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Abstract 

The Hedgehog (Hh) signalling pathway is one of the major signalling pathways governing 

embryonic and adult development in bilateria, yet many of the direct targets of Hh signalling 

remain unknown. Here, I use the zebrafish embryo to investigate two potential Hh target genes 

that were identified in the mouse. These are lama1, encoding Laminin α1, and c125, a novel gene 

hypothesised to play a role in motor neuron development. 

Laminins are conserved heterotrimeric glycoproteins, of which there are at least 16 different 

isoforms, generated from Laminin α, β, and γ subunits. Laminins are an essential component of 

basement membranes (BMs), which are specialised forms of the extra-cellular matrix (ECM) 

crucial for normal patterning, proliferation, migration, and differentiation of many different cell 

types. Mutations in lama1 cause embryonic lethality in mouse and zebrafish, demonstrating that 

Laminin α1 function is critical for embryonic development. 

The aims of this study were to assess the expression of lama1 and c125 during zebrafish 

embryonic development, and to explore a possible role for Shh in their regulation. I also aimed to 

determine the regulatory sequences controlling lama1 expression using a bacterial artificial 

chromosome (BAC) transgenic zebrafish approach. My data reveal that the enhancer elements 

controlling zebrafish lama1 expression are located within intron 1 of lama1. Within this intron, I 

have uncoupled the enhancers that regulate lama1 expression in the muscle fibres, from enhancers 

that regulate lama1 expression in the anterior CNS, neural tube, and the eye. These findings are of 

particular importance because ectopic expression of lama1 in mouse models of congenital 

muscular dystrophy restores normal muscle function. Therefore, the characterisation of lama1 

regulation provides a framework for future studies to identify drugs stimulating endogenous 

lama1 expression in dystrophic muscles. 
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