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We don’t know whether there is light at the end of the tunnel, but we are 

pretty convinced that there is a tunnel. 

-Unknown 
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Abstract 

Prostate cancer is the most frequently diagnosed malignant disorder in men 

and despite intensive research there is little effective therapy against tumour 

recurrence and metastatic disease. Recent findings direct the origins of 

prostate cancer to cancer stem cells (CSCs). The CSC model proposes that 

tumours are hierarchically organized and sustained by CSCs that act as an 

undifferentiated reservoir within the tumour. Similar to their normal 

counterparts, CSCs are thought to be highly protected against DNA damage, 

which might play a crucial role in therapy failure and tumour recurrence. 

Our findings indicate that CD133+/α2β1integrinhigh stem cells (SCs) from 

malignant and benign prostate tissues are more effectively protected against 

DNA damage introduced by etoposide than CD133-/α2β1integrinhigh transit 

amplifying (TAs) and CD133-/α2β1integrinlow committed basal cells (CBs). 

Furthermore, the colony forming efficiency in prostate SCs was less affected 

by the drug. The assessment of ABC-transporters revealed that these are 

unlikely to be mediators of the enhanced resistance in SCs. However, 

according to a cell cycle analysis a higher proportion of SCs was quiescent 

when compared to TA or CB populations. Hence, cellular dormancy might be 

one factor contributing to therapy survival. Further research is required to 

determine the role of CSCs in treatment resistance. Future therapies that 

target specifically prostate CSCs might be a key to prevent tumour relapse. 
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1. INTRODUCTION 

1.1 The prostate  

The prostate is a walnut-sized gland of the mammalian reproductive system 

that produces ~30% of the seminal fluid [1]. The function of this secretion is 

to provide nutrients and anticoagulants for the spermatozoa, which are 

mixed in the urethra. According to McNeal’s classification, the prostate 

consists of four zones (Figure 1-1) [2]. The peripheral zone constitutes 

more than 70% of the prostate and surrounds the urethra [2, 3]. The 

majority of prostate carcinomas arise from here [2]. The second largest zone 

is the central zone, which surrounds the ejaculatory ducts [2, 3]. The 

transitional zone makes up 5% of the prostate [2, 3]. It is the zone where 

benign prostatic hyperplasia (BPH) and approximately 25% of prostate 

carcinomas occur [2, 3]. The anterior zone contains mainly fibrous and 

muscular tissue and has no secretory function [2]. The normal prostate 

epithelium consists of three major cell types: luminal cells, basal cells and 

neuroendocrine cells (NEs) (Figure 1-2) [3, 4]. The predominant cell type are 

the luminal cells [4]. They are terminally differentiated and produce prostate 

specific antigen (PSA), a serine-protease that prevents the coagulation of 

seminal fluid. Furthermore, they secrete prostatic acid phosphatase (PAP) 

and beta microseminoprotein [3, 5]. As their growth and survival depends on 

androgens e.g. testosterone, they express the androgen receptor (AR) [6, 7].  

The population of luminal cells has a high apoptotic rate and hence a short 

life time leading to a fast turn-over [3, 8]. 

The basal cells of the prostate epithelium are less differentiated and do not 

have secretory activity [4]. They are androgen-independent and express 

only low levels of AR [9, 10]. The basal epithelium is the most proliferative 

compartment and is made up in a hierarchical order (Figure 1-2) [4]. There 
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is a rare subset of stem cells (SCs) that ensures the regeneration of the 

prostate tissue [11, 12]. They are located within a supporting environment, 

the so-called “stem cell niche”, which provides signals that are essential for 

their survival. Furthermore, in the niche the SCs are protected from signals 

that would result in their differentiation and apoptosis, that would otherwise 

result in an exhaustion of the SC pool [3, 13, 14].  

To fuel the tissue with new cells, SCs give rise to basal, luminal and NEs, a 

process which is mediated by alternative differentiation pathways [3, 15]. 

During differentiation, the cells migrate through the basal layer to form 

terminally differentiated cells [3, 16]. The SCs give rise to transit amplifying 

cells (TAs) and these proceed to differentiate upon stimulation with 

androgens, stromal factors and signals from the extracellular matrix into 

committed basal cells (CBs), which develop into fully differentiated luminal 

cells [17-19]. The prostate epithelium is illustrated in Figure 1-2. 

The NEs reside in the epithelium of the acini and ducts. They are terminally 

differentiated and androgen-independent [20]. NEs secrete a variety of 

hormones, such as serotonin, bombensin, neurotensin and calcitonin, which 

regulate the growth of the prostate [3, 21]. Underneath the epithelium there 

is the stromal compartment, which comprises different structures such as 

smooth muscle cells, fibroblasts, adipocytes, collagen and elastin [3]. The 

stromal compartment is critical for the maintenance of the prostate gland by 

the secretion of growth factors [22]. 
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Figure 1-1 Zones of the prostate. Illustration of the prostate showing the central, 

anterior (fibromuscular), transitional and peripheral zone. Taken from [23].   [3].  
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Figure 1-2 Anatomy of the prostate gland. The prostate gland consists of many 

fluid-filled ducts. The cellular structure within the ducts consists of an epithelium of 

undifferentiated basal cells (SCs, TAs, CBs; CD44/CK5/CK14+) and differentiated 

luminal cells (CD24/CK18/PSA/PAP/AR+) that have a secretory function. The 

neuroendocrine (ChrA+) cells are protruding through both layers. The basal layer 

also contains a small population of SCs (CD133+/α2β1
high) that give rise to the 

differentiated cells within the epithelium. The prostate epithelium is separated from 

the stromal compartment by the basement membrane. The stromal fraction consists 

of fibroblasts and collagen. Modified and reproduced from [3, 4]. 
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1.1.1 Non-malignant diseases of the prostate 

1.1.1.2 BPH 

 BPH is a benign outgrowth of cells in the prostate that frequently occurs in 

ageing men. The disease is a result of a deregulated proliferation of the 

epithelial and stromal compartments [24, 25]. BPH is often treated with 

trans-urethral resections of the prostate (TURP) surgery to reduce a high 

frequency of urination owing to increased pressure on the bladder [3]. BPH 

is not thought to be involved in malignant transformation as it is localized in 

the transition zone of the prostate, whereas prostate cancer usually occurs 

in the peripheral zone [26]. 

1.1.1.3 Prostate intraepithelial neoplasia (PIN) 

PIN is caused by an increased cell proliferation that causes, similar to 

prostate cancer, a degeneration of the basal-luminal cell stratification, even 

if the integrity of the basement membrane is maintained [3, 27]. High grade 

PIN (HGPIN) has been described as a pre-cancerous condition with 

progression to cancer after 5 years or more [3, 28-30]. 

1.2 Prostate cancer 

1.2.1 Incidence and risk factors of prostate cancer 

Cancer is one of the most common diseases leading to death in western 

countries. One of the most frequently diagnosed malignant disorders in men 

in the UK is the development of tumours in the prostate (Figure 1-3). 

According to Jemal et al. prostate cancer is the second leading cause of male 

cancer-related death in the USA and UK (12% of all male cancer related 

deaths) [31, 32]. Despite its strong geographical dependence, other risk 

factors include age, ethnic origin and diet [33]. Whereas prostate cancer is 

uncommon in young men, almost one-third of men around 50 years of age 

already have histologically identifiable prostate tumours and incidence rises 



                                                                                             INTRODUCTION 

25 
 

for men in their 80s [33-35]. Concerning the ethnic origin, the highest 

incidence is found in African Americans [33, 36]. Also diet has been 

extensively researched due to the variation in prostate cancer incidence 

between different countries. Calcium from dietary or supplemental sources 

has been associated with an increased prostate cancer risk, whereas 

lycopene and selenium were linked with a decreased risk in some studies 

[37]. 
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Figure 1-3 The 10 most commonly diagnosed cancers in men (excluding non-

melanoma skin cancer) in the UK. Reproduced  from CRUK statistics, 2009.  
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1.2.2 Diagnosis of prostate cancer 

The diagnosis of prostate cancer relies on the determination of serum levels 

of the protein PSA that is secreted by prostate luminal cells. Elevated levels 

of PSA are linked to malignancy [3, 38]. However, in some cases the PSA test 

fails. Even though the PSA test is a commonly used method, it cannot 

distinguish aggressive from non-aggressive cancers [33]. As a consequence, 

false positive results can result in patients undergoing unnecessary surgery 

[33].  There is a 5% rate of false-positive and 2% rate of false negative 

results [3, 39]. PSA is not exclusively secreted by the prostate and can also 

be expressed by other tissues such as the lung [33, 40]. Furthermore, high 

PSA levels are not necessarily linked to malignancy and may be a result of 

PIN, inflammation or infection [3, 41, 42]. In regard to false-negative results, 

a study revealed that even some individuals with normal PSA levels had 

prostate tumours [43].  

However, the next step after the detection of high PSA levels (>4 ng/ml) is 

the preparation of a biopsy for histological analysis to confirm the presence 

of the tumour and its grade of malignancy [3]. The tissue is examined 

according to the Gleason grading system, which was established in the 

sixties and remains the most important clinical prognostic factor (Figure 1-

4), [33, 44]. Two areas of the tissue with the most common and second most 

common tumour pattern are scored with the values 1-5. A normal cellular 

structure would be assigned with 1, whereas the value 5 would represent a 

highly malignant condition featured by loss of the common basal-luminal 

bilayer and integrity of the basement membrane. To determine the Gleason 

score both values are added. Hence, the lowest Gleason score can be 2 and 

the highest 10. Gleason scores over 7 are usually correlated with a poor 

clinical outcome [3, 45]. Other diagnostic methods which are particularly 
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used to assess the tumour progression are magnetic resonance imaging 

(MRI) or computer tomography (CT) scan [33]. 
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Figure 1-4 The Gleason grading system. Biopsies taken from prostate tissue are 

analyzed on the basis of their cellular morphology in order to identify disease 

related alterations. Pattern 1 represents healthy tissue consisting of small uniform 

glands. At pattern 2 there is more stroma between the tissue. Both, pattern 1 and 

pattern 2 are well differentiated. At pattern 3 there is a distinct infiltration from the 

cells at the margins of the gland and the cells are only moderately differentiated. At 

pattern 4 neoplastic cells arise and there are only very few glands. Pattern 5 is 

characterized by a lack of glands. Pattern 4 and 5 are poorly differentiated. Taken 

from [46].  
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1.2.3 Treatment of prostate cancer 

The treatment modality depends on the progression/stage of the disease, 

which is for prostate cancer, assessed by the previously described 

diagnostic methods. Therapies for localized prostate cancer (tumours are 

contained within the prostate capsule) include watchful waiting, radical 

prostatectomy (surgical removal of the prostate) or radiotherapy which can 

be applied in form of external-beam radiation or brachytherapy 

(implantation of radioactive seeds into the prostate) [33, 47-49]. When 

metastases are found, these treatment options have only a limited efficacy 

with the result of a relapse of the disease. 

A frequent therapy for advanced prostate cancer is androgen deprivation 

therapy (ADT). Owing to their importance in PSA production, cell survival, 

growth and proliferation, AR signalling pathways are a critical target for 

prostate cancer treatment [50, 51]. ADT can be conducted by chemical 

castration through substances designed to block AR signalling e.g. by 

gonodotropin-releasing hormone analogs or direct inhibition of the 

androgen receptor activity [33]. Furthermore it can also be achieved by 

surgical castration [33].  

However,  with ADT the patients´ life can be prolonged for rarely more than 

2 years as tumours become castration resistant (CRPC) [33, 52].  Upon 

failure of ADT, the application of chemotherapeutic drugs, such as 

docetaxel or novel androgen ablation therapies, are used as a last line of 

treatment. These treatments typically only extend the patients´ life for up to 

2 years and help to reduce the symptoms [53, 54].  

Mitoxantrone was the first chemotherapeutic drug approved for the 

treatment of CRPC. Today it is typically given as a second-line treatment, 

where it can have palliative improvement for patients with cancer 
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progression after treatment with docetaxel [33]. New drugs such as 

abiraterone are used to decrease the testosterone levels, but they can only 

extend the mean life time expectancy of a patient with CRPC by a few 

months with little prospect of curing the disease [33, 55].  

Research into new treatments against prostate cancer is crucial, as CRPC 

and also radiorecurrent prostate cancer present a serious issue with 30% of 

patients relapse [56-59]. There are a few new treatment strategies with 

success in clinical trials, including photodynamic therapy (PDT), high 

intensity focused ultrasound (HIFU), cryotherapy, gene therapy and 

immunotherapy, including vaccines [60-62]. HIFU, cryotherapy and PDT are 

focal therapies and target specific cancer areas, with minimum damage to 

normal tissue and reduced side effects [33, 63]. 

In conclusion, despite intensive research there are currently no therapies 

available that eliminate treatment-resistant secondary tumours and 

metastatic disease. Further research is required to find novel therapeutic 

targets and treatment strategies. Recent findings direct the origins of 

prostate cancer to cancer stem cells (CSCs) that might be a new therapeutic 

target.  

1.2.4 Development of prostate cancer 

1.2.4.1 The stages of prostate cancer 

Prostate cancer development is defined by four basic stages. At stage 1 the 

tumour is small and localized inside the prostate gland [64]. At stage 2 the 

cancer is still located in the prostate gland, but is enlarged in comparison to 

stage 1 [64]. A hard lump might be felt during rectal examination [64]. At 

stage 3 the cancer has broken through the outer layer of the prostate gland 

to tissues such as the seminal vesicles [64]. In the most advanced condition, 
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stage 4, the cancer spreads to more distant locations such as the lymph 

nodes, bones, bladder, rectum, liver or lungs [64]. 

In advanced stages of prostate cancer, primary tumour cells acquire the 

ability to escape from the prostate capsule by expression of enzymes that 

inactivate substrate-anchoring proteins [3]. One example is the 

upregulation of heparanase that cleaves heparin-sulphate-modified 

proteoglycans in the extracellular matrix (ECM) [3, 65]. The malignant cells 

migrate to secondary locations through lymph node drainage or the vascular 

system [3]. There is also increasing evidence that aberrant stromal 

components play a role in tumour progression [3, 66].  

1.2.4.2 Genetic changes in prostate cancer  

Although no single tumour suppressor gene responsible for the onset of the 

disease has been identified yet, there are a number of candidate genes [67]. 

However, the loss of particular genes allows the progression of the disease 

at each stage (Figure 1-5) [67]: The loss of NKX3.1 is linked to the 

transformation of the normal prostate epithelium to PIN. PTEN and Rb loss 

allow the progression from PIN to the development of invasive carcinoma 

and loss of p53 function is often found at metastatic stages of the disease 

[67]. Also the AR gene plays a role in the malignant prostate and has been 

shown to have numerous sequence alterations in prostate cancer [68]. The 

AR binds to testosterone and is responsible for the transcription of genes 

that stimulate the growth of the normal prostate gland, but also of prostate 

cancer cells [68]. Furthermore, aberrant AR signalling is a main obstacle in 

androgen ablation therapy [68]. 

Genetic changes in the prostate can also occur at a gross level e.g. through 

chromosomal aberrations such as the TMPRSS2:ERG fusion, which was found 
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in 20% of HGPIN and 50-70% of patients with prostate cancer [3, 69, 70]. 

Also epigenetic mechanisms have been linked to prostate cancer [3]. For 

example a commonly inactivated gene through promoter hypermethylation 

is glutathiontransferase 1 (GSTP1) [71]. In prostate cancer GSTP1 expression 

is lost in almost 90% of tumours and 70% of PIN, making it to an early event 

in prostate carcinogenesis [71]. Another example is the inactivation of 

TIMP-2 through promoter hypermethylation [3, 72]. A normally functional 

TIMP-2 gene would prevent tumour invasion and metastasis [3, 73].  
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Figure 1-5 The progression of prostate cancer. Schematic presentation of the 

transformation of the normal prostate epithelium to prostate cancer and the loss of 

genes associated with each stage. Reproduced from [3, 67]. 
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1.3 CSCs 

Recent findings direct the origins of many cancers to CSCs rather than 

deregulated differentiated cells. Also prostate cancer was originally treated 

as a disease that developed from terminally differentiated luminal cells. 

When reconsidering the origin of prostate cancer it may be more logical to 

attribute the onset of the disease to oncogenic changes in basal cells and 

SCs [4]. The reason being, SCs persist during the life time of the host and 

the risk for the accumulation of mutations is therefore much higher than in 

progenitors or differentiated cells [4]. Also crucial pathways required for SC 

maintenance are correlated with carcinogenesis [74]. 

1.3.1 Normal SCs  

SCs have the unique capacity for differentiation and self-renewal which 

distinguishes them from any other cell type. The self-renewal capacity 

ensures the maintenance of SCs during the life time of the host. It comprises 

asymmetric and symmetric cell division. Asymmetric cell division produces 

an identical daughter SC and a progenitor cell that can differentiate into a 

specific cell type of the tissue (Figure 1-6) [75]. A symmetric cell division 

generates two identical daughter SCs. Hence, asymmetric cell divisions 

maintain a constant number of SCs, whereas symmetric cell divisions 

increase the SC number. SCs can be mainly divided into embryonic SCs and 

adult SCs. Embryonic SCs are found in the inner cell mass of the blastocyst. 

They are defined as a population of undifferentiated pluripotent cells. Owing 

to their pluripotent character they are able to give rise to the three germ 

layers (mesoderm, ectoderm, endoderm) that later on develop into the 

specific tissues of the organism. Adult SCs or tissue specific SCs are derived 

from embryonic SCs. As embryonic SCs they form a reservoir of 

undifferentiated cells, but they can only develop into a limited number of 

http://en.wikipedia.org/wiki/Cell_differentiation
http://en.wikipedia.org/wiki/Cell_(biology)
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cell types to generate a specific tissue, a feature that is referred to as 

multipotency. The function of adult SCs is the replacement of dying cells 

(natural turnover e.g. the gut) and regeneration of damaged tissue (wound 

healing). Adult SCs have the capacity for self-renewal and are maintained 

during the life time of the host. During the last few decades various adult SC 

types have been identified. The first evidence for their existence was 

produced for SC originating from the bone marrow niche [76]. It was found 

that hematopoietic SCs were able to differentiate into any type of blood cell 

such as T cells, B cells, granulocytes, erythrocytes and mast cells when 

transplanted into irradiated mice [76]. The hematopoietic model was of 

great importance for the understanding of tissue development [77]. 

Subsequently, other types of adult SCs have been discovered in neuronal, 

epithelial, mesenchymal and epidermal tissues [11, 78, 79]. 

Various pathways are essential for the regulation of the self-renewal and 

differentiation capacity of SCs. A role for Notch signalling has been shown in 

neural SCs as well as in mouse prostate development [80, 81].  Das et al. 

2008 and Kalani et al. 2008 demonstrated that Wnt signalling was critical in 

retinal and neural SCs [82, 83]. Hedgehog and transcription factor B 

lymphoma Mo-MLV insertion region 1 (Bmi-1) have been shown to play a 

role in regulating the normal mammary gland [84]. During normal 

organogenesis these processes are strictly regulated. Importantly, the 

deregulation of self-renewal may be one of the key events leading to 

carcinogenesis [84].  
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Figure 1-6 Asymmetric cell division in SCs. SCs have the capability for self-renewal 

and differentiation. Upon division they create an identical daughter cell and a TA 

that undergoes differentiation. Reproduced from [75]. 
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1.3.2 The CSC model 

There are two main models for carcinogenesis. The stochastic model 

proposes that the tumour mass is homogenous. According to this theory 

every cell in the tumour has the same tumour forming potential [4]. The CSC 

model suggests that the tumour consists of a heterogeneous mass of cells 

[4]. Here, only a small subset of cells, the CSCs, are capable of initiating 

tumourigenesis [4].  The CSCs might develop from a deregulation in normal 

SCs that reside in the tissue e.g. prostate SCs. 

 Like normal SCs replenish their specific tissue, CSCs might form a reservoir 

that reconstitutes the tumour mass [4, 85]. They divide and expand the CSC 

pool and develop into heterogeneous cancer cells [85]. The main criteria 

that define CSCs are the capacity for self-renewal, differentiation, invasion, 

extensive proliferation and tumour initiating capacity [86-88]. The CSC 

model for the development of prostate cancer is presented in Figure 1-7.  

1.3.3 CSC types  

 A relationship between SCs and carcinogenesis was first shown in 1997 in 

acute myeloid lymphoma (AML) [88]. A population of cells expressing the 

markers CD34++CD38- initiated AML in NOD/SCID mice, whereas committed 

progenitor cells failed to engraft [88]. These cells showed major features of 

SCs, such as capacity for self-renewal, differentiation and high proliferative 

potential [88]. In the following years, CSCs were also identified in many solid 

tumours in the breast, lung, head and neck, pancreas, liver, kidney, colon, 

ovarian, brain bladder, endometrial and prostate [87, 89-103]. 

1.3.4 Characterization of prostate CSCs 

Normal human prostate SCs were first identified by experiments in a rat 

model that showed the regression of the prostate gland upon castration [4, 

12, 104]. The prostate could then be restored by hormone induction [4, 12, 
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105]. The observation that this cycle could be repeated multiple times led to 

the conclusion that a surviving castration-resistant SC population must exist 

[4]. Subsequently, normal human prostate epithelial SCs were identified in 

the normal/benign prostate using gland regeneration experiments: a basal 

epithelial phenotype of cells positive for CD133 and expressing high levels 

of α2β1integrin showed the highest clonogenic potential and gland 

regeneration in immuno-compromised mice [11, 106]. The same cellular 

phenotype was explored by Collins et al. 2005 to sub-fractionate epithelial 

cells from human prostate cancers [33, 87]. Prostate CSCs represented a 

very small fraction of the total tumour mass (approximately 0.1%) [4]. 

CD133 and α2β1integrinhigh cells isolated from primary cultures grown from 

prostate tumours had self-renewal, proliferative and differentiation 

properties in addition to invasiveness and an enhanced secondary colony 

forming efficiency, [33, 87]. The hierarchical and heterogeneous 

organization of the tumour mass suggests that CSCs give rise to the entire 

malignant tissue [107, 108].  

In order to compare transcription patterns a microarray analysis was carried 

out on SCs (CD133+/α2β1integrinhigh) and CBs (CD133-/α2β1integrinlow) from 

both benign and malignant prostate samples [33, 109]. A significantly 

different gene expression signature emerged in SCs compared to CBs [33, 

109]. More crucially, gene expression differences were found when 

comparing benign SCs to SCs originating from malignant tissues [33, 109]. 

The profiles revealed that the expression of 581 genes was significantly 

different in SCs from malignant tissues relative to benign control cultures 

[33, 109].  A number of the genes identified in the CSC signature were 

linked to carcinogenic alterations, including promotion of an invasive 

phenotype in prostate and other cancers [33, 109]. By using Gene Ontology 
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and the KEGG pathway database, functional associations and the activation 

of signalling pathways were identified in CSC relative to benign tissues [33, 

109].  For instance, malignant SCs expressed genes linked to inflammation 

such as IL-6 and NFκB activated genes [33, 109]. Furthermore, it showed 

that Wnt signalling, the JAK-STAT pathway and adhesion signalling 

pathways were upregulated in the CSCs [33, 109]. In prostate cancer Wnt 

signalling has been linked with both androgen-independence and bone 

metastasis [110-112].  

There are further studies that aimed to define prostate CSC markers e.g. 

TRA-1-60/CD166/CD151 cells [33, 113]. Like CD133+/α2β1integrinhigh cells, 

TRA-1-60/CD166/CD151 cells did not express markers associated with 

differentiated secretory luminal cells, AR or PSA [113]. They possessed 

major hallmarks of SCs such as multipotency as revealed by in vitro sphere-

formation and tumour-initiation in the mouse model [33]. However, the 

authors did not directly correlate the expression of TRA-1-

60/CD166/CD151 to CD133 expression [33]. Through analysis of 

microarray data from Birnie et al 2008 we know that the 

CD133+/α2β1integrinhigh SC populations also expressed TRA-1-

60/CD166/CD151 and constitute therefore potentially the same population 

[33]. Alternative or additional prostate SCs markers have been explored 

elsewhere [114]. 

1.3.5 CSCs as the origins of prostate cancer 

Originally prostate cancer was thought to develop from luminal cells [124]. 

This conclusion was mainly based on the underlying ratio changes in 

prostate cancer [124]. The luminal: basal compartments change from ~1:1 

in the normal prostate to a decrease of basal cells with the majority of cells 

having a luminal phenotype in malignant prostate tissue [33, 115, 116]. It 



                                                                                             INTRODUCTION 

41 
 

could be hypothesized that the luminal cells might have regained the 

function for self-renewal due to disruptions in cell signalling. For example a 

chromosomal translocation could generate a novel fusion protein, which 

reprogrammes a cell to express a self-renewal signature [117]. For instance, 

a mechanism that allows the transformation of a differentiated cell into a 

CSC has been identified in blast crisis chronic myelogenous leukaemia [85].   

However, several findings propose that the cell of origin of prostate cancer 

resides in basal compartment and the likelihood of de-differentiation from 

luminal to basal cells is slim [16, 106, 118-122]. In particular SCs are a very 

likely candidate for tumour initiation. SCs are maintained during the lifetime 

of the host, hence the probability for the accumulation of genetic alterations 

in the SC population causative for tumour development should be higher 

than in short-lived terminally differentiated luminal cells [33]. Furthermore, 

pathways necessary for SC maintenance e.g. Notch, Sonic hedgehog and Wnt 

signalling are associated with carcinogenesis [33, 74]. Alternatively, prostate 

cancer might originate from differentiated progeny which revert into a SC- 

like cells [107, 114, 115, 123, 124].  

However, support for a basal origin for prostate cancer has also been shown 

with mouse basal cells that developed into a tumour mass with a luminal 

phenotype after induction of ERG expression and activation of PI3K 

signalling [33, 118]. A similar result was seen with human benign prostate 

cells that were transduced with lentiviruses to introduce AKT, ERG 

transactivator and AR genes in luminal and basal cells [33, 119]. When 

transplanted into mice, only the basal cells were able to initiate tumour 

growth [33, 119]. Furthermore, the histological analysis of the tumour tissue 

revealed a reduced basal compartment, but an increased luminal 

compartment, which is a characteristic of human prostate tumours [33, 119]. 
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CSCs might not only be the source of cancer development, but also play a 

role in therapy resistance and tumour relapse. 
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Figure 1-7 The prostate CSC theory. Normal prostate SCs (green) differentiate into 

TAs and CBs (grey) that develop finally into differentiated prostate cells (white). 

According to the prostate CSC theory mutations in prostate SCs or TAs might lead 

to their transformation into CSCs (red). These differentiate into TAs and CBs and 

make up a heterogeneous tumour mass (yellow). Contrary to their healthy 

counterparts, malignant cells fail to grow into structured layers. According to the 

CSC theory all of these different cell types (red, yellow) are present in a tumour and 

the CSCs form the reservoir of undifferentiated cells from which all other cell types 

arise. Reproduced from [33]. 
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1.4 The DNA damage response 

In view of constant DNA damaging influences the maintenance of genomic 

stability is a major concern in all cells and a coordinated response to DNA 

damage is necessary to ensure the survival of the host [125]. To maintain 

genomic integrity the cell devotes a wide range of mechanisms such as DNA 

damage checkpoints, DNA repair pathways, apoptosis, senescence and 

autophagy. The DNA damage response is predominantly controlled by the 

regulators Ataxia-telangiectasia mutated (ATM) and ATM and RAD3-related 

(ATR) proteins, which belong to the phosphoinositide-3-kinase (PI3K)-

related protein kinases (PIKKs). The breakdown of these pathways is 

correlated with severe consequences for the host such as the development 

of cancer [125-128]. 

1.4.1 Sources of DNA damage 

DNA damage can originate from exogenous and endogenous sources. 

Endogenous DNA damage can be a result of oxidative reactions with 

surrounding water molecules, oxygen and reactive oxygen species (ROS) 

generated by metabolic byproducts [125]. The induction of exogenous 

damage can be the consequence of mutagenic chemicals or viruses [125]. 

Radiation is another source of exogenous DNA damage, including non-

ionizing radiation such as ultra-violet radiation (UV) and ionising radiation 

[125]. Ionising irradiation can arise from cosmic rays or earth bound sources 

[125]. The induction of exogenous DNA damage plays a critical role in 

chemo- and radiotherapy to kill cancer cells, even if ironically, exposure to 

DNA damaging conditions is linked to an increased cancer risk [125].  
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1.4.2 Introduction of DNA damage through chemicals for cancer 

therapy  

For many cancers, surgery and radiotherapy are not sufficient to eradicate 

the malignant cells or may not be able to function optimally due to the 

location of the tumour. For this reason chemotherapeutic drugs are 

preferable to increase the probability of a long-lasting tumour regression. 

Many chemicals used against cancer are replication inhibitors. These 

specifically target rapidly proliferating cells, as many cancer cell types are, 

and thereby interfere with the normal progression of the cell cycle leading to 

DNA damage and ideally cell death. The following paragraph introduces six 

different replication inhibitors that are related to experiments carried out in 

this thesis. All of them, except excess thymidine, are of relevance in the 

clinic for cancer treatment.  

The anti-cancer drug etoposide is a podophyllotoxin-derivative. Its 

mechanism relies on the production of strand breaks in DNA by inhibiting 

the enzyme topoisomerase II, which is important for unwinding DNA during 

replication [129]. The alkaloid camptothecin arrests the cell cycle by a 

similar mechanism as etoposide, but it inhibits topoisomerase I rather than 

topoisomerase II [130, 131]. Carboplatin is a derivate of cisplatin. Its exact 

mechanism of action is not known [132]. It causes platinium-DNA adducts 

leading to interstrand cross-link formation [132, 133]. Doxorubicin belongs 

to the group of anthracyclin-antibiotics. Its effect relies on two main 

mechanisms: firstly by intercalation into the DNA and thereby blocking 

transcription and secondly by directly blocking toposiomerase II [134, 135]. 

The taxane docetaxel inhibits cells during mitosis. It binds and stabilizes the 

microtubuli-apparatus thereby preventing progression through mitosis 

leading to cell cycle arrest [136]. Thymidine is not used for cancer therapy, 

but it is used for research purposes to trigger replication stress in cells. 
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Excess thymidine results in an increase of the intracellular dTTP pool and 

prevents supplement of dCTPs by allosteric regulation of ribonucleotide 

reductase [137, 138]. The resulting depletion of dCTP slows DNA synthesis 

and arrests cells in the S-phase [138].  

1.4.3 DNA damage induced signalling 

The DNA damage response is mediated through proteins of four main 

groups: sensors of DNA damage, mediators that enhance the signal 

generated through DNA damage and transducers that pass the signal to 

effectors which are responsible for the activation of cellular responses [125], 

(Figure 1-8). 

A master regulator in the response to DSBs is the protein ATM, which 

belongs to the PIKKs [139]. The pathways downstream of ATM have been 

frequently described, but the mechanism of DNA damage sensing itself and 

the steps involved in ATM phosphorylation are mostly unknown [125]. It has 

been shown that the generation of DSBs results in the recruitment of the 

Meiotic recombination protein-11 (MRE11)-RAD50-Nijmegen breakage 

syndrome protein-1 (NBS1) (MRN) complex and the transformation of the 

inactivated ATM dimer into the monomeric, phoshorylated form of ATM 

(phATM) [140, 141]. Activated ATM binds to the MRN complex on the sites 

of DNA lesions and activates the C-terminal region of the histone variant 

H2A.X by phoshorylation [141]. γH2AX (the phophorylated form of H2A.X) is 

capable of binding Mediator of DNA Damage Checkpoint Protein-1 (MDC1) 

and recruits additional ATM-MRN complexes leading to further H2A.X 

phosphorylation [141]. The expression of yH2A.X is one of the early events 

measured after the introduction of DNA damage. It is crucial for the 

recruitment of repair factors such as RAD50, RAD51 and the product of the 

gene BRCA-1 [142]. Due to its central role in DNA damage signalling γH2A.X 
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is often used as a marker to detect DNA DBS, but also SSB. Furthermore, its 

appearance has been described as a genotoxic endpoint for the cell [143]. 

Upon its activation, ATM phoshorylates multiple substrates and thereby 

causes cell cycle arrest. The cell can re-enter the cell cycle following DNA 

damage repair or if the damage is not recoverable, the cell can activate 

apoptosis or senescence [144-146].  

Another PIKK crucial in DNA damage signalling is ATR. The accumulation of 

single-stranded DNA (ssDNA) is the main trigger of the ATR-dependent 

checkpoint response [147]. It has been shown that in Xenopus egg extracts, 

the most developed model for this research, replication stress causes 

extended stretches of ssDNA [148, 149]. The generated ssDNA is then 

coated by RPA in an ATR-interacting protein (ATRIP) dependent manner 

[141, 150, 151]. ATRIP needs to be associated with the RAD9-RAD1-HUS 

complex that is able to detect and bind DNA ends adjacent to RPA-coated 

ssDNA [141, 152]. The RAD9-RAD1-HUS-Complex recruits topoisomerase-

binding protein-1 (TOPBP1) to sites of DNA lesions leading to an activation 

of ATR [141, 153, 154].  Activated ATR then phoshorylates checkpoint 

kinase Chk-1 on ser-345 and ser-317 [141, 155-157]. After dissociation of 

activated Chk-1 from the chromatin it phosphorylates a wide range of 

downstream targets [141]. Recently, ATR has also been shown to respond to 

DSB breaks [158].  
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Figure 1-8 The recruitment of proteins as response to DNA damage. The DNA 

damage response is coordinated by sensors, mediators, transducers and effectors, 

which lead to different cellular responses. Reproduced from [125, 159].   
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1.4.4 DNA repair 

Evolution has equipped the cell with several repair mechanisms that are 

capable of recognising and repairing distinct types of DNA damage [125]. 

From a simplified point of view DNA repair comprises three main processes: 

(i) recognition of DNA damage, (ii) excision or removal of the DNA damage 

and (iii) restoration of the DNA [125]. Depending on the type of DNA 

damage, cells initiate different types of repair mechanisms. Single 

nucleotide errors resulting from DNA damage or errors in DNA replication 

are repaired by base excision repair (BER), nucleotide excision repair (NER) 

or mismatch repair (MR) [125, 160]. BER is also used for the repair of SSBs. 

The more severe DSBs are repaired by non-homologous end-joining (NHEJ) 

or homologous recombination (HR) [125, 161, 162].  

1.4.4.1 BER/ SSB repair  

The BER pathway serves to eliminate fragmented or modified bases in DNA. 

BER is also used to repair SSBs, which can be generated endogenously by 

ROS or IR and the abortive activity of topoisomerase I and II [163-166]. 

There are two different variants of BER: the predominant short patch 

mechanism and the long patch mechanism (Figure 1-9). The first step in 

short patch BER is the removal of the base by a DNA Glycosylase, a process 

that leads to the generation of an Apurinic/apyrimidinic site (AP site) [125]. 

The APE1 endonuclease then incises the DNA strand (leading to a SSB) [167]. 

The detection of SSBs is predominantly via PARP1 [167]. PARP1 is 

responsible for the recruitment of XRCC1 to the sites of DNA damage [168]. 

XRCC1 is essential for the recruitment of factors that mediate end 

processing, gap filling (DNA polymerase β) and finally ligation (DNA ligase 

IIIα) [169, 168]. Long patch BER also requires the APE1 to cleave the DNA 

strand but depends on the factors PCNA, RFC and DNA polymerase δ or Ɛ 
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and DNA Ligase I for further processing [170]. Whereas in short patch repair 

only one nucleotide is “flapped” away from the strand in long patch repair a 

“flap” of 2-8 nucleotides is produced, which is excised by the flap 

endonuclease 1 (FEN1), [125, 170].  
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Figure 1-9 The mechanisms of BER repair. BER consists of a short patch and a long 

patch pathway. Both processes initiate with the generation of an AP site, but are 

then mediated by different types of proteins. Reproduced from [125, 170].  
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1.4.4.2 DSB repair 

DSBs are the most severe form of DNA damage as they can lead to the loss 

of genetic information [125]. DSBs can be generated by oxidative stress, IR 

and topoisomerase inhibitors [166, 171, 172]. DSBs can be repaired through 

NHEJ and HR. The main difference between the two pathways is that HR 

requires sequences of homologous DNA for the alignment of the broken 

ends, whereas NHEJ re-joins them without using homologous regions. The 

first step of NHEJ in mammals is the recognition and coating of broken DNA 

ends by the Ku70/80 heterodimer to prevent degradation [125, 173]. 

Ku70/80 is required for the recruitment of DNA-PKcs to the site of the lesion 

[174]. Potential overhangs are processed by Artemis and Polynucleotide 

Kinase (PNK) [125, 175, 176]. The strand gaps are then filled by DNA 

Polymerase ß [177]. DNA-PK (=DNA-PKcs associated with Ku70/80) recruits 

the XRCC4-DNA ligase IV which is essential for resealing the DNA [178]. A 

schematic presentation of NHEJ is shown in Figure 1-10. HR uses 

homologous DNA as a template to repair of DSBs. The mechanism is 

particularly associated with the S-Phase when sister chromatids are 

available. The first step of HR involves a 5´-3´resection of the DSB end 

which generates a 3´single stranded overhang [125, 179]. This produces 

ssDNA, which is coated by Rad51that is required for strand invasion [180, 

181]. The invasion leads to a displacement of the homologous DNA region 

and the subsequent generation of a D-Loop (D=displacement). This event 

creates an X-shaped structure known as Holliday junction [182]. DNA 

synthesis is then carried out using the homologous template by DNA 

polymerase Ɛ followed by a ligation step [125, 183]. A schematic 

presentation of HR is shown in Figure 1-11. 
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Figure 1-10 The mechanism of NHEJ. DSBs are repaired by NHEJ. DNA-PKcs, Artemis 

and Ku70/80 locate to the site of the lesion for end processing and gap filling. DNA 

ligase IV is required for the ligation. Reproduced from [125, 170].  
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Figure 1-11 The mechanism of HR. HR starts with a strand resection that creates a 

3’ overhang. The next step is coating by Rad51 (required for strand invasion) and 

Rad52 (function unknown). The strand invasion displaces a strand from the 

homologous region by the formation of a D-loop structure and a Holliday junction. 

The lost DNA sequences on both strands are restored and the resolution of the 

Holliday junction is then carried out by enzymes (resolvases) that produce nicks. 

Modified from [125, 170].  
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1.4.4.3 Regulation of DNA repair 

ATM is critical in the NHEJ pathway as it phosphorylates Artemis. ATM 

activates DNA- PKcs by phosphorylation on threonine-residue-2609, which 

is a stimulator for Artemis nuclease activity. ATM also functions in the HR 

pathway by phosphorylating many factors like BRCA1, c-ABl, Bloom 

Syndrome Protein, H2A.X, and NBS1[184]. Also, ATR signalling is critical for 

regulating the repair of various DNA lesions. It targets a wide range of 

proteins linked to recombination (BRCA1, Werner syndrome ATP-dependent 

helicase, Bloom syndrome protein) [185-188].  ATR and BRAC-1 play a role 

in the regulation of BER [189]. 

1.4.5 Cell cycle checkpoints 

The cell cycle of an eukaryotic cell can be divided into four stages: the Gap 

phase 1 (G1), synthesis of sister chromatid phase (S), Gap phase 2 (G2) and 

Mitosis (M). Cells that are out of cell cycle are in G0 and referred to as 

quiescent or dormant. The cell cycle is strictly regulated by cyclins and cell 

cycle checkpoints which control the order of these processes in cycling cells 

to ensure that a distinct event happens only after completion of a previous 

event [125, 190-193]. This is crucial, as for example cells need to be 

prevented from entering S-Phase when only an insufficient amount of 

nutrients are available or proceeding to mitosis before the complete 

duplication of the genome and other components (e.g. organelles) has 

occurred [125, 191-193]. In the presence of DNA damage, the induction of 

cell cycle checkpoints is a critical step as they allow time for cellular 

responses such as DNA repair or apoptosis [125]. The cell cycle checkpoints 

can be classified as G1/S, S, and G2/M  (Figure 1-12) [194]. In the presence 

of DNA damage the G1/S checkpoint serves to prevent the cell from 

entering S-phase by inhibiting initiation of replication to ensure genomic 



                                                                                             INTRODUCTION 

56 
 

stability [170, 194]. The intra-S-phase checkpoint is initiated by DNA 

damage that occurs during S-phase or by unrepaired lesions that passed the 

G1/S checkpoint [170, 195]. The intra-S-phase checkpoint it not capable of 

halting the DNA replication, but is able to slow the S-Phase by suppression 

of origin firing [195, 196]. The G2/M checkpoint serves to avoid mitotic 

entry of damaged cells [196]. Although these checkpoints are distinct, the 

DNA damage sensors responsible for their activation seem to be shared by 

all three pathways [170]. ATM and ATR play a central role in the regulation 

of checkpoints [170]. In the G1/S checkpoint ATM phosphorylates p53 and 

Chk2 [170]. These phosphorylations lead to the activation of two main 

pathways: one to initiate and one to maintain G1/S [170, 197]. The initiation 

is mediated by phosophorylation of Chk2, which phosphorylates Cdc25A 

phosphatase leading to its inactivation and proteolytic degradation leading 

to G1 arrest [170, 198, 199]. Alternatively to the ATM-Chk2-Cdc25A 

pathway (activated through IR) the initial arrest can also be caused by the 

ATR-Chk1-Cdc25A pathway (activated by UV light) [170]. P53 plays a role in 

mediating the maintenance of the G1/S arrest [197]. 

During the ATM-regulated intra-S-phase checkpoint, in response to DSBs, 

ATM triggers two parallel pathways. ATM phosphorylates Chk2 using MDC1, 

H2A.X and 53BP1 as mediators, which leads to the degradation of Cdc25A 

[170]. ATM can also initiate a second pathway by phosphorylating the 

proteins NBS1, SMC1, BRCA1 and FANCD2 [170]. Both pathways lead to a 

block of replication [170]. Furthermore, in response to SSBs there is a ATR-

Chk1-Cdc25A mediated pathway [170]. 

For the G2/M checkpoint the ATM-Chk2-Cdc25A or ATR-Chk1-Cdc25A 

pathway can be activated depending on the type of DNA damage [157, 200, 

201]. The proteins MDC1, 53BP1 and BRAC1 mediate the signal generated 
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through DNA damage to Chk2 and Chk1 and these regulate Cdc25A (Chk1, 

Chk2) and Wee1 (Chk1) leading to G2 arrest [170]. 

 

 

 

 

 

 

 

 

 

 



                                                                                             INTRODUCTION 

58 
 

          

Figure 1-12 The cell cycle including its checkpoints. The cell cycle can be divided 

into four stages: G1, S-phase (synthesis of sister chromatids), G2 and M-Phase 

(mitosis). Dormant or quiescent cells are in G0. Before the transition into the next 

stage of the cell cycle the cell passes cell cycle checkpoints (G1/S, S, G2/M). 
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1.4.6 Apoptosis 

In contrast to necrosis, a consequence of tissue injury, apoptosis is a 

programmed death induced by the cell to ensure the survival of the host. 

Apoptosis is an energy-dependent mechanism and is characterized by 

distinct morphological changes [202]. It plays a role in the normal cell turn-

over, development and function of the immune system, embryonic 

development and chemical-induced cell death [202]. Inappropriate control 

of apoptosis is causative for various human disorders including many types 

of cancer [202]. There are two major apoptotic signalling pathways: the 

extrinsic pathway that is mediated through the death receptor and the 

intrinsic mitochondrial pathway. The important apoptotic mechanism to 

eliminate DNA damaged cells is intrinsic apoptosis.   

The intrinsic pathway is initiated by signals such as the absence of growth 

factors, radiation, toxins, hypoxia and free radicals [202]. These conditions 

lead to changes in the inner mitochondrial membrane resulting in the 

opening of the mitochondrial permeability transition pore, the loss of the 

mitochondrial transmembrane potential and the release of pro-apoptotic 

proteins, such as cytochrome c, from the intermembrane space into the 

cytoplasm [202, 203]. Cytochrome c release can be initiated via the tumour 

suppressor p53 [202, 204]. Cytochrome c binds and activates Apaf-1 and 

procaspase 9, which is referred to as the apoptosome [202, 205, 206]. This 

triggers a caspase-cascade leading finally to programmed cell death to clear 

the host of defective cells [202, 204].  

The control and regulation of intrinsic apoptosis occurs through members of 

the Bcl-2 family of proteins [207]. To regulate apoptosis, ATM targets p53, 

the E3 ubiquitin ligase MDM2, Chk1and Chk2, H2AX and BRCA1 [208-211]. 

P53 is known to play a critical role in the regulation of the Bcl-2 family, even 
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if the mechanisms are not fully understood [212]. It is believed that the 

members of the Bcl-2 family are paramount for the regulation of 

cytochrome c release through modification of mitochondrial membrane 

permeability [202]. 

1.4.7 Autophagy 

Autophagy is a cellular stress response. Following autophagy cells can 

undergo apoptosis, or use it as a survival mechanism. Similar to apoptosis, 

autophagy could play an important role in human disease [202]. Autophagy 

is characterized by the sequestration of the cytoplasm and its organelles in 

membrane vesicles (autophagosomes) and subsequent transport to the 

lysosomes for degradation [202, 213]. In contrast to apoptosis, autophagy is 

a caspase-independent process [214]. A main trigger for autophagy are 

starvation conditions, where autophagy serves as a survival mechanism 

[215, 216]. Additionally, it can be caused by a range of chemotherapeutic 

agents [217]. It has been demonstrated that its induction is an escape 

mechanism, which prevents the cell from inducing apoptosis [218-220]. 

1.4.7.1 The mechanism of autophagy 

The first regulatory process of autophagy involves the de-repression of the 

mTOR Ser/Thr kinase, which inhibits autophagy by phosphorylation of 

Autophagosome-autophagy-related gene (AP-Atg) 13 [221]. AP-Atg 13 has 

been identified in yeast, but a mammalian homologue is not known at this 

time [221]. In mammalian cells the endoplastmic reticulum has been 

proposed as the source of the autophagosomal membrane [222, 223]. The 

autophagosome arises initially from a structure referred to as “phagophore”, 

where the cytoplasm or organelles are wrapped by a double membrane 

[215, 216]. The AP-Atg proteins, which are located in the membrane of the 

vesicles, play a major role in autophagosome formation [216]. In yeast the 
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AP-Atg proteins have been extensively studied and it has been 

demonstrated that they fulfil tasks in scaffolding the pre-autophagosomal 

structures and phagophore elongation [216, 224]. The autophagy gene 

Beclin 1 has been identified as an important factor that modulates the 

function of AP-Atg proteins [216]. In addition the membranous protein LC3-

II plays an important role in autophagosome formation [224]. The 

membranes enclose their contents in an non-specific fashion [216]. Upon 

sequestration, autophagosomes fuse with lysosomes to form autolysosomes 

and the cytoplasm derived materials are degraded by hydrolases [216]. 

Through this process macromolecules are degraded into monomeric units 

such as amino acids and are then transported to the cytoplasm for reuse 

[216]. The process of autophagosome formation is illustrated in Figure 1-

13. 

 

 

 

 

 



                                                                                             INTRODUCTION 

62 
 

    

Figure 1-13 The process of autophagy in mammalian cells. In the first step 

cytoplasm and organelles are included from the phagophore which closes to form 

an autophagosome. The autophagosome fuses with a lysosome to form an 

autolysosome that degrades the internal material for reuse. Modified from [216, 

225].  
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1.4.8 Senescence 

Cellular senescence is an irreversible cell cycle arrest that acts as a 

safeguard programme of the cell to reduce its proliferative capacity after the 

exposure to stress signals [226]. Hence, like apoptosis, cellular senescence 

has a tumour suppressor function [226]. A growing line of evidence 

suggests senescence as a critical mechanism in response to 

chemotherapeutic agents [226]. Whereas the “replicative senescence” is 

related to cellular aging and was found to be induced through DNA damage 

signals from eroded telomeres that shorten with each cell division, 

“premature senescence” is an acutely inducible form of senescence [226- 

228]. Both mechanisms are biochemically and morphologically highly related 

[226]. The cellular insults that cause “premature senescence” may include 

ROS, unresolved DNA damage, y-irradiation, and chemotherapeutic drugs 

[226, 229-234]. Agents that cause an acute senescence in tumour cells are 

considered as an option to force a terminal rest programme [226].  

However, in some experimental set ups this form of senescence has been 

shown to be reversible, therefore raising issues about its therapeutic effect 

in the long term [235, 236]. 

1.5 Therapy resistance of CSCs  

There are several factors that hamper a successful (prostate) cancer therapy. 

Among these are hypoxia, anti-apoptotic mechanisms, aberrant androgen-

receptor signalling, increased drug efflux through the expression of ABC-

transporters, detoxifying enzymes and cellular quiescence [33]. Recent 

findings link CSCs to therapy-resistance, in particular in relation to some of 

the mentioned resistance mechanisms (Figure 1-14). It is proposed that the 

CSCs are a therapy resistant fraction within the tumour that does not 

respond to conventional treatments and might therefore be responsible for 
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the recurrence of secondary therapy-resistant tumours [33, 100, 114, 237-

239]. Normal SCs harbour better protective and repair mechanisms against 

DNA damage [240-243]. This is essential for a cell type that maintains 

during the life time of an organism, and is, due to this time factor, more 

likely to accumulate genetic alterations [242]. The more effective shielding 

against DNA damage is crucial to fulfil their tasks in tissue regeneration 

properly without passing alterations to the daughter cells. It is likely that 

CSCs “hijack” these features and are therefore less responsive to DNA 

damage introduced by cancer therapy [237, 244, 245]. This raises the issue 

of how CSCs are better protected against treatment than more differentiated 

tumour cells.  

 1.5.1 Mechanisms of therapy resistance in CSCs 

A variety of mechanisms causal for treatment resistance in the CSC 

population have been proposed.  For instance, CSCs are believed to have an 

enhanced resistance to DNA damage. Normal SCs exhibit efficient DNA 

mutation defence systems. When mutations occur that transform SCs into 

CSCs these defence systems are thought to protect CSCs against 

chemotherapy and irradiation [246]. Two candidates responsible for the 

mediation of therapy-resistance in CSCs might be Chk1 and Chk2 that 

become activated after genotoxic stress and arrest the cell cycle to enable 

repair [246]. Chk1 and Chk2 have higher activities in SC compared to 

normal cells [247]. In regard to CSCs, inhibitors against Chk1 and Chk2 

partially reverse the resistance to irradiation in glioblastoma CSCs [247, 

248].  

Quiescence in cells is a critical mediator of treatment resistance, as most 

therapeutic strategies are designed to target rapidly proliferating cells. 

Indeed, many cancer treatments work initially for the majority of rapidly 
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proliferating primary tumour cells, but fail to eradicate quiescent 

populations. In particular, adult CSCs were shown to be in G0, a feature they 

might have inherited from their healthy counterparts [242]. Some studies 

already demonstrated that quiescent CSC populations e.g. from the colon, 

breast, ovaries, and pancreas harboured both in vitro and in vivo abilities to 

resist therapies that killed the main bulk of tumour cells [242, 249-251]. 

Hence, unsurprisingly the type of cell leading to initiation of secondary 

tumours must be the surviving CSC pool that re-enters cell cycle to re-

populate the tumour by giving rise to extensively proliferating TAs [242].  

Another factor correlated to therapy-survival of CSCs are ROS defence 

enzymes. ROS such as superoxide, hydrogen peroxide, hydroxylradical and 

nitrous oxide are produced in vivo as a result of normal metabolism [252]. 

They have influence on carcinogenesis, cardiovascular disease and ageing as 

they cause oxidative damage to proteins, lipids and DNA [252]. 

Peroxiredoxins are highly conserved enzymes that function to scavenge 

ROS. Their loss is associated with a tumour prone phenotype due to 

accumulation of damaged DNA [253]. Peroxiredoxins are thought to be key 

players in radio- and chemoresistance of cancer cells, as ROS are mediators 

of these therapeutic strategies. In a work of Diehn et a. 2009 CSCs  derived 

from the breast were demonstrated to express higher levels of ROS defence 

enzymes in comparison to their more differentiated counterparts which were 

correlated with radioresistance [254]. Lower ROS levels have also recently 

been reported for central nervous system SCs and haematopoietic SCs as 

well as their early progenitors [255-261].  

The family of ATP-binding cassette transporters (ABC-transporters) 

transport a large variety of substrates through the membrane, including 

metabolic byproducts, lipids, sterols and drugs. One of their main functions 



                                                                                             INTRODUCTION 

66 
 

is to expel toxins from the liver, kidneys and gastrointestinal tract. Due to 

their capability to excrete undesired substances, ABC-transporters are 

thought to play a critical role in chemotherapeutic agent resistance. Three 

types are mainly correlated with drug resistance: P-gp (ABCB1/multi-drug 

resistance (MDR) 1), MDR-associated protein (MRP1/ABCC1) and breast 

cancer resistance protein (BCRP/ABCG2). Their expression in different types 

of tumours has been correlated with a poor clinical outcome [262]. One 

frequently observed characteristic of CSCs is a high expression of ABC-

transporter proteins in comparison to more differentiated cells, which led to 

the definition of the so-called “side population” (SP). There are various 

studies that link the expression of ABC-transporters to enhanced resistance 

properties of CSCs e.g. in the brain, lung, breast and prostate [263-267]. 

The aim of many anti-cancer therapies is to trigger apoptosis. CSCs seem to 

be less sensitive to the induction of apoptosis by cytotoxic agents and 

radiation therapy compared with more differentiated tumour cells [244, 

268]. This might be due to Akt pathway activation and the overamplification 

of anti-apoptotic proteins such as those of the Bcl-2 family [246, 269]. 

Another important inhibitor of apoptosis in CSCs and promising target for 

cancer therapies is the transcription factor NFĸB [246]. In neural SCs it has 

been demonstrated that they are protected from undergoing apoptosis due 

to the absence of caspase-8 and overexpression of PED (Phosophoprotein 

Enriched in Diabetes over-expression) [270]. Also the expression of the 

cytokine IL-4 seems to be paramount for mediating drug resistance by 

inhibition of apoptosis [271, 272]. 

Furthermore, it has been reported that the reactivation of (developmental) 

signaling cascades including EGF/EGFR, SCF, Sonic hedgehog, Notch and/or 

Wnt/β-catenin seems to play a major role [244, 268, 273].   
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Finally, CSCs are not only believed to escape many therapeutic approaches, 

it is even thought that they may enrich after the induction of therapy by 

selecting for resistant CSC subpopulations within a heterogeneous CSC pool 

[246]. Evidence for radiation-induced enrichment has already been shown 

for both brain and breast CSCs [246]. Due to these findings, specific 

targeting of CSCs must be considered for improving current anti-cancer 

strategies with the aim of sensitizing tumours toward conventional therapies 

and effectively abrogating tumourigenesis. So far only very little is known 

about therapy-resistance of SCs derived from prostate cancer tissue. A more 

profound knowledge about their nature might be the key for the 

development of new treatment strategies to eradicate prostate tumours on 

the long-term. The elucidation of these mechanisms is paramount for our 

understanding of treatment resistance.    
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Figure 1-14 Mechanisms leading to therapy-resistance in CSCs. Note that the 

expression of ABC-transporters applies only to chemoresistance. Modified from 

[246]. 
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Aim and strategy of the study 

It was the aim of this study to investigate the therapy-resistance potential of 

CD133+ α2β1/ integrinhigh SCs derived from malignant and benign prostate 

tissues in comparison to CD133- α2β1/ integrinhigh TAs and CD133-

α2β1/integrinlow CBs originating from the same tissue. For this purpose 

epithelial cells were isolated from prostate tissues and expanded in culture 

to enrich subsequently for the above mentioned cell populations. The 

project aimed to answer two main questions: 

Are SCs more resistant to the induction of DNA damage than TAs and CBs?   

 The extent of DNA damage was assessed after treatment of the 

different populations with the “model drug” etoposide.  We used 

alkaline comet assays as a direct measurement of DNA damage and 

staining for the repair factor γH2A.X as an indirect measurement, 

both of were analysed by immunofluorecence microscopy. 

 The recovery of selected populations after etoposide treatment was 

examined by clonogenic assays. 

What might be the mechanisms of potential therapy-resistance in SCs? 

 The expression of ABC-transporters is a frequently reported therapy-

resistance mechanism of cancer cells. In particular CSCs were 

demonstrated to be highly capable of expelling undesired 

substances. We re-analysed a microarray data set for the expression 

of ABC-transporters at mRNA level in our prostate epithelial cell 

model. To conduct a functional analysis we incubated the cells with 

the fluorescent substance calcein and measured the change of calcein 
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levels by the plate reader to compare the effectiveness of the ABC-

transporters. 

 Another likely mechanism of resistance to treatment is cellular 

dormancy or quiescence, as chemotherapeutic drugs are mainly 

designed to target rapidly proliferating cells. Cellular dormancy was 

assessed by staining for the protein Ki67 and subsequent assessment 

by immunofluorescence microscopy.  

 The failure of apoptotic mechanisms is a common problem in cancer 

cells. Hence, we assessed apoptotic cell death following etoposide 

treatment by staining for activated caspases and examination by flow 

cytometry. Furthermore, we stained for LC3B to elucidate autophagy 

as an alternative cellular response. We assessed cell viability in 

prostate cancer cells following drug treatment using MTS. 
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2. MATERIALS AND METHODS 

2.1 General Methods 

2.1.1 Human prostate tissue processing and culture  

Prostate tissue was taken with approval from York and Hull Research Ethics 

Committee from patients undergoing transurethral resection of the prostate 

(TURP) and open or laparoscopic radical prostatectomy operations (ORP and 

LRP respectively). Diagnosis, age and treatment of the individual patients are 

listed in Table 2-1 and 2-2. Epithelial cells were isolated as described by 

[11]. Briefly, prostate tissue was washed with PBS, chopped and digested in 

collagenase for 12 h at 37°C on a shaker to release epithelial structures 

(acini and ducts).  Epithelial cells were separated from stromal cells by 

repeated gravity centrifugation at 100 g, RT, 1 min. The material was 

resuspended in trypsin and left for 30 min at 37°C on a shaker. Epithelial 

cells were transferred to 10 mm BioCoat TM Collagen I plates and co-

cultured with a confluent layer of irradiated STO feeder cells in stem cell 

media (SCM) at 37°C.  

2.1.2 Maintenance of primary cell cultures 

 Prostate epithelial cells were grown in co-culture with irradiated STO feeder 

cells in SCM on 10 mm BioCoat TM Collagen I  plates  at 37°C. Culture media 

was replenished every second day. For subculture, cell cultures were 

trypsinized as explained in 2.1.3 and pelleted at 200 g, RT, 5 min. Cells 

were resuspended in SCM and transferred to BioCoat TM Collagen I cellware 

and grown at 37°C. Cells were subcultured at a ratio of 1:2, 1:3 or 1:4 

depending on their growth. 
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2.1.3 Harvesting of primary cells and cell lines 

When epithelial cells reached approximately 80% confluency, culture 

medium was removed and cells were washed once with PBS and treated with 

1 ml trypsin for 1 min. Trypsin was blocked with R10. The procedure was 

repeated to remove the entire population from the plates. 

2.1.4 Cryopreservation  

For storage in liquid nitrogen, cells were trypsinized as explained in 2.1.3, 

pelleted at 200 g, RT, 5 min and resuspended in cold freezing media (FM) at 

a concentration of 1 - 2 x 106 cells/ ml. Cells were aliquoted in cryovials and 

stored at - 80°C for at least 24 h prior to transfer into liquid nitrogen. To 

culture from frozen stocks cells after freezing, cells were plated with 

irradiated STO feeder cells in 10 ml SCM. The media was replenished after 

24 h to remove the DMSO-containing freezing media from the culture. 

2.1.5 Preparation of STO feeder cells 

STO fibroblasts were grown on T175 plastic flasks. When they reached 

approximately 80-90% confluency they were trypsinized and pelleted at 200 

g, RT, 5 min. Cells were washed with PBS and resuspended in 10 ml SCM per 

100 cm2 of culture surface. Cells were transferred into universal tubes and 

treated with an γ-irradiation dose of 60 Gy to inactivate mitosis. Cells were 

stored at 4°C and used within 4 days. 

2.1.6 Selection of SCs, TAs and CBs from primary cell cultures 

Human prostate epithelial cells were harvested as described in 2.1.3. Cells 

were washed once in MACS buffer at 200 g, RT, 5 min and resuspended in 5 

ml SCM. To separate α2β1low cells (CBs) from the α2β1 high population (SCs and 

TAs) 10 mm BioCoat TM Collagen I plates were blocked with blocking 

solution at 37°C for 1 h. The blocking solution was removed and plates were 

washed once with PBS. Cells were incubated on the blocked plates at 37°C 
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for 20 min. α2β1low cells do not adhere within the indicated incubation time 

and can be collected easily from the plate afterwards. The plates were 

washed once with PBS. The α2β1high population was released from the plates 

by repeated trypsinization as described in 2.1.3. CD133+/α2β1 high SCs and 

CD133-/ α2β1high TAs were separated by a CD133 Cell Isolation Kit. Up to 

108 cells were resuspended in 300 µl MACS buffer, 100 µl FcR blocking 

reagent and 100 µl CD133 antibody microbeads. Sorting using MACS MS 

columns was then carried out in accordance with the manufacturers’ 

instructions.  Briefly, each magnetic column was used for approximately 6 x 

106 cells. After elution of the cells from the first column up to 4 ml of the 

CD133+ elute was passed through a second column to increase the purity of 

the population. 

2.2 Single cell analysis  

2.2.1 Immunocytochemistry for γH2A.X foci and Ki67  

The different cell subpopulations were selected as described in 2.1.6 (or 

used unselected depending on the type of experiment). Cells were plated on 

collagen I-coated 8-well chamber slides (10 000 for CBs and TAs; for SCs a 

lower number depending on the yield). For the γH2A.X staining, cells were 

incubated with 30 µM etoposide for 30 min or 45 min to induce DNA 

damage. Additional time points with etoposide were carried out to assess 

repair by removing the drug, washing once with PBS and leaving the cells at 

37°C for additional 24 h in SCM. A small set of samples were treated with 2 

mM thymidine at 37°C for 24 h to induce replication stress. For the Ki67 

staining cells were left untreated. 

The following volumes were applied per 8-well chamber slide: After removal 

of the medium, cells were washed with 1 ml PBS and fixed in 1.6 ml 

Fixation-Permablization buffer at RT for 15 min.  Cells were washed with 1 
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ml PBS. Cells were washed with 1.6 ml 0.5 % Nonidet-P40 (NP40) in PBS at 

RT for 20 min to remove cytoplasmic proteins and subsequently washed 

with PBS. The primary antibody anti-human γH2A.X was diluted 1: 1000 in 

0.5% BSA in PBS and cells were incubated in 1.6 ml at 4ºC o/n. After removal 

and washing three times with PBS, 1.6 ml of the secondary antibody goat 

anti-mouse Alexa Green 488 was added in a 1:1000 dilution in 0.5% BSA in 

PBS and incubated at RT for 45 min in the dark. The chambers were 

removed from the chamber slides and DNA was labelled with DAPI. A 

coverslip was mounted on the slides and fixed in place with nail polish. 

γH2A.X was detected by immunofluorescence microscopy. For analysis ~100 

cells (but at least 50 cells) were counted per well and the % of γH2A.X 

positive cells was determined. For the Ki67 staining the same procedure was 

applied. In this case a goat anti-rabbit Alexa Red 568 served as a secondary 

antibody. 

2.2.2 LC3B staining 

Primary cells were harvested as described in 2.1.3 and plated on collagen I-

coated 8-well chamber slides. After incubation with 60 µM etoposide for 60 

h, cells were washed once with PBS and incubated in fixation buffer for 15 

min. The cells were washed three times with PBS and permeablized in 0.25% 

Triton-100 in PBS for 10 min. Cells were washed three times with PBS and 

blocked with IF-blocking buffer for 1 h. The LC3B antibody was diluted in 

0.1% Tween 20/ 0.1% BSA in PBS and left on the cells for 1 h. Cells were 

washed three times with PBS and incubated for 45 min with a 1: 1000 

dilution of goat-anti-rabbit Alexa 488 in 1% BSA in PBS. Cells were washed 

three times with PBS and mounted with DAPI for final assessment by 

immunofluorescence microscopy.  
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2.2.3 Alkaline Comet Assay  

Primary cells were harvested according to 2.1.3. Cells were selected 

according to 2.1.6 (or left unselected depending on the type of experiment). 

30 000 cells (for SCs less depending on the yield) were treated per tube in 1 

ml etoposide in suspension while rotating on a MACS spinner at 37ºC. The 

etoposide concentrations ranged from 30 µM to 250 µM and the incubation 

times from 30 min to 3 h. After treatment, cells were pelleted at 200 g, RT, 

5 min and resuspended in 25 µl PBS. The following steps were carried out in 

the dark: Tubes were placed in a waterbath at 37ºC and 225 µl low melting 

agarose was added per tube. Samples were dropped onto agarose-coated 

slides and covered with coverslips. Slides were cooled for 15 min at 4ºC. 

Coverslips were removed and immersed in lysis buffer o/n. The following 

day, samples were placed into alkaline electrophoresis buffer and incubated 

for 40 min at 4ºC. Slides were run in a gel tank apparatus in alkaline 

electrophoresis buffer at 24 V (300 mAmps) for 40 min and drained 

afterwards. Samples were placed in neutralizing buffer for three times for 10 

min. To stain the samples SYBR-Gold was diluted 1:10 000 in TE buffer pH 

7.5 and 300 µl was added to each slide and covered with a coverslip. 

Samples were assessed by immnofluorescence microscopy and images of ~ 

100 cells per sample were taken to be analyzed with the comet analysis 

software TriTek – CometScore Version 1.5. 

2.2.4 Neutral Comet Assay  

Cells were harvested according to 2.1.3. Unselected populations were used 

or cells were selected according to 2.1.6.  30 000 cells per tube (for SCs less 

depending on the yield) were treated in 1ml etoposide in suspension while 

rotating on a MACS spinner at 37ºC. The etoposide concentrations ranged 

from 30 µM to 1mM and the incubation times from 30 min to 3 h. After 
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treatment cells were pelleted at 200 g, RT, 5 min and resuspended in 25 µl 

PBS. The following steps were carried out in the dark: Tubes were placed in 

a waterbath at 37ºC and 225 µl low melting agarose was added per tube. 

Samples were dropped onto agarose-coated slides and covered with 

coverslips. Slides were cooled for 15 min at 4ºC. Coverslips were removed 

and immersed in lysis buffer o/n. The following day samples were placed 

into TBE electrophoresis buffer for 10 min. Slides were run in a gel tank 

apparatus in TBE electrophoresis buffer at 24 V for 20 min and drained 

afterwards. To stain the samples, SYBR Gold was diluted 1:10 000 in TE 

buffer pH 7.5 and 300 µl were added to each slide and covered with a 

coverslip. Samples were assessed by immunofluorescence microscopy and 

images of ~ 100 cells per sample were taken to be analyzed with the comet 

assay analysis programme TriTek – CometScore Version 1.5. 

2.3 Caspase Assay 

Cells were treated in culture with etoposide. The etoposide concentrations 

ranged from 15 µM to 125 µM and the incubation times from 12 h to 72 h. 

The supernatant was collected and cells were harvested according to 2.1.3. 

Cells were washed in 2 ml cold MACS per sample and centrifuged at 200 g, 

RT, 5 min. Cells were washed in 2 ml cold MACS buffer per tube and 

pelleted at 200 g, RT, 5 min. The CaspACE™ FITC-VAD-FMK In Situ Marker 

was diluted 1:500 in PBS and cells were resuspended in 100 µl per tube and 

incubated for 20 min at 37ºC. Cells were washed in 2 ml PBS per tube and 

pelleted at 200 g, RT, 5 min. Cells were resuspended in 500 µl PBS. Caspase 

activity was assessed by a CyAn Flow Cytometer (Dako). 
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2.4 Plate reader experiments 

2.4.1 Calcein efflux test  

Epithelial cells were harvested according to 2.1.3 and selected according to 

2.1.6 (or used unselected depending on the type of experiment). 1000-20 

000 cells were plated on collagen I-coated 96-well plates and left to adhere 

for 2 h at 37ºC in KSFM. CBs and TAs were seeded as triplicates whereas for 

SCs the yield was only sufficient for one well. KSFM was removed and 200 µl 

1:5000 Calcein- AM Fluorescent Dye in KSFM was added per well and left for 

15 min at 37ºC. Calcein AM Fluorescent Dye was removed. The wells 

containing the plated cells were washed with once in PBS and 200 µl KSFM 

without Calcein AM Fluorescent Dye were added per well. The plates were 

measured in the plate reader immediately and kept at 37ºC afterwards. After 

1 h the KSFM (containing effluxed calcein) was taken from the cells and cells 

were washed with PBS. Fresh KSFM without Calcein Fluorescent Dye was 

added to the cells. This step was repeated after 2 h and 3 h. Plates were 

measured at all indicated timepoints.  

2.4.2 Viability assay 

Cells were harvested as described in 2.1.3 and transferred to collagen I-

coated 96-well plates (5000 cells/ 100 µl SCM per well) After 24 h at 37°C 

media was removed and replaced by 100 µl fresh SCM containing a dilution 

series of replication inhibitors (see appendix). After four days, cells were 

measured by using the CellTiter96® Aqueous One Solution Cell Proliferation 

Assay. 20µl of solution was added and after 2 h incubation absorbance was 

measured. 

2.5 Clonogenic recovery assay 

TAs and SCs were selected as described in 2.1.3. 100 - 300 cells per well 

were seeded in triplicate on collagen I-coated 6-well plates in 2 ml SCM per 
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well and kept at 37ºC.  Cells were left for 2 h to adhere and washed once 

with PBS to remove floating cells. Fresh SCM was added to each well. The 

number of cells was then counted in every well. 500 µl irradiated feeder 

cells were added. Cells were treated for 45 min or 3 h with 30 µM etoposide 

or the appropriate dilution of DMSO at 37ºC. Cells were washed twice with 

PBS and 3 ml SCM were added to each well. Cells were kept at 37ºC and SCM 

was changed every second day. An appropriate amount of irradiated feeder 

cells was added to keep the plates confluent. After 8-14 days SCM was 

removed and cells were washed once with PBS. Cells were stained with 2 ml 

crystal violet solution per well for 20 min.  Cells were washed twice with 3 

ml PBS per well. The number of colonies was determined and related to the 

cells counted on the day of the selection. Different sizes of colonies were 

classified: colonies consisting of 2-4, 5-8, 9-16, 16-32 cells and > 32 cells. 

2.6 Malignant and benign prostate tissue samples and cell lines 

Sample (site) Diagnosis Age Surgery GS PT 

H020/09 Cancer n/a RP 3+4=7 - 

H035/11 (LA) Cancer 

T2c 

n/a RP 3+4 =7 

 

- 

H049/11 (LB) 

 

Cancer/ side 

carcinoma 

T2c 

n/a 

 

RP 

(ORP) 

 

3+3=6 

 

- 

PE665 Cancer 53 RP 3+4=7 - 

PE531 Cancer 57 RP 4+5=9 - 

H054/11 (RA) 

 

Cancer 58 

 

RP 

(LRP) 

3+4=7 

 

- 

H018/09 

 

Cancer 

HGPIN T2c 

n/a 

 

RP 

 

1 - 

H034/11  Cancer 

T3a 

 RP  3+4=7 

 

- 

H031/10 Cancer 

T2a 

n/a 

 

RP 

 

3+4=7 

 

- 

H048/11 (LM) Cancer 

 

n/a 

 

RP  3+3=6 

 

- 
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H149/12  Cancer 78 TURP N/A Hormone 

therapy 

Y018/11 Cancer 75 TURP 3+=6 Hormone 

therapy 

H090/09 Cancer 80 TURP 4+5=9 Hormone 

therapy 

H087/11 (LB)  Cancer 68 RP 

(ORP) 

3+4=7 

 

- 

H131/11 (LA) Cancer 70 RP 

(LRP) 

3+4=7 

 

- 

H069/11 (RB) Cancer 65 RP 

 

4+3=7 

 

- 

Y062/11 Cancer 61 TURP 

 

5+4=9 

 

Hormone 

therapy 

Table 2-1 Prostate carcinoma tissue 

Abbreviations: TURP = Transurethral resection of the prostate; GS = Gleason score; 

PT = Previous treatment; RP = Radical prostatectomy;  LRP = Laparoscopic radical 

prostectomy; ORP = Open radical prostatectomy; HGPIN = High grade prostate 

intraepithelial neoplasia; Tumour stages: T2a = tumour in half or less than half of 

the 2 lobes, T2c = tumour in both lobes; T3a = tumour has spread through the 

capsule; Sites the cores were taken from:  RA, LA, LM, LB, RB → R = Right, L = Left, 

A = Apex, M = Mid, B = Base 

 

 

Sample Age Surgery GS PT 

Y004/09 77 TURP - - 

Y031/08 83 TURP - - 

Y024/08 72 TURP - - 

Y040/09 67 TURP - - 

Y025/09 84 TURP - - 

Y010/11 61 TURP - - 

Y031/11 80 TURP - - 

Y052/10 72 TURP - - 

Y040/10 67 TURP - - 

H053/11 n/a TURP - - 

Y025/11 75 TURP - - 

Y030/11 88 TURP - - 

H053/11 N/A TURP - - 
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Y023/09 88 TURP - - 

Y075/11 80 TURP - - 

Table 2-2 BPH Tissue samples 

Abbreviations: TURP = Transurethral resection of the prostate; GS=Gleason 

score; PT = Previous treatment 

 

 

Cell line Origin Media Dilution upon 

subculture  

RC165N/hTERT 

[274] 

Benign prostate derived cell line R-Media 1:5 

RC92a/hTERT 

[274] 

Malignant prostate derived cell 

line 

R-Media 1:5 

PNT1a Normal prostate epithelial cell line R10 1:5 

LNCaP Human prostatic adenocarcinoma 

metastatic site in supraclavicular 

lymphnode 

R10 1:5 

BPH-1 Benign prostate derived cell line R5 1:10 

PC3 Human prostatic adenocarcinoma 

metastasis site in the bone 

H7 1:5 

STO Mouse embryonic fibroblasts D10 1:10 

Table 2-3 Mammalian cell lines 

2.7 Chemicals 

Drug Company 

Etoposide Sigma 

cat. no. E1383 

Carboplatin Sigma 

cat. no. C2538 

Docetaxel Fluka 

cat. no. 01885-25MG-F 

Doxorubicin Fluka 

cat. no. D1515-10MG 

Camptothecin Sigma 

cat. no. 365637 

Thymidine Sigma 

cat. no. T9250 

Table 2-4 Chemotherapeutic drugs 
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Kit/ Reagent Dilution 

 

Company 

BD TMCalcein AM Fluorescent Dye 

 

1:5000 BD Bioscience 

cat. no. 354216 

CaspACE™ FITC-VAD-FMK In 

Situ Marker 

1:500 Promega 

cat. no. G7461 

Mounting Medium with DAPI - Vectashield Laboratories 

cat. no. H-1200 

NuSieve® GTG® Agarose - Cambrex 

cat. no. 50080 

SYBR-Gold nucleid acid gel stain 1:10 000 Invitrogen 

cat. no. S11494 

CD133 Microbead Kit - Miltenyi Biotec Ltd 

cat. no.  130-050-801 

Collagenase Type I - Worthington 

cat. no. MX1H12791 

FCR blocking reagent - Miltenyi Biotec Ltd 

cat. no. 130-059-901 

DMSO - Sigma-Aldrich 

cat. no. D8418 

CellTiter96® Aqueous 

One Solution Cell Proliferation Assay 

- Promega 

cat. no. G3582 

Trypsin-EDTA - Gibco 

cat. no. 15400-054 

FCS - PAA 

cat. no. A15-041 

Goat serum - Sigma 

Cat.  No R4505 

Rabbit serum - Sigma 

Cat.  No G6767 

Table 2-5 Kits and reagents 

 

Antibody Host 

 

Reactivity Dilution Company 

γH2A.X 

 

mouse anti-human 1:1000 Millipore 

cat. no. 05-636 

Ki67 rabbit anti-human 1:1000 Abcam 

cat. no. ab15580 

CD133/2 (293C3)-APC mouse anti-human 1:11 Miltenyi Biotec 

cat. no. 130-090-854 

Alexa 568 goat anti-rabbit 1:1000 Invitrogen 

cat. no. A11036 
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Alexa 488 goat anti-mouse 1:1000 Invitrogen 

cat. no. A11029 

LC3B rabbit anti-human 1:1000 Abcam 

cat. no. ab51520 

Table 2-6 Antibodies 

Solution Components 

PBS 

 

137 mM NaCl 

2.7 mM KCl 

4.3 mM Na2HPO4 

1.47 mM KH2PO4 

Adjust to a final pH of 7.4 

Neutralizing Buffer 0.4 M Tris  

in  dH2O; adjusted to pH 7.5 

MACS buffer 0.5% FCS 

2 mM EDTA 

in PBS 

Lysis buffer 2.5 M NaCl 

1 mM EDTA 

10 mM Tris 

10% DMSO 

1% Triton X-100 

in dH20; adjusted to pH 10 

Alkaline electrophoresis buffer 0.3 M NaOH 

1 mM EDTA 

TE buffer 1 M Tris – HCl 

0.5 mM EDTA 

adjusted to pH 8 

Fixation-Permablization buffer 

(for nuclear stainings) 

 

2% PFA  

0.2% Triton x-100 

PBS 

adjusted to pH 8.2 

Fixation buffer 

(for staining proteins in the cytoplasm) 

3% PFA in PBS 

adjust to pH7 

TBE electrophoresis buffer 89.15 mM TRIS 

89.9 mM Boric Acid 

3.98 mM EDTA 

IF-Blocking Solution 

(LC3B staining) 

5% goat serum  

0.1% Tween 20 in PBS 

Blocking solution 

(selection of epithelial cells) 

0.3% BSA in PBS 

 heat-inactivated at 80°C for 10 minutes 

Crystal violet solution PBS 
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1% crystal violet  

10% ethanol 

Table 2-7 Solutions 

2.8 Media and plastic ware 

Media Components Origin 

RPMI 1640 --- 

 

Gibco, cat. no. 31870-074 

DMEM ---- Gibco, cat. no. 41966-029 

KSFM --- 

 

Gibco, cat. no. 17005-075 

Ham´s F-12  ---- Lonza, BE12-615F 

R5 RPMI 1640 

5% FCS 

as mentioned above 

as mentioned above 

R10 RPMI 1640 

10% FCS 

as mentioned above 

as mentioned above 

D10 DMEM 

10% FSC 

as mentioned above 

as mentioned above 

H7 HAM´s F-12  

7% FCS 

as mentioned above 

as mentioned above 

R-Media 500 ml KSFM 

5ng/ml Epidermal growth factor 

50µg/ml Bovine pituitary extract 

2mM L-Gluatmine 

as mentioned above 

as mentioned above 

as mentioned above 

as mentioned above 

SCM KSFM 

5 ng/ml Epidermal growth factor 

50 µg/ml Bovine pituitary extract 

2 ng/ml LIF 

2 ng/ml SCF   

100 ng/ml Cholera toxin  

1 ng/ml GM-CSF 

2 mM L-Glutamine 

as mentioned above 

Gibco, cat. no. 10450-013 

Gibco, cat. no. 13028-014 

Millipore, cat. no. LIF 2010 

First link, cat. no. 62-64-

206 

Sigma, cat. no. C8052-1MG 

Miltenyi,  

cat. no. 130-093-8865  

Gibco, cat. no. 25030-024 

FM  RPMI 1640 

20 % FCS 

10 % DMSO 

as mentioned above 

as mentioned above 

as mentioned above 

Table 2-8 Mammalian cell line culture media 
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Plastic ware Company 

20 x 10 mm BioCoat TM Collagen I   BD Biosciences 

cat. no. 356450 

Collagen coated 6-well plates BD Biosciences 

cat. no. 354400 

Collagen coated 8-well chamber slides BD Biosciences 

cat. no. 354630 

Collagen coated 96-well plates BD Biosciences 

cat. no. 356407 

T75 flasks Corning Incorporated 

cat. no. 430641 

MS columns Miltenyi Biotec Ltd 

cat. no. 130-042-201 

Table 2-9 Plastic ware 

2.9 Statistical Analysis 

The statistical analysis was conducted by Sigma plot 11.0. For paired t-test 

or  Wilcoxon rank sum test, values were considered to be significant when p 

< 0.05. 
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3. RESULTS 

3.1 Assessment of DNA damage in primary prostate epithelial 

cells using comet and γH2A.X assays 

The extent of DNA damage in cancer cells after their exposure to therapy is 

an important indicator to elucidate their treatment susceptibility. We used 

etoposide - a drug that also has clinical relevance for the treatment of many 

cancers - as a “model drug” for our studies. In order to compare levels of 

DNA damage in selected malignant and benign prostate populations, we 

treated cells with etoposide and employed comet and γH2A.X assays. 

3.1.1 Assessment of the DNA damage after etoposide treatment by 

comet assays  

3.1.1.1 Examination of the suitability of neutral and alkaline comet 

assays to detect etoposide-induced DNA damage 

Comet assays rely on the separation of damaged DNA (“tail”) from intact 

DNA (“head”) by gel electrophoresis, imaging of “comets” by 

immunofluorescence microscopy and the subsequent quantification of DNA 

damage e.g. by the  parameter % of DNA in tail (Figure 3-1). Both neutral 

and alkaline comet assays were performed to examine which technique was 

most suitable for detecting etoposide-induced DNA damage. In general, 

neutral comet assays are more specific for the detection of DSBs, but less 

sensitive than alkaline comet assays, which allow the quantification of DSBs, 

SSBs and alkali-labile sites [275]. Use of comet assays to assess etoposide-

induced DNA damage has been carried out before [166, 275]. However, the 

effect on primary prostate epithelial cells has not been measured. This was 

clearly of relevance in these studies. In order to verify whether neutral comet 

assays were suitable, we treated PNT1A cells and selected primary cells 

(H020/09), with several etoposide concentrations for different time points 

(Figure 3-2). In both assays only a slight increase of the parameter % DNA in 
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tail was detected. This result suggested that neutral comet assays were not 

suitable to detect etoposide-induced DNA damage. Alkaline comet assays 

were then carried out using RC92a/hTERT cells and two primary samples 

(Y004/09 and Y025/09), (Figure 3-3). In RC92a/hTERT cells the levels of 

DNA damage increased strikingly and revealed more than 90% DNA in tail 

for all treated samples (Figure 3-3 A). In primary samples the response 

appeared to be weaker than in RC92a/hTERT cells, but still stronger than 

with neutral comet assays (Figure 3-3 B and C). Comparative images 

presenting the observed amounts of DNA damage, revealed by either neutral 

or alkaline comet assays, emphasize the suitability of the alkaline comet 

assay to detect DNA damage in our system (Figure 3- 4). We concluded that 

the high pH in the alkaline version encouraged the unwinding and release of 

DNA better than in neutral comet assays and was furthermore able to detect 

several types of DNA damage induced by etoposide. 
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Figure 3-1 Assessment of DNA damage using comet assays. Cells were subjected to 

gel electrophoresis and stained with SYBR Gold for subsequent visualization by 

immunofluorescence microscopy. (A) The “head” of a comet represents undamaged 

DNA, whereas the “tail” represents damaged DNA. Image shows measurements 

made by AutoComet TriTek software. (B) Examples for cells with and without DNA 

damage from an alkaline comet assay. (C) Images as shown in B were analysed by 

TriTek comet score software. 
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Figure 3-2 Determination of suitability of neutral comet assays to detect etoposide-

induced DNA damage. (A) PNT1A cells and (B) selected primary cells (H020/09) were 

treated with the indicated concentrations and time points with etoposide and % of 

DNA in tail was quantified by neutral comet assays. Bars represent median values of 

% DNA in tail. At least 50 cells were analyzed, but usually more than 100 depending 

on their availability. 
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Figure 3-3 Determination of suitability of alkaline comet assays to detect 

etoposide-induced DNA damage. (A) RC92a/hTERT cells and (B, C) primary cells 

(Y004/09 and Y025/09 respectively) were treated with different concentrations of 

etoposide for the indicated times and % DNA in tail was assessed by alkaline comet 

assays. Bars represent median values of % DNA in tail. At least 50 cells were 

analyzed, but usually more than 100 depending on their availability. 
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Figure 3-4 Alkaline comet assays are more suitable for detecting etoposide-induced 

DNA damage. The images are representative for the highest amounts of % DNA in 

tail observed in prostate primary cells by performing (A) a neutral comet assay and  

(B) an alkaline comet assay. 
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3.1.1.2 Comparative study of the levels of DNA damage using alkaline 

comet assays 

In view of these findings we decided to proceed with alkaline comet assays 

for a comparative study of the DNA damage response in selected primary 

prostate malignant and benign populations. Initially, a number of alkaline 

comet assays with different etoposide concentrations and time points was 

conducted (Figure 3-5). With this assay SCs showed lower levels of DNA 

damage. There were significant differences between SCs vs. TAs (p = 

<0.001) and SC vs. CB (p= 0.007) at 30 µM etoposide for 45 min. When 

using more aggressive treatment conditions we observed a similar trend. 

Both malignant and benign SCs acquired less DNA damage than TAs and 

CBs. At an etoposide concentration of 250 µM for 45 min we found a 

significant difference in DNA damage between SCs and TAs (p=0.0029).  

During the preparation of the previously described assays we found that the 

combination of 30 µM etoposide for 45 min was the most suitable. It was 

therefore applied to a higher number of samples (as already included in 

Figure 3-5). Treatment, which was too aggressive, might have resulted in (i) 

missing a potentially different response among the populations and (ii) 

creating an enormous DNA fragmentation below the detectable range of a 

comet assay. The % DNA in tail seemed to be reduced at aggressive 

treatment conditions relative to lower concentrations (Figure 3-5). This 

might have been due the obliteration of the DNA, which would make it 

undetectable. We analyzed the comet assays performed for our optimal 

treatment condition in more detail by separating malignant and benign 

samples and by enabling a correlation of SCs, TAs and CBs that originated 

from the same patient (Figure 3-6). When we compared the extent of DNA 

damage in malignant SCs to their corresponding TAs, we found a higher 
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susceptibility to etoposide in TAs (p= 0.008), (Figure 3-6 A). CBs from the 

same tissue were also seen to present with a higher amount of DNA damage 

than SCs, but in this case the difference was not significant. Interestingly, 

the amounts of DNA damage measured in malignant SCs were very low 

(median fold change of % of DNA in tail = 1.3), but an increased damage 

response was seen in SCs from the samples H018/11 and H090/09, which 

were both taken from patients that underwent hormone therapy. In selected 

populations of benign origin, we found a significant increase of % of DNA in 

tail in TAs after etoposide exposure when comparing them to SCs (p=0.008) 

(Figure 3-6 B). Benign CBs increased their levels of DNA damage post 

treatment, but we found no significant difference in comparison to SCs and 

TAs. 

To visualize these differences between selected populations before and after 

treatment in regard to the % of DNA in tail, comparative example images 

were taken (Figure 3-7). As graphed in Figure 3- 6, SCs displayed less DNA 

damage following treatment (Figure 3-7 A, B) than TAs (Figure 3- 7 C, D) 

and CBs (Figure 3-7 E, F). 

In conclusion, both malignant and benign prostate SCs were less sensitive to 

etoposide treatment than their differentiated counterparts. Their decreased 

susceptibility to the induction of DNA damage might therefore be correlated 

with a higher resistance to conventional treatments. A method to examine 

the DNA damage response further and even more detailed than with comet 

assays (direct measurement), is the use of the DNA damage marker γH2A.X, 

the phosphorylated form of a  protein that is indicative of DNA lesions 

(indirect measurement).    
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Figure 3-5 Prostate SCs from benign and malignant samples are more resistant to 

etoposide treatment than CBs and TAs. Malignant and benign SCs, TAs and CBs 

were selected from cultures grown from primary tissues. Cells were treated for the 

indicated time points in suspension and the % of DNA in tail was quantified by 

alkaline comet assays. Each symbol represents one patient. Black marks represent 

median values of % DNA in tail. At least 50 cells, but usually more than 100 were 

analyzed for the treatment condition 30 µM, 45 min depending on their availability. 

For the other treatment conditions occasionally less than 50 cells were available for 

analysis. These exceptions are listed in the appendix. Wilcoxon rank sum test for 

the 45 min, 30 µM: SC vs. CB: p= 0.007, SC vs. TA: p = <0.001; 45 min, 250 µM SC 

vs. TA: p = 0.0029. Non-significant p-values are listed in the appendix. 
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Figure 3-6 Primary malignant and benign SCs are more resistant to etoposide 

treatment than CBs and TAs. (A) Malignant and (B) benign SCs, TAs and CBs were 

selected from cultures grown from primary tissues. Cells were treated with 30 µM 

etoposide for 45 min in suspension and the % of DNA in tail was quantified by 

alkaline comet assays. Each symbol represents one patient. At least 50 cells were 

analyzed, but usually more than 100 depending on their availability. Wilcoxon rank 

sum test for malignant samples: SC vs. TA: p= 0.008; Wilcoxon rank sum test for 

benign samples: SC vs. TA: p= 0.008. Non- significant p-values are listed in the 

appendix. 
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Figure 3-7 Comparative images of primary prostate populations following etoposide 

treatment. (A) SCs, (B) TAs and (C) CBs were selected from primary cultures and 

treated with 30 µM etoposide for 45 min. DNA damage was quantified by alkaline 

comet assays. Note the increasing % DNA in tail in (B) and (C) between the images 

on the left (before treatment) and images on the right (after treatment). The SCs 

could only be plated in a lower density, as SC yields are very low.  
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3.1.2 Assessment of the DNA damage after etoposide treatment by 

γH2A.X  

3.1.2.1 Suitability of the DSB marker γH2A.X to assess DNA damage 

and repair  

In order to detect DSBs in malignant and benign primary prostate SCs and 

TAs after exposure to etoposide, cells were stained for the DSB marker 

γH2A.X. The γH2A.X staining protocol was initially tested on unselected 

LNCaP, BPH-1 and primary cells (Figure 3-8). In both LNCaP and primary 

cells the number of γH2A.X positive cells increased strongly after treatment 

at different concentrations (Figure 3-8 A and E), whereas BPH-1 cells 

showed a weaker response (Figure 3-8 C). To assess whether or not γH2A.X 

was a suitable marker to examine repair in primary prostate cells, the drug 

was replaced by normal media after 45 min and cells were kept at 37ºC for a 

further 24 h. In LNCaP and primary cells the γH2A.X foci were reduced ~50% 

in comparison to the levels observed directly after 30 min (Figure 3-8 B, F). 

In BPH-1 cells a slight repair was observed after 24 h when compared to the 

initial levels of γH2A.X at 30 min. (Figure 3-8 D). 
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Figure 3-8 Determination of suitability of γH2A.X staining to assess etoposide 

induced DNA damage in cell lines and primary cells. (A, B) Unselected LNCaP cells, 

(C, D) unselected BPH-1 cells and (E, F) unselected primary cells (Y023/09) were 

plated on collagen I-coated 8-well chamber slides. (A, C, E) Cells were treated with 

the indicated concentrations of etoposide for 30 min, fixed, permeabilized and 

stained with a γH2A.X antibody. (B, D, F) The drug-containing media was replaced 

by normal media after 45 min and cells were kept for 24 h at 37ºC to assess repair. 

The value for the concentration 125 µM in (B) is not applicable, likely due to a 

mistake during the preparation. At least 50 cells, but usually more than 100 were 

counted by immunofluorescence microscopy depending on their availability and the 

percentage of γH2A.X positive cells was determined. 
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3.1.2.2 Qualitative differences of γH2A.X positive cells in primary cells 

When examining γH2A.X up-regulation in malignant and benign primary 

cells by immunofluorescence microscopy, qualitative differences regarding 

the γH2A.X pattern were observed. Mainly, γH2A.X positive cells with 

“classical” punctate foci and others with a diffuse staining throughout the 

nucleus (pan-nuclear staining). These two different types were further 

divided resulting in five different phenotypes (Figure 3-9 and 3-10):   

 Punctate foci were divided into the types “5-10 foci” and “>10 foci” 

  The pan-nuclear γH2A.X distribution came with different intensities 

and was therefore divided into: “pan-nuclear light” (PL), “pan-nuclear 

intermediate” (PI) and “pan-nuclear strong” (PS).  

This classification served later for a more detailed investigation of selected 

primary cells. 
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Figure 3-9 Schematic presentation of different γH2A.X phenotypes identified by 

immunofluorescence microscopy. Five different phenotypes of γH2A.X positive 

nuclei were found in malignant and benign primary prostate cells.  
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Figure 3-10 Different γH2A.X phenotypes in primary prostate cells identified by 

immunofluorescence microscopy. Primary prostate cells were plated on collagen I–

coated 8-well chamber slides, fixed and permeabilized. Cells were stained with an 

antibody against γH2A.X (A, B, C, D; images on the left) and with DAPI (A, B, C, D; 

images on the right). Note that the PL signal appears significantly more intense 

through the eyepiece and intensity decreases when images are transferred for 

printing. 
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3.1.2.3 Quantification of γH2A.X positive cells in selected primary 

malignant and benign populations following etoposide treatment 

Selected malignant and benign primary cells were incubated with etoposide 

for 45 min and stained for γH2A.X (Figure 3-11 and 3-12). The percentage 

of γH2A.X positive cells increased after treatment, which is presented as a 

fold change (Figure 3-11 A and 3-12 A). However, when comparing the 

median DNA damage levels of the two groups malignant SCs sustained 

significantly less damage in comparison to their corresponding TAs (p= 

0.032), (Figure 3-11 A). When applying etoposide to SCs and TAs of benign 

origin, an increased γH2A.X expression was found in both populations. 

Benign-derived SCs also sustained less DNA damage than TAs, even though 

the difference was not statistically significant (Figure 3-12 A).  

A second set of selected malignant and benign cells was subjected to 

etoposide for 45 min, replenished with normal media and left for 24 h at 

37ºC to allow repair (Figure 3-11 B and 3-12 B). In benign SCs and TAs a 

significant repair was observed when compared to the initial γH2A.X levels 

at 45 min (SCs 45 min vs. SCs 24 h: p=0.047; TAs 45 min vs. TAs 24 h: 

p=0.047; compare Figure 3-12 A to 3-12 B). However, it is difficult to 

compare the repair efficiencies of the two populations, as they sustained 

different amounts of DNA damage at 45 min. For SCs and TAs from 

malignant tissues no significant differences were revealed. In this case this 

is very likely due to the low number of malignant samples available for the 

statistical analysis (n=3). The assessments performed for Figures 3-11 and 

3-12 take all of the five different types of γH2A.X phenotypes into account.  
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Figure 3-11 SCs from malignant tissues are more resistant to etoposide treatment 

than their corresponding TAs. (A) SCs and TAs were selected from cultures grown 

from malignant primary tissues and plated on collagen I-coated 8-well chamber 

slides. Cells were treated with 30 µM etoposide for 45 min, fixed, permeabilized 

and stained for γH2A.X. (B) The drug-containing media was removed after 45 min, 

replaced by normal media and cells were kept for 24 h at 37ºC to allow repair. The 

evaluation includes all different types of yH2A.X positive cells as explained in 

Figures 3-9 and 3-10. Each symbol represents one patient. At least 50 cells, but 

usually more than 100 were counted by immunofluorescence microscopy depending 

on their availability and the percentage of γH2A.X positive cells was determined. 

Wilcoxon rank sum test: TA vs. SC 45 min: p= 0.032. Non-significant p-values are 

listed in the appendix. 
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Figure 3-12 SCs from benign tissues are more resistant to etoposide treatment than 

their corresponding TAs. (A) SCs and TAs were selected from cultures grown from 

benign primary tissues and plated on collagen I-coated 8-well chamber slides. Cells 

were treated with 30 µM etoposide for 45 min, fixed, permeabilized and stained for 

γH2A.X. (B) The drug-containing media was removed after 45 min, replaced by 

normal media and cells were kept for 24 h at 37ºC to allow repair. The evaluation 

includes all different types of yH2A.X positive cells as explained in Figures 3-9 and 

3-10. Each symbol represents one patient. At least 50 cells, but usually more than 

100 were counted by immunofluorescence microscopy depending on their 

availability and the percentage of γH2A.X positive cells was determined. The non-

significant p-values are listed in the appendix. 
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3.1.2.4 Qualitative differences of γH2A.X in selected primary 

populations following etoposide treatment 

To assess the frequency of the different γH2A.X phenotypes (as summarized 

in Figures 3-11 and 3-12), the patterns 5-10 foci, >10 foci, PL, PI and PS 

were quantified for each selected population (Figure 3-13). The different 

types of yH2A.X patterns were seen to increase after 45 min of treatment in 

all malignant populations (Figure 3-13 A), with SCs being affected less than 

TAs. The types >10 foci and PL were found to be particularly up-regulated 

when comparing malignant SCs to TAs. The phenotype >10 foci was 

significantly elevated in TAs when compared to SCs (p=0.032).  After 24 h 

the number of γH2A.X positive cells dropped for most phenotypes in SCs 

and TAs, but increased for PL and PI in the TA population (Figure 3-13 B).  

In benign samples the different yH2A.X phenotypes were found mostly at 

similar levels for TA and SCs, but the phenotype >10 foci was more strongly 

expressed in TAs (Figure 3-13 C). After 24 h, several γH2A.X phenotypes 

were present in comparable quantities in both benign SCs and TAs, but SCs 

had a higher fold–change of >5-10 foci and TAs in PI.  

In conclusion, malignant and benign SCs and TAs both responded to 

etoposide exposure by increased DNA damage, with SCs being less 

susceptible than TAs. 24 h of repair diminished mostly the higher DNA 

damage in benign and malignant TAs, except for the patterns PL and PI in 

malignant TAs. Less is known about the meaning of different γH2A.X 

phenotypes, but the lower γH2A.X levels found in SCs after an initial dose of 

etoposide might be correlated with their resistance phenotype. 
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Figure 3-13 Quantification of the different γH2A.X patterns in SCs and TAs from 

malignant and benign primary samples. (A, C) Primary cells from malignant and 

benign samples were selected and plated on collagen I-coated 8-well chamber 

slides. Cells were treated with 30 µM etoposide for 45 min, fixed, permeabilized 

and stained for γH2A.X. (B, D) The drug-containing media was replaced by normal 

media after 45 min and cells were left for 24 h at 37ºC to allow repair. At least 50 

cells, but usually more than 100 were counted by immunofluorescence microscopy 

depending on their availability and the percentage of the different phenotypes of 

γH2A.X positive cells was determined. Bars represent median values of fold change 

of the different patient groups as shown in Figures 3-11 and 3-12. Wilcoxon rank 

sum test for cancer 45 min >10 foci SC vs. TA: p= 0.032. Non-significant p-values 

and the determination of the median fold changes are listed in the appendix. 
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3.1.2.5 Detection of γH2A.X after excess thymidine treatment 

The DNA damage marker γH2A.X has been shown to respond to DSBs, but 

also to SSBs [166, 276, 277]. To assess whether this is the case in prostate 

primary cells we assessed γH2A.X expression in selected populations after 

72 h treatment with excess thymidine. Excess thymidine is a trigger of 

replications stress that results in the formation of SSBs, but not DSBs. The 

cells increased γH2A.X expression which indicated that γH2A.X responds to 

SSBs in prostate primary cells (Figure 3-14). 
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Figure 3-14 γH2A.X detects SSBs in primary prostate cells. Benign SCs, TAs and CBs 

were isolated from primary cultures, plated on collagen I-coated 8-well chamber 

slides and incubated for 72 h with 2 mM thymidine. Cells were fixed, permeabilized 

and stained for γH2A.X. At least 50 cells, but usually more than 100 were counted 

by immunofluorescence microscopy depending on their availability and the 

percentage of the different types of γH2A.X positive cells was determined. 
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3.2 Clonogenic recovery assays to determine the susceptibility of 

prostate epithelial cell populations to etoposide treatment 

3.2.1 Optimization of the experimental set up for clonogenic 

recovery assays 

Clonogenic recovery assays are an important method to investigate the drug 

resistance potential of cells. We seeded SCs and TAs originating from 

malignant and benign prostate tissues and assessed the influence of 

etoposide on their colony forming efficiency, which is defined as number of 

colonies/cells plated÷100. Reduction of colony forming efficiency by 

etoposide treatment indicates susceptibility to the drug. Colonies were 

classified into 2+, 4+, 8+, 16+ and 32+ cells, which equals 1, 2, 3, 4 and 5 

population doublings, respectively. Example images for a clonogenic assay 

performed with primary prostate cells are shown in Figure 3-15. First, 

unselected primary cells were plated and treated with DMSO (vehicle) or 30 

µM or 250 µM etoposide for 45 min and 3 h (Figure 3-16 A). Only at the 

combination 30 µM for 45 min did the cells form colonies, whereas all other 

combinations were found to be too aggressive and prevented the cells from 

any colony formation (0% colonies), (Figure 3-16 A). Hence, we decided to 

proceed with the concentration 30 µM etoposide for 45 min, as (i) we were 

able to find colonies at this concentration and (ii) the treatment conditions 

matched the treatment conditions used in the γH2A.X and comet assays, 

which enabled a better correlation of the results revealed from these 

different assays. To determine the appropriate time points for analyzing the 

number of colonies, the first two clonogenic recovery assays on selected 

populations were assessed at different time points (Figure 3-16 B and C). At 

day 4 (Figure 3-16 B) and day 3 (Figure 3-16 C) only a low number of 

colonies grew in the DMSO treated cells and the biggest colony size 32+ 

was only present in moderate quantities (as seen in 3-16 B). However, after 
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8 days (Figure 3-16 B) and 6 days (Figure 3-16 C) we found an increased 

colony number and increased colony sizes in SCs and TAs from both 

samples. Based on this assessment we decided that clonogenic recovery 

assays should be grown at least for one week prior to their assessment. 

However, the optimal time frame for growing a clonogenic recovery assay 

was later found to be strongly patient specific and in some cases longer 

times (up to 16 days) were required. 
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Figure 3-15 Examples for colonies observed in clonogenic recovery assays. (A) A 

crystal violet stained 32+ colony. (B) Crystal violet stained cells of a clonogenic 

recovery assay treated with DMSO (upper panel) or etoposide (lower panel). 
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Figure 3-16 Suitability of clonogenic recovery assay to assess susceptibility of 

primary prostate cells to etoposide treatment. (A) Unselected benign primary cells 

(Y030/11) were seeded as triplicates on collagen I-coated 6-well plates with 

irradiated feeder cells. Cells were treated with etoposide for the indicated times and 

concentrations or with the appropriate dilution of DMSO and kept at 37ºC. After one 

week different colony sizes (2+, 4+, 8+, 16+, 32+) were assessed. (B, C) Malignant 

primary cells (H035/11, PE531) were selected and seeded as triplicates on collagen 

I-coated 6-well plates with irradiated feeder cells. Cells were treated with 30 µM 

etoposide for 45 min or the appropriate dilution of DMSO and kept at 37ºC. The 

different colony sizes (2+, 4+, 8+, 16+, 32+) were assessed after the indicated 

days. The colony forming efficiency was calculated by the formula number of 

colonies/cells plated÷100. Note that the error bars refer to the total number of 

colonies observed. Error bars for specific colony sizes are listed in the appendix. 
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3.2.2 Comparison of the clonogenic recovery in SCs and TAs 

A series of clonogenic recovery assays were conducted with SCs and TAs 

from malignant (n=7, Y062/11 = CRPC) and benign origin (n=2) to compare 

their therapy resistance potential (Figure 3-17 A and B). In the majority of 

cancer samples SCs showed a higher clonogenic recovery (except for 

H049/11). We found that benign samples usually failed to form any colonies 

(also when not treated with etoposide) and only Y031/11 and Y030/11 

produced colonies. TAs from the sample Y031/11 showed a higher 

clonogenic recovery, whereas for Y030/11 SCs were more resistant. The 

bars as shown in Figure 3-17 A represent the entire five colony sizes 

observed in summary. A detailed analysis of the colony sizes is shown in 

Figure 3-17 B. The colony sizes 8+ and 16+ were found frequently and we 

assume that these would have developed into 32+ colonies, if allowed more 

time to continue. However, not all colonies grew with the same pace and 

faster growing ones would have started to merge and overgrow the plate. 

For this reason the clonogenic recovery assays had to be evaluated usually 

after 1-2 weeks. Please note that the risk of colonies merging can’t be 

excluded for the samples YO30/11 and YO31/11 due to an enhanced 

growth in the DMSO control wells. In one case SCs and TAs from a malignant 

sample (H035/11) were treated with 30 µM and left for 3 h (Figure 3-17 C). 

TAs did not form any colonies under this condition, but a small number of 

SCs survived and formed colonies in the sizes 32+ and 16+. In conclusion, 

the clonogenic recovery assays revealed that in particular malignant SCs 

recovered better from etoposide treatment than malignant TAs, which might 

be another hint for their role in therapy resistance in prostate cancer. 
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Figure 3-17 Malignant SCs have a higher clonogenic recovery after etoposide 

treatment than TAs. Malignant and benign primary cells were selected and seeded 

as triplicates on collagen I-coated 6-well plates with irradiated feeder cells. Cells 

were treated with 30 µM etoposide for 45 min or the appropriate dilution of DMSO 

and kept at 37ºC. (A) Summary of all colony sizes observed. (B) Detailed 

presentation of different colony sizes (2+, 4+, 8+, 16+, 32+) as shown in (A). (C) 

Selected cells of H035/11 were treated with 30 µM etoposide for 3 h. The 

percentage of the colonies grown was calculated by the formula number of 

colonies/cells plated÷100.  Note that the error bars refer to the total number of 

colonies observed. Error bars for each specific colony size are listed in the 

appendix. 
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3.3 Examination of the cell cycle status in primary prostate cells 

using Ki67 

Since the cell cycle status plays a critical role in mediating therapy-

resistance, selected primary cells originating from malignant and benign 

samples were selected and assessed for Ki67 expression. Ki67 is a nuclear 

protein strictly associated with proliferating cells [278]. It is present in all 

active stages of the cell cycle (G1, S, G2, and mitosis), but is absent from 

quiescent cells (G0) [278]. We investigated the presence of Ki67 by 

immunofluorescence microscopy (Figure 3-18 A and B). A significantly lower 

percentage of SCs from malignant tissues was found to be cycling (Ki67 

positive) in comparison to malignant TAs (p=0.016) and CBs (p=0.008) 

(Figure 3-19 A). The assessment of selected benign samples revealed a 

similar trend (Figure 3-19 B). Benign SCs proliferated less in comparison to 

benign TAs and CBs. These data suggest that the cell cycle might play a role 

in the therapy-resistance of SCs derived from malignant prostate tissues. 
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Figure 3-18 Example images for Ki67 staining in primary cells. Primary prostate 

cells were seeded on collagen I-coated 6-well plates, fixed, permeabilzed and 

stained for Ki67 and assessed by immunofluorescence microscopy. (A) Cells positive 

for Ki67 (left) and corresponding DAPI (right). (B) Cells negative for Ki67 (left) and 

corresponding DAPI (right). 
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Figure 3-19 A lower percentage of SCs of malignant and benign primary prostate 

samples is in cell cycle in comparison to TAs and CBs. (A) Primary malignant and (B) 

benign prostate cells were selected and plated on collagen I-coated 8-well chamber 

slides. Cells were fixed and stained with an antibody against Ki67. At least 50 cells, 

but usually more than 100 were counted by immunofluorescence microscopy 

depending on their availability and the percentage of Ki67 positive cells was 

determined. One exception was made for SCs derived from cancer sample H048/11: 

a number of 32 cells had to be analysed. Wilcoxon rank sum test cancer samples SC 

vs. TA: p= 0.016; SC vs. CB: p= 0.008. Non-significant p-values are listed in the 

appendix. 
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3.4 Assessment of cell death in primary cells  

One of the main obstacles in cancer therapy is resistance to apoptosis. In 

respect to prostate cancer cells our previous findings revealed that primary 

prostate cells reduced their colony forming efficiency through etoposide 

treatment (even if in TAs this effect was stronger than in SCs). This 

observation might have been a consequence of cell death through 

apoptosis. Alternatively, the cells could have remained viable, but suffered a 

loss of their colony forming potential. To address these questions further, 

we applied MTS assays to assess cell viability and apoptotic assays with an 

activated caspase in situ marker. Additionally, autophagy was tested as an 

alternative treatment response. 

3.4.1 Viability assays to assess the effect of anti-cancer drugs on 

unselected primary cells 

MTS assays on unselected primary prostate cells (PE665) served to elucidate 

the cell viability (Figure 3-20 A-F). The viability of cells decreased after 72 h 

incubation with the anti-cancer drugs etoposide (B), docetaxel (C), 

carboplatin (D), camptothecin (E) and doxorubicin (F).    
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Figure 3-20 Unselected malignant primary cells reduce viability after treatment with 

anti-cancer drugs. Unselected malignant primary cells (PE665) were plated on 

collagen I-coated 96-well plates, incubated with different concentrations of 

etoposide, docetaxel, carboplatin, camptothecin and doxorubicin and left for 72 h 

at 37ºC. Viability was assessed using MTS. Concentrations are shown from high to 

low (left to right) in each graph and listed in numbers in the appendix. The 

percentage of viable cells was determined by setting the DMSO control (first bar of 

each graph, grey) to 100% and calculating the values for the treated wells in 

percentile relation to that. Exception: The grey bar in the DMSO chart (upper panel, 

left) represents an untreated control. 
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3.4.2 Detection of active caspases for assessment of apoptosis  

The previously described observations in clonogenic recovery assays and 

MTS assays raised the question of whether cells underwent apoptosis 

following treatment. For this reason we applied an activated caspase in situ 

marker for flow cytometry analysis to examine the apoptotic response to 

etoposide treatment using the described gating strategy (Figure 3-21). 

Initially, we examined the suitability of the caspase in situ marker as an 

indicator for apoptosis in the prostate cell lines RC165N/h-TERT and 

RC92a/h-TERT (Figure 3-22 A-C).  The cells were incubated for 12 h, 24 h, 

48 h and 72 h with 15 µM, 30 µM, 60 µM and 125 µM etoposide. We 

detected an increase of active caspases at 48 h and 72 h in a dose 

responsive manner in both cell lines. To exclude the possibility that 

etoposide interfered with the FITC-channel (where the caspase in situ 

marker was measured), cells were incubated with 60 µM etoposide for 48 h 

and compared to an unstained and untreated population of cells. Etoposide 

did not interfere with the FITC-channel. When cells were treated with 

etoposide the activated caspase positive population increased significantly, 

suggesting an apoptotic mechanism.   

However, when the same caspase in situ marker was applied to primary 

samples, the outcome differed from that observed in cell lines (Figure 3-23). 

Cells originating from a patient who had failed hormone therapy (H149/11), 

a patient with a malignant disorder but without hormone therapy (H054/11) 

and cells from a BPH patient (Y030/11) were incubated with 125 µM 

etoposide for 24 h, 48 h and 72 h. The detected activated caspase levels for 

the three different samples were between 15 and 30% for the untreated and 

treated controls. None of the samples increased caspase activity significantly 
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at any treatment condition suggesting that apoptosis was blocked in these 

cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                         RESULTS 
 

131 
 

              

Figure 3-21 Gating strategy to detect apoptotic cells by flow cytometry. Debris was 

excluded by using the Forward/ Side Scatter. The cells in gate R1 were further 

analysed for binding to the caspase marker CaspACE™ FITC-VAD-FMK. The 

unstained control (cells only) was used to set the gates for the untreated and 

etoposide treated controls. Plots present the gating strategy by showing a primary 

sample (Y030/11). The same gating strategy was applied for cell lines (not shown). 

Note that there is no increase of apoptotic cells after 125 µM etoposide treatment, 

as apoptosis was found not to be activated in primary cells. 
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Figure 3-22 RC165N/ h-TERT and RC92a/ h-TERT cells undergo apoptosis after 

exposure to etoposide. (A) RC165N/ h-TERT and (B) RC92a/ h-TERT cells were 

incubated for the indicated time points and concentrations (µM) with etoposide and 

kept at 37ºC. Cells were stained with the caspase marker CaspACE™ FITC-VAD-FMK 

for flow cytometry. C demonstrates the relevant controls using the example of 

RC92a/h-TERT.  
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Figure 3-23 Unselected primary cells do not activate caspases following treatment 

with etoposide. Unselected primary cells (H149/11=CRPC; H054/11=cancer; 

Y30/11=BPH) were incubated for the indicated time points with 125 µM etoposide 

and kept at 37ºC. Cells were stained with the caspase marker CaspACE™ FITC-VAD-

FMK for flow cytometry. 
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3.5 Assessment of autophagy  

Since we found no sign for apoptotic cell death in primary prostate cells we 

assessed autophagy as an alternative response with an antibody against 

LC3B (the protein is thought to be involved in formation of autophagosomal 

vacuoles), (Figure 3-24). Primary cells were left untreated (Figure 3-24, 

upper image) or in 60 µM etoposide for 60 h (Figure 3-24, lower image). 

When assessed by confocal microscopy, treated cells were found to be LC3B 

positive, suggesting autophagy. It would have been interesting to assess 

this phenomenon further for different cell populations of different samples, 

as it might have provided information about an alternative cell death. In 

conclusion, primary prostate cells were found to lose viability, but were at 

the same time resistant to apoptosis. Preliminary results point out that the 

cells might have undergone autophagy, a mechanism that can result in cell 

survival or cell death. 
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Figure 3-24 Primary cells display features of autophagy following etoposide 

treatment. Primary cells of a cancer sample (H131/11) were plated on collagen I-

coated 8-well chamber slides  and kept in absence (A) or presence (B) of etoposide 

(60 µM, 60 h) at 37ºC. Cells were fixed and stained with an antibody against LC3B 

and assessed by confocal mircoscopy. 
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3.5 The role of ABC-transporters in mediating therapy-resistance 

in primary prostate populations 

3.5.1 Gene expression analysis of ABC-transporters in primary 

prostate cells 

ABC multidrug transporters are expressed in many human tumours and are 

thought to be a major source of chemoresistance. Hence, we studied ABC-

transporters at the mRNA level by re-assessment of a microarray analysis 

prepared for a previous project [109]. SCs and CBs from malignant and 

benign primary prostate tissues revealed the presence of several ABC-

transporters in both cell types (Figure 3-25). In particular ABCB1, ABCC1 

and ABCG2 belong to the three major types of ABC-transporters correlated 

with drug resistance and were therefore of further interest. ABCB1 was 

present in about 50% of the tested samples, although its expression at the 

mRNA level was very low. ABCG2 was equally expressed in SCs and CBs. We 

found the etoposide-transporting protein ABCC1 [279] significantly higher 

expressed in SCs when compared to CBs (p= 0.002).  ABCC5, which has not 

been shown to use etoposide as a substrate [279], was significantly higher 

expressed in CBs (p= 0.0016). According to these results, ABC-transporters 

might play a role in mediating therapy-resistance and explain some of the 

effects observed in this study. We decided therefore to proceed with 

functional assays. 
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Figure 3-25 Expression of ABC-transporters at mRNA level. Microarray data 

performed with primary malignant and benign SCs and CBs were obtained from 

Birnie et al. 2008 [109] and specifically analysed for mRNA-expression levels of 

ABC-transporters. Each line within one mark presents one patient. P-values marked 

in green indicate significant differences between the two populations: SC vs. CB for 

ABCC1 p=0.002; SC vs. CB ABCC5 p=0.0016. Non-significant p-values are shown 

in brown above the figure. Analysis by Alastair Droop. 
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3.5.2 Assessment of the functionality of ABC-transporters in primary 

cells using calcein efflux assays 

As described previously, a gene expression analysis of ABC-transporters in 

malignant and benign primary samples revealed that SCs and CBs expressed 

various ABC-transporters. However, the microarray-derived expression data 

did not necessarily reflect the cells’ capability to efflux chemotherapeutic 

drugs, as the ABC-transporters might not be expressed at protein level or 

not be functional, if expressed.  For this reason, a calcein efflux assay was 

applied to research the function of ABC-transporters in SCs, TAs and CBs.  

The method is based on the uptake of calcein-am into the cell cytoplasm 

and its metabolism into the green fluorescent substance calcein (Figure 3-

26). A decrease of calcein in the cytoplasm can then be correlated with 

functional ABC-transporters that are able to expel undesirable substances. 

Among different fluorescent substances available, calcein was considered as 

a suitable reagent for several reasons: the substance is highly fluorescent, 

which is an advantage when detecting small cell numbers. Additionally, it is 

transported by ABCC1 (calcein) and ABCB1 (calcein-am) [280]. Particularly, 

ABCC1 was of interest, as it is an etoposide-transporting resistance protein 

that was found to be significantly higher expressed in malignant and benign 

SCs. Substances that are fluorescent without prior metabolism such as 

doxorubicin, daunorubicin and mitoxantrone, were not used, as they have 

been found to lack sensitivity due to poor fluorescent properties and the 

risk of measuring a significant number of false negative results [281]. 
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Figure 3-26 Use of calcein to assess the functionality of ABC-transporters. Cells 

were incubated with calcein-am which is shortly after its uptake, metabolized into 

green fluorescent calcein. Cells that express functional ABC-transporters are able to 

efflux calcein and should therefore be less calcein positive. 
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3.5.2.1 Suitability of the plate reader to measure calcein efflux and 

rejection of other methods 

We tested different approaches to measure calcein efflux in primary prostate 

cell populations (Table 3-1). The initially chosen methods, flow cytometry 

and immunofluorescence microscopy, were rejected as they were difficult to 

conduct due to several technical disadvantages. The main difficulty with 

immuofluorescence microscopy was the inconsistent calcein signal within 

the wells where the cells were kept: the calcein signal varied strongly, 

depending on the position of the cells within the well. There were patches of 

cells that were able to metabolize the calcein-am to a greater extent than 

others. When capturing images of 100 cells per well at different time points, 

it was difficult to exclude the possibility that a change in the signal was not 

solely based on the technical variability within the wells. Furthermore, taking 

images of 3 x 100 cells (SCs, TAs and CBs) was a time-consuming 

procedure and did not allow measurement of the signal in different wells at 

exactly the same time point. The disadvantage of using flow cytometry for 

calcein efflux assessment was a constantly poor CD133 staining for SCs, 

which did not allow the collection of the required minimum of 100 cells for 

the SC population.  

In view of these disadvantages, we used a plate reader as an alternative. To 

examine  the  suitability  of  the  plate  reader  for measuring calcein, 100 to  

15 000 unselected primary prostate cells were incubated with calcein-am 

(Figure 3-27 A and B). The subsequent measurement by the plate reader 

showed that the number of seeded cells per well was proportional to the 

detected fluorescence signal.  
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Table 3-1 Advantages and disadvantages of different methods to measure calcein. 

Since the plate reader was able to detect calcein in cells and took the entire 

well into account, it was concluded to be a suitable quantitative method. To 

assess whether selected populations of primary cells were able to exclude 

calcein, SCs, TAs and CBs were seeded and the calcein signal was measured 

directly after incubation with calcein-am (15 min) and after 1 h, 2 h and 3 h 

(Figure 3-27 C and D). The initial signal measured (15 min) was between 30 

000 and 45 000 units for the three different cell populations. After 1 h the 

signal was significantly reduced to 15 000 to 25 000 units, resulting in the 

(subsequently discovered to be misleading) conclusion that all of the three 

cell types were highly capable of calcein extrusion. At 2 h and 3 h the signal 

was reduced further. This initial experiment led to the decision to conduct 

further calcein efflux assays with the same method. However, it was 

subsequently observed that the decrease of the signal and in particular the 

change between 15 min and 1 h, was highly affected by an artefact resulting 

from the required washing steps: measuring between different time points 

required washing steps in between, to exclude the possibility of measuring 

calcein in the media instead of calcein inside the cells. Unexpectedly, the 

washing steps led to a loss of cells, even though the washing steps were 
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gently performed with PBS. This was unexpected as the cells have a high 

affinity for collagen I-coated plates and are therefore strongly adherent. 

However, the loss of cells during different washing steps significantly 

influenced the measured signal, to the extent that a decrease of the signal 

due to efflux or a loss of cells through the washing, were indistinguishable.  
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Figure 3-27 Suitability of plate reader to measure calcein in primary cells. (A) The 

indicated numbers of unselected primary cells were plated in triplicate on collagen 

I-coated 96-well plates and left o/n to adhere. Cells were incubated with calcein–

am for 15 min and washed with PBS. Wells were filled with KSFM and the calcein was 

measured by a plate reader. Each bar represents the average of one triplicate. (B) 

Calcein signal of unselected cells detected by immunofluorescence microscopy. (C) 

Schematic presentation of the method used in D. (D) Primary cells (H054/11) were 

selected. CBs and TAs were seeded in 1 x triplicate on collagen I-coated 96-well 

plates. The entire SC yield was plated at one well. The selected populations were left 

for 2 h to adhere and cells were incubated for 15 min with calcein-am-containing 

media. The calcein signal was measured in the same well(s) directly (15 min) and 

after 1 h, 2 h and 3 h. Each time point represents the calcein signal for one cell 

population at the indicated times. Standard deviations for each mark are listed in 

the appendix.  
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3.5.2.2 Determination of cell loss due to different washing methods 

There were two main ways to use calcein. In Figure 3-27 C and D calcein 

was used to measure efflux. However, due to the previously described 

difficulties calcein was used in a second way: to determine the loss of cells 

on collagen I-coated 96-well plates due to required washing steps. In 

comparison the two methods used with calcein were: 

 Method 1: Use calcein to measure efflux  

          Plate cells → add calcein → wash → measure 

 Method 2: Use calcein to determine effect of washes on cell loss     

Plate cells → wash → add calcein → measure 

Figure 3-28 refers to method 2 and a detailed schematic presentation of the 

experimental set up is shown in Figure 3-28 A. Unselected populations were 

plated on collagen I -coated 96-well plates and left to adhere for 2 h (Figure 

3-28 B and C) or o/n (Figure 3-28 D and E).  Cells were washed using a 

vacuum pump (B, D) or alternatively with a pipette (C, E). The different 

washes (wash 1, wash 2, wash 3, wash 4) equal the number of washes in a 

calcein efflux experiment: wash 1 equals the washes at the 15 min point, 

wash 2 the 1 h time point, wash 3 the 2 h time point and wash 4 the 3 h 

time point. Regardless of the type of method applied for washing (vacuum 

pump or pipette) or the allowed time for adherence (2 h or o/n), the calcein 

signal decreased with increasing washes. These findings suggested that the 

washes resulted in a loss of cells leading to an artefact (as shown in Figure 

3-27 D). It was therefore not possible to distinguish between a decrease of 

the signal due to calcein efflux or due to reduction of cells on the plates due 

to washing.  
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Figure 3-28 Impact of different washing methods on the cell number in the 

collagen-coated 96-well plates. (A) Schematic presentation of the method used in 

B-E. (B-E) Unselected primary cells (H069/11) were plated as triplicates on 

collagen-coated 96-well plates and washed as indicated. Cells were left to adhere 

for 2 h (B, C) or o/n (D, E). Wells were washed with the same number of washes as 

used in Figure 3-27 by a vacuum pump (B, D) or with a pipette (C, E). After applying 

the washes calcein-am-containing media was added and left for 15 min to 

determine cells remaining after washing and measured by a plate reader. Wash 1 

equals the washes at the 15 min time point, wash 2 at the 1 h time point, wash 3 at 

the 2 h time point and wash 4 at the 3 h time point. Each bar represents the average 

measured for 1 triplicate. 
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3.5.2.3 Minimization and prevention of cell loss when conducting 

calcein efflux assays  

Due to the previously described results, there were two main ways to 

minimize or even prevent the loss of cells affecting the fluorescent signal 

significantly:  

(i) Firstly, a comparison of time points that had a minimum number of 

washes between them e.g. by comparing the values in Figure 3-27 C using 

the 2 h time point and the 3 h time point as there was only one washing 

cycle in between. However, to use the 15 min time point for comparison to 

any other value in the time course would not have been suitable, as the loss 

of cells after the 15 min time point was very high (see Figure 3-28 B, C). 

(ii) A method that entirely excluded the possibility of a decrease of signal 

due to a loss of cells caused by washing was the one used in Figure 3-29. In 

this approach TAs and CBs were plated in 2 x triplicates. Both triplicates 

were incubated for 15 min with calcein-am-containing media. One triplicate 

was measured directly after the end of the incubation time, the other 

triplicate was measured after 3 h. The number of washes was kept constant 

between the different sets of wells. Due to the SCs being such a very rare 

population, it was not possible to plate them as triplicates. The maximum 

number of SC replicate wells was therefore two, but only for samples that 

contained a high number of SCs. For those with a poor SC yield this method 

could not be used. Responses in selected populations of the malignant 

samples H035/11 and H131/11 were measured with the above mentioned 

method. Interestingly, in all cell populations, there was an increase of signal 

between the 15 min and the 3 h time point. This finding led to the design of 

a further experimental set up as described below. 

 



                                                                                                         RESULTS 
 

150 
 

 

Figure 3-29 The time points 15 min and 3 h are not suitable to measure calcein 

efflux in selected primary cells. (A) Schematic presentation of the method used in B. 

(B) CBs and TAs were seeded in 2 x triplicates (15 min, 3 h) on well collagen-coated 

96-well plates. The entire SC yield was divided between two wells. The selected 

populations were left o/n to adhere. Cells were incubated for 15 min with calcein-

am-containing media, with PBS and the calcein signal was measured directly (15 

min) or after 3 h to allow the detection of calcein efflux by the plate reader Each bar 

represents the average of one triplicate.  
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3.5.2.4 Determination of calcein efflux in unselected primary cells and 

RD-ES cells 

The observation of an increase of the signal in all cell populations between 

15 min and 3 h as presented in Figure 3-29 led to the design of a further 

experimental improvement. This was based on the assumption that all cell 

types might metabolize more calcein-am into calcein than effluxing calcein, 

in particular in the first 1 or 2 h when there might have still been a distinct 

amount of calcein-am left in the cytoplasm. Thus calcein had not been 

metabolized when measuring at earlier time points. Only after most of the 

calcein-am molecules in the cytoplasm were metabolized, should an efflux 

have been detectable (if it existed). For this reason, unselected populations 

of the malignant primary sample H054/11 and benign sample Y023/11 

were plated in four triplicates (Figure 3-30 A and B). After incubation with 

calcein-am, each triplicate was left for different times before measurement. 

In both samples the following trend was observed: the balance between 

production of calcein and its efflux changed after 2 h. Before this time point 

the metabolism into calcein was more dominant, so that a decrease of the 

signal could not be detected, even if it was likely that there was some efflux 

present also within the first 2 h. At 2 h most of the calcein-am in the 

cytoplasm seemed to be used up and an efflux was detected between 2 h 

and 3 h. Here, the numbers of the fluorescent signal in samples H054/11 

and Y023/11 rose from 15 min to 1 h and 2 h. After reaching this 

maximum, the signal decreased at 3 h. To confirm the suitability of the 

plate reader method to detect calcein efflux, the ABC-transporter 

expressing cell line ES-RD was used (Figure 3-30 C). Similar to primary 

cells, an increase of the signal was initially detected. After peaking at 2 h, 

the signal decreased due to calcein efflux. This trend was confirmed by 
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repeating the experiment (Figure 3-30 C, green bars).These results enabled 

a re-analysis of a data set acquired earlier. 
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Figure 3-30 Unselected populations of primary cells and RD-ES cells are able to 

efflux calcein. (A, B) Unselected primary cells (H054/11, Y023/11) were plated as  4 

x triplicates (15 min, 1 h, 2 h and 3 h) on collagen I-coated 96-well plates and left 

o/n to adhere. Cells were incubated with calcein-am for 15 min. Calcein-am-

containing media was washed off with PBS, replaced by KSFM and measured directly 

(15 min) or left to allow efflux for the indicated time points (1 h, 2 h, 3 h). (C) 

Calcein efflux of RD-ES cells. Each bar represents the average of one triplicate. The 

experimental set up is similar to that shown in 3-29 A. 
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3.5.2.5 Measurement of calcein efflux in primary cells 

The findings in Figures 3-27 to 3-30 directed a re-analysis of a set of data 

that was measured according to the strategy in Figure 3-27 C. It was 

produced earlier by using a vacuum pump for washes and allowing the cells 

to adhere for 2 h.  Hence, Figure 3-31 was created based on the following 

considerations:  

(i) The loss of cells when washing with a vacuum pump and allowing the 

cells to adhere for 2 h was relatively low, in particular when only comparing 

time points that did not have more than one wash in between them (only the 

difference between 15 min and 1 h would have been too high), (Figure 3-28 

B).  

(ii) According to Figure 3-30 A and B calcein efflux was detectable after 2 h. 

The change of the calcein signal in SCs, TAs and CBs is most likely due to 

efflux of calcein, even when taking into consideration that a slight loss of 

cells might have played a role for the decrease of the signal (Figure 3-31). 

When normalizing the signal measured at the 3 h time point to the one at 

the 2 h time point by setting the 2 h time point measured for each 

population to 100% no significant different efflux capabilities were found 

among the populations. This result suggests that enhanced drug efflux is 

not the dominant resistance mechanism in SCs from malignant and benign 

prostate tissues. 
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Figure 3-31 SCs do not display an enhanced efflux in comparison to TAs and CBs. 

The detection of calcein efflux was conducted as shown in Figure 3-27 C and D. CBs 

and TAs were seeded as 1 x triplicates on collagen-coated 96-well plates. The 

entire SC yield was plated on one well. The selected populations were left for 2 h to 

adhere and cells were incubated for 15 min with calcein-containing media. Cells 

were washed with PBS and the calcein signal was measured in the same well(s) after 

2 h and after 3 h. The fluorescence intensity measured after 2 h was set to 100% 

and the intensity at 3 h calculated in percentile relation to this value. Each symbol 

represents the calcein signal for one cell population of one patient. Standard 

deviations for each data point and the non-significant p-values are listed in the 

appendix. 

 
 
 

 



                                                                                                   DISCUSSION 
 

156 
 

 

 

 

 

 

 

Chapter IV 

DISCUSSION 

 

 
 

 

 

 



                                                                                                   DISCUSSION 
 

157 
 

4. DISCUSSION 

In summary our results indicate that SCs from malignant and benign 

prostate tissues are better protected against DNA damage than TAs and 

CBs. The colony forming efficiency was less affected in SCs after exposure to 

DNA damaging conditions. Following this observation we examined 

potential mechanisms of the increased therapy-resistance and investigated 

ABC-transporters, cellular quiescence, apoptotic susceptibility and 

autophagy in prostate primary cells. We found that ABC-transporters were 

expressed at mRNA level in SCs and CBs, but these seemed not to be 

causative for the enhanced therapy-resistance in SCs. However, the 

assessment of cellular quiescence, a frequent obstacle in cancer therapy, 

revealed that a higher proportion of SCs was in a dormant stage. This might 

be one of the key factors leading to an increased resistance. Unlike prostate 

cell lines, primary prostate epithelial cells seemed to lack the ability to 

undergo apoptosis after exposure to etoposide. Preliminary data suggest 

that autophagy might be an escape mechanism to apoptosis. 

4.1 Assessment of DNA damage in prostate cell populations 

following etoposide treatment 

When we employed both comet assays and staining for γH2A.X expression 

to assess DNA damage in SCs and differentiated cells from malignant and 

benign prostate tissues, by both methods the SCs were less susceptible to 

etoposide-induced DNA damage than their differentiated counterparts.  

4.1.1 Comparison of neutral and alkaline comet assays as methods to 

detect DNA damage in primary cells  

Neutral comet assays did not detect high levels of DNA damage, whereas 

alkaline comet assays were suitable for this purpose. This finding concurs 

with results from other groups that used alkaline comet assays as the 
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preferred version to detect DNA damage following etoposide treatment. For 

example Watters et al 2009, used alkaline comet assays as the method of 

choice after treating immortalized wild-type mouse embryonic fibroblasts 

with etoposide [143]. In another study neutral constant field gel 

electrophoresis (CFGE) did not detect a high amount of etoposide induced 

DNA damage in SV40 transformed fibroblasts, but alkaline CFGEs were a 

suitable technique [166]. By combining these methods the authors found 

that in their system, only 3% of the DNA strand breaks caused by etoposide 

were indeed DSBs. This observation is the most likely explanation why in 

neutral comet assays with primary cells only a moderate % of DNA in tail was 

identified in these studies.   

4.1.2 Observation of different γH2A.X phenotypes  

The previously described comet assays provide a direct measurement of 

DNA damage. In contrast, the identification of DNA damage by the histone 

variant γH2A.X is an indirect and more sensitive method. In addition to 

classical discernible γH2A.X foci, we also found cells with a pan-nuclear 

distribution of the marker. This finding is also in accordance with a previous 

study in our lab that assessed prostate primary cells for up-regulation of 

γH2A.X after irradiation. In this case, a pan-nuclear γH2A.X staining was 

found occasionally, but as this study used a different source of DNA 

damage, the predominant type of foci observed were classical foci (personal 

communication with F.M. Frame). A pan-nuclear γH2A.X pattern after 

etoposide treatment has also been identified by other groups. For example, 

in RKO cells (colon cancer) the same pattern was found after exposure to 

etoposide [275]. The authors interpreted their finding as a question of drug 

concentration and software adjustment. A pan-nuclear γH2A.X pattern after 

etoposide treatment has also been reported after treatment of mouse 
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embryonic fibroblasts [143]. Further sources of damage such as UV 

irradiation are also known to cause a pan-nuclear γH2A.X distribution [282, 

283]. Its meaning is mostly unknown, but some studies correlated the 

appearance with S-Phase cells [276, 284]. If this holds true, a higher 

percentage of malignant prostate primary TAs would be in the S-Phase, 

which agrees with the nature of TAs and is furthermore supported by our 

Ki67 staining, where a significantly higher number of TAs were in cycle. 

Presumably the unwound and open DNA during S-Phase is a cause for the 

pan-nuclear yH2A.X pattern. 

4.1.3 Higher resistance to etoposide-induced DNA damage in SCs  

The higher resistance to etoposide-induced DNA damage in SCs is in 

accordance with data from other studies and can be interpreted as a first 

hint of more successful survival for SCs. Pedriatic brain tumour 

neurospheres, which are enriched for CD133+Sox2+ CSCs, displayed a higher 

resistance to etoposide in comparison to monolayers, as shown by alkaline 

comet assays [285]. Another study showed that Hs578T cells (breast cancer) 

could be sensitized to drugs such as etoposide and doxorubicin: After 

treatment with salinomycin, the cells showed a higher amount of DNA 

breakage as assessed by comet assays and markers of DNA damage such as 

γH2A.X and 53BP1 [286]. As salinomycin has been shown to specifically 

inhibit CSCs [287], it would have been interesting to test this drug on 

prostate SCs. However, when human embryonic and induced pluripotent 

stem cells were exposed to etoposide to test their genomic stability, an 

inverse finding was revealed [288]. The pluripotent cells were more 

susceptible to DNA damage, in comparison to more differentiated cells. The 

authors did not assess possible reasons for their observation, but one 
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explanation might be that the embryonic SC were not quiescent [288], as 

CSC sometimes are [289, 290].  

4.1.4 The DNA damage response in the prostate  

Our data match studies on cultured prostate tissues derived from radical 

prostatectomy specimens that were cored at the unaffected lobe [291]. In 

the basal compartment, phosphorylation of H2A.X upon irradiation, 

etoposide or daunomycin treatment was fast, transient and dependent on 

ATM, but these responses were only moderate in luminal cells [291]. The 

authors correlated these differential DNA damage responses with distinct 

chromatin marks [291]. Basal cells contained higher levels of euchromatin, 

which is more accessible for repair complexes, whereas the DNA in luminal 

cells was packed in heterochromatin [291]. This study agrees with our 

finding in respect to the up-regulation of γH2A.X following etoposide 

treatment in TAs, which are located in the basal compartment. However, the 

previously described study did not specifically assess the prostate SCs which 

showed a differential response in our experiments. In this case, our study 

has gone deeper in understanding the DNA damage response by taking into 

account the hierarchy of the prostate epithelium and the different 

subpopulations. The higher resistance to DNA damage of primary malignant 

and benign prostate SCs in comparison to more differentiated cells has also 

been found when using irradiation (personal communication with F.M. 

Frame). Interestingly, in malignant and benign SCs the presence of 

heterochromatin was identified, which might provide an explanation for the 

lower γH2A.X levels (personal communication with F.M. Frame). 

4.1.5 Conclusions: γH2A.X up-regulation after treatment 

The up-regulation of γH2A.X after treatment is an indicator of DNA strand 

breaks, which result in different outcomes for the cell (cell cycle arrest, 
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repair or apoptosis). Whereas in the literature γH2A.X is often described as a 

specific DSB marker [166, 277] recent findings suggest that it also responds 

to different types of DNA damage such as SSBs [276]. Hence, it is likely that 

both malignant and benign prostate cells up-regulate γH2A.X not only by 

etoposide-induced DSBs, but also due to SSBs. A back-up for the 

assumption that primary prostate cells up-regulate γH2A.X due to SSBs, 

were the specific experiments, using a treatment condition that causes SSBs 

(excess thymidine): here we also observed an up-regulation of γH2A.X with 

SCs showing more resistance to DNA damage.  

A clearance of foci is correlated with repair. We monitored a reduction in the 

percentage of γH2A.X positive cells, as well as foci per cell in malignant and 

benign TAs after 24 h. In malignant and benign SCs we mainly observed a 

decrease of foci per cell. However, it was hard to compare repair in SCs and 

TAs directly, as they sustained different amounts of DNA damage and had 

therefore a different distance to the baseline. To test repair in SCs it would 

have been necessary to use a more aggressive treatment.  However, other 

groups have observed a more efficient repair e.g. in brain tumour CSCs 

[285]. 

The appearance of γH2A.X is usually seen as a sign of the genotoxic 

endpoint for the cells. Evaluating γH2A.X has been suggested as a standard 

in-vitro genotoxicity test to complement micronucleus assays, comet assays 

and mutation frequency tests [143]. According to Muslimovic et al. 10% of 

the etoposide–induced DSBs resulted in γH2A.X phosphorylation and these 

were closely related to toxicity [166]. A consequence of reaching the 

genotoxic endpoint is often apoptotic cell death e.g. after incubation with 

etoposide [292]. Our results confirm this observation in part. Indeed, for a 

high proportion of our cells, the appearance of γH2A.X foci could be 
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interpreted as a genotoxic endpoint, but we cannot confirm that this 

genotoxic endpoint results in apoptosis. The question remains as to why 

SCs acquired less DNA damage than more differentiated cells. Among many 

different reasons the stage of the cell cycle might play on important role.  

All these possibilities will be discussed. 

4.2 Clonogenic recovery of primary prostate epithelial cells 

Clonogenic assays are a meaningful tool to reveal information about the 

recovery of cells that have been exposed to various treatments. We found 

that the clonogenic potential of SCs, in particular from malignant tissues, 

was less affected following etoposide treatment than those of TAs derived 

from the same tissue. The same trend was confirmed when using irradiation 

to treat selected populations of primary prostate epithelial cells (personal 

communication with F.M. Frame). Interestingly, benign samples often failed 

to produce colonies, even when left untreated. Hence, only two clonogenic 

assays conducted with BPH derived cells were evaluated. We assume that 

this was based on the fact that cancer cells are proliferating faster and have 

therefore a higher clonogenicity than BPH cells. The two BPH samples 

capable of colony formation were those that were most Ki67 positive among 

the benign samples in our study.  

These observations of SCs of malignant origin being more resistant to drugs 

such as etoposide was also seen when using SCs from other sources and 

agrees with our data. For examples spheres grown from cultured brain 

tumour cells that were enriched for SC-like cells showed a higher clonogenic 

recovery after etoposide treatment than monolayers which only contained a 

low number of SC-like cells [285]. CD44+CD24- breast CSCs enriched cell 

lines were seen to have a higher viability after treatment with 

chemotherapeutic drugs than populations containing only a low proportion 
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of CSCs [287]. Out of 16 000 agents only salinomycin targeted the CSC 

population specifically and decreased their survival in vitro and in vivo [287]. 

Furthermore, the authors found that the common chemotherapeutic agent 

paclitaxel increased the ability of CD44+CD24- CSCs to form mammospheres 

2-fold [287]. In one case when we used a prolonged incubation time of 

etoposide (3 h instead of 45 min) the TAs were prevented entirely from 

forming colonies. The SCs were reduced in colony formation, but were still 

able to form a small number of colonies. This leads to the speculation that 

these recovering cells might be the ones that are causal for a relapse in vivo. 

Indeed, there are reports about a small fraction of tumour cells that survive 

therapy, namely minimal residual disease, not only in leukemia, but also 

lung cancer and breast cancer [293-296]. Our data suggest that minimal 

residual disease in prostate cancer might be mediated by SCs rather than 

differentiated cells. The hallmarks that provide the protection specifically for 

SCs from malignant tissues are very likely to be multifactoral. Examples of 

protection mechanisms of CSCs, are  cellular dormancy [297, 298], 

expression of ABC-transporters [266, 267, 280, 281, 299-305] apoptotic 

resistance [218-220, 306-309], limitation of ROS production [254] or the 

presence of high levels of heterochromatin (personal communication with 

F.M. Frame), [291], and enhanced DNA repair [297]. Some of these 

mechanisms were assessed in this study and will be discussed below.  If it 

holds true that CSCs are the main drivers of tumour recurrence, future 

strategies to target specifically CSCs are crucial. Some approaches have 

been already made e.g. high throughput screening to identify agents that 

target CSCs in vitro and in vivo [287]. However, there is an urgent need to 

study these agents more extensively on cells cultured from patient samples 

instead of cell lines. Nevertheless, there are a few clinical trials for different 

types of cancer e.g. pancreatic, breast and colon present at the time that 
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aim to target major signaling pathways in CSCs such as Wnt, Hedgehog or 

Notch [310].  

4.3 Cellular quiescence as a resistance mechanism in SCs derived 

from malignant prostate tissues 

Cellular quiescence or dormancy refers to cells in the G0 phase of the cell 

cycle. Quiescent cells are an obstacle in cancer therapy, as treatments are 

usually directed against fast proliferating cells [311]. We assessed the 

quiescence in selected populations of primary prostate epithelial cells of 

malignant and benign origin and found that a higher proportion of SCs, in 

comparison to TAs and CBs, was Ki67 negative. This finding is in accordance 

with the nature of normal tissue SC that are usually dormant and therefore 

better protected against DNA damage [297]. This enables SCs to avoid 

mutations through replication that would diminish the potential for self-

renewal and differentiation resulting in the degradation of tissue, ageing 

phenotypes or cancer [312]. It seems that malignant and benign SCs from 

the prostate maintain this protection mechanism and are therefore more 

resistant to DNA damage induced by chemotherapy or irradiation. The 

higher proportion of SCs (benign and malignant origin) in a quiescent stage 

was also confirmed by a series of experiments in our group that used Ki67 

staining and EdU incorporation (BrdU analogue) on a different set of primary 

samples (personal communication with F.M. Frame). The mainly quiescent 

nature of CD133+/α2β1integrinhigh SCs was also confirmed by [106]. The 

authors isolated SCs directly from BPH samples and assess Ki67 expression 

[106]. More than 80% of the SCs were found to be dormant [106]. Data from 

other groups support the hypothesis that dormancy occurs frequently in 

CSCs and concur with our results. For example CML-SCs were dormant and 

it was speculated that this is a likely resistance mechanism against anti-
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cancer treatment [313, 314]. Quiescence has also been reported for CSCs 

from the esophageal, rectal carcinoma, breast and pancreatic tumours [289, 

290, 315, 316]. 

A link between the slow cycling nature of CSC populations and therapy 

resistance has been demonstrated in the colon, breast, ovaries, and 

pancreas [247, 249, 251, 316]. Quiescent CSCs survived in vivo therapies 

that killed the bulk tumour cells and required in vitro increased doses to 

decrease viability in comparison to rapidly cycling cells [247, 249, 251, 

316]. These findings emphasis how ineffective conventional therapies can 

be on dormant cells and can provide explanations why tumors that seem to 

be entirely regressed after treatment can recur [242]. 

To kill quiescent CSCs successfully, the application of agents that target 

non-cycling cancer cells must be the alternative. It would have been 

interesting to assess a substance that acts in a cell cycle independent 

fashion such as the trk tyrosine kinase inhibitor CEP-751 (KT6587) that has 

been used to examine the elimination of prostate cancer in animal models 

[317]. Alternatively, dormant cells could be treated in a manner that 

encourages them to re-enter the cell cycle. Such an approach was made for 

hematopoietic SCs that were switched from dormancy to self-renewal 

following stimulation with G-CSF [298]. This mechanism might offer a novel 

treatment option and be meaningful for the eradication of malignancy. 

Indeed, CML-SCs were eliminated in vitro by imatinib when pre-treated with 

G-SCF [318]. However, one of the main challenges for the clinical use of 

these substances will be to activate specifically CSCs whilst sparing healthy 

SCs. Targeting healthy SCs would be dangerous for the patient and lead to 

tissue atrophy or indeed could drive malignancy. At this time there is no 



                                                                                                   DISCUSSION 
 

166 
 

substance available that switches exclusively CSCs from dormancy to an 

activated stage. Hence, further research into substances and their suitability 

for clinical use is required. 

4.4 Apoptotic inhibition in prostate primary cells  

The mechanism of action of our “model drug” etoposide is the induction of 

apoptosis by inhibiting topoisomerase II [277, 319, 320], even if some 

studies reported that, paradoxically, etoposide might also reduce the 

expression of several caspases and Bcl-2 related genes [321]. We found that 

malignant and benign primary prostate epithelial cells failed to undergo 

apoptosis following etoposide treatment, whereas the prostate cell lines 

RC92a/ h-TERT and RC165N/h-TERT were able to do so. This effect seems 

not only to be observed after etoposide treatment of prostate epithelial 

primary cells, but also after high doses of irradiation (personal 

communication with F.M. Frame). Recent reports which addressed the 

question of apoptotic resistance in prostate cells agree with our findings. A 

higher susceptibility of prostate cell lines to apoptosis in comparison to 

primary cells has been seen after treatment with drugs such as docetaxel, 

mitoxantrone, methotrexate  or cisplatin [267]. The immortalization of the 

cell lines obviously led to genetic changes that altered their response to 

treatment.  

Apoptotic resistance remains one of the main obstacles to successful cancer 

therapy. Its failure can depend on many molecular factors, for example p53, 

the members of the Bcl-2 family, NF-ƘB and beclin1. Bcl-2 overexpression 

has been linked to a failure of treatment strategies such as radiation, 

chemotherapeutic drugs (e.g. docetaxel) or androgen deprivation [308, 

322]. p53 is frequently mutated in metastatic prostate cancer [68, 323, 324] 

and its lack of  function has been shown to inhibit apoptosis in cell lines and 
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(primary) prostate cells preventing the success of anti-cancer treatment  

[307, 325]. The pro-apoptotic regulators Fau and Bcl-G were downregulated 

in prostate tumours relative to normal prostate tissue and BPH and shown to 

play a role in apoptotic sensitivity [309]. Also the repair factor γH2A.X, 

which we found to be up-regulated after etoposide treatment, is thought to 

play a role in treatment success by maintaining cell cycle arrest and 

preventing apoptosis [326], even though γH2A.X has also been described as 

a marker for the genotoxic endpoint of the cell [143].  

As we didn’t detect apoptosis in primary prostate epithelial cells, we took 

alternative cellular responses such as senescence, necrosis and autophagy 

into consideration. As primary prostate epithelial cells displayed enlarged 

vacuoles after etoposide treatment (experiment conducted for a different 

study by a former lab member), we decided to test for autophagy as an 

alternative treatment response. Preliminary findings demonstrated the 

presence of LC3B positive cells following the administration of etoposide. 

Indeed, autophagy is known as a resistance mechanism for multiple 

therapeutic substances in the setting of apoptotic inhibition [218-220]. In 

vivo and in vitro work on the prostate cancer cell lines PC-3 and LNCaP has 

demonstrated autophagy as a mechanism to escape apoptosis [219]. By 

inhibiting autophagy the authors observed an increased ability of the cells  

to trigger programmed cell death [219]. It is possible that our primary 

prostate epithelial cells used autophagy as a resistance mechanism.  

In conclusion, the observed apoptotic resistance can rely on many factors. 

To encourage an apoptotic mechanism in primary prostate epithelial cells, it 

would probably be necessary to block anti-apoptotic factors before the 

administration of therapy. As we found cells to be autophagy positive, it 

would have been interesting to pursue this work e.g. by down-regulating 
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the autophagy gene beclin1 prior to the treatment. To reveal more detailed 

information it would also be crucial to assess these impacts on selected 

populations. Based on previous reports it is likely that SCs are more 

resistant to apoptosis [109, 113, 327] e.g. through expression of NF-ĸB 

[109, 113]. The differential findings concerning the apoptotic sensitivity in 

cell lines vs. primary cells confirm the importance of the use of cells from 

primary tissues for research.  

4.5 The role of ABC-transporters in mediating therapy-resistance 

4.5.1 Gene expression analysis of ABC-transporters  

ABC multidrug transporters are expressed in many human tumours. They 

are a major cause of chemoresistance and have also been identified in 

prostate cell lines and primary prostate cells [266, 267, 299, 300]. Our gene 

expression analysis of ABC-transporters in SCs and CBs from malignant and 

benign primary prostate tissues indicated the presence of ABC-transporters 

in SCs and CBs, suggesting they might be a factor in therapy failure. Out of 

the 10 ABC-transporters present on the array ABCB1 (Pg-G), ABCC1 (MRP-

1), ABCG2 (MRP), ABCC3 and ABCC6 are known to transport etoposide [279, 

280]. In particular ABCB1, ABCC1 and ABCG2 belong to the three major 

types of ABC-transporters correlated with drug resistance and were 

therefore of further interest. The ABCB1 gene is expressed in many cancer 

cells including primary malignant and non-malignant prostate cells [266, 

302], whereas other studies revealed that it is not present at the protein 

level [303, 328]. In our gene expression analysis ABCB1 was found in about 

50% of the tested samples, even though its expression at mRNA level was 

very low in comparison to other ABC-transporters. ABCB1 is therefore 

unlikely to play a main role in drug resistance. Further etoposide-

transporting proteins such as ABCG2, ABCC1, ABCC3 and ABCC6 were 
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(highly) expressed in all of the samples tested. In particular the expression 

of ABCG2 and ABCC1 has been reported for primary prostate tissue and 

prostate cell lines and is in accordance with our results [266, 267, 299, 

300]. Interestingly, the etoposide-transporting ABCC1 is more highly 

expressed in malignant and benign SCs, whereas ABCB5 (which is not known 

to transport etoposide) is significantly highly expressed in CBs. These data 

suggest that malignant and benign SCs might be able to eliminate etoposide 

more efficiently, due to increased ABCC1 expression. However, some ABC-

transporters which are not known as etoposide transporting systems might 

still be able to efflux etoposide, even if not specifically described in the 

literature. Following this gene expression analysis we decided to pursue a 

functional assay for ABC-transporters. 

4.5.2 Calcein efflux assays to assess the functionality of ABC-

transporters in primary prostate tissue 

In order to reveal more information about a potential influence of ABC-

transporters on drug resistance we applied calcein efflux assays to selected 

populations of primary prostate cells. Among other advantages (as 

described in results) calcein was considered as a suitable substance as it is a 

substrate of ABCC1. The application of calcein efflux assays demonstrated 

that malignant and benign SCs and their corresponding TAs and CBs were 

all able to efflux calcein, but SCs did not display enhanced efflux 

capabilities. A similar trend was observed in a series of experiments carried 

out by one of our lab members (David Hudson) aimed to define the so-

called “side population” with Hoechst 33342 (transported by ABCG2 and 

ABCB1, but not by ABCC1) in primary malignant and benign prostate cells. 

This “side population” has been described by other groups as a rare ABCG2-

positive population within a total population of cells that has SC 

characteristics and the ability to efflux fluorescent substances such as dye 
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cycle violet or Hoechst 33342 more efficiently than non-SCs [299, 300, 

304]. However, in the previously described study with Hoechst 33342, our 

lab could not identify the “side population”. The calcein assays and the 

Hoechst 33342 experiments covered the three main ABC-transporters and 

no specific efflux capabilities were seen in SCs. Our results suggest that 

malignant and benign SCs do not harbor increased efflux properties that 

might be an advantage in therapy survival. Based on these findings, the 

primary cause for the higher in vitro resistance to etoposide observed in 

malignant and benign SCs compared to their differentiated counterparts 

probably resides with other factors. Our findings are in contradiction to 

Brown et al. that has defined a “side population” of ABCG2-expressing 

malignant and benign prostate cells derived from primary tissues [305]. 

Possible explanations for these conflicting data might be factors such as a 

different type of preparation or differential growth conditions.  

Even if ABC-transporters were a primary cause for therapy resistance, 

attempts to improve the therapeutic outcome by inhibiting ABC-transporters 

have mainly failed in clinical trials. For example, blocking one of the most 

commonly known drug resistance proteins ABCB1 revealed only 

disappointing results, due to a lack of confirmation of ABCB1 expression in 

the tumour tissue prior to the administration of the treatment, lack of 

evidence of ABCB1 inhibition in vivo and ABCB1 inhibitor toxicity [329]. In 

patients with prostate cancer, ABC-transporters have been shown to 

influence the clinical outcome e.g. genetic variations in ABCB1 influence the 

toxicity and success of docetaxel therapy [301]. However, inhibitors of ABC-

transporters are not in clinical use for the treatment of prostate cancer. 

Furthermore, even if blocking of ABC-transporters could be easily achieved 
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in the clinic, it would be likely that additional mechanisms of therapy-

resistance prevent successful treatment. 

4.5.3 Limitations of the calcein assay  

The performance of calcein assays came with some challenges, which were 

mainly a consequence of the small SC numbers available, which limited the 

possibilities of the experimental design. The best option would have been a 

reagent that was highly fluorescent, transported by the three major ABC-

transporters and did not rely on metabolism. All of the available substances 

on the market such as doxorubicin, daunorubicin, mixatrone, Hoechst 

33342 and newer ones such as eFluxx—ID Green and Gold lack at least one 

of these features [281]. Another general limitation of efflux assays 

(including calcein assays) needs to be taken into consideration: a substance 

might be effluxed faster than its measurement in the cytoplasm can be 

conducted. For example in the case of calcein assays, the non-fluorescent 

calcein-am could be exported before its metabolism into the fluorescent 

calcein. However, for our study the risk of this effect is considered to be 

small, since: 

 Calcein-am is a substrate of ABCB1, which was only present in about 

50% of our samples and furthermore only weakly expressed.  

 The other two main ABC-transporters ABCG2 and ABCC1 do not 

appear to efflux calcein-am. ABCC1 takes calcein as a substrate but 

here no differences were observed among the populations.  

The available kits for efflux studies are certainly suitable for different kinds 

of studies, such as those that test efflux before and after application of an 

inhibitor, but are not ideal when comparing efflux in different cell types, in 

particular when cell numbers are limited. 
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In addition to the previously described calcein assays, an interesting type of 

experiment would be the use of an inhibitor against an efflux pump e.g. 

agosterol A or raloxifine against ABCC1 (significantly elevated at mRNA level 

in malignant and benign SCs) and subsequent assessment of calcein levels. 

A higher amount of calcein in the cytoplasm of inhibitor-treated cells vs. 

non-inhibitor-treated cells would have confirmed efflux and allowed firmer 

conclusions about the efficiency of the efflux pump. An inhibitor of ABCB1 

e.g. verapamil would block a potential efflux of the non-fluorescent calcein-

am. This would have eliminated some previously described issues: when 

calcein-am is prevented from exiting the cell, an accumulation of 

fluorescent calcein should be visible after time. The extent of calcein 

accumulation would allow conclusions regarding the efficiency of the pump 

when comparing it to a non-inhibitor treated control. However, these 

studies can only be performed, if a sufficient SC yield is available, which is 

usually not the case. A further interesting experiment would have been the 

use of inhibitors in combination with a chemotherapeutic drug, and the 

subsequent assessment of DNA damage or clonogenic recovery. However, 

three facts lead to the consideration that malignant and benign SCs are not 

in advantage due to increase effux capabilities:  

 At mRNA level we only found similar expressions of ABC-transporters 

in benign and malignant SCs and CBs (only ABCC1 and ABCB5 were 

different)  

 The selected populations in our calcein assays did not show 

significant efflux capabilities 

  This finding was backed up by independently performed tests with 

Hoechst 33342  
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In view of the finding that functional assays referring to the three main ABC-

transporters showed negative results, it was decided to focus on other 

potential mechanisms of therapy resistance. 

4.6 Concluding remarks 

In summary, our findings suggest that SCs from malignant and benign 

prostate tissues are more resistant to treatment than the corresponding TAs 

and CBs originating from the same outgrowth. Indeed, chemotherapy is not 

successful for the treatment of advanced prostate cancer, and this 

resistance might be mediated by surviving CSCs that repopulate the tumour 

mass. One important factor in therapy resistance might be cellular 

quiescence, as we can confirm for the SCs isolated from malignant and 

benign prostate tissues. The role of healthy SCs is to repair and repopulate a 

tissue after wounding. Therapies that decrease tumour size can be thought 

of as initiating an injury, to which the CSCs responds by going back into a 

proliferative stage [33].  In malignant tissue, this response might result in an 

increase in the tumour initiating or metastasis establishing cell pool [33]. 

Recently, the FDA in the USA has warned about the use of chemotherapy for 

the treatment of prostate cancer with inhibitors of 5-alpha reductase, which 

are designed to targets AR+ luminal cells [33]. Studies suggest that these 

agents promote poorly differentiated tumours in patients who had a pre-

existing tumour [33]. This is the likely response after the elimination of 

differentiated luminal cells resulting in the promotion of basal-like tumour 

cells.  

Due to this potentially fatal role for CSCs in therapeutic outcome, it is crucial 

to elucidate their mechanisms of therapy survival further. In addition to 

quiescence as demonstrated in our study, there might be a wide range of 

other mechanisms. For instance, it would have been interesting to assess 
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the role of ROS detoxifying enzymes in SCs isolated from prostate tumours. 

It would have also been logical to assess the role of autophagy in apoptotic 

inhibition further. Upon the confirmation of SCs relevance in treatment 

resistance to conventional therapies a screen to identify agents that 

specifically target CSCs would have been an important step. The elucidation 

of these mechanisms and the identification of treatments to block them 

might be an important future direction for the elimination of prostate 

tumours. 
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Appendix 

Chapter III Results: Comet assays 

Figure 3-5: Alkaline Comet assays less than 50 events. Due to the availability of SCs 

a lower number of events (lower than 50) had to be analyzed for the alkaline comet 

assays (cancer and benign samples). 

SCs 45 min,  250 µM  

sample number of cells data point in graph 

H031/10  38 1.36 

Y025/09 11 1.6 

SCs 3 h,  30µM  

 sample number of cells data point in graph 

H018/09  23 3.09 

Y004/09 40 0.662 

H035/11  43 1.09 

 

Figure 3-5: p-values determined by Wilcoxon rank sum test for alkaline comet 

assays (cancer and benign samples). Significant p-values shown in bold. 

45 min, 30 µM 

SC vs. CB p=0.007 

SC vs. TA p= <0.001 

CB vs. TA p=0.257  

45 min, 250 µM 

SC vs. CB p= 0.686 

SC vs. TA p = 0.0029 

CB vs. TA p = 0.114 

3 h, 30 µM 

SC vs. CB  P = 0.222 

SC vs. TA p = 0.056 

CB vs. TA p = 0.421 

3 h, 250 µM 

SC vs. CB p = 0.667 

SC vs. TA p = 0.667 

CB vs. TA p = 0.667 

 

Figure 3-6 A: p-values determined by Wilcoxon rank sum test for alkaline comet 

assays (cancer samples). Significant p-values shown in bold. 

45 min, 30 µM 

SC vs. CB p= 0.095 

SC vs. TA p= 0.008 
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CB vs. TA P=0.0421 

 

Figure 3-6 B: p-values for alkaline comet assays determined by Wilcoxon rank sum 

test (benign samples). Significant p-values shown in bold. 

45 min, 30 µM 

SC vs. CB p= 0.056 

SC vs. TA p= 0.008 

CB vs. TA P=0.548 

 

Chapter III Results: γH2A.X assays 

Figure 3-11: p-values determined by Wilcoxon rank sum test for γH2A.X assays 

(cancer samples). Significant p-values shown in bold. 

45 min, 30 µM 

SC vs. TA p=0.032 

24 h, 30 µM 

SC vs. TA p=0.114 

 

Figure 3-12: p-values determined by Wilcoxon rank sum test for γH2A.X assays 

(benign samples). 

45 min, 30 µM 

SC vs. TA p=0.222 

24 h, 30 µM 

SC vs. TA p=0.310 

 

Figure 3-11 and Figure 3-12: p-values yH2A.X assays determined by paired t-test 

and Wilcoxon rank sum test to assess repair. Significant p-values are shown in bold. 

Paired t-test 

Cancer 

SC 45 min vs. SC 24 h P = 0.222 

TA 45 min vs. TA 24 h P = 0.117 

Benign 

SC 45 min vs. SC 24 h p=0.047 

TA 45 min vs. TA 24 h p=0.047 

Wilcoxon signed rank test 

Cancer 

SC 45 min vs. SC 24 h P = 0.250 

TA 45 min vs. TA 24 h P = 0.250 

Benign 

SC 45 min vs. SC 24 h P = 0.063 
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TA 45 min vs. TA 24 h P = 0.063 

 

Figure 3-13 A-D: p-values determined by Wilcoxon rank sum test for the 

quantification of different γH2A.X foci types (benign and malignant samples). 

Significant p-values are shown in bold. 

Quantification of different foci types 

Cancer 45 min, 30 µM SC vs. TA 

5-10 foci p = 0.841 

>10 p = 0.032 

PL p = 0.421 

PI p = 0.548 

PS p = 0.841 

Cancer 24 h, 30 µM SC vs. TA 

5-10 foci p = 1.000 

>10 p = 0.100 

PL p = 0.400 

PI p = 0.200 

PS p = 0.200 

Benign 45 min, 30 µM SC vs. TA 

5-10 foci p = 0.310 

>10 p = 0.421 

PL p = 1.000 

PI p = 0.421 

PS p = 0.222 

Benign 24 h, 30 µM SC vs. TA 

5-10 foci p = 0.421 

>10 p = 0.095 

PL p = 0.841 

PI p = 0.310 

PS p = 0.690 

 

Figure 3-13 A-D: Fold-changes for the quantification of different γH2A.X foci types 

(benign and cancer samples). The median values graphed in Figure 3-13 A-D are 

highlighted in pink. The fold changes were calculated by dividing the percentage of 

γH2A.X positive cells after treatment (45 min or 24 h time point) by the percentage 

before treatment. A 1-fold change was considered as no change, a fold change > 1 

was considered as an increase and a fold change <1 was considered as decrease. 

When 0 cells were positive for a distinct yH2A.X pattern 0 was replaced by 1 to 

calculate an approximate fold change.  

Cancer: SC; 45 min, 30 µM 

Sample H035/11  PE665 H054/11  H048/11 H049/11 

 5 to 10 

foci 0.85 to 7.69 0.81 to 3.2 0 to 2.56 0 to 0 2.83 to 0.85 
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fold 

change 9.047058824 3.950617284 2.56 1 0.300353357 

> 10 4.24 to 6.73 8.87 to 4 8.40 to 10.26 4.85 to 3.85 5.66 to 38.14 

fold 

change 1.587264151 0.450958286 1.221428571 0.793814433 6.734982332 

PL 16.10 to 8.65 3.23 to 21.6 3.36 to 7.69 2.91 to 7.69 0.94 to 1.69 

fold 

change 0.537267081 6.687306502 2.288690476 2.642611684 1.79787234 

PI 4.24 to 6.73 0.81 to 18.4 15.97 to 10.26 1.94 to 5.77 2.83 to 3.39 

fold 

change 1.587264151 22.71604938 0.642454602 2.974226804 1.197879859 

PS 1.69 to 1.92 1.61 to 1.6 0 to 3.85 0 to 0 0 to 12.71 

fold 

change 1.136094675 0.99378882 3.85 1 12.71 

 

 

Cancer: TA; 45 min, 30 µM 

Sample  H035/11  PE665 H054/11  H048/11 H049/11 

 5 to 10 

foci 2.1 to 4.38 0 to 17.61 1.35 to 5 0 to 1.47 0 to 0 

fold 

change 2.085714286 17.61 3.703703704 1.47 1 

> 10 5.6 to 29.2 4.20 to 26.06 6.08 to 45 0 to 9.56 3.5 to 54.14 

fold 

change 5.214285714 6.204761905 7.401315789 9.65 15.46285714 

PL 2.8 to 7.3 0 to 10.56 2.70 to 0.83 0 to 7.35 1.4 to 8.27 

fold 

change 2.607142857 10.56 0.307407407 7.35 5.907142857 

PI 1.4 to 16.79 0 to 12.68 4.73 to 15 0 to 2.21 0 to 0.75 

fold 

change 11.99285714 12.68 3.171247357 2.21 0.75 

PS 1.4 to 1.46 0 to 11.27 0 to 1.67 4.41 to 0 0.7 to 21.05 

fold 

change 1.042857143 11.27 1.67 0.22675737 30.07142857 

 

 

Cancer: SC; 24 h, 30 µM 

Sample H035/11  H054/11  H049/11 

 5 to 10 

foci 0.85 to 1.64 0 to 0.98 2.83 to 1.39 

fold 

change 1.929411765 0.98 0.491166078 

> 10 4.24 to 0.82 8.40 to 0 5.66 to 0.7 

fold 

change 0.193396226 0.119047619 0.123674912 

PL 16.10 to 11.48 3.36 to 5.88 0.94 to 10.42 

fold 

change 0.713043478 1.75 11.08510638 

PI 4.24 to 3.28 15.97 to 8.82 2.83 to 9.03 

fold 

change 0.773584906 0.552285535 1.197879859 

PS 1.69 to 1.64 0 to 0 0 to 0 

fold 0.970414201 1 1 
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change 

 

 

Cancer: TA; 24 h, 30 µM 

Sample H035/11  H054/11  H049/11 

 5 to 10 

foci 2.1 to 4.03 1.35 to 0 0 to 9.68 

fold 

change 1.919047619 0.740740741 1 

> 10 5.6 to 2.42 6.08 to 1.71 3.5 to 7.26 

fold 

change 0.432142857 0.28125 2.074285714 

PL 2.8 to 23.39 2.70 to 12.82 1.4 to 21.77 

fold 

change 8.353571429 4.748148148 15.55 

PI 1.4 to 12.9 4.73 to 5.13 0 to 13.71 

fold 

change 9.214285714 1.084566596 13.71 

PS 1.4 to 3.23 0 to 0 0.7 to 4.03 

fold 

change 2.307142857 1 5.757142857 

 

 

Benign: SC; 45 min, 30 µM 

Sample HO53/11  YO25/09  YO30/11 YO23/09  YO31/11 

 5 to 10 

foci 0 to 2.86 0.75 to 0.97 0 to 0 0.81 to 0.75 1.89 to 1.03 

fold 

change 2.86 1.293333333 1 0.925925926 0.825242718 

> 10 0.86 to 15.24 3.76 to 5.83 2.44 to 0 

4.03 to 

18.05 3.77 to 7.22 

fold 

change 17.72093023 1.550531915 0.409836066 4.478908189 1.915119363 

PL 5.17 to 9.52 

1.50 to 

18.45 0 to 7.84 

8.87 to 

14.29 

10.38 to 

15.46 

fold 

change 1.84139265 12.3 7.84 1.611048478 1.489402697 

PI 8.62 to 6.67 0 to 9.71 6.1 to 2.94 

4.03 to 

21.05 1.89 to 22.68 

fold 

change 0.773781903 9.71 0.481967213 5.223325062 12 

PS 0 to 0 1.5 to 0.97 0 to 0 0 to 0.75 0 to 1.03 

fold 

change 1 0.646666667 1 0.75 1.03 

 

 

Benign: SC; 24 h,30 µM 

Sample HO53/11  YO25/09  YO30/11 YO23/09  YO31/11 

 5 to 10 foci 0 to 5.45 0.75 to 0 0 to 0 0.81 to 2.24 1.89 to 5.97 

fold change 5.45 1.333333333 1 2.765432099 3.158730159 

> 10 0.86 to 0 3.76 to 0 2.44 to 0 4.03 to 0 3.77 to 0.75 
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fold change 1.162790698 0.265957447 0.409836066 0.248138958 0.198938992 

PL 5.17 to 14.55 1.50 to 9.64 0 to 2.4 

8.87 to 

11.94 

10.38 to 

12.69 

fold change 2.814313346 6.426666667 2.4 1.346110485 1.222543353 

PI 8.62 to 3.64 0 to 2.41 6.1 to 3.2 4.03 to 0.75 

1.89 to 

16.42 

fold change 0.422273782 2.41 0.524590164 0.186104218 8.687830688 

PS 0 to 0 1.5 to 0 0 to 0 0 to 0 0 to 0 

fold change 1 0.666666667 1 1 1 

 

    

Benign: TA; 45 min, 30 µM 

Sample HO53/11  YO25/09  YO30/11 YO23/09  YO31/11 

 5 to 10 foci 0.83 to 0 6.29 to 3.05 2.4 to 6.02 1.72 to 0.74 11.67 to 0 

fold change 1.204819277 0.484896661 2.508333333 0.430232558 0.085689803 

> 10 10 to 78.81 1.4 to 9.92 1.2 to 8.27 

2.87 to 

20.74 5 to 7.53 

fold change 7.881 7.085714286 6.891666667 7.226480836 1.506 

PL 0.83 to 0 2.8 to 12.98 1.8 to 8.27 

5.17 to 

11.85 5.83 to 15.07 

fold change 1.204819277 4.635714286 4.594444444 2.292069632 2.58490566 

PI 0.83 to 4.24 2.1 to 31.3 2.4 to 12.78 8.62 to 29.3 0.83 to 27.4 

fold change 5.108433735 14.9047619 5.325 3.399071926 33.01204819 

PS 0 to 2.54 0 to 4.58 0.6 to 0 0 to 0 0 to 0.68 

fold change 2.54 4.58 1.666666667 1 0.68 

 

 

Benign: TA; 24 h, 30 µM 

Sample HO53/11  YO25/09  YO30/11 YO23/09  YO31/11 

 5 to 10 foci 0.83 to 8 6.29 to 4.51 2.4 to 0 1.72 to 5.13 11.67 to 3.85 

fold change 9.638554217 0.723370429 0.416666667 2.98255814 0.329905741 

> 10 10 to 3.2 1.4 to 13.53 1.2 to 0 

2.87 to 

17.09 5 to 3.08 

fold change 0.32 9.664285714 0.833333333 5.954703833 0.616 

PL 0.83 to 5.6 2.8 to 6.02 1.8 to 10.07 5.17 to 2.56 5.83 to 16.15 

fold change 6.746987952 2.15 5.594444444 0.49516441 2.770154374 

PI 0.83 to 0.8 2.1 to 9.77 2.4 to 4.32 

8.62 to 

14.53 0.83 to 13.08 

fold change 0.963855422 4.652380952 1.8 1.685614849 15.75903614 

PS 0 to 0 0 to 0 0.6 to 2.16 0 to 0.85 0 to 0 

fold change 1 1 3.6 0.85 1 
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Chapter III Results: Clonogenic assays 

Figure 3-16 A-C: Detailed information about the colony sizes including STDVs 

unselected Etoposide 45 min , 30 µM DMSO   

Y030/11    STDV    STDV 

 all 0.83 0.29 all 30.17 1.44 

 2+ 0 0 2+ 1 1 

 4+ 0 0 4+ 2,67 0.29 

 8+ 0.5 0.5 8+ 10.5 1.32 

 16+ 0.33 0.58 16+ 9.83 2.02 

 32+ 0 0 32+ 6.17 1.26 

 Etoposide 45 min, 250 µM DMSO  

    STDV   unselected STDV 

 all 0 0 all 33.17 17.56 

 2+ 0 0 2+ 0.33 0.29 

 4+ 0 0 4+ 4.67 2.84 

 8+ 0 0 8+ 9.33 7.59 

 16+ 0 0 16+ 11.17 2.89 

 32+ 0 0 32+ 7.67 4.51 

 Etoposide 3 h, 30 µM DMSO  

    STDV   unselected STDV 

 all 0 0 all 29.5 8.53 

 2+ 0 0 2+ 0.83 1.04 

 4+ 0 0 4+ 5.17 1.15 

 8+ 0 0 8+ 8.5 0 

 16+ 0 0 16+ 9.33 3.82 

 32+ 0 0 32+ 5.67 2.75 

 Etoposide  3 h, 250 µM DMSO  

   unselected STDV   unselected STDV 

 all 0 0 all 33.5 5.41 

 2+ 0 0 2+ 0.5 0.5 

 4+ 0 0 4+ 5.33 1.15 

 8+ 0 0 8+ 8.33 2.03 

 16+ 0 0 16+ 11 3.5 

 32+ 0 0 32+ 8.33 3.79 

       

 

Sample 

 

Day 3, DMSO 

PE531 Colony size TA SC TA STDV SC STDV 

 all 13.25 9.51 11.5 4.6 

 2+ 3.89 3.03 3.53 3.88 

 4+ 6.98 5.91 6.9 2.2 

 8+ 2.38 0.56 4.12 0.98 

 16+ 0 0 0 0 

 32+ 0 0 0 0 

 Day 3,  Etoposide 45 min, 30 µM 

 Colony size TA SC TA STDV SC STDV 

 all 0.61 0 1.05 0 

 2+ 0 0 0 0 



                                                                                                       APPENDIX 
 

182 
 

 4+ 0.61 0 1.05 0 

 8+ 0 0 0 0 

 16+ 0 0 0 0 

 32+ 0 0 0 0 

 Day 6, DMSO 

 Colony size TA SC TA STDV SC STDV 

 all 46.61 46.17 7.94 19.53 

 2+ 0 1.7 0 1.87 

 4+ 1.13 2.73 1.96 1.01 

 8+ 12.41 10.74 5.09 4.73 

 16+ 15.34 11.98 7.37 6.48 

 32+ 16.72 19.02 2.22 6.72 

 Day 6, Etoposide 45 min, 30 µM 

 Colony size TA SC TA STDV SC STDV 

 all 4.34 12.21 4.73 3.92 

 2+ 0.52 0 0.9 0 

 4+ 0 0.93 0 1.6 

 8+ 0 4.26 0 1.1 

 16+ 3.82 4.87 3.91 1.01 

 32+ 0 2.14 0 0.55 

 

Sample Day 4, DMSO 

H035/11  Colony size TA SC TA STDV SC STDV 

 all 0.67 15.38 0.58 10.5 

 2+ 0 0.38 0 0.66 

 4+ 0 4.23 0 4.26 

 8+ 0.33 8.47 0.58 7.46 

 16+ 0 1.91 0 2.4 

 32+ 0.33 0.38 0.58 0.66 

 Day 4, Etoposide 45 min, 30 µM 

 Colony size TA SC TA STDV SC STDV 

 all 0 0.45 1.05 0 

 2+ 0 0 0 0 

 4+ 0 0 0 0 

 8+ 0 0 0 0 

 16+ 0 0 0 0 

 32+ 0 0.45 0 0.78 

 Day 8,  DMSO 

 Colony size TA SC TA STDV SC STDV 

 all 7.67 14.73 5.03 3.03 

 2+ 0 0 0 0 

 4+ 0.33 0 0.58 0 

 8+ 0 0 0 0 

 16+ 2.33 2.79 2.52 2.52 

 32+ 5 11.94 2 1.65 

 Day 8, Etoposide 45 min, 30 µM 

   TA SC TA STDV SC STDV 

 all 1.67 5.47 1.15 0.95 

 2+ 0 0.45 0 0.78 

 4+ 0 0.36 0 0.62 

 8+ 0.33 0.36 0.58 0.62 

 16+ 0.33 1.52 0.58 2.62 
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 32+ 1 2.79 1 2.42 

 

Figure 3-17 A-C: Detailed information about the colony sizes including STDVs and 

p-values 

Sample Colony size 

%TA colonies  

normalized 

to vehicle 

control 

%SC colonies 

normalized 

to vehicle 

control TA STDV SC STDV 

H035/11   all 21.74 37.13 15.06 6.48 

  2+ 0 3.06 0 5.3 

  4+ 0 2.43 0 4.22 

  8+ 4.35 2.43 7.53 4.22 

  16+ 4.35 10.29 7.53 17.82 

  32+ 13.04 18.91 13.04 16.4 

PE531 all 9.51 26.45 10.36 8.5 

  2+ 1.14 0 1.98 0 

  4+ 0 2 0 3.47 

  8+ 0 9.26 0 2.4 

  16+ 8.37 10.55 8.57 2.2 

  32+ 0 4.63 0 1.2 

H087/11 all 10.44 17.16 5.5 11.71 

  2+ 0 2.52 0 4.36 

  4+ 2.99 7.33 2.63 7.56 

  8+ 3.46 2.52 6 4.36 

  16+ 2.66 0 4.61 0 

  32+ 1.33 4.8 2.31 4.17 

H049/11 all 23.22 22.44 7.04 13.58 

  2+ 0 2.23 0 1.97 

  4+ 4.44 4.5 3.88 4 

  8+ 1.58 5.74 2.74 5.62 

  16+ 9.68 0.98 0.49 1.7 

  32+ 7.51 8.98 1.76 13.09 

H048/11  all 6.45 11.55 4.39 6.4 

  2+ 0 0.76 0 1.32 

  4+ 0.23 2.41 0.41 0.32 

  8+ 3.06 3.81 2.67 4.43 

  16+ 1.68 2.28 1.54 3.96 

  32+ 1.46 2.28 1.27 3.96 

H054/11  all 8.61 25.38 2.65 3.1 

  2+ 0 0 0 0 

  4+ 1.09 2.7 0.61 2.36 

  8+ 1.63 10.22 0.18 8.98 

  16+ 3.2 8.07 2.4 5.1 

  32+ 2.68 4.4 0.85 1.92 

Y062/11 all 33.36 78.81 12.03 75.65 

  2+ 0 0 0 0 

  4+ 0 0 0 0 

  8+ 14.1 53.67 15.5 46.76 

  16+ 3.82 0 6.61 0 

  32+ 15.44 25.14 17.78 43.55 
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Y031/11  all 21.66 1.69 27.45 1.53 

  2+ 0 0 0 0 

  4+ 2.74 0 4.74 0 

  8+ 4.63 0.69 4.3 1.19 

  16+ 10.13 0.5 14.92 0.86 

  32+ 4.17 0.5 3.52 0.86 

Y030/11 all 6.82 12.94 1.13 3.03 

  2+ 0 0 0 0 

  4+ 0 0 0 0 

  8+ 1.24 5.92 0.91 1.36 

  16+ 2.79 4.93 1.59 1.97 

  32+ 2.79 2.09 0.86 2.59 

 

Figure 3-17 A and B: p -values for the clonogenic assays 

Sample SC vs. TA 

H035/11   p = 0.400 

PE531  p = 0.100 

H048/11 p = 0.400 

H087/11  p= 0.700 

H049/11 p = 1.000 

H054/11 p = 0.100 

Y062/11 p= 0.700 

Y031/11  p = 0.100 

Y030/11  p = 0.100 

 

Etoposide  3 h, 30 µM 

Colony size TA SC TA STDV SC STDV 

all 0 7.07 0 12.25 

2+ 0 0 0 0 

4+ 0 0 0 0 

8+ 0 4.72 0 8.17 

16+ 0 0 0 0 

32+ 0 2.36 0 0 

 

Chapter III Results: KI67 

Figure 3-19 A-B:  p-values for Ki67 assessment. Significant p-values are shown in 

bold. 

Malignant   

TA vs. SC  P = 0.016  

CB vs. SC  P = 0.008  

CB vs. TA  p = 0.310  

Benign   

TA vs. SC    P=0.065 
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CB vs. SC  P=0.065 

CB vs. TA   p=0.31 

 

 

Chapter III Results: MTS assay 

 

Figure 3-20: Concentrations for MTS assay 

 

Chapter III: Calcein efflux assays 

Figure 3-27 D: STDVs for calcein efflux 

STDVs of the triplicates measured  for H054/11  

   15 min 1 h 2 h 3 h 

CB 1131.8491 2483.0989 1826.0665 949.28763 

TA 5763.4303 4613.0499 4088.4203 4281.2879 

 

Figure 3-31: STDVs for calcein efflux and p-values 

H054/11 STDV 

TA 26.683004 

CB 7.6389123 

H092/11 STDV 

TA 11.352347 

CB 21.206506 

H035/11 STDV 

TA 12.294343 

CB 18.578056 

Y030/11 STDV 

TA 12.268419 

CB 4.9243582 

Y075/11 STDV 

Concentration→ 

Replication inhibitor↓ 

      

Camptothecin 32µM 12.8µM 5.1µM 2µM 0.8µM 0.32µM 

Carboplatin 64µM 25.6µM 10.2µM 4.1µM 1.6µM 0.6µM 

Docetaxel 12.8µM 5.12µM 2µM 0.8µM 0.32µM 0.128µM 

Doxorubicin 12.8µM 5.12µM 2µM 0.8µM 0.32µM 0.128µM 

Etoposide 64µM 25.6µM 10.2µM 4.1µM 1.6µM 0.6µM 

DMSO (carrier) 1:1562 1:3906 1:9762 1:24406 1:61015 1:152539 
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TA 14.040624 

CB 11.879222 

 

SC vs. TA SC vs. CB TA vs. CB 

P = 0.690 P = 0.690 P = 1.000 
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                                                                                                       APPENDIX 
 

189 
 

Permission from Elsevier for Figure 1-4 

 



                                                                                                   REFERENCES 
 

190 
 

References 

1. Cunha, G.R., et al., The endocrinology and developmental biology of the prostate. 
Endocr Rev, 1987. 8(3): p. 338-62. 

2. McNeal, J.E., The zonal anatomy of the prostate. Prostate, 1981. 2(1): p. 35-49. 
3. Swift, S.L., A novel approach to prostate cancer gene therapy: targeting neurotensin 

receptors with baculovirus, in Department of Biology2008, University of York: York. 
p. 272. 

4. Collins, A.T. and N.J. Maitland, Prostate cancer stem cells. Eur J Cancer, 2006. 42(9): 
p. 1213-8. 

5. Lilja, H. and P.A. Abrahamsson, Three predominant proteins secreted by the human 
prostate gland. Prostate, 1988. 12(1): p. 29-38. 

6. Berry, P.A., N.J. Maitland, and A.T. Collins, Androgen receptor signalling in prostate: 
effects of stromal factors on normal and cancer stem cells. Mol Cell Endocrinol, 
2008. 288(1-2): p. 30-7. 

7. Sar, M., et al., Immunohistochemical localization of the androgen receptor in rat 
and human tissues. Endocrinology, 1990. 127(6): p. 3180-6. 

8. Maitland, N.J. and A.T. Collins, Prostate cancer stem cells: a new target for therapy. 
J Clin Oncol, 2008. 26(17): p. 2862-70. 

9. Kyprianou, N. and J.T. Isaacs, Activation of programmed cell death in the rat ventral 
prostate after castration. Endocrinology, 1988. 122(2): p. 552-62. 

10. Bonkhoff, H. and K. Remberger, Widespread distribution of nuclear androgen 
receptors in the basal cell layer of the normal and hyperplastic human prostate. 
Virchows Arch A Pathol Anat Histopathol, 1993. 422(1): p. 35-8. 

11. Collins, A.T., et al., Identification and isolation of human prostate epithelial stem 
cells based on alpha(2)beta(1)-integrin expression. J Cell Sci, 2001. 114(Pt 21): p. 
3865-72. 

12. English, H.F., R.J. Santen, and J.T. Isaacs, Response of glandular versus basal rat 
ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate, 
1987. 11(3): p. 229-42. 

13. Moore, K.A. and I.R. Lemischka, Stem cells and their niches. Science, 2006. 
311(5769): p. 1880-5. 

14. Schofield, R., The relationship between the spleen colony-forming cell and the 
haemopoietic stem cell. Blood Cells, 1978. 4(1-2): p. 7-25. 

15. Hudson, D.L., et al., Proliferative heterogeneity in the human prostate: evidence for 
epithelial stem cells. Lab Invest, 2000. 80(8): p. 1243-50. 

16. Robinson, E.J., D.E. Neal, and A.T. Collins, Basal cells are progenitors of luminal cells 
in primary cultures of differentiating human prostatic epithelium. Prostate, 1998. 
37(3): p. 149-60. 

17. Bonkhoff, H. and K. Remberger, Differentiation pathways and histogenetic aspects 
of normal and abnormal prostatic growth: a stem cell model. Prostate, 1996. 28(2): 
p. 98-106. 

18. Lang, S.H., et al., Experimental prostate epithelial morphogenesis in response to 
stroma and three-dimensional matrigel culture. Cell Growth Differ, 2001. 12(12): p. 
631-40. 

19. Oldridge, E.E., et al., Prostate cancer stem cells: Are they androgen-responsive? Mol 
Cell Endocrinol, 2012. 360(1-2): p. 14-24. 

20. Bonkhoff, H., U. Stein, and K. Remberger, Endocrine-paracrine cell types in the 
prostate and prostatic adenocarcinoma are postmitotic cells. Hum Pathol, 1995. 
26(2): p. 167-70. 



                                                                                                   REFERENCES 

191 
 

21. di Sant'Agnese, P.A., Neuroendocrine differentiation in carcinoma of the prostate. 
Diagnostic, prognostic, and therapeutic implications. Cancer, 1992. 70(1 Suppl): p. 
254-68. 

22. Condon, M.S. and M.C. Bosland, The role of stromal cells in prostate cancer 
development and progression. In Vivo, 1999. 13(1): p. 61-5. 

23. De Marzo, A.M., et al., Inflammation in prostate carcinogenesis. Nature reviews. 
Cancer, 2007. 7(4): p. 256-69. 

24. McNeal, J.E., Origin and evolution of benign prostatic enlargement. Invest Urol, 
1978. 15(4): p. 340-5. 

25. McNeal, J.E., Normal histology of the prostate. Am J Surg Pathol, 1988. 12(8): p. 
619-33. 

26. McNeal, J.E., et al., Zonal distribution of prostatic adenocarcinoma. Correlation with 
histologic pattern and direction of spread. Am J Surg Pathol, 1988. 12(12): p. 897-
906. 

27. Bostwick, D.G., et al., Prostatic intraepithelial neoplasia and well differentiated 
adenocarcinoma maintain an intact basement membrane. Pathol Res Pract, 1995. 
191(9): p. 850-5. 

28. Sakr, W.A., et al., The frequency of carcinoma and intraepithelial neoplasia of the 
prostate in young male patients. J Urol, 1993. 150(2 Pt 1): p. 379-85. 

29. Braun, M. and S. Perner, [High-grade prostatic intraepithelial neoplasia: the only 
accepted prostate cancer precursor lesion]. Pathologe, 2011. 32 Suppl 2: p. 237-41. 

30. Zynger, D.L. and X. Yang, High-grade prostatic intraepithelial neoplasia of the 
prostate: the precursor lesion of prostate cancer. Int J Clin Exp Pathol, 2009. 2(4): p. 
327-38. 

31. Jemal, A., et al., Cancer statistics, 2003. CA Cancer J Clin, 2003. 53(1): p. 5-26. 
32. Jemal, A., et al., Cancer statistics, 2005. CA Cancer J Clin, 2005. 55(1): p. 10-30. 
33. Klein, S., Treatment resistance in prostate cancer: a stem cell perspective, in Stem 

cells and regenerative medicine2012, Springer. 
34. Isaacs, W., A. De Marzo, and W.G. Nelson, Focus on prostate cancer. Cancer Cell, 

2002. 2(2): p. 113-6. 
35. Sakr, W.A., et al., High grade prostatic intraepithelial neoplasia (HGPIN) and 

prostatic adenocarcinoma between the ages of 20-69: an autopsy study of 249 
cases. In Vivo, 1994. 8(3): p. 439-43. 

36. Boring, C.C., et al., Cancer statistics, 1994. CA Cancer J Clin, 1994. 44(1): p. 7-26. 
37. Sonn, G.A., W. Aronson, and M.S. Litwin, Impact of diet on prostate cancer: a 

review. Prostate Cancer Prostatic Dis, 2005. 8(4): p. 304-10. 
38. Hudson, M.A., R.R. Bahnson, and W.J. Catalona, Clinical use of prostate specific 

antigen in patients with prostate cancer. J Urol, 1989. 142(4): p. 1011-7. 
39. Brawer, M.K., Prostate-specific antigen: current status. CA Cancer J Clin, 1999. 

49(5): p. 264-81. 
40. Levesque, M., et al., Immunoreactive prostate-specific antigen in lung tumors. J Clin 

Lab Anal, 1995. 9(6): p. 375-9. 
41. Baron, J.C., et al., Prostate-specific antigen in prostatic cancer. Am J Clin Oncol, 

1988. 11 Suppl 2: p. S75-6. 
42. Ferrero Doria, R., et al., [Impact of prostatic benign hyperplasia and prostatic 

inflammation on the increase of prostate specific antigen levels]. Actas Urol Esp, 
1997. 21(2): p. 100-4. 

43. Thompson, I.M., et al., Prevalence of prostate cancer among men with a prostate-
specific antigen level < or =4.0 ng per milliliter. N Engl J Med, 2004. 350(22): p. 
2239-46. 

44. Gleason, D.F., Classification of prostatic carcinomas. Cancer chemotherapy reports. 
Part 1, 1966. 50(3): p. 125-8. 



                                                                                                   REFERENCES 

192 
 

45. Pierorazio, P., Preoperative characteristics of high-Gleason disease predictive of 
favourable pathological and clinical outcomes at radical prostatectomy. BJU Int, 
2012. 

46. Nguyen, K., Prostate cancer grading: Gland segmentation and structural features. 
Pattern Recognition Letters, 2011. 33(7): p. 951. 

47. Kollmeier, M.A. and M.J. Zelefsky, Brachytherapy for clinically localized prostate 
cancer: optimal patient selection. Archivos espanoles de urologia, 2011. 64(8): p. 
847-857. 

48. Koontz, B.F. and W.R. Lee, External beam radiation therapy for clinically localized 
prostate cancer: when and how we optimize with concurrent hormonal deprivation. 
Archivos espanoles de urologia, 2011. 64(8): p. 858-864. 

49. Duchesne, G., Localised prostate cancer - current treatment options. Australian 
family physician, 2011. 40(10): p. 768-71. 

50. Massard, C., E. Deutsch, and J.C. Soria, Tumour stem cell-targeted treatment: 
elimination or differentiation. Ann Oncol, 2006. 17(11): p. 1620-4. 

51. Gomella, L.G., et al., Hormone therapy in the management of prostate cancer: 
evidence-based approaches. Therapeutic advances in urology, 2010. 2(4): p. 171-81. 

52. Garcia, J.A. and B.I. Rini, Castration-resistant prostate cancer: Many treatments, 
many options, many challenges ahead. Cancer, 2011. 

53. Garcia, J.A., et al., Gemcitabine and docetaxel in metastatic, castrate-resistant 
prostate cancer: results from a phase 2 trial. Cancer, 2011. 117(4): p. 752-7. 

54. Seruga, B. and I.F. Tannock, Chemotherapy-based treatment for castration-resistant 
prostate cancer. Journal of clinical oncology : official journal of the American 
Society of Clinical Oncology, 2011. 29(27): p. 3686-94. 

55. Sartor, O., et al., Novel Therapeutic Strategies for Metastatic Prostate Cancer in the 
Post-Docetaxel Setting. The oncologist, 2011. 

56. Jones, J.S., Radiorecurrent Prostate Cancer: An Emerging and Largely Mismanaged 
Epidemic. European Urology, 2011. 

57. Catton, C., et al., Recurrent prostate cancer following external beam radiotherapy: 
follow-up strategies and management. The Urologic clinics of North America, 2003. 
30(4): p. 751-63. 

58. Ishkanian, A.S., et al., Array CGH as a potential predictor of radiocurability in 
intermediate risk prostate cancer. Acta oncologica, 2010. 49(7): p. 888-94. 

59. Zafarana, G. and R.G. Bristow, Tumor senescence and radioresistant tumor-
initiating cells (TICs): let sleeping dogs lie! Breast cancer research : BCR, 2010. 12(4): 
p. 111. 

60. Gerritsen, W.R. and P. Sharma, Current and Emerging Treatment Options for 
Castration-Resistant Prostate Cancer: A Focus on Immunotherapy. Journal of clinical 
immunology, 2011. 

61. Madan, R.A., et al., Therapeutic vaccines in metastatic castration-resistant prostate 
cancer: principles in clinical trial design. Expert opinion on biological therapy, 2010. 
10(1): p. 19-28. 

62. Rivera-Gonzalez, G.C., et al., Baculoviruses as gene therapy vectors for human 
prostate cancer. Journal of invertebrate pathology, 2011. 107 Suppl: p. S59-70. 

63. Lindner, U., J. Trachtenberg, and N. Lawrentschuk, Focal therapy in prostate cancer: 
modalities, findings and future considerations. Nature reviews. Urology, 2010. 
7(10): p. 562-71. 

64. (http://cancerhelp.cancerresearchuk.org/type/prostate-cancer/treatment/the-
stages-of-prostate-cancer), C.R.U. 2012. 

65. Lerner, I., et al., Function of heparanase in prostate tumorigenesis: potential for 
therapy. Clin Cancer Res, 2008. 14(3): p. 668-76. 

http://cancerhelp.cancerresearchuk.org/type/prostate-cancer/treatment/the-stages-of-prostate-cancer)
http://cancerhelp.cancerresearchuk.org/type/prostate-cancer/treatment/the-stages-of-prostate-cancer)


                                                                                                   REFERENCES 

193 
 

66. Cunha, G.R., et al., Estrogenic effects on prostatic differentiation and 
carcinogenesis. Reprod Fertil Dev, 2001. 13(4): p. 285-96. 

67. Abate-Shen, C. and M.M. Shen, Molecular genetics of prostate cancer. Genes Dev, 
2000. 14(19): p. 2410-34. 

68. Dong, J.T., Prevalent mutations in prostate cancer. J Cell Biochem, 2006. 97(3): p. 
433-47. 

69. Cerveira, N., et al., TMPRSS2-ERG gene fusion causing ERG overexpression precedes 
chromosome copy number changes in prostate carcinomas and paired HGPIN 
lesions. Neoplasia, 2006. 8(10): p. 826-32. 

70. Demichelis, F., et al., TMPRSS2:ERG gene fusion associated with lethal prostate 
cancer in a watchful waiting cohort. Oncogene, 2007. 26(31): p. 4596-9. 

71. Nakayama, M., et al., GSTP1 CpG island hypermethylation as a molecular biomarker 
for prostate cancer. J Cell Biochem, 2004. 91(3): p. 540-52. 

72. Pulukuri, S.M., et al., Epigenetic inactivation of the tissue inhibitor of 
metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene, 2007. 
26(36): p. 5229-37. 

73. DeClerck, Y.A., et al., Inhibition of invasion and metastasis in cells transfected with 
an inhibitor of metalloproteinases. Cancer Res, 1992. 52(3): p. 701-8. 

74. Taipale, J. and P.A. Beachy, The Hedgehog and Wnt signalling pathways in cancer. 
Nature, 2001. 411(6835): p. 349-54. 

75. Preston, S.L., et al., The new stem cell biology: something for everyone. Mol Pathol, 
2003. 56(2): p. 86-96. 

76. Spangrude, G.J., S. Heimfeld, and I.L. Weissman, Purification and characterization of 
mouse hematopoietic stem cells. Science, 1988. 241(4861): p. 58-62. 

77. Raff, M., Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol, 2003. 19: 
p. 1-22. 

78. Chen, Z., H.M. Sun, and X.Y. Yuan, [Identification of human corneal epithelial stem 
cells]. Zhonghua Yan Ke Za Zhi, 2005. 41(11): p. 1014-9. 

79. Alvarez-Buylla, A., B. Seri, and F. Doetsch, Identification of neural stem cells in the 
adult vertebrate brain. Brain Res Bull, 2002. 57(6): p. 751-8. 

80. Wang, Y., et al., Cell differentiation lineage in the prostate. Differentiation, 2001. 
68(4-5): p. 270-9. 

81. Androutsellis-Theotokis, A., et al., Notch signalling regulates stem cell numbers in 
vitro and in vivo. Nature, 2006. 442(7104): p. 823-6. 

82. Das, A.V., et al., The canonical Wnt pathway regulates retinal stem cells/progenitors 
in concert with Notch signaling. Dev Neurosci, 2008. 30(6): p. 389-409. 

83. Kalani, M.Y., et al., Wnt-mediated self-renewal of neural stem/progenitor cells. Proc 
Natl Acad Sci U S A, 2008. 105(44): p. 16970-5. 

84. Liu, S., et al., Hedgehog signaling and Bmi-1 regulate self-renewal of normal and 
malignant human mammary stem cells. Cancer Res, 2006. 66(12): p. 6063-71. 

85. Clarke, M.F., et al., Cancer stem cells--perspectives on current status and future 
directions: AACR Workshop on cancer stem cells. Cancer Res, 2006. 66(19): p. 9339-
44. 

86. Clarke, M.F., Cancer Stem Cells—Perspectives on Current Status and Future 
Directions: AACR Workshop on Cancer Stem Cells. Cancer Res, 2006. 99(19): p. 
9339-9344. 

87. Collins, A.T., et al., Prospective identification of tumorigenic prostate cancer stem 
cells. Cancer Res, 2005. 65(23): p. 10946-51. 

88. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy 
that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7. 

89. Boiko, A.D., et al., Human melanoma-initiating cells express neural crest nerve 
growth factor receptor CD271. Nature, 2010. 466(7302): p. 133-7. 



                                                                                                   REFERENCES 

194 
 

90. Bussolati, B., et al., Identification of a tumor-initiating stem cell population in 
human renal carcinomas. Faseb J, 2008. 22(10): p. 3696-705. 

91. Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem 
cell population. Cell Death Differ, 2008. 15(3): p. 504-14. 

92. Ginestier, C., et al., ALDH1 is a marker of normal and malignant human mammary 
stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007. 1(5): p. 
555-67. 

93. Ma, S., et al., Identification and characterization of tumorigenic liver cancer 
stem/progenitor cells. Gastroenterology, 2007. 132(7): p. 2542-56. 

94. Rutella, S., et al., Cells with characteristics of cancer stem/progenitor cells express 
the CD133 antigen in human endometrial tumors. Clin Cancer Res, 2009. 15(13): p. 
4299-311. 

95. Zhang, S., et al., Identification and characterization of ovarian cancer-initiating cells 
from primary human tumors. Cancer Res, 2008. 68(11): p. 4311-20. 

96. Chan, K.S., et al., Identification, molecular characterization, clinical prognosis, and 
therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U 
S A, 2009. 106(33): p. 14016-21. 

97. Chiou, S.H., et al., Identification of CD133-positive radioresistant cells in atypical 
teratoid/rhabdoid tumor. PLoS One, 2008. 3(5): p. e2090. 

98. Prince, M.E., et al., Identification of a subpopulation of cells with cancer stem cell 
properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A, 
2007. 104(3): p. 973-8. 

99. Schatton, T., et al., Identification of cells initiating human melanomas. Nature, 
2008. 451(7176): p. 345-9. 

100. Al-Hajj, M., et al., Therapeutic implications of cancer stem cells. Curr Opin Genet 
Dev, 2004. 14(1): p. 43-7. 

101. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating 
cells. Nature, 2007. 445(7123): p. 111-5. 

102. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer 
Res, 2003. 63(18): p. 5821-8. 

103. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 
2004. 432(7015): p. 396-401. 

104. Isaacs, J.T. and D.S. Coffey, Etiology and disease process of benign prostatic 
hyperplasia. Prostate Suppl, 1989. 2: p. 33-50. 

105. Isaacs, J.T., Control of cell proliferation and cell death in the normal and neoplastic 
prostate: a stem cell model, in Benign Prostate Hyperplasia, C.D. Rodgers CH, 
Gunha G, Grayhack JT, Hinman Jr F, Horton R, Editor 1987, NIH No.87-2881: 
Bethesda, MD. p. 85-94. 

106. Richardson, G.D., et al., CD133, a novel marker for human prostatic epithelial stem 
cells. J Cell Sci, 2004. 117(Pt 16): p. 3539-45. 

107. Maitland, N.J., et al., Prostate cancer stem cells: Do they have a basal or luminal 
phenotype? Hormone and Cancer, 2010. 

108. Oldridge, E.E., et al., Prostate cancer stem cells: Are they androgen-responsive? 
Molecular and cellular endocrinology, 2011. 

109. Birnie, R., et al., Gene expression profiling of human prostate cancer stem cells 
reveals a pro-inflammatory phenotype and the importance of extracellular matrix 
interactions. Genome Biol, 2008. 9(5): p. R83. 

110. Fodde, R. and T. Brabletz, Wnt/beta-catenin signaling in cancer stemness and 
malignant behavior. Curr Opin Cell Biol, 2007. 19(2): p. 150-8. 

111. Verras, M. and Z. Sun, Roles and regulation of Wnt signaling and beta-catenin in 
prostate cancer. Cancer Lett, 2006. 237(1): p. 22-32. 



                                                                                                   REFERENCES 

195 
 

112. Dai, J., et al., Prostate cancer induces bone metastasis through Wnt-induced bone 
morphogenetic protein-dependent and independent mechanisms. Cancer Res, 2008. 
68(14): p. 5785-94. 

113. Rajasekhar, V.K., et al., Tumour-initiating stem-like cells in human prostate cancer 
exhibit increased NF-kappaB signalling. Nature communications, 2011. 2: p. 162. 

114. Maitland, N.J. and A.T. Collins, Cancer stem cells - A therapeutic target? Current 
Opinion in Molecular Therapeutics, 2010. 12(6): p. 662-673. 

115. Taylor, R.A., R. Toivanen, and G.P. Risbridger, Stem cells in prostate cancer: treating 
the root of the problem. Endocrine-related cancer, 2010. 17(4): p. R273-85. 

116. Humphrey, P.A., Diagnosis of adenocarcinoma in prostate needle biopsy tissue. 
Journal of clinical pathology, 2007. 60(1): p. 35-42. 

117. Kasper, S., Exploring the Origins of the Normal Prostate and Prostate Cancer Stem 
Cell. Stem Cell Rev, 2008. 4(4): p. 329. 

118. Goldstein, A.S., et al., Identification of a cell of origin for human prostate cancer. 
Science, 2010. 329(5991): p. 568-71. 

119. Goldstein, A.S., T. Stoyanova, and O.N. Witte, Primitive origins of prostate cancer: in 
vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. 
Mol Oncol, 2010. 4(5): p. 385-96. 

120. Patrawala, L., et al., Highly purified CD44+ prostate cancer cells from xenograft 
human tumors are enriched in tumorigenic and metastatic progenitor cells. 
Oncogene, 2006. 25(12): p. 1696-708. 

121. Patrawala, L., et al., Hierarchical organization of prostate cancer cells in xenograft 
tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. 
Cancer Res, 2007. 67(14): p. 6796-805. 

122. Trerotola, M., et al., CD133, Trop-2 and alpha2beta1 integrin surface receptors as 
markers of putative human prostate cancer stem cells. Am J Transl Res, 2010. 2(2): 
p. 135-44. 

123. Risbridger, G.P. and R.A. Taylor, The complexities of identifying a cell of origin for 
human prostate cancer. Asian journal of andrology, 2011. 13(1): p. 118-9. 

124. Frame, F.M. and N.J. Maitland, Cancer Stem Cells, Models of Study and Implications 
of Therapy Resistance Mechanisms, in Human Cell Transformation - Role of Stem 
Cells and the Microenvironment J.S. Rhim and R. Kremer, Editors. 2011, Springer 
Science + Business Media, LLC. p. 105-118. 

125. Kenmore, D., Investigation into the DNA damage induced cell cycle checkpoint 
responses of karyotypically normal and culture-adapted human embryonic stem 
cells in Institute for Cancer Studies2011, University of Sheffield: Sheffield. 

126. Leach, F.S., et al., Mutations of a mutS homolog in hereditary nonpolyposis 
colorectal cancer. Cell, 1993. 75(6): p. 1215-25. 

127. Savitsky, K., et al., A single ataxia telangiectasia gene with a product similar to PI-3 
kinase. Science, 1995. 268(5218): p. 1749-53. 

128. Weeda, G., et al., A presumed DNA helicase encoded by ERCC-3 is involved in the 
human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell, 
1990. 62(4): p. 777-91. 

129. Hande, K.R., Etoposide: four decades of development of a topoisomerase II inhibitor. 
Eur J Cancer, 1998. 34(10): p. 1514-21. 

130. Wall, M.E., Plant antitumor agents. I. The isolation and structure of camptothecin, a 
novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminate 

. J. Am. Chem. Soc, 1966. 88(16): p. 3888–3890. 
131. Ulukan, H. and P.W. Swaan, Camptothecins: a review of their chemotherapeutic 

potential. Drugs, 2002. 62(14): p. 2039-57. 
132. Roland, P.S., Ototoxicity2004: BC Decker Inc. 221. 



                                                                                                   REFERENCES 

196 
 

133. Knox, R.J., Mechanism of cytotoxicity of anticancer platinum drugs: evidence that 
cis-diamminedichloroplatinum(II) and cis-diammine-(1,1-
cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction 
with DNA. Cancer Res, 1986. 46: p. 1972-1979. 

134. Fornari, F.A., et al., Interference by doxorubicin with DNA unwinding in MCF-7 
breast tumor cells. Mol Pharmacol, 1994. 45(4): p. 649-56. 

135. Momparler, R.L., et al., Effect of adriamycin on DNA, RNA, and protein synthesis in 
cell-free systems and intact cells. Cancer Res, 1976. 36(8): p. 2891-5. 

136. Montero, A., et al., Docetaxel for treatment of solid tumours: a systematic review of 
clinical data. Lancet Oncol, 2005. 6(4): p. 229-39. 

137. Eriksson, S., L. Thelander, and M. Akerman, Allosteric regulation of calf thymus 
ribonucleoside diphosphate reductase. Biochemistry, 1979. 18(14): p. 2948-52. 

138. Bjursell, G. and P. Reichard, Effects of thymidine on deoxyribonucleoside 
triphosphate pools and deoxyribonucleic acid synthesis in Chinese hamster ovary 
cells. J Biol Chem, 1973. 248(11): p. 3904-9. 

139. Banin, S., et al., Enhanced phosphorylation of p53 by ATM in response to DNA 
damage. Science, 1998. 281(5383): p. 1674-7. 

140. Lee, J.H. and T.T. Paull, ATM activation by DNA double-strand breaks through the 
Mre11-Rad50-Nbs1 complex. Science, 2005. 308(5721): p. 551-4. 

141. Cimprich, K.A. and D. Cortez, ATR: an essential regulator of genome integrity. Nat 
Rev Mol Cell Biol, 2008. 9(8): p. 616-27. 

142. Paull, T.T., et al., A critical role for histone H2AX in recruitment of repair factors to 
nuclear foci after DNA damage. Current biology : CB, 2000. 10(15): p. 886-95. 

143. Watters, G.P., et al., H2AX phosphorylation as a genotoxicity endpoint. Mutat Res, 
2009. 679(1-2): p. 50-8. 

144. Khosravi, R., et al., Rapid ATM-dependent phosphorylation of MDM2 precedes p53 
accumulation in response to DNA damage. Proc Natl Acad Sci U S A, 1999. 96(26): p. 
14973-7. 

145. Lim, D.S., et al., ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. 
Nature, 2000. 404(6778): p. 613-7. 

146. Xu, B., et al., Phosphorylation of serine 1387 in Brca1 is specifically required for the 
Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res, 2002. 
62(16): p. 4588-91. 

147. Petermann, E. and K.W. Caldecott, Evidence that the ATR/Chk1 pathway maintains 
normal replication fork progression during unperturbed S phase. Cell Cycle, 2006. 
5(19): p. 2203-9. 

148. Byun, T.S., et al., Functional uncoupling of MCM helicase and DNA polymerase 
activities activates the ATR-dependent checkpoint. Genes Dev, 2005. 19(9): p. 1040-
52. 

149. Walter, J. and J. Newport, Initiation of eukaryotic DNA replication: origin unwinding 
and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. 
Mol Cell, 2000. 5(4): p. 617-27. 

150. Dart, D.A., et al., Recruitment of the cell cycle checkpoint kinase ATR to chromatin 
during S-phase. J Biol Chem, 2004. 279(16): p. 16433-40. 

151. Zou, L. and S.J. Elledge, Sensing DNA damage through ATRIP recognition of RPA-
ssDNA complexes. Science, 2003. 300(5625): p. 1542-8. 

152. Parrilla-Castellar, E.R., S.J. Arlander, and L. Karnitz, Dial 9-1-1 for DNA damage: the 
Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst), 2004. 3(8-9): p. 1009-
14. 

153. Delacroix, S., et al., The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint 
signaling via TopBP1. Genes Dev, 2007. 21(12): p. 1472-7. 



                                                                                                   REFERENCES 

197 
 

154. Lee, J., A. Kumagai, and W.G. Dunphy, The Rad9-Hus1-Rad1 checkpoint clamp 
regulates interaction of TopBP1 with ATR. J Biol Chem, 2007. 282(38): p. 28036-44. 

155. Guo, Z., et al., Requirement for Atr in phosphorylation of Chk1 and cell cycle 
regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus 
egg extracts. Genes Dev, 2000. 14(21): p. 2745-56. 

156. Liu, Q., et al., Chk1 is an essential kinase that is regulated by Atr and required for 
the G(2)/M DNA damage checkpoint. Genes Dev, 2000. 14(12): p. 1448-59. 

157. Zhao, H. and H. Piwnica-Worms, ATR-mediated checkpoint pathways regulate 
phosphorylation and activation of human Chk1. Mol Cell Biol, 2001. 21(13): p. 4129-
39. 

158. Roos, W.P. and B. Kaina, DNA damage-induced cell death by apoptosis. Trends Mol 
Med, 2006. 12(9): p. 440-50. 

159. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and 
disease. Nature, 2009. 461(7267): p. 1071-8. 

160. Emanuel, P. and N. Scheinfeld, A review of DNA repair and possible DNA-repair 
adjuvants and selected natural anti-oxidants. Dermatol Online J, 2007. 13(3): p. 10. 

161. Lieber, M.R., et al., Mechanism and regulation of human non-homologous DNA end-
joining. Nat Rev Mol Cell Biol, 2003. 4(9): p. 712-20. 

162. West, S.C., Molecular views of recombination proteins and their control. Nat Rev 
Mol Cell Biol, 2003. 4(6): p. 435-45. 

163. Davies, C.S., Screening for gamma-ray hypersensitive mutants of Arabidopsis. 
Methods Mol Biol, 1999. 113: p. 41-8. 

164. Bradley, M.O. and K.W. Kohn, X-ray induced DNA double strand break production 
and repair in mammalian cells as measured by neutral filter elution. Nucleic Acids 
Res, 1979. 7(3): p. 793-804. 

165. Pommier, Y., et al., Repair of and checkpoint response to topoisomerase I-mediated 
DNA damage. Mutat Res, 2003. 532(1-2): p. 173-203. 

166. Muslimovic, A., et al., Numerical analysis of etoposide induced DNA breaks. PLoS 
One, 2009. 4(6): p. e5859. 

167. Ame, J.C., et al., PARP-2, A novel mammalian DNA damage-dependent poly(ADP-
ribose) polymerase. J Biol Chem, 1999. 274(25): p. 17860-8. 

168. Masson, M., et al., XRCC1 is specifically associated with poly(ADP-ribose) 
polymerase and negatively regulates its activity following DNA damage. Mol Cell 
Biol, 1998. 18(6): p. 3563-71. 

169. Matsumoto, Y. and K. Kim, Excision of deoxyribose phosphate residues by DNA 
polymerase beta during DNA repair. Science, 1995. 269(5224): p. 699-702. 

170. Sancar, A., et al., Molecular mechanisms of mammalian DNA repair and the DNA 
damage checkpoints. Annu Rev Biochem, 2004. 73: p. 39-85. 

171. Kuzminov, A., Single-strand interruptions in replicating chromosomes cause double-
strand breaks. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8241-6. 

172. Saleh-Gohari, N., et al., Spontaneous homologous recombination is induced by 
collapsed replication forks that are caused by endogenous DNA single-strand 
breaks. Mol Cell Biol, 2005. 25(16): p. 7158-69. 

173. Thode, S., et al., A novel pathway of DNA end-to-end joining. Cell, 1990. 60(6): p. 
921-8. 

174. Gottlieb, T.M. and S.P. Jackson, The DNA-dependent protein kinase: requirement for 
DNA ends and association with Ku antigen. Cell, 1993. 72(1): p. 131-42. 

175. Ma, Y., et al., Hairpin opening and overhang processing by an Artemis/DNA-
dependent protein kinase complex in nonhomologous end joining and V(D)J 
recombination. Cell, 2002. 108(6): p. 781-94. 

176. Koch, C.A., et al., Xrcc4 physically links DNA end processing by polynucleotide kinase 
to DNA ligation by DNA ligase IV. EMBO J, 2004. 23(19): p. 3874-85. 



                                                                                                   REFERENCES 

198 
 

177. Lee, J.W., et al., Implication of DNA polymerase lambda in alignment-based gap 
filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem, 
2004. 279(1): p. 805-11. 

178. Calsou, P., et al., Coordinated assembly of Ku and p460 subunits of the DNA-
dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. 
J Mol Biol, 2003. 326(1): p. 93-103. 

179. Jazayeri, A., et al., ATM- and cell cycle-dependent regulation of ATR in response to 
DNA double-strand breaks. Nat Cell Biol, 2006. 8(1): p. 37-45. 

180. Ogawa, T., et al., Similarity of the yeast RAD51 filament to the bacterial RecA 
filament. Science, 1993. 259(5103): p. 1896-9. 

181. Sung, P., Catalysis of ATP-dependent homologous DNA pairing and strand exchange 
by yeast RAD51 protein. Science, 1994. 265(5176): p. 1241-3. 

182. Holliday, R., A mechanism for gene conversion in fungi. Genet. Res., 1964. 5: p. 282-
304. 

183. McIlwraith, M.J., et al., Human DNA polymerase eta promotes DNA synthesis from 
strand invasion intermediates of homologous recombination. Mol Cell, 2005. 20(5): 
p. 783-92. 

184. Iijima, K., et al., Dancing on damaged chromatin: functions of ATM and the 
RAD50/MRE11/NBS1 complex in cellular responses to DNA damage. J Radiat Res, 
2008. 49(5): p. 451-64. 

185. Davies, S.L., et al., Phosphorylation of the Bloom's syndrome helicase and its role in 
recovery from S-phase arrest. Mol Cell Biol, 2004. 24(3): p. 1279-91. 

186. Tibbetts, R.S., et al., Functional interactions between BRCA1 and the checkpoint 
kinase ATR during genotoxic stress. Genes Dev, 2000. 14(23): p. 2989-3002. 

187. Pichierri, P., F. Rosselli, and A. Franchitto, Werner's syndrome protein is 
phosphorylated in an ATR/ATM-dependent manner following replication arrest and 
DNA damage induced during the S phase of the cell cycle. Oncogene, 2003. 22(10): 
p. 1491-500. 

188. Li, W., et al., Absence of BLM leads to accumulation of chromosomal DNA breaks 
during both unperturbed and disrupted S phases. J Cell Biol, 2004. 165(6): p. 801-12. 

189. Saha, T., M. Smulson, and E.M. Rosen, BRCA1 regulation of base excision repair 
pathway. Cell Cycle, 2010. 9(13): p. 2471-2. 

190. Weinert, T. and L. Hartwell, Control of G2 delay by the rad9 gene of Saccharomyces 
cerevisiae. J Cell Sci Suppl, 1989. 12: p. 145-8. 

191. Bohnsack, B.L. and K.K. Hirschi, Nutrient regulation of cell cycle progression. Annu 
Rev Nutr, 2004. 24: p. 433-53. 

192. Johnston, G.C., J.R. Pringle, and L.H. Hartwell, Coordination of growth with cell 
division in the yeast Saccharomyces cerevisiae. Exp Cell Res, 1977. 105(1): p. 79-98. 

193. King, K.L. and J.A. Cidlowski, Cell cycle regulation and apoptosis. Annu Rev Physiol, 
1998. 60: p. 601-17. 

194. Dasika, G.K., et al., DNA damage-induced cell cycle checkpoints and DNA strand 
break repair in development and tumorigenesis. Oncogene, 1999. 18(55): p. 7883-
99. 

195. Paulovich, A.G. and L.H. Hartwell, A checkpoint regulates the rate of progression 
through S phase in S. cerevisiae in response to DNA damage. Cell, 1995. 82(5): p. 
841-7. 

196. Willis, N. and N. Rhind, Regulation of DNA replication by the S-phase DNA damage 
checkpoint. Cell Div, 2009. 4: p. 13. 

197. Bartek, J. and J. Lukas, Mammalian G1- and S-phase checkpoints in response to DNA 
damage. Curr Opin Cell Biol, 2001. 13(6): p. 738-47. 

198. Molinari, M., et al., Human Cdc25 A inactivation in response to S phase inhibition 
and its role in preventing premature mitosis. EMBO Rep, 2000. 1(1): p. 71-9. 



                                                                                                   REFERENCES 

199 
 

199. Falck, J., et al., The ATM-Chk2-Cdc25A checkpoint pathway guards against 
radioresistant DNA synthesis. Nature, 2001. 410(6830): p. 842-7. 

200. Xu, B., et al., Two molecularly distinct G(2)/M checkpoints are induced by ionizing 
irradiation. Mol Cell Biol, 2002. 22(4): p. 1049-59. 

201. Brown, E.J. and D. Baltimore, Essential and dispensable roles of ATR in cell cycle 
arrest and genome maintenance. Genes Dev, 2003. 17(5): p. 615-28. 

202. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 
35(4): p. 495-516. 

203. Saelens, X., et al., Toxic proteins released from mitochondria in cell death. 
Oncogene, 2004. 23(16): p. 2861-74. 

204. Lavrik, I.N., A. Golks, and P.H. Krammer, Caspases: pharmacological manipulation of 
cell death. J Clin Invest, 2005. 115(10): p. 2665-72. 

205. Chinnaiyan, A.M., The apoptosome: heart and soul of the cell death machine. 
Neoplasia, 1999. 1(1): p. 5-15. 

206. Hill, M.M., et al., Analysis of the composition, assembly kinetics and activity of 
native Apaf-1 apoptosomes. EMBO J, 2004. 23(10): p. 2134-45. 

207. Cory, S. and J.M. Adams, The Bcl2 family: regulators of the cellular life-or-death 
switch. Nat Rev Cancer, 2002. 2(9): p. 647-56. 

208. Matsuoka, S., M. Huang, and S.J. Elledge, Linkage of ATM to cell cycle regulation by 
the Chk2 protein kinase. Science, 1998. 282(5395): p. 1893-7. 

209. Ahn, J.Y., et al., Threonine 68 phosphorylation by ataxia telangiectasia mutated is 
required for efficient activation of Chk2 in response to ionizing radiation. Cancer 
Res, 2000. 60(21): p. 5934-6. 

210. Fernandez-Capetillo, O., et al., DNA damage-induced G2-M checkpoint activation by 
histone H2AX and 53BP1. Nat Cell Biol, 2002. 4(12): p. 993-7. 

211. Cortez, D., et al., Requirement of ATM-dependent phosphorylation of brca1 in the 
DNA damage response to double-strand breaks. Science, 1999. 286(5442): p. 1162-
6. 

212. Schuler, M. and D.R. Green, Mechanisms of p53-dependent apoptosis. Biochemical 
Society transactions, 2001. 29(Pt 6): p. 684-8. 

213. Noda, T., K. Suzuki, and Y. Ohsumi, Yeast autophagosomes: de novo formation of a 
membrane structure. Trends Cell Biol, 2002. 12(5): p. 231-5. 

214. Cohen, J.J., Programmed cell death in the immune system. Adv Immunol, 1991. 50: 
p. 55-85. 

215. Marino, G. and C. Lopez-Otin, Autophagy: molecular mechanisms, physiological 
functions and relevance in human pathology. Cell Mol Life Sci, 2004. 61(12): p. 
1439-54. 

216. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-
73. 

217. Kondo, Y., et al., The role of autophagy in cancer development and response to 
therapy. Nat Rev Cancer, 2005. 5(9): p. 726-34. 

218. DiPaola, R.S., et al., Therapeutic starvation and autophagy in prostate cancer: a new 
paradigm for targeting metabolism in cancer therapy. Prostate, 2008. 68(16): p. 
1743-52. 

219. Saleem, A., et al., Effect of dual inhibition of apoptosis and autophagy in prostate 
cancer. Prostate, 2012. 

220. Huang, S. and F.A. Sinicrope, Celecoxib-induced apoptosis is enhanced by ABT-737 
and by inhibition of autophagy in human colorectal cancer cells. Autophagy, 2010. 
6(2): p. 256-69. 

221. Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and 
apoptosis. Nat Rev Mol Cell Biol, 2007. 8(9): p. 741-52. 



                                                                                                   REFERENCES 

200 
 

222. Dunn, W.A., Jr., Studies on the mechanisms of autophagy: formation of the 
autophagic vacuole. J Cell Biol, 1990. 110(6): p. 1923-33. 

223. Furuno, K., et al., Immunocytochemical study of the surrounding envelope of 
autophagic vacuoles in cultured rat hepatocytes. Exp Cell Res, 1990. 189(2): p. 261-
8. 

224. Suzuki, K., et al., Hierarchy of Atg proteins in pre-autophagosomal structure 
organization. Genes Cells, 2007. 12(2): p. 209-18. 

225. Rosenfeldt, M.T. and K.M. Ryan, The multiple roles of autophagy in cancer. 
Carcinogenesis, 2011. 32(7): p. 955-63. 

226. Schmitt, C.A., Cellular senescence and cancer treatment. Biochim Biophys Acta, 
2007. 1775(1): p. 5-20. 

227. Herbig, U., et al., Telomere shortening triggers senescence of human cells through a 
pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell, 2004. 
14(4): p. 501-13. 

228. d'Adda di Fagagna, F., S.H. Teo, and S.P. Jackson, Functional links between 
telomeres and proteins of the DNA-damage response. Genes Dev, 2004. 18(15): p. 
1781-99. 

229. Chen, Q. and B.N. Ames, Senescence-like growth arrest induced by hydrogen 
peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci U S A, 1994. 
91(10): p. 4130-4. 

230. MacLaren, A., et al., c-Jun-deficient cells undergo premature senescence as a result 
of spontaneous DNA damage accumulation. Mol Cell Biol, 2004. 24(20): p. 9006-18. 

231. von Zglinicki, T., et al., Human cell senescence as a DNA damage response. Mech 
Ageing Dev, 2005. 126(1): p. 111-7. 

232. Elmore, L.W., et al., Adriamycin-induced senescence in breast tumor cells involves 
functional p53 and telomere dysfunction. J Biol Chem, 2002. 277(38): p. 35509-15. 

233. Suzuki, K., et al., Radiation-induced senescence-like growth arrest requires TP53 
function but not telomere shortening. Radiat Res, 2001. 155(1 Pt 2): p. 248-253. 

234. Han, Z., et al., Role of p21 in apoptosis and senescence of human colon cancer cells 
treated with camptothecin. J Biol Chem, 2002. 277(19): p. 17154-60. 

235. Beausejour, C.M., et al., Reversal of human cellular senescence: roles of the p53 and 
p16 pathways. EMBO J, 2003. 22(16): p. 4212-22. 

236. Dirac, A.M. and R. Bernards, Reversal of senescence in mouse fibroblasts through 
lentiviral suppression of p53. J Biol Chem, 2003. 278(14): p. 11731-4. 

237. Dean, M., T. Fojo, and S. Bates, Tumour stem cells and drug resistance. Nat Rev 
Cancer, 2005. 5(4): p. 275-84. 

238. Ishii, H., et al., Cancer stem cells and chemoradiation resistance. Cancer Sci, 2008. 
99(10): p. 1871-7. 

239. Rich, J.N., Cancer stem cells in radiation resistance. Cancer research, 2007. 67(19): 
p. 8980-4. 

240. Luo, L.Z., et al., DNA repair in human pluripotent stem cells is distinct from that in 
non-pluripotent human cells. PLoS One, 2012. 7(3): p. e30541. 

241. Krishnamurthy, P., et al., The stem cell marker Bcrp/ABCG2 enhances hypoxic cell 
survival through interactions with heme. J Biol Chem, 2004. 279(23): p. 24218-25. 

242. Moore, N. and S. Lyle, Quiescent, slow-cycling stem cell populations in cancer: a 
review of the evidence and discussion of significance. J Oncol, 2011. 2011. 

243. Scharenberg, C.W., M.A. Harkey, and B. Torok-Storb, The ABCG2 transporter is an 
efficient Hoechst 33342 efflux pump and is preferentially expressed by immature 
human hematopoietic progenitors. Blood, 2002. 99(2): p. 507-12. 

244. Eyler, C.E. and J.N. Rich, Survival of the fittest: cancer stem cells in therapeutic 
resistance and angiogenesis. J Clin Oncol, 2008. 26(17): p. 2839-45. 



                                                                                                   REFERENCES 

201 
 

245. Baumann, M., M. Krause, and R. Hill, Exploring the role of cancer stem cells in 
radioresistance. Nat Rev Cancer, 2008. 8(7): p. 545-54. 

246. Morrison, R., et al., Targeting the mechanisms of resistance to chemotherapy and 
radiotherapy with the cancer stem cell hypothesis. J Oncol, 2011. 2011: p. 941876. 

247. Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation 
of the DNA damage response. Nature, 2006. 444(7120): p. 756-60. 

248. Hambardzumyan, D., M. Squatrito, and E.C. Holland, Radiation resistance and stem-
like cells in brain tumors. Cancer Cell, 2006. 10(6): p. 454-6. 

249. Gao, M.Q., et al., CD24+ cells from hierarchically organized ovarian cancer are 
enriched in cancer stem cells. Oncogene, 2010. 29(18): p. 2672-80. 

250. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with 
properties of stem cells. Cell, 2008. 133(4): p. 704-15. 

251. Naumov, G.N., et al., Ineffectiveness of doxorubicin treatment on solitary dormant 
mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat, 
2003. 82(3): p. 199-206. 

252. Lim, H.W., et al., Up-regulation of defense enzymes is responsible for low reactive 
oxygen species in malignant prostate cancer cells. Exp Mol Med, 2005. 37(5): p. 
497-506. 

253. Graves, J.A., et al., Regulation of reactive oxygen species homeostasis by 
peroxiredoxins and c-Myc. J Biol Chem, 2009. 284(10): p. 6520-9. 

254. Diehn, M., et al., Association of reactive oxygen species levels and radioresistance in 
cancer stem cells. Nature, 2009. 458(7239): p. 780-3. 

255. Hisaoka, T., et al., [A case of subacute thyroiditis with highly positive thyrotropin 
receptor antibodies and normal radioiodine uptake]. Nippon Naibunpi Gakkai 
Zasshi, 1993. 69(9): p. 997-1002. 

256. Ito, K., et al., Regulation of oxidative stress by ATM is required for self-renewal of 
haematopoietic stem cells. Nature, 2004. 431(7011): p. 997-1002. 

257. Ito, K., et al., Reactive oxygen species act through p38 MAPK to limit the lifespan of 
hematopoietic stem cells. Nat Med, 2006. 12(4): p. 446-51. 

258. Miyamoto, K., et al., Foxo3a is essential for maintenance of the hematopoietic stem 
cell pool. Cell Stem Cell, 2007. 1(1): p. 101-12. 

259. Smith, J., et al., Redox state is a central modulator of the balance between self-
renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci U S 
A, 2000. 97(18): p. 10032-7. 

260. Tothova, Z., et al., FoxOs are critical mediators of hematopoietic stem cell resistance 
to physiologic oxidative stress. Cell, 2007. 128(2): p. 325-39. 

261. Tsatmali, M., E.C. Walcott, and K.L. Crossin, Newborn neurons acquire high levels of 
reactive oxygen species and increased mitochondrial proteins upon differentiation 
from progenitors. Brain Res, 2005. 1040(1-2): p. 137-50. 

262. Chuthapisith, S., Cancer Stem Cells and Chemoresistance, in Cancer Stem Cells 
Theories and Practice, S. Shostak, Editor 2011, InTech. 

263. Chuthapisith, S., et al., Breast cancer chemoresistance: Emerging importance of 
cancer stem cells. Surg Oncol, 2009. 

264. Hirschmann-Jax, C., et al., A distinct "side population" of cells with high drug efflux 
capacity in human tumor cells. Proc Natl Acad Sci U S A, 2004. 101(39): p. 14228-33. 

265. Dean, M., ABC transporters, drug resistance, and cancer stem cells. J Mammary 
Gland Biol Neoplasia, 2009. 14(1): p. 3-9. 

266. Sanchez, C., et al., Expression of multidrug resistance proteins in prostate cancer is 
related with cell sensitivity to chemotherapeutic drugs. Prostate, 2009. 69(13): p. 
1448-59. 



                                                                                                   REFERENCES 

202 
 

267. Sanchez, C., et al., Chemotherapy sensitivity recovery of prostate cancer cells by 
functional inhibition and knock down of multidrug resistance proteins. Prostate, 
2011. 71(16): p. 1810-7. 

268. Ischenko, I., et al., Cancer Stem Cells: How can we Target them? Curr Med Chem, 
2008. 15(30): p. 3171-84. 

269. Hambardzumyan, D., et al., PI3K pathway regulates survival of cancer stem cells 
residing in the perivascular niche following radiation in medulloblastoma in vivo. 
Genes Dev, 2008. 22(4): p. 436-48. 

270. Iannolo, G., et al., Apoptosis in normal and cancer stem cells. Crit Rev Oncol 
Hematol, 2008. 66(1): p. 42-51. 

271. Todaro, M., et al., Apoptosis resistance in epithelial tumors is mediated by tumor-
cell-derived interleukin-4. Cell Death Differ, 2008. 15(4): p. 762-72. 

272. Francipane, M.G., et al., Crucial role of interleukin-4 in the survival of colon cancer 
stem cells. Cancer Res, 2008. 68(11): p. 4022-5. 

273. Lou, H. and M. Dean, Targeted therapy for cancer stem cells: the patched pathway 
and ABC transporters. Oncogene, 2007. 26(9): p. 1357-60. 

274. Miki, J., et al., Identification of putative stem cell markers, CD133 and CXCR4, in 
hTERT-immortalized primary nonmalignant and malignant tumor-derived human 
prostate epithelial cell lines and in prostate cancer specimens. Cancer Res, 2007. 
67(7): p. 3153-61. 

275. Gallmeier, E., et al., Novel genotoxicity assays identify norethindrone to activate 
p53 and phosphorylate H2AX. Carcinogenesis, 2005. 26(10): p. 1811-20. 

276. Lobrich, M., et al., gammaH2AX foci analysis for monitoring DNA double-strand 
break repair: strengths, limitations and optimization. Cell Cycle, 2010. 9(4): p. 662-
9. 

277. Montecucco, A. and G. Biamonti, Cellular response to etoposide treatment. Cancer 
Lett, 2007. 252(1): p. 9-18. 

278. Scholzen, T. and J. Gerdes, The Ki-67 protein: from the known and the unknown. J 
Cell Physiol, 2000. 182(3): p. 311-22. 

279. Boumendjel, A., ABC Transporters and Multidrug Resistance, ed. B. Wang2009: 
WILEY. 

280. Sharom, F.J., ABC multidrug transporters: structure, function and role in 
chemoresistance. Pharmacogenomics, 2008. 9(1): p. 105-27. 

281. Lebedeva, I.V., P. Pande, and W.F. Patton, Sensitive and specific fluorescent probes 
for functional analysis of the three major types of mammalian ABC transporters. 
PLoS One, 2011. 6(7): p. e22429. 

282. de Feraudy, S., et al., A minority of foci or pan-nuclear apoptotic staining of 
gammaH2AX in the S phase after UV damage contain DNA double-strand breaks. 
Proc Natl Acad Sci U S A, 2010. 107(15): p. 6870-5. 

283. Bonner, W.M., et al., GammaH2AX and cancer. Nat Rev Cancer, 2008. 8(12): p. 957-
67. 

284. Gagou, M.E., P. Zuazua-Villar, and M. Meuth, Enhanced H2AX phosphorylation, DNA 
replication fork arrest, and cell death in the absence of Chk1. Mol Biol Cell, 2010. 
21(5): p. 739-52. 

285. Hussein, D., et al., Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA 
repair, and etoposide extrusion. Neuro Oncol, 2011. 13(1): p. 70-83. 

286. Kim, J.H., et al., Salinomycin sensitizes cancer cells to the effects of doxorubicin and 
etoposide treatment by increasing DNA damage and reducing p21 protein. Br J 
Pharmacol, 2011. 162(3): p. 773-84. 

287. Gupta, P.B., et al., Identification of selective inhibitors of cancer stem cells by high-
throughput screening. Cell, 2009. 138(4): p. 645-59. 



                                                                                                   REFERENCES 

203 
 

288. Velichko, A.K., et al., Sensitivity of human embryonic and induced pluripotent stem 
cells to a topoisomerase II poison etoposide. Cell Cycle, 2011. 10(12): p. 2035-7. 

289. Chen, Y., et al., Quiescence and attenuated DNA damage response promote survival 
of esophageal cancer stem cells. J Cell Biochem, 2012. 

290. Buczacki, S., R.J. Davies, and D.J. Winton, Stem cells, quiescence and rectal 
carcinoma: an unexplored relationship and potential therapeutic target. Br J Cancer, 
2011. 105(9): p. 1253-9. 

291. Zhang, Z., et al., Differential epithelium DNA damage response to ATM and DNA-PK 
pathway inhibition in human prostate tissue culture. Cell Cycle, 2011. 10(20): p. 
3545-53. 

292. Tanaka, T., et al., Induction of ATM activation, histone H2AX phosphorylation and 
apoptosis by etoposide: relation to cell cycle phase. Cell Cycle, 2007. 6(3): p. 371-6. 

293. Stow, P., et al., Clinical significance of low levels of minimal residual disease at the 
end of remission induction therapy in childhood acute lymphoblastic leukemia. 
Blood, 2010. 115(23): p. 4657-63. 

294. Wang, L., et al., [Clinical significance of sequential monitoring minimal residual 
disease in childhood B-cell acute lymphoblastic leukemia]. Zhonghua Xue Ye Xue Za 
Zhi, 2011. 32(6): p. 400-3. 

295. Hosch, S.B., P. Scheunemann, and J.R. Izbicki, Minimal residual disease in non-small-
cell lung cancer. Semin Surg Oncol, 2001. 20(4): p. 278-81. 

296. Ignatiadis, M., C. Sotiriou, and K. Pantel, Minimal Residual Disease and Circulating 
Tumor Cells in Breast Cancer: Open Questions for Research. Recent Results Cancer 
Res, 2012. 195: p. 3-9. 

297. Blanpain, C., et al., DNA-damage response in tissue-specific and cancer stem cells. 
Cell Stem Cell, 2011. 8(1): p. 16-29. 

298. Wilson, A., et al., Hematopoietic stem cells reversibly switch from dormancy to self-
renewal during homeostasis and repair. Cell, 2008. 135(6): p. 1118-29. 

299. Mathew, G., et al., ABCG2-mediated DyeCycle Violet efflux defined side population 
in benign and malignant prostate. Cell Cycle, 2009. 8(7): p. 1053-61. 

300. Pascal, L.E., et al., Molecular and cellular characterization of ABCG2 in the prostate. 
BMC urology, 2007. 7: p. 6. 

301. Sissung, T.M., et al., ABCB1 genetic variation influences the toxicity and clinical 
outcome of patients with androgen-independent prostate cancer treated with 
docetaxel. Clinical cancer research : an official journal of the American Association 
for Cancer Research, 2008. 14(14): p. 4543-9. 

302. Kawai, K., et al., Demonstration of MDR1 P-glycoprotein isoform expression in 
benign and malignant human prostate cells by isoform-specific monoclonal 
antibodies. Cancer Lett, 2000. 150(2): p. 147-53. 

303. Van Brussel, J.P., et al., Expression of multidrug resistance related proteins and 
proliferative activity is increased in advanced clinical prostate cancer. J Urol, 2001. 
165(1): p. 130-5. 

304. Huss, W.J., et al., Breast cancer resistance protein-mediated efflux of androgen in 
putative benign and malignant prostate stem cells. Cancer research, 2005. 65(15): 
p. 6640-50. 

305. Brown, M.D., et al., Characterization of benign and malignant prostate epithelial 
Hoechst 33342 side populations. Prostate, 2007. 67(13): p. 1384-96. 

306. Pommier, Y., et al., Targeting chk2 kinase: molecular interaction maps and 
therapeutic rationale. Current pharmaceutical design, 2005. 11(22): p. 2855-72. 

307. Ide, H., et al., DNA damage response in prostate cancer cells after high-intensity 
focused ultrasound (HIFU) treatment. Anticancer Res, 2008. 28(2A): p. 639-43. 

308. Catz, S.D. and J.L. Johnson, BCL-2 in prostate cancer: a minireview. Apoptosis : an 
international journal on programmed cell death, 2003. 8(1): p. 29-37. 



                                                                                                   REFERENCES 

204 
 

309. Pickard, M.R., et al., Apoptosis regulators Fau and Bcl-G are down-regulated in 
prostate cancer. Prostate, 2010. 70(14): p. 1513-23. 

310. Diaz, A., Therapeutic Approaches to Target Cancer Stem Cells. Cancers, 2011. 3(3): 
p. 3331-3352. 

311. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating 
evidence and unresolved questions. Nat Rev Cancer, 2008. 8(10): p. 755-68. 

312. Rossi, D.J., et al., Deficiencies in DNA damage repair limit the function of 
haematopoietic stem cells with age. Nature, 2007. 447(7145): p. 725-9. 

313. Aguirre-Ghiso, J.A., Models, mechanisms and clinical evidence for cancer dormancy. 
Nat Rev Cancer, 2007. 7(11): p. 834-46. 

314. Trumpp, A. and O.D. Wiestler, Mechanisms of Disease: cancer stem cells--targeting 
the evil twin. Nature clinical practice. Oncology, 2008. 5(6): p. 337-47. 

315. Pece, S., et al., Biological and molecular heterogeneity of breast cancers correlates 
with their cancer stem cell content. Cell, 2010. 140(1): p. 62-73. 

316. Dembinski, J.L. and S. Krauss, Characterization and functional analysis of a slow 
cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp 
Metastasis, 2009. 26(7): p. 611-23. 

317. Dionne, C.A., et al., Cell cycle-independent death of prostate adenocarcinoma is 
induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin Cancer Res, 
1998. 4(8): p. 1887-98. 

318. Jorgensen, H.G., et al., Intermittent exposure of primitive quiescent chronic myeloid 
leukemia cells to granulocyte-colony stimulating factor in vitro promotes their 
elimination by imatinib mesylate. Clin Cancer Res, 2006. 12(2): p. 626-33. 

319. Kaufmann, S.H. and W.C. Earnshaw, Induction of apoptosis by cancer 
chemotherapy. Exp Cell Res, 2000. 256(1): p. 42-9. 

320. Wang, P., et al., Role of death receptor and mitochondrial pathways in conventional 
chemotherapy drug induction of apoptosis. Cell Signal, 2006. 18(9): p. 1528-35. 

321. Wotawa, A., et al., Differential influence of etoposide on two caspase-2 mRNA 
isoforms in leukemic cells. Cancer Lett, 2002. 185(2): p. 181-9. 

322. Bubendorf, L., et al., Prognostic significance of Bcl-2 in clinically localized prostate 
cancer. The American journal of pathology, 1996. 148(5): p. 1557-65. 

323. Chi, S.G., et al., p53 in prostate cancer: frequent expressed transition mutations. J 
Natl Cancer Inst, 1994. 86(12): p. 926-33. 

324. Gumerlock, P.H., et al., p53 abnormalities in primary prostate cancer: single-strand 
conformation polymorphism analysis of complementary DNA in comparison with 
genomic DNA. The Cooperative Prostate Network. J Natl Cancer Inst, 1997. 89(1): p. 
66-71. 

325. Aimola, P., et al., Cadmium induces p53-dependent apoptosis in human prostate 
epithelial cells. PLoS One, 2012. 7(3): p. e33647. 

326. Kao, J., et al., gamma-H2AX as a therapeutic target for improving the efficacy of 
radiation therapy. Curr Cancer Drug Targets, 2006. 6(3): p. 197-205. 

327. Jin, F., et al., Influence of Etoposide on anti-apoptotic and multidrug resistance-
associated protein genes in CD133 positive U251 glioblastoma stem-like cells. Brain 
Res, 2010. 1336: p. 103-11. 

328. Sullivan, G.F., et al., The expression of drug resistance gene products during the 
progression of human prostate cancer. Clin Cancer Res, 1998. 4(6): p. 1393-403. 

329. Leonard, G.D., T. Fojo, and S.E. Bates, The role of ABC transporters in clinical 
practice. The oncologist, 2003. 8(5): p. 411-24. 

 

  


