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Abstract

Despite the intense efforts that have been devoted to the development of scoring

functions for protein-ligand docking, they are still limited in their ability to identify

the correct binding posc of a ligand within a protein binding site. A deeper
understanding of the intricacies of scoring functions is therefore essential in order to
develop these effectively. The aim of the work described in this thesis is to analyse

the individual interaction energy types which form the individual components of a

force field-based scoring function.

To do this, a protein-ligand docking algorithm that is based on multiobjective
optimisation has been developed. Multiobjective optimisation allows for the
optimisation of scveral objectives simultancously and this has been applied to the
individual interaction energy types of the GRID scoring function. Traditionally these
interaction energy types are summed together and the total energy is used to guide the
search. By using individual energy types during optimisation, their roles can be better
understood. The interaction energy types that have been used here are the electrostatic

and hydrogen bond interactions combined, and van der Waals interactions.

The algorithm is first tested on two datasets containing twenty complexes. The results
show that the different interaction energy types have varying influences when 1t
comes to successfully docking certain complexes, and that it is important to find the

right balance of interaction energy types so as to find correct solutions. Of the twenty

complexes, the algorithm found correct solutions for fifteen.

To improve the performance of the algorithm, a few enhancements were introduced.
This includes a simplex minimisation process with a Lamarckian element. The
algorithm was retested on the twenty complexes, and the newer version was found to

outperform the original version, finding correct solutions for seventeen of the twenty

complexes.
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To extensively study the capabilities of the algorithm, it was tested on varied datasets,
including the FlexX dataset. The algorithm’s performance was also compared to a
single-objective docking tool, Q-fit. The comparison between the multiobjective and
single-objective methodologies revealed that single-objective methods can sometimes
fail at finding correct docked solutions because they are unable to correctly balance
the interaction energy types comprising a scoring function. The study also showed

that a multiobjective optimisation method can reveal the reasons why a given docking

algorithm may fail at finding a correct solution.

Finally, the algorithm was extended to incorporate desolvation encrgy as a third

objective. Though these results are preliminary, they revealed some interesting

relationships between the different objectives.
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1 Introduction

The path of developing a small molecule into a drug for the market is long and
arduous, but one that every pharmaceutical company must take so as to ensure that

they survive and flourish in the healthcare industry. High attrition rates, mounting

costs of drug development (estimated at over US$1 billion per drug) and regulatory

hurdles are all factors which have driven the need to develop methods that increase

the efficiency and speed of finding viable leads that can be developed into drugs.
Computational methods in particular have scen an increase in popularity within the
industry. These range from chemoinformatics techniques such as similarity searching,
to virtual screening, a computational technique used to identify ligands from a library
of compounds based on various criteria, such as activity against a specified protein
target. Virtual screening is one of the tools used in structurc-bascd drug design
(SBDD), a concept which uses three dimensional (3-D) structural information of a
target protein to find and design drugs. For example, protein-ligand docking is a
SBDD tool often used in virtual screening, which tries to predict the structure of a

small molecule-protein complex from the molecules’ atom coordinates only.

Several of these methods apply search techniques, many of which are borrowed from
engineering applications, to try to predict the behaviour and characteristics of small
molecules computationally. The computational search mcthods vary, depending on
the type of problem and the method’s aims. One such method is multiobjective
optimisation, which has been used in several drug discovery/chemoinformatics
applications, including library selection (Gillet e al., 2002), and pharmacophore
generation (Cottrell ef al., 2004). The theory behind this method and a discussion of
its different implementations is presented in Chapter 2. Chapter 2 also introduces
genetic algorithms (GAs), which have been used to perform multiobjective

optimisation. GAs are heuristic search algorithms based on Darwinian concepts of

evolution and natural selection.

Using computational methods, such as protein-ligand docking, to predict the

behaviour of molecules requires a good understanding of biological notions that drive



these molecules’ interactions. Chapter 3 discusses molecular recognition concepts and
the various energy components that are considered when modelling biological
systems. The use of these concepts in protein-ligand docking is discussed, along with

the different types of algorithms that have successfully been applied to the problem
(Kitchen ef al., 2004).

Dicussion of the experimental work carried out in the thesis begins in Chapter 4,

which explains the development of a single-objective GA that performs protein-

ligand docking. This algorithm is tested on a small dataset, the results of which are

also discussed in this chapter.

An area of weakness of current protein-ligand docking methods is their ability to
correctly score different docked solutions which leads to deficiencies in virtual
screening experiments which attempt to rank a large number of ligands. As the title of
the thesis indicates, the aim of this work is to apply multiobjective optimisation to
protein-ligand docking in order to gain insights that will lead to improved scoring
functions. Chapter 5 discusses how the single-objective, protein-ligand docking
algorithm is modified into a multiobjective algorithm. To understand the capabilities

of the algorithm, it is tested on two datasets, the results of which are presented in
Chapter 6.

An algorithm can be modified in several ways in order to improve its performance, as

well as provide different levels of control that can be adjusted depending on the
problem. Chapter 7 focuses on the algorithmic side of the rescarch, and describes
major modifications carried out on the multiobjective algorithm. To understand the

effects of these modifications, the algorithm’s performance is compared to that of the

unmodified version described in Chapter 6.

In Chapter 8 the biological attributes of the algorithm are explored on a larger scale

by testing it on different datasets, the results of which provide a deeper understanding
of the algorithm and its benefits. In Chapter 9 the algorithm is once again modified to

include a novel component, which, though not fully explored, provides a basis for

future work. The thesis is concluded with Chapter 10, which summarises and



discusses the results obtained from this research, and provides a discussion on the

future prospects of this work.



2  Multiobjective optimisation: Theories

Optimisation is the process which attempts to find the global solution or solutions,
and which describes extreme values of one or more objectives. A problem which

involves only one objective function will require finding a single extreme solution, in

a process termed single-objective optimisation.

When more than one objective function affects a problem, then the task of {inding
one or more optimal solutions is known as multiobjective optimisation.
Multiobjective optimisation elucidates real-life problems more realistically since
these will naturally involve multiple, conflicting, objectives. Therefore finding the
extreme solution for one objective will not be sufficient in these cases, since the other
objectives need to be considered. In scenarios focusing on one or more objectives, a
number of solutions will exist, which may have conflicting trade-offs, or
compromises among the objectives. An extreme solution in one objective (one that is
optimal in that objective) will require a compromise in the other objective. Given the
existence of different solutions at the optimal extremes of the objectives, there will

also exist solutions in between the extremes, with different compromises of the

different objectives (Figure 2.1).

Multiobjective optimisation problems occur in many everyday decision-making
situations. For example, when buying a car, and if, hypothetically, cost is the only
criterion to base the decision by, then only the least expensive cars would ever be

bought. However, the reality is that other factors which conflict with cost also affect
this decision, such as the comfort level of the car. The cheapest cars will have the
lowest comfort levels, whereas the most expensive cars will be the most comfortable.
Rich individuals to whom comfort is important will therefore opt for the most

expensive cars. In between the two extremes there is a whole array of cars with

different trade-offs of cost versus comfort.
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Figure 2-1 In a multiobjcctive optimisation problem, the (conflicting) objectives f;
and f; are minimised. The solid circle solutions are optimal in terms of one
objective, but at the expense of the other. The solutions in open circles are not

optimal in either of the objectives but show different compromises in terms of the
objectives.

Traditionally multiobjective optimisation problems have been approached by
transforming the problem into a single-objective optimisation one by using user-
defined parameters (classical methods). The weighted sum technique is onc such
example, and is described in section 2.3.1. The main problem with such an approach
s deciding on the ideal parameters which correctly describe the relationships between
the objectives. Also, it is difficult to define these parameters when the objectives
themselves are non-commensurate. A true multiobjective optimisation technique will

remove any bias towards a particular objective during optimisation and will consider

all objectives to be equally important. The process is not completely objective though
because, since most optimisation problems require a single solution, then the user, or
decision maker, will have to sclect one of the trade-off solutions. At this point it is
hoped that higher level information, information that is qualitative and driven by
experience, will assist in making that decision. Therefore the task of a multiobjective
optimisation technique is to find optimal solutions which have a good variety in

compromised objectives, giving the decision maker a good basis for judging which of

the optimal solutions solve the particular problem.



2.1 Evolutionary approach to multiobjective optimisation

The classical approach to multiobjective optimisation combines all objectives into a
composite function that is then optimised single objectively. Classical search

methods, which operate on a point-by-point approach, modifying a single solution per

iteration until the best solution is found are therefore very well suited for single-
objective optimisation problems, where only one optimal solution is needed.
However, to perform true multiobjective optimisation, multiple solutions must exist

during the optimisation process, all of which are optimised simultaneously in order to

result in a set of multiple optimised solutions.

Evolutionary methods are therefore ideally suited for multiobjective optimisation.
These maintain a population of solutions at all times during optimisation, and
therefore the end of a run always contains a final population of solutions.
Evolutionary methods are routinely implemented on single-objective optimisation
problems, where it is hoped that all population members will converge to a single
optimal solution. These methods can be adapted though, so that different population
members converge towards multiple optimum points. The details of multiobjective
optimisation using evolutionary algorithms, along with evolutionary computation

concepts, are discussed in the following sections.

2.2 Evolutionary computation

Evolutionary computation methods are a type of optimisation algorithms which
mimic biological evolution (Holland, 1992). They work on the principle that by
combining different parts of good but non-optimal solutions together, then the global
minimum will be reached. Evolutionary computational techniques consist of three
components; a data structure representing decision variables, a fitness function for

evaluating the quality of the solutions and a strategy for moving from one generation
to the next,



Different types of evolutionary computation methods exist, such as genetic
programming, evolutionary strategies and genetic algorithms (Foster, 2001). This
thesis focuses largely on genetic algorithms (GAs), therefore this section will focus

solely on these evolutionary computation methods.

2.2.1 Genetic algorithms

Genetic algorithms attempt to find a set of decision variables, represented by a vector
X, that minimises the value of a fitness function f(x). The process mimics
evolutionary Darwin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>