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Abstract 

Staphylococcus aureus (S. aureus) is a common human pathogen that causes a 

variety of diseases including infective endocarditis, necrotizing pneumonia and 

sepsis. An important aspect of S. aureus’ virulence is its ability to form biofilms, 

particularly following the implantation of indwelling medical devices. Biofilm 

infections are acutely difficult to treat due to the increased antimicrobial resistance 

rendered by this form of growth. Thus, there is a need to understand the molecular 

basis of biofilm formation to enable the development of new therapeutics. 

The S. aureus fibronectin-binding protein FnBPA is a cell wall anchored adhesin 

also able to bind fibrinogen. Fibronectin binding is mediated by 11 disordered 

binding repeats (FnBRs) via the tandem β-zipper mechanism and fibrinogen binding 

by the N2N3 subdomains of FnBPA’s A domain. Consequently, these regions of 

FnBPA are well characterised structurally. The A domain contains a third subdomain 

N1, which to date is poorly characterised and has no attributed function. The A 

domain of FnBPA is necessary for an FnBP-mediated mechanism of S. aureus 

biofilm formation. However, the molecular basis of FnBP-mediated biofilm 

formation is not understood. The main foci of this work are to determine the 

structure and function of the N1 subdomain and establish the molecular basis of 

FnBP-mediated biofilm formation. 

Nuclear magnetic resonance (NMR) spectroscopy was used to demonstrate the N1 

subdomain is intrinsically disordered, but exhibits secondary structure propensity in 

the C-terminal region. A range of pull-down experiments identified a novel function 

of FnBPA’s A domain in the adherence to human endothelial cells. Adherence to 

host vasculature is potentially an important step in S. aureus bacteraemia and the 

involvement of N1 is the first evidence of functionality in this domain. 

A proposed mechanism of protein-mediated biofilm formation involves the chelation 

of Zn
2+

 to form intercellular protein dimers. The ability of FnBPA’s A domain to 

dimerise in a Zn
2+

-dependent manner was investigated and despite forming dimers in 

conditions mimicking those known to induce FnBP-mediated biofilm formation, the 

concentration of Zn
2+

 required far exceeded physiological concentrations. Therefore, 
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interactions between the A domain and other biofilm matrix components were 

investigated. It was found that N1 interacts with wall teichoic acids, representing 

new insight into protein-mediated biofilm formation mechanisms and a novel 

function of the N1 subdomain.
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1 Introduction 

1.1 Staphylococcus aureus 

Staphylococcus aureus (S. aureus) is a Gram positive bacterium and an important 

organism due to its interactions with humans. Staphylococcal growth is characterised 

by the formation of grape-like cellular clusters, and this distinct architecture is 

responsible for the name of the genus. Cell division in staphylococci occurs in 

alternating perpendicular planes, with irregular or incomplete separation of daughter 

cells resulting in the observed clumps of cells (Tzagoloff and Novick, 1977). S. 

aureus is distinguishable from other staphylococci by a yellow pigmentation. 

A commensal pathogen, S. aureus persistently colonises the anterior nares, pharynx 

or damaged skin of approximately 20% of the population, with a further 60% being 

intermittent carriers (Noble et al., 1967, Rippon and Vogelsang, 1956). The risk of 

infection is minimal in non-carrying healthy individuals, whereas persons colonised 

by S. aureus are more susceptible to infections by their carried strain (Foster, 2004, 

von Eiff et al., 2001). Being an opportunistic pathogen, S. aureus takes advantage of 

impaired host immune responses causing a variety of conditions ranging in severity 

from minor skin lesions to life threatening illnesses such as toxic shock syndrome, 

necrotising pneumonia and infective endocarditis (Wenzel and Perl, 1995, Lowy, 

1998). 

Resistance to antimicrobial agents is an important facet of S. aureus’ virulence and a 

major clinical concern, particularly the rate at which resistance is acquired (Diekema 

et al., 2001, Yamazumi et al., 2001). In the United States, methicillin resistant S. 

aureus (MRSA) is a leading cause of death from infection by a single pathogen 

(Klevens et al., 2007). MRSA strains harbour genes encoding β-lactamases, 

rendering β-lactam antimicrobials obsolete as therapeutic agents (de Lencastre et al., 

1991). Vancomycin was introduced to combat infections caused by MRSA and in a 

relatively short period vancomycin-resistant strains (VRSA) were isolated from post-

operative patients that had developed infections (Hiramatsu et al., 1997). This 

highlights the ability of S. aureus to adapt quickly to novel antimicrobials. 
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S. aureus is a major cause of nosocomial infections, with the mortality rate of such 

infections, particularly those caused by MRSA, ranging from 20 to 30% (Mylotte et 

al., 1987, Julander, 1985, Bryan et al., 1984). Approximately one third of wound 

infections following cardiac surgery are attributed to MRSA (Jonkers et al., 2003, 

Bandyk, 2008). Such surgical site infections (SSIs) often cause complications during 

the implantation of prostheses, commonly resulting in the removal and re-

implantation of the device. The outcome of this treatment is a lengthier 

hospitalisation period for patients and a significant financial burden for health-

services (de Lissovoy et al., 2009). In recent times there has been a notable rise in 

the number of community associated MRSA (CA-MRSA) infections (Deleo et al., 

2010, Hersh et al., 2008). Contrasting hospital acquired MRSA (HA-MRSA) 

infections that are traditionally linked to patients with established risk factors, CA-

MRSA infections develop in otherwise healthy individuals (Naimi et al., 2003). 

Despite being deemed more transmissible and virulent than HA-MRSA, CA-MRSA 

is more susceptible to non-β-lactam antibiotics (Baba et al., 2002). 

S. aureus possesses an arsenal of virulence factors that facilitate host colonisation 

and immune evasion (Chesney et al., 1984, Uhlen et al., 1984, Watanabe et al., 2007, 

O'Brien et al., 2002a). During the establishment of blood borne infections bacteria 

are in close contact with endothelial cells throughout the vasculature, and a number 

of surface components promote adherence to the host cell surface (O'Brien et al., 

2002b, Roche et al., 2003, Weidenmaier et al., 2005, Massey et al., 2001). Working 

in tandem with adhesion molecules other virulence factors provide resistance to 

phagocytosis, enzymes promoting host cell lysis and bacteraemia, and other toxins 

damage host tissues (Claro et al., 2011, Fitzgerald et al., 2006, Peterson et al., 1977, 

Thurlow et al., 2011). Understanding the molecular mechanisms by which the 

aforementioned virulence factors are utilised could provide potential therapeutic 

targets. 

1.2 S. aureus Surface Protein Adhesins 

S. aureus expresses a number of protein adhesins that recognise host extracellular 

matrix (ECM) components (Massey et al., 2001, McDevitt et al., 1994, Patti et al., 

1994b, Roche et al., 2004). Collectively these adhesins are referred to as 
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MSCRAMMs (microbial surface components recognising adhesive matrix 

molecules) (Patti et al., 1994a). These surface proteins do not exclusively recognise 

ECM components and also promote adhesion to endothelial cells. Clumping factor B 

(ClfB) (O'Brien et al., 2002b), iron-regulated surface determinant A (IsdA) (Clarke 

et al., 2004, Corrigan et al., 2009) and SasG (Roche et al., 2003) are utilised in the 

colonisation of the anterior nares. Though a large proportion of MSCRAMMs 

recognise only one ECM component, certain proteins are bi-functional, notably the 

fibronectin-binding proteins (FnBPs), which bind fibronectin (Fn) (Schwarz-Linek et 

al., 2003, Froman et al., 1987) and fibrinogen (Fg) (Keane et al., 2007b, Wann et al., 

2000). Protein adhesins are often important in establishing infections (Arrecubieta et 

al., 2006, Edwards et al., 2010, Piroth et al., 2008). Expression of clumping factor A 

(ClfA) and fibronectin-binding protein A (FnBPA) on the otherwise non-pathogenic 

Lactococcus lactis (L. lactis) increased its capacity to colonise a host (Que et al., 

2005). Synergistic binding of Fn and Fg by L. lactis led to a more efficient infection, 

suggesting that proteins recognising multiple targets are particularly effective 

virulence factors (Piroth et al., 2008). 

1.2.1 The Fibronectin Binding Proteins 

The FnBPs of S. aureus have been implicated in the pathogenesis of a number of 

diseases including infective endocarditis (Fitzgerald et al., 2006) and the 

development of sepsis (Edwards et al., 2010, Shinji et al., 2011). Many strains 

express two FnBPs, FnBPA and FnBPB, encoded by the closely linked genes fnbA 

and fnbB (Jonsson et al., 1991). Although some strains express only fnbA, the 

majority of clinical isolates also contained the gene fnbB enocoding FnBPB 

(Peacock et al., 2000). FnBPA and FnBPB share very a similar domain organisation 

and have high sequence identity, 45% and 95% for the N-terminal Fg-binding and 

the Fn-binding regions respectively, (Figure 1) (Burke et al., 2010, Loughman et al., 

2008). The N-terminus of FnBPA comprises a short signalling peptide, required to 

ensure expressed proteins are directed to the cell surface (DeDent et al., 2008), and 

the Fg-binding A domain (Wann et al., 2000, Keane et al., 2007a). Adjacent to the A 

domain is the Fn-binding region, containing 11 highly conserved Fn-binding repeats 

(FnBRs) (Schwarz-Linek et al., 2003, Meenan et al., 2007). The C-terminus is 
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composed of a proline rich repeat region, wall and membrane spanning domains, and 

a LPETG motif for sortase-catalysed cell wall anchoring (Novick, 2000). 

 

Figure 1 Structural schematics of FnBPA and FnBPB. FnBPA (A) and FnBPB (B) have very 

similar domain organisations. Both comprise a short signalling peptide (S) at the N-terminus, a Fg-

binding A domain, multiple FnBRs, a proline rich repeat region (PRR), wall- (W) and membrane- 

(M) spanning domains. Covalent attachment to the cell surface is achieved via a LPETG motif. The 

percentage identity between regions of the FnBPs is indicated. Residue numbers correspond to 

UniProt entries P14738 (FnBPA) and Q53682 (FnBPB). 

Interactions between FnBPA and Fn and Fg play a pivotal  role in a number of 

processes. The internalisation of S. aureus into host cells (Edwards et al., 2010), 

platelet activation (an important step in the development of infective endocarditis) 

(Fitzgerald et al., 2006) and the adhesion of S. aureus to implanted ventricular assist 

devices (Arrecubieta et al., 2006) are all mediated by FnBPA-Fn and FnBPA-Fg 

interactions. Upon binding of Fn, disordered regions of bacterial proteins form 

additional β-strands antiparallel to the Fn F1 modules E-strands, in a mechanism 

known as the tandem β-zipper (Schwarz-Linek et al., 2003, Meenan et al., 2007). 

Recently solved crystal structures of the 
2
F1

3
F1 and 

4
F1

5
F1 module pairs of Fn’s N-

terminal domain (NTD) with FnBR peptides, show that FnBPA exploits this 

particular mechanism of binding (Figure 2) (Bingham et al., 2008). A significant 

entropic penalty exists upon complex formation, following the transition from a 

disordered to an ordered conformation. A high percentage of the FnBR residues form 

N1 N2 N3            PRR W S M 

LPETG 
37 511 

A Domain 

N1 N2 N3           PRR W S M 

Fn Binding 

37 480 

45 % 95 % 

878 

A 

B 
LPETG 

Fg Binding 
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an extensive interface with F1 modules. Thus, unfavourable entropic changes are 

offset by a favourable enthalpic contribution. 

 

Figure 2 Fibronectin binding by FnBPA. On binding to Fn (navy) the disordered FnBRs (cyan) 

form an additional β-strand antiparallel to the F1 modules E-strand. Adapted from Bingham et al. 

(Bingham et al., 2008). 

The N2N3 subdomains of FnBPA’s N-terminal A domain comprise the Fg-binding 

site, a region that has also been shown to bind elastin (Keane et al., 2007b, Roche et 

al., 2004, Keane et al., 2007a). A recently solved crystal structure of N2N3 (Figure 

3A) (Stemberk, manuscript in preparation) shows the independently folded 

subdomains adopt immunoglobulin type conformations, similar to other S. aureus 

Fg-binding surface proteins (ClfA and ClfB) (Ganesh et al., 2011a, Deivanayagam et 

al., 2002). The Fg-binding site is located in the mostly hydrophobic cleft between N2 

and N3. Upon binding, the C-terminus of the Fg γ-chain forms an additional β-strand 

parallel to the G’ strand of N3 (Figure 3B) (Stemberk, manuscript in preparation). 

To date no function has been attributed to the N1 subdomain. In a pair-wise 

sequence alignment of FnBPA A domains from a number of S. aureus strains, N1 

was found to be the most conserved subdomain (Loughman et al., 2008, Keane et al., 

2007b). On average N1 is approximately 90% conserved, compared to 75% and 60% 

in N2 and N3, respectively. N1 appears to have evolved separately from N2N3 as 

high sequence identity in N2N3 does not necessarily correlate with similar identity in 

N1. The Fg-binding capacity of FnBPA is unaffected by N1 (Stemberk, manuscript 

in preparation), thus it is likely N1 has a role separate from N2 and N3. One 

hypothesis is that during the early stages of infection N1 may protect N2 and N3 
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from proteolysis (Burke et al., 2010). N1 is speculated to be less readily recognised 

by the host immune system rendering protection to N2 and N3, thus preserving 

FnBPA’s Fg-binding capacity (Burke et al., 2010). A second proposed role is in 

FnBP-mediated S. aureus biofilm formation. 

 

 

Figure 3 Crystal structures of FnBPA ligand interactions. Crystal structures of the N2N3 (cyan) 

subdomains from FnBPA in the apo form (A) and bound to Fg (red) (B). 
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1.3 Bacterial Biofilms 

The current definition of a bacterial biofilm is a structured community of cells 

enclosed in a self-produced polymeric matrix and adhered to an inert or living 

surface (Costerton et al., 1995). Biofilms have been observed in nature for some 

time, often on moist surfaces as a slimy coating. By forming biofilms bacteria 

generate an environment that provides protection during growth in hostile conditions 

(Darouiche, 2004, Anwar et al., 1990). Recently, understanding the mechanisms of 

biofilm formation has become more important in a clinical setting as commensals 

such as Staphylococcus epidermidis (S. epidermidis) and S. aureus form biofilms 

following infection (Cha et al., 2010, Fey and Olson, 2010). The protective nature of 

a biofilm increases the difficulty of treating infections and this is attributed to two 

primary factors. Firstly, antimicrobial agents may not fully penetrate the biofilm, as 

the biofilm matrix is known to retard the diffusion and as a result bacteria situated 

deeper within the biofilm are less likely to be affected (Hoyle et al., 1992). Secondly, 

bacteria in a biofilm are in a semi-dormant state and in this mode of growth are less 

susceptible to antimicrobial agents (Kinniment and Wimpenny, 1992). An additional 

complication is that low levels of antibiotics can act to stimulate biofilm formation 

and growth (Hsu et al., 2011, Kaplan, 2011, Kaplan et al., 2011). Therefore, 

incomplete treatment or sub-lethal doses of antibiotics may be advantageous to the 

bacteria, even strains susceptible to a particular course of treatment. Typically S. 

aureus and S. epidermidis utilise polymeric intercellular adhesion (PIA), 

extracellular DNA (eDNA), proteins and teichoic acids as structural components in 

the bioflm matrix (Izano et al., 2008b, Conrady et al., 2008, Kaplan et al., 2011, 

Sadovskaya et al., 2004). A recent study has shown that despite being able to kill 

bacteria with antimicrobials such as lysostaphin, unless the matrix is also destroyed 

the biofilm will remain intact (Wu et al., 2003). S. aureus and S. epidermidis are 

adept at forming biofilms on indwelling medical devices, which can significantly 

hinder medical treatments (Mack et al., 2006, Donlan, 2001). Therefore, 

understanding the molecular mechanisms bacteria employ to form biofilms is an 

important area of research with significant clinical implications. 
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1.3.1 Staphylococcal Biofilm Formation Mechanisms 

Bacterial biofilm formation is classically described as a four-stage process; 

adherence, accumulation, maturation and dispersal (Figure 4).  Primary attachment 

by bacteria to a surface can be mediated by a number of factors. Perhaps the most 

intuitive mechanism employed by S. aureus involves utilising adhesins expressed on 

the cell surface that recognise extracellular matrix components. Following 

implantation, the surface of a prosthetic device is rapidly coated with host matrix 

proteins such as fibrinogen and fibronectin (Vaudaux et al., 1989). As a result the 

surfaces of prostheses become ideal environments for S. aureus to colonise via 

specific interactions between its surface adhesins (FnBPA, FnBPB and ClfA of S. 

aureus, for example) and the deposited host factors (Figure 5). A second method 

enables adherence to unconditioned surfaces and is mediated by DNA, released 

through the action of the major autolysin Atl, and dependent on electrostatic 

interactions (Heilmann et al., 1997, Qin et al., 2007). However, this method of 

primary attachment is less well understood and appears to be governed by the overall 

mechanism of biofilm formation (Houston et al., 2011). 

 

Figure 4 The four stages of staphylococcal biofilm formation. Biofilms growth is categorised into 

four stages; attachment, accumulation, maturation and dispersal. Adapted from (Otto, 2004). 
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Figure 5 Mechanisms of biofilm primary attachment. S. aureus utilises specific interactions 

between surface proteins and deposited host factors (A) or non-specific electrostatic interactions (B) 

to mediate primary attachment. 

The accumulation phase of biofilm formation is typically separated into two distinct 

mechanisms mediated by a polysaccharide intercellular adhesin (PIA) and surface 

proteins (Heilmann et al., 1996, O'Gara, 2007, Geoghegan et al., 2010). PIA, or 

poly-N-acetyl glucosamine (PNAG), is synthesised by the ica gene products (Mack 

et al., 1996a, Mack et al., 1996b). Initially identified in biofilm forming strains of S. 

epidermidis, the ica operon is composed of four genes (icaA, icaB, icaC and icaD). 

The presence of the ica locus was subsequently identified in S. aureus, with the gene 

products sharing high amino acid identity across strains (Cramton et al., 1999). The 

ica operon is conserved in a significant proportion of S. aureus clinical isolates and 

is one of seven factors associated with increased invasiveness and virulence (Kropec 

et al., 2005, Peacock et al., 2002). IcaA is a transmembrane N-acetyl-

glucosaminyltransferase requiring IcaD for optimal activity. Coexpression of icaAD 

with icaC leads to the synthesis of long PNAG chains. Transfer of these polymers to 

the cell surface is likely achieved with IcaC involvement (Gerke et al., 1998). Partial 

deacetylation of PIA/PNAG is carried out by IcaB, generating a net positive charge 

throughout the polymer (Vuong et al., 2004). The partial deacetylation of PIA is 

crucial for the accumulation of bacteria, presumably to interact with negatively 

charged cell surfaces (Vuong et al., 2004). 

The role proteins play in biofilms is more ambiguous and dependent on growth 

conditions and the bacterial strain. To date a number of proteins have been 

demonstrated to facilitate the accumulation phase of biofilm formation. S. aureus 

typically employs LPXTG-anchored surface proteins including Bap, SasG, SasC and 
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FnBPA/B to mediate cell biofilm formation (Cucarella et al., 2001, O'Neill et al., 

2009, Schroeder et al., 2009, Corrigan et al., 2007). The involvement of proteins was 

identified by the dispersal of the biofilm following treatment with proteases or 

through genomic analysis and comparison with proteins known to mediate biofilm 

formation (Corrigan et al., 2007, O'Neill et al., 2007). Little is known about the 

molecular mechanisms by which proteins drive cell accumulation though the 

involvement of zinc has been confirmed in a number of cases (Conrady et al., 2008, 

Geoghegan et al., 2010). The addition of chelating agents resulted in the dispersal of 

cells, with the biofilm only re-established on the addition of Zn
2+

. No other divalent 

cations had the same effect. A proposed mechanism involving Zn
2+

 is the “zinc-

zipper”, wherein Zn
2+

 induces intercellular protein dimerisation and drives cell 

accumulation (Conrady et al., 2008). However, to date evidence to support this 

hypothesis has only been found for one protein from S. epidermidis. 

The superstructure of biofilms also differs depending on the cell accumulation 

mechanism. In S. epidermidis PIA acts as a tether running through the biofilm matrix 

to which the bacteria adhere resulting in relatively dispersed cells (Schommer et al., 

2011). Contrastingly cells growing in protein mediated biofilms form dense bacterial 

aggregates with little void space apparent between cells (Vergara-Irigaray et al., 

2009). This may be indicative of interactions between surface bound molecules on 

neighbouring cells driving bacterial accumulation. 

1.3.2 Biofilm Maturation and the Biofilm Matrix 

Mature biofilms are complex environments consisting of cells in multiple metabolic 

states, and this contributes to the difficulty of clearing biofilm infections (Rani et al., 

2007). An intricate response system exists within the biofilm influencing gene 

expression to optimise biofilm development in response to the bacteria’s 

environment (Beenken et al., 2004). This multipart quorum-sensing system dictates 

levels of protein expression, cell lysis and shifts from aerobic to anaerobic 

respiratory mechanisms to mention but a few regulated processes (Marti et al., 2010, 

Mann et al., 2009, Rani et al., 2007). What is clear is that in mature biofilms the 

matrix is critical to the stability and survival of the biofilm. It allows intense 

interaction among cells in close proximity, permitting efficient response to various 
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stimuli (Flemming and Wingender, 2010). Maintaining the biofilm matrix relies on 

continual production of its constituents with DNA, teichoic acids, PIA and proteins 

seemingly ubiquitous throughout staphylococcal biofilms. The role played by each 

component differs significantly with eDNA a major structural component and PIA a 

minor one in S. aureus biofilms (Izano et al., 2008a). In S. epidermidis biofilms, PIA 

has a much more significant contribution (Izano et al., 2008a, Rohde et al., 2010). A 

commonality is that both polymers act as diffusion barriers to prevent access to 

embedded cells. Over time the contribution of a particular component can also 

change (Mann et al., 2009). For example, in certain S. aureus biofilms eDNA is 

known to be essential for primary attachment and in the initial stages of biofilm 

growth (Houston et al., 2011, Izano et al., 2008a). In due course the established 

biofilm becomes less susceptible to DNase activity and more reliant on the 

contribution of proteinaceous adhesins.  

1.3.3 Role of the FnBPs in Biofilm Formation 

An ica-independent biofilm was identified for clinically relevant MRSA strains and 

was induced by growth in glucose-supplemented media (O'Neill et al., 2008, 

Vergara-Irigaray et al., 2009). Biofilm formation was triggered by mild acid stress 

following the metabolism of glucose. The role of a LPXTG wall-anchored protein 

was determined through the deletion of sortase, required for cell-wall anchoring, and 

a subsequent six-fold reduction in biofilm density. Following the systematic deletion 

of cell wall anchored proteins, it was found that a fnbAfnbB double mutant severely 

disrupted MRSA’s ability to form biofilms, implying FnBPA and FnBPB are 

necessary for biofilm viability. Bacteria were still able to adhere to a surface and 

consequently the role of the FnBPs is thought to be in cell accumulation. The A 

domains of FnBPA/B were found to be necessary and sufficient for biofilm 

development. Deletion of the A domain inhibited biofilm formation, whereas 

deletion of the FnBR region had no observable effect. The presence of either FnBPA 

or FnBPB was sufficient to establish biofilm at close to wild-type levels suggesting 

the proteins can functionally substitute for one another (O'Neill et al., 2008). 

Lowering the temperature from 37
 
to 30 

o
C resulted in reduced biofilm formation, 

and it has been suggested that this is due to attenuated levels of fnb gene expression 
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(O'Neill et al., 2009). To date there is no proposed molecular mechanism for FnBP-

mediated biofilm formation. 

1.4 Intrinsically Disordered Proteins 

Ordered proteins are typically characterised as having a stable three-dimensional 

structure, governed by the primary sequence. For a long time it was thought a stable 

fold was a prerequisite for protein function. More recently there has been a 

significant shift away from this paradigm with the crucial role of disorder in protein 

interactions evident throughout nature. Proteins can typically be divided into four 

structural categories; tightly folded single domains, multi-domain proteins with 

flexible linker/disordered regions, compact but disordered molten globules and 

highly extended unstructured states (or random coil) (Uversky, 2003). There are no 

clearly defined boundaries to indicate whether a protein falls into a particular 

category; rather a continuum between states exists (Dyson and Wright, 2005). For 

simplicity intrinsically disordered proteins (IDPs) are generally described as proteins 

that lack stable secondary or tertiary structure under physiological conditions 

(Dunker et al., 2002). IDPs sample an ensemble of conformations that continually 

interconvert and thus have a rugged energy landscape and no clearly defined 

minimum (Rezaei-Ghaleh et al., 2012). However, proteins rarely behave as true 

random coils, showing rather a propensity to form local elements of secondary 

structure (Dyson and Wright, 2005). The regions with transient secondary structure 

are often stabilised on binding to a ligand. 

As mentioned previously, proteins can be wholly or partially disordered. Thus, the 

classification of IDPs remains somewhat subjective. It is thought approximately 

21%, 18% and 30% in bacteria, archaea and eukaryotes, respectively, are IDPs or 

contain intrinsically disordered regions (IDRs) (Pancsa and Tompa, 2012, Ward et 

al., 2004). There is an apparent correlation between the number of disordered 

proteins and complexity of the organism, with more complex organisms expressing a 

higher percentage of IDPs (Xue et al., 2012). However, this may be an 

oversimplification and structural disorder cannot simply be attributed to the 

phylogeny of an organism (Pancsa and Tompa, 2012). 
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IDPs exhibit low sequence complexity compared to folded proteins, a characteristic 

that enables the prediction of unstructured regions in silico (Bordoli et al., 2007, 

Oldfield et al., 2005). Typically IDPs contain relatively low numbers of what are 

commonly termed order-promoting residues such as Val, Leu, Ile, Phe, Trp and Tyr 

(Dosztanyi et al., 2005b, Garner et al., 1998). The lack of these residues prevents the 

formation of a stable hydrophobic core and consequently, a stable three-dimensional 

fold. Instead, IDPs are typically rich in polar and charged residues (Glu, Asp, Pro, 

Ser, Lys and Gln) (Romero et al., 2001, Midic and Obradovic, 2012). Interactions 

between the prevalent charged residues in IDPs can significantly impact the protein’s 

dimensions (Marsh and Forman-Kay, 2010, Muller-Spath et al., 2010). Interestingly, 

the net charge, rather than the number of charges governs the hydrodynamic radius 

of an IDP, with a higher net charge resulting in increased compaction. Contrastingly, 

and somewhat counter intuitively, IDPs with a similar number of positive and 

negative charges are subject to pronounced expansion (Muller-Spath et al., 2010). In 

addition, the number of proline residues affects an IDPs hydrodynamic radius, with 

an increased number of proline residues resulting in increased expansion (Marsh and 

Forman-Kay, 2010). 

The properties of IDPs lead to characteristic behaviour in a number of biophysical 

techniques. IDPs have a large hydrodynamic radius compared to folded proteins of 

similar size , a feature detectable using size exclusion chromatography. In addition 

IDPs are easily identifiable using techniques such as nuclear magnetic resonance 

(NMR) spectroscopy (Mittag and Forman-Kay, 2007) and circular dichroism (CD) 

(Sigalov et al., 2006), producing unique spectral features (Dyson and Wright, 2004, 

Tompa, 2002). 

IDPs are known to play important roles in a number of processes, such as signalling 

and transcriptional regulation (Zeng et al., 2011, Kim et al., 2008). The recognition 

of multiple targets can be crucial to fulfilling such roles. For example, the Cyclin-

dependent kinase inhibitor p21
Cip1

 is able to interact with a variety of kinases to 

regulate numerous aspects of the cell cycle (Kriwacki et al., 1996, Tanaka et al., 

2002). Interactions involving IDPs have a significant entropic cost when undergoing 

a disordered to ordered transition. This is countered by IDPs exposing a large 

interface, relative to their overall size, for binding. Thus, there is a significant 
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enthalpic contribution to binding (Dyson and Wright, 2001). As a result, interactions 

involving IDPs tend to be highly specific but low affinity. 

1.5 Nuclear Magnetic Resonance Spectroscopy 

Solution state NMR spectroscopy is a powerful technique for probing protein 

structure and monitoring interactions. Along with crystallography and cryo-electron 

microscopy, NMR is one of able to elucidate three-dimensional chemical structures 

at high resolution. NMR can provide an insight into molecular dynamics and the 

kinetics of interactions. However, despite recent advances in methodology, including 

polarisation, pulsing and acquisition techniques, and spectrometer technologies 

NMR is limited by its inherent low sensitivity and requires significant amounts of 

material relative to other biophysical techniques.  

Nuclei possess an intrinsic angular momentum known as spin, denoted with the spin 

quantum number (I) (Hore, 1995). The magnitude of I possessed by nuclei is 

dependent on the number of protons and neutrons they comprise, and increases in 

half integers from 0 to 4. When I ≠ 0 the nuclei possess a magnetic dipole. Nuclei 

with I greater than 
1
/2 possess electric quadrupole moments arising from non-

spherical charge distribution. The lifetime of magnetic states arising from 

quadrupolar nuclei is typically short-lived and resonance lines broader (Levitt, 

2001). As a result they are more difficult to study and subsequent discussions will 

focus on spin-
1
/2 nuclei, which are most widely used in chemical analysis. The spin 

angular momentum (I) of a nucleus has a number of permitted directions based on its 

spin quantum number. In the absence of an applied magnetic field all orientations 

have the same energy. When an external field (B0) is applied, this degeneracy is 

removed and lower energy states become more populated. Spin-
1
/2 nuclei have two 

permitted orientations, in the same direction as the applied field, or in the opposite 

direction to the applied field (Figure 6). Spins oriented in the direction of the applied 

field have a lower energy. The energy gap between these two states (ΔE) depends on 

the magnitude of the nuclear magnetic moment (Equation 1) and the magnetic field 

strength. The application of radio frequency (RF) electromagnetic radiation excites 

the system inducing an inversion in the population of energy states. The frequency of 
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radiation required to achieve this at a given field strength is therefore known as the 

resonance frequency (Equation 2) (Keeler, 2005). 

 

Figure 6 The orientation of spins in a magnetic field. Spin-
1
/2 nuclei have two permitted 

orientations when an external field is applied. A lower energy orientation in the direction of B0 and a 

higher energy orientation in the opposite direction. 

        

Equation 1 Calculating the magnetic moment of a nucleus. The magnetic moment (µ) of a nucleus 

is directly proportional to I, with the gyromagnetic ratio (γ) of the nucleus the proportionality 

constant. 

   
   

  
 

Equation 2 Resonance frequency of an isolated nucleus in an applied magnetic field. The 

resonance frequency (ν) of a nucleus is dependent on the gyromagnetic ratio of the nucleus (γ) and the 

magnetic field strength (B0). 

Each nucleus (e.g. 
1
H, 

13
C, 

15
N, 

19
F) has a characteristic resonance frequency based 

on its individual magnetic moment. The local chemical environment of a nucleus 

also has an effect on its resonance frequency within an external field. As a result, 

spin-
1
/2 nuclei can be used as probes to determine the environments of specific atoms 

and elucidate the structural characteristics of a particular molecule. By isotopically 

enriching proteins with the spin-
1
/2 nuclei 

13
C and 

15
N, along with using naturally 

occurring 
1
H, NMR can be a powerful technique for probing protein structure and 

interactions by monitoring changes in the resonance frequency of particular nuclei. 
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The resonance frequency of a nucleus is primarily determined by its gyromagnetic 

ratio and the strength of the applied magnetic field (Hore, 1995). However, the local 

chemical environment, specifically the electron distribution, also contributes to a 

nucleus’ resonance frequency. Application of an external magnetic field induces 

electron motion, which in turn generates small local magnetic field in the opposite 

direction to B0. Nuclei situated within the field generated by electron motion are 

shielded from the external field and resonate at a slightly different frequency. Thus, 

Equation 3 more accurately describes resonance frequency of a nucleus, where B is 

the magnetic field generated by electron motion. This effect, known as chemical 

shift, enables the identification of individual nuclei based on their unique chemical 

environment (Hore, 1995). 

   
        

  
 

Equation 3 Resonance frequency of nuclei in a magnetic field. The resonance frequency (ν) of a 

nucleus is dependent on the gyromagnetic ratio of the nucleus (γ), the applied magnetic field strength 

(B0) and magnetic field generated by electron motion (B). 

1.5.1 The NMR experiment 

Magnetic nuclei within a sample are a detected by generating and recording a free 

induction decay (FID) (Figure 7). Firstly, the nuclei are allowed to come to 

equilibrium within the magnetic field. Secondly, a short high-power RF pulse is 

applied at 90
o
 to B0 generating the FID. The FID is recorded for a particular time 

(acquisition time) with Fourier transformation of the time-domain signal generating a 

frequency-domain NMR spectrum (Keeler, 2005). 
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Figure 7 The basic NMR experiment. Following a relaxation period (tr) a short high power RF pulse 

is applied and the resultant FID recorded for time tacq. To improve the signal-to-noise ratio the 

experiment is repeated as necessary. 

1.5.1.1 The HSQC Experiment 

One-dimensional 
1
H NMR spectra of proteins are generally very complicated due to 

the number of observable nuclei within the system and the resultant signal overlap. 

Acquiring two dimensional 
1
H spectra (e.g. NOESY, ROESY and TOCSY) 

alleviates some of the spectral congestion, although acquisition of two-dimensional 

1
H spectra and subsequent extraction of the requisite information (for example, inter-

proton distance restraints) can be time consuming. These problems become 

particularly pronounced with high molecular weight species. Larger proteins 

typically have longer correlation times (τc), which is a measure of the rate of random 

molecular motion, both rotational and translational (Keeler, 2005). Peak linewidth is 

inversely proportional to the spin-spin (T2) relaxation time. Slower molecular motion 

results in more efficient T2 relaxation and correspondingly broader peaks. Thus, the 

slow tumbling properties of large proteins, and subsequently larger linewidths, 

coupled with the sheer number of protons present in the system results in a lack of 

sensitivity and signal degeneracy (Cavanagh, 1996). Labelling proteins with 
13

C and 

15
N isotopes allows correlations between these nuclei and 

1
H nuclei to be recorded. 

Such two-dimensional heteronuclear spin correlation (or coherence) spectra can be 

recorded in a fraction of the time and are often simpler to interpret. Consequently, 

the 
1
H 

15
N heteronuclear single quantum coherence (HSQC) experiment (Figure 8) 

has become the most commonly used experiment to obtain simple secondary 

structure information as well as monitor protein interactions. 
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Figure 8 The basic HSQC experiment. First, insensitive nuclei enhanced by polarisation transfer 

(INEPT) sequence transfers magnetisation from the I spin to the S spin. Following an evolution period 

(t1), during which a refocusing pulse is applied to I, a second INEPT sequence is used to transfer S 

encoded magnetisation back to I for detection.  

Each peak in the 
1
H, 

15
N HSQC corresponds to a correlation between covalently 

linked 
1
H and 

15
N nuclei. As a result all amino acids in the sequence (except proline) 

give rise to a single resonance attributed to their backbone amide group. Certain side 

chains also produce observable signals, although this is dependent on the chemical 

exchange regime. Signal overlap in the 
1
H dimension can often be resolved by the 

increased dimensionality as residues are less likely to have identical 
1
H and 

15
N 

chemical shifts.  

1.5.2 Three-dimensional experiments and Resonance Assignment 

Protein NMR spectroscopy was revolutionised by Wütrhich et al. following the 

introduction of techniques to complete the sequential resonance assignment of 

protein spectra (Wuthrich et al., 1982, Strop et al., 1983, Wagner and Wuthrich, 

1982). Principally these techniques were introduced to provide a basis for protein 

structure determination by NMR and relied on through-bond rather than through-

space correlations. Thus, spectra were far less congested and significantly easier to 

interpret. Sequential assignment techniques were developed further through the 

introduction of triple-resonance techniques (Ikura et al., 1990). As a result the 
1
H, 

15
N and 

13
C backbone resonances of fully 

15
N and 

13
C labelled proteins can be 

unequivocally assigned without relying on complex NOESY spectra (Pelton et al., 
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1991, Powers et al., 1992). NOESY-based spectra are still required for determining 

inter-residue distance restraints, though the interpretation of such spectra is 

significantly easier following sequential resonance assignment. In addition to 

providing the basis for structure determination, resonance assignments are a 

powerful tool in obtaining sequence specific information from proteins unsuitable for 

standard structural characterisation, such as IDPs (Dyson and Wright, 2001). By 

assigning resonances in a spectrum to specific residues, the particular regions of a 

protein involved in an interaction can be mapped and kinetic parameters of the 

reaction determined.  

Triple-resonance experiments normally correlate 
1
H

N
, 

15
N

H
, 

13
C

α
, 

13
C

β
 and 13C’ 

shifts via one and two bond J-couplings. Typically these experiments give rise to 

three-dimensional datasets that are in essence a 
1
H, 

15
N HSQC spectrum moderated 

by a 
13

C dimension at a frequency related to the 
13

C nucleus of interest (Cavanagh, 

1996). Triple-resonance experiments are often acquired in pairs; the first allows only 

one correlation to either the intra-residue 
13

C or that of the preceding residue, the 

complementary experiment with intra- and inter-residue correlations permitted. The 

resultant spectra are analysed simultaneously and neighbouring residues can be 

determined (Figure 9). Acquisition of a number of these pairs of experiments can 

provide reliable, independent pathways to complete the sequential resonance 

assignment of a protein without knowledge of the amino acid type. Only proline 

residues interrupt connectivity’s as they lack the amide proton necessary for many of 

the magnetisation pathways utilised. 
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Figure 9 Sequential assignment of protein spectra using 3D spectra. Pairs of 3D triple resonance 

spectra are analysed simultaneously and the sequential connectivity’s determined. A 
15

N frequency is 

selected corresponding to a peak in the 
1
H, 

15
N HSQC and the 

1
H, 

13
C planes analysed. The blue 

spectrum contains peaks arising from connections to 
13

C nuclei from the same and preceding residues, 

the orange only from the preceding residue. By overlaying spectra the spin system to which each peak 

belongs can be deduced, and by finding a resonance with the same 
13

C frequency in a different 
15

N 

plane the sequential assignment can be carried out. In the example above the 
13

C resonance arising 

from the previous residue is used to determine connectivity’s. 

The nomenclature of triple-resonance experiments is derived from the magnetisation 

transfer pathway permitted in the pulse-sequence. For example, an HN(CA)CO 

experiment utilises the following coherence transfers: 

1
H

N
 → 

15
N

H
 → 

13
C

α 
→ 

13
C’ → 

13
C

α
 →

`15
N

H
 → 

1
H

N
 

Experiments that follow similar coherence pathways, that is initially exciting the 

amide proton and detecting via this nucleus also, are referred to as ‘out and back’ 

pulse sequences. The nomenclature only takes into account the ‘out’ pathway, 

omitting the ‘back’ transfer steps (Cavanagh, 1996). In the above example, amide 

group resonances are correlated with 
13

C’ nuclei and this forms the basis of the 

experiment name. The magnetisation transfer is allowed via 
13

C
α
 and this permitted 

1
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pathway is represented in brackets (in this case as ‘(CA)’). However, no chemical 

shift is measured for 
13

C
α
 nuclei. Examples of commonly used complementary triple-

resonance experiments are shown in Table 1. Following the sequential backbone 

assignment of amide groups, specific residue types can be identified using spectra 

such as the HN-HSQC-TOCSY that correlate side-chain protons with backbone 

amide groups. 
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Table 1 Commonly used three-dimensional triple resonance experiments. Magnetisation transfer 

pathways are indicated by red boxes. 

Experiment Correlations 

Observed 

Magnetisation Transfer 
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1.5.2.1 Deuteration of Proteins 

As described previously (section 1.5.1.1), the slow tumbling rates of large proteins 

have adverse affects on their spin relaxation properties. Slower tumbling molecules 

have short transverse relaxation times, in turn leading to a rapid decay of signal and a 

poor signal to noise ratio. In practice this can be observed as broad peaks in a NMR 

spectrum. Early applications of deuteration, replacing 
1
H nuclei with spin-1 

2
H 

nuclei, aimed to simplify spectral interpretation by reducing the peak congestion in 

1
H spectra (Crespi and Katz, 1969, Markley et al., 1968). The incorporation of 

deuterium also greatly improved the relaxation properties of remaining 
1
H nuclei 

resulting in narrower linewidths and improved signal to noise, as can be seen in 

Figure 10. A further application of deuteration is improving the resolution in spectra 

of disordered proteins. Typically the interpretation of IDP spectra suffers due to 

significant signal overlap. The narrower linewidths resulting from deuteration can 

dramatically improve spectral resolution, thus making them to easier analyse. 

Backbone amide resonances are still visible in 
1
H, 

15
N HSQC spectra when the 

protein is dissolved in H2O due to proton exchange effects with aqueous solvents. 

Therefore the standard backbone resonance assignment experiments discussed in 

section 1.5.2 are still applicable to deuterated proteins. 

 

 

Figure 10 Effect of deuteration on the 
1
H, 

15
N spectrum of a 36 kDa protein. HSQC-TROSY 

spectra of 
13

C, 
15

N (A) and 
2
H, 

13
C, 

15
N (B) N2N3 from FnBPA. Spectra were recorded under 

identical conditions. 
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1.5.3 Secondary Structure Determination 

Secondary chemical shifts (Δδ) can be used to determine regions of secondary 

structure within a protein. They are calculated by subtracting the experimentally 

measured chemical shift of a nucleus from the random coil chemical shift proposed 

for said nucleus. Random coil chemical shifts are defined as the chemical shift of an 

amino acid when it has no stable secondary or tertiary structure, thereby free to 

access all sterically allowed conformations (Wishart et al., 1995a). They are 

calculated experimentally from short peptides, or derived statistically from chemical 

shift databases where each residue in a known structure is classified as random coil, 

α-helix or β-strand (Wishart et al., 1995a, Wishart and Nip, 1998, Wishart et al., 

1992). The advantage of using experimentally derived random coil shifts is that they 

are measured in defined conditions. However, the conditions used to determine these 

values may differ from those used for the protein of interest. In some cases 

denaturants were used and these are also known to influence random coil chemical 

shifts (Schwarzinger et al., 2000). Statistically-derived datasets incorporate values 

measured in a variety of conditions and referenced to different compounds. So while 

databases can be compiled from known structural elements, an inherent inaccuracy 

lies in the fact that conditions affecting random coil values vary throughout the 

sample set. Therefore, a common approach is to use multiple datasets in secondary 

chemical shift calculations (Mielke and Krishnan, 2004). 

The magnitude and direction of secondary chemical shift values is indicative of α-

helical, β-strand or intrinsically disordered regions. Wishart et al. proposed a method 

in which H
α
 nuclei are assigned a chemical shift index (CSI) based on their 

secondary chemical shifts (Wishart et al., 1992). Briefly, for an amino acid to be 

classified as random coil, its H
α 

chemical shift must be within ±0.10 ppm of the 

defined random coil shift. Secondary chemical shifts that are more than 0.10 ppm 

and positive are assigned a CSI of 1, if they are more than 0.10 ppm and negative a 

CSI of -1 is assigned, and for those falling with the random coil shift range (±0.10 

ppm) a value of 0 is assigned. Clusters of the same CSI are indicative of particular 

secondary structure contributions; multiple 1’s being a strand conformation, -1’s 

helical and 0 disordered regions. Regions with less than 4 of the same CSIs assigned 

sequentially are also considered disordered (Wishart et al., 1992). Subsequent studies 
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found that secondary structure can be more accurately predicted if all assigned 

resonances are used in the analysis (Schwarzinger et al., 2001, Wishart et al., 1992). 

In addition to H
α
 shifts H

N
, N

H
, C

α
, C

β
 and C’ can also be used for CSI analyses, 

though the range whereby a CSI is applied differs between nuclei. Positive CSI 

values for C
α
 and C’, and negative values for H

α
, H

N
, N

H
 and C

β
 are indicative of 

helical secondary structure. Residues in a strand conformation have opposite CSI 

values for the respective nucleus.(Schwarzinger et al., 2001) 

A number of factors can affect the random coil chemical shifts for amino acids in a 

protein. Therefore, a number a corrections need to be made prior to calculating 

secondary chemical shifts. Principally the random coil shifts must be corrected in a 

sequence-dependent manner. A number of studies have shown that the neighbouring 

residues can have a dramatic impact on the random coil shifts of a particular amino 

acid (Kjaergaard and Poulsen, 2011, Schwarzinger et al., 2001, Wang and Jardetzky, 

2002, Wishart et al., 1995a). For example, residues preceding proline in the protein a 

subject to significant changes in random coil chemical shifts. These effects are 

attributed to the reduced conformational freedom of the proline ring and the absence 

of an amide proton (Schwarzinger et al., 2001). Aromatic residues can also cause 

changes in random coil shifts due to the action of the ring current generated by the 

aromatic rings. Nuclei that spend more time close to aromatic systems are 

correspondingly more susceptible to their effects. Many early studies were recorded 

at acidic pH and only one temperature. However, a recent investigation has shown 

that both parameters have non-negligible effects on certain nuclei. Therefore, 

coefficients correcting random coil chemical shifts values in commonly used datasets 

for temperature and pH variances are proposed to improve the reliability of 

secondary structure calculations (Kjaergaard et al., 2011). Unsurprisingly, inaccurate 

referencing of spectra has a significant impact on measured chemical shifts and 

therefore differences to reported random coil values (Wishart et al., 1995b). In turn 

this can impact calculated CSI values. Referencing to an internal standard, 

preferentially DSS (4,4-dimethyl-4-silopentane-1-sulphonic acid), is therefore 

crucial for accurately calculating secondary chemical shifts (Wishart et al., 1995b).  
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1.6 Aims 

Despite the high level of sequence conservation of the N1 subdomain of FnBPA 

across strains of S. aureus, surprisingly little is known about its structure and 

function. N1 has no impact on the Fg-binding capacity of the A domain, and its 

absence does not affect the ability of N2 or N3 to fold. Therefore N1 is thought to 

have a role distinct from N2 and N3. FnBPA, and specifically the A domain, has a 

crucial role in the accumulation stage of ica-independent S. aureus biofilms. The 

specific aims of this work are to: 

1. Structurally characterise the N1 subdomain of FnBPA by completing the 

resonance assignment of N1 and subsequently carrying out secondary 

chemical shift analysis. 

2. Determine the involvement of N1 in possible ligand interactions. A series of 

pull-down experiments will be carried out with N1 as a bait protein in various 

target solutions to investigate potential unidentified ligands for FnBPA. 

3. Investigate the role of FnBPA’s A domain in adherence to host endothelial 

cells and subsequent colonisation, particularly on the role N1 plays any in 

such mechanisms. 

4. Determine the molecular mechanism by which FnBPA mediates S. aureus 

biofilm formation and define the regions necessary for this function. 

5. Deduce whether FnBP-mediated biofilm accumulation is facilitated 

exclusively by proteinaceous adhesins, or if other molecules in the biofilm 

matrix play a role. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Bacterial Strains 

All Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) strains used in 

this work are listed in Table 2. E. coli DH5α and BL21(DE3) Gold were used for 

molecular biology and protein production, respectively. Both strains were made 

chemically competent as described in section 2.2.1. S. aureus 8325-4 was kindly 

supplied by Dr. James Moir, University of York. 

Table 2 Bacterial strains. 

Organism Strain Supplier Reference 

E. coli DH5α Invitrogen (Meselson and 

Yuan, 1968) 

E. coli BL21(DE3) Gold Stratagene  

S. aureus 8325-4  (O'Neill, 2010) 

 

2.1.2 Bacterial Culture Media 

The composition of E. coli and S. aureus culture media is described in Table 3. 

Selective media was supplemented with either 50 μg ml
-1

 kanamycin or 100 μg ml
-1

 

ampicillin. 
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Table 3 Composition of E. coli and S. aureus culture media. 

Medium Application Composition 

LB Molecular biology, 

protein production 

1% (w/v) tryptone, 0.5% (w/v) yeast 

extract, 1% (w/v) NaCl 

LB-agar Molecular biology, 

protein production 

1% (w/v) tryptone, 0.5% (w/v) yeast 

extract, 1% (w/v) NaCl, 1.5% (w/v) agar 

LB-glucose S. aureus culture 1% (w/v) tryptone, 0.5% (w/v) yeast 

extract, 1% (w/v) NaCl, 0.3% (w/v) glucose 

15
N M9 minimal 

medium 

15
N labelled protein 

production 

1% (w/v) 
15

NH4Cl, 0.68 % Na2PO4, 0.3% 

KH2PO4, 0.5% NaCl, 0.3% glucose, 2 mM 

MgSO4, 0.2 mM CaCl2, 5 μM FeCl3, 1 μM 

MnCl2, 1 μM ZnSO4, 0.2 μM CoCl2, 0.2 

μM NiCl2, 0.2 μM Na2MoO4, 0.2 μM 

Na2SeO3, 0.2 μM H3BO3, 1 μg ml
-1

 

riboflavin, 1 μg ml
-1

 niacinamide, 1 μg ml
-1

 

pyridoxine, 1μg ml
-1

 thiamine 

monochloride 

15
N, 

13
C M9 

mininal medium 

13
C, 

15
N labelled 

protein production 

1% (w/v) 
15

NH4Cl, 0.68 % Na2PO4, 0.3% 

KH2PO4, 0.5% NaCl, 0.3% 
13

C-glucose, 2 

mM MgSO4, 0.2 mM CaCl2, 5 μM FeCl3, 1 

μM MnCl2, 1 μM ZnSO4, 0.2 μM CoCl2, 

0.2 μM NiCl2, 0.2 μM Na2MoO4, 0.2 μM 

Na2SeO3, 0.2 μM H3BO3, 1 μg ml
-1

 

riboflavin, 1 μg ml
-1

 niacinamide, 1 μg ml
-1

 

pyridoxine, 1μg ml
-1

 thiamine 

monochloride 
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2.1.3 Protein Expression Vectors 

Vectors used for the cloning and over expression of protein are described in Table 4. 

Table 4 Protein expression vectors. 

Vector Application Supplier Reference 

pGEX-6P-1 Expression of N-terminally 

GST-tagged proteins 

Novagen (Norris et al., 

2011) 

pSKB2 Expression of N-terminally 

His6-tagged proteins 

Dr. James Brannigan, 

University of York 

(Gruszka et 

al., 2012) 

 

2.1.4 HUVECs 

Human umbilical vein endothelial cells (HUVECs) were kindly donated by Dr. 

Dawn Coverley, University of York. Cell growth basal medium was prepared using 

the Lonza EGM-2 SingleQuot Kit (CC-4176), specifically designed to culture 

HUVECs. 

2.1.5 Buffer Solutions 

Table 5 Composition of buffers. 

Buffer/Solution Composition 

Tris-borate-EDTA (TBE) 890 mM Tris-Hcl, 890 mM Boric acid, 

20 mM EDTA, pH 8.3 

  

Phosphate buffered saline 140 mM NaCl, 27 mM KCl, 100 mM 

Na2PO4, 18 mM KH2PO4, pH 7.4 
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SDS-PAGE 

MES running buffer (20x) 1 M MES, 1 M Tris, 69.3 mM SDS, 20.5 

mM EDTA 

MOPS running buffer (20x) 1 M MOPS, 1 M Tris, 69.3 mM 

SDS,20.5 mM EDTA 

Native-PAGE 

Tris-Tricine running buffer 0.1 M Tris-HCl, 0.1 M tricine, pH 8.2 

Nickel-affinity purification 

Binding buffer 20 mM HEPES, 150 mM NaCl, 20 mM 

imidazole, pH 7.5 

Elution buffer 20 mM HEPES, 150 mM NaCl, 0.5 M 

imidazole, pH 7.5 

Anion Exchange purification 

Binding buffer 20 mM Bis-Tris, pH 6.2 

Elution buffer 20 mM Bis-Tris, 1 M NaCl, pH 6.2 

Size exclusion 

Running Buffer 20 mM HEPES, 150 mM NaCl, pH 7.5 

 

2.1.6 Native Proteins 

2.1.7 Fibrinogen From Human Plasma 

Human plasma glycoprotein Fg was obtained as a lyophilised white powder of 

purified Fg in 20 mM sodium citrate-HCl, pH7.4 (Calbiochem/Merck). Lyophilised 

powder (1 g) was resuspended in 24 ml of pre-warmed sterilised water (37 
o
C) and 

incubated at 37 
o
C until the Fg was completely dissolved. The Fg solution was 
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subsequently aliquoted and stored at -80 
o
C. The Fg was analysed by SDS-PAGE to 

confirm its purity. 

2.1.8 Fibronectin From Human Plasma 

Native human plasma glycoprotein Fn was obtained as a 1 mM solution in 50 mM 

TBS, pH 7.5 (Sigma Aldrich). The Fn was analysed by SDS-PAGE to confirm its 

purity. The addition of 0.02 % (v/v) NaN3 rendered the sample stable for several 

weeks at 4 
o
C. 

2.2 Methods in Molecular Biology 

2.2.1 Preparation of Chemically Competent Cells 

DH5α and BL21(DE3) Gold competent cells were prepared according to a modified 

version of Cohen’s procedure (Cohen et al., 1972). Briefly, cells were grown to an 

OD600 of 0.5 in LB medium, harvested by centrifugation (4500 xg, 10 mins) and 

resuspended in half the original volume of ice-cold 20 mM Tris-HCl, 50 mM CaCl2, 

pH 8.0. Following a 1 hr incubation on ice, cells were harvested by centrifugation 

and resuspended in one quarter of the original volume of ice-cold 20 mM Tris-HCl, 

50 mM CaCl2, 20% (w/v) glycerol, pH 8.0. 200 μL aliquots were frozen in liquid 

nitrogen at stored at -80 
o
C.  

2.2.2 Transformation of Competent Cells 

Cryo-preserved competent cells were thawed on ice, mixed with 50 ng of plasmid 

DNA and incubated on ice for 30 mins. Cells were then heat-shocked by incubation 

at 42 
o
C for 45 s. Following incubation on ice for 5 mins, pre-warmed LB medium 

was added to a final volume equal to 10 times the original cell suspension volume. 

Prior to plating on selective LB-agar medium, cells were incubated at 37 
o
C for 45 

mins with shaking at 200 rpm. 
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2.2.3 Preparation of Plasmid DNA 

5 ml cultures of freshly transformed DH5α cell were grown overnight in LB medium 

at 37 
o
C with shaking at 200 rpm. Plasmid DNA was isolated using QIAprep Spin 

Miniprepkit (Qiagen) according to the manufacturer’s instructions. DNA 

concentration was determined by measuring the absorbance at 260 mm. The purity 

of DNA was estimated using the A260/A280 ratio and samples with a ratio between 1.6 

and 2.0 stored at -20 
o
C in MilliQ (Millipore) purified water. 

2.2.4 Agarose Gel Electrophoresis 

Agarose gels of between 0.8% and 1% (w/v) were prepared in TBE buffer (Table 5) 

supplemented with SYBRsafe DNA dye (Invitrogen). DNA was mixed with (6x) 

DNA loading dye (Fermentas) according to the manufacturers instructions and 

loaded into the gel. Separation was achieved following the application of a voltage of 

100 V for 1 hr. DNA was visualised using a UV transilluminator. 

2.2.5 Polymerase Chain Reaction (PCR) 

The composition of a standard PCR is given in Table 6. Manually designed primers 

(Table 7) were synthesised by Eurofins MWG. PCRs were performed on an MJ 

research PTC-200 Gradient Thermal Cycler according to the cycling programme in 

Table 8. 

Table 6 Composition of PCR. 

Component Supplier Final Concentration 

Phusion HF Buffer Finnzymes 1 x 

dNTPs Finnzymes 200 μM each 

Forward primer Eurofins MWG 1 μM 

Reverse primer Eurofins MWG 1 μM 

Template DNA  0.5 ng ml
-1

 

Phusion Hot Start II DNA 

Polymerase 

Finnzymes 0.02 U μl 

H2O   
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Table 7 PCR Primers. BamH1 (GGATCC) and Xho1 (CTCGAG) restriction sites are 

underlined  

Construct Forward Primer 5’ – 3’ 

Reverse Primer 5’ – 3’ 

pGEX-N1 TCAGCTGGATCCGCATCAGAACAAAAGACAACTACAG 

TATACTCTCGAGTCAACCCGTTTCCACTTTCGC 

pGEX-N1N2 TCAGCTGGATCCGCATCAGAACAAAAGACAACTACAG 

TGACGTCTCGAGTCAATATTTAACATCTAATTCCTTTGAAG 

pGEX-fA TCAGCTGGATCCGCATCAGAACAAAAGACAACTACAG 

TGATGACTCGAGTCATGATGAATCATATTCCTCTTCAACAGTAGTT

AC 

 

Table 8 PCR cycling program. 

Cycle Step Temperature Time No. Cycles 

Initial denaturation 98 
o
C 3 mins 1 

Denaturation 98 
o
C 10 s 

35  Annealing 65 
o
C 30 s 

Extension 72 
o
C 30 s 

Final extension 72 
o
C 5 mins 1 

Hold 4 
o
C ∞ 1 

 

2.2.6 Restriction Digest 

Restriction digests of PCR products and plasmids were performed using BamH1 and 

Xho1 restriction enzymes purchased from New England Biolabs (NEB). Reactions 

were conducted according to the manufactures recommendations. Reaction mixtures 

were typically 50 μl in volume and contained 2 – 3 μg of DNA and 10 – 20 U of 

each restriction enzyme in the appropriate buffer (supplied by NEB). Reactions were 

incubated at 37 
o
C for at least 3 hrs. Digested DNA was separated by agarose gel 

electrophoresis and extracted from the gel and purified using QIAquick Gel 

Extraction Kit (Qiagen). 
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2.2.7 Ligation 

Ligation mixtures constituted approximately 10 ng of linearised vector, a 5-fold 

molar excess of digested PCR product and 20 U of T4 DNA ligase (Fermentas) in 20 

μL of the supplied reaction buffer. Ligation reactions were incubated at room 

temperature for 3 hrs. 10 μl of each reaction was then used to transform 100 μl of 

competent DH5α cells. 

2.2.8 Construct Validation 

The correct composition of newly generated DNA constructs was verified by an in-

house DNA sequencing service (Technology Facility, University of York).  

2.3 Protein Expression and Purification 

2.3.1 Expression of Unlabelled Proteins 

BL21 (DE3) Gold cell were transformed with appropriate plasmid DNA according to 

the procedure outlined above (section 2.2.2). A single colony was selected based on 

resistance to kanamycin and used to inoculate 50 ml of LB medium containing 

kanamycin (LB-kan) (Table 3). After overnight incubation at 37 
o
C with shaking 

(220 rpm), 5 ml of the starter culture was inoculated into 500 ml of fresh LB-kan 

medium and incubated at 37 
o
C with shaking at 200 rpm until the optical density at 

600 nm (OD600) reached 0.6. Isopropyl-β-thiogalactopyranoside (IPTG, Melford) 

was added to a final concentration of 0.5 mM and cultures incubated for 4 hrs at 37 

o
C with shaking. Cells were harvested by centrifugation (5000 rpm, 20 mins, 4 

o
C) 

and resuspended in nickel affinity binding buffer (Table 5). Cell pellets were used 

immediately for protein purification or stored at -20 
o
C.  

2.3.2 Expression of 
15

N and 
13

C, 
15

N Labelled Proteins 

Expression of isotopically enriched proteins was performed 
15

N M9 or 
13

C, 
15

N M9 

minimal medium (Table 3) according to the protocol described in section 2.3.1 with 

two exceptions. Firstly, 5 ml of the starter culture was pelleted by centrifugation 
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(5000 rpm, 4 
o
C, 15 mins) and resuspended in 5 ml of M9 medium prior to 

inoculating fresh expression medium. Secondly, due slower bacterial growth in 

minimal medium, following induction with IPTG, cultures were incubated with 

shaking at 30 
o
C overnight. 

2.3.3 Expression of 
2
H, 

13
C, 

15
N N1 

BL21 (DE3) Gold cells were transformed with plasmid DNA encoding His6-N1 

according to the procedure outlined above (section 2.2.2). A single colony was 

selected based on resistance to kanamycin and used to inoculate 5 ml LB-kan. 

Following overnight incubation with shaking at 37 
o
C, 200 μl was inoculated into 5 

ml M9 minimal medium with kanamycin, which in turn was used to inoculate 5 ml 

10% 
2
H2O M9 minimal medium. Subsequent 5 ml cultures of 20%, 40%, 60% and 

80% 
2
H2O M9 minimal medium were inoculated with 200 μl of the preceding 

2
H2O 

concentration culture following overnight growth at 37 
o
C with shaking. Finally 200 

μl of 80% 
2
H2O M9 minimal medium culture was inoculated into a 50 ml 100% 

2
H2O M9 minimal medium overnight starter culture. 5 ml of overnight starter culture 

was inoculated into 500 ml of 100% 
2
H2O 

13
C, 

15
N M9 minimal medium and 

incubated with shaking at 37 
o
C until the culture reached an OD600 of 0.6. Protein 

expression was induced through the addition of IPTG to a final concentration of 0.5 

mM and cultures were incubated for a further 18 hrs with shaking at 30 
o
C. Cells 

were harvested by centrifugation (5000 rpm, 4 
o
C, 30 mins) and resuspended in 

nickel affinity binding buffer (Table 5). Cell pellets were used immediately for 

protein purification. 

2.3.4 Expression of Selectively Unlabelled 
2
H, 

13
C, 

15
N N1 

Expression of 
2
H, 

13
C, 

15
N N1 was performed according to the protocol described in 

section 2.3.4 with one exception. 1 hr prior to inducing protein expression, growth 

media supplements were added to selectively unlabel a specific amino acid (Rasia et 

al., 2012). The supplements, corresponding unlabelled amino acid and requisite 

concentrations are detailed in Table 9. 
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Table 9 Growth media supplements to selective unlabel amino acids. 

Growth Medium 

Supplement 

Residue(s) 

Unlabelled 

Final Conc. 

(mg l
-1

) 

Supplier 

L-proline Proline 250 Sigma-Aldrich 

4-hydroxyphenylpyruvic 

acid 

Tyrosine 400 Sigma-Aldrich 

Sodium 3-methyl-

oxobutyrate 

Leucine/Valine 120 Sigma-Aldrich 

Sodium 2-oxobutyrate Isoleuline 70 Sigma-Aldrich 

 

2.3.5 E. coli Cell Lysis 

Frozen cell pellets were thawed at room temperature and homogenised using a 

Pasteur pipette. Cells were lysed by sonication using a Misonix Sonicator 300 

equipped with a 
3
/8 inch stud probe. A standard sonication cycle involved 60 3 s 

pulses at 70 W with 7 s intervals between pulses. During sonication the cell 

suspension was cooled on ice. The crude extract was clarified by centrifugation 

(48000 xg, 4 
o
C, 30 mins). The supernatant was filtered through a 0.22 μm PVDF 

membrane (Millipore) prior to further purification. 

2.3.6 Purification of His6-tagged Proteins 

Clarified cell extract was loaded at a flow rate 3 ml min
-1

 onto a 5 ml HisTrap HP 

column (GE Healthcare) equilibrated with binding buffer (Table 5). Unbound 

species were removed from the column in a subsequent washing step with binding 

buffer until a stable baseline of absorbance at 280 nm was reached. Hi6-tagged 

proteins were eluted at a flow rate of 3 ml min
-1

 with a linear gradient of imidazole 

from 20 – 250 mM over 25 column volumes (nickel affinity elution buffer, Table 5). 

Fractions were collected and analysed by SDS-PAGE. Fractions containing protein 

were pooled and dialysed at 4 
o
C overnight against 20 mM HEPES, 150 mM NaCl, 

pH 7.5 using 5 kDa molecular weight cut-off dialysis tubing (Spectrum). 
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To cleave the N-terminal His6-tag, purified recombinant protein was incubated with 

human rhinovirus (HRV) 3C protease (Novagen), a protease that recognises the 

cleavage site Leu-Glu-Val-Leu-Phe-Gln-Gly-Pro and cleaves between Gln and Gly. 

Cleavage reactions were typically performed at a protease:protein ratio of 1:300 

(w/w) and incubated at 4 
o
C for 6 hrs. The His6-tag and protease were removed from 

the target protein by passage over a HisTrap HP column at 5 ml min
-1

 with the flow-

through containing recombinant protein collected. The purity of recombinant 

proteins was assessed by SDS-PAGE. In cases of insufficient purity (less than 95% 

pure), namely N2N3 and AF1, further purification was required. 

N2N3 was concentrated to a volume of 1 ml by centrifugation (4500 xg, 4 
o
C) using 

VivaSpin20 5 kDa MWCO concentrators (Sartorius). The concentrated protein 

sample was loaded onto a HiLoad 16/60 Superdex 75 size exclusion column (GE 

Healthcare) and eluted with 1 column volume (120 ml) of 20 mM HEPES, 150 mM 

NaCl, pH 7.5 at a flow rate of 1 ml min
-1

. Elution peaks were analysed by SDS-

PAGE and fractions containing protein were pooled and concentrated using 

VivaSpin20 5 kDa MWCO concentrators. 

Further purification of AF1 was achieved by anion exchange chromatography. The 

flow-through from the nickel affinity purification was dialysed against anion 

exchange binding buffer (Table 5) at 4 
o
C overnight using 5 kDa MWCO dialysis 

tubing. AF1 was loaded at 5 ml min
-1

 onto a 5 ml HiTrap Q sepharose column (GE 

Healthcare) equilibrated with binding buffer (Table 5). Unbound species were 

removed from the column in a subsequent washing step with binding buffer until a 

stable baseline of absorbance at 280 nm was reached. AF1 was eluted at a flow rate 

of 5 ml min
-1

 with a linear gradient of NaCl from 0 – 1 M NaCl over 30 column 

volumes. Identity and purity of the resulting peaks was determined by SDS-PAGE 

analysis. 

2.3.7 Purification of GST-tagged Proteins 

Clarified cell lysate was passed over a 5 ml GSTrap FF column (GE Healthcare), 

equilibrated with PBS, 3 times at 3 ml min
-1

. Unbound species were removed from 

the column in a subsequent washing step with binding buffer until a stable baseline 
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of absorbance at 280 nm was reached. Proteins were eluted from the column at 3 ml 

min
-1

 by the addition of elution buffer (Table 5) applied for 6 column volumes. 

Collected fractions were analysed using SDS-PAGE. Fractions that contained pure 

recombinant protein were pooled and dialysed (using 3 kDa MWCO tubing) against  

PBS and concentrated using VivaSpin20 10 kDa MWCO concentrators. 

2.3.8 Isolation of Wall Teichoic Acids 

WTAs were isolated essentially as described by Peschel et al. (Peschel et al., 1999b). 

S. aureus was grown overnight at 37 
o
C with shaking (180 rpm) in 500 ml LB-

glucose (Table 3). Cells were harvested by centrifugation (5000 rpm, 4 
o
C, 30 mins), 

washed with 100 ml 20 mM sodium acetate (NaOAc), pH 5.8 and resuspended in 50 

ml of the same buffer. Cells were lysed by treatment with 2.5 mg of lysostaphin 

(Sigma-Aldrich) at 37 
o
C with shaking for 2 hrs. Crude cell extracts were diluted 4 

times in 20 mM NaOAc, pH 4.6 and sonicated for 10 mins (150 W, 25 s on, 5 s off) 

using a Misonix Sonicator 300 equipped with an ethylene glycol-cooled 4 inch cup-

horn probe. Cell extracts were then incubated at 60 
o
C for 1 hr with vigorous 

shaking. Cells walls were pelleted by centrifugation (48000 xg, 18 
o
C, 30 mins) and 

washed extensively with 20 mM NaOAc, pH 4.6. Teichoic acids were released by 

diluting cell wall extracts 4 times in 5% (w/v) trichloroacetic acid and incubating at 

60 
o
C for 4 hrs. Peptidoglycan was removed by centrifugation (48000 xg, 18 

o
C, 45 

mins), the crude WTA extract extensively dialysed against mildly acidic H2O and 

lyophilised. WTAs were resuspended in 1 ml deionised H2O and loaded on to a 

Superdex 75 HR 10/30 size exclusion column (GE Healthcare) and eluted at a flow 

rate of 0.5 ml min
-1

 with 1 column volume (25 ml) of 20 mM HEPES, 150 mM 

NaCl, pH 5.5. Fractions containing WTA were pooled and analysed by SDS-PAGE. 

Pure samples were extensively dialysed against mildly acidic H2O, lyophilised and 

stored at -20 
o
C. 
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2.4 Biochemical Methods 

2.4.1 SDS-PAGE 

The NuPAGE Novex Bis-Tris protein gel electrophoresis system (Invitrogen), XCell 

SureLock Mini-Cell gel tanks (Invitrogen) and a Bio-Rad power-pack were used for 

all SDS-PAGE analyses. Pre-cast NuPAGE Novex 4 – 12% Bis-Tris gels 

(Invitrogen) were used to separate protein species. Prior to loading onto a gel, 

samples were denatured in NuPAGE LDS Sample Buffer (Invitrogen), boiled for 5 

mins and centrifuged (13000 xg, room temperature, 1 min). Mark12 unstained 

protein standard (Invitrogen) was used to estimate the molecular weight of protein 

samples. Electrophoresis was performed in MES- or MOPS- SDS running buffer 

(Table 5) at a constant voltage of 200 V for 35 – 40 mins. Proteins were visualised 

by staining with 0.2% (w/v) Coomassie brilliant blue R250 10% (v/v) acetic acid, 

50% (v/v) ethanol, followed by destaining in 10% (v/v) acetic acid, 10% (v/v) 

ethanol. 

2.4.2 Native-PAGE 

The Bio-Rad Mini-PROTEAN Tetra Electrophoresis System and a Bio-Rad power-

pack were used for all native-PAGE analyses. Teichoic acids were separated using 

NativePAGE Novex 15% Bis-Tris pre-cast gels (Invitrogen). Samples were prepared 

in 20 mM HEPES, 150 mM NaCl, 50% (v/v) glycerol, 0.5% bromophenol red, pH 

7.5. Electrophoresis was performed in native-PAGE running buffer (Table 5) at a 

constant voltage of 100 V for 90 mins. Teichoic acids were visualised according to 

the alcian blue-silver staining procedure developed by Wolters et al. (Wolters et al., 

1990). Briefly, gels were soaked in 1% (w/v) alcian blue 8GX (Sigma-Aldrich), 3% 

(v/v) acetic acid for 30 mins followed by destaining in 1% (v/v) acetic acid, 45% 

methanol (v/v) overnight. Gels were treated with 3.4 mM Na2Cr2O7, 3.2 mM HNO3 

for 7 mins and washed extensively with H2O. Gels were soaked with gentle agitation 

under a lamp in 12 mM silver nitrate for 30 mins and washed several times with 

H2O. Gels were developed by 3 short treatments with 0.28 M sodium carbonate, 6 

mM formaldehyde. As soon as the background darkened, the gel was flooded with 

0.1 M acetic acid to quench the development process. 
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2.4.3 Determination of Protein Concentration 

Protein concentration was determined from the absorbance measurement at 280 mm 

according to the Beer-Lambert law: 

  
 

    
 

where c is the molar concentration of the protein, A is the absorbance at 280 nm, ε is 

the molar extinction coefficient at 280 nm and l is the path length. The theoretical 

molar extinction coefficient (εprotein) was calculated using the ProtParam program 

according to the following equation (Gasteiger et al., 2003): 

                                         

where NTyr, NTrp and NCys is the number of Tyr, Trp and Cys residues in the protein, 

respectively, and εTyr, εTrp and εCys are the molar extinction coefficients of Tyr (1490 

M
-1

), Trp (5500 M
-1

) and Cys (125 M
-1

), respectively. 

Due to the presence of only 1 Tyr residue, and lack of Trp and Cys residues, N1 has 

a correspondingly low molar extinction coefficient, which may lead to significant 

errors in concentration estimates based on absorbance measurements at 280 nm. To 

verify the reliability of concentrations obtained by spectrophotometric analysis, the 

protein concentration was also estimated by amino acid analysis (Alta Bioscience, 

University of Birmingham). The concentration values obtained from both techniques 

were identical confirming the suitability of absorbance-based concentration 

measurements for N1. 

2.4.4 GST Pull-down Assays 

20 μl aliquots of MagneGST Glutathione Particles (Promega) were washed 5 times 

with 1 ml PBS and resuspended in 500 μl of PBS containing bait protein (GST 

negative control, GST-N1, GST-N1N2, GST- fA) at a concentration of 4.4 μM and 

incubated at 4
o
C for 90 mins with gentle agitation. The beads were washed 5 times 

with 1 ml PBS, resupended in 750 μl of plasma and incubated for 2 h at 4
o
C with 
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gentle agitation. The beads were then washed 5 times with 1 ml PBS before re-

suspension in 50 μl PBS. Protein was eluted from beads by boiling for 5 mins, and 

the supernatant was analysed by SDS-PAGE.  

2.4.5 His6-tag Pull-down Assay 

62.5 μl (2.5 mg) aliquots of Dynabeads (Invitrogen) for His6-tagged protein isolation 

were washed 5 times with 1 ml PBS. The beads were then incubated with 4.4 μM 

solution of bait protein (His-N1, His-N1N2, His-fA) in PBS for 1 h at 4
o
C with 

gentle agitation. The beads were washed 5 times with 500 μl PBS before adding 500 

μl blood plasma and incubating for 2 h at room temperature. Supernatant was 

removed and the beads washed 5 times with 500 μl PBS before re-suspension in 50 

μl PBS. Protein was eluted from beads by boiling for 5 mins, and the supernatant 

was analysed by SDS-PAGE. 

2.4.6 Affinity Column Pull-down Assay 

FnBPA sepharose columns were prepared using AminoLink Plus Immobilisation Kit 

(Thermo Scientific) according to the manufacturers protocol. Briefly, 20 mg purified 

FnBPA A domain constructs N1, N2N3 and AF1 in 3 ml PBS were incubated with 

beaded agarose resin and 40 μl NaCNBH3 mixing end over end at 4 
o
C for 18 hrs. 

Buffer and unbound protein was removed by centrifugation (1,000 xg, 1 min). 

Remaining binding sites on the resin blocked by incubation with quenching buffer 

and NaCNBH3. One column was left uncharged as a negative control. Prior to 

applying 3 ml analyte solution (Fn/Fg control solutions, plasma), columns were 

equilibrated in PBS. The column was washed 5 times with 3 ml PBS, and bound 

protein was eluted with 3 washes of 3 ml 0.1 M Sodium citrate, 150 mM NaCl 

buffer, pH 3.0. Eluted fractions were analysed by SDS-PAGE. 

2.4.7 HUVECs Adhesion Assay 

HUVECs were cultured in basal medium (section 2.1.4) to approximately 95% 

confluency, liberated with trypsin-EDTA and resuspended in fresh basal medium. 

Cells were added to 24-well plates and incubated at 37 
o
C for 48 hrs. Following the 
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addition of proteins to final concentrations of 25, 50 and 70 μM, the HUVECs were 

incubated for a further 30 mins at 37 
o
C. Following extensive washing with PBS 

cells were liberated from the 24-well plate by treatment with LDS and dithiothreitol 

(0.1 M) SDS-PAGE sample buffer. Cell extracts were boiled for 15 mins, 

centrifuged (13000 rpm, room temperature, 5 mins) and the supernatant subjected to 

SDS-PAGE (section 2.4.1). 

2.4.8 Western Blot Analysis of HUVECs Extracts 

Following SDS-PAGE, separated proteins were transferred onto a nitrocellulose 

membrane using an Invitrogen iBlot Blotting System. Membranes were blocked by 

incubation with PBST, 5% Marvel milk powder at 4 
o
C with gentle agitiation for 1 

hr and probed with mouse anti-His6 antibodies for 1 hr at room temperature with 

gentle agitiation. Membranes were washed 5 times with PBST (Table 5) and 

incubated with HRP-conjugated sheep anti-mouse antibodies for 1 hr with gentle 

agitation. Membranes were washed 5 times with PBST and reactive bands detected 

by chemiluminescence and visualised with photographic film. 

2.4.9 Gel Electromobility shift Assay (EMSA) 

Band shift assays were carried out using 1% agarose gels. TBE (Table 5) was used 

for gel preparation and running buffer. Gel wells were thoroughly flushed with 

running buffer prior to loading samples. DNA ligand at a concentration of 0.4 μM 

was incubated with a range of protein concentrations (0.0, 0.2, 0.4, 0.8, 1.2 and 1.6 

μM) in 20 μL 20 mM HEPES, 150 mM NaCl, 50 μM ZnAc2, pH 5.5 for 15 mins 

prior to electrophoresis. Gel electrophoresis was conducted for 1 hr at 60 V and 4 
o
C. 

DNA was stained with SYBRsafe and visualised using a UV transilluminator. 

2.5 Biophysical Methods 

2.5.1 Circular Dichroism (CD) 

Recombinant protein was dialysed overnight against 10 mM Na/K
+
 PO4

-
, pH 7.4 

using 2,000 Da MWCO Slide-a-lyzer dialysis cassettes (Thermo-Fisher) and then 
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diluted to a concentration of 0.2 mg ml
-1

. 200 μl of protein was loaded into a quartz 

cuvette with a path-length of 0.1 mm. Spectra were recorded at 25 
o
C from 300 – 184 

nm on a Jasco J810 CD spectrophotometer. Data was processed using Dichroweb 

software (Whitmore and Wallace, 2004). 

2.5.2 Size-exclusion Chromatography Multi Angle Laser Light Scattering 

(SEC-MALLS) 

Recombinant protein was dialysed overnight using 2,000 Da MWCO Slide-a-lyzer 

dialysis cassettes (Thermo-Fisher) against 50 mM HEPES, 150 mM running buffer 

at either pH 5.5 or 7.5 containing either 2 mM EDTA or 5 mM ZnAc2. Samples were 

then diluted to a concentration of 1 mg ml
-1

. SEC-MALLS experiments were 

performed using a Superdex 200 HR10/30 column (GE Healthcare) on a Shimadzu 

HPLC system. 100 μl protein samples were loaded onto the size exclusion column 

and eluted at 0.5 ml min
-1

 with 1 column volume (24 ml) of an appropriate running 

buffer. Protein elution was monitored using a Wyatt Technologies Dawn HELEOS-

II light-scattering detector and an Optilab rEX refractive index monitor. Recorded 

data were analysed using Astra 5.0 software (Wyatt Technologies). 

2.6 Methods in NMR Spectroscopy 

2.6.1 Sample Preparation  

Prior to sample preparation, proteins were dialysed against the appropriate buffer at 

4 
o
C overnight using 2000 MWCO Slide-a-lyzer dialysis casettes. Typically, samples 

were 700 μl in volume comprising 630 μl of protein solution, 70 μl D2O (10% (v/v)) 

and 1.2 μl of 10% (v/v) NaN3 (final concentration of 0.02% (v/v)). Heteronuclear 

single quantum coherence (HSQC) NMR spectra of 
15

N labelled were generally 

acquired with a protein concentration of 0.2 mM, while three-dimensional triple-

resonance experiments were recorded for samples containing 1.0 mM 
13

C, 
15

N or 
2
H, 

13
C, 

15
N labelled protein. 
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2.6.2 Data Acquisition  

All NMR spectra were recorded on a Bruker Avance 700 MHz spectrometer 

equipped with a triple-resonance inverse-detection probe and z-axis pulsed field 

gradients. 1D 
1
H spectra (pulse program, zgesgp) were acquired with a spectral 

window of 9000 – 12000 Hz, 64 scans and 8192 points. The basic parameters of all 

NMR experiments used throughout this work are listed in Table 10. The HN-HSQC-

TOCSY experiment was acquired with a TOCSY mixing time of 40 ms.  
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Table 10 Pulse programs and basic paramters for two- and three- dimensional experiments 

recorded for this work. 

Experiment Pulse Program Scans Number of Points 

Spectral Width   Hz 

                             ppm 
1
H 

15
N 

13
C 

1
H 

15
N 

13
C 

HSQC hsqcetf3gpsi 8 2048 256 - 10000 

14.28 

1560.9 

22.00 

- 

BEST-HSQC b_hsqcetf3gpsi 8 2048 256 - 10000 

14.28 

22.001

560.9 

- 

TROSY-HSQC trosyetf3gpsi 16 2048 256 - 10000 

14.28 

32.00 - 

BEST-HNCO b_hncogp3d 8 2048 64 128 10000 

14.28 

1560.9 

22.00 

1760.8 

10.00 

BEST-

HN(CA)CO 

b_hncacogp3d 8 2048 64 128 10000 

14.28 

1560.9 

22.00 

1760.8 

10.00 

BEST-HNCA b_hncagp3d 8 2048 64 128 10000 

14.28 

1560.9 

22.00 

3521.2 

20.00 

BEST-

HN(CO)CA 

b_hncocagp3d 8 2048 64 128 10000 

14.28 

1560.9 

22.00 

3521.2 

20.00 

BEST-HNCAi b_hncaigp3d 8 2048 64 128 10000 

14.28 

1560.9 

22.00 

3521.2 

20.00 

BEST-

HNCACB 

b_hncacbgp3d 8 2048 64 128 10000 

14.28 

1560.9 

22.00 

10563.3 

60.00 

BEST-

HN(CO)CACB 

b_hncocacbgp3d 8 2048 64 128 10000 

14.28 

1560.9 

22.00 

10563.3 

60.00 

   

Number of Points
 

Spectral Width   Hz 

                             ppm
 

   
1
H 

15
N 

15
N 

1
H 

15
N 

15
N 

HNCANNH hncannhgp3d 16 2048 128 128 10000 

14.28 

1560.9 

22.00 

1560.9 

22.00 

   

Number of Points
 

Spectral Width   Hz 

                             ppm
 

   
1
H 

15
N 

1
H 

1
H 

15
N 

1
H 

HN-HSQC-

TOCSY 

dipsihsqcf3gpsi3d 8 2048 80 300 10000 

14.28 

1560.9 

22.00 

6301.1 

9.00 
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2.6.3 Data Processing 

Spectra were processed with scripts generated in NMRPipe (Delaglio et al., 1995) 

that were optimised for each dataset. Scripts included apodization functions applied 

to the FID prior to Fourier transformation to improve signal-to-noise and spectral 

resolution. Typically a Gaussian function was applied in the first 1H dimension, 

whereas squared sinebell functions were applied to the second and third dimensions 

or appropriate datasets. Zero-filling was applied in all dimensions to increase the 

digital resolution of the spectra and in some cases linear prediction was applied to 

dimensions in which relatively few points had been collected to correct for FID 

truncation and improve resolution.  

2.6.4 Spectral Referencing 

Following processing, spectra were referenced to 4,4-dimethyl-4-silapentane-1-

sulphonic acid (DSS). DSS produces a signal in the 1D 
1
H spectrum at 0 ppm. 

Therefore, all 1H frequencies were corrected according to the formula: 

      
         

       
  

where        
 is the corrected 

1
H frequency at 0 ppm,       

  the observed 
1
H 

frequency at 0 ppm and     
  the observed DSS signal. For the indirect 

13
C and 

15
N 

dimensions, the reference frequencies were calculated using IUPAC accepted 

frequency-referencing ratios (Ξ
N
 and Ξ

C
 for 

15
N and 

13
C, respectively) and the 

corrected 
1
H reference frequency (      

 ), using the formula; 

      
            

  

where X is either 
13

C or 
15

N and       
  is the corrected reference frequency for 

nucleus X. Ξ
N
 and Ξ

C 
are 0.101329118 and 0.251449530, respectively (Yamazumi et 

al., 2001). Chemical shifts were then corrected according to the following formula: 

    
       

   (
      

         
 

      
     ) 
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where     
  is the corrected chemical for nucleus X (

1
H, 

13
C, 

15
N),     

  is the 

observed chemical shift for nucleus X and       
  is the observed frequency of X at 0 

ppm in the respective dimension. 

2.6.5 Resonance Assignment 

Processed and referenced spectra were analysed using CcpNmr Analysis version 

2.1.5 (Vranken et al., 2005, Fogh et al., 2005). The procedure for resonance 

assignment is outlined in detail in section 4.5.3. Sequence-specific triple-resonance 

assignment of H
N
, N

H
, C

α
, C

β
 and C’ nuclei was based on HNCO/HN(CA)CO, 

HNCA/HN(CO)CA and HNCACB/HN(CO)CACB spectra.
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3 Expression and Purification of Recombinant FnBPA 

Fragments 

3.1 Introduction 

FnBPA has been identified as a major S. aureus virulence factor associated with a 

variety of life-threatening conditions such as osteomyelitis and infective endocarditis 

(Shinji et al., 2011, Que et al., 2001). The contribution of FnBPA in the development 

of these conditions is largely attributed to its recognition of multiple ECM 

components such as fibronectin (Fn), fibrinogen (Fg) and elastin (Wann et al., 2000, 

Keane et al., 2007b, Froman et al., 1987). The Fn- and Fg-binding regions of 

FnBPA, the Fn binding repeats (FnBRs) and N2N3 subdomains, respectively, have 

been investigated in great detail and the interactions they facilitate are well 

understood (Bingham et al., 2008, Meenan et al., 2007)(Stemberk et al., manuscript 

in preparation). Upon binding to Fn, the FnBRs form additional β-strands antiparallel 

to the E-strands of Fn F1 modules in the N-terminal domain (Schwarz-Linek et al., 

2003). Fg binding is mediated by the A domain of FnBPA, with the C-terminus of 

the Fg γ-chain binding in the hydrophobic cleft between the N2 and N3 subdomains 

(Stemberk et al., manuscript in preparation). Contrastingly, the N1 subdomain is 

poorly characterised and has no involvement in known FnBPA interactions. 

3.2 Aims 

The aim of this work was to express and purify a set of recombinant FnBPA 

(rFnBPA) fragments covering different regions of the A domain to enable the 

characterisation of the N1 subdomain. Primarily, poly-histidine (His6)-tagged 

proteins were produced via well-established procedures (Stemberk et al., manuscript 

in preparation). Isotopically enriched proteins were expressed to facilitate the 

structural analysis of N1 by NMR spectroscopy. To aid the resonance assignment of 

N1 (section 4.5), a series of proteins were expressed using a recently developed 

‘unlabelling’ strategy (Rasia et al., 2012). DNA constructs encoding GST-fusion 

proteins of N1, N1N2 and fA were produced to enable to expression of proteins for 

use in ligand binding studies (section 5.3). 
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3.3 Recombinant FnBPA Fragments 

For the investigations presented in this work a number of different rFnBPA 

constructs were used. Primarily these were A domain variants encompassing the N1 

subdomain and the Fg-binding N2N3 region. However, for work presented in 

Chapter 5, a protein containing the first FnBR was used and this will be also 

discussed here. The various proteins used are summarised in Figure 11. 

 

Figure 11 Recombinant FnBPA fragments. 

The A domain of FnBPA is preceded by a short secretory signalling peptide 

(residues 1 – 36), responsible for ensuring FnBPA is directed to the cell surface 

(DeDent et al., 2008). The A domain comprises three subdomains; N1, N2 and N3. 

N1 is highly conserved with approximately 90% sequence identity between strains of 

S. aureus, compared to approximately 75% and 60% sequence identity in N2 and 

N3, respectively (Loughman et al., 2008). The N2N3 subdomains represent the 

minimum region required to bind Fg, with N1 having no involvement (Stemberk et 

al., manuscript in preparation). Elastin and tropoelastin binding by FnBPA is also 

achieved by N2N3 (Keane et al., 2007a, Keane et al., 2007b). No functional role has 

yet been established for N1. Structural characterisation of N2 and N3 revealed each 

subdomain adopts an immunoglobulin type fold (Stemberk et al., manuscript in 
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preparation). Proteins containing the independently folded N2 and N3 subdomains 

(N1N2 and fA) were used to investigate N1’s structure in the context of larger A 

constructs (section 4.4.1). N1N2 is unable to bind Fg as it lacks the hydrophobic 

cleft between the N2 and N3 subdomains necessary for this interaction (Stemberk et 

al., manuscript in preparation). AF1 comprises the Fg binding region (N2N3) and the 

first disordered FnBR; as a result AF1 is able to bind both Fg and Fn (Stemberk et 

al., manuscript in preparation). 

3.4 Expression of His6-tagged rFnBPA Proteins 

3.4.1 Unlabelled Protein Expression 

The procedure for the optimal expression of unlabelled rFnBPA A domain proteins 

developed by Vaclav Stemberk was used here (Stemberk et al., manuscript in 

preparation). Briefly, plasmid DNA containing the rFnBPA fragments was 

transformed into the E. coli expression strain BL21 (DE3) Gold, as described in 

section 2.2.2. Positive transformants were selected by resistance to kanamycin and 

used to inoculate overnight starter cultures. Baffled flasks containing 500 ml LB with 

kanamycin were inoculated with the starter cultures, and following growth for 2 – 3 

hours to an OD600 of approximately 0.7, protein expression was induced by the 

addition of IPTG to a final concentration of 0.5 mM. The growth curves associated 

with the expression of each rFnBPA fragment are shown in Figure 12. 

Overexpression of recombinant protein was confirmed by SDS-PAGE analysis prior 

to protein purification (data not shown). 
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Figure 12 E. coli growth curves during the expression of rFnBPA proteins. The growth of E. coli 

BL21 (DE3) Gold was monitored by measuring the OD600 of the culture. An OD600 of ~0.7 was 

reached after approximately 180 minutes at which point protein expression was induced by the 

addition of IPTG to a final concentration of 0.5 mM. 

3.4.2 Uniformly-Labelled rFnBPA Expression 

rFnBPA proteins uniformly 
15

N or 
13

C, 
15

N labelled were expressed in M9 minimal 

media (section 2.3.2). Supplementing the expression media with 
15

NH4Cl and 
13

C-

glucose (Marley et al., 2001), as the sole nitrogen and carbon sources, respectively, 

ensured sufficient isotope enrichment for NMR spectroscopy studies. Although cell 

cultures grew more slowly in minimal media, typically taking approximately 6 h to 

reach an OD600 of around 0.7, following induction, overnight growth at 30 
o
C 

resulted in similar levels of protein expression compared to growth in LB. Following 

purification, the level of isotope enrichment was determined by comparison of the 

molecular mass determined by electrospray ionisation mass spectrometry (ESI-MS) 

analysis with the theoretical mass of the protein (Gasteiger et al., 2003) (Table 11). 

3.5 Purification of His6-tagged rFnBPA Proteins 

After expression was induced, cells were typically grown for 4 h at 37 
o
C or 

overnight at 30 
o
C. Cells were harvested by centrifugation prior to lysis by 

sonication. His6-tagged rFnBPA proteins were purified from the soluble cell extract 
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by nickel affinity chromatography. Proteins eluted from the column at between 75 

and 150 mM imidazole (Figure 13A). Fractions containing protein were pooled and 

dialysed against 20 mM HEPES, 150 mM NaCl, pH 7.5 to remove imidazole. The 

N-terminal His6-tag was cleaved using HRV 3C protease and removed, along with 

the enzyme, from the protein solution by a second nickel affinity purification step 

(Figure 13C). Following cleavage of the His6-tag, N1 appears to increase in mass 

according to SDS-PAGE analysis. His6-tags are known to affect the expansion 

properties of disordered proteins resulting in abnormal behaviour in a number of 

analytical techniques (Marsh and Forman-Kay, 2010), although the behaviour 

observed in this case has not previously been reported. Nonetheless, MS analysis 

confirmed the cleaved species was of the mass expected for recombinant N1. The 

volume of protein samples was reduced using VivaSpin20 5 kDa molecular weight 

cut-off concentrators (Vivaproducts) and the purity verified by SDS-PAGE analysis 

(Figure 13D). 
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Figure 13 Purification of  His6-N1. (A) Nickel affinity chromatography elution profile of His6-N1. 

Protein elution was monitored by absorbance at 280 nm (blue) relative to the concentration of the 

elution buffer (green). (B) SDS-PAGE analysis of the nickel affinity purification step containing pre- 

(1) and post-induction (2), soluble cell extract (L), flow-through (F) and elution peak (E). (C) SDS-

PAGE analysis of the His6-tag cleavage by HRV-3C protease. Before cleavage (1), post cleavage (2). 

(D) SDS-PAGE analysis of purified N1. 

Further purification was required for AF1 and N2N3. AF1 is prone to C-terminal 

degradation and as proteins were expressed with a N-terminal His6-tag, degradation 

products could not be separated by nickel affinity chromatography. Therefore, 

following cleavage of the His6-tag and removal of the protease, intact AF1 was 

separated from degradation products by anion exchange chromatography (Figure 

14). AF1 eluted at a NaCl concentration of approximately 180 mM. The final 

purification step applied to N2N3 was size-exclusion chromatography (SEC) to 

separate oligomeric and monomeric species (Figure 15). The equilibrium between 

the oligomeric states of N2N3 and AF1 is not dynamic (Stemberk et al., manuscript 
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in preparation), and a single SEC step was required to produce homogenous species. 

The purity of each rFnBPA protein produced in the aforementioned work was 

verified by SDS-PAGE as over 95%. ESI-MS (Table 11) verified the molecular 

weight along with the level of isotope incorporation of labelled species.  

 

Figure 14 Anion exchange chromatography of AF1. (A) Anion exchange chromatography elution 

profile of AF1 monitored by absorbance at 280 nm (blue) relative to the concentration of elution 

buffer (green). (B) SDS-PAGE analysis the anion exchange step. 

 

Figure 15 Size-exclusion chromatography of N2N3. (A) Size-exclusion chromatography elution 

profile of N2N3 monitored by absorbance at 280 nm. (B) SDS-PAGE analysis of the size exclusion 

step. Numbered lanes correspond to the three elution peaks. 
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3.5.1 Expression and Purification of 
2
H, 

13
C, 

15
N N1 

Substituting non-labile hydrogen atoms for deuterium introduces properties more 

favourable for the NMR analysis of proteins (Gardner and Kay, 1998). The specific 

benefits of deuterating proteins will be discussed in section 4.5.1. However, the 

expression of 
2
H, 

13
C, 

15
N N1 differed from the procedure applied for non-deuterated 

N1 and those differences will be presented here. Prior to expression of N1 in 98% 

2
H2O M9 minimal media, the E. coli expression strain was acclimatised to growth in 

2
H2O by incrementally increasing the concentration in 5 ml cultures (section 2.3.3). 

Finally, a 50 ml 98% 
2
H2O M9 minimal media starter culture was inoculated into 

baffled flasks containing 500 ml 98% 
2
H2O M9 minimal media. Cell cultures grew 

more slowly in minimal media as described in section 3.4.2, and growth was even 

slower in 98% 
2
H2O minimal media. After approximately 8 h an OD600 of 0.7 was 

reached and protein expression was induced by the addition of 0.5 mM IPTG. 

Following overnight growth at 30 
o
C, cell cultures were harvested and proteins 

purified as described previously. The level of deuterium incorporation was 

determined by ESI-MS (Table 11). 

3.5.2 Expression of Selectively Unlabelled 
2
H, 

13
C, 

15
N N1 

To aid the sequence specific resonance assignment of N1 (section 4.5), samples of 

2
H, 

13
C, 

15
N N1 with particular amino acids ‘unlabelled’ were produced via the 

method developed by Rasia et al. (Goto et al., 1999, Rasia et al., 2012). Briefly, 

supplementing growth media with the metabolic precursor to a specific amino acid 

results in their incorporation into expressed proteins (section 4.5.2). The addition of 

non-isotopically enriched precursors to enriched expression media results in fully 

labelled proteins with specific amino acids unlabelled, namely leucine, valine, 

isoleucine, phenylalanine and tyrosine. Proline can also be unlabelled by the addition 

of L-proline. 4-hydroxyphenylpyruvic acid, sodium 3-methyl-oxobutyrate and 

sodium 2-oxobutyrate, precursors to tyrosine, leucine/valine and isoleucine, 

respectively, and L-proline were added 1 hr prior to the induction of protein 

expression according to the method developed Rasia et al. (Rasia et al., 2012). All 

the unlabelled species, except tyrosine unlabelled N1, were successfully over-

expressed. Supplementation of cell cultures with 4-hydroxyphenylpyruvate resulted 
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in cell death and no protein was expressed. It is uncertain why expression of tyrosine 

unlabelled N1 resulted in cell death as this behaviour has not been previously 

reported and the precursor has no known toxicity when used as a growth supplement 

(Rasia et al., 2012). However, N1 contains only one tyrosine residue and the impact 

of unlabelling this residue for the NMR analysis of N1 was likely to be minimal and 

the matter was not investigated further. Unlabelled 
2
H, 

13
C, 

15
N N1 was purified as 

outlined in section 4.7 and an example of the procedure is presented in Figure 16. 

The successful incorporation of unlabelled residues was confirmed by NMR analysis 

(section 4.5.2). 
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Figure 16 Purification of selectively unlabelled 
2
H, 

13
C, 

15
N N1 proteins. (A) Nickel affinity 

chromatography elution profile of isoleucine unlabelled N1. Protein elution was monitored by 

absorbance at 280 nm (blue). (B) SDS-PAGE analysis of the nickel affinity purification step 

containing soluble cell extract (L), flow-through (F) and elution peak (E). (C) SDS-PAGE analysis of 

purified 
2
H, 

13
C, 

15
N N1 (1), isoleucine unlabelled N1 (2), leucine/valine unlabelled N1 (2) and 

proline unlabelled N1 (4). 
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Table 11 Summary of rFnBPA properties and isotope incorporation. Isotope incorporation of 

labelled species was calculated using the theoretical weight (MWt) and molecular weight determined 

by ESI-MS (MW). The extinction coefficient (ε) and theoretical pI of proteins are also included 

(Protparam)(Gasteiger et al., 2003). 

rFnBPA MWt (Da) MW (Da) ε Theoretical pI 

N1 17136 17132 1490 4.66 

N1N2 32947 32949 7450 4.86 

fA 52929 52926 33810 5.09 

N2N3 36551 36551 32320 5.59 

AF1 40693 40690 36790 5.18 

15
N N1 17350 17346 (98%) 1490 4.66 

15
N N1N2 33351 33349 (99%) 7450 4.86 

15
N fA 53575 53563 (98%) 33810 5.09 

15
N N2N3 36992 36987 (99%) 32320 5.59 

13
C, 

15
N N1 18059 18024 (96%) 1490 4.66 

2
H, 

13
C, 

15
N N1 19225 17721 (72%) 1490 4.66 
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3.6 Expression and Purification of GST-Fusion Proteins 

3.6.1 Molecular Biology of GST-rFnBPA Constructs 

The DNA constructs of N-terminally GST-tagged N1, N1N2 and fA were produced 

using standard molecular biology techniques as described in section 2.2. The pGEX-

6P-1 vector, containing a PreScission Protease cleavable N-terminal GST-tag, was 

chosen as the expression vector. Primers used in PCR to generate the requisite 

constructs are listed in METHODS. The PCR products were ligated into the 

linearised expression vector using BamH1 and Xho1 restriction sites. The successful 

ligation of the inserts into the expression vector was confirmed using the restriction 

sites flanking the insert, or PCR using the primers used to generate the insert. The 

correct sequence of all GST-fusion constructs was confirmed by an in-house 

sequencing service (Technology Facility, University of York). 

3.6.2 Expression and Purification of GST-rFnBPA Proteins 

Various conditions, including temperature, time of induction and final concentration 

of IPTG, were screened to achieve optimal expression of the GST-rFnBPA proteins. 

Based on small-scale tests, optimum expression was achieved in E. coli BL21 (DE3) 

Gold at 37 
o
C with expression induced at a final IPTG concentration of 0.4 mM 

following growth to an OD600 of between 0.5 and 0.6. Following induction, cell 

cultures were typically grown for 4 h and harvested by centrifugation prior to cell 

lysis (section 2.3.7). 

Cell extracts were prepared by lysing cell cultures by sonication and separation of 

the soluble fraction from cell debris by centrifugation. rFnBPA proteins were 

isolated from the cell extracts by GST affinity chromatography. Cell extracts were 

passed over a 5 ml GST affinity column (GE Healthcare) 3 times to achieve 

maximum binding. Proteins were eluted from the column following the addition of 

10 mM reduced glutathione (GSH). Fractions containing protein were pooled and 

dialysed against PBS to remove GSH. An example of the purification procedure is 

given in Figure 17. 
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Figure 17 Purification of GST-N1N2. (A) GST affinity chromatography of GST-N1N2. Protein 

elution was monitored by absorbance at 280 nm (blue) relative to the concentration of elution buffer 

(green). (B) SDS-PAGE analysis of GST affinity purification step including soluble cell extract (L), 

flow through (F) and elution peak (E).  

Although the expression and purification of GST-N1, N1N2 and fA was successful, 

all three proteins are susceptible to C-terminal degradation. In an attempt to reduce 

the degradation, protease inhibitors were added to the soluble cell extracts prior to 

GST affinity purification. However, the purified species still prone to degradation 

suggesting it is not the result of proteolysis. Despite the instability of the GST-

rFnBPA proteins, a sufficient quantity of intact material was present in purified 

protein samples and used in subsequent studies (section 5.3.1). 

3.7 Summary 

A number of His6-rFnBPA constructs covering various regions of the A domain 

(Figure 11) were successfully expressed and purified. The procedure for the 

optimum expression and purification of His6-rFnBPA was developed previously 

(Stemberk et al., manuscript in preparation). The majority of His6-rFnBPA proteins 

were also uniformly labelled with 
15

N for subsequent NMR studies. 
13

C, 
15

N N1 was 

expressed in M9 minimal media supplemented with 
15

NH4Cl and 
13

C-glucose and 

high levels of isotope incorporation were achieved. Deuterated N1 was also 

successfully expressed and purified. Following an initial acclimatisation to growth in 

2
H2O, deuterated N1 was expressed and purified following the same procedure 

employed for the purification of the His6-rFnBPA proteins. Selectively unlabelled 
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variants of N1 were expressed via recently developed methodology (Rasia et al., 

2012). Isoleucine, proline and leucine/valine residues were unlabelled following the 

supplementation of expression media with metabolic precursors. However, tyrosine 

unlabelling was unsuccessful due to unexplained cell death following the induction 

of protein expression. DNA constructs encoding GST-rFnBPA proteins were 

successfully produced via standard molecular biology techniques. The expression 

conditions were optimised on a small scale and implemented for large-scale protein 

production. GST-rFnBPA fusion proteins were purified by GST affinity 

chromatography and despite susceptibility to C-terminal degradation, sufficient 

amounts of intact recombinant protein was produced for subsequent investigations. 
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4 Structural Characterisation of N1 

4.1 Introduction 

 FnBPA is a major S. aureus virulence factor associated with a number of life-

threatening conditions (Fitzgerald et al., 2006, Edwards et al., 2011, Shinji et al., 

2011, Arrecubieta et al., 2006). FnBPA’s contribution to S. aureus virulence is 

mainly attributed to its recognition of multiple ECM proteins such as Fn, Fg and 

elastin (Bingham et al., 2008, Keane et al., 2007a, Roche et al., 2004, Wann et al., 

2000). Interactions with these ligands are crucial for host colonisation and immune 

evasion (Massey et al., 2001, Edwards et al., 2010, Fitzgerald et al., 2006). FnBPA 

binds Fn through the well-characterised tandem β-zipper mechanism (Bingham et 

al., 2008, Schwarz-Linek et al., 2003). FnBPA interacts with Fg via the N-terminal A 

domain (Keane et al., 2007b). The binding site is located within the mostly 

hydrophobic cleft between the N2 and N3 subdomains (Stemberk et al., manuscript 

in preparation). The regions of FnBPA involved in ligand binding, the N2N3 

subdomains and 11 FnBRs for Fg and Fn binding, respectively, are well 

characterised structurally. Contrastingly, the structure of the N1 subdomain has not 

been investigated despite being the most highly conserved region of the N-terminal 

A-domain (Loughman et al., 2008) and the domain boundaries being reasonably 

well-defined. 

 

Figure 18 Schematic Representation of FnBPA. The N-terminal region of FnBPA comprises a 

short signalling and the A domain, consisting of the N1, N2 and N3 subdomains. The 11 highly 

conserved FnBRs, proline-rich repeat region (PRR), wall (W) and membrane (M) spanning domains 

constitute the C-terminus. FnBPA is anchored to the cell wall by an LPETG motif. 
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4.2 Aims 

The aim of this work was to determine the structure of the N1 subdomain. The 

behaviour of N1 in the presence and absence of other regions of the A domain was 

investigated using NMR spectroscopy and circular dichroism (CD). The effect of 

temperature and pH on the conformation of N1 was also investigated. The resonance 

assignment of N1 was conducted using recently developed labelling strategies (Rasia 

et al., 2012). Secondary chemical shift analysis (Wishart and Sykes, 1994, Wishart et 

al., 1992) and structural propensity calculations (Marsh et al., 2006) were performed 

to identify residual secondary structure elements within N1. 

4.3 Sequence Analysis of N1 

IDPs typically contain few residues that would form the hydrophobic core of a 

folded protein (Val, Leu, Ile, Phe, Trp and Tyr) (Dyson and Wright, 2005, Midic and 

Obradovic, 2012). A high proportion of residues in IDPs are instead polar or charged 

‘disorder-promoting residues’ (Glu, Pro, Ser, Lys and Gln). Simple sequence 

analysis of N1 reveals characteristics associated with IDPs (Figure 19). 46% of the 

amino acids in N1 promote disorder, with a further 20 alanine residues that can 

sometimes have similar effects. Contrastingly, only 20 of the 158 residues are 

considered order promoting, and these a sporadically positioned throughout the 

protein. 

ASEQKTTTVE ENGNSATDNK TSETQTTATN VNHIEETQSY NATVTEQPSN 

ATQVTTEEAP KAVQAPQTAQ PANIETVKEE VVKEEAKPQV KETTQSQDNS 

GDQRQVDLTP KKATQNQVAE TQVEVAQPRT ASESKPRVTR SADVAEAKEA 

SNAKVETG 

Figure 19 Presence of Order and Disorder Promoting Residues in N1. Order and disorder 

promoting amino acids are highlighted in blue and red, respectively. N1 contains 74 disorder-

promoting residues compared to 20 that promote order.  

A number of bioinformatics tools were used to analyse N1 and predict any structural 

elements it contained. These included Jpred (Cole et al., 2008), IUPred (Dosztanyi et 

al., 2005a), FoldIndex (Prilusky et al., 2005) and metaPrDOS (Ishida and Kinoshita, 
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2008). Each tool utilises slightly different methodology and algorithms to predict 

disorder on a residue-by-residue basis. Jpred uses multiple sequence alignments to 

calculate secondary structure contributions and scores suggested conformations in 

terms of likelihood (Cuff and Barton, 2000, Cole et al., 2008). IUPred estimates fold 

stabilising interactions based on amino acid composition and the sequential 

environment of residues (Dosztanyi et al., 2005a, Dosztanyi et al., 2005b). FoldIndex 

calculates the average hydrophobicity of residues and net charge of the protein to 

predict whether a given sequence is ordered or disordered (Prilusky et al., 2005). 

Using a different approach, metaPrDOS integrates results from other algorithms to 

predict disorder (Ishida and Kinoshita, 2008). Each of the aforementioned methods 

predicted a high level of disorder for N1 (Figure 20). 

 

Figure 20 Predicted Disorder in N1. Secondary structure predictions of N1 using (A) Jpred, (B) 

FoldIndex, (C) metaPrDOS and (D) IUPred. The consensus of all four predictions is that N1 is an 

IDP. Small elements of secondary structure are predicted by Jpred, however the likelihood score 

assigned to these regions is very low. 
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4.4 Preliminary NMR Analysis of N1 

NMR spectroscopy is a powerful tool for studying protein conformations. Chemical 

shifts are a sensitive indicator of structural elements within a protein. Therefore, 

even from complicated 1D 
1
H spectra inferences can be made about a protein’s 

structure. Typically β-sheet conformations give rise to a broad dispersion of 

resonances in the amide region (approximately 6 – 10 ppm) of the 
1
H spectrum, and 

individual methyl groups are often resolved at around 0 ppm (Figure 21A). The 

narrow 
1
H signal dispersion also results in characteristic 

1
H, 

15
N HSQC spectra 

(Figure 21C). IDPs exhibit poor signal dispersion, with peak overlap and signal 

degeneracy commonly observed throughout the spectrum (Figure 21B and D). 

Resonances arising from amide protons cluster around 8 ppm with a dispersion of 

approximately 0.5 ppm. Aliphatic resonances also exhibit high levels of degeneracy. 

Helical proteins generally give rise to features between the two aforementioned 

extremes. Although, signal dispersion in the amide region of the 
1
H spectrum is 

typically narrow, the aliphatic region exhibits features similar to those observed for 

β-sheet proteins. An initial evaluation of a 1D 
1
H spectrum for N1 suggests it is 

intrinsically disordered (Figure 22). 
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Figure 21 NMR spectra of β-sheet and disordered proteins. (A) 1D 
1
H and (B) 

1
H, 

15
N HSQC 

NMR spectra of 8F19F1, an 11 kDa β-sheet module pair of Fn (Atkin et al., 2010). (C) 1D 
1
H and (D) 

1
H, 

15
N HSQC spectra of a disordered region of BBK32, a surface protein from Borrelia burgdorferi 

(Harris, unpublished). Spectra were acquired at 298 K on a 700 MHz spectrometer. 

 

Figure 22 1D 
1
H NMR Spectrum of N1. The spectrum was acquired at pH 6.0 and 298 K on a 700 

MHz spectrometer. 
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Uniformly 
15

N labelled N1 was expressed to acquire a 
1
H, 

15
N HSQC spectrum to 

confirm the perceived disorder in the 
1
H spectrum. Resolution of degenerate proton 

chemical shifts via a second dimension enables a more accurate estimation of 

secondary structure to be made. 
1
H, 

15
N HSQC spectra show correlations between 

the 
1
H and 

15
N nuclei in amide groups. Thus, for every amino acid in a protein 

except proline, a peak is seen in the spectrum corresponding to a backbone amide 

group. Depending on the pH, certain side-chain amide groups are also visible. The 

1
H, 

15
N HSQC of N1 again exhibits the characteristic features of an IDP (Figure 23). 

In addition to degeneracy of amide 
1
H shifts, the 

15
N chemical shift dispersion is also 

low with the middle of the spectrum particularly congested. Therefore, the resolution 

of individual peaks is poor. The peaks have narrow linewidths, a feature indicative of 

IDPs due to the slower spin relaxation rates relative to globular proteins. One further 

feature symptomatic of IDPs is overlap of Gln and Asn side-chains amide 

resonances. In folded proteins the pairs of peaks observed for these –NH2 groups are 

well resolved and easily identified. Despite N1 containing 28 Asn and Gln residues 

in total, there is significant signal overlap in this region and only a small number of 

peaks observed.  
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Figure 23 
1
H, 

15
N HSQC spectrum of N1. The spectrum was recorded at pH 6.0 and 298 K on a 700 

MHz spectrometer. 
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most resonances remain clustered in the middle of the spectrum. As the pH increases 

the rate of exchange between amide protons and the solvent also increases 

(Englander et al., 1996). The signals of labile protons in NMR spectra consequently 

decrease in intensity until they can no longer be observed. The vast majority of peaks 

in the N1 spectrum decrease in intensity or disappear as the pH increases, suggesting 

that most of N1 amide protons are freely accessible to the solvent. This is further 

evidence that N1 is an IDP. 

 

Figure 24 
1
H, 

15
N HSQC spectra of N1 over a range of pH's. Data was acquired at 298 K on a 700 

MHz spectrometer. Spectra are coloured from light to dark are the pH increases from pH 5 to 8. 

4.4.2 N1 is Disordered in the A Domain 

The disorder observed for N1 may not be indicative of its confirmation in the context 

of the full A domain. The disorder may arise from a C-terminal truncation if the 

domain boundaries between N1 and N2 were incorrectly defined. The subdomain 

boundaries within the A domain of FnBPA were originally proposed relative to S. 

aureus Clumping factor A (Deivanayagam et al., 2002). Structural studies found two 

6.5 7.0 7.5 8.5 8.0 

125.0 

120.0 

115.0 

110.0 

δ 
1

H (ppm) 

δ
 1

5

N
 (

p
p

m
) 



Chapter 4 

83 

 

distinct domains, N2 and N3, comprised a recombinant ClfA fragment encompassing 

residues 221 to 559 (Deivanayagam et al., 2002). The N-terminal region of the A 

domain (residues 45 – 220), susceptible to protease activity, was termed N1. A 

subsequent model suggested the structure and organisation of the A domain of 

FnBPA was analogous to ClfA (Keane et al., 2007b). This was confirmed by a 

recently solved crystal structure of the independently folded N2 and N3 subdomains 

(Stemberk et al., manuscript in preparation). However, the precise boundary between 

the N1 and N2 subdomains has not been defined. Incorrectly defining the domain 

organisation of a protein can have a significant impact on subsequent structural and 

functional studies. For example, the revision of domain boundaries within the Fn 

binding region of FnBPA, identifying 11 highly conserved FnBRs, led to 

significantly increased understanding of Fn recognition and the specificity of 

particular motifs for certain regions of Fn (Schwarz-Linek et al., 2003, Meenan et al., 

2007). Therefore, correctly identifying the C-terminal boundary of N1 is essential 

prior to further structural and functional studies. 

An alternative explanation for the perceived disorder of N1 is that the presence of the 

N2 and N3 subdomains could act to stabilise a conformation in N1 that we do not 

observe when they are absent. Establishing the correct interfaces between domains 

can significantly impact a protein’s conformation as evidenced in the B-repeat region 

of S. aureus surface protein SasG (Gruszka et al., 2012). In this instance, the E 

segment of the SasG B-repeats is disordered when preceded by a G5 domain, 

whereas a C-terminal G5 domain introduces a stable fold in the E segment. To 

address these questions, uniformly 
15

N labelled N1N2, N2N3 and fA proteins were 

expressed and 
1
H, 

15
N HSQC spectra recorded. 

A 
1
H, 

15
N HSQC of N1N2 suggests that the protein comprises two regions adopting 

different conformations (Figure 25). The difference in peak linewidths between 

folded proteins and disordered proteins reflects the relative correlation time (τc) of 

each component. In essence τc is a measure of the rate of random molecular motion 

of a molecule (Keeler, 2005). Thus, dynamic molecules such as disordered proteins 

typically have a shorter τc relative to globular proteins. Spin-spin, or T2, relaxation 

processes are more efficient when molecular motion is slower and peak linewidth is 

inversely proportional to T2 (Levitt, 2001). Consequently, shorter τc corresponds to 
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an increased T2 relaxation time and in turn narrower linewidths. Therefore, the 

broader, more dispersed resonances in the N1N2 spectrum indicate a folded β-sheet 

component, N2, whilst the narrower, centrally localised peaks could represent a 

disordered component, N1. By superimposing the N1 spectrum onto the 
1
H, 

15
N 

HSQC of N1N2 it is clear that the disorded features are attributable to N1, and the 

more dispersed peaks to the independently folded N2 subdomain. The 
1
H, 

15
N HSQC 

of fA is relatively poor due to the size of the protein and differing dynamics of the 

domains it contains (Figure 26). However, the spectrum exhibits similar features to 

the 
1
H, 

15
N HSQC of N1N2 with peaks attributable to a disordered domain and 

dispersed peaks indicative of folded regions being clearly visible. A 
1
H, 

15
N HSQC 

of N2N3 confirms that under the conditions used to record the N1N2 and fA spectra, 

both subdomains adopt stable β-strand conformations as expected (Figure 26). 

Therefore, under the conditions tested N1 appears to be an IDP and incorrect domain 

boundaries are not responsible for the disorder. 
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Figure 25 Comparison of the 
1
H, 

15
N HSQC spectra of N1 and N1N2. 

1
H, 

15
N HSQC spectrum of 

N1 (black) is superimposed on the 
1
H, 

15
N HSQC of N1N2 (red). Spectra were acquired at pH 6.0 and 

298 K on a 700 MHz spectrometer. 
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Figure 26 
1
H, 

15
N TROSY-HSQC spectra of fA and N2N3. Both spectra were recorded at pH 7.4 

and 298 K on a 700 MHz spectrometer. Examples of features common to both spectra are indicated.  
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4.4.3 Circular Dichroism of the A Domain 

Despite the NMR spectra suggesting that N1 is disordered a small amount of 

ambiguity exists as helical proteins can exhibit similarly narrow amide chemical 

shift dispersions. Therefore, CD spectra of the various A domain proteins were 

recorded with the results corroborating the NMR data (Figure 27). 

Helical proteins give rise to characteristic features in a CD spectrum, most notably 

double minima between approximately 205 and 220 nm (Nelson et al., 2008). IDPs 

produce a strong minimum at around 195 nm. β-sheet conformations are less 

distinctive in CD spectra, although contributions to overall protein structure can be 

estimated (Chen et al., 1974). N1 exhibits no features characteristic of α-helical 

conformations, with the minimum at approximately 198 nm indicative of disorder 

(Figure 27). The spectra of N1N2 and fA also show features attributable to 

disordered regions (Figure 27). Deconvolution of the CD spectra using DichroWeb 

algorithms (Whitmore and Wallace, 2004) predicts that N1 is almost completely 

disordered, with virtually no helical content (Table 12). The β-sheet contribution 

increases in N1N2 and fA, as expected due to the presence of folded subdomains. 

The contribution of β-strand in these proteins is surprisingly low given the known 

structure. However this is likely due CDs unsuitability for studying β-sheet proteins. 

Taken with the NMR data it can be concluded that N1 is an IDP.  

Table 12 Deconvolution of FnBPA CD spectra Deconvolution of the CD spectra of N1, N1N2 and 

fA using DichroWeb software (Whitmore and Wallace, 2004). 

 Helix 1 Helix 2 Strand 1 Strand 2 Turns Unordered Total 

N1 0.01 0.02 0.05 0.03 0.05 0.84 1.00 

N1N2 0.00 0.03 0.11 0.07 0.12 0.67 1.00 

fA 0.00 0.03 0.20 0.10 0.14 0.53 1.00 
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Figure 27 CD spectra of FnBPA A domain constructs. CD spectra of N1 (A), N1N2 (B) and fA 

(C) acquired at pH 7.4 and 298 K. Data was processed using DichroWeb algorithms (Whitmore and 

Wallace, 2004). Blue and red lines represent the experimental and reconstructed data, respectively. 
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4.5 Resonance Assignment of N1 

The resonance assignment of proteins enables a detailed and quantitative chemical 

shift analysis to be performed. Such analyses are powerful tools in accurately 

describing the behaviour of IDPs. Transient secondary structures elements (Wishart 

and Sykes, 1994, Bozzi et al., 2003) and residues with propensities for secondary 

structure (Marsh et al., 2006) can be identified within an IDP by chemical shift 

analysis. This can be important in identifying regions likely to be involved in ligand 

binding activity (Norris et al., 2011, Zhang et al., 2008, Marsh et al., 2006). 

Completing the resonance assignment of a large unstructured protein is a far from 

trivial undertaking due to the inherent signal degeneracy associated with IDPs and 

apparent in N1 (Figure 23). Notwithstanding the recent advances in methodology 

and the role IDPs play in many of biological processes, there are relatively few 

examples of resonance assignments of proteins similar in size to N1 (Szalaine 

Agoston et al., 2011, Libich and Harauz, 2008, Csizmok et al., 2008, Mayer et al., 

2012). However, the completed resonance assignments provided valuable insight 

into the protein of interest’s function that were otherwise difficult to discern. To 

further probe the structural nuances of N1, the resonance assignment of the full 

subdomain (residues 37 -194, Figure 18) was carried out. The results described in 

Section 4.4.2 suggest the conformation observed for the recombinant fragment is 

representative of the confirmation N1 adopts in the full A domain.  

Uniformly 
13

C, 
15

N labelled N1 was expressed and purified as described (section 

2.3.2) and mass spectrometry (MS) analysis revealed isotope incorporation of 96% 

(section 3.5.2). As discussed previously, there is significant overlap in the centre of 

the 
1
H, 

15
N HSQC spectrum of N1 and it is difficult to conclusively identify 

individual peaks (Figure 28). For disordered proteins it is not uncommon for this 

overlap to be observed in the 
13

C dimensions used for sequential assignment (Dyson 

and Wright, 2001). However, ambiguities arising from signal overlap in a particular 

spectrum can often be solved using a dataset involving different nuclei (i.e. 

ambiguity in an HNCO spectrum can be solved using a HNCA). The triple-

resonance spectra recorded for N1 all had considerable signal overlap in the 
13

C 

dimension (Figure 28). Despite the use of multiple experiments, a high degree of 

uncertainty remained in sequentially assigning resonances and an alternative 
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approach was required. Such difficulties are not uncommon in assigning the NMR 

spectra of disordered proteins. Strategies employed to enable the resonance 

assignment of IDPs include substituting non-labile 
1
H nuclei with 

2
H nuclei to 

improve spectral resolution (Gardner and Kay, 1998) or increasing the 

dimensionality of datasets used for sequential assignment (Zhang et al., 2008, 

Motackova et al., 2010). Despite the low sequence complexity of N1 there are few 

examples of sequence repetition (Section 4.3) and it was thought that simply 

improving the spectral resolution could solve signal degeneracy.  

 

Figure 28 Resonance overlap in NMR spectra of 
13

C, 
15

N N1. Regions of the HSQC ((A) and (B)), 

HNCA (C) and HNCO (D) highlighting overlapping resonances in the spectra of N1. All spectra were 

recorded at pH 5.5 and 298 K on a 700 MHz spectrometer.  
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exchangeable hydrogen atoms are substituted with deuterium. Proton-proton dipolar 

relaxation mechanisms are removed, or significantly reduced, when typical 

deuteration levels of between 50-80% are achieved and the T2 relaxation time 

increases (Agback et al., 1994, Markus et al., 1994). In non-deuterated aqueous 

solvents, amide groups that have exchangeable hydrogens are protonated and 

therefore observable in a 
1
H, 

15
N HSQC experiment. Deuteration also improves 3D 

triple-resonance spectra commonly used for sequential assignment and this is 

attributed to two factors. Firstly, the typical experiments implemented for resonance 

assignment record the amide proton chemical shift during acquisition. Therefore, 

narrower linewidths in the 
1
H dimension translates to improved resolution in the 

indirect dimensions. Secondly, by substituting 
2
H for 

1
H in aliphatic groups 

13
C-

1
H 

dipolar interactions are suppressed and the 
13

C T2 relaxation time increases (Venters 

et al., 1996). Thus, experiments involving such 
13

C nuclei (C
α
 and C

β
 in the 

HNCA/HN(CO)CA and HNCACB/HN(CO)CACB experiments, for example) have 

narrower 
13

C linewidths and improved resolution. 
2
H, 

13
C, 

15
N labelled N1 was 

expressed as described previously (section 3.5.1) and MS analysis revealed a 
2
H 

incorporation of approximately 70%. 

The incorporation of non-labile 
2
H nuclei is apparent by the reduced signal intensity 

in the aliphatic region of the 
1
H spectrum compared to the non-deuterated material 

(Figure 29). As expected the 
1
H, 

15
N HSQC of 

2
H, 

13
C, 

15
N N1 had significantly 

reduced linewidths and spectral resolution improved accordingly (Figure 30), 

enabling nearly all of the expected peaks to be identified. Despite the improved 

resolution in the triple resonance experiments (Figure 31), there were still congested 

regions of the spectra and not all assignment ambiguities were resolved.  
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Figure 29 1D 
1
H spectra of 

13
C, 

15
N N1 and 

2
H, 

13
C, 

15
N N1. Overlaying the 1D 

1
H spectra of 

deuterated (blue) and non-deuterated (red) N1 shows the extent of 
2
H incorporation through the 

reduced signal intensity in the aliphatic region of the spectrum. 

 

Figure 30 
1
H, 

15
N HSQC spectra of 

13
C, 

15
N N1 and 

2
H, 

13
C, 

15
N N1. Resolution in the 

1
H, 

15
N 

HSQC was improved though deuteration as can be seen by overlaying the spectra of 
13

C, 
15

N N1 (red) 

and 
2
H, 

13
C, 

15
N N1 (blue).  
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Figure 31 Improvement in the HNCO spectrum following deuteration. The first 32 of 64 
15

N 

planes are superimposed in both spectra. Increased resolution is achieved in deuterated (B) compared 

to non-deuterated (A) N1. Spectra were recorded at pH 5.5 and 298 K on a 700 MHz spectrometer. 

4.5.2 Selective Unlabelling of N1 

Despite the resolution improvement achieved through deuteration, the size and 

disorder of N1 meant that spectra were still congested and the ambiguity of 

sequential assignments was not completely resolved. Recent approaches employed to 

study large proteins by NMR involve selectively protonating side-chain methyl 

groups in perdeuterated proteins (Goto and Kay, 2000). Selective labelling is 

achieved using metabolic precursors of particular amino acids added 1 hr prior to 

inducing protein expression. Similar methods recently developed by Rasia et al. can 

be used to selectively ‘unlabel’ particular amino acids (Rasia et al., 2012). 

Supplementing the growth media with metabolic precursors results in their 

incorporation, provided the precursor is from a suitable position in the biosynthetic 

pathway. The addition of non-isotopically enriched precursors to enriched expression 

medium results in a labelled protein with specific amino acids unlabelled (Rasia et 

al., 2012). Leucine, valine, isoleucine, phenylalanine and tyrosine can be unlabelled 

in this way. Proline can also be unlabelled by the addition of L-proline prior to 

induction.  The unlabelled residues are isotopically enriched in certain positions with 

13
C and 

15
N nuclei sequestered from the expression media (Table 13). However, the 

magnetisation pathways necessary for particular experiments are abolished rendering 

the amino acid ‘NMR invisible’. The precursors suitable for this strategy and the 
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subsequently unlabelled amino acids are given in Table 13. The selective labelling 

strategy was originally developed to study large folded proteins otherwise outside 

the scope of NMR spectroscopy (Goto et al., 1999). Therefore, the precursors used to 

unlabel specific residues (Rasia et al., 2012) are not optimised for use in IDPs. In 

fact, the residues suitable for unlabelling, leucine, valine, isoleucine, tyrosine and 

phenylalanine, would form the typically hydrophobic core of a folded protein and are 

correspondingly sparse in IDPs (Romero et al., 2001). Preferentially residues such as 

glutamic acid and serine would be unlabelled to aid the resonant assignment of IDPs. 

However, the metabolic pathways of these residues are unsuitable for manipulation 

with precursors. Despite this drawback, N1 does contain 28 residues that can be 

selectively unlabelled and this strategy was pursued.  

Of the residues able to be unlabelled, N1 contains leucine, valine, isoleucine, proline 

and tyrosine. As leucine and valine are unlabelled using the same precursor, four 

selectively unlabelled samples of 
2
H, 

13
C, 

15
N N1 were expressed as described 

previously (section 3.5.2). The unlabelled species will be referred to as 
U
Val/Leu, 

U
Ile, 

U
Tyr and 

U
Pro in subsequent discussions. All proteins except 

U
Tyr were 

expressed and purified in the same way as 
2
H, 

13
C, 

15
N labelled N1. However, after 

induction the cells expressing 
U
Tyr died and no protein was expressed. It is uncertain 

why expression of 
U
Tyr resulted in cell death as this behaviour has not been 

previously reported, and 4-hydroxyphenylpyruvic acid has no known toxic effects 

when used as a growth medium supplement (Rasia et al., 2012). N1 contains only 

one tyrosine residue and the effect of unlabelling one residue was thought to have a 

minimal impact on easing spectral congestion. As such, the matter was not 

investigated further and 
U
Tyr was not used to complete the resonance assignment of 

N1. 

As can be seen in Table 13, backbone amide groups are sequestered from the 

expression media. Therefore, N1 was enriched with 
15

N nuclei and the appearance of 

1
H, 

15
N HSQC spectrum was unaltered. In order to identify unlabelled residues 

HNCO spectra were acquired. Carbon nuclei are less susceptible to isotopic 

scrambling (Tugarinov and Kay, 2004, Atreya and Chary, 2001), and the C’ nuclei in 

unlabelled samples are preferentially incorporated from the precursors. 

Consequently, the magnetisation transfer pathway required for HNCO spectra is no 
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longer allowed in unlabelled residues. Peaks corresponding to residues preceded by 

an unlabelled amino acid therefore disappear from the 2D 
1
H, 

15
N plane of HNCO 

datasets. Although leucine is unlabelled, the C’ nucleus is sequestered from the 

expression media not the precursor, and residues preceded by leucine are still 

observed in the HNCO. Unlabelled leucine residues can be identified via spectra 

utilising a magnetisation pathway involving C
β
 nuclei, which are incorporated from 

the precursors. The 2D 
1
H, 

15
N plane of HNCO spectra acquired for each unlabelled 

N1 sample showed that the unlabelling was successful with the appropriate number 

of peaks missing from each spectrum; two from the 
U
Ile HNCO (Figure 32), sixteen 

from the 
U
Val HNCO (Figure 33) and eight from the 

U
Pro HNCO (Figure 34). In 

some cases the ‘deleted’ peaks were in regions with signal overlap and the removal 

of one overlapping peak enabled the identification of the other. In this way the 

remaining resonances in the 
1
H, 

15
N HSQC that were previously unresolved were 

identified.



 

96 

 

Table 13 Metabolic precursors for specifically unlabelling amino acids. The metabolic precursor used as a growth medium supplement and the subsequently unlabelled 

residue. Leucine and valine are produced via the same biosynthetic pathway and therefore are unlabelled by the same precursor. Unlabelled residues undergo some isotope 

enrichment with nuclei sequestered from expression media. Isotopically enriched carbon and nitrogen nuclei are indicated in red and blue, respectively. 

Precursor Structure Residue(s) Unlabelled Isotope Incorporation 
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Figure 32 2D 
1
H, 

15
N HNCO plane of 

u
Ile. Superimposing the 

U
Ile spectrum (green) onto the fully 

labelled N1 spectrum (black) enables identification of the two residues preceded by Ile, highlighted 

with red crosses. 
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Figure 33 2D 
1
H, 

15
N HNCO plane of 

u
Val/Leu. By superimposing the 

U
Val/Leu spectrum (cyan) 

onto the fully labelled N1 spectrum (black) the sixteen residues preceded by Val were identified and 

are highlighted with red crosses. 
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Figure 34 2D 
1
H, 

15
N HNCO plane of 

u
Pro. The eight amino preceded by proline residues in the 

sequence were identified by superimposing the 
U
Pro spectrum (purple) and fully labelled N1 spectrum 

(black) and are highlighted with red crosses. 

 

 

7.8 8.0 8.2 8.6 8.4 

130.0 

125.0 

120.0 

115.0 

110.0 

δ 
1

H (ppm) 

δ
 1

5

N
 (

p
p

m
) 

X 
X 

X 

X 

X 

X X X 



Chapter 4 

100 

 

4.5.3 Resonance Assignment Procedure 

To complete the resonance assignment of N1, HNCO, HN(CA)CO, HNCA, 

HN(CO)CA, intra-HNCA, HNCACB and HN(CO)CACB triple resonance datasets 

were acquired. As was discussed previously (section 4.5), the size and disorder of N1 

meant that there was significant signal overlap in all acquired spectra. Following the 

resolution improvements achieved via deuteration, the ambiguity of sequential 

assignments observed in certain spectra could be resolved using other datasets. Any 

further uncertainty in sequentially assigning residues was solved using the 

HN(CA)NNH experiment, which correlates the backbone amide group of a 

particular residue with those of its neighbours.  

By knowing the position of peaks for residues preceded by the unlabelled amino 

acids, all unlabelled residue types can be also identified. For example, all peaks 

arising from residues preceded by valine were identifiable by their absence in the 

U
Val/Leu spectrum. Using standard sequential assignment experiments correlating 

residue i to residue i-1 all valine residues were subsequently identified. The same 

method was applied to identify all isoleucine residues. Proline does not produce a 

peak in 
1
H, 

15
N-HSQC spectra so this process was redundant.  

The identified residue types provide reference points or ‘anchors’ to the sequence, 

and the intervals between ‘anchors’ enable unambiguous resonance assignment. In 

addition to using the unlabelled residues as reference points, glycine, threonine and 

serine residues were also identifiable by their characteristic chemical shifts. Glycine 

residues typically have lower 
15

N
H 

and 
13

C
α
 chemical shifts than other residues. In 

addition they have no C
β
 and produce fewer signals in the HNCACB spectrum, and 

on this basis were easily identifiable. The 
13

C
β
 chemical shifts of threonine residues 

are typically greater than their 
13

C
α
 shifts, the opposite being true for other amino 

acids. Therefore, the threonine residues in N1 were apparent with a 
13

C
β
 chemical 

shift of approximately 69 ppm. A 
1
H, 

15
N HSQC-TOCSY spectrum was acquired, 

and although its use was limited in many instances due to signal overlap, serine 

residues were identified by their distinctive H
β
 shifts at approximately 3.6 to 3.8 

ppm. The ability to link residue i to residue i-1 via through-bond connectivity’s 

underpins the triple resonance assignment procedure. As was described previously 
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(section 1.5.3), collecting pairs of spectra (i.e. HNCO and HN(CA)CO) allows 

unambiguous assignment of a particular nucleus to a particular residue and enables 

identification of the residues neighbour . An example of this procedure as applied to 

N1 is given in Figure 35. 

 

Figure 35 Sequential assignment of N1. Strips from the HNCA and HN(CO)CA spectra at particular 

1
H and 

15
N frequencies as annotated above. The HNCA peaks are magenta and the HN(CO)CA peaks 

are orange. Strips from the HNCO and HN(CA)CO spectra with peaks coloured black and green, 

respectively. Dotted lines indicate the connectivity used to complete the sequential assignment. 
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No residue exhibited anomalous or uncharacteristic shifts except the C-terminal 

glycine, which had a higher than expected 
15

N
H
 shift. Of the 158 residues, 149 were 

assigned in the 
1
H, 

15
N-HSQC, with only Glu-39 of the observable peaks unassigned, 

the others being proline residues. The two foreign N-terminal residues derived from 

the expression vector were also unassigned in the 
1
H, 

15
N HSQC. Near complete 

assignment of 
13

C
α
, 

13
C

β
 and 

13
C’ nuclei was also achieved. The chemical shift 

values of all assigned nuclei are given in Table 14. 

Table 14 Chemical shift assignments of N1. Reported values were obtained from the 
1
H, 

15
N HSQC, 

HNCO, HNCAi and HNCACB datasets acquired at pH 5.5 and 298 K. All spectra were referenced to 

an internal DSS signal. 

Residue 
1
H

N
 

15
N

H 13
C’ 

13
C

α
 

13
C

β 

37 Ala - 124.43 177.75 52.07 17.88 

38 Ser 8.37 119.84 176.05 54.84 - 

39 Glu - - 176.31 56.15 - 

40 Gln 8.34 121.34 175.79 55.30 28.29 

41 Lys 8.42 123.05 176.72 55.78 31.86 

42 Thr 8.29 115.80 174.61 61.39 69.09 

43 Thr 8.25 116.57 174.50 61.31 69.16 

44 Thr 8.26 117.25 174.39 61.43 69.18 

45 Val 8.23 122.58 176.08 61.91 31.57 

46 Glu 8.48 124.57 - 58.09 - 

47 Glu 8.40 122.36 176.26 56.14 - 

48 Asn 8.52 119.52 175.77 53.02 38.20 

49 Gly 8.42 109.11 174.06 45.20 - 

50 Asn 8.34 118.64 175.38 52.88 38.20 

51 Ser 8.37 116.42 174.47 58.21 63.30 

52 Ala 8.39 125.70 178.11 52.43 18.06 

53 Thr 8.07 112.17 174.38 61.47 68.99 

54 Asp 8.24 122.22 175.83 53.94 40.18 

55 Asn 8.36 119.19 175.30 53.03 37.92 

56 Lys 8.33 121.38 177.04 56.16 31.54 

57 Thr 8.20 114.85 174.72 61.65 69.09 

58 Ser 8.33 117.70 174.66 58.17 63.31 

59 Glu 8.47 122.67 176.73 56.29 28.98 

60 Thr 8.19 114.94 174.56 61.73 69.04 

61 Gln 8.42 122.86 176.13 55.45 28.53 

62 Thr 8.30 115.80 174.68 61.55 69.06 

63 Thr 8.18 116.46 174.28 61.47 69.12 

64 Ala 8.36 126.48 177.81 52.20 18.12 

65 Thr 8.13 113.07 174.27 61.49 69.03 

66 Asn 8.42 121.11 175.14 52.85 38.01 

67 Val 8.06 119.76 175.72 61.94 31.34 
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68 Asn 8.43 121.26 174.74 52.81 38.02 

69 His 8.41 119.36 174.19 55.13 28.04 

70 Ile 8.21 123.02 176.10 60.88 37.40 

71 Glu 8.54 124.58 176.44 56.05 28.84 

72 Glu 8.46 122.38 176.72 56.23 28.93 

73 Thr 8.21 115.12 174.60 61.76 69.08 

74 Gln 8.41 122.47 175.86 55.43 28.39 

75 Ser 8.30 116.85 174.18 57.93 63.31 

76 Tyr 8.20 122.20 175.38 57.70 37.76 

77 Asn 8.26 120.98 174.48 52.59 38.18 

78 Ala 8.17 124.46 177.79 52.28 18.11 

79 Thr 8.14 113.63 174.58 61.79 69.03 

80 Val 8.13 122.70 176.19 61.85 31.56 

81 Thr 8.22 118.11 174.29 61.44 69.10 

82 Glu 8.36 123.49 175.95 55.85 29.11 

83 Gln 8.47 122.67 174.00 53.10 - 

84 Pro - - 177.07 - - 

85 Ser 8.49 116.04 174.54 58.05 63.29 

86 Asn 8.44 120.52 175.01 52.83 38.05 

87 Ala 8.23 123.84 177.89 52.40 18.07 

88 Thr 8.11 113.19 174.43 61.65 68.96 

89 Gln 8.33 122.90 175.69 55.26 28.38 

90 Val 8.26 121.95 176.37 61.85 31.58 

91 Thr 8.34 118.37 174.54 61.27 69.20 

92 Thr 8.22 116.49 174.37 61.47 69.11 

93 Glu 8.41 123.08 176.15 55.91 29.01 

94 Glu 8.39 122.29 175.72 55.69 29.10 

95 Ala 8.34 126.69 175.39 50.12 16.98 

96 Pro - - 176.95 

 

- 

97 Lys 8.38 121.72 176.41 55.56 31.90 

98 Ala 8.31 125.24 177.55 51.82 18.12 

99 Val 8.15 119.88 176.06 61.69 31.63 

100 Gln 8.43 124.45 175.12 54.90 28.51 

101 Ala 8.41 127.32 175.48 50.10 16.99 

102 Pro - - 177.01 62.68 - 

103 Gln 8.56 120.61 176.20 55.38 28.43 

104 Thr 8.16 115.44 174.06 61.35 69.24 

105 Ala 8.33 126.41 177.28 51.87 18.15 

106 Gln 8.37 120.85 173.99 53.06 27.98 

107 Pro - - 176.52 62.67 - 

108 Ala 8.41 123.86 177.44 51.99 18.16 

109 Asn 8.38 117.65 175.00 52.79 37.97 

110 Ile 8.08 120.89 176.11 60.71 37.55 

111 Glu 8.48 124.57 176.49 56.02 29.05 

112 Thr 8.21 116.31 174.43 61.61 69.07 

113 Val 8.20 123.41 175.92 61.91 31.48 

114 Lys 8.41 125.76 176.27 55.70 31.86 

115 Glu 8.43 122.71 176.17 55.94 29.05 

116 Glu 8.47 122.60 176.18 55.92 - 
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117 Val 8.22 122.32 176.08 61.92 31.54 

118 Val 8.28 125.10 175.99 61.90 31.40 

119 Lys 8.42 126.08 176.29 55.70 31.93 

120 Glu 8.44 122.84 176.27 55.98 29.01 

121 Glu 8.50 122.58 175.93 55.82 29.22 

122 Ala 8.35 125.52 177.36 51.81 18.03 

123 Lys 8.29 122.09 174.54 53.67 31.20 

124 Pro - - 176.82 62.68 - 

125 Gln 8.53 121.10 176.00 55.20 28.44 

126 Val 8.24 122.23 175.96 61.75 31.61 

127 Lys 8.42 125.44 176.34 55.74 31.89 

128 Glu 8.53 122.80 176.61 56.11 29.06 

129 Thr 8.33 115.51 174.74 61.38 69.12 

130 Thr 8.22 116.50 174.50 61.49 69.08 

131 Gln 8.46 122.71 175.98 55.42 28.31 

132 Ser 8.42 117.41 174.61 58.10 63.31 

133 Gln 8.48 122.08 175.61 55.41 28.33 

134 Asp 8.35 121.13 175.97 53.98 40.23 

135 Asn 8.44 119.92 175.60 52.83 38.02 

136 Ser 8.39 116.22 175.32 58.97 63.28 

137 Gly 8.45 110.49 174.07 45.23 - 

138 Asp 8.17 120.37 176.46 54.06 40.16 

139 Gln 8.37 120.52 176.08 55.46 - 

140 Arg 8.29 121.48 176.35 55.89 29.38 

141 Gln 8.40 121.42 175.98 55.40 28.11 

142 Val 8.13 121.13 175.55 61.84 31.68 

143 Asp 8.38 123.50 176.06 53.76 40.27 

144 Leu 8.34 123.61 177.46 54.53 40.80 

145 Thr 8.17 117.48 172.84 60.11 68.76 

146 Pro - - 176.94 62.84 - 

147 Lys 8.40 121.85 176.72 55.71 31.78 

148 Lys 8.31 122.76 176.33 55.77 31.94 

149 Ala 8.42 125.57 177.95 52.18 - 

150 Thr 8.13 113.29 174.57 61.49 69.08 

151 Gln 8.40 122.08 175.63 55.51 28.89 

152 Asn 8.49 119.74 174.93 53.05 38.02 

153 Gln 8.36 120.74 175.86 55.51 28.04 

154 Val 8.18 121.54 175.87 61.82 31.55 

155 Ala 8.36 127.45 177.68 51.96 18.09 

156 Glu 8.41 120.36 176.65 56.19 29.01 

157 Thr 8.17 115.26 174.33 61.49 69.18 

158 Gln 8.44 123.11 175.69 55.24 28.37 

159 Val 8.16 121.64 175.97 61.84 31.60 

160 Glu 8.47 124.73 176.21 55.87 29.00 

161 Val 8.22 122.02 175.72 61.63 31.58 

162 Ala 8.37 127.71 177.32 51.87 18.14 

163 Gln 8.33 120.72 174.01 53.06 27.83 

164 Pro - - 176.95 62.74 - 

165 Arg 8.53 121.49 176.65 55.72 29.54 
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166 Thr 8.17 115.13 174.39 61.32 69.20 

167 Ala 8.42 126.18 177.93 52.35 18.06 

168 Ser 8.29 114.83 174.65 58.20 63.25 

169 Glu 8.35 122.38 176.39 56.09 29.11 

170 Ser 8.31 117.05 174.02 57.96 63.27 

171 Lys 8.23 124.13 174.30 53.79 31.34 

172 Pro - - 176.75 62.65 - 

173 Arg 8.48 121.90 176.34 55.67 29.56 

174 Val 8.24 121.89 176.18 61.65 31.68 

175 Thr 8.32 118.97 174.19 61.32 69.17 

176 Arg 8.43 123.92 176.17 55.45 29.77 

177 Ser 8.45 117.99 174.37 58.16 63.27 

178 Ala 8.41 125.47 177.41 52.27 18.11 

179 Asp 8.25 119.24 176.31 54.12 40.21 

180 Val 7.96 119.89 176.01 61.83 31.52 

181 Ala 8.32 126.95 177.88 52.27 18.00 

182 Glu 8.29 119.98 176.33 56.13 28.97 

183 Ala 8.28 125.14 177.80 52.16 17.86 

184 Lys 8.27 120.67 176.83 56.01 31.77 

185 Glu 8.38 121.47 176.41 56.15 28.82 

186 Ala 8.34 124.96 177.89 52.25 18.01 

187 Ser 8.28 114.77 174.54 58.16 63.20 

188 Asn 8.37 120.58 174.83 52.91 38.02 

189 Ala 8.12 123.79 177.45 52.18 18.09 

190 Lys 8.24 120.79 176.42 55.73 31.76 

191 Val 8.17 122.00 176.17 61.77 31.60 

192 Glu 8.56 124.85 176.55 55.92 29.01 

193 Thr 8.21 114.76 174.31 61.36 69.18 

194 Gly 8.07 117.12 179.03 45.91 - 

 

4.6 Secondary Chemical Shift Analysis 

Secondary structure elements in proteins can be identified by analysing secondary 

chemical shifts (Δδ) (Wishart and Sykes, 1994, Szalaine Agoston et al., 2011, Bozzi 

et al., 2003). Δδ values are calculated by subtracting experimentally measured 

chemical shifts from random coil values predicted for a given sequence. The 

chemical shifts of certain nuclei are highly sensitive to secondary structure and the 

magnitude of Δδ values indicative of the conformation an amino acid adopts. 

Interpretation of Δδ values is often simplified by assigning a chemical shift index 

(CSI) (Wishart and Sykes, 1994, Wishart et al., 1992). For a residue to be classified 

as random coil, Δδ values must be within a specified range (Table 15). Nuclei with 

Δδ in this range are assigned a CSI of 0. Nuclei with Δδ values outside this range are 
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assigned a CSI of ±1 depending on the direction of the deviation. Clusters of the 

same CSI value are indicative of local secondary structure elements. Positive CSIs 

for 
1
H

α
, 

1
H

N
, 

15
N

H
 and 

13
C

β
 nuclei and negative CSIs for 

13
C

α
 and 

13
C’ nuclei of four 

or more sequential residues suggests β-strand conformations (Wishart and Sykes, 

1994, Wishart et al., 1992, Schwarzinger et al., 2001). Residues in helical 

conformation have the opposite CSI values for a given nucleus. Prior to calculating 

Δδ values, the random coil chemical shifts for a particular protein need to be 

determined. Random coil chemical shifts are dependent on the protein sequence and 

the temperature and pH at which they are measured (Kjaergaard et al., 2011, 

Kjaergaard and Poulsen, 2011, Schwarzinger et al., 2001). Therefore prior to Δδ 

values being calculated, corrections must be made to account for these factors. 

Referencing to an internal standard, typically DSS, is also essential when calculating 

Δδ values (Wishart et al., 1995b).  

Table 15 Chemical shift index ranges. The range for each nucleus used to assign CSI values. 

Positive values outside of each range are assigned a +1 CSI, negative values -1 and values within the 

range 0. 

Nucleus Δδ 

1
H

α
 ± 0.10 ppm 

1
H

N
 ± 0.10 ppm 

15
N

H
 ± 1.00 ppm 

13
C

α
 ±0.70 ppm 

13
C

β
 ± 0.70 ppm 

13
C’ ± 0.70 ppm 
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Prior to resonance assignment, all N1 spectra were referenced to DSS. A 1D 
1
H 

spectrum of 
2
H, 

13
C, 

15
N N1 containing 1 mM DSS was recorded and the reference 

signal measured at -0.091 ppm (data not shown). The 
15

N and 
13

C dimensions of 

each dataset were referenced indirectly based on the 
1
H correction value. All spectra 

of N1 were recorded at 25 
o
C and pH 5.5. The sequence, temperature and pH 

corrected random coil shifts for N1 were predicted using an algorithm developed by 

Alexandr Maltsev of the National Institutes of Health based on coefficients 

determined by Kjaergaard et al. (Kjaergaard et al., 2011, Kjaergaard and Poulsen, 

2011). The calculated Δδ values of N1 are given in Figure 36. As near complete 

assignment of 
1
H

N
, 

15
N

H
, 

13
C

α
, 

13
C

β
 and 

13
C’ nuclei in N1 was achieved, all were 

used in secondary chemical shift analysis. The vast majority of Δδ values for nuclei 

in all residues lie within the range indicative of random coil conformations. 

Therefore, analysis using the CSI method suggests N1 behaves as an IDP. 
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Figure 36 Sequence corrected secondary chemical shifts of N1. Δδ values were calculated using 

sequence, temperature and pH corrected random coil values. The CSI thresholds for each nucleus 

indicated with a dashed line.  

 

57 77 97 117 137 157 177 

0.3 

0.2 

0.1 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

Δ
δ

 H
N

 (p
p

m
) 

Δ
δ

 C
’ 

(p
p

m
) 

5.0 

3.0 

2.0 

1.0 

0.0 

-1.0 

-2.0 

-3.0 

4.0 

0.6 

0.2 
0.0 
-0.2 
-0.4 
-0.6 
-0.8 
-1.0 

Δ
δ

 N
H

 (p
p

m
) 

0.4 

0.8 

57 77 97 117 137 157 177 

57 77 97 117 137 157 177 

0.6 

0.2 
0.0 

-0.2 
-0.4 
-0.6 
-0.8 

1.0 

Δ
δ

 C
α

 (p
p

m
) 

0.4 

0.8 

0.6 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

-0.8 

Δ
δ

 C
β

 (p
p

m
) 

0.4 

0.8 

57 77 97 117 137 157 177 

57 77 97 117 137 157 177 

Residue Number 



Chapter 4 

109 

 

4.6.1 Secondary Structure Propensity of N1 

Despite lacking stable secondary structure it is possible that regions of N1 adopt 

transient conformations. Δδ values in such elements may not be over the CSI 

threshold but instead can be identified qualitatively. N1 contains no regions in which 

all nuclei have Δδ values suggestive of a particular conformation. The Δδ values of 

the C
α
 and N

H
 nuclei in most residues follow a trend suggestive of a helical 

conformation (Figure 36). However, the Δδ values of all other nuclei contradict this 

notion as there are no unidirectional clusters indicative of secondary structure 

propensity. A method proposed by Marsh et al. quantitatively describes the 

secondary structure propensity (SSP) of amino acids based on their chemical shifts 

(Marsh et al., 2006). Each residue is assigned a SSP score representing the expected 

fraction of secondary structure. Values of 1 and -1 represent fully formed helical or 

strand structures, respectively. An advantage of this method is that the contributions 

of chemical shifts of each nucleus are weighted reflecting their usefulness in 

predicting secondary structure. SSP analysis of N1 suggests that different regions 

have a propensity for different conformations (Figure 37). Residues in the N-

terminal region of N1 (residues 37 -90) are assigned scores that show no significant 

SSP. From residues 91 to 169 the SSP scores indicate a propensity for strand 

conformations. The C-terminal 18 residues exhibit a propensity for helical secondary 

structure. The propensity of these regions for a particular conformation may indicate 

that they are involved in interactions with ligands and that the suggested 

conformations are stabilised on binding. 
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Figure 37 Secondary structure propensity scores for residues in N1. SSP scores were calculated 

based on all assigned resonances. Positive values indicate a propensity for helical secondary structure, 

negative for strand conformation.  

4.7 Summary 

FnBPA is a S. aureus surface protein and major virulence factor (Arrecubieta et al., 

2006, Fitzgerald et al., 2006). Interactions involving FnBPA play crucial roles in 

host colonisation and the development of various life-threatening illnesses (Massey 

et al., 2001). FnBPA recognises a number of ECM components and the mechanisms 

of these known interactions are well described (Schwarz-Linek et al., 2003, Keane et 

al., 2007b). Correspondingly, the regions of FnBPA involved have been well-

characterised structurally; Fn binding mediated by the highly conserved disordered 

FnBRs (Meenan et al., 2007), and Fg/elastin binding by the immunoglobulin-type 

folded N2N3 subdomains of the N-terminal A domain (Stemberk et al., manuscript 

in preparation). Conversely, the N-terminal N1 subdomain is poorly characterised 

structurally and has no attributed functions. Sequence conservation in N1 is much 

higher than in the N2 and N3 subdomains, with approximately 90% conservation 

compared to 75% and 60% for N2 and N3, respectively (Loughman et al., 2008). 

Variation within the N1 subdomain does not correlate with variation in the N2 and 

N3 subdomains, suggesting a divergent evolution. This hypothesis is reinforced by 
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the fact that N1 does not affect the Fg-binding capacity of the N2N3 subdomains 

(Stemberk et al., manuscript in preparation).  

In silico sequence analysis of N1 (Figure 19) revealed it contains only 20 residues 

that would form the hydrophobic core of a folded protein. Instead, N1 is rich in 

disorder-promoting residues, a characteristic associated with IDPs (Romero et al., 

2001). Unsurprisingly therefore, a number of tools that predict secondary structure 

based on the protein sequence suggest that N1 is an IDP (Figure 20). Each of the 

four tools used implements a different algorithm to predict secondary structure and 

agreement between each method is highly suggestive that N1 lacks stable secondary 

structure and is an IDP. 

The 1D 
1
N NMR spectrum of N1 contained low signal dispersion in the amide 

region of the spectrum and a high degree of signal degeneracy in the aliphatic region 

(Figure 22); features characteristic of intrinsic disorder. The acquisition of a 
1
H, 

15
N 

HSQC supported the hypothesis that N1 is an IDP (Figure 23). Peaks in the 
1
H, 

15
N 

HSQC had narrow linewidths, were poorly dispersed, and a high degree of 

degeneracy of side-chain resonances was observed. Again these features are typical 

of disordered proteins and suggest N1 is intrinsically disordered. To confirm the 

observed disorder observed in N1 was not due to incorrectly defined domain 

boundaries, particularly at the C-terminus, two dimensional NMR spectra of N1N2 

and fA were acquired. Both spectra exhibit features characteristic of disordered and 

folded components, attributable to N1 and N2N3, respectively. A number of 

resonances for residues at the C-terminus of N1 are subject to minor chemical shift 

changes when N2 is present. Most are in close proximity to or overlap with the 

corresponding resonance in the spectrum N1 and have linewidths indicative of 

disorder. The C-terminal Gly-194 peak is no longer visible in the region of the 

spectrum it populates in N1.  However, a distinct peak in a region of the spectrum 

typical for glycine residues is apparent. It is likely therefore, that the structure of 

recombinantly expressed N1 is representative of its behaviour in the intact A 

domain. 

A small degree of ambiguity exists in NMR when distinguishing between helical and 

disordered proteins, as helical conformations can give rise to narrowly dispersed 
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resonances, though typically not as narrow as IDPs. CD spectra of N1, N1N2 and fA 

and their deconvolution (Whitmore and Wallace, 2004) revealed that N1 has no 

helical character (Figure 27). Taken together this provides strong evidence that N1 is 

an IDP. 

Completing the resonance assignment of a protein enables chemical shift based 

structural characterisation and insight into potential functions. Therefore, the 

sequence specific resonance assignment of N1 was carried out. Uniformly 
13

C, 
15

N 

N1 was expressed, but substantial resonance overlap was observed in all acquired 

spectra. Deuterated N1 was expressed, and due to more favourable relaxation 

properties of deuterated proteins (Gardner and Kay, 1998), spectral resolution 

improved dramatically and nearly all peaks were identified in the 
1
H, 

15
N HSQC 

spectrum (Figure 30). Final ambiguities in the assignment procedure were solved by 

selectively unlabelling specific amino acids in N1 (Rasia et al., 2012). The addition 

of non-isotopically enriched metabolic precursors to enriched expression medium 

resulted in labelled N1 with leucine, valine, proline or isoleucine selectively 

unlabelled. HNCO spectra of the unlabelled proteins lack peaks attributed to residues 

preceded by the unlabelled amino acids (Figure 32, Figure 33, Figure 34). Regions 

with overlapping peaks therefore became less congested and individual peaks could 

be resolved. Further, identification of specific residue types provided reference 

points to the sequence and the interval between such points enabled unambiguous 

sequential assignment of N1. Of the 150 peaks observed in the 
1
H, 

15
N HSQC of N1, 

149 were assigned. 

Chemical shift analysis can give useful insight into the structure and dynamics of 

IDPs. Comparing experimentally measured chemical shifts to random coil values 

enables secondary structure elements within a protein to be identified (Wishart and 

Sykes, 1994, Wishart et al., 1992). Secondary chemical shift analysis of N1 suggests 

it behaves as a random coil and there are no regions of stable secondary structure 

(Figure 36). However, rather than adopting stable conformations, IDPs often form 

transient secondary structure elements or contain regions with a propensity for 

secondary structure (Dyson and Wright, 2005). Such elements can be identified in 

IDPs by carrying out secondary structure propensity (SSP) calculations based on 

chemical shifts (Marsh et al., 2006). SSP analysis of N1 revealed regions with 
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propensity for both strand and helical confirmations (Figure 37). These were 

confined to the C-terminus of N1 with residues 91 – 169 and 177 - 194 exhibiting 

propensities for strand and helical confirmation, respectively. Identifying regions 

with a propensity for secondary structure can denote ligand-binding sites (Norris et 

al., 2011, Zhang et al., 2008), and the SSP observed in N1 may indicate ligand 

binding potential. 
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5 Interactions Between N1 and Host Ligands 

5.1 Introduction 

The ability of FnBPA to interact with multiple ECM components is thought to 

underpin its importance as a S. aureus virulence factor and the known interactions 

involving FnBPA have been described in detail (Stemberk et al., manuscript in 

preparation)(Bingham et al., 2008, Meenan et al., 2007, Roche et al., 2004). To date 

no function is attributed to the N1 subdomain. The Fg- and Fn-binding capacity of 

FnBPA is unaffected by N1 (Stemberk et al., manuscript in preparation). A study of 

the sequence diversity in the A domain of FnBPA across a number of S. aureus 

strains found that N1 is the most conserved subdomain (~90%), with N2 (~75%) and 

N3 (~60%) more divergent (Loughman et al., 2008). Taken together, these results 

suggest N1 fulfils a role detached from N2 and N3. 

The work presented previously (Chapter 4) shows N1 is an IDP. A characteristic 

sometimes associated with IDPs is the recognition of multiple ligands (Dyson and 

Wright, 2002, Dunker et al., 2002). N1 is the most N-terminal subdomain of FnBPA. 

As the cell wall attachment site is at the C-terminus, N1 is likely to be projected 

away from the cell surface. The potential to recognise multiple ligands may be 

advantageous in host colonisation processes. As the known ligands of FnBPA are 

plasma components it is possible that N1 also recognises a plasma factor. The A 

domains of the S. aureus surface proteins clumping factor B (ClfB) and SasG are 

known to facilitate host colonisation via interactions with host endothelial cells 

(Corrigan et al., 2007, O'Brien et al., 2002b, Roche et al., 2003). ClfB recognises 

human type 1 cytokeratin 10 (O'Brien et al., 2002b), however the specific receptor 

recognised by SasG is not known. The functional overlap observed across S. aureus 

surface proteins suggests FnBPA’s A domain could fulfil a similar role.  

5.2 Aims 

The aim of this work was to identify N1 ligands. FnBPA is known to bind plasma 

components, so pull-down experiments with various A domain constructs as ‘bait’ 

proteins in plasma were conducted. Affinity columns prepared using recombinant 
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FnBPA A domain fragments were used to screen for potential ligands. The role of 

FnBPA in host colonisation processes was investigated by screening A domain 

adherence to human umbilical vein endothelial cells (HUVECs). 

5.3 Pull-down Experiments 

As described previously (section 3.6), recombinant GST-fusion proteins of the 

FnBPA A domain are susceptible to C-terminal degradation. Despite this instability, 

a significant amount of intact material was still present and suitable for use in GST 

pull-down experiments. Pull-down experiments are commonly used to identify 

binding partners of previously uncharacterised proteins. Often, pull-downs involve 

using an affinity tag ‘anchor’ to isolate the ‘bait’ protein following a period of 

incubation with solutions containing potential ligands. Exploiting specific 

interactions involving anchor proteins enables efficient recovery of bait proteins, and 

as a result GST-fusion proteins are widely used in pull-down assays (Lee et al., 

2008, Park et al., 2012). GST interacts specifically with reduced glutathione (GSH) 

with nanomolar affinity (Fabrini et al., 2009) and this interaction was used to purify 

the recombinant GST-fusion proteins (section 3.6.2). Therefore, beads or media 

coated with GSH will interact with GST-fusion proteins and enable simple isolation 

of potential complexes. Species isolated by GST pull-down assays are typically 

identified using tandem mass-spectrometry (MS/MS). To screen for potential ligands 

for N1, the A domain GST-fusion ‘bait’ proteins were anchored to magnetic beads 

via the GST/GSH interaction prior to incubation with blood plasma (Figure 38). The 

presence and identity of pulled-down ligands were determined by SDS-PAGE and 

mass spectrometry analysis, respectively. 
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Figure 38 Schematic representation of a GST pull-down assay. The GST-fusion bait protein is 

anchored to the magnetic beads via GST binding to GSH (indicated by white elipse). The beads are 

then mixed with a solution containing possible binding partners (A). Following a period of incubation 

complexes involving the bait protein are pulled-down using the magnetic beads (B). 

5.3.1 FnBPA A Domain Appears to be Proteolytically Cleaved in Plasma 

The GST pull-down experiments were conducted as described in section 2.4.4. SDS-

PAGE analysis of proteins eluted from the beads following incubation with plasma 

revealed a large number of non-specific interactions with only trace amounts of 

intact GST-N1N2 recovered (Figure 39). GST-N1 and GST-fA were not present in 

the eluted samples. The inability to recover the bait proteins could be attributed to 

three factors. Firstly, GSH present in plasma could cause the GST-fusions to elute 

from the magnetic beads. However, the concentration of GSH in plasma is 

approximately 1.5 μM (Jones et al., 1998), and this was insufficient to elute the 

GST-fusions in control experiments (data not shown). Secondly, the non-specifically 

bound species may out-compete the GST-fusion proteins for binding to the magnetic 

beads. The third, and most likely, explanation is that the GST-fusion proteins are 

subject to proteolysis in the plasma. The recovery of free GST suggests the magnetic 
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beads retain their ligand binding capacity. Therefore, proteolytic cleavage within the 

N1 subdomain, separating GST and the A domain fragment, would prevent recovery 

of the intact bait protein. Consequently, any other interactions involving regions of 

FnBPA upstream of the cleavage site, such as the N2N3 interaction with Fg, are 

unlikely to be observed. 

Two species pulled-down by GST-N1N2 were initially attributed to specific 

interactions with plasma components. These bands were cut out of the gel and 

analysed by in-house mass spectrometry services. Briefly, the samples were 

destained and digested with trypsin, with the resulting peptides analysed by matrix-

assisted laser desorption/ionisation time-of-flight tandem mass spectrometry 

(MALDI-TOF MS/MS) and identified through Mascot database searches. The 

isolated proteins were identified as serum albumin, the most abundant human plasma 

protein (Koch-Weser and Sellers, 1976b, Koch-Weser and Sellers, 1976a, Owen et 

al., 1993), and GST. However, as neither species was pulled-down in subsequent 

assays the interactions are thought to be non-specific.  

 

Figure 39 SDS-PAGE analysis of FnBPA A domain GST pull-down assay. The A domain GST-

fusion proteins are susceptible to a significant amount of degradation. A high number of non-specific 

interactions are observed in each pull-down. Following incubation with plasma, no intact bait protein 

was recovered. Serum albumin and GST were pulled down by GST-N1N2. 
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To ensure that the inability to recover intact bait protein was not due to unsuitable 

elution conditions, protein coated beads were incubated with PBS rather than 

plasma. The bait proteins were then eluted under the same conditions used for the 

pull-down experiments (Figure 40). Although increased degradation was observed 

during the incubation period, near complete recovery of the loaded protein was 

achieved. Therefore, the elution conditions used in this assay are suitable. In an 

attempt to reduce the amount of non-specific interactions, a second pull-down was 

carried out with detergent added to the plasma during the incubation with the bait 

proteins (Figure 40). However, this had no observable effect with the high level of 

non-specific binding still apparent. 

 

Figure 40 SDS-PAGE analysis of the A domain GST pull-down assay. Following incubation with 

PBS the loaded proteins were recovered, despite increased degradation. GST-fA pulled-down Fg from 

plasma, as expected, with a small amount of the bait protein also recovered.  

In the second pull-down assay, GST-fA pulled down Fg as expected, a positive 

(albeit control) result. The ligand binding capacity of fA seemed to influence its 

susceptibility to proteolysis in plasma as intact GST-fA was recovered and eluted 

from the beads. Similar behaviour was observed in the previous pull-down when a 
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small amount of GST-N1N2 was recovered intact following the non-specific 

isolation of serum albumin (Figure 39). Therefore, it is likely that the major 

influence for the inability to recover  protein is that the bait protein is cleaved from 

the GST-tag. In instances where a ligand is bound to the bait protein, regardless of 

the specificity, the cleavage site is obscured and the GST-fusion protein remains 

uncleaved. Despite the positive result of pulling-down Fg, the GST-fusion proteins 

used in this study are not ideal due to their high level of degradation. In addition, 

their apparent susceptibility to proteolysis in the plasma and the significant number 

non-specific interactions observed suggested a different approach might be more 

appropriate. 

5.3.2 His-tag Pull-down Assays 

Previous work has shown recombinant poly-histidine (His6) tagged variants of the 

proteins used for the previously described pull-down experiments are less prone to 

degradation than the corresponding GST-fusion proteins (section 3.4). Therefore, 

similar pull-down experiments utilising the interaction between the His6-tag and 

cobalt coated magnetic beads were carried out. The pull-down yielded results similar 

to those observed for the GST based assays. A large number of non-specific 

interactions are observed with little bait protein recovered (Figure 41). The elution 

conditions were again found to be suitable as intact protein was recovered from the 

beads when not subjected to plasma. Fg was isolated from plasma by His6-fA, and 

again a small amount of intact bait protein was recovered. No novel bands were 

observed following the His6-N1 or His6-N1N2 pull-downs and no intact material was 

recovered. These results appear to corroborate those observed in the GST pull-down 

assays for fA, in that bait proteins forming complexes are less susceptible to 

proteolysis and can be recovered. However, competitive binding to the cobalt beads 

by other plasma components might also affect the ability to recover intact bait 

protein. 
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Figure 41 SDS-PAGE analysis of A domain His6-tag pull-down. His6-tagged variants of N1, N1N2 

and fA are more stable than the corresponding GST-tagged proteins. Elution of intact bait proteins 

was achieved following incubation with PBS, confirming the suitability of the elution conditions. A 

significant amount of non-specific binding is observed when non-protein covered beads are incubated 

with plasma. No N1 or N1N2 was recovered. Fg is pulled-down by His6-fA and a small amount of 

bait protein was recovered.  

5.3.3 Recombinant Proteins are Active in Plasma 

From the aforementioned affinity-tag pull-down assays, it is difficult to gauge the 

binding capacity of the proteins used. The apparent proteolysis of N1 and possible 

competitive binding to the beads renders complexes known to form in vitro, such as 

N2N3 and Fg, largely undetectable. To verify the activity of the various A domain 

fragments in plasma, significant amounts of intact bait protein, and consequently its 

binding partner, need to be recovered. Therefore, recombinant A domain proteins 

were covalently linked to beaded agarose and affinity columns were generated, over 

which analyte solutions could be passed. The method by which the affinity columns 

were prepared is given in section 2.4.6. In summary, the bait proteins are coupled to 

the beaded agarose via the primary amine groups of the N-terminal amino acid or 

lysine residues. N1, N2N3 and AF1 affinity columns were generated in this way, 
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along with a blank column to control for any non-specific interactions. Each protein 

contains multiple lysine residues allowing immobilisation in a number of different 

orientations, some of which could potentially obscure the ligand binding sites. 

However, a similar approach to protein immobilisation was employed in studies 

conducted previously (Stemberk et al., manuscript in preparation) and the ligand-

binding capacity was unaffected.  

Initially control solutions containing Fn or Fg at physiological concentrations were 

passed over the columns (300 μg ml
-1

 and 3 mg ml
-l
 for Fn and Fg, respectively). Fn 

was pulled down by AF1, as expected, and Fg was pulled-down by AF1 and N2N3 

(Figure 42). Lowering the pH to 3.0 eluted bound protein from the column, and this 

had no observable impact on the stability or binding capacity of the bait proteins. As 

predicted N1 did not interact with either Fn or Fg and there were no non-specific 

interactions with a blank column. 

Following observed binding to Fn and Fg in control solutions, plasma was passed 

over the columns. Washing the blank column with PBS removed residual plasma 

components. Fn and Fg were isolated from plasma with the N2N3 and AF1 columns 

(Figure 43), demonstrating the physiological activity of the proteins and hence the 

suitability of this assay. However, no interactions involving N1 were identified.  
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Figure 42 SDS-PAGE analysis of affinity column pull-downs from Fn/Fg solutions. Solutions 

containing physiological concentrations of Fn ((A) and (B)) and Fg ((C) and (D)) were passed over 

the prepared columns to confirm the binding activity of immobilised proteins. Bound species were 

eluted by lowering the pH to 3.0.  
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Figure 43 SDS-PAGE analysis of affinity column plasma pull-downs. No non-specific interactions 

were observed when plasma was flowed over the black column. N1 does not pull down any plasma 

components. N2N3 and AF1 pulled-down Fg as expected. Additionally, Fn was pulled-down by AF1. 

5.4 The Role of Surface Proteins in Host Colonisation 

An important facet of S. aureus’ virulence lies in its ability to persistently colonise a 

host (Cole et al., 2001, Farley et al., 2012). Nasal carriage of S. aureus is a key risk 

factor in the infections it causes (von Eiff et al., 2001). Approximately 20% of the 

population are persistent carriers, with a further 60% being intermittent carriers 

(Noble et al., 1967). The role of S. aureus surface proteins is not limited to the 

recognition of ECM components and a number promote adhesion to host endothelial 

cells facilitating colonisation (Edwards et al., 2010, O'Brien et al., 2002b, Roche et 

al., 2003, Edwards et al., 2012). ClfB has been shown to promote adherence to 

squamous nasal endothelial cells (O'Brien et al., 2002b). The otherwise non-adherent 

Lactococcus lactis (L. lactis) was able to adhere to squamous tissues following the 

expression of ClfB. Cellular adhesion mediated by ClfB involves binding to type 1 

cytokeratin 10 via the N-terminal A domain, specifically the N2 and N3 subdomains. 

However, ClfB deficient S. aureus mutants were still able to adhere to nasal epithelia 

suggesting that other factors are involved in host colonisation. SasG has also been 

shown to promote bacterial adherence to squamous endothelial cells (Roche et al., 
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2003, Corrigan et al., 2007). Adherence is facilitated by SasG’s A domain, 

specifically the unique N-terminal region, although the receptor to which it binds has 

not been identified. FnBPA shares structural and functional similarities to both ClfB 

and SasG. The organisation of the ClfB A domain is analogous to FnBPA, 

comprising three subdomains N1, N2 and N3, with N2 and N3 adopting 

immunoglobulin type folds and mediating Fg binding(Ganesh et al., 2011b). The 

structure and function of N1 from ClfB are unknown. The unique N-terminal region 

of SasG’s A domain is thought to be disordered (Gruszka, unpublished). The 

involvement of these regions of ClfB and SasG in host colonisation, coupled to the 

functional redundancy observed across a number of S. aureus surface proteins, 

suggests that a similar protein, such as FnBPA, could be involved host colonisation 

processes. However, there is no experimental evidence to support this hypothesis and 

FnBPA A domain-mediated host colonisation has not been investigated.  

5.4.1 fA Binds to HUVECs 

FnBPA A domain-mediated S. aureus adherence to endothelial cells was 

investigated by carrying out a series of cell pull-down experiments using various A 

domain fragments. Pull-down employing intact endothelial cells as ‘bait’ are 

commonly used to identify proteins that bind to cell surface-receptors (Valle et al., 

2012, Edwards et al., 2011). Briefly, proteins implicated in surface receptor binding 

are incubated with the cell line of interest and species able to adhere to the cells are 

pulled-down from the analyte solution. The cells and analyte solution are separated 

and pulled-down proteins specifically detected by western blot analysis. Dr. Dawn 

Coverley, University of York, kindly supplied the HUVECs used in this study. His6-

tagged N1, N2N3 and fA were expressed and purified as described in section 2.3.6. 

25, 50 and 75 μM concentrations of the A domain proteins were incubated with 

approximately 3 x 10
5
 cells in a 24-well plate for 10 minutes. HUVECs adhere to the 

surface of the wells and following supernatant removal and extensive washing with 

PBS, were released and harvested using SDS-PAGE loading buffer (section 2.4.7). 

Pulled-down proteins were detected by western blot analysis using a mouse-anti-His6 

primary antibody and a sheep-anti-mouse secondary antibody. fA was pulled-down 

at all concentrations by the HUVECs (Figure 44), but N1 and N2N3 were not 

detected. This is the first evidence that the A domain of FnBPA can adhere to 
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endothelial cells and potentially identifies a contribution of the N1 subdomain to 

FnBPA ligand binding capacity. 

 

Figure 44 Western blot analysis of the HUVECs FnBPA pull-down experiment. Pull-downs were 

carried out in 24-well plates. FnBPA A domain proteins were added to final concentrations of 75, 50 

and 25 µM. 10 µL and 5 µL volumes of resuspended cell extracts were used for the blot. Pulled-down 

species were detected using a mouse anti-histidine tag primary antibody and a sheep anti-mouse 

secondary antibody.  

5.5 Summary 

S. aureus expresses a number of cell-wall anchored surface proteins that are 

implicated in the in aetiology of infective endocarditis, osteomyelitis and metastatic 

abscess formation (Claro et al., 2011, Edwards et al., 2010, Piroth et al., 2008). 

Collectively these proteins are referred to as MSCRAMMs, although some do not 

exclusively recognise ECM components (O'Brien et al., 2002b, Patti et al., 1994a). 

FnBPA is a relatively well-characterised surface protein that binds Fn and Fg via 

well-understood mechanisms (Stemberk et al., manuscript in preparation) (Bingham 

et al., 2008, Meenan et al., 2007). Fn binding is mediated by 11 Fn-binding repeats 

(FnBRs), while Fg-binding is achieved through the N2N3 subdomains of the N-

terminal A domain. The A domain comprises a third subdomain, N1, which plays no 

role in Fn- and Fg-binding and to date has no attributed function. N1 is highly 

conserved with 90% sequence identity between strains of S. aureus, compared to 
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75% and 60% identity in N2 and N3, respectively (Loughman et al., 2008). High 

sequence identity in N1 does not necessarily correlate with similar identity in N2 and 

N3, suggesting a divergent evolution not linked to Fg-binding. The known ligands of 

FnBPA are both plasma components (Matsuda et al., 1978, Herrick et al., 1999). 

Thus, possible binding partners of N1 may also be present in plasma. N1 is likely to 

be the region of FnBPA projected furthest from the cell surface, as anchoring to the 

cell wall is achieved by a C-terminal LPETG motif (Novick, 2000). Therefore, 

potential interactions involving N1 might play a role in host colonisation events. 

Fully understanding the function of FnBPA is important from a clinical standpoint as 

expression of fnbA is attributed to increased virulence in S. aureus (Peacock et al., 

2000). 

To determine whether N1 interacted with a plasma component a series of pull-down 

experiments using various A domain fragments as bait proteins were carried out. 

Initially GST-fusion proteins were used as bait, anchored to magnetic beads via the 

GST/GSH interaction and incubated with plasma. A substantial number of non-

specific interactions were observed by SDS-PAGE analysis and very little of the 

intact bait proteins were recovered. Two species were pulled-down by GST-N1N2, 

identified by MS/MS analysis as serum albumin, the most abundant plasma protein 

(Owen et al., 1993) and GST. However, these are likely to be non-specific 

interactions because they were not detected in subsequent experiments. Fg was 

pulled-down by GST-fA and, in this instance, a small amount of bait protein was 

recovered (Figure 40). The inability to recover the bait protein is likely due to 

proteolytic cleavage of FnBPA by a plasma component. Substantial amounts of GST 

were recovered confirming that competitive binding by plasma components to the 

magnetic beads does not impede binding to GST, and that the plasma GSH 

concentration is insufficient to elute bait proteins from the beads (Jones et al., 1998). 

Therefore, proteolytic cleavage within the N1 subdomain, generating the recoverable 

GST with the A domain fragment absent, is likely to prevent the retrieval of the 

GST-fusions. Fg binding appears to protect GST-fA enabling the intact bait protein 

to be recovered. Thus, ligand binding may obscure the cleavage site preventing 

proteolysis. However, the inherent instability of the GST-tagged proteins did not 

allow firm conclusions to be drawn. 
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His6-tagged variants of the A domain proteins are not susceptible to the degradation 

observed in their GST-tagged counterparts (Chapter 3). Therefore, plasma pull-down 

experiments with His6-N1, -N1N2 and -fA as bait proteins, anchored to cobalt coated 

magnetic beads were performed. Despite the increased stability, very little of the bait 

proteins were recovered. fA pulled-down Fg, as expected, and a small amount of 

intact bait protein was retrieved (Figure 41). These results appear to support the 

hypothesis that the A domain is susceptible to proteolysis in plasma and that ligand 

binding obscures the cleavage site. However, the high level of non-specific binding 

observed in all the pull-downs suggests competitive binding to the magnetic beads 

may also contribute to the inability to recover the bait proteins. To circumvent these 

problems recombinant N1, N2N3 and AF1 were covalently linked to beaded agarose 

to generate affinity columns via primary amine groups. Control solutions containing 

physiological concentrations of Fn and Fg were passed over the columns and pulled-

down by the expected species (Fn by AF1, Fg by N2N3 and AF1) confirming the 

viability of the immobilised proteins. N1 did not interact with Fn or Fg, as expected 

(Figure 42). Fn and Fg were also pulled down from plasma, positive albeit control 

results. N1 did not pull down any species (Figure 43). That N1 did not isolate any 

plasma components could be attributed two factors. Firstly, the proteolytic cleavage 

to which N1 appears to be susceptible cleaves the region of the protein involved in 

ligand binding from the column. However, the amine coupling reaction is not site 

specific and proteins are covalently linked via any accessible lysine. Thus, it is likely 

that in some proportion regions of N1 involved in potential ligand binding 

interactions would remain on the column and any N1 ligands would be pulled down. 

As this was not the case, the second inference is that N1 is not involved in the 

binding of any plasma components. 

Adherence to host tissues is a pivotal step in S. aureus infections, and subsequent 

immune evasion renders persistent infections difficult to treat (Clement et al., 2005, 

Sinha and Herrmann, 2005, Plouin-Gaudon et al., 2006). Surface protein adhesins 

have essential roles in a number of these colonisation and invasion processes. 

FnBPA plays a critical role in host cell internalisation, and expression of FnBPA on 

the surface of the otherwise non-invasive L. lactis enabled invasion of host cells 

(Sinha et al., 2000a). S. aureus uptake is initialised by Fn-mediated contacts between  

FnBPA and integrins on the surface of endothelial cells (Sinha et al., 1999). More 
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recently, Edwards et al. showed that the recognition of multiple Fn molecules 

enables more efficient bacterial uptake (Edwards et al., 2011, Edwards et al., 2010). 

The S. aureus surface proteins ClfB and SasG are able to promote S. aureus 

adherence to squamous host tissues (O'Brien et al., 2002b, Roche et al., 2003). Of 

these the role played by ClfB is best understood, with adherence mediated by 

binding to human type 1 cytokeratin 10 (O'Brien et al., 2002b). The specific surface 

receptor recognised by SasG is unknown (Roche et al., 2003, Corrigan et al., 2007). 

Common to both cases is the involvement of the A domains of each protein, which 

share structural similarities to FnBPA. The ClfB A domain comprises three 

subdomains N1, N2 and N3 (Ganesh et al., 2011b), with host cell adherence 

mediated by N2N3 (O'Brien et al., 2002b). SasG-mediated adherence requires the 

entire A domain (Roche et al., 2003), including the unique N-terminal subdomain, 

which is thought to be disordered (Gruszka, unpublished). Functional overlap is 

common in S. aureus surface proteins, thus it was postulated the FnPBA A domain 

might fulfil a role in host colonisation.  

The ability of the A domain to promote endothelial cell adherence was investigated 

via cell pull-down experiments. HUVECs were used as bait and incubated with 

varying concentrations of N1, N2N3 and fA. Adherence was determined by Western 

blot analysis. N1 and N2N3 were not pulled down by the HUVECs. However, fA 

was pulled-down, representing the first evidence that the A domain interacts with an 

endothelial cell surface receptor (Figure 44). The role played by the individual 

subdomains is not yet understood, and further investigation is required to determine 

the minimum region of the A domain able to adhere to endothelial cells and the 

physiological relevance of such an interaction. 
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6 The Role of FnBPA in S. aureus Biofilm Formation 

6.1 Introduction 

Biofilms are multicellular bacterial communities encased in a self-produced 

extracellular matrix (Costerton et al., 1995). Growth in biofilms affords bacteria 

protection against antimicrobial agents (Nickel et al., 1985, Duguid et al., 1992) and 

the host immune system (Thurlow et al., 2011, Voyich et al., 2005). S. aureus 

biofilms represent a significant clinical problem as they typically form following the 

implantation of indwelling medical devices (Mack et al., 2006, Murga et al., 2001). 

The protective nature of biofilms renders such infections difficult to treat and in 

many cases necessitates additional surgery to remove and replace prostheses. 

Treatment of biofilm-associated infections is further complicated by the involvement 

of antibiotic resistant strains (Cha et al., 2010). Understanding the molecular basis of 

biofilm formation is of paramount importance to developing novel strategies for 

combatting staphylococcal infections.  

Biofilm formation occurs as a four stage process; adherence, accumulation, 

maturation and dispersal (Otto, 2008). The surface of prostheses are rapidly coated 

with host ECM components soon after insertion (Vaudaux et al., 1989), and primary 

attachment is thought to be dominated by interactions between bacterial surface 

adhesins and deposited host factors. However, bacteria are also able to adhere to 

unconditioned surfaces, relying on electrostatic and hydrophobic interactions 

(Veenstra et al., 1996, Heilmann et al., 1997, Rohde et al., 2005). Cell accumulation, 

the next stage of biofilm formation, is generally categorised as two distinct 

mechanisms mediated by a polysaccharide intercellular adhesin (PIA) or surface 

proteins. PIA-mediated cell accumulation is currently the best understood, although 

the exact molecular mechanism is not known (Cramton et al., 1999, Heilmann et al., 

1996, Izano et al., 2008b, Rohde et al., 2010). Conversely, protein mediated biofilms 

are less well studied and the molecular mechanisms that facilitate cell-to-cell 

adherence in protein-mediated biofilms are poorly characterised. The involvement of 

proteins in biofilm formation was identified through genomic analysis (Rohde et al., 

2005, Fitzpatrick et al., 2005) or by the susceptibility of biofilm to protease 
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treatment (O'Neill et al., 2008). The homologous cell wall anchored surface proteins 

accumulation associated protein (Aap) and SasG of S. epidermidis and S. aureus, 

respectively, are known to mediate cell accumulation in biofilms (Conrady et al., 

2008, Geoghegan et al., 2010). It has been suggested that cellular adhesion in Aap- 

and SasG-mediated biofilms is achieved via a zinc-induced (Zn
2+

-induced) 

dimerisation of proteins on neighbouring cells (Conrady et al., 2008). Multiple 

association events between the repeat regions of opposing molecules leads to an 

extensive adhesive interface described as a “zinc-zipper” (Figure 45). 

 

Figure 45 The zinc-zipper model for Aap and SasG mediated biofilm formation. Adapted from 

Conrady et al. (Conrady et al., 2008). Cell accumulation in S. epidermidis and S. aureus ica-

independent biofilms is mediated by a Zn
2+

 induced dimerisation of the B-repeat regions of the 

surface proteins Aap and SasG. Coordination of multiple Zn
2+

 ions results in the formation of an 

extensive interface between proteins on neighbouring cells. Aap/SasG B-repeats are represented by 

blue ovals, Zn
2+

 ions by red circles. 

A number of other S. aureus surface proteins, including SasC and biofilm-associated 

protein (Bap), have been implicated in the accumulation phase of biofilm formation 

(Schroeder et al., 2009, Cucarella et al., 2001). More recently, a FnBP-mediated 

biofilm was identified for the clinical S. aureus isolate BH1CC (O'Neill et al., 2009, 

O'Neill et al., 2008, Vergara-Irigaray et al., 2009). The formation of FnBP-mediated 

biofilms is triggered by mild acidic stress induced by glucose utilisation, to date a 

unique phenotype, and may suggest a novel molecular mechanism is utilised during 

biofilm development. Expression of either fnbA or fnbB was sufficient to restore the 

biofilm forming capacity in a double fnbAfnbB mutant of BH1CC (O'Neill et al., 
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2008). Bacteria were still able to adhere to a surface following the deletion of the 

FnBPs suggesting their roles lie in the accumulation phase of biofilm formation. The 

A domains of FnBPA/B were found to be necessary for biofilm formation. Mutations 

of the FnBPA A domain in the Fg-binding region did not impair biofilm 

development (O'Neill et al., 2008), suggesting that the ability of FnBPA to mediate 

cell-accumulation is not related to its ligand binding capacity. Despite being 

commonly associated with methicillin resistant S. aureus (MRSA) (O'Neill et al., 

2009, O'Neill et al., 2008) and the clinical relevance of MRSA infections (Klevens et 

al., 2007, Naimi et al., 2003), the molecular basis of FnBP-mediated biofilm 

formation is not understood. 

6.2 Aims 

The aim of this work was to investigate the molecular basis of FnBPA-mediated cell 

accumulation in S. aureus biofilms. The effect of zinc on protein oligomerisation 

was investigated as Zn
2+

-induced dimerisation is thought to be involved in protein-

mediated biofilm formation. Possible interactions between FnBPA and other biofilm 

extracellular matrix components were also investigated. 

6.3 fA Dimerises in a pH and Zn
2+

 Dependent Manner 

SasG- and Aap-medated biofilms of S. aureus and S. epidermidis, respectively, have 

been shown to be dependent on the presence and availability of divalent zinc cations 

(Conrady et al., 2008, Geoghegan et al., 2010). Chelation of Zn
2+

 resulted in 

dispersal of these biofilms (Geoghegan et al., 2010). FnBP-mediated biofilms exhibit 

similar behaviour (Geoghegan, unpublished). The addition of the chelator 

diethyltriaminepentaacetic acid (DTPA) reduced FnBPA mediated biofilm formation 

in a concentration dependent manner (Geoghegan, unpublished). Biofilm was only 

re-established following the addition of ZnCl2, but not MgCl2 or CaCl2, showing that 

Zn
2+ 

is crucial for FnBP-mediated S. aureus biofilm formation. Zn
2+

 is required for 

the activity of the major autolysin Atl (Zoll et al., 2010). In the early stages of 

biofilm development, Atl activity results in cell lysis and the release of DNA, 

necessary for primary attachment to hydrophobic and hydrophilic surfaces (Houston 

et al., 2011). ClfA/B can mediate primary attachment on Fg-coated surfaces in atl 



Chapter 6 

132 

 

deficient mutants; however, Zn
2+

 chelation still results in biofilm dispersal 

suggesting Zn
2+

 is necessary for cell accumulation. The proposed role for Zn
2+

 in 

Aap- and SasG- mediated biofilms is to induce protein dimerisation, which in turn 

drives cell accumulation (Conrady et al., 2008, Geoghegan et al., 2010). It has been 

suggested that FnBPA may mediate biofilm formation via a similar mechanism. 

Therefore, the ability of the A domain to dimerise under the conditions conducive to 

FnBP-mediated biofilm formation was explored using size exclusion 

chromatography multi-angle laser light scattering (SEC-MALLS). 

FnBPA-mediated biofilms form in response to mild acid stress; biofilms formed at 

higher pHs are ica-dependent with no protein involvement (O'Neill et al., 2008, 

Vergara-Irigaray et al., 2009). Therefore, the ability of the A domain to dimerise at 

pH 7.5 and 5.5 was investigated. As indicated by the calculated masses of the eluted 

peaks, all three proteins were monomeric in the absence of Zn
2+

 regardless of the pH 

(Figure 46). N1 and N1N2 also remained monomeric with the addition of Zn
2+

. 

However, at pH 5.5 and in the presence of Zn
2+

 fA dimerised. 
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Figure 46 SEC-MALLS analysis of oligomeric states of FnBPA A domain proteins. 

Chromatograms were acquired at pH 7.5 and 5.5 in the presence (red) and absence (blue) of Zn
2+

. The 

estimated molar masses for each peak are indicated. 

These data show that the full A domain is required for Zn
2+

 and pH induced 

dimerisation. The inability of N1 and N1N2 to dimerise suggests that the N3 

subdomain may be the driving force behind fA dimerisation. However, N3 

dimerisation could not be investigated due to the instability of the subdomain in 

isolation (data not shown). Therefore, the ability of N2N3 to dimerise was 

investigated. Regardless of the pH N2N3 is always monomeric (Figure 47). 
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Following the addition of Zn
2+

 N2N3 precipitated at both pH 7.5 and 5.5. However, 

N2N3 precipitation is not exclusively induced by Zn
2+

, with Ni
2+ 

and Mn
2+

 having 

the same effect (data not shown). The non-specific nature of the metal-induced 

precipitation suggests that the behaviour of the entire A domain, rather than the 

contribution of a single subdomain, is more likely to influence FnBPA’s ability to 

facilitate biofilm formation via protein dimerisation. A model for the Zn
2+

-induced 

fA dimerisation in cell accumulation is shown in Figure 48. 

 

Figure 47 SEC-MALLS analysis of N2N3 at different pHs. Traces were recorded at pH 7.5 

(green), pH 5.5 (red) and pH 4.7 (blue). The estimated molar mass of N2N3 from each peak is close 

to the measured value of 36.0 kDa. 
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Figure 48 Cell accumulation in an FnBPA mediated biofilm facilitated by Zn
2+

-dependent fA 

dimerisation. Co-ordination of Zn
2+

, represented as red circles,
 
may result in an extensive zinc-zipper 

type interface between the A domains of two FnBPA molecules on neighbouring cells (A). Following 

Fg- or DNA-mediated adherence to a surface, FnBPA dimerisation enables cell accumulation in the 

biofilm (B).   
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6.3.1 The Physiological Zn
2+ 

Concentration is Too Low to Induce Dimerisation 

The Zn
2+

-dependent dimerisation of FnBPA as observed using SEC-MALLS 

requires a Zn
2+

 concentration of 10 mM, compared to an approximate protein 

concentration of 20 μM, a 500-fold molar excess. When the concentration of zinc 

was lowered to 2 mM, the ability of FnBPA to dimerise was abolished. In vivo the 

concentration of zinc is estimated to be 10 – 15 μM, with free zinc concentration 

thought to be significantly lower (Outten and O'Halloran, 2001). Depending on the 

phase of growth, FnBPA expression is estimated to be between 1,000 and 15,000 

molecules per cell (Mohamed et al., 2000). The ratio of free zinc to protein would 

therefore be insufficient to promote biofilm formation by the proposed mechanism.  

It has been argued that the Zn
2+

 concentration in a biofilm promoting environment 

would be bolstered by free zinc present in the cytosol that is released on the lysis of 

cells. However, while the cytosolic zinc concentration is between 10
-5

 and 10
-12

 M, 

free zinc is again thought to be significantly lower, in the femtomolar range (Outten 

and O'Halloran, 2001). Further, this concentration is not persistently maintained 

within the cell, with any free zinc not required for a specific process often non-

specifically chelated by other molecules (Outten and O'Halloran, 2001). 

Consequently, even with the Zn
2+

 concentration supplemented by cytosolic zinc, it is 

unlikely to be sufficient to induce biofilm formation. Therefore, it is likely another 

molecule contributes to FnBP-mediated biofilms representing a novel mechanism of 

cell accumulation in S. aureus biofilms. 

6.4 The Structural Role of eDNA in S. aureus Biofilms 

The composition of the extracellular matrix is similar in all reported staphylococcal 

biofilms, with proteins (Shanks et al., 2008, Vergara-Irigaray et al., 2009), DNA 

(Izano et al., 2008a, Kaplan et al., 2011), teichoic acids (TA) (Sadovskaya et al., 

2005, Sadovskaya et al., 2004) and PIA (Rohde et al., 2010, Vuong et al., 2004) 

consistently present. Although the relative quantities of each component can vary 

depending on the mechanism utilised by the bacteria to form biofilms, extracellular 

DNA (eDNA) is ever-present (Izano et al., 2008a, O'Neill et al., 2008). eDNA is 

released following Atl-mediated cell autolysis and is known to mediate primary 
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attachment to surfaces not coated by host ECM components (Houston et al., 2011). 

The susceptibility of S. aureus biofilms to DNase activity, demonstrated by their 

dispersal following DNase I treatment, suggests eDNA is also a major structural 

component of the biofilm matrix (Izano et al., 2008a). eDNA can promote cell-to-

cell adhesion in other processes and it is reasonable to surmise a similar role may be 

adopted during biofilm formation (Petersen et al., 2005, Izano et al., 2008a). 

Interactions between proteins and DNA in a number of systems rely on the 

coordination of Zn
2+

 ions (Patzer and Hantke, 2000, Schmitt and McEntee, 1996). 

The elongated and poly-anionic nature of DNA potentially provides the requisite 

features to form an extensive interface with other molecules (Otwinowski et al., 

1988, Richardson et al., 2009). Thus, the ability of N1 to interact with DNA, and the 

possible involvement of Zn
2+

, was investigated using a gel electromobility shift assay 

(EMSA) (Figure 49) and NMR spectroscopy (Figure 50, Figure 51). The EMSA 

involved adding increasing protein concentrations, ranging from 0.1 to 1.6 μM, to a 

0.4 μM solution of linearised plasmid DNA containing 100 μM zinc acetate (ZnAc2). 

The samples were incubated at room temperature for 10 mins prior to 

electrophoresis. DNA was visualised by SYBRsafe staining. NMR analysis entailed 

the acquisition of 
1
H, 

15
N HSQC spectra of 0.1 mM uniformly 

15
N labelled N1 in the 

presence and absence of DNA, added to achieve a molar ratio of 2:1 DNA to protein. 

ZnAc2 was added to a final concentration of 200 μM. Both experiments indicate 

there is no interaction between N1 and DNA. 

 

Figure 49 Gel electromobility shift assay for N1 0.4 μM. Linearised plasmid DNA was incubated 

with increasing concentrations of N1 and 50 μM ZnAc2 for 30 mins prior to gel electrophoresis. DNA 

was visualised by SYBRsafe staining. 
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Figure 50 
1
H, 

15
N HSQC spectrum of N1 in the presence (red) and absence (black) of DNA. Data 

was acquired at 298 K on a 700 MHz spectrometer at pH 5.5. DNA was added to a achieve a 2:1 

DNA:protein molar ratio. 
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Figure 51 
1
H, 

15
N HSQC spectrum of N1 in the presence (blue) and absence (black) of DNA and 

Zn
2+

. Data was acquired at 298 K on a 700 MHz spectrometer. DNA and ZnAc2 were both added to 

achieve molar ratios of 2:1 DNA/Zn
2+

:protein.   
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6.5 Teichoic Acids 

S. aureus expresses a number of glycopolymers on the cell surface that play 

important roles in cell protection and host colonisation (Peschel et al., 1999a, 

Weidenmaier et al., 2004, Weidenmaier and Peschel, 2008). The most well-

characterised are teichoic acids of which S. aureus expresses two types; the 

membrane lipid-linked lipoteichoic acids (LTA) (Grundling and Schneewind, 2007) 

and the peptidoglycan attached wall teichoic acids (WTA) (Endl et al., 1983, Xia et 

al., 2010a). Unlike other species of bacteria, non-expression of WTAs does not affect 

the viability of S. aureus under laboratory conditions, although cells lacking WTAs 

are more sensitive to environmental conditions (Weidenmaier et al., 2004, Pollack 

and Neuhaus, 1994, Vergara-Irigaray et al., 2008). Contrastingly, LTAs are essential 

for S. aureus viability (Grundling and Schneewind, 2007). WTAs play a pivotal role 

in host colonisation, with WTA deficient mutants unable to colonise nasal epithelial 

cells (Weidenmaier et al., 2004). In addition, S. aureus lacking WTAs exhibited 

reduced adhesion to endothelial cells and attenuated virulence in rabbit models of 

infective endocarditis (Weidenmaier et al., 2005). As such teichoic acids represent a 

major virulence factor in S. aureus infections. 

WTAs are covalently attached to peptidoglycan by a phosphodiester linkage to N-

acetylmuramic acid sugars (Neuhaus and Baddiley, 2003, Harrington and Baddiley, 

1985) (Figure 52). The linkage unit consists of a N-acetyl glucosamine (GlcNAc) 

disaccharide and up to 3 glycerol-phosphate repeats. A poly-ribitolphosphate main 

chain follows the linkage unit comprising between 20 and 40 repeats (Endl et al., 

1983, Neuhaus and Baddiley, 2003, Fischer, 1994). The main polymeric chain of 

LTAs is composed of approximately 23 glycerol-phosphate repeat units (Grundling 

and Schneewind, 2007, Fischer, 1994) (Figure 52). Preceding the main chain, a 

glucose disaccharide is attached to fatty acid groups via an ester linkage. In turn, the 

fatty acids anchor LTAs to the cell membrane. The ribitol- and glycerol-phosphate 

repeats, of WTA and LTA, respectively, are supplemented with D-alanine or 

GlcNAc. The incorporation of D-alanine and GlcNAc varies depending on the 

processes teichoic acids are involved in. For example, alanyl residues play an 

important role in resistance to host antimicrobial peptides (Peschel et al., 1999a, 

Collins et al., 2002). Differential sugar modifications play a role in eliciting specific 
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host antibody responses and in resistance to bacteriophage activity (Xia et al., 

2010b). 

 

Figure 52 Chemical structures of teichoic acids from S. aureus The main chain of WTA (A) 

comprises ribitolphosphate repeats enriched with either D-alanine or GlcNAc. A phosphodiester 

linkage to acetylmuramic acid achieves covalent attachment to the cell wall. The main chain of LTA 

(B) is composed of D-alanine or GlcNAc enriched glycerol-phosphate repeats. Fatty acid groups 

anchor LTAs to the cell membrane. 

An extracellular variant of teichoic acid (eTA) has also been identified as a structural 

component of staphylococcal biofilm matrices in both PIA- and protein-mediated 

biofilms (Kogan et al., 2006). Initially, teichoic acid was found to be a constituent of 

the S. epidermidis biofilm extracellular matrix (Sadovskaya et al., 2005). A more 

recent study found that teichoic acids were also structural components in biofilms 

formed by S. aureus (Vinogradov et al., 2006). eTAs in the biofilms of both species 

had the same structure as WTAs, and it has been suggested that WTA is released 

from the cell surface to become part of the biofilm matrix, although the molecular 

basis of WTA release in unknown. To date the role of eTAs in protein-dependent 

biofilms is not understood. Although Zn
2+

-mediated protein dimerisation is generally 

thought to promote cell accumulation, the concentration of Zn
2+ 

required to induce 

FnBPA dimerisation is thought to be unachievable in vivo (Section 6.3.1). Therefore, 

an interaction between FnBPA and teichoic acids may promote cellular adhesion. 
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6.5.1 Purification of S. aureus WTAs 

WTAs were purified from the laboratory S. aureus strain 8325-4 kindly supplied by 

Dr. James Moir, University of York. The purification was carried out largely as 

described by Peschel et al., with minor modifications made to ensure the WTAs 

were expressed and purified in conditions similar to those in the biofilm (Peschel et 

al., 1999a) (section 2.3.8). Principally this entailed tight control of the pH as the 

alanyl group is labile under basic conditions, with 50% lost per hour at pHs greater 

than 6.5 (Xia et al., 2010b). FnBP-mediated biofilms form under mildly acidic 

conditions and it is likely that a significant number of ribitolphosphate repeats will 

include alanyl groups. S. aureus was cultured in LB broth supplemented with 1% 

glucose, and the final pH found to be pH 5.1. Initially cells were harvested and 

resuspended in 50mM sodium acetate, 150 mM NaCl, pH 4.5, to be lysed by 

sonication. However, the cells showed considerable resistance to sonication and 

lysostaphin was used in subsequent purifications. Although the optimum pH for 

lysostaphin activity is approximately pH 7.5, it is still active at lower pHs (Trayer 

and Buckley, 1970). Therefore, to preserve the D-alanine content of the WTAs, 

incubation with lysostaphin at pH 5.8 for 30 min was followed by adjustment to pH 

4.6 prior to lysate clarification. WTAs were released from the cell walls by 

trichloroacetic acid (TCA) treatment and peptidoglycan removed by centrifugation. 

The crude WTA extract was extensively dialysed against mildly acidic de-ionised 

water and lyophilised. Approximately 250 mg of material was isolated from a 1 L 

culture. The presence of WTA was confirmed by native polyacrylamide gel 

electrophoresis (native-PAGE) (Figure 53). WTAs were visualised following native-

PAGE by staining with alcian blue, a dye that binds acidic polysaccharides (Wolters 

et al., 1990).  
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Figure 53 Native-PAGE of crude WTA extract The gel was run at 100 V for 2 h at 4 
o
C. Varying 

amounts of WTA were loaded as indicated. WTAs were visualised by Alcian blue staining. The 

smeared bands are indicative of multiple species with varying main chain polymer lengths. 

6.5.2 Preliminary Study of N1 and WTA Interaction 

The N2 and N3 subdomains have well characterised roles in ligand binding 

(Stemberk et al., manuscript in preparation) (Keane et al., 2007b, Wann et al., 2000), 

whereas N1 has no attributed function. It has been suggested that N1’s primary role 

may be to mediate biofilm formation. Therefore, WTA binding to N1 was 

investigated. 
1
H, 

15
N HSQC spectra of uniformly 

15
N labelled N1 were acquired in 

the absence and presence of WTAs (Figure 54). A significant number of peaks in the 

spectrum are affected suggesting N1 interacts with WTA in a residue specific 

manner. This is the first suggestion of a WTA-FnBPA interaction and it may have a 

significant role in FnBP-mediated biofilm formation. However, to confirm the 

validity of the interaction, further purification and characterisation of the WTAs was 

required. 
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Figure 54 
1
H, 

15
N-HSQC of 

15
N N1 in the absence (black) and presence (red) of WTAs Spectra 

were acquired in 20 mM HEPES, 150 mM NaCl, pH 5.5 at 298 K on a 700 MHz spectrometer. 3.6 

mg of WTAs were added to the N1 sample to achieve a 1:1 (w/w) ratio.  
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6.5.3 Further WTA Purification and Characterisation 

The crude WTA extract contains a number of species with varying molecular 

weights. Although WTAs with varying main chain lengths are likely to produce the 

multiple species observed by native-PAGE, proteinaceous and DNA contaminants 

may also be present. To further purify the WTAs, size exclusion chromatography 

was carried out (Figure 55). Lyophilised material was resuspended in 20 mM 

HEPES, 150 ml NaCl, pH 5.0 to a final volume of 1 ml and loaded onto a Superdex 

75 size exclusion column. During column chromatography purification, elution 

profiles of teichoic acids are typically monitored by analysing phosphorous content 

(Leopold and Fischer, 1992). However ,this facility was not available and elution 

profiles were rather monitored by UV absorbance. TAs have a maximum UV 

absorbance at 205 nm (Eugster and Loessner, 2011) and there is sufficient 

absorbance at 220 nm to monitor elution profiles. Two species eluted from the 

column; a main species eluting between 15 and 20 ml and a second species 

exhibiting a slightly longer elution time. An alcian blue-silver staining procedure 

enables improved visualisation of purified WTAs and resolution of individual 

species with varying main chain lengths (Wolters et al., 1990). Native-PAGE 

analysis with alcian blue-silver staining revealed the main peak is attributable to 

WTAs (Figure 55), although the resolution of species with different main chain 

lengths was poor. There was also UV absorbance at 280 nm coinciding with the 

elution of WTAs that could result from proteinaceous contaminants. The absorbance 

at 220 nm may also result from DNA contaminants. However, staining with 

coomassie blue and SYBRsafe detected no protein or DNA contamination, 

respectively (data not shown). 
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Figure 55 Size exclusion chromatography purification of crude WTA extracts. The 

chromatogram for the elution of WTAs shows the UV absorbance at 220 nm over 1 column volume 

(approximately 24 ml). The main species contains purified WTAs as can be seen by alcian blue-silver 

staining native-PAGE analysis.  

6.5.3.1 NMR Characterisation of Purified WTA 

Despite the detection of a species with the characteristics of WTAs by native-PAGE, 

it cannot be unambiguously identified as teichoic acids. Alcian blue does not 

exclusively interact with teichoic acids and is able to bind multiple acidic 

polysaccharides. Therefore, NMR spectroscopy was employed to unequivocally 

identify the purified species. A 1D 
1
H spectrum with carbon decoupling and a 

proton-detected 
1
H, 

13
C HMQC spectrum of the purified WTAs were acquired 

(Figure 56). By comparison to published spectra (Vinogradov et al., 2006), the 

purified species was confirmed as WTA. 
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Figure 56 NMR spectra of purified WTAs . The chemical structure (A), 1D 
1
H (B) and 

1
H, 

13
C 

HMQC (C) spectra of purified WTA from S. aureus. Certain features are obscured by the residual 

water signal. Both spectra are similar to published spectra of WTA purified from S. aureus MN8m 

(Vinogradov et al., 2006). The methyl groups of alanine and GlcNAc are clearly visible in the 
1
H 

spectrum. Resonances in the HMQC attributable to GlcNAc are highlighted in blue and alanine H
α
/C

α
 

correlation indicated. All other resonances are attributed to the ribitolphosphate repeat units and 

glycerolphosphate linkage units. 

6.5.3.2 SEC-MALLS Analysis of Purified WTAs 

To fully characterise the purified WTAs, the molecular weight, and hence the 

number of ribitolphosphate repeat units was calculated. However, as can be seen in 
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molecular weights are present. This is due to the varying length of the 

polyribitolphosphate main chain, with between 20 and 40 repeat units comprising 

this region (Endl et al., 1983). Therefore, an average mass of the purified material 

was calculated using SEC-MALLS (Figure 57). To calculate molecular masses from 

light scattering data, a dn/dc (specific refractive index increment) value for the 

compound of interest is required. However, a specific dn/dc value for WTAs is not 

available and therefore estimates were used. Polysaccharides with similar structures 

to WTA have dn/dc values ranging from 0.12 to 0.13 (Joyce et al., 2003, Iwasaki et 

al., 2004, Iwasaki and Akiyoshi, 2006). The calculated mass of WTAs using these 

two extreme dn/dc values results in average masses of 17480 and 16130 kDa. The 

linker region of WTAs remains constant, with the main chain the only variable 

region (Figure 52). Therefore, by subtracting the mass of the linker unit from the 

mass measured by SEC-MALLS the main chain length can be calculated. Using the 

aforementioned molecular mass estimates, the main chain of the purified WTAs 

constitutes an average of either 29 or 38 poly-ribitolphosphate repeats. 

 

Figure 57 SEC-MALLS analysis of purified WTAs. WTAs were dissolved in 20 mM HEPES, 150 

mM NaCl, pH 5.5. Using dn/dc values of 0.12 (A) and 0.13 (B) molecular masses of 17.4 and 16.1 

kDa were calculated. 

6.5.4 N1 Interacts with WTA in a Residue Specific Manner 

The results described previously (section 6.5.2) suggested N1 interacts with WTAs. 

This is a novel interaction and may be crucial to understanding the molecular basis 

of S. aureus FnBP-mediated biofilm formation. Therefore, a series of 
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recorded (Figure 58). The spectra show a clear, residue specific and concentration 

dependent interaction between N1 and WTAs. Resonances affected on WTA binding 

are predominantly in intermediate exchange on the NMR timescale. At low WTA 

concentrations, small changes in chemical shift and peak linewidths are observed and 

as a result the movement of individual peaks can be easily tracked. However, as the 

concentration of WTA increases, chemical shift perturbations become more 

pronounced and the peaks become less intense. At a 4:1 molar ratio of WTA to N1, a 

significant number of resonances are no longer observable in the spectrum (Figure 

59). As can be seen from the chemical shift perturbation map (Figure 60), the C-

terminal region of N1 is most affected by WTA binding. The SSP scores assigned to 

this region in the previously described chemical shift analysis (section 4.7.1) indicate 

a propensity for β-strand conformations. Interestingly, all chemical perturbations are 

unidirectional with decreasing 
1
H and 

15
N chemical shifts. This suggests that on 

WTA binding, backbone amide groups become de-shielded and that all residues 

involved in the interaction are affected in a similar way. Typically, this behaviour is 

observed following pH or temperature changes, factors that affect residues in a non-

specific fashion (Baxter and Williamson, 1997, Cho et al., 2012, Kjaergaard et al., 

2011). However, as not all residues are affected, the chemical shift changes are likely 

to be the result of a specific interaction. 
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Figure 58 
1
H, 

15
N HSQC spectra of N1 with increasing concentration of WTAs. Data was 

acquired at 298 K on a 700 MHz spectrometer. Uniformly 
15

N labelled N1 dissolved in 20 mM 

HEPES, 150 mM NaCl, pH 5.5, with freeze dried aliquots of WTA added to give protein:WTA molar 

ratios of 0.05, 0.10, 0.15, 0.20, 0.40, 0.60, 0.80, 1.00, 1.50, 2.00, 3.00 and 4.00. Spectra are coloured 

from light to dark as the WTA concentration increases. 
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Figure 59 
1
H, 

15
N-HSQC spectra of N1 with increasing concentration of WTAs. It is clear that the 

C-terminal residues of N1 are involved in WTA binding, whereas the N-terminal residues are largely 

unaffected, as the two example regions show. Residues involved in binding WTAs are in intermediate 

exchange on the NMR timescale. 

The effect of Zn
2+

 on the interaction between WTAs and N1 was investigated by 

adding ZnAc2 to a final concentration of 300 μM resulting in a 1:1 protein to Zn
2+

 

molar ratio. A white precipitate formed on the addition of Zn
2+

 and a significant 

signal reduction in the 
1
H, 

15
N HSQC of the supernatant suggests that N1 had 

precipitated. Zn
2+

 does not affect the solubility of N1 or WTAs individually (data not 

shown), therefore it is reasonable to conclude that Zn
2+ 

enhances the N1:WTA 

interaction, inducing the precipitation of the complex or the formation of larger, 

insoluble aggregates. The precipitate was solubilised by EDTA, confirming the 

involvement of metal ions. These results provide evidence for a novel interaction 

that could describe the molecular basis of protein-mediated biofilm formation. Zn
2+

 

is an essential extracellular matrix component of FnBP-mediated biofilms and the 

enhancement of the N1:WTA interaction could explain the role of Zn
2+

. Therefore, a 

new model for FnBP-mediated biofilm formation is proposed in Figure 61. 
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Figure 60 N1 chemical shift perturbation map following the addition of WTAs. Chemical shift perturbations in the 
1
H, 

15
N HSQC of 

15
N N1 on the addition of a 4x 

molar excess of WTAs. Blue and red bars indicate 
1
H and 

15
N chemical shift changes, respectively. Peaks that disappear in the WTA-bound spectrum are indicated by a grey 

bar of arbitrary size. Proline residues are indicated by P; unassigned residues in the apo N1 spectrum by Ο; unassigned residues in the WTA-bound spectrum by .
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Figure 61 FnBPA/eTA-mediated model of S. aureus biofilm formation. Primary attachment to a 

surface conditioned with host ECM components is facilitated by S. aureus surface adhesins such as 

ClfA. Attachment to hydrophobic or hydrophilic surfaces is mediated by eDNA and Atl. Cell 

accumulation is mediated by the interaction between FnBPA and eTAs, or FnBPA and WTAs still 

attached to the cell. An elongated interface is formed via the coordination of Zn
2+ 

ions, represented by 

red circles. 

6.6 Summary 

Staphylococci are important pathogens due to their interactions with humans. S. 

epidermidis and S. aureus are commensals that persistently colonise the skin and 

anterior nares of significant proportions of the population (Noble et al., 1967, 

Ziebuhr, 2001). Carriers of S. aureus and S. epidermidis are more susceptible to 

infection by their carried strain, particularly when host immune defences are 

compromised (Wenzel and Perl, 1995). Pathogenic staphylococci have a tendency to 

form biofilms, particularly following the implantation of prosthetic devices such as 

catheters (Mack et al., 2006). Growth in a biofilm affords bacteria an increased 

resistance to antimicrobials, and as a result infections are more difficult to treat (Cha 
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et al., 2010, Vuong et al., 2004). When forming biofilms, bacteria produce an 

extracellular matrix comprising various polymers that mediate surface adherence and 

cell accumulation (Flemming and Wingender, 2010, Izano et al., 2008a, Kaplan et 

al., 2011). Biofilms are characterised as either ica-dependent or ica-independent with 

the matrix composition varying accordingly (Izano et al., 2008a). ica-dependent 

biofilms utilise PIA to mediate cell-to-cell adhesion, whereas in ica-independent 

biofilms proteins facilitate cell accumulation. The current model for protein-

mediated cell accumulation is known as the ‘zinc-zipper’ mechanism (Conrady et al., 

2008, Geoghegan et al., 2010). Initially proposed for the S. epidermidis surface 

protein Aap, and later the homologous S. aureus protein SasG, Zn
2+

-induced 

dimerisation of proteins on neighbouring cell is suggested to drive cell accumulation. 

More recently an FnBP-dependent S. aureus biofilm was identified that is triggered 

by mild acid stress (O'Neill et al., 2009, O'Neill et al., 2008). Expression of either 

FnBPA or FnBPB was sufficient to restore biofilm in a double fnbAfnbB mutant. The 

region of FnBPA/B responsible for promoting cell adhesion was found to be the A 

domain (O'Neill et al., 2008). The addition of the Zn
2+

 chelator DTPA to FnBP-

mediated biofilms resulted in their dispersal and biofilm was only re-established 

following the addition of ZnCl2, suggesting Zn
2+

 is a crucial component of the 

biofilm matrix (Geoghegan, unpublished). However, to date the molecular basis of 

FnBP-mediated biofilm formation is poorly understood and the specific roles played 

by FnBPA and Zn
2+

 are not known.  

Initially, the ability of FnBPA to mediate cell accumulation via the ‘zinc-zipper’ 

mechanism (Conrady et al., 2008) described for Aap and SasG was investigated. 

SEC-MALLS analysis revealed fA was able to dimerise in a pH and Zn
2+

 dependent 

manner (Figure 46). Smaller fragments of the A domain were monomeric under all 

conditions tested suggesting that the formation of an elongated interface is necessary 

if FnBPA utilises a ‘zinc-zipper’ mechanism. However, a 500-fold molar excess of 

Zn
2+

 was required to induce protein dimerisation. Free zinc concentration in vivo is 

thought to be in the femtomolar range (Outten and O'Halloran, 2001), and despite 

being supplemented by cytosolic Zn
2+

 released by cell lysis during the early stages of 

biofilm formation, the ratio of Zn
2+ 

to protein in the biofilm is thought to be 
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insufficient to induce protein dimerisation. Thus, other components of the biofilm 

matrix are likely to be involved in cell-to-cell adhesion.  

eDNA and teichoic acids are consistently present in the extracellular matrix of S. 

aureus biofilms (Mann et al., 2009, Sadovskaya et al., 2005). eDNA is released 

during the early stages of biofilm formation following Atl mediated cell lysis, and is 

known to promote attachment to hydrophilic and hydrophobic surfaces (Houston et 

al., 2011). In addition to its role in primary attachment, eDNA is a major structural 

component of S. aureus biofilms (Mann et al., 2009, Izano et al., 2008a). Therefore, 

the ability of FnBPA to interact with DNA was investigated using EMSAs (Figure 

49) and NMR spectroscopy (Figure 50). Both techniques indicate that there is no 

interaction between N1 and DNA and that the addition of Zn
2+

 has no effect (Figure 

51).  

S. aureus expresses two types of teichoic acid; the membrane linked LTAs and 

peptidoglycan attached WTAs (Grundling and Schneewind, 2007, Swoboda et al., 

2010). Vinogradov et al. identified extracellular teichoic acids (eTAs) as a major 

component the extracellular matrix of a biofilm formed by S. aureus MN8m 

(Vinogradov et al., 2006). The role of eTAs in protein-mediated biofilms is not 

understood and to date no structural function has been attributed to eTAs. In the 

absence of other interactions that might stabilise FnBP-mediated biofilms, it is 

possible FnBPA interacts with eTAs to promote cell-to-cell adhesion. eTAs are 

structurally identical to WTAs, and it has been suggested that WTAs are released 

from the cell surface to become part of the biofilm matrix (Vinogradov et al., 2006). 

Therefore, WTAs from S. aureus were isolated and characterised by NMR 

spectroscopy (Figure 56) and SEC-MALLS (Figure 57). The calculated molar mass 

of purified WTAs suggested an average of 29 or 38 repeat units constituted the poly-

ribitolphosphate main chain.  

NMR spectroscopy revealed a novel interaction between N1 and WTAs that may 

facilitate cell accumulation in FnBP-mediated biofilms (Figure 58). Following the 

incremental addition of purified WTAs to uniformly 
15

N labelled N1, sequence 

specific chemical shift perturbations were observed (Figure 60). WTA binding is 

restricted to the C-terminal region of N1, with a significant proportion of residues 



Chapter 6 

156 

 

affected. Chemical shift perturbations following the addition of WTAs are 

unidirectional suggesting that the residues involved in WTA binding are affected in 

the same way. Commonly such behaviour is associated with non-specific effects 

resulting from changes in temperature, pH and ionic strength (Baxter and 

Williamson, 1997). However, as not all residues are affected and constant 

temperature, pH and ionic strength was maintained throughout the experiment, the 

chemical shift changes appear to be as a result of specific interactions.  

Although further study is required to determine the role the rest of FnBPA’s A 

domain plays in FnBP-mediated biofilm formation, this is the first evidence that a 

teichoic acid-protein interaction could promote cellular adhesion in S. aureus 

biofilms. It also represents a novel ligand binding function of the N1 subdomain. 
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7 Discussion 

S. aureus is a major human pathogen associated with a number of life-threatening 

conditions (Foster, 2004). A significant proportion of healthy individuals are 

persistently colonised by S. aureus and are susceptible to infection by their carried 

strain if the immune system is compromised (von Eiff et al., 2001). As such, 

understanding the molecular mechanisms of colonisation is important in combating 

S. aureus infections. S. aureus is particularly adept at forming infections following 

the implantation of indwelling medical devices, commonly resulting in lengthier 

treatment times for patients, a costly burden for health services (de Lissovoy et al., 

2009). A further complication attributed to such infections is the tendency for S. 

aureus to form biofilms (Mack et al., 2006). Growth in biofilms affords bacteria 

increased resistance to antimicrobials and the host immune system and treatment can 

be particularly challenging requiring protracted treatments with antibiotics (Hoyle et 

al., 1992). The S. aureus surface protein FnBPA is associated with more invasive S. 

aureus clinical isolates and is a major virulence factor (Peacock et al., 2002). FnBPA 

can mediate adherence to host endothelial cells via fibronectin binding (Edwards et 

al., 2010), and recently an FnBP-dependent S. aureus biofilm has been identified 

(O'Neill et al., 2008). The main objectives of the work described here were to 

determine the structure and function of the previously uncharacterised N1 

subdomain, and to elucidate the role played by FnBPA in FnBP-mediated biofilm 

formation. 

7.1 Structural Characterisation of N1 

The A domain of FnBPA comprises three subdomains, N1, N2 and N3. N2 and N3 

are known interact with fibrinogen, with the C-terminus of the fibrinogen γ-chain 

binding in the mostly hydrophobic cleft between the two subdomains (Stemberk et 

al., manuscript in preparation). As a result, both subdomains are well characterised 

structurally, adopting immunoglobulin-type conformations. Contrastingly, N1 is 

poorly characterised, despite being the most highly conserved region of the A 

domain (Loughman et al., 2008). 
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Initial sequence analysis of N1 revealed characteristics associated with intrinsically 

disordered proteins (IDPs). N1 contains a relatively high proportion of disorder 

promoting residues (Glu, Asp, Lys, Pro, Ser and Gln), and correspondingly few 

residues that would form a stable hydrophobic core. Expectedly therefore, a number 

of secondary structure prediction tools predicted N1 lacks stable secondary structure. 

Each tool implements a different algorithm to analyse the protein sequence and 

predict secondary structure. A consensus between each method, although not 

conclusive, strongly suggests N1 is an IDP. By contrast, similar analyses of the 

folded N2N3 subdomains revealed opposing characteristics, containing a higher 

percentage of order promoting residues (24%) compared to N1(17%), particularly 

Trp (1 compared to 0), Phe (12 compared to 0) Tyr residues (21 compared to 1). 

Correspondingly, and as expected, a significant proportion of β-strand was predicted 

from the sequence by Jpred (Figure 62). 

-----H------EEEEEE----------EE-----EEEEEEEE----------EEEEEE- 

N2N3 AKVETGTDVTSKVTVEIGSIEGHNNTNKVEPHAGQRAVLKYKLKFENGLHQGDYFDFTLS  

 

--EE------------------EEEEEEEE---EEEEEE---------EEEEEEEEEEE- 

N2N3 NNVNTHGVSTARKVPEIKNGSVVMATGEVLEGGKIRYTFTNDIEDKVDVTAELEINLFID 

 

--E------EEEEEEE--EEEEEEEEEEE--------------EEEE-----EEEEEEEE 

N2N3 PKTVQTNGNQTITSTLNEEQTSKELDVKYKDGIGNYYANLNGSIETFNKANNRFSHVAFI 

 

---------EEEEEE-----EE-----EEEEEEE--------------------EEEEE- 

N2N3 KPNNGKTTSVTVTGTLMKGSNQNGNQPKVRIFEYLGNNEDIAKSVYANTTDTSKFKEVTS 

 

-----EEE----EEEEE-----EEEEEEEEEE------EEEEEEEEEEE----------- 

N2N3 NMSGNLNLQNNGSYSLNIENLDKTYVVHYDGEYLNGTDEVDFRTQMVGHPEQLYKYYYDR 

 

EEEEEE-EEEEE-----EEEEE---------EEEE---------EEE----EEEEE---- 

N2N3 GYTLTWDNGLVLYSNKANGNEKNGPIIQNNKFEYKEDTIKETLTGQYDKNLVTTVEEEYD 

 

-- 

N2N3 SS 

Figure 62 Secondary structure prediction of N2N3. Jpred prediction of secondary structure 

elements in N2N3 from FnBPA (residues 189 – 515). Helical conformations are indicated by a red 

‘H’, strand by a yellow ‘E’ and loops, linker regions and disordered segments by ‘-’.  

Preliminary NMR analyses seemed to corroborate the in silico predictions that N1 is 

an IDP. A one-dimensional 
1
H spectrum of N1 revealed significant signal overlap in 

both the amide and aliphatic regions of the spectrum. The 
1
H, 

15
N HSQC of N1 

exhibited similarly narrow chemical shift dispersion in the amide region of the 
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spectrum with the peaks also having narrow linewidths, thereby supporting the 

hypothesis N1 is and IDP. 

The observed disorder in N1 might be the result of incorrectly defined domain 

boundaries and a subsequent C-terminal truncation. Incorrectly defined domain 

boundaries can have a significant effect on protein function, as evidenced in the 

revision of domain boundaries in the Fn binding region of FnBPA (Meenan et al., 

2007, Schwarz-Linek et al., 2003). The absence of the N2 and N3 subdomains may 

also act to destabilise structural elements in N1, a characteristic observed in the B-

repeat region of S. aureus surface protein SasG (Gruszka et al., 2012). However, 

NMR spectra of N1N2 and fA contain features indicative of disordered and ordered 

components. By superimposing the spectrum of N1 onto these spectra, it appears the 

disordered features result from N1 with the ordered components resulting from the 

independently folded N2 and N3 subdomains. A number of residues attributed to N1 

in the N1N2 spectrum have slightly different chemical shifts compared to those in 

the isolated N1 spectrum. Principally these are at the C-terminus of N1 with 

resonances assigned to Gly-194, Glu-192 and Val-180 subject to the most substantial 

chemical shift changes. For all residues except Gly-194, there is a peak in the N1N2 

spectrum in close proximity to the position of the affected residue in the N1 

spectrum, in many cases overlapping. Therefore, it is reasonable to surmise the peaks 

correspond to the same amino acid. The Gly-194 resonance in the N1 spectrum is no 

longer visible, though the appearance of a peak in a region of the spectrum most 

commonly populated by glycine resonances is likely attributable to Gly-194. The 

observed chemical shift changes are not likely to indicate the formation of stable 

secondary structure elements. The minor chemical shift changes, coupled with the 

peaks attributed to N1 exhibiting the narrow linewidths associated with IDPs, 

suggest N1 remains disordered in recombinant N1N2. Rather, the chemical shift 

changes are likely to result from small changes in the local environment caused by 

‘nearest neighbour’ effects, with nearby amino acids in a polypeptide known to 

influence chemical shifts in IDPs (Wang and Jardetzky, 2002, Kjaergaard and 

Poulsen, 2011). Alternatively the conformational freedom of N1 may be slightly 

reduced when N2 is present. 
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The TROSY-HSQC spectrum of fA displays similar features to that of N1N2, with 

features attributable to disordered and ordered components clearly visible. However, 

due to the size of fA and the different dynamics of the subdomains the spectrum is 

poor and the influence the N3 subdomain has on specific residues in N1 is difficult 

to discern. In order to unambiguously confirm N1 is disordered in the context of the 

intact A domain, a better quality NMR spectrum is required. The TROSY effect is 

optimal at higher magnetic fields (900 MHz and above) (Pervushin et al., 1997), and 

acquisition of a spectrum at this frequency may yield better results. In addition, 

acquiring spectra implementing cross-relaxation enhanced polarisation transfer 

(CRINEPT) steps rather than the standard insensitive nuclei enhanced by 

polarisation transfer (INEPT) steps for magnetisation transfer between 
1
H and 

15
N 

nuclei can produce improved spectra for large proteins (Riek et al., 1999, Riek et al., 

2000). Nonetheless, the minimal impact the N2 subdomain has on the structure of 

N1, and similar features being observed in the spectrum of fA, imply that the domain 

boundaries between N1 and N2 are correct, and the recombinantly expressed N1 is 

representative of the subdomain in intact FnBPA. 

Ambiguity in the NMR spectra exists as helical proteins give rise to similarly small 

amide chemical shift dispersions. Therefore, circular dichroism (CD) spectra of N1, 

N1N2 and fA were acquired. The CD spectra, and subsequent deconvolution, 

showed no helical characteristics suggesting the conclusion reached through NMR 

analysis that N1 is an IDP is likely correct. 

7.1.1 Resonance Assignment of N1 

IDPs often contain transient secondary structure elements or contain regions with a 

propensity for secondary structure (Dyson and Wright, 2005). Such regions can be 

identified by chemical shift analysis following completion of the resonance 

assignment and often provide insight into the regions of proteins likely to be 

involved in ligand interactions (Marsh and Forman-Kay, 2010, Norris et al., 2011). 

Assigning large, unstructured proteins is challenging and there are relatively few 

examples of completed assignments for proteins similar to N1 in size (Libich and 

Harauz, 2008, Mayer et al., 2012, Szalaine Agoston et al., 2011). In most cases the 

assignments were crucial to understanding the structure and function of the protein in 
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question. Therefore, the sequence specific resonance assignment of N1 was carried 

out. Uniformly 
13

C, 
15

N N1 was expressed, but substantial resonance overlap was 

observed in all acquired spectra. As a result, ambiguities that arose when attempting 

to sequentially assign N1 could not be solved and the assignment could not be 

completed. A common approach to improving spectral resolution is to substitute 

non-labile protons for deuterons, thereby decreasing linewidths (Gardner and Kay, 

1998). Traditionally this approach is applied to large, but folded, proteins due to the 

broad linewidths associated with such species, resulting from their fast relaxation 

rates. IDPs do not suffer such unfavourable spin relaxation properties, but due to the 

signal overlap often observed reduced linewidths and improved resolution can aid 

the assignment procedure. Resolution was dramatically improved by deuterating N1 

and nearly all expected peaks were identified in the 
1
H, 

15
N HSQC spectrum.  

Despite the improved resolution achieved through deuteration, the size and disorder 

of N1 meant that certain regions of the spectra were still congested. Final 

ambiguities arising from overlapping signals were solved by selectively unlabelling 

specific amino acids in N1 (Rasia et al., 2012). The addition of non-isotopically 

enriched metabolic precursors to enriched expression medium resulted in labelled N1 

with leucine, valine, proline or isoleucine selectively unlabelled. HNCO spectra of 

the unlabelled proteins lack peaks attributed to residues preceded by the unlabelled 

amino acids. Regions with overlapping peaks therefore became less congested and 

individual peaks could be resolved. Further, identification of specific residue types 

provided reference points to the sequence and the interval between such points 

enabled unambiguous sequential assignment of N1. In the absence of reliable HSQC-

TOCSY data, this proved invaluable for unambiguously assigning specific residues 

and not solely relying on interruptions in triple-resonance experiments connectivity’s 

due to proline residues. Of the 150 peaks observed in the 
1
H, 

15
N HSQC of N1, 149 

were assigned. 

A potential drawback of selectively unlabelling proteins is a non-specific isotope 

scrambling effect resulting from the metabolism of the media supplement. Such 

pitfalls are avoided when supplementing growth media with precursors in the amino 

acid biosynthetic pathway, as they are not subject to the scrambling effects observed 

when supplementing with intact amino acids (Rasia et al., 2012). However, L-proline 
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was also used as a growth supplement to produce 
u
Pro N1, and isotopic scrambling 

of L-proline can reduce signal intensity throughout the NMR spectra. Glutamate and 

glutamine residues are particularly affected and subject to up to a 30% decrease in 

signal intensity. Although the exact peak widths were not measured, no significant 

drop in signal intensity was observed and the assignment procedure was not 

hindered.  

Notwithstanding the success of implementing a selective unlabelling strategy to 

compete the resonance assignment of N1 and the use of robust and relatively simple 

experimental techniques, a number of other methods could have been used with 

similar success. As mentioned previously, NMR spectra of IDPs often suffer from 

extensive signal overlap. Typical approaches to protein resonance assignment, such 

as those implemented in this work, rely on signal detection via the amide proton. A 

weakness of this approach when studying IDPs is significant signal degeneracy in 

the amide region of the spectrum. In addition, under certain conditions, particularly 

alkaline pH’s, amide protons rapidly exchange with water, broadening resonances 

and resulting in decreased sensitivity and resolution (Bai et al., 1993). 
13

C’ spins 

offer superior chemical shift dispersions than other species, and detection through 

this nucleus can improve spectral resolution. A robust procedure based on 

magnetisation transfers from side chain 
13

C nuclei to the detected 
13

C’ spins has been 

successfully implemented to assign a number of proteins (Bermel et al., 2008). 

However, a pitfall of this approach when studying IDPs is reliance on poorly 

dispersed 
13

C
α
/
13

C
β
 spins. 

More recently, an approach developed by Mӓntylahti et al. implements H
α
-detected 

experiments to complete backbone resonance assignments (Mantylahti et al., 2010, 

Mantylahti et al., 2011). Non-labile protons, such as H
α
’s, are not subject to the 

exchange effects detrimental to H
N
-detection based experiments. Therefore, 

resolution is dramatically improved in H
α
-detection based experiments. A further 

advantage of H
α
-detection methods is the unidirectional magnetisation transfer 

pathways they employ, reducing signal degeneracy by suppressing unnecessary 

transfer routes (Permi and Hellman, 2012). Consequently, it is possible to achieve 

near complete assignment of disordered proteins where conventional methods fall-

down. Another strategy to completing complicated resonance assignments is to 
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increase the dimensionality of the datasets acquired, thereby reducing the likelihood 

of signal overlap in higher dimensions. Coupled with recent advances in sparse free 

induction decay (FID) sampling, collecting 4D or 5D spectra represents an attractive 

alternative to traditional approaches when assigning IDPs as demonstrated by Wen et 

al. (Wen et al., 2011). 

Secondary chemical shift analysis revealed N1 is almost entirely disordered. By 

employing the chemical shift index method proposed by Wishart et al. (Wishart et 

al., 1991), it was found that N1 contains no regions of stable secondary structure. A 

limitation of calculating CSI values lies in the inability to detect transient secondary 

structure elements common in IDPs. Rather than adopt stable conformations, IDPs 

contain regions with a propensity to form secondary structure, with such elements 

often indicative of residues involved in ligand binding. A method proposed by Marsh 

et al. assigns a secondary structure propensity (SSP) score according to each residue 

representing the likelihood it adopts secondary structure. SSP analysis of N1 

revealed elements with propensity helical or strand confirmations in the C-terminal 

region of the protein (Marsh et al., 2006). The N-terminus exhibits no propensity for 

secondary structure and is entirely disordered. 

7.1.2 N-terminal Disorder in S. aureus Surface Proteins 

There are relatively few examples of proteins similar in size to N1 completely 

lacking stable secondary structure and it is difficult to infer the role such a high level 

of disorder may play in the function of N1. A number of other S. aureus surface 

proteins contain N1 subdomains within A domains analogous to FnBPA (Figure 63). 

ClfA/B, FnBPB and SdrC are known to bind fibrinogen via a similar mechanism to 

FnBPA, also employing N2N3 subdomains that adopt immunoglobulin-type folds 

(Deivanayagam et al., 2002, Ganesh et al., 2011a, Burke et al., 2011). However, no 

function has been attributed to their N1 subdomains. Given the structural similarity 

of the N2N3 subdomains, it was suggested the N1 subdomains in these proteins may 

also be IDPs, particularly since the initial identification of N1 was through 

susceptibility to protease activity. Simple analysis of the N1 subdomains reveals the 

low sequence complexity typically associated with IDPs and a lack of obvious 
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sequence similarity across these proteins (Figure 64). However, other than sharing 

the overall characteristics of IDPs, there is little similarity between sequences. 

 

 

Figure 63 The domain organisation of FnBPA and other cell-wall anchored S. aureus surface 

proteins. The repeat regions (R) and regions of unknown function (B) are labelled accordingly. All A 

domains are organised and labelled similarly to FnBPA except SasG, which contains a predicted 

lectin type domain (A2) and a domain analogous to N1 (A1). 
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FnBPA   ASEQKTTTVEENGNSATD--NKT--SE---TQTTA-----TNVNHIE-ETQSYNATVTEQ  83 

FnBPB   ASEQNNTTVEESGSSATE--SKA--SE---TQTTT-----NNVNTID-ETQSYSATSTEQ  83 

ClfA    ASENSVTQSDSASNE-SKSNDSSSVSAAPKTDDTNVSDTKTSSNTNNGETSV-AQN----  92 

ClfB    ASEQSNDTTQSSKNNASADSEKNNMIETPQLNTTA-----NDTSDISANTNSANVDSTTK  98 

SdrC    -----------------------------------------AAEHTNGELNQ-SKNETTA  67 

SdrE    AAENTSTEN-AKQDDATTSDNKEVVSETENNSTT----ENNSTNPIKKETNTDSQPEAKK  106 

Cna     ------------------------------------------------------------ 

SasG    --------------------------------AA----ENNIENPTTLKDNVQSKEVKIE  73 

                                                                           

 

FnBPA   PSN--A-----TQVTTEEAPKA--------VQA--PQTAQ---PANIETVKEEVVKEE--  121 

FnBPB   PSQ--S-----TQVTTEEAPKT--------VQA--PKVET---SR---------------  108 

ClfA    PAQQETTQSSSTNATTEETPVTGEATTTTTNQANTPATTQSS-NTNAEELVNQTSNET--  149 

ClfB    PMSTQT-----SNTTTTEPAST--------NET--PQPTAIKNQATAAKMQDQTVPQE--  141 

SdrC    PSENKTTKKVD------SRQLKDNT---QTATADQPKVTMSD-SAT--------------  103 

SdrE    ESTSSSTQKQQNNV---------------------TATTETK-PQNIEKENVKPSTDKTA  144 

Cna     ------------------------------------AARDIS-STNVTDLTVSPSKIEDG  51 

SasG    E----------------------------------VTNKDTA-PQGVEAKSEVTSNKDT-  97 

                                                                           

 

FnBPA   ----AKPQVKET-T----QSQDN-------SGDQRQ-VDLTP-KKATQNQVA-----ETQ  168 

FnBPB   -------------------------------------VDLPS-EKVADKETT-----GTQ  125 

ClfA    -------TFNDTNTVSSVNSPQNSTNAENVSTTQDTSTEA----TPSNNESAPQSTDASN  198 

ClfB    ----ANSQVDNK-T----TNDANSIATNSELKNSQT-LDLPQ-SSP------------QT  188 

SdrC    --------V--KETSSNMQSPQNATANQSTTKTSNVTTNDKS-STTYSNETD-KSNLTQA  151 

SdrE    TEDT-SVILEEKKA------PNNT-NNDVTT---KPSTSEPSTSEIQTKPTTPQ--ESTN  191 

Cna     GKTTVKMTFDDKN------------------------------GKIQ---------NGDM  72 

SasG    ----------------------------IEH---EPSVK---AEDISKKEDTPK--EVAD  121 

                                                                         

 

FnBPA   VEVAQPRTASESK------------PRVTRSADVAEAKEA-SNA---KVETG--------  194 

FnBPB   VDIAQPSNVSEIK------------PRMKRSTDVTAVAEK-EVV---EETKAT-------  162 

ClfA    KDVVN-QAVNTSA------------PRAFSLAAVAADAPA-AG-----------------  229 

ClfB    ISNAQGTSKPSVR------------TRAVRSLAVAEP--V-VNA---ADAKGTNVNDKVT  220 

SdrC    KDVSTTPKTTTIK------------PRTLNRMAVNTVAA---------------------  178 

SdrE    IENSQPQPTPSKVDNQVTDATNPKEPVNVSKEE--------------LKNNPEKLKELV-  236 

Cna     IKVAWPTSGTVKIEG-----YSKTVPLTVKGEQVGQAVITPDGATITFNDKVEKLSDVSG  127 

SasG    VAEVQPKSSVT--HN----AETPK----VRK-----------------------------  142 

                                                                           

 

FnBPA   ------------- 

FnBPB   ------------- 

ClfA    ------------- 

ClfB    ASNFKLEKT----  229 

SdrC    ------------- 

SdrE    ------------- 

Cna     FAEFEVQGRNLTQ  140 

SasG    ------------- 

 

Figure 64 Sequence alignment of N1 subdomains. The multiple sequence alignment was performed 

using Clustal Omega (Wagner et al., 1983). 

1
D 

1
H NMR spectra of the N1 subdomains from FnBPB, ClfA and the analogous 

domain of SasG (termed A1) suggest all three proteins are intrinsically unstructured 

(Figure 65). This may imply the N1 domains fulfil a common role in cell-wall 

anchored surface proteins. It has been suggested that the N1 subdomain of FnBPB 

may protect the N2N3 subdomains from action by host proteases preserving ligand 

binding activity (Burke et al., 2010). As other cell-wall anchored proteins also 

contain regions with ligand binding activity, an ever-present domain limiting 

protease activity would be beneficial. An advantage of disorder is an increased 
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ligand capture radius that could be useful in the early stages of host colonisation, 

particularly as the N1 subdomains are likely to be most distal from the cell surface. 

Such a role has been suggested for SasG, with the A1 domain essential for this 

function (Corrigan et al., 2007). However, as the N1 domain is unnecessary for 

ClfB-mediated adhesion to squamous tissue a divergence of roles is also 

possible(O'Brien et al., 2002b). 

 

Figure 65 1D 
1
H NMR spectra of disordered N-terminal subdomains. NMR spectra of N1 from 

FnBPA (A) and ClfB (B) and A1 from SasG (C). Data was acquired at 298 K and pH 6.0. Despite the 

presence of contaminants, all spectra contain features suggestive of disorder. 

7.2 A Domain Interactions with Host Factors 

Interactions between S. aureus surface proteins and host extracellular matrix proteins 

are of paramount importance in the early stages of a number of diseases (Arrecubieta 

et al., 2006, Clement et al., 2005). Indeed, the recognition of two ligands, fibronectin 

and fibrinogen, is thought to underpin FnBPA’s importance as a S. aureus virulence 

δ 
1
H (ppm) δ 

1
H (ppm) 

δ 
1
H (ppm) 

A B 

C 



Chapter 7 

167 

 

factor. As the N1 subdomain has no attributed function, its ligand binding capacity 

was investigated with a series of blood-plasma pull-down experiments. Glutathione 

S-transferase (GST) and hexa-histidine tagged constructs of N1, N1N2 and fA were 

expressed, purified and used as ‘bait’ proteins and incubated with plasma. Following 

the incubation, little intact bait protein was successfully recovered. However, when 

the A domain interacted with plasma components, fA with fibrinogen or N1N2 non-

specifically with serum albumin, a small amount of bait protein was recovered. 

Therefore, it seems the A domain is subject to proteolysis in plasma, probably within 

the N1 subdomain, and that the cleavage site is protected following ligand binding. 

In addition to the inability to recover the A domain proteins a significant amount of 

non-specific binding to the magnetic beads used to anchor the bait proteins was 

observed. To circumvent the problem of non-specific interactions, a number proteins 

encompassing the A domain and the first FnBR were covalently attached to 

sepharose beads to generate affinity columns over which plasma could be passed. 

Fibrinogen and fibronectin were both pulled down by constructs containing their 

respective binding sites. However, N1 did not isolate any plasma components. 

A critical step in S. aureus infections is adherence to host tissues, enabling 

subsequent immune evasion (Edwards et al., 2011). Several surface protein adhesins 

have essential roles in a number of colonisation processes, interacting directly with 

host cell receptors or via mediating molecules (Sinha et al., 2000b). FnBPA plays 

such a role in host cell internalisation through the fibronectin-mediated contacts with 

integrins on the surface of endothelial cells (Edwards et al., 2010). This is a well-

characterised process involving the FnBRs. Other S. aureus surface proteins with 

structural similarities to FnBPA, ClfB and SasG, are also able to promote adhesion 

to host tissues (O'Brien et al., 2002b, Roche et al., 2003). ClfB binds to human type 

1 cytokeratin 10, whilst the specific receptor for SasG mediated adherence is 

unknown. The N2N3 subdomains and disordered A1 subdomain of ClfB and SasG, 

respectively, are necessary for host cell adhesion. Thus, it was postulated the A 

domain of FnBPA could fulfil a similar role. The ability of the A domain to promote 

adherence to endothelial cells was investigated by cell pull-down experiments. 

Human umbilical vein endothelial cells (HUVECs) were used as bait in analyte 

solutions containing N1, N2N3 or fA. Western blot analysis revealed fA bound to 

the HUVECs and is the first evidence of an interaction involving the N1 subdomain. 
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The reason why only fA and not N1 or N2N3 bound to HUVECs could be explained 

by subtle structural differences between the intact A domain and isolated 

subdomains. The structural characterisation of N1 revealed that the C-terminal 

region exhibits a propensity to form secondary structure. The presence of the 

independently folded N2 subdomain could potentially stabilise these transient 

conformations, enabling binding to endothelial cell surface receptors. In the absence 

of N2, the increased entropic cost of stabilising N1 is not overcome by binding, and 

so the interaction is not permitted. Conducting similar experiments with recombinant 

N1N2, or N2N3 with an extended N-terminus, could investigate this hypothesis. 

Another important consideration is the apparent proteolysis N1 undergoes when 

subjected to plasma, suggesting FnBPA would not survive S. aureus bacteraemia 

intact and potentially inhibiting fA mediated endothelial cell adherence. Therefore, it 

is important to identify the cleavage site within the A domain and the minimum 

region required to adhere to endothelial cells before the physiological relevance can 

be concluded.  

Despite the aforementioned caveats, the ability of the A domain to mediate 

adherence to endothelial cells has potentially far reaching consequences. As an 

opportunistic pathogen, the capacity of S. aureus to colonise different environments 

is an important facet of its virulence. The ligand binding redundancy between 

FnBPA and other S. aureus surface proteins is well documented (Deivanayagam et 

al., 2002, Ganesh et al., 2011b, Keane et al., 2007a, Wann et al., 2000). However, 

interplay between surface proteins able to mediate host colonisation is poorly 

understood. Expression of multiple proteins that bind to different tissues would be 

advantageous during the spread of infections. ClfB can mediate nasal colonisation 

(O'Brien et al., 2002b), however there is no evidence to suggest ClfB can adhere to 

host vasculature. Therefore, FnBPA, able to mediate adherence through either the A 

domain or FnBRs, might be employed by S. aureus to colonise different tissues and 

establish an infection. Further investigation is required to confirm the viability of A 

domain-mediated adherence in vivo, although it is the first evidence suggesting a 

function for the N1 subdomain. 
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7.3 FnBPA-mediated Biofilms 

An important facet of S. aureus virulence is its tendency to form biofilms on 

implanted medical devices. Growth in a biofilm provides bacteria with an increased 

resistance to the host immune response and antimicrobial agents and as a result 

infections are more difficult to treat. The molecular mechanism of protein-mediated 

biofilm formation is poorly understood, particularly for FnBP-mediated biofilms. A 

study found that the A domain of FnBPA is necessary and sufficient for biofilm 

formation, though no mechanistic details of its role were investigated. Cell 

accumulation in other protein-mediated biofilms is thought to result from Zn
2+

-

induced dimerisation of protein molecules on neighbouring cells (Conrady et al., 

2008, Geoghegan et al., 2010). While the conditions necessary for FnBP-mediated 

biofilms differ from those of other protein-mediated biofilms, requiring mildly acidic 

condition resulting from glucose metabolism, Zn
2+

 is essential for biofilm integrity. 

Therefore, it was suggested FnBPA might also utilise a ‘zinc-zipper’ mechanism to 

promote cell aggregation. 

The full A domain of FnBPA did dimerise under the conditions known to induce 

biofilm formation; at pH 5.5 and in the presence of Zn
2+

. Smaller fragments of the A 

domain were always monomeric under the conditions tested suggesting an extended 

interface between protein molecules is required if FnBPA utilises the ‘zinc-zipper’ 

mechanism. A caveat to describing FnBP-mediated biofilm formation using the zinc-

zipper model is the concentration of Zn
2+

 required to induce dimerisation. A 500-

fold molar excess of Zn
2+

 was necessary for dimers to form, far exceeding the 

protein to zinc ratio thought to be achievable in vivo where free zinc concentration is 

in the low femtomolar range. Therefore, it seems more likely a different interaction 

facilitates cell accumulation in FnBP-mediated biofilms. 

Extracellular DNA (eDNA) and teichoic acids (eTA) are major components of the 

biofilm matrix, along with proteins and PIA. The relative concentration of each 

component varies depending on the type of biofilm formed. Although their exact role 

is not known, both eDNA and eTA are ubiquitous in protein-mediated biofilms with 

eDNA known to be key to structural integrity in the early stages on biofilm 

development and able to mediate primary attachment. The coordination of metal ions 
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plays an important role in a number of DNA/protein interactions (Nowotny et al., 

2005, Beese and Steitz, 1991, Schreiter et al., 2006). Typically, the carboxyl groups 

of glutamate and aspartate residues and phosphate groups of DNA coordinate metal 

ions to establish the interaction. The N1 subdomain of FnBPA contains 26 aspartate 

and glutamate residues that could mediate an interaction with DNA by Zn
2+

 

coordination. Thus, the ability of FnBPA to interact with DNA, and the potential 

involvement of Zn
2+

 was investigated. EMSAs and NMR spectroscopy indicate that 

there is no interaction between N1 and DNA and that the addition of Zn
2+

 has no 

effect. However, Izano et al. found that eDNA fragments greater than 10 kb in length 

were necessary for biofilm viability (Izano et al., 2008a). The DNA fragments used 

in this study were approximately 6 kb in length and may not be able to form stable 

and interactions with N1. The sensitivity of NMR enables weak interactions to be 

detected and it seems unlikely the even suboptimal interface formation would not be 

detected. 

The role of eTAs in protein-mediated biofilm formation is not yet understood, 

despite them being ever-present. In the absence of other interactions that might 

stabilise FnBP-mediated biofilms, it is possible FnBPA and teichoic acids interact to 

drive cell accumulation. Wall teichoic acids (WTA), found to be structurally 

identical to eTA (Sadovskaya et al., 2006), were isolated and binding to N1 

investigated by NMR spectroscopy. The addition of an increasing concentration of 

WTAs to 
15

N labelled N1 resulted is residue specific chemical shift perturbations. 

These chemical shift changes were unidirectional suggesting residues involved in 

WTA binding were affected in the same way. Typically such chemical shift changes 

are associated with non-specific interactions or changes in temperature and pH 

(Baxter and Williamson, 1997). All spectra were acquired at 298 K with the 

temperature tightly controlled throughout the titration. Following each addition of 

WTA, the pH was also measured and corrected as required to pH 5.5. Therefore, it 

seems unlikely either of these variables would account for the observed chemical 

shift changes. However, WTA are known scavengers of divalent metal cations, and 

despite extensive dialysis, an increased ion concentration may have resulted from the 

addition of WTA to the N1 sample, accounting for the chemical shift perturbations. 

The observed line broadening of a number of resonances could also be attributed to 

ionic effects (Lambert et al., 2005). 
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The similarity of the chemical shift changes observed in the N1 NMR spectra may 

also reflect how N1 interacts with WTAs. Electrostatic interactions can result in 

systematic chemical shift perturbations (Live et al., 1984, Wagner et al., 1983). 

Therefore, the chemical shift changes in the N1 spectrum could result from an 

extensive electrostatic interface between N1 and WTAs. The polymeric nature of 

WTAs may result in the same region of the repeat unit interacting with N1 backbone 

amide groups, inducing the similar chemical shift perturbations observed for affected 

residues.  

The addition of Zn
2+

 resulted the formation of a precipitate containing N1 (data not 

shown). Zn
2+

 has no effect on the solubility of either N1 or WTAs when in isolation, 

suggesting Zn
2+

 enhances the interaction between N1 and WTAs resulting in the 

observed precipitate. Although the Zn
2+

 binding capacity of WTAs is unknown, 

binding to other divalent metal cations, such as Mg
2+ 

and Cd
2+

,
 
has been well 

characterised (Halye and Rice, 2010, Wickham et al., 2009). However, Zn
2+

 is an 

essential component of the FnBP-mediated biofilm matrix and its role may be to 

stabilise the interface between FnBPA and eTAs or WTAs.  

To confirm the validity of the N1:WTA interaction further spectroscopic methods 

could be employed. NOEs have been employed to distinguish between non-specific 

interactions and specific structural rearrangements the result from interactions with 

metal ions (Riek et al., 1999), and a similar approach could be applied to N1. 

Changes to carbon chemical shifts could also be monitored on the addition of WTA 

to determine if perturbations attributable to specific or non-specific interactions are 

observed, with uniform and unidirectional movement indicative of the latter. A 

different technique less sensitive to ionic effects, such as surface plasmon resonance 

or mobility shifts assays could also be employed to confirm the legitimacy of the 

interaction. Implementation of either of these techniques would also be useful in 

determining the involvement of other regions of the A domain outside the scope of 

this work. 
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7.4 Role of Disorder in N1 Function 

In many instances identification of secondary structure propensity in IDPs is 

indicative of regions involved in ligand binding interactions. The SSP analysis of N1 

revealed the C-terminal region exhibits a propensity to form elements of secondary 

structure. Both the identified interactions involving N1 indicate this region is 

necessary for binding. In each case a stabilisation of these transient conformations 

may result in the formation of a stable interface, enabling FnBPA to fulfil the 

required role. A recent study has suggested that a truncated FnBPA construct lacking 

approximately the first 100 residues of N1 is the minimal region required for stable 

surface expression and to mediate biofilm formation (Geoghegan et al., submitted 

manuscript). Coincidentally, a similarly truncated variant of FnBPA is produced by 

the action of thrombin, a protease present in plasma. These findings suggest that the 

regions of N1 adopting transient secondary structure, identified through the 

structural characterisation and thought to be key in the interactions described here, 

are physiologically relevant and are likely to be crucial for FnBPA’s function. 

The entropic penalty of stabilising disordered proteins is offset by a high enthalpic 

contribution (Dyson and Wright, 2001). As a result interactions involving IDPs are 

highly specific but low affinity. Recognition of multiple ligands is a well-

documented facet of IDP function and coupled with the aforementioned 

thermodynamic characteristics enables IDPs to fulfil a variety of roles (Kim et al., 

2008). For example, recognition of multiple kinases enables regulation of a number 

of aspects of the cell cycle by kinase inhibitor p21
Cip1

 (Kriwacki et al., 1996). 

Despite this well-studied binding promiscuity, there are no examples of IDPs 

fulfilling two such distinct roles as those proposed for N1 within the FnBPA A 

domain; adhesion to endothelial cells and binding to WTAs. The supposition that in 

both cases ligand interactions stabilise local folds is a phenomenon observed in 

many systems, from protein:protein interactions (Schwarz-Linek et al., 2003) to 

protein:DNA interactions (Spolar and Record, 1994). To confirm the feasibility that 

N1 could contribute to separate processes requires further investigation, particularly 

in deducing the role played by the rest of the A domain. 
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