shows has almost no activity at both temperatures ΔN160H (Fig. 12, 

open circles). The addition of Gun4 revives the enzyme somewhat and at 40 °C (Fig. 

12, B) with a Gun4 concentration of 1 μM the assay is revived to a slightly higher rate 

than unenhanced ChlH. It is difficult to determine the extent the head deletion has on 

the catalytic activity. Although the H subunit is inactive in the absence of Gun4 this 
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could be a consequence of removal of the head domain, but altered folding caused by 

the large truncation cannot be discounted. The native gel analysis (Fig. 10) suggests 

that ΔN160H has lost some ability to form a complex with Gun4, but the enzyme 

assays are a more reliable indicator of a functional association and these indicate that 

the truncation does still allow the interaction with Gun4, especially at 40 °C. 

 

The definite role of the first ~15 kDa of ChlH is difficult to pinpoint. What is clear is 

that protoporphyrin binding is associated with the globular body region, possibly 

within the lumen as proposed by Qian et al. (2012). As noted in Qian et al. (2012) the 

linker region between the head and the remaining globular protein has a contrasting pI 

when compared with ChlH as a whole. It may be this linker allows the type of Mg2+-

association with the membrane previously observed for the Arabidopsis ChlH (Gibson 

et al. 1996). Interesting future work would involve creating an inducible FLAG-tagged 

ΔN160H mutant in a WT Synechocystis background. Separating the thylakoid and 

soluble fractions under differing Mg2+ conditions, then western blotting with 

antibodies against ChlH and FLAG should indicate the locations of ChlH and ΔN160H 

and throw some light on the membrane association process. This would highlight if the 

ΔN160H is able to remain in the thylakoid fraction when compare to ChlH. 

 

When considering any crystallographic possibilities of ChlH the head region of ChlH 

may disrupt any possible packing in protein lattice formation. This is a possible reason 

that there are no crystal structures of any of the ChlH/BchH/CobN proteins or any 

similar proteins in general. Removal of the head region might allow tighter packing of 

the proteins in a crystal lattice. 

 

The ΔN160H truncation forms inclusion bodies when cultures are induced overnight 

and to some extent when induced for 4 h. The quality of the purification is also not to a 

high enough standard to allow crystal formation. A useful strategy for obtaining 

crystallographic information of H would be to determine a purification procedure that 

would enable large quantities of highly pure protein. One strategy to increase the 

purity of the protein could be to alter the pH in the anion exchange chromatography 

step. Although the pH of buffer in the gel filtration chromatography did not alter the 

aggregation state of the ΔN160H protein a great deal altering the pH in ion exchange 

often reduces the number of contaminating proteins in a purification step. Another 

option would be to try a cation exchange step either before or after anion exchange. If 
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ΔN160H does not bind strongly to a cation exchange column it may be that some of 

the contaminants do and thus are separable from recombinant protein. Gel filtration 

does improve the preparation and is necessary for the removal of any remaining 

aggregation. HPLC gel filtration improves the purification further but is not suitable 

for the large scale purification necessary for crystallisation trials. Another more 

appropriate gel filtration column with a void volume nearer the MW of ThrΔN160H 

may be of advantage. Finally it may be interesting to employ the thermophilic 

properties of the protein; E. coli grows at 37°C and T. elongatus grows optimally at 

55°C. An incubation step after separating the insoluble and soluble fractions at a range 

of temperatures followed by an additional centrifugation step and analysis on SDS-

PAGE may indicate a temperature at which contaminating E. coli proteins denature 

and ΔN160H remains intact. 
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6. CHAPTER 5 
 

Characterisation of a thermophilic magnesium 

chelatase from Thermosynechococcus elongatus 
 

6.1. Summary 

 
The insertion of magnesium into Proto is catalysed by MgCH and commits the 

porphyrin to the synthesis of chlorophyll, as opposed to the synthesis of haem 

catalysed by ferrochelatase. MgCH is comprised of three subunits named BchH/ChlH, 

BchI/ChlI and BchD/ChlD depending on whether they are found in anoxygenic or 

aerobic phototrophs. MgCH from purple bacteria, cyanobacteria have been 

characterised kinetically and also structurally to some extent, although there are no 

high-resolution structures for the ChlH, I and D subunits.  This problem might be 

overcome by using chelatase subunits from a thermophilic photosynthetic organism, 

but there are no reports of any thermophilic MgCH. In this chapter the ChlH, I and D 

subunits from T. elongatus are overproduced in E. coli and purified to yield an active 

enzyme. The temperature stability and kinetic parameters of this enzyme have been 

characterised.   

 

6.2. Introduction 
 

The formation of chlorophyll is likely to be regulated at the branch point of 

tetrapyrrole biosynthesis. Proto is a precursor of both chlorophyll and haem and the 

reactions catalysed by MgCH or ferrochelatase dictate the fate of this porphyrin. 

Ferrochelatase is either a monomeric or homodimeric enzyme of 34 - 54 kDa (Wu et 

al., 2001) and catalyses the chelation of divalent iron into Proto, in a process that does 

not require ATP. MgCH is a much more complicated enzyme consisting of three 

protein subunits that are all essential for activity (Gibson et al., 1995). The subunits are 

denoted BchH/ChlH, BchI/ChlI and BchD/ChlH (~140, ~40 and ~75 kDa respectively) 

depending on the mode of photosynthesis as either anoxygenic (Gibson et al., 1995; 

Petersen et al., 1998) or aerobic (Jensen et al., 1996a,; Kannangara et al., 1997; 
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Papenbrock et al., 1997; Guo et al., 1998). The H subunit binds both the substrate and 

product of the reaction (Karger et al., 2001). The H subunit is proposed to distort the 

tetrapyrrole ring in order to insert magnesium; this has been shown to be the case for 

iron insertion into haem by ferrochelatase (Lacerof et al., 2000; Al-Karadaghi et al., 

2006). The I subunit is an ATPase from the AAA+ family and like other proteins from 

this family I forms a nucleotide (ATP, ADP or adenosine 5´-[β,γ-imido]triphosphate)-

dependent oligomeric complex (Fodje et al, 2001; Hansson et al., 2002; Reid et al., 

2003). The N-terminal half of the D subunit is homologous to the I subunit, although D 

is not an ATPase; the C-terminal domain of D contains a MIDAS motif suggested to 

be involved in divalent metal ion binding (Jensen et al., 1996; Axelsson et al., 2006). 

  

MgCH activity has been studied intensively since the 1990s and the recombinant 

enzyme has been characterised in a number of species (Jensen et al., 1998; Guo et al., 

1998; Gibson et al., 1999). In Synechocystis the optimum subunit ratio between ChlI 

and ChlD was found to be 2:1 with a molar excess of ChlD resulting in inhibition 

(Jensen et al., 1998). ChlH was found to have an optimum concentration double that of 

ChlI. Steady-state kinetics performed using a ratio of 4:2:1, ChlH:ChlI:ChlD, 

respectively, gave a Vmax of 236 ± 36 pmol-h-1µg-1 and a Km of 1.25 ± 0.28 µM for 

Proto, up to a concentration of 0.8 µM, when all other substrates were in excess 

(Jensen et al., 1998). At 0.8 µM Proto the rate was reduced to 92 pmol-h-1µg-1. Jensen 

et al., (1998) interpreted this reduction as a possible consequence of aggregation of 

Proto molecules, limiting the availability for the enzyme, rather than substrate 

inhibition. A Vmax of 95 ± 3 pmol-h-1µg-1 and a Km of 4.9 ± 0.2 mM was estimated for 

MgCl2 and Vmax of 50 ± 3 pmol-h-1µg-1 and a Km of 0.49 ± 0.1 mM was observed for 

ATP (Jensen et al., 1998). A more detailed steady-state study showed that the kcat of 

the Synechocystis MgCH is 0.8 min-1 (Reid and Hunter, 2004).     

 

In the purple bacterium Rba. sphaeroides, kinetic information showed that the 

optimum ratio of the three MgCH subunits was 36:4:1 of BchH, BchI and BchD, 

respectively (Gibson et al., 1999). A high molar excess of BchD inhibits the Rba. 

sphaeroides MgCH (Gibson et al., 1999). Using the ratio of 36:4:1 (BchH: BchI: 

BchD) the Vmax was 32.1 ± 1.0 pmol-h-1µg-1 and the Km for Proto was 0.15 ± 0.05 µM. 

Above 1 µM porphyrin appears to inhibit the chelation reaction, but again this may be 

due to Proto aggregation (c.f. Jensen et al., 1998). The Vmax for Mg2+ was 43.4 ± 1.4 

pmol-h-1µg-1 with a Km of 3.3 ± 0.48 mM and the maximum rate achieved with 
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increasing ATP gave a Vmax of 22.1± 0.7 pmol-h-1µg– 1 and a Km of 0.12 ± 0.02 mM 

(Gibson et al., 1999).  

 

The aim of this chapter is to provide the first kinetic information for a MgCH from a 

thermophilic source, comparing the data with those already available for the 

Synehcocystis and Rba. sphaeroides enzymes mentioned above. Apart from widening 

our knowledge of MgCH enzymes generally, one benefit of this work is that it 

establishes that all three subunits are active, so they all become candidates for future 

structural studies. 

 

6.3. Results 

 

6.3.1. Cloning the T. elongatus chlD gene 
 

Previous studies have noted the low levels of expression of the chlD gene from 

Synechocystis in E. coli using the pET9aHis6 expression vector (Dr. Paul Davison, 

personal communication). This is also the case when expressing gun4 gene in this 

vector, although in this case cloning the gene into the pGEX-4t-1 vector overcame this 

problem (Dr. Paul Davison, personal communication). Bearing this in mind, the 

tsr1414 gene encoding T. elongatus ChlD was cloned into both pET9a-His6 and pGEX 

using the primers pET-DF and pET-DR and GEX-DF and GEX-DR respectively (see 

Chapter 2, table 4). Cloning was performed using the Clontech method described in 

section 2.7.10. ChlD was cloned into pET9a-His6 with a NdeI site at the 5’ end of the 

gene and a BamHI site at the 3’ end. When cloning in pGEX, an EcoRI site was 

located at the 5’ end of the gene with a NotI at the 3’ end of the gene. The insertion of 

the chlD gene was confirmed by DNA sequencing and the plasmids were named 

pET9a-His6[TchlD] and pGEX[TchlD] (fig. 1). 
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6.3.2. Expression trials of ChlD 
 

Both the pET9a-His6[TchlD] and pGEX[TchlD] plasmids were individually 

transformed into the E. coli Bl21(DE3) expression strain and grown on LB agar with 

antibiotic selection. Single colonies of both transformants were then inoculated into 6 

different rich media (50 ml cultures) and induced to express protein as in section 2.8.1. 

The cells were harvested by centrifugation and lysed by sonication. The soluble and 

insoluble fractions were separated and expression of ChlD was analysed using SDS-

PAGE (fig. 2).The pET9a-His6[TchlD] transformants grown in the auto-inducing 

media (AIM)  (Formedium) appeared to express the most soluble ChlD. This growth 

medium and plasmid were therefore used for further growth and expression of ChlD.  

Figure 1 – Plasmid maps of pGEX and pET9a-His6 vectors containing chlD. 

Constructs containing the ChlD encoding gene showing restriction sties and 

relevant antibiotic selection. 
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Figure 3 – Analysis of purity of 

recombinant T. elongatus MgCH subunit 

proteins 

SDS-PAGE of I, D and H subunits after final 

purification steps. 

Figure 2 – Expression trial of ChlD in using two different expression plasmids in 6 

various types of commercial rich media 

Both pET9a-His6[TchlD] and pGEX[TchlD] were transformed into six different 

types of rich media (induction indicates the use of standard LB broth) and induced to 

overproduce protein. The cells were broken and analysed using SDS-PAGE for ChlD 

expression. I represents insoluble fraction and S indicates soluble fraction. 

 

 

6.3.3. Purification of MgCH subunits 

 
The plasmids containing the T. elongatus chlH and chlI genes were kindly provided by 

Dr. Paul Davison. Cells were transformed with pET9a-His6[TchlH], pET9a-His6[TchlI] 

and pET9a-His6[TchlD] and grown as described in section 2.12. The cells were 

harvested by centrifugation and lysed using sonication. The soluble and insoluble 

fractions were separated and the proteins were purified as in section 2.10. SDS-PAGE 

(Fig. 3) shows that all proteins had a typical purity of 90% or higher. 

 

 

 

 

 

 

 

 



 114 

6.3.4. Analytical gel filtration 
 

The size exclusion chromatography analysis in Qian et al. (2012) and Chapter 3 

showed that ChlH from T. elongatus eluted in one main peak from with an estimated 

MW of 150 kDa. The predicted molecular weight of ChlH is 150 kDa so these gel 

filtration data suggest a monomeric protein, as seen with the Synechocystis ChlH 

(Karger et al., 2001).  

 

Purified ChlD was analysed by HPLC gel filtration chromatography in the absence of 

MgCl2 or nucleotide. ChlD eluted in one major peak with a retention time of 16.5 mins 

(Fig. 4). Using a calibration curve this gave an estimated molecular weight of 500 kDa. 

ChlD has a predicted molecular weight of 73 kDa so this would indicate 7 ChlD 

monomers in a complex,  

 
When ChlI was analysed by gel filtration on the same column the elution profile 

indicated a species  smaller than for ChlH or ChlD, possibly arising from a monomer 

or a dimer although the elution was outside the range for estimation of the size of the 

species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 –HPLC gel filtration elution profile of ChlD  

Elution profile of purified ChlD from a calibrated Biosep S4000 gel filtration 

column. The arrow indicates an estimated molecular weight of 500 kDa.  



 115 

 

6.3.5. Optimisation of the I:D subunit ratio for steady-state 

MgCH assays 

 
The MgCH I and D subunits associate in an ATP-dependent reaction to form a 

complex (Jensen et al., 1999; Gibson et al., 1999).  A cryo-EM study of a ~660 kDa 

complex formed in vitro from Rba. capsulatus subunits suggests a stoichiometry of 6:6 

(Elmlund et al., 2008).  

 

To ensure kinetic analysis of the MgCH was under optimum conditions, initial tests 

were performed to determine optimal concentrations of the I and D subunits. Because 

ChlI is the catalytic subunit with ATPase activity and D has a supposed role as 

support/scaffold unit for I it seemed most appropriate to vary the concentration of D 

rather than I. All the MgCH assays were performed as previously published for 

Synechocystis MgCH (Reid and Hunter, 2004) but at a temperature of 45°C. 

Continuous, fluorometric MgCH assays were performed at a range of ChlD 

concentrations, with 1 µM ChlH and 0.1 µM ChlI. The steady state rates were 

observed and either duplicate or triplicate results plotted as a mean with standard 

deviation about the mean (Fig. 5). The optimum concentration of ChlD appeared to be 

0.1 µM which gave a maximum rate of 0.045 ± 0.001µM min-1. This concentration 

gave an ID ratio of 1:1. The published MgCH kinetics from Synechocystis describe an 

optimal ID ratio of 2:1; at this ratio this system has an activity marginally below 

optimum in the present study (Fig. 5) with a maximum rate of 0.042 ± 0.001µM min-1. 

 

When the concentration of D in the assay is increased so that I and D are no longer 

equimolar, excess D inhibits the reaction. At a D concentration five times that of 

optimum no chelation reaction is observed, in agreement with previous studies (Jensen 

et al., 1998; Gibson et al., 1999). 
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Figure 5 – MgCH assays with increasing amounts of the ChlD subunit 

MgCH assays performed at 45°C with increasing concentration of ChlD. Assays were 

performed with 8 µM DIX, 15 mM MgCl2 and 5 mM ATP. ChlH was at a concentration 

of 1 µM and ChlI was 0.1 µM. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

6.3.6. Setting the optimal ChlH concentration 

 
The optimum concentration of the ChlH subunit was determined, using the previously 

determined optimal concentrations for ChlI and ChlD  of 0.1 µM (Fig. 6). A saturating 

concentration of ChlH was obtained at around 1 µM, giving a maximum rate of 0.054 

± 0.005 µM min-1. These data can be described by the Hill equation with a three-

parameter function giving an estimated Vmax of 0.039 ± 0.006 µM min-1 with a Km of 

0.64 ± 0.078 µM and h of 6.2 ± 3.4. Similar curves have been interpreted as showing 

positive cooperativity in the interaction between H and ID (Sawacki and Willows, 

2008). Full activity was observed at 1 µM ChlH, so a ChlH:ChlI:ChlD subunit ratio of 

10:1:1, was chosen as the concentration for kinetic analysis of the enzyme. 
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Figure 6 – MgCH assays with increasing amounts of the ChlH subunit 

MgCH assays with increasing concentration of ChlH. Assays were performed with 

8 µM DIX, 15 mM MgCl2 and 5 mM ATP. ChlI and ChlD were at a concentration of 

0.1 µM at a temperature of 45°C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.7. Measurements of steady-state kinetic parameters for the 

three substrates 

 
To estimate the Vmax and Km of MgCH for DIX, continuous magnesium chelation 

assays were performed at a range of porphyrin concentrations with the previously 

optimised subunit ratio of 10:1:1. The concentrations of MgCl2 and ATP were 

maintained at the presumed saturating level of 15 mM and 5 mM respectively. It was 

observed that a saturating concentration of DIX was reached at 2.5 µM with a steady 

state rate of 0.05 µM min-1 and further increases in the concentration of DIX inhibit 

chelatase activity (Fig. 7). The Vmax and Km were therefore estimated from the rising 

portion of the curve (Fig 7 inset) as Vmax = 0.052 ± 0.006 µM min-1 and Km = 0.43 ± 

0.17 µM. The substrate inhibition constant (Ki) was calculated to be 4.56 ± 0.54 µM 

using the equation: 
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Figure 7 – MgCH assays with increasing amounts of DIX 

Left panel: substrate inhibition is seen with DIX concentrations above 5 µM. Right 

panel: the steady-state activity up to saturation can be fitted to estimate kinetic 

parameters. Assays were performed with 15 mM MgCl2 and 5 mM ATP at a 

temperature of 45°C. The curve was fitted to a substrate inhibition model. 

 

 

 

Where v is velocity, K’m is the mechalis-menton constant, a is the substrate and Ksi is 

the inhibition constant. 

 

The ATP dependence of the MgCH catalysed reaction was investigated. As the 

substrate for MgCH is actually MgATP2-, the MgCl2 concentration was always 

maintained with a 15 mM excess over the ATP concentration to ensure a constant free 

Mg2+ concentration of 15 mM. This was presumed to be a saturating concentration of 

Mg2+. The DIX concentration was 5 µM. A maximum steady state rate of 0.047 µM 

min-1 was observed. The data (Fig. 8) were fitted to a single rectangular hyperbola with 

characterising parameters Vmax = 0.064 ± 0.0112 µM min-1 and Km = 1.8 ± 0.81 µM.  
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Figure 8 – MgCH assays with increasing amounts of MgATP2- 

MgCH assays with increasing concentration of MgATP2-. Assays were performed at 

45°C with 5 µM DIX, ensuring the free Mg2+ was maintained at 15 mM.  

Figure 9 – MgCH assays with increasing amounts of Mg2+- 

MgCH assays with increasing concentration of MgCl2. Assays were performed at 

45 °C with ATP maintained at 5 mM and the DIX concentration at 5 µM.  
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The MgCH dependence on free magnesium was investigated at saturating 

concentrations of the other two substrates (ATP, 5 mM and DIX 5 µM). The data were 

fitted to the Hill equation with a three-parameter function giving an estimated Vmax of  

0.045 ± 0.003 µM min-1 with a Km of 5.11 ± 0.35 mM and h of 4.37 ± 1.35 (Fig. 9). 
 

6.3.8. Analysis of MgCH subunits by circular dichroism 

spectroscopy 

 
Circular dichroism (CD) spectroscopy was carried out in the UV region (section 2.15) 

to provide some evidence for the correct folding of the recombinant ChlH, I and D 

subunits from T. elongatus. The CD spectra were similar for all three subunits, 

indicating a high proportion of α-helices, rather than random coils, suggesting that all 

three subunits are folded (Fig. 10). Fig. S1 in the supplementary data section shows 

examples of CD spectra of particular secondary structural features. Elipcitiy was 

calculated using the equation: 

 

 

 

Where θ is optical rotation, m is molecular weight, c is concentration of protein in 

experiment (g/ml) and l is the pathlength used. 

 

6.3.9. Thermostability of MgCH subunits 

 
The thermostability of the MgCH subunits was investigated to reveal how much 

tolerance the subunits have for high temperatures in relation to structural integrity. CD 

was performed where a chosen wavelength, 222 nm, was monitored during a thermal 

ramp (Fig. 11). Over a time of approximately 3 hours, the temperature was monitored 

from 5°C until the there was no more change in absorbance at 222 nm indicating the 

protein was fully unfolded. From this the first derivative was taken to estimate the Tm. 

 

 

 

 



 121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 - UV CD analysis of the MgCH subunits from T. elongatus  

Far UV CD spectra were recorded on a Jasco J-810 spectropolarimeter at room 

temperature. The numbered spectra correspond to samples containing: 1, ChlI; 2, 

ChlH; 3, ChlD. Spectra have been stacked for clarity, the y axis scale bar 

corresponds to 10 mdeg cm2 dmole-1. 
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Figure 11 – CD analysis monitoring change in wavelength at 222 nm with 

increasing temperature to measure thermal stability 

The CD signal was measured at 222 nm in chelatase buffer with increasing 

temperature, with the data plotted as the first derivative. The red dashed line 

indicates the Tm of the protein. 
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It is clear from the thermal melt data that as expected the T. elongatus subunits have a 

far greater tolerance for high temperatures when compared to Synechocystis. 

Interestingly however, the most tolerant subunit from each organism is not the same, H 

and D from both organisms behave similarly whereas the Synechocystis I subunit is far 

more robust with respect to the other Synechocystis subunits, than the T. elongatus 

homologue is with respect to the thermophilic H and D subunits. 

 

6.4. Discussion 

 
SDS-PAGE analysis of all three MgCH subunits from the thermophile T. elongatus 

shows that all three proteins are essentially pure after gel filtration chromatography. 

The analytical gel filtration of ChlD is interesting as there is no monomer observed and 

all protein migrates in large complexes.  

 

The optimal ratio of the ID complex of 1:1 from kinetic data is consistent with the 

current structural BchI:BchD model from cryo-EM analysis  (Elmlund, 2008). In 

previously published work the ID ratio has varied to quite a degree. In BchID 

complexes from Rba. sphaeroides the optimum ratio for steady-state kinetic studies 

has been reported to be 4:1 respectively (Gibson et al., 1999). In Synechocystis an 

optimum ratio of 2:1 was determined (Jensen et al., 1998) and was used in all later 

studies from this laboratory. The reported need for a small excess of ChlI over ChlD 

(the 2:1 ratio of Jensen et al., 1998) may arise from a small proportion of inactive I 

subunit or from weak binding between ChlI and ChlD requiring an excess of protein to 

drive complex formation.  It should also be noted that in this study and in published 

Subunit Synechocystis T. elongatus 

ChlH 43°C 62°C 

ChlI 47°C 58°C 

ChlD 41°C 63°C 

Table 1 – Tm for the MgCH subunits from Synechocystis and T. elongatus 

The data for the Synechocystis I and D subunits were kindly made available by Nathan 

Adams (N.B. P. Adams, Ph.D. thesis, 2012). For the analysis of Synechocystis ChlH 

see the supplementary data section Fig. S2. 
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work (Jensen et al., 1998; Gibson et al., 1999) anything over a 1:1 molar ratio of D to I 

leads to inhibition. Perhaps the I subunit interacts with H, and excess D starts to 

intervene and prevent this association. 

 

The H subunit concentration found to be optimal was around 1 µM leading to an 

optimal subunit ratio of 10:1:1. The initial characterisation of the Synechocystis MgCH 

showed that a ratio of 4:2:1 (H: I: D) was optimal (Jensen et al., 1998), compared to a 

ratio of 36:4:1 for Rba. sphaeroides (Gibson et al., 1999), in good agreement with the 

current study. An analysis of ChlH mutant subunits showed saturation of activity at a 

H to I ratio of 2:0.2 (Davison et al., 2011), which is consistent with the data in this 

chapter. 

 

When optimising the concentration of ChlH in the assay, a sigmoid curve appears to 

describe the data well. This could indicate a cooperative interaction between H and the 

ID complex. The Hill coefficient of 6.2 ± 3.4 is consistent with positive cooperativity. 

Sawacki and Willows (2008) have also described cooperativity with BchH and the 

BchI•BchD complex; they offered the explanation that more than one H will interact at 

any one time. Alternatively, these data could arise from a mixture of binding reactions 

between H and DIX and HDIX and the ID complex. 

 

ChlH appears to be inhibited by high concentrations of DIX (over 5 µM) similar to the 

work of Jensen et al., (1998), who observed inhibition with Proto concentrations over 

0.8 µM. The estimated inhibition constant (Ki) in the present work is 4.56 µM. One 

explanation of this phenomenon could be that the high temperatures of the assay 

promote aggregation of DIX rendering it unavailable for the enzyme. 

 

The kinetic parameters of MgCH from different species vary significantly. The kcat for 

Synechocystis MgCH when using the porphyrin binding subunit concentration as a 

reference is 0.8 min-1 (Reid and Hunter, 2004). The Rba. capsulatus MgCH has a 

turnover number of 5.1 min-1 in relation to BchD concentration which Sawacki and 

Willows (2008) note is ~6 times higher than that of Synechocystis. This is somewhat 

misleading when regarding the ratio of H and D in both experiments. When the 

Synechocystis MgCH turnover number is calculated in relation to the concentration of 

ChlD it is 3 min-1, which is comparable with the purple bacterial enzyme. 
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Because the ChlH subunit in this work is at a much higher concentration than that used 

by Reid and Hunter (2004), the kcat for Synechocystis MgCH was recalculated on the 

basis of the ChlI concentration and it was estimated to be 1.5 min-1(Reid and Hunter, 

2004). On this basis the T. elongatus kcat is 0.52 min-1. This is still ca. 10-fold lower 

than the value determined for Rba. capsulatus but relatively close to the kcat of 

Synechocystis with a ~3 fold difference. Rba. sphaeroides utilises Bchl for light 

harvesting whereas in cyanobacteria phycobilisomes are heavily involved in energy 

capture. These differing physiological demands on the Bchl and haem branches of 

tetrapyrrole biosynthesis could contribute to the differing kcat values, but without 

knowledge of the same values for the ferrochelatases, and the numbers of enzyme 

molecules present, no valid comparisons can be made. 
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7. CHAPTER 6 
 

Evidence for in vivo interactions between MgCH 

subunits  
 

 

7.1. Summary 

 
Three subunits are essential for the activity of MgCH, the enzyme involved in the 

insertion of a magnesium ion into protoporphyrin. These consist of H, a porphyrin 

binding subunit, and an ATP/Mg2+ binding complex formed by the I and D subunits. It 

is thought that H binds to porphyrin and this then interacts transiently with the H I•D 

complex to perform the chelation reaction. Apart from mechanistic studies the 

evidence for the formation of a MgCH complex is limited to an in vitro column assay 

in which non-tagged ChlI and ChlH subunits were observed to bind to a Ni2+ agarose 

column with immobilised His-tagged ChlD subunits. Analysis of column eluates using 

western blots and immunodetection showed that HID complexes can form under these 

conditions (Davison and Hunter, 2011). This chapter presents the first evidence for an 

in vivo MgCH complex in Synechocystis, as well as presenting additional information 

on the presence of the ChlI subunit in different cellular locations. The importance for 

the selection of buffers used in this type of assay is also discussed. 

 

7.2. Introduction 
 

Assays in which a target protein is genetically modified to encode an affinity 

chromatography tag and then isolated on the appropriate resin to analyse any co-

purified proteins are an extremely useful tool. Pull-down assays can give insights into 

proteins and/or co-factors that interact with the target protein.  

 
The three essential subunits of MgCH, the porphyrin binding subunit, H; the AAA+ 

ATPase I and the D subunit, have been shown to form a complex in vitro using a 

column binding assay (Davison and Hunter, 2011). Recombinant His6-tagged ChlD 
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was immobilised on Ni2+ charged chelating Sepharose and following a washing step 

recombinant non-tagged ChlI was applied to the column.  After another washing step, 

non-tagged ChlH was then applied; any unbound subunits were removed by a final 

wash and the column was eluted with buffer containing 300 mM imidazole. Western 

blotting of eluates showed that ChlI, ChlD and ChlH had all bound to the column.  

 
This approach is advantageous in the respect that the best possible conditions are 

provided for the complex to form. The MgCH subunits were already assumed to form 

a complex and the use of large quantities of highly pure proteins gives the opportunity 

to show that they do indeed interact in vitro. Although this procedure yielded 

encouraging results it does not provide any information on how well the proteins 

interact, nor does it show whether or not such interactions occur inside the cell. 

 

Another approach is to use pull-down assays where a gene encoding an affinity tagged 

target protein is recombined into a non-essential location in the genome of the 

organism. Then, the tagged protein can act as in vivo bait to trap any interacting 

partner subunits. An inducible promoter can confer some extra control over the timing 

of the interaction.  The non-essential site within the Synechocystis genome chosen for 

the work in this chapter was the psbAII gene; the photosystem II D1 protein is encoded 

by three genes psbAI, psbAII and psbAIII. These are semi-induced under high light 

conditions (Hihara et al., 2001).  The deletion of the psbAII gene (slr1311) does not result 

in a mutant phenotype (Dr. Roman Sobotka, personal communication) and so a mutant 

was created that contains a ChlI protein with an N-terminal 3 X FLAG peptide 

sequence (DYKDDDDK) and integrated into this D1 site. It should be noted that the 

native gene encoding ChlI was retained, so there are two copies of the protein present, 

one tagged and the other native. 

 

Pull-down assays with this mutant were performed under different buffer conditions 

and the eluate analysed for proteins that co-purified with FLAG-ChlI. This chapter 

reports the first isolation of the full ChlHID MgCH complex in vivo and the 

importance of the buffers used to achieve the desired results will be discussed. 
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Figure 1 - SDS-PAGE showing the 

purification of FLAG-ChlI 

The soluble fraction of Synechocystis 

containing the FLAG-ChlI gene was purified 

on an affinity column using HEPES buffer and 

the eluate analysed by SDS-PAGE. The upper 

band is most likely FLAG-ChlI and the lower 

band the WT ChlI. 

7.3. Results 
 

The Synechocystis FLAG-ChlI mutant was kindly donated by Dr. Roman Sobotka. The 

mutant was grown on BG-11 agar plates under high light and used to inoculate 4 x 125 

ml starter cultures of BG-11 liquid medium and grown as in 2.8.2. under high light (50 

μmol photons m-2 s-1) for 2 days. 4 x 1.25 L flasks of BG-11 were inoculated with 

these starter cultures and again grown under high light until an OD740 of ~1 was 

reached. The cells were pelleted and resuspended in buffer containing 25mM HEPES 

(pH7.4), 5mM CaCl2, 10mM MgCl2, 20% glycerol and 5 mM ATP. The cells were 

broken by bead beating and the soluble and insoluble fractions were separated by 

centrifugation.  

 

It is known that ChlI is expressed in E. coli as a soluble protein (Jensen et al., 1998) 

(Gibson et al., 1995) and so, following cell breakage and centrifugation of the extract, 

the supernatant fraction of Synechocystis was chosen for further analysis.  This fraction 

was loaded onto an anti-FLAG M2 affinity column, which was washed with 10 ml of 

HEPES buffer and then resuspended in 1 ml of buffer and allowed to settle. Another 1 

ml of buffer was added as a final wash and the column was then eluted by incubation 

in 1 ml thylakoid HEPES buffer containing 100 μg pure FLAG peptide on a roller-

mixer for 1 hour at room temperature. The eluted material was separated from the 

column by passage through a cellulose acetate membrane and the purification was 

analysed by SDS-PAGE (fig. 1) 
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Figure 2 – Western blot of a FLAG-

ChlI pull down assay, probed with 

anti-ChlH antibodies 

The cell supernatant and eluate 

fractions are labelled, as are the 

positions of the ChlH and FLAG-ChlI 

signals. 

Fig. 1 demonstrates that FLAG-tagged ChlI can be purified from the soluble fraction 

of Synechocystis. Two bands of protein are eluted from the purification and because 

the FLAG-ChlI gene was added to a WT background it is likely that the upper band is 

FLAG-ChlI and the lower band is WT ChlI that has co-purified alongside the tagged 

protein. 

 

FLAG peptides have a high content of acidic residues such as aspartic acid, which could 

influence the binding of SDS, and affect the relative mobility giving the protein a larger 

apparent MW. What is clear from the SDS-PAGE is that the FLAG-ChlI purification is 

very efficient in HEPES buffer, increasing the likelihood of any co-purification being the 

result of a specific interaction, rather than contamination,  Thus, the co-purification of 

FLAG-ChlI and ChlI supports the existence of an I2 complex, or possibly an even higher 

order of assembly. 

 

To identify other interesting proteins are present in the purification the starting cell 

supernatant and the column eluate were blotted (section 2.9.3.) and probed with an 

antibody raised against ChlH. Fig. 2 shows the western blot probed with anti-ChlH and 

it is clear that the supernatant contains ChlH, as expected. Other bands are seen lower 

down the gel lane, indicating that there is either some degradation of the H subunit, 

detected by the antibody to ChlH, and/or some non-specific cross-reaction with FLAG-

ChlI, perhaps because the FLAG-ChlI is expressed at a relatively high level and so 

there will be much more protein produced in the cell. There is no evidence for ChlH in  
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Figure 3 – Western blot of FLAG-

ChlI pull down assay and labelling 

with anti-ChlI 

WT and FLAG-ChlI is indicated in 

both supernatant and elution.  

the eluate indicating that FLAG-ChlI and ChlH did not co-elute using this HEPES 

buffer system. The western blot of FLAG-ChlI purification was stripped and probed 

with anti-ChlI antibodies. Fig. 3 shows that two bands are present in both the 

supernatant and the elution. The FLAG-ChlI band that appeared in Fig. 2 can be 

assumed to be the same as the upper band in Fig. 3 due to the correspondence in size. 

 

The correspondence in migration on SDS-PAGE between the two bands in Figs. 1 and 

3 suggests that the two Coomassie-stained bands in Fig. 1 are most likely the WT ChlI 

and FLAG-ChlI, emphasising the fact that ChlI does form complexes in the cytoplasm 

of Synechocystis. 

 

The absence of other bands from the SDS-PAGE analysis in Fig. 1 suggested that the 

pull-down is perhaps not performed at the correct pH that HEPES can buffer at. With 

this in mind the purification was attempted again with another 4 × 1.25 L of culture.a 

lower pH;  25mM MES pH (6.5), 10mM CaCl2, 20 mM MgCl2, 20% glycerol and 5 

mM ATP was used for the resuspension and washing of the column. In this assay the 

thylakoids were also analysed for the presence of interesting proteins. The thylakoids 

were resuspended in thylakoid buffer, as far as possible avoiding contamination with 

cell debris, and solubilised by the addition of β-DDM to a final concentration of 2 % 

(w/v) at room temperature for an hour. 

The solubilised material and remaining 

cell debris were separated by 

centrifugation. The supernatant and 

solubilised thylakoids were applied to 

separate anti-FLAG M2 affinity gel 

columns and washed and eluted as 

previously. Fig. 4 shows western blots of 

both soluble fraction and solubilised 

thylakoids analysed with different 

antibodies. It is clear that as seen 

previously FLAG-ChlI and WT ChlI co-

purify from the cell. It is interesting to 

note that similar levels of FLAG-ChlI are 

present in both the soluble and membrane 
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fractions. WT ChlI co-purifies with FLAG-ChlI to a greater extent when the soluble 

fraction is used, consistent with the idea that WT ChlI is mainly found into the soluble 

fraction of Synechocystis. A large amount of ChlD with a migration of the correct 

molecular weight has also co-purified with FLAG-ChlI, as seen in the middle two 

blots, but only using the soluble fraction; no detectable signal was obtained using the 

solublised membranes. Finally incubation of the blot with antibodies to ChlH also gave 

a faint but visible band of the correct molecular weight for ChlH, again with the 

soluble fraction. Less ChlH was seen from the purification when compared to D and I. 

Because the stripping of the blot in Fig. 3 also removed some protein from the 

nitrocellulose membrane used in Fig. 4 was incubated with different antibodies and the 

bands visualised sequentially without using a stripping protocol in between each 

antibody incubation.  

 

Because the proteins co-purified with FLAG-ChlI were generally found in the soluble 

fraction SDS-PAGE was used to analyse the protein content of the pull-down from this 

fraction allowing any interesting bands to be excised and analysed using mass 

spectrometry. Fig. 5 shows the SDS-PAGE of the second FLAG-ChlI pull-down assay, 

which used MES buffer rather than the HEPES buffer. This second type of purification 

is clearly not as efficient at removing contaminants when compared to the previous 

experiment (Fig. 1) it is clear that a large number of proteins co-purify with FLAG-

ChlI. As previously described using MES buffer WT Synechocystis soluble and 

insoluble fractions were also analysed by SDS-PAGE as a negative control for the 
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Figure 4 – Western blot of FLAG-ChlI pull-down assay using MES buffer 

Blots were analysed with antibodies targeted to ChlI, ChlD and ChlH 

consecutively. S represents the soluble fraction and M represents the 

thylakoid membranes. The proteins likely to be identified are highlighted on 

the right. The purification was performed in 25mM MES pH (6.5), 10mM 

CaCl2, 20 mM MgCl2, 20% glycerol and 5 mM ATP. 
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Figure 5 – SDS-PAGE analysis of 

FLAG-ChlI pull-down assay prepared 

using MES buffer, and stained with 

Coomassie blue 

 

Figure 6 - SDS-PAGE analysis of WT 

Synechocystis soluble and membrane 

fractions prepared using MES buffer, 

and stained with Coomassie blue 
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FLAG-ChlI pull-down assays (Fig. 6). The control gel shows one major band in the 

soluble fraction with an estimated molecular weight of ~35 kDa and a fainter band of 

around 80 kDa.  The membrane fraction has one band with an estimated molecular 

weight of ~100 kDa. The band in the soluble fraction of ~35 kDa was confirmed to be 

tryptophanyl-tRNA synthetase by mass spectrometry (personal communication, Dr 

Philip J. Jackson). 

 

Mass spectrometry (MS) was performed on both the soluble and membrane FLAG-

ChlI elutions to identify which proteins were present. In both cases proteins were 

derivatised by S-carbamidomethylation and digested by trypsin in the presence of 

SDS. The tryptic peptide fragments were prepared for MS analysis by solid phase 

extraction using a combination of cation exchange and C18 reversed-phase media. The 

peptides were analysed using nano-LC/MS-MS in conjunction with ultra high 

resolution time of flight MS. This enabled high mass accuracy in both the MS and 

tandem MS spectra. 

 

Table 1 displays proteins identified from MS analysis of the pull-downs from both 

soluble and membrane fractions. These results show that ChlI has been purified from 

both fractions and the soluble fraction also contains Δ-aminolevulinic acid 

dehydratase, also known as porphobilinogen synthase, which is involved in the first 

committed step of tetrapyrrole biosynthesis.  
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Table 1 - Proteins identified by nano-LC-MS/MS and database searching in 

FLAG-ChlI pull-down assays 

Peptides identified by database searching are shown alongside their score. 
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7.4. Discussion 
 

Significant conclusions can be drawn regarding MgCH and with regard to the method 

and success of pull-down assays the work presented here offers scope. It is clear that 

the H, I and D subunits MgCH do indeed form a complex that can be isolated from 

Synechocystis using FLAG-tagged ChlI as bait. The interaction was tighter than 

expected; the MgCH interaction is usually thought to be transient but this eluted 

complex was formed and remained intact through 120 column volumes of wash buffer.  

 

The MgCH from Synechocystis is almost completely soluble with only a small fraction 

of WT ChlI co-purifying from the thylakoid membranes. The high expression of 

FLAG-ChlI in the membrane fraction is an artefact of the high over-expression, arising 

from the effects of the high light growth conditions and the use of a light-inducible 

promoter that drives expression of the FLAG-ChlI construct. It would appear that ChlI 

forms a complex with other ChlI subunits when purified with ATP, which appears to 

be stable at both pH 6.5 and 7.4. It would be interesting to repeat the purification using 

the HEPES buffer (pH 7.4) with the addition of an HPLC gel filtration step to analyse 

the molecular mass of the ChlI aggregates in the eluate. Subsequent analysis by EM 

and native gels could reveal the type of association between ChlI in vivo in the 

presence of ATP and confirm whether the sample is heptameric as seen by Reid and 

Hunter (2003) with a ChlI aggregate reconstituted in vitro. It would also be useful to 

determine if this ChlI•ChlI interaction is ATP dependent as has previously been seen.  

 

The band for co-purified ChlD appears to be less intense than that seen for WT and 

FLAG-ChlI, and the ChlH band is weaker still. Unfortunately, with the protocol 

developed here, it would be impossible to visualise the MgCH complex directly by 

EM. The impurities that remain in the pull-down assay using MES buffer (pH 6.5) 

would prevent any clear image of anything that would be useful. New strategies will 

be needed to provide enough HID complexes for structural analysis.  Crystallisation 

appears to be impossible, but single particle reconstruction only requires ~10,000 

molecules for a low resolution structure with negatively stained material, so it is still 

possible that, with the correct affinity-based protocol, a chelatase complex can be 

isolated and analysed structurally. 
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The co-purification of Δ-aminolevulinic acid dehydratase with ChlI is interesting and 

should be investigated further. MgCH is involved in regulation of Chl in plants 

(reviewed by Masuda and Fujita, 2008) and is presumably involved in cyanobacterial 

Chl regulation as well. The co-purification of these two proteins may provide a 

regulation mechanism in Synechocystis.  

 

What is clear is that for further work in this area a number of approaches would be best 

used to further this research. Western blotting has been a resilient and trustworthy tool 

for studying co-purification of interacting proteins. With the development of more 

sensitive mass spectrometers and more genomes being sequenced it is obvious that MS 

will continue to become more important (Hall et al., 2012). 

 

The work in this chapter demonstrates that the MgCH enzyme forms a complex in 

vivo. It is also clear that pH of the buffers used is of great importance and much 

thought should be put into designing experiments with the desired outcome in mind. It 

would appear that with some preliminary work a highly tailored buffer may be found 

that would allow the isolation of relatively pure MgCH complex that would be 

appropriate for more rigorous downstream applications and analysis.  

 

To identify binding partners in the MgCH enzyme all three subunits could be labelled, 

each with a different tag, to enable serial affinity steps. It would also be important to 

C-terminally tag proteins if the N-terminal domains are important for complex 

formation.  

 
 

 

 

 

 

 

 



 138 

8. CHAPTER 7 
 

General Discussion 
 
Magnesium chelatase is a fascinating enzyme to study in terms of its physical 

attributes that are known and those that are proposed and discussed. It is the first step 

of chlorophyll biosynthesis committing porphyrins to become pigments that are the 

hub of energy capture and transfer. In higher plants MgCH has been shown to play a 

key role in the regulation of Chl biosynthesis and help manage the amount of Chl and 

haem made (Masuda and Fujita, 2008) and it makes sense that this would be the same 

in cyanobacteria and photosynthetic bacteria. The high level of complexity of MgCH 

is an indication of the importance and how intricate the reaction it catalyses is. The 

ferrochelatase, catalysing the insertion of Fe2+ into Proto on the other branch to that of 

Mg2+ chelation, is a single protein enzyme that often forms a dimer. This reaction is 

ATP independent whereas Mg2+ chelation uses 15 ATP molecules (Reid and Hunter, 

2004).  

 

The H subunit which is the tetrapyrrole binding protein of MgCH (Karger et al., 2001) 

has been shown in this thesis (Chapter 3) to be a bi-lobed protein with a small “head” 

region connected to a large hollow “body” through a linker region. The structures that 

have been modelled of both BchH and ChlH differ significantly forming an open and 

caged body, respectively. They also appear to behave differently upon the binding of 

Proto. At the level of resolution presented in this thesis there appears to be little change 

upon the binding of Proto, unlike that of BchH (Sirijovski et al., 2008).  

 

The H subunit is a large protein (~ 150 kDa) when compared to other tetrapyrrole 

binding proteins (ferrochelatase (~54 kDa) binds Proto, methyltransferase (~25 kDa) 

binds MgProto and Gun4 (~ 25 kDa) binds both Proto and MgProto (Davison et al., 

2005)). It has also been suggested that there is no specific amino acid motif that is 

required for MgProto binding and that a particular fold is required (Kindgren et al., 

2011). All these proteins must have this particular fold enabling tetrapyrrole binding 

and it may be assumed that the fold requires residues that make up perhaps a 

significant portion of even the smallest Proto binding proteins. H has also been shown 
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to be involved in other roles including an anti-sigma factor (Osanai et al., 2009) and its 

controversial role in the binding of abscisic acid (Wu et al., 2009; Müller and Hansson, 

2009; Tsuzuki et al., 2011). H also binds the MgCH enhancer protein Gun4 (Chapter 

4, Fig. 10) and is also likely to have a role in regulation of the branch of Chl 

biosynthesis since it up stimulates the steady-state rate of the next enzyme along in the 

pathway (Hinchigeri et al., 1997; Shepherd et al., 2005). All these functions obviously 

result in a large amount of sequence that makes ChlH a multi-functional protein. 

 

Mutational studies have indicated mutations of the protein that are important for 

catalytic activity (Olsson et al., 2004) and it is also known that the N-terminal 565 

residues are essential for MgCH function. Chapter 4 discusses an N-terminal deletion 

of ChlH that while catalytically dead, is recoverable with Gun4. This indicates that the 

identified “head” region is not essential for chelation but may be important and may 

also perform another function. Due to the unchanged Kd for both substrate and product 

it can be assumed that the head is not involved in tetrapyrrole binding. A Synechocystis 

mutant with this mutation would be interesting to monitor for any changes in 

phenotype of both MgCH capacity and other perhaps surprising characteristics. 

 

The characterisation of a thermophilic MgCH gives evidence that it functions much the 

same as that of a mesophilic MgCH. CD analysis on secondary structure of each 

subunit with respect to temperature also highlights similar properties regarding 

structural integrity in relation to growth temperature of the organism. From the kinetic 

analysis of a thermophilic enzyme we know that all subunits are catalytically active. 

Often, thermophilic proteins have a higher chance of forming crystals and due to the 

low amount of structural information available for the MgCH this may be a fruitful 

avenue to explore. 

 

The evidence proving that MgCH does form a complex in vivo is compelling to the 

isolation of a MgCH or ID complex that can be visualised by EM. Another exciting 

opportunity would be to take advantage of the new techniques that are being developed 

in MS. Carol Robinson’s group are developing MS techniques that are able to provide 

detailed structural information of complexes (Hall et al., 2012). Unlike EM and SAXS 

that are typically used for complex assessment which are both of low resolution MS 

would provide detailed information not only of structural characteristic but also of 

binding dynamics. With isolation of proteins from cells the worry of creating artefacts 
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is also reduced. A limiting problem facing this currently is the quantity of material 

needed for these particular MS techniques. The future may allow more sensitive MS 

what will give a higher chance of obtaining results in this field.  
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Supplementary Information 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S2 – CD analysis monitoring change in wavelength at 222 nm with 

increasing temperature to measure thermal stability 

The CD signal was measured at 222 nm in chelatase buffer with increasing 

temperature, with the data plotted as the first derivative. The red dashed line 

indicates the Tm of the protein. 

Figure S1 – Typical CD spectra of particular secondary structural features 
including α-helices and random coil 
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