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Abstract

Mean flows are known to play an important role in the dynamics of the Spiral Defect Chaos

state and in the existence of the skew-varicose instability in Rayleigh–Bénard Convection.

SDC only happens in large domains, so computations involving the full three-dimensional

PDEs for convection are very time-consuming. We therefore explore the phenomena of

Spiral Defect Chaos and the skew-varicose instability in Generalized Swift–Hohenberg

(GSH) models that include the effects of long-range mean flows. Our analysis is aimed at

linking the two phenomena.

We apply analytical and numerical methods to study the linear stability of stripe

patterns in two generalizations of the two-dimensional Swift–Hohenberg equation that

include coupling to a mean flow. A projection operator is included in our models to

allow exact stripe solutions. In the generalized models, stripes become unstable to the

skew-varicose, oscillatory skew-varicose and cross-roll instabilities, in addition to the usual

Eckhaus and zigzag instabilities. We analytically derive stability boundaries for the skew-

varicose instability in various cases, including several asymptotic limits. Close to the

onset of pattern formation, the skew varicose instability has the same dependence on

wavenumber as the Eckhaus instability provided the coupling to the mean flow is greater

than a critical value. We use numerical techniques to determine eigenvalues and hence

stability boundaries of other instabilities. We extend our analysis to both stress-free and

no-slip boundary conditions and we note a cross-over from the behaviour characteristic of

no-slip to that of stress-free boundaries as the coupling to the mean flow increases or as

the Prandtl number decreases. The region of stable stripes is completely eliminated by

the cross-roll instability for large coupling to the mean flow or small Prandtl number.

We characterize the nonlinear evolution of the modes that are responsible for the skew-

varicose instability in order to understand whether the bifurcation from stable stripes at

the skew-varicose instability is supercritical or subcritical. The systems of ODEs, which

are derived from the PDEs by selecting 3 relevant modes and truncating, show that the

skew-varicose instability is supercritical whereas for an extension with 5 relevant modes
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shows the skew-varicose instability is subcritical.

We solve the PDEs of one GSH model in spatially-extended domains for very long

times, much longer than previous efforts in the literature. We are able to investigate the

influence of domain size and other parameters much more systematically, and to develop

a criterion for when the spiral defect chaos state could be expected to persist in the long

time limit. The importance of the mean flow can be adjusted via the Prandtl number or

parameter that accounts for the fluid boundary conditions on the horizontal surfaces in a

convecting layer and hence we establish a relation between these parameters that preserves

the same pattern. We further analyze the onset of chaotic state, and its dependence on

the Prandtl number and the domain size.

An outstanding issue in the understanding of SDC is that it exists at parameter values

where simple straight roll convection is also stable, and the region of co-existence increases

as the domain size increases. The results of our numerical simulations are coupled with

the analysis of the skew-varicose instability of the straight-roll pattern in the Generalized

Swift–Hohenberg equation, allowing us to identify the role that skew-varicose events in

local patches of stripes play in maintaining Spiral Defect Chaos.
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Chapter 1

Introduction

1.1 Pattern formation

The Universe, from the grandest to the smallest scales, mostly consists of non equilibrium

systems that possess an extraordinarily rich and visually fascinating variety of spatiotem-

poral structures, patterns. An example of grand pattern formation, spiral galaxies, is

shown in figure 1.1(a). Descending from galaxies to the natural world, one can experience

how the formation of patterns has become a common theme in nature; patterns in cloud

streets, animal coatings such as dappling on giraffes and stripes in zebras, patterns in

the ocean, patterns of hurricanes, snowflakes patterns and cracks in mud. One terrestrial

example of natural pattern formation, ripples found in sand dunes, is shown in figure

1.1(b).

Pattern formation has, mostly since the 1960s, attracted experimentalists and theo-

reticians and become a large, growing and increasingly important part of modern physical

science, one relevant to everyday phenomena. The common phenomenon of these pattern

forming non-equilibrium systems is the change from a spatially uniform state to a patterned

state. Some of the patterns and dynamics that are observed in natural non-equilibrium

systems have been explored using representative non-equilibrium systems in the labora-

tory. Of these non-equilibrium systems, Rayleigh–Bénard Convection (RBC) [12, 13], in

1
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(a) (b)

Figure 1.1: Nature of patterns: (a) Galactic spirals: Why galaxies evolve to form spiral,
is an important open question in current astrophysical research [1]. (b) Pattern formation
in wind-swept sand at the Sand Dunes in Mui Ne, Vietnam. The photo was taken by
Ali Watters [2]. The wind lifts sand grains into the air, transferring translational and
rotational energy to sand grains, which eventually fall back to earth and dissipate their
energy into heat by friction as they roll and rub against other sand grains.

which a fluid is driven out of equilibrium by a destabilizing temperature gradient, has

been studied extensively. The Taylor–Couette [14] fluid dynamics experiment and the

Faraday wave experiment [15], which are driven out of equilibrium by a velocity gradient

and an applied forcing respectively, are also particularly well studied paradigms of pattern

formation.

The work reported in this thesis is based on Rayleigh-Bénard Convection and we use

the next section to elaborate upon the details of RBC.

1.2 Rayleigh–Bénard Convection

Convection is one of the major modes of heat transfer and mass transfer that occurs in

a large scale in atmospheres, oceans, planetary mantles, and interestingly the outermost

30% of the sun is driven by convective motion [6, 16]. Convective motion in experiments

2
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Temperature = T0

Temperature = T0 + ΔT

z = d

gz

z = 0
x

Figure 1.2: Schematic diagram for the convective flow in the Rayleigh-Bénard Convec-
tion of a fluid layer between two horizontal plates. When the temperature difference ΔT
is sufficiently large, the warm less-dense fluid near the bottom plate starts to rise and the
cold more-dense fluid near the top plate spontaneously starts to fall. This eventually forms
structures known as convection rolls. The characteristic roll size is about the same as the
depth d. The gravitational acceleration is denoted by g. Arrows indicate the flow of hot
rising and cold descending fluid.

was reported initially by Bénard, in 1900 [12] and investigated further by Lord Rayleigh in

1916 [13]. The phenomenon of thermal convection under an adverse temperature gradient

is therefore known as the Rayleigh–Bénard Convection (RBC) in their honour.

In RBC, a fluid layer of depth d is held in a vertical temperature gradient ΔT/d

that determines whether or not the fluid is in thermodynamic equilibrium. When this

temperature gradient exceeds a critical value, the buoyancy forces overcome the dissipation

and the fluid layer undergoes a transition from a uniform conducting state to a convecting

state of lower symmetry. The roll pattern occurring across the fluid layer was described

as the linear instability of the conducting state by Rayleigh [13]. This phenomenon is

illustrated in figure 1.2.

The temperature difference, ΔT is characterized by the dimensionless Rayleigh number,

3
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Ra, a measure of the external temperature difference applied to the system, defined as

Ra = αgd3ΔT/κν. In the expression, α is the volumetric thermal expansion coefficient, g is

the gravitational acceleration, κ is the thermal diffusivity, and ν is the kinematic viscosity.

Also the vertical thermal diffusion time is d2/κ and the vertical viscous relaxation time

d2/ν.

Rayleigh–Bénard Convection is described by the well-known non-dimensionalized Boussi-

nesq equations; under the Boussinesq approximation fluid properties do not vary over the

imposed temperature interval, except for the density in the buoyancy term. The dimension-

less equations for the temperature perturbation θ(x, z, t), the pressure P (x, z, t) and the

velocity field u(x, z, t), where x = (x, y) denotes the horizontal coordinates are [6, 17, 18]:

1
Pr

(
∂u
∂t

+ u · ∇u) = −∇P + ∇2u + θêz

∂θ

∂t
+ u · ∇θ = ∇2θ +Raêz · u

∇ · u = 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1.1)

The resulting temperature gradient is thus parallel to the vertical unit vector êz and

parallel to gravity −gêz and temperature T is given by T = 1−z+θ. The Prandtl number,

Pr, is a dimensionless number; the ratio of kinematic viscosity to thermal diffusivity.

Boundary conditions must be added with these equations. No-slip boundary conditions

yield: u = θ = 0 at top and bottom boundaries. Rayleigh [13] assumed stress-free

boundary conditions at top and bottom, hence: θ = uz = ∂zux = ∂zuy = 0.

This set of equations is the starting point of most theoretical work, which has been in

three stages: the linear stability analysis of the conducting solution; the roll solution and

its stability to small perturbations; and the description of spatial temporal modulations

in terms of amplitude equations.

4



Chapter 1. Introduction

Figure 1.3: Instability of the uniform conducting state to growth of convecting solution
with wavenumber K. Marginal stability curves for stress-free (A) and no-slip (B) velocity
boundary conditions and isothermal plates [3].

1.2.1 Straight-Roll Patterns

When the amplitude of convection is small, the terms u · ∇u and u · ∇θ can be neglected,

the equations (5.3) become linear and homogeneous. The linear stability of the conducting

state is obtained by solving equations for Fourier normal modes in the form e(iK·x), which

yields the marginal stability condition, (here K = |K|)

Ra =
(K2 + π2)3

K2
,

in the case of stress-free boundaries. Neutral stability curves for stress-free and no-slip

boundaries (obtained by Pellew & Southwell in 1940 [3]) are illustrated in figure 1.3. The

heat conduction state u = 0 becomes unstable and convection is commenced for a layer

with no lateral boundaries [17], if the Rayleigh number exceeds the critical value Rc = 1708

(for no-slip boundaries) or Rc = 27π4/4 ≈ 657.5 (for stress-free boundaries), independent

5
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Figure 1.4: Examples of shadowgraph images of the patterns, at onset when the system
started to convect, seen in Argon layer in a circular convective cell with aspect ratio (radius-
to-height ratio), 7.66. On the left: a straight-roll pattern at Ra = 1793.4. On the right: at
Ra = 1913, the rolls bend in order to end perpendicular to the sidewalls. The rolls in the
centre are squeezed, while those near the sidewall are widened [4].

of the fluid under consideration [19]. In Boussinesq convection the primary bifurcation

turns out to be supercritical and the system builds up a well defined steady straight roll

pattern just above threshold.

Steady straight rolls are made of a single pair of wave vectors ±Kx̂ where x̂ is a unit

vector in the horizontal plane. The periodic straight-roll solutions can be described by

their horizontal roll wavelength λ = 2π/K, where the critical wavenumbers are Kc = 3.117

and Kc = π/
√

2 ≈ 2.22 for no-slip and stress-free boundary conditions respectively. Figure

1.4 shows how straight rolls develop in the interior of a convection cell in the experiments

carried out by Croquette in 1989 [4]. They increased the temperature across an Argon

layer (at Ra = 1793) and the first convective pattern, shown in left plot, is a straight

defect-free roll pattern. They examined that the roll diameter is close to the thickness of

the Argon layer, indicating that the pattern has the expected critical wavenumber. When

Ra is slightly increased to 1913, a permanent deformation has built up to make rolls

squeezed at the centre and expanded near the boundary, as shown in right plot. They

6
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have explored many complex time dependent patterns for further higher Ra.

It has been shown by Schluter et al. in 1965 [17], for values of Ra sufficiently close to

the critical value, that the only stable solution in an infinite horizontal layer corresponds

to convection in the form of periodic rolls.

1.2.2 Secondary Instabilities

If the Rayleigh number is increased from Rc, the straight parallel-roll pattern could become

unstable to various instabilities. Combinations of these instabilities could replace rolls

by more complex spatio-temporal structures. In the Boussinesq approximation, pattern

selection is completely determined by the values of Ra, Pr and K, the wavenumber of

the pattern. The theoretical analysis of pattern-forming instabilities are quite extensively

discussed in the literature [20, 21]. Above but close to onset, the predictions of the

linear and weakly nonlinear theory [17] for the stability of convection rolls with varying

wavenumber were reproduced in a number of experiments [5, 22]. A particularly detailed

study was carried out by Hu et al. in 1993 [23]. Developments concerning the stability of

the rolls against various secondary instabilities have been mainly carried out by Busse and

coworkers [6, 24, 25, 26]. Using perturbation theory, they considered the stability of rolls

with respect to arbitrary disturbances of infinitesimal amplitude [27]. They extended the

analysis to the case of higher Rayleigh numbers by employing the Galerkin method [24].

From 1978 to 1989, they calculated the region in (K, Pr, Ra) parameter space in which

rolls are stable (known now as the Busse Balloon [6, 28]). The Busse Balloon was found to

agree well with experiments for large Pr (for example water) [5], and reasonably well for

gases with lower Pr [4, 8]. However an important question of which of the stable states will

be selected by the physical system is yet largely unanswered. Figure 1.5 shows the Busse

Balloon in (Pr, K, Ra) space: for lower Pr, there is a smaller stability region for stationary

7
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Figure 1.5: Busse Balloon: stability region of convection rolls evolves in the three-
dimensional Ra − Pr − K space. Stability diagrams show the range of Ra and K for
Pr = 0.1, 0.71, 7 and 300 where the roll state is stable (light blue region). The thick curves
represent computed stability boundaries for the oscillatory (OS), the skew-varicose (SV),
the cross-roll (CR), the knot (KN), and the zigzag (ZZ) instabilities. The other curves
represent approximate interpolations [5, 6].

convection and a larger domain of dynamic behaviour. The stable states are limited at

the low-wavenumber side by the Eckhaus and the cross-roll instabilities and at the high-

wavenumber side by the skew-varicose instability. The secondary modes for the Eckhaus

and zigzag instabilities [5, 29], do not depend on the fact that the pattern is generated

8
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by the RB mechanism but on the symmetries of the rolls whereas for short wavelength

cross-roll (rolls form perpendicular to the existing roll pattern) and long wavelength skew-

varicose instability they are much more specific to convection, and are strongly depended

on the value of Pr. We next describe the seminal results in the analysis of the Eckhaus,

zigzag, cross-roll, oscillatory and skew-varicose instabilities in RBC.

Eckhaus and zigzag Instabilities

Various modulations to the roll patterns lead to instabilities that depend on initial wavenum-

ber of the roll pattern and this is what sets the instability boundaries as indicated in Busse

Balloon.

The simplest secondary long-wavelength instability is the Eckhaus instability [30], the

well known modulation of the wavenumber of the pattern. In convection, rolls adjust

wavenumber by destroying or creating rolls due to the Eckhaus instability. The Eckhaus

instability occurs if the roll wavelength is too long or too short and eventually adjusts

with a more favourable wavelength. If a roll pattern is at some Ra and wavenumber

K0 < Kc or K0 > Kc in the Eckhaus unstable region (in the Busse Balloon) the evolution

of the Eckhaus instability leads to the addition or subtraction of rolls and the increase

or decrease the wavenumber. Figure 1.6 illustrates the experimental results of convecting

liquid crystal layer showing how the initially periodic pattern develops a long-wavelength

modulation if the initial condition is located in the Eckhaus unstable region [7].

The zigzag instability [5, 29], a long-wavelength instability, creates wavy distortions of

the rolls to reduce the wavelength when it is too large. The zigzag modulation is of the

form eiq0xe±isyy, where q0 = K − 1 and sy � q0.

Therefore zigzag instability initiates a bending process of rolls and breaks the trans-

lation invariance of the pattern along the roll axis. Figure 1.7 exhibits the experimental
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Figure 1.6: Four subsequent stages in the development of the Eckhaus instability from
a spatially periodic pattern for ε = 0.052. New roll pairs nucleate in the regions of weak
optical contrast, leading to a higher wavenumber. In the initial pattern, the dimensionless
wavenumber, (K0 −Kc)/Kc is 0.194 [7].

results of convecting silicone oil layer showing how the initially periodic pattern can develop

into zigzagging if the the initial condition is located in the zigzag unstable region [5]. The
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Figure 1.7: Four subsequent stages in the development of the zigzag instability from a
spatially periodic pattern with wavenumber K = 2π/2.8 for Ra = 3600, showing bending
process of straight rolls into a wavy roll pattern, leading to a higher wavenumber. The
initial pattern is shown in planform (1) and the time interval between planforms, (1)-(4),
are 9mins, 10mins and 26mins respectively [5].

zigzag instability plays a minor role for small Pr but for large Pr, the zigzag instability

forms a larger portion of the boundary to stable rolls in Busse Balloon.

The Eckhaus and the zigzag instabilities can be dealt within the framework of the

amplitude-equation formalism, which retains the behaviour of convection close to the onset;

amplitude equations describe the slow spatiotemporal evolution of the most unstable mode.

The Eckhaus instability is subcritical, so the Eckhaus unstable rolls do not saturate in

the bifurcated state and thus the pattern breaks down, creating defects that alter the

wavelength of the pattern until it gets into the stable region. On the other hand, the

zigzag instability is supercritical, stabilizing the pattern.
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Figure 1.8: Four subsequent stages in the development of the cross-roll instability at
ε = 0.2 (ε, the reduced Rayleigh number, is given by ε = (R−Rc)/Rc) Pr = 1.1. Pictures
are spaced 23 sec apart [8].

Cross-roll and oscillatory Instabilities

The cross-roll instability, being a short-wavelength instability, makes rolls perpendicular

to the given rolls, changing convection with large wavenumber to a pattern with more

favourable wavenumber and hence makes radical changes to the original convection pat-

tern. The cross-roll instability of rolls have been investigated in the earlier experiments

by Busse & Whitehead (1971) [5] and experimental evidence shows the occurrence of this

instability at all Prandtl numbers [31]. Unlike, the Eckhaus and the zigzag instabilities,

the wavelength of the cross rolls is independent of the wavelength of the original rolls in a

way that as the cross rolls grow, the original ones decay and finally disappear. Figure 1.8

illustrates the experimental results showing the development of cross rolls in the bulk of

the original rolls [8].
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The oscillatory instability, a short wavelength and a transverse instability, has been

observed in experiments with a layer of mercury by Rossby in 1969 [32] and the transverse

structure on each roll is observed to propagate along the length of the roll due to this

instability. Therefore, from the phenomenological point of view the oscillatory instability

of rolls resembles a wave propagating along a rope [24].

Skew-Varicose Instability

The skew-varicose instability is an important predominant instability at Prandtl numbers

of the order of unity or smaller and it tends to distort the roll pattern; the skew-varicose

mechanism causes a periodic thickening and thinning of the rolls and the resulting bulges

are tilted towards the roll axis, so the patterns exhibit a skewed appearance. As the

unstable modes grow, pinches are formed that cause the elimination of a roll and associated

counter roll from the pattern [33] causing a shift towards larger wavelengths [6]. The

tendency of the instability mechanism is to eliminate large wavenumber rolls in favour

of small wavenumber rolls. A good example describing the evolution of skew-varicose

instability is shown in figure 1.9. The instability starts with wavy distortion (shown in

planform 1) of the originally uniform roll pattern. These disturbances grow to form cells in

the form of short rolls with large wavelength and then evolve into defects which travel along

the roll axis to the boundaries, destroying one or two roll pairs; in complex pattens these

defects are known to play a crucial role in determining the dynamics and the structure

of the pattern. Thus the skew-varicose instability does not correspond to a transition to

a qualitatively new kind of convection pattern, but instead transforms one pattern into

another one with a stable wavenumber. This decrease of the wavenumber of convection

caused by the skew-varicose instability is more pronounced at lower Prandtl numbers [25].

The skew-varicose instability disappears both for large and very small Prandtl numbers
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Figure 1.9: Time evolution of the skew-varicose instability at ε = 2.26 (ε, the reduced
Rayleigh number, is given by ε = (R − Rc)/Rc)) Pr = 1.07 [about (183tv) after ε was
increased from 2.23]. Pictures are spaced 0.54tv apart [8] (tv is the vertical diffusion
time). Evolution from the pattern of convection rolls which are distorted by the skew-
varicose instability is to a state with a few defects.

and therefore is thought to originate from the combined effect of the momentum and heat

advection terms in the basic equations [25]. Clever & Busse in 1978 and 1979 performed

a detailed comparison of the theoretical description with experimental observation of the

skew-varicose instability for moderate Prandtl numbers [25, 33]. For free-free boundaries,

Zippelius & Siggia [34] and Busse & Bolton [26, 35] found that the parallel roll state is

unstable against the skew-varicose instability immediately above onset if Pr < 0.543.

The theoretical analysis proceeded by obtaining two-dimensional steady solutions,

which correspond to the convection rolls and imposing perturbations of arbitrary three-

dimensional form on the steady solution. In the stability analysis these infinitesimal dis-

turbances required the introduction of two additional wavenumber parameters along and

perpendicular to roll axis [36]. The skew-varicose instability is characterized by a finite

ratio between wavenumbers along and perpendicular to the roll axis. The critical Rayleigh
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number for the onset of the skew-varicose instability corresponds to disturbances for which

both these wavenumbers tend to zero. The SVI has been difficult to capture due to the

lack of consistent scaling for these disturbances and system parameters. Also that its

growth rate, which is relatively low in the neighbourhood of this critical Ra, increases

only quadratically, as the Ra exceeds the critical value [37]. Owing to these difficulties, a

new technique is needed to capture whole of the SVI. In this thesis we attempt to address

this question by developing a method to investigate the SVI using a reduced model of

convection (for models of convection see section 1.3).

It is believed that the SVI plays a role in the formation of complex patterns such

as Spiral Defect Chaos (see section 1.3.1), which occurs in low Pr convection. However,

because the understanding of the SVI is not yet forthcoming, the question about this

relation remain unanswered. In next section we describe some complex patterns that are

exhibited by RBC and depend on the Prandtl number.

1.2.3 Complex Patterns: Spiral Defect Chaos

When the Rayleigh number is increased, convection rolls may become disordered and

exhibit complex patterns. The characterization of these complex time-dependent patterns

remains a challenge in the experimental investigation of pattern dynamics. As a result

of the substantial progress in experiments of RBC, Morris et al. in 1993 [38] discovered

the novel state, Spiral Defect Chaos (SDC), in large-aspect ratio systems. This SDC

pattern is irregular in time and space, but it maintains a relatively simple structure in

the vertical direction. The SDC state is characterized by rotating spirals, dislocations,

disclinations and patches of rolls. The experiments of Ahlers in 1998 [39] have provided

evidence that SDC is an intrinsic state of RBC for fluids with Pr ≈ 1 and it has been

observed using several pure gases with Prandtl numbers near one, including SF6 [40, 41],
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Figure 1.10: Examples of shadowgraph images of the patterns seen in a fraction of the cell
near the center of Rayleigh–Bénard convection in SF6 near its gas-liquid critical point [9].
Spirals and Targets depend on the Prandtl number, Pr. (a) Spirals with Pr = 3.3, Ra =
6217.12 (b) Targets with Pr = 6.6, Ra = 6200.04. The horizontal size of each frame is
≈ 4.5mm.

N2 [42] and Ar [41], gas mixtures [41], which have smaller Prandtl numbers than pure

gases, and in liquid 4He [43]where Pr is smaller than unity. Assenheimer and Steinberg

in 1993 [9] found that SDC evolved into a state of target chaos when the Prandtl number

is raised. The observation of SDC in large aspect ratio systems and in simulations with

periodic boundary conditions [44] supports the conclusion that SDC is a generic state for

low Pr and large aspect ratio convection which is not related to the detailed boundary

conditions [45]. However, no conclusion has been made as to which of the many dynamic

phenomena that occur at low Prandtl numbers [20] is responsible for the formation of

spiral defect chaos.

Some examples of possible complex patterns, spirals and targets that can occur in RBC

are shown in figure 1.10, which is taken from the work of by Assenheimer and Steinberg [9,

40]. In experiments using compressed SF6 gas, they reported a continuous transition from

SDC to target chaos when the Prandtl number was increased above approximately 4 by

tuning the temperature and pressure near the critical point of the gas. The experimental
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results were described on the basis of full hydrodynamic equations for convection [11, 44,

45, 46]. Decker et al. [44] were able to reproduce SDC by a Galerkin truncation of standard

three-dimensional Boussinesq equations. These numerical dynamics resembled the results

of experiments [47].

SDC has attracted much theoretical attention because it was a completely unexpected

state within the framework of straight-roll instabilities. Interestingly, the SDC state exists

in a parameter regime for an infinitely extended system, where parallel straight rolls are

stable [36]. Straight rolls only develop for initial conditions that are very close to the

rolls whilst for most other initial conditions SDC is seen [48]. Inspired by this behaviour,

several investigations have been performed to identify the onset of SDC. Liu and Ahlers

in 1996 [41] originated investigations that were concerned with the onset of SDC. The

influence of cell geometry on the onset of SDC is found to be weak; Hu et al. [49] used a

circular box and Cakmur et al. [48] used a square box with same aspect ratio and their

onset value of SDC was the same. However, the onset of SDC decreases as the domain

gets larger and Li et al. in 1998 [50] predicted (without any justification) that this onset

approaches to zero for as the domain size becomes large.

A quantitative understanding of SDC has not been achieved so far. However, several

attempts have taken place in characterizing this state and the following facts have been

considered: statistics of spiral and defect populations [51], the distributions of local roll

properties such as the wavenumber [52], the mechanisms for the generation of chaos from

spatial disorder [53]; the wavenumber selection mechanism for spirals [10, 54, 55]; and

the conditions under which spiral defect chaos transitions to other states. Ecke et al. in

1995 [51] experimentally determined the time dependence with the number of spirals of

the SDC state and their results suggested that at any instant, the probability distribution

of spirals is fit by a Poisson distribution. Hu et al. [49] computed local wavenumbers and
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curvatures in experimental pictures and proposed order parameters to describe transitions

in spatiotemporal chaos in Rayleigh–Bénard Convection. In order to characterize the sta-

tistical structure of SDC, Morris et al. [45] analyzed series of shadowgraph images of SDC

and constructed the three dimensional structure-factor (the modulus squared of the Fourier

transform of the space-time shadowgraph data). Egolf et al. [52] found the characteristic

feature of SDC that the average wavenumbers, as determined by local measurements in

physical space, are in the middle of the stability region for rolls; the distribution of local

wavenumber includes the skew-varicose and the CR instabilities; this indicates that the

Busse Balloon applies locally in disordered SDC patterns [52]. In SDC, to identify spi-

rals and to measure their characteristics, Riecke et al. [10] analysed SDC based on direct

numerical simulations of the Boussinesq equations employing a pseudospectral code, and

they suggested an approach that allows the extraction of the spiral tip, the size of the spiral

as measured using the spiral arm length and the winding number. They evaluated spiral

features of SDC state and their dependence on Ra and Pr. Figure 1.11 illustrates some of

their results: figure 1.11(a) (defect state) and 1.11(b) (SDC) show snapshots of the tem-

perature field in the mid plane of the convection cell for Pr = 1.5 with reduced Rayleigh

numbers ε = 0.7 and 1 respectively; the reduced Rayleigh number ε = (R − Rc)/Rc with

Rc = 1708. Their results suggest that at Pr = 1.5, ε = 0.7 is close to the onset of spiral

defect chaos. Figure 1.11(c) shows the dependence of the mean number (average of mean

of black and white components) of closed contours on ε for three different Prandtl num-

bers. The number of closed contours increases with increasing ε and decreasing Pr. This

has been found to be consistent with the fact that the driving force of spiral defect chaos

is a large-scale flow, which is driven by the curvature of the convection rolls.

Many fundamental aspects of patterns and their instabilities have been addressed pre-

cisely over the past three decades in the context of Rayleigh–Bénard Convection [47].
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(a) (b)

(c)

Figure 1.11: Results based on direct numerical simulations of the Boussinesq equations:
(a) Snapshot of a typical convection pattern for Pr = 1.5 and ε = 0.7. (b) Snapshot of
SDC state at ε = 1 for Pr = 1.5. The system size is L = 64.9. The spiral defect chaos
planform is characterized by a disordered collection of spirals rotating in both directions
and co-existing with dynamical defects such as grain boundaries and dislocations. Dark
regions correspond to cold sinking fluid, light regions to hot rising fluid. (c) Mean number
of closed contours (mean of white and black components of closed contours that enclose up
and down flow regions) as a function of ε for different values of Pr [10].

However, there is still little theoretical understanding of why the SDC state develops and

its dynamic behaviour; the important questions such as which of the stable states will be

selected by the physical system? What is the onset of chaotic state, such as spiral defect

chaos? are still open.
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1.2.4 Mean flow field

In convection, a mean flow is induced by distortions of the convective rolls [56]. Mean

flow is the name given to the component of the velocity field with a non-zero horizontal

mean over the depth of the system; it is generated by the differences of the structure of the

convection rolls such as curvature, amplitude and wavenumber, and the mean flow in turn

affects the roll structure [57]. The presence of a mean flow is an important phenomenon in

low Prandtl number convection [58] and its magnitude is approximately inversely propor-

tional to the Prandtl number [59]. Siggia and Zippelius in 1981 [60] found a particularly

important theoretical result, which motivated much of the work during 1990s, that for a

fluid of Pr = 1, roll curvature induces slowly varying long-range pressure gradients that

drive a mean flow that affects with the roll curvature. Manneville in 1983 [56] described

how mean flow is induced by distortions of the convective rolls. Indeed, it was shown ex-

perimentally by Daviaud & Pocheau [61] that suppression of the mean flow dramatically

reduces the roll curvature. Studies of mean flow are not straightforward in experiments,

mainly because mean flow is difficult to measure in an experimental setup and therefore

the direct numerical simulations are particularly valuable for the study of mean flow.

Mean flows are known to play an important role in the dynamics of spiral defect

chaos: Assenheimer et al. established using experimental observations in Rayleigh–Bénard

Convection that Spiral Defect Chaos occurs most readily at low Prandtl numbers [9, 40].

Mean flows are stronger at low Prandtl numbers [58, 60], suggesting that SDC is an effect

of the mean flow [45]. In the absence of the mean flow, SDC is found numerically to

collapse to a stationary pattern of rolls with angular bends, again suggesting that Spiral

Defect Chaos is an effect of the mean flow [38]. Cross in 1996 [54] found by numerical

simulations that the mean flow is localised where curvature is high in SDC pattern such

as the cores of spirals and also in patterns with defects. Although the mean flow is weak it
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Figure 1.12: (a) An example of spiral defect chaos observed in a numerical simulation
of Boussinesq equations. The mid-plane temperature field is plotted. For parameters ε = 1
and Pr = 1 in a square cell with aspect ratio 20. Dark regions correspond to cold sinking
fluid, light regions to hot rising fluid. Left-SDC state at time t = 500. The labels 1− 4 are
discussed in (b). Right-At time t = 510 after the quenching has been introduced at t = 500
(this quenching has done by constructing a modified velocity field that does not have any
mean flow). When mean flow is quenched, spiral defect chaos collapses to a stationary
pattern of textures of stripes with angular bends. (b) The rate of change of the temperature
field with time for the four locations of left planform of (a). Before the quenching, t < 500,
the derivative fluctuates and differs from zero. After quenching, t > 500, it approaches
zero that the pattern is approaching stationarity [11].

can have a significant effect upon the dynamics and stability boundaries of the flow field.

The effect of mean-drift flows depress the onset of the skewed-varicose (SV) instability [49].

Chiam et al. in 2003 [11] described direct numerical simulation of Rayleigh–Bénard

Convection, showing that spiral defect chaos is indeed a consequence of the presence of

mean flow. They verified that in the absence of a mean flow, spiral defect chaotic states

are replaced by states whose statistical properties differ from those of spiral defect chaos.

Figure 1.12 illustrates their results, observed in numerical simulation of RBC for param-

eters ε = 1 and Pr = 1. Figure 1.12(a) shows when the mean flow is quenched, the SDC

state (left) is replaced by a state in which rolls are straightened out, and have developed

angular bends (right). Figure 1.12(b) shows the time series before and after mean flow
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is quenched, the rate of change of temperature at several locations, suggesting that a

stationary pattern is being approached with loss of mean flow.

1.3 Models of convection

In this section we introduce specific models that have been developed to understand con-

vection. The three-dimensional hydrodynamic equations are too complicated to analyze

conveniently. Therefore several 2-dimensional phenomenological models have been intro-

duced; these lead to the correct amplitude equations near threshold and can be solved in

the nonlinear regime. The derivation of these models relies on the fact that vertical spatial

variations of the patterns remain quite smooth even when these patterns show complex

space and time dependence, and so projections of the three-dimensional hydrodynamic

description onto the two-dimensional horizontal plane provides a reliable description of

the fluid’s behaviour.

The Swift–Hohenberg Equation (SHE) [62] was obtained by a semi-rigorous elimination

of the vertical dependence through a Galerkin expansion of the thermo-hydrodynamic fields

in the stress-free case. It describes the evolution of a real scalar field ψ(x, y, t) that mimics

the convection [62, 63]:

∂tψ = εψ − (1 + ∇2)2ψ − ψ3, (1.2)

where ε is the driving parameter and the bifurcation to stripe pattern (rolls in convection

correspond to stripes in the SHE) occurs with critical wavenumber unity. The nonlin-

ear term ψ3 is used as an approximation of a nonlocal integral term. However, different

nonlinearities have been incorporated in the SHE and none of them can be derived rigor-

ously, but some are better at reproducing the Busse Balloon than others. The SHE has a

Lyapunov function and the persistent dynamic, periodic or chaotic is not possible. Also
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the stability diagram is qualitatively different from the Busse Balloon and, in particularly

the skew-varicose instability is absent. Therefore the SHE fails to model medium to low

Prandtl number convection even qualitatively and so generalizations have been developed

to remove these imperfections [56, 64].

The importance of the mean flow in reduced models of convection was discovered by

Siggia and Zippelius [60] in their study of the amplitude equation for free-slip convection.

Following the analysis of importance of long-wavelength vertical vorticity or mean drift

effects by Siggia and Zippelius [56, 57, 60], coupling to mean flow was incorporated in a

generalization of SHE. Manneville in 1983 [56] and Greenside and Cross in 1985 [64] added

the mean flow phenomenologically by replacing ∂tψ by ∂tψ+(U·∇)ψ with U =
(

∂ζ
∂y , − ∂ζ

∂x

)
,

where ζ is a stream function for the mean flow U. The generalizations differ in how the

mean vertical vorticity ω = −∇2ζ is generated.

Manneville’s [56] model includes the mean flow for the case of stress-free boundary

conditions, and introduces a second PDE that describes the evolution of the stream-

function for the large scale mean flow U:

∂tψ + (U · ∇)ψ = εψ − (1 + ∇2)2ψ − g1ψ
3 − g3ψ|∇ψ|2

(∂t − Pr∇2)∇2ζ = gm

[∇(∇2ψ) ×∇ψ] · ẑ,
⎫⎪⎪⎬⎪⎪⎭ (1.3)

where gm is the coupling constant to the mean flow. g1 and g3 are parameters controlling

the strength of the nonlinearities and the term −Pr∇2 serves to reduce the importance of

higher-wavenumber modes in the vorticity field.

To extend the model for the no-slip boundary convection he suggested a modified

second PDE; (
∂t − Pr(∇2 + c̃)

)∇2ζ = gmF [∇(∇2ψ) ×∇ψ] · ẑ,
where c̃, which is negative, is used to switch between stress free and no-slip boundary
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conditions. In the absence of forcing, ζ tends to a constant whereas ∇2ζ becomes a constant

otherwise. Bestehorn et al. in 1990 [65] suggested that the selection g1 = g3 = 1 gives a

better description of fluid nonlinearities and in 1993 [66] they solved this model numerically

and showed that the mean flow accounts for the deformation of straight convection rolls

to spirals. Li, Xi and Gunton in 1996 [67] studied the dynamic properties of spirals using

this model.

Greenside & Cross in 1985 [64] suggested two models where the time derivatives of the

vorticity field do not enter:

∂tψ + (U · ∇)ψ = εψ − (1 + ∇2)2ψ − aψ3 − bψ|∇ψ|2 + cψ2∇2ψ

∇2ζ = gF [∇(∇2ψ) ×∇ψ] · ẑ
⎫⎪⎪⎬⎪⎪⎭ (1.4)

and [68]

∂tψ + (U · ∇)ψ = εψ − (1 + ∇2)2ψ + d∇2ψ|∇ψ|2

∇2ζ = gF [∇(∇2ψ) ×∇ψ] · ẑ.
⎫⎪⎪⎬⎪⎪⎭ (1.5)

Here g is a coupling constant and a, b, c, d are constants that control the nonlinearities.

The filtering operator, F is an artificial Gaussian filter included in order to remove the

short-wavelengths from the mean flow vorticity and it was first included in two dimensional

models by Greenside & Cross [64]. They performed stability analysis of stripes for both

models, using a = 1, b = c = 0 in the first model and d = 3 in the second and suggested

the second model with d = 3 as an optimal choice among other models, as the stability

diagram of this closely approximates the Busse Balloon; They found that the skew-varicose

instability is encountered for g �= 0.

Xi et al. in 1993 [69] described an important insight into the mechanism of spiral-defect
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chaos (SDC) using the model:

∂tψ + (U · ∇)ψ = εψ − (1 + ∇2)2ψ − ψ3 − g2ψ
2

(∂t − Pr(∇2 − c2))∇2ζ = gmF [∇(∇2ψ) ×∇ψ] · ẑ.
⎫⎪⎪⎬⎪⎪⎭ (1.6)

In this model, g2 = 0 allows the Boussinesq symmetry ψ → −ψ. However, since the

higher-order derivative terms are omitted, the Busse Balloon is in general not described

correctly by this model [70].

Due to coupling to the mean flow, these GSH models do not have a Lyapunov func-

tion, which opens the possibility for complex spatio-temporal behaviour. These models

of Rayleigh–Bénard convection have been used in the study of different spatiotemporal

chaotic states that produce in convection. In this work we consider two representative

models, which are referred in the following work as the generalized Swift–Hohenberg (GSH)

models: the first model contains PDEs (1.6), with g2 = 0 and the second model contains

PDEs (1.4), with with constants a = 1 and b = c = 0. In order to avoid the complexity, we

include only the cubic nonlinearity. We choose these two models to represent two different

behaviours to the dynamics of the vorticity field: one model has time derivative of the

vorticity field and a parameter that controls the boundary conditions whereas they do not

enter in the other model.

1.3.1 Spiral Defect Chaos

The hypothesis of the importance of the mean flow field to SDC led investigations to

explore the dynamics of SDC in these generalized Swift–Hohenberg model equations. Xi

et al. in 1993 [71] claimed that spirals are obtained with the quadratic nonlinearities, but

Bestehorn et al. in 1994 [72] showed it is not the quadratic nonlinearity that leads to the

formation of spirals. Instead, it is the nonvariational terms, such as terms describing mean
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flow effects, that are responsible for the formation of spirals.

SDC was found numerically in solutions of the several generalized Swift–Hohenberg

models in the early 1990’s [69, 73]. When the coupling to the mean flow is large, Spiral

Defect Chaos is observed [50, 74, 75]. Xi et al. in 1993 [69] showed that the large aspect

ratio and low Pr also play a crucial role in the spontaneous formation of SDC state.

Thus the generalizations of the SHE to include mean flows have become pivotal in

understanding SDC. Numerical solutions of GSH models not only reproduce SDC but also

resemble experimental results reasonably well [69], reproducing some qualitative features

of Spiral Defect Chaos. However, Schmitz et al. in 2002 [76] claimed that the SDC

state may not persist in long time dynamics and hence the direct comparison between the

models and convection may not be appropriate.

1.3.2 Parameter Selection

It is not possible to achieve a quantitative match with the Boussinesq equations and

experiments by adjusting the model parameters in (1.3)-(1.6). In this section we discuss

qualitatively appropriate choices of parameter values for model (1.6) taking only cubic

nonlinearity, −ψ3 (with g2 = 0). For the standard description of the Boussinesq equations

only two non-dimensionalized control parameters are available; Ra and Pr. The value of

Pr varies widely for different experimental fluids, from O(10−2) for liquid metals to values

close to one for gases and for liquid Helium, and to 2 < Pr < 12 for water, and into the

thousands for silicone oil [77]. For pure gases away from the critical point, the value of

the Prandtl number is Pr ≈ 1; for SF6 [40, 41], N2 [42] and Ar [41] and CO2, the Prandtl

number is in the range 0.85 < Pr < 0.98 [49]. However, compressed gases have the

advantage that it is possible to tune the Prandtl number in several ways, for example, by

changing layer heights. Therefore the experimentally accessible range is 0.17 < Pr < 115.
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Assenheimer and Steinberg [9, 40] conducted experiments near the critical point of SF6,

and were able to cover the Prandtl number range 2 < Pr < 115. In another experiment,

Liu et al. [41] used gas mixtures such as He−SF6, He−CO2, and Ne−Ar, that cover the

range 0.3 < Pr < 0.8. Smaller values of Pr can be achieved by mixing two gases, one with

a large and the other with a small atomic or molecular weight [78]. A readily available

example is a mixture of H2 and Xe where the Prandtl number 0.16 can be reached.

The stress parameter is supposed to mimic the role of the reduced Rayleigh number,

ε = (R − Rc)/Rc. The models involve two more parameters: gm, the strength of the

coupling to the mean flow and c, a parameter related to the choice of boundary conditions

on the bottom and top plates of a three-dimensional convection system. In the derivation

by Manneville [56], c emerges as part of the expansion and averaging procedures used

when starting from the Boussinesq equations. This model was first derived for the stress

free condition, where it was found that c = 0. For no-slip boundary condition, the precise

numerical value of c depends upon the approximation process as well as the manner in

which the averaging is done in the vertical direction [79]. However a precise estimation for

values of parameters c and gm has not been performed in literature; and different values

have been used by different authors: c2 = 2 [69, 74, 76] or 10 [80]. Usually, gm is taken

to be 50. However, Decker & Pesch [44] claim that the strength of the coupling to mean

flow in these models is overestimated by a factor of about 4 and they suggested (without

providing any derivation) that the value of gm can be calculated from results in Manneville

and Piquemal in 1983 [81].

The estimation of parameter values in models that link with the experiments and results

of hydrodynamics equations is not straightforward since the approximations applied in

deriving the GSH from hydrodynamics equations are not systematic. However, based on

the fact that the amplitude equations for the GSH and the full hydrodynamics equations
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are the same at leading order near onset, several attempts have been made to establish

relations between convection parameters and parameter values in the GSH model. For

example, the GSH model 1 (model (1.6) with g2 = 0), is:

τ0[∂′tψ
′ + (U′ · ∇′)ψ′] = ε′ψ′ − (ξ0/2Kc)2(Kc + ∇′2)2ψ′ − g′1ψ

′3

(∂′t − Pr′(∇′2 − c′2))∇′2ζ ′ = g′mF [∇′(∇′2ψ′) ×∇′ψ′] · ẑ.
⎫⎪⎪⎬⎪⎪⎭ . (1.7)

where Kc is the critical wavenumber at onset, g′1 is the parameter that controls the cubic

nonlinearity, and the other parameters model the properties of the system. Cross [82]

and Zippelius and Siggia [34] in their derivation of the amplitude equations from the

Boussinesq equations, have stated expressions for the parameters τ0, ξ0 and g′1 in terms of

Pr for both stress-free and rigid boundary convection. Xi et al. [83] used these expressions

to approximate parameter values for the experiments on CO2 by Bodenschatz in 1991 [84].

However, they have not given clear evidence for the choice of values for g′m and c′. They

introduced appropriate scalings, including gm → (4τ2
0K

2
c g

′
m/g

′
1ξ

2
0), Pr → (4τ0/ξ20)Pr′,

ε→ (4/K2
c ξ

2
0)ε

′ and c2 → c′2/K2
c , to derive the dimensionless form:

∂tψ + (U · ∇)ψ = εψ − (1 + ∇2)2ψ − ψ3

(∂t − Pr(∇2 − c2))∇2ζ = gmF [∇(∇2ψ) ×∇ψ] · ẑ,
⎫⎪⎪⎬⎪⎪⎭ . (1.8)

and calculated corresponding parameter values for gm, Pr and c. However there derivations

were for non-Boussinesq approximations: they included the quadratic nonlinearity, −g2ψ2.

Hence, in the situation of SDC, their calculation of parameter values is not suitable for the

Boussinesq fluids. Li, Xi and Gunton in 1997 [85] attempted to describe the parameter

relation for SDC state with Boussinesq approximations. They used the expressions for

τ0, ξ0 and g1
′
defined by Cross [82]. In order to calculate g′m and c′, they supplemented

the solutions, presented by Cross [82]. The values of these parameters are found to be
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dependent on the boundary conditions,

for stress-free boundary conditions : g′m = 6, c′ = 0, ξ20 = 8/3π2, τ0 = 2
1+ 1

Pr′
3π2 ;

for no-slip boundary conditions: g′m = 24.77, c′2 = π2, ξ20 = 0.148, τ0 =
1+0.5117 1

Pr′
19.65 .

Hence c2 = 2 for scaled model with no-slip boundary conditions. In order to get gm from

g′m, the value of g′1, the coefficient of the cubic nonlinearity, should be suitably chosen

using the work presented by Cross [82] and Li, Xi and Gunton [85] claimed it as gm = 50.

1.3.3 Advantages and criticisms of GSH models

Recent advances in parallel computers and data storage have allowed the direct numer-

ical simulations that allow for the efficient integration of the Boussinesq equations with

realistic boundary conditions in large domains, although the computational cost remains

very high [86]. The GSH models are computationally much less expensive to integrate

than the Boussinesq equations and hence have the advantage of allowing large scale nu-

merical simulations that help to understand features of SDC. Although GSH models can

not be derived systematically from the Boussinesq equations, they capture much of the

experimentally observed physical behaviour and have been useful when qualitative, and

not quantitative, comparisons between theory and experiment are needed quickly.

However, there are several limitations to Swift–Hohenberg modelling, primarily, the

models describe the spatiotemporal behaviour of a field in two dimensions, whereas convec-

tion is a three-dimensional phenomenon. Moreover, the generalizations of Swift–Hohenberg

equation produce spiral defect chaos only as a transient for some system parameter values,

whereas in experiments, spiral defect chaos is known to persist for much longer times [76]

and this could be because the small-scale features of the depth averaged vorticity at the

cores of the spirals are not precisely captured by these Swift–Hohenberg models [47].

In addition, in many GSH models, the stability balloon is dissimilar to the correct
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one. However, Greenside and Cross argued that their model (1.5) with d = 3 and g =

10, corresponding roughly to Pr = 0.7 in convection [20], resembles very closely the

fluid stability diagram, the Busse Balloon. However, this model neglects the intrinsic

dynamics of the vorticity field and as a result, the oscillatory instability is absent. The

filtering operator in their models effectively eliminates the more serious unphysical short-

wavelength cross-roll instability that could render a large region of rolls to be unstable.

1.4 Thesis Outline

In this chapter we discussed some of the investigations that have been performed on the

Rayleigh–Bénard Convection, focussing on the skew-varicose instability and the Spiral

Defect Chaos state. We also discussed the models of convection, generalizations of Swift–

Hohenberg equation and their connection to the original fluid equations. In the chapters

that follow, two of the generalizations of Swift–Hohenberg equations [56, 64, 69, 87] includ-

ing the effect of mean flow are investigated. The skew-varicose instability and its relation

to the parameter regimes, in which the system exhibits Spiral Defect Chaos will be the

main concerns of this thesis.

In Chapter 2, we perform a linear stability analysis of the two sets of model equa-

tions in order to investigate the long wave-length instabilities (including the SVI) and how

they depend on the parameters in the models. The novelty we apply here is the use of

a projection operator, which acts as a filter in Fourier space and allows an exact stripe

solution with wavenumber close to the critical wavenumber. We then carry out a linear

stability analysis of the stripe solution and investigate the growth rate of perturbations

corresponding to Eckhaus, zigzag, the skew-varicose, oscillatory and cross-roll instabilities

including the effect of two different boundary conditions, stress-free and no-slip, establish-

ing the agreement of stability calculations of the SVI with PDE solutions of models. We
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also establish a relation between two models of interest.

The analytical expressions obtained for the Jacobian matrices are quite complex, not

allowing explicit expressions for the eigenvalues for all cases. Hence in chapter 3, we use

numerical continuation in order to derive the complete stability diagram for the models.

The stability boundaries are computed for a range of system parameters and are presented

graphically.

In chapter 4, we perform a truncation of the model PDEs onto three or five modes, cho-

sen to focus on the nonlinear development of the SVI, and carry out a bifurcation analysis

of the resulting ODEs using center manifold reduction and numerical path following. We

choose a set of parameters involved in the GSH models and present bifurcation diagrams

for the transition of the stripes to the skew-varicose phenomena. We establish our results.

We also focus on establishing results with direct simulations of the PDEs. The dynamics

of Spiral Defect Chaos is exceedingly complex and it is known to exist in the region where

rolls are stable. One ambitious goal of chapter 5 is to gain a better understanding of

the dynamics of Spiral Defect Chaos, addressing questions associated with it such as its

connection with the SVI, the onset of SDC and its dependence with system parameters,

whether the SDC state is a transient in the model equations, and a statistical evaluation

of local roll properties such as the wavenumber.

Finally, in Chapter 6, we present conclusions to the results from all the chapters and

propose some suggestions for future work.
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Chapter 2

Generalizations of the two dimensional Swift–

Hohenberg Equation: long-wavelength insta-

bilities

2.1 Introduction

In this chapter, we study two generalized Swift–Hohenberg models that include a coupling

to the mean flow [56, 64, 69, 87]. We perform a linear stability analysis to investigate

long wave-length instabilities and how they depend on the parameters in the models. In

particular, we consider different behaviours of the skew-varicose instability (SVI), for which

we derive stability boundaries. We further extend our analysis to study the SVI behaviour

for different boundary conditions.

The Swift–Hohenberg equation, as a model of convection near onset, has a major

drawback as a model of low-viscosity convection: mean flows are excluded. The importance

of the large scale mean flow on the stability of convection rolls was first investigated by

Siggia and Zippelius [60]. Mean flows are also known to play an important role in the

dynamics of spiral defect chaos [11]. Motivated by the strong impact of mean flows on

spiral defect chaos, we study two related generalizations of the SHE, which have been

developed to include the effects of mean flows [69, 87].
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Including mean flows in these models allows an interesting long-wavelength instability,

the skew-varicose instability (SVI) [6], which resembles the Eckhaus instability but the

most unstable modes are those at an angle to the original roll axes. In the SVI, rolls bend

and become irregular in order to decrease their effective wavenumber, and often dislocation

pairs form [20]. Indeed, chaotic spiral patterns have been observed during the transition

from the conducting state to rolls. The onset of SDC and defect chaos has therefore been

tentatively associated with the occurrence of the SVI [47, 88, 89]. It is this connection

that motivates this detailed investigation into the SVI in this chapter .

An additional problem that occurs in the analysis of the SVI is that there is no con-

sistent relative scaling of lengths parallel and perpendicular to the roll axes, owing to the

singular nature of the slow length scale expansion of the stability problem, as detailed

below.

Although the model equations of interest have been well studied, a complete analysis

of the SVI in the models is not available. One difficulty in the analysis comes from the

contribution of terms proportional to k2l2/(k2 + l2), where (k, l) is the small wavevector of

the perturbations associated with the SVI. Terms like this are responsible for the absence

of a consistent asymptotic scaling in the limit of small amplitude and small k and l [90].

This difficulty is resolved in this chapter.

The remaining part of this chapter is organized as follows: in section 2.2, we present

the two generalizations of the Swift–Hohenberg equation, both of which incorporate the

effect of a mean flow. We discuss two operators: Pα is a projection operator included in

the model to allow exact stripe solutions, and Fγ is a filtering operator that suppresses

the cross-roll instability. Fγ is present in an original formulation of the models [64]; Pα

was suggested by Ian Melbourne [91]. We find a stable stripe solution in section 2.3 and

in section 2.4, we present a detailed analysis of the linear stability of that stripe solution.
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The structure of the maximum eigenvalue for instability for small k and l is also presented.

In section 2.5, we analyze the zigzag and Eckhaus long-wavelength instabilities. Section

2.6 shows how the SVI in no-slip boundary conditions can be located by means of the

stability analysis. The work is extended to the asymptotic behaviour of the SVI boundary.

In section 2.7 and 2.8 we consider stress-free boundary conditions for which the skew-

varicose and the oscillatory skew-varicose instabilities co-exist. We illustrate the agreement

between linear stability calculations of the SVI with solving the PDEs numerically in

section 2.9. Our results are discussed in last section.

2.2 Description of Models

In this section, we set out the two models we will investigate, and discuss basic properties

of the models. We start with the standard two-dimensional Swift–Hohenberg equation [62],

∂ψ

∂t
=
[
μ− (1 + ∇2)2

]
ψ − ψ3, (2.1)

where the real field ψ(x, y, t) is a scalar function of t and the horizontal spatial coordi-

nates and represents the pattern-forming field, for example, the vertical component of the

velocity in the horizontal mid-plane of the convection cell. μ ∈ 	 is the driving parameter

(in convection, μ represents the temperature difference between the top and the bottom

layer), taking the value zero at the onset of pattern formation. The SHE is generalized

by adding a term that models the coupling to the vertical vorticity. In both models, we

introduce a (U · ∇)ψ term to the left-hand side of (2.1), where U(x, y, t) is a mean flow

driven by pattern distortion. This mean flow is calculated from a stream function ζ(x, y, t):

U =
(
∂ζ

∂y
,−∂ζ

∂x

)
.
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Vertical vorticity ω(x, y, t) = −∇2ζ. The way that vorticity is generated by nonlinear

forcing from ψ differs in the two models.

2.2.1 Model 1

In the first model [69], the vertical vorticity ω(x, y, t) has its own independent dynamics:

∂ψ

∂t
+ (U · ∇)ψ =

[
μ− (1 + ∇2)2

]
ψ −Pα

(
ψ3
)
, (2.2)[

∂

∂t
− Pr(∇2 − c2)

]
ω = −gmFγ

[∇(∇2ψ) ×∇ψ] · ẑ, (2.3)

where Pr, c and gm are parameters. The Prandtl number Pr (the ratio between kinematic

viscosity and thermal diffusivity) is effectively a viscosity parameter for the mean flow,

which plays a much greater role in low Prandtl number convection. Indeed, in the limit

of large Pr, the vertical vorticity is hardly excited and the dynamics of ψ becomes purely

relaxational [5, 20, 76], reducing model 1 back to the SHE. The coefficient gm is a coupling

parameter that controls the strength of the mean flow effects relative to the ordinary Swift–

Hohenberg nonlinear term −ψ3. The parameter c models the effect of top and bottom

boundary conditions on the vertical vorticity, with c �= 0 corresponding to more realistic

no-slip boundary conditions. In this case, ω decays to zero in the absence of nonlinear

forcing. The choice c = 0 corresponds to mathematically simpler stress-free boundary

conditions. In this case ω = constant is an allowed solution of the linearised vorticity

equation. The operators Pα and Fγ are explained in more detail in section 2.2.3.
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2.2.2 Model 2

The second model [56, 64, 87] has the vertical vorticity slaved to the nonlinear driving

term:

∂ψ

∂t
+ (U · ∇)ψ =

[
μ− (1 + ∇2)2

]
ψ − Pα

(
ψ3
)
, (2.4)

ω = −gFγ

[∇(∇2ψ) ×∇ψ] · ẑ, (2.5)

so the vertical vorticity responds instantly to the nonlinear driving. The parameter g is

a non negative coupling parameter that controls the relative strength of mean flow effects

compared to the ordinary nonlinearity. Large g corresponds to small Pr in model 1.

2.2.3 Basic properties of the models

The major novelty in this work is the introduction of the projection operator Pα in both

models to project amplitudes to a desired wavelength α. This projection acts as a filtering

in Fourier space and is defined as

Pα(eiK·x) =

⎧⎪⎨⎪⎩
eiK·x if |K|≤α;

0 if |K|>α.

By setting α = 2.5, we allow stripes with a single Fourier mode with wavenumber close to

one to be exact solutions of the PDEs (2.2–2.3) and (2.4–2.5) [91]. We show in section (2.3),

the consequences of the application of this projection operator to our models and the

derivation of the stripe solution and the effect of α in selecting the wavenumber.

The other operator we use in both models is a filtering, Fγ . This filtering operator

eases the analysis by reducing the short-wavelength modulations of the mean flow [64].

Hence it ensures that the SVI is not pre-empted by other instabilities; in Fourier space,
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the operator is defined by

Fγ(eiK·x) = e−γ2|K|2eiK·x.

Throughout this work, we set γ = 2.5, coincidentally same as α, in order to reduce short-

wavelength instabilities effectively. This selection of γ does not disturb long-wavelength

instabilities. The effect of this filtering on short-wavelength instabilities, particularly the

cross-roll instability, is discussed in Chapter 3.

The two models can be related to each other close to onset, regardless of the projection

and filtering. By scaling μ = O (
ε2
)

with ε � 1, introducing a slow time scale ∂/∂t →

ε2∂/∂t, and assuming that the wavenumbers that are excited in the vorticity variable ω

are of order O(ε), the largest term on the left-hand side of the vorticity equation (2.3) in

model 1 is Pr c2ω. Thus model 1 reduces to model 2 in this limit, with the relation

g = gm/(Pr c2). (2.6)

These models are not restricted to be variational as in the SHE and they are rotationally

invariant. Mean flows are much stronger when the Prandtl number is small, following from

(2.6); indeed for large Pr, the effect of nonlinear term in vorticity equation in model 1 is

small and hence the effect of mean flows is small, reducing to the SHE.

2.3 Solution to the linearized equations

For model 1, linearisation yields:

∂ψ

∂t
=
[
μ− (1 + ∇2)2

]
ψ and

∂ω

∂t
= Pr

(∇2 − c2
)
ω ;
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0 1

0

K

-1

μ = 0
-Prc2

Figure 2.1: Growth rates as functions of wavenumber K = |K|. Blue curve: σ1 for
μ = 0, which peaks at K = Kcritical = 1. Green curve: σ2, which takes the value −Pr c2
at K = 0 and decreases as K increases.

only the first equation is relevant to model 2. Normal mode solutions to these linear equa-

tions are given by ψ = F1e
σ1t+iK·x and ω = F2e

σ2t+iK·x, where σ1 and σ2 are growth rates,

K is a wavevector, and F1 and F2 are constants. Substituting these into the linearized

equations gives the dispersion relations, σ1 = μ − (
1 −K2

)2 and σ2 = −Pr (K2 + c2
)
.

These are shown in Figure 2.1 for μ = 0, when the trivial solution is marginally stable. The

most unstable wavenumber is Kcritical = 1, and for μ > 0, a band of wavenumbers close

to K = 1 is linearly unstable, signalling the onset of pattern formation. The vorticity ω

(in model 1) is always linearly damped, unless c = 0.

We define q = K − Kcritical and thus the trivial solution loses stability for any q at

μExistence, where

μExistence = (1 − (1 + q)2)2.

Note that as q → 0, μExistence ∼ 4q2.

In this chapter, we are interested in the stability of the nonlinear equilibrium stripe
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solution of the PDEs. We note that with the projection P2.5

ψ0 =
√
β
(
ei(1+q)x + e−i(1+q)x

)
and ω0 = 0 with β =

μ− (1 − (1 + q)2)2

3
, (2.7)

is an exact stripe solution of both models. This can be shown by substituting the

expressions for ψ0 and ω0 into the PDEs (2.2) & (2.4). Models (1) and (2) with combina-

tion (2.7) results in:

0 = μ
√
β
(
ei(1+q)x + e−i(1+q)x

)
− (1 + ∇2)2

(√
β
(
ei(1+q)x +e−i(1+q)x

))
−Pα

[(√
β
(
ei(1+q)x + e−i(1+q)x

))3
]
.(2.8)

The nonlinear term in the vorticity equation is zero. Next, we note that in this equa-

tion (2.8)

(1 + ∇2)2e±i(1+q)x = (1 − (1 + q)2)2e±i(1+q)x, (2.9)

and

Pα

[(√
β
(
ei(1+q)x + e−i(1+q)x

))3
]

= Pα

[
3β
√
β ×

(
ei(1+q)x + e−i(1+q)x

)
+ β

√
β ×

(
e3i(1+q)x

+e−3i(1+q)x
)]
.

In order to retain the e±i(1+q)x terms and discard the e±3i(1+q)x terms, we require |3(1 + q)| >

α and |(1 + q)| < α with α = 2.5 (for example). These inequalities result in −0.167 < q <

1.5, and for these values of q,

P2.5

[(√
β
(
ei(1+q)x + e−i(1+q)x

))3
]

= 3β
√
β ×

(
ei(1+q)x + e−i(1+q)x

)
, (2.10)

provided that q is between −0.167 and 1.5.
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Therefore, combining equations (2.9) and (2.10) with (2.8) and considering the compo-

nents of e±i(1+q)x, we find that with β = μ−(1−(1+q)2)2

3 , the two model PDEs are satisfied

exactly, and so (ψ0, ω0) is an exact stripe solution with wavenumber close to unity. In the

limit of small q, we have β = (μ− 4q2)/3, so stripe solutions exist when μ > 4q2.

The advantage of using the projection Pα is that it allows this exact stripe solution

with wavenumber close to unity of the PDEs [91]. The alternative would be to consider

the limit of small μ and β. However, by obtaining an exact solution, which matches the

asymptotic result we would obtain without the projection, we do not have to be concerned

with the relative sizes of these parameters compared to other small parameters that will

be introduced below.

2.4 Linear stability Analysis

The linear stability theory for stripes in the SHE is well known [90]: stripes with wavenum-

ber 1 + q (with |q| � 1) exist provided μ > 4q2, and they are stable with respect to the

Eckhaus and zigzag instabilities provided μ > 12q2 and q > 0. Once mean flows are

included, there is the additional SVI, and the zigzag instability needs to be modified at

finite Prandtl number by the presence of mean-flow modes with non-zero vertical vortic-

ity [34, 35]. The Eckhaus instability is unchanged. We consider the stability of stripe

solutions with respect to long-wavelength perturbations, deriving three (model 1) or two

(model 2) linear ODEs for the perturbation amplitudes, and so determine the parameter

regions in which the stripe configuration is stable, as well as the boundary of the SVI.

2.4.1 Linearisation

We proceed by considering perturbations to the basic stripe solution. We suppose that

the vorticity perturbation contains wavevectors (k, l) and (−k,−l), where k is along the
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stripes and l is perpendicular to stripes. These interact with the wavevectors (1 + q, 0)

and (−1 − q, 0) in the stripe solution to give four new wavevectors, (1 + q + k, l) and

(−1 − q + k, l) and their conjugates. Having chosen particular modes, the perturbed

solution can be written as ψ and ω, where

ψ = ψ0 + ψ
′

with ψ
′
= A(t)ei(1+q+k,l)·x +B(t)ei(−1−q+k,l)·x + Ā(t)e−i(1+q+k,l)·x

+B̄(t)ei(1+q−k,−l)·x, (2.11)

ω = ω0 + ω
′

with ω0 = 0 and ω
′
= C(t)ei(k,l)·x + C̄(t)ei(−k,−l)·x, (2.12)

provided A, B, C � 1.

We can calculate the stream function ζ from ω(x, y, t) = −∇2ζ by inverting the Lapla-

cian, and hence obtain the mean flow:

U =
i

k2 + l2

(
C(t)ei(k,l)·x − C̄(t)e−i(k,l)·x

)
(l,−k) .

We first substitute the expressions above into the equations (2.2) & (2.4) in both models

and linearize (assuming that A, B and C are small and therefore neglecting quadratic

terms). Examining only the coefficients of ei(1+q+k,l)·x and ei(−1−q+k,l)·x we get on the

LHS:

∂[ψ′ + ψ0]
∂t

: Ȧ(t)ei(1+q+k,l)·x + Ḃ(t)ei(−1−q+k,l)·x,

(U · ∇) [ψ′ + ψ0] :
iC(t)
k2 + l2

(l,−k)ei(k,l)·x ·
(
i
√
β(1 + q), 0

)
(ei(1+q,0)·x − e−i(1+q,0)·x),

and on the RHS:

[
μ− (1 + ∇2)2

]
[ψ′+ψ0] : [μ−(1−(1+q+k)2−l2)2]×(A(t)ei(1+q+k,l)·x+B(t)ei(−1−q+k,l)·x),
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−P2.5[ψ′ + ψ0]3 : P2.5[−3β(ei(1+q,0)·x + e−i(1+q,0)·x)2 × (A(t)ei(1+q+k,l)·x +B(t)ei(−1−q+k,l)·x)],

: β[−6A(t) − 3B(t)]ei(1+q+k,l)·x + [−6B(t) − 3A(t)]ei(−1−q+k,l)·x.

We simplify this further and consider both sides separately for the components of ei(1+q+k,l)·x

and ei(−1−q+k,l)·x would result in two linear ODEs for A and B:

Ȧ =
(
μ−

[
1 −

(
(1 + q + k)2 + l2

)]2 − 6β
)
A− 3βB +

l(1 + q)
√
β

k2 + l2
C, (2.13)

Ḃ =
(
μ−

[
1 −

(
(−1 − q + k)2 + l2

)]2 − 6β
)
B − 3βA − l(1 + q)

√
β

k2 + l2
C . (2.14)

The term k2 + l2 that appears in the denominator of the governing equations for Ȧ and Ḃ

arises from inverting the Laplacian when calculating ζ, and hence U, in the linearisation

of the (U · ∇)ψ term. This makes the analysis difficult in long wavelength limit.

We next substitute the expressions for ψ, ω and U into the vorticity equations of the

models. Substituting into equation (2.3) and retaining only the coefficients of ei(k,l)·x on

the LHS yields:

∂ω′

∂t
− Pr(∇2 − c2)ω′ = [ ˙C(t) − Pr

(−(k2 + l2) − c2
)
C(t)]ei(k,l)·x,

and on the RHS:

−gmFγ

[∇(∇2[ψ′ + ψ0]) ×∇[ψ′ + ψ0]
] · ẑ = −gmFγ{i

√
β(1 + q)3(−ei(1+q,0)·x + e−i(1+q,0)·x),

−Al((1 + q + k)2 + l2)iei(1+q+k,l)·x −Bl((−1 − q + k)2 + l2)ie−i(−1−q+k,l)·x}

×{i
√
β(1 + q)(ei(1+q,0)·x − e−i(1+q,0)·x), Aliei(1+q+k,l)·x +Blie−i(−1−q+k,l)·x} · ẑ,

which remains same with the replacement gm by g, for the nonlinear term in the vorticity

equation of the model 2.
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In Fourier space, the effect of the filtering, Fγ , is to reduce the amplitude of a Fourier

component; for the function ei(k,l)·x, Fγ reduces the amplitude by the multiplicative fac-

tor e−γ2(k2+l2). Therefore we get,

Ċ = −Pr (k2 + l2 + c2
)
C + Fγgml(1 + q)

√
β
([

− (1 + q − k)2 − l2 + (1 + q)2
]
B

+
[
(1 + q + k)2 + l2 − (1 + q)2

]
A
)
, (2.15)

with Fγ taken to be equal to e−γ2(k2+l2). The equation for C differs between the two

models and in the model 2, with no intrinsic dynamics for ω, there is an algebraic relation

between C, A and B:

C = Fγgl(1 + q)
√
β
(
((1 + q + k)2 + l2 − (1 + q)2)A+ (−(1 + q − k)2 − l2 + (1 + q)2)B

)
.

(2.16)

Equations (2.13–2.15) for model 1 can be succinctly expressed as:

⎛⎜⎜⎜⎜⎜⎝
Ȧ

Ḃ

Ċ

⎞⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎣
M1 M2 M3

M2 M4 −M3

gmM5 gmM6 M7

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
A

B

C

⎞⎟⎟⎟⎟⎟⎠ = J1

⎛⎜⎜⎜⎜⎜⎝
A

B

C

⎞⎟⎟⎟⎟⎟⎠ . (2.17)

Equations (2.13–2.14) and (2.16) for model 2 yield:

⎛⎜⎝ Ȧ

Ḃ

⎞⎟⎠ =

⎡⎢⎣M1 + gM3M5 M2 + gM3M6

M2 − gM3M5 M4 − gM3M6

⎤⎥⎦
⎛⎜⎝ A

B

⎞⎟⎠ = J2

⎛⎜⎝ A

B

⎞⎟⎠ . (2.18)
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Here, we use the abbreviations:

M1 = μ− [1 − ((1 + q + k)2 + l2)]2 − 6β,

M2 = −3β,

M3 = l(1 + q)
√
β/(k2 + l2),

M4 = μ− [1 − ((−1 − q + k)2 + l2)]2 − 6β,

M5 = −e−γ2(k2+l2)l(1 + q)
√
β[2k(1 + q) + k2 + l2],

M6 = −e−γ2(k2+l2)l(1 + q)
√
β[2k(1 + q) − k2 − l2],

M7 = −Pr(k2 + l2 + c2).

Following this procedure we derive two Jacobians for both models and hence reduce the

problem to an eigenvalue problem. We note that in the limit (k, l) → (0, 0), we have

M7 ≈ −Pr c2, so it is not surprising (looking at the bottom line of the 3×3 matrix for

model 1) that long-wavelength instabilities in model 1 will depend on the Prandtl number

only on the combination gm/(Pr c2).

2.4.2 Approximations to the eigenvalues in the limit of small k and l

The characteristic polynomials (and hence the eigenvalues, traces and determinants) of

each of these Jacobian matrices are even in k and l. Bifurcations occur when the real part

of an eigenvalue crosses through zero. The stripe solution is stable only if all eigenvalues

are negative for all (k, l), so we are interested in extreme values of the eigenvalues as

functions of k and l. The product of eigenvalues is the determinant and hence a zero

extreme value of the eigenvalue corresponds to a zero extreme value of the determinant.

Consequently, we use the determinants of J1 and J2 to assist our analysis of instabilities.
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The determinant of J1, Det(J1), is:

1
k2 + l2

{(
P

(1)
1 k4 + P

(1)
2 k2l2 + P

(1)
3 l4

)
+
(
Q

(1)
1 k6 + · · · +Q

(1)
4 l6

)
+
(
R

(1)
1 k8 + · · · +R

(1)
5 l8

)
+
(
S

(1)
1 k10 + · · · + S

(1)
6 l10

)
− Pr(k2 + l2)6

}
,

where all coefficients P (1)
i etc., are functions of μ, q, Pr, gm, c and the filtering e−γ2(k2+l2).

The determinant of J2, Det(J2), is:

1
k2 + l2

{(
P

(2)
1 k4 + P

(2)
2 k2l2 + P

(2)
3 l4

)
+
(
Q

(2)
1 k6 +Q

(2)
2 k4l2 +Q

(2)
3 k2l4 +Q

(2)
4 l6

)
+
(
R

(2)
1 k8

+ · · · +R
(2)
5 l8

)}
,

where all coefficients P (2)
i etc. are functions of μ, q, g and the filtering e−γ2(k2+l2). The

traces of the two Jacobians can be written as

Tr(J1) = −6β − Pr c2 +
(
4 − Pr − 12(1 + q)2

)
k2 +

(
4 − Pr − 4(1 + q)2

)
l2 − 2

(
k2 + l2

)2

and

Tr(J2) = −6β +
(
4 − 12(1 + q)2

)
k2 +

(
4 − 4(1 + q)2 − 2βg(1 + q)2e−γ2(k2+l2)

)
l2 − 2

(
k2 + l2

)2
,

where we recall the relationship in (2.7) between β and μ.

Note that at this point, no approximations or truncations have been made in the linear

stability problem of the stripe solution, by virtue of having an exact solution. Our task is

now to calculate the most unstable eigenvalues in the limit of small k and l; this is made

more challenging by the presence of k2 + l2 in the denominators of the determinants above.

We note that explicit expressions for eigenvalues of J1 are not, in general, analytically

attainable (though the eigenvalues can be calculated numerically). The Jacobian J2 is easi-
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est to tackle first. Eigenvalues of a 2×2 Jacobian can be obtained by, 1
2

(
Tr ±√

Tr2 − 4Det
)
.

At this point we are interested on long-wavelength limit, (k, l) → (0, 0). In this limit,

for the matrix J2, the trace is Tr(J2) = −6β and the determinant is zero, so, for

small (k, l), one eigenvalue will be −6β + O(k2 + l2), which is bounded away from zero

for a finite-amplitude stripe. The other eigenvalue will be close to zero, approximately

Det(J2)/Tr(J2). Similarly, in the limit (k, l) → (0, 0), Det(J1) = 0, so J1 will have an

eigenvalue close to zero for small (k, l). Since bifurcations occur when an eigenvalue is

equal to zero, this can be detected in both cases by considering only the determinants of

the two matrices. Hopf bifurcations (see section (2.7)) require additional consideration.

We will expandDet(J1) and Det(J2) in powers of k and l, including the filtering e−γ2(k2+l2)

in the expansion. This yields expressions of the form,

Det(J1,2) =(
A1,2k

4 +B1,2k
2l2 + C1,2l

4
)

+
(
D1,2k

6 + E1,2k
4l2 + F1,2k

2l4 +G1,2l
6
)

+ O((k2 + l2)4)
k2 + l2

,

(2.19)

where in model 2, the coefficients are:

A2 = 12β(3(1 + q)2 − 1) − 16q2(1 + q)2(2 + q)2,

B2 = −24β(1 − 2(1 + q)2) − 16q2(1 + q)2(2 + q)2 + 4(1 + q)2β
(
3β − 4q(1 + q)2(2 + q)

)
g,

C2 = 12β
(
βg(1 + q)2 − q(2 + q)

)
,

D2 = 6β + 4 + 4(1 + q)2
(
(1 + q)2 + 2

)
,

E2 = g
[
4γ2(1 + q)2β

(
4(1 + q)4 − 3β − 4(1 + q)2

)− 4β(1 + q)2
(
(1 + q)2 + 1

)]
+ 12 + 8(1 + q)2

+ 18β − 4(1 + q)4, (2.20)
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and in model 1, the coefficients are:

A1 = −Pr c2A2,

B1 = −Pr c2B2,

C1 = −Pr c2C2,

D1 = −Pr c2D2 − PrA2,

E1 = −Pr c2E2 + β(−48 − 84q2 − 168q) + 32q2(q + 1)2(q + 2)2.

(2.21)

We will hence refer to the determinants of two matrices in the general form with no

subscripts:

Det(J) =

[(
Ak4 +Bk2l2 + Cl4

)
+
(
Dk6 + Ek4l2 + Fk2l4 +Gl6

)
+ O((k2 + l2)4)

]
k2 + l2

,

(2.22)

where A−G are chosen from the sets (2.20) and (2.21) according to the model of interest.

Following the derivation of the expression (2.22) to the determinant, we next express long-

wavelength instabilities in terms of A − E and hence using the parameters involved in

relevant model. The values of F and G are not needed subsequently. Stripes are stable

if all eigenvalues are less than zero, corresponding to Det(J1) < 0 and Det(J2) > 0. To

simplify the presentation, we focus on Det(J1) since the sign of Det(J1) coincides with the

sign of the most unstable eigenvalue.

2.5 Eckhaus and zigzag instabilities

Bifurcation points correspond to parameter values for which an eigenvalue has zero real

part. We first investigate how the determinants depend on k and l, and then use this

information to explore how the bifurcation lines of these instabilities depend on the other
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parameters μ, q and either g or gm, Pr and c.

We first examine the well known Eckhaus instability. We recall that the Eckhaus

instability arises for perturbations with l = 0 and therefore (2.22) yields Det(J) = Ak2 +

Dk4 + . . . and for small k, this is positive when A > 0. Thus for model 1, instability

corresponds to A1 > 0 and for model 2, instability corresponds to A2 < 0.

Accordingly, in both cases, the Eckhaus instability, which is independent of the mean

flow, occurs when A = 0:

μEck =
q2(7q4 + 42q3 + 90q2 + 80q + 24)

(3q2 + 6q + 2)
.

Note that the Eckhaus instability is not dependent on g and c and hence it remains the

same with no-slip and stress-free boundary conditions. In the limit of q → 0,

μEck → 12q2 and hence μEck → 3μExistence.

When A > 0, the maximum of Det occurs at finite k, which is given by ∂Det(J)
∂k2 = 0

when l = 0. Therefore the maximum occurs at

k = −A/2D + O(A2). (2.23)

Figure 2.2(a) depicts how the contours of the maximum eigenvalue depend on (k, l)

when stripes are Eckhaus unstable. It illustrates an example for parameter values, μ = 0.1,

q = 0.091 and g = 0. Due to the symmetry we consider only the first quadrant of (k, l)

space. We also show in figure 2.2(b), the behaviour of the Det in the (k, l) plane. The

coefficients A−G in the Det are calculated using the same parameter values as above.

We next consider the zigzag instability, which corresponds to perturbations with k = 0.

Therefore (2.22) yields Det(J) = Cl2 +Gl4 + . . . , which is positive for small l when C > 0.

Thus for model 1, instability corresponds to C1 > 0 and for model 2, instability corresponds

48



Chapter 2. GSH models: long-wavelength instabilities

0

k

l

8e
−0

05

−8e−005

−
8e−

005

−0.0002

−0.0002

0 0.01 0.02 0.03 0.04 0.05
0

0.005

0.01

0.015

0.02

0.025

0.03

(a)

0

k

l −2e−005
−2e−005

2e−005

−5e−005

−5e−005

0 0.01 0.02 0.03 0.04 0.05
0

0.005

0.01

0.015

0.02

0.025

0.03

(b)

Figure 2.2: (a) Contours of largest eigenvalue for the parameters μ = 0.1, q = 0.91 and
g = 0. (b) Contours of the determinant, of which the coefficients A − G are calculated
using the expressions with the same parameters as in (a). For these parameter values,
A = 0.06332 > 0 and stripes are unstable to the Eckhaus instability. In both cases, the
zero contour, which is denoted as a thick red line extends from k = 0 to k = 0.0405. The
maximum growth rate occurs at k = 0.0286 and satisfies the equation (2.23). Negative
values of growth rates are indicated by black contours while zero and positive values of
growth rate are in red.

to C2 < 0. Accordingly, the zigzag instability in both models occurs when C = 0:

μzigzag = μExistence − 3q(2 + q)
g(1 + q)2

, (2.24)

where for model 1 we have identified g = gm/Pr c
2.

When C > 0, the maximum of Det occurs at a finite l, which is given by ∂Det(J)
∂l2

= 0

when k = 0. Therefore the maximum occurs at

l = −C/2G+ O(C2). (2.25)

The zigzag instability however does not exist for stress-free boundary conditions. If we

substitute g = gm/Pr c
2 into equation (2.24), c = 0 results in μzigzag = μExistence.

Figure 2.3(a) depicts how contours of the maximum eigenvalue depend on (k, l) for
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Figure 2.3: (a) Contours of largest eigenvalue for the parameters μ = 0.1, q = −0.001
and g = 0. (b) Contours of the determinant, of which the coefficients A−G are calculated
using the expressions with the same parameters as in (a). For these parameter values,
C = 0.0016 > 0 and stripes are unstable to the zigzag instability. In both cases, the zero
contour, which is denoted as a thick red line extends from l = 0 to l = 0.06325. The
maximum growth rate occurs at l = 0.0447 and it is in a complete agreement with equation
(2.24). Negative values of growth rates are indicated by black contours while zero and
positive values of growth rate are in red.

μ = 0.1, q = −0.001 and g = 0 at which stripes are zigzag unstable. Due to the symmetry

we consider only the first quadrant of (k, l) space. We also show in figure 2.3(b), the

behaviour of the Det in the (k, l) plane.

Unlike the Eckhaus instability, the zigzag instability is affected by the strength of the

mean flow. Vorticity and mean flows act as a stabilizing influence on the zigzag instability,

which is suppressed for larger values of g, resulting in a larger region of stable stripes for

q < 0 in the (μ, q) stability diagram. Figure 2.4 shows how the zigzag instability boundary

behaves for different values of g. Note that for sufficiently large g, it no longer forms the

lower stability boundary except for very small μ.

The zigzag and Eckhaus instabilities cross in parameter space when g (= gm/Pr c
2)

and q are related by

g =
3(3(1 + q)2 − 1)
4q(1 + q)4(2 + q)

,
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Eckhaus
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Figure 2.4: Location of the Eckhaus and zigzag stability boundaries in the (q, μ) plane
(q < 0), for g = 0.5, 5 and 50. The Eckhaus boundary derived from A = 0, is denoted in
green. The red curve is the existence boundary. The zigzag boundary (blue) crosses the
Eckhaus boundary at q ≈ −0.015 when g = 50. The behaviour for small q is approximately
μ = −6q/g. Stripes are stable to the right of the Eckhaus and zigzag boundaries.

where q < 0. Furthermore, when g → 0, we recover the standard result for the SHE

without mean flow, and when g → ∞, we have μzigzag → μExistence. For small μ and q,

we can show from the equation (2.24) that μzigzag is approximately −6q/g for g > 0, so

the zigzag stability boundary emerges from (q, μ) = (0, 0) in a straight line of slope −6/g,

as can be seen in figure 2.4.

2.6 The skew-varicose instability in no-slip boundary con-

ditions

The skew-varicose instability is driven by the inclusion of mean flow, the strength of which

is determined by either g in model 1 or by gm, Pr and c in model 2. It is associated with

modes for which the maximum positive growth rate occurs when k �= 0 and l �= 0, and

51



Chapter 2. GSH models: long-wavelength instabilities

0 < k, l � 1.

Two conditions are required to characterize the SVI: the determinant should be zero

and should have maximum or minimum value (for model 1 and model 2 respectively) for

k �= 0 and l �= 0. We first express these conditions for the SVI in terms of the coefficients

A−G of the expression (2.22), the power series expansion of the determinants of J1 and

J2, which we denote simply by Det. We then express these conditions in terms of the

parameters μ, q and either g or gm, c and Pr, in order to locate the SVI boundary in the

(μ, q) plane.

2.6.1 Different manifestations of the skew-varicose instability

There are two different manifestations of the skew-varicose instability. We first illustrate

the contour behaviour of numerically calculated maximum eigenvalue in order to highlight

the two cases. In the first case (case I), the instability emerges from k = l = 0, as

illustrated in figure 2.5(a). This behaviour takes place only if stripes are stable to the

Eckhaus instability.

The other possibility (Case II ) for the skew-varicose instability is that it can accompany

the Eckhaus instability and hence the instability emerges from a finite k and l = 0. The

contour behaviour of the maximum eigenvalue for case II is denoted in figure 2.5(b).

We now derive the conditions for different cases of the SVI using the Det(J). In the

case I, the determinant is negative for (k, l) close to the axes, corresponding to A < 0

and C < 0. We suppose in the first instance that we can write the leading order terms

in the determinant as Det =
Ak4+Bk2l2+Cl4+O((k2+l2)3)

k2+l2
. We impose Det = 0, along with

∂Det/∂k = 0 and ∂Det/∂l = 0. These three conditions consequently give the following
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Figure 2.5: Contour behaviour of the maximum eigenvalue in the (k, l) plane for param-
eter values, Pr = 1, c2 = 2. (a) Case I of the SVI for q = 0.053, g = 50 and μ = 0.07:
maximum eigenvalue emerges from (k, l) = (0, 0) but occurs with k �= 0 and l �= 0. (b)
Case II of the SVI for q = 0.082, g = 1 and μ = 0.07: maximum eigenvalue emerges from
a finite k on l = 0 but occurs with k �= 0 and l �= 0. A negative value of the maximum
eigenvalue is indicated by black contours while zero and positive values of the maximum
eigenvalues are in red.

equations

Ak4 +Bk2l2 + Cl4 = 0, (2.26)

Ak4 + 2Ak2l2 + (B − C)l4 = 0, (2.27)

(B −A)k4 + 2Ck2l2 + Cl4 = 0. (2.28)

Solving the equations (2.26) & (2.27) result in k2

l2 = B−2C
B−2A , which can combine with (2.28)

to give

(B2 − 4AC)(A−B + C) = 0. (2.29)

In order for k2/l2 to be positive, we need B > max(2A, 2C), which excludes B = A + C
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Figure 2.6: Case I of the SVI: behaviour of the Det in the (k, l) plane for A = −0.1
and C = −0.1 (A < 0 and C < 0 makes stripes Eckhaus and zigzag stable). The other
coefficients are D = −1, E = 2, F = −1 and G = −1. (a) B = 0.195, giving stable stripes
(B2 < 4AC). (b) B = 0.205, giving stripes that are unstable to the SVI (B2 > 4AC). The
positive maximum of the determinant emerges from (k, l) = (0, 0) but occurs with k �= 0
and l �= 0. A negative value of the determinant is indicated by black contours while zero
and positive values of the determinant are in red.

in (2.29), leaving B = ±√
4AC. On the other hand, equations (2.26) & (2.28) result in

k2l2

k4+l4
= −B

2(A+C) , which can combine with the condition C < 0 to give B > 0. Therefore

we exclude the solution B = −√
4AC of (2.29). Finally with the solution B =

√
4AC of

(2.29), we can simplify k2

l2
=

√
4AC−2C√
4AC−2A

as k2

l2
= 1

(−A)

√
CA.

We conclude that

B2 − 4AC > 0, A < 0, C < 0 and B > 0with
k2

l2
=

1
(−A)

√
CA (2.30)

is the condition for the SVI. However, the truncation of Det above is degenerate: the

conditions are satisfied along a line in the (k, l) plane, rather than at a point. This

degeneracy is resolved by restoring the higher order terms, as illustrated in figure 2.6.

In the case II, A > 0 and C < 0: for l = 0 and D < 0, Det is positive for a range
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Figure 2.7: Case II of the SVI: behaviour of the Det in the (k, l) plane for A = 0.005
and C = −0.1 (A > 0 and C < 0 makes stripes Eckhaus unstable but stable to zigzags).
The other coefficients are D = −1, E = 2, F = −1 and G = −1. (a) B = −0.003, giving
SV stable and Eckhaus unstable stripes

(
B < D+E

2D A
)
; the maximum occurs with l = 0.

(b) B = −0.001, giving stripes that are unstable to both SV and Eckhaus instabilities(
B > D+E

2D A
)
; the maximum moves off axis, and (kmax, 0) is now a saddle. A negative

value of the determinant is indicated by black contours while zero and positive values of
the Determinant are in red.

of k and attains its maximum on the l = 0 axis at a finite k = kmax. In the (k, l) plane,

(kmax, 0) can either be a maximum or a saddle, as illustrated in figure 2.4. We define the

SVI (case II) to be the point at which (kmax, 0) changes from a maximum to a saddle; at

this point the maximum eigenvalue moves off the k axis.

Unlike in the previous case, the growth rate at the SVI is positive, since stripes are

already Eckhaus unstable. Therefore the SVI occurs when there is a degenerate maximum

at l = 0 and k = kmax, about to become saddle. In this case, we consider the Det with

leading order terms as indicated in (2.22).

The conditions ∂Det
∂k2 = 0 and ∂Det

∂l2
= 0 at the point (k, l) = (kmax, 0) yield the pa-

rameter values at which this variant of the skew-varicose instability occurs. These two
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Figure 2.8: Schematic diagram of the conditions for the Eckhaus and SV instabilities
in cases I and II in (A,B) plane. The Eckhaus instability occurs when A = 0 (red line).
The blue curve shows the SV stability boundary: B2 = 4AC in case I (A < 0), and
B =

(
D+E
2D A

)
in case II (A > 0). At the intersection of the two stability boundaries,

(A,B) = (0, 0).

conditions together with l = 0, consequently give the following equations

A+ 2Dk2 + ... = 0,

(B −A) + (E −D)k2 + ... = 0

at k = kmax.

The first equation implies k2
max = − A

2D + O(A2), which we combine with the second

equation to give (B − A) + (E −D)
(− A

2D

)
= 0 at k = kmax. Hence in the limit of small

A, we conclude the condition for case II of the SVI is

B =
(
D + E

2D

)
A+ O(A2), A > 0 andD < 0, with k2 =

−A
2D

+ O(A2) and l = 0 . (2.31)

Contours of Det on either side of this boundary are illustrated in figure 2.7. Moreover,
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the conditions (2.30) and (2.31) are summarized in the schematic diagram in figure 2.8,

which also indicates the regions affected by the SVI and Eckhaus instability. Interestingly,

the Eckhaus instability and SVI coincide at the point (A,B) = (0, 0). This separates the

two different cases, I and II above and is discussed in detail in next section.

2.6.2 The boundary of the skew-varicose instability

We continue by expressing how the conditions (2.30) and (2.31) possibly relate to the

bifurcation lines in the (μ, q) plane. A feature of the SVI is that it makes stripes unstable

only for q > 0 and, for any given value of μ, g must be large enough for the SVI to pre-

empt the Eckhaus instability. The crossing point between the Eckhaus and skew-varicose

instabilities is found by (A,B) = (0, 0), where A and B are taken from equation sets (2.3)

or (2.20) accordingly in model 2 and model 1. For a given value of q it occurs for some g,

say gEck, which is given by

gEck =
3
8

[
3(1 + q)2 − 1

(1 + q)6

]
. (2.32)

The condition A = 0 could be used to express gEck as a function of μ if desired. In the

limit μ → 0 and q → 0, gEck leads to 0.75, which we call gcritical. The expression for

gEck and the value gcritical = 0.75 is the same in models 1 and 2 provided we use the

relation g = gm/(Pr c2). The Eckhaus instability precedes the SVI for some range of μ

only if g < gcritical. We have found that the SVI boundary for g > gcritical approaches

the origin as μ = 12q2, as does the Eckhaus curve, whilst SVI approaches as μ = nq2,

with 4 < n < 12 when g < gcritical. A detailed presentation of this asymptotic result

will be discussed in section 2.6.3. The distinction between g > gcritical and g < gcritical

is illustrated in the schematic diagram 2.9. Interestingly, for a fixed q, g → 0 implies

μSV → μExistence. Therefore when g → 0, the SVI boundary coincides with the existence

curve of stable stripes for small μ.
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Figure 2.9: Schematic diagrams of the SVI boundary. (a) g > gcritical: the region of
stable stripes is bounded by the blue (SVI) curve, which approaches the origin as μ = 12q2,
as does the green (Eckhaus) curve. (b) g < gcritical: 0 < μ < μcross: the region of stable
stripes is bounded by the green (Eckhaus) curve and blue (SVI) curve is approximately a
parabola μ = nq2, with 4 < n < 12 for small q. μ > μcross: the region of stable stripes is
bounded by the blue (SVI) curve.

We then illustrate some examples of bifurcation lines in the (μ, q) plane. In order

to derive bifurcation lines we have used a branch-following package, MATCONT [92].

We discuss in detail about the package MATCONT and the conditions that we use in

derivation of bifurcation lines in chapter 3. An example of the calculation for model 2 is

given in figure 2.10, which was computed working directly with numerically determined

eigenvalues and computing ∂
∂k2 and ∂

∂l2
numerically. In case I, the SVI boundaries derived

using condition (2.30) coincide with the numerical computation. However, in case II,

condition (2.31) agrees with the numerical computation only when A is close to zero, as

would be expected. The transition from case I to case II occurs at (μ, q) = (0.1367, 0.2387)

for g = 0.5: for smaller μ, the stability region of stripes is bounded on the right by the

Eckhaus instability, while for larger μ, the Eckhaus instability is pre-empted by the SVI.

For g = 5, the SVI pre-empts the Eckhaus instability for all μ.

The Eckhaus and SVI boundaries are often very close, so we present our result in an
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Figure 2.10: Numerical computation (in model 2) of the SV stability boundary in the
(μ, q) plane. For g = 5, the SVI pre-empts the Eckhaus instability for all μ and hence
the region of stable stripes is bounded by the skew-varicose instability curve. However, for
g = 0.5, the region of stripe stability is bounded by the skew-varicose instability curve only
when μ > 0.2387. The crossing point, (0.1367, 0.2387), of the two boundaries is denoted
as a red square. For 0 < μ < 0.2387, the Eckhaus precedes the SV curve, which reaches
the origin as a parabola μ = 9.33q2. The green curve denoted by E is for the Eckhaus
boundary whereas the red curve is the boundary of existence of stripes.

alternative way in figure 2.11. Figures 2.11(a) and 2.11(b) present the SVI boundaries for

g = 5 and g = 0.5 in the (μ/μExistence , log(q)) plane. This is a better way of illustrating

the regions of stable stripes (shaded regions) and the behaviour of the Eckhaus and SVI

boundaries as q → 0. Moreover, it shows how the coordinate axes A and B from (14) can

be defined near the SVI–Eckhaus crossing point.

2.6.3 Asymptotic analysis of the SVI boundary

In this section we focus on the asymptotic behaviour of the SVI boundary, which we

derived using the two conditions: condition (2.30) for g > gcritical and the condition (2.31)

for g < gcritical. We first express these conditions in terms of the parameters in models 1

or 2 and consider their limiting behaviour.
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Figure 2.11: Numerical computation (in model 2) of the SVI boundary as a function
of μ/μExistence and log(q). μExistence = (1 − (1 + q)2)2. The Eckhaus boundary, A = 0,
is denoted by a green curve and the shaded region corresponds to stable stripes. (a) g =
5 > gcritical. Here, μSV /μExistence → 3 as q → 0. The SVI precedes the Eckhaus for all
q values. (b) g = 0.5 < gcritical. Here, μSV /μExistence → 2.3333 as q → 0, which in turn
becomes μSV → 9.3333q2 as q → 0. The point of intersection of the SVI boundary with
the Eckhaus boundary is denoted by (A,B) = (0, 0). A schematic illustration of the A and
B axes at the crossing point is also shown (see figure 2.8).
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Case 1: g > gcritical

Here we consider the case when g > gcritical, where the SVI boundary pre-empts the

Eckhaus instability boundary. We use the condition B2 − 4AC = 0 and for model 2, it is

expressed as

F1g
2 + F2g + F3 = 0, (2.33)

where the Fi’s are functions of μ and q. In the limit of very small μ and q,

F1 ≈ 1
9
(1024q6 − 512μq4 + 64μ2q2 − 16μ3q + μ4), (2.34a)

F2 ≈ 1
3
(−1536q5 + 512μq3 − 32μ2q − 4μ3), (2.34b)

F3 ≈ (576q4 − 96μq2 + 4μ2). (2.34c)

To proceed, we consider the behaviour of the boundary at the highest order as μ ∼ qα,

where α = 1 or 2. Depending on α, we select the smallest orders of F1, F2 and F3. We

demonstrate this in figure 2.12.

For smallish g ≥ gcritical, as μ → 0, μ ∼ q2 as shown in figure 2.11(a) and hence the

functions in equation (2.34) can be taken as F1 ∼ q6, F2 ∼ q5 and F3 ∼ q4 as illustrated

in figure 2.12. Therefore we have F1g
2 + F2g + F3 ∼ q4

(
q2g2 + qg + 1

)
. If q � 1/g, we

set F3 = 0. This results in 144 − 24( μ
q2 ) + ( μ

q2 )2 = 0, which gives

μ = 12q2.

This can be improved by including F2 and hence F2g + F3 = 0 and we can select

relevant terms of lowest orders of F2 and F3 as shown in figure 2.12. In this case we
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obtain,

q

3

[
384 + 128

(
μ

q2

)
− 8

(
μ

q2

)2
]
g +

[
144 − 24

(
μ

q2

)
+
(
μ

q2

)2
]

= 0

⇒ (3 − 8qg)
(
μ

q2

)2

− 8 (9 − 16qg)
(
μ

q2

)
+ 48 (9 − 8qg) = 0

⇒
(
μ

q2
− 4

(9 − 8qg)
(3 − 8qg)

)(
μ

q2
− 12

)
= 0.

We conclude that

μSV = 12q2
(

9 − 8qg
9 − 24qg

)
, (g > gcritical , q � 1/g) (2.35)

and hence μ → 12q2 when q → 0. Therefore when g > gcritical, the SVI boundary for

small μ has the same curvature as the Eckhaus boundary. Note that figure 2.11(a) shows

how the SVI boundary for g = 5 coincides with the Eckhaus boundary as q → 0.

The limit of very large g is also of interest, as it corresponds to stress-free boundary

conditions (see section 2.7 below). In this limit, we expect the SVI boundary (as shown
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Figure 2.13: Numerical computation of the SVI boundary on a logarithmic scale for
g = 10i for i = 1, 2, 3, 4, 5 and 7. The transition from μ ∼ q to μ ∼ q2 occurs when
g ∝ 1/q (inflection points, denoted in red points, are almost exactly at q = 1

g ). In the limit
of small q, the SVI curve is tangent to μ = 12q2, whereas in the limit of large g, the SVI
curve goes as μ ∼ 8q as μ increases. Both asymptotes, μ ∼ 8q and μ ∼ 12q2 are denoted
by red lines.

in figure 3.5 in chapter 3) should have μ ∼ q [93]. From equation (2.34) with μ ∼ q,

we have F1 ∼ q4, F2 ∼ q3 and F3 ∼ q2 as shown in figure 2.12. Therefore we have

F1g
2 + F2g + F3 ∼ q2

(
q2g2 + qg + 1

)
. If qg � 1, we set F3 = 0 and recover μ = 12q2.

If qg � 1, we set F1 = 0. This results in, 64 − 16
(

μ
q

)
+
(

μ
q

)2
= 0, which gives

μ ∼ 8q.

Again, this can be improved by setting F1g + F2 = 0, and we obtain

μSV = 8q
(

2qg + 3
2qg − 3

)
, (g > gcritical , q � 1/g). (2.36)
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Finally, we note that the transition between μ ∼ 12q2 and μ ∼ 8q will occur when qg is of

order unity, so qtransition ∼ 1
g . Figure 2.13 illustrates the behaviour of the SVI boundary

for selected values of g with g > gcritical and the transition agrees with q ∼ 1
g .

All these explicit results are for model 2. When g > gcritical, the expressions for

conditions given in (2.30) are the same for model 1 with the relation g = gm/Pr c
2.

Therefore, equations (2.35) and (2.36) are the same for model 1.

In the skew-varicose mechanism for g > gcritical, the maximum of Det is attained for

perturbations of a mode, say (kmax, lmax), as kmax → 0 and lmax → 0. As shown in

equation (2.30), kmax
2

lmax
2 =

√
C
A . The expressions for A and C are taken from equation sets

(2.20) or (2.21) accordingly for the model 2 or model 1.

For g > gcritical , q � 1/g, μ = 12q2 at the asymptotic limit of the SVI and we get,

(
kmax

lmax

)
= (2− (27/2 + 8/3g)q + (46/3g + 639/8)q2 − (15045/32 + 521/6g)q3 +O(q4))1/4

which results in (
kmax

lmax

)
= O(1).

For g > gcritical , q � 1/g, μ = 8q at the asymptotic limit of the SVI and we get,

(
kmax

lmax

)
= O(q1/4).

Case 2: g < gcritical

We now consider the case g < gcritical, for which the SVI boundary lies in the Eckhaus

band for small μ. We do not have an exact criterion for the SVI in this case, though

equation (2.31) is an approximate criterion. However, for small μ, we expect μSV to

depend approximately linearly on g. We know from equation (2.35) that for g = gcritical,
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Figure 2.14: Contours of largest eigenvalue for the parameter values μ = 0.02, q =
0.0036, gm = 10, Pr = 1 and c = 0. For these parameter values stripes are unstable to
the SVI. The zero and positive real growth rates are denoted as red lines and the negative
real values of growth rates are indicated by black contours. The maximum real eigenvalue
emerges from (k, l) = (0, 0) but occurs with k �= 0 and l �= 0

μSV → 12q2 as q → 0 and from conditions in equation (2.31) in the limit g → 0, we have

μSV → 4q2 as q → 0. A linear interpolation between these yields

μSV ≈ 4
(

2
gcritical

g + 1
)
q2, (g < gcritical , q � 1). (2.37)

This relation is shown numerically using MATCONT [92] (see section 3.2) to be a very good

approximation; μSV /μExistence behaves linearly with g with a gradient 8/3. In addition,

the numerical simulation illustrated in figure 2.11, shows at g = 0.5, μ/μExistence → 2.333

as q → 0 which agrees well with equation (2.37). The conditions for the SVI and its

asymptotic behaviour can be expressed for model 1 with the relation g = gm/(Pr c2). The

case where c = 0 is considered in the next section.
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2.7 SVI in stress-free boundary conditions

We now consider the case that models convection with stress-free boundary condition.

In model 1, c is the parameter that accounts for the boundary conditions at the top

and bottom, and stress-free boundary conditions corresponds to c = 0. Using the relation

g = gm/Pr c
2 to connect the two models, taking the limit g → ∞ corresponds to stress-free

boundary condition in model 2.

When c = 0, an example for the behaviour of the maximum eigenvalue for the SVI is

shown in figure 2.14. The instability emerges from k = l = 0 and extends to k �= 0 and

l �= 0. The conditions for the SVI in stress-free boundary conditions are the same as in

equation (2.30), corresponding to case I above with no-slip boundary conditions. Hence

for any coupling constant gm, the SVI boundary always pre-empts the Eckhaus boundary

in the (μ, q) plane, and it takes the form,

μ = 8q + 24q2 + 20q3 + 5q4 + O(q5)

and in the limit of small q, μ ∼ 8q, approximating g → ∞ in model 2. A remarkable

property of the SVI in model 1 with stress-free boundary conditions is that the stability

boundary is independent of Pr and gm.

2.8 Oscillatory SVI in stress-free boundary conditions

Another instability of interest in the stress-free case is the oscillatory skew-varicose (OSV)

instability, which consists of a long-wavelength transverse oscillation of the stripes that

propagates along their axis [26]. For OSV modes, the associated eigenvalues are complex.

This instability does not occur in model 2 because Tr(J2) < 0 for small k and l and so
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Figure 2.15: Contours of largest eigenvalue for the parameter values μ = 0.02, q =
−0.025, gm = 10, Pr = 1 and c = 0. For these parameter values stripes are unstable
to the OSV instability. Hatched region indicates where the maximum eigenvalue has a
non zero imaginary part. The zero real growth rate is denoted as a thick red line and the
negative real values of growth rates are indicated by black contours. The complex eigenvalue
that emerges from (k, l) = (0, 0) occurs with k �= 0 and l �= 0

complex eigenvalues are not possible. In model 1, the OSV instability does not appear for

c2 = 2, no-slip boundary conditions. In contrast for c = 0, the regions in the (k, l) plane

with positive growth rate and non-zero frequency emerge from (k, l) = (0, 0) in a way that

resembles the contours for the SVI, as shown in figure 2.15.

We derive the asymptotic behaviour of the OSV instability boundary as follows. At the

point of instability, the eigenvalues of J1 are purely imaginary. We take the real eigenvalue

as λ1 and purely imaginary eigenvalues as ±iω and so the characteristic equation of J1

can be written as,

(λ− λ1)(λ2 + ω2) = 0

⇒ λ3 − λ1λ
2 + ω2λ− λ1ω

2 = 0.
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Figure 2.16: The location of the OSV instability boundary for model 1 for c = 0 (stress-
free boundary conditions), Pr = 1 and gm = 1000, 100, 25, 5 and 1. Stripes are OSV
unstable to the left of the OSV boundary. For small μ, the boundary is asymptotic to
μ =

(
−3+

√
5

3

)
qgm. The Eckhaus boundary is denoted in green and the existence curve is

in red.

Therefore we can write the characteristic equation of J1 as

λ3 +Aλ2 +Bλ+ C = 0,

where

A = −λ1, B = ω2 andC = λ1ω
2.

This gives two conditions, C−AB = 0 andB > 0 for J1 to have pure imaginary eigenvalues.

The coefficients A, B and C are functions of gm, Pr, q, μ, k and l. We will set Pr = 1 to

illustrate this calculation. For small k and l, the condition C −AB = 0 gives,

G1

(
gmq

μ

)2

+G2

(
gmq

μ

)
+G3 = 0, (2.38)
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after maximizing C − AB over (k, l). The Gi’s are functions of μ and q. In the limit of

very small μ and q, we find,

G1 ≈ 1024
9

+ O
(
q2

μ

)
, (2.39a)

G2 ≈ 512 + O
(
q2

μ

)
, (2.39b)

G3 ≈ 256 + O
(
q2

μ

)
, (2.39c)

where we have dropped terms that can be shown to be smaller than those retained.

We note at this point that equations (2.38) and (2.39) with (q2/μ) � 1 give

1024
9

(
gmq

μ

)2

+ 512
(
gmq

μ

)
+ 256 = 0,

which implies

μ =

(
−3 +

√
5

3

)
qgm. (2.40)

The OSV instability boundary has a linear relationship between q and μ for small μ, and

it bounds the region of stable wavenumbers for negative q, (figure 2.16). Stripes are stable

to the right of the boundary. In this asymptotic limit, the point of maximum growth rate

in the (k, l) plane can be found at the point of maximum of C −AB; this point satisfies

l/k =
√

5.

We now derive the expression for B on l =
√

5k with the relation (2.40). We obtain,

B = Hk2 + O(k4), where H ≈ 10
(
−3+

√
5

3

) (
1
3gm + 2

)
q + O(q2). Therefore, for small k

and in the limit of small q, we establish the condition B > 0.

Figure 2.16 shows the behaviour of the OSV instability boundary in model 1 with
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c = 0, for Pr = 1 and different values of the coupling constant gm.

2.9 Agreement of results of direct simulations of the models

and stability calculations
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Figure 2.17: Logarithmic plot of the amplitude of the growth rate of the perturbed mode
with respect to time. Here the perturbed mode is (1.1 + k, l) with k = l = 0.05. Param-
eter values are μ = 0.1 and g = 0.75. Secondary growth rate, which is calculated by a
linear fitting, of the perturbed mode is 0.00360926 whereas the stability calculations for the
corresponding mode gives 0.00360933

In this section we show by an example that the quantitative results of stability calcu-

lations have been in remarkable agreement with studies of the full equations and is our

justification for stability analysis above.

In order to compare with the stability calculations that were performed for the SVI,

we find the solutions to the nonlinear system of PDEs (2.2-2.3 & 2.4-2.5). These original

models are solved numerically using a spectral method and exponential time differencing

of fourth order, ETDRK4. We discuss the numerical scheme in detail in chapter 5.
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Figure 2.18: Comparison of the stability calculations with the numerical solution of model
2. We use a (k, l) grid with grid spacing (Δk,Δl) = (0.025, 0.025). The parameter values
are μ = 0.1, q = 0.075 and g = 25. We calculate the growth rates numerically on the grid
points indicated on the grid (k,l) in red and blue. Contours are derived using the Jacobian
in a finer grid. The contours indicated are the ones that pass through the points marked
in red. For instance, for (k, l) = (0.05, 0.025), numerical solution gives the growth rate as
zero and the zero contour, which calculated using the Jacobian, over plot the point showing
the agreement of 99.97%.

To investigate the stability of parallel stripes, we begin with finding non-linear solutions

of the PDEs starting from an initial condition ψ = 0.01 sin((1 + q)x) and ω = 0 and time

stepping until the amplitude of sin((1 + q)x) saturates. We then add perturbations to the

stripe solution, 10−6 sin((1 + q+ k)x, ly) varying k and l over the grid and time step for a

further length of time. We then look for exponential growth or decay of the perturbation.

The secondary growth rate was calculated by fitting a straight line to the data as indicated

in figure 2.17. Note that we choose the initial amplitude of the perturbation and the

time interval over which the calculation was done to ensure that the amplitude of the
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perturbation remains in the linear regime.

This calculation of the eigenvalues depends on the perturbed mode, which again de-

pends on the choice of k and l. This is determined by the size of the domain and in

order to investigate details of stability for small (k, l), we need a large domain size, which

is time consuming. Therefore the numerical simulation is not guaranteed to capture the

instability boundaries, but can only find sufficient conditions for instabilities.

On the other hand, we can use the Jacobian to calculate the maximum eigenvalue for

a range of values of k and l; it allows to investigate details of stability in the limit of small

(k, l), and hence to derive the SV boundary precisely. Therefore the calculations using the

Jacobian are exceedingly useful to consider eigenvalue behaviour for any set of parameters

and importantly, in calculating instability boundaries.

For this illustration, the PDE calculations were carried out in a square domain of

size L = 2π × 40 with 512 Fourier modes for periodic boundary conditions. This fixes a

lattice in (k, l) space with lattice spacing 2π/L = 0.025. On this grid, at each point, we

calculated the growth rates. This is illustrated in figure 2.17 and the results of the two

methods appeared to be identical. The blue and red points in the figure correspond to grid

points, which we use to compare growth rates. Contours of growth rates, computed from

the Jacobian on a much finer grid, are also shown. The contour levels correspond to the

PDE growth rates at the red points, and contours go exactly through these points, with

about 0.03% error. The reason for this agreement is because the conditions we used in the

stability calculations are kept in PDE simulations; we apply the projection and filtering

operations in numerical simulations.

Calculating the eigenvalues directly from the Jacobian can be done for arbitrary k

and l and therefore we have overcome the difficulty of numerical calculation; eigenvalues

depend on k and l and is restricted by the largest domain we can simulate.
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2.10 Concluding remarks

In this work we considered the consequences of including the mean-flow on the generalized

Swift–Hohenberg models. We analyzed two models: in the first model vorticity has its

own independent dynamics [69]. In the second, vorticity is directly slaved to the order

parameter [64]. In most circumstances, the stability theory for the two models is exactly

the same, when the relation g = gm/(Pr c2) is made. Even with c = 0, the behaviour of

model 1 is reproduced by model 2 in the limit g → ∞. Two boundary conditions were

considered in this work: stress-free (c = 0) and no-slip (c2 = 2).

In order to explore long-wavelength instabilities, we carried out a complete linear sta-

bility analysis of stripes. We expressed the relevant determinants as power series in k2 and

l2, where (k, l) is the perturbation wavevector. We were able to derive explicit expressions

for the largest growth rates in most cases. This has led to an improved understanding of

the instabilities of stripes. Unlike in previous work [90, 93, 94], we have not had to make

assumptions on the relation between k, l and the amplitude of the basic stripe solution.

This approach has been made possible through the use of the projection operator, Pα,

which allows the exact stripe solution to be written down easily [91].

With this linear stability analysis of the stripe solution, we investigated the growth rate

of perturbations corresponding to the Eckhaus, zigzag, skew-varicose and the oscillatory

skew-varicose instabilities. The Eckhaus instability does not depend on the mean flow.

However, the zigzag instability depends on the mean flow and higher mean flow suppresses

the zigzag instability. The skew-varicose instability has two different behaviours: if stripes

are stable to the Eckhaus instability, in the limit of μ = 0, the SVI scales as μ ∼ 12q2,

provided g > 0.75. The most unstable wavevector satisfies k2/l2 = O(1). For g < 0.75,

the SVI boundary crosses the Eckhaus curve, and in the limit of μ = 0, it goes as μ ∼ aq2
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with 4 < a < 12. In model 1, the critical gm is 0.75Pr c2. In the large g limit (that is,

for very low Pr, or for stress-free boundary conditions), there is a transition of the SVI

boundary from μ = 12q2 to μ = 8q at a wavenumber satisfying q ∝ 1/g.

An additional instability, the oscillatory skew-varicose (OSV) instability, is encoun-

tered for stress-free boundary conditions in model 1. The OSV instability boundary is

approximately μ =
(
−3+

√
5

3

)
qgm, for small μ. For higher mean flow, region of stripes that

is unstable to the OSV instability is increased.

The projection operator Pα, which is equivalent to a truncation to selected wavenum-

bers, made this analysis straightforward. The most significant benefit is the complete

understanding of the skew-varicose instability in our models. Numerical simulations of

these projected models for small μ, have the same solutions as the unprojected PDE and

this is our justification for using these projected models in stability analysis for small μ.

It would be of interest to find out whether a similar projection could be used to overcome

the difficulty of analysis of the Navier-Stokes equations.

In order to appreciate fully the method, we compare the results of the SVI growth

rates derived using stability calculations with those from numerical solutions of the PDEs.

We found a very good agreement (of 99.974%) between the two.

In the next chapter, we extend the asymptotic results in this chapter using MATCONT

to explore fully the long wavelength instabilities of stripes. In addition, we discuss short-

wavelength instabilities and how these depend on the coupling to the mean flow.
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Generalizations of the two dimensional Swift–

Hohenberg Equation: effect of system param-

eters on the region of stable stripes

3.1 Introduction

In this chapter, our main objective is to use numerical methods to derive the region of stable

stripes of the models: Model 1 (2.2-2.3) and Model 2 (2.4-2.5). The numerical analysis

in this chapter provides further reassurance that the stability results of long-wavelength

instabilities, derived in chapter 2, are correct. For the two different manifestations of skew-

varicose instability (case I and case II) we presented illustrative examples using numerical

results in chapter 2. Here we mainly focus on the stability region of SVI for case I. However,

we consider case I and II later in this chapter, where we discuss the influence of the mean

flow on the stability region. The short-wavelength instabilities, despite the Fγ filtering,

are found to limit the region of stable stripes and we numerically analyze the types of

short wavelength instabilities. We further extend our numerical derivations to identify the

dependence of the mean flow to all instabilities that exist in the models.

In order to compute the stability boundaries, we use the continuation package MAT-

CONT [92]. First we recall the governing Jacobians J1 in (2.17) and J2 in (2.18) in Chapter
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2 and calculate the maximum eigenvalue (or the real part if the eigenvalue is complex),

σmax, numerically. The eigenvalue σmax behaves differently for the different instabilities

(Eckhaus, zigzag, skew-varicose, cross-roll, oscillatory skew-varicose, oscillatory cross-roll),

and we determine numerically how it depends on k and l in order to compute the deriva-

tives that govern the criteria for each instability. Given an appropriate initial parameter

value, MATCONT can calculate the curves in parameter space on which these criteria are

satisfied.

The numerical results obtained with MATCONT are presented for different boundary

conditions: no-slip (c =
√

2), stress free (c = 0) and for the case with small c > 0. We

first present the stability diagrams in (μ, q) plane for illustrative parameter values. The

parameter value of the coupling strength on the meanflow is chosen to be larger than the

critical value that we discussed in chapter 2, so that the SV boundary always preempts

the Eckhaus boundary. Second, we discuss the impact of the coupling strength on the

meanflow, Prandtl number and the filtering coefficient, γ, on modifying the region of

stable stripes.

The chapter is structured as follows. We start by describing how the short-wavelength

instabilities appear in our models in section 3.2. Our numerical method is discussed

in section 3.3, where we discuss the behaviour of σmax for each instability. Then we

present numerically computed stability diagrams for both no-slip and stress-free boundary

conditions in section 3.4. We illustrate the growth rates of perturbations at selected

points in the stability diagram in the same section. Section 3.5 shows the influence of

the mean flow on the region of stable stripes. In section 3.5, we discuss the influence

of the Pr on the region of stable stripes and present numerical results that show the

relation g = gm/Pr c
2 in section 3.6. Section 3.7 presents the numerical results to show

how the filtering coefficient γ of the filtering operator Fγ , which is used to reduce short-
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wavelength instabilities, affects the cross- roll instability boundary and hence the region of

stable stripes. Further numerical exploration of a curious behaviour of the growth rates is

included in section 3.8. This chapter closes with some concluding remarks in section 3.9.

3.2 Short-wavelength instabilities

In this section we illustrate two types of short-wavelength instabilities present in our

models: the Cross-Roll (CR) instability and Oscillatory Instability (OI). These short-

wave instabilities are produced when a mode with k and l that are not small, is associated

with a positive growth rate.

3.2.1 The Cross-roll instability.

The cross-roll (CR) instability is so-called because the fastest growing disturbances ap-

pear to take the form of stripes perpendicular to the basic steady stripe pattern: these

disturbances have non-zero k and l in the limit μ → 0 [5]. In contrast to the oscillatory

instability discussed below, the most unstable eigenvalue at the CR instability is real.

We use numerical results in section 3.5 below to show that the CR instability only forms

a boundary of the region of stability of stripes if g is large. The filtering Fγ , discussed in

section 2.2.3 in Chapter 2, was introduced to suppress the CR instability in favour of the

SVI, so the location of the CR instability boundary depends on γ, while the SVI is not

influenced by γ for small enough μ and q. Since the CR instability sets in with non-zero k

and l, even for small μ and q, asymptotic analysis of the type carried out above in chapter

2 cannot be done.
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3.2.2 The oscillatory instability

When the parameter c is increased from zero (which models stress-free boundary condi-

tions), the OSV instability disappears and is replaced by the so-called oscillatory instability

(OI). This has the nature of an oscillatory cross-roll instability, setting in with non zero k

and l. The boundary of this oscillatory instability emerges from β = 0, the existence curve.

However, this instability is prominent only for Pr c2 � 1; for higher values of Pr c2, the in-

stability moves to larger negative q. The behaviour of the oscillatory instability boundary

and the effect of the mean flow are illustrated in section 3.4.3.

3.3 Numerical Technique: MATCONT

In this section we outline the method used in tracing the bifurcation lines. We use MAT-

CONT, which is a continuation package for the interactive numerical study of dynamical

systems. [92]. MATCONT works in the MATLAB environment and it provides the means

for continuing equilibria and periodic orbits of systems of ordinary differential equations

(ODEs), and their bifurcations. We first need to identify the type of solutions of the

branch to be computed and to set up the equations file which helps to trace the solution.

Then the continuation can be initialized with a known initial solution or at a bifurcation

point.

We begin by setting up equations file in MATCONT to derive algebraic bifurcation

lines. We first calculate the maximum eigenvalue, σmax, numerically. This eigenvalue is

a function of k and l, and each instability corresponds to different conditions on σmax

and its derivatives with respect to k and l, as detailed below. These conditions are then

programmed into files in MATCONT in terms of the parameters of the models.
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Eckhaus instability

Stripes are unstable to the Eckhaus instability if σmax is positive for l = 0 and k = kmax >

0. The Eckhaus stability boundary occurs when kmax → 0, in which case ∂2σmax

∂k2 = 0

at (k, l) = (0, 0). An example of the maximum eigenvalue behaviour due to the Eckhaus

instability is shown in figure 2.2 in Chapter 2.

Zigzag instability

Stripes are unstable to the zigzag instability if σmax is positive for k = 0 and l = lmax > 0.

The zigzag stability boundary occurs when lmax → 0, in which case ∂2σmax

∂l2
= 0 at (k, l) =

(0, 0). An example of the maximum eigenvalue behaviour due to the zigzag instability is

shown in figure 2.3 in chapter 2)

Skew-varicose instability

There are two cases of the SVI, as discussed in chapter 2. First, if the SVI precedes

the Eckhaus instability, we consider σmax as a function of k and l with k = ε cos(θ)

and l = ε sin(θ). Stripes are unstable to the SVI, if σmax is positive for some θ in the

limit of ε = 0. The SV stability boundary occurs when ε → 0, in which case σmax = 0

and ∂σmax
∂θ = 0. An example of the maximum eigenvalue behaviour for this case of the

skew-varicose instability is shown in figure 2.5(a) in chapter 2.

Second, if the SVI follows the Eckhaus instability, σmax (which is then located on l = 0

and k = kmax owing to the Eckhaus instability), moves off the k axis. Therefore the SV

stability boundary occurs when lmax → 0, in which case ∂σmax
∂k2 = 0 and ∂σmax

∂l2 = 0 at

(k, l) = (kmax, 0). An example of the maximum eigenvalue behaviour for this case of the

skew-varicose instability is shown in figure 2.5(b) in chapter 2.
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Cross-roll instability

In the case of CR instability, σmax = 0 occurs at non-zero (k, l) and when σmax > 0,

the contours of σmax = 0 do not reach (k, l) = (0, 0). Hence the three conditions are

∂σmax
∂k = 0, ∂σmax

∂l = 0 and σmax = 0 at k = kmax �= 0 and l = lmax �= 0. An example of

the maximum eigenvalue behaviour for the CR instability is shown in figure 3.4(a).

Oscillatory skew-varicose instability

The oscillatory skew-varicose instability occurs for stress-free boundary conditions. In this

case, we check whether the eigenvalue is complex and consider σmax to be the real part

of the eigenvalue and use the same conditions stated in the first case of the skew-varicose

instability. An example of the maximum eigenvalue behaviour for the OSV instability is

shown in figure 2.15 in chapter 2.

Oscillatory instability

The CR instability can be oscillatory for boundary conditions, where c is positive but

not too large. In this case, we check that the extreme of the maximum eigenvalue is

complex and we consider σmax to be the real part of the eigenvalue. We then use the same

conditions stated above for cross-roll instability. An example of the maximum eigenvalue

behaviour for the OI is shown in figure 3.10(a). Note that the contours of zero real part

of the eigenvalue do not reach (k, l) = (0, 0).

The remainder of the chapter illustrates the bifurcation diagrams, which we derived

using these conditions in MATCONT, for different parameter values.
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Figure 3.1: Stability diagram in the neighbourhood of μ = 0 for model 1 with c2 = 2 (no-
slip boundary conditions), Pr = 1, gm = 50 and γ = 2.5. Stable stripes are in the region
hatched in blue, bounded by zigzag instability and then Eckhaus instability from below and
by the SVI boundary from above.

3.4 Stability Diagrams

In this section, we illustrate our numerical results of model 1, with Pr = 1. We choose

two illustrative parameter values: gm = 50 and gm = 1000, and three different boundary

conditions: no-slip (c2 = 2), stress-free (c = 0) and smallish c > 0.

3.4.1 No-slip boundary conditions: c =
√

2

Figure 3.1 shows the stability diagram for model 1 with parameter value c2 = 2 (corre-

sponding to no-slip boundary conditions), Pr = 1, gm = 50 and γ = 2.5. The region of

stable stripes is bounded by the SVI from above and the Eckhaus instability from below.

The zigzag instability boundary for this value of gm lies below the left Eckhaus boundary

except for very small μ and q (as in figure 2). The CR instability does not occur in this

range of parameters.
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Figure 3.2: Stability diagram in the neighbourhood of μ = 0 for model 1 with c2 = 2
(no-slip boundary conditions), Pr = 1, gm = 1000 and γ = 2.5. Stable stripes are in the
region indicated, bounded by the SV and CR instabilities from above, and by the zigzag
and Eckhaus instabilities from below. Growth rates as a function of k and l at the points
indicated by (a)–(f) are given in figure 3.4.

Figures 3.2 and 3.3 show the stability diagram for model 1 with parameters c2 = 2

(no-slip), Pr = 1, gm = 1000 and γ = 2.5. Close to μ = 0 (figure 3.2), a neighbourhood

of q = 0 is in the stable regime and the zigzag and the SV instabilities bound the region

of stable stripes. For μ > 5 × 10−4, the region of stable stripes is bounded by the CR

instability from above and by the Eckhaus instability from below. For this value of gm, the

CR instability boundary crosses the SVI boundary, and the zigzag instability boundary is

linear for small μ. For the same parameter values, the stability diagram for a larger range

of q and μ is shown in figure 3.3. The region of stable stripes is bounded by the Eckhaus

instability from below and the CR instability from above. The zigzag instability boundary

lies close to the existence curve and is of less interest for this value of gm.

Figure 3.4 shows the eigenvalue behaviour at selected points in the (q, μ) space from
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Figure 3.3: Stability diagram with parameters as in figure 3.2 covering a larger range of
q and μ. Stripes are stable in the shaded region, bounded by the Eckhaus, CR and a small
part is due to SVI. Stable stripes exist at q = 0 for range of μ close to zero.

figure 3.2, as a function of (k, l), showing how stripes can be unstable to one or both of the

SV and CR instabilities. We note that the CR instability occurs for reasonably large values

of k ≈ 0.04 and l ≈ 0.2 (3.4(a)). In contrast, for the SVI, contours of positive growth rate

emerge from (k, l) = (0, 0) (3.4(d)). When both instabilities exist, two separate peaks of

growth rates appear (3.4(b) & 3.4(e)). For larger q, these contours can join to form one

large contour (3.4(c) & 3.4(f)).

We have computed the stability diagrams for model 2 with g = 500 and g = 25,

and these are qualitatively the same as figures 3.1 and 3.2, consistent with the relation

g = gm/Pr c
2.

3.4.2 Stress-free boundary conditions: c = 0

Figures 3.5 and 3.7 similarly show the instability boundaries for model 1, with parameters

c = 0 (corresponding to stress-free boundary conditions), Pr = 1, γ = 2.5 and gm = 1000
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Figure 3.4: Growth rates of perturbations at selected (μ, q) indicated by (a)–(f) in fig-
ure 3.2. (a) μ = 8.5 × 10−4, q = 0.002; stripes are CR unstable, but growth rates for k
and l close enough to zero are negative. (b) μ = 5.5 × 10−4, q = 0.003; stripes are CR
and SV unstable. Growth rates for k and l close enough to zero become positive due to
the SVI and there are two distinct zero contours. (c) μ = 5.5 × 10−4, q = 0.0034; stripes
are CR and skew-varicose unstable. One large zero contour encloses both the SV and CR
instabilities. (d) μ = 2.5 × 10−4, q = 0.00225; stripes are skew-varicose unstable, and
growth rates for k and l close enough to zero are positive for a range of polar angles. (e)
μ = 2.5 × 10−4, q = 0.0025; same as case (b), but the maximum occurs in the SV region.
(f) μ = 2.5× 10−4, q = 0.003; same as case (c), but again the maximum occurs in the SV
region. The zero contour is denoted in black (outer) and contours of positive growth rate
are denoted in red.

and gm = 50. The results agree qualitatively with earlier calculations by Bernoff [93],

who found a similar linear relation between μ and q for the SV and OSV instabilities in

convection with stress-free boundary conditions; he did not consider the CR instability.

Disregarding the CR instability, stripes would be stable between the OSV instability

and SVI boundaries. However, as seen in figure 3.5, the SVI is always preempted by the

CR instability; these boundaries appear to be parallel for larger μ. For μ < 0.32, there are
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Figure 3.5: Stability diagram for model 1 with c = 0 (stress-free boundary conditions),
Pr = 1, gm = 1000 and γ = 2.5. Stripes are skew-varicose unstable to the right of the SVI
boundary, OSV unstable to the left of the OSV boundary and CR unstable to the right of
the CR boundary. Stable stripes exist for μ > 0.32; the region of stable stripes is shaded,
and is bounded by the OSV instability boundary on the left and the CR boundary on the
right. Growth rates as a function of k and l at the points indicated by (a)–(d) are given
in figure 15.

no stable stripes. For higher μ, the stable region is bounded by the CR instability from

above and by the OSV instability from below.

Figure 3.6 shows the change of structure of the eigenvalues when moving from left to

right in the stability diagram shown in figure 3.5. At μ = 0.1, we selected four different

wavenumbers: q = −0.05, where stripes are OSV unstable (3.6(a)), q = −0.02, where

stripes are CR and OSV unstable (3.6(b)), q = 0.0058, where stripes are CR unstable

but OSV stable and q = 0.05 (3.6(c)), where stripes are CR and skew-varicose unstable,

though the distinction between these two instabilities has become blurred (3.6(d)).

Figure 3.7 presents instability boundaries for stress-free boundary conditions with Pr =

1, gm = 50 and γ = 2.5. This provides an illustration of the change of the CR instability
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Figure 3.6: Growth rates of perturbations at selected (μ, q) indicated in figure 3.5, all
with μ = 0.1. (a) q = −0.05, where stripes are OSV unstable. (b) q = −0.02, where
stripes are CR and OSV unstable. (c) q = 0.0058, where stripes are CR unstable but
OSV stable. (d) q = 0.05, where stripes are CR and skew-varicose unstable, though the
distinction between these two instabilities has become blurred. The zero contour of the real
part of the eigenvalue is denoted in black and contours of positive growth rate are in red.
The eigenvalues in the OSV case are complex.

boundary with gm. For gm = 50, the CR instability boundary crosses the SVI boundary

and the effect of the CR instability is reduced.

3.4.3 Nearly stress-free boundary conditions: c > 0

The parameter c, approximates the no-slip boundary conditions in convection when c =
√

2

and stress-free boundary condition in convection when c = 0. It is interesting to determine
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Figure 3.7: Stability diagram for model 1 with c = 0 (stress-free boundary conditions),
Pr = 1, gm = 50 and γ = 2.5. Stable stripes exist for μ > 0.02; the region of stable stripes
is bounded by the OSV boundary on the left and the CR boundary and then the SV on the
right.

how the stability diagram changes when c is increased from 0. Therefore, in this section,

we introduce the stability diagram for small c.

Figure 3.8 shows the stability diagram for model 1 with parameter values c = 0.1,

Pr = 1, gm = 50 and γ = 2.5. The region of stable stripes is bounded by the CR

instability from above and the oscillatory instability from below. Stripes are unstable to

the left of the OI boundary and to the right of the CR boundary. The CR instability

preempts the SVI for lower values of μ. Thus, when the parameter value c is slightly

increased from zero, the OSV instability seems to turn in to the oscillatory instability.

Figure 3.9 shows the stability diagram for model 1 with parameter values c = 0.1,

Pr = 1, gm = 1000 and γ = 2.5. The stability diagram is qualitatively the same as that

in figure 3.5 (c = 0, with the other parameters the same). The main difference is that the

OSV boundary is replaced by the oscillatory instability boundary. As seen in figure 3.9,

the SVI is always preempted by the CR instability; these boundaries appear to be parallel
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Figure 3.8: Stability diagram for model 1 with c = 0.1, Pr = 1, gm = 50 and γ = 2.5.
The OI boundary extends from the existence boundary and hence it crosses the Eckhaus
boundary when q = −0.01. The CR instability boundary preempts the SV boundary when
μ < 0.35. The region of stable stripes, which is hatched in blue, is bounded by the Eckhaus
instability and then OI boundary on the left and the CR boundary on the right.

for larger μ. For μ < 0.28, there are no stable stripes. For higher μ, the stable region is

bounded by the CR instability from above and by the OI from below. Figure 3.10 shows

the change of the structure of the eigenvalues at selected points in the (q, μ) space from

figure 3.9; at the wavenumber q = −0.01, we select μ = 0.3, where stripes are unstable to

the OI and μ = 0.2, where stripes are unstable to the OI and CR instability. We note that

the CR instability, as before, occurs for reasonably large values of k and l. The eigenvalues

for OI are complex and the contours of positive growth rate emerge from smaller (but non-

zero) k and l (figure 3.10(a)). When both instabilities exist, two separate peaks of growth

rates appear (figure 3.10(b)).

We have computed the stability diagrams for model 2 with g = 5000 and g = 105, in

order to keep the consistency with the relation g = gm/Pr c
2 for the boundary condition

c = 0.1 and the parameter values Pr = 1, gm = 50 and gm = 1000. However, the

oscillatory instability is absent in model 2, owing to the Tr(J2) < 0 prevents complex
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Figure 3.9: Stability diagram for model 1 with c = 0.1, Pr = 1, gm = 1000 and γ = 2.5.
Stripes are skew-varicose unstable to the right of the SVI boundary, OI unstable to the left
of the OI boundary and CR unstable to the right of the CR boundary. Stable stripes exist
for μ > 0.28; the region of stable stripes is hatched, and is bounded by the OI instability
boundary on the left and the CR boundary on the right. Growth rates as a function of k
and l at the points indicated by (a) and (d) are given in figure 3.10

eigenvalues. In contrast, the SVI and CR instabilities have the same qualitative behaviour

and since the OI is absent, stripes are stable over a wide range in (q, μ).

We now examine in more detail how the CR and OI boundaries depend on c. We

illustrate the numerical results using two parameter values, gm = 50 and gm = 1000. It

is evident in figure 3.11 that the cross-roll instability, for c = 0.01 and c = 0.2 depends

strongly on gm but only weakly on c. Small values of gm reduce the effect of the CR

instability so the location of the CR instability boundary moves to higher q. Comparing

the CR instability boundaries in figure 3.11 with stress-free boundary conditions (figures

3.5 and 3.7), we can conclude that the CR instability has a qualitatively similar behaviour

for a range of c, which we have found to be 0 ≤ c < 1.

On the other hand, the OI depends crucially on both gm and the choice of the boundary

condition value c. For the case c = 0.01, as depicted in figure 3.11(a), the OI boundary
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Figure 3.10: Growth rates of perturbations at selected (μ, q) indicated in figure 3.9, all
with q = −0.01. (a) μ = 0.3, where stripes are OI unstable. (b) μ = 0.2, where stripes
are CR and OI unstable. The zero contour of the real part of the eigenvalue is denoted
in black and contours of positive growth rate are in red. The eigenvalues in the OI case
are complex; blue thick contour denotes the zero imaginary part of the eigenvalue and the
hatched region is where the eigenvalue complex.

is qualitatively same as the OSV boundary for the stress-free boundary conditions (figure

3.5). In this case the OI boundary, for both values of gm, extends linearly from (μ, q) =

(0, 0). However, for larger c, the OI boundary moves to smaller wavenumber, starting on

the existence curve β = 0. This identifies the starting point of the OI boundary to be a

point where a Hopf bifurcation occurs. We find that for any value of gm, the OI disappears

when c is increased above about 0.6. As with the CR instability, small gm reduces the

effect of the OI instability.

3.5 The role of mean-flows

In this section we study the effect of the mean flow, presenting the stability diagrams in

a different manner to emphasis the dependence on g. For a fixed μ, we show how the

coupling to the mean flow affects the region of stable stripes. This choice of presentation
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Figure 3.11: Effect of c and gm on the CR and OI boundaries. Stability diagram for
model 1 with Pr = 1, γ = 2.5 and two different parameter values, gm = 50 and 1000.
(a) c = 0.01. The OI boundary seems to be linear and it extends from (μ, q) = (0, 0) (b)
c = 0.2. The OI boundary appears with Hopf bifurcation close to the existence boundary
and this bifurcation is very sensitive to the value of gm. In both cases, small gm suppresses
the CR boundary to the right and the OI boundary to the left. CR boundary is denoted in
blue and the OI boundary is in pink.
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Figure 3.12: Stability diagrams in (g, q/
√
μ) plane for model 2 with μ = 0.1 and γ = 2.5.

(a) For small g: the region of stable stripes is mainly bounded by zigzag and SV instabilities.
(b) For large g, the region of stable stripes is bounded by the Eckhaus (thick green) and
CR instabilities. These instability boundaries cross around g = 2 × 104, eliminating the
region of stable stripes. The region of stable stripes is hatched.

provides useful information for numerical simulations of the PDEs in large domains.

3.5.1 No-slip boundary conditions

Figure 3.12 represents the region of stable stripes for model 2 in the (g, q/
√
μ) plane for

μ = 0.1. We choose q/
√
μ as the coordinate for ease of comparison between different

values of μ and with this choice, parabolas in the (q, μ) plane become a single value of

q
√
μ. Figure 3.16(a) shows the stability diagram for small g, where the region of stable

stripes is bounded from above by the Eckhaus instability for g < 0.574 and by the SVI for

g > 0.574, and by the zigzag instability from below. Figure 3.12(b) shows how for large g,

the region of stable stripes is bounded by the CR instability from above and by the Eckhaus

instability from below. There are no stable stripes for g � 2 × 104. Figure 3.13 shows

the location of the CR instability for μ = 0.01, 0.001 and 0.0001. The upper bound on

g, beyond which there are no stable stripes, initially decreases with μ and then increases.

The behaviour of model 1 with c2 = 2, Pr = 1 is qualitatively the same.
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Figure 3.13: Stability diagrams in (g, q/
√
μ) plane for model 2 with γ = 2.5. (a)

μ = 0.01, (b) μ = 0.001 and (c) μ = 0.0001. In all three cases CR instability reduces the
region of stable stripes which is hatched.

3.5.2 Stress-free boundary conditions

Figure 3.14 presents stability diagrams for model 1 with c = 0 (stress-free boundary

conditions), for μ = 0.1 and μ = 0.01. The SV and the OSV instabilities bound the region

of stable rolls from above and below and the CR instability makes the upper bound on

gm. Stable stripes exist only for small gm and the upper bound on gm is further reduced

with μ.
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Figure 3.14: Stability diagrams in (gm, q/
√
μ) plane with c = 0 (stress-free boundary

conditions), Pr = 1 and γ = 2.5. (a) μ = 0.1 and for large gm: stable stripes are completely
eliminated when gm � 130. (b) μ = 0.01 and for small gm. In all three cases, the region of
stable stripes (hatched) is mainly bounded by the OSV, SV and CR instabilities, and the
CR instability makes the upper bound in gm and reduces the region of stable stripes with
μ.

3.6 The effect of Prantl number, Pr

In this section we study the effect of varying Pr, presenting the stability diagrams in the

(1/Pr, q/
√
μ) plane. We choose q/

√
μ as the coordinate for ease of comparison between

different values of μ. For a fixed μ, we show how Pr affects the region of stable stripes.

This choice of coordinates supports to show the relation g = (gm

c2
) 1

Pr .

3.6.1 No-slip boundary conditions

Figure 3.15 represents the region of stable stripes for model 1 in the (1/Pr, q/
√
μ) plane

for μ = 0.1 and μ = 0.001 with c2 = 2 and gm = 50. Figure 3.15(a) shows when μ = 0.1

the region of stable stripes is eliminated when 1/Pr � 800. The upper bound on 1/Pr

beyond which there are no stable stripes initially decreases with μ and then increases.

This stability diagram is similar to the figure 3.12(b) with g = 25 1
Pr = gm/(Pr c2); figure

3.12(b) shows that the region of stable stripes is eliminated when g � 2 × 104.
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Figure 3.15: Stability diagrams in (1/Pr, q/
√
μ) plane for model 1 with gm = 50, c2 = 2

and γ = 2.5. (a) μ = 0.1 (b) μ = 0.001. For small Pr, the region of stable stripes is
bounded by the Eckhaus (thick green) and CR instabilities. These instability boundaries
cross around 1/Pr ≈ 800 in (a) and 1/Pr ≈ 65 in (b), eliminating the region of stable
stripes. The region of stable stripes is hatched. The stability diagrams (a) and (b) are
similar to 3.12(b) and 3.13(b) respectively with 1

Pr = g
25 .

Figure 3.15(a) shows the region of stable stripes and how it is bounded by the CR

instability from above and by the Eckhaus instability from below for μ = 0.001. The

region of stable stripes is completely eliminated when 1/Pr � 65. This stability diagram

is similar to the figure 3.13(b) if we consider g = 25/Pr = gm/(Pr c2).

3.6.2 Stress-free boundary conditions

Figure 3.16 presents stability diagrams for model 1 with c = 0 (stress-free boundary

conditions), for μ = 0.1. Stable stripes exist only for large Pr; the SV and the OSV

instabilities bound the region of stable rolls from above and below and the CR instability

makes the upper bound on 1/Pr ( upper bound is at 1/Pr ≈ 2.6). The stability diagram

is similar to figure 3.14(b) with 1
Pr = gm

50 . This is due to the fact that for c = 0 the ratio,

gm/Pr is preserved by the instabilities.
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Figure 3.16: Stability diagrams in (1/Pr, q/
√
μ) plane with c = 0 (stress-free boundary

conditions), gm = 50 and γ = 2.5. μ = 0.1 and for small Pr: stable stripes are completely
eliminated when 1/Pr � 2.6. The region of stable stripes (hatched) is mainly bounded by
the OSV, SV and CR instabilities, and the CR instability makes the upper bound in 1/Pr.
The stability diagram is similar to 3.14(b) with 1

Pr = gm

50 .

3.7 The effect of filtering coefficient, γ

The filtering operator, Fγ , is used to reduce the short-wavelength modulations of the mean

flow and we use it to suppress the cross-roll instability. So far we have illustrated results

for γ = 2.5. We now discuss how this filtering coefficient γ affects the cross-roll instability

and hence the region of stable stripes. Figure 3.17 illustrates the stability diagrams of

model 2 in (g, q/
√
μ) for μ = 0.1 and γ = 1.5, 2.5 and 3.5. As shown in the figure, different

choices of γ change the cross- roll instability. Figure 3.17(a) shows the stability diagram

for no-slip boundary conditions. The CR instability makes the upper bound in g to the

region of stable stripes and the upper bound increases for larger γ. When γ = 3.5, cross-

roll instability boundary extends parallel to the SVI boundary for large g and the region of

stable stripes is not eliminated for any g. When γ = 0, the region of stable stripes further

decreases retaining a small region of stable stripes for smaller g. Figure 3.17(b) shows the
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Figure 3.17: Effect of the filtering coefficient γ for cross roll instability. Stability dia-
grams in (g, q/

√
μ) plane for model 2 with μ = 0.1 and for γ = 1.5, 2.5 and 3.5. (a) No-slip

boundary conditions (c2 = 2). The region of stable stripes is mainly bounded by Eck-
haus and cross-roll instabilities. These instability boundaries cross around g ≈ 4.3 × 103,
g ≈ 2×104 and γ = 1.5, 2.5 and 3.5 respectively and no crossing for γ = 3.5, giving larger
regions of stable stripes for higher γ. (b) Stress-free boundary conditions (c = 0). CR
instability makes the upper bound in g to the region of stable stripes and the upper bound
increases for larger γ. The region of stable stripes for γ = 1.5 is hatched.

stability diagram for stress-free boundary conditions. The CR instability makes the upper

bound in g to the region of stable stripes. This upper bound increases for larger γ and

the effect of γ is not significant as that for no-slip boundary conditions.

3.8 Curious behaviour of growth rates

We report here an observation of the curious behaviour of the growth rates of some modes,

which, to the best of our knowledge, has not been previously observed earlier in any model

of the Swift–Hohenberg equation.

In previous sections, we considered the growth rate behaviour for (k, l) close to zero.
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Figure 3.18: Stability diagram for Swift–Hohenberg equation( models 1 and 2 with g =
0) (2.1). The I instability boundary generates positive growth rates for some large k and l
and this instability occurs in regions (a) and (d). is due to the curious behaviour of growth
rates, which is shown in figure 3.19. The region of stable stripes, which is hatched in blue,
is not affected by the I instability. Growth rates as a function of k and l in the regions
indicated by (a)–(d) are given in figure 3.19

However, when a larger range of k and l is considered, we noticed additional instabilities

in the regime where stripes are already unstable. These instabilities occur even in the SHE

and so are not related to presence of the mean-flow. They have not been studied before,

though they are of less interest since they do not bound the region of stable stripes. We

consider them briefly here.

Figure 3.18 shows the stability diagram of model 2 with g = 0, which is same as the

ordinary Swift–Hohenberg equation. The parabolic boundary indicated by I shows the

instability associated with this curious behaviour; it occurs between the Existence and the

Eckhaus boundaries.

Contours of the growth rates of perturbations for selected parameter values in regions

indicated by (a)–(d) in figure 3.18 are shown in figure 3.19. As shown in figure 3.19(a),
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Figure 3.19: Growth rates of perturbations as a function of (k, l) for the Swift–Hohenberg
equation (2.1), with ψ3 replaced by Pα(ψ3). Figures (a) and (b) correspond to points in
the left Eckhaus band, q < 0, whereas (c) and (d) correspond to points in the right Eckhaus
band, q > 0. (a) Stripes are zigzag and Eckhaus unstable, and additional unstable modes
lie approximately in a annulus of unit radius centred at (k, l) = (1 + q, 0). (b) Stripes are
zigzag and Eckhaus unstable. (c) Stripes are Eckhaus unstable. (d) Stripes are Eckhaus
unstable and in addition, an annulus of unit radius centred at (k, l) = (1+q, 0) has positive
real eigenvalues. Thick black: zero contour. Red: positive contour. Dotted line: circle of
unit radius centred at (k, l) = (1 + q, 0).

for a fixed small μ, when q is increased from the left existence boundary (q < 0), modes

approximately in an annulus of unit radius centered at (k, l) = (1+ q, 0) have positive real

eigenvalues in addition to unstable modes for small k and l, corresponding to the Eckhaus
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and zigzag instabilities. This annulus disappears for larger q (in region (b)) leaving only the

Eckhaus and zigzag unstable modes close to (k, l) = (0, 0), as is shown in figure 3.19(b).

This process is in part reversed for q > 0 going towards the right existence boundary.

First are Eckhaus unstable only, close to the Eckhaus boundary (in region (c)) but for

large enough q (in region (d)), the annulus of unstable modes reappears. The behaviour

of growth rates in the right Eckhaus band is illustrated in figure 3.19(c) and 3.19(d).

We use the solutions of PDEs to check whether this curious behaviour is due to our

projection and hence the stability calculations. Interestingly the comparison of the eigen-

values of the Jacobians with the growth rates of relevant modes, which is taken by the

calculations of PDEs, confirms that this curious behaviour is not a result of using the

projection operator Pα in the Swift–Hohenberg equation so that it does occur in the full

equations.

3.9 Concluding remarks

In this chapter we have used the continuation package MATCONT in order to calculate

bifurcation lines corresponding to instabilities that appear due to the mean flow. We

outlined the numerical method and conditions on eigenvalues for each instability. We

confirmed the analytical results in chapter 2 by numerical computations of the eigenvalues

of the stability matrices and these eigenvalues also allowed us to explore short-wavelength

instabilities: cross-roll and the oscillatory instabilities. We extended our study to three

values of c, which controls the boundary conditions: c =
√

2, c = 0 and c = 0.1. The

selection of the value c = 0.1 leads us to understand the transition between the stress-free

to no-slip boundary conditions. We presented contours in perturbation space to illustrate

the eigenvalue behaviour of each instability and combined instabilities.

The interesting oscillatory instability (OI) occurs for small values of c and it arises
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from a Hopf bifurcation at β = 0 in model 1. For this reason, the OI does not appear for

very large g in model 2 in which Hopf bifurcations are excluded. The cross-roll instability,

despite the filtering operator, seems to eliminate a range of stable stripes for c < 1 and

large gm. Therefore the region of stability of stripes is eliminated for small μ and large

enough gm when c < 1.

We illustrated stability diagram in order to understand the effect of the mean flow on

the region of stable stripes, using which we highlighted again that a large value of the

coupling constant to the mean flow significantly affect the region of stable stripes. We also

presented the stability diagrams to show the effect of Pr on the region of stable stripes and

we established again that the relation g = gm/Pr c
2 is preserved. Even for the stress-free

boundary conditions (c = 0), the ratio gm/Pr is preserved by the parameter values of gm

and Pr of model 1.

Finally we discussed the effect of the filtering coefficient on the cross-roll instability.

The region of stable stripes improves for higher values of γ and effect of γ is significant on

cross-roll instability for no-slip boundary conditions.

We now have a complete understanding of the stability diagrams for any given param-

eter of our models of interest. Therefore the results of this work provide useful information

for the choice of parameters for different instability regimes in model 1 and model 2. This

work also justifies using model 2 with large g, since this has been shown to have similar

instability boundaries for the skew-varicose, cross-roll, zigzag and Eckhaus as to model 1.

We finally comment on the implications of our analysis on the direct numerical sim-

ulations of PDEs in large domains. The most striking signature of the inclusion of a

mean-flow is the existence of the skew-varicose instability, which can play an important

role in the formation of the spiral defect chaos or defect chaos [6, 47]. Hence the improved

understanding of the stability of stripes in this work provides a foundation for numerical
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simulations of spiral defect chaos and defect chaos. The SDC state exists inside the Busse

balloon, where convection rolls are stable [38]. We suspect that the defect chaos (DC)

state also exists due to the cross-roll and skew-varicose instabilities. Thus we intend in

next chapter to relate the SDC and defect chaotic states present in these GSH models

to calculations carried out using Rayleigh–Bénard convection with stress-free [38] and no-

slip [11] boundary conditions, using the stability boundaries computed in this chapter to

improve the understanding of why SDC occurs in convection.
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Chapter 4

Bifurcation analysis of the Skew-Varicose in-

stability

4.1 Introduction

In this chapter we focus on a detailed mathematical study, combining numerical pathfollow-

ing and bifurcation analysis, of the nonlinear development of the skew-varicose instability.

The organization of the bifurcations enables us to understand the existence of different

patterns. A possible approach to gain insight in the transitions from stable stripes to

stripes that are unstable to the skew-varicose instability is by characterizing the nonlinear

evolution of the modes that are responsible for the skew-varicose instability through a sys-

tems of ODEs. To aid this investigation, we reduce the infinite-dimensional PDEs (recall

models 1 and 2, repeated in (4.2-4.4)) to a finite-dimensional set of ODEs by considering

a particular set of modes of the system: ψ and ω are expanded using the selected set of

modes and nonlinear differential equations for the amplitudes of the eigenfunctions are

derived. These systems are investigated through numerical computations and theoretical

analysis in this chapter in order to perform a bifurcation analysis for the skew-varicose

instability.

Busse et al. in 1992 [95] suggested that a significant part of the nonlinear dynamics
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of the convection layer can be understood in terms of reduced systems of a few coupled

amplitude equations. They derived a finite dimensional system of differential equations,

the Busse system, by doing a Galerkin truncation of the original fluid equations. The

ODEs are for the coefficients in a Fourier type expansion of velocity and temperature fields

in Rayleigh–Bénard convection assuming stress free boundary conditions and restricting

wave vectors to a grid. They have selected wavenumbers from a grid with the domain

size L = 2 × 2π, and sufficiently close to the critical wavenumber π/
√

2; wave vectors

ki = (π
2 + πi

4 ,
π
2 ) for i = −1, 0, 1 and derived the system:

M−1
˙C−1 = (R −R−1)C−1 − C−1

1∑
i=−1

α−1iC
2
i − α−14C

2
0C1 − q−1C0G

M0Ċ0 = (R −R0)C0 − C0

1∑
i=−1

α0iC
2
i − α04C−1C0C1 − q0C−1G− q1C1G

M1Ċ1 = (R −R1)C1 − C1

1∑
i=−1

α1iC
2
i − α14C

2
0C−1 − q4C0G

Ġ = −π
2

16
G+

3π4

16
C−1C0 +

5π4

16
C0C1

(4.1)

where Ri = (π2 + |ki|2)3/|ki|2, Mi = (1 + Pr)(π2 + |ki|2)2/|ki|2 and other coefficients

depend on R and Pr. The three variables Ci, (i = −1, 0, 1), correspond to amplitudes of

basic wave components whereas G is responsible for the meanflow. Although a proof is

missing they considered the real system, observing the numerical results; different initial

conditions indicate that the arguments of complex solutions tend to be real; real subspace

is invariant. The Busse system is reminiscent of the Lorenz model [96], but considers a

three dimensional instead of two dimensional fluid motion. Like the Lorenz model, the

Busse system is obtained as a truncation to few modes; it also involves the introduction
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of a specific aspect ratio for the periodicity interval in the fluid layer and the system

has Z2 × Z2 symmetry. The Busse system was derived to study the spatio-temporal

structure evolving from the onset of the skew-varicose instability; they observed that some

characteristic spatio-temporal structures appear in numerical simulations and the way in

which the transitions to chaos occur depends on the set up.

Nguyen et al. in 2005 [97] carried out a thorough investigation of the Busse system

relevant to the study of initial and secondary instabilities of convection patterns in RBC.

Their study of global bifurcation showed how homoclinic and heteroclinic bifurcations

organize the bifurcation diagram in the parameter plane of Rayleigh number and Prandtl

number. Also they extended the Busse system including one extra mode, k2 = (0, 3π/4);

the reason for this selection is not given. They found that much of the bifurcation scenarios

are the same in both systems [97]. We note here that this selection is not supported as

regards the skew-varicose behavior, but for cross-roll instability; they have selected modes

with large perturbation wave vectors and hence their analysis is only valid for short wave

length instabilities such as cross-roll.

The bifurcation analysis for the Eckhaus instability was presented first by Tsiveriotis &

Brown in 1989 [98]. They presented the bifurcation diagram corresponding to the Eckhaus

stability curve, constructed for the one-dimensional Swift–Hohenberg equation in a finite

domain. The complete bifurcation analysis for the Eckhaus instability has been carried out

by Tuckerman and Barkley in 1990 [99], and they presented the bifurcation diagram from

the work based on the Ginzburg–Landau equation in a finite domain with either stress

free or periodic boundary conditions. Through a centre manifold reduction, they showed

that all restabilizing bifurcations of the pure-mode states are subcritical, and hence that

the Eckhaus instability is itself subcritical. They also confirmed the length-independent

downwards shift of the Eckhaus parabola for a finite geometry.
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We have carried out a truncation of model 1, retaining only a few modes and giving a

system which has the same structure of the Busse system. We find that this system does

not accurately describe the transitions of stable stripes to the skew-varicose stripes: the

truncated system predicts that the bifurcation is supercritical, whereas our expectation

from the numerical work in chapter 3 and from the results of [99] is that the bifurcation

should be subcritical. However, we extend the system by incorporating more relevant

modes, resulting in a larger system in which the skew-varicose bifurcation is subcritical.

We start in section 2 with a description of the derivation of the truncated systems of

equations using two sets of modes (the smaller set having three complex modes, the larger

having five). In next section we perform a centre manifold reduction at the skew-varicose

bifurcation point in order to check the supercriticality or the subcriticality of the pitchfork

bifurcation. We discuss the numerical method used to solve the truncated systems in

section 4 and illustrate a case study in section 5, in which we present bifurcation diagram

for the transition of the stripes to the skew-varicose phenomena. In section 6 we focus on

the agreement between the PDE and the two systems of ODEs. This chapter closes with

some concluding remarks in section 7.

4.2 Derivation of two systems of Ordinary Differential Equa-

tions

We begin with restating the two generalized Swift–Hohenberg models. Model 1 is:

∂ψ

∂t
+ (U · ∇)ψ =

[
μ− (1 + ∇2)2

]
ψ −Pα

(
ψ3
)
, (4.2)[

∂

∂t
− Pr(∇2 − c2)

]
ω = −gmFγ

[∇(∇2ψ) ×∇ψ] · ẑ. (4.3)
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Figure 4.1: Mode selection. 3-mode truncation: Set of modes with wave vectors
(1+q+nk,nl) for ψ and (nk, nl) for ω where n = −1, 0, 1. 5-mode truncation: Set of
modes with wave vectors (1+ q+nk, nl) for ψ and (nk, nl) for ω where n = −2,−1, 0, 1, 2.

In model 2, the equation for ψ is same as equation (4.2) but the equation for vorticity is

ω = −gFγ

[∇(∇2ψ) ×∇ψ] · ẑ. (4.4)

The purpose of this section is to describe how we obtain the systems of coupled ODEs

from these models. In order to proceed we select a particular set of modes, eikn·x for the

field ψ and eirn·x for the field ω, where n = (n, n), kn = (1+ q+nk, nl) and rn = (nk, nl).

Here n is an integer and k and l are small wave vector components along and perpendicular

to stripes respectively. Having chosen the modes, we interact them with the stripe solution,

which incorporates the wave vectors ±(1 + q, 0), and expand ψ and ω:
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ψ = A(t)ei(1+q,0)·x +
∑
n�=0

An(t)eikn·x + c.c.

ω =
∑
n�=0

Bn(t)eirn·x (4.5)

provided A(t), An(t) and Bn(t) are complex amplitudes.

The summation here could be infinite in principle. We need to truncate expression

(4.5) in order to get a finite set of ODEs which involves the eigenfunctions. When this set

of ODEs are small, the bifurcation analysis becomes easier. On the other hand the details

of bifurcations will be more accurate with more modes.

To obtain a finite dimensional set of equations, we chose two sets of modes (one with

three modes, one with five), illustrated in figure 4.1. For the 3-mode truncation we consider

only the modes with wave vectors indicated in red, whereas for the 5-mode truncation, we

extend this set by including the modes that are indicated in blue. In chapter 2, we have

shown that the modes k0 and −k0 associate with the stripe solution and we incorporated

modes ±k1 and ±k−1 for linear stability analysis (±k2 and ±k−2 are higher order modes).

4.2.1 The 3-mode truncation

We start by deriving the truncated system by taking the modes with wave vectors kn and

rn for n ∈ {(−1,−1), (0, 0), (1, 1)} and considering the equations corresponding to these

terms. The three mode truncation amounts to

ψ = A0(t)ei(1+q,0)·x +A1(t)ei(1+q+k,l)·x +A−1(t)ei(1+q−k,−l)·x + Ā0(t)ei(−1−q,0)·x

+ Ā1(t)ei(−1−q−k,−l)·x + ¯A−1(t)ei(−1−q+k,+l)·x (4.6)

ω = B1(t)ei(k,l)·x + B̄1(t)ei(−k,−l)·x. (4.7)
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Observe that Ān is the complex conjugate of An, B0 = 0 and the convention B−1 = B̄1 has

been used. Substituting these expressions for ψ and ω into model PDEs and truncating

to the modes that are used in the expansion of ψ and ω yields the coupled ODEs for the

amplitudes. At this point we introduce some notations to ease the illustration.

rn = μ− [1 − ((1 + q + nk)2 + (nl)2)]2, for n = −1, 0, 1

λ± = (1 + q)l((l2 + k2) ± 2(1 + q)k)

δ = l(1 + q)/(l2 + k2),

and ⎛⎜⎜⎜⎜⎜⎝
C0

C1

C−1

⎞⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎣
1 2 2

2 1 2

2 2 1

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
|A0|2

|A1|2

|A−1|2

⎞⎟⎟⎟⎟⎟⎠
We first examine each term in the equation (4.2) and consider only the coefficients of

each mode, ei(1+q+nk,nl)·x for n = −1, 0, 1 and their complex conjugates. Since the

vertical vorticity ω(x, y, t) is −∇2ζ, we have ζ = 1
k2+l2

(
B1e

i(k,l)·x + c.c.
)

and so U =

i
k2+l2

(
B1e

i(k,l)·x − B̄1(t)e−i(k,l)·x) (l,−k). Therefore we have, after truncation,

(U · ∇)ψ = −δ(B1A−1 − B̄1A1)eik0·x − δ(B1A0)eik1·x + δ(B̄1A0)eik−1·x + c.c.,
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and

(
μ− (1 + ∇2)2

)
ψ = r0A0e

ik0·x + r1A1e
ik1·x + r−1A−1e

ik−1·x + c.c.,

ψ3 = (3A0C0 + 6A1A−1Ā0)eik0·x + (3A1C1 + 3A2
0Ā−1)eik1·x

+ (3A−1C−1 + 3A2
0Ā1)eik−1·x + c.c..

Combining these we obtain three coupled ODEs for amplitudes An for n = −1, 0, 1:

Ȧ0 = (r0 − 3C0)A0 − 6A1A−1Ā0 + δ(B1A−1 − B̄1A1), (4.8)

Ȧ1 = (r1 − 3C1)A1 − 3A2
0Ā−1 + δ(B1A0), (4.9)

Ȧ−1 = (r−1 − 3C−1)A−1 − 3A2
0Ā1 − δ(B̄1A0). (4.10)

Next we examine each term in equations (4.3) and (4.4) and consider only the coefficients

of each mode, ei(nk,nl)·x = eirn·x for n = −1, 0, 1. Note that computations yield:

[∇(∇2ψ) ×∇ψ] · ẑ = (λ+A1Ā0 − λ−Ā−1A0)eir1·x + (λ+Ā1A0 − λ−A−1Ā0)eir−1·x.

Hence the equation (4.3) follows to differential equation for B1,

Ḃ1 = −Pr(c2 + k2 + l2)B1 − gmFγ(λ+A1Ā0 − λ−Ā−1A0), (4.11)

where Fγ = e−γ2(k2+l2). Therefore the reduced system for model 1, (4.2)-(4.3), is given

by the system of differential equations (4.8) - (4.11). For model 2, equation (4.4) gives an

algebraic relation for B1,

B1 = −gFγ(λ+A1Ā0 − λ−Ā−1A0). (4.12)
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Substituting this into the ODEs (4.8)-(4.10) results in the following system for model 2:

Ȧ0 = (r0 − [3|A0|2 + (6 − P )|A1|2 + (6 −Q)|A−1|2])A0 − SA1A−1Ā0 (4.13)

Ȧ1 = (r1 − [(6 + P )|A0|2 + 6|A1|2 + 3|A−1|2])A1 − (3 −Q)A2
0Ā−1 (4.14)

Ȧ−1 = (r−1 − [(6 +Q)|A0|2 + 3|A1|2 + 6|A−1|2])A−1 − (3 − P )A2
0Ā1, (4.15)

where P = gδλ+Fγ , Q = gδλ−Fγ and S = 2(3 + g(l(1 + q))2Fγ).

4.2.2 The 5-mode truncation

We now derive the truncated system by putting the modes with wave vectors kn and rn for

n ∈ {(−2,−2), (−1,−1), (0, 0), (1, 1), (2, 2)} and considering the equations corresponding

to these terms. Five modes truncation amounts to setting

ψ =
2∑

n=−2

An(t)ei(1+q+nk,nl)·x + c.c.,

ω =
2∑

n=−2

Bn(t)ei(nk,nl)·x.

These expressions involve all the modes that appear in the 3-mode truncation with the

addition of 2 modes, as indicated in blue in figure 4.1. Therefore the resulting system

includes all the terms of the systems we derived with 3-mode truncation with additional

terms corresponding to the extra modes. We now examine each term in equation (4.2) and

consider only the coefficients of each mode, ei(1+q+nk,nl)·x = eikn·x for n = −2,−1, 0, 1, 2.
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At this point we introduce some notation:

rn = μ− [1 − ((1 + q + nk)2 + (nl)2)]2, for n = −2, 2

η± = (1 + q)l(3(l2 + k2) ± 2(1 + q)k)

υ± = (1 + q)l((l2 + k2) ± (1 + q)k),

ν± =
2(1 + q ± k)

1 + q

and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0

D1

D−1

D2

D−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 2 2

2 1 2 2 2

2 2 1 2 2

2 2 2 1 2

2 2 2 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|A0|2

|A1|2

|A−1|2

|A2|2

|A−2|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Following the 3-mode derivation, we confine ourselves to illustrating only the additional

terms that result from incorporating the two extra modes. Note the extensions in ζ :

1
4(k2+l2)

(
B2e

i(2k,2l)·x + c.c.
)

which results in U : i
2(k2+l2)

(
B2e

i(2k,2l)·x − B̄2(t)e−i(2k,2l)·x) (l,−k).

Hence

(U · ∇)ψ =
δ

2

[
(B̄2A2 −B2A−2)eik0·x − (2B̄1A2 −B2A−1)eik1·x + (2B1A−2 − B̄2A1)eik−1·x

−(A0B2 + ν+A1B1)eik2·x + (A0B̄2 + ν−A−1B̄−1)eik−2·x
]
.
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Further, the extensions of terms
(
μ− (1 + ∇2)2

)
ψ : r2A2e

ik2·x + r−2A−2e
ik−2·x and ψ3,

can be combined to compute ODEs for the amplitudes An, (n = −2, . . . , 2):

Ȧ0 = (r0 − 3D0)A0 − 6
[
Ā0(A−1A1 +A2A−2) + Ā−1A1A−2 +A−1Ā1A2

]− 3
[
A2

1Ā2 +A2
−1Ā−2

]
+
δ

2
[
2(B1A−1 − B̄1A1) + (B2A−2 − B̄2A2)

]
,

Ȧ1 = (r1 − 3D1)A1 − 6
[
A0(A−1Ā−2 +A2Ā1) +A2(A−1Ā0 +A−2Ā−1)

]− 3A2
0Ā−1

+
δ

2
[
2(B1A0 − B̄1A2) +B2A−1

]
,

˙A−1 = (r−1 − 3D−1)A−1 − 6
[
A0(A1Ā2 +A−2Ā−1) +A−2(A1Ā0 +A2Ā1)

]− 3A2
0Ā1

− δ

2
[
2(B̄1A0 −B1A−2) + B̄2A1

]
,

Ȧ2 = (r2 − 3D2)A2 − 6A1(A0Ā−1 +A−1Ā−2) − 3A2
0Ā−2 − 3A2

1Ā0 +
δ

2
[B2A0 + ν+B1A1] ,

˙A−2 = (r−2 − 3D−2)A−2 − 6A−1(A0Ā1 +A1Ā2) − 3A2
0Ā2 − 3A2

−1Ā0 +
δ

2
[
B̄2A0 + ν−B̄1A−1

]
.

(4.16)

Next we examine each of the term in equation (4.3) and (4.4) and consider only the

coefficients of each mode, ei(nk,nl)·x for n = 1, 2. Note that the extension yields

[∇(∇2ψ) ×∇ψ] · ẑ = (η+Ā1A2 − η−A−1Ā−2)eir1·x + 8(lk(1 + q)2A1Ā−1

+ υ+A0Ā2 − υ−A0Ā−2)eir2·x.

Substituting this into model 1 results in coupled ODEs for amplitudes B1 and B2:

Ḃ1 = −Pr(c2 + k2 + l2)B1 − gmFγ(λ+A1Ā0 − λ−Ā−1A0 + η+Ā1A2 − η−A−1Ā−2),

Ḃ2 = −Pr(c2 + 4(k2 + l2))B2 − 8gmFγ(υ+Ā0A2 − υ−A0
¯A−2 + k(1 + q)Ā1

¯A−1). (4.17)
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Therefore the reduced system for model 1 is given by the system of ODEs (4.16) and

(4.17). On the other hand, model 2 gives an algebraic relations for eigenfunctions B1 and

B2:

B1 = −gmFγ(λ+A1Ā0 − λ−Ā−1A0 + η+Ā1A2 − η−A−1Ā−2)

B2 = −8gmFγ(υ+Ā0A2 − υ−A0
¯A−2 + k(1 + q)Ā1

¯A−1). (4.18)

Therefore the reduced system for model 2 is the system of ODEs (4.16), with the algebraic

relations (4.18).

4.3 Theoretical Analysis

We treat all the amplitudes to be real and to consider the real system; real system is

an invariant subspace. Due to the translational invariance of the system (with X and Y

translations), the amplitudes, A0 and A1 are real. Applying Ā0 = A0 and Ā1 = A1 to

equations (4.8-4.10), we get ¯A−1 = A−1 and hence real system is an invariant subspace.

This finally results in equations with four and three real variables in 3-mode truncation

of model 1 and 2 respectively, whereas 5-mode truncation yields equations with seven and

five real variables for model 1 and 2 respectively. The system of four ODEs (4.8)- (4.11)

with real variables in the 3-mode truncation has the same structure as the Busse system.

However, they restricted to 3 selected wave vectors, while, in our system, k and l can be

varied in order to choose the most relevant wave vectors. Moreover, the coefficients in the

Busse system are different from ours.

We restrict our theoretical analysis to model 2; model 1 is investigated numerically.

We start our analysis with the system of 3 coupled ODEs (3-mode truncation of model 2)
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that describes the evolution in time of the amplitudes:

Ȧ0 = (r0 − [3A2
0 + (6 − P )A2

1 + (6 −Q)A2
−1])A0 −RA1A−1A0

Ȧ1 = (r1 − [(6 + P )A2
0 + 6A2

1 + 3A2
−1])A1 − (3 −Q)A2

0A−1

˙A−1 = (r−1 − [(6 +Q)A2
0 + 3A2

1 + 6A2
−1])A−1 − (3 − P )A2

0A1.

(4.19)

We also consider the system of 5 coupled ODEs (5-mode truncation of model 2):

Ȧ0 = (r0 − 3D0)A0 − 6 [A0(A−1A1 +A2A−2) +A−1A1(A−2 +A2)] − 3
[
A2

1A2 +A2
−1A−2

]
+
δ

2
[2B1(A−1 −A1) +B2(A−2 −A2)]

Ȧ1 = (r1 − 3D1)A1 − 6 [A0(A1A−2 +A2A1) +A2A−1(A0 +A−2)] − 3A2
0A−1

+
δ

2
[2B1(A0 −A2) +B2A−1]

˙A−1 = (r−1 − 3D−1)A−1 − 6 [A0(A1A2 +A−2A−1) +A−2A1(A0 +A2)] − 3A2
0A1

− δ

2
[2B1(A0 −A−2) +B2A1]

Ȧ2 = (r2 − 3D2)A2 − 6A1A−1(A0 +A−2) − 3A0(A0A−2 +A2
1) +

δ

2
[B2A0 + ν+B1A1]

˙A−2 = (r−2 − 3D−2)A−2 − 6A−1A1(A0 +A2) − 3A0(A0A2 +A2
−1) +

δ

2
[B2A0 + ν−B1A−1]

B1 = −gmFγ(A0(λ+A1 − λ−A−1) + η+A1A2 − η−A−1A−2)

B2 = −8gmFγ(A0(υ+A2 − υ−A−2) + k(1 + q)A1A−1).
(4.20)

Observe that in both truncations the origin is always an equilibrium, which is stable for

μ sufficiently negative. We note that if we ignore nonlinear terms in our systems of ODEs

(apart from −A3
0 in the Ȧ0), the linearized equations are in agreement with the linear

theory established in chapter 2 for the exact stripe solution. Pitchfork bifurcations lead

first to equilibria corresponding to stripe patterns; secondary pitchfork bifurcations lead

to equilibia corresponding to patterns with less symmetry: these secondary bifurcations
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correspond to the skew-varicose instability.

Our systems have two equilibia correspond to the stripe pattern on the A0 axis with

coordinate A0 = ±√r0
3 (recall r0 = μ− (1 − (1 + q)2)2). In chapter 2, we performed the

linear stability analysis of stripes and established the regime where stripes become unstable

to the skew-varicose instability. The work following aims to find nearby nonlinear solutions

at this transition. We present our results using bifurcation diagrams. The theoretical

approach towards the understanding of this bifurcation is by centre Manifold Reduction

(CMR).

4.3.1 Centre Manifold Reduction

It is important to note that the new branches of solutions emerge from the stripe equilib-

rium in a continuous fashion with μ. Close to the secondary bifurcation point, the distance

from the original equilibrium to the new solution can be made arbitrarily small. There-

fore these small amplitude solutions are contained in a centre manifold, which describes

bifurcations at the equilibrium point.

Our analysis first follows for the system (4.19), where the Jacobian J1 evaluated at the

equilibrium point (
√

r0
3 , 0, 0) takes the form

⎛⎜⎜⎜⎜⎜⎜⎝
−2r0 0 0

0

0

r1 − (6+P )r0

3 − (3−Q)r0

3

− (3−P )r0

3 r−1 − (6+Q)r0

3

⎫⎪⎬⎪⎭A

⎞⎟⎟⎟⎟⎟⎟⎠
Given the block structure of this matrix, we know that −2r0 is an eigenvalue, which is

always negative for the stripe solution. Hence the equilibrium is stable if the trace of

A, T (A), is negative and the determinant, D(A), is positive. The other two eigenvalues

are σ± = T (A)±
√

T (A)2−4D(A)

2 . For real eigenvalues, σ+ will be the first to cross through
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zero, resulting at the bifurcation point with a one-dimensional centre manifold which is

tangential at the equilibrium point to the space spanned by the eigenvector corresponding

to the zero eigenvalue. This eigenvector corresponding to σ+ can be obtained with the

zero determinant: ⎛⎜⎜⎜⎜⎜⎝
0

−a1/a2

1

⎞⎟⎟⎟⎟⎟⎠
where a1 = − (3−Q)r0

3 and a2 = r1 − (6+P )r0

3 . Hence a linear approximation of the centre

manifold is ,

A1 = u1A−1 with u1 = −a1/a2 =
(Q− 3)r0

(P + 6)r0 − 3r1

A0 =
√
r0/3 (4.21)

It follows that the nonlinear centre manifold can be represented locally as a function

of A−1. We write,

A1 = u1A−1 + u2A
2
−1 + u3A

3
−1 +· · · = f1(A−1)

and

A0 =
√
r0/3 + w2A

2
−1 + w3A

3
−1 +· · · = f2(A−1),

where ui, wi ∈ R, i = 2, 3,· · · are to be determined. To identify these constants we

perform a power series expansion in powers of A−1. We write Ȧ1 = df1(A−1)
dA−1

Ȧ−1 and

Ȧ0 = df2(A−1)
dA−1

Ȧ−1, and then substitute the values of Ȧ−1, Ȧ0 and Ȧ1 from (4.19) into

these two equations. Finally, we consider coefficients of each power of A−1. This pro-

cedure results in an approximation to the centre manifold which is valid close to the
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equilibrium point and close to the bifurcation point. We find fourth order approximations

A1 = u1A−1+u3A
3−1+... and A0 =

√
r0/3+w2A

2−1+w4A
4−1+· · · which serve to determine

Ȧ−1:

Ȧ−1 = a1A−1 + a3A
3
−1 +· · · , (4.22)

where a1 = σ+.

This is the normal form of the pitchfork bifurcation and when σ+ < 0, the equilibrium

(
√

r0
3 , 0, 0) is stable. When σ+ is increases through zero, there is an unstable equilibrium at

A−1 = 0, which is the equilibrium point (A0, A1, A−1) ≡ (
√

r0
3 , 0, 0) and two equilibria at

A−1 = ±
√

σ+

−a3
. These equilibria are stable if a3 < 0 (pitchfork bifurcation is supercritical),

unstable otherwise. We illustrate this in section 5, where we present a case study. We

investigate the value of a3 later in this section.

Next, our analysis follows for the system (4.20), where the Jacobian (J2) evaluated at

the equilibrium point (
√

r0
3 , 0, 0, 0, 0) takes the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2r0 0 0 0 0

0

0

r1 − (6+P )r0

3 − (3−Q)r0

3

− (3−P )r0

3 r−1 − (6+Q)r0

3

⎫⎪⎬⎪⎭A
0 0

0 0

0

0

0 0

0 0

r2 − (6+U)r0

3 − (3−V )r0

3

− (3−U)r0

3 r−2 − (6+V )r0

3

⎫⎪⎬⎪⎭B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Here U = gδυ+Fγ and V = gδυ−Fγ . Given the block structure of this matrix, we observe

that three eigenvalues are −2r0 and σ±, which are the eigenvalues of J1. The other two

eigenvalues, are the eigenvalues of matrix B. Despite the two new eigenvalues, we focus

on the case where σ+ first becomes zero, resulting a one-dimensional centre manifold

which is tangential at the equilibrium point to the space spanned by the eigenvector
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corresponding to the eigenvalue with zero real part, σ+. Hence the centre manifold at

the linear approximation is , A1 = u1A−1 with A0 =
√
r0/3 and A2 = A−2 = 0, where

u1 is given by (4.21). Following the outlined procedure for centre manifold reduction in

system (4.19), we find fourth order approximations, A1 = u1A−1 + uJ2
3 A

3
−1 + ..., A0 =√

r0/3+wJ2
2 A

2−1 +wJ2
4 A

4−1 + ..., A2 = v2A
2−1 + v4A

4−1 + ... and A−2 = z2A
2−1 + z4A

4−1 + ...,

where all the coefficients are known at this point. These approximations serve to determine

Ȧ−1 in 4.20:

Ȧ−1 = b1A−1 + b3A
3
−1 +· · · , (4.23)

where b1 = σ+.

This is the normal form of the pitchfork bifurcation and when real part of σ+ < 0,

the equilibrium (
√

r0
3 , 0, 0, 0, 0) is stable. When σ+ is increases through zero, there is an

unstable equilibrium at A−1 = 0, which is the equilibrium point (A−2, A−1, A0, A1, A2) =

(0, 0,
√

r0
3 , 0, 0) and two equilibria at A−1 = ±

√
−σ+

b3
. These equilibria are unstable if

b3 > 0 (pitchfork bifurcation is subcritical), stable otherwise. We illustrate this in section

5, where we present a case study.

The expressions for a3 and b3 in terms of system parameters are enormous. Therefore

the theoretical derivation of their signs and limiting values are not straightforward. There-

fore we numerically determine how the signs of a3 and b3 change with system parameters.

Figure 4.2 depicts the values of a3 and b3 on the SVI points for parameter g = 20 and

k = l = 2π/L = 0.05, where the domain size L = 40 × 2π. We first numerically compute

the skew-varicose instability points, (qSV , μSV ), for g = 20 and k = l = 0.05 (the SVI

boundary for these parameters is illustrated in figure 4.6). We then put these values into

the derivations of CMR in order to obtain a3 and b3. Along the SVI bifurcation points, a3

is negative (figure 4.2(a)) whereas b3 is positive (figure 4.2(b)). When q is small b3 tends

to the value 3, while a3 tends to zero.
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Figure 4.3 illustrates how the values of a3 and b3 on the SVI points behave for different

domain size, L, with g = 20 and q = 0.1. We first numerically compute the skew-varicose

instability points, μSV , changing k (changing the domain size L) with k = l, for g = 20.

This is illustrated in figure 4.3(a). We then put these values into the derivations of CMR

in order to obtain a3 and b3. At the SV bifurcation points in large domains, a3 is negative

(figure 4.3(b)) and tends to −3 for infinite domain (both k and l tends to zero ). However,

b3 tends to approximately zero in infinite domain as shown in figure 4.3(c).

Figure 4.4 illustrates how the values of a3 and b3 at the SVI bifurcation depend on g for

μ = 0.1. Figure 4.4(a) shows the numerically computed skew-varicose instability points,

qSV , for μ = 0.1 with k = l = 0.05 (denoted in black dotted curve) and k and l → 0

(denoted in red dotted curve). We put parameter values along these two curves into the

derivations of CMR in order to obtain a3 and b3. When k and l → 0, a3 is approximately

−3 ( figure 4.4(b)) and b3 is approximately 0. However, when k = l = 0.05, as g becomes

large, a3 changes the sign from negative to positive (figure 4.4(c)) whereas b3 changes the

sign from positive to negative (figure 4.4(d)). This strange behavior is due to the selection

of k and l; by selecting k = l = 0.05, we have fix θ = tan−1(k/l) = π/4. However SVI

emerges with different angles and for large g, the maximum eigenvalue occurs with large

angle θ � π/4 and for small g , it occurs with small angle θ � π/4. Moreover, θ of

the maximum eigenvalue changes when instability grows and therefore figures in 4.4 are

accurate only for parameters when g close to 20.

We note the unexpected behaviour of b3; it does not seem to be in agreement with a3 in

any asymptotic limit and also its value tends to zero in infinite domain. This theoretical

analysis does not leave us with a firm conclusion about the supercriticality of the SVI

bifurcation: it is supercritical for the 3-mode truncation and subcritical for the 5-mode

truncation. This suggests that the extension of the system by incorporating more modes
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Figure 4.2: Results of CMR along the SVI points calculated for g = 20 with k = l =
2π/L = 0.05 (SVI boundary for these parameters is indicated by red dotted curve in figure
4.6). (a) a3 and (b) b3 with respect to the wavenumber are shown for the parameter values
along these SVI points.

has changed the bifurcation scenario. We present a case study for both scenarios in the

next section, where we also present numerically computed bifurcation diagrams to verify

5-mode truncation gives more insight into the character of the solution at the bifurcation.

4.4 Numerical Methods

In this section we describe the way the bifurcation curves and points in our systems were

found and continued. Various software packages are available to assist in a numerical study

of the differential equations. We used the software package MATCONT [92] for numer-

ical path following of bifurcation curves and for identifying the various codimension-one

bifurcations along them. Equipped with a collection of bordering methods and minimally

extended systems, MATCONT can locate several local and global bifurcations and detect

and continue bifurcations of equilibria (in our systems these are pitchfork bifurcations of

equilibria). We obtain the data of starting points for the continuation by our analyti-
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Figure 4.3: Results of CMR along the SVI points calculated for g = 20 and q = 0.1
with different k = l. (a) Numerically computed points, μ, of the skew-varicose instability,
varying the size of the domain, L. (b) a3 and (c) b3 with respect to k = l = 2π/L are
shown for the parameter values along the red curve in (a).
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Figure 4.4: Results of CMR along the SVI points calculated for μ = 0.1.(a) Numerically
computed points for the skew-varicose instability, in (q, g) plane for different size of the
domain, L: k = l = 2π/L = 0.05 (denoted in black) and k& l → 0 (L → ∞) (denoted in
red) (b) a3 with respect to g is shown for the parameter values along the red curve in (a).
(c) a3 and (d) b3 with respect to g is shown for the parameter values along the black curve
in (a)
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cal investigations. We also examined our results using numerical integration, assisted by

ODE45 package, MATLAB’s standard solver for ODEs. This routine uses a variable step

Runge-Kutta Method to solve differential equations numerically.

4.5 Case study

In this section, we show how the bifurcations organize the bifurcation diagram by combined

numerical and theoretical analysis of a selected set of parameter values and modes. We

fix g = 20. Following the linear investigation in chapter 2 we can find the skew-varicose

boundary. Recall that the skew-varicose instability emerges from (k, l) = (0, 0). However,

in order to consider (k, l) = (0, 0), we need to have an infinite domain. In a finite domain,

for example a square domain with size 20× 2π, (k, l) in the lattice are integer multiples of

0.05. Stripes will be unstable until the maximum eigenvalue becomes zero on a point on the

lattice. This is illustrated in figure 4.5, for the parameter values (q, μ) = (0.1, 0.29652).

For this set of parameters, zero contour of the maximum eigenvalue touches a point in

the lattice, in this case (k, l) = (0.05, 0.05). Therefore, when q = 0.1, stripes are stable

until μ = 0.29652; we encounter that for the parameters q = 0.1 and g = 20, with

(k, l) = (0.05, 0.05), the bifurcation for the skew-varicose instability occurs at μ = 0.29652.

We fix (k, l) = (0.05, 0.05) and when the maximum eigenvalue at this point becomes zero,

we picked the parameter values (q, μ) and induced the skew-varicose boundary in (q, μ)

parameter space, as depicted by the red dotted curve in 4.6. The SVI boundary with this

selection of perturbation wave vector has a downward shift from the original SVI boundary

as expected.

In the following we illustrate results of the nonlinear solutions at the point (g, q, μ) =

(20, 0.1, 0.29652) with (k, l) = (0.05, 0.05).
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Figure 4.5: Contour behavior of the the maximum eigenvalue in the (k, l) plane for
the system parameters q = 0.1, g = 20 and μ = 0.29652 (point (a) in figure 4.5). The
maximum eigenvalue occurs with (k, l) = (0.036, 0.033). The zero contour (denoted in
black) extends through the point (k, l) = (0.05, 0.05). A negative value of the maximum
eigenvalue is indicated by gray contours while positive values of the maximum eigenvalues
are in red.

4.5.1 The 3-mode truncation

In this subsection we describe the analysis for the system parameter values (g, q, μ, k, l) =

(20, 0.1, 0.29652, 0.05, 0.05), using the 3-mode truncation (4.19). The eigenmodes corre-

sponding to A0, A1, A−1 are ei(1.1,0)·x, ei(1.15,0.05)·x and ei(1.05,−0.05)·x respectively. Figure

4.7 shows how the values of σ+ vary along the part of solid line indicated in figure 4.6, close

to the bifurcation point (q, μ) = (0.1, 0.0296519). At the bifurcation point, a3 = −1.73.

Therefore the secondary bifurcation due to the skew-varicose is via a supercritical pitchfork

bifurcation, stable equilibria at A−1 = ±
√

σ+

−a3
. When μ is decreasing, σ+ becomes posi-

tive and the stripe solution becomes unstable. As a consequence, the bifurcating branches

exist only for μ < μsv and are necessarily stable.

We show in figure 4.8 how the computation of equilibria replicates the derivation using

centre manifold reduction. As expected, they agree close to the bifurcation point. The

illustration is for the nonlinear solutions that bifurcate from the primary single mode
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Figure 4.6: Numerical computation (in model 2) of the SV stability boundary in the
(μ, q) plane. For g = 20, the SVI pre-empts the Eckhaus instability for all μ and hence the
region of stable stripes is bounded by the skew-varicose instability curve, SVI. However,
if we fix k = l = 0.05, the new skew-varicose instability curve (red dotted), SV I(k=l=0.05)

extends below the boundary of SV I. The point, (a) = (0.1, 0.29652) on the SV I(k=l=0.05)

is denoted as a red square and we present the eigenvalue behaviour of this point in figure
4.5. The blue curve is for the Eckhaus boundary whereas the green curve is the boundary of
existence of stripes. A vertical line is added to indicate the parameter value q = 0.1. The
dotted and solid portions represent unstable and stable stripe solutions to the skew-varicose
instability, respectively.

solution, A0.

We are now in a position to illustrate the complete bifurcation diagram for the SVI

in the context of this 3-mode truncation. Figure 4.9 shows the numerically computed

bifurcation diagram using the software package, MATCONT. We illustrate the connec-

tion between the primary instability and the skew-varicose instability. The primary and

secondary bifurcations are all supercritical pitchforks. As the primary solution family

emerges from the base solution at μExistence = (1 −K2)2, where K =
√

(1 + q + k)2 + l2,

just after the primary bifurcation point, the states ±A−1, ±A0 and ±A1 bifurcating from
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Figure 4.7: Variation of a1 close to μsv for q = 0.1, g = 20 and k = l = 0.05. The
bifurcation is represented by red point.
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Figure 4.8: Correspondence between numerical computation and derivations of the centre
manifold reduction. Numerically computed mixed mode solution near the bifurcation point,
μ = 0.296519, of the SVI is illustrated in black while the derivation using centre manifold
reduction is in red. Amplitudes of (a) A0 (b) A1 (c) A−1, of the nonlinear solution after
the secondary bifurcation, which is supercritical. The branch extends towards μ < 0.296519
and is stable; it bends back and becomes unstable in a saddle-node bifurcation at μ = 0.217.

non-existence state at μ for which r−1 = 0, r0 = 0 and r1 = 0 respectively and these

values are (μr−1=0, μr0=0, μr1=0) = (0.011025, 0.0441, 0.105625). The members ±A0 and
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Figure 4.9: Bifurcation diagram showing the connection between the primary and sec-
ondary instabilities and the nonlinear solutions of the 3-mode truncation in model 2. Pri-
mary bifurcations (supercritical pitchforks), occur at points (μr−1=0, μr−1=0, μr−1=0) =
(0.011025, 0.0441, 0.105625) indicated in green, from which primary single-mode solutions
(±A−1, ±A0, ±A1) bifurcate with the stability properties inherited from the trivial solu-
tion. The wavenumber, K, of each branch is (1.0512, 1.1, 1.1510). The square represents
the secondary bifurcation point (the SVI at μ = 0.296519) on the primary A0 branch at
which point the branch is restabilised. The stable mixed solution bifurcating at this point
is denoted in blue, showing the amplitude variation of A0 ±

√
A2

1 +A2−1. These stable
branches bend back and become unstable at saddle-node bifurcation points indicated in red.
Solid and dashed curves denote stable and unstable branches, respectively.

±A1 are unstable while ±A−1 is stable. The corresponding wavenumbers for A−1, A0

and A1 are K = 1.0512, 1.1 and 1.1510 respectively. Secondary bifurcation points, due

to the SVI, appear from the primary A0 solution at the critical values are represented
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by a red square. At this secondary bifurcation the primary solutions regain stability; in

other words, secondary bifurcations restabilize the parent branch. The locus of secondary

bifurcation points is plotted as a red dotted curve (falling just below the original SVI

boundary) in Fig. 4.6. Numerical computations show the bifurcation due to the SVI

is supercritical (confirming the centre manifold calculations) and as a consequence, this

mixed-mode branch exists for μ < μSV Ik=l=0.05
and is necessarily stable. The bending back

of the unstable branch at a saddle-node bifurcation is also illustrated.

4.5.2 The 5-mode truncation

In this subsection we describe the analysis for the same parameter values (g = 20,

k = l = 0.05 and q = 0.1), using the five-mode system 4.20. Reconsider the deriva-

tion using centre manifold reduction for this system, where the eigenmodes correspond-

ing to A0, A1, A−1, A2 and A−2 are ei(1.1,0)·x, ei(1.15,0.05)·x, ei(1.05,−0.05)·x, ei(1.2,−0.1)·x and

ei(1,−0.1)·x respectively. We presented in figure 4.7 how the values of σ+ vary along the part

of solid line indicated in figure 4.6, close to the bifurcation point (q, μ) = (0.1, 0.0296519).

At the bifurcation point, b3 ≈ 21. Therefore the secondary bifurcation due to the skew-

varicose is via a subcritical pitchfork bifurcation, leading to unstable equilibria with

A−1 = ±
√

σ+

−b3
.

When μ is decreasing, σ+ becomes positive at the bifurcation point whereas b3 is posi-

tive, verifying the subcriticality. As a consequence, the branch exists only for μ > μsv and

is necessarily unstable. We show in figure 4.10 how the computation of equilibrium points

replicates the derivation using centre manifold reduction: these agree close enough to the

bifurcation point as expected. The illustration is for the nonlinear solutions that bifurcate

from the primary single mode solution, A0, in subcritical manner. The illustration of

amplitudes of A0, A1, A−1, A−2 and A2 is for the nonlinear solutions that bifurcate from
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Figure 4.10: Correspondence between numerically computated equilibrium point and the
centre manifold reduction of the 5-mode truncation. The mixed mode solutions are illus-
trated in black while the derivation using centre manifold reduction is in red. Amplitudes
are (a) A0 (b) A1 (c) A−1 (d) A−2 and A2. The unstable branch exists for μ > 0.296519.

the primary single mode solution, A0 at μ = 0.296519.

We are now in a position to illustrate the complete bifurcation diagram for the SVI in

the context of this 5-mode truncation. Figure 4.11 shows the numerically computed bifur-
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Figure 4.11: Bifurcation diagram of model 2 with the five-mode truncation showing
the connection between the primary and secondary instabilities. The primary bifurcations
(supercritical pitchforks), occur at points points (μr−2=0, μr−1=0, μr0=0, μr1=0, μr2=0) =
(0.0001, 0.011025, 0.0441, 0.105625, 0.2025) indicated in green, from which primary single-
mode solutions (±A−2, ±A−1, ±A0, ±A1, ±A2) bifurcate with the stability proper-
ties inherited from the trivial solution. The wavenumber, K, of each branch is
(1.005, 1.0512, 1.1, 1.1510, 1.2). The squares represent secondary bifurcation points on the
primary branches, where the single mode solutions restabilize. We follow the branches A0

and A−1, where the secondary bifurcations (subcritical pitchforks) occur at μ = 0.296519
and μ = 0.051 respectively. As a consequence, the mixed-mode branches exist only for
μ > 0.296519 on A0 and μ > 0.051 on A−1 and these unstable solution, originating
from the primary single-mode steady solutions, are denoted as a blue curves, showing the
amplitude variation of A0 ±

√
A2

−2 +A2
1 +A2

−1 +A2
2 and A−1 ±

√
A2

−2 +A2
0 +A2

−1 +A2
2

respectively. We also note another bifurcation point on A0 (red circle) at μ = 0.276 where
A2 and A−2 become non-zero. Solid and dashed curves denote stable and unstable branches,
respectively
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cation diagram using the software package, MATCONT. We illustrate the connection be-

tween the primary instability and the skew-varicose instability. The primary and secondary

bifurcations are all supercritical pitchforks. As the primary solution family emerges from

the base solution at μExistence = (1 −K2)2, where K =
√

(1 + q + k)2 + l2, just after the

primary bifurcation point, the states ±A−2, ±A−1, ±A0, ±A1 and ±A2 bifurcating from

non-existence state at μ for which r−2 = 0, r−1 = 0, r0 = 0, r1 = 0 and r2 = 0 respectively

((μr−2=0, μr−1=0, μr0=0, μr1=0, μr2=0) = (0.0001, 0.011025, 0.0441, 0.105625, 0.2025) ). In

the first branch, A−2, the trivial solution is stable, but all subsequent solutions bifurcating

from the trivial solution are unstable. The corresponding wavenumbers for A−2, A−1,

A0, A1 and A2 are 1.005, 1.0512, 1.1, 1.1510 and 1.2 respectively. Secondary bifurcation

points, due to the SVI, appear from the primary A−1 and A0 solutions at the critical values

are represented by a red squares. At these secondary bifurcations the primary solutions

regain stability; in other words, secondary bifurcations restabilize the parent branch. Nu-

merical computations show the bifurcation due to the SVI is subcritical (confirming the

centre manifold calculations) and as a consequence, those mixed-mode branches, which are

originated at μ = μSV Ik=l=0.05
, exist for μ > μSV Ik=l=0.05

are unstable. We note here that

the secondary bifurcation due to the SVI of A−1 primary solution is subcritical, presum-

ably due to the contributions from modes A1 and A2. We also show another bifurcation

point on the A0 solution. At this point the values of A2 and A−2 become non-zero.

We continue with a brief study of the 5-mode truncation obtained from model 1,

real system of equations (4.16 and 4.17). The results of a computation of its equilibrium

points show that the secondary bifurcation is also a subcritical pitchfork. We established in

chapter 2, using linear stability analysis, that models 1 and 2 had the same SVI boundary

provided the relation g = gm/(Pr c2) held; therefore, the SVI boundary for model 1 with

gm = 40, Pr = 1 and c2 = 2 is same as in figure 4.6. The bifurcation point at the primary
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Figure 4.12: Numerically computed mixed mode equilibrium points close to the subcritical
bifurcation point, μ = 0.296519, of the SVI for the system (parameter values are gm = 40,

Pr = 1 and c2 = 2). Amplitudes are (a) ±
√
A2

1 +A2−1 and (b) B1 and B2 representing
the mean flow. The unstable branch exists for μ > 0.296519 and is necessarily unstable.

solution branch of A0 is at μ = 0.296519, at which nonlinear unstable solutions emerge.

Numerically computed mixed-mode equilibrium points are presented in figure 4.12.

4.6 Agreement of results of direct simulations of the models

and bifurcation analysis of systems of ODEs

In this section we show by an example that the results of systems of ODEs (4.19) and (4.20)

are in remarkable agreement with studies of the truncated PDEs; only modes relavent to

theoretical analysis are retained in PDE calculations. In order to compare the bifurcation

analysis that we performed for the SVI, we find the solutions to the nonlinear system of

PDEs (4.2-4.3 & 4.2-4.4). These PDEs are solved numerically using the numerical scheme

described in detail in chapter 3.
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Figure 4.13: Logarithmic plot of the amplitude of the modes A0, A1 and A−1 with respect
to time. Here the wavevector component of the perturbed mode is (1.15, 0.05). Parameter
values are μ = 0.294 and g = 20. Our initial simulation results (in Blue) includes only
three modes corresponding to amplitudes A0, A1 and A−1 and after a long time the solution
saturates to the nonlinear solution we obtained from the 3-mode truncation at μ = 0.294, a
mixed mode solution on the stable (supercritical) branch (see figure 4.9). We then introduce
additional modes corresponding to the amplitudes A2 and A−2 and the resulting behaviour
is denoted in red. The solution switches onto the single mode branch with A−1 �= 0, due to
the fact that the skew-varicose instability occurs via a subcritical bifurcation, as illustrated
in figure 4.11

We solve the PDEs in an L × L square cell with, L = 20 × 2π. This fixes a lattice

in (k, l) space with lattice spacing 2π/L = 0.05. A grid with N2 Fourier modes has been

used with N = 256 and we use periodic boundary conditions. We apply the projection and

filtering operations in numerical simulations to keep the same conditions on the numerical

solution and in the bifurcation analysis.

We present the results we obtained for the parameter values g = 20, q = 0.1 and

k = l = 0.05. This selection of q, k and l is allowed by the size of the domain and in

order to investigate details of stability for small (k, l), we need a large domain size and

this is time consuming. We find nonlinear solutions for the truncated PDEs (keeping 3

134



Chapter 4. Bifurcation analysis of the Skew-Varicose instability

modes and their complex conjugates) which agrees with the 3-mode truncation; we cut off

the spectrum so as to include only eigenmodes corresponding to wavevectors (1.05,−0.05),

(1.1, 0), (1.15, 0.05) (accordingly to (1 + q± k,±l), as in the 3-mode truncation) and their

complex conjugates. We begin with the initial condition ψ = 0.01 sin((1.1)x) and ω = 0

for μ = 0.298 (stripes are stable at this point) and time stepping until the amplitude of

sin((1.1)x) saturates. We then decrease μ to 0.294 and add perturbations to the stripe

solution, 10−6 sin((1.15)x, 0.05y), and time step for a further length of time. We are looking

for exponential growth of the selected three modes followed by nonlinear saturation (the

blue curves in figure 4.13). Note that we choose the initial amplitude of the perturbation

and the time interval over which the calculation was done to ensure that the amplitudes

of the modes saturate to a constant value, and we found this is same as the bifurcation

analysis we carried out in previous sections. In order to find the behavior of non linear

solutions for the truncated PDEs (keeping 5 modes and their complex conjugates) which

agrees with the 5-mode truncation, we include the modes corresponding to wavevectors

(1,−0.1) and (1.2, 0.1) (accordingly to (1+q±2k,±2l), as in 5 mode truncation) and time

step for further length of time. We then noted that the solution switches to the single

mode stable solution A−1, and this scenario is indicated in red curves. The behavior is due

to the switch from a supercritical to subcritical bifurcation as we move from the 3-mode

to 5-mode truncation, and is consistent with the behaviour that would be expected from

figure 4.11.

4.7 Concluding remarks

The bifurcation analysis for the skew-varicose instability is presented for model 1 (4.2 and

4.3) and model 2 (4.2 and 4.4). We derived systems of ODEs selecting three relevant

modes (3-mode truncation) and extending the selection to include 2 more relevant modes
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(5-mode truncation). The 3-mode truncation was derived in order to gain insight into

the skew-varicose instability in large domains that destroys roll patterns. However, the

results of the 3-mode truncation showed that the secondary bifurcation is supercritical,

which was inconsistent with our experience with solving the PDE numerically (in chapter

4). We therefore introduced the 5-mode truncation, which has the subcritical bifurcation

as expected.

We performed a theoretical analysis with Centre Manifold Reduction in order to cap-

ture the supercriticality or subcriticality of the skew-varicose bifurcation. However, the

expressions for a3 and b3 (of 3-mode and 5-mode truncations), which are incorporated in

the normal form of pitchfork bifurcation are enormous. Therefore a theoretical analysis to

determine the sign of a3 and b3 was not performed. However, we numerically calculated

these values for selected parameters and found a3 is negative for large domains. On the

other hand, we note that b3 is positive, but tends to zero when L → 0. This curious

behaviour was not expected.

The supercriticality or subcriticality of the skew-varicose bifurcation was also obtained

by direct computation of equilibrium points of the ODEs. We illustrated this scenario

using a case study with the parameters, g = 20, q = 0.1 and k = l = 2π/L = 0.05. Results

of numerical computations agreed well with the results of Centre Manifold Reduction;

in 3-mode truncation the secondary bifurcation due to the SVI is supercritical pitchfork

whereas it is subcritical pitchfork in 5-mode truncation. In addition we established an

agreement with results of systems of ODEs and numerical computations of truncated

PDEs (including relevant 3 modes and 5 modes). Results of full PDEs are the same as

the results of PDEs with 5-mode truncation.

The bifurcation structure presented by Nguyen et al. [97] is based on the Busse system,

which is obtained as a truncation to just three modes with wave vectors ki = (π
2 + πi

4 ,
π
2 )
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for i = −1, 0, 1. This selection involves the specific domain size L = 2 × 2π, in the fluid

layer. They confined to brief discussion on the extension of Busse system including one

more mode with wavevector k4 = (0, 3π
4 ). With this selection, they claimed that much of

the bifurcation scenario of the Busse system remains same in the extension and noted some

additional bifurcations. It should be emphasized that this selection of modes may not fully

and accurately describe the structure of the bifurcation diagram. On the other hand, the

bifurcation diagram for the Eckhaus instability was presented by Tuckerman and Barkley,

based on Ginzburg-Landau equation for finite aspect ratio. With this 3 mode selection

they claimed that the secondary bifurcations are all subcritical, as was expected.

We claim that the three mode truncation can not capture the correct nonlinear solu-

tions at the bifurcation due to the skew-varicose instability and a truncated system of 5

modes may capture the correct behaviour. We suggest to consider truncations with more

modes and systems with higher aspect ratio in order to get the accurate behaviour of

nonlinear solutions.
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Chapter 5

Solutions to the Generalized Swift–Hohenberg

model: Spiral Defect Chaos and Defect Chaos

5.1 Introduction

In this chapter we perform a qualitative and quantitative analysis to improve the under-

standing of the full numerical solutions to the generalized Swift–Hohenberg model. We

discuss how the model parameters produce different solutions: Spiral Defect Chaos (SDC),

Defect Chaos (DC) and Target (T) states. We obtain these solutions by numerical inte-

gration of the model of interest (model 1 in chapter 2) for very long times. We perform

simulations in large domains over a range of parameter values in order to discover how the

parameter values alter the different solution states, particularly SDC. We show that the

generalized Swift–Hohenberg model can produce SDC that resembles the SDC in convec-

tion if the mean flow is large, the Prandtl number is small, the domain is large and the

parameter that accounts for the top and bottom boundary conditions is small. We also

find that slowly moving target states dominate for large Prandtl numbers, weak values

of the mean flow or large values of the parameter that accounts for the top and bottom

boundary conditions.

Spiral Defect Chaos (SDC) and global spiral patterns were experimentally observed in
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low-viscosity convection nearly 20 years ago [38], and yet much of the detail of its origin

remain unexplained. Spiral Defect Chaos is characterized by the dynamics of rotating

spirals and defects and interestingly the state occurs for fluid parameters even where

straight parallel convection rolls are linearly stable [20, 47]. So far, very limited theoretical

insight has been obtained as to why the spiral chaotic state develops, or of the dynamic

behaviour of spirals and defects within chaotic state and global spirals in Rayleigh–Bénard

Convection and the understanding of these patterns.

After being discovered experimentally [38], SDC was first found numerically in solutions

of the generalized Swift–Hohenberg (GSH) models [56, 69, 73], and of the Boussinesq

approximation for the full hydrodynamic equations for convection [11, 44, 45, 46, 47].

Although significant progress has been made in the ability to simulate convection using

the Boussinesq equations in large domains, the computational cost remains very high [86].

The GSH models are computationally less expensive to integrate than the Boussinesq

equations and hence have the advantage of allowing longer runs and a more detailed ex-

ploration of parameter values, helping to understand features of SDC in RBC. As models

of convection, the generalized Swift–Hohenberg models have been proven very successful

in characterizing convective patterns, and numerical solutions of GSH models reproduce

qualitative features of SDC, resembling experimental results reasonably well [69]. How-

ever, Schmitz et al. [76] suggest that making a direct comparison between the model and

convection is not appropriate.

Spatially disordered patterns, such as SDC, have been described by several researchers

using local pattern properties: Hu et al. [49] computed local wavenumbers and curva-

tures in experimental pictures and proposed order parameters to describe transitions in

spatiotemporal chaos in Rayleigh–Bénard Convection: Cross and Tu [55] used a model of

convection rotating about a vertical axis and characterized the domain structure. However
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the methods they used took large amounts of time to process each snapshot in systems

exhibiting complicated time-dependent behaviour. Morris et al. [45] used experimentally

obtained shadowgraph images of SDC to characterize the space-time behaviour by means

of the structure-factor. More recently, Egolf et al. [52] described a fast method for cal-

culating properties of locally striped pattern based on ratios of simple partial derivatives.

We use this method to investigate the local properties of the solutions to the model of

interest.

In this chapter, we base our numerical study on the GSH model,

∂ψ

∂t
+ (U · ∇)ψ =

[
μ− (1 + ∇2)2

]
ψ −Pα

(
ψ3
)
, (5.1)[

∂

∂t
− Pr(∇2 − c2)

]
ω = −gmFγ

[∇(∇2ψ) ×∇ψ] · ẑ, (5.2)

that has been developed to include the effects of mean flow [69, 87]. We present results

of extensive numerical work, which provides a criterion for when Spiral Defect Chaos,

defect chaos or target states may be expected, depending on the different parameters of

the system, on the size of system and on different boundary conditions. This includes a

study of transition between the different states for different parameters. We attempt to

quantify several aspects of the different patterns and to understand the time dependence

of these aspects. We also investigate the small scale features using the images of solution

states of the model.

This chapter is constructed as follows. We present our numerical scheme in section

2. In section 3, the different possible solutions of the model are illustrated. We include

a qualitative study of these solutions to show how they depend on different parameters

of the model in section 4, where we present how the onset of the defect chaotic state

depends on the Prandtl number and the size of the domain. In section 5, we discuss our
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attempts to differentiate the solutions of the model quantitatively using a count of Spirals

and Defects, Kinetic Energy. We present our results of local wavenumber in section 6,

where we illustrate SVI distortions in different solutions and the wave-vector orientation

of different structures. We conclude in section 7.

5.2 Numerical Scheme

The numerical scheme we employ to solve these two-dimensional model equations is for

periodic boundary conditions. This leads, conveniently, to the application of the Fourier

pseudospectral approximation in space using a spectral method, which is an elegant

technology for the numerical solution of PDEs [100]. This involves the use of the Fast

Fourier Transform to discretize the PDEs into a coupled system of ordinary differential

equations (ODEs) for the time-dependent coefficients of the complex exponentials; we

then use a time-stepping method to solve those ODEs. The linear parts of this system,

L1 = μ−(1 −K2
)2 and L2 = −Pr (K2 + c2

)
, where K is the wavenumber, are diagonal in

spectral space. The nonlinearities are evaluated at grid points by transforming to physical

space and then transforming back to the spectral space. In order to maintain the projection

operator in the cubic nonlinearity, the contributions to the cubic nonlinearity are cutoff

in the spectral space if wavenumber |K| > 2.5. The contributions of high wavenumber

modes in the vorticity field that contributes to short-wavelength instabilities are reduced

by filtering operator to the nonlinearity and that is performed in the Fourier space; am-

plitudes of higher wavenumbers are damped by e−γ2K2
. Aliasing is a phenomenon that

occurs when higher wavenumbers are folded back into the lower spectrum; nonlinearities

generate high wavenumbers and aliasing is initiated when resolution cannot be increased

to the extent that high wavenumbers are resolved. The higher wavenumbers that can be

aliased are filtered out by the dealiasing.
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In this work, time stepping, which is carried out in spectral space, is based on an

exponential time differencing (ETD) scheme. The idea behind the ETD methods is to

multiply the differential equation by an integrating factor that allows to solve the linear

part by exact integration with an approximation of an integral involving the nonlinear

components. Different ETD schemes have been introduced based on the approximation of

this integral.

We employ an ETD method based on the Runge-Kutta scheme, the exponential time

differencing fourth-order Runge-Kutta (ETDRK4) method, which was derived by Cox &

Matthews in 2002 [101]. For all Fourier modes, L1 and L2 span a wide range of values and

this method is well suited to handle this wide range.

However, a well-known difficulty associated with ETDRK4 is that its coefficients re-

semble the higher orders of the form, (eL − 1)/L (here L refers to a linear operator) and

therefore suffer from cancellation errors when the linear operator has eigenvalues close or

equal to zero. There is a chance of having small values in the discretized linear operators,

L1 and L2 for some values of the wavenumbers, particularly for larger box sizes and hence

special care is needed in calculating coefficients in order to avoid rounding errors. We

handle this issue by introducing a cutoff for small values and using a Taylor series approx-

imation to the coefficients for diagonal elements below the cutoff. We select this cutoff

value ensuring that Taylor series representation and the direct computation of coefficients

preserve the highest accuracy; our implementation approximates the explicit formula by

a 9-term Taylor series when |Δt L| < 0.04, where Δt is the time step.

Our results are reported in a square domain that is discretized on a spatially uniform

grid. Owing to the necessity of the large aspect ratios for the study of SDC, most of

our simulations are for aspect ratios, Γ = 40 and 100 wavelengths. We extended our

simulations in domains with aspect ratios, 10, 20 and 200 in order to check the state
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dependence with the domain size, L, where L = 2πΓ. We discretized the spatial domain

using N Fourier modes in each horizontal direction so that Δx = Δy = L/N . The

number of Fourier modes, N is chosen to satisfy the maximum allowed wavenumber,

Kmax = Nd/(2Γ) where (Nd = 2N/3) (here 2/3 is the dealiasing power), to be greater

than the required cutoff value of the wavenumber, which is 2.5 due to the projection cutoff

describe above. The results presented in this chapter are mostly based on kmax = 4.26

(i.e., N = 512 for L = 2π × 40 and Δx = Δy = 5π/32). We impose periodic lateral

boundary conditions and each individual simulation is allowed to evolve for very long time

for a time step of Δt = 0.1.

The numerical code was initially developed in MATLAB. However, due to the need to

carry out long simulations over a range of parameter values, we translated the code into

C. Both developments share a common phenomenon listed below. We recall PDE 1,

∂ψ

∂t
+ (U · ∇)ψ =

[
μ− (1 + ∇2)2

]
ψ − Pα

(
ψ3
)
,

and PDE 2

[
∂

∂t
− Pr(∇2 − c2)

]
ω = −gmFγ

[∇(∇2ψ) ×∇ψ] · ẑ,
of GSH model.

• We begin with introducing global variables (Pr-Prandtl number, μ-bifurcation pa-

rameter, gm-coupling coefficient to the mean flow, c-parameter that models boundary

conditions) and constants (time step, Δt = 0.1, L = 40 × 2π, N = 512).

• We then set up spatial grid, X = Y = (0 · · ·N − 1)L/N , wavenumbers, Kx =

Ky = 2π[0 · · ·N/2 −N/2 + 1 · · · − 1]/L and K =
√
K2

x +K2
y , and linear operators,
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L1 = (μ− 1) + 2K2 −K4 and L2 = −Pr(K2 + c2);

• The initial condition we used is a random number for ψ with random amplitude

between 0.0001 and 0.001, scaled down by 1/(1 +K6) to make it smooth and zero

mean flow. We then define dealiasing keeping 2/3 of the spectrum. The projection

operator is used to cut off the spectrum if K > 2.6 (this is applied only to the cubic

nonlinearity of PDE 1).

• We then precompute various ETDRK4 scalar quantities. In evaluating coefficients

of ETDRK4, we define a threshold for small eigenvalues, and Taylor series repre-

sentation of the coefficients is used for diagonal elements below the threshold. If

|L1Δt| < 0.04 and |L2Δt| < 0.04, coefficients are approximated using 9-term Taylor

series expansion.

• The space transformations between the spectral and physical space are supported

to compute all spatial derivatives in Fourier space, the nonlinearities in physical

space. Temporal evolution for PDE 1 and PDE 2 is performed in Fourier space

ETDRK4. Nonlinear terms, which are calculated by going back to physical space,

are transformed into spectral space in order to compute ETDRK4 update of the

solution.

• The nonlinear part of PDE 1 is − (U · ∇)ψ − Pα

(
ψ3
)
. For the illustration we use

hat notation to denote in spectral space. In spectral space, ∇̂ψ = (iKxψ̂, iKyψ̂) and

Û = (iKy ζ̂ ,−iKxζ̂). Using inverse Fourier transformation, these two expressions are

converted into physical space, and compute − (U · ∇)ψ. The nonlinear term −ψ3 is

also computed in physical space and then transfered into spectral space, where we

apply the projection.

• The nonlinear part in PDE 2 is Fγ

[∇(∇2ψ) ×∇ψ] · ẑ. In spectral space, ˆ∇(∇2ψ) =
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−(K2
x +K2

y )(iKxψ̂, iKyψ̂) (∇̂ψ is same as above). Using inverse Fourier transforma-

tion, these two expressions are converted into physical space and compute the vector

product
[∇(∇2ψ) ×∇ψ] · ẑ and convert back to spectral space, where we apply the

filtering operator, e−γ2K2
.

In order to check the accuracy of the code, we tested code development for linear

terms and nonlinear terms. For the linear problem, we measured the growth rates of the

modes that are excited for the initial condition and compared with linear theory, which

was performed in chapter 2. The nonlinear term in PDE 2 is tested with weakly nonlinear

theory of the square solution. The mean flow term is tested with stability calculations,

which we performed in chapter 2 and we illustrate our results in the same chapter. We

also checked the relative error against step sizes, Δt = 0.1, 0.01, 0.001 and verified that

ETDRK4 is fourth order with our development.

5.3 Solutions to the model: Spatial features of convection

pattern, ψ and the mean flow field, ζ

In this section, the differences of spatial features between the patterns observed in the

mean flow field are illustrated. We present our results in two fields: ψ, which describes the

spatial and temporal variation of pattern and ζ, the stream function for the mean flow.

The mean flow, which can be written in terms of stream function, tends to reach a local

maximum at locations that contain defect structures and it remains large on a length scale

of several roll wavelengths around the defect.

We also present the circularly averaged power spectrum of both fields, ψ and ζ.

Through out this chapter in presenting the field ψ, we use colour red, ψ > 0, repre-

senting hot rising fluid and blue, ψ < 0, representing cold descending fluid. However, with
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Boussinesq symmetry there is no real distinction; ψ = −ψ. In the vorticity field, patches

indicate the regions of large mean flow; red colour corresponds to clockwise rotations and

blue corresponds to counterclockwise rotations.

5.3.1 Stripe pattern

Figure 5.1(a) shows the regular spatial structure of perfect stripe pattern, the stable so-

lution of the model that corresponds to convection rolls. This illustration is for the set

of parameters, Pr = 0.5, gm = 50 and μ = 0.1. We start with random initial conditions

to evolve with Δt = 0.1, and this shadowgraph is taken at time 4 × 104. The global

wave-vector distribution of ψ is presented in figure 5.1(b); the distribution is peaked at

K = 0.93 and is isotropic. For these parameters, the region of stable stripes is bounded

by the Eckhaus instability boundary from below, K ≈ 0.908 and by the SVI boundary

K ≈ 1.045 from above.

5.3.2 Defect Chaos state

These models exhibit defect chaos (DC), where the dynamics is apparently associated with

defects and patches of curved stripes. Figure 5.2(a) denotes the DC phenomenon in the

field ψ for parameter values gm = 50, c2 = 2, Pr = 0.5 and μ = 0.4 at t = 104; the system

organizes into a structure comprising moving defects, which is exhibited by large patches

in corresponding ζ field, as denoted in 5.2(b). The wavenumber distribution is illustrated

in figure 5.2(c) where the vertical dotted green and red lines we denote the stability bound-

aries of stable stripes. The lower tail of power spectrum belongs to the Eckhaus unstable

region whereas a part of the upper tail belongs to the skew-varicose unstable regime. In

the phenomenon of Defect Chaos, the persistent dynamics is apparently associated with

easily identified defects or coherent structures and it exhibits transitions between bend-roll
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Figure 5.1: A typical configuration of the perfect stripe pattern: (a) Field ψ (colour red
correspond to ψ > 0, and blue for ψ < 0). The configuration shown is at t = 4 × 104 for
parameter values gm = 50, c2 = 2, Pr = 0.5, L = 40 × 2π and μ = 0.1 (b) Circularly
averaged power spectrum. The peak of the spectrum is at the wavenumber Kpeak ≈ 0.93,
in units of the critical wavenumber, Kc = 1. For these parameters, the SVI occurs if
K � 1.045 (red dotted line is at KSV I ≈ 1.045) and the Eckhaus instability limit the stable
stripes if K � 0.908 (green dotted line).

states, curved roll states and patches of rolls that are time dependent. The mean flow at

the locations that contain defect structures is spread.

5.3.3 Spiral Defect Chaos state

The Spiral Defect Chaos (SDC) pattern is a disordered state characterized by a collection

of spirals and dynamical defects; this state provides an intriguing example of the Defect

Chaotic state. This state is marked by the continuous creation and breaking of various sizes

of the left and right handed spirals that can rotate in the counter-clockwise or clockwise

senses. The background state contains many moving roll dislocations.

Figure 5.3(a) shows spatial variation of the convection field and the corresponding
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Figure 5.2: Configuration of the defect chaos state for system parameter values gm = 50,
c2 = 2, Pr = 0.5 and μ = 0.4 at t = 104: (a) Field ψ (b) Field ζ, of which the patches
indicate the large mean flow. (c) Circularly averaged power spectrum of the field ψ (in
brown) and ζ (in green). Kpeak of the amplitude of ψ is approximately at 0.85 whereas it
is close to zero for ζ. For these parameters, the region of stable stripes is bounded by the
Eckhaus instability from below, K ≈ 0.817 (green dotted line) and by the SVI boundary
K ≈ 1.088 (red dotted line) from above.

stream function, ζ, (figure 5.3(b)) for the parameters Pr = 0.5, gm = 50, c2 = 2 and

μ = 0.7, exhibiting chaotic pattern with many spiral defects. We show in figure 5.3(c) the

circularly averaged power spectrum that correspond to configurations ψ and ζ. We see

that the power spectrum of ψ is broad and peaked at a wavenumber, kpeak < 1. Power
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Figure 5.3: An example of Spiral Defect Chaos state observed at t = 104 in a numerical
simulation for parameters Pr = 0.5, gm = 50, c2 = 2 and μ = 0.7 (a) Field ψ (b) Field ζ.
Red denotes the core of right handed spirals, while blue contours indicate the left handed
spirals. (c) Circularly averaged power spectrum of the field ψ (in brown) and ζ (in green).
Kpeak of the amplitude of ψ is approximately at 0.875 whereas the peak close to zero for
ζ. For these parameters, the region of stable stripes is bounded by the Eckhaus instability
from below, K ≈ 0.758 (green dotted line) and by the SVI boundary K ≈ 1.1178 (red dotted
line) from above.

spectrum of ζ is peaked close to zero. The lower part of power spectrum belongs to the

Eckhaus unstable region whereas a part of the upper tail belongs to the skew-varicose

unstable regime.
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Figure 5.4: An example of target pattern (with many slowly moving spirals) observed
at t = 104 in a numerical simulation for set of parameter values Pr = 0.5, gm = 10,
c2 = 2 and μ = 0.7 (a) Field ψ (b) Field ζ. Red denotes the core of right handed spirals,
while blue contours indicate the left handed spirals. Note that ζ is zero at target core. (c)
Circularly averaged power spectrum of the fields ψ and ζ. Kpeak ≈ 1.1 for the amplitude
of ψ and Kpeak ≈ 0 for the field ζ. For these parameters, the region of stable stripes is
bounded by the Eckhaus instability from below, K ≈ 0.758 (green dotted line) and by the
SVI boundary K ≈ 1.17 (red dotted line) from above.

5.3.4 Target pattern state

The Target pattern is a state comprising of concentric rolls and spirals, which move slowly

in the evolution process. The background state contains some defects, and ill-formed
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Figure 5.5: Instances of the evolution process of SDC state and target pattern. SDC
pattern (a) at t = 9 × 103 and (b) at t = 104 (similar to figure 5.3(a)) in a numerical
simulation for set of parameter values pr = 0.5, gm = 50, c2 = 2 and μ = 0.7. Target
pattern (c) at t = 9 × 103 and (d) at t = 104 (similar to figure 5.4(a)) in a numerical
simulation for set of parameter values pr = 0.5, gm = 10, c2 = 2 and μ = 0.7. The target
pattern resembles stationary targets and spirals.

spirals, which are less time dependent than SDC state and hence their impact on the well-

formed spirals and targets is less. The scenario of the formation of targets is initiated by

an instability of a core of dislocations or defects [9, 102]. Figure 5.4(a) illustrates a target

state that coexist with spirals for the parameter values Pr = 0.5, gm = 10, c2 = 2 and

μ = 0.7. Figure 5.4(b) shows the relevant stream function, which is zero at target core

in contrast, vorticity patches (these are are circular for well formed spirals) at spiral core.

The corresponding global wavenumber distribution is shown in figure 5.4(c).

In the evolution process, the target pattern can be differentiated from the SDC state

from its chaotic behaviour; the target pattern resembles slowly moving spirals whereas in

SDC state, spirals and defects are chaotic. Figure 5.5 shows two snapshots at t = 9× 103

and t = 104 of SDC and target states.
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5.4 Dependence of solutions of the model on Parameters

We intend, in this section, to illustrate the effect of parameters for the different solutions of

the GSH model. We carry out this analysis based on a qualitative examination of different

solution states. The choice of the parameters, Prandtl number, Pr, bifurcation parameter,

μ, the strength of the mean flow effects, gm, and boundary condition parameter, c, all have

a strong influence on the dynamics of the model, generating different solution scenarios. It

is important to determine the range of parameter values that yield dynamics that resemble

stripes, Spiral Defect Chaos, Defect Chaos and Target state. Previous numerical work on

the GSH model in searching for SDC has been carried out for system parameters Pr = 1,

μ = 0.7, gm = 50 and c2 = 2 [69, 76], although a justification for this particular choice

is not given. Presumably the parameters were chosen to mimic experimental conditions;

large aspect ratios and Pr around unity. We discussed this parameter selection in chapter

1.

Here we demonstrate numerical results for different parameter values and suggest most

relevant parameters in order to obtain each solution state after transients have passed. We

mostly base our study with varying the Prandtl number, Pr, the bifurcation parameter,

μ, and the domain size, L. We also describe the effect of c and gm in order to provide an

insight into a sensible parameter range.

5.4.1 Prandtl number, Pr

The Prandtl number is a dimensionless number, the ratio of kinematic viscosity to thermal

diffusivity. Experiments and numerical investigations have indicated that a low Pr is

required to yield dynamics that generates spirals and defects [23, 49, 103]. We find SDC

in the long-time dynamics of the GSH if the correct range of values of Pr is chosen. We
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Figure 5.6: Instances of the domain structure of the fields ψ and ζ in the evolution
process for the system parameter values Pr = 1, μ = 0.7, gm = 50, and c2 = 2. (a) At
t = 5 × 103; state dominated by small spirals and defects. (b) At t = 2 × 104; adjacent
spirals and defects combine to form bigger spirals. There are fewer spirals than in planform
(a). (c) At t = 6 × 104, showing how the pattern has evolved into a state with even bigger
spirals. The panel of four plots shows the spiral breaking up (marked in black) in the
evolution process. Four states are taken each with a time period of t = 3000. (d)-(f)
Stream function to the mean flow corresponds to (a)-(c) respectively. Panel in (f) shows
how the mean flow behaves in the breaking up process.

explored the long time dynamics in the range 0.15 < Pr < 6. Across this range, we found

three major types of solutions: Target state, SDC state and complex chaotic state.

We first consider the parameter value used extensively in the literature, Pr = 1.

Schmitz et al. [76] investigated the parameter set Pr = 1, μ = 0.7, gm = 50, and c2 = 2

and claimed that Spiral Defect Chaos in the numerical simulations of the GSH disappears

when the system evolves into a state dominated by bigger spirals, and therefore concluded

that the SDC state is only a transient. Based on this result, they claimed that the use
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Figure 5.7: Instances of the domain structure of the fields ψ and ζ in the evolution
process for the system parameter values Pr = 0.5, μ = 0.7, gm = 50, and c2 = 2. Spiral
Defect Chaos state persists in long time in the evolution process. (a) At t = 5 × 103; (b)
At t = 105; (c) At t = 2 × 106. (d)-(f) Stream function to the mean flow corresponds
to (a)-(c) respectively. Note that the mean flow profile at the spiral core is wider than in
figure 5.6 (Pr = 1).

of the numerical simulations of the GSH model to study the SDC state is problematic.

However, our new results, run over much longer times, suggest that these bigger spirals

may eventually break into smaller spirals and defects, returning to the SDC state. We

speculate that the system then cycles between SDC and a state dominated by bigger

spirals.

Figure 5.6 shows instances of pattern evolution in ψ and ζ fields for system parameters

as in [76], μ = 0.7, Pr = 1, gm = 50, and c2 = 2. At small time, t < 5× 103 the pattern is

chaotic and contains many dynamic spiral and defect structures as shown in figure 5.6(a).

Planform 5.6(b) represents a snapshot at t = 2 × 104, while the coarsening process to
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Figure 5.8: Instances in the long time evolution of the field ψ and corresponding ζ for
the system parameter values Pr = 6, gm = 50, c2 = 2 and μ = 0.7. (a) At t = 103:
Labyrinthine structure with small targets. (b) At t = 104: state dominated by targets,
spirals and defects; (c) At t = 106: targets dominating state with few spirals. (d)-(f)
Corresponding ζ field of (a)-(c) in order. Note that the mean flow is approximately zero
at target core.

bigger spirals is taking place; well formed spirals capture adjacent small spirals or defects

to form bigger spirals. In figure 5.6(c), we show the planform at t = 6 × 104, when the

formation of bigger spirals has begun. The process of coarsening to bigger spirals is very

slow and invasive spirals are evidenced by the pattern after t = 3 × 104.

However, the defects that coexist with bigger spirals create instabilities, breaking up

the bigger spirals to form small spirals and several defects. The combined motion of bigger

spirals with defects can be understood by considering the situation shown in the panel in

figure 5.6(c), where we show the evolution process of a bigger spiral that terminates with

a dislocation. Note that during the time evolution, the dislocation climbs into the spiral,
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which breaks up, forming a few defects and a smaller spiral. The defects that are created

in the breaking process will then interact with other spirals. We carried out this simulation

for very long time t = 2 × 106 and we could examine the process of breaking up tends to

the Spiral Defect Chaos state invades the domain,similar to the behaviour shown in figure

5.6(a).

We speculate that in subsequent dynamics (time evolution for t� 2×106), the domain

structure of the pattern rests on two processes: coarsening to bigger spirals and breaking

up into small spirals with defects (SDC state). Our numerical exploration indicates that

this scenario occurs when 0.9 � Pr � 1.2.

We attempt to check whether the spirals formed for 0.9 � Pr � 1.2 are expected

to capture the small scale features correctly by comparing the mean flow fields around a

single spiral of two states: SDC state (for 0.25 � Pr � 0.8) and pattern showing bigger

spirals (this state can be seen in the evolution for 0.9 � Pr � 1.2). Figure 5.9 shows

the mean flow at core regions of left-handed spirals, which are taken from SDC evolution

with Pr = 0.5 and bigger spiral evolution with Pr = 1. Each contour line shown is 0.02

distance apart.

If 0.25 � Pr � 0.8, the pattern resembles the state of Spiral Defect Chaos even at

long times. Figure 5.7 shows instances at t = 104, 105 and 106 during the time evolution

process for Pr = 0.5, gm = 50, c2 = 2 and μ = 0.7. Another interesting feature is that the

behaviour, which is shown in figure 5.7(d), of the mean flow at spiral core is different than

Pr = 1, shown in figure 5.6(d). The vorticity patches at the spiral core spread to couple

of wavelengths for Pr = 0.5, whereas for Pr = 1, they appear to be limited to small scales

at the spiral core. Therefore the claim of Schmitz et al. [76], that the mean flow in the

GSH model is small and hence does not support the long time dynamics of SDC, may not

true; for Pr = 0.5 (with gm = 50, c2 = 2 and μ = 0.7), in fact, if 0.25 � Pr � 0.8, the
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Figure 5.9: Spatial variation of the mean flow at (a) a spiral core in SDC state (Pr = 0.5)
and (b) a bigger spiral (Pr = 1). The red contours represent the magnitude of the mean
flow (each contour line is with 0.02 magnitude apart). The spiral is indicated in the black
and white. Other parameters are gm = 50, c2 = 2 and L = 40 × 2π.

mean flow field at the spiral core is supported for persistent SDC and resembles qualitative

features of rigorous solutions of the Boussinesq equations.

However, if Pr � 0.2, the behaviour is more chaotic and owing to the large mean flow

at the spiral core, spirals break up; we can only notice fast moving patches of defects and

parts of stripes. Figure 5.10 illustrates the solution state for Pr = 0.1. This shows a

spatially complex structure with rapid dynamics. Although during the evolution process

some small-scale spirals may be formed, they will soon breakup. The mean flow patches

correspond to defects and are widely spread. This state is an example for Pr � 0.2. We

therefore suggest the lower bound of Pr, that generates apparent SDC as Pr ≈ 0.25.

On the other hand, if Pr is increased, the SDC state disappears and is replaced by a

target pattern. Figure 5.8 illustrates the pattern evolution of the numerical simulations

for Pr = 6 with gm = 50, μ = 0.7 and c2 = 2. Xi et al. [69] used same parameters and they

suggested the pattern is labyrinthine. However, their simulations were for short intervals of

time t ∼ 900, while our long time simulations reveal that this labyrinthine pattern (figure
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Figure 5.10: Instantaneous pattern in field ψ and corresponding ζ at t = 5 × 105 for
system parameters Pr = 0.1, gm = 50, μ = 0.7, L = 40 × 2π and c2 = 2. Solution
shows a domain structure, which is not well developed into SDC state, rather more defects
state. Corresponding ζ field depicts the wide spreaded large mean flow at the defects. This
solution state has the similar behaviour to pattern in figure 5.18.

5.8(a)) evolves into dynamics that is dominated by small targets and defects (figure 5.8(b))

and then to a state with large and very slowly moving targets with a few spirals as shown

in figure 5.8(c). The mean flow at the target core is approximately zero and hence not

sufficient to turn the targets into spirals or defects. We find that if Pr � 2, a labyrinthine

structure is formed for a short time, but in the long term, the structure evolves into

slowly moving target patterns. If Pr is high, the subsequent dynamics therefore has a

labyrinthine structure followed by a target state. This labyrinthine structure may persist

for long time before evolving into targets.

Therefore this analysis supports the prediction of when the SDC state should be ex-

pected if the other parameters are fixed as gm = 50, μ = 0.7, c2 = 2 and L = 40×2π; SDC

state persists for long time if Pr is in the range 0.2 � Pr � 0.8, while for 0.9 � Pr � 1.2,

SDC pattern can develop into a state dominated by bigger spirals and then back to SDC

state (the solution may then cycle between SDC and a state dominated by bigger spirals).

We summarize our results of long time evolution (t ≈ 106) for gm = 50, μ = 0.7, c2 = 2
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Pr range Pr Result and illustration

Pr � 0.2
0.1 Complex structures with rapid dynamics (Figure 5.10)
0.15 Complex structure similar to figure 5.18
0.2 Complex structure, but less chaotic than figure 5.18.

0.25 � Pr � 0.8
0.25 SDC (very chaotic).
0.5 SDC state (Figure 5.7)
0.8 SDC state similar to figure 5.7

0.9 � Pr � 1.2
0.9 In evolution, SDC→ bigger spirals→ SDC.
1 In evolution, SDC→ bigger spirals→ SDC (Figure 5.6).
1.2 SDC for short time → bigger spirals → SDC

2 � Pr � 6
2 Labyrinthine → target state similar to figure 5.8
6 Labyrinthine → target state (Figure 5.8)

Table 5.1: Summary of simulation results showing the dependence of Pr to different
solution states. The other parameters are gm = 50, μ = 0.7, c2 = 2 and L = 40 × 2π.

and L = 40 × 2π, in the table. In the first column we illustrate the four different ranges

of Pr that give different solution states. We then illustrate the values of Pr, for which we

performed our simulations. Dynamics of the solution and its illustration are indicated in

the last column.

5.4.2 The bifurcation parameter, μ

We also studied the role of the bifurcation parameter μ, which controls the amplitude of the

stripe pattern. We find that for lower values of μ (e.g., for μ = 0.1 with Pr = 0.5, gm = 50,

c2 = 2 and L = 40×2π), the system is dominated by stripes. When μ is increased, a defect

state with curved stripes and patches of stripes is found; this does not settle into stripe

state and further increase in μ generates Defect Chaos followed by Spiral Defect Chaos.

This transition to different states depend on other system parameters. An example of this

scenario in a large aspect ratio system, L = 100×2π, is illustrated in figures 5.11 and 5.12

for parameter values Pr = 0.25, gm = 50 and c2 = 2. We use four different values of μ

and each state is shown at t = 105. Figure 5.11(a) is for μ = 0.1, which generates skewed

stripes with moving defects; in subsequent dynamics (time evolution until t = 5 × 105)
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this state does not settle into a stripe solution. If μ is increased up to 0.3, stripes bend

around defects and a defect dominated state as shown in figure 5.11(c) is found. Figure

5.12(a) shows the state when μ = 0.5, in which spirals have begun to form. However,

this planform is dominated more by patches of stripes and defects than by spirals. Figure

5.12(c) shows how the state evolves into SDC when μ = 0.7. The mean flow is almost zero

for μ = 0.1 (figure 5.11(a)), while the corresponding field at μ = 0.7 (figure 5.12(c)), has

a much richer structure comprising of isolated bubbles of mean flow patches. The size of

the mean flow patches decreases with μ. Our results suggest that the pattern evolves to a

more chaotic state with higher μ.

We extend our analysis by investigating the onset of this chaotic state; the onset of the

defect state is at a higher μ than the onset of stripes (μ = 0), if the domain size is small

(L � 100 × 2π). The transition of stripe state to Defect Chaos state depends on other

system parameters Pr, gm and c for a particular L.

Transition to Chaotic state: dependence on the Domain size, L and the Prandtl

number, Pr

In the following we investigate the transition of stripes to chaotic state. As the route

to study the transition, we checked the long time behaviour, t = 5 × 105 of each set

of parameters starting with random initial conditions. For each set of parameters, we

initially picked two values of μ, for which solution states are stripes at the smaller μ and

defect chaos at the larger. Then we followed the bisection method to trace the onset of

Defect Chaos. We remark that the DC to SDC transition scenario, however, is hard to

identify since the DC to SDC developments is sequential: recall that the DC state is defect

dominated and SDC state is spiral and defect dominated and in between, the scenario is

apparently dominated by defects but few spirals exist with locally curved stripes (figure
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Figure 5.11: Field ψ and corresponding ζ at t = 105 for the parameter values Pr = 0.25,
gm = 50, c2 = 2 with L = 100 × 2π. (a) μ = 0.1: Skewed stripes with dislocations and
defects. (c) μ = 0.3: defects dominated sate. Defects are nucleated in curved stripes. (b)
and (d) are corresponding ζ fields to a fixed colour scale.

5.12(c)) or a state with defect and flattened spirals (an example is shown in figure 5.26).

The solution exhibits a well developed SDC state if a higher μ (μ � 0.6) is considered. As
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Figure 5.12: Field ψ and corresponding ζ at t = 105 for the parameter values Pr = 0.25,
gm = 50, c2 = 2 with L = 100 × 2π. (a) μ = 0.5: Defects dominated state with few spirals
and locally curved stripes. (c) μ = 0.7: SDC state. (b) and (d) are corresponding ζ fields
to a fixed colour scale. Patches of vorticity decrease in size and appear as scattered patches
with μ increasing.

a consequence we only analyzed the stripes to DC transition.

We first demonstrate the transition from stripes to Defect Chaos as a function of the

domain size, L to assess the driving parameter value at the onset of Defect Chaos in large
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Figure 5.13: Plot of L/2π vs μ of the transition to DC state from stripes for the system
parameters gm = 50, c2 = 2 and Pr = 0.5. The final solution state is presented in
the figure: DC state (green triangles) and stripes state (brown triangles). We carried out
numerical simulations for t = 5×105, at each marked point except for the case L = 200×2π,
where we simulated the system only for t = 105. Dotted line indicates the approximate
boundary to the stripe state and DC transition. We illustrate dynamics of points (a) and
(b) in figure 5.14 and 5.15 respectively.

aspect ratio systems. Figure 5.13 shows the L dependence of the transition (for system

parameter values gm = 50, c2 = 2 and Pr = 0.5) of stripes to chaotic defect dynamics.

We note that owing to the high computational cost only one data point is considered for

L = 200×2π and simulated only for t = 105. We indicate the values of μ, that are used in

deriving this boundary. Our results show that when L is large, the onset μ of the defect

chaotic state decreases, and we speculate that it tends to zero in the limit of large L.

We note here that when μ > μtransition, close to the boundary, DC structure is less

chaotic. The structure contains curved stripes with defects and does not settle into a

stripe state eventually. On the other hand, if μ is increased further, DC is chaotic and
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Figure 5.14: Fields ψ and corresponding ζ at t = 105 for the point (a) in figure 5.13,
(parameter values Pr = 0.5, gm = 50, μ = 0.1 and c2 = 2 with L = 100 × 2π). Solution
state is dominated by stripes with few defects. The stream function is approximately zero
everywhere except at few dislocations. Evolution for long time (t ≈ 5 × 105) leaves a
solution with perfect stripe state.
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Figure 5.15: Domain structure of fields ψ and corresponding ζ at t = 105 for the point
(b) in figure 5.13, (parameter values Pr = 0.5, gm = 50, μ = 0.1 and c2 = 2 with
L = 200 × 2π), showing curved stripes with few defects. We speculate that the stream
function is sufficiently large enough to support defects to persist for long time. Dynamics
in the pattern come from the motion of defects and also by the motion of curved stripes.

dominated by defects than curved stripes.

In figures 5.14 and 5.15 we illustrate the structure of the pattern for μ close to the

boundary from above and below. We plot the instantaneous patterns of ψ and ζ at t = 105

for parameter values at points (a) and (b) in figure 5.13. In the first case (μ = 0.1 with L =
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Figure 5.16: Plot of Pr vs μ of the transition to DC state from stripes for the system
parameters gm = 50, c2 = 2 and L = 40 × 2π. The final solution state is presented
in the figure: DC state (green triangles) and stripes state (brown triangles). We carried
out numerical simulations for t = 5× 105, at each marked point. Dotted line indicates the
approximate boundary to the stripe state and DC transition. We suggest that this boundary
approaches to zero when Pr tends to zero.

100×2π), the planform shows few disclinations with straightened stripes. In the evolution

process, straightened stripes become stationary so the dynamics in the pattern comes from

the motion of disclinations. The disclinations glide opposite directions, eventually leading

to perfect stripes (when t ≈ 5×105), whereas in the second case μ = 0.1 with L = 200×2π,

defects coexist with curved stripes and we speculate that this disordered state persists in

the long time limit.

Secondly, we illustrate the dependence of this transition from stripes to chaotic state

with the parameter Pr in figure 5.16. We indicate the values of μ, that are used in deriving

this boundary. Our results show that when Pr is small, the onset μ of the defect chaotic

state decreases, and we speculate that it tends to zero in the limit of large L.
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5.4.3 Coupling constant to the mean flow, gm

The coefficient gm represents the strength of the mean flow field. We have carried out

simulations to study the effect of the magnitude of mean flow, which is inversely propor-

tional to Pr, and increases with increasing values of the coupling strength gm. If gm is

small, the slowly moving target state appears. An example of target state is illustrated

in figure 5.4 for gm = 10. This suggests that a higher parameter value of gm is essential

to develop the SDC state. Figure 5.17 shows an example of SDC state for gm = 100

(for Pr = 0.5, c2 = 2), and the domain structure is similar to the pattern which occurs

for lower Pr ≈ 0.25 with gm = 50 and c2 = 2. Note that the mean flow at the spiral

core spreads to several wavelengths resulting in large patches in the field ζ at spiral cores.

However, when Pr = 0.5, c2 = 2, the solution state for very large gm, gm � 125, is similar

to that for smaller Pr � 0.2 with gm = 50, c2 = 2; a chaotic state where spirals become

unstable breaking into circular patches of rolls with many defects. Our results show that

the SDC state can be expected in the range 20 � gm � 125, when Pr = 0.5, c2 = 2,

μ = 0.7, L = 40 × 2π.

This leads us to an important result that the solution states preserve the ratio gm/Pr

for c2 = 2 with μ = 0.7.

5.4.4 Parameter c that models the boundary conditions

The parameter that models viscous damping of the horizontal flow component by the

top and bottom cell walls is denoted by c, and it affects the magnitude of the mean

flow. We used c2 = 2 to simulate approximately no-slip boundary conditions whereas

c = 0 approximates the stress-free boundary conditions. We discussed this selection of

parameters in chapter 1. We observed a state with slowly moving targets for c2 � 5. This

is similar to the structure illustrated in figure 5.4. On the other hand, smaller c leads the
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Figure 5.17: Instantaneous pattern in field ψ and corresponding ζ at t = 5 × 105 for
system parameters gm = 100, Pr = 0.5, μ = 0.7, L = 40 × 2π and c2 = 2. Solution shows
SDC state and corresponding ζ field depicts that the mean flow patches are large at spiral
core.

dynamics to be more chaotic and no SDC state is apparent. Figure 5.18 illustrates an

example for smaller c, c2 = 0.8 with the parameter values μ = 0.7, Pr = 0.5, gm = 50.

This scenario is similar to the states at higher gm (gm = 125, Pr = 0.5) or lower Pr

(Pr = 0.2, gm = 50) with c2 = 2. Our results suggest that the SDC state exists in the

range 1 � c2 � 5 for Pr = 0.5, gm = 50, μ = 0.7, L = 40 × 2π. We checked the solution

state for series of values in different ranges. Combining these results, we suggest that the

solution states depend on the parameter relation gm/Pr c
2 as for the linear problem.

5.5 Quantitative analysis of different solution states

So far, we have defined qualitative features of the mean flow magnitude and order param-

eter in distinguishing different solution scenarios. In order to quantify different aspects of

the solution states, we now define some important time averaged global quantities: spiral

and defect count, Kinetic energy, root mean square of convection and mean flow fields.
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Figure 5.18: Instantaneous pattern in field ψ and corresponding ζ at t = 5 × 105 for
system parameters c2 = 0.8, gm = 50, Pr = 0.5 and μ = 0.7. Solution shows a domain
structure, which is not well developed into SDC state, rather more defects state. Corre-
sponding ζ field depicts the wide spreaded large mean flow at the defects. This solution
state has the similar behaviour to pattern in figure 5.10

We note that these quantities are strongly fluctuating and the analysis of these data must

be treated with caution. This fluctuation arises because of the chaotic behaviour of DC

and SDC states. However the fluctuation of these quantities is around a well-defined av-

erage value. For our calculations, each simulation is performed for long time, t = 105.

We calculated the average over the last 103 time periods. The horizontal diffusion time is

td = L2/(2π Pr) = 1600/Pr.

We include the maximum and minimum variations of the different measures, illustrated

using error bars. We used the qualitative analysis, which we performed in previous sec-

tions, to describe different solutions and their dependence with system parameters. In the

following, we attempt to get a demarcation between DC, SDC state. We also use these

aspects to differentiate the long time persistent SDC state (illustrated in figure 5.7) and

the bigger spiral formation during SDC evolution (illustrated in figure 5.6).
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Figure 5.19: The pattern observed for paramters Pr = 1, μ = 0.7, c2 = 2, gm = 50 at
t = 4.5×104, t = 9×104 and 11×104 (left to right). The contours indicates regions where
|ζ| = 0.06. Red denotes the core of right handed spirals, while blue contours indicate the
left handed spirals.

5.5.1 Spirals and Defects (SD) Count

The first measure we consider is the count of spirals and defects. We use the ζ field of

the solution to capture the spiral core and regions of defects. However, the magnitude of

the vorticity field at defects and spirals vary for different parameters and therefore in each

set of parameters we define a threshold mean flow to differentiate spirals and well formed

defects from other local patterns. We illustrate an example in figure 5.19 for parameter

values Pr = 1, μ = 0.7, c2 = 2, gm = 50 at t = 4.5 × 104, t = 9 × 104 and t = 11 × 104.

The coloured contour lines denote where the vorticity satisfies |ζ| = 0.06; this particular

value captures all spirals and well formed defects.

If the state is chaotic and contains many spirals and well formed defects, then the

count of vorticity patches above this threshold is high. We therefore use a high value of a

SD count as a characteristic of SDC.

Figure 5.20 shows the variation of SD count in the evolution process of the SDC state for

the two cases discussed in section 4.1, Pr = 1 and Pr = 0.5 (the other system parameters

are gm = 50, c2 = 2, μ = 0.7, L = 40 × 2π). We considered |ζ| = 0.075 and 0.06 as the
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threshold mean flow of selecting spiral core and well formed defect patches for Pr = 0.5

and 1 respectively; vorticity is high for low Pr.

Recall that in section 4.1, we discussed the difference of SDC evolution for these two

values of Pr; for Pr = 0.5, the SDC state persists for a long time, whereas for Pr = 1,

the SDC state evolves into the spiral pattern state characterized by fewer, larger, slow-

moving spirals and fewer defects and back to the SDC state. This scenario is verified in

figure 5.20; for Pr = 0.5, the rapid fluctuations imply that the motion is more chaotic,

and the SD count at any given time is between 35 and 55. On the other hand, for Pr = 1,

spirals and defects move more slowly than in the previous case, and the SD count is

approximately between 4 and 25. We define the solution states for Pr = 1, dividing the

time evolution into three ranges. First, when t � 3 × 104, the SDC state exits. The

process of coarsening spirals in SDC state to bigger spirals is started when t ≈ 3 × 104.

Second, in the time range, 3 × 104 � t � 10.5 × 104, two states appear intermittently;

many bigger spirals with fewer defects or fewer bigger spirals with many defects. Our SD

count method counts both spirals and well formed defects. Therefore due to large number

of defects in the bigger spiral state, in figure 5.20, we can see higher SD counts in the range

3× 104 � t � 10.5× 104. We can observe the least SD counts, at t ≈ 4× 104, 6× 104 (this

state is shown in figure 5.6(c)) and 9 × 104 (this state is shown in the middle picture in

figure 5.19) where the state with many bigger spirals and fewer defects exist. Third, when

t � 10.5 × 104, each bigger spiral breaks into many smaller spirals and defects confirming

the SDC state with many small spirals.

Owing to the behaviour in the range 3× 104 � t � 10.5× 104 discussed above, we can

not define a threshold of SD count for SDC state. However, we suggest that the state with

many bigger spirals and fewer defects appear if SD count is approximately less than 5. We

checked the spiral core distribution in different domain sizes, L = 20, 40 and L = 100 and
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Figure 5.20: Spirals and Defects count as a function of time for gm = 50, c2 = 2 and
L = 40 × 2π with Pr = 0.5 (in blue) and Pr = 1 (in red). The SD count is lower for
Pr = 1 than for Pr = 0.5, for which there is a recurrent transition between SDC and spiral
pattern state. The domain structures of points (a), (b) and (d) are illustrated in figure 5.6
while (c), (e) and (f) are shown in 5.19.

found that the spiral core density is a constant. We recall that the simulations of Schmitz

et al. [76] are for Pr = 1 and only for time evolution up to t = 64, 000.

Figure 5.21 shows how the SD count depends on the parameter Pr. The average SD

count is taken after t = 105 together with the maximum and minimum count over the

period t = 103 of time. Our results show that the solution is more chaotic for lower Pr,

for which the SD count is high.

5.5.2 Kinetic Energy

The second property we investigate is the Kinetic Energy (KE) of the mean flow defined

by KE = 1
2

((
∂ζ
∂x

)2
+
(

∂ζ
∂y

)2
)

. This quantity is zero for perfect parallel rolls, increases

for the DC state and has the highest values in the SDC state. Therefore we postulate that
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Figure 5.21: Average count of spirals and Defects vs the parameter Pr (gm = 50, c2 = 2
and L = 40×2π). The maximum and minimum count for each Pr is shown in error bars.
The count is averaged over a period t = 103 after evolving for t = 105. Long error bars
indicate large fluctuations and the dotted line is a guide to eye.

the mean flow Kinetic Energy can be used to characterize different solution states.

We illustrate in figure 5.22, the time variation of the space-averaged kinetic energy

(this spatially averaged KE is then averaged over a short time periods of t = 7500), that

corresponds to SD count shown in figure 5.20 for Pr = 0.5 (in blue) and Pr = 1 (in red).

The triangular error bars indicate the maximum and minimum values of the KE in each

profile. As with the SD count, the KE is high for Pr = 0.5 and it is reduced for Pr = 1,

particularly when the simulation is dominated by bigger spirals.

Figure 5.23 shows the KE dependence on Pr for different values of μ, μ = 0.7, 0.4 and

0.1. For each μ, the KE decreases when Pr is increased and for each Pr, the KE increases

when μ is increased. Note that when L = 40 × 2π, for gm = 50 with c2 = 2, the solution

state depends on Pr and μ: at μ = 0.7, the solution state is SDC if 0.25 � Pr � 1.2 and

targets if Pr � 2. At μ = 0.4, the solution state is defect, but the motion of dynamic

is faster for lower Pr: At μ = 0.1, the solution evolves into stable stripes if Pr � 0.5

and defects otherwise. The KE is zero if the state is perfect stripes. We conclude that
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Figure 5.22: Averaged KE, averaged over space and over small time periods t = 7500,
as a function of time for Pr = 0.5 (in blue) and Pr = 1 (in red). The KE is lower
for Pr = 1 than for Pr = 0.5, implying a smaller mean flow. The error bars show the
maximum and minimum KE for each profile.

the Kinetic Energy is high in the regime for which Spiral Defect Chaos arises. Note that

the KE for Pr = 1 and μ = 0.7 (SDC state) is smaller than the KE for Pr = 0.25 and

μ = 0.4 (DC state with few spirals), so the KE on its own is not enough to characterize

the solution state.

5.6 Local pattern properties: local wave-vector

We further utilize instantaneous local pattern properties, the local wave-vector magnitude

and local pattern orientation, to relate DC and SDC to the skew-varicose instability in our

model, discussed in chapters 2 and 3. Using numerical estimates of these quantities, we

provide evidence to demonstrate that defects are formed in regions of the pattern in which

the local wavenumber exceeds the skew-varicose boundary. In addition, local properties

can be used to characterize the domain structure of different patterns.

We followed the efficient method for calculating the local wave-vector of stripe patterns

introduced by Egolf et al. [52]. The components of the wave-vector are approximated
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Figure 5.23: The variation of the time averaged KE with Pr at t = 105 for μ = 0.7
(in green), μ = 0.4 (in blue) and μ = 0.1 (in red). The other system parameter values
are gm = 50 and c2 = 2 and L = 40 × 2π. Time averaging is performed from the data
for the final t = 103 period of the simulation. The error bars represent the maximum and
minimum KE in this final period. The dotted lines are guides to the eye. Long error bars
indicate large fluctuations which reflect the complex pattern contains many dynamic spirals
and defect structures. The KE is approximately zero for μ = 0.1, except at Pr = 0.25, for
which the state evolves into DC state.

using partial derivatives of order parameter, ψ. For patterns that are locally striped, we

approximate ψ(x) using, ψ(x) = A(x) cos(φ(x)) with local wave-vector Klocal ≡ ∇φ(x).

Sufficiently far from defects, we expect that the variations in A(x) are small compared to

the variations in φ(x). Hence, the components of the wave-vector Klocal are found using

simple partial derivatives,

Klocal.x̂ =
√

−ψxx/ψ

Klocal.ŷ =
√

−ψyy/ψ

⎫⎪⎪⎬⎪⎪⎭ (5.3)

, where x̂ and ŷ are unit vectors. If ψ is close to zero then 5.3 will be very sensitive to

small uncertainties in ψ. This problem is covered by taking the ratio of the third partial

derivative to the first partial derivative for points where ψ is small. Relative signs of wave
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vectors are obtained by Klocal.ŷ = (ψxy/ψxx)Klocal.x̂. We calculated all the derivatives in

Fourier space. Effects of noise can be reduced by smoothing the wave-vector over small

regions; i.e., the wave-vector can be replaced by the average of it within a small square

region. In our illustrations, we are only concerned with the areas corresponding to patches

of compressed stripes and hence we have filtered out very high and very low wave-vector

magnitudes. We note here that the local wavenumber is undefined at defects and grain

boundaries due to the basic assumption we made in derivation.

We have also calculated the local stripe orientation, θ = tan−1(Klocal.x̂/Klocal.ŷ) at

each point of the pattern.

In this section, the corresponding local wave-vector magnitude of the patterns of large

aspect ratio system L = 100 × 2π, for the set of parameter values, Pr = 0.5, gm = 50,

c2 = 2 with different bifurcation parameter values, μ = 0.1, 0.3, 0.5 and 0.7 are illustrated.

For this set of parameters, the skew-varicose instability boundary is shown in figure 5.24.

Later in this section, we present the local stripe orientation for different patterns.

At μ = 0.1, the pattern is dominated by stripes with few defects and the wavenumber is

approximately constant across the pattern. Eventually the solution will get into a perfect

stripe state with a wavenumber less than unity, which is in the stable region for the set of

parameters of interest. Figure 5.25 shows the local wave-director magnitude at each point

of the pattern shown for μ = 0.1. The localized regions of wavenumber higher than that

for the skew-varicose instability, KSV , are indicated in white. A skew-varicose distortion

for a selected region of high wavenumbers is marked in yellow and the magnified view

is illustrated. Eventually, all such developed skew-varicose distortions propagate away

leaving stable stripes of a smaller local wavenumber.

At μ = 0.3, the pattern is dominated by curved stripes with few defects. Figure 5.26

shows the local wave-director magnitude at the each point of the pattern for μ = 0.3,
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Figure 5.24: SVI boundary for stripes, indicating wavenumber, KSV for Pr = 0.5,
gm = 50 and c2 = 2.

for which we get a solution with largely curved stripes. We mark a region where the

localized skew-varicose instability is observed where the local wavenumber of the pattern

is larger than KSV . We illustrate in figure 5.27 how this skew-varicose distortion evolves.

In the evolution, defects are created. We speculate that for this bifurcation parameter, μ,

skew-varicose distortions leave angled stripes in the solution state.

Figure 5.28 shows the local wave-director magnitude at each point of the pattern shown

for μ = 0.5. The localized regions of wavenumber higher than that for the skew-varicose

instability, KSV , are indicated in white. The corresponding skew-varicose distortions for

some of selected regions of high wavenumbers are marked in yellow, some of which are

inset to give magnified view.

At μ = 0.7, the solution is a well developed SDC state. The stripes are squeezed largely

between spirals and compressed stripes are then evolve into skew-varicose distortions.
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Figure 5.25: Local wave-vector magnitude (left) and the corresponding the pattern (right)
taken from simulations with Pr = 0.5, μ = 0.1, L = 100 × 2π, gm = 50 and c2 = 2
at t = 2 × 104. In the plot of wave-vector magnitude, white indicates where the local
wavenumber exceeds the wavenumber for SV instability (KSV ≈ 1.045). One of the SVI
distortions (marked in yellow) is magnified in middle with the relevant local wavenumber.

Figure 5.29 illustrates the magnitude of the local wave-vector over the SDC pattern at μ =

0.7. The skew-varicose distortions, which are shown in small white patches in local wave-

vector magnitude, appear largely in stripes between spirals. Some of these are indicated

in yellow squares.

Besides checking the SV distortions, the local stripe orientation helps to characterize

the variation of the domain structure of the patterns. The stripe orientation around a

spiral, a defect state and a skew-varicose event are illustrated in figures 5.30, 5.31 and 5.32

respectively. Unlike defects, spirals can be clearly distinguishable as the switching phe-

nomena in the pattern of local stripe orientation around the spiral core is unique to spirals

and it is clearly apparent. At a defect, the local stripe orientation is not clear and the

177



Chapter 5. Solutions to the GSH model: Spiral Defect Chaos and Defect Chaos

 

 

200 400 600 800 1000 1200

200

400

600

800

1000

1200

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Figure 5.26: Local wave-vector magnitude (left) and the corresponding pattern (right) of
the simulations with Pr = 0.5, μ = 0.3, L = 100 × 2π, gm = 50 and c2 = 2. In the plot of
wave-vector magnitude, white indicates the local wavenumber exceeds the wavenumber for
the SV instability (KSV ≈ 1.075), while black signals lower wavenumbers. Pattern, taken
at t = 2 × 104, shows many curved stripes with a few defects. Marked region (in yellow)
shows an example for compressed stripes due to skew-varicose event.

boundary of different angles is non smooth. On the other hand, if the solution state is

perfect a stripe state, the angle of stripes is constant globally.

5.7 Concluding remarks

We first explored the different solution states of numerical simulations: SDC, DC and

target and large spiral pattern. The choice of the system parameters affects the dynamics

and we have first presented numerical evidence to indicate the important role played by

the parameters of the system, particularly Pr, μ and domain size L. Contrary to the

results of Schmitz et. al. 2002 [76], we found that although some larger spirals may be

formed for Pr = 1, (with gm = 50, c2 = 2 and L = 40 × 2π) they will break up and

eventually get to the SDC state. In the main analysis, we systematically varied Pr for
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Figure 5.27: Evolution of the skew-varicose distortion highlighted in figure 5.26 (Pr =
0.5, μ = 0.1, L = 100 × 2π, gm = 50 and c2 = 2). In the sequence (directed by arrows),
the second plot is the skew-varicose distortion marked in yellow in figure 5.26 and each
plot is 500 time units apart.

gm = 50, c2 = 2 and L = 40× 2π and we discovered four different ranges of the parameter

Pr, for which the pattern structures are different and behave differently in the evolution.

For Pr � 0.2, the solution has a complex structure which cannot be identified clearly.

When 0.25 � Pr � 0.8, the SDC state does not, at any time, evolve into global spirals and

therefore the SDC state persists at all the times. However, when 0.9 � Pr � 1.2, larger

spirals are formed and they then breakup into small spirals forming SDC. We speculate

that this transition between bigger spiral state and SDC occurs intermittently for long

times (t > 106). On the other hand, for 2 � Pr � 6, a solution has targets and spirals

and they evolve slowly with time.

We note that the bifurcation parameter, μ should be greater than 0.6 (for gm = 50,
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Figure 5.28: (a) Local wave-vector magnitude (left) and the corresponding pattern (right)
of the simulations with Pr = 0.5, μ = 0.5, L = 100×2π, gm = 50 and c2 = 2. In the plot of
wave-vector magnitude, white indicates the local wavenumber exceeds the wavenumber for
SV instability (KSV = 1.1), while black signals lower wavenumbers. Shadowgraph image
is taken at t = 2 × 104 and is largely dominated by defects and curved stripes with some
few spirals. Marked regions show skewed stripes that correspond to selected white regions
in the plot of wavevector magnitude. The insets show a magnified view of marked regions.
(b) Panel shows the evolution of the selected magnified regions (at t = 2.1 × 104).

c2 = 2 and L = 40 × 2π) for the SDC state to occur. When μ is decreased, the domain

structure of the solution shows a defect dominated state with fewer spirals followed by

Defect Chaos with no spirals followed by a defect state with curved stripes. Further

decrease in μ results in perfect stripe state. We suggested that the transition value of μ

tends to zero in the limit of large L and in the limit of small Pr.

We also investigated the pattern structure varying gm and c and we found the pattern

structure and dynamics of the pattern preserve the ratio gm/Pr c
2. We provided an

analysis of quantitative aspects, Spirals and defects count and Kinetic energy to the mean

flow of different solution states. We extended our analysis to estimate local properties, local

wave-vector magnitude and wave-vector orientation of different patterns and illustrated
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Figure 5.29: Local wave-vector magnitude (left) and the corresponding pattern (right) of
the simulations with Pr = 0.5, μ = 0.7, L = 100 × 2π, gm = 50 and c2 = 2. In the plot
of wave-vector magnitude, white indicates the local wavenumber exceeds the wavenumber
for the SVI (KSV v = 1.12), while black signals lower wavenumbers. Shadowgraph image
is taken at t = 2× 104 and largely dominated by spirals with defects. Marked regions show
skew-varicose distortions.
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Figure 5.30: (a) An image of spiral taken from the pattern in figure 5.29. (b) Local
wave-vector direction, indicated in degrees with respect to the X direction. Red regions are
for the stripes with 90◦ angle while blue denotes −90◦ angle.
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Figure 5.31: (a) Part of a defect taken from the pattern in figure 5.29 (b) Local wave-
vector direction, indicated in degrees with respect to the X direction. Red regions are for
the stripes with 90◦ angle while blue denotes −90◦ angle.
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Figure 5.32: (a) The skew-varicose distortion shown in figure 5.25 (b) Local wave-
vector direction, indicated in degrees with respect to the X direction. Red regions are for
the stripes with 90◦ angle while blue denotes −90◦ angle.

the SVI events in different patterns.
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Chapter 6

Conclusions and Discussion

Motivated by the most striking signatures of the mean flow effects in Rayleigh–Bénard

Convection, the Spiral Defect Chaos (SDC) state and the existence of the skew-varicose

instability, we have investigated two generalized Swift–Hohenberg models of convection

that include the mean-flow effects. The skew-varicose instability is known to play an

important role in the formation of Spiral Defect Chaos [6, 47], a spatio-temporally complex

pattern, that competes with stationary rolls near the onset of convection in medium to

low Prandtl number convection.

The main difference between the two models we analyzed is that in the first model

vorticity has its own independent dynamics [69], while in the second, vorticity is directly

slaved to the order parameter [64]. In addition to the driving parameter μ, the dynamics

of model 1 could be controlled using three parameters, Prandtl number, Pr, coupling

coefficient to mean flow, gm and a parameter c, which accounts the boundary conditions,

stress-free (c = 0) and no-slip (c2 = 2); in model 2, the coupling coefficient to mean flow,

g, is the only extra parameter.

The skew-varicose instability in these models has been difficult to analyse owing to

the absence of consistent scaling for the modulation wavenumber and the system param-

eters [90]. Therefore, previous work [90, 93, 94] has made varying assumptions on the

relation between k, l (where (k, l) is the perturbation wavevector) and the amplitude of
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the basic stripe solution. The novelty of this work was that we used a projection operator,

Pα, that applies to the cubic nonlinearity and acts as a filter in Fourier space, allowing the

exact stripe solution of the PDEs to be written down explicitly [91]. We then carried out

a complete linear stability analysis of the stripe solution. We expressed the relevant deter-

minants as power series in k2 and l2 and hence derived explicit expressions for the largest

growth rates; this has led to an improved understanding of the instabilities of stripes over-

coming the main difficulty, the appearance of k2+l2 in the denominator of the determinant,

by a careful consideration of appropriate limits. We theoretically derived the boundaries

of Eckhaus, zigzag, skew-varicose and oscillatory skew-varicose instabilities with numerical

verification, while cross-roll and oscillatory instabilities are investigated using numerical

computations of the eigenvalues of the stability matrices. We established a relationship

between two models through g = gm/(Pr c2). Therefore the results we derived are in an

agreement in both models with this relationship. However, the oscillatory instabilities do

not exist in model 2, owing to the lack of intrinsic dynamics in the vorticity field.

We found two different behaviours of the skew-varicose instability: in the limit of μ

going to zero, the SVI goes as μ ∼ 12q2 (q = K−1, where K is the wavenumber), provided

g > 0.75. The most unstable wave-vector satisfies k2/l2 = O(1). In this case, stripes are

Eckhaus stable at the SVI. For g < 0.75, the SVI boundary crosses the Eckhaus curve, and

in the limit of μ going to zero, it goes as μ ∼ aq2 with 4 < a < 12. In the large g limit (that

is, for very low Pr, or for stress-free boundary conditions), there is a transition of the SVI

boundary from μ ∼ 12q2 to μ ∼ 8q at a wavenumber satisfying q ∝ 1/g. The oscillatory

skew-varicose (OSV) instability occurs only with stress-free boundary conditions and is

approximately μ =
(
−3+

√
5

3

)
qgm, for small μ. We presented results for both stress free

and no-slip boundary conditions: stability diagrams in the (μ, q) plane, exploring the role

of the mean flow and the effect of Prandtl number on the region of stable stripes. This
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region is eliminated for small μ if g is large enough or if Pr is small enough.

The use of the projection operator Pα, which is equivalent to a truncation to selected

wavenumbers, made this analysis straightforward and allowed the complete understanding

of the skew-varicose instability in our models. Numerical simulations of these projected

models for small μ have qualitatively the same solutions as the unprojected PDEs; this is

our justification for using these projected models in the stability analysis for small μ. The

projected and unprojected models will of course differ for large μ.

We characterized the nonlinear evolution of the modes that are responsible for the

skew-varicose instability in order to understand whether the bifurcation from stable stripes

at the skew-varicose instability is supercritical or subcritical. We derived two systems

of ODEs, first selecting three relevant modes (3-mode truncation), and then extending

this to include 2 more relevant modes (5-mode truncation). We carried out a centre

Manifold Reduction at the bifurcation point and showed that in the 3-mode truncation,

the secondary bifurcation is supercritical. This was inconsistent with our experience with

solving the PDE numerically. We therefore introduced the 5-mode truncation, in which

the bifurcation is subcritical as expected. A bifurcation diagram illustrating this scenario

is presented for the parameters, g = 20, q = 0.1 and k = l = 2π/L = 0.05.

Our results suggest that the three mode truncation does not capture the correct non-

linear solutions at the skew-varicose instability, and that a truncated system of 5 modes

may capture the correct behaviour. We therefore claim that the bifurcation structure pre-

sented by Nguyen and Homburg [97] is unlikely to capture the correct nonlinear behaviour

of the skew-varicose instability. Their work is based on the Busse system, which was

derived by truncating to just three modes in the PDEs for Rayleigh–Bénard Convection

assuming stress free boundary conditions and limiting to a small aspect ratio with domain

size L = 2 × 2π.
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The improved understanding of the stability of stripes in this work provided the foun-

dation for numerical simulations of the PDEs in large domains. We explored the Spiral

Defect Chaos state using a generalized Swift–Hohenberg model (GSH model 1) and estab-

lished numerically the role of the mean flow, the Prandtl number and the parameters c

and μ in the transformation of different solutions (SDC, Defect Chaos and target states),

in model 1.

Reasonable values of Pr and the coupling coefficient to the mean flow, gm, that gener-

ate Spiral Defect Chaos have already been explored at some length in literature. However,

Schmitz et al. [76] in 2002 claimed that the SDC in GSH models occurs only as a transient

(in contrast to SDC found in experiments) and that the small-scale structure of the vortic-

ity field at the spiral cores, which might be crucial for persistent SDC, may not captured

in the GSH model. Their claim was based only on a simulation carried out for t = 6× 104

time units with the parameter values, Pr = 1, gm = 50, c2 = 2 and aspect ratio, Γ = 32.

Our results for the same parameter values, run over much longer times, suggest that these

bigger spirals may eventually break into smaller spirals and defects, returning to the SDC

state. We speculate that the system then cycles between SDC and a state dominated by

bigger spirals.

In our main analysis, we systematically varied Pr and μ keeping other parameter values

fixed at gm = 50, c2 = 2, L = 40 × 2π. Our results show that the SDC state occurs when

μ � 0.6 and with suitably selected Pr, the GSH model generates SDC with persistent

dynamics, resembling the spiral defect chaos of RBC. We found that for Pr in the range

0.25 � Pr � 0.8, the SDC state persists for as long as we have simulated (t = 2 × 106

time units) whereas in the range 0.9 � Pr � 1.2, SDC pattern can develop into a state

dominated by bigger spirals and then back to SDC state (the solution may then cycle

between SDC and a state dominated by bigger spirals). We supported these conclusions
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by using time series evolution of the Kinetic Energy and by counting the number of spirals.

The Spiral Defect Chaos state is replaced by a state with slowly moving targets if Pr � 2,

whereas if Pr � 0.2, the solution is more chaotic and spirals cannot be distinguished.

By varying gm and c2, we found that which type of solution is present depends on the

combination gm/Pr c
2.

When μ is decreased, spirals break up into defects, giving a defect dominated state

followed by perfect stripe pattern at even lower μ. We found that this transition of stripes

to defect state, occurs at μtransition > 0 in finite domains, but in the limit of large L,

μtransition appears to go to zero, suggesting that the onset of stripes and onset of Defect

Chaos are the same in an infinite domain. We also investigated the dependence of this

transition on Pr, and μtransition appears to go to zero, when Pr tends to zero.

With the support of the local wave vector in different patterns and the stability analysis

for the skew-varicose instability we established that it is skew-varicose events that are

responsible for maintaining Defect Chaos.

In the future it will be of interest to address the question whether a similar projection

operator could be used in the analysis of the Navier–Stokes equations.

The Busse system, which is derived from the original fluid equations has the same

structure as our 3-mode truncation of the GSH model and hence a relation to the coef-

ficients could be found. We recommend the structure of our extended system of 5-mode

truncation could be used to derive an extension to a Busse system and hence to follow the

work carried out by Nguyen et al. [97] and Busse [95].

We anticipate that our results on SDC have brought a significant advantage that the

GSH model, for some parameters, is capable of generating a Spiral Defect Chaos state that

persists for long time, could be used to investigate several properties of dynamics of SDC

in Rayleigh–Bénard convection. In addition, our investigation of the local wavenumber of
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the solution state combined with the stability diagram of the GSH model could be used

to guide the development of a more accurate theoretical description of the connection

between the skew-varicose instability and the SDC state and hence to get an improved

understanding of why SDC occurs in convection.

189



Bibliography

[1] R. Joseph. Infinity patterned symmetry pythagoras and the black hole at the edge

of the universe. Journal of Cosmology, 13, 2011. In press.

[2] N. Mui. http://www.travelblog.org/Wallpaper/sand_dunes_mui_ne.html,

2011. [Online; accessed 23-Oct-2011].

[3] P. Manneville. Rayleigh–Bénard Convection: Thirty years of experimental, theoret-

ical, and modeling work. Springer Tracts in Modern Physics, 207:41–65, 2006.

[4] V. Croquette. Convective pattern dynamics at low Prandtl number: Part II. Con-

temporary Physics, 30:153–171, 1989.

[5] F. H. Busse and J. A. Whitehead. Instabilities of convection rolls in a high Prandtl

number fluid. J. Fluid Mech., 47:305–320, 1971.

[6] R. M. Clever and F. H. Busse. Large wavelength convection rolls in low Prandtl

number fluids. J. of App. Math. and Phys., 29:711–714, 1978.

[7] M. Lowe and J. P. Gollub. Pattern Selection near the Onset of Convection: The

Eckhaus Instability. Phys. Rev. Lett., 55:2575–2578, 1985.

[8] B. Plapp. Spiral-pattern formation in Rayleigh–Bénard Convection. PhD thesis,

Cornell Univ., Ithaca, New York (Unpublished), 1997.

[9] M. Assenheimer and V. Steinberg. Rayleigh–Bénard convection near the gas-liquid

critical point. Phys. Rev. Lett., 70:3888–3891, 1993.

190

http://www.travelblog.org/Wallpaper/sand_dunes_mui_ne.html


Chapter 6. Conclusions and Discussion

[10] H. Riecke and S. Madruga. Geometric diagnostics of complex patterns: Spiral defect

chaos. Chaos, 16:013125, 2006.

[11] K. H. Chiam, M. R. Paul, M. C. Cross, and H. S. Greenside. Mean flow and spiral

defect chaos in Rayleigh–Bénard convection. Phys. Rev. E, 67:056206, 2003.

[12] H. Bénard. Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. Sci. Pure

Appl., 11:679–686, 1900.

[13] L. Rayleigh. On convection currents in a horizontal layer of fluid, when the higher

temperature is on the under side. Phil. Mag., 32:529546, 1916.

[14] G. Taylor. Stability of a Viscous Liquid Contained between Two Rotating Cylinders.

Phil. Trans. R. Soc. Lond. A, 223:289–343, 1923.

[15] M. Faraday. On a peculiar class of acoustical figures; and on certain forms assumed

by a group of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond.,

121:299–318, 1831.

[16] M. Cross. Pattern formation and dynamics in nonequilibrium systems. Cambridge

University Press, 2009.

[17] A. Schluter, D. Lortz, and F. Busse. On the stability of steady finite amplitude

convection. J. Fluid Mech., 23:129, 1965.

[18] C. Normand, Y. Pomeau, and M. G. Velarde. Convective instability: A physicists

approach. Rev. Mod. Phys, 49:581–624, 1977.

[19] S. Chandrasekhar. Hydrodynamic and hydromagnetic stability. Oxford University

Press, 1961.

191



Chapter 6. Conclusions and Discussion

[20] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev.

of Mod. Phys., 65:851–1112, 1993.

[21] A. C. Newell, T. Passot, and J. Lega. Order parameter equations for patterns. Ann.

Rev. Fluid Mech., 25:399–453, 1993.

[22] M. Chen and J. Whitehead. Evolution of two-dimensional periodic Rayleigh–Bénard

Convection cells of arbitrary wavenumbers. J. Fluid Mech., 31:1–15, 1968.

[23] Y. Hu, R. Ecke, and G. Ahlers. Convection near threshold for Prandtl numbers near

1. Phys. Rev. E, 48:4399–4413, 1993.

[24] F. H. Busse. The oscillatory instability of convection rolls in a low Prandtl number

fluid. J. Fluid Mech., 52:97–112, 1972.

[25] F. H. Busse and R. M. Clever. Instabilities of convection rolls in a fluid of moderate

Prandtl number. J. Fluid Mech., 91:319–335, 1979.

[26] E. W. Bolton and F. H. Busse. Stability of convection rolls in a layer with stress-free

boundaries. J. Fluid Mech., 150:487–498, 1985.

[27] F. H. Busse. The stability of finite amplitude cellular convection and its relation to

an extremum principle. J. Fluid Mech., 30:625–649, 1967.

[28] F H Busse. Fundamentals of Thermal Convection. Mantle convection plate tectonics

and global dynamics, Gordan and Breach Science publishers, New York, 1989.

[29] C. Newell and J. Whitehead. Finite bandwidth, finite amplitude convection. J. Fluid

Mech., 38:279303, 1969.

[30] W. Eckhaus. Studies in Nonlinear Stability Theory. Berlin: Springer-Verlag, 1965.

192



Chapter 6. Conclusions and Discussion

[31] J. Whitehead and M. Chen. Stability of Rayleigh–Bénard Convection rolls and

bimodal flow at moderate Prandtl number. Dynamics of Atmospheres and Oceans,

1:33–59, 1976.

[32] T. Rossby. A study of Bénard convection with and without rotation. J. Fluid Mech.,

36:309, 1969.

[33] R. M. Clever and F. H. Busse. Large wavelength convection rolls in low Prandtl

number fluids. J. of App. Math. and Phys., 29:711–714, 1978.

[34] A. Zippelius and E. D. Siggia. Stability of finite-amplitude convection. Phys. of

Fluids, 26:2905–2915, 1983.

[35] F. H. Busse and E. W. Bolton. Instability of convection rolls with stress-free bound-

aries near threshold. J. Fluid Mech., 146:115–125, 1984.

[36] R. M. Clever and F. H. Busse. Transition to time-dependent convection. J. Fluid

Mech., 65:62545, 1974.

[37] R. M. Clever and F. H. Busse. Nonlinear properties of convection rolls in a horizontal

layer rotating about a vertical axis. J. Fluid Mech., 94:609–27, 1979.

[38] S. W. Morris, E. Bodenschatz, D. S. Cannell, and G. Ahlers. Spiral defect chaos

in large aspect ratio Rayleigh–Bénard convection. Phys. Rev. Lett., 71:2026–2029,

1993.

[39] G. Ahlers. Experiments on spatiotemporal chaos. Physica A, 249, 1998.

[40] M. Assenheimer and V. Steinberg. Transition between spiral and target states in

Rayleigh–Bénard convection. Nature, 367:345 – 347, 1994.

193



Chapter 6. Conclusions and Discussion

[41] J. Liu and G. Alhers. Spiral-defect chaos in Rayleigh–Bénard Convection with small

Prandtl numbers. Phys. Rev. Lett., 77:312629, 1996.

[42] B. Plapp and E. Bodenschatz. Core dynamics of multi-armed spirals in Rayleigh–

Bénard convection. Phys. Scr., 67:111–116, 1996.

[43] M. J. Lees, M. S. Thurlow, J. R. Seddon, and P. G. Lucas. Convective Roll Dynamics

in Liquid 4He near the Onset of Convection. Phys. Rev. Lett., 93(14):144502, 2004.

[44] W. Decker, W. Pesch, and A. Weber. Spiral defect chaos in Rayleigh–Bénard con-

vection. Phys. Rev. Lett., 73:648–651, 1994.

[45] S. W. Morris, E. Bodenschatz, D. S. Cannell, and G. Ahlers. The spatio-temporal

structure of Spiral-Defect Chaos. Physica D: Nonlinear Phenomena, 97:164–179,

1996.

[46] W. Pesch. Complex spatiotemporal convection patterns. Chaos, 6:348–357, 1996.

[47] E. Bodenschatz, W. Pesch, and G. Ahlers. Recent Developments in Rayleigh–Bénard

Convection. Ann. Rev. Fluid Mech., 32:709–778, 2000.

[48] R. V. Cakmur, D. A. Egolf, B. Plapp, and E. Bodenschatz. Transition from Spa-

tiotemporal Chaos to Ideal Straight Rolls in Rayleigh–Bénard Convection. In eprint

arXiv:patt-sol/9702003, pages 2003–+, 1997.

[49] Y. Hu, R. Ecke, and G. Ahlers. Convection for Prandtl numbers near 1: Dynamics

of textured patterns. Phys. Rev. E, 51:3263–3279, 1995.

[50] X. J. Li and J. D. Xi, H. W.and Gunton. Nature of roll to spiral-defect-chaos

transition. Phys. Rev. E, 57:1705–1716, 1998.

194



Chapter 6. Conclusions and Discussion

[51] R. Ahlers G. Ecke, R. Mainieri. Excitation of spirals and chiral symmetry breaking

in Rayleigh–Bénard Convection. Science, 269:1704–7, 1995.

[52] D. A. Egolf, I. V. Melnikov, and E Bodenschatz. Importance of Local Pattern

Properties in Spiral Defect Chaos. Phys. Rev. Lett., 80:3228–3231, 1998.

[53] D. A. Egolf, I. Melnikov, W. Pesch, and R. Ecke. Mechanisms of extensive spa-

tiotemporal chaos in Rayleigh–Bénard Convection. Nature, 404:733736, 2000.

[54] M. Cross. Theoretical modelling of spiral chaos in Rayleigh–Bénard Convection.

Physica D, 97:65–80, 1996.

[55] M. C. Tu, Y.and Cross. Chaotic domain structure in rotating convection. Phys. Rev.

Lett., 69:2515–2518, 1992.

[56] P. Manneville. A two-dimensional model for three-dimensional convective patterns.

Journal of Physics France, 44:759–765, 1983.

[57] M. Cross. Phase dynamics of convective rolls. Phys. Rev. A, 27:490498, 1983.

[58] C. Newell, T. Passot, and M. Souli. The phase diffusion and mean drift equations for

convection at finite Rayleigh numbers in large containers. J. Fluid Mech., 220:187–

252, 1990.

[59] M. C. Cross and A. C. Newell. Convection patterns in large aspect ratio systems.

Physica D: Nonlinear Phenomena, 10(3):299–328, 1984.

[60] E. D. Siggia and A. Zippelius. Pattern Selection in Rayleigh–Bénard Convection

near Threshold. Phys. Rev. Lett., 47:835–838, 1981.

[61] Pocheau A. Daviaud F. Inhibition of phase turbulence close to onset of convection by

195



Chapter 6. Conclusions and Discussion

permeable lateral boundary condition for the mean flow. Euro. phys. Lett., 9:67580,

1989.

[62] J. Swift and P. C. Hohenberg. Hydrodynamic fluctuations at the convective insta-

bility. Phys. Rev. A, 15:319–328, 1977.

[63] Y. Pomeau and P. Manneville. Stability and fluctuations of a spatially periodic

convective flow. J. Phys. France Lett., 40:L60912, 1979.

[64] H. S. Greenside and M. C. Cross. Stability analysis of two-dimensional models of

three-dimensional convection. Phys. Rev. A, 31:2492–2501, 1985.

[65] M. Bestehorn and H. Haken. Traveling waves and pulses in a two-dimensional large-

aspect-ratio system. Phys. Rev. A, 42:7195–7203, 1990.

[66] M. Bestehorn, M. Fantz, R. Friedrich, and H. Haken. Hexagonal and spiral patterns

of thermal convection. Phys. Lett. A, 174:48–52, 1993.

[67] X.-J. Li, H.-W. Xi, and J. D. Gunton. Dynamical properties of multiarmed global

spirals in Rayleigh–Bénard Convection. Phys. Rev. E, 54:R3105–8, 1996.

[68] V. Gertsberg and G Sivashinsky. Stability analysis of two-dimensional models of

three-dimensional convection. Prog. Theor. Phys., 66:1219, 1980.
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