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Abstract 

A variety of marketed drugs are known to cause damage to the hearing and/or 

balance systems in humans (ototoxicity). The absence of standard testing 

protocols to identify ototoxic effects at the pre-clinical stage is one major reason 

for the incidence of these adverse effects in the clinic.  

The zebrafish (Danio rerio) has been proposed as a suitable model organism to 

determine the ototoxicity of compounds early on. Free-swimming zebrafish 

larvae possess rudimentary hearing and balance systems that consist of inner 

ear and lateral line structures, with specialised hair cells similar to those of the 

human inner ear.  

The studies described in this thesis examine the pathological and functional 

consequences of hair cell loss in the lateral line and otic vesicle of larval 

zebrafish, following exposure to a range of reported human ototoxins. The aim 

of these studies was to assess the validity and translational capability of the 

larval zebrafish as a microplate-scale in vivo model of mammalian inner ear hair 

cell responses to ototoxin exposure.  

Histological analyses of hair cell damage were performed using the vital dyes 

DASPEI and FM1-43FX, in addition to Tg(pou4f3::mGFP)s356t and i193 

transgenic lines, which mark hair cells. Results of the histological investigations 

showed hair cell damage to occur in a concentration-dependent manner after 

exposure to representatives from a range of drug classes. These classes 

include the aminoglycoside antibiotics, salicylates and platinum-based 

chemotherapeutics. Injection of ototoxins into the ear was also sufficient to 

induce hair cell damage to specific sensory maculae.  

The functional impact of hair cell damage was investigated using startle, 

rheotaxis and seeker response assays, which harnessed the natural 

behavioural responses of the larvae. A novel semi-automated startle assay was 

developed and optimised to study the effects of hair cell damage on the 

acoustically-evoked high-speed escape response. Functional assessment 

revealed the significant attenuation of startle, rheotaxis and underwater motion 

detection following exposure to compounds that had previously induced hair cell 

damage.  

Additional investigations into the mechanisms underlying hair cell damage for 

one ototoxin, cisplatin, are also described. Chemical manipulation of one 

component of the proposed mammalian pathway of damage was able to 

significantly protect hair cells in the zebrafish, suggesting conservation of 

damage mechanisms between zebrafish and higher vertebrates. Collectively, 

the data described in this thesis provide evidence to support the use of 

zebrafish as an in vivo model of ototoxicity.   
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Chapter 1 General Introduction 

1.1 Hearing Loss, Tinnitus and Balance Disorders 

1.1.1 Hearing Loss 

1.1.1.1 Prevalence and impact 

Hearing loss is the most prevalent sensory impairment, affecting more than 278 

million individuals worldwide (WHO). It is estimated that 10 million, or 1 in every 

6, people in the UK are deaf or hard of hearing (AHL, 2011a; Vio and Holme, 

2005). Strikingly, a report from 2004 ranks hearing loss as the most common 

moderate to severe disability globally (Mathers et al., 2008). The Medical 

Research Council has predicted that hearing loss will increase by approximately 

14% every ten years as the worldwide population ages; this has been equated 

to a total of 14.5 million UK sufferers by 2031 (AHL, 2011b). Concurrent with 

these statistics, adult-onset hearing loss is anticipated to feature in the top 10 

disease burdens in the world by 2030, giving it a greater disease impact than 

diabetes and cataracts (Mathers and Loncar, 2006).  

The annual cost of hearing loss to the UK economy through unemployment has 

been estimated at more than 13 billion pounds; even in times of economic 

prosperity, people with severe to profound deafness are four times less likely to 

be employed (RNID, 2007; Shield, 2006). This cost will almost certainly grow in 

the coming years as the worldwide demographic alters towards an ‘ageing 

population’ and the incidence of leisure-based noise-induced hearing loss 

increases. Despite the rising economic costs associated with hearing loss, 

disproportionately little money is spent on its prevention; the money invested 

into research for individuals affected is close to 16-times less than for diabetes 

and 37-times less than for cardiovascular diseases (AHL, 2011b). The cost to 

the individual is also high, affecting sufferers both socially and psychologically. 

The congenitally deaf, or those undergoing paediatric-onset losses, may have 

problems with language acquisition, reading, writing and information 

processing. As a consequence, sufferers may experience social isolation, 

limitation of career choices and a dependence on others (Rutman, 1989). The 

impact of adult-onset hearing loss is somewhat different, with loneliness, 
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psychiatric disturbances and reliance on others more commonly experienced 

(Thomas and Herbst, 1980).  

1.1.1.2 Sensorineural hearing loss 

Sensorineural hearing loss occurs as the result of damage to either the 

specialised hair cells within the cochlea (the auditory component of the inner 

ear) or to the auditory nerve (Cranial nerve VIII), and is predominantly 

associated with ageing. Around half of 61-80 year olds and 90% of the over 80s 

in the UK have some degree of hearing deterioration (AHL, 2011a; Davis, 1989; 

Shield, 2006). Although ageing is a major cause, approximately 40% of all 

cases are unrelated to age, with other causes including: prolonged exposure to 

loud noise, genetic predisposition, ototoxic medications, head injury and 

infectious diseases.  

1.1.2 Tinnitus  

Tinnitus is the perception of sound originating from the ear or head, without any 

obvious auditory input (Baguley, 2002). Following the onset of the condition, 

either continuous tinnitus or recurrent sporadic episodes of tinnitus can be 

experienced; these effects are commonly permanent but can also be reversible. 

The noises experienced are often described as ‘ringing in the ears’ and are 

characteristically high-pitched, sometimes with musical or mechanical 

properties. In the UK, approximately 1% of the population have tinnitus which 

affects the quality of everyday life and around 10% of adults experience mild to 

moderate tinnitus on a regular basis (Davis and Rafaie, 2000). There is no 

single underlying cause of tinnitus, but the symptom is more prevalent in the 

elderly and individuals with hearing impairment and experienced more often by 

women than men (Holmes and Padgham, 2011). Tinnitus can also be caused 

by prolonged exposure to loud noise, ototoxic medications, infection, altered 

blood pressure and even stress. Severe tinnitus can have long-term 

psychological impact, with individuals suffering from lack of concentration, 

troubled sleep, depression and irritation. The economic cost of tinnitus is not 

known. 

1.1.3 Balance Disorders 

Balance (vestibular) disorders occur as a consequence of damage to the 

labyrinth of the inner ear and/or the vestibulocochlear nerve, and can be caused 
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by a variety of factors including acute injury, infections, medications, genetic 

disorders and environmental conditions. Commonly, the balance difficulty is 

idiopathic. Symptoms can include imbalance, vertigo, dizziness, hearing 

changes, blurred vision, nausea and coordination problems (VEDA, 2010). The 

prevalence of vestibular disorders is difficult to estimate; a 1998 survey entitled 

“Acceptability, Benefit & Costs of Early Screening for Hearing Disability” found 

that on average 22% of responders had experienced attacks of dizziness (Davis 

and Moorjani, 2002). The socioeconomic cost of balance disorders is not 

known.  

1.2 Ototoxicity 

1.2.1 Definition of Ototoxicity 

Ototoxicity is defined as the cellular and functional damage to the hearing 

and/or balance systems of the inner ear or the vestibulocochlear nerve caused 

by substances, typically medicines and other chemicals. Ototoxicity may be 

permanent, causing lasting damage to the hearing or balance systems, or 

reversible. This distinction is dependent on the class of ototoxin and its specific 

pathophysiology. The principal symptoms of ototoxicity are hearing loss (initially 

at high frequencies), tinnitus and disequilibrium. 

Ototoxicity is distinct from neurotoxicity resulting in hearing impairment as 

neurotoxins exert their damage in the brainstem and the cochlear and vestibular 

nuclei (Monsell, 2007). 

1.2.2 Risk Factors 

Multiple factors can increase an individual’s susceptibility to adverse ototoxic 

effects. Contributing factors include age, dosing regimen and route of 

administration, concomitant administration of additional ototoxic substances, 

renal dysfunction and pre-existing hearing loss (Gratton and Smyth, 2004; 

Prepageran and Rutka, 2004; Rotstein and Mandell, 2004; Yancey et al., 2012). 

Interestingly, certain genetic variants have been linked to ototoxicity. Single 

nucleotide polymorphisms (SNPs) in mitochondrial 12S rRNA (A1555G and 

Δ961Cn) that are linked to increased susceptibility to the ototoxic effects of 

aminoglycoside antibiotics have been discovered in many populations 

worldwide (Bacino et al., 1995; Fischel-Ghodsian et al., 1993; Fischel-
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Ghodsian, 1999; Hamasaki and Rando, 1997; Prezant et al., 1993; Tang et al., 

2002). Additionally, non-synonymous variants in MT-ND3 and MT-CYB genes 

have also been identified as potentially harmful in the South African population 

(Human et al., 2010). Certain mutations in Glutathione S-Transferase 

(GSTM3*B, GSTP1) have been proposed to protect from cisplatin-induced 

hearing loss, whereas other SNPs in the same gene (such as GSTM1) are 

potentially detrimental (Oldenburg et al., 2007a; Oldenburg et al., 2007b; Peters 

et al., 2000). Increased incidence of cisplatin-induced ototoxicity has also been 

linked to polymorphisms in a number of other genes, including Megalin, 

Thiopurine S-methyltransferase and Catchol-O-methyltransferase (Riedemann 

et al., 2008; Ross et al., 2009).  

1.2.3 Common Classes of Ototoxin  

Ototoxic drugs are commonly categorized by therapeutic class (See Table 1.1). 

Some of the most well known classes include the aminoglycoside antibiotics, 

platinum-based chemotherapeutics, salicylates, loop diuretics, and anti-

malarials. Each ototoxin has its own associated effects on the ear and 

vestibulocochlear nerve. Effects may be reversible or irreversible and range in 

severity. 
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Table 1.1: A selection of medicines with known ototoxicity in humans. 

Drug class Compound Therapy Disease 

Aminoglycoside Amikacin Antibiotic Pseudomonas 

aeruginosa, Acinetobacter, 

Enterobacter and tuberculosis. 

Gentamicin Pseudomonas, Proteus, Serratia, 

and the Gram-

positive Staphylococcus. 

Kanamycin Obsolete. 

Neomycin E. Coli, Enterobacter aerogenes, 

Klebsiella pneumoniae. 

Netilmicin Similar activity to gentamicin, but 

less ototoxicity. 

Streptomycin Infective endocarditis, 

Tuberculosis, Plague (Yersinia 

pestis). 

Tobramycin Pseudomonas. 

Cytotoxic Agents Bleomycin Chemotherapeutic Hodgkin lymphoma, Non-Hodgkin 

lymphoma (NHL), Penile cancer, 

Squamous cell carcinoma of 

the (cervix, vulva, the head and 

neck), Testicular cancer. 

Carboplatin Ovarian carcinoma, lung, head 

and neck cancers. 

Cisplatin Bladder cancer, Cervical cancer, 

Malignant mesothelioma, Non-

small cell lung cancer, Ovarian 

cancer, Squamous cell 

carcinoma of the head and neck, 

Testicular cancer. 

Nitrogen mustard Hodgkin’s disease, non-Hodgkin’s 

lymphoma, lung cancer, breast 

cancer, cutaneous T-cell 

lymphoma. 

Vinca alkaloids Leukaemia, rhabdomyosarcoma, 

neuroblastoma, Wilm’s tumour, 

Hodgkin’s disease, non-Hodgkin’s 

lymphoma, breast cancer, and 

germ cell tumours. 

Iron-Chelating 

agents 

Deferoxamine 

(desferrioxamine B) 

Chelator Haemochromatosis and iron 

poisoning. 

Loop Diuretics Ethacrynic acid Diuretic Congestive cardiac failure, renal 

failure, cirrhosis, hypertension.  Furosemide 
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Macrolides Azithromycin Antibiotic Infections relating to HIV. 

 Clarithromycin Activity against gram-positive and 

gram-negative infections, MAC 

microorganisms. 

 Erythromycin Variety of infections including 

upper and lower respiratory tract 

infections. 

Salicylates Aspirin Analgesic, antipyretic, 

anti-inflammatory 

Fever, pain, inflammation, heart 

attack (follow-up treatment), 

colorectal cancer (prevention). 

Anti-malarials Quinine Anti-Malarial Prevention of malaria. 

Topical agents Chloramphenicol Antibiotic Eye and ear infections. 

Polymixin Infections of the skin, mucous 

membranes, eye and ear. 
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1.2.3.1 The Aminoglycoside Antibiotics 

The aminoglycosides (aminoglycosidic aminocyclitols) are bactericidal 

antibiotics used primarily to treat aerobic gram negative infections. The first 

aminoglycosides were discovered in the 1940s, and were isolated actinomycete 

bacteria found in soil (Montie and Patamasucon, 1995).  

All aminoglycosides have common chemical features, each possessing a single 

hexose nucleus, or aminocyclitol ring. In every class representative except 

streptomycin, this hexose nucleus is 2-deoxystreptamine, whereas in 

streptomycin, the hexose is streptidine. The aminocyclitol ring is additionally 

linked to two or more amino sugars via glycosidic bonds (Brunton et al., 2006; 

Figure 1.1).  
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The aminoglycosides exert their bactericidal effects by perforating the cell walls 

of target bacteria and inhibiting bacterial protein synthesis. The action of this 

class of antibiotic on gram negative bacilli can be explained by their natural 

charge; the aminoglycosides are positively charged and are thus attracted to 

the anionic lipopolysaccharides of the outer surface of the bacterial membranes, 

perforating them (Hancock and Bell, 1988; Peterson et al., 1985) . Once inside 

the bacterial cell, aminoglycosides interact specifically with the prokaryotic 

ribosomes in the small 30S and large 50S subunits (Campuzano et al., 1979; 

De Stasio et al., 1989; Fourmy et al., 1996; Fourmy et al., 1998; Misumi et al., 

1978; Moazed and Noller, 1987; Scheunemann et al., 2010; Woodcock et al., 

1991). The aminoglycosides can bind to the A-site of the bacterial ribosome’s 

small subunit and cause tRNA to misread mRNA codons (Davies et al., 1965; 

Davies et al., 1966; Davies and Davis, 1968). An interaction can also occur 

between the small and large subunits of the ribosome, causing linking of two 

components and preventing recycling of the ribosome (Scheunemann et al., 

2010). Misread protein produced by the binding of aminoglycosides may also be 

incorporated into membranes, causing abnormal channel formation and 

damage to the outer membrane of bacteria, leading to increased uptake of 

aminoglycosides and formation of a positive feedback loop (Busse et al., 1992; 

Davis, 1987; Montie and Patamasucon, 1995).  The action of these antibiotics 

on bacteria is dose-dependent and persistent, even after withdrawal of 

treatment.  

Aminoglycosides are administered in various forms: topically, intravenously, 

orally and intramuscularly (Joint Formulary Committee, 2011). The serious 

dose-limiting side-effects of the aminoglycosides are nephrotoxicity, 

neuromuscular blockade and ototoxicity (auditory and vestibular). The oto- and 

nephrotoxic effects of the aminoglycosides were noted early in their use, in 

some of the first clinical trials for tuberculosis (Hinshaw and Feldman, 1945). 

Although the exact incidence is uncertain, reviews of the literature in 2004 and 

2011 estimated up to 47% ototoxicity in adults undergoing aminoglycoside 

treatment; these estimates were based on a variety of clinical studies and meta-

analyses (Rotstein and Mandell, 2004; Xie et al., 2011). Individual risk factors 

such as cumulative dose, duration of treatment and combined therapy may 



Figure 1.1: The chemical structure of the aminoglycoside antibiotics. 

Some examples of the aminoglycoside antibiotics. (A) Neomycin. (B) 

Streptomycin. (C) Gentamicin.  

8a 



9 
 

influence susceptibility to aminoglycosides in patient populations, although 

genetic susceptibility remains the only proven risk factor (Prezant et al., 1993; 

Xie et al., 2011).  

Aminoglycosides preferentially accumulate in the renal cortex and in the 

endolymph and perilymph of the inner ear; their half lives are up to six times 

longer in the otic fluids than in blood plasma (Brunton et al., 2006; Voldrich, 

1965). Resultant ototoxic damage occurs mainly at the level of the sensory hair 

cells in both the cochlea and vestibular apparatus. In some cases, degeneration 

of spiral ganglion neurons, nerve fibres and supporting cells and atrophy of the 

stria vascularis can be observed (Fischel-Ghodsian, 2004; Schacht, 2004). In 

the cochlea, damage occurs from the base to the apex causing high frequency 

hearing loss initially, resulting in irreversible auditory threshold shifts (Huizing 

and de Groot, 1987; Schacht, 2004; Xie et al., 2011). The outer hair cells 

appear to be more susceptible to the damage. Vestibular injury can manifest in 

nausea, vomiting, disequilibrium, vertigo and nystagmus. Different effects are 

observed depending on the specific compound administered.  

Evidence from whole animal and cell line studies on the aminoglycosides has 

led to the suggestion of a variety of mechanisms of uptake and ototoxic damage 

over the years. Proposed mechanisms of uptake and accumulation of the 

aminoglycosides in hair cells include: receptor-mediated endocytosis, 

mechanotransduction and unconventional myosin-VII-A (Gale et al., 2001; 

Hashino and Shero, 1995; Hashino et al., 1997; Marcotti et al., 2005; 

Richardson et al., 1997; Williams et al., 1987). Uptake is not directly correlated 

to toxicity.  

The ear-specific toxicity of the aminoglycosides could be attributed to a 

combination of selective uptake through ion channels due to positive 

endolymphatic potential and tissue specific intracellular binding targets, such as 

CLIMP-63 (Karasawa et al., 2008; Karasawa et al., 2010; Marcotti et al., 2005). 

To date the most convincing explanations for the mechanisms of damage inside 

auditory cells are the stimulation of reactive oxygen (and possibly reactive 

nitrogen) species production by the formation of heavy metal-aminoglycoside 

complexes, and polyphosphoinositide lipid-aminoglycoside binding, leading to 
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generation of lipid peroxides (Clerici et al., 1996; Hirose et al., 1997; Hong et 

al., 2006; Karasawa and Steyger, 2011; Lodhi et al., 1980; Priuska and 

Schacht, 1995; Priuska et al., 1998; Sha and Schacht, 1999a; Sha and 

Schacht, 1999b; Sha et al., 2001a; Takumida and Anniko, 2002). This is 

supported by studies displaying varying levels of otoprotection using either free 

radical scavengers, or iron chelators (Conlon et al., 1998; Conlon and Smith, 

1998; Conlon et al., 1999; Dehne et al., 2002; Garetz et al., 1994; McFadden et 

al., 2003; Sha et al., 2001b; Song and Schacht, 1996; Song et al., 1997).  

Most reports of cell death induced by aminoglycosides suggest apoptosis is the 

main mechanism of hair cell death, but some necrosis has also been observed 

(Forge and Li, 2000; Jiang et al., 2006; Nakagawa et al., 1998). Various studies 

have shown evidence for apoptosis in hair cells and spiral ganglion cells, 

including JNK (c-Jun N-terminal kinase) and caspase activation, increased 

TUNEL staining, phosphatidylserine externalisation at the apical membrane and 

extrusion of hair cells from the organ of Corti (Alam et al., 2007; Bae et al., 

2008; Cheng et al., 2003; Cunningham et al., 2002; Goodyear et al., 2008; 

Hirose et al., 2004; Jeong et al., 2010; Jiang et al., 2005; Kil et al., 1997; Lang 

and Liu, 1997; Lee et al., 2004a; Li et al., 1995; Nakagawa et al., 1997; 

Nakagawa et al., 1998; Sugahara et al., 2006; Taylor et al., 2008). Further to 

this, there is evidence that inhibition of caspases and JNK signalling and 

manipulation of apoptotic mediators such as XIAP (X-linked inhibitor of 

apoptosis protein) can partially protect hair cells from ototoxic insult (Forge and 

Li, 2000; Matsui et al., 2003; Nakamagoe et al., 2010; Okuda et al., 2005; 

Pfannenstiel et al., 2009; Pirvola et al., 2000; Tabuchi et al., 2007; Wang et al., 

2003b; Wei et al., 2005; Ylikoski et al., 2002).  

1.2.3.2 Platinum coordination complexes 

Platinum-based chemotherapeutics are a sub-class of alkylating agents 

frequently used to treat a wide range of aggressive cancers from germ-cell 

tumours of the testes, to lung cancer (Joint Formulary Committee, 2011; 

Sturgeon, 2004). Their chemotherapeutic potential was first identified in the mid 

1960s by Rosenberg and colleagues (Rosenberg et al., 1965; Rosenberg et al., 

1969). The compounds cisplatin, carboplatin and oxaliplatin are all platinum 

coordination complexes (Figure 1.2).  
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These compounds can bind covalently to nucleophilic sites on DNA such as the 

N7 of guanine, causing intra- and inter-strand cross-linking. These DNA adducts 

prevent the proliferating cell from carrying out transcription and replication, 

resulting in DNA strand breaks, miscoding and ultimately apoptosis (Brunton et 

al., 2006).  
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The dose-limiting side-effects of the platinum chemotherapeutics are peripheral 

neuropathy, nephrotoxicity, reversible myelosuppression and ototoxicity 

(Brunton et al., 2006).  

Like the aminoglycosides, platinum-based chemotherapeutics cause permanent 

high frequency hearing loss after repeated dosing, with preferential loss of the 

outer hair cells of the basal turn of the cochlea. Damage has also been 

observed at the level of the stria vascularis, the vestibulocochlear nerve and in 

the spiral ganglion cells. Additionally, vestibular perturbation and tinnitus have 

been reported in some patients (Aguilar-Markulis et al., 1981; Boheim and 

Bichler, 1985; Brunton et al., 2006; Gratton and Smyth, 2004; Schaefer et al., 

1985; Wright and Schaefer, 1982).  

Despite its ototoxic effects, cisplatin is one of the most effective therapies for 

solid tumours and therefore the seriousness of any side-effects have to be 

weighed against the drug’s high therapeutic value.  

The overall ototoxicity of cisplatin has been estimated by one review of patient 

case reports as between 4 and 91% (Fausti et al., 1984). There are a number of 

reasons for this highly variable estimate. In particular, differing methods of 

ototoxic assessment and individual susceptibility factors can have an impact on 

the ototoxic outcome. Cumulative dose and age are predictors of cisplatin 

ototoxicity with children especially prone to its ototoxic effects (Weatherly et al., 

1991; Yancey et al., 2012).  

Cisplatin is a square-planar inorganic platinum molecule consisting of a central 

platinum element incorporating cis-positioned pairs of chlorine atoms or amine 

groups. The ear-specific toxicity of cisplatin in higher vertebrates could be 

attributed to the selective uptake of cisplatin into cochlear tissues either via 

organic cation transporter 2 (OCT2), or copper transporter 1 (Ctr1). In OCT1/2-/- 

knockout mice, cisplatin does not cause ototoxicity. Furthermore, inhibition of 

OCT2 with cimetidine protects against cisplatin ototoxicity (Ciarimboli et al., 

2010). On the other hand, small interfering RNA against the Ctr1 gene 

decreases cisplatin uptake in HEI-OC1 cells in vitro. Additionally, competitive 

inhibition at the level of the Ctr1 channel with copper sulphate decreases the 

uptake and toxicity of cisplatin in vitro and in mice in vivo (More et al., 2010).   



Figure 1.2: The chemical structures of the platinum chemotherapeutics. (A) Carboplatin, (B) Cisplatin and (C) Oxaliplatin. 

12a 
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Numerous studies suggest that cisplatin causes damage to hair cells via the 

generation of reactive oxygen species (ROS) (reviewed by Rybak et al., 2009). 

The increase in reactive oxygen species is thought to be triggered by induction 

or activation of the NADPH oxidase family of enzymes and TRPV1 (transient 

receptor potential vanilloid 1) ion channels (Mukherjea et al., 2008; Mukherjea 

et al., 2010). Increases in ROS subsequently lead to downstream apoptotic and 

necrotic events. Some of these downstream events (such as induction of pro-

inflammatory factors, p53 and pro-apoptotic factors) are known to be mediated 

by the activation of STAT transcription factors (Kaur et al., 2011; Schmitt et al., 

2009). The mechanisms of cisplatin-induced hair cell death will be discussed in 

more detail in Chapter 6.  

1.2.3.3 Salicylates 

Salicylates are commonly taken to treat fever, pain and inflammation. The best 

known salicylate, aspirin, exerts its therapeutic effects by inhibiting the 

cyclooxygenase enzymes COX-1 and COX-2 in a reversible manner (Vane, 

1971; Vane and Botting, 2003; for compound structure, see Figure 1.3). 

Aspirin and other salicylate derivatives have long been reported to have ototoxic 

effects. The first reports date back to 1877, with aspirin ototoxicity reported 

around the time of its synthesis by Bayer in 1899. Salicylate toxicity is reported 

to occur in around 11 per 1000 individuals (Prepageran and Rutka, 2004). Often 

the hearing loss associated with the salicylates is mild to moderate, bilateral 

and reversible and frequently concomitant with tinnitus (Day et al., 1989).  

The exact sites of aspirin-induced damage in the ear are debated, as there is 

conflicting histological evidence, both from humans and from non-human animal 

models. Pathological alterations have been reported in the organ of Corti, stria 

vascularis, spiral ganglion and outer hair cells (Tuper et al., 2005).  

There are many current theories concerning the underlying mechanisms of 

aspirin-induced damage. Acoustic emission studies indicate that outer hair cell 

abnormalities are important in hearing loss. Decreased cochlear blood flow may 

also contribute to hearing loss; this has been associated with catecholamines 

and arachidonic acid metabolism (Didier et al., 1993) . A more recent finding is 

that the dissociated ion of salicylate competes with chloride ions to couple to the 
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anion-binding site associated with prestin (a voltage-sensitive membrane 

protein responsible for outer hair cell (OHC) electromotility). This interaction 

inhibits the action of prestin, thus limiting electromotility and cochlear 

amplification (Chen et al., 2010; Dallos, 2008; Kakehata and Santos-Sacchi, 

1996; Oliver et al., 2001).  

One proposed mechanism for aspirin-induced tinnitus is that altered levels of 

arachidonic acid increase the open probability of the NMDA receptors, thus 

activating them. The increase in NMDA receptor activity could lead to 

excitotoxicity (Guitton et al., 2003; Puel and Guitton, 2007).  

1.2.3.4 Loop Diuretics 

Loop diuretics are a subclass of diuretics administered orally or intravenously to 

treat renal failure, cardiac failure, hypertension, cirrhosis and also 

bronchopulmonary dysplasia in premature infants (Prepageran et al., 2004). 

The loop diuretics act to block the reabsorption of sodium and chloride in the 

loop of Henle and proximal renal tubule of the kidney (Ikeda et al., 1997; Rybak, 

1993).  

The ototoxicity of loop diuretics such as ethacrynic acid and furosemide is well 

documented (for structures, see Figure 1.3), with the earliest reports occurring 

in the 1960s and 1970s (Maher and Schreiner, 1965; Rybak, 1988; Schwartz et 

al., 1970). The ototoxicity tends manifest in reversible sensorineural hearing 

loss, although occasional reports of permanent hearing loss have been linked to 

patients with renal failure. Tinnitus and vertigo have also been recorded 

(Prepageran et al., 2004). 

The main site of damage in the ear is the stria vascularis, with oedema and 

cystic changes observed. Very occasionally, damage to the outer hair cells has 

been reported in the basal turn of the cochlea (Arnold et al., 1981). Studies 

have suggested that the loop diuretics exert their ototoxicity by inhibiting ion 

channels in a manner similar to their effect in the kidney, and that this alters 

perilymph and endolymph composition. These alterations in fluid homeostasis 

are correlated with temporary reductions in the endocochlear potential (Ikeda et 

al., 1997; Prepageran et al., 2004). 
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1.2.3.5 Anti-malarials 

It has been well reported that a small number of anti-malarial drugs have 

ototoxic effects. In particular, cases of ototoxicity have been linked with the use 

of quinine.  This was first reported in 1692 (Tange et al., 1997). The effects of 

quinine are reversible hearing loss, tinnitus and vertigo, although the 

mechanisms of damage are not well understood (reviewed in Gurkov et al., 

2008; for compound structure, see Figure 1.3). 
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1.2.4 The Prevalence of Ototoxicity 

The prevalence of ototoxicity is extremely difficult to estimate. There are many 

reasons for this.  

Firstly, most data for the ototoxicity of marketed and environmental chemicals is 

based on individual patient or small cohort case studies and anecdotal 

evidence. The lack of a clear definition of an ototoxin is also a major barrier to 

clinical diagnosis, particularly as the extent of damage to hearing and balance 

function required for a substance to be classed as ototoxic has not been agreed 

(Konrad-Martin, 2005; Scott and Griffiths, 1994). The delayed onset of 

ototoxicity (up to 6 months for neomycin) and the continuing progress of the 

pathology after cessation of treatment are also limiting factors in diagnosis. 

Furthermore, the variability in the pathophysiological effects of the different 

ototoxins and the reversible nature of many compounds makes an ototoxic 

event hard to capture and define. Perhaps most surprisingly, standardised 

protocols for monitoring ototoxicity in the clinic are non-existent. According to 

the American Academy of Audiology, there are “...significant gaps in knowledge 

that preclude the formulation of a standard of practice in this area...” (AAA, 

2009).  

It is important to highlight that the prevalence of ototoxicity is likely higher in less 

economically developed countries and in the Far East, where known ototoxins 

such as the aminoglycoside antibiotics are frequently used as first line 

medications for common infections such as bronchitis, often due to their 

comparative low cost (Anon, 1994; Fischel-Ghodsian, 2004). This, combined 

with genetic predisposition to ototoxicity, makes the prevalence much higher in 

countries such as China, for example (Hu et al., 1991). One study in China 

found that out of 763 deaf-mutes, 167 cases had acquired deaf-mutism through 

aminoglycoside treatment (22%). Of these 22%, 47 cases had at least one 

relative with aminoglycoside-induced hearing impairment, suggesting genetic 

susceptibility (Hu et al., 1991).  

From all of this, it is clear that the incidence of ototoxicity is likely to be 

underestimated and that those cases observed in the clinic are merely the ‘tip of 

the iceberg’. 



Figure 1.3: The chemical structure of some ototoxins. The loop diuretics 

furosemide (A) and Ethacrynic acid (B). (C) The salicylate derivative aspirin. 

(D) The anti-malarial quinine. 16a 
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1.3 The Requirement for Ototoxicity Screening in Humans 

Currently, the Food and Drug Administration (FDA) do not require ototoxicity 

screening in either the preclinical or clinical testing stages of drug development, 

and there are no Good Clinical Practice (GCP) guidelines in place. The 

exception to this is that monitoring is recommended at the clinical stage if the 

investigational compound is a member of a class of chemicals already 

recognised as ototoxic (AAA, 2009; Anon, 2010) 

Similarly, ICH1 guidelines call for a core battery of cardiovascular, central 

nervous system and respiratory testing in nonclinical safety pharmacology 

studies for human pharmaceuticals, but do not include auditory testing. As with 

the FDA, monitoring for adverse auditory effects using ‘follow-up’ safety 

pharmacology tests is only advised if the effects are expected (ICH, 2005). 

Despite the lack of test guidelines currently in place for so-called ‘low priority’ 

adverse effects such as ototoxicity, the general consensus among 

pharmaceutical companies is that early hazard detection adds value. Early 

‘screening test methods’ for adverse effects are advantageous in that they help 

to prioritise new chemical entities (NCEs). They also provide critical insights into 

the potential toxicity in man, thus enhancing the safe progression of a 

compound onto the market (Anon, 2005; Redfern et al., 2002; Valentin and 

Hammond, 2008). 

As highlighted in section 1.2.4, ototoxicity is an underestimated problem with 

potential socioeconomic impact that is highly preventable. By employing early 

frontloaded screening during the lead identification and lead optimisation (LILO) 

stages as standard, the burden of ototoxicity has the potential to be greatly 

reduced.  

1.4 Methods to Assess the Ototoxic Effects of Medicines 

1.4.1 In vitro 

Research into the ototoxic effects of compounds is performed in vitro using 

either organotypic culture, or less complex cell culture models.  

                                            
1 ICH = International Conference on Harmonisation of Technical Requirements 
for Registration of Pharmaceuticals for Human Use 
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1.4.1.1 Organotypic culture 

The earliest in vitro models of ototoxicity used explants of cochlear and 

vestibular tissues to model the damaging effects of compounds (Anniko et al., 

1982; Richardson and Russell, 1991). This method is still employed by many 

laboratories and is often used in combination with in vivo tests of auditory 

function (Bas et al., 2012; Mazurek et al., 2012; Waissbluth et al., 2012). Most 

commonly, explants are taken from mouse, rat, guinea pig and chick tissues 

(Ding et al., 2011; Schmitt et al., 2009; Slattery and Warchol, 2010; Sly et al., 

2012). As well as being able to combine organotypic culture experiments with in 

vivo functional assays, this in vitro method has additional advantages. The 

system allows for the investigation of the cellular mechanisms of drug-induced 

damage, regeneration and otoprotection in a 3D milieu also containing support 

cells. The major disadvantage of organotypic culture is its complexity. Often 

cochlear tissues are difficult to access, as the temporal bone must be removed 

from the animal and dissected. In some cases, dissection itself can damage the 

tissues. The method is easier for vestibular structures but is still relatively time-

consuming.  

1.4.1.2 Cell culture 

In the last 15 years, a number of cell lines have been created that are derived 

from inner ear structures. The majority of these cell lines are immortalised and 

take advantage of the Immortomouse model; in this transgenic mouse line, 

SV40 T antigen can be conditionally induced by temperature (Jat and Sharp, 

1989; Jat et al., 1991). Specifically, a number of Organ of Corti (UB/OC-1, HEI-

OC1, OC-k3) and vestibular (UB/UE-1, HEI-Ve1) derived lines have been 

established, which have been used to better examine the cellular mechanisms 

of ototoxicity and the potential of compounds to confer protection to hair cells 

(Chen et al., 2012; Kalinec et al., 1999; Lawlor et al., 1999; Park et al., 2012; 

Rivolta et al., 1998; Rivolta and Holley, 2002).  The major advantage of this 

method of ototoxicity assessment is the high throughput and ease of 

experimentation compared with traditional in vivo and organotypic approaches. 

For example, this technique does not require the time-consuming isolation of 

cells required for organotypic culture. An obvious drawback is that the cells lack 
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the complex environment that is present in an in vivo system, reducing the 

translational capacity of the data generated. 

1.4.2 In vivo 

In vivo models of ototoxicity are mainly focussed on the function of the hearing 

and vestibular systems. The major advantage of in vivo studies is that cells 

remain intact and within their normal physiological environment, and the 

functional output allows a direct indication of potential clinical impact. The main 

disadvantages of in vivo studies are that the cellular mechanisms of damage 

are more difficult to investigate, experiments are expensive and compound 

requirements are high. This means that traditionally, if undertaken, in vivo 

audiometry can only be conducted towards the later stages of the drug 

development process. Additionally some animals such as mice are notorious for 

their variable responses to ototoxic insult, making the task of assessing 

ototoxicity, and translation to clinical risk, even more difficult  (as highlighted in 

Ou et al., 2010). 

1.4.2.1 Auditory and vestibular testing 

One useful method to test the auditory function in live animals is Auditory 

Brainstem Response (ABR) testing. In ABR testing, electrophysiological 

readings are recorded in response to direct auditory stimulation in the test ear 

(usually incremental tones).  

Methods of vestibular monitoring are Vestibular Evoked Myogenic Potential 

(VEMP) and caloric testing. In VEMP testing, the myogenic potential of muscles 

in response to vestibular input is recorded. In caloric testing, directed 

nystagmus is induced and recorded by irrigating the auditory canal of the test 

ear with water of varying temperatures (Yang et al., 2010).  

Functional assays such as these can be performed in a variety of animals from 

guinea pigs to chinchillas. The measurements taken are similar to those taken 

in human subjects and provide an excellent indication of ototoxic damage 

induced by either topical or systemic administration. An inherent advantage of 

the methods is that measurements taken before ototoxin exposure provide a 

direct comparison for each animal. Other major advantages of the techniques 

are that they can be performed in combination with post-mortem examination of 
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the tissues, for example electron microscopy and immunohistochemistry, and 

that repeated dosing can be performed. The shortcoming of the techniques is 

that they are not scalable; the requirement for high numbers of animals would 

be too costly and unethical (Yorgason et al., 2011). 

1.4.2.2 Knockout models 

In recent years, mouse knock-out models have been created to study a 

selection of the proposed mechanisms of ototoxicity.  

For example, knockouts have been used to great effect to study the 

mechanisms of cisplatin ototoxicity. STAT1, STAT4 and STAT6 knockout mice 

have been generated to investigate the role of the STAT pathway in the 

generation of pro-inflammatory cytokines in cisplatin-mediated hair cell death; it 

has been demonstrated that STAT1 and STAT6 signalling is required for 

ototoxicity (Kim et al., 2011; Schmitt et al., 2009). The role of OCT2 in the 

uptake of cisplatin has also been investigated using knockouts. Double 

knockout mice lacking OCT1 and OCT2 genes are partially protected from the 

hearing loss and cellular damage induced by cisplatin treatment (Ciarimboli et 

al., 2010).  

Although important for providing valuable information on the mechanisms of 

ototoxin-induced damage, knockout mice are expensive and can take in excess 

of six months to generate.  

1.5 The Zebrafish as an Alternative for Pre-Clinical Screening 

Clearly, additional models for investigating the effects of new drugs on the 

hearing and vestibular systems are needed.  

Any proposed model must confer the advantages of the mammalian, avian and 

in vitro systems and still be cost-effective, reliable and show good predictivity 

(Fleming and Alderton, 2012; Redfern et al., 2008; Valentin and Hammond, 

2008). This is where fish models of auditory structure and function, and 

specifically the zebrafish, may have a role to play. 

1.5.1 The zebrafish 

The Zebrafish (Danio rerio) is a species of tropical freshwater fish originating 

from the Indian subcontinent (Spence et al., 2008). It is a member of the diverse 
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Cyprinid family of fishes, in the ray-finned class (Actinopterygii, grade 

Teleostei).  

Since the 1980s, the zebrafish has gained popularity in the scientific research 

arena. The advent of two large scale ENU mutagenesis screens in the mid-

1990s put the zebrafish on the map as a model of vertebrate development, 

developmental genetics and disease. This resulted in the publication of a whole 

collection of papers in a special issue of the journal Development in 1996 

(Volume 123). Since this time, efforts have been made to sequence the entire 

zebrafish genome; the current zebrafish genome assembly, Zv9, was released 

in July 2010 (Sanger, 2012;  www.sanger.ac.uk/Projects/D_rerio/). Most 

recently, the potential value of the zebrafish in higher throughout compound 

screening, re-profiling and toxicology has been explored.  

1.5.2 Advantages 

The zebrafish confers a number of advantages over more traditional models 

used for drug safety assessment. Adult zebrafish are small in size and relatively 

easy to maintain, making them cheap to house compared with higher 

vertebrates. The genetic tractability and rapid development of the animals also 

makes the generation of transgenic animals more practicable, quick and 

relatively inexpensive. As an in vivo model, the whole physiology of the animal 

can be studied rather than cells in isolation.  

A number of advantages are also apparent regarding their suitability for 

developing higher throughput assays to frontload drug safety assessment. 

Female adult zebrafish have high fecundity, producing a large number of eggs 

in regular cycles. The speed of development and transparency of the fish at 

embryo and larval stages, as well as the use of transgenic reporter lines, 

enables the visualisation of organ system growth, development and physiology 

in addition to overall animal mortality (Kimmel et al., 1995). From around 24 

hours post fertilisation (hpf) zebrafish larvae exhibit a number of stereotyped 

behaviours that can be readily observed and possess most of the major organs 

systems that mammals have. Most encouragingly, zebrafish larvae are also 

known to be capable of at least some drug metabolism (Alderton et al., 2010; 

David et al., 2012; Jones et al., 2010; Jones et al., 2012). These factors 
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combined make zebrafish a more attractive proposition than isolated cell 

preparations (Diekmann and Hill, 2012). Consequently, there are many 

examples of assays and screens having been developed to address a wide 

range of disease phenotypes and safety assessment targets, many of which are 

summarised below.  

1.5.3 Use in screening and disease modelling 

In 1997, the zebrafish was officially recognised by the National Institutes of 

Health (NIH) as a model organism for the study of vertebrate development and 

disease (Lessman, 2011; NIH, 2012). Since this time, the zebrafish has 

garnered a significant amount of interest among pharmaceutical companies 

(Redfern et al., 2008; Valentin and Hammond, 2008). In particular, leading 

organisations such as Pfizer, Novartis and AstraZeneca have all developed in-

house assays or embarked on collaborations involving the use of zebrafish to 

assess drug safety, efficacy and pharmacokinetics (Fleming and Alderton, 

2012; also see Table 1.2).  
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Table 1.2: Example assays performed in zebrafish to identify adverse drug 

reactions (ADRs). 

Safety screen Assay type Comments Study 

Behavioural 

alterations 

Visual motor 

response test. 

57/60 compounds produced a change in 

activity at either basal or challenge phases. 

(Ali et al., 2012) 

Photomotor 

response, touch-

evoked response. 

Behavioural 

fingerprinting. 

Phenotypic clustering.  (Kokel et al., 

2010) 

Rest/wake 

regulation. 

Locomotor assays. 

3968 unique compounds screened. 

463/3968 altered behaviour compared to 

control animals. Phenotypic clustering can 

identify novel targets/compounds. 

(Rihel et al., 2010) 

Seizure liability In situ hybridisation 

screen, locomotor 

assay. 

PTZ plus compound library. 46/2000 

compounds decreased cfos and locomotor 

activity. Potential anti-convulsants. 

(Baxendale et al., 

2012) 

Locomotor assay. 25 compound validation set. 72% 

predictivity. 

(Winter et al., 

2008) 

Heart rate 

modulation/ 

cardiotoxicity 

Embryonic heart 

rate. 

Tg:cmlc2:GFP. Automated analysis (95% 

scored). Three positive and three negative 

controls. 

(Burns et al., 

2005) 

Heartbeat 

regularity in 

peripheral blood 

vessels. 

terfenadine decreased heart rate and 

caused AV blockage. Increase in 

rhythmicity index. 

(Chan et al., 

2009) 

Q-T prolongation 

by video 

assessment and 

custom software. 

Bradycardia induced by nifedipine. 12 Q-T 

prolonging drugs identified. Morpholino to 

HERG mimics Q-T prolonging compounds. 

(Langheinrich et 

al., 2003) 

Addiction Conditioned place 

preference (CPP) 

in mutant lines. 

dum and jpy mutants display cocaine 

insensitivity. 

(Darland and 

Dowling, 2001) 

CPP. Measured the reinforcing properties of D-

amphetamine in adults. 

(Ninkovic and 

Bally-Cuif, 2006) 

Visual function ENU mutagenesis 

then Optomotor 

(OMR) and 

optokinetic (OKR) 

response testing. 

Mutations in 41 genes identified that affect 

visual function. Mostly in photoreception. 

(Muto et al., 2005) 

OMR and OKR 

tests. 

27 compound validation set. OMR: 13/19 – 

expected positive effect (visual toxins). 6/8 

– expected negative result. Useful predictor 

(Richards et al., 

2008) 
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of ADRs on visual function. 

Anxiety Thigmotaxis. Edge preference (anxiety) increases with 

caffeine and decreases with diazepam. 

(Richendrfer et al., 

2012; Schnorr et 

al., 2012) 

Gut motility Gut contractions 

counted by eye. 

16 compound blinded validation. 6/10 

compounds showed the expected change 

in gut motility. 

(Berghmans et al., 

2008) 

Ototoxicity Vital dye staining 

of neuromasts 

1040 FDA approved compounds and 

bioactives. Seven known ototoxins 

identified, 14 novel compounds potentially 

ototoxic. 

(Chiu et al., 2008) 

 

Additionally, the zebrafish has been utilised for the study of a wide range of 

human diseases ranging from obesity to cancer (see Table 1.3; Jones et al., 

2008; Li et al., 2012; Liu and Leach, 2011; Ridges et al., 2012; Tingaud-

Sequeira et al., 2011). 
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Table 1.3: Examples of zebrafish disease modelling. 

Disease Assay Comments Study 

Polycystic kidney 

disease 

Chemical modifier screen for 

two mutant phenotypes. 

Custom library 115 compounds. 

6/115 altered body curvature. 

14/115 affected asymmetry. 

(Cao et al., 

2009) 

Acute renal 

failure/renal 

defects/diabetes 

mellitus 

Injection of drugs into 

cardiac venous sinus. 

Measurement of clearance 

and histology. 

Decreased renal clearance after 

treatment with gentamicin and 

cisplatin. Changes to pronephric 

tubules consistent with observations 

in mammals. 

(Hentschel et 

al., 2005) 

Morpholino and dextran-

toxin injection. 

Morpholinos targeting CD2AP or 

podocin and puromycin 

aminonucleoside cause oedema 

and increased clearance. 

(Hentschel et 

al., 2007) 

Inflammation Tail transection model and 

cell counts in mpo:GFP 

larvae. 

Inflammation proceeds in a similar 

fashion (similar kinetics) to 

mammals. Neutrophil resolution can 

be manipulated by a caspase 

inhibitor. 

(Renshaw et al., 

2006) 

Chemically induced 

inflammation assay. 

Neuromasts and leukocytes 

visualised using transgenic 

lines. 

10/11 anti-inflammatory agents and 

ROS inhibitors inhibited leukocyte 

recruitment. Automated detection. 

Migratory impairment observed in 

Was mutant. 

(d'Alençon et al., 

2010) 

Pharmacological 

manipulation of resolution of 

inflammation. Measured by 

neutrophil counts using 

mpo:GFP line. 

Caspase inhibitors delayed 

resolution. Bacterial LPS and 

dbcAMP also perturbed 

inflammation resolution. Polycyanin 

reduced neutrophil numbers in a 

caspase-dependent manner. 

Roscovitine accelerated resolution. 

12/960 accelerated resolution of 

inflammation. 

(Loynes et al., 

2010) 

Bacterial Infection S. aureus infection into yolk 

or bloodstream. Survival 

curves. 

Infection model established in wild 

type. Myeloid cells key in mounting 

infection response. Pu.1 knockdown 

larvae die more rapidly and cannot 

contain the infection. 

(Prajsnar et al., 

2008) 

Atherosclerosis Measuring vascular 

accumulation of MDA-LDL 

using hsp70:IK17-EGFP line. 

Treatment with high cholesterol diet 

leads to increased accumulation of 

IK17 epitopes. Regression diet and 

antioxidant probucol leads to 

decreased IK17 accumulation. 

(Fang et al., 

2011) 
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Angiogenesis Cognition Network 

Technology to look at 

intersegmental vessels. 

Tg(fli1:EGFP). 

Intersegmental area and length are 

decreased significantly by the 

known anti-angiogenic agent 

SU4312. Microtubule inhibiting 

agents inhibit growth of 

intersegmental vessels. 

(Vogt et al., 

2009) 

Obesity Rate yolk sack diminished 

measured by Nile Red stain. 

PPARγ receptor agonists cause 

increase in fat. Resveratrol 

decreased fat. 

 

(Jones et al., 

2008) 

Cancer Screening for anti-cancer 

agents 

59 of 502 natural compounds 

induced apoptosis or activated the 

p53 pathway. 28 already known for 

anti-cancer properties. 21 agreed 

with cell based MTT (3-(4,5-

Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide) 

assay. 

(Li et al., 2012) 

Screen for T-cell elimination 

in thymus using the 

p56lck:EGFP zebrafish line 

(lck:EGFP). 

26 400 molecules screened. 

Identified lenaldekar which 

selectively eliminates T-cells without 

affecting other cell types. 

(Ridges et al., 

2012) 

  



27 
 

1.6 The Zebrafish auditory and vestibular system 

Zebrafish use their acoustico-lateralis system, swim bladder and Weberian 

ossicles in combination to detect stimuli from the external environment; they are 

hearing specialists (Fay and Popper, 1974). The zebrafish acousticolateralis 

system is comprised of two key sensory structures, the inner ear (the utricular, 

saccular and lagenar maculae along with the semicircular canals) and the 

lateral line (Bever and Fekete, 2002; Ghysen and Dambly-Chaudière, 2004; 

Metcalfe et al., 1985; Metcalfe, 1989; Raible and Kruse, 2000; Whitfield et al., 

2002). The acoustico-lateralis system has mixed auditory and vestibular 

function.   

1.6.1 The Zebrafish Ear 

The zebrafish inner ear system possesses remarkably similar functional 

capabilities to mammalian hearing systems, despite lacking a cochlea.  

1.6.1.1 Structure and development 

The zebrafish inner ear forms from the otic placode, a transient thickening of 

ectoderm that can be observed in proximity to the caudal hindbrain from around 

16 hpf (Ladher et al., 2010; Whitfield et al., 2002). The placode cavitates to form 

a vesicle approximately two hours later and by 24 hpf this vesicle contains the 

rudimentary sensory patches and otoliths. Between 22 and 42 hours post 

fertilisation, a subset of cells of the otic vesicle delaminate to become neuronal 

precursors; these form the statoacoustic ganglion (Haddon and Lewis, 1996; 

Whitfield et al., 2002). 

At the early larval stages (including 5 days post fertilization (dpf)), the zebrafish 

inner ear possesses two patches of sensory epithelium, one within the future 

utricle  (utricular or anterior macula) and one occupying the future saccule 

(saccular or posterior macula), each with an overlying otolith. The maculae are 

bathed in fluid and contained in interlinked compartments, similar to in other 

vertebrate systems although less complex. The maculae contain support cells 

and hair cells of similar, but not identical, structure and function to those seen in 

the mammalian and avian auditory systems. Each hair cell has a single apical 

kinocilium and a bundle of stereocilia that transduce signals via associated 

sensory neurons (Haddon and Lewis, 1996; see Figure 1.4).  
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As in all jawed vertebrates, zebrafish also possess three semicircular canals 

that are visible in larvae from approximately 3 dpf. Each canal contains small 

patches of hair cells in swellings or ampullae. The semicircular canals are 

formed by the joining of three pairs of cylindrical projections from the wall of the 

otocyst (Waterman and Bell, 1984). 

In adult zebrafish, there are two additional sensory patches present, the lagena 

(hair cells visible at 13dpf) and macula neglecta. Sound waves are focused onto 

the saccule of the inner ear by the zebrafish swim bladder and Weberian 

ossicles (a system of small bones; described in Abbas and Whitfield, 2010).  

1.6.1.2 Function  

The sensory maculae have auditory and/or vestibular function. The utricle is 

proposed to be primarily vestibular in function, detecting linear acceleration and 

gravity. The saccule has been proposed to have primarily auditory function, 

detecting sound. The semicircular canals are situated perpendicular to each 

other and detect position in relation to movement in a three-dimensional 

environment (Lambert et al., 2008). The sensory cells in the ampullae serve to 

detect this motion. 

  



Figure 1.4: The zebrafish ear at 5 dpf. (A) 

and (B) Bright field images of the ear of a 

wild type larva at 5 dpf. Image is 

representative of wild-type larvae. The 

anterior macula (*), otoliths (^) and semi-

circular canals can be observed. (C) 

Schematic of the larval ear displaying 

posterior ototlith (^), anterior macula (am), 

posterior macula (pm), anterior crista (ac), 

medial crista (mc) and posterior crista (pc). 

Diagram taken from Nicolson et al., 2005. 

(D) Confocal image of an ear from a 

Tg(i193:GFP) larva at 5 dpf (n is a cranial 

neuromast).  

^ 
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1.6.2 Lateral line 

1.6.2.1 Structure 

The lateral line is a system of mechanosensory organs positioned around the 

head (anterior lateral line or ALL) and bilaterally along the horizontal 

myoseptum (posterior lateral line or PLL). These organs, called neuromasts, 

consist of sensory hair cells, mantle cells and support cells in a rosette-like 

formation (see Figure 1.5). The entire neuromast is surrounded by a gelatinous 

cupula. 

The sensory hair cells are superficially located but embedded in the skin, 

protruding outwards. Each hair cell extends a ciliary bundle into the water. 

Vibrations through the water result in the displacement of hair cells and the 

transduction of a signal to the central nervous system. Mantle cells are 

accessory cells that line the neuromast; they are positioned so as to allow the 

kinocilia to protrude from a hole in the centre of the rosette. It is thought that the 

mantle cells are responsible for the production of the cupula and may aid in hair 

cell regeneration. Other supporting cell types lie in close proximity to the hair 

cells and are proposed to play a role in regeneration (Hernandez et al., 2007). 

Each neuromast is innervated by both afferent and efferent fibres which relay 

electrical signals to and from the brain respectively (Raible and Kruse, 2000).  

The study described in this thesis mainly focuses on the posterior section of the 

lateral line at 5 dpf. At this stage in PLL development, there are usually nine 

mature neuromasts (on each side), with an extra two maturing neuromasts in an 

anterior position in line with the inflated swimbladder. The location of the 

neuromasts in the developing larva follows a stereotypical pattern (Gompel et 

al., 2001; see Figure 1.5). 

 

 

.   
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1.6.2.2 Development 

In order to study the ototoxicity of compounds on the PLL, it is important to 

consider the complex development of the system.  

The posterior lateral line develops from the lateral line placode, an epidermal 

thickening that originates from neural ectoderm. This placode lies caudal to the 

otic vesicle. At around 20 hpf, a posterior section of the placode detaches from 

the basement membrane and forms two divergent clusters of cells that are 

differentially controlled by cell signals. These separate clusters form the 

primordium and the ganglion (Ghysen and Dambly-Chaudière, 2004; Ghysen 

and Dambly-Chaudiere, 2007; Metcalfe et al., 1985).  

The primordium of the posterior lateral line (pPLL) begins to migrate towards 

the tip of the tail at around 20 hpf and by approximately 48 hpf reaches its 

terminus, having deposited nine immature neuromasts on each side. These pro-

neuromasts mature in a few hours to become mechanotransductively active 

(Murakami et al., 2003; Santos et al., 2006). As the primordium migrates, so too 

do the axons of the neurons that will innervate the mature neuromasts (Gilmour 

et al., 2004; Metcalfe, 1985). Myelination of the PLL nerve is subsequently 

performed by glial cells which travel along the axons (Brosamle and Halpern, 

2002; Gilmour et al., 2002). Another wave of deposition occurs as a second 

primordium makes its way along a similar path.  

The tightly controlled processes of primordium organisation, primordium 

migration, neuromast deposition and cell differentiation are coordinated by an 

elaborate combination of signalling pathways. These signals include the 

interaction of CXCR4 and CXCR7 with their SDF1 ligands to coordinate 

directed migration and neuromast deposition, and lateral inhibition from 

Notch/Delta to regulate cell specification within the neuromast (Dambly-

Chaudiere et al., 2007; David et al., 2002; Haas and Gilmour, 2006; Itoh and 

Chitnis, 2001; Li et al., 2004; Sarrazin et al., 2006; Valentin et al., 2007). The 

FGF and Wnt/β-catenin pathways are crucial in many aspects of the 

development of the lateral line (Aman and Piotrowski, 2008; Gompel et al., 

2001; Lecaudey et al., 2008; Nechiporuk and Raible, 2008). 



Figure 1.6: Chemical screens for ototoxicity can be carried out using vital 

dyes. (A) Control treated larva. The neuromasts of the lateral line are labelled 

with DASPEI (2-(4-(dimethylamino)styryl) -N-Ethylpyridinium Iodide). Staining in 

the nasal epithelium acts as an internal control. (B) Ototoxin treated embryo 

stained with DASPEI. Nasal epithelium staining can still be seen. (C) Close up of 

an untreated neuromast stained with DASPEI. (D) Close up of an ototoxin treated 

neuromast stained with DASPEI. 

Figure 1.5: The zebrafish lateral line. (A) Schematic showing typical pattern of 

neuromasts in a 5 dpf zebrafish larva. Smaller neuromasts from the second wave 

of deposition are indicated (II-1, II-2). Taken from Buck et al., 2012. (B) Cross-

section of a lateral-line neuromast at 4 dpf. Acetylated tubulin immunofluorescent 

labelling (green) shows innervating neurons and outlines the hair cells including 

kinocilia. Ribeye labelled puncta (red) localise to the basolateral end of the hair 

cells close to the neurons. Taken from Sheets et al., 2011. (C) Schematic of a 

neuromast showing hair cells, support cells, cupula and nerve supply (taken from 

Chiu et al., 2008). 

A 
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1.6.2.3 Function 

The lateral line senses changes in water flow, acting to perceive “touch-at-a-

distance” (Hofer 1908 as reviewed by Dijkgraaf, 1963; Ghysen and Dambly-

Chaudière, 2004; Kaus, 1987). It is capable of mediating a variety of important 

naturally occurring behaviours such as predator avoidance, feeding, station 

holding, obstacle detection and schooling (Coombs and Montgomery, 1999; 

Hassan, 1986; Montgomery et al., 1997; Partridge and Pitcher, 1980). Innate 

responses such as rheotaxis and the escape reflex are required to mediate 

these behaviours. 

1.7 Use of zebrafish to model ototoxicity 

In recent years, there has been considerable interest in the larval zebrafish as a 

model to investigate ototoxicity. This interested has stemmed from a number of 

important factors that make the zebrafish an appropriate model of auditory 

structure and function.   

1.7.1 Genetic conservation 

The conservation of genes involved in hearing function and in cell death 

pathways implicated in ototoxicity between the zebrafish and mammals makes it 

an excellent candidate species to study the effects of ototoxins.  

Large scale mutagenesis screens have revealed numerous clinically significant 

inner ear and lateral line mutants (Nicolson et al., 1998; Schibler and Malicki, 

2007; Whitfield et al., 1996). Subsequent characterisation of these mutants has 

resulted in the improved understanding of processes such as 

mechanotransduction and hair cell survival in the zebrafish, including similarities 

to the human disease state. For example, a candidate for a component of the 

transduction apparatus, the tip link, was discovered by analysis of the 

homozygous mutant sputnik/cadherin 23 that completely lacks a tip link 

(Nicolson et al., 1998). Equally as impressive, the zebrafish mariner mutant is 

linked to a mutation in the gene that codes for Myosin VIIA. Mutations in the 

human MYOVIIA gene are known to cause hearing disorders including Usher 

1B syndrome. Not only is this gene conserved, but mutants also show similar 

phenotypic and functional changes to shaker-1 mice defective in the 

orthologous murine gene (Ernest et al., 2000; Gibson et al., 1995). 
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Multiple genes and pathways involved in apoptosis and oxidative stress are also 

conserved between zebrafish and higher vertebrates, facilitating the study of 

mechanisms of hearing loss induced by compounds. For example, cross-

species functional conservation of the zebrafish and mammalian Bcl-2 apoptotic 

proteins, caspases and reactive oxygen-generating NADPH oxidase enzymes 

has been shown (Chakraborty et al., 2006; Jette et al., 2008; Kawahara et al., 

2007; Niethammer et al., 2009). 

1.7.2 Ototoxins 

Numerous studies have demonstrated that human ototoxins can destroy or 

damage hair cells in the lateral line of larval zebrafish, although relatively few 

have focussed on effects in the inner ear (Giari et al., 2012; Seiler and Nicolson, 

1999).  

Many aminoglycosides including neomycin, streptomycin, gentamicin and 

kanamycin damage zebrafish hair cells in a dose-dependent manner (Seiler and 

Nicolson, 1999; Ton and Parng, 2005; Williams and Holder, 2000). It is now 

known that the actions of the aminoglycosides on hair cells are complex and 

involve early mitochondrial changes, calcium modulation, apoptotic and necrotic 

death events and different time-dependent phases of damage that potentially 

act via alternative signalling pathways (Coffin et al., 2009; Owens et al., 2007; 

Owens et al., 2009; Vlasits et al., 2012). Likewise, the chemotherapeutic agent, 

cisplatin, causes hair cell death in the zebrafish (Ton and Parng, 2005). The 

damage follows a much slower time course that continues after compound 

washout. Cisplatin is thought to exert its damage via both shared and divergent 

pathways compared to the aminoglycosides, including ROS generation (Choi et 

al., 2011; Kim et al., 2008; Ou et al., 2007; Owens et al., 2008; Vlasits et al., 

2012; Wang et al., 2004). Additionally, the toxicity of heavy metals such as 

copper, zinc and iron has been demonstrated in the PLL, with attention being 

focussed on copper (Hernandez et al., 2006). Like aminoglycosides, copper is 

taken up into hair cells via mechanotransduction (Olivari et al., 2008). Once 

inside the neuromast it is capable of inducing ROS, inflammation and even 

damage to support cells at higher concentrations (d'Alençon et al., 2010; 

Hernandez et al., 2006; Linbo et al., 2006; Olivari et al., 2008). 
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Notably, the work of the Raible and Rubel laboratories has been of key 

importance in assessing the functional anatomy of the lateral line (Murakami et 

al., 2003; Raible and Kruse, 2000; Santos et al., 2006) and in the elucidation of 

drug-induced damage occurring in the hair cells of the neuromasts (Harris et al., 

2003; Ou et al., 2007; Owens et al., 2007). More recently, the group’s focus has 

shifted to an unbiased compound screening approach involving the 

identification of novel ototoxins, otoprotectants and modifiers of regeneration 

following ototoxic damage (Coffin et al., 2010; Ou et al., 2010). These studies 

build on the earlier work of Christopher Ton and Chuenlei Parng to bring the 

zebrafish to the forefront of ototoxicity research (Ton and Parng, 2005). Despite 

the shift to screening, the group still aims to investigate any “confirmed hits” 

further, in order to identify the mechanisms underlying their effects. Nowadays, 

promising “hits” from these screens are additionally assessed in cultured mouse 

utricles in vitro and more rarely, in live animals (Chiu et al., 2008; Ou et al., 

2009; Owens et al., 2008). 

1.7.3 Screens to identify ototoxins 

Initially, zebrafish–based screens were designed to identify potential hair cell 

toxins among compounds in medical use in order to make clinicians aware of 

the danger (Figure 1.6). 

The original screen focussed on detecting unknown ototoxic agents. A library of 

1040 FDA-approved compounds and known bioactives was screened using 

vital dye techniques (NINDS custom library; Chiu et al., 2008). Twenty-one 

compounds were identified as potentially ototoxic in confirmatory retests. Of 

these, seven had known ototoxicity (emphasising the usefulness of the 

zebrafish in identifying known human ototoxins) and fourteen were proposed 

novel ototoxins (highlighting the potential of the zebrafish as a potential 

predictor of ototoxicity). Five false negatives were recorded when known human 

ototoxins were not detected. This was explained by the fact that assessment 

was only undertaken at one concentration for a single exposure time. 

In the last year, a library of 88 anticancer drugs (National Cancer Institute 

Approved Oncology Drugs Set) was screened for ototoxic effects (Hirose et al., 

2011). Unlike in the aforementioned screen, this assay was performed at 
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different concentrations and with two exposure durations. This time, 80% of 

previously reported ototoxins were identified correctly. Additionally, 57% of 

suspected human ototoxins were observed to cause hair cell damage and five 

new potentially ototoxic compounds were proposed (7% of the library). 

1.7.4 Screens to identify otoprotectants 

An alternative use for assays that are able to detect ototoxins is for the 

discovery of novel otoprotectants. There are two main reasons to identity 

putative otoprotectants. Firstly, pre-treating or co-treating with protectants could 

ameliorate the damage induced by ototoxins in humans. Secondly identifying 

the mode of action of protectants could help scientists to better understand the 

underlying mechanisms of the initial toxicity.  

The first screen for protective compounds came in 2008. A library of 10 960 

compounds was screened to identify molecules that protected hair cells of the 

lateral line from neomycin toxicity (Owens et al., 2008). This screen identified 

two compounds, the benzothiophene carboxamides PROTO1 and PROTO2, 

which exhibited robust protection across neomycin doses. Neither of the 

compounds inhibited aminoglycoside uptake, suggesting that they acted 

intracellularly to attenuate hair cell toxicity. In theory, these compounds could be 

used clinically to limit ototoxicity as they appeared not to interfere with the 

therapeutic action of neomycin. The screen also identified five protective 

mutants using an ENU mutagenesis screen and studied two (persephone and 

sentinel) in more detail. Sentinel is mutant in the cc2d2a gene, and is 

insensitive to aminoglycosides but still sensitive to cisplatin hair cell damage. 

The most promising protectant discovered by screening so far is the 

Alzheimer’s medicine tacrine. Tacrine was found in the NINDS library. It 

provided protection against neomycin-induced hair cell death in both zebrafish 

and in vitro in mouse utricles (Ou et al., 2009). As tacrine did not alter the 

bactericidal activity of neomycin and was already FDA-approved, it was an 

excellent candidate for in vivo validation and clinical testing as a potential 

otoprotectant (Coffin et al., 2010). On further testing of weaker “hits” from the 

original screen, eight quinoline-derived otoprotectants were also discovered (Ou 
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et al., 2009). These quinoline-derivates seem to exert their protective effects by 

inhibiting the uptake of the aminoglycosides (Ou et al., 2012). 

The most recent screen from the Raible and Rubel laboratories looked for 

compounds that could protect against multiple ototoxins, including cisplatin and 

neomycin (Vlasits et al., 2012). This investigation highlighted the complexity of 

the ototoxins in terms of their different mechanisms of action. Ten compounds 

were found to protect hair cells from treatment with at least two of the four 

ototoxins tested. These came under four classes of drug: serotonin and 

dopamine modulating drugs, adrenergic receptor ligands and oestrogen 

receptor modulators; often the protective effects were not attributable to the 

therapeutic mechanism of action. The time scale of protection and multi-drug 

protection suggested to the authors that at least some of the protectants must 

be acting intracellularly rather than directly interacting with the toxin. Another 

interesting observation was that seven of the drugs protected against neomycin 

and gentamicin exposure but not kanamycin exposure, suggesting that 

kanamycin kills hair cells via a different mechanism. Two drugs, benzamil and 

paroxetine, protected from aminoglycoside- and cisplatin-induced hair cell loss. 

This result suggested that the aminoglycosides and cisplatin act at least in part 

to kill hair cells via similar mechanisms. By contrast, other studies in zebrafish 

suggest that the mechanisms must be different (Owens et al., 2008). In reality, it 

is probably a combination of the two. 

1.7.5 Screen to identify compounds that improve regeneration following 

ototoxic insult 

Studies in zebrafish have also diversified to include the assessment of 

compounds thought to aid hair cell regeneration as zebrafish, unlike humans, 

show regenerative capability after toxic insult. In 2003, it was shown that hair 

cell regeneration after treatment with neomycin could be seen between 12 and 

24 hours post treatment and involved increased proliferation in support cells 

(Harris et al., 2003). Moreover, the observed regeneration was dose-dependent; 

neuromasts treated with a lower dose of neomycin were able to regenerate hair 

cells to near control levels whereas at higher doses, fewer hair cells were 

observed. This is also the case in larvae treated with copper (Hernandez et al., 

2006).  
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A small number of potential enhancers of regeneration have been discovered 

through drug screening. For example, fucoidan, a purified natural compound 

found in seaweed, enabled enhanced regeneration 12 and 16 hours after 

neomycin treatment. Although fucoidan does not prevent cell death, it has been 

shown to stimulate supporting cells to proliferate and presumably give rise to 

the regeneration of associated hair cells (Moon et al., 2011). Just this year 

(2012), Dexamethasone and prednisolone have been identified as enhancers of 

regeneration following neomycin-induced toxicity. These compounds 

potentiated hair cell numbers by increasing mitotic activity (Namdaran et al., 

2012). 

1.7.6 Assessing the functional affects of ototoxins in the zebrafish  

Compared to cell based histological assays there has been a relative paucity of 

research into the functional consequences of ototoxin-induced hair cell damage. 

At the start of my study, no functional screens had been performed to identify 

ototoxins.  

In 2007, Johnson and colleagues reported that copper decreases the ability of 

larvae to orient to a current (rheotaxis). More recently two papers have been 

published that identify rheotaxis as a behaviour that could be harnessed to 

measure functional hair cell damage (Olszewski et al., 2012; Suli et al., 2012). 

These papers have only explored the effects of neomycin on rheotaxis, 

however.  

In larvae and adults, the auditory evoked startle is an important behaviour, 

mediated by the lateral line. Startle is pivotal in predator evasion (see Chapter 

4). Despite this, there are virtually no published data looking at the effect of 

ototoxin exposure on this important reflex. Just one study, using a flow stimulus 

to induce the startle response, has shown that neomycin treatment decreases 

responsiveness to water flow (McHenry et al., 2009). This is despite the fact 

that Zeddies and Fay  highlighted the potential for the development of quick and 

robust assays of hair cell damage with a functional readout as long ago as 2005 

(Zeddies and Fay, 2005). The lack of data on the functional effects of ototoxins 

highlights an area where more work can be done.  
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1.7.7 Available tools to study ototoxicity in the zebrafish lateral line 

1.7.7.1 The use of vital dyes to study neuromasts 

A range of vital dyes have frequently been used in vivo to visualize the 

neuromasts of the PLL in real time (Figure 1.7). In the study described in this 

thesis, hair cell damage is determined by the use of vital dyes. In previous 

studies, the dyes DASPEI, YO-PRO and FM1-43 have been used most 

frequently to visualise the hair cells of the PLL (e.g. Chiu et al., 2008; Harris et 

al., 2003; Seiler and Nicolson, 1999; Whitfield et al., 1996). See Chapter 3 for a 

more detailed description concerning the vital dyes used in this study. Typically, 

assays employ vital dye staining after compound exposure and then score the 

hair cell damage using arbitrary scoring system based on the degree of 

damage/fluorescence observed.     
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1.7.7.2 The use of transgenic lines to study the lateral line 

Over the last decade, a number of zebrafish transgenic lines have been created 

that enable the visualisation of the hair (Kindt et al., 2012; McDermott et al., 

2010; Parinov et al., 2004; Xiao et al., 2005) and accessory cells of the 

neuromasts (Behra et al., 2009; Behra et al., 2012; Haas and Gilmour, 2006; 

Parinov et al., 2004), as well as their supplying nerves and glia (Faucherre et 

al., 2009; Gilmour et al., 2002) and that monitor the mechanotransductive 

capacity of the hair cells (Kindt et al., 2012). These transgenic animals are 

valuable tools not only in investigating lateral line development and hair cell 

regeneration, but potentially also in visualising ototoxin-induced damage (Figure 

1.8). 

For example, the cldnB::GFP line has been used to great effect to study the 

pathways affecting lateral line migration and neuromast deposition and to 

observe the migration of leukocytes to neuromasts during the inflammatory 

response in vivo (d'Alençon et al., 2010; Haas and Gilmour, 2006).  

The Tg(pou4f3::mGFP)s356t (or Brn3c::mGFP) and sqET4 lines mark hair cells 

of the lateral line and ear; experiments using these lines have shown the effects 

of ototoxins on both sensory systems (Behra et al., 2009; Buck et al., 2012; 

Choi et al., 2011; Hernandez et al., 2007; Moon et al., 2011; Olivari et al., 2008; 

Parinov et al., 2004; Xiao et al., 2005).  

Most recently, the Cameleon transgenic line has been developed to study the 

early onset of mechanotransductive activity of hair cells that precedes the 

uptake of FM1-43. Cameleon utilises D3cpv, a genetically encoded FRET 

(fluorescence resonance energy transfer)-based calcium indicator to visualise 

mechanotransductive events specifically in hair cells. Using the line, it has been 

shown that the kinocilium is required for the onset of mechanotransduction in 

immature hair cells lacking mechanotransduction channels and tip links (Kindt 

et al., 2012).  

  



Figure 1.7: Hair cell staining in the larval zebrafish. 

A composite image of hair cell vital dyes. (A) The 

mitochondrial vital dye DASPEI stains for hair cells in 

the neuromast with 15 minute exposure time. Scale 

bar = 20 µM. (B) The dye Yo-Pro-1 stains the nuclei of 

the hair cells.  Scale bar = 25 µM. (C) FM1-43 labels 

mechanotransductively active hair cells and is fixable 

in the ‘FX’ form. Scale bar = 10 µM. (D) Like YO-PRO-

1, DAPI also stains the nuclei of the hair cells. Scale 

bar = 12.5 µM. Images for composite figure (A) Harris 

et al., 2003; (B)  Chiu et al., 2008 and (C) Ou et al., 

2007.  
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Figure 1.8: Transgenic lines used to study 

neuromasts. (Ai) A representative drawing of 

a lateral line neuromast. (A) The pou4f3::GFP 

line marks  hair cells of the neuromast. (B) 

Tg(myo6b:b-actin-GFP) marks hair cell 

bundles. (C) The cameleon transgene acts as 

a calcium indicator in hair cells. (D) The 

enhancer trap ET20::GFP line marks the 

mantle cells. (E) Tg(cldnb:lynGFP) marks 

support cells and undifferentiated hair cell 

progenitors. (F) Tg(tnks1bp1:EGFP) marks all 

support cells.  (G)  The ET4::GFP line marks 

hair cells. (H) scm1::GFP marks the internal 

support cells. Images (Ai), (A), (D) and (H) 

taken from Moon et al., 2011. Images (B) and 

(C) taken from Kindt et al., 2012. Image (E) 

taken from Matsuda and Chitnis, 2010. (F) 

Taken from Behra et al., 2012. (G) Taken from 

Wibowo et al., 2011. 

Ai 

38b 
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1.8 Project Aims 

Despite the variety of research into the zebrafish as a disease model for 

ototoxicity, there is still a level of scepticism regarding their real value within the 

field of safety pharmacology (Redfern et al., 2008).  

The overall aim of the current study was to investigate the potential value of the 

zebrafish as an alternative non-mammalian model of drug-induced ototoxicity. 

There were 3 main questions associated with this. Is the zebrafish auditory and 

vestibular system responsive to a range of known mammalian ototoxins in a 

concentration dependent manner; does any observed histological damage 

result in a reduction in auditory function; and is one or more of the mechanisms 

known to induce ototoxicity in mammals, comparable in zebrafish? (See Figure 

1.9).  

From this, the specific objectives of the project were to: 

 Investigate the pathological consequences of exposure to a small 

collection of known human ototoxins, with differing mechanisms, on the 

zebrafish lateral line neuromasts and inner ear. 

 

 Develop and optimise a semi-automated method to provoke and assess 

the naturally occurring noise-induced startle reflex in zebrafish. 

 

 Exploit the above method (in combination with additional simple reflex-

based assays) to investigate the functional consequences of exposure to 

the selected ototoxins. 

 

 Probe the underlying mechanisms of ototoxin-induced damage in a 

single compound of interest, and compare the results obtained to what is 

reported in the literature from non-human model systems. 

The results chapters that follow document the progress of the project in terms of 

the above aims. Chapter 3 describes the pathological consequences of 

exposure to ototoxins on both the lateral line and ear. Chapter 4 

comprehensively details the development and optimisation of the startle assay. 

The methods used in Chapter 5 draw on results from Chapters 3 and 4 in order 
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to give an account of the functional consequences of ototoxin exposure. 

Chapter 6 and Appendix 3 report some preliminary data on the underlying 

mechanisms of cisplatin-induced damage in zebrafish and describe the 

potential future directions for the project.  

  



Figure 1.9: Project aims. 

Histological and functional analyses 

will act as indicators of ototoxicity. 

Histological investigations will centre 

around vital dye assays, TUNEL 

staining for cell death. Otic injections 

will act to assess the effects of 

potential ototoxins in the ear. 

Functional assays will test for the 

larval rheotactic response, auditory 

evoked startle response and 

underwater motion detection by 

larvae. Time permitting, experiments 

will be performed to assess the 

underlying mechanisms of damage 

caused by a single ototoxin.  

40a 
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Chapter 2 Materials and Methods 

2.1 Zebrafish husbandry 

Wild-type zebrafish (AB strain, Sheffield brood stock, UK) adults were used both 

at Sheffield and Brixham Environmental Laboratory. Tg(pou4f3::mGFP)s356t 

and i193 adult zebrafish (Xiao et al., 2005; Stone Elworthy (unpublished line)) 

were used at Sheffield only. Adult fish were maintained on a 14 hour light/10 

hour dark cycle according to standard protocols (Nüsslein-Volhard and Dahm, 

2002) and induced to breed using group spawning tanks. Egg collection and 

staging was performed according to standard procedures (Kimmel et al., 1995; 

Nüsslein-Volhard and Dahm, 2002). Larvae were raised at a density of 50 (or 

128 in the case of the raising density experiments) per 90 mm Petri dish 

(Sterilin, Newport, UK), at 28°C (± 1.0°C) in standard E3 culture medium (5 mM 

NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4, 0.0001% methylene 

blue). For vital dye staining, fish were transferred into E3 culture medium 

without methylene blue at 2 days post fertilisation (dpf) to prevent methylene 

blue uptake into cells. All experiments were carried out on larvae below 5.2 dpf. 

To anaesthetise larvae, 1 mL of 4% MS222 (3-aminobenzoic acid ethyl ester; 

CAS No. 886-86-2; Sigma-Aldrich, UK) was used per 30 mL of E3 solution (400 

mg Tricaine powder, 97.9 mL distilled water and 2.1 mL 1M Tris buffered to 

pH7). 

2.2 Imaging 

Anaesthetised larvae were mounted in 1% low melting point agarose (CAS No. 

9012-36-6; Sigma-Aldrich, UK) and imaged using a BX51 compound 

microscope, Camedia (C-3030ZOOM) camera and Cell B software (Olympus, 

UK). Confocal images were acquired using an Olympus FV1000 confocal with 

SIM-scanner on a BX61 upright microscope. Images were compiled using 

Adobe Photoshop software (Adobe Inc., USA).  

2.3 Choice of compounds 

2.3.1 Ototoxins 

All positive compounds were selected from literature searching, based on a 

reported ototoxic effect in humans and non-human mammals. 
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2.3.2 Negative control compounds 

A small subset of negative control compounds, selected to have similar 

pharmacological effects in humans to the ototoxins, but no documented ototoxic 

side effects, were also tested. According to the literature these compounds 

exhibited no additional reported behavioural, locomotor or visual effects.  

2.3.3 Identification of compounds for mechanistic investigations 

A literature search was carried out to identify chemical compounds that were 

closely linked to the mechanisms thought be involved in cisplatin-induced hair 

cell death. Compounds were selected based on their activation/inhibition of 

various pathway components from cell and mammalian experimental studies.  

2.4 Compound exposures 

2.4.1 Suppliers 

All compounds and reagents were obtained from Sigma-Aldrich (UK), unless 

otherwise stated. 

2.4.2 Approximation of appropriate compound exposure concentrations  

2.4.2.1 Literature searching 

A literature search was used to identify appropriate dosing levels. When there 

were no zebrafish data available, values were approximated from cell line data, 

mammalian toxicity testing and/or Body Surface Area (BSA) calculations (see 

below). 

2.4.2.2 BSA calculations 

An attempt was made to estimate the concentration in human blood per 

treatment for certain compounds that lacked human plasma exposure data. 

Assuming the solution containing the compound of interest was in equilibrium 

with the lateral line hair cells, it was then possible to use these equivalent 

exposure concentrations (or higher) in order to focus the concentration range 

used for the initial MTC. This was done by: 

Calculation of the BSA of the average English adult using the Mosteller formula: 
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Where average adult height* = 168.3 cm and average adult weight*2 = 76.9 kg  

Calculation of total dose based on recommended dose: 

                                              

Calculation of the molar concentration of compound in 5L of blood based on 

total dose (mg): 

                         
                                  

        
 

 

5 L blood is assumed to be the total blood volume in an average adult. 

2.4.3 Initial exposures 

Initial exposures were performed in 24-well plates (Corning Costar, NY, USA) 

by direct immersion of larvae (5 dpf) in a range of solutions across a defined 

concentration range. As a control, larvae were immersed in E3 alone (also 

referred to as dilution water control (DWC)) or E3 containing 0-2% DMSO or 

methanol as a solvent control (SC). The Maximum Tolerated Concentration 

(MTC) of each compound was determined (minimum of 6 larvae per 

concentration for each trial). The MTC was classed as the concentration of 

compound that induced 20% mortality after a set exposure time (for exposure 

times, see Table 2.1). If a compound failed to reach the MTC, a second trial 

was performed. 

2.4.4 Adjusted exposures 

Using the MTC data, appropriate concentration ranges and exposure times 

were established for the definitive compound exposures and subsequent hair 

cell damage, functional and mechanistic assessments. Treatment times and 

concentrations were specific to each compound tested (Table 2.1). For 

mechanistic studies, 2 hour co-treatments of cisplatin (IC50/450 µM/900 µM) and 

the drug of interest at varying concentrations were performed. After compound 

exposure, larvae were rinsed 3 times with E3 and left to recover for 60 minutes 

prior to further processing. For each exposure, an appropriate DWC/SC was 

                                            
* Data for the average English adult (> 16 years of age) were taken from "Health Survey for 
England 2008". http://www.ic.nhs.uk/. 17-12-2009.Retrieved 10-03-2012. 

http://www.ic.nhs.uk/statistics-and-data-collections/health-and-lifestyles-related-surveys/health-survey-for-england/health-survey-for-england--2008-trend-tables
http://www.ic.nhs.uk/statistics-and-data-collections/health-and-lifestyles-related-surveys/health-survey-for-england/health-survey-for-england--2008-trend-tables
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used alongside a positive control, which was neomycin (100 or 300 µM 

dependent upon assay type). Compound exposures were performed in an 

identical manner in Tg(pou4f3::mGFP)s356t larvae. For full details, see Table 

2.1. 
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Table 2.1: Test compound exposure details. Treatments were performed as 

shown for each assay. MTC was defined as the concentration of compound to 

elicit more than 20% mortality within a single treatment group.  

 

Test 

compound 

 

CAS No. 

DASPEI assay Startle, SR and 

Rheotaxis Assays 

MTC 

(>20% 

mortality) 

(mM) 

 

Concentrati

on range 

(µM) 

Exposure 

time 

(Hours) 

Concentrati

on range 

(µM) 

Exposure 

time 

(Hours) 

Neomycin  1405-10-3  0-300 1 0, 14, 100 1 0.5 

Streptomycin  3810-74-0 0-300 1 0, 40, 200 1 4 

Gentamicin  1405-41-0  0-1000 1 0, 25, 1000 1 >10 

Cisplatin 

(batch 

029K1426) 

15663-27-

1 

0-100 2 0, 14, 100 2 1 

Cisplatin 

069K1236 

and 479306 

(Aldrich) 

15663-27-

1 

0-1000 2 0, 14, 100 2 1 

Aspirin 50-78-2  0-400 1 0, 193, 300 1 1.5 

Furosemide 54-31-9 0-1000 2 - - variable 

Copper (II) 

Sulphate  

7758-98-7  0-1 1 0, 0.5, 1 1 0.15 

Amoxicillin  26787-78-

0  

0-2000 2 0, 1000, 

2000 

2 12 

Cefazolin  27164-46-

1  

0-5000 1 0, 2500, 

5000 

1 >20 

Melphalan  148-82-3  0-400 0.5 0, 200, 400 1 >0.5 

Gemcitabine  122111-

03-9  

0-5000 0.5 - - 1.5 

DPI  4673-26-

1 

0-62.5 2 - - >0.125 

http://www.sigmaaldrich.com/catalog/search?term=4673-26-1&interface=CAS%20No.&lang=en&region=GB&focus=product
http://www.sigmaaldrich.com/catalog/search?term=4673-26-1&interface=CAS%20No.&lang=en&region=GB&focus=product
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2.5 Vital dye staining of neuromasts 

2.5.1 DASPEI 

The fluorescent vital dye DASPEI (2-[4-(dimethylamino)styryl]-N-ethylpyridinium 

iodide; CAS No. 3785-01-1) was used to label the mitochondria of hair cells 

within the lateral line neuromasts (Balak et al., 1990). Following compound 

exposure and recovery, larvae were incubated in 2 mL E3 containing DASPEI 

(0.05 mg/mL) for 20 minutes under dark conditions. Subsequently, larvae were 

rinsed 3 times with E3.  

2.5.2 FM1-43FX 

FM1-43FX (Invitrogen; F-35355) was used as an indicator of the 

mechanotransductive activity of hair cells (Betz et al., 1996; Gale et al., 2001) 

within the lateral line. Following compound exposure and recovery, larvae were 

immersed in 2 mL 3 µM FM1-43FX for 45 seconds in the dark. Larvae were 

then rinsed 3 times with E3.  

2.5.3 DAPI 

DAPI (CAS No. 28718-90-3) was used as a live nuclear stain in the lateral line. 

Subsequent to compound exposure and recovery, larvae were immersed in 2 

mL of 0.1 µg/mL DAPI solution for 15 minutes in the dark. Larvae were then 

rinsed 3 times with E3.  

2.6 Optimisation of DASPEI staining 

2.6.1 Duration of staining 

Larvae were immersed in DASPEI (0.05 mg/mL) for 5, 10, 15, 20, 25 and 30 

minutes and rinses performed. DASPEI scoring was performed to assess the 

most appropriate duration of exposure (i.e. the concentration that gave the 

strongest staining). 

2.6.2 The effect of pH 

2.6.2.1 Untreated control larvae 

The effect of pH on DASPEI staining was measured in small numbers of larvae. 

Small glass beakers were filled with 20 mL of E3 solution (no Methylene blue). 

The pH of each beaker was adjusted manually with 1M hydrochloric acid (CAS 

No. 7647-01-0) and 1M sodium hydroxide solution (CAS No. 1310-73-2). Five 

larvae were added to each beaker in a further 5 mL of fluid and an initial pH 

http://www.sigmaaldrich.com/catalog/search?term=28718-90-3&interface=CAS%20No.&lang=en&region=GB&focus=product
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reading was taken. Larvae were exposed to the solution for 1 hour, followed by 

a final pH measurement. Larvae were then rinsed three times in E3 and 

recovered for a further 60 minutes.  Staining and scoring was performed as 

described (Sections 2.5.1 and 2.7.1).  

2.6.2.2 Compound treated larvae  

The effect of pH on DASPEI staining during compound treatment was 

investigated. Treatments were carried out in 24 well plates. Non pH altered 

compound treatments and pH altered treatments were performed 

simultaneously, with corresponding water/solvent controls. For non-altered 

compound treatments, the treatment was as in Section 2.4.4, but with additional 

pH readings before and after the incubation period. For pH altered samples, the 

pH of a 2X working solution (10 mL total volume) was altered before further 

diluting to 1X with embryo solution containing the larvae (2 mL total volume in 

multi-well plates). The pH readings were taken in the well plate using a Corning 

pH meter 240 (Corning, USA) at the start of treatment to account for the 

addition of E3. A final pH reading was taken at the end of exposure to assess 

buffering capacity. Ten larvae were used for each treatment group. At the end 

of treatment, larvae were rinsed three times in E3 and DASPEI scored as in 

Section 2.7.1. 

2.6.3 Effects of anaesthesia 

Untreated, DASPEI-stained (Section 2.5.1) larvae were cooled on ice for 30 

minutes; half were also treated with MS222 (Section 2.1). Scoring (Section 

2.7.1) was performed to exclude the possibility that MS222 affected staining. 

2.6.4 Testing automation of DASPEI scoring 

Two systems were used to test the viability of an automated method of 

fluorescence measurement. Larvae were immersed in either DWC or 100 µM 

neomycin for 1 hour and washes performed as in Section 2.4.4. Following 

DASPEI staining and anaesthesia, larvae were transferred into a black-edged 

96 well microplate. A total of two fish per well were aliquoted in a volume of 200 

µL. Untreated animals were positioned in columns 1 to 6; treated larvae were 

placed in columns 7 to 12. A Phenosight high throughput high-content 

screening system was used to scan the plates at high speed. This was carried 

out with an exposure of 40 ms. Next, the plates were scanned at slower speed 
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with a 1 second exposure using a Nikon AZ100M microscope and NIS elements 

software (Version 3.00; see Figure 2.1). Multiple images were EDF processed 

using NIS elements software to create a single image per well. Thresholds were 

allocated to the images before conversion to binary using Image J (Version 

1.45). Analysis of the mean gray value was carried out by defining a region of 

interest (ROI) along the pLL and taking two measurements per larva (ROI along 

the lateral line and comparison ROI along the body). 

 

  



Figure 2.1: Automated image processing of the DASPEI assay. A Nikon AZ100M microscope and NIS elements software were used to capture the 

results of the DASPEI assay in control versus neomycin treated larvae (5 dpf).  Image stacks were compressed into a single image using EDF processing. 

Single images were then thresholded and converted to binary using Image J.  Regions of interest (ROI) were defined on each fish along the posterior 

lateral line. A mean gray value was taken for each animal.  
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2.7 DASPEI assay 

2.7.1 DASPEI scoring technique 

For scoring, larvae were anaesthetised in MS222 (as in Section 2.1) and 

observed under an epifluorescence dissecting microscope (Leica MZ-12 FLIII) 

equipped with a GFP1 filter set (excitation 425/60 nm; barrier filter 480 nm). 

Nine individual neuromasts of the posterior lateral line (pLL) that were present 

at 5 dpf were scored for fluorescence (Figure 2.2). The scoring scheme used 

was based on previous work (Harris et al., 2003) and was as follows: strong 

staining indicating the presence of hair cells, score = 2; weak reduced staining 

indicating the presence of fewer or damaged hair cells, score = 1; an absence 

of staining indicating the absence or severe damage of hair cells, score = 0.  

See Figure 2.2 for examples of neuromasts exhibiting strong and weak staining. 

Each fish was scored on both sides, giving a maximum total score of 36 per 

larva. A minimum of 8 larvae per treatment group per trial were scored and an 

average taken from 3-4 trials (except in the case of gemcitibine, where 5 larvae 

per treatment group were assessed over a single trial). 
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2.7.2 Methods employed to calculate IC50 values 

The concentration relating to an approximately 50% reduction in DASPEI score 

(IC50) was ascertained for each compound using either log(concentration of test 

compound) vs. response (three parameters) or log(concentration of test 

compound) vs. response-variable slope (four parameters) curve-fitting 

equations (Prism 5.0 (GraphPad Software Inc., USA)). The best fit values 

(Section 3.15) were used later as the IC50 values for the startle assay. Six 

positive and three negative compounds were selected for use in further 

behavioural assays to study the functional consequences of ototoxin exposure. 

2.8 Ear injection technique 

Anaesthetised i193 larvae (4dpf) were mounted onto 38mm Petri dish lids in 1% 

low melting point agarose and imaged at 20x magnification with 2x zoom. The 

exposure time for each fish was noted. The otic lumen of the larvae was 

microinjected posterolaterally with ~4nL DWC, S/C or ‘stock’ solution dissolved 

in 10% phenol red. Larvae were left in situ for 30 minutes. Next, a syringe 

needle was used to free the larva from the agarose. The syringe needle was 

positioned under the tail of the larva so as not to cause damage and then gentle 

upward motion was used to release the animal. The head was released last. 

Larvae were then recovered individually in anaesthetic-free embryo medium for 

4 hours at 28ºC. After viability and “tap” testing (tapping the Petri dish for an 

escape response), larvae were anaesthetised, remounted in the original 

orientation and imaged using the corresponding exposure time to assess 

damage (Figure 2.3).  

 
  



Figure 2.2: Examples of DASPEI staining in pLL neuromasts. (A) Schematic showing typical pattern of neuromasts in a 5 dpf zebrafish larva. 

Smaller neuromasts from the second wave of deposition are indicated (II-1, II-2), but were not scored for the purpose of the DASPEI assay. The 

remaining 9 neuromasts of the pLL (P1-9) were scored on both sides. (B) and (C) Exemplar images of neuromast staining with DASPEI. Image (B) is 

representative of a healthy neuromast given a score of 2 in the fluorescence assay. Image (C) is representative of a damaged neuromast, given a 

score of 1. Scale bar 20 µm. 
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Figure 2.3: Ear injection 

technique. (A) The 

treatment and testing 

paradigm used to inject 

ototoxins. (B) Position of 

injection. Larvae were 

injected postero-laterally 

to avoid damage to the 

important structures 

including the otoliths and 

sensory patches. 
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2.9 Startle Assay 

2.9.1 Equipment 

2.9.1.1 Equipment list 

 15” (381 mm) 350W bass speaker range 35 Hz to 4 KHz (Maplin 

electronics, UK) 

 2.0 MHz PCGU1000 PC USB function generator (Velleman Inc., USA) 

 SP103 amplifier (Acoustic Solutions, UK) 

 35 MHz 4-channel digital storage oscilloscope PM3305 (U) (Phillips, 

Netherlands) 

 0.3 megapixel high-speed digital video camera GRAS-03K2M (Point 

Grey Research Inc., Canada) 

 TCM110 omni-directional electret-condenser microphone (RS 

Components Ltd., UK) 

 Castle GA213 sound pressure level meter (Castle Group Ltd., UK) 

2.9.1.2 Setup 

A schematic of the experimental setup used to assess lateral line functionality is 

shown in Figure 2.4. Vibratory stimuli (sinusoidal/square tone bursts) were 

generated using a 2.0 MHz PCGU1000 PC function generator and controlled 

using PClab2000SE generator interface software (Velleman Inc., USA). Stimuli 

were amplified (SP103 amplifier; Acoustic Solutions, UK) and directed through a 

vertically oriented 15” (381 mm) speaker cone, housed in a wooden casing. 

Acoustic stimuli were delivered to the larvae through a 6.4 mm thick translucent 

plastic base plate, bolted to the speaker case, to which the microplate 

containing the larvae was fixed. Larvae under investigation were placed into 24-

well plates with a single larva per well. The 24-well plate was securely bolted to 

the plastic base plate. Larval startle responses (auditory-evoked high speed 

movements, or AERs) were captured using a high speed 0.3 megapixel digital 

video camera (GRAS-03K2M, Point Grey Research Inc., Canada) set at a 60 

frames/second capture rate. Recordings were visualised and processed using 

VideoTrack for Zebrafish™ software (Viewpoint Inc., France).  

  



52 
 

2.9.1.3 Calibration of the oscilloscope 

All wave output parameters were measured using a calibrated 35 MHz 4-

channel digital storage oscilloscope (PM3305 (U), Phillips, Netherlands). This 

was calibrated according to the manufacturer’s instructions using calibration 

probes (see Figure 2.5). 

 
 

  



Figure 2.4: Experimental setup used to evoke startle responses in larval zebrafish. 
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Figure 2.5: Calibration of the oscilloscope. The oscilloscope was adjusted 

using a trimmer and measuring pin (B), which was attached to oscilloscope 

(C). Adjustments were made to ensure correct compensation (A).  
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2.9.1.4 Calibration of function generator for voltage and frequency 

The function generator was calibrated using the oscilloscope to ensure that it 

had the correct output at each test frequency. Continual sinusoidal pure tones 

were generated and the output observed on screen (Figure 2.6).  
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2.9.1.5 Calibration of function generator for stimulus duration 

The PCGU1000 PC USB function generator software gave an inaccurate 

readout of stimulus duration. To assess the true duration of the stimuli that the 

larvae would experience, the function generator was calibrated to the 

oscilloscope and measured DC output using the ‘memory’ function. The 

discrepancy and true duration was determined as below: 

                                                                                          

                                                                                      

2.9.1.6 Sound pressure level measurement and calibration 

The 17 mm diameter wells of a 24-well plate were too small for direct 

measurement of the sound pressure level (SPL) using a standard hydrophone. 

Therefore, to measure the SPL inside the wells of the microplate (indirectly), a 

small microphone (TCM110 omni-directional electret-condenser, RS 

Components Ltd., UK) was used. The microphone was waterproofed with a 

latex sheath and calibrated against a pre-calibrated SPL meter (Castle GA213; 

Castle Group Ltd., UK) in air, and subsequently in wells filled with 2 mL of E3 

solution. Measurements were taken over all test frequencies at previously 

optimised voltage settings (1.6 to 4.5 Vpp) for a small range of amplifier 

volumes (-40 to -10 dBTP). The output of the microphone was routed through 

the calibrated oscilloscope providing a direct measure between the SPL meter 

and the microphone, and consequently the attenuation in air versus that in fluid. 

The SPL meter was clamped at 35 mm above one of the four central wells (well 

4C). In addition, the microphone wire was adhered directly to the SPL meter, to 

ensure that it was vertically positioned and adjacent to the meter. The 

microphone recordings in either air or water were then taken inside the centre of 

the well adjacent to well 4C, 5 mm above the bottom of the well.  

2.9.1.7 Acetone coating and leaching of plates 

The external surface of clear polystyrene multi-well plates (Corning, UK) were 

frosted using acetone immersion to prevent visual startle cues from animals in 

neighbouring wells. This also served to improve image contrast for video 

recording. Multiple 2mm holes were drilled into the plastic mould and plates 

were then held in acetone (CAS No. 67-64-1) for 2 minutes (being careful not to 



Figure 2.6: Calibration of the function generator for voltage and frequency. 

The output of the function generator was measured against the output displayed on 

the 4-channel oscilloscope (B) to calibrate the generator software (A). (C) 

Schematic of a pure tone sinusoid as viewed using an oscilloscope (with 

measurement parameters overlaid).  
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get any inside the wells). The plates were then immediately dipped in distilled 

water to rinse and left to air dry. Microplates (coated and non-coated) were 

leached of contaminants in running water overnight.  

2.9.1.8 Testing stimulus spread in plates (salt test) 

Dry sodium chloride (CAS No. 7647-14-5) was dispensed into each individual 

well of a microplate.  A black card background allowed for video recording of the 

salt particles. A 20 second video recording was made with no stimulus, followed 

by a 200 Hz, -30 dBTP, 2.2 Vpp sine wave, finishing with a 200 Hz, -25 dBTP, 

2.2 Vpp sine wave (Supplementary Material disk, “salt test”). 

2.9.2  Stimulus form 

2.9.2.1 Determination of optimum volume and voltage at individual frequencies 

using a custom hydrophone 

Conditions were optimised for voltage peak to peak (Vpp) and amplifier volume 

(-dBTP) to ensure the resultant sound wave was not distorted across a range of 

frequencies (40-1200 Hz). Sinusoidal tones were generated for each frequency 

and were amplified onto the speaker. A hydrophone in a large beaker of water 

was attached to the speaker and connected to the oscilloscope to measure 

output. The maximum volume before distortion was ascertained at a range of 

voltages. Once the maximum non-distorted output was established, the 

response thresholds of control animals could be examined (Section 2.9.2.2). 

Following testing in the larvae, the maximum volume before non-distortion was 

re-checked using this same method. 

2.9.2.2 Determination of response thresholds in control animals 

Threshold responses of larvae were determined for each frequency to ensure 

that maximum larval responses occurred at the lowest possible volume and with 

non-distortion of the sound wave. A sub-threshold stimulus was given, which 

represented the lowest volume, and this was followed by 5 equally spaced 

sequential stimuli, up to a maximum volume threshold (the maximum volume 

attainable before distortion of waveform). Stimulus volume was chosen based 

on the best response at the lowest volume for each frequency. The responses 

of 24 larvae were tested over 3 repeated stimuli for each individual frequency. 
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2.9.2.3 Optimised stimuli 

Stimuli consisted of sinusoidal or square waves of either 440 or 540 ms 

duration. The stimulus frequencies used were 40, 50, 100, 150, 200, 300, 400, 

and 500 Hz. See Table 2.2 

Table 2.2: Optimised settings at each frequency. 

Frequency (Hz) Duration (ms) Voltage (Vpp) Volume (dBTP) 

40 540 2.3 -15 

50 440 1.6 -15 

100 440 2.1 -25 

150 440 2.7 -35 

200 440 2.2 -30 

300 440 3.8 -40 

400 440 4.3 -41.25 

500 440 4.5 -30 

 

2.9.3 Scoring of the startle response 

2.9.3.1 Scoring of startle responses by eye 

Virtualdub freeware (version 1.9.11; http://virtualdub.org) was used to slow 60 

frame/sec video recordings of control larvae to a fraction of their speed for 

analysis by eye. Startle responses were classed based on characteristics 

defined by (Burgess and Granato, 2007; Kimmel et al., 1974). Scoring was as 

shown in Table 2.3. 

  

http://virtualdub.org/
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Table 2.3: Scoring larval responses by eye. 

Movement description Classification 

Larva is unresponsive to stimulus. Larva may move at other 

points during the recording. 

U 

Larva performs a movement in response to stimulus that has 

no large C- or S- bend. Not a classic startle movement. 

M 

Larva performs a timely but ‘borderline’ C-bend on stimulation 

(very mild startle) but not a strong C- or S-bend.  

VMS 

Larva performs a timely C-bend on stimulation (mild startle) 

but not a strong S-bend. 

MS 

Stereotypical S-bend followed by additional counter-flexion. 

Strong reaction. 

S 

Stereotypical S-bend followed by additional counter-flexion. 

Strong reaction at the edge of the well. 

SE 

Stereotypical S-bend followed by additional counter-flexion. 

Strong but slightly delayed reaction. 

LS 

 

2.9.3.2 Setting a threshold for automated quantification of startle 

The results of manual scoring from 20 individual videos of control 5 dpf larvae 

were played through the Viewpoint system and high-speed thresholds were 

adjusted to find the best threshold for startle. The three high-speed thresholds 

evaluated were 15.6 mm s-1, 21.1 mm s-1 and 26.6 mm s-1. Assessments were 

made using Viewpoint colour traces. Two average values were measured to 

indicate the level of concurrence between score by eye and Viewpoint colour 

traces; one overall value that takes into account all animals (including non-

responders; OPM) and one value that only takes into account traces for 

movement and startle (excluding non-responders; MSO). Thresholds were 

matched to the video clips so that larvae scored by eye as “S” (stereotypical 

startle), “SE” (startle at the edge of the well) and the majority scored as “MS” (a 

mild startle) could be visualised in the high-speed red threshold. Movements 

with no startle “M” (movement, no startle) were set as white or green (low/mid-

speed) coloured and unresponsive animals (“U”) were allocated to white (low-

speed/no movement).  
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2.9.3.3 Comparison of scoring by eye versus automation 

Twenty video recordings were compared in order to assess the concordance 

between scoring by eye and scoring by automated tracking at the high-speed 

threshold of >21.1 mm s-1. The 20 files were scored by eye as in Section 

2.9.3.1. The first set of comparisons made was for all measurements of 

movement (unresponsive/movement/startle). The second comparison was for 

the detection of startle only. Results were entered into an excel spreadsheet. 

When the manual and automated score matched, the cell on the excel 

spreadsheet was marked with a “1”. When there was a discrepancy, the cell 

was left blank. A percentage match was calculated for each plate, and an 

overall percentage concordance was determined for each of the two 

comparison types.  

2.9.4 Improving control compliance 

2.9.4.1 Plate type 

To test whether the capacity of the assay could be increased by using more 

wells per experiment, larval AERs were tested in either 24- or 48-well plates. 

For each individual test, larvae were equilibrated on the startle platform for a 

minimum of 30 minutes. Animals were then presented with eight selected 

frequencies (40, 50, 100, 150, 200, 300, 400 and 500 Hz) at the previously 

optimised voltages and volumes, with a duration of 440 ms or 540 ms. The ISI 

was 60-80 seconds. For both conditions (24- and 48-well plates), tests were 

carried out in triplicate with a total of either 24 or 48 larvae per trial. All 

subsequent experiments described used the 24-well plate format. 

2.9.4.2 Wave type 

One larva (5 dpf) was individually loaded into each well of a 24-well microplate 

and allowed to equilibrate for 30 minutes. Three stimuli (200Hz, 440 ms 

duration) of either a square or sinusoidal waveform were presented with a 

minimum inter-stimulus interval (ISI) of 60 seconds. The averaged AERs of the 

larvae for each wave type were then compared. All subsequent experiments 

described used the sinusoidal waveform.  
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2.9.4.3 Density of raising 

To assess the effect of the density of culture on animal startle responses, larvae 

were raised from 0-5 dpf at a density of 50 or 128 per Petri dish. Larvae were 

individually loaded into microplates, and left to equilibrate on the apparatus, as 

previously described (Section 2.9.4.2). Larvae were presented with 10 identical 

sinusoidal stimuli of 200 Hz (440 ms duration, 60-80 second ISI). This trial was 

repeated 3 times for each set of animals (24 larvae per test condition, per trial). 

To compare the response of animals raised at 50 or 128 per Petri dish, an 

average large distance (ALD) measurement (distance travelled at >21.1 mm s-1) 

was taken for each animal over the 10 stimuli, and the ALD for all animals 

across 3 trials for each condition were calculated. To assess the development 

of fish housed at the two different densities, larvae were raised as described 

(Section 2.1) and imaged (for detail see Section 2.2). 

2.9.4.4 Choice of an appropriate Inter-stimulus Interval (ISI) 

To determine possible habituation to acoustic stimulation, the response of 

larvae to varying ISIs was investigated. For each experimental trial, five 

separate ISIs (15, 30, 45, 60 and 120 seconds) were tested in turn on the same 

twenty-four test animals. Based on previous studies, a minimum gap of 15 

minutes was placed in between each interval tested to allow animals to recover 

from any habituation (Best et al., 2008). For each ISI tested, multiple sinusoidal 

stimuli of 200 Hz were presented to larvae. The habituation experiment was 

carried out 3 times using different clutches of larvae. A test was also performed 

with a 1 second ISI, to exemplify true habituation. 

2.9.5 Plate randomisation technique 

An in-house program (PCRAN Version 1.01, AstraZeneca) was used to 

randomise the order of column treatment for each of the three plates in the final 

startle assay. A description of the treatment group was attached to the numbers 

one to six and the numbers allocated an order at random as detailed below 

(also see Appendix 2). 
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Number 1 = solvent control to discard (SC1) 

Number 2 = solvent control to discard (SC2) 

Number 3 = solvent control to use for statistical analysis (SC3) 

Number 4 = IC50 hair cell (as estimated by DASPEI assay) 

Number 5 = MTC hair cell (as estimated by DASPEI assay) 

Number 6 = Positive control (100 µM neomycin) 

Test plate 1 (order from left to right in columns): 6 2 5 4 1 3  

Test plate 2 (order from left to right in columns): 4 1 5 6 2 3 

Test plate 3 (order from left to right in columns): 4 6 3 2 5 1 

2.9.6 Final startle assay: Assessment of the larval startle response after 

ototoxin exposure 

Larvae were individually loaded into each well in a total of 2 mL E3 medium, 

and left overnight. Three microplates were prepared per assessment, which 

provided data from 12 animals for each of the treatment groups. Before 

treatment, rheotaxis and seeker response testing was performed (Section 2.10). 

Larvae were then immersed in compound (see Table 2.1), and at the end of 

treatment, animals were rinsed 3 times in E3, and rheotaxis and seeker 

response scoring repeated. Larvae were then transferred to frosted microplates 

and placed onto the startle platform to equilibrate. A baseline recording of 60 

seconds was taken at the beginning of equilibration to monitor pre-stimulation 

movement. Next, 8 sinusoidal tone bursts (Table 2.2) were presented with a 

randomised ISI of 60-80 seconds. During each stimulus, a 10 second video 

recording was taken to capture AERs. Video recordings were visualised and 

processed using VideoTrack for Zebrafish™ software (Viewpoint Inc., France) 

and Microsoft Excel. Each compound trial was carried out over 3 plates. For 

each plate, 3 control columns were assigned to ensure that a startle response 

could be identified against a baseline recording.  

A single pre-determined control column per plate was used for statistical 

analysis to make animal numbers equal for each treatment group. To ensure 
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identical exposure conditions for all plates, treatments were staggered. Each 

compound was tested over 3 separate trials using different clutches of larvae, 

all at a temperature of 28 ± 0.5 °C (For full protocol proforma, see Appendix 2; 

Figure 2.8).  

2.9.7 Data processing and macros for the startle assay 

All datasets were processed using Microsoft Excel. For the final startle assay, a 

large amount of data was produced for each compound. To process this data 

efficiently, macros were created using the Excel macro facility (Appendix 1; also 

see Supplementary Material CD for files containing macros).  

2.10  Measurement of rheotaxis and seeker response 

Two additional assays were employed to investigate functional consequences 

of ototoxin exposure further: rheotaxis and seeker response. The same animals 

as in Section 2.9.6 were subjected to these tests. 

2.10.1  Rheotaxis 

For rheotaxis testing, 0.5 mL E3 was dispensed at high speed through a pipette 

to the side of individual wells in turn, resulting in a circular flow of fluid around 

the well. This was repeated, so that each larva was tested twice. Rheotaxis was 

scored as follows: 2 = immediate rheotaxis (orientation of the larva towards the 

direction of flow); 1 = rheotaxis observed on second attempt; 0 = no rheotaxis 

(See Figure 2.7). 

2.10.2  Seeker response 

To test the underwater motion detection and avoidance behaviour of larvae, 

seeker response (SR) was tested. For SR evaluation, a previously described 

method was used (Winter et al., 2008). Briefly, larvae were tested by gently 

approaching them from behind with a 20 µL pipette tip (the “seeker”). The 

response was scored as follows: 3 = uncompromised escape (immediate 

movement as soon as the tip touched the water surface, at a distance from the 

larva); 2 = reduced escape, which required the seeker to be moved towards the 

larva; 1 = escape following touch; and 0 = absence of an escape with touch 

(See Figure 2.7) 
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2.11  Measurement of baseline activity 

To examine possible sedation effects of test substances, activity profiles were 

analysed from baseline recordings. Video footage of 60 seconds duration was 

taken for each test plate at the start of the equilibration time and the Viewpoint 

software was used to determine the average speed of each animal. Manual 

observation was also carried out throughout the 30 minutes. For comparison 

with animals sedated with anaesthetic, larvae were immersed in 0.1 µg/mL (full 

sedation), or 0.0125 µg/mL (light sedation), MS222 for 30 minutes. For the full 

startle assay and anaesthetic testing, a total of 72 larvae per trial were 

examined. Each compound was tested over 3 trials using different clutches of 

larvae. 

2.12 Circadian rhythm 

In light of evidence that circadian rhythm could affect movement, it was 

necessary to examine the effect of time of day on baseline activity and startle 

reactions. All animals for these experiments were kept in a temperature 

controlled room that was on an artificial light/dark cycle (14 hours of light/10 

hours of dark) to stimulate circadian rhythm. The data for this analysis came 

from control animals taken on multiple days. The same clutches were compared 

for morning versus afternoon). Data pooled for all controls together were a 

comparison of 144 animals in each group. Data pooled for individual control 

columns were a comparison of 48 animals in each group. 

2.13 Testing for AER threshold shifts with neomycin treatment 

The usefulness of the startle assay in measuring threshold changes in the 

larvae was investigated following neomycin exposure. The same protocol as for 

the original startle assay was used (Appendix 2). The only changes made were 

in the treatment and the stimulation of larvae. Larval treatment groups were 

control (E3 medium) or 100 µM neomycin only, with three columns in each plate 

to achieve an n of 12 per treatment group. Stimulation of larvae was at 200 Hz 

frequency only but with a volume range of -30dBTP to -15dBTP (2.2 Vpp 

output). Data were pooled from a total of three trials on the same day.   

2.14 Fixation and storage of embryos 

Larvae were fixed in 4% PFA (Sigma-Aldrich, UK) at 4ºC overnight in a 1.5 mL 

microcentrifuge tube. For embryos younger than 2 dpf, embryos were 



Figure 2.7: Rheotaxis and seeker 

response testing. Zebrafish larvae (5 

dpf) were tested for rheotaxis ability 

and evasion responses before and 

after compound exposure.  (A) 

Rheotaxis assay performed as 

described in Section 2.10.1. (B) 

Seeker response assay performed as 

described in Section 2.10.2.  
  

A B 
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Figure 2.8: Treatment and testing paradigm used in 

the startle, SR and rheotaxis assays. 
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dechorionated using forceps prior to fixation. Following fixation, larvae were 

transferred by a PBS: methanol dilution series into 100% methanol and stored 

at -20ºC. For staining, larvae were rehydrated by rinsing in a methanol: 1X PTW 

dilution series (PTW: PBS plus 0.1% TWEEN® 20 (Sigma; CAS No. 9005-64-

5)). 

2.15 Detection of apoptosis 

Apoptosis was detected by the Terminal Deoxynucleotide Transferase dUTP 

Nick End Label (TUNEL) method, using the ApopTag® Red in Situ Apoptosis 

Detection Kit (Millipore). Rehydrated samples (Section 2.14) were 

permeabilised by incubation in a 1:1000 dilution of Proteinase K solution 

(10mg/mL) for 2 hours. Digestion was stopped by rinsing the samples twice for 

5 minutes in PTW. Samples were re-fixed in 4% PFA for 20 minutes at room 

temperature and then rinsed three times for 5 minutes with PTW. An ‘acetone 

crack’ step was performed by incubation of samples in 1 mL of cold 1:2 

(acetone: ethanol) for 7 minutes at -20ºC. Following cracking, tubes were rinsed 

three times in PTW. Larvae were then incubated in 50 µL equilibration buffer for 

1 hour at room temperature. The equilibration solution was removed and 16 µL 

terminal deoxynucleotidyl transferase (TdT) enzyme and 30 µL of Reaction 

Buffer was added to the tubes for 90 minutes at 37ºC. Following incubation, all 

the liquid was removed from the tubes and the enzymatic reaction was 

terminated by adding 200 µL STOP buffer for 3 hours at 37ºC. Larvae were 

then rinsed three times for a total of 15 minutes in PTW. To fluorescently label 

the embryos, 62 µL of Anti-Digoxigenin Rhodamine and 68 µL of blocking 

solution were added to the tubes overnight at 4ºC. On the second day of the 

protocol, the stain was stopped by washing four times for 30 minutes in PTW 

and the larvae were post-fixed at room temperature for 30 minutes in 4% PFA. 

Four final washes in PTW were performed to remove the fixative solution. 

TUNEL stained larvae were mounted in 80% glycerol: PTW solution and stored 

at -20ºC, ready for mounting and imaging at a later date (Section 2.2). 

2.16 Data collection and statistics 

For the DASPEI assay and mechanistic studies, data were collected manually, 

processed in Microsoft Excel and all raw data analysed using Prism 5.0 

(GraphPad Software Inc., USA). For the startle assay and optimisation, data 

http://www.sigmaaldrich.com/catalog/search?term=9005-64-5&interface=CAS%20No.&lang=en&region=GB&focus=product
http://www.sigmaaldrich.com/catalog/search?term=9005-64-5&interface=CAS%20No.&lang=en&region=GB&focus=product
http://www.millipore.com/catalogue/item/s7165
http://www.millipore.com/catalogue/item/s7165
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were collected by camera recording and Viewpoint tracking, as previously 

described. Raw data from the Viewpoint software were then processed using 

macros written in Microsoft Excel (Appendix 1), and analysed using Prism 5.0.  

Datasets were assessed for deviations from a normal distribution using the 

D’Agostino-Pearson normality test, and then for equality of variances using 

Bartlett's statistic. If tests indicated that a dataset deviated from a Gaussian 

distribution or had unequal variances, non-parametric methods were applied 

(e.g. Kruskal-Wallis and Dunn’s tests). For all other datasets, parametric 

methods were appropriate (e.g. ANOVA).  

In all analyses, I adopted a threshold value of 0.05α as statistically significant. In 

all cases, data are presented as the mean, with error bars plotted as the 

standard error of the mean (SEM). 
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Chapter 3 Histological analysis of known 

human ototoxins in the zebrafish pLL  

Introduction 

3.1 Aim 

The aim of this study was to investigate the pathological consequences of in 

vivo exposure of larval zebrafish lateral line hair cells to a range of human 

ototoxins. The compound set tested comprised several known ototoxins, one 

lateral line (hair and support cell) toxin and several additional compounds that 

were not known to cause hair cell damage in mammals or fish.  

3.2 Compounds: hair cell toxins 

3.2.1 Aminoglycosides 

3.2.1.1 Streptomycin 

The first of the aminoglycosides to be discovered was streptomycin in 1943 

(Schatz et al., 2005). It is produced by the actinomycete Streptomyces griseus 

and has strong bactericidal action against both gram negative and positive 

infections. Streptomycin is primarily vestibulotoxic, with some auditory toxicity.  

3.2.1.2 Neomycin sulphate 

Neomycin was first discovered in 1949 (Waksman and Lechevalier, 1949). It is 

produced naturally by the actinomycete Streptomyces fradiae and has strong 

bactericidal action against gram negative and some gram positive infections. 

Neomycin is administered topically and orally and is commonly used to reduce 

the bacterial population of the large intestine prior to bowel surgery, in skin graft 

operations and also in hepatic failure (Joint Formulary Committee, 2011). 

Neomycin in considered one of the most ototoxic compounds, and preferentially 

damages auditory hair cells (Kotecha and Richardson, 1994; Owens et al., 

2009; Rotstein and Mandell, 2004; Wang et al., 1984). 

3.2.1.3 Gentamicin 

Gentamicin was discovered in 1963 and is produced from a mixture of two 

species of Micromonospora, M. pupurea and M. echinospora (Weinstein et al., 

1963). It is the most commonly employed aminoglycoside in the UK and is used 
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for numerous applications including the treatment of: meningitis and 

pneumonia, E. coli, Staphylococcus, urinary tract and bone infections. More 

recently, it has been used in the treatment of cystic fibrosis. Due to the 

vestibulotoxic effects of gentamicin, it can also be delivered by intratympanic 

injection to treat Ménière's disease (Joint Formulary Committee, 2011).  

3.2.2 Cisplatin 

Cisplatin was first approved for use by the FDA in 1978 and is the most ototoxic 

of all the platinum chemotherapeutics. It is administered intravenously to treat 

testicular, lung, cervical, bladder and head and neck cancer (Joint Formulary 

Committee, 2011; Rosenberg, 1985). Cisplatin causes permanent high 

frequency hearing loss over time, with preferential loss of the outer hair cells of 

the basal turn of the cochlea (Sturgeon, 2004). 

3.2.3 Aspirin 

Aspirin, an acetyl derivative of salicylic acid, is one of the most commonly used 

medicines worldwide. It was synthesized at the company Bayer in 1897 and 

was first marketed in 1899 (Sneader, 2000). 

Aspirin is administered orally, rectally and topically to treat mild to moderate 

pain, fever and inflammation. It also has anti-platelet aggregating activity and is 

thus used in the treatment of transient ischemic attack, stroke and myocardial 

infarction (Joint Formulary Committee, 2011). Aspirin functions by irreversibly 

inhibiting cyclooxygenase enzymes COX-1 and COX-2 (Vane, 1971; Vane and 

Botting, 2003).  

Aspirin and other salicylate derivatives have long been reported to have ototoxic 

effects. Most commonly, aspirin induces bilateral (flat or high frequency) hearing 

loss which is reversible and often preceded by tinnitus. Aspirin-induced tinnitus 

tends to be tonal and at frequencies of around 7-9 Hz, with a loudness of 

between 20 and 60 dB SPL. Recovery from the ototoxic effects of aspirin can 

take anywhere between one day and several weeks (Cazals, 2000; Prepageran 

and Rutka, 2004).   

3.2.4 Copper sulphate 

The death of hair cells is known to be induced by exposure to a variety of 

environmental factors, including heavy metals; methyl mercury and lead are 
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both documented to have ototoxic effects in humans (Prepageran and Rutka, 

2004). 

In recent years another heavy metal, copper, has been shown to cause hair cell 

toxicity in zebrafish (Hernandez et al., 2006; Linbo et al., 2006; Olivari et al., 

2008). Copper is an important nutrient but it can be toxic to most cells at high 

exposure levels. High levels of dissolved copper (copper sulphate) from water 

can accumulate in aquatic organisms such as fish, leading to systemic toxicity 

(Clearwater et al., 2002; Grosell et al., 2003). Although copper ototoxicity has 

not been reported in humans, the mechanisms of ototoxin-induced hair cell 

death seen with copper partly mimic those caused by the aminoglycosides and 

cisplatin. Copper sulphate exposure elicits increased reactive oxygen species, 

neutrophil recruitment and apoptotic cell death (d'Alençon et al., 2010; 

Hernandez et al., 2006; Olivari et al., 2008). 

3.2.5 Furosemide 

Furosemide is a commonly used loop diuretic that is administered orally or 

intravenously to treat congestive cardiac failure, renal failure, cirrhosis and 

hypertension (Joint Formulary Committee, 2011). The hearing loss caused as 

an adverse effect of furosemide treatment is commonly transient, although 

some permanent cases of hearing loss have been recorded (Prepageran et al., 

2004).    

3.3 Compounds: Negative control compounds 

A series of negative control compounds were selected based on similarities of 

therapeutic action with some of the ototoxic compounds listed above. 

Importantly, these negative control compounds had no published reports of 

impaired auditory or vestibular function associated with their use. These 

compounds included two antibiotics and two cytotoxic chemotherapeutic 

agents. 

3.3.1 Amoxicillin 

Amoxicillin is an orally administered semi-synthetic antibiotic of the 

aminopenicillin class.   

The bactericidal activity of amoxicillin is explained by its ability to interfere with 

interpeptide linking of peptidoglycan, a structural molecule present in the cell 
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wall of bacteria. Without functional peptidoglycan, the cell wall is weakened and 

the bacteria undergo lysis upon division. Non-lytic bacterial death can also 

occur via changes in the bacterial membrane that collapse the membrane 

potential (Brunton et al., 2006).  

Amoxicillin is primarily used to treat bacterial meningitis and upper respiratory 

tract, urinary tract, and salmonella infections. It is additionally employed to treat 

infection of the inner ear (Joint Formulary Committee, 2011). 

Commonly reported side-effects of this compound are nausea, vomiting, 

diarrhoea and rashes. Rarely, antibiotic-associated colitis is encountered (Joint 

Formulary Committee, 2011). 

3.3.2 Cefazolin 

Cefazolin is a semi-synthetic first-generation antibiotic of the cephalosporin 

class. It has a similar bactericidal activity to that of amoxicillin (Brunton et al., 

2006). 

Cefazolin is usually administered by intravenous injection and is used to treat 

skin and soft tissue infections, and as prophylaxis for surgery where skin 

infection is likely. It is particularly active against Staphylococcus aureus and 

Streptococcus pyogenes. 

The most common side-effect of cefazolin is hypersensitivity. Other side-effects 

include loss of appetite, diarrhoea, nausea and vomiting. Rarely, colitis and 

nephrotoxicity occur (Joint Formulary Committee, 2011). 

3.3.3 Melphalan 

The chemotherapeutic melphalan is the phenylalanine derivative of nitrogen 

mustard. Similar to cisplatin, melphalan is an alkylating agent. It acts in a 

comparable manner, binding DNA covalently by nucleophilic attack (Brox et al., 

1980; Ross et al., 1978).  

Melphalan is administered both orally and intravenously and is used in the 

treatment of malignant melanoma of the extremities, localised soft-tissue 

sarcoma of the extremities, multiple myeloma, polycythaemia vera and 

childhood neuroblastoma.  
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The main toxicity of melphalan is haematological, causing a decrease in red 

and white blood cells and platelets. These effects lead to anaemia, infections 

and bruising. Nausea, diarrhoea and infertility are also commonly observed 

(Joint Formulary Committee, 2011). 

3.3.4 Gemcitabine 

Gemcitabine is a member of the antimetabolite class of chemotherapeutics 

acting to inhibit DNA function. Specifically, gemcitabine is transported into 

dividing cells and converted into the active cytidine analogues 

difluorodeoxycytidine diphosphate (dFdCDP) and difluorodeoxycytidine 

triphosphate (dFdCTP). Once converted, dFdCTP can incorporate into the 

DNA, inhibiting the elongation of growing DNA strands. Additionally, dFdCTP 

inhibits DNA polymerase activity, reportedly poisons topoisomerase I and may 

bind to RNA (Mini et al., 2006).  

Gemcitabine hydrochloride is administered intravenously to treat pancreatic 

cancer. It is also used in adjuvant therapy with cisplatin to treat locally advanced 

or metastatic non-small cell lung cancer and advanced bladder cancer.  

The most common off-target effects of gemcitabine are: musculoskeletal pain, 

mild gastro-intestinal effects, rashes and flu-like symptoms. Renal impairment 

and pulmonary toxicity are rarely encountered (Brunton et al., 2006).  

3.4 Hair Cell visualisation 

3.4.1 DASPEI 

DASPEI (2-(4-(dimethylamino)styryl)-N-Ethylpyridinium Iodide) is a vital dye 

used as a mitochondrial label in situ (Bereiter-Hahn, 1976). In teleosts, it was 

initially used to study active chloride transport in the skin (Marshall and 

Nishioka, 1980). Since then, DASPEI has been harnessed extensively for 

labelling of hair cells in the zebrafish pLL to study lateral line mutations, hair cell 

regeneration and hair cell damage induced by ototoxins (Balak et al., 1990; 

Harris et al., 2003; Ton and Parng, 2005; Van Trump et al., 2010; Whitfield et 

al., 1996)  
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3.4.2 FM1-43FX 

FM1-43FX is a fixable form of FM1-43 (N-(3-Triethylammoniumpropyl)-4-(4-

(Dibutylamino)styryl)Pyridinium Dibromide). It is a lipophilic styryl vital dye with 

a four carbon tail that provides bright signal when dissolved in a membrane 

(Betz et al., 1996). The dye is taken up by two mechanisms: rapidly via 

mechanotransduction and ion channels and more slowly by endocytosis (Gale 

et al., 2001; Meyers et al., 2003; Nishikawa and Sasaki, 1996). In hair cells, 

FM1-43 labels the cytoplasm including the endoplasmic reticulum and 

mitochondria. In support cells, the dye only labels the plasma membrane. The 

rapid immersion time in this study means that uptake is most likely via 

mechanotransduction channels. Due to the rapid uptake of FM1-43 and the 

fixable nature of this dye, it can be used as an alternative to DASPEI to 

measure the health of hair cells. 

3.4.3 DAPI 

DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) is a trypanocide which 

fluoresces blue upon binding to A-T rich regions of dsDNA (Dann et al., 1971; 

Kubista et al., 1987). In zebrafish, DAPI has been used to stain nuclei of fixed 

and live embryos, including live hair cell nuclei (Kane et al., 1996; Olivari et al., 

2008).  

3.4.4 TUNEL 

The terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) 

assay is a method of labelling DNA breaks in nuclei (Gavrieli et al., 1992). 

Specifically, it has been used as a marker of programmed cell death and late 

stage apoptotic cells. Fragmentation of DNA is associated with changes in 

cellular morphology during apoptosis and is a consequence of the action of 

endonucleases. The TUNEL method used in this chapter is based on the 

specific binding of the terminal deoxynucleotidyltransferase (TdT) enzyme to 3-

OH ends of the fragmented DNA. The assay hijacks this by using TdT to 

incorporate digoxigenin-labelled dUTP (and non-labelled) nucleotides. Labelled 

nucleotides can be detected by immunofluorescence by an anti-DIG antibody 

with a rhodamine fluorochrome. The TUNEL assay has been used successfully 

for a number of applications in zebrafish (e.g. Elks et al., 2011; Lu et al., 2011).  



71 
 

3.5 Tg(pou4f3::mGFP)s356t transgenic larvae 

The (pou4f3::mGFP)s356t transgenic line was generated in 2005 in order to 

study axon guidance in a distinct subset of zebrafish retinal ganglion cells 

(RGCs). This GFP reporter line additionally labels mechanosensory hair cells 

and was therefore useful in studying the effects of ototoxins on hair cells of the 

ear and lateral line (Xiao et al., 2005).   

3.6 i193 transgenic larvae 

A BAC transgenic line was made (Stone Elworthy, Fredericus van Eeden and 

Philip Ingham; unpublished line) to rescue the smoothened genotype in larval 

zebrafish. In this line (i193), the construct is a BAC with the genomic smo gene 

that has an epitope tag on the C-terminus of the smo coding sequence. A 

heatshock:GFP that is unrelated to the smo gene is present in the BAC vector 

to provide a visible marker so as to facilitate generation and maintenance of the 

transgenic line. Coincidentally, GFP is also expressed in the hair cells of the ear 

and lateral line. This expression is likely to be due to random insertion of the 

transgene into the genome, which happened by chance, directing GFP 

expression to the hair cells. 

Methods 

The techniques described in Chapter 2 were used to build simple profiles of hair 

cell toxicity for each individual compound. For full methods, see Sections 2.1-

2.8 and Sections 2.14-2.16.  

Results 

3.7 Determination of MTC levels for the acute exposure of 

larvae to ototoxic compounds 

For the purposes of subsequent experiments, it was necessary to determine the 

maximum tolerated concentration (MTC) before larval mortality and to build a 

concentration-response profile for each compound tested. This required the 

optimisation of a simple, fast and reliable technique to determine mortality. 

Thus, the maximum tolerated concentration level was approximated. This was 

the concentration to elicit more than twenty percent death following compound 

exposure. MTC data obtained provided a basis for subsequent compound 

exposure ranges for the DASPEI fluorescence assay (see Table 2.1). In the 
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majority of cases, systemic toxicity requires good uptake of the exposure 

compound. For hair cell damage such compound uptake is not required, as the 

hair cells of the lateral line are in almost direct contact with the compound in 

solution.  

3.7.1 Neomycin 

The MTC of neomycin was approximated to be 300 µM after an initial exposure 

(minimum of 9 fish per concentration). The treatment point that resulted in more 

than 20% mortality was 500 µM (Figure 3.1).  

3.7.2 Streptomycin 

The MTC of streptomycin was approximated to be 3.5 mM after the first 

exposure (minimum of 8 fish per concentration). Twenty percent mortality was 

exceeded at 4 mM (Figure 3.1). 

3.7.3 Gentamicin 

A mortality rate of above 20% was not reached after an hour of gentamicin 

treatment, even at a concentration of 10 mM (minimum of 6 fish per group; 

Figure 3.1).  
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Figure 3.1: Maximum Tolerated Concentration data for the
aminoglycoside antibiotics following acute exposure.
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3.7.4 Cisplatin 

An initial exposure to cisplatin for two hours failed to elicit more than 20% 

mortality at concentrations up to 1 mM (minimum of 9 fish per group). 

Interestingly, a second exposure from 1 mM to 10 mM showed that the 

concentration of 1 mM was highly toxic to animals (71% death; n = 6 per group). 

Overall, the MTC was taken as 1 mM (Figure 3.2). 
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3.7.5 Aspirin 

The MTC of aspirin was approximated to be 1.1 mM after initial exposure 

(minimum of 7 fish per group). Twenty percent mortality was exceeded at 2 mM 

in the initial test (Figure 3.3). A second test at 1.5 mM showed that 100% 

mortality could also be reached at this level (data not shown).  

3.7.6 Copper sulphate 

The MTC of copper sulphate was approximated to above 140 µM after initial 

exposure (minimum of 7 fish per group). The treatment point that resulted in 

more than 20% mortality was 250 µM in the initial test (Figure 3.3). A second 

test at concentrations of 150 and 200 µM showed that > 20% mortality could 

also be reached at these levels (data not shown).  
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Figure 3.2: MTC data obtained for acute cisplatin exposure over two trials
shows variable mortality thresholds.
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Figure 3.3: Maximum Tolerated Concentration data for acute exposure 
to aspirin and copper sulphate.
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3.7.7 Furosemide 

The MTC of furosemide was highly variable following a two hour exposure. 

MTC ranged from 1mM to 5 mM and was probably linked to the variable 

solubility of the compound in solution (minimum of 8 larvae per treatment group, 

data not shown). The maximum exposure concentration ever used following 

MTC assessment was 1 mM. 

3.8 Determination of MTC levels for the acute exposure of 

larvae to negative control compounds 

3.8.1 Antibiotics 

3.8.1.1 Amoxicillin 

Initial exposures suggested that the MTC was above 5 mM, re-testing was 

carried out at a higher concentration range. In the second test, MTC was 

estimated at 11.2 mM (minimum of 6 fish per concentration). The treatment 

point that resulted in more than 20% mortality was 12 mM (Figure 3.4). 

3.8.1.2 Cefazolin 

A mortality rate of above 20% was not reached after an hour of cefazolin 

treatment, even at a concentration of 20 mM (8 fish per treatment group; Figure 

3.4).  

3.8.2 Chemotherapeutics 

3.8.2.1 Melphalan  

The MTC of melphalan was approximated to 820 µM (6 fish per concentration). 

The treatment point that resulted in more than 20% mortality was 1 mM (Figure 

3.4). 

3.8.2.2 Gemcitabine 

The MTC of gemcitabine was approximated to be 1.4 mM after an exposure of 

30 minutes (6 fish per concentration). The treatment point that resulted in over 

20% mortality was 1.5 mM (Figure 3.4).  
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3.9 Vital dye staining of the mitochondria of live hair cells 

following acute compound exposure 

3.9.1 Ototoxins affect mitochondrial DASPEI staining in the pLL 

The mitochondrial vital dye DASPEI was used to investigate the effects of 

ototoxins on the posterior lateral line. DASPEI staining was reduced by 

treatment with all except one of the human ototoxins tested, suggestive of 

damage to the hair cells of the pLL. An almost complete reduction in DASPEI 

staining was observed for all three aminoglycosides, cisplatin and copper 

sulphate at higher concentrations. Aspirin also strongly reduced the DASPEI 

stain in association with increasing treatment concentration. Furosemide 

exposure did not reliably alter the DASPEI staining. The nasal epithelium 

staining seen with DASPEI immersion was not affected by exposure to any of 

the human ototoxins. Labelling of the nasal epithelium therefore acted as an 

internal control for the reliability of the DASPEI staining method. Additionally, it 

was observed that the posterior lateral line seemed to be more susceptible to 

hair cell damage than the anterior lateral line at mid-concentration ranges. This 

observation did not warrant further investigation, as my primary interest was in 

the pLL. Representative images of DASPEI staining in control versus treated 

animals are shown in Figure 3.5 (a minimum of 12 larvae were stained for each 

treatment condition). 

The negative control compounds amoxicillin, cefazolin and melphalan did not 

cause a visible reduction in DASPEI staining (Figure 3.5). This result indicated 

that the compounds were not toxic to the hair cells of the pLL. Surprisingly, 

gemcitabine caused a decrease in DASPEI staining above 50 µM (Figure 3.16). 

This result meant that gemcitabine was not used in further testing.  

 

  



Figure 3.4: Maximum Tolerated Concentration data for acute exposure to the negative control compounds. 
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Figure 3.5: The effects of compounds on DASPEI staining in the pLL. Ototoxin treatment
reduced DASPEI staining in the hair cells of the pLL compared to control larvae. Row A =
neomycin; Row B = streptomycin; Row C = gentamicin; Row D = cisplatin; Row E = copper
sulphate; Row F = aspirin; Row G = amoxicillin; Row H = cefazolin; Row I = melphalan. Staining in
the nasal epithelium was not affected in treated larvae (rows A-F). Treatment with negative control
compounds did not alter the brightness of DASPEI labelling in the pLL compared to controls (rows
G-I). Images are representative of 12 larvae per treatment group over a minimum of 3 trials.
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3.10 Vital dye staining for the mechanotransductive activity of 

live hair cells following acute compound exposure  

3.10.1 Ototoxins affect FM1-43FX staining in the pLL 

The vital dye FM1-43FX was used to further investigate the effects of ototoxins 

on the posterior lateral line and to confirm what was observed using DASPEI 

staining. A reduction in labelling was taken to be indicative of reduced 

mechanotransduction in the cells, and therefore cell damage. This stain was 

indicative of the uptake activity of the healthy hair cell.  FM1-43FX staining was 

reduced by treatment with all of the human ototoxins tested except one, 

suggestive of damage to the hair cells of the pLL. A strong reduction in FM1-

43FX stain was observed for all three aminoglycosides, cisplatin and copper 

sulphate at higher doses. Aspirin did not appear to reduce the FM1-43FX 

staining at the top concentration; this suggested some hair cell function was 

retained. Overall, it appeared that DASPEI labelling was a more sensitive 

indicator of ototoxic damage, as it could detect aspirin-induced hair cell 

damage, whereas FM1-43 staining could not. Representative images of FM1-

43FX staining in control versus treated animals are shown in Figure 3.6. 

The negative control compounds amoxicillin, cefazolin and melphalan did not 

cause a visible reduction in FM1-43FX staining. This indicated that the 

compounds were not toxic to hair cells of the pLL. 

  



78 
 

3.11 Hair cell damage to the pLL in Tg(pou4f3::mGFP)s356t 

larvae following acute compound treatments  

3.11.1 Ototoxins affect GFP fluorescence in the pLL 

Following testing using vital dyes, I next investigated the effects of the test 

compounds in transgenic larvae. This focussed on an assessment of GPF 

fluorescence in pLL hair cells in the Tg(pou4f3::mGFP)s356t line. A reduction in 

fluorescence was expected to be indicative of hair cell damage that would 

correlate with reduced vital dye staining. GFP fluorescence was visibly reduced 

by treatment with all of the human ototoxins tested except copper sulphate, 

where GFP fluorescence did not appear reduced (Figure 3.7). This indicated the 

hair cells were damaged but not destroyed by treatment with copper sulphate.  

In all cases of acute ototoxic treatment there was no decrease in the GFP 

fluorescence within the ears of the larvae and no change in the morphology of 

the inner ear structures (maculae and cristae), suggesting that the compounds 

could not access the inner ear sufficiently to induce visible damage (see Figure 

3.18). Long term exposure to compounds at lower doses for 24 hours also had 

no effect on inner ear GFP fluorescence.  

In agreement with vital dye labelling assays, the negative control compounds 

amoxicillin, cefazolin and melphalan did not cause an observable reduction in 

GFP fluorescence. This suggested that the compounds were not toxic to hair 

cells of the pLL. 
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Figure 3.6: The effects of compounds on FM1-43FX staining in the pLL. Acute treatment with
ototoxins (except aspirin) reduced FM1-43FX staining in the hair cells of the pLL compared to control
animals. Row A = neomycin; Row B = streptomycin; Row C = gentamicin; Row D = cisplatin; Row E =
copper sulphate; Row F = aspirin; Row G = amoxicillin; Row H = cefazolin; Row I = melphalan.
Staining of the nasal epithelium acted as an internal control for treated animals (rows A-F). Treatment
with negative control compounds did not visibly change FM1-43FX labelling in the pLL compared to
control larvae (Rows G-I). The images shown are representative of all fish tested (12 larvae per
treatment group).



Figure 3.7: The effects of compounds 

on GFP expression in the pLL of 

Tg(pou4f3::mGFP)s356t transgenic 

larvae. Ototoxin treatment (except with 

copper sulphate) reduced GFP expression 

in the hair cells of the pLL compared to 

control larvae. Row A = neomycin; Row B 

= streptomycin; Row C = gentamicin; Row 

D = cisplatin; Row E = copper sulphate; 

Row F = aspirin; Row G = amoxicillin; Row 

H = cefazolin;  Row I = melphalan. 

Staining in the ear was not affected in 

ototoxin treated larvae (rows A-F). 

Treatment with negative control 

compounds did not reduce the brightness 

of GFP in the pLL compared to control 

larvae (Rows G-I). Images displayed are 

representative of 12 larvae per treatment 

group.  
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3.12 Neomycin causes hair cell death: DAPI and TUNEL  

3.12.1 DAPI 

In order to show that the decrease in vital dye staining and GFP expression in 

live fish correlated with hair cell death in addition to hair cell damage, a quick 

method to assess alterations in cell morphology was established. Live cell 

labelling using the nuclear dye DAPI in control animals showed the individual 

nuclei of hair cells to have a large, rounded shape indicating a healthy cell. The 

DAPI stain also revealed the rosette arrangement of hair cells in the healthy 

neuromast. Very occasionally, nuclear condensation could be observed in a 

single cell within the cluster of hair cells (Figure 3.8 B arrowhead). In larvae 

treated with high concentration neomycin there were clear alterations in nuclear 

morphology (condensed and fragmented nuclei) and the rosette structure was 

lost (Figure 3.8 C, D). In agreement with previous studies in zebrafish, these 

changes appeared to be indicative of apoptosis and were observed not only for 

neomycin but also with other ototoxins, including cisplatin (data not shown). 
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3.12.2 TUNEL 

The TUNEL assay was used to confirm that the changes in DAPI staining seen 

with neomycin treatment were a true indicator of apoptosis. As expected, 

TUNEL labelling was observed in areas of high cell turnover in both control and 

treated animals. In control larvae, there was no TUNEL labelling observed along 

the lateral line and the cells looked healthy under DIC microscopy. In larvae that 

had been treated with 100 µM neomycin, there was an increase in TUNEL 

staining in the neuromasts in all cases (Figure 3.9). This supported the view that 

changes in nuclear morphology observed using DAPI corresponded, at least in 

part, to apoptotic death. The possibility that some necrosis was also occurring 

following ototoxin treatment could not be excluded however. 

  



Figure 3.8: Treatment of larvae 

with high-dose neomycin 

induces apoptotic-like changes 

in nuclear morphology that can 

be visualised by live DAPI 

staining. (A, B) In neuromasts P3 

and P4 of control (untreated) 

larvae, the majority of nuclei have 

a round morphology. A single 

condensed nucleus can be seen 

in panel (B) (arrowhead). In 

larvae treated with 100 µM 

neomycin for one hour (C, D), the 

majority of nuclei have 

condensed or fragmented into 

smaller bodies (some examples 

are indicated with arrowheads).  

The characteristic rosette-like 

morphology of the neuromast is 

no longer visible. These 

alterations are indicative of 

apoptosis. Images are 

representative of 12 larvae per 

treatment group.  
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Figure 3.9: Neomycin treatment increases TUNEL labelling in the
neuromasts of the pLL. In control larvae, the neuromasts look healthy under
Differential Interference Contrast (DIC) microscopy and TUNEL staining is not
visible (A-H). (K-R) Treatment with 100 µM neomycin for an hour with one
hour recovery results in increased TUNEL staining in the neuromast,
indicative of apoptosis. DIC microscopy also shows some altered cell
morphology (arrowheads). As expected, TUNEL labelling was additionally
observed in areas of high cell turnover in both control and treated larval
samples (J, T) .
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3.13 Optimisation of the DASPEI staining method to quantify 

hair cell damage 

3.13.1 Duration of exposure to DASPEI affects the quality of staining 

To optimise the DASPEI staining process, the duration of exposure of larvae to 

DASPEI was altered and the effects of staining time were observed (Figure 

3.10). Exposure times varied from 0-30 minutes. Untreated larvae that were 

exposed to DASPEI for 5 minutes or less had significantly weaker staining than 

those exposed to the dye for 10 minutes or longer (Kruskal-Wallis test, H = 

110.7, 6 d.f., P < 0.0001). There was no difference in staining score for any of 

the time points between 10 and 30 minutes (Dunn’s multiple comparison test, P 

> 0.05). In all subsequent assays, larvae were immersed in DASPEI solution for 

20 minutes to guarantee sufficient staining.  

3.13.2 The use of anaesthesia has no effect on DASPEI staining 

It was important to ensure that the use of anaesthesia to observe and score 

larvae did not affect the strength of DASPEI staining in control animals. 

Reduced temperature (by cooling the plate on ice) or reduced temperature plus 

MS222 were used to sedate the larvae and the strengths of staining scores 

were compared. The use of MS222 for 30 minutes or less had no significant 

effect on the average score of staining (Figure 3.10, Mann Whitney U test, 

MWU statistic = 348.5, 1 d.f., P = 0.4125).  
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3.13.3 The effect of pH on DASPEI staining 

3.13.3.1 Untreated control larvae 

Untreated larvae were immersed in embryo medium with different pH levels and 

the effects of pH on resultant DASPEI scores were observed (Figure 3.11). 

Results from two initial tests indicated that DASPEI scores could be affected by 

pH (test 1: F (6, 28) = 8.951, P <0.0001; test 2: F (8, 33) = 26.28, P < 0.0001). 

DASPEI scores were negatively affected at lower pH, but less affected at 

alkaline or neutral pH levels. A follow-up test on a range of more acidic 

solutions (3.83-6.03), suggested that DASPEI score could be affected by certain 

acidic conditions (F (4, 44) = 6.118, P = 0.0005). As a small subset of the 

compounds tested had a lower pH in water, it was necessary to carry out 

preliminary investigations to assess the effects of pH alteration in control versus 

treated larvae.  
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Figure 3.10: The effects of duration of staining and anaesthetic
treatment on DASPEI labelling. (A) The duration of incubation with
DASPEI significantly affects the DASPEI score (strength of fluorescence
staining). Control larvae incubated for 10 minutes or longer have a
significantly improved DASPEI score compared with larvae incubated for
only 5 minutes (n = 28 per group from 1 trial, Kruskal-Wallis test, H =
110.7, 6 d.f., P < 0.0001; Dunn’s multiple comparison post-test). (B)
DASPEI score is unaffected by anaesthetic treatment (n = 28 per group
over 1 trial , Mann Whitney U test, MWU statistic = 348.5, 1 d.f., P =
0.4125).
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Figure 3.11: pH 
alteration can 
affect DASPEI 
staining in 
control animals.  
(A, B) In the initial 
two trials, 
lowering the pH 
appeared to have 
a negative effect 
on DASPEI 
fluorescence 
scores.  (C) 
Follow-up testing 
in control animals 
at lower pH 
indicated that 
although pH 
alteration has an 
effect, there is a 
large amount of 
variability in 
DASPEI score. 
(A) and (B) n= 5 
larvae per 
treatment group, 
(C) n= 10 larvae 
per treatment 
group. Test 
performed: One-
way ANOVA 
followed by 
Dunnett’s multiple 
comparison test.
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3.13.3.2 Compound treated larvae  

The effect of pH on DASPEI score was assessed using a selection of four 

weakly acidic compounds (Figure 3.12). These compounds were amoxicillin, 

melphalan, gentamicin and aspirin. These pH tests were performed in 

compound-treated larvae to ensure that the pH of these more acidic compounds 

did not have a damaging effect on the hair cells that was not due to ototoxicity. 

Altering the pH of amoxicillin solution from 4.6 to 6.5 had no effect on DASPEI 

score in control or treated embryos (F (1, 44) = 0.1059, P = 0.7464). Treatment 

had no effect on DASPEI score at either pH, suggesting that amoxicillin did not 

cause toxicity to hair cells and that DASPEI staining was not affected by the 

weak acidity of the compound. This made amoxicillin a suitable negative control 

(F (1, 44) = 0.9531, P = 0.3343).  

Altering the pH of melphalan solution from 4.5 to 6.2 had no effect on DASPEI 

score in either control or treated animals (F (1, 36) = 0.2638, P = 0.6106). 

Treatment with 0.4 mM melphalan had no effect on DASPEI score, suggesting it 

was not toxic to hair cells at either pH and was therefore a suitable negative 

control (F (1, 36) = 3.13, P = 0.0853). 

Altering the pH of gentamicin from 4.8 to 6.4 had a significant effect overall (F 

(1, 48) = 10.12, P = 0.0026). Post-testing showed that changing the pH in 

control conditions had no significant effect on DASPEI score (Bonferroni test: t 

= 1.670, P = > 0.05). Altering pH to 6.4 may have significantly increased the 

toxicity of gentamicin to hair cells (Bonferroni test: t = 2.889, P = < 0.05) but the 

overall outcome remained the same; gentamicin treatment still significantly 

reduced DASPEI score in both pH conditions (F (1, 48) = 618.5, P = < 0.0001). 

Gentamicin thus appeared to be ototoxic in either condition.   

Preliminary results showed that altering the pH of aspirin had a significant effect 

on DASPEI score, indicating that pH alteration was important in aspirin toxicity 

(F (1, 36) = 1101, P = < 0.0001). Overall, treatment with aspirin significantly 

affected DASPEI score, suggesting it was toxic to hair cells (F (1, 36) = 1225, P 

= < 0.0001). As expected for this experiment, there was a significant interaction 

between pH and treatment (F (1, 36) = 1036, P = < 0.0001). The interaction 

result showed that pH alteration did not have the same effect in control and 



84 
 

treated animals. Treatment with aspirin at the 0.4 mM level had significantly 

different effects under different pH conditions (Bonferroni test: t = 46.22, P = < 

0.0001); pH alteration had no effect on DASPEI staining in control animals 

(Bonferroni test: t = 0.7111, P > 0.05). At the altered pH of 6.6, aspirin did not 

appear to affect DASPEI score compared to the control condition (2.6% change 

in DASPEI score). At the pH of 3.5, aspirin treatment decreased DASPEI score 

by 95% compared to control conditions.  It was expected that the effects of 

aspirin treatment could be pH-dependent, as it is known that aspirin solubility is 

pH-dependent (less soluble in acidic conditions) and also that aspirin readily 

undergoes a neutralisation reaction in the presence of sodium hydroxide, 

converting it into the salt sodium acetylsalicylate plus water. The neutralisation 

reaction of aspirin may alter the toxicity of the compound to hair cells.  

On balance, it was decided that alteration of the pH of compounds in solution 

was not necessary for the DASPEI assay.  

  

  



Figure 3.12: The effects of pH 

on DASPEI staining in 

compound treated larvae.  The 

effects of acute treatment with 

amoxicillin and melphalan are 

independent of pH and are 

unaffected by pH alteration (A, 

C). (A) pH altered from 4.6 to 6.5. 

(C) pH altered from 4.5 to 6.2.  

(B) Treatment with 1 mM 

gentamicin is ototoxic in  both 

non-altered (pH 4.8) and pH 

altered (pH 6.4) animals 

compared to matched controls. 

pH alteration significantly 

increases the damage caused by 

gentamicin treatment.  (D) 

Treatment with 400 µM aspirin 

was ototoxic in non pH altered 

conditions (pH 3.5). Altering the 

pH of aspirin solution to match 

the pH of the DMSO control (pH 

6.6) changed the outcome of the 

result, rendering aspirin 

ineffective at hair cell damage. All 

tests: Two-way ANOVA, followed 

by Bonferroni  multiple 

comparison post-tests (minimum 

n = 10 per treatment group). 
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3.13.4 Automation of DASPEI fluorescence intensity 

The potential to automate the scoring of DASPEI fluorescence was 

investigated. It was hypothesised that the process of ototoxicity assessment 

might be shortened by automation. 

3.13.4.1 Automation of the DASPEI method using the Phenosight high 

throughput high-content screening system 

Initially, I tested the Phenosight system to investigate the feasibility of high-

speed automated scanning and quantification of DASPEI fluorescence as an 

assay for ototoxicity. Unfortunately, this system could not detect fluorescence, 

even in untreated DASPEI stained control animals at an exposure level of 40 

ms (the highest exposure level on this system). Additionally, the orientation of 

the larvae in the 96-well format was poor.  

3.13.4.2 Automation of the DASPEI method using the Nikon AZ100 

scanning microscope 

Next, a system with a slower scanning time that was capable of longer 

exposures was tested. Using the Nikon AZ100 scanning microscope, it was 

possible to obtain images of sufficient quality to observe the neuromasts of 

control animals; this enabled the quantification of the effects of high-dose 

neomycin treatment. Quantification was carried out by measuring the 

fluorescence intensity along the lateral line and comparing the control versus 

treated groups. A one hour treatment with 100 µM neomycin significantly 

reduced the average difference in mean gray value compared to the dilution 

water control group (Figure 3.13; Mann Whitney U test, MWU statistic = 513, 1 

d.f., P < 0.0001). Although a significant difference was observed between the 

two groups, this system would be unsuitable for creating a concentration-

response plot, as there were a number of difficulties with the image capture. 
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3.13.4.3 Limitations of automation using the Nikon AZ100 scanning 

microscope 

A number of issues were discovered upon inspection of the images obtained by 

scanning the 96-well plate. In particular, there were serious problems with 

orientation of the 5 dpf larvae. Crossover of the larvae, out of focus larvae, 

inappropriate orientation and curvature of the larvae all made quantification of 

the images far less accurate, leading to skewed data and some larvae being 

discounted altogether (see Figure 3.14 for examples). Gently spinning down the 

plates at low speed rpm on a plate centrifuge did not improve the orientation of 

the larvae.  

 

  



Figure 3.13: Automation of 

the DASPEI fluorescence 

assay using the motorised 
Nikon AZ100 microscope. (A, B) 

Examples of image capture 

using the Nikon scanning 

microscope. (A) Raw image 

obtained at 2x magnification in 

control animals from well A6 of 

a 96 well plate. (B) Raw image 

obtained at 2x magnification of 

DASPEI staining in neomycin 

treated animals. The image is 

of well A7 of a 96 well plate.  

(C) Enlarged image of a single 

larva from well A6, showing the 

region of interest (ROI) that 

was analysed. (D) Acute 

treatment with high-dose 

neomycin (100 µM) causes a 

significant reduction in 

fluorescence intensity/mean 

gray value (minimum n =  89 

per group over 1 trial , Mann 

Whitney U test, MWU statistic 

= 513, 1 d.f., P < 0.0001).  

C 

D 
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A B 

C D 

Figure 3.14: Problems encountered 

with automated screening in the 

DASPEI assay. The orientation  and 

position of the larvae were important 

factors in measuring DASPEI 

fluorescence intensity. (A, B) Larvae 

were often out of the plane of focus or at 

the edge of the micro well.  (C) Another 

common problem was crossover of the 

two larvae in the wells. (D) Inflation of 

the swim bladder at 5 dpf meant that a 

number of the larvae were floating and 

had altered orientation,. This made 

quantification of the fluorescence in the 

pLL difficult.  
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3.14 The effects of acute compound exposure on DASPEI 

staining score  

3.14.1 Ototoxins 

3.14.1.1 Aminoglycosides 

For all three aminoglycosides there was a concentration-dependent decrease in 

DASPEI score, indicative of hair cell damage or death (Figure 3.15). When 

compared at the concentrations of 50 and 100 µM, neomycin exerted the 

strongest effect on DASPEI staining at comparable concentrations, followed by 

gentamicin and streptomycin. For neomycin and streptomycin, a concentration 

of 100-300 µM was sufficient to eliminate the DASPEI stain (P = > 0.05 from 

post-testing between 100, 200 and 300 µM over three repeats). The acute 

treatment given with gentamicin treatment was insufficient to completely abolish 

labelling. There was however, a concentration-dependent decrease in DASPEI 

score with the lowest observed effect concentration (LOEC) at 50 µM.  

3.14.1.2 Cisplatin  

Acute treatment with cisplatin for 2 hours significantly decreased the average 

DASPEI score over three repeats (Kruskal-Wallis test, H = 219, 7 d.f., P < 

0.0001). The response was concentration-dependent, with the LOEC at 20 µM. 

According to post-testing, the average score was most reduced at a 

concentration of between 40 and 100 µM (Figure 3.15). Cisplatin treatments at 

higher concentrations for 1 hour were insufficient to cause the maximum 

damage and saturate the response (i.e. abolish the DASPEI stain), suggesting 

that the damage is time-dependent.  

3.14.1.3 Aspirin 

Treatment with aspirin resulted in a concentration-dependent decrease in 

DASPEI fluorescence over three repeats (Kruskal-Wallis test, H = 182.8, 5 d.f., 

P < 0.0001). The LOEC was 50 µM and DASPEI staining was completely 

abolished at concentrations above 300 µM (Figure 3.15). 

3.14.1.4 Copper sulphate 

Unlike the clear concentration-response curves seen with the other human 

ototoxins, copper sulphate appeared to produce a threshold-type response 

(Figure 3.15). There was a sharp decrease in DASPEI average score at a 
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concentration of 0.5 µM. Immersion of larvae in concentrations below 0.5 µM 

did not significantly reduce DASPEI staining. Treatments above 0.5 µM caused 

a significant decrease in DASPEI staining, indicative of hair cell damage 

(Kruskal-Wallis test, H = 405.2, 10 d.f., P < 0.0001). The response above 0.5 

µM was, however, concentration dependent. Results from post-testing showed 

that DASPEI staining was completely abolished at concentrations above 0.7 µM 

(no significant difference between scores at 0.7 µM versus 1 µM (Dunn’s test)). 

3.14.1.5 Furosemide 

Furosemide failed to reduce DASPEI staining scores over three trials (Kruskal-

Wallis test, H = 3.841, 4 d.f., P = 0.4279, data not shown). For these reasons, 

furosemide was excluded from any further experiments.  

3.14.2 Negative controls 

3.14.2.1 Amoxicillin, cefazolin and melphalan 

Three of the four compounds selected as negative controls had no significant 

effect on hair cell labelling at the concentrations tested (Figure 3.15). This 

suggested that there was no detrimental effect of these compounds on hair 

cells.  

3.14.2.2 Gemcitabine 

An initial treatment with the chemotherapeutic gemcitabine gave an unexpected 

positive result in the DASPEI assay (Figure 3.16). Contrary to expectations, this 

compound caused a significant reduction in DASPEI staining at levels of 50 µM 

and above (one-way ANOVA: F (4, 21) = 197.3, P = < 0.0001). Results from 

post-testing showed that DASPEI staining was completely abolished at 

concentrations above 250 µM. As a consequence of this result, gemcitabine 

was not used as a reliable negative control in subsequent assays. The possible 

reasons for this apparently positive effect in a previously assumed negative 

control are detailed in the Discussion part of this Chapter.   

In all cases, nasal epithelium staining was unaffected by exposure to the 

ototoxins; this labelling served as an internal control for the reliability of the 

DASPEI staining method. 
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Figure 3.15: Concentration-response
relationships of known ototoxins and
negative control substances in larval
zebrafish. (A-F) Exposure to the
ototoxins neomycin, streptomycin,
gentamicin, cisplatin, aspirin and copper
sulphate caused a significant
concentration-dependent decrease in
DASPEI staining, indicative of hair cell
damage. Exposure time and
concentration range were as described
in Table 2.1.

(G-I) Exposure to the negative controls amoxicillin, cefazolin and melphalan
had no significant effect on DASPEI staining (Kruskal-Wallis test, followed by
Dunn’s multiple comparison test). Minimum of 29 fish per group (pooled from
3 or more experimental trials). Statistical significance compared with the
control group is indicated by asterisks. *P < 0.05, **P < 0.01, ***P < 0.001, ns
P > 0.05 (applies to all subsequent figures and tables). The first observed
statistical effect is denoted by the hash (#) symbol.
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Figure 3.16: The effects of gemcitabine on the pLL at 

5dpf. (A) Acute gemcitabine treatment induces an 

unexpected concentration-dependent decrease in DASPEI 

staining. (B) The IC50 of gemcitabine was estimated at by 

curve fitting to 59.25 µM. (C) Representative images of the 

damage induced by high-dose gemcitabine compared to 

DWC (n = 5 per group). (D) Chemical structure of 

gemcitabine hydrochloride. 

C A 

B 

D 
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3.15 Determining approximated IC50 values for DASPEI 

fluorescence scoring data 

The concentration of ototoxin required to reduce the DASPEI average raw score 

by half (IC50) was approximated using curve fitting equations (Figure 3.17). In 

agreement with other studies, the order of potency for ototoxicity of the 

aminoglycosides could be ranked using the IC50 value as: 

neomycin>gentamicin>streptomycin (Kotecha and Richardson, 1994; Owens et 

al., 2009; Wang et al., 1984). The IC50 of cisplatin was most comparable with 

that of neomycin.  Copper sulphate appeared to have the highest hair cell 

toxicity at the lowest treatment concentration. Aspirin required a much higher 

treatment concentration to elicit damage to the hair cells.  These approximated 

IC50 values were used in the startle, rheotaxis and avoidance assays as a mid-

range treatment group to establish the sensitivity level of the assay and to 

investigate the comparative functional effect of hair cell damage induced by 

each compound.  
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3.16 The effects of acute compound exposure on GFP 

expression in the otic vesicle of larvae 

(Tg(pou4f3::mGFP)s356t)  

In all cases, acute exposure to the test compounds did not result in a reduction 

in the GFP fluorescence of the otic vesicle of the larvae, or a change in the 

morphology of the maculae or cristae (Figures 3.7 and 3.18), even when there 

was a reduction in GFP in the pLL.  
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Figure 3.17: Predicted IC50 values for each of the ototoxins. IC50 values
were approximated using either log(concentration of test compound) versus
response (three parameters) or log(concentration of test compound) versus
response - Variable slope (four parameters) curve-fitting equations from the
original data shown in Figure 3.15. The IC50 represents the dose required to
reduce DASPEI average raw score by half and is used as a reference
concentration in later chapters. Data were pooled from a minimum of 3
trials. Dotted lines represent the 95% confidence levels of each curve fitting.



Figure 3.18: The effects of 

copper sulphate and 

neomycin immersion on the 

ear and pLL of 

Tg(pou4f3::mGFP)s356t 

larvae. Treatment with 

neomycin and copper 

sulphate (E-H) did not affect 

GFP expression in the hair 

cells of the inner ear when 

compared to control treatment 

(A-D). These images were 

taken at both the anterior and 

posterior focal planes in live 

animals. A, anterior macula; 

P, posterior macula; 

arrowheads indicate the 

cristae of the semicircular 

canals. Treatment with 

neomycin (K) but not copper 

sulphate (L) caused a strong 

decrease in GFP expression 

in hair cells of the pLL, when 

compared to control treatment 

(I, J). Images are 

representative of an n of 12 

per treatment group. 
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3.17 The effect of ototoxin injection on the otic vesicle 

In order to further assess the ototoxic potential of the compounds tested, the 

compounds neomycin, streptomycin and cisplatin were injected into the ears of 

i193 larvae. Injection of 4 nL 100 mM neomycin was sufficient to reduce GFP 

expression dramatically in the posterior macula and in the anterior macula (to a 

lesser extent) when compared to control injected larvae (Figure 3.19, n = 15 

from four trials for each treatment group). The cristae of the semicircular canals 

appeared unaffected by the ototoxins. Damage to the maculae was visible from 

4.5 hours post-injection. Lower concentrations of neomycin (500 µM – 2 mM) 

did not damage the hair cells (data not shown). Preliminary data from 

streptomycin (n = 5 for each treatment group) and cisplatin (controls n= 8, 

cisplatin n = 7) injections showed the same pattern of preferential hair cell 

damage to the posterior macula (data not shown). 
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Discussion 

3.18  MTCs are useful indicators of compound toxicity 

In this study, approximation of the maximum tolerated concentration (MTC) of 

each compound served as a qualitative indicator of compound toxicity; MTC 

determination not only acted as a starting point to determine appropriate test 

concentration ranges but also enabled the observation of the physiological 

responses of the whole animal to toxic insult. Overall, the results obtained from 

initial MTC experiments fit with those from other studies. Specifically, it has 

been shown that cisplatin was toxic at concentrations above 1 mM. Only one 

published study has exceeded this concentration at the same larval stage. Ou 

and colleagues immersed larval zebrafish in 1.5 mM of cisplatin for 4 hours (Ou 

et al., 2007). However, in that study, the cisplatin was dissolved in E3 directly 

instead of DMSO and the larvae were fed at 4 dpf (potentially making them 

hardier). Overall, reported concentrations used by others range from 50-1000 

µM which is within the non-toxic range used in this study. The MTC 

assessments of neomycin presented here also fit with the published literature. 

The highest reported concentration used was 1 mM for 4 hours, although 

neomycin was typically used at concentrations between 100 and 400 µM. It is 

widely accepted that 200 µM is sufficient to induce the maximum hair cell 

damage (Ou et al., 2009). This is the concentration within the non-toxic range 

established in my study (Buck et al., 2012).  

3.19 MTC versus MTD in assessing toxicity 

There is a clear requirement to test for lethality and multiple-organ damage 

when assessing specific sub-lethal pharmacological toxicities in larval zebrafish 

(Hutchinson et al., 2009). This simple assessment ensures that any effects 

seen within the system of interest, the lateral line in this case, are organ 

specific. Although the MTC appears to be a reasonably accurate reflection of 

the concentration eliciting >20% lethality, the maximum tolerated dose (MTD) 

cannot be easily ascertained. For both the DASPEI and MTC assays, it would 

have been ideal to ascertain how the MTC score corresponded with the internal 

concentration (i.e. dose) of compounds within the whole animal. Due to the 

individual chemical properties of the compounds that were tested, it was not 



Figure 3.19: The effects of ototoxin 

injection on the sensory patches of 

the zebrafish ear at 4 dpf. Panels show 

the effects of injecting larval ears with 

either a 10% phenol red dilution water 

control (A-F) or with 4 nL of 100 mM 

neomycin (G-L) and re-imaging 4.5 hours 

post-injection. Injection of neomycin 

damages the anterior macula and 

posterior macula within 4.5 hours (J, K) 

with no observable damage to the cristae 

(L). A, anterior macula; P, posterior 

macula; C, cristae of the semicircular 

canals. Images are representative of n = 

15 per treatment group. 
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possible to investigate uptake using a well established liquid chromatography 

mass spectrometry (LC/MS) method. 

Although bioanalysis was not possible during the current study, previous 

unrelated studies have shown that in general, antibiotic compounds (e.g. 

cefazolin, tobramycin and amoxicillin for example) show relatively poor uptake 

into the larva at 7 dpf (M. J. Winter, personal communication). Despite this, it is 

worth reiterating that systemic exposure is not necessarily required to induce 

hair cell damage, as the neuromasts are directly exposed to the compound in 

solution. 

3.20 Factors such as pH and duration affect the strength of 

DASPEI staining 

It was found that factors such as the duration of staining and pH of exposure 

solutions could affect the outcome of DASPEI staining, whereas the anaesthetic 

MS222 had no significant effect.  

It was expected that the duration of exposure to the dye would affect the 

strength of the stain as DASPEI is known to be taken up slowly into the cells as 

a function of membrane potential. It was, therefore, necessary to determine the 

optimal duration of immersion in the untreated larvae to obtain the most robust 

results. This was established to be twenty minutes in 5 dpf wild-type larvae.  

Although pH had some effects on DASPEI staining, it was decided that the pH 

of compounds would not be altered to within set limits before testing for ototoxic 

effects. The reason for this decision was that in most cases where pH was out 

of normal range (amoxicillin, melphalan and gentamicin) altering the pH did not 

alter the outcome of the test (i.e. whether the compound was identified as 

ototoxic). In only one instance, altering the pH affected the outcome of the 

experiment; the known human hair cell toxin aspirin was no longer identified as 

ototoxic at pH > 6.5. This was most likely due to the dissociation of the 

compound. Aspirin readily undergoes a neutralisation reaction in the presence 

of sodium hydroxide, converting it into the salt sodium acetylsalicylate and 

water, thus rendering it inactive.  
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For the purposes of this study, as long as non-specific toxicity was controlled 

for, it was preferential not to mask the effect of a potential ototoxin by changing 

its chemical composition through the alteration of pH.  

3.21  The automation of DASPEI scoring was limited by larval 

orientation 

The feasibility of automation of the image capture, processing and scoring for 

the DASPEI assay was investigated. I hoped to develop an automated DASPEI 

screen which was faster than scoring manually and could produce a more 

sophisticated quantification (providing continuous rather than discrete 

quantitative data).  

The Phenosight system is a high-speed plate reader for fluorescence analysis. 

The system was tested using control and neomycin treated larvae stained using 

DASPEI. Unfortunately, the plate reader used was unable to detect the staining 

in the control larvae even at the maximum possible exposure level.  

Next, I tested the Nikon plate scanning system. This system was slower to scan 

the microplate but produced much better images using a 1 second exposure 

and EDF (extended depth of focus) imaging. Despite the improved image 

capture, there were still a number of disadvantages associated with this semi-

automated method for DASPEI assessment compared to manual assessment.  

The key issue identified was that the orientation of the larvae in the wells of the 

microplate was not ideal for viewing the neuromasts. The optimal position was 

with the larva lying in a lateral position, so that all neuromasts on one side could 

be imaged. Often, larvae were in alternative positions such as those displayed 

previously (Figure 3.14). This made the readings of fluorescence intensity 

inaccurate. Unlike in younger embryos, where larvae are more likely to position 

in the centre of the well and sink to the bottom of the plate, larvae at 5 dpf float 

due to the inflation of the swimbladder; this makes focussing of images difficult, 

even with multiple z-stacking and EDF processing. Deflating the swimbladders 

of the animals would be too impractical for an automated or even medium 

throughput approach. 
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There were a few additional problems with automation on the Nikon system. 

Firstly, the total time taken to load the plates with larvae and to analyse the 

images manually was greater than the time taken to score the larvae by eye.  

Secondly, fewer data were sampled by scanning the larvae, as the measure of 

fluorescence was often only for one side. This differed from the manual scoring, 

where both sides of the fish were scored in all cases.  

One way to correct for the imperfect orientation of the larvae, to accelerate 

loading of the animals into the plates and to improve the amount of data 

obtained (i.e. imaging both sides of the subject and fitting to the specified region 

of interest) would be to employ an advanced capillary imaging system (Chang 

et al., 2012; Pardo-Martin et al., 2010). The vertebrate automated screening 

technology (VAST) method is a recently developed technique for high-

throughput confocal imaging. This system loads and unloads larvae 

automatically from a 96-well mesh plate using fluid handling systems. VAST is 

capable of processing multiple larvae simultaneously at loading, imaging, and 

unloading steps. Larvae are dispensed into a capillary which is rotated by two 

stepper motors, enabling 360 degree imaging of larvae. The VAST system is 

not currently available at the University of Sheffield or Brixham Environmental 

Laboratory. An alternative way to address the problem of orientation would be 

to use u-shaped black microplates to manipulate larvae into the central position 

in the well, as used by Walker and colleagues in their high-throughput screen 

(HTS; Walker et al., 2012). 

A template for the region of interest (ROI) was created in the software to ensure 

that an equal area was measured for each of the direct comparisons. This 

proved inflexible when larvae were orientated in the wrong plane. A way to 

improve this system might be to assess the neuromasts individually rather than 

drawing a rectangle along the entire pLL and by designing an algorithm to 

recognise the shape of each neuromast, such as that used in the chemically 

induced inflammation (ChIn) assay (d'Alençon et al., 2010). Cognition Network 

Technology (CNT) is an object-oriented method of analysis that was developed 

to inspect satellite images. The technology has more recently been developed 

to recognise components of the whole zebrafish embryo such as yolk and head 

and to successfully quantify the brightness and area of GFP expression. It is 
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compatible with automated scanning in the 96-well format and has thus far been 

used to investigate the modulation of the FGF/RAS/MAPK pathway in embryos 

and to quantify intersegmental blood vessel development in embryos treated 

with small molecule inhibitors of anigiogenesis (Vogt et al., 2009; Vogt et al., 

2010). CNT has the potential to be adapted to study neuromasts. A final 

alternative would be to use Automated Reporter Quantification in vivo (ARQiv). 

ARQiv uses a microplate reader with modified detection functions. Imaging 

using ARQiv could be advantageous in future assays of this kind, as it allows 

changes in fluorescent reporters to be accurately monitored over time. So far, 

this method has been used to compare the variability of reporter expression in 

transgenic lines, to investigate the modulation of the Notch pathway and to 

quantify increases in reactive oxygen species (ROS) production (Walker et al., 

2012).  

Currently, the best method of evaluating DASPEI staining in the animals is by 

manual manipulation and scoring by eye. This method provides fast and reliable 

results. In future, it may be beneficial to optimise the Nikon system for scanning, 

or to implement a high speed VAST-type method in assaying for hair cell 

damage. There is much scope to develop the automation of the assay further as 

numerous alternative technologies have been applied to HTS of the zebrafish 

for other endpoints.  

3.22 The effect of ototoxins on the pLL 

Many compounds are considered to be toxic to human and mammalian hair 

cells (Guthrie, 2008; Rybak and Ramkumar, 2007; Rybak et al., 2007). Larvae 

were exposed to a small collection of known ototoxins (or to negative controls 

with no reported effect in the ear) in order to investigate the sensitivity of 

zebrafish hair cells to these compounds.  

A fluorescence scoring system was employed in order to quantify hair cell 

damage in the pLL. For scoring, larvae were immersed in the styryl dye 

DASPEI. This dye is readily taken up by the sensory hair cells of the 

neuromasts and by cells of the nasal epithelium. The level of DASPEI staining 

observed correlates to the number of functioning hair cells present in the 
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neuromast; this has previously been shown using methods such as phalloidin 

and anti-acetylated tubulin antibody labelling (Harris et al., 2003).  

The aminoglycoside antibiotics, cisplatin and copper sulphate all induced a 

concentration-dependent loss of DASPEI staining in the pLL, indicative of hair 

cell damage. Moreover, exposure to ototoxins reduced FM1-43FX staining and 

GFP labelling in hair cells, further indicating hair cell damage and loss. This is in 

agreement with previously published data in zebrafish (Chiu et al., 2008; Coffin 

et al., 2010; Harris et al., 2003; Hernandez et al., 2006; Ou et al., 2007; Ou et 

al., 2010; Owens et al., 2007; Owens et al., 2009; Ton and Parng, 2005; Van 

Trump et al., 2010). In addition, the salicylate aspirin, a reported reversible 

ototoxin in humans, was tested and it was found that similar concentration-

dependent hair cell damage occurred with DASPEI and GFP but not FM1-43FX 

labelling. This result suggested that although the mitochondria encounter the 

damage, some aspirin-treated hair cells may maintain mechanotransductive 

activity and are, therefore, still functioning.  

One known human ototoxin, furosemide, failed to induce significant damage to 

the hair cells of the pLL in zebrafish. This result was somewhat expected, as 

furosemide was also not detected as a hair cell toxin in a large compound 

screen for ototoxins (Chiu et al., 2008). 

Further testing of the positive control neomycin provided evidence that apoptotic 

cell death could occur in response to treatment. Nuclear condensation and 

fragmentation was observed in the live fish following neomycin treatment and 

staining with DAPI. In support of this, there was also an increase in TUNEL 

staining in neomycin-treated animals at the highest concentration tested. This is 

in agreement with other studies (e.g. Williams and Holder, 2000). Although it 

appears that most of the cell death caused by the aminoglycosides is apoptotic, 

necrotic death cannot be ruled out (Grasl-Kraupp et al., 1995). In future, it would 

be valuable to test the effects of the ototoxins in a way which allows 

measurement of the levels of cell death. In this respect, the availability of the 

new transgenic line secA5-YFP, which acts as a marker of apoptosis, could 

make it possible to visualise apoptotic cell death in real time (van Ham et al., 

2010).  
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Interestingly, cisplatin treatments at higher concentrations for one hour were 

insufficient to cause the maximum damage to the hair cells; a two hour 

exposure period was necessary to observe the full effects of this ototoxin. This 

slower time course for damage has also been observed by others (Ou et al., 

2007), and suggests that the aminoglycosides and cisplatin may have distinct 

mechanisms of hair cell damage. There are a number of possible reasons for 

this. For example, the uptake and clearance mechanisms in the cell may differ 

between the two drug classes. Also, it is likely that there are some differences in 

the mechanisms of hair cell death once inside the cells. For example, neomycin 

and cisplatin may act through different apoptotic pathways; blocking Jun kinase 

with d-JNKI-1 attenuates neomycin- but not cisplatin-mediated hair cell death 

(Eshraghi et al., 2007; Wang et al., 2004).  

A small group of negative control compounds with similar therapeutic effect in 

humans to the ototoxins, but no documented ototoxic side effects were also 

examined. These included the antibiotics amoxicillin and cefazolin and two 

chemotherapeutics melphalan and gemcitabine. Cefazolin and amoxicillin have 

not previously been investigated for their ototoxic effects in the zebrafish. The 

chemotherapeutics melphalan and gemcitabine were shown in a recent 

zebrafish screen to have no hair cell toxicity (Hirose et al., 2011). In my assay, 

amoxicillin, cefazolin and melphalan had no significant effect on hair cell 

staining, supporting evidence that they exert no ototoxic effects. In contrast to 

the findings of the published screen (Hirose et al., 2011), gemcitabine exposure 

resulted in a significant reduction in hair cell labelling, thus scoring as positive in 

the current assay. One possible explanation for this discrepancy is that DASPEI 

labels mitochondria, whereas Hirose and colleagues used the nuclear dye 

YOPRO-1, which could be less sensitive to more subtle cellular alterations 

caused by treatment. One rationalization for the lack of reported ototoxicity of 

gemcitabine in humans is that patients treated with gemcitabine are commonly 

treated with gemcitabine-cisplatin adjuvant therapy (Joint Formulary Committee, 

2011; Lee et al., 2004b). The effects of cisplatin may therefore mask any 

additional ototoxic effect of the gemcitabine in patients. Additionally, the 

concentration of gemcitabine used in my experiments is likely to be higher than 

the effective concentration used in humans, due to the direct exposure of the 
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neuromasts to the compound. The human ear is less likely to encounter such 

high levels. 

Previous work has described the role of the external ionic environment in hair 

cell death and protection in the zebrafish lateral line. It is known that increasing 

calcium or magnesium in external bathing solutions can protect hair cells from 

acute neomycin and gentamicin damage by blocking their cellular uptake (Coffin 

et al., 2009; Kaus, 1992). To control for the effect of cations in this study, all 

larvae were raised and tested in embryo medium with identical composition at 

both the University of Sheffield and at AstraZeneca, Brixham. 

It was important when designing this assay to ensure that the data were robust. 

It is noteworthy that, over repeated trials, the effects of the compounds were 

consistent, even when tested across two different zebrafish strains. All 

compounds were tested in WIK larvae once to ensure that the outcomes 

matched with the data obtained for the AB animals (data not shown). Across the 

strains, the ototoxicity was still observed. This is a positive indicator of the 

strength of the assay.  

One area for further investigation would be to examine the effect of the 

ototoxins on support cells of the neuromast in detail. Although I did not 

investigate the effect of the ototoxins on support cells, previous studies have 

been conducted to investigate this. Specifically, there is evidence that high 

concentrations of copper sulphate can damage the structure of the support cells 

(Olivari et al., 2008). Studies into regeneration in the lateral line suggest that 

neomycin may spare support cells at the concentrations used here: hair cells 

can regenerate following neomycin treatment and this regeneration is thought to 

involve support cells (Harris et al., 2003). The focus of the current study was 

specifically on the hair cells of the lateral line, as these are the first cells to be 

damaged, making for a more sensitive assay of ototoxicity.  

In order to fully validate the DASPEI assay as a pre-clinical indicator of 

ototoxicity, it would be necessary to carry out a blinded screen using a much 

larger selection of compounds. This would act as a more detailed indicator of 

the sensitivity and specificity of the assay. These experiments extend beyond 

the remit of the study but are an area for future development in order to validate 
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this method as a preclinical assay for the assessment of ototoxicity in new 

drugs. 

3.23 The effect of ototoxins in the inner ear 

To investigate the ototoxins in more detail, the outcome of compound exposure 

in the ear was tested. The aim was to ascertain whether hair cell damage could 

be induced in the inner ear, as in humans, other mammals and birds. 

Additionally, these experiments served to reveal whether there would be 

preferential damage to one of the sensory patches, which may relate to the 

functional damage in humans. Finally, it was hoped to use these data to 

compare the effects of the ototoxins between the zebrafish and other vertebrate 

models and to assess the suitability of the zebrafish as a surrogate model to 

predict human ototoxicity. 

Initially, the aim was to induce hair cell damage in the otic vesicles of the fish by 

immersion of the larvae in solutions containing ototoxins. However, it was found 

that neither acute nor chronic treatment with ototoxins affected the levels of 

GFP expression or the morphology of inner ear hair cells. It has been proposed 

that acute exposure of larvae to ototoxins causes damage specific to the lateral 

line that does not affect the ear (Blaxter and Fuiman,1989; Matsuura et al., 

1971). This is likely to be because ototoxins dissolved in the medium in which 

the larvae are swimming are less able to access the ear compared to the easily 

accessible lateral line.  

To answer the question of whether ototoxins could damage hair cells of the 

inner ear, compounds were injected postero-laterally into the otic vesicles of 

larvae at 4 dpf using the i193 transgenic line. As in humans, hair cells of the ear 

were susceptible to insult with neomycin, streptomycin and cisplatin in zebrafish 

larvae. The posterior (saccular) macula (whose role is thought to be primarily 

auditory;  Fay and Popper, 1999) was severely affected. The anterior (utricular) 

macula (thought to have a primarily vestibular role; Fay and Popper, 1999) was 

damaged and cristae of the semicircular canals were also affected, but to a 

lesser extent. The cristae retained their GFP expression and their morphology 

in the main. In humans and other vertebrate models treated with neomycin, the 

damage occurs mainly in the auditory OHCs at the basal turn of the cochlea. 
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These results seemed to match with what is observed in other model systems 

at least in part. In addition, I tested the effect of streptomycin injection on the 

inner ear. The hypothesis was that injection of a more vestibulotoxic compound 

may preferentially damage the utricular macula and/or cristae. Interestingly, 

streptomycin injection, as with neomycin injection, preferentially damaged the 

saccular macula. An explanation for the susceptibility of the saccular macula to 

ototoxic insult may be that it is better developed than the other patches at 4 dpf 

and has a higher compound uptake overall. This may be because the cells are 

more mature and have more active uptake. When tested, it appeared that hair 

cells in all of the sensory patches at 4 dpf were mechanotransductively active, 

as they were all capable of FM1-43FX uptake. To my knowledge, nothing in the 

literature concerning the development of the sensory maculae suggests that 

one macula develops faster than the other.  

3.24  Concluding remarks 

The DASPEI assay in larval zebrafish appears to offer a robust and sensitive 

method for the detection of potential ototoxins. I have shown that the hair cells 

of the zebrafish lateral line and inner ear can be damaged by exposure to 

known human ototoxins. These data concur not only with the literature from 

zebrafish but also from higher vertebrates and humans. Taken together these 

data support the use of the zebrafish as an early stage pre-clinical indicator of 

drug-induced ototoxicity.  

Although histological changes following exposure to selected human ototoxins 

were demonstrated it was necessary to show that this cellular damage 

translated into a functional consequence, impaired auditory function. In other 

words, it was important to demonstrate that zebrafish larvae experience the 

decrease in auditory function seen in higher vertebrates and humans as a result 

of ototoxic insult. Assays to measure the functional consequences of hair cell 

damage are described in the following Chapters.  
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Chapter 4 Optimisation of the startle assay 

Introduction 

4.1 Aim 

The aim of the work described in this chapter was to develop and optimise a 

semi-automated method for assessing the high-speed auditory evoked 

response (or startle) in 5 dpf larval zebrafish. Once optimised, the goal was to 

use this method, in conjunction with other simpler tests for reflex behaviours, in 

order to determine the functional consequences of the hair cell damage seen in 

the histological DASPEI assay for individual compounds.  

4.2 The larval startle response 

As discussed in Chapter 1, zebrafish are hearing specialists. They use their 

acoustico-lateralis system to facilitate a number of essential behaviours 

including feeding, schooling and predator avoidance (Dijkgraaf, 1963; Ghysen 

and Dambly-Chaudière, 2004; Kaus, 1987). Vibrations through the water and 

water flow are detected using the specialised mechanosensory hair cells in the 

neuromasts, which elicit a variety of reflex behaviours (McHenry et al., 2008; 

Zeddies and Fay, 2005).  

A key locomotor behaviour exhibited by larval zebrafish is the startle response. 

The acoustically evoked startle response is conserved in most vertebrate 

species including humans (Landis and Hunt, 1939), but is especially well 

characterised in fish and conserved in species such as Carassius auratus 

(goldfish) and Lepomis macrochirus (bluegill) (Neumeister et al., 2008; Zottoli, 

1977). Startle is crucial in escaping the strike of a predator; it can be elicited by 

water flow, touch and visual cues (Colwill and Creton, 2011; Issa et al., 2011; 

Kohashi and Oda, 2008; McHenry et al., 2009). Zebrafish larvae are capable of 

performing this complex, high-speed escape response from five days post 

fertilisation onwards, correlating with the mechanotransductive maturity of the 

hair cells and swim bladder inflation (Bang et al., 2002; Murakami et al., 2003; 

Santos et al., 2006). It is suggested that the sensitivity of larvae to respond with 

a start to vibratory cues remains unaltered after this time, making this the ideal 

age to study functional changes in response to compounds that cause hair cell 

damage (Zeddies and Fay, 2005). 
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The startle response is characterised by an initial bend involving the whole body 

(with an estimated angle of 90-220º) occurring in the first 14 ms after 

stimulation, followed by a strong counter-flexion and subsequent smaller bends. 

In total a startle lasts for approximately 40 ms.  

Like in goldfish, the zebrafish escape response is mediated by the M-series 

reticulospinal neurons (Foreman and Eaton, 1993; Kimmel et al., 1980; Weiss 

et al., 2006). Ablation studies and in vivo calcium imaging have shown that 

Mauthner, MiD2cm and MiD3cm neurons integrate convergent sensory input 

and send motor commands to initiate the reflex (Gahtan et al., 2002; Issa et al., 

2011; Kimmel et al., 1974; Kimmel et al., 1980; Liu and Fetcho, 1999; Liu et al., 

2003; Sillar, 2009). The action potential created by the reticulospinal neuron 

stimulates the contralateral trunk muscle to bend the entire body. The C-start 

can be described as short or long latency (SLC and LLC respectively), with the 

SLC being the stronger Mauthner cell dependent response (Burgess and 

Granato, 2007).  

It is noteworthy that a less well characterised S-start is also described in 

zebrafish. This escape response is mainly elicited through stimulation of the tail 

and has a similar onset and conduction velocity to an SLC. The S shape of the 

response is made by the contraction of rostral axial muscle on one side of the 

body and caudal axial muscle on the opposite side. Motor control of the S-start 

is poorly understood but responses may be elicited by an alternative 

reticulospinal circuit, a combination of reticulospinal and local circuits, or 

rhythmic swimming circuits (Liu et al., 2012).  The lateral line is a key mediator 

of larval startle responses, but the ear is also proposed to contribute to the 

response; this will be discussed in more detail in the following chapter.  

Previous studies on the startle response in zebrafish have mostly focussed on 

methods of characterising and measuring the response (high-speed kinematics, 

video based frame subtraction), age of onset of the reflex and how the response 

changes during development (Budick and O'Malley, 2000; Fontaine et al., 2008; 

Gahtan et al., 2002; Kimmel et al., 1974; Kimmel et al., 1980; Liu et al., 2003; 

Muller and van Leeuwen, 2004; Sillar, 2009; Zeddies and Fay, 2005). In 

addition, acoustic stimulation and startle measurement has been used in other 
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contexts such as measuring the effects of compounds on associative learning 

(Best et al., 2008; Roberts et al., 2011; Wolman et al., 2011) and Pre-pulse 

Inhibition (or PPI) (Burgess and Granato, 2007). Only one study has been 

carried out to determine the effects of a single ototoxin on startle response and 

this investigation was based solely on touch-evoked startle (McHenry et al., 

2009), not auditory evoked startle.   

4.3 Measuring sound waves 

One key aspect of this work was ensuring the quality and purity of the sound 

waves that were generated in order to elicit the startle response.  

4.3.1 Important properties of sound waves  

Sound is a mechanical vibration which travels in longitudinal (or compressed) 

waves in air and water. A simple sound wave has a number of key properties 

including: frequency, amplitude, direction and sound pressure. 

4.3.1.1 Frequency  

Frequency is defined as a number of cycles of a wave per unit time. The Hertz 

(Hz) is the unit of frequency and is the number of cycles per second.  

4.3.1.2 Amplitude 

The amplitude of the wave is essentially the height of the wave. The amplitude 

of a wave can be described in a number of ways. Peak amplitude is the 

difference between the peak and average value of the wave. Peak-to-peak 

amplitude is the change between peak and trough of the wave; it is expressed 

as Vpp. Finally, RMS (root mean square) amplitude is a measure of 

the magnitude of a varying quantity. The RMS value of a sine wave is 

the square root of the average of the squares of the original values. For 

simplicity, the RMS value can be approximated by dividing the peak to peak 

amplitude by 2.8. RMS is a useful value as it can be used to calculate the 

average power of a sine wave and to calculate sound pressure level in decibels 

(dB SPL). 

4.3.1.3 Sound pressure 

Sound pressure is the difference between the instantaneous pressure in the 

presence of a sound wave and the static pressure of the same medium with no 
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sound wave. In air, sound pressure can be measured with a microphone; in 

water it can be measured with a hydrophone. Sound pressure level (SPL) is 

a measure of the effective sound pressure compared to a reference value (on a 

logarithmic scale). SPL is measured in decibels (dB) above a standard 

reference level and is denoted as dB SPL.  

4.3.1.4 Checking the sound waves  

The sound waves created were checked using a digital storage oscilloscope 

(DSO). Repeating constant signals are displayed on the DSO as a static graph 

depicting the shape of the wave. The static graph generated allows the 

measurement of Vpp, frequency, and the time taken for a signal to rise to the 

maximum amplitude (signal onset or rise time). SPL was measured using a 

sound pressure level meter. Any distortions could easily be observed using a 

DSO.  

Methods 

The techniques described in Chapter 2 were used to optimise the semi-

automated startle assay in untreated animals. For full methods, see Sections 

2.1, 2.9.1.3 to 2.9.5 and 2.2.9.7. 

Results 

4.4 Calibrating the function generator for frequency and 

voltage 

The predicted output of the Velleman 2.0 MHz PCGU1000 PC function 

generator was compared to the actual (measured) output to ensure that the 

instrument was correctly calibrated. 

4.4.1 Frequency 

The predicted and measured frequencies of the function generator matched 

exactly (Figure 4.1; linear regression: r2 = 1, DFn = 1, DFd = 13), confirming that 

the function generator frequency output was as stated by the manufacturer. 

4.4.2 Voltage 

The predicted and measured voltage outputs of the function generator were 

equal (Figure 4.1; linear regression: r2 = 1, DFn = 1, DFd = 11). This confirmed 

that the voltage output of the equipment was identical to the values stated by 

the manufacturer.  

http://en.wikipedia.org/wiki/Logarithmic_scale
http://en.wikipedia.org/wiki/Decibel
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4.5 Determining the threshold for sine wave distortion over a 

range of frequencies 

 

It was important to ensure that the pure tone sinusoids that were delivered to 

the control larvae had very little distortion. This was investigated by measuring 

the combined output of the function generator and amplifier in 400 mL of water 

using an oscilloscope coupled to a custom made hydrophone. Measurements 

taken at varying frequencies, voltages and volumes produced graphs to 

estimate the values at which the sine wave remained undistorted (Figures 4.2 a 

and b). Distortion was often measured at higher amplifier volumes and voltages, 

especially at the lower frequencies. The most commonly observed distortion 

was harmonic distortion with soft clipping, where the wave adopted an 

increasingly square or triangular characteristic (Figure 4.3). At the highest 

frequencies, voltage and volume were not sufficient to drive the signal towards 

distortion (Figure 4.2 b; (I), (K) and (L)). The data obtained from these initial 

measurements were subsequently used for each of the frequencies to test 

responses in the larvae (see Figure 4.4). Stimulus settings were later adjusted 

according to the optimal larval response and re-tested for non-distortion at the 

altered levels (see additional red and blue data points Figures 4.2 a and b).  

 

 

  



Figure 4.1:  Determining the accuracy of the function generator.  Measurements taken using an oscilloscope show 

that the measured output of the frequency generator  equals the predicted output (directly proportional), for both frequency 

(A) and voltage (B).  
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Figure 4.2a: Testing for 

wave distortion 

thresholds over a 40-300 

Hz frequency range. 

Appropriate volume and 

voltage settings were 

chosen for each frequency 

(A-F). These were based on 

the approximated thresholds 

for distortion of the sinusoid. 

Settings were chosen that 

were predicted to form a 

pure tone.  These settings 

were tested in the animals 

and adjustments made to 

the settings according to the 

best larval response.  The 

best larval response (blue 

cross) was subsequently 

compared to the actual 

maximum volume settings 

(red triangle) for each 

frequency to ensure non-

distortion.  Data are 

representative of 2 repeat 

tests.  Non-linear curve 

fitting has been applied. 

95% confidence levels are 

indicated for each fit. 
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Figure 4.2b: Testing 

for wave distortion 

thresholds over a 

400-1500 Hz 

frequency range. (G-

L) Appropriate volume 

and voltage settings 

were chosen for each 

frequency and then 

tested in larvae, as 

described in figure 

4.2a. Data are 

representative of 2 

repeat tests.  Non-

linear curve fitting has 

been applied. 95% 

confidence levels are 

indicated for each fit. 
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Figure 4.3: Commonly observed wave distortions. Image (A) depicts 

non-linear transfer characteristics. The image on the far left represents 

the ideal non-distorted wave, the central image shows a symmetrically 

distorted sine wave and the image on the far right shows an 

asymmetrically distorted sine wave. (B) An example oscilloscope trace 

showing the commonly observed positive peak limited sine wave. (C)  

An example oscilloscope trace showing the commonly observed positive 

and negative peak limited sine wave. Images courtesy of Steve Temme. 
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4.6 Initial testing of the startle response in larvae 

4.6.1 Lighting conditions 

Initially, larval startle responses were observed at a rate of 200 frames per 

second (fps). However, it was noted form the recorded video footage that the 

video displayed light/dark cycles on playback at this frame rate. The ‘dark 

frames’ made larval movement impossible to visualise by eye and to track using 

the Viewpoint software. The appearance of these light/dark cycles was the 

product of the frequency of the ambient AC lighting in the laboratory, which was 

found to be 120 Hz. In order to resolve this, a capture rate of 60 fps was 

adopted, which was half the frequency of the lighting. At this frame rate, it was 

possible to visualise larval startle responses without on/off flicker.  

4.6.2 Fluid volume 

The effect of using smaller fluid volumes in each well of the microplate was 

investigated with the aim of minimising the amount of compound required for 

each test. It was found that when a fluid volume of 1 mL or less was used, it 

was not possible to accurately visualise the fish that were performing 

thigmotaxis (swimming at the edge of the wells; Schnorr et al., 2012) as the 

wells were too deep and the camera too far from the microplate. Consequently 

2 mL of fluid per well was selected for the final assay. At this volume, it was 

possible to visualise the larvae across the entire well. Qualitatively, larval startle 

responses appeared unaffected by altering the fluid volume from 1 to 2 mL. 

4.6.3 Stimulus duration 

The duration of the sinusoidal stimulus was restricted to the minimum duration 

that the software could offer (denoted as ‘1 second’) for all but one of the 

stimuli. The larvae were able to respond with a startle to the shortest stimulus. 

Qualitatively, there was no improvement in the response shown to longer 

stimuli, as the animals were responding only to the onset of the signal. At the 

lowest frequency (40 Hz), a ‘1 second’ stimulus was inaudible and ineffective at 

producing a startle response. It was therefore necessary to increase the 

stimulus duration to ‘1.1 seconds’ in order to elicit the response although the 

actual length of the stimulus appeared to be less than 1-1.1 seconds. Direct 

measurements of the ‘1 second’ and ‘1.1 second’ tone bursts with the 
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oscilloscope revealed that the actual stimulus durations were 440 ms and 540 

ms respectively. 

4.7 Determination of the threshold responses of larvae to a 

range of pure tone stimuli  

For all frequencies, the threshold for indicating the successful induction of a 

startle (minimum startle responsiveness) was 40% (>40% of fish responding to 

stimulus). A summary of the manual scoring data are shown in Figure 4.4. The 

optimal settings for larval AER are plotted in Figures 4.2 a and b (blue cross). 

The highest frequency that elicited an AER that could be tested was 500 Hz. No 

reproducible larval response could be elicited above this frequency. The greater 

power (voltage and volume) required to drive stimulation at higher frequencies 

evoked a double startle as the speaker audibly clicked on and off. In addition, 

fewer than 40% of larvae per plate responded to even the loudest stimulus 

before distortion of the waveform occurred at frequencies above 800 Hz. 

 

  



Figure 4.4: Initial testing 

of frequency settings in 

control animals. (A-H) 

Estimated settings for 

voltage (Figure 4.2 (a) 

and (b)) were tested at 

each frequency in short 

tone bursts. Volume 

settings were altered to 

determine the best larval 

response achievable. Red 

dotted line represents the 

40% threshold. 

Frequencies of 800 Hz 

and above could not be 

used, as explained in the 

text. The data displayed 

represent the average of 

3 repeated stimuli per 

volume setting, with error 

bars showing SEM. 

Settings that elicited the 

best larval response were 

re-tested to ensure non-

distortion of the sinusoid 

(Figure 4.2 (a) and (b)). 

The optimised voltage 

and volume settings for 

each frequency are 

shown in the table (inset). 
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4.8 Re-testing of the optimised stimuli 

4.8.1 Re-testing for distortion in a 400 mL fluid volume 

Following assessment and optimisation in the larvae, the chosen voltage and 

volume settings for each frequency were retested using the same method as in 

Section 2.9.2.1. This additional check was performed because some larvae 

required a louder volume than predicted by the line/curve fitting in order to elicit 

an adequate response. This additional measurement is marked by the red 

triangle (Figures 4.2 a and b) and is an accurate maximum value before wave 

distortion occurred. As shown in these figures, none of the values used for the 

final assay (denoted ‘best larval response’) exceeded the maximum value 

before distortion.  

4.8.2 Testing for distortion in the 24 well microplate 

There was little to no distortion of the wave when the final settings were 

examined for volume, voltage and frequency in well 4C of the plate using a 

microphone connected to the oscilloscope. 

4.8.3  Testing the spread of signal across the 24 well microplate 

In order to ensure that there were no edge effects, it was desirable to assess 

the spread of the signal across the microplate. Initially, a small omni-directional 

microphone was used in each well of the plate to detect any variation in sound 

pressure level or wave distortion, when coupled to an oscilloscope. However, 

due to the physical limitations of the equipment, it was not possible to take 

measurements from each individual well. As a simple and safe alternative, 

sodium chloride powder was employed to visualise the pattern of sound waves 

in the plate in the absence of water (see Supplementary Material Video “salt 

test”. The spread of the signal appeared uniform as the salt moved in each of 

the 24 wells (see Figure 4.5 for a representative image).  
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4.8.4 Calibration of sound pressure level 

Figure 4.6 shows the data from SPL calibrations at each frequency. Overall, 

there was a correlation of measurement between both media (water and air) at 

individual fixed frequencies (40-500 Hz). SPL meter readings were positively 

correlated with the readings taken in both air and water (as the SPL meter 

reading increased, so did the SPL calculated from the microphone recordings). 

As predicted, there was a difference in microphone SPL measurements in air 

versus water for each frequency tested; this varied from 14-24 dB SPL. 

Interestingly, there was an increase in the SPL recorded with the microphone as 

the frequency setting decreased, when compared with the SPL meter. This was 

unexpected and is explained by the resonance of the apparatus, which could 

not be detected by the SPL meter in air, but was detectable in water using the 

microphone. This resonance did not appear to distort the wave created by the 

speaker. 

  

  



Figure 4.5: The spread 

of signal across a 24 

well microplate. This 

time-to-colour merge 

picture was generated 

from frames 877-882 of 

the “Salt test” video 

(Supplementary 

Material). Grey scale 

shows lack of 

movement, colour 

indicates movement. 

Overall, the spread of 

movement looks even 

across the plate. Note: 

dark patches within the 

wells are due to light 

reflection and high 

density salt patches; 

movement colour 

outside of the wells is 

due to salt escaping 

from the wells. 
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Figure 4.6: The relationship between sound pressure level measurements 

and microphone SPL in air versus water.  
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4.9 Setting the threshold speed of the stereotypical startle 

response 

After initially testing for startle threshold on one video at a number of speeds, 

further testing was undertaken on three thresholds that were 5.5 mm s-1 apart. 

This involved replaying and scoring videos by eye more than 1440 times. Data 

for the manual comparison of the 3 alternative thresholds for high-speed AER 

are shown in Figures 4.7 to 4.9. The thresholds evaluated were 15.6 mm s-1, 

21.1 mm s-1 and 26.6 mm s-1. Two average values are reported that indicate the 

level of concurrence between score by eye and Viewpoint traces; one overall 

value that takes into account all animals (including non-responders; ‘overall 

percentage match’ (OPM)) and one value that only takes into account traces for 

movement and startle (excluding non-responders; ‘movement and startle only’ 

(MSO)). Assessments using Viewpoint colour traces over 20 stimuli showed 

that changing the high-speed threshold had a significant effect on OPM (Figure 

4.7 B; Repeated Measures ANOVA followed by Tukey’s multiple comparison 

test: F (2, 19) = 32.68, P <0.0001) and MSO (Figure 4.7 D; Repeated Measures 

ANOVA followed by Tukey’s multiple comparison test: F (2, 19) = 34.19, P 

<0.0001). The most appropriate thresholds for detection of the high-speed 

escape response appeared to be 21.1 mm s-1 (OPM = 86%; MSO = 85%) and 

26.6 mm s-1 (OPM and MSO = 89%). Post-testing showed no significant 

difference in percentage match at these two levels (Tukey’s multiple 

comparison test, P > 0.05), whereas a setting of 15.6 mm s-1 gave a 

significantly reduced percentage match with the score by eye compared with 

the two higher thresholds (Tukey’s multiple comparison test, P < 0.05). Tracking 

of the motion was much less stringent at 15.6 mm s-1; often movements (M) 

were displayed as mild startles (MS) on playback through the Viewpoint system. 

Conversely, limiting the threshold of the response to 26.6 mm s-1 was 

excessively stringent; fish that had been scored as performing a mild startle 

(MS) by eye were displayed as (M) only with tracking (see examples Figure 4.8; 

G and H). A threshold of 21.1 mm s-1 had a higher percentage match than 15.6 

mm s-1 in 19 out of 20 of the videos (OPM = 86% versus 72%; MSO = 85% 

versus 68%). 21.1 mm s-1 was chosen as the final threshold for the assay. At 

this level, most mild startles could still be detected and many of the non-startle 

movements were not being mistaken for an escape response (see Figure 4.9).  
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4.10 Comparing results of the automated tracking software to 

scoring by eye 

A direct comparison between scoring responses by eye and the data generated 

by the viewpoint software set to a threshold of 21.1 mm s-1 showed an excellent 

concurrence over the 20 sample recordings. The overall percentage match 

(OPM) was 85.6%. The percentage match for tracking of movement and startle 

only (MSO) was 83.3%. Reasons for the incompatible scores will be discussed 

in more detail in Section 4.19.2. There was no significant difference between 

the manual visual traces produced using Viewpoint and the automated data the 

software created for the 21.1 mm s-1 threshold (Figure 4.10; OPM t-test: t = 

0.4197, d.f. 19, P = 0.6794; MSO t-test: t = 1.050, d.f. 19, P = 0.3069). This 

suggests that the inclusion of additional tracking before and after the stimulus 

(caused by the 1 second time binning) should not influence the outcome of the 

analysis. 

 

  



Figure 4.7: Selecting the 

optimal threshold to identify 

the stereotypical startle 

response. The results from 

three speed thresholds were 

compared over 20 video 

recordings to identify the best 

setting for accurate startle 

detection. Videos were scored 

by eye and compared to 

viewpoint colour traces (see 

Fig. 4.8). Values displayed are 

for overall percentage match 

(A and B) and matching for 

movement and startle only (C 

and D).  (B) and (D) Data 

displayed are an average 

taken over 20 videos, with 

error bars representing SEM. 

Adjusting the high-speed 

threshold has a significant 

effect on OPM and MSO in 

control animals. Results of all 

videos individually are shown 

in (A) and (C).  
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Figure 4.8: Example Viewpoint tracking. (A-F) Occasionally animals are 

not detected, despite movement. (A, C and E) Time-to-colour merge 

pictures generated from frames 379-384 of video 14 “habituation testing 

extremes rep 3 500 Hz AVI 8” (Supplementary Material). Grey scale shows 

lack of movement, colour indicates movement. (B, D and F) Viewpoint 

automated tracking from video 14 (A), (B) Images generated from  well D3. 

The larva moves but is not detected.(C), (D) Images generated from well C6. 

The larva does not move but is detected at its centre of gravity. E), (F) The 

larva moves and is detected by tracking. (G-H) Differences between traces 

over three test thresholds. (G) Example traces for an “M” score by eye.(H) 

Example traces for an “MS” score by eye.  

A B 

C D 

F E 

G 

H 
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Figure 4.9: Selecting the 

optimal threshold to 

identify the stereotypical 

startle response. Images 

display the concurrence 

between Viewpoint traces 

and score by eye at each of 

the thresholds. In videos 9, 

12 and 19, 21.1 mm s-1 is the 

most accurate indicator of the 

startle response. 15.6 mm s-1 

is the least accurate 

threshold to identify startle 

responses, often lacking 

stringency (video 12(i)).  
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Figure 4.10: Comparing results of Viewpoint colour traces and 

automated tracking using the VideoTrack software. A comparison of 

viewpoint traces and automated tracking software at the chosen 

threshold of 21.1 mm s-1.  There was no significant difference between 

traces and automated tracking for either OPM (A) or MSO (B). The data 

points shown are the average over 20 stimuli. Error bars represent the 

SEM. 
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4.11 Using Excel to detect the timing of the startle response 

automatically  

A macro was created in Excel to remove inactive larvae and outlying data and 

to isolate the point in the 10 second recording in which the stimulus was 

delivered/the startle response occurred. Data were only excluded if they were ± 

2 standard deviations from the mean. An example of the graph created can be 

seen in Figure 4.11 A. The graph not only highlights the timing of the startle 

response, but also provides an 8-9 second baseline recording of any movement 

within the plate that was above 21.1 mm s-1. This macro was essential in the 

further processing of the data and its accuracy was of great importance. Over 

the 20 sample videos, I found a 100% match between the automated detection 

of startle and the actual onset of the response (Figure 4.11 B).  
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4.12  Factors influencing control compliance 

4.12.1 Plate type 

As summarised in Figure 4.12, plate format (24- vs. 48-well) had a significant 

effect on the startle response, with larvae in the 24-well plate displaying a 

stronger startle response overall (two-way ANOVA; F (1, 32) = 8.72, P = 

0.0058). The frequency of the stimulus had no effect on response strength (two-

way ANOVA; F (7, 32) = 0.72, P = 0.6529). It is noteworthy that plate format did 

not have the same effect at all frequency values (two-way ANOVA; F (7, 32) = 

0.66, P = 0.7028). Taken together, these data supported the use of 24-well 

plates in the assay to ensure the most reproducible reactions. 

4.12.2 Wave type 

It was also investigated whether an alternative stimulus wave shape (square) 

could elicit an improved larval response compared with a sinusoid. Both 

sinusoidal and square waveforms produced equally strong AERs (Figure 4.13 

A; Paired t-test: t = 0.6267, 22 d.f., P = 0.5373), with no difference in the 

proportion of responding larvae (Figure 4.13 B; Paired t-test: t = 0.6146, 23 d.f., 

P = 0.5449). I therefore chose to use the more conventional sine wave for the 

final startle assay design. 

4.12.3 Raising density 

Raising larvae at a density of 50 per Petri dish produced a significantly stronger 

startle movement than raising animals at 128 per dish (Figure 4.14 A; 2.09 ± 

0.13 (50/dish) compared with 1.62 ± 0.16 mm s-1 (128/dish); Mann Whitney U 

Statistic = 1743, 1 d.f., P = 0.0033). Larvae raised at the lower density displayed 

increased responsiveness to the stimulus when compared with those reared at 

the higher density (Unpaired t-test on transformed data; Figure 4.14 B; 0.85 ± 

0.044 compared with 0.64 ± 0.039; t = 3.707, 142 d.f., P = 0.0003). The 

developmental progression and health of the larvae, however, did not appear to 

be changed between the different rearing conditions. Qualitative assessment 

revealed that larvae raised at both densities inflated their swimbladders, and 

developed normal-sized jaw, ear and eye structures and a functional digestive 

tract (Figure 4.14 C). 

 



Figure 4.11: Identifying the stimulus time using macro design. (A) An example figure showing the result of macro processing 

from a single stimulus over a 10 second recording (taken from neomycin trial a plate 1 200 Hz).  The stimulus was delivered and 

an AER elicited at 4-5 seconds. (B) A comparison of the results generated by the macro versus the original video recordings. 

There is a 100% agreement between predicted stimulus time and observable startle.   
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Figure 4.12: Plate type 

contributes to the control 

compliance of larval 

AERs. Overall, untreated 

larvae displayed stronger 

AERs when arrayed into 

microplates containing 24 

wells compared  with 48 

wells (two-way ANOVA). 

The average value from 

three trials is shown for 

each plate format and 

frequency. Error bars 

represent SEM. 
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Figure 4.13: Wave type does not affect larval AERs. (B, C) Paired 

t-tests indicated that both sine and square waveforms elicited equally 

strong startle responses (based on the strength of response and the 

percentage of animals responding). Data shown are the average 

values from a total of 3 repeated trials. Error bars show SEM. 
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Figure 4.14: Density of 

raising affects larval AERs. 

(A, B) A density of 50 larvae per 

Petri dish gave both the 

strongest startle response 

(Mann Whitney test) and the 

highest percentage of untreated 

larvae startling (unpaired t-test), 

when compared with a higher 

density of 128 larvae per Petri 

dish. Data shown are the mean 

average value of three trials, 

with error bars showing SEM. 

(C) Development was 

unaffected by altering the 

density at which larvae are 

raised. (a-d) Representative 

images of larvae reared at a 

density of 50 per Petri dish 

(taken from a sample of 150 

animals). (e-h) Representative 

images of larvae reared at a 

density of 128 per Petri dish 

(taken from a sample of 128 

animals). Note normal 

development of eye, body 

pigmentation, body length, and 

swimbladder inflation for all 

animals. Scale bar = 500 µm. 
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4.12.4 ISI 

To determine if there was any habituation at different inter stimulus intervals 

(ISIs), the startle response of individual larvae was measured over 10 stimuli, 

and linear regression used to analyse the resultant data. Inducing a deliberate 

habituation using 1 second ISIs showed that control fish were capable of 

learned habituation (Linear regression: r2 = 0.7882, F (1, 7) = 26.05, P = 

0.0014). The responsiveness, but not strength, of the AER was significantly 

decreased with an ISI of 30 seconds over 10 stimuli. This was indicative of 

habituation (Figure 4.15). Intervals of 45 seconds or longer did not cause 

significant habituation (either in strength or responsiveness of AER; P >0.05; 

Figure 4.15). An ISI of 60 seconds (with a random variation up to 80 seconds) 

was selected for further work, as this did not cause habituation and also allowed 

for data collection to be streamlined. (Figures 4.15 and 4.16; Linear Regression: 

r2 = 0.1179, F (1, 7) = 0.9359, P = 0.3656). Initial stimuli induced a consistently 

stronger AER than subsequent stimuli, as shown by the one sample t-test 

(Figure 4.16; t (8) = 13.68, P < 0.0001; t (8) = 26.46, P < 0.0001 for 1 and 60 

second ISIs respectively), and was therefore removed from the datasets before 

performing regression tests (see Discussion Section of this Chapter). The 

number of stimuli chosen in the final startle protocol was 8. This number of 

stimuli allowed for a good range of frequencies (to provide a good picture of 

functional damage) and also prevented the possibility that habituation would 

occur.  
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4.12.5 Outcome 

By optimising for the factors described above (Section 4.12), an average control 

compliance of 49.2% was obtained. This percentage value was determined by 

taking an average of all the percentage values for startle compliance over all of 

the final compound trials. 

4.13 Plate design in the startle assay  

In the initial test run of the assay (using the positive control neomycin), a 

computer program was used to randomly allocate treatment group. The 

treatments were assigned by column and included: one negative (solvent/E3 

alone) control group, a range of four compound concentrations (up to the 

concentration required to damage all hair cells using the DASPEI assay (MTC 

HC)) and a positive control group. Following the initial test, it became apparent 

that it would be difficult to isolate the timing of the startle response for each 

stimulus based on a single control group. The reason for this was that the high-

speed AER is probabilistic, giving only ~50% response, therefore it is more 

difficult to identify the response within a 24 well plate (as only two animals 

across the entire plate could be exhibiting a startle response). As a solution to 

this problem, the plate loading template was modified to include two additional 

control columns. The new plate design included: three control groups, one IC50 

concentration group, a top concentration group and a positive control. A 

comparison of the original plate design (neomycin test trial) and the optimised 

version (neomycin trial a) showed that including three control columns per plate 

gave a significantly stronger whole-plate AER than a single control column 

(Figure 4.17 A; 1.17 ± 0.14 compared with 0.62 ± 0.23 mm s-1 respectively; 

Mann Whitney U Statistic = 97, 1 d.f., P < 0.0001). In the majority of cases, the 

onset of AER was considerably easier to identify when three control columns 

were included (Figure 4.17 B-D).  

  



Figure 4.15: The habituation profile of larvae over 10 repeated stimuli 

using ISIs of 1 s, 30 s, 45s, 60 s and 120 s.  (A) Auditory Evoked 

Responses of control animals at 200 Hz. An ISI of 1 s caused significant 

habituation. (B) Percent responsiveness of control larvae at 200 Hz. An ISI of 

1 s or 30 s caused significant habitation. Each data point represents the 

average from 3 trials. The error bars show SEM. 
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Figure 4.16:The habituation profile of control larvae using the 

chosen 60 s ISI. (A) Auditory Evoked Responses of control animals at 

200 Hz. (B) Percent responsiveness of control larvae at 200 Hz. An ISI of 

1 s caused significant habitation for both strength of startle (A) and 

responsiveness to stimuli (B). An ISI of 60 s did not cause habituation. 

Each data point represents the average from 3 trials. The error bars show 

SEM. 
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Figure 4.17: The use of three 

control columns per 24 well 

microplate enables the 

identification of the onset of 

AERs. (A) A comparison of 

“neomycin test trial” (one 

group of control animals only) 

and “neomycin trial A” (three 

control groups). Including 

three control columns per 

plate leads to a significantly 

stronger AER across the 

entire plate compared to a 

single control column. (B-D) 

Example graphs showing the 

whole plate response in the 

original test trial  compared to 

the response in trial A. The 

AER onset is easier to identify 

for neomycin trial A. Data 

taken from: neomycin test trial 

and trial A; plates one (B), two 

(C) and three (D), (all at 200 

Hz). (A) Individual data points 

show the peak ‘average large 

distance’ over a 10 second 

recording from 24 individual 

stimuli. Error bars represent 

SEM. 
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For the final assay, a pre-defined randomised control column for each of the 

three plates (control group 3) was used. By including a single control column 

only, it was possible to compare data with equal n numbers across the 

treatment groups. This was the most statistically valid and unbiased method of 

data analysis. It was important to show that by choosing control group 3, bias 

was not introduced into the assay. To analyse this, the data from neomycin 

trials A to C, for each control group (1, 2 and 3), were compared. There was no 

significant difference in the strength of the startle response between any of the 

control groups (Figure 4.18; one-way ANOVA followed by Bonferroni’s MC test; 

F (2, 105) = 0.2429, P = 0.7848). This suggested that it was acceptable to use 

control group 3 only for the purpose of data analysis.  
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4.14  Deciding whether to merge time points 

Occasionally, the larval startle response would straddle two of the 1 s time bins 

in the VideoTrack file making the response more difficult to pick out. Using only 

the maximum peak in these cases could have meant discarding useful data or 

missing the correct startle response altogether. To test this, the effect of 

merging versus not merging the two time peaks for neomycin trials A to C was 

compared. Time points were only merged when the secondary peak contributed 

substantially to the primary peak (i.e. when the smaller peak was at least 40% 

of the larger peak. See Figure 4.19 A). Merging of the time points had no 

significant effect on the outcome of the startle assay (Figure 4.19 B; two-way 

ANOVA; F (1, 274) = 6.268 x 10-5, P = 0.9937). It was decided that it would be 

more time-effective not to merge the time points prior to data analysis.   

 

  



Figure 4.18: The use of control 

column three only to analyse 

larval AERs. There is no 

significant difference in startle 

responses between the three 

control groups, as shown by one-

way ANOVA and Bonferroni’s MC 

test. Using only control column 

three for statistical testing of larval 

AERs is a valid method and should 

not introduce bias. Data points 

analysed are from neomycin trials 

A-C (n = 12 per treatment group, 

per trial). Error bars represent 

SEM. 
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Figure 4.19: Merging of time points does not affect the outcome of 

the startle assay. Occasionally an AER would occur over two of the 1 

s time bins (A). Time points were merged only when  the smaller of the 

two peaks was at least 40% of the primary peak. Data are taken from 

neomycin trial A plate 1 40 Hz. (B) A comparison of merging versus 

non-merging of time points for neomycin trials A-C. Merging of time 

points had no significant effect on the outcome of the startle assay 

(two-way ANOVA followed by Bonferroni’s MC test). Data points shown 

in (B) are the average of 3 trials (n of 12 per treatment group per trial). 

Error bars represent SEM.  
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4.15 The final startle assay  

4.15.1 Standard Operating Procedure 

A standard operating procedure was designed, based on the results of the 

optimisation of the assay. For full details of the protocol see Chapter 2, Section 

2.9.6 and Appendix 2. 

4.15.2 Macros 

Macros were designed in Microsoft Excel in order to process the high volume of 

data effectively (see Appendix 1 and Supplementary Material disk for original 

macro files).  

4.16 Investigating the effects of circadian rhythm on larval 

activity 

In light of evidence that circadian rhythm could affect movement, it was 

necessary to examine the effect of time of day on baseline activity and startle 

reactions (Burgess and Granato, 2008; Cahill et al., 1998; Hurd et al., 1998).  

4.16.1 Effects on baseline activity  

Figure 4.20 shows the data obtained from testing the effects of time of day on 

baseline activity. For comparisons, two averages were used: total distance 

travelled over the 60 s recording period (Figure 4.20 A, C), and the average 

speed of larvae during the period in which they were detected (by tracking 

software; Figure 4.20 B, D). When data were compared for all three control 

groups (AM versus PM), time of day had a significant effect on baseline activity 

(Figure 4.20 A, B). Larvae travelled further (230.4 ± 7.086 compared with 208.8 

± 6.923 mm respectively; Mann Whitney U Statistic = 7816, n1 = n2 = 138, P = 

0.0101) and faster (4.021 ± 0.1223 compared with 3.66 ± 0.1101 mm s-1 

respectively; t = 2.195, 276 d.f., P = 0.029) in the morning than in the afternoon. 

When data were compared only for control group three (the control group used 

in the final assay to statistically analyse data), time of day did not affect baseline 

activity (Figure 4.20 C, D). There was no significant difference in average 

distance travelled (214.4 ± 14.07 compared with 207.3 ± 13.15 mm 

respectively; t = 0.3656, 87 d.f., P = 0.7155) or speed (3.843 ± 0.2556 

compared with 3.588 ± 0.2152 mm s-1 respectively; t = 0.7585, 87 d.f., P = 

0.4502) between the morning and the afternoon.  
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4.16.2 Effects on startle response 

Figure 4.21 shows the data obtained from testing the effects of time of day on 

startle response. The average high speed AER was used for analysis. When 

data were compared for all three control groups (AM versus PM), time of day 

had no significant effect on startle response (Figure 4.21 A; 1.794 ± 0.1078 

versus 1.980 ± 0.1127 mm; Mann Whitney U Statistic = 9475, n1 = 143, n2 = 

142, P = 0.3296). Additionally, there was no significant difference in average 

high speed AER between the morning and the afternoon when control groups 

when examined individually (Figure 4.21 B-C).  

  



Figure 4.20:The effects of time 

of day on baseline activity of 

animals. (A) The overall 

distance travelled in a 60 s video 

recording for all three control 

groups (morning versus 

afternoon). (B) The average 

speed of larvae during the period 

of detection for all three control 

groups (morning versus 

afternoon). In a comparison 

including all three control 

groups, the baseline activity of 

larvae is significantly reduced in 

the afternoon. (C) The overall 

distance travelled in a 60 s video 

recording for control group three 

only (morning versus afternoon). 

(D) The average speed of larvae 

during the period of detection for 

control group three only 

(morning versus afternoon). In a 

comparison of control group 

three only, baseline activity is 

unaffected by time of day. All 

data are represented as mean 

average values, error bars are 

the SEM.  
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Figure 4.21: The effects of 

time of day on startle activity. 

(A) The average high speed 

distance travelled in response to 

auditory stimulation for all three 

control groups (morning versus 

afternoon). (B) The average high 

speed distance travelled in 

response to auditory stimulation 

for control group one (morning 

versus afternoon). (C) The 

average high speed distance 

travelled in response to auditory 

stimulation for control group two 

(morning versus afternoon). (D) 

The average high speed 

distance travelled in response to 

auditory stimulation for control 

group three (morning versus 

afternoon). (A-D) Time of day 

does not appear to affect the 

noise-evoked startle response in 

control animals. All data are 

represented as mean average 

values, error bars are the SEM.  
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Discussion 

4.17  The assessment of Larval Startle was constrained by the 

limitations of the equipment  

4.17.1 Speaker 

The range of frequencies that could be used to elicit the startle response in 

larvae was limited by the size of the speaker. The large 15” speaker used in the 

assay had a frequency range of 35 Hz to 4 kHz; this range could theoretically 

assess the response of the lateral line (frequencies up to ~ 200 Hz) and the ear 

(frequencies above ~ 200 Hz) to auditory stimulation. Frequency range was 

further limited by the output of the amplifier and the response of larval fish to the 

sinusoid. The large speaker was chosen with this in mind. There was a balance 

between obtaining an even spread of signal across a large diameter and 

obtaining frequencies within the higher range. Although it would be feasible to 

optimise the assay for an additional small speaker capable of vibrating at higher 

frequencies, this would only provide information concerning the ability of larvae 

to respond to higher frequencies and not further information about ototoxic 

effects. Other assays have shown that larval zebrafish can respond to 

frequencies of up to 1200 Hz using broadband vibrational stimuli created by a 

shaker (Burgess and Granato, 2007; Burgess et al., 2009; Zeddies and Fay, 

2005).  

4.17.2 Lighting 

Problems with lighting conditions in the laboratory meant that an on/off flicker 

could be seen on playback of video recordings. As a consequence, it was 

necessary to reduce the frame rate of the camera. By improving the lighting, the 

frame rate could have been increased, enabling the in-depth kinematic type 

analysis of the startle response (Burgess and Granato, 2007; Fontaine et al., 

2008). A way of solving this problem would have been to custom make and fit 

an infrared lighting system similar to the one used in the Viewpoint Inc. 

ZebraBox; this would have been designed in the shape of a ring and positioned 

around the camera, preventing shadows from the camera obscuring the view of 

the plate. Despite the decreased frame rate, it was still possible to carry out 

valuable analysis of the zebrafish response to acoustic stimulation and to 

distinguish between larval startle response and general high-speed movements 
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on playback. The tracking used was a somewhat more sophisticated method of 

analysis than the frame subtraction method used by others, which can only 

really detect if any movement has occurred (Bang et al., 2002; Zeddies and 

Fay, 2005).  

4.17.3 On/Off click at high frequencies 

An audible on/off click was encountered at the higher frequencies (above 800 

Hz) due to the requirement to drive the stimulus at higher amplitudes. In order 

to fix this problem it was necessary to add a switch into the circuit between the 

amplifier and speaker that limited the stimulus duration to less than ~ 100 ms. 

The modification was unsuccessful in trials and was therefore not adopted, 

leading to the removal of higher frequencies from the assay.  

4.17.4 Extraneous noise 

As far as possible, extraneous noise was excluded from the assay during the 

equilibration and assay periods. Unfortunately, the equipment that maintained 

the laboratory at 28ºC also made a constant gentle humming noise. The only 

sure way of eliminating extraneous noise would have been to carry out all of the 

experiments in an anechoic chamber. 

4.17.5 Triggering 

In order to streamline the video recording and analysis of the startle response, 

attempts were made to use a trigger that would activate the camera recording at 

the same time as the stimulus onset. However, the trigger did not work for 

technical reasons and as such all recordings were carried out manually. This 

meant that the AER did not always take place at exactly the same time in all of 

the video recordings. In order to overcome this problem, a macro was designed 

in Microsoft Excel that could take the raw data and automatically determine 

when the startle response was occurring. This method was 100% accurate in 

the example recordings and provided an adequate alternative to triggering the 

recording.  

4.18  Multiple types of larval startle were observed 

As described in Section 4.2, there are alternative types of startle reflex. When 

the video recordings were reviewed by eye, both C- and S-starts (Kimmel et al., 

1974; Liu et al., 2012) were observed. When the videos were examined in more 
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detail, it was possible to pick out both short and long latency C-starts (SLC and 

LLC respectively). Responses were classified manually: S- and C-starts were 

coded as “S”/”SE” while LLCs were coded “MS”, “LS” or “VMS”. The 

observation of all of these types of escape response is suggestive that the 

optimised stimuli can elicit the full array of noise evoked responses. All types of 

startle were included in the final dataset where possible. Occasionally, due to 

the threshold setting procedure, some mild startles (LLCs) may have gone 

undetected. 

4.19  Determining the startle threshold of control larvae 

required compromise 

4.19.1 Detection threshold for individual larvae 

Setting the threshold for the detection of individual animals was an important 

process in ensuring accurate tracking of the larvae. This was because the 

algorithms for detection of startle and baseline movement were dependent upon 

detection of the animal in each well plate. The threshold for animal detection is 

set when an adequate number of pixels are displayed over each fish; these 

pixels define the centre of gravity. The threshold for larval detection was set to 

115; this was the best possible threshold to detect the larvae over the 20 

sample videos. Occasionally, this general threshold setting meant that some 

fish were not detected by the software, even though they were clearly moving. 

As a consequence, some fish were inaccurately tracked in baseline activity and 

startle experiments (example seen in Figure 4.8 B). This was mainly a problem 

when assessing baseline activity. To account for this, baseline activity was 

displayed in two ways 1) the total distance moved during the recording 2) the 

total distance moved divided by the amount of time detected by the tracking 

software (not the total time of the recording).   

4.19.2 Startle threshold 

The threshold chosen to define a high-speed AER was 21.1 mm s-1. This 

threshold struck a good balance between stringency and detection of startle, 

showing a good concurrence between the Viewpoint traces and the scoring by 

eye. However, even with this optimised threshold, there were still discrepancies 

between automated detection and scoring by eye. There were a number of 

explanations for this. The most common explanation was that it was difficult to 
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separate a mild startle from a fast movement. Another frequently encountered 

reason for a mismatch was that larvae were difficult to track at the edges of 

wells. Less often, fish were unresponsive to the stimulus but performed an 

unrelated movement within the 1 s tracking time. Very occasionally, fish went 

undetected due to the software or startled with a duration of less than 100 ms 

and were tracked in the “small distance” category (a limitation of the software). 

Although the threshold for the startle was a compromise, the data obtained by 

tracking does closely match the scoring by eye and is adequate for a medium 

throughput design. To further refine the assay, more thresholds could be tested 

between 21.1 and 26.6 mm s-1. Interestingly, 21.1 mm s-1 is similar to the 

threshold set to detect hyperactivity in seizure liability testing (>20 mm s-1), 

although the movement patterns are very different (single bend versus 

continuous high-speed circling of the well; Winter et al., 2008).  

4.20  Control compliance of larvae in the startle assay was 

dependent on many factors, including raising density and 

inter stimulus interval 

A major obstacle in examining larval AERs is that short latency C-starts are 

probabilistic (Burgess and Granato, 2007). In the current investigation, early 

testing showed that only 40% of untreated larvae responded to each stimulus. A 

number of parameters were altered in order to increase the control compliance 

of animals, thus optimising the assay. In particular, raising density, ISI duration 

and plate type were found to be key determinants of control compliance. 

Refining these factors resulted in a final control compliance overall of 49.2%.  

Previous work has shown that larval husbandry conditions can have a direct 

effect on animal sensitivity to auditory stimuli. Larvae raised at lower densities 

show increased responsiveness (Burgess and Granato, 2008). The data 

presented here fit with this, and suggest that AER is significantly greater in 

animals raised under low density conditions. Larval development appeared to 

be unaffected in the large sample of animals tested, meaning that the observed 

effect is probably not explained by detectable alterations in development. More 

likely, larvae raised at a higher density will be exposed more often to vibrational 

stimuli through the water, due to a higher number of surrounding larvae 

performing swim bursts. This higher background level of underwater motion and 
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therefore increased stimulation may desensitise the larval zebrafish to 

subsequent artificial stimuli (Domenici, 2010). 

It is well recognized that repeated exposure to a stimulus results in a gradual 

decline in response (Rankin et al., 2009; Thompson and Spencer, 1966). This 

form of non-associative learning is called habituation. Larval zebrafish are 

capable of habituation to repeated stimuli, including tone bursts. In support of 

this, deliberate induction of habituation was shown here using an inter-stimulus 

interval (ISI) of 1 second. To determine the duration between stimuli that could 

prevent habituation, the larval response to different ISIs was investigated. The 

current data showed that movement elicited by the first auditory stimulus is 

significantly greater than that brought about by successive stimuli; this is in 

agreement with a previous study of habituation in larval zebrafish (Best et al., 

2008). This result justified the removal of the first stimulus from further testing, 

as the immediate alteration in response between stimulus one and two is not 

classed as a habituation effect. Experimental data showed that habituation did 

not occur over repeated stimuli with an ISI of 45 seconds or longer; this is in 

agreement with work by Zeddies and Fay (2005) who used an ISI of 105 ± 30 

seconds to prevent a decrease in response to stimulation. Previous studies 

have used an ISI of 15-20 seconds, which was shown to be insufficient to 

induce habituation (Best et al., 2008; Burgess et al., 2009). In contrast, the data 

generated here show that an ISI of 30s can reduce the responsiveness of the 

larvae over ten repeated stimuli. These minor discrepancies in larval habituation 

are most likely due to inter-strain variation and different experimental 

methodology between studies. I selected an ISI of 60 seconds with a random 

variation of up to 20 seconds to prevent habituation. This 60 second gap also 

streamlined the experimental protocol, allowing time for video processing to be 

carried out in between each stimulus. 

In early pre-clinical screens, it is important to maximise the quality and 

throughput of assays by increasing sample size. I compared larval AERs 

between 24- and 48-well plates in order to test whether the capacity of the 

current assay could be increased by using more wells per experiment. 

Unfortunately, the data indicated that the best response could be observed 

using 24-well plates. This result limited the throughput of the assay and 
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introduced a necessity for staggered treatments to obtain an appropriate 

number of animals per treatment group. Importantly, using 24-well plates 

provided more robust data with lower variability overall.  

4.21 Time of day did not affect baseline activity or larval startle 

in the optimised assay 

Previous studies have suggested that time of day can have a significant effect 

on locomotor behaviours in larval zebrafish (Burgess and Granato, 2008; Cahill 

et al., 1998; Hurd et al., 1998). Although time of day had an effect on baseline 

activity over all three concentrations combined in the current study, it did not 

appear to affect control groups two or three individually. Control group three 

was used as the pre-determined control group to analyse the locomotor and 

startle activity of zebrafish in the assay. Time of day had no effect on startle 

response for any of the control groups, combined or taken individually. Taken 

together, these data suggested that there was no difference in behaviour 

between the morning and afternoon recordings. In reality, it is unlikely that a 

difference of approximately 4 hours or less during an artificial light period would 

have a large effect on activity. This result should be viewed with some caution 

however, as data were analysed retrospectively and also animals were at 

slightly different stages of development. Further analysis of animals would be 

necessary to confirm this finding.  

4.22  Improving the design of the assay gave promising 

preliminary results 

Additional control treatment columns were included in the plate design at the 

expense of a range of test compound concentrations. The preliminary results 

obtained from neomycin testing were improved by using this new plate design 

instead of the initial plate design.  

By creating re-useable macros in Excel, it was possible to greatly reduce the 

time taken to process the high volume of data obtained through the visual 

tracking software for the neomycin test. These macros could be used to process 

the data obtained for each new compound in the main startle assay.  
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Designing a simple standard operating procedure and proforma (Appendix 2) 

for the startle assay ensured consistency in performing the experiments, making 

the results more reliable.  

4.23 Concluding remarks 

The startle assay was optimised for a number of conditions, ensuring the best 

possible responses in control larvae. The assay was pilot tested and the design 

of the assay was adjusted to ensure that the most accurate data could be 

obtained. Using this optimised assay it was possible to assess the effects of 

compounds of interest on larval auditory evoked responses. The chapter that 

follows summarises and discusses the results of the functional testing of larval 

AERs, rheotaxis and underwater motion detection following compound 

exposure.  
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Chapter 5 The Effect of Ototoxins on the 

Function of the Lateral Line 

Introduction 

5.1 Aim 

The aim of the work described in this chapter was to exploit the optimised 

startle assay (Chapter 4), in combination with additional reflex-based assays, to 

investigate the functional consequences of exposure to selected ototoxins. 

Additional aims were to assess the relative sensitivities of these functional 

assays and to determine the suitability of the zebrafish to model hearing 

impairment using functional assessment.  

5.2 Assays of zebrafish acousticolateralis function 

5.2.1 Startle 

As described in Chapter 4, acoustically-evoked startle is an indicator of the 

function of the lateral line in zebrafish. The startle response is conserved in 

many higher order species including humans. In humans, the audiogenic startle 

reflex is characterised by eye closure, grimacing, neck flexion, trunk flexion, 

abduction of the arms, bending of the elbows and pronation of the forearms 

(Jacobson, 1926; as reviewed by Dreissen et al., 2012; Wilkins et al., 1986). In 

patients with hearing loss, the audiogenic startle is reduced or non-existent. 

This is also the case in other vertebrates such as rodents and mice (Carlson 

and Willott, 1996; Horlington, 1968; Jaspers et al., 1993; Koch, 1999; Willott et 

al., 1998). A principle aim of the current study was to investigate whether the 

startle reflex in fish was reduced in response to hair cell damage, thus 

mimicking the result in humans and other higher vertebrates. The hypothesis 

was that test substances that caused a significant increase in hair cell damage, 

(as indicated by reduced DASPEI fluorescence) would also reduce the 

response of larval zebrafish to sinusoidal tone bursts over a range of 

frequencies, alongside other indicators of response impairment. 

5.2.2 Rheotaxis 

The ability of larvae to orientate to, and swim against, currents is termed 

rheotaxis (Arnold, 1974). This behaviour is conserved in many fish species and 
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can be observed as early as 5 dpf in free-swimming zebrafish larvae (Baker and 

Montgomery, 1999a; Baker and Montgomery, 1999b; Baker and Montgomery, 

2001; Coombs et al., 2001; Montgomery et al., 1995; Olszewski et al., 2012; 

Suli et al., 2012); it plays an important role in natural behaviours such as station 

holding (holding position in flowing water), breeding and feeding (Arnold and 

Weihs, 1978; Montgomery et al., 1995). Historically, it was proposed that the 

visual and tactile systems were the key mediators of rheotaxis but it is now 

known that the hair cells of the mechanosensory lateral line are also key 

mediators of the behaviour in zebrafish (Johnson et al., 2007; Olszewski et al., 

2012; Suli et al., 2012) and other fish species. A number of studies in adult fish 

have shown that ablating the hair cells of the lateral line can decrease the 

rheotactic ability of the animal (Baker and Montgomery, 1999b; Montgomery et 

al., 1997), however little is known about the effect of such damage on rheotaxis 

in larvae. Here, rheotactic behaviour in response to artificial circular currents 

was examined in larvae treated with ototoxins. It was hypothesised that lateral 

line-specific hair cell damage induced by ototoxins would lead to a reduced 

rheotaxis score. 

5.2.3 Motion detection  

The lateral line is capable of detecting subtle changes in water flow created by 

both stationary and moving objects, sensing “touch at a distance” (Dijkgraaf, 

1963; Montgomery et al., 1995). Consequently, the seeker response test has 

previously been used to assess the responsiveness of animals following 

exposure to compounds that may reduce sensitivity to stimulation (e.g. 

hypnotics and sedatives, see Winter et al., 2008). In the context of the current 

study, the seeker response (SR) test served to answer two questions: are 

larvae responsive to water flow disturbances? And; do they retain 

neuromuscular function after compound exposure? A previous study using a 

flow stimulus to induce startle responses has shown that neomycin treatment 

causes a decreased responsiveness to water flow (McHenry et al., 2009). 

Therefore, the hypothesis was that treatment with ototoxins would result in a 

reduced seeker response score and that negative compounds would have no 

discernible effect. 
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Methods 

The techniques described in Chapter 2 were used to perform the assays to 

detect the functional consequences of exposure to test compounds. For full 

methods, see Sections 2.4.4, 2.9.6 to 2.11 and 2.13. 

Results 

5.3 Assessment of the larval startle response after ototoxin 

exposure  

The startle assay measured the larval high-speed response to a set of eight 

individual auditory stimuli. The standard response in control animals is a high-

speed escape, characterised by whole body bending and burst movement 

(AER). 

5.3.1 The outcome of treatment with positive test compounds 

Results from the startle assay are shown in Figure 5.1. As predicted, larvae 

treated with neomycin trisulphate, streptomycin sulphate, gentamicin sulphate 

and aspirin displayed a significantly reduced high-speed escape response to 

auditory stimulation. For all the compound treatments except gentamicin 

sulphate, the reduction in startle response could only be detected at 

concentrations that damaged nearly all the hair cells; these concentrations were 

based on data from the DASPEI fluorescence assay. At the estimated IC50 level 

for neomycin, streptomycin and aspirin (50% reduction in fluorescence score) 

there was no significant decrease in auditory evoked startle, despite an 

apparent qualitative reduction in larval responsiveness.  

  

  



Figure 5.1: Certain 

compounds caused 

a concentration-

dependent decrease 

in larval startle 

response following 

histological damage.  

Panels (A) to (I) are 

for different 

compounds. 

Neomycin (100µM ) 

was the positive 

control used. 

Minimum of 36 larvae 

pooled from 3 

experimental repeats 

per condition. All data 

were analysed using 

the Kruskal-Wallis 

test, followed by 

Dunn’s multiple 

comparison test. 

Statistical significance 

compared with the 

control group is 

indicated by asterisks. 

For details of 

compound exposures, 

see Table 2.1. 
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It was hypothesised that all compounds that caused a concentration-dependent 

reduction in DASPEI fluorescence in the pLL would also significantly reduce the 

larval AER. Contrary to this, larvae exposed to cisplatin and copper sulphate did 

not display a significantly decreased AER at the concentrations required to 

cause maximal loss of fluorescence in the DASPEI assay (Figure 5.1 D and E). 

In both cases, a mild but non-significant decrease in response was observed at 

the top concentration (cisplatin = 13.2% decrease, copper sulphate = 16.6% 

decrease). This “false negative” result suggested that the hair cells of the pLL 

were not fully damaged by the treatment, despite small the decrease in 

fluorescence.   

5.3.2 Investigating hair cell integrity in compounds that gave a false 

negative result 

5.3.2.1 Cisplatin 

One explanation for the unexpected negative result for cisplatin is that during 

the course of the study, two different samples of the compound were used. Both 

samples of cisplatin were of the same product code and specification from 

Sigma-Aldrich, although by necessity were from two separate batches.  Batch 

029K1426 was used at the University of Sheffield for the hair cell assay, but 

could not be reordered for use in the functional assessment at AstraZeneca, 

Brixham. When the hair cell assay was repeated, the second batch of cisplatin 

(069K1236) showed variable results: a higher concentration was required to 

reduce the DASPEI staining in the majority of the hair cells, shifting the 

concentration response curve to the right (Figure 5.2) compared to batch 

029K1426. The estimated IC50 for batch 029K1426 was 14.5 µM (95% 

confidence level = 8.2 µM to 25.5 µM) compared to 143.2 µM (95% confidence 

level = 88.8 µM to 231.0 µM) for batch 069K1236. It is possible that the AER of 

larvae would have been significantly affected at a higher concentration of batch 

069K1236 of cisplatin, as more of the cells would have been damaged.  
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5.3.2.2 Copper sulphate 

As an alternative assessment of hair cell integrity following exposure to copper 

sulphate, the transgenic line Tg(pou4f3::mGFP)s356t was used to examine hair 

cell GFP expression. In transgenic larvae treated with 1 µM copper sulphate, 

GFP expression was unaltered in pLL hair cells up to one hour post-treatment, 

despite a reduction in live hair cell labelling with DASPEI and FM1-43FX. 

However, neomycin treatment at the top concentration reduced GFP expression 

in the posterior lateral line (refer to Chapter 3 Figures 3.7 and 3.18). The 

retention of GFP-positive hair cells in the lateral line of larvae exposed to 

copper could indicate that some hair cell functionality remained, accounting for 

the unaltered AER. GFP expression in the Tg(pou4f3::mGFP) line is an 

additional indicator of hair cell viability, along with DASPEI or FM1-43FX 

staining, which appeared more sensitive to minor hair cell damage. 

5.3.3 The role of the ear in maintenance of the startle response following 

hair cell damage to the lateral line 

Treatment at the highest concentrations of all the ototoxins never completely 

abolished the larval AER (Figure 5.1), suggesting that some other sensory 

component may also contribute to the startle response. This additional sensory 

component is most likely the ear. In support, the inner ear hair cells of the 

transgenic Tg(pou4f3::mGFP) line retained a high level of GFP expression and 

the correct morphology after acute exposure to the ototoxins by immersion, 

even when GFP expression in the pLL was reduced or eradicated (Figure 3.18). 

It is probable that the ototoxins were unable to enter the inner ear, and thus 

inner ear hair cells were protected from damage. These observations indicate 

that the ear may play a role in mediating the larval startle response. 

5.3.4 The outcome of treatment with negative control compounds 

As expected, treatment with the negative control compounds amoxicillin, 

cefazolin and melphalan had no significant effect on the response of animals to 

auditory stimulation (Figure 5.1, G-I). This supported the results of the DASPEI 

assay that showed staining in the lateral line was unaffected by immersion in 

solutions of these compounds.  



Figure 5.2: Treatment of larvae with different batches of cisplatin shifts the concentration response curve and IC50 value. (A) 

Larvae treated with batch 029K1426. The hair cell MTC is approximately 100 µM and the estimated IC50 is 14.5 µM. (B) Larvae 

treated with batch 069K1236. The hair cell MTC is approximately 1 mM and the estimated IC50 is 143.2 µM. Data are pooled from 

three repeats for each compound, minimum n of 36 per treatment group. Data were analysed using the Kruskal-Wallis test, followed 

by Dunn’s multiple comparison test. Statistical significance compared with the control group is indicated by asterisks.  
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5.3.5 The effects of compounds over individual frequencies 

The results from the startle assay displayed in Figure 5.1 show the average 

AER of each of the larvae over all of the frequencies combined. The responses 

of larvae at individual frequencies were examined in order to probe the 

frequency sensitivity of the lateral line. It was hypothesised that the decrease in 

AER would be more apparent at lower frequencies where there was less 

contribution from the inner ear. In theory, damage solely to the lateral line could 

act to separate the roles of the lateral line and ear in frequency discrimination. 

The results for neomycin are as shown in Figure 5.3.  
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At most frequencies, a significant decrease in AER was observed at the top 

concentration of neomycin but not at the IC50 level (Table 5.1). There was no 

change in AER at either treatment level compared to the solvent controls at 40 

Hz and 100 Hz. This result was surprising, as it was expected that the functional 

damage to the lateral line would be more evident below 200 Hz. The best 

frequency for detection of functional damage in neomycin treated larvae was 

200 Hz. At this frequency, a significant decrease in AER was seen at the IC50 

and at the top concentration (Kruskal-Wallis test followed by Dunn’s multiple 

comparison test; H = 12.63, 2 d.f., P = 0.0018).  

In all other compound treatments, the individual frequency response to auditory 

stimulation was inconsistent (Table 5.1). For example, with streptomycin 

treatment significant alterations in AER were observed at the top-concentration 

level at 100 Hz and 200 Hz. For gentamicin, a reduction in AER was observed 

only at 50 Hz with the highest concentration of treatment. Aspirin treatment at 

300 µM resulted in a decrease in AER at 40 Hz and 200 Hz. From these data 

combined, there was no clear pattern to indicate which frequency was most 

affected by exposure to ototoxins in general (i.e. lateral line hair cell damage). 

For the assay to indentify an individual ototoxin successfully, the frequencies 

had to be pooled together, rather than examined individually. By combining the 

data, it was possible to look at the overall change in response to auditory 

stimulation elicited by each compound.  

 

  



Figure 5.3: The response of neomycin treated larvae to auditory 

stimulation at different frequencies. Data were pooled over three repeats. 

A minimum 36 larvae per treatment group were tested. Data were analysed 

using the Kruskal-Wallis test, followed by Dunn’s multiple comparison test. 

Statistical significance compared with the control group is indicated by 

asterisks. The stimulus frequency increases from panels (A) to (H). 
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Test Substance Frequency (Hz) Control vs. IC50

Control vs. Top 

concentration

40 ns ns

50 ns *

100 ns ns

150 ns **

200 ** **

300 ns *

400 ns *

500 ns *

40 ns ns

50 ns ns

100 ns *

150 ns ns

200 ns ***

300 ns ns

400 ns ns

500 ns ns

40 ns ns

50 ns *

100 ns ns

150 ns ns

200 ns ns

300 ns ns

400 ns ns

500 ns ns

40 ns ns

50 ns ns

100 ns ns

150 ns ns

200 ns ns

300 ns ns

400 ns ns

500 ns ns

40 ns *

50 ns ns

100 ns ns

150 ns ns

200 ns *

300 ns ns

400 ns ns

500 ns ns

40 ns ns

50 * ns

100 ns ns

150 ns **

200 ns ns

300 ns ns

400 ns ns

500 ns ns

134b

Table 5.1: The 

effects of ototoxins 

at individual test 

frequencies. 

Minimum of 36 larvae 

per treatment group 

and frequency. 

Significance is 

denoted by asterisks.

Copper Sulphate

Neomycin

Streptomycin

Gentamicin

Cisplatin

Aspirin
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5.4 Can a reduction in AER due to ototoxins be rescued by 

increasing stimulus volume? 

In mammalian studies, a widely used functional readout of hearing loss (and 

otoprotection) is the hearing threshold change. Consequently, the usefulness of 

the startle assay in measuring threshold changes in larval zebrafish was 

assessed in the current study. Results of the preliminary experiment in control 

and neomycin treated larvae are shown in Figure 5.4. Linear regression was 

used to analyse the effects of increasing stimulus volume on the larval AER. In 

control animals, increasing the volume of the stimulus from -30 dB TP to -15 dB 

TP had no significant effect on the larval AER (linear regression; r2 = 0.0011, 

F(1, 275) = 0.3058, P = 0.5807). In larvae treated with 100 µM neomycin, where 

the startle response was significantly attenuated, increasing the stimulus 

volume resulted in a significant rescue of AER (linear regression; r2 = 0.01573, 

F(1, 257) = 4.107, P = 0.0437). This rescue was especially marked at the 

highest volume (-15 dB TP) where the result for both treatment groups 

overlapped (4.117 ± 0.46 for controls and 3.870 ± 0.64 for neomycin treated 

animals). Thus, neomycin treatment increased the threshold for AER. 
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5.5 Baseline recording 

Baseline recordings were analysed to ensure that the alterations in AER that 

were observed were not due to neuromuscular stimulant or sedative effects of 

the compounds.  

5.5.1 Increased activity 

As summarised in Table 5.2, treatment with amoxicillin caused a significant 

increase in the average total distance travelled during the recording period, 

compared to the control group (one-way ANOVA; F (2, 95) = 4.914, P = 

0.0093). Acute exposure to amoxicillin caused a significant increase in average 

total movement from 156.6 ± 9.85 mm to 195.8 ± 8.94 mm; this increase was 

observed only at the mid concentration but not at the top concentration. Despite 

this, there was no overall change in activity observed for speed (during the 

period of larval detection; Kruskal-Wallis test; H = 4.977, 2 d.f., P = 0.0831), 

suggesting the observed increase was artifactual, rather than biologically 

significant. For all other compounds, there was no significant increase in 

baseline activity between control and treated groups. 

5.5.2 Decreased activity 

There was no significant decrease in either the average speed of treated larvae 

over the time detected or the average total distance moved when the majority of 

compounds were compared to control groups (Table 5.2). Treatment with 

neomycin, however, coincided with a significant decrease in overall activity 

during detection time (Kruskal-Wallis test; H = 15.83, 2 d.f., P = 0.0004) and in 

the average distance travelled (Kruskal-Wallis test; H = 15.92, 2 d.f., P = 

0.0003). Acute exposure to 100 µM neomycin resulted in a significant decrease 

in average speed compared to untreated larvae (Dunn’s multiple comparison 

test; 2.119 ± 0.23 compared with 3.467 ± 0.20 mmsec-1 respectively; P < 0.05) 

and in total distance moved (Dunn’s multiple comparison test; 104.3 ± 13.34 

compared with 191.8 ± 13.77 respectively; P < 0.05), suggesting some 

impairment of locomotor activity.  

 

  



Figure 5.4: The threshold response of larvae to auditory stimulation is shifted by neomycin treatment. The response 

of larvae is significantly rescued by increasing the volume of the stimulus. Data were analysed using linear regression.  Data 

were pooled from three experimental repeats. A minimum 36 larvae per treatment group were tested for each frequency.   
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Test substance 

Significant 
change in 

baseline activity 
over time 
detected? 

Statistical Data 
(ANOVA/Kruskal-

Wallis) 

Concentration 
required to 
significantly 
increase/ 

decrease activity 
level? 

Significant 
change in 

total distance 
travelled?

Statistical Data 
(ANOVA/Kruskal-

Wallis) 

Concentration required to 
significantly increase/ 

decrease activity level? 

neomycin Yes H  = 15.83, 2 d.f ., 
P  = 0.0004

100 µM (P < 0.05, 
Dunn’s post-test)

Yes

H  = 15.92, 2 d.f ., P  = 
0.0003

100 µM (P < 0.05, Dunn’s 
post-test)

streptomycin No F (2,93) = 0.6848, 
P  = 0.5067 

No

gentamicin No H  = 1.261, 2 d.f., 
P = 0.5324 No

cisplatin Yes F (2,100) = 4.231, 
P = 0.0172

None

Yes

F (2,100) = 5.255, P = 
0.0068

None

aspirin No F (2,94) = 1.655, 
P  = 0.1966 No

copper sulphate No F (2,94) = 1.825, 
P = 0.1669 No

amoxicillin No H  = 4.977, 2 d.f., 
P = 0.0831

Yes

F (2,95) = 4.914, P = 
0.0093

Mid dose only (P < 0.05, 
Dunnett's post-test)

cefazolin No F (2,98) = 0.3355, 
P = 0.7158

No

melphalan No F (2,98) = 0.6207, 
P  = 0.5397

No

Table 5.2: Movement profiles from drug-treated larvae identify potentially sedative effects of compounds. Neomycin treatment
reduced the average speed of unstimulated larvae. All other histologically positive and negative compounds had no significant reduction in
average speed of the larvae over the time they were detected for. Amoxicillin at the IC50 level caused an increase in total distance moved

(mm). Minimum of 36 larvae pooled from 3 experimental repeats per condition. Statistical tests performed were one-way ANOVA (followed
by Dunnett's multiple comparison tests) or Kruskal-Wallis test (followed by Dunn’s multiple comparison test). 
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To investigate further, neomycin was re-examined using the final startle protocol 

alongside two concentrations of MS222 anaesthetic (0.1 µg/mL or 0.0125 

µg/mL). The purpose of the extra tests was to assess the possibility that 

neomycin had sedative effects. The higher concentration of anaesthetic induced 

a state of full sedation and non-responsiveness after only a few minutes. The 

lower concentration was insufficient to cause full sedation after a 30 minute 

exposure and caused only a mild decline in responsiveness and activity. The 

average speed of neomycin-treated larvae was significantly faster than heavily 

sedated larvae (Figure 5.5; 2.409 ± 0.27 mmsec-1 versus 1.229 ± 0.21; P 

<0.05), but no different from the lower concentration of MS222 (2.409 ± 0.27 

versus 2.572 ± 0.19 mmsec-1). The average total distance moved was 

significantly different between neomycin treatment and heavy sedation (132.7 ± 

14.94 versus 55.56 ± 11.18; P <0.05). There was no significant difference in 

average total distance moved between neomycin treatment and light sedation 

(132.7 ± 14.94 versus 148.8 ± 11.79; P >0.05). This data suggested that the 

effects of 100 µM neomycin treatment were comparable to light, not heavy, 

sedation. Additional tests were carried out using rheotaxis and SR to identify 

any differences between neomycin treatment and light sedation groups (see 

Section 5.6.3). 
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5.6 Additional functional testing 

5.6.1 Rheotaxis tests 

As shown in Table 5.3, treatment with the aminoglycosides (neomycin, 

streptomycin and gentamicin), cisplatin and aspirin resulted in significant 

disruption to rheotactic behaviour. Treatment with neomycin and gentamicin at 

the IC50 level was sufficient to decrease rheotaxis score (Bonferroni’s multiple 

comparison test, P < 0.01; 22.2% reduction for neomycin, 15.3% reduction for 

gentamicin). In contrast, the highest concentration of compound was required to 

reduce rheotaxis score with streptomycin, aspirin and cisplatin treatment 

(Bonferroni’s multiple comparison test, P < 0.05; 15.3% reduction for 

streptomycin, 21.3% reduction for aspirin, and 11.1% reduction for cisplatin). 

Interestingly, copper sulphate treatment did not significantly impair rheotactic 

behaviour at either concentration. At the concentration of copper sulphate 

required to decrease DASPEI fluorescence in majority of hair cells, there was 

an 18% decrease in rheotaxis but this did not achieve statistical significance. In 

the solvent and negative control treated groups, there was no change in 

rheotaxis score following treatment (Bonferroni’s multiple comparison test, P > 

0.05).  

 

  



Figure 5.5: The effects of 

neomycin versus MS222 

on the movement profile, 

rheotaxis and SR score 

of larvae. (A) and (B) 

Examination of the 

baseline movement 

profiles of larvae treated 

with top concentration 

neomycin or anaesthetic 

(analysed using Kruskal-

Wallis test and Dunn’s 

post-tests). (C) and (D) 

Rheotaxis and SR scores 

alter after immersion in 

neomycin or anaesthetic. 

Data from three 

experimental trials were 

analysed using Two-way 

ANOVA, followed by 

Bonferroni multiple 

comparison tests. 

Statistical significance 

level (α) is denoted by 

asterisks (*).  
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Table 5.3: Rheotaxis scores decreased in a concentration 

dependent manner with ototoxin exposure. Data are presented as 

the percent reduction in score following treatment with either the 

water/solvent control, test compound or positive control for all test 

substances. Statistical data from post-tests are displayed in the 

adjacent column (for all post-test data, d.f. = 1). All data were analysed 

using two-way ANOVA, followed by Bonferroni multiple comparison 

tests. Minimum of 36 larvae pooled from 3 experimental repeats per 

condition. For details of compound exposure, see Table 2.1. 
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5.6.2 Seeker response tests 

Results from the seeker response (SR) assay showed that all of the ototoxic 

compounds reduced the overall SR score by at least 46% at the top-

concentration level. This suggested that the ototoxins caused a decrease in 

responsiveness to stimulation through the water in the larvae (summarised in 

Table 5.4). Larvae were still able to respond to direct touch in the SR assay 

after ototoxin exposure, indicating that neuromuscular function was not affected 

and so not the ability to respond. The negative controls, amoxicillin and 

cefazolin, had no significant effect on SR score. Melphalan treatment caused an 

unexpected 14% reduction in responsiveness at 400 µM (top-concentration 

level). In animals treated with solvent/water control there was no significant 

change in the seeker response score (Table 5.4). 
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5.6.3 Comparing rheotaxis and seeker response data in neomycin treated 

versus sedated animals. 

To identify any subtle differences between 100 µM neomycin treatment and light 

sedation, the rheotaxis and seeker response scores of the animals were 

assayed (Figure 5.5). Following light sedation or treatment with the top 

concentration of neomycin there was a significant disruption to rheotactic 

behaviour (Figure 5.5 C). Interestingly, the effects of neomycin on this 

behaviour were more pronounced; rheotaxis score was reduced by 40.3% with 

neomycin compared to 20.2% for light sedation.  

As shown in Figure 5.5 D, seeker response scores were significantly reduced 

for both treatment groups. A greater decline in responsiveness was observed 

with neomycin treatment than light sedation with MS222 (50.4% compared with 

16.5%).  

Taken together, these data show that 100 µM neomycin treatment is sufficient 

to induce a decline in movement comparable with very light sedation with 

MS222, but that neomycin exposure induces stronger effects on rheotaxis and 

SR overall. It is therefore possible that neomycin treatment (at the top-

concentration level) causes a more complex behavioural effect than sedation 

and that sedation is not the sole reason for the observed reduction in AER. 

5.7 Overall sensitivities of ototoxicity assays 

A comparison of the data collected for the DASPEI, startle, rheotaxis and 

seeker response assays can be seen in Table 5.5. The sensitivity of each assay 

in detecting the ototoxic effect of each of the positive compounds is shown. The 

startle assay was the least sensitive assay overall, as it could only detect 

changes in response at the top-concentration level in 4 out of 6 of the 

compounds assessed. The most sensitive assays were the DASPEI and seeker 

response assays. In both of these assays, all of the positive compounds (6/6) 

were detected as ototoxins at the IC50 level or lower. This result suggests that 

the startle assay is less sensitive in detecting drug-induced ototoxicity in larval 

zebrafish, and is probably more effective when used in conjunction with other 

assays for hearing impairment. 

  



Table 5.4: Seeker response scores decreased in a concentration 

dependent manner with ototoxin exposure. Data are presented as the 

percent reduction in score following treatment with either the water/solvent 

control, test compound or positive control for all test substances. Statistical 

data from post-tests are displayed in the adjacent column (for all post-test 

data, d.f. = 1). All data were analysed using two-way ANOVA, followed by 

Bonferroni multiple comparison tests. Minimum of 36 larvae pooled from 3 

experimental repeats per condition. For details of compound exposure, see 

Table 2.1 
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Table 5.5: The comparative sensitivities of the ototoxicity assays. The various sensitivities are presented for each method. The 

most sensitive assay is decided first by lowest detectable concentration effect and then by significance level (α) at that concentration.   
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Discussion 

5.8 The startle assay is an indicator of the functional damage 

induced by ototoxins 

The optimised startle assay was exploited to assess the effects of the chosen 

positive and negative compounds on the high-speed auditory evoked reflex. It 

was hypothesised that compounds that significantly decreased the DASPEI 

fluorescence score would also produce a functional effect; a measurable 

concentration-dependent decline in response to tone bursts over a range of 

frequencies. Data from the assay showed that certain ototoxins, including all of 

the aminoglycoside antibiotics and aspirin, caused a decrease in startle 

response at the maximum concentrations tested. The results of the assay agree 

with published data showing that other lateral line toxins, including cadmium 

and mercury, attenuate the C-start in other fish species (Baker and 

Montgomery, 2001; Faucher et al., 2006; Faucher et al., 2008; Weber, 2006). 

These data also concur with evidence from electrophysiological studies that 

auditory brainstem responses are reduced after gentamicin exposure in goldfish 

(Ramcharitar and Selckmann, 2010; Ramcharitar and Brack, 2010; Weber, 

2006).  

5.9  The startle assay lacks the sensitivity of the DASPEI assay 

in detecting ototoxicity 

5.9.1 Detection rate for ototoxins 

The startle assay was able to detect 67% of the positive compounds and 67% 

of negative compounds in testing. The positive control, neomycin, gave 

consistent results with a decrease in AER observed in 89% of trials. The startle 

assay was unsuccessful at consistently detecting decreases in AER at 

individual frequencies, but was a good predictor when all of the stimuli were 

combined to give a readout for each compound tested.  

5.9.2 False negative results 

The compounds cisplatin and copper sulphate were not shown to have any 

significant effect on response in the startle assay, despite giving a positive 

result in the DASPEI assay, thus giving a false negative result. The fact that the 

startle assay could not detect a decrease in AER for these compounds is 

probably explained by the high variability of response between test animals, and 
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possibly by incomplete hair cell damage, as well as batch differences between 

compounds. It is unlikely that the false negative results were caused by drug-

induced activity changes leading to decreased responsiveness to stimulation, 

as there was no significant change in baseline activity of larvae exposed to 

either compound. Data from additional experiments suggests that some hair cell 

function may remain in the lateral line even in the absence of DASPEI staining 

and this could account, at least in part, for the false negative result. Perhaps 

differences in AER effects between aminoglycosides, cisplatin and copper 

sulphate could also be explained by compound-specific cellular damage 

mechanisms, although this would require further investigation. 

5.9.3 Assay sensitivity 

Overall, the startle assay lacked some sensitivity in comparison to the DASPEI 

assay: it was only sensitive to changes in AER at high concentrations that were 

sufficient to bring about near complete loss of staining in the DASPEI assay. 

There are a number of reasons why this might be the case. A simple reason for 

this could be that the behavioural response (AER) is highly variable in animals. 

The larvae react very differently to the same stimulus, leading to greater data 

variability. One method of making the results less variable would be to assign a 

rank score to different ranges of response based on the distance moved at high 

speed. This could be similar to the scoring system applied to the simpler 

functional assays (rheotaxis and SR). This rank scoring method has the 

potential to limit the variability of the data making it easier to detect any changes 

between treatment groups. However, it must be considered that ranking the 

data would also remove a large amount of quantitative information from the 

results, as the data would no longer be continuous. 

Importantly, the sensitivity of the assay is somewhat limited because the 

measured response is probabilistic, even in control groups. This means that 

there is only approximately fifty percent response rate to each auditory stimulus 

at best. Additionally, the startle response is never completely abolished, 

presumably due to the contribution of the ear, making significant results harder 

to obtain. These factors together make any differences between groups more 

difficult to determine than if a higher compliance rate and a more marked 

decrease in AER were to be exhibited.  
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A final explanation for the low apparent sensitivity of the assay could be the 

stringency of the method for defining the stereotypical startle. In the finalised 

startle assay protocol, movements (“M”) below the high speed threshold were 

not recorded as AERs. The majority of movements below this threshold were 

characterised by a weak C-bend, but not the full range of motion expected from 

a stereotypical startle. The future inclusion of these less marked responses may 

be sufficient to increase the compliance levels in control larvae and thus make 

any compound-induced decreases in AER easier to detect. 

5.9.4 Advantages of the startle assay 

Despite its sensitivity problems, the startle assay has a number of advantages. 

The method used to test the compounds is medium throughput and high 

content, allowing for full analysis of each compound within approximately 18 

hours (including MTC, DASPEI, startle, baseline activity, rheotaxis and seeker 

response assays). The startle protocol also has the potential to be adapted for 

use in combined endpoint testing alongside other behavioural assays, for 

example, sleep/wake cycle and seizure studies that all rely on high speed video 

analysis and subsequent behavioural phenotyping (Rihel et al., 2010; Rihel and 

Schier, 2012; Winter et al., 2008). Finally, the startle assay is not limited by one 

of the main potential complications of the use of larval zebrafish in early 

toxicology screens: a reliance on compound uptake across extraneous body 

surfaces. Insufficient uptake of test compounds in other larval zebrafish assays 

can result in erroneously low potencies for certain compounds when based on 

exposure concentration (Redfern et al., 2008; Richards et al., 2008; Winter et 

al., 2008). In the current assay, this problem is circumvented as the hair cells 

are essentially directly exposed to the concentration of compound dissolved in 

the solution. 

5.9.5 Measuring threshold changes in AER using the startle assay 

A promising outcome of preliminary testing was that neomycin exposure raised 

the volume threshold for auditory evoked responses. Thus, louder sound 

volume was able to rescue the startle response back to a level that was 

comparable to control animals. This mimics the type of result seen in 

mammalian studies using ototoxins (e.g. Ciarimboli et al., 2010). By using a 
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“threshold change” assay in future experiments, it may be possible to look more 

closely at the damage induced by each ototoxin and to investigate the rescue 

effects of otoprotectants. One caveat of this experiment is that the threshold of 

non-distortion of the sine wave is exceeded at the higher volume outputs. This 

means that the results are not reflective of pure tone audiometry and data may 

be affected by a reaction to the lower frequency harmonics of the sound wave.  

5.10 The ear may play a role in larval startle 

It has previously been shown that acute exposure of zebrafish adults and larvae 

to ototoxins causes damage specific to the lateral line which does not affect the 

ear (Blaxter and Fuiman, 1989; Matsuura et al., 1971). Despite a significant 

reduction in startle response with the aminoglycosides and aspirin at the top-

concentration level, the reaction was never completely abolished. On further 

inspection using the transgenic line Tg(pou4f3::mGFP)s356t, it was found that 

hair cells in the inner ear were unaffected by immersion of the larva in ototoxins, 

whereas the hair cells of the lateral line displayed obvious damage. These 

findings are especially interesting and support the notion that the ear plays a 

role in initiating the noise-evoked startle response. This would also support the 

previous implication by Zeddies and Fay (2005) that the sacculus partly 

mediates the startle response. Further investigation will be necessary to 

separate out the roles of the ear versus the lateral line for this behaviour. For 

example, the injection protocol described in Chapter 3 could be used in 

conjunction with ototoxin exposure in order to assess the additive effects of hair 

cell damage to the inner ear on AER.  

5.11  Rheotaxis and Seeker Response assays offer sensitive 

readouts of ototoxin-induced functional damage 

5.11.1 Rheotaxis 

As an additional test of lateral line function, rheotactic behaviour in response to 

artificial circular currents was examined. The rheotactic responses were 

compared in larvae before and after ototoxin treatment. It is known that the 

mechanosensory lateral line is a key mediator of rheotaxis in zebrafish 

(Johnson et al., 2007) and other fish species (Montgomery et al., 1997). It was 

hypothesised that lateral line-specific hair cell damage induced by ototoxins 

would lead to a reduction in rheotaxis score and that this change in behaviour 
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would not be seen in solvent control and negative control-treated larvae. The 

data generated here supported this hypothesis on the whole, with 83% of the 

positive ototoxic test compounds causing a reduction in rheotaxis score. All 

negative and solvent control treatments had no effect on rheotaxis. This is in 

agreement with data from other fish species, such as whitebait and blind cave 

fish, in which exposure to certain ototoxins and heavy metals is sufficient to 

raise the threshold for rheotactic responses (Baker and Montgomery, 2001; 

Montgomery et al., 1997). Since the publication of this work (Buck et al., 2012) 

there have been two new papers investigating the contribution of the lateral line 

system to rheotaxis. In one paper, the larval response to flow was investigated 

using a closed flow system in which the effects of neomycin-induced hair cell 

damage and EDTA treatment on rheotaxis were assessed. Neomycin treatment 

was found to significantly reduce percentage rheotaxis in the absence of visual 

cues. Disruption of mechanotransduction in the lateral line hair cells with EDTA 

treatment was sufficient to attenuate rheotaxis (Suli et al., 2012). In the second 

paper, an assay was developed which could measure lateral line mediated 

rheotactic burst responses. This study found that ablation of the lateral line hair 

cells using neomycin significantly reduced the rheotactic burst response 

(Olszewski et al., 2012). The experimental findings of both of these papers are 

in agreement with the data presented here, lending support to the results.  

One unexpected result was that copper sulphate did not affect rheotaxis in the 

current assay, as this effect has previously been observed in larval zebrafish in 

response to copper exposure (Johnson et al., 2007). The effects of copper may 

have gone undetected in our investigation due to biological variation or 

insufficient levels of hair cell damage, as they cannot be explained by 

alterations in baseline activity of larvae. Nevertheless, rheotaxis tests proved 

more sensitive than the startle assay on comparison (Table 5.5).  

5.11.2 Seeker response  

The seeker response assay was the final test used to assess lateral line 

function following ototoxin treatment. Seeker response testing aimed to answer 

two questions: are larvae responsive to water flow disturbances and do they 

retain neuromuscular function after compound exposure? A previous study of 

predator evasion showed that neomycin treatment causes a decreased 
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responsiveness to directional water flow, reducing the escape manoeuvre 

(McHenry et al., 2009). This published result led to the hypothesis that 

treatment with ototoxins would cause a decrease in SR score. In the current 

study, there was an observable decrease in SR score for all of the positive 

compounds tested. This reduction in score was significant even at the IC50 level. 

It was also hypothesised that negative compounds and solvent control 

treatments would have no effect on SR score. This was true for all negative 

compounds, except melphalan, which gave an unexpected minor decrease in 

SR score. This result could not be attributed to a sedative effect, as melphalan 

treatment did not alter the activity profile of the larvae. Reduction in SR score is 

the third functional consequence of hair cell damage to the lateral line to be 

detected here. 

5.12 Sedation and seizure induction do not account for 

alterations in functional responses to exogenous stimuli 

To eliminate the possibility that the decrease in startle response caused by 

ototoxins was due to sedative effects, the activity profiles of the larvae from 

baseline recordings were analysed. With the exception of neomycin, none of the 

test substances had a significant sedative-type effect on the overall movement 

of larvae. When neomycin treatment was compared to immersion in the 

anaesthetic MS222, it appeared that the decreased activity caused by neomycin 

exposure may have been due to slight sedative effects. Interestingly, the 

decrease in baseline activity of neomycin-treated larvae could not solely be 

attributed to sedative effects, as neomycin treatment had a stronger effect on 

rheotaxis and seeker response than light sedation. These findings indicate that 

perhaps a more subtle, compound-specific effect is occurring with neomycin 

treatment that cannot be explained by sedation alone. 

5.13  Concluding remarks 

The startle, rheotaxis and seeker response assays were used to assess the 

functional consequences of exposure to ototoxins and negative control 

compounds. The data shown demonstrate that larval zebrafish can experience 

deficits in detecting auditory and vibratory stimuli, and in orientation to current 

flow, following hair cell damage induced by a range of ototoxins. In combination, 

these assays provide a wealth of information on the ototoxic potential of 
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compounds. Taken together, they support the theory that larval zebrafish 

responses mimic the functional hearing and vestibular effects seen in humans 

and non-human mammals following exposure to certain ototoxins.  
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Chapter 6 Discussion and future directions 

6.1 Discussion 

6.1.1 Project aims 

 

The overall goal of this study was to assess the true value of the larval zebrafish 

as an in vivo model of drug-induced hearing and balance impairment. To test 

this, the main experimental aims were: 

(i) To demonstrate the damage induced to hair cells by a range of 

known human ototoxins (using vital dye uptake and expression 

assays). 

(ii) To develop a set of novel assays to investigate the functional 

consequences of this hair cell damage. 

(iii) To investigate the underlying mechanisms of ototoxicity in one or 

more of the selected test compounds and to assess the translational 

capability of the zebrafish as a model, by comparing the results to 

what is known from mammalian studies.  

Aims (i) and (ii) were fulfilled, with assays developed and successfully utilised to 

show both histological and functional damage to hair cells following exposure to 

a range of ototoxins. The completion of this body of work resulted in a 

publication (Buck et al., 2012). This chapter summarises and discusses these 

results. In addition, some data were generated in support of understanding the 

mechanisms of cisplatin-induced ototoxicity in the zebrafish (aim iii). The results 

and progress towards this aim are described in this Chapter and in Appendix 3. 

6.1.2 Hair cell toxicity in the zebrafish PLL 

In Chapter 3 of this thesis, a combination of approaches was utilised in order to 

assess the damage induced to hair cells following exposure to human ototoxins.  

Vital dye and TUNEL staining was performed in order to examine the damage 

induced to the hair cells by a range of human ototoxins. Experiments using the 

vital dyes DASPEI and FM1-43FX demonstrated that all except one of the 

human ototoxins tested (furosemide) could damage hair cells in the zebrafish 

lateral line in a concentration-dependent manner. A reduction in GFP labelling 

was also observed in the Tg(pou4f3::mGFP)s356t line in response to ototoxin 
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treatment. More specifically, TUNEL staining was observed in larvae treated 

with neomycin; this was indicative of apoptotic hair cell death. 

The ototoxins tested were selected from a range of therapeutic classes: the 

aminoglycoside antibiotics, platinum based chemotherapeutics, loop diuretics, 

salicylates and heavy metals (See Chapter 2, Table 2.1). The DASPEI assay 

had a predictivity rate of 85% for these compounds (6 out of 7 detected as 

ototoxins). This highlights the relative versatility of the zebrafish lateral line in 

assessing different classes of ototoxin. A predictivity power of >85% is classed 

as ‘excellent’ by the European Centre for the Validation of Alternative Methods 

(Genschow et al., 2002 as reviewed by; Redfern et al., 2008). Seventy-five 

percent (3 out of 4) of negative control compounds were identified as non-toxic 

to hair cells.  

Overall, the data obtained in this section of the study correlate well with the 

results from other laboratories working in zebrafish (Chiu et al., 2008; Coffin et 

al., 2010; Harris et al., 2003; Hernandez et al., 2006; Ou et al., 2007; Ou et al., 

2010; Owens et al., 2007; Owens et al., 2009; Ton and Parng, 2005; Van 

Trump et al., 2010). In particular, the slow onset of cisplatin ototoxicity, the 

threshold effects of copper sulphate toxicity in hair cells and the apoptotic-like 

changes observed with neomycin-induced hair cell damage have also been 

observed by others (Dr. Clemens Grabher personal communication; Ou et al., 

2007; Owens et al., 2007).  

Aspirin is a known human ototoxin that reportedly causes reversible hearing 

loss and tinnitus. Encouragingly, the data obtained in this study using the 

mitochondrial vital dye DASPEI has shown that aspirin can cause hair cell 

damage in the zebrafish lateral line. This has not previously been demonstrated 

in zebrafish.  

In order to contextualise the results obtained in this investigation, the effective 

concentrations to elicit hair cell damage according to the DASPEI assay were 

compared to those required to damage hair cells in higher vertebrates. In 

general, the concentrations required to elicit hair cell damage in the posterior 

lateral line correlated best with published data from explanted tissue culture in 

mice.  
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For example, the concentration to completely abolish DASPEI staining in the 

lateral line was 100 µM compared with recorded damage to the basal coil of the 

mouse cochlea at 200-250 µM after the same exposure time (Kotecha and 

Richardson, 1994; Richardson and Russell, 1991). This damage was seen most 

clearly at the apical surface of the hair cells in cochlear cultures, with a higher 

concentration of neomycin required to elicit damage at the apical coil structures 

(Richardson and Russell, 1991). In a separate study, the concentration reported 

to cause severe damage to hair cells in Organ of Corti explants from rats was 

100 µM (Mazurek et al., 2012), however this was after a much longer compound 

exposure (48 hours). In organ of Corti explants taken from human embryonic 

tissue, the concentration of neomycin required to elicit such hair cell damage is 

higher (1 mM; Mu et al., 1996). The more variable results from explant 

experiments are still within a 10-fold change from the concentrations used in 

zebrafish in this study.  

The ototoxin gentamicin can severely damage hair cells from mouse cochlear 

explants at a concentration of 250 µM after a one hour exposure (Kotecha and 

Richardson, 1994). At this concentration in the pLL of the zebrafish, there is 

also a large and significant decrease in hair cell staining in the lateral line. 

Additionally, gentamicin is toxic to HEI-OC1 cells at a concentration of 50 µM 

after prolonged exposure (24 hours; Kalinec et al., 2005). Although not tested 

this lower concentration would most likely have a strong damaging effect upon 

hair cells of the lateral line after chronic immersion, as this study estimates that 

the IC50 for gentamicin exposure after a single one hour treatment is 24.75 µM.  

Experiments using cisplatin have shown that hair cell death can be elicited by 

chronic treatment in both explants and HEI-OC1 cells. The concentration 

required to damage or destroy half of the hair cells in explants from rat cochleae 

was given as 33 µM following a 48 hour exposure (Malgrange et al., 1998). In 

the HEI-OC1 line, an 8 µg/mL dose (equivalent to ~27 µM) over 24 hours was 

sufficient to kill all of the organ of Corti-derived cells (Lee et al., 2011). In the 

current study, acute 2 hour exposures of batch 029K1426 of cisplatin were 

severely toxic to hair cells at a concentration of 70-100 µM. It is entirely feasible 
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therefore that a longer low-dose treatment could cause the same level of hair 

cell damage in the zebrafish. 

The comparison between compound-induced damage in the zebrafish larva and 

in vivo results taken from higher vertebrates is much harder to make, as dosing 

regimens are often repeated over longer periods of time (i.e. one week) and 

ABR measurements and histological samples are taken after an additional 

period following cessation of dosing (i.e. 30 days post treatment). A further 

barrier to direct comparison is that the compound pharmacokinetics and the 

penetration of the compound into the hair cells are much more difficult to 

assess, therefore the effective concentration to destroy the hair cells is much 

harder to estimate. This is not the case in the zebrafish, as the hair cells are 

directly exposed to the solution containing the compound and therefore a good 

estimate of the effective concentration can be made.  It is however known that 

repeated dosing with neomycin, gentamicin and cisplatin (for example) in higher 

vertebrates, such as guinea pigs, can cause significant shifts in ABR and 

compound action potential (CAP) thresholds and significant disruption to hair 

cell structure.  

Taken together, the results of histological assays for ototoxicity in the zebrafish 

lateral line appear to be robust and highly reproducible between laboratories, 

and are comparable to other studies, including those using the explanted 

tissues of higher vertebrates.  

6.1.3 Hair cell toxicity in the zebrafish ear 

In addition to investigations in the lateral line, it was also desirable to assess the 

effects of ototoxins on the zebrafish ear (Chapter 3). The aims were to discern if 

ototoxins could also damage hair cells of the maculae and cristae and to 

determine whether the damage induced was specific to certain sensory patches 

of the ear, thus mimicking the damage in humans and other vertebrates. 

Previously, an otic injection technique had been used to label hair cells (Seiler 

and Nicolson, 1999). A similar technique was optimised in this study in order to 

inject ototoxins into transgenic i193 larvae. As in the lateral line, the ototoxins 

tested damaged hair cells within the ear. The damage induced appeared to act 

preferentially on the posterior macula, although it was uncertain to what extent 
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ear development affected the specificity of the ototoxins to damage the saccule. 

In zebrafish the posterior (saccular) macula is proposed to have mainly auditory 

function. It was not possible to conclude whether the damage to the saccule in 

zebrafish would be the equivalent of damage to the auditory organ of higher 

vertebrates (the cochlea) or to the tissue of the saccule in higher vertebrates, as 

no functional readout could be taken. 

Taken together, these data demonstrated that the hair cells of both the 

zebrafish lateral line and inner ear can be damaged by exposure to known 

human ototoxins, mimicking the pathological findings from numerous studies in 

higher vertebrates.  

6.1.4 The functional effects of ototoxins on the lateral line  

Prior to this study, very few findings had been published that addressed the 

functional consequences of hair cell damage in the larval zebrafish subsequent 

to ototoxin exposure. Prior to the current study, only two publications showed 

results from functional testing in the larval zebrafish following ototoxin exposure. 

One study (Johnson et al., 2007), assessed the rheotactic behaviour of larval 

zebrafish following copper exposure as part of a wider study to assess the 

effects of this compound on the morphological and functional development of 

embryos. A second study illustrated the effects of neomycin on the tactile 

escape response by monitoring escape caused by accelerated water flow 

(McHenry et al., 2009). Neither of these studies set out to specifically 

investigate the ototoxic effects of a variety of compounds or a range of 

functional readouts.   

It is well known that the lateral line can mediate reflex behaviours such as the 

escape response and rheotaxis in adult and larval fish of other species. A set of 

novel assays were developed that could be used in combination to assess 

lateral line function in larvae following ototoxin exposure. An assay was 

developed and optimised to examine larval auditory evoked startle responses 

following compound exposure; this assay was based partly on the work of David 

Zeddies and Richard Fay and on a study by Pascal Bang (Bang et al., 2002; 

Zeddies and Fay, 2005). In addition, methods to assess larval rheotaxis and 

underwater motion detection were developed.  
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Data from the optimisation of the startle assay revealed a number of interesting 

outcomes. Factors such as plate type, raising density and inter-stimulus interval 

were all able to alter the control compliance (baseline response) of animals to a 

pure tone stimulus (For a detailed discussion, refer to Chapter 4). By optimising 

for these factors, it was possible to increase the quality of the startle assay. 

Startle, rheotaxis and seeker response were assessed consecutively in a final 

functional testing paradigm (Chapter 5 and Appendix 2). These assessments 

produced a large amount of valuable data for each of the test compounds (AER 

value, baseline activity value, compound toxicity, rheotaxis score, SR score), 

indicating their potential ototoxicity. The predictivity of the data was good for 

each of the assays; 67% for the startle assay (‘sufficient’ according to EVCAM), 

83% for the rheotaxis test, and 100% for the seeker response test (both 

‘excellent’ according to EVCAM). It was decided that due to its lower predictive 

value, the startle assay should not be used alone to identify ototoxins, but was 

useful in conjunction with the additional assays. By analysing these results 

together, a better overall indication of the specific hair cell toxicity of the 

compounds could be obtained. If the functional assays were to be developed 

further into a hierarchical screening method, then the recommendation would be 

to use the three functional assays in combination initially, as a ‘first-tier’ screen. 

Secondary testing using the DASPEI assay could be then used to confirm any 

‘hits’ identified. 

An attempt was made to assess the effects of ototoxic compounds individually 

at isolated frequencies. It was hypothesised that damage to the lateral line 

would affect the lower frequencies (up to ~200 Hz) more than the higher 

frequencies. Unfortunately, no pattern of damage at specific frequencies could 

be observed. A more positive outcome of supplementary tests using neomycin 

was the ability of the zebrafish AER testing to mimic ABR threshold shift testing 

in higher vertebrates; it was possible to rescue the AER by increasing the 

stimulus volume in increments. Importantly, the startle assay gives an indication 

of the state of a functional response that is highly specific to hair cells and is a 

simple alternative assay to mammalian ABR testing, which is far more time-

consuming and costly.  
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Since the publication of this body of work (Buck et al., 2012), two new studies 

have been published, both concerned with the use of larval zebrafish to assess 

rheotaxis (Olszewski et al., 2012; Suli et al., 2012). These studies both showed 

that neomycin treatment could significantly attenuate rheotactic behaviour at 

concentrations between 50 and 400 µM. The data presented in this study 

showed that a significant reduction in larval rheotaxis could be seen at 

concentrations as low as 14 µM. These publications lend further support to the 

data presented in this thesis concerning rheotaxis, suggesting that the results of 

this assay in particular are reliable. It is also encouraging to see that there has 

been a shift of focus within the field to a more functional approach to test the 

ototoxic effects of compounds.  

6.1.5 Comparative sensitivities of the ototoxicity assays 

Assays were compared directly for each of the ototoxins tested. The most 

sensitive assay was decided first by lowest detectable concentration effect 

(LOEC) and then by significance level (α) at that concentration. When all of the 

assays were compared, the seeker response and DASPEI assays emerged as 

the most sensitive.  These assays can detect alterations in hair cell morphology 

and lateral line function at lower concentrations and with more accuracy than 

the startle and rheotaxis assays. Specifically, the DASPEI assay is the best 

assay to detect ototoxicity caused by neomycin, streptomycin and aspirin, 

whereas the SR assay is the best assay to detect damage caused by 

gentamicin, cisplatin and copper sulphate (see Chapter 5, Table 5.5). This 

highlights the importance of using more than one assay to assess a single 

outcome.  

6.1.6 Further validation of the ototoxicity assays 

The next logical step for this work from a safety screening perspective would be 

to perform a blinded validation screen using ~25 compounds, like those 

performed for other safety endpoints such as seizure liability, gut motility and 

visual function (Berghmans et al., 2008; Richards et al., 2008; Winter et al., 

2008). If results from this validation set showed good sensitivity, it would then 

be possible to carry out further in-house validation on a large scale. The 

eventual application of this work would be for pharmaceutical companies to 

incorporate the ototoxicity assay into a hierarchy of safety screens at the ‘Lead 
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Identification’ and ‘Lead Optimisation’ stages of compound development. These 

are early stages of drug discovery where chemical modification to the molecular 

structure is still possible, to reduce safety liabilities (Stevens and Baker, 2009). 

Any potential ototoxins could be flagged up at the early stages for further 

evaluation in a lower throughput study using a higher vertebrate. The use of 

these functional tests for an ototoxicity screen may however require some more 

investigation into the automation of certain processes. For example, automatic 

recording by the camera upon stimulation could be developed. The future 

development of the assays described here is outside of the remit of this project. 

6.1.7 Caveats 

There are some caveats to the use of zebrafish in assessing ototoxicity.  

Firstly, any assessment of a new chemical entity only investigates the effects on 

the hair cells, and therefore compounds that affect any other part of the ear may 

go undetected. For example, the loop diuretic furosemide was not detected as 

an ototoxin in this and another investigation in zebrafish (see Chapter 3; Chiu et 

al., 2008). This is likely to be because furosemide is supposed to act to alter 

endolymphatic fluid composition and not to damage the hair cells of the lateral 

line. Additionally, it is unlikely that the effects of this compound would be seen 

by fluid volume changes in the otic vesicle (a readout of fluid misregulation in 

the ear) because the channel that furosemide functions through (NKCC1) 

probably lacks the critical residues for this role in zebrafish (Abbas and 

Whitfield, 2009; Delpire et al., 1999).  

When assessing the ototoxins it is also important to note that the hair cells of 

the lateral line and ear in zebrafish are also more similar to vestibular than 

cochlear hair cell types in mammals (Owens et al., 2007). Any results acquired 

are therefore most likely to reflect changes to the vestibular epithelium in 

humans and not the cochlea.  

As shown in this and other studies, the duration of exposure to ototoxins can 

have a significant effect on the results seen. For example, acute exposure of 

larvae to cisplatin for 30 minutes would not result in hair cell toxicity, as the 

effects of the compound on the hair cells can only be seen after 2 hours. It is 

therefore important to bear in mind that not all potential ototoxins will be 
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detected within a short exposure time, and to design experiments accordingly. 

This would be particularly relevant if a validation screen were performed where 

compounds were tested only for a single exposure time.    

Finally, it is important to remember that all of the experiments described have 

been carried out as acute exposures. In reality however, the damage caused in 

humans is often a consequence of chronic and cumulative exposures. 

The introduction to this thesis outlined that “any proposed model (of ototoxicity) 

must confer the advantages of the mammalian, avian and in vitro systems and 

still be cost-effective, reliable and show good predictivity”.  The concordance 

between the data for explants and the data for zebrafish from the DASPEI 

assay provides support for the notion that the zebrafish can confer the 

advantages of an in vitro system. The tissues under investigation are easily 

accessible (less time consuming) and any compound-induced changes are 

obvious, allowing for good throughput. The DASPEI assay in itself is robust and 

predictive. Importantly, the zebrafish lack some of the disadvantages of using in 

vitro systems. Notably, the zebrafish hair cells are contained within neuromasts 

along with supporting cells, offering a more complex cellular environment in 

which to study ototoxicity than simpler cell line assays. Also the hair cells of the 

lateral line and ear are not vulnerable to the genotypic and phenotypic changes 

that cell lines can undergo as a consequence of multiple passages (e.g. HEI-

OC1 cell line; Cederroth, 2012). The zebrafish also confer some of the 

advantages of mammalian systems. As in higher vertebrates, the functional 

consequences of hair cell toxicity can be readily observed, in a reproducible 

manner. Additionally, genetic tools such as transgenic animals can be 

harnessed to better understand the effects of ototoxicity. The zebrafish is an 

elegant and simple model to identify hair cell toxins with acceptable levels of 

predictivity and with higher throughput and lower costs than any mammalian 

assay. It is unlikely that the zebrafish will ever act alone as a replacement for in 

vivo mammalian investigations into ototoxicity. However, the zebrafish assays 

are certainly a useful and informative tool with numerous advantages that could 

be used in combination with assays in higher vertebrates and cell lines. If 

placed into a hierarchy of early pre-clinical screening, they could enable 

potential ototoxic effects of new chemical entities to be flagged up for further 
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testing in higher organisms. This is a vast improvement on the current situation, 

where ototoxicity is not addressed at all in the pharmaceutical industry.  
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6.2 Future Directions 

In order to fully determine the potential of the zebrafish as a model of 

ototoxicity, it would be desirable to assess the similarities and differences in 

mechanisms of ototoxicity between zebrafish and non-human mammals in a 

separate follow-on project. Ideally, any ototoxic compound under investigation 

would have been studied in detail previously in the more traditional animal 

models such as mice, rats and guinea pigs.  

To date, work by other zebrafish laboratories has focussed predominantly on 

elucidating the underlying mechanisms of aminoglycoside-induced hair cell 

death (as briefly summarised below). The results from this thesis have 

highlighted a number of potential avenues for future investigation that are not 

concerned with the aminoglycoside antibiotics. 

Data from Chapter 3 have shown for the first time that the human ototoxin 

aspirin can damage hair cells in the zebrafish lateral line. It would be of value to 

further dissect the mechanisms of this damage and draw some comparisons to 

what is known from the in vivo literature from non-human mammals. The areas 

of aspirin-induced hair cell death to investigate are detailed in Section 6.3.1. 

Another area that is poorly investigated in the zebrafish concerns the underlying 

mechanisms of cisplatin-induced hair cell death.  Initial investigations into the 

underlying mechanisms of cisplatin-induced hair cell damage were begun 

towards the end of this thesis, providing some exciting preliminary findings (see 

Appendix 3). These preliminary data could readily form the basis of a new grant 

proposal. The continuation of this work is a priority in fully validating the 

zebrafish as a model of ototoxicity. For this reason, the potential of the zebrafish 

in assessing cisplatin-induced toxicity is discussed below (Sections 6.2.1.3 and 

6.3.2).  

6.2.1 Mechanisms of ototoxicity: species comparison. 

6.2.1.1 Aminoglycoside antibiotics:  

Knowledge from in vitro and in vivo studies in other models 

As discussed in detail earlier (see Chapter 1) the best explanations for the 

mechanisms of damage inside auditory cells are the stimulation of reactive 
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oxygen (and possibly reactive nitrogen) species production by the formation of 

heavy metal-aminoglycoside complexes and polyphosphoinositide lipid-

aminoglycoside binding, leading to generation of lipid peroxides. Based on the 

high volume of evidence, caspase-dependent apoptosis, involving the 

mitochondria, is likely to be a primary cell death event in aminoglycoside-

induced ototoxicity. Some necrotic events have also been less frequently 

reported. Many otoprotective strategies have been employed against 

aminoglycoside-induced hair cell loss. These protection studies have enabled 

researchers to uncover the pathways that are most likely to mediate hair cell 

damage. For example, inhibition of caspases and JNK signalling can protect 

hair cells from death (Matsui et al., 2003; Okuda et al., 2005; Pirvola et al., 

2000; Ylikoski et al., 2002).  

Current knowledge in zebrafish 

Aminoglycoside-induced ototoxicity is a popular research area within the 

zebrafish field. Not only have the cellular consequences of aminoglycoside-

induced damage been described, but also major laboratories have focussed 

their efforts on the discovery of compounds that can protect hair cells from 

aminoglycosides. As with other model systems, the discovery of protectants in 

zebrafish provides tantalising clues as to the possible mechanisms underlying 

the damage.  

The ototoxicity of various aminoglycosides (neomycin, gentamicin, 

streptomycin, tobramycin, kanamycin, amikacin) is well reported in the zebrafish 

(Harris et al., 2003; Owens et al., 2009; Seiler and Nicolson, 1999; Williams and 

Holder, 2000). Damage to the hair cells by aminoglycosides has been evaluated 

using electron microscopy techniques. Studies of this damage have shown loss 

of hair cell bodies and stereocilia bundles, some extrusion of hair cells from the 

apical membrane, mitochondrial alterations, apoptotic and necrotic debris 

(Harris et al., 2003; Murakami et al., 2003; Owens et al., 2007). This is in 

agreement with histological evidence from other model systems (e.g. De Groot 

et al., 1991; Dehne et al., 2002; Richardson and Russell, 1991; Ylikoski et al., 

2002).  
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The mechanism of uptake of the aminoglycosides in zebrafish is proposed to be 

via mechanotransduction channels at the apical membrane of hair cells, 

mimicking in part what has been suggested in other model systems (Alharazneh 

et al., 2011; Gale et al., 2001; Kossl et al., 1990). This has been investigated 

using fluorescently conjugated aminoglycosides and chemical inhibitors such as 

amiloride (Coffin et al., 2009; Ou et al., 2009; Seiler and Nicolson, 1999; Wang 

and Steyger, 2009). The mechanotransductive uptake described is also known 

to be affected by extracellular divalent cations such as calcium, with altered 

levels of calcium conferring protection or promoting aminoglycoside-induced cell 

death (Coffin et al., 2009; Wang and Steyger, 2009). Like in mammals, the 

apoptotic death observed is thought to involve early changes to the 

mitochondria. For example, it has been shown using vital dye labelling that the 

mitochondrial membrane potential of the hair cells is reduced in response to 

acute neomycin exposure (Owens et al., 2007). Further investigations into this 

class of antibiotics suggests that there may be two phases of compound-

induced cell death, an early and late phase, and this suggests that some 

members of the aminoglycosides may undergo hair cell death via divergent 

mechanisms (Owens et al., 2009).  

Many screens have been carried out in the zebrafish in order to discover 

protectants against aminoglycoside-induced ototoxicity (Ou et al., 2009; Ou et 

al., 2012; Owens et al., 2008; Vlasits et al., 2012). These protection assays can 

provide clues as to which signalling pathways may mediate hair cell loss. For 

example, two benzothiophene carboxamide derivatives (PROTO1 and 

PROTO2) most likely act intracellularly to attenuate hair cell toxicity (the 

mechanism by which they act is still under investigation) (Owens et al., 2008). 

The Sentinel mutant confers protection against hair cell death caused by the 

aminoglycosides but not cisplatin, whereas some drugs (such as benzamil) 

protect against both cisplatin and aminoglycoside-induced hair cell loss (Owens 

et al., 2008; Vlasits et al., 2012). This suggests that there are both shared and 

divergent pathways of hair cell death involved between the two drug classes. 

Most recently, quinoline-derived compounds have been shown to protect hair 

cells from aminoglycoside-induced death. These quinoline-derivates appear to 
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exert their protective effects by inhibiting the uptake of the aminoglycosides (Ou 

et al., 2012).  

6.2.1.2 Aspirin 

As mentioned, the ototoxic effects of aspirin have not previously been reported 

in the zebrafish. It will therefore be interesting to investigate this hair cell 

damage in more detail.  

The temporary hair cell damage induced in humans and mammals during 

aspirin treatment has been suggested to involve the motor protein prestin. 

Prestin is the motor protein of outer hair cells that functions in cochlear 

amplification. It is a direct voltage-to-force converter, using anions as voltage 

sensors (Dallos and Fakler, 2002). Studies using the patch clamp technique in 

isolated outer hair cells from the rat and guinea-pig have shown that aspirin acts 

as a competitive antagonist at the anion-binding site of prestin; the hypothesis is 

that aspirin interferes with electromotility of the hair cells and thus disrupts 

cochlear amplification (Homma and Dallos, 2011; Kakehata and Santos-Sacchi, 

1996; Oliver et al., 2001; Tunstall et al., 1995). Prestin is expressed in zebrafish 

ears at both larval and adult stages and acts as a voltage sensor (Albert et al., 

2007; Weber et al., 2003). It would be interesting to assess the role of prestin in 

aspirin-induced ototoxicity in the zebrafish (see Section 6.3.1). 

The transient tinnitus provoked by aspirin is thought to be caused through the 

overactivation of NMDA receptors (Guitton et al., 2003; Peng et al., 2003; Puel 

and Guitton, 2007). Behavioural assays have been developed in rats to observe 

tinnitus induced by compounds including aspirin (Jastreboff et al., 1988; 

Ruttiger et al., 2003). In general, these assays work by exposing the animal to 

prolonged white noise and conditioning them to perform a set task (such as 

feeding) during this white noise. Gaps or sinusoidal tones are placed within the 

noise, which can cause the animals to react by altering their behaviour (i.e. stop 

pressing a lever for food, as in Bauer et al., 1999). Tinnitus is inferred when the 

animals fail to alter their behaviour in response to the stimulus (the silence or 

tone). In rats, it has been shown that tinnitus-like behaviour can be reduced by 

NMDA receptor antagonists such as MK-801 and gacyclidine (Guitton et al., 

2003). It may be useful to develop a behavioural assay for tinnitus in the 
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zebrafish model and compare results to what is known from non-human 

mammalian data. 

6.2.1.3 Cisplatin 

In recent years, a large volume of research has been undertaken in both cell 

lines and the more traditional animal models in order to understand the 

underlying mechanisms of cisplatin-induced hair cell toxicity better. Studies 

have focussed not only on the potential mechanisms of uptake of the compound 

itself, but also on the complex downstream signalling pathways which culminate 

in the death of the hair cells themselves. What follows is a review of the 

literature thus far (for a summary, see Figure 6.1). 

  

 

 

  



= activation/ 

 upregulation 
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Figure 6.1: Proposed mechanisms of cisplatin-induced hair cell death 

compiled from mammalian and cell culture data.  162a 
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Uptake of cisplatin into hair cells 

Two main mechanisms of cisplatin uptake into cells have been proposed in 

recent years. The first is that cisplatin enters the hair cells via Organic Cation 

Transporter 2 (OCT2). The second channel proposed as the key mediator of 

cisplatin uptake is Copper Transporter 1 (Ctr1).  

There is evidence that OCT2 is the major uptake channel for cisplatin. OCT2 

(SLC22A2) is an electrogenic transporter of cations. It was first isolated from 

homology screening in the rat kidney (Okuda et al., 1996). The channel 

possesses twelve α-helical transmembrane domains (TMDs), with a large 

extracellular loop between TMDs one and two and a large intracellular domain 

between TMDs six and seven (Ciarimboli, 2011). Cisplatin is known to interact 

with human OCT2 and use it as a channel for entry into cells (Burger et al., 

2010; Ciarimboli et al., 2005; Yonezawa and Inui, 2011). In humans, single 

nucleotide polymorphisms in the SLC22A2 gene are associated with reduced 

cisplatin ototoxicity and nephrotoxicity (as reviewed by Deavall et al., 2012). In 

mice, the OCT2 protein has been shown to be expressed specifically in the 

apical pole of outer hair cells and the entirety of the inner hair cells, with some 

additional expression in the stria vascularis (Ciarimboli et al., 2010; More et al., 

2010). The most convincing evidence for the role of OCT2 in cisplatin uptake 

comes from protection experiments. Cimetidine, a competitive substrate for 

OCT2, is protective to hair cells both in vitro and in vivo and can confer 

complete protection against the ototoxic effects of the compound (Ciarimboli et 

al., 2005; Ciarimboli et al., 2010). Knockout mice lacking the OCT2 gene were 

significantly protected from ototoxicity, as shown by ABR measurements 

(Ciarimboli et al., 2010). OCT2 is the ideal candidate for otoprotective therapy, 

as it does not appear to be involved in the uptake of cisplatin into tumours; thus 

knocking down or chemically inhibiting OCT2 should not interfere with the 

anticancer effects of the compound (Ciarimboli et al., 2010). 

Interestingly, there is also some evidence that Ctr1 could be a channel for 

cisplatin uptake into cells. Human Ctr1 has three transmembrane domains, an 

N-terminal extracellular domain, a large intracellular loop, and a short 

intracellular C-terminal tail (Abada and Howell, 2010). It sits in the membrane as 
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a trimer; this trimeric formation creates a pore through the cell membrane (De 

Feo et al., 2009). Ctr1 protein has been shown to be expressed in mouse 

cochlear lysate, HEI-OC1 cells and in the mouse cochlea. Specifically, 

expression can be seen in the organ of Corti. The expression of Ctr1 protein in 

Human Embryonic Kidney (HEK) and HEI-OC1 cells was shown by the MTT 

assay to enhance cytotoxicity. Moreover, co-administration of cisplatin and 

copper sulphate by intratympanic injection had a partial yet significant protective 

effect on auditory function (More et al., 2010). 

In addition, investigations have shown that cisplatin and reactive oxygen 

species (produced downstream by cisplatin) may increase the activation of the 

Transient Receptor Potential channel, TRPV1 (Mukherjea et al., 2008). The 

overactivation of TRPV1 could act as a positive feedback loop, further activating 

NOX enzymes (e.g. NOX-3) and increasing ROS levels and damage via 

calcium influx into the cells (Mukherjea et al., 2011). Importantly, TRPV1 may 

also act as a permeant channel for cisplatin, further augmenting the process 

(reviewed by Rybak et al., 2009). The protective effect of the TRPV1 inhibitor 

capsazepine gives further support to this potential mechanism (Mukherjea et al., 

2008).  

Early downstream targets of cisplatin 

Cisplatin is known not only to activate TRPV1 channels upon entry into the cell 

but has also been shown to activate big conductance potassium channels (BK 

channels). The activation of these channels in the lateral wall of the inner ear 

leads to increased potassium efflux and disrupts the delicate electrochemical 

gradient in place, resulting in cell death (Liang et al., 2005). 

Of particular interest in recent years, the NOX family of NADPH oxidase 

enzymes are thought to play a key role in cisplatin ototoxicity. The NOX family 

transfer electrons across biological membranes. In other cell types they function 

to generate reactive oxygen species (Bedard and Krause, 2007). One of the 

NOX enzymes, NOX-3 has been shown specifically to be expressed in the 

organ of Corti and vestibular system of mammals (Banfi et al., 2004; Paffenholz 

et al., 2004). The NADPH oxidases NOX-1 and NOX-4 are expressed in HEI-

OC1 cells (Kim et al., 2011). The NOX enzymes are upregulated in hair cells by 
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cisplatin and additionally via activated TRPV1 channels (Kaur et al., 2011; 

Mukherjea et al., 2006; Mukherjea et al., 2011). When the levels of NOX 

enzymes in the cell increase, reactive oxygen species are generated; this 

causes widespread cellular damage and death. Additionally, superoxides 

produced by NOX enzymes go on to generate highly toxic 4-HNE downstream, 

leading to increased cell death. Small interference RNA (siRNA) to knock down 

NOX-1 and -4 has been shown to protect HEI-OC1 cells from apoptosis (Kim et 

al., 2011). Likewise, siRNA knock down of NOX-3 in the rat is protective, 

decreasing ROS and phosphorylated STAT levels downstream (Kaur et al., 

2011). Chemical inhibition of NADPH oxidases has been shown to confer 

significant protection against cisplatin-induced hair cell damage (Choi et al., 

2011; Kaur et al., 2011; Kim et al., 2011). For example, DPI, a pan-NOX 

inhibitor protects both UB/OC-1 and HEI-OC1 cells from death induced by 

cisplatin (Kaur et al., 2011; Kim et al., 2011). 

As mentioned above, cisplatin generates high levels of reactive oxygen species 

that act to overwhelm the cell and deplete antioxidant levels (Clerici et al., 1996; 

Kopke et al., 1997). Many thiol-based antioxidants have been shown to confer 

protection to hair cells by acting against these reactive oxygen species and 

“mopping up” the cisplatin in the cell (reviewed in Rybak et al., 2009). For 

example, sodium thiosulphate protects against functional changes in hearing 

and against hair cell loss in the cochlea of guinea pigs (Berglin et al., 2011; 

Wang et al., 2003a; Wimmer et al., 2004). The antioxidants D-Methionine (D-

Met) and N-acetyl-L-cysteine (L-NAC) offer otoprotection in cell culture and 

explants of the stria vascularis and organ of Corti (Campbell et al., 1996; 

Campbell et al., 1999; Feghali et al., 2001). Encouragingly, a recent study in 

humans has also found that transtympanic administration of L-NAC is protective 

against changes in auditory function (Riga et al., 2011).  

Evidence suggests that phosphorylation of the transcription factors STAT1 and 

STAT6 occurs as a consequence of high levels of reactive oxygen species in 

both the auditory and vestibular cells following cisplatin exposure. In cultured 

mouse utricles phosphorylated STAT1 (pSTAT1) peaks 4 hours after cisplatin 

exposure (Schmitt et al., 2009). In UB/OC-1 cells, pSTAT1 activation can be 

seen within 45 minutes. In rat cochlea pSTAT1 is upregulated following a 72 
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hour cisplatin administration (Kaur et al., 2011). pSTAT6 is also upregulated in 

HEI-OC1 cells following cisplatin treatment (Kim et al., 2011). In all cases where 

STAT phosphorylation was increased, preventing this phosphorylation using 

siRNA knock down or chemical inhibition had a significant protective effect 

(Kaur et al., 2011; Kim et al., 2011; Schmitt et al., 2009). Moreover, STAT1 and 

STAT6 deficient mice are resistant to the ototoxic effects of cisplatin (Kim et al., 

2011; Schmitt et al., 2009). Translocation of phosphorylated STATs to the 

nucleus triggers downstream cell death events involving both apoptotic and 

inflammatory pathways.  

Additional downstream effects of ROS are increased production of the nitric 

oxide synthase “iNOS” (which can in turn lead to increases in 4-NHE), the 

release of cytochrome C from the mitochondria (triggering downstream 

apoptotic events), protein oxidation, lipid peroxidation and DNA damage. 

Both apoptotic and necrotic like cell death pathways have been implicated in 

cisplatin-induced ototoxicity. These effects have been observed in auditory- and 

vestibular-type cells. Phosphorylated STATs have been shown to activate both 

pathways, inducing not only increased caspase levels but also increases in pro-

inflammatory cytokines such as TNFα and IL-1β and IL-6 and inflammatory 

CD14-positive cells (Kaur et al., 2011; Kim et al., 2011; Mukherjea et al., 2011; 

So et al., 2007; So et al., 2008). Inhibition of caspases, p53, iNOS and 

inflammatory cytokines protects cells from ototoxic insult induced by cisplatin, 

further providing evidence that cell death occurs by both routes (Cooper et al., 

2006; Kaur et al., 2011; Kelly et al., 2003; Kim et al., 2008; Kim et al., 2011; Lee 

et al., 2010; So et al., 2007; So et al., 2008; Wang et al., 2004; Zhang et al., 

2003). 

Current knowledge of cisplatin ototoxicity in the zebrafish  

To date, the literature concerning the ototoxic effects of cisplatin in the zebrafish 

is sparse. 

A study by Ton and Parng published in 2005 was the first to show that chronic 

cisplatin exposure (24 hours) could induce hair cell damage in the zebrafish. 

Subsequently, a more comprehensive study was performed in order to assess 
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cisplatin toxicity in more detail (Ou et al., 2007). This study showed that acute 

cisplatin exposure (4 hours) induced repeatable and predictable damage to 

lateral line hair cells. Cisplatin damage continued even after removal of the drug 

and was independent of the initial exposure concentration.  

The time course of cisplatin-induced ototoxicity is known to be slower than for 

neomycin in zebrafish (Ou et al., 2007; Owens et al., 2009). Ou and colleagues 

proposed that the different time course for damage could be explained by the 

distinct mechanisms of uptake, cellular damage and cellular clearance by the 

two compound classes. Evidence from mammalian studies suggests that 

neomycin and cisplatin act in part through different damage pathways; for 

example Jun kinase inhibition blocks neomycin but not cisplatin-induced hair 

cell death in guinea pigs (Wang et al., 2004). Although not investigated in the 

paper by Ou, a later paper from the same laboratory showed that otoprotectants 

(a mutation in the sentinel gene and the compound PROTO-1) that could 

significantly protect from neomycin induced hair cell death could not confer 

protection to cisplatin-treated animals (Owens et al., 2008). This suggested that 

there were in fact some distinct mechanisms of early damage events or 

compound uptake between neomycin and cisplatin.  

Conversely, there is evidence of similarities in the late damage mechanisms 

between cisplatin and neomycin in the literature taken from mammalian and cell 

line research. Both compounds are known to promote formation of reactive 

oxygen species and caspase inhibitors are protective against their ototoxic 

effects, suggesting that both cascades end in apoptotic death. There is 

evidence in the zebrafish that cell damage mechanisms must be at least in part 

overlapping; the compounds benzamil and paroxetine can protect against both 

neomycin and cisplatin induced hair cell loss (Vlasits et al., 2012).  

Interestingly, a number of antioxidant compounds have been shown to confer 

protection to the hair cells of larval zebrafish during cisplatin exposure. Some of 

these compounds also have a protective action in higher vertebrates. Co-

treatment with the antioxidants glutathione (GSH), allopurinol (ALO), N-acetyl L-

cysteine (L-NAC), 2-oxothiazolidine-4-carboxylate (OTC) and D-methionine (D-

MET) prevented decreases in hair cell staining with DASPEI, indicative of 
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protection (Ton and Parng, 2005). Additionally, the polyphenolic compound 

epicatechin was able to protect hair cells of the zebrafish lateral line from 

cisplatin ototoxicity; this was shown using the vital dye YO-PRO1 and by 

electron microscopy (Kim et al., 2008). These results imply that cisplatin also 

induces the formation of reactive oxygen species in zebrafish. 

6.3 Opportunities for further work/experiments 

6.3.1 Aspirin 

As mentioned above, the finding that the human ototoxin aspirin is also toxic to 

hair cells of the zebrafish lateral line is novel. A number of future follow-on 

experiments could be performed to build on this initial discovery. 

6.3.1.1 Reversible ototoxicity 

It is known that in humans, aspirin acts as a reversible ototoxin causing 

temporary loss of absolute hearing sensitivity, alterations of perceived sounds 

and tinnitus (Cazals, 2000). It would be interesting to test whether the ototoxic 

effects of this drug are attenuated following washout of the compound. To 

assess this, measurements could be taken from the same animals following a 

one hour treatment with aspirin and for a time after washout. Aspirin treatment 

decreases the number of cells with positive GFP labelling in the 

Tg(pou4f3::mGFP)s356t larvae (Figure 3.7). It will therefore be feasible to 

assess the animals over time (at regular intervals, up to 10 hours after washout) 

to examine recovery of the hair cells. It is known that hair cells begin to 

regenerate in the lateral line 12 hours after initial treatment (Harris et al., 2003; 

Hernandez et al., 2006). By looking no later than ten hours after treatment has 

been terminated, it will be possible to rule out any regeneration effects. 

6.3.1.2 Prestin 

As previously mentioned prestin is a known target of aspirin and has previously 

been shown to be expressed in zebrafish (Section 6.2.1.2.). It will be interesting 

to assess the exact expression pattern of the prestin gene at 5 dpf and to 

determine the effect of blocking prestin directly on the appearance and function 

of the hair cells. The expression pattern of prestin could be examined by in situ 

hybridisation. The inhibitor of protein kinase G, 8-Rp-pCPT-cGMPS, could be 

applied to block the non-linear capacitance of prestin and to see if the results 
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mimic those of aspirin treatment (Deak et al., 2005). It would be interesting to 

discover if prestin is the target for aspirin toxicity in zebrafish hair cells, despite 

the absence of a cochlea.  

6.3.1.3 Overactivation of NMDA receptors  

In mammals, it has been suggested that overactivation of NMDA receptors 

could be a mechanism for aspirin-induced tinnitus (Guitton et al., 2003; Puel 

and Guitton, 2007). In zebrafish, it could be possible to develop a tinnitus assay 

by exposing larvae at 5 dpf to white noise and silent gaps using the startle 

assay rig. The silent stimulus could act as the ‘startle-inducer’ interrupting the 

normal swimming behaviour of the larvae. This could be analysed using the 

Viewpoint tracking software. This assay could then be used to investigate the 

effects of NMDA receptor antagonists on tinnitus in zebrafish.  

Although there is the potential to develop a tinnitus assay, it is worthwhile 

bearing in mind that NMDA receptor antagonists already have known effects on 

the central nervous system in zebrafish (Sison and Gerlai, 2011). Specifically, 

memantine (an NMDA receptor antagonist) increases startle and decreases 

habituation behaviour (Best et al., 2008). 

6.3.2 Cisplatin 

Cisplatin represents the ideal candidate for a more thorough investigation of the 

underlying mechanisms of hair cell death in zebrafish using a single compound. 

As shown in Chapters 3 and 5, cisplatin is capable of inducing hair cell damage 

in the zebrafish (also shown in Giari et al., 2012; Ou et al., 2007). Unlike for the 

aminoglycosides neomycin and gentamicin, there is not a great deal of 

continuing research regarding the underlying mechanisms of cisplatin-induced 

hair cell damage in the zebrafish. There is however, a large body of research 

concerning the mechanisms of this ototoxicity in cell lines and other animal 

models, as shown above (Section 6.2.1.3).  

6.3.2.1 Potential areas for future investigation 

There are clearly a number of areas where there is a gap in the research 

concerning the mechanisms of cisplatin ototoxicity in zebrafish. The table below 
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highlights areas for further investigation, based on what is known from the 

literature (Section 6.2.1.3). 
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Table 6.1: Potential areas for further investigation into cisplatin-induced hair cell 

loss.  

Area Short-term questions Long-term questions 

Metabolite 

effects 

Is the hydrolysis metabolite of cisplatin 

(found in the blood of human patients) 

sufficient to induce hair cell loss in the 

pLL?  

 

How does this damage from the 

metabolite compare with the damage 

induced by non-metabolised cisplatin? 

 

Uptake of 

cisplatin into 

hair cells 

Does OCT2 play a role in the zebrafish 

in uptake of cisplatin?  

Can the timely and spatially controlled 

knock down of Ctr1 protect from cisplatin 

induced hair cell death? 

Where are OCT2 and Ctr1 mRNA 

expressed in the zebrafish? Is it 

expressed at the time of hair cell loss 

i.e. 5 dpf? 

Can knock down of OCT2 protect from 

cisplatin induced hair cell death? 

Early 

downstream 

effects of 

cisplatin 

Does chemical inhibition of the NADPH 

oxidase family of enzymes protect from 

cisplatin induced hair cell damage?  

Does knock down of components of the 

NOX family of enzymes protect from 

cisplatin induced hair cell loss? 

Are any components of the NOX family 

of enzymes expressed at 5 dpf? 

 

Does chemical inhibition of the zebrafish 

TRPV1 channel protect from cisplatin 

induced hair cell damage?  

Does knock down of the zebrafish 

equivalent of TRPV1 protect from cisplatin 

induced hair cell loss? 

Is the zebrafish equivalent of TRPV1 

mRNA expressed at 5 dpf? 

 

Reactive 

oxygen 

species 

Can cisplatin exposure induce a 

quantifiable increase in ROS in 

zebrafish? 

 

Which antioxidants confer protection in 

the pLL against cisplatin induced 

ototoxicity? What can this tell us about 

intermediary pathways to cisplatin 

induced hair cell death?   

 

Can cisplatin induce H2O2 in ZF?   

Death Does cisplatin induced hair cell death 

involve apoptosis alone or some 

necrosis? 
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6.3.2.2 Future avenues for investigation based on preliminary data 

One well-established area of research in non-zebrafish models is the role of 

reactive oxygen species production in cisplatin-induced hair cell damage 

(recently reviewed in Casares et al., 2012). The NADPH family of enzymes 

have been shown to increase reactive oxygen species in response to cisplatin 

(Banfi et al., 2004; Kim et al., 2010; Mukherjea et al., 2010). Towards the end of 

the research project, the potential effects of cisplatin on ROS induction were 

investigated. Preliminary data showed that inhibition of this family of enzymes in 

particular could confer significant protection from hair cell damage in zebrafish 

(see Appendix 3).  This promising result could form the basis of an independent 

follow-on project and help to further validate the zebrafish as a translational 

model for ototoxicity. Specific ideas for future experiments are detailed below. 

Gene expression studies 

Expression of the NADPH oxidase family of enzymes in the zebrafish could be 

investigated using in situ hybridisation. The NOX family of enzymes are fairly 

well conserved compared to humans (Figure 6.2). The Zebrafish genome 

encodes the NADPH oxidase members NOX-1, -2 and -4, NOX5-like and 

DUOX-1 (Kawahara et al., 2007; Niethammer et al., 2009). CYBA (P22phox) is a 

key subunit of NOX1-4 in humans and is also present in NOX-1, NOX-2 and 

NOX-4 in zebrafish; NOX enzyme activity is P22phox-dependent. (Bedard and 

Krause, 2007). Zebrafish lack a NOX-3 equivalent. RNA Probes could be made 

to the genes zfCYBA, zfNOX-5-like and zfDUOX-1, and the expression pattern 

assessed between 24 hpf and 5 dpf. Information on the timing of expression of 

these genes would also be informative if morpholino knockdown were to be 

performed.  

  



Figure 6.2: Conserved members of the NADPH oxidase family of enzymes in the zebrafish. NOX-1, NOX-2 and NOX-4 

genes are dependent on the co-expression of the P22phox  (or CYBA) subunit. Zebrafish also possess a NOX-5-like gene and a 

DUOX-1 gene. Zebrafish lack NOX3, which has been proposed to be involved in cisplatin-induced hair cell death in the mammal. 

Figure taken from Niethammer et al., 2009. 
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Protection studies 

A combination of genetic and compound-based protection studies could be 

performed in order to determine which of the NADPH oxidase family members 

is important in perpetuating the hair cell damage cascade.  

Specific knockdown of the CYBA component of NOX-1, -2 and -4 and 

knockdown of DUOX-1 using splice blocking morpholinos would indicate the 

importance of these enzymes in the damage process. Morpholino injections 

could be performed at the 1 cell-stage. The knockdown would be confirmed by 

PCR from cDNA at days 2, 3, 4 and 5 following fertilisation. The protective 

effects of knockdown could then be evaluated by the DASPEI assay (blinded to 

treatment group; as in Section 2.7).  

To determine specifically if the NOX-1 enzyme is a key mediator of cisplatin-

induced hair cell death, a specific inhibitor (2-acetylphenothiazine) could be 

applied as a co-treatment with cisplatin and the effects investigated initially with 

the DASPEI stain (blinded to treatment group; as in Section 2.7; Gianni et al., 

2010).  

More broadly, tests could be carried out for the downstream effects of cisplatin 

with or without otoprotectant/morpholino knockdown. For example, an assay 

using the cell-permeant dye 2',7'-dichlorodihydrofluorescein diacetate 

(H2DCFDA) would act as an indicator of reactive oxygen species levels. 

Furthermore, functional testing (rheotaxis and seeker response test) could be 

performed to confirm otoprotection. 

Additional experiments 

Other elements of the pathway of cisplatin-induced damage have the potential 

to be investigated. It would be informative to establish the uptake mechanism of 

cisplatin in zebrafish and to determine the role of TRPV1 receptor activation and 

phosphorylation of STAT transcription factors in eliciting hair cell damage. 

Again, these pathways could be studied using in situ hybridisation, antibody 

staining, conditional knockdown and a variety of downstream damage indicators 

including transgenic lines, the DASPEI assay and functional testing. 
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6.4 Closing remarks 

This study described in this thesis has shown that hair cell damage can be 

induced in larval zebrafish by short-term exposure to a range of known human 

ototoxins. It is the first study to demonstrate that larval zebrafish can experience 

deficits in detecting auditory and vibratory stimuli, and in orientation to current 

flow, following hair cell damage induced by a variety of ototoxic compounds. 

The findings collectively replicate the histological and functional effects 

manifested in humans and non-human mammals after exposure to ototoxins, 

thereby further supporting the use of zebrafish as an early pre-clinical indicator 

of drug-induced ototoxicity. A number of routes exist for potential future 

investigation into ototoxicity in the zebrafish. By exploring some of the 

mechanistic pathways of damage induced by specific compounds and 

comparing this to what is already known in mammalian and cell line studies, it 

will be possible to validate the zebrafish fully as an in vivo model of drug-

induced hearing and balance impairment.  
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Appendix 1 Macro instructions 
 

Table A1.1: Macro design for "Startle template FULL VERSION" worksheet. 

Macro Command Brief description of task 

performed 

Intermediate/manual step 

1 Ctrl + i Cleans up raw data: copies data 
into new sheet copy of raw data, 
sorts by an, deletes an values 
equal to 1, removes unwanted 
columns, copies data into 
cleaned up data. Inserts 
columns plate number and 
stimulus. 

 

2 Ctrl + j Assigns plate reference number, 
assigns stimulus reference, 
alters animal column so that 
animals from plate 2 = .2. Sorts 
data ready for removal of 
inactive larvae (removal of 
undetected larvae).  

Manually delete undetected larvae 

3 Ctrl + k Splits data into individual plates, 
copies each dataset into 
summary for stimuli sheets, 
deletes unwanted columns. 
Copies data from summary for 
stimuli sheets into find stim time 
sheets and orders by stimulus 
frequency then start time. 

Manually remove outliers (marked 
reject) by highlighting then deleting. 
Manually copy data from identified 
startle time (e.g.4-5 s) into startle vs. 
conc sheet, for each stimulus. Sort 
by stimulus then concentration/dose. 

4 Ctrl + l Moves summary data for each 
stimulus into data table for all 
three plates. Orders for each 
frequency and makes graphs. 

 

5 Ctrl + m Makes summary data for all 
concentrations and frequencies 

 

6 Ctrl + n Provides raw data for startle. Delete the unnecessary sheets 
(edited version only). 

7 Ctrl + o Produces data which can be 
used to analyse individual trials 
(A, B, C) or all three trials (A-C) 
using statistical methods.  

Copy data from raw summary all 3 
into all/raw data per fish. Sort data 
by dose, then animal (custom list), 
then stimulus frequency. Alter N to 0 
if there is no data for the larva and 
delete DIV#. Use this for summary 
data for all of the trials. 
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Table A1.2: Macro design for "summary of all trials" worksheet. 

 

 

 

 

  

Macro 
number 

Command Brief description of task 
performed 

Intermediate/manual step 

   For each trial (A, B, C) copy 
and paste data from final raw 
per Hz  

1 Ctrl + q Summarises trials A, B and 
C.  

 

2 Ctrl + r Copies and pastes lar. dist. 
values for each frequency at 
each individual dose. 

Copy and paste data directly 
from all data per fish into all 
freq all 3 rep. 

3 Ctrl +shift+ q Provides all data over three 
trials, combining frequency 
data 

 

4 Ctrl +shift+ r Copies over average large 
distance data per fish, for 
statistical analysis. 

Copy into Graphpad for 
analysis.  
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Appendix 2 Functional assays (proforma) 
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TEST COMPOUND INFORMATION 

 

DATE 

WEIGHED 

 

COMPOUND 

 

WEIGHT 

AND 

BALANCE 

REF. 

 

VOLUME 

LIQUID 

REQUIRED 

FOR 

STOCK 

 

STOCK 

CONCENTRATION/ 

DATE STOCK 

MADE 

 

DILTUION 

NEEDED 

 

 

pH TOP 

CONCENTR

-ATION 

 

pH 

METER 

USED 

 

 

 

       

 

SOLVENT/WATER CONTROL USED: …………………………………………. 

FINAL pH of SOLVENT/WATER CONTROL: …………………………….. 

FINAL % SOLVENT IN S/C: ……………………… 

DATE MADE: ………………………………. 

 

LIGHT ADJUSTMENT PHASE/PLATE TIMES 

PLATE 1: ………………………..arrayed from a mix of …….plates  

PLATE 2: ……………………….arrayed from a mix of………plates 

PLATE 3: …………………………arrayed from a mix of …....plates 

 

 

Pipettes used: …………………………………………………….. (1mL 1 X E3 

clear) 
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RHEOTAXIS SCORES BEFORE TREATMENT: 

PLATE 1: (tick) 

 1 2 3 4 5 6 

A 

 

 

 

 

     

B  

 

 

     

C  

 

 

     

D  
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REHEOTAXIS SCORES BEFORE TREATMENT: 

PLATE 2: (tick) 

 1 2 3 4 5 6 

A  

 

 

     

B  

 

 

     

C  

 

 

     

D  

 

 

     

 

PLATE 3: (tick) 

 1 2 3 4 5 6 

A  

 

 

     

B  

 

 

     

C  

 

 

     

D  
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MTC SCORES BEFORE TREATMENT 

Plate 1: (score) 

 

Plate 2: (score) 

 1 2 3 4 5 6 

A 

 

 

 

 

     

B  

 

 

     

C  

 

 

     

D  

 

 

     

 

  

 1 2 3 4 5 6 

A 

 

 

 

 

     

B  

 

 

     

C  

 

 

     

D  
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MTC SCORES BEFORE TREATMENT: 

Plate 3: (score) 

 1 2 3 4 5 6 

A 

 

 

 

 

     

B  

 

 

     

C  

 

 

     

D  
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PLATE CONFIGURATION AND TREATMENT INFORMATION (BASED ON 

RANDOM NUMBER GENERATION): 

PLATE 1: 

Room Temp at time of treatment: ……………………. 

 Positive 

control 

S/C MTC (HC) EC50 

(HC) 

S/C S/C keep 

A  

 

     

B  

 

     

C  

 

     

D  

 

     

 

TIME OF TREATMENT: …………………. 

PIPETTES USED: …………………………………… 

TIME OF WASHES (3X) IN 1X E3 (clear/no methylene blue): …………………. 

 

PLATE 2: 

Room Temp at time of treatment: ……………………. 

 EC50 

(HC) 

S/C MTC (HC) Positive 

Control 

S/C S/C Keep 

A  

 

     

B  

 

     

C  

 

     

D       
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TIME OF TREATMENT: …………………. 

PIPETTES USED: …………………………………… 

TIME OF WASHES (3X) IN 1X E3 (clear/no methylene blue): …………………. 
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PLATE CONFIGURATION AND TREATMENT INFORMATION (BASED ON 

RANDOM NUMBER GENERATION): 

PLATE 3: 

Room temp at time of treatment: ………………….. 

 EC50 

(HC) 

Positive 

control 

S/C 

(Keep) 

S/C MTC (HC) S/C 

A  

 

     

B  

 

     

C  

 

     

D  

 

     

 

TIME OF TREATMENT: …………………. 

PIPETTES USED: …………………………………… 

TIME OF WASHES (3X) IN 1X E3 (clear/no methylene blue): …………………. 
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PLATE 1 PARADIGM: 

Plate 1 placed into startle arena at: ……………………….. 

Baseline recording taken for 60s at: ……………………… (30fps) 

Room Temp at start: …………. Room Temp at end: ………………….. 

OBSERVATIONS (over 10 minutes from………..until…….……): 

(I=inactive, H = hyperactive, Si = Lying on side, O = other orientation 

issue/vestibular) 

 1 2 3 4 5 6 

A  

 

     

B  

 

     

C  

 

     

D  

 

     

 

HEARING TEST PARADIGM: 

START TIME: ………………………… 

40 Hz (540 milliseconds, 2.3 Vpp, -15dB)…………… (tick) 

50 Hz (440 milliseconds, 1.6 Vpp, -15dB)…………. (tick) 

100 Hz (440 milliseconds, 2.1 Vpp, -25dB)………… (tick) 

150 Hz (440 milliseconds, 2.7 Vpp, -35dB)………... (tick) 

200 Hz (440 milliseconds, 2.2 Vpp, -30dB)………… (tick) 

300 Hz (440 milliseconds, 3.8 Vpp, -40dB)………… (tick) 

400 Hz (440 milliseconds, 4.3 Vpp, -41.25dB)…….. (tick) 
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500 Hz (440 milliseconds, 4.5 Vpp, -30dB)………… (tick) 

END TIME: …………………………….. 

SAVED AS 

FOLDER:……………………………………………………………………… 
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RHEOTAXIS AFTER TREATMENT: (tick) 

 1 2 3 4 5 6 

A  

 

     

B  

 

     

C  

 

     

D  

 

     

 

MTC AFTER TREATMENT: 

 

  

 1 2 3 4 5 6 

A  

 

     

B  

 

     

C  

 

     

D  
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PLATE 2 PARADIGM: 

Plate 2 placed into startle arena at: ……………………….. 

Baseline recording taken for ……. at: ……………………… (30 fps) 

Room Temp at start: …………. Room Temp at end: ……………….. 

 

OBSERVATIONS (over 10 minutes from………..until…….……): 

(I=inactive, H = hyperactive, Si = Lying on side, O = other orientation 

issue/vestibular) 

 1 2 3 4 5 6 

A  

 

     

B  

 

     

C  

 

     

D  

 

     

 

HEARING TEST PARADIGM: 

START TIME: ………………………… 

40 Hz (540 milliseconds, 2.3 Vpp, -15dB)…………… (tick) 

50 Hz (440 milliseconds, 1.6 Vpp, -15dB)…………. (tick) 

100 Hz (440 milliseconds, 2.1 Vpp, -25dB)………… (tick) 

150 Hz (440 milliseconds, 2.7 Vpp, -35dB)………... (tick) 

200 Hz (440 milliseconds, 2.2 Vpp, -30dB)………… (tick) 

300 Hz (440 milliseconds, 3.8 Vpp, -40dB)………… (tick) 
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400 Hz (440 milliseconds, 4.3 Vpp, -41.25dB)…….. (tick) 

500 Hz (440 milliseconds, 4.5 Vpp, -30dB)………… (tick) 

END TIME: …………………………….. 

SAVED AS FOLDER: 

………………………………………………………………………………… 
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RHEOTAXIS AFTER TREATMENT: (tick) 

 1 2 3 4 5 6 

A  

 

     

C  

 

     

B  

 

     

D  

 

     

 

MTC AFTER TREATMENT: 

 1 2 3 4 5 6 

A  

 

     

B  

 

     

C  

 

     

D  
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PLATE 3 PARADIGM: 

Plate 3 placed into startle arena at: ……………………….. 

Baseline recording taken for ……. at: ……………………… (30fps) 

Room Temp at start: …………. Room Temp at end: ………………………… 

 

OBSERVATIONS (over 10 minutes from………..until…….……): 

(I=inactive, H = hyperactive, Si = Lying on side, O = other orientation 

issue/vestibular) 

 1 2 3 4 5 6 

A  

 

     

B  

 

     

C  

 

     

D  

 

     

 

HEARING TEST PARADIGM: 

START TIME: ………………………… 

40 Hz (540 milliseconds, 2.3 Vpp, -15dB)…………… (tick) 

50 Hz (440 milliseconds, 1.6 Vpp, -15dB)…………. (tick) 

100 Hz (440 milliseconds, 2.1 Vpp, -25dB)………… (tick) 

150 Hz (440 milliseconds, 2.7 Vpp, -35dB)………... (tick) 

200 Hz (440 milliseconds, 2.2 Vpp, -30dB)………… (tick) 

300 Hz (440 milliseconds, 3.8 Vpp, -40dB)………… (tick) 
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400 Hz (440 milliseconds, 4.3 Vpp, -41.25dB)…….. (tick) 

500 Hz (440 milliseconds, 4.5 Vpp, -30dB)………… (tick) 

END TIME: …………………………….. 

SAVED AS FOLDER: 

………………………………………………………………………………… 
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RHEOTAXIS AFTER TREATMENT: (tick) 

 1 2 3 4 5 6 

A  

 

     

B  

 

     

C  

 

     

D  

 

     

 

MTC AFTER TREATMENT: 

 1 2 3 4 5 6 

A  

 

     

B  

 

     

C  

 

     

D  
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NOTES/COMMENTS: 
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Appendix 3 Preliminary Data 
Towards the end of the research project, the potential effects of cisplatin on 

ROS induction were investigated, with initial experiments focussing on the 

effects of cisplatin on the NOX family of enzymes. Some preliminary data are 

described below. 

mRNA expression of the NOX family of enzymes in the zebrafish 

Methods 

RNA extraction 

Anaesthetised larvae (up to 5 dpf) were transferred into clean 1.5 mL 

microcentrifuge tubes (STARLAB, Milton Keynes, UK). The number of larvae 

varied depending on age at extraction (between 10 and 20). All fluid was 

removed from the larvae and they were ‘snap’ frozen on dry ice (at this stage, 

samples could be stored at -80ºC). 500 µL of Trizol (Invitrogen; 15596-026) was 

added to the tube and the embryos were homogenised using a syringe. The 

sample was left at room temperature for 5 minutes before adding 100 µL of 

chloroform. Tubes were immediately and vigorously shaken by hand for 15 

seconds and then left to stand for a further 3 minutes at room temperature. After 

the incubation, samples were centrifuged at 12,000 g for 15 minutes at 4ºC. 

Approximately 300 µL of the aqueous phase was transferred into a clean, 

labelled 1.5 mL tube and 250 µL isopropanol added before briefly vortexing the 

mixture. The sample was left to incubate for 10 minutes at room temperature 

and then centrifuged at 12,000 g for 15 minutes at 4ºC. The supernatant was 

removed, leaving a pellet of RNA, which was then washed with 1 mL of 70% 

ethanol/30% DEPC-treated water. Tubes were centrifuged at 4ºC for a further 5 

minutes at 7,500 g before removing the ethanol and air drying for 15 minutes. 

The pellet was resuspended in 20 µL of DEPC-treated water. 1 µL of the RNA 

preparation was tested on a NanoDrop ND-1000 spectrophotometer (Thermo 

Fisher Scientific) using a scan of the absorbance from approximately 200 nm up 

to 350 nm. The sample was taken as pure if it had an A260/280 ratio of 

between 1.8 and 2.1. Aliquots of the pure RNA sample were stored at -80ºC for 

later use. 
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cDNA synthesis 

First strand cDNA synthesis was performed from total extracted RNA using the 

SuperScript™ III Reverse Transcriptase Kit (Invitrogen), according to the 

manufacturer’s instructions. Total extracted RNA was primed using oligo(dT) 

and RNA removed at the end using RNase H. The synthesised cDNA was 

stored at -20ºC and later used for RT-PCR. 

Primer design 

Genes implicated in cisplatin-induced ototoxicity in cell-line or mammalian 

studies were identified by literature searching. A BLAST search was performed 

comparing the nucleotide sequence of the candidate gene against the zebrafish 

genome using the NCBI browser (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The 

top matches from the BLASTn were viewed in the zebrafish Zv9 genome 

database on Ensembl (http://www.ensembl.org/Danio_rerio/Info/Index). Primers 

to potential zebrafish homologues were designed using the NCBI browser 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?) and checked for 

secondary structures and primer dimers using the Sigma design tool 

(http://www.sigmaaldrich.com/configurator/servlet/DesignTool?prod_type=STAN

DARD). These primers were used to amplify gene fragments from zebrafish 

cDNA by RT-PCR. For details of the primers, see Table A3.1. 
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Table A3.1: Primer design. 

 

Gene 

 

Number of 

primer pairs 

designed 

Fragment 

length (bp) 

and number 

of primer 

pair 

 

Primers to Sequence (5’ to 3’) 

cyba 2 473 

Pair 1  

Forward: TGTGGGCCAACGAGCAAGCTT 

Reverse: TTTACGGCGCAGTTCAGGGGG 

  457 

Pair 2 

Forward: TCCCCCTGAACTGCGCCGTA 

Reverse: 

ACAAGTCATCGAGAGGACACAAAAGG 

Duox1 3 563 

Pair 2 

Forward: GGGACACGAGCACGGGCAAA 

Reverse: ACCAGGGGGCGCAAGAGTCA  

  279 

Pair 3 

Forward: GTTGGCTTTGGTGTAACTGTA 

Reverse: GCCCAGGCTGTGAGAG 

nox5-

like 

3 565 

Pair 1 

Forward: TGGCATCGGCTGGGTCAACG 

Reverse: CGCTCTGCTTTGGTGCCGTCT 

  438 

Pair 3 

Forward: AGTCGTTTTTCGCGGAGCGGTT 

Reverse: ATGCGCGTGTCAGATAGCGGG 

eef1a1l1 1 543 Forward: TCTGTTGAGATGCACCACGA 
Reverse: TGGAACGGTGTGATTGAGG 

 

PCR 

DNA sequences were amplified from cDNA using specific primers designed to 

anneal to the DNA template on either side of the sequence of interest. A 

standard PCR reaction mixture was used: 
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Single reaction:  

2 µL 10x PCR buffer (100 mM Tris-Cl (pH 8.8 at 25 ºC), 500 mM KCl, 1% Triton 
X-100; Yorkshire Bioscience Ltd., UK) 

0.6 µL 50 mM MgCl2 (Yorkshire Bioscience Ltd., UK)  

15.25 µL dH2O 

0.2 µL 25 mM deoxynucleotide triphosphate (dNTP) mix (Promega)  

0.75 µL 10 µM forward primer (Sigma, UK)  

0.75 µL 10 µM reverse primer (Sigma, UK)  

0.2 µL 5 u/µl DNA Polymerase  

0.25 µL cDNA)  

 

For routine PCR procedures, the DNA Polymerase used was YB Taq (Yorkshire 

Bioscience Ltd., UK). Negative controls used were: forward primer only, reverse 

primer only and no template cDNA. Primers designed to the constitutively 

expressed zebrafish elongation factor 1-alpha (eef1a1l1) gene were used as a 

positive control.  

The PCR reaction was as detailed in Table A3.2. A thermal gradient of 48 - 

64ºC was used to optimise the annealing step. The reaction was performed 

using an MJ Research PTC-200 Thermo Cycler (Bio-Rad Laboratories Ltd., 

UK). PCR products were visualised by agarose gel electrophoresis.  
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Table A3.2: PCR reaction 

 

Agarose gel electrophoresis 

Gel electrophoresis was used to check the size and/or quantities of restriction 

digested DNA and PCR products and to confirm RNA transcription. Agarose 

(Web Scientific Ltd.) was dissolved into 1X Tris-borate EDTA buffer (TBE) at a 

concentration of 1-3% by heating. 1µL of 10 mg/mL ethidium bromide solution 

(BDH Laboratory Supplies, Poole, UK) was added to 30 mL of the molten 

agarose solution in order to visualise the product of interest. Gels were set in 

PCR step Temperature (ºC) Time (minutes) Cycles Function 

Denature 94 3 1 Denature the template 

cDNA (removal of 

secondary structure) 

by breaking hydrogen 

bonds 

Denature 94 30 33 Melts the template 

and newly-

synthesised cDNA 

(after cycle 1) by 

breaking hydrogen 

bonds 

Anneal 48-64 45 33 Primers anneal to 

single stranded 

template 

Elongate 72 1 33 Allows Taq 

polymerase to 

elongate from the 

primers, making a 

copy. 

Final elongation 72 3 1 Allows remaining 

single stranded DNA 

to become fully 

extended 
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trays containing combs to form the DNA loading wells. Once set, the agarose 

gels were immersed in an electrophoresis tank filled with 1X TBE buffer. DNA 

loading buffer (Fermentas, UK) was added to the product of interest at a final 

concentration of 1X and products were loaded into the wells. Products were 

compared to a reference DNA ladder run on the same gel (GeneRuler 100 bp or 

1 kb 0.5 mg/mL DNA ladder; Fermentas, UK). In the majority of cases, 

electrophoresis was performed at 90V for 45 minutes using a Powerpac 300 

power supply (Bio-Rad Laboratories Ltd., UK). Samples run on the gel were 

subsequently visualised under ultraviolet light using a gel doc system.  

Results 

Primers were designed to the zebrafish mRNA sequence for zfCYBA, zfDUOX-

1 and zfNOX-5-like. PCR products could be seen for each of these genes of 

interest. The PCR product for zfCYBA could be observed using cDNA that was 

a mix of fish aged 3-5 dpf. The PCR products for zfNOX-5-like and zfDUOX-1 

could be seen at 26 hpf but were more difficult to detect between 3 and 5 dpf 

(data not shown). The PCR products were gel extracted and cloned before 

sequencing. Sequencing showed the expected products in all cases for each 

gene of interest.  

Protective effects of NOX family inhibitors 

Methods 

MTC testing 

MTC testing of DPI was carried out as in Section 2.4.3 of Chapter 2. 

Compound exposures 

For protection studies, 2 hour co-treatments of cisplatin (IC50/450µM/900µM) 

and DPI at varying concentrations up to half of the MTC concentration were 

performed (0-62.5 µM, MTC was 125 µM). After compound exposure, larvae 

were rinsed 3 times with E3 and left to recover for an additional 60 minutes prior 

to further processing (DASPEI assay, as described in Chapter 2 Section 2.7). 
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Results 

DPI (diphenylene iodonium) is a known inhibitor of the NADPH oxidase family 

of enzymes. The effect of DPI co-treatment on cisplatin induced hair cell 

damage was investigated in the posterior lateral line at 5 dpf. Co-incubation of 

DPI and cisplatin for 2 hours partially protected hair cells of the neuromast 

against cisplatin–induced decreases in DASPEI staining (Figure A3.1 A). This 

protective effect was statistically significant at both 450 µM and 900 µM of 

cisplatin treatment (Figures A3.1 B and C). The data suggest that the 

NOX/DUOX pathway may be important in the induction of hair cell death in the 

zebrafish, supporting what is already known from studies in other species.  

  



Figure A3.1: The protective 

effect of the pan-NOX family 

inhibitor DPI on larvae treated 

with cisplatin. Co-incubation of DPI 
and cisplatin for 2 hours partially 
protects against cisplatin–induced 
decreases in DASPEI staining in the 
posterior lateral line (A). The 
protective effect of DPI can be seen at 
both 450µM (B) and 900µM (C) of 
cisplatin treatment.  For each 
treatment group n is a minimum of 36 
larvae, pooled from three separate 
trials. 

B 

A 

C 

239a 



A B 

C 

Figure A4.1: The chemical structures of the negative control compounds. (A) Amoxicillin, (B) Cefazolin sodium salt and (C) Melphalan hydrochloride. 

240 

Appendix 4 



A 

B 

C 

Figure A5.1: The chemical structures of the vital dyes used. (A) DASPEI, (B) FM1-43FX, (C) DAPI. 241 
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