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Abstract 

Despite the intense efforts that have been devoted to the development of scoring 
functions for protein-ligand docking, they are still limited in their ability to identify 

the correct binding pose of a ligand within a protein binding site. A deeper 

understanding of the intricacies of scoring functions is therefore essential in order to 

develop these effectively. The aim of the work described in this thesis is to analyse 

the individual interaction energy types which form the individual components of a 
force field-based scoring function. 

To do this, a protein-ligand docking algorithm that is based on multiobjective 

optimisation has been developed. Multiobjective optimisation allows for the 

optimisation of several objectives simultaneously and this has been applied to the 

individual interaction energy types of the GRID scoring function. Traditionally these 

interaction energy types are summed together and the total energy is used to guide the 

search. By using individual energy types during optimisation, their roles can be better 

understood. The interaction energy types that have been used here are the electrostatic 

and hydrogen bond interactions combined, and van der Waals interactions. 

The algorithm is first tested on two datasets containing twenty complexes. The results 

show that the different interaction energy types have varying influences when it 

comes to successfully docking certain complexes, and that it is important to find the 

right balance of interaction energy types so as to find correct solutions. Of the twenty 

complexes, the algorithm found correct solutions for fifteen. 

To improve the performance of the algorithm, a few enhancements were introduced. 

'Ibis includes a simplex minimisation process with a Lamarckian element. 'Me 

algorithm was retested on the twenty complexes, and the newer version was found to 

outperform the original version, finding correct solutions for seventeen of the twenty 

complexes. 
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To extensively study the capabilities of the algorithm, it was tested on varied datasets, 

including the Flex. X dataset. The algorithm's performance was also compared to a 

single-objective docking tool, Q-fit. The comparison between the multiobjective and 

single-objective methodologies revealed that single-objective methods can sometimes 
fail at finding correct docked solutions because they are unable to correctly balance 

the interaction energy types comprising a scoring function. The study also showed 

that a multiobjective optiniisation method can reveal the reasons why a given docking 

algorithm may fail at finding a correct solution. 

Finally, the algorithm was extended to incorporate desolvation energy as a third 

o ective. Though these results are preliminary, they revealed some interesting 

relationships between the different objectives. 
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1 Introduction 

The path of developing a small molecule into a drug for the market is long and 

arduous, but one that every pharmaceutical company must take so as to ensure that 

they survive and flourish in the healthcare industry. High attrition rates, mounting 

costs of drug development (estimated at over US$I billion per drug) and regulatory 
hurdles are all factors which have driven the need to develop methods that increase 

the efficiency and speed of finding viable leads that can be developed into drugs. 

Computational methods in particular have seen an increase in popularity within the 

industry. These range from chemoinformatics techniques such as similarity searching, 

to virtual screening, a computational technique used to identify ligands from a library 

of compounds based on various criteria, such as activity against a specified protein 

target. Virtual screening is one of the tools used in structurc-based drug design 

(SBDD), a concept which uses three dimensional (3-D) structural information of a 

target protein to find and design drugs. For example, protein-ligand docking is a 
SBDD tool often used in virtual screening, which tries to predict the structure of a 

small molecule-protein complex from the molecules' atom coordinates only. 

Several of these methods apply search techniques, many of which are borrowed from 

engineering applications, to try to predict the behaviour and characteristics of small 

molecules computationally. The computational search methods vary, depending on 
the type of problem and the method's aims. One such method is multiobjective 

optimisation, which has been used in several drug discovery/chemoinformatics 

applications, including library selection (Gillet et aL, 2002), and pharmacophore 
generation (Cottrell et aL, 2004). The theory behind this method and a discussion of 
its different implementations is presented in Chapter 2. Chapter 2 also introduces 

genetic algorithms (GAs), which have been used to perform multiobjective 
optimisation. GAs are heuristic search algorithms based on Darwinian concepts of 
evolution and natural selection. 

Using computational methods, such as protein-ligand docking, to predict the 
behaviour of molecules requires a good understanding of biological notions that drive 
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these molecules' interactions. Chapter 3 discusses molecular recognition concepts and 
the various energy components that are considered when modelling biological 

systems. The use of these concepts in protein-ligand docking is discussed, along with 
the different types of algorithms that have successfully been applied to the problem 
(Kitchen et al., 2004). 

Dicussion of the experimental work carried out in the thesis begins in Chapter 4, 

which explains the development of a single-objective GA that performs protein- 
ligand docking. This algorithm is tested on a small dataset, the results of which are 

also discussed in this chapter. 

An area of weakness of current protein-ligand docking methods is their ability to 

correctly score different docked solutions which leads to deficiencies in virtual 

screening experiments which attempt to rank a large number of ligands. As the title of 

the thesis indicates, the aim of this work is to apply multiobjective optimisation to 

protein-ligand docking in order to gain insights that will lead to improved scoring 
functions. Chapter 5 discusses how the single-objective, protein-ligand docking 

algorithm is modified into a multiobjective algorithm. To understand the capabilities 

of the algorithm, it is tested on two datasets, the results of which are presented in 

Chapter 6. 

An algorithm can be modified in several ways in order to improve its perfon-nance, as 

well as provide different levels of control that can be adjusted depending on the 

problem. Chapter 7 focuses on the algorithmic side of the research, and describes 

major modifications carried out on the multiobjective algorithm. To understand the 

effects of these modifications, the algorithm's performance is compared to that of the 

unmodified version described in Chapter 6. 

In Chapter 8 the biological attributes of the algorithm are explored on a larger scale 
by testing it on different datasets, the results of which provide a deeper understanding 

of the algorithm and its benefits. In Chapter 9 the algorithm is once again modified to 

include a novel component, which, though not fully explored, provides a basis for 

future work. The thesis is concluded with Chapter 10, which summarises and 
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discusses the results obtained from this research, and provides a discussion on the 
future prospects of this worL 



2 Multiobjective optimisation: Theories 

Optimisation is the process which attempts to find the global solution or solutions, 

and which describes extreme values of one or more objectives. A problem which 
involves only one objective function will require finding a single extreme solution, in 

a process termed single-objective optimisation. 

When more than one objective function affects a problem, then the task of finding 

one or more optimal solutions is known as multiobjective optimisation. 
Multiobjective optimisation elucidates real-life problems more realistically since 

these will naturally involve multiple, conflicting, objectives. Tberefore finding the 

extreme solution for one objective will not be sufficient in these cases, since the other 

objectives need to be considered. In scenarios focusing on one or more objectives, a 

number of solutions will exist, which may have conflicting trade-offs, or 

compromises among the objectives. An extreme solution in one objective (one that is 

optimal in that objective) will require a compromise in the other objective. Given the 

existence of different solutions at the optimal extremes of the objectives, there will 

also exist solutions in between the extremes, with different compromises of the 

different objectives (Figure 2.1). 

Multiobjective optimisation problems occur in many everyday decision-making 

situations. For example, when buying a car, and if, hypothetically, cost is the only 

criterion to base the decision by, then only the least expensive cars would ever be 

bought. However, the reality is that other factors which conflict with cost also affect 
this decision, such as the comfort level of the car. The cheapest cars will have the 

lowest comfort levels, whereas the most expensive cars will be the most comfortable. 
Rich individuals to whom comfort is important will therefore opt for the most 

expensive cars. In between the two extremes there is a whole array of cars with 
different trade-offs of cost versus comfort. 
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Figure 2-1 In a multiobjective optimisation problem, the (conflicting) objectivesfi 
and f? are minimised. The solid circle solutions are optimal In terms of one 
objective, but at the expense of the other. The solutions in open circles are not 
optimal in either of the objectives but show different compromises in terms of the 
objectives. 

Traditionally multiobjective optimisation problems have been approached by 

transforming the problem into a single-objective optimisation one by using user- 
defined parameters (classical methods). The weighted sum technique is one such 

example, and is described in section 2.3.1. The main problem with such an approach 
is deciding on the ideal parameters which correctly describe the relationships between 

the objectives. Also, it is difficult to define these parameters when the objectives 
themselves are non-commensurate. A true multiobjective optimisation technique will 
'remove any bias towards a particular objective during optimisation and will consider 

all objectives to be equally important. The process is not completely objective though 
because, since most optimisation problems require a single solution, then the user, or 
decision maker, will have to select one of the trade-off solutions. At this point it is 
hoped that higher level information, information that is qualitative and driven by 

experience, will assist in making that decision. Therefore the task of a multiobjective 
optimisation technique is to find optimal solutions which have a good variety in 

compromised objectives, giving the decision maker a good basis forjudging which of 
the optimal solutions solve the particular problem. 
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2.1 Evolutionary approach to multiobjective optimisation 

The classical approach to multiobjective optimisation combines all objectives into a 

composite function that is then optimised single objectively. Classical search 

methods, which operate on a point-by-point approach, modifying a single solution per 
iteration until the best solution is found are therefore very well suited for single- 

objective optimisation problems, where only one optimal solution is needed. 
However, to perform true multiobjective optimisation, multiple solutions must exist 
during the optimisation process, all of which are optimised simultaneously in order to 

result in a set of multiple optimised solutions. 

Evolutionary methods are therefore ideally suited for multiobjective optimisation. 
These maintain a population of solutions at all times during optimisation, and 

therefore the end of a run always contains a final population of solutions. 
Evolutionary methods are routinely implemented on single-objective optimisation 

problems, where it is hoped that all population members will converge to a single 

optimal solution. These methods can be adapted though, so that different population 

members converge towards multiple optimum points. The details of multiobjective 

optimisation using evolutionary algorithms, along with evolutionary computation 

concepts, are discussed in the following sections. 

2.2 Evolutionary computation 

Evolutionary computation methods are a type of optimisation algorithms which 

mimic biological evolution (Holland, 1992). They work on the principle that by 

combining different parts of good but non-optimal solutions together, then the global 

minimum will be reached. Evolutionary computational techniques consist of three 

components; a data Structure representing decision variables, a fitness function for 

evaluating the quality of the solutions and a strategy for moving from one generation 
to the next. 
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Different types of evolutionary computation methods exist, such as genetic 

programming, evolutionary strategies and genetic algorithms (Foster, 2001). This 

thesis focuses largely on genetic algorithms (GAs), therefore this section will focus 

solely on these evolutionary computation methods. 

2.2.1 Genetic algorithms 

Genetic algorithms attempt to find a set of decision variables, represented by a vector 

x, that minimises the value of a fitness function f(x). The process mimics 

evolutionary Darwinian theory in many ways. For example, the decision variables 

representing solutions of the population are known as chromosomes. The other 

similarities to biological processes are in the methods of optimisation as described 

below. 

The genetic operators are the methods applied on the chromosomes to effectively 
explore the search space and find optimal solutions. Two of these are crossover and 
mutation. Crossover combines the genetic information (the decision variables), of two 
"parente' in the population to result in two "offspring" which are different, and 
hopefully "better", than the parents. The mutation process mutates a part of the 
information stored in the chromosome at random. These are discussed in detail 

below. 

The chromosomes onto which the genetic operators are applied arc selected 

randomly, though the selection is weighted so that fitter members are more likely to 
be selected. This process is analogous to the biological theory that fitter members of a 
population are more likely to survive and reproduce, passing on their genetic traits to 
the next generation. Least fit chromosomes are removed from the population; in 
biological scenarios these unfit individuals are least likely to survive and perish 
before they can reproduce. 
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2.2.1.1 Chromosome structure 

The chromosome, a member of a GA population, encodes information in decision 

variables into elements known as genes, which are the smallest data units that can be 

manipulated independently. There are various ways of representing genes, including 

as floating point numbers or integers which directly represent the problem (real 

coding). Binary numbers can also be used to represent decision variable information; 

each binary digit is regarded as a gene. The type of gene encoding selected affects the 

'(resolution7' of the data structure, and will affect how the genetic operators are 

applied to them. The genes of a member of the GA population represent that 

member's genotype, whereas the phenotype is a tangible characteristic displayed by 

that member, and that is defined by its genotype. 

2.2.1.2 Genetic operators: mutation 

The mutation operator makes small changes in a gene of a chromosome. Binary 

representation allows one of two values in the gene therefore during mutation, the 

binary digit of a randomly selected gene is simply switched to the other one. In real 

number encoding of chromosomes, the real number floating point or integers can 

theoretically take any value. These are usually limited by the gene step-size, which is 

the maximum value by which a gene can change. This type of mutation is known as 

random. Creep mutation changes a randomly selected gene by a fixed, pre-determined 

step-size. 

2.2.13 Genetic operators: crossover 

Crossover, the swapping of information, or genes, between two chromosomes, 

usually occurs by swapping contiguous sequences of genes between two parent 
chromosomes. The crossover process begins by sclccting a random point, the 

crossover point, on the two chromosomes. The genes before the crossover point from 

one parent, are combined with the genes after the crossover point of the second 
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parent. Figure 2.2 illustrates this process. This is known as single-point crossover 

because a single point is selected on the chromosome. Two point crossovers divide 

the chromosome into three sections, and the central portions are swapped between the 

two parents. A third type of crossover is known as uniform crossover, where 

corresponding genes from either parent are selected to form the offspring 

chromosomes. This is equivalent to having 5 crossover points for the chromosomes 

depicted in Figure 2.2. 

Figure 2-2 Single-point crossover between two chromosomes 

2.2.1.4 Selection and replacement strategy theories 

The starting population of a GA will consist of randomly generated solutions that arc 

represented by chromosomes. The aim of the GA is to improve the fitness of the 

entire population over a run of the algorithm. This is performed by ensuring that the 

genetic operators only act on the fitter chromosomes to produce improved offspring. 

To keep the population size constant, as new offspring are produced, these must 

replace other chromosomes in the population; this is done by removing less fit 

members of the population. 
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Given two similar chromosomes, it is likely that both will have similar fitness values. 
Applying the mutation operator on a reasonably fit but non-optimal chromosome will 

very slightly change the fitness of the chromosome, ideally towards a better fitness. 

The gradual improvements of solutions in a population will result in the population 

gradually evolving towards a better fitness. 

Two chromosomes which have similar fitness values will not necessarily have similar 

chromosomes. Different sets of genes may be contributing towards the fitness of the 

chromosomes. By combining the two chromosomes through crossover, it is hoped 

that the good genes from one chromosome will combine with the good genes from the 

other chromosome resulting in offspring which are better than the parents. 

Given a problem where all the local minima are close to the global minimum (Figure 

2.3), and are much worse than the global minimum, then the genetic operators are 
likely to effectively lead the population to the global minimum. Solutions that are 

near the global minimum will have a much better fitness than solutions at the local 

minima. These are therefore more likely to get selected and to reproduce fitter 

offspring that will eventually lead to global convergence. 

F(x) 

1-1*1"" 

x 

Figure 2-3 A function F(x) that is being minimised. Local optima are all close to 
the global minimum and have worse fitness. In this scenario it is likely that the 
genetic operators will easily guide the search to the global minimum. 
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However, in the scenario shown in Figure 2.4, where there are several local minima 

with fitness close to the global minimum that are separated by large barriers in the 
fitness landscape, converging to the true global minimum is more problematic. This is 

because solutions may exist at any of the local minima basins, and if these groups of 

solutions are continuously selected for the genetic operators to act on, then the 

population can very easily converge into one of the local minima. This process is 

known as genetic drift (Goldberg, 1989). 

AX) 

x 

Figure 2-4 A function f(x) that is being minimised. Here the local minima are only 
slightly worse than the global minimum, are separated by large fitness barriers 
and the population may converge into any of the local minima. 

One tactic employed for avoiding genetic drift is to maintain diversity in the 

population at all times, so that the population always contains solutions near as many 

optima as possible. Niching is one process that can be used to maintain diversity and 
is described in section 2.4.4. The different types of selection and replacement 
strategies are also discussed in sections 2.4.1 and 2.4.2. 

2.3 Multiobjective optimisation techniques 

As was discussed earlier, multiobjective optimisation has traditionally been 

performed by transforming multiple objectives into a single one that is then optimised 

11 



as a single objective. One of the more popular of these methods is the weighted surn 

approach. 

2.3.1 Weighted sum approach 

flie Aeiglited suin approach scalarises a set ofobjectives into a single objective b) 

multiplying each objective with a user-defined weight to produce a composite 
function. The first issue that arises here is deciding which weights to select. A guide 

to setting weights is to decide the relative importance of each objective and setting a 

weight accordingly. A second issue which must be considered is sealing of tile 

objectives. If the objectives have different orders of magnitude, then it is useful to 

normalisc these values before forming the composite function. Also, it is worth noting 

that forming a composite function by summing physical quantities of different 

dimensions does not have a direct physical meaning, i. e. tile physical quantities are 

non-commensurate. Figure 2.5 illustrates how a composite function can find optimal 

solutions in multiobjective space. 

f2 

/ 

f 

Figure 2-5% A weighted sum approach to finding a single optimal solution in 
objective space. The gradient of the dotted lines (representing the composite 
function) is dependent on the weights selected; both points A and B at the 
tangents of the accessible area of the objective space (coloured grey) have been 
found by using different sets of weights in the composite function. 
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Changing the weights of the objectives will result in changes in the gradient of the 
dotted line, therefore the optimisation process will find a different optimal solution. 
Theoretically it is possible to find all optimal solutions by changing the weights of the 

objectives systematically. This however, will only apply if the shape of the objective 

space region is convex. If the shape of the objective region is non-convex, the 

weighted sum approach will not find all optimal solutions (Figure 2.6). As the figure 

shows, certain weights will only find certain solutions, but any solutions that lie on 

the red portion of the objective space boundary will not be found because it is not 

possible to find a tangent at that point due to the shape of the curve. 

f2 
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Figure 2-6 The weighted sum approach applied to a non-convex problem. The 
section of the objective boundary that is coloured in red will not be accessible by 
this approach. 

Though the weighted sum approach is intuitive and theoretically straightforward to 
implement optimal solutions will be missed if the shape of the objective space 
boundary is non-convex. It is also not possible to tell the shape of the objective space 
boundary a priori, which will make it difficult to decide on whether this approach is 

most suitable for a given problem. Additionally the designation of weights, as 
mentioned earlier, can be problematic and introduces a subjective element to the 
optimisation process, which will undoubtedly bias the search for optimal solutions. 
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Given the assurntion that many objectives control a given situation and are all equally 
important indicates why multiobjective optimisation aims to find a set of solutions 

which all display a variety of different objective compromises, or trade-offs. This in 

turn explains why it is that GAs are employed for this type of search. Since a set of 

solutions is the output expected, then the population-based nature of GAs is ideal 

because it allows for the existence of several solutions simultaneously (unlike other 

search methods, such as simulated annealing and tabu searches). This optimal 

solution set is said to lie on the Pareto front, named after the Italian economist 
Vilfredo Pareto, who popularised the notion of multiobjective optimisation. These 

solutions are collectively known as the Pareto solutions. They are all considered to be 

equally important- and it is left up to the decision maker to decide which one of the 

solutions is the most desirable. All the solutions in the population are ranked based on 

where they lie in objective space, and how they relate to each other in a Pareto 

fashion. This is explained in more detail below. 

2.3.2 Pareto concepts 

D- 
Recent approaches to multiobjective optimisation have been based on the economic 
theory developed by Vilfredo Pareto in the I 9th and early 20th centuries. The theories 

centre around the allocation of resources in a society, and how the reallocation of 

resources is not possible without making at least one individual worse off. This is 

known as the Pareto optimality or efficiency. 

Pareto-optimal distributions can vary. For examples resources can be evenly 
distributed across all individuals or all resources could be distributed to one 
individual. The latter would still be a Pareto-optimal distribution if that one individual 

became worse off by redistributing the resources more equally. 

The application of this theory has been adapted to scientific optimisation problems. In 

multiobjective optimisation of real-life problems with conflicting objectives, no 

solution can exist which is optimal in all objectives. With a Parcto-optimal solution it 

is not possible to make an improvement in one objective without worsening the 
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solution's other ob ective. There can therefore be many different Pareto-optimal j 

solutions, with different compromises, or balances, of the objectives, to a given 

problem. 

f2 
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Figure 2-7 Illustration of Pareto dominance. All solutions within shaded area are 
dominated by A. 

2.3.2.1 Pareto dominance 

Most multiobjective optimisation algorithms use the concept of dominance to 

compare solutions to each other. Given two solutions, Y and Z, Y will dominate Z if 

it is better than Z in at least one objective, and worse than Z in no objectives. Figure 

2.7 illustrates this concept. Solution A is better than solution B for both fi and f2. 

Therefore A dominates B. although C is equal to A in terms offi, it is worse with 
respect tof2. Therefore A dominates C. Looking at the position of solution D, it can 
be seen that A is better than D in terms offi, but D is better in fi. This relationship 
means that neither solution dominates the other. The elegance of this process avoids 
the need to quantitatively compare two objectives of a solution and to arbitrarily 
assign values that manipulate the importance of each objective. 
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2.3.2.2 Pareto optimal set 

As the previous section showed, both solutions A and D do not dominate each other, 

and are not dominated by any other solution shown on the plot. Therefore both these 

solutions are showing different, but equally valid compromises between the two 

objectives. These solutions are said to be non-dominated. In a population of solutions, 
the non-dominated solutions are considered to be equally as valid, due to the different 

balance in objectives which they display. Also for every other solution in the 

population there will exist at least one non-dominated solution that is better than itself 

in all objectives. Therefore all the non-dominated solutions can be considered equally 

optimal, and are known as the Pareto-optimal, or the Pareto solutions. 

2.3.2.3 Pareto frontier 

The points in objective space representing the Pareto solutions are said to lie on the 

Pareto front. If the objective scores are continuous quantities, then theoretically the 

Pareto front will consist of an infinite number of Parcto solutions on a continuous 

surface, although some discontinuous parts may exist as well. In practical terms, 

when dealing with Pareto solutions in a GA population, these cannot form a 

continuous surface. As Figure 2.8 shows, it can be assumed that the solutions on the 

Pareto front will dominate any solution that lies with the stcp-like area in grey. It 

should not be possible to interpolate between Pareto solutions to form a smooth 

curve, since no solutions were found in between those points, though they may still 

exist. In practice, if the gap between two Pareto solutions is small, then forming a 

continuous surface to link them is reasonable, such as between A and B. However if 

there is a large gap between the solutions, such as B and C, then it should not be 

assumed that these are joined by a continuous surface. 
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Figure 2-8 The attainment surface for a finite set of Pareto solutions. 

2.4 Comparison of GAs and MOEAs 

The basic outline of the operation of GAs is described in the preceding sectiOlls. 

However, the details of the implementation vary considerably. Some of these 

variations apply equally to singIc-objective and inultiobjecti,, -c GAs, "hilst others are 

relevant only to multiobjective methods. These are discussed below. 

2.4.1 Replacement strategies 

The replacement strategy describes the way in which a population is maintained and 

evolved over the period of an algorithmic run. There are two types of replacement 

strategy, generational and steady-state. The more popular strategy is generational, 

which involves the potential replacement of an entire population with a new one at 

each iteration, or generation. During a generation, from a (parent) population of size 
N, members are selected to fill a mating pool. The process of selection is weighted so 

that Fitter members are more likely to be selected (these can be selected more than 

once) and the least fit members are less likely to be selected (Deb, 2001). This is 
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followed by a random selection of members from within the gene pool for crossover 

and mutation (sections 2.2.1.2 and 2.2.1.3), to result in a new, offspring population, 

also of size N. Finally N members, which can be selected from both the parent and 

offspring population, are passed to the new generation, which signals the end of one 

generation and the beginning of the next one. 

In steady-state replacement, individual members of the population gradually undergo 

change, but the selection and creation of new members are not structured into a 

generation. The process involves the application of one genetic operator at a time, and 
begins by the selection of one or two members (depending on whether crossover or 

mutation is being carried out). This again occurs with a stronger bias towards the 

fitter members. Selection is followed by the application of the genetic operator, and 
the replacement of the resulting member(s) with one or two less fit members in the 

current population. 

An issue that may arise with a replacement strategy, the generational replacement 

strategy in particular, is that non-dominated solutions generated during a run are 
discarded during the selection process and better solutions are not found and retained 
in the final population. To ensure that the current, fittest solutions are always retained 

many algorithms employ elitism which ensures that the current fittest, non-dominatcd 

solutions are never discarded, whether through maintaining an archive of these 

solutions, or through keeping these in the main population, presuming of course, that 

the number of non-dominated solutions is smaller than the size of the single 

population. The NSGA-II and PAES described below are examples of algorithms 

with highly elitist strategies. 

2.4.2 Selection methods 

Selection is integral to evolutionary algorithms in directing a population towards an 
optimal solution, the theory of which was discussed in section 2.2.1.4. All selection 
procedures are ultimately characterised by a stronger bias towards fitter individuals so 
that the probabilities of their selection is increased. 
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Proportionate selection is an i' lementation of a procedure which gives each IMP 

member of a population a weight related to its fitness; fitter members will have 

stronger weights, and vice versa. Members with higher weights will therefore a 

stronger probability of being selected than weaker, less fit members. Roulette wheel 

selection is a type of proportionate selection (Goldberg, 1989) and, as its name 

suggests, is analogous to a roulette wheel, where every member of the population is 

represented by a segment on the wheel, the size of the segment being proportional to 

the weight, or fitness, of the member. With a "spin7' of the wheel, a member is 

selected; those with higher weights will have a higher chance of being chosen since 

the size of their segment is larger than weaker individuals. 

In tournament selection, the alternative to proportionate selection, tournaments are 

performed between pairs of members from the population. Two members are selected 

randomly, the fitter of these "wine' and is added to the mating pool. 

2.4.3 Ranking methodologies 

With single objective optimisation, the ranking of the population is straightforward: 

minimising functions require that the lowest scoring chromosome is given the highest 

rank and vice versa. In multiobjective optimisation, population ranking is more 

complicated since several objectives must be considered. It is important that the value 

of each objective for a given chromosome is taken into account separately (summing 

the objectives defeats the purpose of multiobjective optimisation), and that all non- 
dominated solutions are considered as jointly optimal. One technique that is 

implemented is that which was proposed by Fonseca and Fleming (1998a) and which 
is best described using a graphical representation shown in Figure 2.9. 

Figure 2.9 shows solutions to a problem in objective space. The two objectives being 

minimised are f, and f2, on the x and y axes respectively. The Pareto solutions are 

represented as closed circles on the Pareto front - these are also considered to be the 

non-dominated solutions. A non-dominated solution is a solution where an 
improvement in one objective results in the deterioration of another objective. All 
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non-dominated solutions are considered to be superior and are given the top rank 0 

(as labelled). The rest of the solutions are dominated solutions (open circles) and are 

ranked according to the number of times they are dominated. For example the 

solution ranked I is ranked so because there is one other solution that is better than 

itself in both objectives. A simple way of obtaining this information is to draw 

perpendicular lines to the axes from a solution and counting the number of solutions 

within the rectangle (shown for one of the solutions ranked 0 and the solution ranked 
4). 

f, 
Figure 2-9 Pareto ranking: Solutions in objective space, where the two objectives, 
f, and f2 are being minimised. Solid circles represent the Pareto or non-dominated 
solutions. The open circles are the dominated solutions and are ranked as 
indicated. The number of times a solution is dominated can be determined by 
drawing perpendicular lines to the axes and counting the number of solutions that 
fall within the rectangle (from Gillet et aL, 2002). 

An alternative ranking scheme is to first give all the non-dominated solutions a rank 

of 0. These are then temporarily ignored and the non-dominating solutions in the 

remainder of the population are determined and given a rank 1. These are then also 
ignored, non-dominating solutions are determined from the remainder of the 

population and these are given a rank of 2. The process continues until all the 

members of the population have been given a rank. 
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2.4.4 Niching 

Preserving diversity is essential during multiobjective optimisation. Diversity is also 

necessary in single-objective optimisation, since a population consisting of 

chromosomes with diverse gcncs is more likely to find the optimal solution than a 

population consisting of similar, mediocre, chromosomes. Because solving 

multiobjective problems generates a set of optimal solutions, then ideally these also 

must be as diverse as possible, and widely spread out on the Pareto front. Diversity 

along a front ensures that a good representation of varying compromises by the 

solutions has been achieved. Niching is the technique that is most widely 
implemented to preserve the diversity of a population and is modelled on the 

behaviour of species in biological macrosystems. Individuals within a species 

competing for a fmitc amount of resources in an environmental niche will have a 

reduced fitness, whereas those that occupy less dense niches will have more resources 

available, which in turn will increase their fitness. In an analogous manner a given 

member of a population will exist in a niche, specified by a niche radius (Figure 

2.10). The selection probability of the chromosome is reduced to a level that is 

correlated to the number of chromosomes which fall within its niche. In this way 

chromosomes in sparse niches have a higher likelihood of being selected. This mode 

of niching which influences selection probabilities of chromosomes is known as 

sharing. The alternative is known as crowding, and this acts by restricting the number 

of individuals that may exist in a specific niche. This can be achieved by, for 

example, not accepting a new solution if too many other solutions exist in the same 

niche or, if using a steady-state replacement strategy, then a solution from the same 

niche is removed to make space for a new solution. 

To quantify niching, the "distance" between solutions must be measured in some 

way. In multiobjective optimisation, this can be done in objective, or in decision 

space. Objective space niching measures the Euclidian distance between solutions in 

objective space, using the magnitude of the solutions' individual objectives. The 
definition of the decision space depends on the problem, and is usually a 
characteristic that is exhibited by the solution. 
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Figure 2-10 Niching In objective space. The niche radii of two solutions: the first 
shown as a striped circle and the second as an open circle. The striped circle 
solution will have a reduced niche fitness because two other solutions lie within its 
niche radius whereas the open circle solution will have the maximum fitness since 
no other solution occupies Its niche. Therefore the open circle solution has a 
higher probability of being selected relative to the striped solution. This allows for 
diversity along the Pareto rank and ensures that potentially Interesting outliers 
are not lost. 

2.5 MOEA implementations 

The previous section has shown the different aspects of multiobjective optimisation 

and described the features which control the process. Several different algorithms, 

which implement these features in various ways have, as a result, been developed. An 

outline of some of these is given below. 

2.5.1 Vector Evaluated Genetic Algorithm 

The Vector Evaluated Genetic Algorithm (VEGA) was published in 1984 by Schaffer 

and is possibly the first GA which aims to find non-dominated solutions. The VEGA 
is a simple extension of a single-objective GA, and operates by ranking certain 
members of the population by a given single objective and independent of the other 
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objectives. Given that M objectives are to be handled, the GA population is, at every 

generation, split into M subpopulations randomly. Each subpopulation is given a 
fitness value according to one of the objectives; therefore each subpopulation will be 

evaluated based on one of the objectives. The selection operator is then used to fill a 

subpopulation mating pool, using only members from a single subpopulation. In this 

way, members which are particularly good in one objective are likely to be 

represented more than once within the mating pool. The mating pools from all sub- 

populations are combined, and the genetic operators, crossover and mutation, take 

place. Since the focus of this method is per objective, then members who are 

particularly good at a single objective will be favoured. Schaffer proposed that by 

allowing crossover between different members of the subpopulations, solutions may 
be created which are good at more than one objective. It was noted however, that 

crossover between solutions which excel at different objectives did not succeed at 
finding diverse solutions with good compromises of the objectives, and eventually the 

VEGA converges to a few solutions that are good at only one of the objectives. The 

main advantage of a VEGA is in the simplicity in the implementation. It is also 

suitable for problems where best solutions per objective are desired. 

2.5.2 Multiobjective genetic algorithms 

A multiobjective genetic algorithm (MOGA), developed by Fonseca and Fleming 
(1998a) was the first algorithm that was designed to explicitly emphasise non- 
dominated solutions and simultaneously maintain diversity along a front. The MOGA 

used the Pareto ranking scheme described in section 2.3.2, where the rank of a 
member is determined by the number of members it is dominated by. The algorithm 
is generational and uses a fitncss-sharing technique for its niching. Niching takes 

place in objective space between solutions of the same rank. 

The MOGA also uses the concept of "goals" as well as regular objectives in its 

selection of members. A goal is an ob ective for which a member needs to achieve a j 

value over a certain threshold regardless of what it achieves in other objectives. 
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2.5.3 Pareto Archived Evolutionary Strategy 

The Pareto Archived Evolutionary Strategy (PAES), by Knowles and Come (2002), 

uses a steady-state, rather than a generational strategy, and was originally designed 

for solving real-world telecommunications network design problems. It differs from 

other multiobjcctive algorithms in that the crossover operator is not applied and only 

the mutation operator is used to produce offspring. This algorithm therefore uses a 
local search strategy, rather than a global search, to find non-dominated solutions. A 

PAES, as its name may imply, also keeps an archive of the best solutions found 

during the run, which has a limit in terms of the numbers of solutions it can hold. 

During the search process, a random member, p, is selected from the population and 

mutated to produce an offspring c. If c dominates p, c is added to the archive of good 

solutions. If p dominates c, c is discarded and another mutated solution is created for 

processing. 

In scenarios where both p and c are non-dominated relative to each other, then c is 

compared to members in the archive. If there are solutions in the archive which 
dominate c, then this is discarded and p is mutated again to produce another offspring. 
If c dominates any solutions in the archive, then these are deleted and c is added to 

the archive. If c is not dominated, and does not dominate any solution in the archive, 
then it is only accepted in the archive if a free slot is available. On the other hand if c 

occupies a less crowded region in the search space, then it is retained and replaces a 

randomly-selected member from a more crowded region. 

This version of the PAES is known as (1+1). Other versions have been developed 

which vary in terms of the number of solutions generated by mutating the parent pX 
timest to produce X offspring, one of which is then selected to be added to the archive, 
in the smne way as described above. This version is known as (I + %). In the (g + %) 

version, there are g current solutions and one of these is selected as a parent by 

tournament selection. ), offspring are then generated from this parent via mutation and 
one of these is selected, as described above, for addition to the archive. 
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2.5.4 Elitist Non-dominated Sorting Genetic Algorithm (NSGA-11) 

An NSGA-11 is a highly elitist method developed by Deb in 2000. An offspring 

population of size N is created from a parent population of size N, and these two are 

combined to form 2N, upon which a Pareto ranking process is carried out. This 

ensures that relatively good solutions are never lost from the population. After the 

population is ranked and sorted, solutions in 2N are taken, rank by rank, to fill the 

offspring population of size N, meaning that the lowest ranking N solutions are 

discarded. Ile NSGA-11 uses a crowded tournament selection operator to select 

parents for crossover. This works in the same way as standard tournament selection, 

with the exception that if both members are in the same rank then a crowding distance 

measure is used for selecting one of the two members. The crowding distance is a 

fitness-sharing scheme with the advantage of not requiring a user-defined measure to 

define the size of a niche. Its estimation is based on the distance of a given solution to 

adjacent solutions per objective. The crowding distance measure may also be used in 

the step of reducing 2N down to N. This situation may arise when the final rank that 

is being added to the offspring population N contains more solutions than available 

slots. In this case the crowding distance measure is applied to select enough solutions 
from the least crowded areas to fill the final vacant slots of the offspring population. 

2.6 Multiobjective Optimisation in chemoinformatics and bioinformatics 

The optimisation methods of GAs have been applied to various problems in 

chemoinformatics and bioinformatics. Section 3.4.3.5 discusses the application of 
GAs to protein-ligand docking. Multiobjective optimisation has also been applied to 

several chemoinformatics and bioinformatics problems. These applications have been 

reviewed by Nicolaou et al., (2007). One of the first chemoinformatics applications 
for Pareto based GAs was the GAMMA program for the superposition of flexible 

molecules (Handschuh et al., 1998; Handschuh. and Gasteiger, 2000). The program 
optimises two criteria, the number of matching atoms between two molecules - which 
has to be maximised - and the devitations of the coordinates of the superimposed 
atoms - which is minimised. The geometric fit between two conformations is ftirther 
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improved by changing torsional angles. This is done using a GA and a directed tweak 

method. 

Other recent multiobjective approaches include: 

- The MoSELECT program (Gillet et aL, 2002; Wright et aL, 2003) applies a MOGA 

to combinatorial library design. In the original version, up to six objectives were 

optimised - the cost of producing the library, the diversity of the library, and the 

profiles of four physicochernical properties. The size of the libraries and the 

configuration (number of reactants needed to generate the products) were fixed 

throughout a given run. A later version of the program allowed the latter two 

properties to be varied during a run, and hence be treated as additional optimisation 

objectives. 

-A method for generating multiple pharmacophore hypotheses using a MOGA 

(Cottrell et aL, 2004). The method looks for a representative ensemble of overlays 
that show different structure-activity hypotheses, in a concerted manner, and allowing 
full conformational flexibility. Three objectives are optimised simulatenously, the 
feature score which is a similarity score that measures the degree to which feature 

alignments are optimal, the van der Waals energy of individual conformers, and the 

volume integral of the overlay. A later version of the method allowed for partial 
matches to exist between ligands within a set (Cottrell et aL, 2006). 

- Brown et al. (2004) applied a multiobjective approach to the generation of median 

molecules. The aim is to generate a series of molecules, known as median molecules, 
that arc as similar as possible to each of a set of two or more input molecules. The 

number of objectives is equal to the number of input molecules, and the similarity of 
the median molecules to each of the input molecules forms an objective. Since the 

molecule that is most similar to each input molecule is that molecule itself, the 

objectives are in conflict. 

- In bioinformatics, multiobjective optimisation has been applied to clustering (Handl 

and Knowles, 2005). Their MOCK algorithm optimises two objectives, what the 
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authors describe as "the compactness of clusters", and the "connectedness of data 

points". The algorithm has the capacity of selecting a good solution from the Pareto 

front, and automatically determines the optimal number of clusters in a given set. 

2.7 Summary 

In this chapter, the theory of multiobjective optimisation in relation to single- 

objective optimisation was described, as well as the principles of evolutionary 

algorithms. Fundamental Pareto techniques in multiobjective optimisation were 
discussed, and their application to evolutionary algorithms. Various applications of 

evolutionary algorithms in chemoinformatics and bioinformatics were also cited. 
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Docking and scoring 

3.1 Molecular recognition 

Most biological activity begins with a union of individual elements to forin one 

entity. If one of the elements is smaller than the other, then it is usually referred to as 

the ligand, and the latter as the receptor. Thus in an cnzyme-substrate complex, the 

substrate is the ligand, and the enzyme is the receptor. Other examples of receptors to 

which ligands bind are antibodies, DNA, and membrane-bound proteins. The action 

of drugs tends to be synonymous to these interactions; a drug will bind to a receptor 

protein to initiate a desired therapeutic effect. Molecules need to recognise each other 
in order to unite, or bind together, thus triggering the cascade of events that leads to a 
biological outcome. 

One of the first theories that attempted to explain how molecules recognise each 

other, or molecular recognition, was proposed by Emil Fischer in 1894, using the 

"lock and key" hypothesis. This theory envisaged molecules as wooden puzzles that 

need to have a geometric match in order to interact with each other. This theory was 

modified in the late fifties by Daniel Koshland, who proposed the "induced fit" 

model; molecules induce changes in their conformations as they bind to each other; 

Koshland likened the process to a hand fitting a glove, the glove is the receptor, and 

the hand is the ligand (Koshland, 2004). 

Molecular recognition has been studied through supramolecular chemistry, an 
interdisciplinary field which explores molecular interactions through specially 
designed artificial systems. The 1987 Nobel Prize for chemistry was awarded to 

Cram, Lehn and Pederson for their work in this field (Cram, 1988). Their work on 
"host-guest" complexes in particular, was cited as important. Host-guest systems 
describe the study of complexes composed of two molecules and held together by 

non-bonded interactions, and which are used in the detailed analyses of the binding 

properties of molecules. This type of information can be used to understand 
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biological processes and subsequently help in the selection and design of ligands 

which can manipulate these processes. 

3.2 Energetics of protein-ligand interactions 

The interactions between a protein and a ligand, or drug, takes place if the reaction is 

energetically favourable. Though covalent bonding between protein and drug can 

occur, these interactions tend to be non-bonded. The association of molecules and the 

affinity towards each other, is driven by the thermodynamics. 

3.2.1 Affinity and dissociation constants 

The process of non-covalent binding between ligand A and protein B, is described by 

the changes in enthalpy and entropy of a system. The system consists of free protein 

and free ligand molecules and solvent, and bound molecules A and B with solvent. 
The association relationship between the molecules is described as: 

k+I 

A+B AB Equation 3.1 
k-I 

A represents the uncomplexed ligand and B represents the uncomplexed protein. AB is 

the complexed ligand and protein. k+j is the association rate constant for the reaction 

going from left to right and k-I is the dissociation rate constant going from right to 
left. 

The binding affinity between two molecules can be expressed as the dissociation 

equilibrium constant (molar) at the thermodynamics equilibrium, Kd, shown by: 

[A] [B] 
Kd «- ý 

[AB] Equation 3.2 
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or by the association equilibrium constant & (in Nf 1), given by: 

Ka 7- 
[AB] 

[AI[81 

Equation 3.3 

These equilibrium constants can be determined eXPerimentally by measuring the 

concentrations of A, B, and AB. The following equation relates the equilibrium 

constant to the change in Gibb's free energy of dissociation of AB 

AG = AG* - RT In (Kd) Equation 3.4 

G is Gibb's free energy constant, AG is the change in free energy for the reaction, T is 

the absolute temperature and R is the gas constant. AGO is the free energy change of 

the reaction under standard conditions. Standard conditions arc denoted by aIM 

concentration of all reactants and products, T= 298 K and pressure is at I atm. At 

equilibrium AG = 0, therefore: 

AG*=RTln(Kd) Equation 3.5 

AG'is the binding free energy of an interaction. This is made up of two componcricts, 

entropy and enthalpy, which are associated with AG *through: 

AG'= AIP - TAS* Equation 3.6 

AH* represents the change in enthalpy of a system and TAS' is the change in entropy. 
If AH* is positive (i. e. unfavourable energy value) then the interaction is described as 
being entropy-driven and TAS* is positive (so -TAS* is favourable). If the signs for 
both terms are negative (i. e. AH' is favourable and _TASO is unfavourable) then the 

reaction is regarded as enthalPY-driven. 

Changes in enthalpy of a system can be measured experimentally by isothermal 

calorimetry or ITC (isothermal titration calorimetry), which measures binding 

equilibrium directly by using sensitive calorimeters which can measure AH and Kd in 

a single experiment. Protein-ligand interactions can also be determined using ICso 
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values. The IC5o measures the concentration of inhibitor required to reduce the 

binding of a ligand (or the rate of reaction) by half. The IC50 is not suitable for 

theoretical studies because its value depends on the amount of ligand available to the 

receptor, which makes comparisons between data obtained under different conditions 

unfeasible. On the other hand Kd values from different experiments can be compared, 

assuming that these were performed under equilibrium conditions (Ajay and Murcko, 

1995). 

3.2.2 Computational free energy calculations 

Using computational methods to accurately calculate binding affinities/free energies 

are essential in biomolecular simulations. Energy functions are used to estimate the 

binding energy between a ligand and a protein. Though there are several methods 

which are used to estimate free energies, these vary in terms of the levels of theory 

they employ and also in terms of their speed. Currently these methods are not capable 

of estimating binding energies to the level of experimental methods (Gilson and 
Zhou, 2007), though they continue to have huge potential, particularly in the field of 

structure-based design for the discovery of drugs (section 3.4). These methods are 
likely to improve as our understanding of physical principles increase and with 
improvements in computer hardware and speed. 

3.2.3 Free Energy Perturbation 

Free energy perturbation (FEP) is a computational technique that can be used to 

calculate relative binding free energies (Bash et aL, 1987). Free energy changes are 
defined by the initial and final thermodynamic states, regardless of the path takcn to 

get from one state to the other. By making small changes in a molecule's atom 

composition, and calculating the free energy between each change, it is possible to 

sum all the free energies from each of the changes to get the free energy between the 

starting and the final molecule. For example, given two molecules A and E, the 
difference in free energy between both can be calculated by taking into account 
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intermediate structures B, C and D. Therefore the free energy between each of the 

intermediate molecules can be summed up to give the difference in free energy 

between A and E (Figure 3.1). 

AGu-ý AGc-. *D 
AGA-+B 13 10 cD AGD-4E 

AE AGA--+E 

Figure 3-1 Free energy of change from moving between molecule A and E is 

represented by AGAýE. This is calculated by calculating the changes in free energy 
between intermediates, B, C and D which Is represented by AGA-A'ý:: AGA-+B + 

AGB.., c +, &GC-+D + AGD-. 
#L 

AGI 

L, +R LIR 
AG3 

II 
AG4 

L2 +R L2R 
AG2 

Figure 3-2 Thermodynamics cycle of Inhibitor ligands Li and L29 binding to 
receptor R. 

These principles can be applied to thermodynamics cycles, which attempt to calculate 

the relative binding energy between two different complexes, LIR and L2R in Figure 

3.2. The difference in free energies to form the two complexes can be written as AG2 - 
AGI, or as AAG. In principle it is possible to calculate AAG, AGI and AG2 by 

simulating the process, but in practice this is difficult as it would entail the 

reorganisation of receptor, ligand and solvent, and would require large computational 

power for the extensive sampling of the phase space. It is easier to, instead, focus on 

AG3 and AG4- Since the value around a thermodynamics cycle is zero, then AG2 - AGI 

= AG4 - AG3, then AAG can be calculated from AG3 and AG4- Though physically AG3 
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and AG4 cannot be performed in the laboratory, they can be simulated 

computationally by mutating LI to L2 in solution and also within the receptor. Taking 

this route rather than using AGI and AG2 is much more reliable as this involves less 

reorganisation of the system. 

3.2.3.1 Empirical factor models 

Calculating the Gibbs free energy of binding can be very time-consuming and 

complex because the calculation requires long, all-atom molecular dynamics 

simulations in order to cover the full phase space and obtain reliable free energy 

estimates. It is possible to use methods which approximate and simplify these 

calculations. By breaking down the Gibbs free energy of binding into separate, 

tangible components that are calculated separately and then summed together, it is 

possible to infer a good estimate of the free energy of binding. Force fields employ 

what is known as a "master equation" that comprises all, or some, depending on the 

level of approximation needed, of the energetic factors involved in a ligand binding 

reaction. One representation of the master equation is as follows: 

AGbind AGj,, j + AG,,,,, + AGcoqf + AGmotio, Equation 3.7 

AGbi,, d is the binding free energy, AGi,,, is the change in interaction energy, AGsolv is 

the change in solvation energy, AGO,, f is the change in confonnational energy, and 

AG.,,, j,,. is the change in molecular motion. 

Empirical factor models are much less computationally exhaustive 
'than 

FEP, though 
it is important to be aware of their relatively simplistic nature compared with more 
exhaustive methods. Reasons which contribute to this are, for example, the disregard 

of certain terms, such as entropic terms, which are difficult to estimate. Also it is 

difficult to weigh each of the terms in the master equation to give a good 
approximation of the free energy of binding. The other point to be aware of is that 

often the individual energy components comprise large, approximate, numbers may 
be both favourable (i. e. negative energy values) and unfavourable (positive energy 
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values). By summing these approximate values together, a small total binding free 

energy is obtained which, because it was derived from large approximate niunbers, 
may likely be prone to statistical and systematic errors (Kollman, 1993). In the next 

section the individual terms of the master equation shown in Equation 3.7 are 
discussed. 

31.3.1.1 Change in interaction energy (AGI. t) 

This term describes the non-bonded interactions between a ligand. and protein, in 

particular the electrostatics and van der Waals (vdw) interactions. These terms form 

part of the enthalpic contributions to binding and are discussed further in section 
3.2.3.2.4. 

3.2.3.1.2 Change in solvation energy (AG,.,, ) 

Change in solvation energy is represented by AG,,, t,, and represents the contribution 

of water to the free energy of a system. Biological systems where the binding of a 

protein and a ligand take place occur in an aqueous environment. In their free, 

unbound states, the surfaces of a protein and ligand are surrounded by water. When 

the two molecules bind and form a complex, the complex is also surrounded by water, 
but the actual surface available for water- molecule contact (the solvent accessible 

area) has been reduced. Conversely the surfaces of molecules buried from the solvent 
(the solvent inaccessible area) have increased. The reduction in solvent accessible 
area is termed the desolvation energy and will contribute towards AGbind. The 

approach of modelling a system's water will depend on the level of approximation 
necessary; explicit modelling of desolvation include solving the Poisson-Boltzmann 

equation and the Generalised Born, method (Lee et al., 2005). implicit solvation 
calculations can be performed using the solvent accessible surface area (Dill et al., 
2005). 
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3.2.3.1.3 Change in conformational energy (AG,.,, j) 

The energetic contributions made to AGbjM through changes in conformation of the 

protein and ligand are represented by AG,,, nf. The degree of conformational changes 

made by the protein and ligand upon binding differs between complexes. For most 

complexes the protein side chains may change substantially whereas changes in the 

conformation main chain are minimal. There are proteins which do undergo large 

changes in conformation of the main chain upon binding, such as HIV protease. 'Me 

enthalpic contribution to free energy from conformational changes can be modelled 

using a molecular mechanics force field. The entropic component of the protein and 
ligand AG,,, nf is more problematic to compute. A ligand, in its free state, adopts 

several conformations and, when bound to the protein, does so in only one 

conformation, resulting in loss of conformational entropy. Sampling all possible 

conformations of the ligand in its free state is impractical, so a method of 

circumventing this issue is to estimate the number of conformational bonds in the 

ligand, and so this term is usually estimated by counting the ligand's number of 

rotatable bonds. Changes in movement of the protein main chain and side chains also 

contribute to entropic losses. It is possible to estimate this by looking at the 

distribution of side chains from experimentally determined structures (Pickett and 
Stemberg, 1993). 

3.2.3.1.4 Change in molecular motion (AG.,, ti.. ) 

The change in energy due to motion of molecules is represented by AG.,, jj,,,,, and is 

represented by changes in rotation, translation and vibrational movements of the 

molecules. Upon binding, the six degrees of freedom, three translational and three 

rotational, are lost, thus lowering the entropy of the system and negatively 
contributing to the free binding energy. 

35 



3.2.3.2 Molecular mechanics force fields 

Molecular mechanics force fields have been developed to perform calculations of 

energy on systems containing large numbers of atoms. They are ideal for these types 

of systems because they ignore the electrons in the system and model atoms based on 

their nuclear positions, thus substantially reducing computational time. With 

biomolecules force fields are described as being two-body additive, meaning the 

potential energy is estimated as a function between pairs of two atoms. A potential 

energy function calculates the potential energy of a system and is a function of the 

position of the atoms under study. Energy terms which can be applied to estimate the 

potential energy of a system are shown in the following equation: 

E= Ebond + &, gj, + Ejo,, ion + E,, & + Ejec Equation 3.8 

Ebond represents the stretching of bonds, E,, ngi, is the opening and closing of valance 

angles, represents torsional terms, and E, & and E&, are the non-bonded vdw 

and electrostatic interactions respectively. 

Transferability of a force field and the parameters which define the terms in Equation 

3.8 is an important feature of force fields as it allows the same sets of parameters to 

model related molecules, and avoids having to generate a new set of parameters for 

every molecule. This is also important for making predictions; a force field that has 

been parameterised on a given molecule type can be applied to a related molecule 

and, theoretically, a reasonable estimation of the potential energy can be achieved. 
Force fields also utilise the concept of an atom type; every atom in the system under 
study is assigned an atom type, containing information about the atom, such as its 

number, hybridisation states, and local environment. For example, carbon atoms with 
SP I, sp2and sp3hybridisation states will be assigned individual atom types. 
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3.2.3.2.1 Bond stretching 

The energy of a bond between two atoms is said to be at its lowest when its length is 

at its "naturar', equilibrium length. A bond is stretched when its length deviates from 

its equilibrium state. When two bonded atoms are brought close to each other, their 

electron clouds overlap, thus increasing the energy of the bond. Similarly if the bond 

is stretched beyond its equilibrium point its energy will increase. Hooke's law is 

usually applied to describe bond stretching. 

v(o = IU2 (1 _ 10)2 Equation 3.9 

v(O represents the potential energy, k is a stretching constant of the bond, Io is the 

reference bond length and (I - lo)'is the change in bond length. The reference bond 

length is the value that a bond adopts when all other terms in the force field are set to 

zero. 

31.3.2.2 Angle bending 

Angle bending describes the bending of a valence angle. The valence angle describes 

the angle between the two bonds of three atoms that are bonded together 

consecutively. Similar to bond stretching Hooke's law is also applied to estimate the 
deviations of a given angle from a reference state: 

v(4 = ld2 (0 - Oo)2 Equation 3.10 

v(O) is the potential energy, k is a constant, Oo is the reference angle and (0 - Oo) is the 
displacement of the reference angle. 
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3.2.3.2.3 Torsional terms 

Torsional terms account for rotations about a covalent bond, which tend to have a 
large impact on the conformation of a molecule. Torsional angle interactions differ 

from bond stretching and angle bending interactions in two ways. The internal 

rotational energy barriers of a torsion bond are quite low therefore changes in torsion 

angles can be large. Secondly change in the torsional potential is periodic through a 
360' rotation. Therefore, the torsion angles between atoms determine the torsional 

potential and Et,,,, can adopt many different forms depending on the atoms forming it. 

Hence, torsional terms in force fields model a variety of different potentials. 
Torsional potentials are usually expressed as a cosine series expansion, such as: 

, 17 EL ((0) Al + COS(II (0 - 7)1 

n=o 2 
Equation 3.11 

where, (o is the torsion angle, and Vn is often referred to as the 'barrier height, ' giving 
the relative energy barriers to rotation. n is the multiplicity and gives the number of 
minimum points in the function as the bond is rotated through 360'. y is the phase 
factor and defines where the torsion angles passes through its minimum value. 

3.2.3.2.4 Non-bonded interactions 

Non-bonded interactions in a force field usually comprise the electrostatic and vdw 
interactions. These forces are distance-dependent and are usually expressed between 

non-bonded atoms. The non-bonded interactions of 1,2 and 1,3 atom pairs (atoms 

separated by one and two covalent bonds respectively) are usually not considered; the 
bond stretching and angle bending terms usually suffice in these cases. 1,4 bonds or 
greater are usually considered because these affect the conformational energies of a 
molecule. 
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3.2.3.2.4.1 Electrostatic interactions 

Because of differences of electronegativity of atoms, the clectron. cloud on a molecule 
tends to be unequally distributed. A couloumbic electrostatic potential is used to 

calculate these interactions, as shown by the equation: 

qiqi 
E, k, = 332 - Equation 3.12 

rE 

i andj are the two atoms between which the interaction energy is being calculated, qj 

and qj are the atomic charges for i andj respectively, r is the distance between the two 

atoms and c is the dielectric constant. 332 is a constant for expressing the value in 

units (kcal mol"). Estimation of the dielectric can be problematic, and different 

dielectric constants can vary the electrostatic interactions substantially. Examples of 
dielectric values implemented are E=I for a vacuum and c= 80 for bulk water. 
Dielectric constants are usually selected during parameter optimisation to fit 

empirical data. 

3.2.3.2.4.2 Van der Waals (vdw) interactions 

vdw interactions describe dispersion, repulsion and induction between atoms. They 
determine the shape and volume a given atom occupies. Dispersion forces are due to 

correlations between electrons in different atoms; they lower the overall energy and 
are therefore an attractive force. Repulsion is a positive force that is due to electron 
clouds overlapping. Induction is due to the distortion of the charge distribution of an 
atom by a neighbouring atom. The strength of the vdw term E, & is distance 
dependent. At small distances between atoms the repulsion force is unfavourable, 
making E, & unfavourable and as the interatomic distance decreases E, &O' approaches 
infinity. At larger interatomic distances the dispersion interactions first result in 
favourable, negative values for E,, &; as the interatomic distance increases to infinity, 
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E,, d,, value approaches 0. These distance-dependent changes in E, & values are most 

frequently described using the Lennard-Jones '12-6' function. 

0. 
Ay Cd 

r12 r6 

Equation 3.13 

r is the distance between a pair of atoms and c is the vdw well depth. A is equal to 4 

oJ2 and C is equal to 4d6 where a is the collision diameter (the separation between 

atoms for which the energy is equal to zero). 

Clash Ivnakv 

as 

I' 

Figure 3-3 The Lennard-Jones potential consisting of a repulsive component (r 12 ) 
and an attractive component (f6). The relative positions of the well depth C and 
the clash penalty are also shown. 

A diagrammatic representation of the Lennard-Jones potential is shown in Figure 3.3. 

The attractive component of E,, & varies with r -6and the repulsive component varies 
with r -12 . The clash penalty is a cut-off value that represents the magnitude of the 

maximum F, & value allowed between two atoms. The clash penalty can be decreased 

to dampen the effect of large, unfavourable vdw interactions. 
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3.3 Molecular modelling 

Molecular modelling applies variations of the theoretical principles described above, 

combined with computational methods, to molecules in order to understand and 

predict their behaviour in biological systems. The interactions of molecules can be 

studied to gain insight into the fundamental principles which govern biological 

processes. Similarly molecular modelling methods can be applied to the rational 
design of therapeutic drugs that interact with proteins to treat different disease 

conditions. 

Ligand-receptor interactions have traditionally been elucidated through laboratory 

experiments, which are often time-consuming and expensive. A drive towards 

molecular simulation has been triggcrcd by the incrcase in protein structural 
information in the PDB (Berman et al., 2000) and the decreasing costs of 

computational hardware. These methods complement laboratory experiments by 

providing fast and inexpensive investigations to guide further examination through 
laboratory experiments. An example of this is the application of protein-ligand 
docking in virtual screening of compound libraries for the identification of hits, a 

technique which is now widely implemented in the pharmaceutical industry (Jalaic 

and Shamnugasundaram, 2006). 

77 

3.4 Protein-ligand docking 

In the very simplest of terms protein-ligand docking attempts to, computationally, 

predict the correct bound association of a protein and a ligand from their atomic 

coordinates only. Research over the past two decades has focused on finding the most 

successful methods to try to achieve this. Ile fundamental drive for developing such 
methods is for their use in structure-based drug design (SBDD) for drug discovery. 
The potential to predict which ligands effectively bind to a protein target is valuable 
in the process of finding lead compounds that can be developed into effective drugs. 
This, combined with the mounting costs and lengthy process of taking a drug to 

market, have caused computational methods of structure based drug design to receive 
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significant attention (Jorgensen, 2004; Klebe, 2006; Kitchen et aL, 2004) as a viable 

strategy to drug discovery. 

Traditionally lead compounds have been discovered serendipitously, by modifying 

existing drugs or by isolating active ingredients in herbal remedies. However, with 

the increase in the elucidation of pharmacologically relevant protein structures from 

experimental (X-ray crystallography and NMR) and computational (homology 

modelling) methods, a structure-based approach to finding a drug which interacts 

with a protein to trigger a specific physiological response has become more feasible. 

The application of SBDD methods to drug discovery ultimately requires two 

elements, the 3-D structure of a protein and the location of the appropriate ligand- 

binding site. As mentioned in the previous paragraph, X-ray crystallography and 

NMR methods are some of the experimental techniques which are used to obtain 

structural information, though it is important to be aware of these methods' 

limitations, in particular the uncertainties introduced during the derivation of an 

atomic model from the experimentally observed electron density data in X-ray 

crystallography (Davis, et aL, 2003, Acharya and Lloyd, 2005). 

Computationally driven homology/comparative modelling can also be used to obtain 

suitable structures, particularly for structures which are difficult to elucidate 

experimentally, such as membrane-bound proteins. A notable example of such 

proteins are GPCRs (G protein-coupled receptors), which are perhaps the most 
important group of targets for therapeutics (Jacoby, et aL, 2006), with 50% of the 

most recently launched drugs targetting GPCRs (Klabunde and Hessler, 2002). 

Building a homology model of a protein is possible if there is good sequence 
homology between the target and another protein whose structure is known 

experimentally. Homology modelling therefore allows for the discovery of suitable 

structures of targets, such as GPCRs (Flower, 1999), upon which SBDD methods can 
be applied. 

The binding site within the protein can be inferred by the co-crystallisation of the 

protein and ligand. Other methods exist which look at sequence or structural 
similarity between putative sites to known binding sites (Campbell et aL, 2003). 
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Other methods use de novo identification and mapping of small-molecules binding 

sites (Sotriffer and Klebe, 2002, Laurie and Jackson, 2005). 

3.4.1 Methodologies of protein-ligand docking 

The approach to protein-ligand docking followed by many algorithms divides the 

process into two components; a search procedure and a scoring function. The aim of 

the search procedure is to sample the search space efficiently in order to predict the 

correct pose of a ligand within the protein binding site. With rigid-body docking, six 
degrees of freedom apply, three for rotation and three for translation. The scoring 
function is what is used to assess the "quality" of the structures generated by the 

search procedure. This step is necessary to guide the search towards the correct ligand 

pose, and is essential in the ranking of generated poses, with good poses being in the 

top ranks. 

The earliest docking algorithms considered both the protein and ligand as rigid 
bodies, with no consideration of the molecules' flexibility. Nowadays most docking 

tools allow for flexibility within a ligand. Full receptor flexibility, on the other hand, 

remains a challenge, due to the immense computational resources that would be 

needed in order to effectively sample all possible conformations and backbone 

rearrangements of the target protein. Attempts have been made, however, to include 

partial protein flexibility. This includes methods such as soft docking (Jiang and Kim, 

1991) and partial side-chain flexibility (Leach, 1994, Jones et al., 1995). Current 

protein-ligand docking algorithms are, in general, considered to be successful at 

predicting the binding pose of a ligand within a protein binding site (Leach et al., 
2006). 

Protein-ligand docking methods have been reviewed in a number of publications 
(Abagyan and Totrov, 2001; Brooijmans and Kuntz, 2003; Campbell et al., 2003; 
Halperin et al., 2002; McConkey et al., 2002; Shoichet et al., 2002; Taylor et al., 
2002, Kitchen et al., 2004). In the following sections a description of scoring 
fimctions is presented, followed by a discussion on the search techniques employed in 
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docking and their application in different algorithms. A review of studies that 

compare and evaluate different docking methods is also covered, in Section 3.4.4. 

3.4.2 Scoring functions 

Accurate scoring of ligand conformations is essential for discerning the best solution 
from a variety of different conformations a ligand adopts during a conformational 

search, and for differentiating binders from non-binders from a compound library. In 

addition to pose discrimination, ideally scoring functions should also be capable of 

ranking sets of ligands according to experimentally determined binding affinities. 
This assumption is made in virtual screening methods, by using the calculated 
binding affinities to rank-order a hit list obtained from docking a library of 

compounds. In practice, this is very difficult to achieve, mainly due to the challenge 

of accurately calculating the energy components that influence the binding energy. 
A good scoring function also needs to be fast, since numerous conformations, 

generated by the search component, need to be assessed at one time. A huge effort 
has gone into developing effective scoring functions, which is apparent in the 

numerous reviews (Tarne, 1999; Gohlke and Klebe, 2001; Gohlke and Klebe, 2002; 

Jansen and Martin, 2004) and performance comparative studies (Wang et al., 2003; 

Ferrara et al., 2004; Wang et al., 2004) which have been published in the area. 
Despite this drive, scoring functions continue to have their limitations (Leach et al., 
2006), and to-date no scoring function has been developed which succeeds at 
discerning correct poses in all docking experiments. Attempts to understand scoring 
functions have included the employment of decoy structures to validate the 

capabilities of scoring functions (Wang et al., 2003; Perola et al., 2004) and to 
highlight their limitations (Graves et al., 2005). Some attention has also recently 
focused on developing methods that tailor scoring functions towards a specific need 
(Catana and Stouten, 2000). 
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Scoring functions in general can be categorised into three main groups; (1) scoring 
functions derived from first principles, (2) empirical scoring functions and (3) 

knowledge-based scoring functions. 

3.4.2.1 Force rield-based scoring functions 

Force field-based scoring functions use first principles to quickly compute the scores 

of docking solutions, are transferable and also use terms which have a physical basis. 

Force field scoring functions tend to only measure potential energy therefore some 
force fields contain additional terms to account for desolvation and entropy using 
different models. The non-bonded interaction energy terms calculated in force fields 

are the vdw and electrostatics contributions, usually performed using a Lennard-Jones 

6-12 potential and Coulombic function respectively. The Lcnnard-Jones potential is 

sometimes softened, to allow for "sofV' docking and as in GOLD, where a 4-8 

potential is used. Hydrogen bonding terms are accounted for using geometric 
dependent terms as shown with Q-fit (Jackson, 2002) and GOLD (Jones et al., 1997). 

Continuum solvent models, using a fixed or scaled dielectric constant, arc the 

common approach to dealing with the effects of solvent. 

3.4-2.2 Empirical scoring functions 

Empirical scoring functions use multivariate regression methods to fit coefTicicnts of 
-I--- physical contributions to the binding free energy in order to reproduce measured 
binding affinities for a training set of known 3D protein-ligand complexes (Horton 

and Lewis, 1992; Bohm, 1994). LUDI (Bohm, 1994), was one of the earliest 
empirical scoring functions developed, and includes terms for hydrophobic contact, 
polar interactions and entropic fixation costs for loss of torsional, translational and 
rotational degrees of freedom upon binding. The FlexX (Rarey, 1996) scoring 
function uses a modified version of the LUDI function, and estimates free energy 
contributions from the number of rotatable bonds in the ligand, hydrogen bonds, ion- 

pair interactions, hydrophobic and n-stacking interactions of aromatic groups and 
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lipophilic interactions. Empirical scoring functions are fast and are reasonably good at 

predicting binding free energies. The disadvantage of these methods is that they are 
trained on protein-ligand complexes with good binding energies, and therefore they 

do not penalise steric clashes or same-charge interactions appropriately. 

3.4.2.3 Knowledge-based scoring functions 

Knowledge-based scoring functions are based on a classical statistical physics 

concept, where observed distributions of geometries are used to deduce the potential 
that give rise to the observed distribution. The function uses protein-ligand atom pair 

potentials derived from crystallographic complexes and assumes that these are 

represented correctly. A limitation of this type of function is the unavailability of 

sufficient data to allow computation of density distributions for different parameters. 
Also, this approach tends to treat all parameters independently when it may not be 

correct to do so. For example, a hydrogen bond with a large distance between donor 

and acceptor will not contribute towards binding, regardless of the directionality of 

the bond. The availability of large quantities of data can circumvent this issue as it 

would allow the consideration of joint distributions of parameters. One of the first 

studies which used this method was for the binding affinity prediction of HIV-1 

protease complexes (Verkhivker et aL, 1995). Current popular knowledge-based 

scoring functions are Drugscore (Gohlke et aL, 2000) and DFIRE (Zhang et aL, 
2005). 

3.4.2.4 Consensus scoring 

Consensus scoring has become increasingly popular for enhancing the performance of 

a scoring function (Charifson et al., 1999; Wang and Wang, 2001; Clark et al., 2002; 

Yang et al., 2005). This method works by using individual scoring functions to 

synergistically score generated poses; for example one scoring function can be used 
to find poses, and a second scoring function can be used to refine the placement and 
correctly score the protein-ligand complex. 
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3.4.3 Docking search procedures 

Numerous procedures have been employed to perform conformational and 

configurational searches. The most widely used are simulated annealing, matching, 

molecular dynamics, evolutionary algorifluns (which include GAs), tabu searches, 
incremental construction and systematic searches. These are discussed below. 

3.4.3.1 Matching algorithms 

Matching algorithms are designed to align, or match, structural features of a ligand 

onto a protein binding site. Surflex (Jain, 2003) generates an idealised binding site, a 

protomol, from a protein's binding site, to which ligands arc optimally aligned, and 

which consists of molecular information which represent the most favourable 

interactions to the protein binding site. During a docking run, the ligand is 

fragmented, and each fragment is aligned to the protomol to maximise the molecular 

similarity to the protomol. All the fragments are then scored, and the molecule is re- 

assembled, either by incremental construction (described below) or by a "whole 

molecule" algorithm (which is significantly faster). 

LigandFit (Venkatachalarn et al., 2003) is a shape-dirccted docking procedure which 

matches a ligand to the active site of a protein. A site detection algorithm first of all 
detects the position of the active site, or, where possible, an experimentally-validated 
active site is used to define the shape of the active site. A Monte Carlo search 
procedure (see below) is used to search the conformational. space of the ligand. Each 
ligand conformation is evaluated against the active site and, if it passes a certain 
threshold, is docked in the active site via a shape alignment protocol. Protein-ligand 
interaction energy calculations further refine these poses. 14 of the 19 test cases 
produced structures very close to the expcrimentally-deterrnined ones. The method is 

also very fast and the authors recommend its use in high-througliput virtual screening 
studies. 
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The earliest protein-ligand docking algorithms assumed rigidity of both molecules' 
bonds. DOCK, one of the earliest docking algorithms (Kuntz et aL, 1982), used a 

matching technique modelling rigid-body molecules. One of the more recent versions 

of the program (DOCK 4.0) incorporates incremental construction and random 

conformational searches to allow flexible ligand docking (Ewing et aL, 2001). 

Incremental construction is described in a later section. The matching orientation 

procedure in DOCK 4.0, which is user-defined, can be either automatic or manual. 
For a manual matching operation, the user must specify geometric parameters such as 

the distance tolerance, and these are used to build orientations that match these 

parameters. In automatic matching the program performs nested cycles of matching, 

until a user-defined number of valid orientations has been reached. This technique is 

carried out on ligand fragments which are subsequently added to an anchor fragment 

and pruned. The purpose of pruning is to cut down on the degree of the systematic 

conformational search which increases exponentially with the number of fragments. 

This is done by analysing binding positions according to score and only keeping the 

best scoring and most diverse positions for the next stages of the algorithms. DOCK 

4.0 still allows the option of rigid-body docking, where multiple conformations of the 

ligand are docked independently. DOCK 4.0, unlike previous versions, allows the 

user to specify the number of conformations (N) a rotatable bond of a particular 
flexible ligand can undertake. A ligand with 4 rotatable bonds will therefore have N4 

possible conformations to be docked. This gives the user control over the degree of 

conformational search to be explored. 

3.4-3.2 Simulated annealing 

The principles of simulated annealing originate from the annealing of physical objects 
in the manufacturing industry where a molten substance's temperature is slowly 

reduced until a crystal is formed. Mimicking this process in docking, the temperature 

of a system is reduced until a stable docked structure is achieved. The temperature 
(which corresponds to the degree of random motion) change is achieved by changing 
a control parameter, and the ftee energy is represented by a scoring function. To get 
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to the global minimum, careful temperature control is essential and large increases in 

temperature must be applied periodically, so as to overcome high-energy barriers, and 
to avoid being stuck in a local minimum. The Metropolis Monte Carlo simulated 

annealing algorithm in particular has been widely used. MCDOCK (Liu and Wang, 

1998) is one of the more popular MC (Monte Carlo) -simulated annealing algorithms, 

which performs geometry-based docking and energy-based docking, followed by a 
final energy minimisation on the docked structure. The scoring function used in the 

second step utilises Lennard-Jones and electrostatic non-bonded interaction terms. 

The simulated annealing step of this algorithm first samples several geometries at a 

high temperature. The lowest energetic structure is then chosen, which is then used as 

a starting state for more structures, at lower temperatures. During these steps, scveral 

structures with low energies are saved, and the lowest is once again minimised. This 

version of MCDOCK was tested on 19 ligands, and the rmsd values obtained were 
between 0.25 A and 1.84 A for all 19 cases. 

3.4.3.3 Tabu search 

A tabu search, a heuristic search procedure, was first applied to the docking problem 

within the PRO 
- 
LEADS software (Westhead et al., 1997). It involves the generation 

and maintenance of a tabu list, which contains a number of previously visited 

solutions, and which are considered to be "tabif'. i. e. the algorithm is restricted from 

revisiting them. The algorithm begins with the generation of a random solution. The 

variables of the solution are then randomly adjusted using user-defined moves, and 
these moves are scored using an energy function. These moves are then ranked by the 

value of their energy functions, and each move is individually examined. If a solution 
resulting from a certain move is not sufficiently different (which is determined by an 
rms threshold value between two solutions) from the solutions in the tabu list, then it 
is considered tabu and is discarded. The best non-tabu move is selected (if found) and 
added to the tabu list. A move is always accepted, regardless of its tabu status, if it 
has energy lower than any solution that has been generated so far. If no non-tabu 
moves have been found, and if none of the moves have generated solutions of the 
lowest energies, then the algorithm terminates. This particular tabu search also has an 
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extra method which restarts the whole procedure using a new initial solution, if the 

best solution has not changed for a number of iterations. This helps the search escape 

any local minima. PRO-LEADS was validated against a test set of 50 complexes 
(Baxter et aL, 1999). Using a docking protocol that compromised between accuracy 

and average docking time per complex, 79% of the ligands docked with rms values of 
less than 2.0 A. Using the same docking protocol, 10 000 ligands from the 

ChemBridge Prime database were selected for virtual screening experiments, to be 

docked into three receptor molecules (thrombin, factor Xa and ER), along with a 

number of known ligands. The authors reported a good separation between the 

docking energies of the two subsets. 

3.4.3.4 Incrcmental Construction 

The incremental construction technique is different from the other search techniques 

so far described in that the ligand is placed in the active site incrementally, Le. the 
ligand is divided into fragments which are docked independently and then fused. 

FlexX (Rarey et aL, 1996) is one of the more widely used incremental algorithms, 
which considers the receptor as a rigid body, and allows for ligand flexibility. The 

scoring function used to assess the solutions is one similar to that developed by B6hm 

(1994). 

The FlexX algorithm consists of three Phases. The first phase consists of the selection 

of the base fragment. 17his is a fragment that is connected to the receptor. What needs 
to be considered in the selection of the fragment is that a larger fragment with more 
interaction groups increases the probability of finding the correct binding mode, but 

that this also increases the number of possible conformations of the base fragment. 
The authors obtained the best results if the fragments are small. After the base 
fragment has been selected the rest of the ligand is split into fragments. 
The second phase of FlexX is the base placement algorithm, which uses a pose 
clustering technique to generate a set of placements for the base fragment in the 

active site, and B6hm's scoring function is used to assess the placements. The final 

phase of the algorithm involves the incremental construction of the ligand (complex 
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construction). This is approached as a tree search problem, where a node represents a 

placement of the ligand. The binding energies of the growing ligands are assessed at 

each stage so that the fragments are only placed in the most cnergcticaRy favourable 

poses. Extended placements are then optimised where necessary, ranked (based on 

the scoring function mentioned earlier) and clustered (to remove similar placements). 
FlexX was tested on 19 complexes, and docked all 19 within a 0.5 A to 1.2 A n'ns 
deviation from the experimentally determined structures. 

FlexX forms the basis of another docking algorithm, FLEXE (ClauBen et al., 2001), 

which considers protein side chain variations, point mutations and loop movements 
(to a certain degree). Each variation is represented by a single structure, and all the 

variable structures together are known as an ensemble (Knegtel et al., 1997). The 

entire ensemble representation is based on a "united proteiw' description which is 

created by the superimposition of the different structures in the ensemble. Similar 

parts between all the structures in the ensemble are merged whereas the dissimilar 

parts are treated as variations of the united structure. 67% of the ten ensembles 
FLEXE was validated on had solutions of RMSD less than 2.0 A in the top ten 

predictions. FLEXE is now known as FlexX-Ensemble. 

Hindle et aL, (2002) introduced Flex. X-Pharm, which employs the original FICXX 
flexible docking tool, but allows for pharmacophore-type constraints to be considered 
during the incremental construction stage. In many docking studies, some knowledge 

may already exist concerning particular features adopted by the protein target site 
when docked to a ligand. FlexX-Pharm considers two types of constraints, interaction 

and spatial constraints, when building a particular ligand. Only if the specified 
interaction between a particular group in the active site and a ligand fragment in a 
certain position is present would a partial solution be kept. A spatial constraint 
constricts a ligand to a particular position in the active site, and it is defined by an 
element type and a sphere in which the element must remain. Flex. X-Pharm produced 
good results, especially with complexes where FlexX was not successful. 
Q-fit (Jackson, 2002) is another tool that uses incremental construction, combined 
with probabilistic sampling, to dock fragments into a binding site. Q-f*it has been 
utilised during the research for this thesis and is therefore described in more detail in 
Chapter 4. 
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3.4.3.5 Genetic algorithms 

The basics of a genetic algorithm are described in section 2.2.1. In this section genetic 

algorithms will be discussed in the context of protein-ligand docking. one of the 

earliest GAs developed for flexible ligand docking is the extension to the DOCK 

programs developed by Oshiro et al. (1995). This program explores the 

conformational and orientational space of a ligand within a receptor, using a GA- 

based technique. A chromosome (which represents one potential solution, or pose, of 

the ligand), encodes both the orientation and the conformation of the ligand. The 

conformation is represented by values of all the torsion angles about rotatable bonds 

of the ligand. The representation of the ligand orientation within a chromosome is 

dependent on the GA approach being used. 'Me program allows for two different 

approaches: a sphere-based GA method and an explicit-orientation-based method. 

The former orients the ligand by matching the ligand atoms with spheres that 

represent the active site. In this method, the orientation of a ligand is represented by 

pairs of integers, where each pair is a matching between a sphere and an atom 

number, and is encoded in a gene within a chromosome. The explicit-orientation- 
based method consists of two stages: the first stage determines restrictions on the 

ligand orientation space so that only the active site region is explored. In the second 

stage, the GA is used to find the lowest-energy conformation. In this approach, the 

orientation representation in the chromosome is a translation vector and Euler angles, 

describing the ligand's position in the search space, and the conformation is 

represented by torsion angles about the ligand's rotatable bonds. 10%-20% of a 

population in a particular generation is discarded, and two-point crossover is carried 

out on 60%-70% of the remaining population. Each bit in a chromosome has a certain 

probability of being mutated (0-0065 was the probability used by the authors). Based 

on the AMBER potential function, the ligand-enzyme interaction energy is calculated 

to score a particular solution. Both GA-based methods succeeded in finding low- 

energy solutions that are close to the experimental structures. 
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Autodock (Morris et aL, 1998) is an automated docking algorithm whose searching 

procedure was modified from a simulated annealing search to a hybrid of a genetic 

algorithm and a local search. The reason for this extension is that the success of 
docking with simulated annealing employed by Autodock was limited to ligands with 

eight rotatable bonds or less. The hybrid consisted of a traditional genetic algorithm 

combined with a local search method (LS) for energy minimisation. The LS 

procedure is adaptive, i. e. energies from previously generated poses during the LS 

influence the step size of the steps that follow. 

In this GA the chromosome consists of real number genes; three Cartesian 

coordinates for translating the ligand along the three axes, four variables 

(quaternions) that define ligand orientation, and a real number representing each 

torsion angle in the ligand. Five stages are involved in forming a single generation: 

mapping and fitness evaluation, selection, crossover, mutation and elitist selection. 

Mapping converts the individual's genotype to its phenotype (i. e. from the genes that 

make up the chromosome to the coordinates of the ligand and its calculated energy 

function). The energy function (which is the sum of intermolecular interaction energy 
between ligand and protein and the intramolecular interaction energy within atoms of 

the ligand) signifies the fitness of a particular ligand pose. The selection of the 

individuals allowed to reproduce is performed through proportionate selection. 

Individuals with above average fitness will generate proportionately more offspring. 

Selection is followed by two-point crossover and mutation. Also, an elitist strategy is 

used to pass the top individuals to the next generation. The algorithm is implemented 

over several generations until a termination criterion is met. In Autodock, this occurs 

when a maximuin number of generations or a maximum number of energy 

evaluations is reached. 

At every generation, a user-dcfined fraction of the population can undergo a local 

search (LS). Here, LS searches the genotypic space around a particular individual and 

any improved adaptations observed are encoded in the genotype, which is inherited in 

the offspring. This concept of encoding, in which changes acquired in the phenotype 
are passed to the next generation is known as Larnarckian, after Jean Batiste de 

Lamarck's discredited theory that phenotypic characteristics acquired during an 
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individual's lifetime are inherited. Hence the GA in Autodock is referred to as the 

Lamarckian Genetic Algorithm (LGA). 

The different search procedures in Autodock were tested on seven protein-ligand 

complexes, where the LGA search was found to be the most successful and efficient 
in predicting the docked structures (mean rmsd from experimental structures = 0.88 
A). 

While Autodock considers the target structure as a rigid body, GOLD (Jones et al., 

1997) allows for some flexibility within the active site of the target. The GOLD 

algorithm is based on the GA described by Jones et al. (1995). The chromosomes in 

GOLD are represented by bit strings. Two binary strings, one for the protein, one for 

the ligand, are used to represent the torsional angles. Two integer strings represent 
hydrogen bond mappings between the protein and the ligand. A GA run begins with 

the generation of an initial population randomly. The fitnesses of the individuals are 

calculated based on the scoring energy function. An operator (such as crossover or 

mutation) is chosen using roulette wheel selection, which is also used to select the 

parents whose genotypes will be manipulated by the operators. The resulting children 

then replace the least fit members of the population, and the iteration process 

continues. The termination procedure is employed when 100 000 operators have been 

applied. 

As well as modelling hydrogen bond interactions, GOLD also incorporates hydrogen 

bonding energy in the scoring function. The authors have noted the importance of 

hydrogen bonds observed from crystal structures which show that ligands appear to 

interact at a number of key hydrogen bonding sites to conforrn to the shape of the 

binding site. A recent version of GOLD accounts for water mediation and 
displacement by switching water molecules on and off and allowing their rotation 

around their three principal axes (Verdonk, et al., 2005). 

DARWIN (Taylor et aL, 2000), another GA-docking tool, is interfaced with the 

CHARMM force field program (Brooks, 1983) to score flexible ligand placements 
within a protein. Parallelisation of CPUs is employed to run several CHARMM 
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programs instantaneously to allow multiple energy evaluations and thus speed up the 

process of a DARWIN run. 

The chromosome in a DARWIN GA contains the binary encoded variables of a 
ligand (a solution) that represent the starting orientation and position of the ligand, as 

well as the torsional bonds. The population size and the number of generations are 

user-defined. An elitist strategy (or the "survival rate"- termed by the authors) passes 

the fittest chromosomes to the next generation, whereas the least fit are deleted 

(defined by the term "death rate"). Mutation and crossover operators are carried out 

on the parent chromosomes to fill in the rest of the population (the population size 

remains the same throughout a run). DARWIN's search strategy performed well in 

finding solutions with fitnesses at least as good as the experimental structure. 

GAs have also been applied to the docking of fragmented ligands. The SEED-FFLD 

algorithm (Cecchini et aL, 2003) docks ligands in two phases. First the SEED 

program (Majeux et aL, 1999) docks the ligand fragments into the binding site of the 

receptor. The FFLD program (a GA) then docks the whole ligand into the binding 

site, using the docked fragments from the SEED to determine its placement. The 

FFLD program therefore only explores the conformational space of the ligand. FFLD, 

as with Autodock, uses a hybrid technique that consists of a global and a local search. 
The stages which constitute a single generation in this program are: evolution, 
mapping, fitness evaluation, local search and similarity testing. The first stage 

comprises of using the genetic operators (one-point crossover and mutation) to the 

population to generate a new population. The binding energy of the new population is 

evaluated. A local search is performed on the top 10% of the individuals in the new 
population to refine the fitness. Finally the parent population is compared to the new 
population and parent chromosomes are replaced by new chromosomes, taking 

energy values and structural similarity between the chromosomes into consideration. 
By reducing structural similarities between the chromosomes the diversity of the 

population is retained and convergence to local minima is avoided. The termination 

criteria used by FFLD are determined by the maximum number of generations 
reached or number of energy evaluations performed. 
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3.4.3.6 Systematic methods 

Systematic docking approaches attempt to carry out an exhaustive search of 

conformational, positional, and orientational spaces of a ligand relative to a protein 
binding site. the program Glide (Friesner et al, 2004) approximates a complete 

systematic search of a ligand's degrees of freedom by first implementing a rough 

positioning and scoring phase for narrowing down the search space. This generates 
ligand poses that are then minimised in the field of the recptor using a standard 

molecular mechanics energy function in conjunction with a distance-dependent 

dielectric model. Finally three to six lowest energy poses undergo Monte Carlo 

simulations to examine nearby torsional minima. This step is necessary in some cases 

to correctly orient peripheral groups and alter internal torsional angles. A scoring 
function is finally used to select the correct pose from the mi*ru*mised poses. The 

scoring function implemented uses a modified and expanded version of Chemscore 

scoring function (Eldridge et al, 1997), which the authors term as GlideScore to 

predict binding affinity and for rank-rodering ligands in database screens. To select 

the correct pose, a composite scoring function is used, that combines GlideScore, the 

ligand-receptor molecular mechanics interaction energy and the ligand strain energy. 
This scoring function is termed the Emwel, and which was found to be superior to 

using GlideScore or the molecular mechanics energy alone. 

Glide was tested on 282 co-crystallised protein-ligand complexes derived from the 
PDB. The results showed that the program obtained geometries that were less than I 
A in nearly half of the test cases, and greater than 2A in 94 of them. These results 

were compared to other published results, and it was found that Glide is nearly twice 

as accurate as GOLD and more than twice as accurate as FlexX for ligands with up to 
20 rotatable bonds. 
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3.4.4 A review of comparative studies of docking methods 

Numerous comparison studies have been published to understand and evaluate the 

performance of different docking methods relative to each other. It is not possible to 

provide a review of all, so this section will provide a review of the more significant 

papers. 

Onodera et al., (2007) compared three docking tools, AutoDock, GOLD and DOCK 

by testing these on 116 target proteins. DOCK was shown to have the best screening 

performance in the enrichment rates compared with the others, whereas GOLD was 
the best in docking pose prediction. Another study, comparing the performance of 
Glide, GOLD and DOCK for virtual screening was carried out (Zhou et al., 2007). 

The test case targets in this particular study are deemed as being pharmaceutically 
interesting, and are tested with active compounds. Glide XP was shown to achieve 
better enrichment rates compared with the other two methods, while GOLD 

outperforms Dock. 

One of the more comprehensive studies attempted to compare eight of the most 

widely used docking tools, in terms of their ability to both, predict poses of x-ray 
crystal structures, and to discriminate known inhibitors from randomly selected, drug- 
like molecules (Kellenberger et al., (2004)). The authors found that the same three 

algorithms (Glide, GOLD and Surflex) were successful in both properties. The 

strengths and weaknesses of each of the docking tools were also noted, based on 
physicochernical properties of the ligands and protein binding sites. A similar study 
comparing the performance of five docking programs (FlexX, DOCK, GOLD, 
LigandFit and Glide) against 14 protein families (and comprising of 69 targets) also 
found GOLD and Glide to be the most reliable (Kontoyanni et al., 2004). This paper 
also attempted to relate the results obtained with each docking tool with the nature of 
the binding site. For example GOLD was found to perform well with mildly or 
mostly hydrophilic targets, whereas Glide was not as discriminatory to the nature of 
the active site. 
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A more recent study conducted by Warren et al., (2006), attempted to assess the 

current state of docking algorithms, by evaluating 10 docking tools and 37 different 

scoring functions. The datasets consisted of eight protein targets tht are of seven 

protein types, and ligands that were very similar to pharmaceutical companies' 

compound libraries. The authors found that the docking algorithms were successful at 

generating correct poses, although scoring functions were less successful at 
differentiating crystallographic poses from the rest of the generated poses. It was also 
found that docking programs can identify active compounds from a set of decoys, 

though this was not possible across all protein targets. A study of the docking 

programs' and scoring functions' ability to predict compound affinity showed that 

none were able to do so successfully. 

Effectively comparing docking algorithms can be problematic, in particular with 

respect to standardising the methods and the analysis of the docking programs' results 

to warrant a fair comparison. Issues include the use of rmsds as a reliable measure of 

success, the lack of consideration of crystal packing interactions and not always 

ensuring that all search problems are given equal levels of complexity (Cole et al., 
2005). Finding an algorithm's optimum set of parameters suited to a particular 

problem can also bias comparative studies; attempts have been made recently at 

understanding docking parameters' effects on performance (Andersson et al., 2007). 

3.5 Aims of this work 

Though much progress has been achieved in the protein-ligand docking field, 
limitations attributed to the accuracy of scoring functions continue to hinder the 
development of accurate and robust algorithms. 

As mentioned in section 3.2.3.1, scoring functions tend to weight individual energy 
terms before combining them to give a total energy, in a process that can be described 

as a weighted sum approach and which was discussed in section 2.3.1. Section 2.3.2 
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introduces Pareto concepts for multiobjective optimisation as an alternative way of 
dealing with problems comprising of different components, or objectives. In this 

work multiobjective optimisation is applied to the scoring function element of 

protein-ligand docking. The thesis will focus on understanding scoring : ftmctions 

ftirther by applying multiobjective optimisation to a force field-based scoring 
function. Rather than using the total interaction energy to assess the quality of poses, 

a multiobjective approach, using individual components of the scoring function, will 

be used. In this way the influence of individual energy terms in docking a ligand 

correctly into a binding site can be examined energy. The role of individual energy 

terms when docking a particular test case could be compared to results obtained by a 

single objective optimisation algorithm (most current docking tools fall under this 

category). For cases when a single objective optimisation algorithm fails to find the 

correct solution, the total energy of the best solution can be broken down into its 

individual energy terms, and the relative contribution of each terms to the total energy 

can be compared to the energy terms of correct solutions obtained from a 

multiobjective algorithm. From such an analysis, it may be possible to realise whether 

the relative contributions of individual energy terms are important in finding correct 

solutions. These experiments would also indicate which of the terms, if any, is most 
important in docking a ligand with a correct pose. 

As far as we are aware, no studies have been performed to study, in a multiobjective 

manner, the balance of energies which constitute a scoring function. An attempt to 

understand the importance of individual interaction energies in relation to others has 

been demonstrated by Brenk et aL, (2006) who have designed very simple binding 

sites dominated by only a few energy terms, and where other docking approximations 
do not apply. The binding site used by the authors allowed for the study of the 
balance between electrostatic energy and desolvation energy, which was performed 
by the retrospective docking of known binders and non-binders and for which the 

scoring function being implemented was found to predict accurately. The binding site 

was also used for prospective docking of a large compound database. The binding 

affinities of the top scoring and lowest scoring ligands were calculated and the crystal 

structures of the binders were elucidated, which helped in giving an insight into the 

accuracy and weakness of the scoring function. Similar studies by the same group 
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have been carried out on cavities that examine ligand binding in hydrophobic and 

slightly polar environments (Graves et aL, 2005, Wei et aL, 2002). In contrast this 

thesis will attempt to understand the roles of individual energy components 

algorithmically, within the realms of the scoring function. 

The aim of this thesis is therefore to gain a greater understanding of the influence of 
individual terms that comprise scoring functions, and their effect on the performance 

of a docking algorithm. More specifically, this will be achieved through the following 

objectives: 

- To develop a docking algorithm that oPtimises the individual energy terms in a 

scoring function independently, with an initial focus on electrostatic, hydrogen 

and vdw energy tenns. 

- To compare docking results obtained from multiobjective optimisation. to 

single objective optimisation in order to see whether docking failures of single 

objective optimisation algorithms can be attributed to the incorrect 

optimisation of individual energy terms. 

- To gain an understanding on whether individual energy terms have differing 

influenees on different eomplexes. 

- To test the algoritbra on a dataset comprising of a single protein in complex 

with different ligands. 

- To test the algorithm on a large dataset of different protein-ligand complexes. 

- To extend the algorithm so that it incorporates a third objective, thus 

performing multiobjective optimisation on three objectives. 

In the following chapter (Chapter 4), the development of a single-objective genetic 

algorithm that performs rigid-body protein-ligand docking is described, and the 

results obtained when the algorithm is tested on one dataset are presentcd. Chapter 5 

describes the adaptation of the algorithm from single-objective into a multiobjective 

optimisation docking algorithm. Chapter 6 describes results obtained when the 

algorithm is tested on two datasets. Chapter 7 describes enhancements to the 

algorithm, followed by results comparing the enhanced version with the original 

version of the algorithm. Chapter 8 shows results from testing the algorithm on 
various and larger datasets. Chapter 9 describes the adaptation of the algorithm to 
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incorporate solvation energy as a third objective in optimisation, and finally Chapter 

10 is a discussion of the major observations and future directions of the project. 
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4 Docking using single-objective optimisation. 

As was discussed in Chapter 3, the aim of this thesis is to apply the process of 

multiobjective optimisation to protein-ligand docking and, in particular, to a scoring 
function. The scoring function selected for this is Goodford's force field based GRID 

scoring function (Goodford, 1985) and which is discussed in section 4.4. 

Since an algorithm that employs multiobjective optimisation follows the standard 
form of a GA, a good starting point in the process of producing a multiobjective 

optimisation docking tool is to first develop a single objective, standard GA (or 

SGA). An SGA has several of the elements that are necessary for multiobjective 

optimisation, such as crossover, selection, and mutation. By first implementing an 
SGA, these operators can be tested and their parameters optimised, before modifying 

the algorithm into a multiobjective optimisation program. The type of docking 

implemented here is rigid-body docking. 

4.1 The chromosome and its genes 

As was discussed in Chapter 2, the population in a GA is made up of a collection of 

chromosomes, each of which represents a solution to the problem which is being 

optimised. In the case of protein-ligand docking, the chromosome represents the pose 

of the ligand in the search space- which consists of a section of the protein binding 

site. For the SGA that was developed here, the ligand pose is codcd into the 

chromosome using real value representation- the magnitudes of the translation and 

rotation of the ligand, with respect to a reference structure, are represented as floating 

point numbers in the chromosome's genes. Since the algorithm performs rigid-body 
docking, rotatable bonds have not been considered and these are not encoded in the 

chromosomes' genes. Within the algorithm a chromosome therefore consists of an 

array of floating point numbers, where each floating point is position-specific to the 

gene it represents. Figure 4.1 contains a schematic of the chromosome. The first three 
floating point numbers of the array, (trX, trY and trZ) represent the translation of the 
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ligand, in Angstroms along the x, y and z axes respectively. Rotation of the ligand 

along the x, y and z axes is represented by roLX, rotY and rotZ radians respectively, 

and which occupy the fourth, fifth and sixth positions of the chromosome. These 

genes represent the six degrees of freedom which are necessary for generating 
different poses of a ligand in order to implement rigid-body docking. They also 

represent changes that are carried out on a ligand's reference pose. 

4.2 Mapping the genes to the ligand 

The coordinates of the ligand, as extracted from a pdb file, represent its position 

relative to the protein it is bound to, and has usually been inferred experimentally. 
The experimentally determined ligand will be referred to in this thesis as the ligand's 

crystal structure, because all test cases applied here have been inferred by x-ray 

crystallography. The pose of the crystal structure also forms the comparison upon 

which the quality of a solution is assessed, by comparing the pose of a solution to that 

of the ligand crystal structure's pose. It is therefore important to remove any bias 

towards the ligand crystal structure, and to ensure that the use of this information is 

kept to a minimum during a run of the algorithm. For this reason the genes encoded 

by a chromosome are applied to a reference pose that has been modified from the 

ligand crystal structure rather than to the ligand crystal structure pose. This is done by 

first translating the ligand so that it is at the origin of the GRID box (see section 4.4) 

and then rotating it along the x, y and z axes by three randomly generated numbers. A 

pose is generated by the program by applying the rotations and translations stored in 

the chromosome to the reference ligand pose. 

4.2.1 Rotation 

The rotation procedure rotates the ligand along the x, y and z axes. The ligand 

reference pose is first translated from the GRID box origin to the global origin. It is 

essential to rotate at the global origin otherwise the ligand will be both rotated and 
translated erroneously. This is followed by the construction of rotation matrices using 
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the three rotation genes, which are hard-coded into the program, and are shown 
below. 

00 

cos roCX sin rotX 

-sin roCX cos rotX 

0-1- 
cos roty 

0 

sin roff 

Cos Totz 

-sin rotZ 

0 

0 -sin rotY 

10 

0 cos rotY 

sin rotZ 

cos rotZ 

0 

By concatenating these matrices together (performed by multiplying them together), a 

unified matrix is produced, which, when multiplied by the three coordinates of an 

atom of a ligand, will rotate the atom by rotX, rotY and rotZ radians. This step 

simplifies and speeds the rotation process. Once all of the ligand's atom coordinates 
have been multiplied by the unified matrix, the newly-rotated ligand is translated 
back to the GRID origin and this is followed by the translation procedure. 
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transX I transY I transZ rotX I rotY I rotZ 

Figure 4-1: The structure of the GA chromosome. transX, transY and transZ are 
the magnitudes of the translation vectors of the ligand. rotX, MY and rotZ 
represent the magnitudes of the rotations about the three axes. 

4.2.2 Translation 

The translation of the ligand allows for rigid movements along the x, y and z axes. 

The translation genes (trX, trY and trZ) move the ligand from its position at the GRID 

box origin by trX, trY and trZ A along their respective axes. The algorithm performs 

this operation by simply adding the value of each gene to its corresponding 

coordinate of every atom in the ligand. 

In this way a chromosome's genes are mapped onto a particular pose of a ligand. 

After this operation, the scoring function is used to assess the quality of the pose 

generated by a given chromosome, and this is described in section 4.4. 

4.3 The Genetic Operators 

4.3.1 Selection 

The roulette wheel selection method is implemented for the selection of pairs of 

chromosomes from the parent population to undergo crossover. As was described in 

section 2.4.2, it is necessary to have a bias during the process of selection towards 

chromosomes with good fitness values, to ensure that more advantageous genes are 

passed on to the next generation. This is possible through roulette wheel selection by 
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creating a hypothetical roulette wheel that is divided into segments, where each 

segment represents a chromosome, and whose size is proportional to its fitness (see 

Figure 4.2). One of the main issues with this method is the problem with scaling 
(Hancock, 1994). Very fit individuals may take over the majority of the roulette 

wheel and this could flood the population with these individuals, leading to premature 

convergence. To avoid this situation, the linear scaling approach (Goldberg, 1989) 

was adopted to scale the individual fitnesses of all the chromosomes in the 

population. Linear scaling adjusts the fitness values so that the relationship between 

the raw fitness values W and the scaled fitness values (f) is linear, as shown in 

equation (1). 

f= af+b Equation 4.1 

To maintain the scaling, the average scaled fitness must equal the average raw 
fitness (f,,, g). Also, in later generations of a GA run, the situation may arise where the 

average fitness may be close to the best fitness. This would result in average members 

contributing the same number of offspring as the best members and the optimisation 

process will stagnate. By introducing the following relationship into the scaling 

procedure, 

fnm ": -- Cmult 
- 
favg Equation 4.2 

the number of offspring the fittest individual (f. ) can contribute is controlled by 

Cmult, which is the number of expected copies desired for the best population member. 

As a result of scaling, in later generations the situation may arise where, due to a few 

bad strings and a relatively close best fitness and population average fitness, the worst 

members are scaled to negative values. In these cases the worst member is always 

mapped to a scaled fitness of 0 (Qn = 0). 

The following equations were derived and implemented in the scaling function, prior 
to roulette wheel selection. 
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4.3.1.1 Scaling 

The fitness function used by the GA is the interaction energy between a given ligand 

pose and the protein. The more negative (i. e. the smaller) a value is the more 
desirable is the pose's conformation and the fitter is its chromosome. These negative 

energy values must first of all be converted to positive values, so that the fittest 

members have the largest, most positive values and the less fit ones have the lowest 

fitness values. To do this, the signs of the energy values are simply inverted, so that 

all negative energy values are now positive and vice versa. This is followed by 

subtracting the worst inverted value (which may be negative) from all the other 

values in the population, so that all chromosomes have positive values. These 

methods result in a population where the fittest individual has the highest value, and 
the worst individual a value of 0 (&, ý = 0). 

As mentioned earlier, bothfag andf,, g need to remain equal. Therefore if, 

y=a+ bx Equation 4.3 

describes the linear relationship between the raw and scaled values, then 

f., g =a+bf,, g 

Becausef.,, g is equal tof,, g: 

f,, 
g =a+b. f,,, 

g 

a =f., g (1-b) Equation 4.4 

f,,, g =a 
I(I-b) 

Equation 4.5 

From 4.2 

C.,, It. f., g a+ bf. nm 
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+ b. f. = Cm, it -fag 

From 4.5 

ajvg. (1b) 
f,,, g. + b. f.,, = C. wt. f,,, g 

b(fmwfayg) = (Cmuirl) 
-favg 

b= (tvg. (Cmuirl))/(fmaxfavg) Equation 4.6 

From 4.4 and 4.6 

a favg. (i 

-(o;. 
(Cmuit - 1))/(f favg)) 

a favg. (tnaxfavg favg. (Cmuit - 1)) 
/(fmax 

favg) 

=favg(fnm - Cmult favg) 
/ 

(f. -f.,, g) Equation 4.7 

a and b are calculated in the above manner when the f. i,, is not negative. If fmin is 

negative then a and b are calculated as follows. 

alfavg Equation 4.8 

f. i,, is scaled down to 0, therefore y=0. 

a b. f. i, 
a=b. fmin 

Substituting from 4.8 

(a Ifag)) 
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1(fg 

To calculate b (and substituting from 4.5) 

0 =fag. (I-b) +fmin 

b= fag 
/ 

(fg. f. jn) 

4.3.1.2 Algorithmic Details for Roulette Wheel Selection 

Conceptually the roulette wheel selection method follows the figure shown in 4.2. In 

practice this is achieved by first generating a random number between 0 and 1. The 

proportionate scaled fitness of cvcry chromosome (which is the scaled fitness of 

chromosome/total scaled fitness) in the sorted population is then individually 

summed, each time checking that the sum does not exceed the generated random 

number. Once this occurs, then the chromosome that was added last is taken as the 

selected one, and is returned by the algorithm. 

The random number generation implemented here is the C library routine randO. This 

function generates pseudo-random numbers between 0 and a RAND 
- 
MAX value. 

The rando function is likely to follow a linear congruential generator, which defines a 

relationship between the last random number generated and the current one, hence 

resulting in pseudo-random number generation. 

The function rando has the advantage of being fast and straightforward to implement. 

For the purpose of the GA, it is therefore deemed adequate. 
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1.00 

0.0 

). 49 

Figure 4-2 Hypothetical roulette wheel used as the selection operator. Every 

chromosome Is given a segment on the wheel. The size of the segment Is 

proportional to the fitness of the chromosome. The numbers surrounding the 
wheel represent each segment's proportion of the wheel. The selection of a 
chromosome, or segment, begins by generating a random number between 0 and 
1. The segment into which that number falls results In the selection of its 
representative chromosome. For example if the random generated is 0.39, then 
the largest segment (49%) Is selected, since 0.39 within Its range In the roulette 
wheel. Similarly if the random number generated is 0.95, then the chromosome 
represented by the smallest segment (0.7%) Is selected. Since the larger segments, 
representing the fittest chromosomes, cover a larger range of the total, they are 
more likely to be selected. 

43.2 Crossover 

The roulette wheel method selects chromosomes within the population that will 

undergo crossover, and that will therefore pass their genes onto the next generation. 
The method of crossing over that has been implemented here is single point 

crossover. Two parent chromosomes are selected by roulette wheel selection. These 

are then split at a random breakpoint and the resulting segments are swapped (see 

Figure 4.3). The newly-created chromosomes replace their parents, and this process 

of parent selection and crossover continues until the entire population has been 
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regenerated. An elitist strategy is also applied, in that the best two chromosomes of 

the parent generation are passed into the new generation unaltered. 

Randomly selected 
crossover ooint 

II 
Parents 

Offspring 

Figure 4-3 A single point crossover operation. The two parent chromosomes are 
split at a random point and the resulting portions are swapped to result in the two 
offspring. 

4.3.3 Mutation 

The final genetic operator, mutation, allows for discrete changes in the values 

represented by the genes. Mutation is performed on the population that has resulted 
from the crossover operator. A user-defined probability (the mutation rate) 
determines whether a given gene is to be mutated. The gene then undergoes a change 
by a particular step size. The step size is determined randomly, and cannot exceed a 

certain threshold. The threshold for a translation gene is 2.0 A and for a rotation gene 
is 360'. When a gene is randomly selected for mutation, a stcp-size not exceeding the 

threshold for that type of gene is also randomly generated, and the gene is adjusted by 
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that step-size. Ile mutation function therefore loops through every gene in the 

population, randomly selects a gene and mutates this by the randomly-generated step 

size. 

4.4 The GRID Scoring Function 

The GRID scoring function (Goodford, 1985) is a molecular mechanics force field 

used throughout this study to describe the interaction energy between ligand atoms 

and the protein target. It is used to create molecular interaction grid maps for 

specified regions of a protein target. 

GRID calculates the non-bonded interaction energy for various different probe types 
for an orthogonal grid which covers a user specified region of the protein. The GRID 

program requires a user defined centre co-ordinate point to determine the position of 

the simulation box on the protein target. Furthermore, the dimensions of the 

simulation box are also defined by the user to obtain the required box size. The 

default grid resolution is set at 0.5 A and each functional group probe is placed at 

every grid point defined within the GRID box. 

The GRID empirical energy function consists of van der Waals, electrostatics and 
hydrogen bond functions. Tberefore the non-bonded interaction energy E,, y, can be 

calculated from these three terms shown in the equation below: 

ExA '"" 21 Evdýv + ael + ahb 

Equation 4.9 

where E, & is the Lennard-Jones potential for calculating the van der Waals energy, 
E, i is the electrostatics function and Ehb is the hydrogen bonding function. 

The Lennard-Jones potential in GRID is calculated using a 12-6 function given by the 

equation below: 
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Ylij Cii 
r 

t2 

)( 

11 6 

Equation 4.10 

The details of this energy function have been discussed previously in section 
3.2.3.2.4.2. 

The electrostatics interaction E., are evaluated pairwise between probe and protein. 
However, the value of E., is critically sensitive to the spatial dielectric behaviour of 
the environment. GRID assumes a priori that the environment surrounding solution, 
ý, has a bulk dielectric of 80. The protein phase, c, has a dielectric that reduces ý 

towards 4 in the centre of the protein. The depth of each protein atom (Sq) in the 

protein phase is calculated by counting the number of neighbouring protein atoms 

whose nuclei lie within a distance of 4 A. The depth of the probe (Sp) at each xyz 

position is assessed in a similar manner. Equation 4.11 below describes &I : 

pq I (r- o/(t + 
E., = Kt[ 3+ 

A- 
, 
/d2 + 48psj 

] 

Equation 4.11 

where p and q are the electrostatic charges on the probe and pairwise protein atom 
that are separated by a distance, d, and K is a combination of geometrical and natural 
constants. 

Default cut-off distances of 3.5 A, 8 A, and 12 A are applied for the hydrogen bond, 

van der Waals and electrostatics calculations respectively. In addition, the maximum 
positive (unfavourable) interaction energy permitted by any single grid point is 

restricted to 5.0 kcal/mol. 

73 



The hydrogen bond function implemented in GRID is a direction dependent 8-6 

function consistent with the hydrogen bond parameters of GRID as described by 

equation 4.12: 

Ehb = [Cij /d8 - Dij /d6] COSm 0, 
Equation 4.12 

where 
Cii =- 3Enfjn(2Rnjin)8, 

Dii = -4Einin(Mtnin 

E. i,, is the minimum in the potential energy well when two identical atoms of type, i, 

are interacting and Rj, is half the distance between the atoms at this point. The 

energy from a hydrogen bond is angle dependent within this function. If a receptor 

donates a hydrogen bond, 0 is the angle DHP where D is the protein donor, H is the 

hydrogen atom of the donor and P is the probe. If the receptor accepts a hydrogen 

bond., 0, is the angle ALP where A is the protein acceptor, L is the lone pair of 

electrons on the acceptor and P is the probe. The term m is a constant set at 4 and Ehb 

is set to zero when 0 <90". 

The munber of hydrogen bonds that can be accepted and donated is specified in the 
GRID parameters file for both the probes and protein. To maximise interactions 
hydrogens and lone pairs are rotated to orientate them for optimal interaction and 

only the most energetically favourable hydrogen bonds are selected. Hydrogen atoms 

and lone pair electrons are computed from the heavy atom co-ordinates of the protein 
according to the method described by Jackson et aL, (1998). 

4.4.1 The Probe Map Files 

Calculating interaction energies takes up valuable computational time. If every ligand 

pose's raw interaction energy was calculated during the GA run there would be a 
substantial increase in execution time. One of the way of dealing with this issue is to 
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calculate interaction energies at different points on the protein binding surface prior to 

running the pose-generating algorithm (the GA in this case), and to store these in 

look-up tables, which are then accessed during the run of the algorithm. The look-up 

tables are known as the probe map files and are generated by a program called 
Liggrid. The GRID scoring function has its own set of probes, and these are 
functional groups with individual parameters and constitute groups of atoms that 

represent different parts of a ligand, following a unitcd atom approach. To create the 

probe map files, a grid box is placed on the protein binding site surface, and the 

interaction energies are calculated between all the points on the grid box and the 

protein. Each probe type is placed at every grid point, its interaction energy with the 

protein is calculated and stored in the probe map file. Therefore before a GA run, a 
ligand will have all of its atoms assigned probe types. This can be done manually, by 

observing the local envirom-nent of each atom in the ligand, or using an automated 

program, known as gmol2. During a GA run, when a given pose's fitness is being 

assessed, the position of each atom in the ligand is used to determine which energies 

to look up in the relevant probe map file. Figure 4.4 is a schematic of probe map file 

generation. 

But as one would expect, the ligand atoms do not always fall exactly at a unit grid 
box vertex. By taking into account the energy values of the eight vertices of the unit 
box which contains the atom, and the distances between the atom and the vertices, 
trilinear interpolation can be applied to calculate the interaction energy of the probe 
with the protein at that particular point. 
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Protein PDB file with added 
hydrogen atoms. 

Gdd box 
centre of mass 

Uigg(id program 

Grid box 
dimensions 

Probe map files 

Figure 4-4 The generation of probe map files using the Liggrid program. The 
protein PDB file, a specifled grid box centre of mass and box dimensions are the 
required input for the program. 

4.4.2 Trilinear Interpolation 

First the coordinates of the bottom left point of the unit grid box containing the atom 

need to be detennined. 

low(i) = round(coord(i)lgrdspc) +1 Equation 4.13 

Where coord(l) is the x, y or z coordinate of the atom, grdspc is the grid spacing, i. e. 
the dimensions of a unit grid box (a parameter of Liggrid) and roundo rounds the 

operation enclosed between the brackets to the nearest whole number. 

Next the distance between the atom and low(i) known as the fractional distance 

(crd(i)), is calculated. 

crd(i) = coord(i)lgrdspc -floor(coord(i)1grdspc) Equation 4.14 
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whereflooro rounds down the float resulting from the operation in brackets. 

As mentioned earlier, the interaction energy at each vertex of a unit grid box is storcd 
linearly in the probe map files. This is a listing of the interaction energies of all the 

vertices of the grid box. To find out the energy values of the eight vertices 

surrounding the probe, the index i. e. the position in the probe map file of a vertex 

needs to be determined. This is done in the following way. 

indxl = grdpts(l). grdpts(2). (ord(3)-I) 

grdpts(l). (ord(2)-l)+ ord(l) Equation 4.15 

where grdpls(l), grdpts(2) and grdpts(3) are the dimensions (number of unit grid 
boxes) along the x, y and z axes respectively, and ord(l), ord(2) and ord(3) are the x, 

and z coordinates of a vertex. 

Equation 4.15 is repeated to obtain the indices of all eight vertices (indxI ... MW 

shown in Figure 4.5). Using these indices, the energy values are obtained from the 

probe map files, referred as rawl ... raw8, which correspond to the energy values at 
indxl ... indx8 respectively. 

The interaction energy contribution (al ... a8) at each vertex is determined as follows. 

a8 = raw8 

a7 = raw7 - a8 

a6 = raw6 - a8 

a5 = raw5 - a8 

a4 = raw4 - a8 - a7 - a6 

a3 = raw3 -A- a7 -a5 

a2 = raw2 - a8 - a6 - a5 
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al =rawl -a8-a7-a6-a5-a4-a3-a2 Equation 4.16 

Finally, using the energy values derived above and the fractional distances, trilinear 
interpolation is performed, which returns the overall interaction energy of the probe at 
that point. 

probeEn = aJ. crd(J). crd(2). crd(3) + aZcrd(l). crd(2) + a3. crd(l). crd(3) 
a4. crd(2). crd(3) +a5. crd(l) +a6 crd(2) +a7. crd(3) +a8 Equation 4.17 

where probeEn is the interaction energy of the probe. 

The above calculations are perfon-ned on all the atoms of the ligand at run time, and 
the resulting interaction energy values of each probe (probeEn) are summed up to 

give the interaction of the entire ligand. 

indxl (a I) 

indx7(a 

indx2(a2) 

Figure 4-5 Box representing a unit of the Grid box that is placed on the protein 
binding site. 11-18 represent the vertices of the Indices used in trilinear 
Interpolation. 

4.4.3 Bumps 

The bumps file (. bmp) is one of Liggrid progranfs output files. It contains details of 
information on the grid box (size in Angstroms of a unit cell, box dimensions and the 
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global coordinate of the box origin). More importantly, it contains the grid box! s 
"'bumps", which is basically a series of T and F characters, one for each cell of the 

grid box. AT at a particular vertex indicates an overlap with the protein at that point, 

whereas an T means there is not. Whenever a new pose is generated, a count of the 

nurnber of atoms which fall within cells containing bumps (labelled T) is taken. If 

the count is higher than a threshold value, which has been set at 40%, then that pose 
is rejected. The percentage value represents the portion of the ligand allowed to 

'bump' before rejecting a pose. This is time-saving since it avoids scoring poses 

which sterically clash with the protein, and which will inevitably have high, 

unfavourable scores. 

4.5 The Genetic Algorithm Structure 

The genetic operators described in section 2.2.1 together evolve the population until 

some termination criterion has been met. Each operator has a specific role in the SGA 

structure, which is illustrated in Figure 4.6. The overall strategy of the SGA is 

generational, meaning that the offspring population created by the genetic operators 
replaces the parent population entirely, with the exception of the top two 

chromosomes of the parent population which are passed to the offspring population 
without change. This gives an elitist element to the algorithm and ensures that top 

solutions are never lost from the population unless better solutions are found. 

A GA run begins when the initial population is formed by generating chromosomes 
that consist of randomly generated genes. These chromosomes are scored by the 
GRID scoring function by firstly applying the rotations and translations incorporated 
in the genes to the reference ligand, as described in section 4.2. Next, the 

reproduction operator selects chromosomes which the crossover operator uses to 

generate new chromosomes. The mutation operator is then applied, and the resulting 
population is regarded as the new generation. This generation is scored, and the cycle 
continues, until the termination criterion has been met. The termination criterion in 

this case stops a run of the algorithm at 30 000 generations. 
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Randomly initialise starting 
population 

Assess fitness using the 
GRID scoring ftinction and 
sort 

I 

Test if termination criterion 
has been met 

Apply roulette wheel 
selection and crossover to 
parent population to create 
offspring population 

Apply mutation operator 
on offspring population 

Figure 4-6 Schematic of the SGA. 

4.6 Q-fit overview 

The Q-fit method is a fragment based rigid-body ligand docking algorithm (Jackson, 

2002). It uses a grid-based deterministic search algorithm, the basis of the algorithm 

relies on probe 3D energy grid maps created from the protein target. These molecular 
interaction field maps are created with the molecular mechanics force field GRID (see 

section 4.4) to calculate interaction energies against the protein for all functional 

groups contained within the ligand. 
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Q-fit uses a probabilistic model with a geometric matching methodology to simulate 
ligand binding. The Boltzmann principle is used to describe ligand confonnations 

most likely to bind to a protein. 

Q-fit determines a ligand binding conformation on an energetics basis. The program 

calculates the interaction energy of a ligand within an active site using functional 

probes (representation of a ligand atom/functional group in the GRID scoring 
function). Therefore, the energetically most probable conformation can be identified 

by calculating each individual atom's contribution with respect to any specific atomic 

configuration. 

Any given ligand can be represented by a set of functional probe groups which relate 

to a set of molecular interaction field grid maps of a protein. Figure 2.1 is a schematic 

of the method utilised to place a small ligand fragment in the most energetically 
favourable position within a protein active site. Given the pre-calculated 3D grid 

maps of atom preferences the program reads those appropriate for the atom probe 

types in the given ligand. 

For each map the grid point interaction energies arc then sorted in order of decreasing 

interaction energy with the receptor so that the most favourable (i. e. negative) 
interaction energy is at the top of the list and the least favourable at the bottom 

(Figure 43A). 

The top N locations for each probe type are pooled into a single list and again sorted 
in order of decreasing energy. This creates a set of M interaction points (N x no. of 
probe types representing the ligand) that are energetically sorted to provide the most 
favourable binding site locations. 

A) 

Rak Receptor intemcdons 
subject to diswwo crite& 

01%1 

NH2* Cli= 
1 2056 1345 
2 2211 1316 
3 2175 1362 

Ligand 
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Figure 4-7 Schematic representation of steps (A-C) involved in placing a small 
ligand fragment in the most energetically favourable position within a protein 
active site. Adapted from (Jackson, 2002). 

The M interactions site list from the receptor protein is then searched for low energy 

triplets that correspond to triplets found in a ligand (Figure 4.7 (B and Q. The search 

procedure is based on a pose clustering (Rarey et aL, 1996). The M interaction sites 

are systematically searched to find a receptor pair (mi, mj) that is coincident to a 

ligand pair (Ii, 1j) such that the distances (Imi - mjI - Ili - 1jj < 8). The value of 8 is set to 

3.0 A and is the maximum difference in distance between matched ligand atom-atom, 

and grid interaction site grid-grid distances. Then a further point match is identified 

that creates the most favourable triplet interaction energy and is also coincident to the 

ligand triplet (Ii, 1j, 1k) such that the distances (IMi - MkI - Ili - lkI <8) and (Imj - Ind - Ili 

- lkI <8). Therefore these triplets are classified as 8-compatible and are stored for the 

transformation stage which maps the ligand to the receptor. 

The ligand triplet solutions from pose clustering are transformed onto the receptor 
interaction sites using a least squares fitting routine (McLachlan, 1979) Following 

placement an inter-molecular clash filter (where a protein atom overlaps with a probe) 
is applied. In this way ligand fragments consisting of probe triplets are docked in the 

protein binding site. The output from Q-fit is a file containing a list of poses 

generated by the algorithm ranked in order of increasing interaction energy. All poses 

within the ranked list are energy minimised using a downhill Simplex algorithm 
(Nelder and Mead, 1965) implemented according to Gschwend and Kuntz (Gschwend 

and Kuntz, 1996). 

4.7 SGA Parameters 

Before testing the SGA on a set of protein-ligand complexes, its parameters were 
optimised using three rigid-body protein-ligand complexes: trypsin with benzamidine 
(3ptb), pentosyltransferase with guanine (lulb), and I-arabinose binding protein with 
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alpha-L-arabinose (labe). The optimal consensus parameters obtained from these 

cases, and which were applied on the rest of the test cases, are listed in table 1. 

The probe map files are generated using Liggrid (as described in section 4.4.1) and 
these are used by both Q-fit and the SGA for scoring the generated poses during a 

run. The input required by Liggrid (and as shown in figure 4.4) are the box 

dimensions and centre of the box. The box dimensions represent the search space and 

these are assigned manually, depending on the size of the ligand, by allowing at least 

7A between the outside of the ligand and the edge of the box. The centre of mass of 
the box is generated by taking the x, y and z coordinates of the centre of mass of the 

ligand crystal structure and randomly adjusting these, in order to remove the 

introduction of any bias from experimental data. This process of generating input 

parameters for liggrid applies to all test cases described in the thesis. 

Parameter Value 
Population 150 
Number of generations 30000 

Mutation rate 20% 

cmult 1.2 

Rotation step size 2x rads 
Translation step size 2.0 A 

Table 4.1 SGA paramters 

4.8 Results from Dataset 1 

The SGA was tested on Dataset 1, a dataset that was also used to test Q-fii and which 
is described in section 4.6. The purpose of this section is to test whether the SGA is 

reasonably able to find good solutions, i. e. low-energy solutions which have rmsds 
below 2.0 A from the crystal structure, the accepted threshold for determining the 
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success of a docking run. Both the SGA and Q-fit use the GRID scoring function to 

assess solutions and guide the search during a run. Because both algorithms use the 

same scoring function then it is feasible to compare the magnitudes of the interaction 

energies of solutions from the two algoritms. By comparing the top-ranked SGA 

solution with the top-ranked Q-fit solution it is possible to gain insight into the 

performance of the SGA in terms of its ability to successfully find solutions which 
have minimised interaction energies. This comparison presumes that Q-fit has found 

solutions which are close to, or at, the global minima. This is a reasonable assumption 

to make where the rmsd of the top-ranked solution is below the 2.0 A threshold. 

Looking at the table of results (Table 4.2), it can be seen that the SGA obtained 

solutions with rmsds below 2.0 A for six of the ten complexes in Dataset 1. The four 

complexes which the SGA did not find correct, top-ranked, solutions for are 3tpi, 

lulb, 4dfr and 3ptb. For two of these, 4dfr and 3ptb, Q-fit also did not find correct 

solutions in its top ranks. Looking at the interaction energies obtained for 4dfr, it can 
be observed that Q-fit was able to find a solution with much lower energies than the 

SGA, though the rmsd of this solution is high. With 3ptb, the interaction energy of the 

Q-fit solution is slightly lower than that of the SGA, and both solutions have similar 

rmsds that are higher than 2.0 A. With 3tpi, the SGA obtained a top-ranked solution 

with a higher interaction energy than Q-fit's solution, and also has a high rmsd. With 

lulb, the SGA obtained a solution with a lower interaction energy than the Q-fit 

solution (-28.04 kcal/mol. versus -35.00 kcal/mol for the SGA solution). Interestingly 

the rmsd of the higher energy Q-fit solution is below the 2.0 A threshold, whereas 
that of the SGA solution is not. It would be expected that a lower energy solution 

should have an misd that is closer to the crystal structure. This anomaly may imply 

that the crystal structure is not close to the global minimum, and that the scoring 
function is not capable of associating low-energy solutions with poses that are close 
to the crystal structure. For the rest of the complexes, both algorithms obtained 

solutions with good rmsds for the top-ranked solutions. Generally Q-fit's solutions 
have slightly lower energies than the SGA's, with the exception of ldbb, for which 
the SGA's top-ranked solution has an energy of -27.92 kcal/mol and Q-fit's solution 

an energy of -26.93 kcal/mol. 
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These results indicate that the SGA can, overall, find solutions which have low rmsds 

and are therefore correct, and that the algorithm and the genetic operators employed 

are capable of conducting an effective search for these solutions. Athough Q-fit did 

outperform the SGA in several of the test cases, in terms of both energies and rmsds, 
it is worth noting that Q-fit performs the additional step of locally minimising its final 

solutions which serves to further minnimise their interaction energies. This step is not 

performed in the SGA. As with most optimisation algorithms that are controlled by 

different parameters, it is quite likely that further tweaking and experimenting with 

the various parameters, such as increasing population size, or running the algorithm 

over longer generations, will lead to improvements in the overall performance of the 

SGA. However, since the purpose of this work is to study protein-ligand docking in a 

multiobjective optimisation context, it was decided that the current performance of 
the SGA is adequate and provides a good foundation for adapting it to a 

multiobjective algorithm. All adjustments needed to improve performance can be 

carried out on the ensuing multiobjective optimisation algorithm. The development of 

the algorithm, along with the refinements implemented, is discussed in the following 

chapters. 
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Interaction 
energy (kcal/mol) 

Rmsd (A) 

2gbp 
Wit -44.01 0.48 

SGA -39.00 0.64 

lldm 
Q-fit -36.57 0.72 

SGA -35.88 1.05 

2phh 
Wit -34.26 0.52 

SGA -31.89 0.59 

3tpi 
Q-fit 49.65 1.23 

SGA -16.59 10.47 

I stp 
Q-flt -26.72 1.10 

SGA -25.19 0.95 

Idbb 
Q-fit -26.93 1.2 

SGA -27.92 0.47 

4dfr 
Q-fit -32.99 7.1 

SGA -26.6 8.44 

3ptb 
Q-fit -35.26 2.2 

SGA -34.29 2.3 

labe 
Wit -36.38 0.62 

SGA -35.50 0.82 

lulb 
Q-fit -28.04 0.64 

SGA -35.00 4.2 

Table 4.2 Energies and rmsds of top ranked solutions obtained by docking 
Data3et 1 using Q-rit and SGA. 
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5 Conversion of SGA to a Multiobjective Genetic Algorithm 

Protein-ligand docking was dcscribcd in Chapter 3. It is clear from that discussion 

that the quality of different ligand poses is assessed by one of many different types of 

scoring functions. Many of these scoring functions calculate and add the different 

interaction energy types together in a function known as the master equation, to 

produce, as output, a single energy value. Based on this value, the quality of the 
ligand is assessed in relation to other generated poses. Iliese scores are also used to 
drive the conformational and orientational search towards a global minimum. 

As was mentioned in Chapter 3, the aim of Us thesis is to apply multiobjcctivc 

optimisation to the protein-ligand docking problem. Because several of the features 

implemented by a single-objective, standard genetic algorithm (SGA) are also 

common to multiobjective genetic algorithms (see section 2.4), a standard genetic 

algorithm (SGA) was developed in Chapter 4 with the purpose of converting it to a 

multiobjective algorithm. As the results of testing the SGA on Dataset I have shown, 
the SGA is adequate at finding near-optimal solutions, and the decision was therefore 

taken to adapt the algorithm for multiobjective optimisation. This chapter describes 

the new features and the changes that were performed on the SGA to do this, and the 

chapter which follows (Chapter 6) describes the datasets used in testing the algorithm, 

as well as the results obtained. 

5.1 Structure of algorithm 

The multiobjective optimisation algorithm that was developed here follows the 

structure of an elitist non-dominated sorting GA, or NSGA-11 for short (Deb et aL, 
2000), and which was described in section 2.5.4. This highly elitist mcthod ensures 
that only the best solutions are passed on to the next generation - and that no good 
solution is ever lost. The only way that a good solution is eliminated from the 

population is if a better solution is found. By keeping elites in a population the 
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probability of finding good solutions is increased. The version of the NSGA-11 

described here differs in two aspects from the original NSGA41 developed by Deb et 

aL, (2000). The roulette wheel selection method is used (described in section 4.3.1.2) 

as the genetic operator which contributes towards the formation of the offspring 

population, rather than binary tournament selection. The second difference is that a 
fitness-sharing niching procedure is used to select solutions from within the same 

rank, rather than the crowded tournament selection operator. The requirement for 

niching can arise in several situations, and which will be described below. The reason 
for modifying the NSGA-11 algorithm is because both of the methods implemented 

here perform the same functions as the originals, i. e. both roulette wheel and the 

binary tournament selection find a selection of good solutions for recombination, and 

the crowded tournament selection operator and niching are both capable of finding 

the solutions which are in the least crowded sections of a front. Also at the time of 
development it was more convenient to use a modified NSGA-11 in order to minimise 

changes made from previous versions of the algorithm. 

A flowchart detailing a single generation of the algorithm is shown in figure 5.1. In 

summary, the initial chromosome population (A) is created at random, using C's 

random number generator function rando. The individual chromosomes are scored 

using the different objectives, the Parcto ranks of the chromosomes are determined, 

and the population is sorted based on their ranks. The selection, crossover and 

mutation operators are applied to produce an intermediate population. This is 

combined with the parent population (2N) and the combined population is Parcto 

ranked. The combined population of size 2N is reduced to N by selecting the highest 

ranked N chromosomes. The details of these methods are described below. 
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Create initial random population (N). 

I Score with all objectives. I 

Calculate Parcto rank for each chromosome and sort 

Apply selection, crossover and mutation operators to 
produce an intermediate population. 

Score intermediate population. 

Combine intermediate population with parent ---I- 
population QN). If termination 

criteria are not 
met, repeat. 

Pareto rank and sort the combined population. 

Reduce the combined population 2N to N by selecting 
the highest ranked N chromosomes. 

Figure 5-1 Schematic of the MOGA which follows a NSGA-11 structure. 

51 NSGA-II: details of the algorithm 

The NSGA-11 was adapted from the SGA described in Chapter 2, and manY of its 
features have not been modified. What follows is a description of the features 
introduced in the NSGA-11. 
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51.1 The objectives 

Aswas stated in Chapter 3, the purpose of developing an NSGA-Il for protein-ligand 
docking is so as to investigate the relative contributions of individual interaction types 
for protcin-ligand docking optimisation. The GRID scoring function (Goodford, 
1985), as described in section 4.4, incorporates electrostatic, vdw and hydrogen bond 
donor and acceptor calculations in its assessment of interaction energy. The NSGA-11 

was developed to optimise two objectives. These were: 

- Elccirostatic and hydrogcn bond donor and acccptor cncrgics combincd (rcfcffcd as 

electrostatic and hydrogen bond energies from here on). 

- Vdw intemctions. 

Although both of these objectives arc energy types and both have the same units 
(kcal/mol), they are not necessarily commensurate. A certain ligand pose can have the 

preference to form predominantly electrostatic and hydrogen bond interactions within 
the protein active site, it may prefer to form mainly vdw interactions, or it may form 
interactions that are a relatively equal balance of both energy types. Also, different 

poses of a given ligand can have the same total energy, but these can have different 

balances of the two objectives; for example a change in orientation can decrease the 

electrostatic interaction energy but increase the pose's vdw interaction energy, 
withough changing the overall total energy. A multiobjective algorithm would be able 
to differentiate between these two situations, unlike a single objective approach. The 

possibility that a ligand may have preference to a particular interaction energy type 

within the protein binding site indicates that in these situations the two different 

objectives are conflicting, and that a multiobjective approach would be more able to 

quantify this than a composite function such as those that are used in single objective 
approaches. 

It is belicvcd that highly populated docked conformations of ligands (such as those 
found in crystal structures) correspond to minima in the free energy of a complex 
system comprising ligands, protein and solvent, that is, minima of a single objective 
function with a single defined balance of non-bondcd and entropic contributions. The 
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accurate calculation of this free energy is, however, problematic. Docking studies 
tend to be limited to optimisation of highly empirical fimctions which try to capture 

some of the important contributions to free cnergy. In this context, the appropriate 
balance of the various terms is not clear, and the fact that the choice of different 

weightings leads to different solutions shows that the terms are competing and thus 
'incommensurate'. A multiobjective approach allows investigation of all possible 

weightings between competing empirical energy terms. 

It is also important to be aA-are of the fact that both these objectives are interlinked, in 

that the range of electrostatic and hydrogen bond energies is limited by the vdw 
intcractions. Even though a protein and ligand atom may be forming favourable 

electrostatic and hydrogen bond interactions, this would be irrelevant if the two 

atoms' vdw interaction energy is high. It is therefore important to take this anomaly 
into account when splitting the interaction energy into different energy types. How 

this was performed with regard to the GRID scoring function is explained in section 
5.2.1.1. 

As was explained previously, multiobicctivc optimisation is achieved by Parcto 

ranking of chromosomes within a population. Since Pareto ranking requires that each 
individual chromosome in the population is assessed with the different objectives, 

each chromosome must be scored by the two objectives. As was shown in Chapter 4, 

chromosomes within a population generated by the SGA have their fitness assessed 
by the total GRID interaction energy. This, in turn, is performed through trilinear 
interpolation (described in section 4.4.2), from position-specific energy values 

extracted from probe map files which are generated by the Liggrid program. Tbe 

same process of scoring chromosomes occurs with the NSGA-11, but rather than using 
the probe map files to estimate a single value representing the total interaction energy 
(as with the SGA), two sets of values, representing the two objectives, are calculated 
separately. This is done by using two different sets of probe map files. By scoring a 
given chromosome, or orientation, using values generated from the two sets of probe 
map files, and manipulating these, two values representing the two objectives are 
obtained, and are then used in the Parcto ranking of the population. The process of 
separating out the different components of the energy function is feasible through the 

adjustment of the probes. dat file, and which is explained below. 
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51.1.1 Editing of probes. dat file for estimating vdw energies 

One of Liggrid's input parameters is the probes. dat file, a text file that contains the 

parameters needed by the program to calculate the interactions for the ligand's 

probes. These are arranged in table format; the first three columns represent van der 

Waals parameters, the fourth column holds charge information (for electrostatic 
interaction energy calculations), and the final four columns contain hydrogen bond 

donor and acceptor parameters. These parameters are used by the Liggrid program to 

generate the probe map files. Because the parameters which calculate these individual 

energy types are in an amendable text file, by setting parameters for one energy type 

only and setting the other parameters to zero, it is possible to run Liggrid using the 

edited probes. dat file to obtain probe map files which contain energies for one 
interaction energy type only. Therefore, to obtain a set of probe map files which 

contain vdw interactions only, the probcs. dat file was amended to create a vdw 

version of the probes. dat file, referred to as probesV. dat. The process of amending 
this file is illustrated in Figure 5.2. The probesV. dat file contains the first three 

columns containing the vdw parameters. The parameters for the other interaction 

energy types are set to zero, as figure 5.3 shows. During a run of the NSGA-11, the 

trilinear interpolation method will use the vdw-specific probe map files to estimate 
the vdw interaction energy that a particular atom of the ligand is making with the 

protein. The vdw interaction energies arc summed over all atoms to form the vdw 

objective used in Pareto ranking. 

51.1.2 Electrostatic and hydrogen bond energies 

The calculation of the electrostatic and hydrogen bond energies at a particular grid 
point occurs during a run of the NSGA-11. To obtain the electrostatic and hydrogen 
bond energies at a particular grid point, both vdw-specific as well as the total energy 
probe map files are required. During the NSGA-II run, to find the electrostatic and 
hydrogen bond energies for a particular chromosome's pose, the electrostatic and 
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hydrogen bond energies for all grid points involved in calculating a given atom's 

energy (section 4.4.2) are first determined. The total interaction energy for the grid 

points arc obtained from the probe map files which contain total interaction energies. 
Ibis is followed by extracting the vdw energies for the same points from the vdw- 

specific probe map files. For every grid point, the vdw energy is subtracted from the 

total interaction energy of that grid point to then obtain the point's electrostatic and 
hydrogen bond energy. The electrostatic and hydrogen bond energies for these grid 

points are then used to estimate that particular atom's energy (section 4.4.2). This 

process is repeated for all atoms of that pose and these are summed together. The 

resulting value, representing the electrostatic and hydrogen bond energies for that 

particular chromosome, is used during Pareto ranking of the population. 

The reason for finding the electrostatic and hydrogen bond energies by subtracting the 

vdw energy from the total energy rather than calculating the electrostatic and 
hydrogen bond cnergics in the same manncr as the vdw energies (i. e. directly from 

the probe map filcs) is to prevent the existence of artificially favourable electrostatic 

and hydrogen bond energies where the vdw energy is high (for example when there is 

a clash with the protein). This has the effect of smoothing the energy surface at these 
high vdw energy points (such as at the surface of the protein). 

Given the situation where an atom's position allows it to form favourable electrostatic 

and hydrogen bond interactions, but unfavourable vdw interactions, for example if it 

clashes with the protein then the electrostatic and hydrogen bond energies are set to 

zero, which prevents favourable electrostatic and hydrogen bond energies from 

erroneously biasing these orientations positively. Therefore when estimating the 

electrostatic and hydrogen bond energies for a particular atom, the vdw energies of 
the grid points surrounding the atom are first checked. If any of these values are at a 
certain threshold (5.0 kcal/mol), indicating a clash with the protein, then the 

corresponding electrostatic and hydrogen bond energies of the grid point is given a 
value of 0. In this way the overall energy of the atom at that position is unfavourable 
and an atom that is making unfavourablc vdw interactions will not be at an advantage 
if it is forming favourable electrostatic and hydrogen bond interactions. Figure 5.3 

summarises the process of estimating the values for the two objectives. 
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(A) 

Cl- 1.90 6.2.07 0.000 0.00 0.00 00 00 00 Aromatic CH group 

C2 1.90 7.1.77 0.000 0.00 0.00 00 00 00 Methylene CH2 group 
*** Made up *** 
C3 1.95 8.2.17 0.000 0.00 0.00 00 00 00 Methyl CH3 group 
N: 1.65 6.1.10 0.000 -6.50 1.50 00 01 97 sp3 N with one lone 
pair 
N: - 1.65 6.1.80 0.000 -5.50 1.55 00 01 97 sp2 N with one lone 
pair 

(B) 

Cl-v 1.90 6. 2.07 0.000 0.00 0.00 00 00 00 
C2v 1.90 7. 1.77 0.000 0.00 0.00 00 00 00 
C3V 1.95 0. 2.17 0.000 0.00 0.00 00 00 00 
N: v 1.65 6. 1.10 0.000 0.00 0.00 00 00 00 
N: -v 1.65 6. 1.80 0.000 0.00 0.00 00 00 00 

Figure 5-2 Sections of the two files, (a) probes. dat and (b) probesV. dat. (a) 
contains Information on the parameters needed to calculate the different 
Interaction energy types (see main text). The probesV. dat file contains only the 
vdw parameters. This file Is created by retaining the first three columns (which 
contain the vdw Interaction parameters) and setting the rest of the columns, 
which represent other interaction type parameters, to zero. Both of these files are 
used as Input for the Liggrid program to generate the necessary probe map riles 
needed by the NSGA-11. 
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Generate vdw-specific probe map files 
from Liggrid using probcsVdat file as 
Liggrid input. 

During NSOA-11 run. use vdw-spccific 
probe map riles to rind vdw energy of the 
points surrounding an atom for a particular 
orientation, then use trilincar kdcrpolation 
to obtain vdw energy of the atom at that 
particular point. 

Sum vdw encrgies or an atoms of 
ligandL 

I 

Total vdw energies of ligand atoms 
represents score of objective for 
chromosome. 

Gcnerate probe map files representing total 
interaction energies using default probesdat 
file as tiggrid input 

During NSGA-11 nm, to obtain electrostatic and 
hydrogen bond energies for a particular atom, 
subtract the vdw energy for a given vertex 
(taken from vdw-spccific probe map filcý from 
the total energy at the same point (taken from 
total energy probe map filcs). If vdw energy at 
that point is at threshold, set electrostatic and 
hydrogen bond energies for that point to zero. 
Use the electrostatic and hydrogen bond 
energies of the points surrounding the atom to 
calculate the electrostatic and hydrogen bond 
energies for that atom. 

I Sum electrostatic and hydrogen 
bond energies of all atoms of 
ligand. 

I 

Total electrostatic and hytgen )nd 
energies of ligand atoms rep sent 

=e 

of objective for chromosome. 

I 

Figure 5-3 Schematic of the scoring methodology of the NSGA-11 for the two 
objectives: vdw Interactions and electrostatic and hydrogen bond energies. 

511 The Pareto ranking function 

Once the entire population has been scored for both objectives, the objectives are 

used to Pareto rank the chromosomes of the population. Pareto ranking was explained 
in detail in Chapter 2, and involves the comparison of all chromosomes against each 
other for a given objective. This function within the algorithm consists of two nested 
for loops that take each chromosome and compare its objectives against the other 
chromosomes' objectives. If any other chromosome within the population shows a 
lower energy value for both objectives then that chromosome's rank is incremented. 
In this way a count of the number of chromosomes that dominate a particular solution 
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is kept, whicI4 at the termination of the loop, represents the Pareto rank of that 

chromosome. This process is illustrated in Figure 5.4. 

Take chromosome a 

Compare chromosome a 
If b=N and a! = N, move to next 

with next chromosome in chromosome from a (a =a+ 1). 

population, bII Otherwise terminate loop. 

If both objectives of a are lower 
than both objectives of b, 
increment Pareto rank of b (bk 
+= 1) 

Figure 54 Pareto ranking of population. 

After the entire population is ranked, the chromosomes within the population are 
sorted in ascending order. Ile process of sorting is necessary for the selection 
operator, which is explained below. 

51.3 Producing the intermediate population 

With the parent population ranked, the next stage of the algorithm is applying the 
genetic operators to the parent population to produce the intermediate population. 
This involves the selection of pairs of chromosomes for crossover to produce an 
intermediate population upon which the mutation operator is applied. 
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51.3.1 Selection of chromosomes for crossover 

An effective selection procedure will bias the process of selection of chromosomes 
towards the fitter individuals in the population. At the same time it must ensure that 
less fit individuals are also selected, to maintain diversity in the population, and to 

prevent premature convergence. In the SGA described in Chapter 2, a roulette wheel 
selection procedure was implemented for the selection of chromosomes. Each 

chromosome is represented on the wheel by a segment with a size that is proportional 
to its fitness. With multiobjective optimisation it is the Parcto rank, rather than a raw 

score, that determines a chromosome's fitness. Therefore implementing roulette 
wheel selection in the NSGA-11 requires that the segments on the wheel represent 
Pareto ranks rather than fitness values. For example, given a population of size 100, 

where the chromosomes are distributed over 35 ranks (including the non-dominated 
rank), then the roulette wheel will consist of 35 segments. The size of the segment is 

dependant on the rank- it represents- the higher ranks will have larger segments and 
vice versa. This process is analogous to rank selection in SGAs. 

For the NSGA-11, the roulette wheel selection procedure was adapted from that 
implemented in the SGA so that, at every generation, the number of segments on the 

wheel is equal to the number of Pareto ranks. The linear scaling procedure, which was 
used with the SGA, has also been implemented. This procedure, as was described in 

section 4.3.1.1, will ensure that the size of the segments are proportionately 
distributed on the roulette wheel, so that top ranks are not over-rcpresented, and 
therefore avoids scenarios of flooding the population with individuals from the top 

ranks. 

To apply the linear scaling procedure to the roulette wheel, first the "fitness" of each 
rank is modified so that each rank is inversely proportional to its position. Therefore, 
from the previous example, the top Pareto rank will have a fitness of 35, the second 
highest 34, etc. with the lowest rank having a fitness of 1. This is achieved using this 
equation: 

mnk,, =(N+ 1)-x Equation 5.1 
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%N, hcrc (I ... x) is the numbcr of each rank-, rank-. rcprcscnts the "fitness" of rank x, and 
N represents the population size. Once the fitnesses of all the ranks has been 

determined, the linear scaling process is applied to these. During selection, the 

roulette wheel is spun, returning a rank (and not a chromosome, as with the SGA). A 

rank- may cncompass scvcral chromosomes, and since one spin of the roulette whccl 
must result in only one chromosome, a second process must be implemented to select 
a chromosome from within a rank. It is also important to ensure that outliers from 

within a rank have the possibility of being selected, as these are necessary to help 

maintain the gencral diversity within a population. Niching enables these factors, and 
is described in the following section. 

51.4 The niching function 

Niching is important for maintaining diversity within a population, and is discussed in 

more detail in section 2.4.4. The opportunity to use niching occurs at different points 
during the run of the NSGA-Il. As discussed above, it is applied when the selection of 
a chromosome is required from within a rank which contains more than one. Niching 
is also applied when reducing the intermediate population from 2N down to N at the 

end of a generation. Before the roulette wheel operator for selection is applied, each 
chromosome within a rank- is allocated a specific fitness value (fi'- the niched fitness). 
This value is proportional to the chromosome's niche count (mi'). 

fi7m Equation 5.2 

fi is an arbitrary constant that represents the highest possible fitness that could be 

allocated to a chromosome, and in the case of the NSGA-II has been set to 100. 

The niche count (m, ') for a chromosome i is calculated as follows: 

N 

mi' =E sh(dy) 
J. 1 

Equation 5.3 
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where sh(du) represents a sharing function evaluated between 1 and all the 

chromosomes in the rank (N), including i itself, as follows. 

sh(dj) = I- d< CTsi.,,, Equation 5.4 

= 0, otherwise 

cT, h,,,, is a user-defined value that denotes the niche radius. dy is the distance, whether 
in objective or decision space, between the chromosome i and all other chromosomes 
j in the rank. The d< am, condition ensures that chromosomes with d greater than 

the niche radius ah,, do not contribute towards i's sharing function sh(du). 
This means that if a chromosome is by itself in one niche then it will have a niche 

count of I (mi'-I) which will allow it to receive its full fitness share. 

Ile "distance" between chromosomes depends on whether decision or objective 

space niching is required. For objective space niching, do is evaluated using a simple 
Euclidian distance calculation of the two objectives (objI and obj2) for chromosomes 
i andj. 

dy = 4((objli- objlj)2 + (obj2j- obj2j )2) Equation 5.5 

When niching in decision space, the rmsd between the poses that arc encoded by 

chromosomes i andj could be used. 

dy. 4 (Iln Z ry 
2) Equation 5.6 

where n is the number of atoms of the ligand and ru is the distance between two 

corresponding atoms encoded by chromosomes 1 andj in 3D space. In the NSGA-11, 

objective space niching, through trial and error, was found to be more effective than 
decision space niching and this is implemented throughout this work. 
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5.2.4.1 Selection of niched chromosomes from within a rank for crossover 

The niched fitness values provide a discriminating measure to select a single 

chromosome from one rank for crossover. This is done using another roulette wheel 

selection procedure, this time the segments represent chromosomes within a rank, and 
the segments' sizes are proportional to the chromosomes' niched fitness values. This 

biases the search towards chromosomes which are less crowded relative to the rest of 

the rank's chromosomes, or to the outliers, and this helps retain population diversity. 

No scaling of the niched fitness values was carried out at this point. The roulette 

wheel is "spuif' once, and returns the chromosome to which the genetic operator, 

cross-over, is applied. 

5.2.5 The crossover operator 

The techniques described above are repeated twice to select the two chromosomes 
needed for crossover. The single point crossover operation was described in the 

previous chapter and this is also applied here. Chromosomes resulting from this 

operation are checked for duplicates against all other chromosomes of the parent 
population and also against any chromosomes that have already been produced during 

the current generation. If either of the chromosomes produced by the crossover is 
found to be a duplicate then the pair of chromosomes is discarded and the whole 
process is repeated until a unique pair of chromosomes is found. 

5.2.6 The mutation operator 

After the crossover operator has produced the intermediate population, the final 

genetic operator, the mutation operator, is applied. This is performed in exactly the 
same way as described in section 4.3.3. Ile duplicate checking function is also used 
here- if a mutation causes a chromosome to become identical to another chromosome 
in the parent or intermediate population, then that mutation is rejected, and the 

100 



mutation process is repeated (with different random numbers) until a unique 

chromosome is created. 

5.2.7 From intermediate to offspring population 

The highly elitist nature of NSGA-11 only allows chromosomes into the offspring 

population if they show fitness values higher than any parent chromosome. Therefore 

the chromosomes in the intermediate population must be compared to the parent 

population. Firstly the objectives of the intermediate population's chromosomes are 

calculated. This is followed by combining the parent and intermediate population 

together. The combined population is Pareto ranked and sorted in ascending order. 
The final offspring population is formed by taking the top N chromosomes of the 

combined population (where N is the population size) to form the offspring 

population. The situation may arise though, where the number of chromosomes in the 

final rank of the offspring population "overflowe' or exceeds the number of positions 

available. In this case the niching function is applied to the final rank's chromosomes, 

and the roulette wheel selection based on the resulting niched fitness values selects 

the final chromosomes of the offspring population (Figure 5.5). 

This entire process is repeated with the offspring population now behaving as the 

parent population. 

Combined Offspring 
population population 
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Figure 5-5 Creating the offspring population (overleaf). All chromosomes within a 
rank of the combined population are passed over to the offspring population. But 
if the final rank contains more chromosomes than the offspring population size 
(e. g. rank 5 In flgure), then niching in the rank allows for the selection of the 
chromosomes needed to complete the offspring population. 

5.2.8 Termination criteria 

Monitoring progress in an SGA, and hence deciding when to terminate a run is fairly 

straightforward, as the main requirement is to keep track of only one solution's status 
(the top-ranked solution). However implementing a termination criterion in a 

multiobjective optimisation algorithm would require a different strategy since it is the 

progress of the Pareto front, in multi-dimensions, that needs to be observed. One way 

of doing this is to check the current set of Pareto solutions against an archive 

containing solutions which have been generated a few generations ago. If none of the 

current set dominates the previous set, the run is terminated. However, this approach 
does not guarantee convergence to the true Pareto front since the two populations 

could be mapping different regions of the Pareto front. Establishing effective 
termination criterion in multiobjective optimisation is a well rccognised problem and 

many implementations are based on running for a fixed number of generations 
determined through experimentation. This is the approach adopted here (Laumanns et 

aL, 2002, Roudenko et aL, 2004). 

With the NSGA-11, the algorithm is run for a fixed number of generations, after which 
the program terminates. The determination of the fixed number of generations was 
achieved through trial and error. The algorithm was run for a very large number of 

generations on a few test cases. The number of generations was gradually reduced 
until the optimum number of generations, which finds the most advanced Parcto front 

was reached. With multiobjective optimisation methods it is difficult to ensure when 
the most advanced, or "true" Pareto front, has been reached. In the case of the NSGA- 
II, this was vcrified when solutions with low rmsds (of less than 2.0 A) were obtained 
within the Pareto front. Solutions which are as close to the crystal structure as 
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possible are deemed as being "correcf'. Also, as the ensuing results chapters show, 

the performance of the NSGA-11 is compared to that of Q-fit, a published docking 

algorithm which uses the total interaction energy, or a single objective, to guide the 

optimisation process. For the majority of the results shown, Q-fit's top ranked 

solutions (those with the lowest total interaction energy), are among the Pareto 

solutions at the Pareto front. This is a good indication that the Pareto front has 

advanced optimally, i. e. the true Pareto front has been reached since the Pareto 

solutions also include optimal solutions from a different algorithms. Some cases are 

also presented in the following results chapters where the Q-fit solution has lower 

energy than any of the Pareto solutions. This indicates that the Pareto solutions have 

not advanced far enough, and for these cases the NSGA-II was run for a longer 

number of generations in an attempt to reach true convergence. If this still does not 

advance the Pareto front's position, it is considered that the Pareto front has 

converged to a local minimum. 

Currently, for the purpose of algorithm development the number of generations for 

which to run the algorithm is specified manually. The NSGA-11 was tested on two 

datasets, the results of which are discussed in the following chapter. 

53 Chapter summary 

In Us chapter the conversion of a single-objective SGA to a multiobjcctive NSGA-11 

was described. 'Me new features which have been introduced, some of which are 
integral to multiobjective optimisation, are the scoring of each chromosome by two 

objectives rather than one, Pareto ranking of the population, a fitness-sharing niching 
technique and a highly elitist structure to the algorithm. In the next chapter, the 
NSGA-11 is tested on two datasets, one of which is Dataset I which was used to 

validate the SGA in the previous chapter. Description of the datascts, the execution of 
the NSGA-11 on this data, along with the results obtained are all discussed in the next 

chapter. 
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6 Initial Results of NSGA-11 

In this chapter, the performance of the NSGA-11 is tested. The performance of the 

NSGA-11 will depend on its ability to obtain solutions, within its Pareto set, which 
have rmsds that are 2.0 A or less from the crystal structure. 'Me 2.0 A threshold is 

widely used in the field to judge the performance of a docking algorithm. - poses 

within this threshold are assumed to be making similar interactions to the co- 

crystallised ligand, and the pose prediction technique is therefore assumed to be 

relatively accurate. Also any results obtained from testing the NSGA-11 can be used to 

assess whether a multiobjective optimisation approach has an advantage over single 

objective optimisation, and whether it provides information that cannot be obtained 
from single objective optimisation. 

The test set selected for validating the NSGA41 is that used in Jackson (2002), which 

consists of twenty proteins in complex with rigid-body ligands/ligand fragments. As 

the NSGA-II performs rigid-body docking, a rigid-body test set is ideal for initial 

proof-of-concept tests. This dataset represents a diverse set of fragments which bind 

non-covalently to their receptors and have few or no rotatable bonds (Jackson, 2002). 

These were in turn selected from the original GOLD data set (Jones et aL, 1997), 

which consists of 100 protein-ligand complexes, with the ligands noted as being 

"interestine' and "drug-like". The complexes are placed in four categories (good, 

close, errors, wrong) - depending on the accuracy of their prediction by the GOLD 

docking algorithm. Complexes where the binding mode, including all hydrogen bond 

and metal coordination interactions and other close contacts between the protein and 
ligand were reproduced correctly were placed in the good category. When the correct 
pose was predicted, but with a few displaced ligand groups then the complex was 
placed in the close category. The errors category contained predictions that were 
partially correct but with significant errors, and the predictions that were completely 
incorrect were placed in the wrong category. Ten of the complexes in the Jackson 
dataset were taken from the good or close categories (referred as Dataset 1), and ten 
from the errors or wrong categories (Dataset 2). By subjecting a given algorithm to 
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complexes which are considered to be at varying levels of difficulty for docking, the 

algorithm's capabilities can be fully tested. Figures 6.1 and 6.2 give the chemical 

structures of the ligand/ligand fragments. Tables 6.1 and 6.2 give the PDB code of the 

complexes and their protein-ligand constituents. 
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Figure 6-1 Molecular structures and PDD codes of ligands in Dataset 1 
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Figure 6-2 Molecular structures and PDB codes of ligands in Dataset 2 
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PDB code Protein-figand complex 
3ptb Beta-trypsin with benzamidine 
labe L-arabinose-binding protein with I- 

arabinose 
lulb Purine nucleoside phosphorylase with 

guanine 
Istp- treptavidin complex with biotin 
Ildm =4= lactate dehydrogenase, ternary 

om lex with NAD and oxamate 

r 

2phh Hyloxybenzoate hydroxylase with P- - 
droxybenzoate 

3tpi sinogen complex with ile-val 
Idbb 

o0 
aW fragment of the db3 anti-steroid 

noclonal antibody with progesterone 
f 

4dfr Dihydrofolate reductase with methotrexate 
2gbp D- Galactose D-glucose binding protein 

with Beta-d-glucose 

Table 6.1 PDB codes and the proteins and ligands for complexes within Dataset 1 

PDB code Protein-figand complex 
lbaf Fab fragment of murine monoclonal 

antibody with tetramethyl dinitrophenyl 
I aqJ Acetylcholinesterase with tacrine 
lack Acetylcholinesterase with edrophonium 
lhdc 3-alpha, 20-beta-hydroxysteroid 

dehydrogenase with carbenoxolone 
Imup Major urinary protein complex with 2- 

sec-butyl) thiazoline 
ltdb ajor urinary protein complex with 2- 

sec-butyl) thiazoline 
2ak3 denylate kinase isoenzyme-3 (gtp: amp 

hosphotransferase) 
2mth ethylparaben insulin 
4fab ýIb fragment with fluorescein (dianion) 
6rsa bonuclease, a complex with uridine 

vanadate, 

Table 6.2 PDB codes and the proteins and ligand for complexes within Dataset 2 
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6.1 Parameterisation of NSGA-11 

The performance of an NSGA-11, as with an SGA, is controlled by several 

parameters. This includes all the parameters associated with an SGA (such as 

mutation rate, population size), and a few parameters specific to a NSGA-11. What 

follows is a description of the parameters. 

6.1.1 Population size 

The population consists of chromosomes representative of solutions in the search 

space. A large population will therefore have more genetic diversity than a smaller 

population (no duplicate chromosomes are permitted). A richer pool of genes 
increases the probability of good genes combining through crossover to obtain good 

solutions. (Also, with a larger population, a larger space in the GRID box is covered 
by chromosomes of the initial population. This speeds the process of reaching the 

favourable areas within the GRID box. ) The downside of a large population is the 
increase in computation time resulting from applying the genetic operators, two- 

objective scoring and the Pareto ranking process to more chromosomes. Continually 

increasing the population size also ceases to improve results after a certain point. 
Therefore a balance between computational time and effective optimisation needs to 

be achieved. A multiobjective approach usually requires a larger population size than 

a single objective algorithm, because a group of optimal solutions (the Pareto 

solutions) are sought, rather than one single optimal solution. After several trial and 

errors, a population size of 200 was seen as the most appropriate. 

6.1.2 Mutation rate 

Three parameters are involved in mutation; the mutation rate, and the two step sizes 
(one for mutating the translation genes and one for the rotation genes). A high 

mutation rate allows the search to proceed randomly whereas with a low mutation 
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rate the NSGA-11 might fail to discover unexplored areas in the search space. 

Similarly too large a step size introduces random changes in the genes whereas a very 

small step size may have little effect. Ultimately a balance needs to be reached. The 

optimum values found for this NSGA-II's purposes were 2.0 A for the translational 

step-size and 360* for the rotational step-size. 

6.13 Fmult and a., h 

The scaling procedure that was implemented in the SGA (section 4.3.1.1) has also 

been applied here. During multiobjective optimisation, chromosome selection is 

dependent on the Pareto ranks of the chromosomes, rather than their raw fitness 

values. The Pareto ranks are used in the selection procedure (in a process analogous 

to rank selection in an SGA) and are therefore scaled, using Goldberes linear scaling 

procedure described in Chapter 4. (Rank selection involves ranking a population by 

its chromosomes' raw fitness values, and using a chromosome's position (or rank), as 
its representative fitness value for the selection operator. ). Thef.. 1, parameter was not 

modified for the NSGA-11, since the 1.8 value used for the SGA was seen to be just as 

effective. The reason for applying the scaling procedure here is because there is the 

possibility that the highest ranks could be favoured in the selection procedure, which 
lead to loss of diversity and premature convergence. This is especially an issue if 

there is a small number of Parcto ranks and when the top rank occupies a 
disproportionately large segment of the roulette wheel. 

Tle ah,,,, value, the niche radius described in the previous chapter, has been set at IA 

Mutation rate 20% 
Rotation step-size 360 degrees 

Translation step-size 2.0 A 

Population size 200 

Generation number 100000 

Niche radius (objective space) 1.0 

109 



Table 6.3 NSGA-11 parameters when NSGA-11 is tested with datasets 1 and 2 (all 
molecules are considered to be rigid) (overleaf) 

6.2 Comparison to Q-fit 

As was discussed in Chapter 4, the Q-fit docking tool uses the GRID scoring function 

to assess the quality of the poses generated during the search procedure. As the 

NSGA-11 implements the same scoring function, it is feasible to compare the 

performance of the NSGA-11 against that of Q-fit. The main difference between the 

algorithm is the search procedure rather than the scoring function, so it should 

therefore be possible to attribute differences in results between the algorithms to the 

number of objectives used to guide the search. Also comparing the results from these 

programs may highlight information which multiob ective optimisation provides that j 

single objective optimisation does not. Also, by comparing the rmsds and energies of 

solutions from both algorithms, it may be possible to infer whether the global 

optimum has been reached, assuming the results from both algorithms are in 

agreement. Ultimately the Q-fit search procedure is led by the total interaction 

energy- and is optimised by a single objective, whereas the NSGA-11 search 

procedure is guided by multiple independent objectives; this is a process which has 

not been, as far as we are aware, applied to protein-ligand docking, and by comparing 

these two methods directly it will be possible to observe whether multiobjective 

optimisation offers any advantages relative to single objective optimisation in terms 

of finding correct energies, and learning about the influence of the different 

objectives on a given complex. 

63 Interpretation of Pareto plots 

The most effective way of presenting the results obtained by the NSGA-II is to show 
Pareto fronts, containing Pareto solutions, and that have been plotted in objective 

space. These Pareto solutions will be shown as plots where the electrostatic and 
hydrogen bond interactions are on the x-axis, and the vdw interactions are on the y- 

axis. By retrospectively observing where correct solutions (i. e. solutions of rmsds of 
less than 2.0 A) fall on the Pareto front, it is possible to learn which of the objectives, 
if any, are the most influential. The NSGA-11 can potentially find several Pareto 

solutions, all of which are different poses of the ligand. In order to facilitate the 
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comprehension of these results, the Pareto solutions are clustered based on their rmsd 
values from the crystal structure of the ligand (this process is explained in more detail 
in the next section). 

Figure 6.3 is a hypothetical example of a plot which shows that the correct Pareto 

solutions (those within 2.0 A of the crystal structure) are predominantly influenced by 

electrostatic and hydrogen bond interactions. This is apparent by the relatively more 
favourable magnitudes of these interactions, which are in the region of -30 to -45 
kcal/mol. Although the vdw interactions do play a role in finding these correct 
solutions, they are not as influential as the electrostatic and hydrogen bond 
interactions. 
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Figure 6-3 Pareto solutions predominantly dominated by electrostatic and 
hydrogen bond interactions in objective space 

This next plot (Figure 6.4), shows several Pareto solutions which have been clustered 
into four different groups. Only one of these groups, cluster 0.4 A, contains correct 
solutions below 2.0 A. The position, in objective space, of solutions in this cluster 
shows that these are more influenced by vdw interactions. As the figure shows, the 
vdw interactions for these solutions are more favourable than the electrostatic and 
hydrogen bond interactions. 
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Figure 6-5 Pareto, solutions which are relatively equally influenced by both 
objectives 

Looking at Figure 6.5, it can be observed that the correct cluster is relatively equally 
influenced by both objectives. This is unlike the previous two plots, where one of the 

objectives is seen as relatively more favourable than the other. It is therefore possible 
from this plot to infer that neither of the objectives has a predominating influence in 

obtaining correct solutions when docking this particular case. 
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6.4 Robustness of algorithm 

As with any stochastic procedure, the robustness of a multiobjective algorithm must 

also be investigated. The robustness of an algorithm specifies whether the 

optimisation process is consistent, and that the optimal solutions found at the end of a 

run have not been reached randomly. The NSGA-H's robustness can be tested by 

running the algorithm using different random number generator seeds, and comparing 

the Pareto fronts generated by the different runs. C's srando function was used to 

seed the different runs with different integers. The test for robustness was carried out 

on different test cases, all of which confirmed the algorithm's robustness. One of 

these tests is represented in Figure 6.6 which shows the Pareto fronts obtained when 
docking lack, a complex from Dataset 2. As the figure shows, the three different 

Pareto fronts produced by the different runs seeded with 8,2 and I have all converged 
to approximately the same areas in objective space. This confirms that the algorithm 
is robust enough to obtain similar solutions when the random numbers generated at 

all points in the run are different. 
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Figure 6-6 Pareto fronts obtained when NSGA-H was seeded with 
different integers. The test case used is lack. 

6.5 Dataset 1 results 

Using the parameters which have been discussed in the above section, the NSGA-H 

was tested on the 10 complexes from ADataset 1. The following figures show the 
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Pareto solutions obtained when each molecule was docked back into its co- 

crystallised protein active site. For comparison, results obtained from Q-fit are also 

shown. To obtain the energy terms (the two objectives) for Q-fit, the coordinates of 
the Q-fit solution are input into the NSGA-11 which then scores the ligand pose and 

returns the values of the two objectives. The solution is plotted in objective space 

along with the corresponding Pareto solutions. In cases where the rmsd of the top- 

ranked Q-fit solution is below 2.0 A then only the top-ranked Q-fit solution is shown 

on the plot. If the rmsd of the top-ranked solution is greater than 2.0 A then that 

solution is plotted, along with the next solution within the ranked list that has an rmsd 
below 2.0 A. The top-ranked Q-fit solutions are labelled as "top-rank7' whereas the 
low rmsd Q-fit solutions are labelled as "best rmsd". As has been mentioned 

previously, multiobjective optimisation produces a number of solutions, each of 

which represents a unique pose. To be able to easily comprehend the results, and to 

simplify the process of observing these solutions in objective space, the Pareto 

solutions are clustered into groups based on their rmsds from the crystal structure 

using a first-pass clustering procedure. This function first sums the two objectives of 

each pose in the Pareto solution set. These solutions are then ranked based on their 

total interaction energy, the solution with the lowest energy being ranked highest. The 
function then takes the top ranked solution and compares it with the other Parcto 

solutions within the ranked list. The comparison is done based on the rmsd between 

the solutions; all solutions which are less than 1.0 A from the top ranked solution are 

put into a single cluster with the top ranked solution. The function then moves on to 

the next solution that is not already in a cluster, and the rmsd of that solution is 

compared with the remaining solutions, also clustering these together if they are less 

than 1.0 A from each other. In this way all the Pareto solutions are put together into 

clusters based on their orientations. 

114 



6.5.1 labe 

As figure 6.7 shows, for labe both Q-fit and the NSGA-11 docked the molecule 

correctly. The top ranked Q-fit solution has an rmsd of 0.6 A and, judging by its 

position in objective space, is influenced by electrostatic and hydrogen bond 

interactions more so thari by the vdw interactions. The majority of the solutions in the 

Pareto set have an approximate rmsd of 0.3 A. Comparing the positions of the top- 

ranked Q-fit solution and the Pareto solutions, it can be seen that the electrostatic and 
hydrogen bond energies of the Q-fit solution are more negative, and are therefore 

more optimised, than any of the Pareto solutions. In terms of the vdw interactions, 

some of the Pareto solutions have lower energies than the Q-fit solution, though the 

same Pareto solutions have higher electrostatic and hydrogen bond energies. The 

slightly lower electrostatic and hydrogen bond energies of the Q-fit solution indicates 

that such solutions can exist, and can be found by an algorithm's search procedure. 
As the NSGA-II did not find solutions which are as low implies that the Pareto front 

has not converged completely in terms of the electrostatic and hydrogen bond 

energies. Nevertheless this difference in electrostatic and hydrogcn bond energies 
between the Q-fit and closest Pareto solution is relatively small - approximately 0.7 

kcal/mol and the Q-fit solution only dominates two of the Pareto solutions- the 

remaining Pareto solutions are not dominated by this solution. It can therefore be 

concluded that the NSGA-11 was successful at docking this complex. 
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Figure 6-7 Pareto solutions obtained when docking labe. The top-ranked Q-fIt 
solution is also shown. 

6.5.2 ldbb 

The NSGA-11 produced a larger number of Pareto solutions for Idbb than labe 

(Figure 6.8). These are also more varied in orientation, which is reflected in the 

number of clusters and the variety of approximate rmsds from the crystal structure. 

The top-ranked Q-fit solution is on the Pareto front, among Pareto solutions with low 

rmsds. The rmsd of the Q-fit solution is 1.2 A, which is higher than some of the 

Pareto solutions which have approximate rmsds of 0.4 A. The solutions within this 

cluster are spread across the Pareto front, and are varied in terms of the two 

objectives. The Pareto clusters with rmsds above 2.0 A (the green, orange and red 

triangles) in general have more optimised electrostatic and hydrogen bond energies, 
but higher vdw energies. Since the top-ranked Q-fit solution is on the Pareto front, 

and because the rmsds of the lowest energy solutions from both algorithms are 
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relatively low (and below 2.0 A), it can be presumed that the solutions from the 

NSGA-11 have converged to the true Pareto front. 
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Figure 6-8 Pareto solutions obtained when docking Idbb. The top-ranked Q-fit 
solution is also shown. 

6.5.3 Ildin and lstp 

The Pareto solutions obtained when docking lldm all fall into a single cluster of an 

approximate rmsd of 1.1 A (Figure 6.9). These solutions are more influenced by the 

electrostatic and hydrogen bond energies than by the vdw interactions. The top- 

ranked Q-fit solution is among the Pareto solution set, and has an rmsd of 0.7 A. 

-. 1 1 
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Figure 6-9 Pareto solutions obtained when docking lldm. The top-ranked Q-fit 
solution is also shown. 

Unlike I dbb, the Pareto clusters obtained when docking I stp are not scattered across 

the Pareto front (Figure 6.10), The positions of the three clusters obtained fall into 

three clear groups in objective space. The group with the highest rmsd (3.3 A) 

generally has low vdw energy but its electrostatic and hydrogen bond energies are 
higher. Conversely solutions in the 2.0 A Pareto cluster have higher vdw energies but 

lower electrostatic and hydrogen bond energies. As the figure shows, The Pareto 

cluster with the lowest rmsd (1.0 A) is in between the 2.0 A and 3.0 A clusters; its 

solutions have lower electrostatic and hydrogen bond energies than the 3.0 A cluster, 

and also lower vdw energies than the 2.0 A cluster. This cluster appears to be slightly 

more influenced by vdw energies than by electrostatic and hydrogen bond energies. 
The top-ranked Q-fit solution obtained when docking I stp has an rmsd of 1.1 A and is 

among the solutions of the 1.0 A cluster. 
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Figure 6-10: Pareto solutions obtained when docking Istp. The top-ranked Q-fit 
solution is also shown 

6.5.4 lulb, 3tpi, 2gbp and 2phh 

For lulb, 3tpi, 2gbp, and 2phh the NSGA-H obtained Pareto solutions which fall into 

single clusters (Figures 6.11,6.12,6.13,6.14). The clusters produced by lulb, 3tpi 

and 2gbp are correct, and have rmsds of 0.5 A, 1.0 A and 0.6 A respectively. In 

comparison, the 2phh Pareto solutions have high rmsds of approximately 4.5 A. The 

top-ranked Q-fit solutions for lulb, 3tpi and 2gbp have rmsds which are below 2.0 A. 

The position of the top-ranked Q-fit solution in objective space for lulb is on the 
Pareto front, among the Pareto solutions. This may indicate that, since both 

algorithms have found good solutions that are at the same points in objective space, 
the Pareto solutions obtained for lulb have converged to the true Pareto front. Figure 

6.12 shows that for 3tpi, the Q-fit solution is slightly dominating the Pareto solutions, 
though these also have good rmsds. Regarding 2gbp, both algorithms produced 
solutions with good rmsds, but, as can be observed from Figure 6.13, the top-ranked 
Wit solution has slightly more negative electrostatic and hydrogen bond energies. 
This implies that the Pareto front has not fully optimised the electrostatic and 
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hydrogen bond energies. Comparing the Pareto, solution set positions and the top- 

ranked Q-fit solution obtained when docking 2phh shows that the Q-fit solution has 

more negative electrostatic and hydrogen bond energies (by approximately 1.5 

kcal/mol) and also has a good rmsd of 0.5 A. This indicates that the NSGA-11 has not 
been optimised enough to have converged to the true Pareto front. 
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Figure 6-11 Pareto solutions obtained when docking lulb. The top-ranked Q-fit 
solution is also shown 
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Figure 6-12 Pareto solutions obtained when docking 3tpi. The top-ranked Q-fit 
solution is also shown 
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Figure 6-13 Pareto solutions obtained when docking 2gbp. The top-ranked Q-fit 
solution is also shown 
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Figure 6-14 Pareto solutions obtained when docking 2phh. The top-ranked Q-fit 
Solution is also shown 
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6.5.5 3ptb 

When the NSGA-11 was tested using 3ptb, five different clusters were obtained 
(Figure 6.15). Two of the clusters have rmsds of less than 2.0 A (1.1 A and 1.9 A). 

The other three range from 2.1 A to 3.3 A. Looking at the position of the best cluster 
(1.1 A), it can be seen that it is influenced approximately equally by both objectives. 
As would be expected, the Pareto solutions with positive vdw energies may be 

clashing with the protein and therefore have high rmsds. The top-ranked Q-fit 

solution which was obtained when 3ptb was docked has an rmsd of 2.2 A. This 

solution is on the Pareto front but its rmsd is higher than that of some of the Pareto 

solutions. The solution that is at rank 2 has an rmsd of 2.0 A and has slightly worse 

energies than the Pareto solutions. 
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Figure 6-15 Pareto solutions obtained when docking 3ptb. The positions of the 
top-ranked Q-fit solution and next solution from Q-fit's ranked list that has a 
good rmsd are also shown. 
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6.5.6 4dfr 

The NSGA-11 was not able to successfUlly dock 4dfr (Figure 6.16). Both Pareto 

clusters obtained have rTnsds of high rmsds of 8.1 A and 8.4 A. The top-ranked 

solution from Q-fit also has a high rmsd, of 7.1 )ý but the fourth ranked solution in 

the Q-fit list has a good rmsd of 0.6 A. Both these solutions have lower energies than 

the Pareto solutions. Two things can be concluded from this test case. Firstly the 
NSGA-II failed because it did not fully optimise its solutions and therefore the true 

Pareto, front has not been reached. Secondly the fact that the two Q-fit solutions are 

close to each other in objective space but have very different rmsds indicates that this 
is a difficult complex to dock. A small change in energy results in a large change in 

orientation. It can therefore be inferred that the NSGA-111 solutions have converged to 

a local minimum. 
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Figure 6-16 Pareto solutions obtained when docking 4dfr. The positions of the 
top-ranked Q-fit solution and next solution from Q-fit's ranked list that has a 
good rmsd are also shown. 
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6.5.7 Summary of results obtained with Dataset 1 

The NSGA-Il was successful in docking most of the complexes in Dataset 1. The 

Pareto sets for eight out of the ten complexes contain solutions which have good 

rrnsds. As the plots have shown, the balance of energy types between different 

complexes varies. For example the correct Pareto solutions for Ildin, 2phh and 2gbp 

are influenced by electrostatic and hydrogen bond interactions, whereas the Pareto 

solutions from 3tpi and lulb appear to be equally influenced by both objectives. The 

number of clusters Produced also varies between complexes. Single clusters were 

produced for Ildm, lulb, 3tpi, 2gbp and 2phh, all of which have good rmsds, with the 

exception of 2phh. The spread of solutions in the clusters varies, most are spread at 

evenly over both ob ectives, Ildm covers a relatively narrower range than the other 

single-cluster complexes in both objectives. The remaining complexes, Idbb, 4dfr, 

3ptb, Istp and labe produced more than one cluster. The highest number of clusters 

obtained for a complex was with 3ptb, where five clusters were produced. The spread 

of these complexes' clusters on the Pareto front vary; the 3ptb Pareto solutions spread 
into positive vdw energy space whereas the others do not. Solutions from different 

clusters for I dbb are irregularly distributed on the Pareto front, whereas clusters from 

I stp and I abe are grouped more discreetly. 

Comparing the position of the Q-fit solutions to the Parcto solutions provides a good 
basis for assessing the performance of single versus multiobjective optimisation and 

gives an indication as to whether the algorithm has converged to the true Pareto front 

or not. With the majority of the complexes, the top ranked correct Q-fit solution is 

among the correct Pareto solutions therefore making it feasible to assume that the 
Pareto front has optimally converged (assuming that Q-fit has found its lowest energy 
solution). Q-fit did manage to obtain correct solutions within its top ranks for the two 

complexes which the NSGA-11 did not find good solutions for, 2phh and 4dfr,. These 
Q-fit solutions are also dommating the Pareto solutions. This indicates that, since 
good solutions exist, the NSGA-11 did not optimise the solutions for these two 
complexes fully and that they have not converged to the true Pareto front. Overall 
however, the NSGA-11 has been successful at docking this dataset. 
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6.6 Dataset 2 results 

The NSGA-II was also tested on the 10 complexes from Dataset 2. The following 

figures show the Pareto, solutions obtained when each molecule was docked back into 

its co-crystalliscd protein active site. As with Dataset, 1, results obtained from Q-fit 

are also shown, and these are labelled as described previously. The Pareto solutions 

obtained for complexes from this dataset have also been clustered based on their 

orientations in relation to the crystal structure. 

6.6.1 lacj 

Docking I aqJ with the NSGA-II resulted in 8 clusters (Figure 6.17). One of these has 

an rmsd below 2.0 A, (0.7 A) and, looking at its position in objective space it can be 

seen that this correct cluster is more influenced by vdw than by electrostatic and 

hydrogen bond interactions. The 0.7 A solutions are spread between 0 and -1 
kcal/mol for the electrostatic and hydrogen bond interactions, whereas all of these 

solutions' vdw interactions are approximately -25 kcal/mol. The rest of the clusters 

(which incidentally have high rmsds) are spread across both axes, and have 

decreasing electrostatic and hydrogen bond interactions and increasing vdw 
interactions. The Q-fit solution with the best rmsd is ranked P and has an rmsd of 0.6 

A. Its position in objective space is among the correct Pareto solutions, and therefore 

has low vdw interactions and relatively high electrostatic and hydrogen bond 

interactions. The top-ranked Q-fit solution has an rmsd of 2.8 A and this solution, as 

the figure shows, has lower electrostatic and hydrogen bond interactions than the 

correct solutions. This implies that the interactions are not balanced correctly and that 

undue influence is given to the electrostatic and hydrogen bond interactions, resulting 
in the high rmsd of these solutions. Figures 6.18 and 6.19 show the poses of an 

electrostatic and hydrogen interaction influenced pose (from cluster 5.6 A) and a vdw 
influenced pose (cluster 0.7 A). 
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Figure 6-17 Pareto solutions obtained when docking lacj. The positions of the 
top-ranked Q-fit solution and next solution from Q-fit's ranked list that has a 
good rmsd are also shown. 
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Figure 6-18 A pose of a Pareto solution obtained when docking I aci. The pose (in 
red) is more influenced by electrostatic and hydrogen bond interactions, and this 
is apparent by the two hydrogen bonds made by a nitrogen in the ligand and 
glutamic acid in the protein binding site. 
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Figure 6-19 A vdw influenced pose obtained when docking lacj. The pose (in 
blue) is making vdw interactions predominantly, though the nitrogen in the ligand 
may possibly be forming a hydrogen bond with a histidine in the protein binding 
site. The length of this bond pictured is 3.4 A, which is close to the threshold for 
hydrogen bonds in GRID (3.5 A). 

6.6.2 lack 

Docking lack with the NSGA-11 resulted in three clusters, two of which have rmsds 
below 2.0 A (Figure 6.20). The 0.8 A solutions (which are the solutions with the 
lowest rmsd) have electrostatic and hydrogen bond interactions ranging from --6 to 

-10 kcal/mol, and the vdw interactions for this cluster vary from -10 to -22 
kcal/mol. These solutions are therefore more influenced by vdw interactions than by 

electrostatic and hydrogen bond interactions, though the latter are more negative for 

this group Of solutions than for the correct solutions obtained when docking I acj. The 

top-ranked Q-fit solution has a low rmsd of 0.5 A and is among the correct Pareto 

solutions. 
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Figure 6-20 Pareto solutions obtained when docking lack. The position of the top- 
ranked Q-fit solution is also shown. 

6.6.3 lbaf 

Nine clusters were obtained when lbaf was docked using the NSGA-11 (Figure 6.21). 

One of these has a good rmsd of 0.6 A. The position of this cluster is on the right 

edge of the Pareto front and, in terms of the objectives, is strongly influenced by vdw 
interactions, which are in the region of -24 kcal/mol. The electrostatic and hydrogen 

bond interactions, on the other hand, are higher, and have an approximate value of - 
2.5 kcal/mol. The rest of the Pareto solutions are spread on the Pareto front with 
increasing electrostatic and hydrogen bond energies and decreasing vdw energies. 
The top-ranked Q-fit solution has a high rmsd of 4.2 A and is adjacent to the correct 
Pareto cluster but with a slightly lower electrostatic and hydrogen bond energy. The 

lowest rmsd obtained for a solution by Q-fit is 2.1 A for the solution ranked I Vh. As 

its position indicates, this solution is also dominated by the correct Pareto solutions. 
The NSGA-II was able obtain solutions with low rmsds of approximately 0.6 A, and 
is therefore more successful at docking this case than Q-fit, whose lowest energy 
solution has a high rmsd (4.2 A) and whose lowest nnsd solution has a higher energy. 
The shape of the Pareto front differs from the overall shapes of the Pareto fronts 

obtained for the other complexes discussed so far. These have the shape of one 

smooth curve whereas the Pareto front from lbaf is characterised by two smaller 
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curves which are close to each other. One reason for this may be that each curve 

represents a particular pose and that the ligand, tetramethyl dinitophenyl, can also 

dock to this binding site with an alternative pose. 
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Figure 6-21 Pareto solutions obtained when docking Ibaf. The positions of the 
top-ranked Q-fit solution and next solution from Q-fit's ranked list that has a 
good rmsd are also shown. 

6.6.4 lhdc 

With lhdc, the NSGA-H obtained five clusters, all of which have rmsds which are 
higher than 2.0 A (Figure 6.22). The lowest rmsd obtained for a Pareto solution is 9.4 
A, and this cluster has positive vdw interactions and electrostatic and hydrogen bond 

energies of approximately -15 kcal/mol. The top-ranked Q-fit solution also has a high 

rmsd of 9.0 A. This solution has lower vdw energies than the Pareto solutions, and 
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higher electrostatic and hydrogen bond energies. The lowest rmsd obtained by a Q-fit 

solution is 1.5 A, which is at rank 9. This solution has lower vdw energy than all the 

Pareto solutions and therefore dominates some of these. This implies that the NSGA- 

11 did not succeed in optimising the Pareto solutions, and which has resulted in 

premature convergence. The low rmsd of the best Q-fit solution implies that its 

position is where the Pareto front should converge to. If the NSGA-H fails to obtain a 

correct solution among its Pareto set, as illustrated by this case, then it is not possible 

to determine which of the objectives, if any, is the most influential in obtaining the 

correct solutions. 
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Figure 6-22 Pareto solutions obtained when docking Ihdc. The positions of the 
top-ranked Q-fit solution and next solution from Q-fit's ranked list that has a 
good rmsd are also shown. 

6.6.5 Imup 

One out of four clusters obtained when docking Imup has a good rmsd of 0.4 A 

(Figure 6.23). This cluster has a vdw energy of approximately -14 kcal/mol and 
electrostatic and hydrogen bond energies of nearly zero. The values of these 

objectives clearly point to the fact that the vdw energies are having the strongest 
influence on optimising the poses to obtain good solutions. With Q-fit, the lowest 

rmsd obtained has an rmsd of 1.4 A and is at rank 48. This solution is among the 
correct Pareto solutions. The top-ranked Q-fit solution has an nnsd of 4.6 A. This 

solution has lower vdw energies than the correct Pareto solutions and dominates 
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them. This suggests that the Pareto front has not fully converged and it just so 

happens that at its prematurely converged point, correct solutions exist. The fact that 

the Pareto front has not fully converged to the true Pareto front and that the top- 

ranked Q-fit solution has a high rmsd signify that this complex is difficult to dock. 
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Bectrostatic +hydrogen bond 

Figure 6-23 Pareto solutions obtained when docking 1mup. The positions of the 
top-ranked Q-fit solution and next solution from Q-fit's ranked list that has a 
good rmsd are also shown. 

6.6.6 ltdb, 6rsa and 2ak3 

The NSGA-H docked Itdb, 6rsa and 2ak3 successfully, obtaining clusters with good 

rmsds for all three. With ltdb, a correct cluster was produced with an rmsd of 1.8 A, 

and both objectives appear to be exerting relatively equal influences on these 

solutions (Figure 6.24). The correct Q-fit solution has an rmsd of 1.5 A and is among 

the correct Pareto solutions. With 6rsa one cluster was produced by the NSGA-11, 

which has an rmsd of 1.0 A (Figure 6.25). The top-ranked Q-fit solution has an rmsd 

of 1.4 A and is dominated by some of the correct Pareto solutions. These solutions 

are, overall, more influenced by electrostatic and hydrogen bond interactions. Two 

clusters were produced when 2ak3 was docked, one of which has a good rmsd of 0.8 
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A (Figure 6.26). The top-ranked Q-fit solution, as with 6rsa. and ltdb, is also correct 

and has an rmsd of 1 .0A. 
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Figure 6-24 Pareto solutions obtained when docking Itdb. The position of the top- 
ranked Q-fit solution is also shown. 
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Figure 6-25 Pareto solutions obtained when docking 6rsa. The position of the top- 
ranked Q-fit solution is also shown. 
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Figure 6-26 Pareto solutions obtained when docking 2ak3. The position of the top- 
ranked Q-fit solution is also shown. 

6.6.7 2mth and 4fab 

Neither the NSGA-H nor Q-fit were able to dock 2mth and 4fab successfully. The 

lowest rmsd for a cluster produced by the NSGA-11 for 2mth is 4.3 A (Figure 6.27); 

the lowest rmsd for a Q-fit solution is 2.0 A, but this solution has a high rank of 92. 

With 4fab, three clusters were produced, one of which has an rmsd of 2.3 A, which is 

slightly higher than the 2.0 A threshold that deter-mines the success of the algorithm 
(Figure 6.28). Q-fit did not find a solution with an rmsd below 2.0 A either; the best 

Q-fit solution has an rmsd of 2.5 A and is ranked 6h. Since the Pareto and Q-fit 

solutions are near each other in both plots, it can be assumed that these have 

converged to the same local minimum. This also indicates that this is a difficult case 
to dock, the global minimum may be at the bottom of a deep well in the energy 
landscape which both algorithms failed to reach. As was explained when lhdc was 
discussed it is not possible to infer the influence of the individual objectives on 
finding a correct pose in objective space if the Pareto set does not contain correct 
solufions. 
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Figure 6-27 Pareto solutions obtained when docking 2mth. The positions of the 
top-ranked Q-fit solution and next solution from Q-fit's ranked list that has a 
good rmsd are also shown. 
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Figure 6-28 Pareto solutions obtained when docking 4fab. The positions of the 
top-ranked Q-fit solution and next solution from Q-fit's ranked list that has a 
good rmsd are also shown. 

6.6.8 SuInnIary of Dataset 2 results 

The NSGA-U was able to obtain correct solutions among the Pareto set in seven out 
Of ten complexes of Dataset 2, which is the more problematic of the two datasets. The 
Positions Of the correct solutions in objective space vary between the different 
complexes. For Itdb and 2ak3, the Pareto solutions appear to be influenced relatively 
equallY by both objectives. The Pareto solutions for 6rsa are more influenced by 
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electrostatic and hydrogen bond energies, with values in the range of -25 to . 30 

kcal/mol, whereas the vdw interactions are in the range of -8 to -18 kcal/mol. For 

I baf, I aqJ and I mup, the more influential objective is the vdw interactions- in fact the 

latter two are very heavily influenced by vdw interactions; some of the correct Pareto 

solutions are nearly on the y-axis, and therefore have electrostatic and hydrogen bond 

interactions nearing zero. These results are in contrast to those from Dataset 1 where 

several of the correct solutions are not particularly influenced by either objective, and 

a few are more strongly influenced by electrostatic and hydrogen bond interactions. 

In terms of the numbers of clusters, the results from this dataset generally produced 

more clusters per complex compared with Dataset 1. This shows that, with Dataset 1, 

there are fewer orientations that a ligand can take to obtain different balances of the 

two objectives and vice versa for Dataset 2. The most clusters obtained are with lbaf 

(9 clusters) and the smallest number of clusters was observed with 6rsa (I cluster). In 

general, the clusters from most of the complexes fell into discreet groups along the 

Pareto front. In terms of the Pareto fronts produced by Dataset 2, these appear more 
irregular than the more parabola-shaped graphs from Dataset 1. The smoother Pareto 

fronts seen with Dataset I suggests that the energy landscapes of these cases are also 

smoother, with fewer energy minima, or with a shallow, wide, global minimum that 

can be relatively easily reached. In contrast, the shapes of the Parcto fronts obtained 

with Dataset 2 can be regarded as representing a more rugged landscape, with a few 

similar minima spread over the energy surface. This may also explain why these cases 

may be considered as problematic, since a rugged landscape provides more 

opportunities for a search to get stuck in a local minimum. 

Aq 
xs was discussed earlier, observing the positions of the Q-fit solutions gives an 

indication of the performance of the NSGA-11, and allows for the comparison of 

single versus multiobjcctive optimisation. For lacj, lack, ltdb, 6rsa and 2ak3, the 
top-ranked, or high-ranked lowest rmsd Q-fit solutions are all among the correct 
Pareto solutions. Since the solutions from both algorithms have low rmsds and are 
close to each other in terms of energies, it can be assumed that the true Pareto front 
has been reached by the NSGA-II. For lbaf, the NSGA-II produced better results than 
Q-fit; the Pareto set contains solutions with low rmsds and these have lower energies 
than the lowest rmsd Q-fit solution. Also the top-ranked Q-fit solution obtained when 
docking Ibaf has an nnsd that is above 2.0 A. 
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Three complexes which the NSGA-11 could not dock are lhdc, 2mth and 4fab. Q-fit 

did not obtain good solutions at high ranks for these complexes either, though the 18 th 

ranked solution from Q-fit's ranked list of solutions for Ihdc has an rmsd of 1.5 A. 

By observing this solution's position, it can be seen that it is influenced strongly by 

vdw interactions. The Pareto front does not extend as far as this solution; if it did, it 

may also have found this correct solution. For both 2nith and 4fab, the highest ranked 

Q-fit solutions have high rmsds, and the Q-fit solutions with the lowest rmsds have 

high energies. As the NSGA-II was also not capable of finding solutions with msds 

below 2.0 A within its Parcto set, then it can be inferred that these are difficult 

complexes to dock, which have global minima that are difficult to find. The ligands in 

Dataset 2 in general appear to be more strongly influenced by different interaction 

energy types than the ligands in Dataset 1. Vdw interactions play a more predominant 

role than the electrostatic and hydrogen bond interactions, and as illustrated by lbaf 

and lacj. Overall, Q-fit performed better with Dataset I (where it docked all 10 

complexes) than Dataset 2 (where it failed to find good solutions at high ranks for 5 

complexes). Likewise the NSGA-II was more successful with Dataset 1, where it 

docked 8 complexes successfully relative to 7 in Dataset 2. The less favourable 

results obtained with Dataset 2 are not surprising as the complexes in this dataset are 

recognised for their more problematic nature. 

These results have demonstrated that obtaining correct poses is not solely dependent 

on the total energy, but on the balance of the interaction energies that a particular 

solution makes within a protein binding site. For example looking at 2ak3 (Figure 

6.26), a vdw interaction value of -20 kcal/mol and electrostatic and hydrogen bond 

energy value of -10 kcal/mol gives a total energy of -30 kcal/mol, and the resultant 
ligand structure has an rmsd of 0.8 A. Whereas if these values were inverted, the total 

energy would still be -30 kcal/mol, but the ligand would have an rmsd of 6.5 A. 

Therefore a single objective algorithm, guided by the total energy, would not be able 

to differentiate between both scenarios, and the algorithm has an equal probability of 
finding the high-rmsd solution as the low-rmsd solution. This clearly indicates the 
importance in obtaining the right balance of interaction energy types in order to find 

solutions with low rmsds. The distinction which the NSGA-11 has over single 
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objective optimisation algorithms is that it can differentiate between these two 

scenarios. 

These results have also shown that that the energy terms have varying influences 

between different complexes. With single objective optimisation it is not possible to 

infer which energy term has the strongest effect in optimising the search, whereas the 

importance of a particular energy type can quickly be inferred through multiobjectivc 

optimisation by observing the positions of the correct Pareto solutions in objective 

space. This extra information which multiobjective optimisation provides highlights 

the potential for this technique, and which will be further explored in the following 

chapters. 

Chapter summary 

In this chapter, the results obtained when testing the NSGA41 on Datasets I and 2 

have been described. The NSGA-II obtained correct solutions within the Pareto set 
for eight out of the ten complexes in Dataset 1, and for seven out of the ten complexes 

of Dataset 2. The results have demonstrated that for some cases a correct balance of 
the individual interaction energy terms needs to be achieved to find correct solutions. 
The balance of energy terms may also differ between different complexes. 
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Algorithmic Enhancements to the NSGA-11 

The results from the previous chapter show that the NSGA-11 performs satisfactorily 
in obtaining "correcf' solutions within the Pareto solution set. Most of the failures 

which were observed occurred with the complexes in the problematic data set. The 

one exception is 4dfr, which is part of the Dataset 1, and which the NSGA-11 could 

not dock. 4dfr (dihydrofolate reductase and methotrexate) is regarded as the "classic" 

test complex. It has been used as a test case in some of the earliest docking programs 
(Oshiro et aL, 1995, DcsJarlais et aL, 1986). This is mainly because it is a 
therapeutically important target and has been involved in several inhibitor design 

studies. The solutions on the Pareto front obtained when docking methotrexate into 

dihydrofolate reductase are approximately 8A from the crystal structure. To be able 
to understand the reason for this failure, an initial population was created that 

contained several copies of the crystal structure. When the NSGA-11 was run on this 

population, good solutions were obtained. These also had lower energies than 

solutions obtained from a random initial population. This is an indication that 

solutions that have low energies and good nnsds from the crystal structure can exist, 
but the algorithm cannot find them. 

To explore the capabilities of the algorithm, and to improve some of the results 
obtained with the two datasets, three different strategies were implemented. These 

are: 

I- controlled elitism 
2- reduction of E,,. to smooth the energy landscape 
3- refined local search using simplex minimisation with a Lamarckian element 

7.1 Controlled Elitism 

As was described in Chapter 6, the NSGA-11 was found to be very effective at 
converging to the Pareto front, by ensuring no good solution is ever lost from the 
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population. However, it has been pointed out that with some fUrictions, especially 

where there are several non-dominated solutions in the population, the NSGA-11 may 

not be as effective (Jianjun Ilu el aL, 200-3); Deb and Goel, 2001). By only taking the 

best solutions onto the next generation, which may occupy only 2-3 ranks, there is a 

risk of flooding the population with good chromosomes that are similar to each other, 

resulting in the population's premature convergence to a local minimum. 
Intentionally excluding the worst chromosomes may be intuitive, but this also reduces 

the amount of diversity in the population which will lead to premature convergence. 
This has led to the development of NSGA-11 \, Nith controlled elitism (Deb and Goel, 

2001). As the name implies, controlled elitism allows the level of elitism to be 

"controlled" by a certain parameter. In the controlled NSGA-11 the number of 

chromosomes that are selected from a given rank to pass to the next generation 
becomes adaptive and is maintained at a specified distribution. This may be any type 

of distribution- in this case a geometfic distribution was used, though an arithmetic 

distribution was 

N (regular elitism) 2N 

also experimented with. 

N (controlled elitism) 

Figure 7-1 Comparing the reduction of population of size 2N down to N in elitism 
and in controlled elitism. The middle rectangle represents the population 2N, and 
the separate compartments show a hypothetical distribution of solutions across 
five ranks. The rectangle on the left shows the ranks of the chromosomes that 
make up N for the case of non-controlled elitism. The rectangle on the right shows 
the ranks of chromosomes when N is produced by controlled elitism. 

The geometric distribution is shown in the following equation: 

rN, -, where r <I 
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Where Nj is the maximum number of allowed individuals in the i! h rank and r is the 

reduction rate. r is a uscr-defined parameter, but it also allows the procedure to 
behave adaptively. As with the standard NSGA-11, in controlled NSGA-II the parent 

population (N) is combined with the offspring population (N), and the combined 

population (21V) is Parcto, ranked. The maximum munber of chromosomes (Nj) from 

each rank that could potentially be passed to the next generation is: 

N, =N 
I-r 

Equation 7.2 
1-r K 

where K is the total number of ranks in the combined population (i = 1,2, ..., K). 

Because r<1, the highest rank will have the largest number of allowed chromosomes 

and N, will become exponentially reduced with increasing rank numbers. 

The situation may arise where there are more solutions in the th rank than Ni i. e. the 

number of chromosomes in the ith rank, N'j, is greater than Ni. In such cases the 

niching operator is applied to select only Ni chromosomes. This will ensure that the 

maximum number of chromosomes allowed is selected. Using the niching operator to 

select the chromosomes also ensures that diversity along the rank is maintained. 
When the reverse of this situation occurs, i. e. the maximum number of allowed 
individuals is greater than the number of chromosomes in the Jh rank (Ni > Nl), then 

all the solutions in the ith rank are passed to the next generation and the number of 

slots which remain empty NrM, = pi are counted. In the following rank, the 

maximum allowed individuals is increased- so that Nj+1 = Nj+1 + pi. This is also 

compared to the number of solutions in the i+I rank in the same manner as 
described for the previous rank, and the process continues, until N solutions have 

been selected. In this way a distribution of solutions is selected from the majority of 

all ranks, and the resulting population N will retain the diversity of 22V. 

The situation may arise where, after a pass has been made over all the ranks, a few 

slots remain empty. This is most likely to occur with a large r. In such situations 

another pass is made with the chromosomes that have been left out, in 
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Figure 7-2 Schematic of controlled elitism feature of NSGA-11 

the same manner as described previously. This procedure is repeated until all 

slots of N are occupied. 

The NSGA-11 was modified so that, at the end of a generation, the technique 
described above is used to select the chromosomes from the combined 2N population, 
to form population N that is passed on the next generation. The rcduction rate, or r, 

used is 0.1. This version was used to dock the more problematic complexes, such as 
4dfr. 
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The effectiveness of the controlled NSGA-11 was tested by redocking the ligands 

from Datasets I and 2 back into their binding sites. The new modification did not 

cause a profound change to the results discussed in the previous chapter. It was, 
however, interesting to observe if there was any improvement in docking 

methotrexate into 4dfir. As was discussed in the previous section, 4dfr is one of the 

more significant test cases and an algorithm's ability to dock the molecule is a good 
indication of the algorithm's performance. The Pareto solutions in objective space 

obtained when docking methotrexate back into the dihydrofolate reductase active site 

are shown in Figure 7.3. As the figure indicates, none of the Pareto solutions have 

good rmsd values relative to the crystal structure, which indicates that a low diversity 

in the Population may not be the reason why the algorithm cannot dock 4dfr correctly. 
However, comparing this plot with that generated from the initial NSGA-11 (Figure 
6.16), it can be seen that the controlled NSGA-11 produces a Pareto front that is 

slightly more advanced in terms of the electrostatics and hydrogen bond energies 
(most favourable electrostatics and hydrogen bond energy obtained is approximately - 
17 kcal/mol; this is relative to -- 15 kcal/mol obtained with the initial NSGA-11). The 

advancement of the Pareto front generated by the controlled NSGA-11 on the y-axis 
(the vdw energies) is similar to that of the initial NSGA-II. The two plots have the 

same number of clusters, but the clusters from the controlled NSGA-II are more 
diverse in terms of orientations. The rmsds of these clusters range from 8.8 A to 16.5 
A. The rmsd represented by red triangles (16.5 A) is high because the vdw energies 
for this cluster are positive, which means that these solutions may be physically 

clashing with atoms of the binding site. All the clusters from the initial NSGA-11 are 
orientationally similar, with rmsds of approximately 8A from the crystal structure. 
The Parcto solutions from the controlled NSGA-II have a wider range in terms of the 

vdw interactions than the initial NSGA-II (range from - 15.8 to 15.2 kcal/mol versus - 
15.3 to -8.2 kcal/mol), and slightly less varied in ternis of the electrostatic interactions 
09-01 to -13.2 kcal/mol versus -15.37 to -8.4 kcal/mol). 

This result indicates that using controlled elitism can slightly improve the 
performance of the algorithm when run on 4dfr, in terms of the optimization of the 
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electrostatics and hydrogen bond energies. Also the diversity in orientation of the 
Pareto solutions is higher with the controlled NSGA-H than the initial NSGA-11. 
Nevertheless the controlled NSGA-11 was not able to successfully dock any of the 

failures from datasets I and 2. This led to further developments in the algorithm, as 

explained below. 
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Figure 7-3 Pareto solutions obtained when docking 4dfr using controlled NSGA- 
11. 

7.2 A deep energy well- Reducing E. 

An issue that may arise is the ability of the algorithm to go down narrow, steep, 
energy wells. Given an energy surface with several shallow local minima and a global 
minimum that is at the bottom of a narrow and steep well, there is a possibility for the 
algorithm to only explore the shallower, more accessible local minima, without 
reaching the global minimum (Figure 7.4). 

This scenario was observed with Ihdc. As can be seen Figure 7.5, the initial 
Population is evenly distributed within the grid box. The population then very rapidly 

144 



congregates to a shallow cleft - away from the binding site. One way for the 

population to emerge from this situation is through a random event, i. e. for the 

mutation operator to generate a change in a gene which is substantial enough to move 

a chromosome to the more energetically favourable and correct cleft. However, if 

such large changes were allowed this would make it very difficult to ensure that the 

algorithm is successful at reaching the true Pareto front each time. 

0 

Figure 7-4 Hypothetical energy surface an Illustration of an energy landscape that 
may prove challenging to the NSGA-11. The landscape consists of several local 
minima that are more easily accessible than the global minimum, which is down a 
steep well. Note that for clarity a single objective plot has been used here. A 
multiobjective plot consists of several dimensions. 

145 



Figure 7-5 Distribution of initial population of NSGA-11 when docking lhdC 
By studying these figures more closely, and observing the binding site, it may be 

presumed that, for the genes of a chromosome to translate the ligand from the comer 

of the box, to the binding cleft, they will need to be very close to the "true" genes, i. e. 

those genes that would translate the ligand to the crystal structure's orientation. 

Because the binding site of the protein is tight, any chromosome that produces a 

ligand orientation relatively similar to the crystal structure may result in orientations 

that sterically clash with the protein- and hence have high van der Waals energies. 

These are either rejected for exceeding the bumps threshold or are eliminated early 

from the population due to their low Pareto rank which puts them at a disadvantage 

for selection by the reproduction operator. 

The most effective way of dealing with this issue is to soften the energy landscape. 

Energy landscape softening is a feature of the docking tool GOLD (Jones et al., 1997) 

where a 4-8 Lennard-Jones potential is used rather than a 6-12 and the choice of 

parameters ensures that its minimum equals that of a 6-12 potential. In our case, 

reducing the energy threshold E.,,,, will have a similar effect. E.,,,, is the maximum 

energy allowed for any grid point. All points that have energies higher than E.,,, are 
levelled to the E,,,,,,, value. Therefore points on the grid map with high energies, and 

also points which are very close to the protein atoms, will have the energy value of 
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Em4x. Reducing E.,. allows for a "softer" docking approach- therefore any 

orientations that are very close to the protein will have, with a lowered E.,,,,, a lower 

overall energy. Using this technique, orientations which would previously have had 

higher energies with the higher E.,. will now have lower energies. This would allow 
for the existence of orientations in the population that would normally be excluded, 
i. e. orientations that are close to the "true" genes. Having chromosomes in the 

population which are nearer to the crystal structure's orientation increases the 

probability for these chromosomes to produce good solutions - through mutation 
and/or crossover. Therefore reducing E.,,, gives the algorithm scope to explore a 
larger variety of orientations, some of which are more likely to be near to the crystal 
structure orientation. Because of the "softness" of this approach, there is the 

possibility that the fittest chromosomes in the population have orientations which 
clash with the protein. To prevent this from happening, the E.,. value is, after a 
certain number of generations, returned to the default value of 5.0 kcal/mol and the 

entire population is rescored. This will increase the energies of the clashing 
orientations, giving them higher Pareto ranks and decreasing their ability of surviving 
into future generations, which will eventually weed them out of the population. By 

this Point chromosomes closer to the crystal structure and not clashing with the 
protein would already have been created. These are not removed when E. = is 
increased, and their good Pareto ranks will enable them to survive in the population, 
and to produce offspring which are good solutions. 

Liggrid allows the user to change the default value of E.,,,, (5.0 kcal/mol), so one way 
of implementing this is to generate two sets of probe map files, one with a low E. = 
and one with the default Ea,. This would reduce the flexibility of the algorithm 
because experimenting with different E,,,,, values would mean that liggrid would need 
to be run every time to generate new probe map files. Another option is to read in the 
Probe Map files as produced by liggrid using the default Emax value, and modifying 
these values intrinsically, so that they correspond to a lowered Emax value. This would 
also provide the option to change E.. several times during the run, without having 
had to generate different probe map files previously. Hence this is the method that 
was implemented. 
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7.3 Reducing E.. 

Because the second option described above provides the algorithm with flexibility, it 

was selected for implementation. The probe files (created with the default E. of 5.0 

kcal/mol) are read in as normal, and their energy values are then adjusted to a lower 

E.,,,,., value. The reduced E.,,, that has been selected is -2.0 kcal/mol. This threshold 

was selected because it was found to be the most effective value that avoided the 

generation of chromosomes with excessively artificial low energies. Lower E.. 

values produce too many such chromosomes the majority of which are quickly 

selected out of the population when E.,,, is reverted to 5.0 kcal/mol. Equally a higher 

value of E.,. did not result in the desired effect of "softening" the energy landscape. 

Therefore all energy values that are 5.0 kcal/mol are converted to -2.0 kcal/mol. To 

maintain the energy gradient, values between 5.0 and -3.0 kcal/mol are scaled as 
follows: 

5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 ý3.0 

E. = 5.0 kcaVmol 

-2.0 -2.125 -2.25 -2.375 -2.5 . 2.625 -2ý5 -2.875 -3.0 

E. = -2.0 kcal/mol 

Figure 7-6 (a) represents energy values where the value of Emax Is 5.0 kcal/mol; 
(b) shows how these are altered when E. Is reduced to -2.0 kcal/mol. 

The adjustments of the energy values are calculated using the following equations: 
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if Ead < -3.0; 
E,,,,,, = E,, Id Equation 7.3 

if Ewd> -3.0; 
E,,. ý -3 + 118 (Eold+ 3) Equation 7.4 

Where E,, Id is the energy value as input from a probe map file, and E. is the energy 

adjusted based on the scale shown in Figure 7.6. This adjustment ensures the 

maintenance of the energy gradient. 

73.1 Effect of changing E.,, 

To view the effect of E.,. manipulation, distributions of the NSGA-II populations 

were observed within the protein binding site relative to the crystal structure. Figure 

7.7 shows the population at 500 generations when docking lhdc, and where the Emm 

value is set to its default (5.0 kcal/mol). Ihe figure clearly indicates that the 

population is concentrated at a different part of the binding site, meaning that the 

algorithm is not exploring the correct area of the search space. Only a chance event 

(which may be introduced by the mutation operator), may move a chromosome from 

that location closer towards the crystal structure. Figure 7.8 shows the distribution of 

the population with the introduction E.. manipulation, as well as the crystal 

structure. The population is now located much closer to the crystal structure's 

position. The genes of the chromosomes of this population are closer in 

representation to the crystal structure's position, therefore the genetic operators are 

more likely to yield solutions with orientations close to the crystal structure. This 

implementation of the algorithm, in combination with the local minimisation 

technique (described below) was tested on Datasets I and 2- and the results are shown 

in section 7.5. 
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Figure 7-7 Solutions from NSGA-11 (green line figures) in binding site of Ihdc at 
500 generations when E,,.., is set at 5.0 kcal/mol. The solutions are occupying a 
region away from the crystal structure's (yellow cylinder) location in the binding 
site. 

Figure 7-8: Solutions from NSGA-II (green line figures) in binding site of Ihdc at 
500 generations when E,,,, is lowered. The solutions are at the location of the 
crystal structure (yellow cylinder) in the binding site, indicating that the 
algorithm is, at this stage, exploring the correct region in the search space. 
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7.4 Downhill simplex minimisation in multidimensions 

7.4.1 Distribution of initial population 

Figure 7-9 Distribution of initial population in relation to the GRID box. 

Looking at the initial population in Figure 7.9, it can be seen that this is evenly 

distributed throughout the GRID box. A few of the chromosomes are similar to the 

crystal structure in orientation (i. e. they have low rmsd values). After a few 

generations these chromosomes are eliminated from the population. Despite their 

relatively good orientations, they do not have good Pareto ranks. This is because they 

are being outranked by other chromosomes in the population, which are occupying 

regions that are more energetically favourable. Therefore they are very early on 

eliminated from the population. The elimination of these orientations results in the 

loss of valuable information encoded by the chromosomes, which has the potential of 

producing offspring with good Pareto ranks and rmsds close to the crystal structure. 
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7.4.2 Downhill simplex minimization 

The process of local minimisation allows for a molecule to explore the degrees of 
freedom until it reaches a rnHmurn potential energy. Minimising the chromosomes 

with orientations relatively close to the crystal structure and with low Parcto ranks 

will allow them to reach a local minimum. The lower energies attained would give 
these chromosomes higher Pareto ranks, therefore they are more likely to survive in 

the population. 

There are a few docking tools which use local minimisation techniques to aid the 

conformational search, or to refine solutions ftirther. Autodock (Morris et aL, 1998) 

applies the Solis and Wets (1981) local search method to a proportion of the 

population during every generation. The advantage of this method is that it does not 

require knowledge of the gradient at a particular point on the energy landscape. Also 
it searches the genotypic rather than phenotypic space, which avoids the inverse 

mapping of the phenotype back to the genotype. In protein-ligand docking the 

genotypic space is defined by the genetic operators, i. e. crossover, roulette wheel 

selection and mutation, and represented by the genes of the chromosomes. The 

phenotype of a chromosome is the atomic coordinates of the ligand pose as encoded 
by its genes, as well as the energy score of that ligand orientation. However, in those 

cases where an inverse mapping function exists, i. e., one which yields a genotype 
from a given phenotype, it is possible to finish a local search by replacing the 
individual with the result of the local search. 

The Lamarckian element of Autodock (section 3.4.3-5) ensures that chromosomes 

resulting from a local search are incorporated back into the population, and passed to 

the next generation. 
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Figure 7-10 Effect of local minimisation as Implemented by NSGA-11. The 
amoeba method (section 7.43) uses the genes representing the energy at the 
starting point to construct the initial simplex. The method then drives the simplex 
down the slope, taking steps in genotypic space, and assessing the quality of each 
step by calculating the energy at that point (the phenotype). The resulting energy 
value determines what direction the simplex should take next. The changes from 
genotype to phenotype during the minimisation procedure are shown as arrows. 
The Lamarckian element ensures that the final set of genes at the point of the 
minimised energy are passed into the next generation (adapted from Morris et Aq 
1998). 

Q-fit (Jackson, 2002) also incorporates a minimisation step in its procedure. It uses 
the downhill Simplex algorithm of Nealder and Mead (Nelder and Mead, 1965) for 

rigid-body minimisation of every fragment that is placed in the binding site. This 

method, like Autodock's Solis and Wets method, also does not require gradient 
information. It was also found to be fast when compared to a steepest descent method 
(Jackson et aL, 1998), which incidentally also requires gradient information. 
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7.43 Implementation of energy minimisation in the NSGA-11 

The minimisation procedure that has been implemented for the NSGA-11 combines 
factors from both Autodock and Q-fit. The minimisation method used is that of 
Nelder and Mead (1965), and a Larnarckian element ensures that mimmised 

chromosomes are inherited by future generations. 

The Nelder and Mead method, like the Solis and Wets method, is able to search 

genotypic space. This is advantageous to a phenotypic search because the latter would 
involve mapping the genes of a chromosome to its phenotype (i. e. to its coordinates 

and energy score), minimising these, and inverse mapping the resulting coordinates 
into their corresponding genes. A genotypic space search will directly minimise the 

genes of a chromosome, thus avoiding the need for inverse mapping (a time- 

consuming step). 

The NSGA-II uses the amoeba method (Press et aL, 1992), to implement the Nelder 

and Mead minimisation technique. The theory behind this technique is based on the 

generation of a simplex, a geometric figure represented, in N dimensions by N+1 

vertices which are all interconnected by lines. N represents the number of degrees of 
freedom encompassing the problem, which in this case is six (the three translational 

and three rotational degrees of freedom). The generated simplex then undergoes 

various transformations (Figure 7.11). A rcflcction moves the highest point of the 

simplex (this is the vertex with the highest energy) through the opposite face to a 
lower point (or energy). Taking bigger steps results in the expansion of the simplex. If 

the simplex is trying to go through a "tight" spot (or the eye of a needle), it can 

contract itself in all directions, so that it squeezes itself out. Contracting in one 
direction helps it to ooze out of a valley. This behaviour is likened to that of an 

amoeba, which explains the naming of the function. 
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Figure 7-11 Transformations undertaken by the simplex generated by the local 
minimisation feature (Press et A, 1992) 

7.4.4 Simplex generation 

The simplex consists, as mentioned above, of seven vertices (total number of degrees 

of freedom +1). Each vertex or point makes up a possible solution for the problem. 

The starting vertex is represented by the genes of the chromosome being minimised. 

The remaining six vertices consist of modified versions of the chromosome at the 

starting vertex. These are modified by changing a single gene of each by a factor ý- 

The magnitude of ý is an estimate of the scale of the problem, and different values for 

ý were be used for different genes. Therefore for changing any of the translation 

genes, aA value of 0.4 A was found most effective (A, ). For the rotational genes a 

value of 0.087266 rads (equivalent to 5') was used (AA This is shown in Figure 7.12. 
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Figure 7-12 Chromosomes representing the seven vertices of the simplex. 

The terraination criterion is reached when a certain move of the simplex results in a 

functional distance that is fractionally smaller than a particular threshold. The 

threshold which has been used here is 0.5. 

Because the local minimisation technique attempts to decrease the total energy of a 

solution using small changes in orientation (the chromosomes of a simplex only have 

fractional changes in their genes), then it is hoped that solutions in the carly 

generations which are close to the crystal structure- but have relatively high Pareto 

ranks, will retain their overall good orientations, but will have their energies 

minimised by the local minimisation technique, increasing their Pareto rank within 
the population and increasing the probability that they remain in future generations. 
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The Lamarckian element which has been implemented by the NSGA-11 refers to the 

aspect of the algorithm which allows a chromosome that has gone through the 

simplex minimisation procedure to be passed on to the subsequent generation. Every 

chromosome in the population has 10% probability of undergoing the minimisation 
procedure. This was found to be sufficient- and does not vastly compromise the speed 
of the algorithm. 

7.5 Results of Modifications 

Datasets I and 2 were retested with some or all of the modifications described in this 

chapter. The general parameters of the NSGA-II are described in Table 7.1. The 

results obtained from these tests are compared with the results obtained by the 

original version (and described in Chapter 6). The original version of the NSGA-11, 
described in Chapter 5, will be referred to as Version 1 of the algorithm, and the 

modified NSGA-11 as Version 2 (referred to as v. 1 NSGA-11 and v. 2 NSGA-11 for 

brevity). To ease the comparison between the two versions, the Pareto fronts from 

both are plotted on the same axes. The Pareto solutions from Version 2 are clustered, 
based on orientation, into groups which are within 1A of each other. All of these are 
shown as different coloured triangles. The lowest rmsd of a solution in a given group 
is quoted in the legend key. The Pareto solutions from Version I are shown in two 

groups, solutions with rmsds; below 2.0 A (shown as grey circles), and solutions with 

rmsds higher than 2.0 A (red circles). The next sections show the results for both 
datasets. 
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Generation number 15000 

Population size 200 

Niche radius 0.5 A 

Mutation parameters 
Mutation rate 30% 

Rotation step size 27c rads 
Translation step size 2A 

Table 7.1 Parameters used in modified NSGA-11. 

7.5.1 Dataset I 

Dataset I is described in Chapter 6, and consists of complexes that are considered to 

be fairly easy to dock. v. I NSGA-11 successfully docked eight out of the ten 

complexes, and failed with 4dfr and 2phh. Figures 7.13 to 7.23 show the Pareto 

solutions obtained when docking the different molecules. The following section 

compares the results obtained from the two versions. 
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Figure 7-13 Pareto solutions generated by version 2 of NSGA-11 for Idbb. Pareto 
solutions from Version I are also shown. 

Both versions of the NSGA-11 were successful in docking Idbb (Figure 7.13). 

Looking at the position of the correct Pareto solutions from both versions, it can be 

seen that both have converged to similar points. Overall, the Pareto front from 

Version 2 is clearly more advanced than the Version I Pareto front. Also, comparing 
the number of clusters generated by both versions, fewer clusters are generated by v. 2 

NSGA-11. This may be because at the more advanced position of the Version 2 Pareto 

front, the Pareto solutions are more similar to each other orientationally- resulting in 

fewer clusters. 

7.5.1.2 lldm, 2gbp and Istp 
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Figure 7-14 Pareto solutions generated by version 2 of NSGA-11 for Mtn. Pareto 
solutions from Version 1 are also shown. 

All of the Pareto solutions of I Idm from Version 2 have good rmsds of approximately 
0.6 A, which fall into one cluster (Figure 7.14). Some of these solutions are slightly 
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more advanced than the Version I Pareto solutions. The Version 2 solutions also fall 

into a single cluster, with a higher nnsd of 1.1 A. 

The Pareto solutions of I stp fall into two clusters, which have approximate rmsds of 

0.7 A and 3.4 A (Figure 7.15). This Pareto front is sparser than that obtained with 

NSGA-11 Version 1. 
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Figure 7-15 Pareto, solutions generated by version 2 of NSGA-11 for Istp. Pareto 
solutions from Version I are also shown. 
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Figure 7-16 Pareto solutions generated by version 2 of NSGA-11 for 2gbp. Pareto 
solutions from Version 1 are also shown. 

With 2gbp all the Pareto solutions obtained by Version 2 fall into one cluster (Figure 

7.16). These have a better approximate rmsd than that obtained with the v. I NSGA-11. 

Also, as the figure shows, the Pareto front is more advanced. The range of the Pareto 

solutions' vdw energies is much smaller than that obtained from Version 1. This may 

be because at that particular point in objective space all the Pareto solutions have a 

smaller vdw energy range. 
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7.5.1.3 2phh 
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Figure 7-17 Pareto solutions generated by version 2 of NSGA-11 for 2phh. Pareto 
solutions from Version I are also shown. 

All of the Pareto solutions obtained for 2phh have good rmsds (Figure 7.17). This is 

in contrast to the result obtained with the initial NSGA-II, where the best solutions 
had rmsds of -4A. The Pareto front has advanced further than that obtained with the 

v. ] NSGA-II, which implies that v. 1 NSGA-II was unsuccessful because the 

algorithm had not converged to the true Pareto front. 
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7.5.1.4 3tpi and 4dfr 
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Figure 7-18 Pareto solutions generated by version 2 of NSGA-11 for 3tpi. Pareto 
solutions from Version I are also shown. 

For 3tpi, the Pareto front generated by the modified NSGA-11 is slightly more 

advanced than that obtained with v. 1 NSGA-11 (Figre 7.18). Correct solutions were 

obtained in both cases. 
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Figure 7-19 Pareto solutions generated by version 2 of NSGA-11 for 4dfr. Pareto 
solutions from Version 1 are also shown. 

The v. 1 NSGA-II was unable to successfully dock 4dfr, which is one of the reasons 

why the algorithm was modified as described in this chapter. The modified NSGA-H 

was successful in docking this molecule at good rmsds of approximately 1.4 A 

(Figure 7.19). Comparing these solutions with those from the v. 1 NSGA-H, it is clear 
that the modified NSGA-H is more effective at progressing the Pareto front in 

objective space. It is interesting to note that the two clusters obtained with the 

modified NSGA-H have very different orientations (as observed by their rmsd values) 

and yet they are adjacent in objective space. This shows that two chromosomes may 
have very different orientations but be very similar to each other in objective space. 
This demonstrates the difficulty of this particular case, since the NSGA-H is 

optimising the objectives of the chromosomes, and cannot differentiate between 

different orientations. Therefore if the "wrong! ' orientation is present in the 

population, then it will not be at a substantial disadvantage from a "coffecf' 

orientation with similar objectives. This problem can, hypothetically, be 

circumvented by using decision space niching (section 5.2.4), which applies niching 

to the orientations of the ligands rather than the objectives. In this way a diverse 

selection of orientations are maintained within the population, and therefore increase 

the probability of finding solutions that have both, low interaction energy types and 

correct orientations. 
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Figure 7-20 Pareto solutions generated by version 2 of NSGA-11 for labe. Pareto 
solutions from Version I are also shown. 

7.5.1.5 labe 

labe was docked by both versions of the algorithm. The correct clusters in both 

Pareto fronts have good rmsds of approximately 0.3 A. The Pareto front from Version 

I has a second cluster of 2.1 A. This is not in the Pareto front from the second version 
because its Pareto solutions would dominate these clusters, which is why they would 
have been excluded from the Pareto set. The Version 2 Pareto front is slightly more 

advanced than the Pareto front from Version 1. 

-5 0 
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7.5.1.6 3ptb and lulb 
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Figure 7-21 Pareto solutions generated by version 2 of NSGA-11 for 3ptb. Pareto 
solutions from Version 1 are also shown. 

3ptb was successfully docked by both versions of the NSGA-H, but the Pareto front 

obtained with v. 2 NSGA-H is more advanced along the x axis, where some of the 

solutions have decreased electrostatic and hydrogen bond energies (Figure 7.21). This 

front, however, does not extend into the positive vdw energy space. The clusters with 

good rmsds from both fronts have comparable objective values. 
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Figure 7-22 Pareto solutions generated by Version 2 of NSGA-11 for lulb. Pareto 
solutions from Version 1 are also shown. 

lulb is one of the cases docked successfully by both versions of the NSGA-11. The 

Pareto front obtained with the v. 2 NSGA-II is slightly less advanced along the x-axis: 

the lowest electrostatic and hydrogen bond energy for a solution is -13.8 kcal/mol. 

This is relative to -14.5 kcal/mol, the lowest electrostatic and hydrogen bond energy 

obtained by a Pareto solution from the v. I NSGA-11 (Figure 7.22). The extension of 

the Pareto front along the y-axis is similar for both algorithms. A single cluster was 

obtained with Version 2, and all of its solutions are similar to each other in terms of 

the two objectives. The vdw range of these solutions is also much narrower than those 

obtained with Version 1. 

7.5.1.7 Summary of results obtained from Dataset 1 

The NSGA-11 v. 2 described in this chapter has been successful in docking the entire 
Dataset 1, including 4dfr, the "model" docking test case. The Pareto fronts obtained 
have, in general, advanced further than those from Version 1. As demonstrated with 
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2phh and 4dfr, this has led to obtaining solutions with better rmsds. It was noted that 
fewer clusters of Pareto solutions were obtained from Version 2 of the algorithm. One 

reason for this could be that, where the Pareto front has advanced further, then at that 

particular point all the Pareto solutions have similar orientations, resulting in a 
smaller number of clusters. Another factor could be the local minimisation procedure, 
which is minimising the chromosomes so that they are all converging into the same 
minima, thus resulting in several chromosomes that are similar to each other 
orientationally. The aim of multiobjective optimisation is to achieve an advanced and 
laterally spread Pareto front. The v. 2 NSGA-II has shown that all of the Pareto fronts 

obtained from docking the ligands from dataset I have advanced enough to obtain 
correct solutions within the Pareto solution set, though some of the fronts obtained are 

not as laterally spread as those obtained with Version 1. Ibis may be due to the 
Lamarckian element of the algorithm- continually minimising a proportion of the 

population during a run may be producing several chromosomes that are similar to 

each other, therefore reducing the diversity of the population- which may result in a 
Pareto front that is less diverse- i. e. that is not as spread out laterally. The effect of 
the local minimisation/Lamarckian elements may be the faster convergence of the 
Parcto front (which means fewer generations are needed for running the algorithm) at 
the expense of a small loss in diversity. Despite the latter point the algorithm was 
successful in obtaining correct solutions within the Pareto solution set for all 

complexes of Dataset I- an improvement from the initial version of the algorithm. By 

obtaining correct solutions it is possible to observe where these are falling in 

objective space, and therefore infers which of the objectives, if any, is dominating. 

7.5.2 Dataset 2 

Dataset 2, one of the two datasets used to validate Q-fit, was described in Chapter 6. 
This is a more problematic dataset- both Q-fit and the original GOLD docking tool 
found these complexes difficult to dock- obtaining erroneous results. The v-2 NSGA- 
II was retested on this dataset, and the results obtained were compared to the results 
from Version 1. The local minimisation procedure has not been implemented with 
this dataset because it was found that including this procedure had a detrimental 
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effect on the results, and failed to dock complexes which were previously docked 

successfully. The effect of the local minimisation procedure on this dataset was 

realised through various trial and error experiments, and this led to the decision not to 
include this procedure, though it is worth noting that Dataset I was successfully 
docked when this feature was implemented. The following section describes Dataset 

2 results. 
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Figure 7-23 Pareto solutions generated by version 2 of NSGA-11 for lacj. Pareto 
solutions from Version I are also shown. 
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Figure 7-24 Pareto solutions generated by version 2 of NSGA-11 for lack. Pareto 
solutions from Version 1 are also shown. 
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Figure 7-25 Pareto solutions generated by version 2 of NSGA-11 for 2ak3. Pareto 
solutions from Version 1 are also shown. 
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Figure 7-26 Pareto solutions generated by version 2 of NSGA-11 for Itdb. Pareto 
solutions from Version I are also shown. 

Version 2 was as successful as Version I of the algorithm in docking laqJ, lack and 
2ak3 (Figures 7.23,7.24,7.25). The Pareto fronts of I aqJ and I ack advance to similar 

positions in objective space- a slightly more advanced Pareto front is produced with 

Version 2 for 2ak3. The rmsds of the correct Pareto solutions from both versions of 

the algorithm are similar for all three of these complexes. With I tdb, both versions of 

the program produced a cluster that occupies similar regions in objective space 
(Figure 7.26)- though the rmsd of the cluster from the second version is lower. The 

v. I NSGA-II produced a second cluster with more positive vdw energies and poorer 

rmsds, and which is absent from the Pareto set from Version 2. This cluster results in 

the Pareto front being further extended than the Version 2 Pareto, front. 

7.5.2.2 4fab, Imup and 2mth 
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Figure 7-27 Pareto solutions generated by version 2 of NSGA-11 for 4fab. Pareto 
solutions from Version 1 are also shown. 
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Figure 7-28 Pareto solutions generated by version 2 of NSGA-II for Imup. Pareto 
solutions from Version I are also shown. 
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Figure 7-29 Pareto solutions generated by version 2 of NSGA-11 for 2mth. Pareto 
solutions from Version 1 are also shown. 

With 4fab, the v. I NSGA-11 produced Pareto solutions that have lower rmsds than 

Pareto solutions from Version 2 (Figure 7.27). The Pareto fronts from Version I is 

slightly more advanced in objective space, though the Pareto front from Version I 

extends further along the x-axis, towards more positive values. Incidentally the 

solutions at this point have better nnsds (Figure 6.28). There are solutions with lower 

rmsds (approximately 2.3 A) in the final population generated from version 2, but 

these have lower Pareto ranks (between 2 and 5), and are therefore excluded from the 
Pareto solution set. 

For Imup, the Pareto front obtained is similar to what was obtained with Version 1, 

and it is slightly more advanced (Figure 7.28). Both versions produced one cluster 

with a good rmsd (0.4 A with Version I and 0.8 A with Version 2), and which were 
in similar positions of the Pareto space. 
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2mth was not docked by Version I of the algorithm (Figure 7.29). The lowest rmsd 

obtained by a cluster was 4.3 A. Version 2 of the algorithm, however, was able to 
dock the ligand successfully and obtained a cluster with an rmsd of 0.5 A. This 

cluster only has slightly better energies. This small improvement in both objectives 
has resulted in a change of orientation- resulting in solutions with rmsds close to the 

crystal structure. This illustrates the sensitivity of the scoring function, and how 

solutions which are close to each other in objective space can have very different 

orientations. The Pareto fronts from both versions have converged to similar points. 

7.5.2.3 6rsa 
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Figure 7-30 Pareto solutions generated by version 2 of NSGA-Il for 6rsa. Pareto 
solutions from Version 1 are also shown. 

Both versions of the algorithm produced Pareto sets containing correct solutions 

when tested with 6rsa (Figure 7.30). Both Pareto fronts obtained have varied 
distributions in objective space. The Pareto solutions from Version 1 (all of which 
have rmsds of less than 2.0 A), are spread over a wide range of vdw energies (--4 to - 
18 kcal/mol) and the electrostatics and hydrogen bond energies cover a smaller range 
(--25 to -30 kcal/mol). The Version 2 Pareto, solutions have vdw energies which are 
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overall as advanced as the Version I Pareto solutions, but cover a smaller range- (- - 
13 to -48 kcal/mol). The electrostatic and hydrogen bond energies of the Pareto 

solutions from version 2 also cover a smaller range. This objective is slightly more 

advanced with the Version I Pareto solutions. The correct clusters from both versions 
have similar rmsds. 

7.5.2.4 lhdc 
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Figure 7-31 Pareto solutions generated by version 2 of NSGA-11 for Ihdc. Pareto 
solutions from Version I are also shown. 

Ihdc was a problematic complex, which version I of the algorithm did not dock 

successftdly. The v-2 NSGA-11 was also unsuccessful at docking this complex- the 
lowest rmsd obtained for a cluster was 9.7 A (Figure 7.3 1). The Pareto fronts from the 

two versions have converged to similar points in objective space. The Pareto front 

from version I extends into positive vdw energy space- the highest vdw energy value 

reached by the version 2 Pareto front is approximately -5 kcal/mol. Also the Version 
I Pareto front solutions cover a wider range of electrostatics and hydrogen bond 

energies (--6 to --14 kcal/mol). The failure of this algorithm to dock this molecule 
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using either of the versions- and which Q-fit docked only at a lower rank of 18- 

indicates that this is a difficult complex to dock correctly. The solution with the 

lowest rmsd from the Q-fit output (with an rmsd of 1.5 A from the crystal structure) 
has a total energy of -26.05 kcal/mol, which is higher than solutions with worse 

rmsds- hence its low rank. The magnitude of the scoring function therefore does not 

agree with the quality of the molecule's orientation- an orientation with a high rmsd 
has a more favourable energy than an orientation with a good rmsd. This makes Ihdc 

a complex that is difficult for the algorithm to dock- since the scoring function does 

not differentiate between correct and wrong orientations. 
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Figure 7-32 Pareto solutions generated by version 2 of NSGA-11 for lbaf. Pareto 
solutions from Version I are also shown. 

A test case which version I docked and version 2 did not is Ibaf. The pareto fronts 

obtained from the two versions when docking I baf are in roughly similar positions of 

objective space, though a section of the Version I Pareto front is more advanced 
(Figure 7.32). The correct cluster from version 1 (0.6 A), on the edge of the Pareto 
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front, has stronger vdw than electrostatics and hydrogen bond energies. The cluster 
labelled 5.6 A from the version 2 Pareto front has very similar balances of objectives, 
yet its orientation is very different. This suggests the difficulty of this case: two 

energy minima, one local and one global, have very similar energies. Presumably it is 

more difficult to reach the global minimum, which may be down a narrow well. 
Version 2 of the algorithm seems to get stuck at the local minimum, whereas version 
I is able to reach the slightly more energetically favourable global minimum. The 
difficulty of this case suggests the possibility that version I may have "found" the 

correct solution by chance, and that different starting populations would not always 

produce good solutions. 

7.5.2.6 Summary of results from Dataset 2 

The previous section showed the results obtained when testing Dataset 2 with the 

NSGA-11 algorithm which has been modified as described earlier in this chapter 
(though for these tests the local minimisation procedure was switched off). These 

results were compared with the results that were obtained with the initial NSGA-11- In 

terms of success in docking, Version 2 was able to dock an additional complex which 

version I did not (2mth). However, it was unable to successfully dock 4fab and lhdc, 

both of which were also not docked with version 1. Unlike Version 1, Version 2 did 

not dock lbaf. 

In conclusion, Version 2 of the NSGA-11 produces correct solutions wit1iin the Pareto 

set in seven out of ten cases. Ile three failures are I hdc, I baf and 4fab. 

7.6 Conclusions 

The aim of this chapter was improve the perfon-nance of the algorithm on datasets, I 

and 2, and particularly to dock 4dfr, the "moder' test case. The three modifications 
implemented- controlled elitism, reducing E,,,,,, and local minimisation with 
Larnarckian element succeeded in docking all ten cases from Dataset 1, and seven of 
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the ten cases from Dataset 2- giving a success rate of 85%. This is an improvement 

from the results obtained with version 1, where a success rate of 70% was achieved 
(taking into account that docking lbaf was not successful). Along with the fact that 

these enhancements have improved the results obtained from datasets, they have also 

provided the opportunity to explore the capabilities of these enhancements in the 

algorithm. 'Me implementation of the local minimisation/Lamarckianism is a novel 

element which, as far as we arc aware, has not been previously used in multiobjective 

optimisation. 'Mis has provided some benefit to the performance of the algorithm- as 
the Dataset I results show. Because this feature was detrimental on results from 

Dataset 2, but was beneficial to Dataset I results, it should be experimented with 
before deciding on whether to implement it on a particular case/dataset. 

All three modifications allow the algorithm to be parameterised and tweaked to obtain 
the best results. The controlled elitism feature, which did not achieve a profound 
improvement of results, nevertheless provides the option of controlling the level of 

elitism in the algorithm. The E.,,,, reduction feature can be manipulated by switching 
it off or on, or by changing the generation number at which it is reverted back to the 

default value of 5.0 kcal/mol. The local minimisation/Lamarckianism feature can 
have the termination criterion, %I and X2 manipulated, as well as the proportion of the 

population to which this is applied at the end of each generation. This provides a user 

with the opportunity to tailor the algorithm to suit a particular problem, in order to 

achieve the best results. These features also give the algorithm flexibility- different 

parameters could be applied to different cases. 
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Testing of the NSGA-11 on different datasets 

In this chapter, and as specified in the aims of the thesis in section 3.5, the effect of 

running the NSGA-11 on different datasets is explored. These are the FlexX dataset 

(Kramer et aL, 1999), and a dataset consisting of glycogen synthase kinase-3 beta 

(GSK-3 beta) co-crystallised with different ligands. Enhancements in the algorithmic 

structure of the NSGA-II were explored in the previous chapter. This chapter attempts 

to understand the biological capabilities of the algorithm. 

As the previous chapters have shown, the NSGA-11 is capable of satisfactorily 
docking various ligands into their respective co-crystallised protein binding sites. 
More importantly by observing the position of the correct solutions in ob cctive space 

we are able to learn which interactions, if any, are having the dominating effect in 

obtaining the correct solutions. Many of the results showed that either one of the two 

objectives, at any one time, could have a dominating effect. For example Imup had a 

stronger vdw interaction influence, whereas with 3ptb/4dfr the electrostatics and 
hydrogen bond energies are more influential. These variations lead to the question of 

what could be observed if different ligands, which bind to the same protein, were 
docked using the NSGA-11. Would there be a trend in the balance of the objectives? 
Are there any trends in the spread of the Parcto front or in the positions of the correct 

solutions on the Pareto front? To attempt to answer these questions, the algorithm was 

tested on the GSk-3 beta dataset. 

8.1 Glycogen synthase kinase-3 beta 

GSK-3 beta is a serine/threonine protein kinase which phosphorylates glycogen 

synthase, as well as being involved in a broad range of other biological processes. 
GSK-3 beta has been implicated in a number of conditions, including Alzheimer's 

disease, type 2 diabetes, cancer and chronic inflammatory conditions (Garcea et al., 
2007; Takashima, 2006). GSK-3 beta is known to phosphorylate many different kinds 

of structural, signalling and metabolic proteins. It is linked with Alzheimer's disease 
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because of its known interactions with the plaque-producing ainyloid system, in 

assisting in the formation of neurofibrillary tangles and for its interactions with other 

proteins associated with the condition (Mudhcr and Lovcstonc 2002). GSK--3) beta 

plays a part in the Wnt and Hedgehog pathways, both of which are implicated in 

several forms of cancer (Doble and Woodgett, 2003). 

These factors make GSK-33 beta a very attractive therapeutic drug target and it has 

therefore been studied extensively in recent years. Many structure based design 

experiments that attempt to find effective inhibitors for its function have also been 

published (Polgar et al., 2005, Lescot el al, 2005, Naerum et al, 2002). 

The ten complexes of GSK-3) beta that were used in this study involved molecules 
bound to the ATP binding site of the kinase. The parameters used to dock these 

molecules were the sanic as those described in the previous chapter. For comparison, 

the molecules were also docked using the docking tool Q-fit (Jackson, 2002). 

PDB 

Code 
Structure Type/Inhibitor 

1 Q4L 15 

lQ3W Alsterpaullone 

1 PYX AMP-PNP 

lQ3D Staurosporine 

1 Q41 Indirubin 

1 UV5 Bromo-indirubin 

1GNG apo phosphorylated structure 

lJlB AMP-PNP 

lilc AMP-PNP 

109U 9-methyl-9H-purin-6-amine 

Table 8.1 PDB codes and ligands of GSK-3 beta dataset 
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8.1.1 Results 

Figures 8.1 and 8.2 show the Pareto fronts obtained when these molecules were 
docked into their protein binding sites. The top ranked solutions obtained when 
docking the ligand into the binding site using the docking tool Q-fit are also shown. 
The rmsd of these solutions from the crystal structure are indicated in the legend. If 

the rmsd of the top-ranked Q-fit solution is greater than 2.0 A, then the solution with 

the lowest rmsd from the entire Q-fit output list is selected and also plotted in 

objective space. This solution's rank (within Q-fit's list of solutions), is quoted in the 

legend. 

The NSGA-11 was able to dock six out of ten of the GSK-3-beta complexes with 

rmsds that are lower than 2.0 A. The Pareto, fronts obtained with some of the 

successful cases (e. g. lq4l) show that the correct solutions in the Pareto solution set 

are more influenced by vdw energies than the electrostatic and hydrogen bond 

energies. Correct solutions from other Pareto fronts are spread more uniformly across 
both objectives ft lq3w)- but the vdw range covered appears to be larger than the 

electrostatics and hydrogen bond energies. 

The overall results from Q-fit agreed with the results obtained by the NSGA-II, Le. 

complexes for which NSGA-11 obtained correct solutions in the Pareto set also 

obtained correct solutions in the top ranks of Q-fit's list of output, and vice versa. 
This was with the exception of lq4l, lq3d and lpyx. The NSGA-11 docked these 

correctly (solutions with approximate rmsds of 1.0 A), but Q-fit did not find a 

solution below 2.0 A. The results of Q-fit also correlated with the negative results 
obtained by the NSGA-11: the four cases for which the NSGA-11 did not obtain 
correct solutions among its Pareto sets were also not docked correctly by Q-fit- 

8.1.1.1 Successful cases: Iuv5,1q3w, 1q4l, lq4L, 1q3d and 1pyx 

The NSGA-11 was able to successfully dock six of the ten GSK protein complexes, 
i. e. the Pareto solution sets generated all contained some solutions that had rmsds of 
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less than 2.0 A from the crystal structure. With the exceptions of lq3d, lq4l and 
lpyx, Q-fit obtained good rmsds for all its top-ranked solutions. All the Pareto 

solutions obtained with I uvS have good rmsds (less than 2.0 A). The top-ranked Q-fit 

solution is also among the correct Pareto solutions; this implies that, presuming Q-fit 

has reached the global minimum, the NSGA-11 has reached the true Pareto front. This 

scenario was also observed with I q3w and I q4L (Figure 8.1(b) (c)). 

Q-fit did not dock the lq4I complex successfidly; the top-ranked solution has an 

rmsd of 6.2 A, and the lowest rmsd for any solution was 3.2 A (ranked at 35). 

Looking at the position of the top-ranked Q-fit solution relative to the Pareto front, it 

can be seen that this is in the same region as Pareto solutions with high rmsds (near 

Pareto solutions represented by green triangles) (Figure 8.1(d)). The correct Pareto 

solutions (blue triangles) are fin-ther down the Pareto front, towards the y-axis. This 

implies that, despite the Q-fit solution being amongst the Pareto solutions- it does not 
have a correct balance of the energy types- which results in a high rmsd from the 

crystal structure. Comparing the balance of the correct Pareto solutions and the Q-fit 

solution, it can be seen that the Q-fit solution has a slightly lower electrostatics and 
hydrogen bond energies. This case therefore highlights the importance of achieving a 

correct balance of energy types in order to find solutions with good rmsds. 

The position of the top-ranked Q-fit solution for the lq3d complex in objective space 

suggests that Q-fit did not reach the global minimum (Figure 8.1 (e)). The rmsd of this 

solution is 2.6 A from the crystal structure. The Parcto solutions (which also 

constitute a correct cluster) have more favourable electrostatics and hydrogen bond, 

and vdw energies and two of the clusters have rmsds that are below 2.0 A (0-5 A and 
1.2 A). This case indicates that the NSGA-II can be more effective at reaching the 

global minimum than Q-fit. 
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8.1.1.2 Unsuccessful cases: Igng, 1o9u, 1j1b and 1jIc 

There are four cases which the NSGA-II did not successfully dock. These are Igng, 

I o9u, Ij Ib and Ij I c. These same cases were also not docked by Q-fit; the top-ranked 
Q-fit solutions have nnsds ranging from 3A to 9.6 A. The position of these solutions 

relative to the Pareto solution set varies. For Ij 1 b, I gng and Ij I c, the top-ranked Q-fit 

solutions are all slightly beyond the Pareto front (Figure 8.2 (a), (b), (d)). This 

indicates that, in these particular cases the NSGA-II may not have fully optimised the 

Pareto fronts, since the Parcto fronts do not extend as far as the Q-fit solutions. But 

since the rmsds of these Q-fit solutions are over 2.0 A then this implies that even if 

the NSGA-11 obtained Pareto solutions that extended as far, then these would still 
have high rmsds. For Io9u (Figure 8.2(c)), the top-ranked Q-fit solution lies on the 
Pareto front. This may indicate that the true Parcto front has been reached, and that 

this does not contain the correct solution. This scenario would mean that the scoring 
function cannot differentiate between solutions that are close to the crystal structure 

and solutions that are not. Or it may be that this is a more difficult complex to dock, 

which both Q-fit and the NSGA-II could not successfully minimise towards the true 

Pareto front, or to the global minimum, resulting in incorrect solutions. 

The Q-fit solutions with the lowest rmsds for these four cases all have higher energies 
than the top-ranked Q-fit solutions, and are also behind the Pareto fronts generated by 

the NSGA-11. Their rmsds from the crystal structure are not necessarily below 2.0 A 

(with the exceptions of I o9u, for which a solution with a low rmsd of 0.77 A was 
obtained, and Ij I c, where a solution with rmsd of 1.8 A from the crystal structure was 

obtained). 

The agreement of results from both programs indicates that the reason for not 

successfully docking these molecules may be due to the scoring function: it is not 

able to successftdly differentiate between correct and incorrect solutions and incorrect 

solutions are being scored more favourably than correct solutions. Another possibility 
is that the search procedure of both algorithms is not effectively sampling favourable 

areas of the search space so no correct orientations are ever produced during a search. 
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A reason for this may be that correct solutions for these cases lie down narrow energy 

wells, malcing it difficult for the algorithms to reach those points. 
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8.1.2 Discussion of results obtained with GSK-3 beta dataset 

The aim of this experiment was to observe Pareto fronts which have been generated 
by docking different molecules which have been co-crystallised with the same protein 
into their respective binding sites. Two trends were observed when looking at the 

distribution of the correct Pareto solutions in objective space. With lpyx, lqrd and 

Iq4l, the vdw interactions are seen to be the dominating objective in obtaining the 

correct solutions- these interactions are more favourable relative to the electrostatics 

and hydrogen bond interactions. Q-fit failed to obtain good solutions at high ranks for 

these cases. With luv5, lq3w and lq4L, the correct Pareto solutions are distributed 

over a wider range of vdw interactions whereas the electrostatic and hydrogen bond 

energies of the same solutions have a narrower range, and in fact a few of the correct 

solutions appear to have very similar electrostatic and hydrogen bond energies 
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(demonstrated by the almost vertical portions of the Pareto fronts). This implies that 

making specific electrostatic and hydrogen bond interactions are important in 

obtaining correct solutions, but that the vdw interaction energies can be more varied. 
Q-fit obtained good solutions at high ranks for these three cases. The variation of Q- 

fit's results with these six cases implies that, where specific hydrogen 

bond/electrostatic interactions are necessary to obtain correct solutions, then it is able 
to optimise these sufficiently to obtain good solutions, whereas with the cases where 
the vdw interactions are the more influential, then Q-fit does not achieve the correct 
balance of objectives- tending to optimise electrostatic and hydrogen bond 

interactions at the expense of the vdw interactions- thus failing to obtain good 

solutions. 

Another observation is that of the position of the correct Pareto solutions on the 

Pareto front. As the six correct Pareto fronts show, clusters containing the correct 
Pareto solutions are always on the right edge of the Parcto front. This may be a 

potentially useful application for prospective docking: if other molecules whose 

orientations with the protein are not known are docked using the NSGA-11 into the 

GSK-3 beta binding site, it may be possible to infer that the Pareto solutions on the 

right edge of the Pareto front are more likely to be the correct orientations. This 

would require further verification by docking more ligands with GSK-3-beta and 

observing the Pareto fronts obtained, as well as performing more docking studies of 

proteins which have been co-crystallised with different ligands. 

8.2 The Flexx Dataset 

The results that have been discussed in this and previous chapters have shown that by 

comparing Pareto fronts and the relative positions of the top-ranked Q-fit solutions in 

objective space, it is possible to understand why Q-fit may fail to dock certain 
complexes. As the results with the GSK dataset have shown, the predominant cause 
for these failures is the inability of Q-fit to obtain a correct balance of objectives for 

solutions that have a favourable energy, and that have high ranks. These cases have 
therefore highlighted why it is important, for certain cases, to obtain a correct balance 
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of energy types, and the advantage that multiobjective optimisation possesses over 

single objective optimisation in explaining the different balance of energy types. To 
be able to explore the capabilities of multiobjective optimisation relative to single 

objective optimisation ftu-ther, both the NSGA-II and Q-fit were run on a more 

extensive dataset, the Flexx dataset, which consists of 200 protein-ligand complexes 
(Kramer, et aL, 1999). By looking at cases within the Flexx dataset where the NSGA- 
11 was successful and Q-fit was not, it may be possible, by observing Parcto and Q-fit 

solutions in objective space, to understand causes for Q-fit's failure in obtaining 

solutions with good rmsds. In the following section ten cases from the Flexx dataset, 

where the NSGA-11 was successfid and Q-fit was not, are presented and discussed. 

8.2.1 Comparison of the NSGA-11 with Q-flt 

The FlexX ligands, were docked into their corresponding protein binding sites (i. e. the 
binding sites with which they are co-crystallised) using Version 2 of the NSGA-11 

(with the local minimisation parameter switched ofo, and Q-fit. Comparing the 

results from both programs, there are 17 cases out of 200 where the NSGA-II was 

successful and Q-fit was not. Overall, Q-fit docks 104 of the 200 complexes 

successfully and the NSGA-II flinds correct Pareto solutions for 84 of the 200 cases. 
The Pareto fronts obtained with the NSGA-II and Q-fit solutions with the best rmsd 

and that have the highest rank are shown in Figures 8.3 to 8.15. Examining these plots 

show that the results broadly follow two trends which are: 

Cases where Q-fit was unsuccessful because the highest ranked solutions 
obtained for a given complex did not achieve a correct balance of energies. 
Cases where Q-fit was unsuccessful because it did not obtain solutions whose 
energies are as minitnised as the Pareto solutions. 

These two situations are differentiated by the positions of the top-ranked Q-fit 

solution relative to the Pareto front. The fast situation is observed if the top-ranked 
Q-fit solution is on the Pareto front, but is at a point that is away from correct Parcto 

clusters, i. e. its balance of energies differs from the correct Pareto solutions. The 
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second situation is observed if the top ranked Q-fit solution lies behind the Pareto 

front, therefore both its objectives (or energies) are not as optimised as the Pareto 

solutions. Because the Pareto solutions for these cases contain solutions which are 
below 2.0 A, it may be assumed that these solutions have converged to (or very near 
to) the true Pareto front. 

8.2.2 Q-fit solutions with incorrect balance of energies: Ixie, 2rO7,3hvt 

and ligj 

The Pareto plots in Figures 8.3 to 8.6 illustrate cases where the top ranked Q-fit 

solution did not obtain a good rmsd of less than 2.0 A. With I xie, the top ranked Q-fit 

solution, i. e. the solution with the lowest energy, has an rmsd of 4.3 A from the 

crystal structure (Figure 8.3). Looking at the balance of energies for this solution, it 

can be seen that the electrostatics and hydrogen bond energies obtained are further 

optimised than those obtained by the NSGA-II clusters with good rmsds (labelled 1.2 

A and 2.0 A). This implies that, to obtain a solution with a good rmsd, the 

electrostatics and hydrogen bond energies should not be as optimised as the top- 

ranked Q-fit solution, and that this solution's high rmsd is due to the over-optimised 

electrostatic and hydrogen bond interactions. The lowest rmsd obtained by any 

solution from within Q-fit's ranked list is 1.3 A, and as Figure 8.3 shows, this 

solution does not have favourable energies that are minimised to the level of the top- 

ranked Q-fit solution and the Pareto solutions. 

The top-ranked solution obtained by Q-fit for 2rO7 has an rinsd of 9.8 A, and the 
lowest rmsd obtained by any Q-fit solution is 6.3 A. These results are in contrast to 

the rmsds of the clusters in the Pareto solution set where the lowest rmsds reached are 
1.0 A and 1.5 A. Figure 8.4 shows that both the top ranked and the best rmsd 
solutions from Q-fit do not have optimised vdw interactions that are at the level of the 
1.0 A cluster. The lowest vdw energy value obtained by a solution in this cluster is - 
27.8 kcal/mol, while the vdw value of the top-ranked Q-fit solution is - 18.0 kcal/mol- 

190 



-20 

A 
a 

AIL 

electrostatic + hydrogen bond (kcal/moQ 

-1 -10 -5 

*0644 
A AIL AA&qft& 

15- 

10- 

5 

0 

-5-'- 

-10- 

-15 - 

A 1.2 A 

A, 2.0 A 

,&2.7 
A 

Q4t: best rmsd 1.3 A rank 51 

Q-fit: top rank 4.3 A 

Figure 8-3 Pareto solutions produced by NSGA-II for We in objective space. The 
positions of the top-ranked Q-fit solution and the solution with the lowest rmsd 
obtained by Q-fit are also shown. 

The electrostatic and hydrogen bond energies on the other hand are further minimised 
by the top-ranked Q-fit solution, to -2.31 kcal/mol, while solutions in the 1.0 A Pareto 

cluster have electrostatics and hydrogen bond energies in the range of -0.4 to -1.6 
kcal/mol. By looking at the rmsd values of these solutions from the crystal structure, 
it is evident that a correct balance of the objectives needs to be achieved to obtain 

good solutions, and that the reason for Q-fit not obtaining a good rmsd solution in its 

top ranks is because it has optimised the electrostatic and hydrogen bond interactions 

at the expense of the vdw interactions. The correct NSGA-11 solutions show that, in 

this case the vdw interaction energies are the predominant objective, and must be 

optimised to obtain correct solutions. The position of the top-ranked Q-fit solution 

shows, relative to the Pareto front, that this solution is an outlier. It therefore has a 
balance of energies (electrostatic and hydrogen bond energies of -2.31 kcal/mol and 

vdw energies of -17.98 kcal/mol) which none of the Pareto solutions are close to. 

This implies that at that particular point the Pareto front has not advanced to an 

optimum level. 
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With 3hvt Q-fit did not produce any solutions with good rmsds from within its ranked 
list. As Figure 8.5 shows, the top-ranked Q-fit solution, with an rmsd of 4.5 A has 

slightly lower electrostatic and hydrogen bond energies than the best Pareto solutions 
(with rmsds of 0.4 A from the crystal), and higher vdw energies. The same scenario 
is observed with ligj: the electrostatic and hydrogen bond energies of the top-ranked 

Q-fit solution are more negative than the Pareto solutions with the lowest rmsds (0.8 

A), whereas its vdw interactions are higher than the 0.8 A Pareto cluster. The position 

of the Q-fit solution with the lowest rmsd is very close, in objective space, to the good 
Pareto solutions (Figure 8.6). This is reflected in its reasonably low rmsd value of 2.1 
A. It does, however, have a fairly low rank of 33. 

192 



20- 

15 - 
A 10- 

5- CL 4k 
A electrostatic+ hydrogen bond (kcal/mol) 

A 
-15 -10 -5 -5 

0 
-10 - 

tA 
-15 - 

-20 - 
AILA -25 - 

-30 - 

A 0.4 A 

A 4.4 A 

4.7 A 

A 8.8 A 

+ Q-fit: best rmsd 3.5 A rank 150 

- Q-fit: top rank 4.5 A 

Figure 8-5 Pareto solutions produced by NSGA-11 for 3hvt in objective space. The 
positions of the top-ranked Q-fit solution and the solution with the lowest rmsd 
obtained by Q-15t are also shown. 
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Figure 8-6 Pareto solutions produced by NSGA-11 for ligj in objective space. The 
positions of the top-ranked Q-fit solution and the solution with the lowest rmsd 
obtained by Q-fit are also shown. 
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8.2.3 Q-rit solutions with objectives not fully minimised: 1bbp, IgIp, 

Ifld, 2ada, lrne and Isnc 

The next few plots illustrate cases where Q-fit did not succeed at minimising its 

solutions' interaction energies enough for good rmsds to be reached. Because some of 
the Pareto solutions in these cases have rmsds lower than 2.0 A, it is possible to 

presume that they have converged to the true Pareto front. This makes it feasible to 

compare the positions of the Q-fit solutions in objective space to the "correcf ' points 
of convergence, i. e. the Pareto front. 

For the following five cases, lbbp, lglp, lfki, 2ada, Ime and Isnc Q-fit did not find 

solutions which have rmsds less than 2.0 A. The positions in objective space of the 

solutions output from NSGA-11 and Q-fit (F igures 8.7 to 8.12) show that both the top- 

ranked and the lowest rmsd Q-fit solutions have not advanced as far as the Pareto 
front. The high energies of the Q-fit solutions are observed in both objectives. With 

2ada the two Q-fit solutions have positive values for both ob ectives. The spread of j 

the clusters containing correct solutions for these five complexes varies: for lbbp and 
Ime the correct solutions have energies which are relatively widely spread over both 

objectives (Figures 8.7 and 8.11) , the correct solutions from I fki have very similar 
electrostatic and hydrogen bond energies (between -4.5 and -6.0 kcal/mol) but varied 
vdw energies (Yigure 8.8); and with lgIp and 2ada the correct solutions are close 
together and are more influenced by the electrostatic and hydrogen bond energies 
than vdw interactions (Figures 8.10 and 8.9). 

These results indicate that, for these complexes, the NSGA-11 has a distinct advantage 
over Q-fit in minimising energies to the point of obtaining solutions with low rmsd 
values from the crystal structure. 
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Figure 8-7 Pareto solutions produced by NSGA-11 for Ibbp in objective space. 
The positions of the top-ranked Q-fit solution and the solution with the lowest 
rmsd obtained by Q-fit are also shown. 
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Figure 8-8 Pareto solutions produced by NSGA-11 for IgIp in objective space. The 
positions of the top-ranked Q-fit solution and the solution with the lowest rmsd 
obtained by Q-1fit are also shown 
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Figure 8-9 Pareto solutions produced by NSGA-11 for Ifki in objective space. The 
positions of the top-ranked Q-fit solution and the solution with the lowest rmsd 
obtained by Q-fit are also shown. 
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Figure 8-10 Pareto solutions produced by NSGA-11 for 2ada in objective space. 
The positions of the top-ranked Q-fit solution and the solution with the lowest 
rmsd obtained by Q-fit are also shown. 
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Figure 8-11 Pareto solutions produced by NSGA-11 for Irne in objective space. 
The positions of the top-ranked Q-fit solution and the solution with the lowest 
rmsd obtained by Q-fit are also shown. 
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Figure 8-12 Pareto solutions produced by NSGA-11 for 1snc in objective space. 
The positions of the top-ranked Q-fit solution and the solution with the lowest 
rmsd obtained by Q-fit are also shown. 
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The top-ranked Q-fit solution of I snc has an rmsd of 7.2 A from the crystal structure, 

and interestingly its position in objective space is very close to the correct Pareto 

solutions (0.7 A) (Figure 8.12). The values of the two objectives for the top-ranked 

Q-fit solution are -18.8 kcal/mol for electrostatic and hydrogen bond energies, and - 
12.5 kcal/mol for the vdw interactions. These are only marginally different from the 

0.7 A Pareto solution it is closest to (-19.1 kcal/mol for the electrostatic and hydrogen 

bond energies, and -12.4 kcal/mol for the vdw energies). This demonstrates that, for 

Isnc, very subtle differences in the values of the objectives can have a substantial 

effect in the orientations of the solutions. The slightly more minimised Parcto 

solution therefore has an rmsd that is much closer to the crystal structure than the top- 

ranked Q-fit solution. The Q-fit solution ranked 14 th has the lowest rMsd (1.8 A) from 

the crystal structure, but its interaction energies have not been as minimised as the 

correct Pareto solutions. 

8.2.4 Successful NSGA-11 and Q-fit cases: electrostatic and hydrogen 

bond energy influenced 

Results comparing the performance of Q-fit with the NSGA-11 that have so far been 

discussed in this chapter have highlighted a trend, which is that Q-fit, in some cases, 

over-optimises electrostatic and hydrogen bond energies at the expense of the vdw 

energies. As the results from the NSGA-11 have shown, a correct balance of these 

energies can be essential in obtaining good solutions, and which is why, as has been 

demonstrated in the previous section, Q-fit failed to dock some cases successfully. 
Since Q-fit tends to optimise electrostatic and hydrogen bond energies more readily it 
is therefore not surprising that it obtains correct solutions when docking into binding 

sites that are more influenced by these interactions. 

The following plots illustrate cases where the electrostatic and hydrogen bond 

energies are the more influential objective, and where both Q-fit and the NSGA-11 are 
successfid in obtaining solutions with good rmsds. Figure 8.13 shows the Pareto 

solutions obtained when docking ImId, and as their positions in objective space 
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indicate, the electrostatic and hydrogen bond energies have a stronger influence in 

obtaining these Pareto solutions than the vdw energies. Also the Pareto solutions are 

spread over a wider range with the electrostatic and hydrogen bond energies than with 

the vdw energies. 
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Figure 8-13 Pareto solutions produced by NSGA-11 for Imid in objective space. 
The positions of the top-ranked Q-fit solution and the solution with the lowest 
rmsd obtained by Q-fit are also shown. 

With Inis (Figure 8.14), one correct cluster was produced by the NSGA-11 and this 

cluster is also more influenced by the electrostatic and hydrogen bond energies. With 

5cts two clusters were produced by the NSGA-11 with approximate rmsds of 1.9 A 

and 3.0 A (Figure 8.15). Both of these clusters are closer to each other in objective 

space, and they are also more influenced by electrostatic and hydrogen bond energies 
than by vdw interactions. It is interesting to note that the top-ranked Q-fit solution has 

lower electrostatic and hydrogen bond energies than the Pareto solutions, and that it 

also has a lower rmsd (0.5 A). This implies that the Pareto front from 5cts may not 
have converged to the true Pareto front. 
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Figure 8-14 Pareto solutions produced by NSGA-11 for Inis in objective space. 
The positions of the top-ranked Q-fit solution and the solution with the lowest 
rmsd obtained by Q-fit are also shown. 

Electrostatic + hydrogen bond (kcal/mol) 

-30 -25 -20 -15 -10 -5 

-2 

4- 
"Pý A 1.9 A 

-6 A 3.0 A 

Q -fit: top rank 0.5 A 

IL -8 

4kQm%k 
-10 - 

-12 

Figure 8-15 Pareto solutions produced by NSGA-11 for 5cts in objective space. 
The positions of the top-ranked Q-fit solution and the solution with the lowest 
rmsd obtained by Q-fit are also shown. 

f, ocks and the There are several cases from within the FlexX dataset which Q- it d 

NSGA-11 does not, and cases for which both algorithms fail to achieve good 

solutions. There are several reasons why the NSGA-11 may have failed and Q-fit 

succeeded, the most likely reason being that the NSGA-11 did not converge to the true 

Pareto front. As some previous test cases have shown, the NSGA-11 is at times 
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incapable of converging to the true Pareto front, which can therefore result in its 

failure to find correct solutions. Q-fit is a reliable validated tool, and as the overall 

results with FlcxX show, it is relatively successful at finding good solutions. 
Nevertheless the NSGA-11 proves valuable when trying to understand the influence of 
individual energy terins in finding correct solutions. 

8.2.5 Exploration of search spaces: single objective versus 

multiobjective 

A given search space can be regarded differently depending on whether single or 

multiobjective optimisation is being employed. In single objective optimisation, 

changes in conformation explore an energy landscape in one dimension, which 

represents the total interaction energy. Multiobjective optimisation can be regarded as 

a ftu-ther breakdown of a single dimension, or the total interaction energy, into 

multiple dimensions, the number of which is equal to the number of objectives. 

Therefore in the case of the NSGA-11, the energy landscape that is being explored is 

represented by two dimensions, the electrostatic and hydrogen bond energies, and the 

vdw interactions. Because of the perceived differences in search space between the 

two optimisation procedures, it may be useful to observe how solutions that result 

from each vary in terms of the balance of their interaction energy types, and to 

observe any differences between the two methods in accessing different parts of the 

objective space. To do this, the Pareto solutions obtained from docking a given 

complex are plotted in objective space along with an equal number of top-ranked Q- 

fit solutions obtained for the same complex. Complexes were selected which 

represent cases where: 

a- both Q-fit and the NSGA-II were successful in finding solutions with good rmsds. 
b- the NSGA-II found good solutions but Q-fit did not because it did not minimise 
solutions to the level of the Pareto front. 

c- the NSGA-11 succeeded in obtaining good solutions but Q-ftt did not because the 
balance of energies of its top-ranked solutions is not correct. 
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Complexes with pdb codes lfen, lepb and We were selected to represent cases (a), 

(b) and (c) respectively. 

Figure 8.16 shows the Pareto solutions obtained when docking Ifen, as well as the 

top-ranked solutions obtained by Q-fit. The Q-fit solutions are evenly spread in 

objective space, and the top three Q-fit solutions, all of which have good rmsds, are at 

or very close to the Pareto front. The remaining Q-fit solutions' rmsds are above 2.0 
A. 

lcpb is a case where the top-ranked Q-fit solution was not miniimiscd to the level of 

the Pareto front, and hence its top-ranked solution does not have a good rmsd (Figure 

8.17). The correct Pareto clusters have lower vdw interactions than all of the Q-fit 

solutions, none of which have good rmsds. The spread of the Q-fit solutions indicates 

that Q-fit is attempting to optimise electrostatic and hydrogen bond interaction 

energies and not the vdw interactions, but, as the position of the correct Pareto cluster 
indicates, for this complex the vdw interactions need to be further minimised in order 

to obtain good solutions. 

Figure 8.18 shows Pareto solutions and an equivalent number of Q-fit solutions 
obtained when docking Ixie. Ixie, as was described earlier, is a complex which 
NSGA-11 docks but Q-fit does not. As was also discussed earlier, ftom the 
distributions of the solutions it has been inferred that Q-fit does not succeed at 
docking this molecule because it does not obtain a correct balance of energies for any 
of its solutions. The largest correct Pareto solution cluster has an rmsd of 2.0 A 

(turquoise blue triangles in Figure 8.18- there is also a smaller correct Pareto cluster 

with an rmsd of 1.2 A (dark blue triangle in Figure 8.18). None of the Q-fit solutions 
are close to the 1.2 A cluster. There are however, two Q-fit solutions that are near the 
2.0 A cluster (orange circles). The nnsds of these solutions are not, as might be 

expected, close to 2.0 A- they are 3.1 A and 4.3 A (ranked 26 and 25 respectively). 
The figure shows that the good Pareto solutions have slightly lower vdw energies 
than the two Q-fit solutions, and examining the energies of the Q-fit solutions more 
closely shows that these have vdw interaction energies that are very slightly higher in 

magnitude (by approximately 0.1 kcal/mol) than the Pareto solutions. Evidently the 

slight difference in energies between the two sets of solutions affects their 
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orientations, so that the Pareto solutions have rmsds that are closer to the crystal than 

the Q-fit solutions. The Q-fit solutions are spread out evenly in objective space, and, 

as the figure shows, the top-ranked Q-fit solution does not have the same balance of 

energies as the correct Pareto clusters, thus resulting in an rmsd that is high relative to 

the ligand crystal structure. 
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Figure 8-16 Pareto solutions produced by NSGA-11 for Ifen in objective space. 
The positions of the top-ranked Q-fit solutions are also shown. 
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Figure 8-17 Pareto solutions produced by NSGA-11 for lepb in objective space. 
The positions of the top-ranked Q-fit solutions are also shown 
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Figure 8-18 Pareto solutions produced by NSGA-11 for We in objective space. 
The positions of the top-ranked Q-fit solutions and are also shown. 

8.2.6 Hydrophobic binding sites 

The results discussed so far have shown that the NSGA-11 is a useful tool for 

observing the influence specific interactions have in driving the binding of a ligand to 

a protein binding site. Another feature of the NSGA-11 is that it could be used to 

observe which interaction energy types may be more influential when docking into 

particular types of binding sites. For example, given a hydrophobic binding site, i. e. a 
binding site containing few or no polar groups, vdw interactions would be expected to 

have a dominating effect in obtaining correct solutions. The reverse scenario would 
be expected with a polar binding site. 

The figures in the following section show Pareto fronts obtained when docking 

molecules into hydrophobic binding sites. These complexes are a subset of the FlexX 

dataset (Rarey et aL, 1999), and are deemed to be hydrophobic because they have 

less than three level 3 interactions (i. e. hydrogen and electrostatic bonds) occurring 
between the ligand and protein. 
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Looking at the Pareto fronts obtained by docking these complexes, it can be seen that 

the vdw interactions do have a predominating effect on the correct clusters. This 

scenario is particularly noticeable with Irbp Idbb and Hen, where, as the figures 

show, the electrostatic and hydrogen bond energies of the correct clusters are several 

magnitudes higher than vdw interactions (Figures 8.19,8.20,8.21). With lepb the 

correct cluster (1.9 A) is spread over a wider range- the solutions which are 
dominated by vdw interactions have low vdw energies and higher electrostatic and 
hydrogen bond energies, and the rest of the solutions within the same cluster have 

gradually increasing vdw energies and decreasing electrostatic and hydrogen bond 

energies, reaching a point where some of the solutions have nearly equal magnitudes 
in both objectives (Figure 8.22). The same situation is observed with Imbi, where the 

correct clusters (I. IA and 1.7 A) contain solutions with predominating vdw energies 
(at the right edge of the Pareto front), and also contain solutions which are spread so 

that, overall, the solutions have gradually increasing vdw energies, and decreasing 

electrostatic and hydrogen bond energies (Figure 8.23). With lack, unlike the other 

complexes within this subset, all of the Pareto solutions have good rmsds, and these 

are also spread in objective space: those on the right edge of the Pareto front are 
influenced by vdw energies, and other solutions are spread over a wider range in 

objective space (Figure 8.25). 
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Figure 8-19 Pareto solutions produced by NSGA-11 for lrbp, a protein with a 
hydrophobic binding site, in objective space. 
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Figure 8-20 Pareto solutions produced by NSGA-11 for Idbb, a protein with a 
hydrophobic binding site, in objective space. 
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Figure 8-21 Pareto solutions produced by NSGA-11 for 1fen, a protein with a 
hydrophobic binding site, in objective space. 

206 



50 

-25 

A 40- 

AA 30- A 1.9 A 

20- 
A 2.1 A 

rL A, 2.7 A 

10 -.! 3.3 A 
Bectrostatic + hydrogen bond (kcaUmol) pr 

0j&3.5 
A, j 

_1 0 -5 
3 s, 9.1 A 

-20 -15 A -10 
0.9 

ILAI% 
-20- 

A, 9.6 A 

-30 - 

Figure 8-22 Pareto solutions produced by NSGA-11 for lepb, a protein with a 
hydrophobic binding site, in objective space. 
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Figure 8-23 Pareto solutions produced by NSGA-II for Imbi, a protein with a 
hydrophobic binding site, in objective space. 
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Figure 8-24 Pareto solutions produced by NSGA-II for Ipbd, a protein with a 
hydrophobic binding site, in objective space. 
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Figure 8-25 Pareto solutions produced by NSGA-11 for lack, a protein with a 
hydrophobic binding site, in objective space. 
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8.2.7 Discussion of results obtained with FlexX Dataset 

The purpose of testing the NSGA-11 on the FlexX dataset was to validate the 

algorithm and, by comparing the results with those obtained by Q-fit, to verify the 

importance of optimising interaction energies in order to obtain good orientations of 

the molecules that are being docked. Docking the 200 complexes of the FlexX dataset 

using both, the NSGA-11 and Q-fit, produced several cases for which the NSGA-11 

obtains good solutions within its Pareto set and for which Q-fit does not find good 

solutions with high ranks. By observing the positions of the Pareto sets and the top- 

ranked Q-fit solutions in objective space it is possible to understand why Q-fit failed 

in those cases. The results obtained fell into two categories. The first of these is 

shown in cases where the top ranked Q-fit solution, which consequently has the 

lowest energy, is behind the Pareto front, i. e. it has not been optimally minimiscd to 

the global minimum. This implies that the Q-fit search algorithm was caught in a 

local minimum. Because the Pareto sets in these cases contain solutions with good 

rmsds it is possible to assume that these solutions are very close to, or at the global 

minimum. It can therefore be inferred that, for these cases, the NSGA-11 is more 

effective at exploring the search space and finding correct solutions than Q-fit is. The 

second trend, which is perhaps more interesting, is shown in cases where the top 

ranked Q-fit solution is at the Pareto front, but its balance of energies is different to 

that from the correct Pareto solutions. Despite the fact that the total interaction energy 

of the top ranked Q-fit solution is comparable to the correct Pareto solutions, the 

difference in the balance of energies between the correct Pareto solutions and Q-fit 

verifies the importance of balancing the interaction energy types in order to obtain 

correct solutions when docking a molecule into a protein binding site. 

This study has shown that the NSGA-Il is capable of providing valuable information 

as to why a docking tool may fail in finding orientations of a molecule that are close 
to the crystal structure. It has particularly highlighted the importance for Some 

complexes in obtaining a certain balance of interaction energies in order to obtain 

correct solutions. The results from Q-fit have shown that the algorithm tends to 

optimise electrostatic and hydrogen bond energies more so than vdw interactions, and 
therefore Q-fit fails to obtain correct solutions in cases where the correct orientation 
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of a molecule is more influenced by vdw interactions. Section 8.2.4 describes cases 

where Q-fit and the NSGA-11 are both successful at obtaining correct solutions, and 

where the influential objective is the electrostatic and hydrogen bond energies. These 

cases draw attention to the fact that the NSGA-11 is not limited to successfully 
docking vdw interactions-influenced complexes, and that its versatility includes 

docking complexes that are influenced by either of the objectives, and complexes 

which are not particularly influenced by any one objective, such as I me and I bbp. 

Comparing the abilities of the two programs in exploring the search space (from 

section 8.2.5), demonstrated some differences in accessing the search space. The 

Pareto solutions from the NSGA-II are, of course, not dominating each other, which 

explains why they are spread linearly in objective space, and why each solution has 

minimised objectives, albeit with different balances. Q-fit, because it uses a single 

objective to drive its search, does not produce the same spread of solutions as the 

NSGA-11. Its top ranked solutions are instead distributed evenly in objective space 

and, as demonstrated with Ifen, the group of solutions may also contain solutions 

with low rmsds that have good ranks. We is also a good case showing the even 

spread of the Q-fit solutions, though the solution with the lowest rinsd has a low rank 

of 51, and as its position shows, it does not have low energies relative to the Parcto 

solutions. The top ranked Q-fit solutions for I epb are not as evenly spread as the Q-fit 

solutions for Ifen and We and, as Figure 8.17 shows, are more concentrated on 

optimised electrostatic and hydrogen bond energies than vdw interactions. Ibis 

results in the algorithm missing the area in objective space containing correct 

solutions, indicated by the position of the correct Pareto solutions, which have lower 

vdw energies and higher electrostatic and hydrogen bond energies. These plots also 

show that generally both algorithms cover similar areas of search space (keeping in 

mind that during earlier generations of an NSGA-11 run, the population of solutions, 

at some point, most likely covered the same areas of objective space as the top ranked 
Q-fit solutions). lepb is an exception- most of its Q-fit solutions cover an area of 
higher vdw energies and low electrostatic and hydrogen bond energies, and do not 

extend to the area around the correct Pareto solutions. Similarly the left edge of the 
Pareto front obtained by I epb has not advanced as far as the Q-fit solutions. The Q-fit 

solutions dominate the Pareto clusters represented by the orange and red triangles- it 

can therefore be expected that the Pareto front should stretch as far as these solutions. 
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This implies that, for lepb, the left edge of the Pareto front has not completely 

converged to the true Pareto front. Nevertheless further along the Pareto front correct 

solutions exist, which is sufficient for providing information on the correct balance of 

energies. 

Finally the NSGA-11 was tested on a dataset consisting of proteins with hydrophobic 

binding sites. As was described in section 8.2.6, and as was expected, many of the 

correct Pareto solutions were more influenced by vdw, rather than electrostatic and 
hydrogen bond interactions. This study reflects the ability of the NSGA-II to provide 

useful information on the nature of a particular binding site, and on the influence of 
individual interaction energies in obtaining solutions with good rmsds. 

8.3 Chapter Summary 

This chapter has provided an in-depth study of the capabilities of the NSGA-11- 
Testing the algorithm on a large dataset has re-iterated the variation observed in the 
balance of energies between different complexes, and the importance of obtaining a 
correct balance of energies to find good solutions. This is especially apparent when 
the results are compared with Q-fit. In situations where Q-fit did not obtain solutions 
at high ranks with good rmsds, a comparison with the positions of the correct Pareto 

solutions in objective space revealed that this may be because Q-fit solutions do not 
have the correct balance of energies. This information is extremely useful in trying to 

understand the reasons for docking failures, and for highlighting the weakness of a 
scoring function. The study with the GSK-3 beta dataset has shown that the NSGA-11 
has the potential to be developed as a prospective docking tool. 

As has been shown throughout the previous chapters, the NSGA-11 generates a set of 
"correct" Pareto solutions, which are clustered into groups of solutions, all of which 

are within 1.0 A from each other. Unlike other docking algorithms, these solutions are 

not ranked and, algorithmically-speaking, are all considered equal. It is therefore not 

possible to choose the correct Parcto cluster without any further information (such as 

crystallographic data). However the results from the study on the GSK-3 beta dataset 
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have shown that the NSGA-11 may potentially be used for prospective docking. All 

correct Pareto solutions obtained by docking molecules into GSK-3 beta binding sites 

were situated on the right edge of the Pareto front, which suggests that, if a known 

binder to GSK-3 beta (for which there is no crystallographic information) is docked 

into a GSK-3 beta binding site using the NSGA-11, it may be possible to infer that the 

correct orientation of the molecule is on the right edge of the Pareto front. 

212 



9 The incorporation of a third objective: desolvation energy 

In this chapter, the NSGA-II is modified to incorporate a third objective, desolvation 

energy, alongside the vdw and combined electrostatic and hydrogen bond energies. 

The purpose of this chapter is to explore the capabilities of the algorithm in docking 

ligands into protein active sites when three objectives, rather than two, are utilised. 

By incorporating a third objective, which is also an energy contribution to the process 

of binding, it may be possible to gain insight into the importance of desolvation 

energy in obtaining correct docked solutions. Also by observing desolvation energy 

values relative to the vdw and electrostatic and hydrogen bond energies of solutions, 

it may be possible to observe relationships between the different energy types, and 

whether these have any effect in obtaining correct docked solutions. 

As was discussed in section 3.2.3.1, desolvation energy plays an important role in 

protein-ligand binding, its physical model influences ranking in virtual screening 

(Iluang and Caflisch, 2004) as well as docking geometry (Ferrara et al., 2004). 

Incorporating solvation energies accurately in scoring functions continues to be 

problematic (Leach et al., 2006) mainly because of the difficulty in modelling 

aqueous systems with many degrees of freedom without sacrificing computational 

time. 

Several attempts at addressing desolvation effects in docking have been employed. 
Morreale et aL, (2007) recently developed an implicit solvent model for computing 

the electrostatics binding free energy in protein-ligand docking where the system is 

immersed in a continuum that permeates all space surrounding the molecules. 
Specific comparisons of different implicit solvation models have also been performed 
(Ferrara et aL, 2004). The placement of water molecules during the docking search 

process has also been implemented in some docking algorithms. As mentioned in 

section 3.4.3.5, a version of GOLD allows water molecules to switch on and off and 

to rotate around their three axes during the search procedure. This process accounts 
for the loss of rigid-body entropy when water molecules are switched on, thus 

rewarding water displacement (Verdonk et aL, 2005). Similarly the placement of 
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water molecules during the search process of the incremental construction method 
FlexX has also been explored (Rarey et al., 1999). The aim of the latter method is to 

find water molecules at the protein-ligand interface that may assist in the process of 

accurate ligand placement. 

The method for calculating desolvation implemented here is based on the solvent 

accessible surface area, or SASA. The desolvation energy is approximated as the 

change in SASA of each atom or atom type upon binding, using appropriate 

parameters, the atomic desolvation parameters (ADP), that reflect the given atom 

type's propensity for aqueous environments. The ADP values that have been used 
here were taken from Jain et aL, (2005), which were used to predict protein-ligand 
binding affinities. These were in turn derived from a combination of the Comell el 

aL, force field (1995), for proteins and nucleic acids, and the GAFF force field for 

small molecules (2004) (see Appendix). 

The method that has been implemented for calculating SASA of a given 

protein/ligand is that which was originally defined by Lee and Richards (1971), and 

which is described in the following section. 

9.1 The atomic vdw surface 

The protein and ligand surfaces are defined by the vdw radii of the atoms on the 

surface of the molecules. For the ligand, the entire surface of the molecule is assessed 
using the vdw radii of the constituent atoms. For the purposes of protein-ligand 
docking, only the surface of the atoms on the protein binding site needs to be defined, 

particularly as this is kept rigid throughout the run of the algorithm. These surfaces 
are estimated in the following way. 

Spheres with radii that are equal to the appropriate vdw radius of an atom of a given 
chemical type are placed so that the centre of the sphere is at the xy and z coordinates 
of the atom as determined in the pdb file. The surfaces of the sphercs are dcfmcd by 

evenly distributed points such that a given density of points can be calculated per 
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square Angstrom for each sphere. The number of points on a given atoftn's surface 

can therefore be calculated by multiplying the surface area of a sphere by the density 

of points; the number of points on the equators is the product of the equator's 

circumference and the square-root of the point density. Half of the equatorial points 
(those on the side of one sphere) are used to position rings of points around the 

sphere, The rings' elevations from the centre of the sphere, the numbers o points on 
the rings and the rings' radii can be calculated using basic trigonometric rules (Figure 

9.1). 

tai (b 

Figure 9-1 The method for positioning points on a sphere to determine an 
atom's vdw surface. (a) the number of points on the equator of the sphere 
(white circles), is calculated by multiplying the circumference of the 
equator and the square-root of the points density. Half of these points (grey 
circles), define rings around which the points are placed. The radius and 
elevation of the ring are the opposite and adjacent lengths of angle 0 in the 
blue triangle (the sphere radius is the hypotenuse). The elevation is the z 
coordinates of points in the ring. For the nth grey circle on the hemisphere, 
0 is the product of n and the fraction of 180' between adjacent grey circles 
on the hemisphere. (b) The number of points (white circles) on each ring 
(red circle, now viewed from above) is calculated as the product of the 
radius of the ring and square-root of the point density. The x and y 
coordinates of points on this circle are defined as the opposite and adjacent 
lengths the angle y in the blue triangle (where the hypotenuse is the radius 
of the ring, as calculated previously). 

In the manner described in Figure 9.1 above, an atom's vdw surface is determined. To 
determine which part of an atoms' vdw surface is exposed (in order to obtain the 
SAS), the molecule is first placed in a grid where the grid spacings represent the 

orthogonal limits of the SAS of the atom with the largest radii placed at the centre of 
the grid space. This allows for the rapid assessment of atoms that are likely to 
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influence the SAS of atoms within a given grid space. The atoms within the same or 
26 surrounding grid spaces (6 orthogonally and 20 diagonally adjacent spaces) are the 

only atoms that can affect the SAS within the central grid space. This list can be 

reduced by selecting those atoms with overlapping SASs. The SAS of the protein 
binding site can be calculated by assessing the SAS of each atom in turn. The points 

on the SAS of the atom are defined using the points pre-calculated for a sphere, 
described in the previous section, of the same radii whose centre is superimposed on 
top of the atom's centre. Where the distance between point and neighbouring atom 

centre is less than the sum of the solvent radii and the vdw radius of the atom, the 

point is regarded as not exposed. However if the point is exposed, then it is regarded 

as lying on the SAS. The total number of exposed points per atom is used to calculate 

the SASA per atom, by dividing the number of exposed points by the density of 

points. 

(a) (b) 

Figure 9-2 The Lee and Richards (1979) definition of SAS. (a) The SAS (solid line) 
around the protein/ligand (grey circles) is defined by rolling a sphere with the 
radius of water (1.4 A- white circle) on the surface of the protein/ligand, and using 
the trace of the "path" of the centre of the sphere to represent the SAS. (b) The 
SAS (blue line) is defined by those points around atoms (grey spheres) which are 
not within the solvent radii of another atom (those which are, are shown in red). 
The neighbouring atom of A, atom B, is determined by calculating the distance 
between the centres of both atoms. If their centres; are less than the combined vdw 
radii of the two atoms plus the diameter of the solvent probe, then the atoms are 
considered as neighbours and are used to calculate each other's SAS. Conversely 
the distance between the centres of A and C is over their combined radii and the 
probe diameter, and they are therefore not considered as neighbours. 
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9.2 Using SAS to calculate the buried surface area and the desovlation 

energy 

To calculate the desolvation energy for a given ligand pose within the binding site, 

the buried surface area of both the protein and ligand, upon complex formation, must 
be established. This is calculated in the same way as determining the SAS described 

above, but rather than calculating distances between atom centres and the points on 

atoms of the same molecule, this is done between atoms on the different molecules, 
i. e. the protein and the ligand. A point on an atom is deemed buried if the distance 

between that point and a neighbouring atom centre from the other molecule is less 

than the sum of the solvent diameter and the neighbouring atom vdw radius. By 

counting the number of buried points on an atom, the buried surface area is calculated 

using the following equation: 

Aburied" Pburledl Dpoint Equation 9.1 

Where Pb,,, kd is the number of buried points on a given atom, DP"jnI is the point 

density and Ab,,,,. id is the surface area of the atom which is buried. Consequently, 

given that a particular atom is buried, then its desolvation score is calculated as 

follows: 

Esoiv = Ab,, rjed x ADP,, t,,,, Equation 9.2 

where ADPw,,. is the atornic desolvation potential, or clesolvation score, of the 

particular atom and E,,, I, is the given atom's contribution to desolvation energy. 

Equations 9.1 and 9.2 are applied to all atoms of the ligand (since the position of the 
ligand is dynamic it is not possible to predetermine which of its atoms are in contact 
with the protein), and to the surface atoms of the protein binding site. The atoms on 
the surface of the binding site are determined at the start of a run, and these remain 
static throughout. The desolvation score of the ligand is calculated by first 
determining the distance between all points on its atoms to the protein surface atoms 
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to determine the molecule's buried surface area. This is followed by the application of 

equation 9.2 to calculate the desolvation score for each buried atom, and summing the 
desolvation scores for all buried atoms to give the desolvation energy of the ligand. 

The process is reversed for the estimation of the protein's contribution to the 
desolvation energy. The distances between all the points on the protein surface atoms 

and the ligand atoms are calculated to find the binding site's buried surface area 
(using equation 10.1). Equation 10.2 is then used to calculate the desolvation score 
for each buried protein atom, all of which are summed to give the desolvation energy 
for the protein binding site. Finally the desolvation energies of both the protein and 
ligand are summed to give the desolvation energy of binding. 

9.3 Incorporation of desolvation energy into NSGA-11 

The NSGA-II was adapted to incorporate desolvation energy as the third objective, 
alongside vdw and electrostatic and hydrogen bond energies. Algorithmically the 
introduction of this objective requires the modification of the Parcto ranking function 

only; rather than using the two interaction energy objectives to determine the rank of 
every chromosome (as Figure 5.4 in Chapter 5 shows), the desolvation energy of each 

chromosome is also used, as the third objective, in the ranking process. 

As was explained in Chapter 5 for the two-objcctivc algoritlun the combined parent 
and offspring population are assessed using all objectives, and this is followed by the 
Pareto ranking of the combined population. In the three-objective NSGA-11, the 

combined population's objectives are assessed by the two interaction energy 
objectives, as well as by the desolvation energy. Each chromosome's genes are 
therefore mapped into a ligand pose, and the desolvation energy between the protein 
and ligand pose is calculated. Specifically, and as described earlier, the buried surface 
area of the particular ligand pose is calculated relative to the atoms on the surface of 
the protein's binding site (Equation 9.1), followed by calculation of the desolvation 

energy using the constituent atoms' relevant desolvation parameters. 
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9.4 Preliminary Results 

The three-objective NSGA-II was tested on Datasets I and 2, which were described in 

Chapter 6. Minimising the desolvation energy minimises the process of removing 

water from the interfaces of the molecules, thus contributing towards the binding of 
the molecules. The parameters used when testing Version 2 of the NSGA-II on 
Dataset 2 remained unchanged (Table 7.1). Out of the twenty complexes in Datasets, I 

and 2, the three-objective NSGA-II obtained correct solutions for four complexes. 
These are from within Dataset 1, labe, lulb, 3ptb and 3tpi. Figures 9.3 to 9.6 are 

parallel coordinate plots, each plot showing the objective values of a chromosome in 

the final population. A single continuous line represents one chromosome, the 

objectives are plotted on the x-axis, and the values of the objectives for each 

chromosome on the y-axis, with the best value for each objective at zero on the y- 

axis. Non-dominated solutions are indicated by crossing lines which indicate a trade- 

off in the objectives. The solutions in the final population are clustered in terms of 
their rmsds. The raw values of all the objectives have been scaled, to allow for 

comparison, using the following equation: 

scaledX,, bj 4-- (Xobj-XIow)1(Xhigh-XIoW) Equation 9.3 

where Xobj is the raw objective value, X10w is the lowest value of that ob ective in the j 

population, Xhigh is the highest value and scaIedX,, hj is the scaled value of Xobi. This 

equation is applied to the objective values of all the chromosomes in the population. 

219 



1 -: z- 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

01 
Electrostatic + 
hydrogen bond 
(kcal/mol) 

Z 1.4 

r-1 2.9 

3.3 Ä 

4.0 Ä 

vdw (kcal/mol) Desolvation eneW, 
(kcal/mol) 

Figure 9-3 Parallel coordinate plots obtained when docking labe showing the 
objective values of the chromosomes in the final population. 

Figure 9.3 shows that the three-objective NSGA-11 succeeded in finding one cluster 

of correct solutions, with approximate rmsds of 1.4 A, denoted by the black lines in 

the plot, for I abe. The majority of the correct solutions, as the figure shows, have low 

vdw energies relative to the desolvation energies. Solutions with rmsds higher than 

2.0 A, especially the 2.9 A and 4.0 A clusters, show the inverse relationship between 

the two objectives; the vdw energies of these solutions are relatively higher than their 

desolvation energies. As the figure also shows, the electrostatic and hydrogen bond 

energies of the solutions with good rmsds are lower than solutions with worse rmsds. 

The vdw energies of the correct solutions are less spread out in objective space than 

the solution with higher rmsds. 
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Figure 9-4 Parallel coordinate plots obtained when docking lulb showing the 
objective values of the chromosomes in the final population. 

A similar scenario is observed with lulb. As figure 9.4 shows, solutions with low 

rmsds (in the 0.6 A cluster shown in purple) have relatively high desolvation energies 

and low vdw energies; a similar situation is observed with the 2.6 A cluster, The two 

clusters with the highest rmsds, 4.1 A and 4.8 A, have low desolvation energies and 

higher vdw energies. Unlike labe, where the desolvation energy of the solutions is 

largely uniformly distributed, the desolvation energies of lulb's solutions are spread 

over two discontinuous groups. The majority of solutions from the 0.6 A clusters are 

clustered together on the higher end of the scale in terms of their desolvation 

energies, whereas the remaining solutions, covering a larger area on the scale, are 
discreetly grouped at the lower end of the scale. In fact, as the figure shows, several 

of these solutions appear to have converged to a singular desolvation energy value. 
As with I abe, the electrostatic and hydrogen bond energies of the 0.6 A solutions are, 
in general, lower than solutions in the clusters with higher rmsds. The vdw energies 

of solutions with high rmsds also cover a larger range than correct solutions. 

221 



01 

01 

0 

0 2.0 

F-I 2.3 

0 
>2.3 A 

Electrostatic + vdw (kcal/mol) Desolvation energy 
hydrogen bond (kcaVmol) 

(kcal/mol) 

Figure 9-5 Parallel coordinate plots obtained when docking 3ptb showing the 
objective values of the chromosomes in the final population. 

With 3ptb, a similar situation is observed; in general the solutions which have docked 

well have high relative desolvation energies and lower vdw energies, and vice versa 
for solutions with higher nnsds (Figure 9.5). In terms of electrostatic and hydrogen 

bond energies, solutions from the 2.0 A cluster have lower values than solutions from 

the 2.3 A cluster. Solutions with higher rmsds are distributed across the scale. As with 
the previous case, the values for the desolvation energies also fall into reasonably 
discreet groups and are not continuous, as shown with I abe. 
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Figure 9-6 Parallel coordinate plots obtained when docking 3tpi showing 
the objective values of the chromosomes in the final population. 

For 3tpi, the same observation can be made in terms of the relationship of the vdw to 

the desolvation energies. Solutions with good rmsds have high desolvation energies 

and low vdw energies, and vice versa for solutions with high rmsds. As Figure 9.6 

shows, this effect is more apparent with this case than with the previous three cases. 
The desolvation energies of the solutions also fall into discreet groups, the correct 

solutions' desolvation energy values appear to have converged to a singular point, 

whereas the incorrect solutions' desolvation energy is more distributed across the 

scale. The electrostatic and hydrogen bond energies are, as shown with the other 

cases, lower for the correct solutions than for solutions with higher nnsds. 
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9.5 Discussion 

The results obtained with the three-objective NSGA-II have shown some interesting 

relationships between the objectives, but it is difficult to draw firm conclusions when 

only a few cases have been successful. It is important to note at this point that the 

three-objective NSGA-II is at an early stage of development, and that the algorithm's 

parameters were not adjusted and tweaked to the same level as the two-objective 

NSGA-11. Modifying parameters of the algorithm so that more cases are docked 

successfully will no doubt provide more meaningful results which can bc analyscd 

more effectively. Nevertheless, even with a small number of successful cases, some 
interesting observations on the effect of optimising desolvation energy during 

docking can be made. 

As shown in the previous section, results obtained from the four successful test cases 

show a clear relationship between the calculated desolvation energy and the vdw 

energies of the docked ligands; orientations with favourable vdw energies have 

unfavourable desolvation energies. The nature of the desolvation score that has been 

implemented here assigns more unfavourable energies to the loss of water from polar 

and charged groups than it does to the loss of water from aromatic and aliphatic 

surfaces. Orientations with favourable desolvation energies will be those that lose 

water from the surface of non-polar groups. These same orientations have 

unfavourable vdw interaction energies. This suggests that the desolvation potential 
optimises for orientations that bind to non-polar surface, and not for orientations that 

make polar-polar hydrogen and electrostatic interactions. The four successful cases 
have relatively polar interfaces, which would explain why all good orientations have 
high, or unfavourable, desolvation energies. The fact that these correct solutions have 
low vdw energies is possibly because correct orientations will inherently make 
optimal and favourable vdw interactions with the protein. The inverse of this 

argument could be applied to the incorrect solutions; the low desolvation scores of 
these orientations may be due to non-polar contacts between the protein and ligand; 

the high vdw energies of these solutions implies unfavourable vdw interactions, or 
steric clashes between the ligand and protein. These are speculative arguments and it 
is difficult to draw further conclusions between the relationships of the objectives 
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without further study of the systems and more successful cases, preferably cases 

consisting of non-polar protein binding sites. 

Other issues to be aware of is that this method of calculating desolvation does not 

model a given system ideally, and makes certain assumptions to simplify the process 

of estimating the desolvation energies. One of these is that it treats the entire surfaces 

of molecules as lined with one layer of water. In practice this may not be the case. It 

has recently been shown by Barratt et aL, (2005), that in hydrophobic pockets the 
density of water is very much lower than expected, with water molecules only 

relatively static around polar groups. A second assumption made by the implemented 

model of desolvation is that water molecules form spanning networks of interactions 

on protein surfaces (Oleinikova et aL, 2005), implying that the desolvation energy is 

based on several layers of interacting water molecules rather than just the first to 

contact the protein surface. 

The purpose of this study was to show that the NSGA-11 can be extended to 
incorporate a third objective that is important to the process of docking, namely 
desolvation energy. The application of an optimised version of the algorithm to a 
larger dataset should provide information on whether including desolvation energy 
improves docking results. This should also enable the study of the cffcct of 
desolvation energy relative to electrostatic and hydrogen bond, and vdw energies in 

obtaining correct solutions. A comparison to Q-fit, as performed in previous chapters 
with the two-objective NSGA41, may also provide an insight on whether the 
inclusion of the desolvation term has an effect on improving docking performance. 

9.6 Chapter Summary 

In this chapter the NSGA-11 was extended to include a desolvation energy term as a 
third tenn, alongside electrostatic and hydrogen bond, and vdw interactions, thus 
fulfilling one of the aims outlined in section 3.5. Preliminary results obtained when 
the three-objective NSGA-11 was tested on cases in Datasets I and 2 showed that the 
algorithm docked four cases successfully. These results showed that the desolvation 
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energies of the correct solutions were high, and appear to be inversely correlated with 
vdw energies. However it is recognised that these are preliminary results and ftulher 

optimisation and testing of the algorithm is needed to determine the ultimate benefit 

of the three-objective NSGA-II. 
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10 Discussion and Conclusions 

Limitations of scoring functions are repeatedly attributed to the hindrance of 
developing robust and reliable docking algorithms, which is why scoring function 

development remains an active area of research (Jain, 2006). The importance of this 

area motivated the aims of this work, which is the application of a multiobjective 

optimisation method to a particular scoring function. This work has focused on 

understanding the roles of individual energy contributions in finding good poses 

within a protein binding site, which can effectively be performed using multiobjective 

optimisation. To our knowledge, this type of study has not been performed 

previously, and has thus provided a valuable insight to our knowledge of scoring 
functions and their roles in docking algorithms. 

10.1 Summary of Results and Discussion 

The approach taken to develop a multiobjective optimisation algorithm for protein- 
ligand docking was to start by developing a single-objective, standard genetic 

algorithm (SGA), which uses a single objective, or fitness function, to score 

chromosomes, and to adapt that into a multiobjective genetic algorithm. This is done 

by introducing functions specific to multiobjectivc optimisation, including adapting 

the scoring procedure, so that chromosomes are scored by multiple, rather than a 

single objective. The production of a multiobjective algorithm for protein ligand 

docking fulfils one of the major aims of this work. 

The experimental work begins in Chapter 4, within which the development of the 

SGA is described. This is a "classic" genetic algorithm, implementing the popular 

genetic operators, roulette wheel selection, single-point crossover and mutation, to 

perform rigid-body docking of ligands into protein binding sites. The algorithm used 

the GRID scoring function to assess the chromosomes that represent the different 

poses of the ligand. To test the algorithm's capabilities, the SGA was run on a dataset 

consisting of ten protein-ligand complexes, known as Dataset 1. Dataset I was also 
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used to run Q-fit, a docking tool that uses GRID as its scoring function, thus forming 

a good basis for comparison. The SGA docked four out of the ten complexes 
successfully, i. e. the top-ranked solutions of these four complexes had rmsds of less 

than 2.0 A. Q-fit was, overall, more successful at obtaining solutions with good rmsds 
and with lower interaction energies; one reason for this may be that Q-fit performs a 
local minimisation of the solutions listed in its output of ranked solutions, and the 
SGA does not. Also the performance of the SGA would likely improve if the 

algorithm's parameters were further experimented with and tweaked. However, the 

current performance of the SGA was deemed satisfactory for its modification into a 

multiobjective genetic algorithm. The view behind this was that it is more reasonable 
to improve the algorithm's performance by modifying the multiobjective optimisation 
algorithm, whose development is, after all, the purpose of this work, rather than the 
SGA. This chapter is therefore followed by a methods chapter, describing the 

conversion of the algorithm from a single-objective into a multiobjective algorithm 
(Chapter 5). 

From the many different modes of multiobjective optimisation algorithms (some of 
which are described in section 2.5), it was decided to implement a version of the 
highly elitist NSGA-II (Deb el al., 2000) for performing protein-ligand docking. As 

mentioned earlier, the different energy components of the scoring function were 
selected for multiobjective optimisation. These are the vdw interactions and the 

combined electrostatic and hydrogen bond interactions of the GRID scoring function. 
Some of the major changes implemented to enable the algorithm to perform 
multiobjective optimisation (apart from scoring chromosomes with two objectives) 
include Pareto ranking and niching. The NSGA-11 was tested on two datasets, the 

results of which are described in Chapter 6. 

The results described in Chapter 6 were produced when the NSGA-11 was tested on 
two datasets, termed Datasets I and 2. These datasets were selected primarily because 
they were used to validate Q-fit (Jackson, 2002), and the ligands forming the 

complexes are deemed suitable for rigid-body docking. Also, both datasets contain 
complexes of varying difficulties for docking algorithms. Dataset I contains 
relatively straightforward complexes for docking whereas Dataset 2 is considered a 
more problematic dataset, consisting of more challenging complexes. 
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Of the ten complexes in Dataset 1, the NSGA-11 obtained correct solutions within the 
Pareto sets for eight out of the ten complexes. The most prominent observation made 
from this data is that the successful docking of different complexes is influenced by 

different objectives. This can be inferred by observing the position of the correct 

solutions in objective space and the contributions that the different objectives are 

making to the interaction energies of the correct solutions. Some of the complexes 

within Dataset I are influenced relatively equally by both objectives, and some are 
found to be more influenced by electrostatic and hydrogen bond energies. These 

results were compared to results obtained when Q-fit docks the same complexes. As 

was discussed in section 3.5, a multiobjective optimisation approach to docking can 
be used to understand why a single objective optimisation approach may fail at 
finding correct solutions. Given that a single objective optimisation method has failed 

because it did not optimise individual energy terms adequately, then a multiobjective 

approach will confirm this, and also reveal which of the energy terms need to be 

optimised to obtain correct solutions. The top-ranked Q-fit solutions were, for the 

majority of the complexes, among the correct Pareto solutions, indicating that both 

algorithms have found an optimal balance of the two objectives. T'he two complexes 

which the NSGA-II did not dock successfully, 2phh and 4dfr, Q-fit did succeed in 

docking, and by observing the position of these solutions in objective space, it is clear 
that Q-fit was successful at docking these because it was capable of minimising their 
interaction energies further than the NSGA-11. This indicates that the NSGA-11 did 

not minimise these solutions effectively. 

With Dataset 2, seven out of ten complexes contained correct solutions among the 
Pareto set. The influence of the objectives in this dataset varied. Two of the 

complexes were influenced equally by both objectives, one complex was influenced 
by electrostatic and hydrogen bond interactions and, unlike the Dataset I results, three 

complexes are also influenced by vdw interactions. An interesting observation with 
this dataset is that the shape of some of the Pareto fronts is not as "smootlP as those 

observed with Dataset 1, indicating a more "rugged" energy landscape, which in turn 
implies that it is easier for the algorithm's search component to get stuck at a local 

minimum. 
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Considering Q-fit's results, the top-ranked Q-fit solutions were among the correct Q- 

fit solutions for several of the complexes. An interesting case was that of lbaf, for 

which the NSGA-II obtained a good solution, but Q-fit did not. This was clearly a 
case of the NSGA-II obtaining a correct balance of energies for a subset of its Pareto 

solutions that resulted in solutions with good rmsds. It could therefore be argued that 
Q-fit was unable to find a low rmsd solution at a high rank because the correct 
balance of interaction energies was not achieved. This case demonstrates the potential 
usefulness of a multiobjective approach relative to a single objective one, and 
confirms the ability of the NSGA-11 to understand why a single objective optimisation 

approach may have failed. The three complexes that the NSGA-11 did not succeed in 

docking were also not successfully docked by Q-fit. Tbcrefore it was inferred that 

these complexes are problematic for docking, with global minima that are difficult to 

access. The overall inference of the results from the two datasets is that to obtain 
correct poses, optimising objectives so that a correct balance is obtained is important 
for certain complexes. Secondly, these results show that that the different energy 
terms, or objectives, have varying influences between different complexes. It is not 

possible to determine, with single objective optimisation, which of the energy terms is 

having the strongest influence in optimising the search, whereas a multiobjective 
optimisation approach to retrospective docking can determine the influence of 
different objectives by observing the position of correct solutions in objective space. 

In Chapter 7, the NSGA4I is modified from the version described in Chapter 5; the 

main reason for this was to determine the effect of certain algorithmic enhancements 
on the performance of the algorithm. The three major modifications made to the 

algorithm were; the application of controlled elitism; reduction of the Em= parameter 
to smooth the energy landscape and the implementation of a local search by using 

simplex minimisation with a Lamarckian element. Reducing the value of Emm softens 
the energy landscape, and allows for the existence of chromosomes that may 
otherwise be clashing with the protein, but that are nevertheless close to the crystal 
structure. Finally performing the simplex minimisation procedure allows 
chromosomes with orientations relatively close to the crystal structure and with low 
Pareto ranks to reach a local minimum, thus increasing their Parcto ranks and 
increasing their prospects of surviving in the population. The Lamarckian element to 
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this method ensures that the newly minimised chromosomes are passed on to the next 

I 

generation of the population. 

The new version of the algorithm was tested on Datasets I and 2, and the overall 

consensus was that the modified algorithm performs better than the original NSGA-11. 

Comparing the Pareto fronts from both versions of the algorithm shows that the 

modified version advances the Pareto front ftirther than the original version. Also, the 

modified version successfully docked all ten complexes in Dataset 1, an improvement 

from Version I of the algorithm which only docked eight complexes. With Dataset 2, 

Version 2 succeeded in docking a complex which Version I could not, and also failed 

to a dock a different complex that was successfully docked by Version I. Therefore 

the overall success rate for Dataset 2 from both versions of the algorithm remained 

unchanged though the Pareto fronts from several of the dataset's complexes had 

advanced further with Version 2. 

The results obtained with Version 2 indicate that the modifications implemented have 

been beneficial to the performance of the algorithm. Also, they add a more 

exploratory note to the algorithm, giving the flexibility to modify the parameters 

controlling the modifications as deemed necessary to a particular test case. To more 
thoroughly understand the capabilities of Version 2, the algorithm was tested, on 

several, more extensive datasets, the results of which are described in Chapter 8. 

In Chapter 8 the NSGA-11 (Version 2) was tested on two datasets. One of these 

consists of complexes of one protein (glycogen synthase kinase-3 beta, or GSK-3 

beta) co-crystallised with several ligands, and the second is a large dataset (T-lexX) 

that is routinely used in different docking experiments. Testing the algorithm on these 

different types of datasets fulfils two of the aims outlinsed in section 3.5. The purpose 

of the GSK-3 beta study was to see whether any trends could be observed when the 

NSGA-11 is used to dock different ligands into the same protein. The Pareto fronts 

generated by the GSK-3 beta study revealed two trends in the interactions made 
between the protein and its ligands. The vdw interactions were seen as the dominating 

interactions for three of the complexes. For three other complexes the very narrow 

range of electrostatic and hydrogen bond energies of the correct solutions implied that 

these ligands need to make specific electrostatic and hydrogen bond interactions in 
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order to find correct solutions. Interestingly Q-fit was unable to successfully dock the 

vdw-influenced complexes, whilst succeeding in docking the electrostatic and 
hydrogen bond-specific ligands. This implies that Q-fit is capable, for this set of 
complexes, of optimising specific electrostatic/hydrogen bond interactions, which is 
beneficial if a correct pose is influenced by these interactions. However if vdw 
interactions are the more influential of the objectives, then Q-fit can fail in finding 

correct solutions. Again this demonstrates the ability of the NSGA-11 in highlighting 

the importance of individual energy terms and in explaining why a single objective 
optimisation algorithm may have failed in obtaining correct solutions, thus fulfilling 

one of the aims introduced in section 3.5. Another interesting observation made 
through this study is that the complexes' correct clusters obtained by the NSGA-II are 
all on the right edge of the Pareto front. Though more validation studies are needed to 

confirm this, this information could be used to potentially perform prospective 
docking using the NSGA-II. 

The purpose of testing the NSGA-11 on a large dataset like FlexX was to compare the 

algorithm's performance to Q-fit at a larger scale, and to observe whether the 

multiobjective approach could provide extra information on Q-fit's capabilities. 
Though overall Q-fit docked more of the FlexX test cases successfully, there were 17 

cases that the NSGA-II successfully docked which Q-fit could not. Examining these 
further revealed that Q-fit may have failed in these cases for one of two reasons, (1) it 

did not minimise the total interaction energy to the level of the NSGA-11, (2) it did 

not achieve a correct balance of energies to find correct solutions. From the first 

point, it can be inferred that, for these particular complexes, the NSGA-Il was more 
successful at finding solutions at the global minimum than Q-fit, whose search may 
have stopped at a local minimum. The more interesting cases are those which failed 

because of the second point, once again highlighting the importance, for any 
algorithm, of finding the correct balance of energies in order to succeed at finding 

good solutions. Overall, the FlexX study has shown that multiobjective optimisation 
can provide insight into why a docking tool may fail in finding correct solutions for 

certain complexes, exemplifying possible scoring function weaknesses. 

Finally Chapter 9 describes achievement of the final aim of this thesis (section 3.5), 

which is the implementation of a third objective, desolvation energy, within the 
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NSGA-11. Although the results produced are preliminary only, they have 

demonstrated the algorithm's capabilities to use three objectives, rather than two, in 

optimisation. The preliminary results revealed some interesting relationships between 

the ob ectives, though further analyses and improvements to the algorithm are j 

necessary before any firm conclusions can be drawn. 

101 Conclusions and Future Directions 

Scoring functions continue to be a problematic aspect of protein-ligand docking. This 

work, applying a multiobjective approach to the scoring function of a docking 

algorithm, has highlighted the importance of correctly weighting the individual 

energy terms constituting a scoring function. Ideally scoring functions should have a 
level of transferability between complexes, and although this can be achieved for the 

most part, the results from this thesis have shown that certain failures of a docking 

algorithm could be attributed to the varied influences of different interaction energies 

among complexes. Multiobjective optimisation has provided a new "dimensioW' to 

understanding the optimisation of scoring functions during a search. As shown with 

the results from Q-fit, the NSGA-II can be used to understand a specific docking 

algorithm more thoroughly, and to be aware of any weaknesses. Although the 

algorithm cannot perform prospective docking, a potential avenue to explore, as 

shown with the GSK-3 beta data, is to learn where correct solutions lie on the Pareto 

fronts obtained from docking co-crystallised ligands; into the same protein binding 

site, and to use that information to predict orientations of ligands for which no x-ray 

crystal information is available. 

In its current form, the NSGA-11 is a toot for gaining understanding of the relative 
importance of the different factors that contribute to a scoring function, and 

consequently a docking algorithm. As this discussion has shown, the NSGA-II has 

provided useful insight into the performance of Q-fit, its implementation of the GRID 

scoring function, and has shown why the algorithm fails to dock certain test cases 

successfully. This approach could potentially be extended to other docking programs; 

a multiobjective procedure may be used to understand the effect of the different 
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components of other scoring functions, assess their influence in finding correct 

solutions and may also reveal their ability to balance the different components. To do 

this, the NSGA-II must be adapted to incorporate the same scoring function, where 
the objectives are the relevant scoring function components. Results obtained from 

the algorithm can then be compared with results from the docking tool under study, in 

the same manner used here to assess Q-fit. 

Though the current NSGA-II generally had a good docking success rate, there is the 

potential to increase its level of performance. The NSGA-11 currently performs rigid- 
body docking, and though for the purposes of comparison of its performance with Q- 

fit this was adequate (Q-fit is also a rigid-body docking tool), introducing ligand 

flexibility may be desirable. This could potentially improve the algorithm's 

performance since more optimal interactions could be made if rotatable bonds have 

the freedom to move. Also this would allow the algorithm to be compared to the more 

popular docking tools, which all implement flexible ligand docking. A ftirther 

improvement to the algorithm is to optimise the three-objective version of the 

algorithm so that the influence of desolvation energy in protein-ligand docking can be 

understood. Finally the algorithm could bc used to help in the parameterisation, or 

tailoring of a scoring function, so that the weights for individual energy components 

can be more reliably assigned. 
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Appendix 
121 p I eta 1 nis 2cpp 8gch 
laaq I etr lnsc; 2ctc; 9hvp 
1 abe I fen I pbd 2dbI 
I abf 1 fkg 1 pha 2er6 
1 acj IN I phd 2gbp 
lack 1 frP 1 phf 21gs 
lacm 1 ghb 1 phg 2mcp 
laec I& I poc 2mth 
1 aco I g1q 1 ppC 2phh 
laha lhdc lpph 2pk4 
lake I hef I ppi 2rO4 
I apt I hfc lppk 2rO7 
lase lhgg I ppi 2sim 
lab lhgh 1 ppm 2tmn 
lavd lhgi lpso 2yhx 
lazm I hgj 1 rbp 3aah 
lbaf lhd lme 3cla 
lbbp 1 hsl 1 mt 3cpa 
1 b1h lhfi I rob 3gch 
1 bma lhvr 1 sit 3hvt 
lbyb I hyt lsnc 3ptb 
lcbs 1 icn lsd 3tpi 
lcbx 1 ida lstp 4cts 
lcde 1 igj ltdb 4est 
lcdg 1 imb 1 thy 4fbp 
1 cil I ivb ltka 4dfr 
lcom I ivc UP 4fxn 
lcoy I ivd ltmn 4hmg 
UPS I ive 1 tng 4hvp 
I ctr I ivf I tnh 4phv 
ldbb 1 Idrn Itni 4tim 
1d bj 1 lah 1 tnj 4t1n 
ldbk I fic ltnk 4tsl 
ldbm I Ipm ltnI 5abp 
ldid 11cp ltph 5cpp 
Idie 1 Imo ltpp 5cts, 
ldrl 1 Ina 1 trk 5p2p 
ldwb I Ist ityl 5tim 
ldwc 1 mbi 1 ukz 5tmn 
ldwd I mcr I u1b 6abp 
1 eap 1 mdr lwap 6cpa 
leed 1 mid 1xid 6mt 
1 ela Immq We 6rsa 
1 elb 1 mnc 2ak3 6tim 
leic 1 mrg 2ada 6tmn 
leld 1 mrk 2cgr 7cpa 
lele Imup 2cht 7tim 

11 epb 1 nco 2cmd 8atc 

List of PDB codes of FlexX dataset 
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Description Parameters 

sp' carbonyl -0.1209 
sp carbon -0.2522 
spý carbon aliphatic 0.0283 

sp' carbon aromatic -0.0141 
sp' carbon -0.1276 
Halogens (Fl, Cl, Br, 1) -0.0081 
Hydrogen bonded to aliphatic carbon -0.0005 
Hydrogen bonded to aromatic carbon 0.0040 

Hydrogen bonded to nitrogen -0.0051 
Hydroxyl group -0.0013 
Hydrogen bonded to sulfur -0.0595 
sp' nitrogen in amide groups 0.0232 

sp' nitrogen in aliphatic systems 0.0311 

sp' nitrogen in aromatic systems 0.0111 

sp nitrogen -0.0037 
sp' nitrogen 0.0478 

Amine nitrogen connected to one or 

more aromatic rings 
-0.0077 

Oxygen with one connected atom 0.0074 

Oxygen in hydroxyl group 0.0094 

Ether and ester oxygen 0.0147 

Phosphate -0.7097 
Sulfur -0.0109 

Desolvation parameters used in desolvation energy calculations in Chapter 9 

(Jain and Jayaram, 2005) 
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