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Abstract

The majority of active vibration control problems are tackled by mount-
ing sensors and actuators at the location where vibration attenuation is de-
sired. But for some special vibration attenuation problems, the constraint
due to space and weight prohibit positioning of sensors and actuators at
these points. This necessitates development of control design methods that
overcomes these stringent limitations. One such method makes use of re-
motely located sensor actuator pair to counteract the problematic excita-
tion. A novel control design methodology based on a geometric approach
for remotely located sensor actuator pair had previously been developed to
address this issue. It was experimentally tested to attenuate vibration for a
harmonic or tonal excitation. It gives better physical insight as compared
to alternative control design techniques. The final compensator implemen-
tation for controlling vibration due to broadband excitation involves model
inversion of the local control path dynamics. So, the controller itself is
unstable if the local control path is non-minimum phase. Although collo-
cated sensor and control actuator pair can be employed here, it is difficult
to avoid non-minimum phase transfer function due to non-ideal practical
conditions. A stable controller design using a similar geometric approach
is developed in this work such that even if the local control path transfer
function is non-minimum phase, the controller will be stable.

A solution is provided by means of a modified design procedure which is
necessary but not sufficient for the final controller to be stable and stabil-
ising. The sufficiency conditions for stability of controller are presented
in terms of the new design freedom parameter. Furthermore, robustness
to unmodelled high frequency dynamics is taken into account as part of
the modified design procedure. The controller implementation using the



modified approach enjoys the advantage of robustness to control spillover
at unmodelled high frequencies without deteriorating the performance in
the disturbance frequency bandwidth. The applicability of this method to
address spatially global reduction requirements is also investigated. A se-
quential loop closing control design for multiple local feedback loops is
also shown using this design for each individual control loops.
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Chapter 1

Introduction

The phenomenon of vibration as a consequence of moving parts and machinery in me-
chanical systems is undesirable since it causes wear and tear, thereby reducing opera-
tional life. It also adversely affects civil engineering structures and is uncomfortable
for passengers on ships and aeroplanes. Passive methods have been used to alleviate
some of such problems by adding mass or using dampers, absorbers and passive iso-
lators [Mead and Meador, 1998; Motahari et al., 2007; Nakra, 1998; Rao, 2003]. But
a major drawback of passive vibration control is that it is only effective at high fre-
quencies and is sensitive to the exposed thermal environment. The weight of passive
damping components and also the cost of overhauling structures to fit dampers makes
passive methods unappealing for some applications. Advancement in actuator and sen-
sor technologies together with faster signal processing capabilities makes active control
an attractive proposition for sound and vibration problems. Several works have com-
bined advanced control systems design for varied performance requirements with active
noise and vibration control problems [Meirovitch, 1990; Preumont, 2002; Tokhi and
Hossain, 1996].

The aim of Active Noise and Vibration Control (ANC/AVC) is to cancel out or
minimise the noise or vibration output due to a primary excitation signal by the su-
perposition of an externally applied control signal. There has been considerable ad-
vancement in the field of AVC/ANC for application in mechanical [Gawronski, 2004],
aerospace [Viswamurthy and Ganguli, 2004], and civil engineering problems [Soong,
1988]. This is comprised of the development in sensor and actuator technologies along

1



1.1. ACTIVE CONTROL

with improved control design methods. The stringent constraints on weight and space
in some applications necessitates development of smaller and lighter sensors and actua-
tors with better operating bandwidth [Glazounov et al., 2000]. Unlike passive methods,
AVC is dependent upon the uninterrupted supply of external power source. It is also
not inherently stable which necessitates systematic design of control systems for AVC
applications. Furthermore, superior performance can only be achieved using advanced
control design with state-of-the-art transducers and instrumentation. Unfortunately, this
does not justify the increased financial costs for many industrial applications.

1.1 Brief review of active control

The majority of AVC/ANC methods can be broadly grouped into feedback and feed-
forward architectures [Alkhatib and Golnaraghi, 2003]. The appeal of feedforward
techniques especially for active noise control applications is due to its improved per-
formance and ease of stability robustness. This is well suited for disturbance caused by
excitations that are deterministic in nature such as harmonic and tonal excitations. It
does not require an accurate model of the process and so is robust to uncertainties and
error in model identification [Elliott, 1998]. However, major drawbacks of this method
are that it does not ensure reduction in global response and is limited to a very narrow
frequency band. A reference signal that is correlated with the primary disturbance sig-
nal is also necessary for such control paradigms. In order to track changes to the spatial
distribution and frequency of the primary signal, the controller is usually made adaptive.

Adaptive feedforward control algorithms for active noise and vibration control have
been extensively investigated in the literature, see for e.g. [Daley and Zazas, 2012;
Elliott et al., 1987]. It has been utilised for practical applications, for example, the sup-
pression of aeroplane interior noise [Borchers et al., 1992; Elliot et al., 1990; Johansson
et al., 1999]. The filtered-x LMS algorithm, which is a type of adaptive feedforward
control proposed in the early 80s [Burgess, 1981; Widrow and Stearns, 1985], updates
the coefficients of an FIR filter to adapt it every sampling instant by an amount dictated
using the least mean squares algorithm to achieve noise mitigation. A similar algorithm
causing adjustments to the coefficients of an IIR filter is termed as filtered-u LMS al-
gorithm [Eriksson et al., 1987]. However, the convergence rate of FxLMS and FuLMS
algorithm is slow for broadband disturbances, such as those encountered during changes
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in engine speed [Inoue et al., 2004]. For more academic research works on ANC based
on feedforward control algorithms, readers are referred to [Kuo and Morgan, 1996; Nel-
son and Elliott, 1993].

Feedback control, on the other hand, is more suited when a reference signal is
not readily available. Output feedback control involves sensing the vibration output
and feeding it back to a controller which then drives an actuator to cancel or min-
imise the primary excitation. Unlike feedforward techniques, many feedback control
methods can be employed to reduce random excitation perturbations. It has also been
used in conjunction with feedforward control for active vibration control [Meurers and
Veres, 2000]. The stability and performance analysis tools are well developed for feed-
back techniques and can be implemented using fixed parameter filters [Elliott, 2001;
Hansen and Snyder, 1997]. However, the controllers are mostly designed off-line for
pre-determined model of a plant. Hence, there is less possibility for adaptation to dy-
namical variations in the plant. In [Meurers et al., 2002], a feedback control design
method for mitigation of discrete frequency excitations with a high degree of adapt-
ability to dynamic changes in the plant is presented. Although it does not require a
reference signal, vibration is attenuated only for predetermined discrete frequencies.
Also, an initial model of the plant comprised of complex gains at those frequencies is
required prior to implementation. The real time computation involves updating the con-
trol input instead of updating any filter coefficients for the controller, which renders it
as a non-linear control algorithm.

The varied vibroacoustic attenuation requirements for many applications is consid-
ered using different cost functions as parameters to be minimised [Anthony and Elliott,
2000; Bardou et al., 1997; Nelson et al., 1985]. Basically, this performance is evaluated
based on the magnitude of vibration output at the location of one or more error sensors.
A typical example is the application of modern control theory tools such as H∞ and
LQG design for vibration suppression [Bhattacharya et al., 2002]. However, the control
of local outputs alone does not take into account the response of the whole structure for
AVC. Active control of lightly damped structures in a narrow spatial region may lead
to increased response away from the error sensor positions. Therefore, this requires a
wide distribution of sensors which may not be sufficient to quantify global attenuation
due to the response at the unmeasured locations. These type of new lightweight struc-
tures have recently become widespread in the construction of cars and aeroplanes due
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to their improved strength and stiffness. This can cause discomfort to passengers due
to an increase in sound transmission and radiation in the low to middle audio frequency
spectrum [Gardonio, 2002].

Distributed sensors and actuators for decentralised control is another promising ap-
proach to tackle the global vibration response [Jiang and Li, 2010]. Direct velocity feed-
back for decentralised control usually finds favour due to its simplicity of implementa-
tion and better performance margins. The objective is often to reduce the radiation of
noise from vibrating structures, such as flat panels. It so happens that particular modes
contribute more effectively than others towards the overall sound radiation [Baumann
et al., 1992]. This leads to an additional consideration instead of merely mitigating the
global vibration response of the structure [Zilletti et al., 2012]. Active control of vibra-
tion with an aim to reduce the sound power radiated by the structure is termed as active
structural acoustic control. Some of the limitations using direct velocity feedback for
active control are discussed more extensively in chapter 6.

The control design in this thesis also makes comparison to other active damping
methods, besides direct velocity feedback, within the objectives of remote vibration
control. In state-space formulation for feedback control, the control gains are selected
so as to assign the eigenvalues of the identified system to certain pre-desired closed
loop values. Active damping methods achieve reduction in the amplitude at resonance
by actively modifying the structural characteristics [Dı́az and Gardonio, 2007]. It then
becomes important to model the dynamics of the sensors and actuators accurately for
stability and better performance margins [Paulitsch et al., 2006b]. Discussion on some
of the active damping methods, that require knowledge of modal parameters, are more
pertinent in chapter 5 to show the parameterisation of any control design close to reso-
nance in terms of the formulated design freedom.

The sensor and actuator placement strategy also has a crucial role to play in the
AVC/ANC success story. The location and quantity of sensors and actuators has perfor-
mance implications for both global and local vibration reduction in many active sound
and vibration control applications. These factors affect the design of any control system
for desired vibration attenuation [Baek and Elliott, 2000]. It can be argued that the num-
ber and location of actuators and sensors in a practical system has to be analysed at the
design stage to avoid excitation of harmful vibration away from error sensor location or
increased energy at ‘non-descript’ frequencies. For instance, the location of the control
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action on a beam and its position relative to the primary excitation affects the achiev-
able kinetic energy reduction as is shown in [Engels and Elliott, 2008]. It is reported
in [Nelson and Elliott, 1993] and [Johnson et al., 2003] that for effective control action,
the actuators should be placed close to the source of the disturbance. It is also shown
in the latter work that global vibration reduction performance can be greatly improved
when more error sensors than actuators are used. When the same number of actuators
and error sensors are used, deterioration away from the error sensors can limit global
attenuation performance.

1.2 Motivation

Many of the active vibration control studies implicitly make the assumption that vibra-
tion reduction is desired at the output that is available for measurement. This is true
for systems if the actuators and sensors can be mounted where vibration attenuation
is desired. The requirement to reduce noise or vibration at specific points can then be
achieved using active control systems designed by positioning sensors and actuators at
the same location [Balas, 1979; Hong and Bernstein, 1998]. However, in many large
and interconnected structures such as large machinery installation, the source of distur-
bance is not available for measurement or in some cases the sensitive component where
vibration reduction is desired is not available for actuation due to practical limitations
on sensor and actuator placement. Furthermore, in many cases a wide distribution of
sensors and actuators is not a feasible option. The feasibility of positioning sensors or
actuators locally is generally limited due to harsh environment, space constraints or cost
limitations. In such circumstances, feedback control has to be employed at easily acces-
sible locations and the performance of the closed loop system in such a case does not
then simply correspond to the measurement at the error sensor location. Moreover, vi-
bration attenuation at the error sensor location in some cases does not ensure reduction
in global response of the structure. This is true for complex interconnected structure
and also for disturbance loading from different sources that interact with each other.
Also, the attenuation of vibration output at a point has the potential to enhance vibration
output at other points through vibration transmission paths [Post and Silcox, 1990], thus
leading to a deterioration in global performance. Therefore, there are application areas
where a locally sub-optimal solution is necessary for global vibration reduction. Hence-
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primary excitation

thrust block 
vibration

Figure 1.1: Vibration due to unsteady force loading on a propeller blade

forth in this thesis, the term local point or local vibration is used to refer to the location
of error sensor and control actuator on the structure and the vibration measurement at
this point, while remote point or remote vibration refers to any other location where
disturbance excitation acts or where vibration reduction is desired.

1.2.1 Some examples

The generic nature of remote vibration control problem is illustrated with the help of
few examples from the aerospace and maritime applications.

Rotary propulsion noise in aerospace

A typical example of such a problem is the vibration encountered due to aerodynamic
loading on helicopter blades. The unsteady forces experienced by the rotor blades are
generally transmitted at multiples of the blade passing frequency through the hub to
the fuselage. This frequency depends on the rotational speed of the rotor multiplied by
the number of blades. Although it is a discrete deterministic excitation of a particu-
lar frequency, the disturbance can be considered to sweep through a narrow frequency
band as the speed of propeller rotor is increased initially from stationary position and
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then consecutively run at different operating speeds. This can have detrimental effects
such as passenger discomfort, increase in maintenance costs, lowering of component
lifetime and limitations on maneuvering capabilities. Several experimental works have
addressed the vibration problem due to helicopter rotor blades [Hall and Prechtl, 1999;
Shaw et al., 1989].

Higher harmonic control uses swashplate oscillations to suppress the vibration force
at the higher harmonics of rotor rotational speed. A swashplate is a mechanism that
achieves flight command signals by changing the angle of the blades to which it is
connected via control rods. In individual blade pitch control, sensors mounted on the
blade feed information which is used to regulate the pitch of individual rotor blades.
Traditionally, actuators are located at the swashplate or near the pitch links of the blades
to act as close to the source of vibration as possible. Lately, with lighter actuator designs,
there has been demonstrations using actuators that are mounted on the blades [Chopra,
2000]. These solutions are not cost effective and also suffer from limitations of small
stroke which requires amplification [Giurgiutiu et al., 1997].

A related problem encountered in aerospace applications is concerned with the trans-
mission and radiation of sound due to structure-borne noise. The vibration of working
machinery causes excitation of low frequency structural resonances which radiates noise
inside the aircraft cabin. Several control strategies actively dissipates the energy of these
radiation modes by applying control force on the fuselage wall to reduce the interior
noise, which is termed as active structural acoustic control [Fuller et al., 1992; Pearson
et al., 1994; Simpson et al., 1991]. However, the control force applied on the fuselage
does not take into account the vibration output on the rotor. It can lead to deterioration
in global response due to the complex interactions between the different vibration loads
on the hub [Nguyen, 1994]. A comprehensive review of passive and active approaches
for aerospace vibro-acoustic control can be found in [Gardonio, 2002].

Propeller and machinery noise in marine vessels

Equivalent problems in marine vessels occurs due to the oscillatory vibration caused by
the propeller blades as they pass through a non-uniform wake velocity in the fluid field.
The axial fluctuating forces generated by this vibration at the blade increases in ampli-
tude at the resonant frequencies of the blades and it gets transmitted through the shaft to
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the hull. The hull radiates noise very well which can generate acoustic noise leading to
undesirable acoustic signature for naval and civil vessels. Besides the vibration caused
by propulsion shafting systems, on-board machinery and equipment such as diesel en-
gines are a major source of disturbance that propagates through the hull and radiates
as structure borne noise in ships. One of its side effects is noise pollution that affects
marine life and it also limits stealth capabilities of naval vessels. The raft supporting the
working machinery is traditionally isolated using passive mounts to attenuate the trans-
missibility of forces to the hull [Crede, 1951]. However, due to resonances associated
with structural components large forces are transmitted at these frequencies.

Active control methods which allows the machinery to be isolated from the hull
by electromagnetically levitating the supporting raft received some attention from the
defence and marine industry [Daley, 1998; Darbyshire and Kerry, 1997; Johnson and
Swinbanks, 1996]. However, complete loss of vibration isolation during power failure
is a major concern which motivated the development of active methods such as a hybrid
active/passive solution [Daley et al., 2004, 2006, 2008]. Active control using magnetic
levitation has also been reported for isolating precision instruments from microvibra-
tions, which are critical for high resolution scanning applications and high-technology
manufacturing at nanoscales [Hoque et al., 2010].

Figure 1.1 shows a pictorial representation of the fore and aft vibration along shaft
connected to the propeller blades in ships. It gets transmitted to the hull through the
thrust bearing which forms a rigid connection. Previous efforts focused on using passive
methods to reduce the vibration transmission to the hull using a resonance changer
[Dylejko and Kessissoglou, 2006; Goodwin, 1960]. A resonance changer is a hydraulic
vibration absorber that dissipates the energy transmitted from the shaft to the thrust
bearing.

1.3 Description of problem

The problems encountered in the applications briefly described in the previous section
which use propeller or rotary blade system necessitates the development of control de-
sign methods that are cost effective, and can be implemented on a retrofit system. It is
also imperative to have a degree of control and insight over the deterioration of vibration
at the unmeasured outputs such as at the blade disk, in the above example. A similar
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problem is encountered in mechatronic positioning systems where the performance out-
put is inferred from the measured output [Oomen et al., 2011]. If the performance out-
put is not measured but the measured output has a dynamic relation to the performance
output, then a model can be identified that is used to infer the effect of control on the
unmeasured performance output. This is also called as inferential control or observer
based control. It has been used for the control of lightly damped flexible modes using
system identification techniques.

Another method [Halim and Cazzolato, 2006; Halim et al., 2008; Mazoni et al.,
2011] uses a spatial performance index incorporated into the control design that achieves
desired attenuation at different spatial regions. The spatial H∞ norm from the distur-
bance to a performance output that depends on both time and space [Skelton et al., 1997]
is converted into an equivalent standardH∞ problem. This method is more comprehen-
sive than the localised minimisation solutions. Therefore, it is particularly useful for
large interconnected and flexible structures for which a model based controller would
be computationally cumbersome. However, it is limited by the requirement for exten-
sive distribution of sensors on the structure to measure as many vibration components
at different points on the structure. Therefore, it is only suited for structures which have
no weight or space constraints on sensor placement.

In order to fully understand the dynamic response of any structure or industrial ma-
chinery due to disturbance excitation, a detailed model of the plant is necessary. The
source of disturbance excitation and its propagation at the receiving structure for the
vibration problems encountered in marine and aerospace applications also requires the
knowledge of a multitude of different factors such as hydrodynamics, acoustics, tur-
bulence, temperature sensitivity etc. A simplified model of these processes with many
assumptions can initially be utilised for the design of a control system. Any limitations
and meaningful performance drawn from this controller is indicative of its practical
viability and so it facilitates the design of a control system for the actual practical in-
stallation.

The experimental rig used in chapter 4, for example, is a simplified model that repli-
cates the type of vibration encountered due to propeller blade excitation and so it fa-
cilitates the design and testing of control systems for such applications. Similarly, the
experimental rig in chapter 8 is a mock-up installation to test the vibration forces due
to human walking excitations on building floors. Both of these experimental facilities
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can be used to test the consequence of a SISO control design on one or more remote
performance outputs using feedback from only a local measured output.

P

K

Disturbance input d Performance output z

Control input u

Measured output y

Figure 1.2: Linear Fractional Transformation representation of the remote vibration
controller design problem. The controller is designed to minimise the level of the per-
formance output based on feedback of measurement output

The remote vibration control problem can be cast in the framework of a general
control configuration, which is widely used in the control literature for analysis and
design, as shown in figure 1.2. Here, d is the vector of exogenous inputs that act on the
plant which in this case consists of all the disturbance excitation inputs, z is the vector
of exogenous outputs and represents vibration levels at all the locations that are desired
to be minimised. This can include the measured as well as the remote vibration outputs.
All the outputs available for measurement are included in y and the set of control inputs
is denoted by u. The plant matrix, P, relating the inputs to the outputs is denoted as

[
z

y

]
=

[
P11 P12

P21 P22

][
d

u

]
(1.1)

The local sensed output y is fed back to a controller K, which produces the control
signal u. The closed loop performance output z from the disturbance input d is the
lower linear fractional transformation given as

Fl(P,K) = P11 + P12K(I−P22K)−1P21 (1.2)

Feedback control design algorithms that reduce a desired norm of (1.2) have been
widely discussed in the literature. If an accurate model of the process is available, then
many of the modern control design methods, such as those that minimise the 2 norm
‖Fl(P,K)‖2 and ∞ norm ‖Fl(P,K)‖∞ can be safely used to regulate the measured
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and unmeasured outputs of the system. But vital physical insight into the existence
of solutions and the trade-off between the performance and measured outputs is not
retained. It is thus desirable to develop a framework that takes into account conflict-
ing performance requirements and gives better physical insight into the existence of
vibration attenuation solutions than the traditional H2 and H∞ optimal control design
methods.

Therefore, the problem of remote vibration controller design can be desribed as the
question of finding a controller that simultaneously minimises the remote vibration out-
put z and the local sensed output y. As is illustrated using the examples in the preceding
sections from the aerospace, maritime and other related areas, it is of practical signifi-
cance to understand the effect of correcting action on the unmeasured vibration outputs.
Furthermore, this knowledge can be utilised to design a suitable controller that achieves
satisfactory response levels of the measured and unmeasured outputs. Additionally, this
knowledge can be used as a design freedom to regulate the attenuation in vibration at
the local and remote locations using a suitable controller.

1.4 Achievements

The primary aim of the work in this thesis is to advance the novel control design method-
ology that had previously been developed for the remote control of vibration [Daley and
Wang, 2008; Wang and Daley, 2010]. The control design is based upon a parameterisa-
tion of all stabilising controllers in terms of a single design variable. The reduction in
vibration output at several remote locations using a single pair of sensor and actuator can
be parameterised in terms of this design freedom. It is specifically useful for the deter-
mination of performance limitations for vibration attenuation at remote locations. The
portrayal of reduction in output at various locations as circular regions elucidates the
feasibility of realising any controller that achieves simultaneous reduction in local and
remote ouputs. Although the original control design had been successfully implemented
for discrete frequency or harmonic excitation, the broad band control of vibration is not
practically viable in its original form.

A solution to the stable and stabilising controller problem for the geometric based
control design is initially described. A detailed systematic procedure for the design
of a stable controller that achieves reduction in remote output whilst simultaneously

11



1.5. OUTLINE AND CONTRIBUTION

mitigating the local output is presented in this thesis. This is motivated from the practical
aspects of difficulties in unstable controller implementation. Also, the original control
design does not guarantee suppression of control gain at out-of-band frequencies, thus
causing a potentially destabilising control spillover. This problem is also addressed
in this thesis. The modified control design retains the remarkable properties of the
previous method that allows parameterisation of closed loop output at local and remote
locations, using only a single design variable. The modified control design for broad
band control of vibration is also experimentally validated using laboratory set-ups. It
shows the practical viability of this geometric based control design.

Within the framework of this geometric approach, an important result is derived
that proves the effect of local control action on the output at other remote locations, for
frequencies close to resonance. This simplifies the active damping of resonance and is
utilised to extend the control design for multimodal control.

The design parameter for local control is used to design multivariable decentralised
controller. Decentralised control loops that interact with each other leads to instabilities
when the controllers are implemented concurrently or individually. The design parame-
ter is used to determine the integrity of individual feedback loops to the failure of other
loops. A multivariable controller design is described in detail using this technique and
the closed loop stability for interacting loops is also presented in terms of this design
parameter.

1.5 Outline of thesis and contribution

The major contributions and description of the contents of the following chapters in this
thesis is summarised below.

Chapter 2

Description: This chapter introduces the geometric based design methodology for
the remote control of vibration. The problems encountered in the experimental imple-
mentation of the original geometric based controller is initially detailed. The geometric
approach for broad band control yields an unstable controller due to inversion of a non-
minimum phase control path transfer function. The main issue of strong stabilisation
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needs to be tackled before practical implementation for AVC problems. Various factors
encountered in practical situations that contribute to a non-minimum phase system are
also presented.

Contribution: The limitations of the previously developed geometric based con-
trol design are examined and the effect of practical issues on its real-world implementa-
tion are considered. Its advantages over other multivariable control design methods are
also highlighted.

Chapter 3

Description: A modified design procedure using the original geometric approach
is formulated in this chapter such that the final compensator is stable and stabilising.
Additionally, conditions to avoid control spillover are included as part of this design
procedure. Weighting filters are used to shape the magnitude of this design parameter
at out-of-band frequencies as its magnitude dictates the magnitude of complementary
sensitivity function. Finally, the various steps in the design of a controller is detailed
with the help of a numerical example problem.

Contribution: The main contribution in this chapter is the development of a sys-
tematic procedure based on the original geometric-based approach to design a stable
controller that is also robust to excitation of unmodelled dynamics, whilst not compro-
mising the performance in the desired frequency bandwidth. This design methodology
safeguards performance of controller irrespective of sensor and actuator dynamics and
also the time lags associated with the intrumentation.

Parts of this chapter on the design of a stable controller were presented at: Internoise
2011, Osaka, Japan [Ubaid et al., 2011a]. The systematic procedure to avoid control
spillover was also presented at: Asia Pacific Vibration Conference 2011, Hong Kong
[Ubaid et al., 2011b].

Chapter 4

Description: The control design developed in chapter 3 is experimentally vali-
dated using a propeller blade test rig. Control force is applied on a non-resonating part
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of the system which is connected to a resonating structure. It replicates to a limited
extent the problem encountered in the control of vibration at the thrust block due to
disturbance from the propeller blades in naval vessels. The controllability and observ-
ability issues using the geometric based controller are implicitly tackled by the portrayal
of constraint regions in the design freedom plane. It is also shown that the design param-
eter has a direct correspondence to the Relative Gain Array. This is helpful to analyse
the difficulty in reducing output at the remote location using control action solely at the
thrust block. Very small elements of the RGA for input at thrust block to the output at
blade end shows the very limited effect of control at design frequencies.

Contribution: This chapter confirms the practical viability of the control design
method developed in chapter 3. A stable and robust controller is implemented using
this geometric approach for a system that replicates the vibration problem encountered
in naval vessels due to propeller blade excitations. The significance of the geometric
based approach for complex interconnected structure becomes apparent. The relation
between design parameter and Relative Gain Array simplifies portrayal of the efficiency
of local control input on remote outputs.

The main experimental results with the complete design procedure were presented
at: UKACC International Conference on Control 2012, Glamorgan, UK [Ubaid et al.,
2012].

Chapter 5

Description: The stable geometric design methodology developed in chapter 3 is
analysed for active damping close to resonance. It is shown analytically that the value
of design freedom that achieves reduction in output at the local point close to resonance
will also achieve global attenuation. This is verified experimentally on a beam rig set-up
and the resonance associated with its first bending mode is actively dampened.

Contribution: This chapter analytically proves the effect of active damping close
to resonance on the global vibration reduction for a lightly damped structure. This
result provides a significant mathematical proof for the performance of any controller
that achieves reduction close to resonance at the local point. This is also validated using
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an experimental beam rig facility for the control of vibration at frequencies close to its
first bending mode.

Parts of this chapter excluding the experimental results has been submitted for pub-
lication in the Journal of Sound and Vibration.

Chapter 6

Description: The limitations of direct velocity feedback control for global vibra-
tion reduction are highlighted. It is compared with a controller design based on the
geometric approach but with similar objectives. The theory that underpins this design is
presented in chapter 5, which facilitates the active damping of a simple structure close to
resonance. The design freedom parameter approaches the centre of circle correspond-
ing to local vibration reduction, as the direct velocity feedback gain is increased. This
causes the onset of new modes at antiresonant frequencies because the region in the
design freedom plane, corresponding to reduction at remote locations, does not contain
the design freedom that corresponds to this gain.

Contribution: A novel design technique that utilises the optimal values for design
parameter close to resonance is presented. It shows that the limitations arising from
direct velocity feedback control can be addressed using this geometric method. As the
design freedom is selected for different frequencies, a controller which dissipates energy
at different levels for different frequencies is potentially achievable. The requirements
to achieve this are clearly described in the γ−plane while designing a controller.

Chapter 7

Description: Controller design for remote vibration attenuation using multiple
feedback control loops is presented. The disadvantages of a centralised MIMO con-
troller for vibration attenuation problems can be overcome using decentralised sequen-
tial loop closing technique. The geometric controller design methodology can be used
for the design of individual feedback controllers for each control point. Robustness to
instabilities due to the failure of inner feedback loops is presented in terms of the design
freedom parameter.
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Contribution: Closed loop stability considerations arising due to the interactions
between individual feedback loops is determined using the design parameter. A design
rule that guarantees the stability of sequentially designed feedback loop to the failure of
inner loops is presented.

Chapter 8

Description: The sequential loop closing control design for a decentralised mul-
tivariable implementation is experimentally validated using a laboratory facility. Two
local feedback loops are designed for suppression of output at different test points on a
15 tonne slab structure. The interaction between the two feedback loops causes stability
issues that is addressed in terms of the design parameter. The integrity of both feedback
loops to the failure of the other loop is safeguarded inspite of strong interactions.

Contribution: Sequential loop closing control design using the geometric-based
approach is experimentally validated using a laboratory facility.

The experimental results along with the sequential loop closing control design is to
be presented at: International Congress on Sound and Vibration, 2013.

Chapter 9

Concluding remarks with recommendations for future work to improve the proposed
geometric based control design is presented.
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Chapter 2

Remote Vibration Control Design
Using Geometric Approach

2.1 Introduction

This chapter sets out the groundwork for the remainder of this thesis. An introduction
to the original geometric based control design is first presented and then the limitations
of the controller which restricts its implementation on a real-world practical installation
will be established. Initially, some of the underlying factors that hamper the realisa-
tion of a stable controller are presented. Subsequently, the difficulty in the practical
implementation of an unstable controller is exemplified with an example.

A novel geometric based methodology for control design presented in [Daley and
Wang, 2006] addresses the problem of remote vibration attenuation. According to this
method, vibration at any inaccessible remote point on a large interconnected structure
is tackled using sensors and actuators placed locally at any other convenient location.
Fundamentally the design approach enables a feedback controller to be implemented
that satisfies the closed loop specifications to achieve desired vibration attenuation at
both the local and remote points. A knowledge of the dynamics of the path from the
disturbance excitation to the local point and vice versa is to be available for control
design purposes.

It should be noted that vibration attenuation at the local output can be achieved
using any controller that minimizes the sensitivity function. For remote vibration control
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problem, a filter is needed that affects the gain and phase of this compensator so that
in addition to attenuation at the local point, vibration output at certain predetermined
remote points is also reduced. This filtering action is implemented in terms of a tuning
parameter that portrays the conflicting performance requirements at the local and remote

points on the structure. This tuning parameter encapsulates the design freedom which
regulates the extent to which simultaneous attenuation at discrete frequencies in a certain
desired frequency band can be achieved.

If it is assumed that the dynamics of the local control and remote disturbance paths
are available during a commissioning stage and there are not any significant changes
to the properties of the system/structure from the testing to the operational phase, the
limitations on maximum attenuation of both remote and local vibration at the excitation
frequency can be denoted in terms of this design parameter. By selecting an optimal
value for the design freedom parameter at this frequency, which could (for example)
represent maximum attenuation of remote vibration without enhancement in local vi-
bration, or vice versa, a controller can be implemented in terms of this design freedom
parameter. The limitations on simultaneous vibration reduction at different locations in
a system can be easily deduced using this design methodology.

Vibration attenuation at a remote point for a discrete frequency is portrayed as a cir-
cle in a design freedom plane. Similar circles for local and other remote points can also
be plotted on the same plane. This gives a physical insight into the extent of achievable
simultaneous vibration attenuation at the local and remote points. Then the physical
limitations on simultaneous vibration reduction at different locations on the structure is
easily deduced from this plot. The values selected for the design freedom parameter
from this plane regulates the extent of simultaneous vibration attenuation. Closed loop
stability issues can also be cast in terms of the selection and interpolation of points on
this design freedom plane.

18



2.2. PRELIMINARY DESIGN PROCEDURE

2.2 Preliminary design procedure

In this section the original geometric design methodology for the broadband attenuation
of vibration [Wang and Daley, 2007a,b] is revisited and the design freedom parameter
is formulated. A system is considered where a SISO control loop design using a sensor
actuator pair is developed for a single disturbance excitation. If the primary excitation
and control inputs to the system are denoted as fp(t) and fc(t), respectively, then the
multivariable transfer function matrix relating the force inputs to the vibration outputs
is given as

[
qc(jω)

qp(jω)

]
=

[
gcc(jω) gcp(jω)

gpc(jω) gpp(jω)

][
fc(jω)

fp(jω)

]
(2.1)

where qc(jω) represents the vibration of a local point at which the control force acts and
qp(jω) represents the vibration output of some remote point where the primary excita-
tion acts. It should be noted that the matrix in (2.1) represents receptance, mobility or
accelerance functions depending on whether the output considered is the displacement,
velocity or acceleration. In the absence of any control input, i.e. fc(jω) = 0, the local
and remote vibration outputs are given as

qc(jω) = gcp(jω)fp(jω) (2.2)

qp(jω) = gpp(jω)fp(jω) (2.3)

The measurement at the local control point qc(jω) is fed back to the controller k(jω) in
order to generate the control signal fc(jω) according to

fc(jω) = −k(jω)qc(jω)

The closed loop vibration output at the local and remote points, in the presence of feed-
back control can respectively be written as

qc(jω) = [1 + gcc(jω)k(jω)]−1 gcp(jω)fp(jω) (2.4)
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2.2. PRELIMINARY DESIGN PROCEDURE

and

qp(jω) =
[
1− g−1pp (jω)gpc(jω)k(jω) {1 + gcc(jω)k(jω)}−1 gcp(jω)

]
gpp(jω)fp(jω) (2.5)

Comparing the open loop outputs given by (2.2) and (2.3) with the closed loop outputs
given by (2.4) and (2.5), it is clear that for a discrete frequency ω0, simultaneous reduc-
tion in output at both the local and remote points can be achieved using a compensator
k(jω) that satisfies both conditions

∣∣[1 + gcc(jω0)k(jω0)]
−1∣∣ < 1 (2.6)

and

∣∣1− g−1pp (jω0)gpc(jω0)k(jω0) {1 + gcc(jω0)k(jω0)}−1 gcp(jω0)
∣∣ < 1 (2.7)

The two algebraic inequalities given by (2.6) and (2.7) are linear in the unknown
variable k(jω0) and for suitable selection of this quantity the measured and unmeasured
outputs can be regulated. The same task can be accomplished using many of the modern
control design methods such asH∞ control. However, vital physical insight into the ex-
istence of solutions and the trade-off between the performance and measured outputs is
not retained by these methods. It is thus desirable to develop a framework that straight-
forwardly reveals conflicting performance requirements when simultaneous reduction
in output at the local and remote points is not achievable. The geometric methodology
introduced in [Daley and Wang, 2006] achieves this by using a design parameter that
translates the reduction in output at the local and remote points as constraint regions in a
common plane. According to this method, the proposed design parameter α is denoted
as

α(jω) = S(jω)− 1 =
−gcc(jω)k(jω)

1 + gcc(jω)k(jω)
(2.8)

where S(jω) is the sensitivity function. The closed loop local and remote vibration
outputs from (2.4) and (2.5) can then be denoted in terms of this design freedom variable
as (2.9) and (2.10) respectively

qc(jω) = [1 + α(jω)] gcp(jω)fp(jω) (2.9)
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qp(jω) =

[
1 + α(jω)

gcp(jω)gpc(jω)

gcc(jω)gpp(jω)

]
gpp(jω)fp(jω) (2.10)

At any arbitrary point x on the structure, the vibration output qx(jω) due to this primary
and control excitation can be generalised as

qx(jω) =

[
1 + α(jω)

gcp(jω)gxc(jω)

gcc(jω)gxp(jω)

]
gxp(jω)fp(jω) (2.11)
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Figure 2.1: Circles in α−plane for discrete frequencies which signify reduction in out-
put at local (dashed) and remote (solid) points, and their centres which denote maximum
attenuation at the local (�) and remote (?) points

Attenuation in the closed loop output at the local point for a discrete frequency ω0

with feedback control results from a reduction in the closed loop gain in (2.9) relative to
the uncontrolled state. This is determined by the magnitude of the expression inside the
brackets in the RHS of this closed loop equation. The reduction in output at the local
point for a discrete frequency ω0 can therefore be expressed as

|α(jω0) + 1| < 1 (2.12)

Inequality (2.12) at any particular frequency ω0 is an algebraic constraint which de-
scribes the region inside a unit circle with centre (−1, 0) in a 2-D complex α−plane.
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2.2. PRELIMINARY DESIGN PROCEDURE

Similarly, attenuation in vibration output qx(jω) at a remote point x for discrete fre-
quency ω0 with feedback control can be expressed as

∣∣∣∣1 +
α(jω0)

Vx(jω0)

∣∣∣∣ < 1 (2.13)

|α(jω0) + Vx(jω0)| < |Vx(jω0)| (2.14)

where

Vx(jω0) =
gcc(jω0)gxp(jω0)

gcp(jω0)gxc(jω0)
(2.15)

Inequality (2.14) is an algebraic constraint in terms of the design parameter which de-
scribes the region inside a circle with centre −Vx(jω0) and radius |Vx(jω0)| in the same
α−plane. Figure 2.1 shows the circles representing (2.12) and (2.14) in a 2-D α−plane
which is a complex argand diagram. A value of α(jω0) at the centre of circle (2.14)
corresponds to maximum attenuation of remote vibration at the disturbance frequency
ω0.

Now the conditions of simultaneously reducing vibration at the local and remote
points is defined as the problem of selecting values for α from inside the intersecting
region of the two circles (2.12) and (2.14) in the α−plane. Based on the required degree
of vibration reduction at the remote and local point, α can be chosen nearer to the centre
of either circle that corresponds to respectively remote or local vibration attenuation.
The control of vibration across a broad frequency band [ωL, ωH ] is implemented using
a controller given by (2.16) such that α(jω) is the transfer function obtained by the
interpolation of α(jωi), i = 1, 2, ...n, at discrete intervals in the design frequency band.
This interpolation procedure to form the transfer function from optimal values of design
parameter is explained in detail in section 3.5.3.

k(jω) =
−α(jω)

[1 + α(jω)] gcc(jω)
(2.16)

The controller given in (2.16) then satisfies all the closed loop specifications de-
fined within the design freedom α(jω). This approach does not require estimation of
the mass, damping and stiffness matrices or the evaluation of modal parameters of the
structure. The local control path transfer function for this method can be identified us-
ing any modelling/system identification technique available to the control designer. It
is well accepted that experimental modal analysis of large complex structures is a cum-
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bersome process with varying degrees of success [Peeters et al., 2004], especially for
highly damped structures. A clear advantage using this method is that it does not require
very accurate identification of mode shapes, damping values or natural frequencies of
the structure. Hence, it is particularly suited for complex structures for which it may
not be easy to obtain the modal parameters related to only an individual component of
the whole structure. This is the case when the vibration due to a resonating compo-
nent of the structure gets transmitted to non resonating parts of the structure [Daley and
Wang, 2008; Dylejko and Kessissoglou, 2006; Merz et al., 2010; Pearson and Emery,
2003; Ubaid et al., 2012]. The blade rig facility used for experimental verification of
the geometric-based control design in chapter 4 illustrates the problem of attenuation at
the receiving structure. The control force is applied on a region of structure which is
rigidly connected to the resonating member. Due to the structural properties associated
specifically with joints and fasteners [Ibrahim and Pettit, 2005], it is difficult in this case
to accurately model the overall dynamic properties of the assembled structure. Uncer-
tainties and non linear characteristics arise due to the complex behaviour of connection
elements [Ouyang et al., 2006]. Also, the mathematical modelling of frictional con-
tact surfaces, to describe its dynamic characteristics, is unduly complicated. Although
connection elements affect the damping behaviour due to the dissipation of energy, the
dynamic response at discrete points on the built-up structure can be computed using
vibration test measurements on the structural members themselves [Jalali et al., 2007].
Global control of the structure using modal control methods will not achieve desired
results due to difficulties in reachability and observability of the states at the unmea-
sured location. These limitations will manifest as smaller regions of intersection for the
circles in α−plane corresponding to attenuation at the local and unmeasured locations.
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2.3 Practical Considerations

The feedback controller using the geometric design approach from [Wang and Daley,
2007a], which is reviewed in section 2.2, is implemented as a function of the design free-
dom variable that incorporates the inverse of the local control path transfer function. A
model based controller is recommended only if the plant is modeled accurately, espe-
cially for a lightly damped structure [Preumont, 2002]. The uncertainty in the identified
plant model at higher frequencies, particularly for a displacement response, increases
due to the noise component in measurements therefore a model based controller is not
suitable when excitation is dominated by high frequency characteristics. Passive control
can be used for vibration attenuation at high frequencies. Moreover, the excitations that
are generated due to rotating or reciprocating components in large equipment such as
industrial machinery or diesel engines are usually dominated by low frequency charac-
teristics. Hence, this inverse model based geometric control design can be pursued as
an active vibration control solution for similar applications.

It is desirable to use a collocated and dual sensor actuator pair for feedback control
due to the inherent stability robustness [Balas, 1979]. This allows application of a pas-
sive control law; such as velocity feedback control that alters only the damping of the
natural frequencies in the closed loop system. Also, it benefits from the application of
very large feedback control gains for better performance, irrespective of the modelling
errors. Moreover, the design of decoupled SISO feedback loops is comparatively eas-
ier using a collocated and dual sensor actuator pair [Canavin, 1978]. The stability of
the closed loop system is guaranteed if the individual feedback loops are themselves
stable. The favourable conditions with the use of collocated control can be attributed
to the alternating pole-zero pattern in the open loop transfer function, which is always
minimum phase. So, as the nominal gain increases, the root locus plot from all the poles
to the zeros remains entirely in the left half plane and the phase is restricted between
0 ◦ and 180 ◦. The sensor and actuator for the geometric based control design in section
2.2 is assumed to be collocated. The limitations of other control design methods with
non-ideal collocated set-up is generally due to the resulting additional phase lag.
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2.3.1. TIME DELAY AND PHASE LAG

2.3.1 Time Delay and Phase Lag

As stated previously, the sensor and actuator used for the geometric design approach can
be collocated and dual which in theory should give a minimum phase transfer function
with its phase bounded between 0 ◦ and 180 ◦. But it has been widely appreciated that
even when the sensors and actuators are collocated, there is significant phase lag in
the frequency response [Ren et al., 1997], which limits the performance of feedback
control. The phase lag of the open loop frequency response coupled with the limitations
on accurate model identification generally presents the control designer with a non-
minimum phase local control path transfer function approximation. This is especially
true when excitation data-based model identification techniques are used for control
design.

The phase lag in the frequency response is attributed to a number of different factors
in active control design. In most practical cases, even when the sensor is located very
close to the actuator, it is very difficult to achieve true physical collocation. The factors
that affect mis-colocation of distributed transducers are transducer registration, spatial
gain weighting, type and aperture [Burke et al., 1993]. There has also been considerable
work to improve physical collocation such as by designing self sensing actuators [Dosch
et al., 1992; Paulitsch et al., 2006a]. Also, to ensure duality, the sensor and actuator
has to be energetically conjugated by using the same type of transducer; for example,
force input coupled with velocity or acceleration measurement, or torque coupled with
angular measurements, etc. [Fahy and Gardonio, 2007].

Moreover, the sensors and actuators have significant dynamics associated with them
and even if they are collocated, there is phase lag in the frequency response [Aoki et al.,
2008]. Sensors such as piezo-strip, linear accelerometer, velocity sensor, etc. and ac-
tuators such as PZT, electrohydraulic, electrodynamic proof-mass actuators, etc. which
are widely used for AVC applications have significant dynamics associated with them
[Rohlfing et al., 2011a] that contribute to the dynamics of the local control path. Also,
the time delays in the electronic instrumentation contribute to unmodelled phase shift.
There are several stages in the instrumentation that affect the time delay [Heylen et al.,
2006] which is predominantly due to sampling in digital controllers (A/D and D/A),
integration, power amplification, anti-aliasing and reconstruction filtering.
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Figure 2.2: The sensor and actuator dynamics included in the open loop transfer func-
tion

Implication for the geometric design approach

The sensor and actuator dynamics can cause difficulties in many active vibration control
problems. The dynamics of the shaker has to be explicitly taken into account especially
when its resonance frequency is close to the frequency of problematic excitation [Dı́az
and Reynolds, 2010]. This is because it introduces additional phase lag in the open loop
transfer function. In this section, the dynamics of the sensor and actuator that are very
likely to be encountered in practical installation are explicitly incorporated in the open
loop transfer function and their effect on controller implementation using the geometric
design methodology is presented.

The multivariable transfer function matrix in (2.1) relates the actual local and remote
outputs with the force inputs. However, the effect of sensor and actuator dynamics is
neglected on this plant model. The sensor dynamics affect the output measurement and
the actuator dynamics affect the actual force applied on to the structure from the control
input. Figure 2.2 shows representation of sensor and actuator dynamics included sepa-
rately in the local control path dynamics. The control input f̃c in figure 2.2 represents
voltage or current that drives the actuator. The sensor measurement output is related to
the actual kinematic quantity as

q̃c(jω) = PS(jω)qc(jω) (2.17)

The actuator force applied on the structure is related to the control input as

fc(jω) = PA(jω)f̃c(jω) (2.18)
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Substituting (2.17) and (2.18) in the equation for output at the local control point gives

q̃c(jω)

PS(jω)
= gcc(jω)PA(jω)f̃c(jω) + gcp(jω)fp(jω)

q̃c(jω) = gcc(jω)PA(jω)PS(jω)f̃c(jω) + gcp(jω)PS(jω)fp(jω)

q̃c(jω) = g̃cc(jω)f̃c(jω) + g̃cp(jω)fp(jω)

where
g̃cc(jω) = gcc(jω)PA(jω)PS(jω)

and
g̃cp(jω) = gcp(jω)PS(jω)

Similarly, substituting (2.18) in the expression for output at the remote point gives

qp(jω) = g̃pc(jω)f̃c(jω) + gpp(jω)fp(jω)

where
g̃pc(jω) = gpc(jω)PA(jω)

The transfer function matrix in (2.1) can be written with the inclusion of sensor and
actuator dynamics to relate the sensor measured output with the control signal applied
to the actuator for local control and primary excitation paths as

[
q̃c(jω)

qp(jω)

]
=

[
g̃cc(jω) g̃cp(jω)

g̃pc(jω) gpp(jω)

][
f̃c(jω)

fp(jω)

]
(2.19)

In (2.19), g̃cc(jω) can therefore be generally considered as non-minimum phase due
to practical problems of non-collocation and non-duality and phase delays which can
be transformed as right half plane zeros. Any remote vibration control problem for
simulation purposes can therefore be replicated using a non-collocated local control
sensor and actuator pair. As shall be seen, with the geometric methodology, there is no
need to determine actuator PA(jω), or sensor PS(jω) dynamics explicitly, or the time
delays due to instrumentation - A/D, D/A, integration, amplification, filtering, etc and
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the measured open loop FRF between any input and any output itself is sufficient to
design a control system.

The geometric-based remote vibration controller given as (2.16) in section 2.2 is
therefore more accurately implemented as

k(jω) =
−α(jω)

[1 + α(jω)] g̃cc(jω)
(2.20)

The transfer function from the local control actuator to the local vibration sensor, g̃cc(jω),
appears as a factor in the denominator of the controller transfer function in (2.20). It has
been argued that g̃cc(jω) is likely non-minimum phase even when the sensor and actuator
are collocated due to instrumentation phase lags, acquisition delays and sensor, actuator
dynamics. The right half plane zero(s) of the local control path transfer function would
therefore result in an unstable controller which cancels the non-minimum phase zeros
of the local control path transfer function. This will introduce an unstable hidden mode
giving an unbounded control signal and therefore cannot be implemented. Additionally,
an unstable controller in general is not practical because of problems associated with
it such as difficulty in controller commissioning, excessive actuator use and instability
issues if the feedback loop fails.

2.3.2 Unstable Controller - Testing and Implementation

Owing to the difficulties associated with unstable controllers, controller stabilisation has
been the focus of earlier control design research. Unstable controllers are encountered
with many controller design methods and some of the attempts in addressing controller
stabilisation can be found in [Liu et al., 2000] for state feedback pole assignment design,
in [Liu et al., 2001] for proportional-integral plus controllers and in [Petersen, 2009] for
anH∞ controller design. A modified design procedure that results in a stable controller
whilst retaining the informative approach of this geometric methodology is established
in the next chapter.

It is always desirable to implement a strongly stabilising controller due to difficulties
in the practical implementation of an unstable controller. One of the obstacles encoun-
tered with an unstable controller that is also relevant to the experimental set-up used in
the remote vibration attenuation problem in this project will be demonstrated here using
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Figure 2.3: (a) Nyquist diagram of open loop system for nominal gain (blue dashed)
encircles the critical point and is closed loop stable if the controller itself is unstable
but as the dc gain reduces below 60% nominal value (green solid) the closed loop sys-
tem becomes unstable as is seen in the corresponding (b) time response of closed loop
simulation outputs for nominal gain (blue) and 60% of it (green)

an example. This example serves to illustrate the complexities in implementation and
testing of unstable controllers in similar applications.

Due to robustness issues, in practice, any new controller design is usually commis-
sioned on a real world plant or experimental set-up with very small open loop gain that
is then gradually increased [Stoustrup and Niemann, 1997]. One method that can be
employed to start up an unstable controller is to gradually switch between the Youla
parameterisation of a stable controller to another one of the unstable controller until the
latter is fully active [Balini et al., 2011]. However, if the unstable controller is to be
implemented directly, then the closed loop system can go unstable for values of gain
that are different from the nominal design values.

Consider the closed loop stability of the system described in section 4.2 when an un-
stable but stabilising broadband controller is to be implemented. An unstable controller
would be stabilising for a stable and non-minimum phase plant if, as per the nyquist
stability criterion, the polar plot of the open loop transfer function encircles the criti-
cal point −1 + j0 as many times as there are unstable poles in the open loop transfer
function. Figure 2.3(a) shows the nyquist diagram of such a system for the nominal
controller gain. Since the plant itself is stable, for closed loop stability the number of
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encirclements of the critical point is dictated by the number of unstable controller poles.
Now consider the closed loop stability of the same open loop system when the controller
gain is implemented for a fraction of the designed gain. If the gain of controller falls
below 60% of this open loop design gain, then the closed loop system would go unstable
as seen in figure 2.3(b). Similarly, it can be easily verified that the closed loop system
would go unstable when the controller gain is increased beyond a certain limit. This
would present challenges in the practical implementation and commissioning in plants
when the control action starts to wind up gradually. This is an indirect effect of the time
delays and phase lag in the open loop control path and motivates investigation of a mod-
ified approach that benefits from the remote geometric methodology whilst realising a
stable controller.

2.4 Summary

This chapter introduces the geometric based control design method that had previously
been developed to address the problem of remote vibration control. The parameterisa-
tion of vibration reduction at the local and remote points in terms of a design freedom
parameter is revisited. The benefits of this method over traditional multivariable con-
trol design methods is also highlighted in this chapter. The justification for using this
intuitive control design for vibration attenuation in large scale applications is presented.
Unlike the ’handle turning’ nature of modern multivariable control design, this approach
retains vital physical insight into the trade-offs between vibration mitigation of the per-
formance and measured outputs. The practical considerations relating to the actuator
and sensor dynamics along with time delays in the instrumentation affect the realisa-
tion of a stable controller. Finally, the difficulty encountered in the implementation of
unstable controllers are highlighted with the help of an example.
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Chapter 3

Design of Strongly Stabilising
Controllers

3.1 Introduction

The geometric design method had been experimentally validated on a rig facility to at-
tenuate local and remote vibration due to a discrete frequency excitation [Daley and
Wang, 2008]. However, there are some drawbacks to this control design when broad
band frequency attenuation is desired in the local and remote outputs. As noted in the
previous chapter, controller implementation for suppressing vibration due to broadband
excitation involves inversion of the local control path model. This will lead to an un-
stable controller if the local control path model has non-minimum phase characteristics.
Although collocated sensors and actuators are generally used in the local control path,
the transfer function can still be non-minimum phase due to non-ideal practical condi-
tions. In [Wang et al., 2010], it is shown that the closed loop stability can be determined
from the relation of the design parameter, α, with the Youla parameter.

It is well known that a stable Youla or Q-parameter parameterises all stabilising
controllers. Therefore, an α parameter that corresponds to a stable Q parameter would
also ensure closed loop stability of the system. However, the Q-parameterisation itself
does not systematically ensure stability of the controller. This broad-band controller is
also not resilient to parasitic dynamics or control spillover resulting from the limitations
in identification at high frequencies. If the controller has significant energy at higher
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frequencies then the unmodelled high frequency dynamics will be excited.
The main contributions in this chapter are the development of solutions to address

the issues of controller stability and robustness at high frequencies. A modified control
design approach is proposed which uses a single design freedom variable to parame-
terise vibration attenuation feasibility in a straightforward geometric representation that
is similar to the original method. It therefore retains the beneficial physical insight into
the feasibility of simultaneous local and remote vibration attenuation whilst yielding
a strongly stabilising controller. Additionally, the control spillover that can affect sta-
bility due to unmodelled lightly damped high frequency dynamics is addressed. The
new method is also extended for both global performance requirements such as kinetic
energy reduction and for mutliloop sequential loop closing controller designs.

3.2 Design of Stable and Broadband Controller

A modified design approach is formulated in this section that gives a stable remote
vibration controller using the geometric methodology. The minimum phase counterpart
of the local control path transfer function, which is assumed to be non-minimum phase,
is used to denote a new design freedom parameter. The non-minimum phase transfer
function g̃cc(jω) is decomposed into its minimum phase counterpart ĝcc(jω), which has
all its RHP zeros reflected into the LHP, and an all pass transfer function Bcc(jω) as
(3.1).

g̃cc(jω) = ĝcc(jω)Bcc(jω) (3.1)

A new design freedom parameter γ is introduced as

γ(jω) =
−ĝcc(jω)k(jω)

1 + g̃cc(jω)k(jω)
(3.2)

In the presence of local feedback control action f̃c(jω) = −k(jω)q̃c(jω), the closed
loop local and remote vibration outputs for the multivariable transfer function matrix in
(2.19) can be written as

q̃c(jω) =

[
1 +

{
− g̃cc(jω)k (jω)

1 + g̃cc(jω)k(jω)

}]
gpp(jω)fp(jω) (3.3)
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qp(jω) =

[
1 +

{
− g̃cc(jω)k (jω)

1 + g̃cc(jω)k(jω)

}
g̃cp(jω)g̃pc(jω)

g̃cc(jω)gpp(jω)

]
gpp(jω)fp(jω) (3.4)

Substituting (3.2) in (3.3) and (3.4) gives (3.5) and (3.6), respectively

q̃c(jω) = [1 + γ(jω)Bcc(jω)] g̃cp(jω)fp(jω) (3.5)

qp(jω) =

[
1 + γ(jω)Bcc(jω)

g̃cp(jω)g̃pc(jω)

g̃cc(jω)gpp(jω)

]
gpp(jω)fp(jω) (3.6)

Attenuation in the local and remote vibration levels using feedback control results from
a reduction in the magnitude of the terms inside the brackets in (3.5) and (3.6) which
can be represented as (3.7) and (3.9), respectively

|γ(jω) + Uc(jω)| < |Uc(jω)| (3.7)

where
Uc(jω) =

1

Bcc(jω)
(3.8)

|γ(jω) + Up(jω)| < |Up(jω)| (3.9)

where
Up(jω) =

ĝcc(jω)gpp(jω)

g̃cp(jω)g̃pc(jω)
(3.10)

Up(jω) given by (3.10) is a dimensionless quantity which, as noted in earlier fundamen-
tal control research, provides a useful measure for the severity of the trade-off between
stability robustness and disturbance attenuation [Freudenberg et al., 2003a]. For fre-
quencies at which Up(jω) is very large or very small, the trade-off between stability
robustness and disturbance attenuation will be severe which is the case in flexible struc-
tures and is attributed to its lightly damped zeros [Freudenberg et al., 2003b].

It should be noted that (3.8) and (3.10) computed at any discrete frequency ω0 is a
complex number that denotes the gain and phase of these transfer functions at this fre-
quency. As a result, (3.7) and (3.9) for a discrete frequency ω0 are algebraic inequalities
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that represent region inside circles in a γ−plane. Inequality (3.7) at discrete frequency
ω0 represents a circle with centre −Uc(jω0) and radius |Uc(jω0)| in the γ−plane. Simi-
larly, inequality (3.9) at discrete frequency ω0 represents a circle with centre −Up(jω0)

and radius |Up(jω0)| in the γ−plane. If a controller is implemented using a value of γ
from inside both these circles, then simultaneous remote and local vibration attenuation
is possible for a primary excitation at frequency ω0. An illustration of the circles in
the γ−plane that portray regions where attenuation in both local and remote outputs is
feasible is shown in figure 3.1. It can be seen that the centre of circle representing local
vibration attenuation has a unit radius. The locus of its centre varies with frequency and
is not fixed at a point unlike the original geometric method shown in figure 2.1.
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Figure 3.1: The constraint regions for discrete frequencies in γ−plane which signify
reduction in output at local (dashed) and remote (solid) points and their centres that
represent maximum attenuation at local (�) and remote (?) points

If the disturbance is a broadband frequency excitation in a certain known frequency
range [ωL, ωH ] then the circles given by inequalities (3.7) and (3.9) are plotted at several
discrete frequencies in this frequency band. The selected optimal values for the design
freedom γ at regular intervals of frequency in the excitation frequency band [ωL, ωH ] is
interpolated by a stable transfer function γ (jω) and the controller is now implemented
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as (3.11).

k (jω) = − γ (jω)

[1 + γ (jω)Bcc (jω)]ĝcc (jω)
(3.11)

Comparing controller equation (3.11) with (2.16) it can be seen that the RHP zeros
of the local control transfer function do not form the poles of the compensator and as
γ (jω) is a stable transfer function by design, the compensator itself can be stabilised
subject to conditions listed in section 3.4.

3.3 Robust Performance

3.3.1 Control Spillover and Observation Spillover

The model of any structural or mechanical system that is continuous or has a very high
number of degrees of freedom is normally truncated beyond a certain number of modes
for ease of computation. The controller is designed based on the lower order approxi-
mation of the original system. This approximation has implications on the stability of
the closed loop system [Fuller et al., 1997]. The response of any distributed parameter
system can be described by a partial differential equation

m(x)
∂2q(x, t)

∂2t
+ c

∂q(x, t)

∂t
+ kq(x, t) = f(x, t) (3.12)

where q(x, t) is the displacement at location x and time t, m(x) is the mass distribution,
c and k are the damping and stiffness respectively. The deflection of such a structure
can be described in terms of the mode shape functions ψ(x) and modal amplitude η(t)

as

q(x, t) =
∞∑

k=1

ψxkηk(t) (3.13)

The measurement at a point is the summation of infinitely many modes that occur at
different frequencies. In practice, only the first N modes are considered for control
design. The measurement is split into dominant modes that significantly contribute to
the overall response and the residual modes as

q(x, t) =
N∑

k=1

ψxkηk(t) +
∞∑

k=N

ψxkηk(t) (3.14)

35



3.3. ROBUST PERFORMANCE

Similarly, any force fy at a point y on the structure relates to the modal force component
fm as

fm =
N∑

k=1

ψykfy +
∞∑

k=N

ψykfy (3.15)

The truncation of residual modes for control design purpose leads to the following ap-
proximations

fm ≈
N∑

k=1

ψykfy (3.16)

and

q(x, t) ≈
N∑

k=1

ψxkηk(t) (3.17)

The approximation given by (3.16) neglects the excitation of the residual set of modes.
This is known as Control Spillover. Similarly, the approximation given by (3.17) ne-
glects the information about the residual modes in the actual measurement. This is
known as Observation Spillover. The presence of both control spillover and observation
spillover can lead to instabilities in the closed loop system.

Additionally, the actuator dynamics can have a lightly damped resonance frequency
and if neglected in the design and the control signal has high amplitude near this fre-
quency, it can lead to instability. The accuracy of measurements provided by the sensor
which is fed back to the controller also affects the stability robustness. This depends on
many factors such as sensor attachment on the surface, rigidity of host structure, envi-
ronment noise etc. [Ewins, 2000]. The signal to noise ratio is generally much lower at
higher frequency and so it is more susceptible to amplification of noise at these frequen-
cies.

3.3.2 Control Design for Robust Performance

The uncertainties in the plant model due to truncation of higher order modes can lead
to instabilities. By design the natural frequencies of the neglected modes are usually
well above the bandwidth of the problematic disturbance excitation. Also, the uncer-
tainty due to sensor limitations are prevalent at high frequencies. The controller (3.11)
derived in section 3.2 will amplify measurement noise in the closed loop system if it
has high gain at those frequencies. The effect of low signal to noise ratio on the mea-
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Figure 3.2: Feedback system with multiplicative uncertainty

surements and truncation of high frequency modes can be represented as a frequency
dependent uncertainty and the robust stability conditions can be determined using upper
limit values on uncertainty [Skogestad and Postlethwaite, 2005].

The dynamic uncertainty for a nominal plant model g̃cc(jω) is shown in figure 3.2.
∆I is any stable transfer function such that ‖∆I‖∞ ≤ 1 and WI(jω) denotes the fre-
quency dependent magnitude of uncertainty. The system is robustly stable if the set of all
possible perturbed plant models are stable. This can be verified using the Nyquist stabil-
ity criterion for the set of all perturbed plant models. The nyquist plot of this set of per-
turbed plant models can be represented as discs of radius |WI(jω)g̃cc(jω)k(jω)| centred
on the nyquist contour of the open loop nominal model transfer function g̃cc(jω)k(jω).
At every frequency this disc should avoid the point −1 for robust stability. This can be
achieved if the distance from −1 to g̃cc(jω)k(jω) is greater than the radius of the disc
|WI(jω)g̃cc(jω)k(jω)| which is determined by

|WI(jω)g̃cc(jω)k(jω)| < |1 + g̃cc(jω)k(jω)| , ∀ω (3.18)

∣∣∣∣
g̃cc(jω)k(jω)

1 + g̃cc(jω)k(jω)

∣∣∣∣ <
∣∣∣∣

1

WI(jω)

∣∣∣∣ , ∀ω (3.19)

|T (jω)| <
∣∣∣∣

1

WI(jω)

∣∣∣∣ , ∀ω (3.20)

Since the magnitude of the complementary sensitivity function is equivalent to the mag-
nitude of the design freedom parameter transfer function γ(jω)

|γ(jω)Bcc(jω)| <
∣∣∣∣

1

WI(jω)

∣∣∣∣ , ∀ω (3.21)
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The magnitude of all pass transfer function is unity at all frequencies

|Bcc(jω)| = 1, ∀ω

so the expression (3.21) gives an upper bound on the magnitude of γ(jω). A controller
implemented in terms of γ(jω) that satisfies (3.21) will ensure robustness to unmod-
elled dynamics. The uncertainty increases at higher frequencies, therefore WI(jω) can
be assumed to have low magnitude at lower frequencies but high magnitude at higher
frequencies. γ values for vibration attenuation purposes are only selected for discrete
frequencies in the disturbance excitation frequency bandwidth which is mostly in the
low frequency region, so the gain of the complementary sensitivity function is not en-
sured to roll-off at high frequencies. Therefore this may lead to a deterioration in the
performance at out of bound frequencies. It is necessary to roll-off the controller gain at
high frequencies so that the system is made robust to uncertainties. Assuming that the
identified model of the local path transfer function ĝcc(jω) has 2 excess poles then it is
seen from controller equation (3.11) that the design parameter transfer function γ(jω)

should have atleast 4 excess poles in order to have 2 excess poles in the controller trans-
fer function k(jω). By giving careful consideration to the tuning and interpolation of
γ(jω) a refined controller with excess poles can be obtained.

A systematic procedure to achieve gain roll-off after an appropriate cut-off fre-
quency can be incorporated into the controller implementation itself. At frequencies
within the disturbance bandwidth the optimal γ points are selected from inside circles
(3.7) and (3.9). But at high frequencies, the robust stability condition in (3.21) dictates
that γ(jω) be close to the origin in the γ−plane. This can be achieved using a low pass
filter in series with the controller so that g̃cc(jω)k(jω) rolls off at least as fast as g̃cc(jω).
A low pass filter following the controller would roll-off the gain at high frequency but
it will also affect the phase in the disturbance frequency region. This has the effect of
rotating the γ points in the γ−plane possibly resulting in γ points outside circles (3.7)
and (3.9) and hence the intended vibration attenuation will not be achieved. But if a low
pass filter is incorporated in the γ point selection then the effect of phase changes on the
γ points would be accounted for in the controller implementation itself. The local and
remote vibration attenuation conditions from (3.7) and (3.9) are therefore modified to
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(3.22) and (3.24), respectively

|γ(jω) + Uc(jω)| < |Uc(jω)| (3.22)

where
Uc(jω) =

1

Wγ(jω)Bcc(jω)
(3.23)

|γ(jω) + Up(jω)| < |Up(jω)| (3.24)

where
Up(jω) =

ĝcc(jω)gpp(jω)

Wγ(jω)g̃cp(jω)g̃pc(jω)
(3.25)

andWγ(jω) is any chosen frequency weighting function that has low gain at frequencies
where the percentage of uncertainty is high due to model truncation or sensor noise. The
magnitude of Wγ(jω) is close to unity in the disturbance frequency bandwidth therefore
it has negligible influence on the size of circles but only affects the rotation of its cen-
tre. The controller from (3.11) is now implemented as (3.26) which satisfies the robust
stability condition in (3.21).

k(jω) =
−γ(jω)Wγ(jω)

[1 + γ(jω)Bcc(jω)Wγ(jω)] ĝcc(jω)
(3.26)

Additionally, the actuator dynamics can cause performance degradation or stability
issues in certain applications. So, it is preferable to have low gain around the actuator
resonance in order to avoid stroke and force saturation effects which usually occur in
the low frequency region. Then Wγ(jω) can be a bandpass filter to suppress spillover
at low and high frequencies. It should be noted that for nominal performance Wγ(jω)

should have unity gain within the disturbance frequency bandwidth. Then the controller,
implemented as (3.26), will achieve both nominal performance and robust stability.

3.4 Stability Analysis

The controller in (3.26) is equivalent to the original geometric-based controller in (2.16)
if the local transfer function is minimum phase and no weighting filter is used, i.e.
Bcc(jω)Wγ(jω) = 1, and then the closed loop stability conditions follow from [Wang
and Daley, 2010]. However, for the non-minimum phase condition, the centre of the
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circle representing local vibration attenuation is no longer fixed at−1 for all frequencies
and the mapping of its centre in the γ−plane also depends on the frequency reponse
of Bcc(jω)Wγ(jω) which has to be taken into account in order to ensure closed loop
stability. The conditions for the closed loop stability and controller stability on the
selection of γ points is considered in this section.

Rearranging controller equation (3.26) to form a relation between the design free-
dom parameter and the complementary sensitivity function

γ(jω)Bcc(jω)Wγ(jω) =
−g̃cc(jω)k(jω)

1 + g̃cc(jω)k(jω)

It can be observed that since Bcc(jω)Wγ(jω) is stable, selecting γ points as the mapping
of a stable function (in a similar fashion to the approach proposed by Wang and Daley
[2010]) guarantees closed loop stability.

Since ĝcc(jω) has no RHP zero(s), a controller given by (3.26) is stable if γ(jω) is a
stable transfer function and the nyquist contour of γ(jω)Bcc(jω)Wγ(jω) does not enclose
the −1 point 1. This has implications near the resonant frequency of a flexural mode.
As will be shown in section 5.3 of chapter 5, the optimal γ point for vibration atten-
uation close to a resonant frequency of the structure approaches [−Bcc(jω)Wγ(jω)]−1.
This means that when a controller is to be designed for attenuation near resonant fre-
qencies the polar plot of γ(jω)Bcc(jω)Wγ(jω) approaches the critical point and would
therefore have have very low gain and phase margins close to this frequency. Hence,
when γ points are to be selected for attenuation near a resonant frequency, which will
usually be the case, then it becomes important to define some additional constraints so
that γ(jω)Bcc(jω)Wγ(jω) in the disturbance frequency bandwidth does not encircle the
critical point.

The polar plot of γ(jω)Bcc(jω)Wγ(jω) will not enclose the −1 point and hence the
controller will be stable if, at the phase crossover frequency ωpc (i.e. when
Im(γ(jω)Bcc(jω)Wγ(jω)) = 0), the condition Re(γ(jω)Bcc(jω)Wγ(jω)) > −1 is satis-
fied. The frequency response of γ(jω)Bcc(jω)Wγ(jω) at the phase crossover frequency
can be written in cartesian form as the products of the frequency response of γ(jω) and
Bcc(jω)Wγ(jω) evaluated at ωpc as

1It should be noted that the Nyquist contour of open loop system is normally used for closed loop
stability analysis. However, this is an unconventional use of Nyquist of the closed loop system to anal-
yse the RHP zeros in the denominator of the controller, which is per the consequence of the Cauchy’s
argument principle.
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γ(jω)Bcc(jω)Wγ(jω) =

[Re(γ(jω)) + jIm(γ(jω))][Re(Bcc(jω)Wγ(jω)) + jIm(Bcc(jω)Wγ(jω))] (3.27)

Multiplying the terms inside the brackets and rearranging as the summation of real and
imaginary parts

γ(jω)Bcc(jω)Wγ(jω) =

[Re(γ(jω))Re(Bcc(jω)Wγ(jω))− Im(γ(jω))Im(Bcc(jω)Wγ(jω))]

+ j[Re(γ(jω))Im(Bcc(jω)Wγ(jω)) + Im(γ(jω))Re(Bcc(jω)Wγ(jω))] (3.28)

At the phase crossover frequency Im(γ(jω)Bcc(jω)Wγ(jω)) = 0, therefore equating the
imaginary term on the right hand side of (3.28) to zero gives

Re(γ(jω))Im(Bcc(jω)Wγ(jω)) + Im(γ(jω))Re(Bcc(jω)Wγ(jω)) = 0 (3.29)

The controller is stable if at the phase crossover frequency Re(γ(jω)Bcc(jω)Wγ(jω)) >

−1, which from the real term of (3.28) can be stated as

Re(γ(jω))Re(Bcc(jω)Wγ(jω))− Im(γ(jω))Im(Bcc(jω)Wγ(jω)) > −1 (3.30)

Substituting Im(γ(jω)) from (3.29) in (3.30) gives

Re(γ(jω)) >
−Re(Bcc(jω)Wγ(jω))

[Re(Bcc(jω)Wγ(jω))]2 + [Im(Bcc(jω)Wγ(jω))]2
(3.31)

The Blaschke product Bcc(jω) has unity magnitude at all frequencies and the weight-
ing filter is chosen such that in the design frequency bandwidth it does not affect the
magnitude

|Bcc(jω)Wγ(jω)| = |Bcc(jω)| |Wγ(jω)| = 1. ω ∈ [ωL, ωH ]
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The stability consideration is also not critical because of small gain outside of this fre-
quency band due to the band pass filter. Therefore, (3.31) reduces to

Re(γ(jω)) > −Re(Bcc(jω)Wγ(jω)) (3.32)

Similary, substituting Re(γ(jω)) from (3.29) in (3.30) leads to the expression

Im(γ(jω)) < Im(Bcc(jω)Wγ(jω)) (3.33)

A controller given in (3.26) will therefore be both stable and stabilising if the γ points
are selected from a mapping of a stable transfer function γ(jω) and either of the condi-
tions (3.32) or (3.33) is satisfied.

3.5 Numerical example

In this section the new geometric based approach for the design of a stable remote
vibration controller is verified using simulation results for a flexible beam. The difficulty
arising in the synthesis of a stable controller for vibration attenuation at resonance is
clearly evident with this example.

3.5.1 Model of beam

The response of a slender beam, assuming Euler Bernoulli beam theory for a simply
supported boundary condition, is considered in order to illustrate the remote vibration
control technique described in section 3.3.2. Finite element modelling [Petyt, 2010] is
used to construct the mass and stiffness matrices for a beam with the dimensions and
material properties given in Table 3.1. For convenience Rayleigh damping is assumed
for the beam model. The beam is subdivided into 10 elements and two degrees of free-
dom are associated with each node (end connection) of a single beam element. The
two degrees of freedom associated with each point are the angular rotation and vertical
translational displacement. The mass, stiffness and damping matrices for this model
of the beam is provided in Appendix B. The control force acts as a discrete transla-
tional force at a distance of 0.2 m from one end of the beam while the feedback sensor
measures translational displacement at a distance of 0.1 m as shown in figure 2.2. This
non-collocated arrangement will impart NMP characteristics on the local control path
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Parameter Value
Length 1 m

Cross section 2.0× 2.0 cm
Mass Density 7850 kg/m3(mild steel)

Young’s modulus of elasticity 21× 1010 N/m2

Table 3.1: Properties of the beam considered for simulation study in section 3.5

transfer function g̃cc(jω). The primary excitation acts as a discrete translational force
at a distance of 0.9 m from the end of the beam. The first bending mode of the beam
occurs at 47 Hz and the controller will be designed to attenuate vibration at the local
and remote points for excitation around this frequency.

3.5.2 Selection of optimal γ

A controller targeting attenuation of vibration for the excitation frequency range 42 Hz
to 52 Hz is designed for the beam. Although the controller will be implemented on a
known model of the structure, robustness to high frequency dynamics will be included
as part of the design procedure to illustrate the practical applicability of this method.
The frequency weighting terms have to be selected such that the closed loop magnitude
rolls off at high frequencies and also the amplitude is minimum at low frequencies which
might be necessary to prevent excitation of actuator dynamics. Therefore, an 8th order
bandpass filter with lower cut-off frequency of 14 Hz and a higher cut-off frequency of
57 Hz is chosen as Wγ(jω) to account for suppression of spillover at both low and high
frequencies.

The circles corresponding to local and remote vibration reduction as per (3.22) and
(3.24) are computed for 30 discrete frequencies within the disturbance bandwidth as
shown in figure 3.3. The circles are stacked on top of each other with increasing fre-
quency depicted as a cylinder in a three-dimensional plot. The locus of the centre of
the circles corresponding to a reduction at the local point Uc(jωi) is denoted by 3, and
the equivalent locus for the remote point Up(jωi) is denoted by ?. Based on the required
vibration attenuation at the local and remote points, a set of optimal values denoted as
γi is selected at each discrete frequency ωi. In order to achieve the maximum reduction
at the remote point, the set of optimal γ points is selected as Up(jωi). The next step
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Figure 3.3: Circles representing reduction in vibration at the local (blue) and remote
(red) points on the beam, Uc(jωi) - 3, Up(jωi) - ?

is to determine a stable transfer function that takes these optimal values for the design
freedom parameter at discrete frequencies ωi.

3.5.3 Interpolation of γ values

The set of optimal values γi can be interpolated by a stable transfer function using
any suitable curve fitting technique. The Nevanlinna Pick interpolation technique is
well suited as it allows determination of a stable transfer function and provides extra
degrees of freedom. It is stated as follows [Delsarte et al., 1981]: given n distinct points
s1, . . . , sn in the right half plane Π+ and a collection of complex numbers ξ1, . . . , ξn,
determine a transfer function h(s) that is analytic in Π+ with

sup |h(s)| ≤ 1
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such that h(si) = ξi for all i = 1, . . . , n. The solution of this interpolation problem
exists if and only if the associated Pick matrix (3.34) is positive definite.

P =

[
1− ξkξl
sk + sl

]n

k,l=1

(3.34)

The points si according to the above theorem should strictly lie in the right half
plane, whereas the set of optimal selected values for the design parameter γ have to be
interpolated on the imaginary jω axis. The frequency points are shifted into the RHP
using Lemma 2 in [Ferreres and Puyou, 2005] and the original problem is transformed
as follows: for the optimal γ data values at n discrete frequencies ωi, for i = 1, . . . , n,
a stable transfer function γ(jω) exists if and only if the associated Pick matrix (3.35) is
positive definite.

P =

[
1− ZkZ l

sk + sl

]n

k,l=1

=




1− γk
M

γl
M

σ + jωk + (σ − jωl)




n

k,l=1

(3.35)

It can be seen from (3.35) that increasing the constant value of non-unitary upper bound
M or decreasing stability margin σ will increase the positiveness of the pick matrix but
for a stable controller and good performance at intermediate frequencies, M and σ val-
ues have to be finely tuned. It should be noted that a small value of shift σ will result in
interpolated transfer function γ(jω) with poles that are close to the imaginary axis. This
would cause oscillations between the interpolated frequency points in the frequency
response of the identified transfer function leading to gain and phase crossover at inter-
mediate frequencies [Coelho et al., 2002]. As the final γ values at the non-interpolated
frequency points may lie outside the (3.22) and (3.24) circles in the γ−plane, closed
loop performance will deteriorate. Also, since ‖γ(jω)‖∞ = M a large value ofM could
result in polar plot of γ(jω)Bcc(jω)Wγ(jω) to encircle the −1 point. A good tuning rule
would be to iteratively increase the value of M so that the pick matrix is positive defi-
nite for every specific value of σ until the controller stability condition is violated [Fu,
1991].

The first step in the iterative classical N-P interpolation algorithm is to compute
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elements of Fenyves arrayΩ.

Ωk,l =
sl + sk−1
sl − sk−1

Ωk−1,l −Ωk−1,k−1

1−Ωk−1,lΩk−1,k−1
, 2 < k < n, k < l < n (3.36)

where Ω1,l = Zl, for 1 < l < n. The next step is to recursively estimate Z1(s) from

Zk(s) =
Ωk,k + Zk+1(s)

s− sk
s+ sk

1 +Ωk,kZk+1(s)
s− sk
s+ sk

, k = n, n− 1, . . . , 2, 1 (3.37)

If the set of data points (si, Zi) for interpolation is augmented with its complex conju-
gate (si, Zi), then a stable bounded real analytic interpolating function is given by

γ(s) = M × 1

2

[
Z1(s+ σ) + Z1(s+ σ)

]

for any arbitrarily selected initial stable bounded analytic function Zk+1(s) in (3.37).

3.5.3.1 Reduced interpolation data set

Each data point used for interpolation adds 4 poles and zeros to the identified γ(jω)

transfer function. This increases the order of the controller by 4 for every additional γi
value considered. Therefore, for practical reasons a reduced set of data points should be
selected from the complete design set for γ(jω) interpolation. If the gradient of optimal
points γi between two consecutive discrete frequencies is large and a reduced set of
points that excludes the intermediate frequency point is used for interpolation, then the
frequency response of γ(jω) at the intermediate frequency point will differ by a large
extent from the optimal value at this frequency. The gradient of the real and imaginary
parts of the complete data set, (γi, ωi), is denoted as κi

κi =
γi − γi−1
ωi − ωi−1

(3.38)

The phase of Wγ(s) affects the gradient of κ and it depends on the order of the filter
and also the cut off frequency of the filters as shown in figure 3.4. More interpolation

points need to be considered in the corresponding frequency intervals when
d(Re(κ))

dω
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and
d(Im(κ))

dω
are large, which is the case when the upper and lower cut-off frequencies

are nearer to the disturbance frequency bandwidth. As can be seen in figure 3.4, for the
selected filter with low and high cut-off frequencies of 14 Hz and 57 Hz, respectively,
the gradient of Re(κ) and Im(κ) at frequencies higher than 48 Hz is small.

3.5.3.2 Modification of γi to satisfy controller stability

Although increasingly large values of σ give a better approximation at intermediate
frequencies, the values of M that ensure positivity of the pick matrix for these σ values
would be large enough to cause the nyquist locus of γ(jω)Bcc(jω)Wγ(jω) to encircle
the critical point. To illustrate this point, the frequency response of the γ(jω) transfer
function interpolated using σ = 50 (large) shows good approximation at intermediate
frequencies in figure 3.5, but the corresponding nyquist plot of γ(jω)Bcc(jω)Wγ(jω)

encircles −1 as shown in figure 3.6. It is seen that for σ = 6.5 the nyquist plot of
γ(s)Bcc(s)Wγ(s) crosses the real axis to the left of −1 in the immediate vicinity of the
disturbance frequency band as shown in figure 3.7. This is because absolute value of
optimal γ data points is greater than 1 at some discrete frequencies ωi. In order to use
σ value large enough to give satisfactory response at intermediate frequencies whilst
simultaneously satisfying controller stability conditions, optimal γ values are slightly
modified such that γ(jωi)Bcc(jωi)Wγ(jωi) at discrete disturbance frequencies only lie to
the right of−1. This modified set of points γ̃i is used for interpolation. The nyquist plot
of γ(s)Bcc(s)Wγ(s) for transfer function γ(jω) obtained by interpolating a reduced set
of γ̃i in figure 3.8 shows that the critical point is not enclosed and hence the controller
is stable. The final operating γ points from the FRF of γ(jω) at ωi and γ̃i is plotted
in figure 3.9 for comparison. This shows that the modified optimal γ points lie inside
both circles and therefore the overall performance will be similar to that provided by the
original optimal γ point selection.

3.5.4 Controller Implementation

The interpolated stable transfer function γ(jω) is substituted into (3.26) to obtain a con-
troller k(jω). The magnitude of the controller rolls-off at higher frequencies due to
action of Wγ(jω) as shown in figure 3.12 and will not excite any unmodelled high fre-
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Figure 3.4: Variation in κ for different cut on and cut off frequencies of Wγ(s)
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Figure 3.5: Initial set of optimal selected γ values (#), set of γ values used for interpo-
lation (?), operating γ values shown as � is the frequency response of identified γ(jω),
which is interpolated using a value of σ = 50

quency dynamics. The reduction in magnitude of the closed loop FRF from disturbance
input to local vibration output shows around 20 dB attenuation as shown in figure 3.10.
The corresponding reduction in magnitude from disturbance input to remote vibration
output is also 20 dB as shown in figure 3.11.

However, it can be seen in figure 3.11 that a sharp peak is induced at 97 Hz in the
closed loop FRF which is originally not present in the open loop case. The controller
realisation involves inversion of the minimum phase counterpart of the local control
path FRF. The antiresonance anti-peaks in the local control path FRF appears as a peak
in the controller FRF which results in sharp peaks in the closed loop FRF between
disturbance input and remote output. This peak can be suppressed by using a notch filter
in series with the controller, as illustrated in section 4.5.2 of chapter 4. Alternatively,
low gain of γ(jω) at this frequency can suppress this peak in controller FRF. If this
antiresonant frequency is close to the design frequency band then a high order filter
Wγ(jω) is necessary to achieve steep roll-off of gain in γ(jω). But it is easier to define
few additional values for the design freedom parameter near the origin to ensure small
magnitude of γ(jω) at this frequency.
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Figure 3.6: Nyquist diagram of γ(jω)Bcc(jω)Wγ(jω) for γ(jω) interpolated using a value
of σ = 50
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Figure 3.7: Nyquist plot of γ(s)Bcc(s)Wγ(s) for γ(jω) interpolated using a value of
σ = 6.5, also shown are the values of γ(jωi)Bcc(jωi)Wγ(jωi) corresponding to the initial
set of optimal selected γ values (#) and its reduced set used for interpolation (�)
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Figure 3.8: Nyquist plot of γ(s)Bcc(s)Wγ(s) for γ(jω) interpolated from the modified
set of γ data values using a value of σ = 6.5 and M = 1.54, also shown are the values
of γ(jωi)Bcc(jωi)Wγ(jωi) corresponding to the initial set of optimal selected γ values
(#), modified set of γ values (?) and its reduced set used for interpolation (�)

3.5.5 Alternative Controller Implementation

In the case of lightly damped modes, a slight discrepancy in the γ value at resonance
affects the attenuation at this frequency. The inversion of the local control path in the
controller implementation will result in very low control action at this resonant fre-
quency if γ(jω) does not accurately compensate for it. The frequency response of γ(jω)

at resonance should lie at the centre of the local vibration reduction circle.
A controller synthesised in terms of the inversion of a modified minimum phase

local control path transfer function will not suffer from low gain at resonance. This is
achieved by using a local control path transfer function such that the damping at the
resonant frequency is increased considerably. The damping of the first resonance of
ĝcc(jω) is increased by a factor of 30 and this modified transfer function Ĝcc(jω) is used
as given in (3.39). The reduction in the closed loop FRF using Ĝcc(jω) for controller
realisation shows better disturbance attenuation in the local and remote output as shown
in figures 3.13 and 3.14. Utilization of a damped model compensates for the errors
in interpolation and is manifested as a better magnitude in the controller FRF at the
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Figure 3.9: Initial set of optimal selected γ values (#), modified set of γ values (+),
set of γ values used for interpolation (?), final operating γ values shown as � is the
frequency response of identified γ(jω), which is interpolated using a value of σ = 6.5
and M = 1.54
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Figure 3.10: Magnitude FRF of primary disturbance input to local sensor with (solid)
and without (dashed) feedback control
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Figure 3.11: Magnitude FRF of primary disturbance input to remote output with (solid)
and without (dashed) feedback control
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Figure 3.12: Magnitude FRF of controller, |k(jω)|

resonant frequency as shown in figure 3.15. It should be noted that this alternative
controller implementation in a real-life situation may not always be feasible due to the
difficulty in modal parameter estimation. Derivation of modal properties from data-
driven models is in itself a vast area of research [Heylen et al., 2006] and so whenever
possible the former controller implementation should be realised in the first instance.

k̂(jω) =
−γ(jω)Wγ(jω)

[1 + γ(jω)Bcc(jω)Wγ(jω)] Ĝcc(jω)
(3.39)

3.6 Summary

A modified geometric control design methodology for the control of remote vibration
has been presented in this chapter. It yields a stable controller even when the local
control path transfer function is non-minimum phase. This control design relaxes the
requirement for a truely collocated sensor and actuator pair, which is often impracti-
cal in real situations. It is seen that neither the sensor and actuator dynamics nor the
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Figure 3.13: Magnitude FRF of primary disturbance input to local sensor with (solid)
and without (dashed) feedback control, k̂(jω)
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Figure 3.14: Magnitude FRF of primary disturbance input to remote output with (solid)
and without (dashed) feedback control, k̂(jω)
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Figure 3.15: Magnitude FRF of controller,
∣∣∣k̂(jω)

∣∣∣

time delay due to instrumentation need to be explicitly determined using this method.
Robustness to uncertainties or unmodelled high frequency dynamics and low frequency
actuator resonance has also been incorporated as part of the design procedure. This is
achieved using weighting filters with appropriate cut off frequencies that are selected
depending on the requirements to avoid control spillover. A simulated example using a
finite element model of a beam shows the practical potential of a systematic procedure
to design a controller for simultaneous mitigation of vibration at the local and remote
points.
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Chapter 4

Vibration Attenuation Using a Remote
Controller at a Non-resonating Point

4.1 Introduction

The original remote vibration control design for was experimentally validated on a blade
rig facility for harmonic or tonal excitation [Daley and Wang, 2008]. The digital imple-
mentation of this controller requires extraction of the Fourier component of the noise
corrupted output signal using an approach from [Liu and Daley, 1999]. The recursive
least squares algorithm [Ljung, 2002] is used to determine the gain and phase of the
measured output signal with respect to a sinusoidal reference signal. This is then used
to apply the control input after multiplying its gain with the controller gain and adding
its phase with the phase of controller.

The blade rig used in this study replicates the vibration problem encountered in rotor
blade propulsion systems which is widely used in helicopters and marine vessels. The
oscillatory vibration is caused when the propeller blades rotate through a non-uniform
wake velocity in the fluid field. The response levels increase close to the resonant fre-
quency of the blades and this gets transmitted through the shaft to the hull or fuselage via
the thrust bearing. The construction and working of the experimental set-up is described
in more detail in section 4.2.

It was shown in chapter 3 that the controller design using the original geometric
method results in an unstable controller. A stable and stabilising solution using the
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disturbance shakers control shaker

remote accelerometers

local accelerometer

resonating member

Figure 4.1: Top view of the experimental facility

geometric methodology presented in chapter 3 is easier to implement as it does not suffer
from the complications encountered in the implementation of an unstable controller.
Also, it is possible to systematically avoid the excitation of high frequency dynamics
using this method. In this chapter, the geometric method for the design of stable and
broadband vibration controllers is experimentally validated using the propeller blade
test rig1.

4.2 Experimental set-up

A picture of the blade rig used for experimental testing is shown in figure 4.1. It is made
up of a long shaft supported at one end on a rigid block and at the other end pinned to
a short iron bar element, which acts as the resonating member in this experiment. The
shaft is bolted with screws near the mid span of the beam element. The primary exci-
tation signal fp(t) is a common signal fed to two smaller shakers (30 N each) attached
at both ends of the beam which acts as the transient loading force due to rotation of the
propeller blades. The vibration at the blade end of the shaft qp(t) is the summation of

1This work was carried out by the author during a research visit to the Institute of Sound and Vibration
Research at the University of Southampton in March-April 2012
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4.2. BLADE RIG

outputs measured by two accelerometers connected near each of the disturbance shak-
ers. Remote output is composed of the summation of these measurements because it is
dominated by the dynamics of the first bending mode. As both the sensors are in phase
it approximates appropriately with the first bending mode. Maximum transmission of
force to the thrust block occurs around the first bending mode of the blade element.
The total momentum of higher modes that is transmitted through the connected shaft is
negligible. The control input fc(t) drives the control shaker (50 N) attached at the other
end of propeller shaft on the thrust block and a local accelerometer on the thrust block
measures local vibration levels qc(t).

In marine vessels the thrust block is rigidly connected to the hull, which is to be safe-
guarded against excessive vibration. Vibration is transmitted from the blade end along
the shaft to the hull via the thrust block end and is particularly detrimental at the blade
resonant frequency. Due to difficulties in measuring and actuating at the blade end for
most applications, it is desired to control both blade vibration and its transmission using
sensors and actuators mounted on the thrust block only2. This blade system can be con-
sidered as a two input two output system with the frequency response function matrix
relating the disturbance and control inputs to the remote and local vibration outputs as

[
qc(jω)

qp(jω)

]
=

[
gcc(jω) gcp(jω)

gpc(jω) gpp(jω)

][
fc(jω)

fp(jω)

]
(4.1)

The frequency response function matrix in (4.1) is obtained by exciting the disturbance
shakers and control shaker with an uncorrelated white noise signal and taking measure-
ments of the blade and thrust block accelerometers. The magnitude frequency response
of the open loop path from primary excitation input of the disturbance shakers to the
outputs on the thrust block and the blade end is plotted in figure 4.2(a) and figure 4.2(b),
respectively. These show that close to the frequency of the first bending mode of the
blade (i.e. the iron beam connected to one end of the shaft), vibration transmission to
the thrust block is amplified. A feedback controller to achieve simultaneous reduction
in the thrust block and blade vibration outputs is designed around this frequency band.

2It should be noted that the control arrangement shown in figure 4.1 is the subject of a BAE Systems
patent [Pearson and Emery, 2003]
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Figure 4.2: Magnitude frequency response of primary excitation input to (a) thrust block
vibration output and (b) blade vibration output

4.3 Description using Relative Gain Array

The experimental assembly used in this study is noteworthy because it consists of two
coupled structural components which makes it complex. This distinguishes its require-
ment for a control algorithm different from other active structural damping techniques.
It is later established in section 5.3 of chapter 5 that active control of vibration close to
resonance at the local point leads to global mitigation of vibration but this holds true
only if the control force acts directly on the resonating part of the structure. However
in the blade rig, the control force is applied to a non resonating part of the structure and
hence it does not ensure global vibration attenuation. The vibration due to the resonat-
ing component of the structure is transmitted to another part of the structure. Therefore,
close to resonance associated with a structural component, response levels at any other
point on the whole structure is also amplified. Vibration attenuation using control ac-
tion at a non-resonating part of the structure, therefore, also depends on the coupling
between both structures. The difficulty in observability and controllability of the blade
resonance at the thrust block side will manifest as a smaller intersection of circular re-
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gions in the γ−plane that represent attenuation at the resonating and non-resonating
part of the structure. Active damping of the blade resonance using control action at the
thrust block is not a feasible objective for the blade rig set-up. Another tool from multi-
variable control design is more useful to infer the performance at the blade end, which
is described next.

In this section, it is shown that the design parameter from the geometric approach
has a direct correspondence to the Relative Gain Array (RGA). Although the RGA is
a tool used in chemical process control to evaluate efficient pairing between different
input and output combinations, in this work it is used to demonstrate the effect of a
control input on a vibration output at various remote points. The RGA between an
input and output signal is the ratio between the loop gain, when all other loops are
open, to the loop gain when all other loops are closed. The measure of difficulty in
controlling a particular output using a given input can be readily obtained from the
RGA matrix. For a system, large RGA elements indicate strong interactions and the
system will be ill-conditioned. RGA matrix is a function of frequency and its value at
crossover frequencies are important. The pairing rule for independent control design
states that the control input which has an RGA element closer to 1 should be used to
actuate that output. Many alternatives to RGA that consider both the gain and phase of
the RGA elements, such as RGA number and iterative RGA, have also been developed.
The RGA matrix at a discrete frequency is next defined for the blade rig system given
by (4.1). The gain matrix for this system at a discrete frequency ω0 can be written as

Gω0 =

[
gcc(jω0) gcp(jω0)

gpc(jω0) gpp(jω0)

]
(4.2)

The relative gain array for this gain matrix is calculated as

Λ(Gω0) = Gω0 ⊗ (G−1ω0
)T (4.3)

where⊗ is the Hadamard or Schur product. The individual elements of this 2×2 matrix
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4.3. RGA

are given as

Λ(Gω0) =




(
1− gcp(jω0)gpc(jω0)

gcc(jω0)gpp(jω0)

)−1 (
1− gcc(jω0)gpp(jω0)

gcp(jω0)gpc(jω0)

)−1

(
1− gcc(jω0)gpp(jω0)

gcp(jω0)gpc(jω0)

)−1 (
1− gcp(jω0)gpc(jω0)

gcc(jω0)gpp(jω0)

)−1


 (4.4)

The rows and columns of an RGA matrix sum to unity and also as per the pairing
rule, an input should be used to actuate a particular output for which the corresponding
RGA element is close to unity. If the RGA matrix (4.4) is multiplied by a diagonal
scaling matrix then the pairing rule is determined by the proximity of the elements to
Wγ(jω0)Bcc(jω0), which also has a magnitude close to unity in the design bandwidth.

[
Wγ(jω0)Bcc(jω0) 0

0 Wγ(jω0)Bcc(jω0)

]
× Λ(Gω0) =

[
Λ11 Λ12

Λ21 Λ22

]
(4.5)

where Wγ(jω) is the filter for robustness and Bcc(jω) is the Blaschke product formed
from the non-minimum phase zeros of the local control path transfer function and

Λ11 = Λ22 =

(
1

Wγ(jω0)Bcc(jω0)
− gcp(jω0)gpc(jω0)

Wγ(jω0)Bcc(jω0)gcc(jω0)gpp(jω0)

)−1

Λ12 = Λ21 =

(
1

Wγ(jω0)Bcc(jω0)
− gcc(jω0)gpp(jω0)

Wγ(jω0)Bcc(jω0)gcp(jω0)gpc(jω0)

)−1

The magnitude of the elements of this matrix is determined by the magnitude of the
corresponding RGA elements only. Additionally, the magnitude of elements of this
matrix between the control input and the blade vibration output has a distinct relation
to the size and position of circles in γ−plane that represents feasible attenuation in
vibration levels at the blade and thrust block end. It can be seen seen that this element is
the inverse of the difference between the centre of both these circles. This shows that if
the centre of circles that denote reduction in output at the remote point and at the local
point are close in the γ−plane, then the RGA element will be large. Although a very
large RGA element is not desirable for many chemical process control applications, it is
necessary for the active control of remote vibration. A large RGA element corresponds
to a larger region of overlap for the circles in the γ−plane, which allows for maximum
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Figure 4.3: Magnitude and phase frequency response of the local control path from con-
trol shaker input to thrust block accelerometer measurements (solid) and an identified
model (dashed)

attenuation simultaneously at the local and remote locations. On the other hand, if the
centre of both circles are far apart, then the RGA element for the cross-coupling term
will be small which means that a large control action will be needed to reduce the output
at the blade end.

4.4 Control design

The first step is to determine an LTI model for the open loop control path, g̃cc(jω), from
the measured frequency response. The measured frequency response data of the path
from control shaker input to acceleration output on the thrust block for frequencies be-
low 800 Hz is fitted with a 15th order transfer function model using least squares fit
as shown in figure 4.3. This identified transfer function has 1 right half plane zero so
that Bcc(jω) is of order 1 and ĝcc(jω) has this RHP reflected into the LHP. The high
frequency dynamics neglected is not a cause for concern as the filter, Wγ(jω), avoids
control spillover thus ensuring that the controller does not excite unmodelled high fre-
quency dynamics. However, the control shaker resonance at 20 Hz can potentially lead
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Figure 4.4: Portrayal of constraint regions in γ−plane that denote attenuation in blade
vibration for discrete frequencies between 200 Hz and 300 Hz. Unit radius circles cor-
responding to reduction of vibration at the thrust block appear as a cylinder passing
through the origin

to instabilities if the control signal exerts more gain at low frequencies. This can ad-
ditionally be dealt with by selecting Wγ(jω) as a bandpass filter. It is selected as a
bandpass butterworth filter with lower and higher cut-off frequencies selected as 100
Hz and 600 Hz, respectively.

The circles in the γ−plane corresponding to a reduction in vibration at the local and
remote outputs, given by inequalities (3.22) and (3.24), for frequencies around the first
bending mode of the beam is shown in figure 4.4. The circles corresponding to reduction
in vibration at the blade end are very large in the frequency band 200 Hz to 220 Hz and
above 270 Hz. The distance between the centre of both circles is large and so it will not
be possible to achieve considerable reduction in vibration levels at the blade end without
amplifying vibration at the thrust block end. Moreover, the off-diagonal elements in the
RGA matrix for this frequency are very small which indicates the limited influence of
the control action on the vibration output at the blade end. Therefore, optimal values
for γ at these frequencies are selected such that the vibration level at the thrust block is
reduced without increasing the level at the blade end.
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4.4.1 Interpolation of optimal γ data values

The set of optimal values for γ at discrete frequencies in the design frequency band
is interpolated by a stable transfer function using the Nevanlinna Pick interpolation al-
gorithm. A stable γ(jω) that interpolates the optimal data set is possible only if the
associated Pick matrix is positive definite. As the Pick matrix is basically defined for
data values that are interpolated in the right half plane, a transformation is needed on
the optimal γ data set. The Pick matrix is then calculated as

P =

[
1− ZkZ l

sk + sl

]n

k,l=1

=




1− γk
M

γl
M

σ + jωk + (σ − jωl)




n

k,l=1

(4.6)

The Pick matrix for the initial selection of γ data values is not positive definite. An ap-
proach from [Wang and Daley, 2010] can be used to modify the γ values so as to satisfy
the positive definiteness of the matrix. This is done using Linear Matrix Inequalities to
alter the optimal γ values within a very narrow tolerance limit until the Pick matrix is
positive definite. The subsequent steps in the identification of a stable γ(jω) is similar
to the description given in section 3.5.3 of chapter 3. In the frequency interval from
200 Hz to 300 Hz there are 164 discrete frequencies for which an optimal γ value is
selected. Only 6 of the optimal γ data values are used for interpolation so that the final
compensator is of low order. This results in a stable γ(jω) that also satisfies the con-
troller stability condition, namely, the nyquist contour of γ(jω)Bcc(jω)Wγ(jω) does not
encircle −1.

The final operating γ values for frequencies 220 Hz to 250 Hz obtained from the
frequency response of the interpolated γ(jω) are shown in figure 4.5. It can be seen
that in the frequency range 230 Hz to 245 Hz, circles representing a reduction in blade
vibration converge towards the origin and reduce in size. Due to this several more
γ data values have to be selected in this frequency band alone to get a good transfer
function approximation, but this will increase the order of γ(jω) considerably, which
in turn affects the order of controller. The circles corresponding to reduction in blade
vibration output for all other frequencies in this frequency band are considerably larger
than its counterpart for reduction at the thrust block. The final operating values for γ
lie inside the unit circle that corresponds to local vibration attenuation. This is esti-
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Figure 4.5: The reduction in vibration at the thrust block (◦) and blade end portrayed as
regions inside circles in γ−plane. The frequency response of the interpolated γ(jω) (�)
and the optimal selected values for interpolation (#)

mated to achieve only slight reduction in the blade vibration output using a 58th order
controller. This vibration attenuation problem is a case of very extreme magnitude for
the dimensionless parameter discussed in [Freudenberg et al., 2003b], which is equiva-
lent to the function formed by the centre of remote vibration reduction circle given as
−gcc(jω)gpp(jω) [gcp(jω)gpc(jω)Bcc(jω)Wγ(jω)]−1. The magnitude of this function is a
measure of the severity of the trade-off between disturbance attenuation and stability
robustness. This also substantiates the difficulty in attenuation of the blade vibration
levels without a deterioration at the thrust block end which may lead to closed loop
instabilities.

A controller realised in terms of this γ(jω) by substituting it in (3.26) has a mag-
nitude frequency spectrum as shown in figure 5.11. The gain of the controller starts to
roll-off after 600 Hz due to the action of filter, Wγ(jω), thereby improving robustness to
unmodelled high frequency dynamics.
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Figure 4.6: Magnitude frequency spectrum of the synthesized controller

4.5 Experimental implementation

The controller obtained in the previous section is a compensator transfer function in the
continuous time domain. It is converted to a discrete time model using a first order hold
approximation with a sampling frequency of 5 kHz. The frequency characteristic of the
discrete time model matches exactly with that of the continuous time model especially
in the design frequency bandwidth. A minimal and balanced realisation of the state
space model of this compensator is used such that its observability and controllability
grammians are equal and diagonal. It is then integrated with the experimental set-up
through Simulink using a dSPACE real time interface hardware. The acceleration out-
puts at the thrust block, qc(t), and blade end, qp(t), are measured to compare the closed
loop and open loop responses.

4.5.1 Sinusoidal excitation of frequency 247 Hz

In order to test the reduction at the resonant frequency of the blade, it is excited by a si-
nusoidal excitation of 247 Hz. The power spectral density of the measured acceleration
at the thrust block with and without feedback control for this excitation input is plotted
in figure 4.7. It shows more than 14 dB reduction in magnitude at this frequency. The
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Figure 4.7: Power spectral density of accelerometer output on thrust block when distur-
bance shakers on the blade are excited by a sinusoidal of 247 Hz
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Figure 4.8: Power spectral density of the summation of accelerometer outputs on blade
end when disturbance shakers on the blade are excited by a sinusoidal of 247 Hz
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Figure 4.9: Estimated magnitude frequency response of the path from primary excitation
input to thrust block output with (solid) and without (dashed) feedback control

power spectral density of the summation of outputs from each ends of the blade in figure
4.8 shows around 3 dB reduction in magnitude at this frequency. However, a peak at
534 Hz in the PSD of both closed loop outputs can be noticed which is not originally
present for the open loop. However, this additional component is well below (∼20 dB)
the dominant 247 Hz tone. The implications of this sharp peak, its underlying causes
and a solution to suppress it are discussed in the next section.

4.5.2 Reduction of peak in controller FRF

The estimated magnitude of the closed loop frequency response of the thrust block and
blade outputs to the primary excitation input with and without feedback control is plot-
ted in figure 4.9 and figure 4.10, respectively. These show that around 534 Hz, the
closed loop system has low stability margins. This is caused by the peak in controller
FRF. The controller implementation involves inversion of the minimum phase coun-
terpart of the local control path transfer function so an antiresonance (lightly damped
zeros) at frequency 534 Hz in the local control path FRF (figure 4.3) appears as a peak
in the controller FRF. FilterWγ(jω) has a high cut-off frequency 600 Hz which is higher
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Figure 4.10: Estimated magnitude frequency response of the path from primary excita-
tion input to blade vibration output with (solid) and without (dashed) feedback control

than the frequency (534 Hz) at which the peak in controller FRF appears. If the high
cut-off frequency of Wγ(jω) is reduced below 534 Hz and the order of filter is also in-
creased so as to take account of the sharp increase in this peak then due to limitations
as quantified by Bode’s sensitivity integral, amplification due to waterbed effect at out-
of-bound frequencies will not be spread over a large frequency range and there will be
peaks appearing in the closed loop frequency response. Therefore, the controller is im-
plemented in series with a notch filter which has a notch at 534 Hz in order to reduce
the peak at this frequency. The magnitude and phase of the controller is unaffected in
the design frequency band.

The PSD of acceleration measured at the thrust block with and without feedback
control when the blade end is excited by a sinusoidal input of 247 Hz shows around 16
dB reduction in magnitude at this frequency as shown in figure 4.11. The PSD of the
summation of acceleration measured at the blade end for the same excitation in figure
4.12 shows around 3 dB reduction in magnitude at this frequency. The peak at 534 Hz
is reduced considerably and the performance of the controller is also not compromised.
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Figure 4.11: Power spectral density of accelerometer output on thrust block when dis-
turbance shakers on the blade are excited by a sinusoidal of 247 Hz, and the controller
is implemented in series with a notch filter
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Figure 4.12: Power spectral density of the summation of accelerometer outputs on blade
end when disturbance shakers on the blade are excited by a sinusoidal of 247 Hz, and
the controller is implemented in series with a notch filter
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Figure 4.13: Power spectral density of accelerometer output on thrust block when dis-
turbance shakers on the blade are excited by a random white noise input, controller is
implemented in series with a notch filter

4.5.3 Broad frequency band random excitation

The disturbance shakers are excited by a random white noise input and the PSD of the
acceleration outputs from the thrust block and blade end are plotted in figures 4.13 and
4.14, respectively, for the open and closed loop cases. These show a maximum of 12 dB
attenuation in the thrust block output while the output at the blade end is only marginally
reduced as per design.

4.6 Summary

The proposed remote vibration control design approach has been experimentally vali-
dated using a laboratory rig that replicates the vibration problem encountered in rotary
propeller blade shafting systems. The force transmitted to the thrust block which is
predominantly due to the momentum of the first bending mode of the resonating beam
element is minimised. As the control force is applied on a non-resonating part of the
structural assembly, active damping of this mode is not feasible. Moreover, the circles
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Figure 4.14: Power spectral density of the summation of accelerometer outputs on blade
end when disturbance shakers on the blade are excited by a random white noise input,
controller is implemented in series with a notch filter

in the γ−plane that correspond to a reduction in thrust block and blade outputs do not
overlap. The limited effect of control action on the blade output is also substantiated
from the relation between the design parameter and the relative gain array matrix. The
RGA elements between input at thrust block and output at blade is the inverse of the
distance between the centre of circles in the γ−plane that portray reduction in output at
these locations. The centre of both these circles are not close in the γ−plane and con-
secutively the RGA elements for these frequencies are also small, which demonstrates
the limited effect of control action upon the blade vibration output.
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Chapter 5

Active Damping at Resonance

5.1 Introduction

The geometric technique for a stable controller design presented in chapter 3 targets re-
duction in vibration at pre-determined locations in a certain frequency band only. In this
chapter, the feasibility of designing a controller using the geometric approach to target
spatially global vibration attenuation in a broader frequency band will be investigated.
Initially it is proved analytically in terms of the design parameter that when control ac-
tion is applied on a resonating structure, the selection of design freedom parameter to
achieve maximum attenuation at the local point would also correspond to attenuation at
other remote points at which that mode is observable.

Firstly, this proof presented in section 5.3 simplifies the selection criterion for opti-
mal γ values near resonant frequencies and can be used to address vibration attenuation
in a wider frequency band encompassing several mode resonant frequencies. Secondly,
it has implications for spatially global vibration attenuation for lightly damped struc-
tures using only a single pair of transducers for measurement and actuation. This is
validated using an experimental beam facility for vibration attenuation at both local and
remote locations around its first bending mode frequency1.

1This work was carried out at the Institute of Sound and Vibration Research, University of Southamp-
ton, during March-April 2012
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5.2. ACTIVE DAMPING

5.2 Active Damping

The response of a structure is particularly detrimental when the disturbance forces are
near its natural frequency as the magnitude is amplified near these frequencies. Sev-
eral control design methods achieve disspation of energy at resonance by modifying the
eigenvalues of the open loop system. The closed loop system properties are altered by
increasing the damping of the natural frequency or shifting the eigenvalues away from
frequency of the excitation signal. Positive position feedback control design developed
by Goh and Caughey [1985] can increase the damping of desired modes when the nat-
ural frequency is accurately known. It does not suffer from control spillover effects at
high frequencies but may amplify the response at frequencies lower than the natural fre-
quency of the second order controller. It is also essential for this control scheme that the
control sensor and actuator be perfectly collocated, similar to the requirement in direct
velocity feedback control.

Other control design methods to assign the closed loop poles with desired damping
and natural frequency are accomplished using the pole placement feedback approach
[Kautsky et al., 1985], indpendent modal space control approach [Daley et al., 2004]
or the receptance based active control method [Mottershead et al., 2008]. The effects
of spillover can be minimised in these types of control design methods by seeking a
condition of unobservability [Datta et al., 1997] or uncontrollability [Ghandchi Tehrani
et al., 2010] of the higher order modes so that the corresponding eigenvalues remain
unchanged. However, the proportional and derivative gain vector for this approach is
formed from the inversion of a measurement dependant matrix. The rank of this matrix
is affected by the number of error sensors used and so partial pole assignment is not
possible using only a local transducer pair. Also, the experimental studies considered
so far have not elaborated if the performance of the receptance based control design
is affected by the accuracy of modal parameter estimation technique. On the other
hand, the geometric based approach provides a systematic procedure using only a local
transducer pair for remote and global vibration attenuation.
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5.3 Design parameter at resonance

The geometric based controller presented in chapter 3 achieves perfect remote vibration
annihilation if values for the optimal γ point is selected as Up(jω0), i.e. the centre
of circle (3.24) at frequency ω0. Substituting this value for γ in (3.26) gives the perfect
cancellation controller as (5.1). It may not be strictly proper and so needs to be modified
before practical implementation [Hong and Bernstein, 1998].

kcx(jω0) =
gxp(jω0)

g̃cp(jω0)g̃xc(jω0)− g̃cc(jω0)gxp(jω0)
(5.1)

Assuming a worst case scenario such that the centre of the circle for maximum reduction
in output at the remote point does not lie inside the circle corresponding to reduction in
local vibration, then the ideal disturbance attenuation problem is not solvable and the
cancellation controller given by (5.1) will amplify the response level at the local point.
The optimal γ point in this case is selected from the region of intersection of the two
circles in the γ−plane.

However, it has been shown in previous works that the control of resonant vibrations
at a local point on a structure results in global reduction on the structure [Brennan et al.,
1995; Pope and Daley, 2009; Post and Silcox, 1990]. The optimal γ value that achieves
attenuation at the local point will therefore also lie inside the region in the γ−plane that
corresponds to attenuation at any remote point. This result is analytically proven for
active structural control of resonant vibration using a control action at a resonating part
of the structure. If the control force does not act at a node of any of the modes under
consideration then the frequency response between the output at the ith point and the
input at the jth point can be written in terms of the summation of the first N dominant
modes [Ewins, 2000] as

gij(jω) =
N∑

k=1

ψikψjk
(−ω2 + j2ζkωkω + ω2

k)
(5.2)

where ψik is the ith element in the mode shape vector ψk, ζk is the damping ratio and
ωk is the natural frequency of the kth mode. At a natural frequency ωn of a resonant
mode, the frequency response function between the ith output and the jth input is given
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as

gij(jωn) =
N∑

k=1

ψikψjk
(−ω2

n + j2ζkωkωn + ω2
k)

(5.3)

Expanding the contribution from the first N modes to the stuctural frequency response
at this frequency gives

gij(jωn) =
ψi1ψj1

(ω2
1 − ω2

n + j2ζ1ω1ωn)
+ · · ·+ ψinψjn

(j2ζnω2
n)

+ · · ·+ ψiNψjN
(ω2

N − ω2
n + j2ζNωNωn)

(5.4)
For a lightly damped structure with low modal density, the contribution to the structural
frequency response from modes that are away from the dominant mode frequency ωn
would be insignificant and can be neglected. Therefore the structural frequency response
near a resonant mode frequency can be approximated by the modal frequency response
of the dominant mode [Gawronski, 2004] as

gij(jωn) ≈ ψinψjn
(j2ζnω2

n)
(5.5)

Substituting the modal transfer function approximation near mode frequency ωn from
(5.5) into the centre of circle (3.24), the value of the design freedom parameter γ for
maximum reduction in vibration at node x is given as

−

ψ1nψ1n

(j2ζnω2
n)

ψxnψ2n

(j2ζnω2
n)

ψ1nψ2n

(j2ζnω2
n)

ψxnψ1n

(j2ζnω2
n)

1

Bcc(jωn)Wγ(jωn)
= − 1

Bcc(jωn)Wγ(jωn)
(5.6)

which is the value of γ that corresponds to maximum attenuation in local vibration. Thus
the centre of the circle in the γ−plane for vibration reduction at any remote point near
resonant frequencies coincides with the centre of circle for local vibration reduction,
has unit radius and is independent of its location on the structure. As a consequence of
this, any controller will have the same effect both locally and at any remote point and
in theory can be selected at the common centre of the circles to provide global vibration
annihilation.
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Figure 5.1: (a) the point frequency response plot showing a discrete frequency relative
to the peak of resonant frequency highlighted by red dashed line and (b) the circles cor-
responding to reduction in output at 10 different locations on the beam for this discrete
frequency
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Figure 5.2: (a) resonant frequency highlighted by red dashed line and (b) the circles cor-
responding to reduction in output at 10 different locations on the beam for this discrete
frequency

78



5.4. EXPERIMENTS ON BEAM

10
2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Frequency Hz

M
ag

n
it

u
d
e 

d
B

(a)

0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

Real(γ)

Im
ag

(γ
)

Circles represent attenuation at different nodes for a discrete excitation frequency

(b)

Figure 5.3: (a) a discrete frequency near the peak of resonant frequency and (b) the
circles corresponding to reduction in output at 10 different locations on the beam for
this discrete frequency

As an example, the finite element model of the beam presented in section 3.5.1
is considered to describe the overlap of regions near resonance described above. The
circles and its centres corresponding to reduction in vibration at 10 equidistant positions
on the beam are plotted for frequencies at resonance in figure 5.2 and close to it in figures
5.1 and 5.3. As the design frequency moves away from resonance, the common region of
intersection between the regions for local and remote vibration attenuation reduces and
so it becomes difficult to achieve global attenuation at off resonant frequencies [Johnson
et al., 2003]. At an antiresonant frequency, the circles are 180◦ separated on opposite
sides of the origin and have no common region of intersection so the only optimal value
of γ is near origin in the γ− plane (i.e. the uncontrolled state).

5.4 Active damping of a beam structure

Control design using the geometric method to achieve active damping of a beam struc-
ture near its first natural frequency is presented in this section. The response levels
near the base of this beam assembly are amplified near its first resonant frequency. The
vibration output from the top of the beam is fed back to the controller for corrective
action which is applied using two smaller control shakers. This arrangement of error
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sensor and control shaker is non-collocated and forms the local control path while the
transmission of vibration near the base of the passive isolation mounts that support the
beam forms the remote output, which is also distinct from the location of primary exci-
tation. The helpful feature of the design parameter near a mode resonant frequency (as
described in the previous section) is also validated for this experimental rig.

5.4.1 Experimental set-up

A picture of the test rig is shown in figure 5.4 highlighting the location of sensors and
actuators, and an illustration of the experimental set-up for control implementation is
shown in figure 5.5. The beam is supported at both ends on passive mounts and a per-
formance measurement sensor is placed near the base of each mount. The summation of
output from both these accelerometers forms the remote output, qp(t). The primary dis-
turbance signal, fp(t), is fed to a 170 N Gearing & Watson IV46 inertial shaker attached
on top of the beam which excites the beam near its mid-span. Three sensors mounted
on top of the beam at either ends and at its centre produce the error measurement, qc(t),
which is fed back to the controller. The three accelerometers attached on top of the
beam together give a measurement of the first bending mode. This is calculated by sub-
tracting the top middle accelerometer output qmc (t) from the summation of the top right
qrc(t) and top left qlc(t) accelerometer outputs.

Each accelerometer is connected in series with a FLYDE microAnalog2 amplifier
and anti-aliasing filters. The gains on the card of the amplifier for the channels that serve
the accelerometers below the mount are set on higher values in order to compensate
for the comparatively lower level of response. Anti aliasing filters are set at a cut-
off frequency of 700 Hz. The analog voltage signals from the anti-aliasing filters is
connected to a 16 bit analog to digital converter. Two 10 N Labworks Inc. inertial
electrodynamic actuators mounted on the underside of circular discs connected at each
end of the beam are used to provide the control input, fc(t). A single control signal is
fed to both the identical shakers and so the local control path, comprising of a single
measurement output and a single control signal, can be considered as a SISO set up.

The frequency response between the two vibration outputs and the two input signals
is required for control design. This is obtained by exciting the disturbance and control
shakers separately with a random signal which has a uniform distribution and measuring
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control shaker control shaker
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Figure 5.4: Experimental test rig consists of a beam mounted on passive mounts

the local and remote outputs. The plant can be considered as a 2 × 2 system and the
frequency response measurements relate the local and remote vibration outputs as

[
qc(jω)

qp(jω)

]
=

[
gcc(jω) gcp(jω)

gpc(jω) gpp(jω)

][
fc(jω)

fp(jω)

]
(5.7)

The frequency response measurement includes the dynamics of: ADC, DAC, sensors,
actuators and the associated instrumentation. The first natural frequency of the beam
structure found from the magnitude and phase of the frequency response of the open
loop paths occurs around 283 Hz as evident from the plots in figure 5.6 (a) and figure
5.6 (b).

5.4.2 Control design

The local output measurement alone is used as a feedback signal for the controller as
given in (5.8). A geometric based controller that increases the damping in the closed
loop outputs of the local and remote points for frequencies near the first natural fre-

81



5.4. EXPERIMENTS ON BEAM

Plant

left control
shaker

right
control
shaker

disturbance
shaker

top left
sensor

top middle
sensor

top right
sensor

bottom
left sensor

bottom
right sensor

amplifier

amplifier

amplifier

amplifier

amplifier

Anti-
aliasing

filter

Anti-
aliasing

filter

Anti-
aliasing

filter

Anti-
aliasing

filter

Anti-
aliasing

filter

controller

dSPACE

ADCDACamplifier

f lc

f rc

fp

qlc

qmc

qrc

qlp

qrp

+

−
+

+

+ qp

qc

control voltage

primary
exci-
tation
input

Figure 5.5: Schematic illustration of the experimental set-up
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Figure 5.6: Magnitude frequency response of output (a) on top of the beam and (b) at
the base of beam near the mounts, for disturbance excitation input
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Figure 5.7: Magnitude and phase frequency response of output on top of the beam
and control input plotted using data from measurements (solid) and an identified model
(dashed)

83



5.4. EXPERIMENTS ON BEAM

−0.5
0

0.5
1

1.5
2 −2

−1
0

1
2270

275

280

285

290

295

300

Re(γ)
Im(γ)

F
re
q
u
en
cy

(H
z)

Figure 5.8: Portrayal of vibration attenuation at the local (blue) and remote (red) points
as circles in γ−plane and its centres (� and ?, respectively) which denote maximum
attenuation at the respective points

quency of the beam is developed.

fc(jω) = −k(jω)qc(jω) (5.8)

The first step is to identify a model for the local control path frequency response func-
tion, gcc(jω). This is done by estimating a transfer function using least squares curve
fitting to the frequency response data up to 1 kHz as shown in figure 5.7. This results in
a non-minimum phase transfer function containing 9 right half plane zeros. A bandpass
filter, Wγ(jω), with low and high cut-off frequencies at 135 Hz and 600 Hz respectively,
is used for robustness to suppress control spillover at out of band frequencies. This
filter, Wγ(jω), alongwith the Blaschke product, Bcc(jω), formed from the local control
path transfer function, is then used to compute the centre and radius of circles at discrete
frequencies describing the regions of feasible local and remote vibration attenuation in
the γ−plane, as given by (3.22) and (3.24).

The circles in the γ−plane for frequencies encompassing the first resonance of the
beam are plotted in figure 5.8. It can be seen that the constraint regions describing
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attenuation in remote output almost entirely overlap with the region corresponding to
reduction in the local output. Hence, this confirms the prediction descibed in section 5.3
for frequencies near resonance. The optimal values for γ are selected from inside both
circles for the discrete frequencies. A stable transfer function that interpolates through
this γ data set is constructed next.

5.4.3 Interpolation of optimal γ data values

The set of optimal γ data values is interpolated by a stable transfer function using the
Nevanlinna Pick interpolation algorithm in a similar manner to the formulation pre-
sented in section 3.5.3. The Pick matrix associated with the optimal γ data values is
given by (5.9). A stable function γ(jω) that interpolates the optimal data set is possible
only if this pick matrix is positive definite.

P =

[
1− ZkZ l

sk + sl

]n

k,l=1

=




1− γk
M

γl
M

σ + jωk + (σ − jωl)




n

k,l=1

(5.9)

A reduced data set containing only 5 γ data values is used for interpolation. As the
optimal γ values are selected from near the centre of circle which defines reduction at
the local point, the maximum absolute optimal γ values is limited by the radius of this
circle which is unity.

|γ(jωi)| ≤ 1, ∀ωi ∈ 2π × [270, 300]

The pick matrix is not positive definite for values of σ = 20 and M = 1 but the
minimum eigenvalue of this matrix is -0.008. A smaller value of σ will increase the
positive definiteness of the pick matrix, however, the approximation at intermediate
frequencies will deteriorate as a result. Therefore, the set of γ values is slightly modified
such that the Pick matrix is positive definite for σ = 20 and M = 1. This modified set
of γ values and the final operating γ values, which is the frequency response of the
interpolated γ(jω) at the discrete frequencies, are plotted in figure 5.9. The modified
values used for interpolation lie near the centre of the circles and the final operating
points give a good approximation even at intermediate frequencies. The nyquist contour
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Figure 5.9: Portrayal of vibration attenuation at the local (blue) and remote (red) points
as circles in γ−plane, initial set of optimal γ values (#) and γ values used for inter-
polation after modification (?). The set of final operating γ values shown as � is the
frequency response of identified γ(s) which is interpolated using a value of σ = 20 and
M = 1
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Figure 5.10: Nyquist plot of γ(s)Bcc(s)Wγ(s) interpolated using a value of σ = 20,
also shown are the values of γ(jωi)Bcc(jωi)Wγ(jωi) corresponding to the initial set of
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Figure 5.11: Magnitude frequency response of the designed controller

of γ(jω)Bcc(jω)Wγ(jω) which governs the stability of the controller does not enclose the
−1 point as shown in figure 5.10.

A controller is realised by substituting γ(jω) in (3.26). The magnitude of the fre-
quency response of this controller is shown in figure 5.11. This starts to roll off after
600 Hz due to the filter action thereby improving robustness at higher frequencies. This
response is used to estimate the theoretical closed loop frequency response of the local
and remote outputs which predicts around 12 dB reduction close to resonance, as shown
in figure 5.12 and figure 5.13.

5.4.4 Experimental results

As the geometric control design is performed in the s domain, the controller is a continuous-
time transfer function. In order to enable digital implementation, a discrete-time state
space model of this compensator using a first order hold approximation with a sampling
frequency of 4 kHz is obtained. A balanced state space realization such that the observ-
ability and controllability grammians of this discrete-time compensator are diagonal and
equal is used. The magnitude and phase of the frequency response of the discrete-time
compensator matches exactly with the continuous-time model which is necessary and
sufficient. This compensator is then implemented in Simulink using a dSPACE real
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Figure 5.12: Theoretical estimation of the magnitude of the frequency response from
primary excitation input to local output with (solid) and without (dashed) feedback con-
trol

time hardware interface to integrate it with the experimental set-up. The digital input
signal is converted to analog voltage signal using a 16 bit digital to analog converter.
The output from DAC is filtered and amplified before driving the shakers as shown in
figure 5.5. The disturbance shaker is excited with different input signals for which the
local and remote outputs are measured.

Sinusoidal excitation at 283 Hz

The power spectral density of the outputs obtained from accelerometers mounted on
top of the beam is plotted in figure 5.14, for a 283 Hz sinusoidal primary excitation.
This shows around 16 dB reduction in magnitude at this frequency compared with the
open loop output. The power spectral density of outputs from accelerometers near the
base of the isolation mounts is plotted in figure 5.15. This shows approximately 18 dB
reduction in magnitude at this frequency compared with the open loop output.
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Figure 5.13: Theoretical estimation of the magnitude of the frequency response from
primary excitation input to remote output with (solid) and without (dashed) feedback
control
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Figure 5.14: Power spectral density of the output on top of the beam for a sinusoidal
excitation input with (solid) and without (dashed) feedback control
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Figure 5.15: Power spectral density of the output at the base of the beam for a sinusoidal
excitation input with (solid) and without (dashed) feedback control
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Figure 5.16: Power spectral density of the output on top of the beam for a random
excitation input with (solid) and without (dashed) feedback control
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Figure 5.17: Power spectral density of the output at the base of the beam for a random
excitation input with (solid) and without (dashed) feedback control

White noise excitation

The disturbance shaker is excited with a white noise signal and the power spectral den-
sity of acceleration outputs on top of the beam, qc(t), is plotted in figure 5.16. As
expected this also shows around 16 dB attenuation around the first resonant frequency.
The power spectral density of the outputs near the base of the beam for the same excita-
tion input is plotted in figure 5.17. The reduction at resonant frequency is almost 18 dB
however there is an amplification of around 10 dB at 350 Hz.

5.5 Summary

It has been proven in this chapter that the value of design freedom that parameterises
a reduction in the output at any remote point, for frequencies close to resonance, lies
at the centre of the circle that depicts reduction in output at the local point. There-
fore, a controller that achieves attenuation locally for frequencies close to resonance
would also invariably reduce the response at all other points that is not on a node of
that mode. The region of overlap corresponding to reduction in output at the local and
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remote points reduces as the frequency moves away from resonance. This shows the
difficulty in achieving good response at all points using any SISO control design when
the excitation frequency is not close to a structural bending mode frequency. It also
shows that active damping of a structural resonance using a single sensor and actuator
pair on a structure can be achieved using the geometric based control design. This is ex-
perimentally validated on a beam rig. The optimal value for design freedom parameter
that achieves reduction in a local output near the first bending mode resonant frequency
has been shown to also achieve good attenuation of the remote output.
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Chapter 6

Global Vibration Reduction

6.1 Introduction

The analytical proof presented in section 5.2 of chapter 5 is used in this chapter to inves-
tigate the feasibility of the geometric based approach for global vibration reduction. A
reasonable indicator for the global response level of the whole structure is its kinetic en-
ergy. It can be measured relatively easily using laser vibrometers for simple structures,
such as flat panels [Rohlfing et al., 2011b]. As the vibration energy propagates it can
excite attached structures that are removed from the source of disturbance. Therefore,
it is important to control the total vibration energy of the system. An effective method
to reduce the global response is achieved by increasing the damping of structural res-
onances. A few of the active damping methods have been discussed in section 5.2 of
chapter 5. The simplest of these methods involves electronically multiplying the mea-
sured velocity at a point by a fixed gain and feeding the resultant as a control signal to a
closely located actuator, which is commonly termed as direct velocity feedback control.

There are many works based on direct velocity feedback control methods for min-
imising the kinetic energy and minimising the sound radiation from flat panels [Elliott
et al., 2002; Fahy and Gardonio, 2007; Gardonio et al., 2004]. In an ideal case, direct
velocity feedback control is unconditionally stable for very high feedback gains us-
ing collocated sensor and actuator pairs. However, for a good collocated arrangement,
point force actuators such as inertial electrodynamic shakers employed with velocity
sensors add significant weight to the lightweight host structure. This defeats the ob-
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jective of minimal structural modification intended with active control as opposed to
passive methods. On the other hand, strain actuators such as piezoelectric patch actu-
ators are lighter and have been used for direct velocity feedback control of lightweight
structures [Hong et al., 2007]. However, it is more difficult to achieve collocation and
duality in this case since the forces are provided by a distribution of moments.

Besides the issue of non-collocation and non-duality, the closed loop stability is
also affected by the dynamics of different components in the feedback path, namely,
transducer dynamics and the time lags in the electronic instrumentation which together
add phase lag at low and high frequencies in the local control path. The implications of
this on geometric control design has been discussed extensively in section 2.3 of chapter
2. Nevertheless, significant reduction in the total kinetic energy has been achieved using
direct velocity feedback control methods for very high values of feedback gains [Gatti
et al., 2007].

However, it has been shown in [Gardonio and Elliott, 2005] that direct velocity
feedback control would pin the structure at the location of the control actuator for very
high control gains which leads to new resonant modes passing through this point as
a node. The new resonant peaks in the total kinetic energy spectrum appears at the
antiresonant frequencies of the local control input to sensor path transfer function. As
a result, the total kinetic energy level of the structure starts to increase for increasing
values of feedback gain beyond a certain optimum value. The power absorbed by a
control loop also starts to decrease close to this optimum value of gain. Using this
principle, the gains of individual feedback loops can be tuned to achieve an optimum
value of the kinetic energy [Zilletti et al., 2010].

In this chapter, the geometric based approach is used to design a controller for kinetic
energy reduction. It was shown in section 5.3 of chapter 5 that the optimal value for γ
close to resonance that achieves maximum reduction in output at the local point also
corresponds to a reduction in response level at the remote points. This principle is
utilised for the selection of optimal values for the design parameter and subsequenct
realisation of a controller. This method is compared with the direct velocity feedback
control for a lightly damped model of a beam. The limitations of maximum gain for
closed loop stability and the problem of new resonant peaks is also investigated using
this method.
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6.2. DIRECT VELOCITY FEEDBACK

6.2 Design parameter for direct velocity feedback con-
trol

The drawbacks of direct velocity feedback control pertaining to the stability and induce-
ment of new resonance can potentially be avoided using the geometric based approach.
This is explored in terms of the location of γ value in the γ−plane for increasing values
of control gain. This is considered for a 2 × 2 system assuming that the multivariable
system matrix is composed of receptance functions.

[
q̃c(jω)

qp(jω)

]
=

[
g̃cc(jω) g̃cp(jω)

g̃pc(jω) gpp(jω)

][
f̃c(jω)

fp(jω)

]
(6.1)

The control input for direct velocity feedback is given as

fc(jω) = −Cjωqc(jω) (6.2)

where C is the constant value of feedback gain. The closed loop output at the local point
is then given as

qc(jω) =
g̃cp(jω)

1 + jωCg̃cc(jω)
fp(jω) (6.3)

The relationship between the sensitivity function and the design parameter can be used
to express the latter as a function of the direct velocity feedback controller gain as

γ(jω) =
−1

Bcc(jω)Wγ(jω)

g̃cc(jω)jωC

1 + g̃cc(jω)jωC
(6.4)

or alternatively as

γ(jω) =
−1

Bcc(jω)Wγ(jω)

1
1

g̃cc(jω)jωC
+ 1

(6.5)

Assuming that the transducers are perfectly collocated and the system is unconditionally
stable then it can be seen from Eq.(6.5) that when

C→∞
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⇒ γ(jω)→ −1

Bcc(jω)Wγ(jω)

It can be observed that as the control gain is increased, the design parameter γ moves
from the origin for low gain to the centre of the circle describing a reduction in output
at the local point for very large gains. Whilst these circular regions in the γ−plane
are depicted only for discrete frequencies, the overall effect of high feedback gain is
to reduce the output at the local point in the entire frequency spectrum. As the circles
corresponding to a reduction in output at the remote points do not overlap with those of
the local point for all frequencies, very large feedback gains do not ensure good global
response.

It has been established in section 5.3 circular region describing attenuation at the
remote point for resonant frequencies in the γ−plane overlap with those of the local
point. Hence, the resonant peaks in the total kinetic energy reduces for increasing gain.
However, for frequencies close to the frequency of the zeros these circular regions are
removed from each other and do not overlap. Therefore, the amplitude of vibration in-
creases at the remote points and new resonant peaks appear in the total kinetic energy
spectrum. A controller based on the geometric technique can be developed such that
the optimal value for γ is selected for maximum reduction of resonant peaks without in-
creasing the amplitude of vibration at the antiresonant frequencies. It can be devised by
exerting very low dissipation of energy at the frequencies of the zeros while increasing
the dissipation of energy at resonance.

6.3 Control design for kinetic energy reduction

The geometric technique for kinetic energy reduction is illustrated in this section and
is compared with the direct velocity feedback control method using the model of the
beam described in section 3.5.1 of chapter 3. As the control input is not collocated with
the feedback sensor in this arrangement, the maximum stable gain for direct velocity
feedback is used for comparison with the geometric based method.

The geometric based technique for kinetic energy reduction is implemented by se-
lecting the optimal set of γ values for certain frequencies inside a limited bandwidth.
This is selected as the centre of the circle for local vibration reduction for the first four
resonant frequencies. At the frequencies of the first three lightly damped zeros of the
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local control path transfer function, it is selected from near the origin in the γ−plane.
The filter for robustness is chosen as a fourth order low pass butterworth filter with a
high cut off frequency of 1.35 kHz.

This optimal set of γ data values is interpolated by a stable transfer function γ(jω)

using the Nevanlinna Pick interpolation algorithm. A controller is implemented in terms
of the identified design parameter transfer function which is then used to compute the
kinetic energy spectrum of the beam.

The total kinetic energy of the beam with no control is calculated from the modal
mobility excitation vector due to only the primary excitation [Fuller et al., 1997] as

EOL(ω) =
1

4
maHp (ω)ap(ω) (6.6)

where m is the total mass of the beam and ap(ω) is the column vector of modal mobility
excitations of the flexural modes of the beam due to the primary force excitation. Its
elements are calculated according to

ap(ω) =
2ψpk

mk [−ω2 + j2ζkωkω + ω2
k]

(6.7)

where ψpk is the pth element in the mode shape vector ψk, ζk is the modal damping
ratio, mk is the modal mass and ωk is the natural frequency of the kth mode. The total
kinetic energy of the beam using a feedback controller k(ω) is calculated as

ECL(ω) =
1

4
m

[
aHp (ω) +

k∗(ω)g̃∗cp(ω)

1 + k∗(ω)g̃∗cc(ω)
aHc (ω)

] [
ap(ω) + ac(ω)

k(ω)g̃cp(ω)

1 + k(ω)g̃cc(ω)

]

(6.8)
where ac(ω) is the column vector of modal mobility excitations due to the control force
which is computed as

ac(ω) =
2ψck

mk [−ω2 + j2ζkωkω + ω2
k]

(6.9)

The superscript ∗ denotes complex conjugate and H denotes hermitian transpose of the
vector and the notations have their usual meaning.

The geometric based control design achieves significant reduction in the kinetic en-
ergy of the beam as seen from its plot in figure 6.1. The direct velocity feedback con-

97



6.3. KINETIC ENERGY REDUCTION

100 101 102 103
−200

−180

−160

−140

−120

−100

−80

−60

−40

Frequency (Hz)

K
in
et
ic

E
n
er
gy

(d
B
)

Figure 6.1: Kinetic energy spectrum of the beam with no control (green dotted), direct
velocity feedback control with maximum stable gain (blue dashed) and geometric based
control design (solid red)

troller is only conditionally stable for this high value of feedback gain. In practice, the
actuator dynamics further restricts this amount of gain. The geometric control design,
on the other hand, ensures closed loop stability even in the presence of unmodelled
actuator dynamics.

The minimum value of kinetic energy can be calculated in terms of the vector of
control force distributions [Fuller et al., 1997]. Using the relation between the control
force and the design parameter, the kinetic energy in Eq(6.8) has a global minimum
when the design parameter is given by

γ(ω) = −
[
aHc (ω)ac(ω)

]−1
aHc (ω)ap(ω)

ĝcc(ω)

g̃cp(ω)
(6.10)

The value of the design parameter for this minimum kinetic energy is compared with
the optimal selection of γ values for the first two resonant and the first two antiresonant
frequencies in the γ−plane and plotted in figures 6.2 and 6.3, respectively. The value
of the design parameter that corresponds to the minimum kinetic energy approaches
near the origin for the frequency of the zeros, whereas for the resonant frequencies it
approaches near the centre of local vibration reduction circle. This shows the validity of
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the design rules using γ values for designing a controller for kinetic energy reduction.
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Figure 6.2: Value of γ that corresponds to minimum kinetic energy (?), the selected
values for geometric control design (�) and the centre of circles for local vibration re-
duction (#) plotted for (a) the first resonant frequency of 47 Hz and (b) second resonant
frequency 187 Hz
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Figure 6.3: Value of γ that corresponds to minimum kinetic energy (?), the selected
values for geometric control design (�) and the centre of circles for local vibration re-
duction (#) plotted for the frequency of (a) the first complex zeros 95 Hz and (b) the
second zeros 316 Hz
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6.4 Summary

In this chapter the effect of increasing the gain in a direct velocity feedback configu-
ration on the kinetic energy has been shown, using the evolution of the corresponding
design parameter values in the complex plane. Kinetic energy reduction performance
deteriorates due to a pinning action at the local control point for very large values of
feedback gain and the new peaks appear at the frequencies of the lightly damped zeros
of the local control path transfer function. A geometric based controller can be designed
for kinetic energy reduction using the information at these frequencies. As the dissipa-
tion of energy using a controller thus implemented depends on the value of the design
parameter in the γ−plane, the available design freedom for attenuation at the local and
remote points can be specified for frequencies near resonance and antiresonance. This
approach is compared with an ideal direct velocity feedback controller for its maximum
stable gain using a numerical example. The geometric based controller achieves good
broadband kinetic energy reduction for this lightly damped beam model.
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Chapter 7

Multi-loop Sequential Loop Closing
Control Design

7.1 Introduction

The geometric based approach for a stable feedback controller design is extended to
the design of multiple local feedback loops in this chapter. Several error sensors and
control actuators can then be incorporated on to a large structure for desired remote vi-
bration attenuation. A theoretical formulation for the design of multiple control loops
is provided, followed by an experimental implementation involving the design of two
sequential loops. A controller for a SISO loop is implemented in terms of a single de-
sign parameter that defines the feasible vibration attenuation at multiple locations solely
due to this control action. Distinct design parameters for each control loop are used to
construct each local feedback controller. Values for these design freedom variables that
parameterise feasible vibration attenuation are selected for each control loop separately
from different complex planes. These variables can then be selected to achieve vari-
ous control objectives, such as minimum interaction with other control loops at certain
frequencies or to enhance vibration attenuation at additional locations where simulta-
neous attenuation is not possible using the available control action. The robustness of
individual loops to failure will also be examined.

Although the geometric design method is not suitable for a centralised control ap-
proach, there are many other control design methods that can be used to design a
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centralised control scheme for vibration attenuation using multiple sensors and actu-
ators. Robust controller design methods for vibration attenuation using similar control
schemes have been extensively presented in the literature, see for example [Gawronski,
2004; Liu and Hou, 2004]. A centralised control scheme requires the sensor measure-
ment at any location for the computation of control action at some other or more than
one location. This poses hardware limitations for many AVC applications when the sen-
sor measurement and control actuation are separated by large distances. Mitigation of
vibration on the hull of ships using a centralised controller, for example, would require
long wiring between distantly located sensors, a centralised controller and actuators.
Although the extra time delay does not significantly affect the control design, excessive
wiring and hardware is also undesirable for the vibration mitigation of large span floors
in buildings and stadia. Moreover, the stability and performance of a centralised scheme
with multiple sensors and actuators is prone to several external factors. A single sensor
or actuator failure could aggravate the performance at more than one location.

A de-centralised control scheme, on the other hand, uses only the local measure-
ment as a feedback signal for the actuator. This avoids the need for extensive wiring to
connect the controller with the sensor and actuator. Furthermore, the individual feed-
back loops are closed loop stable and can also be made unsusceptible to the failure
of any other feedback loops. This allows for convenient testing and implementation
of additional controllers on the structure. Therefore, a de-centralised scheme is more
appropriate for active vibration control applications.

7.2 Sequential Loop Closing Control Design

In this section, a geometric approach for controller design is discussed for the vibration
attenuation problem where control action is applied at more than one point. Since the
design freedom parameterises feasible vibration attenuation only for a SISO local feed-
back loop, a decentralised control design technique is pursued for the design of control
systems at multiple locations. This is a decentralised independent control design ap-
proach and can be made robust to instabilities due to the failure of individual control
loops.

Sequential loop closing control design using the geometric technique is presented
here for a system with two local feedback loops. The extension to three or more local
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feedback loops is straightforward. The vibration measurement from the two error sen-
sors are denoted as qe1 and qe2 while the control force acting at the respective locations
are denoted as fc1 and fc2 . The error sensor and control actuator for both loops are
assumed to be slightly non-collocated to admit the non-minimum phase characteristics
encountered in practical situations. A primary excitation force denoted as fp acts at a
remote location and the vibration response at this point is denoted as qp. The open loop
transfer function matrix relating the various inputs and outputs is denoted as (7.1).



qe1 (jω)

qe2(jω)

qp (jω)


 =



gaa(jω) gab(jω) gac(jω)

gba(jω) gbb(jω) gbc(jω)

gca(jω) gcb(jω) gcc(jω)






fc1(jω)

fc2 (jω)

fp(jω)


 (7.1)

7.2.1 Control system design for the first loop

Initially, a feedback control system only for the first loop is designed such that the
control action is given as fc1(jω) = −k1(jω)qe1(jω). The control law for determining
the second input is undefined at this stage and it will be expressed as fc2(jω). The closed
loop response due to the control action of the first loop is then given by

qe1(jω) =
gab(jω)fc2(jω) + gac(jω)fp(jω)

1 + gaa(jω)k1(jω)
(7.2)

qe2(jω) =

[
gbb(jω)− gba(jω)k1(jω)gab(jω)

1 + gaa(jω)k1(jω)

]
fc2(jω)

+

[
gbc(jω)− gba(jω)k1(jω)gac(jω)

1 + gaa(jω)k1(jω)

]
fp(jω) (7.3)

qp(jω) =

[
gcb(jω)− gca(jω)k1(jω)gab(jω)

1 + gaa(jω)k1(jω)

]
fc2(jω)

+

[
gcc(jω)− gca(jω)k1(jω)gac(jω)

1 + gaa(jω)k1(jω)

]
fp(jω) (7.4)
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The local closed loop transfer function at point 1 is denoted in terms of a design freedom
parameter as

γa1(jω)Wa1(jω)Ba1(jω) = − gaa(jω)k1(jω)

1 + gaa(jω)k1(jω)
(7.5)

where Ba1(jω) is the all-pass transfer function formed from the RHP zeros of the non-
minimum phase control path transfer function and Wa1(jω) is a weighting filter to sup-
press spillover at out-of-bound frequencies. gaa(jω) can be factorised as a minimum
phase counterpart ĝaa(jω) with all its RHP zeros reflected into the LHP and an all pass
transfer function as given in (7.6).

gaa(jω) = ĝaa(jω)Ba1(jω) (7.6)

The numerical subscript with the design parameter and the Blaschke product denotes
the numerical order of the current loop in the multi-loop sequential design. Substituting
(7.5) in the equations for the closed loop transfer functions in (7.2), (7.3) and (7.4) gives



qe1(jω)

qe2(jω)

qp(jω)


 =



hab(jω) hac(jω)

hbb(jω) hbc(jω)

hcb(jω) hcc(jω)



[
fc2(jω)

fp(jω)

]
(7.7)

where

hab(jω) = [1 + γa1(jω)Wa1(jω)Ba1(jω)] gab(jω) (7.8)

hac(jω) = [1 + γa1(jω)Wa1(jω)Ba1(jω)] gac(jω) (7.9)

hbb(jω) =

[
1 + γa1(jω)Wa1(jω)Ba1(jω)

gba(jω)gab(jω)

gaa(jω)gbb(jω)

]
gbb(jω) (7.10)

hbc(jω) =

[
1 + γa1(jω)Wa1(jω)Ba1(jω)

gba(jω)gac(jω)

gaa(jω)gbc(jω)

]
gbc(jω) (7.11)

hcb(jω) =

[
1 + γa1(jω)Wa1(jω)Ba1(jω)

gca(jω)gab(jω)

gaa(jω)gcb(jω)

]
gcb(jω) (7.12)

hcc(jω) =

[
1 + γa1(jω)Wa1(jω)Ba1(jω)

gca(jω)gac(jω)

gaa(jω)gcc(jω)

]
gcc(jω) (7.13)

The attenuation in output qp(jω) using control action fc1(jω) results from a reduction
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in the magnitude of the partial closed loop transfer function hcc(jω) relative to the open
loop transfer function gcc(jω), which can be expressed as (7.14).

∣∣∣∣
hcc(jω)

gcc(jω)

∣∣∣∣ < 1 (7.14)

Substituting from (7.13) in (7.14) gives

∣∣∣∣1 + γa1(jω)Wa1(jω)Ba1(jω)
gca(jω)gac(jω)

gaa(jω)gcc(jω)

∣∣∣∣ < 1 (7.15)

or alternatively as

∣∣∣∣γa1(jω) +
gaa(jω)gcc(jω)

Wa1(jω)Ba1(jω)gca(jω)gac(jω)

∣∣∣∣

<

∣∣∣∣
gaa(jω)gcc(jω)

Wa1(jω)Ba1(jω)gca(jω)gac(jω)

∣∣∣∣ (7.16)

Inequality (7.16) evaluated at a discrete frequency ωi represents the region inside a circle
in a complex γa1− plane with centre

− gaa(jωi)gcc(jωi)

Wa1(jωi)Ba1(jωi)gca(jωi)gac(jωi)

and radius ∣∣∣∣
gaa(jωi)gcc(jωi)

Wa1(jωi)Ba1(jωi)gca(jωi)gac(jωi)

∣∣∣∣

. Any value for γa1 from inside this circle used in the implementation of a controller as
(7.17) will achieve attenuation in qp at that frequency.

k1(jω) =
−γa1(jω)Wa1(jω)

(1 + γa1(jω)Wa1(jω)Ba1(jω)) ĝaa(jω)
(7.17)

Similarly, attenuation in outputs qe1 and qe2 can be represented as inequalities (7.18) and
(7.19), respectively

∣∣∣∣γa1(jω) +
1

Wa1(jω)Ba1(jω)

∣∣∣∣ <
∣∣∣∣

1

Wa1(jω)Ba1(jω)

∣∣∣∣ (7.18)
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∣∣∣∣γa1(jω) +
gaa(jω)gbc(jω)

Wa1(jω)Ba1(jω)gba(jω)gac(jω)

∣∣∣∣

<

∣∣∣∣
gaa(jω)gbc(jω)

Wa1(jω)Ba1(jω)gba(jω)gac(jω)

∣∣∣∣ (7.19)

If the region of these circles in the γa1 plane is such that simultaneous vibration attenu-
ation at one or more point results in deterioration at any other point, then a value for γa1
used for controller implementation in (7.17) can be sought such that it augments design
of the second control system for simultaneous attenuation at all the points.

7.2.2 Control system design for the second feedback loop

A control system for the second feedback loop is designed using the partially closed
loop system in (7.7) and the performance of this closed loop system is denoted in terms
of a second variable γb2 as

γb2(jω)Wb2(jω)Bb2(jω) = − hbb(jω)k2(jω)

1 + hbb(jω)k2(jω)
(7.20)

where Bb2(jω) is obtained from factorization of the second local control loop non-
minimum phase transfer function as

hbb(jω) = ĥbb(jω)Bb2(jω)

The numerical subscript for the design parameter and the blaschke product is used to
denote that this feedback loop is implemented after the first feedback loop is closed. It
should be noted that Bb2(jω) contains the RHP zeros of the second open loop control
path transfer function, i.e. RHP zeros of gbb(jω) and the additional RHP zeros intro-

duced by the term
(

1 + γa1(jω)Wa1(jω)Ba1(jω)
gba(jω)gab(jω)

gaa(jω)gbb(jω)

)
, which is due to the

first feedback loop.
The closed loop transfer function matrix after substitution of the second feedback con-
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trol action in terms of this design parameter in (7.7) gives




qe1(jω)

qe2(jω)

qp(jω)




=




(
1 + γb2(jω)Wb2(jω)Bb2(jω)

hab(jω)hbc(jω)

hbb(jω)hac(jω)

)
hac(jω)

(1 + γb2(jω)Wb2(jω)Bb2(jω))hbc(jω)

(
1 + γb2(jω)Wb2(jω)Bb2(jω)

hcb(jω)hbc(jω)

hbb(jω)hcc(jω)

)
hcc(jω)




[
fp(jω)

]

(7.21)
In a similar fashion to the vibration attenuation conditions postulated in terms of regions
in the γa1−plane for the first control loop, closed loop reduction in qe1 , qe2 and qp at
a discrete frequency for the second control loop can be represented as regions inside
circles in the γb2−plane given by inequalities (7.22), (7.23) and (7.24), respectively

∣∣∣∣γb2(jω) +
hbb(jω)hac(jω)

Wb2(jω)Bb2(jω)hab(jω)hbc(jω)

∣∣∣∣

<

∣∣∣∣
hbb(jω)hac(jω)

Wb2(jω)Bb2(jω)hab(jω)hbc(jω)

∣∣∣∣ (7.22)

∣∣∣∣γb2(jω) +
1

Wb2(jω)Bb2(jω)

∣∣∣∣ <
∣∣∣∣

1

Wb2(jω)Bb2(jω)

∣∣∣∣ (7.23)

∣∣∣∣γb2(jω) +
hbb(jω)hcc(jω)

Wb2(jω)Bb2(jω)hcb(jω)hbc(jω)

∣∣∣∣

<

∣∣∣∣
hbb(jω)hcc(jω)

Wb2(jω)Bb2(jω)hcb(jω)hbc(jω)

∣∣∣∣ (7.24)

A controller for the second control loop is then implemented in terms of the optimally
selected and interpolated γb2(jω) transfer function as (7.25)

k2(jω) =
−γb2(jω)Wb2(jω)

(1 + γb2(jω)Wb2(jω)Bb2(jω)) ĥbb(jω)
(7.25)
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7.2.3 Integrity when inner feedback loop fails

One of the disadvantages of sequential loop closing design is that the stability of indi-
vidual control loops is not guaranteed when other feedback loops fail. This is termed
as integrity in the literature [Skogestad and Postlethwaite, 2005]. In this section, taking
the example case of the 3× 3 system in (7.1), conditions are formulated such that when
an inner feedback loop breaks then subject to certain conditions being met, individual
control loops will be tolerant to this failure.

The controller for loop 2 is designed for the partial closed loop transfer function
in (7.7) assuming that a stable feedback controller is already implemented for the first
feedback loop. For the second control loop γb2(jω) is first determined and then a con-
troller k2(jω) is implemented in terms of this γb2(jω) transfer function as (7.25). The
closed loop stability and controller stability conditions for the second control loop are
satisfied by appropriate selection and interpolation of γb2(jω) which is related to the
closed loop transfer function as (7.20). Now if the first feedback loop breaks, then
closed loop stability of the second local feedback loop is determined by the stability of
the term γb1(jω), which is the design parameter for the second feedback loop had the
first feedback loop not been implemented, given as

γb1(jω)Wb1(jω)Bb1(jω) =
−gbb(jω)k2(jω)

1 + gbb(jω)k2(jω)
(7.26)

Substituting k2(jω) from (7.25) in (7.26) gives

γb1(jω)Wb1(jω)Bb1(jω)

=

−gbb(jω)
−γb2(jω)Wb2(jω)

[1 + γb2(jω)Wb2(jω)Bb2(jω)] ĥbb(jω)

1 + gbb(jω)
−γb2(jω)Wb2(jω)

(1 + γb2(jω)Wb2(jω)Bb2(jω)) ĥbb(jω)

(7.27)
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After simplification, (7.27) can be written as

γb1(jω)Wb1(jω)Bb1(jω) =

γb2(jω)Wb2(jω)Bb2(jω)
gbb(jω)

hbb(jω)

1 + γb2(jω)Wb2(jω)Bb2(jω)

[
1− gbb(jω)

hbb(jω)

] (7.28)

The second control loop will be robust to a failure of the first control loop if γb2(jω) is
determined such that the denominator of (7.28) given by the term

1 + γb2(jω)Wb2(jω)Bb2(jω)

[
1− gbb(jω)

hbb(jω)

]
(7.29)

does not have any RHP zeros. This is satisfied if the nyquist contour of

γb2(jω)Wb2(jω)Bb2(jω)

[
1− gbb(jω)

hbb(jω)

]
(7.30)

does not enclose the (−1+j0) point. It should be noted that for a stable controller γb2(jω)

is determined such that the nyquist contour of γb2(jω)Wb2(jω)Bb2(jω) does not enclose
the critical point. The maximum peak magnitude of this term across all frequencies can
be denoted as

‖γb2(jω)Wb2(jω)Bb2(jω)‖∞ = ‖γb2(jω)‖∞ = Mb2 (7.31)

As per the small gain theorem, the nyquist contour of γb2(jω)Wb2(jω)Bb2(jω)

[
1− gbb(jω)

hbb(jω)

]

will not enclose the critical point if

∥∥∥∥γb2(jω)Wb2(jω)Bb2(jω)

[
1− gbb(jω)

hbb(jω)

]∥∥∥∥
∞
≤ 1 (7.32)

Substituting from (7.31) in (7.32) gives

Mb2

∥∥∥∥
[
1− gbb(jω)

hbb(jω)

]∥∥∥∥
∞
≤ 1 (7.33)
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Dividing both sides of inequality by Mb2

∥∥∥∥
[
1− gbb(jω)

hbb(jω)

]∥∥∥∥
∞
≤ 1

Mb2

(7.34)

It can be seen from (7.34) that if the maximum peak magnitude of the term in the
brackets in (7.30), i.e. [

1− gbb(jω)

hbb(jω)

]
(7.35)

is less than or equal to M−1
b2

at all frequencies then (7.29) does not have any RHP zeros
and the second loop will be stable. A less conservative statement would be to ensure that
frequencies at which (7.35) has low gain and low phase margins, γb2(jω)Wb2(jω)Bb2(jω)

has large gain and large phase margins. Substituting hbb(jω) from (7.10) in (7.35) gives

1− gbb(jω)

hbb(jω)
= 1− 1

1 + γa1(jω)Wa1(jω)Ba1(jω)
gba(jω)gab(jω)

gaa(jω)gbb(jω)

(7.36)

also simplified as

1− gbb(jω)

hbb(jω)
=

[
1 +

gaa(jω)gbb(jω)

γa1(jω)Wa1(jω)Ba1(jω)gba(jω)gab(jω)

]−1
(7.37)

Substituting (7.37) in (7.34) gives

∥∥∥∥∥

[
1 +

gaa(jω)gbb(jω)

γa1(jω)Wa1(jω)Ba1(jω)gba(jω)gab(jω)

]−1∥∥∥∥∥
∞
≤ 1

Mb2

or alternatively as

∣∣∣∣∣

[
1 +

gaa(jω)gbb(jω)

γa1(jω)Wa1(jω)Ba1(jω)gba(jω)gab(jω)

]−1∣∣∣∣∣ ≤
1

Mb2

∀ω
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As both sides of inequality are positive, inversion leads to

∣∣∣∣1 +
gaa(jω)gbb(jω)

γa1(jω)Wa1(jω)Ba1(jω)gba(jω)gab(jω)

∣∣∣∣ ≥Mb2 ∀ω

which can also be rearranged as

∣∣∣∣γa1(jω) +
gaa(jω)gbb(jω)

Wa1(jω)Ba1(jω)gba(jω)gab(jω)

∣∣∣∣ ≥Mb2 |γa1(jω)| ∀ω (7.38)

Proposition 1. For any value of Mb2 such that Mb2 6= 1, (7.38) for a discrete frequency

ωi is the equation of an Apollonius circle in the γa1−plane which gives the locus of all

points whose distances from
−gaa(jωi)gbb(jωi)

Wa1(jω)Ba1(jωi)gba(jωi)gab(jωi)
to 0 are in the ratio Mb2 .

The centre c and radius r of this circle are given as

c =

(
1

1−M2
b2

)[ − gaa(jωi)gbb(jωi)
Wa1(jω)Ba1(jωi)gba(jωi)gab(jωi)

]

r =
Mb2

(M2
b2
− 1)

∣∣∣∣∣
gaa(jωi)gbb(jωi)

Wa1(jω)Ba1(jωi)gba(jωi)gab(jωi)

∣∣∣∣∣

Proof. See Appendix A

The equation (7.38) can also be stated as (7.39) which describes the region inside a
circle for a discrete frequency ωi

∣∣∣∣γa1(jωi) +

(
1

1−M2
b2

)
gaa(jωi)gbb(jωi)

Wa1(jωi)Ba1(jωi)gab(jωi)gba(jωi)

∣∣∣∣

≤ Mb2(
M2

b2
− 1
)
∣∣∣∣

gaa(jωi)gbb(jωi)

Wa1(jωi)Ba1(jωi)gab(jωi)gba(jωi)

∣∣∣∣ (7.39)

The condition for robustness to failure of individual loops can be deduced for differ-
ent values of Mb2 from this equation which represents different regions in the design
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freedom plane. For simplicity, let the term

A(jω) =
gaa(jω)gbb(jω)

Wa1(jω)Ba1(jω)gba(jω)gab(jω)
(7.40)

From (7.7),
qe2 = hbb(jω)fc2(jω) + hbc(jω)fp(jω)

The partial closed loop transfer function hbb(jω) is related to the open loop transfer
function gbb(jω) as

hbb(jω)

gbb(jω)
= 1 + γa1(jω)Wa1(jω)Ba1(jω)

gab(jω)gba(jω)

gaa(jω)gbb(jω)

The region inside a circle centred on A(jωi) corresponds to a reduction in magnitude of
FRF ∣∣∣∣

hbb(jωi)

gbb(jωi)

∣∣∣∣ < 1

A(jω) at any arbitrary discrete frequency ωi is the centre of the circle that corresponds to
attenuation in output at the second control loop error sensor resulting from control action
in the first feedback loop for any primary excitation collocated with this error sensor.
The robustness to failure for different values of Mb2 is depicted in the γa1−plane as
follows

Case 1: The special case when Mb2 = 1 results in a perpendicular bisector of the line
segment joining the point A(jωi) with the origin. Substituting Mb2 = 1 in (7.38)
yields

∣∣∣∣γa1(jω) +
gaa(jω)gbb(jω)

Wa1(jω)Ba1(jω)gba(jω)gab(jω)

∣∣∣∣ ≥ |γa1(jω)| ∀ω (7.41)

For a discrete frequency ωi substituting in terms of A(jωi) from (7.40) gives

|γa1(jωi) + A(jωi)| ≥ |γa1(jωi)| (7.42)

which is the equation of a perpendicular bisector of the line joining the points 0

and A(jωi) in the γa1−plane. The condition to guarantee integrity of the decen-
tralised multivariable control system is that the controller k1(jω) is implemented
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using values for γa1 selected from only one half of the γa1−plane divided by this
line segment. This is the portion of the plane which encompasses the origin as
shown in figure 7.1. The red dashed circle in the γa1−plane represents reduction
in output at the second error sensor for any excitation that occurs at the same
point.

Case 2: Substituting (7.40) in (7.39) gives

∣∣∣∣γa1(jωi) +

(
1

1−M2
b2

)
A(jωi)

∣∣∣∣ ≤
Mb2

M2
b2
− 1
|A(jωi)| (7.43)

If Mb2 > 1, then the circle (7.43) surrounds the origin and A(jωi) lies outside this
circle. For increasing values of Mb2 , the centre of this circle approaches 0, and
the size of the circle becomes smaller as seen in figure 7.2. For robust stability
of both control loops, a value for γa1 will have to be selected at this frequency
from a region that lies inside this circle. The position and size of this region
depends on the terms A(jωi) and Mb2 , but for very large values of Mb2 the size
of this region reduces. Therefore, as the peak magnitude of γb2(jω) increases, the
region in the γa1−plane available for controller implementation reduces and this
imposes an additional constraint on the implementation of the controller for first
loop. Predictably, selection of γa1 from inside these circles for increasing values
of Mb2 results in very low controller gain at these frequencies.

The peak magnitude Mb2 gives the worst case condition for selection of γa1 such
that the second control loop is robust to failure of the first control loop. A less
conservative approach would be to use the actual magnitude of γb2(jω) instead of
its peak magnitude to determine the feasible regions in the γa1−plane for robust
stability. This would allow selection of γa1 from a larger region as compared to
the more conservative approach.

Remark The robust stability condition to ensure stability of feedback loop 2 when
feedback loop 1 fails can be summarized from the foregoing treatment in the γa1−plane.
It can be stated as follows:

The effect of feedback control at loop 1 should not cause attenuation of the open

loop response between the output at error sensor 2 and the excitation input at the point
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For M=1, equation is perpendicular bisector of the line from 0 to A
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Figure 7.1: The perpendicular bisector in γa1−plane for Mb2 = 1

of application of second loop control force.

This would ensure that when loop 1 fails then the ‘closed’ loop response to point
excitation at the second control loop does not get amplified thereby ensuring closed
loop stability.

7.3 Summary

A sequential loop closing control design technique has been demonstrated using the
geometric design approach. The robustness to failure of inner feedback loops can be
formulated in terms of the design parameter. The conditions that guarantee integrity
of additional loops is described in the design freedom plane. It predicts robustness of
the second feedback loop to failure of the first loop if the control action due to the first
loop does not attenuate the driving point transfer function of the second. This can be
defined in terms of additional constraints on the selection and interpolation of the design
parameter transfer function.
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Chapter 8

Experimental Verification of Sequential
Loop Closing Control Design

8.1 Introduction

The decentralised multivariable control design for remote vibration attenuation pre-
sented in chapter 7 is experimentally validated in this chapter1. The full-scale laboratory
set-up is a simply supported in situ cast post-tensioned slab strip that is representative of
many floor structures used in building construction. A schematic of the concrete slab is
shown in figure 8.1. The total length of the slab strip is 11.2 m which includes 200 mm

overhangs over each edge support. It is 2.0 m wide, 275 mm thick and weighs approx-
imately 15 tonnes. The first mode of vibration has a natural frequency around 4.4 Hz,
the second bending mode occurs around 16.7 Hz while the third mode is a torsional
mode which occurs around 26.2 Hz. These low frequency resonant modes are prone to
excitation by human-induced motion.

This slab structure is used for the study of vibration mitigation in floor structures due
to excitations characterised by human body motions such as walking, running, skipping,
jumping, etc. Vibration due to human induced excitation is problematic in office floors,
footbridges, stadia and other large buildings [Bachmann and Ammann, 1987]. The de-
velopment of newer materials which are stronger but lighter has allowed the possibility

1This work was carried out at the Department of Civil and Structural Engineering, University of
Sheffield, during July-August 2012
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of constructing open plan structures inexpensively and with ease. The use of lighter ma-
terials has unfortunately led to lesser damping and lower natural frequencies of the floors
which can be easily excited by periodic human motions or operation of indoor equip-
ment. Although this is not a safety concern, vibration mitigation is an ongoing area of
research amongst the civil and structural engineering community due to the vibration
serviceability requirements. Traditionally, passive techniques have been employed to
this end but lately AVC technologies have gained acceptance in this field [Nyawako and
Reynolds, 2009, 2011].

However, a major area of concern is the dynamics and nonlinearities of the actuators
that are typically used on civil engineering structures, which adversely affects the AVC
system performance and stability margins. Ideally, the actuator dynamics should not
influence the open loop system dynamics but in practice this would still be acceptable
if the resonance due to the inertial mass of the actuator is considerably less than the
structural resonance [Benassi et al., 2004; Elliott et al., 2001]. The actuators used in
this study are four electrodynamic inertial shakers as shown in figure 8.2, two of which
are APS Electro-Seis Dynamics Model 113 used for primary excitation, and larger APS
Electro-Seis Dynamics Model 400 used as control actuators. The FRF between the
output of the control shaker, which is the force applied by the inertial mass, and the
input voltage that drives the shaker is shown in figure 8.4. The acceleration of the
inertial mass is measured using Endevco accelerometers mounted on the armature of
the shaker as shown in figure 8.3. A low frequency resonance is evident which will
affect the performance of the control system at the first structural resonant frequency.
The vertical acceleration is measured using QA accelerometers (shown in figure 8.3)
mounted at certain test points of interest on the structure.

8.2 Experimental Implementation

8.2.1 Selection of suitable measurement and performance test points

The first bending mode of the slab can be excited by a suitable force applied near its
mid-span. This is achieved using a primary excitation shaker at test point 11 (TP11),
fp2 in figure 8.1. The second bending and torsional modes are excited using a dis-
turbance shaker placed at TP02, denoted as fp1 in figure 8.1. The first feedback loop
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Figure 8.1: Schematic of the concrete slab showing location of excitation shakers (fp1
and fp2) and control shakers (fc1 and fc2) on the structure, acceleration is also measured
at test point 6 (TP06) for remote performance evaluation

is designed for a control shaker at TP19 as it can attenuate the torsional mode effec-
tively from this location. A suitable location for the second control shaker is chosen as
TP10 because it can affect the first and second bending mode of the slab appropriately.
An additional remote point at TP06 is chosen for performance evaluation of a remote
vibration controller since all the three modes are readily visible at this location. The
magnitude of FRF between acceleration measurement at all test points of interest to the
excitation input signal for both disturbance shakers at TP02 and TP11 upto 100 Hz is
shown in figure 8.5 and figure 8.6, respectively. This was obtained by feeding uncorre-
lated random excitation to both the disturbance shakers and taking measurements of the
QA accelerometers. A transfer function model approximation for both the local control
path FRFs has non-minimum phase characteristics.

8.2.2 Control Design for first feedback loop at TP19

A controller is designed for the shaker at TP19 for attenuation around the torsional
mode frequency of the structure. A weighting filter, Wa1(jω), has to be selected for
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Figure 8.2: View of the laboratory set-up from one end
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Figure 8.3: Control Shaker, piezo-electric Endevco accelerometer used to capture shaker
dynamics, and QA accelerometer used for feedback measurement
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Figure 8.4: Magnitude and Phase of the actuator dynamics
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Figure 8.5: Magnitude of the FRF between the acceleration output at TP06, TP02, TP19
and the primary excitation at TP02

0 10 20 30 40 50 60 70 80 90 100

−80

−60

−40

−20

Frequency (Hz)

A
m
p
li
tu
d
e
d
B

(1
m
s−

2 /
V
)

TP06
TP11
TP10

Figure 8.6: Magnitude of the FRF between the acceleration output at TP06, TP11, TP10
and the primary excitation at TP11
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suppression of spillover at problematic frequencies. It is chosen as an 8th order band-
pass butterworth filter with low cut-off frequency 19.9 Hz and high cut-off frequency
39.4 Hz. The regions describing attenuation at various test points of interest is then
determined in the design freedom plane. The circles enclosing the regions describing
attenuation at TP19, TP02 and TP06 for discrete frequencies between 25.5 Hz to 27 Hz
is shown in figure 8.7. It can be seen that the regions almost completely overlap which
indicates that spatially global reduction is possible in this frequency band. The optimal
values for the design parameter is selected near the centre of these circles at discrete
frequencies. This set of optimal values for design parameter is then interpolated at the
design frequencies using the Nevanlinna Pick interpolation algorithm as was previously
demonstrated for the beam example in section 3.5. A controller is then realised in terms
of this design parameter transfer function which is then used to compute the theoretical
reduction in output at the desired locations. The magnitude of the FRF between out-
put at TP19, TP02 and TP06 and disturbance input at TP02 predicts reduction around
the frequency of interest using this designed feedback controller as shown in figures
8.8, 8.9 and 8.10. The weighting filter used with this design parameter ensures that the
controller for the first loop does not have energy in the same frequency band as the con-
troller for the second feedback loop. The system dynamics of this partially closed loop
system is then utilised in the design of a feedback control system at TP10. The actual
FRF measurements of the open loop system as shown in figures 8.5 and 8.6 is used for
the computation of partial closed loop system dynamics.

8.2.3 Control Design for second feedback loop at TP10

The partial closed loop system dynamics with the first control loop closed is used for
estimating a local control path model of the second loop. The design of the control
system for the second loop does not necessitate identification of a model for the other
FRFs and so the inaccuracies due to model approximation can be avoided compared to
a centralised MIMO control design.

The control shaker for the second feedback loop at TP10 targets reduction around
the first and second natural frequency of the structure. Therefore, the test points of
interest for this control design are TP11, TP10 and TP06; the last one is chosen to eval-
uate the performance of the remote vibration controller. A suitable weighting filter to
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Figure 8.7: Regions in γa−plane in the design frequency band describing the reduction
in output at TP06 (centre of circle ◦), TP02 (centre of circle ?) and TP19 (centre of
circle �)
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Figure 8.8: Comparison of the predicted magnitude of FRF between output at TP06 and
disturbance excitation at TP02, with and without (dashed) feedback control at TP19
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Figure 8.9: Comparison of the predicted magnitude of FRF between output at TP02 and
disturbance excitation at TP02, with and without (dashed) feedback control at TP19
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Figure 8.10: Comparison of the predicted magnitude of FRF between output at TP19
and disturbance excitation at TP02, with and without (dashed) feedback control at TP19
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suppress excitation due to spillover at undesired frequencies is initially selected. Signif-
icant energy in the control input below 2.0 Hz will cause instabilities due to the shaker
dynamics as illustrated in figure 8.4. Therefore, an 8th order bandpass butterworth filter,
with low and high cut-off frequencies of 2.0 Hz and 25.7 Hz respectively, is selected.

The design freedom parameter for the second loop, γb2 , is selected based on the par-
tial closed loop transfer function at this location. The regions in γb2−plane for reduction
in vibration at TP06, TP10 and TP11 for frequencies near the first resonant frequency
in figure 8.11 almost overlap indicating the possibility of spatially global reduction for
this bending mode. However, for frequencies near the second resonance the centre of
circles representing attenuation at TP11 denoted as � lie outside the circles that rep-
resent attenuation at TP06 and TP10 as seen in figure 8.12. This is because for the
second bending mode, there is a node at the location of TP11. So, further attenuation
at TP11 near the second resonant frequency is not a concern but it should be ensured
that the output does not deteriorate at TP11. Therefore the optimal values for design
freedom is selected as the centre of the circle representing attenuation at TP10 as this
would lie inside the regions representing attenuation at the other test points of interest.
It is interpolated using the Nevanlinna Pick interpolation algorithm and a controller is
implemented in terms of the design parameter transfer function. The maximum singular
value of γb2(jω) is less than 1 which simplifies robustness to failure of the first feedback
loop as shown by Eq.(7.32).

The closed loop stability of the feedback loop depends on the stability of the de-
sign parameter transfer function as given in Eq.(7.20). Now if the first loop fails then
the stability of the second feedback loop, with the designed controller in operation, de-
pends on the stability of the term given by Eq.(7.26). As is shown in section 7.2.3, this
condition can be satisfied if the nyquist contour of Eq.(7.30) does not enclose the criti-
cal point. The nyquist diagram of this term for the identified design parameter transfer
function obtained using NP interpolation is plotted in figure 8.13. The contour does not
enclose the critical point which signifies robustness of this controller to failure of the
first feedback loop.
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Figure 8.11: Regions in γb2−plane in the frequency band near first natural frequency
describing the reduction in output at TP06 (centre ?), TP11 (centre ◦) and TP10 (centre
�)

8.2.4 Experimental Results

The controllers developed in section 8.2.2 and section 8.2.3 for the first and second feed-
back loop has to be implemented in the laboratory through Simulink using an dSPACE
real time interface hardware. Prior to that it is converted to a discrete-time function
using the first order hold method with a sampling frequency of 2 kHz. The FRF of the
discretised compensator matches accurately with the continuous time domain compen-
sator especially in the design frequency bandwidth.

Random excitation is fed to both the disturbance shakers at TP02 and TP11 which
is driven by the power amplifiers in voltage control mode. The control shakers at TP19
and TP10 are also operated in voltage control mode. The power spectral density of
the QA accelerometer measurements at the relevant test points are plotted in figures
8.14, 8.15, 8.16, 8.17 and 8.18 for three different runs of experiments. In the first
run of experiment, control at TP10 is switched off and only control shaker at TP19 is
operational. It can be seen from the plots that when the control is switched on at TP19
only, there is a reduction of approximately 10 dB in the response levels at TP06, TP02
and TP19 around the torsional mode frequency. In the second run of experiments control
at TP19 is switched off and only control shaker at TP10 is operational. It can be seen
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Figure 8.12: Regions in γb2−plane in the frequency band near second natural frequency
describing the reduction in output at TP06 (centre ?), TP11 (centre ◦) and TP10 (centre
�)
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Figure 8.13: Nyquist plot of the term (7.30) which determines robustness of second loop
when inner loop fails

from the plots of PSD that the response levels at TP06, TP02, TP19 and TP10 reduces by
around 15 dB near the frequency of the second bending mode. There is also a reduction
of more than 10 dB in response levels at all the test points around the frequency of
the first bending mode which shows the predicted attenuation in the design frequency
band is achieved. In the third run of experiments, control shaker at TP19 is switched
on followed by the control shaker at TP10. The closed loop system remains stable for
this configuration even when one of the controllers is switched off. This demonstrates
the robustness of both control loops to the failure of individual loops. The PSD of the
outputs at all the test points for both controllers switched on shows more than 10 dB
reduction close to the frequencies of the first bending mode and torsional mode whereas
the response levels reduce by around 15 dB near the frequency of the second bending
mode.
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Figure 8.14: Power spectral density of the output at TP06, open loop (thick shaded),
partial closed loop with control action at only TP19 (dotted) and only TP10 (dashed),
and both loops closed (thin solid)
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Figure 8.15: Power spectral density of the output at TP02, open loop (dotted), partial
closed loop with control action at only TP19 (dash-dotted) and only TP10 (dashed), and
both loops closed (solid)
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Figure 8.16: Power spectral density of the output at TP11, open loop (dotted), partial
closed loop with control action at only TP19 (dash-dotted) and only TP10 (dashed), and
both loops closed (solid)
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Figure 8.17: Power spectral density of the output at TP19, open loop (dotted), partial
closed loop with control action at only TP19 (dash-dotted) and only TP10 (dashed), and
both loops closed (solid)
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Figure 8.18: Power spectral density of the output at TP10, open loop (dotted), partial
closed loop with control action at only TP19 (dash-dotted) and only TP10 (dashed), and
both loops closed (solid)

8.3 Summary

The geometric-based decentralised multivariable feedback controller design approach
has been experimentally validated using a laboratory set-up. The first control loop at a
test point on a floor slab structure is used to attenuate vibration output at frequencies
close to the torsional mode. The second control loop at a different test point attenuates
vibration output close to the first and second bending mode frequencies. The interaction
between both control loops can cause instabilities in the system. This is addressed with
the help of the design parameter, so that both control loops are robust to the failure
of each other. The results demonstrate the validity of the aforementioned method for
the design of two feedback loops that can be operated individually or concurrently for
remote vibration attenuation.
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Chapter 9

Conclusions

A remote vibration control design technique for the attenuation of broadband distur-
bance at more than one location, subject to achievability, is detailed in this thesis. This
is motivated from the practical problems associated with sensor and actuator dynamics
for remote vibration attenuation and the undesirable consequences of locally optimal
control actions. For example, in marine vessels and rotor aircraft, the excitation gener-
ated due to propulsion systems gets transmitted to other vibration sensitive regions. The
attenuation of this vibration at easily accessible locations may then lead to an enhanced
response at other locations.

The developed methodology provides the control designer with a systematic proce-
dure to evaluate and then generate an optimal controller based on the required perfor-
mance. The restrictions on the controller stability in the previously related works, when
the local control path transfer function is non-minimum phase, is solved in the work
presented here. According to this method, a single design variable allows the param-
eterisation of feasible attenuation at the local and remote points. A single sensor and
actuator pair can then be used to achieve desired vibration mitigation performance at the
local and remote points. The value of this design activity lies in the uncomplicated ren-
dering of the achievable attenuation at the remote and local points and then exploiting
this information to realise a suitable strongly stabilising controller.

Robustness to uncertainties and unmodelled dynamics is also tackled within the
framework of this geometric approach. The available design freedom shapes the con-
troller FRF to suppress the excitation of dynamics at out of band frequencies. The
circles in the γ−plane can also be visualised in a three dimensional plot. The contour

132



Excite the disturbance and control ac-
tuators and then measure the out-

puts of the local and remote sensors

Fit a model to the local control path

Factorise this model into a minimum
phase and an all pass transfer function

Select a suitable filter to suppress control spillover

For discrete frequencies in the
desired frequency bandwidth

Plot the circles in the γ−plane that de-
scribe reduction in local and remote outputs

Ascertain the maximum possible attenuation of
output simultaneously at local and remote points

Select an optimal value for γ from this plane

Interpolate the set of optimal γ data
values at the discrete frequencies

with a stable transfer function γ(jω)

Realise controller

gcc(jω) gcp(jω)
gpc(jω) gpp(jω)

Bcc(jω)

Wγ(jω)

Figure 9.1: Flow chart showing the main steps of the geometric based control design
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of the final operating values of the design parameter, which is obtained from the FRF of
the identified design parameter transfer function, allows for a simplistic interpretation
of the controller performance in a certain frequency band. The main steps of the control
design are summarised in figure 9.1.

The proposed control design was also experimentally validated using a propeller
blade test rig. The sharp peaks in the controller FRF due to the inversion of lightly
damped zeros in the minimum phase counterpart of the local path transfer function
is also addressed using a notch filter. Alternatively, this peak can be suppressed by
selecting small values for the design parameter from near the origin in the complex
plane.

The effect of local control on the response level at remote points for frequencies
close to resonance can also be proven with the help of this design parameter. It shows
that active damping of the local control path FRF using control on the resonating struc-
ture achieves satisfactory global response. This result is extended for the reduction of
kinetic energy of a beam model and compared with the ideal performance using a direct
velocity feedback control.

Finally, an extension for the design of a multivariable controller using the geometric
technique is also presented. A sequential loop closing approach is used for the design
of de-centralised multiple feedback controllers. Due to the interactions between the
individual loops it is important to consider the stability of each loop to the failure of
other loops. Robustness to failure of individual loops is also demonstrated with the help
of an experimental implementation.

9.1 Contributions

The main achievements of the work presented in this thesis are briefly summarised
below:

1. A systematic procedure is developed in chapter 3 for the design of a stable and
broadband controller based on the previous geometric approach. This method
relaxes the requirement for a truely collocated sensor and actuator pair.

2. The conditions for avoiding control spillover can be incorporated in this design
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procedure itself, so that the final compensator is robust to the uncertainties of
unmodelled system dynamics. This allows the practical implementation of con-
troller for the broadband mitigation of vibration.

3. This control system design is experimentally validated for a laboratory rig, that
replicates the vibration problem in propeller blade systems, in chapter 4. It is
demonstrated that due to the nature of vibration excitation and transmission in
this system, it is not feasible to achieve reasonable remote vibration attenuation.

4. In chapter 5, it is proven analytically in terms of this design parameter that optimal
control at the local point results in good global response for frequencies near
resonance.

5. A control system design is proposed for kinetic energy reduction based on its opti-
mal values for frequencies near resonance and antiresonance. This can potentially
be used to overcome the limitations of direct velocity feedback control for kinetic
energy reduction.

6. In chapter 7, a decentralised sequential loop closing technique for the design of
multivariable controllers is also presented. This method provides conditions on
the design parameter that ensures the robustness of individual loops to the failure
of other feedback loops.

7. The multivariable control design is experimentally validated on a laboratory scale
slab structure. It provides good vibration reduction performance and the design
of individual feedback loops is made robust to the failure of other loop using this
method.

9.2 Scope for further work

The geometric approach in its present form is a very convenient tool for the evaluation
of any remote vibration controller performance. It can be used to extract meaningful
information regarding the feasibility of simultaneous attenuation at the local and remote
points. This functionality is demonstrated in figure 4.4, which clearly shows the limited
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influence of any control action on the remote output. However, the calculation of a
suitable controller from the optimal design parameter using the procedure in its current
form results in many shortcomings. This can cause significant performance degradation
depending on the dynamics of the system. Some of the drawbacks and recommendations
to improve this design methodology is presented below:

9.2.1 Lower Order Compensator

The main drawback is the high order of the final controller LTI model. The optimal
set of values for the design parameter at the discrete frequencies is interpolated using
the Nevanlinna Pick interpolation algorithm. The order of the final controller using
this method increases by four for every additional data value. One way to reduce the
order of the controller is to minimise the size of the optimal design parameter data set.
This can be achieved for lightly damped structures by selecting only very few optimal
values close to the resonant frequencies, since the region of overlap is maximum at these
frequencies and the feasible data values would tolerate considerable deviation from the
optimal data values. But for heavily damped structures, the region of overlap depicting
feasible attenuation at several locations decreases in the design freedom plane, thus
necessitating interpolation at many discrete frequencies. Furthermore, the gradient of
κ, defined in Eq.(3.38), for the optimal values of the design parameter can be large for
some control problems, as shown in figure 4.5. Therefore in this case, it requires more
interpolation data values in the frequencies from 220 to 250 Hz to obtain simultaneous
attenuation at the local and remote points. The filter, Wγ(jω), also affects the selection
of optimal values for the design parameter which is explained in section 3.5.3.1, based
on its effect on the gradient of κ. The requirement for filters with a high order or with
cut-off frequencies close to the design frequency bandwidth increases the gradient of κ,
thus necessitating more interpolation data values.

9.2.2 Computational complexity

Also, the processing power required for NP interpolaton increases as the number of
data values increase. This computational complexity can be determined by the number
of arithmetic operations for the calculation of the Fenyves array, as given in (3.36), and
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the recursive evaluation of a function, as given in (3.37). The calculation of Fenyves
array requires O(n2) operations and the subsequent computation of the function re-
quires O(n) steps. Therefore, it is recommended that an algorithm be developed such
that the discrete frequencies for which the values of the design parameter are consid-
ered for interpolation is optimised. Based on this, a reduced set of discrete frequencies
can be determined such that any redundant data values are avoided. Furthermore, or-
der reduction techniques can be employed that results in a lower order controller with
the same performance in the desired bandwidth, however this may require extra com-
putation power. This computational requirement and the need to realise a high order
controller also hampers the attenuation of a larger frequency bandwidth.

9.2.3 Interpolation of design parameter

The main steps in the interpolation of the optimal values of the design parameter is
shown in figure 9.2. This procedure is applicable for many of the commonly occuring
vibration control problems and the whole process can be automated. However, it still
requires judicious user input to satisfy the controller stability conditions by manually
tuning the σ and M values. The criteria for determination of sensible values for σ and
M is illustrated with the help of an example in section 3.5.3. It may not always be
possible to follow the guidelines listed therein due to the nature of the contour formed
by the optimal values of the design parameter. A large value of M will increase the
positive definiteness of the Pick matrix given by Eq.(3.35), which determines the closed
loop stability. However, for controller stability, the term given by

1

1 + γ(jω)Bcc(jω)Wγ(jω)
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Select optimal γ data values
for desired frequencies, [γi, ωi]

Check whether
γ(jωi)Wγ(jωi)Bcc(jωi) >

−1?

Reduce |γ(jωi)|
to be less than 1

OR
Use LMI to alter

the optimal data set

Choose initial val-
ues of σ and M
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Calculate Pick matrix

using the values of σ and
M from previous step

Is Pick matrix
positive definite? Interpolate γ(jω)
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Is there large oscillations between
the discrete frequency points?
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Does the γ contour in 3D plane lie
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Does Nyquist contour of
γ(s)Wγ(s)Bcc(s) cross -1?
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Figure 9.2: Flow chart showing the steps of the Nevanlinna Pick interpolation
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should also be stable. A Pick matrix Ps for this term can be defined based on the
selections of M and σ as

Ps =




1− 1(
1 +

γk
M
Bcc(jωk)Wγ(jωk)

) 1(
1 +

γl
M
Bcc(jωl)W γ(jωl)

)

σ + jωk + (σ − jωl)




n

k,l=1

(9.1)

Multiplying the terms inside the brackets and substitutingBcc(jωk)Bcc(jωl)Wγ(jωk)W γ(jωl) =

1 gives

Ps =




1− 1

1 +
γk
M
Bcc(jωk)Wγ(jωk) +

γl
M
Bcc(jωl)W γ(jωl) +

γkγl
M2

j(ωk − ωl) + 2σ




n

k,l=1

(9.2)

It can be seen from Eq.(9.2) that the positive definiteness of Ps reduces as M increases
which proves the difficulty in obtaining a stable controller if a small value of M also
does not ensure closed loop stability. Therefore, in some cases the optimal values of γ
needs to be manually adjusted so that the closed loop stability is satisfied for a small
value of M .
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Appendix A

A generalized form of (7.38) is written as

|z − A| ≥ c |z −B|

Squaring both sides

(z − A)(z − A) ≥ c2(z −B)(z −B)

zz − c2zz − zA+ c2zB − zA+ c2zB ≥ c2BB − AA

[
1− c2

]
zz +

[
c2B − A

]
z +

[
c2B − A

]
z ≥ c2BB − AA

[
c2 − 1

]
zz −

[
c2B − A

]
z −

[
c2B − A

]
z ≤ AA− c2BB

zz −
[
c2B − A

]

[c2 − 1]
z − [c2B − A]

[c2 − 1]
z ≤ AA− c2BB

[c2 − 1]

zz −
[
c2B − A

]

[c2 − 1]
z − [c2B − A]

[c2 − 1]
z +
|c2B − A|2

[c2 − 1]2
≤ AA− c2BB

[c2 − 1]
+
|c2B − A|2

[c2 − 1]2
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∣∣∣∣z −
(
c2B − A
c2 − 1

)∣∣∣∣
2

≤
[
AA− c2BB

]
[c2 − 1] + (c2B − A)

(
c2B − A

)

[c2 − 1]2

∣∣∣∣z −
(
A− c2B
1− c2

)∣∣∣∣
2

≤ c2AA− AA− c4BB + c2BB + c4BB − c2AB − c2AB + AA

[c2 − 1]2

∣∣∣∣z −
(
c2B − A
c2 − 1

)∣∣∣∣
2

≤ c2 |B − A|2

[1− c2]2

∣∣∣∣z −
(
c2B − A
c2 − 1

)∣∣∣∣ ≤
c |B − A|
[c2 − 1]

Substituting
z = γa1

A =
−gaa(jω)gbb(jω)

Ba1(jω)gab(jω)gba(jω)

c = Mb2 , B = 0

gives

∣∣∣∣γa1(jω) +

(
1

1−M2
b2

)
gaa(jω)gbb(jω)

Ba1(jω)gab(jω)gba(jω)

∣∣∣∣ ≤
Mb2(

M2
b2
− 1
)
∣∣∣∣

gaa(jω)gbb(jω)

Ba1(jω)gab(jω)gba(jω)

∣∣∣∣
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Appendix B

The mass matrix of the finite element model of the beam in section 3.5 is

Mbeam = 10−3×




0.03 M1 01×2 01×2 01×2 01×2 01×2 01×2 01×2 01×2 01×1

M′
1 M2 M3 02×2 02×2 02×2 02×2 02×2 02×2 02×2 02×1

02×1 M′
3 M2 M3 02×2 02×2 02×2 02×2 02×2 02×2 02×1

02×1 02×2 M′
3 M2 M3 02×2 02×2 02×2 02×2 02×2 02×1

02×1 02×2 02×2 M′
3 M2 M3 02×2 02×2 02×2 02×2 02×1

02×1 02×2 02×2 02×2 M′
3 M2 M3 02×2 02×2 02×2 02×1

02×1 02×2 02×2 02×2 02×2 M′
3 M2 M3 02×2 02×2 02×1

02×1 02×2 02×2 02×2 02×2 02×2 M′
3 M2 M3 02×2 02×1

02×1 02×2 02×2 02×2 02×2 02×2 02×2 M′
3 M2 M3 02×1

02×1 02×2 02×2 02×2 02×2 02×2 02×2 02×2 M′
3 M2 M′

4

01×1 01×2 01×2 01×2 01×2 01×2 01×2 01×2 01×2 M4 0.03




where

M1 =
[

1.0 −0.02
]

M2 =

[
233.3 0

0 0.1

]

M3 =

[
40.4 −1

1.0 −0.02

]
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M4 =
[
−1.0 −0.02

]

and 0p×q is an p rows and q columns matrix of zeros.
The stiffness matrix is

Kbeam = 10−2×




1.12 K1 01×2 01×2 01×2 01×2 01×2 01×2 01×2 01×2 01×1

K′1 K2 K3 02×2 02×2 02×2 02×2 02×2 02×2 02×2 02×1

02×1 K′3 K2 K3 02×2 02×2 02×2 02×2 02×2 02×2 02×1

02×1 02×2 K′3 K2 K3 02×2 02×2 02×2 02×2 02×2 02×1

02×1 02×2 02×2 K′3 K2 K3 02×2 02×2 02×2 02×2 02×1

02×1 02×2 02×2 02×2 K′3 K2 K3 02×2 02×2 02×2 02×1

02×1 02×2 02×2 02×2 02×2 K′3 K2 K3 02×2 02×2 02×1

02×1 02×2 02×2 02×2 02×2 02×2 K′3 K2 K3 02×2 02×1

02×1 02×2 02×2 02×2 02×2 02×2 02×2 K′3 K2 K3 02×1

02×1 02×2 02×2 02×2 02×2 02×2 02×2 02×2 K′3 K2 K′4
01×1 01×2 01×2 01×2 01×2 01×2 01×2 01×2 01×2 K4 1.12




where

K1 =
[
−16.80 0.56

]

K2 =

[
672 0

0 2.224

]

K3 =

[
−336 16.8

−16.80 0.56

]

K4 =
[
−16.80 −0.56

]

The damping matrix is

Cbeam = 8× 10−2 ×Mbeam + 8× 10−6 ×Kbeam
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S. Johansson, T. Lagö, S. Nordebo, and I. Claesson. Control approaches for active
noise control of propeller-induced cabin noise evaluated from data from a dornier

150



REFERENCES

328 aircraft. In Proceedings of International Congress on Sound and Vibration, pages
1611–1618, Copenhagen, 1999. 2

FA Johnson and MA Swinbanks. Electromagnetic control of machinery rafts. Journal

of Defence Science, 1(4):493–497, 1996. 8

M.E. Johnson, L.P. Nascimento, M. Kasarda, and C.R. Fuller. The effect of actuator and
sensor placement on the active control of rotor unbalance. Journal of vibration and

acoustics, 125(3):365–373, 2003. 5, 79

J. Kautsky, N.K. Nichols, and P. Van Dooren. Robust pole assignment in linear state
feedback. International Journal of Control, 41(5):1129–1155, 1985. 75

S.M. Kuo and D.R. Morgan. Active noise control systems: algorithms and DSP imple-

mentations, volume 31. Wiley-Interscience, 1996. 3

GP Liu and S. Daley. Output-model-based predictive control of unstable combustion
systems using neural networks. Control Engineering Practice, 7(5):591–600, 1999.
57

GP Liu, GR Duan, and S. Daley. Stable observer-based controller design for robust
state-feedback pole assignment. Proceedings of the Institution of Mechanical Engi-

neers, Part I: Journal of Systems and Control Engineering, 214(4):313–318, 2000.
28

GP Liu, R. Dixon, and S. Daley. Design of stable proportional-integral-plus controllers.
International Journal of Control, 74(16):1581–1587, 2001. 28

W. Liu and Z. Hou. A new approach to suppress spillover instability in structural vibra-
tion control. Structural Control and Health Monitoring, 11(1):37–53, 2004. 102

L. Ljung. Recursive identification algorithms. Circuits, systems, and signal processing,
21(1):57–68, 2002. 57

A. F. Mazoni, A. L. Serpa, and E. G. Nobrega. A decentralized and spa-
tial approach to the robust vibration control of structures. In Prof. An-
drzej Bartoszewicz, editor, Challenges and Paradigms in Applied Ro-

bust Control. InTech, 2011. URL http://www.intechopen.com/

151

http://www.intechopen.com/books/challenges-and-paradigms-in-applied-robust-control/a-decentralized-andspatial-approach-to-the-robust-vibration-control-of-structures
http://www.intechopen.com/books/challenges-and-paradigms-in-applied-robust-control/a-decentralized-andspatial-approach-to-the-robust-vibration-control-of-structures


REFERENCES

books/challenges-and-paradigms-in-applied-robust-control/

a-decentralized-andspatial-approach-to-the-robust-vibration-control-of-structures.
9

D.J. Mead and DJ Meador. Passive vibration control. Wiley, 1998. 1

L. Meirovitch. Dynamics and control of structures. Wiley-Interscience, 1990. 1

S. Merz, N. Kessissoglou, R. Kinns, and S. Marburg. Minimisation of the sound power
radiated by a submarine through optimisation of its resonance changer. Journal of

Sound and Vibration, 329(8):980–993, 2010. 23

T. Meurers and S.M. Veres. Online iterative design for periodic vibration attenuation.
In Proceedings of Seventh International Congress of Sound and Vibration (ICSV7),
volume 1, pages 359–366. International Institute of Acoustics and Vibration, 2000.
URL http://eprints.soton.ac.uk/21662/. 3

T. Meurers, S.M. Veres, and SJ Elliot. Frequency selective feedback for active noise
control. Control Systems, IEEE, 22(4):32–41, 2002. 3

SA Motahari, M. Ghassemieh, and SA Abolmaali. Implementation of shape memory al-
loy dampers for passive control of structures subjected to seismic excitations. Journal

of Constructional Steel Research, 63(12):1570–1579, 2007. 1

J.E. Mottershead, M.G. Tehrani, S. James, and Y.M. Ram. Active vibration suppression
by pole-zero placement using measured receptances. Journal of Sound and Vibration,
311(3):1391–1408, 2008. 75

BC Nakra. Vibration control in machines and structures using viscoelastic damping.
Journal of sound and vibration, 211(3):449–465, 1998. 1

PA Nelson and SJ Elliott. Active control of sound. Academic Pr, 1993. 3, 5

PA Nelson, ARD Curtis, and SJ Elliott. Quadratic optimisation problems in the active
control of free and enclosed sound fields. Proceedings of the Institute of Acoustics, 7
(Part 2):45–54, 1985. 3

152

http://www.intechopen.com/books/challenges-and-paradigms-in-applied-robust-control/a-decentralized-andspatial-approach-to-the-robust-vibration-control-of-structures
http://www.intechopen.com/books/challenges-and-paradigms-in-applied-robust-control/a-decentralized-andspatial-approach-to-the-robust-vibration-control-of-structures
http://www.intechopen.com/books/challenges-and-paradigms-in-applied-robust-control/a-decentralized-andspatial-approach-to-the-robust-vibration-control-of-structures
http://eprints.soton.ac.uk/21662/


REFERENCES

Khanh Q. Nguyen. Higher harmonic control analysis for vibration reduction of heli-

copter rotor systems. PhD thesis, University of Maryland, 1994. 7

D. Nyawako and P. Reynolds. Response-dependent velocity feedback control for mitiga-
tion of human-induced floor vibrations. Smart Materials and Structures, 18:075002,
2009. 117

D.S. Nyawako and P. Reynolds. Lqr controller for an in-service floor. In Dynamics of

Civil Structures, Volume 4: Proceedings of the 28th IMAC, A Conference on Struc-

tural Dynamics, 2010, volume 13, pages 227–237. Springer, 2011. 117

T. Oomen, E. Grassens, F. Hendriks, R. van Herpen, and O. Bosgra. Inferential motion
control: Identification and robust control with unmeasured performance variables. In
Decision and Control and European Control Conference, CDC/ECC 2011. Proceed-

ings of the 50th IEEE Conference on, pages 964–969. IEEE, 2011. 9

H. Ouyang, MJ Oldfield, and JE Mottershead. Experimental and theoretical studies of a
bolted joint excited by a torsional dynamic load. International journal of mechanical

sciences, 48(12):1447–1455, 2006. 23

C. Paulitsch, P. Gardonio, and SJ Elliott. Active vibration damping using self-sensing,
electrodynamic actuators. Smart materials and structures, 15(2):499, 2006a. 25

C. Paulitsch, P. Gardonio, and S.J. Elliott. Active vibration control using an inertial
actuator with internal damping. The Journal of the Acoustical Society of America,
119:2131, 2006b. 4

J.B. Pearson and P.A. Emery. Damping of vibrations, January 24 2003. US Patent App.
10/502,589. 23, 59

JT Pearson, RM Goodall, and I. Lyndon. Active control of helicopter vibration. Com-

puting & Control Engineering Journal, 5(6):277–284, 1994. 7

B. Peeters, G. Lowet, H. Van der Auweraer, and J. Leuridan. A new procedure for modal
parameter estimation. Sound and Vibration, 38(1):24–29, 2004. 23

153



REFERENCES

I.R. Petersen. Robust h∞ control of an uncertain system via a strict bounded real out-
put feedback controller. Optimal Control Applications and Methods, 30(3):247–266,
2009. 28

M. Petyt. Introduction to finite element vibration analysis. Cambridge Univ Pr, 2010.
42

S. Pope and S. Daley. Redistribution of the energy in a vibration isolation system under
the action of discrete frequency active control. In Proceedings of Active 2009, pages
149–159, 20-22 August 2009. 76

J.T. Post and R.J. Silcox. Active control of the forced response of a finite beam. Noise

Control Engineering Journal, 1:197–202, 1990. 5, 76

A. Preumont. Vibration control of active structures: an introduction, volume 96.
Springer, 2002. 1, 24

M.D. Rao. Recent applications of viscoelastic damping for noise control in automobiles
and commercial airplanes. Journal of Sound and Vibration, 262(3):457–474, 2003. 1

MZ Ren, K. Seto, and F. Doi. Feedback structure-borne sound control of a flexible
plate with an electromagnetic actuator: the phase lag problem. Journal of sound and

vibration, 205(1):57–80, 1997. 25

J. Rohlfing, P. Gardonio, and SJ Elliott. Base impedance of velocity feedback control
units with proof-mass electrodynamic actuators. Journal of Sound and Vibration, 330
(20):4661–4675, 2011a. 25

J. Rohlfing, P. Gardonio, and DJ Thompson. Comparison of decentralized velocity feed-
back control for thin homogeneous and stiff sandwich panels using electrodynamic
proof-mass actuators. Journal of Sound and Vibration, 330(5):843–867, 2011b. 93

J. Shaw, N. Albion, E.J. Hanker, and R.S. Teal. Higher harmonic control: wind tun-
nel demonstration of fully effective vibratory hub force suppression. Journal of the

American Helicopter Society, 34(1):14–25, 1989. 7

154



REFERENCES

MA Simpson, TM Luong, CR Fuller, and JD Jones. Full-scale demonstration tests
of cabin noise reduction using active vibration control. Journal of Aircraft, 28(3):
208–215, 1991. 7

R.E. Skelton, T. Iwasaki, and D.E. Grigoriadis. A unified algebraic approach to control

design. CRC, 1997. 9

S Skogestad and I Postlethwaite. Multivariable Feedback Control. Analysis and Design.
John Wiley & Sons, 2005. 37, 108

TT Soong. State-of-the-art review:: Active structural control in civil engineering. En-

gineering Structures, 10(2):74–84, 1988. 1

J. Stoustrup and H. Niemann. Starting up unstable multivariable controllers safely. In
Decision and Control, 1997., Proceedings of the 36th IEEE Conference on, volume 2,
pages 1437–1438. IEEE, 1997. 29

MO Tokhi and MA Hossain. A unified adaptive active control mechanism for noise
cancellation and vibration suppression. Mechanical systems and signal processing,
10(6):667–682, 1996. 1

U. Ubaid, S. Daley, and S. Pope. Broadband design of remotely located vibration control
systems: A stable solution for non-minimum phase dynamics. In INTER-NOISE and

NOISE-CON Congress and Conference Proceedings, volume 2011, pages 835–840.
Institute of Noise Control Engineering, 2011a. 13

U. Ubaid, S. Daley, and S. Pope. Design of remotely located stable vibration controllers
for non-minimum phase systems. In 14th Asia Pacific Vibration Conference, Hong
Kong, December 5-8 2011b. 13

U. Ubaid, S. Daley, S. Pope, and I. Zazas. Experimental validation of a geometric
method for the design of stable and broadband vibration controllers using a propeller
blade test rig. In Control (CONTROL), 2012 UKACC International Conference on,
pages 369–374. IEEE, 2012. 14, 23

S.R. Viswamurthy and R. Ganguli. An optimization approach to vibration reduction
in helicopter rotors with multiple active trailing edge flaps. Aerospace science and

technology, 8(3):185–194, 2004. 1

155



REFERENCES

J. Wang and S. Daley. A geometric approach to the optimal design of remotely lo-
cated broadband vibration control systems. In Proceedings of the 14th International

Congress on Sound and Vibration, pages 9–12, 2007a. 19, 24

J. Wang and S. Daley. A geometric design approach to the broadband control of re-
motely located vibration. In Control & Automation, 2007. MED’07. Mediterranean

Conference on, pages 1–6. IEEE, 2007b. 19

J. Wang and S. Daley. Broad band controller design for remote vibration using a geo-
metric approach. Journal of Sound and Vibration, 329(19):3888–3897, 2010. ISSN
0022-460X. 11, 39, 40, 65

J. Wang, N. Min, T. Zhang, and L. Ma. A new parameterization of all stabilizing con-
trollers in a siso setup. In Control Conference (CCC), 2010 29th Chinese, pages
3441–3446. IEEE, 2010. 31

B. Widrow and S.D. Stearns. Adaptive signal processing. Englewood Cliffs, NJ,

Prentice-Hall, Inc., 1985, 491 p., 1, 1985. 2

M. Zilletti, S.J. Elliott, and P. Gardonio. Self-tuning control systems of decentralised
velocity feedback. Journal of Sound and Vibration, 329(14):2738–2750, 2010. 94

M. Zilletti, S.J. Elliott, and E. Rustighi. Optimisation of dynamic vibration absorbers to
minimise kinetic energy and maximise internal power dissipation. Journal of Sound

and Vibration, 331(18):4093–4100, 2012. 4

156


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Brief review of active control
	1.2 Motivation
	1.2.1 Some examples

	1.3 Description of problem
	1.4 Achievements
	1.5 Outline of thesis and contribution

	2 Remote Vibration Control Design Using Geometric Approach
	2.1 Introduction
	2.2 Preliminary design procedure
	2.3 Practical Considerations
	2.3.1 Time Delay and Phase Lag
	2.3.2 Unstable Controller - Testing and Implementation

	2.4 Summary

	3 Design of Strongly Stabilising Controllers
	3.1 Introduction
	3.2 Design of Stable and Broadband Controller
	3.3 Robust Performance
	3.3.1 Control Spillover and Observation Spillover
	3.3.2 Control Design for Robust Performance

	3.4 Stability Analysis
	3.5 Numerical example
	3.5.1 Model of beam
	3.5.2 Selection of optimal 
	3.5.3 Interpolation of  values
	3.5.3.1 Reduced interpolation data set
	3.5.3.2 Modification of i to satisfy controller stability

	3.5.4 Controller Implementation
	3.5.5 Alternative Controller Implementation

	3.6 Summary

	4 Remote Vibration Attenuation at a Non-resonating Point
	4.1 Introduction
	4.2 Experimental set-up
	4.3 Description using Relative Gain Array
	4.4 Control design
	4.4.1 Interpolation of optimal  data values

	4.5 Experimental implementation
	4.5.1 Sinusoidal excitation of frequency 247 Hz
	4.5.2 Reduction of peak in controller FRF
	4.5.3 Broad frequency band random excitation

	4.6 Summary

	5 Active Damping at Resonance
	5.1 Introduction
	5.2 Active Damping
	5.3 Design parameter at resonance
	5.4 Active damping of a beam structure
	5.4.1 Experimental set-up
	5.4.2 Control design
	5.4.3 Interpolation of optimal  data values
	5.4.4 Experimental results

	5.5 Summary

	6 Global Vibration Reduction
	6.1 Introduction
	6.2 Design parameter for direct velocity feedback control
	6.3 Control design for kinetic energy reduction
	6.4 Summary

	7 Sequential Loop Closing Control Design
	7.1 Introduction
	7.2 Sequential Loop Closing Control Design
	7.2.1 Control system design for the first loop
	7.2.2 Control system design for the second feedback loop
	7.2.3 Integrity when inner feedback loop fails

	7.3 Summary

	8 Experimental Verification of Sequential Loop Closing Control Design
	8.1 Introduction
	8.2 Experimental Implementation
	8.2.1 Selection of suitable measurement and performance test points
	8.2.2 Control Design for first feedback loop at TP19
	8.2.3 Control Design for second feedback loop at TP10
	8.2.4 Experimental Results

	8.3 Summary

	9 Conclusions
	9.1 Contributions
	9.2 Scope for further work
	9.2.1 Lower Order Compensator
	9.2.2 Computational complexity
	9.2.3 Interpolation of design parameter


	Appendix A
	Appendix B
	References

