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Abstract

Generative models are commonly used in statistical patternrecognition to describe the

probability distributions of patterns in a vector space. Inrecent years, sustained by the

wide range of mathematical tools available in vector space,many algorithms for con-

structing generative models have been developed. Comparedwith the advanced devel-

opment of the generative model for vectors, the developmentof a generative model for

graphs has had less progress. In this thesis, we aim to solve the problem of constructing

the generative model for graphs using information theory.

Given a set of sample graphs, the generative model for the graphs we aim to construct

should be able to not only capture the structural variation of the sample graphs, but to also

allow new graphs which share similar properties with the original graphs to be generated.

In this thesis, we pose the problem of constructing a generative model for graphs as that

of constructing a supergraph structure for the graphs.

In Chapter 3, we describe a method of constructing a supergraph-based generative

model given a set of sample graphs. By adopting thea posterioriprobability developed in

a graph matching problem, we obtain a probabilistic framework which measures the like-

lihood of the sample graphs, given the structure of the supergraph and the correspondence

information between the nodes of the sample graphs and thoseof the supergraph. The

supergraph we aim to obtain is one which maximizes the likelihood of the sample graphs.

The supergraph is represented here by its adjacency matrix,and we develop a variant of

the EM algorithm to locate the adjacency matrix that maximizes the likelihood of the

sample graphs. Experimental evaluations demonstrate thatthe constructed supergraph

performs well on classifying graphs.

In Chapter 4, we aim to develop graph characterizations thatcan be used to measure

the complexity of graphs. The first graph characterization developed is the von Neumann



entropy of a graph associated with its normalized Laplacianmatrix. This graph charac-

terization is defined by the eigenvalues of the normalized Laplacian matrix, therefore it is

a member of the graph invariant characterization. By applying some transformations, we

also develop a simplified form of the von Neumann entropy, which can be expressed in

terms of the node degree statistics of the graphs. Experimental results reveal that effec-

tiveness of the two graph characterizations.

Our third contribution is presented in Chapter 5, where we use the graph characteriza-

tion developed in Chapter 4 to measure the supergraph complexity and we develop a novel

framework for learning a supergraph using the minimum description length criterion. We

combine the Jensen-Shanon kernel with our supergraph construction and this provides

us with a way of measuring graph similarity. Moreover, we also develop a method of

sampling new graphs from the supergraph. The supergraph we present in this chapter

is a generative model which can fulfil the tasks of graph classification, graph clustering,

and of generating new graphs. We experiment with both the COIL and “Toy” datasets to

illustrate the utility of our generative model.

Finally, in Chapter 6, we propose a method of selecting prototype graphs of the most

appropriate size from candidate prototypes. The method works by partitioning the sam-

ple graphs into two parts and approximating their hypothesis space using the partition

functions. From the partition functions, the mutual information between the two sets is

defined. The prototype which gives the highest mutual information is selected.
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Chapter 1

Introduction

In this chapter we provide an introduction for the research work presented in the thesis.

We commence by introducing the problems encountered in learning graph data, followed

by a description of our research goals and, finally, we provide an outline of the thesis at

the end of this chapter.

1.1 The Problems

Relational graphs provide a convenient means of representing structural patterns. Exam-

ples include the arrangement of shape primitives or featurepoints in images, molecules

and social networks. When abstracted in this way, complex data can be compared or

matched using graph matching techniques. Although matching problems such as sub-

graph isomorphism or inexact graph matching are computationally expensive, there are

a number of effective algorithms based on probabilistic [25], optimization [48] or graph-

spectral [93] techniques that can give reliable results in polynomial time.

However, despite considerable progress in the problems of representing and matching

data using graph structures, dealing with graph data is still a long-standing problem. There

are two reasons why graphs are more difficult to manipulate than pattern vectors. One is
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that there is no canonical ordering for the nodes in a graph, so correspondence between

nodes must be established as a prerequisite [107]. The otheris that the variation in graphs

of a particular class may manifest itself as subtle changes in the structure, i.e. variations

in a) node or edge attributes, b) node or edge composition andc) edge connectivity. For

instance, the number of nodes and edges in a graph may be different from other graphs

in the same class. Thus, even if the nodes or the edges of graphs could be encoded in a

vectorial manner, the vectors would be of variable length [107].

The reasons above render the difficulty in the analysis of graph data for the purpose

of characterizing graphs. Unlike pattern vectors, when theanalysis of graph data is at-

tempted, there is frequently no labeling or ordering of the nodes of the structure to hand.

For the graph characterizations which require reliable node correspondences, they can

prove very time consuming and even fragile, since they invariably require inexact graph

matching over the dataset. It is for this reason that the use of permutation invariant graph

characterizations has proved to be an attractive one. Although there are a number of

simple alternatives that can be used, such as node or edge frequency, edge density, di-

ameter and perimeter, these have proved to be ineffective asa means of characterizing

variations. Instead, it has proved necessary to resort to more complex representations.

One of the most successful of these has been to use graph-spectral methods [64][107].

Here the distribution of the eigenvalues and eigenvectors can be used to construct per-

mutation invariants that do not require node correspondences. Unfortunately, the graph

spectral method can prove to be computationally burdensome. The reason for this is that

the computation of the graph-spectrum is cubic with regard to the number of nodes.

Another resultant difficulty is the construction of a generative model for graphs that

captures structural variations present in the sample set. Compared with the advanced de-

velopment of graph matching algorithms, the issue of how to capture variability in such

representations has received relatively little attention. By contrast, there is a wealth of lit-

erature on how to construct statistical generative models that can deal with quite complex

2



data for vectorial patterns, including those arising from the analysis of variability in shape

[29][76][57]. The lack of progress in graph generative models is due to the difficulty in

developing representations that capture variations in graph structure. As previously men-

tioned, there are three types of graph structural variation. Of the three, the problem of

learning edge connectivity is probably the most challenging. Broadly speaking, there are

two approaches to characterizing variations in edge structure for graphs. The first of these

is graph spectral, while the second is probabilistic. In thecase of graph spectra, many of

the ideas developed in the generative modeling of shape using principal components anal-

ysis can be translated relatively directly to graphs using simple vectorization procedures

based on the correspondences conveyed by the ordering of Laplacian eigenvectors [64].

Although these methods are simple and effective, they are limited by the lack of stability

of the Laplacian spectrum under perturbations in graph structure. The probabilistic ap-

proach is potentially more robust, but requires accurate correspondence information to be

inferred from the available graph structure.

1.2 Our Goals

The goals of this thesis are to explore efficient graph characterizations and, with the help

of the derived characterizations, construct a generative model for graphs. In this thesis

we focus on the problem of capturing edge connectivity variations and aim to develop a

generative model that can be used to describe structural variations of edge connectivity in

the sample graphs. Specifically,

a) We aim to explore more efficient graph characterizations.To this end, we turn

to information theory and use entropy to define measures of graph characterizations. In

particular, we will investigate the von Neumann entropy of graphs, which relates to the

eigenvalues of the normalized Laplacian matrix as a graph characterization. Using the

von Neumann entropy, we will explore whether we can approximate the entropy in terms

3



of node degree statistics and obtain a simplified form, the computational complexity of

which is much lower.

b) We aim to take an information theoretic approach to construct a generative model

for graphs. Once we have the entropy based graph characterizations developed in the last

step, we will use them to measure the complexity of the generative model and construct

a generative model that trades off goodness-of-fit by adopting the minimum description

length criterion. Moreover, we seek a generative model which is multi-functional and

which can be used to classify graphs, measure graph similarity and also to generate new

sample graphs.

1.3 Thesis Outline

Having described the overall goals of the thesis, we proceedto outline the structure of the

thesis. In Chapter 2, we reviews the literature relevant to the research described in this

thesis.

In Chapter 3, we present a novel method of constructing a supergraph-based genera-

tive model for a set of graphs. We pose the problem of constructing a generative model

for graphs as that of learning a supergraph structure which can capture the edge connec-

tivity variations present in the sample graphs. We experiment with a real world dataset

and investigate its performance in classifying graphs.

In Chapter 4, we illustrate how the von Neumann entropy can beused as a measure

of graph characterization and, moreover, we also develop its simplified form. In the ex-

perimental part, we evaluate these two graph characterizations and compare them with

alternative graph characterizations .

In Chapter 5, we combine the methods previously developed inChapter 3 and Chapter

4 to construct a generative prototype for graphs by adoptinga minimum description length

approach. A variant of the expectation-maximization algorithm is developed to minimize

4



the overall description length criterion. We also develop new mechanisms so that the

generative model is capable of measuring graph similarity and of generating new samples.

Experimental investigations reveal the utility of our generative model.

In Chapter 6, a prototype graph size selection method is provided. We extend the the-

ory of approximate set coding from the vector domain to the graph domain and show how

the problem of prototype size selection can be solved by optimizing the mutual informa-

tion between two partitioned sets of sample graphs.

In the final chapter, we offer some conclusions, including a summary of the contribu-

tions we have made and directions for future research.
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Chapter 2

Literature Review

In this chapter, we will review the literature relevant to our work described in the thesis.

The two main aims of the thesis are to explore efficient methods to characterize graphs

and to use the derived graph characterization to construct agenerative model for graphs

that can capture graph structural variations. To comply with these aims, we partition the

content of the chapter into six parts. We commence in Section2.1 by introducing the

graph representation. We then review the spectral graph theory and its applications in

the area of image segmentation and graph matching in Section2.2. We survey graph

characterizations in Section 2.3. We review generative models for graphs in Section 2.4,

followed by a review of deep learning in Section 2.5. Finally, in Section 2.6, we review

some measures from information theory that we will use to develop our methods in the

following chapters.

2.1 Graph Representation

The graph-based representations have been widely used withconsiderable success in the

problems of shape representation [3], segmentation [40], matching [73], and object recog-

nition [112] in computer vision since relational graphs as abstractions for pictorial infor-
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mation were first demonstrated by Barrow and Burst [8], and Fishchler and Elschlager

[43]. In the cases of the genomics and networks, we can naturally represent the data as

structural graphs. However, it is not that straightforwardwhen encountered with image or

scene data. Dealing with these data using graph-based methods requires converting them

to graph representation and this involves extracting feature points on images and arrang-

ing the feature points to graphs. In the graph representation of these data, the extracted

features are represented as graph nodes and their arrangement are represented by an edge

structure.

To represent the images in graphs, we need to arrange the set of extracted feature

points in a way that can preserve their general layout. An issue to be noted is that we

need to have a distance measure between feature points before we construct graph rep-

resentation for the feature points. The distance between feature points can be defined in

many ways. It can be defined as the Euclidean distance betweenthe descriptors of the

feature points or the Euclidean distance between the locations of the feature points or one

combining both. After we have the pairwise distance of the feature points, we proceed

to the graph construction step. There are many different methods to connect these fea-

ture points in graphs. A famous one among them is the Delaunaytriangulation invented

by Boris Delaunay [31] in 1934. The Delaunay triangulation of the feature points has

such representation that no feature point is inside the circumcircle of any triangle of other

points. A property of the Delaunay triangulation is that it maximizes the minimum angle

of all the angles of the triangles in the triangulation [94].Other graph representations

include the Gabriel graph [47] and theK-nearest neighbour graphs [72]. In the Gabriel

graph, two points are connected by an edge when there are no other points in the circle

whose diameter is the line segment jointing the two points. The nearest neighbor graph

representation, as indicated by its name, connects each node to itsK-nearest neighbour

nodes.
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2.2 Spectral Graph Theory

Spectral graph theory [13] [84] [26] is a branch of mathematics which studies the struc-

tural properties of a graph by exploring the eigensystem of the graph. The eigensystem of

a graph consists of the eigenvalues and eigenvectors of an associated matrix of the graph,

such as its adjacency matrix or Laplacian matrix (the degreematrix minus the adjacency

matrix). The eigenvalues, ordered in terms of their magnitude, constitute the spectrum

of the graph. An important property of the spectrum is that itis invariant to the labelling

of the graph when the graph is non-attributed. The subject ofspectral graph theory has

acquired considerable topicality because spectral graph theory is very useful for solving

problems of image segmentation and graph matching.

Alternative methods based on the eigensystem have been usedto solve the problems

of pairwise clustering and image segmentation. Some of the earliest work was done by

Scott and Longuet-Higgins in [88]. They build an proximity matrix to measure the dis-

similarities between image features and then use the eigenvalues and eigenvectors of the

proximity matrix to partition features into clusters. Thereafter, Shi and Malik [92] treated

image segmentation as a graph partitioning problem and introduced the normalized cut

criterion to segment graphs. To optimize this criterion, they develop a generalized eigen-

value system in which they iterated using the eigenvector with the second smallest eigen-

value of the affinity matrix to bipartition the graph. Examples also include those described

in [96] [103].

With regard to the problem of the graph matching, there are lots of examples of the

application of spectral matching methods. In the pioneer work of Umeyama [101], he

employed an analytic approach to the optimum matching problem of weighted graphs

and efficiently found a permutation matrix close to the optimum one by taking the outer

product of the left eigenvector matrices for the two graphs.In related work, Shapiro

and Brady [91] have proposed a method for recovering point-feature correspondence by

using the eigenvectors of a proximity matrix that records the Gaussian weighted distance
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between features within the shapes. However, both methods are exact graph matching

algorithms and they can only deal with graphs of the same size(the same number of

nodes).

Luo and Hancock [61] have described an efficient algorithm for inexact graph match-

ing that can accommodate graphs of different sizes. In theirwork, they develop a proba-

bilistic framework to measure graph similarity and pose theproblem of graph matching as

maximum likelihood estimation using the apparatus of the EMalgorithm. In the recovery

of the correspondence matching, they ingeniously cast the problem in a matrix framework

which can be efficiently solved using singular value decomposition.

In addition, spectral graph theory also provides approaches to measuring graph dis-

tance. For instance, Wilson and Zhu [108] have used the Euclidean distance between

spectra of graphs to measure the distance of graphs in classification and clustering tasks.

Many concepts in spectral graph theory, such as the heat kernel, commute time and

random walks, play important roles in analyzing graphs. Heat kernels of graphs are widely

used as a means of characterizing graphs, clustering graphsand embedding graphs [111]

[6] [5]. Besides the utility for graph clustering and embedding [85][11], the commute

time and random walks also have applications for image segmentation and multi-body

motion tracking [74][50].

2.3 Graph Characterizations

Graph characterizations are of vital importance in the analysis of graph data. Broadly

speaking, these characterizations falls into two groups. The first are permutation invariant

characteristics extracted from the graph structure and theothers require having the node

correspondence to hand [41][42]. The second type of graph characterizations usually

involves applying graph matching algorithms to obtain the node correspondence and thus

their performance relies on the goodness of these matching algorithms. Therefore, the use

9



of permutation invariant graph characteristics has provedto be more attractive.

Examples of the invariant graphs characterizations include Laplacian spectra and char-

acteristic polynomials of elements of the spectral matrix [62] [107]. Luoet al. [62] have

used the ordered eigenvalues from the Laplacian matrices ofgraphs as graph features to

perform graph clusterings. Wilsonet al. [107] have used the elements of the Laplacian

matrices of graphs to construct symmetric polynomials thatare permutation invariants.

The coefficients of these polynomials can be encoded in a vector manner and used as

graph features. Xiaoet al. [111] have taken the study of spectral graph invariants one step

further. In their studies, they perform an analysis of the heat kernel for graphs, and show

that the Riemann zeta function can be used to generate a number of powerful invariants

from the normalized Laplacian spectrum.

Recently, graph characterizations that can quantify the intrinsic complexity of graphs

and networks have attracted significant attention due to their fundamental practical impor-

tance, not only in network analysis [38] but also in other areas such as pattern recognition

and control theory. Some of the existing quantifications areeasily computable, i.e. they

have polynomial computational complexity [37] [9], but others are not since they rely

on NP-hard problems and are computationally intractable. These existing approaches are

based on notions of either randomness complexity or statistical complexity.

Randomness complexity aims to quantify the degree of randomness or disorganiza-

tion of a combinatorial structure. This approach aims to characterize an observed graph

structure probabilistically and to compute its associatedShannon entropy. Escolanoet al.

[34] have constructed a graph complexity measure using the entropies associated to the

Birkhoff-von Neumann decomposition on the heat kernel of the graph. In their subse-

quent studies, they extended their work by defining the heat flow complexity measure and

the corresponding heat flow based thermodynamic depth measure [36].

Statistical complexity, on the other hand, aims to characterize a combinatorial struc-

ture using statistical features such as node degree statistics, edge density or the Laplacian
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spectrum. Early examples of the network irregularity indices falling into this category

include the index proposed by Collatz and Sinogowitz [27], which is defined as the differ-

ence between the principal (largest) eigenvalue of the adjacency matrix and the average

node degree, and the Bell’s index, which is the variance of nodes degree [9]. Recently,

Estrada [37] has defined an index that accounts for the heterogeneity of networks. To

compose this index, he starts by defining a local index which is a function of the node de-

gree to measure the irregularity of a single link (edge) in the network. The heterogeneity

index of a network proposed is obtained as the sum of the link irregularity for all links in

the network. By choosing a suitable function, this index canbe expressed as a quadratic

form of the Laplacian matrix of the network. Passerini and Severini [70] have shown how

to use the von Neumann entropy to measure network irregularity.

Viewed historically, most early work in this area falls intothe randomness class, while

recent work is statistically based. The main drawback of randomness complexity is that

it does not properly capture the correlations between vertices [39]. Statistical complexity

aims to overcome this problem by measuring regularities beyond randomness, and does

not necessarily grow monotonically with randomness.

2.4 Generative Models of Graphs

In this section, we discuss the work of constructing generative models for graphs. There

are three types of graph structural variations, namely variations in a) node or edge at-

tributes, b) node-composition and c) edge-connectivity, which provide a natural frame-

work for analyzing the state-of-the-art in the literature.Most of the literature can be

viewed as modeling variations in node or edge attributes. Infact, most of the work on

Bayes nets in the graphical models literature falls into this category [45] [22] [46]. The

Bayes nets used are a graph-based representation of a multivariate joint probability distri-

bution that exploits the dependencies or independencies between variables. These Bayes
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nets can be used to do diagnosis, learning, explanation, andmany other inference tasks

necessary. Thus they have wide applications in the area of genetics, social science and

computer science. There are also some well documented studies in the structural pattern

recognition literature that also fall into this category, including the work of Wonget al.

[109], Bagdanov and Worring [4]. Wonget al. [109] have introduced a first order ran-

dom graphs for structural-based classification. In their random graph model, the vertices

and edges are associated with discrete random variables taking values over the attribute

domain of the graphs. However, the use of the discrete densities complicates the learn-

ing and classification process and hampers the practical application. Later, Bagdanov

and Worring [4] extended the first order random graphs by using continuous Gaussian

distributions to model the densities of random variables inthe graphs. Their method over-

comes some of the computational difficulties and allows for fast and efficient clustering

and classification.

The problems of modeling variations in node and edge composition are more chal-

lenging, since they focus on modeling the structure of the graph rather than its attributes.

For the restricted class of trees, Torsello and Hancock [99]have built a tree union to clus-

ter trees. In their clustering method, the correspondencesbetween nodes are unknown

and must be inferred as part of the learning process. They usea minimum description

length approach to fitting the tree union to graph data. The node composition is recov-

ered by minimizing the edit distance which is linked to the description length criterion.

Since trees are rooted, the learning procedure is facilitated and can be performed in poly-

nomial time. However, this greedy strategy does not translate tractably to graphs where

the complexity becomes exponential. Torsello and Dowe [98]have recently made some

progress in extending this method to graphs using importance sampling techniques [97]

to overcome some of the computational bottlenecks.

The problem of learning edge-connectivity is probably the most challenging of those

listed above. The literature on characterizing variationsin edge structure for graphs can be
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categorized into two types. The first of these are graph spectral approaches, while the sec-

ond are probabilistic approaches. The graph spectral approaches are developed by using

the eigenvalues and eigenvectors of the associated graph matrices from graph spectral the-

ory. Xiao and Hancock [110] have explored how to use the eigenvalues and eigenvectors

from the heat kernel matrix to construct a generative model for graphs. They first embed

the nodes of graphs into a vector space by performing the Young-Householder decom-

position on the heat kernel matrix, and then describe the distribution of the coordinates

of the nodes using a Gaussian distribution. Although the variations in graph structure

can be adequately captured by the covariance matrix of the embedded node coordinates,

it is difficult to reconstruct graphs from these representations. White and Wilson [104]

have proposed a different spectral generative model. They create separate distributions

for eigenvalues and eigenvectors, from which they can generative a new matrix that is

close to a Laplacian matrix of a graph. Through setting a threshold, the Laplacian matrix

can be recovered back to an adjacency matrix, which gives thestructure of the graph.

Therefore, their method is an improvement in the sense that their model can generate new

graph structures. Although the methods based on the spectral graph theory are simple

and effective, they are limited by the stability of the eigensystems of the graphs under

perturbations in graph-structure.

The probabilistic approaches, on the other hand, are potentially more robust. An

example of the approach has been developed by Luoet al. [63], where the authors directly

convert graphs into long vectors by stacking the elements ofthe adjacency matrices of

graphs, and exploit the structural variations of graphs by constructing a linear deformable

model. Before stacking the elements of the adjacency matrices, however, they need to

align the graphs so that the nodes are in the same order. They use the algorithm in [61] to

obtain the node correspondence information. The drawback of probabilistic approaches

is that they require accurate correspondence information to be inferred from the available

graph structure before constructing the statistical models. To date, the most effective
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algorithm falling into this category exploits a part-basedrepresentation [105]. In the part-

based representation, graphs are represented by a clustering of subgraphs. The variations

in graphs are modelled by observing which subgraphs are present in each graph and how

these subgraphs are connected. Because the model defines a distribution based on the

presence of subgraphs and the way subgraphs are connected, new graphs can be sampled

from the distributions.

2.5 Deep Learning

Recently, a new area of machine learning called deep learning emerged and has attracted

considerable interest. The research in this area advocateslearning multiple levels of rep-

resentation in order to model complex relationships among data. High level features and

concepts are defined in terms of lower-level ones, and this hierarchical representation is

called deep architecture. Before 2006, attempts at training deep architectures (mostly

neural networks) failed, with the exception of shallow neural networks with one or two

hidden layers. In 2006, Hinton’s revolutionary work on deepbelief networks [55] made

a breakthrough in learning deep architectures. The main breakthrough made by Hinton

et al. is that they develop a greedy, layer-by-layer unsupervisedlearning algorithm that

allows efficient training of the deep belief networks [86]. With the help of the algorithm,

the deep belief networks form probabilistic generative models, which consist of multiple

layers of variables. The top layer consists of the observed variables and the remaining

layers consist of hidden variables. The variables in a lowerlayer control the variables in

the upper layers. The main building block of a deep belief network is a Restricted Boltz-

mann Machine (RBM). The RBM is a stochastic neural network, which consists of one

layer of visible variables (neurons) and one layer of hiddenvariables (neurons). Variables

in each layer have no connections between them and are connected to all variables in the

other layer. Connections between variables are undirected, which means that information
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flows in both directions during the training and during the usage of the network.

Since then, the deep generative model has been applied with success in many tasks.

In the work of [55], a deep belief network is used to learn a generative model of the joint

distribution of handwritten digit images and their labels.This generative model gives

better digit classification than the best discriminative learning algorithms. Examples also

include the work reported in the area of natural language processing [28], where a deep

neural networks can facilitate multitask learning (i.e. given a sentence, outputting a host

of language processing predictions such as part-of-speechtags, chunks and named entity

tags) and semi-supervised learning, both of which are able to improve the generalization

of the shared tasks and result in state-of-the-art performance.

Ranzatoet al. [76] have used a deep belief network to improve a gated MarkovRan-

dom Field (MRF) generative model on images. The gated MRF generative model is com-

posed of two hidden layers, one set of hidden variables is used to create an image-specific

model of the covariance structure of the pixels and the otherset of hidden variables is used

to model the intensities of the pixels. Their deep belief network uses the gated MFR as the

lowest level and adds several layers of Bernoulli hidden variables to model the statistical

structure in the hidden activities of the gated MRF. Their experiments have shown that

the deep belief network is better than the gated MRF model at generating high-resolution

natural images, and that the features that it learns are goodat discriminating facial expres-

sions or scene images.

In most of the methods that adopt the deep learning to train probabilistic distributions

of the observed data, such as images and sentences, variables in the hierarchical structure

have vector value. Therefore those methods closely relate to the generative models of

graphs that model the distributions of node and edge attributes.
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2.6 Information Theory Related to Our Work

Most of our work presented in the thesis relates to information theory. The related in-

formation theory includes the von Neumann entropy, the minimum description length

criterion and the mutual information. We review the three concepts in this section.

2.6.1 Von Neumann Entropy

The von Neumann entropy was introduced by John von Neumann tomeasure irreversibil-

ity processes in quantum statistical mechanics [102]. It isan extension of the Gibbs

entropy and the Shannon entropy to the quantum realm. The vonNeumann entropy is

defined as entropy of the density matrix of a quantum system. In quantum mechanics, a

quantum system is described by state vector|ψ〉. If a quantum system has only one single

state vector, it is then called pure state. In most general cases, the quantum systems have

a mixed quantum state. A mixed quantum state corresponds to aset of state vectors|ψj〉
with different probabilitiesηj . The probabilitiesηj satisfy the condition that0 ≤ ηj ≤ 1

and
∑

j ηj = 1. The density matrix of the quantum system is

ρ =
∑

j

ηj |ψj〉〈ψj|, (2.1)

where |ψj〉 is a column vector and〈ψj| is the transpose of|ψj〉. The density matrix

ρ defined above has the following properties. Its eigenvaluesare non-negative and its

trace sums up to one Tr(ρ) = 1. Given the density matrix, the von Neumann entropy is

[10][102]

H(ρ) = −Tr(ρ ln ρ). (2.2)

To computeln ρ, we performρ = Φ(lnΛ)ΦT . Φ is a matrix whose columns are eigen-

vectors ofρ and lnΛ is a diagonal matrix whose diagonal line has elements which are

logarithms of the eigenvalues ofρ. The von Neumann entropy is equal to

H(ρ) = −
∑

j

λj lnλj , (2.3)
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whereλj is the eigenvalue of the density matrix.

Since the entropy is defined for a quantum state, a mapping from graphs into states

is required if we want to explore the von Neumann entropy associated with graphs. In

the literature area, many methods have been proposed to map graphs into quantum states.

Examples include the work in [19][26]. Recently, this research has been taken further

by Passerini and Severini [70], who build a faithful mappingbetween the Laplacians and

quantum states. They show that the density matrix of a graph can be obtained by scaling

the (normalized) Laplacian matrix of the graph and from which the von Neumann entropy

of graphs can be defined. In Chapter 4, we are going to explore the graph characterizations

from the von Neumann entropy of graphs.

2.6.2 Minimum Description Length Criterion

Model selection is one of the most important problems in statistical inference. It deals

with the problem of selecting the best underlying statistical models from a set of candi-

date models. The minimum description length criterion (MDL), introduced by Rissanen

[79], is proposed to provide a solution to this problem. The minimum description length

is a formalization of Occam’s Razor and its basic idea is to select the model that can

compress data most [51]. The earliest implementation of this idea is the two-part code

version of the minimum description length criterion, whichrespectively encodes the data

and model complexity and selects the best model by minimizing the sum of their code-

length. The rationale of the two part version is that the complexity of the model is against

goodness of the fit, which will automatically avoid overfitting and will have a good pre-

dictive performance on new data. However, a problem of this two-part version is that it is

difficult to find a good code for the model. Later, Rissanen [81] sidestepped this problem

by using a one-part version, which comes out to the refined MDL.

Torsello and Hancock [99] have adopted a two-part MDL to the problem of fitting a

tree-union model, where they encode the complexity of tree-union in terms of the param-
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eters in their model. Davieset al. [113] have described a method for building statistical

shape models from a set of boundaries using the minimum description length approach.

In their method, they pose the problem of building the shape model as one of finding the

parameterizations for the correspondence points on the shapes. The parameterizations are

selected as those which minimize the description length of the training set. Examples

also include using minimum description length to evaluate the quality of business process

models [24] and using the minimum description length principle to segment multilingual

documents and identify the language of the segments [114].

2.6.3 Mutual Information

Since Shannon [90] introduced mutual information to measure the dependence between

variables, there have been substantial theoretical and practical developments of the con-

cept. For instance, Tourasset al. [100] have used the mutual information criterion to

select the optimal subset of features in computer-aided diagnosis, where the mutual infor-

mation between random variables (features) is estimated using the histogram approach.

Examples also include using the maximum mutual informationto train hidden Markov

models [49] and applying the mutual information in medical image processing and image

registration task [71]. Recently, Buhmannet al. [20][21] have proposed an information

theoretic model selection theory called the approximate set coding where they develop a

communication scenario to measure the generalization capacity of models. The general-

ization capacity of the models is defined using the mutual information between the coars-

ened training data and the coarsened test data. However, their model selection method is

proposed in clustering in the vector domain. In Chapter 6, wewill extend his theory to

graph domains.
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2.7 Conclusions

Based on the review of the related literature, we may draw several conclusions. First,

although there is a substantial body of research on graph characterizations, developing

efficient graph characterizations that can quantify the intrinsic complexity of graphs and

networks is still an urgent problem. These existing graph characterization measures either

suffer from the curse of expensive computational complexity or are not effective. In the

thesis, we will explore the feasibility of extracting useful and efficient graph characteri-

zations from the von Neumann entropy as graph complexity measures.

The second point derived from the literature review is that the method of learning

generative models for graphs using information theory, under the guide of the minimum

description length criterion, has not been proposed. It is of value to explore this area,

since the generative models developed in this way can avoid the problem of overfitting

and generalize well to new data. Developing such methods could be achieved with the

help of a well-developed graph characterization measure, which can efficiently capture

graph complexity. Later, we will show how we use the graph characterizations extracted

from the von Neumann entropy of graphs to measure the complexity of the generative

model and take an information theoretic approach to construct a generative model using

the minimum description length criterion.

Thirdly, the review of the mutual information also suggestsa method for selecting

graph models. The recently developed theory of approximateset coding proposed a

method of selecting models by maximizing the mutual information between two parti-

tioned datasets. Although this theory is proposed for clustering in the vector domain, it

provides scope for us to apply it to graphs. We will extend thetheory to the graph domain

and use it for selecting the sizes of the prototype graphs.
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Chapter 3

A Supergraph-based Generative Model

3.1 Introduction

This chapter proposes a method of constructing generative model for a set of sample

graphs. We follow Torsello and Hancock [99] and pose the problem of constructing the

generative model as that of learning a supergraph structurewhich can describe the edge

structural variations present in the set. The supergraph isa graph-union that can capture

the structural variations of the graphs in the sample set. Tofurnish the required learning

framework, we use the probabilistic framework developed byLuo and Hancock [61] to

describe the distribution of the sample graphs. The structure of supergraph we aim to learn

is the one that maximizes the likelihood of the sample graphs. To locate the structure of

this supergraph, we develop a variant of the expectation-maximization (EM) algorithm

where both the structure of the supergraph and the correspondences between the nodes

of the sample graphs and those of the supergraph are treated as missing data. This novel

technique is applied to a database of object views, and used to learn class prototypes that

can be used for the purposes of recognition.

The main contribution of this chapter is that by extending the work of Luo and Han-

cock [61], we develop a novel generative model for a set of graphs based on a supergraph
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structure. The supergraph here is the one that maximizes thelikelihood of the sample

graphs. The second contribution is that we develop a variantof EM algorithm to realize

the maximum-likelihood estimation. The outline of the chapter is as follows. In Section

3.2 we review the likelihood function developed by Luo and Hancock [61]. This likeli-

hood function will later be used to formulate our probabilistic framework. In Section 3.3,

we describe the methodology we use to learn the supergraph structure. The variant of the

EM algorithm is also provided here. In Section 3.4 we give some experimental analyses.

Finally, in Section 3.5 we draw our conclusions.

3.2 The Likelihood Function

Given a set of sample graphs, our aim is to learn a generative model that can be used to

describe the distribution of the sample graphs and characterize the structural variations

present in the set. Here we pose the problem as that of learning a supergraph. To com-

mence our development we require a probabilistic frameworkto measure the likelihood

of the sample graphs. We use thea posterioriprobability developed by Luo and Hancock

[61] to describe the likelihood function of the sample graphs. Thisa posterioriprobabil-

ity was initially developed to measure the similarity between a data graph and a model

graph in a graph matching problem. In our problem we use it to measure the likelihood

of a sample graph being generated from a supergraph. In this section we review how they

construct thea posterioriprobability. To make the content in this section consistentwith

the following sections, we explain the development of thea posterioriprobability in the

context of a sample graph and the supergraph.

To commence, we introduce some notations. We represent the sample graph byG =

(V,E) whereV = {a, b, . . . } represents the node-set in the graph andE represents the

edge-set. The supergraph is denoted byΓ = (VΓ, EΓ) with node-setVΓ = {α, β, . . . } and

edge-setEΓ. The structure (edge connectivity) of the two graphs are indicated by their
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adjacency matrices. The adjacency matrices are square matrices and the dimension of an

adjacency matrix of a graph is equal to the number of the nodesin the graph. If two nodes

in a graph are connected by an edge, the corresponding element in the adjacency matrix

is one, otherwise it will equal zero. We denote the adjacencymatrix of the sample graph

G byA and the elements of the adjacency matrix are

Aab =







1 if (a, b) ∈ E
0 otherwise.

(3.1)

Similarly, we represent the adjacency matrix of the supergraphΓ by M and have its

elements

Mαβ =







1 if (α, β) ∈ EΓ

0 otherwise.
(3.2)

In the graph matching problem, the node correspondence information between the two

graphs is represented by an assignment matrixS whose dimension is|V | × |VΓ| where

|V | and |VΓ| are respectively the number of the nodes in the sample graph and those in

the supergraph. The assignment matrix indicates the node correspondences between the

sample graphG and the supergraphΓ. It has elements

saα =







1 if f(a) = α

0 otherwise,
(3.3)

wheref(a) = α means that nodea ∈ V is matched to nodeα ∈ VΓ.

According to Luo and Hancock [61], the idea underpinning their developed likelihood

function is that the node correspondences between the two graphs are hidden variables and

the nodes in the sample graphs arise through a noisy observation process. That is to say,

there is a possibility that any single node of the sample graph may be matched to any

node in the supergraph. Therefore, to entertain this feature, the authors define the prob-

ability of observing a node in the sample graph in the form of asummation over the set
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of all the possible correspondences. By assuming the nodes in the sample graph are inde-

pendent, the likelihood function of the sample graph involves factorizing the observation

probability over all the nodes in the sample graph, and is written

P (G|Γ,S) =
∏

a∈V

∑

α∈VΓ

P (a|α,S), (3.4)

whereP (a|α,S) is the probability that nodea in the sample graph is in correspondence

with nodeα in the supergraph under the assignment matrixS.

They proceed to develop a model for the observation probability P (a|α,S). Using

Bayes’ theorem,P (a|α,S) is equal to

P (a|α,S) = P (S|a, α)P (a, α)
P (S|α)P (α) . (3.5)

Assuming that the observation probability of the assignment matrix is factorizable over

the set of the assignment variables, the above function becomes

P (a|α,S) =
{∏b∈V

∏

β∈VΓ
P (sbβ|a, α)}P (a, α)

{∏b∈V
∏

β∈VΓ
P (sbβ|α)}P (α)

. (3.6)

Applying Bayes’ theorem, they have

P (sbβ|a, α) =
P (a|α, sbβ)P (α|sbβ)P (sbβ)

P (a, α)
(3.7)

and

P (sbβ|α) =
P (α|sbβ)P (sbβ)

P (α)
, (3.8)

then the function can be rewritten as

P (a|α,S) =
{
∏

b∈V
∏

β∈VΓ

P (a|α,sbβ)P (α|sbβ)P (sbβ)

P (a,α)
}P (a, α)

{
∏

b∈V
∏

β∈VΓ

P (α|sbβ)P (sbβ)

P (α)
}P (α)

. (3.9)

Canceling termsP (α|sbβ) andP (sbβ) which appear both in the numerator and denomi-

nator and collecting together terms, they find the expression simplifies to
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P (a|α,S) = [
1

P (a|α)]
|V |×|VΓ|−1

∏

b∈V

∏

β∈VΓ

P (a|α, sbβ). (3.10)

They further assume that nodes in the sample graph are conditionally dependent on the

supergraph graph nodes only in the presence of the assignment matrixS, thenP (a|α) =
P (a). Hence,

P (a|α,S) = Ba

∏

b∈V

∏

β∈VΓ

P (a|α, sbβ), (3.11)

where

Ba = [
1

P (a)
]|V |×|VΓ|−1. (3.12)

is a constant and its value depends only on the identity of thesample graph nodea.

To develop a model for the conditional probabilityP (a|α, sbβ), the authors draw on

the work of Wilson and Hancock [106]. The idea behind the model is that a nodeα in

the supergraph can emit a symbola drawn from the nodes in the sample graph and the

probability that this correspondence is correct is1− Pe, while the probability that it is in

error isPe. The correctness of the correspondence is gauged by checking whether nodes

a andb in the sample graph are matched to a valid edge in the supergraph. AabMαβsbβ

is used for the test of edge-consistency. It has a unity valueonly when nodeb in the

sample graph is matched to nodeβ in the supergraph and they also satisfy(a, b) ∈ E and

(α, β) ∈ EΓ. When the condition is not met, the quantity is zero. Using this switching

property and assuming the nodes in the sample graph are derived from the supergraph

under a Bernoulli distribution, the condition probabilityis

P (a|α, sbβ) = (1− Pe)
AabMαβsbβP

1−AabMαβsbβ
e . (3.13)

Substituting Equation (3.13) into Equation (3.11), they have

24



P (a|α,S) = Ba

∏

b∈V

∏

β∈VΓ

(1− Pe)
AabMαβsbβP

1−AabMαβsbβ
e . (3.14)

The above function can be expressed as a natural exponentialfunction

P (a|α,S) = Ka exp[µ
∑

b∈V

∑

β∈VΓ

AabMαβsbβ], (3.15)

where

µ = ln
1− Pe

Pe
(3.16)

and

Ka = P |V |×|VΓ|
e Ba. (3.17)

Finally, replacing Equation (3.15) into Equation (3.4) thelikelihood function is

P (G|Γ,S) =
∏

a∈V

∑

α∈VΓ

Ka exp[µ
∑

b∈V

∑

β∈VΓ

AabMαβsbβ ]. (3.18)

3.3 Learning the Supergraph

Having thea posteriori probability in hand, we proceed to measure the likelihood of

the sample graphs. Let the graphs in the sample set beG = {G1, . . . , Gi, . . . , GN} and

the supergraph beΓ. We use the set of assignment matricesS = {S1, . . . ,Si, . . . ,SN}
to represent the correspondences between the nodes of sample graphs and those of the

supergraph. Under the assumption that the graphs inG are independent samples from

the distribution, the likelihood of the sample graphs can bewritten as follows using thea

posterioriprobabilities reviewed in Section 3.2

P (G|Γ,S) =
∏

Gi∈G

∏

a∈Vi

∑

α∈VΓ

Ki
a exp[µ

∑

b∈Vi

∑

β∈VΓ

Ai
abMαβs

i
bβ ]. (3.19)
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We aim to locate the supergraph that maximizes the likelihood function above which

is a mixture model over the set of possible correspondences.In [61], Luo and Hancock

use this probabilistic model to cast the problem of graph matching into that of seeking the

assignment matrix that maximizes thisa posteriorprobability. To solve this problem, they

develop an EM algorithm in which the node correspondences can be efficiently recovered

using singular value decomposition. In our method we use thisa posteriorprobability as

the probability distribution of the sample graphs given thesupergraph and correspondence

information. However, to maximize the likelihood of the sample graphs we need to esti-

mate not only the assignment matrices, but also the structure of the supergraph. In order

to deal with the missing node assignment matrices and the structure of the supergraph, we

develop a different EM algorithm to locate the solution.

3.3.1 Expected Log-Likelihood Function

We proceed to compute the expected value of the log-likelihood function of the sample

graphs. The likelihood function for observing a sample graphG, i.e. for it to be generated

by the supergraphΓ, is thea posteriorprobability in Equation (3.18), its log-likelihood

function is

L(S) =
∑

a∈V
ln{
∑

α∈VΓ

Ka exp[µ
∑

b∈V

∑

β∈VΓ

AabMαβsbβ]}. (3.20)

According to [26] [78] [14] [61], Luo and Hancock show that the expectation of this

log-likelihood function is

Λ(S(n+1)|S(n)) =
∑

a∈V

∑

α∈VΓ

Q(n)
aα {ln Ka + µ

∑

b∈V

∑

β∈VΓ

AabMαβs
(n+1)
bβ }, (3.21)

whereQ(n) is a matrix with elementsQ(n)
aα that are equal to thea posterioriprobability of

nodea in G being matched to nodeα in Γ at iterationn of the EM algorithm.
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To develop the expected log-likelihood function for our supergraph model, since we

do not know the supergraph adjacency matrixM, we work with its expectation valueP.

From the set of sample graphs with correspondence matrices represented byS we have

Λ̄(S(n+1)|S(n)) =
∑

Gi∈G

∑

a∈Vi

∑

α∈VΓ

Qi,(n)
aα {lnKi

a + µ
∑

b∈Vi

∑

β∈VΓ

Ai
abP

(n)
αβ s

i,(n+1)
bβ }, (3.22)

whereP (n)
αβ = E[Mαβ ] = P (Mαβ = 1| G,S(n)). Posed in this way, the estimation of the

expectation valueP (n)
αβ involves exploring all the configurations of the supergraphmodel,

which is only computationally tractable using Monte Carlo sampling. The alternative is

to assume a simple distribution for the supergraph edges. For instance, if we assume that

the sample graph edges arise as independent samples from those of the supergraph under

a Bernoulli distribution, then the likelihood becomes

P (G|Γ,S) =
∏

Gi∈G

∏

α,β∈VΓ

Pαβ

∑

a,b∈Vi

siaαs
i
bβ

Ai
ab

(1− Pαβ)
1−

∑

a,b∈Vi

siaαs
i
bβ

Ai
ab

. (3.23)

This is a different distribution from the one prosed for matching but it is tractable. The

trial success probability for the Bernoulli distributionPαβ is equal to the expected number

of successes, and so

Pαβ =
1

|G|
∑

Gi∈G

∑

a,b∈Vi

siaαs
i
bβA

i
ab, (3.24)

where|G| is the number of graphs in the sample setG.

To maximize the expected log-likelihood function in Equation (3.22), since the first

term under the curly braces contributes a constant amount

∑

Gi∈G

∑

a∈Vi

∑

α∈VΓ

Qi,(n)
aα lnKi

a =
∑

Gi∈G

∑

a∈Vi

lnKi
a, (3.25)

we confine our attention to the second term under the curly braces, which determines the

update direction. The quantity of interest can be written asthe summation of the traces of
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products of matrices that is

Λ̂(S(n+1)|S(n)) =
∑

Gi∈G
Tr[(Ai)TQi,(n)P(n)(Si,(n+1))T ]. (3.26)

As a result, we concentrate on the critical quantity in Equation (3.26) and maximize its

value.

3.3.2 Maximization

The maximization step involves recovering the elements in the assignment matricesS(n+1)

that satisfy the condition

Si,(n+1) = argmax
Ŝ

Tr[(Ai)TQi,(n)P(n)ŜT ]. (3.27)

To update those set of correspondence indicators, we use theextreme principal re-

ported by Scott and Longuet-Higgins [89]. Scott and Longuet-Higgins demonstrate that

theSi,(n+1) satisfying the above condition can be recovered by performing the singular

value decomposition

(Ai)TQi,(n)P(n) = YΣUT , (3.28)

whereY andU are orthogonal matrices andΣ is a rectangular diagonal matrix. From

the factorization, we construct the matrix∆ by making the diagonal elements inΣ unity,

and compute matrixZ by settingZ = Y∆UT . The elements ofZ can be used to update

the assignment indicators. However, the matrixZ is not a binary matrix in nature and the

elements ofZ are neither positive nor normalized. To overcome those problems, Scott

and Longuet-Higggins suggest testing the elements ofZ and transforming the matrix to

a matrix of binary correspondence indicators. We follow their method and make the

following setting. If the elementZaα is the maximum value in both its containing row and
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column, then the corresponding assignment indicator is setto unity; otherwise, it is set to

zero. In other words,

Si,(n+1)
aα =







1 if Zaα = maxZa· = maxZ·α

0 otherwise.
(3.29)

There are alternative methods to update the assignment matrix Si,(n+1) in this step.

For instance, the graduated assignment method proposed by Gold and Rangarajan [48]

could be adopted. Here we choose to use the idea of singular value decomposition for the

reasons of simplicity.

3.3.3 Expectation

In the expectation step of the EM algorithm, we compute the matrix Qi,(n+1) whose el-

ements are thea posterioriprobability of the nodes in the supergraph being matched to

those of the sample graphGi under the current correspondenceSi,(n). In [61], thea pos-

teriori probability of a node in the supergraph graphΓ given a node in the sample graph

G and the correspondence at iterationn is

P (α|a,S(n+1)) =
p(a|α,S(n))π

(n)
α

∑

α∈VΓ
p(a|α,S(n))π

(n)
α

, (3.30)

where

π(n)
α =

1

|V |
∑

a∈V
P (α|a,S(n)). (3.31)

Recall in Equation (3.15) we have

P (a|α,S) = Ka exp[µ
∑

b∈V

∑

β∈VΓ

AabMαβsbβ].

Replacing it into Equation (3.30), thea posterioriprobability of the nodes in the super-

graph graphΓ at iterationn+ 1 is
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Qi,(n+1)
aα =

exp[
∑

b∈Vi

∑

β∈VΓ
Ai

abP
(n)
αβ s

i,(n)
bβ ]π

i,(n)
α

∑

α′∈VΓ
exp[

∑

b∈Vi

∑

β∈VΓ
Ai

abP
(n)
αβ s

i,(n)
bβ ]π

i,(n)
α′

(3.32)

where

π
i,(n)
α′ =

1

|Vi|
∑

a∈Vi

Q
i,(n)
aα′ . (3.33)

To run the EM algorithm, we need to initialize both the structure of the supergraph and

the node correspondences between the sample graphs and the supergraph. Initializing the

supergraph with different structure, the supergraph we learned using the EM algorithm

could be different. The initial supergraph should have two properties. First, the initial

supergraph should be easily obtained, and second it should preserve enough structural

variations of the graphs in the sample set. Later in the experimental part, we will show

how we construct a concatenated graph that satisfies the above properties and use it as the

initial supergraph of the EM algorithm.

3.4 Experiments

In this section, we test our proposed method on a real-world “toys” dataset and provide

some experimental evaluations of our generative model. Thedataset used consists of

images of 4 objects, with 20 different views of each object. We extract feature points in

the images using the SIFT [60] detector and construct the sample graphs using Delaunay

triangulation of the detected points. In Figure 3.1, we illustrate some example images of

the objects and the extracted SIFT feature points on the images. Figure 3.2 shows the

associated Delaunay graphs constructed from the SIFT points.

To initialize the structure of the supergraph, we constructa concatenated graph. The

concatenated graph is constructed using the following procedures. we first match pairs

of neighbour graphs from the same object using the SIFT feature descriptors and then

merge the common structures for pairs of graphs. Finally we concatenate the common

30



Figure 3.1: Example images and the extracted SIFT feature points on the images.
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Figure 3.2: Example images and their associated graphs fromthe SIFT feature points.

structures over for the sample graphs to form the concatenated graph. The concatenated

graph constructed in this way well preserves the structuralvariations present in the set of

sample graphs.

The first part of our experimental investigation aims to validate the supergraph learn-

ing method. We iterate the two steps of the EM algorithm 50 times, and observe how the

structure of the supergraph changes and how the likelihood function changes with itera-

tion number. During the iterations of the EM algorithm, we recover the structure of the

supergraph at iterationn by setting

M
(n)
αβ =







1 if P (n)
αβ > 0

0 otherwise,
(3.34)

and measure the variation of the supergraph structure usingthe von Neumann entropy

mentioned in Section 2.6.1. According to Passerini and Severini [70], the von Neumann
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entropy of graphs is defined as

H(Γ) = −
|VΓ|
∑

j

λ̂j
|VΓ|

ln
λ̂j
|VΓ|

, (3.35)

whereλ̂j are the eigenvalues of the normalized Laplacian matrix of the supergraph that is

defined aŝL = D−1/2(D −M)D−1/2, whereD is the degree matrix of the supergraph

which is a diagonal matrix with node degree on the diagonal line andM is the adjacency

matrix. The von Neumann entropy can be used as an indicator ofstructural complexity

of the supergraph. A detailed description of this entropy isprovided in the following

chapter. From Figure 3.3(a), it is clear that the von Neumannentropy of the supergraph

decreases as the iteration number increases and finally converges when the iteration num-

ber increases to 40. This indicates that the complexity of the supergraph decreases and its

structure becomes condensed and simplified as the number of iterations increases. Figure

3.3(b) shows that the average of the logarithm of the productof the a posterioriprob-

abilities of the sample graphs, i.e. the average log-likelihood, increases and gradually

converges as the number of iterations increases. In other words, our algorithm behaves in

a stable manner both increasing the likelihood of sample graphs and simplifying the su-

pergraph structure. Both the likelihood of sample graphs and the value of von Neumann

entropy of the supergraph converge when the iteration number increases to 40.

Secondly, we evaluate the effectiveness of our generative model learned using the

EM algorithm for classifying graphs. To do this, we learn a supergraph for each object

class from a set of samples in the training set and use the learned supergraphs to dis-

tinguish graphs from a separate test set. For each graph in the test set, we compute its

likelihood from a given supergraph using thea posterioriprobability in Equation (3.18).

The class-label of the test graph is determined by the class of the supergraph which gives

the maximuma posterioriprobability. The classification rate is the fraction of correctly

identified graphs in the test set computed using 10-fold cross validation. For comparison,
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Figure 3.3: (a) variation of the von Neumann entropy of the supergraph in Equation (3.35)

during iterations and (b) variation of the average log-likelihood of the sample graphs

during iterations.
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Table 3.1: Comparison of the classification results. The values are the average classifi-

cation rates from 10-fold cross validation, followed by their standard error. The highest

classification rates are shown in bold.

Supergraph construction classification rate

initial supergraph 66.3%± 0.038

set median graph 65.5%± 0.025

learned supergraph 72.5%± 0.022

we have also investigated the results obtained using two alternative constructions of the

supergraph. The first of these is the initial structure concatenated from the results of SIFT

descriptors. The second is the set median graph [56], i.e. the set median graph is a sample

graph in the training set that has largest average value of the a posterioriprobabilities

to the other sample graphs in the training set. Table 3.1 shows the classification results

obtained with the three different supergraph constructions. Among the three construc-

tions, our learned supergraph achieves an average classification rate of 72.5%, which is

higher than the initial supergraph’s classification rate (66.3%) and the set median graph’s

(65.5%).

Finally, we visualize the structure of the learned supergraph for car object after the

EM iterations in Figure 3.4.

3.5 Conclusions

Our first contribution of this chapter is that we have proposed a method of learning a

generative model or supergraph for graphs. We began by introducing thea posteriori

probability defined in a graph matching problem [61]. In the subsequent development,

we used this probability to measure the likelihood of a sample graph from the supergraph.
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Figure 3.4: Learned supergraph for car object after the EM algorithm.
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The supergraph we aim to learn is one which maximizes the likelihood of the sample

graphs. Our second contribution is that, to maximize this objective function, we have

developed an EM algorithm to maximize the likelihood of the sample graph and locate

the structure of the optimal supergraph. In our experiments, we have demonstrated that

our supergraph learning method can locate the structure of asupergraph that is optimal

or suboptimal and have shown that the supergraph learned is effective for classification.

Besides, we also have investigated the use of the von Neumannentropy as the indicator

for measuring the complexity of the supergraph in the experimental part of this chapter.
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Chapter 4

Graph Characterizations From Von

Neumann Entropy

4.1 Introduction

In this chapter we explore how the von Neumann entropy can be used as a measure of

graph characterization. We also develop a simplified form for the von Neumann entropy

of a graph that can be computed in terms of node degree statistics. We compare the

resulting characterizations with a number of different graph characterizations including

Estrada’s heterogeneity index [37] and the derivative of the Riemann zeta function at the

origin [111]. In the case of Estrada’s heterogeneity index we reveal a new link between

Estrada’s index and the commute time on a graph. We then proceed to show how the

the von Neumann entropy can be used to compute thermodynamicdepth and illustrate its

applications to a set of protein-protein interaction networks.

The main drawback of randomness complexity is that it does not capture properly the

correlations between vertices [39]. Statistical complexity aims to overcome this problem

by measuring irregularities beyond randomness, and does not necessarily grow monoton-

ically with randomness. Here we take the view that a more natural route to computing
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graph complexity is to turn to information theory and to use entropy measures.

The novel contributions of this chapter are threefold. First, we develop new graph

characterizations from the von Neumann entropy. Second, wereveal a new link between

Estradas index and the commute time on a graph. Third, we showhow to use the von

Neumann entropy to construct the Bregman balls needed to compute the entropy based

thermodynamic depth complexity. The outline of the chapteris as follows. In Section

4.2 we introduce the definition of the von Neumann entropy andshow how to simplify

and approximate its calculation. Section 4.3 describes theheterogeneity index and re-

veals its link to the commute time. Section 4.4 we review the derivative of the Riemann

zeta function at the origin as an alternative graph characterization for experimental com-

parison. Section 4.5 describes the thermodynamic depth complexity measure for graphs,

and explains how our von Neumann entropy can lead to the von Neumann entropy based

thermodynamic depth complexity. Section 4.6 provides experimental results. This study

is divided into three parts, namely a) an investigation of the relationship between the von

Neumann entropy and its approximate counterpart, b) the comparison with alternative

graph characterizations and c) the application of the entropy-based thermodynamic depth

to protein-protein interaction networks. Section 4.7 offers some conclusions.

4.2 Graph Representation and the Von Neumann Entropy

The von Neumann entropy was originally defined in quantum mechanics as the Shannon

entropy associated with the eigenvalues of the density matrix. Recently, Severiniet al. [2]

[70] have shown how to apply the von Neumann entropy to the domain of graphs through

a mapping between discrete Laplacians and quantum states [16]. In the graph domain,

the von Neumann entropy is the entropy of the density matrix obtained by scaling the

normalized discrete Laplacian matrix by the reciprocal of the size of the graph. In the

following we show how we derive this entropy.
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To be consistent with the notations in Chapter 3, we denote the data graph under study

byG = (V,E), whereV is the set of nodes andE is the set of edges. Further, the structure

of the graph is represented by a|V | × |V | adjacency matrixA (|V | is the number of the

nodes in the graph) whose elements are

Aab =







1 if (a, b) ∈ E
0 otherwise.

(4.1)

The degree matrix of graphG is a diagonal matrixD, whose diagonal elements are given

byDaa = da =
∑

b∈V A(a, b). From the degree matrix and the adjacency matrix we can

construct the Laplacian matrixL = D −A, i.e. the degree matrix minus the adjacency

matrix. The elements of the Laplacian matrix are

Lab =



















da if a = b

−1 if (a, b) ∈ E
0 otherwise.

(4.2)

The normalized Laplacian matrix is given byL̂ = D−1/2LD−1/2 and has elements

L̂ab =



















1 if a = b andda 6= 0

− 1√
dadb

if (a, b) ∈ E
0 otherwise.

(4.3)

The spectral decomposition of the normalized Laplacian matrix is L̂ = Φ̂Λ̂Φ̂T where

Λ̂ = diag(λ̂1, λ̂2, ..., λ̂|V |) is a diagonal matrix with the ordered eigenvalues as elements

(0 = λ̂1 < λ̂2 < ... < λ̂|V |) andΦ̂ = (φ̂1|φ̂2|...|φ̂|V |) is a matrix with the correspond-

ing ordered orthonormal eigenvectors as columns. The normalized Laplacian matrix is

positive semi-definite and so has all eigenvalues non-negative. The number of zero eigen-

values is the number of connected components in the graph. For a connected graph,

there is only one eigenvalue which is equal to zero. The normalization factor means that
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the largest eigenvalue is less than or equal to 2, with equality only whenG is bipartite.

Hence all the eigenvalues of the normalized Laplacian matrix are in the interval[0, 2]. The

normalized Laplacian matrix is commonly used as a graph representation and the eigen-

vectorφ̂2 associated with the smallest non-zero eigenvaluesλ̂2 is often used in graph cuts

[83][92].

The trace of the normalized Laplacian matrix is equal to the size of the graph, i.e.

the number of the nodes in the graph. Scaling the normalized Laplacian matrix by the

reciprocal of its trace, we obtain a density matrixL̂|V | . The eigenvalues of the density

matrix is( λ̂1

|V | ,
λ̂2

|V | , ...,
λ̂|V |

|V | ) and thus the von Neumann entropy of density matrix associated

with the normalized Laplacian matrix of the graph is defined as [70]

H(G) = −
|V |
∑

j=1

λ̂j
|V | ln

λ̂j
|V | , (4.4)

where0 ln 0 = 0, by convention. The von Neumann entropy above relies on the com-

putation of the normalized Laplacian spectrum, therefore its computational complexity

is cubic in the number of nodes. To render the computation more efficient, we explore

how to simplify and approximate the calculation of von Neumann entropy. The Taylor

expansion forln λ̂j

|V | at point 1 is

(
λ̂j
|V | − 1)− 1

2
(
λ̂j
|V | − 1)2 +

1

3
(
λ̂j
|V | − 1)3 − 1

4
(
λ̂j
|V | − 1)4 + · · · . (4.5)

If we keep the first item of the expansion and discard the remaining that contribute to a

small amount,ln λ̂j

|V | is approximated using( λ̂j

|V | − 1). Then the entropy−
∑

j
λ̂j

|V | ln
λ̂j

|V |

can be replaced by the quadratic entropy
∑

j
λ̂j

|V |(1−
λ̂j

|V |), then we obtain

H(G) = −
∑

j

λ̂j
|V | ln

λ̂j
|V | ≃

∑

j

λ̂j
|V |(1−

λ̂j
|V |) =

1

|V |
∑

j

λj −
1

|V |2
∑

j

λ2j . (4.6)

Using the fact that Tr[L̂k] =
∑

j λ̂
k
j [12], the quadratic entropy can be rewritten as
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H̄(G) =
Tr[L̂]
|V | −

Tr[L̂2]

|V |2 . (4.7)

According to Equation (4.3), the normalized Laplacian matrix L̂ has unit diagonal ele-

ments, therefore for the trace of the normalized Laplacian matrix we have

Tr[L̂] = |V |. (4.8)

Similarly, for the trace of the square of the normalized Laplacian, we have

Tr[L̂2] =
∑

a∈V

∑

b∈V
L̂abL̂ab =

∑

a∈V

∑

b∈V
(L̂ab)

2

=
∑

a,b∈V
a=b

(L̂ab)
2 +

∑

a,b∈V
a6=b

(L̂ab)
2

= |V |+
∑

(a,b)∈E

1

dadb
. (4.9)

Substituting Equation (4.8) and Equation (4.9) into Equation (4.7), the entropy be-

comes

H̄(G) =
Tr[L̂]
|V | −

Tr[L̂2]

|V |2 =
|V |
|V | −

|V |
|V |2 −

∑

(a,b)∈E

1

|V |2 dadb
= 1− 1

|V | −
∑

(a,b)∈E

1

|V |2 dadb
.

(4.10)

As a result, we can approximate the von Neumann entropy usingtwo measures of graph

structure. The first is the number of nodes of the graph, whilethe second is based on de-

gree statistics for pairs of nodes connected by edges. The approximation can be computed

without evaluating the spectrum of the normalized adjacency matrix (which is cubic). The

expression of the approximate entropy is quadratic in the number of nodes in a graph.
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4.3 Graph Heterogeneity Index

To compare our derived graph characterization with its alternatives, we review the net-

work heterogeneity index recently developed by Estrada [37] and reveal its link to the

commute time on a graph. To develop the heterogeneity index,Estrada commences by

defining a local index which measures the irregularity of an edge in the graph(a, b) ∈ E
as

δab = [f(da)− f(db)]2, (4.11)

wheref(da) is a function of the node degree. Selectingf(da) = d
−1/2
a , the heterogeneity

index proposed is defined to be the sum of the irregularity of all edges in the graph,

J ′(G) =
∑

(a,b)∈E
(d−1/2

a − d−1/2
b )2. (4.12)

The main advantage of defining the index as the sum of square differences of a func-

tion of node degree is that the index can be expressed in termsof a quadratic form of the

Laplacian matrix of the graph. That is, letd−1/2 = (d
−1/2
1 , d

−1/2
2 , ..., d

−1/2
|V | )T represent a

column vector whereda is the degree of the nodea, the index can be written as

J ′(G) =
∑

(a,b)∈E
(d−1/2

a − d−1/2
b )2 =

1

2
(d−1/2)TLd−1/2. (4.13)

The index above can also be stated in terms of theRandíc index′′ 1R−1/2
′′ [75] of the

graph,

J ′(G) =
∑

(a,b)∈E
(d−1/2

a − d−1/2
b )2 = |V | − 2

∑

(a,b)∈E
(dadb)

−1/2 = |V | − 2 1R−1/2. (4.14)

Li and Shi [58] show that for connected graphs theRandíc indexis bounded as follows

√

|V | − 1 ≤ 1R−1/2 ≤
|V |
2
, (4.15)
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where the lower bound is attained for star graphs and the upper bound is attained for

regular graphs with|V | nodes. Thus the heterogeneity index is bounded as follows

0 ≤ J ′(G) = |V | − 2 1R−1/2 ≤ |V | − 2
√

|V | − 1 . (4.16)

Then Estrada defines the normalized heterogeneity index as

J(G) =
|V | − 2 1R−1/2

|V | − 2
√

|V | − 1
=

∑

(a,b)∈E
(d−1/2

a − d−1/2
b )2

|V | − 2
√

|V | − 1

=
1

|V | − 2
√

|V | − 1

∑

(a,b)∈E
(
1

da
+

1

db
− 2√

dadb
) . (4.17)

The value of the normalized heterogeneity index is in the range[0, 1], i.e. 0 ≤ J(G) ≤ 1.

It is zero for regular graphs and one for star graphs. Heterogeneous starlike graphs are

expected to have values ofJ(G) close to one. On the other hand, more regular graphs are

expected to have values close to zero.

It is interesting to note that Maieret al. [65] have shown that1/da + 1/db is pro-

portional to the commute timeCTab (or resistance distance) between nodesa andb for

graphs of large degree. Therefore, in the limit of large nodedegree we have

J(G) ∼
∑

(a,b)∈E
{CTab − 2Âab} (4.18)

whereÂ = D−1/2AD−1/2 is the normalized adjacency matrix with elementsÂab =
1√
dadb

when(a, b) ∈ E and otherwise zero. The heterogeneity is largest when the commute time

between nodesa andb differs from2Âab due to a large number of alternative connecting

paths.

Recall that commute time is the average of the outward hitting time and return hitting

time, over all paths connecting a pair of nodes [74]. It henceprovides a non-local index
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of connectivity between pairs of nodes, which is non-zero even if there is no connecting

edge. Apart from the commute time term and constants relatedto the size of the graph,

the simplified von Neumann entropy depends on

ΨH̄(G) = −
∑

(a,b)∈E

1

|V |2 dadb
= − 1

|V |2
∑

(a,b)∈E
L̂2
ab , (4.19)

whereas the normalized heterogeneity index depends on

ΨJ(G) = −
∑

(a,b)∈E

2√
dadb

= 2
∑

(a,b)∈E
L̂ab. (4.20)

Hence, the heterogeneity contains measures of both global path length distribution via

commute time, and local edge structure via the elements of the normalized Laplacian.

The entropy on the other hand is based only on the latter.

4.4 Riemann Zeta Function Derivative

In this section we review a unary representation based on theanalysis of the Riemann zeta

function which will be used for comparisons in the experimental part. The Riemann zeta

function associated with normalized Laplacian eigenvalues is defined to be [111]

ζ(υ) =
∑

λ̂j 6=0

λ̂−υ
j , (4.21)

which is the result of exponentiating and summing the reciprocal of the non-zero normal-

ized Laplacian eigenvalues.

The derivative of the zeta function is given by

ζ ′(υ) =
∑

λ̂j 6=0

−λ̂−υ
j ln λ̂j . (4.22)

At the origin the derivative takes on the value
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ζ ′(0) =
∑

λ̂j 6=0

{− ln λ̂j} = ln{
∏

λ̂j 6=0

1

λ̂j
}. (4.23)

McKay [67] has shown that the derivative of the zeta functionat the origin is linked to the

number of spanning trees in a graph G through

τ(G) =

∏

a∈V da
∑

a∈V da
exp[−ζ ′(0)]. (4.24)

As a result, the derivative of the Riemann zeta function at the origin is determined by the

number of spanning trees in the graph together with the degree of its nodes.

4.5 Thermodynamic Depth Complexity

Escolanoet al. [36] [35] have recently explored how to measure the complexity of graphs

using thermodynamic depth. They consider the nodes in a graph as microscopic states

and their expansion subgraphs as macroscopic states and in this way they define a node

history. Given a graphG = (V,E), then the history of a nodea ∈ V is ~a(G) =

{e(a), e2(a), ..., eq(a)} wheree(a) ⊆ G is the first order expansion subgraph given bya

and allb : (a, b) ∈ E, e2(a) = e(e(a)) ⊆ G is the second-order expansion consisting of

c : (b, c) ∈ E, b ∈ Ve(a), c /∈ Ve(a), and so on untilq cannot be increased. IfG is connected

eq(a) = G, otherwiseeq(a) is the connected component to whicha belongs.

Every node history~a(G) specifies a different causal trajectory leading toG or its

connected components. If the causal trajectories are confined with narrow bounds, then

the graphG (or its connected components) is easy to reach. In this case the process leading

to the graph and generating the trajectories is simple, and the thermodynamic depth of the

graph is shallow. Otherwise if a wide range of historical alternatives has been extracted,

then the process is complex and the graph has a deep thermodynamic depth.

In this section, we develop a novel variant of this idea and use the von Neumann

46



entropy of the expansion subgraph as a complexity characterization. Specifically, our

characterization is developed based on the idea of Escolanoet al. [36] [35], where they

use the centres and radii of the minimum enclosing Bregman balls (MEBB) [69] to char-

acterize the causal trajectory of each node of the graph. TheBregman divergence [17] is

used in information theory to assess the similarity betweentwo objects. Given the von

Neumann entropies of two subgraphs (h1 andh2) and a strictly convex and differentiable

functiong onX , the Bregman divergence associated withg for pointsh1 andh2 is

B(h1 ‖ h2) = g(h1)− g(h2)− (h1 − h2)∇g(h2). (4.25)

If we useg(h) = h ln h− h, the distance becomes the Kullback-Leibler divergence

KL(h1‖h2) = h1 ln
h1
h2
− h1 + h2. (4.26)

We characterize the causal trajectory of a node by the centreand the radius of the small-

est enclosing Bregman ball that encloses the entropy valuesof all expansion subgraphs

for that node history. More specifically, given~a(G), the von Neumann entropyhl =

H(el(a)) for the l-th expansion ofa and Kullback-Leibler divergenceKL, the casual

trajectory leading toG (or one of its connected components) froma is characterized by

the centreca ∈ R and radiusra ∈ R of the MEBBBca,ra = {hl ∈ X : KL(ca‖hl) ≤
ra}. Solving for the centre and radius implies findingca that minimizera subject to

KL(ca‖hl) ≤ ra, ∀ l 1 ≤ l ≤ q. Nock and Nielson [69] proposed an efficient algorithm

to estimate the centreca by iterating

c(n)a ← ∇−1
g (

n

n+ 1
∇g(c

(n−1)
a ) +

1

n+ 1
∇g(h

(n))), (4.27)

wheren is the iteration number and

h(n) = arg max
h′∈{h1,h2,...,hq}

KL(c(n−1)
a ‖h′) . (4.28)

47



If hl (1 ≤ l ≤ q) is chosen at least once during iterations, its Lagrange multiplier σl > 0,

and the radius is simply chosen as

ra = max
σl>0

KL(ca‖hl). (4.29)

After characterizing the causal trajectories of a graph, the thermodynamic depth com-

plexity of the graph is defined as follows. GivenG = (V,E), with node number|V | and

all the|V | pairs(ca, ra), the entropy-thermodynamic depth complexity ofG is character-

ized by the MEBBBc∗,r∗ = {ca ∈ X : KL(c∗‖ca) ≤ r∗} andΘmin = minh∈Bc∗,r∗ KL(h∞‖h),
whereh∞ is the von Neumann entropy of the van der Waerden matrix. The van der Waer-

den matrix is a|V | × |V | matrix with all entries equal to1
|V | . Then the thermodynamic

depth of the graph is given byD(G) = r∗ ×Θmin.

We have shown how to use the von Neumann entropy as basic complexity measure to

construct the Bregman ball and derive the entropy-based thermodynamic depth complex-

ity. In fact, the thermodynamic depth approach can be applied to any structural complex-

ity measure. In our experiments, we will compare it with thermodynamic depth based

on Estrada’s heterogeneity index and thermodynamic depth based on the derivative of the

zeta function at the origin. An advantage of the thermodynamic depth complexity mea-

sure is that it overcomes problems of cospectrality when thebasic complexity measure is

associated with spectra of graphs. This is because the thermodynamic depth complexity

relies on all expansion subgraphs from each node, rather than the single structure of the

whole graph alone. In addition, the thermodynamic depth complexity is independent of

the graph size, which means graphs with a large number of nodes do not necessarily have

a large complexity.

4.6 Experiments

The experimental evaluation of the different graph characterizations is divided into three

parts. We commence with a study on both the synthetic data andreal world data which
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aims to evaluate how well the approximation of the von Neumann entropy holds. The

second part is concerned with a comparison of the use of the graph characterizations as

a means of representing graph structure for the purpose of object recognition on the real-

world data. In the third part we embed the von Neumann entropyinto the thermodynamic

depth approach and use the derived complexity measure to characterize sets of protein-

protein interaction networks.

4.6.1 Approximation Evaluation

We first focus on analyzing how well the approximation of the von Neumann entropy

holds. Recall that in Section 4.2 we show that we approximatethe value of the von Neu-

mann entropy of a graph using the number of nodes in the graph together with the node

degree statistics. This approximation is realized by replacing the entropy−
∑

j
λ̂j

|V | ln
λ̂j

|V |

by the quadratic entropy
∑

j
λ̂j

|V |(1−
λ̂j

|V |). To explore how well the approximation holds,

we experiment with both a synthetic graph dataset and Delaunay graphs from a real-world

image dataset.

Synthetic dataset.The synthetic dataset contains two types of representativegraph

models. The first are the classical Erdös-Rényi (ER) random-graphs [33]. These are

generated by connecting pairs of nodes in the graphs with an equal probabilityp (0 ≤
p ≤ 1). The second class of graphs are the Barabási-Albert (BA) scale-free graphs.

Their degree distribution follows the power-law distribution shared by many real-world

networks. The number of the nodes of the ER graphs varies from50 to 70. For each

number of nodes we generated several ER graphs with different values ofp. The BA

scale-free graphs here are generated with the preferentialattachment algorithm in [7].

The preferential attachment commences from a small seed graph of sizem0 and iteratively

introduces one new node to the graph by connecting it tom (1 ≤ m ≤ m0) existing nodes

with a probability that is proportional to the degrees of theexisting nodes. We use a seed

graph of sizem0 = 5 and differentm values to generate BA graphs whose number of
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(a) Synthetic ER graphs. Left:p = 0.1, middle:p = 0.2, right: p = 0.4.

(b) Synthetic BA graphs. Left:m = 1, middle:m = 2, right:m = 3.

Figure 4.1: Examples of synthetic graphs.

nodes ranges from 50 to 200. In Figure 4.1, we show some examples of the ER graphs

and BA networks generated in this way.

Real-world dataset. The real-world image dataset used is the COIL dataset [68]

which consists of images of different views of 3D objects, with 72 views of each object

from equally spaced directions over 360◦. We extract corner features using the corner

detector [54] from each image and use the detected feature points as nodes to construct

sample graphs by Delaunay triangulation. Some example images and their Delaunay

graphs can be seen in Figure 4.2.

To investigate the veracity of the entropy approximation, we compute the von Neu-

mann entropy of the three types of graphs together with theirquadratic approximation.

We also randomly select different sets of normalized eigenvalues from a uniform distri-
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Figure 4.2: Example images from the COIL dataset and their associated Delaunay graphs.

bution between 0 and 2. For each set of the eigenvalues, we divide the eigenvalues by the

number of the eigenvalues in the set, to ensure that the resulting values add up to one. We

show the relationship between the exact von Neumann entropycomputed from the result-

ing values and their approximate quadratic entropy. Figure4.3 shows scatter plots of the

von Neumann entropy (y-axis) versus the quadratic approximation (x-axis) for the uni-

form sample of eigenvalues and the three different types of graphs. Figure 4.3(a) shows

the scatter plot for the uniform eigenvalue sample. Here thepoints disperse in a similar

shape of an ellipse. Compared with the uniform eigenvalue sample, the scatter plot for

the ER graphs in Figure 4.3(b) shows that the approximate entropy and the von Neumann
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(c) BA graphs
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(d) Delaunay graphs

Figure 4.3: Exact entropy versus approximate entropy for the synthetic dataset and COIL

dataset.

entropy have a same variation pattern. They increase or decrease at the same time. The

plot for the ER graphs has a small dispersion. For the BA graphs in Figure 4.3(c), there is

again a same variation pattern between the two entropies, but less dispersion than the ER

graphs. The scatter plot for the Delaunay graphs in Figure 4.3(d) demonstrates a similar

result to that of the BA graphs. Note that the slope of the scatter plots for BA, ER and

Delaunay graphs does not change dramatically, we may assumethere is a linear depen-

dence relationship between the approximate entropy and thevon Neumann entropy when

the exact computation is not strictly required. The same variation patterns or even linear

regression trend for the three types of graphs indicates theapproximate entropy of these
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graphs is a good approximation. Recall that the computational complexity of obtaining

the von Neumann entropy is governed by the spectral decomposition of the normalized

Laplacian matrix. This requiresO(|V |3) operations where|V | is the number of nodes in

a graph. On the other hand, the computational complexity of the approximate entropy is

O(|V |2). Therefore, using the approximate entropy as a substitute for the von Neumann

entropy offers an advantage of easy computation.

4.6.2 Comparison of Graph Characterizations

In this section, we turn our attention to comparing the utility of the two entropy measures

with four alternative graph characterizations, i.e. the heterogeneity index, the derivative

of the Riemann zeta function at the origin, average path length and graph diameter. To

do this, we first select 5 objects from the COIL dataset and plot different characterization

measures of their Delaunay graphs. From left-to-right and top-to-bottom in Figure 4.4

we show the values of six characterizations for different objects. In the plot, thex-axis is

the object index and they-axis is the value of the characterization. For each object there

are 72 graphs extracted from images obtained with differentviewpoints. The graphs from

images of a same object are indicated by a same color. From Figure 4.4, we note that the

four of the characterizations, i.e. the von Neumann entropy, the approximate entropy and

the derivative of the zeta function at the origin and the average path length separate the

objects well. On the other hand the values of the heterogeneity index and graph diameter

overlap significantly for the different objects and do not distinguish the objects well.

To further quantitatively evaluate the use of the six methods on an object classifica-

tion task, we apply aK-nearest neighbour classifier to the six graph characterizations

of the Delaunay graphs for the objects in the COIL dataset. Weobserve how the clas-

sification rate changes as we increase the number of objects to be distinguished. Figure

4.5 shows the variation of the classification rates for the six graph characterizations. In

our experiments, we setK=7 and the classification rate is the average fraction of graphs
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Figure 4.4: The values of alternative graph characterizations.
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that are correctly identified, computed using 10-fold cross-validation. From the plot, it is

clear that the von Neuman entropy method (red line) and the approximate entropy method

(blue line) give almost the same results and they always achieve the highest classification

rate as the number of objects increases from 5 to 15. The derivative of the zeta function

at the origin (black line) follows the performance of the entropy methods. The average

path length (cyan line) outperforms the graph diameter (green line) and the heterogeneity

index (magenta line) has lowest classification rates on all the classification tasks.
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Figure 4.5: Comparison of the classification rate for the sixmethods.

4.6.3 Von Neumann Entropy Based Thermodynamic Depth

Having compared the graph characterizations, we apply the entropy-based thermody-

namic depth complexity measures to analyze a set of protein-protein interaction networks

(PPIs) [36]. Our aim in this experiment is to investigate whether the von Neumann en-
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Figure 4.6: An example of the protein-protein interaction networks.

tropy based thermodynamic depth developed in Section 4.5 can characterize the structural

complexity of the PPIs. The PPIs dataset consists of networks which describe the inter-

action relationships between histidine kinase and other proteins. Histidine kinase is a key

protein in the development of signal transduction. If two proteins have direct (physical)

or indirect (functional) association, they are connected by an edge. Examples of the PPIs

are illustrated in Figure 4.6 and Figure 4.7. There are 219 PPIs in this dataset and they are

collected from 5 different kinds of bacteria with the following evolution order (from older
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Figure 4.7: An example of the protein-protein interaction networks.

to more recent)Aquifexand thermotoga–8 PPIs from Aquifex aelicusandThermotoga

maritima, Gram-Positive–52 PPIs fromStaphylococcus aureus, Cyanobacteria–73 PPIs

from Anabaena variabilisandProteobacteria–40 PPIs fromAcidovorax avenae. There is

an additional class (Acidobacteria–46 PPIs) which is more controversial in terms of the

bacterial evolution since they were discovered. Although there are studies which relate

many of them to different sub-phyla of theProteobacteria, some of them have recently

been placed very early in the phylogenic tree.
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Figure 4.8: Cumulatives for: von Neumann entropy (top-left), approximate entropy (top-

right), heterogeneity index (bottom-left) and derivativeof the zeta function at the origin (

bottom-right).

The question of whether the von Neumann entropy based thermodynamic depth is a

good measure of the structural complexity of the PPIs can be answered by studying the

cumulative distribution of the thermodynamic depth complexity [35]. From an evolu-

tionary perspective, older (less evolved) bacteria have simpler PPIs and thus lower ther-

modynamic depth values compared with bacteria that have evolved more recently. This

observation motivates the measurement of the area under thecumulative entropy distri-

bution (CED). The greater the CED the simpler the PPIs. For purpose of comparison,

we have also explored using the alternative three characterizations, i.e. the approximate

entropy, the heterogeneity index and the derivative of the zeta function at the origin, as

basic measures in the thermodynamic depth approach. The cumulative distributions of the
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four thermodynamic depth measures are shown in Figure 4.8 and their corresponding area

under the cumulatives are shown in Table 4.1 where the incorrect (inconsistent with evolu-

tion) values are shown in bold. The analysis of the area underthe cumulatives in Table 4.1

gives the following results. The two entropy based thermodynamic depth measures over-

estimate the complexity ofAquifex-Thermotoga, whereas the heterogeneity index based

thermodynamic depth overestimates the complexity ofCyanobacteria. The derivative of

the zeta function at the origin overestimates the complexity of Aquifex-Thermotogaand

underestimates that forCyanobacteria. Finally, for the controversialAcidobacteria,

Table 4.1: Values of the area under the cumulatives of the four measures.

According to the evolution order of bacteria which the PPIs are from, the

order of the PPIs from simple to more complex are:Aquifex-thermotoga,

Gram-Positive, Cyanobacteriaand Proteobacteria, with a controversial

classAcidovorax avenae. The simpler the PPIs, the greater the area under

the cumulatives. The values that are not consistent with evolution order are

shown in bold.

Bacteria VNE1 AE2 Heterogeneity zeta function derivative

Aquifex-Thermotoga 95.40% 95.23% 65.45% 49.71%

Gram-possitive 96.24% 96.09% 65.36% 90.65%

Cyanobacteria 89.27% 88.89% 54.05% 98.31%

Proteobacteria 88.82% 88.53% 56.45% 60.94%

Acidobacteria 98.22% 98.15% 65.84% 85.42%

1 von Neumann entropy

2 approximate entropy

the two entropy based thermodynamic depth measures and the heterogeneity index based

thermodynamic depth place it oldest, whereas the derivative of the zeta function based

measure places its order later thanGram-possitive. We note from those results that when
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combined with the thermodynamic depth, the two entropy characterizations provide com-

parable results with the heterogeneity index based measureand also outperform the zeta

function based measure.

4.7 Conclusions

In this chapter we have developed new graph characterizations from the von Neumann

entropy. We commence from the von Neumann entropy of a graph.This is simply the

entropy of density matrix associated with the normalized Laplacian matrix. We explore

how to simplify and approximate the calculation of von Neumann entropy. Our first step

is to replace the entropy by its quadratic counterpart. An analysis of the quadratic entropy

reveals that it can be computed from a number of permutation invariant matrix trace ex-

pressions. This leads to a simple expression for the approximate entropy in terms of the

elements of the degree matrix, and which can be computed without evaluating the nor-

malized Laplacian matrix. Then we compare the new graph characterizations with their

alternatives, i.e. Estrada’s heterogeneity index and Riemann Zeta Function derivative, and

we reveal a new link between Estradas index and the commute time on a graph. Finally,

we introduce the entropy based thermodynamic depth as a graph complexity measure.

Experimental results on both synthetic dataset and real-world dataset reveal the ap-

proximate entropy is a good approximation of the von Neumannentropy for the BA, ER

and Delaunay graphs. We have also compared the performance of six graph characteri-

zations, i.e. the von Neumann entropy, the approximate entropy, the heterogeneity index

and the derivative of the Riemann zeta function at the origin, the average path length and

graph diameter, for distinguishing graphs. Here we observethat the two entropy methods

give a better classification rate than the alternatives. In the final experiment, we investi-

gated how to use the von Neumann entropy based thermodynamicdepth to characterize

the complexity of networks. This gives good results in ordering the PPIs of different
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species of bacteria according to their evolved state.
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Chapter 5

Generative Graph Prototypes from

Information Theory

In this chapter, we combine the probabilistic framework introduced in Chapter 3 and the

entropy-based graph characterization measures proposed in Chapter 4 and take an infor-

mation theoretic method to construct a generative model forgraphs by adopting a mini-

mum description length approach. Here again the generativemodel is posed in the form

of a prototype graph called supergraph. The complexity of the supergraph is encoded us-

ing the simplified von Neumann entropy (refer back to Equation (4.10) in Chapter 4). We

develop a variant of the EM algorithm to minimize the description length. To generate

new graphs, rather than only control the edge occurrence probabilities (as shown in the

generative model developed in Chapter 3), we assume that both the nodes and the edges

of graphs arise under independent Bernoulli distributionsand sample new graphs accord-

ing to their node and edge occurrence probabilities. Empirical evaluations on real-world

database demonstrate the practical utility of the proposedalgorithm and show the effec-

tiveness of the generative model for the tasks of graph classification, graph clustering and

generating new sample graphs.
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5.1 Introduction

Given a set of sample graphs, we aim to learn a supergraph thatbest explains the graphs.

The best supergraph model should be able to summarize the observed data well, and more-

over, it should have good predictive capabilities. To locate the structure of this supergraph

model, we take an information theoretic approach using a two-part minimum description

length criterion [82] [79][80]. The two-part minimum description length (MDL) mea-

sures both the goodness-of-fit with the observed sample graphs under a supergraph model

and the complexity of the supergraph. By trading off the firstquantity against the second,

it avoids overfitting the supergraph model. Torsello and Hancock [99] have shown how to

learn a tree-union for a set of trees using the minimum description length criterion. Since

the trees are rooted their learning process can be effected by performing tree merging

operations in polynomial time. However, this greedy strategy does not translate tractably

to graphs where the complexity becomes exponential, and we require different strategies

for learning and sampling. Torsello and Hancock realize both objectives using edit opera-

tions. Here on the other hand we use a soft assignment method for optimization and then

generate new instances using a direct sampling method.

To furnish the required learning framework, we adopt the probability distribution de-

scribed in Chapter 3. This probability distribution is usedto describe the likelihood of the

sample graphs. To adopt the two-part minimum description length criterion, we also need

a complexity measure of the supergraph. In traditional statistical models based on vec-

tor patterns, the complexity of the model is generally measured by counting the number

of parameters in the model. However, this does not generalize well for graphs because

information such as the number of edges or nodes of a graph is not sufficient to reflect

its true complexity. Here we use an alternative measure of complexity, encoded using the

von Neumann entropy proposed in Chapter 4 (i.e. the entropy of density matrix associated

with its normalized Laplacian). We develop a variant of the EM algorithm to minimize the

total code-length criterion. Here the structure of the supergraph and the correspondences
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between the nodes of the sample graphs and those of the supergraph are treated as miss-

ing data. In the maximization step, we update both the node correspondence information

and the structure of the supergraph using soft assignment [48]. After several iterations

the variant EM algorithm will locate the structure of the supergraph that minimizes the

overall-code length.

Besides developing a method of learning the structure of thesupergraph model, we

also investigate how to combine the Jensen-Shannon divergence with our supergraph to

measure graph similarities. This investigation provides us a route to embed graph data into

pattern space to perform graph clustering. Moreover, we also develop a novel and efficient

method which allows our supergraph model to sample new graphs. This is realized by

assuming the nodes and edges of sample graphs arise under Bernoulli distributions and we

sample new graphs according to their node and edge occurrence probabilities. Therefore,

our supergraph model proposed here can fulfil the tasks of graph classification, graph

clustering and generating new graphs.

The remainder of this chapter is laid out as follows. In Section 5.2, we recall the

probabilistic ingredients mentioned in Chapter 3, which describe the distribution of the

graph data and are the prerequisites for our method. In Section 5.3, we explain how

we encode our model so as to formulate the problem in hand in a minimum description

length setting. In Section 5.4, we present a variant of the EMalgorithm to minimize

the code-length criterion. Section 5.5 exploits how to measure graph similarities using

the Jensen-Shannon kernel and Section 5.6 shows how to sample new graphs from the

generative model. Section 5.7 provides experiments to demonstrate the utility of our

proposed algorithms. We first validate our variant EM algorithm by showing that the

overall code-length decreases during the iterations. We then illustrate that our generative

model outperforms alternative supergraph constructions on graph classification tasks. We

also investigate the performance of graph clustering with the Jensen-Shannon kernel and

explore to what extent the graphs sampled by our method reproduce the salient properties
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of the original graphs used to train the supergraph model. Finally, Section 5.8 offers some

conclusions.

5.2 Probabilistic Framework

To commence our development, we first recall the probabilistic framework we used to

construct the supergraph in Chapter 3. We represent the set of sample graphs usingG =

{G1, . . . , Gi, . . . , GN}, where the graph indexedi isGi = (Vi, Ei), with Vi as the node-

set andEi as the edge-set. Similarly, the supergraph which we aim to learn from this

data is denoted byΓ = (VΓ, EΓ), with node-setVΓ and edge-setEΓ. Furthermore, the

structure of the sample graphGi is represented using a|Vi| × |Vi| adjacency matrixAi

and the structure of the supergraph modelΓ is represented using a|VΓ| × |VΓ| adjacency

matrixM. The elements of the adjacency matrix for the sample graph and those for the

supergraph are respectively defined to be

Ai
ab =







1 if (a, b) ∈ Ei

0 otherwise,
Mαβ =







1 if (α, β) ∈ EΓ

0 otherwise.
(5.1)

The correspondence information between the nodes of the sample graph and the nodes

of the supergraph is represented using a|Vi| × |VΓ| assignment matrixSi which has ele-

ments

siaα =







1 if a→ α

0 otherwise,
(5.2)

wherea→ α implies that nodea ∈ Vi is matched to nodeα ∈ VΓ.

With the above ingredients, thea posterioriprobability of the sample graphGi given

the structure of the supergraph and the node correspondences between each sample graph

and the supergraph is [61]
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P (Gi|Γ,Si) =
∏

a∈Vi

∑

α∈VΓ

Ki
a exp[µ

∑

b∈Vi

∑

β∈VΓ

Ai
abMαβs

i
bβ ], (5.3)

where

µ = ln 1−Pe

Pe
, Ki

a = P
|Vi|×|VΓ|
e Bi

a. (5.4)

In the above,Pe is the error rate for node correspondence andBi
a is the probability of

observing nodea in graphGi, the value of which depends only on the identity of the node

a, and|Vi| and|VΓ| are the number of the nodes in graphGi and supergraphΓ.

5.3 Model Coding Using MDL

With the probabilistic framework in hand, we take an information theoretic approach to

estimating the structure of the supergraphΓ that best fits the set of sample graphsG by

using a minimum description length criterion. Underpinning minimum description length

is the principle that learning, or finding a model that explains some observed data and

makes predictions about data yet unseen, can be viewed as finding a shortest code for

the observed data [82] [79]. In its earliest realization introduced by Rissanen [80], the

minimum description length principle states that the best model to explain a set of data is

the one which minimizes the description length of the model together with the description

length of the data, when encoded subject to the model. To formalize this idea, we encode

and transmit the data together along with the model. In our case these are respectively the

sample graphsG and the supergraph structureΓ. This leads to a two-part message whose

total length is given by

L(G,Γ) = LL(G|Γ) + LL(Γ). (5.5)
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whereLL(G|Γ) is the code-length of the sample graphs given the supergraphandLL(Γ) is

the code-length of the supergraph. Then the optimal supergraph is the one that minimizes

this total code-length. By taking into account the total code-length in the model, MDL

allows us to select a supergraph representation that trades-off goodness-of-fit with the

observed sample graphs against the complexity of the model.

5.3.1 Encoding Sample Graphs

To apply the two-part MDL principle, we first compute the code-length of the graph data.

A general choice for the code-length of the graph data is theShannon-Fano code[30]

which is equivalent to the negative logarithm of its likelihood function given the super-

graph. Instead of using theShannon-Fano code, here we measure the code-length of

the graph data using its average. Our reason is that if we adopt the former measure,

then there is a bias to learning a complete supergraph that isfully connected. The rea-

son will become clear later-on when we outline the maximization algorithm in Section

5.4, and we defer our justification until later. To compute the likelihood of the graph

data, for the sample graph-setG = {G1, . . . Gi, . . . GN} and the supergraphΓ, we use

S = {S1, . . .Si, . . .SN} to represent the set of assignment matrices and these indicate

the correspondences between the nodes of the sample graphs and those of the supergraph.

Under the assumption that the graphs inG are independent samples from the distribution,

using thea posterioriprobability from Section 5.2 the likelihood of the set of sample

graphs is

P (G|Γ,S) =
∏

Gi∈G
P (Gi|Γ,Si) =

∏

Gi∈G

∏

a∈Vi

∑

α∈VΓ

Ki
a exp[µ

∑

b∈Vi

∑

β∈VΓ

Ai
abMαβs

i
bβ]. (5.6)

Then the graph code-length is

67



LL(G|Γ) = − 1

|G| lnP (G|Γ,S) = −
1

|G|
∑

Gi∈G

∑

a∈Vi

ln{
∑

α∈VΓ

Ki
a exp[µ

∑

b∈Vi

∑

β∈VΓ

Ai
abMabs

i
bβ]},

(5.7)

which is the average over the set of sample graphsG.

5.3.2 Encoding the Supergraph Model

Next, we need to compute a code-length to measure the complexity of the supergraph. For

two-part codes the MDL principle does not give any guidelineas to how to encode the

hypotheses. Hence every code for encoding the supergraph structure is allowed, so long

as it does not change with the sample sizeN . Graph characterizations such as the number

of edges or nodes can express some properties of graphs, however they are not sufficient

to reflect the true complexity of the graphs. Thus we need to seek for a more meaningful

measure of graph complexity. Here we use the von Neumann entropy associated with

the normalized Laplacian matrix we proposed in Chapter 4 to give a code-length for the

supergraph complexity. According to Equation (4.4) in Chapter 4, the von Neumann

entropy of the supergraphΓ is defined as

H(Γ) = −
|VΓ|
∑

j=1

λ̂j
|VΓ|

ln
λ̂j
|VΓ|

,

where|VΓ| is the number of nodes in the supergraph andλ̂j are the eigenvalues of the

normalized Laplacian matrix of the supergraph. To incorporate the supergraph complexity

with the code-length of the graph data, we need to express thevon Neumann entropy in

terms of the simple statistics for the graph, as in the code-length expression. Fortunately,

we have shown in Chapter 4 that replacing the Shannon entropyby the quadratic entropy

and using some transformations, the von Neumann entropy canbe approximated in terms

of node degree statistics
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H̄(Γ) = 1− 1

|VΓ|
−

∑

(α,β)∈EΓ

1

|VΓ|2 dαdβ
, (5.8)

whereEΓ is the edge-set of the supergraph anddα anddβ are the degree of nodesα and

β of the supergraph. Finally, by adding together the two contributions to the code-length,

the overall code-length is

L(G,Γ) = LL(G|Γ) + LL(Γ) = (5.9)

− 1

|G|
∑

Gi∈G

∑

a∈Vi

ln{
∑

α∈VΓ

Ki
a exp[µ

∑

b∈Vi

∑

β∈VΓ

Ai
abMabs

i
bβ ] }+ 1− 1

|VΓ|
−

∑

(α,β)∈EΓ

1

|VΓ|2 dαdβ
.

Unfortunately, due to the mixture structure, the direct estimation of the supergraph

structureM from the above code-length criterion is not tractable in closed-form. For this

reason, we resort to using the EM algorithm.

5.4 The Expectation-Maximization Algorithm

Having developed our computational model which poses the problem of learning the su-

pergraph as that of minimizing the code-length, in this section, we provide a concrete

algorithm to locate the supergraph structure using our code-length criterion. The min-

imization of the code-length is equivalent to the maximization of its negative, and we

develop an EM algorithm to realize the maximization. We viewthe node correspondence

information between the sample graphs and supergraph as missing data, and regard the

structure of the supergraph as the set of parameters to be estimated. The initialization

of the EM requires an initial supergraph structure and an initial correspondence between

the sample graphs and the initial supergraph. In the two interleaved steps of the EM al-

gorithm, the expectation step involves recomputing thea posterioriprobability of node

correspondence while the maximization step involves updating both the structure of the
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supergraph and the node correspondence information. Aftereach maximization step, we

recompute the value of the code-length using the updated information of the supergraph

structure and the node correspondences. When the difference between the new value of

the code-length and the old value of the code-length are always smaller than a set thresh-

old value (normally a very small positive value), it means the code-length converges.

Otherwise, we continue interleaving the two steps of the EM algorithms. In the exper-

imental part, we will initialize the supergraph using different structures and investigate

their convergence.

5.4.1 Weighted Code-length Function

To compute the weighted log-likelihood of the overall code-length, we make use of Luo

and Hancock’s log-likelihood function for correspondencematching. According to Luo

and Hancock [61], treating the assignment matrix as missingdata, the weighted log-

likelihood function for observing a sample graphGi, i.e. for it to have been generated

by the supergraphΓ is

Λ(n+1)(Gi|Γ,Si,(n+1)) =
∑

a∈Vi

∑

α∈VΓ

Qi,(n)
aα {ln Ki

a + µ
∑

b∈Vi

∑

β∈VΓ

Ai
abM

(n)
αβ s

i,(n+1)
bβ }, (5.10)

where the superscriptn indicates that the quantity is taken at iterationn of the EM al-

gorithm andQi,(n) is a matrix with elementsQi,(n)
aα that are set equal to thea posteriori

probability of nodea in Gi being matched to nodeα in Γ at iterationn of the EM algo-

rithm.

With the above likelihood function and the code-length developed in the previous
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section, the EM algorithm involves maximizing

Λ̄(n+1)(G|Γ,S(n+1)) =
1

|G|
∑

Gi∈G

∑

a∈Vi

∑

α∈VΓ

Qi,(n)
aα {lnKi

a + µ
∑

b∈Vi

∑

β∈VΓ

Ai
abM

(n)
αβ s

i,(n+1)
bβ }

− 1 +
1

|VΓ|
+

∑

(α,β)∈EΓ

1

|VΓ|2 dαdβ
. (5.11)

The expression above can be simplified since the first term under the curly braces con-

tributes a constant amount

∑

Gi∈G

∑

a∈Vi

∑

α∈VΓ

Qi,(n)
aα lnKi

a =
∑

Gi∈G

∑

a∈Vi

lnKi
a. (5.12)

Based on this observation, the critical quantity in determining the update direction is

Λ̂(n+1) =
1

|G|
∑

Gi∈G

∑

a∈Vi

∑

α∈VΓ

∑

b∈Vi

∑

β∈VΓ

Qi,(n)
aα Ai

abM
(n)
αβ s

i,(n+1)
bβ −1+ 1

|VΓ|
+
∑

(α,β)∈EΓ

1

|VΓ|2 dαdβ
.

(5.13)

5.4.2 Maximization

In order to optimize our weighted code-length criterion, weuse graduated assignment

[48] to update both the assignment matricesS and the structure of the supergraph, i.e.

the supergraph adjacency matrixM. The updating process is realized by computing the

derivatives of̂Λ(n+1), and reformulating the underlying discrete assignment problem as a

continuous one using soft assignment [18].

In the maximization step, we have two parallel iterative update equations. The first

update mode involves softening the assignment variables, while the second aims to modify

the edge structure in the supergraph. Supergraph edges thatare unmatchable become

disjoint by virtue of having weak connection weights and cease to play any significant

role in the update process. Experiments show that the algorithm appears to be numerically

stable and appears to converge uniformly.
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Updating Assignment Matrices: To update the assignment matrices, we commence

by computing the partial derivative of the weighted code-length function in Equation

(5.13) with respect to the elements of the assignment matrices, which gives

∂Λ̂(n+1)

∂s
i,(n+1)
bβ

=
1

|G|
∑

a∈Vi

∑

α∈VΓ

Qi,(n)
aα Ai

abM
(n)
αβ . (5.14)

To ensure that the assignment variables remain constrainedto lie within the range

[0,1], we adopt the soft assingment update rule

si,(n+1)
aα ←−

exp[ε
∂Λ̂(n+1)

∂s
i,(n+1)
aα

]

∑

α′∈VΓ

exp[ε
∂Λ̂(n+1)

∂s
i,(n+1)
aα′

]

. (5.15)

The value ofε in the update process has been controlled using a slow exponential an-

nealing schedule of the form suggested by Gold and Rangarajan [48]. Initializingε with a

small positive value and allowing it to gradually increase,the assignment variablesi,(n+1)
aα

corresponding to the maximum∂Λ̂
(n+1)

∂s
i,(n+1)
aα

approaches 1 while the remainder approach 0.

Updating Supergraph Structure: The partial derivative of the weighted code-length

function in Equation (5.13) with respect to the elements of the supergraph adjacency

matrix is equal to

∂Λ̂(n+1)

∂M
(n)
αβ

=
1

|G|
∑

Gi∈G

∑

a∈Vi

∑

b∈Vi

Qi,(n)
aα Ai

abs
i,(n+1)
bβ − 1

|VΓ|2(d(n)α )2

∑

(α,β′)∈EΓ

1

d
(n)
β′

. (5.16)

The soft assignment update equation for the elements of the supergraph adjacency

matrix is

M
(n+1)
αβ ←−

exp[ε
∂Λ̂(n+1)

∂M
(n)
αβ

]

∑

(α′,β′)∈EΓ

exp[ε
∂Λ̂(n+1)

∂M
(n)
α′β′

]

. (5.17)
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In the case of the updating of the assignment matrix elements, in each row and each

column of the recovered assignment matrix no more than one element can take on unit

value. By contrast, in the case of the recovered supergraph adjacency matrix there may

exist multiple elements in each row or column with a unit value. To deal with this prob-

lem, in practice we set a threshold, and then recover the adjacency matrix by setting all

elements larger than the threshold to unity and by setting the remaining elements to zero.

This is repeated each time we increase the value ofε in the annealing schedule.

From Equation (5.16), it is interesting to note that the derivatives ofΛ̂(n+1) with re-

spect to the elements of the supergraph adjacency matrix aredependent on the frequency

of sample-set edges that are in correspondence with the samesupergraph edge. To illus-

trate this point, if we approximate the matrixQ usingS, then the first term in Equation

(5.16) becomes the expectation value of the permutated adjacency matrices for the sample

graphs. As a result, the elements of the supergraph adjacency matrix reflect the frequency

of corresponding edges in the sample-set. The thresholdingprocess selects frequent edges

and removes infrequent ones.

Recall that in Section 5.3.1 we discussed the encoding of thesample graphs, and chose

to use the average of theShannon-Fano code-length. We can now elucidate that the reason

for this choice is that as the number of the sample graphs increases, for instance in the

limit as the size of the graph sample-setG increases, i.e.N → ∞, the sum of permuted

adjacency matrices of the sample graphs might dominate the magnitude of the second

term in Equation (5.16). Thus the update algorithm might induce a complete supergraph

that is fully connected. Hence, we choose to use its average rather than its sum.

5.4.3 Expectation

In the expectation step of the EM algorithm, we compute thea posterioriprobabilities of

the nodes in the supergraph being matched to the nodes in the sample graphs. Applying

Bayes rule, thea posterioriprobabilities of the nodes in the supergraph correspondingto
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the nodes in the sample graphGi at iterationn+ 1 are given by

Qi,(n+1)
aα =

exp[
∑

b∈Vi

∑

β∈VΓ

Ai
abM

(n)
αβ s

i,(n)
bβ ]πi,(n)

α

∑

α′∈VΓ

exp[
∑

b∈Vi

∑

β∈VΓ

Ai
abM

(n)
αβ s

i,(n)
bβ ]π

i,(n)
α′

, (5.18)

where

π
i,(n)
α′ =

1

|Vi|
∑

a∈Vi

Q
i,(n)
aα′ . (5.19)

5.5 Information Theoretic Kernel

The information theoretic formulation presented in this chapter also provides a natural

route to the kernelized analysis of graph similarity, sincethe measure of the von Neumann

entropy can be used to construct an information theoretic kernel. The route we take here

is to form supergraphs from pairs of graphs, and then to compute the so-called Jensen-

Shannon (JS) divergence [23] [59] between graphs as an information theoretic measure of

dissimilarity. The JS divergence is found by taking the difference between the entropy of

the pairwise supergraph and the average of the separate entropies of the two graphs used

to construct it. The JS divergence is used to construct the information theoretic and non-

extensive Jensen-Shannon kernel [66]. More specifically, we measure the dissimilarity

between graphs using the JS divergence

JS(Gi, Gj) = H(Gi ⊕Gj)−
H(Gi) +H(Gj)

2
. (5.20)

In the above equation,Gi ⊕ Gj represents the union for graphsGi andGj , andH(·)
denotes the entropy of the corresponding graph. From the Jensen-Shannon divergence we

construct a kernelK(Gi, Gj) = ln 2− JS(Gi, Gj) and with the kernel matrix to hand we

embed the graphs into pattern space using kernel principal component analysis (kernel

PCA).
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The supergraph learning method proposed in this chapter exploits a method for com-

puting the Jensen-Shannon divergence between pairs of graphs. To do this, we use our

supergraph learning method to construct a graph-unionGi ⊕ Gj for every pair of graphs

Gi andGj. The graph-unionGi⊕Gj is the supergraph ofGi andGj learned by using the

minimum description length criterion. Using the von Neumann entropy as the entropy of

graphs, we measure the similarities of the graphs using the Jensen-Shannon divergence

and then embed graphs into pattern space using kernel PCA.

5.6 Sampling From the Generative Model

In this section we explore whether our generative model can be used to sample new

graphs. Given thea posteriorprobability in Equation (5.3), the task of sampling graphs

from the generative model is only tractable using a Monte Carlo technique. However,

Monte Carlo sampling is computationally expensive since procedures such as edge inser-

tion or deletion on a sample graph may affect the assingment matrix and may therefore

take excessive amount of time to cycle through all the edges of the supergraph. Here we

provide a direct sampling method, based on the assumption that graphs are drawn from

a simple distribution. We assume that the nodes and edges of the sample graphs arise

as independent samples from the supergraph under a Bernoulli distribution. Given the

learned structure of the supergraph modelΓ̂ and the assignment matricesŜ obtained from

our EM algorithm, then the likelihood of the sampled graphsG becomes

P (G|Γ̂, Ŝ) =
∏

Gi∈G

∏

α,β∈V
Γ̂

P V
α

∑

a∈Vi

ŝiaα
(1−P V

α )
1−

∑

a∈Vi

ŝiaα
PE
αβ

∑

a,b∈Vi

ŝiaαŝ
i
bβ

Ai
ab

(1−PE
αβ)

1−
∑

a,b∈Vi

ŝiaαŝ
i
bβ

Ai
ab

(5.21)

whereP V
α is the probability that nodeα of the generative modelΓ is present in the set of

graphsG andPE
αβ is the conditional probability that edge(α, β) occurs when nodesα and
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β are present inΓ. The trial success probability for the Bernoulli distributionsP V
α and

PE
αβ is equal to the expected number of successes, and so

P V
α =

1

|G|
∑

Gi∈G

∑

a∈Vi

ŝiaα , (5.22)

PE
αβ =

1

|G|
∑

Gi∈G

∑

a,b∈Vi

ŝiaαŝ
i
bβA

i
ab . (5.23)

To generate a new graph from the distribution, we first samplenodes from the gen-

erative model using the node occurrence probabilities computed in Equation (5.22). To

do this, for each nodeα ∈ VΓ̂, we use a random generator to return a scalar value drawn

from a uniform distribution on the interval [0,1] and compare the occurrence probability

of the nodeP V
α and the scalar value. If the occurrence probability of the node is larger

than the scalar value, the node is selected to be present in the sample graph; otherwise,

the node is not present. After we have sampled the nodes that are present in the generated

graph, we decide whether there are edges between pairs of these present nodes. It is real-

ized in a similar manner of the node sampling. That is, for each pair of the present nodes

(α, β), we generate a random value drawn from the uniform interval [0,1] and compare

their edge occurrence probabilityPE
αβ computed from Equation (5.23) with the random

value. If their edge occurrence probability is greater thanthe random value, there will be

an edge between this pair of nodes; otherwise, there will be no connection between them.

Algorithm 1 gives the pseudo code for the sampling procedure.
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Algorithm 1: Sampling Graphs From The Probabilistic Generative Model

Input : A generative model̂Γ = (VΓ̂, EΓ̂) with probabilitiesP V
α on each node

α ∈ VΓ̂ andPE
αβ on each corresponding edge(α, β) ∈ EΓ̂

Output : Some sample graphs

1: Initialize a null sample graphGSG = (VSG, ESG)

2: For each nodeα ∈ VΓ̂
3: If P V

α > rand

4: Add nodeα to VSG

5: End

6: End

7: For each pair of nodes(α, β) ∈ VSG
8: If PE

αβ > rand

9: Add edge(α, β) toESG

10: End

11: End

12: Delete the disconnected nodes inVSE.

13: Repeat the above procedures until obtain some sample graphs.

Note: therand command generates a random value between 0 and 1 from a

uniform distribution.
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5.7 Experiments

In this section, we report experimental results aimed at demonstrating the utility of our

proposed generative model on real-world data. We use imagesfrom two datasets for ex-

periments. The first dataset is the COIL [68] which consists of images of four objects,

with 72 views of each object from equally spaced directions over 360◦. We extract corner

features using the corner detector [54] from each image and use the detected feature points

as nodes to construct sample graphs by Delaunay triangulation. The second “toys” dataset

consists of views of toys, and contains images of 4 objects with 20 different views of each

object. For this second dataset, the feature points used to construct Delaunay graphs are

extracted using the SIFT [60] detector. Some example imagesof the objects and their

associated Delaunay graphs from these two datasets are given in Figure 5.1. The exper-

imental study with these datasets is divided into four parts. We commence by exploring

the convergence properties of our supergraph learning algorithm, then we evaluate the

performance of the our learned model on graph classificationand graph clustering tasks.

Finally we explore to what extent the sample graphs from the generative model reproduce

the statistical properties of the original graphs used to train the supergraph model.

5.7.1 Convergence

The first part of our experimental investigation aims to explore the convergence proper-

ties of our supergraph learning method. We test our proposedalgorithm on the COIL and

“toys” datasets. We initialize the supergraph structure with the set median graph [54],

i.e. the sample graph with the largest average of thea posterioriprobabilities to the other

sample graphs. Then we match the sample graphs from the two datasets against their re-

spective initial supergraphs using graduated assignment [48] and initialize the assignment

matrices in our algorithm with the resulting assignment matrices. Using these settings,

we iterate the two steps of the EM algorithm, and observe how the complexity of the
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Figure 5.1: Example images and their associated graphs. Up two rows: COIL images and

their associated graphs. Down two rows: Toy images and theirassociated graphs.
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supergraph, the average log-likelihood of the sample graphs and the overall code-length

vary with iteration number. Figures 5.2 and Figure 5.3 respectively show the results for

the COIL and “toys” datasets illustrated in Figure 5.1.

Figure 5.2(a) and Figure 5.3(a) show the variations of the simplified von Neumann en-

tropy for the two datasets, and from the figures it is clear that the simplified von Neumann

entropy of the supergraph increases as the iteration numberincreases. This indicates that

the supergraph structure becomes more complex with an increasing number of iterations.

Figure 5.2(b) and Figure 5.3(b) show that the average of the log-likelihood of the sample

graphs increases with the iteration number, while Figure 5.2(c) and Figure 5.3(c) show

that the overall-code length decreases and gradually converges as the number of iterations

increases.

In order to better analyze our method, we have also experimented with initializing

the supergraph with different structures. This is effectedusing SIFT feature descriptors

for the “toy” dataset. That is, we match pairs of the neighbour graphs using the SIFT

feature descriptors and concatenate the common structuresover the sample graphs from

the same object to form an initial supergraph. The initial supergraph constructed in this

way preserves more of the structural variations present in the set of sample graphs. Figure

5.4 shows the results obtained when we initialize using thisconcatenated supergraph.

The figure shows how the three quantities studied in Figure 5.2 and Figure 5.3 change

during the EM algorithm. Compared with the plots in Figure 5.2(a) and Figure 5.3(a),

the von Neumann entropy in Figure 5.4(a) shows an opposite trend and decreases as the

number of iterations increases. The reason for this is that the initial supergraph, i.e. the

concatenated supergraph, accommodates too much structural variation from the sample

graphs. The reduction of the simplified von Neumann entropy implies some trivial edges

are eliminated or relocated. As a result the supergraph structure both condenses and

simplifies with increasing iteration number. Although the complexity of the supergraph

behaves differently, the average of the likelihood of the graphs in Figure 5.4(b) exhibits
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Figure 5.2: COIL dataset: (a) variation of the complexity ofthe supergraph, encoded

as the simplified von Neumann entropy, during iterations, (b) variation of average log-

likelihood of the sample graphs during iterations and (c) variation of the overall code-

length during iterations.
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Figure 5.3: “Toys” dataset (The set median graph is used to initialize the EM algorithm ):

(a) variation of the complexity of the supergraph, encoded as the simplified von Neumann

entropy, during iterations, (b) variation of the average log-likelihood of the sample graphs

during iterations and (c) variation of the overall code-length during iterations.
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Figure 5.4: “Toys” dataset (The concatenated supergraph isused to initialize the EM

algorithm ): (a) variation of the complexity of the supergraph, encoded as the simplified

von Neumann entropy, during iterations, (b) variation of the average log-likelihood of

the sample graphs during iterations and (c) variation of theoverall code-length during

iterations.
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a similar behaviour to those in Figure 5.2(b) and Figure 5.3(b) , and the overall-code

length in Figure 5.4(c) has a similar behaviour to those in Figure 5.2(c) and Figure 5.3(c).

In other words, our algorithm behaves in a stable manner bothincreasing the likelihood

of sample graphs and decreasing the overall code-length on both dataset. We note that

the structures of the supergraphs we learned in Figure 5.3 and Figure 5.4 are different.

This is because the EM algorithm is sensitive to initializations. Since we initialize the

supergraph using the set median graph in Figure 5.3 and the concatenated graph in Figure

5.4, the supergraphs we learned have different structures.

5.7.2 Classification

Our second experimental goal is to evaluate the effectiveness of our learned generative

model for classifying out-of-sample graphs. From the COIL dataset, we aim 1) to distin-

guish images of cats from pigs on the basis of their graph representations and 2) distin-

guish between images of different types of bottles. For the “toys” dataset, on the other

hand, we aim to distinguish between images of the four objects. To perform these classi-

fication tasks, we learn a supergraph for each object class from a set of samples and use

Equation (5.3) to compute thea posterioriprobabilities for each graph from a separate

(out-of-sample) test-set. The class-label of the test graph is determined by the class of

the supergraph which gives the maximuma posterioriprobability. The classification rate

is the fraction of correctly identified objects computed using 10-fold cross validation. To

perform the 10-fold cross validation for the COIL dataset, we index the 72 graphs from a

same object according to their image view direction from 0◦ to 360◦, and in each instance

we select 7 or 8 graphs that are equally spaced over the angular interval as test-set, and

the remainder are used as as sample-set for training. We use asimilar procedure for the

“toys” dataset. For comparison, we have also investigated the results obtained using two

alternative constructions of the supergraph. The first of these is the set median graph used

to initialize our algorithm. The second is the supergraph learned without taking its com-
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plexity into account. This supergraph is learned by maximizing the likelihood function of

the sample graphs given in Equation (5.6). Table 5.1 shows the classification results ob-

tained with our supergraph construction using minimum description length and the other

two alternative supergraph constructions. From the three constructions, it is the super-

graphs learned using the MDL principle that achieve the highest classification rates on all

three classification tasks.

Table 5.1: Comparison of the classification results. We showthe average classification rates

from 10-fold cross validation and their standard error. Thehighest classification rates are

shown in bold.

Classification Rate cat & pig bottle1 & bottle2 four objects (Toys)

learned supergraph (by MDL)83.2%± 0.041 76.6%± 0.027 75.2%± 0.025

learned supergraph1 80.7%± 0.056 69.9%± 0.029 72.5%± 0.022

set median graph2 66.9%± 0.052 65.1%± 0.023 65.5%± 0.025

1 the supergraph learned using method from Chapter 3

2 refer to [56]

5.7.3 Clustering

In this section we provide some analysis of the graph similarities provided by the gen-

erative model and explore whether they can be used for the purposes of clustering. One

principled approach to this problem is to use the kernel principal component analysis

explained in Section 5.5. In order to assess the quality of the method, we compare our

embedding result with that obtained by using edit distance to measure graph dissimilarity.

In Figure 5.5 , we illustrate the results of the Jensen-Shannon kernel embedding and edit

distance embedding in the 2D space for two different object clustering tasks. The edit

distance used is the approximate edit distance computed using the matchings from the
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Figure 5.5: Comparison of graph clusterings obtained from Jensen-Shannon kernel and

edit distance. Row 1: cat (red) and pig (blue). Row 2: bottle 1(black) and bottle 2 (green).

Column 1: edit distance and Column 2: Jensen-Shannon kernel.

graduated assignment [48]. The top row shows the embeddingsof graphs from images

of the cat (red) and the pig (blue) from the COIL dataset. The second row shows the

embedding of the graphs from two types of bottle images (bottle1 as black scatter points

and bottle2 as green scatter points) from the COIL dataset. The left hand column displays

the clustering results obtained by edit distance and the right hand column gives the result

obtained using the Jensen-Shannon kernel. To evaluate the quality of the clustering re-

sults obtained using the two methods, we measure the clustercompactness and separation

using the Dunn index [32]. The Dunn index is defined as the ratio between the minimal
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Table 5.2: The Dunn index for the clusterings obtained from the two different embed-

dings. The best results are shown in bold.

Dunn index cat & pig two bottles

Jensen-Shannon embedding 0.7974 0.8309

edit distance embedding 0.5217 0.5937

inter-cluster distance and the maximal intra-cluster distance. The higher the value of the

index the better the separated clusters. We measure the inter-cluster distance between two

clusters as the distance between their centroids (mean of the data points inside a clus-

ter). The intra-cluster distance of a cluster is measured asthe average distance of the

data points inside the cluster to its centroid. Table 5.2 compares the Dunn index for the

clusterings obtained from the two different embeddings. From Table 5.2, it is clear that

the Jensen-Shannon embedding outperforms the edit distance embedding for both object

clustering tasks.

5.7.4 Sampling New Graphs

Finally, we generate graphs using our method in Section 5.6 and explore to what extent

the sample graphs from the generative model reproduce the statistical properties of the

original graphs used to train the supergraph model. To do this, we experiment with both

a synthetic graph dataset and Delaunay graphs from the real-world COIL image dataset.

The synthetic dataset contains two types of representativegraph models. The first are

the classical Erdös-Rényi (ER) random-graphs [33]. These are constructed by connecting

each pair of nodes in the graph with an equal probabilityp (0 ≤ p ≤ 1), independently of

the other edges. The second class of graphs are Barabási andAlbert (BA) scale-free net-

works whose node degree follows the power-law distributionshared by many real-world

networks. The scale-free networks here are generated with the preferential attachment al-
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gorithm [7]. This preferential attachment algorithm commences from a small seed graph

of sizem0 and iteratively introduces one new node to the graph at a time, by connecting

it tom (1 ≤ m ≤ m0) existing nodes with a probability that is proportional to the degrees

of the existing nodes. There are 40 ER graphs in the syntheticdataset and these graphs are

constructed using a common value ofp=0.1. The 40 BA scale-free graphs in the synthetic

dataset are constructed from a same seed graph of sizem0=5 and using a common value

ofm=3. The number of the nodes in both types of graphs satisfies a Gaussian distribution

N(110,
√
70) and vary from 90 to 130. The Delaunay graphs used here are fromthe 72

pig images in the COIL dataset.

We construct a generative model for each type of graph and sample graphs from the

resulting generative models using the procedure given in Algorithm 1. We compare the

following statistical properties of both the training graphs (the ones used to construct the

supergraph) and the sample graphs from the generative model, i.e. 1) the node degree

distribution , 2) the graph diameter distribution, 3) the distribution of relative frequency

for paths of a chosen lengthl, herel =5, 4) a scatter plot of the Ihara coefficients of the

graphs which count the number of the (prime cycles) triangles, squares and pentagons of

graphs as feature vector [77], 5) the eigenvalue distribution for the normalized Laplacian

matrix of graphs and 6) the distribution of a graph spectral characterization (the derivative

of the Riemann zeta function at the origin [111]).

It is worth pausing to consider the challenges posed by simulating these different

characteristics. First our model assumes neither a node frequency distribution nor a degree

distribution. This is learned from the data. Second, we assume no detailed model of edge

connectivity and this is again learned from the data. Hence by simulating the node degree

distribution, we explore the ability of our method to learn this from data. Second, the

attributes 2) to 6) explore in a deep way the accuracy of both the node degree and edge

connectivity models learned from the data.

Figure 5.6 shows the plots of these statistics for the ER graphs and the sample graphs
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Figure 5.6: Comparison of the statistics for the ER graphs and their sample graphs.
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Figure 5.7: Comparison of the statistics for the BA scale-free graphs and their sample

graphs.
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Figure 5.8: Comparison of the statistics for the Delaunay graphs and their sample graphs.
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Figure 5.9: The adjacency matrices of some sample graphs where black and white squares

are used to indicate zero and unit elements of the adjacency matrices. Top row: from ER

supergraph. Middle row: from BA scale-free supergraph. Bottom row: from Delaunay

supergraph.
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from their corresponding generative model. We represent the results for the original

graphs using black and those for the sample graphs using red.From these plots, we

observe that the sample graphs reproduce the distributionsof graph statistics of the ER

graphs well. This is especially the case for the node degree distribution, the graph di-

ameter distribution and the normalized Laplacian eigenvalue distribution where there are

only slight deviations. The original graphs and the sample graphs have similar curves in

the path length distribution and the distribution of the derivative of zeta function. Their

Ihara coefficient scatter points are also overlapped. Figure 5.7 illustrates the distributions

obtained for the BA graphs and their corresponding sample graphs. When plotting node

degree distribution, although the curve for the sample graphs does not as peak in the same

way as its counterpart, it still exhibits a similar increasing and decreasing pattern as the

BA graphs. For the remaining distributions, the sample graphs give similar results to those

of the original graphs. Compared to the results in Figure 5.6and Figure 5.7, Figure 5.8

shows two significant deviations between the distributionsof the Delaunay graphs and

their sample graphs. One is in the Ihara coefficient scatter plot where the original graphs

and the sample graphs display two separated clusters. The other is that the normalized

Laplacian eigenvalue distribution of the sample graphs is more uniform than that for the

original graphs.

From the plots in the three figures above, we observe that the properties of the sample

graphs from the ER generative model resemble the original graphs most closely, and least

well for the Delaunay graphs. The reason for this resides in the way we sample graphs,

based on the assumption that the nodes and edges of graphs arise independently. For the

three types of graphs studied, the ER graphs fit this model best. The Delaunay graphs

which are constructed by triangulation violate the assumption most strongly. Neverthe-

less, for all the three types of graphs, the graphs sampled from the generative model by

our method exhibit comparable properties to those of the original graphs to some extent.

In Figure 5.9, we visualize the adjacency matrices for some sample graphs for the
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three different types of varieties of graphs studied. In theplots we use black and white

squares to respectively represent zero and unit elements ofthe adjacency matrices. We

note the sample graphs exhibit different edge densities andpatterns of connectivity. The

generated sample graphs from the ER supergraph demonstratea uniform distribution of

edges, whereas in the case of the BA supergraph there is condensation of edges around

a few nodes. The edge density of the graphs sampled from the Delaunay supergraph is

most unbalanced.

The overall conclusions of this study are that our method canlearn and then generate

distributions that reflect not only node degree statistics,but characteristics which are an

artifact of detailed models of edge connectivity.

5.8 Conclusions

One big novelty of this chapter is that we have developed an information theoretic frame-

work for learning a generative model (in the form of a supergraph) for graphs which

captures the probabilistic distributions over nodes and over edges. We also have devel-

oped a novel practical algorithm for solving the problem. That is, we have provided a

variant of the EM algorithm for estimating both the structure of the supergraph and node

correspondences between the supergraph and the sample graphs. Empirical results on

real-world datasets have shown the effectiveness of our proposed method. We have also

illustrated how to embed graphs using supergraphs with Jensen-Shannon divergence and

investigated the performance of our generative model on sampling new graphs. There

are a number of ways in which the work reported here can be extended. First, since the

probabilistic framework we used here is based on the edge connectivity of graphs, our

work concentrates on unweighted graphs. There is scope for generalizing the method to

weighted and attributed graphs. Second, the procedures of learning the structure of the

generative model (i.e. edge connectivity) and its node and edge occurrence probabilities
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are realized as discoupled computational procedures, yet they are clearly closely depen-

dent. A better procedure will be to realize the estimation ofthe two parts jointly.
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Chapter 6

Information Theoretic Prototype

Selection for Graphs

In this chapter we present a prototype size selection methodfor a set of sample graphs.

Our method of prototype size selection is based on the theoryof approximate set cod-

ing. Approximate set coding was initially proposed for clustering validation in the vector

domain, here we extend the theory from the vector domain to graph domain and apply

it to selecting prototype graph size. However, extending the theory to graph domain is

by no means a trivial problem due the difficulty of manipulating graph structures. Our

main contributions here are that 1) we redefine the three critical concepts and reformulate

the functions in approximate set coding so that the theory can be adopted for graphs, and

2) we solve the problem of exploring all the possible correspondence between the data

graphs and prototype graphs by sampling the correspondenceusing the importance sam-

pling approach. With the new definitions and the facility of the importance sampler in

hand, we pose the problem of prototype size selection as thatof optimizing the mutual

information between two partitioned sets of sample graphs.In the experiments, we apply

our method to the graphs from the COIL image dataset and investigate its performance on

prototype size selection tasks.
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6.1 Introduction

A problem we may encounter when dealing with graph data is to select the best proto-

type graph from several candidate prototype graphs in hand.This problem falls into the

category of model selection, which is one of the fundamentaltasks in pattern analysis.

There are a wealth of principles in the literature for model selection [79][44][87]. Gen-

erally speaking, although these principles are motivated from different viewpoints, most

of them employ penalizing the parameters (or complexity) ofthe model in order to gen-

eralize well on a new dataset. For instances, the two-part minimum description length

criterion we adopted to construct our supergraph model in Chapter 5 involves penalizing

the complexity of the model using the von Neumann entropy. Other examples also include

the Akaike’s information criterion (AIC) which penalizes the model by twice the number

of free parameters of the model [1] [15], the Bayesian Information Criterion (BIC) which

suggests a stronger penalty than AIC, i.e. number of model parameters times logarithm of

the number of samples [87], and the universal coding in the minimum description length

criterion [52].

Recently, Buhmannet al. [20] [21] have proposed an information theoretic principle

called approximate set coding to estimate the generalization ability of the models from

training to test data. The idea behind this can be explained using a communication proto-

col. The training data, after a transformation, generate a code for communication over a

noisy channel and the test data recover the transformation after receiving the code. Chan-

nel capacity measures how well the communication between the two sets and models are

ranked according to the channel capacity. The model that maximizes the channel capacity

is selected. Actually, the channel capacity is encoded as the mutual information between

the two sets. In their explanatory case of clustering model selection, both datasets in the

scenario are characterized by a cost function and model selection is achieved by maxi-

mizing the channel capacity over a set of different cost functions.

Although these principles proposed for model selection mentioned above are widely
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exploited in statistical models in the vector domain, theirapplications in the graph do-

main are very limited. This is due to the different representations between vectors and

graphs. Vectors manifest themselves as ordered numerical values, while graphs are natu-

ral structures of edge and node (and also the attributes on them). Therefore, more effort is

needed in order to adopt them in the graph domain. For instance, when we adopt the two-

part minimum description length criterion to construct a supergraph for sample graphs

in Chapter 5, graph characterizations from the von Neumann entropy are developed in

advance to measure the complexity of the supergraph.

In this chapter we present an approach to selecting the optimal prototype graph size

for a set of sample graphs. Our method is an extension of the theory of approximate set

coding to the graphs. The prototype of optimal size is that which maximizes the mutual

information between the two partitioned sets of the sample graphs. To measure the mutual

information, we need to compute the partition functions of the two partitioned sets and

their joint partition function. The computation of the partition function involves exploring

the hypothesis space and this is a NP hard problem for graphs.We locate an approximate

solution to this problem by using the importance sampling approach.

The remainder of the chapter is organized as follows. In Section 6.2 we first briefly

introduce the idea of selecting prototype graphs using the theory of approximate set cod-

ing. In Section 6.3 we explain in detail how we extend the theory on model selection to

the graph domain. This section includes four parts. The firstthree parts explain the new

definitions of the three concepts (i.e. hypothesis, cost function, partition function) to cater

for graph data. The last part shows how we approximate the value of the partition function

using the importance sampling approach. In Section 6.4, we experiment with graph data

to investigate our prototype size selection method. Finally, we conclude the work in this

chapter in the last Section 6.5.
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6.2 Approximate Set Coding

In this section we briefly introduce the idea of selecting prototype graphs using the the-

ory of approximate set coding. In this context, a hypothesisis a solution to our pattern

recognition problem. In this specific case, a hypothesisc is a mapping (matching) of all

of our sample graphs to a prototype graph. We also have a cost functionR(c) which eval-

uates the quality of a particular matching. NaturallyR(c) depends on the prototype graph

proposed for the data samples.

Given a prototype graph drawn from a set of possible prototypes (usually of different

sizes or complexity), we can find the best matching and prototype configuration by opti-

mizingR(c). We denote the best hypothesis asc⊥ that satisfiesc⊥ = argmin
c
R(C). As

usual, we cannot useR(c) to select the best prototype from the set, as the more complex

prototypes have lower costs (they fit the samples better) butdo not generalize well.

In [20], Buhmann explains how the approximate set coding works for the clustering

model selection problem by describing a communication scenario with a sender, a receiver

and a problem generator where the problem generator serves as a noisy channel between

the sender and receiver. In his theory, the communication between the sender and receiver

take place in the noisy channel in the following procedures.

1. The sender and the receiver obtain a dataset that includessome objects to be clus-

tered from the problem generator.

2. The sender and receiver calculate the number of hypotheses that are within a costγ

to the minimum cost of the clustering of the dataset.

3. The problem generator generates a new dataset and appliessome transformations

to the new dataset.

4. The problem generator sends the transformed dataset to the receiver without reveal-

ing the transformations.
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5. The receiver calculates the hypotheses that are within a costγ to the minimum cost

of the clustering of the transformed dataset.

6. The receiver estimates the applied transformations by maximizing the overall num-

ber of hypotheses that are within a costγ to the minimum cost of both datasets.

Approximate set coding uses the observation that there are aset of transformations

which alter the sample data without essentially changing the prototype in any way. For

example, if we consider the sample graphs in a different order, or if their nodes are per-

muted in some way, the structure of the recovered prototype should be the same (although

the prototype graph nodes may also be in a different order). We can use this fact to mea-

sure how good our prototype is at recovering these transformations when they are coded

using the prototype graph and sent through a noisy channel. To do this, we split the sam-

ple data into two partitions. The first partition is used to code the transformation, and the

second provides a prototype graph to decode the transformation. We then attempt to max-

imize the amount of information transmitted. The analysis in [21] shows that the mutual

information between sender and receiver is

Iγ =
1

N
log

(

|Ω||∆Cγ,12|
|Cγ,1||Cγ,2|

)

, (6.1)

whereN is the number of graphs in the partitioned sets and|Ω| is the number of free

transformations of the graphs.|Cγ,1| is the number of hypotheses that are within a cost

γ of the best cost in set 1 (and likewise for|Cγ,2|). The quantity|∆Cγ,12| is the number

of hypotheses on set 2 which are within a costγ of the best cost in set 1. To calculate

this, we need a way of transferring hypotheses from set 2 to set 1. In the following, we

will describe in detail how we extend this theory to apply it to the graph prototype size

selection.
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6.3 Prototype Selection for Graphs

We commence by introducing our problem and then give formal definitions of the in-

gredients. Given a set of sample graphs, our aim is to select the optimal size of the

prototype graph for the sample graphs. To ensure that the optimal prototype graph gener-

alizes well on a new dataset, we adopt the two-sample scenario and partition the sam-

ple graphs into two sets of the same sizeG(1) = {G(1)
1 , . . . , G

(1)
i , . . . , G

(1)
N }, G(2) =

{G(2)
1 , . . . , G

(2)
i , . . . , G

(2)
N }. Here the superscripts indicate different sample-sets andthe

subscripts indicate the graph indices. To partition the graphs from images of the same

object into two sets, we index the graphs according to their image viewpoints and allocate

neighbour graphs in the index to different sets. The best prototype graph is determined

according to its generalization capability on the two sets.

6.3.1 Hypothesis

The hypotheses originally proposed in the clustering problem (where approximate set

coding was first used) are the assignments of data points to clusters [20]. Here in our

problem the hypotheses consist of a set of mappings of each ofthe sample graphs onto

its corresponding prototype graph. By direct analogy with the clustering problem, each

mapping is equivalent to an assignment of a point to a cluster; the prototype graph here

is equivalent to the cluster centroid. For each datasetG(q) (q ∈ {1, 2}) a hypothesis

is cq = {S(q)
1 , . . . ,S

(q)
i , ...,S

(q)
N } whereS(q)

i (i ∈ {1, 2, ..., N}) is the assignment matrix

between graphG(q)
i from setG(q) and its corresponding prototype graphΓ(q). The set of

all possible hypotheses isCq , which consists of all the possible mappings between all

samples and the prototype graph.
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6.3.2 Cost Function

To proceed, we require a cost functionRq(cq) to quantify the effectiveness of a particular

hypothesiscq. The cost function measures how consistent the given mappings are with

the prototype graph. Here the cost function of a hypothesis is the negative logarithm of

the likelihood of the sample graphs from the prototype graphunder the hypothesis, which

uses the probabilistic framework presented in Chapter 3

Rq(cq) = − lnP (G(q)|Γ(q), cq)

= −
∑

G
(q)
i

∑

a∈V (q)
i

ln
∑

a∈V (q)
Γ

Ki
aexp

[

µ
∑

b∈V (q)
i

∑

β∈V (q)
Γ

A
(q)
iabM

(q)
αβ S

(q)
ibβ

]

. (6.2)

In the above,A(q)
i is the adjacency matrix for the sample graphGi from setq andM(q)

is the adjacency matrix for the prototype graphΓ(q). The matrixS(q)
i is the assignment

matrix between the two graphs. If nodesa andb of the sample graphG(q)
i are connected,

their corresponding elementA(q)
iab in A

(q)
i has a unit value otherwise it is zero. This is

same for the adjacency matrixM (q) of the prototype graphΓ(q). The elements of the

assignment matrixS(q)
iaα are unit if nodea in graphG(q)

i is matched to nodeα in graph

Γ(q). The cost function above is a natural choice in our problem because it is also involved

in measuring the likelihood of the sample graphs from the prototype graph during the

learning procedure of the prototype graph.

In order to normalize the minimum cost of the hypotheses to zero, we define the

relative cost of hypothesis. Suppose the optimal hypothesis (i.e. the hypothesis yielding

the lowest cost between the sample graphs and their prototype graph) isc⊥q , the relative

cost of the hypothesiscq is ∆Rq(cq) = Rq(cq)−Rq(c
⊥
q ).
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6.3.3 Partition Function

The measurement of the mutual information of the two sample sets requires counting the

number of hypotheses|Cγ,1| and |Cγ,2| that are within a certain costγ of the optimal

solution. However, this is hard to do since it involves exploring all the hypotheses. For-

tunately, this value can be estimated using concepts from statistical physics. Considering

the hypotheses as microcanonical ensembles in statisticalmechanics, their number can be

estimated by calculating the partition function [20]

Zq =
∑

cq∈Cq
exp[−ε∆Rq(cq)], (6.3)

whereε is a positive scaling parameter known as the inverse computational temperature.

Essentially,ε coarsens the precision of the partition function approximating the number

of hypotheses that fit the sample set [21]. Whenε is zero, the partition function is equal

to the number of all the possible hypotheses. Whenε is very large, the partition func-

tion only counts the number of optimal hypotheses. Becauseε controls the number of

hypotheses fitting the sample set, we will call theseε-optimal hypotheses. In our case,

the hypothesis space is the set of all the possible mappings between the sample graphs

and their prototype graph. The hypothesis space is very large and the computation of the

partition function will be expensive. Later we show how we use the importance sampling

approach to sample the mapping between the sample graphs andtheir prototype graph

and approximate the value of the partition function.

To measure how well the hypotheses generalize for the two sample sets, we count the

number ofε-optimal hypotheses in the first set which also exist in the second set, when

transferred to the first set. We therefore need a way of transferring hypotheses from the

second set to the first. We denote the cost of the hypothesisc2 between the transferred

graphs and prototype graphΓ(2) asRt(c2). This is the cost of making hypothesisc2 for

the graphsG(2) when evaluated against the data inG(1). The following procedure may be
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Figure 6.1: A diagram illustrates the procedure of computing the three partition functions.

When we compute the partition functionZ12, we need to count how many of our hypothe-

ses areε-optimal when we use the prototype from set 2 and the data graphs from set 1.

We therefore need a way of transferring hypotheses from the second set to the first.
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used to find the transfer. For eachG(1)
i graph inG(1), we find the most similar graph in

G(2) and the mappingτi between the two.τi ◦ G(1)
i is then the image of this graph in the

second set. From these images, we compute the cost ofc2 by comparing the images to

the prototype graphΓ(2) under the mappings inc2. Finally, the joint partition function is

formulated as

Z12 =
∑

c2∈C2

exp[−ε(∆Rt(c2) + ∆R2(c2))] . (6.4)

The quantity∆Rt(c2) is the relative cost of hypothesisc2 between the image graphs of

G(1) in the second set and the prototype graphΓ(2). This is equivalent to the cost of

hypothesisc2 between the image graphs andΓ(2) minus their minimum cost. Figure 6.1

illustrates the procedure of computing partition functionsZ1, Z2 and the joint partition

functionZ12.

Prototype graphs with different sizes are ranked accordingto their mutual information

between the two sets

Iε =
1

N
log

(

|Ω|Z12

Z1Z2

)

. (6.5)

In the above equation,Z1 andZ2 are respectively the partition functions of two sample

sets, andZ12 is their joint partition function.|Ω| is the number of the free transformations

of the graphs. In ideal conditions, its value is|Ω| = |VΓ|!, which is equal to the factorial

of the size of the prototype graph. Since we are going to use the importance sampling

approach to sample the correspondences in the hypothesis space rather than enumerating

all the correspondences in the hypothesis space, and this will induce a bias on the value of

|Ω|. In practice we set its value to the one that keeps the value ofthe mutual information

equal to zero whenε is zero. The amount of the mutual information can be interpreted

as the generalization capacity of prototype graphs. Hence our problem is posed as that of

finding the prototype graph that maximizes this mutual information.
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6.3.4 Approximating the Partition Function

As previously mentioned, the computation of the partition function is expensive, since

it involves exploring the hypothesis space, which encompasses all the mappings between

the graphs in the sample sets to the prototype graph. To deal with this problem, we use the

importance sampling approach proposed by Torsello [97] to sample the mappings from

the hypothesis space and to approximate the value of the partition function.

Importance sampling [53] is a Monte Carlo sampling technique, where the expectation

value of a particular distribution is approximated by a weighted average of random drawn

from another distribution [95]. This technique is particularly useful to reduce the variance

of the estimators. Suppose we aim to estimate the expectation value of a target function

g(x) in the domainX ,E[g(x)] = 1
‖X‖
∫

X g(x)dx. The basic idea of importance sampling

is that instead of using random variables fromg(x), we use random variables from a

different distributionf(x) to estimate the expectation. Letx = (x1, ..., xk) bek random

samples from the distributionf(x). Thus we estimateE[g(x)] as

E[g(x)] ≈ 1

k

k
∑

i=1

g(xi)

1
‖X‖
f(xi)

. (6.6)

In our problem, we aim to approximate the value of the partition functionsZq (q ∈
{1, 2}) andZ12. Since the approximation procedure is the same in all the three cases, we

simply review the equations forZq (q ∈ {1, 2}). To commence, we have

Zq =
∑

cq∈Cq

exp[−ε∆Rq(cq)] = E
[

exp[−ε∆Rq(cq)]
]

|Cq|, (6.7)

where|Cq| is the cardinality of the hypothesis spaceCq, in other words, the number of the

mappings inCq. In this case, we have‖X‖ = |Cq| andg(cq) = exp[−ε∆Rq(cq)], and thus

E
[

exp[−ε∆Rq(cq)]
]

≈ 1

|C′q|
∑

cq∈C′
q

exp[−ε∆Rq(cq)]

1
|Cq|

P (cq)
, (6.8)
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where samples inC′q are drawn from the distribution with a probability ofP (cq).

Substituting Equation (6.8) into Equation (6.7),Zq results in

Zq ≈
1

|C′q|
∑

cq∈C′
q

exp[−ε∆Rq(cq)]

P (cq)
. (6.9)

Recall that∆Rq(cq) = Rq(cq) − Rq(c
⊥
q ) andRq(cq) = − lnP (G(q)|Γ(q), cq), where

G(q) is the observed graph andΓ(q) is the prototype graph. In order to estimateZq, we

need to sample hypothesescq ∈ C′q with probability close to P (G(q)|Γ(q),cq)∑
cq∈Cq

P (G(q)|Γ(q), cq)
. We

assume that the graphs in the sample setsG(q) are independent and sample mappings for

individual graphs. The requisite for sampling a mapping between a graph and the proto-

type graph is a node-correspondence matrix, which gives theprobabilities of the nodes

in the graph corresponding to nodes in the prototype graph. This node-correspondence

matrix can be obtained by performing a graph matching algorithm and by relaxing the

resulting assignment matrix. The relaxing process ensuresthat there is a possibility that

any node in the graph may be matched to any node in the prototype graph. The node-

correspondence matrix obtained is a doubly-stochastic matrix, where the sum of each row

and column is one. Once we have the node-correspondence matrix in hand, a mapping

between the graph and the prototype graph can be located using the following procedure,

as reported by Torsello [97].

Suppose the node-correspondence matrix is represented byS̄ = (s̄aα), which gives

the probability that nodea in the graph corresponds to nodeα in the prototype graph.

We first sample a correspondence for the node indexed 1 in the prototype graph by

picking a nodea1 in the graph, with probabilitȳsa11. The next step is to condition

the node-correspondence matrix to the current match by taking into account the struc-

tural information between the sampled node and all those remaining, which yielding a

matrix S̄1
a1 that gives the conditional node-correspondence probability between the re-

maining nodes in the graph and those in the prototype graph given the current node cor-
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respondence. We proceed to sample a correspondence for the node indexed 2 in the

prototype graph according to the matrix̄S1
a1

and then compute a new conditional node-

correspondence matrix. Iterating these steps until all thenodes in the prototype graph

are matched to nodes in the graph. Finally, the probability of the sampled mappinğS is

P (S̆) = (s̄)a1,1 · (s̄1a1)a2,2 · . . . · (s̄
1,...,|VΓ|−1
a1,...,a|VΓ|−1)a|VΓ|,|VΓ|. Sample a mappinğS(q)

i for each

graphG(q)
i ∈ G(q)(i ∈ {1, 2, . . . , N}) and these mappings constitute a hypothesiscq,

whose probability isP (cq) =
∏

G
(q)
i ∈G(q) S̆

(q)
i .

6.4 Experiments

In this section, we report some experimental results of the application of our prototype

size selection method on real-world dataset. The dataset used is the COIL [68] dataset.

We first investigate how the value of the mutual information and the three partition

functions vary as the value ofε increases. To do this, we randomly partition the graphs

from a given object, e.g. the cat images, into a training set and a test set that are of the same

size. The bijective mapping of the graphs between the two sets is located by minimizing

the sum of the approximate edit distances between the mappedgraphs. The approximate

edit distance is computed using the matchings from the graduated assignment [48]. We

learn two prototype graphs of the same size for the two sets using the method in Chapter

3. Given this setting, we compute the value of the mutual information and the logarithms

of the three partition functionslogZ1, logZ2 andlogZ12.

Figure 6.2 shows how these quantities vary as we increase thevalue ofε from 0 to

50. From the plot in Figure 6.2(a), we observe that the mutualinformation initially in-

creases and achieves the highest value aroundε=8, and afterwards it begins to decrease.

To maintain the non negativity of the mutual information, weset its value to zero when

it falls below zero. Figure 6.2(b) and Figure 6.2(c) respectively show the value of the

logarithms of partition functionslogZ1 and logZ2. From the plots it is clear that these
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Figure 6.2: How the mutual information and the logarithm of partition functions change

asε increases from 0 to 50. (a) variation of the mutual information, (b) variation oflogZ1,

(c) variation oflogZ2 and (d) variation oflogZ12.

two quantities converge to a horizontal asymptote. The reason for this is that the relative

cost of the optimal hypothesis is zero and thus its contribution to the partition function is

a constant positive value. The exponential of the relative costs given by the non-optimal

hypotheses converges to zero asε increases, thus yielding the observed horizontal asymp-

tote. On the other hand, the logarithm of the joint partitionfunction logZ12 in Figure

6.2(d) continues to decrease asε increases. This indicates that the optimal hypotheses of

the graphs in the test set do not necessarily generalize to the optimal hypotheses of their

mapped graphs in the training set. For this reason the relative costs of all the hypotheses
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(a) cat (size range of graphs [41,65])

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

m
ut

ua
l i

nf
or

m
at

io
n

 ε  value

 

 

prototype 1 (graph size 52)
prototype 2 (graph size 54)
prototype 3 (graph size 55)
prototype 4 (graph size 57)
prototype 5 (graph size 58)
prototype 6 (graph size 53)

(b) bottle 1 (size range of graphs [26,50])
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(c) pig (size range of graphs [44,70])
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(d) bottle 2 (size range of graphs [32,44])

Figure 6.3: Variation of the mutual information of six prototype graphs of the four objects.

(a) Cat object, (b) bottle 1 object, (c) pig object and (d) bottle 2 object.

in the joint partition function are positive values. As a result their exponentials converge

to zero asε increases. Consequently, the joint partition function converges to zero and its

corresponding logarithm becomes both large and negative.

Our second experimental goal is to select the optimal sizes of the prototype graphs

for several objects from the COIL dataset. Here the objects we used are the cat, pig and

two bottles. To perform these tasks, for each object we learnsix prototype graphs of

different sizes using the method in Chapter 3 and then compute the mutual information

of these prototype graphs. The optimal size of the prototypegraph is that which gives the

highest mutual information asε varies. Figure 6.3 shows plots of the mutual information
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Table 6.1: The sizes of the six prototype graphs. The sizes ofthe prototype graphs selected

are shown in bold.

Prototype Graph cat bottle 1 pig bottle 2

prototype 1 78 52 73 49

prototype 2 71 54 79 45

prototype 3 69 55 72 47

prototype 4 73 57 77 48

prototype 5 75 58 71 51

prototype 6 79 53 78 46

of the six prototype graphs versus the value ofε for the four objects. The sizes of the six

prototype graphs are shown on the legend and the size ranges of the graphs used to learn

the prototype graphs are given following the names of the objects. From the plots it is

clear that for each object there is a prototype size that gives optimized performance. In

Table 6.1, we also list the sizes of the six prototype graphs,i.e. the number of the nodes

in the prototype graphs, of the four objects. The sizes of prototype graphs selected by

our model selection method are shown in bold. Note that unlike what is expected using

other standard model complexity selection methods, which may choose the model with

the smallest size, our experiments observe that in three outof four objects the proposed

method favours the larger size.

6.5 Conclusions

In this chapter we have developed a method for selecting the optimal size of a prototype

graph used to represent a set of sample graphs. Our method of prototype size selection

is based on the theory of approximate set coding that was initially proposed for cluster-
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ing validation in the vector domain. The main novelty of thischapter is that we redefine

the three critical concepts in the theory of the approximateset coding and extend the

theory from vector domain to graph domain so that we can applythe theory to solving

model selection problems in graph domain. The second novelty of this chapter is that we

have solved the problem of exploring all the possible correspondence between the sam-

ple graphs and prototype graphs by sampling the correspondence using the importance

sampling approach. With the new definitions and the facilityof the importance sampler

in hand, we posed the problem of prototype size selection as that of optimizing the mu-

tual information between two partitioned sets of sample graphs. In the experimental part,

we have investigated its performance on prototype graph selection in object recognition.

However, the method we presented in this chapter is a follow-up work after we have

learned the structure of the prototype graphs. Therefore, learning the prototype graphs

and selecting the prototype size are realized as discoupledcomputational procedures. In

the future work, we will adopt some more sophisticated strategies (e.g. simulated anneal-

ing) to realize the estimation of the two parts jointly.
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Chapter 7

Conclusions and Future Work

In this chapter we first provide a summary of the main contributions of the thesis. This

includes the novel ideas on developing graph characterizations, constructing generative

models and selecting prototype graphs. Secondly, we will spell out some of the weak-

nesses and describe possible directions for future work.

7.1 Summary of Contributions

We have developed and evaluated new methods for characterizing graphs and constructing

generative models for graph data. Our generative models developed concentrate on cap-

turing the variations of edge connectivity present in the sample graphs. We now provide

a summary of our contributions for each chapter in the thesis.

7.1.1 A Supergraph-based Generative Model

Our first contribution is that we developed a novel generative model for a set of graphs

based on a supergraph structure in Chapter 3. The supergraphis analogous to the graph

union that aims to capture the structural variation presentin the set. We began by in-

troducing thea posterioriprobability defined in a graph matching problem [61]. In the
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subsequent development, we used this probability to measure the likelihood of a sample

graph from the supergraph. The supergraph we aim to learn is one which maximizes

the likelihood of the sample graphs. To maximize this objective function, the unknown

correspondence information between the nodes of the samplegraphs and those of the

supergraph was treated as missing data and we developed a variant of the expectation-

maximization (EM) algorithm to locate the supergraph structure. This supergraph can

generate new graphs by modelling the edge occurrence probabilities. Besides, we also

investigated the use of the von Neumann entropy as the indicator for measuring the com-

plexity of the supergraph in the experimental part of this chapter.

7.1.2 Graph Characterizations from von Neumann Entropy

The second contribution of the thesis is that we developed graph characterizations from

the von Neumann entropy. We first explored how the von Neumannentropy of a graph

associated with the normalized Laplacian matrix can be usedas a measure of graph char-

acterization. Then we developed a simplified form for the vonNeumann entropy of a

graph that can be computed in terms of node degree statistics. The simplified form of the

von Neumann entropy offers the advantage of lower computational complexity which is

quadratic in the number of the nodes of graphs while the computation of von Neumann

entropy is cubic. Both of the two measures belong to the invariant graph characterizations.

We also compared the resulting characterizations with a number of alternative graph char-

acterizations including Estrada’s heterogeneity index [37] and the derivative of Riemann

zeta function at the origin [111]. In the case of Estrada’s heterogeneity index we revealed

a new link between Estrada’s index and the commute time on a graph. In addition, we

also explored how the von Neumann entropy can be used in conjunction with the thermo-

dynamic depth and illustrated its applications to biological networks.
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7.1.3 An Information Theoretic Generative Graph Prototype

In this chapter, we combined the graph characterizations from the von Neumann entropy

with the probabilistic framework described in Chapter 3, toconstruct a generative proto-

type for a set of graphs by adopting a minimum description length approach. Again here

the generative graph prototype is represented by a supergraph structure. The complexity

of the supergraph is encoded using the simplified von Neumannentropy. A variant of the

EM algorithm is developed to minimize the overall description length in which both the

structure of the supergraph and the node correspondences between the sample graphs and

the supergraph are treated as missing data. We also exploited a kernel method of analyzing

graph similarity. To do this, we measured graph similarities using the Jensen-Shannon di-

vergence and then embedded graphs into pattern space using kernel principal component

analysis. The Jensen-Shannon divergence between a pair of graphs is found by taking the

difference between the entropy of the pairwise supergraph and the average of the separate

entropies of the two graphs used to construct it. In addition, we also developed a method

of generating new graphs from the supergraph. This is realized by assuming that both the

nodes and edges of graphs arise under independent Bernoullidistributions and sampling

new graphs according to their node and edge occurrence probabilities. Therefore, our su-

pergraph model proposed in this chapter can fulfil the tasks of graph classification, graph

clustering and of generating new graphs.

7.1.4 Information Theoretic Prototype Selection for Graphs

In Chapter 6, we provided a prototype graph size selection method. Our method of pro-

totype size selection is based on the theory of approximate set coding that was initially

proposed for clustering validation in the vector domain. Weextended the theory from the

vector domain to graph domain so that it can be applied to the model selection problem

for graphs. However, extending the theory to graph domain isnot a trivial problem. Our
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main contributions in this chapter are that 1) we redefined the three critical concepts and

reformulated the functions in approximate set coding so that the theory can be adopted for

graphs, 2) we solved the problem of exploring all the possible correspondence between

the sample graphs and prototype graphs by sampling the correspondence using the im-

portance sampling approach. With the new definitions and thefacility of the importance

sampler in hand, we posed the problem of prototype size selection as that of optimiz-

ing the mutual information between two partitioned sets of sample graphs. Experimental

investigations demonstrated the practical utility of our method.

7.2 Weaknesses

There are a number of weaknesses of the work presented in the thesis. We discuss these

weaknesses and then propose some possible directions for future work.

In the methods for constructing generative models presented in Chapter 3 and Chapter

5, we developed variants of the EM algorithm to optimize the objective functions (which

were respectively the likelihood of the sample graphs in Chapter 3 and the overall descrip-

tion length in Chapter 5) . The reason we use the EM algorithmsis that the correspon-

dence information between the nodes of the sample graphs andthe supergraph is hidden

to us, and the EM algorithms are specialized to solve the problems where there is missing

data. Although we showed that our variants of the EM algorithm work well to drive the

objective functions to converge, the supergraphs we obtained from these algorithms are

not guaranteed to be the best solutions due to the fact that the EM algorithm can easily

get stuck in local optima. In addition, because the probabilistic framework we adopted

to learn the supergraphs (i.e. the likelihood function described in Section 3.2, Chapter

3) is developed in the context of unweighted graphs, the generative model construction

methods we proposed in the thesis are restricted to unweighted graphs. Another weakness

of the generative models proposed in the thesis is that they cannot generate graphs bigger
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than the supergraphs. This is because we only model the occurrence probability of the

nodes and edges on the supergraphs and sample nodes and edgesalready existing in the

supergraphs to assemble new graphs.

In Chapter 4, we extracted two graph characterizations fromthe von Neumann en-

tropy. However, both of the two representations, i.e. the von Neumann entropy of a graph

and the simplified von Neumann entropy, have shortcomings. For the von Neumman en-

tropy of a graph, since it is defined using the eigenvalues of the normalized Laplacian

matrix, it suffers from the problem of cospectrality of graphs. Cospectral graphs have the

same eigenvalues with respect to the matrix representationbeing used. Therefore, even

for two graphs with different structures, the value of theirvon Neumann entropy may be

same. For the simplified form of the von Neumann entropy, it isdeveloped by using two

equivalent transformations, i.e. the trace of the normalized Laplacian matrix of a graph is

equal to the number of the nodes in the graph (refer to Equation 4.8) and the trace of the

square of the normalized Laplacian is equal to a quantity of node degree statistics (refer to

Equation 4.9). These equivalent transformations hold onlyfor unweighted graphs. Thus,

the simplification of the von Neumann entropy of a graph described here does not exhibit

itself with the capability of handling edge-weighted graphs.

Additionally, we showed a prototype size selection method in Chapter 6. This method

only deals with the problem of selecting the best prototype size from candidate prototypes

and it does not involve the learning procedure of the prototype graphs. That is to say, the

prototype selection method presented in the chapter is a separate post-processing step that

takes place after the learning procedure of the prototype graphs. We need to carry out a

further investigation on how to integrate the learning procedure and selecting procedure

together so as to reduce the overall complexity.
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7.3 Future Work

To address the weaknesses of this thesis, in this section we suggest some possible ap-

proaches to overcoming some of them for further research, and also provide a number of

ways in which the work reported can be extended.

First, our work presented in the thesis solves the problem ofconstructing genera-

tive models for non-attributed graphs. There is scope for generalizing the methods to

attributed graphs. Since the probabilistic framework we used to develop our generative

models is based on non-attributed graphs, our methods of constructing generative models

are restricted to non-attributed graphs. One possible way of applying our work for at-

tributed graphs would be to adjust the current probabilistic framework. This may involve

adding extra parameters to the probabilistic framework to model the attribute of nodes

and edges. To accommodate the new probabilistic framework,the learning procedure

will change accordingly. For instance, during the iterations of the EM algorithm, we need

to re-estimate not only the structure of the supergraph but also the attribute parameters.

Second, the problem that our generative models cannot generate graphs bigger than

the supergraphs might be solved by padding extra nodes and edges to the supergraphs.

We could use these extra nodes and edges to model the occurrence of the nodes and edges

apart from the ones in the supergraphs.

In Chapter 4, we described how we developed graph characterizations using the von

Neumann entropy of graphs. These simple measures of graph entropy open up a number

of interesting potential information theoretic avenues. These include their use as model

complexity measures in the learning of generative models using a minimum description

length approach, and their use in the construction of information theoretic kernels using

the Shannon-Jensen divergence (which are shown in Chapter 5). Moreover, it would be

interesting to explore whether the von Neumann entropy can be extended to more com-

plex matrix representations including those for edge-weighted graphs, attributed graphs

or hypergraphs.
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For the prototype size selection method proposed in Chapter6, learning the structure

of the prototype graphs and selecting the prototype size arerealized as discoupled com-

putational procedures. A better way would be to adopt some more sophisticated strategies

(e.g. simulated annealing) to realize the estimation of thetwo parts jointly.
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