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Abstract 

Quantitative one-dimensional proton NMR metabolomics is performed on growth medium 

samples gathered at up to ten time-points during the in vitro culture of P. falciparum in 

human red blood cells. From this study, exchange fluxes between the parasite-host 

complex and the growth medium are calculated for glucose, lactate, glycerol, glutamine, 

hypoxanthine, valine, leucine, isoleucine, alanine, tyrosine and phenylanaine. 

Carbon-source exchange fluxes are added as constraints to a new model of malaria 

metabolism — built using my published MetNetMaker software — consisting of 249 

reactions, 143 genes and a novel experimentally derived biomass function. 

Analysis of this network including by flux-balance analysis and flux-variability analysis are 

projected onto a live map of the network providing the most accessible view of malaria 

metabolism to date. This model reproduces key phenotypes of the malaria parasite such as 

the unusual branched TCA cycle, and accurately predicts internal fluxes through the 

pentose-phosphate cycle and the low oxygen-dependence of the parasite’s metabolism 

during its erythrocytic life stages. The model is carbon balanced and accurately predicts 

the parasite’s growth-rate at measured glucose uptake rates. Furthermore, it accurately 

reproduces measured amino acid and purine-source exchange fluxes at the optimal 

solution and implies that the parasite digests 30% of its red blood cell host’s haemoglobin 

but incorporates just 40% of the resulting freed amino acids into its proteome. Lethal 

single and double gene deletions are predicted and suggest potential drug and vaccine 

targets. 

The metabolic model is available in MetNetMaker format for easy editing, SBML format 

including constraints for metabolic modelling and the independent reproduction of the 

reported results, and cytoscape format with metadata for visualisation of both the 

network and the results of simulations performed on it. 
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Introduction 

Metabolic networks 

 

 

 

 

 

 

 

Metabolism - the chemical processes that occur within a living organism in order to 

maintain life. 

The Oxford English Dictionary 

 

 

 

 

 

 

 

 

This thesis is an attempt to more fully understand the chemical processes that make up 

the metabolism of the parasite Plasmodium falciparum, the cause of malaria in humans. 

Let us start at the beginning.  
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Life as a controlled network of chemical reactions 

For the greater part of human history the realms of the living and the dead were 

considered to be largely separate. Greek philosophers, and many who followed, believed 

that the chemistry of animals and plants was inspired by a force greater than what drove 

reactions between minerals.  

In 1828, Friedrich Wöhler began to dismantle the barrier between the living and the non-

living by showing that urea could be made without the intervention of a living organism. 

The discovery that a compound found in the urine of animals could be made from two 

solutions not associated with life marked the birth of organic chemistry. 

Meanwhile, in the fields of agriculture and biology, the increasing population of the world 

was quickly approaching the limits of the soil to produce food. In highest demand by 

farmers were the nitrites and similar nitrogenous compounds required for the production 

of proteins by plants. At this time, humanity had only one primary renewable source for 

these compounds; leguminous plants such as peas and beans which were known to 

accumulate nitrates in their roots. In 1888 Martinus Beijerinck had isolated and studied 

the bacteria that lived in the root nodules of these plants1 and noted that they produced 

nitrites from the hydrogen and the nitrogen in the air but the mechanism of the reaction 

remained unknown. The limited amount of nitrogenous fertiliser, from manure, guano, or 

saltpetre mines in South America risked defining the limit of human population. 

With such a constraint on production the price of nitrites grew ever higher and much 

attention was turned to performing for ourselves the same reaction that bacteria had 

mastered millennia before. The development of the Haber process in 1908 was the 

achievement of that goal. And yet it was striking that industrial production of nitrites 

required a temperature of 300°C and a pressure of 100 atmospheres whilst the same 

reaction in bacteria operates at ambient temperature and pressure. Although we had 

learned to mimic a reaction that bacteria had mastered it was clear that we still had a lot 

to learn from bacteria in the emerging field of biochemistry. 

In this genomic era of biology we have moved beyond mimicking reactions that bacteria 

already perform and started to use bacteria for our own purposes. Insulin, a hormone 

produced by the pancreas, helps regulate blood sugar levels in humans. In patients with 

diabetes insulin is not produced properly by the patient but blood sugar levels can still be 

controlled by injecting insulin from an external source. For decades the only source of 

insulin was by isolating it from the pancreas of an animal an expensive and dangerously 

unsterile procedure. It was clear that it would be a great advantage to be able to 

synthesise pure insulin — a molecule over 300 times as large and enormously more 
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complex than ammonia — from basic materials but the existing chemistry was not up to 

the task. 

The solution arrived at by Herbert Boyer in 1978 was to add a gene encoding insulin to a 

bacterium and let the intricately evolved and interoperable systems of life deal with the 

complexity of the synthesis. This application of biochemistry is now often called 

biotechnology and it is probably the fastest growing discipline in all of science. Today we 

are turning to biotechnology to solve problems in fields as diverse as medicine, 

environmental protection and energy supply.  

In less than 200 years we have moved from single reactions between minerals to hijacking 

the thousands of controlled and overlapping reactions that let bacteria live to our own 

ends. Wöhler opened the world of organic chemistry to us with a single reaction. Haber 

developed a process that not only permitted a more difficult reaction but also linked 

together several reactions. Boyer harnessed the set of regulated reactions within bacteria 

to produce a chemical product of unprecedented industrial complexity, but he did so by 

using, not understanding, the complex systems of the E. coli bacterium. The future of 

biotechnology lies in extending our ability to harness the existing set of regulated 

reactions within an organism to shaping that metabolism to our own needs. Before we can 

do this we must first more fully understand the process of metabolism. 

The chemical reactions we know to exist in the living world are no different to ones we 

could perform in isolation without the intervention of life. What makes life special is that it 

has evolved not to perform these reactions in isolation but rather to perform them 

together and most importantly to perform them as part of a controlled network with 

reactants and products separated and allowed to mix as and when required. The scale on 

which these networks operate and the variability and harshness of the conditions they are 

able to tolerate is astounding and it will take decades to understand them fully. However, 

even at this early stage it seems clear that much of the function and the resilience of the 

metabolic networks that maintain life can only be understood in terms of the relations 

between all the components of the network. 

The gene-protein-reaction relationship and the importance of enzymes 

Some of the reactions within a living organism occur spontaneously at a rate sufficient to 

permit life, and perhaps more frequently at a rate sufficient to cause death. Depending on 

how you look at it we should be either frustrated or grateful then, that the majority of 

reactions require the intervention of one enzyme or more to take part in the processes of 

life. It would be hard to make much progress in describing metabolism without first 

describing what has become known as the central dogma of molecular biochemistry.  
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Figure 1: Simplified depiction of the central dogma of molecular biochemistry  
(Daniel Horspool – Wikimedia Commons under license: CC BY-SA 3.0). 

The central dogma, as shown in figure 1, is that DNA is transcribed to RNA by RNA 

polymerase and then translated to a protein by a ribosome. In this simple model, the unit 

of transcription is the gene, with each gene directly related to one strand of RNA and each 

strand of RNA directly related to one protein. If the protein is an enzyme — and in study of 

metabolism almost all proteins of interest will be — then this enzyme catalyses a single 

reaction. This gene-protein-reaction (G-P-R) relationship, where the proteins act as 

enzymes, is at the core of studying metabolism.  

In reality the links between gene and protein are complicated by alternative splicing, post-

transcriptional modification and post-translational modification. Similarly the link 

between protein and reaction is often more complex than simply linking a single enzyme 

with a single chemical reaction. Nevertheless, the underlying concept of the central dogma 

and its application to the study of metabolism as a set of G-P-R relationships is valid and in 

the case of simple bacteria, unencumbered by many of the complexities of higher orders of 

life, can give a remarkably accurate representation of an organism. 

Now that we know where they come from, let us turn to considering what enzymes do. 

We can break enzyme function down into three parts. They speed up slow reactions, they 

allow reactions to occur that would otherwise take place so infrequently that they might 

as well be considered impossible and they let an organism control when and where 

reactions occur. Let’s deal with these three features of enzymes in turn. 
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Enzymes speed up reactions 

The rate at which a reaction proceeds is overwhelmingly governed by two factors, 

activation energy and temperature, as formalised in Arrhenius’ law. 

           

  reactions second,   constant,    activation energy,   gas constant,   temperature in  elvin 

The simplest way to speed up reactions is thus to increase the temperature and as a rule of 

thumb Arrhenius’ law tells us that the rate of a reaction doubles for every 10°C increase in 

temperature. For industrial processes, increasing temperature is rarely a problem. Life on 

the other hand is restricted by both the temperature of its surroundings and the physical 

properties of water and even the hardiest bacteria cannot survive in boiling water for long.  

Once the option of raising temperature to speed up reactions is exhausted*lowering a 

reaction’s activation energy is the most effective alternative. Enzymes are the direct 

equivalents of the catalysts — typically made of heavy metals and often effective only at 

high temperatures — we use industrially for this purpose.  In comparison, enzymes have 

evolved to operate in the conditions provided by the host organism and only occasionally 

incorporate rare metallic atoms to improve their effectiveness.  

Enzymes and catalysts speed up reactions not by changing the equilibrium concentrations 

of the reactants and products or the free energy difference between them but rather by 

reducing the activation energy required for the reaction to proceed. 

Enzymes permit extremely unlikely reactions 

A naïve interpretation of the second law of thermodynamics can show life to be impossible 

in that it frequently appears to build order from disorder and structure from individual 

compounds. The flaw in this line of argument is that the Earth is not a closed system but 

rather driven by the heat and light delivered by the Sun. Still, it is essential to consider the 

mechanism by which the Sun is able to drive all the chemical processes of life on Earth 

given that only a tiny fraction of the reactions in a tiny fraction of the organisms on the 

planet are able to photosynthesise and thus directly harness the energy that the sun 

provides. These photosynthetic organisms are able to convert electromagnetic radiation 

into compounds with a large amount of easily accessible energy, usually adenosine tri-

phosphate (ATP), frequently stored in a more stable form such as glucose for conversion 

back to ATP, or similar, as required. Compounds like ATP, with large amounts of available 

free energy, are what allow hundreds of other key enzyme-mediated metabolic reactions 

                                                             
* few warm-blooded animals exceed a body temperature of 40°C. 
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to occur. More specifically, ATP permits reaction to occur in a direction that would not 

otherwise satisfy the second law of thermodynamics. 

 

Figure 2: KEGG reaction R04479, catalysed by enzyme 2.7.1.11, typically proceeds in the direction shown in part a. 
It can be considered a combination of two reactions, b and c with opposite energetically favoured directions. 

KEGG reaction R04479, shown in figure 2, is a good example of this property. The reaction 

shown in part b; β-D-Fructose-6P to β-D-Fructose-1 ,6P2  through the addition of a 

phosphate ion, is not energetically favourable and at equilibrium the population of β-D-

Fructose-6P will be much higher than the population of β-D-Fructose-1 ,6P2. Similarly, but 

in the other direction, the equilibrium concentration of ATP is extremely low compared 

with the equilibrium concentration of ADP. 

Because an enzyme ensures that both components of the desired reaction R04479 take 

place at the same time and in the same place it can also ensure that the free energy 

released by the dissociation of ATP and the high energy phosphate group can be used to 

phosphorylate the β-D-Fructose-6P molecule. Furthermore, although the natural reaction 

rates of reactions b and c are much higher than the natural reaction rate of reaction a, the 

presence of the enzyme 2.7.1.11 specific to reaction a means that as long as ATP is 

supplied to the system, β-D-Fructose-1 ,6P2 is produced more quickly than it is consumed 

by reaction b. For this reason we can, in the presence of the correct enzyme, draw reaction 

R04779 just as in figure 2a.  

For almost all of this thesis this simplified picture will serve us adequately and all the 

analysis I have performed assumes that an enzyme-mediated reaction takes place only in 

the presence of the enzyme facilitating it. In all but a few cases I have ignored the kind of 

spontaneous decay shown in figure 2b and c. Nevertheless, it is important to appreciate 

the limitations of the simplification of all three sections of figure 2 to just the part shown 

in section a and be wary of situations where this simplification is no longer valid. 

Enzymes let an organism control when and where a reaction takes place 

The third key advantage to life of making use of enzyme-catalysed reactions is that the 

presence and location of these enzymes can be set to allow certain reactions to occur only 

at certain times within the life-cycle or within certain organelles and internal 
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compartments. Although this property is useful in bacteria and other prokaryotes it is 

particularly important to the functioning of mitochondria within eukaryotic cells. 

Mitochondria can only function because particular reactions occur in separate 

compartments with limited permeability between them. The inclusion of compartments 

within a metabolic model for P. falciparum is similarly essential as I will show later. 

Metabolism is highly conserved 

Now that we have seen how genes, enzymes and reactions are related and how enzymes 

thus govern the chemical reactions that make up metabolism, let us turn to what I 

consider one of the most beautiful results in all of science. 

That the machinery of the central dogma of biochemistry is shared across all living 

organisms is magnificent evidence for the common ancestry of all life on Earth and it is 

this common language of DNA, RNA and proteins that lets us express human genes in 

bacteria. And yet I see absolutely no reason to extrapolate from this that the products of 

that machinery, the enzymes that govern the chemical reactions that make up our 

metabolism, should be as deeply shared. Figure 3 shows the collection of reactions that 

form the Glycolysis I metabolic pathway — the key link in the conversion of glucose to 

lactate that sports scientists call anaerobic respiration — in humans and in E. coli. It is 

striking in this image that the two pathways, despite around three billion years of separate 

evolution, are almost exactly the same. And not only are the reactions the same but the 

amino acid sequence of each pair of enzymes in this pathway is so similar that the DNA 

sequence of each enzyme-coding gene in E. coli can be found, albeit with a few 

modifications, in every human’s genome.  

In some ways it should not surprise us that some core pathways, and their component 

reactions (and thus enzymes and genes) are conserved. The process of evolution works in 

small steps, not in great leaps, and thus a successful system, even an imperfect one, is 

likely to be retained in future species. And yet in the 3-4 billion years since life began there 

has been plenty of time for changes to occur and for the different species, and certainly the 

different kingdoms, of life to diverge and find different enzymes, perhaps even different 

pathways, to perform identical roles. For this reason I think the finding of Peregrin-

Alvarez et al.2 that “half of the metabolic enzymes have homologs in all domains of life” is 

particularly beautiful. To someone like myself who entered the field of biochemistry after 

studying physics it is also surprising. 
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Figure 3: Visual representations of the Glycolysis I Pathway in E. coli (left) and Human (right) in Biocyc 15.1 

The widely shared homology of metabolic enzymes has enormous practical benefits. It 

means that as long as we have the genome sequence of an organism — an increasingly 

affordable thing to discover — we can immediately find a significant proportion of its 

enzymes just by searching that genome for sequences homologous to known genes. In this 

way an enzyme whose associated gene and reaction has been discovered in one organism 

can be found in all other organisms where there is a homolog. 
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Existing ontologies in systems biology 

KEGG LIGAND contains our knowledge on the universe of chemical substances 

and reactions that are relevant to life. 

- First sentence of the KEGG LIGAND site at www.genome.jp/ligand 

In order to define a set of chemical reactions we must first define a single reaction. This is 

not as easy as it sounds. 

Identical reactions almost always have many different names and a single name is not 

guaranteed to refer to a single reaction. Furthermore, each compound making up a 

reaction will almost always have many different names and again a single name is not 

guaranteed to refer to a single compound. Clearly, in order to construct a metabolic 

network these naming problems have to be overcome and a single naming system must be 

defined. This defined naming system is called an ontology and within systems biology 

there are two leading ontologies that define both reactions and compounds, MetaCyc and 

KEGG. 

MetaCyc 

The MetaCyc ontology3 is maintained by Peter Karp’s group at SRI International 

(previously Stanford Research Institute) and is available as a collection of flat-files for free 

to both academics and industry and as part of Pathway Tools for free to academics. It is 

tightly coupled to the Biocyc pathway/genome database collection and the pathway tools 

software package available from SRI International. As of 2011, MetaCyc contained a 

description of 9460 unique reactions and 9188 Compounds. 

MetaCyc reactions and compounds are linked as part of a well-defined hierarchy stored by 

Pathway Tools in object-orientated structures written in the LISP programming language. 

This has the advantage of providing extensive links between entities within the ontology 

but the drawback that the data structure is extremely complex. Access to the MetaCyc 

ontology is available directly via Pathway Tools and via Java and Perl APIs for Pathway 

Tools all of which represent a steep learning curve for those new to the field. The ontology 

is also available as a collection of flat-files in a variety of formats although the structure of 

these files is necessarily complex to represent the extensive links between component 

entities. 

KEGG LIGAND 

The LIGAND ontology4 is part of the larger Kyoto encyclopedia5 of genes and genomes 

(KEGG) and was maintained until recently by its founder within the Kanehisa group. 
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Financial pressures mean that access is now provided via a non-profit organisation, NPO 

Bioinformatics Japan. Currently the ontology is mostly free to academics and industry* and 

looks likely to remain so but recent developments mean that access may become more 

difficult in the future. As of 2011, LIGAND describes 8146 unique reactions and 14762 

Compounds (some deprecated, some similar). 

The ontology is available directly on the internet and via the KEGG API with the complete 

ontology available in flat files. Each compound is given a unique ID starting with a C and 

followed by 5 digits (C00001 = water, C00002 = ATP, etc...) and each reaction is given a 

unique ID starting with an R and following by 5 digits (R00004 = diphosphate 

phosphohydrolase, R00028: maltose glucohydrolase, etc…). Although it is hard to find, 

KEGG provides a file named compound.inchi which provides International Chemical 

Identifier (InChI) codes — text strings that uniquely describe all chemical compounds — 

for all KEGG compounds. 

LIGAND vs MetaCyc 

With the exception of some notable efforts to link the two major ontologies of metabolism, 

some of which I mention later, they remain effectively incompatible. Therefore it is 

regrettably necessary to make a choice before embarking on a considerable effort in a 

given area. To this end I took the advice of many different people including my supervisor 

David Westhead, others in the lab including John Whitaker and Elizabeth Edwards and 

Markus Herrgard. Additionally, I attended a two-day workshop on Pathway Tools at King's 

College London in 20086. The opinions I formed then, and since, on the differences 

between the two ontologies are summarised below in two parts. 

Ontology take-up and completeness 

Biocyc currently contains 1129 pathway/genome databases all based on the MetaCyc 

ontology of which 4 are intensively curated with almost all genes having been identified by 

an expert and the corresponding reaction assigned by that person. Thirty-two pathways 

are mildly curated with a computational model having been improved by an expert in the 

metabolism of the organism or in metabolism generally. The remaining metabolic 

networks have been created by computational annotation only. 

KEGG currently contains 1536 pathway/genome databases all based on the LIGAND 

ontology the vast majority of which were assembled using computational annotation 

                                                             
* Direct internet and API access is unrestricted and can feasibly supply the whole ontology. Bulk 
downloads of the ontology as flat-files via FTP is now restricted to paid licensees as part of a larger 
package of services  EGG provides. 
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alone. The extent of manual curation on those pathways claiming to have been manually 

curated is extremely variable. 

Both ontologies are widely used and capable of accurately representing a metabolic 

network. In fact both had been used for metabolic network reconstructions of Plasmodium 

falciparum, MetaCyc by Yeh et al.7 and LIGAND by Ginsberg8, before I started my PhD. 

Ontology complexity 

Although it is unwise to judge a scientific tool on its appearance, the best place to start 

comparing the complexity of the two ontologies is to look at the default representation of a 

single compound. In figure 4 and figure 5 on the following pages a condensed version of 

the compound descriptions for ATP in each of the ontologies is shown. Whilst both 

definitions uniquely define the compound there is a stark contrast between the LIGAND 

representation, three pages of simple but ordered information, and the MetaCyc 

representation, seventeen pages of extensive and well linked but cluttered information. 

A closer inspection of these figures shows a key advantage of MetaCyc over LIGAND. In 

both ontologies compounds are well linked with reactions and pathways in addition to 

information on the physical properties of the compound. MetaCyc goes a step further by 

linking compounds with other compounds, a property of the ontology’s structure that is 

extended to reactions. In the ATP example we see that ATP belongs to various nested 

classes of compounds, “a purine phosphate” which is a member of “a ribonucleoside 

triphosphate” which is a member of “a nucleoside triphosphate” and so on. This extra 

linking offers some attractive features. For example ambiguities in a metabolic network 

can be represented more simply and more flexibly within this system.  

In my experience this contrast in styles extends across the full extent of both ontologies. 

LIGAND’s use of unique IDs makes using the ontology simpler and easier to apply 

computationally and in my use there are only a few areas where the more complex 

hierarchical structure of MetaCyc makes sacrificing that simplicity worthwhile*. It is 

further worth noting that the ambiguities that the MetaCyc ontology permits in metabolic 

networks must be resolved; the subject of a fascinating talk9 by Jeremy Zucker of the 

Broad institute at the NeSC metabolic modelling workshop at the National eScience Centre, 

Edinburgh, 07/04/2010. 

In summary then, my slight preference is for the LIGAND ontology. This is a particularly 

sensible choice because the most extensive manual curation of malaria metabolism to date 

— the malaria metabolic pathways database (MPMP)10 — uses the LIGAND ontology.  

                                                             
* Work by Mark Poolman and David Fell at Oxford Brookes University using the MetaCyc compound 
and reaction names within a simplified framework suggests that this trade-off is avoidable. 
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Figure 4: The KEGG LIGAND compound entry for ATP, shortened from 3 pages. The simplicity of the ontology 
appeals to me. 

Entry 
C00002                      Compound                          

       
 

Name ATP; 

Adenosine 5'-triphosphate 

Formula C10H16N5O13P3 

Exact mass 506.9957 

Mol weight 507.181 

Structure 

 

 

Remark Same as:  

D08646 

 

Reaction R00002 R00076 R00085 R00086 R00087 R00088 R00089 R00104  

R00105 R00124 R00126 R00127 R00128 R00129 R00130 R00137  

                     … plus many more … 

Pathway ko00190   Oxidative phosphorylation 

ko00195   Photosynthesis 

… plus many more … 
 

Enzyme 1.2.1.30        1.2.1.31        1.3.7.8         1.13.12.7        

1.14.99.19 (C)  1.17.4.1 (C)    1.17.4.2        1.17.4.2 (C)     

                     … plus many more … 

Other DBs CAS:  

56-65-5 

PubChem:  

3304 

ChEBI:  

15422 

KNApSAcK:  

C00001491 

3DMET:  

B01125 

NIKKAJI:  

J10.680A 

KCF data 
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Figure 5:The MetaCyc compound entry for ATP, shortened from 17 pages. The extensive linking within the ontology 
has many advantages but is intimidating to work with.  
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Other ontologies of note 

Although KEGG and MetaCyc are the dominant ontologies for defining metabolism there 

are other ontologies that serve useful complementary functions which are worth 

describing briefly. 

ChEBI 

The chemical entities of biological interest database11, ChEBI, is in its own words “a freely 

available dictionary of molecular entities focused on 'small' chemical compounds”. In aim this is no 

different to the compound databases found in MetaCyc, LIGAND or other competitors and 

its focus on compounds limits its usefulness for my purposes. 

Despite this drawback, ChEBI has two distinct advantages. Firstly, its stated aim to stay 

completely free makes it a safer platform on which to build tools. Secondly, ChEBI is in my 

experience the best linked compound database with almost all compounds linking directly 

to international chemical identifiers (InCHI) codes and KEGG compound IDs amongst 

other identifiers. 

ChEBI is of further note because the combined yeast model assembled at the 2007 Yeast 

Jamboree12 — one the most comprehensive metabolic models assembled to date — used 

ChEBI identifiers as the preferred compound description format. 

EC numbers 

All the previous ontologies I have discussed deal with the reaction part of the gene-

protein-reaction relationship. The enzyme commission’s nomenclature for the 

classifications of enzymes13, EC numbers*, are different in that they primarily describe the 

protein’s function. 

An EC number consists of four numbers separated by a full-stop with the first number 

describing the action of the enzyme in very general terms and each number to the right 

describing a more detailed subset of that action. As an example, the enzyme involved in 

the reaction 6-phosphofructokinase, as shown in figure 2, is defined in the top part of 

figure 6. 

                                                             
* often referred to by the backronym enzyme classification numbers. 
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Figure 6: The tree structure of the EC number definition for 6-phosphofructokinase and the 10 KEGG reactions 
related to 2.7.1.11. 

An EC number could perfectly define of a reaction if it were unambiguous but in this, and 

many other cases, the single EC number 2.7.1.11 describes no fewer than ten separate 

KEGG reactions, each defined in terms of four of the twelve compounds present across all 

ten reactions. Whilst these reactions are very similar, when building a metabolic network 

where reactions must link exactly, very similar is not good enough. 

Figure 6 shows us that the complexities of the real world and the requirement for an 

ontology to remove ambiguity means that the naïve model of metabolism, where EC 

numbers uniquely define both protein function and a single associated reaction, is 

insufficient. Still, EC numbers are probably the single most universally applicable 

descriptor of metabolism and an extremely valuable resource for linking genes and 

reactions. 

Beyond the ontology: a rigorous reconstruction framework 

The described ontologies are an important unambiguous vocabulary for describing the 

components of metabolic models. And yet in order to build functional models upon which 

we can perform analysis and simulations we need to assemble these components, usually 

from multiply ontologies, into models in a regular, unambiguous and structured way. In 

the absence of a generally accepted term I have called this system of assembly a 

reconstruction framework.  

As part of my attempts to explore the requirements of such a framework I created the 

videos14 from which figure 7 and figure 8 are taken. 

2 = Transferase
  .7 = Transferase, transferring Phosphorous-containing groups
     .1 = Transferase, transferring Phosphorous-containing groups, with an alcohol group as acceptor
        .11 = Transferase, transferring Phosphorous-containing groups, with an alcohol group as acceptor, 6-phosphofructokinase

2.7.1.11 =2.7.1.11 = R00756 ATP:D-fructose-6-phosphate 1-phosphotransferase
R00767 CTP:D-fructose-6-phosphate 1-phosphotransferase
R00769 UTP:D-fructose-6-phosphate 1-phosphotransferase
R00770 ITP:D-fructose-6-phosphate 1-phosphotransferase
R01843 ATP:Sedoheptulose 7-phosphate 1-phosphotransferase
R03236 ATP:D-tagatose-6-phosphate 1-phosphotransferase
R03237 CTP:D-Tagatose 6-phosphate 1-phosphotransferase
R03238 UTP:D-Tagatose 6-phosphate 1-phosphotransferase
R03239 UTP:D-Tagatose 6-phosphate 1-phosphotransferase
R04779 ATP:D-fructose-6-phosphate 1-phosphotransferase*

2.7.1.11 =

*R00756 and R04779 are not identical, R04779 acts on the β form of the fructose



16 
 

 

Figure 7: The LIGAND reaction R01600 labelled with the key components required to define a reaction within a 
reconstruction framework. This is a still frame from the “Framework Video” on my project website14. 

 

Figure 8: The key components required to define a reaction within a reconstruction framework. This is a still frame 
from the “Framework Video” on my project website14. 

Figure 7 breaks down a single reaction within a reconstruction framework into 

components with each component colour co-ordinated as in figure 8. The stoichiometries, 

compounds (both IDs and names), reaction (both ID and name), and the associated 

pathway (both ID and name) are taken from the LIGAND ontology and fully define the 

reaction. Additionally, EC numbers associated with the reactions are included to provide a 

link to the enzyme. A gene could additionally be assigned to this reaction to complete the 

GPR definition. When further reactions are added to a model it is essential that they 

conform to this same structure and are defined according to the same ontologies in order 

to avoid confusion or ambiguity. 

For the definition of metabolic models suitable for analysis two further properties are 

required for each reaction: compartment and kinetics. Since any given reaction can occur 

within different cellular compartments — the cytosol, mitochondria, nucleus, etc… — a 

compartment must be defined for each reaction to ensure it is unique and to ensure that 

its reactants and products are properly separated from those in other compartments. 

Kinetic properties are essential to creating a valid metabolic model upon which 

simulations can be run and in the scope of this thesis the only kinetic properties provided 

are limited to simple flux constraints. 
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The seven components of a reconstruction framework as shown in figure 8 are a guide 

rather than a prescription. As long as a rigorous framework is adhered to, each component 

of that framework could derive from a separate ontology. For the rest of this thesis the 

LIGAND ontology and the EC system, in addition to custom naming of compartments and 

arbitrary kinetic parameters, are used. 

SBML: the standard for network exchange 

A metabolic network can at its simplest be represented simply as a list of reactions on the 

condition that those reactions are properly defined somewhere as part of a rigorous 

framework. The first metabolic networks were thus lists, or, more usually, spreadsheets 

containing lists of reactions with additional information on each reaction contained in 

extra columns. Whilst this approach is perfectly adequate when a model is used within a 

single group using a single reconstruction framework it presents problems when models 

need to be shared. In these cases reactions are frequently not accompanied by a full 

definition of the stoichiometries and compounds from which they are formed leading to 

ambiguity in the metabolic model. Furthermore, without a standard for model interchange 

the order and meaning of entries in different columns of a spreadsheet are variable and 

unclear. 

In April 2000, as this problem of model interchange within systems biology was becoming 

clear, “The 1st Workshop on Software Platforms for Systems Biology” was held at the 

California Institute of Technology15 and by 2003, the proposed solution, the systems 

biology markup language, SBML16, had been finalised. This was followed in 2004 by the 

biological pathways exchange language, BioPAX17, proposed by a group including Peter 

Karp at SRI and joined that year by PSI MI18, the Proteomics Standards Initiative’s 

molecular interaction XML format. Other interchange formats have been proposed but in 

the field of metabolic modelling SBML and BioPAX are the only two in wide enough use for 

me to have encountered them in the last four years. 

Although SBML and BioPAX are far easier to convert between than LIGAND and MetaCyc it 

is still easiest to choose one when starting a large project and for this reason they must be 

compared. I can give no better a summary of the comparison between these two formats 

than that published in 2005, 

“SBML is better on simulation-related properties [whilst] BioPAX provides the richest and most general 

representation. The richer hierarchy of BioPAX, which is a benefit with respect to representation of data, 

has a price with respect to computational complexity.” 

From the conclusion of “Representations of molecular pathways: an evaluation of SBML, PSI MI 

and BioPAX”19 by Lena Strömbäck and Patrick Lambrix. 
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Since 2005, the scope of both SBML and BioPAX has increased as the standards have 

matured. Higher levels — currently at level 3 in both specifications20–22 — have been 

added to allow a more complete description of the modelled system. 

Choosing between these standards is difficult and many people in the systems biology 

community have very strong views on the subject. The hierarchy and flexibility of BioPAX 

means that almost every imaginable aspect of a model can be contained within the format 

but I have found the cost in terms of usability too high. SBML is much simpler to work with 

and in almost all cases it is good enough. 

It seems that others agree with me and as of June 2011 the SBML software matrix lists 225 

tools compatible with the format. To further prove the dominance of SBML, Pathway Tools 

— a project with close ties to the BioPAX working group — now supports SBML export of 

models in addition to the longer-standing option for BioPAX export. The interoperability 

of models afforded by SBML is an outstanding achievement and its value should not be 

underestimated. As long as the format is maintained and updated as rapidly as it is 

currently it will remain, as many argue it currently is23, the lingua franca of biological 

modelling. 

SBO (systems biology ontology) 

The systems biology ontology24, SBO, project is different to the other ontologies I have 

described in that it aims not to define the physical contents of a metabolic model but 

rather the mathematical properties of that model: what I called kinetics in figure 8. 

Currently models can be exchanged using SBML but there is no standard way to define 

things like enzyme properties, reaction kinetics or any of the more complex features of a 

mathematical model. This makes it difficult for one group to repeat simulations, and thus 

verify the results obtained by another group, performed on metabolic networks. This in 

turn makes it difficult for existing models to be expanded and adapted to future modelling 

techniques. 

SBO is developed at the European Bioinformatics Institute and, although it can be used to 

mathematically define models in any format, it is tightly coupled with the maintenance 

and extension of the SBML standard. As the modelling techniques applied to metabolic, 

and other, models increases SBO is likely to become an increasingly important part of the 

SBML specification. 

A less adventurous effort to standardise metabolic models with the goal of making their 

simulated behaviour reproducible  is the MIRIAM25 (minimum information required in the 

annotation of models) project which I discuss further at the end of this thesis. 
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Visual representations of metabolic networks 

An intuitive feel for the process of metabolism can best be gained from a visual 

representation of it. For example, the visual representation in figure 3 is easily 

understandable to someone with some experience of chemistry and requires no special 

explanation. By comparison, the mathematical model underlying the visualisation would 

not be widely understood. 

I strongly believe that visualisation techniques are essential to the wider understanding of 

metabolic models and the results of their analysis and I develop this idea throughout this 

thesis. To help with that it is important to define some basic principles of visualisation.  

Networks of nodes (objects) connected by edges (lines) are called graphs and their study 

is called graph theory. As shown in figure 9, there are essentially three different types of 

graphs that can be used to display metabolic networks. 

 

 

Figure 9: (top/a) Reaction-centric graph. (left/b) Compound-centric graph. (right/c) Combined graph. These are all 
equivalent representations of the first six reactions in the glycolysis pathway. ATP and ADP nodes are aliased. 
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Reaction-centric graph 

In this type of graph, reactions are placed as nodes which are then connected by edges 

representing the compounds passed between reactions. In graph theory this is called a 

simple graph or a directed graph if a preferred direction for the compound flow is 

specified. 

Compound-centric graph 

Much more commonly the compounds in a metabolic network are chosen as the nodes 

connected by reactions shown as edges. Many visual representation of metabolism are 

compound-centric graphs such as those already shown in figure 3 and figure 7. Even 

though all reactions are reversible a preferred direction of each reaction is defined to 

ensure the correct coupling of reactants and products. At first it might be tempting to 

consider the compound-centric graph a directed graph within graph theory but in fact it is 

more like the combined graph below but with the reactions nodes omitted and instead 

used to label a group of edges representing the reaction. 

Combined graph 

A bipartite directed graph treats both compounds and reactions as nodes, with the edges 

showing only how compounds connect to each reaction. This is the graph type that most 

usefully represents a metabolic network although the increased complexity means that 

graphs like this can be confusing on a large scale. 
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Mathematical representations of metabolic networks 

Visual representations of network are essential to our understanding of them but the true 

power of representing metabolic networks as graphs is the symmetry that these 

representations have with much more powerful mathematical representations. 

Figure 10 shows us how we can represent a metabolic network mathematically by forming 

a stoichiometric matrix. 

 

Figure 10: (left) A visual representation of a small reaction network. (right) The equivalent     stoichiometric matrix 
(S matrix) that completely defines the network. Reaction IDs and compound IDs and names are added as labels to 

the matrix. 

We can best understand this stoichiometric matrix (S matrix) by inspecting its rows and 

columns separately. 

Let us take as an example the fifth row of the S matrix. We see that α-D-Glucose-6P 

(C00668) is not involved in three of the six reactions, a single molecule is consumed by the 

forward direction of the reactions R02739 and R02740 and a single molecule is consumed 

by the forward direction of reaction R01786.  

Inspecting a row of the S matrix is equivalent to inspecting the edges connected to that 

compound’s node in the compound-centric visual representation shown in Figure 9b. 

Likewise, inspecting a single column of the S matrix is equivalent to inspecting the edges 

connected to a reaction’s node in the reaction-centric visual representation shown in 

Figure 9a. 

Completing the symmetry between the rows/columns of the S matrix and the different 

possible visual representations we see that the combined graph in Figure 9c is equivalent 

to considering the nodes represented by the rows and columns of the S matrix at the same 

time. 

α-D-Glucose  β-D-Glucose 

 β-D-Glucose-6P α-D-Glucose-6P 

 β-D-Fructose-6P

 β-D-Fructose-1 ,6P
2

ATP 

ADP 

ATP 

ADP 

ATP 

ADP 

R01600 R01786 

R02739

R03321
R02740

R04479

 β-D-Glucose 

ATP 

ADP 

α-D-Glucose 

 β-D-Fructose-1 ,6P
2

 β-D-Fructose-6P

α-D-Glucose-6P 

 β-D-Glucose-6P 
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SBGN: an emerging standard for network visualisation? 

In March 2010 I attended the “Systems Biology of Microorganisms” conference at the 

Institut Pasteur in Paris. At the poster sessions of the meeting I took photos of 28 visual 

representations of biological networks. It was striking that the information in all 28 forms 

was conveyed in a completely different way. Whilst it was possible to understand each 

poster it took a long time to see what was being shown and it was almost impossible to 

make comparisons between similar systems shown in different ways. I thought that there 

had to be a better way to represent models and in fact the reason why the leading 

proposed solution was not yet being used was that it was less than a year old and had not 

yet been finalised. 

The systems biology graphical notation26 — SBGN — was proposed and promoted by 

much of the same group, led by Kitano and Hucka, that have worked on SBML for the last 

ten years. SBGN aims to standardise the major elements of the visual representation of 

metabolic models in the same way that SBML has standardised the major elements of their 

mathematical description. I think that the SBGN initiative is a worthwhile venture and 

many people, including myself, have already adopted elements of it.  

A visualisation of a biological network is inherently more variable and more open to 

personal interpretation than the underlying structure of the network. It is also harder to 

build tools to create and interpret visual networks.  

For these reasons I doubt SBGN will achieve the same universal acceptance as SBML. 

Nevertheless I have already noticed that some of its design elements and conventions are 

becoming more widely applied and I have adopted many for my own visualisation tool in 

this thesis. For example, my own visualisation efforts draw heavily on SBGN’s insistence 

on the use of the combined graph visual style, the use of rounded nodes for compounds 

and rectangular nodes for reactions, and the insistence that aliased compounds be 

represented differently to non-aliased compounds.  

In time I’m sure that the efforts of the SBGN group will make visual representations of 

biological networks much clearer than they are now and I suspect that this — rather than 

the widespread adoption of their precise standard — was always their main aim. 
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The malaria parasite 

 

 

 

 

 

 

 

 

Malaria is like no other disease, it isolates communities, people simply don’t go 

there. It violates Adam Smith’s precept of freedom of movement as being essential 

for economic growth. It sits on the people. It protects them from intruders but also 

denies them access to the world economy. I think that’s probably the most 

important element of economic growth in Africa… 

Interview with Prof Andrew Spielman, Professor of Tropical Public Health, Harvard School of 

Public Health 27. 

 

 

 

 

The background to some of the information in this section comes from the ninth, tenth and 

eleventh episodes of a podcast by Vincent Racaniello and Dickson Despommier called This 

Week in Parasitism, the tenth episode in particular is well worth listening to. Much of that 

material is in turn based upon Despommier’s two books on the subject28,29. An exceptional 

account of mosquito-borne diseases, including large sections on malaria, can be found in 

the excellent book Mosquito by the late Professor Andrew Spielman30 a fascinating 

interview with whom can be found with the Vega Science Trust27 from which the quote at 

the start of this section was taken.  
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Human impact 

Malaria is a major cause of human suffering around the world with between one and three 

million directly attributable deaths each year. Direct deaths are principally the result of 

infection with Plasmodium falciparum and occur primarily in the young and in pregnant 

mothers. The secondary affects, caused primarily by the temporary inability of affected 

people to work, and the associated fear of travel and trade, but possibly extended into 

many other areas such as reduced IQ31, impose considerable economic costs and thus 

hamper projects to reduce malaria infection rates. 

Perhaps the most significant long-term impacts of malaria are caused by its rapid 

evolution and the resulting specificity of acquired immunity. People growing up in a single 

affected village acquire immunity to the local variant of the malaria parasite with those 

who survive into their teens continually re-infected but with symptoms usually no worse 

than mild flu. Such is the variation of the parasite — and the specificity of their acquired 

immunity — that even travelling a distance on the order of ten miles can result in a 

debilitating or even deadly infection from a variant to which they have no immunity. In 

this way, sharing of goods and ideas, and even the establishment and maintenance of 

nations is cripplingly frustrated by malaria. 

Malaria, alongside other mosquito-borne diseases, has critically shaped the course of 

human history. Malaria was a key part of the failure of the first Panama Canal project by 

the French and placed a huge burden on Egyptian, Greek and Roman empires. Quinine, the 

first drug to combat malaria, was first given by, and later stolen from, native South 

Americans when they came into contact with Europeans and remained an important 

treatment until over-use in the 20th century made it increasingly useless against resistant 

parasites. Derivatives of quinine32 that for a while proved more resilient to resistance are 

now unable to treat malaria in many parts of the world and there are worrying signs33 that 

resistance to the last universally effective anti-malarial drug artemisinin may be emerging. 

At one time in the 1970s it seemed as if malaria could be eradicated in the developing 

world as it had been in the developed world. This belief was so prevalent that much 

research into the parasite was stopped and many Universities greatly reduced the 

importance of the parasites in their teaching of both microbiologists and doctors. In 

addition to distributing bed nets, DDT was sprayed to target the mosquito vector whilst 

anti-malarial drugs were given as soon as symptoms emerged with the aim of both curing 

the illness and the parasite’s spread. Despite early successes the discovery that DDT 

remained active in ecosystems far longer than predicted, notably in Rachel Carson’s book 
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Silent Spring, and the corresponding reduction in its use marked the end of our last 

attempt, nearly 40 years ago, to rid the world of malaria. 

The characteristics and life-cycle of the parasite 

The primary host of parasites in the genus Plasmodium are mosquitoes, typically of the 

genera Anopheles or Culex. Over two hundred species of Plasmodium have been identified 

to date, with each usually specific to a given non-insect host and at least a specific genus of 

the insect host. Although further parasite species have not been classified, it is likely that 

many more mammal, reptile and bird species with territories overlapping a suitable 

mosquito vector play host to at least one corresponding Plasmodium parasite. 

Humans are afflicted by five species of Plasmodium, most frequently by falciparum but also 

by vivax, ovalae, malariae, and occasionally by the long-tailed macaque specific species 

knowlesii. Of these, P. falciparum reaches the highest population within the body and 

causes the most severe symptoms including severe anaemia and unconsciousness: 

frequently called cerebral malaria. By comparison P. malariae has far milder symptoms 

but can persist asymptomatically for decades. P. vivax and P. ovalae are distinguished by 

the persistence of hypnozoites in the liver stage which can later cause the recurrence of 

acute symptoms. 

The complex life-cycle of Plasmodium is best understood in a diagram as shown in figure 

11 on page 27 and described below. 

Life stages within the human blood stream (erythrocytic stages) 

1 – The merozoite, regardless of its source, attaches and induces the red blood cell to 

produce extra membrane and, enclosed in this membrane, enters the red blood cell. 

2 – Early-stage trophozoites appear ring-shaped under Giemsa stain34 and are easily 

recognised by clinicians for diagnosis. This is frequently called the ring-stage. 

3 – Late-stage trophozoites grow to fill the host cell. In infections by Plasmodium 

falciparum these trophozoites induce the production of a histidine-rich protein (Pf HRP II) 

which causes red blood cells to clump around an infected cell and block capillaries35. This 

coagulation ultimately causes unconsciousness called cerebral malaria*, making treatment 

and patient maintenance extremely difficult and thus greatly increasing the risk of death 

                                                             
* Many textbooks still explain that cerebral malaria is caused when clumped red blood cells induce 
the expression of tumor necrosis factor in the capillary walls. This in turn induces nitric acid 
production leading to unconsciousness. Newer evidence increasingly suggests that nitric acid 
frequently protects brain function212 in stressed conditions and that it can also protect against 
cerebral malaria213. Current consensus seems to be shifting towards…  (continued overleaf) 
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4 – Mitotic nuclear division takes place to form a schizont full of merozoites ready to enter 

the blood stream upon cell lysis.  Toxic haemozoin — the crystallised accumulation of the 

haem groups left as a by-product of the parasite’s haemoglobin digestion — is left in the 

lysed blood cells upon lysis. 

5 and 6 – Microgametocytes (5, male) and Macrogametocytes (6, female) form from 

ring-stage parasites and remain inside un-lysed red blood cells in circulation. They are 

rarely seen in parasite cultures and the mechanism governing gametogenesis versus 

schizogeny is not fully understood. 

Life stages within the mosquito 

7, 8 and 9 – Any parasites ingested by a female mosquito taking a blood meal are digested 

except for microgametocytes and macrogametocytes which are released from their 

surrounding red blood cell and activated by the mosquito’s digestive tract. For the female 

gamete this activation is simple and the activated macrogametocyte becomes a 

macrogamete (9). At this point the activated microgameteocyte begins a process known 

as exflagellation, producing a free-living microgamete (8) capable of fertilising the 

macrogamete at which point the combined diploid organism is called the zygote. 

10 – The zygote matures to become the mobile ookinate which embeds itself in the 

mosquito gut wall. Although exact details remain unclear it is likely that the zygote is the 

only diploid form of Plasmodium 36 with meiosis occurring during its maturation into the 

ookinate. 

11 – The embedded ookinate matures into the oocyst.  

12 and 13 – The oocysts divide asexually until individual sporozoites are mature. 

14 – The sporozoites lyse the host cell and circulate within the mosquito until reaching 

the salivary gland where they settle, ready to be injected when the mosquito takes it next 

blood meal. 

Life stage within the human liver (exoerythrocytic stages) 

15 – Sporozoites injected into the human blood stream settle in the liver where they infect 

hepatocytes. At this stage the parasites are almost invisible to clinicians and are thus 

referred to as cryptozoites. In P. vivax and P. malariae these liver-stage parasites can 

become hypnozoites, capable of staying asymptomatically in the liver for months or years 

before continuing their life-cycle and causing a recurrence of acute malaria. 

                                                                                                                                                                                   
cerebral malaria being caused by the breakdown of the blood-brain barrier and the ability of 
clumped rosetted red blood cell groups to enter the brain214,215. 
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16 – Hepatic schizonts form, the direct equivalent of the schizonts in red blood cells. 

17 – The lysis of hepatic schizonts releases merozoites into the blood stream to 

commence the red-blood cycle. 

 

Figure 11 : The multiple life stages and host cells of Plasmodium. Parasite nuclei are shown in dark purple, cytosol 
as a lighter purple, as under Giemsa stain. Partially adapted from Dr. Wiser’s malaria course at Tulane University, 

FL, USA37. 
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Methods of study 

Cell culture of erythrocytic stages 

Human malaria parasites had proved impossible to culture until 1976 when Trager and 

Jenson realised that the low oxygen environment of coagulated red blood cells (RBCs) 

within the capillaries was essential to the progression of the P. falciparum life-cycle38. Just 

a year later the technique had advanced to a system we would recognise today whereby 

frozen parasitised red blood cells could be thawed and grown in washed human RBCs in 

RPMI medium fortified with human serum all within culture flasks kept with a low oxygen 

internal environment39. At the time the low oxygen environment was provided by burning 

a candle at the entrance of the culture flask to lower the oxygen concentration. Modern 

improvements to these methods have improved reproducibility; low-oxygen gas of known 

composition replaced candles and a standard culture medium of RPMI+AlbuMAX has 

largely replaced the variable composition of human serum40. 

 

Figure 12 : The life-cycle red blood cell stage Plasmodium parasites with representative images of Giemsa stained 
infected red blood cells on thin blood smears. All images are my own. 
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The techniques I have used to manipulate P. falciparum cultures are detailed in the 

experimental methods chapter of this thesis. Additional methods of study that I have not 

conducted but which are worthy of a brief mention are, 

Cell culture of liver stages 

Limited success in cultivating liver stages of Plasmodium vivax and malariae  to study their 

ability to persist as hyponozooites has been achieved41,42. Furthermore, recent advances 

with Plasmodium falciparum are making it possible to culture the liver stages of the 

parasite in human liver cell lines43. These techniques are currently very difficult but may 

offer a way to study the organism’s metabolism more fully and may allow the development 

of new types of drugs, both prophylactic and as treatment, that target the liver-stage of the 

parasite’s life cycle. 

Other in vitro methods of study 

Studies into Plasmodium continue in bird species, rats (berghei) and long-tailed macaques 

(knowlesii) as well as in the mosquito primary host and may provide valuable insights into 

human malaria. It is also possible to study the human species in vivo by infecting 

splenectomised, and thus immunodeficient, chimpanzees although these studies are both 

extremely expensive and ethically questionable. 

Unique challenges to the study of P. falciparum 

Although it is now relatively straightforward to culture erythrocytic life stages of 

P. falciparum, it remains more difficult than the culture of many other pathogens. Daily 

attention to cultures is usually required and unexplained culture death is not unusual. 

Furthermore, since only a third of the parasite’s life cycle occurs in human RBCs the 

current life-cycle coverage of in vitro study remains low. 

Although some initial efforts at gene silencing through RNA interference appeared 

successful in reducing growth-rate44 further studies have shown that P. falciparum lacks 

the genetic machinery required for general application of RNAi45. 

The intracellular nature of the parasite means that direct manipulation typically involves 

lysing the host RBCs and conducting experiments on freed and thus dying parasites 

outside of their normal environment46. 

The genome of P. falciparum was published in 200247 and many hoped it would simplify 

the study of the parasite. By building a metabolic network of P. falciparum, based 

principally on its genome, and integrating it sufficiently with supporting experimental 

data we might reasonably expect to construct a model that would reproduce the inner 
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workings of the organism. Unfortunately the genome47 presented many problems. 

Assembling the fragments from shotgun sequencing had been hard because the genome 

was known to be A-T rich but at 80.6% A-T, with around 90% A-T in introns and 

intergenic regions. The genome remains to my knowledge the most A-T rich genome ever 

sequenced. This unusual nucleotide composition presents further difficulties. Homology 

searches find fewer genes than expected making metabolic network reconstruction 

difficult and very few restriction enzymes are specific enough to perform genetic 

modifications on the genome. 

A final impediment to creating an accurate metabolic reconstruction of the parasite is a 

result of it being an intracellular parasite and thus able to rely on its host, and even induce 

its host, to fill gaps in its own metabolism. Homology searches of the parasite genome will 

not identify these genes and the gaps must be filled with knowledge of red blood cell 

(RBC) metabolism.  
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Network analysis 

 

 

 

 

 

 

 

 

We’ve got the human genome sequenced, we’ve got the parasite genome 

sequenced, we’ve got the mosquito genome sequenced. Somehow you should be 

able to work out some way of controlling everything… 

Dickson Despommier, TWiP Episode 10 

 

 

 

 

 

 

 

 

 

Flux-balance analysis is the primary metabolic analysis technique I will use in this thesis. 

It is well described in a book on the subject by Bernhard Palsson48 — one of the early 

users of the technique — and in four papers charting the development of the technique 

over the last fifteen years49–52 most recently in a summary published by J. Orth in 201053.   
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A note on Wikipedia 

In 2010 the clearest academically published description of FBA was published in Nature 

Biotechnology53 and, despite adding little to the field, was cited nearly fifty times in the 

following year. At this time, in frustration at the lack of an openly available, linkable and 

updatable resource describing FBA I decided to write what remains the current Wikipedia 

page on the subject.  

The work on that page, including all figures, is almost completely my own and has been 

reviewed, graded and commented on by notable academics in the field, including Kieran 

Smallbone at the University of Manchester. Some sections are repeated in the following 

pages without citation because they were written by me. 

In the eight years since I started as an undergraduate I have had numerous candid, and 

usually negative, discussions about Wikipedia. These have ranged from markers failing my 

lab reports for no other reason than they referenced Wikipedia, through lecturers 

instructing me to mark as errors in lab reports any reference to Wikipedia.. I have listened 

to, considered and engaged in the debates on whether knowledge should be open or 

correct and ultimately concluded that we can have both. I do not think that the current 

“solution” to the phenomenon of free and open information: rephrasing Wikipedia text 

and then — without reading the source — citing that text’s reference, is in interest of 

scientific advance or education. 

For this reason I will in this section focus on the basics of FBA, in addition to the 

requirements, scope and limitations of the technique. The version online is both more 

complete and will already be more current than the limited version I reproduce here. It is 

reflective of the approach that academic institutions have taken to Wikipedia that in all the 

written guidance* given to PhD students and supervisors at the University of Leeds, the 

word does not occur once. I hope that my use of, and contribution to, this resource is in 

keeping with the requirements of the University of Leeds. 

  

                                                             
* Research Student Handbook 2010-2011, Ordinance and Regulations and Programmes of Study for 
Research Degrees 2010-2011, Guide for Research Degree Supervisors 2010-11, Guidance on Ethesis 
Preparation, Copyright and Publication, General Academic Regulations. 
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Recognising the limitations of metabolic network reconstructions 

Armed with the genome of an organism it is a relatively simple task to search for genes 

homologous to those in reference databases such as refseq54. More advanced software 

such as SharkHunt55 and RAST56 can make this process even easier and more effective. 

Yet no matter what technique is employed to find genes, and thus reactions, describing an 

organism’s metabolism there are still significant limitations on these automated 

techniques. Just four of these limitations are, 

 We haven’t found all the enzymes required to build a complete set of reference 

sequences and we cannot search a genome for enzymes we don’t yet know exist. 

 We don’t know the properties of most enzymes or their location or concentration 

within their host organism.  

 We cannot predict the effect that small changes in mostly homologous proteins 

may have on their properties. 

 We cannot predict how an enzyme’s properties will change in a different organism. 

Steps can be taken to improve the quality of a metabolic network by filling gaps in the 

automated annotation and I will discuss those in detail later. For now let’s deal with 

another approach to dealing with incomplete metabolic networks; making simplifications 

when analysing them. 

Techniques for the analysis of metabolic networks can be split as by Poolman et al.57 into 

two groups: structural and kinetic. To this I add a further type, local analysis, which was 

considered too basic to be included in Poolman et al. and is arguably not true network 

analysis. 

Local analysis (chokepoint analysis) 

The first published metabolic network reconstruction and analysis for P. falciparum was 

conducted by Yeh et al.7 in 2004. Their core technique was chokepoint analysis where they 

define a chokepoint as “a reaction that either uniquely consumes a specific substrate or uniquely 

produces a specific product” and finding that 21 out of 24 known drug targets (enzymes coding 

for reactions disrupted by a drug) were chokepoints. 



34 
 

 

Figure 13: Cellular overview of P. falciparum network used for chokepoint analysis from Fig 2 in Yeh et al7. Reactions 
(edges) shown in grey are not present in the model. 

Inspecting an overview of the reconstructed network, figure 13, to which chokepoint 

analysis was applied it becomes clear why the technique was adopted. Because of the large 

number of gaps in the reconstructed network an analysis technique that considered the 

flow of metabolites through the network could not be used. Since chokepoint analysis 

considers each reaction in turn it can deal with this problem with the associated downside 

that every reaction before and after a gap in the network is by definition a chokepoint. 

In fact in the analysis of this basic network 216 out of 303 (71%) core metabolic enzymes 

were found to catalyse reactions that were chokepoints making it unsurprising that 21 out 

of 24 (87.5%) known drug targets were also chokepoints. The complexity of the network 

description — typical of a reconstruction in Pathway Tools — and the many reactions 

excluded from the chokepoint analysis ultimately make the results of this paper difficult to 

quantify and utility of chokepoint analysis unclear. 
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Structural analysis 

Structural analysis differs from local analysis in two connected ways. Firstly, it examines 

reactions not in isolation but rather as a collection. Secondly — and partly as an extension 

of the first point — it operates not only on the metabolic network of a system but also on 

the interaction between that system and its surroundings; a key part of structural analysis 

is that there is some input and some output. In the examples of glycolysis shown back in 

figure 3 these are as simple as β-D-Glucose-6P as an input and pyruvate as an output. On 

the whole-organism scale, as represented in figure 14, the inputs are the metabolites 

absorbed from the environment and the outputs are both the metabolites excreted back to 

the environment and the metabolites used for growth and reproduction. 

 

Figure 14: a. A metabolic network on its own cannot simulate life. b. A metabolic network that is able to exchange 
metabolites with a growth medium and provide molecules for growth as part of a biomass function can. 

Because structural analysis requires inputs and outputs it invokes the concept of 

metabolites flowing through the network from input to output and for this reason it 

cannot operate on networks with key missing reactions. This requirement makes 

networks more difficult to prepare for structural analysis than for local analysis. 

Flux-balance analysis (FBA) 

A key form of structural analysis is FBA, which can be explained most concisely in 

mathematics as the solution to the flux-balance problem, where   is the stoichiometric 

matrix and  ⃗⃗  is the vector describing the collection of fluxes through the reactions in the 

network. 

   ⃗⃗    

The result of multiplying the stoichiometric matrix with a vector of fluxes through each 

reaction in this way is a vector representing the rate of change in the concentration of all 

the compounds within the system. The condition that this is equal to zero is equivalent to 

the homeostatic condition, that the internal concentrations of compounds within a living 

organism stay constant over time. 
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Additional constraints on the minimum and maximum fluxes, either from thermodynamic 

considerations or experimental results, can be defined to ensure the model is realistic. 

     
         

 

The constrained model, which will still usually have a large null space, is then solved to 

find the optimal solution according to some sensible optimisation goal. Typically this is 

biomass production, a single reaction,     representing the consumption of metabolites in 

the correct proportion to represent growth of the organism. 

   
 ⃗⃗ 

                   ⃗⃗    

Whilst the mathematical description of FBA is accurate it can be hard to comprehend and a 

purely mathematical understanding of the technique does not express the impressive 

ability of the technique to make insights into metabolism. Thankfully, as I showed earlier, 

mathematical and visual representations of metabolic networks can be completely 

equivalent and FBA can be best explained visually.  

In figure 15 we see the process of preparing a metabolic network, in this case the first six 

reactions of the glycolysis pathway, for FBA. The process involves adding reactions to 

allow α-D-glucose, β-D-glucose, ATP and ADP to enter and leave the system from an 

infinite external pool. A biomass objective function is added to remove β-D-Fructose-1-

6P2 from the system with this removal simulating growth in this highly simplified example. 

 

Figure 15: The first six reactions in glycolysis prepared for FBA through the addition of an objective function (red) and 
the import and export of nutrients (ATP, ADP, BDG, ADG) across the system boundary (dashed green line). The full 

version* shows the stoichiometric matrix both before and after the model is prepared for FBA.  

                                                             
* http:  en.wikipedia.org wiki File:Prepare_for_FBA_maths.png 
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The result of performing FBA on the network shown in Figure 15 with constraints on the 

maximum uptake of glucose at 50 arbitrary units are shown both as a vector and 

represented pictorially in figure 16. In this representation the width of the edges 

representing each reaction is proportional to the calculated flux through that reaction. 

Applied constraints are represented as red bars limiting the flux on the entry of α-D-

glucose and β-D-glucose to the system. 

 

Figure 16 : A metabolic network before (left) and after (right) flux-balance analysis. The 'after' picture conveys the 
optimal flux from the nutrient source to the biomass function as the weight of the lines representing each reaction. 

These weights correspond to the reaction flux vector, v, shown below in its transposed orientation v'. A constraint on 
the glucose uptake flux of 50 arbitrary units is shown as a pair of red bars constraining flux through these reactions. 

There is nothing surprising in this result and indeed it, or something similar, could be 

drawn without calculation by anyone familiar with the technique. FBA is important 

because it easily scales to large networks where human intuition on metabolite flows is 

useless.  The efficiency of the technique is also a major advantage with analysis of a 1000 

reaction network taking under a second on a desktop computer. This in turn allows 

further techniques such as studying the effect on network fluxes of simulated deletions of 

all single, and all pairs of, reactions to be carried out within minutes. 

Flux-balance analysis of whole organism metabolic networks of P. falciparum have been 

used to predict essential reactions and thus drug targets58,59 and I will discuss these results 

in more detail later. 
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Elementary modes analysis 

The solution to the flux-balance problem, the null-space of the stoichiometric matrix, is not 

singular. All solutions are made up of some linear combination of a set of basic solutions 

we call elementary modes which I have drawn for the example system used so far in figure 

17. 

Of these, solutions 1-4 that are valid solutions to the problem    ⃗⃗    whilst also 

satisfying the objective function to produce biomass. Solutions 6 and 7 are valid solutions 

to     ⃗⃗    but do not satisfy the objection function. Solution 5, is an example of an 

internal cycle which although a valid solution to the problem    ⃗⃗    is of limited 

informative value and can be confusing when interpreting results. 

Elementary modes are important because they help us understand how FBA works but 

also because they help us find and eliminate unwanted features of a network. The type of 

elementary mode that we call internal cycles are almost never biologically representative 

and can be eliminated by enforcing constraints on some of the components. For example, 

enforcing a forward direction on reactions R03321 and R02740 eliminates this cycle and 

is a sensible thermodynamic constraint to add to the model in this system. Beyond being 

of interest in their own right, elementary modes are key components of further analytic 

techniques such as extreme pathways60 and minimal flux modes61. 
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Figure 17 : The seven elementary modes of the example system. Solutions 5,6 and 7 are equally valid in both directions.
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Kinetic modelling 

Structural modelling techniques like FBA are an advantage over local modelling 

techniques like chokepoint analysis because they consider the whole network and thus 

interactions between all parts of the network. This advantage brings with it the associated 

disadvantage of requiring a network with no gaps in the chain of reactions between 

nutrient uptake and the production of compounds required for growth. 

Kinetic modelling is an advantage over structural modelling techniques because it 

considers how the concentrations of compounds within a system evolve over time but 

requires a network even more complete than that required for structural analysis. 

The key of FBA is that compounds are assumed to remain at a constant concentration 

within the organism. We wrote this earlier as     ⃗⃗    with the right-hand side of the 

equation representing a zero vector of equal dimension to the number of unique 

compounds in the system. In kinetic modelling we no longer make the constant 

concentration assumption and this zero vector has in each position a differential equation 

describing the evolution of that compound’s concentration with time. 

   ⃗⃗  
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The exact form of these differential equations may be simplified but would most 

realistically consist of linked Michaelis-Menten kinetic equations with the metabolic 

products of one equation being the substrate of one of more other equations. These 

formulae require not only a good guess of each compound’s initial concentration but also 

knowledge of the kinetic parameters for each enzyme. This is particularly difficult because 

the kinetic properties of enzymes are poorly predicted from homology and vary 

considerably in different conditions. 

Once the metabolic model has been expanded to contain these required details solutions 

can be found by solving the fuller problem using software such as COPASI62. 

To date kinetic modelling has been used mostly to study small subsystems within 

organisms. Attempts have been made on a larger scale and in 2010 an extremely 

impressive study of E. coli showed that kinetic modelling was able to reproduce many 
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complex behaviours of bacterial metabolism that had previously been thought to require 

sensing and regulation at a higher level63. 

Kinetic modelling can offer a more accurate description of an organism’s metabolism than 

FBA but at the same time it is substantially more difficult.  This difficulty means there is a 

larger scope for errors when constructing kinetic models and finding errors can take a 

long time. Furthermore, large problems can become computationally expensive and the 

resulting systems are frequently unstable and give results that are difficult to trust.  

Kinetic modelling is a technique best applied either to small, simple or extremely well 

studied systems and I do not think it is currently suitable for malaria research. 

Extensions of FBA 

Many extensions have been built on top of FBA aimed at more deeply analysing the system 

being studied or attempting to mediate the limitations of the technique. Of these I will 

discuss the three of most interest to me and this thesis, flux-variability analysis (which I 

perform later), dynamic FBA (which I have not performed) and attempts to model the 

regulation of metabolism (which I discuss again in the final chapter as a possible extension 

of my work). 

Flux variability analysis 

The optimal solution to the flux-balance problem is rarely unique, with many possible and 

equally optimal, solutions existing. Flux variability analysis (FVA), as described by 

Mahadevan and Schilling64, returns the boundaries for the fluxes through each reaction 

that can, when combined with the right combination of other fluxes, produce an optimal 

solution.  

An example of the result of FBA performed on the top six reactions of the glycolysis 

pathway as shown in previous figures is shown in figure 18. 

Reactions which can support a low variability of fluxes are likely to be of a higher 

importance to an organism and FVA is a promising technique for the identification of 

reactions that are highly important despite being non-essential. In this example we see 

that the essential reactions, R04779, ADP exchange and ATP exchange have no associated 

variability.  Furthermore, once R01786 has been deleted we see that other reactions, 

notably R01600, that previously had an associated variability now have none, indicating 

the essentiality of these reactions within the new reduced network. 
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Figure 18 : Visual representation, with FBA and FVA solution vectors below, of flux-variability analysis (FVA) 
performed on the top six reactions of glycolysis. R03321 and R02740 were only allowed to run forwards to avoid an 
internal cycle. Constraint on R04779 of 50 units as shown places an upper limit on biomass production. Variability of 

fluxes (in light grey) shown at four times width with chevrons noting possible direction of flow. 
(left) Full network. (right) With non-lethal deletion of R02740. 

Dynamic FBA 

Dynamic FBA, as first described in Varma et al. 199465 and later expanded in Mahadevan 

et al. 200266, attempts to add the ability for models to change over time, thus avoiding the 

strict homoeostatic condition of pure FBA but without requiring kinetic parameters for 

each reaction. Typically the technique involves running an FBA simulation, changing the 

model based on the outputs of that simulation, and rerunning the simulation. By repeating 

this process an element of feedback is achieved over time. I have not performed dynamic 

FBA in this thesis but it is a technique that I think could be applied to the model I have 

ultimately produced. 

Regulation of metabolism 

Finally, let me introduce one of the most interesting directions in which FBA is moving and 

a key area where improvements in its predictive power can be made. I mentioned at the 

beginning of this chapter that life is a controlled network of chemical reactions and yet I 

have barely discussed the element of control. Metabolism is not a fixed process and 

organisms must adapt to their changing surroundings or changing roles by changing how 

they live. 
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The ways that metabolism adapts to different conditions are varied. At the simplest 

conceptual level allosteric feedback loops within networks can increase or decrease flux 

through certain reactions. Referring back to Figure 18 we can imagine that if β-D-

Fructose-6P bound to the enzyme catalysing reaction R01600 in such a way as to reduce 

the enzyme’s effectiveness the network would limit its own use of β-D-Glucose and thus 

the organism’s growth-rate. We can similarly imagine that β-D-Fructose-6P might bind to 

the enzyme catalysing reaction R03321 in such a way as to increase the enzyme’s 

effectiveness and the network would increase the flux through that reaction at the expense 

of R02739 and R02740. 

Complex networks of allosteric interactions can produce systems that adapt extremely 

well to changes in conditions, often frustrating attempts to disrupt metabolic networks 

with pharmaceuticals. Similarly — as we can see from the complexities of drug design — 

the effects of small molecules on enzymes are extremely difficult to predict and the huge 

diversity of chemistry combined with the variability of enzymes makes experimental 

screening of libraries of small molecules against target enzymes extremely expensive and 

often unsuccessful. This extremely difficult problem means that exhaustive lists of the 

small molecules and enzymes involved in allosteric regulation of metabolism are not 

available for anything larger than small systems within model organisms and even then 

are subject to substantial changes caused by small changes in conditions. 

A more promising avenue for understanding the regulation of metabolism is via the more 

conceptually difficult but experimentally more accessible mechanism of gene regulation. 

Within the GPR relationship I have described, it follows logically that if the gene is not 

expressed, the protein is not synthesised and the reaction does not occur. Thus by turning 

genes on and off an organism can drastically change its metabolism. The mechanism of 

this gene regulation and the adaptability it allows is explained extremely well in Nessa 

Carey’s book, “The Epigenetics Revolution”67 but a brief explanation can give an idea of 

how we can improve FBA with this knowledge. 

Gene expression data is primarily gathered in one of two ways. The more established 

technique is to use a micro-array with different DNA molecules (probes) attached at 

different grid positions. The contents of a growing cell are extracted and the mRNA 

isolated and reverse transcribed to cDNA, and then placed on the micro-array. cDNA 

sequences with sufficient complimentarity to a probe bind to it, with the amount of cDNA 

bound to each probe signified by the intensity of the fluorescence at that position. The 

advent of much cheaper next-generation sequencing techniques now offers us a far more 

powerful way to measure the transcriptome (the set and quantity of transcribed genes), 

with the cDNA strands created by reverse transcription of the organism’s mRNA and 
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sequenced directly. This technique, called RNA-seq, has the advantage of giving 

information for the whole transcriptome rather than just the parts for which probes were 

designed and placed on the micro-array. In addition to these techniques for measuring the 

transcriptome, techniques for measuring the collection of proteins, often called the 

proteome, exist. Methods based around mass spectrometry such as peptide mass 

fingerprinting are particularly useful when studying eukaryotes where transcribed genes 

and translated proteins are subject to a variety of post-transcriptional and post-

translation modifications. 

Whatever the method used to measure the transcriptome or the proteome the obvious 

applications to the study of metabolism are similar. By comparing the transcriptome or 

the proteome in different conditions we can see the set of reactions that are active within 

the organism in each condition. This approach extends to further studies of variation, for 

example seeing active metabolic reactions in different human cell types, seeing active 

metabolic reactions in different P. falciparum life stages or seeing how P. falciparum 

responds to known inhibitors68. 

Several transcriptome and proteome studies69–73 have measured which genes are 

transcribed or which proteins are present at different life stages in P. falciparum with the 

most notable probably being Bozech et al.74. The work on P. falciparum by Huthmacher 

et al.59 integrates this life-stage specific gene-expression/transcriptome data into their 

flux-balance analysis to simulate metabolism and predict metabolic fluxes at different life 

stages. This integration is achieved* by setting each gene to either “expressed” or “not 

expressed” depending on whether the gene-expression is above or below a defined 

threshold. The flux optimisation problem is then changed such that it seeks to maximise 

biomass production at each stage whilst minimising contradictions between whether flux 

flows through a reaction catalysed by a gene that is not expressed or does not flow 

through a reaction catalysed by a gene that is expressed. The results of this approach are 

interesting, with some evidence that the predicted metabolic variations at different life 

stages accurately represent changes in metabolism as measured by known exchanges of 

metabolites between the parasite and the RBC host. Despite this success, I think that this 

type of model is often more explanatory than it is predictive and the last extension of FBA I 

want to mention is an attempt to improve upon that. 

The variable expression of the genes that largely determines the state of metabolism is 

itself governed by a network of molecules, usually proteins, called transcription factors 

which affect which genes are transcribed. Individual transcription factors increase or 

                                                             
* The last page of their paper explains this more precisely. 
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reduce the expression of a number of genes, often with related roles. For highly curated 

metabolic models such as E. coli and S. cerevisiae these gene-transcription factor networks 

have been painstakingly reconstructed and can be used to predict the effects of 

perturbations to the network, either in growth conditions of the organism or as a result of 

a knock-out of metabolic genes or transcription factors. The probabilistic regulation of 

metabolism (PROM) model proposed by Chandrasekaran and Price75 is better able to 

predict the phenotype in response to varied perturbations of E. coli and Mycobacterium 

tuberculosis than other models by moving beyond the Boolean (express/not-expressed) 

gene regulation model in Huthmacher et al. towards a probabilistic model of gene 

regulation where the expression of a gene has a certain probability of being linked to a 

transcription factor. In this system the penalty paid for allowing flux to flow through a 

reaction linked to a non-expressed gene (and vice-versa) is proportional to the probability 

it was not expressed. 

The collection of multi-layered and highly connected networks that explain the regulation 

of metabolic networks is hard to understand but it also gives good results as reported in 

Chandrasekaran and Price.  

I’ll finish this chapter by mentioning an example of where this multi-layered system of 

regulation explains a complex system very beautifully as reported in Kotte et al. 76 for 

E. coli metabolism.  The paper shows that the ability of E. coli to sense and adapt to 

different carbon sources (acetate and glucose) can be explained, without specific sensing 

of the carbon sources, using a metabolic model of just “4 TFs, 17 transcriptional regulations and 

28 enzymatic regulations”. The achievements in that paper are beyond the scope of this thesis 

but I hope that it shows what will one day be possible in other organisms and eventually in 

P. falciparum. 
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MetNetMaker 

 

 

 

 

 

MetNetMaker is a great program with a user-friendly interface that allows non-

programming-literate people like me to enter the world of SBML. 

Melinda Griffiths, MetNetMaker user creating SBML models of algae metabolism at the University 

of Cape Town 

 

 

 

 

 

 

A paper on the subject of the software described in this section was published in 

Bioinformatics in 2010 as follows, 

T. Forth, G. A, McConkey, D. R. Westhead. MetNetMaker: A free and open-source tool for 

the creation of novel metabolic networks in SBML format. Bioinformatics (Oxford, 

England). 2010:2-3. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20671147. 

The software can be downloaded at www.metnetmaker.com  — both packaged as an 

installer with the Microsoft Access Runtime or as a standalone *.accdr runtime database 

(changeable to *.accdb to open with the full version of Access) — where tutorial videos 

are available and some frequently asked questions are answered. The tutorial videos and 

examples show all the key features described in this chapter and replace formal 

documentation.  
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Lessons learned from initial reconstruction attempts 

My first attempt at building an SBML model of P. falciparum metabolism used results from 

an automated annotation of the raw genome by the SharkHunt77 software previously 

developed in the group. This first effort selected those EC numbers returned by SharkHunt 

with a high confidence — which I defined as those with an   -             — and looked 

up the KEGG reaction most closely linked to that EC number using the KEGG web API.  

My software was written completely in Perl and output an SBML file containing the list of 

reactions as defined in the KEGG LIGAND ontology. Whilst this software produced a valid 

SBML file, the network contained a lot of holes (gaps in an otherwise complete series of 

reactions) and orphans (individual or small groups of reactions not linked to other 

reactions) and had a number of shortcomings that would not be present in a complete 

network. Some of these shortcomings were as follows. 

 Reactions were not defined within pathways and so were difficult to link together. 

 Pathways known from other sources to exist fully had missing reactions and 

orphaned reactions were common. Despite their frequency these problem were 

hard to spot as there was no way to see the network. 

 The model was not compartmentalised and all reactions occurred in the cytosol of 

the parasite. 

 The network could not be changed or added to except by direct manipulation of 

the SBML file. 

 Information contained in the literature and in other manual annotations was not 

integrated into the network. 

Overall then, my first attempt to create a metabolic network was a useful introduction to 

SBML, the KEGG database and the project in general but was far too simplistic a base on 

which to build a whole-network reconstruction. It was clear that I would need to use — or 

build — a more powerful system for tracking my metabolic network reconstruction and 

building it piece by piece. 

Evaluation of existing solutions 

The paucity of existing software for metabolic network reconstruction was summed up in 

“A protocol for generating a high-quality genome-scale metabolic reconstruction”78 

published in 2010 by Thiele & Palsson in which they list only Simpheny79 as a suitable 

“reconstruction software package”. Whilst their assessment is both slightly biased and 

overly pessimistic, it is probably not far from the truth.  
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In the search for another option I spent a considerable amount of time researching 

existing methods for constructing whole-organism metabolic networks. This process 

included exchanging a number of emails with Markus Herrgard, discussing options with 

Elizabeth Edwards (Webb) and attending a training event with Peter Karp on Pathway 

Tools. I include a brief overview of my findings and conclusions below. 

Simpheny 

Elizabeth Edwards had spent several months prior to my arrival at Leeds working in 

Bernhard Palsson’s group at UCSD and had constructed a small model of central carbon 

metabolism in P. falciparum using the Simpheny™ software package. Information on this 

software suite is hard to come by; the only published material is a single page abstract in a 

2005 list of grantees produced by the genomics science program of the US department of 

energy 79. Bernhard Palsson is currently listed as a “Board Observer” and a co-founder of 

Genomatica, the private company who develop and distribute the software. In 

conversations with former PhD students of his including Nathan Price, Ines Thiele and 

Markus Herrgard it has been suggested that Prof. Palsson is able to ensure free or cheap 

access to the Simpheny platform to researchers with personal affiliations to him as long as 

their use of the software does not compromise the interests of Genomatica. 

My understanding is that Simpheny did not historically enforce a particular ontology — 

the many arbitrary reaction and compound names in Elizabeth Edwards’s reconstruction 

reinforce this — but that the software has since evolved to use an ontology completely 

compatible with MetaCyc. Examining recent metabolic reconstructions made using the 

software it now seems that Simpheny has fully adopted the MetaCyc ontology. Simpheny 

has the advantage of being the only tool to allow all steps of the metabolic network 

reconstruction, analysis and visualisation process to occur within a single piece of 

software. Reactions can be added to a network either by choosing them from a list of pre-

existing reactions or by independent definition. These reactions can then additionally be 

represented graphically in user-editable graphs. Flux-balance analysis can be performed 

within the programme and the results projected onto the edges of the network graph. 

Given the work already done by Elizabeth Edwards in Simpheny and her opinion that it 

was a useful programme I contacted Genomatica in June 2008 with the hope of using their 

software for my project. I was quoted a fee of $13,000 per year for use of the software, 

with additional fees for extra users and a worrying suggestion that Genomatica may retain 

certain rights to the metabolic network and simulation results produced using the 

software. Clearly we would have to find another solution. 
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Pathway Tools 

The Pathway Tools software80, at version 15.1 as of June 2011, is maintained by Peter 

 arp’s group at Stanford Research International (SRI) and is available to academics free of 

charge. It continues to be well promoted and developed and is closely linked to the 

MetaCyc ontology maintained by the same group at SRI and described in the introduction. 

The software is used for the curation of a groupe of networks all of which end with “cyc”, 

including the P. falciparum network, plasmocyc, that we have already seen in relation to 

choke-point analysis. Pathway Tools includes tools for visualising networks and finding 

and filling gaps within networks, courtesy of the Pathologic module. When I originally 

investigated using the software it did not allow SBML export of models, nor did it allow 

flux-balance analysis to be performed on models. Both these features have now been 

added. 

In the end my decision not to use Pathway Tools for my metabolic reconstruction was 

based on its extremely confusing user interface, its lack of features and flexibility, and its 

worrying tendency to revert to a LISP command-line interpreter at the first sign of trouble. 

That the software was only able to use the MetaCyc ontology was a further issue. 

CellDesigner/Payao 

CellDesigner81, and its collaborative online implementation Payao82, are interesting 

because they are primarily visual methods of creating valid SBML format metabolic 

models. As such, they can be a big help in creating joined up models without making errors 

and should be a good introduction for researchers looking to build their first models. 

The promise of CellDesigner is rather let down by its implementation which is at the same 

time too complex — with an extremely cluttered user interface — and too simple; no 

ontology or reconstruction framework is offered or enforced. My experience with 

CellDesigner has been much like Markus Herrgard’s who told me via email in July 2008 

that, “I’ve also used CellDesigner a bit, but it seems a bit too clumsy for my liking”. 
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Building MetNetMaker 

 

 

 

Obviously, the more you can automate generating the input files the easier things 

will be. 

Markus Herrgard’s advice, July 2008 via email. 

 

 

 

Having evaluated the available existing software, I decided that the best way to progress 

with my project was to build my own solution capable of six key tasks. 

1. Store the LIGAND ontology* offline within a rigorous reconstruction framework. 

2. Allow the user to generate new reactions not defined in the LIGAND ontology and 

insert them into this framework. Non-defined reactions are generally transfer 

reactions, spontaneous reactions, biomass reactions or simplifications of complex 

groups of reactions.  

3. Help the user to re-use commonly custom-defined reactions, such as hydrogen ion 

transport across the cell membrane. 

4. Output metabolic networks in SBML format complete with relevant constraints, 

optimisation objectives and kinetic properties for use with the COBRA toolbox, 

probably the most widely-used tool for flux-balance analysis. 

5. Remain flexible and expandable enough to accommodate additional information. 

Amongst other things this additional information could consist of Gene-Protein-

Reaction relations (GPRs), the chemical formulae of compounds, or references to 

evidence supporting the inclusion of a given reaction in a network. 

6. Have an interface that makes creating new reactions, viewing existing reactions and 

adding reactions to a metabolic network extremely quick, easy, and reliable. 

In the process of developing, publishing and updating MetNetMaker it has acquired a 

further key feature; the production of visual representations of the network being 

reconstructed.  

                                                             
* My reasons for choosing  EGG over MetaCyc are explained in the introduction. 
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Application structure 

The structure of MetNetMaker version 1.0, as shown in figure 19, was my solution to these 

design challenges. MetNetMaker is built around a central reaction database which holds a 

rigorous reconstruction framework as described in the introduction. This database is 

initially populated by selected parts of the LIGAND ontology as parsed and imported by a 

comprehensive parsing script called the LIGAND loader which I describe later.  Within 

MetNetMaker the reaction creator is used to create new reactions to add to the central 

database and the reaction picker is used to insert reactions from the central database into 

the selected reactions table in order to build up a metabolic network. 

 

Figure 19: Representation of key parts of the application structure of MetNetMaker as published in Forth et al.83 

Excel spreadsheets are used to hold lists of selected reactions and can be considered 

MetNetMaker’s internal file format. Multiple pathway files in Excel format can be joined 

within MetNetMaker and can additionally be exported as SBML files with extra markup for 

easy analysis in the COBRA toolbox. 

The software can thus be considered in four main parts, the database structure, database 

population (ligand loader), database addition (reaction creator) and network assembly 

(reaction picker). 
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Software implementation 

MetNetMaker is written using visual basic for applications (VBA) for the user interface 

elements and structured-query language (SQL) queries for database manipulation. These 

two elements of the design are brought together within the Microsoft Access Runtime 

which manages the central reaction database. The source code for the application (though 

not of the runtime) is available from within the full version of Microsoft Access. 

Decision to use Microsoft Access 

Since it has been the subject of much discussion let me briefly explain my decision to write 

MetNetMaker in Microsoft Access. 

I made preliminary efforts to write my software as a webservice using html, css and 

javascript for the user interface and php scripts linked to a MySQL database to manage the 

data. This was unacceptable to me because of the complexity of installation if run locally 

and the poor responsiveness if run remotely. 

I attempted to use the opensource database module of openoffice.org as the basis for 

MetNetMaker but quickly realised that the poor documentation and limited user interface 

tools available in openoffice.org would make this a very slow process. 

Although at the time I was reluctant to write software that I knew could only be used on 

Windows I am extremely happy with the outcome. The software is extremely easy to 

install, completely portable and will be supported without any intervention on my part for 

at least ten years.  

Database structure 

A further advantage of using Microsoft Access was that the entity relation diagram I 

designed, figure 20, could be verified graphically as in figure 21. This made it much easier 

to add links between tables to ensure that additions and deletions of compounds and 

reactions to and from the reconstruction framework were handled correctly. 

The entity relation structure ensures that each compound is referred to uniquely by a 

single ID and that each reaction — also referred to by a single ID — is built only of those 

compounds.  Synonym tables mean that a reaction can be searched for using any 

combination of multiple names, metabolic pathways, associated EC numbers, or 

constituent compounds whilst retaining a single unique ID. 
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Figure 20: The Entity Relation Diagram of the central database in MetNetMaker is central to implemented a rigorous reconstruction framework. 

Final Entity Relation Diagram
Central Database

MULTIPLE
COMPOUND NAMES

PREFERRED COMPOUND
NAME AND DETAILS

Compounds

Preferred 
Compound Name

Source

KEGG Compound ID

Chemical Formula

KEGG Compound ID

Compound Name

REACTION-REACTANT
LINKING TABLE

COMPARTMENT

Outside 

Suffix

Compartment Name

KEGG Reaction ID

Reactant's KEGG
Compound ID

synonym table

REACTIONS

KEGG Reaction ID

Preferred Reaction Name

MULTIPLE
REACTION NAMES

Reaction Name

KEGG Reaction ID

Reactant Stoichiometry

synonym table

Surrogate Primary Key

Reactions

Compartment **

** In the Reaction-Reactant and the Reaction-Product 
linking table the Compartment is only specified for 
transport reactions. Other reactions occur within a  
single compartment and so the compartment can be 
defined in the selected reactions table.

REACTION-PRODUCT 
LINKING TABLE

KEGG Reaction ID

Product's KEGG 
Compound ID

Product Stoichiometry

Surrogate Primary Key

Compartment **

Source

EC-REACTIONS LINK

Surrogate Primary Key

KEGG Reaction ID

synonym table

EC Number

Product Atoms

Reactant Atoms

KEGG Reaction ID

Balanced (Boolean)

BALANCED

Primary Key

Foreign Key

Key

TABLE Legend
link into table

link out of table

Lower Bound

Upper Bound

Kinetic Type

Objective Value

KINETICS

MULTIPLE
REACTION PATHWAYS

Surrogate Primary Key

KEGG Reaction ID

synonym table

KEGG Pathway



54 
 

 

Figure 21: The Entity Relation Diagram of the central database in MetNetMaker as represented within Microsoft Access.
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Database population 

MetNetMaker’s central database is populated with a parsed version of the LIGAND 

ontology, obtained either through direct download* of the following files, 

 reaction from ftp://ftp.genome.jp/pub/kegg/ligand/reaction/ 

 compound from ftp://ftp.genome.jp/pub/kegg/ligand/compound/ 

 glycan from ftp://ftp.genome.jp/pub/kegg/ligand/glycan/ 

or via the KEGG API available at http://www.genome.jp/kegg/soap/. 

Prior to version 1.5.2 these files were automatically downloaded and parsed on the first 

run of MetNetMaker but due to licensing changes by KEGG MetNetMaker now ships pre-

populated with the last freely available (July 2011) version of the ftp-derived LIGAND 

ontology. This information — and subsequent ontology updates — could still be obtained 

legally using the KEGG API but would require some changes to be made to the scripts used 

to parse the ontology. 

The parsing algorithm is written in Perl and notably makes fewer parsing errors than the 

kegg2sbml algorithm written for conversion of KEGG pathways to SBML84. For 

convenience this perl script is compiled as a Windows executable file 

(parsescript.exe) for distribution with MetNetMaker so that the installation process 

has absolutely no dependencies but is also included uncompiled (parsescript.pl) with 

the standalone version of MetNetMaker (without installer) for inspection and re-use. 

Since the structure and purpose of the glycan flat file is identical to the compound flat file, 

the approach to parsing the three input files from LIGAND (REACTION, COMPOUND and 

GLYCAN) can be explained in two parts. In figure 22 I show how a section of the 

REACTION flat file corresponding to reaction R00014 (pyruvate:thiamine diphosphate 

acetaldehydetransferase (decarboxylating)) is parsed and a summary of the total length 

and destinations of the files produced is shown below as table 1. 

                                                             
* Access to the FTP site is currently only available to paid subscribers. 
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Table 1: The purpose of text files produced by parsing the LIGAND REACTION file. 

 

The equivalent parsing approach for the COMPOUND and GLYCAN files is shown in figure 

23 for C00022 (pyruvate) the first reactant of R00014 and a summary of the total length 

and destinations of the files produced is shown in table 2. 

 

 

Table 2: The purpose of text files produced by parsing the LIGAND COMPOUND and GLYCAN files. 

 

A final text file (reactionbalancedcheck.txt) is created by the parsing script and is 

shown in figure 24. This file is slightly different from the other parsing outputs as it 

contains information that is calculated — rather than merely extracted — from the 

LIGAND flat files. The chemical formula information for compounds held in the 

preferredcompoundname.txt file is split into counts for each atom. These atom counts 

are then combined according to the compounds and stoichiometries for each reaction as 

given in the reactants.txt and products.txt file. By counting atoms on each side of 

the mass-balancing of each LIGAND reaction is checked and any violations are marked in 

the balanced column of the reactionbalancedcheck.txt file. Of the 8134 reactions 

imported from LIGAND, this methodology reports 6269 to be balanced. 

Text file Length Purpose/Destination within MetNetMaker 

parseKEGGreactionfileOUT.txt 8137 lines Used to check for errors in the parsing algorithm. 

multiplereactionpathways.txt 10781 lines Imported to MRP table. 

multipleECnumbers.txt 7626 lines Imported to EC-REACTIONS LINK table. 

preferredreactionpathway.txt 8137 lines Created but not used. 

preferredECnumber.txt 6836 lines Created but not used. 

multiplereactionnames.txt 8280 lines Imported to MRN table. 

preferredreactionname.txt 8137 lines Imported to REACTION table. 

reactants.txt 16821 lines Imported to REACTIONS-REACTANTS LINK table. 

products.txt 17358 lines Imported to REACTIONS-PRODUCTS LINK table. 

 

Text file Length Purpose/Destination within MetNetMaker 

multiplecompoundnames.txt 17798 lines Imported to MCN table. 

preferredcompoundname.txt 10874 lines Imported to PREFERRED COMPOUND NAME 

table. 

reactionbalancedcheck.txt 8136 lines Calculated for each reaction rather than parsed 

directly from LIGAND.  

Imported to BALANCED table. 
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Difficulties with mass and charge balance 

It must be noted that although checking that reactions are balanced in this way is useful 

and avoids obvious mistakes, it is by no means perfect.  

Mass balancing is made especially difficult where imprecise definitions of polymers are 

given such as the addition or subtraction of a single glucose molecule from starch in KEGG 

reaction R01790 (Starch + H2O <=> alpha-D-Glucose + Starch). Another common area for 

problems in the LIGAND ontology is that most reactions involving RNA are also 

unbalanced, for example R00435 (ATP + RNA <=> Diphosphate + RNA).  

Usually problems with mass balance can be resolved quite easily but resolving problems 

with charge-balance is typically much more difficult. Since metabolism mostly takes place 

in aqueous solutions, compounds can freely exchange protons and electrons with the 

solvent. Depending on the pH, many compounds will have different ionisation states from 

their defined state. LIGAND reactions are remarkably well balanced with respect to 

protons but electrons are not considered at all when counting atoms. For most pathways 

this is unimportant but in key areas, especially close to the electron transport chain, it is 

extremely important to check if reactions are properly balanced and avoid internal cycles 

capable of creating electrons from nowhere. It is perhaps fortunate that the electron 

transport chain plays such a minor role in P. falciparum metabolism that I have been able 

to omit this pathway from my reconstruction. The reasons for this simplification are given 

later. 
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Figure 22: (top) Colour coded entry from the LIGAND database REACTION file for R00014. (bottom) The tables 
produced from parsing this entry and then used to populate tables in MetNetMaker’s central database. 

///

ENTRY       R00014                      Reaction

NAME        pyruvate:thiamin diphosphate acetaldehydetransferase (decarboxylating)

DEFINITION  Pyruvate + Thiamin diphosphate <=> 2-(alpha-Hydroxyethyl)thiamine 

diphosphate + CO2

EQUATION    C00022 + C00068 <=> C05125 + C00011

COMMENT     2-oxoglutarate dehydrogenase complex: pyruvate dehydrogenase (see R01699), 

subsequently R03270

            TPP-dependent enzymatic reaction (see R00006), subsequently R03050

            TPP-dependent enzymatic reaction (see R00226), subsequently R04672

            TPP-dependent enzymatic reaction (see R00224), subsequently R00755

            TPP-dependent enzymatic reaction (see R08648), subsequently R04673

RPAIR       RP00074  C00068_C05125 main

            RP02918  C00022_C05125 trans

            RP05698  C00011_C00022 leave

ENZYME      1.2.4.1         2.2.1.6         4.1.1.1

PATHWAY     rn00010  Glycolysis / Gluconeogenesis

            rn00020  Citrate cycle (TCA cycle)

            rn00290  Valine, leucine and isoleucine biosynthesis

            rn00620  Pyruvate metabolism

            rn00650  Butanoate metabolism

            rn01100  Metabolic pathways

            rn01110  Biosynthesis of secondary metabolites

            rn01120  Microbial metabolism in diverse environments

ORTHOLOGY   K00161  pyruvate dehydrogenase E1 component subunit alpha [EC:1.2.4.1]

            K00162  pyruvate dehydrogenase E1 component subunit beta [EC:1.2.4.1]

            K00163  pyruvate dehydrogenase E1 component [EC:1.2.4.1]

            K01568  pyruvate decarboxylase [EC:4.1.1.1]

            K01652  acetolactate synthase I/II/III large subunit [EC:2.2.1.6]

            K01653  acetolactate synthase I/III small subunit [EC:2.2.1.6]

            K11258  acetolactate synthase II small subunit [EC:2.2.1.6]

///

Reaction ID Name Definition Eqaution Pathway

R00014 pyruvate:thiamin diphosphate 
acetaldehydetransferase 
(decarboxylating)

Pyruvate + Thiamin diphosphate <=> 2-
(alpha-Hydroxyethyl)thiamine 
diphosphate + CO2

C00022 + C00068 <=> 
C05125 + C00011

rn00010  Glycolysis / 
Gluconeogenesis

parseKEGGreactionfileOUT.txt

Reaction ID Kegg Pathway

R00014 Glycolysis / Gluconeogenesis

R00014 Citrate cycle (TCA cycle)

R00014 Valine, leucine and isoleucine biosynthesis

R00014 Pyruvate metabolism

R00014 Butanoate metabolism

R00014 Metabolic pathways

R00014 Biosynthesis of secondary metabolites

R00014 Microbial metabolism in diverse environments

multiplereactionpathways.txt multipleECnumbers.txt

Reaction ID Name Source

R00014 pyruvate:thiamin diphosphate acetaldehydetransferase(decarboxylating) KEGG

multiplereactionnames.txt

preferredreactionname.txt

Reaction ID EC number

R00014 1.2.4.1

R00014 2.2.1.6

R00014 4.1.1.1

Reaction ID Compound ID Stoichiometry

R00014 C05125 1

R00014 C00011 1

products.txt

Reaction ID Compound ID Stoichiometry

R00014 C00022 1

R00014 C00068 1

reactants.txt

preferredreactionpathway.txt

preferredECnumber.txt

Created but not used
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Figure 23: (top) Colour-coded sample entry from the LIGAND database COMPOUND file for C00022. (bottom) The 
tables produced from parsing this entry and then used to populate tables in MetNetMaker’s central database. 

///

ENTRY       C00022                      Compound

NAME        Pyruvate;

            Pyruvic acid;

            2-Oxopropanoate;

            2-Oxopropanoic acid;

            Pyroracemic acid

FORMULA     C3H4O3

MASS        88.016

REACTION    R00006 R00008 R00014 R00195 R00196 R00197 R00198 R00199 

            R00200 R00203 R00205 R00206 R00207 R00208 R00209 R00210 

...

            R08660 R08667 R08686 R08698 R08714 R09048 R09088 R09238 

            R09254 R09366

PATHWAY     ko00010  Glycolysis / Gluconeogenesis

...

            ko00900  Terpenoid backbone biosynthesis

            map01060  Biosynthesis of plant secondary metabolites

            ...

            map01070  Biosynthesis of plant hormones

            ko01100  Metabolic pathways

...

            ko04930  Type II diabetes mellitus

ENZYME      1.1.1.27        1.1.1.28        1.1.1.38        1.1.1.39        

            1.1.1.40        1.1.1.83        1.1.2.3         1.1.2.4         

            ...

            4.4.1.13        4.4.1.15        4.4.1.16        4.4.1.24        

            4.4.1.25        4.4.1.-         4.5.1.2         4.6.1.1 (C)     

            6.4.1.1

DBLINKS     CAS: 127-17-3

            PubChem: 3324

            ChEBI: 32816

            LIPIDMAPS: LMFA01060077

            LipidBank: DFA0385

            KNApSAcK: C00001200

            PDB-CCD: PYR

            3DMET: B00006

            NIKKAJI: J2.015J

ATOM        6

            1   C1a C    12.6924  -17.4300

            2   C5a C    13.9049  -16.7300

            3   C6a C    15.1173  -17.4300

            4   O6a O    16.3318  -16.7288

            5   O5a O    13.9049  -15.3302

            6   O6a O    15.1173  -18.8300

BOND        5

            1     1   2 1

            2     2   3 1

            3     3   4 1

            4     2   5 2

            5     3   6 2

///

Compound ID Compound Name

C00022 Pyruvate

C00022 Pyruvic acid

C00022 2-Oxopropanoate

C00022 2-Oxopropanoic acid

C00022 Pyroracemic acid

multiplecompoundnames.txt

preferredcompoundname.txt

Compound ID Compound Name Formula

C00022 Pyruvate C3H4O3
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Figure 24: Table produced during parsing to test whether reactions are mass balanced. 

  

Reaction ID Reactant Atoms Product Atoms Balanced

R00014 C15 H23 N4 O10 P2 S1 C15 H23 N4 O10 P2 S1 True

reactionbalancedcheck.txt
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User interface 

A key aim for me when writing MetNetMaker was that it should be usable by someone 

with a limited knowledge of metabolic network design. Ideally this would include people 

who spent a majority of their time in the wet lab performing experiments on the organism 

they were studying. A key part of achieving this goal was to have a friendly and familiar 

user interface capable of performing all tasks without ever presenting the user with a 

command line prompt. My decision to build features around the user interface, rather than 

the other way round, means that there are some useful features missing from 

MetNetMaker. This lack of features is a reasonable criticism of my software but I think my 

software fills a valuable niche below much more complex programmes like Metannogen85 

and I have been greatly encouraged by the feedback I have received from all around the 

world. 

The user interface of MetNetMaker can be considered in two main parts, the reaction 

picker and the reaction creator, all tied together by the ribbon user-interface (UI). The 

ribbon — now common in modern Windows programmes — contains frequently used 

controls within the user interface. 

Reaction Picker 

The reaction picker, shown in figure 27 on page 64, is the immediately visible part of 

MetNetMaker and is itself divided into a number of subsections. 

Reaction Filters 

This section gives the user the chance to search for a reaction within the database by 

specifying reactants and/or products (by either full or partial name or ID), associated 

pathway, associated EC number and reaction name (including partial names). All of these 

parameters can be searched for in any combination. 

Reaction Chooser 

This section provides the user with a list of reactions that fit the search parameters chosen 

in the “Reaction Filters” section. In figure 27 the reaction chooser only shows reactions 

associated within the LIGAND ontology with the EC number 1.2.4.1. Reaction R00014 has 

been selected. Double-clicking on a selected reaction within the reaction chooser opens 

the relevant page of the LIGAND website with the most recent full description of the 

reaction. 

Three additional buttons allow the user to delete existing reactions, open the reaction 

creator to create a new reaction from scratch, or edit an existing reaction by pressing the 
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“Edit Reaction” button. Selecting a reaction and pressing “Edit Reaction” opens the 

selected reaction within the reaction creator. 

Reaction Viewer 

Clicking on a reaction in the “Reaction Chooser” opens it for inspection in the “Reaction 

Viewer” section so that the user can be sure that they are ready to add the correct reaction 

to their metabolic network. Additional information is shown for each reaction, including 

whether it is balanced or not. Double-clicking on any compound within the reaction 

viewer opens the relevant page of the LIGAND website with the most recent full 

description of the compound. 

Reaction Picker 

In this area the user chooses which compartment they want the reaction to take place in 

and the kinetic type of the reaction. Possible kinetic types are transfer, reversible (with 

varying maximum fluxes), forward, backward, special (if a user has defined the reaction 

themselves in the reaction creator they are prompted to choose this) and biomass. By 

clicking on the “Add Reaction ==>” button the reaction that is currently selected in the 

reaction chooser section is added to the “Selected Reactions” section with the relevant 

compartment and kinetic type attributes added to it. A selection of common compartments 

is pre-populated but non-standard custom compartments — such as the food vacuole in 

P. falciparum — can be added where necessary. 

Selected Reactions 

The selected reactions area shows the user a scrollable list of all the reactions that are 

currently in their metabolic network. Items can be deleted and edited from within this list 

to allow the user to build up a metabolic network. The selected reactions table can be 

detached, as shown in figure 25, and moved separately from the main window of 

MetNetMaker allowing changes to be made more easily. Additional columns of the selected 

reactions table leave space to tweak the composition of a model’s objective biomass 

function, add information on the associated KEGG Pathway (Map Number) of each 

reaction, add information on a gene associated with each reaction and choose to reverse 

the preferred direction of the reaction during export. 
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Figure 25: Detachable window for the selected reactions list within MetNetMaker 1.5.2. 

A further notable feature of the selected reactions table is the option to see dead-end 

compounds — the lists of compounds that only enter, or only leave the network — for the 

currently loaded set of reactions. Since this calculation requires knowledge of the 

preferred direction of each constituent reaction in the network any reactions known to be 

operating in the reverse of their default direction need to be reversed by selecting the 

“Rev” tickbox in the selected reactions table. The resulting dead-end compounds table, as 

shown in figure 26, can be extremely useful in solving small errors in a network such as 

missing inter-compartment transfer reactions. 

A full description of the algorithm used to calculate the dead-end compounds within a list 

of selected reactions is included as appendix I. 

 

Figure 26: Dead-end compounds report for an example set of reactions in the selected reactions table.
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Figure 27: Reaction Picker window within MetNetMaker 1.5.2. Reaction R00014 is currently highlighted. The ribbon UI at the top is always present.
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Reaction Creator 

The reaction creator, as shown in figure 28 on page 67, performs two functions. Firstly, it 

protects the reaction database and reconstruction framework from the user, and secondly it 

helps the user make additions to the reconstruction framework without creating inconsistencies 

or duplications. Like the reaction picker it can be considered in different subsections. 

Compound Picker 

Here the user can search — by either a partial or complete name or compound ID — for the 

compound they would like to add to the reaction. Because a single compound may have multiple 

names each compound may appear more than once in the possible compounds list, as in the 

example in figure 28. 

Custom compounds, typically generic compounds such as “lipid” or “any tRNA”, can be added to 

the list of compounds here and are marked within the PREFERRED COMPOUND NAME table as 

being user generated so they can be exported by pressing the “Backup User Reactions” button in 

the ribbon UI. These exported custom compounds can be restored at a later date or transferred 

to other version of MetNetMaker as required. 

Add Record 

The user selects whether the compound selected in the compound picker is a reactant or a 

product and defines which, if any, compartment it is in. By clicking on the “Add New Record” 

button this compound is added to the selected compounds area. At this stage ambiguities from 

the compound picker area are removed and only the unique compound ID and its associated 

preferred name is added to the selected compound area. 

Selected Compounds 

This section holds lists and details of all the compounds in the reaction being created or edited. 

In figure 28 the reaction R00014 is being edited and the relevant reactants and products and 

their associated stoichiometries are present and editable in the selected compounds area. 

Similar Reactions 

The application checks that the reaction that is being defined has not already been created by 

warning of similar reactions (those containing the same reactants and products). In this example 
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it is warning that R00014 is already present within the reaction database so that it not defined 

twice with different names. 

Reaction Naming 

Despite efforts to automate naming of new reactions I have decided to offer suggestions on 

naming conventions but ultimately leave the user to name them. In this section the user defines 

a long name and a reaction ID before the reaction is added to the central reaction database. 

Finalise and Create Reaction 

Clicking this button finalises the reaction and adds it to the database. User-added reactions are 

marked “User” instead of “ EGG” in the source column of the REACTION table. These custom 

reactions are exportable in the same way as custom compounds by using the “Backup User 

Reactions” button in the ribbon UI.
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Figure 28: Reaction R00014 being edited within the Reaction Creator window of MetNetMaker 1.5.2. The ribbon UI at the top is always present.



68 
 

Application outputs for further analysis 

The most frequently used controls in the ribbon are those related to the import and export 

of models.  Model export options are critical because further use of a model must take 

place in other programmes. MetNetMaker can export models to three destinations, Excel 

spreadsheets for internal saving, SBML files for sharing models, and Cytoscape86 sessions 

for visualisation. 

Excel spreadsheet import and export 

Since MetNetMaker is written in Microsoft Access it is simple to export a list of reactions 

accumulated in the selected reactions table as an Excel spreadsheet using the “Export 

Excel” button. In this way, small sections of a complete network can be built over time and 

saved and shared easily. 

These sets of reactions can later be loaded into MetNetMaker using the “Import Excel” 

button. Importing multiple sets of reactions into a single selected reactions table within 

MetNetMaker automatically joins them and in this way large networks can be quickly 

assembled from pre-prepared components. 

SBML export 

MetNetMaker offers two options for SBML export of the reactions currently defined in the 

Selected Reactions table. Files exported as level 2 version 1 have been fully tested to work 

with COBRA toolbox 1.3.3 and this option is retained for compatibility. Exported networks 

using the level 2 version 4 export button have been validated using the SBML validator at 

sbml.org/facilities/validator and are known to work with a wide variety of tools including 

CellDesigner81, SurreyFBA87 and Cytoscape (SBML import). 

Cytoscape export 

Any valid SBML network can easily be imported into Cytoscape for visualisation. This 

would be a good method of network visualisation both for verification of the network 

during reconstruction and to view the results of analysis except for one problem. For 

useful visualisation of a network frequently occurring compounds need aliasing to allow 

the network to take a proper shape and neither SBML nor the cytoscape SBML import 

function provide a mechanism for defining and aliasing these currency metabolites. For 

this reason MetNetMaker includes a dedicated button to “Visualise in Cytoscape” which 

prompts the user to select which metabolites to alias before opening the network in 

cytoscape. 
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Since a metabolite may be a currency metabolite only in some parts of a complete network 

a related feature the “Merge .xgmml visualisations” lets the user merge separate visual 

representations of networks in the same way as they merge separate excel files in the 

selected reactions table. This helps the user manually layout a large network in small 

pieces whilst specifying different currency metabolites for each section. 

 

Figure 29: The cytoscape output form in MetNetMaker 1.5.2 

Final structure and additional features 

Because networks within MetNetMaker are stored as Excel spreadsheets they can easily 

be opened, edited and appended outside of MetNetMaker and then re-imported later. This 

flexibility is the key behind the evidence lookup process I have developed to help with my 

reconstruction of a metabolic network for P. falciparum. A key advantage of this approach 

is that organism-specific information is kept separate from the general reconstruction 

thus allowing a complete reconstruction without unnecessary complexity. 

A thorough example of the reconstruction process, including all parts of the complete 

process diagram shown in figure 30, is contained in the next chapter of this thesis.
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Figure 30: Representation of key parts of the application structure of MetNetMaker 1.5.2 as currently available from www.metnetmaker.com and an overview of associated tools for further analysis of 
networks.  
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Visualisation and Network 

Reconstruction 

visit www.tomforth.co.uk/pfalnetwork for the network. 

 

The case for manual curation: 25% of 4711 enzymatic activities are orphan 

reactions and 26% of Pfam* families are of unknown function. 

Monica Munoz-Torres at ISB2012†  

 

Why visualisation and network reconstruction in the same chapter? 

I have shown in the introduction that a visual representation of a metabolic network is 

directly equivalent to the mathematical representation we can use for calculations and 

simulations. Previous reconstructions of the P. falciparum metabolic network have 

strongly focused on either the mathematical representation — Yeh et al.7, Hutchmacher 

et al.59 and Plata et al.58 — or the visual representation as in Ginsburg et al.10.  

Another limited visual reconstruction is shown as figure 33 and is an extract from 

Olszewski et al.88. No computational model of this network exists although my final model 

largely follows its template. 

The focus on the mathematical approach to network reconstruction is likely to have 

contributed to some of the errors found in the Huthmacher and Plata models, evidence of 

which is shown in figure 31 and figure 32, These errors are easily visible to humans when 

drawn but, as described in Gregorvyan et al.89, are often difficult to uncover 

mathematically. Also described in Gregorvyan et al. are errors, such as unconserved 

metabolites, that are difficult to see but that can be discovered computationally and which 

I will return to later. 

The visualisations of the networks in figure 31 and figure 32 use two different techniques 

to show a number of non-connected/orphan reactions. Since these network visualisations 

                                                             
* The Pfam database is a large collection of protein families, each represented by multiple sequence 
alignments and hidden Markov models (HMMs) – as defined at pfam.sanger.ac.uk. 
† Biocuration 2012. The Conference of the International Society for Biocuration, April 2-4, 2012, 
Washington DC, USA. 
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have no aliased compounds these reactions are completely redundant and serve no 

possible purpose within the final networks. Visualisation lets us see these obvious errors 

but we must also consider that there are likely to be further orphan reactions, or non-

orphan but incorrect reactions that are included in error within both models. The orphan 

reactions in both models provide good reasons why I think that network visualisation is a 

vitally important part of network reconstruction. 

 

Figure 31: P. falciparum metabolic model from Huthmacher et al.59 as visualised in SharkView90 with no compound 
aliasing. Squares represent reactions and circles represent compounds. The outline colour of each compound 

denotes the compartment it is found in. Isolated reactions are not connected to the network. 

 

Figure 32: P. falciparum metabolic model from Plata et al.58 as visualised in cytoscape86 with no compound aliasing. 
Red lines show compounds entering a reaction, green lines show compounds leaving a reaction. Compounds and 
reactions are arranged around the perimeter of the circle. Isolated reactions at the top-left are not connected to the 

network.  



73 
 

 

Figure 33 : The simplified map of carbon metabolism from Olszewski et al.88shows the unusual role of the 
mitochondrial TCA cycle in P. falciparum metabolism and the unusual role of the apicoplast in lipid synthesis and 

manipulation. Some of the visual simplifications are highly misleading, for example the reaction Glu => 2OG 
(glutamate => oxoglutarate) and the reaction OAA <=> Asp (oxaloacetate <=> aspartate) are actually the same 

reaction and their linked behaviour radically changes the structure of the network. My final model on page 94 (figure 
47) retains some of the design features of this model without making this important oversimplification. 

 

KEGG projector and Cytoscape: one problem, two approaches 

I have explained the general principles of metabolic network visualisation in the 

introduction and I have tried many techniques to implement those ideas. In the end I have 

largely settled for two network visualisation techniques which I have implemented in 

versions of MetNetMaker greater than v1.6. Access to both the KEGG projector and 

cytoscape visualisation techniques are shown in the user interface excerpt in figure 34. 

Both visualisation techniques are used widely in the rest of this thesis and it makes more 

sense to refer to later figures in this chapter as examples than to include them in this 

section out of context. 

 

Figure 34 : The visualisation section of the ribbon in MetNetMaker v1.6+ includes new options for visualising 
reactions in the selected reactions table. These methods rely either on my KEGG projector tool (the two buttons on 

the left) or Cytoscape for visualisation. 
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KEGG projector: a visual tool for immediately gauging the extent of a network 

KEGG projector relies on the KEGG markup language (KGML) global map available from 

the KEGG ftp site and described at www.kegg.jp/kegg/xml/ where an xml version of the 

global map can be downloaded. This xml file describes the KEGG global map91 in the 

scalable vector graphics (SVG) format and as such the visual map can be easily read by 

humans and manipulated by simple computer programmes called scripts. 

The KEGG projector tool — available from within MetNetMaker and also at 

www.tomforth.co.uk/keggprojector — shows the reactions described by a list of KEGG 

reaction IDs or EC numbers projected onto the KEGG global map. An example of this for all 

the reactions for which I have found any evidence of existence in P. falciparum is shown on 

page 88 as figure 42. I have found the KEGG projector to be a very powerful tool because 

the KEGG global map is widely recognisable to people working in metabolism and because 

the maps are generated in seconds from basic input and without the need for any manual 

intervention. 

There are some drawbacks to this very quick approach to visualisation. One is that the 

KGML global map only has 2048 edges, much fewer than the current 8135 active reactions 

and 6742 EC-linked reactions in the KEGG LIGAND ontology. This means that many 

different reactions correspond to the same edge within the visualisation and some 

reactions do not refer to any edge at all. A further problem arises as a side-effect of the 

simplifications made to create the KGML global map whereby only major connections 

between nodes are shown. Clearly currency metabolites need to be removed from this 

kind of visual overview, but at the level of simplification used in KGML important 

connections between major metabolites are also frequently omitted. An example of these 

simplifications is shown in context on page 83 as figure 39 where the addition of 18 

reactions to a network is projected as just 7 extra paths, one of which appears — wrongly 

— to be orphaned from the other reactions in the network. 

These and other limitations mean that KEGG projector is mostly useful to get a quick 

overview of a metabolic network and whilst I have written an extension of the tool that 

allows the thickness of each path to be weighted by calculated fluxes from FBA, the 

inherent disjointedness of the visualisation makes this a poor tool for visualising fluxes in 

a metabolic network. 
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Cytoscape: precise network display and flux projections 

Cytoscape visualisation makes none of the simplifications that make the KEGG projector so 

easy to use and it therefore retains much more power and flexibility.  Cytoscape 

visualisations have an extra advantage because they can contain a very large amount of 

metadata, allowing each node and edge to be precisely defined. The powerful model 

structure used by cytoscape allows this metadata to govern how data is displayed on the 

network using customisable and interchangeable Vizmaps. I have defined Vizmaps for 

showing fluxes (page 199, figure 98), flux constraints (page 204, figure 99), flux 

variabilities (page 216, figure 107) and essential reactions (page 218, figure 109). 

Figure 35 shows how cytoscape visualisation can recreate — as a fully editable cytoscape 

session — the static representations in MPMP. These visual representations require 

currency metabolites to be defined during creation within MetNetMaker and then require 

manual layout making them manageable for no more than thirty reactions. Large visual 

models can be built up from these small networks by combining xgmml (extensible graph 

markup and modelling language) format files* representing each subnetwork. A script to 

merge *.xgmml metabolic networks is included in MetNetMaker v1.6+ and is available as 

the “merge .xgmml visualisations” button. 

A key advantage of cytoscape visualisations is that they show all the reactions and 

metabolites within a model and the layout options make dead-ends and orphan reactions 

easy to see during model construction. The greatest strength of cytoscape visualisation is 

to provide a global map — like the one in figure 46 on page 94 — of the final model 

containing sufficient metadata to allow the projection of the results of simulations directly 

onto the model. This approach allows considerable insights into the system being studied.  

                                                             
* Cytoscape files (.cys) can be exported to xgmml files without loss of information from within 
cytoscape. Manipulated xgmml files can be reimported to cytoscape after merging. This round trip 
and merge retains all information within the network. 
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Four elements of my P. falciparum reconstruction 

Whilst both the Huthmacher et al. model59 and the Plata et al. model58 have been published 

since I started my reconstruction, the majority of my reconstruction was complete and my 

reconstruction process developed before I was aware of these efforts. I have not used any 

significant elements from these reconstructions, largely because I did not need to but also 

because of difficulties re-using these models. At the end of this chapter I describe how I 

have learned from the problems I had trying to re-use these published models to make my 

model easier to re-use. In this section I will explain the four principal methods I used to 

complete my metabolic reconstruction, reusing and correcting MPMP, using existing 

sources of curated data, gap filling with literature and defining custom reactions. 

Reusing and correcting MPMP 

The malaria parasite metabolic pathways (MPMP) project10 remains one of the best 

sources of information on P. falciparum metabolism but the raw data is available only as 

linked pictures like the one shown in figure 35 alongside the accompanying digitised 

pathway. Digitising these drawings is cumbersome but could have been completed quickly 

using the advanced searching features in MetNetMaker were it not for a second problem. 

 

Figure 35 : (left) depiction of glycolysis from MPMP8 (right) equivalent diagram within Cytoscape, created from a 
corrected version of the MPMP network using the ‘Visualise in Cytoscape’ button in MetNetMaker. 
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In large part because it is assembled and defined graphically, MPMP is full of errors. As I 

digitised and corrected these errors I noted and categorised them according to severity. 

Counting these errors after model assembly showed there to be, 

 62 minor errors such as currency metabolites being wrongly defined or mass not 

being conserved for a single reaction. These problems could be fixed quickly. 

 57 serious errors such as mass and/or charge not being conserved across a larger 

set of reactions or required reactions within a pathway being omitted. A few of 

these problems could typically be fixed in a day, especially where information from 

other sources was available. 

 22 very serious problems that were difficult to resolve and were critical to the 

functioning of the network as a whole. These problems often required extensive 

simplifications or generalisations to be made to my network. 

The full list of errors and corrections may no longer be accurate as corrections are made to 

MPMP frequently but to more fully explain the problem I include — as table 3 —an 

example of the kind of issues found when digitising an MPMP pathway. 

Pyrimidine metabolism - MPMP digitisation issues 

Severity EC Number Note 

serious 4.2.1.1 and 6.3.5.5 Carbonic Acid issue needs looking into seriously. Here 
4.2.1.1 creates carbonic acid (H2CO3). This will 
disassociate by itself in solution to H+ and HCO3

— which is 
then used by 6.3.5.5. I should add this dissociation 
reaction implicitly. 

minor 1.17.4.1 Extra H20 in KEGG reaction 

minor 2.7.4.14 KEGG reaction R02098 is a perfect match but has EC 
number 2.7.4.9 

serious 2.7.4.9 This reaction is already in the pathway one step above. In 
FBA this is useless so I've omitted it. 

minor 2.1.2.1 R00945 is a good match but produces an extra H20 
compared to MPMP. 

minor 1.8.1.9 (occurs 
twice, second 
occurrence omitted) 

R02016 is a good match but produces an extra H+ 
compared to MPMP. 

minor 1.17.4.1 R02023 is a good match but is much more complex than 
the MPMP reaction. 

minor 6.3.4.2 R00573 is a good match but has an extra H20 as a 
reactant. 

Table 3 : Issues encountered during the digitisation of MPMP’s depiction of pyrimidine metabolism. 

Updating or redefining deprecated KEGG reactions 

In the introduction I described how the simplicity of the KEGG LIGAND4 ontology played a 

large role in my decision to use it for this reconstruction but as I used it more I realised 
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that this simplicity comes at a price. As the ontology is updated some reactions are 

removed, often without a direct replacement. I first noticed this issue when manually 

entering reactions drawn in MPMP pathways which linked to numbered KEGG reactions 

that no longer existed. The issue came to light a second time when updating the first draft 

of my model two years after it was built. The first draft of my P. falciparum metabolic 

network was completed using MetNetMaker 1.0 in early 2010. Just over a year later seven 

reactions — R02086, R00415, R05919, R05921, R05922, R07461 and R07462 — that 

were valid at the time of reconstruction were no longer part of the updated KEGG LIGAND 

database. 

 

Figure 36: RO2086 as shown in MetNetMaker v1.0. This reaction is no longer present in current versions of LIGAND. 
No current LIGAND reaction involves C04256 but the compound remains in the ontology. 

 

Figure 37: R08193 as shown in MetNetMaker v1.5+. This reaction replaces R02086 but specifies the product as 
C04501 in place of C04256. The two compounds are isomers. 

It is somewhat reassuring that where reactions are removed from LIGAND their reaction 

numbers seem to be permanently retired so at least a reaction does not change across 

different versions of the ontology. The extent of this problem is unclear but with the 

current LIGAND reaction numbering system going up to R09052 and with only 8135 

distinct LIGAND reactions it seems likely that around 900 reactions have been removed 

from the LIGAND ontology since it was first published. 

At first inspection it seems as if a similar purging of the ontology occurs with compounds; 

in the version of LIGAND used in MetNetMaker 1.5+ compounds are listed up to C13782 

but there are only 10873 unique compounds. In considering this discrepancy we must 

remember that the compounds within the LIGAND database serve purposes greater than 

just defining reactions; they are also used to define drugs and inhibitors for example. In 

my experience no compounds that have ever been involved in a defined reaction are 

removed from the ontology, even if the reaction is removed. 
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A reaction that no longer exists within a model presents a problem. The ideal solution and 

the one I have used wherever possible is to update an outdated reaction to its modern 

equivalent. This often requires updating several reactions to ensure that the new reaction 

connects properly with its neighbours. 

Where replacing reactions has not been possible I have taken advantage of the consistency 

of the defined compounds to redefine legacy reactions in the new version of the ontology 

using the original reaction ID. Because these redefined reactions are stored within 

MetNetMaker as user-defined rather than KEGG-defined reactions they are included in the 

user’s custom reactions file if custom reactions are exported.  

This problem is one of many unexpected and frustrating discoveries I have made over the 

last four years and worked around. Because of  EGG’s decision to charge for access to the 

LIGAND ontology via its FTP service, all current and future version of MetNetMaker are 

pre-populated with the last free version of the ontology. This has the welcome side-effect 

that the problem I have just described is substantially reduced as compared to when each 

installation of MetNetMaker populated itself with the most up-to-date version of LIGAND 

when it was first run. 

Using existing sources of curated data 

SharkHunt77 was run on version 2.1.4 of the P. falciparum 3D7 genome available from the 

European Molecular Biology Laboratory (EMBL) and returned 289 protein hits with an E-

value under         (good) and 250 protein hits with an E-value under         (very 

good). These EC hits corresponded to 558 and 447 possible LIGAND reactions at each of 

the two confidence levels. SharkHunt returns more information than a list of EC hits 

including the sequence of each hit and the name of the reference sequence it was matched 

with but since this information is not required for network reconstruction I did not use it.  

The list of genes and associated EC numbers was downloaded for the KEGG pfa model 

from the organism section of  EGG’s FTP servers. This contained 616 genes corresponding 

to 646 unique EC numbers and 908 distinct possible LIGAND reactions. Initially I had used 

the output of KEGG2SBML84 on the KEGG pfa model to convert EC numbers of reaction IDs  

but it was clear that a number of EC numbers were missed in that parsing script. Using the 

EC Number-Reaction ID linking table in my ECinfo database — described on page 81 — 

gave much better results. 

The Braunschweig Enzyme Database (BRENDA) database92 contains 230 pieces of direct 

evidence, typically an experimentally isolated enzyme or experimentally confirmed 

reaction, covering 151 distinct EC numbers for enzymes that exist in P. falciparum. An 
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additional 451 distinct EC numbers are returned using the FRENDA text-mining method 

and 410 distinct EC numbers are returned using the AMENDA text-mining method. Hits by 

the three methods — direct evidence, FRENDA and AMENDA —overlap, meaning that in 

total BRENDA contains at least some evidence for 556 distinct EC numbers corresponding 

to 1053 distinct KEGG reactions. 

In addition to reporting on the presence of enzymes in P. falciparum BRENDA contains 

information on the localisation of some of those enzymes. A BRENDA localisation search 

returned 107 unique EC numbers with an associated cellular localisation of which 47 were 

from direct evidence in P. falciparum, 18 from direct evidence in other species of 

Plasmodium and 42 from FRENDA text-mining. These 107 unique EC numbers correspond 

to 295 compartmentalised reactions; there may be evidence for a single reaction occurring 

in more than one compartment. 

The version of PlasmoDB93 — a centralised database of Plasmodium genes — in the ECinfo 

database contains 813 distinct genes associated with 452 distinct EC numbers in turn 

associated with 1190 distinct LIGAND reactions. 

Extra reactions: gap filling with literature 

Carbon metabolism94–96, the role of the apicoplast97–99, and amino acid metabolism100–103 

are areas of metabolism where significant research has been conducted in Plasmodium 

and where ideas are still changing.  Fatty acid metabolism is also an area where the 

behaviour of P. falciparum is complicated and I have incorporated results from Mi-ichi 

et al.104 widely in this area. I have tried wherever possible to include information from 

these sources in my model. 

Defining custom reactions 

Sometimes reactions need to be added to metabolic models even when there is little or no 

evidence for their existence. There are seven reasons why these reactions may need 

defining. 

1. Transport between compartments within the model. These make up the largest 

number of custom-defined reactions and are largely included without evidence. 

2. Exchange reactions that move metabolites to and from the external pool of 

metabolites that simulates an inexhaustible growth medium. 

3. The biomass function. Strictly the biomass function is a reaction in that it appears 

in the SBML model as such. 
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4. Reactions defined for simplification. An example is in the fatty acid biosynthesis 

and elongation pathways where long series of elongation reactions are simplified 

to the creation of a single fatty acid which is then added to the biomass function. 

5. Balanced versions of reactions within LIGAND. In many cases unbalanced 

reactions in LIGAND can be fixed simply by defining a balanced equivalent. 

6. Reactions which occur in the host red blood cell and whose mechanism is beyond 

the scope of my model. 

7. Reactions added through necessity. Usually these reactions are strongly implied, 

for example where a single reaction is missing from a pathway that is known to be 

active.  

Combining evidence in the ECinfo database 

With evidence coming from many different sources it was a considerable challenge to join 

it together. The ECinfo database was my solution to this problem and it combines all the 

raw data used to create my final model. The structure of the database, as shown in figure 

38, is much looser than that for MetNetMaker because there are none of the same 

requirements to preserve the integrity of a reconstruction framework. The database 

structure collects information from all the sources described by EC number and links this 

to the LIGAND ontology which — like the reconstruction framework within MetNetMaker 

— is based on Reaction IDs and pathways. 

 

Figure 38: Entity relationship diagram for the ECinfo database as presented in Microsoft Access’s Relationships 
view. 

The Reaction ID – EC Number link 

The key task of the ECinfo database is providing a reliable link between KEGG Reaction IDs 

and EC numbers. This is a many-many relationship with the conversion table being 

created when the KEGG LIGAND database is parsed and imported into MetNetMaker. In 
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total this table contains 7533 entries referring to 6742 distinct KEGG Reaction IDs. 

Incomplete EC numbers, eg (2.4.1.-) are linked only to those reactions specified in the 

KEGG LIGAND ontology and not to all the possible reactions that could be linked to an EC 

number if the dash, or dashes, in the EC number were treated as wildcards. 

Additional information 

Beyond the other described sources of information, the ECinfo database contains 

information from KEGG on the preferred direction, if specified, of each reaction. As 

discussed in the introduction, all chemical reactions are theoretically reversible and since 

metabolism in general often uses the same reaction both anabolically and catabolically the 

preferred direction of a reaction is sometimes related to the pathway it is found in. In 

order to allow this specification the KEGG pathways associated with each reaction are held 

in a table within ECinfo and I have additionally created my own table linking the non-

standard MPMP pathways names to the KEGG pathway numbering/naming system. 

The ECinfo database also contains the same information on whether a LIGAND reaction is 

balanced as contained in MetNetMaker so that problems with known unbalanced 

reactions within a network are highlighted twice. 

Example reconstruction: nucleotide metabolism 

A description of the process for choosing each reaction within my final model would serve 

little purpose but since the process is shared across the whole network a small example is 

useful in explaining how the four main reconstruction elements described so far in this 

chapter are combined. In P. falciparum, an excellent place to choose such an example is 

nucleotide metabolism which is an interesting group of pathways for two main reasons. 

Firstly, because we know a great deal about both purine and pyrimidine metabolism, both 

in humans and in malaria parasites. Whilst humans can both salvage and synthesise de 

novo both purines and pyrmidines, it has been known for over three decades that 

P. falciparum parasites cannot perform de novo synthesis of purines105 and cannot salvage 

pyrimidines106. They must therefore rely on salvage of the host cell’s purines and de novo 

synthesis of pyrimidines for nucleotide synthesis. These gaps in malaria metabolism are 

especially good drug targets since human metabolism can use the redundant pathway if 

one of the two mechanisms of nucleotide synthesis is perturbed. The widely used 

prophylactic drug atovaquone — used in combination with proguanil and marketed as 

Malarone® by GSK — perturbs pyrimidine metabolism and the drugs Coformycin, 

Bredinin, Hadacidin, Allopurinol and the iminoribitol group of compounds target purine 

metabolism10. 
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Secondly — and surprisingly given the importance of nucleotide metabolism — MPMP 

seems to omit parts of the pathway with considerable evidence for occuring. To highlight 

this, the left side of figure 39 shows — using the KEGG projector tool — the reactions I 

created from correcting and importing MPMP’s drawings for nucleotide metabolism. 

When compared to the equivalent section of the consensus reactions projection at the top 

right of figure 43 it is clear that there are considerable gaps that can be filled from our 

existing knowledge. 

          

Figure 39: (left) The heavily shaded edges represent the 49 reactions of the nucleotide metabolism section of MPMP 
as projected onto the KEGG global map in KEGG projector (right) My reconstruction contains 17 more reactions but 

this is represented as only an additional 4 heavily shaded edges on the KEGG global map. 

The following example of how I improved on MPMP’s model of pyrimidine is considerably 

more ordered than what I actually did but it is a good representation of what I would do if 

I started my reconstruction now with the knowledge I have gained during my PhD studies. 

The results of the improvements I have made, as shown on the right side of figure 39 seem 

small in the KEGG projector view of the network but are more considerable than they 

appear. 
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Pyrimidine metabolism as an example of my reconstruction technique 

The starting point for my reconstruction is the list of reactions shown in table 4 and I 

assume that all reactions for which there is a consensus across all my data sources, as 

presented by the ECinfo database, are worthy of inclusion in my model. 

 

Table 4 : The 29 consensus reactions associated with pyrimidine metabolism (KEGG pathway 00240) from the 
ECinfo database. 

Using the ECinfo database’s information on each reaction we immediately see that five of 

these reactions are unbalanced.  

 R00377 and R00378 have both as reactants and products the generic compound 

DNA (C00039) and are the LIGAND ontology’s representation of DNA elongation 

using dCTP (C00458) and dTTP (C00459) respectively. These reactions can be 

deleted so long as dCTP and dTTP are included in the biomass function and that 

the biomass function returns to the cytosol, for each nucleotide consumed, a 

molecule of diphosphate. 

 R00442 and R00443 can be deleted for the similar reason that they refer to 

elongation of the generic compound RNA (C00046) from CTP and TTP bases 

respectively.  

 R00575 (2 ATP + L-Glutamine + HCO3— + H2O <=> 2 ADP + Orthophosphate + L-

Glutamate + Carbamoyl phosphate) is an unbalanced reaction; the atom counts 

calculated by MetNetMaker are shown in figure 40. After checking these atom 

counts by hand I added a hydrogen ion as a reactant in R00575 to create 

R00575_balanced and include this in my model instead. 

Reaction ID EC Number 

R00139 2.7.4.6 

R00156 2.7.4.6 

R00158 2.7.4.14 

R00377 2.7.7.7 

R00378 2.7.7.7 

R00442 2.7.7.6 

R00443 2.7.7.6 

R00512 2.7.4.14 

R00570 2.7.4.6 

R00571 6.3.4.2 

R00573 6.3.4.2 

R00575 6.3.5.5 

R00965 4.1.1.23 

R00969 3.6.1.17 

R01665 2.7.4.14 

R01867 1.3.3.1 

R01870 2.4.2.10 

R01876 2.4.2.3 

R01993 3.5.2.3 

R02016 1.8.1.9 

R02018 1.17.4.1 

R02024 1.17.4.1 

R02093 2.7.4.6 

R02094 2.7.4.9 

R02098 2.7.4.9 

R02100 3.6.1.23 

R02101 2.1.1.45 

R02326 2.7.4.6 

R02331 2.7.4.6 
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Figure 40 : The report from MetNetMaker on the atom counts for R00575 showing that the reaction is unbalanced. 
R00575_balanced replaces it in my final model. 

The next step in network reconstruction is to visualise the network and see whether there 

are any orphaned reactions. Selecting Pi (Orthophosphate), PPi (Diphosphate), H2O, O2, 

C02, PRPP (5-Phosphoribosyl diphosphate), ATP, ADP and H+ as currency metabolites in 

MetNetMaker’s cytoscape export dialogue and applying cytoscape’s circular layout to the 

resulting visualisation showed three reactions to be orphaned.  

 R00139 shares an EC number with R00156 which is not orphaned and is exactly 

equivalent except for the use of thioredoxin as the charge carrier in place of 

R00139’s ferrodoxin. With thioredoxin used elsewhere in the network I chose to 

delete R00139 and have used thioredoxin as the preferred charge carrier in similar 

reactions throughout my final network. 

 R01876 converts between Uracil (C00106)  + Pi (C00009) and Uridine (C00299) + 

alpha-D-ribose 1-P (C00620). Since we know from the literature that pyrimidines 

cannot be salvaged this is entirely expected and we can assume that the gene for 

this reaction is vestigial or serves another purpose. R01876 is deleted. 

 R02016 moves charge between thioredoxin and NADP and has no non-currency 

metabolites. This important reaction is kept since it only appears to be an 

orphaned reaction when NADP and thioredoxin are aliased and is actually well 

connected with the network. 

During visualisation I observed a dead-end compound which I chose to remove from the 

network by removing the reaction that creates it. R00969 combines two phosphorylated 

uracil bases to create UppppU (C06198) in the reaction UTP + UMP  <=> C06198 + H2O. 

This compound, shown in figure 41, is a dead-end that I am not including in my biomass 

function and whose known biochemical properties107 are beyond the scope of my model to 

simulate. 
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Figure 41 : The chemical structure of KEGG compound C06198, also called P1,P4-Bis(5'-uridyl) tetraphosphate or 
UppppU. 

At this point I turned to the digitisation of MPMP’s depiction of pyrimidine metabolism 

which I had previously manually converted into 24 reactions. Table 3, earlier in this 

chapter, summarised the issues I encountered during digitisation of this pathway but for 

this example we are only interested in the five reactions from the MPMP digitisation that 

were to this stage not in my model. 

 R00132 (4.2.1.1) has evidence for existence from both BRENDA text-mining and 

PlasmoDB and is necessary to provide HCO3
- from carbon dioxide dissolved in 

water. I added this reaction to my model. 

 R01397 (2.1.3.2) provides N-Carbomyl-L-aspartate to R01993. The reaction did 

not appear in the consensus model because it is missing from BRENDA but it is 

present in all other sources and required for the pathway and so included in my 

model. 

 R00945 (2.1.2.1) is omitted from the consensus model for this pathway because it 

is defined within other pathways (specifically 00670, 00460, 00260, 01100 and 

00680) and in this case acts as a link to folate metabolism. It is added to my model. 

 R02023 (1.17.4.1). There is only evidence for this reaction from BRENDA and 

these are text-mining hits. The reaction does not occupy an essential position in 

the pathway and although the reaction is included in MPMP I have not included it. 

 R02325 (3.5.4.3). The only evidence for this reaction is from PlasmoDB but given 

the reliability of this source it seems safe to include it. Without inclusion, 

conversion between dUTP and dCTP is only possible if the nucleotides are first 

oxidised which lends weight to its inclusion given the number of other reactions 

that would otherwise be redundant. 

With these three reactions added, returning to the visual representation highlights a 

further problem. R00132 creates H2CO3 from carbon dioxide dissolved in water but the 

following reaction requires HCO3
- which forms spontaneously in solution (H2CO3 <=> 

HCO3
- + H+). Defining this reaction as CarbonicAcid_disoc and adding it to the network 

solves this problem.  



87 
 

The next stage in the reconstruction is to flag the compounds in the pathway to include in 

my biomass function. In the case of pyrimidine metabolism these are UTP (C00075) and 

CTP(C00063) for RNA synthesis and dTTP(C00459) and dCTP(C00458) for DNA synthesis.  

The last stage of reconstruction is to define exchange and transport reactions. For 

simplicity I have not modelled a separate nucleus or endoplasmic reticulum in the parasite 

which means that none of the compounds involved in pyrimidine metabolism need 

transport reactions between internal compartments defining. Exchange reactions 

simulating the entry and exit into the parasite of compounds are required.  

A good guideline to the nutrients available to P. falciparum is provided by the exchange 

reactions in the Leishmania major metabolic network of Chavali et al.108 which I examined 

closely. Further information on relevant exchange reactions is provided from a number of 

papers103,109–117, from necessity and from my experimental results on nutrient exchange. 

For this pathway I have defined exchange reactions for L-glutamate, L-glutamine, H2O, CO2, 

Orthophosphate, Diphosphate, L-aspartate. NH3, and H+. Where exchange reactions are 

required for multiple pathways they only need defining once and it should be remembered 

that the fluxes through many of these exchange reactions — particularly those of the 

amino acids and carbon sources — are restricted by experimental results at the modelling 

stage. 

 

The size of the task 

The techniques I have documented for pyrimidine metabolism are similar to those for 

other pathways, each with their own difficulties. The scale of the challenge of creating a 

reconstruction can be shown as the difference between figure 42, showing the reactions 

for which there is some evidence of existence within P. falciparum, and figure 43, the EC 

numbers for which there is a consensus of evidence across all sources.  

The challenge is thus to develop a model somewhere between these two extremes whilst 

adding the necessary transport and exchange reactions and any simplifications needed to 

keep the model functional when combined with experimentally measured fluxes. 
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Figure 42: Projection onto the KEGGML pathway map118 of all 1415 reactions with any evidence for existence in 
P. falciparum in my ECinfo database. 

 

Figure 43: Projection onto the KGML pathway map118 of all 363 reactions related to an EC number with a consensus 
of evidence for existence in P. falciparum. Nucleotide metabolism (dark pink, top-right) appears more populated than 

in figure 39 because EC numbers associated with multiple reactions are projected onto multiple edges. 

  



89 
 

The final model 

Model creation ended up being a two-step process. First I built a large model with nearly 

500 reactions which I have called the full model and whose properties are summarised in 

figure 44. I then began reducing it to a core network which I could usefully visualise and 

manually check to be free of errors. 

Notable simplifications in this model are, 

 All de novo fatty acid synthesis is reduced to a one-step creation of palmitic acid 

(16:0 fatty acid) in the apicoplast as a direct branch from glycolysis at 

phosphoenol pyruvate (PEP). 

 The simplification of all fatty acid elongation to the addition of a single C2H4 unit 

to a generic fatty acid. This process occurs in the apicoplast as a branch from de 

novo fatty acid synthesis. 

 The desaturation of all fatty acids is simplified to the desaturation of a generic fatty 

acid by a three step process in the cytosol. This step is thought to occur in the 

endoplasmic reticulum but from a modelling perspective moving it to the cytosol 

removes around a dozen reactions — without affecting the modelling results — 

and removes a compartment from the model. 

 GDP-L-fucose is selected as the only compound to represent all glycosylation 

within the model. 

 GDP-mannose is selected as the only compound to represent carbohydrate 

accumulation in the parasite. 

 The majority of non-core metabolic reactions are removed from the network, 

including all reactions ultimately producing compounds not incorporated into my 

biomass function such as spermidine and putrescine. 

 Thioredoxin replaces ferroredoxin as the charge carrier for all reactions where 

either can be used. 

 The electron transport chain is not included in the model even though it is known 

to be functional. This is justified because there is very strong evidence that it 

serves only to replenish ubiquinone levels to allow the synthesis of purines and 

not to provide energy via oxidative phosphorylation as per Painter  et al. 119, 

“erythrocytic stages of the human malaria parasite Plasmodium falciparum seem to maintain an 

active mitochondrial electron transport chain to serve just one metabolic function: regeneration of 

ubiquinone required as the electron acceptor for dihydroorotate dehydrogenase, an essential 

enzyme for pyrimidine biosynthesis”  

 Haemoglobin digestion in the food vacuole is substantially reduced in complexity 

to just five reactions; importing haemoglobin, releasing amino acids and forming 
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and exporting haemozoin. I took this decision because despite considerable 

study100,103,120–125 our understanding of the processes surrounding haemoglobin 

digestion remains unclear. 

 Hydrogen peroxide, H2O2 is produced in the cytosol by pyrimidine synthesis and in 

the food vacuole by haemoglobin digestion. In many organisms, catalase (1.11.1.6) 

converts hydrogen peroxide to water and oxygen but there is no evidence that this 

protein class is expressed in P. falciparum. Catalase from the RBC is known to be 

ingested along with haemoglobin and is active within the parasite’s food 

vacuole126. The acidity of the food vacuole reduces the catalase’s activity to about 

one third of its specific activity within the RBC127 and the catalase appears to be 

broken down by proteases within the parasite. This means that some hydrogen 

peroxide is exported to the parasite’s cytosol before being dealt with by catalase 

but I have not included this behaviour in my model. This behaviour could easily be 

simulated by forcing a flux of H2O2 from the vacuole to the cytosol and this reaction 

is included in the model for just this eventuality. 

This simplified model, which I call the final model, is summarised in figure 45, and at 249 

reactions and 143 genes is around half the size of the full model.  
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Figure 44 : Characteristics of the “full” metabolic network before reduction to form the final model. 
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Figure 45: Characteristics of the reduced “final” model used for flux-balance analysis. 
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Size vs accuracy 

My final model is small but I think it has significant advantages over other models. That 

the Plata et al.58 model contains 1001 reactions versus the 1812 for the combined parasite 

and red-blood cell model in Huthmacher et al.59 is not a basis for comparing their quality 

or usefulness and in my opinion both are much larger than they should be considering our 

rapidly changing understanding of P. falciparum metabolism. Taking the size vs. accuracy 

argument to an extreme we could take the 1415 reactions shown in figure 42 and add the 

relevant transport and exchange reactions to create the largest model of P. falciparum 

metabolism to date but it seems unlikely that we would learn anything from doing that. 

As discussed elsewhere in this thesis with reference to Olszewski et al. 201188 even the 

functioning of central carbon metabolism remains unclear in the most-studied life stage of 

the parasite. I think it is foolish to create an extremely large model and introduce further 

complexities at deeper levels when the basis of such a model is so unclear and those 

further levels would rest so heavily upon any errors at the core of the model. Likewise, it 

does not seem useful to define specific products of the metabolic network in the biomass 

function whilst it remains unclear what is produced by the parasite, not to mention where, 

when and how. 

In comparing the number of exchange and transport reactions in my models with many 

others it is essential to realise that I have removed fifty reactions from my network. I have 

achieved this without side-effect by not separating exchange reactions (transfers of 

compounds between the extra cellular space and a pool external to the modelled system) 

and cell membrane transport reactions (import from the extra cellular space to the 

cytosol). Separating these two types of reaction is useful if there are reactions that occur in 

the extra cellular space but in my models no such reactions occur. Because of this a single 

reaction can be defined that moves a metabolite from an external pool directly into the 

cytosol, halving the number of exchange reactions. 

Finally, when considering the size of my final model it is worth remembering the visibly 

redundant reactions shown in figure 31 and figure 32 for previously published 

P. falciparum metabolic models and considering that these and similar reactions increase 

the size of the network whilst adding nothing to — and sometimes diminishing — its 

quality. I am sure that my final network contains no completely disconnected reactions 

and I am almost certain it contains no similar internal errors. I think this level of 

confidence — combined with a powerful visualisation system — is essential to 

understanding the true functioning of a metabolic network. 
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Dynamic visualisation, compartments and fluxes 

One of the reasons I can be so confident in the quality of the model is that I have 

assembled it both mathematically and visually. The full visual representation is shown in 

figure 46 and additionally with annotations of key features and an example flux projection 

in figure 47. These maps are fully editable within cytoscape and are coupled to SBML 

models representing the same system mathematically. Results of FBA can be shown on the 

map within seconds, highlighting problems that would otherwise escape attention. 

 

Figure 46: Visual version of the final model ready for flux projection, as in figure 47. 

 

Figure 47 : Final model with live flux projections of the optimal flux distribution given measured constraints. 
Annotations in red show key pathways and features of the network. 



95 
 

Encouraging model re-use 

This final model is arguably the fifth such model to be created for P. falciparum and I have 

spent some time examining how well existing models are being re-used to try and 

understand whether effort is being wasted by not building on previous achievements. 

Plasmocyc7 was last updated in 2003 and is no longer relevant. The Huthmacher et al. 

model59 is being re-used by the Hoppe group internally but, despite being well cited, a 

search on Google scholar suggests it has not yet been re-used for published work. 

Similarly, the Plata et al. model58 has not, according to Google scholar, been re-used for 

published work outside of the group in which it was developed and the currently available 

model does not seem to incorporate some of the recent improvements published by the 

group. In fact, of all the existing models it is arguably the least easy to re-use, MPMP10, that 

has been most widely adopted. 

I have thought a lot about this and had useful discussions with Giancarlo Biaggini and 

Simon Wagstaff, who are currently building on my model at the Liverpool School of 

Tropical Medicine, to try and make my model easy to re-use in the following three ways. 

Using the most standard LIGAND ontology possible 

Because Plata et al. use the MetaCyc ontology, re-use is difficult in a field where much of 

metabolism has already been formalised using the LIGAND ontology.  The Huthmacher 

et al. model is an improvement in this regard but the widespread simplifications they 

make to the ontology make the model more difficult to re-use. For this reason I have used 

the LIGAND ontology for my reconstruction and deviated from it as infrequently as 

possible, even where this might mean making the model slightly less accurate. 

Providing the model in a variety of formats, both visual and mathematical and both 

as a complete network and in sections 

The MPMP model is drawn pathway by pathway meaning it can be visually examined in 

manageable amounts. The drawback of this approach is that the details of connections 

between pathways are not well represented. In comparison, Plasmocyc is available only 

within Pathway tools and the Huthmacher and Plata models are easily available only as 

SBML files of the whole model without any corresponding visual representation of the 

network. I think that the lack of a visual representation for the two newest models is a 

huge barrier to their further use and maintenance. 

For my model both individual pathways and pre-defined useful combinations are available 

in a variety of formats; as MetNetMaker-ready excel format spreadsheets, SBML files, 
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cytoscape visualisations and as KEGG projections. All of these files are accessible from a 

single website, currently www.tomforth.co.uk/pfalnetwork , and linked to from my 

published software’s main website at www.metnetmaker.com . 

Providing tools to easily edit and update the model 

Since MPMP is provided as a collection of hyperlinked images it is not possible to re-use 

and update computationally. In discussions with Carola Huthmacher at ICSB 2011, 

Mannheim she mentioned that Hagai Ginsburg provided her with a list of the reactions in 

MPMP and I have had similar discussions with the LAMP (Liverpool Library of 

Apicomplexan Metabolic Pathways) consortium in Liverpool. It is unclear why MPMP is 

not made available publicly in a more computationally accessible format alongside the 

visual representations but I suspect that the errors that I encountered when manually 

digitising the pathways may provide some explanation. 

The Huthmacher model was assembled from a spreadsheet using custom scripts written 

by Carola Huthmacher. There is no documented way to update the model except to work 

backwards from the SBML which itself is described in terms of a mostly undocumented 

ontology. 

The Plasmocyc model can only be edited in Pathway Tools and I have already expressed 

my reservations with this software. As a result the Plasmocyc model has not been updated 

since 2003.  

The Plata et al. model was built using Simpheny but the raw files are not provided and 

even if they were the software is not within the budget of most researchers. 

By comparison my models are distributed ready to edit in MetNetMaker and because they 

are divided into pathways in the same way as MPMP, the choice of pathways is familiar to 

people working on malaria metabolism. My models are already being reused in Liverpool 

and I have tried my best to give them a good chance of being used even more widely in the 

future. 

Links to MetNetMaker 

A final goal of mine in constructing my model was that all forms of it should contain as 

much information as possible. MetNetMaker Excel files of the model contain the full set of 

information and much of this is exported to the Cytoscape visualisation file but when using 

the publicly available version of MetNetMaker most of the extra information for each 

reaction is omitted from the SBML export. 
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I designed the structure of MetNetMaker (figure 19 on page 51) so that it would be 

completely independent of the model being reconstructed and there are therefore no 

direct links between it and the ECinfo database. A link between the two databases is 

provided by the evidence checker spreadsheet which adds columns to the metabolic 

reconstruction from the ECinfo database. Examples of this process for the pyrimidine 

metabolism reconstruction used as an example in this chapter are found as table 33 and 

table 34 in appendix II. 

A key feature of a MetNetMaker pathway file is that any number of extra columns can be 

added by the evidence checker spreadsheet and it remains readable. This means that 

adding evidence to pathways does not break the compatibility of the pathway files but it 

also means that the extra information cannot be exported from a normal version of 

MetNetMaker.  

Since some of the evidence I have added to my model is specific to P. falciparum I wrote a 

special version of MetNetMaker to export the information in the extra columns of each 

pathway file as part of the SBML output. This took about half a day and I include an 

example of the extra information in the SBML description of R00156 below as figure 48. 

 

Figure 48 : The portion of the SBML export produced by MetNetMaker for the top reaction in table 33 (appendix II), 
R00156, showing the mechanism for encoding additional information in SBML level 2 format within the <notes> tag 

for COBRA compatibility. 

<reaction id = "R00156_c" name = "ATP:UDP phosphotransferase" reversible = "true" >  
 <notes> 
  <html:p>GENE_ASSOCIATION: PF13_0349, PFF0275c</html:p> 
  <html:p>PROTEIN_CLASS: 2.7.4.6</html:p> 
  <html:p>SUBSYSTEM: 00240</html:p> 
  <html:p>SHARKHUNT_EVALUE: 4.2E-58</html:p> 
  <html:p>PRESENT_IN_PLASMODB: True</html:p> 
  <html:p>BRENDA_HIT: BRENDA</html:p> 
 </notes> 
 <listOfReactants> 
  <speciesReference species="C00002_c" stoichiometry ="1"/> 
  <speciesReference species="C00015_c" stoichiometry ="1"/> 
 </listOfReactants> 
 <listOfProducts> 
  <speciesReference species="C00008_c" stoichiometry ="1"/> 
  <speciesReference species="C00075_c" stoichiometry ="1"/> 
 </listOfProducts> 
 <listOfModifiers> 
  <modifierSpeciesReference species="EC_2_7_4_6__7"/> 
 </listOfModifiers> 
 <kineticLaw> 
  <listOfParameters> 
   <parameter id="LOWER_BOUND" value="-500" units="mmol_per_gDW_per_hr"/> 
   <parameter id="UPPER_BOUND" value="500" units="mmol_per_gDW_per_hr"/> 
   <parameter id="OBJECTIVE_COEFFICIENT" value="0"/> 
   <parameter id="FLUX_VALUE" value="0" units="mmol_per_gDW_per_hr"/> 
  </listOfParameters> 
 </kineticLaw> 
</reaction> 
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Keeping a model up to date 

At the end of this chapter I would like to make it clear that I have made a compromise in 

keeping the model up-to-date. Where experimental results and publications have 

improved our understanding of P. falciparum I have made sure to update my network 

accordingly and in these contentious areas my network includes data published as 

recently as the end of 2011. SharkHunt results and the KEGG pfa reconstruction are largely 

static and do not require updating but PlasmoDB and BRENDA are being constantly 

updated. I initially used data from these two sources from mid-2009 and updated this 

information most recently towards the end of 2010. 
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Experimental Methods 

In addition to precise details on the experimental techniques used in this thesis this 

chapter includes some discussion of the development and assessment of those techniques. 

Details of actual measurements taken and their analysis is contained within the chapter on 

experimental results. 

 

Malaria culture 

Preparing human red blood cells for culture 

Erythrocytes for parasite culture are isolated from rejected donations from the national 

blood service at St. James’ Hospital, Leeds. Blood is still thoroughly screened and 

donations have typically been rejected for being underweight or having too much or too 

little of a measured component such as fat, alcohol or salt. Before use, the RBCs must be 

separated from other blood components which would complicate culture or lead to 

variability in the nutrient content of the growth medium. White blood cells and platelets 

are removed using a filter provided with the blood as it is transferred from a donation bag 

into sterile glassware. In this state the blood partially separates as the serum rises and the 

RBCs sink. Washing these RBCs aims to isolate them whilst minimising the content of 

other components. 

1. 10ml of blood placed in a 50ml plastic conical tube (falcon tube). 

2. Falcon tube filled to 50ml with RPMI 1640 growth medium and shaken. 

3. Falcon tube centrifuged at 30-45k RPM in bench-top centrifuge for 5 minutes. 

4. A clear divide between the supernatant and compacted RBCs should be clear, the 

supernatant is removed and discarded. 

5. Repeat steps 2, 3 and 4: typically three times. 

6. Dilute the compacted RBCs (defined as being close to 100% haematocrit at this 

point) to double their volume with RPMI 1640 and store at 4°C labelled as “washed 

RBCs, 50% haematocrit” with the date of the initial blood stock.  

Culture maintenance 

Plasmodium parasites in culture typically require daily attention but this can be reduced 

to every other day if the percentage of red blood cells infected with parasites is kept low 
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(below 1%). A culture with a parasitemia below 1% left in a good condition on Friday 

night can be expected to be in a recoverable condition on Monday morning but cultures 

are unlikely to handle such neglect frequently and the following protocol for media change 

should ideally be completed daily, especially during experiments. 

1. Red blood cells are separated from the growth media by leaving the culture flask 

tilted within its tray and waiting for separation or, especially for larger cultures, by 

transferring to falcon tubes and centrifuging at 30-40k RPM for 5 minutes. 

2. The supernatant is removed. For analysis of used growth medium this is 

immediately frozen and labelled appropriately. 

3. Fresh growth medium, made as described below, is added back to the culture flask. 

4. Red blood cells are re-suspended in growth medium. 

Complete growth medium 

Complete growth medium is prepared by combining the following ingredients in sterile 

conditions and then filter-sterilising by passing through a filter with a pore size of 0.22µm. 

 45ml RPMI 1640 (Gibco) (optionally supplemented with 0.1g/L hypoxanthine). 

 5ml human serum. 

 0.1g sodium bicarbonate powder. 

 50µL gentamicin solution (10mg/ml stock). 

Fresh complete growth medium is a colour best described as salmon and is slightly cloudy. 

It keeps for one or two days in at 4°C before components of it oxidise, lowering the pH and 

changing it to a brighter pink colour.  By storing prepared medium in full containers with 

less available oxygen it can keep for twice as long.  

AlbuMAX I growth medium 

AlbuMAX I growth medium is prepared by combining the following ingredients in sterile 

conditions and then filter-sterilising by passing through a filter with a pore size of 0.22µm. 

 50ml RPMI 1640 (Gibco) (supplemented with 0.1g/L hypoxanthine). 

 0.25g AlbuMAX I powder. 

 0.1g sodium bicarbonate powder. 

 50µL gentamicin solution (10mg/ml stock). 

AlbuMAX I growth medium looks and behaves almost identically to complete growth 

medium and has the advantage of being identical across batches and thus more likely to 

give reproducible results across different experiments and laboratories. There are also 

some problems with using AlbuMAX I growth medium, notably that it moves the in vitro 
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system further away from the in vivo system we are aiming to reproduce. Evidence of this 

has been both in previous studies128 although no reduction in growth-rate was reported in 

the paper which first reported the use of AlbuMAX II growth medium40. The composition 

of AlbuMAX I is unknown and unspecified beyond being a lipid-rich fraction of bovine 

serum albumen (BSA).  

Note on maximum parasitemia and culture “crash” 

Cultures with a parasitemia higher than 8% tend to die. In some cases this occurs where 

glucose levels become critically low and in discussions with Giancarlo Biaggini at the 

Liverpool School of Tropical Medicine he has mentioned that parasites die in the absence 

of glucose within 20 minutes. Whilst low glucose levels cause culture death this can be 

avoided by supplementing the growth medium with glucose or changing the growth 

medium more frequently. Even where this is done cultures still crash at parasitemia 

greater than about 8% for unknown reasons; proposed mechanisms include toxin 

accumulation and even inter-parasite chemical communication/quorum sensing129,130,131. 

Note on the requirement for supplementary hypoxanthine 

Work on the requirements of a minimal growth medium for cultured Plasmodium 

falciparum by Geary et al.101,102,132 published in 1985 had already found that, 

 “hypoxanthine was the preferred purine source for the parasite over adenine, guanine, inosine, adenosine 

and guanosine although all supported growth equally.” 

Geary et al.101,102,132  

This finding was also reported in 199540 in the first paper on substitution of human serum 

for AlbuMAX where hypoxanthine was required for parasite growth in AlbuMAX growth 

medium and the addition of a small amount of hypoxanthine to some examples of human 

serum that would otherwise not support parasite growth allowed parasites to grow. 

“One important finding was the absolute requirement for hypoxanthine in RPMI-A [AlbuMAX II growth 

medium] to enable good parasite growth.” 

Cranmer et al. 199540 

There is a further discussion of the parasite’s uptake of hypoxanthine from the growth 

medium in the next chapter. 

Transition of cultures from complete medium to AlbuMAX I 

Mixtures of complete medium and AlbuMAX I medium are defined according to the 

percentage of the AlbuMAX I medium. For example, growth medium referred to as 50% 

AlbuMAX is half complete medium and half AlbuMAX I medium. For simplicity of 
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preparation, 90% AlbuMAX can be prepared by adding 0.5ml of human serum to prepared 

AlbuMAX growth medium. 

Immediately transitioning cultures from complete medium to 100% AlbuMAX I medium 

has been observed to slow parasite growth-rate and even cause the death of a culture. The 

reasons for this are unknown but can be avoided if the amount of human serum within the 

growth medium is reduced to nothing over the course of a week. The observations of 

Plasmodium falciparum cultures adapting to changing conditions over a period greater 

than a full life cycle seems bizarre. Beyond the set of transcribed genes and expressed 

proteins inherited by merozoites from their mother cell I can think of no good mechanism 

for what appears to be some signalling between generations in culture and yet this 

property of slowly adapting to new conditions is well known to occur. A good published 

example is of parasites recovering from being deprived of hypoxanthine in their growth 

medium. 

“It required weeks to months of meticulous culture for the parasites to adapt successfully and to restore 

good growth kinetics in the absence of hypoxanthine.” 

Cranmer et al. 199540 

Observing cultures 

Blood smears 

Cultures of P. falciparum are still observed in much the same way as Alphonse Laveran 

first observed the parasite in Algeria around twenty years before his discovery and 

subsequent work won him the 1907 Nobel Prize133.  

“Films of blood are stained by Leishman or Giemsa stains and the red cells are examined...” 

Medical Microbiology, G. Thomas, 1963134 

 

Figure 49: Thin blood smears are made from a single drop of blood pushed quickly across a glass slide. The red 
blood cells at the edge of the smear are one layer thick. 
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In our lab we take thin blood smears and use Giemsa stain, which binds specifically to the 

phosphate groups in the parasite’s DNA — red blood cells (RBCs) have no DNA — whilst 

being able to easily diffuse across multiple membranes to reach the parasite nucleus. The 

protocol for making blood smears is the same as for changing the growth medium and the 

two are usually performed at the same time. 

1. The culture flask is tilted and left until the RBCs have mostly separated from the 

growth medium. 

2. If the growth medium is being changed it is removed. 

3. The smallest possible drop of packed RBCs is removed from the flask and placed 

on a labelled glass slide. 

4. A second glass slide is used to quickly push the drop of blood out into a thin smear 

with only a single layer of RBCs towards the edges of the smear. 

5. Once dry, the smear is fixed in 100% methanol and can be stained immediately or 

left for staining later. 

6. The fixed slide is stained for 10 minutes in Giemsa’s stain, diluted 1 part in 5 parts 

Sorenson’s buffer. Slides are held upside-down in a staining tray so that any 

Giemsa crystals falling out of solution do not stick to the slide. 

7. Once staining is complete, slides are immediately de-stained under running water 

for as long as necessary, usually a few minutes. 

8. Dry slides are ready to be examined under an optical microscope. 

The parasitemia of a culture is defined as the number of parasites divided by the number 

of red blood cells in that smear. Under the oil-immersion microscope used in our lab (x100 

object lens magnification in series with an x6 magnification eyepiece lens = x600 total 

magnification) a tightly-packed monolayer of red blood cells contains approximately 250 

red blood cells. Usually ten fields are counted though more may be necessary to get an 

accurate reading at low parasitemias. For all reported parasitemias all slides were read 

blind, that is to say without knowledge of the expected parasitemia or life stages present. I 

found this invaluable in preventing a positive bias creeping into my results and it is a 

technique we have all adopted in the lab when taking measurements for analysis. 

Where it is necessary to count not only the number of parasites but also the number at 

each approximate life-stage the generalisations set out by Coatney in “The primate 

malarias”135 are generally adopted, These classifications are shown in figure 50 where 

drawings 1 through 26 might be interpreted as the progression of the parasite through 

equal time steps over the full 48 hour life cycle. Since each person counts differently these 

life-stage drawings can only be considered a guide and I report an accurate measurement 
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of my counting later in this chapter in the section on “objectively re-assessing sorbitol 

synchronisation”. 

 

Figure 50: Categories used to define the life stages of P. falciparum in the microscopy time course. 1: normal red 
cell. 2-10: early ring trophozoites. 11-18: late trophozoites. 19-26: schizonts. 27-30: gametocytes (not observed in our 

system of continuous culture). Image: Plate XLII, The primate malarias, 1971, G . R. Coatney135. Similar illustrations 
by G. H. Nicholson for 26 other plasmodium species available from Images from the History of Medicine136. 

Potential problems visible in blood smears 

Previously in our lab we have had problems with airborne yeast infections which were not 

visible in stained blood smears. I was fortunate to avoid these problems and since 

thoroughly disinfecting the sterile culture extraction hood these problems have not 

returned. 
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Many problems in culturing can be diagnosed from examining blood smears, in particular 

bacterial infection as shown in figure 51. Bacteria quickly kill the parasites within a 

culture but can be tolerated at very low levels. Infections can often be removed if they are 

caught early by adding gentomycin and are less likely to occur if gentomycin is used 

continually. Although gentomycin has no known effect on P. falciparum metabolism it is 

often preferable to take great care to keep sterile when handling cultures rather than add 

a further variable to an experiment. The cultures for all the metabolomics experiments 

reported in this thesis were cultured without gentamycin in strictly aseptic conditions. 

  

Figure 51: left: Rod-shaped bacteria are clearly visible in a Giemsa stained blood smear.  
right: A healthy ring-stage parasite in an infected culture shows that  minor infections are not always fatal. 

Optical fluorescence microscopy 

Optical fluorescence microscopy was used only to confirm that acridine orange dyed 

infected RBCs selectively. Slides were prepared according to the following protocols. 

Unfixed fluorescent slides 

1. Start with 100µl of mixed culture (5% haematocrit, 95% growth medium). 

2. Add 1µl of acridine orange dye at 50µg/ml (diluted x200 from stock at 10mg/ml) 

to a final dilution of 0.5µg/ml. 

3. Place on a glass microscope slide and cover with a glass cover slip. 

Hybrid fixed fluorescent slides (limited success) 

1. Start with 100µl of mixed culture (5% haematocrit, 95% growth medium). 

2. Add 1µl of acridine orange dye at 50µg/ml (diluted x200 from stock at 10mg/ml). 

3. Incubate for 3 minutes in the dark. 

4. Make long smears (slowly push the dyed culture over a slide), dry in the dark and 

fix with methanol. 

5. Stain with Giemsa. 
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Flow cytometry 

Preliminary experiments using flow cytometry were performed on a PRS III flow 

cytometer which proved effective but extremely unreliable. All reported experiments were 

performed on a BD FACSCalibur flow cytometer from Beckton Dickinson Biosciences. 

Acquired data was analysed at the time using the software supplied with the relevant flow 

cytometer as set up by Gareth Howell, director of the FBS flow cytometry facility. Post-

acquisition analysis, and the preparation of figures for this thesis, was performed using the 

Cytomation Summit 4.2 software from Dako. 

The development of a technique to measure parasitemia by flow cytometry is discussed in 

detail in the next chapter. Although we had limited success it seems likely that with the 

right experimental setup the technique would be more successful. Our experiments 

suggest the following protocol is most likely to yield good results. 

1. Start with 40µl of mixed culture (5% haematocrit, 95% growth medium). 

2. Add 1µl of acridine orange dye at 50µg/ml (diluted x200 from stock at 10mg/ml) . 

3. Incubate in the dark for 3 minutes. 

4. Add 1.5ml PBS (phosphate-buffered saline) and acquire. 

If an accurate and reliable system for counting parasites using flow cytometry could be 

developed it should be possible to use fluorescence-assisted cell sorting (FACS) to create 

extremely high parasitemia cultures for — amongst other potential uses — high-precision 

metabolomics. The drawback of this technique is that the effects of the intercalating 

acridine orange dye on metabolism are unknown and the technique seems considerably 

more complex than the magnetic isolation technique of parasite concentration which I 

discovered late in my project and describe later in this chapter. 

Synchronisation of cultures 

Female Anopheles mosquitoes typically bite in the evening and for this reason it would 

seem advantageous for P. falciparum to time the production of gametocytes so they were 

at their highest population within the bloodstream at that time. Some support for this 

hypothesis is provided by recent studies137 showing that Plasmodium parasites in mice (P. 

chabaudi) grow best when their 48-hour circadian rhythm is synchronised with the 24-

hour circadian rhythm of their host.  

No mechanism for this possible host-parasite circadian rhythm synchronisation has been 

proved but is clear that whether or not such a system exists in vivo it does not exist in 

vitro. Cultured parasites show no natural synchronicity of life stages and life-stage-
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synchronised cultures return to this state in a matter of weeks. Most studies are 

performed on synchronised cultures where the majority of parasites are at the same stage 

in their 48-hour life cycle together. 

Synchronisation presents advantages in two major areas for study. Firstly, when trialling 

new drugs or growth conditions, it allows the stage-specific impacts of any perturbations 

to be observed. Secondly, if metabolite exchange between the growth medium and the 

parasites is being measured it is possible to minimise contamination of the growth 

medium with the contents of lysing RBCs by ensuring measurements are not taken during 

parasite release. 

There are many ways to synchronise parasite cultures and excellent reviews on the 

subject exist138,139. Here I include details on the sorbitol incubation method we use in the 

lab and on a magnetic isolation method which we have not used but which holds 

considerable promise for further research. 

Sorbitol incubation 

The sorbitol incubation method as described by Lambros and Vandenburg in 1979140 

works by selectively killing schizonts and late-stage trophozoites by submitting them to 

the high osmotic pressure of otherwise non-toxic high concentrations of sorbitol. For short 

periods, early-stage trophozoites (rings) can withstand this osmotic pressure. Sorbitol 

synchronisation is performed according to the following protocol. 

1. Transfer the whole culture to be synchronised to a 50ml falcon tube. 

2. Centrifuge at 30-45k RPM in a benchtop centrifuge for 5 minutes. 

3. Remove and discard the supernatant. 

4. Add half the volume of the removed medium of 5% w/w sorbitol solution in water 

to the compacted RBCs. 

5. Incubate for exactly 5 minutes at room temperature. 

6. Add excess growth medium to restore osmotic pressure. 

7. Centrifuge the falcon tube at 30-45k RPM in a benchtop centrifuge for 5 minutes. 

8. Remove supernatant and replace with growth medium for continued culture. 

9. Transfer the mixture back to a culture flask and treat as usual (gas and incubate). 

Synchronisation typically kills slightly over half the parasites in a mixed culture and 

parasitemia will not increase until around 40 hours later, at which point it will increase by 

the usual daily growth-rate squared. Further synchronisations, as shown in figure 52 can 

produce a tighter synchronisation window at the cost of the extra time needed to achieve a 

high parasitemia. 
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Figure 52: a) A second synchronisation performed 36 hours after the first leads to a tighter final synchronisation 
profile as shown in (b). 

Objectively re-assessing sorbitol synchronisation 

Initial observations by Lambros and Vandenburg on what proportion of — and at 

precisely what times in the life-cycle — parasites are killed by sorbitol incubation are 

vague, 

Cultures examined immediately after sorbitol treatment consisted almost entirely of single and multiple 

ring-form infections, and uninfected RBCs. 

Lambros and Vandenburg140 

That paper later suggests a second synchronisation 34 hours after the first as the best time 

to fine tune and achieve a narrower synchronisation window, suggesting that they 

experienced survival of parasites up to 16-20 hours post invasion. Since the existing 

literature is unclear on this I decided to make a more accurate estimation based on a large 

experiment I conducted in December 2010. Seven identical cultures were grown in 

parallel and synchronised at       hours, and       hours. Blood smears of all cultures 

were taken approximately 24, 46 and 86 hours later with a selection of cultures being 

examined at times in between. The parasitemias of the cultures was measured and the 

proportion of each life-stage — rings, late-stage trophozoites or schizonts — was 

determined. 

The results of these tests are shown in figure 53 and the results are consistent — as shown 

by the dashed-line fits — with the combination of the two synchronisations killing the 

majority of parasites outside of a 14-hour window as shown in figure 54a. Since the 

second synchronisation took place 46 hours after the first synchronisation the 14-hour 
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period is consistent with a single synchronisation window being approximately 16 hours, 

at the low end of the range suggested in Lambros and Vandenburg140. 

The dashed-line fits in figure 53 are particularly interesting to me as an example of a 

biological system that seem complicated but whose behaviour can be explained with 

extremely simple rules. These dashed lines are just the convolution of the two functions 

shown in figure 54a and figure 54b performed using a simple script and the         
function in Matlab. The convolution function exactly represents the progress through time 

of an applied synchronisation window. The following parameters in the source functions 

started with a sensible guess and were adjusted by hand to provide a good fit of the data, 

 Duration of the synchronisation window, 

 Smoothness of the edges of the synchronisation window representing the 

imperfection of the synchronisation technique, 

 Time at which the transition between each of the four distinguished life stages 

occurs. 

It is likely that a slightly better fit could be made by further refining the parameters but 

within the uncertainties of the measurements this would provide us with no useful 

information. In addition to letting us elegantly quantify the progression of a population of 

P. falciparum through its life stages and giving us a more accurate measurement of the 

effectiveness of sorbitol synchronisation these results provide an objective measure of 

what times in a parasite’s life I have classified them to each named stage. 

Life-stage Visible period 

Merozoites* 0-1 hours 

Rings 2-16 hours 

Trophozoites  17-37 hours 

Schizonts 38-47 hours 

 
Table 5: Age of parasites since infection at which I have classified them at each distinct stage. 

*We know that merozoites re-invade extremely quickly after they are released so this 2 

hour period is actually best interpreted as the time after successful invasion but at which 

the ring form is not yet sufficiently mature to be visible in a blood smear. 

After exiting the host, merozoites recognize, attach, and enter RBCs, and this process occurs rapidly, 

probably on the order of 60s. 

Cowmann and Crabb141 
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Figure 53: Progression of life stages for seven identical cultures in AlbuMAX I 100% growth medium synchronised at 
    hours and       hours. Lines modelling life stage progression are the convolution of figure 54a and figure 

54b. 

 

 

Figure 54: a) Mathematical representation of a 14-hour synchronisation pulse killing 90% of the targeted life-stages. 
b) 48 hours of the idealised life-stage progression that best fits results in figure 53. This figure would continue 

infinitely in both directions. 
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Synchronisation and concentration of parasitised red blood cells using magnetic 

isolation 

I was introduced to the magnetic isolation method as described in Ahn et al. 2008142 by 

PhD student Murad Mubaraki and his supervisor Giancarlo Biaggini at the Liverpool 

School of Tropical Medicine. The technique works because the crystallised haem groups 

(haemozoin) formed as a by-product of haemoglobin digestion by the parasites at their 

later life stages is paramagnetic120 and therefore late-stage trophozoites and schizont 

infected RBCs respond differently to an applied magnetic field than uninfected  RBCs and 

early-stage trophozoite infected RBCs. 

Magnetic isolation is particularly interesting because in addition to creating a highly 

synchronous culture it can also concentrate infected RBCs up to a parasitemia of around 

90%. At this parasitemia cultures are liable to crash quickly but the increased 

concentration of parasites allows for more sensitive measurements of parasite 

metabolism. I do not include a protocol for this procedure beyond the reference to Ahn et 

al. as I have not used it and mention it only for completeness and because it may be useful 

for future experiments. 

Saponin lysis and parasite biomass isolation 

Parasite biomass must be separated from red blood cell biomass before any analysis of it 

can be performed. This process — as described in Ashong et al.143 — consists broadly of 

three steps, lysing the red blood cells using saponin, centrifuging the resultant mix at very 

high speed to separate parasite biomass and then washing away the red blood cell 

membrane components. Tubes were made RNA-safe by washing with phosphate-buffered 

saline (PBS) with 0.1% diethylpyrocarbonate (DEPC) added, the tubes were then 

autoclaved to ensure sterility and deactivate the DEPC before use. The following protocol 

was used. 

1. Place culture to lyse in a 50ml RNA-safe falcon tube and spin at 4500RPM on the 

benchtop centrifuge for 5 minutes. 

2. Remove the growth medium and re-suspend the pellet in 5 times the pellet’s 

volume of Tris-buffered Saline (TBS). 

3. Add stock saponin (15% w/w in water) to a final dilution of 1 in 100 and agitate 

for ⋍30s until the culture goes from a red colour to a deep purple, signifying lysis 

has occurred. 

4. Centrifuge for 10 minutes at 10k RPM in the large Beckmann centrifuge cooled to 

4°C using RNA-safe tubes. 
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5. Remove supernatant and discard. 

6. Add a small amount of TBS and gently wash away the white-coloured red blood 

cell ghosts, remove supernatant and discard. 

7. Resuspend all remaining parasite components in a small amount of TBS and 

transfer to RNA-safe 2ml micro-centrifuge (eppendorf) tubes. 

8. Centrifuge eppendorf tubes containing parasite biomass at 10k RPM for 10 

minutes in the benchtop centrifuge. 

9. Remove supernatant and any remaining red blood cell ghosts. 

10. Add ten times the pellet volume of RNAlater®(Invitrogen) and freeze at -80°C 

immediately. 

Problems working with large culture volumes 

Initially I planned to measure biomass components using the adapted TRI REAGENT 

(Sigma) protocol described in Daniel Opi’s masters thesis144. It seems likely that a large 

reason why he was unable to make accurate measurements of the RNA, DNA and protein 

content of the total parasite biomass was because the quantities of biomass he was 

measuring were too small. To overcome this problem I started examining options for 

culturing with up to 1 litre total culture volume and around 180ml in each culture flask. 

The principal problems I encountered with culturing in very large flasks were, 

 Tilting flasks to separate haematocrit and growth medium took a long time and I 

often removed cultures from their flasks and centrifuged them to ensure that 

growth medium was properly changed without accidentally removing haematocrit. 

 The gassing procedure — where air with only 3% oxygen is injected into flasks to 

replace atmospheric air — took much longer and seemed less successful. 

 Infections seemed more likely, probably due to the greater difficulty in dealing 

with the cultures and the longer times they were manipulated for. 

 Growth seemed to slow even further, from a 1.6 daily growth-rate to closer to 1.4. 

 Preparing and filtering large quantities of growth medium required special 

equipment including a pump-attached filtration bottle. 
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Measurements techniques 

Used growth medium assays 

Collection of samples 

My usual technique for taking used growth medium samples was as follows, 

1. Shake flask to homogenise the culture. 

2. Remove 0.5-1.0ml of culture. The precise amount depends on the number of time 

points and the volume of the culture. As little as 0.1ml of culture could easily be 

used now that the techniques for sample analysis are established. Gas the culture 

and place back in the incubator. 

3. Centrifuge to separate pellet from supernatant whilst avoiding precipitating any 

supernatant contents. Usually 5k RPM for 3 minutes on a small benchtop 

centrifuge will do this but higher speeds for higher durations are unlikely to cause 

any dissolved contents to fall out of the supernatant. 

4. Remove the supernatant and freeze at -80°C ready for later analysis. 

5. Re-suspend the pellet in the remaining supernatant and make a blood smear. 

6. If required, saponin lyse the pellet to isolate parasite biomass and freeze at -80°C 

for HPLC analysis of biomass components. 

Special case for Sara metabolomics set of experiments 

The above technique has the advantage of maintaining the same haematocrit 

concentration throughout but involves disturbing the culture every time a sample is 

collected. In the Sara metabolomics set of experiments — see table 20 on page 157 for a 

full summary of metabolomics experiments — I modified the technique to increase 

sensitivity and avoid disturbing the culture. In this modified technique, at each time point 

the culture flask was tilted for 15 minutes to allow the haematocrit and supernatant to 

fully separate before 1ml of growth medium was carefully removed without disturbing the 

haematocrit. From that point the technique continued as previously described. 

There is no evidence that leaving the culture separated and thus the haematocrit 

undisturbed made any difference but this technique did increase sensitivity as the 

percentage haematocrit increased over the course of the experiment. The difficulty came 

when adjusting the results to take into account of this. The most elegant solution to this 

problem was to assume a constant exchange rate of metabolites and substitute the 

haematocrit at each time point where a sample was taken with the mean haematocrit of all 

previous time points as shown in table 6. 
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Table 6 : Haematocrit correction table for the "Sara metabolomics" set of experiments. 1ml of growth medium was 
removed every 3 hours during the experiment. 

This method has the drawback that where the change in a metabolite’s concentration 

stops being constant it can produce strange results. There are examples of this which I 

deal with in the experimental results chapter, notably figure 76 on page 170 and figure 78 

on page 171. 

Chemical assays to measure lactate and glucose levels 

We hoped to measure glucose and lactate levels in used growth medium immediately after 

acquiring it and as part of Jennifer Lake’s Masters thesis145 we developed protocols to do 

so. The results of our preliminary tests and our reasons for choosing not to pursue the 

techniques are summarised here and described more fully in that Masters thesis. In all 

cases measurement were made according to the suggested protocols and calibration 

routines included with the kits. The glucose and lactate levels of samples of growth 

medium were either acquired immediately or thawed from -80°C  immediately prior to 

testing. 

The (SIGMA GAGO-20) glucose oxidase kit was used for most glucose level measurement, 

some tests were run using the glucose hexokinase assay (SIGMA GAHK-20). The 

absorptions, at 540nm and 340nm respectively, of the samples from both kits were 

acquired using an Ultrospec 2100 pro spectrophotometer. 

Hour of 

experiment
Medium (ml) RBCs (ml) Haematocrit

Mean haematocrit 

up to now

0 25 1.25 5.0% 5.0%

3 24 1.25 5.2% 5.0%

6 23 1.25 5.4% 5.1%

9 22 1.25 5.7% 5.2%

12 21 1.25 6.0% 5.3%

15 20 1.25 6.3% 5.5%

18 19 1.25 6.6% 5.6%

21 18 1.25 6.9% 5.7%

24 17 1.25 7.4% 5.9%

27 16 1.25 7.8% 6.0%

30 15 1.25 8.3% 6.2%

33 14 1.25 8.9% 6.4%

36 13 1.25 9.6% 6.6%
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The chosen lactate assay kit (Source BioScience AutoGen ABE2467) measured ʟ -Lactate 

as this has been reported as accounting for 93-94% of the total lactate produced by 

P. falciparum94. 

 

NMR Analysis of used growth medium 

The results from NMR were much better than from the chemical assay kits we used and 

those results are described in the chapter dedicated to experimental results. 

Sample preparation 

Samples of used growth medium for NMR analysis were thawed from -80°C storage and 

prepared as follows, 

 270 µl sample 

 27 µl D2O 

 3 µl TSP 

These amounts were placed in NMR tubes, either open topped (Julie Fisher lab) or sealed 

with a glass stopper meaning there was no interface between the air in the tube and the 

sample (FBS NMR service) as shown in figure 55. By reducing edge effects, the glass 

stopper increased the sensitivity of the measurements with the drawback that sample 

preparation was more difficult. 

 

Figure 55: An example of a glass stoppered NMR tube with no interface between the sample and the air as used in 
the FBS NMR service machines. 

Analysis in the Julie Fisher lab, Chemistry, The University of Leeds 

The machine used was a Varian Unity Inova 500 spectrometer operating at 499.97 MHz 

proton frequency. All NMR reported in this thesis was proton (1H) NMR. 

The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was used: [RD – 90°x - (t – 180°y - 

t)n – acq] with the following parameters; 
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relaxation delay (RD)  3 seconds 

t = 1.5 ms 

n = 150 

During the relaxation delay the decoupler was applied to selectively irradiate the water 

resonance 

Decoupler power = 4  

Spectral width = 6499.84 

Acq time = 1.26034s 

Acquired complex points = 8192 

Transients = 256 

Power = 57 

Samples were run at 20°C. 

Analysis by the NMR service, Faculty of Biological Sciences, The University of Leeds 

Minor adjustments to the protocol developed in chemistry were made by Arnout Kalverda 

at the NMR service in FBS. These attempted to account for the slightly different machines 

used for acquisitions but the general protocol remained the same. 

Data extraction from *.fid files 

Analysis of *.fid files produced by the spectrometers was performed using the freeware 

ACD/NMR Processor Academic Edition available at acdlabs.com/resources/freeware/ . 

The protocol for analysis was broadly similar for the *.fid files produced by each machine, 

1. Load *.fid file. 

2. Apply a Lorentzian-Gaussian window function with the following parameters 

Julie Fisher lab machine = (LB = -0.3, GF = 0.25), 

FBS NMR service machine = (LB = -0.3, GF = 0.1). 

3. Zero-fill the spectrum to increase the number of acquired points. 

Julie Fisher lab machine = 8192  32768, 

FBS NMR service machine = 8192  65536. 

4. Perform a Fourier Transform of the data. 

5. Adjust phase, first using the auto function and then manually using the central 

water peak at around 4.80ppm for reference. 

6. Apply a baseline correction. 

Julie Fisher lab machine = Auto simple, 

FBS NMR service machine = Auto simple, followed by manual adjustments and 

then a further automatic baselining is usually required. 
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7. Reference to TMS at 0ppm chemical shift. 

8. Manually integrate the HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid) signal (5 overlapping peaks) at 3.15ppm and reference to 100. 

These prepared spectra were saved as ACD/labs *.esp format files. Their further analysis 

is described in the experimental results chapter. 

Biomass analysis 

Biomass component extraction 

Extraction of biomass components from the biomass pellet was performed by manually 

disrupting/grinding the pellet within the eppendorf tube and vortexing the mixtures in the 

selected solvent for as long as necessary (often 5-10 minutes) to achieve as homogeneous 

a solution as possible. This solution was always a dark grey colour with fine — but clearly 

visible — suspended black particles. 

Samples were clarified by either centrifugation or spin filtration using the 40 micron spin 

filters supplied with the PARIS™ kit (AMBION). 

Determining protein concentration 

Protein content of biomass extractions was determined using the Bradford assay with a 

known concentration of bovine serum albumen (BSA) at seven x2 serial dilutions in the 

extraction solvent starting at 4mg/ml for calibration. 190µl of Bradford reagent was added 

to 10µl of sample in a well of a 96-well plate and incubated for at least 10 minutes before 

the absorption at 595nm was measured in a Spectramax 340 pc microplate reader 

(Molecular Devices).  

Determining DNA and RNA concentration 

DNA and RNA concentrations were measured using a nanodrop photometer blanked with 

Tris-Buffered Saline following the same extraction and purification steps described for 

protein content determination. 

NMR analysis of biomass components 

1H-NMR (Proton-NMR) analysis of parasite biomass components extracted in Tris-

buffered saline was attempted but produced no useful results. We lacked the NMR time to 

perform a thorough investigation of different extraction techniques and peak 

identification methods and once Teng et al.146 published a thorough 1H-NMR analysis in 

2009 no further efforts were made in this area. A full analysis of the findings of Teng et al. 

(appendix IV) suggests that repeating their techniques on a solubilised biomass pellet may 

yield good results in the future. 
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Analysis of lactate and glucose in biomass using chemical assays 

Analysis of parasite biomass components extracted in Tris-buffered saline using the 

glucose and lactate kits described for used growth medium analysis was attempted but 

produced no useful results. 

HPLC analysis of biomass components 

A fuller description of the development of the HPLC techniques used for biomass analysis 

— as reported briefly in figure 75 on page 168 — are contained within Sara Zakutansky’s 

Masters thesis147. This section contains only those details required to repeat the 

experiments.  

Sample preparation 

All HPLC extractions were performed on parasite biomass pellets that had been frozen at -

80°C in either RNAlater™ (AMBION) or PBS. 

Thaw sample, remove supernatant and remove any remaining red-blood cell ghosts. 

Transfer the parasite pellet to a pre-weighed eppendorf tube, reweigh the tube and 

calculate the pellet mass. 

Add 500µl of 60% methanol, disrupt the pellet manually with a pipette tip and vortex until 

the pellet is as dissolved as possible. 

Speed vac the pellet until dry. 

--------------Steps 5 and 6 are required only if alkaline phosphatase digestion is required. 

Re-suspend the pellet in 200µl restriction endonuclease buffer (NEB) and pass through a 

40micron spin filter to clarify (PARIS kit spin filters used).* 

Add 50U alkaline phosphatase and incubate at room temperature for 2 hours. 

-------------- 

Dilute in Ammonium Acetate HPLC running buffer to volume required (typically 500µl 

final volume). 

Samples were frozen at -20°C if they could not be acquired immediately. 

HPLC calibration 

Tests were performed on a Dionex 3000 series liquid chromatograph with a 200 mm × 4.6 

mm Thermo Scientific Hypersil GOLD column with 5 µm particle size and 175 Å pore size. 



119 
 

The column eluate was measured at 254 nm and the resulting chromographs were 

analysed in the Chromeleon software package. 

To calibrate the column, Sara Zakutansky measured the retention times and peak sizes of 

dihydroorotate, orotate, guanine, guanidine, uracil, uridine, deoxyuridine, hypoxanthine, 

xanthine, thymine, thymidine, inosine, and adenosine run both separately and as a mixture 

at concentrations ranging from 0.5 to 50 µM.  
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Accurate determination of P. falciparum 

growth-rate  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parasite culturing for the fluorescence microscopy and flow cytometry in this chapter 

was performed by a Masters student, Cheng Ma. All reported experiments were designed and 

performed together. All the analysis reported in this section is my own. 

Cheng Ma’s Master’s thesis148 is available from the University of Leeds and offers a broadly 

similar, though perhaps more optimistic, analysis of our results. I am indebted to him for his 

efforts.  
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Do we need a better way of measuring growth-rate? 

Well-parameterised genome-scale metabolic models of model organisms like E. coli and 

S. cerevisiae are able to accurately predict changes in a population’s growth-rate in 

response to perturbations149,150 including changes in available nutrients. These model 

organisms are typically grown in chemostats where conditions are precisely controlled, 

with population, and thus growth-rate, measured via the dilution rate required to keep the 

growth medium’s optical density constant.  This approach also works for more challenging 

organisms such as M. tuberculosis but there is currently no widely-used equivalent test for 

any species of Plasmodium. The closest equivalent, the substantially more difficult 

technique of measuring the uptake of radioactive hypoxanthine151, is described in the final 

section of this chapter where I argue that it is not suitable for the experiments in this 

thesis. 

Measuring P. falciparum growth-rate in vitro using blood smears 

The parasitemia of cultures is determined using optical microscopy of stained blood 

smears and the growth-rate of a culture can be calculated from the rate at which 

parasitemia increases. When measuring changes in the growth-rate of cultures an 

additional complexity must be considered.  

P. falciparum is notoriously difficult to culture outside of live animals and so it is difficult 

to make changes to the growth medium without killing the parasites. When measuring a 

change in growth-rate due to a change in growth conditions — such as the addition of a 

known inhibitor or the restriction of a required nutrient — we have to balance the need 

for the change in growth-rate to be big enough to be measurable and small enough not to 

kill the cultures. Work on this compromise is not well reported in the literature and the 

basic background measurements to make that assessment are required. 

Uncertainty in the parasitemia of a single blood smear 

The uncertainty in a measurement of the parasitemia of a culture from a single blood 

smear can be estimated by taking a number of blood smears from the same sample and 

comparing the parasite counts.  

 

 

 

Parasites counted in ten 

fields of seven slides 

Mean Standard Deviation Implied percentage 

error in a single slide 
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95, 99, 95, 87, 77, 76, 110 91 12 13% 

Table 7: The number of parasites counted in ten fields of seven slides each made from the same sample. The 
standard deviation rather than the standard error is calculated because during the experiment only a single slide 

(   ) is counted and     √ . 

In the example shown in table 7 the parasitemia is 3.6±0.2%* taking into account all 7 

slides with the uncertainty increasing to ±0.5 if just a single blood smear were read. As a 

percentage, uncertainty in the measurement of a single slide is at least 10%.  To improve 

the readability of the graph in figure 56, and other graphs in this thesis, I have not 

included these large errors on individual measurements. This is because once a sufficient 

number of measurements has been taken over time the uncertainties on the 

measurements at each time point become unimportant. 

Uncertainty in the growth-rate over multiple readings 

I grew a standard culture of P. falciparum for two weeks, splitting the parallel cultures as 

necessary so that the parasitemia stayed in the safe range between 0.5% and 6%.  I 

measured the parasitemia of the cultures each day using thin blood smears and scaled up 

the recorded parasitemias according to how diluted with respect to the culture at the start 

of the trial the cultures had become. This meant that by the end of day 14 the average 

parasitemia of the 5 final parallel cultures was 4.6% but reported as 1251.1% after 

applying the dilution factor on day 5 with respect to day 0 of 303.5.  

                                                             
* the error here is an absolute value and not a percentage. The % refers to parasitemia which is 
always reported as the percentage of red-blood cells that are infected. 
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Figure 56 : Growth-rate of a population of P. falciparum grown in 100% AlbuMAX I media for two weeks as measured 
using Giemsa’s stain on thin blood smears under an optical microscope. Here the natural logarithm of the 

parasitemia is plotted so that the exponential growth curve becomes linear. Shaded areas show the error in a least 
squares linear fit of the data after 4 (dark), 7 (lighter) and 10 (lightest) days. 

Growth, as shown in figure 56, is exponential, with the population increasing by a factor of 

about 1.55 per day (d-1). At day 14 all cultures were harvested and the parasite biomass 

extracted and separated from red blood cells (RBCs) and frozen for further analysis. 

The blue shaded areas in figure 56 show the maximum and minimum possible growth-rate 

calculated by a least-squares fit and associated error calculations as provided by the linest 

function in Microsoft Excel after four days, seven days and ten days respectively. The 

results are as we would expect with the error on the best fit line decreasing as the 

experiment progresses. As the error decreases we can see that we would able to 

distinguish between two samples with ever closer growth-rates but we need to look at the 

lines in a numerical form, as in table 8, to see this most clearly. 

Experiment 

duration 

Number of 

measurements 

Calculated growth-rate 

(per day/ d-1) 

Error in 

growth-rate 

4 days 5 1.44 ±0.12 

7 days 8 1.55 ±0.05 

10 days 11 1.55 ±0.025 

Table 8 : Best-fit growth-rates for the three time periods depicted in figure 56. 
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Looking at the numbers in table 2 we see that if we aim to measure a change in growth 

from 1.55 to 1.45 d-1 then we would need to maintain the two cultures for 10 days to be 

sure that they are different (after 7 days 1.45+0.05 d-1 is not distinguishable from 1.55-

0.05 d-1). This is certainly possible but every extra day of culturing introduces a possibility 

that a culture could be affected by an unknown factor such as infection by bacteria or yeast 

or an unexpected crash. 

The advantages of making more frequent measurements 

These results give us a rough idea of the duration of an experiment needed to measure a 

change in growth-rate if measurements of parasitemia are taken every day during normal 

culture maintenance. If we assume that growth-rates remain exponential whatever their 

magnitude — sensible for an organism with no resource limits and that reproduces 

through asexual fission — we can use these results as a guide to the number of 

measurements required to accurately determine growth-rate over a shorter period.  

Taking more frequent measurements of a culture has a direct advantage, the growth-rate 

can be determined in less time, but also a secondary advantage, samples can be taken to 

observe properties of the culture on a shorter timescale. My work on the metabolism of 

P. falciparum over a single life-cycle relied on taking a minimum of five measurements 

over a period of around 40 hours. 

Note on the reproducibility of growth-rates across experiments and laboratories 

The reproducibility of growth-rates has been a problem throughout this project. 

Asynchronous cultures grown in growth medium containing over 10% human serum have 

been measured to have a typical growth-rate of around 2 d-1 (parasitemia doubling each 

day), in keeping with previous experience and the literature.  

In contrast, almost all my experiments with parasites grown in 100% AlbuMAX medium 

show a growth-rate of nearer 1.55 d-1. The work of a 2008 Master’s degree student, Cheng 

Ma148, reproduced a growth-rate of around 1.6 in 90% AlbuMAX I although previous 

experiments by both myself and Daniel Opi144 have achieved growth-rates of 2 in 90% 

AlbuMAX I. Considerable efforts to ensure that all components of the growth medium were 

prepared properly have been unable to solve this problem and in more recent 

experiments I too have seen a growth-rate of around 1.6 d-1 in 90% AlbuMAX I growth 

medium.  

These observations are worrying but not completely unexpected as slower growth-rates in 

AlbuMAX growth medium have been reported previously128. Since we are typically 

interested in measuring changes — rather than absolute values — of the metabolic 
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activity and the growth-rate of cultures submitted to perturbations, we can work around 

this issue. 

It is also of note that variability in growth-rate is widely reported, with early attempts at 

optimising growth conditions152 achieving a near doubling of parasite growth-rate by 

making small changes to the growth medium. 

Development of flow cytometry 

Thin blood smears are often time consuming to stain and clumsy to store and counting 

parasites by hand introduces large errors on individual readings. My finding that — with 

daily culture maintenance and observation — it would take two weeks of culturing to 

measure a change in growth-rate from 1.55 to 1.45 d-1 led me to think about better ways of 

measuring parasite growth-rate. After reading the review “Cytometry in malaria: moving beyond 

Giemsa” by Shapiro et al.153, I decided to investigate flow cytometry as a way to improve the 

measurement of growth-rate. 

Selection of a suitable fluorescent dye 

Flow cytometry works by staining cells with a dye that selectively binds to only those cells 

we want to count. In this case any DNA-binding dye will bind only to parasites as human 

RBCs contain no DNA. A quick review of the literature provided us with three dyes to 

consider, Hoescht153,154, Acridine Orange155,156 and syto-16157. Our discussions with 

Dr. Gareth Howell in the Astbury centre at The University of Leeds led us not to consider 

using the technique described in the paper using syto-16 and preliminary tests with 

Hoescht dye led to an unexplained sedimentation in our samples. Acridine orange became 

the best option for continued study and we set ourselves the goal of repeating the results 

found in “Re-Evaluating acridine orange for rapid flow cytometric enumeration of parasitemia in malaria-

Infected rodents” by Bhakdi et al.156. 

Fluorescence microscopy to confirm selective staining of infected RBCs 

Our first task was to test that acridine orange selectively stained infected RBCs by 

examining a stained sample of live cells under a fluorescence microscope. Unfortunately 

the only fluorescence microscope available to us has a broken lens at maximum 

magnification which caused us some of the following problems. 

 The illumination of the sample area was uneven, meaning that some areas within 

each field of view were harder to see than others. 

 Each field contained around 1500 RBCs making it hard to count the cells.  

 The cells were not fixed and thus tended to move slightly. 
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 Cells tended to stick to either the glass slide or the coverslip but the microscope 

could only focus on one plane at a time. 

Despite these difficulties we were able to confirm that acridine orange was selectively 

staining parasite-infected RBCs from our cultures. Figure 57 is a typical capture of the 

centre of a field of infected RBCs with a known parasitemia of 3.8%, as measured by 

Giemsa staining a thin blood smear under an optical microscope. Within this picture we 

found it useful to define two different types of fluorescent spots. Type 1 spots are clearly 

inside RBCs and of a similar size to a parasite whereas the type 2 spots are outside RBCs 

and often appear smaller. I have also highlighted a single stain with 2* which looks like it 

may be either part of the nearby cell or a parasite in a cell in another focal plane.  

Table 9 shows the results of counting the cells in figure 57 and we see that type 1 stains 

imply a parasitemia of around 4%, the same as determined by reading the blood smear, 

suggesting that type 1 stains are infected parasites.  

  

*estimate based on number of cells crossing the field edges (17x11) 

Table 9 : Counts of the different types of fluorescent spots in figure 57. 

The presence of the type 2 stains is unfortunate since it seems possible that they could be 

falsely counted as positive in a flow cytometer if the threshold of fluorescence were not 

adequately set. These spots could be aggregates of waste products and dead parasites in 

solution that have been stained by acridine orange or aggregates of dye particles. The 

tempting explanation that they are due to auto-fluorescence of unstained RBCs as 

described later in this chapter seems unlikely given their high frequency and the fact that 

they seem to occur outside of the RBCs.  

My original tests were carried out with a dye concentration of 4.0 µg/ml whereas future 

test were carried out at around 0.5-1.0 µg/ml. At these lower dye concentrations, fewer 

type 2 stains are visible under the fluorescence microscope suggesting that the problem of 

type 2 staining may be reduced at the concentrations we use in flow cytometry. 

Nevertheless, we still need to consider these staining artefacts when interpreting results 

from flow cytometry. 

 Number Inferred parasitemia 

Red blood cells 187* - 

Type 1 stains 8 4.3% 

Type 2 stains 15 8.0% 

Combined 23 12.3% 
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Figure 57: Fluorescence microscope image of RBCs stained with Acridine Orange at 4.0 µg/ml *. Green spots are 
areas of peak fluorescence under white light and are labelled as described.  

The fluorescent layer and the background layer were aligned in Photoshop due to a problem with the microscope 
optics. 

 

Having confirmed that acridine orange was able to stain infected RBCs whilst leaving 

uninfected cells unstained we moved on to seeing whether stained and unstained cells 

could be distinguished within a flow cytometer.  

                                                             
* Bhakdi et al.20 quote their dye concentrations after samples have been diluted by half in PBS. As a 
result a dye concentration of 4.0 µg ml is defined as being 2.0 µg ml in their paper. My results are 
completely equivalent as long as this factor of 2 is taken into account. 
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Single-channel flow cytometry 

The simplest type of flow cytometry is single-channel analysis, in our case using the green 

channel. This uses the confirmed property that acridine orange fluoresces green under 

illumination once bound to DNA and sets a cut-off intensity of fluorescence above which a 

cell is considered infected and below which a cell is considered uninfected. In order to test 

this method we prepared serial dilutions of a culture with an optically measured 

parasitemia of 4.6%. These assays were prepared by adding acridine orange to a final 

concentration of 1.25 µg/ml and then diluting with 1.5ml of phosphate-buffered saline 

solution (PBS) before acquisition. The threshold above which cells would be considered 

infected was set by running a control of stained uninfected cells through the flow 

cytometer and setting the gate to count a minimum of these cells. 

 

Figure 58 : Comparison of my results and published results for single-channel flow cytometry. a. Sample result from 
Bhakdi et al.156 with M1 gate denoting uninfected cells and M2 denoting infected cells. Parasitemia ≈30-50%. b. My 

equivalent result for a sample with a known parasitemia of 4.6%. Gate R1 denotes infected cells. 

Figure 58 shows an example of gate-setting to distinguish infected and uninfected 

populations. The excerpt in section a shows an idealised case where the distinction is easy 

to make whereas section b shows my real results with the gated area defining infected 

cells. In the ideal case the histogram for a control population (known parasitemia of 0.0%) 

would be identical to the histogram seen in b but with no counts in the section gated as R1. 

Any counts in the R1 gated section of this histogram for this control population should be 

discounted from all other samples and discarded as background noise. 

The very different parasitemias of the samples in figure 58 are a result of the limitation 

caused by culture “crashes” if culturing above 8% parasitemia. As Bhakdi et al.’s samples 
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came from living hamsters infected with Plasmodium berghei they were not constrained by 

this limitation. 

Determining an ideal dye concentration 

With a gate threshold set we moved on to trying to determine ideal parameters to use 

before sample acquisition. To this end we ran extensive tests to examine the effects on the 

measured parasitemia of, 

 the time the sample was left to incubate with the acridine orange before dilution in 

PBS, 

 keeping the samples in the dark during incubation, 

 the amount of PBS the sample was diluted with before acquisition, 

 the time the sample was left to incubate with the acridine orange after dilution 

 the concentration of acridine orange used. 

An example of the results from the last of these tests is shown below in figure 4 and shows 

a large variation between the measured parasitemia of samples stained with slightly 

different concentrations of acridine orange. 

 

Figure 59: FACS-determined parasitemia versus parasitemia determined by microscope inspection of Giemsa-
stained blood smears. Removal of counts from un-dyed control samples means some FACS-determined 

parasitemias are below 0%. 

Calibration issues 

The effects of varying the acridine orange concentration on the results of flow cytometry 

were not encouraging and the results for the other variables were no better. Further tests 

showed that part of our problems came from the raw data coming from the flow 
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cytometer. A clear example of one of these problems, setting a threshold for distinguishing 

infected from uninfected cells, is shown in figure 60 .  

These are histograms for two sequential runs using identical parameters on the same flow 

cytometer. The control sample consists of uninfected RBCs in media with 1.25 µg/ml 

(before dilution in PBS) of acridine orange added. The 0.18% parasitemia sample is 

identical but 2% of the total volume was from a culture at 4.6% parasitemia. Clearly this 

addition of a tiny amount of culture to an identical sample should not move the whole 

fluorescence peak since the peak in both cases corresponds to uninfected RBCs from an 

identical source. 

 

Figure 60: Comparison of raw single-channel output from BD FACSCalibur acquisition of a control sample (0% 
infected RBCs in media dyed with 1.25 µg/ml of acridine orange) versus a sample with a known parasitemia of 
0.18%. Overlapping section is darker. R1 shows gating optimal for control which is clearly not optimal for 0.18% 

case. 

This peak-shifting made it extremely difficult to set a gate that could consistently 

distinguish infected and uninfected cells. In our preliminary tests we never saw — no 

matter what the dye concentration used — as distinct a separation between the 

fluorescence of infected and uninfected RBCs as shown in figure 58a. This closeness in the 

magnitude of the fluorescence of the two populations meant that the placement of the gate 

had a big influence on the results. 

I had some success in overcoming the problems with the raw output of the flow cytometer 

by setting the gate position in different ways for different experiments as I will now 

explain. Where I have set a single gate and applied it to all samples I have called this gating 

technique “global and constant”.  

Where peak-shifting meant that a threshold could not be set this way I was forced to set a 

gate for each sample by eye. This meant estimating the position of the edge of the peak for 

each result and manually drawing a gate. I have called this gating technique “custom and 

variable” since the gate is different for each sample.  
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Figure 61 shows the results of a test to measure the parasitemia of samples by flow 

cytometry using global and constant gating where the parasitemia had already been 

determined by optical microscopy. The results appear impressive, with a good linear 

response and the flow cytometer picking up over a third of the parasites. Unfortunately 

the results are not nearly as positive when we look at them in detail. The control sample 

— uninfected RBCs stained with acridine orange — has a parasitemia of 2.10%, far higher 

than expected. Furthermore, even a tiny and insignificant change in the preparation of the 

samples, adding 2.0ml of PBS instead of 1.5ml of PBS before running the samples, causes a 

large and unpredictable change in the results. 

  

Figure 61 : Parasitemia measurements by single-channel flow cytometry using global and constant gating versus 
measurements by optical microscopy of Giemsa-stained blood smears. Samples were identical and prepared as 

described in the methods chapter and diluted with either 1.5ml or 2.0ml of PBS before acquisition. The point in red 
belongs to the 1.5ml dataset but is not included in the best fit line. 

 

Figure 62: Parasitemia by single-channel flow cytometry using custom and variable gating versus optical microscopy 
of Giemsa-stained blood smears. 
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Figure 62 shows the results from analysing exactly the same raw data from the flow 

cytometer as used to create figure 61 but instead determining by eye a custom gate for 

each sample. The combined numerical results from figure 61 and figure 62 are 

summarised below in table 10. 

Gating PBS added before 

acquisition (ml) 

Gradient Intercept Parasitemia 

of control 

Global and constant 1.5 0.37 0.78 2.10% 

Custom and variable 1.5 0.38 0.65 0.67% 

Global and constant 2 0.19 0.93 0.95% 

Custom and variable 2 0.13 1.33 0.81% 

Table 10 : Summary of the gradient and intercepts of best-fit lines for points in figure 61 and figure 62. 

Summary of single-channel flow cytometry 

Table 4 raises some issues that are very difficult to resolve. The measured relation 

between optical parasitemia and parasitemia as measured by flow cytometry seems 

erratic, possibly owing to tiny changes in sample preparation but more probably owing to 

instabilities within the flow cytometer. The peak-shifting issue highlighted in figure 60 

means we are forced to analyse samples by hand but even this does not give us a reliable 

technique for analysis. Custom and variable gating has a further drawback in that it 

removes the speed and objectivity of the process and thus both main advantages of flow 

cytometry over optical microscopy. Our failure to develop a better method for counting 

parasites using single-channel flow cytometry is perhaps not surprising given that 

examples in the literature have only proved the technique for the very high parasitemias 

found in in vivo infections. 

Dual-channel flow cytometry 

Acridine orange has a very useful property, it not only fluoresces green when bound to 

DNA and but it also fluoresces red when bound to RNA. Instead of a histogram of counts 

against intensity of fluorescence in a single colour axis, dual-channel flow cytometry 

produces a three dimensional plot with each measured cell placed according to the 

intensity of its fluorescence in the two different colours. By extracting this information 

from our samples we hoped to overcome the problems we experienced using single-

channel analysis. 
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Figure 63 is the output of dual-channel flow cytometry from exactly the same raw data as 

shown in figure 58. In other words, if we projected all the points in figure 63 onto the x-

axis and counted them to produce a histogram we would exactly reproduce figure 58. The 

peak shifting that meant we had to use a different gate for the control than for the rest of 

the samples in the single-channel case is also the case in dual-channel analysis and so this 

technique cannot offer any improvement in this regard and custom and variable is still 

likely to be required. 

 

Figure 63 : Dual-channel flow cytometry (red and green) for the same sample as shown in figure 58b. The gated area 
shown is a naïve attempt to select infected cells. Samples were dyed with acridine orange to a final concentration of 

1.25 µg/ml, left for at least 3 minutes, then diluted with 1.5ml of PBS before acquisition. 

A more advanced application of dual-channel flow cytometry is to specify zones of the plot 

which may correspond to different features of the cells measured. An excellent example of 

this can be found in Grimberg et al.158 where the authors were able to distinguish between 

all life stages of Plasmodium falciparum with a two-dye technique using Hoescht and 

thiazole orange and dual-channel flow cytometry. Whilst this technique certainly warrants 

further investigation, neither of the flow cytometers I have been able to use at Leeds have 

working filters to measure Hoescht fluorescence. We would also have to overcome a 

problem we had during our preliminary experiments with precipitates forming in our 

samples after adding Hoescht to them. We are still unsure what caused this precipitation 

but it seems likely that it was due to some reaction between the solvent used in our 

Hoescht stock and components within the growth medium. 

In Bhakdi et al.156 the zoning technique described in Grimberg et al. 158  for distinguishing 

life stages was used only to distinguish between cells that were fluorescing due to parasite 
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infection and those exhibiting simple auto-fluorescence. With acridine orange this seems 

likely to be our only option. Figure 64 is in an illustration of the zones in a dual-channel 

plot that we might suggest are due to these two different types of fluorescence.  

The significantly increased number of points in the infected fluorescence zone where 

parasitemia is high (3.5%) versus low (0.18%), as in figure 8, support this distinction. That 

the number of points in the auto fluorescence section of the plot goes down is in keeping 

with the observations of Bhakdi et al. 156 but is hard to explain. 

 

Figure 64 : Dual-channel output of a sample of known parasitemia of 3.5% showing the two distinct zones where it is 
suggested that fluorescence is the result of parasite infection or auto-fluorescence of an uninfected RBC. The zoning 

technique seems hard to justify as discussed in the thesis body. 

The idea that measuring auto-fluorescence can be eliminated using this method is very 

interesting but we have to remember that our results from single-channel flow cytometry 

already measured too few parasites rather than too many. Another worry for me is that 

Bhakdi et al. 156 does not fully justify the applied zoning technique or adequately explain 

why different types of fluorescence should occur in the different zones. The position of the 

infected fluorescence zone would suggest that more RNA is present in infected RBCs, 

which would make sense, but Bhakdi et al. 156  makes no mention this. These issues are 

particularly troubling given that Grimberg et al.158 makes no mention of auto-fluorescence 

in unfixed cells and makes no effort to filter out these cells in their paper.  
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A further reason that splitting the zone of higher fluorescence into two distinct sections 

may not be useful comes from inspecting the dual-channel plot in figure 63. Here we see 

that almost all the fluorescence in this plot would be counted as auto-fluorescence even 

though the known parasitemia is 4.6%. Experience with single-channel flow cytometry 

makes it clear that any technique that attempts to remove auto fluorescence from results 

must be calibrated using a negative control or dyed uninfected RBCs. When we consider 

the peak-shifting effect that we noticed in the green channel of the available equipment, 

and is likely to also exist in the red channel, we see that this is far from easy. 

Despite these problems, when dual-channel flow cytometry works it can give us good 

results. Figure 65 shows that at least some of our results do seem to agree with the results 

in Bhakdi et al. 156 and the results shown in figure 66 show that flow cytometry using this 

method can measure over half of the true number of parasites. 

 

Figure 65 : A. Stained uninfected cells from Bhakdi et al. (known parasitemia =0.0%, observed parasitemia = 0.09%) 
B. Stained mouse RBCs infected with P. berghei from Bhakdi et al. 156 (known parasitemia ≈* observed parasitemia = 
1.79%) C. Stained uninfected cells from my experiments. (known parasitemia =0.0%, observed parasitemia = 0.1%)  

D. Stained infected cells from my experiments. (known parasitemia = 3.5%, observed parasitemia = 2.0%) 

                                                             
* This measurement by Giemsa stain optical microscopy is not given in the paper but a later figure shows a 
near perfect 1:1 correspondence between optical measurements and measurements using flow cytometry.  
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Figure 66 : Parasitemia by dual-channel flow cytometry as demonstrated in figure 64 versus optical microscopy of 
Giemsa-stained blood smears. Samples prepared as in the methods chapter. Results are extremely variable across 

different runs. 

Disruptive variables 

We carried out a huge number of tests whilst trying to develop a robust protocol for 

measuring parasitemias of samples using flow cytometry. Many of our problems in the 

beginning were caused by machine issues but we also noticed that the results of flow 

cytometry were extremely difficult to predict and tiny changes in protocol — or just 

different runs of the same machine with the exact same settings — seemed to lead to 

massively different outcomes. We can see this in figure 66 where samples run in exactly 

the same conditions by the same machine give very different results.  The peak shifting 

effect I have described for single-channel flow cytometry is also visible in dual-channel 

flow cytometry with the peak in the green channel in very different positions in figure 63 

and figure 64. 

These problems meant that calibration of the output from the machines we used was 

almost impossible and required manual adjustments which removed many of the 

advantages of the technique. Even after rigorous calibration results were unpredictable. 

An interesting example of the variability of the experiments is shown below in figure 67. 

We noticed that at lower concentrations of acridine orange the two zones of fluorescence 

described previously became more and more distinct. At first we were very excited by this 

until we counted the number of cells in the infected fluorescence zone and saw that it 

accounted for less than a quarter of the known parasitemia, even fewer than measured at 

normal dye concentrations. 
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Figure 67 : Dual-channel output of a sample of known parasitemia of 3.3% dyed with 0.25 ug/ml acridine orange. The 
infected fluorescence zone contains 0.78% of the cells counted. 

Summary of flow cytometry 

Flow cytometry could have given us a quicker and more accurate way to measure the 

parasitemia of a culture and helped to more easily and objectively measure growth-rates 

of large cultures of P. falciparum grown in parallel under different conditions. In the end 

we have struggled to reproduce the published results as we would have liked to, only 

picking up between a quarter and a half of the infected cells as detected by Giemsa staining 

and optical microscopy. The unreliability of the equipment casts further doubt on the 

technique as despite a huge number of tests we were never able to isolate or eliminate 

sources of variability. It is an interesting hypothesis that we measure only a proportion of 

the true parasitemia because we are picking up only infections where the parasite is at its 

largest stage (schizont) but our experiments with a synchronised culture failed to show 

this*. My feeling is that the results of Bhakdi et al.156 were idealised and not ready for 

integration into a lab setting. That the paper was published in a flow cytometry journal 

rather than a parasitology journal, and the knowledge that Barbara Kappes and her group 

in Heidelberg have also tried and failed to use flow cytometry for parasitemia 

measurements†, supports this view. It seems possible that with the freedom to more 

accurately control and calibrate the flow cytometer many of the problems we had could be 

overcome but this was not possible within the restrictions of this project. 

Useful applications of flow cytometry to studies of Plasmodium falciparum using both dual-

channel and dual stain techniques have recently been published by Jiménez-Díaz et al. in 

2009157 and, most applicably to my project and already mentioned, by Grimberg et al. in 

2008158. 

                                                             
* These tests were carried out on the PRS III machine and should not be considered reliable. They 
are not reported. 
† Discussed in private communications with Glenn McConkey. 
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The inherent limits of “growth-rate” measurements in P. falciparum cultures. 

The final section of this chapter is a common point of discussion at all conferences on 

metabolism; what does growth-rate really mean?  

The growth-rate of an organism can mean either the rate at which biomass is produced, or 

the rate at which the population of the organism increases. In batch cultures of ideal 

organisms like E. coli and S. cerevisiae these two definitions are interchangeable since the 

population times the average mass of a single organism — which is constant — is equal to 

the biomass. This simplification no longer holds when the rate at which biomass is 

accumulated is no longer related to the rate at which the population of the organism 

increases and this is exactly the case with Plasmodium grown in culture. This discrepancy 

arises because, before bursting out of their containing RBCs, mature schizonts appear to 

have between 8 and 16 (16 - 32 according to Keeley et al.159) separate nuclei that will 

become merozoites upon lysis. Since only between 2 and 4 (equivalent to a daily growth-

rate of between 1.4 and 2.0) of these merozoites will successfully invade a new RBC as 

much as 7/8 of the accumulated biomass is lost with every life cycle thus breaking the link 

between biomass created and current population. 

In this example, all the processes of metabolism were still needed to create the biomass 

that was lost. However, since determining the exact proportion lost is extremely difficult, 

the simplification between the organism’s population, which we can easily measure, and 

the rate at which biomass is produced, which we cannot easily measure but which is most 

important for flux-balance analysis, is lost. The simplest solution to this problem is to only 

study biomass accumulation within a single life cycle and most my work has thus been 

limited to the 40-hour period in highly synchronised cultures where no RBC lysis occurs. 

This also requires the assumption that the biomass of the invading merozoites was 

negligible compared to the biomass of the final mature schizonts which seems sensible in 

comparison to other larger sources of uncertainty. 

A further discussion of this complexity and how it relates to the units of flux in my final 

model forms the first section of the chapter on metabolic modelling. 

Limits of the radioactive hypoxanthine assay 

As briefly mentioned at the start of this chapter, a standard objective method for 

measuring Plasmodium growth-rate is the radioactive hypoxanthine assay. In this assay 

parasites are cultured with radioactive hypoxanthine in the growth-medium and the 

resulting radioactivity of haematocrit is used to calculate the amount of hypoxanthine 

incorporated by the parasites and thus their growth-rate. 
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The assay works because the parasite is unable to perform de novo synthesis of purines 

which must be imported from the growth medium and/or the host cell. Given a selection 

of purines it has been shown that hypoxanthine is taken up preferentially160 and we know 

— both from personal experience and the literature — that it can be extremely difficult to 

maintain cultures in the absence of hypoxanthine40. Furthermore, in the presence of 

known inhibitors hypoxanthine uptake is reduced the least of the alternative purine 

sources: adenine, guanine, inosine, adenosine and guanosine160. More recent work agrees 

that hypoxanthine is taken up in preference to other purine sources161 but confusingly 

notes that, 

“the rate of adenosine uptake was considerably higher than the rate of hypoxanthine uptake in infected 

human RBCs” 

Quashie et al. 2010161 

More worryingly for the assumption that hypoxanthine uptake is a proxy for growth-rate, 

“In both uninfected and P. falciparum-infected erythrocytes, hypoxanthine uptake was completely blocked 

in the presence of 1 mM adenine.” 

 Quashie et al. 2010161 

These findings must be treated with caution and considerable doubt is cast on the 

conclusions of Quashie et al. 161 relating to purine uptake by Kirk et al.162. This 

disagreement leaves me with the impression that we do not yet fully understand the 

mechanism of hypoxanthine uptake or the effect on it of changing growth conditions. 

Despite these complexities I think that it is probably reasonable to presume that as long as 

the growth medium contains an excess of hypoxanthine and there are no major changes to 

metabolism or growth conditions, then the amount of hypoxanthine incorporated by the 

parasites is likely to be more or less proportional to biomass formation. This linear 

relationship has indeed been shown over extremely short (⋍10s) time periods161 and 

periods up to five days151. 

Still, we need to think carefully about what hypoxanthine uptake assays measure and how 

that might be affected by changes to metabolism not linked to growth-rate.  If we want to 

perform experiments on the metabolism of the malaria parasite in response to 

perturbation that may change the behaviour of purine salvage — and they are areas of 

interest in this thesis and its possible expansions — I would suggest that the hypoxanthine 

uptake assay is not an acceptable measurement of growth-rate.  
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Experimental results 

No account of the biochemistry of Plasmodium would be complete without some 

mention of the inherent pitfalls and problems encountered. 

Biochemistry of Plasmodium (Malarial Parasites), I. W. Sherman106, 1979 

 

Towards a biomass function for malaria 

Beyond a gap-free metabolic network, FBA requires both a biomass function and some 

constraints on the rate of exchange of compounds between the organism and its 

environment to accurately simulate metabolism. P. falciparum has been shown to be 

adaptable to different nutrient sources, and a minimal controllable growth medium160 is 

used to reduce the variability between experimental repeats. Nevertheless, the 

requirement to use human RBCs — necessarily of different ages or from different donors 

across experiments — introduces an uncontrollable variability into all experiments. This 

variability is visible later in my measured exchange fluxes and is also reported in a large 

body of knowledge on human RBCs. 

There is no published experimentally measured biomass function for P. falciparum. In 

explaining this, and perhaps light-heartedly, Giancarlo Biagini once suggested to me that a 

lot of the basic biochemistry was never done on malaria parasites because it couldn’t be 

cultured when such experiments were in fashion, and by the time Plasmodium could be 

cultured people were no longer interested in publishing basic biochemistry.  Irwin 

Sherman’s106 1979 publication in Microbiological Reviews remains the most 

comprehensive general work but is not comprehensive enough to build a biomass function 

from. More recently a number of more specialised papers have been published which fill in 

some gaps in our knowledge about free nucleotide and amino acid composition146 and 

fatty acid composition99 but these papers still do not reliably report the whole-organism 

concentrations for the key biomass components: protein, DNA, RNA, lipids and 

carbohydrates. 

At a push we could use existing data to build a biomass function for our own FBA analysis 

and in fact Chavali et al.’s 2008 analysis of Leishmania Major108 includes a biomass 

function adapted from E. coli using published information on essential components of 

growth media for other species of Leishmania. This is not a reason to ignore the 
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predictions of that model and even for model organisms such as E. coli, debates continue 

as to the importance and relevance of an accurate biomass function163.  

Still, for P. falciparum none of the existing solutions to the biomass problem are attractive. 

There are good reasons to think that the biomass function of a human parasite would be 

very different to that of a bacterium and in any case the biomass functions of different 

species of bacteria vary enormously164,165. Furthermore, even though the biomass function 

is probably not the most representative objective function of real metabolism76 I think it 

remains — within an experimentally constrained model — a reasonable approximation of 

“life” and in any case the best available tool. 

A first effort to measure the biomass of parasites grown in our own minimal media was a 

Masters project carried out in the year I started my PhD by Daniel Opi144. We worked 

together to convert his results into a preliminary biomass function but in addition to 

solving some early problems this served as a warning that biomass measurement would 

be much more difficult than expected. At the time, the lab’s technique for measuring 

parasite biomass components was to use Sigma’s Tri-Reagent system to separate the 

components of a large amount of biomass in different solvents and then dry and weigh 

each solvent separately. This method returned negligible amounts of DNA and RNA and a 

protein concentration of 89% of total biomass in the best case and over 100% in the worst 

case.  

By repeating the difficult large-batch cultures that Daniel had used for his experiments I 

was able to gather the large amounts of biomass needed to develop the techniques in this 

thesis. Ultimately, the new extraction technique I describe in this chapter can accurately 

determine the composition of the biomass extracted from small cultures and large-batch 

culturing is not required. 

The best place to start in this discussion of my experimental results is with table 11 which 

summarises the major wet-lab experiments that led to the final biomass function 

calculations I report in this thesis. The majority of the culturing in these experiments was 

performed by the person whose name is written first in the experiment name and I am 

extremely grateful to Cheng Ma, Sara Zakutansky and Jennifer Lake for their work and 

achievements in their Masters degree projects.
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A summary of experiments performed 

 

 

 

Table 11 : Summary of major growth-rate and biomass experiments conducted in 2008 and 2009. The growth-rate experiments used to produce figure 56 on page 123 were performed up to 22/12/2008 
and are not included in this summary chart but are present in my lab book. 

 

  

Growth-rate and Biomass Experiments (2008 - 2009)

Name Tom Biomass 1 Cheng FACS Tom Biomass 2 Tom Biomass 3

Culture End Date 22nd December 2008 July 2009 18th November 2009 2nd December 2009

Extracted Culture Volume (ml) - 540 1080

Extracted Parasitemia - 3.2% 1.7%

Extracted Pellet Volume (ml) - 18 30

Biomass Extracted Yes - Yes Yes

Description

Biomass samples used for preliminary 

experiments on biomass measurement (NMR 

metabolomics, glucose measurements by 

biochemical kit, Bradford Assay, RNA/DNA 

measurement).

21/03/09  fluorescence microscropy.                    

I did not do this culturing.

Extraction 18/11/2009. Culturing continued to 

December 2009, Biomass samples used for Sara 

Masters Project technique development and 

calibration of HPLC.

Extraction  02/12/2009 used for final biomass 

measurements. Cultures were saponin-lysed 

together then the lysate split by four and 

centrifuged and isolated to 4 eppendorf tubes 

labelled "1/4"
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Sources of uncertainty in biomass recovery 

As summarised in table 11 — and table 20 in the metabolomics section later — biomass 

was recovered from a number of experiments. The development of the techniques for 

measuring biomass components, also part of Sara Zakutansky’s and Jennifer Lake’s 

Masters dissertations, used the biomass samples from the experiments named Tom 

Biomass 1 and Tom Biomass 2. The extracted samples from Tom Biomass 3 — all of which 

had been RNA-safe acquired and stored at -80°C with RNAlater® (Ambion) — were 

acquired at the late schizont stage before lysis and were used to gain the final results 

reported in this section. 

Preliminary experiments allowed methods for determining biomass content to be 

improved with particular attention paid to four key areas, 

Separating parasite biomass from RBC biomass 

A key step in the isolation of parasite biomass is the separation of parasite and RBC 

components after the saponin lysis described in the methods chapter. The pellet visible 

after high-speed centrifugation of a lysed culture consists of a black core with a white 

covering. The black core is the parasite biomass, the white covering is formed of the 

remnants of the lysed red-blood cells and is called the RBC ghost. That the protein, DNA 

and RNA concentrations measured in table 13, table 14 and table 15 are within the 

expected range suggests that the separation of largely intact parasites and lysed red-blood 

cells is effective but it still seems likely that the two components of the pellet are not 

completely distinct. A more significant source of uncertainty in the isolated biomass 

weight is the process of separating the black and the white pellet section. RBC ghosts are 

“washed away” gently in TBS but this process is an inherently variable one with too much 

washing discarding some parasite biomass and too little leaving RBC ghosts in the parasite 

pellet. 

There is an elegant method for quantifying the scale of this uncertainty. Following saponin 

lysis of the infected RBC pellet from the Tom Biomass 3 experiment the homogenous 

lysate was split equally into four centrifuge tubes for parasite isolation. The measured 

weights of the dried parasite biomass from each of these tubes (1,2,3,4) should be 

identical but we see in table 12 (page 145) that they are not. This variance lets us calculate 

a mean dry biomass of 13.4mg with a standard error (  √   of 1.7mg: most easily 

expressed as a percentage error of 13%. 

One suggestion that is often made for simplifying the process of getting the P. falciparum 

biomass function is that the metabolic model for P. falciparum is inserted into the existing 



144 
 

FBA-ready metabolic model for a human RBC166. In this case, the biomass function for the 

RBC on its own would be substituted for the biomass composition of the RBC and the 

parasite together. Whilst this avoids the difficult step during biomass measurement of 

lysing RBCs and purifying the released parasites I suspect that this idea would not work. It 

is well documented94,113,127,167–170 that infected RBCs have massively altered metabolism 

and it has not yet been shown that any existing model for RBC metabolism is capable of 

reproducing these changes. 

Weighing pellets 

Two problems frustrated my first attempts at the simple task of weighing parasite 

biomass pellets. Firstly, I did not at first consider that eppendorf tubes vary considerably 

in mass; using one empty tube to tare a set of scales used to weigh another tube containing 

a biomass pellet produced highly misleading and useless results. As an example, some of 

the empty tubes used in the extractions summarised in table 12 weighed 0.8671g, 

0.9005g, 0.8937g and 0.8996g, a considerable variation when compared to the biomass 

pellet weight. Secondly, I did not at first consider that the vigorous vortexing needed to re-

suspend the isolated biomass pellet would grind away an appreciable amount of plastic 

from each eppendorf tube. 

Careful weighing at every step of biomass handling solved these problems and any 

remaining uncertainty is included in the 13% error described in the previous 

consideration of parasite and RBC biomass separation. 

Clarifying solutions before photometric assays 

All the successful techniques for measuring the composition of parasite biomass have been 

photometric but these techniques are made impossible by the dark grey colour of the re-

suspended parasite biomass. For each of the four samples and corresponding extraction 

methods I attempted, I clarified the samples before acquisition by two methods, a and b. 

Samples labelled a — and sample 4 — were clarified by centrifugation in a 2ml eppendorf 

tube at 5000RPM for 5 minutes except for 3a which was clarified by centrifugation at 

13000RPM for 5 minutes. No noticeable change in protein or nucleotide concentration 

arose from this change. Samples labelled b were clarified by passing through the 40 

micron filter cartridges provided with the PARIS(Ambion) kit in a benchtop centrifuge at 

13000RPM for 5 minutes. 

Solutions were visibly slightly clearer after filtration but the statistically indistinguishable 

results for samples 3a and 3b suggests that both techniques of clarification are equivalent. 
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Extracting biomass components from parasite pellets 

In part because of the overestimation of protein content in Daniel Opi’s thesis I wanted to 

avoid extraction of parasite biomass components using sodium dodecyl sulfate (SDS) as a 

detergent. The results reported in Teng et al.146 made me hopeful that simple extraction 

techniques such as vigorous agitation in methanol followed by drying and re-suspension 

in TBS (methanol/TBS, sample 1) would be sufficient. I also wanted to try extracting 

biomass components through vigorous agitation in TBS alone (sample 2). Extraction using 

phenol/chloroform and perchloric acid were not performed partly because they did not 

perform well in Teng et al. 146 and partly because I felt uncomfortable performing them.  A 

further extraction technique I tried was the cell lysis buffer component of the PARIS kit ( 

sample 3 and sample 4). 

A summary of the samples and their various treatments is shown in table 12 and the 

following results show that the PARIS kit’s cell lysis buffer proved a simple and effective 

method for isolating biomass components. 

 

Table 12 : Extraction methods and biomass weights of the four samples labelled “1/4” isolated at the end of the Tom 
Biomass 3 experiment. 

How much biomass is recovered 

In total, 30ml of haematocrit at a parasitemia of 1.7% was extracted from the Tom 

Biomass 3 experiment. The dry weight of the total parasite biomass was            

with this mass coming from an RBC pellet of 30ml at 1.7% parasitemia. 

From this — and the known concentration of RBCs in haematocrit (           ) — we 

can calculate    , the total number of parasites, to be, 

                                               

The dry weight per parasite             is thus, 

           
         

                                  

  

Extraction Method Methanol/TBS TBS PARIS cell lysis buffer PARIS cell lysis buffer

Sample names 1a and 1b 2a and 2b 3a and 3b 4 (no filtration)

wet biomass weight (mg) 47.4 54.5 35.1 52.6

dry biomass weight (mg) 17.1 15.5 10.0 11.0

dry weight/wet weight 36% 28% 28% 21%

volume of extraction solvent (ml) 2 2 2 1

dry biomass concentration (mg/ml) 8.6 7.8 5.0 11.0
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Protein content 

The typical method of determining protein content with the Bradford assay is to create a 

calibration curve using a protein standard, BSA in my case, and then determine the protein 

content of a sample by comparing it to this curve. Preliminary tests with this technique 

were less accurate than I hoped and I settled upon another method — most clearly shown 

in figure 68 — where serial dilutions of both the BSA standard and the samples prepared 

by each method were measured for absorbance at 595nm. 

 

Figure 68 : Serial dilutions of BSA standard and samples 3b (from 5mg/ml of pure biomass) and 4 (from 11mg/ml of 
pure biomass) in Bradford reagent. Note the bubbles in the second row for sample 3b; this data-point was excluded 

from analysis. 

Figure 69 shows the results of these measurements for sample 4 and the BSA standard 

with the gradient of lines of best fit shown. The graph is illustrative only and the points at 

4mg/ml were discarded during numerical analysis because they were outside of the linear 

range of the assay. 
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Figure 69 : Determination of protein concentration for sample 4 (see table 12) by the Bradford assay. There are two 
points at each concentration for each sample corresponding to acquisition at 15 minutes and 90 minutes. 

Given the following algebraic identities, 

                                                      

                                                               

                                        

                                    (
                 

   
) 

                    (
              

   
) 

The percentage protein can be calculated because the ratio of the lines of best fit is equal 

to the inverse of the ratios of the protein concentrations in the two samples, thus, 

  
    

    
 

Error in protein content determination 

Errors for    and     (             are calculated by the LINEST least-squares 

regression function in Microsoft Excel; also available in most other spreadsheets (eg. 

Libreofffice). The error in      is 13% as previously shown (             and the error 

in    is negligible and therefore ignored. These component errors are combined according 
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to the standard formula for the propagation of uncertainty from multiple sources*171 to 

give an uncertainty in the final protein content. In this case this combination is, 
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Or explicitly, 
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The resulting protein content determinations and associated percentage-point errors for 

the seven samples are shown in Table 13. 

 

Table 13 : Protein concentration of biomass samples extracted using the techniques summarised in table 12 
Because of the bubbles visible in the second row of the 3b sample, see Figure 68, this point was omitted from 

analysis. Extractions by the methods used for samples 1 and 2 were clearly unsuccessful. 

The three separate samples, 3a, 3b, and 4 have the same protein content within the 

uncertainties of the experiment and can be combined to create a single best estimate of 

the protein content of P. falciparum’s late-stage schizont biomass. The uncertainties in this 

measurement are the combination — according to the previously described general 

formula for combining uncertainties — of the component percentage-point errors and the 

standard error (  √ ) arising from the variance of the three constituents. This gives a 

final best-estimate of the protein proportion of late-stage schizont biomass of 

P. falciparum to be, 

        

It is important to remember that the quoted uncertainty is a percentage-point error and 

not a percentage error, in this case meaning that the protein content has been measured to 

lie somewhere between 39% and 57%. 

  

                                                             
* If z is a function of x and y (with uncertainties  𝑥      𝑦), the uncertainty in z ( 𝑧  is given by, 

 𝑧   √(
 𝑧

 𝑦
  𝑦)

 

 (
 𝑧

 𝑥
  𝑥)

 

 ⋯ 

with the … representing the continuation of the pattern for all further variables. 

1a 1b 2a 2b 3a 3b* 4

% Protein 4% 4% 0% -1% 54% 46% 43%

percentage-point error 1% 1% 1% 1% 8% 7% 7%
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DNA and RNA content 

The DNA and RNA contents of the biomass extractions were measured using a nanodrop 

spectrophotometer and calculated as follows. 

Given the algebraic identities, 

                                                  

                                                               

                                                   

The DNA as a percentage of total biomass by weight is given by, 

  
    

  
 

And — following the same formula for combining errors as for proteins — the error in D is 

given by, 
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The resulting DNA content determinations and associated percentage-point errors for the 

seven samples are shown in table 14. 

 

Table 14 : DNA concentration of biomass samples. Extractions by the methods used for samples 1 and 2 were 
clearly unsuccessful. 

Applying exactly the same treatment for the RNA measurements gives us table 15. 

 

Table 15 : RNA concentration of biomass samples. Extractions by the methods used for samples 1 and 2 were 
clearly unsuccessful. 

Like with the protein level determination it is clear that the DNA and RNA content of 

samples 3a and 3b are the same within the uncertainties of the experiment but in this case 

it is unclear that sample 4 is part of the same set. To check that this was not because 

1a 1b 2a 2b 3a 3b 4

% DNA 0.4% 0.4% 0.2% 0.1% 7.6% 8.3% 4.1%

percentage-point error 0.2% 0.1% 0.1% 0.0% 1.3% 1.1% 0.7%

1a 1b 2a 2b 3a 3b 4

% RNA 0.5% 0.7% 0.1% 0.1% 7.4% 6.6% 3.6%

percentage-point error 0.5% 0.6% 0.1% 0.1% 1.1% 0.9% 0.5%
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sample 4 had a nucleotide concentration above the range of the nanodrop 

spectrophotometer I tested dilutions of the raw sample. These scaled correctly, showing 

that this was not the cause of the issue. Despite this I can see no reason not to combine the 

nucleotide determinations from samples 3a, 3b and 4 into a single reading. In calculating 

the error in this estimate the percentage-point errors reading was combined with the 

standard error (  √ ) arising from the variance of the three constituents. This gives a 

final best-estimate of the DNA (D) and RNA (R) proportion of late-stage schizont biomass 

of P. falciparum to be, 

           

           

As with the protein figure, the quoted uncertainty is a percentage-point error and not a 

percentage error. 

Best guesses and sanity checks 

One of the difficult but interesting parts of moving to a new scientific field is that you lack 

some very basic knowledge of techniques and expected outcomes. It is frequently 

disappointing, sometimes exciting and always very useful to check that results seem 

sensible. I made biologically sensible comparisons in the following four areas. 

Wet weight/Dry weight ratio 

Haemoglobin makes up around 92% of the dry weight172 of an RBC and around 35% of the 

wet weight of an RBC173 thus inferring a dry weight/wet weight ratio of 38%. The 

equivalent figure for E. coli is around 30%164. By comparison, the average dry weight/wet 

weight ratio for my parasite biomass extractions — see table 12 — is 28%: which seems 

sensible. 

Nucleotides as a percentage of dry weight 

Martin et al.116 report a final RNA mass of                       but do not report the 

mean dry weight of parasites in their study. If we use the dry weight I have measured, this 

figure corresponds to an RNA percentage of around 4%. The biomass function of Arvind 

Chavali’s L.major model (sup. 1)108 contains 1.6% DNA and 11% RNA as a percentage of 

dry weight. The biomass function of the S. cerevisiae in Förster et al. (sup. 3)174 contains 

0.4% DNA and 6.3% RNA as a percentage of dry weight. 

My measured RNA figure of          seems within the expected range but my DNA 

measurement of          initially seems very high. Once we remember that the biomass 

was harvested from synchronised cultures at the most mature stage of schizogeny my 
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results are more sensible. Since merozoites have been formed, the total amount of DNA 

will have increased by a factor of 8-3236 from the level before schizogeny began. The lower 

DNA content as a percentage of dry weight of the L. major biomass function is despite a 

larger genome of 32.8 million base pairs. This is to be expected in part because individual 

amastigotes of that species reproduce by simple division to produce two daughter cells 

and in part because the host macrophage is substantially larger meaning the minimum 

required amount of DNA represents a smaller percentage of total dry weight. 

To try and see if this difference in number of daughter cells explains the amount of DNA I 

have measured I have performed a basic calculation to calculate the number of complete 

genomes the measured DNA mass represents. 

The total DNA (        ) in the parasite’s biomass is formed of two components, free DNA 

nucleotides (       ) and chromosomal DNA (         ) which add up to give the total 

DNA measured by my assays. 

                           =              

An approximation of the amount of free DNA can be calculated from Teng et al.146 (table 36 

in appendix IV) giving a total of                      of free nucleotides of which it 

seems reasonable to assume that around a third* are/were intended for DNA synthesis. 

                           

We know that the P. falciparum nuclear genome ( ) is 22,853,764 base pairs. Taking the 

mass of an average base pair to be (             ) we can calculate the total mass of 

DNA in a single parasite genome (    ) to be, 

      
     

  
 

     
            

                             

The genome is haploid in all of the erythrocytic life-stages so the total mass of 

chromosomal DNA is given by multiplying the mass of a single genome by the number of 

genomes (        ) to give, 

                        

                                                             
* Here I split DNA, RNA and energy (ATP, ADP etc…) populations equally for a very rough calculation. 
Free DNA is a small enough proportion of total DNA that any error in this figure should have only a 
small effect on these calculations. 
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Combining all these formulas and rearranging for the number of genomes gives us,  

         
(            )         

    
 

                           

          
       

This means that the best-estimate measurement of DNA content is within the maximum 

sensible figure of 32 genome copies per late-stage schizont. My feeling is that the most 

accurate figure is towards the lower end of the estimate for   with the equivalent 

calculation giving an average of 17.5 genome copies per late-stage schizont but the optical 

microscopy and staining techniques described in this thesis cannot reliably distinguish 

between 8, 16 and 32 nuclei in schizonts so I have little evidence either way.  

Protein as a percentage of dry weight 

The biomass function of Arvind Chavali’s L. major model (sup. 1)108 contains 45% protein 

as a percentage of dry weight, exactly the same as in Förster et al.’s S. cerevisiae model. 

This is in good agreement with my measurement of a 48% protein content. 

Dry weight per parasite 

The dry weight per parasite             is, 

           
         

                              

By comparison the dry mass of an RBC is given as               in Mysliwski and 

Korczak175 and               in Williams Hematology173. My measurements and these 

figures suggest that the dry weight of a mature P. falciparum schizont is around 20-30% of 

the dry weight of a human RBC. 

As previously noted, 92% of the dry weight of a human RBC is composed of haemoglobin. 

The principal source of amino acids in mature P. falciparum schizonts is from the digestion 

of the host erythrocyte’s haemoglobin100 and the best independent estimate from Krugliak 

et al. 2002103 is that 65% of the infected RBC’s haemoglobin is digested by the parasite of 

which up to 16% is retained. Multiplying these three percentages suggests that the protein 

mass of a mature P. falciparum schizont is around 10% of the RBC mass.  My 

measurements show that protein makes up around half of the parasite’s biomass and so 

the expected total biomass is just over 20% of the RBC mass; within the measured range of 

20-30% of RBC mass. 

Combining information from so many sources and confirming that my measurements are 

sensible is extremely pleasing but it raises a more serious point. I intended to use the 

biomass components from Teng et al.146 to provide information on relative proportion of 

amino acids and nucleotides in my biomass function but it is clear from the total mass 
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returned in their paper that their techniques measure only free metabolites, not those 

incorporated in polymers. A better solution is required. 

Details breakdown 

In order to create a detailed biomass function the measured amounts of DNA, protein and 

RNA need breaking down into their constituent nucleotides and amino acids and the lipids 

and carbohydrates need to be added to the biomass composition to make it up to 100%.  

Amino acid frequencies could naïvely be measured from the composition of translated 

proteins but a more complex analysis where the relative abundance of each protein is 

considered is already provided by Chanda et al.176 and adapted as table 16. 

 

Table 16 : Amino acid frequency in the Plasmodium falciparum proteome, from Table 1 in Chanda et al.176. 
Frequencies sum to 99% due to rounding in the original paper. 

DNA nucleotide composition is easy to add since we know that the majority of DNA 

nucleotides are incorporated in the chromosomes and we know the exact proportion of 

DNA nucleotides from the genome sequence47. 

Amino Acid Frequency (%)

Aspartate 12.2%

Lysine 11.6%

Isoleucine 9.3%

Leucine 8.1%

Glutamate 7.0%

Serine 6.3%

Aspartate 6.0%

Tyrosine 5.5%

Phenylalanine 4.6%

Threonine 4.2%

Valine 4.1%

Glycine 3.1%

Arginine 2.9%

Glutamine 2.8%

Alanine 2.4%

Proline 2.2%

Histidine 2.2%

Methionine 2.2%

Cysteine 1.8%

Tryptophan 0.5%
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Table 17 : DNA nucleotide frequency in the P. falciparum genome. 

Another contribution to total RNA comes from gene transcripts in the form of messenger 

RNA (mRNA) and from Gardener et al.47 we know that around 76.3% of the nucleotides in 

introns are A or T meaning the mRNA composition should be about 76.3% T and U, giving 

the final RNA nucleotide composition shown in table 18 . 

 

Table 18 : RNA nucleotide frequences are calculated by taking into account both the ribosomal RNA nucleotide 
composition and the likely composition of mRNA from gene transcription. The rRNA:mRNA ratio is set at 1:1. 

A complexity that I have omitted in my final model with regard to the RNA content of the 

biomass function is that, in quickly growing cells, ribosomal RNA makes up the major part 

of the total RNA; typically 85% in E. coli and 81% in S. cerevisiae165. From Vezza et al.177 we 

know that the ribosomal RNA (rRNA) of P. falciparum has around a 35-37% G-C content 

and the AMP and UMP composition of the biomass may well we correspondingly lower. I 

have not made this correction since the proportion of RNA which is ribosomal is unknown. 

In any case, making such a change results in negligible changes to the model’s behaviour 

and predictions. 

No serious attempts were made to quantify the carbohydrate and lipid composition of the 

biomass and so these remaining components were added in the same ratio (carbohydrate 

27:15 lipids) as they are including the L. major biomass function of Chavali et al.108. The 

breakdown of lipid and carbohydrate components of the biomass function are discussed in 

the next chapter of this thesis as the pathways that generate are considerably simplified in 

the final model. 

 

 

 

 

 

 

DNA nucleotide Frequency (%)

dAMP 40.3%

TMP 40.3%

dGMP 9.7%

dCMP 9.7%

RNA nucleotide Frequency (%)

AMP 38.7%

UMP 38.7%

GMP 11.3%

CMP 11.3%
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All of this gives the final biomass composition shown in table 19 and figure 70. 

 

Table 19 : The components of the final biomass function as a percentage of dry weight. 

 

Figure 70 : The components of the final biomass function as a percentage of dry weight. 

  

Component % dry weight

DNA 6.7%

RNA 5.9%

Protein 48.0%

Lipids 14.1%

Carbohydrate 25.3%

Total 100.0%

DNA

7% RNA

6%

Protein

48%

Lipids

14%

Carbohydrate

25%
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Measuring exchange fluxes 

What started as an idea to extend Jennifer Lake’s Masters project evolved into a key part of 

my thesis when I spoke at the White Rose Doctoral Training Centre internal conference in 

Sheffield in late 2009. I was pitching my ideas to perform metabolomics on the malaria 

parasite using liquid chromotagraphy linked to mass spectrometry (LC-MS) techniques as 

described widely for many other organisms. The specialisms and experience at Leeds were 

not ideal for trying these types of experiments but Cassey McRae and Hayley Fenton in 

Julie Fisher’s group in Chemistry at Leeds said that was I was looking to do was very 

similar to the work they were doing on the metabolomics of cancer patients, looking at the 

composition of body fluids. 

Jennifer had been measuring the rate at which glucose was taken up by the parasite and 

the rate at which lactate was produced using biochemical kits which were inaccurate and 

unreliable*. Preliminary tests we performed using 1H-NMR (Proton NMR) metabolomics 

proved to be more reliable and were additionally able to distinguish more metabolites. A 

summary of these preliminary trials and the three major metabolomics experiments that 

followed are contained in table 20. In this section I will explain the results and the 

techniques I have developed. 

The methods and data analysis are identical for all compounds and so I start with a 

detailed description of the techniques. The results are then split into carbon compounds 

and amino acids. Glutamine is considered as a carbon compound rather than an amino 

acid due to its recently clarified role as the principal carbon source — via conversion to 

oxoglutarate — driving the mitochondrial TCA cycle95 as shown earlier as figure 33 on 

page 73. The magnitude and direction of the exchange fluxes measured also supports 

glutamine being primarily considered as a carbon compound.  

Splitting the metabolites this way makes sense because the exchange fluxes measure two 

different things. The exchange fluxes for carbon compounds primarily tell us how the 

parasite produces the energy it needs to survive, with the magnitude and choice of 

pathway providing further information in areas such as redox metabolism. The amino acid 

exchanges tell us how the parasite acquires the amino acids it needs to synthesise proteins 

and the way it deals with the haemoglobin it digests. 

Hypoxanthine exchange fluxes are included with the amino acid analysis simply because 

the magnitudes of the fluxes are similar. The NMR assignment of hypoxanthine is unclear 

and the results should be treated with even greater caution than their high uncertainties 

and wider variability suggest.

                                                             
* Protocols are in the methods section, a full evaluation is contained in Jennifer’s thesis145. 
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Table 20 : Summary of metabolomics and biomass experiments performed in 2010 and 2011. 

Metabolomics and Biomass Experiments (2010-2011)

Name Jenny Metabolomics Tom repeat of Jenny Metabolomics Sara Metabolomics of Inhibition
Tom repeat of Sara Metabolomics of 

Inhibition

Culture End Date July 2010 17th November 2010 June 2011 22nd December 2011

Extracted Culture Volume (ml) 120 2 x 13 8

Extracted Parasitemia
4.1%

3.5% (uninhibited)                                                

4.5% (inhibited)
2.6%

Haematocrit volume at extraction (ml) 3.75 2 x 1.25 0.32

Biomass Extracted Successfully No Partially Yes No

NMR Acquisition Month 29/07/2010 21/02/2011 July and August 2011 January 2012

Time Points Harvested (including fresh 

medium)
2 11 13 5

Time Points Measured 2 11 5 5

End Time 24 41

Blood Nulls No Yes, insufficient Yes, sufficient No

Notes Ethanol production detected.
Methanol sterilisation. No ethanol production 

detected.

Full set of blood nulls both with and without 

atovaquone inhibition, Normal growth and 

sublethal atovaquone inhibition time course of 

parasitised red blood cells

No blood nulls. Significantly lower base 

metabolism.

Description

Fresh Albumex growth medium was measured 

for the first time. Three biological replicates of 

used growth medium harvested after 24 hours 

were measured.

Single blood null at 14.50 hours not accurate 

enough. Ethanol production result from Jenny's 

results not reproduced. 11 time-points taken for 

one sample. 1 time-point taken at 31.58 hours 

for a biological replicate largely agrees with main 

sample

Strange experimental technique means changing 

haematocrit percentage. Abnormally high 

haematocrit at end of experiment may affect 

results. Strange technique has advantage of 

increasing sensitivity. Sample B is uninhibited. 

Sample A is inhibited with atovaquone at 3.2nM.

Sample 1 is uninhibited. Samples 2 is inhibited 

with atovaquone at 3.2nM
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Collecting spectra 

I create spectra for each growth medium sample using the 1H-NMR techniques described 

in the methods section. These spectra are then grouped by experiment like in the example 

shown in figure 72 for the Sara A set from the “Sara metabolomics of inhibition, June 

2011” set of experiments summarised in table 20.  

The exact position of peaks is not constant across different experiments even if the data 

processing is identical. It is therefore extremely important to align each peak manually in 

the ACD/labs software to ensure that the range of integration is consistent across spectra 

and for this reason it is best to integrate spectra that will later be compared in sets. 

An example of the visual alignment required — in this case the prominent α-Glucose 

doublet at 5.25ppm — is shown in figure 71 and each peak requires its own alignment. 

This figure also gives an excellent visual example of how glucose is consumed by the 

parasite over time, leading to a large decrease in its concentration in the growth medium. 

A final note on this image is that whilst the sizes of the peaks in this case largely 

correspond to the concentration of glucose in the medium this is often misleading due to 

the visual normalisation techniques in the ACD/labs software. Although this kind of visual 

inspection can be useful for peak identification, the reported area under each curve — and 

not the visual representation of the area — is the only reliable way to assess the 

concentration of each metabolite. 

 

Figure 71 : 1H-NMR spectra for the α-Glucose doublet at 5.25ppm from the Sara A set. (left) Positions as referenced 
to TMS at 0ppm. (right) Positions once manually aligned. Colours blue, green, grey, pink, red, correspond to t = 0, 
9.2 18.5, 27.0, 36.5 hours and show the clear decrease in glucose concentration in the growth medium over time. 
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Figure 72 : The four 1H-NMR spectra in the Sara A set. Here the integrals for the selected spectrum (red, 30/06_00h20_A, t = 9.2 hours) are shown. The two symmetrical HEPES multiplets at 2.86 and 
3.15 (integral referenced to 100) are visible. Colours green, grey, pink, red, correspond to t = 9.2 18.5, 27.0, 36.5 hours.   



160 
 

Picking peaks  

With the spectra of all the acquired samples collected into sets for each experiment we 

need to identify the peaks within the spectra that correspond to metabolites of interest. 

Initially we drew heavily on the time and experience of Cassey McRae, a PhD student in 

Julie Fisher’s lab who showed us how to identify and interpret spectra. My method for 

identifying peaks has evolved but in my final full review of my results was as follows. 

1. Visually move through the set of spectra and note the positions and forms (singlet, 

doublet, multiplet, etc…) of visible peaks. In total 34 peaks or sets of peaks were found. 

2. Look for peaks at the same position in Cassey’s suggested reference paper, “750 MHz 

1H and 1H-13C NMR spectroscopy of human blood plasma” by Nicholson et al.178. 

3. Search for other peaks using the human metabolome database179 (HMDB) available at 

www.hmdb.ca and the Biological Magnetic Resonance Data Bank (BMRDB) at 

http:  www.bmrb.wisc.edu . 

4. Verify proton assignments for each peak using the interactive 1H-NMR viewer at 

http:  mmcd.nmrfam.wisc.edu , part of the Madison Metabolomics Consortium  

Database180 (MMCD). 

With a large number of the peaks identified I downloaded the reference spectra from 

HMDB for the following metabolites, 

Malate, leucine, isoleucine, ethanol, glucose, glycerol, histidine, hypoxanthine, alanine, 

glutamate, glutamine, valine, lactate, NAD, NADP, phenylalanine, tyrosine. 

These reference spectra, as shown separately in figure 73 and combined in figure 74, were 

used to check that the peaks identified in my samples were at the correct position and of 

the same shape as expected. Metabolites that were known to be present in the growth 

medium were not included in the reference set of spectra where the only measurable 

peaks overlapped with other strong signals. For example asparagine is present in RPMI 

medium but its principal peaks at 2.8–3.0 ppm are obscured by a HEPES peak at 2.84–2.90 

ppm. Arginine’s triplets at 3.23ppm and 3.76ppm are obscured by glucose and 

glucose/glutamate/glutamine respectively. There are techniques to separate overlapping 

signals in NMR spectra but they introduce considerable error into the results130, especially 

when used by someone with no experience of them and when one signal is considerably 

stronger than the other. 

 

http://www.hmdb.ca/
http://www.bmrb.wisc.edu/
http://mmcd.nmrfam.wisc.edu/
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Figure 73 : Collection of 1H-NMR reference spectra used as a guide to peak identification displayed separately. From 
the top, spectra are of NADP, NAD, Leucine, Lactate, L-Valine, L-Glutamine, L-Glutamate, L-Alanine, Isoleucine, 

Hypoxanthine, Histidine, Glycerol, Glucose, Ehtanol, Isoleucine (included twice in error), Leucine (included twice in 
error), Malate. 

 

 

Figure 74 : Collection of 1H-NMR reference spectra used as a guide to peak identification displayed together. Other 
reference spectra were downloaded and examined individually but determined not to be present in any spectra. 

A total of 21 peaks represent 12 unique metabolites (counting α and β-glucose together*) 

were identified and are summarised in table 21 with the majority of these metabolites 

visible in all 42 spectra acquired. The glycerol assignments and associated results should 

be treated with caution and I discuss this further at the end of this chapter. 

                                                             
* The α and β isomers of glucose interconvert spontaneously and the distinction between the two 
forms within my model could be removed without affecting my results. Restrictions on glucose flux 
in the modelling section of this thesis are always on the combined flux of both forms. 
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Table 21 : NMR peak assignment table ordered by observed peak position (ppm). The two unobserved malate peaks 
and the HEPES peak used as a concentration reference are included in addition to the 21 metabolite peaks 

representing 12 unique metabolites that were observed in at least some spectra. The hypoxanthine assignment is not 
very clear and should be treated with caution. In all cases the Madison Metabolomics Consortium  Database180 was 

used as the definitive source of hydrogen counts for each peak. 

With the peaks identified, the area under each of them was integrated within the ACD/labs 

software with the integral expressed as a percentage of the HEPES peak at 3.15ppm. 

Converting metabolite integrals to metabolite concentrations 

At the level of NMR analysis used in this thesis, the integral of a peak (  ) is proportional to 

the number of molecules in solution (proportional to the milliMolar concentration ([ ]  ) 

times the number of hydrogen atoms (  ) in each molecule that produce the integrated 

peak. For all metabolites in solution, 

       [ ]   

And thus 

  
  [ ]  

          

Observed 

Position (ppm)
Peak Type

Nicholson 

Position (ppm)
Hydrogens

Molecular 

Weight (g/mol)

Isoleucine 0.95 t 0.93 3 131.17

Leucine 0.97 t 0.97 6 131.17

Valine 0.99 d 0.97 3 117.15

Isoleucine 1.02 d 1.00 3 131.17

Valine 1.05 d 1.02 3 117.15

Ethanol 1.16 t - 3 46.07

Lactate 1.33 d 1.34 3 90.08

Alanine 1.46 d 1.46 3 89.09

Glutamine 2.13 m - 2 146.14

Glutamine 2.45 m - 2 146.14

HEPES 3.15 m - 2 238.30

Glycerol 3.56 dd 3.56 2 92.09

Glycerol 3.66 dd 3.64 2 92.09

Lactate 4.12 q 4.12 1 90.08

β-Glucose 4.65 d 4.66 1 180.16

α-Glucose 5.24 d 5.24 1 180.16

Tyrosine 6.90 m 6.87 2 181.19

Tyrosine 7.20 m 7.17 2 181.19

Phenylalanine 7.33 m 7.33 2 165.19

Phenylalanine 7.38 m 7.38 1 165.19

Phenylalanine 7.43 m 7.43 2 165.19

Hypoxanthine 8.20 d - 2 136.11
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From this relationship we can calculate the milliMolar concentration of a metabolite from 

the known concentration of any other metabolite. Often an external concentration 

standard is added to samples before acquisition but this requires extremely accurate 

pipetting and sample preparation at the small acquisition volumes (⋍ 300µl) of our NMR 

system. Instead we make use of the extremely clear peaks of the HEPES* buffer used at 

very high concentration (see table 35 in appendix III) in RPMI 1640 medium. In particular 

I have chosen to use the multiplet at 3.15ppm produced by two hydrogens.  

  
  [ ]  

  
      

      [     ]  
  

Isolating [ ]   gives us, 

[ ]    
           [     ]  

         
 

This milliMolar concentration can be converted to the more useful mg/ml using the molar 

mass of the metabolite (  ), 

[ ]       [ ]   
  

    
 

The integrals of different peaks within the reference spectra for each metabolite available 

from the human metabolome database179 show that small deviations from this basic 

theory occur but applying these corrections is difficult and unnecessary since the 

uncertainties are small compared to biological variance. 

HEPES as a concentration reference 

Using HEPES as an internal concentration reference is not completely new130 but it is rare 

enough that documentation is not widely available. Indeed the technique has its 

drawbacks, namely that, 

… the use of protonated, organic buffers (e.g., Tris, MOPS or HEPES) should be 

avoided. Signals from these additives can mask important metabolite resonances 

or can be mistaken as ‘‘unknown’’ endogenous metabolites. 

Quantitative metabolomics using NMR, David. S. Wishart, 2008181 

Since HEPES exists in the growth medium already there is no easy way to avoid this 

problem and it makes sense to use the HEPES signals if possible. 

                                                             
* 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid. 
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The NMR spectrum of HEPES is strange in that it changes considerably with concentration* 

and is extremely poorly predicted by the best commercial NMR spectrum prediction 

software (MestReNova®, analysis performed in collaboration with a fellow doctoral 

student, Simon England at the University of Sheffield). The BMRDB assignment table for 

HEPES points to there being five distinct peaks, of various multiplicity, at 2.851, 2.936, 

3.056, 3.151 and 3.851ppm with hydrogen assignments of 4, 2, 2, 6 and 2 respectively and 

in light of this Cassey McRae assigned the peak at 3.15ppm to 6 hydrogens. 

The problem with these assignments is that the peaks I observe in my samples, table 22,   

do not agree with them.  

 

Table 22 : Chemical shifts and integrals of the four HEPES peaks in my samples. Integrals are referenced to the 
clearest and most reliable peak at 3.15ppm. 

My observed four peaks with equal integrals are far more consistent with the HEPES 

spectrum in MMCD (Madison Metabolomics Consortium  Database180). In that spectrum 

the four peaks are the same shape as I observe but only the 3.15ppm peak is in the same 

position. That the peaks are in different positions is not ideal but it seems reasonable 

given the way the reference spectra vary with HEPES concentration. 

There is a second concern with using the 5958mg/L (25.03mM) of HEPES in RPMI 1640 

growth medium as a concentration reference. In Teng et al.146 it is reported that HEPES 

accumulates in the parasite biomass to a final concentration of at least 

                                    . This is the highest concentration of any 

measured metabolite accumulated in the parasite biomass and significantly higher than 

the three next most significantly accumulated metabolites: glutamate at around 30 g/1015 

parasites and glutathione and ATP at around 20 g/1015 parasites. This high absorption of 

HEPES by the parasite will lower its concentration in the used growth medium and could 

thus falsely suggest an increase in the concentrations of the other metabolites. An estimate 

of the percentage error that this problem could introduce can be calculated as follows. 

                                                             
* The spectra on the Biological Magnetic Resonance Data Bank (BMRDB) at 
http:  www.bmrb.wisc.edu  show this very clearly. 

Chemical shift (ppm) Peak type Integral

2.72 t 88.7

2.86 m 92.2

3.15 m 100.0

3.78 t 105.2

Mean 96.5

St. dev. 6.4
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The initial concentration of HEPES in the growth medium and the amount absorbed by the 

parasites is roughly, 

[     ]                

[     ]                                                    

Assuming a typical haematocrit of 5%, parasitemia of 5% and packed RBC density of 

            of haematocrit182 we can calculate the number of parasites per litre of 

culture. 

[         ]                                          

The total amount of HEPES absorbed by these parasites is thus, 

                 [     ]               [         ] 

                                                   

The percentage change in HEPES concentration in the growth medium due to absorption 

by parasites is thus, 

                             
               

[     ]       
      

A 0.3% underestimation of metabolite concentrations is tiny compared to other 

uncertainties and can be ignored. Accumulation of HEPES by uninfected RBCs has not been 

reported as a major concern. The effect of HEPES absorption may become an issue in 

experiments conducted at higher haematocrit concentrations and higher parasitemias. 

A further concern using HEPES as the stated reference concentration of 5958mg/L is that 

it is diluted by 5-10% when the RPMI medium is combined with the haematocrit for 

culturing. It might be sensible to make a correction to account for this but for the 

unrelated finding in Lewis et al.130 that metabolite concentrations calculated from 1H-NMR 

spectra and referenced to HEPES were typically underestimated by a similar amount. 
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A note on the graphs and axes 

I am convinced that the graphs on the next few pages are the best way to show my results 

but I am also aware that they are heavy on information and require detailed explanation. 

The four sets of experiments summarised in table 20 are all displayed on the same graphs 

(figure 76 — figure 79 and figure 82 — figure 88) with the experiments grouped 

according to shape of marker; 

 Diamonds — Jenny preliminaries. 

 Dots — Tom repeat of Jenny. 

 Squares — Sara metabolomics.  

(Set A is inhibited with sub-lethal dose of atovaquone, Set B is grown in normal 

growth medium, Sets C and D are uninfected blood nulls for set A and B respectively.) 

 Triangles — Tom repeat of Sara. 

The colour of each series is different except for blood nulls — parallel cultures of identical 

but uninfected RBCs — which are always shown in blue. 

The y-axes of the graphs have units of mg per 10 billion RBCs which is a product of the 

measured concentration of the metabolites in the growth medium in mg/ml and the 

volume of homogenous culture containing an average of 10 billion RBCs (ml/10 billion 

RBCs). For metabolites such as lactate and glycerol that are not present at detectable 

levels in the growth medium at     this is a perfect unit for the y-axis. For other 

metabolites with a significant concentration at     the choice of y-axis can be confusing. 

This is because an equal concentration will have a different value depending on the 

haematocrit concentration in the culture. The major upside of the choice of y-axis unit is 

that gradients are directly comparable across all experiments and correspond to the 

exchange rates of the compound between the growth medium and the population of 

infected and uninfected RBCs. 

A final explanation needs to be made of the starred points present in figure 76, figure 77 

and figure 78. As described on page 114 of the methods chapter the Jenny metabolomics 

set of experiments used a complex technique that required an equivalent haematocrit to 

be calculated for each measured point. These calculations assume a constant exchange of 

metabolites but in the case of the Sara A set the glucose in the growth medium was 

exhausted and could no longer be absorbed by the parasite. This had a knock-on effect on 

lactate and glycerol entering the growth medium and the assumption of constant exchange 

rate in the haematocrit correction no longer held. 



167 
 

Although figure 76 appears to show lactate being reabsorbed by the RBC population in the 

final time step the actual levels in the growth medium increased over this period, from 

4.65mg/ml to 4.67mg/ml. Likewise with glycerol, figure 78 greatly exaggerates the 

reduction in glycerol concentration. In the last three time points the concentrations of 

glycerol in the growth medium were 2.25mg/ml, 3.14mg/ml and 2.82mg/ml. Whilst the 

idea that glycerol produced from glucose may be reabsorbed by the parasite once it the 

glucose is exhausted is fascinating — and in keeping with models of E. coli metabolism76 — 

it is impossible to suggest this based on a single point in a single experiment with such 

large underlying uncertainties. 

The experimental setup used to get the results in the Sara metabolomics set of results is 

undoubtedly complex and in appendix IX to this thesis I discuss much simpler ways to 

achieve even better results. Despite its many drawbacks this overly complex system 

allowed high sensitivity assays to be conducted and has produced some fascinating 

results. 

Atovaquone inhibition 

Two of the sets of experiments, Sara metabolomics and Tom repeat of Sara metabolomics, 

had one time series where the growth medium contained 3.2nM of the known inhibitor 

atovaquone in addition to an experiment in normal conditions. This was the concentration 

of the compound measured by Sara Zakutansky in her Masters thesis to reduce the 

parasite population’s growth-rate to 1; no increase or decrease in population over time. 

We choose a sub-lethal concentration of the inhibitor in the hope of observing not the 

death of a culture — which could lead to the complete breakdown of metabolism — but 

rather a highly stressed but still functional version of metabolism. 

The mechanism of action of atovaquone is well known, with precise details in Olliaro126 

amongst others. At its most simple it is an inhibition of the enzyme dihydroorotate 

dehydrogenase which catalyses reaction R01867 as shown in figure 75. Dihydroorotate 

(DHO) is primarily produced from aspartate and the conversion of glutamine to glutamate. 

Orotate goes on to form pyrimidine nucleotides. The results shown in figure 75 show that 

with a 3.2nM concentration of atovaquone in the growth medium the flux through R01876 

is slowed, leading to an accumulation of dihydroorotate before the reaction and a 

reduction of the amount of orotate after the reaction. 
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Figure 75 : HPLC measurements of dihydroorate and orotate concentrations in the parasite biomass pellets extracted 
at the end of the Sara metbolomics set of experiments suggest that sub-lethal atovaquone inhibition (sample A) was 
successful in reducing the flux through R01867 leading to accumulation before, and reduced concentration after, the 

reaction. 

The results in figure 75 are presented briefly because the parasite biomass extractions in 

these experiments were performed using the methanol/water technique I later found to 

be ineffective in freeing the contents of isolated biomass pellets*.  

Uncertainties on individual points 

The graphs in the remainder of this chapter are already full of information so I have not 

included estimates of the errors in individual readings even though I have made efforts 

estimate these. As I discuss later, no two batches of RBCs have the same metabolic 

properties so I cannot calculate errors by comparing results from different experiments; 

the variability of RBC metabolism across different experiments is far greater than the 

technical error in each of my measurements. 

One way of estimating the technical uncertainties in individual points is by making use of 

the multiple measurements of fresh growth medium since these samples have never been 

in contact with RBCs or parasites. 

                                                             
* A more complete set of results and detailed methods are contained in Sara Zakutansky’s Masters 
thesis147 but are the subject to the same caveat. 
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Table 23 : Mean and standard deviation for eight different metabolite concentrations for the five different t = 0 fresh 
medium samples across all experiments. 

The result of this error analysis is in table 23 but we need to be wary of the results. My 

feeling is that a large part of the uncertainty calculated in this measurement is actually 

variability in the growth medium across experiments from differing amounts of AlbuMAX I 

powder used in preparation, different composition of any remaining serum not washed 

from the RBCs, etc…  

A better way to estimate the size of the uncertainty in single readings is suggested when 

examining table 21. Many metabolites have multiple peaks identified and since these are 

merely different reports of the same metabolite’s concentration any variance in the results 

gives an idea of the uncertainty in calculations of metabolite concentration from the NMR 

results. By calculating the standard deviations from the two — or three for phenylalanine 

— integrals for each of these metabolites and expressing this is a percentage of the 

average concentration for the metabolite in that spectrum we produce the uncertainty 

estimates in table 24. 

 

Table 24 : Average standard deviation as a percentage of metabolite concentration for the six metabolites with 
multiple measurable peaks. *Lactate measurements at      were ignored as the standard deviation of the two 

measurements at 4.12(q) and 1.33(d) was extremely high as a percentage of the mean concentration at    . 

Whilst this method is only possible for the few metabolites where multiple peaks are 

available for measurement it makes more sense to me as a way to quantify the technical 

error in the NMR method of measuring metabolite concentrations. 

The errors derived from this technique are used later in the numerical analysis of the 

“Tom Repeat of Jenny Blood Null” series where an error in the straight line fit cannot be 

returned from the linear regression as there are only two points. The error is instead 

calculated by assuming an error of 10% in both directions for both points and propagating 

this error to the calculated gradient. This assumed error is the average of  table 24 if 

lactate is ignored and is in keeping with other studies of HEPES-normalised quantitative 

NMR130 for isolated peaks. 

Valine Leucine Isoleucine Tyrosine Phenylalanine Glutamine Glucose Hypoxanthine

Mean Concentration (mg/ml) 0.02 0.03 0.04 0.03 0.02 0.25 1.85 0.24

Standard Deviation 0.002 0.009 0.004 0.006 0.006 0.05 0.48 0.05

Standard Deviation as percentage 

of mean concentration
10% 30% 9% 22% 28% 20% 26% 21%

Valine Isoleucine Tyrosine Phenylalanine Glutamine Lactate*

Average standard deviation as a 

percentage of concentration
7% 10% 5% 17% 10% 24%
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We are now ready to look at the next four graphs (figure 76 — figure 79) which show how 

the concentrations of carbon compounds change within the growth medium over the 

course of an approximately 40 hour experiment. In all cases the cultures are synchronised 

and the     point of the experiment is just after the merozoites have infected their host 

cells. The end of the experiments is just before the first late-stage schizonts start to lyse 

and exit their host cells. 

 

Carbon compound results 

 

Figure 76 : The concentration of lactate in growth medium over time. The starred red point was not used during 
numerical analysis and does not suggest reabsorption of lactate from the growth medium*. 

                                                             
* see page 112 for a complete explanation of the origin of this misleading point and why it is omitted 
from further analysis. 
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Figure 77 : The concentration of glucose (α + β) in growth medium over time. The starred red point was not used 
during numerical analysis. Points at t =0 are only reported for blood nulls as discussed later. 

 

Figure 78 : The concentration of glycerol in growth medium over time. The starred red point was not used during 
numerical analysis and does not suggest reabsorption of glycerol from the growth medium. 
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Figure 79 : The concentration of glutamine in growth medium over time. Points at t =0 are only reported for blood 
nulls as discussed later. 

We can make some important observations from these graphs which I list in the same 

order as the graphs. 

 Lactate is not detectable in fresh growth medium (at    ) and is produced at a 

constant rate in all experiments, including by blood nulls. 

 The rate of lactate production varies considerably across different experiments 

with blood nulls (uninfected RBCs) in one experiment producing more lactate than 

infected RBCs in other experiments. 

 In experiments with paired blood null series we see that infected RBCs produce 

more lactate than blood nulls. 

 Glucose is consumed at a constant rate which is similar to the rate at which lactate 

is produced. 

 The rate of glucose consumption varies considerably across different experiments. 

 Glucose is consumed more quickly by infected RBCs than uninfected RBCs. 

 Glycerol is not detectable in fresh growth medium (at    ) and is produced at a 

constant rate by infected RBCs. It is not produced by uninfected RBCs. 

 Glycerol production was only detected in the highest sensitivity experiment and 

even this assignment is not without controversy. 
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 Glycerol production is at a rate about a tenth of the rate of lactate production. 

 Glutamine appears to be consumed at a constant rate although this rate is 

considerably slower (       times) than glucose. 

 The observed production of glutamine by the blood null series in the “Tom repeat 

of Jenny Blood Null” experiment seems unlikely and is an example of why multiple 

measurements of blood null series are required. 

Numerical analysis of carbon compound exchange 

Whilst looking at the graphs of how carbon source concentrations in the growth medium 

change over time gives us a good feeling for what is happening, a more rigorous numerical 

analysis is required to extract numbers that we can use with our metabolic model as 

constraints for flux-balance analysis. Since the blood nulls show significant and variable 

levels of metabolism we can only make calculations of parasite metabolism for those 

experiments where we have a parallel blood null. In these case we calculate for each 

metabolite a least-squares linear regression using the LINEST function which returns a 

gradient (  ) and an associated error (  ) in that gradient. A gradient (    ) and an 

associated error (    ) for the blood null was similarly calculated. 

The blood null gradient is subtracted from metabolite gradient to give the gradient caused 

by infected RBCs (  ) whilst being careful to remember that parasites replace, in the 

same proportion as the culture’s parasitemia ( ), rather than add to the number of 

uninfected RBCs. 

      (          ) 

The uncertainties combine to give   , 

   √  
      

   

The gradient    is the result of the small percentage ( ) of the RBCs that are infected and 

so to calculate the exchange flux in units of mg/10 billion infected RBC/hour or more 

sensibly            per parasite (  ) 

   
  

 
  

   (          )

 
 

The results of this analysis for the three series with associated blood nulls is summarised 

table 37, table 38 and table 39 in appendix V but shown most easily in figure 80 below. 
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Figure 80 : Exchange fluxes of carbon compounds. Differences between the glycerol excretion and glutamine 
absorption rates in Sara A and Sara B sets are not significant. No glycerol was measured in the “Tom Repeat of 

Jenny” experiment. 
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Amino acids and hypoxanthine results 

A key complexity of working with malaria parasites is the interplay between RBC host and 

the parasite itself. This is important in many areas but nowhere as strongly as with regard 

to amino acid metabolism since the parasite does not synthesise amino acids itself47 but 

rather obtains them from haemoglobin digestion or from the host cell. Measuring the 

content of the growth medium tells us the exchange of metabolites between the infected 

RBC (including the internal parasite) and the extracellular space. Putting aside for a 

moment the significant changes to RBC metabolism provoked by parasite invasion we can 

safely subtract the background effect of the RBC’s metabolism for carbon compounds. This 

is because the quantities of glucose, lactate and glycerol contained within the RBC at the 

moment of parasite infection are insignificant compared with the amounts exchanged with 

the growth medium over the subsequent 40 hours of parasite growth. The same cannot be 

said for amino acids because — as mentioned when considering the biomass function 

measurements earlier — around 92% of an RBC’s dry weight172 at the moment of parasite 

infection is protein: almost exclusively haemoglobin. 

 

Figure 81 : Amino acid sources and fates in a cultured infected RBC are more complex than with carbon sources due 
to the abundant proteins provided by haemoglobin digestion. It is unclear whether the free amino acid pool in the 
RBC is large enough to affect measured amino acid exchange fluxes between the parasite and growth medium 

significantly. 

In the case of amino acids we only measure the exchanges between the infected RBCs and 

the extra-cellular space even though only the exchange of isoleucine — an essential amino 

acid not present in haemoglobin — is required for growth*. Furthermore, the dynamics of 

amino acid exchange are already known to be extremely complex with the parasite known 

                                                             
* Parasites cannot grow without isoleucine and enter a state of hibernation until isoleucine is 
adequately provided124. 
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to digest more haemoglobin than it needs for growth, export excess amino acids103 and, 

bizarrely, to grow more slowly if certain amino acids that should be adequately supplied 

by the digestion of haemoglobin are not present in the growth medium100. Finally, because 

the fluxes of amino acids are smaller than for the carbon compounds the relative size of 

the internal pool within the RBC but not within the parasite may no longer be insignificant 

as a buffer between a compound entering/leaving the parasite and entering/leaving the 

growth-medium. 

These issues, displayed in figure 81, make the meaning of measured amino acid exchange 

fluxes between the infected RBC and the growth medium more challenging to interpret 

than with carbon compounds. The data from which these exchange fluxes are calculated is 

shown on this and the next three pages as figure 82 — figure 88. 

 

 

Figure 82 : The concentration of valine in the growth medium over time. 
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Figure 83 : The concentration of alanine in the growth medium over time. 

 

Figure 84 : The concentration of leucine in the growth medium over time. 
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Figure 85 : The concentration of isoleucine in the growth medium over time. 

  

Figure 86 : The concentration of tyrosine in the growth medium over time. 
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Figure 87 : The concentration of phenylalanine in the growth medium over time. 

 

Figure 88 : The concentration of hypoxanthine in the growth medium over time. 
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As with the carbon compounds it is useful to make some general observations from the 

graphs. 

 Valine, alanine and phenylalanine are clearly exported from the infected RBC into 

the growth medium. 

 Valine seems to be exported more quickly in the second half of the life cycle. 

 Alanine may be exported more quickly in the second half of the life cycle but the 

low concentration of alanine at early time points means it cannot be reliably 

detected by NMR metabolomics. 

 Leucine seems to be exported into the growth medium but it is not clear. 

 Isoleucine and tyrosine seem to be exchanged at the same rate between RBCs and 

the growth medium in both parasite-infected cultures and the uninfected blood 

null series. 

 The considerably lower exchange fluxes measured for the amino acids and 

hypoxanthine make the accurate quantification of the fluxes more difficult. 

 The considerable variability of the two blood null sets makes the interpretation of 

results difficult and increases the uncertainty in my findings. 

A more complex but extremely important point to make is that the series of infected 

cultures when traced back to     frequently do not seem to start at the same 

concentration as the blood nulls. This is not something we see in the carbon source graphs 

and is a particular problem for the Sara metabolomics experiments because 

measurements were only taken at five time points.  

I haven’t been able to uncover the origins of this discrepancy but the possible 

interpretation that in the first time point a large exchange of amino acids occurs between 

infected RBCs and the growth medium that does not occur between uninfected RBCs and 

the growth medium is not plausible. Without a good suggestion for why this incongruity 

might be occurring I am forced to deal with it as well as possible. In this case I have done 

so by ignoring the     points when calculating the gradients of the infected RBC lines of 

best fit. In the Sara metabolomics set of experiments this makes a considerable difference. 

In the case of the ”Tom Repeat of Jenny” metabolomics set of experiments this makes 

almost no difference as a sufficient number of time points are sampled to make a single 

point relatively unimportant. 
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Numerical analysis of amino acid exchange 

With the exception of this change the numerical analysis of the amino acid exchange fluxes 

is identical and produces table 40, table 41 and table 42 in the appendix V and as figure 89 

below. 

 

Figure 89 : Amino acid and hypoxanthine exchange fluxes from infected RBCs. Positive values indicate the 
metabolite is released into the growth medium, negative values indicate that it is absorbed. 

 

Carbon balance 

Examining figure 80 showing carbon compound exchange fluxes we see that, within error, 

carbon compounds are balanced within the system. The phrase “within error” is very 

important because in each case the glucose consumption is higher than the lactate 

production and when averages of the three experiments are taken the uncertainties 

reduce such that the difference becomes significant. This incomplete conversion of glucose 

to lactate has been observed before with Krugliak et al.103 stating that, 

Most of the glucose consumed (60–70%) by Plasmodium falciparum is 

incompletely oxidized to lactic acid and excreted although the exact percentage 

varies between different Plasmodium species and the atmospheric culture 

conditions used. This glucose consumption contrasts with the >90% glucose-to-

lactate conversion observed in uninfected RBCs and reflects the increased flux of 

glucose carbon into biomass (nucleic acids, lipids, glycosylated proteins) required 

for proliferating parasites. 
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The first part of this agrees with my results as summarised in table 25 with a measured 

glucose flux to lactate flux mass ratio* of between 1.38:1.00 (72% conversion) and 

1.71:1.00 (58% conversion). My results agree far less well with Krugliak et al.’s 103 second 

finding, with the only reliable blood null experiment I conducted showing a glucose flux to 

lactate flux mass ratio for uninfected RBCs  of 1.76:1.00 (56% conversion). 

 

Table 25 : Ratios of glucose uptake and lactate excretion (          ) from uninfected RBC and infected RBC 
populations in the three experiments with blood nulls. Results from the ”Tom Repeat of Jenny” experiment should be 

treated with caution as the blood null line of best fit was calculated from only two points. 

My results also do not completely agree with the suggestion that the origin of the 

incomplete measured conversion of glucose to lactate is extra biomass formation from 

carbon compounds. The mean carbon accumulation I have measured in parasites across 

all three experiments is                            so over 40 hours the unaccounted 

mass of carbon compounds is                     . This is twice the average parasite 

dry weight of                          showing that biomass formation cannot fully 

explain the imbalance. 

It is known that P. falciparum can produce acetate and experiments with other species of 

Plasmodium have measured the production of formate and other volatile carbon 

compounds183,184 though there are reasons discussed in Krugliak et al. to think that this 

may not occur in P. falciparum cultured in more modern conditions. It is known that D-

lactate is additionally produced at a rate of around 5% that of L-lactate and this is not 

measured. It is important to note that precise carbon balance is not achieved at the most 

best estimate for the carbon compound fluxes but that carbon balance is achieved well 

within the uncertainties in those measurements. 

                                                             
* Glucose to lactate mass ratio of 2:1 (180.16:90.08) is exactly equivalent to the carbon mass ratio of 
2:1 (6:3). 

Sara A Glucose Lactate Ratio

uninfected RBCs -0.79 0.45 1.76

infected RBCs -18.2 13.2 1.38

Ratio 23.0 29.3

Sara B Glucose Lactate Ratio

uninfected RBCs -0.79 0.45 1.76

infected RBCs -8.2 4.8 1.71

Ratio 10.4 10.7

Tom repeat of Jenny Glucose Lactate Ratio

uninfected RBCs* -0.26 0.68 0.38

infected RBCs -16.7 10.0 1.68

Ratio 64.4 14.7
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In summary, my measured carbon compound fluxes achieve carbon balance but not at 

their most likely rates. It is likely that a combination of biomass formation, retention of 

lactate and glycerol within the parasite and the RBC, the production of carbon compounds 

that I have not measured, and most importantly uncertainties in my measured fluxes can 

explain what might seem to be a carbon imbalance. My metabolic model confirms this, 

The absence of malate 

I cannot measure some metabolites which I know to present in the medium at visible 

concentrations because they are obstructed by other peaks. A good example of this is L-

arginine whose principal peaks at 3.23(t) and 3.76(t) are both overwhelmed by glucose 

peaks at the same position. 

This does not seem to be the case for malate, which is important because one of the most 

interesting results in malaria metabolism since I started this project was published in 

Nature in August 2010 by Olsewzski et al.95. One of the many findings — figure 3 in their 

manuscript — shows that P. falciparum parasites produce and export malate to the growth 

medium using a highly adapted version of the TCA cycle fed with glutamine. In the paper, 

extracellular concentrations of malate reach a concentration of about 60µM 40 hours after 

synchronisation. This compares with the 90µM concentration of L-phenyalanine and the 

110µM concentration of L-tyrosine that NMR analysis of my growth medium can detect, 

giving me hope that we too would measure malate production. The possibility that we 

might be able to detect malate and confirm this result seems even more likely when we 

examine the experimental technique in the paper in more detail. 

Olszewksi et al.’s95 experiments continued to hour 40 (    ) and were conducted at an 

unusually low haematocrit (    ) of 0.4% and at 6% parasitemia (    ). My equivalent 

experiments named “Tom repeat of Jenny Metabolomics” were conducted at a final 

measured haematocrit concentration of 3.1% (   ) and a parasitemia of 4.1% (   ).  From 

this we can calculated the expected final concentration of malate in my used growth 

medium, [ ]   from the concentration in Olsewksi et al. [ ]   . 

[ ]   [ ]    
   

    
  

   

    
 

   

    
  

[ ]         
  

  
 

   

   
 

   

 
               

 

From this predicted concentration we can calculate the expected integral value for each of 

malate’s three single proton (      ) peaks with reference to a single (      ) HEPES 

peak defined as having an integral of 100. 
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The set of experiments named “Sara Metabolomics” which were conducted to a final time 

of 36.5 hours at an average haematocrit of 7.5% and a parasitemia of 4.5% giving an 

equivalent predicted concentration of 770µM and a predicted integral of 1.53. For 

comparison, integrals for phenylalanine and tyrosine are registered in all samples with 

magnitudes typically between 0.20 and 0.40 so we would expect to see malate signals at 

this predicted intensity. 

Before we can try to find malate we need to know what we’re looking for. The principal 

multiplet peaks of the malate NMR spectrum, as shown in figure 90, are summarised in the 

human metabolome database (HMDB)179 in the following order of maximum relative 

intensity, 

 A double-doublet produced by a single proton with a maximum relative intensity 

of 1.00 at 2.66ppm referenced to TSP at 0.00ppm. 

 A double-doublet produced by a single proton with a maximum relative intensity 

of 0.91 at 2.36ppm referenced to TSP at 0.00ppm. 

 A double-doublet produced by a single proton with a maximum relative intensity 

of 0.25 at 4.29ppm referenced to TSP at 0.00ppm. 

 

Figure 90 : The three peaks of the experimental 1H-NMR spectrum of malate from HMDB179. There are no significant 
peaks outside of this range. The peak to the right is TSP at a chemical shift of zero. 

Of the three malate peaks the one at 2.66ppm is close to the HEPES signal at 2.72ppm 

making it difficult to identify and the one at 2.36ppm is obscured by an unreliable, but 

present, glutamate multiplet at the same location. The peak at 4.29ppm is flanked by two 

larger unidentified signals making the assignment unclear. There is a small signal at 

4.29ppm in the Sara metabolomics set of experiments but  if this is malate then it is not 

visible in the ”Tom Repeat of Jenny” set of experiment and its integral of 0.07 (35µM, 
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0.005mg/ml) in the final time point is around one twentieth of the production measured 

in Olszewksi et al.95. Furthermore, the shape of the peak at 4.29ppm is not convincingly 

malate. 

A clue to explaining this discrepancy between our results is given in another paper by the 

same group, in which they suggest why malate may be exported, 

“in cell culture, aspartate levels are relatively high and this flux [from oxaloacetate 

to aspartate] may be redirected to malate, which is then excreted due to overflow 

metabolism” 

Central carbon metabolism of Plasmodium parasites, Olszewski et al.88 

To consider this idea we need to look at three things we know about aspartate, 

1. It is present at 20mg/L (0.15mM) in RPMI medium (see appendix III). I cannot 

measure changes in its concentration with my NMR technique since the three 

double doublets at 2.66, 2.80 and 3.89ppm are obscured by HEPES, HEPES and 

glucose respectively.  

2. It is present in haemoglobin at about the same level as phenylalanine and makes 

up a similar proportion of the proteome composition. We know that phenylalanine 

is exported from the parasite due to excess haemoglobin digestion but we need to 

remember that phenylalanine does not have the additional roles of aspartate in 

metabolism so aspartate is unlikely to be in excess simply due to haemoglobin 

digestion. 

3. It is produced instead of lactate by a branch of glycolysis at phosphoenolpyruvate 

and additionally, according to Olszewksi et al.95, from glutamine in the 

mitochondrial TCA cycle*. Furthermore, it is consumed by both nucleotide and 

amino acid synthesis. We do not know what percentage of the aspartate consumed 

comes from each possible source but it seems unlikely that the requirement is 

exceeded by haemoglobin digestion and the branched TCA cycle. If the glycolytic 

flux were channelled to aspartate production this would easily produce a large 

excess of the metabolite. 

The system that Olszewski proposes as to why malate may be produced and exported is 

plausible but to me it seems odd. Malate is most likely produced in part because of an 

overflow from the main branch of glycolysis and yet lactate is clearly the main overflow 

metabolite. Channelling glycolysis to malate seems to offer no advantage over the 

                                                             
* The figure showing this in Olszewski et al. is reproduced earlier in this thesis as Figure 33. 
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production of lactate and costs a molecule of ATP in comparison to lactate production and 

export. 

I revisit the malate issue in the final chapter with respect to a fuller metabolic model 

which provides some answer, and yet more questions. Certainly we can say that we have 

not measured the same malate production and efflux as previously reported. 

Sanity checks and discussion of results 

Absolute metabolite concentration 

The composition of RPMI 1640 is very accurately known — see table 35 in appendix III —, 

and our only additions are AlbuMAX I, sodium bicarbonate and hypoxanthine as described 

in the methods chapter. This provides an excellent benchmark with which to test the 

metabolite concentrations measured by our unusual HEPES-referenced NMR technique. 

We can also compare this technique with the results of Massimi et al. (sup. 1)185 who used 

a similar quantitative NMR approach to measure the components of  a growth medium 

consisting of RPMI 1640 medium (Sigma) supplemented with 10% foetal calf serum (FCS) 

and 2 mM (0.29mg/ml) L-glutamine. A final check of the measured concentrations is 

provided by the biochemical assays of fresh growth medium we  performed and which are 

reported fully in Jennifer Lake’s Masters dissertation145. All these sources of information 

and the equivalent averages from all my NMR measurements of fresh growth medium are 

shown for the overlapping metabolites in table 26. 

 

Table 26 : Concentration of six metabolites in RPMI 1640 (manufacturer’s definitions) and the equivalent 
measurements for fresh growth medium (t=0) by 1H-NMR in Massimi et al.185, in my NMR results and for glucose as 

reported in Jennifer Lake’s Masters dissertation145. 

The higher amino acid concentrations in Massimi et al. 185 could be explained by their use 

of unprocessed FCS unlike my use of AlbuMAX which has the majority of free amino acids 

removed. but their observation of a far lower glucose and glutamine level than would be 

expected in RPMI supplemented with 0.29mg/ml L-glutamine is more puzzling and 

RPMI 1640 Massimi et al. Biochemical assays

Concentration 

(mg/ml)

Concentration 

(mg/ml)

Concentration 

(mg/ml)

Standard 

Deviation

Concentration 

(mg/ml)

Isoleucine 0.050 0.10 0.042 0.004 -

Valine 0.020 0.04 0.022 0.006 -

Alanine 0.000 0.02 0.002 0.010 -

Glutamine 0.300 0.38 0.245 0.15 -

Glucose 2.000 1.03 1.853 1.44 2.33

Phenylalanine 0.015 0.05 0.020 0.017 -

My measured mean concentrations, 

fresh growth medium
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suggests that my HEPES-referenced method is in many ways superior to their more 

complex techniques. My results vindicate the decision to assign the reference peak of 

HEPES to 2 hydrogens as the concentrations of the comparable metabolites are in good 

agreement with the composition of RPMI 1640 and the independent measurement of 

glucose levels by a biochemical assay. The underestimation of metabolite concentration at 

higher concentrations is in keeping with the results in Wishart181. 

The composition of AlbuMAX I is unknown but from these results we can broadly suggest 

that it is principally albumen with a considerable amount of fatty acids and/or lipids and 

negligible free amino acids and carbohydrates.  

Known fluxes and stage specificity 

Lactate production by infected RBCs has been reported previously, with Pfaller et al.186 

measuring a mean lactate production rate of    -                       * with a 

higher rate of     -                        at the schizont stage.  Vander Jagt 

et al.94 report higher but comparable L-lactate production rates† for ring stages of 

                       and                        for trophozoite/schizont 

stages. 

My results seem reasonable in comparison to these previously reported results with the 

best estimate of lactate production in the range                              . The 

slightly lower figure that I measure is likely due to the RBC population variability I discuss 

later and my observed slower growth-rate in AlbuMAX-based medium as opposed to the 

10% serum medium used in Pfaller et al. 186  and presumably used in Vander Jagt et al.‡. 

The stage specificity of lactate production in these two papers is presented — as far as I 

can see — without a statistical test and in the case of Vander Jagt with an experimental 

technique my results show to be unreliable; two different experiments were used to 

calculate early and mature stage lactate production rates meaning background RBC 

metabolism was different in each experiment. Of my experiments the “Tom Repeat of 

Jenny” set is the one where enough time points were sampled to make observing stage-

specificity most likely. Taking time points before 17h to be early stage (ring) and those 

after 17h to be late stage (trophozoite/schizont) — these times are accurately derived on 

page 110 of this thesis — I calculated the stage-specific exchange fluxes for glucose, lactate 

                                                             
* The normal equivalent unit (Eq) used in the paper is rare and for lactate 1nEq = 1nmol. 
† D-lactate is produced at a rate about 5% of L-lactate. The D-lactate NMR peak at 1.40ppm (d) is 
not visible or obscured by the 1.33(d) L-lactate peak so I have not measured it. 
‡ Culture details are in referenced paper to which I do not have access. 
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and valine as shown in figure 91. For all three metabolites the exchange flux is higher in 

the latter life stage but only in the case of valine is this statistically significant. 

 

Figure 91 : Exchange fluxes of the three metabolites potentially showing stage-specificty at the ring stage (early) and 
the trophozoite/schizont stages (late). The valine exchange flux and associated uncertainty is shown at 100 times 

real scale to be visible. 

It is worth noting that in figure 91 the exchange fluxes of glucose and lactate are higher 

when life stages are split than they are for the whole series. This is because the two lines 

of best fit are not forced to meet at      ; the origins of this strange result can be seen 

by examining figure 76 and figure 77. Forcing the two lines of best fit to meet near       

does not change the results; the gap between early and late life stage exchange fluxes 

reducing slightly but the gap in valine emission remains statistically significant. 

Glycerol production 

The metabolism and exchange of glycerol by P. falciparum is an area of considerable 

disagreement. Lian et al.46 measured production and export of glycerol by the infected RBC 

and Olszewksi et al.109 measured absorption and use of glycerol by the parasite. 

Absorption of glycerol would be impossible to measure with my NMR technique since the 

growth medium contains no NMR-measurable free glycerol but this does not make the 

findings of Olszewski et al. implausible. Firstly, their measurements are more sensitive —

though less accurate — and secondly it is possible that some glycerol becomes available to 

the parasite due to some degradation of the glycerophospholipids likely to be present in 

the growth medium and the host RBC. 

Nevertheless, if my NMR assignments to glycerol are correct then production and export 

of glycerol was seen clearly in the “Sara A” and “Sara B” metabolomics experiments with 

no measurable background production of glycerol by uninfected RBCs. The only doubt I 

have with these results is that the glycerol peaks are close to glucose peaks and I saw no 
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measurable production of glycerol by infected RBCs in the other less sensitive 

experiments*. Since this result is of such importance I have spent a considerable amount of 

time examining the NMR glycerol assignment which I justify here. 

Figure 92 shows glycerol’s two principal peaks and how the double-doublet at 3.56ppm 

overlaps slightly with a distinctive glucose signal. Apart from this interference, this 

glycerol peak is not affected by any other identified metabolites. 

 

Figure 92 : Glycerol (red) and glucose (blue) peaks overlap slightly at 3.50ppm affecting the otherwise clear glycerol 
peak assigned to 3.56ppm. Spectra are from HMDB references and manually aligned with the TMS peak at 0ppm. 

 

Figure 93 : Ethanol and isoleucine are both strong peaks that obscure the glycerol peak at 3.66ppm. Spectra are 
from HMDB references and manually aligned with the TMS peak at 0ppm. 

As we can see in figure 93, the same cannot be said for the glycerol peaks (dd) at 3.66ppm. 

These peaks are obscured by isoleucine and ethanol, both known to exist in the growth 

medium at high concentrations and clearly seen in the experimental results shown in 

figure 94. 

I am confident enough to make the glycerol assignment at 3.56ppm but it is clear that only 

the left two peaks of the double-doublet are isolated enough to be reliably measured. In 

                                                             
* The Sara metabolomics set of experiments were more sensitive because of the higher parasitemia, 
higher average haematocrit and because the spectra were acquired by the FBS NMR service with 
the improvement in sensitivity mentioned in the methods chapter on page 115. 
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the reference spectra for glycerol the integrals of the left pair of peaks and the right pair of 

peaks have integrals in the ratio 3:2 and so in all cases I have measured the left pair of 

peaks and multiplied by 5/3 to estimate the true integral. 

 

Figure 94 : Spectra for the “Sara A” set annotated to show the set of peaks I assign to glycerol. Colours blue, green, 
pink, red, corresponds to t = 9.2 18.5, 27.0, 36.5 hours. Glucose concentration at the final time point is almost zero 

meaning the glycerol peak of the double doublet becomes visible. Due to the normalisation techniques used in 
ACD/labs the visual size of each peak is only a guide to its integral. 
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Amino acid fluxes 

As mentioned previously, the amino acid fluxes cannot be understood without a 

substantial amount of background information. An essential tool for helping with the 

interpretation of these results is the amino acid composition of the haemoglobin protein 

as calculated from the amino acid sequences  of haemoglobin subunit α (P69905) and 

haemoglobin subunit β (P68871) in UniProt187 and shown for selected amino acids in table 

27. 

 

Table 27: Amino acid composition of 2 α-subunits + 2 β-subunits of the human haemoglobin molecule ordered by 
total weight per mole of haemoglobin for selected amino acids of interest, The full table is reproduced in Appendix VI 

as table 43. 

The composition of haemoglobin gives us the ratios of amino acids that the parasite 

acquires through haemoglobin digestion. The next important quantity is the ratio of amino 

acids that the parasite uses to create its biomass; already extracted from Chanda et al.176 as 

table 16 on page 153. Here, the same table for the selected amino acids of interest is 

reproduced as table 28. 

 

Table 28 : Amino acid use in the P. falciparum proteome, adapted from Chanda et al.176 for selected amino acids of 
interest, The full table is reproduced in Appendix VI as table 44. 

We’ve measured the exchange fluxes between the infected RBC and the growth medium 

and so referring back to figure 81 outlining the sources and fates of amino acids we see 

Name
Molecular 

Weight (g/mol)
Count

Weight per mole 

of haemoglobin (g)

Percent by 

Weight

Percent by amino 

acid count

Leucine 113 72 8142 13.0% 12.5%

Valine 99 62 6142 9.8% 10.7%

Alanine 71 72 5115 8.2% 12.5%

Phenylalanine 147 30 4412 7.1% 5.2%

Aspartate 115 30 3451 5.5% 5.2%

Tyrosine 163 12 1957 3.1% 2.1%

Glutamine 128 8 1024 1.6% 1.4%

Isoleucine 113 0 0 0.0% 0.0%

Amino Acid Percent by weight
Percent by amino 

acid count

Isoleucine 8.5% 9.3%

Glutamate 8.3% 7.0%

Leucine 7.4% 8.1%

Tyrosine 7.3% 5.5%

Aspartate 6.5% 6.0%

Phenylalanine 5.5% 4.6%

Valine 3.3% 4.1%

Glutamine 2.9% 2.8%

Alanine 1.4% 2.4%
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that we now have the three key fluxes in the system. If we temporarily ignore the pool of 

free amino acids in the RBC*, and the possibility of conversion between amino acids, we 

can calculate some very interesting conclusions from our results. 

Figure 95 shows how these three factors balance when it is assumed that 40% — the 

amount required to achieve an average net balance of the six amino acids to the left of the 

dotted line — of the haemoglobin in the host RBC is digested by the parasite. 

 

Figure 95 : Stacked bar charts showing the fluxes of amino acids to (negative) and from (positive) the pool of free 
amino acids (shown in figure 81) for the”Tom Repeat of Jenny”experiment. The blue bars represent the quantity of 
each amino acid freed from haemoglobin digestion (assuming 40% of the host cell’s haemoglobin is digested). Red 
bars represent the quantity of each amino acid used for protein synthesis by the parasite. Green bars represent the 

measured fluxes of amino acids out of the parasite (into the parasite in the case of glutamine). The total mass of 
amino acids is conserved in this figure. 

We can see clearly in this figure that glutamine is used in a way quite unlike the other 

amino acids, confirming that it is better considered as a carbon source. We can also clearly 

see the problem we face in explaining why no isoleucine uptake flux from the growth 

medium was measured. A possible explanation for the problem with the isoleucine result 

is suggested by Elford et al.188 who report that isoleucine is taken up equally by uninfected 

and infected red blood cells. More recent work at higher precision than my method and 

that employed by Elford et al.188 has measured an increase in isoleucine uptake by infected 

red blood cells189. 

A drawback of this amino acid balancing approach is that the solution does not provide 

enough tyrosine, alanine or phenylalanine to explain the amounts incorporated into 

proteins within the organism and exported by the infected RBC. Figure 96 shows the result 

                                                             
* There is some evidence103 that infected RBCs are made extremely permeable by the parasite and 
thus unable to retain a significant free amino acid pool. 
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of a different calculation, ensuring that the amino acids tyrosine and phenylalanine are 

supplied from haemoglobin digestion in adequate amounts. This calculation suggests that 

at least 55% of the host RBC’s haemoglobin is digested by the parasite. 

 

Figure 96 : Stacked bar charts showing the fluxes of amino acids to (negative) and from (positive) the pool of free 
amino acids (shown in figure 81) for the ”Tom Repeat of Jenny” experiment. The blue bars represent the quantity of 
each amino acid freed from haemoglobin digestion (assuming 55% of the host cell’s haemoglobin is digested). Red 
bars represent the quantity of each amino acid used for protein synthesis by the parasite. Green bars represent the 

measured fluxes of amino acids out of the parasite (into the parasite in the case of glutamine). The total mass of 
tyrosine and phenylalanine is conserved in this figure. 

 

As always I am interested in checking that my measurements and calculations are 

reasonable and these results let us calculate a figure to compare with the unexpected 

haemoglobin digestion strategy employed by P. falciparum, specifically that, 

 “The parasite digested up to 65% of the host cell’s haemoglobin but utilized only 

up to about 16% of the amino acids derived from haemoglobin digestion.” 

Krugliak et al.103 

Our minimum figure of 55% of haemoglobin being digested to supply adequate amounts of 

phenylanine and tyrosine to explain protein formation and the measured excretion fluxes 

agrees well with this figure, deduced through a very different method. For the amino acids 

for which I have flux information — alanine, leucine, phenylalanine, tyrosine and valine — 

I calculate that 16% of the amino acids obtained through haemoglobin digestion are 

incorporated into the parasite’s proteins. If isoleucine and glutamine are included then 
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this number increases to 23%: still in good agreement with the previous measurements by 

Krugliak et al.103. 

Lastly I should note that figure 95 and figure 96 are presented for the ”Tom Repeat of 

Jenny” set of experiments because the larger number of acquired time points makes the 

amino acid exchange flux figures from this experiment more reliable. Similar results are 

observed for the Sara A and Sara B set of experiments but are not shown. 

Possibility of stress response 

In treating the Sara A set of experiments with a sub-lethal but active dose of atovaquone 

we might have expected to observe a slow-down in carbon use and haemoglobin 

digestion amino acid excretion in keeping with the predicted slowing of the culture’s 

growth-rate to zero. Instead we observe the opposite. Similar stress responses have been 

observed in other organisms and recently in P. falciparum grown in large-scale cultures 

where a similar stress response was observed, 

“Once a continual decline in parasitemia was observed, however, glucose 

consumption and lactate production per parasite increased”  

Preechapornkul et al.129  

It is tempting to imagine that a sensing mechanism within the parasite — perhaps similar 

to the distributed metabolic sensing observed in E. coli76 — might allow the parasite to 

respond to the inhibited production of pyrimidines caused by atovaquone treatment by 

increasing other fluxes to try and force more flux through the affected reaction. 

Disappointingly the repeat of this experiment, “Tom repeat of Sara”, shows the opposite 

with less growth and less metabolism in response to the same atovaquone inhibition. 

Hypoxanthine 

There is considerable discussion on the role and importance of hypoxanthine to parasites 

at the very of my chapter on measuring P. falciparum growth-rates and we expect to 

observe hypoxanthine being taken up by infected RBCs from the growth medium.  

The NMR metabolomics techniques that I have used are good at detecting large changes in 

metabolite concentration caused by large carbon source fluxes due to their use as energy 

sources and large amino acid fluxes in considerable part due to excess haemoglobin 

digestion and the disposal of surplus amino acids. In comparison the calculations in this 

chapter on HEPES absorption show us that the NMR techniques I have used are not 

particularly well suited to measuring the smaller amounts of metabolite uptake caused by 
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the simple accumulation of a metabolite as is the case for hypoxanthine. A further 

complexity in interpreting the hypoxanthine results is that the assignment is unclear. In 

table 21 I assign a doublet at 8.20ppm to hypoxanthine but the shape of this doublet is 

variable within my spectra and often not convincingly in keeping with the reference 

spectra’s shape. 

The uncertainty around the hypoxanthine fluxes is reflected in the wide variability and 

extremely large errors for hypoxanthine exchange shown in figure 89. Clearly the results 

are not exactly what we would have expected but the issues I have just mentioned and a 

closer inspection of the time-series data in figure 88 suggests that measurements of 

hypoxanthine being produced and excreted from infected RBCs in the Sara metabolism set 

of experiments are incorrect. In the ”Tom Repeat of Jenny” set of experiments where a 

larger number of time-points were acquired a considerable hypoxanthine uptake is 

measured albeit with a very large error in the best fit line. 

False starts and dead ends 

Measuring metabolism using kits 

The use of biochemical assays to measure glucose consumption and lactate production by 

infected RBCs was largely a failure and is fully reported in Jennifer Lake’s Masters 

dissertation145. It was however a failure in the right direction and the glucose 

measurements were useful in confirming the validity of the NMR technique we moved on 

to and which has been very successful. 

Fermentation of glucose to ethanol in P. falciparum 

All metabolomics experiments — except “Tom repeat of Jenny metabolomics” where 

methanol was used instead of ethanol in the spray used to maintain sterility in the culture 

hood — show a steady accumulation of ethanol in the growth medium. When we first 

observed this it was very interesting because ethanol production could play a significant 

role in achieving a more satisfactory carbon balance. It would also be a completely new 

observation in Plasmodium although not completely unbelievable since the metabolism of 

glucose to ethanol has been observed in other apicomplexan parasites such as 

Cryptosporidium parvus190.  

Section 4.4 of Jennifer Lake’s Masters dissertation145 details the possible genes required to 

allow this and how we found some evidence for most of these within the P. falciparum 

genome. Figure 97 below is included as an example of the role of FBA in assessing the 
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metabolic changes that can result from small changes to a metabolic network and a first 

introduction to the tools and visual representation in the final chapter. 

 

Figure 97: FBA-predicted fluxes through my early 2010 model of glycolysis, the pentose phosphate cycle and the 
TCA cycle using minimum and maximum constraints for glucose, lactate, glycerol and ethanol fluxes. Low energy 
small molecules are provided free. The objective function consumes high energy molecules or precursors (ATP, 

NADH, NADPH etc…) and is maximised up to a top limit. 
(left) with no flux allowed through additional ethanol generating reactions.  
(right) with flux allowed through additional ethanol generating reactions. 

Ultimately, the much reduced and variable ethanol content of the growth medium when 

methanol was used as the sterilising agent strongly argued against fermentation occurring 

in P. falciparum and the experience serves as a warning that when you want to find genes 

coding for reactions in an organism they are worryingly easy to find and justify. 

Variability of RBC metabolism 

If you had asked me at the beginning of this project what metabolic processes were 

performed by an RBC I would have guessed that — apart from exchange of CO2 and O2 — 

they did nothing. This is very clearly not the case and I have measured considerable 

exchanges of many different metabolites between uninfected RBCs and their environment. 

Perhaps more forgivably I felt that the background metabolism of isolated and washed 

human RBCs would be largely constant across different experiments as long as the 

conditions were kept the same. For this reason — and largely because of the extreme 

difficulty in getting the time to acquire samples using the NMR machines — I have made 

poor use of much of my experimental time by not running sufficient blood nulls in parallel 

with my experiments with infected RBCs. 

The variability of RBC metabolism, as shown most clearly in the wide variation of 

gradients in figure 76, still surprises me. Looking into RBC variability further it quickly 
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becomes clear that tiny changes in temperature172, age of donor175, diet of donor191 and 

other unidentified or random sources of variability182 all lead to RBCs with very different 

metabolic profiles. A further complication is that the malaria parasite does not just feed on 

the RBC it infects, it changes its metabolism to its own requirements, digests and disposes 

of haemoglobin and the toxic haem group, and provides nutrients to sustain its host. Not 

only does the background metabolism of uninfected RBCs change considerably from 

experiment to experiment but so too does the parasite’s ability and approach to adapting 

these variable hosts to its own metabolic requirements.  

It is always dangerous to assume that anything can be left unmeasured and uncontrolled 

for between experiments with malaria. 

Finally, as if the variability of RBCs was not enough of a challenge, there is even some good 

evidence in Mehta et al.131 that “malaria parasite-infected erythrocytes inhibit glucose utilization in 

uninfected red cells”. 

Solving the RBC variability problem? 

Discussions with Prof. D. Fell have suggested some possibilities for avoiding the worst of 

the RBC variability problems that are worth considering. It is known that storage of RBCs 

leads to the depletion of internal metabolites — notably ATP and 2,3-

Bisphosphoglycerate192,193 — and it seems likely that the variable storage times of RBCs 

before use makes this a significant source of variability. Additionally, degradation of RBC 

morphology is known to occur during storage194.  

As reported in Watanabe et al.194, incubation in inosine restores ATP to near pre-storage 

concentrations and incubation with glucose and citrate restores RBC morphology to close 

to normal. Incubation in all three compounds restores both morphology and ATP levels, 

though less effectively than when performed separately. 

No previous studies of P. falciparum metabolism report using any of these techniques to 

standardise the host RBCs’ metabolic properties before experiments began and 

discussions with Dr. Glenn McConkey suggest this is not widely, if ever, used. It would be 

worth conducting further experiments using metabolically restored RBCs to see whether 

some of the variability observed in my work can be reduced. If this technique could allow 

experiments conducted at different times to be compared it would greatly increase the 

scope of comparative metabolomics of the malaria parasite. 

Two precautions would need to be taken if following these RBC preparation techniques. 

Firstly, the impact of adding additional glucose to the system would need closely 

monitoring but should cause no problems as long as the glucose level was constant, or low 
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enough to be insignificant, at the time the RBCs were used. Secondly, the addition of 

inosine to the system — and to some extent the restoration of erythrocytic ATP —

provides a supplementary purine source to hypoxanthine and further casts doubt on the 

applicability of radioactive hypoxanthine methods of growth-rate measurement. Assuming 

erythrocytic ATP was restored to the same level across all experiments this should cause 

no problems. 
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Metabolic modelling 

 

Figure 98 : Final annotated model with live flux projections of the optimal flux distribution given the applied 
experimentally derived constraints. Annotations in red show key pathways and features of the network. Flux weights 

are not linear and greatly exaggerate smaller fluxes. For example the three exchange fluxes at the top-left, α-D-
glucose β-D-glucose and glutamine import have fluxes of 19.24, 19.24 and 0.98 respectively but appear much closer 

in width. Calculated using SurreyFBA87. 

The above figure shows the final result of all my modelling; it is my best representation of 

the metabolic fluxes in P. falciparum. This chapter describes how I combined everything 

I’ve described in the rest of this thesis to arrive at this answer and then explores what the 

model tells us about the parasite. 

Creating the above model has taken four years and has been a process of trying, failing and 

improving as often as possible. The constraints, objectives and simplifications described in 

this chapter were developed alongside the development of the model rather in stark 

contrast to the way they are presented alone at the end of this thesis. The final results are 

heavily influenced by many layers of earlier results. This iterative process was made 

possible because of the technique of visual representation I have developed and use 

heavily in this chapter; I believe it is an important technique in metabolic modelling. 

I will begin with a description of some of the key concepts, constraints and objectives that 

define the model.  
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Units of biomass and exchange fluxes 

The problem of units in my metabolic model can be best outlined in the following two 

statements. 

 In idealised batch-cultures of E. coli the rate of biomass production, the amount of 

biomass, and the fluxes in the system are all proportional. 

 In synchronised cultures of P. falciparum the rate of biomass production is 

proportional to the fluxes in the system but neither of these is proportional to the 

amount of biomass. We know this because, as shown in figure 91 on page 188, no 

metabolite except valine shows a strong stage-specificity/time dependency of 

exchange flux even though biomass increases by a factor of 8-32 during the life 

cycle. 

This key difference makes comparing the flux-balance analysis solutions of my model with 

other organisms very difficult and requires further explanation so that possible solutions 

to the problem can be fully understood. The results in this thesis are presented in units 

that are understood throughout the FBA community and a full understanding of these 

additional complexities is not necessary to appreciate my results. 

The goal of my metabolic model is to simulate the creation of biomass and thus the growth 

of the parasite. Any units for flux and biomass formation can be defined within the SBML 

model but the convention is to express biomass creation in grams of dry weight per hour 

(ΔgDW/hour) and fluxes in units of millimoles per hour per gram of dry weight of biomass 

(mmole/hour/gDW) usually rearranged as mmole/gDW/hour.  

These units work well for unsynchronised cultures of bacteria or yeast in chemostats 

where the rate of consumption of nutrients and thus the rate of biomass formation is 

proportional to the biomass of the subject organism in the system and where no mass is 

lost from the system at the moment of replication. This condition is met for E. coli, S. 

cerevisiae and even Leishmania major where reproduction produces daughter cells which 

all survive. In these systems the rate of biomass production by the subject organism is 

equal to the rate at which the biomass of the system increases. 

The cultures of P. falciparum that I have worked with are more complex than this. Since 

the majority of merozoites released when the schizont lyses its host do not successfully 

infect a new RBC the majority of biomass accumulated by the parasite over the 48 hour life 

cycle is lost to the system. We can estimate this since we know that the doubling time of a 

culture is around 24 hours and thus after 48 hours the biomass of an unsynchronised 

culture will have increased by a factor of 4. In this same time a single parasite starting a 
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merozoite and bursting out from a red blood cell at the 48th hour will have increased its 

biomass by a factor of between 8 and 32 depending on the number of daughter cells it 

produced. We can see that in an unsynchronised culture this means that the rate of 

biomass creation is far greater than the rate at which the biomass of the system increases 

and the condition described in the previous paragraph is no longer met.  

A second complexity with P. falciparum is that my cultures are synchronised and remain 

synchronised far more strongly than batch cultures of bacteria or yeast. Although some 

variability of fluxes in line with life-stage has been observed elsewhere I measure little or 

none for the majority of the exchange fluxes I have been able to measure.  

Since the biomass of the system is expanding rapidly over the life cycle — a schizont 

presumably weighs 8-32 times as much as a merozoite — the fluxes, if measured in units 

of mmole/gDW/hour with the gDW representing the dry weight of biomass at that 

moment, decrease by a factor of 8-32 over the course of the life cycle. Because of this it 

makes much more sense to measure fluxes with respect to the rate at which biomass is 

formed rather than the overall biomass of the system. This means that the unit of flux 

within the network is (mmole/hour)/( ΔgDW/hour) = mmole/ΔgDW with the fluxes 

defined in proportion to the rate of biomass accumulation. 

Using these units would be fine except for the fact that all the tools for model analysis and 

the assumptions of all researchers in the field are set up differently. Thankfully there is an 

elegant hack that lets us pretend we’re using the usual unit of flux.  

We just have to imagine that we are examining a system with a mass equal to the amount 

of biomass produced in one hour. At this point the biomass of the system (gDW) is equal to 

rate of change of the biomass (ΔgDW/hour) and the flux values are identical whether in 

units of mmole gDW hour or mmole ΔgDW. This simplification is the one that I have 

made throughout this chapter and that I use to report all of my results. 

Where comparisons need to be made with other organisms we ignore the problem of lost 

biomass at reproduction and consider an unsynchronised culture with an average parasite 

age of 24 hours. Assuming this and dividing all the fluxes in my model — except the 

biomass flux — by 24 gives us absolute fluxes in mmole/gDW/hour for comparison with 

other flux-balance models. Following discussions with Prof. David Fell this is the system of 

units I will use for publishing and sharing my final model. 

Within the final model fluxes are scaled and the biomass function calculated such that a 

flux through the biomass function of 1 gDW/hour is equal to the experimentally measured 

rate of biomass production. 
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Defining the final biomass function 

The calculations in the experimental results chapter provide the percentages of dry weight 

that are used to calculate the biomass function. In these calculations the proportion of 

each component by dry weight (amino acids, DNA nucleotides, RNA nucleotides, fat, 

carbohydrate) is broken down into a proportion by stoichiometry and then further to 

stoichiometries of each of the subcomponents. 

Amino acid stoichiometries are calculated as per Chanda et al.176 (table 44 in appendix VI) 

and for each amino acid in the biomass function 2 molecules of GTP and one molecule of 

ATP are converted to 2 molecules of GDP and 1 molecule of AMP plus 2 molecules of 

orthophosphate and one molecule of diphosphate. This energy cost of protein formation 

makes up for the simplifications in my model whereby amino acids are not attached to 

tRNA molecules nor is the process of polymerisation modelled. 

Nucleotides, both DNA and RNA, are included in the biomass function in the cytosol as the 

nucleus is not modelled. For each nucleotide consumed by the biomass function a 

molecule of diphosphate is released back into the system. 

The carbohydrate composition of P. falciparum is unclear. In the distantly related parasite 

L. major, 90% of the carbohydrate content is known to be mannan195, a polymer of 

mannose. In my model GDP-mannose (C00096) forms 90% of the carbohydrate 

component of the biomass function, with GDP-L-fucose (C00325) making up the 

remainder and acting as a surrogate for all glycosylation within the cell. For each molecule 

of GDP-mannose or GDP-L-fucose incorporated into the biomass function a molecule of 

GDP is returned to the system. 

Fatty acids are incorporated into the biomass function according to the observations in 

Tarun et al.196 and Mi-ichi et al.104.  

… Plasmodium parasites depend on de novo fatty acid synthesis only for liver-

stage development. 

A. Tarun et al.196 

… the parasite’s overall fatty acid composition reflects that of the medium, 

although the parasite has a limited capacity to desaturate and elongate serum-

derived fatty acids.  

Mi-ichi et al.104 
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Table 2 in Mi-ichi et al.104 lets us calculate that the vast majority of fatty acids in the final 

parasite are unchanged from those absorbed from the growth medium and only 0.64%  

are elongated by a single C2H4 unit and 10.8% are desaturated.  Elongation is modelled by 

the reaction ‘single fatty-acid elongation’ (SFAE) which is the simplification and 

generalisation of KEGG reactions R01626, R04952, R04953, R04954 and R04955 to create 

the custom compound ‘FAC2H4unit’ which is incorporated into the biomass function. 

Desaturation is modelled by ‘R02222_generalised’ and included in the biomass function as 

a custom compound ‘DesatFA’. Whilst de novo synthesis of fatty acids is left in the model it 

is not included in the biomass as per Tarun et al.196. 

Figures on the process of fatty acid absorption and incorporation in P. falciparum are not 

available and the energy costs of this process are considered only as part of the ATP 

maintenance function. The general acetylation purpose of the branched-TCA cycle as 

described in Olszewksi et al.95 is modelled by the inclusion of ‘Acetylated generic 

compound’ (AcCmpd) in the biomass function at a stoichiometry equal to 10% of the fatty-

acids portion of the biomass function. 

Applying constraints 

The largest number of constraints applied to the network are thermodynamic in origin 

and applied to the reversibility and direction of reactions. These restrictions were 

determined iteratively: by performing FBA, projecting the results onto the network map 

and then examining reactions where fluxes were far higher than reasonable. Where loops 

occurred that produced free ATP, NADPH or NADH, they were removed by adding 

constraints on the direction of reactions or limited to sensible fluxes in the case of arginine 

and proline conversion. In cases where reactions in pairs formed loops but the net flux 

direction for the pair of reactions was unclear one of the reactions was restricted to zero 

flux.  Reaction R04125 — part of glycine and serine interconversion — was restricted to 

zero flux because it increased amino acid influx and efflux without improving biomass 

production. This was only a problem when using the SurreyFBA software for network 

analysis and could be removed if another solver were used. 

Exchange flux constraints for measured carbon sources were applied to limit the model to 

the experimentally determined solution space. During model development constraints 

were applied to amino acid fluxes to try and match them to experimental parameters but 

this was not necessary in the final model. 

A breakdown of the number of reactions to which constraints are applied and the reasons 

for those constraints is provided in table 29 with their locations represented on the visual 

map in figure 99. 
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Table 29 : A summary of the constraints applied to the reactions within the final model. The biomass is constrained in 
a forward direction until simulations are performed at which point it becomes the optimisation goal and is no longer 

constrained. 

 

Figure 99 : A visual representation of the constraints applied to the final model during flux-balance analysis. The 
biomass function is not shown as it is the optimisation goal and not constrained in the final model. 

 Green = direction constrained, Red = experimentally measured or literature reported flux constraint applied, Blue = 
flux set to zero, Orange = flux limited to a reasonable rate that could not be measured (arginine, proline, glutamate 

exchange). 

Restriction on purine sources 

The decision to restrict adenine and adenosine uptake as purine sources to zero is 

justifiable given the findings of Quashie et al. that, 

“Hypoxanthine was taken up with 12-fold higher efficiency than adenosine.” 

Quashie et al.197 

However, there are a number of papers including the appropriately named “Erythrocytic 

Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum” by Cassera 

249 total reactions

194 unconstrained and reversible reactions

35 non-reversible reactions (zero in one direction, unconstrained in the other)

9 exchange fluxes limited to known values (glucose uptake, glutamine uptake, etc…)

4 internal fluxes set to zero to stop thermodynamically unlikely cycles

3 limited to sensible fluxes where fluxes were not measured (arginine, proline, aspartate)

2 Adenine and adenosine fluxes set to zero to force hypoxanthine uptake

1 ATP maintenance

1 biomass function
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et al.198 that suggest purine uptake may be more complex than previously discussed. The 

reactions allowing the uptake of the alternative purine sources are left in the model and 

the restrictions on the fluxes through them can be loosened if desired. 

NADH/NADPH interconversion 

The importance of NADH fates within the parasite46 means that NADH/NADPH 

interconversion could play an important role in the parasite’s metabolism. Direct 

interconversion via R00112 (NADPH:NAD+ oxidoreductase, EC number 1.6.1.1 and/or 

1.6.1.2) is part of the network but a limited additional capacity may also be provided by 

two loops betwen Glutathione and GSSG (reduced glutathione) and between 

Ferricytochrome B and Ferrocytochrome B. So that NADH/NADPH interconversion can be 

monitored by observing a single flux these loops are disallowed in the network and then 

provided for by R00112, with a precautionary note placed in the SBML file. 

Alternatives to internal constraints 

Applying constraints to stop loops and to limit thermodynamically unfeasible reactions 

works but requires a judgement to be made on what the behaviour of the system would 

be. Since the model is designed to show us the behaviour of the system this clearly reduces 

the objectivity of the model’s predictions. 

Two ways that similar restrictions can be placed on the model without a subjective 

decision being made are to consider the thermodynamic cost and to couple reactions. 

The thermodynamic consideration involves calculating the free energy change of each 

reaction within the model and adding an optimisation condition to the analysis such that 

the system as a whole is thermodynamically balanced. This condition would limit fluxes 

through costly reactions — such as loops that create free ATP — without absolutely 

stopping them and a discussion of how to implement a system like this is found in Henry 

et al.199.  

A simpler solution to the problem is to link the direction of pairs or groups of reactions 

that may cause an unnatural loop such that net flow in either direction is allowable but the 

thermodynamically unacceptable creation of free ATP is disallowed. This is an approach 

adopted in Feist et al.200 and elsewhere. 

Adopting either of these — or other similar — approaches can improve the predictive 

power and objectivity of the metabolic model but has the side effect of requiring more 

complex analysis, often using custom software which makes the resulting model hard to 

re-use and its predictions hard to reproduce. 
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ATP maintenance function 

It is an inconvenient fact that FBA of even the best current metabolic models for model 

organisms like E. coli predicts far higher growth-rates than are experimentally measured. 

The solution to this problem is to add an ATP maintenance function to the final model that 

reduces the growth-rate to an experimentally measured or expected rate in ideal 

conditions. The ATP maintenance is typically split into two parts with the majority of the 

ATP flux integrated with the biomass function and called the growth-associated 

maintenance function and a lesser part added to the network as a standalone reaction 

converting ATP and H20 to ADP and orthophosphate and called the non-growth-associated 

maintenance function. 

Since all the fluxes in my network are proportional to growth the distinction between non-

growth associated and growth-associated maintenance is unnecessary and I have 

implemented it as a separate reaction (ATPmaint_c) within my final network. Figure 100 

shows the effect of varying the flux forced through the ATP maintenance function on 

biomass production and justifies my choice of 30 mmole/gDW/hour to limit the biomass 

production in optimal conditions to close to the measured rate of 1 gDW/hour. 

 

Figure 100 : The effect of an increasing ATP maintenance flux on the rate of biomass formation. Calculated using 
SurreyFBA87. 

If the ATP maintenance function is integrated into the biomass function it changes the 

growth-rate predicted by my model by less than 5% and makes no difference to other 

fluxes. Given the cost in terms of lost flexibility of incorporating the ATP maintenance 

function into biomass function and the limited physiological ranges of P. falciparum 

growth-rates I have chosen to keep the ATP maintenance function separate from the 

biomass function for all the results discussed in this thesis. 
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The ATP maintenance function is the “least bad” solution to the problem that growth-rates 

are otherwise over estimated and in conversations with Pedro Mendes at the University of 

Manchester and Fiona Achcar at the University of Glasgow it is clear that in the majority of 

metabolic models there is very limited experimental justification for the value eventually 

chosen. My chosen ATP maintenance flux of 30 mmole/gDW compares to 59.81mmol 

 gDW in Adam Feist’s 2007 E. coli reconstruction200, 32.26mmol/gDW in Chavali’s L. major 

reconstruction108 and 60.01mmol gDW in Plata’s P. falciparum reconstruction58. The 

Huthmacher P. falciparum model implements the ATP maintenance reaction separately 

from the biomass function in the same way as I do but the flux forced through it is not 

included in the SBML model as a non-standard analysis technique is used. 

I prefer to keep the ATP maintenance function completely separate from any identifiable 

use of ATP but this is not the case in many other models. If the ATP maintenance flux is 

integrated with the biomass function and added to the identified ATP and GTP costs of 

amino acid polymerisation the final ATP/GTP growth-associated maintenance flux is 

42.31mmole/gDW; even closer to that of the similar models I have just mentioned. 

Malaria-specific ATP exchange complexities 

There are additional difficulties and distractions in the literature when considering the 

ATP drains in the malaria parasite. In Choi et al.201, isolated parasites — freed from their 

hosts RBC by saponin lysis —import ATP from their surroundings. This result should be 

considered with caution since freed parasites may well have extremely perturbed 

metabolism. An intriguing result in Kanaani et al. 1989117 suggests that during the RBC 

stage of its life cycle the parasite exports ATP to its host, presumably to stop the host from 

dying. I have considerable doubts about this finding given that the paper relies on the 

assumption that mitochondrial inhibitors reduce the amount of ATP production in the 

parasite. Significant research, most notably Fry et al.202 and Painter et al.119, strongly 

suggest that the mitochondrion does not play a significant role in ATP production in 

P. falciparum. 

The uncertainty and complexity of the ATP exchange between parasite and host is such 

that I have not included it in my final model and the ATP maintenance reaction is sufficient 

to contain any intriguing ATP transfer behaviour performed by the parasite that I have not 

added to my model. 

Adding an additional cost to haemoglobin digestion 

My final model’s considerably simplified haemoglobin digestion pathway within the food 

vacuole serves its primary purposes of supplying amino acids to the system but presents a 
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problem. This problem is shown most clearly in the graph on the left of figure 101 where 

we see that a higher rate of biomass formation occurs where more haemoglobin is 

digested. An upper bound on this effect is only imposed by limiting proline efflux to an 

acceptable rate*. 

  

Figure 101 : The growth-rate predicted by FBA on the final model for a range of haemoglobin digestion fluxes. 
Calculated using SurreyFBA87. 

(left) The formation of haemozoin from haem incurs no cost and the optimal solution is for the parasite to digest ever 
more haemoglobin. A reduction in the maximum allowed efflux of proline from the system places an upper limit on 

the haemoglobin digestion flux. 
(right) The addition of a 10 ATP cost for each molecule of haem incorporated into haemozoin moves the optimal 

haemoglobin digestion flux lower but still allows a large range of haemoglobin digestion fluxes that give a biomass 
production rate close to optimal. 

The solution to the problem of non-convergent haemoglobin digestion is to add an ATP 

cost to the process of crystallising the haem molecules released by haemoglobin digestion 

to haemozoin. We can justify this cost as representing what we know is a metabolically 

expensive process but its magnitude is chosen for no other reason than that it moves the 

solution space of the model to give the graph on the right of figure 101. Here the system’s 

optimum rate of haemoglobin digestion does not require limiting by an arbitrary 

constraint on proline efflux. 

At the maximum haemoglobin digestion flux of 0.075 mmole/gDW/hour shown in figure 

101 the 10 ATP/mmole of haem crystalised as haemozoin (40 ATP/mmole of haemoglobin 

digested) represents an addition of 3 mmole/gDW/hour to the total ATP maintenance. 

 

  

                                                             
* see Figure 105 for a justification of this rate. 
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Results 

The creation, parameterisation and constraint of my metabolic model has taken up the 

majority of this thesis and the majority of my time over the past four years. Getting the 

results from the final model was a considerably shorter and more instantly rewarding 

experience. I report the main findings here. 

The model accurately predicts the growth-rate of P. falciparum 

The carbon-source flux constraints in my model are set from my experimental values such 

that the experimentally measured biomass production rate is 1 gDW/hour. Before the 

addition of the ATP maintenance function my model produces a biomass production rate 

of around 2.5 gDW/hour which — whilst higher than what is experimentally measured — 

is of the same magnitude. If the predicted growth-rate was an order of magnitude higher 

than what we had measured we would be able to infer that the parasite had an energy 

source other than that included in the model, presumably either the pathways required for 

aerobic respiration or a direct uptake of ATP from the host RBC. 

That the predicted growth-rate is reduced to the experimental growth-rate when the ATP 

maintenance function is set to a value close to that of other similar organisms is further 

evidence that the model accurately predicts growth-rate. 

Measured glucose influx and lactate efflux rates achieve carbon balance and optimal 

growth 

We know that the primary energy source for P. falciparum is the creation of lactate from 

glucose via the glycolysis pathway and therefore the influx of glucose is closely linked to 

the efflux of lactate. Figure 102 shows how biomass production varies for the model’s final 

allowed efflux rate of lactate of -60 mmole/gDW/hour and has some very interesting 

features. At low levels of glucose uptake the model produces no biomass at all as the 

organism’s ATP maintenance requirements are not met. This is entirely in keeping with 

widespread knowledge that P. falciparum parasites die extremely rapidly in low glucose 

environments. Once the maintenance requirements of the parasite are met growth is 

highly dependent on glucose influx until a peak is reached where no further lactate efflux 

is allowed. The flexibility of the model means that carbon balance can be achieved at no 

cost to growth for a brief plateau of increasing glucose influx before the glucose is used 

inefficiently by the parasite and leads to reduced growth. 

The shaded region in the graph is centred on the measured glucose influx rate for the Tom 

Metabolomics set of experiments and extends as far as the uncertainty on that 

measurement in either direction. 
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Figure 102 : Biomass production response to glucose uptake. The shaded region shows the measured glucose influx 
and its associated error (38.48±14mmole/gDW/hour). The lactate efflux of -60 mmole/gDW/hour is slightly higher 
than the best measured value (56) but well within the error on that measurement. Calculated using SurreyFBA87. 

Figure 103 is the equivalent for lactate of figure 102 with the shaded region this time 

centred on the final lactate efflux rate of -60 mmole/gDW/hour and extending as far as the 

uncertainty on that measurement in either direction. The dependency of biomass 

formation rate on the increasing lactate efflux shows that energy produced by glycolysis is 

a primary restriction on the growth-rate of the parasite. 

 

Figure 103 : Biomass production response to lactate efflux for three glucose uptake rates corresponding to the best-
guess (38±14 mmole/gDW/hour), minus and plus the associated error (24, 56). The shaded region shows the final 

lactate efflux and its associated error (60±11 mmole/gDW/hour). Calculated using SurreyFBA87. 

What we see from these two graphs is that my measurements of glucose and lactate fluxes 

accurately predict growth-rate — the experimentally measured growth-rate given the 

glucose and lactate flux constraints is 1gDW/hour — and achieve carbon balance well 
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within the uncertainties in their measurements. Optimal growth-rates of the model are 

achieved within the measured ranges of glucose influx and lactate efflux. 

I experimented with displaying the dependency of the rate of biomass formation as a 

function of allowed lactate efflux and glucose influx on a three-dimensional plot but found 

these hard to interpret once printed. 

The model accurately predicts internal fluxes 

Large-scale quantitative measurements of internal metabolic fluxes in P. falciparum has to 

my knowledge been limited to the work of Olszewski et al.109 focusing on the TCA cycle. A 

far more limited resource is provided by Atamna et al.167 which measures the diversion of 

the glycolytic flux towards the oxidative pentose-phosphate cycle* (PPC) and towards 

nucleotide metabolism through the formation of ribose sugars. 

This provides an excellent opportunity to compare the predictions of my metabolic model 

with experimentally measured fluxes and the agreement shown in table 30 is encouraging. 

 

Table 30 : Fluxes in mmole/gDW/hour of glucose towards the pentose phosphate cycle and nucleotide sugar 
formation. Figures from Atamna et al. 167 are converted to equivalent units for comparison. Calculated using 

SurreyFBA87. 

Whilst glucose and oxidative PPC fluxes are in excellent agreement. my model predicts a 

higher flux to nucleotides than reported in Atamna et al.. This is consistent with my 

suspicion that the true DNA content of my biomass function should be towards the lower 

end of the uncertainties in the values I’ve measured. 

Another explanation for some of the discrepancy in the glucose to nucleotide flux is that 

that my model forces the exclusive use of hypoxanthine as a purine source. This requires a 

glucose flux to nucleotides in the form of PRPP (C00119) or Ribose 1-phosphate (C00620) 

whereas an uptake of adenosine — as known to be possible from Cassera et al.198 —would 

not require this diversion of flux as PPC-synthesised ribose sugars would only be required 

for pyrimidine synthesis. 

                                                             
* The hexose-monophosphate shunt (HMS) is referred to in the paper. These are the same thing. 

Path Taken Flux from Atamna 1994 FBA predicted Flux

(mmole/gDW/hour) (mmole/gDW/hour)

Glycolysis 41.90 37.54

Oxidative PPC 1.50 1.42

Nucleotide 0.06 0.24
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The model accurately predicts the low-oxygen metabolism of P. falciparum. 

Another area in which the model accurately reproduces the known metabolism of 

P. falciparum is in relation to oxygen consumption. Oxygen and carbon dioxide are both 

taken up from the environment but neither O2 nor CO2 exchange is essential for parasite 

growth. If exchange of oxygen is limited to zero, growth continues but is slowed to 67% of 

the optimal growth-rate, consistent with the knowledge that P. falciparum’s optimum 

culturing conditions  are a low — but not zero — oxygen environment. 

The optimal growth-rate is achieved when the parasite takes in CO2 at 

0.009 mmole/gDW/hour and O2 at 0.178 mmole/gDW/hour. This compared with the 

Adam Feist et al.200 E. coli model which takes up 18.2 mmole/gDW/hour of oxygen. If the 

factor of 24 correction discussed at the start of this chapter is applied then P. falciparum 

has an oxygen requirement for optimal growth of just 0.074 mmole/gDW/hour of oxygen: 

around 250 times less than E. coli. 

By comparison, Adam Feist’s E. coli model has a glucose import flux of 8-11 

mmole/gDW/hour compared to the glucose import flux of my P. falciparum model of 38.4 

mmole/gDW/hour, or at the 24th hour of the life stage, 1.6 mmole/gDW/hour.  That the 

comparable glucose uptake rate of E. coli is six times higher (8-11 compared to 1.6) than 

P. falciparum but its oxygen use is 250 times higher (0.178 compared to 0.074) shows how 

inefficiently P. falciparum uses glucose by relying on anaerobic respiration whilst E. coli 

can perform aerobic respiration. 

The model accurately predicts measured amino acid exchange rates 

Although loose constraints are placed on proline and arginine exchange fluxes these are 

not reached in the model unless the rate of haemoglobin digestion would lead to more 

haemoglobin being digested than is available*. None of the other amino acid efflux rates 

are constrained in the final model and so the predicted amino acid exchange fluxes are the 

result of the model’s haemoglobin digestion rate, amino acid use for the protein synthesis 

part of the biomass and any interconversion of amino acids within the model. 

The FBA-predicted exchange fluxes and my NMR-measured fluxes for the five amino acids 

plus hypoxanthine I was able to measure are shown in table 31. 

                                                             
* see Figure 105 for a justification of this rate. 
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Table 31 : Measured exchange fluxes of the six measured amino acids and hypoxanthine compared with the fluxes 
predicted by the optimal solution of my final model. Calculated using SurreyFBA87. 

The agreement of these two sets of results can be best seen as a graph as in figure 104 

where a linear fit shows predicted fluxes to be on average 1.26 times larger than measured 

fluxes. If we scale this figure to take into account the discrepancy between the measured 

growth-rate of 1 gDW/hour and the predicted growth-rate of 1.15 gDW/hour the gradient 

of the line of best fit becomes 1.10: an excellent agreement between the model and 

experimental results. 

    

Figure 104 : Measured flux of amino acids and hypoxanthine against FBA-predicated fluxes at the optimal FBA 
solution of my final model. Best fit line is forced through the origin. 

 

As a result of the complex nature of my final model the relationship between the rate of 

haemoglobin digestion and the rate of biomass formation is complicated, but flux-balance 

analysis easily calculates it. From these two pieces of information and knowledge of the 

haemoglobin content of an uninfected red blood cell and the mass and protein content of a 

mature parasite we can calculate — for a single parasite — the percentage of the host 

Compound Measured flux FBA predicted Flux

(mmole/gDW/hour) (mmole/gDW/hour)

Valine 0.63 1.16

Leucine 0.35 1.18

Isoleucine 0.00 -0.44

Alanine 1.25 1.46

Tyrosine 0.13 0.26

Phenylalanine 0.54 0.44

Hypoxanthine -0.45 -0.13
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RBC’s haemoglobin that is digested and the percentage of the freed amino acids that are 

integrated into the parasite’s proteins as in figure 105. 

 

Figure 105 : The relationship between the haemoglobin digestion flux and the percentage of the host’s haemoglobin 
that is digested (blue line) and the percentage of the freed amino acids that are integrated into the parasite’s proteins 

(red line). 

At the optimal solution — giving the numbers in table 31 — the haemoglobin digestion 

flux of 0.022 mmole gDW hour is equivalent to the digestion of 30% of the host’s 

haemoglobin and incorporation of 40% of the freed amino acids into the parasite’s 

protein. The upper limit on haemoglobin digestion set by a limit on proline efflux 

approximately limits haemoglobin digestion to the amount present in the host red blood 

cell. 

A haemoglobin digestion flux of 0.046 mmole/gDW/hour is equivalent to digestion of 65% 

of the host’s haemoglobin and incorporation of 19% of the freed amino acids into the 

parasite’s protein and is closer to the maximum equivalent values measured by  rugliak 

et al.103 of 65% digestion and 21% incorporation respectively. As previously shown in 

figure 101 the range of haemoglobin digestion fluxes possible whilst only slightly reducing 

the predicted growth-rate is considerable and so Krugliak et al.’s results are consistent 

with my model. However, it is important to note that this level of haemoglobin digestion, 

whilst energetically possible, does not agree with my measured NMR exchange fluxes as 

shown in table 31. 
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Flux variability analysis (FVA) at the optimal growth-rate 

I have shown how the level of haemoglobin can vary considerably whilst still producing a 

near-optimal growth-rate but it is informative to perform flux-variability analysis on all 

the reactions in the network. 

Figure 106 shows the reactions that can vary whilst still producing the optimal growth-

rate where the thickness of each edge corresponds to the range of fluxes allowed through 

the corresponding reaction. The four futile loops that produce and consume nothing in a 

complete cycle are noted in the figure’s caption and are not interesting except to note that 

the fluxes through these reactions are not informative in the optimal solution. 

Of more interest in figure 106 is to notice that the variances of the amino acid 

interconversions at the bottom right of the figure and the variances of the reactions in 

glycolysis are the same, suggesting that the two are linked.  L-malate export is variable 

between zero and its maximum allowed valued for the optimal solution meaning that both 

the measured malate efflux in Olszewski et al.95 and my measured lack of a malate efflux 

are consistent with the predictions of my model. 

 

Figure 106 : The variability of fluxes that still give 100% of the optimal growth-rate. The very thick lines are three 
cycles that are futile and can have any value as they ultimately produce and consume nothing. The three exchange 

reactions involved in a futile cycle are H2O, Orthophosphate and Diphosphate which combine with an internal 
reaction that converts Diphosphate to 2 Orthophosphate + H2O to form a futile cycle. Aspartate, proline and arginine 

exchange fluxes are all variable within the optimal solution space and aspartate and proline exchange fluxes are 
constrained to a sensible maximum value in the final model. Calculated using the COBRA toolbox v1.3.3203. 



216 
 

Flux variability analysis (FVA) for a solution producing at least 99% of the optimal 

growth-rate 

FVA at the 99% level, shown in figure 107, shows the range of values that each flux can 

take within a solution that can still produce biomass at 99% of the optimal rate. The 

interesting progressions from the 100% FVA solution are that 

 The flux though the branched TCA cycle via succinate becomes highly variable, 

suggesting that this branch plays a minimal role in any modelled aspect of growth. 

The proposed role of this branch of the branched TCA cyle in Olszewski et al.95 is 

not completely clear and needs further investigation. 

 The pentose-phosphate cycle (PPC) and NADPH:NADH interconversion (R00112. 

X-shape at the top-right of figure 107) become variable, suggesting that changes in 

NADPH production by the oxidative PPC can be compensated for by R00112 

without significantly affecting growth. 

 Haemoglobin digestion rate becomes variable, as expected from the results in 

figure 101. 

 

Figure 107 : The variability of fluxes that still give 99% of the optimal growth-rate. The flux through the mitochondrion 
via succinate becomes variable as does haemoglobin digestion and the pentose-phosphate cycle. Calculated using 

the COBRA toolbox v1.3.3203. 
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Flux variability analysis (FVA) for a solution producing at least 70% of the optimal 

growth-rate 

The range that each flux can take and still form a solution that produces biomass at 70% of 

the optimal rate — shown in figure 108 — is extremely large and covers almost all the 

network. The reactions that are least variable in this solution are those that are not 

capable of carrying any flux and those that produce a component of the biomass along a 

metabolic pathway for which there are no alternative routes. For example, adenine and 

adenosine uptake and the subsequent reactions required to use these purine sources for 

nucleotide synthesis have no flux variability because they are disallowed in the model and 

thus always have a flux of zero. The uptake of isoleucine and the branch of the TCA cycle 

via citrate has a low variability since isoleucine and the general acetylation product 

produced in the mitochondrion are made available only through a set of non-redundant 

reactions. 

With relation to earlier observations of the low oxygen and carbon dioxide uptake rates of 

the model it is interesting to note that the parasite is much more able to deal with changes 

to oxygen uptake than with changes to carbon dioxide uptake. At the FVA 70% level, 

oxygen absorption ranges between 0.009 — 0.202 mmole/gDW/hour whilst carbon 

dioxide absorption ranges between 0.006 — 0.009 mmole/gDW/hour. 

 

Figure 108 : The variability of fluxes that still give 70% of the optimal growth-rate. Calculated using the COBRA 
toolbox v1.3.3203.  
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Essential reactions and predicted lethal and sub-lethal single-gene deletions 

Out of 249 reactions in the network, 220 are capable of carrying some flux. Of these “live 

reactions” 117 are essential and reduce growth-rate to zero if removed. The location of 

these reactions within the network is shown in figure 109. 

 

Figure 109 : The location of essential reactions in the network. Calculated using SurreyFBA87. 

Since more than one gene, or indeed no gene, can be linked to a reaction and more than 

one reaction can be linked to a gene the 117 essential reactions correspond to 79 lethal 

gene deletions. A further 19 gene deletions cause a reduced growth-rate but are not lethal 

with these genes largely associated with the oxidative PPC cycle and the succinate branch 

of the TCA cycle. These are, as expected, the parts of metabolism that show considerable 

flux-variability within the FVA 99% result shown in figure 109. 

Another interesting group of genes that cause a reduced growth-rate but that are not 

lethal are those associated with the oxidative stress response. This set of genes includes 

those coding for reactions that oxidise hydrogen peroxide via the reduction of glutathione 

and genes associated with the maintenance of NADPH/NADH levels needed to restore 

glutathione to its oxidised state. 

A summary of the genes whose deletions affect growth-rate is provided in the table 

making up appendix VII. Of these genes it is interesting to note that of the 98 predicted 

lethal or growth-reducing single-gene deletions only 22 are predicted as lethal in Plata 

et al.58. More worryingly, of the 45 genes whose deletion has no effect on growth-rate, 8 
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are predicted as lethal in Plata et al.58. All single gene-deletion simulations were carried 

out in the COBRA toolbox v1.3.3203. 

Lethal and sub-lethal double-gene deletions 

Any double gene deletion involving a gene that is lethal when deleted on its own is also 

lethal and the vast majority of double-gene deletions are trivially lethal in this way and 

therefore uninteresting. The second largest group of double-gene deletions are those 

where both genes are non-lethal when deleted singly and non-lethal when deleted in pairs. 

The most interesting set of double-gene deletion behaviours are those where both genes 

when deleted singly are not-lethal but that are lethal when deleted together. The predicted 

growth-rate — as a proportion of the optimal growth-rate — for fifteen genes and thus 

105 gene pairs is shown in figure 110. Full details on these genes is presented in table 32. 

 

Figure 110 : Predicted growth-rate as a proportion of optimal forall pairwise deletions of fifteen genes that give 
interesting growth-rate predictions. The metabolic role of each gene within the network is shown at the right Growth-

rate predictions made using COBRA toolbox 1.3.3203. 
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Role

PFE0730c 0.99 Oxidative PPC/NADPH creation

PF14_0511 0 0.99 Oxidative PPC/NADPH creation

PF14_0520 0 0.99 0.99 Oxidative PPC/NADPH creation

PF14_0508 0 0 0 0.99 NADPH:NAD oxidoreductase

PFL0960w 0 0 0 0.95 0.99 Non-oxidative PPC

PFF0530w 0 0 0 0.95 0.99 0.99 Non-oxidative PPC

MAL3P2.24 0 0 0 0 0.78 0.78 0.98 Glycerol metabolism (creates FAD for TCA cycle)

PF08_0045 0 0 0 0 0.78 0.78 0.98 0.98 TCA cycle (right side, via succinate)

PF10_0334 0 0 0 0 0.78 0.78 0.98 0.98 0.98 TCA cycle (right side, via succinate)

PF13_0070 0 0 0 0 0.78 0.78 0.98 0.98 0.98 0.98 TCA cycle (right side, via succinate)

PF13_0120 0 0 0 0 0.78 0.78 0.98 0.98 0.98 0.98 0.98 TCA cycle (right side, via succinate)

PF13_0121 0 0 0 0 0.78 0.78 0.98 0.98 0.98 0.98 0.98 0.98 TCA cycle (right side, via succinate)

PF14_0295 0 0 0 0 0.78 0.78 0.98 0.98 0.98 0.98 0.98 0.98 0.98 TCA cycle (right side, via succinate)

PFI1340w 0 0 0 0 0.78 0.78 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 TCA cycle (right side, via succinate)

PFL0630w 0 0 0 0 0.78 0.78 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 TCA cycle (right side, via succinate)
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Table 32 : Details on the 15 interesting double-deletion genes whose pair-wise deletions are lethal or growth-reducing (see figure 110) but whose deletions singly are not lethal.

Gene
Associated 

Reaction(s)
Reaction Name(s)

Associated 

EC number
Role

PFE0730c R01056 D-ribose-5-phosphate aldose-ketose-isomerase 5.3.1.6 Oxidative PPC/NADPH creation

PF14_0511
R02035

R02736

6-Phospho-D-glucono-1,5-lactone lactonohydrolase

beta-D-Glucose-6-phosphate:NADP+ 1-oxoreductase

3.1.1.31

1.1.1.49
Oxidative PPC/NADPH creation

PF14_0520 R01528 6-phospho-D-gluconate:NADP+ 2-oxidoreductase (decarboxylating) 1.1.1.44 Oxidative PPC/NADPH creation

PF14_0508 R00112 NADPH:NAD+ oxidoreductase 1.6.1.1 NADPH:NAD oxidoreductase

PFL0960w R01529 D-Ribulose-5-phosphate 3-epimerase 5.1.3.1 Non-oxidative PPC

PFF0530w
R01641

R01830

Sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphateglycolaldehyde transferase

beta-D-Fructose 6-phosphate:D-glyceraldehyde-3-phosphateglycolaldehyde transferase

2.2.1.1

2.2.1.1
Non-oxidative PPC

MAL3P2.24 R00848 sn-Glycerol-3-phosphate:(acceptor) 2-oxidoreductase 1.1.5.3 Glycerol metabolism (creates FAD for TCA cycle)

PF08_0045
R00621

R03316

NO NAME

NO NAME

1.2.4.2

1.2.4.2
TCA cycle (right side, via succinate)

PF10_0334
R00408

R00432

Succinate:(acceptor) oxidoreductase

Succinate:CoA ligase (GDP-forming)

1.3.99.1

6.2.1.4
TCA cycle (right side, via succinate)

PF13_0070
R00621

R03316

NO NAME

NO NAME

1.2.4.2

1.2.4.2
TCA cycle (right side, via succinate)

PF13_0120 R02570 succinyl-CoA:enzyme N6-(dihydrolipoyl)lysine S-succinyltransferase 2.3.1.61 TCA cycle (right side, via succinate)

PF13_0121 R02570 succinyl-CoA:enzyme N6-(dihydrolipoyl)lysine S-succinyltransferase 2.3.1.61 TCA cycle (right side, via succinate)

PF14_0295 R00405 Succinate:CoA ligase (ADP-forming) 6.2.1.5 TCA cycle (right side, via succinate)

PFI1340w R01082 (S)-malate hydro-lyase (fumarate-forming) 4.2.1.2 TCA cycle (right side, via succinate)

PFL0630w R00408 Succinate:(acceptor) oxidoreductase 1.3.99.1 TCA cycle (right side, via succinate)
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Conclusions 

The final model contains more information than would be useful to present in this thesis. I 

have taken great care to ensure that questions that future researchers may wish to pose of 

the model can be asked easily and the answers understood. A number of further findings 

are, 

 D-lactate is not produced by the model unless forced to but the measured level as 

presented in Vander Jagt et al.94 contributes to the carbon balance of the model. 

 Glycerol is produced by the model but not at the rate I have measured unless 

forced. The consumption of FAD in the succinate half of the branched TCA cycle is 

met by the production of glycerol and its efflux from the parasite. See additional 

note on the next page. 

 Forcing glycerol and D-lactate efflux, combined with the level of carbohydrate 

accumulation from Chavali’s108 L. major metabolic model and the level of fatty acid 

modification in Mi-ichi et al.104 creates a carbon-balanced model if the L-lactate 

efflux is raised slightly from the best estimate of 56 mmole/gDW/hour to 60 

mmole/gDW/hour. 

 L-malate is produced only if the allowed lactate efflux is not sufficient to achieve 

carbon balance. Flux-variability analysis (FVA) shows that any value of L-malate 

efflux between 0 and the maximum allowed can form part of a solution that give 

the optimal growth-rate so both my experimental results and those in Olszewski 

et al.95 are in agreement with my model. 

 Aspartate is similarly variable within the optimal solution, strongly supporting the 

view presented in Olszewski et al.88 that L-malate and aspartate exchanges are 

balanced by the parasite to achieve carbon balance. It is likely that the different 

culture conditions used by me and Olszewski et al.95 led me not to measure L-

malate production where they did. 

 The predicted flow of glucose around the pentose-phosphate cycle matches 

measurements in the literature and the predicted flow to nucleotides is close to 

measurements in the literature. 

 The ATP maintenance cost that gives the measured growth-rate is in keeping with 

both Chavali et al.108’s L. major and Plata et al.58’s P. falciparum model. 

 My model predicts that — over the complete life cycle — between 31% and 100% 

of the host RBC’s haemoglobin can be digested whilst remaining within 95% of the 

optimal growth-rate. The predicted percentage of the digested amino acids used by 

the parasite at these two extremes is 40% and 13% respectively. At the maximum 

65% digestion suggested in Krugliak et al.103 my FBA model predicts that the 
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parasite uses 21% of the available amino acids compared to the 16% measured in 

that paper: an excellent agreement within the uncertainties of the model and the 

measurements. 

 For the optimal solution of my model, corresponding to digestion of 31% of the 

RBC’s haemoglobin, the amino acid exchanges predicted by my model are 

consistent are within 10% of those measured by NMR metabolomics: an excellent 

agreement. 

 The branched TCA-cycle reported in Olszewksi et al.95 is the optimal flux solution 

although FVA shows that the behaviour of the cycle can vary considerably and still 

produce a growth-rate of 99% of optimal. 

 

The complexities of glycerol metabolism 

With respect to the second of my conclusions on the previous page a clarification is 

required. The role of protein complexes is not always elegantly contained within the KEGG 

LIGAND ontology and my network only contains the first of the reactions performed by the 

succinate dehydrogenase (SDH) enzyme complex (Complex II) shown in figure 111. The 

FADH2 produced by the conversion of succinate to fumarate is retained within the enzyme 

complex and is oxidised back to FAD by the reduction of Coenzyme Q10 (Q) (ubiquinone) to 

ubiquinol (QH2), both of which are free within the inner mitochondrial space — a 

compartment which, for simplicity and due to the limited function of the mitochondria in 

P. falciparum, I omit from my model. 

The mitochondrial glycerol-3-phosphate dehydrogenase (GPDH-M) complex works 

similarly via Coenzyme Q10 but in the opposite direction and whilst the two enzyme 

complexes cannot in reality exchange FAD or FADH2 directly as they do my model, they 

can do so in effect via the intermediate Coenzyme Q10. This means that the simplification in 

my model of allowing FAD and FADH2 to be exchanged between the SDH complex and the 

GPDH-M complex is unrealistic but also unlikely to have any effect on the predictions of 

my model. 
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Figure 111 : The succinate dehydrogenase (SDH) complex (left) and the mitochondrial glycerol-3-phosphate 
dehydrogenase (GPDH-M) complex (right) cannot share FAD/FADH2 since neither ever leaves the enzyme complex. 
Both enzyme complexes restore their FAD/FADH2 balance via external Coenzyme Q10 (Q/QH2) in the mitochondrial 

membrane space. Both images from Wikipedia (user: Johnhfst. user: Boghog2). 

 

The functioning of these complexes is additionally interesting because of the unusual role 

of Coenzyme Q10 in P. falciparum — as reported on page 89 of Painter et al119.  

“erythrocytic stages of the human malaria parasite Plasmodium falciparum seem to 

maintain an active mitochondrial electron transport chain to serve just one 

[essential] metabolic function: regeneration of ubiquinone [Coenzyme Q10] required 

as the electron acceptor for dihydroorotate dehydrogenase, an essential enzyme 

for pyrimidine biosynthesis”.  

Within my model, the action of dihydroorotate dehydrogenase (DHODH) is simplified to 

completely remove the complexity of including the electron transport chain (ETC) in my 

model. I have justified this because the flux through the ETC is tiny compared to that in an 

aerobically respiring organism. The DHODH reaction in my model instead represents the 

combined role of the ETC/ubiquinone interaction with a conversion of water to hydrogen 

peroxide simulating the ETC’s creation of superoxide ions leading to oxidative stress. 

The Coenzyme Q10 that is regenerated by P. falciparum’s ETC could be used to drive the 

succinate dehydrogenase enzyme complex in the citrate cycle but there are good reasons 

why this might not be the case. Painter et al119. state that, 

“maintenance of mitochondrial membrane potential,… was essential in these 

parasites”  

and that, 
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“maintenance of electropotential across the mitochondrial inner membrane is a 

critical function of the electron transport chain”.  

Typically electropotential is maintained largely by ATP synthase and yet despite the 

recent discovery of a P. falciparum ATP synthase204 it remains unclear what function it 

serves given that any ATP derived in this way has not been observed to play any role in 

the energy metabolism of the parasite in the RBC life stages.  

These results further convince me that the unusual — and disputed — metabolic fate of 

glycerol in P. falciparum plays an important role in explaining the role of the mitochondria 

in RBC metabolism.  Returning to Lu-Yun Lian et al.46’s findings about glycerol.  

“it is hypothesized … that glycerol production by the malaria parasite is the result 

of a metabolic adaptation to growth in O2-limited (and CO2 elevated) conditions by 

the operation of a glycerol-3-phosphate shuttle for the re-oxidation of assimilatory 

NADH.”  

The results of my model and experimental results agree with this hypothesis but make a 

key addition. Since the glycerol-3-phosphate shuttle in this instance is unbalanced — with 

excess glycerol exported rather than used to re-oxidise NADH — thus maintaining 

mitochondrial membrane potential, it might be not be wholly useful to refer to it as a 

shuttle, but rather a partially branched shuttle. 
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Final comparison of my final model to similar models 

At the end of this chapter I want to make one final comparison between by model, the two 

other leading malaria metabolic models and the model and work which has served as my 

example for much of this thesis: Arvind Chavali’s Leishmania major metabolic model108. I 

already referred to the problem with orphaned reactions in the Huthmacher et al.59 and 

Plata et al. 58 models on page 72 but I want now to focus on another two problems: 

unconserved metabolites and reproducibility of modelling results. 

Unconserved metabolites 

Consider two reactions, A <=> B + C and A <=> B. Individually these reactions may seem 

reasonable but together they allow the infinite creation, or destruction, of the metabolite 

C. In this example we refer to C as an unconserved metabolite. The mathematical solution 

to this problem is to assign compound C a mass of zero but in more complex loops a 

solution to similar problems can sometimes be found by assigning to the same compound 

a negative mass in some reaction and a positive mass in other reactions. Indeed, the 

documentation of SurreyFBA87 describes unconserved metabolites as, “those whose molecular 

masses cannot be simultaneously assigned positive values”. A more formal definition of an 

unconserved metabolite, including this basic example and algorithms for detecting them 

within networks, is found in Nikolaev205 with significant development in Gevorgyan89.  

The importance of unconserved metabolites is that whilst mathematical solutions to these 

problems exist it is never biochemically acceptable to create or destroy mass. 

Unconserved metabolites are almost always a symptom of stoichiometric inconsistencies 

within a metabolic network. 

In light of the impact unconserved metabolites can have on the accuracy of a model I used 

SurreyFBA87 to search for them in the three models of interest. 

As a result of the balanced reactions checker in MetNetMaker and my visual model 

assembly process my final model contains no unconserved metabolites. In comparison the 

Huthmacher et al.59 P. falciparum model has 7 unconserved metabolites and the Chavali 

et al.108 L. major model has 319 unconserved metabolites. The Plata et al.58 P. falciparum 

model could not even be loaded into SurreyFBA and checked for unconserved 

metabolites*. 

                                                             
* I tried searching for unconserved metabolites by first manually parsing the model and SurreyFBA 
reported none but it is unclear whether the manually parsed model was analysed correctly. 
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Reproducibility of results 

A second area for comparison between models is on the reproducibility of results. Since all 

models are constraints-based reconstructions designed for metabaolic analysis using at 

least FBA it is reasonable to expect that opening the models in commonly used FBA 

software and running a simple simulation to maximise biomass production would yield a 

result. I tried this with all three models. 

The Huthmacher et al.59 model cannot produce biomass in SurreyFBA87 or COBRA 

v1.3.3203. Constraints are not included in the model and since the analysis techniques used 

to create the published results are implemented in custom software that is not distributed 

they are almost impossible to reproduce. There are a huge number of reactions and no 

visual model, which — combined with the almost unreproducible computational results — 

makes the model less useful than it could be. 

The Plata et al.58 model produces biomass in COBRA v1.3.3203 but cannot load into 

SurreyFBA87. The model seems to contain no constraints which may limit the biological 

accuracy of its predictions. The very large number of reactions and lack of a visual model 

makes it hard to examine this network. 

The Chavali et al.108 model cannot produce biomass in SurreyFBA or COBRA 1.3.3203. The 

visual model is excellent and is clearly produced in Simpheny which may provide excellent 

analysis and visualisation tools*. In speaking with Arvind Chavali at ICSB 2010 in 

Edinburgh he mentioned that he was continuing to use his model but that a considerable 

amount of information had not made it across from Simpheny to the SBML format model 

he published.  

                                                             
* I am told that the software has matured since then but seems effectively restricted to former PhD 
students of Bernhard Palsson. 
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Summary and future directions 

 

 

 

… in 10 human metabolic pathway databases, none of the descriptions (of TCA) is 

entirely correct and consensus exists on only 3 reactions. 

Stobbe et al.206 via Ben Heaver* 

 

 

 

 

 

I have drawn conclusions on my results in each chapter and this final section does not 

repeat them. Instead I look at some of the larger issues and recent advances in systems 

biology and how these have affected and could improve my work. It is likely that many of 

the opinions in these final few pages will turn out to be wrong. 

Whilst all the ideas are my own they have often come about from discussions, largely on 

twitter, with people including, but not limited to, Fiona Achcar at the University of 

Glasgow, Natalie Stanford at the Humboldt University of Berlin, Christian Priesnitz at the 

University of Saarbrucken, Nicolas le Novère at the European Bioinformatics Institute, 

Cambridge, Mark Hucka at the California Institute of Technology, Ben Heaver at the 

Institute for Systems Biology, Seattle and Pedro Mendes, Neil Swainston and Kieran 

Smallbone all at the University of Manchester. I find twitter increasingly valuable for both 

engaging in, and observing at a distance, discussions between systems biologists all 

around the world.  

                                                             
* Postdoctoral fellow at the Institute for Systems Biology (Price group), Seattle 
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The utility of my model 

I have been stunned by the agreement between the predictions and my model and 

experimentally measured knowledge of P. falciparum metabolism. That internal fluxes, 

amino acid exchange fluxes and growth-rate are all accurately reproduced by a relatively 

simple model analysed by a simple technique still amazes me. This is true even though the 

technique has been shown to work in many other organisms. 

In both cases where my experimental measurements disagree with literature — on malate 

efflux and haemoglobin digestion rate — the model shows that differences that seem 

considerable are found in areas of high variability within the modelled metabolism of 

P. falciparum. It is very possible that even where my measured results and previously 

published results do not agree, they are both correct; they certainly both agree with my 

model of malaria metabolism. 

There’s a lot more that can be learned from my model as long as the limit of its utility is 

appreciated. I am hopeful that the work of the ParaMet consortium* will build on my 

model by using Carbon-13 fluxomics — directly measuring more internal fluxes to refine 

and confirm the predictions of the model — and by adding a model of gene activity and 

regulation similar to that reported in Chandrasekaran and Price75.  A promising avenue for 

further research is the possibility of building upon my preliminary studies of the metabolic 

response to known inhibitors of P. falciparum that I reported on page 168 with respect to 

atovaquone inhibition. An application for funding which I wrote to continue these 

metabolomics studies and improve their integration with an ever improving metabolic 

model is included as appendix IX and gives some further details on this. 

The limits of existing models 

The observation from Stobbe et al.206 on the previous page is an excellent condensation in 

136 characters of the greatest weakness and the greatest strength of current tools in 

metabolic systems biology. Existing metabolic models are often excellent for their 

designed purpose but poor in other situations and frequently in complete disagreement 

with other models of the same system built for a slightly different purpose. 

I am not convinced that enough care is being taken with existing models to explore the 

limits of their usefulness and I hope that by ensuring that a visualisation of each reaction, 

connection and connection within my network is provided, an idea of my network’s limits 

can also be appreciated. Much more rigorous work on the limitations of models and the 

                                                             
* project descriptions at http:  bit.ly SOv7HE 



229 
 

impact of uncertainty on the conclusions that can be drawn from their analysis is being 

done by Fiona Achcar207 at the University of Glasgow. 

Standards beyond SBML, ensuring models can be reused 

SBML has been a great achievement in systems biology, allowing the wide interchange and 

re-use of metabolic models. But as I have shown in this thesis it is a step forward rather 

than a solution to the problems of model re-use. The goal of the MIRIAM25 (Minimum 

Information Required In The Annotation of Models) project and the associated 

identifiers.org208 project is to allow ontologies for reactions, compounds and simulation 

parameters of biological models to be defined such that the models can be re-used and 

their results reproduced. In the words of the Wikipedia page, “MIRIAM is a community-level 

effort to standardize the annotation and curation processes of quantitative models of biological systems.” 

My model is not MIRIAM compliant and as shown in the following tweets the worthy goal 

of MIRIAM is, as yet, unrealised. 

 “MIRIAM support is really hard. I just annotated a large model and what was hard 

was to find the sources to annotate.” 

“Good #sbml annotation has to be done carefully, and the ontologies were far from 

optimal: lots of elements missing.”  

“Software tools (mine included) have a long way to go to really help with MIRIAM 

annotation... many cannot even do it.” 

Tweets from Pedro Mendes to Mike Hucka and  

Neil Swainston in 2012 on the subject of model re-use. 

Tools for FBA and FVA are unreliable; higher level analysis is hard to trust 

One of the most worrying findings in this PhD has been that basic tools that large amounts 

of published work are based upon are not reliable. The basic techniques of FBA and FVA 

are well-established and a simulation run on one piece of software should give the same 

result on another piece of software. This is not the case! 

The development of my final model took place largely in combination with analyses 

conducted in SurreyFBA87, with constraints added to the model to improve the results of 

FBA in that software. SurreyFBA is an excellent piece of software in that it can be run 

either from the command line or from an excellent small user interface called JyMet. It has 

a further considerable advantage of being free so I could install and run it easily on any 

https://twitter.com/#!/search/%23sbml
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computer. The final flux-variability analysis and gene deletion predictions were performed 

in the COBRA toolbox v1.3.3 as these types of analysis were difficult to perform in 

SurreyFBA. 

It was by using two pieces of software on the same model that I noticed some problems. As 

shown in figure 106 a large number of fluxes can vary and still give the optimal solution 

and there is no reason that two different programs should give the same solution to a 

problem as long as all fluxes lie within the allowed variabilities. The problem is that the 

COBRA toolbox v1.3.3 actually predicts a slightly (<2%) higher growth-rate than 

SurreyFBA when analysing the same model. Upon closer inspection the model was able to 

grow without any flux through the purine salvage pathways, a prediction that was clearly 

incorrect. The complexity of installing the COBRA toolbox v1.3.3 and its dependencies was 

such* that I have not tried using a newer version of the COBRA toolbox to see if this 

problem still exists. In discussions with members of John Pinney’s group at Imperial 

College London I have heard that they too have got strange results from the COBRA 

toolbox, this time with COBRApy v2.0.5. In this case the exact same problem would give a 

different optimal growth-rate each time it was solved.  

My point in raising these concerns is not to criticise existing software but to re-iterate a 

feeling I have had throughout my PhD. Systems biology is already very complex and 

advances like the Mycoplasma genitalium whole-cell model209 signal a future where 

currently separate models of different processes in organisms are joined together. Since 

errors in biological simulations have a tendency to multiply rather than fade away when 

scaled up and joined together the success of these systems may hinge on these small 

details. 

For this reason I have made considerable efforts — as discussed frequently in this thesis 

— to ensure that my model is re-usable and that the predictions it makes are both 

reproducible and, through visualisation, easy to understand and play with. I have also 

tried hard to get some idea of the uncertainties in many of the measurements I have made 

to ensure that the conclusions I have drawn are reasonable. 

Sharing ideas as well as models 

When I started my PhD the Wikipedia pages on computational biology didn’t exist and 

those on malaria were largely limited to the human impact rather than the science of the 

parasite. Since then these great introductory resources have improved markedly, in part 

thanks to the efforts of people like Alex Bateman at the Sanger Institute who have outlined 

                                                             
* I spent nearly 4 months trying to get Matlab installed, compiling and installing dependencies and 
testing the final installation before I could perform any simulations. 
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areas for improvement and encouraged researchers to engage with the platform. Pages on 

metabolic engineering, isotopic labelling and synthetic biology have all been created and 

improved in the last 18 months and are now valuable starting points for students and 

cross-disciplinary scientist like me to start exploring new fields. On a personal level I am 

extremely happy that the page I wrote on flux-balance analysis is viewed at least 120 

times a month compared to 30 times per month before I rewrote it and that is now 

available in three languages. I am very glad that the complete dismissal of tools for online 

learning and sharing of knowledge that I experienced six  years ago as an undergraduate 

has given way to an appreciation of their advantages and limitations. 

Better metabolic visualisation 

I’ve shown how combining mathematical and visual approaches to network 

reconstruction can help avoid errors that are hard to see when a reconstruction is 

performed predominantly in one of those two ways. I hope I have also caused the reader 

to pose the same questions that I have in trying to understand the behaviour of these 

networks. I am convinced that the simplification of metabolism to the pathway metaphor 

in biochemistry risks obscuring the highly connected nature of metabolism but I am also 

convinced that software tools could solve that problem and let scientists see and play with 

the complex interactions within metabolic networks. I have made efforts to solve this 

problem with my MetNetMaker software and my visual metabolic reconstruction but I 

think that outside help from the world of design will be needed to really solve the 

problem. I have tried to get this assistance via synthetic aesthetics, without success, and 

via the Wellcome Trust, with more success. 
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Synthetic aesthetics 

In 2010 I submitted a letter of interest for funding and support from the Synthetic 

Aesthetics project led by the University of Edinburgh and Stanford University whereby 

scientists would be paired with designers to try and solve similar problems. I include the 

full letter of interest, which includes my ideas on how we might fix these problems, as 

appendix IX to this thesis but three sentences of the letter provide a good summary, 

In the exciting and rapidly progressing new fields of synthetic biology and systems 

biology people are saving time by using old network design principles, often taken 

from electronic engineering, rather than thinking about the real requirements of the 

problems they face. My fear is that by reusing these existing design tools in the 

world of biology we risk obscuring a truer understanding of biological systems. To 

put it simply, I think that we are drawing biological networks just like we draw 

electronic networks not because the two are similar but because we haven’t taken 

the time to design a better way of doing things.  

Extract from my Letter of Interest for Synthetic Aesthetics210 funding 

Simalaria 

Although my application for synthetic aesthetics funding was unsuccessful many of the 

concepts were re-used in an application for funding from the Wellcome Trust which was 

successful. This short project put me in touch with a Bristol based games development 

company called MobilePie to develop a game based on my PhD research. The game is a 

scientifically accurate representation of flux-balance analysis where the user must balance 

energy creation via glycolysis and glucose consumption — and the associated energy cost 

— of DNA, Fat and Protein synthesis by the control of flux gates shown as multi-coloured 

nodes in figure 112. In two days we were unable to create more than a basic 

representation of the malaria parasite but I’m very pleased with the game’s role of proving 

that many of my ideas for better metabolic network visualisation are achievable. 

The best way to understand SIMALARIA is to play it, currently at 

http://media.mobilepie.com/simalaria/simalaria.html (currently the second hit on google 

for ‘similaria’) and playable through a web browser on Mac and Windows. 
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Figure 112 : (left) glycolyis, oxidative pentose-phosphate pathway, purine base synthesis and fatty acid elongation in 
the apicoplast in a simplified version of the complete final model. Haemoglobin digestion to scavenge amino acids is 

shown separately in the bottom-right. (right) the same model in SIMALARIA, glycolysis in orange, ribose sugar 
synthesis via the oxidative pentose phosphate cycle in green, nucleotide base synthesis via the purine synthesis 
pathway in light blue, fatty acid elongation in pink. Haemoglobin digestion requires no glucose flux but consumes 

energy in the game. 
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Appendix I : Dead-end compounds algorithm and implementation 

The algorithm behind the functioning of the dead-end compounds button can be expressed 

either as a diagram as in figure 116 or as code as in figure 113. As mentioned in chapter 2 : 

MetNetMaker the SQL queries are run and the query results output to files and displayed 

on screen using VBA code. The full code of the ExComps() subroutine that does this is 

included as figure 115 with a simplified version in figure 114 more suitable for 

understanding how the code works. 

 

Figure 113 : The six queries composing the SQL portion of the dead-end compounds algorithm. All queries refer 
either to each other or to tables in MetNetMaker’s central database shown in figure 20. Nested SQL queries break 

the algorithm down into distinct levels as shown in figure 116. 

ReactantsQuery 
SELECT DISTINCT [REACTIONS-PRODUCTS LINK].[Compound ID], [Selected Reactions].Compartment 
FROM [Selected Reactions] , [REACTIONS-PRODUCTS LINK] 
WHERE [Selected Reactions].[Reaction ID] = [REACTIONS-PRODUCTS LINK].[Reaction ID]  
AND [Selected Reactions].Rev=False 
UNION 
SELECT DISTINCT [REACTIONS-REACTANTS LINK].[Compound ID], [Selected Reactions].Compartment 
FROM [Selected Reactions] , [REACTIONS-REACTANTS LINK]  
WHERE [Selected Reactions].[Reaction ID] = [REACTIONS-REACTANTS LINK].[Reaction ID] 
AND [Selected Reactions].Rev=True 
 

ProductsQuery 
SELECT DISTINCT [REACTIONS-PRODUCTS LINK].[Compound ID], [Selected Reactions].Compartment 
FROM [Selected Reactions] , [REACTIONS-PRODUCTS LINK] 
WHERE [Selected Reactions].[Reaction ID] = [REACTIONS-PRODUCTS LINK].[Reaction ID]  
AND [Selected Reactions].Rev=True 
UNION 
SELECT DISTINCT [REACTIONS-REACTANTS LINK].[Compound ID], [Selected Reactions].Compartment 
FROM [Selected Reactions] , [REACTIONS-REACTANTS LINK]  
WHERE [Selected Reactions].[Reaction ID] = [REACTIONS-REACTANTS LINK].[Reaction ID] 
AND [Selected Reactions].Rev=False 
 

CompoundsInOnly 
SELECT ReactantsQuery.[Compound ID], ReactantsQuery.Compartment 
FROM ReactantsQuery  
LEFT JOIN ProductsQuery ON ReactantsQuery.[Compound ID] = ProductsQuery.[Compound ID] 
WHERE ProductsQuery.[Compound ID] Is Null 
 

CompoundsOutOnly 
SELECT ProductsQuery.[Compound ID], ProductsQuery.Compartment 
FROM ProductsQuery  
LEFT JOIN ReactantsQuery ON ProductsQuery.[Compound ID] = ReactantsQuery.[Compound ID] 
WHERE ReactantsQuery.[Compound ID] Is Null 
 

CompoundsInOutputQuery 
SELECT CompoundsInOnly.[Compound ID], CompoundsInOnly.[Compartment],  
[PREFERRED COMPOUND NAME].[Compound Name]  
FROM CompoundsInOnly , [PREFERRED COMPOUND NAME]  
WHERE CompoundsInOnly.[Compound ID] = [PREFERRED COMPOUND NAME].CompoundID 
 

CompoundsOutOutputQuery 
SELECT CompoundsOutOnly.[Compound ID], CompoundsOutOnly.[Compartment],  
[PREFERRED COMPOUND NAME].[Compound Name]  
FROM CompoundsOutOnly , [PREFERRED COMPOUND NAME]  
WHERE CompoundsOutOnly.[Compound ID] = [PREFERRED COMPOUND NAME].CompoundID 
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Figure 114 : Simplified version of the VBA code to run the SQL queries in figure 113 and output the results to a text 
file which is then opened with Notepad. 

 

Simplified Export Subroutine (no screen display, no formatting, no error handling) 
Sub ExComps() 
 OutputPath = Application.CurrentProject.Path & "\excompstemp.txt"  
 Open OutputPath For Output As #5 
 
 Set ta20 = CurrentDb.OpenRecordset(CompoundsInOutputQuery, dbOpenSnapshot) 
 While Not ta20.EOF 'Compounds that only enter the network 
  Print #5, ta20.[Compound ID] & Chr(9) & ta20.[Compartment] & Chr(9) & ta20.[Compound Name] 
  ta20.MoveNext 
 Wend 
 
 Set ta21 = CurrentDb.OpenRecordset(CompoundsOutOutputQuery, dbOpenSnapshot) 
 While Not ta21.EOF 'Compounds that only exit the network 
  Print #5, ta21.[Compound ID] & Chr(9) & ta21.[Compartment] & Chr(9) & ta21.[Compound Name] 
  ta21.MoveNext 
 Wend 
  
 Close #5 
 VBA.Shell ("Notepad.exe " & Application.CurrentProject.Path & "\excompstemp.txt") 'Opens the file in notepad 
End Sub 
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Figure 115 : Full version of the VBA code to run the SQL queries in figure 113 and output the results to a text file 
which is then opened with Notepad and displays the results as an on-screen notification. 

Full Export Subroutine 
Sub ExComps() 
 Dim SQLstring As String 
 Dim ta20 As Object 
 Dim OutputPath As String 
 Dim MessageText As String 
 Dim CompartmentHolder As String 
 Dim IDHolder As String 
 
 Forms("Reaction Picker").Requery 'Refresh before 
 
 MessageText = "This list may be truncated, a full copy has been opened in Notepad. Copy into a spreadsheet for correct formatting."  + vbNewLine + vbNewLine 
 
 OutputPath = Application.CurrentProject.Path & "\excompstemp.txt" 
 Open OutputPath For Output As #5 'The numbers here shouldn't matter, chosen to avoid any chance of conflict 
 SQLstring = "SELECT CompoundsInOnly.[Compound ID], CompoundsInOnly.[Compartment], [PREFERRED COMPOUND NAME].[Compound Name] FROM 
CompoundsInOnly INNER JOIN [PREFERRED COMPOUND NAME] ON CompoundsInOnly.[Compound ID] = [PREFERRED COMPOUND NAME].CompoundID;" 
 Set ta20 = CurrentDb.OpenRecordset(SQLstring, dbOpenSnapshot) 
 Print #5, "Compounds that only enter the network" 
 MessageText = MessageText + "Compounds that only enter the network" + vbNewLine 
 Print #5, "-------------------------------------" 
 MessageText = MessageText + "-------------------------------------" + vbNewLine 
 Print #5, "" 
 MessageText = MessageText + "" + vbNewLine 
 Print #5, "ID" & Chr(9) & "Compartment" & Chr(9) & "Name" 
 MessageText = MessageText + "Compound ID" & Chr(9) & "Compartment" & Chr(9) & "Compound Name" + vbNewLine 
  

While Not ta20.EOF 
  CompartmentHolder = ta20.[Compartment] 
  IDHolder = ta20.[Compound ID] 
  If Len(CompartmentHolder) < 10 Then 'Hack to double the number of tabs if compartment is short to make the output align 
   CompartmentHolder = CompartmentHolder + Chr(9) 
  End If 
  If Len(IDHolder) < 10 Then 
   IDHolder = IDHolder + Chr(9) 
  End If 
  Print #5, ta20.[Compound ID] & Chr(9) & ta20.[Compartment] & Chr(9) & ta20.[Compound Name] 
  MessageText = MessageText + IDHolder & Chr(9) & CompartmentHolder & Chr(9) & ta20.[Compound Name] + vbNewLine 
  ta20.MoveNext 
 Wend 
 
 Print #5, "" 
 MessageText = MessageText + "" + vbNewLine 
 SQLstring = "SELECT CompoundsOutOnly.[Compound ID], CompoundsOutOnly.[Compartment], [PREFERRED COMPOUND NAME].[Compound Name] FROM 
CompoundsOutOnly INNER JOIN [PREFERRED COMPOUND NAME] ON CompoundsOutOnly.[Compound ID] = [PREFERRED COMPOUND NAME].CompoundID;" 
 Set ta20 = CurrentDb.OpenRecordset(SQLstring, dbOpenSnapshot) 
 Print #5, "Compounds that only exit the network" 
 MessageText = MessageText + "Compounds that only exit the network" + vbNewLine 
 Print #5, "------------------------------------" 
 MessageText = MessageText + "-------------------------------------" + vbNewLine 
 Print #5, "" 
 MessageText = MessageText + "" + vbNewLine 
 Print #5, "ID" & Chr(9) & "Compartment" & Chr(9) & "Name" 
 MessageText = MessageText + "Compound ID" & Chr(9) & "Compartment" & Chr(9) & "Compound Name" + vbNewLine 
 
 While Not ta20.EOF 
  CompartmentHolder = ta20.[Compartment] 
  IDHolder = ta20.[Compound ID] 
  If Len(CompartmentHolder) < 10 Then 'Hack to double the number of tabs if compartment is short to make the output align 
   CompartmentHolder = CompartmentHolder + Chr(9) 
  End If 
  If Len(IDHolder) < 10 Then 
   IDHolder = IDHolder + Chr(9) 
  End If 
  Print #5, ta20.[Compound ID] & Chr(9) & ta20.[Compartment] & Chr(9) & ta20.[Compound Name] 
  MessageText = MessageText + IDHolder & Chr(9) & CompartmentHolder & Chr(9) & ta20.[Compound Name] + vbNewLine 
  ta20.MoveNext 
 Wend 
 
 MsgBox MessageText, vbDefaultButton1, "Dead-End Compounds"  

Close #5  
VBA.Shell ("Notepad.exe " & Application.CurrentProject.Path & "\excompstemp.txt") 'Opens the file in notepad 

End Sub 
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Figure 116 : Visual representation of the algorithm for returning dead-end compounds as represented as a set of SQL queries in figure 113. 
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[REACTIONS-REACTANTS LINK] Reaction ID Com pound ID Reaction ID Com pound ID [REACTIONS-PRODUCTS LINK]
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[CompoundsInOnly] Com pounds ID Com partm ent Com pounds ID Com partm ent [CompoundsOutOnly]
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[CompoundsInOutputQuery] Com pounds ID Com partm ent Compound Name Com pounds ID Com partm ent Compound Name [CompoundsOutOutputQuery]

Rev = true

Rev = falseRev = false
Rev = true

If not in other 
table

Distinct
Distinct

Distinct

Distinct

[PREFERRED COMPOUND NAME]
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Appendix II : Example reconstruction and evidence checker spreadsheet 

 

Table 33 : Reactions for pyrimidine metabolism in P. falciparum in the evidence checker spreadsheet ready for import back into MetNetMaker for export and manipulation. 

Reaction Id Compartment EC Number
Max +ve 

Flux

Max -ve 

Flux
Objective

Map 

Number
Gene Rev SharkHunt PlasmoDB BRENDA KEGG Direction Notes

R00156 Cytosol 2.7.4.6 500 -500 FALSE 00240 PF13_0349, PFF0275c FALSE 4.2E-58 yes BRENDA reversible

R00158 Cytosol 2.7.4.14 500 -500 FALSE 00240 PFA0555c FALSE 0.001 yes BRENDA reversible

R00512 Cytosol 2.7.4.14 500 -500 FALSE 00240 PFA0555c FALSE 0.001 yes BRENDA reversible not in MPMP

R00570 Cytosol 2.7.4.6 500 -500 FALSE 00240 PF13_0349, PFF0275c FALSE 4.2E-58 yes BRENDA reversible

R00571 Cytosol 6.3.4.2 500 -500 FALSE 00240 PF14_0100 FALSE 0 yes DIRECT EVIDENCE forward not in MPMP

R00573 Cytosol 6.3.4.2 500 -500 FALSE 00240 PF14_0100 FALSE 0 yes DIRECT EVIDENCE forward

R00575_balanced Cytosol 6.3.5.5 500 -500 FALSE 00240 PF13_0044 FALSE 0.0000019 yes BRENDA not in MPMP

R00965 Cytosol 4.1.1.23 500 -500 FALSE 00240 PF10_0225 FALSE 2.8E-14 yes DIRECT EVIDENCE forward

R01665 Cytosol 2.7.4.14 500 -500 FALSE 00240 PFA0555c FALSE 0.001 yes BRENDA forward not in MPMP

R01867 Cytosol 1.3.3.1 500 -500 FALSE 00240 PFF0160c FALSE 2E-88 yes DIRECT EVIDENCE reversible

R01870 Cytosol 2.4.2.10 500 -500 FALSE 00240 PFE0630c FALSE 5.5E-32 yes DIRECT EVIDENCE reversible

R01993 Cytosol 3.5.2.3 500 -500 FALSE 00240 PF14_0697 FALSE 1.9E-45 yes DIRECT EVIDENCE reversible

R02016 Cytosol 1.8.1.9 500 -500 FALSE 00240 PFI1170c FALSE 0.036 yes DIRECT EVIDENCE forward

R02018 Cytosol 1.17.4.1 500 -500 FALSE 00240 PF10_0154, PF14_0053, PF14_0352 FALSE 0 yes DIRECT EVIDENCE forward

R02024 Cytosol 1.17.4.1 500 -500 FALSE 00240 PF10_0154, PF14_0053, PF14_0352 FALSE 0 yes DIRECT EVIDENCE forward

R02093 Cytosol 2.7.4.6 500 -500 FALSE 00240 PF13_0349, PFF0275c FALSE 4.2E-58 yes BRENDA reversible

R02094 Cytosol 2.7.4.9 500 -500 FALSE 00240 PFL2465c FALSE 1.4E-48 yes DIRECT EVIDENCE reversible

R02098 Cytosol 2.7.4.9 500 -500 FALSE 00240 PFL2465c FALSE 1.4E-48 yes DIRECT EVIDENCE reversible

R02100 Cytosol 3.6.1.23 500 -500 FALSE 00240 PF11_0282 FALSE 3.2E-19 yes DIRECT EVIDENCE forward

R02101 Cytosol 2.1.1.45 500 -500 FALSE 00240 PFD0830w FALSE 6E-61 yes DIRECT EVIDENCE forward

R02326 Cytosol 2.7.4.6 500 -500 FALSE 00240 PF13_0349, PFF0275c FALSE 4.2E-58 yes BRENDA reversible

R02331 Cytosol 2.7.4.6 500 -500 FALSE 00240 PF13_0349, PFF0275c FALSE 4.2E-58 yes BRENDA reversible

R00132 Cytosol 4.2.1.1 500 -500 FALSE 00240 PF11_0410 FALSE 3.8E-10 yes BRENDA

R01397 Cytosol 2.1.3.2 500 -500 FALSE 00240 MAL13P1.221 FALSE 3.9E-89 yes no forward

R02325 Cytosol 3.5.4.13 500 -500 FALSE 00240 PF13_0259 FALSE no yes no forward

R00945 Cytosol 2.1.2.1 500 -500 FALSE 00240 PF14_0534, PFL1720w FALSE 9E-146 yes DIRECT EVIDENCE

CarbonicAcid_disoc Cytosol spontaneous 500 -500 FALSE 00240 FALSE
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Table 34 : Evidence summary from the ECinfo database as presented in the evidence checker spreadsheet and used to help judge the existence of the reactions in table 33 and populate them with 
additional information for SBML export. 

  

Reaction Id By EC number -> Gene
By Reaction ID -> 

EC

By EC number 

(best)

By Reaction ID 

(best)

By EC 

number

By Reaction ID 

(best)
By EC number By Reaction ID

Balanced

R00156 4.2E-58 PF13_0349, PFF0275c 2.7.4.6 R00156 BRENDA BRENDA PF13_0349, PFF0275c PF13_0349 reversible True

R00158 0.001 PFA0555c 2.7.4.14 R00158 BRENDA BRENDA MAL1P2.40 MAL1P2.40 reversible True

R00512 0.001 PFA0555c 2.7.4.14 no BRENDA BRENDA MAL1P2.40 MAL1P2.40 reversible True

R00570 4.2E-58 PF13_0349, PFF0275c 2.7.4.6 R00570 BRENDA BRENDA PF13_0349, PFF0275c PF13_0349 reversible True

R00571 0 PF14_0100 6.3.4.2 no DIRECT EVIDENCE DIRECT EVIDENCE PF14_0100 PF14_0100 forward True

R00573 0 PF14_0100 6.3.4.2 R00573 DIRECT EVIDENCE DIRECT EVIDENCE PF14_0100 PF14_0100 forward True

R00575_balanced 0.0000019 PF13_0044 no no BRENDA no PF13_0044 #N/A #N/A

R00965 2.8E-14 PF10_0225 4.1.1.23 R00965 DIRECT EVIDENCE DIRECT EVIDENCE PF10_0225 PF10_0225 forward True

R01665 0.001 PFA0555c 2.7.4.14 no BRENDA BRENDA MAL1P2.40 MAL1P2.40 forward True

R01867 2E-88 PFF0160c 1.3.3.1 R01867 DIRECT EVIDENCE DIRECT EVIDENCE PFF0160c PFF0160c reversible True

R01870 5.5E-32 PFE0630c 2.4.2.10 R01870 DIRECT EVIDENCE DIRECT EVIDENCE soluble soluble PFE0630c PFE0630c reversible True

R01993 1.9E-45 PF14_0697 3.5.2.3 R01993 DIRECT EVIDENCE DIRECT EVIDENCE PF14_0697 PF14_0697 reversible True

R02016 0.036 PFI1170c 1.8.1.9 R02016 DIRECT EVIDENCE DIRECT EVIDENCE PFI1170c PFI1170c forward True

R02018 0 PF10_0154, PF14_0053, PF14_0352 1.17.4.1 R02018 DIRECT EVIDENCE DIRECT EVIDENCE PF10_0154, PF14_0053, PF14_0352 PF10_0154 forward True

R02024 0 PF10_0154, PF14_0053, PF14_0352 1.17.4.1 R02024 DIRECT EVIDENCE DIRECT EVIDENCE PF10_0154, PF14_0053, PF14_0352 PF10_0154 forward True

R02093 4.2E-58 PF13_0349, PFF0275c 2.7.4.6 R02093 BRENDA BRENDA PF13_0349, PFF0275c PF13_0349 reversible True

R02094 1.4E-48 PFL2465c 2.7.4.9 R02094 DIRECT EVIDENCE DIRECT EVIDENCE PFL2465c PFL2465c reversible True

R02098 1.4E-48 PFL2465c 2.7.4.9 R02098 DIRECT EVIDENCE DIRECT EVIDENCE PFL2465c PFL2465c reversible True

R02100 3.2E-19 PF11_0282 3.6.1.23 R02100 DIRECT EVIDENCE DIRECT EVIDENCE intracellular intracellular PF11_0282 PF11_0282 forward True

R02101 6E-61 PFD0830w 2.1.1.45 R02101 DIRECT EVIDENCE DIRECT EVIDENCE PFD0805w PFD0805w forward True

R02326 4.2E-58 PF13_0349, PFF0275c 2.7.4.6 R02326 BRENDA BRENDA PF13_0349, PFF0275c PF13_0349 reversible True

R02331 4.2E-58 PF13_0349, PFF0275c 2.7.4.6 R02331 BRENDA BRENDA PF13_0349, PFF0275c PF13_0349 reversible True

R00132 3.8E-10 PF11_0410 4.2.1.1 R00132 BRENDA BRENDA no #N/A True

R01397 3.9E-89 MAL13P1.221 2.1.3.2 R01397 no no MAL13P1.221 MAL13P1.221 forward True

R02325 no PF13_0259 3.5.4.13 R02325 no no no #N/A forward True

R00945 9E-146 PF14_0534, PFL1720w 2.1.2.1 R00945 DIRECT EVIDENCE DIRECT EVIDENCE cytosol cytosol MAL13P1.67, PFL1720w MAL13P1.67 True

CarbonicAcid_disoc

KEGG pfa KEGG directionSharkHunt PlasmoDB MPMP BRENDA HIT BRENDA Localisation
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Appendix III : RPMI components 

 

Table 35 : Components of RPMI 1640 growth medium211. 

COMPONENTS Molecular Weight Concentration (mg/L) mM

Glycine 75 10 0.133

L-Arginine 174 200 1.15

L-Asparagine 132 50 0.379

L-Aspartic acid 133 20 0.15

L-Cystine 240 20 0.0833

L-Glutamic Acid 147 20 0.136

L-Glutamine 146 300 2.05

L-Histidine 155 15 0.0968

L-Hydroxyproline 131 20 0.153

L-Isoleucine 131 50 0.382

L-Leucine 131 50 0.382

L-Lysine hydrochloride 146 40 0.274

L-Methionine 149 15 0.101

L-Phenylalanine 165 15 0.0909

L-Proline 115 20 0.174

L-Serine 105 30 0.286

L-Threonine 119 20 0.168

L-Tryptophan 204 5 0.0245

L-Tyrosine 181 20 0.11

L-Valine 117 20 0.171

Biotin 244 0.2 0.00082

Choline chloride 140 3 0.0214

D-Calcium pantothenate 477 0.25 0.000524

Folic Acid 441 1 0.00227

Niacinamide 122 1 0.0082

Para-Aminobenzoic Acid 137 1 0.0073

Pyridoxine hydrochloride 206 1 0.00485

Riboflavin 376 0.2 0.000532

Thiamine hydrochloride 337 1 0.00297

Vitamin B12 1355 0.005 3.7E-06

i-Inositol 180 35 0.194

Calcium nitrate (Ca(NO3)2 4H2O) 236 100 0.424

Magnesium Sulfate (MgSO4-7H2O) 246 100 0.407

Potassium Chloride (KCl) 75 400 5.33

Sodium Bicarbonate (NaHCO3) 84 2000 23.81

Sodium Chloride (NaCl) 58 5500 94.83

Sodium Phosphate dibasic (Na2HPO4) anhydrous 142 800 5.63

D-Glucose (Dextrose) 180 2000 11.11

Glutathione (reduced) 307 1 0.00326

HEPES 238 5958 25.03

Phenol Red 376.4 5 0.0133

Amino Acids

Vitamins

Inorganic Salts

Other Components
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Appendix IV : Free components of the biomass function 

In my analysis of Table 1 in Teng et al.146 I took the maximum measured concentration of 

each metabolite from each of the extraction methods and converted from a milliMolar 

concentration to        parasites. The total mass measured in their experiment is 

536.8        parasites, around a twentieth of the total mass that I have measured of total 

biomass per parasite. It is clear that the paper only reports free metabolites, not the 

composition of the biomass. It is possible that digesting the proteins and DNA/RNA 

polymers to monomers and repeating their analysis techniques could accurately 

determine the biomass composition of P. falciparum. 

 

 

Table 36 : Table created from calculations based on Table 1 in Teng. et al. Reported concentrations of metabolites 

have been converted from milliMolar concentration to       parasites. Note the very high standard deviations 
showing the inherent variability in the biology of the system. 

Metabolite Best estimate Standard Deviation

Alanine (Ala) 5.2 2.0

GABA 6.6 1.4

Arginine (Arg) 20.5 5.4

Asparagine (Asn) 9.6 4.8

Aspartate (Asp) 7.5 1.9

Glutamate (Glu) 45.3 16.5

Glutamine (Gln) 7.0 1.6

Glycine (Gly) 3.4 1.3

Histidine (His) 2.6 1.0

Isoleucine (Ile) 4.0 2.2

Leucine (Leu) 10.3 4.0

Lysine (Lys) 13.9 4.9

Methionine (Met) 1.8 1.2

Phenylalanine (Phe) 4.2 1.9

Serine (Ser) 4.4 2.4

Threonine (Thr) 6.0 3.0

Tyrosine (Tyr) 4.1 1.5

Valine (Val) 4.6 1.6

Total amino acids 160.9 58.6

Reduced (GSH) 46.5 10.3

Oxidised (GSSG) 29.2 12.0

myo-Inositol (Ins) 1.2 0.4

Phosphocholine (PC) 7.7 1.6

Phosphoethanolamine (PE) 17.8 5.9

AMP 5.3 3.2

ADP 13.2 4.8

ATP 28.4 12.8

UMP, CMP, (U/C MP) 11.8 7.3

UDP, CDP, UTP, CTP, (U/C D/T P) 31.7 10.2

NAD+ 53.9 9.3

Acetate 1.3 0.8

Formate 0.3 0.1

Fumarate 0.7 0.2

alpha-Ketoglutarate (alpha-KG) 2.0 1.6

Lactate (Lac) 2.8 2.0

Malate (Mal) 6.8 1.9

Succinate (Succ) 1.4 0.2

Ethanol 0.6 0.4

HEPES 80.1 13.3

Putrescine (Put) 7.2 2.0

Spermidine (Spd) 23.2 6.5

Spermine (Spm) 2.9 0.6

Total 536.8 224.8

  𝑥                       
                  

Colours refer to extraction methods used,

perchloric acid (n=13)

methanol/water (n=12)

methanol/chloroform/water (n=10)

Notes:

* Ethanol results are not reported as they were determined to 

be the result of contamination during preparation.

* The following metabolites were not measurable,

* No reliable method of measuring any lipids was found.

Glycerophosphocholine (GPC), Glycerophosphothanolamine (GPE), 

GMP, GDP, GTP, Hypoxanthine, IMP, NADP+, Citrate, Pyruvate.
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Appendix V : Measured exchange fluxes 

Carbon source exchange flux calculations 

 

Table 37 : Sara A carbon source flux calculations. 

 

Table 38 : Sara B carbon source flux calculations. 

 

Table 39 : Tom repeat of Jennifer carbon source flux calculations.  
No glycerol production was detected.  

Value Glucose Lactate Glycerol Glutamine

-0.79 0.45 0.00 -0.06

-1.57 1.03 0.04 -0.08

0.13 0.02 0.00 0.02

0.39 0.06 0.01 0.01

0.41 0.06 0.01 0.02

-0.82 0.60 0.04 -0.02

-18.2 13.2 0.8 -0.4

50% 10% 14% 125%

-1010 1470

Units

    

  

    

  

  

  

  
  

  

     mg/RBC/hour

     mg/infected RBC/hour

    nmol/infected RBC/hour

Value Glucose Lactate Glycerol Glutamine

-0.79 0.45 0.00 -0.06

-1.05 0.60 0.02 -0.07

0.13 0.02 0.00 0.02

0.23 0.01 0.00 0.00

0.27 0.02 0.00 0.02

-0.29 0.17 0.02 -0.01

-8.2 4.8 0.7 -0.2

92% 13% 5% 302%

-458 530

Units

    

  

    

  

  

  

  
  

  

     mg/RBC/hour

     mg/infected RBC/hour

    nmol/infected RBC/hour

Value Glucose Lactate Glutamine

-0.26 0.68 0.04

-0.93 1.06 -0.05

0.22 0.07 0.03

0.10 0.03 0.01

0.25 0.07 0.03

-0.69 0.41 -0.09

-16.74 9.97 -2.14

36% 18% 38%

-929 1107

Units

    

  

    

  

  

  

  
  

  

     mg/RBC/hour

     mg/infected RBC/hour

    nmol/infected RBC/hour
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Amino acid exchange flux calculations 

 

Table 40 : Sara A amino acid flux calculations.  
Hypoxanthine is listed last as its NMR assignment is unclear. 

 

Table 41 : Sara B amino acid flux calculations.  
Hypoxanthine is listed last as its NMR assignment is unclear. 

 

Table 42 : Tom repeat of Jennifer amino acid flux calculations.  
Hypoxanthine is listed last as its NMR assignment is unclear. 

  

Value Valine Leucine Isoleucine Alanine Tyrosine Phenylalanine Hypoxanthine

0.000 -0.001 -0.003 0.000 -0.005 -0.001 -0.016

0.007 0.001 0.001 0.014 -0.001 0.002 -0.004

0.002 0.002 0.002 0.000 0.001 0.001 0.002

0.002 0.003 0.001 0.002 0.002 0.003 0.001

0.002 0.004 0.002 0.002 0.002 0.003 0.002

0.008 0.002 0.004 0.014 0.003 0.004 0.012

0.21 0.06 0.11 0.41 0.10 0.10 0.33

31% 184% 47% 13% 53% 86% 16%

Units

    

  

    

  

  

  

  
  

     mg/RBC/hour

     mg/infected RBC/hour

Value Valine Leucine Isoleucine Alanine Tyrosine Phenylalanine Hypoxanthine

0.000 -0.001 -0.003 0.000 -0.005 -0.001 -0.016

0.003 0.000 -0.002 0.004 0.001 0.002 -0.006

0.002 0.002 0.002 0.000 0.001 0.001 0.002

0.001 0.001 0.004 0.002 0.002 0.001 0.004

0.002 0.002 0.005 0.002 0.002 0.001 0.004

0.003 0.001 0.001 0.004 0.005 0.004 0.009

0.07 0.03 0.01 0.08 0.12 0.09 0.21

56% 198% 721% 67% 45% 32% 48%

Units

    

  

    

  

  

  

  
  

     mg/RBC/hour

     mg/infected RBC/hour

Value Valine Leucine Isoleucine Alanine Tyrosine Phenylalanine Hypoxanthine

0.002 -0.002 0.002 0.007 0.001 0.002 0.000

0.011 0.003 0.002 0.019 0.003 0.011 -0.006

0.002 0.003 0.005 0.001 0.003 0.003 0.012

0.002 0.002 0.001 0.002 0.001 0.003 0.008

0.003 0.003 0.005 0.002 0.004 0.004 0.014

0.009 0.005 0.000 0.012 0.002 0.010 -0.007

0.22 0.12 0.00 0.29 0.06 0.24 -0.16

35% 67% 12088% 21% 147% 37% 211%

Units

    

  

    

  

  

  

  
  

     mg/RBC/hour

     mg/infected RBC/hour
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Appendix VI: Key amino acid compositions 

Key amino acid compositions, full tables 

 

Table 43 : Amino acid composition of 2 α-subunits + 2 β-subunits of the human haemoglobin molecule ordered by 
total weight per mol of haemoglobin. The molecular weights given are those of the amino acid after it has formed a 

protein. 

Name
Molecular 

Weight (g/mol)
Count

Weight per mole 

of haemoglobin (g)

Percent by 

Weight

Percent by amino 

acid count

Leucine 113 72 8142 13.0% 12.5%

Valine 99 62 6142 9.8% 10.7%

Lysine 128 44 5636 9.0% 7.6%

Histidine 137 38 5208 8.3% 6.6%

Alanine 71 72 5115 8.2% 12.5%

Phenylalanine 147 30 4412 7.1% 5.2%

Aspartate 115 30 3451 5.5% 5.2%

Threonine 101 32 3234 5.2% 5.5%

Glutamate 129 24 3097 5.0% 4.2%

Serine 87 32 2785 4.5% 5.5%

Proline 97 28 2717 4.4% 4.8%

Asparagine 114 20 2281 3.7% 3.5%

Glycine 57 40 2281 3.7% 6.9%

Tyrosine 163 12 1957 3.1% 2.1%

Arginine 156 12 1873 3.0% 2.1%

Methionine 131 10 1310 2.1% 1.7%

Tryptophan 186 6 1116 1.8% 1.0%

Glutamine 128 8 1024 1.6% 1.4%

Cysteine 103 6 618 1.0% 1.0%

Isoleucine 113 0 0 0.0% 0.0%
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Table 44 : Amino acid use in the P. falciparum proteome, adapted from Chanda et al.176. The molecular weights 
given are those of the amino acid after it has formed a protein. 

  

Amino Acid Percent by weight
Percent by amino 

acid count

Asparagine 13.1% 12.2%

Lysine 12.0% 11.6%

Isoleucine 8.5% 9.3%

Glutamate 8.3% 7.0%

Leucine 7.4% 8.1%

Tyrosine 7.3% 5.5%

Aspartate 6.5% 6.0%

Phenylalanine 5.5% 4.6%

Serine 4.4% 6.3%

Arginine 4.1% 2.9%

Threonine 3.4% 4.2%

Valine 3.3% 4.1%

Glutamine 2.9% 2.8%

Histidine 2.8% 2.2%

Methionine 2.7% 2.2%

Proline 2.0% 2.2%

Glycine 1.9% 3.1%

Cysteine 1.8% 1.8%

Alanine 1.4% 2.4%

Tryptophan 0.8% 0.5%
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Appendix VII : Single gene deletions that affect growth-rate 

 

Gene
Relative 

Growth

Associated 

Reaction(s)
Reaction Name(s)

Associated EC 

number

MAL13P1.221 0 R01397 carbamoyl-phosphate:L-aspartate carbamoyltransferase 2.1.3.2

MAL13P1.40 0 R01512 ATP:3-phospho-D-glycerate 1-phosphotransferase 2.7.2.3

MAL8P1.156 0 R01819 D-mannose-6-phosphate aldose-ketose-isomerase 5.3.1.8

PF07_0072 0 R04779 ATP:D-fructose-6-phosphate 1-phosphotransferase 2.7.1.11

PF08_0062 0 R00127 ATP:AMP phosphotransferase 2.7.4.3

PF08_0066 0

R03815

R07618

R07618

dihydrolipoylprotein:NAD+ oxidoreductase

enzyme N6-(dihydrolipoyl)lysine:NAD+ oxidoreductase

enzyme N6-(dihydrolipoyl)lysine:NAD+ oxidoreductase

1.8.1.4

1.8.1.4

1.8.1.4

PF08_0071 0 R00275 superoxide:superoxide oxidoreductase 1.15.1.1

PF08_0077 0 R00888 GDP-mannose 4,6-hydro-lyase(GDP-4-dehydro-6-deoxy-D-mannose-forming) 4.2.1.47

PF10_0086 0 R00127 ATP:AMP phosphotransferase 2.7.4.3

PF10_0123 0 R01231 Xanthosine-5'-phosphate:L-glutamine amido-ligase (AMP-forming) 6.3.5.2

PF10_0137 0 R05692 GDP-L-fucose:NADP+ 4-oxidoreductase (3,5-epimerizing) 1.1.1.271

PF10_0154 0

R02017

R02018

R02019

R02023

R02024

2'-Deoxyadenosine 5'-diphosphate:oxidized-thioredoxin2'-oxidoreductase

2'-Deoxyuridine 5'-diphosphate:oxidized-thioredoxin2'-oxidoreductase

2'-Deoxyguanosine 5'-diphosphate:oxidized-thioredoxin2'-oxidoreductase

2'-Deoxyuridine 5'-triphosphate:oxydized-thioredoxin2'-oxidoreductase

2'-Deoxycytidine diphosphate:oxidized-thioredoxin 2'-oxidoreductase

1.17.4.1

1.17.4.1

1.17.4.1

1.17.4.1

1.17.4.1

PF10_0155 0 R00658 2-phospho-D-glycerate hydro-lyase (phosphoenolpyruvate-forming) 4.2.1.11

PF10_0169 0 R01818 D-Mannose 6-phosphate 1,6-phosphomutase 5.4.2.8

PF10_0218 0 R00351 acetyl-CoA:oxaloacetate C-acetyltransferase (thioester-hydrolysing) 2.3.3.1

PF10_0225 0 R00965 orotidine-5'-phosphate carboxy-lyase (UMP-forming) 4.1.1.23

PF10_0363 0
R00200

R00200

ATP:pyruvate 2-O-phosphotransferase

ATP:pyruvate 2-O-phosphotransferase

2.7.1.40

2.7.1.40

PF10_0407 0 R02569 acetyl-CoA:enzyme N6-(dihydrolipoyl)lysine S-acetyltransferase 2.3.1.12

PF10_0409 0
R00742_balanced

R04386_balanced

Acetyl-CoA:carbon-dioxide ligase (ADP-forming)_balanced

Acetyl-CoA:carbon-dioxide ligase (ADP-forming)_balanced

6.4.1.2

6.4.1.2
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Gene
Relative 

Growth

Associated 

Reaction(s)
Reaction Name(s)

Associated EC 

number

PF11_0145 0 R02530 (R)-S-Lactoylglutathione methylglyoxal-lyase (isomerizing) 4.4.1.5

PF11_0157 0 R00842 sn-Glycerol-3-phosphate:NAD+ 2-oxidoreductase 1.1.1.8

PF11_0208 0 R01518 2-Phospho-D-glycerate 2,3-phosphomutase 5.4.2.1

PF11_0256 0
R00014

R03270

pyruvate:thiamin diphosphate acetaldehydetransferase(decarboxylating)

NO NAME

1.2.4.1

1.2.4.1

PF11_0294 0 R04779 ATP:D-fructose-6-phosphate 1-phosphotransferase 2.7.1.11

PF13_0044 0
R00149

R00575_balanced

Carbon-dioxide:ammonia ligase(ADP-forming,carbamate-phosphorylating)

hydrogen-carbonate:L-glutamine amido-ligase (ADP-forming,carbamate-phosphorylating)_balanced

6.3.4.16

6.3.5.5

PF13_0141 0 R00703 (S)-Lactate:NAD+ oxidoreductase 1.1.1.27

PF13_0143 0 R01049 ATP:D-ribose-5-phosphate diphosphotransferase 2.7.6.1

PF13_0144 0 R00703 (S)-Lactate:NAD+ oxidoreductase 1.1.1.27

PF13_0157 0 R01049 ATP:D-ribose-5-phosphate diphosphotransferase 2.7.6.1

PF13_0229 0
R01325

R01900

citrate hydro-lyase (cis-aconitate-forming)

isocitrate hydro-lyase (cis-aconitate-forming)

4.2.1.3

4.2.1.3

PF13_0242 0 R00267 Isocitrate:NADP+ oxidoreductase (decarboxylating) 1.1.1.42

PF13_0269 0 R00847 ATP:glycerol 3-phosphotransferase 2.7.1.30

PF13_0349 0

R00124

R00156

R00330

R00570

R01137

R01857

R02093

R02326

R02331

ATP:ADP phosphatransferase

ATP:UDP phosphotransferase

ATP:GDP phosphotransferase

ATP:CDP phosphotransferase

ATP:dADP phosphotransferase

ATP:dGDP phosphotransferase

ATP:dTDP phosphotransferase

ATP:dCDP phosphotransferase

ATP:dUDP phosphotransferase

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6
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Gene
Relative 

Growth

Associated 

Reaction(s)
Reaction Name(s)

Associated EC 

number

PF14_0053 0

R02017

R02018

R02019

R02023

R02024

2'-Deoxyadenosine 5'-diphosphate:oxidized-thioredoxin2'-oxidoreductase

2'-Deoxyuridine 5'-diphosphate:oxidized-thioredoxin2'-oxidoreductase

2'-Deoxyguanosine 5'-diphosphate:oxidized-thioredoxin2'-oxidoreductase

2'-Deoxyuridine 5'-triphosphate:oxydized-thioredoxin2'-oxidoreductase

2'-Deoxycytidine diphosphate:oxidized-thioredoxin 2'-oxidoreductase

1.17.4.1

1.17.4.1

1.17.4.1

1.17.4.1

1.17.4.1

PF14_0100 0 R00573 UTP:L-glutamine amido-ligase (ADP-forming) 6.3.4.2

PF14_0341 0

R02739

R02740

R03321

alpha-D-Glucose 6-phosphate ketol-isomerase

alpha-D-Glucose 6-phosphate ketol-isomerase

beta-D-Glucose 6-phosphate ketol-isomerase

5.3.1.9

5.3.1.9

5.3.1.9

PF14_0352 0

R02017

R02018

R02019

R02023

R02024

2'-Deoxyadenosine 5'-diphosphate:oxidized-thioredoxin2'-oxidoreductase

2'-Deoxyuridine 5'-diphosphate:oxidized-thioredoxin2'-oxidoreductase

2'-Deoxyguanosine 5'-diphosphate:oxidized-thioredoxin2'-oxidoreductase

2'-Deoxyuridine 5'-triphosphate:oxydized-thioredoxin2'-oxidoreductase

2'-Deoxycytidine diphosphate:oxidized-thioredoxin 2'-oxidoreductase

1.17.4.1

1.17.4.1

1.17.4.1

1.17.4.1

1.17.4.1

PF14_0378 0 R01015 D-glyceraldehyde-3-phosphate aldose-ketose-isomerase 5.3.1.1

PF14_0425 0 R01070 beta-D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase(glycerone-phosphate-forming) 4.1.2.13

PF14_0441 0
R00014

R03270

pyruvate:thiamin diphosphate acetaldehydetransferase(decarboxylating)

NO NAME

1.2.4.1

1.2.4.1

PF14_0534 0 R00945 5,10-Methylenetetrahydrofolate:glycine hydroxymethyltransferase 2.1.2.1

PF14_0598 0 R01061 D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating) 1.2.1.12

PF14_0664 0

R00742_balanced

R04385

R04386_balanced

Acetyl-CoA:carbon-dioxide ligase (ADP-forming)_balanced

biotin-carboxyl-carrier-protein:carbon-dioxide ligase (ADP-forming)

Acetyl-CoA:carbon-dioxide ligase (ADP-forming)_balanced

6.4.1.2

6.3.4.14

6.4.1.2

PF14_0697 0 R01993 (S)-dihydroorotate amidohydrolase 3.5.2.3

PF14_0774 0 R00885 GTP:alpha-D-mannose-1-phosphate guanylyltransferase 2.7.7.13

PFA0530c 0 R00127 ATP:AMP phosphotransferase 2.7.4.3
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Gene
Relative 

Growth

Associated 

Reaction(s)
Reaction Name(s)

Associated EC 

number

PFA0555c 0 R00158 ATP:UMP phosphotransferase 2.7.4.14

PFC0170c 0

R02569

R00621

R03316

acetyl-CoA:enzyme N6-(dihydrolipoyl)lysine S-acetyltransferase

NO NAME

NO NAME

2.3.1.12

1.2.4.2

1.2.4.2

PFC0275w 0 R00842 sn-Glycerol-3-phosphate:NAD+ 2-oxidoreductase 1.1.1.8

PFC0831w 0 R01015 D-glyceraldehyde-3-phosphate aldose-ketose-isomerase 5.3.1.1

PFD0311w 0 R01736 (R)-S-Lactoylglutathione hydrolase 3.1.2.6

PFD0660w 0 R01518 2-Phospho-D-glycerate 2,3-phosphomutase 5.4.2.1

PFD0755c 0 R00127 ATP:AMP phosphotransferase 2.7.4.3

PFD0830w 0
R00939

R02101

5,6,7,8-Tetrahydrofolate:NADP+ oxidoreductase

5,10-Methylenetetrahydrofolate:dUMP C-methyltransferase

1.5.1.3

2.1.1.45

PFE0555w 0 R02222_generalised Generalised Single Unit Fatty Acid Desaturation 1.14.19.1

PFE0605c 0 R00497 gamma-L-glutamyl-L-cysteine:glycine ligase (ADP-forming) 6.3.2.3

PFE0630c 0 R01870 Orotidine-5'-phosphate:diphosphatephospho-alpha-D-ribosyl-transferase 2.4.2.10

PFF0160c 0 R01867 (S)-Dihydroorotate:oxygen oxidoreductase 1.3.3.1

PFF0230c 0 R02530 (R)-S-Lactoylglutathione methylglyoxal-lyase (isomerizing) 4.4.1.5

PFF0275c 0

R00124

R00156

R00330

R00570

R01137

R01857

R02093

R02326

R02331

ATP:ADP phosphatransferase

ATP:UDP phosphotransferase

ATP:GDP phosphotransferase

ATP:CDP phosphotransferase

ATP:dADP phosphotransferase

ATP:dGDP phosphotransferase

ATP:dTDP phosphotransferase

ATP:dCDP phosphotransferase

ATP:dUDP phosphotransferase

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

2.7.4.6

PFF0455w 0 R00351 acetyl-CoA:oxaloacetate C-acetyltransferase (thioester-hydrolysing) 2.3.3.1



258 
  

Gene
Relative 

Growth

Associated 

Reaction(s)
Reaction Name(s)

Associated EC 

number

PFF0895w 0
R00342

R00342

(S)-malate:NAD+ oxidoreductase

(S)-malate:NAD+ oxidoreductase

1.1.1.37

1.1.1.37

PFF1130c 0 R00275 superoxide:superoxide oxidoreductase 1.15.1.1

PFF1155w 0

R01326

R01600

R01786

ATP:D-mannose 6-phosphotransferase

ATP:beta-D-glucose 6-phosphotransferase

ATP:alpha-D-glucose 6-phosphotransferase

2.7.1.1

2.7.1.1

2.7.1.1

PFF1300w 0
R00200

R00200

ATP:pyruvate 2-O-phosphotransferase

ATP:pyruvate 2-O-phosphotransferase

2.7.1.40

2.7.1.40

PFI0755c 0 R04779 ATP:D-fructose-6-phosphate 1-phosphotransferase 2.7.1.11

PFI0925w 0 R00894 L-glutamate:L-cysteine gamma-ligase (ADP-forming) 6.3.2.2

PFI1020c 0 R01130 IMP:NAD+ oxidoreductase 1.1.1.205

PFI1105w 0 R01512 ATP:3-phospho-D-glycerate 1-phosphotransferase 2.7.2.3

PFI1140w 0
R08539_balanced

R00100

NADPH:ferricytochrome-b5 oxidoreductase

NADH:ferricytochrome-b5 oxidoreductase

1.6.2.4

1.6.2.2

PFI1170c 0 R02016 NADPH:oxidized-thioredoxin oxidoreductase 1.8.1.9

PFI1420w 0 R00332 ATP:GMP phosphotransferase 2.7.4.8

PFL0285w 0 R01736 (R)-S-Lactoylglutathione hydrolase 3.1.2.6

PFL0595c 0 R00274 glutathione:hydrogen-peroxide oxidoreductase 1.11.1.9

PFL0675c 0 R00885 GTP:alpha-D-mannose-1-phosphate guanylyltransferase 2.7.7.13

PFL0780w 0 R00842 sn-Glycerol-3-phosphate:NAD+ 2-oxidoreductase 1.1.1.8

PFL1550w 0

R03815

R07618

R07618

dihydrolipoylprotein:NAD+ oxidoreductase

enzyme N6-(dihydrolipoyl)lysine:NAD+ oxidoreductase

enzyme N6-(dihydrolipoyl)lysine:NAD+ oxidoreductase

1.8.1.4

1.8.1.4

1.8.1.4

PFL1720w 0 R00945 5,10-Methylenetetrahydrofolate:glycine hydroxymethyltransferase 2.1.2.1

PFL2465c 0
R02094

R02098

ATP:dTMP phosphotransferase

ATP:dUMP phosphotransferase

2.7.4.9

2.7.4.9

PF14_0334 0.9665 R00093 L-glutamate:NAD+ oxidoreductase (transaminating) 1.4.1.14
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Gene
Relative 

Growth

Associated 

Reaction(s)
Reaction Name(s)

Associated EC 

number

MAL3P2.24 0.982 R00848 sn-Glycerol-3-phosphate:(acceptor) 2-oxidoreductase 1.1.5.3

PF08_0045 0.982
R00621

R03316

NO NAME

NO NAME

1.2.4.2

1.2.4.2

PF10_0334 0.982
R00408

R00432

Succinate:(acceptor) oxidoreductase

Succinate:CoA ligase (GDP-forming)

1.3.99.1

6.2.1.4

PF13_0070 0.982
R00621

R03316

NO NAME

NO NAME

1.2.4.2

1.2.4.2

PF13_0120 0.982 R02570 succinyl-CoA:enzyme N6-(dihydrolipoyl)lysine S-succinyltransferase 2.3.1.61

PF13_0121 0.982 R02570 succinyl-CoA:enzyme N6-(dihydrolipoyl)lysine S-succinyltransferase 2.3.1.61

PF14_0295 0.982 R00405 Succinate:CoA ligase (ADP-forming) 6.2.1.5

PFI1340w 0.982 R01082 (S)-malate hydro-lyase (fumarate-forming) 4.2.1.2

PFL0630w 0.982 R00408 Succinate:(acceptor) oxidoreductase 1.3.99.1

PF14_0192 0.9861
R00094

R00115

glutathione:NAD+ oxidoreductase

glutathione:NADP+ oxidoreductase

1.8.1.7

1.8.1.7

PFE0730c 0.9874 R01056 D-ribose-5-phosphate aldose-ketose-isomerase 5.3.1.6

PF14_0511 0.9893
R02035

R02736

6-Phospho-D-glucono-1,5-lactone lactonohydrolase

beta-D-Glucose-6-phosphate:NADP+ 1-oxoreductase

3.1.1.31

1.1.1.49

PF14_0520 0.9893 R01528 6-phospho-D-gluconate:NADP+ 2-oxidoreductase (decarboxylating) 1.1.1.44

PFF0530w 0.9903
R01641

R01830

Sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphateglycolaldehyde transferase

beta-D-Fructose 6-phosphate:D-glyceraldehyde-3-phosphateglycolaldehyde transferase

2.2.1.1

2.2.1.1

PFL0960w 0.9903 R01529 D-Ribulose-5-phosphate 3-epimerase 5.1.3.1

PF14_0508 0.9934 R00112 NADPH:NAD+ oxidoreductase 1.6.1.1

MAL13P1.146 0.9975 R00181 AMP aminohydrolase 3.5.4.6

PF13_0259 0.9994 R02325 dCTP aminohydrolase 3.5.4.13
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Appendix VIII : Application for Synthetic Aesthetics funding 

The synthetic aesthetics project was run by the University of Edinburgh and the University 

of Stanford and aimed to bring together designers and scientists to solve problems with 

design in synthetic biology. More details on the project and some of the results of the 

funding are online at www.syntheticaesthetics.org. My proposal, as outlined in the letter of 

interest below, was not funded but remains an interest of mine. 

 

 

Letter of interest, 

For me, synthetic biology is all about networks. From standardising biological building 

blocks to creating new organisms, it is the interactions rather than the components that 

are most fascinating. In the exciting and rapidly progressing new fields of synthetic 

biology and systems biology people are saving time by using old network design 

principles, often taken from electronic engineering, rather than thinking about the real 

requirements of the problems they face. My fear is that by reusing these existing design 

tools in the world of biology we risk obscuring a truer understanding of biological 

systems. To put it simply, I think that we are drawing biological networks just like we 

draw electronic networks not because the two are similar but because we haven’t taken 

the time to design a better way of doing things. 

Recently, I took pictures of all the networks that were printed on posters at the Systems 

Biology of Microorganisms conference in Paris. There were reaction networks, regulatory 

networks, gene expression networks and protein interaction networks galore. Almost 

without exception the aesthetics of the network drawings were poor but the real problem 

in the drawings was their underlying design. I saw that all the networks were drawn with 

large components connected by identical thin lines even though the components were 

largely unimportant and the connections were both critical and varied. 

My specialism is metabolism but all biological networks are similar in that they are rarely 

static collections of connected components. The flows within them are changeable and the 

networks themselves reorganise far more dynamically than their electrical counterparts. 

Biological networks pulse with life, they adapt to changes and most importantly they grow 

and shrink with time. All of these properties can conceivably be described in terms of 

statically connected components within highly connected networks but they could be 
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much more meaningfully described by concentrating more on the connections and less on 

the components. 

I am confident that my vision as outlined on the next page can be realised, but I know from 

experience that it will not be easy. Recently I completed a full reconstruction of the 

metabolic network of human malaria but found the task frustrating and unnecessarily 

difficult. In talking with other people I found that the problems I had were common and as 

a newcomer to the field of systems biology I was surprised that many of the problems had 

not been resolved. I decided to try and help by designing MetNetMaker, probably the first 

metabolic network model creator with an easy to use interface and no enormous nested 

menus or command prompts. In doing this I met with a surprising amount of resistance. I 

was frequently told, “it would be quicker to just design your network” or asked “why do 

you want the tool to look nice? You’re the only one who’ll use it” and occasionally mocked 

for “wasting my PhD” spending more of my time designing the tool than doing what 

systems biologists consider to be real work. 

The Synthetic Aesthetics project offers me a chance to show that good design in science is 

worth spending time on. I firmly believe that time spent on good design will repay itself 

many times over but it is rare to get the opportunity to try and prove that conviction. I am 

well aware that my vision has large gaps as well as unseen problems; it needs a fresh input 

of ideas and someone to look at it who can ask the questions I haven’t thought of yet. I’d 

like help to find someone with new ideas and a different perspective on design and science 

and I’d really like to grasp this rare opportunity to justify design within science as 

something more than just an eccentric passion. I have friends who are designers who 

might be interested to work with me on this project but I think it might be more creative 

and original to take advantage of the skills and interests of the designers who are applying 

for this project so that together we can look at these problems and change how we think 

about, and design, metabolic networks. I’m not proposing that we create the software to 

do this, but I would certainly like to create a compelling visual template for building such a 

system that we could use to tempt students, amateur coders and funding bodies into 

helping make our improved vision a reality. 
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Vision 

I imagine metabolic networks where the consumption of a metabolite is shown as a visible 

whirlpool draining from the system and the production of a metabolite is shown as a 

pulsing fountain. Currency metabolites flow in different coloured streams between their 

multiple occurrences and feedback, both negative and positive, visually impedes or 

magnifies flow within the network. In this vision, dead-end metabolites are immediately 

visible as obstructions to flow, redundant reactions stick out like rocks in a river, the role 

of cellular compartments as barriers to flow is clear and the effects of changes in the 

structure of the network are immediately reflected in the flows within it. The network 

itself would be largely static, in keeping with existing design principles in SBML (sbml.org) 

and SBGN (sbgn.org), and efforts would be made to preserve recognisable design elements 

such as the layout of the KEGG metabolism map and the shapes of the TCA cycle, glycolysis 

and fatty-acid metabolism. The goal must be to move networks away from mathematical 

abstraction and towards living entities that designers of biological systems can play with 

and explore. 
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Appendix IX : Application for Gates Foundation funding 

 

Section I 

The genetic origins of emerging drug resistance in malaria are being uncovered 

more quickly but our understanding of how existing drugs and drug-candidates 

work has not kept pace. We propose a mix of computation and experiment to 

improve existing models of P. falciparum metabolism with the aim of discovering 

how anti-malarial compounds kill parasites. 

There is no published process for finding out how existing anti-malarial drugs affect 

parasite metabolism. Even for those drugs with a known mechanism of action, the wider 

metabolic affects — and thus areas of metabolism where synergistic drug combinations 

could be targeted — have not been systematically explored. We think a process we have 

developed and have good plans to improve can address this problem. 

Existing models of malaria metabolism (Plata et al. 2010; Huthmacher et al. 2010) lack key 

links with experimentally measured properties of malaria metabolism and lack the 

associated tools and simplicity needed to keep them flexible, up-to-date, and accessible to 

wet-lab scientists. Significant recent advances that move us closer to an accurate biomass 

composition for P. falciparum are not integrated with these models nor have 

measurements of metabolite exchange between parasite, host and growth medium. 

Using our MetNetMaker software (Forth et al, Bioinformatics, 2010) we have created a 

simple and adaptable metabolic model of P. falciparum that allows flux-balance analysis 

(FBA) and similar analysis to be performed on an improved version of the most widely 

used, most frequently updated and most discussed metabolic network for malaria 

(Ginsburg 2006). This manually curated model has not previously been available for 

computational analysis. As a proof of concept we have conducted an initial trial comparing 

the metabolism of parasites grown in normal culture conditions and those grown in 

growth medium containing a sub-lethal dose of atovaquone, a widely used prophylactic 

anti-malarial. NMR analysis of the used growth medium in this trial was able to quantify 

the exchange flux of metabolites between the growth medium and parasitised red blood 

cells for the four principle carbon sources (Glucose, Lactate, Glycerol, Glutamine) and a 

further six amino acids (Valine, Isoleucine, Leucine, Alanine, Tyrosine, Phenylalanine) over 

forty hours. HPLC analysis of parasites isolated at the end of this period confirmed that the 

critical step in pyrimidine synthesis was partially inhibited and provided information to 
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update the nucleotide portion of the biomass function for the parasite under these 

conditions. 

 

 

Production (up) and consumption (down) of metabolites by malaria parasites in normal conditions 

(black) and when inhibited by atovaquone (gray). Amino acids (left) are on a different scale to carbon 

sources (right). 

 

Exchange fluxes between the parasites and their growth medium largely agree with 

existing knowledge and, with the exception of lipids, cover all major metabolite 

destinations branching from the most accurate current model of P. falciparum central 

carbon metabolism. Applying these measured fluxes as constraints on the metabolic model 

and performing flux-balance analysis shows that inhibition of a single reaction involved in 

pyrimidine synthesis significantly affects pathways as distant as glycerol metabolism. 

Currently atovaquone is used in combination with pro-guanyl and marketed by GSK as 

Malarone®, but the clear effect it has on glycerol metabolism suggests a new possibility 

for synergy that could overcome developing resistance. 

Significant issues have been resolved and we feel ready to apply our process to a larger 

number of known anti-malarial compounds and candidate compounds with the aim of 

proving that the effects on core metabolism of many of these drugs can be systematically 

deduced. The limited success that we have had to date suggests that this is possible and 

we are keen to see if this technique can be useful with no prior knowledge of a drug’s 

mechanism of action. 

Section II 

In phase 1 we will study 20% of the drug-like compounds in the open-access malaria box, 

choosing the forty with the lowest EC50 concentration, plus the antimalarials atovaquone, 

artemesinin and doxycycline. Each round of experiments will analyse the metabolism of 

parasitised red blood cells in the presence of the EC50 concentration of six compounds. An 
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identically treated culture of red blood cells and another of parasitised red blood cells in 

growth medium without an anti-malarial compound added act as the required controls. 

1. 0 hours — synchronise 200ml of high parasitemia (≈5%) culture by soribitol 

incubation. 

2. 24 hours — concentrate schizonts to the ≈90% parasitemia by magnetic isolation. 

3. 24 hours — create 6 parallel 6ml cultures at 10% parasitemia and 10% 

haematocrit by diluting with red blood cells and standard growth medium 

supplemented with extra glucose and the relevant test compound. Also prepare 

the two controls. 

4. 34, 44, 54 hours — remove 0.25ml of culture and centrifuge to isolate the growth 

medium. 

5. 54 hours — isolate the resultant parasite biomass for HPLC analysis. 

Extracted growth medium samples and biomass samples will be stored at -80°C and 

retained for future analysis by LC-MS or other techniques at a later date or by another 

research group. We aim to acquire NMR spectra, calculate exchange fluxes and measure 

biomass components by HPLC for the forty-three compounds in six batches over the 

course of the year. Integration with our metabolic model will be ongoing and may extend 

slightly after this. 

 British Pounds US Dollars  

Grade 7 postdoctoral researcher salary 
+ pension + NI + University costs (10%) 

31 591 + 5 055 + 2 441 + 3 
908  
= £42 995 

$69 214 

NMR acquisition costs £12 000 $19 317 
Malaria culturing costs £5 000 $8 050 
HPLC running costs £1 000 $1 609 
Total  $98 190 

 


