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Abstract 

In this thesis, potassium channels human Kv2.1 and rat Kv2.1, along with 
calcium channels Ca, 1.2, Ca, 3.1, and chimeras have been studied. These channels 
were expressed in Xenopus oocytes for electrophysiological experiments using two- 
electrode voltage clamp. For protein expression studies, DNA was expressed in 
BL21 or COS-7 cells and purified using glutathione or an ID4 affinity column. 

Firstly, the roles of the N- and C- terminal domains in the activation kinetics 
of rat and human forms of Kv2.1 were investigated. A mutant in the N- terminal 
domain and chimeras between the rat and human forms were constructed. All clones 
were expressed in Xenopus oocytes and activation times obtained. The results 
suggested that key residues in the N- and C- terminal domains are involved in 
determining the activation kinetics of rat and human Kv2.1. 

Further experiments were carried out using GST fusion proteins, Biacore 
surface plasma resonance, and FRET investigations. These confirmed that the N- 
and C- terminal domains are important in determining activation kinetics, and that 
these regions interact. 

To determine the positions of both the N- and C- terminal domains in the 
folded channel, rat Kv2.1 and a C-terminal deleted protein were expressed, purified, 
and shown to have correct protein folding. These samples were sent for electron 
microscopy experiments and a preliminary picture obtained. 

No studies of S4 movement in calcium channels have been reported 
previously. Cysteine residues were substituted into the domain I S4 of a calcium 
channel chimera (with domain I of Ca, 3.1 replaced by Caj. 2). Cysteine residues at 
positions 263,265,266,268,269 and 271 were characterized by electrophysiology. 
Cysteine mutants at residues 263,265,266 and 268 reacted when extracellular 
PCMBS was applied, but mutants at residues 269 and 271 did not. This suggests that 
under depolarising conditions the S4 segment is exposed to the extracellular 
environment up to and including residue 268, with residues 269 and 271 remaining 
buried. Further investigation of residue 263 indicated that this movement occurs at 
potentials more negative than the resting membrane potential of -80mV. The data 
suggests that under depolarisation, the S4 becomes exposed to the extracellular 
solution and this movement of the S4 occurs before the ionic flow. 
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CHAPTER 1 

GENERAL INTRODUCTION 



2 

1. Introduction 

Ion channels are situated in the membranes of cells and selectively allow 

a particular ion to pass through them, from one side of the membrane to the 

other. All are composed of protein molecules and contain a central aqueous pore 

that can be opened by conformational change, to allow the flow of ions. 

Studies by Hodgkin and Huxley on the action potential of the squid giant 

axon provided a mathematical description of the flow of sodium and potassium 
ions through the membrane (Hodgkin and Huxley, 1952). Currents produced by 

ion movement were observed, and Hodgkin and Huxley proposed that ionic 

movement was localized at particular sites that later became known as ion 

channels. 
Ion channels have an important range of functions, which include the 

determination of the resting membrane potential, and modulation of 

neurotransmitter release. The movement of Ne, Ký, Ca2+ and Cl' through their 

respective ion channels controls electrical signalling and excitation in the 

nervous system. These ion channels are all important for maintaining proper 
cellular functions. 

1.1 Potassium channel families 

Potassium channels are broadly diversified and contribute to many tasks; 
for instance they may depolarize or polarize the cell, set the resting membrane 
potential, and alter the function of the cell (Hille, 2001). 

The potassium channel family can be divided into voltage gated, calcium 

activated, inward rectifier, tandem pore, and ligand-gated sub-families. The 

different potassium channel types are defined and distinguished by their 

selectivity to potassium, their structure, gating and pharmacological 

characteristics. A brief outline of the different types of potassium channel 
families follows in this section. 



1.1 Inward rectifier (Kir) and bacterial (KcsA) potassium channels 

two transmembrane domains 

For the Kir inward rectifying potassium channel family, the inward flow 

of potassium ions is greater than the outward flow (Nichols and Lopatin, 1997). 

The channels' main function is to stabilise the resting membrane potential, and 

they are essential in cells that have action potentials with long plateaus. For 

instance in cardiac cells, they enable cardiac repolarisation thus maintaining the 

resting membrane potential (Zitron et al, 2004). 

Six sub-families have been identified; Kirl to Kir6, which have a 

structure as shown (Fig. 1.1). They comprise two transmembrane domains (M I 

and M2) linked by a conserved pore domain, and intracellular N- and C- terminal 

domains (Bichet et al, 2003). Four monomers assemble to forrn functional Kir 

channel tetramers (Abraham et al, 1999). 
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Fig. 1.1 Schematic diagram of a potassium channel with two 
transmembrane domains. The pore region (P) is labelled. 

Another channel family that has two transmembrane domains is the 

bacterial channel KcsA of the eubacterium, Streptomyces lividans. The crystal 

structure has been solved by MacKinnon's laboratory (Doyle et al, 1998), and 

the gene encodes a two transmembrane domain potassium channel of only 160 

residues. This structure was important, as it was the first structural view of an ion 
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channel. The crystal structure revealed a highly ordered compact structure where 

a functional channel is a tetramer, typically of four identical subunits (Doyle et 

al, 1998). The pore region is similar with that of Shaker and other potassium 

channels, with residues -TVGYG- lining the pore. 

The structure (Fig. 1.2) was found to possess four pore helices, which 

point towards the centre of the cavity. This ensures that the potassium ion 

remains in the correct trajectory when the channel is in the open state (Doyle, 

2004). 

EXTRACELLULAR 

Fig. 1.2 Ribbon representation of the KcsA tetramer. 

(Doyle et al, 1998). 

Opening of this channel in vivo occurs upon lowering of the pH on the 

intracellular side (Heginbotharn et al, 1999), although the channel does also 

show weak voltage dependence. 

INTRACELLULAR 



1.1.2 Tandem pore potassium channels (TWIK) -four 

transmembrane domains 

Tandem or twin pore potassium channels were cloned only recently. 

Study of the C. elegans genome has revealed that this family of proteins is more 
diverse than previously imagined (Salkoff and Jegla, 1995). The potassium 

channel monomers have four transmembrane domains and two pore regions, and 

assemble as functional dimers (Fig. 1.3). 

Extracellular 

Intracellular 

Fig. 1.3 Schematic diagram of a potassium channel with four 
transmembrane domains. The pore region (P) is labelled. 

Twin pore channels have small rectification but no voltage dependent 

gating, as they lack a voltage-sensing domain, and can exhibit inwardly (TWIK), 

or outwardly (TASK) rectifying currents (Hille, 2001). Some of these channels 

are sensitive to second messenger signal or to changes in pH. 
The physiological role of twin pore channels is not as yet clear, but it is 

thought that they may have a role in setting the resting membrane potential 

(Brown, 2000). It is known that they are opened by anaesthetics, leading to 
depressed brain activity under general anesthesia (Sirois et al, 2000). 



6 

1.1.3 Kv, KCNQ, EAG, CNG, TRPpotassium channels - six 

transmembrane domains 

Several sub-families with six transmembrane domains have been 

defined. These include Kv channels, (which will be discussed in section 1.2), 

KCNQ, EAG, CNG and TRP sub-families. All have a common structure 
including intracellular N- and C- termini, as can be seen in Fig. 1.4. 

ellular 
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Fig. 1.4 Schematic diagram of a potassium channel with six 
transmembrane domains. The pore region (P) is labelled. 

KCNQ channels are voltage gated, show outward rectification, and do not 
inactivate. The first member of this family to be cloned was KCNQI, which was 
isolated by gene mutations which give rise to the long QT syndrome (Wang et al, 
1996; Sanguinetti et al, 1996; Ashcroft, 2000). These channels differ from Kv 

channels by the lack of the tetramerisation domain that is known to mediate 

subunit association (see section 1.2.3), and interact with accessory subunits such 

as MinK (Yamada et al, 2002). Five members of this family have been cloned, 
KCNQ1, KCNQ2, KCNQ3, KCNQ4 and KCNQ5. mRNA for KCNQ I channel 
is distributed strongly in the heart and brain with lower levels in the placenta, 

pancreas, gastrointestinal tract, kidney, ear and lung (Ashcroft, 2000; Dedek and 
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Waldegger, 2001; Yamada et al, 2002). KCNQ2, and KCNQ3 channels have 

distributions that largely overlap, being widely distributed in the brain (Yang et 

al, 1998; Ashcroft, 2000; Robbins, 2001). KCNQ4 channels are found largely in 

the auditory pathway (Kharkovets et al, 2000; Wong et al, 2004), and KCNQ5 

are found mostly in the central nervous system (Robbins, 2001; Yus-Najera et al, 

2003). 

EAG potassium channels were discovered following the isolation of 

mutant fruit flies which shook their legs when exposed to ether; the gene 

responsible was called the ether-a-go-go gene (Drysdale et al, 1991). Other genes 

isolated subsequently have been sub-classified into three subfamilies; eag (eagI 

and eag2), eag-related (ergl, erg2, and erg3) and eag-like (elkl, elk2 and elk3) 

(Ludwig et al, 2000; Hille, 2001). 

The primary structure of EAG channels differs in some ways from Kv 

channels. The pore contains the structural motif of GFG, rather than GYG, the C- 

terminal domain contains a cyclic-nucleotide binding domain, and the N-terminal 

region contains a so-called PAS domain. Eag channels activate slowly and have 

no inactivation, and erg channels have fast inactivation with slow activation. 

Elk I channels behave as eag channels, and elk2 currents are similar to erg 

currents (Bauer and Schwartz, 200 1 ). 

CNG channels are found in photoreceptors in vertebrates, olfactory 

neurones, cardiac cells and the kidney (Kaupp, 1995). In the eye, they are 

responsible for the flow of ions in the dark, and they open in the presence of 

intracellular cGMP which binds the C- terminal domain (Kaupp et al, 1989). 

These channels also form tetramers, (resembling Kv channels), of two 

homologous subunits, a and P. Both the forms together are able to form 

functional channels, with characteristics of the native channel (Broillet and 

Firestein, 1997). Native channels are cyclic-nucleotide gated, and sodium and 

potassium selective; these channels only discriminate slightly between these ions. 

The channels are also permeable to calcium but this ion also acts as a blocker of 

monovalent ions (Ashcroft, 2000). 

The TRP extended family comprises many channels found in flies, 

worms, and mammals. The first member to be cloned was discovered in a mutant 

Drosophila melanogaster whose photoreceptors failed to maintain a response to 

a stimulus of light (Minke, 1977). In specialised cells, they participate in vision, 
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hearing, temperature, pain, and pheromone perception (Clapham, 2003). TRP 

proteins can be classified into three sub-families: TRPM, TRPV, and TRPC 

(Gudermann and Flockerzi, 2005). More than 100 TRP protein sequences are 

present in database sets from Dictyostehum discoideum, D. melanogaster, C 

elegans, and mammals, although the physiological roles for most of the channels 

are not known (Padinjat and Andrews, 2004). Interestingly the S4 region does 

not contain charged amino acids proposed to be required for the voltage sensor in 

voltage gated channels (Wes et al, 1995). 

1.1.4 Calcium activated potassium channels (BK, SK and IK) - seven 

transmembrane domains 

This family of potassium channels are structurally similar to voltage- 
gated six transmembrane channels, but have an extra transmembrane domain on 

the N-terminal side of the channel (Fig. 1.5; Vergara el al, 1998). Channels in 

this family are sensitive to calcium, where an increase in intracellular Ca 2+ ions 

causes the channel to open. They are also activated by depolarisation. 

ýellular 

ellular 

Fig. 1.5 Schematic diagram of a potassium channel with seven 

transmembrane domains. The pore region (P) is labelled. 

This family comprises three subfamilies, SK (which have small 

conductance), IK (with intermediate conductance), and BK (with big 



9 

conductance). They are found in many tissues, including neurons, where they are 

thought to be involved in regulation of the frequency of action potentials, in 

cells of the liver where they are involved in both hormone secretion, and in 

depolarisation of the membrane after depolarisation (Wu, 2003; Yost, 1999). 

1.1.5 Yeast TOKpotassium channels - eight transmembrane domains 

The eight transmembrane channel of yeast is one of its few channels 

serving a role in K+ transport. It has a structure as shown below (Fig. 1.6), which 

contains two pore domains in each subunit. The TOKI channel was identified in 

Saccharomyces cerevisae; it possesses eight predicted transmembrane domains 

and encodes a non-voltage gated outward rectifier. It has been proposed to 

function as a potassium selective 'leak' channel involved in the control of the 

membrane potential (Roberts, 2003). 

ellula I 
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N 

Fig. 1.6 Schematic diagram of a potassium channel with eight 
transmembrane domains. The pore region (P) is labelled. 

This channel conducts an outward current; opening is favoured by low 

extracellular K+ and depolarisation. A voltage dependent block is seen with Mg2+ 

ions (Ketchum et al, 2002). Again, unusually, the S4 domain contains no charged 

amino acids. 
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1.2 Volta2e imted potassium channels 

Voltage gated potassium or Kv channels activate upon depolarisation of 
the membrane potential, and deactivate upon repolarisation. They are found in a 
large number of excitable tissues (MacKinnon, 2003). The first Kv channel was 

cloned from Drosophila (Kamb et al, 1987), and many members of this family 

have since been cloned and characterised according to their physiological 

characteristics, and amino acid sequences (Albrecht et al, 1993). 

The official nomenclature for vertebrate Kv channels is Kvm. n where m 

and n are numbers denoting families and sub-families respectively. Kvl. 1 to 1.8 

are Shaker related and most activate and inactivate quickly (Dolly and Parcej, 

1996). Kv2.1,2.2, and 2.3 are Shab related; they activate and inactivate slowly 
(Albrecht et al, 1993). Kv3.1 to 3.4 are Shaw related; they activate slowly, have a 
fast rate of deactivation upon repolarisation, and show no inactivation (Ruby and 
McBain, 2001). Kv4.1 and 4.2 are Shal related, and activate and inactivate 

rapidly (Zhu et al, 1999). The remaining families, Kv5 to KvIO, do not appear to 
form functional channels on their own, but can form channels with other sub- 
families to modulate their function (Kerschensteiner et al, 2003; Salinas et al, 
1997; Sano et al, 2002). 

1.2.1 Voltage gated channel structure 

Voltage gated channels consist of six transmembrane domains, termed 
SI -S6 (the a subunit), with cytoplasmic N- and C- terminal regions (Fig. 1.7). 

Four of these a subunits are needed to form a functional channel (reviewed in 

Mackinnon, 199 1). When a tetramer assembles, an aqueous pore is formed by the 
P loops. Each P loop is approximately twenty amino acids long, and enters (and 

exits) the membrane from the extracellular side. The P region forms both the 
selective pore and the outer vestibule (P helix) of the potassium channel. At the 
N- terminus, the T1 domain is located, which is discussed further below. 
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Fig. 1.7 Schematic diagram of an a subunit of a voltage gated potassium 
channel. 

The P region and TI domain are labelled. 

The structure of a voltage gated potassium channel from Aeropyrum 

pernix, KvAP has recently been solved at a resolution of 1.9A. It can be see from 

the structure (Fig. 1.8) that the channel contains a central pore surrounded by a 

voltage sensor (S4) transmembrane domain from each of the four subunits. 

Although this structure is from an archaebacterium, the channel sequence is 

closely related to eukaryotic Kv channel sequences. For the pore helices the 

structure is also similar to the KcsA crystal structure (Fig. 1.2), where the 

selectivity filter and the pore can be directly superimposed on one another (Jiang 

et al, 2003). 
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Fig. 1.8 Crystal structure of the KvAP channel, as viewed from the 
intracellular side of the membrane. 
Each subunit is shown as a different colour, with the SI -S6 transmembrane 
domains and P region labelled. (Jiang el al, 2003). 

Contained within the P-region is the selectivity filter. Recent work on the 

KcsA and MthK channels (Jiang el al, 2002b) has advanced our structural 

understanding of this region greatly. The sequence alignment of the P region 

shows strong sequence conservation at the selectivity filter (TXGYG), and in the 

inner helix where a conserved glycine in the centre of the helix and five amino 

acids near the C-terminal end of this region are thought to increase flexibility of 

the structure. Crystal structures have shown that the GYG signature sequence 
forms an hourglass shape, with the narrowest part forming the main section of 

the selectivity filter. 

Electron microscope single particle structures have been obtained for 

Shaker (Sokolova el al, 20011 Sokolova el al, 2003), Kv I (Orlova el al, 2003) 

and KvAP (Jiang el al, 2004) potassium channels. The Shaker structure includes 

the TI domain discussed further below. It shows a four fold symmetrical 

structure with a large and small domain linked by connectors (Fig. 1.9, and 

Sokolova ef al, 200 1). The upper part of the structure shows the membrane 

spanning regions, and the lower part is the TI domain. However, the structure of 

the C- terminal domain has not yet been determined. 
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Fig. 1.9 3D structure of the Shaker potassium channel. 
Three views of the channel in different orientations. The left picture shows 
the side view, the middle shows the bottom view, and the right picture shows 
the top view. (Sokolova et al, 2001). 

No structures have yet been obtained for the potassium channels 

investigated in this thesis, although an abstract has recently been published of the 

human Kv2.1 structure (Adair et al, 2005). 

1.2.2 Voltage sensor and channel gating 

Gating mechanisms control the voltage at which channels open and 

become active. In voltage gated potassium channels, this gating mediates the 

response to changes in the membrane potential. Hodgkin and Huxley (1952) 

predicted the existence of gating currents, and that they would occur on 

activation of a channel by a rearrangement in the voltage sensor. These have 

been detected as the currents produced by the movement of gating charges prior 

to the ionic flow (e. g. Fedida and Hesketh, 2001; Bezanilla and Stefani, 1994). In 

order to demonstrate the relatively small gating currents it is necessary to block 

the ionic current with toxins, leaving just the gating current. The measurement of 

these gating currents has been carried out on cloned and native channels in this 

way. 
The S4 domain is thought to be the voltage sensor in voltage gated K+ 

channels (reviewed in Bezanilla, 2000). It has positively charged amino acids at 

every third position in the helix; thus charged residues lie in a stripe within the a 
helix. The S4 region is highly conserved. Replacement of these positively 
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charged residues in voltage gated potassium channels with neutral amino acids 
leads to altered voltage dependence of activation, and in some cases prevents 

channel formation (Liman et al, 199 1; Papazian et al, 199 1; Logothetis et al, 
1992; Shao and Papazian, 1993; Papazian et al, 1995). 

S4 accessibility studies using parachloromercuribenzenesulphonic acid 

(PCMBS) have shown that the S4 domain of Shaker moves out of the membrane 

upon depolarisation. The side chains of substituted cysteine residues react with 

extracellular PCMBS under depolarising but not hyperpolarising conditions, 

suggesting a net movement of these residues out of the membrane (Yusaf et al, 
1996). Others, (e. g. Larsson et al, 1996) have used other cysteine binding 

reagents (e. g. MTSET) with similar results 
Analysis of mutant channels that have retained their gating property 

suggests that upon depolarisation, 12 to 16 charges per channel move across the 

transmembrane region in Shaker (Zagotta et al, 1994). Extensive studies of 

potassium and sodium channels have suggested that the S4 segment rotates as 

well as moves outwards during depolarisation (Gandhi and Isacoff, 2002; Sheets 

and Hanck, 2002; Bezanilla, 2002; Glauner et al; 1999; Cha. et al, 1999a; Cha et 

al, 1999b). X-ray crystallography studies have recently been interpreted to 

propose a paddle-like motion, where a coupling mechanism between the paddle 

motion of the S3-S4 segments and channel opening has been proposed 
(Monticelli et al, 2004). However, such apparent coupling is likely to be an 

artefact of distortion due to the channel being co-crystallised with an antibody 
(Jiang et al, 2003; Shrivastava. et al, 2004). 

It is now known that other transmembrane domains are also involved in 

gating. These include the S2 and S3 domains (Cha et al, 1999a; Milligan and 
Wray, 2000) which are thought to interact with the S4 domain. Neutralising the 

negative charges in these domains has shown that some residues contribute 

significantly to the overall gating charge, and so are a major component of the 

voltage sensor (Planells-Cases et al, 1995; Seoh et al, 1996). Other recent 

structural and functional studies in potassium channels have indicated that the 

intracellular regions also have a fiindamental role in channel gating and 

regulation (Jiang et al, 2002; Nishida and MacKinnon, 2002; Kuo et al, 2003; 

Sokolova et al, 2003). 
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1.2.3 TI domain 

Assembly of Kv channels into tetramers Is thought to be controlled by the 

highly conserved TI or tetramerisation recognition domain. It is located within 

the intracellular N- terminal region (Fig. 1.7; Kobertz and Miller, 1999). This 

domain is thought to be attached by thin connectors to the membrane spanning 

region. 
The crystal structure of the TI domain has been solved in Kv I and Kv3 

families (Bixby el al, 1999, Gulbis el al, 2000, Kreusch el al, 1998). It comprises 

a rotationally symmetrical tetramer with a small central channel, approximately 

20A in length (Kreusch el al, 1998). Fig. 1.10 shows the crystal structure of the 

TI domain, the N- and C- termini of each subunit are located at opposite faces of 

the tetramer. The TI domain is also though to be the docking region for the 

subunit, through which a T14 P4 complex can be formed. This complex is 

orientated with the TI domains facing the transmembrane pore interacting with 

the P subunits in the cytoplasm (Gulbis ef al, 2000). 

Fig. 1.10 Ribbon representation of the TI tetramer taken from 
the side view. 
The TI tetrarner is red and the P-tetrarner is blue. 
(Gulbis el al, 200). 
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Electron microscopy has been used to generate a structure for the Shaker 

channel (as shown in Fig. 1.9) showing a 'hanging gondola' model for this 

domain, with four strands supporting a hanging basket, and ions reaching the 

pore of the channel by passing through the four large 'windows' of the basket 

(Sokolova et al, 200 1; Sokolova, 2004). 

Channels can function when the TI domain is deleted, so it does not form 

an essential part of the conducting pore (Kobertz et al, 1999). Mutations in the 

TI domain lead to a change in voltage sensitivity, suggesting that this domain 

could participate in conformational changes upon excitation (Choe et al, 2002). 

1.2.4 Modulation ofvoltage gated channels 

Voltage gated channel current can be modulated in many ways. For 

example, modulation of Kv2.1 currents is seen when they are co-expressed with 
Kv 10 subunits. When Kv2.1 is expressed in oocytes with Kv 10, the Kv2.1 

modulated currents are smaller than when expressed alone. Co-expression also 

causes a slowing of the inactivation rate (deMiera, 2004). Co-assembly of Kv2.1 

with Kv9 subunits leads to channels which have sensitivity to intracellular ATP 

(Patel et al, 1997). 
Direct interaction of voltage-gated channels with SNARE proteins 

(syntaxin IA and SNAP-25) in liver P cells has also been found to modulate 

channel activation and gating. A physical interaction in neuroendocrine cells 
between Kv2.1 and syntaxin IA has been found. When co-expressed, syntaxin 
IA alone binds strongly to Kv2.1 and shifts both activation and inactivation to 
hyperpolarized potentials, whereas expression of SNAP-25 together with 

syntaxin IA results in inactivation being shifted to the opposite direction, toward 
depolarized potentials (Michaelevski et al, 2003). 

Binding of P-subunits to voltage gated channels has also been shown to 

affect channel properties. For example, the binding of KvP(3) to KA. 3 increases 

the current greatly. The P-subunits are hydrophilic and lack any transmembrane 
domains, and are found on the cytoplasmic side of the cell membrane. Co- 

localisation in vivo has also been demonstrated (Deschenes and Tomaselli, 2002). 
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Glycosylation of ion channels has been suggested to contribute to 

efficient cell surface expression (Shi and Trimmer, 1999), with some Kv 

channels having a single glycosylation site located on the extracellular SI -S2 
linker. Glycosylation of voltage gated channels has been demonstrated both in 

vivo and in vitro with the extent of processing of N-linked chains on Kv 1.1 and 
Kvl. 4, (but not Kvl. 2) channels expressed in transfected cells differing from that 

seen in vitro. This may reflect different efficiencies of transport of channels from 

the endoplasmic reticulum. to the golgi apparatus, with glycosylation being 

important for efficient cell surface expression (Shi and Trimmer, 1999). 

Phosphorylation of serine and threonine residues in voltage-gated 

channels by protein kinases can also alter the function of voltage gated channels. 
(Murakoshi et al, 1997). For instance, this is done by protein kinase A (Wilson et 

al, 1994). Furthermore, both the localization and biophysical properties of Kv2.1 

within neurones are affected by phosphorylation, and a link between Kv2.1 

phosphorylation and neuronal activity has been shown (Misonou et al, 2004). 

1.3 Volta2e 2ated potassium channel - Kv2.1 

The potassium channel studied in this thesis is Kv2. I. This channel was 
the first member of the Kv2 family to be cloned, and was first identified through 

expression cloning from rat brain (Frech et al, 1989), with the mouse (Pak et al, 
1991) and human forms (Albrecht et al, 1993) being cloned shortly afterwards. 
These channels are known to activate slowly and produce outward currents that 
inactivate slowly. 

Kv2.1 is found in a very wide range of excitable tissue. High expression 
levels have been found in neurons, the heart and lungs, and olfactory, 
hippocampus and piriform cortex regions of the brain in mammals (Drewe et al, 
1992; Schultz et al, 2001; Coma et al, 2002; McCrossan et al, 2003; Brunet et al, 
2004). The human form of the channel is expressed abundantly in the brain, and 
in pancreatic P- cells. 

It has been found that Kv2.1 channel expression can be regulated by 

nerve growth factor, which has been shown to increase the expression of Kv2.1 

channels in vitro, and change the distribution in vivo (Sharma et al, 1993). A 
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chaperone protein, NFATc3, can regulate Kv2.1 expression in cerebral arterial 

smooth muscle cells. This is thought to occur through activation of transcription 

factors, but the exact mechanism is still unclear (Amberg et al, 2004). 

1.3.1 Kv2.1 structure andfunction 

Like other voltage dependent channels, Kv2.1 has six transmembrane 

domains and cytoplasmic N- and C- termini, with a T1 domain located within the 

N- terminus, and a pore region located between transmembrane domains S5 and 
S6 (Fig. 1.7). It is a delayed rectifier, whose main fimction is to repolarise the 

membrane after an action potential. 
When an action potential occurs, sodium (and calcium channels if 

present) are activated, with a subsequent inward flow of their ions. Influx of 

these ions causes depolarisation of the membrane, which in turn activates 

potassium channels like Kv2. L The outward flow of these channels causes 

repolarisation of the membrane (for review see Hille, 2001). 

Kv2.1 is thought to be involved in many important physiological 

processes. For example, prolongation of the action potential by block of Kv2.1 

has been shown to increase intracellular free calcium and to promote insulin 

release in a glucose-dependent manner in pancreatic P cells (Yan et al, 2004). 
Neuronal apoptosis is mediated by Kv2.1 being the primary exit route for Ký in 

neurons undergoing apoptotic cell death (Pal et al, 2003). 
No human diseases have been associated with Kv2.1, although it is 

thought that disruption of Kv2.1 channels may cause abnormal action potential 
firing rates, and durations (Albrecht et al, 1993). However, type I diabetic rats 

show a down-regulation of Kv2.1 expression in the heart, that is thought to cause 

abnormal heart activity (Qin et al, 2001). 

1.3.2 Kv2. I activation 

The voltage sensor region S4 has been shown to be important in gating of 
Kv2.1 (Koopmann et al, 1997; Islas and Sigwordi, 1999; Scholle et al, 2000; 

Consiglio and Korn, 2004; Scholle et al, 2004). Other regions have also been 
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shown to contribute to Kv2.1 activation; these include the S2 and S3 segments 

(Milligan and Wray, 2000; Koopmann et al, 2001), and the S5 segment (Shich et 

al, 1997), as well as the N- and C- terminal domains discussed below. 

The N- terminal domain has been shown to contribute to channel 

activation. For instance, native cysteines in this region of Kv2.1 react with 

cysteine-binding reagents, causing a slowing of activation kinetics. The effect 

could be prevented by deleting the first 139 amino acids from the N- terminus of 

the channel (Pascual et al, 1997). VanDongen et al (1990), also found that the N- 

terminal domain contributes to activation kinetics, since a deletion of the N- 

terminal domain caused a slowing of activation kinetics, which was restored 

when part of the C- terminal domain was deleted also. 
Other studies have also shown the C-terminal domain to be involved in 

channel function. Peptides Synataxin IA and t-SNARE were found to complex 

on the C-terminal region of Kv2. I. The effect of these peptides on Kv2.1 was to 

cause shifts in the steady-state inactivation and activation in the hyperpolarizing 

direction, and the effects on the inactivation of Kv2.1 were reversed by partial 

deletions of the C-terminus. These findings suggest that physical interactions of 

the Syntaxin IA and t-SNARE complexes with the C-terminus of Kv2.1 are 

involved in channel regulation (Tsuk et al, 2004). 

1.3.3 Human and ratforms ofKv2.1 

The rat and human forms of Kv2.1 have a high degree of sequence 
identity, with over 94% of amino acids being identical. All six transmembrane 

domains are identical and the two forms only differ in their N- and C- terminal 

domains. 

The N-terminal domain is 182 amino acids long in the rat form (four 

amino acids longer in the human form), and is highly conserved. The additional 
four residues at the beginning of the sequence in the human form are not thought 

to contribute to the activation kinetics (Leadbitter, PhD thesis). Major differences 

occur between the 228 amino acids within the C-terminal domain, with little 

conservation between the two forms. 
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Rat Kv2.1 activates around twice as fast as its human counterpart (Ju et 

al, 2003). Because the transmembrane domains have identical amino acids, any 
differences must be due to the N- and C- terminal domains. It would be 

interesting to identify key regions within the N- and C- termini that may account 
for the differing activation kinetics between the two channels. 

Physical interactions of the N- and C-terminal regions in an inwardly 

rectifying potassium channel (Jones et al, 2001) have been demonstrated 

previously. It would therefore also be interesting to determine whether similar 
interactions occur in rat Kv2.1, and also to solve a structure for this channel. 

1.4 Voltage gated calCium channels 

Calcium channels are responsible for voltage-gated depolarisations in 

muscles, and maintain the depolarisation during the plateau of the action 

potential in heart muscle. Calcium ions also act as intracellular messengers for a 

wide range of cellular processes, and so calcium channels are involved in many 

control systems (Hofmann et al, 1999). 

Calcium channels are found in all excitable cells, and play important 

roles. They can supply a maintained inward flow of ions, and can serve as a link 

to transduce membrane depolarisation into all other non-electrical activities 

controlled by excitation (Hille, 2001). 

1.4.1 Classification ofvoltage gated calcium channels 

Voltage gated calcium channels can be split into high and low voltage- 

activating channels (HVA and LVA respectively). HVA channels require a much 
larger depolarisation to open, whilst LVA calcium channels open at more 

negative potentials. 
High voltage activating channels can be further classified according to 

physiological, pharmacological and electrophysiological properties. L- type 

channels have a large single conductance, and a long lasting current, and are 
divided into Ca, 1.1 to 1.4. Inactivation in L- type channels (high voltage 



21 

activating) has been shown to be mediated by the intracellular C- terminal 

domain, where truncated channels had an increase in expressed current, 

presumably resulting from removing the inhibitory effect of the C- terminal 

domain (Wei et al, 1994). They are found in cardiac muscle (Ca, 1.2, Ca, 1.3), 

skeletal muscle (Ca, 1.1), the eyes (Ca, 1.4), and smooth muscle (CaJ. 2) to name 
just a few (Saada et al, 2003; Hoda et al, 2005; Hulme et al, 2005; Qu et al, 
2005). They have a critical role in the excitation-contraction coupling within 

these tissues, and are also prominent in many endocrine cells (Mitterdorfer et al, 
1998). High sensitivity to dihydropyridines such as nifedipine is a defining 

criterion for L- type classification (Tsien et al, 199 1; Lipscombe et al, 2004). The 

Ca2+ agonist Bay K8644 strongly increases the probability of L-type channel 

opening (Nowycky et al, 1985). 

P/Q- type channels comprise Ca, 2.1 channels, are sensitive to the toxin 

co-AGA IVA and are named P- for Purkinje cells (Llinas et al, 1989; Sato et al, 
2000). They have recently been found to be involved in familial migraine and 

episodic ataxia type-2 (Guida et al, 200 1). 

N- type channels have an intermediate conductance between T- and L- 

types, and require strongly negative potentials for complete removal of 
inactivation (unlike L- type) and strong depolarizations for activation (unlike T- 

type) (Nowycky et al, 1985). They are named N- for neither T or L- type, and 

are Ca, 2.2. These channels have a high sensitivity to, and are irreversibly 

blocked by, the toxin co-conotoxin (Sidach and Mintzý 2000). 

R- type channels are resistant to co-conotoxin and co-AGA IVA, are called 
R- type for 'resistance' and named Cav2.3. These types of calcium channels 

resemble T- type channels, in that both show sensitivity to nickel and voltage 
dependence of inactivation. However, Ca, 2.3 requires stronger depolarisations 

for channel opening (Perez-Reyes, 2003). 

T- type channels have a distinctive rapidly activating low voltage 

activating current. They also display fast inactivation and have a small 

conductance and transient current, (being named T for tiny conductance and 

transient current), and are subdivided into Ca, 3.1-3.3 (Klugbauer et al, 1999). 

The S6 transmembrane segment of domain I have previously been shown to be 

important for the fast inactivation properties of high voltage activated channels 
(Zhang et al, 1994 and Shi et al, 2002). 



22 

They were first discovered in cardiac myocytes and dorsal root ganglia 

(Carbone and Lux, 1984; Nilius et al, 1985) and have recently been detected in 

the adrenal and thyroid glands (Monteil et al, 2000). T- type channels in the 

cardiovascular system are thought to mediate a pacemaker action, being found in 

coronary smooth muscle and atrial pacemaker cells (Cribbs et al, 1998). 

Channels within the T- type sub-family produce firing patterns unique to brain 

nuclei, suggesting that this sub-family makes contributions to neuronal 

physiology in the brain (Lee et al, 1999; McRory et al, 2001). 

Table 1.1 shows a summary of the types of calcium channels found in 

vertebrates. 

Table 1.1 Types of calcium channels. 

Type 

HVA 

L 

HVA 

P/Q, N, R 

LVA 

T 

Structural nomenclature Ca, 1.1-1.4 Ca, 2.1-2.3 Ca, 3.1-3.3 

Dihydopyridine sensitivity l Sensitive Resistant Resistant 

1.4.2 Structure of voltage gated calcium channels 

The main pore forming subunit of calcium channels (al) has four 

homologous domains (I-IV) each consisting of six transmembrane segments (Fig. 

1.11). 

racellular 

acellular 

u 

Fig. 1.11 Schematic diagram of an a, subunit of a voltage gated calcium 
channel. 

1 11 111 IV 
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The a subunit contains binding sites for all of the known blockers, the 

selectivity filter, the voltage sensor and the ion conducting pore. Other subunits 

may also associate with the a subunit; intracellular P subunit (which binds to the 

linker between domains I and 11 for L- type channels), the a26 dimer (wherein the 

6 subunit is located with the membrane and the (12 subunit binds to the 

extracellular C- terminus of the 6 subunit by means of a disulphide bridge; 

Catterall, 1995; Hofmann et al, 1999), and the -y subunit (which binds at the N- 

terminal end of the aI subunit within the membrane) (Fig. 1.12 and 1.13) 

(Catterall, 1995; Hofmann et al, 1999). Co-expression of the 0 and a26 subunits 

with the HVA a subunit increases the number of functional channels reaching the 

plasma membrane, changes the gating rate constants and shifts the midpoints of 
both activation and inactivation (Hille, 2001). However, for LVA channels, co- 

expression with the P and (126 subunits do not shift the mid-point of the IN 

curves, although they do produce a small increase in current density (Lambert et 

(I') 

al, 1997; Lacinova et al, 1999). 

o acellular 

racellular 

racellular C 

Fig. 1.12 Schematic diagram Of Q26,0 and y 

cellular 
subunits. 
(126 family consists Of 0126la-e, a28 2 and U28 3. 
P family consists of 01 a-c, P2a-c, P3 and 04. 

ellular y family consists of yl-4. 
The dashed line denotes a disulphide bond in the 
COMDlex. 
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IN 

p %- 

Fig. 1.13 Schematic diagram of an a, subunit of a voltage gated calcium 
channel, with the Q28, P and y subunits. 
The dashed line denotes a disulphide bond in the CC26 complex. 

1.4.3 Pore and selectivity filter in voltage gated calcium channels 

As for other voltage dependent channels, the pore is formed by the highly 

conserved linker connecting the S5 and S6 transmembrane segments in each of 

the four repeats in calcium channels, domains I-IV (Dirksen et al, 1997). The 

pore region is thought to have a similar structure to that found in potassium 

channels (see KcsA, Fig. 1.2). The four S6 transmembrane segments are thought 

to stabilize the four P loops of the pore, and this contributes to the ion selectivity 
(Doyle et al, 1998). 

Mutational analysis of a high voltage channel has shown that four 

glutamate (EEEE) residues in the P regions in each of the domains are important 

in determining ion selectivity (Yang et al, 1993). Equivalent residues are found 

in all high voltage calcium channels. These glutamate residues are thought to 

form a single high affinity Ca 2+ site within the pore, and two Ca 2+ ions can be 

accessed at the same time (Ellinor et al, 1995). Also, the negative charge in the 
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vestibule could increase conduction by electrostatic attraction of Ca2' ions to the 

pore. 
The selectivity filter (P region) of all low voltage Ca2+ channels is 

thought to be by an arrangement (from each of the domains) of two glutamate 

and two aspartate residues (EEDD). Mutation of the aspartate residues to 

glutarnic acid changes the conduction properties of these channels, altering 

channel selectivity and permeability (Talavera et al, 2003). 

1.4.4 Activation in voltage gated calcium channels 

The S4 segment in potassium channels functions as a voltage sensor (see 

1.1.2). However, few studies have been carried out on calcium channels to 

investigate the role of the S4 region, although mutational studies have supported 

a role for this region in channel activation. Effects on the mid-point potential and 

time course of activation have been shown to arise from S4 mutations in domains 

I and III of a high voltage activated calcium channel, but not from S4 mutations 

made in domains II and IV (Garcia et al, 1997). Leucine or isoleucine mutations 
in domains I and III had the sarne effect on the voltage dependence of calcium 

channel activation as the mutations at equivalent positions in potassium channels, 
indicating that this region plays a fundamental role in channel activation (Garcia 

et al, 1997). 

Recent work on low and high voltage activated calcium channels in this 

laboratory has suggested that domains I, III, and IV contribute strongly to the 

differences in voltage dependence of activation between high and low voltage 

calcium channels (Li et al, 2004). 

1.5 Voltage gated calcium channels - Ca, 1.2 and Ca_3.1 

The specific calcium channels investigated within chapter 6 of this thesis 

are discussed in more detail here. Ca, 3.1 is primarily expressed in human brain, 

but has also been shown to be present in the heart, lung, ovary, testes, intestine 

and placenta (Monteil et al, 2000b; Perez-Reyes et al 1998). Caj. 2 has been 

found to be expressed in the heart, smooth muscle, kidney and fibroblasts, as 
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well as in endocrine and neuronal tissue (Hofmann et al, 1999). More recently it 

has also been found in tooth pulp (Westenbroek et al 2004). 

1.5.1 Function and cloning of Ca, 1.2 and Ca, 3.1 

Ca, 1.2 is known to be responsible for initiating excitation-contraction 

coupling in the heart. Some forms of the channel have been cloned from human 

heart, rabbit smooth muscle, and rat brain (Schultz et al, 1993; Biel et al, 1990; 

Snutch et al, 199 1). The clone used in the thesis was rabbit cardiac Ca, 1.2 

(Mikami et al, 1989). The channels isolated from rabbit cardiac (Mikami et al, 

1989) and rabbit smooth muscle (Biel et al, 1990) are similar in sequence, but the 

brain form of the channel differs by containing a small insert in the loop between 

domains II and III, and a small extension in the C- terminal domain. 

Ca, 3.1 is known to trigger bursts of action potentials by calcium influx 

through the channels. Screening of a rat brain cDNA library has facilitated the 

cloning of Ca, 3.1, with human and mouse (used in this thesis) versions following 

(Perez-Reyes et al, 1998; Monteil et al, 2000b; Klugbauer et al, 1999; Zhang et 

al, 2000). Splice variants of this channel differ in the loop between domains II 

and III, and in the loop between domains III and IV (Perez-Reyes, 2003). 

1.5.2 Differing activation kinetics of Ca, 1.2 and Ca, 3.1 

Caj. 2 displays L- type cuffents, is high voltage activating and shows 

little inactivation. In contrast, Ca, 3.1 displays T- type currents, is low voltage 

activating and has fast inactivation. Replacement of domains I, III, or IV of 
Ca, 3.1 with the corresponding domains of Caj. 2 leads to high voltage activated 

channels (Li et al, 2004). Therefore, domains I, III, and IV are important in 

determining differences in voltage dependence of activation between the two 

channels. Work by Altier et al, (2001) has also shown that domains I and III play 

an important role in voltage dependent activation. 
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1.6 Summarv of aims of this thesis 

Firstly, the N- and C- terminal domains of the rat and human Kv2.1 

potassium channel were investigated to try and determine which key residues, or 

molecular regions, responsible for the difference in the rate of activation between 

the two forms of the channel. For this, a point mutation at residue 75 of the rat 

channel and rat-human chimeras were characterised using two-electrode voltage 

clamp. 
Secondly, evidence for a direct interaction between the N- and C- 

terminal domains of rat Kv2.1 was sought. For this, N- and C- terminal protein 

constructs were used to investigate interactions using GST tags and Biacore 

surface plasmon resonance. In addition, fluorescent constructs were generated in 

order to characterize relative movement of the N- and C- terminal domains using 
FRET. 

The structures of some voltage gated potassium channels have been 

solved by electron microscopy. The generation of such a structure for Kv2.1 

would help us to better understand this channel. To this end, initial experiments 

were undertaken to express and purify rat Kv2.1 channel protein, with and 
without the N- terminal domain, for single particle electron microscopy analysis. 

Finally, no previous studies have systematically studied the movement of 
the S4 segment in calcium channels in response to depolarisation. Therefore, to 

establish whether such S4 movement occurs and the extent of this movement has 
been studied in calcium channels using PCMBS. 

Much of the work described in this thesis has already been published. 
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CHAPTER 2 

MATERIALS AND METHODS 
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2. Materials and methods 

Chemicals and reazents 

All of the standard laboratory chemicals were obtained from VWRI 

(Lutterworth, UK) and Sigma (Poole, UK) through Science Warehouse Ltd. 

Collagenase Type IA, ethidiurn bromide, 3-aminobenzoic acid ethyl ester 
(tricaine, disodium. salt), ampicillin and penicillin-streptomycin solution were 

obtained from Sigma. Agarose powder was obtained from Helena Biosciences 

(Sunderland, UK), and PCMBS was obtained from Toronto Research Chemicals 

(Toronto, Canada). EZ-Glass MilkTm was purchased from Anachem (Luton, 

UK). Escherichia coll JM 109 cells (> 109 cfu/ýtg) were from Promega. 

fEames, antibodies and kits 

All restriction enzymes were purchased from Helena Biosciences, or 

Promega (Southampton, UK), unless otherwise stated. The buffers used for each 

of the digests were supplied with the enzymes. Pfu TurboO DNA polymerase 
and DpnI were purchased from Stratagene (Amsterdam, Netherlands) as part of 
the QuikChange TM Site-directed mutagenesis kit. Shrimp Alkaline Phosphatase 

was obtained from Promega. The QIAquickg Gel Extraction kit was obtained 
from Qiagen (Crawley, UK). The WizardID Plus SV Miniprep kit was from 
Promega. The MEGAScript T7 In Vitro Transcription kit was obtained from 
Ambion (Hutingdon, UK). The ClonableSTm DNA ligation kit was from Novagen 
(Lutterworth, UK). All primary and secondary antibodies were purchased from 
Novagen (Lutterworth, UK), except ID4, which was a kind gift from M. Rigney, 
USA. 

Oli, aonucleotides and seauencin 

All primers were designed using the Primer Premier Program version 
4.10 (Premier Biosoft Intemational). Primers were made by Sigma Genosys 
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(Cambridge, UK). All DNA sequencing was carried out by Lark Technologies 

(Saffron Walden, UK). Universal primers were provided by Lark. All primer 

sequences are shown in the 5' to 3' direction. 

Xenopus laevis toads 

Mature female toads were obtained from Blades (UK). 

Potassium and calcium channel cDNA clones 

The human Kv2.1 (hKv2.1) clone in pGEM-He-Juel was a kind gift from 

0. Pongs (Hamburg, Germany), originally cloned as described in Albrecht et al 

(1993). The rat Kv2.1 (rKv2.1) in pBluescript SK7 was a kind gift from J. Drewe 

(Houston, USA), originally cloned as described in Frech et al (1989). The rKv2.1 

E37 in Pblu-Sk was provided by K. J. Swartz (National Institute for Health, 

Maryland), and contained mutations which rendered the rKv2.1 protein 

susceptible to agitoxin-2 binding. The pEYFP and pECFP fluorescent vectors 

were donated by N. Soldatov (Baltimore, USA), and the ajG calcium channel 

clone by F. Hofmann (Munich, Germany). The CGGG and GCGG calcium 

channel chimeras were made by J. Li. 

Growth media, solutions and buffers are as described in table 2.1 a-d. 
All solutions were made using double distilled autoclaved water 

(Millipore system, Watford, UK). The bacterial growth media was sterilized 

prior to use by autoclaving. RNA solutions were made using RNase free water or 
0.05% diethyl pyrocarbonate (DEPC) treated water. All tips used for RNA work 

were treated with DEPC water and autoclaved. 
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Table 2.1a: Growth media for E. coli competent cells 

YT 8g Bacto-Tryptone, 5g Bacto-Yeast 

extract and 2.5g NaCI in 900ml water. 

pH 7.0, volume adjusted to I litre. 

LB lOg Bacto-Tryptone, 5g yeast extract 

and I Og NaCI in 900ml water. pH7.0, 

volume adjusted to 1 litre. 

LB-Agar Plate Agar (I%), LB media and ampicillin 
(I 00mg/ml, I gl/ml media). 

Table 2.1b: Gel electrophoresis of DNA and RNA 

Ethidiurn Bromide (EtBr) for DNA 10mg/Ml in autoclaved water 
Tris-EDTA buffer (TE) Tris HCI pH 8.0 (lOmM) and EDTA 

pH 8.0 (ImM). 

I Ox agarose gel sample buffer I 00ml 250mg bromophenol blue in 33ml 
150mM Tris pH 7.6,60ml glycerol and 
7ml water. 

Tris-acetate SOx (TAE) 242g Tris in 500ml water, 100ml O. SM 
Na2EDTA (pH 8.0) and 57.1ml glacial 

acetic acid, volume adjusted to I litre. 

Table 2.1c: RNA Preparation 

RNA new wash 50% Ethanol, lOmM Tris HCI (pH 8.0), 

I OOmM NaCl and 2.5mM EDTA (pH 

8.0). 

Denaturing solution 5mM Guanidine thiocyanate, 0.05% N- 

lauryl sarcosine, 125mM sodium citrate 

and 0.007% 2-mercaptoethanol. 
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Table 2.1d: Oocyte preparation and electrophysiological solutions 

Calcium-free Ringer solution 82mM NaCl, 2mM KCI, 5mM HEPES, 

and IMM M902. pH was adjusted to 

7.2 using 4M NaOH. 

Barth's solution 88mM NaCl, I mM KCI, 2.4mM 

NaHC03.0.82mM MgS04,0.4mM 

Ca(N03)2,7.5mM Tris-HCI pH 7.6, 

1 O, OOOU/I penicillin, and I 00mg/I 

streptomycin. 
Frog Ringer solution 11 5mM NaCl, 2mM KCI, 1.8mM 

CaC12, and I OmM HEPES. pH was 

adjusted to 7.2 using 4M NaOH. 

Barium solution 40mM Ba(OH)2,5OmM NaOH, 2mM 

KOH, and 5mM HEPES. pH was 

adjusted to 7.4 with methanesulfonic 

acid. 

2.1 General molecular bioloav methods 

2.1.1 Transformation ofp1asmid DNA into E. coll competent cells 

Plasmid DNA was transformed into E. coli JM 109 competent cells by a 

method modified from Sambrook et al (1989). A 1.5ml micro-centrifuge tube 

was pre-chilled and I 00gl of competent cells were added. I pl of plasmid DNA at 

a concentration of I OOng/gl was added. The mixture was placed on ice for 10 

minutes, and then placed in a water bath for 45 seconds at 42*C. The cell mix 

was then placed on ice for a fin-ther 2 minutes. 900pI of pre-warmed LB media 
was added, and then the tube was placed into an orbital incubator for I hour at 
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37*C and 225rpm. Following this, the cells were spun down in a micro- 

centrifuge for 3 minutes at 40OOrpm. 900pl of supernatant was removed and the 

pellet re-suspended in the remaining supernatant. This was then spread out on LB 

agar plates and left to grow overnight in an incubator at 37'C. 

2.1.2 Inoculation ofLB media with a bacterial colony 

Following overnight growth on LB agar plates, individual colonies were 

randomly selected to inoculate 5ml of LB media containing I ýtg/ml ampicillin. 

One colony was removed from the plate with a 200gl micropipette tip and dipped 

into the media. The inoculations were placed in an orbital incubator and left to 

grow overnight at 37*C and 225rpm. 

2.1.3 Extraction ofp1asmid DNA from inoculated cells using the 

mini-prep method 

Overnight inoculations were transferred to 1.5ml micro-centrifuge tubes, 

and spun in a micro-centrifuge at 10,000rpm for 5 minutes. The supernatant was 
then removed from the tubes and discarded. Plasmid DNA was extracted from 

the cells using the Promega Wizarde Plus SV Mini-prep kit, according to the 

manufacturer's recommended protocol. 

2.1.4 Agarose gel electrophoresis ofDNA and RNA 

The yield of DNA was checked using agarose gel electrophoresis. A 

0.7% agarose gel was made (0.7g ultra pure agarose in I 00ml I xTAE, table 

2.1b), with 6ýtl 10mg/ml ethidiurn bromide. The gel was transferred to an 

electrophoresis tank (Wide Mini Sub Cell, BioRad), containing I xTAE buffer. 

DNA samples were added to 6x loading buffer (see table 2.1 b) and loaded in 

separate lanes. A DNA marker was also run to allow semi-quantitative analysis 

of the DNA sample. Gels were run at 80 Volts for approximately 35 minutes, and 
viewed using Quantity One Imaging Software on a BioRad Gel Doc 2000. 
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2.1.5 Site-directed mutagenesis 

Site-directed mutagenesis is a useful molecular biology tool by which 

targeted point mutations can be made rapidly and easily using a thermal cycling 

method. Figure 2.1 shows a diagrammatic representation of the steps involved. 

The QuikChange TM Mutagenesis Kit (Stratagene) was used according to the 

manufacturer's recommended thermal cycling protocol, which is derived from 

the method of Kunkel et al (1987). General cycling parameters are shown in 

table 2.2. Thermal cycling was carried out in a Perkin Elmer GeneAmp 2700 

PCR machine. 

Table 2.2 General cycling parameters for site-directed mutagenesis. 

Segment No. Cycles Temperature Time 

1 1 95"C 2 minutes 
2 25 95"C 

550C 

720C 

30 seconds 
1 minute 

2 minutes/kb 
3 72*C 10 minutes 

Following the completion of the thermal cycling stage, I [d of Dpnl was 

added to each of the tubes, and left ovemight to digest at 37*C. 10ýd was 

transformed into JM 109 cells as described in 2.1.1. Colonies were inoculated as 
described in 2.1.2, and DNA was extracted as described in 2.1.3. Clones were 

confirmed by automated DNA sequencing (Lark). 

2.1.6 Restriction enzyme digest to linearise plasmid DNA 

Restriction cuts for sub-cloning and for linearisation of DNA before 

transcription were carried out in the same way. 15 units of the appropriate 
enzyme were added to 30gl of plasmid DNA, along with 5gl of the appropriate 
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Step I DNA template with identified 

Plasmid preparation 

0 U 
target site for mutation 

0 01h 
IF 

Primersawlr& containing the 
, ýý mismatched bases (X) bind 

4 Step 2 to the template DNA (solid circle). 
Thermal cycling Using Pfu Turbo mismatched bases 

(X) are incorporated into new DNA 

molecules produced during thermal 
cycling. This results in nicked circular 
mutagenic DNA (dashed lines). 

There is a mixture of wild 
type DNA (solid circle) and 
mutagenic DNA containing the 

.......... altered bases (dashed lines). 

Digestion of the methylated, 
non-mutated parental DNA 

Step 3 template with Dpnl removes Digestion 
wild type DNA. Mutagenic 
DNA is then transformed 

..................... into JM109 cells. 

Step 4 
Transformation Cells repair nicks in mutated 

plasmid. 

.................. 

Fig. 2.1 Schematic diagram of the QuickChangeTM site-directed 
mutagenesis method. 
Adaptation from the Stratagene protocol. 
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enzyme buffer, and the volume was made up to 50ýd with water. The mixture 

was left overnight at the optimum temperature for the enzyme. Following 

restriction, the reaction was checked on a 0.7% agarose gel, along with 

unrestricted sample for comparison. 

2.1.7 Purification of DNA fragments from agarose gels 

In ordcr to purify digcstcd DNA it was ncccssary to recovcr the rclevant 
DNA fragments from agarose gels. The restriction enzyme digest was run on a 
0.7% agarose gel at 80 Volts for 35 minutes. The bands of interest were extracted 
from the gel using a sterile scalpel blade. The DNA was extracted using a 
QlAQuicO Gel Extraction Kit, and the protocol was followed according to the 

manufacturer's instructions. The DNA was eluted in 30gl of distilled water, and 

I gl run on a 0.7% agarose gel to check concentration. 

2.1.8 Dephosphorylation ofplasmid DNA fragments 

Prior to the ligation reactions, it was necessary to dephosphorylate the 

typically larger vector fragment to prevent re-ligation. 20ýLl of plasmid DNA 

was added to 2ýd of the supplied I Ox enzyme buffer (Promega), 2 [d of water and 

I gI of Shrimp Alkaline Phosphatase (SAP, Promega), for a total volume of 25 gl. 

The tubes were incubated at 37"C for 30 minutes. The enzyme was then 

deactivated at 65"C for 15 minutes, and the DNA was then checked by running 

I gl on a 0.7% agarose gel. 

2.1.9 Ligation of DNA fragments 

After dephosphorylation of the vector fragment, ligation of the relevant 

insert and vector was carried out. Approximately twice as much insert to vector 
(concentration) ratios were used in all reactions. The ClonableSTm T3 ligase 

ligation/transformation kit from Novagen was used for all ligations, with the 

procedure used according to the manufacturer's instructions. The transformed 
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cells were plated directly onto LB ampicillin. agar plates and incubated at 37C 

overnight. Inoculation and mini-preps were then carried out as described 

previously. 

2.1.10 Gene-clean of linearised DNA to RNA grade 

After plasmid DNA was linearised, it was purified using the Gene-clean 

protocol so that it would be sufficiently high grade to synthesise RNA. To each 

DNA sample 200gI of denaturing solution (see table 2.1 c) was added, along with 

15[d of EZ-Glass Milk". The samples were then vigorously mixed and placed 

on ice for 5 minutes. The tubes were then spun at I 0,000rpm in a micro- 

centrifuge to pellet the Glass Milk beads. The supernatant was removed and the 

pellet was washed three times in 500gI of RNA New Wash (see table 2.1c). The 

DNA was eluted from the beads by adding 20gl of RNA grade water to the beads 

and incubating at 55 *C for 10 minutes with occasional mixing. The tubes were 

then spun at I 0,000rpm for 1 minute and the supernatant then transferred to a 

new tube. I gI of DNA was then run on a 0.7% agarose gel to check recovery. 

2.1.11 In vitro transcription to synthesize RNA 

Capped cRNA was transcribed in vitro using the T7 MEGAScript kitTm 

according to the manufacturer's instructions. I ýtl of the cRNA samples were then 

checked for yield using a 0.7% agarose gel. 

2.2 Specific molecular bioloav methods 1 

2.2.1 Construction ofrKv2.1 E75D mutant 

In order to determine the effect of changing the amino acid at position 75 
(rat Kv2.1 numbering) of rKv2.1 wild type, it was necessary to mutate the coding 
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sequence using the QuikChangeTm site-directed mutagenesis method (see section 
2.1.5). The mutant generated was rKv2.1 E75D. 

Primers were designed with one mismatched base as shown in table 2.3. 

Mismatched bases are shown in red, and both primers are described in the 5' to 

3' direction. The changed amino acid is shown underlined in red. 

Table 2.3 PCR primers used for site directed mutagenesis -E75D. 

rKv2.1 E75D sense GCGACGACTACAGCCTTGACGACAACGAGTACTTCTTC 

rKv2.1 E75D anti-sense GAAGAAGTACTCGTTGTCGTCAAGGCTGTAGTCGTCGC 

Transformation was as detailed in section 2.1.1, and DNA was extracted 

as in section 2.1.3. Samples of mini-prepped DNA were sent to Lark 

Technologies for automated sequencing using a universal T7 primer. 

2.2.2 Construction of chimera rKv2. lh]08-528 

The construction of the chimera rKv2. I M08-528, which has residues 
between 108 and 528 of rat replaced by human, was carried out by a restriction 

enzyme digestion, using Bsp1407I and BssHII, followed by ligation of the 

appropriate fragments (rat wild type digestion was prepared by M. Ju), as shown 
in figure 2.2. 

Briefly, the cDNA of both the channels was digested using the restriction 

enzymes Bsp14071 (15 units, overnight incubation at 37C) and BssHII (15 units, 
5 hour incubation at 5 O*Q. The enzyme Bsp 14071 cuts both rat and human Kv2. I 

cDNA downstream from the S6 domain, and BssHII cuts in the N-terminal 

domain of both clones. Restriction of cDNA of hKv2.1 yields 2 fragments -a 
smaller 1264bp fragment, which contains the SI to S6 domains, and a larger N- 

and C- terminal vector fragment, which of 478 1 bp. The fragments were isolated 

by running on a 0.7% agarose gel and bands excised as described in section 
2.1.7. The smaller hKv2.1 fragment was then ligated to the larger rKv2.1 
fragment as outlined in section 2.1.9, and mini-prepped according to section 
2.1.3. 
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BssHII 14071 BssHII 

r rKN, 2.1 in I 
pBluescript Sk- 

6306bp 

I hKv2.1 in I 
pGem-He-Juel 

6045bp 

14071 

Both plasmids containing the cDNA for the wild type channels 
were digested with the restriction enzymes BssHII and Bsp14071. 

1264bp 

rK%-2.1 
5042bp 

1264bp 

The appropriate DNA fragments were isolated by purification from 
agarose gels 

4911ý 
1264bp 

The relevant smaller fragment of 
the rat clone was ligated to the larger 
fragment of the human clone to create 

chimera rKv2. lhIO8-528 

Fig. 2.2 Schematic diagram of the construction of the chimera 
rKv2. lhlOH-528. 

The different parts of the plasmids that were exchanged during 

construction with the restriction enzymes are shown. The sizes 
of the fragments are indicated. Diagram not drawn to scale. 

41W 
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A sample of mini-prepped DNA was sent to Lark Technologies to 

confirm that the correct sub-clone had been made. The sequencing primer used 

was a T7 universal primer. 

2.2.3 Construction ofchimeras rKV2- IhIo8_74o and hKv2. Ir, 08-740 

'nie construction of the chimeras rKv2. I M08-74o and hKv2. Ilo8-74o, which 

have residues between 108 and 740 replaced, was carried out by restriction 

enzyme digestion of the rKv2.1 and Bsml hKv2. I clone. The latter clone 
(Leadbitter, 2002), has a silent mutation for the Bsml restriction site. The cDNA 

of both the channels was digested using the restriction enzymes BsmI (IS units, 

overnight incubation at 3 7'Q and BssHlI (15 units, 5 hour incubation at 5 O'Q, 

Fig. 2.3. The enzyme BsmI cuts both rat and human (Bsml clone) Kv2. I cDNA 

downstream from the S6 domain, and BssHII cuts both channels in the N- 

terminal domain. Restriction of cDNA of hKv2.1 yields 2 fragments, a smaller 
1898bp fragment which contains the SI to S6 domains, and a larger N- and C- 

terminal vector fragment of 4147bp. Similarly, restriction of rKv2.1 cDNA 

yields 2 fragments -a smaller 1898bp fragment which contains the SI to S6 

domains, and a larger N- and C- terminal vector fragment of 4408bp. The 

fragments were isolated by running on a 0.7% agarose gel and excision of the 

bands performed as described in section 2.1.7. 

All vector fragments were dephosphorylated as in section 2.1.8. The 

smaller fragments were then ligated to the larger relevant fragments (Fig. 2.3), as 

outlined in section 2.1.9, and mini-prepped according to section 2.1.3. Samples 

of mini-prepped DNA were sent to Lark Technologies to confirm that the correct 

constructs had been made. The sequencing primer used was a T7 universal 

primer. 

2.2.4 Construction ofchimera rKV2- lh741-795 

In the absence of any convenient restriction sites, the rKv2. I h741-795 

chimera, which has residues between 741 and 795 of the rat channel replaced by 
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BssHII 

r rKN-2.1 in I 

pBluescript Sk- 
6306bp 

Bsml BssHII 

hKN, 2.1 BsmI I 
clone in 

pGem-He-Juel 
\, 6045bp / 

Bsml 

Both plasmids containing the cDNA for the wild type channels 
were digested with the restriction enzymes BssHII and Bsnil. 

The DNA fragments were is irification from agarose gels 

,4 --- 
W# 
1898bp 

rKv2.1 
4408bp 

1898bp 

hKN, 2.1 Bsml 
4147bp 

The relevant smaller fragment of rat clone was ligated to the 
larger fragment of the human clone to create chimera hKv2.1, jo8-740 

and vice versa to create rKv2. lhIO8-740 

Fig. 2.3 Schematic diagram of the construction of the chimeras 
hKvI'008-740and rKv2. lhIO8-740. 

The different parts of the plasmids that were exchanged during 

construction with the restriction enzymes are shown schematically. 
The sizes of the fragments are indicated. Diagram not drawn to scale. 



44 

human, was generated using the PCR overlap extension protocol described by 

Horton ef al (1989), as illustrated schematically in Fig. 2.4. 

Briefly, in this method first round PCR products were made with both 

wild type rKv2.1 and hKv2.1 cDNA as templates using primers with appropriate 

overhangs (primers are shown in table 2.4). A second round PCR product was 

made which joined residues 741-795 in human to the 5' rat sequence. A third 

round PCR product was then made with primers that spanned the whole region 

using the products from the first and second rounds. PCR cycling parameters are 

shown in table 2.5. 

Table 2.4 PCR primers used in the construction of chimera rKv2. lh741-795. 

All primers are shown in the 5' to 3' direction. Red colouring denotes hKv2.1 

and blue colouring denotes rKv2.1. All of the predicted annealing temperatures 

for the primers were approximately 60'C. 

IR ('G'I'GG-I-GGAGAAAAA'I'GG('G 

2R AGTTGAACGCTATTG('TGI'GTGTTTCTC'AGGGG 

3H CACAG AATAGCGTTCAACTTTGAGGCGG 

4H TAGGGGAGGI'GGGTAAAGGGGAGCTTTCAAAG 

5R CCCTTTACCC ACCTCCCCTAAGTTCTTAAGGCC 

6R GCACG AC AGGTTTCCCG ACT 

Table 2.5 Cycling parameters for overlap-extension PCR. 

Segment No. Cycles Temperature Time 

1 1 95oC 2 minutes 

2 25 950C 

55'C 

720C 

30 seconds 

30 seconds 

2 minutes/kb 

3 1 72'C 10 minutes 
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Product I (841bp) 

1R 

0 rKv2.1 Product 2 (1474bp) 

5R 6R 

rKv2.1 pB 
I 
luescript 

hKv2. I 4H vector 

Product 3 (177bp) 

First round PCR completed and 
products gel extracted 

I 

Second round PCR 

1R 
01 Product I 

411 

Product 4 (1018bp) 

Product 4 
IR 

10 

Final product 2492bp 

Product 3 

Product gel extracted 

I 

Third round PCR 

Product gel extracted 

6R 
Product 2 

Bsp 14071 1742bp Nod 

Fig. 2.4 PCR protocol for the construction of chimera rKv2.1h741-795. 

PCR was carried out using the cycling parameters shown in table 2.5. The relevant sized 
fragments were gel extracted and used as templates in the next round as shown. The red 
colouration denotes human Kv2.1 sequence and the blue denotes rat Kv2.1 sequence. 
The dotted lines show the fragment join. 
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The relevant sized fragments were isolated by running on a 0.7% agarose 

gel and excised as described in section 2.1.7 (and see Fig. 2.5). The final 

chimeric PCR product was then inserted back into the rKv2.1 wild type clone as 

follows. The PCR product was digested with BspI 4701 (15 units, overnight 

incubation at 3 7'C) and Noff (15 units, overnight incubation at 3 7*C), (Fig. 2.5), 

to yield a product of 1742bp. This was then ligated into the similarly digested 

wild type rKv2.1 as described in section 2.1.9, and mini-prepped according to 

section 2.1.3. A sample of mini-prep DNA was sent to Lark Technologies to 

confirm that the correct sub-clone had been made. The sequencing primer used 

was a T3 anti-sense universal primer. 

2.3 Specific molecular biolo2v methods 11 

To determine whether the N- and C- termini of rat Kv2.1 interact, N- and 
C- terminal constructs of the rat Kv2.1 channels were expressed separately, with 

the N-terminus fused to a GST tagged domain. 

2.3.1 Construction off-terminal Kv2.1 GST construct, 2-18, rKv2.1 

For the N-terminal construct, an N-terminal PCR product was obtained, 
from the second amino acid to residue 18 1, just before the SI domain. Primers 

(table 2.6) were designed with overhangs containing the necessary restriction 

sites (EcoRl and XhoI respectively). A stop codon was added at the end of the N- 

terminus (shown in blue). Restriction sites are shown in red, and both primers are 
described in the 5' to 3' direction. 

Table 2.6 PCR primers used for N-terminal Kv2.1 GST construct. 
Both primers had an estimated annealing temperature of 60*C. 

Kv2.1 EcoRI N-S GGCGGAATTCCACGAAGCATGGCTCGCGCTC 

Kv2.1 XhoI N-AS GCCGCTCGAGTCACGACGAGTTGGGCTTCTCCA 
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Bsp14071 

rK-*, 2.1 in 

pBluescript Sk- 

6306bp 

Bsp14071 Nod 

Nod 

*10% 

PCR product (from fig. 2.4) 2492bp 

Both DNA were digested with the restriction enzymes Bsp14071 and Notl 

1742bp 17412Wbp 

542bp 
208bp 

The appropriate DNA fragments were isolated by purification from agarose gels 

1742bp 
4w 

rKv2.1 

4564bp 

The relevant PCR product fragment was ligated to the larger rKv2.1 fragment to create 
the chimera rKv2. lh741-795 

Fig. 2.5 Schematic diagram of the construction of chimera rKv2.1h741-795. 
Only the restriction sites involved are labelled, and the sizes of fragments are 
indicated. Diagram not drawn to scale. 
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PCR was carried out using the cycling parameters in table 2.5. The 

relevant sized fragments were isolated by running on a 0.7% agarose gel. The 

PCR product and pGex-4T-3 vector were digested with EcoRI (15 units, 

overnight incubation at 3 7'C) and Xhol (15 units, overnight incubation at 3 7'Q, 

see Fig. 2.6 for details. The 540bp PCR product was then ligated into the 

similarly digested vector as described in section 2.1.9, and mini-prepped 

according to section 2.1.3. A sample of mini-prepped DNA was sent to Lark 

Technologies to confirm the correct sub-clone had been made. The sequencing 

primer used was the T7 Lark universal primer. 

2.3.2 Construction of the C-term inal Kv2. I construct, 413-8-13rKO. I 

A C-terminal PCR product was obtained using sense and anti-sense 

primers from residue 413 Oust after the S6 domain), to residue 853. The sense 

primer (table 2.7) was designed with an overhang containing the necessary 

restriction site (EcoRI), as well as a start codon at the beginning of the sequence, 

shown in blue. The restriction site is shown in red, and sequences are described 

in the 5' to 3' direction. The anti-sense primer did not contain any overhangs, 

and annealed to the Kv2.1 sequence downstream of the Bsp14071 restriction site. 

Table 2.7 PCR primers used for C-terminal Kv2.1 construct. 

Kv2.1 EcoRl C-S GGCGGAATTCACCATGTCCGAGTTCTACAAGGAGCAGAAG 

Kv2.1 C-AS GTGGCACAGCTGATGAAGCTG 

PCR was carried out using the cycling parameters in table 2.5. The 

relevant sized fragments were isolated by running on a 0.7% agarose gel. The 

539bp PCR product and rat Kv2.1 wild type were digested with EcoRI (15 units, 

overnight incubation at 37*C) and Bsp1407I (15 units, overnight incubation at 
37"C), Fig. 2.7. The 346bp digested product was ligated into the similarly 
digested vector (4703bp) as described in section 2.1.9, and mini-prepped as 
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EcoRl Kv2.1 Xhol N-AS 

N-term PCR product *-ý, Xhol 
2-181 

540bp 

KN, 2.1 EcoRl N-S Stop 
Codon 

GST tag 

Both the pGEX-4T-3 plasmid and the N-terminal PCR product were 
digested with the restriction enzymes EcoRl and Xhol 

I 

The DNA fragments were isolated by purification from agarose gels 

The PCR fragment was ligated into the pGEX-4T-3 vector 

o acids 2-181 

2-181 rKv2. 
GST tag 

-7 
1)Gex-4T-3) 

N-terminal GST fusion construct 

5431bp 

Fig. 2.6 Schematic diagram of the construction of N-terminal GST fusion construct. 
The PCR product and the wild type vector were ligated after digestion 
with restriction enzymes as shown. The sizes of the fragments are indicated. 
Red lines denote restriction sites and the green line denotes the stop codon in 
the PCR product. Diagram not drawn to scale. 

EcoRl Xhol 
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EcoRl 

BspI4011 

EcoRl 
PCR product 

C-terminus 
539bp 

Start of Bsp 14071 
C-terminus 

Both the rKv2.1 pBluescript plasmid and the C-terminal PCR product were 
digested with the restriction enzymes EcoRl and Bsp14071 

8 bi 
\p 

185bp 
lllý 

&4111603bp 

346bp 

rKv2.1 
4703bp 

The relevant DNA fragments were isolated by purification from agarose gels 
I 

The PCR product was ligal ie larger fragment from the rat clone 
to create rKv2.1 C-terminal clone 

Start 

pBluescript 
5049bp, / 

Fig. 2.7 Schematic diagram of the construction of 413-,, 3rKv2.1. 
The PCR product and the larger rKv2.1 fragment were ligated after digestion 

with the relevant enzymes. The sizes of the PCR fragments and rKv2.1 in 
pBluescript are shown. Red lines denotes restriction enzyme sites and the green 
line denotes the start codon. Diagram not drawn to scale. 

346bp 
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described in section 2.1.3. A sample of mini-prepped DNA was sent to Lark 

Technologies to confirm the correct sub-clone had been made. The sequencing 

primer used was the T7 universal primer. 

2.3.3 In vitro expression of GSTfusion proteins and binding studies 

The N-terminal fusion construct was transformed into BL2 I (DE3) E. coli 

cells (Promega), using the method in 2.1.1. Large scale cultures were grown in 

YT media (table 2.1 a) for 5 hours at 3 7'C, and protein expression induced with 
0.25mM isopropyl-l-thio-p-D-galactopyranoside (IPTG), and grown for a further 

90 minutes. Cells were lysed by multiple freeze/thaw cycles, and insoluble 

material removed by centrifugation for 5 minutes at I 0,000rpm. 

The C-terminal construct was synthesised using the reticulocyte lysate 

TNT T7 coupled transcription/translation system (Promega), according to the 

manufacturer's protocol, in the presence of 35S-labelled methionine. 
In vitro binding studies were carried out using the protocol as described 

by Jones et al (2001). Briefly, 20ýd of 50% slurry glutathione-agarose beads 

(Amersharn Biosciences) was added to I ml of N-terminal fusion construct cell 
lysate. Tubes were incubated for I hour at room temperature and washed three 

times with 100pl of sterile lxphosphate buffered saline (PBS). 20PI of the 

labelled C-terminal construct was added, and the samples incubated for a further 

hour at room temperature. The samples were washed again with I OOPI I OBS, 

and eluted from the glutathione-agarose beads using 10 ýtl of elution buffer 

(Amersharn Biosciences). Samples were run on a 12% SDS-PAGE gel, and 

subjected to autoradiography. 
A Western blot was also performed to check the presence of the GST tag. 

Protein was transferred onto nitrocellulose membrane from the SDS-PAGE gel 
using a BioRad semi-dry transfer system, for 15 minutes at IS Volts. The 
Western blot protocol was performed with the mouse anti-GST antibody and 

goat anti-mouse alkaline phosphatase conjugated secondary antibody. 
Chemiluminescence detection was performed using CSPD as a substrate, 

according to the manufacturer's recommended protocol (Amersham 
Biosciences). 
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2.3.4 Biacore surface plasma resonance experiments 

The N- and C- terminal protein constructs were made as described in 

section 2.3.3, and experiments carried out according to Biacore protocols (Fig. 

2.8). Briefly, the C-terminal protein was amide coupled (this step only was 

completed by A. Baron) to flow cell 2, with flow cells I and 3 being left blank, 

and flow cell 3 being used as a negative control. The GST coupled N-terminal 

construct was then washed over flow cells 2 and 3, and a relative response 

recorded where one response unit corresponds to 0.000 1* change in the angle of 

the reflected light. After intensive washing, the GST vector alone control was 

washed over flow cells 2 and 3, and again a relative response recorded. Relative 

interactions of all proteins were then analysed by plotting the response against 

time. 

2.3.5 Construction off-terminal CFP and YFPfluorescent clones 

The construction of four fluorescent N-terminal tagged rat Kv2.1 channel 

clones (as shown in table 2.8) was carried out using the standard PCR overlap 

extension method, as described in Horton et al (19 89), and illustrated 

schematically in Fig. 2.9. It is worth noting that both tags are very similar with 

only a few amino acids differences within the centre of the tag, and hence the 

same primers were suitable for both pEYFP or pECFP DNA (see figure 4.1). 

Briefly, PCR products were made from rKv2.1 -pcDNA3 and either pEYFP or 

pECFP (Clontech) as a template, using primers with appropriate overhangs in the 

regions to be replaced (primers shown in table 2.9). A second round product was 

made which joined either CFP or YFP to the vector pcDNA3. A third round 

product was made with primers which spanned the whole region. PCR cycling 

parameters were as shown in table 2.5. The relevant sized fragments were 
isolated by running on a 0.7% agarose gel, and excision of the bands performed 

as described in 2.1.7. 
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A 

BI 

N-terminal protein was washed over cells 2 and 3 

Flow Channel 

Surfa 

Prism 

"I Sensor surface with gold film 

lected light 

Fig. 2.8 Schematic diagram of the Biacore surface plasmon 
resonance system. 
A) Diagram to show the contents of each cell on the Biacore chip. 
The C-terminal protein was attached to cell 2, with cells I and 3 
being left blank. The N-terminal protein was then washed over cells 
2 and 3. Cell I remained blank to check background levels of the 
Biacore system. 
B) Polarised light is focused onto the sensor continuously. An 
increased sample concentration in the surface coating of the 
sensor (i. e an interaction with a molecule in the flow channel) 
causes a corresponding increase in the refractive index. This 
alters the angle of incidence altering the surface plasmon resonance 
(SPR) angle. By monitoring the SPR-angle as a function of time, the 
kinetic events at the surface are displayed in a sensorgram. 
Taken from Technology Note 1, Biacore. 

Amide coupled 
C-terminal protein 
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Product I (714bp) 

pcDN, iL3-N-S pcDNýý 

pcDNA3 vector 

Product 2 (794bp) 

N-S rK%2.1-N-AS 

rKv2.1 
CFP-N-S PECFP-N-As 

YFP/CFP tag 

Product 3 (724bp) 

First round PCR completed with the parameters shown in table 2.5 and 
products gel extracted 

Second round PCR using cycling parameters in table 2.5 

pcDN, %3-N-S 
Product I 

PECFP-N-AS 

Product 3 

Product gel extracted 
Product 4 (1438bp) 

Product 4 

pcDt3- -s 
Third round PCR 

Product 2 

rKv2.1-N-AS 
4 

Final product 2232bp Product gel extracted 

EcoRl 1080bp Clal 
Fig. 2.9 PCR protocol of clone rKv2. 'N-)'FP/CFP 

PCR was carried out using the cycling parameters shown in table 2.5. 
The relevant sized fragments were gel extracted and used in the next round 
as shown. The red colouration denotes YFP or CFP tag, black denotes pcDNA3 
vector and the blue denotes rat Kv2.1. The dotted lines show the fragment joins. 
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Table 2.8 N-terminal fluorescent constructs made. 

Tag position Tag type Expression vector Constructs made 
N YFP pcDNA3 rKv2. lN-YFP in pcDNA3 

CFP pcDNA3 rKv2. lN-CFP in pcDNA3 

YFP pGern-He-Juel rKv2.1 N-YFP in pGern-He-Juel 

CFP pGern-He-Juel rKv2. lN-CFP in pGern-He-Juel 

Table 2.9 PCR primers used in the construction of N-terminal fluorescent 

clones. 

Blue colouring denotes rKv2.1 in pcDNA3, and red colouring denotes 

part of the sequence from the YFP or CFP tag. The underlined sequence denotes 

the 1,, coRl restriction site. 

pcDNA3-N-S ('Ci('G'F'I-Gl-\('I-\-F'I'GATTATTGA(']'AG'I"I'ATT 

pcDNA3-N-AS TGGTGGCGACGAATTCCAGCACACTGGCGGC 

rKv2. I -N. S GCTGTACAAGACGAAGCATGGCTCGCGCTC 

rKv2. I -N-AS GATGGCCAGTAGGTCAA"I'GGCG 

PECFP-N-S GCTGGAATTCGTCGCCACCATGGTGAGCAAG 

PECFP-N-AS CATGCTTGCTCTTGTACAGCTCGTCCATGCCG 

The final PC R product was then digested with restriction enzymes EcoRl 

15 units, overnight incubation at 3 7'Q, and Clal (15 units, overnight incubation 

at 3 7'Q, Fig. 2.10, to yield a product of 1080bp. This was ligated into the 

similarly digested rKv2.1 pcDNA3 (8367bp, for FRET analysis), or rKv2.1 in 

pGem-He-Juel (6014bp, for electrophysiology analysis), as described in section 

2.1.9, and mini-prepped according to section 2.1.3. A sample of mini-prepped 

DNA was sent to Lark Technologies to confirm that the correct clone had been 

made. The universal sequencing primer T7 was used. The pcDNA3 clone was 

used for tissue culture expression for FRET analysis, and the pGem-He-Juel 

clone was used for two voltage clamp experiments. 
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PCR product 
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rIqKIIIvI2Iýn 
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at 4 

381 bp 381bp ýý pGem-He-Juel 
6014bp 

714bp 

1080bp 
Ift 

438bp 

The appropriate DNA fragments were isolated by purification from agarose gels 

rKN, 2.1 in 

pGem-He-Juel 

1.6014bp 

IW* 
1080bp 

The digested PCR product was ligated to the larger rKv2.1 channel and 

vector fragment to create the N-terminal chimera : rKv2 N-N'FP/('FP 
z rKv2.1 

YFP or CFP tag 

r . -2.1 N-N'FP/CFP Start 
T-77in 

pcDNA 3, 

Stop 

Kv2.1 N-YFP/CFP in 
pGem-Hc-Jucl , 

Fig. 2.10 Schematic diagram of the construction of clone rKv2. 'N-N'FP/CFP. 
Only the restriction sites involved are labelled, and the sizes of fragments are 
indicated. Red colouration denotes YFP/CFP tag, blue denotes rKv2.1 and 
black (in PCR fragment) denotes pcDNA3. Diagram not drawn to scale. 



57 

2.3.6 Construction of C-terminal CFP and YFPfluorescent clones 

The construction of four fluorescent C-terminal tagged rat Kv2.1 channel 

clones was also carried out using the standard PCR overlap extension (Horton ef 

al, 1989), and is illustrated schematically in Fig. 2.11. Constructs made are 

shown in table 2.10. 

Table 2.10 C-terminal fluorescent constructs made. 

Tag position Tag type Expression vector Constructs made 
C YFP pcDNA3 rKv2.1 C-YFP in pcDNA3 

CFP pcDNA3 rKv2. lC-CFP in pcDNA3 
YFP pGern-He-Juel rKv2. lC-YFP in pGern-He-Juel 
UP pGern-He-Juel rKv2. lC-CFP in pGern-He-Juel 

Briefly, PCR products were made from rKv2. I -pcDNA3 and either 

pEYFP or pECFP (Clontech) as a template, using primers with appropriate 

overhangs in the regions to be replaced (primers shown in table 2.11). A second 

round product was made which joined the CFP or YFP at the C-terminal position 
in rKv2.1. A third round product was made with primers which spanned the 

whole region. PCR cycling parameters were as shown in table 2.5. The relevant 

sized fragments were isolated by running on a 0.7% agarose gel, and excision of 
the bands performed as described in 2.1.7. The C-terminal YFP clone in 

pcDNA3 was made by J. Li. 

Table 2.11 PCR primers used in the construction of C-terminal fluorescent 

clones. 
Blue colouring denotes rKv2.1 in pcDNA3, and red colouring denotes 

YFP or CFP tag. 

rKv2. I -C-S ('('('('T GAAGCTGCGAGCG 

rKv2. I -C-AS TGCTCACCATGATACTCTGATCCCTAGTGCTCCC 
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rKv2.1-C-S rKv2.1-C-AS, 

rKv2.1 

Product 2 (524bp) 

pcDNA3-C-S pcDNA3-C-AS 

A 

PC""NA3 VeClolr 

CFP-C-S PECFP-C-AS 

YFP/CFP tag 

Product 3 (724bp) 

First round PCR completed with the parameters shown in table 2.5 and 
products gel extracted 

Second round PCR using cycling parameters in table 2.5 

rK%2.1-('-S 
0. Product I 

PECFP-C-Aýý 

Product 3 

Product gel extracted 
Product 4 (1304bp) 

Product 4 

rK%2.1-('-S 
10 

Third round PCR 
Product 2 

pcDN, %3-C'-AS 
4 

Final product 1828bp Product gel extracted 

892bp I 
AflI I Xbal 

Fig. 2.11 PCR protocol of clone rKv2. IC-I'FP/CFP 

PCR was carried out using the cycling parameters shown in 
table 2.5. The relevant sized fragments were gel extracted 
and used in the next round as shown. The red colouration denotes 
YFP or CFP tag, black denotes pcDNA3 vector and the blue denotes 
rat Kv2.1. The dotted lines show the fragment joins. 
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pcDNA3-C- CGACTCTAGAGGGCCCTATTCTATAGTGTCACCTAAATG 

S 

pcDNA3-C- GGGTCGAGGTGCCGI'AAAGC ACT 

AS 

PECFP-C-S TCAGAGTATCATGGTGAGCAAGGGCGAGGAG 

PECFP-C-AS AATAGGGCCCTCTAGAGTCGCGGCCGCTTTAC 

The PCR product was digested with restriction enzymes AJ711 (15 units, 

overnight incubation at 3 7'Q, and Xbal (15 units, overnight incubation at 3 7'Q, 

Fig. 2.12, to yield a product of 892bp. This was ligated into the similarly digested 

rKv2.1 pcDNA3 (8098bp digested vector size, for FRET analysis) or rKv2.1 in 

pGem-He-Juel (5745bp digested vector size, for electrophysiology analysis), as 

described in section 2.1.9, and mini-prepped as described in section 2.1.3. 

Samples of mini-prepped DNA were sent to Lark Technologies to confirm that 

the correct clones had been made. The universal sequencing primer M 13 was 

used. 

2.3.7 Construction qf double tagged. fluorescent clone rKv2. l. v-)i, i-, 

Chp 
Constructs were made with an N-terminal YFP and a C-terminal CFP tag 

in pcDNA3 and pGem-He-Juel (as shown in table 2.12). For this the starting 

point was the N-terminal PCR product (as described in section 2.3.6) and 

rKv2. I C-CFP in either pcDNA3 or PGem-He-Juel. These were digested using the 

restriction enzymes E-coRJ (15 units, overnight incubation at 37'Q, and Clal (15 

units, overnight incubation at 37'C), see Fig. 2.13 for details. The fragments were 

isolated by running on a 0.7% agarose gel and excision of the bands performed 

as described in section 2.1.7. The larger PCR ftagment (1080bp) was ligated to 

the larger (rKv2. I c-ci: p) vector fragment (8323bp for the pcDNA3 construct and 

5970bp for the pGem-He-Juel construct (sizes of fragments before ligation), as 

outlined in section 2.1.9, and mini-prepped according to section 2.1.3. A sample 
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Fig. 2.12 Schematic diagram of the construction of clone 
rKv2.1('-CFP/YFP. 

Only the restriction sites involved are labelled, and the sizes of 
fragments are indicated. Red colouration denotes the YFP/CFP tag, 
blue denotes rKv2.1, and black (in PCR fragment) denotes pcDNA3 
vector. Diagram not drawn to scale. 
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Only the restriction sites involved are labelled, and the sizes of 
the fragments are indicated. Red colouration denotes the YFP/CFP 
tags, blue denotes rKv2.1, and black (in the PCR 
fragment) denotes pcDNA3. Diagram not drawn to scale. 
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of mini-prepped DNA was sent to Lark Technologies to confirm that the correct 

sub-clone had been made. The universal sequencing primer T7 was used. 

Table 2.12 Double tagged fluorescent constructs made. 

Tag 

position/Type 

Tag 

position/Type Expression vector Constructs made 
N/YFP C/CFP pcDNA3 rKv2. lN-YFP-C-CFP in pcDNA3 
NNFP C/CFP pGern-He-Juel rKv2. lN-YFP-C-CFP in pGern-He-Juel 

2.4 Specific molecular biology methods III 

2.4.1 Construction ofrKv2.1 pMT3 clone 

rKv2.1 was sub-cloned into the pMT3 vector already containing the IN 

tag, to enable purification for electron microscopy (the sequence of the tag is 

shown in Fig. 5.1c). The construction of this clone was also performed using 

standard overlap extension PCR (Horton et al, 1989) and is illustrated 

schematically in Fig. 2.14. 

Briefly, first round PCR products were made using rKv2.1 in pBluescript 

and Shaker in pMT3 as template (clone donated by N. Grigorieff, Brandeis 
University, MA) using appropriate overhangs at the regions to be replaced in the 

clone (primers are shown in table 2.13). A second round product was made 

which joined the pMT3 vector to rKv2.1, using primers that span the whole 

region. PCR cycling parameters are shown in table 2.5. 

Table 2.13 PCR primers used in the construction of rKv2.1 pMT3. 
All primers are shown 5' to 3'. Red colouring denotes pMT3 vector and 

blue denotes rKv2.1 in pBluescript. The pBluescript sense primer runs from the 

pBluescript vector through into the N-terminal end of rKv2. I. The annealing 
temperature of all primers was approximately 60*C. 
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Product I 3328bp 

pBluescript-S rKv2.1 

pBluescript rKv2FI--A-'S"-- 

'-,, ýPMT3-S pMT3-AS 
Products gel extracted 

pMT3 

Product 2.553bp 

Second round PCR using cycling parameters in table 2.5 
Product I 

10 
Product 2 

/ 

Total size = 3781bp Product gel extracted ID4 tag 
2646bp 

pBluescript rKv2.1 pMT3 

EcoRl Notl 

Shaker1920bp 
All DNA samples were 
digested with the restriction 

EcoRI 
enzymes, EcoRl and Notl 

Notl 
7bp 

I)MT3 2646bp PMT3 
55P 128bp 

638bp 

The larger vector 
fragment (5128bp) was 

rKv2.1 in 1)MT3 
ligatedto the digested PCR 

7774bp product (2646bp) 

to create rKv2.1 in pMT3. 

Fig. 2.14 PCR protocol and schematic diagram of the construction of rKv2.1-pMT3. 
Restriction sites involved are labelled, and sizes of the fragments indicated. The red 
colouration denotes the pMT3 vector, the blue denotes rKv2.1, and the black in the PCR 
product denotes the pcDNA3vector. The dotted lines show the joins of the two PCR 
overhangs. Diagram not drawn to scale. 
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pBluescript-S C'('G("l'. -\C A('-I"I'G('C AG('G('(' 

rKv2. I -AS CGTCGGGCTGGATACTCTGATCCCTAGTG('T('C('G 

pMT3-S TCAGAGTATCCAGCCCGACGGTGACCCG 
rp-MT3-AS ýCAAAGTACCGTAATCTCCGAGCTG 

The relevant sized fragments were excised by running on a 0.7% agarose 

gel and excision of the bands performed as described in 2.1.7. The final PCR 

fragment was digested with EcoRl (15 units, overnight incubation at 3 TQ and 

Noll (15 units, overnight incubation at 3 7'C), see Fig. 2.14 for details. The 

digested PCR product (2646bp) was then ligated into the similarly digested 

pMT3 vector (5128bp), as described in section 2.1.9, and mini-prepped 

according to section 2.1.3. A sample of mini-prepped DNA was sent to Lark 

Technologies to confirm that the correct sub-clone had been made, using the 

pMT3 sequencing primer (5'-CCCTTGCCCACC-3'). 

2.4.2 Insertion of A7 agitoxin site 

In order to render the rKv2.1 protein susceptible to binding of agitoxin-2 

(Lee el al, 2004) a A7 site was sub-cloned into the rKv2.1 pMT3 clone. This 

contained seven mutations in the S5-S6 linker between residues 361 and 390. 

The relevant part of the sequence was sub-cloned from a construct containing 

these mutations, rKv2.1 A7 in Pblu-Sk provided by KT Swartz, National 

Institute for Health, Maryland, constructed as described in Lee ef al (2004). 

Firstly, both plasmids were digested with Nrul (15 units, overnight incubation at 
37T), and B. vpl407l (15 units, overnight incubation at 37C), see Fig. 2.15. 

Fragments were isolated by running on a 0.7% agarose gel, and excision of the 

bands was performed as described in section 2.1.7. The smaller, A7 site (579bp) 

fragment was ligated into the larger rKv2.1 pMT3 (7195bp) as outlined in 

section 2.1.9, and mini-prepped according to section 2.1.3. A sample of mini- 

prepped DNA was sent to Lark Technologies to confirm that the rKv2.1 A7 in 

pMT3 clone had been made, by sequencing using the pMT3 A7 sequencing 

primer (5'-GATCTTTCGCATCATGCGC-3'). 
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Nrul Bsp14071 

rKi, 2.1 in pMT3 

7774bp 

Both plasmids were digested with the restriction enzymes Bsp14071 and Nrul 

lw 

579bp 

rKN, 2.1 in pMT3 

7195bp 

Nrul 

rKv2.1 L7 
6330bp 

rKi, 2.1 L7 
5751bp 

Bsp14071 

4w 

579bp 

The relevant DNA fragments were isolated by purification from agarose gels 

p 

rK-*-2.1 in pMT3 
579bp 

71945bp 

The smaller fragment from the rKv2.1 A7 clone was ligated to the 
larger fragment from the rKv2.1-pMT3 to create the rKv2.1-pMT3 A7 
clone 

rK,. -2.1 A7 
in pMT3 

Fig. 2.15 Schematic diagram of the construction of the rKv2.1 A7 in pMT3 clone. 
The different parts of the plasmids that were exchanged following restriction 
enzyme digestion are shown. Diagram not drawn to scale. 
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2.4.3 Construction of the C-terminal deletion clone 

In order to investigate the structural importance of the C-terminus of 

Kv2.1, a deletion of the whole C-terminal domain was made. The construction of 

this clone was again carried out using standard overlap extension PCR, (Horton 

el al, 1989) see Fig. 2.16 for protocol. Briefly, first round PCR products were 

made using rKv2.1 A7 in pMT3 as template, using appropriate overhangs at the 

regions to be replaced in the clone-, primers are shown in table 2.14. A second 

round PCR product was made which joined the pMT3 vector to rKv2,1 after the 

S6 domain, using primers that span the whole region. PCR cycling parameters 

are shown in table 2.5. 

Table 2.14 PCR primers used in the construction of rKv2.1(A7)-.,, c pMT3. 

All primers are shown 5' to 3'. Red colouring denotes pMT3 vector, and blue 

denotes Kv2.1. 

rKv2. I -no C-S GA-I'G, -\GATCTACCTGGAGTCCTGC 

rKv2. I -no C-AS CGTCGGGCTGGTTATTGACGATGATGGGGAI'G 

pMT3-no C-S CGTCAATAACCAGCCCGACGGTGACCC 

pMT3-no C-AS CTAAAGCCAGCAAAAGTCCCATG 

The relevant sized fragments were excised by running on a 0.7% agarose 

gel and excision of the bands performed as described in 2.1.7. The PCR 

fragment was digested with Apal (15 units, overnight incubation at 37T) and 
Noll (15 units, overnight incubation at 37C), Fig. 2.16. The digested PCR 

product (532bp) was then ligated into the similarly digested rKv2.1 A7 pMT3 

vector (5919bp) as described in section 2.1.9, and mini-prepped according to 

section 2.1.33. A sample of mini-prepped DNA was sent to Lark Technologies to 

confirm that the rKv2.1 A7-,,,, c in pMT3 clone had been made, using the pMT3 
A7 sequencing primer (section 2.4.2). 
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Product I 872bp End of S6 

rK-, -2.1 -no C-S 
rKv2.1 rK-*, 2.. l-no C-AS 

'-ýPMT3-no C-S pMT3-no C-AS 
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PCR as Table 2.5 
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I 

pMT3 
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Both DNA samples were digested with the restriction 
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fragment (5919bp) was ligated 
to the PCR product (532bp) to 

rKN, 2.1 A7 create rKv2.1 A7 in pMT3. A 
-. 0 C -no C 30 in pMT3 

6451bi) 

Fig. 2.16 PCR protocol and schematic diagram of the construction of 
rKv2.1 A7-.. (. in pMT3. 
Restriction sites involved are labelled, and sizes of the fragments indicated. 
Red colouration denotes pMT3 vector and blue denotes Kv2.1. The dotted 
lines show the joins of the PCR products. Diagram not drawn to scale. 
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2.4.4 Protein expression andpurification 

rKv2.1 A7 in pMT3 wild type and rKv2.1 A7.1,0 c pMT3 channels were 

expressed in COS-7 cells at 37T under 5% C02 atmosphere, in a high-glucose 

DMEM with 10% FB S. GeneJuice (Novagen) transfection was performed when 

the cells were at 70% confluence, according to the manufacturer's recommended 

protocol. Cells were harvested with a cell scraper after 72 hours, and washed 
twice using I xPB S. Whole cells were solublized using the protocol described by 

Sokolova et al (2003). Purification was carried out on a ID4 affinity column 
(antibody-coupled sepharose beads). The channel was eluted by using a ID4 

peptide solution (0.2mg/ml) in an elution buffer containg 80mM KCI, 2MM 

NaEDTA, 40mM HEPES-KOH, 300mM NaCl, 0.5% CHAPS, and protease 
inhibitors (Roche complete protease tablet). Protein samples were run on an 
SDS-PAGE protein gel to confirm the purity of the protein. A Western blot was 

carried out to confirm the presence of the ID4 tag. Protein was transferred onto 

nitrocellulose membrane from the SDS-PAGE gel using a BioRad semi-dry 

transfer system, for 15 minutes at 15 Volts. The Western blot protocol was 

performed with the anti-ID4 antibody and goat anti-mouse HRP conjugated 

secondary antibody., chemiluminescence detection was performed using 
horseradish peroxidase, according to the manufacturer's recommended protocol 

(Novagen). 

2.4.5 ff 2 '51-agitoxin binding assay 

Assay was carried out according to Sokolova et al (2003). Firstly, [1 1251 

labelled agitoxin-2 was added to the elution fractions (from section 2.4.4) to a 
final concentration of 12.5nM. After 30 minutes incubation on ice, unbound 
toxin (which is smaller in size) was removed from the Kv2. I -toxin complexes 

using a Microcon filter device (pore size 100 ýM, Millipore). The filter was 

transferred to a scintillation vial, and scintillation counted. 
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2.5 Specific molecular biolop-y methods IV 

2.5.1 Consiruction qf CGGG calcium channel cysteine mutants 

In order to determine the effects of PCMBS on cysteine residues 

substituted into the domain I S4 region of the CGGG calcium channel chimera 

(Li el al, 2004), it was necessary to mutate wild type amino acids in the S4 

segment of domain I (this chimera contained Caj. 2 in domain I and Ca, 3.1 in 

domains ll-IV). This was done using the QuikChange TIA site-directed mutagenesis 

method, as explained in 2.1.5. The mutants to be generated were V263C, A265C, 

L266C, A268C, F269C, and V271C. 

In order to limit the size of the fragments amplified by PCR, and hence 

reduce the probability of errors, the thermal cycling was performed in a section 

of the chimera in pUC 18 vector, as shown in Figure 2.17. Pairs of primers were 

used as shown in table 2.15. 

Table 2.15 PCR primers used in the construction of CGGG cysteine 

mutants. 

Sequences are shown in the 5' to 3' direction. Mismatched bases are 

shown in red, and the changed amino acid is underlined. 

V263C sense GCTGGATTCGACTG('AAGGCGCTGAGG 

V263C anti-sense CCTCAGCGCCTTGCAGTCGAATCCAGC 

A265C sense CGACGTGAAGTGCCTGAGGGCTTTCCG 

A265C anti-sense CGGAAAGCCCTCAGGCACTTCACGTCG 

L266C sense GACGTGAAGGCGTGCAGGGCTTTCCGC 

L266C anti-sense GCGGAAAGCCCTGCACGCCTTCACGTC 
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Xbal HindIll 

Xbal 
CElG ý C11G 

Domain I cil, SI-S6 

276bp 1380bp 

4342bp 

pUC18 vector 

Fig. 2.17 Schematic diagram of CGGG in the pUC18 vector 
The restriction sites for Xbal and HintAll are shown, along with 
the fragment sizes. 
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A268C sense GAAGGCGCTGAGGTGTTTCCGCGTGC 

A268C anti-sense GCACGCGGAAACACCTCAGCGCCTTC 

F269C sense GCGCTGAGGGCTTGCCGCGTGCTG 

F269C anti-sense CAGCACGCGGCAAGCCCTCAGCGC 

V27 IC sense GGGCTTTCCGCTGCCTGCGCCCCC 

V27 IC anti-sense GGGGGCGCAGGCAGCGGAAAGCCC 

Transformation was as detailed in 2.1.1, and the DNA was extracted as 

outlined in section 2.1.3. Samples of mini-prepped DNA were sent to Lark for 

automated sequencing using a Lark universal pUC 18 forward primer. 

2.5.2 Sub-cloning into pGem-hel vector 

All of the mutant cysteine clones were then sub-cloned back into wild 

type otIG in pGem-hel vector after sequencing (Fig. 2.18). Firstly, the site-directed 

clones were restricted using the enzyme Xbal (10 units, overnight incubation at 

37C), which cuts the cysteine mutant clones twice giving bands of 276bp and 

4066bp (see Fig. 2.18). The wild type (XIG clone was also linearised with Xbal 

giving a fragment of 9989bp. After checking the digest was successful, the 

reaction product was gel extracted as described in section 2.1.7. 

The larger 4066bp fragment of the Xbal- restricted DNA was then cut 

using HincAll (10 units, overnight incubation at 37'Q. This second restriction 

digest produced two fragments. For the cysteine mutants the larger vector 

fragment was 2686bp (which was discarded), and the smaller, 1380bp fragment 

(which contained the cysteme mutation) was gel extracted as described in section 

2.1.7. For the ctici. the larger vector fragment was 8609bp, and the smaller 

domain I fragment was 1380bp. The larger fragment was gel extracted, and 

dephosphorylated as in section 2.1.8 to prevent self-ligation. 

Ligation of the dephosphorylated vector and the cysteine fragment was 

performed for each of the six cysteine mutations, as outlined in section 2.1.9, and 
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Both plasmids containing the cDNA for the channels were digested using the 
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The relevant DNA fragments were isolated by purification from agarose gels 

-momit- 
1380bp 

8609bp 

Each cysteine mutation fragment in turn was ligated into the larger fragment of 
(x ,. to create the six cysteine CGGG mutants 

pGem-hel vector 
Fig. 2.18 Schematic diagram of the sub-cloning of the cysteine mutants. 

pGEM-hel vector 
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following transformation and selection, DNA were mini-prepped as described in 

section 2.1.3. Samples of mini-prepped DNA was sent to Lark Technologies for 

sequencing to confirm that the correct sub-clone had been made in each case. 
The sequencing primer used was a T7 universal primer. 

2.6 Electrophysiological recordings of ion currents from 

channels expressed in Xenopus Idevis oocvtes 

2.6.1 Oocyte preparation 

Mature Xenopus laevis females were anaesthetised in 3-aminobenzoic 

acid ethyl ester solution (2g/1), for approximately 45 minutes. The frogs were 

then killed using a standard schedule I method of severing the spinal cord, and 

pithing the brain. The ovarian lobes were dissected out and placed in calcium- 
free Ringer solution (table 2.1 d). Oocytes were isolated by placing a lobe in a 

collagenase IA solution (2mg/ml) with gentle agitation for 40 minutes. The cells 

were then washed three times in calcium free Ringer solution to remove any 

remaining collagenase. The follicular layer was removed using ultra fine 

watchmaker's forceps (Dumont, size 5, Agar Scientific). Stage V and VI ooctyes 
(Dumont, 1972) were selected and stored in calcium free Ringer solution prior to 

injection of cRNA. 

2.62 Microinjection of oocytes with cRNA 

Oocytes were injected using a micropipette made from borosilicate glass 
tubing (Drummond Scientific Company), by pulling using a Sutter Instrument 

Model P-87 Flaming/Brown horizontal pipette puller. The tip of the micropipette 

was manually broken to a diameter of approximately 15ýtrn using forceps. The 

micropipette was then backfilled with mineral oil, and loaded onto a 10ýtl 

Drummond microinjection syringe mounted on a Micro-instruments manipulator. 

A microscope slide was then covered with Nescofilm (VWRI), onto which I ýtl of 

cRNA was deposited, and drawn up into the micropipette. Each individual 
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oocyte was injected with 50nl of cRNA within the vegetal pole of the cell. After 

injection, oocytes were stored in 96 well plates at 19.6"C for 1 day (potassium 

channels) or 4 days (calcium channels). 

2.63 Two-electrode voltage clamp technique 

All electrophysiological recordings of potassium and calcium channels 

were made using the two-electrode voltage clamp technique at room temperature. 

Currents were recorded using a GeneClamp 500 amplifier (Axon Instruments), 

controlled via a CED 140 1 plus analogue interface with CED computer analysis 

software. Voltage and current output signals were displayed on a Gould 4064 

digital oscilloscope. Current signals were sampled at 4kHz, and filtered at 2kHz. 

Oocytes were held in a 50ptl recording chamber (as shown in Fig. 2.19) 

and perfused with either frog Ringer (table 2.1 d) for potassium channels, or 

calcium free barium solution (table 2.1 d) for calcium channels. Perfusion was at 

a rate of 2ml/min in all recordings. Microelectrodes were pulled from 

borosilicate glass (Harvard), using a two-stage vertical puller, and filled with 3M 

KCL The microelectrodes were then inserted into the holders (Harvard), which 

contained a chlorided silver wire, and attached to the headstages (Axon 

Instruments). Headstages and holders were mounted onto micro-manipulators 
(Micro-instruments). The bath electrode was made from a Ag/AgC1 pellet for 

potassium channels, and was a chloride silver wire in 3M KCI agar for calcium 

channel recording. Tip resistances were measured, and were typically between 

1.0 and 2.5MC2 for the voltage electrode, and 0.5-1. OM92 for the current 
electrode. 

The oocyte was impaled by the voltage and current electrodes, and the 

resting membrane potential was measured after being allowed to stabilise for 5 

minutes. The internal voltage clamp offset was set to the resting membrane 
potential, and the GeneClamp was switched to voltage clamp. The gain and 

stability were increased while the GeneClamp repetitively depolarised the oocyte 
by I OmV (0.1 Hz) until a square voltage trace was visible on the oscilloscope. 
The membrane was then clamped to -80mV, and the input resistance noted. 
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COMMAND 

rode 

Perfusion solution in Perfusion solution out 

Fig. 2.19 Schematic diagram of the two-electrode voltage 
clanip chamber. 
The oocvte is held within a cradle made from wire and is impaled 
bv the voltage and current electrodes. The vegetal pole is shown in 
dark arev, and the animal pole is shown in yellow. 
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2.64 Current-voltage protocol 

From the holding potential of -80mV, 5OOms pulses were applied every 
10 seconds in I OmV increments from -7OmV to +70mV (see Fig. 2.20). This 

was followed by twenty 500ms hyperpolarizing pulses at 2 second intervals to - 
90mV, for subsequent leak and capacity current subtraction. This current data 

was used to construct IN curves and the 10-90% rise times (tjo-qo%). 

2.6 5 PCMBSpulse protocol 

From the holding potential of -80mV, SOOms depolarising pulses were 

applied (0.1 Hz, Fig 2.20). The oocytes were depolarised to -3 OmV for Ca, 3.1, 

and +lOrnV for Caj. 2, to evoke currents measured by the two-electrode voltage 

clamp method. While repeatedly pulsing, parachloromercuribenzenesulphonate 
(I OOpM PCMBS, dissolved in barium solution, table 2.1 d) was applied at a rate 

of 2ml/min after a steady baseline had been established. IN curves were also 

constructed before and after the application of PCMBS. 
For the application of PCMBS at different holding potentials a different 

protocol was used. Oocytes expressing mutant V263C were perfased with 
barium solution and I/V curves were obtained by applying 500ms test 

depolarisations in I OmV increments, every 10 seconds, from a holding potential 

of -80mV. Pulsing was then stopped, and the cells were then held at the indicated 

holding potentials (either - 140, -110, -80, -40 or OmV) initially for 2 min in the 

absence of PCMBS, and then in the presence of PCMBS (I OOgM) for a further 4 

min. Unreacted PCMBS was removed by washing the cells with barium solution 
for 2 min at the same holding potential. No test pulses were applied during 

PCMBS application. Finally the holding potential was returned to -80mV and I/V 

curves obtained. All I/V curves were normalised to the value of +I OmV before 

the application of PCMBS. For the experiments applying dithiothreitol (DTT), 

oocytes expressing the mutant V263C were held at -80rnV and stepped to 

+lOmV repeatedly every 10s. Oocytes were then superfused with PCMBS 

(I OOgM), washed for 2 minutes, and then DTT (I mM) was applied for 5 
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f current voltage relationships 

-30mV 

-80mv 

Fig. 2.20 Diagrammatic representations of pulse protocols used. 
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minutes. All currents were normalised with respect to the first 5 minutes of 

recording. 

2.6.6 Analysis of current data 

Construction of the current-voltage relationships and subtraction of leak 

current was carried out using CED software. 10-90% rise times were calculated 
from the leak subtracted current traces. 

Current data were converted to conductance data using the following 

equation: G=II(V-VR, ), where G is the conductance, I is the current, V is the 

membrane potential, and V,,, is the reverse potential (assumed to be -98.5mV). 
Conductance-voltage data was fitted with the Boltzmann equation: 

G= GMax1(I+eXP((VO. 5-Vtesd1kA where Vo. 5 is the potential for half maximal 

current, Vt,, t is the test potential, and k is the slope factor (--RT/ZF, where R is 

the gas constant, T is the absolute temperature, Z is the effective charge valency 

and F is the Faraday constant). 

The time course of the block of currents by PCMBS was fitted using a 

single exponential. The single exponential decay equation used was as follows: 

I=IL+Ioe('O-')", where I is the current, IL and 10 are constants (whereby, IL +10 is 

the initial current), t is the time, and, is the time constant of decay. 

Analysis of the current data was performed using Microcal Origin 6.0 and 

statistical analysis was performed using Microsoft Excel 2000. Significance 

testing was carried out using the paired Student's t-test where p <0.05 was 
considered to be statistically significant. 
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CHAPTER 3 

N- AND C-TERMINAL 

DETERMINANTS IN THE 

ACTIVATION OF THE POTASSIUM 

CHANNEL Kv2. 
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3.1 Introduction 

The rat and human forms of the Kv2.1 channel have very similar protein 

sequences (Fig. 3.1 and Chapter 1). They have identical amino acids over the 

membrane spanning regions (S I -S 6), and only differ in their N- and C- termini. 

Despite the sequence similarity, the two forms of these channels have very 
different activation kinetics; rat Kv2.1 is much faster activating than the human 

Kv2.1. This suggests that the N- and C- termini play a role in determining these 
differences in activation kinetics. 

In this chapter, the molecular regions that are responsible for these 
differences in activation times between the two forms of Kv2.1 have been 

systematically investigated. This was carried out by constructing both point 

mutants and chimeras, and expressing these in oocytes. Electrophysiological 

measurements using the two-electrode voltage clamp method were used to 

determine the effects of the changes introduced, and thus which regions are 

responsible for these differences in activation kinetics. 
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Fig. 3.1 Sequence alignment of the rKv2.1 and hKv2.1 potassium 
channels. 
The tetramerisation domain, pore and transmembrane domains are labelled 
T I, P and SI -S6 respectively. Restriction sites on the corresponding DNA 
used to make rat and human chimeras are shown. 
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3.2 Results 

3.2.1 Construction ofrKv2.1 E75Dpoint mutation 

To investigate the role of one of the two N-terminal amino acids that 

differ between the rat and human channels, a point mutation was made to change 

the glutarnate at position 75 in rat Kv2.1 into aspartate (the residue found at the 

equivalent position in human Kv2.1). Sense and anti-sense primers were 
designed that contained the mismatched base at the desired point, and were used 
in the mutagenesis cycling stage (see section 2.2.1). Following thermal cycling a 
DpnI digest was performed and the restricted template DNA transformed into E. 

coli. Plasmid DNA was extracted (2.1.3), and samples of mini-prepped DNA 

were sequenced. Figure 3.2 shows the results of the automated sequencing using 

the T7 universal primer, confirming the presence of the correct point mutation in 

three of the four samples tested. cRNA was transcribed in vitro from sample I 

and injected into Xenopus oocytes for two-electrode voltage clamp recording. 

3.2.2 Construction ofchimera rKV2- lh]08-52ý 

There are 51 amino acid differences between rat and human Kv2.1 

channels, with 49 of these differences located in the C-terminal region (residues 

413 to 853). In order to investigate whether some of these amino acids had any 

effect on activation kinetics, a chimera was generated where bases corresponding 
to residues between 108 and 528 from rat were replaced with human. Because of 
the sequence identity between the channels, no residues at the N- terminal side of 

position 467 were changed by this manipulation. In fact, because of the sequence 
identity between the two channels (Fig 3.1) just corresponds to just swapping 
four residues in the C-terminus, S467,1468, A469, and A490. 

The DNA for the human Kv2.1 was digested with the restriction enzymes 
BssHII and Bsp 14071 (Fig. 3.1). This produced two fragments corresponding to 

the predicted sizes -a smaller 1264bp fragment which included domains SI to 
S 6, and a larger N- and C-terminal vector fragment which was 478 1 bp. The 
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rK-. 2.1 NN I 

rK-. 2.1 E75D required sequence 
Rat E75D sample I 
Rat E75D sample 2 

Rat E75D sample 3 

Rat E751) sample 4 

Fig. 3.2 Sequencing of mutant rKv2.1 E75D. 
a, Electrophoretogram for clone rKv2. I E75D (rat E75D sample 1). Red line 
denotes the amino acid changed. 
b, Sequence alignment. Sequences were aligned using ClustalW, and visualised 
using Boxshade. In this and all subsequent sequence alignment, black shading 
denotes identical bases, and white areas denote differences between the 
sequences. It can be seen that wild type rKv2.1 GAG has been changed to GAC 
in rat E75D samples 1,3 and 4. 
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appropriate fragments were isolated and gel extracted as described in section 
2.1.7. Figure 3.3a shows a 0.7% agarose gel with the fragments after isolation. 

For the rKv2.1, the digest was carried out with the same enzymes by M. Ju. The 

relevant fragments were ligated, transformed and mini-prepped as described in 

section 2.1.3. A sample of the nucleotide sequencing generated for this chimera 

(from sample 1) is shown in Fig. 3.3 b, including the BssHII join. All of the 

samples gave the correct mutant sequence (Fig. 3.3c). cRNA from sample I was 

transcribed in vitro and injected into Xenopus oocytes for two-electrode voltage 

clamp recording. 

3.2.3 Construction ofchimeras rKV2- IhIo8_74o, and hKv2. lr]08-740 

The construction of the two chimeras rKv2. IhIO8-74o and hKv2. IrIO8-740 

was carried out by digestion with restriction enzymes BssHII and BsmI (Fig 3.1). 

This corresponds to a substitution of 34 C-terminal amino acids that are different 

between rat and human Kv2.1, including the 4 substituted in chimera 108-528. 

Restriction of rKv2.1 yielded two fragments corresponding to the predicted sizes 
(I 898bp and 4408bp, Fig. 3.4a). Similarly digestion of hKv2. I -BsmI clone (see 

section 2.2.3) also yielded two fragments corresponding to the predicted sizes 
(I 898bp and 4147bp, Fig. 3.4b). Following excision the relevant fragments were 
ligated, and the DNA transformed. 

A section of the electrophoretograms for the sequences for the two 

chimeric channels at the BssHII join is shown in Figs. 3.5a, and b. Alignment of 

the sequenced DNA shows the correct construction of the two chimeras more 

clearly (Fig. 3.5c). cRNA was transcribed in vitro using sample I for each 

chimera and injected into Xenopus oocytes for two-electrode voltage clamp 

recording. 

3.2.4 Construction ofchimerarKV2. lh741-795 

Construction of this chimera was carried out by the overlap-extension 
PCR method, as described in section 2.2.4. This corresponds to a change of only 
5 amino acids, H749, T750, H774, A785, and T787. The PCR product and 
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Fig. 3.3 Digestion of hKv2.1 and sequencing of chimera rKv2. lhlO8-528' 

a, Agarose gel showing the gel extracted fragments produced by the restriction 
digest of hKv2. I wild type with BssHI1 and Bsp 14071. Lane I contains the X-Hin4fill 
marker, lane 2 contains the hKv2.1 wild type DNA, lane 3 contains the hKv2.1 
wild type linearised by Bsp14071 (6045bp), lane 4 contains the hKv2.1 double 
digest by Bsp 14071 and BssHII (478 1 bp fragment) and lane 5 contains the hKv2. l 
double digest by Bsp 14071 and BssHII (I 264bp fragment). In all gel pictures, only the 
relevant sizes on the markers are shown 
b, Electrophoretogram for clone rKv2.4108-528. sample 1. Red line denotes the 
BssHII restriction site. 
c, Sequence alignment for chimera rKv2. lhIO8-528- Sequences were aligned using 
ClustalW and visualised using BoxShade. It can be seen that the sequences of the 
chimera samples 1-3 are identical to rKv2.1 until the B. vvHll restriction site (red box), 

and thereafter is identical to hKv2.1. Sample I was used to make cRNA for injection 
into oocytes. 

1 
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Fig. 3.4 Digestion of the wild type channel rKv2.1 and hKv2.1 

-BsmI clones. 
a, Fragments were produced by digestion of rKv2.1 with restriction 
enzymes BssHII, and Bsn? I. Gel shows extracted bands. Lane I contains 
the ý. DNA/EcoRI + HincIll marker, lane 2 contains the larger (vector) 
fragment rKv2.1, lane 3 contains the smaller fragment rKv2.1. 
b, Fragments were produced by digestion of hKv2. I -Bsn? l with 
restriction enzymes BssHII, and Bsml. Gel shows relevant gel extracted 
bands. Lane I contains the X DNA/LcoR-I + HinA marker, lane 2 contains 
the larger (vector) fragment hKv2.1 and lane 3 contains the smaller 
hKv2.1 fragment. 
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Fig. 3.5 Sequencing for the chimeric channels rKv2. lhIO8-740 and 
hKv2.1008-740' 

a, Elect rophoretogram for chimera rKv2. lh]08-740 sample L. The red 
line indicates the BssHII site. 
b, Elect rophoretogram for chimera hKv2.1,108-740 sample I. The red 
line indicates the BssHII site. 
c, Alignment of the wild type channels hKv2.1, rKv2.1, and the 
chimeras rKv2. lhI08-740 and hKv2. lr]08-740. DNA sequences were 
aligned using ClustalW and visualised using Boxshade. The restriction 
site for BssHll is indicated by the red box. 
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rKv2.1 wild type were digested with restriction enzymes Bsp1407I and Notl (Fig. 

3.6a and b). This yielded fragments corresponding to the predicted 1742bp for 

the PCR insert and 4564bp for the digest of the rKv2.1, which were gel extracted 

as described in section 2.1.7 (smaller fragments were discarded). These 

fragments were then ligated as described in section 2.1.3, and then mini-prepped. 

The sequence for the rat and human join was then confirmed by sequencing (Fig. 

3.6c and d).. cRNA was transcribed in vitro for the sample shown and injected 

into Xenopus oocytes for two-electrode voltage clamp recording. 

3.2.5 Characterisation of rKv2. I and hKv2. I channels 

Xenopus laevis oocytes were micro-injected with cRNA for wild type 

hKv2. l (0.5ng in 50nl) or rKv2.1 (5. Ong in 50nl). Potassium channel recordings 

were made using the two-electrode voltage clamp technique and the cells 

perfused with frog Ringer's solution (table 2.1 d) at room temperature. 

Outward potassium currents were evoked by pulsing from a holding 

potential of -80mV for 5 OOms in I OmV increments to +70mV at 0.1 Hz. Fig. 3.7 

shows sample rat and human currents after stepping to OmV. When the rat and 
human currents are normalised, the time course for activation can be seen to be 

clearly different between the two channels, with rKv2.1 having a faster activation 

rate. 
Normalised current-voltage (IN) relationships (Fig. 3.8b) show that the 

two channels have identical voltage-dependence. In contrast, the activation times 

were significantly faster for rKv2.1 than hKv2.1 at all test potentials (Fig. 3.8c 

shows the mean 10-90% rise times). 

It is clear that some of the 51 differences in the amino acids between the 

two channels must contribute to the difference in activation rates. 

3.2.6 Characterisation of mutant clone rKv2. IE 75D 

There are two residues that are different between rat and human forms of 
Kv2.1 in the N-terminus; the importance of one of these (residue 75) was studied 
by mutating a glutamate to aspartic acid in rat Kv2.1. Mutant rKv2.1 E75D and 
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Fig. 3.6 Digestion and sequencing for chimera rKv2. lh741-795* 

a, Restriction digest of wild type rKv2,1. DNA was digested with 
BsI) 14071 and Noll, and the relevant sized fragment gel extracted. 
Lane I contains the k-Hincffil marker and lane 2 contains the gel 
extracted rKv2.1 digested with Bsp14071 and Noll (4564bp fragment). 

b, Restriction digest of the PCR product produced by overlap 
extension PCR. DNA was digested with Bsp 14071 and Noll. Lane I 
contains the k-HindIll marker and lane 2 contains the digested PCR 
fragment after gel extraction (I 742bp fragment). 
c, Sequence electrophoretogram of chimera rKv2. lh741-795. Red 
line denotes the join from rat to human DNA. 

d, The sequence was aligned against the desired chimeric predicted 
DNA sequence, using ClustalW and BoxShade software. 

6 

1 
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rKv2.1 
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v2.1 

Fig. 3.7 Current traces recorded from Xenopus laevis oocytes 
injected with wild type rKv2.1 and hKv2.1. 
Currents were recorded using two-electrode voltage clamp in frog Ringer's 
solution. A 5OOms pulse was applied from a holding current of -80mV to 
OmV. Currents were normalised to the maximum current value. 
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Fig. 3.8 Characteristics of wild type rat and human Kv2.1 channels. 
a, The figure shows IN curves for rat (0, n=24) and human (0, n=29) 
wild type channels. 
b, Currents were normalised to the current value at +70mV (2.98±0.74 VA for 
rat and 5.76±0.74 pA for human). 
c, The figure shows the 10-90% rise times for rat and human wild type 
channels (the same data was used as for A). (*) Significant differences 
(p<0.05). 
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wild type cRNA were injected into Xenopus oocytes and the two-electrode 

voltage clamp technique used a day later. Outward potassium currents were 

evoked by stepping from a holding potential of -8 OmV to +70mV in I OmV 

increments (see section 2.6.4). 

Currents were recorded and current-voltage relationships constructed. A 

typical current trace for mutant clone rKv2.1 E75D is shown in Fig. 3.9. Fig. 

3.10 shows the current-voltage relationship of both the wild type and mutated 

channels before (Fig. 3.1 Oa) and after normalisation (Fig. 3.1 Ob). No significant 
differences between rKv2.1 wild type and rKv2.1 E75D currents were found for 

the normalised I/V curves. 
Fig. 3.11 shows mean 10-90% rise times plotted against voltage for 

rKv2.1 and rKv2.1 E75D. The mutant E75D showed fast activation similar to rat 
Kv2.1 wild type (although there were some slight differences at some voltages). 
However, the values were significantly different than for the human wild type 

channel (Fig. 3.8c). This result shows that this change at residue 75 (i. e. changing 

the residue from E to D) did not alter the characteristics of the channel from rat 

to human; therefore this residue does not by itself account for the differences in 

activation kinetics between the two channels. However, the importance of this 

residue will be discussed later (see section 3.3) in the context of other results. 

3.2.7 Characterisation ofchimera rKV2- lh]08-528 

In order to determine whether residues between 108 and 528 (which have 

four amino acids different between rat and human Kv2.1) contribute to 
differences in activation kinetics between rat and human forms of Kv2.1, 

chimera rKv2. Ih 108-528 was studied. Mutant and wild type cRNA were inj ected 
into Xenopus oocytes and the two-electrode voltage clamp technique used a day 
later. Outward potassium currents were evoked by stepping from a holding 

potential of -80mV to +70mV in I OmV increments. 
Currents were recorded for the construction of current-voltage 

relationships. Typical current traces for the mutant clone rKv2. Ih 108-528 are shown 
in Fig. 3.12. Fig. 3.13 shows the current-voltage relationships (mean currents are 
shown in Fig. 3.13a, and nonnalised currents in Fig. 3.13b). For normalised 
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Fig. 3.9 Current families for mutant clone rKv2.1 E75D. 
A family of currents (leak subtracted) is shown for a single oocyte during the 
construction of the IN curve. Bars indicate the current and time calibration. 
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Fig. 3.10 Characteristics of wild type rat and rKv2.1 E75D mutant 
IN curves. 
a, The figure shows IN curves for rat (M, n-5) and rKv2.1 E75D 
(0, n=6) channels. 
b, Currents were normalised to the current value at +70mV 
(6.9±0.5 pA for rat and 5.2±2.2 VA for rKv2.1 E75D). 
There were no significant differences between the two 
norinalised sets of data (p<0.05). 
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Fig. 3.11 Rise times (10-90'Yo) for the wild type rKv2.1 and mutant 
rKv2.1 E75D. 
The figure shows the rise time versus test potential for rat Kv2.1 (0, iiý5), 
and rat Kv2.1 E75D (0, n=6). Some of the data points were significantly 

different from each other (*), (p<0.05). 
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Fig. 3.12 Current families for chimera rKv2. lhlO8-528' 

A family of currents (leak subtracted) is shown for a single oocyte for the 
construction of the IN curve. Bars indicate the current and time calibration. 
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Fig. 3.13 Characteristics of IN curves for wild type rat and human 
Kv2.1 and the chimera rKv2. lhlO8-528* 

a, The figure shows IN curves for wild type rKv2.1 (0, n-- 10), wild type 
hKv2.1, (M, rt--7), and chimera rKV2- lh108-528 (A, n=7). 
b, Currents were normalised to the current value at +70mV (6.4±1 [LA 
for rat, 15.5±0.6 ýLA for human and 5.0±3.5 pA for rKv2.4108-528). 
There were no significant differences between the three sets of 
normalised data (p<0.05). 
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curves, no significant differences between rKv2.1 wild type, hKv2.1 wild type 

and rKV2- Ih 108-528 current-voltage relationships were found. The differences seen 
in Fig. 3.13a for un-normalised data may reflect differing levels of protein 

expression. 
Fig. 3.14 shows mean 10-90% rise times versus test potential for rKv2.1, 

hKv2.1 and rKv2. Ih 108-528. Both rKv2.1 wild type and rKv2. Ih 108-528 showed fast 

activation kinetics and there were no significant differences between rat wild 

type and mutant rise times. The hKv2.1 rise times on the other hand were 

significantly slower at all data points tested. 

Because of the near identity of the two channels (human and rat Kv2.1, 

Fig. 3.1) over the corresponding region, only four amino acids in the C-terminal 

region have actually been swapped between the two channels in the chimera. The 

data indicates that changes to these residues from rat to human did not change the 

channel from fast activation (like rat), to slow (like human). Therefore the data 

suggests that these four residues do not account for the differing activation 
kinetics. 

3.2.8 Characterisation ofchimeras rKV2- IhIo8_74o, and hKV2- IrIO8-740 

In order to determine whether residues between 108 and 740 (a region in 

which 34 amino acids differ between rat and human Kv2.1) contribute to 

differences in activation kinetics between the channels, chimeras rKv2. IhIO8-740 

and hKvIL108-740were studied. N. B because the protein sequences are identical 

between 108 and 466, only residues in the C- terminus are changed in this 

chimera. Mutant and wild type cRNA were injected into Xenopus oocytes and 

two-electrode voltage clamp technique used a day later. Outward potassium 

currents were evoked by stepping from a holding potential of -80mV to +70mV 
in 10mV increments. 

Sample current trace families for chimeric clones, rKv2. IhI 08-74o and 
hKv2. IrIO8-74o are shown in Fig. 3.15. Fig. 3.16 shows the current-voltage 

relationships (mean IN curves are shown in Fig. 3.16a, and normalised curves in 
Fig. 3.16b). There were no significant differences between rKv2.1 wild type, 

hKv2.1 wild type, rKV2. I M08-740 and hKv2. I r108-74o normalised currents at any test 
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Fig. 3.14 Rise times (10-90%) for the wild types rKv2.1 and 
hKv2.1 and the chimera rKv2. lhlO8-528. 

The figure shows the rise time versus test potential for hKv2.1 (M, n=7), 
rat Kv2.1 (0, n=10), and the chimera rKv2. lh108-528 (A, n=7). 
Significance differences (*), are shown (p<0.05). 
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Fig. 3.15 Current families for chimeras rKv2. lhIO8-740, and 
hKv2.1,108-740' 

Families of currents (leak subtracted) are shown, created for 
the construction of the IN curves. Bars indicate the current and time 
calibration. 
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Fig. 3.16 IN curves for wild type rat and human Kv2.1 and the 
chimeras rKv2. lhlO8-740 and hKv2. lrlO8-740* 

a, The figure shows I/V curves for wild type rKv2.1 (E, n=5), wild type 
hKv2.1, (0, n=5), chimera rKv2. I h108-740 (A, n=6) and chimera 
hKv2.1 r108-740 (V, n=9). 
b, Currents were normalised to the current value at +70mV (7.4±1.8 [IA 
for rat, 21.7±3.3 ýLA for human, 20.0±1.5 gA for rKv2. I M08-740 and 
23.0±0.9 IiA for hKv2.1,. 

108-740)- 

No significant differences were found (p<0.05) between the normalised 
data. 
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potentials studied. The differences seen for un-normalised data again may simply 

reflect differing levels of protein expression. 
Fig. 3.17 shows mean 10-90% rise times versus test potential for rKv2.1, 

hKv2.1, rKv2.1 h108-74o and hKV2. I r108-740. Both rKv2.1 wild type and rKv2.1 h108- 

740 clones had fast activation and there were no significant differences between 

them. On the other hand hKv2.1 and the human chimera, hKV2. I ri 08-74o both 

showed slow activation, also with no significant differences between the two sets 

of data. They were both significantly slower than for rat wild type and rat 

chimera, rKv2. Ih 108-740. 

Therefore the data suggests that the 34 residues that are different between 

the chimeras between residues 108 and 740 do not account for the differing 

activation kinetics. 

3.2.9 Characterisation ofchimera rKV2- lh741-795 

In order to determine whether residues between 741 and 795 (a region 

which 5 amino acids differ between the channels) contribute to differences in 

activation kinetics between rat and human forms of Kv2.1 the chimera 

rKv2. I h741-795 was studied. Mutant and wild type cRNA were injected into 

Xenopus oocytes and currents recorded using two-electrode voltage clamp as 

described above. 

Typical current traces for the mutant clone rKv2.1 h741-795 are shown in 

Fig. 3.18. Fig. 3.19 shows the current-voltage relationships (the mean is shown in 

Fig. 3.19a, and normalised curves in Fig. 3.19b). No significant differences 

between normalised rKv2.1 wild type, hKv2.1 wild type and rKv2. I h741-795 

current-voltage relationships were found. Fig. 3.20 shows mean 10-90% rise 

times versus test potential for rKv2.1, hKv2.1 and rKv2. I h741-795. Both rKv2.1 

wild type and rKv2. I h741-795 chimera showed fast activation kinetics and there 

were no significant differences between rat wild type and mutant rise times. The 

hKv2.1 on the other hand was slower at least for test potential up to +2OmV. 

Therefore, replacing residues 741-795 in the rat channel with the human 

sequence did not alter the activation kinetics. Hence, the five amino acids that are 
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Fig. 3.17 Rise times (10-90%) for the wild types rKv2.1 and hKv2-I 

and for chimeras rKv2. IhJO8-740, and hKv2. lrlO8-740. 
The figure shows the rise time versus test potential for human Kv2.1 
(0, n=5), rat Kv2.1 (0, rt--5), and the chimeras hKv2.1 r108-740 (A, n=9) 
and rKV2- 1 M08-740 (V, n=6). 
Human wild type and hKv2- lr108-740 rise times were not significantly different 

at any data point. Rat wild type and rKv2. lh108-740 rise times were also not 
significantly different at any data points (p<0.05). 
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Fig. 3.18 Current families for chimera rKv2. lh741-795* 
A family of currents (leak subtracted) for a single oocyte are shown for the 
construction of the IN curve. Bars indicate the current and time calibration. 
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Fig. 3.19 IN curves for wild type rat and human Kv2.1 and 
the chimera rKv2. lh741-795. 

a, The figure shows IN curves for wild type rKv2.1 (0, n=4), wild type 
hKv2.1, (M, n=5), and chimera rKv2. lh741-795 (A, n=6). 
b, Currents were normalised to the current value at +70mV 
(22.5±6 ýA for rat, 14.5±5.4 gA for human and 17.8±6 VA for rKv2.1 h741-795) 
There were no significant differences between the three sets of normalised data 
(p<0.05). 
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Fig. 3.20 Rise times (10-90%) for the wild types rKv2.1 and 
hKv2.1 and the chimera rKv2. lh741-795. 

The figure shows the rise time versus test potential for human 
Kv2.1 (0, n--5), rat Kv2.1 (0, n=4), and the chimera rKv2.1 h741-795 
(A, n=6). Significant differences between the human wild type and 
the chimera are shown (*), (p<0.05). 
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different within this region do not determine the differences in activation kinetics 

between the wild type rat and human Kv2.1 channels. 



108 

3.3 Discussion 

In this study, molecular regions in the N- and C- terminal domains that 

are responsible for the differences in the activation kinetics between rat and 
human Kv2.1 were investigated. Results are summarised in Fig. 3.21. 

Regarding rise times, rKv2.1 E75D, rKv2. I h108-528, rKv2. I WOO and 

rKV2-lh741-795 were like rat Kv2.1, while hKv2. IrIO8-740 Was like human Kv2.1. 

For the chimeras, these data, when considered in isolation, suggest that residues 

between 108 and 795 in the C- terminus do not determine activation times. 

However, taking into account that the membrane spanning regions between the 

two channels are identical (Fig. 3.1), the data indicates that residues, that are 

different between the rat and human forms of Kv2.1, (between 467 and 787) do 

not seem to contribute. Residue 75 in the N-terminus also does not appear to 

contribute to the differences in the activation kinetics between rat and human. 

Since it is clear that some parts of the N and C-terminus do determine these 

differences in activation times, the data suggests that the remaining sequences 

that are different may be important, i. e. residue 67 in the N-terminus, and/or 

residues within the 796-843 region. However, as will shortly be explained, the 

conclusions will need to be modified in the light of further experiments. 

Figure 3.22 shows a summary of other site-directed mutants made for the 

rat and human forms of the channel (constructed within this laboratory, Ju et al, 
2003). Mutation Q67E in the rat channel caused a slowing in the activation 
kinetics at all test potentials indicating the involvement of residue 67. Similarly, 

the double mutant, rKv2.1 Q67E/E75D also had slowed activation. Thus the data 

shows that residue 67 is involved in determining activation kinetics in the rat 
channel. 

Interestingly, a single point mutation in the human channel at residue 67 
(E67Q), had no effect on the activation kinetics, with the mutant still showing 

slow activation. However, changing residue 75 (D75E) in the human channel did 

have an effect and resulted in fast activation kinetics similar to rat, indicating the 
importance of residue 75. Surprisingly, the double mutant (E67Q/D756E) 

retained slow activation kinetics similar to the human wild type. Taken together, 
these residues suggest, that residues at positions 67 and 75 are involved in 
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hKv2.1 Slow 

rKv2.1 QE Fast 

rKv2.1 E75D QD Fast 

75 

rKv2. lhIO8-528 Fast 

rKv2. lhlO8-740 Fast 

hKv2. lrIO8-740 

W: m 

Slow 

rKv2.1 h741-795 

-1 

Fast 

108 8 741 95 

Fig. 3.21 Summary of the 10-90% rise times of the point mutants 
and all chimeras tested in this thesis. 
The compositions of each of the clones described in this chapter are 
shown schematically. The red colouration denotes rat Kv2.1, and the 
blue denotes human Kv2.1. Residue 75 is marked in human, rat and 
mutant E75D (D in human wild type, E in rat wild type and D in 
rKv2.1 E75D mutant). Also, the domains of the chimeras are shown, 
The rise time characteristics are also shown for each mutant tested. 
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hKv2.1 Slow 

rKv2.1 QE Fast 

rKv2.1 Q67E EE Slow 

rKv2.1 Q67E/E75D ED Slow 

hKv2.1 E67Q QD Slow 

hKv2.1 D75E Fast 

hKv2.1 E67Q/ID75E QE Slow 

Fig. 3.22 Summary of site-directed mutants, data taken from 
Ju et al (2003). 
The compositions of each of the clones described in this chapter 
are shown schematically. The red colouration denotes rat Kv2.1, 
and the blue denotes human Kv2.1. The residues at position 67 
and 75 are shown. The rise time characteristics are also shown for each 
mutant tested. 
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determining the activation kinetics of Kv2.1, but the precise characteristics of 

activation are also influenced by residues in the C- terminal domain. 

The involvement of residues in the C- terminus was also investigated by 

Ju. et al, (2003) using chimeras. For this, chimeras were constructed exploring 

further the roles in activation kinetics of the 51 amino acids that differ between 

rat and human Kv2.1 in this domain (Fig. 3.23). Replacing residues between 529 

and 740 of rat with human did not alter the activation kinetics, i. e. it remained 

similar to rat kinetics. This agrees with results described above, i. e. that 

rKV2-IhIO8-74o had the same (fast) activation kinetics as rat wild type. This 

suggests that the 30 differing amino acids in this region do not account for 

differences in activation times between the two channels (Fig. 3.23, and Ju et al, 

2003). 

Chimeras replacing residues between 741 and 853,594 and 853, and 529 

and 853 (Fig. 3.23) of rat with human, all changed activation times from fast 

(like rat) to slow (like human). Since residues 529-740 did not account for the 
differences in kinetics (see above), this suggests that amino acids 741-853 are 
important in the differing activation kinetics between the two channels. Hence 

some of the 15 residues that differ between rat and human channels in this region 
must contribute to differences in activation times. 

There may appear to be an apparent contradiction between the 
involvement of 741-853 residues described above and the kinetics of the 

chimeras swapping residues between 741-795, and 796-853, as these smaller 
domain swaps each singly appeared to have no effect. The likely explanation is 

that both these regions 741-795, and 796-853 are co-operatively involved. 

In conclusion, the results in this chapter show that neither residue 75, nor 

regions 108-528,108-740, or 741-795 alone solely determine activation kinetics 
in the potassium channel Kv2- 1. However, considering these results alongside 
other results described in Ju et al it appears that residues 67 and 75 in the TI 
domain and residues from 741-795 and 796-853 affect the activation kinetics of 
this channel. It therefore appears that residues 67 and 75 in the N- terminus, and 

residues between 741-795 and 796-853 in the C- terminus are important in 
determining activation rate. We have named the region 741-853 the CTA domain 
(C-terminal activation domain). It is interesting to note that the residues of 
importance within the N-terminus are located within the TI or tetramerisation 
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hKv2.1 Slow 

rKv2.1 Fast 

rKv2. lh529-740 
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0 

Slow 
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Fig. 3.23 Summary of chimera results, data taken from 
Ju et al (2003). 
The compositions of each of the clones described in this 
chapter are shown schematically. 
The red colouration denotes rat Kv2.1, and the blue denotes 
human Kv2.1. The rise time characteristics are also shown for each 
chimera tested. 
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domain. Although a three-dimensional structure for Kv2.1 T1 domain is not 

available, the structure of this region has been investigated and determined in the 

closely related Kv I family of channels (Cushman et al, 2000, Gulbis et al, 2000, 

Kreusch et al, 1998, and Minor et al, 2000). 

It is now known that the TI domain hangs below the membrane like a 

gondola (Kobertz et al, 2000 and Sokolova et al, 2001) in Shaker. In Ju et al 
(2003), homology modelling for the Kv2.1 TI domain predicts that residues 67 

and 75 are on the exposed extracellular side at the "bottom" of the TI region 
(Fig. 3.24a). Furthermore, the model predicts that when residue 67 is mutated to 

glutamate, this region would move outwards, possibly repelled by other charges, 

which could cause conformational changes resulting in the differing activation 
kinetics observed in these experiments. At residue 75, there is an obvious 
difference in the bulk of these alternative amino acids. Although this is only a 

computer model, it does illustrate how the changes might affect the structure of 

the N- terminal domain. The C-terminus (in contrast) has some homology 

between Kv2 channels, and is predicted to have a helix-strand-helix structure (Ju 

et al, 2003). 

The data within this chapter suggests that both the N- and C- termini 

contribute to changes in activation kinetics in Kv2.1, and also suggests an 
interaction between the N- and C- terminal domains since the effect of the N- 

terminus depends on the components of the C- terminus. Indeed, VanDongen et 

al (1990) found that deleting the N-terminus caused a slowing in activation time, 

which was restored when part of the C-terminus was deleted also. 
Since both the N- and C- terminus appear to play a role in determining 

the activation kinetics of the Kv2.1 channel, it would be plausible to suggest that 

these termini might physically interact. Such a prediction is supported by 

electron microscope pictures of the TI domain of Kvl. I, which shows that the 
bulk of the hanging gondola is too big for the TI structure alone (Sokolova et al, 
2001), i. e. it probably includes the C-terminal region. 

A schematic model of the Kv2.1 channel (Fig. 3.24b), showing the 

membrane spanning part and the intracellular domains TI, Kv2, and CTA has 

been made guided by the electron microscope pictures for the Shaker channels 
(Sokolova et al, 200 1). The linkers comprise both N-terminal (T 1 -S 1) and C- 

terminal (S6-Kv2) parts. The CTA domains are shown overlapping the TI 
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Fig. 3.24 N- terminal and C- terminal models of Kv2. I. 
a, Computer homology-based models for the TI domains of 
the Kv2.1 point mutants (Ju el al (2003)). Amino acids 27-137 
are shown and each of the mutated N- terminal residues are 
labelled. 
b, Schematic model of Kv2.1 showing the membrane 
spanning domains and the intracellular TI domains, Kv2 
domain and CTA domain. The linkers comprise both 
the N- terminal (T I -S 1) and C-terminal (S6-Kv2) regions. 
Model taken from Ju el al (2003). 
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residues 67 and 75, and the C linker (S6-Kv2) has been drawn as directly 

connecting to the bottom of T I, as it is in the Shaker channel. The Kv2 domain 

has been located schematically in the remaining space. 
The next stage of this analysis will be to investigate whether direct 

physical interactions occur between the N- and C- termini; this is described in 

chapters 4 and 5. 
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CHAPTER 4 

N- AND C- TERMINAL 

INTERACTION STUDIES OF THE 

RAT POTASSIUM CHANNEL, Kv2. 
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4.1 Introduction 

In the previous chapter it was shown that some residues in the N-terminal 

region, namely residues 67 and 75, and residues between positions 740 and 853 

within the C-terminal region, are involved in determining the difference in 

activation kinetics between rat and human forms of the Kv2.1 channel. This data 

suggested that a direct interaction may occur between the N and C termini. 

In this chapter, this possible interaction was investigated directly using 

glutathione S-transferase (GST) binding studies, Biacore surface plasma 

resonance studies, and fluorescence resonance energy transfer (FRET) 

experiments. 
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4.2 Results 

4.2.1 Construction ofthe N-terminal GST construct 

To investigate whether the N- and C- termini of rat Kv2.1 interact, an N- 

terminal GST clone was first made. An N-terminal PCR product consisting of 

codons 2 to 181 was obtained using the method described in section 2.3.1. The 

product was then digested with enzymes EcoRI and XhoI producing a correctly 

sized fragment (540bp, Fig. 4.1 a), and ligated into the similarly digested pGEX- 
4T-3 vector (4894bp, Fig. 4.1b) (as described in section 2.3.1) to create the 

construct, rKv2. I N2-181 GST. The DNA was transformed into E. coli, and samples 

sent for sequencing using a universal GST primer. Figures 4.1 c and d show the 

results of the automated sequencing, and subsequent sequence alignment, 
indicating the correct construction of the clone at one of the joins. The sequence 

at the otherjoin was also verified by DNA sequencing (data not shown). 

4.2.2 Construction ofthe C-terminal construct 

A C-terminal PCR product consisting of codons 413 to the end of the rat 

sequence, codon 853, was obtained using the method described in section 2.3.2. 

The product was then digested with enzymes EcoRl and Bsp1407I producing a 

correctly sized fragment of 346bp (Fig. 4.2a, with the fragments of 8bp and 
185bp being discarded), and ligated into similarly digested rKv2.1 in pBluescript 

vector (4703bp, Fig. 4.2b) (as described in section 2.3.2) to create the C- terminal 

construct, rKv2.1 C413-853clone. The DNA was transformed into E. coli, and 

samples sent for sequencing using the universal T7 primer. Figures 4.2c and d 

show the results of the automated sequencing, and subsequent sequence 

alignment, indicating that the correct clone had been made. 
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pGEX-4T-3 rKv2.1 (no start codon) 
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Fig. 4.1 Digestion and sequencing for rKv2.1 N2-181 GST clone. 
The fragments were produced by digestion with restriction enzymes ],, CoRl 
and Ahol. 
a, The PCR product was digested with EcoRI and Ahol, and the relevant 
sized fragment gel extracted. Lane I contains k-Hintfill marker and lane 2 
contains the gel extracted PCR product (540bp). 
b, Wild type rKv2.1 in pBluescript was digested with AcoRl and Xhol, and 
the relevant sized fragment gel extracted. Lane I contains the k-Hindlli 
marker and lane 2 contains the gel extracted Kv2.1 product digested by the 
enzymes (4894bp). 

c, Sequence electrophoretograrn of the rKv2.1 N2-181 GST clone. The red 
line denotes the Join from pGEX-4T-3 vector to rKv2.1. 
d, The DNA sequence was aligned against the desired predicted sequence 
using ClustalW and Boxshade on-line software (a small sample is shown). 
The red line denotes the join from vector to rat. 
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Fig. 4.2 Digestion and sequencing for rKvIl,. 40-8.3 clone. 
The fragments were produced by digestion with the restriction enzymes 
EcoRl and Bsp 14071. 
a, The PCR product was digested with the enzymes EcoRI and 
B, vp 14071 

, and the relevant sized fragment gel extracted (346bp). 
Lane I contains k-Hintfill. marker and Lane 2 contains the gel extracted 
PCR product. 
b, Rat wild type Kv2.1 DNA was digested by enzymes EcoRl and 
Bsp]4071, and the relevant fragment gel extracted (4703bp). Lane I 
contains k-Hintfill marker and Lane 2 contains the gel extracted rKv2.1 
product. 
c, Sequence electrophoretogram of the rKv2.1 C413-853 clone. The red line 
denotes the join from the pBluescript vector to the rat sequence, the 
blue line shows the EcoRJ restriction site join, and the black line shows 
the start codon of Kv2.1. A Kozac sequence ACC linker was also added 
between the restriction site and the start codon to facilitate efficient 
expression. 
d, The sequence was aligned against the desired chimeric DNA 
sequence, using ClustalW and Boxshade on-line software. The red line 
denotes the join from the pBluescript vector to the rat sequence, and the 
black line shows the start of the C- terminal domain. 

pBluescript SK 
I 
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4.2.3 In vitro expression of GSTfusion proteins and binding studies 

Binding studies were carried out to deduce whether the N- and C-terminal 

regions interact. The rKv2. I C413-853 clone was expressed using an in vitro 

reticulocyte lysate system in order to radiolabel the C-terminal protein with 35S_ 

Methionine so it could be readily detected (as described in section 2.3.3). The 

rKv2. I N2-181 GST clone was expressed in E. coli and purified using glutathione 
beads, as described in section 2.3.3. This labelled C-terminal protein was then 

mixed with the GST fusion protein, and any unbound C-terminal protein was 

then washed off. This was repeated with BL21 cells, and unmodified GST vector 
(pGEX-4T-3) to check the washing steps for non-specific binding. All samples 

were run on a protein gel, and stained to visualise the bands. The positive 

control, 35S labelled rKv2. I C413-853 was run to check the radiolabelling, as were 

washing controls of GST vector and BL21 E. coli cells mixed with the 35s 

labelled rKV2. I C413-853 - The rKv2. I N2-181 GST protein mixed with j ust water was 

also run to check purification steps for the GST constructs. Fig. 4.3 shows the 

Coomassie stained SDS-PAGE gel, with expected bands shown at 49kDa for 

pure rKv2. I N2-181 GST protein, 4 8kDa for 35S labelled rKv2. I C413-853 and 29kDa 

for pGEX4T-3 protein. A protein breakdown product can be seen at 29kDa, 

representing just the GST tag. 

Another gel was also run to confirm the presence of the GST tag, as 
described in section 2.3.3. After detection using a GST primary antibody, an 

alkaline phosphatase-conjugated secondary antibody and CSPD substrate, bands 

could be seen at 29kDa for the GST vector and at 49kDa for the GST tagged 

rKv2. I N2-181 GST protein (Fig. 4.4a). The GST tag was therefore shown to be 

present. 
An SDS-PAGE gel was examined by autoradiography for any 35s 

labelled product from rKv2. I C413-853 (Fig. 4.4b). Lane 1 shows the 35S labelled 

rKv2. I C413-853 alone which indicates the presence of radiolabelled product. The 

middle lane shows a weaker but still clearly discemable 35 S-labelled band, 

indicating that binding did occur between the N- and C-terminal proteins. No 
band was seen in lane 3, GST alone (control lane), indicating that the C-terminal 
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Fig. 4.3 Rat Kv2.1 N- and G terminal domain interaction assay. 
Interaction assay protein samples were run on a 12% SDS-denaturing gel, and 
stained with Coomassie. The radiolabelled C- terminal domain was mixed with the 
GST vector and BL21 cells to ensure that the binding found with the N- terminal 
domain was specific, as explained in 4.2.3. Lane I contains the rKv2. lN2-181 
insoluble non-purified protein. Lane 2 contains the rKv2. lN2-1g, GST soluble non- 
purified protein, a strong band can be seen at the correct size of 49kDa. Lane 3 

contains the rKv2.1 "2-181 GST purified protein, a band can be seen at the correct 
size of 49kDa. Lane 4 contains the 35 S-labelled rKv2.1 C413-853 alone, a faint band 

can be seen at the correct size of 48kDa. 
* 
Lane 5 contains the purified rKv2. 'N2- 

+3 
181GST 

5S-labelled rKv2. lC413-853, the N- and C- constructs were mixed and 
purified. As the constructs are of similar size a single band can be seen at 48- 
49kDa. Lane 6 contains the pGEX4T-3 vector + 35 S-label led rKv2.1 C413-853; the 

vector was mixed with the labelled C- terminal domain as a negative control. Lane 
7 BL21(DE3) cells + 35 S-labelled rKv2. lC413-853, also as a negative control. 

1 
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Fig. 4.4 Western blot of GST tagged protein, and corresponding 
autoradiograph. 
a, Western blot of the interaction assay protein run on an SDS-PAGE 

gel, transferred to nitrocellulose membrane, and detected via an anti- 
GST antibody, an alkaline phosphatase conjugated secondary antibody, 
and a CSPD substrate. Lane I contains the rKv2.1 N2-181 GST soluble 
fraction, a band of the correct size band can be seen at 49kDa. Lane 2 
contains the rKv2. 'N2-181 GST after purification. Again a correctly sized 
band can be seen at 49kDa. Lane 3 contains the purified rKv2.1 N2-181 
GST mixed with the 15 S-labelled rKv2.1 C413-853. A correctly size band 

can be seen at 49kDa. Lane 4 contains the correctly sized pGEX4T-3 
vector alone (29lcDa). Lane 5 contains the pGEX4T-3 vector (alone) + 
35 S-labelled rKv2.1 C413-853. A correctly sized band can be seen at 29kDa. 
Lane 6 BL21(DE3) cells + 35 S-labelled rKv2.1 C413-853, showing no 
bands, indicating the efficiency of the washing steps. 
b, An autoradiograph detecting radioactivity with lanes as follows: 
Lane I '5S-labelled rKv2. lC413-853, a correctly sized band is seen at 
48kDa. Lane 2 contains the purified rKv2,1 N2-181 GST mixed with the 
35 S-labelled rKv2. lC413-853, a weak band is also seen at 48kDa. Lane 3 
contains the pGEX4T-3 vector mixed with the 35 S -1 A el I ed rKv2.1 C413 - 
. 53. No band can be seen. 
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protein did not bind to GST itself. This confirms that the N- and C-termini 

indeed bind to each other, albeit weakly. 

4.2.4 Biacore surfaceplasma resonance experiments 

To confirm the N- and C-terminal interaction found in section 4.2.3, 

Biacore surface plasma resonance experiments were also carried out. Constructs 

were made as described in section 2.3.3, with the rKv2. I C413-853 protein being 

unlabelled for these experiments. GST tagged N-terminal protein was purified 

and was then run on an SDS-PAGE gel and the correctly sized band can be seen 
(Fig. 4.5). 

Plasma resonance experiments were carried out as described in section 
2.3.4. Here, one response unit is equal to a 0.0001 -degree change in the reflected 

angle. The results in Fig. 4.6 show that when the rKv2. I C413-853 Was amide 

coupled to the Biacore cell and then washed with the rKv2.1 N2-18 IGST protein, a 
large response was seen, showing binding between the N- and C-terminal 

domains. However, when a blank cell was washed with the rKv2. I N2-181 GST 

protein, a medium response was seen. This indicates that this protein is quite 
'sticky' and does produce a reaction on its own, although not as large a reaction 

as with the C-terminal protein. The controls of the rKv2. I C413-853 washed with the 

GST vector alone and a blank cell washed with just GST both showed similar 

and small responses. However, the N- and C- terminal regions together gave by 

far the largest response, which indicates that these two regions do interact - 
confirming the results found in section 4.2.3. 

4.2.5 Preparation off-terminal constructsfor FRET 

An N-terminal PCR product containing either a CFP or YFP fluorescent 

tag was generated using the method described in section 2.3-5. The PCR product 

was then digested with enzymes EcoRI and Cal, producing a correctly sized 
fragment of 1080bp (Fig. 4.7a) with the smaller sized fragments discarded, and 
ligated into a similarly digested rKv2.1 in pGem-He-Juel clone (6014bp, Fig. 

4.7b) (as described in section 2.3.5) to create the rKv2. I N-CFP or rKv2. I N-YFP in 



125 

23 
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4 29kDa 

Fig. 4.5 Protein samples for Biacore analysis. 
Coomassie blue stained 120 o SDS-PAGE I; el of proteins used for Biacore 

analysis Lane I contains the rKv2. 'N'-Ixl GST purified protein, a band can be 

seen at 49kDa. Lane 2 contains the non-labelled rKv2. lC413-853, a correctly sized 
band can be seen at 48kDa. Lane 3 contains the GST vector protein purified, at 
the correct size (29kDa). The gel confirms the correct size of all proteins, and the 
purity of the rKv, 2 1 N2-181GST and GST vector. 
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Fig. 4.6 Binding of the N- terminal domain to the G terminal domain 

using Biacore. 
This figure shows the Biacore SPR trace response from the Biacore dunng 
the application of the N-terminal domain GST-fusion protein or the GST 
alone. Cells contained either the C-terminal protein or were blank as 
labelled. 
One response unit is equal to a 0.0001 degree change in the reflected angle. 
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Fig. 4.7 Digestion and sequencing for the rKv2. 'N-CFP in pGem-He-Juel clone. 
The fragments were produced by digestion with the restriction enzymes E-coRI and Clat 

a, Restriction digest of the CFP PCR product. DNA was digested with Ecopl and Clal, 

and the relevant sized fragment gel extracted (1080bp). Lane I contains k-Hin(IIII marker 
and Lane 2 contains the gel extracted CFP PCR product digested by enzymes EcoRI and 
Clal. 
b, Restriction digest of wild type rKv2.1 in pGem-He-Juel. DNA was digested with Ecopl 

and Clal, and the relevant sized fragment gel extracted (6041bp). Lane I contains k- 
Hintfill marker and Lane 2 contains the gel extracted rKv2.1 digested by enzymes EcoRI 

and Clal. 

c, Sequence electrophoretogram of the rKv2.1 N-CFP in pGem-He-Juel clone. The red line 
denotes the join from rat to the pGem-He-Juel vector, the blue line shows the EcoRI 

restriction site, and the black line shows the start codon. 
d, The sequence was aligned against the desired chimeric predicted DNA sequence, using 
ClustalW and Boxshade on-line software. The N in the sequence alignment denotes a mis- 
read, and the correct base was detected in a subsequent read. 

2 
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pGem-He-Juel clone. This was used for electrophysiology experiments. The 

DNA was transformed into E. coli, and samples sent for automated sequencing 

using a universal T7 primer. A sample of the nucleotide sequencing generated for 

this chimera is shown in Figure 4.7c, showing the EcoRI join and subsequent 

sequence alignment (as shown in Fig. 4.7d). All samples showed the correctly 

constructed chimera. cRNA was transcribed in vitro and injected into Xenopus 

oocytes for two-electrode voltage clamp recording. 
An N-terminal tagged clone was then made in the vector pcDNA3 for 

FRET analysis. The PCR product above after digestion with enzymes EcoRI and 

Cal, again produced a fragment of 1080bp (Fig. 4.8a) and was ligated into a 

similarly digested pcDNA3 (8367bp, Fig. 4.8a) (as described in section 2.3.5) to 

create the rKv2. I N-CFP or rKv2. I N-YFP in pcDNA3 clone. The DNA was 

transformed into E. coli, and samples sent for automated sequencing using a 

universal T7 primer. A sample of the nucleotide sequencing generated for this 

chimera is shown in Figure 4.8b, showing the EcoRI join and subsequent 

sequence alignment (Fig. 4.8c). This showed the correctly constructed chimera, 

and the clone was sent to N. Soldatov for FRET analysis. 

4.2.6 Preparation of C-terminal constructsfor FRET 

A C-terininal PCR product containing a CFP fluorescent tag was obtained 

using the method described in section 2.3.5; J. Li completed the C-terminal YFP 

PCR. The PCR product was digested with the enzymes. 4flIl and Xbal producing 

the correctly sized fragment of 892bp (Fig. 4.9a). This fragment was then ligated 

into a similarly digested rKv2.1 in pGem-He-Juel clone (5745bp, Fig. 4.9b) (as 

described in section 2.3.6) to create the rKv2. I C-CFP in pGem-He-Juel clone, used 

for electrophysiology. The DNA was transformed into E. coli, and samples sent 
for automated sequencing using the universal SP6 primer. A sample of the 

nucleotide sequencing generated for this chimera is shown in Figure 4.9c, 

showing the Xbal join and subsequent sequence alignment (Fig. 4.9d). The 

correctly made clone was transcribed in vitro and injected into Xenopus oocytes 
for two-electrode voltage clamp recording. 
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HintAll marker and Lane 2 contains the gel extracted rKv2.1 in pcDNA3 product 
digested by enzymes Ecolkl and Chil. 
b, Sequence electrophoretogram of the rKN-2. I -N-cl: p in pcDNA, clone. The red line 
denotes the join from rat to the pcDNA, vector, the blue line shows the P., coRl 
restriction site, and the black line shows the start codon. 
c, The sequence was aligned against the desired chimeric predicted DNA sequence, 
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Fig. 4.9 Digestion and sequencing for the rKv2.1 C-CFP in pGem-He-Juel clone. 
a, Restriction digest of the CFP PCR product. DNA was digested with AJAI and 
Xbal, and the relevant sized fragment gel extracted (892bp). Lane I contains k- 
HintAll marker and Lane 2 contains the gel extracted CFP PCR product digested 
bv enzvmes Afill and. X-bal. 
b, Restriction digest of wild type rKv2.1 in pGem-He-Juel. DNA was digested 
with A)711 and Xbal, and the relevant sized fragment gel extracted (5745bp). Lane I 
contains k-HincAll marker and Lane 2 contains the gel extracted rKv2.1 digested 
by enzymes A. fIlI and Xbal. 

c, Sequence electrophoretogram of the rKv2. I C-CIT in pGem-He-Juel clone. The 
red line denotes the join from CFP to the pGem-He-Juel vector, the blue line shows 
theXbal restriction site, and the black line shows the stop codon. 
d, The sequence was aligned against the desired chimeric predicted DNA 
sequence, using ClustalW and Boxshade on-line software. The red line denotes the 
join from CFP to the pGem-He-Juel vector. 
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A C-terminal tagged clone was then made in pcDNA3 for FRET analysis. 
The PCR product above was again digested with enzymes, 4j7II and XbaI again 

producing the correctly sized fragment of 892bp (Fig. 4.1 Oa), and ligated into a 

similarly digested pcDNA3 vector (8 09 8bp, Fig. 4.1 Oa) (as described in section 
2.3.6) to create the rKV2. I C-CFP in pcDNA3 (the C-terminal YFP PCR and the 

rKv2. I C. yFp in pcDNA3 clone were made by J. Li). The DNA was transformed 

into E. coll and samples sent to Lark Technologies for automated sequencing 

using the universal M 13 primer. A sample of the nucleotide sequencing 

generated for this chimera is shown in Figure 4.1 Ob, showing the correct XbaI 

join and subsequent sequence alignment (Fig. 4.1 Oc). This showed the correctly 

constructed chimera, and the clone was sent to N. Soldatov for FRET analysis. 

4.2.7 Preparation ofdouble tagged constructsfor FRET 

The rKv2. I N-YFP PCR product (as described in 4.2.5) was digested with 
enzymes EcoRI and Cal producing the correctly sized fragment of 1080bp (Fig. 

4.11 a). The smaller sized fragments were discarded, and the 1080bp fragment 

was then ligated into the similarly digested rKv2. I C-CFP in pGem-He-Juel clone 
(5970bp, fig. 4.11 b, as described in section 2.3.7) to create the rKv2. I N-YFP-C. CFP 
in pGem-He-Juel clone. The DNA was transformed into E. coli and samples 

were sent for sequencing using the universal T7 primer. A sample of the 

nucleotide sequencing generated for this chimera is shown in Figure 4.11 d, 

showing the EcoRI join and subsequent sequence alignment (Fig. 4.11 e). cRNA 

was transcribed in vitro and injected into Xenopus oocytes for two-electrode 

voltage clamp recording. 
A double tagged clone was then made in pcDNA3 for FRET analysis. The 

PCR product above was again digested with the enzymes EcoRI and Cal 

(I 080bp, fig. 4.11 a), and the smaller sized fragments discarded. This fragment 

was then ligated into the similarly digested rKv2. I C-CFP in pcDNA3 clone 

(8323bp, Fig. 4.1 Ic) (as described in section 2.3.7) to create the rKv2. IN-YFP-C. CFP 
in pcDNA3 clone. The DNA was transformed into E. coli and samples sent for 

sequencing using a universal T7 primer. A sample of the nucleotide sequencing 
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Fig. 4.10 Digestion and sequencing for the rK%, 2.1(, 
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a, Restriction digest of wild type rKv2. l in pcDNA3. DNA was digested with 
41711 and Xbtil, and the relevant sized fragment gel extracted (8098bp). Lane I 
contains X-Hintflll marker and Lane 2 contains the gel extracted rKv2.1 in 
pcDNA3 product digested by enzymes AJTII andXbal. 
b, Sequence electrophoretogram of the rK,., 2. I c-cl., p in pcDNA3 clone. The red 
line denotes the join from CFP to the pcDNA3 vector, the blue line shows the 
Xbtfl restriction site, and the black line shows the stop codon. 
c, The sequence was aligned av zainst the desired chimeric predicted DNA 
sequence, using ClustalW and Boxshade on-line software. The red line denotes 
the join from CFP to the pcDNA, vector. 
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generated for this chimera is shown in Figure 4.11 d, showing the EcoRI join and 

subsequent sequence aligmnent (Fig. 4.11 e). This showed the correctly 

constructed chimera, and the clone was sent to N. Soldatov for FRET analysis. 

4.2.8 Characterisation of the N-terminal CFP and YFPfluorescent 

clones 

The possible effects of the N-terminal CFP and YFP tags on the 

electrophysiological properties of the rKv2.1 channel were examined. cRNA for 

rKv2. IN-CFp, and rKv2. IN-YFP clones and the wild type rKv2.1 were injected into 

Xenopus oocytes and two-electrode voltage clamp recordings were made a day 

later. 

IN curves and normalised IN curves are shown in Fig. 4.12. All 

channels exhibited strong voltage-dependent outward currents, which activated 

around -2OmV as for wild type rKv2. I. nere were no significant differences 

between currents for either of the clones compared with rKv2.1 wild type. 
Fig. 4.12c shows the 10-90% rise times versus voltage relationship for 

wild type rKv2.1, rKv2. I N-CFp, and rKv2. I N-YFP. All clones had fast activation 

and there were no significant differences between wild type and tagged clone rise 

times. These results indicate that neither N-terminal tag affected the activation 

properties of rKv2.1. 

4.2.9 Characterisation ofthe C-terminal CFP and YFPfluorescent 

clones 

The possible effects of the C-terminal CFP and YFP tags on the 

electrophysiological properties of the rKv2.1 channel were examined. Rat 
Kv2. IC-CFp and rKv2. IC-YFP clone and wild type rKv2-I cRNA were injected into 

Xenopus oocytes and two-electrode voltage clamp recordings made a day later. 
Figure 4.13a shows the mean IN curve, and the normalised IN curve is 

shown in Fig. 4.13b. All channels exhibited strong voltage-dependent outward 
currents, which activated around -2OmV as for wild type Kv2- I. There were no 
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Fig. 4.12 Characteristics of wild type rKv2.1, rKv2. IN-CFp and rKv2. IN' 
-N'FP 

clones. 
a, The figure shows IN curves for wild type rKv2. I (V, n=5), rKv2 N-CFP (0, 
n=6) and rKv2. 'N-N'FP (A, n=5) channels. 
b, Currents were normalised to the current value at +70mV (3.25PA ±0.09 for 

rat Kv2.1 wild type (V, n=5), 4.38±0.11 [A for rKv2. lN-CFP (*, n=6) and 
3.69±0.2 7 pA for rKv2.1 N-Y1- P (A 

I n=5)). 
c, The figure shows the rise time versus test potential for rKv2. I (V, 11=5), 
rKv2.1 N-CFP (*, n=6) and rKv2. I (A, n=5) channels. 
There were no significant differences between the sets of data (student's t-test 
(p<0.05)). 
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significant differences in currents between either of the clones and rKv2.1 wild 

type. 
Fig. 4.13c shows the 10-90% rise times versus voltage relationship for 

rKv2.1 wild type, rKv2. I C-Up, and rKv2. I C-YFP. All clones had fast activation and 

there were no significant differences between wild type and tagged clones rise 

times. These results indicate that neither C-terminal tag affected the activation 

properties of rKv2.1. 

4.2.10 Characterisation of the double tagged rKv2. IN-yFp-c-cFp 

fluorescent clone 

The effect of the combined CFP and YFP tags on the electrophysiological 

properties of the rKv2.1 channel was examined. Wild type rKv2.1 and rKv2. I N- 

YFP-C-CFP clone cMA were injected into Xenopus oocytes and two-electrode 

voltage clamp recordings made a day later. Figure 4.14a shows the IN curves, 

and the normalised IN curves are shown in Fig. 4.14b. All channels exhibited 

strong voltage-dependent outward currents, which activated around -2OmV as 

for wild type rKv2.1. There was no significant difference between the double 

tagged clone and wild type Kv2.1. 

Fig. 4.14c shows the 10-90% rise times versus voltage relationship for 

wild type rKv2.1 and rKv2. I N-YFP-C-CFP. Both clones had fast activation and there 

were no significant differences between wild type and tagged clone rise times. 

These results indicate that the double tag did not affect the activation properties 

of rKv2.1. 

4.2.11 Characterisation ofthe rKv2.1 fluorescent clones using FRET, 

completed by N. Soldatov & E. Kobrinsky (NIH, Baltimore, USA) 

FRET experiments depend on a distance-dependant interaction between 

the electronic states of two dyes. Excitation is transferred from a donor to an 

acceptor molecule, and the efficiency of transfer is a function of the proximity of 
the two dye molecules. The two dye molecules used in these experiments are 

pCFP (cyan fluorescent protein, the donor molecule), and pYFP (yellow 
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Fig. 4.14 Characteristics of wild type rKv2.1, and rKv2. I 
clone. 
a, The figure shows IN curves for wild type rKv2. I (V, n=4), and rKv2.1 N- 
)I P-C-Cl 1, (0,11=5) 
b, Currents were normalised to the current value at +70mV (5.02±2.66 PA 
for rK,. -2.1 (V, ti=4), and 15.69±2.82 pA for rKv2.1. -_j-j. p -c-clp 

(0, n=5)). 

c, The figure shows the rise time versus test potential for rKv2. I (V, n=4), 
and rKv2 IN., 1.1, -c-cj. ý,, (0, n=5) channels. 
There were no significant differences between the sets of data (student's t- 
test (P<O 05)) 
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fluorescent protein, the acceptor molecule), with the two dye molecules having 

similar DNA sequences (Fig. 4.15), with only eight amino acid differences 

between the two clones. 
Figure 4.16a shows a schematic structure for an N- terminal Kv2.1 

fluorescent tag. COS- 1 cells were transfected with an equal ratio of rKv2. I N-CFP 
and rKv2. I N-YFp, and then subjected to patch clamp. It can be seen that the 
fluorescent ratio of YFP and CFP is not changed suggesting that N-terminal 

regions do not move relative to each other during activation from -80mV to 
+60mV (Fig. 4.16b). 

The double tagged clone, rKv2.1 N-YFP-C-CFP clone was then analysed. 
Figure 4.17a shows a schematic structure of the Kv2.1 channel. Transfected 

COS-I cells expressing the rKv2. IN-YFP-C-CFp double tagged clone were analysed 

using FRET (Fig. 4.17b). FRET images were taken at channels held at -80mV 
(panel b) and +60mV (panel c). The two images were overlaid to show the ratio 

of fluorescence at the two holding potentials (panel d), which were found to be 

different. The area between the arrows (panel c) is magnified in panel d, 

suggesting a confinement of the FRET to the plasma membrane, and showing 

that the tags did not prevent trafficking of the channels to the membrane. 

This result shows that the FRET changes between -80mV and +60mV (it 

was significantly reduced by depolarization), and therefore suggests that the N- 

and C- terminal domains move relative to each other during activation, (at 

+60mV), indicating a possible state-dependent rearrangement of these two 

regions. This shows a rearrangement of the N- and C- tenninal domains upon 
depolarisation in rKv2.1. 
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Fig. 4.15 DNA sequences from pCFP and pYFP plasmids 
The figure shows the alignment of the sequences for pCFP and pYFP using 
ClustalW and Boxshade on-line software. 
The red line denotes the start codon and the black line denotes the stop 
codon. 
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Fig. 4.16 Schematic representation and FRET images of rKv2. 'N-CFP 

and rK%, 2. IN_, 

All diagrams from N. Soldatov. 
a, Schematic structure of an N- terminal Kv2.1 fluorescent tag. 
b, Transfected COS- I cells expressing aIýI mixture of rKv2.1 N-Cj: p and 
rKv2.1 N-N"Fp N-terminal tagged clones were analysed. FRET images were 
taken for channels held at -8OmV and +60mV. The two images were 
overlaid to show the ratio of fluorescence at the two holding potentials. 
As the ratio of fluorescence does not change, it appears these regions do not 
more relative to each other under these conditions. 
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All diagrams from N. Soldatov. 
a, Schematic structure of an N- and C- terminal Kv2.1 fluorescent tag. 
b, Transfected COS- I cells expressing rKv2.1 

-N-YFP-C-CFP 
tagged clone 

were analysed. Panel a shows a phase-contrast image of a cell with a 

patch pipette. FRET images were taken at channels held at -80mV (panel 

b) and +60mV (panel c). The two images were overlaid to show the ratio 

of fluorescence at the two holding potentials (panel d). The area between 

the arrows shown in panel c is magnified in panel d. 

The fluorescence changes between the two holding potentials, which 

indicates a rearrangement of these two regions upon depolarisation. 



143 

4.3 Discussion 

Work described in this and the preceding chapter has supported an 
interaction between the N- and C- termini of rKv2.1. In this chapter, direct 

evidence for an interaction between the N- and C- termini has been investigated 

using GST fusion proteins, Biacore surface plasma resonance and FRET. 

The results showing an interaction between the N- and C- termini of rat 
Kv2.1 in this chapter are as follows: Firstly, an interaction was found for the N- 

and C- terminal regions using a GST-fusion protein; a band of radiolabelled C- 

terminal protein was retained after mixing with the N-terminal GST protein. No 

bands were seen when the radiolabelled C- terminal protein was mixed with the 

BL21 cells or GST vector, indicating that this binding is specific between the N- 

and C- terminal domains. 

Secondly, an interaction was also found between the N- and C-terminal 

regions using Biacore surface plasma resonance. A large response was seen for 

the C-terminal region washed with the N-terminal region, suggesting an 
interaction between these two domains. A smaller reaction was seen with C- 

terminal domain washed with the GST vector alone; indicating again that the 

reaction seen between the N- and C- terminal domains is specific. 
Thirdly, to investigate the extent of this interaction, fluorescent tags were 

cloned in frame to the N- and C- terminal regions of rKv2.1 to enable FRET 

analysis. Electrophysiological analysis completed using two-electrode voltage 

clamp showed that these tags do not affect the activation kinetics (i. e. the IN 

curves and the 10-90% rise times), when compared to wild type rKv2.1 

recordings. These clones were then used for FRET-microscopy combined with 

patch clamp experiments. This was completed by N Soldatov. The fluorescent 

ratio of YFP and CFP in the N- labelled single tagged experiments did not 
change suggesting that N-terminal regions do not move relative to each other 
during activation from -80mV to +60mV (Fig. 4.16b), but are in close proximity 

as FRET could be recorded. However, analysis of the double tagged rKv2.1 
clone (Fig. 4.17b) shows that FRET between the N- and C- terminal tags was 
significantly reduced upon depolarisation, indicating a state-dependent 
rearrangement of these two regions. This result shows that the N- and C-terminal 
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domains are in close proximity to each other (again by the presence of 
fluorescence), and move upon activation. This shows a rearrangement of the N- 

and C- terminal domains upon depolarisation in rKv2.1. This movement of the 

N- terminus relative to the C- terminus probably occurs in such a way that the C- 

terminus moves relative to the N-terminus, as the N- terminal tag alone did not 

show FRET movement upon depolarisation (Fig. 4.16b). 

Further support for an interaction is found in the electron microscope 
derived structure of the Kv 1.1 channel (Sokolova et al, 200 1). In this paper 

single particle electron microscopy shows that the space filled by the intracellular 

region seems to be too large for the TI domain alone. It has been suggested that 

the C- terminus, which seems to envelop the TI domain, occupies the remaining 

space. This contact between the TI region and the C- terminus has been 

hypothesised to result from the the hydrophobicity of the outer surface of the TI 

region (Minor et al, 200 1). 

It is also known that the N- terminal region contributes to the assembly of 

other voltage gated potassium channels (Hopkins et al, 1994), and that an inter- 

subunit interaction between these regions occurs when cysteine residues are 
introduced in the Shaker channel (Schulteis et al, 1996). Interactions in the N- 

and C- terminal domains have also been reported in Kir6.2 (Jones et al, 2001). 

For this, GST constructs of the N- terminal domain of this channel were mixed 

with various radiolabelled C- terminal fragments. Multiple interaction domains 

within the C- termini were found, which correlated with regions previously 
identified as being important for Kir channel assembly and function. 

In KirBac 1.1, a crystal structure of the closed state has indicated that the 
intracellular regions can influence gating, and that rearrangement of these 
domains occurs between the open and closed states of this channel (Kuo et al, 
2003). This is consistent with the FRET data shown in this chapter, which also 

shows a possible rearrangement of the intracellular regions upon depolarisation. 

An inter-subunit interface between the intracellular domains in MAI and Kir5.1 

potassium channels has also been found that has been shown to influence 

regulation and gating (Casamassima et al, 2003). These other studies all indicate 

intracellular interactions in other channels. 
For Kv2.1, C-terminal interactions have previously been shown to be 

important in driving channel assembly (Bentley et al, 1999). However, no direct 
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studies have previously reported an interaction between the N- and C-terminal 

regions of Kv2.1. It would therefore be interesting to further demonstrate the C- 

terminal region, and to further characterise N- and C- terminal interactions of 

rKv2.1 demonstrated in this chapter. 
In conclusion, these results show that for rat Kv2.1, the N- and C- 

terminal regions interact physically, and rearrange upon depolarisation, which 

could provide an explanation for how key residues (as discussed in chapter three) 
in both the N- and C- terminal domains might contribute to the differing 

activation kinetics of rat and human Kv2.1. 
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CHAPTER 5 

STRUCTURAL ANALYSIS OF RAT 

Kv2.1 USING ELECTRON 

MICROSCOPY 
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5.1 Introduction 

Single particle electron microscopy studies have been carried out on the 

Shaker clone, producing a 3D structure at a 25A resolution (Sokolova et al, 
2001). The structure consists of a large membrane spanning domain, and a 

smaller 'hanging gondola' cytoplasmic domain joined by four connectors 
(Kobertz et al, 2000 and see Introduction). The volume of the cytoplasmic 
domain appeared large enough to accommodate both the N- and C- terminal 

regions. 
In the previous chapter a specific interaction was found between the N- 

and C- terminal regions of rat Kv2.1, which suggests that the C- terminus is 

closely associated with the N- terminal region. In this chapter, both wild type 

rKv2.1 and a mutant with a C-terminal deletion have been expressed and 

purified, to attempt to create a defined 3D structure using electron microscopy, 

and thus to determine the location of the C- terminus. 

For this, the wild type rKv2.1 channel was transferred to a mammalian 

expression vector (pMT3) for expression in COS-7 cells. The pMT3 vector has 

been modified to contain an ID4 tag that when expressed in the same open 

reading frame as a recombinant protein sequence encodes a fusion tag recognised 
by ID4 antibodies. This was then used to purify the channel and the C- terminal 

deleted mutant. An agitoxin binding site (A7) was also incorporated into the 

protein sequences so that a binding assay for agitoxin-2 could be used to 

investigate whether the purified protein samples were correctly folded. 

Preliminary single particle electron microscopy was carried out by E. Orlova. 
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5.2 Results 

5.2.1 Construction ofrKv2. I in the pAM vector 

In order to purify the rKv2.1 protein, the whole channel was cloned into 

the pMT3 vector containing an ID4 purification tag (sequence of ID4 shown in 

Fig. 5.1 c). For this, the whole of the rKv2.1 channel was first amplified by PCR 

as described in section 2.4.1. Both the pMT3 vector (containing Shaker) and the 
PCR product were digested with the restriction enzymes EcoRI and Notl. This 

produced a fragment of 2646bp for the rKv2.1 PCR product and 5128bp for the 

pMT3 vector (with the 1920bp Shaker fragment discarded). Figure 5.1 a shows a 
0.7% agarose gel from which fragments were excised and purified (as described 

in section 2.1.7). The relevant fragments were ligated, transformed and mini- 

prepped as described in section 2.1.3. 

A sample of mini-prepped DNA was sent to Lark for automated DNA 

sequencing using the pMT3-AS primer (see table 2.12). The complete coding 

sequence was obtained to check for unwanted amplification errors. An example 
of the nucleotide sequencing generated and an aligmnent of this is shown in Fig. 

5.1. 

5.2.2 Construction ofrKv2. IA7 in pMT3 

In order to render the rKv2.1 protein susceptible to the toxin agitoxin-2, a 
A7 site was sub-cloned into the rKv2.1 in pMT3, as outlined in section 2.4.2. The 
A7 site contained the following amino acid changes: T355S, L356G, A362N, 
S363A, 1379M, Y380T, and L382V. Both the rKv2.1 A7 in Pblu-SK (containing 

the A7 site, Lee et al, 2004) and the rKv2.1 in pMT3 were digested with the 

restriction enzymes Nrul and Bsp 14071. This produced fragments of 7195bp and 
579bp (the latter being discarded) from the rKv2.1 in pMT3. The rKv2.1 A7 in 
Pblu-SK produced a 579bp fragment which contained the A7 site and a 5743bp 
fragment which was then discarded. Figure 5.2a shows a 0.7% agarose gel from 

which fragments were excised and purified (as described in section 2.1.7). 
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6,557bp 

2-322bp 
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- 2621 bp 
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Fig. 5.1 Digestion and sequencing for the rKv2.1 pMT3 clone 
a, Restriction digest of Shaker in pMT_3 and rKv2.1 PCR product. DNA was 
digested with P'CoRl and Notl, and the relevant sized fragments gel extracted 
(5128bp for pMT3 and 2646bp for the rKv2.1 PCR product). Lane I contains 
ý, -HjncAll marker, lane 2 contains the digested gel extracted pMT3 vector and 
lane 3 contains digested gel extracted PCR product. 
b, Sequence electrophoretogram of the rKv2.1 in pMT3 clone. The red line 
denotes the join from rKv2.1 to the pMT3 vector. 
c, The sequence was aligned against the desired chimeric predicted DNA 
sequence, using ClustalW and Boxshade on-line software. The red line 
denotes the join from rat to pMT3 ) vector (containing the pMT3 tag), the green 
line denotes the stop codon, and the blue line denotes the Notl restriction site. 
Also shown is the sequence of the ID4 tag. 

rK, * 2.1 pNl'r3 

rK%-2.1 pNrr3 
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7195bp 
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Fig. 5.2 Digestion and sequencing for the rKv2.1 \7 pN1T3 clone 
a, Restriction digest of rK,. -2 I in pMT3) and DS-DRK in pBlu SK 

product. DNA was digested with Nrul and Noil, and the relevant size 
fragments gel extracted (7195p for rKv2.1 in pMT3 and 579bp for the 
DS-DRK \7 product). Lane I contains I kb marker, lane 2 contains the 
digested gel extracted rKv2.1 pMT3 vector and lane 3 contains digested 

gel extracted DS-DRK \ 7. 
b, Sequence electrophoretogram of the rKv2.1 \7 in pMT3 clone. The 
arrows denote three of the changed base pairs. 
c, The sequence was aligned against the rKv2.1 wild type DNA sequence, 
using ClustalW and Boxshade on-line software. Seven amino acids were 
changed in total. The doted line denotes that the DNA sequence is not 
continuous. 



151 

The relevant fragments were ligated, transformed and a sample of mini-prepped 
DNA was sent to Lark for DNA sequencing using the pMT3 sequencing primer 
(section 2.4.2). The complete inserted sequence was obtained to check for errors 

occurring. An example of the nucleotide sequencing generated for this is shown 
in Figs. 5.2b and c. 

5.2.3 Construction ofthe C-terminal deletion clone 

In order to ftirther investigate the rKv2.1 protein, the C-terminus was 

deleted to produce an rKv2.1 A7-,,,, c clone in pMT3. Construction of this clone 

was carried out by overlap extension PCR as described in section 2.4.3. Both the 

rKv2.1 A7 pMT3 and the final PCR product were digested with the restriction 

enzymes ApaI and NotI. This produced a desired fragment of 532bp for the 

rKv2.1 PCR product (with the fragments of 592bp and 573bp discarded) and 

5919bp for the rKv2.1 A7 in pMT3 clone (with 1855bp discarded). The 

fragments were isolated and gel extracted as described in section 2.1.7. Figure 

5.3a shows a gel from which fragments were excised and purified. The relevant 
fragments were ligated, transformed and a sample of mini-prepped DNA was 

sent to Lark for DNA sequencing using the pMT3 -AS primer (see table 2.12). 

The region of DNA that was amplified by PCR was sequenced completely to 

check for unwanted amplification errors. An example of the micleotide 

sequencing generated for this from sample I is shown in Figs. 5.3b and c. 

5.2.4 Protein expression andpurification 

Both the rKv2.1 A7 pMT3 and the rKv2.1 A7-,,,, c pMT3 clones were 

expressed in COS-7 cells, as described in section 2.4.4. Extracted protein was 

purified on an IN column, and samples were run on 10% SDS-PAGE gels (for 

different times) to confirm purity. Figures 5.4a and 5.5a show Coomassie-stained 

gels for rKv2.1 A7 pMT3 and rKv2.1 A7,,, c pMT3 protein samples respectively. 
Lane four in both figures shows the purified protein at the correct size. 



152 

a 

6. (NM)bp 
5,000bp 

C 
rK, ý2.1 pNIT3 

b 

'50bp 

I ""I 

2 2 

4 Required seq. 

44-1-4.14 
ýa'mj)le 

2 rKN-2.1 A7_.. 
ýHdjjý. JAý, Sample 3C H414 fý 

4 Sample 4 Seq. data 

Fig. 5.3 Digestion and sequencing for the rKv2.1 . 
\7-.. (. pMT3 clone 

a, Restriction digest of rKvIl \7 in pMT3. DNA was digested with Apal 
and Noll, and the relevant size fragment gel extracted (5919p for rKv2.1 A7 
in pMT3). Lane I contains I kb marker, lane 2 contains the digested gel 
extracted rKv2.1 \7 pMT3 vector. 
b, Restriction digest of 'no C' PCR product. DNA was digested with Apal 
and Noil, and the relevant sized fragment gel extracted (532bp). Lane I 
contains I kb marker, lane 2 contains the digested gel extracted PCR product. 
c, Sequence electrophoretogram of the rKvI I \7-noC in pMT3 clone. The 
red line denotes the end of rK,,,, 2. I S6 domain and the join to pMT3 vector. 
d, DNA sequences obtained by sequencing were aligned against the rKv2.1 
wild type DNA sequence, using ClustalW and Boxshade on-line software. 
The red line denotes the end of the S6 domain from rKv2. I and the join to 
pNIT3 vector. 

5919bp bp 
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a 

150kDa 0, 
IOOkDa 10 97kDa 

Ti 
lit: > 

Fig. 5.4 SDS-PAGE gel and Western blot for rKv2.1 A7 pMT3. 
a, Protein was run on a 10% SDS-denaturing gel at 20OV. 
The gel was stained overnig , 

ht in Coomassle blue, and de-stained for 24 
hours. Lane I contains a broad range protein marker, lane 2 contains the 
insoluble fraction from transfected COS-7 cells, lane 3) contains the 
soluble fraction from transfected COS-7 cells and lane 4 contains the 
purified protein. A band can be seen at the expected size of 97kDa. 
b, A Western blot was performed using ID4 antibody to check the 
presence of the ID4 tag subsequently used for purification, and to check 
that the tagged protein was purified with the column. Detection was 
performed using horseradish peroxidase conjugated secondary antibody. 
A band at the correct size could be seen after 2 hours. Lane I shows un- 
purified protein, and lane 2 shows protein of the correct size after 
purification. 
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Fig. 5.5 SDS-PAGE gel and Western blot for rKv2.1 \7-.. (. pMT3. 
a, Protein was run on a lVo SDS-denaturing gel for '35 minutes at 20OV. 
The gel was stained overnight in Coomassie blue, and de-stained for 24 
hours. Lane I contains a colour protein marker, lane 2 contains the insoluble 
fraction from transfected COS-7 cells, lane ') contains the soluble fraction 
from transfected COS-7 cells and lane 4 contains the purified protein. 
A band can be seen at the expected size of 49kDa. 
b, A \Nestem blot was performed using ID4 antibody to check the presence 
of the ID4 tag subsequently used for purification, and to check that the 
tagged protein was purified with the column. Detection was performed using 
horseradish peroxidase conjugated secondary antibody. A band at the correct 
size could be seen after 2 hours. Lane I shows un-purified protein, and lane 
2 shows protein of the correct size after pufification. 
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A Western blot using an anti-ID4 antibody was then completed to 

confirm the presence of the ID4 tag. Figures 5.4b and 5.5b show the presence of 
the correctly sized band for both protein samples. 

An aliquot was removed from all protein samples for an agitoxin assay, 

and the remainder of the samples sent to E. Orlova (Birkbeck College, London) 

for single-particle electron microscopy. 

ff25j 5.2.5 ,- agitoxin binding assay 

An agitoxin assay was carried out to determine expression levels of 

correctly folded protein in whole cell and purified samples. The binding assay 

was completed for rKv2.1 A7 and rKv2.1 A7-no C proteins, both for whole cell 

and purified protein samples. As described in Sokolova et al (2003), a 1: 1 

binding of toxin to a tetramer protein is assumed. 
To assess the non-specific binding, triplicate protein samples were first 

incubated with cold agitoxin to saturate all their toxin binding sites. Hot agitoxin 

was then added to the mixture and incubated for a further 30 minutes before 

unbound toxin was removed using a micron filter device. Filters containing the 

retained Kv2. I -toxin complexes were then counted in a scintillation counter. The 

average of all three samples is shown in tables 5.1-5.4 as the cold sample. 

Triplicate protein samples were then incubated with hot agitoxin for 30 

minutes before unbound toxin was removed using micron filter devices. These 

samples were then counted (named in tables 5.1-5.4 as the hot samples), and the 

average of the cold samples subtracted to give net counts per minute readings 
(named the net activity in tables 5.1-5.4). 

The net activity values were then used to calculate the amount of active 
(i. e. toxin binding) protein per sample using the specific activity of the hot toxin. 
The specific activity was determined by measuring the counts for a specific 

number of moles of radioactive material, and I count per minute was found to 

equate to 43.4 attomoles of toxin. Tables 5.1 to 5.4 show the results obtained. 
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Table 5.1 Agitoxin assay - rKv2.1 A7 pMT3 whole cell results. 

Sample Hot sample Cold sample Net activity pmols toxin- 

(cpm) (Cpm) (Cpm) binding 

average of 3 activity per 

samples sample 
1 32,133 10,935 21,198 0.92 

2 32,624 21,689 0.94 

3 40,751 29,816 1.294 

Table 5.2 Agitoxin assay - rKv2.1 A7 pMT3 purified protein results. 

Sample Hot sample Cold sample Net activity pmols toxin- 

(cpm) (cpm) (cpm) binding 

average of 3 activity per 

samples sample 

1 18,039 11,357 6,682 0.29 

2 20,574 9,217 0.40 

3 19,191 7,834 0.34 

Table 5.3 Agitoxin assay - rKv2.1 A7.,,. C pMT3 whole cell results. 

Sample Hot sample Cold sample Net activity pmols toxin- 

(cpm) (Cpm) (Cpm) binding 

average of 3 activity per 

samples sample 

1 24,406 8,968 15,438 0.67 

2 23,714 14,746 0.64 

3 24,175 15,207 0.66 
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Table 5.4 Agitoxin assay - rKv2.1 A7-n. c pMT3 purified protein results. 

Sample Hot sample Cold sample Net activity pmols toxin- 

(cpm) (cpm) (cpm) binding 

average of 3 activity per 

samples sample 

1 14,363 9,063 5,300 0.23 

2 15,284 6,221 0.27 

3 14,132 5,069 0.22 

Table 5.5 Agitoxin assay - total protein in sample, measured in pmoles/plate 

assayed. 

Whole cell sample: Purified protein 
Mean pmols toxin- sample: 
binding activity per Mean pmols toxin- 

sample binding activity per 

sample 

rKv2.1 pMT3 1.05±0.12 0.34±0.03 

rKv2.1 pMT3-no C 0.6610.008 0.240.015 

Table 5.5 shows the mean values for the toxin-binding activity, assayed 
for whole cell extracts (i. e. before purification) and after purification for the 

rKv2.1 1: 37 and rKv2.1 A7-.,. c channels. The expression levels were 

approximately 50% higher for the wild type rKv2.1 A7 pMT3. This is in 

accordance with similar experiments showing a reduced protein expression with 

the C- terminal domain deleted in Shaker (Sokolova et al, 2003). Crucially 

however, the assay results show that both the rKv2.1 A7 and the rKv2.1 A7.,,,, c 

protein were successfully expressed and purified using the methods described, 

and the correctly folded proteins were made (as indicated by their ability to 

specifically bind the radiolabelled agitoxin). 
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5.2.6 Preliminary EM results 

Fig. 5.6 shows preliminary single particle images for the full length rat 

Kv2.1 protein. To generate single particle structures, many more such images 

need to be obtained and the results analysed. Further additional experiments are 
being carried out at the moment to this end, and it is hoped that a 3D structure 

will soon be obtained using 3D reconstruction of this protein. 
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5.3 Discussion 

Both the wild type rKv2.1 and the C- terminal deleted mutant were 

expressed and purified. The presence of the ID4 tag was confirmed by Western 

blots. An agitoxin assay was then performed which confirmed that a tetramer 

protein was expressed and purified for both the wild type rKv2.1 A7 and rKv2.1 

A7.,,,, C. In summary, both channels were found to be expressed and correctly 
folded under these conditions, and deletion of the C- terminus did not prevent 
folding of the channel. 

Protein samples were then sent to E. Orlova for single particle EM 

studies. As can be seen in Figure 5.6, preliminary images have been obtained. 
Further images are being taken that should allow single particle imaging in order 

to obtain a 3D structure. Hopefully it will be possible to visualise the channel 

protein with and without the C- terminal domain, so as to determine the position 

of the C- terminus. 

Previous work (Sokolova et al, 2001) on the potassium Shaker channel 

using single particle EM studies has shown that the four-fold symmetric structure 

shows a large (membrane spanning) and small (intracellular) domain linked by 

2nm long connectors, consistent with the 'hanging gondola' model for the TI 

domain proposed by Kobertz et al (2000). However, X-ray studies of the TI 

domain show that the volume of the TI domain does not account for the total 

volume of the intracellular domain (Sokolova et al, 2001) and thus suggests the 

presence of the C- terminal region surrounding the TI domain. 

More recently, a single particle EM structure has been obtained by 

Sokolova et al (2003) for the Shaker potassium channel with and without the C- 

terminus bound to the rat KvP2 subunit. The location of the C- terminus was 
determined, which showed that the C- terminus appears to surround the TI 

domain. Regions of interaction consist of the N- terminal part from the TI 

domain to the start of the SI transmembrane segment, and the region of the C- 

terminus from the end of the S6 transmembrane segment to the C- terminus 
itself. 

Interestingly, for Shaker, four negatively charged residues were located 

within the C-terminal linker at positions, E488, N490, E492 and E493. It is 
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Fig. 5.6 Image of negatively stained full-length rKv2.1 \7 
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thought that these negative residues in the C-terminal linker complement other 

negative residues in the TI linker, promoting the passage of positively charged 

ions (Sokolova et al, 2003). In rat Kv2.1 only two negatively charged residues 

are found at positions equivalent to Shaker (residues 488 and 491). Whether the 

two negative charges in this region of the C-terminal domain of rat Kv2.1 may 

relate to other residues in the Kv2.1 TI linker in a similar way to that 

hypothesised for Shaker is as yet unclear. 

The Shaker channel has previously been shown to be heavily 

glycosylated, producing an increase in the protein size from 80 to I OOkDa upon 

glycosylation (Sokolova et al, 2003). No such shift was found in Kv2.1 in this 

study, with only one band found upon purification, indicating that Kv2.1 is not 

glycosylated. Although an (N)-linked glycosylation site is found within the SI- 

S2 linker in Kv2.1 this site was previously not found to be glycosylated when the 

rat Kv2.1 channel was expressed in COS-1 cells (Shi et al, 1999). 

On the basis of structural studies of other Kv channels described above, 

and the electrophysiological and interaction data described in chapters 3 and 4, 

the C- terminal region of rat Kv2.1 can be considered as three domains. These 

consist of the S6 linker region of approximately 50 residues, a Kv2 domain of 

approximately 250 residues, and the CTA domain of approximately I 10 residues 

(shown schematically in Fig. 3.24 and Ju et al (2003)). The CTA domain is 

predicted to possess several P-strands, as well as hydrophobic regions. It is 

interesting that this region shows a partial homology across the Kv2 potassium 

family. The results described in chapter 4 of this thesis show that the C- terminal 

domain interacts with the TI domain (N- terminal), which is consistent with 

recent studies of Shaker showing that the C- terminal domain surrounds the TI 

domain of this channel (Sokolova et al, 2003). It is hoped that in the coming 

months an EM structure for the Kv2.1 channels described in this chapter will be 

obtained, so that the structures of the full length and the C- terminal deleted 

channels can be compared in order to unequivocally reveal the location of the C- 

terminal domain in Kv2.1 in relation to the TI domain. 
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CHAPTER 6 

ANALYSIS OF S4 SEGMENT 

MOVEMENT IN VOLTAGE 

ACTIVATED CALCIUM CHANNELS 

USING PCMBS 
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, 
6.1 Introduction 

An outward movement of the S4 region upon depolarisation is thought to 
lead to opening of voltage dependent ion channels. Although much work has 

been carried out studying movement of the S4 region upon depolarisation of 

sodium and potassium channels, no such work has been reported for calcium 

channels. 
The objective of the work described in this chapter was to study the 

putative voltage-dependent movement of the S4 region of a calcium channel. For 

this, the accessibility of cysteine residues was investigated using the cysteine- 
binding reagent parachloromercuribenzenesulfonate (PCMBS) on wild type 

Cav3.1, Ca, 1.2 and mutant channels. Using site-directed mutagenesis, cysteine 

residues were introduced into the domain I S4 of the calcium channel chimera 
CGGG at positions V263, A265, L266, A268, F269, and V27 1. cRNAs for the 

mutant channels were injected into Xenopus Idevis oocytes and currents recorded 
4-5 days later using two-electrode voltage clamp technique. PCMBS was 

perfused onto the expressed channels, and the effects on the current amplitude 

were examined. 
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6.2 Results 

6 2.1 Effects ofPCMBS on wild type calcium channel currents 

PCMBS is a highly hydrophilic membrane impermeable reagent, that has 

previously been shown to react with cysteines in an aqueous environment only 
(Yan et al, 1993). Thus if PCMBS were to react with a channel under 
depolarising conditions but not at rest, this would suggest that cysteines within 
the channel moved out of the membrane bilayer as a result of depolarisation, and 

remained inaccessible at rest. 
Firstly it was necessary to test wild type channels, Ca, 3.1 and Caj. 2 

(shown schematically in Fig. 6.1), to see if they reacted with PCMBS without 

engineered cysteines. The corresponding cRNA transcripts were expressed in 

Xenopus oocytes. The oocytes were repetitively depolarised by stepping to - 
3 OmV for Ca, 3.1, and +I OmV for Ca, 1.2, from a holding potential of -80mV. 
While repetitively depolarising, 100jiM PCMBS was applied. IN curves were 

constructed before and after the application of PCMBS. Barium was used as a 

charge carrier in all experiments described in this chapter. 

Extracellular cysteines which could react with PCMBS are already 

present in Ca, 3.1; indeed there are 14 cysteines located on the extracellular 
loops. The results in Figs. 6.2 and 6.3 show that PCMBS did react with Ca, 3.1; 

the current was markedly reduced following application of PCMBS. The wild 

type Ca, 3.1 channel was therefore not used in further experiments. In contrast, 

PCMBS did not appear to react with wild type Caj. 2, as the current was not 

significantly affected by the addition of this reagent (Figs. 6.2 and 6.3), which 

suggests that this channel could be used in cysteine mutagenesis studies of the S4 

domain with PCMBS. Further work with a chimeric channel was then done as 

the investigation was to study Ca, 3.1, which was not possible (see above). It is 

worth noting that there is only one non-conserved cysteine residue found within 

the extracellular loops in Ca, 1.2, compared with seven in Ca, 3.1; the rest are 

conserved or partially conserved within the calcium channel family. 
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Ca,,. 3.1 (GGGG) 

Ca,. 1.2 (CCCC) 

CGGG 

GCGG 

Fig. 6.1 Schematic structure of wild type Ca,. 3.1, Ca,. 1.2 and 
chimeras. 
The four transmembrane domains (I-IV) are represented by four 
letter codes. GGGG refers to wild type Ca,. 3.1, and CCCC refers to 
wild type Ca,. 1.2. Two chimeras CGGG and GCGG had domains I 
and 11 swapped as shown. 

1 11 111 IV 
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Fig. 6.2 Effect of PCMBS, on wild type Ca, 3.1 and Ca, 1.2. 
a, The mean normalised IN curves for wild type Cav3.1, before 
1.17±0.04 [A mn= 4) and after PCMBS (e, n= 4), and wild type Ca, 1.2, 
before (-1.05±0.06 ýA AL n= 5) and after PCMBS (V, n= 5) are shown. 
Curves were normalised to the values at -30mV for Ca, 3.1 and +lOmV for 
Ca, 1.2 before PCMBS. 
b, Sample current traces are shown for two cells corresponding to near the 
maxima of the IN curves (-30mV for Cav3.1 and +lOmV for Ca, 1.2). A 
holding potential of -80mV was used in all experiments. 
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Fig. 6.3 Time course of the effect of PCMBS on wild type Ca%*3.1 

and Ca.. 1.2. 
Effect of application of PCMBS on wild type Ca,. 3.1, (a, n= 4) and 
Caj. 2, (o, n= 4) is shown. PCMBS was applied over the time period 
indicated by the solid line. Cells were repeatedly depolarised stepping 
to -30mV for Ca. 

-3.1, and +I OmV for Caj. 2 from a holding potential 
of -8OmV (see Methods). Current amplitudes were normalised to -I 
with respect to the value measured over the first 4 minutes of the 
recording, -1.15±0.04 ýA for Ca,, 3.1 and -1.09±0.03 pA for Ca,. 1.2. 
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The results shown above would suggest that the conservation of cysteines could 
be related to whether a channel reacts with PCMBS. 

To check that Ca, 1.2 wild type channel was expressing correctly, I [tM 

nifedipine (an L-type specific blocker) was applied after the application of 
PCMBS. While pulsing, 100[tM PCMBS was applied for 7.5 minutes, and 

nifedipine then applied (Fig. 6.4). IN curves were constructed before and after 
the application of PCMBS as previously described. When PCMBS was applied 
there was no reduction in current, but when nifedipine was applied the current 

was reduced significantly (Fig 6.4). This confirmed that the channel was 

expressing as expected and so blocked by nifedipine, but does not react with 
PCMBS. 

62.2 Effects ofPCMBS on calcium channel chimeras CGGG and 
GCGG 

Study of the protein sequences of the two wild type channels Ca., 3.1 

'GGGG', and Ca, 1.2 'CCCC', shows that Cav3.1 has six more non-conserved 

cysteines than Ca, 1.2; three are present in the extracellular loops of domain 1, 

and one cysteine is present in domain IL Some of these residues may account for 

the reactivity of Ca, 3.1, but not Ca, 1.2, with PCMBS. As this study aimed to 

analyze Ca, 3.1, two chimeric channels that had either domains I or 11 substituted 
by Ca, 1.2, CGGG and GCGG were investigated next. 

The chimeric channel CGGG, made by J. Li (shown schematically in Fig. 

6.1) was investigated first. Upon the application of PCMB S, no decrease in 

current occurred (Figs. 6.5 and 6.6). As can also be seen from the current traces, 

CGGG was high voltage activating like Cavl. 2- The results show that this clone 
is suitable for further investigation by creating cysteine mutants in the S4 of 
domain I, as the chimera CGGG is not affected by PCMBS. 

In contrast, chimera GCGG, (also made by J. Li, shown schematically in 
Fig. 6.1) did show a significant decrease in current when PCMB S was applied, 
(Figs. 6.6 and 6.7). This result is probably due to the three non-conserved 

cysteine residues still present in domain I of this chimera, which may have 

reacted with PCMBS. As can also be seen from the current traces, GCGG was 
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'non, 

"0 

-0. 

Time (min) 

Fig. 6.4 Effect of PCMBS and nifedipine on wild type Ca, 1.2. 
a, The mean normalised IN curve for wild type Ca, 1.2, before 
(1.01-+0.04 VA 0, n=3) and after (0, n=3) the addition of PCMBS 
and nifedipine. Curves were normalised to +lOmV as in Fig. 6.2. 
b, Oocytes were perfused with 1001M PCN1BS (shown by the red bar), 
and then perfused with nifedipine (I [M) as indicated by the black bar. 
Cells were repeatedly depolarised to +I OmV. Current amplitudes were 
normalised to -1 with respect to the value measured over the first 4 
minutes of the recording (1.05±0.05 [A). 

10 Is 20 
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CGGG before 
PCMBS 

CGGG after 
PCMBS 

Fig. 6.5 Effect of PCMBS, on chimera CGGG. 
a, The mean normalised IN curves for chimera CGGG, before (n, n 
6) and after PCN11BS (e, n= 6). Curves were normalised to the current 
at +lOmV before PCMBS (-0.76±0.01 [A). 
b, Sample current traces are shown for one cell corresponding to near 
the maximum of the IN curve (+IOmV). A holding potential of - 
80mV was used in all experiments. 
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Time (min) 

Fig. 6.6 Time course of the effect of PCMBS on chimeras CGGG 
and GCGG. 
The figure shows the effect of application of PCMBS on oocytes 
injected with cRNA from either CGGG, (m, it = 6) or GCGG, (e, it = 5). 
Oocytes were perfused with 100ýiNl PCNIBS over the time indicated by 
the bar. Cells were repeatedly depolarised by stepping to -I OmV for 
GCGG, and +I OmV for CGGG from a holding potential of -80mV (see 
Methods). Current amplitudes were normalised to -I with respect to the 
value measured over the first 4 minutes of the recording (-0.4±0.04 ýIA 
for GCGG and -0.81±0.03 pA for CGGG). 
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GCGG before 
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GCGG after 
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Fig. 6.7 Effect of PCMBS on chimera GCGG. 

a, The mean normalised IN curves for chimera GCGG, before, (m, n= 5) 
and after PCMBS (9, n= 5). Curves were normalised to -10mV before 
PCMBS (-0.4: LO. 01 gA). The values from -20mV to +30mV inclusive 
were found to be significantly different (p<0.05). 
b, Sample current traces are shown for one cell corresponding to near the 
maximum of the IN curve (-I OmV). A holding potential of -80mV was 
used in all experiments. 
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low voltage activating like Ca, 3.1. The results for this chimera show that it is not 

particularly suitable for cysteine mutagenesis, and therefore it was not used again 

in this analysis. 
As chimera CGGG did not react with PCMBS, it was therefore decided to 

use this clone for this cysteine mutagenesis study. 

62.3 Generation ofdomain I CGGG cysteine mutants V263C, 

A265C, L266C, A268C, F269C, and V271C 

In order to characterise the extent of exposure of the S4 segment upon 
depolarisation, six neutral amino acid residues (V263, A265, L266, A268, F269, 

and V271, Caj. 2 numbering) in the S4 region of domain I in chimera CGGG 

were mutated to cysteine. Positively charged amino acids in the S4 of the CGGG 

chimera were not changed, as this might be expected to perturb the structure. 

Mutation of these conserved residues was carried out using the QuikChangeTm 

site-directed mutagenesis method (as described in section 2.1.5). A fragment of 

the clone containing domain I in pUC 18 was used. Site directed mutagenesis was 

performed only on small fragments of the coding sequence, rather than the entire 

length, to reduce the possibility of accidentally introducing other, unwanted, 

mutations. Thermal cycling and Dpnl digestion were carried out as described in 

section 2.1.5. After digestion, products were transformed (as described in section 

2.1.1) into E. coli and DNA prepared from colonies grown under ampicillin 

selection by mini-preps (as described in section 2.1.3). Fig. 6.8 shows the results 

of the automated sequencing indicating that all of the mutants were correctly 

constructed. 
Sections of the constructs containing mutations introduced into the 

CGGG clone in pUC 18 were then sub-cloned into wild type Ca, 3.1 (as described 

in section 2.5.1) using the restriction enzymes HindIII and XbaI. Fig. 6.9 shows a 

sample of digested products. In all site-directed mutants made, the smaller 

domain I fragment (1380bp) was ligated into the larger vector fragment 

(8609bp). Fig. 6.10 shows a sample of one of the automated sequencing 

electrophoretograrns, indicating that this construct had the correct sequence 

around the initiation codon. 
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780 790 800 810 820 830 

GG G GC TGGTTCGAC GTG G GC GCTGAGGG CT TT CC GC GT GC T GC GC CC C CT GC GGCTG 

vALAFv 

a 

Chimera CGGG 

400 410 420 430 440 450 
GGGGCTGGTTC GA CT GC AGGCGCTG. GGGCTTT, CC GC GT GCT GC GC CC CC TGCGGCTG 

c 

b 

V263C 

650 660 670 680 690 700 
GGGGCTGGTTCG. C GT G GT GCCTGGGGC TT T CC GC GT GCT GN GC CC CC TGCGGCYG 

c 

C 

A265C 

660 670 680 690 700 710 
GG GGC TG GATT C GA C GT GA AG GC GT GC AGG GC T TT CC GC GT GC T GC GC C CC CTGC GGC T Gi 

c 

d 

L266C 
Fig. 6.8. Electrophoretograms of cysteine mutants. 
The figure shows the electrophoretograrns of part of the nucleotide 
sequence for CGGG before mutagenesis (a), and for V263C, A265C, and 
L266C (b-d). Mutated codons are shown underlined in red. 
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660 670 680 690 700 710 

GGG GC TGG AT TCG. CGTGA AG GC GC T GAG GT GTT TCC GC GT GC T GC GC CCCCT GC G GC TG 

e 

A268C 

660 00 680 690 700 710 

GGGGCTGGATTCGACGTGAAGGCGCTGAGGGCTTGCCGCGTGCTGCGCCCCCTGC6GCTG 

f 

F269C 

660 670 680 690 700 710 

GG GG CTG GATT C GA C GT GA kG GC GC T GAG G GC TTT CC GC T GC CT GC GC CC CC TGCG GC TG 

c 

g 

V271C 

Fig. 6.8 (continued) Elect rophoretograms of cysteine mutants. 
The figure shows the electrophoretograrns of part of the nucleotide sequence for 
A268C, F269C, and V271C (e-g). Mutated codons are shown underlined in red. 
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Fig. 6.9 Digestion of Ca,.. 3.1, and domain I (pUC18) DNA. 
The fragments were produced by digestion with the restriction enzymes 
Hin(A II and Xhal. 
a, Restriction digest of Ca,. 3.1. DNA was digested with HimAll and 
Xhal, and the relevant size fragment gel extracted. Lane I contains I Kb 
marker, lane 2 contains digested Ca, 11 (9,989bp, one cut with Xhal), 
lane 3 contains digested Ca,. 3.1 cut with HincAll and Xhal. The 8,609bp, 
fragment was used for subsequent ligation. 
b, Restriction digest of cysteme mutantV263C in pUC 18. DNA was 
digested with Hint/111 and A-hat, and the relevant size fragment gel 
extracted. Lane I contains I Kb marker, lane 2 contains digested 
cysteine mutant (4066bp, one cut with Abal), lane 3 contains digested 
cysteine mutant cut with HincAll and Xbal. The 1,380bp fragment was 
used for subsequent ligation 

. 

12 

1 
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CGGG mutant V263C 
so 90 100 110 120 

Fig. 6.10 An example electrophoretogram showing part of the 
nucleotide sequence following the sub-cloning of domain I into 
Ca,. 3.1. 
Part of a sample sequence of sub-cloned CGGG cysteine mutant 
V263C. Restriction site used (Xbal) is indicated by the black line, 

and the start codon is indicated by the red line. 

CC CC GGGG AT C. ý TCT, G ýG CC GC CP%C CA TGG AT GAGGAAGAGG AT G 
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6.2.4 Characterisation ofS4 cysteine mutant currents 

In order to investigate accessibility of the engineered cysteine residues to 

PCMBS (shown schematically in Fig. 6.11), cRNA was transcribed in vitro and 

injected into Xenopus oocytes for whole cell recording of calcium channel 

currents using the two-electrode voltage clamp technique. PCMBS (I OOPM) was 

applied during repetitive stimulation to +1 OmV from a holding potential of - 
80mV. 

The normalised IN curves before PCMBS had been applied were similar 

in shape for CGGG and all six cysteine mutants (Fig. 6.12a). The inset in Fig. 

6.12a shows representative current traces for V263C and F269C. The current 

traces were similar in shape before PCMBS was applied and after, whether 

PCMBS reduced the size of the current (V263C) or not (17269C). The results 

shown in Fig. 6.12b, and (more clearly) in Fig. 6.13 a, show that the currents 

expressed by mutant clones F269C and V271 C were unaffected by the addition 

of PCMBS during recording. In contrast, recordings from V263C, A265C, 

L266C and A268C (Figs. 6.12b and 6.13a) show that all these mutants displayed 

currents that were rapidly inhibited by PCMBS, and were significantly different 

from currents before the application of PCMBS (student's t- test, p<0.05). This 

suggests that under these experimental conditions the introduced cysteines were 

exposed to the extracellular environment. The lack of effect of PCMBS on the 

F269C and V271C clones suggests that these residues are buried in the tetrameric 

structure of the channel, and that they remain inaccessible to PCMBS during 

channel activation. Thus, the accessibility of the S4 region to PCMBS occurs up 
to and including residue 268, with 269 and 271 remaining buried in the 

membrane. Interestingly, the rate of onset of the effect of PCMBS was faster for 

A265C than for V263C, L266C, and A268C (Fig. 6.13b). This suggests that the 

rate of inhibition did not vary systematically with the depth of the residue in the 

membrane. 
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N 
To domain 11 

Fig. 6.11 Schematic structure of domain I CGGG. 
Proposed membrane topology of CGGG in domain 1, 
showing positions of the cysteine substitutions. The single amino 
acid code is used, and the hydrophobic segments SI -S6 are shown 
as cylinders. Amino acids that were changed to cysteine residues 
are indicated with grey shading. Red colour indicates amino acids from 
Ca, 1.2, and blue indicates amino acids from Ca,. 3.1. 
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±. 51JAL_ .1 'NIBS 
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1) 

Fig. 6.12 Normalised current-voltage curves showing the effect of 
PCMBS on calcium channel chimera CGGG and cysteine mutants. 
a, The figure shows the normalised IN curves for the chimera CGGG (0, n 
6), and cysteine mutants V263C (9, n= 3), A265C (A, n= 4), L266C, (V, n 
= 3), A268C (+, n= 3), F269C (+, n= 4), and V271C (X, n= 3) before the 
application of PCMBS. Current amplitudes were normalised with respect to 
the value measured at +lOmV: CGGG, -0.76: LO. 01 g& V263, -0.94±0.05 gA, 
A265C, -0.79±0.01 A L266C, -0.81±0.06 A A268C, -0.91±0.03 gA, 
F269C, -0.78±0.05 VA, and V271C, -0.72±0.04 gA. 
The inset shows representative current traces for V263C and F269C before 
and after PCMBS. There were no significant differences between the mutants 
at any data points (student's West, p<0.05). 
b, The figure shows the mean IN curves for the cysteine mutants V263C (N, 
n= 3), A265C (9, n= 4), L266C (A, n= 3), A268C (V, n= 3), F269C (*, n 
= 4), and V27 IC(+, n= 3) after the application of PCNIIB S. Currents for 
mutants V263C, A265C, L266C, and A268C were found to be significantly 
different from the currents before the application of PCMBS (student's West, 
P<0.05). 

V263C I 
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Fig. 6.13 Effect of PCMBS on calcium channel cysteine mutants. 
a, Effect of application of PCMBS on calcium currents invoked by repetitive 
depolarisation of Xenopus oocytes expressing mutants V263C (n= 3), 
A265C (n = 4), L266C (n= 3), A268C (n= 3), F269C (n= 4), 

and V27 IC(n= 3). Cells were repeatedly depolarised to +I OmV 
from a holding potential of -80mV. Current amplitudes were normalised 
with respect to the value measured over the first 4 minutes of the recording: 
V263C, -0.97±0.05 pA, A265C, -0.83±0.01 pA, L266C, -0.86±0.06 [tA, 
A268C, -0.95±0.03 pA, F269C, -0.81±0.06 pA, and V271C, -0.78±0.08 PA. 
b, Exponential time constant of the time course of inhibition by PCMBS of V263C, 
A265C, L266C and A268C. *, significant difference between A265C 
and the other mutants shown (student's t-test, p<0.05), 
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62.5 PCMBS inhibition of V263C mutant as afunction ofmembrane 

potential 

The effect of PCMBS as a function of membrane potential was 
investigated as follows. Oocytes expressing the V263C mutated channel were 
held at various holding potentials and treated with I OOpM PCMBS for 2 minutes 
in the absence of any depolarising pulses. Excess PCMBS was then removed by 

washing to prevent any reaction with cysteine residues accessible only upon 
further depolarisation. IN relationships were determined before and after the 

application of PCMBS at the indicated holding potentials. At a holding potential 

of -1 40mV, the degree of inhibition was very small, indicating that this residue is 

buried in the membrane at this hyperpolarizing potential. As the membrane 

potential was held at more depolarised potentials, an increase in the degree of 

inhibition was observed, with OmV showing the largest inhibition of current by 

PCMBS (Fig. 6.14). At this potential most of the channels would be expected to 

be in the open state. The results show, that the degree of inhibition by PCMBS 

depended upon the voltage at which it was applied. 

This data shows that the S4 segment of mutant V263C moves to the 

solvent accessible environment during depolarisation. Some inhibition was seen 

at -80mV which suggests that the S4 is at least partially accessible at this holding 

potential (prior to channel opening), although the residue is more accessible at 
less negative potentials. 

6 2.6 Observed PCMBS effect on V263C was reversible with DYT 

To investigate whether the inhibitory effect of PCMBS on V263C was 
due to specific covalent binding to a cysteine residue, the current during 

repetitive depolarisation to +lOmV was first inhibited by adding 10OPM 

PCMBS, followed by the application of I mM dithiothreitol (DTF), as described 
in section 2.6.5. As can be seen in Fig. 6.15, DTT reversed the inhibitory effect 
of PCMBS on mutant V263C. This is consistent with the proposed mechanism of 
inhibition by PCMBS, i. e. by covalently binding to the cysteine at position 263, a 
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Fig 6.14 Dependence of inhibition of CGGG V263C by PCMBS on 
holding potential. 
Normalised current/voltage (I/V) curves are shown for mutant V263C 
before (m) and after (e) application of PCMEBS (100pM). The reagent 
was applied in the absence of stimulation at the indicated holding 
potentials (see Methods) and then unreacted PCMBS removed by 
washing. Currents were normalised to the value at +10 mV before 
PCMBS (-l40mV, -1.04 0.09 pA, n=4; -1 10mV, -0.79 ± 0.08 pA, n 
= 3; -80mV, -0.74 ± 0.02 An=5; -40mV, -0.83 ± 0.05 gA, n=3; 
OmV, -1.10 ± 0.08 pA, n 3) and curves were fitted with the 
Boltzmann equation. 
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Fig. 6.15 Reversal of inhibition of V263C by PCMBS with 
dithiothreitol (DTT). 
a, Normalised IN curves are shown for mutant V263C before (n, n 
= 4) and after (9, n= 4) the application of both PCMBS and DTT. 
The current was normalised to the initial value (- 1.16±0.07 VA). 
b, Oocytes expressing the mutant V263C were held at -80mV and 
stepped to +10 mV repeatedly every 10 S. PCMEBS (100W) was 
applied for 6 mins, cells were then washed for 2 mins, and DTT 
(I mM) was applied as indicated. The mean current is shown for 4 
oocytes. Current was normalised with respect to the first 5 mins of 
recording. 

05 10 15 20 
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reaction that could be reversed by the reducing agent DTT. The nature of the 

proposed covalent reaction of PCMBS with a cysteine residue is shown in Fig. 

6.16. 
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Fig. 6.16 Schematic diagram showing the modification of 
the side chain of a cysteine residue by the sulphydryl 
reagent PCI%IBS- 
The membrane impermeable reagent PCMBS can oxidise the 
free sulphydryl (SH) group on the side chain of the cysteine to 
form a mixed disulphide and displace an HCI molecule. 
Diagram taken from C. Milligan, PhD thesis (2000). 
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6.3 Discussion 

In this chapter, the accessibility to PCMBS of cystcinc residues 

introduced within the S4 segment in domain I of a CGGG calcium chimera was 

studied. This reagent is known to specifically bind with cysteines in an external 

solvent-accessible environment. The reaction of a PCMBS molecule with a 

cysteine molecule is shown schematically in Fig. 6.16. 

PCMBS rapidly reduced calcium channel currents mediated by many of 

the cysteine mutants investigated in this chapter. The effect was shown to be 

reversible by the use of a reducing agent DTr, but not by washing, indicating 

specific covalent effects of the reagent on cysteines. The specific nature of this 

reaction is also indicated by the susceptibility of CGGG to PCMBS only after the 

introduction of additional cysteine residues. 
The results obtained using PCMBS in this study are as follows. Wild type 

Ca,, 3.1 and GCGG chimera did react with PCMBS when no additional cysteines 

were introduced. This was apparently due to non-conserved extracellular 

cysteines already being present. Indeed, in domain I of Ca, 3.1, three non- 

conserved cysteines are present in the extracellular loops, and one non-conserved 

cysteine is also present in domain II. In contrast, CGGG chimera (and wild type 

Caj. 2) did not react with PCMBS, suggesting that it is cysteines in domain I of 
Ca., 3.1 that react with PCMBS. The lack of susceptibility of CGGG chimera to 
PCMBS makes it suitable for cysteine accessibility studies with PCMBS. The 

chimera CGGG was high voltage activating like Caj. 2, and not low voltage 

activating like Ca, 3. L It might therefore be assumed that the results shown in 

this chapter for chimera CGGG could also apply to domain I of the wild type 
Caj. 2. 

Cysteine residues substituted into the domain I S4 of CGGG in place of 
V263, A265, L266 and A268 reacted when extracellular PCMBS was applied. In 

contrast, cysteines substituted in place of residues F269 and V271 did not confer 
susceptibility to PCMBS. This suggests that under depolarising conditions the S4 

segment of domain I in CGGG chimera becomes exposed to the extracellular 
environment up to and including residue A268, with residues 269 and 271 

remaining buried. 
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This is consistent with the findings of Yusaf et al (1996) who used a 

similar strategy to study the movement of S4 in the potassium Shaker channel 

with PCMBS as a probe. They determined that cysteine substitutions of L358, 

L361, V363, and L366, but not V367, S376, and G386, render the channel 

susceptible to extracellular PCMBS upon depolarisation, and so have established 

the extent of the S4 movement in the Shaker channel. Thus residue L366 in the 

Shaker channel represents the last residue of the S4 segment that is exposed, and 

sequence alignment of Shaker and CGGG sequences shows that A268 (in 

CGGG) and L366 (in Shaker) are equivalent (see Fig. 6.17). It can also be seen 

that the S4 segment is well conserved between the two channels. Taking the 

membrane boundary as in Gandhi et al (2002) (residue 36 1), this would 

correspond to an exposure of nine residues in the calcium channels. 

However, as it is thought that the S4 lies within a water-filled crevice in 

potassium channels (e. g. Gandhi et al 2002), movement could be less than this, 

perhaps just up to V263, but certainly involving at least six residues. By 

comparison with the Shaker potassium channel, residues K264, R267, R270 and 
R273 of this calcium channel are likely to contribute to gating charge 

measurements when the S4 moves in the calcium channel. 

263 
268 

JA 
IF 

c(log MYRA PLMVSGVPSMal 
V shaker LAI 
FMFJ 

SRHSKGI! M 

366 
361 

Fig. 6.17 Alignment of CGGG calcium chimera and Shaker 

potassium channel S4 domains. 

Overall, it can be seen that the movement of the S4 region in this calcium 

channel chimera is comparable with that found in potassium channels. Results 

that we have found for domain I S4 movement in this high-voltage activating 
chimera may apply also to wild type Caj. 2; clearly it would also be of interest to 
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test S4 movement of Ca., 1.2 directly and indeed to test S4 movement in domains 

II, III and IV. 

The accessibility to PCMBS of residue V263C was shown to depend 

upon membrane potential. Thus, whilst residue V263C remains buried in the 

membrane at very negative potentials, a depolarisation triggers its movement 

outwards to a position where it might react with PCMBS. The results clearly 

show an outward movement upon depolarisation to a degree less than that 

required for ionic flow. This data is consistent with measurements of gating 

currents of calcium channels, where gating currents occur at more negative 

potentials than for ionic currents (I OmV for Ca, 3.1, and 30-4OmV for Ca, 1.2). 

These results indicate that the voltage sensor moves at rather similar voltages 
independent of whether the calcium channel is low voltage activating or high 

voltage activating (Josephson, 1997, Neely et al, 1993, and Lacinova et al, 

2002). 

Two major conclusions can be made from this investigation. Firstly, in 

CGGG calcium channel chimera, depolarisation results in an outward movement 

of domain I S4 up to and including residue A268. Secondly, S4 movement has 

been shown to be voltage dependent, with movement shown at depolarised 

potentials. It is hoped that future studies will further enhance our understanding 

of these previously unreported movements of S4 segments within these calcium 

channels. 



190 

CHAPTER 7 

SUMMARY OF CONCLUSIONS 
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7.1 Summary of conclusions 

The main aims of this thesis were as follows: to identify key residues, or 

regions, responsible for the differing activation kinetics between rat and human 

Kv2.1 potassium channels, to determine how these residues or regions might 
interact, to determine an EM structure of rat Kv2.1, and to characterise 

movement of the calcium channel S4 region in response to changes in membrane 

potential. 

The ma or conclusions to be drawn from these studies are as follows; j 

Chapter 3. By point mutations and chimeras followed by 

electrophysiology experiments, it was found that residues in both 

the N- and C- termini of Kv2.1 potassium channels are important 

in determining activation kinetics. Ibis is consistent with 

structural studies that suggest that residues 67 and 75 in the N- 

terminus appear to be in close proximity to the CTA domain in the 
C- terminus (residues 740-853). 

Chapter 4. GST interaction studies, Biacore surface plasma 

resonance, and FRET showed that the N- and C- termini of rat 
Kv2.1 appear to interact physically with each other, suggesting an 
obvious mechanism by which they could jointly influence reaction 
kinetics. 

Chapter 5. The necessary constructs were made in preparation for 

EM studies to produce a 3D protein structure. Further electron 
microscopy and single particle analysis by our collaborators 
should resolve the structure and thus help further our 
understanding of ion channel properties at the molecular level. 

Chapter 6. By using site directed mutagenesis of a chimeric 

calcium channel to introduce cysteine residues, S4 channel 
movement in response to depoMsation was studied using 
PCMBS. The extent of this movement appears to be similar to that 
found for potassium channels. S4 movement in this calcium 
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channel was also found to first occur at voltages considerably 

more negative than those required for ionic flow; again a similar 

property to that reported previously for potassium channels. 
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