Development of methods for the synthesis of natural product-like macrocycles

Mark John Laurence Dow

Submitted in accordance with the requirements for the degree of a PhD

The University of Leeds
School of Chemistry

September, 2012

The candidate confirms that the work submitted is his ownand that appropriate credit has been given where reference has been made to the work of others

This copy has been supplied on the understanding that it is copyright material and no quotation from the thesis may be published without proper acknowledgement.
© 2012 The University of Leeds and Mark John Laurence Dow

Acknowledgements

There are numerous people that I am hugely grateful to for their support and help throughout my PhD degree. First and foremost, I would like to my supervisors Prof. Adam Nelson and Dr. Stuart Warriner. They have been a constant source of ideas, unthinkable amount of knowledge and expertise (not just chemistry!); but also enthusiasm and support. I would also like to thank Luis-Manuel Vaz my CASE supervisor, who was extremely helpful, and continued to provide support when I returned from placement. This PhD would not have been possible if it weren't for the generous funding from EPSRC and AstraZeneca.

I would like to express my thanks to the technical staff at the University of Leeds including Tanya Marinko-Covell, Simon Barrett and Martin Huscroft. In particular I would like to thank Simon Barrett for assisting with numerous NMR experiments.

During my PhD at I have met and worked alongside some brilliant chemists, they have provided not only a stimulating lab to work in but an enjoyable place to work. I owe particular thanks to Dr. Francesco Marchetti ('Franny') who worked alongside me on this project. Outside the project I would like to thank Tom James ('TOJ'), Ieuan Davies, Charles-Hugues Lardeau ('Chaz'), Tom Harman, Adrian Fowkes, Martin Fisher ('Fishy'), Sarah Murrison, Catherine O'Leary-Steele, Giorgia Magnatti, Paul MacLellan ('PM') and George Karageorgis ('GWhizz').

I would also like to thank my family for their constant love and support, in particular both my Grandads who kept supporting me throughout my studies. Last, but by no means least, thanks to my now wife Gemma Dow. I cannot thank you enough for the constant support you have provided during my studies, for which you uprooted from your home town and family to join me in Leeds so I could carry out my studies. Thank-you.

I dedicate this thesis to my grandad Dr Ronald Dow, who passed away whilst I was completing my corrections. I'm glad he was still here to learn that I successfully passed my viva voce.

Abstract

This thesis describes a modular diversity-oriented synthesis approach, which exploited a 'build \rightarrow couple \rightarrow couple \rightarrow pair' reaction sequence, to generate a library of natural product-like macrocycles. The use of a fluorous-tagged building block allowed the expedient purification of the substrates between the 'couple \rightarrow couple' stages of the sequence. Building blocks were iteratively linked onto the fluorous tagged building block to give linear substrates bearing two terminal alkenes. These substrates were subjected to ring-closing metathesis to yield diverse macrocyclic scaffolds. Subsequent, deprotection and diversification steps yielded natural product-like macrocycles. Using this approach, over 13 macrocyclic scaffolds were prepared which, in turn, after diversification, yielded over 55 diverse macrocycles, each with unique scaffolds. In addition this project also saw the synthesis of the corresponding linear compounds.

Chapter 1 discusses the importance of macrocycles in nature, how this class of molecules have been poorly explored and methods that have been used to explore chemical space. Chapter 2 describes the synthesis of the building blocks and the proposed method to prepare the library of diverse macrocycles. Chapter 3 explores the reactivity of the building blocks and developments required to improve the efficiency of the library synthesis. Chapter 4 describes the final library synthesis from building blocks to final compounds. This work aims to prepare compounds with potential bioactivity; however, the biological evaluation of the compounds is beyond the remit of the study.

Contents

1 Introduction 1
1.1 The importance of macrocyclic small molecules 1
1.1.1 Broad structural features of macrocycles 1
1.1.2 Effect of macrocyclization on biological activity 2
1.1.3 Effect of macrocyclization of pharmacokinetic properties 4
1.2 Macrocyclization Methods 5
1.2.1 Ring-closing metathesis 6
1.2.2 'Click' Macrocyclization 7
1.2.3 Macrolactonization7
1.3 Diversity-oriented synthesis 8
1.3.1 Folding pathways in Diversity-Oriented Synthesis 8
1.3.2 Branching pathways in Diversity-Oriented Synthesis 11
1.3.3 Oligomer-based approaches in Diversity-Oriented synthesis 14
1.4 Diversity-oriented synthesis of macrocycles 17
1.4.1 Bioactive Macrocyclic Compounds discovered via DOS methodologies 19
1.5 Project outline and design 20
1.5.1 Fluorous-tagging technologies 22
1.5.2 Synthetic methods to be exploited 22
1.5.3 Design of building blocks and cyclisation substrates 23
1.5.4 Molecular Properties 24
1.5.5 Design of a comparative study of acycles and macrocycles 26
1.5.6 Molecular properties of the proposed library 26
2 Building block synthesis 29
2.1 Synthesis of initiating building blocks 29
2.2 Synthesis of propagating building blocks 36
2.3 Synthesis of terminating building blocks 38
2.3.1 Terminating alcohol synthesis 38
2.3.2 Synthesis of 2-nitrobenzenesulfonyl amides 40
2.3.3 N-(2-nitrobenzenesulfonamide) isocyanate synthesis and subsequent synthesis of N-(2-nitrobenzenesulfonamide) carbamates 41
2.3.4 Synthesis of N-(trifluoromethanesulfonamide) terminating building blocks 45
2.4 Summary of building blocks synthesised 46
3 Development of methods for the synthesis of a diverse library of macrocycles 47
3.1 Examination of the Fukuyama-Mitsunobu reaction as a method to link building blocks 47
3.2 Optimisation of the metathesis reaction 50
3.3 Diversification of the free amine cyclic and acyclic scaffolds 53
3.4 Summary 56
4 Synthesis of library intermediates and natural product-like macrocycles 57
4.0.1 Revised library design 57
4.0.2 Molecular property distributions of the proposed library 57
4.1 Attachment of propagating building blocks to the fluorous-tagged initiating building block 59
4.2 Attachment of terminating building blocks to yield metathesis substrates 60
4.3 Ring-closing metathesis reactions 64
4.3.1 Dynamic behaviour of selected macrocyclic products 68
4.3.2 Characterisation of the geometrical isomers of the 13-membered macrocycle 249 69
4.4 Derivatization of the scaffolds 74
4.4.1 Derivatization of the macrocyclic scaffolds 74
4.4.2 Derivatization of the linear scaffolds 78
4.5 Review of molecular properties of the final library 82
Summary 84
5 Experimental 85
4.1 General procedures 87
Appendix 1 Example NMR spectra from final compound 250
Appendix 2 Crystal structure of 159a 253

Abbreviations

Ac	acetyl
app	apparent
Ar	aryl
Boc	tert-butyloxycarbonyl
br	broad
${ }^{\circ} \mathrm{C}$	degrees Celsius
ca.	circa; about
${ }^{\text {c }} \mathrm{Pr}$	cyclopropyl
δ	chemical shift
d	doublet
DCC	N-dicylcohexylcarbodiimide
DEAD	diethyl azodicarboxylate
DIPEA	N, N-diisopropylethylamine
DMAP	4- N, N-dimethylaminopyridine
DMF	N, N-dimethylformamide
DMSO	dimethyl sulfoxide
DOS	diversity oriented synthesis
DPPA	Diphenylphosphoryl azide
d.r.	diastereomeric ratio
EDC	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
e.e.	enantiomeric excess
e.g.	exempli gratia; for example
El	electronic ionisation
eq.	equivalents
ESI	electrospray ionisation
etc.	et cetera; and so forth
Et	ethyl
ether	diethyl ether
${ }^{\text {F DIPES }}$	fluorous diisopropyl silyl
F-SPE	Fluorous Solid Phase Extraction
HG-II	Hoveyda-Grubbs' second generation catalyst
HPLC	High performance liquid chromatography
${ }^{\text {i Pr }}$	isopropyl
IR	infrared
J	spin-spin coupling constant
LCMS	Liquid chromatography mass-spectrometry
m.p.	melting point
MS	molecular sieves
m / z	mass to charge ratio
NBS	N -bromosuccinimide
NMR	Nuclear magnetic resonance
Ns	2-nitrobenzenesulfonyl; nosyl
Ph	phenyl
ppm	parts per million
pyr	pyridine
qn	quintet
RCM	ring-closing metathesis
$R_{\text {f }}$	Retention factor
r.t.	room temperature
s	singlet
t	triplet
TBAF	tetra- N -butylammonium fluoride
TBS	tert-butyldimethylsilyl
tert	tertiary

Tf	trifluoromethanesulfonate; triflate
THF	tetrahydrofuran
TLC	thin layer chromatography
TPSA	total polar surface area
v	wavelength
wrt	with respect to

1 Introduction

1.1 The importance of macrocyclic small molecules

Macrocyclic small molecules are of tremendous interest both as targets for synthetic chemistry and as biologically functional compounds. ${ }^{1}$ This interest has largely stemmed from macrocyclic natural products that exhibit interesting and diverse biological activity; ${ }^{2}$ macrocycles may be used as chemical tools for probing biological mechanisms and as starting points for drug discovery. The medicinally-relevant properties of macrocyclic natural products include immunosupression, ${ }^{3}$ anti-cancer and antibiotic activity; these activities are displayed by rapamycin $\mathbf{1}^{4,5}$ epithilone B $\mathbf{3}^{6,7,8}$ and erythromycin 2^{9} respectively (Figure 1).

1

2

3

Figure 1 The chemical structures of rapamycin 1, erythromycin 2 and epithilone B 3

1.1.1 Broad structural features of macrocycles

Macrocycles are an interesting class of molecules which bridge the gap between conventional small molecules and biological macromolecules; ${ }^{1}$ the molecular masses of macrocycles typically do not generally comply with the Lipinski 'Rule of 5, 10-12 guidelines that have dominated medicinal chemistry. Macrocycles are considered to possess rings with 12 or more covalently bonded atoms. ${ }^{2}$ The cyclic structure reduces
the number of rotatable bonds compared to comparable acyclic molecules, ${ }^{13}$ restricting conformation and reducing the entropic penalty associated with binding to a protein. Macrocyclization also imparts topology into the molecule, often yielding two distinct 'faces', allowing a large surface area of protein binding site to be targeted. ${ }^{11,12,13,6,14}$

1.1.2 Effect of macrocyclization on biological activity

Macrocyclization has become a significant tactic in drug discovery programmes. Table 1 summarises selected cases where macrocyclization has had a beneficial effect on biological function. The structure of the complex between the bound linear compound 4 and BACE-1 highlighted the proximity of the two ends of the bound molecule; macrocyclization, to give 5 , resulted in a 34 -fold improvement in affinity (entry 1). The researchers subsequently exploited the macrocycle 5 as a starting point for the discovery of compounds with low nanomolar affinity (not shown). ${ }^{18}$ The checkpoint kinase-1 inhibitor 7 was developed following modelling studies of a linear compound (not shown); ${ }^{19}$ a 440 -fold increase in binding was observed relative to 6 (entry 2). The tetrahydroisoquinoline-3-carboxylamide 8 was identified as a micromolar inhibitor (K_{i} : $15 \mu \mathrm{M}$) of the hepatitis C virus non-structural protein 3 (HCV-NS3). ${ }^{20}$ Crystallographic studies showed that, upon binding, the capping Boc group was in close proximity to the aromatic ring. The macrocyclic analogue 9 of the tetrahydroisoquinoline-3carboxylamide 8 was then prepared and displayed a ca. 70-fold improvement in binding (entry 3). NMR experiments revealed that the piperazinone 10 undergoes a considerable conformational change on binding to farnesyl transferase (FTase). The cyclised variant 11, which adopts a similar conformation to the bound ligand, was therefore prepared; its affinity for FTase was 55,000 -fold higher than the comparable acyclic variant 10 (entry 4). ${ }^{21}$
Table 1 Biological activity of selected macrocycles and their acyclic counterparts

?		$\underset{\text { \# }}{\substack{\text { \# }}}$	0 0		

1^{18}

4

5

(2)

Macrocyclization may also be used as a tactic to control the selectivity of bioactive small molecules. Macrocyclization of the broad-spectrum matrix metalloproteinase (MMP) inhibitor 13, to give 12, resulted in significantly more selective ligands. Cyclisation increased inhibitory activity towards MMP8 (K_{i} : 293 nM for 13 compared to 17 nM for 12), whilst activity against other MMPs remained either similar or was reduced (in the case of MMP2 and MMP9). The macrolactone 14 was also synthesised and displayed increased activity towards MMP8; however the inhibition of MMP2 and 3
was also improved. ${ }^{22,23}$ It is likely that increased target specificity stems from the restricted conformation of the macrocycles compared to the acyclic variant 13.

12

13

14

	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
MMP1	2,500	2,860	8,400
MMP2	8,100	1,533	238
MMP3	13,500	14,088	2,900
MMP8	17	293	10
MMP9	6,600	404	5,800

Figure 2 Comparison of selectivity of the MMP inhibitors 12, 13 and 14; $K_{\mathrm{i}}(\mathrm{nM})$

1.1.3 Effect of macrocyclization of pharmacokinetic properties

Macrocyclization can also improve the pharmokinetic properties of small molecules. Although peptides can be effective inhibitors they are generally susceptible to enzymatic hydrolysis. ${ }^{24}$ However, in many cases, cyclisation can provide resistance to hydrolysis, in general by stabilising a conformation that is not targeted by proteases. ${ }^{25,26}$ For example, the in vitro stability of linear compound 15 and macrocycle 16 were examined in rat plasma; after 5 h only ca. 70% of 15 remained, whereas the macrocycle 16 showed no detectable degradation.

Figure 3 Chemical structures of peptide deformylase inhibitors 15 and $16.16 \mathrm{~K} / 0.67 \mathrm{nM}$
Efficacious drugs must be able to reach their protein target in vivo. Macrocyclization can improve membrane permeability by satisfying hydrogen bonding requirements intramolecularly and through reducing the number of effective rotatable bonds.

Veber et al. examined the contribution of molecular rigidity to oral bioavailability. It was found that ca. 65% of molecules that have ≤ 7 rotatable bonds achieve $\geq 20 \%$ oral bioavailability in rats; in contrast only ca. 25% of molecules that have >10 rotatable bonds only achieve <20\% oral bioavalability. ${ }^{13}$

1.2 Macrocyclization Methods

The key step in the synthesis of most macrocycles is the ring-forming step. Polyketide synthases carry out this step using the terminal thioesterase to effect the concomitant cyclisation and release of macrocycles. ${ }^{27}$ The macrocyclization step can be problematic in the laboratory due to competing intermolecular reactions which can lead to lowyields for the required product and the formation of oligomers. ${ }^{15,28}$ The rate of cyclization, however is extremely dependent on ring size (see Graph 1). Numerous methods have been developed or adapted to overcome these problems and facilitate macrocyclization; the main methods include macrolactonization (see Section 1.2.3), macrolactamization ${ }^{29,30,31}$ and ring-closing metathesis, ${ }^{32}$ often under high dilution conditions (see section 1.2.1). However other methods have been developed to facilitate ring-closure; $\mathrm{S}_{N} \mathrm{Ar},{ }^{33}$ Wittig, ${ }^{34}$ Stille, ${ }^{35}$ Buchwald—Hartwig, ${ }^{36}$ Sonogashira, ${ }^{37-}$ ${ }^{40} \mathrm{Heck}^{41,42}$ and Suzuki ${ }^{43-46}$ reactions. Ultimately, the choice of ring closure depends on the functionality accepted within the target molecule. The kinetics of ring closing is well understood; Illuminati measured the rates of ring closure of ω-Bromo Acids to give the corresponding (macro)lactones (see Graph 1). ${ }^{47}$ The study showed that whilst ring closing of large rings (>12) is considerably slower than small rings (4-6), it was considerably faster than that of medium rings (8-12).

Graph 1 Relative rate of cyclization of ω-Bromo Acids, $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{n-2} \mathrm{CO}_{2} \mathrm{H}$, in 99% aqueous DMSO^{47}

1.2.1 Ring-closing metathesis

Ring-closing metathesis (RCM) has received huge interest, and has become a cornerstone of synthetic organic chemistry; ${ }^{48,49,50}$ The approach is now one of the most utilised methods for macrocyclisation, ${ }^{51,49}$ notably in the synthesis of natural products. ${ }^{52}$ Metathesis catalysts have been developed to improve their stability, reactivity and selectivity. ${ }^{50}$ The value of RCM stems from the lack of reactivity of carbon-double bonds under many reaction conditions (enables the synthesis of substrates), together with the high selectivity of the catalysts (in the cyclisation step). Ruthenium-based catalysts such as the Grubbs first- (17) and second- (18) generation catalysts and the Hoveyda-Grubbs first- (19) and second- (20) generation catalysts are most widely used in metathesis reactions; in particular, 19 and 20 have excellent reactivity and are tolerant to non-inert conditions. ${ }^{53}$

Figure 4 Structures of metathesis catalysis
The functional group created in ring-closing metathesis reactions is an alkene which can facilitate subsequent functionalization (e.g. via epoxidation, dihydroxylation or hydrogenation). The effectiveness of ring-closing metathesis is highlighted by the large scale synthesis of a HCV protease inhibitor BILN 2061 21. ${ }^{54,55}$ The ring-closing step was facilitated by the treatment of the acyclic substrate (not shown) with $0.1 \mathrm{~mol} \%$ of a customised ruthenium catalyst (not shown) in toluene at reflux; this method resulted in $>90 \%$ yield, with quantitative conversion and was scaled up to 400 kg .

21

Figure 5 Chemical structure of BILN 206121

1.2.2 ‘Click’ Macrocyclization

The 'click' cycloaddition ${ }^{56}$ reaction between alkynes and azides is another viable method to prepare macrocycles; however this reaction can also suffer from significant dimer and oligomer formation. The approach has been used to synthesis bioactive macrocycles; however the resultant triazole moiety is inevitably part of the final molecule. Peptidomimetics, including the tyrosinase inhibitor 22 have been prepared using 'click' chemistry. Treatment of the acyclic variant of $\mathbf{2 2}$ (not shown) with copper(I) bromide yielded the cyclic triazole 22 in 36% yield. ${ }^{57,58}$

22

Figure 6 Chemical structure of tyrosinase inhibitor $\mathbf{2 2}^{57,58}\left(\mathrm{IC}_{50}=0.6 \mathrm{mM}\right)$

1.2.3 Macrolactonization

Macrolactonization is an efficient method for the preparation of a variety of natural products, ${ }^{59}$ many macrocyclic natural products are macrolactones ${ }^{2}$, many of which are biosynthesised via polyketide synthase-catalysed cyclisation. Macrolactonization is a viable method for preparing macrocycles with ring size at least 12 (Graph 1). There are numerous methods that can facilitate macrolactonization; for example, the Mitsunobu reaction ${ }^{60}$ and the Yamaguchi ${ }^{61}$ method which proceeds via a mixed anhydride intermediate. The Yamaguchi mixed anhydride method can prove an efficient macrolactonization method. Erythronolide precursor 23, a parent compound of several antibiotics, undergoes the Yamaguchi lactonization, to yield selectively the corresponding 14 -membered macrocycle $\mathbf{2 5}$, in 85% yield (Scheme 1). ${ }^{62}$

Scheme 1 Macrolactonization of $\mathbf{2 3}$ to give erythronolide precursor $\mathbf{2 5}$ via the Yamaguchi esterification

1.3 Diversity-oriented synthesis

Small molecules have aided enormous advances in the understanding of biological systems and our ability to treat disease. ${ }^{63,64}$ Synthetic approaches that allow expedient access to libraries of diverse small molecules are hugely valuable. Diversity-orientated synthesis (DOS) aims to prepare a broad distribution of compounds in chemical space. As DOS does not aim for a specific target molecule compared to a target-orientated synthesis, retrosynthetic analysis cannot be applied. DOS has gathered interest in recent years as a method to access libraries of skeletally diverse compounds which ultimately can yield chemical probes of biological systems. ${ }^{65-68}$

1.3.1 Folding pathways in Diversity-Oriented Synthesis

The folding path approach exploits common reaction conditions to convert multiple substrates into multiple products. Schreiber used rhodium(II)-catalyzed consecutive cyclisation-cycloaddition chemistry ${ }^{69-71}$ to prepare alternative densely-functionalised polycyclic skeletons (Scheme 2, Panel A). ${ }^{72}$ Appended to the substrates 26, 27 and 28 were strategically-positioned α-diazo ketocarbonyl and indole moieties; upon treatment with a catalytic amount of rhodium(II) octanoate dimer in benzene, these substrates were converted into alternative products. Presumably, formation of a carbonyl ylid was followed by 1,3-dipolar cycloaddition with the indole to give polycyclic skeletons such as 29, $\mathbf{3 0}$ and 31. Oguri ${ }^{73}$ used the same approach to generate alkaloid-like products (Scheme 2, Panel B). By varying the position of the reactive groups, the scaffolds of the natural products aspidophytine (not shown) and the transtaganolides 34 could be prepared.

26

27

28

$\operatorname{via} \mathrm{A} \rightarrow \mathrm{C}$
29

via $\mathrm{C} \rightarrow \mathrm{A}$
30

via $\mathrm{A} \rightarrow \mathrm{B} \quad 31$
Panel B

32

33

34

Scheme 2 Rhodium-catalysed ylid formation-cycloaddition approaches to natural product-like compounds. Panel A: Schreiber's approach to indole alkaloid-like compounds. Panel B: Oguri's approach to transtaganolides.

A multicomponent reaction, involving secondary amines 35 , carbonyl compounds 36 and triazines 37 , was used to generate the substrates for a folding pathway leading to alkaloid-like compounds (Scheme B). ${ }^{74}$ The approach utilised a single reaction, using largely commercially available compounds, to synthesise the folding substrates and hence products. Condensation of secondary amines 35 with the carbonyl compounds 36 generated enamines 38 in situ which underwent an inverse-electron demand Diels—Alder reaction with the triazine 37 to yield compounds of general structure 39. Expulsion of molecular nitrogen yielded 2-azadienes (40), some of which could undergo further reaction (e.g. Diels-Alder reaction) with functionality (sometimes known as σ-elements) ${ }^{75}$ elsewhere in the molecule.

Scheme 3 Generation of folding substrates using a multicomponent reaction
The functional groups within 40 thus ultimately determined the final molecular scaffold obtained. Thus, with a tethered dienophile in place, an intramolecular Diels—Alder occurred (41a, cand d \rightarrow 42, 44 and 45); in contrast, with an appropriate nucleophile, attack into the imine occurred (41d $\rightarrow 49$ via 45) (Scheme 4). The unreacted imine 43, and the resultant imines from the Diels-Alder of 41a and 41c, were substrates for a second three-component coupling: a Joullié-Ugi reaction. The cyclic imines 42 and 44, and the 2-aza diene 43, were reacted with an isocyanide and carboxylic acid to give final compounds such as 46,47 and 48.

41a

42

46

41b

43

47

41c

44

48

41d

45

49

Scheme 4 Sarah Murrison's approach to a library of alkaloid-like compounds; a) 4 Å molecular sieves, toluene, imine, carboxylic acid, isocyanide, EtOH.

1.3.2 Branching pathways in Diversity-Oriented Synthesis

In contrast to folding pathways, branching pathways utilise complementary reactions to convert a common intermediate into a range of scaffolds.

A branching pathway exploited a range of cyclization reactions to generate six scaffolds, two of which can be further diversified to yield four more scaffolds (Scheme 5). ${ }^{76}$ Using a four-component Petasis reaction, Schreiber et al. were able to synthesise versatile cyclization precursors (such as 49). The cyclizations exploited the dense functionality of 49: a Pauson-Khand reaction liberated 50; a gold-catalysed cyclisation of an alcohol onto an alkyne liberated the acetal 54; a ruthenium-catalysed reaction gave the cyclohepadiene 52; and enyne metathesis, catalysed by the HoveydaGrubbs $2^{\text {nd }}$ generation catalyst, liberated the diene 55 . Base-induced cyclization of 49 gave the lactone 53, which was also subjected to the same metal catalysed cyclizations: this approach yielded the triene 57, the cycloheptadiene 60, the cyclopentenone 59 and the diene 58 (Scheme 6). The reactivity of the diene 55 was also investigated and it was shown that hetero-Diels—Alder with 4-methyl-1,2,4-triazoline-3,5-dione gave the adduct 56 (Scheme 5).

49
\downarrow conditions

50, dias $>9: 1$

53, 88%

51, 81%

54, 80\%

52, 85\%

55, E:Z 15:85, 89\%

56, 72\%

Scheme 5 Complementary metal-catalysed reactions leading to diverse scaffolds. 50: $\mathrm{Co}_{2}(\mathrm{CO})_{8}, \mathrm{Et}_{3} \mathrm{NO}$ $\mathrm{NH}_{4} \mathrm{Cl}$, benzene, rt; 51: $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{OAc})_{2}\left(10 \mathrm{~mol} \%\right.$) benzene, $80^{\circ} \mathrm{C}$; 52: $\mathrm{CpRu}(\mathrm{MeCN})_{3} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, acetone, rt; 53: NaH , toluene, rt; 54: $\mathrm{NaAuCl}_{4}(10 \mathrm{~mol} \%), \mathrm{MeOH}, \mathrm{rt} ; 55:$ Hoveyda—Grubbs $2^{\text {nd }}$ gen. cat (10 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 56$: 4-methyl-1,2,4-triazoline-3,5-dione, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$,

Scheme 6 Exploitation of metal-catalysed reactions to convert 53 into diverse scaffolds. 57: $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, benzene, $80{ }^{\circ} \mathrm{C}$; 59: $\mathrm{Co}_{2}(\mathrm{CO})_{8}, \mathrm{Et}_{3} \mathrm{NO} \mathrm{NH}_{4} \mathrm{Cl}$, benzene, rt ; 60: $10 \mathrm{~mol} \%$ $\mathrm{CpRu}(\mathrm{MeCN})_{3} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, acetone, rt; 58: Hoveyda—Grubbs 2nd gen. cat. ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$,

Stockman et al. have exemplified a powerful branching approach to twelve small and densely substituted natural product-like scaffolds (Scheme 7). ${ }^{77}$ The approach exploits the diverse reactivity of ketones coupled with the promiscuity of α, β-unsaturated esters. Treatment of 61 with hydroxylamine hydrochloride to form an oxime was followed by a tandem aza-Michael/1,4-prototopic shift/intramolecular [3+2] cycloaddition which gave the azaspirocycle 68. Amongst amine-based transformations of the central ketone of 61, it was also shown that the ketone itself can be used as a pro-nucleophile: treatment of 61 with sodium hydride gave the trans-decalin 64 . Furthermore, treatment of the ketone 61 with two equivalents of Sml_{2} gave the bicyclic lactone 69; however, with five equivalents of Sml_{2}, the carbocycle 65 was obtained. The ketone of $\mathbf{6 1}$ was able to undergo some more conventional transformations: reduction and treatment with methyl lithium resulted in the secondary and tertiary alkoxides respectively and, through oxyMichael additions, the corresponding tetrahydropyrans 66. Treatment of 61 with methyl magnesium bromide liberated the expected tertiary alcohol 70. Thus the approach yielded a small library of diverse scaffolds; using related chemistry it was also possible to synthesise a key intermediate (not shown) in a synthesis of the macrocycle halichlorine (not shown). ${ }^{78}$

62

65

63

66

61

69

72

64

67

70

73

Scheme 7 Stockman's approach to scaffold diversity using the reactivity of α, β-unsaturated esters and ketones. Conditions to initiate scaffold construction; 62, $\mathrm{NaBH}_{4}, \mathrm{NH}_{3}, \mathrm{EtOH}, \mathrm{Ti}(\mathrm{OEt})_{4}$ then $\mathrm{AcOH}, 74 \% ; 63$ $\mathrm{PhNH}_{2}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 65 \%$; 64, $70 \%, \mathrm{NaH}, \mathrm{THF} ; 65, \mathrm{Sml}_{2}$ (5 eq.), THF/MeOH, $-78{ }^{\circ} \mathrm{C}, 70 \%$; 66, superhydride, THF, 50% or MeLi, 19\%; 67, glycine ethyl ester, DIPEA, 71%; 68, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{NaOAc}$, $\mathrm{MeOH} / \mathrm{MeCN}, 60{ }^{\circ} \mathrm{C}, 68 \%$; 69, Sml_{2} (2 eq.), THF/MeOH, $-78{ }^{\circ} \mathrm{C}, 70 \% ; 70, \mathrm{MeMgBr}, 85 \%$; 71, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{NaOAc}, \mathrm{MeCN}$ then $\mathrm{PhMe}, \mathrm{mw} 140^{\circ} \mathrm{C}$, 12%, or PhCl , reflux after 68, 39\%; 72, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, NaOEt , EtOH, 12\%, or NaOEt after 68, 89%; 73, $\mathrm{NH}_{2} \mathrm{NHTs}$ PhMe, reflux, 41%

1.3.3 Oligomer-based approaches in Diversity-Oriented synthesis

One powerful approach to synthesising a library of compounds combines elements of both folding and branching pathways in a so called 'build-couple-pair' approach. ${ }^{79}$ This powerful strategy involves a 'build' phase where monomers with specific reactivity are prepared and joined in a 'couple' phase. Finally, the oligomeric substrates are then 'paired' in subsequent cyclisation reactions. ${ }^{80}$

This approach was harnessed in the synthesis of small, densely substituted heterocycles $(\mathbf{7 2 \rightarrow 7 7})$ (Scheme 8). ${ }^{81-84}$ Firstly, peptide synthesis was used to prepare peptides 71 which contained a masked aldehyde, an amine and a pendant nucleophile. Treatment of the solid supported peptides 71 with acid initiated unmasking of the latent aldehyde, N -acyliminium formation and interception by alternative nucleophiles (for example, a furan $\rightarrow \mathbf{7 6}$: an alcohol $\rightarrow \mathbf{7 3}$; an indole $\rightarrow \mathbf{7 7}$; and a carboxamide $\rightarrow \mathbf{7 2}$).

72, $89 \%{ }^{\text {a }}$

73, $>95 \%^{a}$
$\uparrow_{\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}}$

71

76, $>95 \%^{a}$

75, $93 \%{ }^{a}$

$74,95 \%^{a}$

77, >95\% ${ }^{\text {a }}$, cis/trans $<1: 10$

Scheme 8 Meldal's folding approach to a range of molecular scaffolds utilising N-acyliminium cyclizations; [a] HPLC purity

Metathesis cascades have provided rapid routes to skeletally-diverse small molecule libraries. ${ }^{85,86}$ One compelling approach resulted in the preparation of over eighty distinct molecular scaffolds (Scheme 9). Oligomeric metathesis substrates were prepared by iterative attachment of unsaturated building blocks onto a fluorous-tagged linker; the iterative coupling reactions included the Fukuyama-Mitsunobu reaction, silaketal formation and esterification. Finally, treatment of the oligomers (e.g. 86 and 87) with ruthenium-based catalysts 'reprogrammed' the scaffolds of the molecules. For example, the 'propagating' cylcopentene building blocks $\mathbf{8 0}$ or $\mathbf{8 1}$ could be attached to a fluorous-tagged 'initiating' building block 78 or 79 using either a FukuyamaMitsunobu reaction or silaketal ($\rightarrow 82$ or 83, respectively). Deprotection, and attachment of a 'terminating' building block gave metathesis substrates (for example, 86 and 87). Finally, metathesis 'reprogramming' of the substrates and concomitant release from the fluorous tag, and if applicable removal of the silaketals, yielded the
final products; this approach yielded over eighty distinct scaffolds (two-thirds of which were novel).

82

84

86

1. Append 'capping' building block
2. Metathesis cascade

83

85
 (PAIR)
2. Cleave 'temporary' silyl tethers

88

90

91

92

Scheme 9 Nelson's approach to scaffold diversity exploiting metathesis cascade chemistry. Examples of other products prepared include 90-92

1.4 Diversity-oriented synthesis of macrocycles

The 'build-couple-pair' approach has been applied to the synthesis of a library of macrocycles (Scheme 10). ${ }^{87}$ Initially, building blocks 93 and 94 were prepared stereoselectively. Combination of 93 and 94 led to numerous stereoisomeric intermediates 95. Three reactions were exploited to cyclise substrates; the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction, the Huisgen [3+2] cycloaddition and ring-closing metathesis. For the $\mathrm{S}_{N} \mathrm{Ar}$ cyclisation, intermediates 95 were treated with 2-fluoro-5-nitrophenyl carbonyl chloride 96; deprotected to give 97; and treated with base to affect cyclisation to 8- or 9membered rings 98. Similarly, acylation of the amine 95 with the azido acid 99 deprotection and propagarylation yielded the cycloaddition substrate 100; treatment of the substrate 100 with either a ruthenium- or copper-based catalyst afforded respectively the regioisomeric macrocycles 101 and 102; conversion of the intermediate 95 into a metathesis substrate 104, and treatment with Hoveyda-Grubb $2^{\text {nd }}$ generation catalyst, yielded the corresponding macrocycles 105.

93
2 stereoisomers

94
4 stereoisomers

95
8 stereoisomers

95

95

101

102

Scheme 10 Marcaurelles's oligomer-based approach to a library of macrocycles, of which many stereoisomers were prepared; a) 1) PyBOP, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~h}$; 2) BH_{3} - DMS , THF, $65^{\circ} \mathrm{C}$; b) 96 , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; c) CsF, DMF, $85{ }^{\circ} \mathrm{C}$; or TBAF, $\mathrm{NH}_{4} \mathrm{~F}$; NaH , THF; d) 1) 99, PyBOP, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt then TBAF, THF, $72-93 \%$; 2) $\mathrm{HC}=\mathrm{CCH}_{2} \mathrm{Br}, \mathrm{NaHMDS}, \mathrm{THF}, \mathrm{DMF},-78{ }^{\circ} \mathrm{C}, 91-96 \%$; e) [Cp*Rul] $4, \mathrm{PhMe}, 70$ ${ }^{\circ} \mathrm{C}$; f) $\mathrm{PS}-\mathrm{CsPF}_{6}$, $\mathrm{PhMe}, 5^{\circ} \mathrm{C}$; g) 1) DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; 2) TBAF, THF, $0{ }^{\circ} \mathrm{C}$; 3) NaH , allyl bromide, DMF, 0 ${ }^{\circ} \mathrm{C}, 50-77 \%$; h) Hoveyda-Grubbs $2^{\text {nd }}$ gen cat. ($10 \mathrm{~mol} \%$)

1.4.1 Bioactive Macrocyclic Compounds discovered via DOS methodologies

Ultimately, the aim of DOS libraries is to explore biologically relevant chemical space. ${ }^{88}$ The macrocycles 106-110 have all been identified to be useful tools for probing biological mechanisms and/or are potential starting points for drug discovery (Figure 7). The macrocycles 106 and 108 were identified from the same DOS library and target different proteins: 106 was identified a micromolar histone deacetylase (HDAC) inhibitor (IC_{50} class 1: $1.5 \mu \mathrm{M}$; class 2: $2.8 \mu \mathrm{M}$; and class 3: $4.4 \mu \mathrm{M}$). ${ }^{87}$ Alternatively, macrocycle 108 was identified as a novel lead molecule for the treatment of malaria: it inhibits a multidrug-resistant strain of P. falciparum parasites (Dd2) with $\mathrm{Gl}_{50}{ }^{\dagger} 0.54$ $\mathrm{nM} .^{89}$ In a similar vein, screening identified 107 as a compound active against β-cell apoptosis which exhibited $\mathrm{EC}_{50} 0.78 \mu \mathrm{M} .{ }^{90}$ Compounds 109 and 110 were identified, using small-molecule microarray technology, as inhibitors of the Shh signalling pathways which function by binding directly to the Sonic hedgehog protein. ${ }^{91}$

Figure 7 Bioactive macrocycles identified from DOS libraries

[^0]
1.5 Project outline and design

In this project, it was proposed to develop a DOS strategy that would enable the expedient synthesis of a library of natural product-like macrocycles. Using only a few reactions, it was planned to combine building blocks to yield substrates for cyclisation; pairing the termini of the substrate together would generate the macrocyclic scaffolds. The cyclic and acyclic products would then be further diversified with a range of capping groups.

The envisaged 'build-couple-couple-pair' approach is outlined in Scheme 11; hydroxy acetate building blocks would be linked to a fluorous tagged building block such as 112. After deacetylation, terminating building blocks would be appended to yield cyclisation substrates such as 114 . Ring-closing metathesis would then be used to cyclise the linear substrates to yield macrocycles 115. After revealing a free amine, the macrocycles would subsequently be functionalised in a branching fashion by attachment of diversifying groups. The development and exemplification of this 'build-couple-couple-pair' approach will be described in the following Chapters. Furthermore, the synthesis of the acyclic analogues will be described; the synthesis of these analogues would allow direct comparison of the biological relevance of macrocyclic compounds with their acyclic counterparts.

114

115
Diversification

117

118

Scheme 11 The proposed synthetic approach exploits 'build-couple-couple-pair' approach. The approach is illustrated through the proposed synthesis of the macrocycle 117 and its acyclic counterpart 118

1.5.1 Fluorous-tagging technologies

It was essential that the library be synthesised efficiently as possible; it was decided that fluorous-tagging be used to allow expedient purification of intermediates. These technologies have numerous benefits over other purification methods such as solidphase synthesis. The fluorous tag consists of a perfluorinated octane chain; generally the molecules are oils at room temperature, this allows the molecules to undergo homogeneous reactions and be analysed and purified by traditional methodologies (LC-MS, NMR, TLC, column chromatography).

Picture 1 Demonstration of the fluorous tag using a fluorous tagged dye and a dye containing no fluorous tag. The first picture shows the columns in their unloaded states, the second photo is showing the compounds being loaded and eluted with 15% water in methanol; this results in the third picture where the un-tagged blue dye has been washed out of the mixture. The fluorous tagged compound orange dye can now be eluted with methanol (structures not shown).

1.5.2 Synthetic methods to be exploited

It was proposed to use the Fukuyama-Mitsunobu reaction, which has been shown to be a reliable reaction within the Nelson group, to link building blocks; in addition, removal of the 2-nitrobenzenesulfonyl (Ns) group, would reveal an amine for derivatization. It was hoped N -Ns amides and carbamates would serve as competent nucleophiles, allowing easy differentiation between nitrogen atoms in the deprotected scaffolds (Figure 8). For example, if macrocycle $119\left(\mathrm{X}=\mathrm{H}_{2}\right)$ was deprotected, then two secondary amines would be liberated which would subsequently be difficult to distinguish. However, with 119 ($\mathrm{X}=\mathrm{O}$), deprotection would liberate an amine and an amide which should be easily differentiated (to give 120). An alternative approach was to use trifluoromethanesulfonylamides as nucleophiles leading to macrocycles such as 122 ($\mathrm{X}=\mathrm{Tf}$); subsequent deprotection would remove only the Ns group, thus liberating only one amine for conversion into final compounds (e.g. 123).

119

122

120
When $\mathrm{X}=(\mathrm{O})$

123
When $\mathrm{X}=(\mathrm{Tf})$

121
When $X=\mathrm{H}_{2}$

124
When $X=(N s)$

Figure 8 Careful selection of nucleophiles for the Fukuyama-Mitsunobu reaction would allow differentiation of the groups revealed upon Ns deprotection

It was also important to select the best methods for the ring-closing steps. It was imperative to select an approach in which the functionality needed for cyclisation was stable throughout the synthesis, and the use of protecting groups was minimised. 'Click' chemistry has been highlighted as being reliable for macrocyclisation; ${ }^{92,93}$ however, a pitfall would be that all final compounds would inherit a triazole unit which may dominate their molecular properties. Lactonization and lactamization are proven methods for synthesising large rings; however the resulting functional groups (especially the lactones) are prone to hydrolysis in biological systems and, in any case, intricate protecting group chemistry would be required. Methods that rely on $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions would also require extensive functional group interconversion and/or the use of protecting groups.

It was therefore decided that ruthenium-catalysed ring-closing metathesis would be used to initiate the cyclisation of the substrates: the required terminal alkenes are resistant to most reaction conditions and protecting group chemistry would not be required. The alkene product of ring-closing metathesis is both natural product-like, and serves to provide conformational restriction of the macrocycle.

1.5.3 Design of building blocks and cyclisation substrates

The design of DOS libraries requires careful consideration. ${ }^{94,66}$ It was decided to design final compounds that had some natural product-like features. In addition, although the final molecules were unlikely to be Lipinski-'Rule of 5 ’ compliant, their molecular properties were carefully considered.

1.5.4 Molecular Properties

It is well documented that molecular properties that compounds posess can have a dramatic effect on their biological availability and activity. ${ }^{11}$ Lipinski set out the four 'rules of five'; in general a orally active compound must have no more than five hydrogen bond donors, no more than ten hydrogen bond acceptors, the molecular weight must not exceed 500 Daltons and the octanol-water partition coefficient (clogP) must not exceed 5. Properties such as clogP are important to predict the distribution of a compound in a biological system, compounds that are hydrophobic will favour areas such as lipid bilayers whereas hydrophilic compounds will distribute in areas such as blood serum. The partition coefficient can be predicted using 2 common methods clog P and Alog P ; clog P is a fragment based approach whereas Alog P is an atom based approach.

Table 2 Potential building blocks for the synthesis of a library of diverse macrocycles
'Initiating'

The proposed 'initiating' building blocks were fluorous tagged 2nitrobenzenesulfonamides which were expected to be competent substrates in Fukuyama-Mitsunobu reactions. It was proposed to append five different 'propagating' building blocks (e.g. the hydroxy acetates 126-130). Deacetylation would then reveal an alcohol needed for a second Fukuyama-Mitsunobu reaction. It was proposed to append different terminating building blocks (e.g. the N-Ns carbamates 131 and 132, the $N-N s$ amides 133 and 134, and the trifluoromethanesulfonylamide 135). Subsequent ring-closing metathesis and Ns deprotection would yield secondary amines such as 115 (Scheme 11). Diversification with a range of commercially available reagents would increase the molecular complexity and skeletal diversity. Some of the molecular properties of proposed final compounds are summarised in Table 3 (for selected compounds) and in Section 1.5.5

Table 3 Example molecular properties of a selection of potential final compounds
entry
[a] Calculated using ChemDraw Pro 12.0.2.1076

1.5.5 Design of a comparative study of acycles and macrocycles

The macrocyclization of molecules can have a profound effect on their properties including their biological activity (see Section 1.1.3). To undertake a comparative study of the properties of macrocycles and their acyclic counterparts, we planned in addition, to synthesise the acyclic variants of all the proposed macrocycles. However, the biological evaluation of the compounds was beyond the scope of the project.

1.5.6 Molecular properties of the proposed library

The combination of building blocks shown in Table 3 would result in a library with ALogP values from 6.06 to -0.96 with an average of $2.49 ; 95$ molecular weights from
256.3 to 748.9 with an average of 493.5 ; ring sizes from 11 to 21 with the most common being 18; and TPSA from 70.6 to 187.3 with an average of 113.2 (see Graphs 2,3 and 4). However, the predicted and actual polar surface may deviate dramatically, due to the many conformers that macrocycles can adopt there is possibility of 'burying' the polar surface area; although it has been shown there is a strong correlation between the predicted versus reality. ${ }^{96}$ The molecular properties of many compounds did not comply with the Lipinski 'Rule of 5 '; this was expected for a library of macrocycles. ${ }^{97}$

Graph 2 The distribution of molecular weights versus the atom based prediction ${ }^{\dagger}$ of the $\log P$

[^1]Graph 4 Distribution of the TPSA vs the molecular weights across the proposed library

Graph 5 Distribution of ring sizes across the proposed library

2 Building block synthesis

This Chapter outlines the synthesis of building blocks, for example those proposed in section 1.5.2. It was envisaged that there would be three types of building block: fluorous-tagged 'initiating' building blocks; 'propagating' building blocks; and 'terminating' building blocks.

2.1 Synthesis of initiating building blocks

$\left(S_{\mathrm{s}}\right)$-2-methylpropane-2-sulfinamide 145 and initiating building block 11
The synthesis of the initiating building block 112 exploited the chiral auxiliary 145, developed by Ellman. ${ }^{98-101}$ Ozonolytic cleavage of the alkene 146 afforded the aldehyde 147 in 92% yield; it was found that triphenylphosphine was a much better reductant than $\mathrm{Me}_{2} \mathrm{~S}$ because the by-product is highly crystalline, allowing facile purification, and the reaction proceeded rapidly at temperatures below $0{ }^{\circ} \mathrm{C}$. The aldehyde 147 was condensed with $\left(S_{\mathrm{s}}\right)$-2-methylpropane-2-sulfinamide 145, mediated by CuSO_{4}, to give the sulfinimine 148 in 80% yield.

Scheme 12. Preparation of sulfinimine 148
The stereoselectivity of the addition of allyl magnesium bromide to the imine 148 depended strongly on the reaction conditions used. Initially, poor stereoselectivity was observed (ca. 40:60). However, the stereoselectivity was markedly improved by slow addition of the Grignard reagent, presumably allowing better control of the temperature of the reaction: under these conditions, a $21: 79$ mixture of the separable diastereoisomeric products was obtained (Scheme 13). The major sulfonamide 150 was deprotected by methanolysis under acidic conditions to give the hydrochloride salt 151 in 99% yield (Scheme 13). The amino alcohol 151 was converted into the 2nitrobenzenesulfonamide 152 in 90% yield. The fluorous-tagged silane 153 was treated with NBS to form the corresponding bromosilane which was reacted in situ ${ }^{102,103}$ with the alcohol $\mathbf{1 5 2}$ to give the silyl ether 112 in 95% yield. The synthesis was performed on a large scale to give 30 g of the sulfonamide 112.

Scheme 13. Synthesis of the initiating building block 112

153

Figure 9 Structure of ${ }^{\text {F DIPESH }}$

The sense of induction from the chiral auxiliary in 148 was independently determined using chiral HPLC (see figure 10). Surprisingly, it was found that the major diastereomer 150 did not have the relative configuration reported by Ellman. Deprotection of the major diastereomer 150 using acidic methanolysis gave the (R)-2-aminopent-4-enol, determined by optical rotation (-10.6 vs $+14.1^{98}$). Further investigation concluded that the major diastereomer that we and Ellman et al., had synthesised appeared to be the same compound by comparison of optical rotation (+57.6 vs +57.8) and $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectral data (Table 4) ${ }^{\ddagger}$

[^2]Table $4{ }^{13} \mathrm{C}$ spectra data for the products of the addition to the sulfinimine

$\mathbf{1 5 0}^{\mathrm{a}}$	deviation	Ellman major $^{\mathrm{b}}$	deviation	$\mathbf{1 4 9}^{\mathrm{a}}$
134.78	$-0.48 \downarrow$	134.3	$-0.18 \downarrow$	134.48
118.92	$-0.42 \downarrow$	118.5	$0.95 \uparrow$	117.55
65.35	$-0.45 \downarrow$	64.9	$-0.48 \downarrow$	65.38
56.82	$-0.42 \downarrow$	56.4	0	56.4
56.23	$-0.48 \downarrow$	55.8	$0.11 \uparrow$	55.69
37.48	$-0.43 \downarrow$	37	$0.22 \uparrow$	36.78
26.24	$2.26 \uparrow$	28.5	$2.67 \uparrow$	25.83
22.98	$-0.48 \downarrow$	22.5	$-0.15 \downarrow$	22.65
18.63	$-0.43 \downarrow$	18.2	$0.01 \uparrow$	18.19
-5.29	$0.21 \uparrow$	-5.5	$0.28 \uparrow$	-5.22
-5.35	$0.15 \uparrow$	-5.5	$0.16 \uparrow$	-5.34

[a] Recorded in CDCl_{3} at $75 \mathrm{MHz}[\mathrm{b}]$ Recorded at 100 MHz in CDCl_{3}

Graph 6 Deviations in the ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 4 9}$ and 150 from the major isomer that Ellman reports.
The racemic and enantiomerically pure amino alcohols were synthesised so that a quantitative method such as chiral HPLC could be used to determine the sense of induction. The rac-allyl glycinol was prepared from the parent allyl glycine 154; methyl ester formation to give 155 followed by LiAlH_{4} reduction to give amino alcohol 156 in 94% yield. In a similar vein, the enantiomerically pure (R)-2-aminopent-4-enoic acid (R)-154 was converted into the amino-alcohol (R)-156. The amino alcohols 156, (R)156 and 151 were converted into the corresponding benzamides 157 , (R)-157 and 158 in 51%, 59%, and 88% yield respectively. Chiral HPLC showed good separation of the enantiomeric benzamides (Panel A, Figure 10) and conclusively showed that the amino-alcohol liberated from the major diastereomer prepared by Ellman was in fact the (R) isomer, and not the (S) isomer as stated. This was confirmed further through the determination of a crystal structure of one of the final compounds 159 (Figure 11).

(R)-154
(R)-2-aminopent-4-enoic acid

Scheme 14 Synthesis of the molecules for chiral HPLC analysis

Figure 10 Chiral HPLC ${ }^{\S}$ chromatograms of the alcohols 157, (R) 157 and 158.

[^3]

159

Figure 11 Left: Crystal structure of (5E,3R)-3-(hydroxymethyl)- N-(pyridin-3-yl)-9-(trifluoromethane)sulfonyl-1,2,3,4,7,8,9,10-octahydro-2,9-benzodiazacyclododecine-2-carboxamide 159. Right: Molecular structure of 159

Panel B

163

Scheme 15 Panel A Mechanism of induction of nucleophiles proposed by Ellman and Barrow. Panel B
Revised sense of induction that is consistent with that experimentally determined.
Transition states previously proposed by Barrow ${ }^{100}$ and Davis ${ }^{104}$ propose that the induction arises from the chelated chair-like transition state 161 and the open transition state 162 respectively; however as these transitions predict the incorrect sense of induction for the addition of allyl magnesium bromide. We propose that the allyl group is delivered as in $\mathbf{1 6 0}$ or 163. The sense of induction may be different for allylic nucleophiles because an $\mathrm{S}_{\mathrm{E}} 2$ ' mechanism is possible.

2.2 Synthesis of propagating building blocks

A series of hydroxy acetates was synthesised by reduction and acetylation of commercially-available bis-carboxylic acid derivatives. The bis-carboxylic acid 164 and diphenic anhydride 166 were reduced with LiAlH_{4} in 80% and 85% yield, respectively; and acetylation with acetyl chloride gave the hydroxy acetates 130 and 129 in 35\% and 49\% yield (Scheme 16). The hydroxy acetates 127 and 126 were prepared by Francesco Marchetti.

127

126

Scheme 16 Preparation of hydroxyl acetates
Enzymatic desymmetrization was used to prepare the hydroxy acetate 128 from the diol 168 in 41% yield (Scheme 17). Conversion of the hydroxyacetate 128 into the diastereoisomeric esters 169 and 170 (Scheme 18) allowed the determination of its enantiomeric excess (82% ee) by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy

Scheme 17 Desymmetrization of 2-methyl-1,3-propanediol

169
dr 91:9, de 82\%

Scheme 18 Derivatization into the diastereomeric adducts

2.3 Synthesis of terminating building blocks

A variety of terminating building blocks were proposed in Section 1.5.2 for exploitation in Fukuyama-Mitsunobu reactions. Alcohols have been synthesised (Section 2.3.1) which were then carbamylated with a 2-nitrobenzenesulfonyl isocyanate (Section 2.3.3). A small series of 2 -nitrobenzenesulfonyl amides and trifluoromethane sulfonamides was also synthesised, (Sections 2.3.2 and 2.3.4 respectively).

2.3.1 Terminating alcohol synthesis

A range of alcohols was prepared so that through various functional group interconversions a range of terminating building blocks could be obtained. The alcohol 173 was synthesised in 71% overall yield (Scheme 19). Allylation of 171, by treatment with allyl bromide and potassium carbonate, gave the aldehyde 172 which was not isolated; reduction with sodium borohydride gave the alcohol 173.

Scheme 19 Synthesis of the salicaldehye-derived terminating building block 173
Scheme 20 shows the preparation of building block 180. Oxidative iodination of 1,3dimethoxybenzene 174, by treatment with sulfuric acid, hydrogen peroxide and potassium iodide, gave 2,4-dimethoxyiodobenzene 175 in 70% yield. ${ }^{105}$ A coppercatalysed Ullman-type coupling of the aryl iodide 175 with diethyl malonate using picolinic acid as a ligand gave the aryl malonate 176 in 70% yield. ${ }^{106}$ Subsequent reduction of the malonate 176 with LiAlH_{4} gave the diol 177 in 64% yield. Biocatalytic desymmetrization of the diol 177 was carried out using Candida Antarctica lipase B and vinyl acetate; this procedure gave the hydroxy acetate 178 in 95% yield with $>99 \%$ ee. The enantiomeric excess was determined using chiral HPLC by comparison with the racemic compound synthesised from the diol 177 using acetyl chloride. The absolute configuration of the hydroxyacetate 181 was assigned by analogy with related examples ${ }^{107,108}$ such as 181 . Allylation of the hydroxyacetate 178 was undertaken in the absence of base as it was envisioned that the acetate group could migrate across the 1,3-diol leading to racemisation. Firstly, allylation was attempted with silver(I) oxide and allyl bromide; however this method gave a complex mixture and the allyl ether 179 could not be identified by LC-MS. A palladium(II) catalysed method was explored and gave the allyl ether 179 in 72% yield; ${ }^{109,110}$ potentially racemization could have been an issue. However submitting the hydroxyacetate 178 to the same conditions without allyl
ethyl carbonate showed no erosion of the enantiomeric excess, again determined by chiral HPLC analysis of the crude reaction. Deprotection of the acetate 179 to give the alcohol 180 was achieved in 99% yield using methanolic ammonia.

174

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{H}_{2} \mathrm{SO}_{4}(5.0 \mathrm{eq} .) \\
\mathrm{H}_{2} \mathrm{O}_{2}(2.0 \mathrm{eq} .) \\
\text { KI(1.0 eq.) }
\end{array} \\
& \mathrm{MeOH}, \mathrm{rt}, 2.5 \mathrm{~h} \\
& \hline 70 \%
\end{aligned}
$$

175

176

$$
\begin{array}{c|c}
\mathrm{LiAlH}_{4} \text { (4.5 eq.) } & \\
\text { THF, } 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 24 \mathrm{~h} & 64 \%
\end{array}
$$

$\mathrm{Pd}(\mathrm{OAc})_{2}$ ($1.0 \mathrm{~mol} \%$) PPh_{3} (10 mol\%) Allyl ethyl carbonate (3.0 eq) THF, reflux, 24h
72\%

Novozyme 435 (Lipase),
Vinyl acetale (1.5 eq .)

$96 \%, 99 \%$ ee
178

177
99% MeOH/ NH_{3}

180

181

Scheme 20 Asymmetric preparation of the chiral alcohol 180

Figure 12

A chiral auxiliary was exploited to prepare a handful of terminating building blocks with varying nucleophilic groups (133, 198 and 202). The aldol product 183 was prepared in the reaction between the boron enolate of 182 and 4-pentenal. The boron enolate was
prepared by treatment of the N-acyl oxazolidinone 182 with dibutylboron trifluoromethanesulfonate in the presence of Hunig's base; a 53% yield of 183 was obtained with a $>95:<5$ diastereoselectivity. The sense of diasteroselectivity was assigned by comparison to literature ${ }^{111}$ and ratio of diastereoisomers determined by $500{ }^{1} \mathrm{H}$ MHz NMR spectroscopy. Protection of the secondary alcohol of as a tertbutyldimethylsilyl ether was possible using the silyl chloride in 87% yield. Subsequently the chiral auxiliary was removed in two ways. Treatment of the N-acyl oxazolidinone 184 with LiBH_{4} gave the alcohol 185 in 65% yield (Scheme 21) and hydrolysis of 184 yielded the acid 190 (Scheme 23)

(dias: >95:<5, syn:anti)

185

Scheme 21 Chiral auxiliary controlled aldol reaction and subsequent removal of the auxiliary

2.3.2 Synthesis of 2-nitrobenzenesulfonyl amides

Ethyl lactate 186 was allylated by treatment with silver(I) oxide and allyl bromide; subsequent hydrolysis with lithium hydroxide gave the carboxylic acid 188 in 86% yield. ${ }^{112}$ The acyl sulfonamide 189 was obtained in 71% yield by DCC-mediated coupling of 188 with 2-nitrobenzenesulfonamide (Scheme 22). Treatment of the imide 184 with lithium hydroxide in the presence of hydrogen peroxide yielded the acid 190 (Scheme 23). The acyl sulfonamide 133 was formed in 60% yield by an EDC-mediated coupling of acid 190 with 2 -nitrobenzenesulfonamide.

$\mathrm{NsNH}_{2}(1.1 \mathrm{eq})$,
$\operatorname{DCC}(1.1 \mathrm{eq})$,
$\operatorname{DMAP}(0.1 \mathrm{eq})$,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt,

189

Scheme 22 Preparation of the acyl sulfonamide 189 from ethyl lactate

Scheme 23 Hydrolysis of the imide 184 and subsequent acyl sulfonamide formation

2.3.3 N-(2-nitrobenzenesulfonamide) isocyanate synthesis and subsequent synthesis of \mathbf{N}-(2-nitrobenzenesulfonamide) carbamates

The synthesis of N-(2-nitrobenzenesulfonyl) carbamates required an efficient synthesis of 2-nitrobenzenesulfonyl isocyanate, which has been prepared previously; ${ }^{113}$ however experimental detail and procedures are poor. Franz exploited thermal decomposition of the oxamic chloride ${ }^{114}$. Initial experiments were based on a procedure by Oh, ${ }^{115}$ who showed that forming the oxamic chloride of anilines in ethyl acetate suppressed the formation of the bisoxamide; a solvent swap into dichlorobenzenes and heating under reflux achieved the thermal decomposition to the isocyanate.

Scheme 24 Formation of isocyanate functionality by thermal decomposition of an oxamic chloride
ReactIR ${ }^{\circledR}$ was used to determine if toluene would serve as a suitable alternative solvent to dichlorobenzenes for thermal decomposition of 192. This in situ monitoring technique is useful for accurately quantifying the generation reactive intermediates such as isocyanates. The practicability of using IR to monitor the reaction is facilitated by the diagnostic infrared stretch of isocyanates (ca. $2250 \mathrm{~cm}^{-1}$), a region of the IR spectrum that it is diagnostic to few other functional groups. The formation and reaction of the isocyanate was followed by ReactIR ${ }^{\circledR}$ (See Graphs 6 and 7); elevated temperature ($>86{ }^{\circ} \mathrm{C}$) was required for efficient conversion of the oxamic chloride 192 to the isocyanate 194. Graph 8 shows the stages throughout the synthesis of the nosyl isocyanate. The blue line depicts the temperature of the vessel in which the reaction was being carried out and the black line is the absorption at $2250 \mathrm{~cm}^{-1}$ (specifically the isocyanate region).

Graph 7. Formation of the isocyanate began at c.a. $86^{\circ} \mathrm{C}$. The relatively low intensity of the isocyanate band at $2250 \mathrm{~cm}^{-1}$ is due to the high concentration of ethyl acetate present.

Graph 8. IR and temperature profile of isocyanate formation followed by ReactIR ${ }^{\circledR}$, monitoring absorption at $2250 \mathrm{~cm}^{-1}$; 1) start point, PhMe added; 2) temperature ramped to $95^{\circ} \mathrm{C}$ with holds; 3) temperature held at $95{ }^{\circ} \mathrm{C}$ and PhMe added (system dilution); 4) temperature hold at $78{ }^{\circ} \mathrm{C}$; 5) ramp $5{ }^{\circ} \mathrm{C} / 5 \mathrm{~min}$; 6) temperature hold at $110^{\circ} \mathrm{C}$; 7) PhMe added; 8) temperature ramp to $110^{\circ} \mathrm{C}$; 9) system cooled to $-10^{\circ} \mathrm{C}$; 10) benzyl alcohol addition. The reported temperature is the jacketed vessel temperature as the internal size of the vessel would not accommodate a temperature probe.

Table 5 Summary of the nucleophiles reacted with 2-nitrobenzenesulfonyl isocyanate
Summary of the nucleophiles reacted with 2-nitrobenzenesulfonyl isocyanate

Methods; A) NsNH_{2} (2.0 eq.), (COCl) $\mathbf{2}_{2}\left(10\right.$ eq.), EtOAc, reflux; then PhMe distil EtOAc, reflux $\left(110{ }^{\circ} \mathrm{C}\right)$; Nucleophile addition, rt. a) The base was added simultaneously with the nucleophile

The reactions of the isocyanate 194 with a range of nucleophiles are summarised in Table 5. Excess oxalyl chloride was reacted with 2-nitrobenzenesulfonamide, after heating under reflux in ethyl acetate a solvent swap into toluene allowed for the temperature required for the thermal decomposition (Scheme 24). After heating under reflux in toluene, the crude isocyanate 194 was used. The reaction of the isocyanate 194 with alcohols (197, 131, and 132) resulted in yields between 77 and 95%; however the reaction of alcohol 185 with isocyanate 194 resulted in a relatively low yield (25\%), compared to reactions with 195, 173 and 180. Base was added simultaneously with alcohol 185 due to the nucleophile having an acid labile silyl protecting group. The addition of the organic base with allylamine 196 was to ensure the amine was not protonated in the crude acidic conditions. Purification of all the 2 -nitrobenzenesulfonyl carbamates and ureas involved column chromatography, which was assisted by the low pKa ($\sim 4-5$) of the carbamate proton. Eluting with $50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ allowed for long retention of the products compared to the impurities; subsequent elution with $50: 8 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$ eluted the desired carbamates and ureas.

2.3.4 Synthesis of \mathbf{N}-(trifluoromethanesulfonamide) terminating building blocks

In addition to N-(2-nitrobenzenesulfonyl) amides and carbamates, triflamides were also synthesised. The alcohol 185 was converted into the triflamide 202 in 3 steps (Scheme 25). The alcohol 185 was converted into the azide 200 in 97% yield by treatment with diphenylphosphoryl azide (DPPA). The azide 200 was reduced with triphenylphosphine in aqueous THF to give the amine 201 in 95% yield, which was reacted with trifluoromethanesulfonic anhydride to give the triflamide 202 in 77% yield. The ditriflamide 203 was observed as a minor by-product in 13\% yield; gratifyingly it was shown that the ditriflamide 203 could be converted quantitatively back into the triflamide 202 using methanolic ammonia (Scheme 25).

200

$\mathrm{Tf}_{2} \mathrm{O}$ (2.0 eq.)
$\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to

202

Scheme 25 Synthesis of the terminating building block 202. The terminating building block 135 was synthesised by Francesco Marchetti

2.4 Summary of building blocks synthesised

The range of building blocks prepared is summarised in Table 6. Building blocks 125, 127, 126 and 135 were synthesised by Francesco Marchetti.
Table 6 Building Blocks synthesised
Initiator

3 Development of methods for the synthesis of a diverse library of macrocycles

This Chapter describes the development of robust methods for the preparation of a diverse library of macrocycles. The specific methods involved Fukuyama-Mitsunobu reactions to iteratively combine the building blocks (Section 3.1); ring closing metathesis (Section 3.2); and reactions for diversification and the release of the final compounds from the fluorous tag (Section 3.4). The Fukuyama-Mitsunobu or Fukuyama amine synthesis relies on a nitrobenzene sulfonamide to increase the acidity of the NH whilst also preventing over alkylation of the nitrogen. ${ }^{116}$

3.1 Examination of the Fukuyama-Mitsunobu reaction as a method to link building blocks

This Section describes the investigation of the Fukuyama-Mitsunobu reaction to append building blocks onto a fluorous-tagged building block. The results of the study are summarised in Table 7.

Table 7 Examination of Fukuyama—Mitsunobu methods

	Fluorous-tagged building block	building block		Product	
1			$\begin{gathered} \text { M1, } \\ \text { D } \end{gathered}$		$\begin{gathered} 99, \\ {[>95]} \end{gathered}$
2	 112		M1		$18^{\text {d }}$
3		 130	$\begin{gathered} \text { M1, } \\ \text { D } \end{gathered}$		$70^{\text {b }}$

4

204

134

M2

207
(

204

133

210

Methods; M1) PPh_{3} (2 eq.), DEAD (2 eq.), ROH (2 eq.), THF (0.1 M), $0{ }^{\circ} \mathrm{C} \rightarrow$ RT; M2) PPh_{3} (4 eq.), DEAD (4 eq.), NucH (4 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M}) 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$; M3) PPh_{3} (1.05 eq.), DEAD (1.05 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M}), 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$; D) sat. $\mathrm{MeOH} / \mathrm{NH}_{3}$; [a] Purified by F-SPE unless otherwise stated; [b] Purified by column chromatography; [c] Purity estimated by ${ }^{1} \mathrm{H} 500 \mathrm{MHz}$ NMR spectroscopy using the 1'- CH_{2} of the fluorous tag as an internal standard; [d] Notably, loading of the hydroxy-acetate 130 to the sulfonamide 112 proceeded smoothly, with complete consumption of the sulfonamide (hydroxy-acetate 130 in 4 -fold excess); however analysis by chromatography and ${ }^{1} \mathrm{H}$ NMR indicated that the thiophene 130 had polymerized; purification by conventional flash chromatography was required to isolate 204

The 2-nitrobenzenesulfonamides have been shown in the literature ${ }^{116}$ and previous work in our group ${ }^{85}$ to be excellent nucleophiles; however it was crucial to determine whether the proposed building blocks reacted to give good yields of the required products (see Table 7). The sulfonamide 112 was treated with diethyl azodicarboxylate in the presence of triphenylphosphine and the corresponding alcohols 126, 128 and 130 (entries 1, 2 and 3 respectively). This method worked well with the benzylic and heterobenzylic alcohols 126 and 130; however use of the more hindered alkyl alcohol 128 led to poor conversion. The products from the Fukuyama-Mitsunobu reactions
were purified by fluorous-solid phase extraction. Subsequently, the acetate protecting groups were removed with saturated ammonia in methanol (entries 1 and 3), and the products from this step did not require purification. The second round of FukuyamaMitsunobu reactions appended the terminating building blocks onto the fluorous-tagged substrates (entries 4, 5, 6 and 7). The 2-nitrobenzenesulfonyl amides 133 and 134, entries 4 and 7, proved to be effective nucleophiles; and the triflamide 135 was an excellent nucleophile, entry 6.

3.2 Optimisation of the metathesis reaction

As discussed in Section 1.5, ruthenium-catalysed metathesis was chosen to form the macrocyclic ring system. This section describes the development of a generic procedure for ring closing metathesis of substrates such as those products shown in the Table 7. Our studies are summarised in Table 8

Table 8 Investigation of the cyclisation of potential metathesis substrates
substrate
2

RCM1 days
Complex mixture
212
(SCM3

Methods: RCM1) Hoveyda-Grubbs $2^{\text {nd }}$ gen cat. ($1 \mathrm{~mol} \%$), MTBE (5 mM), $55^{\circ} \mathrm{C}$ then $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{P}(0.8$ eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (1 eq.), silica, rt; RCM2) Hoveyda—Grubbs $2^{\text {nd }}$ gen cat. ($2 \mathrm{~mol} \%$), 1,4 -benzoquinone ($4 \mathrm{~mol} \%$), MTBE (5 mM), $55^{\circ} \mathrm{C}$ then $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{P}\left(0.8 \mathrm{eq}\right.$.), $\mathrm{Et}_{3} \mathrm{~N}$ (1 eq.), silica, rt; RCM3) Hoveyda-Grubbs $2^{\text {nd }}$ generation ($5 \mathrm{~mol} \%$), 1,4-benzoquinone ($10 \mathrm{~mol} \%$), MTBE (5 mM), $55^{\circ} \mathrm{C}$ then $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{P}$ (0.8 eq.), $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{eq}$.), silica, rt; N1) PhSH (10 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{eq}),$.DMF , rt; [a] Purified by column chromatography [b] Determined using ${ }^{1} \mathrm{H} 500 \mathrm{MHz}$ NMR [c] Mixture of starting material and product isolated, removal of the $2-$ nitrobenzene sulfonamides allowed for better separation.

Initially, ring-closing metathesis using Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst in t butyl methyl ether as the solvent ${ }^{117}$ was found to be rather substrate-specific. The metathesis of substrate 208 resulted in complete consumption of starting material to give the desired macrocycle in <16 h (entry 1); however, the substrate 212 gave a complex mixture of isomers of the starting material. The complex mixture of products was analysed by ${ }^{1} \mathrm{H}$ NMR and appeared to be a mixture of internal alkenes of the linear substrates, that is, the products of double-bond migration (e.g. 215-217). The reaction was carried out in the presence of 1,4-benzoquinone, a known suppressor of this alkene migration, ${ }^{18}$ and, gratifyingly, under these conditions, 212 cyclised effectively (entry 3); after removal of the 2-nitrobenzenesulfonamide groups, the amine was obtained in 33\% overall yield. Under these conditions the metathesis substrate 210 was ring-closed in 40% yield (entry 4).

215

216

217

Figure 13 Proposed isomerised products of 212
Double bond migration appears to be a common side reaction of ring closing metathesis; Grubbs et al., have tried to suppress this isomerisation by using additives. ${ }^{118}$ The isomerisation is proposed to stem from the formation of the ruthenium hydride species 218. The mechanism for the formation of the Ru-H species is unknown; however it is hypothesised that it could be formed from a π-allyl species. Presumably the 1,4 -benzoquinone is reduced rapidly in the presence of the proposed ruthenium hydride species.

218

Figure 14 Grubbs proposed Ruthenium hydride species
The application of N-(2-nitrobenzenesulfonyl) amides for the synthesis of macrocycles was reconsidered in the light of the result described in Scheme 26. Ring-closing metathesis of 210 to give $\mathbf{2 1 4}$ proceeded smoothly; however removal of the 2 nitrobenzenesulfonyl) group using thiophenol highlighted a problem. After removal of the 2-nitrobenzenesulfonyl group and F-SPE purification, the methyl ester 221 was isolated; presumably, thiophenolate attacked the amide to give the thioester intermediate 220, (relief of ring-strain being the driving force) which was subsequently quenched with methanol during isolation. With this knowledge, 2-nitrobenzenesulfonyl amides were not used subsequently as terminating building blocks.

214
 $\mathrm{K}_{2} \mathrm{CDM}^{2}$ eq.

$\downarrow \begin{gathered}\mathrm{PhSH}(10 \mathrm{eq} .), \\ \mathrm{K}_{2} \mathrm{CO}(2.5 \mathrm{eq} .) \\ \mathrm{DMF},\end{gathered}$

220

219

Scheme 26 Proposed thiophenol activation of 2-nitrobenzenesulfonyl amides and subsequent methanol ring opening

3.3 Diversification of the free amine cyclic and acyclic scaffolds

As discussed in Table 2 in Section 1.5, the acyclic and cyclic scaffolds were to be diversified with various electrophiles. As the diversifying groups 136, 137, 138 and 139 have already been examined for their molecular properties, the reactivity had to be confirmed; the results are outlined in Table 9.

Table 9 Diversification and removal of the fluorous tag

Table 9 Diversification and removal of the fluorous tag						
entry	Amine [purity $]^{\text {a }}$	Method, mass recovery [purity ${ }^{\text {a }}$ amine	methods	final compound		yield over 2
:---:						
steps						

1a

208
1b
N1, 86
$[>95]$
222
A1, S2

224

225

47
1c
A3, S2

226

1d

2a

2b
N1, 84
211 [>95],
223

2c

2d

S2

227

228

229

230

71

231
Methods: N1 PhSH (10 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.5 eq.), DMF, rt; N2 PhSH (5 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 eq.), DMF, rt; A1) $\mathbf{1 3 6}$ (2 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$, rt; A2) $\mathbf{1 3 9}$ (5 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M}), 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$; A3) 138 (5 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.1 \mathrm{M}\right.$), $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$; A4) 137 (5 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M}$), $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$; S1) HF (10 eq., aq 50%), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}(50 / 50,0.05 \mathrm{M}$), rt, TMSOMe (50 eq.); S2) TBAF
(5 eq., 1 M), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{M})$, rt; [a] Purified by F-SPE unless otherwise indicated; [b] Purity estimated by ${ }^{1} \mathrm{H} 500 \mathrm{MHz}$ NMR spectroscopy using the 1 '- CH_{2} of the fluorous tag as an internal standard; [c] Purified by column chromatography; [d] Ratio of double bond isomers was determined using ${ }^{1} \mathrm{H} 500$ MHz NMR spectroscopy; [e] The 2-oxazolidinone 232 was also isolated in a 34\%

The diversifications described in Table 9 proceeded as planned with one exception: the conversion of the amine 223 into final compound 229 (entry 2 b). In this case, the morpholine moiety of $\mathbf{2 2 9}$ was displaced by the alcohol to give $\mathbf{2 3 2}$ in 34% yield (along with the expected product 229 in 59% yield). This result is not surprising due to the proximity of the alcohol. In the light of this finding we did not subsequently use the derivatization agent 139.

232

Figure 15 Unexpected 2-oxazolidinone from the displacement of the morpholine moiety in 229
The fluorous tagging group was removed from the final compounds in two ways. We found that whilst tetra-n-butylammonium fluoride (TBAF) removed the fluorous-tag efficiently, it made the purification of the final compounds difficult. We therefore tried aqueous $48-51 \%$ hydrofluoric acid, which removed the fluorous tagging group just as efficiently as TBAF; however the purification was straighter forward. The reactions were quenched with methoxytrimethylsilane to remove the excess reagent.

3.4 Summary

This Chapter has outlined how the building blocks designed in section 1.5 and synthesised in Section 2.0 have been examined for their reactivity and stability towards the synthesis of a library of macrocycles. Section 3.1 described how the 2 nitrobenzenesulfonamides performed in Fukuyama-Mitsunobu reactions with the hydroxyl acetate building blocks. This study allowed the judicious selection of building blocks for the final library synthesis. Section 3.2 described the investigation of ringclosing metathesis using a small range of substrates. However this study allowed the most suitable conditions to be identified: specifically, the use of 1,4-benzoquinone as an additive with tert-butyl methyl ether as solvent. Section 3.3 described the investigation of the deprotection and derivatization of the final scaffolds. The study allowed the identification of a suitable set of derivatization reagents, and appropriate conditions for the preparation of the final compounds.

4 Synthesis of library intermediates and natural product-like macrocycles

This Section describes the synthesis of a library of natural product-like macrocycles. The building blocks described in Section 2.0 were combined in a 'branching' fashion using the robust methods that were described in Section 3.0.

4.0.1 Revised library design

This library of macrocycles was refined in view of the studies described in Chapter 3. Specifically, it was decided to focus on four benzylic and heterobenzylic alcohols as propagating building blocks; and two N-(2-nitrobenzenesulfonyl) carbamates and two triflamides as terminating building blocks. This revised library design was preferred as; the benzylic alcohols 129, 130, 127 and 126 completely consumed the fluorous tagged starting material c.f. the non-benzylic alcohol 128, a key objective otherwise making the F-SPE obsolete; this complete consumption of fluorous tagged intermediate was not as much a problem with the terminating building blocks, however the stability of the final bonds formed was (Scheme 26)

Table 10 Revised building blocks

Initiating building block | Propagating building |
| :---: |
| block | Terminating building block

[a] Building block prepared by Francesco Marchetti

4.0.2 Molecular property distributions of the proposed library

The revised building block selection led to reconsideration of the molecular properties of the proposed library. Changing of the building blocks that will compose the final
library will ultimately change the molecular properties of the final library. The molecular weights now ranged from 378.4 to 720.8 with an average molecular weight of 537.6 (an increase of 44.1 Da); the AlogP now ranged from 1.54 to 5.57 with a mean of 3.4 (an increase of 0.91); and the TPSA now ranges from 78.0 to 187.3 with an average of 123.3. The most common ring size remained the same at 18 . In section 1.5 .4 it was discussed that a library of macrocycles may not fall within the 'Lipinski Rule of 5' and this was expected due to the general size of macrocyclic molecules. However it was gratifying to see that the averages were within the Rule of 5 for oral bioavailability; more importantly the compounds have a reasonable spread across the molecular property scales, important for a study where chemical space is being probed.

Graph 9 Distribution of the TPSA vs. the molecular weights across the revised final compound library (See Table 10)

Graph 10 The distribution of the predicted atom contribution partition coefficient of the molecules versus the molecular weights of the revised final compound library (See Table 10)

4.1 Attachment of propagating building blocks to the fluorous-tagged initiating building block

The fluorous-tagged sulfonamide 112 was combined with four hydroxy acetates building blocks using Fukuyama-Mitsunobu reactions (Table 11). The sulfonamide 112, triphenylphosphine and alcohols (126, 130, 127 and 129) were treated with diethylazodicarboxylate to yield 2 -nitrobenzenesulfonyl secondary amines ($\rightarrow \mathbf{2 0 5}$, 204, 113 and 233). The products were purified where possible by fluorous-solid phase extraction with generally high mass recoveries (>90\%); however, in some cases, subsequent purification by flash chromatography was also required (entries 2 and 4). Following, the compounds were treated with saturated methanolic ammonia to give the corresponding benzylic alcohols.

Table 11 Linking the fluorous-tagged initiating building block to the hydroxyl acetates
entry

Methods; M1: PPh_{3} (2 eq.), DEAD (2 eq.), ROH (2 eq.), THF (0.1 M), $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, F-SPE eluting with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(80: 20) \rightarrow \mathrm{MeOH} ; \mathbf{M 2}: \mathrm{PPh}_{3}$ (4 eq.), DEAD (4 eq.), ROH (4 eq.), THF (0.1 M), $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, $\mathrm{F}-$ SPE eluting with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(80: 20) \rightarrow \mathrm{MeOH}$; D: saturated methanolic ammonia (100 rel vols); [a] Purified by F-SPE unless otherwise indicated; [b] Purity estimated by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy using the $1^{\prime}-\mathrm{CH}_{2}$ of the fluorous tag as an internal standard; [c] Purified by column chromatography

4.2 Attachment of terminating building blocks to yield metathesis substrates

This Section outlines the preparation of substrates for ring closing metathesis. Terminating building blocks - two N-(2-nitrobenzenesulfonyl) carbamates and two triflamides - were appended using Fukuyama-Mitsunobu reactions (Table 12). The alcohol (204, 205, 113 and 233), triphenylphosphine and terminating building blocks (131, 132, 135 and 205) were treated with diethylazodicarboxylate to yield metathesis substrates. The products were initially purified by F-SPE; however if F-SPE purification was not sufficient, then conventional flash chromatography was used. Mass recoveries ranged from 56-115\% with purities consistently $>80 \%$.

Scheme 27 Fukuyama-Mitsunobu reaction linking the fluorous tagged intermediate 205 to the terminator 131

Table 12 Linking of the terminating building blocks to the fluorous tagged alcohols prepared in Table 11

212

Methods: L1) NucH (1.1 eq.), DEAD (1.1 eq.), PPh_{3} (1.1 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{M}), 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$; L2) NucH (4 eq.), DEAD (4 eq.), $\mathrm{PPh}_{3}(4 \mathrm{eq}),. \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{M}), 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$; L3) $\mathrm{NucH}(2.0 \mathrm{eq}$.$) , DEAD (2.0 eq.), \mathrm{PPh}_{3}$ (2.0 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{M}), 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$; [a] Purified by F-SPE unless otherwise indicated; [b] Purity estimated by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy using the $1^{\prime}-\mathrm{CH}_{2}$ of the fluorous tag as an internal standard; [c] Purified by column chromatography

4.3 Ring-closing metathesis reactions

Ruthenium-catalysed ring-closing metathesis was used to cyclise the linear oligomeric substrates (Table 13). Accordingly, the linear substrates were treated with $1-5 \mathrm{~mol} \%$ Hoveyda—Grubbs $2^{\text {nd }}$ generation catalyst with $2-10$ mol\% 1,4-benzoquinone in MTBE at $55{ }^{\circ} \mathrm{C}$. Subsequently, the catalyst was inactivated by the addition of tris(hydroxymethyl)phosphine and triethylamine; purification by flash chromatography gave the macrocycles as mixtures of geometrical isomers or in some cases as single geometrical isomers; mixtures of geometrical isomers were not separated at this point. Deprotection of the secondary amines and carbamates was facilitated by treatment of the macrocycle with thiophenol and potassium carbonate and the products were purified by fluorous-solid phase extraction. Subsequently, if possible, chromatography was used to separate mixtures of geometrical isomers; however if separation was not easily possible then the macrocycle was carried through as a mixture of geometrical isomers.

Scheme 28 Ring closing metathesis and subsequent denosylation of 209 to give the cyclic free-amine

Table 13 Metathesis and thiophenol mediated removal of the 2-nitrobenzenesulfonyl group to obtain the cyclic free amines.

2 | 234 | $\mathrm{RCM}, 24$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[93]$ | N 1 |

| 209 | RCM 2, |
| :---: | :---: | :---: | :---: | :---: |
| $[>95]$ | N 2 |

5	236	RCM2, N2	24	'dipeso	$83^{\text {c, e }}$	1]
					undetermined	(90:10)
					247	$247{ }^{\text {D }}$

6	$\begin{gathered} 114 \\ {[94]} \end{gathered}$	RCM2, N1	48	 $115^{\text {D }}$	$88^{\mathrm{c}, \mathrm{e}}$ Undetermined 115	$\begin{gathered} 15 \% Z \\ 26 \% E^{c} \\ 115^{D} \end{gathered}$
7	$\begin{aligned} & 237 \\ & {[59]} \end{aligned}$	RCM2, N1	24		$\begin{gathered} 56^{\mathrm{c}}, \\ (55: 45) \\ 255 \end{gathered}$	$\begin{gathered} 91 \text { [95] } \\ (60: 40) \\ \mathbf{2 4 8} \end{gathered}$
8	$\begin{aligned} & 238 \\ & {[83]} \end{aligned}$	$\begin{gathered} \mathrm{RCM} 2, \\ \mathrm{~N} 2 \end{gathered}$	16		$47^{\mathrm{c}, \mathrm{e}}$ Undetermined 249	$\begin{gathered} 28 \% ~ Z \\ 47 \% ~ E \\ 249^{D} \end{gathered}$
9	$\begin{aligned} & 239 \\ & {[78]} \end{aligned}$	RCM2, N2	4		$\begin{gathered} 78^{c} \\ (<12:>88) \\ 250 \end{gathered}$	$\begin{gathered} 87 \text { [93] } \\ (<5:>95) \\ 250^{\mathrm{D}} \end{gathered}$
10	$\begin{aligned} & 240 \\ & {[83]} \end{aligned}$	RCM2, N1	5		undetermined 250	$\begin{gathered} 16^{e} \\ (85: 15) \\ \mathbf{2 5 1} \end{gathered}$
11	$\begin{aligned} & 241 \\ & \text { [82] } \end{aligned}$	RCM2, N2	$\begin{gathered} 3 \\ \text { Days } \end{gathered}$		$\begin{gathered} 38 \\ (<2:>98) \\ 252 \end{gathered}$	$\begin{gathered} 76 \text { [93] } \\ (<2:>98) \\ \mathbf{2 5 2}^{\text {D }} \end{gathered}$

254

Abstract

Methods: RCM1) Hoveyda—Grubbs $2^{\text {nd }}$ gen cat. (2 mol\%), MTBE (2.5 mM), $55^{\circ} \mathrm{C}$; RCM2) HoveydaGrubbs $2^{\text {nd }}$ gen cat. (2 mol\%), 1,4-benzoquinone ($4 \mathrm{~mol} \%$), MTBE (2.5 mM), $55^{\circ} \mathrm{C}$; N1 PhSH (10 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.5 eq.), DMF, rt; N2 PhSH (5 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 eq.), DMF, rt; [a] Purified by F-SPE unless otherwise indicated; [b] Purity estimated by ${ }^{1} \mathrm{H} 500 \mathrm{MHz} \mathrm{NMR}$ spectroscopy using the 1 '- CH_{2} of the fluorous tag as an internal standard; [c] Purified by column chromatography; [d] Ratio of double bond isomers was determined using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy; [e] compound carried though to removal of the 2 -nitrobenzenesulfonamides due to isolation of a complex mixture containing starting material and geometric isomers [f] Complex mixture isolated

The reason that geometrical isomers became separable in some cases after removal of the 2-nitrobenzenesulfonyl group may have stemmed from significant intramolecular hydrogen bonding. It was observed that removal of the 2-nitrobenzenesulfonyl group often resulted in molecules with unexpected polarities; in some cases, the free amines were sometimes less polar than the 2-nitrobenzenesulfonyl-protected amines (Figure 17)

248
$R_{\mathrm{f}}: 0.37$ (80:20 petrol-EtOAc)

255
$R_{\mathrm{f}}: 0.17$ (70:30 petrol-EtOAc)

Figure 16 Comparisons of the relative polarity of macrocycles 248 and 255.

248

Figure 17 Proposed intramolecular bonding, resulting in less-polar molecules

4.3.1 Dynamic behaviour of selected macrocyclic products

Macrocycles are known to have pre-organised architectures; ${ }^{16}$ many of the macrocycles synthesised in this project were observed to slowly interconvert between alternative conformations on the NMR timescale, giving rise to broad peaks. This slow interconversion, could often be studied using variable temperature NMR. In this project, many spectra were recorded at elevated temperatures (to increase the rate of interconversion) or at low temperature (to decrease the rate of interconversion) to allow sharp spectra to be acquired.

4.3.2 Characterisation of the geometrical isomers of the 13-membered macrocycle 249

The macrocycles $Z-249^{\text {D }}$ and $E-249^{\text {D }}$ were separated by column chromatography after removal of the 2 -nitrobenzenesulfonyl protecting group; however initially it was impossible to determine the geometry of the double bonds because the signals corresponding to the alkene protons were extremely broad (Figure 19 and 20). However, recording the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $E-249^{\mathrm{D}}$ and $Z-249^{\mathrm{D}}$ at $70{ }^{\circ} \mathrm{C}$ greatly improved the spectra and allowed assignment of the alkene geometries.

Z-249 ${ }^{\text {D }}$

E-249 ${ }^{\text {D }}$

Figure 18 Two stereoisomers isolated after removal of 2-nitrobenzenesulfonyl protecting groups

Figure $19500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of macrocycle Z-249 ${ }^{\mathrm{D}}$: top spectrum 343 K in $\mathrm{C}_{6} \mathrm{D}_{6}$; bottom spectrum 300 K in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure $20500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of macrocycle $\mathrm{E}-249^{\mathrm{D}}$; top spectrum 300 K in $\mathrm{C}_{6} \mathrm{D}_{6}$; bottom spectrum 343 K in $\mathrm{C}_{6} \mathrm{D}_{6}$

Analysis of the fragmentation patterns of macrocycles $Z-249^{D}$ and $E-249^{D}$ was used to complement the variable temperature NMR studies. The initial NMR spectrum of the macrocycle $E-249^{\text {D }}$ at 300 K in CDCl_{3} had extremely broad signals for the alkene protons at anomalously low chemical shift. However, careful analysis of the fragmentation patterns of $E-249^{D}$ and $Z-249^{D}$ suggested that they were indeed geometric isomers. Specifically, the molecular ions ($\mathrm{m} / \mathrm{z}=939$, Panel A1 and A2) for both compounds fragmented to give ions with $m / z=361$, tentatively assigned to the arizidinium ions of $E-249^{D}$ and Z-249 ${ }^{\text {D }}$ (Panel B1 and B2). Accordingly, further fragmentation of the assigned arizidinium ions $E-249^{D}$ and $Z-249^{D}$ resulted in very similar fingerprint spectra (Panels C1 and C2).

Figure 21 Mass fragmentation patterns of $E-249^{D}$ and Z-249 ${ }^{\text {D }}$; Panel A1 and A2, molecular ions $\left(M S^{1}\right)$;
Panel B1 and B2, arizidinium ions $M S^{2}\left(m / z=939 \rightarrow E-249^{\circ}\right.$ and $\left.E-249^{D}\right)$; Panel C1 and C2, fingerprint $\left(\mathrm{MS}^{2}\right)(m / z=361 \rightarrow$ fragments $)$

4.4 Derivatization of the scaffolds

To increase the diversity of the library, each scaffold was appended with a diversifying group. Thus, the free amines were reacted with the carbonyl chloride 139 and sulfonyl chloride 138 (used in excess in the presence of triethylamine); and the isocyanate 136 (in the absence of any other reagents). The products were purified using F-SPE, concentrated and the fluorous-tag was removed using either tetra-n-butylammonium fluoride or hydrofluoric acid. Column chromatography or mass-directed HPLC yielded the final compounds on a ca. 10 mg scale.

136

139

138

Figure 22 The suffices of the compound numbers denote the derivatization group; compounds diversified with 136 will be denoted as 'XXa'. Furthermore, diversification with 139,137 and $138 \rightarrow$ ' XXb', 'XXe and 'XXc', respectively. Compounds that do not undergo any diversification will be denoted as 'XXd'

4.4.1 Derivatization of the macrocyclic scaffolds

The derivatization reactions of the metathesis substrates are summarised in Table 14. Where the geometric isomers of macrocycles had been separated, both stereoisomers were derivatized if sufficient material was available; however, if it was not feasible to derivatize the minor isomer, then only the free amine of the minor isomer was prepared (see entry 2 e).

[^4]Table 14 Derivatization of the cyclic variants

entry	substrate	methods	scaffold	$\begin{array}{\|l\|} \hline \text { Yield \% } \\ (2 \text { steps })^{\mathrm{a}} \end{array}$	$\begin{aligned} & \text { ratio } \\ & (E / Z) \end{aligned}$
1 a	223 [95]	A1, S2		$\begin{gathered} 73 \\ 228 \\ \hline \end{gathered}$	>95/<5
22		A4, S2		$\begin{gathered} 59 \\ 229 \end{gathered}$	>95/<5
1c		A3, S2		$\begin{gathered} 42 \\ 230 \end{gathered}$	>95/<5
1d		S2		$\begin{gathered} 96 \\ 231 \end{gathered}$	>95/<5
2a	$E-244{ }^{\text {D }}$	A1, S2		$\begin{gathered} 99 \\ 256 a \end{gathered}$	>95/<5
2 b		A2, S2		$\begin{gathered} 78 \\ 256 \mathrm{~b} \\ \hline \end{gathered}$	>95/<5
2c		A3, S2		$\begin{gathered} 88 \\ 256 \mathrm{c} \end{gathered}$	>95/<5
2d		S2		$\begin{gathered} 83 \\ 256 d \end{gathered}$	>95/<5
2 e	Z-244 ${ }^{\text {D }}$	S1		$\begin{gathered} 54 \\ 257 \end{gathered}$	<5/>95
3 a	$245{ }^{\text {D }}$ [79]	A1, S1		$\begin{gathered} 62 \\ 258 a \\ \hline \end{gathered}$	>75/<25
3 b		A2, S1		$\begin{gathered} 63 \\ 258 b \end{gathered}$	>90/<10
3c		A3, S1		$\begin{array}{r} 43 \\ 258 \mathrm{c} \\ \hline \end{array}$	>80/<20
3d		S1		$\begin{gathered} 99 \\ 258 \mathrm{~d} \\ \hline \end{gathered}$	>80/<20
4a	$246{ }^{\text {D }}$ [89]	A1, S1	 159	$\begin{gathered} 77 \\ 159 a \end{gathered}$	>95/<5
4b		A2, S1		$\begin{gathered} 66 \\ 159 b \end{gathered}$	>95/<5
4 c		A3, S1		$\begin{gathered} 72 \\ 159 \mathrm{c} \end{gathered}$	>95/<5
4d		S1		$\begin{gathered} 46 \\ 159 \mathrm{~d} \end{gathered}$	>95/<5

XXa

XXb

XXc
$R=H$

XXd

Methods: A1) 136 (2 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$, rt then F-SPE ($80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}$); A2) 139 (5 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M}), 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, then F-SPE (80:20 MeOH/H2O $\rightarrow \mathrm{MeOH}$); A3) 138 (5 eq.), $\mathrm{Et} \mathrm{H}_{3} \mathrm{~N}$ (10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M}), 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, then F-SPE ($80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}$); A4) 137 (5 eq.), $\mathrm{Et}_{3} \mathrm{~N}(10$ eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M}), 0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, then $\operatorname{F-SPE}\left(80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}\right.$); S1) HF (10 eq., aq 50%), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}\left(50 / 50,0.05 \mathrm{M}\right.$), rt, TMSOMe (50 eq.); S2) TBAF (5 eq., 1 M), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 M), rt; [a] Purified by F-SPE after the derivatization step, then by column chromatography after desilylation unless otherwise stated; [b] Purity estimated by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy using the 1 ' $-\mathrm{CH}_{2}$ of the fluorous tag as an
internal standard; [c] Purified by column chromatography; [d] Purified by mass-directed high performance liquid chromatography; [e] Ratio of double bond isomers was determined using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy;

4.4.2 Derivatization of the linear scaffolds

The acyclic variants were only derivatized upon successful completion of both the ring closing metathesis and removal of the 2-nitrobenzenesulfonamide of the corresponding macrocycle. Table 15 outlines removal of the 2-nitrobenzenesulfonamide from the linear substrates, followed by diversification and, ultimately, removal of the fluorous tag.

Table 15 Derivatization of the acyclic variants

8a	$\begin{gathered} 238 \\ {[>83]} \end{gathered}$		$\begin{gathered} 96 \text { [99], } \\ 238^{\mathrm{D}} \end{gathered}$	A1, S1	270	$\begin{gathered} 40 \\ 270 a \end{gathered}$
8b		N1		A2, S1		$\begin{gathered} 33 \\ 270 b \end{gathered}$
8c				A3, S1		$\begin{gathered} 52 \\ 270 c \end{gathered}$
						47
8d				S1		270d
	$\begin{gathered} 239 \\ {[>85]} \end{gathered}$	N1	$\begin{gathered} 96 \\ {[>95],} \\ 239^{\text {D }} \end{gathered}$			87
9 a				A1, S1		271a
9 b				A2, S1		$\begin{gathered} 22 \\ \text { 271b } \end{gathered}$
9c				A3, S1		$\begin{gathered} 41 \\ 271 \mathrm{c} \end{gathered}$
9d						67
				S1		271d
10a	$\begin{gathered} 240 \\ {[>83]} \end{gathered}$	N1	$\begin{gathered} 98 \\ {[>92],} \\ 240^{\text {D }} \end{gathered}$	A1, S1		$\begin{gathered} 39 \\ 272 a \end{gathered}$
10b				A2, S1		$\begin{gathered} 45 \\ 272 b \end{gathered}$
10c				A3, S1		$\begin{gathered} 22 \\ 272 c \end{gathered}$
10d				S1		
11 a	$\begin{gathered} 241 \\ {[>82]} \end{gathered}$	N1	$\begin{gathered} 93 \\ {[>83],} \\ 241^{\text {D }} \end{gathered}$	A1, S1	273	72
11b				A2, S1		88
11c				A3, S1		$273 \mathrm{c}$
11d				S1		75
						273d

XXa

XXb

XXc
$\mathrm{R}=\mathrm{H}$

XXd

Methods: N1 PhSH (10 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.5 eq.), DMF, rt, then F-SPE ($80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}$); N2 PhSH (5 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 eq.), DMF, rt, then F-SPE ($80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}$); A1) 136 (2 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$, rt, then F-SPE ($80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}$); A2) 139 (5 eq .), $\mathrm{Et}_{3} \mathrm{~N}$ (10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.1 \mathrm{M}), 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, then F-SPE ($80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}$); A3) 138 (5 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.1 \mathrm{M}), 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, then F-SPE ($80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}$); A4) 137 (5 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.1 M), $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, then $\operatorname{F-SPE}\left(80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}\right.$); S1) HF (10 eq., aq 50%), $\mathrm{CH} 2 \mathrm{Cl}_{2} / \mathrm{MeCN}\left(50 / 50,0.05 \mathrm{M}\right.$), rt, TMSOMe (50 eq.); S2) TBAF (5 eq., 1 M), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 M), rt; [a] Purified by F-SPE unless otherwise indicated; [b] Purity estimated by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy using the $1^{\prime}-\mathrm{CH}_{2}$ of the fluorous tag as an internal standard; [c] Purified by column chromatography; [d] Purified by mass-directed high performance liquid chromatography;

4.5 Review of molecular properties of the final library

The molecular properties of the compounds that were ultimately prepared were determined. The distribution of properties had been affected by the derivatization of the individual geometric isomers and by reactions that had not been successful. The TPSA and AlogP distributions of the final compounds that were prepared from the sulfonamide 112 are shown in Graphs 11 and 12 respectively. The molecular weights of the final library ranged from 378.4 to 718.8 with an average of 516.8 ; the topological surface area ranged from 78.0 to 159.6 with an average of 110.9; and the AlogP ranges from 1.99 to 6.06 with an average of 3.69 . The most common ring size across the library was 18, shown in Graph 14 (the proportion of 18 -membered macrocycles in the library had been increased by derivatization of the separated geometric isomers of 117 and 257). The molecules synthesised in this diversity-oriented synthesis has produced compounds with physical properties that will lend themselves well to testing in vitro; the molecular weights of the compounds synthesised are higher than would be desired in a library of compounds to be tested in vitro, ${ }^{10-12}$ but this was expected. The compounds synthesised are at the top end of lipophilic range, but possess an average (3.69) well within the accepted boundaries (<5.00).

Graph 12 Distribution of the topological polar surface area versus the molecular weights for the final compounds prepared

Graph 13 Distribution of the atom based partition coefficient versus the molecular weights for the final compounds prepared

Graph 14 Distribution of ring sizes of the macrocycles prepared

Summary

A building block-based approach to a library of diverse natural product-like molecules has been developed. The strategy relied upon a minimal number of robust chemistries (ca. 6) and followed a 'build-couple-couple-pair' approach. Through an iterative combination of bespoke building blocks, ring closing metathesis and subsequent deprotection and amine diversification this approach has gleaned over 100 diverse natural product-like molecules, all with varying scaffolds and molecular properties. This efficient synthetic approach was aided considerably by the expedient purification facilitated by the fluorous tag. The development of robust syntheses of diverse macrocycles may enable the discovery of valuable chemical probes of biological mechanisms.

In this library synthesis many lessons were learnt that would improve future library design and synthesis. The fluorous tagged was critical to provide rapid and efficient purification of the intermediates; more standard purifications such as flash chromatography would have been more time consuming and costly in materials. The connective reactions used such as the Fukuyama-Mitsunobu were clean and provided bonds that would not be susceptible to cleavage in biological systems. Ring closing metathesis using the Hoveyda-Grubb's $2^{\text {nd }}$ generation catalyst was an extremely reliable method and provided a natural product-like feature within the molecule, the major downside to the ring-closing metathesis was that the selectivity between geometric isomers could not be predicted nor controlled. However there is constant development in the field of metathesis design and more controllable ligands are being discovered.

The final products have all been prepared on milligram scales and the biological activity will be determined in a range of assays. This will allow for the direct comparison of the biological relevance of macrocycles and acycles.

5 Experimental

All reactions were carried out in oven-dried glassware under an atmosphere of N_{2} from a Schlenk line fitted with a nitrogen bubbler, using dry techniques. Tetrahydrofuran, dichloromethane, toluene, acetonitrile were dried and purified by means of a Pure Solv MD solvent Purification System (Innovative Technology Inc.) or obtained from Oxford sure/seal ${ }^{T M}$ bottles from Sigma-Aldrich. All other solvents used were chromatography or analytical grade. Chemicals used were supplied by Sigma-Aldrich, Alfa-Aesar, and Fluka.

Thin layer chromatography was carried out on aluminium backed silica (Merck silica gel $60 F_{254}$) plates supplied by Merck. Visualisation of the plates was achieved using an ultraviolet lamp ($\lambda_{\max }=254 \mathrm{~nm}$), phosphomolybdic acid, KMnO_{4} and anisaldehyde. Flash chromatography was carried out using silica gel 60 ($35-70 \mu \mathrm{~m}$ particles).

Optical rotation measurements were carried out on a Perkin-Elmer AA-1000 and Polartronic H532 with a path length of 0.5 dm ; concentrations are $\mathrm{g} / 100 \mathrm{~mL}$ and the optical rotations are given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Infrared spectra were recorded on a Perkin-Elmer one FT-IR spectrometer.

Proton and carbon NMR data were collected on an Avance 500, DPX500 and Bruker DPX 300. All shifts were recorded against an internal standard of tetramethylsilane (TMS). Solvents ($\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}$, DMSO-d6 and MeOD) used for NMR experiments were obtained from Sigma-Aldrich. Splitting patterns in this report have been recorded in an abbreviated manner, s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). NMR data was recorded in the following format, PPM (number of protons, splitting pattern, coupling constant (Hz), proton ID). Signal assignments were made by the aid of COSY, DEPT 90 and 135, HMQC and HMBC.

Low resolution mass spectra data were recorded on a Agilent 1200 series LC system compromising a Bruker HCT Ultra ion trap mass spectrometer, a high vacuum degasser, a binary pump, a high performance autosampler, an autosampler thermostat, a thermostated column compartment a diode array detector. The system used two solvent systems: $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}+0.1 \%$ formic acid with a Phenomenex Luna $\mathrm{C} 1850 \times 2 \mathrm{~mm} 5$ micron column or $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ with a Phenomenex Luna $\mathrm{C} 1850 \times$ 2 mm 5 micron column

Nominal and high resolution mass spectrometry using electrospray ionization were recorded by Mrs Tanya Marinko-Covell on a Micromass LCT-KA11 or a Bruker Daltronics micrOTOF spectrometer. Field Desorption Ionisation mass spectra were
acquired on a Water-Micromass GCT premier spectrometer equipped with a Linden LIFDI probe.

Crystal structure measurements were carried out at 150 K on a Bruker-Nonius Apex X8 diffractometer equipped with an Apex II CCD detector and using graphite monochromated Mo-Ka radiation from a FR591 rotating anode generator by Colin Kilner. The structure was solved by direct methods and refined using SHELXL-97. Compound 159a crystallises in the tetragonal space group $P 4_{1}$ with one molecule in the asymmetric unit.

All non-hydrogen atoms were refined anisotropically.
All hydrogen atoms could be located in a difference Fourier map but, in the final stages of the refinement, they were placed in calculated positions and refined using a riding model.

4.1 General procedures

F-SPE purification. When F-SPE (Fluorous solid phase extraction) was utilised the compounds were loaded onto the column with the minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}$ or DMF allowed for the size of column. The non-fluorous compounds were eluted with a MeOH -Water (80:20) mix until deemed complete by TLC; then the fluorous compounds were eluted using $100 \% \mathrm{MeOH}$.

A. Fukuyama-Mitsunobu of a Fluorous protected sulfonamide;

M1: The fluorous sulfonamide (2 eq.), triphenylphosphine (2 eq.) and the alcohol (2 eq.) were dissolved in anhydrous THF (ca. 0.01 M) and cooled to $0^{\circ} \mathrm{C}$ with an ice bath. Diethyl azodicarboxylate (4 eq.) was added dropwise and the reaction was stirred at room temperature until the endpoint was determined by TLC.

M2: procedure as M1; However, equivalents are fluorous sulfonamide (1 eq.), triphenylphosphine (4.0 eq.), alcohol (4.0 eq.) and diethyl azodicarboxylate (4 eq.)

B. Fukuyama-Mitsunobu of a Fluorous protected alcohol;

L1: The fluorous alcohol (1 eq.), triphenylphosphine (2.0 eq.) and the nucleophile (2.0 eq.) were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 0.01 M) and cooled to $0{ }^{\circ} \mathrm{C}$ with an ice bath. Diethyl azodicarboxylate (2 eq.) was added dropwise and the reaction was stirred at room temperature until the endpoint was determined by TLC. Upon completion the product was isolated using F-SPE

L2: procedure as L1; However, equivalents are fluorous alcohol (1 eq.), triphenylphosphine (4.0 eq.), nucleophile (4.0 eq.) and diethyl azodicarboxylate (4 eq.)

L3 procedure as L1; However, equivalents are fluorous alcohol (1 eq.), triphenylphosphine (1.1 eq.), nucleophile (1.1 eq.) and diethyl azodicarboxylate (1.1 eq.)

De-acetylation using saturated ammonia in methanol,

D: The acetate ester (1 eq.) was dissolved in NH_{3} sat. MeOH (100 rel vols), stirred at room temperature until the endpoint is determined by TLC and the solvent, excess NH_{3} and acetamide were removed in vacuo.

Ring-closing metathesis

RCM1: HG-II was added in one portion to the substrate dissolved in MTBE (ca. 2 mM) at room temperature and then heated to $55^{\circ} \mathrm{C}$. The reaction was then followed by TLC or LCMS. When the end point was determined the reaction was cooled to room
temperature, tris(hydroymethyl) phosphine (80 eq. WRT to HG-II), triethylamine (100 eq. WRT to HG-II) and silica ($5 \times$ amount of phosphine) were added and stirred for a minimum of 10 min . The reaction mixture was then passed through a pad of celite, washing with EtOAc, concentrated in vacuo to give the crude product.

RCM2 procedure as RCM1; However, 1,4-benzoquinone (4 mol\%) was added

Denosylation

N1: The sulfonamide (1 eq.) and potassium carbonate (2.4 eq.) were dissolved in DMF (ca. $>0.1 \mathrm{M}$), cooled to $0^{\circ} \mathrm{C}$ and thiophenol (10 eq .) was added dropwise. The reaction was allowed to warm to room temperature and stirred until completion was determined by TLC. The crude product was loaded directly onto a F-SPE cartridge (in portions if necessary not to exceed the maximum loading capacity of the cartridge)
$\mathbf{N} \mathbf{2}$ procedure was as $\mathbf{N} \mathbf{1}$; however, the equivalents of thiophenol and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were reduced to (5 eq .) and (1.2 eq .), respectively.

Diversification

A1: 3-pyridine isocyanate 136 (2 eq.) was added in one portion to the fluorous-tagged amine in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ at room temperature. Completion of the reaction was determined by TLC ($<1 \mathrm{~h}$), the reaction was then concentrated in vacuo and purified using the generic F-SPE method.

A2: cyclopropane carbonyl chloride 139 (5 eq.) was added to a stirred solution of the fluorous-tagged amine and triethylamine (10 eq.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Completion of the reaction was determined by TLC. The reaction was then concentrated in vacuo and purified using the generic F-SPE method.

A3: 1-methyl-1H-imidazole-4-sulfonyl chloride 138 (5 eq.) was added to a stirred solution of the fluorous tagged amine and triethylamine (10 eq.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ Completion of the reaction was determined by TLC. The reaction was then concentrated in vacuo and purified using the generic F-SPE method.

A4: morpholine-4-carbonyl chloride (5 eq.) $\mathbf{1 3 7}$ was added to a stirred solution of the fluorous tagged amine and triethylamine (10 eq.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Completion of the reaction was determined by TLC. The reaction was then concentrated in vacuo and purified using the generic F-SPE method.

Desilylation

S1: Aqueous hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45 \%$) was added in one portion to the silyl ether dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}$ (50:50, ca. 100 rel vols). Upon completion of the reaction determined by TLC, methoxytrimethylsilane (0.5 mL) was added and stirred for 16 h . The solution was concentrated onto silica-gel in vacuo and purified by column chromatography

S2: Tetra-n-butylammonium fluoride ($0.5 \mathrm{~mL}, 1.0 \mathrm{M}, \mathrm{ca} .100$ rel vols) was added to the silyl ether, upon completion determined by TLC the reaction was concentrated in vacuo onto silica-gel and purified by column chromatography.

1,4-Di[tert-butyIdimethyIsilyl)oxy]but-2-ene $146{ }^{119}$

твsо- —отвs
Imidazole ($8.84 \mathrm{~g}, 130 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($20.0 \mathrm{~g}, 130 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL); after 10 min , (Z)-but-2-ene-1,4-diol ($5.6 \mathrm{~g}, 63 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added at room temperature. After 16 h the reaction was filtered through a plug of silica and concentrated in vacuo to give the silyl ether 146 (19.5 g, 61.7 mmol, 98%) as a colourless oil, which was not purified; $R_{\mathrm{f}} 0.95$ (90:10, petrolEtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.19(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.5,2-\mathrm{H}), 3.59(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.5,1-\mathrm{H}), 0.81$ $\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(12 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3024, 1220, 1069 and 769

2-[(Tert-butyIdimethylsilyl)oxy]acetaldehyde $147{ }^{120}$

To a solution of $146(10.0 \mathrm{~g}, 31.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, ozone was bubbled thorough the reaction until a pale blue colour persisted. Oxygen was then bubbled through the reaction until it became clear and colourless. Triphenylphosphine $(8.44 \mathrm{~g}, 32.2 \mathrm{mmol})$ was added in one portion at $-78^{\circ} \mathrm{C}$. The reaction was allowed to reach room $0^{\circ} \mathrm{C}$ over a 16 h period; then concentrated in vacuo. Petrol (200 mL) was added and the slurry was filtered through a silica/Celite ${ }^{\circledR}$ plug, the filtrate was concentrate in vacuo to give the aldehyde 147 ($10.1 \mathrm{~g}, 58.3 \mathrm{mmol}, 92 \%$) as a colourless volatile oil; $R_{\mathrm{f}} 0.87$ ($80: 20$, petro-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.60(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(\mathrm{O}) \mathrm{H}), 4.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$; $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 202.4(\mathrm{C}(\mathrm{O}) \mathrm{H})$, $69.6\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.3\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film): 2929, 1739, 1253, 1123, 832 and 775; m/z (ES+) 175.2 ($100 \%, \mathrm{MH}^{+}$)

(S)- N -[(1E)-2-[(Tert-butyldimethylsilyl)oxy]ethylidene]-2-methylpropane-2sulfinamide $148{ }^{98}$

To a slurry of anhydrous copper(II) sulfate (23.9 g , 150 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, aldehyde 147 ($10.0 \mathrm{~g}, 57 \mathrm{mmol}$) and (S_{S})-2-methylpropane-2-sulfinamide ($10.0 \mathrm{~g}, 86$ $\mathrm{mmol})$ were added. After 16 h at room temperature the reaction was filtered through a silica/Celite® plug and concentrated in vacuo to give the sulfinimine 148 ($14.1 \mathrm{~g}, 51.2$ mmol, 89\%) as a pale yellow oil, which was not purified. For analytical purposes, a 500
mg batch of the sulfinimine 148 was purified by column chromatography; hexanesEtOAc (80:20); $R_{\mathrm{f}} 0.74$ ($80: 20$, hexanes—EtOAc); $\left[\alpha_{D}^{23}\right] 185$ (c 1.00, CHCl_{3}); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.96(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3,1-\mathrm{H}), 4.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3,2-\mathrm{H}), 1.07\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.81(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.9(1-\mathrm{C}), 65.5(2-\mathrm{C}), 56.8$ $\left(\mathrm{S}^{\mathrm{t}} \mathrm{Bu}\right)$, $25.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 22.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $-5.4\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3236, 2962, 1666, 1472, 1465, 1402, 1364, 1298; m/z (ES+) 300.1 (20\%, [M+Na] $\left.{ }^{+}\right)$

N-[(2S)-1-[(Tert-butyldimethylsilyl)oxy]pent-4-en-2-yl\}-2-methylpropane-2sulfinamide 150^{98}

To a solution of sulfinimine $148(0.9 \mathrm{~g}, 3.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, allyl magnesium bromide 1 M solution in ether ($7.5 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was added dropwise. After 1 h the reaction was stirred at $0^{\circ} \mathrm{C}$ for 4 h and then allowed to reach room temperature. After 16 h the reaction was cooled with an ice-bath and sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added dropwise; after 2 h the reaction was concentrated in vacuo to half volume and extracted into ethyl acetate $(3 \times 50 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Column chromatography, eluting with petrol-EtOAc (80:20) gave the amine $\left(S_{\mathrm{s}} R_{\mathrm{c}}\right) 150(810 \mathrm{mg}, 2.54 \mathrm{mmol}, 70 \%$) as a colourless oil and a single diastereomer; $R_{\mathrm{f}} 0.31$ (petrol-EtOAc, 80:20); $\left[\alpha_{D}^{23.4}\right]+57.6$ (c 1.01, CHCl_{3}); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.75(1 \mathrm{H}$, ddt, J 7.2, 10.3 and $17.5,4-\mathrm{H}), 5.11$ $(1 \mathrm{H}, \mathrm{d}, J 7.2,5-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 3.61\left(1 \mathrm{H}, \mathrm{dd}, J 4.3\right.$ and $\left.10.3,3-\mathrm{H}_{\mathrm{a}}\right), 3.47(1 \mathrm{H}, \mathrm{dd}$, $J 5.3$ and 10.3), 3.46-3.43 (1H, m, N-H), 3.33-3.24 (1H, m, 2-H), 2.51-2.29 (2H, m, 1H), $1.14\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{c}}(75 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 134.8(4-\mathrm{C}), 118.9(5-\mathrm{C}), 65.6(1-\mathrm{C}), 56.8(2-\mathrm{C}), 56.3\left(\mathrm{SC}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),} 37.5(3-\mathrm{C})\right.$, $26.3\left({ }^{\mathrm{t}} \mathrm{Bu}\right), 22.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.41\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film): 2954, 2928, 2857, 1252, 1099, 1051, 855 and 775; m/z (ES+) 320.2 (100\%, [M+H $]^{+}$)

Also obtained was the diasteromer 149 ($196 \mathrm{mg}, 0.61 \mathrm{mmol}, 17 \%$); $\left[\alpha_{D}^{23.4}\right]+26.9$ (c 1.0, CHCl_{3}); $R_{\mathrm{f}} 0.48$ ($80: 20$, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.77$ (1 H , dddd, J 17.0 , $10.4,7.5$ and $6.7,4-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{d}, J 17,5-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{d}, ~ J 10.4,5-\mathrm{H}), 3.78$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.7, \mathrm{NH}), 3.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.9$ and 4.6, 1-H), $3.60(1 \mathrm{H}$, dd, J 9.9 and 5.1, 1-H), 3.38 $(1 \mathrm{H}, \mathrm{qt}, J 6.4$ and $4.8,2-\mathrm{H}), 2.40-2.21(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; 1.21(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 0.90(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134.5(4-\mathrm{C})$, 117.6 ($5-\mathrm{C}$), 65.4 ($1-\mathrm{C}$), 56.4 (2-C), 55.7 ($\mathrm{SO}^{\mathrm{t} B u), ~} 36.8$ (3-C), 25.8 ($\mathrm{SO}^{\mathrm{t} B u), ~} 22.7$ $\left.\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.2(\mathrm{SiCH})_{3}\right),-5.3\left(\mathrm{SiCH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3312, 2956, 2930, 2858, 1642, 1472, 1390, 1364 and 1324; m/z (ES+) 320.1 (20\%, [M+H] ${ }^{+}$)

(2R)-2-Aminopent-4-enol hydrochloride 151^{98}

Sulfinamine 150 ($4.0 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(40 \mathrm{~mL})$ and 4 N HCl in $1,4-$ dioxane (20 mL) was added dropwise at $0^{\circ} \mathrm{C}$ for 1 h and then the reaction was stirred at room temperature for 4 h . The reaction was concentrated in vacuo to give a pale yellow solid. The solid was slurried in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and filtered to give the amine hydrochloride 151 ($1.30 \mathrm{~g}, 9.5 \mathrm{mmol}, 95 \%$) as a white crystalline solid; [$\left.\alpha_{D}^{23.7}\right]-10.3$ (c. $0.7, \mathrm{MeOH}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{MeOD}) 5.84$ (1 H , ddt, J 7.1, 10.2 and 17.2), 5.31-5.20 (2H, $\mathrm{m}, 5-\mathrm{H}_{\text {trans }}$ and $5-\mathrm{H}_{\mathrm{cis}}$), $3.78\left(1 \mathrm{H}\right.$, dd, $J 3.8$ and $11.6,3-\mathrm{H}_{\mathrm{a}}$), $3.58(1 \mathrm{H}, \mathrm{dd}, J 7.1$ and 11.6 , $\left.3-\mathrm{H}_{\mathrm{b}}\right), 3.31-3.24(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.5-2.34\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{ab}}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} ; \mathrm{MeOD}) 131.9(4-\mathrm{C})$, 118.8 (5-C), 60.5 (1-C), 52.5 (2-C), 33.5 (3-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (solid): 2472, 2071, 1121 and 972
(2R)-1-Hydroxy-S-(2-nitrophenyl)pent-4-ene-2-sulfonamide 152

The amine hydrochloride 151 ($1.6 \mathrm{~g}, 11.6 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, triethylamine ($2.93 \mathrm{~g}, 29 \mathrm{mmol}$) was added and the reaction cooled to $0{ }^{\circ} \mathrm{C} .2-$ Nitrobenzene sulfonyl chloride ($2.58 \mathrm{~g}, 11.6 \mathrm{mmol}$) was added in one portion; after 1 h the ice bath was removed and the reaction was stirred at room temperature. After 16 h the reaction was poured into water (50 mL), separated and washed with $\mathrm{HCl}(0.5 \mathrm{M}, 50$ $\mathrm{mL}), 10 \% \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (100 mL). The organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to give the sulfonamide 152 ($3.15 \mathrm{~g}, 11.1$
$\mathrm{mmol}, 95 \%)$ as a pale yellow viscous oil, which was not purified; $R_{\mathrm{f}} 0.71$ (80:20, EtOAc-petrol); $\left[\alpha_{D}^{23.7}\right]-5.1$ (c. $0.3, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.17-8.13(1 \mathrm{H}, \mathrm{m}$, nosyl 3-H), 7.90-7.85 (1H, m, nosyl 6-H), 7.79-7.72 (2H, m, nosyl 4 and 5-H), $5.54(1 \mathrm{H}$, ddt, $J 7.2,10.0$ and $17.2,4-\mathrm{H}), 5.01\left(1 \mathrm{H}, J 17.0,5-\mathrm{H}_{\text {trans }}\right), 4.92\left(1 \mathrm{H}, J 10.0,5-\mathrm{H}_{\text {cis }}\right)$, 3.66-3.53 (3H, m, 1-Hab and 2-H), 2.35-2.22 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{ab}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 147.7$ (nosyl 2-C), 134.5 (4-C), 133.6 (nosyl 1-C), 132.9 (nosyl 4 and 5-C), 130.7 (nosyl 6-C)), 125.4 (nosyl 3-C), 118.9 (5-C), 64.4 (1-C), 56.2 (2-C), 36.2 (3-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3334, 1537, 1163 and 593; $\mathrm{m} / \mathrm{z}(\mathrm{ES}+) 309.1\left(100 \%\right.$, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found $309.0515, \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{MNa}, 309.0516$

$N-[(2 R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-H e p t a d e c a f l u o r o d e c y l) b i s(p r o p a n-$ 2-yl)silyl]oxy\}pent-4-en-2-yl]-2-nitrobenzene-1-sulfonamide 112

A solution of $(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-heptadecafluorodecyl)diisopropylsilane $(6.6 \mathrm{~g}, 11.7$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{~mL}$) was added slowly to a solution of N -bromosuccinimide (2.2 $\mathrm{g}, 12.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min at $0{ }^{\circ} \mathrm{C}$ the reaction was then stirred for 20 min at room temperature. A solution of sulfonamide 152 ($3.15 \mathrm{~g}, 11.1$ mmol) and imidazole ($1.0 \mathrm{~g}, 14.6 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. After 16 h at room temperature the reaction was concentrated in vacuo, dissolved in the petrol-EtOAc ($50: 50$) and filtered through a silica/Celite $®$ plug. The resulting filtrate was concentrated in vacuo, to give the sulfonamide 112 (9.3 g , 11.1 mmol, 99%) as a pale yellow viscous oil which was not purified further. $R_{\mathrm{f}} 0.95$ (80:20 EtOAc—petrol); [$\left.\alpha_{D}^{23.7}\right]-2.4$ (c. 1.5, CHCl_{3}); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 8.14-8.12 (1 H , m, Ns), 7.87-7.84 (1H, m, Ns), 7.73-7.69 (1H, m, Ns), 5.65 (1H, d, J 10, N-H), 5.61 (1H, ddt, J 9.5, 13 and 18, 4-H), $5.03(1 \mathrm{H}, \mathrm{d}, ~ J 18,5-\mathrm{H}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13,5-\mathrm{H}), 3.72-3.69$ $\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 3.61-3.52\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{b}}\right.$ and 2-H), 2.35-2.26(2H, m, 1-H), 2.15-1.94 (2H, m, 2'-H), $0.98(14 \mathrm{H}, \mathrm{s}, \mathrm{Pr}), 0.86-0.75\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 135.1$ (4-C), 133.4 (nosyl 1-C), 133.0 (nosyl 6-C), 132.9 (nosyl 4 or $5-\mathrm{C}$), 130.6 (nosyl 6-C), 125.4 (nosyl 3-C), 118.8 (5-C), 64.6 (1-C), 55.8 (2-C), 36.2 (3-C), 24.5 ('Pr), 17.4 ('Pr), 12.2 ('Pr), -0.3 (1'-C), nosyl 2-C missing; $v_{\max } / \mathrm{cm}^{-1}$ (film): 2949, 2870, 1643, 1543, 1275 and 1259; $m / z(E S+) 864.2\left(100 \%,\left[M+\mathrm{NH}_{4}\right]^{+}\right)$; found 864.1787, $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~F}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$ SSi requires $\mathrm{MNH}_{4}, 864.1790$

2-Aminopent-4-enol 156

To a solution of $\mathrm{MeOH}(40 \mathrm{~mL}$) was added acetyl chloride ($4.0 \mathrm{~g}, 52 \mathrm{mmol}$); to this, 2 -amino-4-petenoic acid ($2.00 \mathrm{~g}, 17.4 \mathrm{mmol}$) in $\mathrm{MeOH}(60 \mathrm{~mL})$ was added. The reaction was heated at reflux for 4 h , concentrated in vacuo to give the crude methyl ester hydrochloride. THF (100 mL) was added and the solution cooled to $0^{\circ} \mathrm{C}$, $\mathrm{LiAlH}_{4}(1.97$ $\mathrm{g}, 52 \mathrm{mmol}$) was added portionwise (ca. 0.5 g). After 16 h , aqueous sat. $\mathrm{NH}_{4} \mathrm{Cl}$ was added until effervescence ceased, the resulting solution was concentrated in vacuo onto silica gel. Column chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (85:15) gave the amino alcohol 156 ($1.62 \mathrm{~g}, 16 \mathrm{mmol}, 92 \%$) as a pale yellow oil. $R_{\mathrm{F}} 0.1\left(90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.58(1 \mathrm{H}$, ddt, J 17.1, 10.2 and $7.2,4-\mathrm{H}), 4.96-4.82(2 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}$), $3.39\left(1 \mathrm{H}, \mathrm{dd}, J 10.9,3.9,1-\mathrm{H}_{\mathrm{A}}\right), 3.16$ (dd, J 10.9, 7.4, 1-HB), $2.74(1 \mathrm{H}, \mathrm{dq}, J$ $9.7,7.5 \mathrm{~Hz}, 2-\mathrm{H}), 2.04\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 12.5,6.1,3-\mathrm{H}_{\mathrm{A}}\right), 1.96-1.80\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} ;$ CDCl_{3}) 134.4 (4-C), 177.8 (5-C), 65.1 ($1-\mathrm{C}$), 52.1 (2-C), 37.7 (3-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3543, 3352, 2939, 2308, 1960, 1846, 1660, 1643, 1594, 1539, 1428, 1361
(R) 2-Aminopent-4-enol (R)-156

To a solution of $\mathrm{MeOH}(5 \mathrm{~mL})$ was added acetyl chloride ($3.4 \mathrm{~g}, 43 \mathrm{mmol}$); to this, (R) -2-amino-4-petenoic acid ($1.00 \mathrm{~g}, 8.7 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added. The reaction was refluxed for 4 h , concentrated in vacuo to give the crude methyl ester hydrochloride. THF (100 mL) was added and the solution cooled to $0^{\circ} \mathrm{C}$, $\mathrm{LiAlH}_{4}(0.66$ $\mathrm{g}, 17.4 \mathrm{mmol}$) was added portionwise (ca. 0.2 g). After 16 h , aqueous sat. $\mathrm{NH}_{4} \mathrm{Cl}$ was added until effervescence ceased, the resulting solution was concentrated in vacuo onto silica gel. Column chromatography elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ ($86: 13.5: 1.5$) gave the amino alcohol (R)-156 ($700 \mathrm{mg}, 6.93 \mathrm{mmol}, 80 \%$) as a pale yellow oil; $\left[\alpha_{D}^{23.7}\right]-25.4$ (c. $0.8, \mathrm{MeOH}$)

N-(1-Hydroxypent-4-en-2-yl)benzamide 157

Benzoyl chloride ($124 \mathrm{mg}, 0.9 \mathrm{mmol}$) was added to a solution of 156 ($100 \mathrm{mg}, 0.99$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(156 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After 24 h the reaction was concentrated in vacuo onto silica, column chromatography eluting with petrol-EtOAc $(10: 90 \rightarrow 20: 80)$ gave the amide 157 ($104 \mathrm{mg}, 0.51 \mathrm{mmol}, 51 \%$ as an off white solid; $R_{\text {F }} 0.29$ (90:10 petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.76$ (2H, dd, J 8.3 and 1.4, Ar 2 and $6-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{tt}, J 7.5$ and 1.4, Ar 4-H), $7.43(2 \mathrm{H}, \mathrm{dd}, J 8.3$ and 7.5 , $\operatorname{Ar} 3$ and 5H), $6.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.86(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.1$ and $7.1,4-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{ddd}, J 17.2$, 1.7 and $\left.1.6,5-\mathrm{H}_{\mathrm{A}}\right), 5.17\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.1,1.3\right.$ and $\left.1.7,5-\mathrm{H}_{\mathrm{B}}\right), 4.25-4.19(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $3.81\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.3.7,1-\mathrm{H}_{\mathrm{A}}\right), 3.75\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.5.4,1-\mathrm{H}_{\mathrm{B}}\right), 2.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, OH), 2.51-2.38 (2H, m, 3- H_{AB}); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.2(\mathrm{C}=\mathrm{O})$, $134.3(5-\mathrm{C}), 134.2(\mathrm{Ar}$ 1-C), 131.7 (Ar 4-C), 128.6 ($\operatorname{Ar} 2$ and 6-C), 126.9 ($\operatorname{Ar} 3$ and 5-C), 118.5 (4-C), 65.4 (1C), 51.6 (2-C), 35.8 (3-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3302, 2952, 1955, 1894, 1637, 1603, 1578, 1536, 1490, 1442; m/z (ES+) 228.1 (100\%, [M+Na] ${ }^{+}$); found 228.1002, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{MNa}, 228.0995$

(R) N -(1-Hydroxypent-4-en-2-yl)benzamide

Benzoyl chloride ($124 \mathrm{mg}, 0.9 \mathrm{mmol}$) was added to a solution of $(\boldsymbol{R})-\mathbf{1 5 6}$ ($101 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(150 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After 24 h the reaction was concentrated in vacuo onto silica, column chromatography eluting with petrol-EtOAc $(10: 90 \rightarrow 20: 80)$ gave the amide $(R)-157(120 \mathrm{mg}, 0.58 \mathrm{mmol}, 58 \%)$ as an off white solid. Data as 157, [$\alpha_{D}^{23.7} 11.3$ (c. $\left.0.5, \mathrm{MeOH}\right)$

2,5-Di(hydroxylmethyl)thiophene $165^{121,122}$

To a slurry of $\mathrm{LiAlH}_{4}(4.4 \mathrm{~g}, 116 \mathrm{mmol})$ in THF (800 mL) was added 2,5thiophenedicarboxylic acid $\mathbf{1 6 4}(10.0 \mathrm{~g}, 58 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$. After addition the slurry was stirred at room temperature for 30 min and then refluxed for 24 h . The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and water was added until there was no more gas evolution. The reaction was then extracted with EtOAc ($5 \times 200 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$,
filtered and concentrated in vacuo to give 165 ($6.8 \mathrm{~g}, 82 \%$) as a pale yellow oil, that was used without further purification; $R_{\mathrm{f}} 0.1$ ($60: 40$ petrol-EtOAc); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 6.93(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.84(\mathrm{~s}, 4 \mathrm{H}, 1-\mathrm{H}), 1.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 144.7$ (2-C), 125.7 (3-C), 60.6 (1-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3350, 2870, 1731, 1653, 1359, 1205, 1159, 1008 and 808; m / z (ES+) 167.2 ($100 \%, \mathrm{MNa}^{+}$)

[5-(Hydroxymethyl)thiophen-2-yl]methyl acetate 130

To a solution of 165 ($10.0 \mathrm{~g}, 69 \mathrm{mmol}$), triethylamine ($9.2 \mathrm{~mL}, 82 \mathrm{mmol}$) and DMAP (80 $\mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added a solution of acetyl chloride (5.4 $\mathrm{g}, 69 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The reaction was then stirred for 16 h at room temperature and then concentrated in vacuo. Column chromatography, eluting with 60:40 petrol-EtOAc gave $130(6.42 \mathrm{~g}, 49 \%)$ as a pale yellow oil; $R_{\mathrm{f}} 0.47$ (60:40 petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.5,6-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.5,5-\mathrm{H})$, 5.26 (2H, s, 1-H), 4.84 (2H, d, J5.38, 1'-H), 2.13 (s, 3H, Ac), 1.93 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.8, \mathrm{OH}$); δ_{C} ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 173.6 (Ac), 146.1 (4-C), 137.5 (6-C), 128.5 (2-C), 125.5 (3-C), 61.1 (1-C), 60.6 ($\left.1^{\prime}-\mathrm{C}\right), 21.4(\mathrm{Ac}) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3448, 2864, 2250, 1740, 1379, 1235, 1023; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 169.0\left(50 \%,\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right)$and $498.1\left(100 \%,\left[\mathrm{M}_{3}+\mathrm{NH}_{4}\right]^{+}\right)$

\{2-[2-(Hydroxymethyl)phenyl]phenyl\}methanol 167^{123}

LiAlH_{4} (2M in THF, $45 \mathrm{~mL}, 90 \mathrm{mmol}$) was added dropwise to diphenic anhydride 166 $(10.0 \mathrm{~g}, 44.6 \mathrm{mmol})$ in THF $(350 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 24 h the reaction was quenched with aqueous sat. $\mathrm{NH}_{4} \mathrm{Cl}$ until no gas was evolved and then the pH was corrected to ca . 7 with 4 N HCl . The slurry was filtered through a Celite® ${ }^{\circledR}$ plug and concentrated in vacuo; the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 100 \mathrm{~mL})$. The combined organic layers were dried, filtered and concentrated in vacuo to give the crude product which was recrystallized from toluene to give the diol $167(8.01 \mathrm{~g}, 37.4 \mathrm{mmol}, 85 \%)$ as offwhite needles; m.p 127-129 ${ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.63$ (20:80 petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $7.54(2 \mathrm{H}, \mathrm{dd}, J 1.1$ and 7.6$), 7.45(2 \mathrm{H}, \mathrm{td}, J 1.4$ and 7.6$), 7.40(2 \mathrm{H}, \mathrm{td}, J 1.4$ and 7.4), 7.21 (2H, dd, J 1.1 and 7.4), 4.40 ($4 \mathrm{H}, \mathrm{d}, ~ J 11.7$, benzylic), 2.72 (2 H , br s, OH); $\delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 140.4, 138.9, 130.1, 130.0, 128.5, 128.1, 63.3; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3055, 2987, 2305, 1477, 1422, 1340, 1266; m/z (ES ${ }^{+}$) 237.1 (100\%, [M+Na] ${ }^{+}$); found 237.0884, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ requires MNa 237.0886

\{2-[2-(Hydroxymethyl)phenyl]phenyl\}methyl acetate 129

Acetyl chloride ($182 \mathrm{mg}, 2.3 \mathrm{mmol}$) was added dropwise to a stirring solution of diol 167 ($500 \mathrm{mg}, 2.3 \mathrm{mmol}$), triethylamine ($255 \mathrm{mg}, 2.5 \mathrm{mmol}$) and DMAP ($28 \mathrm{mg}, 0.23$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 2 h at room temperature the reaction was washed with water (5 mL), $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Column chromatography, eluting with petrol--EtOAc ($40: 60$) gave the mono acetate 129 ($256 \mathrm{mg}, 1.05 \mathrm{mmol}, 46 \%$) as a colourless oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.50$ (1H, d, J8.0, Ar), 7.40 (1H, d, J7.3, Ar), 7.367.23 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.13 (1H, dd, J 1.6 and 7.2, Ar), 7.07 (1H, dd, J 1.2 and 7.6), 4.854.76 (2H, m, CH2OAc), 4.39-4.28 (2H, m, CH2OH), $1.94(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.1$ (CO), 140.5, 139.2, 139.1, 134.5, 130.4, 130.1, 129.3, 128.9, 128.7, 128.5, 128.4, 127.8, 65.7 63.4, 21.3; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film): 3406, 1732, 1379, 1223, 1024, 1006 and 775; m/z (ES ${ }^{+}$) 279.1 (100\%, [M+Na] $)$; found 279.0996, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$ requires MNa 279.0992

(2S)-3-Hydroxy-2-methylpropyl acetate 128^{124}

Vinyl acetate ($5.7 \mathrm{~g}, 66 \mathrm{mmol}$) was added to 2-methyl propane 1,3-diol 168 ($2.0 \mathrm{~g}, 22$ mmol) and chloroform (10 mL) at room temperature. Pseudomonas Fluorescens (100 mg) was added and the reaction stirred for 24 h . Once all the diol had been consumed, the reaction was filtered through Celite® and concentrated in vacuo to give the crude product. Column chromatography, eluting with petrol-EtOAc (50:50) gave the monoacetate 128 ($1.2 \mathrm{~g}, 9.0 \mathrm{mmol}, 41 \%$) as a colourless oil; $R_{\mathrm{f}} 0.36$ ($50: 50$ petrolEtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.13\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.1\right.$ and $\left.11.1, \mathrm{CH}_{2} \mathrm{OAc}\right), 4.05$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 6.6 and $\left.11.1, \mathrm{CH}_{b} \mathrm{OAc}\right) 3.56\left(1 \mathrm{H}, \mathrm{dd}, J 5.1\right.$ and $\left.11.1, \mathrm{CH}_{2} \mathrm{OH}\right), 3.50(1 \mathrm{H}, \mathrm{dd}, J 6.6$ and 11.1, $\mathrm{CH}_{b} \mathrm{OH}$) $2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.02-1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 0.96(3 \mathrm{H}, \mathrm{d}$, J 6.9, $\left.\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.7(\mathrm{CO}), 66.2\left(\mathrm{CH}_{2} \mathrm{OAc}\right), 64.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 35.4(\mathrm{CH})$, 20.9 (Ac), $13.5\left(\mathrm{CH}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film): 2963, 1736, 1715, 1367, 1221, 1031 and 988; $m / z\left(\mathrm{ES}^{+}\right) 155.1\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $155.0702, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}$ requires MNa 155.0679

(2R)-3-(Acetyloxy)-2-methylpropyl (2R)-2-methoxy-2-phenylacetate 169

To a solution of (S)-(α)-Methoxyphenylacetic acid ($100 \mathrm{mg}, 0.6 \mathrm{mmol}$), hydroxyl acetate $128(87.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and DMAP ($7 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added 1 -Ethyl-3-(3-dimethylaminopropyl)carbodiimide ($102.3 \mathrm{mg}, 0.66 \mathrm{mmol}$). After 16 h the crude mixture was concentrated in vacuo, column chromatography eluting with 80:20 petrol-EtOAc gave the ester 169 ($93 \mathrm{mg}, 0.30 \mathrm{mmol}, 45 \%$) as a colourless oil; $R_{\mathrm{f}} 0.84$ ($70: 30$, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $7.53-7.33$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 4.81 ($1 \mathrm{H}, \mathrm{s}$, (MeO)CH), $4.12\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and 6.2, $\left.1-\mathrm{H}_{\mathrm{A}}\right), 4.08\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.6.1,1-\mathrm{H}_{\mathrm{B}}\right)$, $3.94\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and $\left.5.6,3-\mathrm{H}_{\mathrm{A}}\right), 3.86\left(1 \mathrm{H}\right.$, dd, $J 11$ and $\left.6.4,3-\mathrm{H}_{\mathrm{B}}\right), 3.44(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 2.20-2.08 (1H, m, 2-H), $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 0.92(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{Me}), 0.88\left(\mathrm{~d}, ~ J 6.9, \mathrm{Me}^{\mathrm{min}}\right) ;$ $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.4,171.1,136.6,129.2,129.1,127.5,82.9,66.7,65.9,57.8$, 32.7, 21.3, 14.1; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3004, 2989, 1738, 1455, 1275, 1261; m/z (ES ${ }^{+}$) 303.1 $\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $303.1199, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$ requires MH 303.1209

(2R)-3-(Acetyloxy)-2-methylpropyl (2S)-2-methoxy-2-phenylacetate 170

Using the same procedure as 169 gave the ester 170 ($96 \mathrm{mg}, 0.31 \mathrm{mmol}, 52 \%$) as a colourless oil; $R_{\mathrm{f}} 0.84$ (70:30, Petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.48(2 \mathrm{H}, 8.0$ and 1.7, Ar), 7.44-7.36 (3H, Ar), $4.82(1 \mathrm{H}, \mathrm{s},(\mathrm{MeO}) \mathrm{CH}), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and $\left.6.1,1-\mathrm{H}_{\mathrm{A}}\right)$, $4.10\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and $\left.5.9,1-\mathrm{H}_{\mathrm{B}}\right), 3.94\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.6.3,3-\mathrm{H}_{\mathrm{A}}\right), 3.93(1 \mathrm{H}, \mathrm{dd}, J$ 11.1 and $\left.5.8,3-\mathrm{H}_{\mathrm{B}}\right) ; 3.87\left(\mathrm{dd}, J 11.1\right.$ and $\left.6.4,3-\mathrm{H}_{\mathrm{B}}{ }^{\mathrm{min}}\right), 3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 2.19-2.13 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 2.06 (3H, s Ac), 0.93 (d, Me), 0.89 (3H, d, J 6.8, Me); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 170.9, 170.6, 136.3, 128.8, 128.7, 127.1, 126.6, 82.5, 66.3, 65.5, 57.3, 32.3, 20.8, 13.6, 13.5 (min); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3001, 2988, 1738, 1274, 1260; m/z (ES ${ }^{+}$) 303.1 (100%, $[\mathrm{M}+\mathrm{H}]^{+}$); found 303.1209, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$ requires MH 303.1209

[2-(Prop-2-en-1-yloxy)phenyl]methanol 173 ${ }^{125}$

To a solution of salicyladehyde ($1.00 \mathrm{~g}, 8.19 \mathrm{mmol}$) and potassium carbonate (2.80 g , 20.2 mmol) in acetone (100 mL); was added allyl bromide ($1.18 \mathrm{~g}, 9.83 \mathrm{mmol}$). The reaction was heated at reflux for 16 h . The reaction was concentrated in vacuo and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$; washed with $\mathrm{NaOH}(1 \mathrm{M}, 20.0 \mathrm{~mL})$, water (2 $\times 20.0 \mathrm{~mL})$ and brine $(2 \times 20.0 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried, MgSO_{4}, filtered and concentrated in vacuo to give a yellow oil. The oil obtained was dissolved into $\mathrm{MeOH}(200 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(1.00 \mathrm{~g}, 26.4 \mathrm{mmol})$ was added portionwise to the solution which self-heating and was not controlled. Once all the NaBH_{4} was added the solution was refluxed for 1 h ; the solution was poured into ice/water (50.0 mL and extracted with $\mathrm{CHCl}_{3}(50.0 \mathrm{~mL})$; the organic layer was dried, MgSO_{4}, filtered and concentrated in vacuo to give a colourless oil. Flash chromatography, eluting with 30:70 EtOAchexanes gave the product 173 ($0.94 \mathrm{~g}, 5.80 \mathrm{mmol}, 71 \%$) as a colourless oil. $R_{\mathrm{f}} 0.34$ (70:30, EtOAc—hexanes); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.32-7.21 (2H, m, Ph 3-H and 6-H), 6.95 (1H, t, J 7.2, Ph 5-H), 6.88 (1H, d, J 8.2, Ph 4-H), 6.07 (1H, m, propenyl 2-H), 5.42 ($1 \mathrm{H}, \mathrm{dd}, J 1.5,17$, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.30\left(1 \mathrm{H}\right.$, dd, $J 1.5,10$, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 4.72(2 \mathrm{H}, \mathrm{d}$, $J 6.1, \mathrm{CH}_{2} \mathrm{OH}$), $4.60(2 \mathrm{H}, \mathrm{dt}, J 5.2$ and 1.5, propenyl $1-\mathrm{H}) 2.34$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$); $\delta_{\mathrm{c}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.5$ (Ph 2-C), 133.0 (propenyl 2-C), 129.4 (Ph 1-C), 128.9 (Ph 4-C or 2), 128.8 (Ph 4-C or 2), 120.9 (Ph 5-C), 117.7 (propenyl 3-C), 111.5 (propenyl 3-C), 68.8 (propenyl 1-C), $62.2\left(\mathrm{PhCH}_{2} \mathrm{OH}\right) ; \mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$ (film) 3368, 2921, 2871, 1602, 1491, 1423, 1236, 998 and 753; m/z (EI+) $164.1\left(75 \%,[\mathrm{M}]^{+}\right)$; found 164.0834, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $M 164.0837$

1-Iodo-2,4-dimethoxybenzene 175^{126}

Sulfuric acid ($18 \mathrm{M}, 2.00 \mathrm{~mL}, 36.0 \mathrm{mmol}$) was added to a stirred solution of methanol $(40.0 \mathrm{~mL}) .1,3$-Dimethoxybenzene ($1.00 \mathrm{~g}, 7.20 \mathrm{mmol}$) and Potassium iodide ($1.33 \mathrm{~g}, 8$ mmol) were added, which resulted in a colour change from colourless to pale yellow. Hydrogen peroxide $(30.0 \%, 2 \mathrm{~mL}, 16 \mathrm{mmol})$ was added, which caused a solution colour change to dark brown. After 2.5 h the reaction mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ and washed with $\mathrm{NaHSO}_{4}(0.1 \mathrm{M}, 60.0 \mathrm{~mL})$ and water $(60.0 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product
as brown oil which was purified by flash chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give purple fractions which were washed with sodium metabisulphite ($10 \% \mathrm{w} / \mathrm{v}, 50.0 \mathrm{~mL}$) to remove elemental I_{2}, dried, MgSO_{4}, filtered and concentrated in vacuo to give the product 175 as a colourless oil ($1.62 \mathrm{~g}, 6.10 \mathrm{mmol}, 84 \%$); $R_{\mathrm{f}} 0.83\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,6-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{d}, ~ J 2.7,2-\mathrm{H}), 6.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6,2.7$, $6-\mathrm{H}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.2(2-\mathrm{C}), 157.6$ (4C), 137.6 (6-C), 105.9 (5-C), 98.0 (3-C), 73.6 (1-C), 55.0 (OMe), 54.3 (OMe); $v_{\max } / \mathrm{cm}^{-1}$ (solid) 1575 and 822; $m / z\left(\mathrm{El}^{+}\right) 264.0\left(75 \%,[\mathrm{M}]^{+}\right)$; found 263.9647, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IO}_{2}$ requires M 263.9647

1,3-Diethyl 2-(2,4-dimethoxyphenyl)propanedioate $176{ }^{127}$

Caesium carbonate ($3.68 \mathrm{~g}, 11.4 \mathrm{mmol}$) was added to a solution of $175(1.00 \mathrm{~g}, 3.78$ $\mathrm{mmol})$ in dioxane (8.00 mL). Copper iodide ($35.0 \mathrm{mg}, 5 \mathrm{~mol} \%$) and picolinic acid (46.0 $\mathrm{mg}, 10 \mathrm{~mol} \%$) were added in one portion. The solution was stirred at room temperature for 5 min and diethyl malonate ($1.20 \mathrm{~g}, 7.56 \mathrm{mmol}$) was added in one portion and the solution was heated at reflux for 48 h . On completion the reaction was filtered through a short silica pad, the silica was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25.0 \mathrm{~mL})$. The solution was dried, MgSO_{4}, filtered and concentrated in vacuo to give a viscous oil. Column chromatography, eluting with 20:80 $\mathrm{Et}_{2} \mathrm{O}$ —hexanes gave 176 ($0.79 \mathrm{~g}, 2.67 \mathrm{mmol}, 71 \%$) as a colourless needles; m.p. $53.5-54.1^{\circ} \mathrm{C}$ (hexanes- $\left.\mathrm{Et}_{2} \mathrm{O}\right) ; R_{\mathrm{f}} 0.65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.25$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph} 6-\mathrm{H}$), 6.50 (1 H , dd, J 8.3 and 2.0, Ph $5-\mathrm{H}$), $6.46(1 \mathrm{H}$, dd, J 2.0, Ph 3-H), 5.02 ($1 \mathrm{H}, \mathrm{s}$, propyl 2-H), 4.27-4.17 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}$), $3.80(3 \mathrm{H}, \mathrm{s}$, OMe), 3.79 (3H, s, OMe), 1.26 ($6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.2$ (2 x C=O), 161.1 (Ph 2-C), 158.4 (Ph 4-C), 130.5 (Aryl 6-C), 114.8 (Aryl 1-C), 105.0 (Aryl 5-C), 99.0 (Aryl 3-C), $62.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 56.0\left(\mathrm{OCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 51.0(\mathrm{C}(\mathrm{O}) \mathrm{CHC}(\mathrm{O})), 14.4$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (solid) 2970, 2442, 2159, 2029, 1738, 1366, 1217; m/z (EI+) 297.5 ($90 \%,[\mathrm{M}+\mathrm{H}]^{+}$) and 223.4 (100\%, [M-C(O)OEt $\left.]^{+}\right)$

Lithium aluminium hydride ($0.40 \mathrm{~g}, 10.6 \mathrm{mmol}$) was slurried in THF (10.0 mL) and cooled to $0^{\circ} \mathrm{C}$. A solution of the α-aryl diethyl malonate $176(0.7 \mathrm{~g}, 2.36 \mathrm{mmol})$ in THF $(3.60 \mathrm{~mL})$ was added dropwise. Once addition was complete the reaction was stirred for 5 min at $0^{\circ} \mathrm{C}$ and then 24 h at room temperature. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and water (15.0 mL) was added. The reaction mixture was then filtered through a short silica pad; washing the silica with $\mathrm{Et}_{2} \mathrm{O}(5 \times 10.0 \mathrm{~mL})$. The filtrate was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10.0 \mathrm{~mL})$. The combined organic layers were dried, MgSO_{4}, and concentrated in vacuo to give the crude diol as a viscous oil. Column chromatography, eluting with 50:50 EtOAc-hexanes gave the diol 177 ($0.27 \mathrm{~g}, 1.27 \mathrm{mmol}, 53 \%$) as colourless needles; m.p. 84.7-85.9 ${ }^{\circ} \mathrm{C}$ (from EtOAchexanes); $R_{\mathrm{f}} 0.11$ ($50: 50$, EtOAc—hexanes); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.07$ (1H, d, J 9 , Aryl $6-\mathrm{H})$, 6.5-6.43 ($2 \mathrm{H}, \mathrm{m}$, Aryl 5-H and $3-\mathrm{H}$), 4.05-3.85 ($4 \mathrm{H}, \mathrm{m}$, propyl 1-H), $3.81(3 \mathrm{H}, \mathrm{s}$, OMe), 3.79 (3H, s, OMe), 3.50-3.39 (1H, m, propyl 2-H), 2.01 ($2 \mathrm{H}, \mathrm{t}, ~ J 7.5, \mathrm{OH}$); $\delta_{\mathrm{c}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 160.3 (Aryl 4-C) 158.8 (Aryl 2-C), 129.2 (Aryl 6-C), 120.2 (Aryl 1-C), 99.4 (Aryl 3-C), 104.8 (Aryl 5-C), 65.8 (propyl 1-C), 55.8 (OMe), 55.7 (OMe), 43.3 (propyl 2C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (solid) 3234, 2509, 2159, 2030, 1615, 1469, 1040; m/z (ES ${ }^{+}$) 235.1 (100\%, $[\mathrm{M}+\mathrm{H}]^{+}$); found 235.0944, $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$ requires MH 235.0941

(2S)-2-(2,4-Dimethoxyphenyl)-3-hydroxypropyl acetate 178

Candida Antarctica (10.0 mg) immobilised on acrylic resin beads (Novozyme 435^{\circledR}) was added to the 1,3 -diol 177 ($50.0 \mathrm{mg}, 0.23 \mathrm{mmol}$) dissolved in ether (2.00 mL). Vinyl acetate ($30.0 \mathrm{mg}, 0.35 \mathrm{mmol}$) was added. The reaction mixture was stirred gently as not to break up the enzyme resin beads for 20 min ; after which the reaction was filtered and concentrated in vacuo to give the crude product as a viscous oil. Column chromatography, eluting with 50:50 EtOAc—hexanes gave the hydroxy acetate 178 $(41.0 \mathrm{mg}, 0.16 \mathrm{mmol}, 70 \%)$ as a colourless film. $R_{\mathrm{f}} 0.27$ ($50: 50$, hexanes-EtOAc); $[\alpha]_{D}^{25}-16.4\left(c 1.2, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.9$ and $2.4, \mathrm{Ar} 6-\mathrm{H})$, 6.49-6.43 (2H, m, Ar 2 and $5-\mathrm{H}), 4.38\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and 7.2 , propyl 1- $\left.\mathrm{H}_{\mathrm{A}}\right), 4.34(1 \mathrm{H}$,
dd, $J 11.1$ and 5.9 , propyl $\left.1-\mathrm{H}_{\mathrm{B}}\right), 3.83\left(2 \mathrm{H}, \mathrm{d}, J 5.9\right.$, propyl $\left.3-\mathrm{H}_{\mathrm{AB}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.50\left(1 \mathrm{H}, \mathrm{p}, J 5.9\right.$, propyl 2-H), $2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.90(1 \mathrm{H}$, brs, $\mathrm{CH}_{2} \mathrm{OH}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.7\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right.$), 160.4 (Ar 2-C or 4-C), 158.8 (Ar 2-C or 4-C), 129.4 (Ar 6-C), 119.7 (Ar 1-C), 104.7 (Ar 5-C), 99.3 (Ar 3-C), 64.9 (propyl 1-C), 63.4 (propyl 3-C), 55.8 (OMe), 55.7 (OMe), 40.7 (propyl 2-C), $21.3\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3} ; \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right.$ (film) 3006, 1727, 1616, 1584, 1506, 1458; m/z (ES ${ }^{+}$) 277.1 (100\%, [M+Na] ${ }^{+}$); found 277.1042, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$ requires MNa 277.1046
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl acetate 179

Alcohol 178 ($15.0 \mathrm{~g}, 60.0 \mathrm{mmol}$) and allyl ethyl carbonate ($23.0 \mathrm{~g}, 177 \mathrm{mmol}$) were dissolved in THF (500 mL) at room temperature. Palladium (II) acetate ($132 \mathrm{mg}, 0.59$ mmol) and triphenylphosphine ($1.54 \mathrm{~g}, 5.9 \mathrm{mmol}$) were added and the reaction was refluxed for 24 h . The reaction was concentrated in vacuo dissolved in EtOAc (200 mL) and passed through a short silica pad and concentrated in vacuo to give the crude product. Column chromatography, eluting with petrol-EtOAc (80:20) gave the allyl ether 179 ($13 \mathrm{~g}, 58.1 \mathrm{mmol}, 72 \%$); $R_{\mathrm{f}} 0.91$ ($80: 20$ petrol—EtOAc,); $\left[\alpha_{D}^{18.9}\right] 4$ (c 0.5, CHCl_{3}); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$); 7.11 (1H, d, J 9.0, Ph 6-H), 6.47-6.43 (2H, m, Ph 3-H and $5-\mathrm{H}), 5.87(1 \mathrm{H}$, ddt, J 17.2, 10.7 and 5.5 , propenyl $2-\mathrm{H}), 5.24(1 \mathrm{H}, \mathrm{d}, J 17.2$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.15\left(1 \mathrm{H}, \mathrm{d}, J 10.7\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 4.38\left(1 \mathrm{H}, \mathrm{dd}, J 5.9\right.$ and $\left.10.8,1-\mathrm{H}_{\mathrm{a}}\right)$, $4.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.2$ and 10.8, propyl 1-HB), $4.01(2 \mathrm{H}, \mathrm{m}$, propenyl 1-H), $3.79(6 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe})$, 3.67-3.56 (3H, m, propyl $2-\mathrm{H}$ and $3-\mathrm{H}_{\mathrm{ab}}$), $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 171.2 (C=O), 159.6 (Ph 2 or 4-C), 158.3 (Ph 2 or 4-C), 134.9 (propenyl 2-C), 128.9 (Ph 6-C), 119.9 (Ph 1-C), 116.7 (propenyl 3-C), 104.0 (Ph 5-C), 98.6 (Ph 3-C), 64.9 (propenyl 1-C), 60.4 (propyl 1 and 3-C), 55.4 (OMe), 55.3 (OMe), 37.7 (propyl 2-C), 21.1 (Me); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film): 1735, 1612, 1506, 1233, 1207, 1032 and 541; m/z (ES ${ }^{+}$) $317.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found $317.1360, \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$ requires MNa 317.1359

By general procedure D, acetate 179 ($10.6 \mathrm{~g}, 36 \mathrm{mmol}$) was dissolved in sat. $\mathrm{MeOH} / \mathrm{NH}_{3}(500 \mathrm{~mL})$, after 48 h the reaction was concentrated in vacuo to give 180 ($7.5 \mathrm{~g}, 75 \%$) as a colourless oil; $R_{\mathrm{f}} 0.18$ ($80: 20$, petrol-EtOAc); $[\alpha]_{D}^{23} 8.3$ (c. 2.9 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.11$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{Ar}$), $5.51-6.47(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.96(1 \mathrm{H}$, ddt, $J 17.1,10.5$ and 5.6 , propenyl $2-\mathrm{H}), 5.32\left(1 \mathrm{H}, \mathrm{d}, J 17.1\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.23(1 \mathrm{H}$, d, $J 10.5$, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right)$, $4.11-3.97\left(4 \mathrm{H}\right.$, m, propenyl $1-\mathrm{H}$ and $\left.3-\mathrm{H}_{\mathrm{AB}}\right), 3.85(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.83-3.79\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.1\right.$ and $\left.4.7,1-\mathrm{H}_{\mathrm{B}}\right)$, 3.64-3.58 (1H, m, 2-H), 2.61 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 160.1 (Ar 2- or $4-\mathrm{C}$), 158.6 (Ar 2- or 4-C), 134.9 (propenyl 2-C) , 128.8 (Ar 6-C), 120.4 (Ar 1-C), 117.5 (propenyl 3-C), 104.5 (Ar 5-C), 99.2 (Ar 3-C), 73.8 (propyl 1-C), 72.6 (propenyl 1-C), 66.6 (propyl 3-C), 55.8 (OMe), 55.7 (OMe), 40.5 (propyl 2-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3407, 2937, 1609, 1212 and 833; m/z (ES ${ }^{+}$) 151 (100\%, [M-Propyl] ${ }^{+}$) and 275.0 (85%, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found $275.1261, \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$ requires MH 275.1254
(4S)-4-Benzyl-3-propanoyl-1,3-oxazolidin-2-one 182^{128}

n-Butyl lithium ($18.75 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 30 mmol) was added dropwise to a stirred solution of (S)-4-Benzyl-2-oxazolidinone ($5.00 \mathrm{~g}, 28 \mathrm{mmol}$) in THF (100 mL) at -78 C . Propionyl chloride ($2.94 \mathrm{~mL}, 30.0 \mathrm{mmol}$) was added dropwise after 1 h at $-78^{\circ} \mathrm{C}$, the reaction was allowed to warm to room temperature over 16 h . Water (10.0 mL) was added and the reaction mixture was concentrated in vacuo; EtOAc (100 mL) was added; the organic layer was washed with water $(3 \times 50 \mathrm{~mL})$ and dried MgSO_{4}, filtered and concentrated in vacuo to give the oxazolidinone 182 ($6.29 \mathrm{~g}, 27.0 \mathrm{mmol}, 96 \%$) as a pale yellow solid; $R_{\mathrm{f}} 0.92$, ($50: 50 \mathrm{EtOAc}-$ petrol); m.p $44{ }^{\circ} \mathrm{C}$ (from EtOAc-hexanes) [Lit. 44-45]; $[\alpha]_{\mathrm{D}}^{27.5} 59.2$ (c. 1 in CHCl_{3}); [Lit. $[\alpha]_{\mathrm{D}} 55$ (c. 1.27 in $\left.\left.\mathrm{CHCl}_{3}\right)^{128}\right] ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.36-7.16 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 4.65 (1 H , dddd, J $10.4,7.5,3.3$ and $3.0,5-\mathrm{H}$), 4.22$4.11(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.28\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.4\right.$ and $\left.3.3, \mathrm{Bn}-\mathrm{H}_{\mathrm{a}}\right), 2.94(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{Pr}), 2.77(1 \mathrm{H}$, dd, J 13.4 and 10.4, Bn-Hb), 1.19 (3H, t, J 7, Pr); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.8$ (3'-C), 28.1 (2'-C), 36.5 (Bn-C), 53.9 (5-C), 65.2 (4-C), 126.3 (Ar), 127.9 (Ar), 128.3 (Ar), 134.4 (Ar),
152.5 (2-C), 173.0 ($1^{\prime}-\mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (solid): 3029, 2981, 2940, 1782, 1698, 1454, 1372; $\mathrm{m} / \mathrm{z}(\mathrm{ES}+) 234.1\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 234.1119, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires MH 234.1125

(4S)-4-Benzyl-3-[(2'S,3' R)-3'-hydroxy-2'-methylhept-6'-enoyl]-1,3-oxazolidin-2-one $183{ }^{111}$

n-Dibutylboryl triflate ($2.60 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.58 \mathrm{mmol}$) and N, N diisopropylethylamine ($0.5 \mathrm{~mL}, 3.00 \mathrm{mmol}$) were added to a stirred solution of oxazolidinone $182(0.50 \mathrm{~g}, 2.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction, after 30 min the reaction was cooled to $-78^{\circ} \mathrm{C}$, following this 4 -pentenal ($0.90 \mathrm{~g}, 10.8 \mathrm{mmol}$) was added dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 3 h and then $0^{\circ} \mathrm{C}$ for a further 30 min . Phosphate buffer (pH 7.2) $\mathrm{MeOH}\left(10 \mathrm{~mL}, 1 / 2 \mathrm{v} / \mathrm{v}\right.$) and $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{MeOH}(10$ $\mathrm{mL}, 1 / 2 \mathrm{v} / \mathrm{v}$) were added to the reaction at $0^{\circ} \mathrm{C}$. After 1 h the reaction was concentrated in vacuo and the aqueous solution was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined organic layers were washed with sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, brine (50 mL) and concentrated in vacuo to give the crude product. Column chromatography, eluting with 70:30 petrol-EtOAc, gave the oxazolidinone 183 ($365 \mathrm{mg}, 1.15 \mathrm{mmol}, 53 \%$) as colourless needles; m.p. 81.7-83.9 ${ }^{\circ} \mathrm{C}$ (from EtOAc—hexanes); $R_{\mathrm{f}} 0.41$ (90:10 hexanes—EtOAc); $[\alpha]_{\mathrm{D}}^{27.5} 51.1$ (c. $0.9, \mathrm{CHCl}_{3}$); [Lit. 82 (c. 0.83 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{111}$]; $\delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.42-7.31 (3H, m, Ph), 7.27-7.21 (2H, m, Ph), 5.87 (1H, ddt, J 16.9, 10.3 and 6.7, $\left.7^{\prime}-\mathrm{H}\right), 5.09\left(1 \mathrm{H}\right.$, ddd, $J 16.9,3.4$ and $\left.1.6,6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 5.02(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and 1.6 , $\left.6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.75(1 \mathrm{H}, \mathrm{ddt}, J 9.4,7.2$ and $3.3,5-\mathrm{H}), 4.31-4.20\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{AB}}\right), 4.02(1 \mathrm{H}$, ddd, J 8.9, 4.1 and 2.8, $\left.3^{\prime}-\mathrm{H}\right)$, $3.82\left(1 \mathrm{H}, ~ q d, J 7.0\right.$ and $\left.2.8,2^{\prime}-\mathrm{H}\right), 3.29(1 \mathrm{H}, \mathrm{dd}, J 13.4$ and 3.3, $\mathrm{Bn}-\mathrm{H}_{\mathrm{A}}$), $2.85\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.9.4, \mathrm{Bn}-\mathrm{H}_{\mathrm{B}}\right)$ 2.38-2.10 (m, 2H, $3^{\prime}-\mathrm{H}_{\mathrm{AB}}$), 1.78-1.64 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{A}}$ or $4^{\prime}-\mathrm{H}_{\mathrm{B}}$), 1.60-1.46 (1H, m, 4'- H_{A} or $4^{\prime}-\mathrm{H}_{\mathrm{B}}$), $1.31(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me})$; $\delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 177.87 ($1^{\prime}-\mathrm{C}$), 153.4 (2-C), (Ar), 138.5 (6'-C), (Ar), 135.4 (Ar), 129.8 (Ar), 129.4 (Ar), 127.9 (Ar), 115.4 (7'-C), 71.3 ($3^{\prime}-\mathrm{C}$), 66.6 (4-C), 55.5 (5-C), 42.6 (2'-C), 38.2 (Bn), 33.4 (4'-C), 30.6 ($5^{\prime}-\mathrm{C}$), 10.9 (Me); $v_{\text {max }} / \mathrm{cm}^{-1}$ (solid) 3497, 2940, 1771, 1675 and 897; m/z (ES ${ }^{+}$) 318.2 (100\%, [M+H] $\left.{ }^{+}\right)$
(4S)-4-Benzyl-3-[(2'S,3' R)-3'-[(tert-butyldimethylsilyl)oxy]-2'-methylhept-6'-enoyl]-

1,3-oxazolidin-2-one 184

Imidazole ($383 \mathrm{mg}, 5.64 \mathrm{mmol}$), DMAP ($10.0 \mathrm{mg}, 0.08 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($423 \mathrm{mg}, 2.82 \mathrm{mmol}$) were added to a stirred solution of alcohol $183(300 \mathrm{mg}$, $0.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and stirred at room temperature for 4 days. The reaction mixture was filtered through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic layers were washed with water ($2 \times 20 \mathrm{~mL}$), $0.1 \mathrm{M} \mathrm{HCI}(20 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$; dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give silyl ether 184 ($352 \mathrm{mg}, 0.81 \mathrm{mmol}, 87 \%$) as a colourless waxy solid; m.p. 41.2-43.9 ${ }^{\circ} \mathrm{C}$ (from EtOAc—hexanes); $R_{\mathrm{f}} 0.73$ ($90: 10$, petrol—EtOAc); $[\alpha]_{\mathrm{D}}^{26.5}: 52$ (c. $0.7, \mathrm{CHCl}_{3}$); δ_{H} NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.36-7.18 (5H, m, Ar), 5.80 (1 H , ddt, J 17.1, 10.3 and 6.4, $\left.6^{\prime}-\mathrm{H}\right), 5.00\left(1 \mathrm{H}\right.$, ddd, $J 17.1,3.5$ and $\left.1.7,7^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.93\left(1 \mathrm{H}, \mathrm{dd}, J 10.3\right.$ and $\left.1.7,7^{\prime}-\mathrm{H}_{\mathrm{B}}\right)$, 4.59 (1 H , ddt, J 15.8, 9.5 and $3.3,5-\mathrm{H}$), 4.19-4.10 (m, 2H, 4-H), 4.01 ($1 \mathrm{H}, \mathrm{q}, ~ J 5.3,3^{\prime}-$ H), $3.86\left(1 \mathrm{H}\right.$, ddd, J13.7, 6.8 and 5.1, 2'-H), $3.28\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.3\right.$ and $\left.3.1, \mathrm{Bn}-\mathrm{H}_{\mathrm{A}}\right), 2.75$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.3$ and 9.7, Bn- H_{B}), 2.17-1.99 (2H, m, $5^{\prime}-\mathrm{H}$), 1.69-1.57 (2H, m, 4'-H), 1.20 $(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{Me}), 0.87\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)\right), 0.01\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 175.6 ($1^{\prime}-\mathrm{C}$), 153.5 (2-C), 138.9 (6 '-C), 135.8 (Ar), 129.9 (Ar), 129.4 (Ar), 127.8 (Ar), 114.8 ($7^{\prime}-\mathrm{C}$), 72.9 ($3^{\prime}-\mathrm{C}$) , 66.4 (4-C), 56.2 ($5-\mathrm{C}$), 43.2 ($2^{\prime}-\mathrm{C}$), 38.0 (Bn), 35.0 ($4^{\prime}-\mathrm{C}$), $\left.29.6\left(5^{\prime}-\mathrm{C}\right), 26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 12.2(\mathrm{Me}),-2.5(\mathrm{SiCH})_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (solid): 2929, 1783, 1704, 1382, 1208, 1108 and 837; m/z (ES ${ }^{+}$) $432.3\left(100 \%,[M+H]^{+}\right)$; found 454.2403, $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ requires MNa 454.2384

(2R,3R)-2-Methylhept-6-ene-1,3-diol 185

$\mathrm{LiBH}_{4}(2.2 \mathrm{~g}, 100 \mathrm{mmol})$ was added portion-wise to a stirred solution of $184(18 \mathrm{~g}, 42.5$ $\mathrm{mmol})$ in THF (100 mL) and ether (400 mL) at $0^{\circ} \mathrm{C}$ over the period of 1 h . The reaction was allowed to warm to room temperature and stirred for 2 h . The reaction was poured over crushed ice (ca. 50 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were concentrated in vacuo to give the crude product. Column chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the alcohol 185 ($7.1 \mathrm{~g}, 27.5 \mathrm{mmol}, 65 \%$); $R_{\mathrm{f}} 0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}^{26.5} 2.8$ (c. 1.4, CHCl_{3}); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.72(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 6.6,10.2$ and 16.9, 6-H), 4.93
(1 H , dd, $J 3.5$ and 16.9, $7-\mathrm{H}_{\mathrm{A}}$), $4.87\left(1 \mathrm{H}\right.$, dd, $J 3.5$ and $10.2,7-\mathrm{H}_{\mathrm{B}}$), 3.70-3.65 ($1 \mathrm{H}, \mathrm{m}, 1-$ $\left.\mathrm{H}_{\mathrm{a}}\right), 3.64-3.57\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.46-3.39(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.13-2.03$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 1.95-1.83 (2H, m, 5-H), 1.55-1.41 (2H, m, 4-H), $0.80\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)\right.$, $0.72\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1,2-\mathrm{CH}_{3}\right),-0.01\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.5(6-\mathrm{C})$, 114.7 ($7-\mathrm{C}$), 75.4 ($3-\mathrm{C}$), 65.9 ($1-\mathrm{C}$), 39.5 ($2-\mathrm{C}$), 31.5 (4 or $5-\mathrm{C}$), 30.4 (4 or $5-\mathrm{C}$), 25.8 (TBS), 18.0 (TBS), $12.1\left(\mathrm{CH}_{3}\right),-4.4$ (TBS); $v_{\max } / \mathrm{cm}^{-1}$ (film): 2929, 1251, 1031, 833 and 772; m/z (ES+) 259.2 ($100 \%, \mathrm{MH}+$); found 281.1914, $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ requires MNa 281.1900

(2S)-2-(Prop-2-enyloxy)propanoic acid 188

Allyl bromide ($7.60 \mathrm{~g}, 63.0 \mathrm{mmol}$) and (S)-ethyl lactate $186(5.00 \mathrm{~g}, 42.0 \mathrm{mmol}$) were added to a suspension of silver oxide(I) ($19.6 \mathrm{~g}, 85.0 \mathrm{mmol}$) in acetone (100 mL) at room temperature. The reaction was stirred at room temperature in the dark for 2 days. The reaction was filtered through Celite and concentrated in vacuo to give the crude ethyl lactate. The crude product was dissolved in THF (50 mL) and 1M LiOH (100 mL) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h and then acidified with 1 M HCl . The solution was then concentrated in vacuo to half volume and extracted with EtOAc ($5 \times 50 \mathrm{~mL}$), the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give 188 ($5.10 \mathrm{~g}, 36.1 \mathrm{mmol}, 84 \%$) as a pale yellow oil; R_{f} : 0.53 ($50: 50$ hexanes-EtOAc); $[\alpha]_{\mathrm{D}}^{27.5}-65$ (c. $1.10, \mathrm{CHCl}_{3}$); [Lit. -69 (c. 1.05, CHCl_{3}); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.92(1 \mathrm{H}, \mathrm{ddd}, J 17.2,10.2$ and 5.8 , propenyl $2-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{dd}, J$ 17.2 and 1.5 , propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.24\left(1 \mathrm{H}\right.$, dd, $J 1.5$ and 10.2 , propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 4.16(1 \mathrm{H}$, dd, $J 12.5$ and 5.6 , propenyl $\left.1-\mathrm{H}_{A}\right), 4.08(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{H}-2), 4.03(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 5.6, propenyl $1-\mathrm{H}_{\mathrm{B}}$), $1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.2(1-\mathrm{C}), 132.6$ (propenyl 2-C), 117.3 (propenyl 3-C), 72.5 (2-C), 70.2 (propenyl 1-C), 17.2 (3-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film): 3083, 298, 2940, 1725, 1213, 1117; m/z (ES ${ }^{+}$) 153.1 (100\%, $[\mathrm{M}+\mathrm{Na}]^{+}$); found 153.0526, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3}$ requires MNa 153.0522
(2S)-N-[(2-Nitrobenzene)sulfonyl]-2-(prop-2-enyloxy)propanamide 189

Acid 188 ($2.0 \mathrm{~g}, 15.4 \mathrm{mmol}$) and 2-nitrobenzene sulfonamide ($3.42 \mathrm{~g}, 16.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added dropwise to a stirred solution of N, N^{\prime} dicyclohexylcarbodiimide ($3.48 \mathrm{~g}, 16.9 \mathrm{mmol}$) and DMAP ($187 \mathrm{mg}, 1.54 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$.

After 5 min the reaction was allowed to warm to room temperature. After 24 h the reaction was poured into water (50 mL), separated and the organic layer was washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a viscous oil. Column chromatography, eluting with 50:50 petrol-EtOAc and 1% AcOH gave the sulfonamide 189 ($3.43 \mathrm{~g}, 10.9 \mathrm{mmol}, 71 \%$) as a yellow viscous oil that solidified on standing; $R_{\mathrm{f}} 0.35$ (petrol-EtOAc, $50: 50$); $[\alpha]_{D}^{18.9} 11.1$ (c. 8.3, CHCl_{3}); δ_{H} ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $9.32(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 8.38-8.34 (1H, m, nosyl 3-H), 7.80-7.72 (3H, m, nosyl 4,5 and $6-H), 5.85(1 H$, ddt, J 5.6, 10.3 and 17.1, propenyl 2-H), 5.26 (1 H , dd, J 1.5 and 17.1, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.20\left(1 \mathrm{H}, \mathrm{dd}, J 1.5\right.$ and 10.3 , propenyl $3-\mathrm{H}_{\mathrm{B}}$), $4.01(2 \mathrm{H}, \mathrm{dt}$, $J 1.3$ and 5.9, propenyl 1-H2), $3.88(1 \mathrm{H}, \mathrm{q}, ~ J 6.8,2-\mathrm{H}), 1.30\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 171.4 (C=O), 148.2 (nosyl 2-C), 135.1 (nosyl 1-C), 133.6 (propenyl 2-C), 132.9, 132.6, 131.5, 124.9, 118.8 (propenyl 3-C), 75.5 (propenyl 1-C), 71.2 (2-C), 17.6 (Me); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film): 2932, 1729, 1540, 1404, 1358, 1100, 852 and $739 ; \mathrm{m} / \mathrm{z}$ (ES) $337.1\left(70 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$and $315.1\left(30 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 315.0639, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{1}$ requires MH315.0645

(2S,3R)-3-[(Tert-butyldimethylsilyl)oxy]-2-methyl-N-[(2-nitrobenzene)sulfonyl]hept-6-enamide 133

Acid 190 ($800 \mathrm{mg}, 2.94 \mathrm{mmol}$) and 2-nitrobenzene sulfonamide ($1.18 \mathrm{~g}, 5.88 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added to a stirred solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) ($0.55 \mathrm{~g}, 3.52 \mathrm{mmol}$) and DMAP ($24 \mathrm{mg}, 0.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 16 h , the reaction was concentrated in vacuo, column chromatography eluting with petrolEtOAc ($50: 50$) gave acyl sulfonamide 133 ($800 \mathrm{mg}, 60 \%$) as a viscous yellow oil that solidified on standing; $R_{\mathrm{f}} 0.23$ (50:50, petrol-EtOAc); $[\alpha]_{\mathrm{D}}^{26.5}-16.1$ (c. $0.9, \mathrm{CHCl}_{3}$); δ_{H} $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.50-8.45(1 \mathrm{H}, \mathrm{m}$, nosyl 6-H), 7.83-7.78 (3H, m, nosyl 3,4 and $5-H$), 5.66 (1 H , ddt, J 16.9, 10.6 and $6.5,6-H$), 4.90 (1 H , dd , J 10.6 and $\left.1.7,7-\mathrm{H}_{\mathrm{A}}\right), 4.89\left(1 \mathrm{H}\right.$, dd , J 16.9 and $\left.1.7,7-\mathrm{H}_{\mathrm{B}}\right), 3.80(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 9.6$ and $3.4,3-\mathrm{H})$, $2.75(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.1$ and 3.6, 2-H), 2.33-2.19 (1H, m, 5-HA), 2.03-1.87 (1H, m, 5-HB), 1.50-1.20 $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.08-1.03\left(12 \mathrm{H}, \mathrm{m},\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)\right.$ and Me$),-0.1(6 \mathrm{H}, \mathrm{s}$, $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.9$ (C=O), 147.2 (nosyl 2-C), 146.8 (nosyl 1-C)), 136.6, 133.6 (6-C), 132.9, 131.3, 123.5, 113.9 (7-C); 73.2 (3-C), 45.9 (2-C), 29.6 (3 or $4-\mathrm{C}), 28.9$ (3 or $4-\mathrm{C}), 24.9\left(\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)\right)$, $16.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 10.9(\mathrm{Me}), 0.02\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2987, 1724, 1546, 1422, 1275, 1261; m/z (ES ${ }^{+}$) $457.2\left(20 \%,\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$ and $474.2\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$; found $235.0944, \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$ SSi requires MH 457.1823

(2S,3R)-3-[(Tert-butyldimethylsilyl)oxy]-2-methylhept-6-enoic acid 190

Hydrogen peroxide $35 \% \mathrm{v} / \mathrm{v}(0.20 \mathrm{~mL}, 1.84 \mathrm{mmol})$ and $\mathrm{LiOH}(23.0 \mathrm{mg}, 0.92 \mathrm{mmol})$ were added to a stirred solution of $184(100 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, 4: 1)$ at room temperature. Saturated sodium sulphite (5 mL) was added to the reaction mixture at $0^{\circ} \mathrm{C}$ after 5 h and stirred for a further 30 min . The pH was adjusted to 14 using 1 M NaOH , and the reaction was washed with ether $(2 \times 10 \mathrm{~mL})$. The aqueous layer was then acidified to pH 3 with $1 \mathrm{M}_{2} \mathrm{SO}_{4}$ and extracted with EtOAc $(4 \times 20 \mathrm{~mL})$; the combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the crude product. Column chromatography, eluting with 90:10 petrol—EtOAc, gave the acid 190 ($57 \mathrm{mg}, 0.21 \mathrm{mmol}, 91 \%$) as a colourless oil; $R_{\mathrm{f}} 0.38$, ($50: 50 \mathrm{EtOAc}-$ petrol); $[\alpha]_{\mathrm{D}}^{26.5}-18.0$ (c. $0.6, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.69$ (1H, ddt, J 16.9, 10.3 and $6.5,6-H), 4.93\left(1 \mathrm{H}\right.$, ddd, $J 16.9,1.6$ and $\left.1.3,7-\mathrm{H}_{\mathrm{A}}\right), 4.88(1 \mathrm{H}$, dd, $J 10.3$ and $1.3,7-\mathrm{H}_{\mathrm{B}}$), $3.90(1 \mathrm{H}$, dd, $J 6.0$ and $5.3,3-\mathrm{H}$), 2.51 (1 H , ddd, J 14.1, 7.0 and 4.4, 2-H), 2.10-1.8 (2H, m, 5-H H_{AB}), 1.55-1.45 (2H, m, 4-H H_{AB}), $1.04(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0$, $\mathrm{Me}), 0.79\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)\right),-0.02\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 178.2(1-\mathrm{C})\right.$, 138.3 (6-C), 115.4 (7-C), 73.6 (3-C), 44.8 (2-C), 33.5 (4-C), 29.9 (5-C), 26.2 $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 11.7(\mathrm{Me}),-4.3\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2983, 1737, 1439, 1201 and 1048; m/z (ES ${ }^{+}$) 273.2 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right) 295.2\left(50 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 273.1876, $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}$ requires MH 273.1886

Benzyl N-[(2-nitrobenzene)sulfonyl]carbamate 197^{129}

To a solution of oxalyl chloride ($3.18 \mathrm{~g}, 25 \mathrm{mmol}$) in EtOAc (20 mL), 2-nitrobenzene sulfonamide ($1.0 \mathrm{~g}, 4.9 \mathrm{mmol}$) dissolved in EtOAc (20 mL) was added dropwise and stirred at room temperature. After 1 h the reaction was concentrated to $1 / 2$ volume using a standard distillation setup at atmospheric pressure. Toluene $(20 \mathrm{~mL})$ was added and the remaining EtOAc and oxalyl chloride were distilled out. The reaction was then heated to reflux, after 2 h the reaction was cooled to $0^{\circ} \mathrm{C}$ and triethylamine ($3.03 \mathrm{~g}, 30$ $\mathrm{mmol})$ was added, followed by benzyl alcohol ($534 \mathrm{mg}, 5 \mathrm{mmol}$). The reaction was allowed to warm to room temperature, after 2 h the reaction was concentrated in vacuo to give the crude product. Column chromatography, eluting with EtOAc-AcOH (97:3) gave the carbamate 197 ($1.23 \mathrm{~g}, 3.6 \mathrm{mmol}, 77 \%$) as colourless prisms; m.p 112-115 (from EtOAc—hexanes); $R_{\mathrm{f}} 0.39$ (99:1 EtOAc—AcOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.24(1 \mathrm{H}$,
dd, J 1.4 and 7.9 , nosyl $3-H), 7.84$ (1 H, br s, NsNH), 7.79 ($1 \mathrm{H}, \mathrm{dd}, J 1.3$ and 7.9 , nosyl $4-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{td}, J 1.4$ and 7.7 , nosyl $6-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{td}, J 1.3$ and 7.7 , nosyl $5-\mathrm{H})$ 7.31-7.26 (3H, m, Ar), 7.25-7.20 (2H, m, Ar), $5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 149.9 (nosyl 2-C), 134.9 (nosyl 1-C), 134.0, 133.4, 132.6, 131.5, 128.9, 128.7, 128.6, 125.2, $69.1\left(\mathrm{PhCH}_{2}\right), \mathrm{C}=\mathrm{O}$ missing; $v_{\max } / \mathrm{cm}^{-1}$ (solid) 3263, 1743, 1541, 1360, 1228, 1156, 1126, 854, 582 and 564; m/z (ES-) 335.1 (100%, MH-)

[2-(Prop-2-en-1-yloxy)phenyl]methyl N-[(2-nitrobenzene)sulfonyl]carbamate 131

To a solution of 2-nitrobenzene sulfonamide ($15.0 \mathrm{~g}, 72 \mathrm{mmol}$) in EtOAc (400 mL) at 0 ${ }^{\circ} \mathrm{C}$ was added a solution of oxalyl chloride ($45.0 \mathrm{~g}, 360 \mathrm{mmol}$) in EtOAc (100 mL). The reaction was stirred at room temperature for 1 h and a further 24 h at reflux. The reaction was then distilled to $1 / 2$ volume using a standard distillation setup, toluene (500 mL) was added and the reaction was distilled further until the vapour temperature was $105{ }^{\circ} \mathrm{C}$ at atmospheric pressure. The reaction was heated under reflux for a further 16 h and then cooled to $0^{\circ} \mathrm{C}$. A solution of alcohol $173(6.1 \mathrm{~g}, 36 \mathrm{mmol})$ in THF (100 mL) was added and the reaction was stirred at room temperature for 16 h and then concentrated in vacuo. Column chromatography, eluting with $85: 14: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ $\mathrm{NH}_{4} \mathrm{OH}$ gave 131 ($10.9 \mathrm{~g}, 77 \%$) as a pale yellow foam; $R_{\mathrm{f}} 0.19$ (85:14:1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOH—NH ${ }_{4} \mathrm{OH}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; MeOD) 8.05-7.95 (1H, m, nosyl 3-H), 7.54-7.44 (3H, m, nosyl 4,5 and 6-H), 7.20-7.05 (2H, m, Ar), 6.81-6.73 (2H, m, Ar), 5.94 (1H, ddt, J 17.3, 10.6 and 5.0 , propenyl $2-\mathrm{H}$), $5.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.3\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.6$, propenyl $3-\mathrm{H}_{\mathrm{B}}$), $4.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.42\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5\right.$, propenyl 1-H); $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; MeOD) 158.0 (C=O), 153.7 (Ph 1-C), 149.6 (nosyl 2-C), 135.7 (nosyl 1-C), 134.6 (propenyl 2-C), 133.8 (nosyl 5-C), 133.4 (Ar), 132.8 (nosyl 4-C), 131.1 (Ar), 130.9 (nosyl 3-C), 125.6 (Ph 2-C), 125.0 (nosyl 6-C), 121.6 (Ar), 117.4 (propenyl 3-C) , 113.0 (Ph 3-C), $69.8\left(\mathrm{PhCH}_{2}\right), 64.8$ (propenyl 1-C); $v_{\max } / \mathrm{cm}^{-1}$ (solid) 3238, 3024, 2898, 1746, 1496, 1365, 999, 851 and 739; $m / z(E S+) 415.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 415.0559, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}_{1}$ requires MNa 415.057

2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl-[(2nitrobenzene)sulfonyl]carbamate 132

To a solution of 2-nitrobenzene sulfonamide ($12.1 \mathrm{~g}, 60 \mathrm{mmol}$) in EtOAc (500 mL) at 0 ${ }^{\circ} \mathrm{C}$ was added oxalyl chloride ($45.0 \mathrm{~g}, 360 \mathrm{mmol}$). The reaction was stirred for 1 h at room temperature and a further 24 h at reflux. The reaction was then distilled to $1 / 2$ volume using a standard distillation setup, toluene (500 mL) was added and the reaction was distilled further until the vapour temperature was $105^{\circ} \mathrm{C}$ at atmospheric pressure. The reaction was further reflux for 16 h and then cooled room temperature. A solution of alcohol $180(4.3 \mathrm{~g}, 17 \mathrm{mmol})$ in THF (50 mL) was added and the reaction was stirred at room temperature for 1 h and then concentrated in vacuo. Column chromatography, eluting with $85: 14: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ gave $132(7.8 \mathrm{~g}, 16.2$ mmol, 95%) as a yellow foam; $R_{\mathrm{f}} 0.2$ ($85: 14: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$); $[\alpha]_{D}^{23} 12.0$ (c. 1.5 in EtOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.15(1 \mathrm{H}, \mathrm{d}, ~ J 7.8$, nosyl $3-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, J 7.8$, nosyl $4-\mathrm{H}$), 7.68 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6$, nosyl $5-\mathrm{H}$), $7.62(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6$, nosyl $6-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{d}, J$ 8.2, DMB 6-H), 6.31-6.26 (2H, m, DMB 3 and 5-H), 5.74 (1H, ddt, J 17.1, 10.4 and 5.5, propenyl $2-\mathrm{H}), 5.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.1\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.03\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.4\right.$, propenyl $3-\mathrm{H}_{\mathrm{B}}$), $4.39\left(1 \mathrm{H}, \mathrm{dd}, J 5.1\right.$ and 10.4, propyl 1-H H_{A}, $4.28\left(1 \mathrm{H}, \mathrm{dd}, J 6.6\right.$ and 10.6, propyl $\left.1-\mathrm{H}_{\mathrm{B}}\right)$, 3.86-3.78 (m, 2H, propenyl 1-H), 3.69 (3H, s, OMe), $3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.52-3.46(\mathrm{~m}$, $3 \mathrm{H}, 2-\mathrm{H}$ and $3-\mathrm{H}_{\mathrm{AB}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 160.2 (Ar 2- or $4-\mathrm{C}$), 158.6 (Ar 2- or $4-\mathrm{C}$), 150.4 (C=O), 148.5 (nosyl 2-C), 135.2 (nosyl 1-C), 135.1 (propenyl 2-C), 133.8 (), 132.9 (nosyl 4-C), 131.9 (nosyl 5-C), 129.3 (Ar 6-C), 125.5 (nosyl 6-C), 119.3 (DMB 1C) , 117.4 (propenyl 3-C), 104.5 (DMB 5-C), 98.9 (DMB 3-C), 72.4 (1-C), 70.4 (3-C), 68.1 (propenyl 1-C), 55.7 (OMe), 55.7 (OMe), 38.7 (2-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (solid) 3369, 3096, 1748, 1525, 1366, 1345, 1164 and 743; m/z (ES+) $503.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 503.1088, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires MNa 503.1095

(2R,3R)-3-[(Tert-butyldimethylsilyl)oxy]-2-methylhept-6-en-1-yl nitrobenzene)sulfonyl]carbamate 198

To a solution of 2-nitrobenzene sulfonamide ($1.59 \mathrm{~g}, 7.9 \mathrm{mmol}$) in EtOAc (100 mL) at 0 ${ }^{\circ} \mathrm{C}$ was added oxalyl chloride ($4.95 \mathrm{~g}, 39 \mathrm{mmol}$). The reaction was stirred for 1 h at room temperature and a further 24 h at reflux. The reaction was then distilled to $1 / 2$
volume using a standard distillation setup, toluene (100 mL) was added and the reaction was distilled further until the vapour temperature was $105^{\circ} \mathrm{C}$ at atmospheric pressure. The reaction was further reflux for 16 h and then cooled room temperature. A solution of alcohol $185(1.0 \mathrm{~g}, 3.9 \mathrm{mmol})$ and triethylamine ($8.0 \mathrm{~g}, 80 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ and the reaction was then stirred at room temperature for 1 h and then concentrated in vacuo. Column chromatography, eluting with 85:14:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ gave 198 as a pale yellow foam ($1.86 \mathrm{~g}, 25 \%$); $R_{\mathrm{f}} 0.11$ (85:14:1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$); $[\alpha]_{D}^{23} 15.7$ (c. 2.3 in EtOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 8.37-8.32 (1H, m, nosyl 3-H), 7.85-7.72 (3H, m, nosyl 4, 5 and 6-H), $5.74(1 \mathrm{H}$, ddt, J $16.9,10.2$ and $6.6,6-H), 4.97\left(1 H, d, J 16.9,7-H_{A}\right), 4.93\left(1 H, d, J 10.2,7-H_{A}\right), 4.07(1 H$, dd, $J 10.4$ and $\left.6.9,1-H_{A}\right), 3.95\left(\mathrm{dd}, J 10.4\right.$ and $\left.7.1,1 \mathrm{H}, 1-\mathrm{H}_{\mathrm{B}}\right), 3.67-3.62(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, 2.02-1.90 $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right), 1.93-1.82(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.55-1.40\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}_{\mathrm{AB}}\right), 0.81(12 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3}$ and $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 138.5 (6-C), 135.2 (nosyl 2-C), 133.8 (nosyl 1-C), 133.7 (nosyl 3-C), 132.9 (nosyl 4-C), 131.6 (nosyl 6-C), 125.5 (nosyl5-C), 115.2 (7-C), 71.7 (3-C), 70.2 (1-C), 37.0 (2-C), $\left.33.5(4-\mathrm{C}), 30.3(5-\mathrm{C}), 26.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 10.7(\mathrm{Me}),-3.8(\mathrm{SiCH})_{3}\right),-4.4$ $\left(\mathrm{SiCH}_{3}\right), C=O$ is missing ; $v_{\max } / \mathrm{cm}^{-1}$ (solid) 3260, 2929, 2857, 1747, 1546, 1462, 1229, 1168 and $836 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) \quad 509.2\left(80 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 509.1752, $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SSi}$ requires MH 509.1748

1-[(2-Nitrobenzene)sulfonyl]-3-(prop-2-en-1-yl)urea 199

To a solution of 2-nitrobenzene sulfonamide ($200 \mathrm{mg}, 0.99 \mathrm{mmol}$) in EtOAc $(7.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added oxalyl chloride ($625 \mathrm{mg}, 4.95 \mathrm{mmol}$). The reaction was stirred for 1 h at room temperature and a further 24 h at reflux. The reaction was then distilled to $1 / 2$ volume using a standard distillation setup, toluene $(20 \mathrm{~mL})$ was added and the reaction was distilled further until the vapour temperature was $105^{\circ} \mathrm{C}$ at atmospheric pressure. The reaction was further reflux for 16 h and then cooled room temperature. A solution of allyl amine 196 ($56 \mathrm{mg}, 0.99 \mathrm{mmol}$) and diisopropylethylamine ($645 \mathrm{mg}, 5 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the reaction was then stirred at room temperature for 1 h and then concentrated in vacuo. Column chromatography, eluting with $85: 14: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ gave 199 as a pale yellow foam ($143 \mathrm{mg}, 51 \%$); $R_{\mathrm{f}} 0.11$ ($50: 8: 1$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{MeOD}\right)$ 8.14-8.04 ($1 \mathrm{H}, \mathrm{m}$, nosyl $3-\mathrm{H}$), 7.58-7.39 (3H, m, nosyl 4, 5 and $6-H)$, $5.62(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.5$ and 5.4 , propenyl 2H), 5.07-4.96 (1 H, m, propenyl $3-\mathrm{H}_{\mathrm{A}}$), 4.95-4.87 $\left(1 \mathrm{H}, \mathrm{m}\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 3.67(0.6 \mathrm{H}, \mathrm{J}$
14.4 and 5.4 , propenyl $\left.1-\mathrm{H}^{\text {rotB }}\right), 3.56\left(1.4 \mathrm{H}, J 14.4\right.$ and 5.4 , propenyl $\left.1-\mathrm{H}^{\text {rotA }}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 164.9\left(\mathrm{C}=\mathrm{O}^{\text {rotA }}\right), 163.5\left(\mathrm{C}=\mathrm{O}^{\text {rotB }}\right)$, 148.3 (nosyl 2-C), 135.7 (nosyl 1-C), 134.3 (propenyl 2-C ${ }^{\text {rotA }}$), 134.0 (propenyl 2-C ${ }^{\text {rotB }}$), 133.2 (nosyl 1-C), 132.7 (nosyl 5-C), 132.5 (nosyl 4-C), 132.4 (nosyl 4-C), 131.6 (nosyl 6-C), 131.2 (nosyl 6-C), 124.5 (nosyl $3-\mathrm{C}$), 123.6 (nosyl 3-C), 116.7 (propenyl 3-C ${ }^{\text {rotA }}$), 115.9 (propenyl 3-CrotB), 42.8 (propenyl 1-C ${ }^{\text {rotA }}$), 42.2 (propenyl 1-C ${ }^{\text {rotB }}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (solid) 3360, 2342, 1671, 1537, 1364, 1166; m/z (ES+) 308.0 (100\%, [M+Na] $]^{+}$; found 308.0322, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires MNa 308.0312

\{[(2R,3R)-1-Azido-2-methylhept-6-en-3-yl]oxy\}(tert-butyl)dimethylsilane 200

DPPA ($2.09 \mathrm{~g}, 7.6 \mathrm{mmol}$) was added dropwise to a stirred solution of alcohol 185 (1.00 $\mathrm{g}, 3.8 \mathrm{mmol})$, Triphenylphosphine ($1.99 \mathrm{~g}, 7.6 \mathrm{mmol}$) and diethylazodicarboxylate (1.32 $\mathrm{g}, 7.6 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $-18{ }^{\circ} \mathrm{C}$. After 30 min the reaction was concentrated in vacuo. Column chromatography, eluting with petrol gave the azide 200 ($1.05 \mathrm{~g}, 97 \%$) as a colourless oil. $R_{\mathrm{f}} 0.66$ (Petrol); $[\alpha]_{D}^{23} 38.5$ (c. $0.9, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 5.84 (1H, ddt, J 16.9, 10.2 and 6.6, 6-H), 5.06 (1H, dd , J 16.9 and 1.4, 7-HA), $5.02(1 \mathrm{H}$, dd, $J 10.2$ and $1.4,7-H_{B}$), $3.74(1 \mathrm{H}, \mathrm{td}, J 6.6$ and $2.9,3-\mathrm{H}), 3.41(1 \mathrm{H}, \mathrm{dd}, J 11.9$ and $\left.6.6,1-\mathrm{H}_{\mathrm{A}}\right), 3.15\left(1 \mathrm{H}, \mathrm{dd}, J 11.9\right.$ and $\left.7.6,1-\mathrm{H}_{\mathrm{B}}\right), 2.18-1.96\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right), 1.86(1 \mathrm{H}, \mathrm{qd}$, $J 6.9$ and 2.9, 2-H), 1.67-1.46 (2H, m, 4-H H_{AB}), 0.97-0.87 (12H, m, $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and Me$)$, $0.1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.7(6-\mathrm{C}), 115.2(7-\mathrm{C})$, 72.6 ($3-\mathrm{C}$), 54.9 (1-C); 38.1 (2-C), 33.4 (4-C), $30.5(5-\mathrm{C}), 26.3\left(\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)\right), 18.5$ $\left.\left(\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)\right), 12.3(\mathrm{Me}),-3.8(\mathrm{SiCH})_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2956, 2931, 2100, 1472, 1463, 1275; m/z (ES+) $306.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$and $256.2\left(100 \%,\left[\mathrm{MH}-\mathrm{N}_{2}\right]^{+}\right.$; found 306.1964, $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{3}$ OSi requires MNa 306.1972

\{[(2R,3R)-1-Amino-2-methylhept-6-en-3-yl]oxy\}(tert-butyl)dimethylsilane 201

Triphenylphosphine ($3.66 \mathrm{~g}, 13.9 \mathrm{mmol}$) was added in one portion to a solution of azide $200(3.6 \mathrm{~g}, 12.7 \mathrm{mmol})$ in THF (130 mL) at room temperature. Water $(0.5 \mathrm{~mL})$ was added, after 24 h the reaction was concentrated in vacuo and column chromatography eluting with $50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ gave the amine 201 ($3.1 \mathrm{~g}, 95 \%$) as a colourless oil; $R_{\mathrm{f}} 0.2$ (EtOAc); $[\alpha]_{D}^{23} 5.1$ (c. $0.3 \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{MeOD}) 5.74(1 \mathrm{H}$, ddt, J 16.9, 10.2 and $6.6,6-H), 4.93\left(1 H\right.$, ddd , J 16.9, 3.7 and $\left.1.7,7-\mathrm{H}_{\mathrm{A}}\right), 4.86(1 \mathrm{H}$, ddd , J 10.2, 3.0 and 1.7, 7-HB), 3.63 (1H, ddd , J 6.7, 5.8 and 3.2, 3-H), 2.68 (1 H , dd, J
12.6 and 5.7, $1-\mathrm{H}_{\mathrm{A}}$), $2.37\left(1 \mathrm{H}, \mathrm{dd}, J 12.6\right.$ and $\left.8,1-\mathrm{H}_{B}\right)$, 2.10-1.87 $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right), 1.66-$ $1.54(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.54-1.35\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{AB}}\right), 0.83\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.81(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7\right.$, $\mathrm{Me}), 0.01\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH} 3\right.$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 140.0(6-\mathrm{C}), 115.3$ ($7-\mathrm{C}$), $75.5(3-\mathrm{C})$, 45.8 (1-C), $41.8(4-\mathrm{C}), 34.5(5-\mathrm{C}), 31.6(2-\mathrm{C}), 26.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.3\left(\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)\right), 12.9$ (Me), -3.7 $\left(\mathrm{SiCH}_{3}\right),-3.9\left(\mathrm{SiCH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2956, 2931, 1672, 1463, 1261, 837; $\mathrm{m} / \mathrm{z}(\mathrm{ES}+) 258.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 258.2253, $\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{NOSi}$ requires MH 258.2248

N-[(2R,3R)-3-[(Tert-butyldimethylsilyl)oxy]-2-methylhept-6-en-1-yl]-1,1,1trifluoromethanesulfonamide 202

Trifluoromethanesulfonic anhydride ($7.3 \mathrm{~g}, 26 \mathrm{mmol}$) was made up to 10 mL with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, this solution was added using a syringe pump at $0.5 \mathrm{~mL} / \mathrm{min}$ to amine 201 $(3.33 \mathrm{~g}, 13 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(5.2 \mathrm{~g}, 52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(52 \mathrm{~mL})$. The reaction was concentrated in vacuo and column chromatography, eluting with 90:10 petrol-EtOAc gave the triflamide 202 ($3.9 \mathrm{~g}, 77 \%$) as a colourless oil; $R_{\mathrm{f}} 0.4$ (70:30, petrol-EtOAc); $[\alpha]_{D}^{23} 16.1\left(c .1, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.76(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 16.9$, 10.2 and $6.5,6-H), 5.01\left(1 \mathrm{H}, \mathrm{dd}, J 16.9\right.$ and $\left.1.6,7-\mathrm{H}_{\mathrm{A}}\right), 4.96(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and 1.6 , $7-\mathrm{H}_{\mathrm{B}}$), $3.68(1 \mathrm{H}$, ddd, J 7.8, 4.3 and $2.9,3-\mathrm{H}), 3.29\left(1 \mathrm{H}, \mathrm{d}, J 12,1-\mathrm{H}_{\mathrm{A}}\right), 3.24(1 \mathrm{H}, \mathrm{d}, J$ $\left.12,1-H_{B}\right), 2.26-1.88\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right.$ and 2-H), 1.57-1.42 (2H, m, 4-H H_{AB}), 0.89-0.84 (12H, m , $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and Me$), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 138.2 (6-C), 115.6 (7-C), 76.8 (3-C), 47.4 (1-C), 38.0 ($5-\mathrm{C}$), 30.8 (2-C or 4-C), 30.7 (2C or $4-\mathrm{C}), 26.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 14.5(\mathrm{Me}),-3.8\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3311, 3005, 2957, 2708, 2306, 1835, 1641, 1473, 1425, 1370; m/z (ES ${ }^{+}$) $412.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found $412.1580, \mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{SSi} \mathrm{MNa}$ requires 412.1560;

$N-[(2 R, 3 R)-3-[($ Tert-butyldimethylsilyl)oxy]-2-methylhept-6-en-1-yl]-1,1,1-trifluoroN -(trifluoromethane)sulfonylmethanesulfonamide 203

Also obtained was the ditriflamide 203 ($680 \mathrm{mg}, 10 \%$) $R_{\mathrm{f}} 0.70$ ($90: 10$, petrol—EtOAc); $[\alpha]_{D}^{23} 15.7$ (c. 2.3 in EtOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.71$ (1 H , ddt, J 16.9, 10.2 and 6.6, 6$\mathrm{H}), 4.96\left(1 \mathrm{H}\right.$, dd , J 16.9 and $\left.1.7,7-\mathrm{H}_{\mathrm{A}}\right), 4.92\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.1.3,7-\mathrm{H}_{\mathrm{B}}\right), 4.00(1 \mathrm{H}$,
dd, $J 14.5$ and $3.5,1-H), 3.79(1 H, d d, J 14.5$ and $10.9,1-H), 3.59(1 H, t d, J 6.7$ and 2.7, 3-H), 2.09-1.84 (3H, m, 5- H_{AB} and 2-H), 1.59-1.36 (2H, m, 4-H H_{AB}), $0.91(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.9, \mathrm{Me}), 0.82\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}(75\right.$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.6$ (6-C), 118.9 ($\mathrm{q} \mathrm{J} 325, \mathrm{CF}_{3}$), 115.2 ($7-\mathrm{C}$), 72.9 (3-C), 57.9 (1-C), 36.6 (5-C), $32.8(2-\mathrm{C}), 29.9(4-\mathrm{C}), 25.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 10.4(\mathrm{Me}),-4.1$ $\left(\mathrm{SiCH}_{3}\right),-4.8\left(\mathrm{SiCH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3082, 2955, 2859, 2329, 1832, 1643, 1453, 1431; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 522.1\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $522.1233, \mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Si} \mathrm{MH}$ requires 522.1233;

[2-(\{N-[(2R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2nitrobenzene)sulfonamido\}methyl)phenyl]methyl acetate 205'

Following general procedure M2, diethyl azodicarboxylate ($288 \mathrm{mg}, 1.65 \mathrm{mmol}$), sulfonamide 112 ($350 \mathrm{mg}, 0.41 \mathrm{mmol}$), hydroxyacetate 126 ($297 \mathrm{mg}, 1.65 \mathrm{mmol}$) and triphenylphosphine ($435 \mathrm{mg}, 1.65 \mathrm{mmol}$) were stirred for 3 h at room temperature. The reaction was concentrated in vacuo and purified by F-SPE. The acetate 205' (410 mg , $0.4 \mathrm{mmol}, 99 \%$, $>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) was obtained as a colourless viscous oil; $R_{\mathrm{f}} 0.61$ ($80: 20$, petrol-EtOAc); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8$, nosyl 3-H), 7.63-7.77 (2H, m, Ar), 7.48-7.41 (2H, m, Ar), 7.29-7.25 (1H, m, Ar), 7.20-7.11 (2H, m, Ar), $5.57(1 \mathrm{H}$, ddt, J 7.1, 10.1 and 17.1, 4-H), $5.19\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4, \mathrm{PhCH}_{2} \mathrm{OAc}\right), 5.00\left(1 \mathrm{H}, \mathrm{dd}, J 1.4\right.$ and $\left.17.1,5-\mathrm{H}_{\mathrm{A}}\right), 4.90(1 \mathrm{H}, \mathrm{d}, J$ $10.1,5-H_{B}$), $4.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.8, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.64\left(1 \mathrm{H}, \mathrm{d}, 16.8, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.10-$ $4.04(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.74\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.6\right.$ and $\left.10.5,3-\mathrm{H}_{\mathrm{A}}\right), 3.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.6$ and $10.5,3-$ H_{B}), 2.43-2.38 (2H, m, 1- H_{2}), $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.08-1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.96$ ($\left.14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, 0.78-0.73 (2H, m, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.8$ (C=O), 148.5 (nosyl 2-C), 136.8 (nosyl 1-C), 134.6 (4-C), 134.3, 133.6, 133.5, 131.9, 131.7, 130.4, 129.3, 128.9, 127.9, 124.4, 118.4 (5-C), 65.0 (1-C), 64.4 ($\mathrm{PhCH}_{2} \mathrm{OAc}$), $\left.60.4(2-\mathrm{C}), 45.5 \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right), 34.6(3-\mathrm{C}), 21.3(\mathrm{Ac}), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.04\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2948, 2869, 1741, 1546, 1372; m/z (ES $\left.{ }^{+}\right) 1031.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right) ;$found 1026.2435, $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~F}_{17} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SSi} \mathrm{MNa}$ requires 1026.2471
$N-[(2 R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-H e p t a d e c a f l u o r o d e c y l) b i s(p r o p a n-$ 2-yl)silyl]oxy\}pent-4-en-2-yl]-N-\{[2-(hydroxymethyl)phenyl]methyl\}-2-nitrobenzene-1-sulfonamide 205

Following the general procedure D, acetate ester $\mathbf{2 0 5}^{\prime}$ ($100 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in NH_{3} sat. $\mathrm{MeOH}(4 \mathrm{~mL})$ and stirred for 16 h , concentrated in vacuo to give the alcohol 205 ($96 \mathrm{mg}, 0.099 \mathrm{mmol}, 99 \%,>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless viscous oil. $R_{\mathrm{f}} 0.4$ ($80: 20$, petrol-EtOAc); δ_{H} (500 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.52(2 \mathrm{H}, \mathrm{m}$, nosyl 3 and $6-\mathrm{H}), 7.49(2 \mathrm{H}, \mathrm{m}$, nosyl 4 and $5-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{d}$, J 7.5, Ph 3-H), 7.30 (1H, d, J 7.5, Ph 4-H), 7.18 (1H, t, J 7.3, Ph 6-H), 7.08 (1H, t, J 7.3, Ph $5-\mathrm{H}), 5.61(1 \mathrm{H}, \mathrm{ddt}, J 7.0,10.0$ and $17.0,4-\mathrm{H}), 5.02\left(1 \mathrm{H}, \mathrm{d}, J 17.0,5-\mathrm{H}_{\mathrm{A}}\right), 4.91(1 \mathrm{H}$, d, J 10.0, $5-\mathrm{H}_{\mathrm{B}}$), 4.85 (1H, d, J 16.3, N(Ns)CH $\mathrm{A}_{\mathrm{A}} \mathrm{Ph}$), 4.78 ($1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{PhCH}_{\mathrm{A}} \mathrm{OH}$), 4.74 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.6, \mathrm{PhCH}_{\mathrm{B}} \mathrm{OH}$), $4.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.3, \mathrm{~N}\left(\mathrm{Ns}^{2} \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 4.14-4.05(1 \mathrm{H}, \mathrm{m}, 2-\right.$ H), $3.72\left(1 \mathrm{H}\right.$, dd, $J 5.9$ and $\left.10.5,1-\mathrm{H}_{\mathrm{A}}\right), 3.52\left(1 \mathrm{H}, \mathrm{dd}, J 5.9\right.$ and $\left.10.5,1-\mathrm{H}_{\mathrm{B}}\right), 2.50-2.33$ (2H, m, 3-H), 2.13-1.96 (2H, m, C ${ }_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $0.96\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.80-0.72$ (2H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 148.1 (nosyl 2-C), 136.4 (nosyl 1-C), 134.1 (4-C), 134.0, 133.8, 133.6, 132.1, 131.7, 130.2, 129.5, 128.9, 127.8, 124.6, 118.7 (5C), $65.2(1-\mathrm{C}), 63.1\left(\mathrm{PhCH}_{2} \mathrm{OH}\right), 60.4(2-\mathrm{C}), 44.3\left(\mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right), 35.1(3-\mathrm{C}), 17.8(2 \times$ $\left.\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4\left(2 \times \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.04\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ missing; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3079, 2949, 2869, 2733, 1643, 1591, 1547; m/z (ES ${ }^{+}$) 989.2 (100\%, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found $989.1951, \mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6}$ SSi MNa requires 989.1916;
[5-(\{N-[(2R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)thiophen-2-yl]methyl acetate 204'

Following general procedure M2, diethyl azodicarboxylate ($4.22 \mathrm{~g}, 24 \mathrm{mmol}$), sulfonamide 112 ($5.08 \mathrm{~g}, 6.5 \mathrm{mmol}$), hydroxyacetate 130 ($4.45 \mathrm{~g}, 24 \mathrm{mmol}$) and triphenylphosphine ($6.2 \mathrm{~g}, 24 \mathrm{mmol}$) were stirred for 2 h at room temperature. F-SPE, followed by column chromatography, eluting with $70: 30 \mathrm{CHCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 204' (4.8 $\mathrm{g}, 73 \%$) as a colourless oil. $R_{\mathrm{f}} 0.71$ ($50: 50$, petrol-EtOAc); $[\alpha]_{D}^{23}-1.8$ (c. 3.4, CHCl_{3});
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.91-7.88 (1H, m, nosyl 3-C), 7.69-7.64 (2H, m, nosyl 6 and 4-C), $7.58-7.54(1 \mathrm{H}, \mathrm{m}$, nosyl $5-\mathrm{C}), 6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.4$, Thio 3 or $4-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.4$, Thio 3 or $4-\mathrm{H}), 5.64(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.1,10.1$ and $6.9,4-\mathrm{H}), 5.15\left(2 \mathrm{H}, \mathrm{s}\right.$, ThioCH $\left.\mathrm{H}_{2} \mathrm{OAc}\right)$, $5.07\left(1 \mathrm{H}, \mathrm{d}, J 17.1,5-\mathrm{H}_{\mathrm{A}}\right), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 10.1,5-\mathrm{H}_{\mathrm{B}}\right), 4.88\left(1 \mathrm{H}, \mathrm{d}, J 16.5, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}}\right)$, $4.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH} H_{\mathrm{A}}\right), 4.03(1 \mathrm{H}$, quin, J 6.6, 2-H), $3.85(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $\left.5.5,1-\mathrm{H}_{\mathrm{A}}\right), 3.63\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.6.01-\mathrm{H}_{\mathrm{B}}\right), 2.48\left(2 \mathrm{H}, \mathrm{t}, J 7.2,3-\mathrm{H}_{\mathrm{AB}}\right), 2.19-2.05(2 \mathrm{H}$, $\mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.04\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.86-0.83(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.8$ (C=O), 148.0 (nosyl 2-C), 142.8 (Thio 2- or 4C), 139.2 (Thio 2- or 4-C), 134.6 (nosyl 1-C), 134.3 (4-C), 133.5, 131.7, 131.5, 127.8, 127.4 (5^{\prime} or $6^{\prime}-\mathrm{C}$), 124.5 (5^{\prime} or $6^{\prime}-\mathrm{C}$), 118.3 ($5-\mathrm{C}$), 65.1 ($1-\mathrm{C}$), 60.8 ($\mathrm{ThioCH}_{2} \mathrm{OAc}$), 60.3 (2-C), 43.9 ($\mathrm{N}\left(\mathrm{Ns}\right.$) CH_{2} Thio), 34.7 (3-C), 25.9 (t, J 25, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 21.2 (Ac), 17.8 $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2948, 2870, 2159, 1976, 1744, 1546, 1440, 1371, 1024 and 736; m/z (ES ${ }^{+}$) $1032.2\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$; found 1037.1620, $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$ requires MNa 1037.1589
$N-[(2 R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-H e p t a d e c a f l u o r o d e c y l) b i s(p r o p a n-$ 2-yl)silyl]oxy\}pent-4-en-2-yl]-N-\{[5-(hydroxymethyl)thiophen-2-yl]methyl\}-2-nitrobenzene-1-sulfonamide 204

Following the general procedure D, acetate ester 204' ($4.8 \mathrm{~g}, 4.73 \mathrm{mmol}$) was dissolved in NH_{3} sat. $\mathrm{MeOH}(500 \mathrm{~mL}$) and gave the crude product after 16 h . The crude product was concentrated in vacuo to give the alcohol 204 ($4.45 \mathrm{~g}, 4.58 \mathrm{mmol}, 97 \%$, $>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil which was used without further purification; $R_{\mathrm{f}} 0.54$ ($50: 50$, petrol-EtOAc); δ_{H} (500 MHz ; CDCl_{3}) 7.91 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6$, nosyl 3-H), 7.69-7.65 (2H, m, nosyl 6 and 4-H), 7.587.55 (1H, m, nosyl 5-H), 6.92 (1H, d, J3.5, Thio 3 or $4-\mathrm{H}), 6.81$ ($1 \mathrm{H}, \mathrm{d}, ~ J 3.5$, Thio 3 or $4-\mathrm{H}), 5.65$ ($1 \mathrm{H}, \mathrm{ddt}, ~ J 17.2,10.2$ and $6.8,4-\mathrm{H}), 5.07\left(1 \mathrm{H}, \mathrm{d}, ~ J 17.2,5-\mathrm{H}_{\mathrm{A}}\right), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $10.2,5-\mathrm{H}_{\mathrm{B}}$), $4.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}}\right.$ Thio), $4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ThioCH}_{2} \mathrm{OH}\right), 4.72(1 \mathrm{H}, \mathrm{d}$, J 16.5, N(Ns)CH H_{B} Thio), 4.08-4.02 (1H, m, 2-H), 3.86 ($1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 5.6, 1- H_{A}), $3.64\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5\right.$ and 4.2, 1- H_{B}), $2.49\left(2 \mathrm{H}, \mathrm{t}, J 7.1,3-\mathrm{H}_{2}\right), 2.17-2.05(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.05\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.88-0.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 148.0$ (nosyl 2-C), 145.2 (Thio 2 or $5-\mathrm{C}$), 141.6(Thio 2 or $5-\mathrm{C}$), 134.7 (nosyl 1-C), 134.4 (4-C), 133.5 (Ns), 131.7 (Ns), 131.5 (Ns), 127.5 (Thio 3 or 4-C),
125.3 (nosyl 3-C), 124.5 (Thio 3 or 4-C), 118.3 (5-C), 65.0 (1-C), 60.4 (2-C), 60.3 (Thio $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 43.9\left(\mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2}\right.$ Thio), $34.8 \quad(3-\mathrm{C}), \quad 25.6 \quad\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 17.8$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3393, 2947, 2869, 2159, 1976, 1546, 1371, 1207 and 1063; m/z (ES ${ }^{+} 990.2$ $\left(100 \%,\left[M+\mathrm{NH}_{4}\right]^{+}\right)$; found $990.1965, \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}$ Si requires $M N H_{4} 990.1929$

$N-[(2 R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-H e p t a d e c a f l u o r o d e c y l) b i s(p r o p a n-$ 2-yl)silyl]oxy\}pent-4-en-2-yl]-N-(\{2-[2-(hydroxymethyl)phenyl]phenyl\}methyl)-2-nitrobenzene-1-sulfonamide 233

Following general procedure M2, diethyl azodicarboxylate ($165 \mathrm{mg}, 0.95 \mathrm{mmol}$), sulfonamide 112 ($200 \mathrm{mg}, 0.24 \mathrm{mmol}$), hydroxyacetate 129 ($240 \mathrm{mg}, 0.95 \mathrm{mmol}$) and triphenylphosphine ($248 \mathrm{mg}, 0.95 \mathrm{mmol}$) gave the crude product after 16 h at room temperature. The crude product was concentrated in vacuo and purified by F-SPE, to give the acetate ester (213 mg). Following the general procedure D, the acetate ester ($100 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in NH_{3} sat. $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred for 16 h and concentrated in vacuo to give the alcohol 233 ($175 \mathrm{mg}, 0.17 \mathrm{mmol}, 99 \%,>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless viscous oil. $R_{\mathrm{f}} 0.41$ ($80: 20$, petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, minor atropisomer denoted where possible) 7.87 (1H, d, J 7.8, nosyl 3-H), 7.78 (1H, J 7.9, nosyl 3-H ${ }^{\text {min }}$), 7.65-7.09 (11H, $\mathrm{m}, \mathrm{Ar}), 5.43\left(1 \mathrm{H}\right.$, ddt, $J 7.1,10.1$ and $\left.17.1,4-\mathrm{H}^{\min }\right), 5.10(1 \mathrm{H}, \mathrm{ddt}, J 7.3,10.1$ and 17.0 , $4-H), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 10.1,5-\mathrm{H}_{\mathrm{A}}^{\mathrm{min}}\right), 4.70\left(1 \mathrm{H}, J 17.1,5-\mathrm{H}_{\mathrm{B}}^{\mathrm{min}}\right), 4.62(1 \mathrm{H}, \mathrm{d}, J 16.8$, $\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{A}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.1,5-\mathrm{H}_{\mathrm{A}}\right), 4.52-4.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{OH}, 5-\mathrm{H}_{B}\right.$, $\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.10\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.8, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}^{\mathrm{min}}\right.$), 3.98-3.90 (1H, m, 2- $\mathrm{H}^{\mathrm{min}}$), 3.89$3.81(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.59-3.50\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.1-\mathrm{H}_{\mathrm{B}}{ }^{\mathrm{min}}\right), 3.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9$ and $10.5,1-$ $\mathrm{H}_{\mathrm{A}}^{\text {min }}$), $3.14\left(1 \mathrm{H}, \mathrm{dd}, J 7.7\right.$ and $\left.9.7,1-\mathrm{H}_{B}\right), 2.20-1.81\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $0.91\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.86\left(14 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{min}}\right), 0.73-0.63(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 148.2$ (nosyl 2-C), 139.8 (nosyl 1-C), 139.2 ($\mathrm{Ns}^{\mathrm{min}}$), 139.1 ($5-\mathrm{C}$), $139.0\left(5-\mathrm{C}^{\text {min }}\right), 136.1,135.8^{\text {min }}, 134.6,134.0^{\text {min }}, 133.7,133.6^{\text {min }}, 131.77$, $131.74^{\text {min }}, 131.73,131.68^{\text {min }}, 130.3^{\text {min }}, 130.2^{\text {min }}, 130.1,129.9,129.1,128.8,128.8$, 128.7, 128.6, 128.6, 128.2, 128.1, 127.9, 127.8, 127.3, $124.4124 .3^{\min }, 118.2\left(4-\mathrm{C}^{\mathrm{min}}\right)$, 118.1 (4-C), 65.5 (1-C), $64.6\left(1-\mathrm{C}^{\text {min }}\right), 63.17\left(\mathrm{PhCH}_{2} \mathrm{OH}^{\text {min }}\right), 63.12\left(\mathrm{PhCH}_{2} \mathrm{OH}\right), 60.13$ $(2-\mathrm{C}), 60.11\left(2-\mathrm{C}^{\mathrm{min}}\right), 46.5\left(\mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}^{\mathrm{min}}\right), 45.9\left(\mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right), 34.9\left(3-\mathrm{C}^{\mathrm{min}}\right), 34.1(3-$
C), $25.6\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $23.0(\mathrm{Ac}), 17.78\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\text {min }}\right), 17.71\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.45$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\text {min }}\right), 12.35\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.05\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3325, 2914, 2743, 1927, 1661, 1599, 1455, 1275 and 1260; m/z (ES ${ }^{+}$) 1060.3 (100\%, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$); found 1060.2702, $\mathrm{C}_{50} \mathrm{H}_{55} \mathrm{~F}_{17} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{~S}_{3}$ Si requires $\mathrm{MNH}_{4} 1060.2678$

$N-[(2 R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-H e p t a d e c a f l u o r o d e c y l) b i s(p r o p a n-$ 2-yl)silyl]oxy\}pent-4-en-2-yl]-N-\{[3-(hydroxymethyl)phenyl]methyl\}-2-nitrobenzene-1-sulfonamide 113

Following general procedure M1, diethyl azodicarboxylate (2.1 g , 12 mmol), sulfonamide 112 ($5.00 \mathrm{~g}, 6 \mathrm{mmol}$), hydroxyacetate 127 ($2.15 \mathrm{mg}, 12 \mathrm{mmol}$) and triphenylphosphine ($3.14 \mathrm{mg}, 12 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE, to give the acetate ester $(6.3 \mathrm{~g})$. Following the general procedure \mathbf{D}, the acetate ester $(6.3 \mathrm{~g})$ was dissolved in NH_{3} sat. $\mathrm{MeOH}(200 \mathrm{~mL})$ was stirred for 16 h and concentrated in vacuo to give the alcohol 113 ($5.2 \mathrm{~g}, 5.3 \mathrm{mmol}, 90 \%$, $>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy); $R_{\mathrm{f}} 0.33$ (70:30, petrol—EtOAc); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3$, nosyl 3-H), 7.63-7.59 (2H, m, nosyl 6-H and Ph), 7.50 (1H, ddd, J8.0, 5.6 and 3.2, Ph), 7.30-7.21 (4H, m, Ph), 5.55 (1 H , ddt, J 17.1, 10.1 and $7.1,4-\mathrm{H}$), 4.99 (1 H , dd, J 17.1 and $\left.1.5,5-\mathrm{H}_{\mathrm{B}}\right), 4.88\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.1.5,5-\mathrm{H}_{\mathrm{B}}\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J 16, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}}\right), 4.88$ (2 H , ap d, J 5.9, $\mathrm{PhCH}_{2} \mathrm{OH}$), $4.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{~N}\left(\mathrm{Ns}^{2}\right) \mathrm{CH}_{\mathrm{B}}\right), 3.99(1 \mathrm{H}, \mathrm{p}, \mathrm{J} 6.9,2-\mathrm{H})$, $3.68\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.5.7,1-\mathrm{H}_{\mathrm{A}}\right), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.6.5,1-\mathrm{H}_{\mathrm{B}}\right), 2.35(2 \mathrm{H}$, ap t, $\left.J 7.3,3-\mathrm{H}_{\mathrm{AB}}\right)$, 2.14-1.93 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.06-0.93\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, 0.78-0.70 (2H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 148.1 (nosyl 2-C), 141.6 (nosyl $1-\mathrm{C}$), 138.2, 134.7 (4-C), 134.4, 133.5, 131.8, 131.7, 129.1, 128.0, 127.1, 126.7, 124.4, $118.2(5-\mathrm{C}), 65.4(1-\mathrm{C}), 65.1\left(\mathrm{PhCH}_{2} \mathrm{OH}\right), 60.5(2-\mathrm{C}), 48.9\left(\mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right), 34.8(3-\mathrm{C})$, $25.6\left(\mathrm{t}, \mathrm{J} 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.4\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2989, 1545, 1462, 1275, 1260 and 748; m/z (ES ${ }^{+}$) 989.2 (100%, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 989.1939, $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SSi}$ requires MNa 989.1919

(2S) $-N-\{[5-(\{N-[(2 R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-$ Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)thiophen-2-yl]methyl\}-N-[(2-nitrobenzene)sulfonyl]-2-(prop-2-en-1-yloxy)propanamide 207

Following general procedure L1, alcohol 204 ($103 \mathrm{mg}, 0.1 \mathrm{mmol}$), acyl sulfonamide 134 ($99 \mathrm{mg}, 0.32 \mathrm{mmol}$), triphenylphosphine $(82 \mathrm{mg}, 0.32 \mathrm{mmol}$) and diethyl azodicarboxylate ($55 \mathrm{mg}, 0.32 \mathrm{mmol}$) gave the crude product in 24 h . The crude product was concentrated in vacuo and purified by F-SPE, to give 207 ($88 \mathrm{mg}, 69 \%$, $>81 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; R_{f} 0.69 ($70: 30$, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) rotamers denoted where possible 8.45 (1 H , dd, $J 8.5$ and 1.9, nosyl $3-\mathrm{H}$), 8.11 (dd, J 8.5 and 1.9, nosyl $3-\mathrm{H}^{\text {rot }}$), 7.94-7.63 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ns}$), 7.62-7.53 (1H, m, Ns), 6.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.9$, Thio $3-\mathrm{H}$), 6.88 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.9$, Thio 4-H), 6.82-6.71 ($1 \mathrm{H}, \mathrm{m}$, Thio $3-\mathrm{H}^{\text {rot }}$ and $4-\mathrm{H}^{\text {rot }}$), 5.92 (ddt, J 16.7, 10.1 and 5.2, propenyl $3-\mathrm{H}^{\text {rot }}$), $5.84(1 \mathrm{H}$, ddt, $J 17.1,10.5$ and 5.2 , propenyl $3-\mathrm{H}$), $5.67(1 \mathrm{H}$, ddt, J 16.7, 11.4 and $7.2,4-H$), 5.61 (ddt, J 16.7, 10.7 and $7.2,4-H^{\text {rot }}$), 5.33 (d, J 16.7, propenyl $\left.2-\mathrm{H}_{A}\right), 5.26\left(\mathrm{~d}, \mathrm{~J} 10.1\right.$, propenyl $\left.2-\mathrm{H}_{B}{ }^{\text {rot }}\right), 5.23\left(1 \mathrm{H}, \mathrm{d}, J 17.1\right.$, propenyl $\left.2-\mathrm{H}_{A}{ }^{\text {rot }}\right)$, $5.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.7,5-\mathrm{H}_{\mathrm{A}}\right), 5.16\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.5,5-\mathrm{H}_{\mathrm{B}}\right), 5.12-4.95(4 \mathrm{H}, \mathrm{m}$, propenyl 1-H and ThioCH $\mathrm{H}_{2} \mathrm{~N}(\mathrm{CO})$), 4.89-4.59 (2H, m, $\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2}$ Thio), 4.55-4.40 (1H, m, $\left.\mathrm{COCH}\left(\mathrm{CH}_{3}\right)\right)$, 4.12-3.95 (1H, m, 2-H), 3.90-3.55 (2H, m, 1-H2), 2.48-2.46 (2H, m, 3- H_{2}), 2.43-2.39 (2H, m, 3- $\mathrm{H}_{2}^{\text {rot }}$), 2.20-2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.44\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{CH}_{3}^{\text {rot }}\right)$, $1.35\left(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CH}_{3}\right), 1.06\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.88-0.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.4$ ($\mathrm{C}=\mathrm{O}^{\text {rot }}$), $173.0\left(\mathrm{C}=\mathrm{O}\right.$), 148.3 (nosyl 2-C), 148.0 (nosyl 2-C ${ }^{\text {rot }}$), 142.1 (Thio 1-C), 139.7 (Thio 5-C), 135.4, 135.0, 134.5, 134.4, 134.3, 134.2, 133.8, $133.8,133.3,132.8,132.8,131.9,131.7,131.5,131.4,131.2,127.7,127.2,127.0$, 126.8, 125.9, 125.3, 124.4, 118.4 (propenyl 2-C or 4-C ${ }^{\text {rot }}$), 118.3 (propenyl 2-C or 4-C), 118.3 (propenyl 2-C or 4-Crot), 76.1 (1 "'-C rot), 74.5 (1 "'-C), 71.2 (propenyl 1-Crot), 70.7 (propenyl 1-C), 64.9 (1-C), $60.3(2-\mathrm{C}), 45.36$ ($\mathrm{Thio}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{CO})$), 43.9 (Thio $\mathrm{CH}_{2} \mathrm{~N}(\mathrm{CO})^{\text {rot }}$), 43.8 ($\mathrm{N}\left(\mathrm{Ns}\right.$) CH_{2} Thio), 43.0 ($\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2}$ Thio $^{\text {rot }}$); 35.0 (3-C), 34.8 (3-C rot), 25.6 $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $17.9\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2963, 2533, 1643, 1545, 1370, 1241, 1165 and 1063; m/z (ES ${ }^{+}$) 1291.2 (60\%, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$); found 1291.2009, $\mathrm{C}_{45} \mathrm{H}_{49} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{~S}_{3} \mathrm{Si}$ requires $\mathrm{MNH}_{4} 1291.1950$
(2S,3R)-3-[(Tert-butyldimethylsilyl)oxy]-N-\{[5-(\{N-[(2R)-1-
\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)thiophen-2-yl]methyl\}-2'-methyl-N-[(2-nitrobenzene)sulfonyl]hept-6'-enamide 210

Following general procedure L1, alcohol $204(1.0 \mathrm{mg}, 1.02 \mathrm{mmol})$, acyl sulfonamide 133 ($0.49 \mathrm{~g}, 1.08 \mathrm{mmol}$), triphenylphosphine ($293 \mathrm{mg}, 1.12 \mathrm{mmol}$) and diethyl azodicarboxylate ($195 \mathrm{mg}, 1.12 \mathrm{mmol}$) gave the crude product in 16 h . The crude product was concentrated in vacuo and purified by F-SPE, to give 210 ($800 \mathrm{mg}, 0.57$ mmol, 56%, $>82 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; $R_{\mathrm{f}} 0.78$ ($80: 20$ petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 8.45-8.35 ($2 \mathrm{H}, \mathrm{m}$, nosyl 3-H), 8.25-8.20 (3H, m, Ns), 7.85-7.44 (3H, m, Ns), 6.83-6.69 (2H, m, Thio), 5.77 (1 H , ddt, J 16.8, 10.3 and $6.4,4-\mathrm{H}$), $5.67-5.43\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 5.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.9$, $(\mathrm{CO}) \mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}}$ Thio), $5.06-4.43\left(5 \mathrm{H}, \mathrm{m},(\mathrm{CO}) \mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{B}\right.$ Thio, $5-\mathrm{H}_{\mathrm{AB}}$ and $\left.77^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 4.05$ (1 H , ap p, J5.5, $3^{\prime}-\mathrm{H}$), 3.98-3.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2}$ Thio), $3.68(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 5.7, $\left.1-\mathrm{H}_{\mathrm{A}}\right), 3.60\left(1 \mathrm{H}\right.$, ap p, J 6.3, 2-H), $3.47\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.6.3,1-\mathrm{H}_{\mathrm{B}}\right), 2.45-2.27(2 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}\right)$, 2.19-1.90 (4H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $\left.5^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 1.59-1.52\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.23-$ $1.15(3 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 0.99-0.91\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.83\left(9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79(9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}^{\mathrm{min}}\right), 0.8-0.67\left(2 \mathrm{H}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH} \mathrm{H}_{3}\right),-$ $0.07\left(\mathrm{~s}, \mathrm{SiCH}_{3}{ }^{\mathrm{min}}\right),-0.14\left(\mathrm{~s}, \mathrm{SiCH}_{3}^{\mathrm{min}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.3(\mathrm{C}=\mathrm{O}), 173.6(\mathrm{C}=\mathrm{O})$, $145.4,144.5,144.4,140.1,139.9,138.5,138.4,135.4,130.4,129.1,126.8,126.4$, $126.0,125.8,124.5,124.4,118.1^{\mathrm{min}}, 117.6,115.0,114.9^{\min }, 74.7^{\text {min }}, 74.5,69.4,65.4$, $65.3^{\text {min }}, 57.8^{\text {min }}, 57.8,46.5,45.9,45.7,38.6,36.1,36.0,34.2,32.1^{\text {min }}, 31.9,30.4$, $30.2^{\text {min }}, 26.1,25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.6\left(\mathrm{t}, \mathrm{J} 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 13.1$ (Me), $0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $-4.26\left(\mathrm{SiCH}_{3}\right),-4.30\left(\mathrm{SiCH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3323, 3077, 2937, 1832, 1668, 1546; m/z (ES ${ }^{+}$) 1041.1 ($\left.100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$

Methyl (2S,3R,6E,9R)-9-(\{[5-(aminomethyl)thiophen-2-yl]methyl\}amino)-3-[(tert-butyldimethyIsilyl)oxy]-10-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}-2-methyldec-6-enoate 221

Following general procedure $\mathbf{N} 1$, potassium carbonate ($41 \mathrm{mg}, 0.30 \mathrm{mmol}$), sulfonamide 214 ($210 \mathrm{mg}, 0.151 \mathrm{mmol}$) and thiophenol ($167 \mathrm{mg}, 1.5 \mathrm{mmol}$) gave the crude product after 16 h . The reaction was purified by F-SPE and column chromatography, eluting with 70:30 petrol-EtOAc gave the methyl ester 221 (125 mg , $0.120 \mathrm{mmol}, 80 \%$) as a colourless oil; $R_{\mathrm{f}} 0.44$ (70:30, petrol-EtOAC); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 6.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.4$, Thio 3 or $4-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.4$, Thio 3 or $4-\mathrm{H}), 6.31(1 \mathrm{H}$, br s, NH), $5.36(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $6.2,6-\mathrm{H}), 5.29(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $6.9,7-\mathrm{H}), 5.17(1 \mathrm{H}$, br s, NH), 4.45 ($\left.1 \mathrm{H}, \mathrm{d}, ~ J 12.9, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right), 4.44\left(1 \mathrm{H}, \mathrm{d}, ~ J 12.9, \mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}\right), 3.88(1 \mathrm{H}, \mathrm{d}$, J 14.3, $\mathrm{NH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}$), 3.85 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.3, \mathrm{NH}_{2} \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}$), 3.70-3.64 (1H, m, 3-H), 3.52-3.46 $\left(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{AB}}\right), 3.25(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.62(1 \mathrm{H}, \mathrm{p}, J 6.1,9-\mathrm{H}), 2.42(1 \mathrm{H}, \mathrm{qd}, J 7.1$ and 3.9, 2-H), 2.13-1.94 ($5 \mathrm{H}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}, 5-\mathrm{H}$ and $8-\mathrm{H}$), 1.90-1.80 (1H, 5-H), 1.48-1.37 (2H, 4-H), $0.99(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1, \mathrm{Me}), 0.94\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.82(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.77-0.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.01\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz} ;$ CDCl_{3}) 184.4 (C=O), 149.3 (Thio 2 or $5-\mathrm{C}$), 145.8 (Thio 2 or $5-\mathrm{C}$), 138.7 (4-C), 131.9 (Thio 3 or $4-\mathrm{C}$), 137.7 (Thio 3 or 4-C); 130.4 (5-C), 79.2 (8-C), 74.3 (1-C), 70.7 (2-C); 61.9 (9-C), $51.1\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 40.2\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 39.4(6-\mathrm{C}) ; 31.1$ (3-C), 30.7 (7-C); 22.2 (Me), $22.1\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $18.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $17.9\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.28\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $\left.0.2\left(\mathrm{SiCH}_{3}\right), 0.00(\mathrm{SiCH})_{3}\right), \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3110, 2996, 1739 and 1562; m/z (ES $\left.{ }^{+}\right) 1045.4\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 1045.3713, $\mathrm{C}_{40} \mathrm{H}_{62} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}_{2}$ requires MH 1045.3692
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl
$N-\{[5-(\{N-[(2 R)-1-$ \{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)thiophen-2-yl]methyl\}-N-[(2-nitrobenzene)sulfonyl]carbamate 212

Following general procedure L2, alcohol 204 ($164 \mathrm{mg}, 0.17 \mathrm{mmol}$), acyl sulfonamide 208 ($323 \mathrm{mg}, 0.67 \mathrm{mmol}$), triphenylphosphine ($88 \mathrm{mg}, 0.34 \mathrm{mmol}$) and diethylazodicarboxylate ($59 \mathrm{mg}, 0.34 \mathrm{mmol}$) gave the crude product after 24 h . The crude product was concentrated in vacuo and purified using F-SPE; to give 212 (218 $\mathrm{mg}, 89 \%$, $>93 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; $R_{\mathrm{f}} 0.27$ ($80: 20 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrol); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8$, nosyl 3-H), 7.70-7.63 (3H, m, Ns), 7.61-7.56 (1H, m, Ns), 7.51-7.47 (2H, m, Ns), 7.417.36 (1H, m, Ns), $6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.3, DMB 6-H), $6.68(1 \mathrm{H}, \mathrm{d}, ~ J 3.5$, Thio 3-H), 6.61 (1 H , d, J 3.5, Thio 4-H), 6.31 (1H, d, J 2.3, Ar, DMB 3-H), 6.28 ($1 \mathrm{H}, \mathrm{dd}, J 8.3$ and 2.3, DMB $5-\mathrm{H}), 5.75(1 \mathrm{H}$, ddt, $J 17.2,10.4$ and 5.6 , propenyl $2-\mathrm{H}), 5.62(1 \mathrm{H}$, ddt, $J 17.1,10.1$ and $7.2,4-\mathrm{H}), 5.12\left(1 \mathrm{H}, \mathrm{d}, J 17.2\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.05\left(1 \mathrm{H}, \mathrm{d}, J 10.4\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.00$ ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.1,5-\mathrm{H}_{\mathrm{A}}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.1,5-\mathrm{H}_{\mathrm{B}}\right), 4.81-4.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ThioCH}_{2} \mathrm{~N}(\mathrm{Ns}) \mathrm{CO}\right)$), $4.65\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2}\right.$ Thio $)$, 4.56-4.41 ($1 \mathrm{H}, \mathrm{m}$, propyl 1- H_{A}), 4.36-4.30 ($1 \mathrm{H}, \mathrm{m}$, propyl 1-H H_{B}, 4.05-3.97 $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 2-\mathrm{H}), 3.86-3.80(2 \mathrm{H}, \mathrm{m}$, propenyl 1-H), $3.76(1 \mathrm{H}$, dd, J 10.5 and $5.5,1-\mathrm{H}_{\mathrm{B}}$), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.63 (1 H , dd, J 10.5 and $\left.5.5,1-\mathrm{H}_{\mathrm{A}}\right), 3.50-3.42\left(3 \mathrm{H}, \mathrm{m}\right.$, propyl 2 - and $\left.3-\mathrm{H}_{2}\right)$, 2.47-2.33 $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.10$ $1.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.95\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.79-0.72(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.2$ (DMB 2- or $4-\mathrm{C}$), 158.6 (DMB 2- or $4-\mathrm{C}$), 151.8 (C=O), 148.1 (nosyl 2-C), 147.7 (nosyl 2-C), 141.4 (Thio 2-C), 139.8 (Thio 5-C), 134.9 , 134.8, 134.8 (propenyl 3-C), 134.7, 134.5 (5-C), 133.6, 133.0, 132.2, 131.8, 131.3, 129.2, 127.8 (Thio 3-C), 127.6 (Thio 4-C), 124.8, 124.3, 119.1, 118.4 (4-C), 117.3 (propenyl 2-C), 104.5 (DMB 5-C), 98.9 (DMB 3-C), 72.3 (propenyl 1-C), 70.5 (propyl 3-C), 68.6 (1-C), 65.0 (propyl 1-C) , 60.1 (2-C), 55.6 (2 $\times \mathrm{OMe}$), 45.8 (Thio $\mathrm{CH}_{2} \mathrm{~N}(\mathrm{CO})$), 43.8 ($\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2}$ Thio), 38.4 (propyl 2-C), 35.0 (3-C), 25.6 (t, J 25, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 2947, 2869, 1737, 1545, 1440,

1370, 1163 and $779 ; \mathrm{m} / \mathrm{z}\left(E S^{+}\right) 1457.3\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$; found 1457.2730, $\mathrm{C}_{50} \mathrm{H}_{55} \mathrm{~F}_{17} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Si}$ requires MNa 1457.2580

[2-(Prop-2-en-1-yloxy)phenyl]methyl
 $N-\{[5-(\{N-[(2 R)-1-$

\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)thiophen-2-yl]methyl\}-N-[(2-nitrobenzene)sulfonyl]carbamate 211

Following general procedure L2, alcohol 204 ($195 \mathrm{mg}, 0.2 \mathrm{mmol}$), acyl sulfonamide 131 ($314 \mathrm{mg}, 0.8 \mathrm{mmol}$), triphenylphosphine ($104 \mathrm{mg}, 0.4 \mathrm{mmol}$) and diethyl azodicarboxylate ($70 \mathrm{mg}, 0.4 \mathrm{mmol}$ gave the crude product after 36 h . The crude product was concentrated in vacuo, purified by F-SPE and column chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 211 ($190 \mathrm{mg}, 70 \%$) as a colourless oil. $R_{\mathrm{f}} 0.89\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $[\alpha]_{D}^{22}-2.0\left(\mathrm{c} .2 .0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$, nosyl 3-H), 7.807.68 (3H, m, Ns), 7.63-7.56 (2H, m, Ns), 7.49 (2H, t, J 8.1, nosyl 5-H), 7.36 (1H, t, J 8.1, Ph 6-H), 7.24 ($1 \mathrm{H}, \mathrm{d}, ~ J 7.5$, Ph 4-H), 6.96 ($1 \mathrm{H}, \mathrm{t}, J 7.5$, Ph 3-H), 6.89 ($1 \mathrm{H}, \mathrm{d}, ~ J 3.5$, Thio 4-H), 6.87 (1H, d, J 8.1, Ph 5-H), 6.83 (1H, d, J 3.5, Thio 3-H), 5.99 (1 H , ddt, J 17.2, 10.6 and $5.1,4-H), 5.75(1 \mathrm{H}$, ddt, $J 17.0,9.9$ and 7.0 , propenyl $2-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{d}$, $\left.J 17.2,5-H_{A}\right), 5.29\left(1 H, d, J 16.2, \mathrm{PhCH}_{\mathrm{A}} \mathrm{O}\right), 5.28$ (1H, d, J 16.2, PhCH A_{A}), 5.27 (1H, d, $\left.J 10.6,5-H_{B}\right), 5.13\left(1 \mathrm{H}, \mathrm{d}, ~ J 17.0\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.05\left(\mathrm{~d}, ~ J 9.9\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.03$ (2H, s, ThioCH2N(CO)), 4.79 (1H, d, J 16.3, 1"-Ha), 4.73 (1H, d, J 16.3, 1"-H H_{b}), 4.52$4.49\left(2 \mathrm{H}, \mathrm{m}\right.$, propenyl $\left.1-\mathrm{H}_{2}\right), 4.18-4.11(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and 5.5 , $1-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 3.77\left(1 \mathrm{H}\right.$, dd, J 10.5 and 5.1, 1-H H_{B}, 2.57-2.47 $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.22-2.09(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.07\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.90-0.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 157.2$ (C=O), 151.7 (nosyl 2-C), 148.1 (Ph 2-C), 147.7 (nosyl 2-C), 141.5, 139.8, 134.8 (4-C), 134.7 (Thio 3-C), 134.7 (Thio 4-C), 134.5, 133.6, 133.1, 133.0, 131.8, 131.3, 131.1, 130.8, 128.2 (Thio 2-C), 127.6 (Thio 5-C), 124.7 (nosyl 3-C), 124.2 (nosyl 3-C), 122.8, 120.9 (Ph 5-C), 117.8 (5-C), 117.4 (propenyl 3-C), 112.0 (Ph 3-C), 69.1 (propenyl 1-C), 65.7 ($\mathrm{PhCH}_{2} \mathrm{O}$), 65.1 (1-C), 60.1 (2-C), 45.8 (Thio $\mathrm{CH}_{2} \mathrm{~N}(\mathrm{CO})$), 43.9 ($\mathrm{N}\left(\mathrm{Ns}\right.$) CH_{2} Thio), $35.0(3-\mathrm{C}), 25.6$ (t, J 25, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.7$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3629, 2490, 2029, 1738, 1544, 1370, 1207, 736 and 586; m/z (ES ${ }^{+}$) 1364.3 $\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right.$); found 1364.2536, $\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Si}$ requires $\mathrm{MNH}_{4} 1364.2502$
$N-[(2-\{[N-(B u t-3-e n-1-y l)($ trifluoromethane $)$ sulfonamido]methyl\}phenyl)methyl]-N-[(2R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4'-en-2'-yl]-2-nitrobenzene-1-sulfonamide 209

Following general procedure L1, trifluoromethanesulfonamide 135 ($1.17 \mathrm{~g}, 5.8 \mathrm{mmol}$), alcohol 205 ($1.4 \mathrm{~g}, 1.45 \mathrm{mmol}$), triphenylphosphine ($0.76 \mathrm{~g}, 2.9 \mathrm{mmol}$) and diethyl azodicarboxylate ($0.5 \mathrm{~g}, 2.9 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was concentrated in vacuo and purified with F-SPE; to give 209 ($1.55 \mathrm{~g}, 1.35 \mathrm{mmol}$, $93 \%,>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{f} 0.88$ ($80: 20$, petrol-EtOAc); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.75$ (1H, d, J 7.8, Ar), 7.77.63 (2H, m, Ar), 7.57-7.49 (2H, m, Ar), 7.37-7.21 (3H, m, Ar), 5.6 (2H, ddt, J 17, 10.1 and 6.8, $4^{\prime}-\mathrm{H}$ and $\left.3-\mathrm{H}\right), 5.08-5.02\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7$ and 1.7, $5^{\prime}-\mathrm{H}_{\mathrm{B}}$), $4.92\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.3,4-\mathrm{H}_{\mathrm{B}}\right), 4.97 .4 .57$ (2H, br s, PhCH ${ }_{2} \mathrm{NTf}$), 4.85 (1H, d, J 16.6, $\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{B} \mathrm{Ph}\right), 4.67$ (1H, d, J 16.6, N(Ns)CH ${ }_{A} \mathrm{Ph}$), 4.10 (1 H , ap p, J 6.7, 2'-H), 3.77-3.69 (1 H, dd, $J 10.9$ and $\left.6.4,1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.55-3.33\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.41\left(2 \mathrm{H}, \mathrm{t}, J 7.7,1-\mathrm{H}_{2}\right), 2.39$ (2H, ap t, J 7.7, 3'-H), 2.31-1.96 (4H, m, 2'-H and $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.99(14 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 148.2$ (nosyl 2-C), 136.3 (nosyl 1-C), 134.3, 134.1 (3-C), 133.8 (4'-C), 133.5, 132.6 (nosyl 5-C), 132.4, 131.9, 131.7 (nosyl 4-C), 130.1, 129.3, 129.1, 128.9 (nosyl 6-C), 128.5, 124.5 (nosyl 3-C), 118.6 (4-C and 5'-C), 64.8 (1'-C), 60.5 (2'-C), 50.6 ($\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right), 48.8$ (1-C), $46.0\left(\mathrm{PhCH}_{2} \mathrm{Tf}\right) ; 34.5$ (3'-C), 33.2 (2C), $25.6\left(\mathrm{t}, \mathrm{J} 24, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $17.7\left(\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\right.$ ($\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), CF_{3} missing; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2948, 2870, 2357, 1643, 1574, 1390; m/z (ES') $1169.2\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$; found 1169.2490, $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~F}_{20} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$ requires MNH_{4} 1169.2487
[2-(Prop-2-en-1-yloxy)phenyl]methyl
$N-\{[2-(\{N-[(2 R)-1-$
\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-
yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)phenyl]methyl\}-N-[(2-nitrobenzene)sulfonyl]carbamate 235

Following general procedure L2, sulfonamide 131 ($2.2 \mathrm{~g}, 5.8 \mathrm{mmol}$), alcohol 205 (1.4 g , 1.45 mmol), triphenylphosphine ($1.5 \mathrm{~g}, 5.8 \mathrm{mmol}$) and diethyl azodicarboxylate (1.0 g , 5.8 mmol) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE to give the sulfonamide 235 ($1.5 \mathrm{~g}, 1.12 \mathrm{mmol}, 77 \%$, $>93 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; R 0.71 (70:30, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.16$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$, nosyl 3-C), 7.73 (1 H , dd, $J 8.1$ and 1, nosyl $3-C$), $7.66(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1 , nosyl $6-\mathrm{C}$), 7.58 ($1 \mathrm{H}, \mathrm{dd}, J$ 8.4 and 1, nosyl 6-C), 7.54-7.50 (2H, m, Ar), 7.47-7.43 (1H, m, Ar), 7.36 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$, Ar), 7.34 (1H, d, J7.9, Ar), 7.30-7.25 (2H, m, Ar), 7.20-7.17 (1H, m, Ar), 7.07-7.03 (2H, m, Ar), 6.88-6.84 (1H, m, Ph 3-H), 6.76 (1H, d, J 8.3, Ph 4-H), 5.89 (1H, ddt, J 17.2, 10.3 and 5 , propenyl $2-H$), 5.67 (1 H , ddt, $J 17.1,10.1$ and $7.0,4-H$), $5.29(1 \mathrm{H}$, dd, J 17.2 and 1.7, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.21\left(1 \mathrm{H}, \mathrm{dd}, J 10.3\right.$ and 1.4 , propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right) ; 5.18(2 \mathrm{H}, \mathrm{s}$, PhCH ${ }_{2}$) , $5.13\left(1 \mathrm{H}, \mathrm{d}, ~ J 17, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 5.09\left(1 \mathrm{H}, \mathrm{d}, J 17.1,5-\mathrm{H}_{\mathrm{A}}\right), 5.0(1 \mathrm{H}, \mathrm{d}, ~ J 17$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 4.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.1,5-\mathrm{H}_{\mathrm{B}}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 16.1, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.60(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J} 16.1, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 4.40-4.32(2 \mathrm{H}, \mathrm{m}$, propenyl 1-H2$), 4.21-4.15(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.74$ (1 H , dd, $J 10.5$ and $6.2,1-\mathrm{H}_{\mathrm{A}}$), $3.57\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.5.9,1-\mathrm{H}_{\mathrm{B}}\right), 2.53(1 \mathrm{H}, \mathrm{dt}, J 13.5$ and 6.6, $3-\mathrm{H}_{\mathrm{A}}$), $2.41\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.5\right.$ and $\left.7.7,3-\mathrm{H}_{\mathrm{B}}\right), 2.16-2.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $0.99\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, $0.83-0.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 157.1 (Ph 2-C), 152.1 (C=O), 148.3 (nosyl 2-C), 147.9 (nosyl 2-C), 135.4 (nosyl 1-C), 135.0 (nosyl 1-C), 134.8 (Ph 1-C), 134.7 (4-C), 134.7, 134.1, 133.2 (propenyl 2-C), 133.1, 133.0, 131.9, 131.7, 130.7, 130.1, 128.4, 127.5, 126.9, 124.7, 124.4, 122.9, 120.9 (Ph 5-C), 118.2 (5-C), 117.7 (propenyl 3-C), 111.9 (Ph 3-C); 69.0 (propenyl 1-C), 65.7 ($\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 64.5(1-\mathrm{C}), 60.3(2-\mathrm{C}), 48.5\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 45.8\left(\mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right), 34.7$ (3-C), $25.6\left(\mathrm{t}, \mathrm{J} 23.4, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3075, 2946, 2869, 1734, 1544, 1369, 1243; m/z (ES ${ }^{+}$) $1358.3\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$; found 1358.2931, $\mathrm{C}_{52} \mathrm{H}_{53} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Si}$ requires MNH_{4} 1358.2937
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl
$N-\{[2-(\{N-[(2 R)-1-$ \{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)phenyl]methyl\}-N-[(2-nitrobenzene)sulfonyl]carbamate 235

Following general procedure L2, sulfonamide $\mathbf{1 3 2}$ ($2.7 \mathrm{~g}, 5.8 \mathrm{mmol}$), alcohol 205 (1.4 g , $1.45 \mathrm{mmol})$, triphenylphosphine ($1.5 \mathrm{~g}, 5.8 \mathrm{mmol}$) and diethyl azodicarboxylate (1.0 g , 5.8 mmol) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE to give the sulfonamide 235 ($1.3 \mathrm{~g}, 0.91 \mathrm{mmol}, 63 \%$, $>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; R_{f} 0.67 (70:30, petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.31$ (1H, d, J 7.8, nosyl 3-H), 7.817.76 (2H, m, Ar), 7.74-7.70 (2H, m, Ar), 7.66 (1H, d, J 7.8, nosyl 4-H), 7.64-7.59 (1H, m, Ar), 7.47-7.42 (2H, m, Ar), 7.34-7.30 (1H, m, Ar), 7.26-7.22 (1H, m, Ar), 7.16-7.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.92 ($1 \mathrm{H}, \mathrm{d}, ~ J 8.2$, DMB 6-H), 6.39-6.34 (2H, m, DMB 3 and $5-\mathrm{H}$), $5.84(1 \mathrm{H}$, ddt, $J 16.9,10.6$ and $5.5,4-H), 5.68(1 \mathrm{H}, \mathrm{ddt}, J 16.9,10.0$ and 6.9 , propenyl 2-H), 5.22 (1 H , ddt, $J 16.9$ and 1.7, propenyl $3-\mathrm{H}_{\mathrm{A}}$), 5.17-5.11 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{\mathrm{A}} \mathrm{N}(\mathrm{CO}), 5-\mathrm{H}_{\mathrm{A}}\right.$ and 3$\left.\mathrm{H}_{\mathrm{B}}\right), 5.09-5.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{\mathrm{B}} \mathrm{N}(\mathrm{CO})\right.$), $4.99\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.1,5-\mathrm{H}_{\mathrm{B}}\right), 4.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16$, $\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7$ and 5.6, propyl 1 H_{A}), $4.42\left(1 \mathrm{H}\right.$, dd, $J 10.7$ and 6.6, propyl 1-H H_{B}, 4.23-4.16 (1H, m, 2-H), $3.89(2 \mathrm{H}, \mathrm{dd}, J$ 5.6 and 1.7, propenyl 1- H_{2}), 3.84-3.79 ($4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}$ and OMe), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.58-3.47 ($4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{B}}$, propyl $2-\mathrm{H}$ and propyl $3-\mathrm{H}_{\mathrm{AB}}$), $2.56(1 \mathrm{H}, \mathrm{dt}, J 13.9$ and 6.9 , 3H_{A}), $2.48\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.9\right.$ and 7.6, $3-\mathrm{H}_{\mathrm{B}}$), 2.20.2.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.04-1.02 ($\left.14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, $0.87-0.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.1$ (DMB 4-C), 158.5 (DMB 2-C), 152.2 (C=O), 148.3 (nosyl 2-C), 147.9 (nosyl 2-C), 135.2 (propenyl 2-C), 135.1 (4-C), 134.9, 134.8, 134.7, 134.6, 134.1, 133.4, 133.0, 132.2, $131.9,131.8,129.9,129.1,128.5,127.4,126.5,124.9,124.5,119.1,118.3$ (propenyl 3-C), 117.1 (5-C), 104.4 (DMB 5-C), 98.9 (DMB 3-C), 72.2 (propyl 3-), 70.1 (propenyl 1-C), 68.4 (1-C), 64.6 (propyl 1-C), 60.5 (2-C), 55.6 ($2 \times \mathrm{OMe}$), 48.7 ($\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}$), 45.8 ($\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), 38.1 (propyl 2-C) , 34.7 (3-C), 25.6 (t, J 23.4, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$) 17.8 $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.01\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3300, 2946,

1869, 1740, 1548, 1371; m/z (ES $\left.{ }^{+}\right) 1451.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 1451.3013, $\mathrm{C}_{56} \mathrm{H}_{61} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{~S}_{2} \mathrm{Si}$ requires MNa 1451.3016

$N-\{[2-(\{N-[(2 R, 3 R)-3-[(T e r t-b u t y l d i m e t h y l s i l y l) o x y]-2-m e t h y l h e p t-6-e n-1-$ $\mathrm{yl}]$ (trifluoromethane)sulfonamido\}methyl)phenyl]methyl\}- $\mathrm{N}-[(2 R)-1-$ \{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4'-en-2'-yl]-2-nitrobenzene-1-sulfonamide 236

Following general procedure L3, sulfonamide 202 ($220 \mathrm{mg}, 0.57 \mathrm{mmol}$), alcohol 205 ($519 \mathrm{mg}, 0.54 \mathrm{mmol}$), triphenylphosphine ($148 \mathrm{mg}, 0.57 \mathrm{mmol}$) and diethyl azodicarboxylate ($98 \mathrm{mg}, 0.57 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was concentrated in vacuo, column chromatography eluting with 80:20 petrol-EtOAc gave the sulfonamide 236 ($430 \mathrm{mg}, 0.32 \mathrm{mmol}, 57 \%$) as a colourless oil; $R_{\mathrm{f}} 0.89$ (70:30, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$, nosyl $3-\mathrm{H}$), 7.71-7.62 (2H, m, Ar), 7.57-7.43 (2H, m, Ar), 7.34 (1H, d, J 7.1, Ar), 7.28 (1H, d, J 7.8, Ar), 7.23-7.19 (1H, m, Ar), 5.78 (0.5 H , br s, $4^{\prime}-\mathrm{H}^{\text {rot }}$), 5.68 ($1 \mathrm{H}, \mathrm{ddt}, J 18.2,9.5$ and 16.5, $6-H), 5.57-5.46\left(0.5 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}^{-}-\mathrm{H}\right), 4.99-4.96\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 4.94-4.79\left(5 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{AB}}\right.$, $\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}$ and $\mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}$), 4.6 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.8, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}$), 4.63-4.78 (1H, br s, PhCH ${ }_{B}$ NTf), 4.03-3.98 (1H, m, 2'-H), 3.68-3.60 (1H, m, 1'- H_{A}), 3.50-3.21 (4H, m, 1'- H_{B} and $1-\mathrm{H}_{A B}$ and $3-\mathrm{H}$), 2.39-2.30 ($2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{2}$), 2.10-1.97 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.84$1.69\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.60-1.56(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.43-1.21(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 0.97-0.93(14 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.82\left(12 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$ and $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.77-0.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 148.2$ (nosyl 2-C), 138.5 (nosyl 1-C), 135.9 (6-C), 134.2 (4'-C), 134.1, 133.8, 133.5, 131.9, 131.9, 130.4, 128.9, 128.8, 128.6; 122.8, 118.4 (5'-C), 115.1 (7-C), 73.7 (3-C), 64.7 (1'-C), 60.6 (2'-C), 52.3 ($\mathrm{PhCH}_{2} \mathrm{NTf}$), 46.5 ($\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right), 36.6$ (1-C), 34.3 (3'-C), 33.5 (5-C), 30.2 (2-C), 26.1 $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.6\left(\mathrm{t}, \mathrm{J} 23, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 11.3\left(\mathrm{CH}_{3}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right),-3.77\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2951, 2867, 1642, 1547, 1372, 1227; m/z (ES ${ }^{+}$) 1355.4 (100%, $\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$; found 1355.3869, $\mathrm{C}_{50} \mathrm{H}_{67} \mathrm{~F}_{20} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Si}_{2}$ requires $\mathrm{MNH}_{4} 1355.3927$
[2-(Prop-2-en-1-yloxy)phenyl]methyl
$N-\{[3-(\{N-[(2 R)-1-$
\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)phenyl]methyl\}-N-[(2-nitrobenzene)sulfonyl]carbamate 114

Following general procedure L1, sulfonamide 131 ($973 \mathrm{mg}, 2.4 \mathrm{mmol}$), alcohol 113 (1.2 $\mathrm{g}, 1.2 \mathrm{mmol}$), triphenylphosphine ($628 \mathrm{mg}, 2.4 \mathrm{mmol}$) and diethyl azodicarboxylate (417 $\mathrm{mg}, 2.4 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE to give the sulfonamide 114 ($1.22 \mathrm{~g}, 0.91 \mathrm{mmol}, 76 \%$, $>94 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; R_{f} 0.23 ($70: 30$, petro-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.1$ and 1.3, nosyl 3H), $7.71(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 1.3 , nosyl $6-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 1.8 , nosyl $3-\mathrm{H}), 7.67$ (1H, dd, J 3.8 and 1.3, Ar), 7.65 (1H, dd, J 3.8 and 1.3, Ar); 7.58-7.51 (2H, m, Ar), 7.477.39 (3H, m, Ar), 7.27-7.23 (2H, m, Ar), 7.13 (1H, apt, J 7.3, Ar), 7.08 (1 H , dd, J 7.5 and 1.7, Ar), $6.86(1 \mathrm{H}, \mathrm{td}, J 7.5$ and $1, \mathrm{Ar}), 6.78(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $1.0, \mathrm{Ar}), 5.91(1 \mathrm{H}$, ddt, $J 17.2,10.4$ and 5.1, propenyl 2-C), 5.64 (1 H , ddt, $J 17.1,10.1$ and $7.0,4-\mathrm{H}$), 5.29 (1 H , ddd, $J 17.2,3.3$ and 1.6, propenyl $3-\mathrm{H}_{A}$), $5.19(1 \mathrm{H}$, ddd, $J 10.4,2.9$ and 1.6, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.02\left(1 \mathrm{H}, \mathrm{dd}, J 17.1\right.$ and $\left.1.6,5-\mathrm{H}_{\mathrm{A}}\right), 4.92(1 \mathrm{H}$, dd, J 10.1 and 1.6, $5-\mathrm{H}_{\mathrm{B}}$), $4.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right.$), $4.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8$, $\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.48\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 4.40(2 \mathrm{H}, \mathrm{dt}, J 5.1$ and 1.7, propenyl $\left.1-\mathrm{C}_{2}\right), 4.08-4.03(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.76\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.5.8,1-\mathrm{H}_{\mathrm{A}}\right), 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5$ and $\left.5.9,1-\mathrm{H}_{\mathrm{B}}\right), 2.41\left(1 \mathrm{H}, \mathrm{dt}, J 13.9\right.$ and $\left.6.9,3-\mathrm{H}_{\mathrm{A}}\right), 2.34\left(1 \mathrm{H}, \mathrm{dt}, J 13.9\right.$ and $\left.7.5,3-\mathrm{H}_{\mathrm{B}}\right)$, 2.16-2.02 (2H, m, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.06-0.96\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.82-0.78(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.7$ (C=O), 151.7 (Ph 2-C), 147.8 (nosyl 2-C), 147.6 (nosyl 2-C), 137.5 nosyl 1-C), 137.2 (nosyl 1-C), 134.6 (4-C), 134.5 (propenyl 2C), $134.3,132.9,132.8,132.7,132.2,132.0,131.94,131.9,131.6,131.3,131.3,130.3$, 128.7, 128.6, 128.4, 127.9, 127.8, 127.1, 124.3, 124.0, 122.7, 120.5 (Ph 5-C)), 117.8 (5-C), 117.4 (propenyl 3-C), 111.6 (Ph 3-C), 68.7 (propenyl 1-C), 65.2 ($\mathrm{PhCH}_{2} \mathrm{O}$), 64.6 (1-C), $60.0(2-\mathrm{C}), 50.8\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 48.5\left(\mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right), 34.7(3-\mathrm{C}), 25.3(\mathrm{t}, \mathrm{J} 25$, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.3\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad-0.03$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3521, 2957, 1737, 1651, 1538, 1372 and 1254; m/z (ES ${ }^{+}$) $1363.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 1363.2414, $\mathrm{C}_{52} \mathrm{H}_{53} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Si}$ requires MNa 1363.2491
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl
$N-\{[3-(\{N-[(2 R)-1-$ \{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)phenyl]methyl\}-N-[(2-nitrobenzene)sulfonyl]carbamate 237

Following general procedure L1, sulfonamide 132 ($993 \mathrm{mg}, 2.07 \mathrm{mmol}$), alcohol 113 ($1.00 \mathrm{~g}, 1.04 \mathrm{mmol}$), triphenylphosphine ($542 \mathrm{mg}, 2.07 \mathrm{mmol}$) and diethyl azodicarboxylate ($360 \mathrm{mg}, 2.07 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE to give the sulfonamide 237 ($1.65 \mathrm{~g}, 1.16 \mathrm{mmol}, 112 \%$, $>59 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; $R_{\mathrm{f}} 0.39$ (70:30, petrol—EtOAc); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; MeOD; 323K) 8.15 (1H, dd, J 7.6 and 1.1, nosyl 3-H), 7.90-7.82 (2H, m, Ar), 7.77-7.69 (3H, m, Ar), 7.65-7.58 (2H, m, Ar), 7.34-7.15 (4H, Ar), 6.91 (1H, dd, J8.5, DMB 6-H), 6.43 (1H, d, J 2.4, DMB 3-H), 6.35 (1H, dd, J 8.4 and 2.5, DMB 5-H), 5.80 (1 H , ddt, J 17.2, 10.4 and 5.5, propenyl 2-H), 5.59 (1H, ddt, J 17.3, 10.2 and $7.1,4-H), 5.16$ (1H, ddd, J 17.2, 1.7 and 1.7, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.08\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and 1.7 , propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.01(1 \mathrm{H}$, dd, $J 17.3$ and $\left.1.6,5-\mathrm{H}_{\mathrm{A}}\right), 4.88\left(1 \mathrm{H}\right.$, dd, $J 10.2$ and $\left.1.8,5-\mathrm{H}_{\mathrm{B}}\right), 4.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right)$, 4.56 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.44$ (1H, dd, J 10.6 and 5.3 , propyl $\left.1-\mathrm{H}_{\mathrm{A}}\right), 4.36\left(1 \mathrm{H}\right.$, dd, J 10.6 and 7.0 , propyl 1-H H_{B}), 4.08-3.99 $(2 \mathrm{H}, \mathrm{m}, 1-$ H_{AB}), 3.87-3.84 (2H, m, propenyl 1-C), $3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$; 3.50-3.40 $\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$, propyl 2-H and 3- H_{AB} propyl), 2.40-2.31 $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}\right)$, 2.21-2.09 $(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.99\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, $0.85-0.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(75$ MHz; MeOD) 165.7 (C=O), 161.5 (DMB 4-C), 159.8 (DMB 2-C), 153.2 (nosyl 2-C), 149.2 (nosyl 2-C), 143.4 (nosyl 1-C) , 139.5, 139.3, 138.9, 136.1, 136.7, 134.8, 133.1, 132.8, 132.2, 130.1, 129.8, 129.5, 129.0, 128.8, 128.8 (DMB 6-C), 127.9, 125.8, 125.4, 125.3, 120.0 (DMB 1-C), 118.1 (propenyl 3-C), 117.0 (5-C), 105.9 (DMB 5-C), 99.7 (DMB 3-C), 72.9 (3-C propyl), 72.3 (propenyl 1-C), 69.2 ($\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), 65.8 ($\mathrm{N}\left(\mathrm{Ns}\right.$) $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 64.9(2-\mathrm{C}), 61.6(1-\mathrm{C}), 55.9(\mathrm{OMe}), 55.8$ (OMe), 51.8 (1-H propyl), 39.5 (2-C propyl), 35.7 (3-C); 26.7 (t, J 25, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.9\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 13.4$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.8\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3573, 3080, 2946, 2868, 1843, 1735, 1643, 1658, 1543; m/z (ES $\left.{ }^{+}\right) 1446.3\left(100 \%,\left[M+\mathrm{NH}_{4}\right]^{+}\right)$; found 1446.3394, $\mathrm{C}_{65} \mathrm{H}_{51} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{~S}_{2}$ Si requires $\mathrm{MNH}_{4} 1446.3462$
$N-[(3-\{[N-(B u t-3-e n-1-y l)($ trifluoromethane $)$ sulfonamido]methyl\}phenyl)methyl]-N-[(2R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4'-en-2'-yl]-2-nitrobenzene-1-sulfonamide 238

Following general procedure L1, sulfonamide $\mathbf{1 3 5}$ ($478 \mathrm{mg}, 2.4 \mathrm{mmol}$), alcohol 113 $(1.21 \mathrm{~g}, 1.2 \mathrm{mmol})$, triphenylphosphine ($628 \mathrm{mg}, 2.4 \mathrm{mmol}$) and diethyl azodicarboxylate ($417 \mathrm{mg}, 2.4 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE to give the sulfonamide 238 ($1.6 \mathrm{~g}, 1.25 \mathrm{mmol}, 115 \%$, $>83 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; $R_{\mathrm{f}} 0.75$ (50:50, petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.89 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$ and 1.3, nosyl $3-\mathrm{H}$), 7.66-7.60 (2H, m, Ar), 7.54 (1 H , ddd, J 8.7, 7 and 1.8, Ar), 7.36 ($1 \mathrm{H}, \mathrm{d}, ~ J 7.3$, Ar), 7.32-7.28 (2H, m, Ar), 7.26-7.22 (1H, m, Ar), 5.62 (1 H , ddt, $J 17.1,10.3$ and $6.9,3-H$), 5.52 ($1 \mathrm{H}, \mathrm{ddt}, J 17.5,9.8$ and $6.7,4^{\prime}-\mathrm{H}$), 5.08-5.01 $\left(2 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 4.96\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.1\right.$ and $\left.1.6,4-\mathrm{H}_{\mathrm{A}}\right), 4.87\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.3,4-\mathrm{H}_{B}\right), 4.74$ (1H, d, J 16.2, N(Ns)CH ${ }_{A} P h$), 4.53 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.45$ (2H, br s, PhCH 2 NTf), 3.96 (1 H , ap p, J 6.8, 2'-H), 3.67 (1 H, dd, J 10.4 and 5.8, $1^{\prime}-\mathrm{H}_{\mathrm{A}}$), $3.39(1 \mathrm{H}$, dd, J 10.4 and 6.3, $1^{\prime}-\mathrm{H}_{\mathrm{B}}$), $3.32\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8,1-\mathrm{H}_{2}\right), 2.32-2.19(4 \mathrm{H}, \mathrm{m}, 3$ '-H and 2-H), 2.09-1.96 (2H, m, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.95\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.76-0.72(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 147.8 (nosyl 2-C), 138.8 (nosyl 1-C), 134.8 (4'-C), 134.8 (3-C), 134.0, 133.8, 133.3, 133.2, 131.4, 131.3, 129.2, 128.5, 127.9, 127.6, 124.2, 118.1 (4-C), 117.9 (5 '-C), 64.5 (1 '-C), 60.1 (2'-C), 51.8 ($\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}$), 48.4 (1C), $47.4\left(\mathrm{PhCH}_{2} \mathrm{NTf}\right)$, $34.5(3 \mathrm{C}-\mathrm{C})$, $32.5(2-\mathrm{C})$, $17.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.3\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $12.1\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2948, 2870, 1574, 1390, 1372, 1203; m/z (ES ${ }^{+}$) 1174.4 (100\%, $[\mathrm{M}+\mathrm{Na}]^{+}$); found 1174.2080, $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~F}_{20} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$ requires $M N a 1174.2041$

$N-\{[3-(\{N-[(2 R, 3 R)-3-[(T e r t-b u t y I d i m e t h y l s i l y l) o x y]-2-m e t h y l h e p t-6-e n-1-$ $y l]$ (trifluoromethane)sulfonamido\}methyl)phenyl]methyl\}- N-[(2R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4'-en-2'-yl]-2-nitrobenzene-1-sulfonamide 239

Following general procedure L3, sulfonamide 202 ($465 \mathrm{mg}, 1.19 \mathrm{mmol}$), alcohol 113 $(1.0 \mathrm{~g}, 1.14 \mathrm{mmol})$, triphenylphosphine $(311 \mathrm{mg}, 1.19 \mathrm{mmol})$ and diethyl azodicarboxylate ($207 \mathrm{mg}, 1.19 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE to give the sulfonamide 239 ($1.41 \mathrm{~g}, 1.06 \mathrm{mmol}, 93 \%$, >95\% purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; $R_{\mathrm{f}} 0.89$ (70:30, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.88 (1H, dd, J 7.9 and 1.3, nosyl 3-H), 7.66-7.59 (2H, m, nosyl 6 and 4-H), 7.56-7.48 (1H, m,), 7.37 (1H, d , J 7.5, Ar), 7.31-7.22 (3H, m, nosyl 5-H), 5.72 (1H, ddt, J 16.9, 10.3 and $6.6,6-\mathrm{H}), 5.59-5.50\left(1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.99-4.87\left(4 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.7-\mathrm{H}_{\mathrm{AB}}\right), 4.75(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J} 16.5, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{A} \mathrm{Ph}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.3, \mathrm{~N}\left(\mathrm{Ns}^{2}\right) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 4.68-4.20(2 \mathrm{H}, \mathrm{br}$, $\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right), 4.51$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}^{\text {rot }}$), 4.49 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.3, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}^{\text {rot }}$), 4.02-3.94 (1H, m, 1'- $\mathrm{H}_{\mathrm{A}}^{\text {rot }}$), 3.72-3.64 ($1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}^{\text {rot }}$), 3.49 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}$), 3.41-3.24 $\left(2.5 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{A B}{ }^{\text {rot }}\right.$ and $\left.1-\mathrm{H}_{\mathrm{AB}}\right), 2.35\left(1 \mathrm{H}, \mathrm{ap} \mathrm{t}, ~ J 7.6,2^{\prime}-\mathrm{H}\right), 2.32-2.27\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.10-$ $1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.93-1.79(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.72(1 \mathrm{H}, \mathrm{br}$ s, 2-H), 1.5-1.37(2H, $\mathrm{m}, 4-\mathrm{H}), 0.96\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.83\left(9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{Me}), 0.77-$ $0.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.00\left(3 \mathrm{H}, \mathrm{SiCH}_{3}\right),-0.08\left(3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $148.2,139.2,139.4,134.5,134.3,133.7,133.5,131.8,131.7,129.5,129.1,128.9$, 128.2, 128.1, 127.9, 124.5, 118.3 (4'-C), 115.2 (7-C), 73.5 (3-C), 64.9 (1'-C), 60.5 (2'C), 48.8 ($\mathrm{N}\left(\mathrm{Ns}\right.$) $\mathrm{CH}_{2} \mathrm{Ph}$), 36.1 (1-C), 34.9 (2-C), 34.8 (3'-C), 33.3 (5-C), 30.3 (4-C), 26.1 $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9\left(\mathrm{t}, \mathrm{J} 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4(\mathrm{Me}), 11.4(\mathrm{TBS}), 0.4\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right),-3.8\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3080, 2851, 2868, 2736, 2391, 1836, 1720, 1642, 1592, 1547 ; m/z (ES') $1355.4\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$; found 1355.3877, $\mathrm{C}_{50} \mathrm{H}_{67} \mathrm{~F}_{20} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Si}_{2}$ requires MNH_{4} 1355.3927
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl \{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl](2-nitrobenzene)sulfonamido\}methyl)phenyl]phenyl\}methyl)- N-[(2nitrobenzene)sulfonyl]carbamate 241

Following general procedure L2, sulfonamide $\mathbf{1 3 2}$ ($2.7 \mathrm{~g}, 5.8 \mathrm{mmol}$), alcohol $\mathbf{2 3 3}$ (1.4 g , $1.45 \mathrm{mmol})$, triphenylphosphine ($1.5 \mathrm{~g}, 5.8 \mathrm{mmol}$) and diethyl azodicarboxylate (1.0 g , 5.8 mmol) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE to give the sulfonamide 241 ($1.3 \mathrm{~g}, 0.91 \mathrm{mmol}, 63 \%$, $>90 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; R_{f} 0.6 (70:30, petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ atropisomers denoted where possible 8.24-8.20 (1H, m, Ar), 7.97-7.55 (m, Ar), 7.51-7.31 (m, Ar), 7.28-7.24 (m, Ar), 7.23-7.10 (m, Ar), 6.89 ($0.5 \mathrm{H}, \mathrm{d}, ~ J 8.4$), 6.83 ($0.5 \mathrm{H}, \mathrm{d}, ~ J 8.4$), 6.46 ($0.5 \mathrm{H}, \mathrm{d}, ~ J 2.4$), 6.39 ($0.5 \mathrm{H}, \mathrm{d}, ~ J$ 2.4), $6.36(0.5 \mathrm{H}, \mathrm{d}, J 8.4$ and 2.5), $6.33(0.5 \mathrm{H}, \mathrm{d}, J 8.4$ and 2.4), 5.88-5.79 (m, propenyl $2-\mathrm{H}), 5.58-5.36\left(0.5 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}^{\text {atrop }}\right)$, 5.23-5.17 ($\left.0.5 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}^{\text {atrop }}\right)$, $5.14-5.10(2 \mathrm{H}, \mathrm{m}$, propenyl $3-\mathrm{H}_{\mathrm{AB}}$), $4.83-4.33\left(7 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right.$ and propyl $1-\mathrm{H}_{\mathrm{AB}}$ and $\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}$ and $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{Ns})(\mathrm{CO})$), 4.21 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17,5-\mathrm{H}_{\mathrm{B}}$), 4.15-4.06 (m, 2-H), 3.90-3.87 (2H, s, propenyl 1- H_{2}), 3.80 (s, OMe), 3.79 (s, OMe), 3.75 (s, OMe), 3.71 (s, OMe), 3.69-3.39 ($\mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}$, propyl $2-\mathrm{H}$ and $3-\mathrm{H}_{\mathrm{AB}}$), $3.31\left(1 \mathrm{H}\right.$, dd, $J 10.3$ and $\left.7.1,1-\mathrm{H}_{\mathrm{B}}\right), 3.26(1 \mathrm{H}, \mathrm{dd}, J$ 10.3 and 7.3, 1- $\mathrm{H}_{\mathrm{B}}^{\text {atrop }}$), 2.27-2.09 (3H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and 3- H_{A}), 2.06-1.97 ($1 \mathrm{H}, \mathrm{m}, 3-$ $\left.\mathrm{H}_{\mathrm{B}}\right)$, 1.03-0.90 $\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.87-0.82\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}^{\text {atrop }}\right), 0.80-0.76(2 \mathrm{H}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 163.8,159.7$, 158.1, 151.7, 148.0, 147.9, 138.3 , 138.2, 135.7. 135.6, 135.5, 134.7, 134.6, 134.4, 134.2, 134.0, 132.9, 132.5, 132.4, 132.2, 131.6, 131.5, 131.4, 131.3, 131.1, 129.9, 129.7, 129.2, 129.1, 128.6, 128.0, 127.8, 127.6, 127.2, 127.1, 125.6, 124.4, 124.3, 123.6, 123.4, 122.5, 119.1, 118.7, 118.6, 117.7, 117.6, 117.5, 116.7, 104.1, 103.9, 98.6, 98.4, , 71.9, 71.8, 69.8, 67.9, $67.9,64.6,63.4,60.4,59.8,59.5,55.2,55.1,49.6,49.5,45.9,45.8,45.5,38.3,37.6$, 34.4, 33.9, 29.7, 25.3 (t, J 25, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 17.5, 17.4, 17.3, 12.1, 12.0, 0.01 ; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3055, 2987, 2306, 1737, 1546, 1422, 1273; m/z (ES ${ }^{+}$) 1527.3 (100\%, $[\mathrm{M}+\mathrm{Na}]^{+}$); found 1527.3407, $\mathrm{C}_{62} \mathrm{H}_{65} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{~S}_{2} \mathrm{Si}$ requires MNa 1527.3329

$N-\{[2-(2-\{[N-(B u t-3-e n-1-$

$\mathrm{yl})($ trifluoromethane)sulfonamido]methyl\}phenyl)phenyl]methyl\}-N-[(2R)-1-$\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-h e p t a d e c a f l u o r o d e c y l) b i s(p r o p a n-2-$ yl)silyl]oxy\}pent-4'-en-2'-yl]-2-nitrobenzene-1-sulfonamide 242

Following general procedure L2, sulfonamide 135 ($689 \mathrm{mg}, 3.4 \mathrm{mmol}$), alcohol 233 ($920 \mathrm{mg}, 0.84 \mathrm{mmol}$), triphenylphosphine ($890 \mathrm{mg}, 3.4 \mathrm{mmol}$) and diethyl azodicarboxylate ($591 \mathrm{mg}, 3.4 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE to give the sulfonamide 242 ($1.02 \mathrm{~g}, 0.81 \mathrm{mmol}, 96 \%$, $>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; $R_{\mathrm{f}} 0.83$ ($60: 40$, petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) minor atropisomer denoted where possible (ca. 43:57) 7.88 ($1 \mathrm{H}, \mathrm{d}, ~ J 7.4$, nosyl $3-\mathrm{H}$), 7.80 (d, J 7.9, nosyl 3-H ${ }^{\text {min }}$), 7.74-7.29 (7H, m, Ar), 7.26-7.23 (1H, m, Ar), 7.18 ($1 \mathrm{H}, \mathrm{dd}$, $J 7.8$ and 1.2, nosyl 5-H), 7.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{Ar}$), 7.12-7.09 (1H, m, Ar); 5.57-5.41 (2H, $\mathrm{m}, 4^{\prime}-\mathrm{H}$ and $\left.3-\mathrm{H}\right), 5.02-4.76\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.5{ }^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{PhCH}_{A} \mathrm{NTf}\right)$, 4.49 ($\mathrm{d}, \mathrm{J} 9.8,5-\mathrm{H}_{\mathrm{B}}{ }^{\text {min }}$), $4.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.6, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right.$), $4.27(\mathrm{~d}, \mathrm{~J} 17$, $\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}^{\mathrm{min}}\right)$, 4.19 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.6, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 3.96$ ($1 \mathrm{H}, \mathrm{dq}, J 8.2$ and 6.0, 2'$\left.H^{\text {min }}\right), 3.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.9, \mathrm{PhCH}_{\mathrm{B}} \mathrm{NTf}\right), 3.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}) ; 3.52(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 5.1, $\left.1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.59-3.40\left(\mathrm{~m}, 1^{\prime}-\mathrm{H}_{\mathrm{A}} \mathrm{min}^{\mathrm{m}}\right), 3.38-3.24\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.13(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15$ and $7.8,1-$ $\left.\mathrm{H}^{\text {min }}\right), 3.05\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15\right.$ and $\left.7.8,1-\mathrm{H}_{2}\right)$, $2.97\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}_{\mathrm{B}}{ }^{\text {min }}\right)$; 2.23-2.08 $\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ H_{AB}), 2.08-1.96 (4H, m, 2-H and $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.94-0.69\left(16 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right.$ and $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 0.64-0.58 (2H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}^{\mathrm{min}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) minor atropisomer denoted where possible 148.4 (nosyl 3-C ${ }^{\text {min }}$), 148.3 (nosyl 3-C), 140.00 (nosyl 1-C), 139.9 (nosyl 1-C ${ }^{\text {min }}$), 138.3, $138.2\left({ }^{\text {min }}\right), 136.5,136.2\left({ }^{\mathrm{min}}\right), 134.5(3-\mathrm{C})$,
 130.2, 129.9, $129.8\left({ }^{\mathrm{min}}\right)$, $129.2\left({ }^{\mathrm{min}}\right)$, 129.1, 129.0, 128.8, $128.7\left({ }^{\mathrm{min}}\right)$, $128.6\left({ }^{\mathrm{min}}\right)$, 128.2, $127.8\left({ }^{\mathrm{min}}\right), 124.3,124.31\left({ }^{\mathrm{min}}\right), 120.1$ ($\mathrm{q}, \mathrm{J} 320, \mathrm{CF}_{3}$), 118.2 ($\left.5^{\prime}-\mathrm{C}\right), 118.1$ (4-C), 118.0 $\left(4-C^{\text {min }}\right), 66.7$ (1'-C), 63.8 ($\left.1^{\prime}-\mathrm{C}^{\text {min }}\right), 60.3(2-\mathrm{C}), 60.1$ (2-C $\left.{ }^{\text {min }}\right), 48.5\left(\mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}^{\text {min }}\right), 48.4$ $\left(\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{2} \mathrm{Ph}\right), 46.3\left(\mathrm{PhCH}_{2} \mathrm{NTf}{ }^{\mathrm{min}}\right), 45.2\left(\mathrm{PhCH}_{2} \mathrm{NTf}\right)$, 35.4 (1-C), $33.7(3-\mathrm{C}), 32.7$ (3'$\mathrm{C}^{\text {min }}$), $32.6(2-\mathrm{C}), 30.1\left(2-\mathrm{C}^{\mathrm{min}}\right), 25.6\left(\mathrm{t}, \mathrm{J} 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.6$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5-12.2\left(\mathrm{~m},\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.12\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}\right.$ (film) 3005,

2947, 2868, 1723, 1642, 1462, 1388; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 1245.3\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$; found 1245.2756, $\mathrm{C}_{26} \mathrm{H}_{49} \mathrm{~F}_{20} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{MNH}_{4} 1245.2800$

N-(\{2-[2-(\{N-[(2R,3R)-3-[(Tert-butyldimethylsilyl)oxy]-2-methylhept-6-en-1$\mathrm{yl}]($ trifluoromethane)sulfonamido\}methyl)phenyl]phenyl\}methyl)- $\mathrm{N}-[(2 R)-1-$ \{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4'-en-2'-yl]-2-nitrobenzene-1-sulfonamide 243

Following general procedure L2, sulfonamide 202 ($540 \mathrm{mg}, 1.39 \mathrm{mmol}$), alcohol 233 $(1.37 \mathrm{~g}, 1.26 \mathrm{mmol})$, triphenylphosphine ($364 \mathrm{mg}, 1.39 \mathrm{mmol}$) and diethyl azodicarboxylate ($241 \mathrm{mg}, 1.39 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was concentrated in vacuo and purified by F-SPE to give the sulfonamide 243 ($1.78 \mathrm{~g}, 1.22 \mathrm{mmol}, 97 \%$, $>80 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a colourless oil; $R_{\mathrm{f}} 0.81$ (80:20, petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $50: 50$ atropisomers denoted where possible 7.91 (0.5 H , dd, $J 7.9$ and 1.3, nosyl 3$\left.H^{\text {atrop }}\right), 7.86\left(0.5 \mathrm{H}, \mathrm{dd}, J 8.0\right.$ and 1.3 , nosyl 3- $\left.\mathrm{H}^{\text {atrop }}\right)$, $7.82-7.75(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.72-7.56$ (3H, m, Ar), 7.58-7.43 (2H, m, Ar), 7.40-7.34 (2H, m, Ar), 7.28 ($0.5 \mathrm{H}, \mathrm{dd}, J 7.5$ and 1.3, $\left.\mathrm{Ar}^{\text {arrop }}\right), 7.23\left(0.5 \mathrm{H}, \mathrm{dd}, J 7.5\right.$ and 1.3, $\left.\mathrm{Ar}^{\text {ratrop }}\right), 7.21-7.17(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.17-7.13(1 \mathrm{H}, \mathrm{Ar})$, 5.74 (1 H , ddt, J 17.1, 10.4 and 6.6, 4'-H), 5.54 (0.5 H , ddt, J 17.1, 10.3 and 7.0, 6$\left.H^{\text {atrop }}\right), 5.15\left(0.5 \mathrm{H}\right.$, ddt, $J 16.9,10.3$ and $\left.6.4,6-H^{\text {atrop }}\right)$, $4.99-4.99\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right), 4.86$ $\left(0.5 \mathrm{H}\right.$, dd,$J 10.3$ and $\left.1.6,7-\mathrm{H}_{\mathrm{A}}^{\text {atrop }}\right), 4.80\left(0.5 \mathrm{H}\right.$, dd, $J 17.1$ and $\left.1.4,7-\mathrm{H}_{\mathrm{B}}{ }^{\text {atrop }}\right), 4.76$ ($0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2, \mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}$), 4.67 ($0.5 \mathrm{H}, \mathrm{d}, ~ J 15.2, \mathrm{PhCH}_{\mathrm{B}} \mathrm{NTf}$), 4.65 ($0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.7$, $\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}^{\text {atrop }}\right), 4.57\left(0.5 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.1.5,7-\mathrm{H}_{\mathrm{A}}^{\text {arrop }}\right), 4.43(0.5 \mathrm{H}, \mathrm{dd}, J 16.9$ and $\left.1.4,7-\mathrm{H}_{\mathrm{B}}{ }^{\text {atrop }}\right), 4.41\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.3, \mathrm{~N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}^{\text {arrop }}\right), 4.25(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.3$, $\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}^{\text {arrop }}\right), 4.12-4.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\left(\mathrm{CH}_{2} \mathrm{NTf} f^{\text {atrop }}\right)\right.$, $4.01\left(1 \mathrm{H}, \mathrm{p}, J 7,2^{\prime}-\mathrm{H}\right), 3.96(0.5 \mathrm{H}$, d, J 16.7, $\left.\mathrm{N}(\mathrm{Ns}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}^{\text {atrop }}\right)$, 3.97-3.92 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $3.55\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and 5.9, 1^{\prime} $\left.\mathrm{H}_{\mathrm{A}}\right), 3.5\left(1 \mathrm{H}, 1-\mathrm{H}_{2}^{\text {atrop }}\right), 3.30-3.21\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2\right.$ and $\left.7.4,1^{\prime}-\mathrm{H}_{\mathrm{B}}\right)$, 2.21-2.02 $\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.93-1.73 $\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{\mathrm{AB}}\right), 1.68-$ $1.53\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.49-1.38\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 0.99-0.96\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.94-$ $0.90\left(12 \mathrm{H}, \mathrm{m}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Me$), 0.08-0.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.05(3 \mathrm{H}, \mathrm{s}$, SiCH_{3}), $0.00\left(\mathrm{~s}, \mathrm{SiCH}_{3}^{\text {arrop }}\right),-0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 149.6$ (nosyl 2-C), 141.0, 139.7, 139.4, 139.2, 137.6, 135.4, 135.3, 134.9, 134.6, 133.1, 132.8, 132.3, $131.6,130.9,130.8,130.0,129.9,129.8$, 129.7, 129.6, 124.5, 129.3, 128.9, 128.6,
125.4, 118.2, 118.1, 115.3, 115.1, 74.6, 74.4, 66.4, 64.9, 61.6, 61.4, 55.1, 53.1, 51.3, $47.3,46.4,37.7,36.9,36.0,35.3,35.1,34.8,30.9,30.8,26.4,18.9,17.9,17.8,13.5$, 13.4, 11.2, 11.1, $\left.0.99\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right),-3.8\left(\mathrm{SiCH}_{3}\right),-3.82\left(\mathrm{SiCH}_{3}\right),-4.3(\mathrm{SiCH})_{3}\right),-4.4$ (TBS); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3311, 3010, 2956, 2707, 2305, 1834, 1641, 1473, 1429 and $1350 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 1436.4$ (100\%, $[\mathrm{M}+\mathrm{Na}]^{+}$); found 1436.3791, $\mathrm{C}_{56} \mathrm{H}_{71} \mathrm{~F}_{20} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Si}_{2}$ requires $M N a 1436.3794$
full carbon assignment was not possible to mixture atropisomers
(5S,6R,9E)-6-[(Tert-butyldimethyIsilyl)oxy]-12-
(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-5-methyl-3,13-bis[(2-nitrobenzene)sulfonyl]-18-thia-3,13-diazabicyclo[13.2.1]octadeca-1(17),9,15-trien-4-one 214

Following general procedure L2, HG-II (5 mg, $2 \mathrm{~mol} \%$), 1,4-benzoquinone ($1.7 \mathrm{mg}, 4$ mol\%) and acyl sulfonamide 210 ($550 \mathrm{mg}, 0.39 \mathrm{mmol}$) were stirred in MTBE (195 mL) at $55^{\circ} \mathrm{C}$ for 16 h . After the workup procedure the crude product was concentrated in vacuo; column chromatography, eluting with 80:20 petrol-EtOAc gave the macrocycle $214(220 \mathrm{mg}, 0.16 \mathrm{mmol}, 40 \%, \mathrm{E} / Z>61:<29) ; R_{\mathrm{f}} 0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{23.7}-17.1$ (c. 0.7 , CHCl_{3}); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.28(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 7.7$ and 1 , nosyl $3-\mathrm{H}$), 8.12-8.07 ($1 \mathrm{H}, \mathrm{m}$, nosyl 3-H), 7.82-7.56 (6H, m, nosyl 4-, 5-, and 6-H), 6.90-6.83 (1, m, Ar²), 6.81 ($1 \mathrm{H}, \mathrm{d}$, J 3.5, Thio 3-H), 6.66 (1H, d, J 3.5, Thio 4-H), 5.71 ($1 \mathrm{H}, \mathrm{d}, J 12.5$, ThioCH $2 \mathrm{~N}(\mathrm{CO})$), $5.60\left(\mathrm{~d}, \mathrm{~J}\right.$ 12.4, $\left.\mathrm{ThioCH}_{2} \mathrm{~N}(\mathrm{CO})^{\mathrm{Z}}\right), 5.41-5.31\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}^{\mathrm{Z}}\right), 5.25(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $6.1,10-\mathrm{H}), 5.19-5.10\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}^{2}\right), 5.04(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $6.8,9-\mathrm{H}), 4.91(\mathrm{~d}, J 12.4$, ThioCH $\left.{ }_{2} \mathrm{~N}(\mathrm{CO})^{\mathrm{z}}\right), 4.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5\right.$, $\left.\mathrm{ThioCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.9,14-\mathrm{H}_{\mathrm{A}}\right), 4.45$ $\left(1 \mathrm{H}, \mathrm{d}, J 15.9,14-\mathrm{H}_{\mathrm{B}}\right), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.6.6, \mathrm{SiOCH}_{\mathrm{A}}\right), 3.77-3.66\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}\right.$ and $6-\mathrm{H}), 3.60\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2\right.$ and $\left.5.8, \mathrm{SiOCH}_{\mathrm{B}}\right), 3.54-3.37\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.8-\mathrm{H}_{\mathrm{B}}\right)$, 2.67-2.53 (1H, m, 12-H), 2.20-1.77 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $11-\mathrm{H}_{\mathrm{AB}}$), $1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.8, Me), 1.27-1.09 (2H, m, 7-H A_{AB}), $0.97\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.84(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.81-0.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl3) 177.1 (C=O), 148.7 (nosyl 2-C), 148.2 (nosyl 2-C), 144.3 (nosyl 1C), 143.7 (nosyl 1-C), 137.7 (nosyl 4-C), 134.9 (nosyl 4-C), 134.8 (Thio 2 or 5-C), 134.1 (Thio 2 or $5-\mathrm{C}$), 134.0, 133.9 (Thio 3 or 4-C), 133.7 (9-C), 132.9, 132.3, 131.9 (Thio 3 or 4-C); 130.6 (Ns), 129.9, 127.7, 125.4 (10-C), 124.6, 74.2 (6-C); 65.7 (2-C), 64.4 (2-
C^{Z}), $64.1\left(\mathrm{SiOCH}_{2}\right)$, 63.5 (12-C), 46.2 (14-C), 35.7 ($5-\mathrm{C}$), 34.8 (11-C), 33.4 (8-C), 32.5 (7-C), $26.2 \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}, 25.6\left(\mathrm{t}, \quad \mathrm{J} 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.4 \quad\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.9$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 16.8(\mathrm{Me}), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.01\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $3.7\left(\mathrm{SiCH}_{3}\right),-4.0(\mathrm{SiCH} 3) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2953, 2867, 1601, 1545, 1367, 1207; m/z (ES ${ }^{+}$) $1400.4\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$; found $1405.3144, \mathrm{C}_{51} \mathrm{H}_{63} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{~S}_{3} \mathrm{Si}_{2}$ requires MNa 1405.2815
(15E,18R)-18-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-3,19-bis[(2-nitrobenzene)sulfonyl]-5,13-dioxa-24-thia-3,19-diazatricyclo[19.2.1.0 ${ }^{7,12}$]tetracosa-1(23),7,9,11,15,21-hexaen-4-one 211

Following general procedure RCM1, HG-II ($0.8 \mathrm{mg}, 1 \mathrm{~mol} \%$) and sulfonamide 211 (180 $\mathrm{mg}, 0.13 \mathrm{mmol}$) were stirred in MTBE (60 mL) at $55{ }^{\circ} \mathrm{C}$ for 16 h . After the workup procedure the crude product was concentrated in vacuo; column chromatography, eluting with $70: 30 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrol gave the macrocycle $223(103 \mathrm{mg}, 0.78 \mathrm{mmol}, 60 \%$, $E / Z>99<1$) as a colourless oil; $R_{\mathrm{f}} 0.15$ ($70: 30, \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ petrol); $[\alpha]_{D}^{23.7}-0.9$ (c. 2.2 in CDCl_{3}); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.98$ (1H, s, nosyl 3-H), 7.73-7.61 (3H, m, Ar), 7.59-7.48 (2H, m, Ar) 7.44, (2H, t, J 7.2, Ar), 7.31 (1H, td, J 7.9 and 1.7, 8-H), 7.11 (1H, dd, J 7.6 and 1.7, 11-H), 6.88-6.80 (4H, m, Ar), 5.74 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}, 15.9$ and $5.8,16-\mathrm{H}$), $5.38(1 \mathrm{H}$, dt, $J, 15.9$ and $6.9,15-H), 533\left(1 H, d, J 10.8,2-H_{A}\right), 4.91\left(2 H, s, 6-H_{2}\right), 4.83(1 H, d, 10.8$, $\left.2-\mathrm{H}_{\mathrm{B}}\right), 4.77\left(1 \mathrm{H}, \mathrm{d}, J 15.8,20-\mathrm{H}_{\mathrm{A}}\right), 4.46\left(1 \mathrm{H}, \mathrm{d}, J 15.8,20-\mathrm{H}_{\mathrm{B}}\right), 4.42(1 \mathrm{H}, \mathrm{dd}, J 12.4$ and $\left.4.3,14-\mathrm{H}_{\mathrm{A}}\right), 4.35\left(1 \mathrm{H}, \mathrm{dd}, J 12.4\right.$ and $\left.6.4,14-\mathrm{H}_{\mathrm{B}}\right), 4.13(1 \mathrm{H}, \mathrm{dq}, J 9.9$ and $5.0,18-\mathrm{H})$, $3.80\left(1 \mathrm{H}, \mathrm{dd}, J 10.6\right.$ and $\left.5.5, \mathrm{SiOCH}_{\mathrm{A}}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.5.5, \mathrm{SiOCH}_{\mathrm{B}}\right)$, 2.49$2.30\left(2 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}_{\mathrm{AB}}\right), 2.09-1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.97\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, 0.78-0.73 (2H, M C $8_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 158.3 (4-C), 151.8 (12-C), 148.3 (nosyl 2-C), 148.1 (nosyl 2-C), 140.4 (7-C), 135.1 (1-C), 134.9 (21-C), 134.5 (nosyl 1C), 133.1, 132.2, 132.1, 132.0, 131.8, 131.2, 129.6 (16-C), 128.8, 128.6 (15-C), 128.4, 124.8, 124.1, 122.8, 120.5 (9-C), 112.7 (11-C), 68.9 (14-C), 66.0 (1 '-C), 65.8 (6-C), 60.5 (18-C), 45.7 (2-C), 44.1 (20-C), 33.5 (17-C), 25.6 (t, J 25, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 17.8 $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.4\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}\right.$ (film) 2948, 2869,

2159, 2029, 1736, 1545, 1371, 1208 and 1166; m/z (ES ${ }^{+}$) 1336.2 ($100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$); found 1336.2221, $\mathrm{C}_{48} \mathrm{H}_{47} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Si}$ requires $\mathrm{MNH}_{4} 1336.2189$
(15E,18R)-18-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-5,13-dioxa-24-thia-3,19diazatricyclo[19.2.1.0 ${ }^{7,12}$]tetracosa-1(23),7,9,11,15,21-hexaen-4-one 223 ${ }^{\text {D }}$

Following general procedure $\mathbf{N 1}$; thiophenol ($264 \mathrm{mg}, 2.4 \mathrm{mmol}$), sulfonamide 223 (320 $\mathrm{mg}, 0.24 \mathrm{mmol}$) and potassium carbonate ($80 \mathrm{mg}, 0.58 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE to give the amine $\mathbf{2 2 3}^{\text {D }}$ (190 mg , $0.20 \mathrm{mmol}, 84 \%,>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow foam; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.4-7.28 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.94(1 \mathrm{H}, \mathrm{ap} \mathrm{t}, J 7.4, \mathrm{Ar}$), $6.88(1 \mathrm{H}, \mathrm{d}, ~ J 8.2, \mathrm{Ar}), 6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.9$, Thio 3 or $4-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.9$, Thio 3 or $4-$ H), $5.74(2 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}$ and $16-\mathrm{H}), 5.32\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.7,6-\mathrm{H}_{\mathrm{A}}\right), 5.09(1 \mathrm{H}, \mathrm{NH}) ; 4.98(1 \mathrm{H}, \mathrm{d}$, $\left.J 10.7,6-\mathrm{H}_{\mathrm{B}}\right), 4.62-4.46\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.14-\mathrm{H}_{\mathrm{A}}\right), 4.38\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.8\right.$ and $\left.5.4,14-\mathrm{H}_{\mathrm{B}}\right)$, $4.04\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.7,20-\mathrm{H}_{\mathrm{B}}\right), 3.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.7,20-\mathrm{H}_{\mathrm{B}}\right), 3.60\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.1, \mathrm{SiOCH}_{2}\right)$, 2.83-2.63 ($1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}$), 2.28-2.00 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $17-\mathrm{H}_{\mathrm{AB}}$), $1.05(14 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.9-0.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 158.2$ (12-C), 156.9 (C=O), 144.6 (Thio 2 or $5-\mathrm{C}$), 143.1 (Thio 2 or $5-\mathrm{C}$), 132.3 (14-C), 130.8, 130.1 (15-C), 129.9, 127.9, 124.6 ,120.8 (9-C), 112.6 (11-C), $69.1\left(\mathrm{SiOCH}_{2}\right), 65.4$ (14-C), 64.1 (2-C), 55.9 ($18-\mathrm{C}$), 45.6 (2-C), 40.7 ($20-\mathrm{C}$), 34.9 (17-C), 25.7 (t, J 25, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.01\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2945, 2159, 2029, 1716, 1206; m/z (ES+ 949.2 (100\%, [M+H] ${ }^{+}$); found 949.2372, $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}$ requires MH 949.2358
(7S,11E,14R)-7-(2,4-Dimethoxyphenyl)-14-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-3,15-bis[(2-nitrobenzene)sulfonyl]-5,9-dioxa-20-thia-3,15-diazabicyclo[15.2.1]icosa-1(19),11,17-trien-4-one 213

Following general procedure RCM2, HG-II (7 mg, $5 \mathrm{~mol} \%$), 1,4-benzoquinone (2 mg , $10 \mathrm{~mol} \%$) and sulfonamide 212 ($300 \mathrm{mg}, 0.2 \mathrm{mmol}$) were stirred in MTBE (100 mL) at $55{ }^{\circ} \mathrm{C}$ for 24 h . After the workup procedure the crude product was concentrated in vacuo. Following general procedure N1, thiophenol ($116 \mathrm{mg}, 1.06 \mathrm{mmol}$), crude product (150 mg) and potassium carbonate ($10 \mathrm{mg}, 0.25 \mathrm{mmol}$) gave the amine crude product after 16 h . The crude product was purified by F-SPE and column chromatography, eluting with 80:20 petrol-EtOAc to give the amine 213 ($71 \mathrm{mg}, 0.068$ mmol, 34%; 63/37 E/Z) as a pale yellow oil; $R_{\mathrm{f}} 0.31$ (70:30, petrol-EtOAc); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.13(1 \mathrm{H}, \mathrm{m}, \mathrm{DMB} 6-\mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J} 3.4$, Thio 3 or $4-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.5$, Thio 3 or $4-H), 6.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.5$, Thio 3 or $4-\mathrm{H}), 6.45-6.40(2 \mathrm{H}, \mathrm{m}, \mathrm{DMB} 3$ and $5-\mathrm{H})$, $5.66(1 \mathrm{H}, \mathrm{dt}, J 15.4$ and $8.1,12-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{dt}, J 15.4$ and $5.6,11-\mathrm{H}), 5.52-5.45(\mathrm{~m}, E$ isomer $11-\mathrm{H}$ and $12-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 4.54-4.19(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $6-\mathrm{H}), 4.11(1 \mathrm{H}$, d, J14.1, 16-H), $3.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.1,16-\mathrm{H}), 4.02-3.87(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74-3.50\left(5 \mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}\right.$ and $\left.\mathrm{SiOCH}_{2}\right), 2.76(1 \mathrm{H}, \mathrm{br}$ s, $14-\mathrm{H})$, 2.28$2.07\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\left.13-\mathrm{H}\right), 2.00(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $8.1,13-\mathrm{H}), 1.06(14 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.90-0.86\left(2 \mathrm{H}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.4(\mathrm{C}=\mathrm{O}), 159.8$ (DMB 4-C), 158.2 (DMB 2-C), 129.6 (11-C), 129.1 (DMB 6-C), 2×124.2 (Thia), 104.4 (DMB 5-C), 98.8 (DMB 3-C), 71.9 (10-C), 65.6 (6-C), 65.5 (7-C), 57.2 (14-C), 55.4 (OMe), 55.2 (OMe), 46.1 ($16-\mathrm{C}$), 38.1 ($7-\mathrm{C}$), 34.7 (13-C), $25.6\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.5$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $12.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.02\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; Thio 1 and 4 missing; $v_{\max } / \mathrm{cm}^{-1}$ (film) 2952, 2857, 1715 and 1165; m/z (ES ${ }^{+}$) 1037.3 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 1037.2894, $\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6}$ SSi requires MH 1037.2882

(15E,18R)-18-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-3,19-bis[(2-nitrobenzene)sulfonyl]-5,13-dioxa-3,19-diazatricyclo[19.4.0.0 ${ }^{7,12}$]pentacosa-1(25),7,9,11,15,21,23-heptaen-4-one 244

Following general procedure L2, HG-II ($9.4 \mathrm{mg}, 2 \mathrm{~mol} \%$), 1,4-benzoquinone ($3.2 \mathrm{mg}, 4$ mol\%) and sulfonamide $234(1.0 \mathrm{~g}, 0.75 \mathrm{mmol})$ were stirred in MTBE (360 mL) at $55^{\circ} \mathrm{C}$ for 24 h . After the workup procedure the crude product was concentrated in vacuo; column chromatography, eluting with $90: 10 \mathrm{CH}_{2}$-petrol gave the macrocycle 244 (550 $\mathrm{mg}, 0.42 \mathrm{mmol}, 56 \% ;>65 /<35 \mathrm{E} / Z$); $R_{\mathrm{f}} 0.85$ ($90: 10, \mathrm{CH}_{2} \mathrm{Cl}_{2} —$ petrol); $[\alpha]_{D}^{23.7} 32$ (c. 1 , $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ minor isomer denoted where possible $8.41-8.38(1 \mathrm{H}, \mathrm{m}$, nosyl 3-H ${ }^{\text {² }}$), 8.17 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, nosyl 3-H), 7.72-6.91 ($13 \mathrm{H}, \mathrm{m}$, nosyl 3-H. $2 \times$ nosyl 4,5 and $6 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}$ and Ar$) ; 6.79\left(\mathrm{t}, J 7.4,11-\mathrm{H}^{\mathrm{z}}\right), 6.67-6.63(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H})$; $6.54\left(1 \mathrm{H}, \mathrm{d}, J 8.2,10-\mathrm{H}^{\mathrm{z}}\right), 5.87(1 \mathrm{H}, \mathrm{dt}, J 14.9$ and $7.2,15-\mathrm{H}), 5.60(1 \mathrm{H}, \mathrm{dt}, J 14.9$ and $5.2,16-H), 5.58-5.51\left(2 \mathrm{H}, \mathrm{m}, 15\right.$ and $\left.16-\mathrm{H}^{2}\right), 5.19-5.12(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.96-4.88(3 \mathrm{H}, 2-$ H and $\left.6-\mathrm{H}_{\mathrm{AB}}\right), 4.83\left(\mathrm{~d}, J 11,2-\mathrm{H}^{\mathrm{Z}}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 15.5,20-\mathrm{H}_{\mathrm{A}}\right), 4.47(1 \mathrm{H}, \mathrm{d}, J 15.5,20-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 4.36-4.14(3 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}$ and 14-H), 3.85-3.76(2H, m, SiOCH 2), 3.57 (dd, J 11.1 and 5.4, $\mathrm{SiOCH}_{\mathrm{A}}{ }^{\mathrm{Z}}$), $3.37\left(1 \mathrm{H}\right.$, ap t, J 9.9, $\mathrm{SiOCH}_{\mathrm{B}}{ }^{\mathrm{Z}}$), $2.64(2 \mathrm{H}$, ap t, J 6.7, 17-H), 2.39 (2 H , ap dt, $J 16.9$ and $8.9,17-\mathrm{H}^{\mathrm{z}}$), 2.10-1.95 (2H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $0.94(14 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.89\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}{ }^{\mathrm{Z}}\right.$), 0.80-0.75 (2H, m, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.75-$ $0.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}^{\mathrm{Z}}\right.$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.5$ (12-C), 152.3 (nosyl 2-C²), 151.9 (nosyl 2-C), 148.0 (nosyl 2-C²), 147.9 (nosyl 2-C), 134.9 (nosyl 1-C), 134.7 (nosyl 1-C ${ }^{\text {min }}$), 134.6 (nosyl 1-C), 133.7, 133.5, 133.3, 132.7, 132.0, 131.9, 131.8, $131.4,131.2,130.9,129.6$ (17-C), 128.5 (16-C), 128.3, 127.3, 127.2, 124.9 ($17-\mathrm{C}^{\mathrm{Z}}$), 124.8 (17-CZ), 124.6, 124.4, 123.3 (nosyl 3-C), 122.8 (nosyl 3-C), 120.4 (9-C), 112.1 (11-C $\left.{ }^{\mathrm{Z}}\right), 111.5(11-\mathrm{C}), 67.6(6-\mathrm{C}), 66.4(14-\mathrm{C}), 65.2\left(\mathrm{SiOCH}_{2}\right), 64.3\left(\mathrm{SiOCH}_{2}{ }^{\mathrm{Z}}\right), 62.7$ ($18-\mathrm{C}^{\mathrm{Z}}$), 60.3 (18-C), 48.8, 48.2, 46.1, 34.0 (17-C), 29.6 (17-C²), 25.6 (t, J 25, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3597, 3006, 1712, 1423, 1367, 1223; m/z (ES $\left.{ }^{+}\right) 1330.3$ (100\%, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$); found 1330.2669, $\mathrm{C}_{50} \mathrm{H}_{49} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{2}$ Si requires $\mathrm{MNH}_{4} 1330.2624$
(15E,18R)-18-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-5,13-dioxa-3,19diazatricyclo[19.4.0.0 ${ }^{7,12}$]pentacosa-1(25),7,9,11,15,21,23-heptaen-4-one $E-244{ }^{\text {D }}$

Following general procedure N1; thiophenol ($443 \mathrm{mg}, 4.03 \mathrm{mmol}$), sulfonamide 244 ($530 \mathrm{mg}, 0.40 \mathrm{mmol}$) and potassium carbonate ($140 \mathrm{mg}, 1.00 \mathrm{mmol}$) gave the crude product after 4 h . The crude product was purified by F-SPE and column chromatography to give the amine $E-244^{\mathrm{D}}$ ($152 \mathrm{mg}, 0.16 \mathrm{mmol}, 40 \%$) as a colourless oil; $R_{\mathrm{f}} 0.58$ ($70: 30$, petrol-EtOAc); $[\alpha]_{D}^{23.7}-1.6$ (c. $1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $7.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.27-7.10(6 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 8-\mathrm{H}$ and Ar$), 6.80(1 \mathrm{H}$, ap t, J 7.4, 9-H), $6.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3,10-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.2$ and $7.0,16-\mathrm{H}), 5.54(1 \mathrm{H}, \mathrm{d}, ~ J 15.2,15-\mathrm{H})$, $5.21\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2,6-\mathrm{H}_{\mathrm{A}}\right), 4.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2,6-\mathrm{H}_{\mathrm{B}}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 14.1,2-\mathrm{H}_{\mathrm{A}}\right), 4.52$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.1,2-\mathrm{H}_{\mathrm{B}}$), $4.34\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.6.3,14-\mathrm{H}_{\mathrm{A}}\right), 4.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5,14-\mathrm{H}_{\mathrm{B}}\right)$, 3.74-3.63 $\left(3 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.\mathrm{SiOCH}_{\mathrm{A}}\right), 3.48\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.1\right.$ and 5.2, $\left.\mathrm{SiOCH}_{\mathrm{B}}\right), 2.77$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 18-\mathrm{H}$), 2.27-2.21 ($1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}_{\mathrm{A}}$), 2.18-1.96 (3H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and 17- H_{B}), $0.96\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.82-0.76\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.6,131.7$, 130.8, 130.7, 130.6, 130.2, 128.6, 128.5, 128.1, 126.7, 120.4 (9-C), 111.4 (11-C), 65.8 (6 or 14-C), 64.3 (6 or $14-\mathrm{C}$), 60.1 (18-C), 50.6 (20-C), 44.9 (2-C), 35.5 (17-C), 25.7 (t, $\left.J 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.01$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; 12-C and $\mathrm{C}=\mathrm{O}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2964, 2867, 1714, 1275 and 1260; $m / z\left(\mathrm{ES}^{+}\right) 943.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $943.2815, \mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ Si requires MH 943.2793
(15Z,18R)-18-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-5,13-dioxa-3,19diazatricyclo[19.4.0.0 ${ }^{7,12}$]pentacosa-1(21),7,9,11,15,22,24-heptaen-4-one Z-244 ${ }^{\text {D }}$

Also obtained was the geometric isomer $\mathbf{Z}-\mathbf{2 4 4}^{\mathrm{D}}$ ($51 \mathrm{mg}, 0.054 \mathrm{mmol} ; 13 \%$) as a colourless oil; $R_{\mathrm{f}} 0.75$ (70:30, petrol-EtOAc); $[\alpha]_{D}^{23.7}-16.5$ (c. 2.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.23(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.28-7.23(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.22-7.14$ (3H, m, Ar), 7.11-7.07 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.85-6.82 (1H, m, Ar), 6.74 ($1 \mathrm{H}, \mathrm{d}, ~ J 8.2, \mathrm{Ar}$), 5.72 ($1 \mathrm{H}, \mathrm{dt}, J 11$ and 5.9, $15-\mathrm{H}), 5.51(1 \mathrm{H}, \mathrm{dt}, J 11$ and $7.5,16-\mathrm{H}), 5.21\left(1 \mathrm{H}, \mathrm{d}, J 10.8,6-\mathrm{H}_{\mathrm{A}}\right), 4.78(1 \mathrm{H}, \mathrm{d}, J 10.8$, $\left.6-\mathrm{H}_{\mathrm{B}}\right), 4.57\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.3\right.$ and $\left.5.1,14-\mathrm{H}_{\mathrm{A}}\right), 4.47\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.3\right.$ and $\left.5.3,14-\mathrm{H}_{\mathrm{B}}\right), 4.35$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4,2-\mathrm{H}_{\mathrm{A}}$), $4.23\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.4\right.$ and $\left.6.2,2-\mathrm{H}_{\mathrm{B}}\right), 3.73\left(1 \mathrm{H}, \mathrm{d}, ~ J 11.2,19-\mathrm{H}_{\mathrm{A}}\right)$, 3.64-3.58 (2H, m, 19-H and SiOCH ${ }_{\mathrm{A}}$), $3.25\left(1 \mathrm{H}\right.$, ap t, J $\left.6.9, \mathrm{SiOCH}_{\mathrm{B}}\right), 2.73-2.67(1 \mathrm{H}, \mathrm{m}$, $18-\mathrm{H}), 2.49-2.38\left(2 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}_{\mathrm{AB}}\right), 2.05-1.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.91(14 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.76-0.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.6$ (4-C), 157.0 (12-C), 138.9 (Ar), 137.6 (Ar), 132.9 , 132.5, 131.1, 130.7, 130.3, 128.6 (16-C), 125.8 (15-C), 125.6, 120.9, 112.8 (11-C), 65.2 (14-C), 64.3 ($6-\mathrm{C}), 63.7\left(\mathrm{SiOCH}_{2}\right), 59.9$ ($18-\mathrm{C}$), 50.4 (2-C), 46.1 (20-C), 30.2 (17-C), 25.7 (t, J 25, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 17.9 $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.01\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film): 2947, 2868, 1713, 1495, 1457, 1275 and 1260; m/z (ES ${ }^{+} 943.3\left(100 \%,\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$; found $943.3005, \mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires MH 943.2793
(10E,6S,13R)-6-(2,4-Dimethoxyphenyl)-13-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-2,3,5,6,7,9,12,13,14,15-decahydro-1H-4,8,2,14-benzodioxadiazacycloheptadecin-3-one 245 ${ }^{\text {D }}$

Following general procedure RCM2, HG-II ($6.5 \mathrm{mg}, 2 \mathrm{~mol} \%$), 1,4-benzoquinone (2.5 $\mathrm{mg}, 4 \mathrm{~mol} \%$) and sulfonamide $235(750 \mathrm{mg}, 0.52 \mathrm{mmol})$ were stirred in MTBE (260 mL) at $55{ }^{\circ} \mathrm{C}$ for 24 h . After the workup procedure the crude product was concentrated in vacuo. Following general procedure N1, thiophenol ($297 \mathrm{mg}, 2.7 \mathrm{mmol}$), crude product (400 mg) and potassium carbonate ($94 \mathrm{mg}, 0.68 \mathrm{mmol}$) gave the amine crude product after 16 h . The crude product was purified by F-SPE and column chromatography, eluting with $80: 20$ petrol-EtOAc to give the amine $245^{\text {D }}$ ($180 \mathrm{mg}, 0.17 \mathrm{mmol}, 33 \%$; $>60<40 \mathrm{E} / Z$) as a pale yellow oil; $R_{\mathrm{f}} 0.50$ ($80: 20$, petrol-EtOAc); $[\alpha]_{D}^{23.7} 9.5$ (c. 1.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 7.21(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $1.5, \mathrm{Ar})$, 7.16-6.96 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.35(1 \mathrm{H}$, ap t, $J 2.6$, DMB $3-\mathrm{H}), 6.32(1 \mathrm{H}, \mathrm{dt}, J 8.4$ and 2.6, DMB $5-\mathrm{H}), 6.06(1 \mathrm{H}, \mathrm{dt}, J$ 15.9 and $\left.5.9,10-H^{E}\right), 5.63\left(1 \mathrm{H}\right.$, ddd, $J 11,7,2$ and $\left.5.5,10-\mathrm{H}^{\mathrm{Z}}\right), 5.49-5.42(2 \mathrm{H}, \mathrm{m}, 11-$ $\left.\mathrm{H}^{Z E}\right)$, 4.74-4.64 $(2 \mathrm{H}, \mathrm{m}),, 4.55-4.36\left(6 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{\mathrm{AB}}, 5-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.1-\mathrm{H}_{\mathrm{AB}}\right), 4.09(1 \mathrm{H}, \mathrm{dd}, J$ 12.4 and $7.4,5$ or $\left.7 \mathrm{H}^{\mathrm{E}}\right), 3.94-3.52\left(7 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{AB}}, 6-\mathrm{H}, \mathrm{SiOCH}_{\mathrm{AB}}\right.$ and $\left.9-\mathrm{H}_{\mathrm{AB}}\right), 3.39(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}^{\mathrm{E} \text { or } \mathrm{Z}}$), $3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}^{\mathrm{E} \text { or } \mathrm{Z}}\right.$), $3.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}^{\mathrm{E} \text { or } \mathrm{z}}\right), 3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}^{\mathrm{E} \text { or } \mathrm{z}}\right.$), 2.76 ($1 \mathrm{H}, \mathrm{qd}, J 5.9$ and $3.5,13-\mathrm{H}^{\mathrm{F}}$), $2.70\left(1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}^{\mathrm{Z}}\right), 2.60-2.53\left(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}^{\mathrm{Z}}\right), 2.38-2.31$ ($1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}^{\mathrm{z}}$), 2.26-2.16 (3H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $12-\mathrm{H}_{\mathrm{A}}{ }^{\mathrm{E}}$), 2.14-2.06 (1H, m, 12$\mathrm{H}_{\mathrm{B}}{ }^{\mathrm{E}}$), 0.98-0.93 (16H, m, $\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}$ and $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.3$ (DMB 2 or $4-\mathrm{C}$), 158.4 (DMB 2 or $4-\mathrm{C}), 156.4$ (C=O), 130.2, 129.4, 129.2, 121.4 (DMB 1-C), 105.0 (DMB 5-C), 99.4 (DMB 3-C), 99.3 (DMB 3-C), 72.2 (7-C), 66.6 (9-C), 66.4 $\left(\mathrm{SiOCH}_{2}\right), 65.3,60.0(13-\mathrm{C}), 54.9(\mathrm{OMe}), 54.8(\mathrm{OMe}), 54.7(\mathrm{OMe}), 50.8(1-\mathrm{C}), 44.3$ (5C), 38.4 ($15-\mathrm{C}^{2}$), 38.1 ($15-\mathrm{C}$) , 34.6 (12-C), 29.9 ($6-\mathrm{C}$), 26.2 (t, J $25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $17.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.3\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.4\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\max } / \mathrm{cm}^{-}$ ${ }^{1}$ (film) 2946, 2869, 1718, 1508, 1465, 1243, 1208; m/z (ES ${ }^{+}$) $1031.3\left(100 \%,[M+H]^{+}\right)$; found 1031.3294, $\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$ requires MH 1031.3318

(8E,4R,5R,11R)-5-[(Tert-butyldimethylsilyl)oxy]-11-

(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-
yl)silyl]oxy\}methyl)-4-methyl-2-(trifluoromethane)sulfonyl-2,3,4,5,6,7,10,11,12,13-decahydro-1H-2,12-benzodiazacyclopentadecine 247 ${ }^{\text {D }}$

Following general procedure RCM1, HG-II (4 mg, 2 mol\%), 1,4-benzoquinone (1.38 $\mathrm{mg}, 4 \mathrm{~mol} \%)$ and sulfonamide $236(430 \mathrm{mg}, 0.32 \mathrm{mmol})$ were stirred in MTBE (160 mL) at $55^{\circ} \mathrm{C}$ for 24 h . After the workup procedure the crude product was concentrated in vacuo, column chromatography eluting with 90:10 petrol-EtOAc gave the sulfonamide as a complex mixture which was used directly in the next step. Following general procedure N1, thiophenol ($330 \mathrm{mg}, 3.0 \mathrm{mmol}$), sulfonamide 247 ($399 \mathrm{mg}, 0.3 \mathrm{mmol}$) and potassium carbonate ($126 \mathrm{mg}, 0.9 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE, to give the amine 247^{D} ($300 \mathrm{mg}, 0.27 \mathrm{mmol}$, 84%; >99\% purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy, $<32 />68 \mathrm{E} / Z$) as a pale yellow oil; $R_{\mathrm{f}} 0.53$ ($80: 20$, petrol—EtOAc); $[\alpha]_{D}^{23.7}-4.3$ (c. 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.41-7.21(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.44\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.9\right.$ and $\left.7.4,8-\mathrm{H}^{E}\right), 5.38-5.27(3 \mathrm{H}$, $\mathrm{m}, 8-\mathrm{H}^{\mathrm{Z}}, 9-\mathrm{H}^{\mathrm{E}}$ and Z$), 5.15-4.57\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{AB}}\right), 3.93\left(0.5 \mathrm{H}, \mathrm{d}, J 12.8,13-\mathrm{H}_{\mathrm{A}}{ }^{Z}\right), 3.87$ $\left(0.5 \mathrm{H}, \mathrm{d}, J 12.5,13-\mathrm{H}_{\mathrm{A}}{ }^{\mathrm{E}}\right), 3.79\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.8,13-\mathrm{H}_{\mathrm{B}}{ }^{\text { }}\right), 3.78-3.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}_{2}\right)$, $3.66\left(0.5 \mathrm{H}, \mathrm{d}, J 12.5,13-\mathrm{H}_{\mathrm{B}}{ }^{E}\right), 3.64-3.20\left(2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{AB}}\right), 3.06(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and $3.8,5-$ H), 2.78-2.68 ($1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$), 2.32-1.98 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $10-\mathrm{H}_{\mathrm{A}}$ and $\left.7-\mathrm{H}_{\mathrm{AB}}\right)$, 1.95-1.85 (1H, m, 10-H H_{B}, 1.80-1.35 (3H, m, 6- H_{AB} and 4-H), $1.09\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.\right.$ $)_{2}$), 0.95-0.89 $\left(2 \mathrm{H}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.88-0.8\left(12 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Me$), 0.00\left(3 \mathrm{H}, \mathrm{SiCH}_{3}\right)$, $-0.06\left(3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.4,138.1,134.0,133.9,133.7,133.4,132.0$, 131.8, 131.6, 130.2, 130.0, 128.1, 128.0, 127.9, 127.7, 126.7, 124.7, 120.2 q J 325, 73.7, 71.8, 65.7, 65.1, 60.8, 59.6, 59.1, 52.8, 50.6, 49.9, 48.7, 47.5, 39.0, 35.9, 34.8, $34.3,33.9,33.8,33.5,32.8,30.9,29.9,29.3,29.2,25.9,25.7,25.4, v_{\max } / \mathrm{cm}^{-1}$ (film) 2950, 2867, 1734, 1547, 1463, 1389; m/z (ES ${ }^{+}$) 1125.4 (100\%, [$M+H^{+}$); found $1125.3605, \mathrm{C}_{42} \mathrm{H}_{60} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}_{2}$ requires MH 1125.3566
(3R,5E)-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-2-[(2-nitrobenzene)sulfonyl]-9-(trifluoromethane)sulfonyl-

1,2,3,4,7,8,9,10-octahydro-2,9-benzodiazacyclododecine 246

Following general procedure RCM2, HG-II ($30 \mathrm{mg}, 5 \mathrm{~mol} \%$), 1,4-benzoquinone (11 mg , $10 \mathrm{~mol} \%)$ and sulfonamide $209(1.1 \mathrm{~g}, 0.95 \mathrm{mmol})$ were stirred in MTBE $(477 \mathrm{~mL})$ at 55 ${ }^{\circ} \mathrm{C}$ for 6 h . After the workup procedure the crude product was concentrated in vacuo; column chromatography, eluting with 70:30 petrol-EtOAc gave the macrocycle 246 ($805 \mathrm{mg}, 0.72 \mathrm{mmol}, 76 \%$) as a colourless oil; $R_{\mathrm{f}} 0.61$ (70:30, petrol-EtOAc); $[\alpha]_{D}^{23.7}$ 6.5 (c. $\left.0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7$, nosyl 3-H), 7.67-7.55 (3H, m, nosyl 4,5 and $6-\mathrm{H}$ and Ar), $7.32(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}), 7.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}), 7.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, Ar), 7.46 (1H, br s, Ar), 5.47 ($2 \mathrm{H}, \mathrm{br}$ s, 5 and $6-\mathrm{H}$), 4.83 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14,1-\mathrm{H}$ or 10-H), 4.73 $(3 \mathrm{H}, \mathrm{br}$ s, $1-\mathrm{H}$ or $10-\mathrm{H}), 4.17\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{SiOCH}_{\mathrm{A}}\right), 3.84(1 \mathrm{H}, \mathrm{br}$ s, $3-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{SiOCH}_{\mathrm{A}}\right), 3.33-3.02\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{AB}}\right) 2.52\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}_{\mathrm{A}}\right), 2.39-2.27\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}_{\mathrm{A}}\right)$, $2.17\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}_{\mathrm{B}}\right), 2.02-1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.81\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}_{\mathrm{B}}\right), 0.86$ (14 H , s, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, 0.66-0.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ broad peaks 148.5 (nosyl 2-C), 134.8 (nosyl 1-C), 134.4 (6-C), 134.2 (nosyl 4-C), 132.3 (nosyl 3-C), 131.9, 130.0 (5-C), 128.8, 127.6, 124.8, 123.2, 121.0 (q, J 325, CF F $_{3}$, 118.9, 115.7; 60.4 (3-C), 53.5 (2-C), 49.9 (10-C), 47.5 (8-C), 33.8 (4-C), 32.2 (7-C); $25.7 \quad\left(\mathrm{t}, \quad \mathrm{J} 25, \quad \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 17.9 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 12.6 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 0.01$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2949, 1546, 1388, 1145; m/z (ES ${ }^{+}$) 1141.2 (100\%, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$); found 1141.2204, $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~F}_{20} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{MNH}_{4} 1141.2174$
(5E,8R)-8-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-2-(trifluoromethane)sulfonyl-1,2,3,4,7,8,9,10-octahydro-2,9benzodiazacyclododecine $246^{\text {D }}$

Following general procedure $\mathbf{N 1}$; thiophenol ($616 \mathrm{mg}, 5.6 \mathrm{mmol}$), sulfonamide 246 (630 $\mathrm{mg}, 0.56 \mathrm{mmol}$) and potassium carbonate ($232 \mathrm{mg}, 1.68 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE to give the amine $\mathbf{2 4 6}^{\mathrm{D}}(430 \mathrm{mg}$,
$0.20 \mathrm{mmol}, 82 \%,>89 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.84$ ($80: 20$, petro-—tOAc); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; MeOD) $7.34-7.25(4 \mathrm{H}, \mathrm{m}$, Ar), $5.31(1 \mathrm{H}, \mathrm{ddd}, J 15.7,8.8$ and $4.4,6-\mathrm{H}), 5.24(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $6.4,5-\mathrm{H}), 5.10$ ($\left.1 \mathrm{H}, \mathrm{d}, J 16,1-\mathrm{H}_{\mathrm{A}}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, J 16,1-\mathrm{H}_{\mathrm{B}}\right), 4.10\left(1 \mathrm{H}, \mathrm{d}, J 13.7,10-\mathrm{H}_{\mathrm{A}}\right), 3.75(1 \mathrm{H}, \mathrm{dd}, J$ 9.7 and $\left.6.0, \mathrm{SiOCH}_{A}\right) ; 3.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7,10-\mathrm{H}_{\mathrm{B}}\right), 3.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.7$ and 5.8 , $\left.\mathrm{SiOCH}_{\mathrm{B}}\right), 3.66-3.62\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 3.49-3.42\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 2.68(1 \mathrm{H}, \mathrm{dtd}, \mathrm{J} 10.4,5.9$ and 2.6, 8-H), 2.33-2.20 (5H, m, 7- $\mathrm{H}_{\mathrm{A}}, 4-\mathrm{H}_{\mathrm{AB}}$ and $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.76 (1 H , ddd, J 13.7, 10.5 and 8.8, $\left.7-\mathrm{H}_{\mathrm{B}}\right)$, 1.13-1.10 ($\left.14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, 0.97-0.92 (2H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 139.1$ (5-C), 133.2 (6-C), 130.9, 130.5, 128.4, 127.8, 127.7, 119.5, $67.1\left(\mathrm{SiOCH}_{2}\right), 58.4$ (8-C), 50.2 (1-C), 49.7 (10-C), 35.3 (7-C), 32.7 (4-C), 25.9 (t, J 25, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 16.9\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 16.99\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.7$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.01\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3005, 2948, 2868, 1547, 1463, 1387; m/z (ES ${ }^{+}$) 939.2 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 939.2137, $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ requires $M N H_{4} 939.2126$
(15E, 18R)-18-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-5,13-dioxa-3,19diazatricyclo[19.3.1.0 ${ }^{7,12}$]pentacosa-1(25),7,9,11,15,21,23-heptaen-4-one E-115 ${ }^{\text {D }}$

Following general procedure RCM1, HG-II ($5.5 \mathrm{mg}, 2 \mathrm{~mol} \%$) and sulfonamide 114 (600 $\mathrm{mg}, 0.45 \mathrm{mmol}$) were stirred in MTBE (250 mL) at $55{ }^{\circ} \mathrm{C}$ for 24 h . After the workup procedure the crude product was concentrated in vacuo as a complex mixture of geometric isomers and starting material 114. Following general procedure N1, thiophenol ($407 \mathrm{mg}, 3.7 \mathrm{mmol}$), sulfonamide $115(490 \mathrm{mg}, 0.37 \mathrm{mmol})$ and potassium carbonate ($128 \mathrm{mg}, 0.93 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and column chromatography, eluting with 70:30 petrol-EtOAc to give the amine $E-115^{\mathrm{D}}$ ($107 \mathrm{mg}, 0.114 \mathrm{mmol}, 25 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.31$ (70:30, petrol—EtOAc); [$\alpha]_{D}^{18.9} 6$ (c. $0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.35-7.10(4 \mathrm{H}$, m, Ar), 7.10-6.99 (2H, m, Ar), 6.97-6.88 (2H, m, Ar), 5.95-5.86 (1H, m, 17-H), 5.61-5.54 $(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 5.43\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}_{\mathrm{A}}\right), 4.99-4.91\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.2-\mathrm{H}_{\mathrm{A}}\right) ; 4.76-4.63(1 \mathrm{H}, \mathrm{m}$, $\left.14-\mathrm{H}_{\mathrm{A}}\right), 4.58-4.48\left(2 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.2-\mathrm{H}_{\mathrm{B}}\right), 4.28\left(1 \mathrm{H}, \mathrm{dd}, J 15.6\right.$ and $\left.5.6,20-\mathrm{H}_{\mathrm{A}}\right), 3.83$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.9,20-\mathrm{H}_{\mathrm{B}}\right), 3.78-3.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}_{\mathrm{A}}\right), 3.61-3.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}_{\mathrm{B}}\right), 2.80-$ $2.69(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 2.40-2.23\left(2 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}_{\mathrm{AB}}\right), 2.20-2.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.06$
(14H, s, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.91-0.84\left(2 \mathrm{H}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.9$ (12C), 157.1 ($\mathrm{C}=\mathrm{O}$) 139.7, 131.9, 131.1, 130.6, 130.2, 129.0, 128.5, 127.9, 127.2, 126.2, 125.6, 120.9, 112.5, 68.4 (14-C), $66.0(6-\mathrm{C}), 64.9\left(\mathrm{SiOCH}_{2}\right), 58.8$ (18-C), 51.9 (1-C), 44.7 ($20-\mathrm{C}$), 30.6 ($17-\mathrm{C}$), $25.6\left(\mathrm{t}, \mathrm{J} 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.7$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3109, 2868, 2756, 1617, 1471 and 1345; m/z (ES ${ }^{+}$) 943.3 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 943.2803, $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires MH 943.2793
(15Z,18R)-18-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-5,13-dioxa-3,19diazatricyclo[19.3.1. ${ }^{7,12}$]pentacosa-1(25),7,9,11,15,21,23-heptaen-4-one Z-115 ${ }^{\text {D }}$

Also obtained was the geometric isomer $\mathbf{Z}-\mathbf{1 1 5}^{\mathrm{D}}$ ($66 \mathrm{mg}, 0.07 \mathrm{mmol} ; 16 \%$) as a colourless oil; $R_{\mathrm{f}} 0.85$ (70:30, petrol—EtOAc); $[\alpha]_{D}^{23.7} 1.8$ (c. 2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 7.35-7.30 (3H, m, Ar), 7.21 ($1 \mathrm{H}, \mathrm{ap} \mathrm{t}, J 7.5, \mathrm{Ar}$), $7.10(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{Ar}), 7.05$ ($1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{Ar}$), $6.94(1 \mathrm{H}$, ap t, J 7.4, Ar), $6.88(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{Ar}), 5.88(1 \mathrm{H}, \mathrm{dt}, J 14.5$ and $7,16-\mathrm{H}), 5.79(1 \mathrm{H}, \mathrm{dt}, J 14.5$ and $4.7,15-\mathrm{H}), 5.18\left(1 \mathrm{H}, \mathrm{d}, J 10.4,6-\mathrm{H}_{\mathrm{A}}\right), 5.10(2 \mathrm{H}$, d, $J 10.4,6-H_{B}$ and NH), $4.51\left(2 \mathrm{H}, \mathrm{d}, J 4.6,14-\mathrm{H}_{\mathrm{AB}}\right), 4.47(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and 6.7, 2$\left.\mathrm{H}_{\mathrm{A}}\right), 4.36\left(1 \mathrm{H}, \mathrm{dd}, J 15.6\right.$ and $\left.6,2-\mathrm{H}_{\mathrm{B}}\right), 3.81\left(2 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}_{\mathrm{AB}}\right), 3.64(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $\left.6.0, \mathrm{SiOCH}_{\mathrm{A}}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.8\right.$ and $\left.5.7, \mathrm{SiOCH}_{\mathrm{B}}\right), 2.77-2.71(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 2.35-2.21$ $\left(2 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}_{\mathrm{AB}}\right), 2.17-2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.02\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.87-$ $0.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.9$ (12-C), 157.2 ($\mathrm{C}=\mathrm{O}$), 139.6, $132.3,130.8,128.8,127.9,127.6,126.3,124.3,120.9$ (9-C), 112.1 (11-C), 68.4 (14-C), $65.4\left(\mathrm{SiOCH}_{2}\right), 64.5(6-\mathrm{C}), 57.3(18-\mathrm{C}), 51.3$ (1-C), 44.6 (20-C), 34.5 (17-C), 25.6 (t, J 25, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6 \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}, 0.3$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) ; $m / z\left(\mathrm{ES}^{+}\right) 943.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 943.2820, $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires MH 943.2793
(6Z,9R)-9-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-3-(trifluoromethane)sulfonyl-3,10-diazabicyclo[10.3.1]hexadeca-1(16),6,12,14-tetraene Z-249 ${ }^{\text {D }}$

Following general procedure RCM2, HG-II ($10 \mathrm{mg}, 2 \mathrm{~mol} \%$), 1,4-benzoquinone (3.6 $\mathrm{mg}, 4 \mathrm{~mol} \%$) and sulfonamide 238 ($998 \mathrm{mg}, 0.86 \mathrm{mmol}$) were stirred in MTBE (400 mL) at $55^{\circ} \mathrm{C}$ for 16 h . After the workup procedure the crude product was concentrated in vacuo and column chromatography gave the sulfonamide (460 mg) as a mixture of geometric isomers. Following general procedure N1, thiophenol ($429 \mathrm{mg}, 3.9 \mathrm{mmol}$), sulfonamide 249 ($440 \mathrm{mg}, 0.39 \mathrm{mmol}$) and potassium carbonate ($162 \mathrm{mg}, 1.17 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and column chromatography, eluting with $95: 5$ petrol-EtOAc to give the amine $\mathbf{Z}-\mathbf{2 4 9}{ }^{\text {D }}$ $(100 \mathrm{mg}, 0.106 \mathrm{mmol}, 12 \%)$ as a pale yellow oil; $R_{\mathrm{f}} 0.1$ (90:10, petrol-EtOAc); $[\alpha]_{D}^{23.7}$ 14.1 (c. 1.2, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)$ Exists as atropisomers $7.53\left(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}^{\text {maior }}\right.$), 7.34 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}^{\text {minor }}$), 6.99-6.86 (2H, m, Ar), 6.76-6.71 (1H, m, Ar), 4.71 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.9$ and $\left.6.5,7-\mathrm{H}^{\text {major }}\right), 4.59\left(1 \mathrm{H}, \mathrm{dt}, J 13.9\right.$ and $6.4,6-\mathrm{H}^{\text {major }}$ and $\left.7-\mathrm{H}^{\text {minor }}\right), 4.33(1 \mathrm{H}, \mathrm{dt}, J$ 14.8 and $\left.6.9,^{\text {minor }}\right), 4.22\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.90\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}_{\mathrm{B}}\right), 3.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5,11-$ $\left.H^{\text {major }}\right), 3.68\left(1 \mathrm{H}, \mathrm{d}, J 14.5,11-\mathrm{H}^{\text {minor }}\right), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J 9.7\right.$ and $\left.5.7, \mathrm{SiOCH}_{\mathrm{A}}{ }^{\text {major }}\right), 3.37$ (1 H , dd, $J 9.7$ and 6.2, $\mathrm{SiOCH}_{\mathrm{B}}{ }^{\text {major }}$), $3.34\left(1 \mathrm{H}, \mathrm{d}, J 14.5,11-\mathrm{H}^{\text {major }}\right), 3.28(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and 4.8, $\left.\mathrm{SiOCH}_{\mathrm{A}}{ }^{\text {minor }}\right), 3.21\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}_{\mathrm{A}}\right), 3.15\left(1 \mathrm{H}, \mathrm{d}, J 14.5,11-\mathrm{H}^{\text {minor }}\right), 3.10(1 \mathrm{H}$, $\mathrm{dd}, J 10.4$ and 6.1, $\left.\mathrm{SiOCH}_{\mathrm{B}}{ }^{\text {minor }}\right)$, $2.85\left(1 \mathrm{H}\right.$, br s, $\left.4-\mathrm{H}_{\mathrm{B}}\right), 2.45-2.38\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}^{\text {minor }}\right) ; 2.33-$ $2.14\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}^{\text {major }}\right.$ and $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.02-1.95\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}\right), 1.95-1.87(1 \mathrm{H}, \mathrm{m}, 5-$ $\left.\mathrm{H}_{\mathrm{A}}\right)$, 1.87-1.79 $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.78-1.63\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.61-1.46\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}\right.$ and $5-$ $\left.\mathrm{H}_{\mathrm{B}}\right)$, 1.02-0.81 (14H, m, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$; $\delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 142.8$, 135.8, 135.6, 131.6, 131.1, 130.9, 130.7, 128.3; 127.7, 127.6, 126.3, 122.5, 119.9, 105.2, 92.2, 92.1, 67.5, 65.4, 59.9, 59.5, 54.5, 52.6, 52.5, 50.7, 50.6, 38.5, 35.8, 35.7, 32.6, 32.5, 31.4, 25.9; 17.4, 12.6, 12.4, 0.3; $v_{\max } / \mathrm{cm}^{-1}$ (film) 2945, 2869, 1463, 1391, 1226, 1147; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 939.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $939.2103, \mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ requires MH 939.2126

Full ${ }^{13} \mathrm{C}$ assignment was not possible due to atropisomers
(6E,9R)-9-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-3-(trifluoromethane)sulfonyl-3,10-diazabicyclo[10.3.1]hexadeca-1(16),6,12,14-tetraene E-249 ${ }^{\text {D }}$

Also obtained was the geometric isomer $E-249^{D}(173 \mathrm{mg}, 0.184 \mathrm{mmol} ; 21 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.25$ ($90: 10$, petrol—EtOAc); $[\alpha]_{D}^{23.7} 3.2$ (c. 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\mathrm{C}_{6} \mathrm{D}_{6}$; 343 K) 7.14-7.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.06-6.99 (3H, m, Ar), 5.24 (1 H , ddd, J 17.3, 9.3 and 6.7, $7-\mathrm{H}$), 5.06 (1 H , ddd, J 17.3, 10.8 and $8.6,6-\mathrm{H}$), 4.16 ($2 \mathrm{H}, \mathrm{br}$ s, $2-\mathrm{H}$), $3.86(1 \mathrm{H}$, d, $J 14.1,11-\mathrm{H}_{\mathrm{A}}$), $3.54\left(1 \mathrm{H}, \mathrm{d}, J 14.1,11-\mathrm{H}_{\mathrm{B}}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J 9.7\right.$ and 4.4, $\mathrm{SiOCH}_{\mathrm{A}}$), $3.43\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.7\right.$ and $\left.6.3, \mathrm{SiOCH}_{\mathrm{B}}\right), 3.22\left(1 \mathrm{H}\right.$, br s, $\left.4-\mathrm{H}_{\mathrm{A}}\right), 2.59\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}_{\mathrm{B}}\right)$, 2.32$2.19\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and 9-H), 1.84-1.72 (2H, m, 8- H_{A} and $\left.5-\mathrm{H}_{\mathrm{A}}\right), 1.66-1.56(1 \mathrm{H}$, $\left.\mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.56-1.44\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}\right), 0.97-0.84\left(16 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ $\left.)_{2}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; 343 \mathrm{~K}\right) 134.8$ (7-C), 130.2, 129.7 (6-C), 128.9, 128.4, 126.8, $65.7\left(\mathrm{SiOCH}_{2}\right), 59.7(9-\mathrm{C}), 53.8(2-\mathrm{C}), 52.7(4-\mathrm{C}), 48.9(11-\mathrm{C}), 38.5(5-\mathrm{C}), 31.4(8-\mathrm{C})$, 29.8 (7-C), 27.4, $26.0\left(\mathrm{t}, \mathrm{J} 24.4, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.3\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.4\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2949, 2868, 1462, 1388, 1275, 1260, 760; m/z (ES ${ }^{+}$) 939.2 (100%, $[\mathrm{M}+\mathrm{H}]^{+}$); found 939.2121, $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ requires MH 939.2126
(11E)-7-(2,4-Dimethoxyphenyl)-14-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-3,15-bis[(2-nitrobenzene)sulfonyl]-5,9-dioxa-3,15-diazabicyclo[15.3.1]henicosa-1(20),11,17(21),18-tetraen-4-one 248

Following general procedure RCM2, HG-II (0.8 mg , $2 \mathrm{~mol} \%$), 1,4-benzoquinone (1.6 $\mathrm{mg}, 4 \mathrm{~mol} \%$) and sulfonamide $237(540 \mathrm{mg}, 0.37 \mathrm{mmol}$) were stirred in MTBE (185 mL) at $55^{\circ} \mathrm{C}$ for 24 h . After the workup procedure the crude product was concentrated in vacuo; column chromatography, eluting with 70:30 petrol-EtOAc gave the macrocycle 248 (295 mg, $0.21 \mathrm{mmol}, 56 \% ; 60 / 40 \mathrm{E} / Z$) as a colourless oil; $R_{\mathrm{f}} 0.17$ (70:30, petrol-

EtOAc); $[\alpha]_{D}^{23.7} 22.8$ (c. $\left.0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; 343 \mathrm{~K}\right) 8.19$ (0.5 H , dd, J 8.0 and 1.4, nosyl $3-\mathrm{H}^{\mathrm{Z}}$), $8.11\left(0.5 \mathrm{H}\right.$, dd, J 8.0 and 1.4 , nosyl $\left.3-\mathrm{H}^{\mathrm{E}}\right), 7.7-6.60(11 \mathrm{H}, \mathrm{m}, 2 \times$ nosyl $4-\mathrm{H}, 5-\mathrm{H}$ and $6-\mathrm{H}$, and Ar), 6.39-6.21 (3H, m, DMB 3-, 5- and 6-H), 5.68 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ 14.6 and $\left.7.0,12-\mathrm{H}^{\mathrm{E}}\right), 5.55-5.46\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}^{\mathrm{E}}, 12-\mathrm{H}^{\mathrm{Z}}\right.$ and $\left.11-\mathrm{H}^{\mathrm{Z}}\right), 5.10-4.96(2 \mathrm{H}, \mathrm{m}, 16-$ $\left.\mathrm{H}_{\mathrm{AB}}\right), 4.75-4.57\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{AB}}\right), 4.55-4.45\left(1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}\right), 4.37-4.24\left(2 \mathrm{H}, 14-\mathrm{H}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right)$, $3.90-3.75\left(3 \mathrm{H}, 10-\mathrm{H}_{2}\right.$ and $\left.7-\mathrm{H}\right), 3.60-3.39\left(4 \mathrm{H}, \mathrm{SiOCH}_{2}\right.$ and $\left.8-\mathrm{H}_{\mathrm{AB}}\right), 3.36(3 \mathrm{H}, \mathrm{OMe})$, $3.19(3 \mathrm{H}, \mathrm{OMe}), 2.71-2.38\left(2 \mathrm{H}, 13-\mathrm{H}_{\mathrm{AB}}\right), 2.35-2.22\left(2 \mathrm{H}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.07-0.78(16 \mathrm{H}$, $\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}$ and $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; 343 \mathrm{~K}\right)$ 160.1, 160.0, 157.9, $157.8,151.5,151.5,148.0,147.8,137.9,137.5,137.2,134.4,134.1,134.0,133.3$, 133.2, 132.8, 132.7, 132.3, 132.3, 130.5, 130.4, 128.8, 128.7, 128.4, 128.1, 123.5, 123.4, 119.8 (DMB 1-C), 119.4 (DMB 1-C), 104.5 (DMB 5-C), 104.4 (DMB 5-C), 98.8 (DMB 3-C), 70.9 (10-C), 69.4 (10-C), 69.1 (8-C), 67.8 (8-C), 67.0 (6-C), 66.4 (6-C), $64.6\left(\mathrm{SiOCH}_{2}\right), 64.3\left(\mathrm{SiOCH}_{2}\right), 60.1(13-\mathrm{C}), 59.9(13-\mathrm{C}), 54.4(2 \times \mathrm{OMe}), 50.8(2-\mathrm{C})$, 50.7 (2-C), 49.8 (16-C), 48.7 (16-C), 37.9 ($7-\mathrm{C}$), 37.6 ($7-\mathrm{C}$), 33.7 (13-C), 29.6 (13-C), $25.6\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.1\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.1\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3006, 2990, 2318, 1737, 1588, 1545, 1463, 1370; m/z (ES $\left.{ }^{+}\right) 1418.3$ (100\%, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$); found $1418.3110, \mathrm{C}_{54} \mathrm{H}_{53} \mathrm{~F}_{17} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{MNH}_{4} 1418.3149$
(7S,11E,14R)-7-(2,4-Dimethoxyphenyl)-14-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-5,9-dioxa-3,15-diazabicyclo[15.3.1]henicosa-1(21),11,17,19-tetraen-4-one 248

Following general procedure N1; thiophenol ($231 \mathrm{mg}, 2.1 \mathrm{mmol}$), sulfonamide 255 (298 $\mathrm{mg}, 0.212 \mathrm{mmol}$) and potassium carbonate ($58 \mathrm{mg}, 0.42 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE to give the amine 248 (198 mg , $0.19 \mathrm{mmol}, 91 \%$, $>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy; $60 / 40 \mathrm{E} / Z$) as a pale yellow foam; $R_{\mathrm{f}} 0.37$ ($80: 20$, petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.60-5.56 (1H, s, Ar), 7.35-7.14 (3H, m, Ar), 6.90-6.83 (1H, m, Ar), 6.48-6.43 (2H, m, Ar), 5.86-5.77 ($1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}^{\mathrm{Z}}$ and $\left.11-\mathrm{H}^{\mathrm{E}}\right), 5.69\left(0.5 \mathrm{H}\right.$, dt, J 15.6 and 4.7, $\left.11-\mathrm{H}^{\mathrm{Z}}\right), 5.53$ $\left(0.5 \mathrm{H}, \mathrm{dd}, J 17.5\right.$ and $\left.8.3,12-\mathrm{H}^{\mathrm{E}}\right) ; 4.80-3.73\left(11 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{AB}}, 6-\mathrm{H}_{\mathrm{AB}}, 8-\mathrm{H}_{\mathrm{AB}}, 10-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.16-\mathrm{H}_{\mathrm{AB}}\right), 3.7-3.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}_{\mathrm{A}}\right), 3.64-3.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}_{\mathrm{B}}\right), 3.48(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.47 (3H, s, OMe), 2.83-2.73 (1H, m, 14-H), 2.4-2.15 ($4 \mathrm{H}, 13-\mathrm{H}_{\mathrm{AB}}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.06$0.93\left(16 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.6,158.8$,
140.7, 140.5, 130.5 (11 or $12-\mathrm{C}$), 130.4 (11 or $12-\mathrm{C}$), 129.8 (11 or $12-\mathrm{C}$), 129.7 (11 or 12-C), 127.5, 127.1, 127.0, 126.7, 121.8, 121.6, 105.3, 105.2, 99.6 (DMB 3-C), 71.9 (10-C), 67.5 ($8-\mathrm{C}$), 66.5 (6-C), $65.6\left(\mathrm{SiOCH}_{2}\right), 59.1\left(14-\mathrm{C}^{\mathrm{E}}\right), 58.5$ (14-C), 55.2 (OMe), 55.1 (OMe), 52.1 , 52.0 , 45.1 ($16-\mathrm{C}$), 38.9 ($7-\mathrm{C}$), 34.9 ($13-\mathrm{C}$), 26.3 (t, J 24.8, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 17.6 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.6 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 12.8 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.7$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3331, 2943, 2868, 1712, 1614, 1546, 1464; m/z (ES ${ }^{+}$) 1031.3 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 1031.3302, $\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$ requires MH 1031.3318

Full ${ }^{13} \mathrm{C}$ assignment was not possible due to a mixture of stereoisomers

(4R,6E,10R,11R)-10-[(Tert-butyldimethylsilyl)oxy]-4-

(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-11-methyl-3-[(2-nitrobenzene)sulfonyl]-13-(trifluoromethane)sulfonyl-3,13-diazabicyclo[13.3.1]nonadeca-1(19),6,15,17tetraene 250

Following general procedure RCM2, HG-II ($7.5 \mathrm{mg}, 2 \mathrm{~mol} \%$), 1,4-benzoquinone (2.7 $\mathrm{mg}, 4 \mathrm{~mol} \%$) and sulfonamide $239(860 \mathrm{mg}, 0.64 \mathrm{mmol})$ were stirred in MTBE (320 mL) at $55^{\circ} \mathrm{C}$ for 4 h . After the workup procedure the crude product was concentrated in vacuo; column chromatography, eluting with 90:10 petrol-EtOAc gave the macrocycle 250 ($650 \mathrm{mg}, 0.50 \mathrm{mmol}, 78 \%,<12 />88 \mathrm{E} / Z$) as a colourless oil; $R_{\mathrm{f}} 0.24$ (90:10, petrol—EtOAc); $\alpha]_{D}^{23.7} 16$ (c. $0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; 343 \mathrm{~K}\right) 7.77(1 \mathrm{H}, \mathrm{dd}, J$ 7.9 and 1.4 , nosyl $3-\mathrm{H}$), 7.68 (dd, J 8.1 and 1.4, nosyl $3-\mathrm{H}^{\mathrm{E}}$), 7.37 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$, Ar), 7.20-7.09 (1H, m, Ar), 6.99 (1H, d , J 7.7, Ar), 6.93 (1H, dd, J 7.9 and 1.3, Ar), 6.87 (dd, $J 7.8$ and $\left.1.4, \mathrm{Ar}^{\mathrm{E}}\right), 6.81(1 \mathrm{H}, \mathrm{td}, J 7.7$ and $1.4, \mathrm{Ns}), 6.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{\mathrm{E}}\right), 6.74(1 \mathrm{H}, \mathrm{td}, J$ 7.4 and $1.4, \mathrm{Ns}), 5.33(1 \mathrm{H}, \mathrm{td}, J 10.1$ and $5.2,6-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{td}, J 10.1$ and $5.7,7-\mathrm{H})$, $5.17-5.15\left(\mathrm{~m}, 7-\mathrm{H}^{\mathrm{E}}\right), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.3,1-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{br}$ s, $14-\mathrm{H}), 4.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.4$, $1-\mathrm{H}), 4.20(1 \mathrm{H}$, ddt, J $11.4,8.2$ and $4.2,4-\mathrm{H}), 3.82(1 \mathrm{H}$, br s, 14-H), 3.77-3.60(3H, $\mathrm{SiOCH}_{\mathrm{AB}}$ and 11-H), 3.27-3.22(1H, m, 10-H), $2.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.1,12-\mathrm{H}), 2.28-2.08(3 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}$ and $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.97 ($1 \mathrm{H}, \mathrm{m}, \mathrm{J} 14.5$ and $10.0,5-\mathrm{H}$), 1.61-1.50 ($1 \mathrm{H}, \mathrm{m}, 11-$ H), 1.44-1.22 (4H, m, 8-H and 9-H), 0.98-0.80 (28H, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and Me); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; 343 \mathrm{~K}\right.$) 148.3 (nosyl 2-C), 138.1 (nosyl 1-
C), 134.2 (nosyl 4-C), 132.5 (nosyl 5-C), 131.5 (Ar), 131.0 (7-C), 130.7 (nosyl 6-C), 130.5 (Ar), 126.4 (6-C), 123.7 (nosyl 3-C); 71.4 (10-C), $62.7\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 60.1$ (4-C), 53.8 (12-C), 48.6 (2-C), 34.1 (8-C), $33.5(5-\mathrm{C}), 31.2(9-\mathrm{C}), 25.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $22.5(11-\mathrm{H})$, $17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 16.9 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.0 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 9.3 \quad(\mathrm{Me}), 0.00$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $-4.5\left(\mathrm{SiCH}_{3}\right),-5.3\left(\mathrm{SiCH}_{3}\right) ; \mathrm{CF}_{3}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2952, 2867, 1547, 1463, 1440, 1388 and 1373; $m / z\left(E S^{+}\right) 1327.4$ (100\%, $\left.\left[M+\mathrm{NH}_{4}\right]^{+}\right)$; found 1327.3558, $\mathrm{C}_{48} \mathrm{H}_{63} \mathrm{~F}_{20} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Si}_{2}$ requires $\mathrm{MNH}_{4} 1327.3614$
(5R,6R,9E,12R)-6-[(Tert-butyldimethylsilyl)oxy]-12-
(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-5-methyl-3-(trifluoromethane)sulfonyl-3,13-diazabicyclo[13.3.1]nonadeca-1(19),9,15,17-tetraene 250 ${ }^{\text {D }}$

Following general procedure $\mathbf{N} 1$; thiophenol ($251 \mathrm{mg}, 2.29 \mathrm{mmol}$), sulfonamide $\mathbf{2 5 0}$ ($600 \mathrm{mg}, 0.46 \mathrm{mmol}$) and potassium carbonate ($126 \mathrm{mg}, 0.91 \mathrm{mmol}$) gave the crude product after 2 h . The crude product was purified by F-SPE to give the amine 250^{D} ($450 \mathrm{mg}, 0.40 \mathrm{mmol}, 87 \%$, >93\% purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow foam; $R_{\mathrm{f}}: 0.81$ (60:40, petrol-EtOAc); δ_{H} (500 MHZ ; $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ 7.23-7.09 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $5.52\left(\mathrm{dt}, J 15.6\right.$ and $6.8,10-\mathrm{H}^{\text {trans }}>7 \%$), $5.38(1 \mathrm{H}, \mathrm{dt}, J$ 11.1 and $\left.8.4,10-\mathrm{H}^{\mathrm{cis}}\right), 5.31\left(1 \mathrm{H}, \mathrm{dt}, J 11.1\right.$ and $\left.6.1,9-\mathrm{H}^{\mathrm{cis}}\right), 5.25(\mathrm{dt}, J 15.6$ and $6.1,9-$ $\left.\mathrm{H}^{\text {trans }},>7 \%\right), 4.47\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}_{\mathrm{A}}\right), 4.11\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}_{\mathrm{B}}\right), 3.85\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14,14-\mathrm{H}_{\mathrm{A}}\right)$, 3.63-3.58 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{AB}} \mathrm{OSi}$ and $4-\mathrm{H}_{\mathrm{A}}$), $3.58\left(1 \mathrm{H}, \mathrm{d}, J 14,14-\mathrm{H}_{\mathrm{B}}\right), 3.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H})$, $3.02\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 11.2,4-\mathrm{H}_{\mathrm{B}}\right), 2.62(1 \mathrm{H}, \mathrm{ap} \mathrm{p}, \mathrm{J} 5.9,12-\mathrm{H}), 2.35-2.15(3 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $\left.11-\mathrm{H}_{\mathrm{A}}\right), 2.01\left(1 \mathrm{H}, \mathrm{dt}, J 13.9\right.$ and $\left.6.8,11-\mathrm{H}_{\mathrm{B}}\right), 1.76-1.70(2 \mathrm{H}, \mathrm{m}, 8-$ $\left.\mathrm{H}_{\mathrm{AB}}\right), 1.59(1 \mathrm{H}$, br s, $5-\mathrm{H}), 1.35-1.48\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{AB}}\right), 1.06\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.9-$ $0.83\left(9 \mathrm{H}, \mathrm{m}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{Me}), 0.08-0.11\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}(126$ $\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) 135.3 (10-C), 132.1, 129.2, 128.5 (9-C), 127.2, 126.5, 72.9 (6-C), 65.9 $\left(\mathrm{SiOCH}_{2}\right), 59.3(12-\mathrm{C}), 53.7(2-\mathrm{C}), 53.2(4-\mathrm{C}), 51.6$ (14-C), 34.9 (8-C), 34.7 (11-C), 30.2 $(5-\mathrm{C}), 29.9(7-\mathrm{C}), 25.8\left(\mathrm{t}, \mathrm{J} 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 23.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.1$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6(\mathrm{Me}),-4.2\left(\mathrm{SiCH}_{3}\right),-4.8\left(\mathrm{SiCH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3055, 2988, 2306, 1603, 1550, 1422, 1388, 1264 and 1152; m/z (ES ${ }^{+}$) $1225.4\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 1125.3563, $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}_{2}$ requires MH 1125.3566
(13S,17E,20R)-13-(2,4-Dimethoxyphenyl)-20-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-11,15-dioxa-9,21diazatricyclo[21.4.0.0 ${ }^{2,7}$]heptacosa-1(27),2,4,6,17,23,25-heptaen-10-one 251 ${ }^{\text {D }}$

Following general procedure RCM1, HG-II ($6.56 \mathrm{mg}, 2 \mathrm{~mol} \%$), 1,4-benzoquinone (2.2 $\mathrm{mg}, 4 \mathrm{~mol} \%$) and sulfonamide $240(810 \mathrm{mg}, 0.52 \mathrm{mmol})$ were stirred in MTBE (208 mL) at $55^{\circ} \mathrm{C}$ for 5 h . After the workup procedure the crude product was concentrated in vacuo and column chromatography eluting with $80: 20 \rightarrow 70: 30$ petrol-EtOAc gave the sulfonamide (475 mg) as a complex mixture. Following general procedure N1, thiophenol ($286 \mathrm{mg}, 7.6 \mathrm{mmol}$), sulfonamide 251 ($400 \mathrm{mg}, 0.26 \mathrm{mmol}$) and potassium carbonate ($91 \mathrm{mg}, 0.66 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by column chromatography, eluting with 80:20 petrol-EtOAc to give the amine 251^{D} ($93 \mathrm{mg}, 0.084 \mathrm{mmol}, 16 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.11$ (80:20, petrolEtOAc); $[\alpha]_{D}^{23.7} 3.2$ (c. 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.42-7.38(1 \mathrm{H}, \mathrm{m}, \mathrm{BiPh}), 7.37-$ 7.28 ($4 \mathrm{H}, \mathrm{m}, \mathrm{BiPh}$), 7.20-7.10 (3H, m, BiPh), 6.95 ($1 \mathrm{H}, \mathrm{d}, ~ J 8.3$, DMB 6-H), 6.52-6.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{DMB} 3-\mathrm{H}$), 6.40 (1 H , dd, J 8.3 and 2.5, DMB $5-\mathrm{H}$), 5.67 ($1 \mathrm{H}, \mathrm{dt}, J 15.4$ and 6.6 , $17-\mathrm{H}), 5.58(1 \mathrm{H}, \mathrm{dt}, J 15.4$ and $6.8,18-\mathrm{H}), 5.55-5.44\left(\mathrm{~m}, 17\right.$ and $\left.18-\mathrm{H}^{\mathrm{cis}}\right), 4.36(1 \mathrm{H}, \mathrm{dd}$, $J 13.7$ and $\left.3.7,12-H_{A}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J 13.7\right.$ and $\left.4.4,12-\mathrm{H}_{\mathrm{B}}\right), 4.03-3.98\left(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{\mathrm{A}}\right)$, $3.92\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8\right.$ and $\left.5.3,16-\mathrm{H}_{\mathrm{B}}\right), 3.88-3.84\left(2 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}_{\mathrm{AB}}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.68-3.52\left(4 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{AB}}\right), 3.48-3.39(1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}), 3.14$ ($2 \mathrm{H}, \mathrm{br}$ s, $\mathrm{CH}_{\mathrm{AB}} \mathrm{OSi}$), $2.57(1 \mathrm{H}$, br s, $20-\mathrm{H}), 2.38\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 19-\mathrm{H}_{\mathrm{A}}\right), 2.20\left(1 \mathrm{H}\right.$, brs, $\left.19-\mathrm{H}_{\mathrm{B}}\right)$, 2.14-2.03 (2H, m, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.00\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.88-0.83(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.0$ (DMB 4-C ${ }^{\text {trans }}$), 159.9 (DMB 4-C ${ }^{\text {cis }}$), 158.6 (DMB 2-Ctrans), 158.5 (DMB 2-C ${ }^{\text {cis }}$), 156.6 (CO), 141.2, 140.8, 136.8, 136.2, 131.4, $130.6,130.1,130.0,129.8,129.7,129.3,129.2,128.9,128.2,128.2,128.1,127.9$, $127.7,127.4,120.5,120.2,104.6,104.5,98.9,98.8,69.5,67.2,64.4,64.3,59.3(20-$ C), 55.6 (OMe), 55.5 (OMe), 50.7, 45.0, 37.1, 33.1, 32.3, 30.0, 29.9, 29.7, 25.7 (t, J 25, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ 24.2, 23.0, $17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3005,2946,2868,1712,1614$, 1587, 1543, 1508, 1465, 1274 and 1260; m/z (ES ${ }^{+}$) 1107.4 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 1107.3655, $\mathrm{C}_{48} \mathrm{H}_{56} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$ requires MH 1107.3631

Full ${ }^{13} \mathrm{C}$ assignment was not possible due to a mix of rotamers and geometric isomers
(12Z)-10-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-9-[(2-nitrobenzene)sulfonyl]-16-(trifluoromethane)sulfonyl-9,16-diazatricyclo[16.4.0.0 ${ }^{2,7}$]docosa-1(18),2,4,6,12,19,21-heptaene 252 ${ }^{\text {D }}$

Following general procedure RCM2, HG-II ($6.0 \mathrm{mg}, 2 \mathrm{~mol} \%$), 1,4-benzoquinone (2.1 $\mathrm{mg}, 4 \mathrm{~mol} \%$) and sulfonamide 241 ($611 \mathrm{mg}, 0.48 \mathrm{mmol}$) were stirred in MTBE (192 mL) at $55^{\circ} \mathrm{C}$ for 4 h . After the workup procedure the crude product was concentrated in vacuo; column chromatography, eluting with $90: 10 \rightarrow 80: 20$ petrol-EtOAc gave the macrocycle $252^{\text {D }}$ ($220 \mathrm{mg}, 0.18 \mathrm{mmol}, 38 \%$) as a colourless oil; $R_{\mathrm{f}} 0.11$ ($80: 20$, petrolEtOAc); $[\alpha]_{D}^{23.7} 6.9$ (c. 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; DMSO-d6; 343 K) 8.03 (1 H , dd, J 7.9 and 1.3, nosyl 3-H), 7.94 (1H, d , J 8.4, nosyl 6-H), 7.92-7.85 (2H, m, nosyl 5-H), 7.827.79 (1H, m, Ar), 7.58-7.52 (2H, m, nosyl 4-H and Ar), 7.46-7.40 (2H, m, Ar), 7.36 (1H, td, $J 7.5$ and $1.4, \mathrm{Ar}), 7.29(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $1.4, \mathrm{Ar}), 7.27-7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.34(1 \mathrm{H}$, dd, J 10.3 and 5.1, 12-H), 5.32-5.25 (1H, m, 13-H), 5.11 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.7,8-\mathrm{H}_{\mathrm{A}}$), $4.91(1 \mathrm{H}$, d, J 16.5, 17-H H_{A}, $4.21\left(1 \mathrm{H}, \mathrm{d}, ~ J 16.7,8-\mathrm{H}_{\mathrm{B}}\right), 4.10\left(1 \mathrm{H}, \mathrm{d}, ~ J 16.5,17-\mathrm{H}_{\mathrm{B}}\right), 4.02-3.95(1 \mathrm{H}$, $\mathrm{m}, 10-\mathrm{H}), 3.25\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4\right.$ and $\left.6.0, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 3.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4$ and 7.6 , $\left.\mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 3.18-3.13\left(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{\mathrm{A}}\right), 3.05-2.98\left(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{\mathrm{B}}\right), 2.22-2.06(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.06-1.89 (2H, m, 14-H H_{AB}), 1.79-1.64 (2H, m, 11- H_{AB}), $0.96(14 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, 0.77-0.72 (2H, m, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz} ; \mathrm{DMSO}-d 6 ; 343 \mathrm{~K})$ 147.2 (nosyl 2-C), 137.2 (nosyl 1-C), 136.2 (nosyl 5-C), 134.3 (nosyl 4-C), 134.1, 131.8, 131.7, 131.4, 131.3, 131.1, 130.6, 129.8 (nosyl 6-C), 129.2 (12-C), 128.5, 128.0, 127.7, 127.2, 126.9, 126.5, 126.4 (13-C), 124.8 (nosyl 3-C), 123.9, $64.2\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 58.1$ (10-C), 49.5 ($8-\mathrm{C}$), 47.8 (15-C), 43.6 (17-C), 27.3 (14-C), $24.7\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 16.5$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $11.3\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.01\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \mathrm{CF}_{3}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2926, 2870, 1547, 1390, 1202; m/z (ES ${ }^{+}$) 1222.2 (100\%, [M+Na] ${ }^{+}$); found 1222.2096, $\mathrm{C}_{44} \mathrm{H}_{45} \mathrm{~F}_{20} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2}$ Si requires MNa 1222.2041
(12Z,15R)-15-(\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}methyl)-9-(trifluoromethane)sulfonyl-9,16-diazatricyclo[16.4.0.0 ${ }^{2,7}$]docosa-1(22),2,4,6,12,18,20-heptaene 252

Following general procedure $\mathbf{N} 2$; thiophenol ($93 \mathrm{mg}, 0.85 \mathrm{mmol}$), sulfonamide $\mathbf{2 5 2}^{\mathrm{D}}$ ($210 \mathrm{mg}, 0.169 \mathrm{mmol}$) and potassium carbonate ($46 \mathrm{mg}, 0.34 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE to give the amine 252 ($123 \mathrm{mg}, 0.12 \mathrm{mmol}, 76 \%$, $>93 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.41$ (90:10, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; 323 K) 7.71 ($1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}$), 7.57 (1 H , dd, $J 7.7$ and 1.2, Ar), 7.44 ($1 \mathrm{H}, \mathrm{td}, J 7.6$ and $1.4, \mathrm{Ar}), 7.37(1 \mathrm{H}, \mathrm{td}, J 7.6$ and $1.5, \mathrm{Ar}), 7.33(1 \mathrm{H}, \mathrm{td}, J 7.5$ and $1.3, \mathrm{Ar}), 7.28(1 \mathrm{H}, \mathrm{td}, J$ 7.5 and 1.3, Ar), 7.15 ($1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $1.3, \mathrm{Ar}$), 7.02 ($1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $1.3, \mathrm{Ar}$), 5.28 (1 H , dd, $J 10.9$ and $7.7,13-\mathrm{H}$), $5.23(1 \mathrm{H}, \mathrm{dd}, J 10.9$ and $6.3,12-\mathrm{H}), 4.75(1 \mathrm{H}, \mathrm{d}, J 16.1$, $\left.8-\mathrm{H}_{\mathrm{A}}\right), 4.05\left(1 \mathrm{H}, \mathrm{d}, J 16.1,8-\mathrm{H}_{\mathrm{B}}\right), 3.70\left(1 \mathrm{H}, \mathrm{d}, J 13.2,17-\mathrm{H}_{\mathrm{A}}\right), 3.62(1 \mathrm{H}, \mathrm{d}, J 13.2,17-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.0\right.$ and $\left.5.9, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.7.4, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right)$, $3.37\left(1 \mathrm{H}, \mathrm{ddd}, J 15.3,11.6\right.$ and $\left.4.9,10-\mathrm{H}_{\mathrm{A}}\right), 2.93(1 \mathrm{H}$, ddd, $J 15.3,10.9$, and 6.2, $10-$ H_{B}), 2.65-2.61 ($1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}$), 2.20-1.99 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and 11-H), 1.98-1.86 ($2 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}$), 1.06 ($\left.14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 323 \mathrm{~K}\right)$ Exists as atropisomers 139.7, 138.4, 138.2, 133.4, 130.5, 130.1, 129.5, 129.2, 128.6, 128.2, 128.0, 127.7 (12 or 13-C), 127.4 (12 or 13-C), 127.2, 126.6, 120.4 (q, J325, CF ${ }_{3}$), 65.3 ($\mathrm{CH}_{2} \mathrm{OSi}$), 61.2 (15-C), 51.2 ($8-\mathrm{C}$), 51.0 (10-C), 50.9 (17-C); 28.2 (11-C), 28.1 (14-C), $25.6\left(\mathrm{t}, \mathrm{J} 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.00\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3058, 3009, 2946, 2868, 1461, 1441, 1387, 1274, 1265 and 1227; m/z (ES ${ }^{+}$) $1015.2\left(100 \%,[M+H]^{+}\right)$; found 1015.2460, $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ requires $M H 1015.2439$
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl \{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl]amino\}methyl)thiophen-2-yl]methyl\}carbamate 275

Following general procedure $\mathbf{N} 1$; thiophenol ($68 \mathrm{mg}, 0.62 \mathrm{mmol}$), sulfonamide $\mathbf{2 1 2}$ (90 $\mathrm{mg}, 0.062 \mathrm{mmol}$) and potassium carbonate ($20 \mathrm{mg}, 0.15 \mathrm{mmol}$) gave the crude product
after 2 h . The crude product was purified by F-SPE to give the amine 275 (58 mg , $0.054 \mathrm{mmol}, 87 \%,>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow foam; $R_{\mathrm{f}} 0.46$ ($80: 20$, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.4, DMB), 6.77-6.68 (2H, m, Thio 3 and 4-H), 6.44 ($1 \mathrm{H}, \mathrm{s}, \mathrm{DMB}$), 6.43 ($1 \mathrm{H}, \mathrm{s}, \mathrm{DMB}$), 5.86 (1H, ddt, J 16.4, 10.9 and 5.4, propenyl 2-H), 5.76 (1H, ddt, J 17.5, 10.6, and 7.8, $4-\mathrm{H}), 5.22\left(1 \mathrm{H}, \mathrm{dd}, J 17.5\right.$ and 1.8, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.13(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and 1.7, propenyl $3-\mathrm{H}_{\mathrm{B}}$), $5.07\left(1 \mathrm{H}, \mathrm{d}, ~ J 16.4,5-\mathrm{H}_{\mathrm{A}}\right), 5.06\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.9,5-\mathrm{H}_{\mathrm{B}}\right), 4.46-4.31(4 \mathrm{H}, \mathrm{m}$, $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$ and propyl $\left.1-\mathrm{H}_{\mathrm{AB}}\right), 3.98-3.92\left(4 \mathrm{H}, \mathrm{m}\right.$, propenyl $1-\mathrm{H}_{2}$ and $\left.\mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.78$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, $3.66-3.58\left(5 \mathrm{H}, 1-\mathrm{H}\right.$, propyl $3-\mathrm{H}_{\mathrm{AB}}$ and $2-\mathrm{H}$), $2.75(1 \mathrm{H}, \mathrm{p}, \mathrm{J} 5.9,2-\mathrm{H})$, 2.28-2.18 (2H, 3- H_{AB}), 2.17-2.05 (2H, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.04\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, $0.88-0.83\left(2 \mathrm{H}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.8$ (DMB 4-C), 158.5 (DMB 2-C), 144.5 (Thio 2-C), 140.3 (Thio 5-C), 135.3 (propenyl 2-C), 135.1 (DMB 6-C), 129.1 (4C); 125.3 (DMB 1-C), 124.4 (Thio 4-C), 120.3 (Thio 3-C), 117.4 (propenyl 3-C), 116.6 (5-C), 104.3 (DMB 5-C), 98.8 (DMB 3-C), 77.3 (propenyl 1-C), 72.0 (1-C), 70.6 (propyl $3-\mathrm{C}), 2 \times 65.3\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right.$ and $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), $57.9(2-\mathrm{C}), 55.5(\mathrm{OMe}), 55.4(\mathrm{OMe}), 46.4$ (propyl 1-C), 38.4 (propyl 2-C), 35.9 (3-C), 25.6 (t, J 25, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 17.6 $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.5\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.06\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3325, 2914 , 2746, 1927, 1720, 1661, 1455, 1275; m/z (ES ${ }^{+}$) 1065.3 (100\%, [M+H] ${ }^{+}$); found 1065.3109, $\mathrm{C}_{42} \mathrm{H}_{53} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6}$ SSi requires MH 1065.3122

[2-(Prop-2-en-1-yloxy)phenyl]methyl

$N-\{[5-(\{[(2 R)-1-$

\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl]amino\}methyl)thiophen-2-yl]methyl\}carbamate $211^{\text {D }}$

Following general procedure N1; thiophenol (286 mg , 2.6 mmol), sulfonamide 211 (350 $\mathrm{mg}, 0.26 \mathrm{mmol}$) and potassium carbonate ($90 \mathrm{mg}, 0.52 \mathrm{mmol}$) gave the crude product after 4 h . The crude product was purified by F-SPE to give the amine 211^{D} (220 mg , $0.22 \mathrm{mmol}, 86 \%$, $>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.37$ (80:20, petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.34$ (1H, dd, J7.5 and 1.8, Ar), 7.29-7.24 (1H, m, Ar), 6.94 (1H, td, J 7.5 and 1.8, Ar), 6.87 (1 H , dd, J 8.4, Ar), 6.79-6.77 (1H, br s, Ar), 6.72 ($1 \mathrm{H}, \mathrm{dd}, J 3.3, \mathrm{Ar}$), 6.04 ($1 \mathrm{H}, \mathrm{ddt}, J 17.4,10.4$ and 5 , propenyl 2-H), 5.77 (1 H , ddt, $J 17.3,10.3$ and $7.1,4-H), 5.41(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and 1.7, propenyl $3-\mathrm{H}_{A}$), $5.26\left(1 \mathrm{H}\right.$, dd, $J 10.4$ and 1.7 , propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, $5.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.3,5-\mathrm{H}_{\mathrm{A}}\right), 5.05-5.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}\right.$ and $\left.5-\mathrm{H}_{\mathrm{B}}\right), 4.56(2 \mathrm{H}, \mathrm{dt}, J 5.1$ and 1.7 ,
propenyl 1-H2), $4.49\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 3.95\left(2 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{NHCH}_{2}\right.$ Thio $), 3.63$ (1 H , dd, J 9.9 and $\left.5.1,1-\mathrm{H}_{\mathrm{A}}\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J 9.9\right.$ and $\left.5.9,1-\mathrm{H}_{\mathrm{B}}\right), 2.76(1 \mathrm{H}, \mathrm{p}, J 5.9,2-$ $\mathrm{H})$, 2.27-2.18 $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}\right)$, 2.17-2.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); 1.04-1.00 (14H, m, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.86-0.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.7$ (phenyl 1 C), 144.7, 144.6, 140.4, 135.4 (4-C), 133.4 (propenyl 2-C), 129.8, 129.6, 129.3, 125.6, 125.3, 124.6, 120.9, 117.7 (5-C), 117.5 (propenyl 3-C), 111.9, 69.1 (propenyl 1-C), 65.3 (1-C), $62.7\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 57.9(2-\mathrm{C}), 46.5$ ($\left.\mathrm{ThioCH}_{2} \mathrm{NCO}\right), 40.5\left(\mathrm{NHCH}_{2}\right.$ Thio), 36.1 $(3-\mathrm{C}), 25.7$ (t, J 25, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3326, 2945, 2159, 2029, 1719, 1494, 1458; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 977.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $977.2703, \mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}$ requires MH 977.2671

N-(But-3-en-1-yl)-1,1,1-trifluoro-N-\{[2-(\{[(2R)-1-

\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl]amino\}methyl)phenyl]methyl\}methanesulfonamide $209{ }^{\text {D }}$

Following general procedure N1; thiophenol ($429 \mathrm{mg}, 3.9 \mathrm{mmol}$), sulfonamide 209 (450 $\mathrm{mg}, 0.39 \mathrm{mmol}$) and potassium carbonate ($161 \mathrm{mg}, 1.17 \mathrm{mmol}$) gave the crude product after 4 h . The crude product was purified by F-SPE to give the amine $209^{\text {D }}$ (385 mg , $0.39 \mathrm{mmol}, 100 \%$, $>89 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; R_{f} : 0.79 ($80: 20$, petrol-EtOAc); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.46-7.29(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 5.84(1 \mathrm{H}, \mathrm{ddt}, J 17.4,10.4$ and $7.1,4-\mathrm{H}), 5.59(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.3$ and $6.8,3-$ H), $5.12\left(1 \mathrm{H}, \mathrm{d}, J 17.4,5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J 10.4,5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 5.02\left(1 \mathrm{H}, \mathrm{d}, J 10.3,4-\mathrm{H}_{\mathrm{A}}\right)$, 4.97 (1H, dd, J 17.1 and 1.7, 4-HB), 4.81 (2H, br s, $\mathrm{PhCH}_{2} \mathrm{NTf}$), 3.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5$, $\left.\mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right), 3.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5, \mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}\right), 3.71\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.9\right.$ and $\left.5.1,1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.64$ ($1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 5.7, $1^{\prime}-\mathrm{H}_{\mathrm{B}}$), $3.42\left(2 \mathrm{H}, \mathrm{t}, J 7.9,1-\mathrm{H}_{2}\right), 2.79(1 \mathrm{H}$, ap p, J 5.8, 2'-H), 2.39-2.23 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}$), 2.23-2.03 (4H, m, $2-\mathrm{H}_{2}$ and $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.08(14 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.94-0.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.9,135.6$, 133.8, 133.6, 130.1, 129.0, 128.7, 128.2, 120.5 (q, J 324.1, CF_{3}), 117.9 (5'-C), 115.5 (4-C), 65.2 (1 '-C), $59.2(2-\mathrm{C}), 49.9\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 49.7\left(\mathrm{PhCH}_{2} \mathrm{NTf}\right), 48.4$ (1-C), 36.2 (3'C), $33.2(2-\mathrm{C}), 25.7\left(\mathrm{t}, \mathrm{J} 23.7, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2870, 1642, 1461, 1389, 1275 and $1261 ; m / z\left(\mathrm{ES}^{+}\right) 967.2$ (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $967.2465, \mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ requires MH 967.2439

Following general procedure $\mathbf{N} 1$; thiophenol ($572 \mathrm{mg}, 5.2 \mathrm{mmol}$), sulfonamide $\mathbf{2 3 4}$ (700 $\mathrm{mg}, 0.52 \mathrm{mmol}$) and potassium carbonate ($180 \mathrm{mg}, 1.3 \mathrm{mmol}$) gave the crude product after 4 h . The crude product was purified by F-SPE to give the amine 234^{D} (410 mg , $0.42 \mathrm{mmol}, 81 \%$, $>84 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.24$ (60:40, petrol-EtOAc); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.71-7.20(6 \mathrm{H}, \mathrm{m}$, Ar), 7.01-6.84 (2H, m, Ar), 6.05 (1H, ddt, J 17.1, 10.3 and $4.8,4-H), 5.79(1 H, ~ d d t, J$ 17.7, 10.3 and 7.3 , propenyl $2-\mathrm{H}), 5.43\left(1 \mathrm{H}\right.$, ddt, $J 17.1$ and $\left.1.8,4-\mathrm{H}_{\mathrm{A}}\right), 5.31-5.21(3 \mathrm{H}$, $\mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}$ and $\left.4-\mathrm{H}_{\mathrm{B}}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 17.7\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.06(1 \mathrm{H}, \mathrm{d}, J 10.3$, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 4.57(2 \mathrm{H}, \mathrm{d}, J 4.7), 4.54-4.39(2 \mathrm{H}, \mathrm{m}),, 3.89\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right)$, $3.80\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}\right), 3.75\left(1 \mathrm{H}, \mathrm{dd}, J 10\right.$ and $\left.4.7,1-\mathrm{H}_{\mathrm{A}}\right), 3.61(1 \mathrm{H}, \mathrm{dd}, J 10$ and $\left.5.5,1-\mathrm{H}_{\mathrm{B}}\right), 2.81(1 \mathrm{H}$, ap $\mathrm{p}, \mathrm{J} 5.6,2-\mathrm{H}), 2.35-2.25\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}\right), 2.23-2.02(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.04\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, $0.91-0.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 138.5, 133.6, 130.5, 129.4, 129.2, 128.3, 120.9, 118.0 (propenyl 3-C), 117.4 (5-C), 111.9 (Ar 3-C), 69.1 (propenyl 1-C), 64.6 (1-C), $62.1\left(\mathrm{PhOCH}_{2}\right)$, 59.2 (2C), $50.6\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 44.4\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 36.2(3-\mathrm{C}), 17.9\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.8$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.14\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, CO missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3054, 2987, 2305, 1713, 1455, 1275 and 1262; $m / z\left(\mathrm{ES}^{+}\right) 971.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 971.3153, $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ Si requires MH 971.3106
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl
\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl]amino\}methyl)phenyl]methyl\}carbamate 235 ${ }^{\text {D }}$

Following general procedure $\mathbf{N 1}$; thiophenol ($246 \mathrm{mg}, 2.2 \mathrm{mmol}$), sulfonamide 235 (320 $\mathrm{mg}, 0.22 \mathrm{mmol}$) and potassium carbonate ($76 \mathrm{mg}, 0.55 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE to give the amine 235^{D} (123 mg , $0.116 \mathrm{mmol}, 57 \%$, $>82 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.49$ ($70: 30$, petrol—EtOAc); $\delta_{\mathrm{H}}\left(300 \mathrm{MHZ} ; \mathrm{CDCl}_{3}\right)$ very broad 7.427.00 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.46-6.34 (2H, m, Ar), 5.91-5.68 (2H, m, 4-H and propenyl 2-H), 5.24$5.01\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right.$ and propenyl $\left.3-\mathrm{H}_{\mathrm{AB}}\right), 4.42-4.23\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right.$ and propyl 1$\mathrm{H}_{\mathrm{AB}}, 3.92(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9$, propenyl 1-H2$), 3.83-3.67\left(11 \mathrm{H}, 2 \times \mathrm{OMe}, 1-\mathrm{H}_{\mathrm{A}}\right.$, propyl 2-H, propyl $3-\mathrm{H}_{\mathrm{AB}}, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}$), 3.66-3.51 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{B}}$ and $\mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}$), 2.74 ($1 \mathrm{H}, \mathrm{p}, \mathrm{J} 5.8$, 2$\mathrm{H})$, 2.25-2.00 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $3-\mathrm{H}_{\mathrm{AB}}$), $1.04\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.9-0.83$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.7,158.6,138.4,135.3,130.2,129.2$, 128.3, 128.0, 120.5, 117.8, 116.7, 104.2, 98.8, 72.1 (propyl 3-C), 70.7 (propyl 1-C), 64.5 (1-C), $59.2(2-\mathrm{C}), 55.5(\mathrm{OMe}), 55.4(\mathrm{OMe}), 50.5\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 38.5$ (propyl 2-C), $36.2(3-\mathrm{C}), \quad 17.7\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 17.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 12.5 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2947, 2868, 1719, 1546, 1275, 1260, 1153; m/z (ES ${ }^{+}$) 1059.4 ($100 \%,[\mathrm{M}+\mathrm{H}]^{+}$); found 1059.3661, $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$ requires $M H 1059.3631$
$N-[(2 R, 3 R)-3-[($ Tert-butyldimethylsilyl)oxy]-2-methylhept-6-en-1-yl]-1,1,1-trifluoro-$N-\{[2-(\{[(2 R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-$ heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2yl]amino\}methyl)phenyl]methyl\}methanesulfonamide $236^{\text {D }}$

Following general procedure $\mathbf{N 1}$; thiophenol ($246 \mathrm{mg}, 2.2 \mathrm{mmol}$), sulfonamide $\mathbf{2 3 6}$ (600 $\mathrm{mg}, 0.45 \mathrm{mmol}$) and potassium carbonate ($123 \mathrm{mg}, 0.89 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE to give the amine 236^{D} (250 mg , $0.22 \mathrm{mmol}, 48 \%$, $>88 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.33$ ($80: 20$, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.41(1 \mathrm{H}, \mathrm{d}, J 7.6$, Ar), 7.33 ($1 \mathrm{H}, \mathrm{dt}, J 7.5$ and 4.3, Ar), 7.30-7.26 (2H, m, Ar), 5.82 (1 H , ddt, J 17.3, 10.2 and 7, 4'-H), 5.68 (1 H , ddt, J 16.9, 10.4 and 6.5, 6-H), 5.12 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{NTf}$), 5.10 $\left(1 \mathrm{H}, \mathrm{d}, ~ J 17.3,5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 5.09\left(1 \mathrm{H}, \mathrm{d}, J 10.2,5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, J 10.4,7-\mathrm{H}_{\mathrm{A}}\right), 4.90(1 \mathrm{H}$, d, J 16.9, $7-\mathrm{H}_{\mathrm{B}}$), $3.86\left(1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right), 3.81\left(1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}\right), 3.70-$ $3.63\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 3.44\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}_{\mathrm{A}}\right), 3.37\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.3-\mathrm{H}\right), 2.76(1 \mathrm{H}, \mathrm{p}, \mathrm{J}$ $5.9,2-H), 2.31\left(1 \mathrm{H}, \mathrm{dt}, J 13.5\right.$ and $\left.6.3,3-\mathrm{H}_{A}\right), 2.22\left(1 \mathrm{H}, \mathrm{dt}, J 13.5\right.$ and $\left.6.5,3^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.20-$ $2.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.80-1.68\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right), 1.50-1.34\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{AB}}\right.$ and 2H), 1.09-1.04 ($\left.14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, $0.93-0.86\left(2 \mathrm{H}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 0.81(12 \mathrm{H}$, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$ and Me$), 0.00\left(3 \mathrm{H}, \mathrm{SiCH}_{3}\right),-0.08\left(3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.35$, 138.24, 135.6, 133.9, 130.3, 130.0, 129.1, 128.7, 128.4, 128.1; 120.5 (q, J 325, CF ${ }_{3}$), 117.6 (5 '-C), 114.9 ($7-\mathrm{C}$), 73.3 (3-C), 65.2 ($1^{\prime}-\mathrm{C}$), 59.1 (2'-C), 53.9 (1-C), 50.0 $\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 36.2\left(3{ }^{\prime}-\mathrm{C}\right), 35.9(2-\mathrm{C}), 33.5(4-\mathrm{C}), 30.0(5-\mathrm{C}), 26.0\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.2$ $\left(\mathrm{SiCH}_{3}\right), 17.7\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 11.0(\mathrm{Me}), 0.25\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right),-3.9$ $\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2950, 2867, 1642, 1464, 1391, 1227; m/z (ES $\left.{ }^{+}\right)$ $1153.4\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $1153.3828, \mathrm{C}_{44} \mathrm{H}_{64} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}_{2}$ requires MH 1153.3879

Following general procedure $\mathbf{N} \mathbf{1}$; thiophenol ($517 \mathrm{mg}, 4.7 \mathrm{mmol}$), sulfonamide 114 (630 $\mathrm{mg}, 0.47 \mathrm{mmol}$) and potassium carbonate ($194 \mathrm{mg}, 1.4 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE to give the amine 116 (397 mg , $0.41 \mathrm{mmol}, 87 \%,>85 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.41$ ($50: 50$, petrol-EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.40-7.15(6 \mathrm{H}, \mathrm{m}$, Ar), $6.94(1 \mathrm{H}, \mathrm{ap} \mathrm{t}, \mathrm{J} 7.5, \mathrm{Ar}), 6.87(1 \mathrm{H}, \mathrm{d}, ~ J 8.5, \mathrm{Ar}), 6.04(1 \mathrm{H}, \mathrm{ddt}, J 17,10.2$ and 5 , propenyl $2-\mathrm{H}$), 5.78 (1 H , ddt, $J 16.3,10.6$ and $7.1,4-\mathrm{H}$), 5.41 ($1 \mathrm{H}, \mathrm{dd}, J 17$ and 1.7, propenyl $3-\mathrm{H}_{\mathrm{A}}$), 5.28-5.23 (3H, m, propenyl $3-\mathrm{H}_{\mathrm{B}}$ and $\mathrm{PhCH}_{2} \mathrm{O}$), 5.11-5.04 (2H, m, 5$\left.\mathrm{H}_{\mathrm{AB}}\right), 4.57\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.8\right.$, propenyl $\left.1-\mathrm{H}_{2}\right), 4.38\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 3.83(1 \mathrm{H}, \mathrm{d}$, $\left.J 13.3, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right), 3.77\left(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right), 3.65-3.59\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{AB}}\right), 2.72(1 \mathrm{H}$, p, J 6, 2-H), 2.28-2.16 (2H, m, 3- H_{AB}), 2.17-2.00 (2H, m, C ${ }_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.03(14 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.89-0.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.6(\mathrm{CO})$, 141.3 (Ar), 138.9 (Ar), 135.5 (4-C), 133.4 (propenyl 2-C), 129.9, 129.6, 129.1, 127.5, 127.4, 126.4, 125.4, 120.9, 117.6 (5-C), 117.4 (propenyl 3-C), 111.9, 69.1 (propenyl 1 C), 65.4 ($1-\mathrm{C}$), $62.6\left(\mathrm{PhOCH}_{2}\right), 58.5(2-\mathrm{C}), 45.4\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 36.1$ (3-C), 25.7 $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $17.8\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.27\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2945, 2869, 1710, 1456, 1242, 1207; m/z (ES ${ }^{+}$) $971.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 971.3098, $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires MH 970.3028
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl
\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl]amino\}methyl)phenyl]methyl\}carbamate 237 ${ }^{\text {D }}$

Following general procedure $\mathbf{N 1}$; thiophenol ($378 \mathrm{mg}, 3.43 \mathrm{mmol}$), sulfonamide 237 ($491 \mathrm{mg}, 0.34 \mathrm{mmol}$) and potassium carbonate ($94 \mathrm{mg}, 0.69 \mathrm{mmol}$) gave the crude product after 3 h . The crude product was purified by F-SPE to give the amine 237^{D} (260 mg, $0.25 \mathrm{mmol}, 72 \%$, $>89 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.52$ ($50: 50$, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.34-7.16 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.15-7.10 (1H, m, Ar), 6.45-6.42 (2H, m, DMB 3 or 5), $5.86(1 \mathrm{H}$, ddt, $J 16.2,10.7$ and 5.5 , propenyl $2-H), 5.78(1 \mathrm{H}, \mathrm{ddt}, J 17.5,10.4$ and $3.6,4-\mathrm{H}), 5.22$ (1 H , dd,$J 17.5$ and $\left.1.8,5-\mathrm{H}_{A}\right), 5.13\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.1.8,5-\mathrm{H}_{\mathrm{B}}\right), 5.08(1 \mathrm{H}, \mathrm{d}, J 16.2$, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.07\left(1 \mathrm{H}, \mathrm{d}, ~ J 10.7\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 4.88(1 \mathrm{H}$, br s, NH), $4.42(1 \mathrm{H}, \mathrm{dd}, J$ 10.5 and 5.3 , propyl $\left.1-\mathrm{H}_{\mathrm{A}}\right), 4.36\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and 5.7 , propyl $\left.1-\mathrm{H}_{\mathrm{B}}\right), 4.32(2 \mathrm{H}, \mathrm{d}, J$ 5.8, $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), 3.98-3.91 (2H, br s, propenyl 1- H_{2}), 3.84-3.74 ($8 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OMe}, 1-$ H_{AB} and $\left.\mathrm{NHCH}_{\mathrm{AB}} \mathrm{Ph}\right)$, 3.65-3.59 (3H, m, propyl 3- H_{AB} and propyl 2-H), 2.76-2.69 $(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 2.30-2.19\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}\right), 2.17-2.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.04(14 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.88-0.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.9$, 158.6, 156.9, 141.4, 141.3, 141.2, 138.9, 135.5, 135.2, 129.2, 129.0, 128.9, 127.6, 127.4 , 126.9, 126.4, 125.9, 120.3 (Ar), 117.6 (5-C), 116.9 (propenyl 3-C), 104.3 (DMB 3 or 5), 98.9 (DMB 3 or 5), 80.2, 72.2 (propenyl 1-C), 70.7 (1-C), 65.6 (propyl 3-C), 65.4 (propyl 1-C), $58.5(2-\mathrm{C}), 55.6(\mathrm{OMe}), 51.7\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 45.3\left(\mathrm{PhCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 38.4$ (propyl 2-C), $36.1(3-\mathrm{C}), 25.6 \quad\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 17.7 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2946, 2868, 1718, 1508, 1243, 1208; m/z (ES $\left.{ }^{+}\right) 1059.3$ ($100 \%,[\mathrm{M}+\mathrm{H}]^{+}$); found 1059.3588, $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$ requires MH 1059.3631

N-(But-3-en-1-yl)-1,1,1-trifluoro- N-\{[3-(\{[(2R)-1-

\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4'-en-2'-yl]amino\}methyl)phenyl]methyl\}methanesulfonamide $238{ }^{\text {D }}$

Following general procedure $\mathbf{N} 1$; thiophenol ($248 \mathrm{mg}, 2.25 \mathrm{mmol}$), sulfonamide 238 ($520 \mathrm{mg}, 0.45 \mathrm{mmol}$) and potassium carbonate ($124 \mathrm{mg}, 0.9 \mathrm{mmol}$) gave the crude product after 3 h . The crude product was purified by F-SPE to give the amine 238 ${ }^{\text {D }}$ ($420 \mathrm{mg}, 0.43 \mathrm{mmol}, 96 \%$, >99\% purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.55$ (70:30, petrol-EtOAc); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; CDCl_{3}) 7.35-7.21 (4H, m, Ar), 5.78 ($1 \mathrm{H}, \mathrm{ddt}, ~ J 17.4,10.4$ and 7.1, 4'-H), 5.60 (1 H , ddt, J 17.1, 10.3 and $6.8,3-\mathrm{H})$, $5.11-4.97\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.5{ }^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 4.52(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, PhCH ${ }_{2} \mathrm{NTf}$), 3.85 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right), 3.81$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4, \mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}$), $3.63(2 \mathrm{H}$, qd, J 9.9 and 5.5, $\left.1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.32\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8,1-\mathrm{H}_{\mathrm{B}}\right), 2.75-2.69\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.31-2.17$ ($4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}$ and $3^{\prime}-\mathrm{H}_{2}$), 2.17-2.06 (2H, m, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; $1.04\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$, 0.88-0.84 (2H, m, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 135.2$ (Ar), 134.4 (Ar), 133.4 (Ar), 129.1 (Ar), 128.3 (Ar), 128.0 (4-C), 127.0 (3-C), 117.9 (4-C or 5'-C), 117.4 (4-C or 5'C), 65.1 (1 '-C), 58.1 (2'-C), 52.1 ($\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right), 51.3\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 47.4$ (1-C), $35.8(2-\mathrm{C})$, $32.5 \quad\left(3^{\prime}-\mathrm{C}\right), \quad 17.5 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 17.4 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 12.3 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 0.29$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2946, 2869, 1642, 1463, 1391, 1226; m/z (ES $\left.{ }^{+}\right) 967.2$ ($100 \%,[\mathrm{M}+\mathrm{H}]^{+}$); found $967.2485, \mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ requires MH 967.2439
$N-[(2 R, 3 R)-3-[($ Tert-butyldimethylsilyl)oxy]-2-methylhept-6-en-1-yl]-1,1,1-trifluoro-$N-\{[3-(\{[(2 R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-$ heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4'-en-2'yl]amino\}methyl)phenyl]methyl\}methanesulfonamide 239 ${ }^{\text {D }}$

Following general procedure $\mathbf{N} 1$; thiophenol ($163 \mathrm{mg}, 1.49 \mathrm{mmol}$), sulfonamide 239 ($400 \mathrm{mg}, 0.30 \mathrm{mmol}$) and potassium carbonate ($82 \mathrm{mg}, 0.59 \mathrm{mmol}$) gave the crude product after 2 h . The crude product was purified by F-SPE to give the amine $239^{\text {D }}$ ($330 \mathrm{mg}, 0.29 \mathrm{mmol}, 96 \%$, $>95 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.45$ ($60: 40$, petrol-EtOAc); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; CDCl_{3}) 7.33-7.28 (3H, m, Ar), 7.25-7.19 (1H, m, Ar), 5.80 ($1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.1$ and $\left.7.1,4^{\prime}-\mathrm{H}\right), 5.71(1 \mathrm{H}, \mathrm{ddt}, J 16.9,10.3$ and $6.6,6-\mathrm{H}), 5.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.2,5^{\prime}-\mathrm{H}_{A}\right), 5.07$ $\left(1 \mathrm{H}, \mathrm{d}, J 10.1,5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.94\left(1 \mathrm{H}, \mathrm{d}, J 16.9,7-\mathrm{H}_{\mathrm{A}}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.3,7-\mathrm{H}_{\mathrm{B}}\right), 4.65-4.41$ (2H, br m, PhCH ${ }_{2} \mathrm{NTf}$), 3.84-3.81 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{Ph}$), $3.65(2 \mathrm{H}, \mathrm{dd}, J 7.8$ and 5.5, 1'$\left.\mathrm{H}_{2}\right), 3.46(1 \mathrm{H}, \mathrm{td}, J 6.5$ and $2.7,3-\mathrm{H}), 3.38-3.31\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}\right), 3.27(1 \mathrm{H}, \mathrm{dd}, J 14.1$ and 4.2, 1-HB), 2.77-2.71 ($1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}$), 2.32-2.18 (2H, m, $3^{\prime}-\mathrm{H}_{\mathrm{AB}}$), 2.19-2.07 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.88-1.83\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right), 1.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}), 1.50-1.37\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{AB}}\right)$, $1.05\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.9-0.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.84$ (9H, s, TBS), 0.81 (3H, d, J 6.7, CH ${ }_{3}$), $-0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}),-0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 141.8$, 137.9, 135.3 (6-C), 134.9 ($\left.4^{\prime}-C\right), 128.9,128.0,127.9,126.8,117.1$ ($\left.5^{\prime}-C\right), 114.7$ (7-C), 75.3 (3-C), 65.4 ($\left.1^{\prime}-\mathrm{C}\right), 58.4\left(2^{\prime}-\mathrm{C}\right), 51.4$ ($\left.\mathrm{NHCH}_{2} \mathrm{Ph}\right), 35.9$ (3'-C), 35.7 ($5-\mathrm{C}$), 33.3 (4-C), $29.8(2-\mathrm{C}), 25.8 \quad\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.9 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.5 \quad\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 10.9\left(\mathrm{CH}_{3}\right),-4.22(\mathrm{TBS}),-4.76(\mathrm{TBS}), \mathrm{PhCH}_{2} \mathrm{Tf}$ and $1-\mathrm{C}$ missing; $v_{\text {max }} / \mathrm{cm}$ ${ }^{1}$ (film) 2948, 2868, 1642, 1548, 1464, 1204; m/z (ES ${ }^{+}$) 1153.4 (100\%, [M+H] ${ }^{+}$); found 1153.3903, $\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ requires MH 1153.3879
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl
$N-(\{2-[2-(\{[(2 R)-1-$
\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4-en-2-yl]amino\}methyl)phenyl]phenyl\}methyl)carbamate 240 ${ }^{\text {D }}$

Following general procedure $\mathbf{N} \mathbf{1}$; thiophenol ($319 \mathrm{mg}, 2.9 \mathrm{mmol}$), sulfonamide $\mathbf{2 4 0}$ (450 $\mathrm{mg}, 0.29 \mathrm{mmol}$) and potassium carbonate ($120 \mathrm{mg}, 0.87 \mathrm{mmol}$) gave the crude product after 4 h . The crude product was purified by F-SPE to give the amine 240^{D} (335 mg , $0.28 \mathrm{mmol}, 98 \%,>92 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.33$ ($60: 40$, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) Atropisomers denoted in italics where possible 7.57-7.23 (7H, m, Ar), 7.21-7.03 (4H, m, Ar), 6.44$6.39(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.83(1 \mathrm{H}, \mathrm{ddt}, J 17.3,10.2$ and 5.5 , propenyl 2H), $5.64\left(0.5 H, d d t, J 17.1,10.1\right.$ and $\left.7,4-H^{\text {min }}\right), 5.52(0.5 \mathrm{H}, \mathrm{ddt}, J 17.3,10.1$ and $7.2,4-$ $\mathrm{H}), 5.18\left(1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and 1.9, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.08(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 1.5 , propenyl $3-\mathrm{H}_{\mathrm{B}}$), 5.02-4.84 $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right)$, 4.42-4.26 $\left(1 \mathrm{H}, \mathrm{m}\right.$, propyl 3- H_{A}), 4.26-4.08 $\left(1 \mathrm{H}, \mathrm{m}\right.$, propyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 3.90\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9\right.$, propenyl 1- $\left.\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}^{\mathrm{min}}\right), 3.65-3.38\left(8 \mathrm{H}, 1-\mathrm{H}_{\mathrm{A}}\right.$, propyl 1- H_{AB} and $2-\mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}$, $\left.\mathrm{N}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{Ph}\right), 3.30-3.18\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{B}}\right), 2.67-2.62\left(2-\mathrm{H}^{\mathrm{min}}\right), 2.57-2.47(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, 2.22-1.98 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $\left.3-\mathrm{H}_{\mathrm{AB}}\right), 1.01\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.98(\mathrm{~s}$, $\left.\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{\mathrm{min}}\right), 0.97-0.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.8$ (DMB 4C), 158.7, 158.6 (DMB 2-C), 156.9 (CO), 141.4, 140.7, 140.4, 140.3, 140.2, 137.7, 137.2 (4-C or propenyl 2-C), 135.4, 135.2, 134.0 (4-C or propenyl 2-C), 130.9, 130.8, $130.2,129.9,129.8,129.7,129.6,129.5,129.2,129.1,128.9,128.4,128.4,128.2$, 127.8, 127.7, 127.5, 127.4, 127.3, 127.2, 120.5, 117.8 (propenyl 3-C or 5-C), 117.3 (propenyl 3-C or 5-C), 116.7 (propenyl 3-C or 5-C), 104.3 (DMB 5-C), 98.8 (DMB 3-C), 98.79 (DMB 3-C), 72.1 (propenyl 1-C), 70.8 (1-C), 64.8 (propyl 3-C); 60.1, 60.0 (Propyl 1-C), 59.4, 59.24 (2-C), 55.5 (2 x OMe), 49.5 (CN(CO)Ph), 49.4 (CN(CO)Ph), 43.2, 42.7 (NHCPh), 38.5 (propyl 2-C), 35.9 (3-C), 35.3 (3-C); $25.7\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 17.7$ $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.01\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 2944, 2867, 1697, 1508, 1464, 1275, 1260; m/z (ES ${ }^{+}$) 1135.4 (100\%, [M+H] $]^{+}$); found 1135.3972, $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{~F}_{17} \mathrm{~N}_{2} \mathrm{O}_{6}$ Si requires MH 1135.3944

N-(But-3-en-1-yl)-1,1,1-trifluoro- N -(\{2-[2-(\{[(2R)-1-
 \{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-
 yl)silyl]oxy\}pent-4'-en-2'-
 yl]amino\}methyl)phenyl]phenyl\}methyl)methanesulfonamide $241^{\text {D }}$

Following general procedure $\mathbf{N} 1$; thiophenol ($177 \mathrm{mg}, 1.61 \mathrm{mmol}$), sulfonamide $\mathbf{2 4 1}$ ($409 \mathrm{mg}, 0.32 \mathrm{mmol}$) and potassium carbonate ($89 \mathrm{mg}, 0.64 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE to give the amine $\mathbf{2 4 1}{ }^{\mathrm{D}}$ ($324 \mathrm{mg}, 0.30 \mathrm{mmol}, 93 \%$, $>83 \%$ purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.37$ ($70: 30$, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $323 \mathrm{~K}) 7.57$ (1H, d, J 7.8, Ar), 7.49 (1H, d, J 8.5, Ar), 7.47 (1H, d, J7.6, Ar), 7.42 (1H, td, J 7.6 and 1.3, Ar), 7.39-7.34 (1H, m, Ar); 7.30 ($1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}$), 7.19 ($1 \mathrm{H}, \mathrm{td}, J 7.4$ and 1.2, Ar), $7.10(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 5.63\left(1 \mathrm{H}, \mathrm{ddt}, J 17.3,11.6\right.$ and $\left.7.1,4{ }^{\prime}-\mathrm{H}\right), 5.50(1 \mathrm{H}$, ddt, J 17.1, 10.3 and $6.8,3-H), 5.0-4.92\left(3 \mathrm{H}, \mathrm{m}, 4{ }^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{AB}}\right), 4.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.1$, 4'- H_{B}), 4.53 (1H, d, J 15.8, PhCH $\mathrm{A}_{\mathrm{A}} \mathrm{NTf}$), 4.13 (1H, d, J 15.8, PhCH B_{B} NTf), 3.53-3.47 (1H, $\left.\mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.45-3.38\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.\mathrm{NHCH}_{2} \mathrm{Ph}\right)$, $3.26\left(1 \mathrm{H}, \mathrm{dt}, J 14.8\right.$ and $\left.7.9,1-\mathrm{H}_{\mathrm{A}}\right)$, $3.15\left(1 \mathrm{H}, \mathrm{dtd}, J 14.8,7.8\right.$ and $\left.3.6,1-\mathrm{H}_{\mathrm{B}}\right), 2.52\left(1 \mathrm{H}, \mathrm{dp}, J 8.7\right.$ and $\left.5.9,2^{\prime}-\mathrm{H}\right), 2.20-1.93$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}, 3^{\prime}-\mathrm{H}_{2}\right.$ and $\left.2-\mathrm{H}_{2}\right), 1.01\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.86-0.79(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 323 \mathrm{~K}\right) 50: 50$ atropisomers 140.67, 140.65, 139.4, 139.3, 139.0, 138.9, 135.3 (4'-C), 135.2 (4'-C), 133.4 (3-C), 132.96, 132.93, 130.12, $130.08,129.50,129.47,129.2,129.1,128.3,128.2,128.12,128.06,127.8,127.1$, 127.0, 120.2 ($\mathrm{q}, \mathrm{J} 325, \mathrm{CF}_{3}$), 117.6 (4-C), 117.1 (4-C), 116.9 (5'-C), 65.4 (1'-C), 65.2 (1'-C), 58.89 (2'-C), 58.87 (2'-C), 49.5 (PhCNTf), 49.3 (PhCNH), 49.1 (PhCNH), 47.9 (1-C), 36.0 (2-C), 35.7 (2-C), 32.4 (3 '-C), 25.7 (t, J 25, $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 17.5 $\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.4\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.45\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.43\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00$ $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3065, 3005, 2947, 2868, 1642, 1462, 1388; m/z (ES ${ }^{+}$) $1043.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $1043.2794, \mathrm{C}_{40} \mathrm{H}_{47} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ SSi requires MH 1043.2752

$N-[(2 R, 3 R)-3-[($ Tert-butyldimethylsilyl)oxy]-2-methylhept-6-en-1-yl]-1,1,1-trifluoro-N-(\{2-[2-(\{[(2R)-1-\{[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)bis(propan-2-yl)silyl]oxy\}pent-4'-en-2'yl]amino\}methyl)phenyl]phenyl\}methyl)methanesulfonamide $243^{\text {D }}$

Following general procedure $\mathbf{N} 1$; thiophenol ($169 \mathrm{mg}, 1.54 \mathrm{mmol}$), sulfonamide 243 ($450 \mathrm{mg}, 0.31 \mathrm{mmol}$) and potassium carbonate ($85 \mathrm{mg}, 0.62 \mathrm{mmol}$) gave the crude product after 3 h . The crude product was purified by F-SPE to give the amine 243^{D} (437 mg, $0.34 \mathrm{mmol}, 111 \%$, >89\% purity as estimated using $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as a pale yellow oil; $R_{\mathrm{f}} 0.36$ (80:20, petrol—EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; 323 K) Atropisomers denoted where possible $7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{Ar}), 7.50-7.47(1 \mathrm{H}, \mathrm{m}$, Ar), 7.45 ($1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 1.3, Ar), 7.41 ($1 \mathrm{H}, \mathrm{tt}, J 7.7$ and $1.8, \mathrm{Ar}$), 7.36 (1 H , tdd, J 7.6, 2.4 and 1.4, Ar), 7.33-7.26 (1H, m, Ar), 7.19-7.13 (1H, m, Ar), 7.08 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5$ and 1.4, Ar), 5.75-5.57 (2H, m, 4'-H and 6-H), 4.99-4.89 (4H, m, 7- H_{AB} and $5^{\prime}-\mathrm{H}_{\mathrm{AB}}$), 4.69 ($0.5 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 16.1, $\mathrm{NTfCH}_{2} \mathrm{Ph}$), 4.62 (0.5 H , d, J 16.7, NTfCH ${ }_{2} \mathrm{Ph}$), 4.09-3.93 (1H, m, NTfC $H_{2} \mathrm{Ph}$), 3.53-3.29 (5H, m, 1-H2, 3-H and $\mathrm{NHCH}_{2} \mathrm{Ph}$), 3.23-3.07 (2H, m, 1'-H), 2.50 (1 H , ddd, J 7.7, 6.5 and 4.9, 2'-H), 1.47-1.35 ($6 \mathrm{H}, \mathrm{m}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}, 5^{\prime}-\mathrm{H}$ and $3^{\prime}-\mathrm{H}$), 1.65-1.55 (1H, m, 2-H), 1.46-1.35 (2H, m, 4-H2), $1.00\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.86-$ 0.79 (11H, TBS and $\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 0.70 (3H, d, J 6.8, Me), -0.04 (3H, TBS), -0.08 (3H, TBS); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 323 \mathrm{~K}\right)$ 50:50 atropisomers 140.4 (Ar), 140.3 (Ar), 139.7 (Ar), 139.6 (Ar), 139.5 (Ar), 139.2 (Ar), 138.2 (4' or 6-C), 138.1 (4' or 6-C), 135.5 (4' or $6-\mathrm{C}$), 135.4 (4' or 6-C), 133.7 (Ar), 133.2 (Ar), 130.4 (Ar), 130.1 (Ar), 129.5 (Ar), 129.4 (Ar), 129.3 (Ar), 129.2 (Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.5 (Ar), 127.4 (Ar), 127.2 (Ar), 127.1 (Ar), (120.5, q, J 325), 117.2 (5- or 7'-C), 117.0 (5 '- or 7-C), 114.9 (5 '- or 7-C), 114.8 (5 '- or 7-C), 73.6 (3-C), 73.3 (3-C), 65.5 (1 '-C), 65.3 ($\left.1^{\prime}-\mathrm{C}\right), 59.0$ (2'-C), 58.9 ($\left.2^{\prime}-\mathrm{C}\right), 54.9$ ($\mathrm{NTfCH}_{2} \mathrm{Ph}$), 53.0 ($\mathrm{NTfCH}_{2} \mathrm{Ph}$), $52.2(1-\mathrm{H}), 50.4(1-\mathrm{H}), 49.5\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 49.1\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 36.6(2-\mathrm{C})$, 36.2 (2-C), 35.9 (3'-C), 35.8 (3'-C), 29.9 (5-C), $29.8(5-\mathrm{C}), 26.0(4-\mathrm{C}), 25.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $25.6\left(\mathrm{t}, \mathrm{J} 25, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.6\left(\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $11.3(\mathrm{Me}), 10.7(\mathrm{Me}), 0.15\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{CH}_{2} \mathrm{CH}_{2}\right),-3.99\left(\mathrm{SiCH}_{3}\right),-4.01\left(\mathrm{SiCH}_{3}\right) ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 2950, 2867, 1738, 1641, 1548, 1464, 1390; m/z (ES ${ }^{+} 1229.4$ (100\%, [M+H] ${ }^{+}$); found 1229.4240, $\mathrm{C}_{50} \mathrm{H}_{68} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}_{2}$ requires MH 1229.4192

Following general procedure S2, tetra-n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the amine 211^{D} ($52 \mathrm{mg}, 0.053 \mathrm{mmol}$); on completion of the reaction the crude product was purified by column chromatography, eluting with EtOAc gave the amine 227 ($6 \mathrm{mg}, 0.014 \mathrm{mmol}, 27 \%$) as a yellow oil; $R_{\mathrm{f}} 0.1$ (EtOAc); $\alpha_{D}^{25} 4.8$ (c. $0.5, \mathrm{CHCl}_{3}$); δ_{H} ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.41-7.37 (1H, m, Ph 3-H), 7.34-7.29 (1H, m, Ph 5-H), $7.00(1 \mathrm{H}, \mathrm{ap}$ t, J 7.41, Ph 6-H), 6.92 (1H, d, J 8.22, Ph 4-H), 6.84 (1H, s, Thio 3 or $4-\mathrm{H}), 6.79$ (1H, s, Thio 3 or $4-H), 6.09$ (1 H , ddt, J 17.6, 10.2 and 5.5 , propenyl $2-\mathrm{H}$), 5.80 (1 H , ddt, J 16.6, 11.0 and $7.2,3-H), 5.46\left(1 H\right.$, dd, $J 17.6$ and 1.7, propenyl $\left.3-H_{A}\right), 5.32(1 H$, dd, J 10.2 and 1.1, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.17\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.6,5-\mathrm{H}_{\mathrm{A}}\right), 5.15(1 \mathrm{H}, \mathrm{d}$, $\left.J 11,5-\mathrm{H}_{\mathrm{B}}\right), 4.62(2 \mathrm{H}$, ap d, J5.5, propenyl 1-H2$), 4.54\left(2 \mathrm{H}\right.$, ap d, $J 7.2$, ThioCH $\mathrm{H}_{2} \mathrm{NCO}$), $4.03\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.69(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and $\left.4.2,1-\mathrm{H}_{\mathrm{A}}\right), 3.39\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7\right.$ and $\left.5.9,1-\mathrm{H}_{\mathrm{B}}\right), 2.87-2.81(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.35-2.24(2 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}$), 1.88 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$); $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl3) 156.8 ($\mathrm{Ph} 1-\mathrm{C}$), 156.6 ($\mathrm{C}=\mathrm{O}$), 144.3 (Thio 3 or 4-C), 140.9 (Thio 3 or 4-C), 135.0 (propenyl 2-C), 133.6 (4-C), 130.0, 129.8, 125.7, 125.4, 124.9, 121.0 (Ph 4-C), 118.5 (5-C), 117.6 (propenyl 3-C), 112.1 (Ph 6-C), 69.2 propenyl (1-C), 63.4 (1-C), 62.8 ($\mathrm{PhCH}_{2} \mathrm{NCO}$), 57.5 (2-C), 46.3 ($\left.\mathrm{NHCH}_{2} \mathrm{Ph}\right), 40.6$, 36.5 (3-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3316, 3073, 2925, 1704, 1494, 1245; m/z (ES ${ }^{+}$) 417.2 (100%, $[\mathrm{M}+\mathrm{H}]^{+}$); found 417.1853, $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{3}$ requires MH 417.1843
(15E,18R)-18-(Hydroxymethyl)-5,13-dioxa-24-thia-3,19diazatricyclo[19.2.1.0 ${ }^{7,12}$]tetracosa-1(23),7,9,11,15,21-hexaen-4-one 231

Following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the amine $223^{\text {D }}$ ($38 \mathrm{mg}, 0.04 \mathrm{mmol}$); on completion of the reaction, the crude product was purified by column chromatography, eluting with EtOAc gave the amine 231 ($15 \mathrm{mg}, 0.038 \mathrm{mmol}, 96 \%$) as a pale yellow glass; $R_{\mathrm{f}} 0.1$ (EtOAc); $\alpha_{23}^{D} 4$ (c. 0.9 ,
$\left.\mathrm{CDCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; MeOD) 7.29-7.15 (2H, m, Ar), 6.88-6.76 (2H, m, Ar), 6.69 (2H, s, Ar), 5.68 (1 H, dd, $J 16.1$ and $3.8,15-H), 5.62$ (1H, dd, J 16.1 and 4.1, 16-H), 5.03 (1H, $\left.\mathrm{d}, J 10.4,6-\mathrm{H}_{\mathrm{A}}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, J 10.4,6-\mathrm{H}_{\mathrm{B}}\right), 4.41\left(1 \mathrm{H}, \mathrm{d}, J 12.1,2-\mathrm{H}_{\mathrm{A}}\right), 4.36(1 \mathrm{H}, \mathrm{d}, J$ $\left.12.1,2-\mathrm{H}_{\mathrm{B}}\right), 4.32\left(1 \mathrm{H}, \mathrm{d}, J 15.5,14-\mathrm{H}_{\mathrm{A}}\right), 4.23\left(1 \mathrm{H}, \mathrm{d}, J 15.5,14-\mathrm{H}_{\mathrm{B}}\right), 3.92(2 \mathrm{H}, \mathrm{s}, 20-\mathrm{H})$, $3.43\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11\right.$ and $\left.5, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right)$, $3.39\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and 5.7, , $\left.\mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right)$, 2.58-2.48 ($1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}$), 2.05 (2H, br s, 17-H); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 159.5 (12-C), 145.4 (Thio 2 or $5-C), 143.2$ (Thio 2 or $5-C$), 133.3 (8 or 9-C), 131.8 (8 or 9-C), 130.3 (7-C), 129.8 (15 or $16-C), 127.1$ (15 or $16-C$), 126.1 (Thio 3 or $4-C$), 125.7 (Thio 3 or $4-C$), 121.7 (10-C), 113.4 (11-C), 69.9 (14-C), $64.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 64.6\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 56.9$ (18-C), 45.8 (2-C), 41.1 (20-C), 34.9 (17-C), C=O missing; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3336, 2935, 2480, 1677, 1438; m/z (ES ${ }^{+}$) $389.2\left(100 \%,[M+]^{+}\right)$; found $389.1541, \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ S requires MH 389.1530
(15E,18R)-18-(Hydroxymethyl)-19-(1-methyl-1H-imidazole-4-sulfonyl)-5,13-dioxa-24-thia-3,19-diazatricyclo[19.2.1.0 ${ }^{7,12}$]tetracosa-1(23),7,9,11,15,21-hexaen-4-one; ethane 230

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (28 mg , $0.16 \mathrm{mmol})$, triethylamine ($32 \mathrm{mg}, 0.32 \mathrm{mmol}$) and amine 223^{D} ($38 \mathrm{mg}, 0.04 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 230 ($9 \mathrm{mg}, 0.017 \mathrm{mmol}, 42 \%$) as a colourless oil; $R_{\mathrm{f}} 0.09$ (60:40 petrolEtOAc); $[\alpha]_{D}^{23.7} 1.3$ (c. 0.9, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.52(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 7.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8, Ar), 7.28 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{Ar}$), 6.98-6.79 (4H, m, Ar), 5.92 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), 5.65 ($1 \mathrm{H}, \mathrm{dt}, J$ 15.0 and $7.5,15-H), 5.36(1 \mathrm{H}, \mathrm{dt}, J 15$ and $5.3,16-\mathrm{H}), 5.23\left(1 \mathrm{H}, \mathrm{d}, J 12.3,6-\mathrm{H}_{A}\right), 5.22$ $(1 \mathrm{H}, \mathrm{br}$ s, $), 5.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.3,6-\mathrm{H}_{\mathrm{B}}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,2-\mathrm{H}_{\mathrm{A}}\right), 4.43\left(4 \mathrm{H}, \mathrm{ap} \mathrm{s}, 14-\mathrm{H}_{2}\right.$ and $20-\mathrm{H}_{2}$), $4.17(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 4.16\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,2-\mathrm{H}_{\mathrm{A}}\right), 3.92-3.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right)$, $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.75-3.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.41-2.20\left(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}_{\mathrm{A}}\right), 2.18-2.02$ ($1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.4$ (12-C), 143.4 (Thio 2 or $5-\mathrm{C}$), 141.4 (Thio 2 or 5-C), 138.5 (Imid 4-C), 131.6 (Thio 3 or 4-C), 130.5 (Thio 3 or 4-C), 129.3, 127.9 ,
127.3 , 125.9 , 124.2 , 120.5 , 112.5 (11-C), 68.5 ($6-\mathrm{C}), 64.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 61.9$ (18-C), 34.2 (17-C), 29.7 (NMe); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2919, 1701, 1531, 1330, 1255, 1157, 1120; $\mathrm{m} / \mathrm{z}\left(E S^{+}\right) 533.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$and $555.1\left(10 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 533.1530, $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires MH 533.1523

[2-(Prop-2-en-1-yloxy)phenyl]methyl

N-\{[5-(\{[(2R)-1-hydroxypent-4-en-2-yl][(morpholin-4-yl)carbonyl]amino\}methyl)thiophen-2-yl]methyl\}carbamate 225

Following general procedure A2, 4-morpholinecarbonyl chloride ($15.6 \mathrm{mg}, 0.1 \mathrm{mmol}$), triethylamine ($20 \mathrm{mg}, 0.2 \mathrm{mmol}$) and amine $\mathbf{2 1 1}^{\mathrm{D}}$ ($51 \mathrm{mg}, 0.052 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with EtOAc gave the urea $225(20 \mathrm{mg}, 0.037 \mathrm{mmol}, 71 \%)$ as a pale yellow oil; $R_{\mathrm{f}} 0.5$ (EtOAc); $[\alpha]_{D}^{23.7} 2.8$ (c. 2, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.34(1 \mathrm{H}$, dd, J 7.6 and 1.6, Ph $3-H$), 7.31 (1 H , dt, $J 8.3$ and 1.6, Ph $6-\mathrm{H}$), 6.99 (1 H , ap t, J 7.6 , Ph $4-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3$, Ph $5-\mathrm{H}), 6.83(2 \mathrm{H}$, ap s, Thio 3 and $4-\mathrm{H}), 6.08(1 \mathrm{H}$, ddt, J 17.3, 10.5 and 4.9, propenyl $2-\mathrm{H}$), 5.79 (1 H , ddt, J 17.6, 10.5 and $7.5,4-\mathrm{H}$); 5.45 (1 H , ddd, J 17.6, 3.6 and 1.5, $5-\mathrm{H}_{\mathrm{A}}$), $5.30\left(1 \mathrm{H}\right.$, ddd, J 10.53 .6 and $\left.1.5,5-\mathrm{H}_{\mathrm{B}}\right) ; 5.22(2 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCH}_{2} \mathrm{O}$); 5.15 (1 H , ddd, J 17.3, 2.9 and 1.4, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.12-5.07(1 \mathrm{H}, \mathrm{m}$, propenyl 3- H_{B}), 4.59-4.57 ($2 \mathrm{H}, \mathrm{m}$, propenyl 1- H_{2}), 4.54-4.49 (2H, m, , $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), $4.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{~N}(\mathrm{CO}) \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.45\left(1 \mathrm{H}, \mathrm{d}, J 16, \mathrm{~N}(\mathrm{CO}) \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-$ $\mathrm{H})$, $3.77-3.63\left(5 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right.$ and $\left.1-\mathrm{H}_{\mathrm{A}}\right) ; 3.63-3.52\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{B}}\right), 3.37(4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.4$ and 5.7, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right)$, 2.58-2.34 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}$), $1.29(1 \mathrm{H}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 164.9$ (C=O), 141.7 (Thio 2 or $5-\mathrm{C}$) , 141.4 (Thio 2 or 5-C), 135.3 (propenyl 2-C), 133.5 (4-C), $130.1,129.8$, 126.1, 125.9 (Thio 3 or $4-C$), 125.3 (Thio 3 or $4-C$), 121.0, 118.1 (5-C), 117.6 (propenyl 3-C), 112.1 (Ph 6-C), 69.2 (propenyl 1-C), $67.0\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 63.6$ ($\mathrm{PhCH}_{2} \mathrm{O}$), $62.8(1-\mathrm{C}), 61.1(2-\mathrm{C}), 47.7\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 46.5 \mathrm{PhCH}_{2}(\mathrm{CO}), 40.5 \mathrm{~N}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{Ph}$, 34.0 (3-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3323, 3077, 2925, 1669, 1581, 1549, 1453 ; m/z (ES $\left.{ }^{+}\right) 530.2$ ($100 \%,[\mathrm{M}+\mathrm{H}]^{+}$); found 530.2332, $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{1}$ requires MH 530.2319

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (38 mg , 0.21 mmol), triethylamine ($42 \mathrm{mg}, 0.42 \mathrm{mmol}$) and amine 211^{D} ($52 \mathrm{mg}, 0.053 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S2, tetra-n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with EtOAc gave the sulfonamide 226 (14 $\mathrm{mg}, 0.025 \mathrm{mmol}, 60 \%$) as a colourless glass; $R_{\mathrm{f}} 0.1$ (EtOAc); [$\left.\alpha\right]_{D}^{23.7} 2.9$ (c. 1.4 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHZ} ; \mathrm{CDCl}_{3}\right) 7.44$ ($1 \mathrm{H}, \mathrm{ap} \mathrm{d}, \mathrm{J} 4.3$, Imid), 7.34 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8$, Ph 3-H), 7.31-7.23 (1H, m, Ph 6-H), 6.95 (1H, td, J 7.4 and 2.5, Ph 4-H), 6.90-6.71 (4H, m, Thio 3 and 4-H, Imid, Ph 5-H), 6.04 (1H, ddt, J 16.3, 10.8 and 5.1, propenyl 2-H), 5.74 (1H, br ddt, $J 17.3,9.9$ and $7.1,4-H), 5.41\left(1 H, d, J 17.3\right.$, propenyl $\left.3-H_{A}\right), 5.26(1 H, d, J 9.9$, propenyl $3-\mathrm{H}_{\mathrm{B}}$), $5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.3,5-\mathrm{H}_{\mathrm{A}}^{\text {rotA }}\right), 5.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8$, $\left.5-\mathrm{H}_{\mathrm{B}}{ }^{\text {rotA }}\right), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 16.3,5-\mathrm{H}_{A}^{\text {rotB }}\right), 4.96\left(1 \mathrm{H}, \mathrm{d}, J 10.8,5-\mathrm{H}_{B}^{\text {rotB }}\right), 4.57(2 \mathrm{H}, \mathrm{ap} \mathrm{dt}, J$ 4.8 and 1.8, propenyl 1- H_{2}), 4.41 (1H, d, J 14.3, $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})^{\text {rotA }}$), $4.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})^{\text {rotB }}\right)$, 4.05-3.86 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})^{\text {rotA, } \mathrm{B}}\right), 3.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right) \mathrm{CH}_{2}\right)$, 3.64 (1 H , dd, J 10.8 and 4.1, 1- H_{A}), 3.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.34 ($1 \mathrm{H}, \mathrm{dd}, ~ J 10.8$ and 6.0, 1H_{B}), $2.79(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.42-2.18(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.8(\mathrm{Ph} 1-\mathrm{C})$, 144.3 (Imid 1-C), 142.6 (Thio 2 or 5-C), 141.8 (Thio 2 or $5-C$), 140.9, 139.9, 138.9, 135.0, 133.5, 130.0 (Ph 5-C), 129.8 (Ph 3-C), 127.8, 125.7, 125.5, 124.9, 124.6, 121.1, 121.0, 118.5 (5-C or propenyl 3-C ${ }^{\text {rotB }}$), 117.9 ($5-\mathrm{C}$ or propenyl $3-\mathrm{C}^{\text {rotB }}$), 117.7 ($5-\mathrm{C}$ or propenyl 3-C ${ }^{\text {rotB }}$), 117.6 ($5-\mathrm{C}$ or propenyl $3-\mathrm{C}^{\text {rotB }}$), 112.1 (Ph 6-C), 69.2 (propenyl 1-C), $64.6 \quad(1-\mathrm{C}), \quad 63.4 \quad\left(\mathrm{PhCH}_{2} \mathrm{O}^{\text {rotA }}\right), \quad 62.8 \quad\left(\mathrm{PhCH}_{2} \mathrm{O}^{\text {rotB }}\right), \quad 57.5 \quad(2-\mathrm{C}), \quad 46.5$ $\left(\mathrm{NSO}_{2} I\right.$ midCH $\left.{ }_{2} \mathrm{Ph}^{\text {rotA }}\right), 46.3\left(\mathrm{NSO}_{2} I \mathrm{midCH}_{2} \mathrm{Ph}^{\text {rotB }}\right), 40.6\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right)$, $37.3\left(3-\mathrm{C}^{\text {rotA }}\right)$, 36.5 (3-C), 34.6 (NMe); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3317, 2926, 1713, 1604, 1531, 1494, 1455, 1334, 1275, 1260, 1158 and 1119; m/z (ES ${ }^{+}$) 561.0 (100\%, [M+H] ${ }^{+}$); found 561.1829, $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires MH561.1836

Full carbon assignment was not possible due to rotamers

Following general procedure A1, 3-pyridyl isocyanate ($15.5 \mathrm{mg}, 0.129 \mathrm{mmol}$) and amine 211^{D} ($63 \mathrm{mg}, 0.065 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with EtOAc gave the urea 224 ($27 \mathrm{mg}, 0.05 \mathrm{mmol}, 77 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.1$ (EtOAc); $\alpha_{D}^{23.3}: 3{ }^{\circ}$ (c. $0.4, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.24$ (1 H, br s, NH), 8.22 (1H, d, J 2.8, Py 2-H), 8.11 (1H, d, J 4.4, Py 4-H), 8.04 (1H, d, J 8.1, Py 6-H), 7.3 (1H, d, J 7.1, Ph 5-H), 7.25 (1H, ddd, J 8,8 and 1.5, Ph 3-H), 7.18 (1H, ddd, J 8.1 and 4.4, Py 5-H), 6.95-6.79 (3H, m, Ph $6-\mathrm{H}$ and $4-\mathrm{H}$, Thio 3 or $4-\mathrm{H}), 6.75$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.2$, Thio 3 or $4-\mathrm{H}$), 6.02 (1 H , ddt, J 17.2, 10.4 and 4.8, propenyl $2-\mathrm{H}), 5.67$ (1 H , ddt, J 17.2, 9.9 and $6.8,4-\mathrm{H}$), 5.45 (1 H , br s, NH), $5.39\left(1 \mathrm{H}, \mathrm{dd}, J 17.2\right.$ and 1.9, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.25(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and 1.9, propenyl $3-\mathrm{H}_{\mathrm{B}}$), $5.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.05\left(1 \mathrm{H}, \mathrm{d}, ~ J 17.2,5-\mathrm{H}_{\mathrm{A}}\right), 5.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.9,5-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 4.64-4.60(2 \mathrm{H}, \mathrm{m}, \mathrm{)}, 4.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.8$, propenyl 1-H), 4.46-4.43(2H, m, $\left.\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 3.85\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.2-\mathrm{H}\right)$; $2.47\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}_{\mathrm{AB}}\right), 1.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.1$ (Ph 1-C), 156.8 ($\mathrm{C}=\mathrm{O}$), 143.1 (Py 2-C), 142.3 (Py 6-C), 141.7 (Thio 2 or 5-C), 140.5 (Thio 2 or 5-C), 137.4 (Py 3-C), 134.6 (propenyl 2-C), 133.5 (4-C), 129.9 (Ar), 129.8 (Py 5-C), 127.4 (Ar), 126.4 (Ar), 125.6 (Thio 3 or 4-C), 125.4 (Thio 3 or 4-C), 124.3 (Py 4-C), 121.0 (Ph 4-C), 118.6 (5-C), 117.6 (propenyl 3C), 112.1 (Ph 5-C), 69.2 (propenyl 1-C), 64.4 (1-C), 62.8 ($\mathrm{PhCH}_{2} \mathrm{O}$), 60.4 (2-C), 46.2, 40.5 ($\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), 34.1 (3-C); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3301, 2929, 1700, 1660, 1532, 1242; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 537.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $537.2178, \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires MH 537.2166
(15E,18R)-18-(Hydroxymethyl)-4-oxo-N-(pyridin-3-yl)-5,13-dioxa-24-thia-3,19diazatricyclo[19.2.1.0 ${ }^{7,12}$]tetracosa-1(23),7,9,11,15,21-hexaene-19-carboxamide 228

Following general procedure A1, 3-pyridyl isocyanate ($10 \mathrm{mg}, 0.082 \mathrm{mmol}$) and amine $223^{\text {D }}$ ($39 \mathrm{mg}, 0.041 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride $(1 \mathrm{M}, 0.1 \mathrm{~mL})$ was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3} — \mathrm{MeOH}$ gave the urea 228 ($15 \mathrm{mg}, 0.03 \mathrm{mmol}, 73 \%$) as a brown oil; $R_{\mathrm{f}} 0.05$ (EtOAc); $\alpha_{D}^{23.3}-16$ (c. $0.5, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.77$ (1 H, br s, Py $2-\mathrm{H}$), 8.26 ($1 \mathrm{H}, \mathrm{s}, \operatorname{Py} 6-\mathrm{H}$), 8.21 (1H, d, J 4.6, Py 5-H), 8.14 (1H, d, J 7.9, Py 4-H), 7.31 (2H, d, J 5.7, 8 or 9-H), $7.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5$ and $4.4,8$ or $9-\mathrm{H}), 7.03(1 \mathrm{H}$, br s, Thio 3 or $4-\mathrm{H}), 6.95(1 \mathrm{H}$, ap t, J $7.5,11-\mathrm{H}), 6.88-6.84(2 \mathrm{H}, \mathrm{m}$, Thio 3 or $4-\mathrm{H}$ and $10-\mathrm{H}$), 5.72 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,16-\mathrm{H}), 5.62$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,15-\mathrm{H}$), 5.29-5.02 ($4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$ and $2-\mathrm{H}_{2}$), 4.61-3.81 (7H, m, 18-H, $\mathrm{CH}_{2} \mathrm{OH}, \mathrm{N}(\mathrm{CO}) \mathrm{PyCH}_{2}$ and $\left.14-\mathrm{H}_{2}\right), 2.60\left(1 \mathrm{H}\right.$, br s, $\left.17-\mathrm{H}_{\mathrm{A}}\right), 2.07\left(1 \mathrm{H}\right.$, br s, $\left.17-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 157.8, 156.6, 143.9, 143.0, 140.3, 140.0, 131.8, 130.5, 128.8, 128.4, 126.8, 126.6, 125.3, 124.4, 123.9, 120.8, 112.6, 68.5, 64.3, 63.0, 59.1, 45.7, 40.1, 32.3, 29.7; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3303, 2925, 1695, 1661, 1532, 1254; m/z (ES ${ }^{+}$) 509.2 (100%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $509.1848, \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires MH 509.1853
(15E,18R)-18-(Hydroxymethyl)-19-[(morpholin-4-yl)carbonyl]-5,13-dioxa-24-thia-3,19-diazatricyclo[19.2.1.0 ${ }^{7,12}$]tetracosa-1(23),7,9,11,15,21-hexaen-4-one 229

Following general procedure A2, cyclopropane carbonyl chloride ($13 \mathrm{mg}, 0.086 \mathrm{mmol}$), triethylamine ($13 \mathrm{mg}, 0.129 \mathrm{mmol}$) and amine $223^{\mathrm{D}}(41 \mathrm{mg}, 0.043 \mathrm{mmol})$ gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea $229(11 \mathrm{mg}, 0.022$ $\mathrm{mmol}, 51 \%$) as a colourless glass; $R_{\mathrm{f}} 0.27$ ($90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $\alpha_{D}^{23.3} 18.7$ (c. 0.2 , $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.37-7.28(2 \mathrm{H}, \mathrm{m}, 8$ and $11-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{t}, J 7.3,9-\mathrm{H})$, $6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3,10-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{s}$, Thio 3 or $4-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{s}$, Thio 3 or $4-\mathrm{H}), 5.81$ ($1 \mathrm{H}, \mathrm{dt}, J 15.8$ and $7.7,16-\mathrm{H}), 5.70(1 \mathrm{H}, \mathrm{d}, J 15.8,15-\mathrm{H}), 5.35\left(1 \mathrm{H}, \mathrm{d}, J 10.6,6-\mathrm{H}_{\mathrm{A}}\right)$, 5.29-4.98 (1H, m, NH), $4.95\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.6,6-\mathrm{H}_{\mathrm{B}}\right), 4.66-4.32\left(6 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right.$ and 2$\left.\mathrm{H}_{\mathrm{AB}}\right), 3.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.2,20-\mathrm{H}_{\mathrm{A}}\right), 3.75-3.57\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}, 14-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.20-\mathrm{H}_{\mathrm{B}}\right), 3.49$ (2H, ddd, J 13.3, 6.5 and 3.1, $\left.\mathrm{N}\left(\mathrm{CH}_{\mathrm{A}}\right)_{2}\right)$, 3.39-3.26 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{\mathrm{B}}\right)_{2}\right)$, $3.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 18-$ H), $2.61\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.7\right.$ and $\left.6.7,17-\mathrm{H}_{\mathrm{A}}\right), 2.55\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.7\right.$ and $\left.7.5,17-\mathrm{H}_{\mathrm{B}}\right)$; $\delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 164.5$ (C=O), 157.7 (12-C), 156.4 (C=O), 143.6 (Thio 2-C), 139.9 (Thio 5C), 131.9 (15-C), 130.6, 129.2, 127.1 (16-C), 126.0 (Thio 3-C), 124.9 (Thio 4-C), 124.1, $120.7(9-\mathrm{C}), 112.4(11-\mathrm{C}), 68.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 66.7\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 61.2(14-\mathrm{C}), 59.0(18-\mathrm{C})$, $49.5(20-\mathrm{C}), 47.4\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 40.1(2-\mathrm{C}), 31.9(17-\mathrm{C}) ; \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3321, 2856, 1703, 1606, 1455, 1252, 1115; m/z (ES ${ }^{+} 502.2\left(100 \%,\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$and $524.2\left(60 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 502.2006, $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires MH 502.2006 .
(7R,9E)-5,12,20-Trioxa-27-thia-3,22-diazatetracyclo[22.2.1.0 ${ }^{3}, 7.0^{13,18}$]heptacosa-1(26),9,13,15,17,24-hexaene-4,21-dione 232

Also obtained was the 2-oxazolidinone $\mathbf{2 3 2}$ ($4 \mathrm{mg}, 9.6 \mu \mathrm{M}, 23 \%$) as a colourless glass; $R_{\mathrm{f}} 0.24\left(90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}\right) \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; 343 \mathrm{~K}\right) 7.13-7.04(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$ and 17-H), 6.72-6.78 (1H, 14-H), 6.67 (1H, d, J 3.5, Thio 3 or $4-H), 6.53(1 H, d, J 8.3,15-$ H), $6.36(1 \mathrm{H}, \mathrm{s}$, Thio 3 or $4-\mathrm{H}), 5.33-5.26(2 \mathrm{H}, \mathrm{m}, 9$ and $10-\mathrm{H}), 5.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8,18-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 5.11(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 4.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.4$, 2 or $22-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}), 4.08-3.98(4 \mathrm{H}$, $\mathrm{m}, 11-\mathrm{H}_{\mathrm{AB}}$ and 2 or $22-\mathrm{H}$), $3.83(1 \mathrm{H}$, br s, 2 or $22-\mathrm{H}), 3.55\left(1 \mathrm{H}, \mathrm{ap} \mathrm{t}, \mathrm{J} 8.4,6-\mathrm{H}_{\mathrm{A}}\right), 3.27$ (1H, ap t, J 7.6, 6-H H_{B}, 3.13-3.04 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 2.11-1.87 ($2 \mathrm{H}, 8-\mathrm{H}_{\mathrm{AB}}$); $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$ (film) 3307, 3008, 2920, 1713, 1619, 1533, 1490, 1275, 1260; m/z (ES ${ }^{+}$) 437.1 (100\%, $[\mathrm{M}+\mathrm{Na}]^{+}$); found 437.1157, $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires MH 437.1142

Unable to obtain a ${ }^{13} \mathrm{C}$ NMR due to insufficient material

[2-(Prop-2-en-1-yloxy)phenyl]methyl

N-\{[2-(\{[(2R)-1-hydroxypent-4-en-2-yl][(pyridin-3-yl)carbamoyl]amino\}methyl)phenyl']methyl\}carbamate 265a

Following general procedure A1, 3-pyridyl isocyanate ($15 \mathrm{mg}, 0.13 \mathrm{mmol}$) and amine $234^{\text {D }}$ ($70 \mathrm{mg}, 0.068 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride $(1 \mathrm{M}, 0.1 \mathrm{~mL})$ was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea 265a ($21 \mathrm{mg}, 0.04 \mathrm{mmol}, 58 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.19$ (70:30 petrol-EtOAc); $[\alpha]_{D}^{23.7} 12.1$ (c. 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; MeOD) 8.38 (1 H, br s, Py 2-H), 8.03 (1H, d, J 4.3, Py 6-H), 7.72 (1H, d, J 8.5, Py 4-H), 7.29-7.01 (7H, m, Py 5-H and Ph and Ph'), 6.83 (1H, d, J8.4, Ph 6-H), 6.80 (1H, ap t, J 7.4, Ph 5-H), 5.93 (1H, ddt, J 17.4, 10.2 and 4.9 , propenyl $2-\mathrm{H}), 5.76-5.66(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{dd}, J 17.4$ and 1.8 ,
propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.11\left(1 \mathrm{H}\right.$, dd, $J 10.2$ and 1.8, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, $4.99\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.3,5-\mathrm{H}_{\mathrm{A}}\right), 4.94\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.3,5-\mathrm{H}_{\mathrm{B}}\right), 4.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.7$, $\left.\mathrm{N}(\mathrm{CO}) \mathrm{PyCH}_{2} \mathrm{Ph}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.7, \mathrm{~N}(\mathrm{CO}) \mathrm{PyCH}_{2} \mathrm{Ph}\right), 4.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.6$, propenyl $1-$ H_{2}), $4.26\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}\right), 4.14(1 \mathrm{H}, \mathrm{br}$ s, 2-H), 3.59-3.48 (2H, m, CH2OH), 2.41$2.25\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.3(\mathrm{C}=\mathrm{O})$, 158.9 (Ph 1-C), 157.9 (C=O), 144.2 (Py 6-C), 142.8 (Py 2-C), 138.8 (Py 3-C), 137.8 , 137.4, 136.5, 135.1, 130.7, 130.4, 130.0, 128.8, 128.7, 128.2, 126.8, 125.3, 121.9 (Ph 4-C), 118.4 (5-C), 117.6 (propenyl 3-C), 113.2 (Ph 6-C), 70.1 (propenyl 1-C), 64.2 , 63.5, 60.3 (2-C), 46.6, 42.9, 35.3 (3-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3439, 3292, 3054, 2987, 2305, 1714, 1665, 1605, 1589, 1520, 1485, 1455, 1422, 1336 and 1273; m/z (ES ${ }^{+}$) 531.3 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $531.2615, \mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires MH 531.2602

[2-(Prop-2-en-1-yloxy)phenyl]methyl $\quad N$-\{[2-(\{N-[(2R)-1-hydroxypent-4-en-2-yl]1-methyl-1H-imidazole-4-sulfonamido\}methyl)phenyl']methyl\}carbamate 265c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (62 mg , 0.34 mmol), pyridine (1 mL) and amine 234^{D} ($72 \mathrm{mg}, 0.069 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 265c (20.9 $\mathrm{mg}, 0.038 \mathrm{mmol}, 55 \%)$ as a colourless glass; $R_{\mathrm{f}} 0.1$ (90:10, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{D}^{23.7} 2$ (c. 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.43-7.38 (2H, m,), 7.32-7.22 (2H, m,), 7.22-7.13 (4H, m,), 6.86 (1H, ap t, J 6.5), 6.78 (1H, d, J7.9), 5.95 ($1 \mathrm{H}, \mathrm{ddt}, J 15.9,10.2$ and 4.9, propenyl 2-H), $5.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.49-5.36(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.3$ and 1.7 , propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.18\left(1 \mathrm{H}\right.$, dd, J 10.2 and 1.7 , propenyl $3-\mathrm{H}_{\mathrm{B}}$), $5.12(2 \mathrm{H}$, s, benzyl o(o)), 4.89-4.84 (2H, m, 5- H_{A} and $5-\mathrm{H}_{\mathrm{B}}$), $4.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5$, propenyl 1-H), $4.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15, $\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right) \mathrm{CH}_{\mathrm{A}}$), $4.34\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right.$), 4.24 (1H, d, J 15, $\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right) \mathrm{CH}_{\mathrm{B}}$), 4.04-3.97 (1H, m, 2-H), 3.74-3.66 (1H, m, CH2OH), $3.62(3 \mathrm{H}, \mathrm{s}$, NMe), 3.55 (1 H , dd, J 12.5 and 3.7, $\mathrm{CH}_{2} \mathrm{OH}$), 2.29 (1 H , dt, J 14.1 and 6.7, 3-H), 2.10 (1 H , dt, J 14.1 and $7.6,3-\mathrm{H}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 156.3 ($\mathrm{Ph} 1-\mathrm{C}$), 155.7 (C=O), 139.7 (Imid 1-C), 138.9, 136.3, 136.1, 135.5, 133.6, 129.2 (Imid 5-C), 128.9, 128.2, 127.1, 126.6, 126.5, 125.1, 125.0, 120.3 (Ph 4-C), 116.9 (5-C), 116.5 (propenyl 3-C), 111.9
(Ph 6-C), 68.1 (propenyl 1-C), 61.8 ($\mathrm{PhCH}_{2} \mathrm{O}$), 60.9 (1-C), 60.4 (2-C), 45.0 $\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right) \mathrm{CH}_{2} \mathrm{Ph}, 41.0\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right)$, $33.9(3-\mathrm{C}), 33.5$ (NMe); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3285, 1713, 1531, 1455, 1336, 1275; m/z (ES ${ }^{+}$) $577.2\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 555.2280, $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ requires MNa 555.2272

[2-(Prop-2-en-1-yloxy)phenyl]methyl
 $N-\{[2-(\{[(2 R)$-1-hydroxypent-4-en-2yl]amino\}methyl)phenyl']methyl\}carbamate 265d

Following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the amine $\mathbf{2 3 4}{ }^{\mathrm{D}}$ ($70 \mathrm{mg}, 0.07 \mathrm{mmol}$); on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 265d ($29 \mathrm{mg}, 0.070 \mathrm{mmol}, 99 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.45\left(90: 10 \mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH}) ;[\alpha]_{D}^{23.7} 5.6$ (c. 1.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHZ} ; \mathrm{CDCl}_{3}\right) 7.24-7.09$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.83 (1H, d, J 8.2, Ph 5-H), 6.80 (1H, t, J 7.5, Ph 6-H), 5.94 (1H, ddt, J 16, 10.3 and 5, propenyl $2-H$), 5.71 (1 H , ddt, $J 17.3,10.1$ and $7,4-\mathrm{H}$), 5.29 (1 H , dd, $J 16$ and 1.9, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.11\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.3\right.$ and 10.3 , propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, $4.97\left(1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and $\left.1.9,5-\mathrm{H}_{\mathrm{A}}\right), 4.93\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.2.0,5-\mathrm{H}_{\mathrm{B}}\right), 4.45(2 \mathrm{H}, \mathrm{d}, J$ 5, propenyl 1-H2), $4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right.$), $3.78\left(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right), 3.73(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J} 12.5, \mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}\right), 3.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2\right.$ and $\left.4.8,1-\mathrm{H}_{\mathrm{A}}\right), 3.37(1 \mathrm{H}, \mathrm{d}, J 11.2$ and 6.4, 1H_{B}), 2.67-2.61 (1H, m, 2-H), 2.20-2.09 (2H, m, 3-H2); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.2$ (Ph $1-$ C), 157.9 ($\mathrm{C}=\mathrm{O}$), 139.2 (Ph '), 139.1 (Ph '), 136.8 (propenyl 2-C), 135.1 (4-C); 131.3 (Ph'), 130.3 (Ph '), 130.6 (Ph '), 130.4 (Ph), 129.1 ($\left.\mathrm{Ph}^{\prime}\right)$, 129.9 (Ph); 121.8 (Ph 4-C), 118.2 (5-C), 117.6 (propenyl 3-C), 113.1 (Ph 6-C), 70.1 (propenyl 1-C), 64.4 (1-C), 63.4 ($\mathrm{PhCH}_{2} \mathrm{O}$), $60.2(2-\mathrm{C}), 50.0,43.8,36.9(3-\mathrm{C}) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3260, 2925, 2858, 1698, 1540, 1494, 1454, 1361; m/z (ES ${ }^{+}$) $411.2\left(100 \%,[M+H]^{+}\right)$; found 411.2286, $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires MH 411.2278

[2-(Prop-2-en-1-yloxy)phenyl]methyl N -[(2-\{[1-cyclopropyl-N-(1-hydroxypent-4-en-2-yl)formamido]methyl\}phenyl)methyl]carbamate 265b

Following general procedure A2, cyclopropane carbonyl chloride ($37 \mathrm{mg}, 0.36 \mathrm{mmol}$), triethylamine ($73 \mathrm{mg}, 0.72 \mathrm{mmol}$) and amine $234^{\mathrm{D}}(75 \mathrm{mg}, 0.072 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with CHCl_{3} gave the amide 265b ($15 \mathrm{mg}, 0.031 \mathrm{mmol}, 44 \%$) as a colourless glass; $R_{\mathrm{f}} 0.41\left(\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{23.7} 8$ (c. $\left.1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.47-7.22 (6H, m, Ar), 6.94 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4$, Ar 3-C), 6.88 ($1 \mathrm{H}, \mathrm{d}, ~ J 8.3, \operatorname{Ar} 4-\mathrm{C}$), 6.04 (1H, ddt, $J 17.3,10.4$ and 5 , propenyl $2-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{ddt}, J 17.1$, and $6.9,4-\mathrm{H}), 5.41(1 \mathrm{H}$, $\mathrm{dd}, J 17.3$ and 1.5 , propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.30-5.22\left(3 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right.$ and propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right)$, 5.13-5.03 ($3 \mathrm{H}, \mathrm{m}, \mathrm{NH}$ and $5-\mathrm{H}_{\mathrm{AB}}$), $4.87\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.5, \mathrm{~N}(\mathrm{CO}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.67(1 \mathrm{H}, \mathrm{d}, J$ 17.5, $\left.\mathrm{N}(\mathrm{CO}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 4.57\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.9, \mathrm{PhCH}_{2} \mathrm{NH}(\mathrm{CO})\right), 4.42(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8$, propenyl 1 H2), 4.12-4.00 (1H, m, 2-H), $3.76\left(1 \mathrm{H}, \mathrm{d}, ~ J 10.3,1-\mathrm{H}_{\mathrm{A}}\right), 3.64\left(1 \mathrm{H}, \mathrm{br}\right.$ s, 1-H $\left.\mathrm{H}_{\mathrm{B}}\right), 3.47(1 \mathrm{H}$, br s, OH), $2.42\left(2 \mathrm{H}, \mathrm{ap} \mathrm{t}, J 6.9,3-\mathrm{H}_{\mathrm{AB}}\right), 1.49\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},{ }^{\mathrm{C}} \operatorname{Pr}\right), 1.08-0.95\left(2 \mathrm{H},{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.77-$ 0.69 (2H, ${ }^{\mathrm{C}} \mathrm{Pr}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134.8,133.1,129.6,128.9,128.3,127.6,126.5$, 124.9, 120.6 (Ar 3-C), 117.7 (propenyl 3-C), 117.2 (5-C), 111.8 (Ar 4-C); 77.2 (propenyl $1-\mathrm{C}), 68.8 \quad\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 64.1 \quad(1-\mathrm{C}), 60.0 \quad(2-\mathrm{C}), 47.8 \quad\left(\mathrm{~N}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{Ph}\right), 43.4$ ($\mathrm{PhCH}_{2} \mathrm{NH}(\mathrm{CO})$); $33.1(3-\mathrm{C})$, $12.4\left({ }^{\mathrm{C}} \mathrm{Pr}\right), 8.4\left({ }^{\mathrm{C}} \mathrm{Pr}\right)$; missing Ar 2-C and $\mathrm{C}=\mathrm{O} ; \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3307, 2920, 2352, 2319, 1713, 1619, 1532, 1493, 1455; m/z (ES ${ }^{+}$) 479.3 (20\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$and $552.3\left(100 \%,[\mathrm{M}+\mathrm{MeCN}+\mathrm{MeOH}]^{+}\right)$; found $479.2562, \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires MH 479.2540
(15E,18R)-18-(Hydroxymethyl)-5,13-dioxa-3,19diazatricyclo[19.4.0.0 ${ }^{7,12}$]pentacosa-1(25),7,9,11,15,21,23-heptaen-4-one 256d

Following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the amine $E-244^{\mathrm{D}}$ ($33 \mathrm{mg}, 0.035 \mathrm{mmol}$); on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-$ MeOH gave the amine $\mathbf{2 5 6 d}$ ($11.1 \mathrm{mg}, 0.029 \mathrm{mmol}, 83 \%$) as a pale yellow film; $[\alpha]_{D}^{23.7}$ 14.4 (c. 0.6, MeOH); $\delta_{H}(500 \mathrm{MHz}$; MeOD/DMSO-d6) 7.33-7.21 ($5 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 22-\mathrm{H}, 23-$ H, $24-\mathrm{H}$ and $25-\mathrm{H}$), 7.18 ($1 \mathrm{H}, \mathrm{d}, ~ J 7.2,9-\mathrm{H}$), $6.83(1 \mathrm{H}, \mathrm{d}, ~ J 8.4,11-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $7.2,10-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 16-\mathrm{H}), 5.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8,15-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6,6-\mathrm{H})$, 5.02 (1H, d, J 11.6, 6-H), 4.42 (2H, s, 14-H), 4.24 (1H, d, J 14.4, 2-H), 4.15 (1H, d, J
14.4, 2-H), $4.02(1 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 3.71-3.52(2 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 3.25-2.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{AB}} \mathrm{OH}\right)$, 2.37 (2H, br s, 17-H); δ_{C} (125 MHz ; MeOD/DMSO-d6) 159.7 (12-C), 159.4 (CO), 133.2 , 132.1, 130.3, 129.8, 122.4, 113.9 (9-C), 106.4 (11-C), 68.6 (14-C), 64.9 (6-C), 62.3 $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 44.7$ (20-C), 31.4 (17-C), 2-C and aromatic carbons missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3006, 2989, 2409, 1715, 1459; m/z (ES ${ }^{+} 383.2$ ($\left.100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 383.1955, $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires MH 383.1965
(15E,18R)-18-(Hydroxymethyl)-5,13-dioxa-3,19-
diazatricyclo[19.4.0.0 ${ }^{7,12}$]pentacosa-1(25),7,9,11,15,21,23-heptaen-4-one 257

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine $\mathbf{Z}-\mathbf{2 4 4}{ }^{\mathrm{D}}$ ($50 \mathrm{mg}, 0.05 \mathrm{mmol}$); on completion of the reaction it was quenched with methoxytrimethylsilane $(0.5 \mathrm{~mL})$ and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave the amine 159d ($10.4 \mathrm{mg}, 0.027 \mathrm{mmol}, 54 \%$) as a pale yellow film; $R_{\mathrm{f}} 0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ EtOH—NH ${ }_{4} \mathrm{OH} 50: 8: 1$); $[\alpha]_{D}^{23.7} 0.3$ (c. 1, MeOH); $\delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{MeOD} / D M S O-d 6) 7.38-$ $7.20(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.05-6.94(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{t}, J 7.4,9-\mathrm{H}), 5.83(1 \mathrm{H}, \mathrm{dt}, J 11.6$ and $6.0,15-\mathrm{H}), 5.7(1 \mathrm{H}, \mathrm{dt}, J 11.6$ and $7.1,16-\mathrm{H}), 5.19\left(1 \mathrm{H}, \mathrm{d}, J 10.9,6-\mathrm{H}_{\mathrm{A}}\right), 4.91(1 \mathrm{H}$, d, $\left.J 10.9,6-H_{B}\right), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J 12.1\right.$ and $\left.6.3,14-\mathrm{H}_{A}\right), 4.57(1 \mathrm{H}, \mathrm{dd}, J 12.1$ and $5.8,14-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 4.37\left(1 \mathrm{H}, \mathrm{d}, J 13.8,2-\mathrm{H}_{\mathrm{A}}\right), 4.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8,2-\mathrm{H}_{\mathrm{B}}\right), 3.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.1,20-\mathrm{H}_{\mathrm{A}}\right)$, $3.78\left(1 \mathrm{H}, \mathrm{d}, J 12.1,20-\mathrm{H}_{\mathrm{B}}\right), 3.66\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.4.1, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.41(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and 6.6, $\mathrm{CH}_{\mathrm{B}} \mathrm{OH}$), 2.84-2.78 ($1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}$), $2.47\left(1 \mathrm{H}, \mathrm{dt}, J 15.3\right.$ and $\left.6.7,17-\mathrm{H}_{\mathrm{A}}\right), 2.37$ (1H, dt, J 15.3 and 7.6, 17-HB); $\delta_{C}\left(125 \mathrm{MHz} ; \mathrm{MeOD}^{2}\right.$ (DMSO-d6) 158.7 (12-C), 138.1, 133.6, 132.9 (16-C), 131.5, 131.3, 128.9, 126.9 (15-C), 121.8 (9-C), 114.4 (11-C), 66.1 (2-C), 64.6 (6-C), 64.1 ($\mathrm{CH}_{2} \mathrm{OH}$), 60.8 (18-C), 50.1 (20-C), 31.0 (17-C), C=O missing; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3055, 2988, 2305, 1669, 1605, 1522, 1421, 1262; m/z (ES $\left.{ }^{+}\right) 383.2$ ($100 \%,[\mathrm{M}+\mathrm{H}]^{+}$); found 383.1965, $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires MH 383.1965
(15E,18R)-18-(Hydroxymethyl)-4-oxo-N-(pyridin-3-yl)-5,13-dioxa-3,19diazatricyclo[19.4.0.0 ${ }^{7,12}$]pentacosa-1(25),7,9,11,15,21,23-heptaene-19carboxamide 256a

Following general procedure A1, 3-pyridyl isocyanate ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$) and amine $E-244^{\mathrm{D}}$ ($31 \mathrm{mg}, 0.033 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride $(1 \mathrm{M}, 0.1 \mathrm{~mL})$ was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea 256a ($18 \mathrm{mg}, 0.033 \mathrm{mmol}, 99 \%$) as a pale yellow film; $R_{\mathrm{f}} 0.41$ (90:10, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{D}^{23.7} 12$ (c. $0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MH}_{\mathrm{z}} ; \mathrm{MeOD} ; 333 \mathrm{~K}\right) 8.38(1 \mathrm{H}, \mathrm{s}$, Ar), 8.09 ($1 \mathrm{H}, \mathrm{s}, \operatorname{Ar}$), 7.69 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 7.50 ($1 \mathrm{H}, \mathrm{s}, \mathrm{J} 7.7, \mathrm{Ar}$), 7.32-7.11 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.91-6.86 (2H, m, 10 and $11-\mathrm{H}$), 5.87 (1 H , dd, J 15.1 and $6.6,15$ or $16-\mathrm{H}$), 5.85-5.81 (1H, m, 15 or 16-H), 4.96-4.05 (9H, m, 2-H, 6-H, 14-H, 18-H and 20-H); 3.81-3.74 (2H, $\mathrm{m}, \mathrm{CH}_{\mathrm{AB}} \mathrm{OH}$), $2.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 17-\mathrm{H}), 2.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.6,17-\mathrm{H}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} ; \mathrm{MeOD} ; 333$ K) 159.0 (12-C), 158.8 ($\mathrm{C}=\mathrm{O}$), 158.6 ($\mathrm{C}=\mathrm{O}$), 144.2 (Py), 142.7 (Py), 132.6, 131.4, 130.5, 129.8 (15 or 16-C), 129.4 (15 or 16-C), 128.3 (Py), 124.9, 121.5, 113.2 (11-C), 69.1 (14-C), 64.8 ($6-C$), 54.7 (20-C), 39.6 (2-C), 30.7 (17-C) ; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3281, 3053, 2926, 2127, 1707, 1661, 1531, 1456, 1421, 1262; m/z (ES+) 503.2 (100\%, $[\mathrm{M}+\mathrm{H}]^{+}$); found $503.2311, \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires MH 503.2289
full carbon assignment was not possible due to rotamers

```
(15E,18R)-19-Cyclopropanecarbonyl-18-(hydroxymethyl)-5,13-dioxa-3,19diazatricyclo[19.4.0.0 \({ }^{7,12}\) ]pentacosa-1(25),7,9,11,15,21,23-heptaen-4-one 256b
```


Following general procedure A2, cyclopropane carbonyl chloride ($19.3 \mathrm{mg}, 0.2 \mathrm{mmol}$), triethylamine ($100 \mathrm{mg}, 1 \mathrm{mmol}$) and amine E-244 ${ }^{\mathrm{D}}(35 \mathrm{mg}, 0.037 \mathrm{mmol})$ gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with CHCl_{3} gave the amide 256b ($8.1 \mathrm{mg}, 0.018 \mathrm{mmol}, 47 \%$); as a pale yellow oil; $R_{\mathrm{f}} 0.23\left(\mathrm{CHCl}_{3}\right)$; $[\alpha]_{D}^{23.7} 5.5$ (c. $0.4, \mathrm{MeOH}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{MeOD} ;$ 233 K) 7.71 (1H, d, J7.7, Ar), 7.45-7.16 (5H, m, Ar), 7.01 (1H, d, J 8.4, Ar); 6.89 (1H, t, $J 7.3,9-H), 6.13\left(1 \mathrm{H}, \mathrm{d}, ~ J 10.9,6-\mathrm{H}_{\mathrm{A}}\right), 5.93(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $9.1,15-\mathrm{H}), 5.64(1 \mathrm{H}, \mathrm{d}$, $J 15.5,16-H), 5.24-5.19(1 H, m, 18-H), 4.94\left(1 H, d, J 18.3,2-H_{A}\right), 4.84(1 H, d, J 13.6$, $\left.20-\mathrm{H}_{\mathrm{A}}\right), 4.58\left(1 \mathrm{H}, \mathrm{ap} \mathrm{t}, \mathrm{J} 9.1,14-\mathrm{H}_{\mathrm{A}}\right), 4.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.3,2-\mathrm{H}_{\mathrm{B}}\right), 4.38-4.32(2 \mathrm{H}, \mathrm{m}, 14-$ H_{B} and 6-H H_{B}, $4.01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.6,20-\mathrm{H}_{\mathrm{B}}\right), 3.62-3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{A B} \mathrm{OH}\right), 2.5-2.29(2 \mathrm{H}, \mathrm{m}$, $\left.17-\mathrm{H}_{A B}\right), 1.29\left(1 \mathrm{H}, \mathrm{s},{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.85-0.80\left(1 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7, $\left.{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.15$ ($1 \mathrm{H}, \mathrm{br}$ s, ${ }^{\mathrm{C}} \operatorname{Pr}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 180.2$ (C=O), 159.2 (12-C), 158.5 (7C), $140.2,134.6$ (15-C), 132.7, 132.1, 131.9, 131.8, 130.1, 129.9 (16-C), 128.2, 127.6, 125.8, 121.2 ($9-\mathrm{C}$), 112.0 (11-C), 69.7 (14-C), $64.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.7$ (6-C), 57.0 (18-C), 45.4 (20-C), 43.6 (2-C), 34.5 (17-C), 14.2 (${ }^{\mathrm{C}} \mathrm{Pr}$), 10.5 (${ }^{\mathrm{C}} \mathrm{Pr}$); $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$ (film) 3307, 1688, 1623, 1530, 1495, 1456; m/z (ES ${ }^{+}$) 451.2 (100\%, $\left.[M+H]^{+}\right)$; found 451.2241, $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{1}$ requires MH 451.2227
(15E, 18R)-18-(Hydroxymethyl)-19-(1-methyl-1H-imidazole-4-sulfonyl)-5,13-dioxa-3,19-diazatricyclo[19.4.0.0 ${ }^{7,12}$]pentacosa-1(25),7,9,11,15,21,23-heptaen-4-one 256c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (23 mg , 0.13 mmol), pyridine (1 mL) and amine $E-244^{\mathrm{D}}(30 \mathrm{mg}, 0.03 \mathrm{mmol})$ gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S2, tetra-n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide $\mathbf{2 5 6 c}$ (14.4 $\mathrm{mg}, 0.29 \mathrm{mmol}, 88 \%$) as a colourless film; $R_{\mathrm{f}} 0.24$ ($90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7} 10$ (c. $0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; MeOD; 333 K) 7.65 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}$), 7.50 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}$), 7.357.09 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.94-6.87 ($3 \mathrm{H}, \mathrm{m}, 9,10$ and $11-\mathrm{H}$); 5.60 (2 H, br s, 15 and $16-\mathrm{H}$), 5.21 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}), 4.53-4.28(4 \mathrm{H}, 14-\mathrm{H}$ and $20-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{dd}, J$ 11.2 and $\left.6.7, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.86-3.65(3 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}$ and $2-\mathrm{H}), 3.59(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and 6.5 , $\left.\mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.52-2.36(2 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.1$ (12-C), 158.5 (C=O), 141.7 ($\operatorname{mmid} 4-\mathrm{C}$), 140.7 ($\operatorname{Imid} 2-\mathrm{C}$), 132.5, 131.4, 130.5, 128.9, 128.4, 126.3, 121.3 ($9-\mathrm{C}$), 112.9 (11-C), 68.7 (14-C), $65.0\left(\mathrm{CH}_{2} \mathrm{OH}\right), 64.8(6-\mathrm{C}), 44.7(20-\mathrm{C})$, 40.7 (2-C), 34.9 (17-C), 34.2 (NMe); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3308, 2822, 1942, 1708, 1604, 1530, 1495, 1455, 1331; m/z (ES ${ }^{+}$) 527.2 (100\%, $\left.[M+N a]^{+}\right)$; found 527.1948, $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{1}$ requires MNa 527.1959

Full carbon assignment was not possible due to rotamers
[(5E,3R)-9-(Trifluoromethane)sulfonyl-1,2,3,4,7,8,9,10-octahydro-2,9-benzodiazacyclododecin-3-yl]methanol 159d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. 45-51\%) was added to the amine $246^{\text {D }}$ ($66 \mathrm{mg}, 0.07 \mathrm{mmol}$); on completion of the reaction it was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product
was purified by column chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: E t O H: \mathrm{NH}_{4} \mathrm{OH} 50-8-1$ gave the amine 159d ($12.2 \mathrm{mg}, 0.032 \mathrm{mmol}, 46 \%$) as a pale yellow film; $R_{\mathrm{f}} 0.71$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}, 50: 8: 1\right.$); $[\alpha]_{D}^{23.7} 3.8$ (c. $0.6, \mathrm{MeOH}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; MeOD; 333 K) 7.40-7.27 (4H, m, Ar), 5.34 (1H, ddd, J 15.8, 8.4 and 3.9, 5 or 6-H), 5.25 (1 H , ddd, J $15.8,10$. and $5.6,5$ or $6-H), 5.09\left(1 H, d, J 15.9,10-H_{A}\right), 4.85\left(1 H, d, J 15.9,10-H_{B}\right)$, $4.02\left(1 \mathrm{H}, \mathrm{d}, J 13.6,1-\mathrm{H}_{\mathrm{A}}\right), 3.73\left(1 \mathrm{H}, \mathrm{d}, J 13.6,1-\mathrm{H}_{\mathrm{B}}\right), 3.66(1 \mathrm{H}, \mathrm{ddd}, J 15,6.8$ and 4.3 , $\mathrm{CH}_{\mathrm{A}} \mathrm{OH}$), $3.55\left(1 \mathrm{H}, \mathrm{dd}, J 10.7\right.$ and $\left.5.9,8-\mathrm{H}_{\mathrm{A}}\right), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 10.7\right.$ and $\left.3.6,8-\mathrm{H}_{\mathrm{B}}\right), 3.45$ (1 H , ddd, $J 15$ and 7.7, 3.6, $\mathrm{CH}_{\mathrm{B}} \mathrm{OH}$), $2.68(1 \mathrm{H}$, dtd, $J 11.4,5.8$ and 2.6, 3-H), 2.35-2.28 $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.7-\mathrm{H}_{\mathrm{A}}\right), 2.27-2.18\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 1.84-1.72\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$; MeOD) 140.1 (Ar), 134.3 (Ar); 132.3 (5 or 6 C), 132.1 (5 or 6 C), 130.7 (Ar), 129.9 (Ar), 129.3 (Ar), 129.1 (Ar); 121.6 (q, J 318, (CF_{3}), 79.8 (10-C), $66.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 59.4$ (3-C), 51.7 (1-C), 49.2 ($8-C), 36.5$ (4-C), 34.1 (7-C); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3348, 2928, 2353, 2256, 2128, 1723, 1644, 1455, 1384; m/z (ES ${ }^{+} 379.1$ (100\%, [M+H] ${ }^{+}$); found 379.1309, $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{1}$ requires MH 379.1298

(5E,3R)-3-(Hydroxymethyl)-N-(pyridin-3-yl)-9-(trifluoromethane)sulfonyl-

 1,2,3,4,7,8,9,10-octahydro-2,9-benzodiazacyclododecine-2-carboxamide 159a

Following general procedure A1, 3-pyridyl isocyanate ($18 \mathrm{mg}, 0.15 \mathrm{mmol}$) and amine $246^{\text {D }}$ ($70 \mathrm{mg}, 0.075 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product; on completion of the reaction it was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ $\mathrm{NH}_{4} \mathrm{OH}$ gave the urea 159a ($28.8 \mathrm{mg}, 0.058 \mathrm{mmol}, 77 \%$) as a colourless solid; m.p. $78.9-81.2{ }^{\circ} \mathrm{C}(\mathrm{DMSO}) ; R_{\mathrm{f}} 0.89$ ($50: 8: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$); $[\alpha]_{D}^{23.7} 1.6$ (c. 1.4 , $\mathrm{MeOH}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$ DMSO-d6; 343 K) 8.60 ($1 \mathrm{H}, \mathrm{d}, ~ J 2.6$, Py $2-\mathrm{H}$), 8.56 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 8.16 ($1 \mathrm{H}, \mathrm{dd}, J 4.6$ and 1.6, Py 6-H), 7.84 (1 H , ddd, J 8.3, 2.6 and 1.6, Py 4-H), 7.48$7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ and Py $5-\mathrm{H}$), 5.22 ($1 \mathrm{H}, \mathrm{br}$ s, $5-$ or $6-\mathrm{H}$), 4.97 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-$ or $6-\mathrm{H}$), 4.85 $\left(1 \mathrm{H}, \mathrm{d}, J 14.4,1-\mathrm{H}_{\mathrm{A}}\right.$ or $\left.10-\mathrm{H}_{\mathrm{A}}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J 16.6,1-\mathrm{H}_{\mathrm{A}}\right.$ or $\left.10-\mathrm{H}_{\mathrm{A}}\right), 4.63(1 \mathrm{H}, \mathrm{d}, J 16.6$, $1-\mathrm{H}_{\mathrm{B}}$ or $\left.10-\mathrm{H}_{\mathrm{B}}\right), 4.39\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.4,1-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.10-\mathrm{H}_{\mathrm{B}}\right), 4.31(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 3.72(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{\mathrm{AB}} \mathrm{OH}\right), 3.54\left(1 \mathrm{H}, \mathrm{d}, 8-\mathrm{H}_{\mathrm{A}}\right), 3.45-3.31\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}\right), 2.60-2.46\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.38-$ $2.21\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 2.07-1.93\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{AB}}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} ; \mathrm{DMSO}-d 6 / \mathrm{MeOD} ; 333 \mathrm{~K})$
158.5 (C=O), 144.3 (Py 2-C), 142.9 (Py 4-C), 129.9, 129.6, 128.4, 125.0, 120.8, 62.9 $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 53.6$ (8-C), 33.9 (7-C), 33.7 (4-C), 10-C, 3-C and CF_{3} missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3006, 2989, 1638, 1588, 1532, 1478, 1424, 1388; m/z (ES ${ }^{+}$) $499.2\left(100 \%,[M+H]^{+}\right)$; found 499.1610, $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires MH 499.1621

Full carbon assignment was not possible due to rotamers
[(5E,3R)-2-Cyclopropanecarbonyl-9-(trifluoromethane)sulfonyl-1,2,3,4,7,8,9,10-octahydro-2,9-benzodiazacyclododecin-3-yl]methanol 159b

Following general procedure A2, cyclopropane carbonyl chloride ($35 \mathrm{mg}, 0.34 \mathrm{mmol}$), triethylamine ($69 \mathrm{mg}, 0.68 \mathrm{mmol}$) and amine $\mathbf{2 4 6}^{\mathrm{D}}$ ($64 \mathrm{mg}, 0.068 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product; on completion of the reaction it was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with 70:30 petrol-EtOAc gave the amide 159b ($20 \mathrm{mg}, 0.045$ $\mathrm{mmol}, 66 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.41$ (70:30, petrol—EtOAc); $[\alpha]_{D}^{23.7} 3$ (c. 1.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{C}}(500 \mathrm{MHz}$ DMSO-d6; 343 K) 7.30-6.75 (4H, m, Ar), 5.37-2.80 ($10 \mathrm{H}, \mathrm{m}, 5-$ $\mathrm{H}, 6-\mathrm{H}, 1-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 10-\mathrm{H}_{2}$ and $\mathrm{CH}_{2} \mathrm{OH}$), 2.35-2.23 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 2.18-1.81 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}$ and $7-\mathrm{H}_{\mathrm{A}}$), 1.80-1.53 $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.7-\mathrm{H}_{\mathrm{B}}\right), 0.74-0.32\left(5 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz} ;$ DMSO-d6; 343 K) 173.5, 128.9, 128.5, 127.0, 124.1, 121.5, 118.9, 59.6, 54.7, 51.5, $47.3,32.3,30.8,30.5,28.9,11.0,7.9,7.8,7.3, C F_{3}$ missing; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3388, 3007, 2989, 2949, 1726, 1625, 1455, 1428, 1387, ; m/z (ES ${ }^{+}$) $447.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 447.1567, $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires MH 447.1560

Full proton and carbon assignment was not possible due to severely broad peaks

[(5E,3R)-2-(1-Methyl-1H-imidazole-4-sulfonyl)-9-(trifluoromethane)sulfonyl-

1,2,3,4,7,8,9,10-octahydro-2,9-benzodiazacyclododecin-3-yl]methanol 159c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (68 mg , 0.33 mmol), triethylamine ($73 \mathrm{mg}, 0.72 \mathrm{mmol}$) and amine 246^{D} ($68 \mathrm{mg}, 0.072 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product; on completion of the reaction it was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with EtOAc $\rightarrow 50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ $\mathrm{NH}_{4} \mathrm{OH}$ gave the sulfonamide 159c ($27 \mathrm{mg}, 0.051 \mathrm{mmol}, 72 \%$) as a colourless glass; $R_{\mathrm{f}} 0.31$ (EtOAc); $[\alpha]_{D}^{23.7} 28.1$ (c. $\left.1.4, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d} 6 ; 343 \mathrm{~K}) 7.87(1 \mathrm{H}$, $\mathrm{s}, \mathrm{Imid}), 7.85$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{Imid}$), $7.50-7.38(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.99$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17,10-\mathrm{H}_{\mathrm{A}}$), 4.96-4.85 $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 6-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,1-\mathrm{H}_{\mathrm{A}}\right), 4.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17,10-\mathrm{H}_{\mathrm{B}}\right), 4.20(1 \mathrm{H}, \mathrm{d}, J$ $\left.16,1-\mathrm{H}_{\mathrm{B}}\right), 3.76(4 \mathrm{H}, \mathrm{s}$, NMe and $3-\mathrm{H})$, 3.69-3.50 ($4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$ and $8-\mathrm{H}_{\mathrm{AB}}$), 2.46-2.38 $\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.33-2.26\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 2.10-2.03\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 2.02-1.95(1 \mathrm{H}, \mathrm{m}, 7-$ H_{B}); $\delta_{\mathrm{C}}(125 \mathrm{MHz}$ DMSO-d6; 343 K) 139.7 (Imid 4-C), 139.3 (Imid 2-C), 128.2, 127.6, 125.5, 122.2 ($\mathrm{q}, \mathrm{J} 325, \mathrm{CF}_{3}$), 59.6 ($\mathrm{CH}_{2} \mathrm{OH}$), 50.3 (1-C), 47.7 (8-C), 33.6 (NMe), 32.8 (4-C), 31.6 (7-C), 10-C missing; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3286, 3056, 2947, 2306, 1712, 1532, 1455, 1438, 1423, 1382, 1327; m/z (ES ${ }^{+}$) 523.1 (100\%, [M+H] ${ }^{+}$); found 523.1295, $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires MH 523.1291

(2R)- $N-[(2-\{[N-$ (But-3-en-1-

yl)(trifluoromethane)sulfonamido]methyl\}phenyl)methyl]-1-hydroxy-S-(1-methyl-

 1H-imidazol-4-yl)pent-4'-ene-2'-sulfonamido 267c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (89.5 mg , 0.49 mmol), triethylamine ($100 \mathrm{mg}, 0.99 \mathrm{mmol}$) and amine 209^{D} ($96 \mathrm{mg}, 0.1 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and
following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with EtOAc gave the sulfonamide 267c (29 $\mathrm{mg}, 0.052 \mathrm{mmol}, 53 \%$); $R_{\mathrm{f}} 0.23$ (EtOAc); $[\alpha]_{D}^{23.7} 3.1$ (c. $1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8, \mathrm{Ar}), 7.52(1 \mathrm{H}, \mathrm{d}, ~ J 1.4$, Imid), 7.37 ($1 \mathrm{H}, \mathrm{d}, ~ J 1.4$, Imid), $7.36-$ $7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.61-5.48\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ or $\left.3-\mathrm{H}\right), 5.52(1 \mathrm{H}, \mathrm{ddt}, J 16.9,10.3$ and $6.1,3-$ H or $\left.4^{\prime}-\mathrm{H}\right), 5.01-4.95\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ or $5^{\prime}-\mathrm{H}_{\mathrm{A}}, 5^{\prime}-\mathrm{H}_{\mathrm{B}}$ and $\left.4-\mathrm{H}_{\mathrm{B}}\right), 4.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.1$ and 1.6, $4-\mathrm{H}_{\mathrm{B}}$ or $\left.5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.68\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{NTf}\right), 4.45\left(1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{~N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right) \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.9, \mathrm{~N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right) \mathrm{CH}_{2} \mathrm{Ph}\right), 4.08\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.76(4 \mathrm{H}, \mathrm{m}, \mathrm{NMe}$ and $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.6\right.$ and $\left.3.6, \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.30(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8,1-\mathrm{H}), 2.47-2.18(2 \mathrm{H}$, m, 3'-H), $2.10(2 \mathrm{H}, \mathrm{br} s, 2-\mathrm{H}), 1.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.6$ (Imid 4-C), 136.9 (Imid 2-C), 133.3, 132.8, 131.3, 130.5, 128.5, 126.9, 126.7, 126.2, 122.8, 120.3, 115.9 ($5^{\prime}-\mathrm{C}$ or $4-\mathrm{C}$), 115.7 ($5^{\prime}-\mathrm{C}$ or $4-\mathrm{C}$), 62.1 ($\left.1^{\prime}-\mathrm{C}\right), 60.6$ (2'-C), 48.2 ($\mathrm{PhCH}_{2} \mathrm{NTf}$), 46.3 ($\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right.$) $\mathrm{CH}_{2} \mathrm{Ph}$), 34.9 ($3^{\prime}-\mathrm{C}$), 32.2 (NMe), $30.8\left(2-\mathrm{C}\right.$), CF_{3} missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3006, 2988, 2318, 1642, 1532, 1456, 1386, 1337; m/z (ES ${ }^{+}$551.2 (100\%, $\left[\mathrm{M}+\mathrm{H}^{+}\right)$; found 551.1613, $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires MH 551.1604

$N-[(2-\{[N-(B u t-3-e n-1-y l)($ trifluoromethane $)$ sulfonamido $] m e t h y l\}$ phenyl)methyl]-N-[(2R)-1-hydroxypent-4'-en-2'-yl]cyclopropanecarboxamide 267b

Following general procedure A2, cyclopropane carbonyl chloride ($55.4 \mathrm{mg}, 0.53 \mathrm{mmol}$), triethylamine ($107 \mathrm{mg}, 1.06 \mathrm{mmol}$) and amine $209^{\text {D }}$ ($103 \mathrm{mg}, 0.106 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ gave the amide 267b (35 $\mathrm{mg}, 0.073 \mathrm{mmol}, 70 \%$) as a colourless oil; $R_{\mathrm{f}} 0.93$ (EtOAc); $[\alpha]_{D}^{23.7} 4.8$ (c. $1.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.55-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.79(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.1,9.7$ and 7.4, 4'-H), 5.52 (1 H , ddt, J 17, 10.2 and 6.8, 3-H), 5.15-5.06 (2H, m, $5^{\prime}-\mathrm{H}_{2}$), $4.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.2,4-$
$\left.\mathrm{H}_{\mathrm{A}}\right), 4.90\left(1 \mathrm{H}, \mathrm{d}, J 17,4-\mathrm{H}_{\mathrm{B}}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.4, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{Ph}\right), 4.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 18.4$, $\left.\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{Ph}\right), 4.51\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{NTf}\right)$, 4.16-4.06 (1H, m, 2'-H), $3.80(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ 11.8 and $\left.3.8,1^{\prime}-H_{A}\right), 3.67\left(1 H, d t, J 11.8\right.$ and $\left.6.9,1^{\prime}-H_{B}\right), 3.40-3.26\left(2 H, 1-H_{2}\right), 2.45$ (2H, ap t, J 7.4, 2-H2), 2.17-2.09 (2H, br s, 3'- H_{AB}), 1.46-1.36 (1H, m, ${ }^{\mathrm{C}} \operatorname{Pr}$), 1.21-1.01 (2H, m, ${ }^{\mathrm{C}} \mathrm{Pr}$), 0.81-0.69 (2H, m, $\left.{ }^{\mathrm{C}} \mathrm{Pr}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.6$ (C=O), 134.5 (4'-C), 133.0 (3-C), 130.1, 129.5, 127.8, 127.0, 118.1 (5'-C), 117.9 (4-C), 64.1 (1'-C), 60.1 (2'C), 50.7 ($\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{Ph}$), 48.2 ($\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right)$, 47.8 (1-C), 33.2 (3'-C), 33.0 (2-C), 12.5 (${ }^{\mathrm{C}} \mathrm{Pr}$), 8.6 (${ }^{\mathrm{C}} \mathrm{Pr}$), 8.5 (${ }^{\mathrm{C} P r}$); CF F_{3} missing; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3284, 3079, 3006, 2984, 1727, 1664, 1587, 1536, 1484; m/z (ES ${ }^{+}$) $475.2\left(20 \%,[M+H]^{+}\right)$and 548.3 (100\%, $\left.[\mathrm{M}+\mathrm{MeOH}, \mathrm{MeCN}, \mathrm{H}]^{+}\right)$; found $475.1884, \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{1}$ requires MH 475.1873

3-[(2-\{[N-(But-3-en-1-yl)(trifluoromethane)sulfonamido]methyl\}phenyl)methyl]-3-[(2R)-1-hydroxypent-4'-en-2'-yl]-1-(pyridin-3-yl)urea 267a

Following general procedure A1, 3-pyridyl isocyanate and amine 209 ${ }^{\text {D }}$ ($99 \mathrm{mg}, 0.1$ mmol) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ gave the urea 267a ($40 \mathrm{mg}, 0.076 \mathrm{mmol}, 76 \%$) as a colourless glass; $R_{\mathrm{f}} 0.77$ (50:8:1 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}\right) ;[\alpha]_{D}^{23.7} 1.96$ (c. 2, MeOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.27(1 \mathrm{H}, \mathrm{br}$ s, NH), 8.29 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Py}$), 8.22-8.05 (2H, m, Py), 7.46-7.30 (4H, m, Ar), 7.30-7.18 (1H, m, Ar), 5.73 (1 H , ddt, J 15.9, 11.2 and $7,4{ }^{\prime}-\mathrm{H}$), 5.55 (1 H , ddt, $J 17.1,10.4$ and 6.8, 3H), $5.09\left(1 \mathrm{H}, \mathrm{d}, ~ J 11.2,5{ }^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 5.08\left(1 \mathrm{H}, \mathrm{d}, J 15.9,5-\mathrm{H}_{\mathrm{B}}\right), 4.99\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.4,4-\mathrm{H}_{\mathrm{A}}\right)$, $4.95\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.1,4-\mathrm{H}_{\mathrm{B}}\right), 4.67\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{NTf}\right.$ and $\left.\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{Ph}\right), 3.80-3.58$ $\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 3.39\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8,1-\mathrm{H}_{2}\right), 2.58\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.8\right.$ and $\left.7.6,3^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 2.42$ (1 H , dt, J 14.8 and 7.1, $3^{\prime}-\mathrm{H}_{\mathrm{B}}$), 2.22-2.10 (2H, m, 2-H); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.7$ (C=O), 142.6 (Py), 139.7 (Py), 137.2 (Py), 136.4, 134.0 (4'-C), 133.1 (3-C), 132.8, 129.2, 128.7, 128.6, 128.1, 126.9 (Py), 124.0; 118.5 (4-C), 118.1 (5'-C), 64.1 (1'-C), 59.9 (2'-C), 49.8 (1-C), 48.6 ($\left.\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{Ph}\right), 47.8\left(\mathrm{PhCH}_{2} \mathrm{NTf}\right), 33.3$ (3'-C), $32.8(2-\mathrm{C})$,
$C F_{3}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3006, 2989, 1715, 1614, 1587, 1508, 1464; m/z (ES ${ }^{+}$) $527.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 527.1937, $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}$ requires MH 527.1934

N-(But-3-en-1-yl)-1,1,1-trifluoro-N-\{[2-(\{[(2R)-1-hydroxypent-4'-en-2'yl]amino\}methyl)phenyl]methyl\}methanesulfonamide 267d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. 45-51\%) was added to the amine 209 ${ }^{\text {D }}$ ($104 \mathrm{mg}, 0.107 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ gave the amine 267d ($40 \mathrm{mg}, 0.098 \mathrm{mmol}, 92 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.89$ (50:8:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOH—NH ${ }_{4} \mathrm{OH}$); $[\alpha]_{D}^{23.7}-2$ (c. 2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{MeOD}) 7.37-7.22$ (4H, m, Ar), 5.74 (1H, ddt, J 17.2, 10.1 and 7.1, 4'-H), 5.47 (1H, ddt, J 17.1, 10.3 and 6.9, 3-H), 5.00 (1 H , ddd, $J 17.2,3.2$ and $1.4,5^{\prime}-\mathrm{H}_{\mathrm{A}}$), 4.96 (1 H , dd, $J 10.1$ and $1.4,5^{\prime}-\mathrm{H}_{\mathrm{B}}$), $4.86(1 \mathrm{H}, \mathrm{d}, J$ 10.3, 4-H H_{A}), 4.83-4.76 (1H, m, 4-H H_{B}), 4.85-4.54 (2H, br s, PhCH ${ }_{2}$ NTf), 3.85 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13$, $\left.\mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right), 3.78\left(1 \mathrm{H}, \mathrm{d}, J 13, \mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}\right), 3.51\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and 4.9, $\left.1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.38(1 \mathrm{H}$, dd, $J 11$ and $\left.6.4,1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.31\left(2 \mathrm{H}, \mathrm{t}, J 7.8,1-\mathrm{H}_{2}\right), 3.21(1 \mathrm{H}, \mathrm{ap} p, J 1.6, \mathrm{OH}), 2.65(1 \mathrm{H}$, qd, J 6.3 and 4.7, $2^{\prime}-\mathrm{H}$), 2.20-2.13 (2H, m, $3^{\prime}-\mathrm{H}_{2}$), $1.95\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.2-\mathrm{H}_{2}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 140.2 (Ar), 136.9 (4'-C), 135.4 (3-C), 134.9 (Ar), 131.5 (Ar), 130.8 (Ar), 130.0 (Ar), 129.2 (Ar), 121.9 (d, J 323.9, CF 3), 118.3 ($4-\mathrm{H}$ and $5^{\prime}-\mathrm{H}$), 118.1 ($4-\mathrm{H}$ and $5^{\prime}-\mathrm{H}$), 64.5 (1'-C), 60.2 (2'-C), 51.5 (1-C), 50.0 ($\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right), 49.7\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 37.0\left(3^{\prime}-\mathrm{C}\right)$, 34.7 (2-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3402, 3079, 2984, 2881, 1642, 1456, 1387; m/z (ES ${ }^{+} 407.2$ (100\%, $[\mathrm{M}+\mathrm{H}]^{+}$); found 407.1623, $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires MH 407.1611
(6S,10E,13R)-6-(2,4-Dimethoxyphenyl)-13-(hydroxymethyl)-3-oxo-N-(pyridin-3-yl)-2,3,5,6,7,9,12,13,14,15-decahydro-1H-4,8,2,14-benzodioxadiazacycloheptadecine-14-carboxamide 258a

Following general procedure A1, 3-pyridyl isocyanate ($10 \mathrm{mg}, 0.068 \mathrm{mmol}$) and amine $245^{\text {D }}$ ($35 \mathrm{mg}, 0.034 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S2, tetra-n-butylammonium fluoride $(1 \mathrm{M}, 0.1 \mathrm{~mL})$ was added to the crude product; on completion of the reaction the crude product was purified by column chromatography, eluting with EtOAc gave the amine 258a ($12.5 \mathrm{mg}, 0.021 \mathrm{mmol}, 62 \%$) as a yellow glass; $[\alpha]_{D}^{23.7} 0.6$ (c. $0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); R_{f} 0.29 (EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 323 \mathrm{~K}\right) \mathrm{E} / \mathrm{Z}>75 /<25$ 8.24-8.17 (2H, m, Py 2 and 6H), 7.96 (1H, d, Py 4-H ${ }^{\text {min }}$), 7.91 (1H, d, J 7.4, Py 4-H), 7.57 (1H, d, J7.7, Py 5-H), 7.49 (1H, d, J7.7, Py 5-H ${ }^{\text {min }}$), 7.36-7.05 (5H, m, Ar), 6.92 (1H, d, J 8.4, DMB 6-H), 6.42 (1H, dd, $J 10.7$ and 2.5, DMB 5-H), 6.38 (1 H , dd, J 8.4 and 2.5 , DMB $\left.5-\mathrm{H}^{\text {min }}\right), 6.13(1 \mathrm{H}, \mathrm{s}$, DMB 3-H ${ }^{\text {min }}$), $5.72(1 \mathrm{H}, \mathrm{ddd}, J 15.9,6.9$ and $3.7,10-\mathrm{H}), 5.71-5.65(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$ and $10-$ $\left.H^{\text {min }}\right), 5.62\left(1 \mathrm{H}, \mathrm{dt}, J 11.1\right.$ and $\left.7.2,11-\mathrm{H}^{\mathrm{min}}\right), 5.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, 4.83-4.01 ($6 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}, 20-\mathrm{H}_{2}$ and $5-\mathrm{H}_{2}$) 3.96-3.72 ($7 \mathrm{H}, \mathrm{m}, \mathrm{OMe}, 9-\mathrm{H}_{\mathrm{AB}}$ and $\mathrm{CH}_{\mathrm{AB}} \mathrm{OH}$), $3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.64\left(1 \mathrm{H}, \mathrm{dd}, J 9.7\right.$ and $\left.4.8,7-\mathrm{H}_{\mathrm{A}}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and 6.7, 7H_{B}), 3.56-3.46 (1H, m, 6-H), $3.40\left(1 \mathrm{H}, \mathrm{br}\right.$ s, 13-H), 2.63-2.53 (1H, m, 12- H_{A}), 2.49-2.37 ($1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}(75 \mathrm{MHz}$ MeOD; 333 K) 159.9, 159.6, 158.0, 157.9, 156.9, 156.8, $156.3,143.6,141.2,140.9,136.9,136.4,134.6,131.3,130.6,129.0,128.9,128.8$, 128.5, 127.7, 127.4, 127.3, 127.0, 123.6, 123.5, 120.4, 104.4, 104.1, 98.8, 71.2, 71.1 , 69.1, 66.7, 65.7, 64.6, 60.3, 55.4 (OMe), 55.3 (OMe), 55.3, 44.4, 38.1, 32.3, 27.8 ; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3281, 3053, 2926, 2127, 1707, 1661, 1605, 1531, 1495, 1484, 1456; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 591.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 591.2827, $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires MH 591.2813

Full carbon assignment was not possible due to geometric isomers and rotamers
($6 S, 10 E, 13 R$)-14-Cyclopropanecarbonyl-6-(2,4-dimethoxyphenyl)-13-
(hydroxymethyl)-2,3,5,6,7,9,12,13,14,15-decahydro-1H-4,8,2,14-benzodioxadiazacycloheptadecin-3-one 258b

Following general procedure A2, cyclopropane carbonyl chloride ($14 \mathrm{mg}, 0.14 \mathrm{mmol}$), triethylamine ($28 \mathrm{mg}, 0.28 \mathrm{mmol}$) and amine $\mathbf{2 4 5}^{\mathrm{D}}$ ($29 \mathrm{mg}, 0.028 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction; the crude product was purified by column chromatography, eluting with $50: 50$ EtOAc-petrol gave the amide 258b (11.9 mg , $0.022 \mathrm{mmol}, 79 \%$); $R_{\mathrm{f}} 0.66$ ($50: 50$, petrol-EtOAc); $[\alpha]_{D}^{23.7} 0.7$ (c. $0.6, \mathrm{MeOH}$); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; 333 \mathrm{~K}\right)>90 /<10 \mathrm{E} / Z 7.51-7.01$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.47-6.35 (2H, m, DMB), 5.73$5.63(2 \mathrm{H}, \mathrm{m}, 10$ and $11-\mathrm{H})$, $5.11-3.10\left(20 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{AB}}, 5-\mathrm{H}_{\mathrm{AB}}, 6-\mathrm{H}, 7-\mathrm{H}_{\mathrm{AB}}, 9-\mathrm{H}_{\mathrm{AB}}, 15-\mathrm{H}_{\mathrm{AB}}\right.$, $\mathrm{CH}_{\mathrm{AB}} \mathrm{OH}$ and $\left.2 \times \mathrm{OMe}\right), 2.71-2.25\left(2 \mathrm{H}, 12-\mathrm{H}_{\mathrm{AB}}\right), 1.55\left(1 \mathrm{H},{ }^{\mathrm{C}} \operatorname{Pr}\right), 1.06\left(2 \mathrm{H},{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.73$ (2H, ${ }^{\mathrm{C}} \mathrm{Pr}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.3(\mathrm{C}=\mathrm{O}), 176.1(\mathrm{C}=\mathrm{O}), 174.9(\mathrm{C}=\mathrm{O})$, 159.8, 159.6, 159.3, 157.9, 157.8, 156.6, 156.0, 137.3, 136.9, 134.3, 131.8, 131.2, 130.9, 130.8, 130.7, 129.8, 129.1, 128.9, 128.8, 128.5, 128.2, 127.7, 127.4, 127.2, 126.9, 126.7, $126.4,126.3,120.3,120.1,103.8,103.7,103.6,98.5,98.5,98.4,98.3,71.5$ (9-C), 71.1 (9-C), 67.8, 66.7, 65.9, 64.4, 63.7, 55.4 (OMe), 55.4 (OMe), 44.2, 37.9, 37.3, 31.9, 12.6 (${ }^{\mathrm{C} P r), ~} 12.4$ (${ }^{\mathrm{C}} \mathrm{Pr}$), $12.1\left({ }^{\mathrm{C}} \mathrm{Pr}\right), 8.8\left({ }^{\mathrm{C}} \mathrm{Pr}\right), 8.7\left({ }^{\mathrm{C} P r}\right), 8.5\left({ }^{\mathrm{C}} \mathrm{Pr}\right)$; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3301, 3101, 2996, 2131, 1706, 1591, 1611, 1526 and 1444; m/z (ES ${ }^{+}$) $539.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 539.2776, $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires MH 539.2752

Full carbon assignment was not possible to mixture of geometric isomers and rotamers
(6S,10E,13R)-6-(2,4-Dimethoxyphenyl)-13-(hydroxymethyl)-14-(1-methyl-1H-imidazole-4-sulfonyl)-2,3,5,6,7,9,12,13,14,15-decahydro-1H-4,8,2,14-benzodioxadiazacycloheptadecin-3-one 258c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (10.8 mg , $0.06 \mathrm{mmol})$, triethylamine ($9.1 \mathrm{mg}, 0.09 \mathrm{mmol}$) and amine $245^{\text {D }}$ ($31 \mathrm{mg}, 0.03 \mathrm{mmol}$) gave the crude product after 9 h . The crude product was purified by F-SPE and following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the crude product; on completion of the reaction the crude. The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 258c ($8 \mathrm{mg}, 0.013 \mathrm{mmol}, 43 \%$) as a colourless glass; $R_{\mathrm{f}} 0.31$ (90:10, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7} 2.9$ (c. $0.4, \mathrm{MeOH}$); $\delta_{\mathrm{H}}(500 \mathrm{MHZ} ; \mathrm{DMSO}-d 6)>80 /<20 \mathrm{E} / Z ; 7.69$ (1H, d, J 1.4, Imid), 7.51 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4$, Imid), 7.50-7.43 (1H, m, Ar), 7.20-7.08 (3H, Ar), 7.03 (1H, d, J 8.4, DMB 6-H), 6.45 (1H, d, J 2.5, DMB 3-H), 6.37 (1 H , dd, J 8.4 and 2.5, DMB 5-H), $5.37(1 \mathrm{H}, \mathrm{br}$ s, 10 or $11-\mathrm{H}), 5.21(1 \mathrm{H}$, br s, 10 or $11-\mathrm{H}), 4.59-4.39(2 \mathrm{H}, \mathrm{m}, 1-$ H_{A} and 5-H H_{A}, 4.32-4.18 $\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{B}}\right), 4.18-4.02\left(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{\mathrm{A}}\right), 3.91(1 \mathrm{H}, \mathrm{d}$, $\left.15-\mathrm{H}_{\mathrm{B}}\right), 3.86-3.73\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{AB}}\right), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.58-3.35(5 \mathrm{H}$, $\mathrm{CH}_{\mathrm{AB}} \mathrm{OH}, 7-\mathrm{H}_{2}$ and $6-\mathrm{H}$ or $13-\mathrm{H}$), $3.50(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.33-3.20(1 \mathrm{H}, 6-\mathrm{H}$ or $13-\mathrm{H}), 2.34-$ $2.31\left(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}_{\mathrm{A}}\right), 2.11\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.4\right.$ and $\left.9.4,12-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} ;$ DMSO-d6) 159.4, 157.6, 155.5, 139.7, 139.5, 129.8, 129.6, 128.3, 127.1, 126.5, 124.6, 120.3, 105.0, 99.9, 98.7, 69.9, 67.5, 63.9, 55.7, 55.2, 37.3, 33.3, 32.3, 28.9; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3056, 2988, 2305, 2257, 2129, 1651; m/z (ES ${ }^{+}$) $615.2\left(95 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$and 637.2 (100\%, [M+Na] ${ }^{+}$); found 637.2320, $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ requires MNa 637.2303

Full carbon assignment was not possible to mixture of geometric isomers and rotamers
(6S,13R)-6-(2,4-Dimethoxyphenyl)-13-(hydroxymethyl)-2,3,5,6,7,9,12,13,14,15-decahydro-1H-4,8,2,14-benzodioxadiazacycloheptadecin-3-one 258d

Following general procedure S2, tetra- n-butylammonium fluoride ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) was added to the amine $245^{\text {D }}$ ($50 \mathrm{mg}, 0.048 \mathrm{mmol}$); on completion of the reaction, the crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 258d ($23 \mathrm{mg}, 0.048 \mathrm{mmol}, 99 \%$) as a pale yellow glass; $R_{\mathrm{f}} 0.16$ (90:10, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{D}^{23.7} 1.7$ (c. $\left.1.2, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)>80 /<20 \mathrm{E} / \mathrm{Z} 7.40-$ 7.22 (5H, m, DMB 6-H and Ar), 7.12-7.03 (1H, m,), 6.51 ($1 \mathrm{H}, \mathrm{d}, ~ J 2.4, ~ D M B 3-H), ~ 6.45-$ $6.38(1 \mathrm{H}, \mathrm{m}, \mathrm{DMB} 5-\mathrm{H}), 5.89(1 \mathrm{H}, \mathrm{dt}, J 14.1$ and $6.7,11-\mathrm{H}), 5.69-5.61\left(\mathrm{~m}, 11-\mathrm{H}^{\mathrm{min}}\right.$ and $\left.10-\mathrm{H}^{\mathrm{min}}\right), 5.57(1 \mathrm{H}, \mathrm{dt}, J 14.1$ and $4.7,10-\mathrm{H}), 4.43-4.29\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.15-\mathrm{H}_{2}\right) 4.06-$ $3.84\left(4 \mathrm{H}, 9-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{AB}}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74-3.51(4 \mathrm{H}$, $\mathrm{CH}_{\mathrm{AB}} \mathrm{OH}$ and $7-\mathrm{H}_{\mathrm{AB}}$), $2.91(1 \mathrm{H}, 13-\mathrm{H}), 2.82\left(\mathrm{p}, 13-\mathrm{H}^{\text {min }}\right), 2.57-2.50\left(12-\mathrm{H}^{\text {min }}\right), 2.45-2.36$ ($1 \mathrm{H}, 12-\mathrm{H}$), $2.28-2.21(1 \mathrm{H}, 12-\mathrm{H})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.2$ (DMB 2 or $4-\mathrm{C}^{\mathrm{min}}$), 160.1(DMB 2 or $4-C)$, 158.4 (DMB 2 or $4-C$), 158.4 (DMB 2 or $4-C^{\text {min }}$), 156.9 (C=O), $138.9,138.1,131.1,131.0,130.9$ (10-C), 130.7 (11-C), 129.7, 129.4, 129.3, 128.6, 128.4, 127.1, 120.8, 104.5 (DMB 5-C), 99.1 (DMB 3-C ${ }^{\text {min }}$), 98.9 (DMB 3-C), 74.0 (min), 71.7 (9-C), 70.1 ($9-\mathrm{C}^{\mathrm{min}}$), 67.6 ($\left.8-\mathrm{C}^{\text {min }}\right), 67.1(8-\mathrm{C}), 66.5,64.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 63.3$ $\left(\mathrm{CH}_{2} \mathrm{OHmin}\right), 59.9(13-\mathrm{C}), 59.5\left(13-\mathrm{C}^{\mathrm{min}}\right), 55.7(2 \times \mathrm{OMe}), 50.9(1-\mathrm{C}), 50.3\left(1-\mathrm{C}^{\mathrm{min}}\right)$, 45.4 ($5-C^{\text {min }}$), 44.6 ($5-\mathrm{C}$), 38.4 ($15-\mathrm{C}$), 37.3 ($12-\mathrm{C}^{\mathrm{min}}$), 35.0 ($12-\mathrm{C}$), 30.1 ($6-\mathrm{C}$); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3278, 2913, 2449, 2414, 1683, 1614, 1507, 1464, 1438; m/z (ES ${ }^{+}$) 471.3 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 471.2496, $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 471.2490

Full carbon assignment was not possible to mixture of geometric isomers and rotamers
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl

Following general procedure A1, 3-pyridyl isocyanate ($8 \mathrm{mg}, 0.066 \mathrm{mmol}$) and amine $235^{\text {D }}$ ($35 \mathrm{mg}, 0.033 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea $\mathbf{2 6 6 a}$ ($20.3 \mathrm{mg}, 0.033 \mathrm{mmol}, 99 \%$) as a colourless glass; $R_{\mathrm{f}} 0.13$ (70:30, petrolEtOAc); $[\alpha]_{D}^{23.7}-1.5$ (c. 1, MeOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.94(\mathrm{~s}, \mathrm{Py})^{\mathrm{min}}, 8.84(1 \mathrm{H}, \mathrm{s}$, Py), 8.52 (s, Py) ${ }^{\text {min }}, 8.32$ (1H, s, Py), 8.12 (1H, s, Py), 7.54 (1H, s, Py), 7.45-6.54 (5H, Ar), 6.45-6.30 (2H, m, DMB 3 and $5-\mathrm{H}), 5.81$ (1 H , ddt, $J 17.4,10.6$ and 7.1, propenyl 2H), 5.69-5.62 (1H, m, 4-H), 5.17 (1 H , dd , J 17.4 and 1.8, propenyl $3-\mathrm{H}_{\mathrm{A}}$), 5.08 ($1 \mathrm{H}, \mathrm{d}, J$ 10.6, propenyl $3-\mathrm{H}_{\mathrm{B}}$), 5.01-4.91 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}$), $4.64\left(1 \mathrm{H}, \mathrm{s}, \mathrm{N}(\mathrm{COPy}) \mathrm{CH}_{2} \mathrm{Ph}\right.$ or $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), 4.46 ($1 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{COPy}^{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$ or $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), 4.39-4.09 (5H, propyl 1$\mathrm{H}_{2}, 2-\mathrm{H}, \mathrm{N}(\mathrm{COPy}) \mathrm{CH}_{2} \mathrm{Ph}$ or $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), $3.90\left(2 \mathrm{H}, \mathrm{d}, J 5.6\right.$, propenyl 2- H_{2}), 3.81-3.46 ($11 \mathrm{H}, 2 \times \mathrm{OMe}$, propyl $3-\mathrm{H}_{2}$ and propyl $2-\mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), $2.35-2.12(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$; $\delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{MeOH} ; 343 \mathrm{~K}\right) 160.3$ (DMB 2 or 4-C), 158.8 (DMB 2 or 4-C), 138.9, 135.2, 129.8, 129.33, 129.3, 128.9, 120.5, 119.9 (5-C), 117.5 (propenyl 3-C) ${ }^{\text {min }}, 116.0$ (propenyl 3-C), 105.1 (DMB 5-C), 99.2 (DMB 3-C), 71.9 (propenyl 1-C), 71.0 (propenyl $1-\mathrm{C})^{\mathrm{min}}, 70.9$ (propyl 3-C), 66.1 (1-C), $63.1^{\mathrm{min}}, 62.5$ (2-C) , 56.9, 55.2 (OMe), 54.9 (OMe), $54.1^{\mathrm{min}}, 49.4$ (propyl 1-C), 46.4, $43.4^{\mathrm{min}}, 41.7,38.7$ (propyl 2-C), 35.8 ${ }^{\mathrm{min}}, 33.9$ (3C), $32.1^{\mathrm{min}} ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3333, 2930, 2852, 1681, 1613, 1566, 1508, 1466; m/z (ES ${ }^{+}$) $619.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $619.3149, \mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires MH 619.3126

Full carbon assignment was not possible to mixture of rotamers
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (30 mg , 0.16 mmol), triethylamine ($32 \mathrm{mg}, 0.32 \mathrm{mmol}$) and amine 235^{D} ($34 \mathrm{mg}, 0.032 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 266c ($14.8 \mathrm{mg}, 0.023 \mathrm{mmol}, 73 \%$) as a colourless oil; $R_{\mathrm{f}} 0.06$ (70:30 petrol—EtOAc); $[\alpha]_{D}^{23.7} 0.8$ (c. $0.7, \mathrm{MeOH}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.46(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 7.35$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 7.32-7.28 (1H, m, Ar), 7.27-7.19 (2H, m, Ar), 7.10 (1H, d, Ar), 6.44-6.41 (2H, m, DMB 3 and $5-\mathrm{H}$), 5.85 (1 H , ddt, J 17.3, 10.7 and 5.5, propenyl 2-H), 5.55-5.41 $(2 \mathrm{H}, 4-\mathrm{H}$ and NH$), 5.22\left(1 \mathrm{H}\right.$, dd, $J 17.3$ and 1.8 , propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.12(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 1.8, propenyl $3-\mathrm{H}_{\mathrm{B}}$), 4.96-4.90 $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right), 4.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right)$, 4.39-4.27 (5H, propyl 1- H_{AB} PhCH $\mathrm{N}(\mathrm{CO})$ and $\left.\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right)$, $4.04(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5$, 2$\mathrm{H}), 3.94\left(2 \mathrm{H}, \mathrm{s}\right.$, propenyl 1- H_{2}), $3.77(6 \mathrm{H}, 2 \times \mathrm{OMe}), 3.71(3 \mathrm{H}, \mathrm{NMe}), 3.64-3.57(5 \mathrm{H}, 1-$ H_{AB} and propyl $3-\mathrm{H}_{\mathrm{AB}}$ and propyl $\left.2-\mathrm{H}\right), 2.39-2.31\left(1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.15(1 \mathrm{H}, \mathrm{dt}, J 15$ and 7.7 , $\left.3-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.6$ (DMB 2 or $\left.4-\mathrm{C}\right)$, 158.3 (DMB 2 or $\left.4-\mathrm{C}\right), 156.7(\mathrm{C}=\mathrm{O})$, 140.9 (Imid), 138.7 (propenyl 2-C) , 137.2 (Imid), 134.9, 134.8, 133.9, 130.7, 129.6, 128.9, 128.1, 127.5, 124.5, 120.1, 117.5 (propenyl 3-C), 116.7 (5-C), 104.0 (DMB 5-C), 98.6 (DMB 3-C); 71.9 (propenyl 1-C), 70.4 (1-C), 65.3 (propyl 1-C), 63.5 (2-C), 62.6 (propyl 3-C), 55.4 (OMe), 55.3 (OMe), 48.8 ($\left.\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Imid}\right) \mathrm{CH}_{2} \mathrm{Ph}\right)$, $42.1 \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$, 37.9 (propyl 2-C), 36.7 (3-C), 34.2 (NMe); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3055, 2987, 2305, 1713, 1612, 1508, 1421 and 1264; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 665.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 665.2584, $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ requires MNa 665.2616
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl $\quad N$-\{[2-(\{1-cyclopropyl-N-[(2R)-1-hydroxypent-4-en-2-yl]formamido\}methyl)phenyl]methyl\}carbamate 266b

Following general procedure A2, cyclopropane carbonyl chloride ($15 \mathrm{mg}, 15 \mathrm{mmol}$), triethylamine ($30 \mathrm{mg}, 30 \mathrm{mmol}$) and amine $\mathbf{2 3 5}^{\text {D }}$ ($32 \mathrm{mg}, 0.03 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amide $\mathbf{2 6 6 b}(7.6 \mathrm{mg}, 0.017 \mathrm{mmol}, 56 \%$) as a colourless glass; $R_{\mathrm{f}} 0.66$ (70:30, petrol—EtOAc); $[\alpha]_{D}^{23.7} 1.3$ (c. $\left.0.5, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) 7.41 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6, \mathrm{Ar}$), 7.31-7.20 (1H, m, Ar), 7.12 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8, \mathrm{Ar}$), 7.06 ($1 \mathrm{H}, \mathrm{t}, ~ J 7.6, \mathrm{Ar}$), 6.99 ($1 \mathrm{H}, \mathrm{d}, ~ J 7.4, ~ \mathrm{Ar}), 6.48-6.45$ (2H, m, DMB 3 and 5-H), 5.85 (1H, ddt, J 17.4, 10.6 and 5.4, propenyl 2-H), 5.76 (1H, ddt, J17.2, 10.1 and $7.4,4-H), 5.22$ (1 H , dd , $J 17.4$ and 1.9, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.09\left(1 \mathrm{H}, \mathrm{dd}, J 17.2\right.$ and $\left.1.8,5-\mathrm{H}_{\mathrm{A}}\right), 5.04(1 \mathrm{H}$, d, $J 10.6$, propenyl $3-H_{B}$), $5.01\left(1 \mathrm{H}, \mathrm{d}, J 10.1,5-\mathrm{H}_{\mathrm{B}}\right), 4.79(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 7.2, propyl $1-\mathrm{H}_{\mathrm{A}}$), $4.69\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7\right.$ and 6.3, propyl $\left.1-\mathrm{H}_{\mathrm{B}}\right), 4.63\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{PhCH}_{\mathrm{A}} \mathrm{N}(\mathrm{CO})$), 4.51 ($1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{PhCH}_{\mathrm{B}} \mathrm{N}(\mathrm{CO})$), 4.16 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6$, propyl 1-H), 4.11 (1H, br s, propyl 2-H), $3.94(1 \mathrm{H}, \mathrm{p}, 2-\mathrm{H}), 3.89\left(2 \mathrm{H}, \mathrm{s}\right.$, propenyl 1- $\left.\mathrm{H}_{2}\right), 3.76-3.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CO}^{\mathrm{C}} \mathrm{Pr}\right) \mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.61(2 \mathrm{H}$, br s, propyl $3-\mathrm{H}), 3.47(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.43(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 1.49-1.11 (3H, m, ${ }^{\mathrm{C}} \operatorname{Pr}$ and $\left.3-\mathrm{H}\right), 0.66-0.44\left(2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 160.4$ (DMB 2 and 4-C), 135.5, 129.5, 128.9, 124.8, 121.0, 117.1 (propenyl 2-C), 115.8 (5-C), 105.0 (DMB 3-C), 72.0 (propenyl 1-C), 71.3 (1-C), 65.9 (propyl 1-C), 63.9 (propyl 3-C), 60.3 (2-C), 55.1 (OMe), 54.9 (OMe), 42.6 ($\mathrm{PhCH}_{\mathrm{A}} \mathrm{N}(\mathrm{CO}), 39.2$ (3-C), 12.5 (${ }^{\mathrm{C} P r), ~} 8.1$ (${ }^{\mathrm{C} P r), ~} 7.9$ (${ }^{\mathrm{C} P r), ~} \mathrm{~N}\left(\mathrm{CO}^{\mathrm{C}} \mathrm{Pr}\right) \mathrm{CH}_{2} \mathrm{Ph}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3326, 3006, 2959, 2929, 1713, 1614, 1508, 1463 and 1439; m/z (ES $\left.{ }^{+}\right) 567.3\left(100 \%,\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$; found 567.3057, $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires MH 567.3065

Full carbon assignment was not possible to mixture of rotamers

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine 235^{D} ($30 \mathrm{mg}, 0.03 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 266d ($9.4 \mathrm{mg}, 0.019 \mathrm{mmol}, 63 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.34$ ($90: 10$, petrol-EtOAc); $[\alpha]_{D}^{23.7} 80.4$ (c. $\left.0.5, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.36-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.12(1 \mathrm{H}, \mathrm{d}$, Ar), 6.48-6.42 (2H, m, DMB 3 and $5-H), 5.88(1 \mathrm{H}, \mathrm{ddt}, J 16.8,10.2$ and 5.5 , propenyl 2C), $5.81(1 \mathrm{H}$, ddt, J 17.1, 9.9 and $7.3,4-\mathrm{H}), 5.24\left(1 \mathrm{H}, \mathrm{d}, J 16.8\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.18-$ $5.12\left(3 \mathrm{H}, \mathrm{m}\right.$, propenyl $3-\mathrm{H}_{\mathrm{B}}$ and $\left.5-\mathrm{H}_{\mathrm{AB}}\right)$, 4.46-4.33 $\left(4 \mathrm{H}, \mathrm{m}\right.$, propyl $1-\mathrm{H}_{2}$ and $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), $3.97\left(2 \mathrm{H}, \mathrm{s}\right.$, propenyl 1-H2), 3.90-3.80 ($8 \mathrm{H}, \mathrm{m}, \mathrm{OMe}$ and $\mathrm{NHCH}_{2} \mathrm{Ph}$), $3.65\left(4 \mathrm{H}\right.$, br s, $1-\mathrm{H}_{\mathrm{A}}$, propyl $2-\mathrm{H}$ and propyl $\left.3-\mathrm{H}_{\mathrm{AB}}\right), 11.1$ and $5.9(1 \mathrm{H}$, dd , $J 11.1$ and $\left.5.9,1-\mathrm{H}_{\mathrm{A}}\right), 2.28(1 \mathrm{H}$, ap $\mathrm{t}, \mathrm{J} 5.6,2-\mathrm{H}), 2.31(2 \mathrm{H}$, ap $\mathrm{t}, \mathrm{J} 6.9,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 159.5 (DMB 2 and 4-C), 158.4 (C=O), 134.9, 134.5, 132.5, 130.4, 128.9, 127.9, 121.9, 120.1, 118.1 (propenyl 3-C), 116.7 (5-C), 103.9 (DMB 5-C), 98.6 (DMB 3-C), 71.9 (propenyl 1-C), 70.6 (1-C), 63.5 (2-C), 55.4 (OMe), 55.3 (OMe), 38.1 (propyl 2-C), 35.5 $(3-\mathrm{C}), \mathrm{N}\left(\mathrm{CO}^{\mathrm{C}} \mathrm{Pr}\right) \mathrm{CH}_{2} \mathrm{Ph}$ and $\mathrm{NHCH}_{2} \mathrm{Ph}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3326, 3004, 2922, 1705, 1614, 1587, 1508, 1464; m/z (ES ${ }^{+}$) 499.3 (100\%, [M+H] ${ }^{+}$); found 499.2797, $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 499.2803
(3R,9R,10R)-9-Hydroxy-3-(hydroxymethyl)-10-methyl- N-(pyridin-3-yl)-12-(trifluoromethane)sulfonyl-2,3,4,7,8,9,10,11,12,13-decahydro-1H-2,12-benzodiazacyclopentadecine-2-carboxamide 259a

Following general procedure A1, 3-pyridyl isocyanate ($14 \mathrm{mg}, 0.112 \mathrm{mmol}$) and amine $247^{\text {D }}$ ($63 \mathrm{mg}, 0.056 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid $(0.2 \mathrm{~mL}$, ca. $45-51 \%)$ was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane $(0.5 \mathrm{~mL})$ and stirred for a further 16 h . The crude product was purified by mass-directed liquid chromatography and gave the urea 259a (3.8 mg , $0.0067 \mathrm{mmol}, 12 \%$) as a colourless film; $R_{\mathrm{f}} 0.4$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2921, 2851, 1667, 1580, 1385, 1260, 1225, 1188, 1107 and 1025; m/z (ES ${ }^{+}$) 553.2 (100\%, [$\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$); found 533.2094, $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O} 553.2091$

Unable to obtain ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra due to insufficient material
(4R,5R,11R)-12-Cyclopropanecarbonyl-11-(hydroxymethyl)-4-methyl-2-(trifluoromethane)sulfonyl-2,3,4,5,6,7,10,11,12,13-decahydro-1H-2,12-benzodiazacyclopentadecin-5-ol 259b

Following general procedure A2, cyclopropane carbonyl chloride ($31 \mathrm{mg}, 0.29 \mathrm{mmol}$), triethylamine ($60 \mathrm{mg}, 0.59 \mathrm{mmol}$) and amine $\mathbf{2 4 7}^{\mathrm{D}}$ ($67 \mathrm{mg}, 0.059 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by mass-directed liquid column chromatography and gave the amide 259b ($12.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 42 \%$) as a
colourless glass; $R_{\mathrm{f}} 0.39$ (EtOAc); $[\alpha]_{D}^{23.7} 11.4$ (c. $0.6, \mathrm{MeOH}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $7.64\left(\mathrm{~d}, \mathrm{~J} 7.8, \mathrm{Ar}^{\mathrm{min}}\right), 7.40-7.17(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.52\left(1 \mathrm{H}, \mathrm{dd}, J 10.8\right.$ and $5.8,8$ or $9-\mathrm{H}^{\mathrm{z}}$), 5.49-5.43 ($1 \mathrm{H}, \mathrm{m}, 8$ or $9-\mathrm{H}^{\mathrm{Z}}$ and E^{2}, $5.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14,1-\mathrm{H}_{\mathrm{A}}{ }^{\mathrm{Z}}\right), 5.08-4.99\left(\mathrm{~m}, \operatorname{mix} 1-\mathrm{H}_{A}{ }^{\mathrm{E}} \mathrm{Z}^{\mathrm{Z}}\right)$, $4.92\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.7,1-\mathrm{H}_{\mathrm{B}}{ }^{\mathrm{E}}\right), 4.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{J} 11.2\right.$ and $\left.5.7, \mathrm{CH}_{\mathrm{A}}{ }^{\mathrm{Z}} \mathrm{OH}\right), 4.18(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $5.4, \mathrm{CH}_{\mathrm{B}}{ }^{\mathrm{Z} O H}$), $3.98\left(\mathrm{~d}, \mathrm{~J} 13.5,13-\mathrm{H}_{\mathrm{A}}{ }^{\mathrm{E}}\right.$), $3.93\left(\mathrm{~d}, \mathrm{~J} 13.5,13-\mathrm{H}_{\mathrm{B}}^{\mathrm{E}}\right), 3.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.11.7,13-\mathrm{H}_{A B}{ }^{\mathrm{Z}}\right), 3.79\left(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}^{\mathrm{Z}}\right), 3.66\left(1 \mathrm{H}, \mathrm{d}, ~ J 11.7,13-\mathrm{H}^{\mathrm{Z}}\right), 3.55\left(\mathrm{~d}, ~ J 9.5, \mathrm{CH}_{B}{ }^{\mathrm{E}} \mathrm{OH}\right)$, $3.45\left(1 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $\left.10.7,3-\mathrm{H}_{\mathrm{A}}\right), 3.13\left(1 \mathrm{H}\right.$, dd, $J 14.6$ and $4.8,3-\mathrm{H}_{\mathrm{B}}$), 3.01-2.90 $(1 \mathrm{H}, 11-\mathrm{H}), 2.42\left(\mathrm{~d}, J 13.5,10-\mathrm{H}_{\mathrm{A}}{ }^{ }\right), 2.28\left(1 \mathrm{H}, \mathrm{dt}, J 14.7\right.$ and $\left.9.5,10-\mathrm{H}_{\mathrm{AB}}{ }^{\mathrm{Z}}\right), 2.14(2 \mathrm{H}, \mathrm{s}$, $\left.10-H_{B}{ }^{E}, 7-H_{A B}{ }^{2}\right), 2.08-1.48\left(9 H, m,{ }^{C} \operatorname{Pr}, 4-H, 7-H_{A B}, 10-H_{A B}, 6-H_{A B}\right), 1.06-1.01(2 \mathrm{H}, \mathrm{m}$, $\left.{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.94-0.85\left(2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.70\left(3 \mathrm{H}, \mathrm{d}, ~ J 6.9, \mathrm{Me}^{\mathrm{Z}}\right), 0.54\left(\mathrm{~d}, J 6.5, \mathrm{Me}^{\mathrm{E}}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 174.7, 164.9, 138.2, 132.7, 130.7, 129.4, 128.2, 128.0, 127.8, 127.2, 76.7, 66.7, 65.7, 63.5, 56.9, 56.6, 53.3, 50.1, 49.8, 47.9, 32.5, 30.9, 22.8, 12.8, 9.6, 9.4, 8.4, 8.3; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3759, 3586, 2940, 1725, 1456, 1383, 1274, 1266, 1225; m/z (ES ${ }^{+}$) $519.2\left(100 \%,[M+H]^{+}\right)$; found $519.2155, \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$ S requires MH 519.2135
full carbon assignment was not possible to mixture of geometric isomers and rotamers
(4R,5R,11R)-11-(Hydroxymethyl)-4-methyl-12-(1-methyl-1H-imidazole-4-sulfonyl)-2-(trifluoromethane)sulfonyl-2,3,4,5,6,7,10,11,12,13-decahydro-1H-2,12-benzodiazacyclopentadecin-5-ol 259c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (52 mg , 0.29 mmol), triethylamine ($58 \mathrm{mg}, 0.58 \mathrm{mmol}$) and amine 247^{D} ($65 \mathrm{mg}, 0.057 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by mass-directed preparative liquid chromatography, and gave the sulfonamide 266c ($4.1 \mathrm{mg}, 0.007 \mathrm{mmol}, 12 \%$) as a colourless glass; $R_{\mathrm{f}} 0.12\left(\mathrm{CHCl}_{3}\right)$; $[\alpha]_{D}^{23.7} 0.3$ (c. $\left.0.4, \mathrm{MeOH}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3006, 2990, 1462, 1384, 1335; m/z (ES ${ }^{+}$) 617.1 (100\%, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 595.1898, $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires MH 595.1872

Unable to obtain ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra due to insufficient material
(4R,5R,11R)-11-(Hydroxymethyl)-4-methyl-2-(trifluoromethane)sulfonyl-

2,3,4,5,6,7,10,11,12,13-decahydro-1H-2,12-benzodiazacyclopentadecin-5-ol 259d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. 45-51\%) was added to the amine $247^{\text {D }}$ ($61 \mathrm{mg}, 0.054 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by mass-directed liquid column chromatography, and gave the amine 259d ($5.2 \mathrm{mg}, 0.012 \mathrm{mmol}, 22 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.15$ (95:5 $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{D}^{23.7}$ -1.2 (c. $0.5, \mathrm{MeOH}$); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3580, 3387, 2933, 1658, 1457, 1384, 1257; m/z (ES ${ }^{+}$) $451.2\left(100 \%,[M+]^{+}\right)$; found 451.1878, $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires MH 451.1873

Unable to obtain ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra due to insufficent material

1,1,1-Trifluoro-N-[(2R,3R)-3-hydroxy-2-methylhept-6-en-1-yl]-N-\{[2'-(\{[(2'R)-1'-hydroxypent-4'-en-2'-yl]amino\}methyl)phenyl]methyl\}methanesulfonamide 268d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine 114^{D} ($48 \mathrm{mg}, 0.042 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by mass-directed liquid column chromatography, and gave the amine 268d ($15.5 \mathrm{mg}, 0.032 \mathrm{mmol}, 77.2 \%$) as a colourless oil; $R_{\mathrm{f}} 0.21\left(\mathrm{CHCl}_{3}\right)$; $[\alpha]_{D}^{23.7} 3.2$ (c. 1.5 , $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.53-7.42$ (4H, m, Ar), 5.95-5.77 (2H, m, 4'-H and 6-H), $5.34\left(1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and $\left.1.6,7-\mathrm{H}_{\mathrm{A}}\right), 5.29\left(1 \mathrm{H}, \mathrm{d}, J 10.6,7-\mathrm{H}_{\mathrm{B}}\right), 5.03(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $\left.1.7,5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.98\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.1.7,5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}\right), 4.50$ ($\left.1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{PhCH}_{\mathrm{B}} \mathrm{NTf}\right), 4.02\left(1 \mathrm{H}, \mathrm{dd}, J 12.3\right.$ and $3.6,1^{\prime}-\mathrm{H}_{\mathrm{A}}$), 3.84 (1 H , dd, J 12.3 and 5, $\left.1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.54-3.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{\mathrm{AB}} \mathrm{Ph}\right), 3.28\left(1 \mathrm{H}, \mathrm{d}, J 7.3,1-\mathrm{H}_{\mathrm{A}}\right), 3.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.3, 1-H H_{B}, 3.28-3.23 (1H, m, 3-H), 2.66-2.59 (1H, m, 2'-H), 2.12-2.02 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{A}}$), 1.99-1.91 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{B}}$), 1.47-1.22 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}, 2-\mathrm{H}, 4-\mathrm{H}_{\mathrm{AB}}$ and $5-\mathrm{H}_{\mathrm{AB}}$); $\delta_{\mathrm{C}}(125 \mathrm{MHz}$;
CDCl_{3}) 139.4, 136.6, 133.8, 132.8, 131.7, 131.4, 130.6, 125.7, 120.3, 115.3, 63.8, $60.7,59.0,48.0,38.5,38.0,33.6,32.8,31.5,28.7,14.5,9.3 ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3250, 3034, 1538 and $1372 ; \mathrm{m} / \mathrm{z}\left(E S^{+}\right) 479.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 479.2204, $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$ S requires MH 479.2186

$N-\{[2-(\{N-[(2 R, 3 R)-3-H y d r o x y-2-m e t h y l h e p t-6-e n-1-$ yl](trifluoromethane)sulfonamido\}methyl)phenyl]methyl\}-N-[(2'R)-1'-hydroxypent-4'-en-2'-yl]cyclopropanecarboxamide 268b

Following general procedure A2, cyclopropane carbonyl chloride ($22 \mathrm{mg}, 0.21 \mathrm{mmol}$), triethylamine ($43 \mathrm{mg}, 0.43 \mathrm{mmol}$) and amine $236^{\mathrm{D}}(49 \mathrm{mg}, 0.043 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amide $\mathbf{2 6 8 b}(17.9 \mathrm{mg}, 0.033 \mathrm{mmol}, 76 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.76\left(\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{23.7} 5$ (c. $\left.0.9, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.46$ (1H, dd, J 7.3 and 1.3, Ar), 7.41-7.22 (3H, m, Ar), 5.84-5.69 (2H, m, 6-H and 4'-H), 5.19-5.05 (2H, m, 7-H or $\left.5^{\prime}-\mathrm{H}\right), 4.99-4.93\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}\right.$ or $\left.5^{\prime}-\mathrm{H}\right), 4.89(1 \mathrm{H}, \mathrm{br}$ s, $\left.\mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}\right), 4.63\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{\mathrm{B}} \mathrm{NTf}\right)$, 4.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2$ and 4.7, $1^{\prime}-\mathrm{H}_{\mathrm{A}}$), $4.07(1 \mathrm{H}$, dd, J 11.2 and 6.0, $1^{\prime}-\mathrm{H}_{\mathrm{B}}$), 3.88 ($\left.1 \mathrm{H}, \mathrm{d}, ~ J 12.1, \mathrm{NCH}_{\mathrm{A}} \mathrm{Ph}\right), 3.76\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.1, \mathrm{NCH}_{\mathrm{B}} \mathrm{Ph}\right)$, 3.70-3.18 (3H, m, 3-H and 1-H), $2.95\left(1 \mathrm{H}, \mathrm{p}, J 5.9,2^{\prime}-\mathrm{H}\right), 2.33(1 \mathrm{H}, \mathrm{dt}, J 13.1$ and 6.3, $\left.3^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 2.24\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.1\right.$ and $\left.7.2,3^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.09-2.00\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.93-1.85(1 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}_{\mathrm{B}}\right), 1.75\left(1 \mathrm{H}\right.$, br s, 2-H), $1.62\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 8.1\right.$ and $\left.4.7,{ }^{\mathrm{C}} \mathrm{Pr}\right), 1.48-1.40\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{AB}}\right)$, 1.02-0.98 (2H, m, ${ }^{\mathrm{C}} \mathrm{Pr}$), 0.91-0.86 (2H, m, ${ }^{\mathrm{C}} \mathrm{Pr}$), $0.66(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 174.8, 138.3, 137.7, 134.4, 134.2, 130.2, 129.0, 128.5, 128.2, 118.2, 114.8, 77.2, 65.8, 56.2, 53.5, 51.2, 49.5, 36.9, 36.1, 33.3, 30.5, 12.8 (${ }^{\mathrm{C} P r}$), $10.2\left({ }^{\mathrm{C}} \mathrm{Pr}\right)$, $8.6\left({ }^{\mathrm{C}} \mathrm{Pr}\right)$; $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$ (film) 3424, 3077, 2979, 2939, 1726, 1641, 1455, 1385, 1275 and 1261; m/z (ES ${ }^{+}$) 529.6 (100\%, $\left.[\mathrm{M}-\mathrm{OH}]^{+}\right)$; found 547.2457, $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires MH 547.2448

3-\{[2-(\{N-[(2R,3R)-3-Hydroxy-2-methylhept-6-en-1-
yl](trifluoromethane)sulfonamido\}methyl)phenyl]methyl\}-3'-[(2'R)-1'-hydroxypent-4'-en-2'-yl]-1'-(pyridin-3-yl)urea 268a

Following general procedure A1, 3-pyridyl isocyanate ($25.2 \mathrm{mg}, 0.21 \mathrm{mmol}$) and amine $236^{\text {D }}$ ($49 \mathrm{mg}, 0.043 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave the urea 268a ($22.6 \mathrm{mg}, 0.037 \mathrm{mmol}, 88 \%$) as a colourless oil; $R_{\mathrm{f}} 0.27$ (90:10, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{D}^{23.7} 2.3$ (c. $\left.1.1, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.78$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), 8.29-8.10 (3H, m, Py), 7.51 (1H, d, Py), 7.43-7.19 (4H, m, Ar), 5.87-5.65 (2H, m, 6-H and $\left.4^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NPyCH}_{\mathrm{A}} \mathrm{Ph}\right), 5.16\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8,7-\mathrm{H}_{\mathrm{A}}\right.$ or $\left.5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 5.10(1 \mathrm{H}, \mathrm{d}, J$ $17.5,7-H_{B}$ or $\left.5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.98\left(1 \mathrm{H}, \mathrm{d}, J 16.5,7-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 10.2,7-\mathrm{H}_{\mathrm{A}}\right.$ or $5^{\prime}-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 4.65(2 \mathrm{H}, \mathrm{s}, \mathrm{NTfCH} \mathrm{AB} \mathrm{Ph}), 4.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NPyCH}_{2}\right), 3.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8$ and 4.8, 1'H), 3.66-3.50 (3H, m, 1'-H, 2'-H and 3-H), 3.40-3.25 (2H, 1-H H_{AB}), $2.67(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 14.5$ and 7.2, $3^{\prime}-\mathrm{H}_{\mathrm{A}}$), $2.47\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 14.5\right.$ and $\left.7,3^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.18-2.08\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.98-1.84$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}$), 1.60-1.42 (2H, m, 4-H H_{A} and $2-\mathrm{H}$), 1.29-1.13 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$), $0.72(3 \mathrm{H}, \mathrm{J}$ $6.9, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.4,142.6,139.5,138.2,137.2,136.1,133.9,128.7$, 128.5, 128.4, 126.9, 124.1, 118.6, 114.8, 77.2, 64.2, 60.0, 52.9, 50.9, 37.4, 33.5, 30.7; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3287, 3056, 2984, 2939, 2305, 1658, 1539, 1484, 1422 and 1385; m/z (ES ${ }^{+}$) $599.8\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $599.2509, \mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires MH 599.2510
(2R)-1-Hydroxy- N-\{[2-(\{ N-[(2R,3R)-3-hydroxy-2-methylhept-6-en-1$\mathrm{yl}]($ trifluoromethane)sulfonamido\}methyl)phenyl]methyl\}-S-(1-methyl-1H-imidazol-4-yl)pent-4-ene-2-sulfonamido 268c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride ($36 \mathrm{mg}, 0.2$ mmol), triethylamine ($40 \mathrm{mg}, 0.4 \mathrm{mmol}$) and amine $236^{\text {D }}$ ($47 \mathrm{mg}, 0.04 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL, ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 268c (12.4 $\mathrm{mg}, 0.019 \mathrm{mmol}, 49.8 \%$) as a colourless glass; $\mathrm{R}_{\mathrm{f}} 0.31$ (90:10, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{D}^{23.7}$ 5.2 (c. $0.6, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.57-7.54(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4, \mathrm{Ar})$, 7.40-7.37 (1H, m, Ar), 7.35 (1H, d, J 1.5, Ar), 7.33-7.28 (2H, m, Ar), 5.77 (1 H , ddt, J $16.9,10.1$ and $6.6,6-H), 5.58\left(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.3\right.$ and $\left.7.0,4^{\prime}-\mathrm{H}\right), 5.00(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 1.8, $\left.5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.98-4.92\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.7-\mathrm{H}_{\mathrm{AB}}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{NTf}\right), 4.50(1 \mathrm{H}$, d, J $\left.15.8, \mathrm{~N}(\mathrm{Imid}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.42\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{~N}(\mathrm{Imid}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 3.98(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $\left.9.6,1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.81\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.65$ ($1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 3.7, $1^{\prime}-\mathrm{H}_{\mathrm{B}}$), $3.54(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 3.42\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.8.8,1-\mathrm{H}_{\mathrm{A}}\right), 3.23(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 6.3, 1$\left.H_{B}\right), 2.35\left(1 \mathrm{H}, \mathrm{dt}, J 15\right.$ and 6.4, $\left.3^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 2.19\left(1 \mathrm{H}, \mathrm{dt}, J 15\right.$ and 7.9, $\left.3^{\prime}-\mathrm{H}_{\mathrm{B}}\right)$, 2.12-2.04 (1H, $\left.\mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.98-1.90\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.54-1.42\left(1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.38(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.9,2-\mathrm{H}), 1.24-$ $1.15\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 0.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 141.2,138.7,138.2$, 135.0, 134.7, 133.6, 130.6, 128.9, 128.3, 128.1, 124.4, 117.5, 114.8, 76.7, 63.6, 62.6, 53.6, 51.6, 37.1, 36.5, 33.9, 33.4, 30.4, 10.4; $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 3388, 2981, 2940, 1641, 1533, 1456, 1385, 1337, 1275; m/z (ES ${ }^{+}$) $645.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 645.1983, $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires MNa 645.1999
(7S,11E,14R)-7-(2,4-Dimethoxyphenyl)-14-(hydroxymethyl)-4-oxo-N-(pyridin-3-yl)-5,9-dioxa-3,15-diazabicyclo[15.3.1]henicosa-1(20),11,17(21),18-tetraene-15carboxamide 260a

Following general procedure A1, 3-pyridyl isocyanate ($30.3 \mathrm{mg}, 0.252 \mathrm{mmol}$) and amine $\mathbf{2 4 8}^{\text {D }}$ ($52 \mathrm{mg}, 0.05 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid $(0.2 \mathrm{~mL}$, ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea 260a ($7.2 \mathrm{mg}, 24 \mathrm{mmol}, 24 \%$) as a brown oil; $R_{\mathrm{f}} 0.12$ ($95: 5 \mathrm{CHCl}_{3}-$ MeOH); $[\alpha]_{D}^{23.7} 5.7$ (c. 0.7, MeOH); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3300, 3006, 2924, 2851, 1711, 1660, 1612, 1539, 1508, 1483, 1464, and 1422; m/z (ES ${ }^{+}$) $591.3\left(100 \%,[M+H]^{+}\right)$; found $591.2812, \mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires MH 591.2813

Unable to obtain ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra due to a mix of geometric isomers and conformers
(7S,11E,14R)-15-Cyclopropanecarbonyl-7-(2,4-dimethoxyphenyl)-14-(hydroxymethyl)-5,9-dioxa-3,15-diazabicyclo[15.3.1]henicosa-1(20),11,17(21),18-tetraen-4-one 260b

Following general procedure A2, cyclopropane carbonyl chloride ($18.6 \mathrm{mg}, 0.179$ mmol), triethylamine ($36 \mathrm{mg}, 0.36 \mathrm{mmol}$) and amine 248^{D} ($37 \mathrm{mg}, 0.036 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following
general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the amide 260b ($3.96 \mathrm{mg}, 0.0072 \mathrm{mmol}$, 20.4%) as a pale yellow glass; $R_{\mathrm{f}} 0.89\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{23.7} 4.4$ (c. $\left.0.2, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{CDCl}_{3} ; 323 \mathrm{~K}$) very broad 7.69-7.58 (1H, m, Ar), 7.51-7.04 (4H, m, Ar and DMB $6-\mathrm{H}), 6.46-6.37(2 \mathrm{H}, \mathrm{m}$, DMB 3 and $5-\mathrm{H}), 5.73-4.93(4 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$ and $12-\mathrm{H}), 4.51-3.36$ ($17 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OMe}, 7-\mathrm{H}, 10-\mathrm{H}_{\mathrm{AB}}, \mathrm{CH}_{\mathrm{AB}} \mathrm{OH}, 8-\mathrm{H}_{\mathrm{AB}}, 2-\mathrm{H}_{\mathrm{AB}}$ and $\left.16-\mathrm{H}_{\mathrm{AB}}\right), 2.95-2.83(1 \mathrm{H}, \mathrm{m}$, 14-H), 2.35-1.95 (2H, m, 13- H_{AB}), 1.66-1.57 (1H, m, $\left.{ }^{\mathrm{C}} \operatorname{Pr}\right), 1.02-0.97\left(2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.89-$ $0.83\left(2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \mathrm{Pr}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 323 \mathrm{~K}\right) 174.6,158.1,131.5,131.4,130.9$; 128.9, 128.5, 127.1, 124.2, 104.9, 104.4, 98.8; 66.4, 66.2, 62.4, 55.4, 55.3, 54.8, 32.9; 12.8; $8.4 ; \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3322, 2925, 1720, 1612, 1587, 1543, 1507, 1463, 1402 and 1344; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 540.5\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$and $539.3\left(17 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 539.2753, $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires MH 539.2752
full carbon assignment was not possible to mixture of geometric isomers and rotamers
(7S,11E,14R)-7-(2,4-Dimethoxyphenyl)-14-(hydroxymethyl)-15-(1-methyl-1H-imidazole-4-sulfonyl)-5,9-dioxa-3,15-diazabicyclo[15.3.1]henicosa-1(20),11,17(21),18-tetraen-4-one 260c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (32 mg , $0.179 \mathrm{mmol})$, triethylamine ($36 \mathrm{mg}, 0.359 \mathrm{mmol}$) and amine 248^{D} ($37 \mathrm{mg}, 0.0359$ mmol) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with CHCl_{3} gave the sulfonamide 260c $\left(12.5 \mathrm{mg}, 0.020 \mathrm{mmol}, 57 \%\right.$) as a colourless oil; $R_{\mathrm{f}} 0.37\left(\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{23.7} 3.7$ (c. 0.6 , MeOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.83$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9$ and 1.3, Ar), 7.78-7.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.43 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 7.37-7.28 (2H, d, Ar), 7.23-7.18 (1H, m, Ar), 7.12 (1H, d, J 8.6, Ar), $6.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.2$ and 2.5, DMB), 6.49 (1 H , ddd, J 8.5, 3.4 and 2.5, DMB), 5.47-5.22
($2 \mathrm{H}, \mathrm{m}, 11-\mathrm{and} 12-\mathrm{H}), 4.77\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.2-\mathrm{H}_{\mathrm{A}}^{\text {min }}\right), 4.64\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}_{\mathrm{B}}^{\text {min }}\right), 4.46(1 \mathrm{H}, \mathrm{d}, J$ $\left.15.8,16-\mathrm{H}_{\mathrm{A}}\right), 4.44\left(1 \mathrm{H}, \mathrm{br} s, 2-\mathrm{H}_{\mathrm{AB}}\right), 4.33\left(1 \mathrm{H}, \mathrm{d}, J 15.8,16-\mathrm{H}_{\mathrm{B}}\right), 4.24-4.10\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.10-\mathrm{H}_{\mathrm{AB}}\right)$, 4.09-4.02 $\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}^{\mathrm{min}}\right), 3.76$
 $\mathrm{H}, 7-\mathrm{H}$ and $\left.8-\mathrm{H}_{\mathrm{AB}}\right), 2.27-2.14\left(2 \mathrm{H}, 13-\mathrm{H}_{\mathrm{AB}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.8,158.1,158.1$, $156.5,141.8,141.6,138.5,138.1,129.5,129.1,128.8,128.7,128.7,127.7,124.2$, $120.5,104.4,104.35,98.8,98.7,77.1,66.2,62.2,55.4,55.3,45.1,44.8,37.9,34.1$, 29.6; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3304, 2921, 2850, 1712, 1612, 1587, 1531, 1508, 1454, 1332; m/z (ES ${ }^{+}$) $638.1\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found, $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ requires MH
(7S,11E,14R)-7-(2,4-Dimethoxyphenyl)-14-(hydroxymethyl)-5,9-dioxa-3,15-diazabicyclo[15.3.1]henicosa-1(20),11,17(21),18-tetraen-4-one 260d

Following general procedure $\mathbf{S 1}$, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine 248^{D} ($38 \mathrm{mg}, 0.037 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 260d ($7.82 \mathrm{mg}, 0.017 \mathrm{mmol}, 45 \%$) as a colourless oil; $R_{\mathrm{f}} 0.1$ ($95: 5 \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3319, 2924, 2853, 1701, 1612, 1587, 1507 and 1463, $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 471.3$ ($100 \%,[\mathrm{M}+\mathrm{H}]^{+}$); found 471.2501, $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 471.2490

Unable to obtain ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra due to geometric isomers
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl hydroxypent-4-en-2-yl][(pyridin-3yl)carbamoyl]amino\}methyl)phenyl]methyl\}carbamate 269a

Following general procedure A1, 3-pyridyl isocyanate ($31 \mathrm{mg}, 0.26 \mathrm{mmol}$) and amine $237^{\text {D }}$ ($55 \mathrm{mg}, 0.052 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with CHCl_{3} gave the urea 269a (14.8 $\mathrm{mg}, 0.024 \mathrm{mmol}, 46 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.08\left(\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{23.7} 6.1$ (c. $0.7, \mathrm{MeOH}$) $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.60(1 \mathrm{H}, \mathrm{NH}), 8.29(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.2, \mathrm{Ar}), 7.94(1 \mathrm{H}$, d, J 8.1, Ar), 7.35-7.02 (6H, m, Ar), 6.43 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 5.85 ($1 \mathrm{H}, \mathrm{ddt}, J 16.2,10.7$ and 5.5, propenyl $2-\mathrm{H}), 5.74(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17.4,107$ and $6.9,4-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.21(1 \mathrm{H}$, dd , $J 17.4$ and 1.7, $\left.5-\mathrm{H}_{\mathrm{A}}\right), 5.14-5.07\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right.$ and propenyl $\left.3-\mathrm{H}_{\mathrm{AB}}\right), 4.70(1 \mathrm{H}, \mathrm{d}, J$ 16.4, $\left.\mathrm{N}(\mathrm{Py}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.48$ (1H, d, J 16.4, N(Py) $\mathrm{CH}_{\mathrm{B}} \mathrm{Ph}$), 4.37 (1H, dd, J 10.7 and 5.8, propyl $1-\mathrm{H}_{\mathrm{A}}$), $4.31\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7\right.$ and 6.3, propyl 1-H $\left.\mathrm{H}_{\mathrm{B}}\right), 4.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}(\mathrm{CO})\right.$), $3.94(3 \mathrm{H}, \mathrm{br}$ s, 2-H and propenyl 1-H2), $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.69(1 \mathrm{H}$, d, J 10.9, propyl $3-\mathrm{H}_{\mathrm{A}}$), 3.65-3.48 ($4 \mathrm{H}, \mathrm{m}$, propyl $3-\mathrm{H}_{\mathrm{B}}$ and $1-\mathrm{H}_{\mathrm{AB}}$ and propyl $2-\mathrm{H}$), 2.48 ($1 \mathrm{H}, \mathrm{dt}, 3-\mathrm{H}_{\mathrm{A}}$), 2.42-2.29 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.6,158.3,157.3,156.9$, 143.1, 140.5, 139.4, 138.9, 136.8, 134.8, 134.3, 129.0, 128.9, 126.7, 126.6, 126.5, $126.3,123.6,119.9,117.9,116.7,104.1,98.6,71.9,70.4,65.5,64.1,59.6,55.4,55.3$, 48.7, 44.9, 38.1, 33.7; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3318, 3060, 3005, 2936, 1703, 1660, 1613, 1587, 1537, 1508, 1483, 1465 and 1422; $m / z\left(\mathrm{ES}^{+}\right) 641.4\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 619.3138, $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires MH 619.3126
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl $\quad N$-\{[3-(\{1-cyclopropyl-N-[(2R)-1-hydroxypent-4-en-2-yl]formamido\}methyl)phenyl]methyl\}carbamate 269b

Following general procedure A2, cyclopropane carbonyl chloride ($27.9 \mathrm{mg}, 0.269$ mmol), triethylamine ($54 \mathrm{mg}, 0.54 \mathrm{mmol}$) and amine 237b ($57 \mathrm{mg}, 0.054 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with CHCl_{3} gave the amide $\mathbf{2 6 9 b}$ ($17 \mathrm{mg}, 0.030 \mathrm{mmol}, 55.6 \%$) as a colourless oil; $R_{\mathrm{f}} 0.4$ (EtOAc); $[\alpha]_{D}^{23.7} 3.7$ (c. $\left.0.9, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.41-7.06 (5H, m, Ph and DMB 6-H), 6.44 (1H, d, J 1.8, DMB 5-H), 6.42 (1H, s, DMB 3H), $5.86(1 \mathrm{H}$, ddt, J 17.2, 10.7 and 5.8 , propenyl $2-\mathrm{H}), 5.75(1 \mathrm{H}$, ddt, J 17.3, 10.3 and $7.3,4-\mathrm{H}), 5.21\left(1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and 1.7, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.13-5.01\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right.$ and propenyl $\left.3-\mathrm{H}_{B}\right)$, 4.99-4.53 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}\right.$ and $\left.\mathrm{N}\left({ }^{\mathrm{C}}{ }^{\mathrm{Pr}}\right) \mathrm{CH}_{A B} \mathrm{Ph}\right), 4.42(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and 5.8, propyl $\left.1-\mathrm{H}_{\mathrm{A}}\right), 4.36\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8\right.$ and 6.2 , propyl $\left.1-\mathrm{H}_{\mathrm{B}}\right), 4.30(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}\right)$, 4.16-4.00 $\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{AH}}\right), 3.96\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.5\right.$ and 5, propenyl 1-H H_{A}, $3.91\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.5\right.$ and 6.4 , propenyl $\left.1-\mathrm{H}_{\mathrm{B}}\right) ; 3.87(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.74-3.56(3 \mathrm{H}, \mathrm{m}$, propyl $3-\mathrm{H}_{\mathrm{AB}}$ and propyl 2-H), $2.91(1 \mathrm{H}, \mathrm{p}, 2-\mathrm{H}), 2.43\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.34-2.24(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}_{\mathrm{B}}$), 1.06-0.97 (2H, m, $\left.{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.89-0.83\left(2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.72\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},{ }^{\mathrm{C}} \operatorname{Pr}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 174.6,159.7,158.5,138.9,135.0,135.0,129.0,128.7,120.3,120.3,116.4$ (propenyl 3-C or $5-H$), 116.3 (propenyl 3-C or $5-H$), 104.4 (DMB), 104.4 (DMB), 98.8 (DMB); 71.9 (propenyl 1-C), 70.7, 66.1, 63.9, 55.4 (2-H), 55.3 (OMe), 51.1, 38.4, 33.2, 12.9, 12.8, 8.4, 8.3; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3359, 3075, 3007, 2936, 1721, 1613, 1508, 1463; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 589.4\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found $567.3088, \mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires MH 567.3065
(2S)-2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (45 mg , 0.25 mmol), triethylamine ($50 \mathrm{mg}, 0.5 \mathrm{mmol}$) and amine 237^{D} ($53 \mathrm{mg}, 0.05 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL, ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with CHCl_{3} gave the sulfonamide 269c ($23.3 \mathrm{mg}, 0.036 \mathrm{mmol}$, 73%) as a pale yellow oil; $R_{\mathrm{f}} 0.2\left(\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{23.7} 10.2$ (c. $\left.1.0, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; CDCl_{3}) 7.49-7.08 (7H, m, Ar), 6.44 (2H, d, J 2.3, DMB), 5.86 (1H, ddt, J 17.3, 10.6 and 5.5 , propenyl 2-H), 5.61-5.52 (1H, m, 4-H), $5.47(1 \mathrm{H}, \mathrm{br}$ s, NH), $5.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.3$ and 1.7, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.13\left(1 \mathrm{H}\right.$, dd, $J 10.6$ and 1.7, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right) ; 4.97-4.86(2 \mathrm{H}$, $\left.\mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right)$, 4.45-4.16 ($6 \mathrm{H}, \mathrm{N}(\mathrm{Imid}) \mathrm{CH}_{\mathrm{AB}} \mathrm{Ph}$, propyl 3- H_{AB} and $\left.\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}\right)$, 4.02-3.86 $\left(3 \mathrm{H}\right.$, propenyl $1-\mathrm{H}_{2}$ and $\left.2-\mathrm{H}\right)$, $3.78(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, $3.68(3 \mathrm{H}, \mathrm{Me}), 3.66-3.58(5 \mathrm{H}$, propyl $2-\mathrm{H}$, propyl $3-\mathrm{H}_{\mathrm{AB}}$ and $1-\mathrm{H}_{\mathrm{AB}}$), $2.26\left(1 \mathrm{H}, \mathrm{dt}, J 13.8\right.$ and $\left.6.8,3-\mathrm{H}_{\mathrm{A}}\right), 2.14(1 \mathrm{H}, \mathrm{dt}, J$ 13.8 and $6.9,3-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.6,158.4,156.6,141.4,138.7,138.5$, $137.3,134.9,134.7,128.9,128.6,127.9,126.7,124.2,120.1,117.3$ (5-C), 116.6 (propenyl 3-C), 104.1 (DMB), 98.6 (DMB); 71.9 (propenyl 1-C), 70.5 (1-C), 65.4 (propyl $3-\mathrm{C}$), 63.9 (2-C), 62.4 (propyl 1-C), 55.4 (OMe), 55.3 (OMe), 50.8 ($\mathrm{N}(\mathrm{Imid}) \mathrm{CH}_{2} \mathrm{Ph}$, or $\left.\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}\right), 44.8$ ($\mathrm{N}(\mathrm{Imid}) \mathrm{CH}_{2} \mathrm{Ph}$, or $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}$), 38.1 (Propyl 2-C), 36.7 (3C), $34.1\left(\mathrm{NCH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3317, 2938, 1713, 1612, 1531, 1508, 1465, 1334, 1275 and 1262; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 665.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found $665.2629, \mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ requires MNa 665.2616

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine $237^{\text {D }}$ ($53 \mathrm{mg}, 0.05 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 269d ($8.4 \mathrm{mg}, 0.017 \mathrm{mmol}, 33.7 \%$) as a pale yellow oil; $R_{\mathrm{f}} 0.15$ ($90: 10, \mathrm{CHCl}_{3}-$ $\mathrm{MeOH}) ;[\alpha]_{D}^{23.7} 7.5$ (c. $\left.0.4, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.30-7.25(2 \mathrm{H}, \mathrm{Ar}), 7.22(1 \mathrm{H}$, d, J 7.4, Ar), 7.14 (1H, d, J 6.3, Ar), 7.11 (1H, d, J 8.6, Ar), 6.44 (2H, s, DMB 3 and 5H), $5.86(1 \mathrm{H}$, ddt, $J 16.2,10.8$ and 5.5 , propenyl $2-\mathrm{H}), 5.75$ (1 H , ddt, J 17.6, 9.6 and $7.4,4-\mathrm{H}), 5.23\left(1 \mathrm{H}, \mathrm{dd}, J 16.2\right.$ and 1.7, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.14-5.09(3 \mathrm{H}, \mathrm{m}$, propenyl 3$\mathrm{H}_{\mathrm{A}}$ and $\left.5-\mathrm{H}_{\mathrm{AB}}\right), 4.95\left(1 \mathrm{H}\right.$, br s, NH), $4.42\left(1 \mathrm{H}, \mathrm{dd}, J 10.6\right.$ and 5.4 , propyl $\left.1-\mathrm{H}_{\mathrm{A}}\right), 4.37$ (1 H , dd, $J 10.6$ and 5.6 , propyl $1-\mathrm{H}_{\mathrm{B}}$), $4.32\left(2 \mathrm{H}\right.$, ap d, $\left.J 5.5, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}\right), 3.95(2 \mathrm{H}$, s, propenyl 1-H2), $3.82\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.1, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}\right), 3.78(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76(1 \mathrm{H}, \mathrm{d}, J$ 13.1, $\left.\mathrm{NHCH}_{B} \mathrm{Ph}\right), 3.68-3.59\left(5 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}\right.$, propyl $2-\mathrm{H}$, propyl $3-\mathrm{H}_{\mathrm{AB}}$ and $\left.2-\mathrm{H}\right), 3.36(1 \mathrm{H}$, dd, 1-H H_{B}, $2.77(1 \mathrm{H}, \mathrm{p}, \mathrm{J} 5.6,2-\mathrm{H}), 2.31-2.21\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{AB}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.6$, 158.4, 156.6, 138.9, 134.9, 134.6, 128.9, 128.8, 127.3, 120.1, 118.1, 116.6, 104.1, 98.6, 71.9, 70.5, 62.8, 57.6, 55.4, 55.3, 50.9, 44.9, 38.1, 36.0; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3331, 3054, 3005, 2936, 2839, 1712, 1613, 1508 and 1464, ; m/z (ES ${ }^{+}$) 499.3 (100\%, $[\mathrm{M}+\mathrm{H}]^{+}$); found 499.2814, $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 499.2803
(15E,18R)-18-(Hydroxymethyl)-19-(1-methyl-1H-imidazole-4-sulfonyl)-5,13-dioxa-3,19-diazatricyclo[19.3.1.0 ${ }^{7,12}$]pentacosa-1(24),7,9,11,15,21(25),22-heptaen-4-one E-117c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (15.3 mg , $0.085 \mathrm{mmol})$, triethylamine ($17.1 \mathrm{mg}, 0.169 \mathrm{mmol}$) and amine $E-115^{\mathrm{D}}$ ($17 \mathrm{mg}, 0.017$ mmol) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave the amine E-117c ($8.1 \mathrm{mg}, 0.014 \mathrm{mmol}, 87 \%$) as a colourless glass; $R_{\mathrm{f}} 0.4$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3280, 3006, 2919, 2850, 1708, 1605, 1533, 1496, 1456 and 1332; m/z (ES ${ }^{+}$) $549.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $549.1779, \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ requires MH 527.1959

Unable to obtain ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra due to excessive $\mathrm{H}_{2} \mathrm{O}$ contamination
(15E,18R)-18-(Hydroxymethyl)-4-oxo-N-(pyridin-3-yl)-5,13-dioxa-3,19diazatricyclo[19.3.1. ${ }^{7,12}$]pentacosa-1(24),7,9,11,15,21(25),22-heptaene-19carboxamide E-117a

Following general procedure A1, 3-pyridyl isocyanate ($4 \mathrm{mg}, 0.034 \mathrm{mmol}$) and amine $E-115^{\mathrm{D}}$ ($17 \mathrm{mg}, 0.017 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane $(0.5 \mathrm{~mL})$ and stirred for a further 16 h . The crude product
was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea E-117a ($6.7 \mathrm{mg}, 0.013 \mathrm{mmol}, 79 \%$); $R_{\mathrm{f}} 0.1\left(\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2922, 2851, 1710, 1554, 1463, 1380, 1275 and 1083; m/z (ES ${ }^{+}$) $503.2\left(100 \%,[M+H]^{+}\right)$; found 503.2291, $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires MH 503.2289

Unable to obtain ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra due to excessive $\mathrm{H}_{2} \mathrm{O}$ contamination
(15E,18R)-19-Cyclopropanecarbonyl-18-(hydroxymethyl)-5,13-dioxa-3,19diazatricyclo[19.3.1.0 ${ }^{7,12}$]pentacosa-1(24),7,9,11,15,21(25),22-heptaen-4-one E117b

Following general procedure A2, cyclopropane carbonyl chloride ($12.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), triethylamine ($24.2 \mathrm{mg}, 0.24 \mathrm{mmol}$) and amine $E-115^{\mathrm{D}}$ ($24 \mathrm{mg}, 0.024 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amide $\mathrm{E}-117 \mathrm{~b}(6.5 \mathrm{mg}$, 0.014 mmol, 60.2%) as a colourless glass; $R_{\mathrm{f}} 0.44$ (90:10, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7}-8.9$ (c. $0.3, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.40-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.15$ (1H, d, J 7.3, Ar), 6.96 (1H, t, J7.5, 10-H), 6.88 (1H, d, J8.3, 11-H), 5.88 ($1 \mathrm{H}, \mathrm{dd}, ~ J 16$ and 4.4, 15- or $16-\mathrm{H}), 5.82$ (1 H , dd, J 16 and 6.2, $15-$ or $16-\mathrm{H}$), $5.30-5.26$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{OH}$), $5.17\left(1 \mathrm{H}, \mathrm{d}, J 10.7,6-\mathrm{H}_{\mathrm{A}}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J 10.7,6-\mathrm{H}_{\mathrm{B}}\right), 5.57-5.48\left(2 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}_{\mathrm{AB}}\right), 4.46$ (1 H , dd, $J 15.9$ and $\left.7.1,20-\mathrm{H}_{\mathrm{A}}\right), 4.39\left(1 \mathrm{H}, \mathrm{dd}, J 15.9\right.$ and $\left.6.1,20-\mathrm{H}_{\mathrm{B}}\right), 4.16(1 \mathrm{H}, \mathrm{dd}, J$ 11.6 and $\left.4.6, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 4.11\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.6\right.$ and $\left.5.6, \mathrm{CH}_{B} \mathrm{OH}\right), 4.02\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}_{\mathrm{AB}}\right)$, 3.01-2.97 (1H, m, 18-H), 2.46-2.38 (2H, m, 17-H A_{AB}), 1.66-1.60 (1H, m, ${ }^{\mathrm{C}} \operatorname{Pr}$), 1.03-0.98 $\left(2 \mathrm{H},{ }^{\mathrm{C}} \mathrm{Pr}\right), 0.92-0.87\left(2 \mathrm{H},{ }^{\mathrm{C}} \mathrm{Pr}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.6,157.7,156.8,139.7,131.9$, $130.4,128.7,127.7,126.5,120.7,112.1,77.1,76.8,67.9,54.3,50.3,31.4,12.7,8.5$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3320, 3007, 2920, 2850, 1714, 1606, 1539, 1496, 1455 and 1403; m/z (ES^{+}) $451.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $451.2241, \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires MH 451.2227
(15E,18R)-18-(Hydroxymethyl)-5,13-dioxa-3,19-
diazatricyclo[19.3.1.0 ${ }^{7,12}$]pentacosa-1(24),7,9,11,15,21(25),22-heptaen-4-one

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine $E-115^{D}$ ($15 \mathrm{mg}, 0.015 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave the amine E-117d ($5.5 \mathrm{mg}, 0.0144 \mathrm{mmol}, 96.2 \%$) as a colourless film; $R_{f} 0.12$ ($90: 10, \mathrm{CHCl}_{3}-$ MeOH); $[\alpha]_{D}^{23.7} 10.7$ (c. $0.3, \mathrm{MeOH}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{MeOD} ; 333 \mathrm{~K}\right) 7.38-7.04(5 \mathrm{H}$, m, Ph), 6.96 (1H, d, J 7.4, Ph), 6.81 (1H, td, J 7.5 and 1.0, 10-H), 6.73 (1H, d, J 8.3 , $11-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{br}$ s, 15 or $16-\mathrm{H}), 5.66(1 \mathrm{H}$, br d, J $15.3,15$ or $16-\mathrm{H}), 5.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.10.6,6-H_{A}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 10.6,6-\mathrm{H}_{\mathrm{B}}\right), 4.30\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.3.8,14-\mathrm{H}_{\mathrm{A}}\right), 4.27(1 \mathrm{H}$, dd, $J 13.1$ and 4.7, $14-\mathrm{H}_{\mathrm{B}}$), 4.26-4.14 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{AB}}$), $3.74\left(2 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}_{\mathrm{AB}}\right), 3.53(1 \mathrm{H}, \mathrm{dd}$, $J 11$ and $\left.5.1, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.45\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and $\left.5.9, \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 2.70(1 \mathrm{H}, \mathrm{p}, 18-\mathrm{H}), 2.22$ $\left(2 \mathrm{H}, \mathrm{s}, 17-\mathrm{H}_{\mathrm{AB}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; 343 \mathrm{~K}\right) 157.8,131.7,130.1,128.3,126.2,124.6$, 112.2, 91.9, 68.1, 56.7; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3304, 2921, 2471, 1682, 1607, 1591, 1548, 1455; m/z (ES ${ }^{+}$) 383.2 ($100 \%,[\mathrm{M}+\mathrm{H}]^{+}$); found 383.1974, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires MH 393.1965
(15Z,18R)-18-(Hydroxymethyl)-5,13-dioxa-3,19-
diazatricyclo[19.3.1.07,12]pentacosa-1(24),7,9,11,15,21(25),22-heptaen-4-one
Z117d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine $Z-115^{\mathrm{D}}$ ($15 \mathrm{mg}, 0.015 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was
purified by column chromatography, eluting with $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave the amine Z-117d ($4.4 \mathrm{mg}, 0.012 \mathrm{mmol}, 72 \%$) as a colourless film; $R_{\mathrm{f}} 0.41$ ($90: 10, \mathrm{CHCl}_{3}-$ MeOH); $[\alpha]_{D}^{23.7} 15.7$ (c. $0.3, \mathrm{MeOH}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.36-7.25 (3H, m, Ar), 7.20 (1H, t, J 7, Ar), 7.11 (1H, d, J 7.6, Ar), 7.03 (1H, br s, Ar), 6.95 (1H, td, J 7.4, Ar), 6.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{Ar}$), $5.95-5.90(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{br}$ s, $16-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $4.91\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.6-\mathrm{H}_{\mathrm{AB}}\right), 4.70\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $8.6,2$ or $\left.20-\mathrm{H}_{\mathrm{AB}}\right), 4.55(1 \mathrm{H}, \mathrm{br}$ s, 2 or $\left.20-\mathrm{H}_{\mathrm{AB}}\right), 4.49\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and 3.7 , 2 or $\left.20-\mathrm{H}_{\mathrm{AB}}\right), 4.27(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and $5.9,2$ or $\left.20-\mathrm{H}_{\mathrm{AB}}\right), 3.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 18-\mathrm{H}), 3.73\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{\mathrm{AB}}\right), 3.69\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.43(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 2.81-2.77(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.43\left(1 \mathrm{H}, \mathrm{dt}, J 14.9\right.$ and $\left.9.4,17-\mathrm{H}_{\mathrm{A}}\right), 2.23(1 \mathrm{H}, \mathrm{d}, J$ 14.9, $17-\mathrm{H}_{\mathrm{B}}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3318, 3006, 2990, 1686, 1606, 1550, 1497; m/z (ES ${ }^{+}$) $383.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $383.1963, \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 383.1965

Unable to obtain ${ }^{13} \mathrm{C}$ NMR due to insufficient material
(15Z,18R)-18-(Hydroxymethyl)-4-oxo-N-(pyridin-3-yl)-5,13-dioxa-3,19diazatricyclo[19.3.1.0 ${ }^{7,12}$]pentacosa-1(24),7,9,11,15,21(25),22-heptaene-19carboxamide Z-117a

Following general procedure A1, 3-pyridyl isocyanate ($3.83 \mathrm{mg}, 0.032 \mathrm{mmol}$) and amine $\mathbf{Z}-115^{\text {D }}$ ($16 \mathrm{mg}, 0.016 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea Z-117a ($5.6 \mathrm{mg}, 0.011 \mathrm{mmol}, 70 \%$); $R_{\mathrm{f}} 0.4$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3321, 2925, 2853, 1709, 1605, 1537, 1462 and 1388; m/z (ES ${ }^{+}$) $503.2\left(100 \%,[M+H]^{+}\right)$; found 503.2285, $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires MH 503.2289

Unable to obtain ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ spectra due to excessive $\mathrm{H}_{2} \mathrm{O}$ contamination

Following general procedure A2, cyclopropane carbonyl chloride ($8.3 \mathrm{mg}, 0.08 \mathrm{mmol}$), triethylamine ($16.2 \mathrm{mg}, 0.16 \mathrm{mmol}$) and amine $\mathbf{Z}-115^{\mathrm{D}}$ ($16 \mathrm{mg}, 0.016 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave the amide $\mathbf{Z} \mathbf{- 1 1 7 b}$ (4.9 mg , $0.011 \mathrm{mmol}, 69 \%) ; R_{\mathrm{f}} 0.44$ (90:10, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{D}^{23.7} 7.9$ (c. $\left.0.3, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.46-7.06 (6H, m, Ar), 6.93 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{Ar}$), 6.89 ($1 \mathrm{H}, \mathrm{br}$ s, Ar), 5.74 (1 H , br s, 15 or $14-\mathrm{H}), 5.39\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.6-\mathrm{H}_{\mathrm{A}}\right), 5.29(1 \mathrm{H}, \mathrm{br}$ s, 15 or $14-\mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6$, $\left.6-\mathrm{H}_{\mathrm{B}}\right), 4.95(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 4.82\left(1 \mathrm{H}\right.$, br s, 2 or $\left.20-\mathrm{H}_{\mathrm{AB}}\right), 4.54\left(1 \mathrm{H}, \mathrm{br}\right.$ s, 2 or $\left.20-\mathrm{H}_{\mathrm{AB}}\right), 4.40$ $\left(2 \mathrm{H}, \mathrm{br}\right.$ s, 2 or $\left.20-\mathrm{H}_{\mathrm{AB}}\right), 3.74\left(2 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}_{\mathrm{AB}}\right), 3.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 18-\mathrm{H}), 2.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 2.48-2.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 1.75\left(2 \mathrm{H}, \mathrm{s}, 17-\mathrm{H}_{\mathrm{AB}}\right), 1.57\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},{ }^{\mathrm{C}} \mathrm{Pr}\right), 1.03$ (2H, s, ${ }^{\mathrm{C}} \mathrm{Pr}$), 0.79-0.71 (2H, m, ${ }^{\mathrm{C}} \mathrm{Pr}$); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3309, 3009, 2930, 1710, 1606, 1535, 1494, 1456; m/z (ES ${ }^{+}$) 473.2 (100%, $[\mathrm{M}+\mathrm{Na}]^{+}$); found 473.2053, $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires MNa 473.2047

Unable to obtain ${ }^{13} \mathrm{C}$ NMR due to insufficient material
(15E,18R)-18-(Hydroxymethyl)-19-(1-methyl-1H-imidazole-4-sulfonyl)-5,13-dioxa-3,19-diazatricyclo[19.3.1.0 ${ }^{7,12}$]pentacosa-1(24),7,9,11,15,21(25),22-heptaen-4-one Z-117c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (11.7 mg , 0.065 mmol), triethylamine ($13.1 \mathrm{mg}, 0.129 \mathrm{mmol}$) and amine $\mathbf{Z}-115^{\mathrm{D}}$ ($13 \mathrm{mg}, 0.0129$ mmol) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave the amine Z-117c ($4.19 \mathrm{mg}, 0.0079 \mathrm{mmol}, 62 \%$); $R_{\mathrm{f}} 0.12\left(\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2922, 2851, 1701, 1554, 1463 and 1378; m/z (ES ${ }^{+}$) 549.2 (100%, $[\mathrm{M}+\mathrm{Na}]^{+}$); found 549.2674, $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires MNa 549.1778

Unable to obtain ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ spectra due to excessive $\mathrm{H}_{2} \mathrm{O}$ contamination

[2-(Prop-2-en-1-yloxy)phenyl]methyl

N - $\{[3-(\{[(2 R)$-1-hydroxypent-4-en-2-yl][(pyridin-3-yl)carbamoyl]amino\}methyl)phenyl]methyl\}carbamate 118a

Following general procedure A1, 3-pyridyl isocyanate ($23 \mathrm{mg}, 0.19 \mathrm{mmol}$) and amine $116(80 \mathrm{mg}, 0.077 \mathrm{mmol})$ gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%)$ was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane $(0.5 \mathrm{~mL})$ and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the
urea 118a ($16.9 \mathrm{mg}, 0.032 \mathrm{mmol}, 41 \%$); $R_{\mathrm{f}} 0.11$ ($80: 20$, petrol-EtOAc); $[\alpha]_{D}^{23.7} 9.3$ (c. $1.5, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Py}), 8.32(1 \mathrm{H}, \mathrm{s}, \mathrm{Py}), 8.18(1 \mathrm{H}, \mathrm{d}, J$ 4.8, Py), 7.98 (1H, dd, J 8.4 and 1.8, Py), 7.39-7.17 (6H, Ar), 6.94 (1H, ap t, J7.4, Ar 3H), 6.89 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9$, Ar $5-\mathrm{H}$), 6.05 (1 H , ddt, J 15.9, 10.2 and 5, propenyl 2-H), 5.78 (1 H , ddt, J 16.7, 9.5 and $6.8,4-\mathrm{H}$), $5.43\left(1 \mathrm{H}, \mathrm{d}, ~ J 16.7\right.$, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.42(1 \mathrm{H}$, br s, NH), $5.28\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and 1.6, propenyl $3-\mathrm{H}_{\mathrm{B}}$), $5.24\left(1 \mathrm{H}, \mathrm{d}, J 12.7, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.20$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.7, \mathrm{PhCH}_{2} \mathrm{O}$), $5.12\left(1 \mathrm{H}, \mathrm{d}, J 16.7,5-\mathrm{H}_{\mathrm{A}}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J 9.5,5-\mathrm{H}_{\mathrm{B}}\right), 4.76(1 \mathrm{H}$, d, J 16.3, $\left.\mathrm{N}(\mathrm{Py}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.58\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5\right.$, propenyl 1- $\left.\mathrm{H}_{2}\right), 4.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.3$, $\left.\mathrm{N}(\mathrm{Py}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 4.39-4.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}\right), 4.05-3.99(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{dd}$, $J 11.1$ and $\left.2.7,1-\mathrm{H}_{\mathrm{A}}\right), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.8.5,1-\mathrm{H}_{\mathrm{B}}\right), 2.51(1 \mathrm{H}, \mathrm{dt}, J 14.3$ and 7.5 , $\left.3-\mathrm{H}_{\mathrm{A}}\right), 2.39\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.3\right.$ and $\left.7,3-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.3,156.9,156.4,142.9$, $140.4,139.0,136.9,134.3,133.1,129.6,129.4,129.1,126.8,126.6,126.5,126.4$, 124.9, 123.7, 120.6, 118.0, 117.2, 111.7, 68.8 (propenyl 1-C), 64.1 (1-C), 62.5 ($\mathrm{PhCH}_{2} \mathrm{O}$), $59.6(2-\mathrm{C}), 48.5\left(\mathrm{~N}(\mathrm{Py}) \mathrm{CH}_{2} \mathrm{Ph}\right), 44.9\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}), 33.7(3-\mathrm{C}) ; v_{\text {max }} / \mathrm{cm}^{-1}\right.$ (film) 3055, 2988, 2305, 1714, 1655, 1604, 1551 and 1422; m/z (ES ${ }^{+} 531.3$ (100\%, $[\mathrm{M}+\mathrm{H}]^{+}$); found 531.2593, $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires MH 531.2602

[2-(Prop-2-en-1-yloxy)phenyl]methyl N -\{[3-(\{1-cyclopropyl- N -[(2R)-1-hydroxypent-4-en-2-yl]formamido\}methyl)phenyl]methyl\}carbamate 118b

Following general procedure A3, cyclopropane carbonyl chloride ($45 \mathrm{mg}, 0.43 \mathrm{mmol}$), triethylamine ($87 \mathrm{mg}, 0.87 \mathrm{mmol}$) and amine $116(86 \mathrm{mg}, 0.083 \mathrm{mmol})$ gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with EtOAc gave the amide 118b ($10.6 \mathrm{mg}, 0.022 \mathrm{mmol}, 26.7 \%$); $R_{\mathrm{f}} 0.81$ ($80: 20$, petrol—EtOAc); $[\alpha]_{D}^{23.7} 6.2$ (c. $\left.0.5, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4)$, 7.25-7.13 (4H, m, Ar), 7.11 ($1 \mathrm{H}, \mathrm{d}, J 7.4$), $6.87(1 \mathrm{H}, \mathrm{ap} \mathrm{t}, J 7.4), 6.80$ ($1 \mathrm{H}, \mathrm{d}, J 8.2$), $5.97(1 \mathrm{H}, \mathrm{ddt}, J 15.8,10.2$ and 5 , propenyl $2-\mathrm{H}$), $5.70(1 \mathrm{H}, \mathrm{ddt}, J 17.3,10.4$ and $7.1,4-$ $\mathrm{H}), 5.34\left(1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and 1.7, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.21-5.16\left(3 \mathrm{H}\right.$, m, propenyl $3-\mathrm{H}_{\mathrm{B}}, \mathrm{NH}$
and $\left.\mathrm{PhCH}_{A} \mathrm{O}\right), 5.06-5.00\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.\mathrm{PhCH}_{\mathrm{B}} \mathrm{O}\right), 4.5\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5\right.$, propenyl 1- $\left.\mathrm{H}_{2}\right)$, $4.32\left(2 \mathrm{H}, \mathrm{d}, J 6, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}\right), 4.03\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.5.1,1-\mathrm{H}_{\mathrm{A}}\right), 3.98(1 \mathrm{H}, \mathrm{dd}, J$ 11.2 and $\left.5.6,1-H_{B}\right), 3.76\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{~N}(\mathrm{CO}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 3.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5$, $\left.\mathrm{N}(\mathrm{CO}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 2.81(1 \mathrm{H}, \mathrm{p}, J 5.9,2-\mathrm{H}) ; 2.23\left(1 \mathrm{H}, \mathrm{dt}, J 13.0\right.$ and $\left.6.5,3-\mathrm{H}_{\mathrm{A}}\right), 2.16(1 \mathrm{H}, J$ 13.0 and 7.1, 3- H_{B}) 1.59-1.49 (1H, ${ }^{\mathrm{C}} \operatorname{Pr}$), 0.94-0.89 (2H, ${ }^{\mathrm{C}} \operatorname{Pr}$), 0.82-0.76 (2H, $\left.{ }^{\mathrm{C}} \operatorname{Pr}\right)$; $\delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 174.9 ($\mathrm{C}=\mathrm{O}$), $159.6(\mathrm{C}=\mathrm{O})$, 153.4, 140.8, 138.7, 134.6, 133.2, 129.6, 129.3, 128.8, 127.3, 126.3, 125.1, 120.6, 118.1 (5-C), 117.1 (propenyl 3-C), 111.7 (Ph $3-\mathrm{C}$), 68.8 (propenyl 1-C), 65.9 (1-C), $62.3(2-\mathrm{C}), 55.2\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 51.3 \mathrm{~N}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{Ph}$, $45.1\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}), 36.3(3-\mathrm{C}), 12.9\left({ }^{\mathrm{C}} \mathrm{Pr}\right), 8.6\right.$ (${ }^{\mathrm{C}} \mathrm{Pr}$); $v_{\mathrm{max}} / \mathrm{cm}^{-1}$ (film) 3329, 3054, 2987, 2686, 2305, 1714, 1606, 15165, 1493, 14221361 and 1265; m/z (ES ${ }^{+}$) $479.3(80 \%$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$and $411.2\left(100 \%,\left[\mathrm{M}-{ }^{\mathrm{C}} \mathrm{Pr}\right]^{+}\right)$; found $479.2537, \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires MH 479.2540

[2-(Prop-2-en-1-yloxy)phenyl]methyl $\quad N$-\{[3-(\{ N-[(2R)-1-hydroxypent-4-en-2-yl]1-

 methyl-1H-imidazole-4-sulfonamido\}methyl)phenyl]methyl\}carbamate 118c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride $(81 \mathrm{mg}$, 0.45 mmol), triethylamine ($90 \mathrm{mg}, 0.9 \mathrm{mmol}$) and amine 116 ($86 \mathrm{mg}, 0.083 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 118c (33.5 $\mathrm{mg}, 0.06 \mathrm{mmol}, 73 \%$); $R_{\mathrm{f}} 0.41$ ($90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7} 3.7$ (c. $1.7, \mathrm{MeOH}$); δ_{H} ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.43 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 7.39-7.17 (7H, m, Ar), 6.95 ($1 \mathrm{H}, \mathrm{ap} \mathrm{t}, \mathrm{J} 7.4, \mathrm{Ar} 3-\mathrm{H}$), 6.87 (1H, d, J8.2, Ar 5-H), 6.04 (1H, ddt, J17.2, 10.3 and 5.0, propenyl 2-H), $5.56(1 \mathrm{H}$, ddt, $J 17.1,9.8$ and $7.4,4-H), 5.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.41(1 \mathrm{H}, \mathrm{dd}, J 17.2$ and 1.8 , propenyl $3-$), $5.26\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.6\right.$ and 1.8 , propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.22-$ $5.17\left(1 \mathrm{H}, \mathrm{br}\right.$ s, OH), $4.94\left(1 \mathrm{H}, \mathrm{d}, ~ J 9.8,5-\mathrm{H}_{\mathrm{A}}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, J 17.1,5-\mathrm{H}_{\mathrm{B}}\right), 4.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 5, propenyl 1-H2), $4.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8, \mathrm{~N}(\mathrm{Imid}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 4.23$ ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8, \mathrm{~N}(\mathrm{Imid}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.00-3.94\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}\right), 3.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}), 3.66(3 \mathrm{H}$,
$\mathrm{s}, \mathrm{Me}), 3.62\left(1 \mathrm{H}, \mathrm{d}, J 10.1,1-\mathrm{H}_{\mathrm{B}}\right), 2.27\left(1 \mathrm{H}, \mathrm{dt}, J 13.8\right.$ and 6.8, 3-H $\left.\mathrm{H}_{\mathrm{A}}\right), 2.14(1 \mathrm{H}, \mathrm{dt}, J$ 13.8 and $7.5,3-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.6(\mathrm{C}=\mathrm{O})$, $156.4(\mathrm{C}=\mathrm{O})$, 141.3, 138.6, 138.5, 137.3, 134.7, 133.2 (4-C), 129.6, 129.4, 128.6 (propenyl 2-C), 127.9, 127.8, 126.7, 125.1, 124.3, 120.7, 117.4 (5-C), 117.3 (propenyl 3-C), 111.7 (Ph 3-C), 68.8 (propenyl 1-C), 63.9 (2-C), $62.4\left(\mathrm{PhCH}_{2} \mathrm{O}(\mathrm{CO})\right) 63.3$ (1-C), 50.8 ($\left.\mathrm{N}(\mathrm{Imid}) \mathrm{CH}_{2} \mathrm{Ph}\right), 44.9$ ($\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), $36.8(3-\mathrm{C}), 34.1\left(\mathrm{CH}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3310, 3006, 2987, 2318, 2127, 1713, 1642, 1605, 1590, 1532, 1493, 1454 and 1333; m/z (ES ${ }^{+}$) $577.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 577.2104, $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ requires MH 577.2091

[2-(Prop-2-en-1-yloxy)phenyl]methyl

N-\{[3-(\{[(2R)-1-hydroxypent-4-en-2yl]amino\}methyl)phenyl]methyl\}carbamate 118d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine 116 ($81 \mathrm{mg}, 0.078 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 118d ($13.5 \mathrm{mg}, 0.033 \mathrm{mmol}, 42 \%$); $R_{\mathrm{f}} 0.3$ (EtOAc); $[\alpha]_{D}^{23.7} 4.5$ (c. 1.2, MeOH); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.38$ (1H, d, J 7.4, Ar), 7.35-7.19 (5H, m, Ar), 6.98 ($1 \mathrm{H}, \mathrm{apt}, ~ J 7.5, \mathrm{Ar}$), 6.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{Ar}$), 6.07 (1 H , ddt, J 15.7, 10.2 and 5.0, propenyl 2-H), 5.77 (1 H , ddt, $J 17.2,10.3$ and 7.2, 4-H), $5.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.2\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.31-5.26(3 \mathrm{H}, \mathrm{m}$, $\mathrm{PhCH}_{2} \mathrm{O}$ and propenyl $3-\mathrm{H}_{\mathrm{B}}$), $5.14\left(1 \mathrm{H}, \mathrm{d}, J 15.7,5-\mathrm{H}_{\mathrm{A}}\right), 5.13\left(1 \mathrm{H}, \mathrm{d}, J 10.2,5-\mathrm{H}_{\mathrm{B}}\right), 5.08$ (1 H, br s, NH), $4.60\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.1\right.$, propenyl 1-H2), 4.42 (2H, d, J 6, $\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})$), 3.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.1, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}$), 3.81 ($1 \mathrm{H}, \mathrm{d}, ~ J 13.1, \mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}$), 3.69 ($1 \mathrm{H}, \mathrm{dd}, J 10.8$ and 4, $\left.1-\mathrm{H}_{\mathrm{A}}\right), 3.40\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8\right.$ and 5.8, 1-H H_{B}), 2.84-2.79 (1H, m, 2-H), 2.34-2.21 (3H, m, 3H_{AB} and OH); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.6,156.4,139.9,138.9,134.5,133.2,129.6$, 129.4, 128.9, 127.3, 126.5, 125.1, 120.6 (Ar 5-C), 118.2 (5-C), 117.2 (propenyl 3-C), 111.7 ($\mathrm{Ar} 3-\mathrm{C}$); 68.8 (propenyl 1-C), 62.7 ($1-\mathrm{C}$ or $\mathrm{PhCH}_{2} \mathrm{O}$), 62.4 (1-C or $\mathrm{PhCH}_{2} \mathrm{O}$), 57.6 (2-C), 50.8 ($\mathrm{NHCH}_{2} \mathrm{Ph}$), $45.0\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO})\right), 35.9(3-\mathrm{C}) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3323, 2925, 1702, 1523, 1493, 1455; m/z (ES ${ }^{+}$) $411.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 411.2295, $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires MH 411.2278
[(4R,6E)-3-(1-Methyl-1H-imidazole-4-sulfonyl)-10-(trifluoromethane)sulfonyl-3,10-diazabicyclo[10.3.1]hexadeca-1(15),6,12(16),13-tetraen-4-yl]methanol E-261c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (33 mg , 0.181 mmol), triethylamine ($36 \mathrm{mg}, 0.362 \mathrm{mmol}$) and amine $E-249^{\mathrm{D}}$ ($34 \mathrm{mg}, 0.036$ mmol) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ gave the amine E-261c ($16.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 83 \%$); $R_{\mathrm{f}} 0.44$ (EtOAc); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.83 (1H, s, Imid $3-\mathrm{H}$), 7.80 ($1 \mathrm{H}, \mathrm{s}$, Imid $5-\mathrm{H}$), 7.72 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 7.34-7.23 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $4.83(1 \mathrm{H}, \mathrm{br} s, 7-\mathrm{H}), 4.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.7,2-\mathrm{H}_{\mathrm{A}}\right), 4.50-4.42\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.11-\mathrm{H}_{\mathrm{A}}\right), 4.30$ ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.9,11-\mathrm{H}_{\mathrm{B}}\right), 4.26(1 \mathrm{H}, \mathrm{br}$ s, $6-\mathrm{H}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.75-3.71(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, $3.68\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and $\left.5.9, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.64-3.55\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{AB}}\right), 3.52(1 \mathrm{H}, \mathrm{dd}, J 11$ and 6.3, $\mathrm{CH}_{\mathrm{B}} \mathrm{OH}$), 2.13-2.03 (3H, m, 5- H_{AB} and 8- H_{A}), 1.99-1.87 $\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 139.7, 139.6, 131.3, 128.3 (7-C), 128.1, 127.8 (6-C), 127.7, 127.6, 124.9, 79.1 ($\mathrm{CH}_{2} \mathrm{OH}$), 61.7 (4-C), 54.5 (2-C), 51.6 (11-C), 33.8 (5-C), 33.5 (NMe), 32.3 (8-C), 9-C missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3295, 2943, 1638, 1612, 1532, 1454, 1386, 1335, 1224; m/z (ES^{+}) $545.1\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $545.1103, \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 545.1111
(4R,6E)-4-(Hydroxymethyl)-N-(pyridin-3-yl)-10-(trifluoromethane)sulfonyl-3,10-diazabicyclo[10.3.1]hexadeca-1(15),6,12(16),13-tetraene-3-carboxamide E-261a

Following general procedure A1, 3-pyridyl isocyanate and amine E-249 ${ }^{\text {D }}$ ($34 \mathrm{mg}, 0.067$ mmol) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was
purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea E 261a ($15 \mathrm{mg}, 0.03 \mathrm{mmol}, 89 \%$); $R_{\mathrm{f}} 0.12$ (60:40, EtOAc—petrol); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3319, 2938, 1662, 1550, 1510, 1382; m/z (ES ${ }^{+}$) $499.2\left(20 \%,[M+H]^{+}\right)$and $543.2(100 \%$, $\left.[\mathrm{M}+\mathrm{PEG}]^{+}\right)$; found 499.1618, $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires MH 499.1635

NMR extremely broad compound confirmed by high-resolution mass spectroscopy, see E-261d for the free-amine scaffold NMR assignment

[(4R,6E)-3-Cyclopropanecarbonyl-10-(trifluoromethane)sulfonyl-3,10-diazabicyclo[10.3.1]hexadeca-1(15),6,12(16),13-tetraen-4-yl]methanol E-261b

Following general procedure A2, cyclopropane carbonyl chloride ($19 \mathrm{mg}, 0.181 \mathrm{mmol}$), triethylamine ($36 \mathrm{mg}, 0.36 \mathrm{mmol}$) and amine E-249 ${ }^{\text {D }}$ ($34 \mathrm{mg}, 0.036 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL, ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with EtOAc gave the amide E-261d ($11 \mathrm{mg}, 0.025 \mathrm{mmol}$, 69%); $R_{\mathrm{f}}: 0.77$ (EtOAc); [$\left.\alpha\right]_{D}^{23.7} 2.1$ (c. 1.1, MeOH); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3402, 2050, 1630, 1459, 1387; m/z (ES ${ }^{+}$) 447.2 (100%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $447.1571, \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires MH 447.1560

NMR extremely broad; compound confirmed by high-resolution mass spectroscopy, see E-261d for the free-amine scaffold NMR

[(4R,6E)-10-(Trifluoromethane)sulfonyl-3,10-diazabicyclo[10.3.1]hexadeca-

 1(15),6,12(16),13-tetraen-4-yl]methanol E-261d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine $E-249^{D}$ ($31 \mathrm{mg}, 0.033 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with EtOAc gave the amine E-261d (8.6 $\mathrm{mg}, 0.023 \mathrm{mmol}, 69 \%) ; R_{\mathrm{f}} 0.18$ (EtOAc); $[\alpha]_{D}^{23.7} 5.3$ (c. $0.9, \mathrm{MeOH}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.62(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 7.31(1 \mathrm{H}, \mathrm{ap} \mathrm{t}, J 7.4, \mathrm{Ar}), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{Ar}), 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$
7.4, Ar), $4.74(1 \mathrm{H}, \mathrm{dd}, J 16$ and $5.8,7-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{dd}, J 16$ and $5.3,6-\mathrm{H}), 4.61(1 \mathrm{H}, \mathrm{d}$, $\left.J 15.3,11-H_{A}\right), 4.53\left(1 \mathrm{H}, \mathrm{d}, J 15.3,11-\mathrm{H}_{\mathrm{B}}\right), 4.04\left(1 \mathrm{H}, \mathrm{d}, J 14.2,2-\mathrm{H}_{\mathrm{A}}\right), 3.64(1 \mathrm{H}, \mathrm{d}, J$ 14.2, 2-H H_{B}), 3.67-3.64 ($1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{A}}$), $3.45\left(1 \mathrm{H}, \mathrm{dd}, J 10.7\right.$ and $\left.6.1, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.45-3.40$ $\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{B}}\right), 3.39\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7\right.$ and $\left.5.8, \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 2.52(1 \mathrm{H}, 4-\mathrm{H}), 2.22-2.14(1 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}_{\mathrm{A}}\right), 2.07-2.00\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.97\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.2,8-\mathrm{H}_{\mathrm{A}}\right), 1.76-1.69\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}$ ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 135.3, 130.5 (6-C), 128.5, 127.7, $127.4(7-\mathrm{C}), 126.9,63.9\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, 59.7 (4-C), 53.9 (11-C), 51.3 (2-C), 50.7 (9-C), 34.5 ($5-C$), 31.9 ($8-C$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3369, 2930, 1610, 1454, 1384; m/z (ES ${ }^{+}$) 379.1 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 379.1316, $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires MH 379.1298

(4R,6Z)-4-(Hydroxymethyl)-N-(pyridin-3-yl)-10-(trifluoromethane)sulfonyl-3,10-

 diazabicyclo[10.3.1]hexadeca-1(15),6,12(16),13-tetraene-3-carboxamide Z-261a

Following general procedure A1, 3-pyridyl isocyanate and amine \mathbf{Z}-249 ${ }^{\text {D }}$ ($30 \mathrm{mg}, 0.032$ mmol) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ then EtOAc gave the amine Z-261a ($11 \mathrm{mg}, 0.022 \mathrm{mmol}, 69 \%$); $R_{\mathrm{f}} 0.5$ (EtOAc); $[\alpha]_{D}^{23.7} 3.7$ (c. 1.1, MeOH); $\delta_{H}(500 \mathrm{MHz}$; DMSO-d6; 343 K) $9.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.5$, Ar), $8.18(1 \mathrm{H}, \mathrm{dd}, J 4.7$ and 1.4, Ar), $7.89(1 \mathrm{H}$, ddd, $J 8.3,2.6$ and $1.5, \mathrm{Ar}), 7.58(1 \mathrm{H}, \mathrm{s}$, Ar), $7.54-7.41$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.32 ($1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{Ar}$), 7.27 ($1 \mathrm{H}, \mathrm{dd}, J 7.4$ and 4.7, Ar), 5.49 ($1 \mathrm{H}, \mathrm{td}, J 11.4$ and $4.0,7-\mathrm{H}$), $5.24(1 \mathrm{H}, \mathrm{td}, J 11.4$ and $3.5,6-\mathrm{H})$; 4.82-4.71 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}$ or $\left.11-\mathrm{H}_{A}\right)$, 4.71-4.50 $\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$ or $11-\mathrm{H}_{\mathrm{A}}$ and $2-\mathrm{H}_{\mathrm{B}}$ or $\left.11-\mathrm{H}_{\mathrm{B}}\right), 3.88-3.82(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.80-3.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.56\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.8\right.$ and $\left.6.6,8-\mathrm{H}_{\mathrm{A}}\right), 3.30(1 \mathrm{H}$, br $\left.\mathrm{s}, 8-\mathrm{H}_{\mathrm{B}}\right), 2.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 1.80-1.61\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.7-\mathrm{H}_{\mathrm{AB}}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; DMSO-d6; 343 K) 155.7, 142.7, 141.6, 140.1, 137.2, 135.2, 134.9, 129.3, 129.1, 128.6, 128.3, 127.6, 126.7, 126.3, 123.0, 120.7 q J 325, 61.7, 53.8, 49.7, 28.6, 28.2, 26.9; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3054, 2987, 2305, 1669, 1614, 1559, 1485, 1422, 1387; m/z (ES ${ }^{+}$) 499.2 (100\%, $[\mathrm{M}+\mathrm{H}]^{+}$); found 499.1623, $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires MH 499.1621

[(4R,6Z)-3-Cyclopropanecarbonyl-10-(trifluoromethane)sulfonyl-3,10-diazabicyclo[10.3.1]hexadeca-1(16),6,12,14-tetraen-4-yl]methanol Z-261b

Following general procedure A2, cyclopropane carbonyl chloride ($16 \mathrm{mg}, 0.149 \mathrm{mmol}$), triethylamine ($30 \mathrm{mg}, 0.298 \mathrm{mmol}$) and amine $\mathbf{Z}-249^{\mathrm{D}}$ ($28 \mathrm{mg}, 0.029 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with EtOAc gave the amine Z-261b ($9 \mathrm{mg}, 0.02 \mathrm{mmol}, 70 \%$); $R_{\mathrm{f}} 0.8$ (EtOAc); $[\alpha]_{D}^{23.7} 7.9$ (c. 1.8, MeOH); $\delta_{H}(500 \mathrm{MHz}$; DMSO-d6; 343 K) very broad 7.64-7.24 (4H, m, Ar), 5.51-5.38 (1H, m, 6-H), 5.32-5.18 (1H, m, 7-H), 4.87-3.96 (5H, $\mathrm{m}, 2-\mathrm{H}_{\mathrm{AB}}$ and $11-\mathrm{H}_{\mathrm{AB}}$ and $\left.4-\mathrm{H}\right), 3.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.68-3.37\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.\mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.13\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.9-\mathrm{H}_{\mathrm{B}}\right), 2.12-1.86\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right), 1.83-1.56\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{AB}}\right)$, 1.44-1.34 (1H, m, ${ }^{\mathrm{C}} \mathrm{Pr}$), 0.96-0.70 (4H, m, ${ }^{\mathrm{C}} \mathrm{Pr}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3369, 3013, 2932, 2883, 1725, 1611, 1454, 1428, 1386; m/z (ES ${ }^{+}$) 447.2 (100\%, [M+H] ${ }^{+}$); found 447.1565, $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 447.1560

Unable to obtain a ${ }^{13} \mathrm{C}$ spectrum due to interconversion of conformers
[(4R,6Z)-3-(1-Methyl-1 H-imidazole-4-sulfonyl)-10-(trifluoromethane)sulfonyl-3,10-diazabicyclo[10.3.1]hexadeca-1(16),6,12,14-tetraen-4-yl]methanol Z-261c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (26 mg , 0.144 mmol), triethylamine ($30 \mathrm{mg}, 0.29 \mathrm{mmol}$) and amine $Z-249^{\mathrm{D}}$ ($27 \mathrm{mg}, 0.029 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $50: 8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{NH}_{4} \mathrm{OH}$ gave the amine Z-261c ($12 \mathrm{mg}, 0.023 \mathrm{mmol}, 79 \%$); $R_{\mathrm{f}} 0.4$ (EtOAc); [$\left.\alpha\right]_{D}^{23.7} 4.1$ (c. 1.2, MeOH); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$ DMSO-d6; 343 K) 7.82 ($1 \mathrm{H}, \mathrm{Ar}$), 7.79 ($1 \mathrm{H}, \mathrm{Ar}$), 7.66 ($1 \mathrm{H}, \mathrm{Ar)}$,
7.41-7.29 (3H, Ar), 5.45 (1H, ap t, J 11, 6-H), 5.29 (1 H, ap t, J 11, $7-\mathrm{H}$), 4.74 ($1 \mathrm{H}, \mathrm{d}, ~ J$ $\left.14.5,11-\mathrm{H}_{\mathrm{A}}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, ~ J 15.6,2-\mathrm{H}_{\mathrm{A}}\right), 4.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5,11-\mathrm{H}_{\mathrm{B}}\right), 4.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.6$, $\left.2-\mathrm{H}_{\mathrm{B}}\right), 3.89(1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{Me}), 3.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.3\right.$ and $\left.7.1, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.55$ (2 H , br s, $9-\mathrm{H}_{\mathrm{AB}}$), $3.51\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.3\right.$ and $\left.6.1, \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 1.80\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.4,5-\mathrm{H}_{\mathrm{A}}\right), 1.68$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.4,5-\mathrm{H}_{\mathrm{B}}$), 1.58-1.40 (2H, m, 8-H H_{AB}); $\delta_{\mathrm{C}}(125 \mathrm{MHz}$ DMSO-d6 343 K) 139.7, 139.5, 138.8, 135.6, 129.6, 128.8, 128.4, 127.8, 126.2, 124.5, $61.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 61.1$ (4C), 54.1 (11-C), 50.3 ($9-\mathrm{C}$), 48.5 (2-C), 33.5 (Me), 29.1 (5-C), 26.6 ($8-\mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3303, 2936, 1532, 1454, 1384, 1332; m/z (ES ${ }^{+}$) 545.1 (100\%, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found 545.1106, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires MNa 545.1111

[(4R,6Z)-10-(Trifluoromethane)sulfonyl-3,10-diazabicyclo[10.3.1]hexadeca-1(16),6,12,14-tetraen-4-yl]methanol Z-261d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine $Z-249^{\text {D }}$ ($32 \mathrm{mg}, 0.034 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine Z-261d ($9.3 \mathrm{mg}, 0.024 \mathrm{mmol}, 72 \%$); $R_{\mathrm{f}} 0.32$ (EtOAc); [$\left.\alpha\right]_{D}^{23.7} 10.7$ (c. $0.9, \mathrm{MeOH}$); δ_{H} (500 MHz ; DMSO-d6; 343 K) 7.84 (1H, s, Ph), 7.68 (1H, d, J 7.5, Ph), 7.58 ($1 \mathrm{H}, \mathrm{ap} \mathrm{t}, ~ J$ $7.5, \mathrm{Ph}), 7.49-7.44$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.38 ($1 \mathrm{H}, \mathrm{td}, J 10.5$ and $5.5,7-\mathrm{H}$), 5.34 ($1 \mathrm{H}, \mathrm{td}, J 10.5$ and 5.6, 6-H), 4.68-4.48 (2H, m, 11-H H_{AB}), $4.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5,2-\mathrm{H}_{\mathrm{A}}\right), 4.13(1 \mathrm{H}, \mathrm{d}, ~ J 13.5$, $2-\mathrm{H}_{\mathrm{B}}$), $3.71\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.8\right.$ and $3.3, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}$), 3.57-3.50 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{B}} \mathrm{OH} 9-\mathrm{H}_{\mathrm{AB}}$); 2.68 $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 1.96-1.65\left(4 \mathrm{H}, 5-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{AB}}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d} 6 ; 343 \mathrm{~K}) 135.3$, 132.1, 130.7, 130.1, 129.6, 127.8 (6-C), 126.5 (7-C), 59.9 ($\mathrm{CH}_{2} \mathrm{OH}$), 58.9 (4-C), 53.5 (11-C), 53.3 ($9-C$), 49.3 (2-C), 48.6 , 27.4 ($5-C$), 25.6 ($8-C$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3292, 2730, 2640, 2049, 1597, 1456, 1381, 1359; m/z (ES ${ }^{+}$) 379.1 (100\%, [M+H] ${ }^{+}$); found 379.1312, $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires MH 379.1298

(2R)- N-[(3-\{[N-(But-3-en-1-

yl)(trifluoromethane)sulfonamido]methyl\}phenyl)methyl]-1'-hydroxy-S-(1-methyl-1H-imidazol-4-yl)pent-4'-ene-2'-sulfonamido 270c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (80 mg , 0.49 mmol), triethylamine ($89 \mathrm{mg}, 0.89 \mathrm{mmol}$) and amine 238^{D} ($86 \mathrm{mg}, 0.089 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 270c ($25.5 \mathrm{mg}, 0.046 \mathrm{mmol}, 52 \%$); $R_{\mathrm{f}} 0.56$ (EtOAc); $[\alpha]_{D}^{23.7} 8.7$ (c. 2.5, MeOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.51$ ($1 \mathrm{H}, \mathrm{s}, \operatorname{Imid}$), $7.45-7.43$ ($2 \mathrm{H}, \mathrm{m}$, Imid), 7.38 ($1 \mathrm{H}, \mathrm{s}$, Imid), 7.35 (1H, ap t, J 7.6, Ph), 7.28 (1H, d, J 7.6, Ph), 5.61 (1H, ddt, J 17.4, 10.2 and $6.9,3-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{ddt}, J 17.2,9.8$ and 7, 4'-H), 5.45 (1 H , dd, J 8.0 and 4.5, OH), 5.05 (1 H , dd, $J 10.2$ and $1.6,4-\mathrm{H}_{\mathrm{A}}$), $5.02\left(1 \mathrm{H}, \mathrm{dd}, J 17.4\right.$ and $\left.1.6,4-\mathrm{H}_{\mathrm{B}}\right), 4.92(1 \mathrm{H}, \mathrm{d}, J 9.8$, $\left.5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.2,5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.51\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{NTf}\right), 4.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.7$, $\left.\mathrm{N}(\mathrm{Imid}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.7, \mathrm{~N}(\mathrm{Imid}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 3.99$ (1H, ddd, J 12.1, 10.0 and 4, $1^{\prime}-\mathrm{H}_{\mathrm{A}}$), $3.88(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 10.0$ and $6.7,2-\mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.64(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.1,8$ and 3.6, $\left.1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.33\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.7,1-\mathrm{H}_{2}\right), 2.29\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.2-\mathrm{H}_{2}\right), 2.14(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.3$ and 7.8, $3^{\prime}-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 141.3,138.6,138.1,134.6$ (3-C), 134.5, 133.4 (4'C), 129.1, 128.8, 127.7, 124.3, 120.1 (q, J 325, CF 3), 118.0 (5 '-C), 117.4 (4-C), 63.9 (2'-C), 62.2 (1'-C), 52.0 ($\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right), 50.9$ ($\mathrm{N}(\mathrm{Imid}) \mathrm{CH}_{2} \mathrm{Ph}$), 47.5 (1-C), 37.0 (3-C), 34.2 $\left(\mathrm{CH}_{3}\right), 32.5(2-\mathrm{C}) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3278, 3055, 2987, 2686, 2522, 2411, 2305, 2126, 1720, 1642, 1609, 1532; m/z (ES $\left.{ }^{+}\right) 573.1\left(100 \%,[M+N a]^{+}\right)$; found 551.1592, $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires MH 551.1604

$N-[(3-\{[N-(B u t-3-e n-1-y l)($ trifluoromethane $)$ sulfonamido]methyl\}phenyl)methyl]-N-[(2'R)-1'-hydroxypent-4'-en-2'-yl]cyclopropanecarboxamide 270b

Following general procedure A2, cyclopropane carbonyl chloride ($45 \mathrm{mg}, 0.43 \mathrm{mmol}$), triethylamine ($86 \mathrm{mg}, 0.86 \mathrm{mmol}$) and amine 238^{D} ($83 \mathrm{mg}, 0.086 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amide 270b ($13.3 \mathrm{mg}, 0.028 \mathrm{mmol}, 33 \%$); $R_{\mathrm{f}} 0.56\left(90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ;[\alpha]_{D}^{23.7} 15.2$ (c. $\left.1.3, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.37-7.21 (4H, m, Ar), 5.77 (1 H , ddt, J 17.7, 10.8 and $7.7,4^{\prime}-\mathrm{H}$), 5.61 (1 H , ddt, J 17.1, 10.2 and $6.8,3-\mathrm{H}), 5.12\left(1 \mathrm{H}, \mathrm{d}, J 17.7,5-\mathrm{H}_{\mathrm{A}}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J 10.8,5-\mathrm{H}_{\mathrm{B}}\right), 5.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $10.2,4-\mathrm{H}_{\mathrm{A}}$), 5.01 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.1,4-\mathrm{H}_{\mathrm{B}}$), $4.55\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{NTf}\right), 4.11$ ($1 \mathrm{H}, \mathrm{dd}, J 11.2$ and 5.1, $\left.1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.5.6,1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.87\left(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{~N}\left({ }^{\mathrm{C} P r}\right) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right)$, $3.84\left(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{~N}\left({ }^{\mathrm{C}} \mathrm{Pr}\right) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 3.34\left(2 \mathrm{H}, \mathrm{t}, J 7.7,1-\mathrm{H}_{2}\right), 2.89\left(1 \mathrm{H}, \mathrm{p}, J 5.7,2^{\prime}-\mathrm{H}\right)$, 2.34-2.17 ($4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{AB}}$ and 2- H_{2}), 1.66-1.59 (1H, m, ${ }^{\mathrm{C}} \operatorname{Pr}$), 1.02-0.98 (2H, m, ${ }^{\mathrm{C}} \operatorname{Pr}$), $0.90-0.86\left(2 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.8(\mathrm{C}=\mathrm{O}), 141.5,134.5,134.4,133.4$, 129.1, 128.4, 128.1, 127.1, 120.0 ($\mathrm{q}, \mathrm{J} 324, \mathrm{CF}_{3}$), 118.0 (5 '-C or $4-\mathrm{C}$), 117.9 (5 '-C or $4-$ C), $65.9\left(1^{\prime}-\mathrm{C}\right), 55.3\left(2^{\prime}-\mathrm{C}\right), 52.2\left(\mathrm{PhCH}_{2} \mathrm{NTf}\right), 51.1\left(\mathrm{~N}\left({ }^{\mathrm{C}} \mathrm{Pr}^{5}\right) \mathrm{CH}_{2} \mathrm{Ph}\right), 47.4(1-\mathrm{C}), 36.4\left(3^{\prime}-\right.$ C), $32.5(2-\mathrm{C}), 12.8\left({ }^{\mathrm{C}} \mathrm{Pr}\right), 8.5\left({ }^{\mathrm{C} P r}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3060, 3006, 2984, 1725, 1641, 1457, 1387, 1275, 1266, and 1225; m/z (ES ${ }^{+} 475.2\left(100 \%,[M+H]^{+}\right)$; found 475.1874, $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 475.1873

3-[(3-\{[N-(But-3-en-1-yl)(trifluoromethane)sulfonamido]methyl\}phenyl)methyl]-3-[(2'R)-1'-hydroxypent-4'-en-2'-yl]-1-(pyridin-3-yl)urea 270a

Following general procedure A1, 3-pyridyl isocyanate ($23.8 \mathrm{mg}, 0.199 \mathrm{mmol}$) and amine 238^{D} ($96 \mathrm{mg}, 0.099 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea 270a ($21 \mathrm{mg}, 0.039 \mathrm{mmol}, 40 \%$); $R_{\mathrm{f}} 0.1$ (EtOAc); $[\alpha]_{D}^{23.7} 1.7$ (c. 2.1, MeOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.26$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.6, \mathrm{Py}-2$), 8.14 (1H, dd, J 4.8 and 1.5, Py-6), 8.08 (1H, d, J 8.7, Py-4), 7.39-7.24 (3H, m, Py-5 and Ar), 7.27-7.21 (2H, $\mathrm{m}, \mathrm{Ar}), 5.70\left(1 \mathrm{H}, \mathrm{ddt}, J 17.1,8.6\right.$ and $\left.7.6,44^{\prime}-\mathrm{H}\right), 5.57(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.3$ and $6.8,3-$ H), $5.07\left(1 \mathrm{H}, \mathrm{d}, J 10.3,4-\mathrm{H}_{\mathrm{A}}\right), 5.08\left(1 \mathrm{H}, \mathrm{d}, J 17.1,4-\mathrm{H}_{\mathrm{B}}\right), 5.01\left(1 \mathrm{H}, \mathrm{d}, J 8.6,5 \mathrm{H}_{\mathrm{A}}\right), 4.97$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.1,5^{\prime}-\mathrm{H}_{\mathrm{B}}$), $4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N}(\mathrm{Py}) \mathrm{CH}_{2} \mathrm{Ph}\right), 4.51\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{NTf}\right), 3.88(1 \mathrm{H}$, m, $\left.2^{\prime}-\mathrm{H}\right), 3.83\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.1\right.$ and $\left.2.4,1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.74\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.1\right.$ and $\left.6.9,1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.32$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.7,1-\mathrm{H}_{2}\right), 2.45\left(2 \mathrm{H}, \mathrm{dq}, J 18.3\right.$ and $\left.7.2,3^{\prime}-\mathrm{H}_{2}\right), 2.20\left(2 \mathrm{H}\right.$, br s, $\left.2-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.9$ (C=O), 142.6 (Py), 139.9 (Py), 139.7 (Py), 137.1 (Py-3), 135.0 (4'C), 134.1 (3-C), 133.3, 129.4, 127.8, 127.4, 127.2, 126.9, 123.9, 119.8 ($\mathrm{q}, \mathrm{J} 327, \mathrm{CF}_{3}$), 118.2 (4-C or $\left.5^{\prime}-\mathrm{C}\right), 118.0$ ($4-\mathrm{C}$ or $5^{\prime}-\mathrm{C}$), 63.9 ($\left.1^{\prime}-\mathrm{C}\right), 59.9$ (2'-C), 52.1 ($\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right), 49.7$ ($\mathrm{N}(\mathrm{Py}) \mathrm{CPh}), 47.6$ (1-C), 33.8 (3'-C), 32.5 (2-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3006, 2988, 1734, 1660, 1539, 1485, 1423, 1386; m/z (ES ${ }^{+}$) $527.2\left(100 \%,[M+H]^{+}\right)$; found 527.1946, $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires MH 527.1934

N-(But-3-en-1-yl)-1,1,1-trifluoro-N-\{[3'-(\{[(2'R)-1'-hydroxypent-4'-en-2'yl]amino\}methyl)phenyl]methyl\}methanesulfonamide 270d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine $238^{\text {D }}$ ($81 \mathrm{mg}, 0.084 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 270d (16 mg, $0.039 \mathrm{mmol}, 46 \%$); $R_{\mathrm{f}} 0.19$ (90;10, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7} 3.7$ (c. 1.6, $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39-7.28$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.24 ($1 \mathrm{H}, \mathrm{d}, ~ J 7.7, \mathrm{Ar}$), $5.76(1 \mathrm{H}$, ddt, J 16.5, 10.8 and 7.2, 4'-H), 5.62 (1H, ddt, J 17.1, 10.3 and 6.9, 3-H), 5.12 (1H, d, J $\left.16.5,5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J 10.8,5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 5.05\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.1.5,4-\mathrm{H}_{\mathrm{A}}\right), 5.01(1 \mathrm{H}$, dd, J 17.1 and 1.5, $4-\mathrm{H}_{\mathrm{B}}$), 4.53 (2 H , br s, $\mathrm{PhCH}_{2} \mathrm{Ntf}$), 3.86 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3, \mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}$), 3.80 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 13.3, $\mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}$), 3.66 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8$ and 4.1, $1^{\prime}-\mathrm{H}_{\mathrm{A}}$), 3.37 (1 H , dd, J 10.8 and 6.4, $\left.1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.34\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.1,1-\mathrm{H}_{2}\right), 2.80-2.74\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.32-2.19(3 \mathrm{H}, \mathrm{m}$, $3^{\prime}-\mathrm{H}_{\mathrm{AB}}$ and $2-\mathrm{H}_{\mathrm{A}}$), $2.01\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}_{\mathrm{B}}\right.$ and OH); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 141.2$, 134.7 (4'-C), 134.6 (3-C), 133.4, 129.2, 128.4, 128.1, 127.2, 119.9 (q, J325, CF ${ }_{3}$), 118.1 (5'-C or 4C), 117.9 (5 '-C or $4-\mathrm{C}$), 62.9 (1 '-C), 57.5 (2'-C), 52.1 ($\mathrm{PhCH}_{2} \mathrm{NTf}$), 50.8 ($\mathrm{NHCH}_{2} \mathrm{Ph}$), 47.5 (1-C), 36.2 (3'-C), 32.5 (2-C); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3300, 3079, 3005, 2982, 2933, 1642, 1457, 1387; m/z (ES ${ }^{+}$) $407.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 407.1621, $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires MH 407.1611
(5R,6R,9Z,12R)-12-(Hydroxymethyl)-5-methyl-3-(trifluoromethane)sulfonyl-3,13-diazabicyclo[13.3.1]nonadeca-1(18),9,15(19),16-tetraen-6-ol 262d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. 45-51\%) was added to the amine $250^{\text {D }}$ ($119 \mathrm{mg}, 0.106 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 262d ($10 \mathrm{mg}, 0.022 \mathrm{mmol}, 21 \%$); $R_{\mathrm{f}} 0.18$ ($90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7}-14.9$ (c. 1 , $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.38-7.17$ (4H, m, Ar), 5.39 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11$ and $6.3,9-\mathrm{H}$),
$5.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11$ and $7.3,10-\mathrm{H}), 4.68\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,2-\mathrm{H}_{\mathrm{A}}\right), 4.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,2-\mathrm{H}_{\mathrm{B}}\right)$; $4.30(1 \mathrm{H}, \mathrm{br}$ s, $6-\mathrm{H}), 4.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.5, \mathrm{CH}_{2} \mathrm{OH}\right), 3.92\left(1 \mathrm{H}, \mathrm{d}, J 13.7,14-\mathrm{H}_{\mathrm{A}}\right), 3.67(1 \mathrm{H}$, d, J $\left.13.7,14-\mathrm{H}_{\mathrm{B}}\right), 4.45-4.30\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHAOH}, 4-\mathrm{H}_{\mathrm{AB}}\right), 3.28-3.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 2.56$ $(1 \mathrm{H}, \mathrm{p}, J 5.9,12-\mathrm{H}), 2.09\left(1 \mathrm{H}, \mathrm{dt}, J 13.3\right.$ and $\left.6.7,11-\mathrm{H}_{\mathrm{A}}\right), 2.02(1 \mathrm{H}, \mathrm{dt}, J 13.3$ and 6.1 , $\left.11-H_{B}\right), 1.85-1.79\left(2 H, m, 8-H_{A B}\right), 1.44-1.29\left(2 H, m, 7-H_{A B}\right), 1.11-0.97(1 H, m, 5-H)$, 0.66 (3H, d, J 6.6); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 135.1, 131.6 (10-C), 128.7, 128.3, 127.9 (9-C), 126.4, 68.9 ($\mathrm{CH}_{2} \mathrm{OH}$), 62.9 (4-C), 58.9 (12-C), 53.9 (2-C), 52.8 (14-C), 34.5, 33.4 (11C), 25.6 ($7-\mathrm{C}$), 22.8 ($8-\mathrm{C}$), 21.9, (5-C), 10.2 (Me), $6-\mathrm{C} \mathrm{missing;} v_{\max } / \mathrm{cm}^{-1}$ (film) 2925, 2854, 2318, 1462, 1377; m/z (ES ${ }^{+}$) $451.2\left(100 \%,[M+H]^{+}\right)$; found 451.1894, $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires MH 451.1873
(4R,6E,10R,11R)-10-Hydroxy-4-(hydroxymethyl)-11-methyl-N-(pyridin-3-yl)-13-(trifluoromethane)sulfonyl-3,13-diazabicyclo[13.3.1]nonadeca-1(19),6,15,17-tetraene-3-carboxamide 262a

Following general procedure A1, 3-pyridyl isocyanate ($27.5 \mathrm{mg}, 0.229 \mathrm{mmol}$) and amine $250^{\text {D }}$ ($129 \mathrm{mg}, 0.115 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea 262a ($14 \mathrm{mg}, 0.024 \mathrm{mmol}, 21.4 \%$); $R_{\mathrm{f}} 0.31$ ($90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7}-17.9$ (c. 1.4, MeOH); $\delta_{H}(500 \mathrm{MHz}$ DMSO-d6; 343 K) 8.66 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4, \mathrm{Py}$), 8.18 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.7$ and 1.5, Py), 7.95-7.88 (1H, m, Py), 7.44-7.37 (3H, m, Ar and Py), 7.34 (1H, d, J 7.8, Ar), 7.28 (1H, dd, J 8.2 and 4.5, Ar), 5.36 (1H, dt, J 11.1 and 6.7, 6H), $5.29(1 \mathrm{H}, \mathrm{dt}, J 11.1$ and $7.2,7-\mathrm{H}), 5.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.85\left(1 \mathrm{H}, \mathrm{d}, J 16.7,2-\mathrm{H}_{\mathrm{A}}\right)$, $4.65\left(1 \mathrm{H}, \mathrm{d}, J 15.4,14-\mathrm{H}_{\mathrm{A}}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J 15.4,14-\mathrm{H}_{\mathrm{B}}\right), 4.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.7,2-\mathrm{H}_{\mathrm{B}}\right), 4.06$ (1 H , br s, $4-\mathrm{H}$), 3.67-3.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $3.52\left(1 \mathrm{H}, \mathrm{dd}, J 13.9\right.$ and 10.9, 12- H_{A}), 3.21 (1 H , dd, $J 13.9$ and $4.8,12-\mathrm{H}_{\mathrm{B}}$), 3.15-3.10 ($1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$), $2.17(1 \mathrm{H}, \mathrm{dt}, J 14.1$ and 8.4 , $\left.5-\mathrm{H}_{\mathrm{A}}\right), 1.96\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.1\right.$ and $\left.5.5,5-\mathrm{H}_{\mathrm{B}}\right), 1.65-1.47\left(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}\right.$ and $\left.8-\mathrm{H}_{2}\right), 1.36-1.31$ (2H, m, 9-H2), 0.71 (3H, d, J 6.8, Me); $\delta_{\mathrm{c}}(75 \mathrm{MHz}$ DMSO-d6; 343 K) 156.2 (C=O), 142.7 (6-Py), 141.7 (2-Py), 141.0 (3-Py), 135.2, 130.9 (9-C), 128.8, 127.5 (10-C),
126.7, 126.6, 125.9, 123.0; 61.1 ($\mathrm{CH}_{2} \mathrm{OH}$), 59.2 (12-C), 53.8 (2-C), 46.7 (14-C), 45.9 (4-C), 33.6 (11-C), 32.9 ($7-\mathrm{C}$), 28.8 ($5-\mathrm{C}$), 22.4 ($8-\mathrm{C}$), 9.3 (Me); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3289, 2931, 1662, 1609, 1384, 1275; m/z (ES ${ }^{+}$) 571.1 ($\left.100 \%,[M+]^{+}\right)$; found 571.2185, $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 571.2197
(5R,6R,9E,12R)-13-Cyclopropanecarbonyl-12-(hydroxymethyl)-5-methyl-3-(trifluoromethane)sulfonyl-3,13-diazabicyclo[13.3.1]nonadeca-1(18),9,15(19),16-tetraen-6-ol 262b

Following general procedure A2, cyclopropane carbonyl chloride ($31 \mathrm{mg}, 0.3 \mathrm{mmol}$), triethylamine ($62 \mathrm{mg}, 0.61 \mathrm{mmol}$) and amine $\mathbf{2 5 0}^{\mathrm{D}}$ ($69 \mathrm{mg}, 0.061 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL, ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amide 262b ($11.1 \mathrm{mg}, 0.021 \mathrm{mmol}, 34 \%$); R_{f} 0.26 (80:20, petrol—EtOAc); $[\alpha]_{D}^{23.7}-22$ (c. 1.1, MeOH); $\delta_{H}(500 \mathrm{MHz} ;$ DMSO-d6; 343 K) $7.41-7.20(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.44(1 \mathrm{H}, \mathrm{dt}, J 11$ and $7.0,9-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{dt}, J 11$ and 7.9 , $10-\mathrm{H}), 4.69\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,2-\mathrm{H}_{\mathrm{A}}\right), 4.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,2-\mathrm{H}_{\mathrm{B}}\right), 4.07-4.03(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OH}$), $3.91\left(1 \mathrm{H}, \mathrm{d}, J 13.5,14-\mathrm{H}_{\mathrm{A}}\right) ; 3.68\left(1 \mathrm{H}, \mathrm{d}, J 13.5,14-\mathrm{H}_{\mathrm{B}}\right), 3.34(1 \mathrm{H}, \mathrm{dd}, J 14$ and 8.3, $\left.4-\mathrm{H}_{\mathrm{A}}\right), 3.25\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14\right.$ and $\left.6.3,4-\mathrm{H}_{\mathrm{B}}\right), 3.20(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $5.4,6-\mathrm{H}), 2.78$ ($1 \mathrm{H}, \mathrm{p}, \mathrm{J} 5.9,12-\mathrm{H}$), 2.17-2.05 (2H, m, 11-H2), 1.88-1.82 $\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 1.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, OH), 1.68-1.63 (2H, m, ${ }^{\mathrm{C}} \mathrm{Pr}$), 1.42-1.31 (2H, m, 7-H2), 1.09-1.05 (1H, m, OH), 0.91-0.85 ($4 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \mathrm{Pr}$); 0.67 (3H, d, J 6.8, Me); δ_{c} (125 MHz ; DMSO-d6, 343K) 173.7 (Ar), 141.5 (Ar), 135.1 (Ar), 132.3 (9-C), 128.8 (Ar), 128.2 (Ar), 127.9 (Ar), 126.4 (10-C), 125.7 (Ar), 119.1 ($q, J 325, \mathrm{CF}_{3}$), 68.9 (6-C), $65.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.6$ (12-C), 53.9 (4-C), 52.9 (2C), 50.9 ($14-\mathrm{C}$), 34.7 ($7-\mathrm{C}$), 29.6 (11-C), $22.9(8-\mathrm{C}), 12.5\left(\mathrm{CH}_{3}\right), 9.8\left({ }^{\mathrm{C}} \operatorname{Pr}\right), 7.8\left({ }^{\mathrm{C}} \mathrm{Pr}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3585, 3388, 3011, 2938, 1724, 1610, 1454, 1384; m/z (ES $\left.{ }^{+}\right) 519.2$ $\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $519.2154, \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{1}$ requires MH 519.2135
(5R,6R,9E,12R)-12-(Hydroxymethyl)-5-methyl-13-(1-methyl-1H-imidazole-4-sulfonyl)-3-(trifluoromethane)sulfonyl-3,13-diazabicyclo[13.3.1]nonadeca-1(18),9,15(19),16-tetraen-6-ol 262c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (59 mg , 0.33 mmol), triethylamine ($68 \mathrm{mg}, 0.67 \mathrm{mmol}$) and amine 250^{D} ($76 \mathrm{mg}, 0.067 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $95: 5 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 262c ($24.1 \mathrm{mg}, 0.041 \mathrm{mmol}, 60.6 \%$); $R_{\mathrm{f}} 0.28$ ($95: 5, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7}$ -0.3 (c. 1.2, MeOH); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$ DMSO-d6; 343 K) 7.81 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4$, Imid), 7.78 (1H, d, J 1.4, Imid), 7.47-7.40 (2H, m, Ar), 7.40 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8, \mathrm{Ar}$), 7.36-7.32 (1H, m, Ar), $5.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8$ and $5.1,9-\mathrm{H}$ or $10-\mathrm{H}), 5.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8$ and $6.3,9-\mathrm{H}$ or $10-\mathrm{H})$, $4.66\left(1 \mathrm{H}, \mathrm{d}, J 15.8,2-\mathrm{H}_{\mathrm{A}}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 15.8,2-\mathrm{H}_{\mathrm{B}}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2,14-\mathrm{H}_{\mathrm{A}}\right), 4.31$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2,14-\mathrm{H}_{\mathrm{B}}\right), 4.14(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.79(1 \mathrm{H}, \mathrm{ddt}, J 9.7,7.1$ and $5.0,12-\mathrm{H})$, $3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.52\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ an $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.44$ (1H, dd, J 11.6 and 4.4, $\left.\mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.24\left(1 \mathrm{H}, \mathrm{dd}, 13.9\right.$ and $\left.4.7,4-\mathrm{H}_{\mathrm{B}}\right), 3.09(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ and $6-\mathrm{H}), 2.07-1.99(1 \mathrm{H}$, $\left.\mathrm{m}, 11-\mathrm{H}_{\mathrm{A}}\right), 1.88\left(1 \mathrm{H}, \mathrm{dt}, 10.5\right.$ and $\left.5,11-\mathrm{H}_{\mathrm{B}}\right), 1.59-1.51\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}\right), 1.49-1.40(2 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}_{\mathrm{B}}$ and $5-\mathrm{H}$), 1.34-1.23 (2H, m, 7-H2), 0.73 (d, J 6.7, Me <10\% trans), 0.69 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.7, Me); δ_{C} (125 MHz DMSO-d6; 343 K) 139.7 (Imid), 139.6 (Imid), 139.5 (Ar), 135.4 (Ar), 130.7 (9- or 10-C); 128.7 (Ar), 128.1 (Ar), 127.9 (Ar), 126.5 (9- or 10-C), 126.4 (Ar), 124.7 (Imid); 120.1 (q J 325, CF_{3}), 68.8 (6-C), 60.8 (12-C), 60.7 ($\left.\mathrm{CH}_{2} \mathrm{OH}\right), 54.6$ (4C), 52.9 (2-C), 48.2 (14-C); 33.5 (Me), 33.0 (7-C), 33.0 (11-C), 30.4 ($5-\mathrm{C}$), 22.4 ($8-\mathrm{C}$), 9.3 (Me); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3401, 2941, 1639, 1533, 1491, 1448, 1384; m/z (ES $\left.{ }^{+}\right) 617.2$ $\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $617.1684, \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires MH 617.1686
(2R)-1-Hydroxy- N-\{[3-(\{ N-[(2R,3R)-3-hydroxy-2-methylhept-6-en-1$\mathrm{yl}]($ trifluoromethane)sulfonamido\}methyl)phenyl]methyl\}-S-(1-methyl-1H-imidazol-4-yl)pent-4'-ene-2'-sulfonamido 271c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (64 mg , 0.36 mmol), triethylamine ($72 \mathrm{mg}, 0.71 \mathrm{mmol}$) and amine 239^{D} ($82 \mathrm{mg}, 0.071 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $95: 5 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 271c ($18 \mathrm{mg}, 0.028 \mathrm{mmol}, 40.8 \%$); $R_{\mathrm{f}} 0.35$ ($95: 5, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7}$ -3.1 (c. $0.9, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4, \mathrm{Ar}), 7.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4$, Ar), 7.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 7.40-7.30 (4H, m, Ar), 5.77 (1H, ddt, J 16.9, 10.2 and 6.7, 6-H), $5.57\left(1 \mathrm{H}, \mathrm{ddt}, J 17.1,10.2\right.$ and $\left.7.1,4{ }^{\prime}-\mathrm{H}\right), 5.45(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 5.01(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 1.6, $7-\mathrm{H}_{\mathrm{A}}$), $4.98\left(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.5^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 4.64\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{NTf}\right), 4.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.8, $\left.\mathrm{N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8, \mathrm{~N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right), 3.99-3.88\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.64\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2,1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 3.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.1-\mathrm{H}_{\mathrm{A}}\right), 3.15\left(1 \mathrm{H}\right.$, br s, 1- $\left.\mathrm{H}_{\mathrm{B}}\right), 2.28-2.08\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{~B}^{-}-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{A}}\right)$, 2.01-1.93 $\left(1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{A}}\right)$; 1.64-1.45 (2H, $2-\mathrm{H}$ and $\left.4-\mathrm{H}_{\mathrm{A}}\right), 1.21\left(1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{B}}\right)$, ch3 $\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $141.2,138.6,138.3,137.9,134.9,134.6,129.1,128.9,128.0,124.3$; 117.6 ($7-\mathrm{C}$ or $5^{\prime}-$ C), 114.9 ($7-\mathrm{C}$ or $5^{\prime}-\mathrm{C}$), 79.9 ($3-\mathrm{C}$), 63.7 ($\left.2^{\prime}-\mathrm{C}\right)$, 62.2 ($1^{\prime}-\mathrm{C}$), 53.4 ($\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right), 52.1$ (1-
 $30.6(2-\mathrm{C}), 10.6\left(\mathrm{CH}_{3}\right.$ extracted from HMQC); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3370, 2977, 2939, 1641, 1533, 1450, 1384, 1335; m/z (ES $\left.{ }^{+}\right) 645.3\left(100 \%,[M+N a]^{+}\right)$; found 623.2163, $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires MH 623.2179

3-\{[3-(\{N-[(2R,3R)-3-Hydroxy-2-methylhept-6-en-1-
$\mathrm{yl}]($ trifluoromethane)sulfonamido\}methyl)phenyl]methyl\}-3'-[(2'R)-1'-hydroxypent-4'-en-2'-yl]-1'-(pyridin-3-yl)urea 271a

Following general procedure A1, 3-pyridyl isocyanate ($16.3 \mathrm{mg}, 0.14 \mathrm{mmol}$) and amine $239^{\text {D }}$ ($78 \mathrm{mg}, 0.067 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gave the urea 271a ($35 \mathrm{mg}, 0.058 \mathrm{mmol}, 87.4 \%$); $R_{\mathrm{f}} 0.15$ ($90: 10, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7}-2.2$ (c. $3.5, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,2-\mathrm{Py}), 8.12$ (1 H , dd, $J 4.8$ and 1.4, 4-Py), 8.00 (1 H , ddd, J $8.4,2.7$ and 1.4, 5-Py), 7.41-7.17 (5H, m, Ar and $6-\mathrm{Py}), 5.81-5.65\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.6-\mathrm{H}\right), 5.09\left(1 \mathrm{H}, \mathrm{d}, J 10.4,7-\mathrm{H}_{\mathrm{A}}\right.$ or $\left.5^{\prime}-\mathrm{H}_{A}\right)$, $5.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,7-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.99\left(1 \mathrm{H}, \mathrm{d}, J 17,7-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.97(1 \mathrm{H}, \mathrm{d}, ~ J 9.4,7-$ H_{A} or $\left.5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{~N}(\mathrm{CO}) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{~N}(\mathrm{CO}) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}\right)$, $4.53\left(2 \mathrm{H}, \mathrm{br} s, \mathrm{PhCH}_{2} \mathrm{NTf}\right), 3.96-3.86\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.80-3.63\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.52(1 \mathrm{H}$, br s, 3-H), $3.34\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7\right.$ and $\left.8,1-\mathrm{H}_{\mathrm{A}}\right), 3.17\left(1 \mathrm{H}\right.$, br s, $\left.1-\mathrm{H}_{\mathrm{B}}\right)$, 2.55-2.34 (2H, m, 3'$\left.H_{A B}\right), 2.14-1.88\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right), 1.67(1 \mathrm{H}, \mathrm{d}, J 6.8,2-\mathrm{H}), 1.44\left(1 \mathrm{H}, \mathrm{d}, J 7.1,4-\mathrm{H}_{\mathrm{A}}\right), 1.32-$ $1.17\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 0.71(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.1$ (CO), 142.7, 139.9, 139.4, 138.1, 136.9, 135.4, 134.1, 129.5, 127.9, 127.8, 127.0, 123.9, 122.3, 118.3 ($\left.5^{\prime}-\mathrm{C}\right), 115.1$ (7-C), 77.2 (3-C), 63.9 ($\left.1^{\prime}-\mathrm{C}\right), 60.0\left(2^{\prime}-\mathrm{C}\right), 53.6\left(\mathrm{~N}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{Ph}\right), 52.0$ ($\mathrm{PhCH}_{2} \mathrm{NTf}$), 49.2 (1-C), 36.4 (5-C), 33.8 ($\left.3^{\prime}-\mathrm{C}\right), 33.0$ (2-C), 30.5 (4-C), CF ${ }_{3}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3316, 3054, 2980, 2937, 1730, 1662, 1587, 1540, 1484, 1384; m/z (ES ${ }^{+}$) $599.3\left(100 \%,\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$; found 599.2506, $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires MH 599.2510

$N-\{[3-(\{N-[(2 R, 3 R)-3-H y d r o x y-2-m e t h y l h e p t-6-e n-1-$
 $y l]($ trifluoromethane)sulfonamido\}methyl)phenyl]methyl\}-N-[(2R)-1'-hydroxypent-4'-en-2'-yl]cyclopropanecarboxamide 271b

Following general procedure A2, cyclopropane carbonyl chloride ($41 \mathrm{mg}, 0.4 \mathrm{mmol}$), triethylamine ($80 \mathrm{mg}, 0.8 \mathrm{mmol}$) and amine $239^{\text {D }}$ ($90 \mathrm{mg}, 0.08 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $95: 5 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amide 271b ($9.7 \mathrm{mg}, 0.018 \mathrm{mmol}, 22.2 \%$); R_{f} 0.64 (90:10, $\left.\mathrm{CHCl}_{3} — \mathrm{MeOH}\right) ;[\alpha]_{D}^{23.7} 1.2$ (c. $\left.0.9, \mathrm{MeOH}\right) ; \delta_{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 323 \mathrm{~K}\right)$ Mixture of rotamers 7.41-7.26 (4H, m, Ar), 5.82-5.70 (2H, m, 4'-H and 6-H), 5.14-4.94 ($4 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{AB}}$ and $7-\mathrm{H}_{\mathrm{AB}}$), 4.67-4.38 (4H, m, $\mathrm{N}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{Ph}$ and $\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right)$, 4.13-4.04 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 3.72-3.41 ($4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{AB}}$ and $1^{\prime}-\mathrm{H}_{\mathrm{AB}}$), 3.20-3.10 (1H, m, 2'-H), $2.41(1 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 2.35-2.20\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 2.21-2.02\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.01-1.92\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.69-$ $1.52\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{AB}}\right), 1.39-0.69\left(6 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}\right.$ and $\left.2-\mathrm{H}\right) ; 0.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{Me}) ; \delta_{\mathrm{C}}(125$ MHz; DMSO-d6; 343 K) 138.5, 131.9, 128.4, 127.8, 126.6, 116.2 (5-C), 114.4 (7-C), 69.5 (3-C), 65.7 (1'-C), 58.1 (2'-C), $54.9\left(\mathrm{~N}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{Ph}\right), 52.6$ ($\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right), 50.2(1-\mathrm{C})$, 35.8 (2-C), 33.6 (3 '-C), 29.7 (4-C), 12.5 (${ }^{\text {C }}$ Pr), 10.2 (Me), 7.7 (${ }^{\mathrm{C} P r), ~ C F ~}{ }_{3}$ missing; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3386, 3055, 2981, 2938, 2306, 1725, 1640, 1546, 1450 and 1384; m/z (ES ${ }^{+}$) $547.3\left(100 \%,[M+]^{+}\right)$; found $547.2461, \mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires MH 547.2448

1,1,1-Trifluoro-N-[(2R,3R)-3-hydroxy-2-methylhept-6-en-1-yl]-N-\{[3-(\{[(2R)-1'-hydroxypent-4'-en-2'-yl]amino\}methyl)phenyl]methyl\}methanesulfonamide 271d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine $239^{\text {D }}$ ($79 \mathrm{mg}, 0.069 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was
purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 271d (22 mg, $0.046 \mathrm{mmol}, 67 \%$); $R_{\mathrm{f}} 0.2$ ($90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7} 6.8$ (c. 1.1 , $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.49-7.34(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.87$ (1H, ddt, J17.4, 10.3 and 7.1, $\left.4^{\prime}-\mathrm{H}\right), 5.81(1 \mathrm{H}$, ddt, J 16.9, 10.6 and $5.4,6-\mathrm{H}), 5.15\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.4\right.$ and $\left.1.9,5^{\prime}-\mathrm{H}_{\mathrm{A}}\right)$, $5.12\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3\right.$ and $\left.1.7,5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 5.02\left(1 \mathrm{H}\right.$, ddd, $J 16.9,1.4$ and $\left.1.4,7-\mathrm{H}_{\mathrm{A}}\right), 4.97(1 \mathrm{H}$, ddd, J 10.6, 1.4 and 1.4, $\left.7-\mathrm{H}_{\mathrm{B}}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5, \mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}\right), 4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5$, $\left.\mathrm{PhCH}_{\mathrm{B}} \mathrm{NTf}\right), 3.93$ (1H, d, J 13.3, $\mathrm{NHCH}_{\mathrm{A}} \mathrm{Ph}$), 3.89 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3, \mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}$), $3.66(1 \mathrm{H}$, dd, $J 11.1$ and 4.7, $1^{\prime}-\mathrm{H}_{A}$), $3.53\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.6.3,1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.49-3.47(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $\left.1-\mathrm{H}_{\mathrm{AB}}\right), 2.79\left(1 \mathrm{H}, \mathrm{qd}, J 6.3\right.$ and $\left.4.7,2^{\prime}-\mathrm{H}\right), 2.33-2.29\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 2.14-2.06(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 2.02-1.92\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 1.76-1.68(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.53-1.44\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right)$, 1.36-1.26 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$), $0.82(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{Me})$; $\delta_{\mathrm{C}}(75 \mathrm{MHz} ; \mathrm{CDCl} 3) 141.8$ (Ar 1- or 3C), 139.5 (Ar 1- or 3-C), 136.9 (6 '-C), 136.4 ($4-\mathrm{C}$), 130.1 (Ar), 129.8 (Ar), 129.6 (Ar), 128.6 (Ar), 121.8 (q, J 324, CF 3); 117.8 (7-C), 115.1 (5'-C), 71.7 (3-C), 64.1 (1'-C), 59.4 (2'-C), 54.6 (1-C), 54.5 ($\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right), 51.8$ (NHC), 37.7 (2-C), 36.6 (3 '-C), 34.9 ($5-\mathrm{C}$), 31.3 (4-C), 10.8 (Me); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3390, 3054, 3005, 2986, 2937, 1640, 1451 and 1384; $m / z\left(\mathrm{ES}^{+}\right) 479.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 479.2199, $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires MH 479.2186

2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl N-\{[2-(2-\{[(1-hydroxypent-4-en-2-yl)[(pyridin-3-yl)carbamoyl]amino]methyl\}phenyl)phenyl]methyl\}carbamate

Following general procedure A1, 3-pyridyl isocyanate ($11.2 \mathrm{mg}, 0.093 \mathrm{mmol}$) and amine 240^{D} ($53 \mathrm{mg}, 0.046 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid $(0.2 \mathrm{~mL}$, ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $95: 5 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea 272a ($12.5 \mathrm{mg}, 0.018 \mathrm{mmol}, 39 \%$); $R_{\mathrm{f}} 0.2$ (70:30, petrol—EtOAc); $[\alpha]_{D}^{23.7} 16.2$ (c. $0.6, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ very broad and atropisomers denoted in italics
where possible 8.41-8.32 (1H, m, Py), 8.24-8.13 (1H, m, Py), 7.98-7.86 (1H, m, Py), 7.81-7.69 (1H, m, Ar), 7.50 (1 H, ap t, J 6.6, Ar), 7.45-7.23 (4H, m, Ar), 7.22-7.07 (3H, $\mathrm{m}, \mathrm{Ar}), 7.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.2$ and 6.6, DMB 6-H), 6.46-6.36 (2H, m, DMB 3-H and 5-H); 5.81 (1H, ddt, J 16.1, 10.5 and 5.5, propenyl 2-H), 5.69 ($1 \mathrm{H}, \mathrm{ddt}, J 17,9.9$ and 6.9, 4$\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{br}$ s, NH$), 5.19\left(1 \mathrm{H}, \mathrm{dd}, J 17\right.$ and 1.5 , propenyl $\left.3-\mathrm{H}_{\mathrm{A}}\right), 5.11(1 \mathrm{H}, \mathrm{d}, J 9.9$, propenyl $3-\mathrm{H}_{\mathrm{B}}$), 5.07-4.93 $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{C}_{\mathrm{AB}}\right)$, 4.40-3.86 $\left(9 \mathrm{H}\right.$, propenyl 1- $\mathrm{H}_{2}, 2 \times$ Benzylic CH2, propyl 1-H and 2-H), 3.78 (3H, s, OMe), 3.74 (3H, s, OMe), 3.69-3.45 (5H, 1-H, propyl $3-\mathrm{H}$ and $2-\mathrm{H}$), 2.44-2.30 (2H, 3-H); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.6$ (DMB 4-C), 158.3 (DMB 2-C), 157.0 (C=O), 156.8 (C=O), 143.5, 136.6, 134.9, 134.6, 128.9, 128.3, 127.6, 127.5, 127.4, 123.3, 117.7 (5-C or propenyl 3-C), 116.7 (5-C or propenyl 3-C), 104.1 (DMB 5-C), 98.6 (DMB 3-C), 71.9 (propenyl 1-C), 70.5 (1-C), 65.6 (propyl 3-C), 62.4 (propyl 1-C), 59.5 (2-C); 55.3 (OMe), 50.5 (N(CO)CPh), 45.7 (NPyCPh), 38.2 (propyl $2-$ C), 33.6 (3-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3332, 2937, 1711, 1623, 1598, 1534, 1357, 1208, 1159, and $1099 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 695.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 695.3441, $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires MH 695.3439

2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl N-\{[2-(2-\{[N-(1-hydroxypent-4-en-2-yl)1-methyl-1H-imidazole-4sulfonamido]methyl\}phenyl)phenyl]methyl\}carbamate 272c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (52 mg , 0.29 mmol), triethylamine ($58.6 \mathrm{mg}, 0.59 \mathrm{mmol}$) and amine 240^{D} ($65 \mathrm{mg}, 0.057 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with CHCl_{3} gave the amine sulfonamide 272c ($9.1 \mathrm{mg}, 0.013 \mathrm{mmol}, 22.2 \%$); $R_{\mathrm{f}} 0.4$ (EtOAc); $[\alpha]_{D}^{23.7} 4.8$ (c. $0.5, \mathrm{MeOH}$); $\delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{CDCl}_{3} ; 323 \mathrm{~K}$) atropisomers denoted where possible 7.82 (1H, d, J 7.9), 7.66-
$7.22(7 \mathrm{H}, \mathrm{m}),, 7.20-7.02(3 \mathrm{H}, \mathrm{m}),, 6.44-6.38(2 \mathrm{H}, \mathrm{m}$,), $5.84(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 16.8,11$ and 5.4 , propenyl $2-H), 5.84\left(d d t, J 16.1,10.2\right.$ and 5.2 , propenyl $2-H^{\text {artop }}$), $5.55(1 \mathrm{H}, \mathrm{ddt}, J$ $17.3,10$ and $6.9,4-H), 5.55$ (ddt, $J 17.1,10.2$ and $6.6,4-H^{\text {atrop }}$), $5.20(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and 1.8, $\left.5-\mathrm{H}_{\mathrm{A}}\right), 5.10\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.1.6,5-\mathrm{H}_{B}\right), 4.94-4.81\left(2 \mathrm{H}, \mathrm{m}\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{AB}}\right)$, 4.44-4.27 $\left(2 \mathrm{H}, \mathrm{m}\right.$, propyl 1- $\left.\mathrm{H}_{\mathrm{AB}}\right), 4.10\left(1 \mathrm{H}\right.$, dd, $J 16.8$ and $5.6, \mathrm{~N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{\mathrm{A}} \mathrm{Ph}$ or $\left.\mathrm{PhCH}_{\mathrm{A}} \mathrm{N}(\mathrm{CO}) \mathrm{O}\right)$, 4.08-3.97 ($1 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{\mathrm{B}} \mathrm{Ph}$ or $\left.\mathrm{PhCH}_{\mathrm{B}} \mathrm{N}(\mathrm{CO}) \mathrm{O}\right)$, 3.95-3.87 (2H, m, propenyl 1-H), 3.78-3.74 ($6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OMe}$), $3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.64$ (s, $\mathrm{NMe}^{\text {atrop }}$), 3.63-3.43 (8H, propyl $2-\mathrm{H}$ and $3-\mathrm{H}_{\mathrm{AB}}, 2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{AB}}$ and $\mathrm{N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{2} \mathrm{Ph}$ or $\left.\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}\right)$, 2.31-2.20 ($1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{A}}$), 2.18-2.05 ($1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 323 \mathrm{~K}\right) 159.7,158.4$ $\left({ }^{\text {arrop }}\right)$, $157.1\left({ }^{\text {atrop }}\right), 138.5,135.0,134.8,129.8,129.8,129.6,129.0,128.9,128.3,128.1$, 128.0, 127.8, 127.8, 127.02, 127.0, 124.2, 120.4, 117.2, 117.1, 116.4, 104.4, 98.8, $71.9,70.6,63.8,62.6,62.2,55.4,55.3,38.3,33.9(\mathrm{Me}) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3691, 3056, 2987, 2685, 2411, 2306, 1714, 1607, 1550, 1508, 1422, 1277; m/z (ES ${ }^{+}$) 741.3 (100\%, $[\mathrm{M}+\mathrm{Na}]^{+}$); found $741.2919, \mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ requires MNa 741.2929 full carbon assignment was not possible to mixture of atropisomers

2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl $\quad N$-\{[2-(2-\{[1-cyclopropyl- N -(1-hydroxypent-4-en-2-yl)formamido]methyl\}phenyl)phenyl]methyl\}carbamate 272b

Following general procedure A2, cyclopropane carbonyl chloride ($36.4 \mathrm{mg}, 0.35 \mathrm{mmol}$), triethylamine ($70.4 \mathrm{mg}, 0.69 \mathrm{mmol}$) and amine 240^{D} ($79 \mathrm{mg}, 0.069 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with 50:50 petrol-EtOAc gave the amide 272b (19.9 mg , $0.031 \mathrm{mmol}, 45 \%$); $R_{\mathrm{f}} 0.5$ (70:30, petrol—EtOAc); $[\alpha]_{D}^{23.7}-5.9$ (c. 1, MeOH); $\delta_{\mathrm{H}}(300$ MHz ; $\mathrm{CDCl}_{3} ; 323 \mathrm{~K}$) very broad 7.95-7.25 (5H, m, Ar), 7.21-7.03 (4H, m, Ar), $6.44(2 \mathrm{H}$, s, DMB), $5.84(1 \mathrm{H}, 16.1,10.7$ and 5.4 , propenyl $2-\mathrm{H}$), $5.70-5.59(1 \mathrm{H}, 4-\mathrm{H}), 5.21(1 \mathrm{H}$,
16.1, propenyl $3-\mathrm{H}_{\mathrm{A}}$), $5.12\left(1 \mathrm{H}, 10.7\right.$, propenyl $\left.3-\mathrm{H}_{\mathrm{B}}\right), 5.06-4.83\left(2 \mathrm{H}, 5-\mathrm{H}_{\mathrm{AB}}\right), 4.67-3.28$ $\left(20 \mathrm{H}, \mathrm{N}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}, 2 \times \mathrm{OMe}, 2-\mathrm{H}, 1-\mathrm{H}\right.$, propenyl 1-H, Propyl $1 \mathrm{H}_{\mathrm{AB}}$, 2H and $3-\mathrm{H}_{\mathrm{AB}}$), 2.46-1.85 (2H,3-H), 1.54-1.45 (1H, $\left.{ }^{\mathrm{C}} \operatorname{Pr}\right)$, 1.05-0.63 ($4 \mathrm{H},{ }^{\mathrm{C}} \mathrm{Pr}$); $\delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 159.7 (DMB 4-C), 158.3 (DMB 2-C), 146.1 (C=O), 138.9, 134.9 (propenyl $2-\mathrm{C}), 131.6,129.8,129.8,128.9,128.4,128.3,128.2,127.6,127.5,127.2,117.5$ (propenyl 3-C or 5-C), 116.7 (propenyl 3-C of 5-C), 104.1 (DMB 5-C), 98.6 (DMB 3-C), 71.9 (propenyl 1-C), 70.6 (1-C), 65.4 (propyl 1-C), 64.0 (propyl 3-C), 63.9 $\left(\mathrm{N}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{Ph}\right), 59.9(2-\mathrm{C}), 55.4(\mathrm{OMe})$, $55.3(\mathrm{OMe}), 49.2\left(\mathrm{PhCH}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{O}\right), 38.2$ (propyl 2-C), 33.1 (3-C), 12.3 (${ }^{\mathrm{C} P r}$), 8.4 (${ }^{\mathrm{C} P r) ; ~} \mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$ (film) 3332, 3061, 3006, 2937, 1713, 1614, 1588, 1544, 1508, 1463, 1358, 1261, 1208, 1159, and 1099; m/z (ES ${ }^{+}$) $665.3\left(100 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$; found $643.3395, \mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires MH 643.3378

3-(\{2-[2-(\{N-[(3R)-3-Hydroxy-2-methylhept-6-en-1-
 yl](trifluoromethane)sulfonamido\}methyl)phenyl]phenyl\}methyl)-3-(1-hydroxypent-4-en-2-yl)-1-(pyridin-3-yl)urea 274a

Following general procedure A1, 3-pyridyl isocyanate ($21.5 \mathrm{mg}, 0.179 \mathrm{mmol}$) and amine 242 ($110 \mathrm{mg}, 0.089 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid $(0.2 \mathrm{~mL}$, ca. $45-51 \%$) was added and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with 50:50 petrol-EtOAc gave the urea 274a ($37.7 \mathrm{mg}, 0.056 \mathrm{mmol}, 63 \%$); $R_{\mathrm{f}} 0.25$ (50:50 EtOAc—petrol); $[\alpha]_{D}^{23.7} 10.9$ (c. 1.1, $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.52(0.5 \mathrm{H}, \mathrm{br}$ s, NH), 9.23 ($0.5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), 8.22 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 11.7), 8.10 (2H, m, Ar), 7.68-7.06 (9H, Ar), 5.74 (1H, ddt, J 17.1, 10.4 and 6.7, 6-H), 5.63-5.54 (1H, m, 4'-H), 5.02-4.84 (4H, m, 5'- $\mathrm{H}_{A B}$ and $7-\mathrm{H}_{A B}$), 4.68 ($0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.8$, $\left.\mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}\right), 4.40\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5, \mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}{ }^{\text {arrop }}\right.$), 4.35 ($\left.1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{\mathrm{B}} \mathrm{NTf}\right)$, 4.183.99 (1H, m, 3-H), 3.89-3.38 (5H, m, 1'- H_{AB}, 2'-H, N(COPy)CH2Ph), 3.34 (1 H , dd, J 14.4 and $\left.9.2,1-H_{A}\right), 3.20\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.6,1-\mathrm{H}_{\mathrm{B}}\right), 2.45(0.5 \mathrm{H}, \mathrm{dt}, J 13.8$ and 6.9 , $\left.3^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 2.38-2.23\left(1.5 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.3^{\prime} \mathrm{H}_{\mathrm{AB}}{ }^{\text {arrop }}\right)$, 2.15-1.83 $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{AB}}\right)$, 1.64-1.53 $\left(0.5 \mathrm{H}, 4-\mathrm{H}_{\mathrm{A}}{ }^{\text {arrop }}\right), 1.51-1.41\left(1.5 \mathrm{H}, 2-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{\mathrm{B}}^{\text {atrop }}\right), 1.32-1.19\left(1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{AB}}\right), 0.69(3 \mathrm{H}, \mathrm{d}$, J 6.9, Me); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.2,156.9,142.4,142.3,139.7,139.6,139.3,139.2$,
$138.5,138.3,138.2,135.8,134.0,133.8$, 133.2, 129.7, 129.6, 129.7, 128.6, 128.4, 128.0, 127.5, 127.4, 127.3, 127.1, 124.1, 118.3, 118.2, 114.9, 114.8, 63.7, 63.6, 60.9, $60.1,54.5,52.6,51.2,48.9,36.8,33.8,33.6,33.4,33.2,30.6,30.4,10.5 ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3285, 3063, 2979, 2939, 1663, 1588, 1546, 1484, 1424, 1385 and 1341; m/z (ES ${ }^{+}$) $675.3\left(100 \%,[M+H]^{+}\right)$; found $675.2833, \mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5}$ S requires MH 675.2823

1-Hydroxy-N-(\{2-[2-(\{N-[(3R)-3-hydroxy-2-methylhept-6-en-1-

 $\mathrm{yl}]($ trifluoromethane)sulfonamido\}methyl)phenyl]phenyl\}methyl)-S-(1-methyl-1H-imidazol-4-yl)pent-4-ene-2-sulfonamido 274c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (93 mg , $0.517 \mathrm{mmol})$, triethylamine ($104 \mathrm{mg}, 1.03 \mathrm{mmol}$) and amine 242 ($127 \mathrm{mg}, 0.103 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid ($0.2 \mathrm{~mL}, \mathrm{ca} .45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $50: 50$ EtOAc-petrol gave the sulfonamide 274c ($50.7 \mathrm{mg}, 0.071 \mathrm{mmol}, 69.2 \%$); $R_{\mathrm{f}} 0.35$ (50:50, EtOAc-petrol); δ_{H} ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $7.95\left(1 \mathrm{H}, \mathrm{d}, J 7.8\right.$, Imid 2-H), $7.89\left(1 \mathrm{H}, \mathrm{d}, J 7.8\right.$, Imid 2- $\left.\mathrm{H}^{\text {atrop }}\right), 7.57$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7, \mathrm{Ar}^{\text {atrop }}$), 7.50-7.30 (6.5H, m, Ar), 7.17-7.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.07-7.01 ($1 \mathrm{H}, \mathrm{m}$, Ar), $5.74\left(1 \mathrm{H}, \mathrm{ddt}, J 16.8,9.8\right.$ and $\left.6.7,4^{\prime}-\mathrm{H}\right), 5.61(0.5 \mathrm{H}$, ddt, $J 16.8,10.2$ and $7.6,6-\mathrm{H})$, $5.43\left(0.5 \mathrm{H}, \mathrm{br} \mathrm{s}, 6 \mathrm{H}^{\text {atrop }}\right), 5.03-4.72\left(4 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.7-\mathrm{H}_{\mathrm{AB}}\right), 4.67-4.04(4 \mathrm{H}, \mathrm{m}$, $\mathrm{N}(\mathrm{Imid}) \mathrm{CH}_{2} \mathrm{Ph}$ and $\mathrm{PhCH}_{2} \mathrm{NTf}$), 3.97 (d, $J 17$, $\mathrm{N}(\mathrm{Imid}) \mathrm{CH}_{2} \mathrm{Ph}$ or $\mathrm{PhCH}_{2} \mathrm{NTf}$), 3.92-3.84 (1H, 3-H); $3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.71$ (s, NMe ${ }^{\text {arrop }}$), 3.60-3.36 ($5 \mathrm{H}, 1^{\prime}-\mathrm{H}_{2}, 2^{\prime}-\mathrm{H}$ and 1- H_{2}), $3.33\left(1 \mathrm{H}, \mathrm{dd}, 1-\mathrm{H}_{\mathrm{A}}\right.$ arrop $), 3.29\left(1 \mathrm{H}\right.$, br s, $\left.1-\mathrm{H}_{\mathrm{B}}{ }^{\text {atrop }}\right)$, 2.32-1.84 $\left(4 \mathrm{H}, 3 \mathrm{H}_{2}-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 1.79-$ $1.60\left(0.5 \mathrm{H}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.53-1.37\left(2 \mathrm{H}, 2-\mathrm{H}\right.$ and $4-\mathrm{H}_{\mathrm{B}}$ and $\left.4-\mathrm{H}_{\mathrm{A}}{ }^{\text {arrop }}\right), 1.30-1.17(0.5 \mathrm{H}, 4-$ $\left.\mathrm{H}_{\mathrm{B}}{ }^{\text {atrop }}\right), 0.65\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 140.6,140.5,139.3,139.0,138.8$, 138.7, 138.3, 138.1, 137.8, 135.9, 135.4, 134.7, 134.6, 133.8, 132.4, 130.1, 129.9, 129.5, 128.8, 128.7, 128.5, 128.4, 128.3, 128.1, 127.6, 127.4, 124.6, 117.7, 117.3, $115.1,114.9,63.1,62.5,61.7,54.4,51.5,60.1,47.0,36.9,36.2,34.2,34.1,32.9,30.5$, $30.4,16.6,12.3,12.1,10.6 ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3368, 3146, 3061, 2942, 2307, 1941, 1830, 1713, 1640, 1600, 1532 and 1447; $m / z\left(E S^{+}\right) 721.2\left(100 \%,[M+N a]^{+}\right)$; found 721.2324, $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ requires MNa 721.2312

$N-(\{2-[2-(\{N-[(3 R)-3-H y d r o x y-2-m e t h y l h e p t-6-e n-1-$ $\mathrm{yl}]($ trifluoromethane)sulfonamido\}methyl)phenyl]phenyl\}methyl)- N -(1'-hydroxypent-4'-en-2'-yl)cyclopropanecarboxamide 274b

Following general procedure A2, cyclopropane carbonyl chloride ($52 \mathrm{mg}, 0.49 \mathrm{mmol}$), triethylamine ($98.9 \mathrm{mg}, 0.98 \mathrm{mmol}$) and amine 242 ($122 \mathrm{mg}, 0.099 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL, ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with CHCl_{3} gave the amide 274b ($40.7 \mathrm{mg}, 0.065 \mathrm{mmol}, 66 \%$); $R_{\mathrm{f}} 0.4\left(\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d} 6)$ 7.59-7.30 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.22-7.17 (1H, m, Ar), $7.09(1 \mathrm{H}, \mathrm{ap} \mathrm{t}, \mathrm{J} 7.6, \mathrm{Ar})$, 5.8-5.59 (2H, m, 6-H and 4'-H), 4.99-4.87 (4H, m, $5^{\prime}-\mathrm{H}_{\mathrm{AB}}$ and $\left.7-\mathrm{H}_{\mathrm{AB}}\right), 4.49\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.4, \mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}\right), 4.44\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.3, \mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}{ }^{\text {atrop }}\right)$, 4.274.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{\mathrm{B}} \mathrm{NTf}$), 3.88-3.74 (2H, m, N(CO) $\mathrm{CH}_{\mathrm{AB}} \mathrm{Ph}$), 3.48-3.06 (5H, m, 3-H, 1$H_{A B}$ and $\left.1^{\prime}-H_{A B}\right), 2.64\left(1 H, a p t, J 5.4,2^{\prime}-H\right), 2.11-1.97\left(3 H, m, 3 '-H_{A}\right.$ and $\left.5-H_{A B}\right)$, 1.93$1.84\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 1.54-1.02\left(4 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}, 2-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{\mathrm{AB}}\right), 0.87-0.77\left(4 \mathrm{H}, \mathrm{m},{ }^{\mathrm{C}} \operatorname{Pr}\right)$, $0.64(3 \mathrm{H}, \mathrm{d}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.57,173.54,139.8,139.7,138.8,138.7$, $138.5,138.4,135.1,132.9,132.8,129.9,129.2,129.1,128.9,127.9,127.8,127.5$, $127.3,126.6,116.8,116.7,114.4,114.3,69.5,69.4,65.7,55.5,54.1,53.5,50.9,50.4$, $48.2,48.1,36.4,36.1,33.6,33.5,29.7,12.4,10.3,10.2,7.7 ; v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3402, 3075, 2979, 2254, 2127, 1998, 1827, 1708, 1640, 1545, 1448 and 1383; $m / z\left(E S^{+}\right)$ $623.3\left(100 \%,[M+H]^{+}\right)$; found $623.2786, \mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires MH 623.2761

Full ${ }^{13} \mathrm{C}$ assignment was not possible due to atropisomers

2-(2,4-Dimethoxyphenyl)-3-(prop-2-en-1-yloxy)propyl N-\{[2-(2-\{[(1-hydroxypent-4-en-2-yl)amino]methyl\}phenyl)phenyl]methyl\}carbamate 272d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine 240^{D} ($63 \mathrm{mg}, 0.055 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by preparative mass-directed column chromatography and gave the amine 272d ($15.9 \mathrm{mg}, 0.028 \mathrm{mmol}, 50.4 \%$); $R_{\mathrm{f}} 0.21$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3441, 3056, 3005, 2936, 2305, 1711, 1614, 1587, 1544, 1508 and 1465; m/z (ES $\left.{ }^{+}\right) 575.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 575.3142, $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 575.3116

Unable to obtain ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ spectra, see 272c and $\mathbf{2 7 2 b}$ for spectra of the same scaffolds

1,1,1-trifluoro- N-[(3R)-3-hydroxy-2-methylhept-6-en-1-yl]-N-\{[2-(2-\{[(1-hydroxypent-4-en-2-yl)amino]methyl\}phenyl)phenyl]methyl\}methanesulfonamide 274d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. 45-51\%) was added to the amine 242 ($90 \mathrm{mg}, 0.073 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by preparative mass-directed column chromatography and gave the amine 274d ($40 \mathrm{mg}, 0.072 \mathrm{mmol}, 99 \%$); $R_{\text {F }} 0.33$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3591, 3424, 3063, 2979, 2937, 2320, 1936, 1829, 1713, 1640, 1546, 1447 and 1384; m/z (ES ${ }^{+}$) 555.3 (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 555.2514, $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires MH 555.2499

Unable obtain ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ due to severe atropisomers
(17E)-13-(2,4-Dimethoxyphenyl)-20-(hydroxymethyl)-10-oxo-N-(pyridin-3-yl)-11,15-dioxa-9,21-diazatricyclo[21.4.0.0 ${ }^{2,7}$]heptacosa-1(27),2,4,6,17,23,25-heptaene-21-carboxamide 263a

Following general procedure A1, 3-pyridyl isocyanate ($5.28 \mathrm{mg}, 0.44 \mathrm{mmol}$) and amine $251^{\mathrm{D}}(24.3 \mathrm{mg}, 0.022 \mathrm{mmol})$ gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with 50:50 petrol-EtOAc gave the urea 263a ($11.9 \mathrm{mg}, 0.018 \mathrm{mmol}, 82 \%$); $R_{\mathrm{f}} 0.12\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{23.7} 4.1$ (c. $\left.1.2, \mathrm{MeOH}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film); $m / z\left(\mathrm{ES}^{+}\right) 667.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 667.3126, $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires MH 667.312610

Unable obtain ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ due to severe atropisomers
(17E)-13-(2,4-Dimethoxyphenyl)-20-(hydroxymethyl)-21-(1-methyl-1H-imidazole-4-sulfonyl)-11,15-dioxa-9,21-diazatricyclo[21.4.0.0 ${ }^{2,7}$]heptacosa-1(27),2,4,6,17,23,25-heptaen-10-one 263c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (18.9 mg , $0.105 \mathrm{mmol})$, triethylamine ($21.2 \mathrm{mg}, 0.21 \mathrm{mmol}$) and amine 251^{D} ($23.5 \mathrm{mg}, 0.21$ mmol) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the amine 263c (11.4 $\mathrm{mg}, 0.016 \mathrm{mmol}, 76 \%) ; R_{\mathrm{f}} 0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{D}^{23.7} 3.1$ (c. $\left.1.1, \mathrm{MeOH}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3321 , 3005, 2924, 2852, 1711, 1612, 1586, 1531, 1507, 1463 and 1335; m/z (ES $\left.{ }^{+}\right) 713.3$ $\left(20 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $713.2614, \mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ requires MH 713.2616

Unable to obtain a ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ spectra due to geometric isomers and atropisomers
(17E)-21-Cyclopropanecarbonyl-13-(2,4-dimethoxyphenyl)-20-(hydroxymethyl)-11,15-dioxa-9,21-diazatricyclo[21.4.0.0 ${ }^{2,7}$ heptacosa-1(27),2,4,6,17,23,25-heptaen-10-one 263b

Following general procedure A2, cyclopropane carbonyl chloride ($10.9 \mathrm{mg}, 0.105$ mmol), triethylamine ($21.2 \mathrm{mg}, 0.21 \mathrm{mmol}$) and amine 251^{D} ($22.7 \mathrm{mg}, 0.021 \mathrm{mmol}$)
gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with CHCl_{3} gave the amide $\mathbf{2 6 3}$ (11.1 mg , $0.018 \mathrm{mmol}, 86 \%) ; R_{\mathrm{f}} 0.32\left(\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{23.7} 3.2$ (c. $\left.0.7, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $8.01(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 7.82\left(0.1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}^{\text {atrop }}\right)$, $7.56-7.04(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.46-6.37(2 \mathrm{H}, \mathrm{m}$, DMB), 5.60-5.20 ($2 \mathrm{H}, \mathrm{m}, 17$ and 18 H), 4.65-2.99 ($21 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OMe}, 20-\mathrm{H}, \mathrm{CH}_{\mathrm{AB}} \mathrm{OH}$, $16-\mathrm{H}_{\mathrm{AB}}, 14-\mathrm{H}_{\mathrm{AB}}, 13-\mathrm{H}, 12-\mathrm{H}_{\mathrm{AB}}, 8-\mathrm{H}_{\mathrm{AB}}$ and $\left.22-\mathrm{H}_{\mathrm{AB}}\right), 2.44\left(1 \mathrm{H}, \mathrm{br}\right.$ s, 19- $\left.\mathrm{H}_{\mathrm{A}}\right), 2.25-1.88(1 \mathrm{H}$, $\left.19-\mathrm{H}_{\mathrm{B}}\right), 1.26\left(2 \mathrm{H},{ }^{\mathrm{C}} \mathrm{Pr}\right), 1.10-0.67\left(3 \mathrm{H},{ }^{\mathrm{C}} \mathrm{Pr}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 162.4,130.7,129.5$, 129.1, 128.7, 128.2, 127.5, 127.3, 127.3, 126.3, 104.4, 68.9, 65.6, 63.9, 63.9, 60.8, $55.4,55.3,36.3,31.7,31.4,29.6,16.5,12.3,12.2,8.6 ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3388,3060 , 3006, 2926, 2854, 2255, 2127, 1712, 1614, 1587, 1536, 1508 and 1436; m/z (ES ${ }^{+}$) $615.3\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $637.2875, \mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires MNa 637.2884

3-\{[2-(2-\{[N-(But-3-en-1-
 yl)(trifluoromethane)sulfonamido]methyl\}phenyl)phenyl]methyl\}-3-(1-hydroxypent-4-en-2-yl)-1-(pyridin-3-yl)urea 273a

Following general procedure A1, 3-pyridyl isocyanate ($13.8 \mathrm{mg}, 0.114 \mathrm{mmol}$) and amine 241^{D} ($60.3 \mathrm{mg}, 0.057 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid $(0.2 \mathrm{~mL}$, ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with 95:5 $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the urea 273a ($25.2 \mathrm{mg}, 0.041 \mathrm{mmol}, 72 \%$); $R_{\mathrm{f}} 0.23$ ($95: 5, \mathrm{CHCl}_{3} — \mathrm{MeOH}$); $[\alpha]_{D}^{23.7} 4.9$ (c. 1, MeOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.27$ (1H, s, Pyridyl 2-H), 8.17 (1H, d, J 4.7, Pyridyl 6-H), 8.10 (1 H , Pyridyl 4-H ${ }^{\text {atrop }}$), 8.03-7.94 (2H, m, Pyridyl 4-H and NH), 7.61-7.56 (2H, m, Ar), 7.48-7.33 (3H, m, Ar), 7.19 (2H, dd, J 7.4 and 1.6, pyridyl 5-H), 7.15 (1H, dd, J 7.4 and 1.4, Ar), 5.61 (1 H , ddt, J 17.1, 10.6 and $6.7,4^{\prime}-\mathrm{H}$), $5.57-5.47(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $5.00-4.88\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.5^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 4.56-4.47\left(1 \mathrm{H}\right.$, br d, $J 16.2$, NTfCH $\left.{ }_{2} \mathrm{Bn}\right), 4.45$ $\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.8, \mathrm{NPyCH}_{\mathrm{A}}^{\text {arrop }}\right), 4.35\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.9, \mathrm{NPyCH}_{\mathrm{A}}\right), 4.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NTfCH} \mathrm{C}_{2} \mathrm{Bn}^{\text {arrop }}\right)$, $4.10\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.9, \mathrm{NPyCH}_{\mathrm{B}}\right), 3.99\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.8, \mathrm{NPyCH}_{\mathrm{B}}{ }^{\text {arrop }}\right)$,
3.84-3.78 ($\left.1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.77-3.72\left(\mathrm{~m}, 1-\mathrm{H}_{\mathrm{AB}}{ }^{\text {arrop }}\right), 3.69-3.64\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{A}}\right), 3.57(1 \mathrm{H}, \mathrm{dd}$, $J 11.2$ and $\left.7,1-H_{B}\right), 3.36-3.28\left(1 H, m, 1^{\prime}-H_{A}\right), 3.19\left(1 H, d t, J 14.5\right.$ and $\left.7.3,1^{\prime}-H_{B}\right), 2.38-$ $2.24\left(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{~B}^{-}-\mathrm{H}_{\mathrm{AB}}\right), 2.09-2.02\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{AB}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 156.9,156.8,142.7$, 139.9, 139.8, 139.7, 138.4, 137.1, 134.1, 133.2, 133.2, 132.8, 129.9, 129.8, 129.6, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 127.5, 127.5, 127.1, 127.0, 123.9, 118.1, $118.0,117.9,117.8,63.7,60.2,59.9,49.4,48.1,48.0,46.9,33.7,33.6,32.4 ; v_{\max } / \mathrm{cm}^{-1}$ (film) 3291, 3053, 3006, 2872, 1665, 1588, 1541, 1422, 1275, 1261, 1225 and 1198; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$603.2(100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 603.2259, $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires MH 603.2247

$N-\{[2-(2-\{[N-(B u t-3-e n-1-$

yl)(trifluoromethane)sulfonamido]methyl\}phenyl)phenyl]methyl\}-1-hydroxy-S-(1-methyl-1H-imidazol-4'-yl)pent-4'-ene-2'-sulfonamido 273c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (45.9 mg , $0.25 \mathrm{mmol})$, triethylamine ($51.5 \mathrm{mg}, 0.510 \mathrm{mmol}$) and amine $241^{\mathrm{D}}(53.3 \mathrm{mg}, 0.051$ mmol) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with CHCl_{3} gave the sulfonamide 273c ($23.2 \mathrm{mg}, 0.037 \mathrm{mmol}, 73 \%$); $R_{\mathrm{f}} 0.15\left(\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{23.7} 3.9$ (c. $1.2, \mathrm{MeOH}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$; DMSO-d6; 343 K) 7.79 ($1 \mathrm{H}, \mathrm{d}, ~ J 7.8, ~ A r), ~ 7.71-7.69$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.59-7.56 (1H, m, Imid), 7.55-7.49 (2H, m, Imid and Ar), 7.48-7.38 (2H, m, Ar), 7.38-7.31 (1H, m, Ar), 7.21 ($1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{Ar}$), 7.09 ($1 \mathrm{H}, \mathrm{dt}, J 7.3$ and 1.7, Ar), 5.62-5.52 (2H, m, 3-H and 4'-H), 5.44 (ddt, J 17.1, 10.2 and $7,3-H^{\text {arrop }}$), 4.97-4.93 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}$), $4.89(0.5 \mathrm{H}$, dd, J 17.3 and 1.7, $\left.4-\mathrm{H}_{\mathrm{B}}\right), 4.88\left(0.5 \mathrm{H}, J 17.3\right.$ and $\left.1.7,4^{\prime}-\mathrm{H}_{\mathrm{B}}{ }^{\text {atrop }}\right), 4.84\left(0.5 \mathrm{H}, \mathrm{d}, J 10.2\right.$ and $1.9,5^{\prime}-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 4.78\left(0.5 \mathrm{H}, \mathrm{d}, J 16.9,5{ }^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.75\left(0.5 \mathrm{H}, \mathrm{d}, J 10,5^{\prime}-\mathrm{H}_{\mathrm{A}}{ }^{\text {arrop }}\right), 4.66(0.5 \mathrm{H}, \mathrm{dd}, J 17.1$ and 1.8, $\left.5{ }^{\prime}-\mathrm{H}_{\mathrm{B}}{ }^{\text {atrop }}\right)$, 4.57-4.40 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{2} \mathrm{Ph}\right.$ or $\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right)$, 4.33-4.16 $(2 \mathrm{H}, \mathrm{m}$, $\mathrm{N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{2} \mathrm{Ph}$ or $\left.\mathrm{PhCH}_{2} \mathrm{NTf}\right)$; 3.91 (d, J 17.3, $\mathrm{N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{2} \mathrm{Ph}^{\text {atrop }}$), 3.76-3.67 (1H, m, 2'H), $3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.37-3.11\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.1^{\prime}-\mathrm{H}_{\mathrm{AB}}\right), 2.20-1.94\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $3^{\prime}-$ H_{A}), 1.92-1.83 (1H, m, 3'- H_{B}); δ_{C} (125 MHz ; DMSO-d6; 343 K) 139.5 (Imid), 139.3 (min Imid), 139.2 (Imid), 137.2, 137.1, 137.1, 136.9, 135.3 ($3^{\prime}-\mathrm{C}$ or $4-\mathrm{C}^{\text {atrop }}$), 135.2 ($3^{\prime}-\mathrm{C}$ or $4-$ C), 133.8, 133.7, 132.7, 132.6 ($\mathrm{Imid}^{\text {atrop }}$), 130.1 (Bip ${ }^{\text {atrop }}$), 130.0, 129.0, 129.9, 128.2
(3'-C or $4-C), 128.1,128.0,127.7,127.5,126.7,126.6,124.7,124.6,119.6$ q J 325, CF_{3}), 117.4 ($5^{\prime}-\mathrm{C}^{\text {arrop }}$), 117.3 ($5^{\prime}-\mathrm{C}$), 116.4 (min 4-C), 116.3 (4-C), 62.4 (1'-C), 61.7 ($1^{\prime}-$ $\left.C^{\text {atrop }}\right), 60.4\left(2^{\prime}-C^{\text {atrop }}\right), 60.1\left(2^{\prime}-\mathrm{C}\right), 49.5\left(\mathrm{PhCH}_{2} \mathrm{NTf}^{\text {fatrop }}\right), 49.4\left(\mathrm{PhCH}_{2} \mathrm{NTf}\right), 48.4$ (1$\left.\mathrm{C}^{\text {atrop }}\right)$, $48.2(1-\mathrm{C}), 45.7\left(\mathrm{~N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{2} \mathrm{Ph}^{\text {arrop }}\right), 45.5\left(\mathrm{~N}\left(\mathrm{SO}_{2}\right) \mathrm{CH}_{2} \mathrm{Ph}\right), 33.9\left(3-\mathrm{C}^{\text {atrop }}\right), 33.5$ (3'-C), 33.4 (Me), 31.9 (2-C); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3301, 3146, 3061, 3005, 2984, 2941, 2306, 1716, 1642, 1531, 1446, 1422, 1386 and 1338; m/z (ES ${ }^{+}$649.2 (100\%, [M+Na] ${ }^{+}$; found 649.1755, $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires MNa 649.1737

$N-\{[2-(2-\{[N-(B u t-3-e n-1-$

$\mathrm{yl})($ (trifluoromethane)sulfonamido]methyl\}phenyl)phenyl]methyl\}-N-(1'-hydroxypent-4'-en-2'-yl)cyclopropanecarboxamide 273b

Following general procedure A2, cyclopropane carbonyl chloride ($24.9 \mathrm{mg}, 0.24 \mathrm{mmol}$), triethylamine ($48.5 \mathrm{mg}, 0.48 \mathrm{mmol}$) and amine 241^{D} ($49.8 \mathrm{mg}, 0.048 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with CHCl_{3} gave the amide 273b ($23.1 \mathrm{mg}, 0.042 \mathrm{mmol}, 88 \%$); $R_{\mathrm{f}} 0.56\left(\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{23.7} 1.6(\mathrm{c} .0 .8, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.79-7.06(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $5.62(1 \mathrm{H}, \mathrm{ddt}, 3-\mathrm{H}), 5.50\left(1 \mathrm{H}, \mathrm{ddt}, 4^{\prime}-\mathrm{H}\right), 5.07-4.94\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{AB}}\right), 4.87(1 \mathrm{H}$, d, J $\left.17.3,5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.50\left(1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}\right), 4.12\left(1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{B}} \mathrm{NTf}\right), 3.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.3$ and 4.7, $\left.1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.89-3.82\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.56-3.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{CO}) \mathrm{CH}_{\mathrm{AB}} \mathrm{Ph}\right), 3.33-3.08$ $\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 2.71-2.63\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.14-1.93\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{AB}}\right.$ and 2-H2$), 1.61-1.52$ (1H, m, ${ }^{\mathrm{C}}$ Pr), 1.00-0.93 (2H, m, ${ }^{\mathrm{C}} \mathrm{Pr}$), 0.91-0.82 (2H, m, ${ }^{\mathrm{C}} \mathrm{Pr}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.8$ (C=O), 140.3, 134.5, 133.3, 128.4, 127.9, 127.3, 117.8, 104.9, 68.2 (1'-C), 65.9 (2'-C), 55.7, 49.2, 49.2, 47.6, 36.2, 35.9, 32.2, 30.9, 12.7 (${ }^{\mathrm{C}} \mathrm{Pr}$), 8.6 (${ }^{\mathrm{C} P r) ; ~} v_{\mathrm{max}} / \mathrm{cm}^{-1}$ (film) 3327, 3061, 3006, 2985, 2850, 1841, 1726, 1641, 1531, 1445, 1387, 1275, 1262, 1225 and 1191; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 551.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $551.5188, \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires MH 551.2186
(12Z)-10-(Hydroxymethyl)-N-(pyridin-3-yl)-16-(trifluoromethane)sulfonyl-9,16diazatricyclo[16.4.0.0 ${ }^{2,7}$]docosa-1(18),2,4,6,12,19,21-heptaene-9-carboxamide 264a

Following general procedure A1, 3-pyridyl isocyanate ($6.8 \mathrm{mg}, 0.062 \mathrm{mmol}$) and amine $252^{\text {D }}$ ($32.1 \mathrm{mg}, 0.031 \mathrm{mmol}$) gave the crude product after 1 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane $(0.5 \mathrm{~mL})$ and stirred for a further 16 h . The crude product was purified by preparative mass-directed column chromatography, to give the amine 264a (16.6 mg, $0.029 \mathrm{mmol}, 93 \%$); $R_{\mathrm{f}} 0.14$ ($90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7} 2.7$ (c. 1.7, $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.67$ (1H, s, Ar), 8.43 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 8.23 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 8.09 (1H, d, J7.9, Ar), 7.66 (1H, d, J 7.9, Ar), 7.64 (1H, d , J7.6, Ar), 7.49 ($1 \mathrm{H}, \mathrm{td}, J 7.6$ and $1.4, \operatorname{Ar}), 7.38$ (2H, t, J 8, Ar), 7.32 (1H, t, J 7.4, Ar), 7.30 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}$), 7.19 ($1 \mathrm{H}, \mathrm{dd}, J$ 7.7 and 1.4, Ar), 7.09 ($1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 1.4, Ar), $5.52\left(1 \mathrm{H}, \mathrm{d}, J 16.8,8-\mathrm{H}_{\mathrm{A}}\right), 5.48(1 \mathrm{H}$, dd, $J 10.2$ and $6.8,13-H), 5.45(1 H, d d, J 10.2$ and $4.7,12-H), 4.97(1 H, d, J 16.7,17-$ $\left.H_{A}\right), 4.32\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.7,17-\mathrm{H}_{\mathrm{B}}\right), 4.01\left(1 \mathrm{H}, \mathrm{d}, J 16.8,8-\mathrm{H}_{\mathrm{B}}\right), 3.89-3.82(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H})$, $3.62\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5\right.$ and $\left.2.5, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.53-3.50\left(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{\mathrm{A}}\right), 3.24(1 \mathrm{H}, \mathrm{ap} \mathrm{t}, ~ J 10.5$, $\mathrm{CH}_{\mathrm{B}} \mathrm{OH}$), 2.84-2.77 ($1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{\mathrm{B}}$), 2.08-1.97 $\left(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{A}}\right.$ and 14- H_{AB}), 1.97-1.91 $\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 157.6,138.4,136.9,136.7,132.0,131.5,131.1$, 129.4, 128.8, 128.4, 127.4, 126.8, 126.7, 64.1 ($\mathrm{CH}_{2} \mathrm{OH}$), 59.1 (10-C), 48.7 (17-C), 46.9 (15-C), 43.6 ($8-\mathrm{C}$), 28.1 (11-C), 25.1 ($14-\mathrm{C}$); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3279, 3058, 3024, 2951, 2250, 1667, 1588, 1539, 1483, 1422 and 1386; m/z (ES ${ }^{+}$) $575.2\left(100 \%,[M+H]^{+}\right)$; found 575.1935, $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires MH 575.1934
[(12Z)-9-(1-Methyl-1 H-imidazole-4-sulfonyl)-16-(trifluoromethane)sulfonyl-9,16diazatricyclo[16.4.0.0 ${ }^{2,7}$]docosa-1(18),2,4,6,12,19,21-heptaen-10-yl]methanol 264c

Following general procedure A3, 1-methyl-1H-imidazole-4-sulfonyl chloride (29.7 mg , $0.165 \mathrm{mmol})$, triethylamine ($33 \mathrm{mg}, 0.33 \mathrm{mmol}$) and amine 252^{D} ($33.7 \mathrm{mg}, 0.033 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the sulfonamide 264c ($10.2 \mathrm{mg}, 0.017 \mathrm{mmol}, 51 \%$); $R_{\mathrm{f}} 0.47$ ($90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); δ_{H} (500 MHz ; CDCl ${ }_{3} / \mathrm{MeOD} ; 323 \mathrm{~K}$) 8.11 (1H, dt, J 8.0 and 1.1, Ar), 7.65 ($1 \mathrm{H}, \mathrm{d}, \mathrm{Ar}$), 7.50 (1H, td, J 7.7 and 1.4, Ar), 7.47 (1H, d, J1.5, Ar), 7.45 (1H, d, J 1.5, Ar), 7.44 (1H, td, J 7.5 and 1.5, Ar), 7.36-7.30 (2H, m, Ar), 7.06 (1H, dd, J 4.1 and 1.4, Ar), 7.05 ($1 \mathrm{H}, \mathrm{dd}, J$ 4.1 and $1.4, \mathrm{Ar}), 5.38(1 \mathrm{H}, \mathrm{dtd}, J 10.3,7.6$ and $1.7,13-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{td}, J 10.3$ and 4.9 , $12-\mathrm{H}), 4.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.7,8-\mathrm{H}_{\mathrm{A}}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5,17-\mathrm{H}_{\mathrm{A}}\right), 4.33\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.7,8-\mathrm{H}_{\mathrm{B}}\right)$, 4.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5,17-\mathrm{H}_{\mathrm{B}}$), 3.74 (3H, s, NMe), 3.73-3.67 (1H, m, 10-H), 3.43 (1 H , dd, J 12 and $\left.3.1, \mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right)$, $3.41-3.35\left(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{\mathrm{A}}\right), 3.27\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12\right.$ and $\left.7.5, \mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right)$, 2.97-2.89 ($1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{\mathrm{B}}$), $2.16\left(1 \mathrm{H}\right.$, tdd, $J 12.8,7.8$ and $\left.4.9,14-\mathrm{H}_{\mathrm{A}}\right)$, 2.03-1.91 ($2 \mathrm{H}, \mathrm{m}$, $14-\mathrm{H}_{\mathrm{B}}$ and $\left.11-\mathrm{H}_{\mathrm{A}}\right), 1.80-1.73\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 140.8,138.9,138.1$, $137.4,136.0,132.3,131.9,130.9,129.9,129.4,128.8$, 128.5, 127.7, 127.2, 127.0, 126.7, 124.2, 120.1 ($\left.\mathrm{q}, \mathrm{J} 325, \mathrm{CF}_{3}\right), 62.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 61.6$ (10-C), 50.7 (Me), 49.4 (17-C), 47.9 (15-C), 46.0 ($8-\mathrm{C}$), 27.7 (11-C), 25.5 ($14-\mathrm{C}$); $v_{\mathrm{max}} / \mathrm{cm}^{-1}$ (film) 2988, 1836, 1649, 1529, 1469, 1384, 1336, 1275, 1261, 1225 and 1188; m/z (ES ${ }^{+} 599.2\left(100 \%,\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$; found 599.1612, $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires MH 599.1604
[(12Z)-9-Cyclopropanecarbonyl-16-(trifluoromethane)sulfonyl-9,16diazatricyclo[16.4.0.0 ${ }^{2,7}$]docosa-1(18),2,4,6,12,19,21-heptaen-10-yl]methanol 264b

Following general procedure A2, cyclopropane carbonyl chloride (17.2 mg, 0.165 mmol), triethylamine ($33 \mathrm{mg}, 0.33 \mathrm{mmol}$) and amine 252^{D} ($33.3 \mathrm{mg}, 0.033 \mathrm{mmol}$) gave the crude product after 16 h . The crude product was purified by F-SPE and following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the crude product and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $\mathrm{CHCl}_{3} \rightarrow 95: 5 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amide 264b (13.1 $\mathrm{mg}, 0.025 \mathrm{mmol}, 76 \%) ; R_{\mathrm{f}} 0.46\left(\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{23.7} 1.7$ (c. $1.3, \mathrm{MeOH}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$;
$\left.\mathrm{CDCl}_{3}\right) 7.71(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{Ar}), 7.59(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}), 7.45(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{Ar}), 7.39(1 \mathrm{H}, \mathrm{t}$, $J 7.5, \mathrm{Ar}), 7.34(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}), 7.30(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Ar}), 7.17(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar}), 7.02(1 \mathrm{H}$, d, J7.5, Ar), 5.33-5.22 (2H, m, 12- and 13-H), 4.75 (1H, d, J 15.8, 8- H_{A}), 4.08-3.99 (3H, $\mathrm{m}, \mathrm{CH}_{\mathrm{AB}} \mathrm{OH}$ and $\left.8-\mathrm{H}_{\mathrm{B}}\right), 3.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.1,17-\mathrm{H}_{\mathrm{A}}\right), 3.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.1,17-\mathrm{H}_{\mathrm{B}}\right), 3.40$ $\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12.1,15-\mathrm{H}_{\mathrm{A}}\right), 2.89\left(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}_{\mathrm{B}}\right), 2.77(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 2.15-1.86\left(4 \mathrm{H}, 11-\mathrm{H}_{\mathrm{AB}}\right.$ and 14- H_{AB}), 1.65-1.59 (1H, $\left.{ }^{\mathrm{C}} \operatorname{Pr}\right)$; 1.01-0.99 (2H, $\left.{ }^{\mathrm{C}} \operatorname{Pr}\right), 0.90-0.85\left(2 \mathrm{H},{ }^{\mathrm{C}} \mathrm{Pr}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 174.5(\mathrm{C}=\mathrm{O}), 139.6,138.2,133.2,130.6,129.9,128.8,128.4,128.3,128.1$, 127.3, 126.8, 126.7, 119.4 ($\mathrm{q}, \mathrm{J} 325, \mathrm{CF}_{3}$), $65.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 57.9$ (10-C), 51.3 (8-C), 51.1 (17-C), 50.5 (15-C), 28.5 (11-C), 28.2 (14-C), $12.8\left({ }^{C} \operatorname{Pr}\right), 8.4\left({ }^{C} \operatorname{Pr}\right), 8.3\left({ }^{C} \operatorname{Pr}\right) ; v_{m a x} / \mathrm{cm}^{-1}$ (film) 3014, 2951, 1728, 1456, 1387, 1275, 1261, 1226 and 1183; m/z (ES ${ }^{+} 523.1$ ($\left.100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $523.1874, \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires MH 523.1873

[(12Z)-16-(Trifluoromethane)sulfonyl-9,16-diazatricyclo[16.4.0.0 ${ }^{2,7}$]docosa-1(18),2,4,6,12,19,21-heptaen-10-yl]methanol 264d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. 45-51\%) was added to the amine $252^{\text {D }}$ ($35 \mathrm{mg}, 0.034 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $90: 10 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 264d ($13.2 \mathrm{mg}, 0.029 \mathrm{mmol}, 85 \%$); $\mathrm{R}_{\mathrm{f}} 0.11$ ($90: 10, \mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[\alpha]_{D}^{23.7} 3.5$ (c. 1.3, $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{MeOD} ; 323 \mathrm{~K}\right) 7.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}), 7.74$ ($1 \mathrm{H}, \mathrm{d}, ~ J 7.9$, Ar), 7.49 (1 H, ap t, J 7.6, Ar), 7.43 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \operatorname{Ar}$), $7.39(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{Ar}), 7.36(1 \mathrm{H}, \mathrm{d}, J 7.7$, Ar), $7.15(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}), 7.07(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{Ar}), 5.29(1 \mathrm{H}, \mathrm{td}, J 11.2$ and $7.4,12-\mathrm{H})$, $5.23(1 \mathrm{H}, \mathrm{br}$ s, $13-\mathrm{H}), 4.80\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,17-\mathrm{H}_{\mathrm{A}}\right), 4.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,17-\mathrm{H}_{\mathrm{B}}\right), 3.99(2 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{s}, 8-\mathrm{H}_{\mathrm{AB}}\right), 3.70\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OH}\right), 3.56\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{\mathrm{B}} \mathrm{OH}\right), 3.38(1 \mathrm{H}$, br s, $10-\mathrm{H}), 2.98$ $\left(1 \mathrm{H}\right.$, br s, $\left.15-\mathrm{H}_{\mathrm{A}}\right), 2.81\left(1 \mathrm{H}\right.$, br s, $\left.15-\mathrm{H}_{\mathrm{B}}\right), 2.18-1.96\left(4 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.14-\mathrm{H}_{\mathrm{AB}}\right) ; \delta_{\mathrm{C}}(125$ MHz; CDCl $_{3} / \mathrm{MeOD} ; 323 \mathrm{~K}$) 138.1, 133.1, 130.9, 130.6, 129.4, 129.3, 128.7, 128.6, 127.8, 127.8, 125.7, 120.1 (q, J 325, $C F_{3}$), 77.1 ($\mathrm{CH}_{2} \mathrm{OH}$), 51.1 (17-C or 8-C), 50.7 (17C or 8-C), 27.5 (11-C), 14-C, 15-C, 10-C missing; $v_{\max } / \mathrm{cm}^{-1}$ (film) 3371, 3052, 3025, 2925, 2255, 2127, 1662, 1440, 1386, 1226 and 1190; m/z (ES ${ }^{+}$) $455.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found $455.1619, \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires MH 455.1611

N-(But-3-en-1-yl)-1,1,1-trifluoro- N-\{[2-(2-\{[(1'-hydroxypent-4'-en-2'yl)amino]methyl\}phenyl)phenyl]methyl\}methanesulfonamide 273d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine 241^{D} ($51 \mathrm{mg}, 0.049 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified by column chromatography, eluting with $95: 5 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the amine 273d ($17.8 \mathrm{mg}, 0.037 \mathrm{mmol}, 77 \%$); $R_{\mathrm{f}} 0.31$ ($95: 5, \mathrm{CHCl}_{3} — \mathrm{MeOH}$); $[\alpha]_{D}^{23.7} 10.7$ (c. 1.7 , $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.58$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{Ar}$), 7.48 ($1 \mathrm{H}, \mathrm{d}, \mathrm{Ar}$), 7.46-7.32 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.25-7.19 (1H, m, Ar), 7.12 (1H, d, J7.5, Ar), 5.59 (1H, ddt, J 17.4, 10.5 and 7.1, 4'-H), $5.53(1 \mathrm{H}, J 17.1,10.1$ and $6.9,3-\mathrm{H}), 5.05-4.94\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right.$ and $5^{\prime}-$ Ав $), 4.88(1 \mathrm{H}$, ddd, J 17.1, 3.4 and 1.7, $4-\mathrm{H}_{\mathrm{B}}$), 4.48 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{\mathrm{A}} \mathrm{NTf}$), 4.11 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{\mathrm{B}} \mathrm{NTf}$), 3.54 (1H, d, J 12.5, NHCH ${ }_{\mathrm{A}} \mathrm{Ph}$), 3.48 ($1 \mathrm{H}, \mathrm{d}, ~ J ~ 13.5,1-\mathrm{H}$), 3.41 ($1 \mathrm{H}, \mathrm{d}, ~ J ~ 13.5,1-\mathrm{H}$), 3.35 (1H, d, J 12.5, $\mathrm{NHCH}_{\mathrm{B}} \mathrm{Ph}$), 3.34-3.12 (2H, m, 1'-H H_{AB}), 2.58-2.48 (1H, m, 2'-H), 2.11-1.94 $\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{AB}}\right.$ and $\left.2-\mathrm{H}_{\mathrm{A}}\right), 1.68\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}_{\mathrm{B}}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 140.3,139.3$, 134.6, 134.5, 133.2, 132.5, 132.1, 130.2, 129.9, 129.6, 129.3, 128.5, 128.4, 128.1, 128.0, 127.6, 127.4, 127.4, 122.1, 117.9, 117.9, 117.8, 62.8 ($\left.1^{\prime}-\mathrm{C}\right), 57.9$ (2'-C), 57.7 (2'C), $49.2\left(\mathrm{PhCH}_{2} \mathrm{NTf}\right), 49.0\left(\mathrm{PhCH}_{2} \mathrm{NTf}\right), 48.9(1-\mathrm{C}), 48.6(1-\mathrm{C}), 47.6\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 47.5$ ($\mathrm{NHCH}_{2} \mathrm{Ph}$), 36.1 (3'-C), 35.9 (3'-C), 32.2 (2-C), 30.9 (2-C); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3055, 3006, 2988, 2305, 1641, 1457, 1387, 1275 and 1262; m/z (ES ${ }^{+}$) $483.2\left(100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 483.1934, $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires MH 483.1924
full carbon assignment was not possible to mixture of atropisomers
(17E)-13-(2,4-Dimethoxyphenyl)-20-(hydroxymethyl)-11,15-dioxa-9,21diazatricyclo[21.4.0.0 ${ }^{2,7}$]heptacosa-1(27),2,4,6,17,23,25-heptaen-10-one 263d

Following general procedure S1, hydrofluoric acid (0.2 mL , ca. $45-51 \%$) was added to the amine 251^{D} ($24.4 \mathrm{mg}, 0.022 \mathrm{mmol}$) and on reaction completion was quenched with methoxytrimethylsilane (0.5 mL) and stirred for a further 16 h . The crude product was purified mass-directed preparative liquid chromatography and gave the amine 263d ($8.2 \mathrm{mg}, 0.015 \mathrm{mmol}, 68 \%$); $R_{\mathrm{f}} 0.42$ ($95: 5, \mathrm{CHCl}_{3}-\mathrm{MeOD}$); $[\alpha]_{D}^{23.7} 15.7$ (c. $0.8, \mathrm{MeOH}$); $\delta_{\text {H }}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; 343 \mathrm{~K}\right) \mathrm{Z} / E<20>80 ; 7.48$ (d, J 7.5, Z), 7.38 (d, J 7.5, Ar), 7.29-7.25 (2H, m, Ar), 7.22-7.16 (1H, m, Ar), 7.16-6.95 (6H, m, Ar), 6.40-6.34 (2H, m, DMB), 5.54 ($1 \mathrm{H}, \mathrm{dt}, J 15.5$ and $7.0,18-\mathrm{H}$), 5.49-5.43 (2H, m, 18-H and 17-H Z), 5.40 ($1 \mathrm{H}, \mathrm{dt}, ~ J 15.5$ and 5.6, 17-H E), 4.51-4.34 (3H, m, 8- and 12-HE), $4.28(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and $8.6,8-\mathrm{H})$, 4.17-4.10 (m, 12-H Z), 4.04 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 4.2, 12-H), 3.83-3.64 ($4 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$ and $14-\mathrm{H}), 3.62(1 \mathrm{H}, \mathrm{d}, J 11.5,22-\mathrm{H}), 3.45(1 \mathrm{H}, \mathrm{d}, J 11.5,22-\mathrm{H}), 3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe} E), 3.39$ (s, OMe Z), 3.36-3.30 ($1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}$), 3.29 (s, OMe Z), $3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe} E), 3.20(1 \mathrm{H}$, dd, $J 11$ and 4.8, $\mathrm{CH}_{\mathrm{B}} \mathrm{OH}$), 3.11 ($1 \mathrm{H}, \mathrm{dd}, J 11$. and 6.4, $\mathrm{CH}_{\mathrm{B}} \mathrm{OH}$), 2.42-2.35 ($1 \mathrm{H}, \mathrm{m}, 20-$ H), 2.06-1.94 (2H, m, 19-H); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; 343 \mathrm{~K}\right) 160.2,158.6,155.9,151.7$, 140.7, 130.1, 129.8, 129.5, 129.2, 127.2, 121.0, 112.9, 104.9, 99.2, 64.2, 63.8, 59.5, 54.9, 49.9, 44.6, 38.6, 37.7; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2929, 2852, 1709, 1613, 1587, 1542, 1508, 1465, 1275, 1261 and 1037; m/z (ES $\left.{ }^{+}\right) 547.3$ (100\%, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; found 547.2816, $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires MH 547.2803

Appendix 1 Example NMR spectra from final compound

The fluorous tag allowed the expedient and efficient purification of the intermediates at multiple steps throughout the series; this is exemplified in Spectra 1-5. Spectrum 1 shows the product of the first coupling reaction, mediated by the FukuyamaMitsunobu reaction followed by deacetylation. Spectrum 2 shows the product of the final coupling reaction to append the capping building block. Spectrum 3 shows the purified product (246) from a ring closing metathesis reaction; notably, the spectrum is broad, suggesting slow interconversionbetween conformers. Spectrum 4 shows the product $\mathbf{2 4 6}{ }^{\text {D }}$ after removal of the 2-nitrobenzenesulfonamide group; the spectrum is sharp suggesting faster interconversion between conformers. Finally, Spectrum 5 is that of a final compound after diversification and release from the fluorous tag.

Spectrum $1500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum following a Fukuyama-Mitsunubo reaction, F-SPE and deacetylation

205
209

\qquad

Spectrum $2500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum following a Fukuyama-Mitsunubo reaction and F-SPE

\qquad , un
 $4.5 \begin{array}{r}\text { 4.0 } \\ \\ \\ \\ \text { fl }(\mathrm{ppm})\end{array}$

Spectrum $3500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum following ring-closing metathesis followed by column chromatography

Spectrum $4500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum following removal of the 2-nitrobenzenesulfonamide and F-SPE

246'

159a

Spectrum $5500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum following the reaction between the amine $246{ }^{\mathrm{D}}$ and 3 -pyridyl isocyanate followed by F-SPE; removal of the silyl protecting group with HF, followed by column chromatography to give the macrocycle 159a

Appendix 2 Crystal structure of 159a

View of 159a. Ellipsoid probability: 50\%.

Table 1. Crystal data and structure refinement for 159 a .

Archive code	11_04_13
Identification code	159a
Formula	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	498.52
Size	$0.53 \times 0.06 \times 0.06 \mathrm{~mm}$
Crystal morphology	Colourless needle
Temperature	150(2) K
Wavelength	0.71073 A [$\mathrm{Mo}-K_{\alpha}$]
Crystal system	Tetragonal
Space group	$P 4_{1}$
Unit cell dimensions	$a=11.6528(4) \AA \quad \alpha=90^{\circ}$
	$b=11.6528(4) \AA \quad \beta=90^{\circ}$
	$c=17.6255(6) \AA \quad \gamma=90^{\circ}$
Volume	2393.33(14) \AA^{3}
Z	4
Density (calculated)	$1.384 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.194 \mathrm{~mm}^{-1}$
$F(000)$	1040
Data collection range	$1.75 \leq 0 \leq 28.31^{\circ}$
Index ranges	$-15 \leq h \leq 15,-10 \leq k \leq 15,-19 \leq l \leq 23$
Reflections collected	18591
Independent reflections	$5631[R(\mathrm{int})=0.0503]$
Observed reflections	4660 [$\mathrm{I}>2 \sigma(\mathrm{I})$]
Absorption correction	multi-scan
Max. and min. transmission	0.9884 and 0.7039
Refinement method	Full
Data / restraints / parameters	5631/1/308
Goodness of fit	1.011
Final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0397, w R_{2}=0.0780$
R indices (all data)	$R_{1}=0.0554, w R_{2}=0.0846$
Largest diff. peak and hole	0.172 and $-0.214 \mathrm{e} . \mathrm{A}^{-3}$
Absolute structure parameter	0.03(6)

Table 2. Atomic co-ordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{4}$) with standard uncertainties (s.u.s) in parentheses. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalized U_{ij} tensor.

	x	y	Z	U_{eq}
$\mathrm{N}(1)$	$-2775.3(13)$	$5806.2(13)$	$2054.8(9)$	$206(3)$
$\mathrm{C}(2)$	$-2085.6(16)$	$5305.1(16)$	$1448.6(11)$	$206(4)$
$\mathrm{C}(3)$	$-1535.2(15)$	$6181.9(16)$	$922.9(11)$	$218(4)$
$\mathrm{C}(4)$	$-1770.2(17)$	$7346.8(17)$	$987.1(13)$	$274(4)$
$\mathrm{C}(5)$	$-1230.7(19)$	$8149.8(19)$	$518.1(14)$	$332(5)$
$\mathrm{C}(6)$	$-461.2(18)$	$7784.6(19)$	$-22.6(14)$	$353(5)$
$\mathrm{C}(7)$	$-235.8(17)$	$6618.2(18)$	$-101.3(12)$	$285(5)$
$\mathrm{C}(8)$	$-761.3(15)$	$5806.9(17)$	$364.4(12)$	$225(4)$
$\mathrm{C}(9)$	$-500.1(17)$	$4553.6(17)$	$231.7(12)$	$258(4)$
$\mathrm{N}(10)$	$197.0(13)$	$4035.1(14)$	$856.3(10)$	$250(4)$
$\mathrm{C}(11)$	$1359.8(15)$	$4543.3(17)$	$990.9(13)$	$277(5)$
$\mathrm{C}(12)$	$1539.6(18)$	$5025.6(18)$	$1785.5(13)$	$309(5)$
$\mathrm{C}(13)$	$648.0(17)$	$5865.3(18)$	$2034.9(13)$	$295(5)$
$\mathrm{C}(14)$	$-94.6(17)$	$5658.5(18)$	$2589.8(13)$	$288(5)$
$\mathrm{C}(15)$	$-1048.7(17)$	$6441.2(17)$	$2830.9(12)$	$266(4)$
$\mathrm{C}(16)$	$-2280.1(16)$	$5937.6(17)$	$2822.6(11)$	$234(4)$
$\mathrm{C}(17)$	$-2357.6(18)$	$4790(2)$	$3226.4(13)$	$317(5)$
$\mathrm{O}(18)$	$-1860.2(14)$	$4887.9(17)$	$3960.3(10)$	$473(5)$
$\mathrm{O}(21)$	$-4470.8(11)$	$6577.2(11)$	$2454.4(8)$	$230(3)$
$\mathrm{C}(21)$	$-3880.4(15)$	$6141.6(16)$	$1947.8(11)$	$203(4)$
$\mathrm{N}(22)$	$-4321.9(13)$	$5970.2(14)$	$1229.7(9)$	$225(4)$
$\mathrm{C}(23)$	$-5375.4(15)$	$6403.4(16)$	$965.4(11)$	$210(4)$
$\mathrm{C}(24)$	$-5951.6(18)$	$7331.4(18)$	$1283.7(12)$	$298(5)$
$\mathrm{C}(25)$	$-6944.2(18)$	$7712.5(19)$	$935.4(13)$	$330(5)$
$\mathrm{C}(26)$	$-7338.6(17)$	$7180.3(18)$	$293.8(12)$	$280(5)$
$\mathrm{N}(27)$	$-6810.3(14)$	$6274.4(15)$	$-11.9(10)$	$281(4)$
$\mathrm{C}(28)$	$-5854.7(17)$	$5902.5(17)$	$326.5(12)$	$258(4)$
$\mathrm{S}(31)$	$-51.7(4)$	$2737.1(5)$	$1099.8(3)$	$320.7(13)$
$\mathrm{O}(31)$	$608.6(15)$	$2459.1(14)$	$1749.8(11)$	$478(5)$
$\mathrm{F}(32)$	$57.8(19)$	$2054.1(16)$	$-317.5(11)$	$809(6)$
$\mathrm{O}(32)$	$-1251.3(12)$	$2517.5(13)$	$1064.0(11)$	$414(4)$
$\mathrm{C}(32)$	$555(3)$	$1829(2)$	$347(2)$	$553(8)$
$\mathrm{F}(33)$	$372.9(18)$	$728.1(13)$	$500.9(14)$	$847(6)$
$\mathrm{F}(34)$	$1658.6(16)$	$1992.3(17)$	$276.3(15)$	$981(8)$

Table 3. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$. The anisotropic displacement factor exponent takes the form:

$$
-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{*} U_{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} U_{12}\right]
$$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{N}(1)$	20.9(8)	23.7(8)	17.1(8)	-0.3(6)	-1.3(7)	1.2(6)
C(2)	18.6(9)	23.3(10)	20.0(10)	-1.0(8)	1.0(7)	1.5(7)
C(3)	16.9(9)	25.4(10)	23.1(10)	3.0(8)	-3.0(7)	0.6(7)
C(4)	24.9(10)	28.2(10)	29.1(11)	1.9(9)	1.3(8)	1.7(8)
C(5)	33.4(12)	27.0(11)	39.1(13)	4.8(9)	-2.2(10)	-0.6(9)
C(6)	27.3(11)	38.0(13)	40.6(14)	16.3(11)	0.5(10)	-4.1(9)
C(7)	21.4(10)	38.8(12)	25.4(12)	5.9(9)	0.6(8)	0.5(9)
C(8)	15.6(9)	30.1(10)	21.7(10)	2.2(8)	-2.1(8)	1.6(8)
C(9)	20.1(10)	32.8(11)	24.4(11)	0.0(9)	-0.4(8)	2.4(8)
N (10)	19.7(8)	24.7(8)	30.4(10)	2.4(7)	-0.4(7)	0.7(6)
C(11)	14.3(9)	29.2(10)	39.7(13)	4.9(9)	1.2(9)	-1.1(7)
$\mathrm{C}(12)$	21.0(10)	33.8(12)	37.8(13)	4.5(10)	-3.0(9)	-4.4(8)
C(13)	23.3(11)	27.5(11)	37.8(13)	4.2(9)	-7.2(9)	-3.2(8)
C(14)	21.3(10)	29.8(11)	35.2(13)	3.0(9)	-6.4(9)	-3.3(8)
C(15)	25.0(10)	29.3(11)	25.5(11)	-2.2(9)	-5.1(8)	-3.8(8)
C(16)	$22.2(10)$	31.6(11)	16.5(10)	-3.0(8)	-0.9(8)	2.9(8)
C(17)	24.6(11)	43.9(13)	26.8(12)	10.6(10)	-4.6(9)	-5.0(10)
$\mathrm{O}(18)$	34.5(9)	80.4(14)	27.0(9)	25.0(9)	-8.1(7)	-17.4(8)
$\mathrm{O}(21)$	23.1(7)	28.5(7)	17.4(7)	-2.9(6)	3.1(6)	2.1(6)
C(21)	18.4(9)	20.8(9)	21.7(11)	0.2(8)	-0.4(8)	-3.0(7)
$\mathrm{N}(22)$	18.4(8)	29.4(9)	19.7(9)	-4.5(7)	-1.0(6)	4.2(7)
C(23)	16.7(9)	25.1(10)	21.2(10)	3.0(8)	1.0(7)	-2.3(7)
C(24)	30.6(11)	31.9(11)	26.7(12)	-7.5(9)	-4.8(9)	5.8(9)
C(25)	29.8(11)	34.4(12)	34.9(13)	-4.7(10)	-0.6(9)	8.4(9)
C(26)	17.3(9)	33.3(11)	33.5(13)	4.9(9)	-3.2(9)	-0.9(8)
N(27)	24.5(9)	30.4(9)	29.3(10)	1.5(8)	-5.8(7)	-5.0(7)
C(28)	23.6(10)	25.9(10)	27.9(12)	-2.0(8)	0.5(9)	-0.9(8)
S(31)	27.4(3)	27.1(3)	41.7(3)	4.0(2)	-2.4(2)	-2.9(2)
$\mathrm{O}(31)$	46.7(10)	37.8(10)	58.9(13)	17.7(8)	-19.0(9)	-8.3(8)
F(32)	113.2(16)	69.8(12)	59.6(13)	-26.6(10)	5.2(11)	11.0(11)
$\mathrm{O}(32)$	28.4(8)	40.8(9)	55.0(11)	6.8(8)	-1.5(8)	-11.7(7)
C(32)	49.4(17)	36.7(15)	80(2)	-15.2(15)	6.9(15)	0.9(12)
F(33)	98.4(15)	30.7(9)	125.0(17)	-16.1(10)	-2.1(13)	0.7(9)
F(34)	52.2(11)	82.1(14)	160(2)	-58.3(14)	34.7(12)	1.3(9)

Table 4. Hydrogen atom co-ordinates ($\times 10^{3}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{2}\right)$ with s.u.s in parentheses.

	x	y	z	$U_{\text {eq }}$
H(2a)	-2579.	4790.	1143.	25.
H(2b)	-1473.	4830.	1679.	25.
H(4)	-2307.	7602.	1356.	33.
H(5)	-1395.	8944.	572.	40.
H(6)	-86.	8326.	-340.	42.
H(7)	287.	6369.	-480.	34.
H(9a)	-1231.	4126.	184.	31.
H(9b)	-78.	4472.	-253.	31.
H(11a)	1486.	5166.	618.	33.
H(11b)	1946.	3945.	897.	33.
H(12a)	1555.	4380.	2150.	37.
H(12b)	2299.	5405.	1805.	37.
H(13)	610.	6585.	1783.	35.
H(14)	-15.	4955.	2857.	35.
H(15a)	-1038.	7123.	2496.	32.
$\mathrm{H}(15 \mathrm{~b})$	-882.	6710.	3352.	32.
H(16)	-2782.	6486.	3106.	28.
$\mathrm{H}(17 \mathrm{a})$	-3171.	4555.	3272.	38.
H(17b)	-1946.	4197.	2930.	38.
H(18)	-2291.	4573.	4281.	57.
H(22)	-3911.	5557.	912.	27.
H(24)	-5670.	7694.	1729.	36.
H(25)	-7353.	8345.	1142.	40.
H(26)	-8013.	7466.	57.	34.
H(28)	-5479.	5253.	116.	31.

Table 5. Interatomic distances (\AA) with s.u.s in parentheses.

$\mathrm{N}(1)-\mathrm{C}(21)$	$1.359(2)$	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.459(2)$
$\mathrm{N}(1)-\mathrm{C}(16)$	$1.479(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.521(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.389(3)$	$\mathrm{C}(3)-\mathrm{C}(8)$	$1.405(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.398(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.376(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.391(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.394(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.510(3)$	$\mathrm{C}(9)-\mathrm{N}(10)$	$1.496(3)$
$\mathrm{N}(10)-\mathrm{C}(11)$	$1.498(2)$	$\mathrm{N}(10)-\mathrm{S}(31)$	$1.5986(17)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.523(3)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.493(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.328(3)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.500(3)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.550(3)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.518(3)$
$\mathrm{C}(17)-\mathrm{O}(18)$	$1.422(3)$	$\mathrm{O}(21)-\mathrm{C}(21)$	$1.236(2)$
$\mathrm{C}(21)-\mathrm{N}(22)$	$1.381(2)$	$\mathrm{N}(22)-\mathrm{C}(23)$	$1.407(2)$
$\mathrm{C}(23)-\mathrm{C}(28)$	$1.386(3)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.391(3)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.383(3)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.369(3)$
$\mathrm{C}(26)-\mathrm{N}(27)$	$1.335(3)$	$\mathrm{N}(27)-\mathrm{C}(28)$	$1.336(3)$
$\mathrm{S}(31)-\mathrm{O}(31)$	$1.4175(17)$	$\mathrm{S}(31)-\mathrm{O}(32)$	$1.4226(15)$
$\mathrm{S}(31)-\mathrm{C}(32)$	$1.838(3)$	$\mathrm{F}(32)-\mathrm{C}(32)$	$1.333(4)$
$\mathrm{C}(32)-\mathrm{F}(34)$	$1.306(3)$	$\mathrm{C}(32)-\mathrm{F}(33)$	$1.328(3)$

Table 6. Angles between interatomic vectors $\left({ }^{\circ}\right)$ with s.u.s in parentheses.

C(21)-N(1)-C(2)	$122.38(16)$	$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{C}(16)$	$117.83(15)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(16)$	$119.77(15)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$114.17(15)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$119.17(18)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.58(17)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	$119.25(17)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.1(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$119.7(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.6(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$121.4(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$118.93(18)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$118.45(18)$	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$122.60(17)$
$\mathrm{N}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$112.71(16)$	$\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{C}(11)$	$116.63(16)$
$\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{S}(31)$	$118.77(13)$	$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{S}(31)$	$119.71(13)$
$\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$114.58(17)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$114.62(18)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$123.5(2)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$125.6(2)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$116.95(16)$	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	$108.34(16)$
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	$114.13(16)$	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$112.60(16)$
$\mathrm{O}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$109.36(18)$	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{N}(1)$	$123.05(17)$
$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{N}(22)$	$120.93(17)$	$\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{N}(22)$	$116.02(16)$
$\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)$	$125.23(16)$	$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{C}(24)$	$117.42(18)$
$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{N}(22)$	$118.01(17)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{N}(22)$	$124.52(18)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$118.32(19)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$120.1(2)$
$\mathrm{N}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$122.45(19)$	$\mathrm{C}(28)-\mathrm{N}(27)-\mathrm{C}(26)$	$117.43(18)$
$\mathrm{N}(27)-\mathrm{C}(28)-\mathrm{C}(23)$	$124.21(19)$	$\mathrm{O}(31)-\mathrm{S}(31)-\mathrm{O}(32)$	$121.88(11)$
$\mathrm{O}(31)-\mathrm{S}(31)-\mathrm{N}(10)$	$109.56(9)$	$\mathrm{O}(32)-\mathrm{S}(31)-\mathrm{N}(10)$	$109.66(9)$
$\mathrm{O}(31)-\mathrm{S}(31)-\mathrm{C}(32)$	$104.06(13)$	$\mathrm{O}(32)-\mathrm{S}(31)-\mathrm{C}(32)$	$104.01(12)$
$\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{C}(32)$	$106.33(12)$	$\mathrm{F}(34)-\mathrm{C}(32)-\mathrm{F}(33)$	$108.5(2)$
$\mathrm{F}(34)-\mathrm{C}(32)-\mathrm{F}(32)$	$108.4(3)$	$\mathrm{F}(33)-\mathrm{C}(32)-\mathrm{F}(32)$	$107.5(2)$
$\mathrm{F}(34)-\mathrm{C}(32)-\mathrm{S}(31)$	$111.3(2)$	$\mathrm{F}(33)-\mathrm{C}(32)-\mathrm{S}(31)$	$110.3(2)$
$\mathrm{F}(32)-\mathrm{C}(32)-\mathrm{S}(31)$	$110.74(19)$		

Table 7. Torsion angles $\left({ }^{\circ}\right)$ with s.u.s in parentheses.

C(21)-N(1)-C(2)-C(3)	$82.7(2)$	$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-98.72(19)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-5.5(3)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$173.77(17)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-1.5(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$177.81(19)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$0.7(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$0.6(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-0.9(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$0.1(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$178.33(18)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$1.1(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$-178.22(17)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$-177.05(18)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$3.6(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(10)$	$110.6(2)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(10)$	$-71.3(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{C}(11)$	$-61.2(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{S}(31)$	$143.63(14)$	$\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.77(19)$
$\mathrm{S}(31)-\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-84.3(2)$	$\mathrm{N}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-53.0(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$112.5(2)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-176.15(19)$	
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$123.6(2)$	$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	$97.9(2)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	$-80.7(2)$	$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(15)-135.81(17)$	
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	$45.6(2)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}(1)$	$-74.4(2)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$49.6(3)$	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(18)$	$178.58(16)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(18)$	$51.4(2)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{O}(21)$	$-179.30(17)$
$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{O}(21)$	$2.1(3)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{N}(22)$	$0.6(3)$
$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{N}(22)$	$-177.97(16)$	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)$	$9.8(3)$
$\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)$	$-170.08(17)$	$\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(28)-161.77(18)$	
$\mathrm{C}(21)-\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$20.8(3)$	$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$-1.6(3)$
$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$175.87(19)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$0.0(3)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{N}(27)$	$1.3(3)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{N}(27)-\mathrm{C}(28)$	$-1.0(3)$
$\mathrm{C}(26)-\mathrm{N}(27)-\mathrm{C}(28)-\mathrm{C}(23)$	$-0.7(3)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{N}(27)$	$2.0(3)$
$\mathrm{N}(22)-\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{N}(27)$	$-175.59(18)$	$\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{O}(31)-173.64(15)$	
$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{O}(31)$	$31.92(19)$	$\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{O}(32)$	$-37.41(18)$
$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{O}(32)$	$168.15(16)$	$\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{C}(32)$	$74.47(18)$
$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{C}(32)$	$-79.97(19)$	$\mathrm{O}(31)-\mathrm{S}(31)-\mathrm{C}(32)-\mathrm{F}(34)$	$-55.5(3)$
$\mathrm{O}(32)-\mathrm{S}(31)-\mathrm{C}(32)-\mathrm{F}(34)$	$176.0(2)$	$\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{C}(32)-\mathrm{F}(34)$	$60.2(3)$
$\mathrm{O}(31)-\mathrm{S}(31)-\mathrm{C}(32)-\mathrm{F}(33)$	$65.1(2)$	$\mathrm{O}(32)-\mathrm{S}(31)-\mathrm{C}(32)-\mathrm{F}(33)$	$-63.5(2)$
$\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{C}(32)-\mathrm{F}(33)$	$-179.3(2)$	$\mathrm{O}(31)-\mathrm{S}(31)-\mathrm{C}(32)-\mathrm{F}(32)-176.09(19)$	
$\mathrm{O}(32)-\mathrm{S}(31)-\mathrm{C}(32)-\mathrm{F}(32)$	$55.3(2)$	$\mathrm{N}(10)-\mathrm{S}(31)-\mathrm{C}(32)-\mathrm{F}(32)$	$-60.4(2)$

Table 9. Hydrogen bonded distances (\AA) and angles (${ }^{\circ}$). Standard uncertainties are included in parentheses for values which do not involve constrained hydrogen atoms.

Atoms (D-H...A)	D-H	H...A	D...A	$\angle \mathrm{DHA}$
$\mathrm{O}(18)-\mathrm{H}(18) \ldots \mathrm{N}(27)^{(b)}$	0.84	1.9	$2.742(2)$	174.4
$\mathrm{~N}(22)-\mathrm{H}(22) \ldots \mathrm{O}(21)^{(a)}$	0.88	2.19	$3.034(2)$	161.8

Key giving operations for symmetry related atoms:
(a) $-1-\mathrm{y},+\mathrm{x},-1 / 4+\mathrm{z}$
(b) $-1-\mathrm{x}, 1-\mathrm{y}, 1 / 2+\mathrm{z}$

1. T. Nicholas K, Drug Discov. Today, 2010, 7, 97-104.
2. L. A. Wessjohann, E. Ruijter, D. Garcia-Rivera, and W. Brandt, Mol. Divers., 2005, 9, 171-186.
3. J. F. Gummert, T. Ikonen, and R. E. Morris, J. Am. Soc. Nephrol., 1999, 10, 1366-1380.
4. A. Kudelski and S. N. Sehgal, J. Antibiot., 1975, XXVIII, 721-726.
5. P. Nghiem, G. Pearson, and R. G. Langley, J. Am. Acad. Dermatol., 2002, 46, 228-241.
6. E. Nogales, S. Grayer Wolf, I. A. Khan, R. F. Luduena, and K. H. Downing, Nature, 1995, 375, 424-427.
7. S. Goodin, M. P. Kane, and E. H. Rubin, J. Clin. Oncol., 2004, 22, 2015-2025.
8. F. Feyen, J. Gertsch, M. Wartmann, and K.-H. Altmann, Angew. Chem. Int. Ed., 2006, 45, 5880-5885.
9. P. F. Wiley, K. Gerzon, E. H. Flynn, M. V. Sigal, O. Weaver, U. C. Quarck, R. R. Chauvette, and R. Monahan, J. Am. Chem. Soc., 1957, 79, 6062-6070.
10. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Adv. Drug Deliver. Rev., 1997, 23, 3-25.
11. C. A. Lipinski, J. Pharmacol. Toxicol., 2001, 44, 235-249.
12. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Adv. Drug Deliver. Rev., 2001, 46, 3-26.
13. D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple, J. Med. Chem., 2002, 45, 2615-2623
14. E. Marsault and M. L. Peterson, J. Med. Chem. 2011, 54, 1961-2004.
15. L. A. Wessjohann and E. Ruijter, Natural Products Synthesis I: Targets Methods Concepts, 2005, 243, 137-184.
16. E. M. Driggers, S. P. Hale, J. Lee, and N. K. Terrett, Nat. Rev. Drug Discov., 2008, 7, 608-624.
17. C. M. Madsen and M. H. Clausen, Eur. J. Org. Chem., 2011, 2011, 3107-3115.
18. S. J. Stachel, C. A. Coburn, S. Sankaranarayanan, E. A. Price, B. L. Pietrak, Q. Huang, J. Lineberger, A. S. Espeseth, L. Jin, J. Ellis, M. K. Holloway, S. Munshi, T. Allison, D. Hazuda, A. J. Simon, S. L. Graham, and J. P. Vacca, J. Med. Chem., 2006, 49, 6147-6150.
19. Z.-F. Tao, L. Wang, K. D. Stewart, Z. Chen, W. Gu, M.-H. Bui, P. Merta, H. Zhang, P. Kovar, E. Johnson, C. Park, R. Judge, S. Rosenberg, T. Sowin, and N.-H. Lin, J. Med. Chem., 2007, 50, 1514-1527.
20. K. X. Chen, F. G. Njoroge, J. Pichardo, A. Prongay, N. Butkiewicz, N. Yao, V. Madison, and V. Girijavallabhan, J. Med. Chem., 2005, 49, 567-574.
21. C. J. Dinsmore, M. J. Bogusky, J. C. Culberson, J. M. Bergman, C. F. Homnick, C. B. Zartman, S. D. Mosser, M. D. Schaber, R. G. Robinson, K. S. Koblan, H. E. Huber, S. L. Graham, G. D. Hartman, J. R. Huff, and T. M. Williams, J. Am. Chem. Soc., 2001, 123, 2107-2108.
22. R. J. Cherney, L. Wang, D. T. Meyer, C.-B. Xue, Z. R. Wasserman, K. D. Hardman, P. K. Welch, M. B. Covington, R. A. Copeland, E. C. Arner, W. F. DeGrado, and C. P. Decicco, J. Med. Chem., 1998, 41, 1749-1751.
23. R. J. Cherney, L. Wang, D. T. Meyer, C.-B. Xue, E. C. Arner, R. A. Copeland, M. B. Covington, K. D. Hardman, Z. R. Wasserman, B. D. Jaffee, and C. P. Decicco, Bioorg. Med. Chem. Lett., 1999, 9, 1279-1284.
24. Amino Acids, Peptides and Proteins in Organic Chemistry, Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis. Vol 4, John Wiley \& Sons, 2011.
25. X. Hu, K. T. Nguyen, V. C. Jiang, D. Lofland, H. E. Moser, and D. Pei, J. Med. Chem., 2004, 47, 4941-4949.
26. X. Hu, K. T. Nguyen, C. L. M. J. Verlinde, W. G. J. Hol, and D. Pei, J. Med. Chem., 2003, 46, 3771-3774.
27. F. Kopp and M. A. Marahiel, Nat. Prod. Rep., 2007, 24, 735-749.
28. G. M. Bennett, Transactions of the Faraday Society, 1941, 37, 794-803
29. S. Wen, G. Packham, and A. Ganesan, J. Org. Chem., 2008, 73, 9353-9361.
30. D. Bai, Y. Bo, and Q. Zhou, Tetrahedron Lett., 1990, 31, 2161-2164.
31. K. L. Bailey and T. F. Molinski, J. Org. Chem., 1999, 64, 2500-2504.
32. R. H. Grubbs, Tetrahedron, 2004, 60, 7117-7140.
33. C. Fotsch, G. Kumaravel, S. K. Sharma, A. D. Wu, J. S. Gounarides, N. R. Nirmala, and R. C. Petter, Bioorg. Med. Chem. Lett., 1999, 9, 2125-2130.
34. J. Tilley, G. Kaplan, N. Fotouhi, B. Wolitzky, and K. Rowan, Bioorg. Med. Chem. Lett., 2000, 10, 1163-1165.
35. M. A. J. Duncton and G. Pattenden, J. Chem. Soc., Perkin Trans. 1 1999, 12351246.
36. V. Balraju and J. Iqbal, J. Org. Chem., 2006, 71, 8954-8956.
37. V. Balraju, D. S. Reddy, M. Periasamy, and J. Iqbal, Med. Chem. Lett., 2005, 2005, 9626-9628.
38. A. C. Spivey, J. McKendrick, R. Srikaran, and B. A. Helm, J. Org. Chem., 2003, 68, 1843-1851.
39. C. Park and K. Burgess, J. Comb. Chem., 2001, 3, 257-266.
40. A. G. M. Barrett, A. J. Hennessy, R. L. Ve, P. W. Seale, S. Stefaniak, R. J. Upton, A. J. P. White, and D. J. Williams, J. Org. Chem., 2004, 69 1028-1037.
41. K. Akaji, K. Teruya, M. Akaji, and S. Aimoto, Tetrahedron, 2001, 57, 2293-2303.
42. P. R. Reddy, V. Balraju, G. R. Madhavan, B. Banerji, and J. Iqbal, ChemInform, 2003, 34, 353-356.
43. B. Beck, G. Larbig, B. Mejat, M. Magnin-Lachaux, A. Picard, E. Herdtweck and A. Domling, Org. Lett., 2003, 5, 1047-1050.
44. K. Burgess, D. Lim, M. Bois-Choussy, and J. Zhu, Tetrahedron Lett., 1997, 38, 3345-3348.
45. H. Shimamura, S. P. Breazzano, J. Garfunkle, F. S. Kimball, J. D. Trzupek, and D. L. Boger, J. Am. Chem. Soc., 2010, 132, 7776-7783.
46. A. Berthelot and S. Piguel, J. Org. Chem., 2003, 68, 9835-9838.
47. C. Galli, G. Illuminati, L. Mandolini, and P. Tamborra, J. Am. Chem. Soc., 1977, 99, 2591-2597.
48. M. Schuster and S. Blechert, Angew. Chem. Int. Ed., 1997, 36, 2036-2056.
49. R. H. Grubbs, S. J. Miller, and G. C. Fu, Acc. Chem. Res., 1995, 28, 446-452.
50. R. Grubbs, Tetrahedron, 1998, 54, 4413-4450.
51. M. Schuster and S. Blechert, Angew. Chem. Int. Ed., 1997, 36, 2036-2056.
52. A. Gradillas and J. Pérez-Castells, Angew. Chem. Int. Ed. 2006, 45, 6086-6101.
53. G. C. Vougioukalakis and R. H. Grubbs, Chem. Rev., 2010, 110, 1746-1787.
54. N. K. Yee, V. Farina, I. N. Houpis, N. Haddad, R. P. Frutos, F. Gallou, X. Wang, X. Wei, R. D. Simpson, X. Feng, V. Fuchs, Y. Xu, J. Tan, L. Zhang, J. Xu, L. L. Smith-keenan, J. Vitous, M. D. Ridges, E. M. Spinelli, M. Johnson, K. Donsbach, T. Nicola, M. Brenner, E. Winter, P. Kreye, W. Samstag, R. Metathesis, and P. O. Box, J. Org. Chem., 2006, 71, 7133-7145.
55. C. Shu, X. Zeng, M.-H. Hao, X. Wei, N. K. Yee, C. A. Busacca, Z. Han, V. Farina, and C. H. Senanayake, Org. Lett., 2008, 10, 1303-1306.
56. V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem. Int. Ed., 2002, 41, 2596-2599.
57. V. D. Bock, D. Speijer, H. Hiemstra, and J. H. van Maarseveen, Org. Biomol. Chem., 2007, 5, 971-975
58. V. D. Bock, R. Perciaccante, T. P. Jansen, H. Hiemstra, and J. H. van Maarseveen, Org. Lett., 2006, 8, 919-922.
59. A. Parenty, X. Moreau, and J. M. Campagne, Chem. Rev., 2006, 106, 911-939.
60. O. Mitsunobu, Synthesis, 1981, 28.
61. A. K. Ghosh and Y. Wang, Tetrahedron Lett., 2001, 42, 3399-3401.
62. J. Mulzer, H. M. Kirstein, J. Buschmann, C. Lehmann, and P. Luger, J. Am. Chem. Soc., 1991, 113, 910-923.
63. D. P. Walsh and Y.-T. Chang, Chem. Rev., 2006, 106, 2476-2530.
64. D. R. Spring, Chem. Soc. Rev., 2005, 34, 472-482.
65. S. L. Schreiber and A. Chemie, Nature, 2009, 457, 153-154.
66. M. D. Burke and S. L. Schreiber, Angew. Chemie. Int. Ed., 2004, 43, 46-58.
67. S. L. Schreiber, Nat. Chem. Biol., 2005, 1, 64-66.
68. W. R. J. D. Galloway, A. Isidro-Llobet, and D. R. Spring, Nat. Commun., 2010, 1, 80.
69. D. L. Hertzog, D. J. Austin, W. R. Nadler, and A. Padwa, Tetrahedron Lett., 1992, 33, 4731-4734.
70. J. M. MejÃa-Oneto and A. Padwa, Org. Lett., 2004, 6, 3241-3244.
71. A. Padwa and M. D. Weingarten, Chem. Rev., 1996, 96, 223-270.
72. H. Oguri and S. L. Schreiber, Org. Lett., 2005, 7, 47-50.
73. H. Mizoguchi, H. Oguri, K. Tsuge, and H. Oikawa, Org. Lett., 2009, 11, 30163019.
74. S. Murrison, S. K. Maurya, C. Einzinger, B. McKeever-Abbas, S. Warriner, and A. Nelson, Euro. J. Org. Chem., 2011, 2354-2359.
75. M. D. Burke, E. M. Berger, and S. L. Schreiber, J. Am. Chem. Soc., 2004, 126, 14095-14104.
76. N. Kumagai, G. Muncipinto, and S. L. Schreiber, Angew. Chemie. Int. Ed., 2006, 45, 3635-3638.
77. D. Robbins, A. F. Newton, C. Gignoux, J.-C. Legeay, A. Sinclair, M. Rejzek, C. A. Laxon, S. K. Yalamanchili, W. Lewis, M. A. O'Connell, and R. A. Stockman, Chem. Sci., 2011, 2, 2232-2235.
78. C. Gignoux, A. F. Newton, A. Barthelme, W. Lewis, M.-L. Alcaraz, and R. A Stockman, Org. Biomol. Chem., 2012, 10, 67-69.
79. T. E. Nielsen and M. Meldal, Org. Lett., 2005, 7, 2695-2698.
80. T. E. Nielsen and S. L. Schreiber, Angew. Chemie Int. Ed., 2008, 47, 48-56.
81. T. E. Nielsen, S. Le Quement, and M. Meldal, Org. Lett., 2005, 7, 3601-3604.
82. S. T. Le Quement, T. E. Nielsen, and M. Meldal, J. Combi. Chem., 2007, 9, 1060-1072.
83. T. E. Nielsen and M. Meldal, J. Comb. Chem., 2005, 7, 599-610.
84. T. E. Nielsen and M. Meldal, J. Org. Chem., 2004, 69, 3765-3773.
85. D. Morton, S. Leach, C. Cordier, S. Warriner, and A. Nelson, Angew. Chemie Int. Ed., 2009, 48, 104-109.
86. D. A. Spiegel, F. C. Schroeder, J. R. Duvall, and S. L. Schreiber, J. Am. Chem Soc., 2006, 128, 14766-14767.
87. L. a Marcaurelle, E. Comer, S. Dandapani, J. R. Duvall, B. Gerard, S. Kesavan, M. D. Lee, H. Liu, J. T. Lowe, J.-C. Marie, C. a Mulrooney, B. a Pandya, A. Rowley, T. D. Ryba, B.-C. Suh, J. Wei, D. W. Young, L. B. Akella, N. T. Ross, Y.-L. Zhang, D. M. Fass, S. a Reis, W.-N. Zhao, S. J. Haggarty, M. Palmer, and M. a Foley, J. Am. Chem. Soc., 2010, 132, 16962-16976.
88. C. M. Dobson, Nature, 2004, 432, 824-828.
89. R. W. Heidebrecht, C. Mulrooney, C. P. Austin, R. H. Barker, J. A. Beaudoin, K. C.-C. Cheng, E. Comer, S. Dandapani, J. Dick, J. R. Duvall, E. H. Ekland, D. A. Fidock, M. E. Fitzgerald, M. Foley, R. Guha, P. Hinkson, M. Kramer, A. K. Lukens, D. Masi, L. A. Marcaurelle, X.-Z. Su, C. J. Thomas, M. Weïwer, R. C. Wiegand, D. Wirth, M. Xia, J. Yuan, J. Zhao, M. Palmer, B. Munoz, and S. Schreiber, Med. Chem. Lett., 2012, 3, 112-117.
90. D. H.-C. Chou, J. R. Duvall, B. Gerard, H. Liu, B. a Pandya, B.-C. Suh, E. M. Forbeck, P. Faloon, B. K. Wagner, and L. a Marcaurelle, Med. Chem. Lett., 2011, 2, 698-702.
91. B. Z. Stanton, L. F. Peng, N. Maloof, K. Nakai, X. Wang, J. L. Duffner, K. M. Taveras, J. M. Hyman, S. W. Lee, A. N. Koehler, J. K. Chen, J. L. Fox, A. Mandinova, and S. L. Schreiber, Nat. Chem. Biol., 2009, 5, 154-156.
92. J. M. Holub and K. Kirshenbaum, Chem. Soc. Rev., 2010, 39, 1325-1337.
93. G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. Sorba, and A. A. Genazzani, Med. Res. Rev., 2008, 28, 278-308.
94. D. W. Young, Nat. Chem. Biol., 2010, 6, 174-175.
95. A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, J. Phys.Chem. A, 1998, 102, 3762-3772.
96. R. A. Bauer, J. M. Wurst, and D. S. Tan, Curr. Opin. Chem. Biol., 2010, 14, 308314.
97. J. C. Rech, M. Yato, D. Duckett, B. Ember, P. V. LoGrasso, R. G. Bergman, and J. A. Ellman, J. Am. Chem. Soc., 2007, 129, 490-491.
98. T. P. Tang, S. K. Volkman, and J. A. Ellman, J. Org. Chem., 2001, 66, 87728778.
99. J. C. Barrow, P. L. Ngo, J. M. Pellicore, H. G. Selnick, and P. G. Nantermet, Tetrahedron Lett., 2001, 42, 2051-2054.
100. J. A. Ellman, T. D. Owens, and T. P. Tang, Accounts Chem. Res., 2002, 35, 984-995.
101. M. Petit, G. Chaqui, C. Aubert, and M. Malacria, Org. Lett., 2003, 5, 2037-2040.
102. C. Cordier, D. Morton, S. Leach, T. Woodhall, C. O'Leary-Steele, S. Warriner, and A. Nelson, Org. Biomol. Chem., 2008, 6, 1734-1737.
103. F. A. Davis and W. McCoull, J. Org. Chem., 1999, 64, 3396-3397.
104. J. Iskra, S. Stavber, and M. Zupan, Synthesis, 2004, 2004, 1869-1873.
105. E. J. Hennessy and S. L. Buchwald, Org. Lett., 2002, 4, 269-272.
106. I. Yamamura, Y. Fujiwara, T. Yamato, O. Irie, and K. Shishido, Tetrahedron Lett., 1997, 38, 4121-4124.
107. K. Takabatake, I. Nishi, M. Shindo, and K. Shishido, J. Chem. Soc., Perk. Trans. 1, 2000, 1807-1808.
108. J. Calveras, Y. Nagai, I. Sultana, Y. Ueda, T. Higashi, M. Shoji, and T. Sugai, Tetrahedron, 66, 4284-4291.
109. R. Lakhmiri, P. Lhoste, and D. Sinou, Tetrahedron Lett., 1989, 30, 4669-4672.
110. D. A. Evans and W. C. Black, J. Am.Chem.Soc., 1993, 115, 4497-4513.
111. K. Krohn, A. Vidal, J. Vitz, B. Westermann, M. Abbas, and I. Green, Tetrahedron: Asymmetr., 2006, 17, 3051-3057.
112. H. Ulrich, Chem. Rev., 1965, 65, 369-376.
113. J. E. Franz and C. Osuch, J. Org.Chem., 1964, 29, 2592-2595.
114. L. M. Oh, P. G. Spoors, and R. M. Goodman, Tetrahedron Lett., 2004, 45, 47694771.
115. T. Fukuyama, C. K. Jow, and M. Cheung, Tetrahedron Lett., 1995, 36, 63736374.
116. K. M. Kuhn, T. M. Champagne, S. H. Hong, W.-H. Wei, A. Nickel, C. W. Lee, S. C. Virgil, R. H. Grubbs, and R. L. Pederson, Org. Lett., 12, 984-987.
117. S. H. Hong, D. P. Sanders, C. W. Lee, and R. H. Grubbs, J. Am. Chem. Soc., 2005, 127, 17160-17161.
118. J. A. Lafontaine, D. P. Provencal, C. Gardelli, and J. W. Leahy, J. Org. Chem., 2003, 68, 4215-34.
119. S. F. Vanier, G. Larouche, R. P. Wurz, and A. B. Charette, Org. Lett., 2010, 12, 672-675.
120. T. Ikeda, M. Higuchi, A. Sato, and D. G. Kurth, Org. Lett., 2008, 10, 2215-2218.
121. J. M. Griffing and L. F. Salisbury, J. Am. Chem. Soc., 1948, 70, 3416-3419.
122. U. Azzena, S. Demartis, L. Pilo, and E. Piras, Tetrahedron, 2000, 56, 83758382.
123. E. Santaniello, P. Ferraboschi, and P. Grisenti, Tetrahedron Lett., 1990, 31, 5657-5660.
124. L.-W. Ye, X.-L. Sun, C.-Y. Li, and Y. Tang, J. Org. Chem., 2007, 72, 1335-1340.
125. J. Iskra, S. Stavber, and M. Zupan, Synthesis, 2004, 1869-1873.
126. S. F. Yip, H. Y. Cheung, Z. Y. Zhou, and F. Y. Kwong, Org. Lett., 2007, 9, 34693472.
127. A. E. May, P. H. Willoughby, and T. R. Hoye, J. Org. Chem., 2008, 73, 32923294.
128. T. Fukuyama, M. Cheung, and T. Kan, Synlett, 1999, 1301-1303.

[^0]: ${ }^{\dagger} \mathrm{Gl}_{50}$ - concentration required for 50% inhibition of cell proliferation

[^1]: ${ }^{\dagger}$ Predicted using Accelrys Pipeline Pilot version 8.5

[^2]: ${ }^{\ddagger}$ The signals in 150 were similarly shifted relative to those in Ellman’s major product.

[^3]: §5\% IPA/nHexane AD-H column

[^4]: Scheme 29 Derivatisation and subsequest deprotection of the macrocyclic scaffold $\mathbf{2 4 6}{ }^{\text {D }}$

