
University of Sheffield

Department of Computer Science

A PERFORMANCE ANALYSIS OF A HYBRID

RELATIONAL-XML APPROACH

To STORE PARTIALLY-STRUCTURED DATA

Thesis submitted for the degree of PhD

by

Yasser Abdel Kader

March 2007

Abstract

Nowadays, huge amounts of data are stored outside the rigid boundary of highly-

structured and traditional database management systems, such as World Wide Web,

application data that deals with non-standard data formats, legacy systems and
structured documents. On the one hand, this data does not conform to a pre-defined
structure and yet it is not completely un-structured. This data is classified as semi-
structured data. There is a need to store and manage the large existing collections of
semi-structured data and to query it efficiently in a way similar to traditional databases.
But as yet, a mature technology for doing so does not exist. However, eXtensible
Markup Language (XML) has emerged as the lingua franca of the web. XML has the
ability to represent all form of structured data (highly-, semi- and un-structured).

This research aims to enhance the performance of storing, querying and retrieving XML
data that contain a combination of highly-structured and semi-structured data (this
hybrid structuring can be described as partially-structured data), so as to better support
classes of application where there is a fixed formal framework for data, but also an ad
hoc component. One way to mange XML data is by using relational database

management systems. This is based on the robust, well established and optimised
performance relational database management systems can offer. The research presented
in this thesis is concerned with seeking ways of further exploiting the latter advantages
in adapting relational technology to store XML data.

To this end, the research has proposed a hybrid relational-XML storage model to store
partially-structured XML encoded data, in which a combination of structure mapping
and XML types are used within a relational database management system, so as to
exploit pre-knowledge of the highly-structured part in query processing while allowing
flexibility to store the semi-structured part. A set of experiments were designed to

evaluate the query performance for partially-structured data using structure mapping to
relational tables, XML types and the hybrid model. These experiments were evaluated
using a standard benchmark set of queries.

The analyses of the experiments' results establish the impact on query performance as
structuredness, volume and query characteristics change. The results of the experiments
showed that there was no one storage model that outperforms all other models in all
cases. In most of the cases, this hybrid model performed better than both the relational
and XML data type models. The research proposed a method, by which the results of
the performance analysis can be utilised by the database designer to seek optimal
relational storage models for XML-encoded partially-structured data.

I

Acknowledgments

Throughout the course of my research, I have been helped and encouraged by many
people. I would like to express my gratitude to all those who have supported me through

out this experience.

Special gratitude is due to my supervisors for their encouragement, supervision and
objective criticism and guidance. I am deeply indebted to Dr Barry Eaglestone for his

continuous support and encouragement, for keeping me motivated and focused through
the entire process. I am also deeply indebted to Dr. Siobhdn North for her great help,

valuable suggestions and constructive criticism.

My deepest gratitude are due to Dr. Gamal Mokhtar, the president of the Arab Academy
for Science and Technology and Maritime transport, without whom help and support the
conduction of my PhD would not be possible.

Finally, I owe many thank for my mother for her care and support. I wish to express my
sincere loving thanks to my wife Rania Abdel Galil for her understanding, immense
help and encouragement and for always being there for me and also to my beloved
children Karim and Noura who gave me an enjoyable life outside the research.

11

Table of Contents

Abstract ..
I

Acknowledgments H

List of Figures VIII

List of Tables XI

List of Abbreviations XII

Chapter I Introduction
I

1.1 Introduction ...
1

1.2 Research Motivation ..
2

1.3 Research Hypothesis ..
4

1.4 Research Contributions ...
5

1.5 Outline of the Thesis ..
5

Chapter 2 Research Background ...
8

2.1 Introduction
...

8

2.2 Semi-Structured Data
...

8

2.2.1 Introduction
.. ...

8

2.2.1.1 Semi-Structured Data's Origin
....................... ...

9

2.2.1.2 Motivations to Study Semi-Structured Data ...
9

2.2.1.3 Definition of Semi-Structured Data
............... ...

10

2.2.1.4 Semi-Structured Data Characteristics
........... ...

11

2.2.2 Semi-structured Data Model
14

2.2.2.1 OEM Data Model
16

2.2.3 Query Languages for semi-structured Data
......... ...

17

2.2.3.1 Lorel
... ...

18

2.2.3.2 UnQL
... ...

19

2.2.3.3 Lorel vs. UnQL
... ...

20

2.2.4 Semi-structured Data Research Issues
20

2.2.5 Conclusion and Way Forward ..
23

2.3 XML
...

24

2.3.1 Introduction ...
24

2.3.1.1 XMI, Origins
...

24

2.3.1.2 XML Document Categories
...

25

2.3.1.3 XML Strengths and Weaknesses ..
26

2.3.1.4 XMI, Technologies
...

28

2.3.2 XML Data Model ... 29
2.3.2.1 Formal XMI, Data Model

32

ul

2.3.2.2 WX proposed data models for XMI, .. 37

2.3.3 Query Languages for XML ... 40

2.3.3.1 XML Query Requirements .. 40

2.3.3.2 XMI, Query Algebra .. 42

2.3.3.3 XQuery ... 44

2.3.4 Conclusion and Way Forward .. 45

2.4 Semi-Structured Data and XMI, .. 45

2.5 XML Storage Strategies .. 49

2.5.1 Using the File System .. 50

2.5.2 Using Novel Storage Structure ... 51

2.5.2.1 Object-Oriented Databases .. 51

2.5.2.2 Native XMI, Databases .. 52

2.5.2.3 Lore ... 53

2.5.2.4 Store XMI, Semantics .. 53

2.5.2.5 Vectorizing Approach ..
54

2.6 Conclusion ... 54

Chapter 3 Partially Structured XML .. 56

3.1 Introduction ... 56

3.2 Research Motivations and Hypothesis .. 56

3.2.1 Motivation .. 57

3.2.2 Research Hypothesis .. 59

3.3 XML Degree of Structuredness ..
60

3.4 Partially-Structured XML ... 66

3.4.1 Defining a Partially Structured XML Document ... 66

3.4.2 XMI, Schema Representing a Partially-Structured XML Document
68

3.4.3 Example of a Partially-Structured XML Document ..
69

3.4.4 Advantages of Using a Hybrid Model to Store Partially-Structured Data
71

3.5 Related Work
..

72

3.5.1 Using Relational Database Management Systems ...
73

3.5.2 Ozone System
..

78

3.5.2.1 Ozone Motivating Example
...

78

3.5.2.2 Ozone Design Concept
...

80

3.5.3 STORED System
.. 81

3.5.4 Discussion
.. 82

3.6 The Proposed Model for Partially-Structured XML Documents
...

83

3.7 Conclusion
... 84

Chapter 4 Experiment Design
... .

85

IV

4.1 Introduction ... 85
4.2 Experimental Design 86

4.2.1 The Objective of the Experiments 86
4.2.2 The Experiments' Strategy 87
4.2.3 SQUXML Standard 88
4.2.4 Storage Model Used in the Experiment go

4.2.4.1 Structured Mapping Approach 90
4.2.4.2 Store the Whole XML Document as an XML Data Type 93
4.2.4.3 The Proposed Hybrid Approach 93

4.3 XML Benchmarking 94
4.3.1 XMach-1 95
4.3.2 XMark 95
4.3.3 X007 ... 96
4.3.4 XBench ... 96
4.3.5 The Michigan Benchmark ... 96
4.3.6 A Comparison between Different XML Benchmarking Techniques 97

4.4 Adapted XBench 99
4.4.1 Data Set .. 99

4.4.1.1 Schema Design for Structured Mapping Approach .. 105
4.4.1.2 Schema Design for Using an XML Data Field .. 107

4.4.1.3 Schema Design for the Proposed Model ... 107
4.4.2 Query Set .. 108

4.4.2.1 Exact Match .. 109
4.4.2.2 Function application .. 109

4.4.2.3 Ordered access .. 109
4.4.2.4 Quantification

... 110

4.4.2.5 Path expressions ... 110

4.4.2.6 Sorting
... 110

4.4.2.7 Document construction ... III

4.4.2.8 Irregular data
... III

4.4.2.9 Retrieval of individual documents
... III

4.4.2.10 Text search .. 112

4.4.2.11 References and Joins ... 112

4.4.2.12 Datatype casting .. 112
4.5 Performance Metrics

... 113

4.6 Experimental Operational Environment
.. 114

4.7 Conclusion
.. 115

V

Chapter 5 Experiment Results and Analysis ...
116

5.1 Introduction ..
116

5.2 Experiments'Environment ...
116

5.2.1 Data Set ...
116

5.2.2 Query Set ..
120

5.2.3 Performance Metrics ...
120

5.2.4 Operational Environment ..
120

5.3 Experiments'Results ...
121

5.3.1 Using 'Document Key' Queries ..
122

5.3.1.1 Exact Match (Shallow) ..
123

5.3.1.2 Path expressions ...
126

5.3.1.3 Document construction ..
128

5.3.1.4 Irregular data ...
133

5.3.1.5 Retrieval of individual documents ...
138

5.3.1.6 References and joins ..
141

5.3.2 Using 'Author' Queries ...
144

5.3.2.1 Exact Match (Deep) ...
144

5.3.2.2 Function application ..
146

5.3.2.3 Ordered access ..
148

5.3.2.4 Quantification ...
153

5.3.2.5 Sorting ...
158

5.3.3 Using 'Title' Queries ...
162

5.3.3.1 Path expressions ...
162

5.3.3.2 Text search ..
165

5.3.3.3 Datatype, Casting ..
169

5.4 Results Analysis ..
171

5.4.1 Experiments' Overall Analysis ..
172

5.4.2 Scalability
.. .

177

5.4.3 Database Storage Size
.. . 179

5.5 Experiments Limitations
... .

181

5.6 Findings and Conclusions
... .

182

Chapter 6 Conclusion and Future Work
189

6.1 Introduction
189

6.2 Main Findings and Contributions
... . 189

6.3 Future Research Work
..

190

6.3.1 Future Work Related to the Research Limitation ..
191

6.3.2 Future Work Related to the Design of the Experiments
..

192

vi

6.4 Final Remarks ..
193

References ..
194

Appendix A Examples of Formal XML Data Model ...
210

Appendix B Database Scripts ..
219

Appendix C Full Experiments' Results ..
225

Vil

List of Figures

FIGURE 2.1 SEMI-STRUCTURED DATA As EDGE LABELLED DIRECTED GRAPH
................... 15

FIGURE 2.2 STRUDEL ARCHITECTURE (FERNANDEZ ET AL. 1998)
..

22

FIGURE 2.3 XML As NODE LABELLED DIRECTED GRAPH
..

30

FIGURE 2.4 XML As NODE LABELLED DIRECTED GRAPH
..

32

FIGURE 3.1 AN EXAMPLE OF A HIGHLY-STRUCTURED XML DOCUMENT
............................

63

FIGURE 3.2 AN EXAMPLE OF A SEMI-STRUCTURED XML DOCUMENT
.................................. 64

FIGURE 3.3 AN EXAMPLE OF AN UN-STRUCTURED XML DOCUMENT
.................................. 65

FIGURE 3.4 AN EXAMPLE OF PARTIALLY-STRUCTURED XML DOCUMENT
70

FIGURE 3.5 XML SCHEMA FOR PARTIALLY-STRUCTURED XML DOCUMENT
71

FIGURE 3.6 STRUCTURED ODMG CLASSES IN THE RETAIL-AGENCY DATABASE FOR THE

OZONE SYSTEM EXAMPLE (LAHIRT ET AL. 1999) ... 80

FIGURE 3.7 EXAMPLE OEM GRAPH FOR THE PRODINFO ATTRIBUTE OF A PRODUCT OBJECT

FOR THE OzoNE EXAMPLE (LAHIRI ET AL. 1999)
...

80

FIGURE 4.1 DBLP DTD (HTTP: //DBLP. UNT-TRIER. DE/XMIJDBLP. DTD)
............................... 105

FIGURE 4.2 QUERY TEMPLATE
... 113

FIGURE 5.1 STORAGE MODELS TESTED IN THE EXPERIMENTS .. 119
FIGURE 5.2 QUERY 1: SHALLow EXACT MATCH

.. 125
FIGURE 5.3 QUERY 1: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOUBLED

(DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3) ..
126

FIGURE 5.4 QUERY 9TATH EXPRESSIONS ...
127

FIGURE 5.5 QUERY 9: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOUBLED

(DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3)
..

128

FIGURE 5.6 QUERY 12: DOCUMENT CONSTRUCTION - STRUCTURE PRESERVING
............ 130

FIGURE 5.7 QUERY 13: DOCUMENT CONSTRUCTION - STRUCTURE TRANSFORMING
...... 131

FIGURE 5.8 QUERY 12: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOUBLED

(DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To D133/3) ..
132

FIGURE 5.9 QUERY 13: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOUBLED

(DB 1/3 To D132/3) AND TRIPLED (DB 1/3 To D133/3) ..
133

FIGURE 5.10 QUERY 14: IRREGULARITY - MISSING ELEMENTS
... 135

FIGURE 5.11 QUERY 15: IRREGULARITY - EMPTY (NULL) VALUES
.....................................

136

viii

FIGURE 5.12 QUERY 14: PERFORMANcE DETERIORATION WHEN DATABASE SEZE

DOUBLED (DBI/3 To DB2/3) AND TRIPLED (D131/3 To DB3/3) 137
FIGURE 5.13 QUERY 15: PERFORMANCE DETERIORATION WHEN DATABASE SIZE

DOUBLED (DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3)
................................ 138

FIGURE 5.14 QUERY 16: RETRIEVE INDIVIDUAL DOCUMENTS
.. 139

FIGURE 5.15 QUERY 16: PERFORMANCE DETERIORATION WHEN DATABASE SIZE

DOUBLED (DBl/3 To DB2/3) AND TRIPLED (DBI/3 To DB3/3) 140
FIGURE 5.16 QUERY 19: REFERENCE AND JOINS ... 142
FIGURE 5.17 QUERY 19: PERFORMANCE DETERIORATION WHEN DATABASE SIZE

DOUBLED (DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3) 143
FIGURE 5.18 QUERY 2: DEEP EXACT MATH ... 145
FIGURE 5.19 QUERY 2: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOU13 LED

(DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3) .. 146

FIGURE 5.20 QUERY 3: FUNCTION APPLICATION .. 147
FIGURE 5.21 QUERY 2: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOUBLED

(DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3) .. 148
FIGURE 5.22 QUERY 4: RELATIVE ORDERED ACCESS ... 150
FIGURE 5.23 QUERY 5: ABSOLUTE ORDERED ACCESS .. 151
FIGURE 5.24 QUERY 4: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOUBLED

(DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3) .. 152
FIGURE 5.25 QUERY 5: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOUBLED

(DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3) .. 153

FIGURE 5.26 QUERY 6: EXISTENTIAL QUANTIFIER
...

155

FIGURE 5.27 QUERY 7: UNIVERSAL QUANTIFIER .. 156
FIGURE 5.28 QUERY 6: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOUBLED

(DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3) ..
157

FIGURE 5.29 QUERY 7: PERFORMANCE DETERIORATION WHEN DATABASE SIZE DOUBLED

(DB 1/3 To DB 2/3) AND TRIPLED (DB 1/3 To DB3/3) .. 157
FIGURE 5.30 QUERY 10: STRING SORTING ... 159
FIGURE 5.31 QUERY 11: NON-STRING SORTING .. 160
FIGURE 5.32 QUERY 10: PERFORMANCE DETERIORATION WHEN DATABASE SIZE

DOUBLED (DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3) 161

ix

FIGURE 5.33 QUERY 11: PERFORMANCE DETERIORATION WHEN DATABASE SIZE

DOUBLED (DB 1/3 To DB2/3) AND TRiPLED (DB 1/3 To DB3/3) 162
FiGURE 5.34 QUERY 8: REGULAR PATH ExPREsSIONS - UNKNOWN ELEMENT

................ 163

FIGURE 5.35 QUERY 8: PERFORMANCE DETERIORATION WHEN DATABASE SizE DOUBLED

(DB 1/3 To DB 2/3) AND TRIPLED (DB 1/3 To DB 3/3)
..

164

FIGURE 5.36 QUERY 17: TExT SEARCH - UNI-GRAM SEARCH
...

166

FIGURE 5.37 QUERY 18: TExT SEARCH - N-GRAM SEARCH
...

167

FIGURE 5.3 8 QUERY 17: PERFORMANCE DETERIORATION WHEN DATABASE SIZE

DOUBLED (DBI/3 To DB2/3) AND TRrPLED (DBI/3 To DB313)
168

FIGURE 5.39 QUERY 18: PERFORMANCE DETERIORATION WHEN DATABASE SIZE

DOUBLED (DB 1/3 To DB2/3) AND TRIPLED (DB 1/3 To DB3/3) 169
FIGURE 5.40 QUERY 20: DATATYPE CAST

.. 170
FIGURE 5.41 QUERY 20: PERFORMANCE DETERIORATION WHEN DATABASE SrzE

DOUBLED (DB 1/3 To DB 2/3) AND TRIPLED (DB 1/3 To DB 3/3)
171

FIGURE 5.42 FLow CHART I ..
183

FIGURE 5.43 FLOW CHART 11 ...
184

FIGURE 5.44 FLOW CHART III ..
185

FIGURE 5.45]FLOW CHART IV ..
186

FIGURE 5.46 FLOW CHART V ...
187

x

List of Tables

TABLE 2.1 DOCUMENT-CENTRIC Vs. DATA-CENTRIC XML (KIM ET AL 2002) 26

TABLE 2.2 DiFFERENT XML DATA MODELS PROPOSED BY THE WX SALMINEN AND

ToPMA (2001) ..
39

TABLE 2.3 COMPARING XML, OEM, RELATIONAL AND OBJECT-ORIENTED DATA

MODELS ...
48

TABLE 3.1 DOCUMENT-CENTRIC Vs. DATA-CENTRIC XML (KIM ET AL 2002)
..................

60

TABLE 4.1 A COMPARISON BETWEEN DIFFERENT XML BENCHMARKING TECHNIQUES.. 97

TABLE 4.2 XQUERY USE CASES
...

98

TABLE 5.1 SUMMARY OF ALL THE RELATIVE PERFORMANCE RESULTS
174

TABLE 5.2 AVERAGE DETERIORATION IN QUERY PERFORMANCE
.......................................

179

TABLE 5.3 DATABASE STORAGE SEZES ..
180

xi

List of Abbreviations

DOM DOCUMENT OBJECT MODEL

DTD DOCUMENT TYPE DECLARATION

HTML HYBRID TEXT MARKUP LANGUAGE

NXD NATIVE XML DATABASE

OEM OBJECT EXCHANGE MODEL

Www WORLD WIDE WEB

XLINK XML LINKING LANGUAGE

XML EXTENSIBLE MARKUP LANGUAGE

XPATH XML PATH LANGUAGE

XTOINTER XML POINTER LANGUAGE

XSCHEMA XML SCHEMA

XSL THE EXTENSIBLE STYLESHEET LANGUAGE

XHTML THE EXTENSIBLE HYPER TEXT MARKUP LANGUAGE

xii

Chapter 1 Introduction

1.1 Introduction

Nowadays, huge amounts of data are stored outside the rigid boundary of highly-

structured and traditional database management systems. One example of that is the
World Wide Web, the largest source of data by volume ever created by human beings.
Other examples include application data that deals with a non-standard data formats,
legacy systems and structured documents (Suciu 1998). On the one hand, this data does

not conform to a pre-defined structure and on the other hand it is not completely un-

structured. Therefore, this data is classified as semi-structured data (Abiteboul 1997,
Buneman 1997, Suciu 1998, Abiteboul et al. 1999, Abiteboul 2001 and Florescu 2005).

There is a need to store and manage the large collections of semi-structured data and to

query it efficiently in a way similar to traditional databases, but as yet, a mature

technology for doing so does not exist. However, eXtensible Markup Language (XML)

has emerged as the lingua franca of the web (Vianu 2003) and can be seen as "the

forthcoming semi-structured standard of the Web" (Abiteboul 2001). Consequently,

XML data models and their query languages are now emerging, partly based on

previous research into semi-structured data models and query languages. For example,
Lore (McHugh et al. 1997 and Abiteboul et al. 1997) was firstly designed as a semi-

structured database management system but then was migrated to store XML data

(Goldman et al. 1999). However, a second and complementary approach towards

establishing an XN1L database theory and technology has been to adapt that of

conventional relational or object-relational databases. Examples can be found in

Shanmugasundararn et al. 1999 and 2001, Shimura et al. 1999, Florescu and Kossmann

1999, Schinidst et al. 2000, Klettke and Mayer 2001, Yoshikawa and Amagasa 2001,

Kudrass 2002, Kudrass and Conrad 2002, Runapongsa and Patel 2002, Tian et al. 2002,

Amer-Yahia and Srivastava 2002, Bohannon et al. 2002, Kuckelberg and Krieger 2003,

Han et al. 2003, Harding et al. 2003, Leonov and Khusnutdinov 2004, Pal et al. 2004,

Lu et al. 2006, Na and Lee 2005, Balmin and Papakonstantinou 2005, Chaudhuri et al.
2005, Qin et al. 2005, Pardede et al. 2005,2006 and Pal et al. 2006. The advantage of
the latter approach is based on the robust, well established and optimised performance

relational database management systems can offer. A recent empirical study of XML

data management showed that using relational database management systems

I

outperform using native XML database systems in processing XML data (Lu et al.
2006). This finding depends on a number of factors such as document structuredness,

data size and the queries' workload.

The research presented in this thesis concerns seeking ways of further exploiting the

advantages of adapting relational technology to store XML data. Specifically, the

research considers a class of XML data which is a hybrid between highly-structured and
semi-structured data (this is defined in section 3.4 as partially-structured data). The

primary aim is to establish for this class of partially-structured XML data, whether pre-
knowledge of the structured component can be exploited when storing the data within a
relational database will improve its query processing efficiency. This improvement can
be achieved by exploiting relational query processing and optimisation technology for

the highly-structured part rather than dealing with the data as totally semi-structured,

while allowing flexibility in storing and querying the semi-structured part of the data.

1.2 Research Motivation

The motivations behind this research are rooted in issues relating to the structuredness
of XML document collections and their implications on the query processing

performance. The research is concerned with a class of XML-encoded data that can be

described as a hybrid between highly-structured and semi-structured data, referred to as
partially structured XML data. Specifically, this study seeks to exploit the knowledge of
the highly-structured part to improve query processing performance.

XML has become a focus for research in both the database as well as the document

research communities (as in section 2.3.1.3). This research effort is motivated by

strengths of XML, including: its simple format, the separation of the data from how this
data is formatted, the internationalisation capability, platform independence,

extensibility, human readability as well as machine readability, processing instruction

and the large investment in XML applications that already exists nowadays. These

strengths make XML appropriate as a way to store and exchange data on the web.
However, achieving good XML query processing performance is problematic because

of the irregular structures inherent in the semi-structured data, which means that

conventional query optimisation technology cannot be used in a straightforward way
(section 2.2.3).

2

One possible approach to addressing the above querying efficiency problem is to exploit
the inherent structures of specific XML documents. In developing this approach it is

useful therefore to classify XML documents according to their structuredness, as has

been done in (Barbosa et al. 2001, Yao et al. 2002 and Bourret 2005), where XML

documents are classified either as highly-structured, semi-structured or un-structured
(see section 3.3). Querying semi-structured or un-structured data is problematic for

query processing and incurs significant overheads (see section 2.2.3), whereas the pre-
knowledge of the uniform structures of highly structured data opens the gate for more

efficient query processing using well established technologies, such as those developed

for relational databases. However, many XML documents are in fact a combination of
highly-, semi- and un-structured data. This poses a question; can querying overheads

associated with these documents be reduced by exploiting the knowledge of the parts of

a document for which the data is highly-structured? In order to address this question, it

is necessary to focus on a class of hybrid highly-structured and semi-structured
documents, which can be defined as partially-structured documents (as in section 3.4).

In such documents, there is a well defined and prescribed structure in part of the

document as well as an ad-hoc semi-structured part.

Given the existence of large data sets and applications that can be classified as partially-

structured data, such as (bibliographic databases, movies databases, health care system

databases and product catalogue databases), there is clearly a need for data management

functionality for this class of data. That is to say, to organise, store, query, restructure

and manipulate large collections of partially-structured XML data in an efficient way.

This requirement is being addressed by applying two main strategies, i. e., developing

native XML database management systems, and developing systems which utilise and

extend conventional relational database management systems. A potential advantage of

the latter approach is that it applies and builds on the years of research and development

that provided a mature, stable, scalable and effective technology for query optimisation

and processing of highly-structured data. The relational database is currently the major
database technology in use and is likely to maintain its dominant position in the

foreseeable future. So, the research concentrates on using relational databases for XML

data management, but seeks a better way to store and query the class of partially-

structured data.

3

Therefore, the basic motivation for this research is the need for improved query

processing performance of partially-structured XML documents based on the use of

relational database management systems. The following section presents the hypothesis

emerging from this motivation.

1.3 Research Hypothesis

Following on from the argument developed in the preceding section, the research

hypothesis is:

For the class of XML documents which contains both a prescribed highly-

structured part and a semi-structured part, performance enhancement may be

achieved over existing query processing techniques for semi-structured
documents by using relational database query processing and optimisation

technology to exploit pre-knowledge of the prescribed highly-structured part of

the data

The research tests this hypothesis by introducing and evaluating a new model to store

partially-structured documents. In the proposed model, the highly-structured part is

stored using structure mapping into a relational database (Shanmugasundaram et al.
1999 and 2001, Shimura et al. 1999, Schmidst et al. 2000, Klettke and Mayer 2001,

Yoshikawa and Amagasa 2001, Kudrass and Conrad 2002, Runapongsa and Patel 2002,

Tian et al. 2002, Amer-Yahia and Srivastava 2002, Bohannon et al. 2002, Kuckelberg

and Krieger 2003, Han et al. 2003, Harding et al. 2003, Leonov and Khusnutdinov

2004, Pal et al. 2004, Lu et al. 2006, Na and Lee 2005, Balmin and Papakonstantinou

2005, Chaudhuri et al. 2005, Pardede et al. 2005,2006 and Pal et al. 2006). This

strategy facilitates the use of existing relational optimisation techniques when querying
the structured part of the data, instead of treating data as if it is totally semi-structured.
On the other hand, the proposed model uses NML extensions to the relational model
(SQL: 2003, SQL: 2006 (ISO/IEC 9075, part 14, XMIrelated specifications -
SQL, fXML)) to store the semi-structured part as a semi-structured data model, and
therefore allowing flexibility in dealing with this part of the document. A number of

experiments were designed to compare and evaluate the performance of the hybrid

model against its two base models; structured mapping approach and storing the whole
XML document into an XML data type. The research is concerned only with large,

possibly complex documents where query processing performance becomes an issue.

4

1.4 Research Contributions

This section presents briefly the main findings and contributions of this research (these

are discussed in more detail in section 6.2):

The research has proposed a hybrid relational-XML storage model to store

partially-structured XML encoded data, in which a combination of structure

mapping and XML types are used within a relational database, so as to exploit

pre-knowledge of the structured part in query processing.

A performance analysis of the above proposed hybrid relational-XML model for

storing and querying partially structured data, based on a standard benchmark

set of queries (XBench, Yao et al. 2002,2003,2004), which establishes the
impact on query performance as the structuredness, volume and query

characteristics change.

* The research has studied the effect of partitioning partially-structured XML data

in two different dimensions:

o The first dimension concerns the ratio of semi-structured to highly-

structured components of the schema.

o The second dimension concerns the ratio of semi-structured to highly-

structured data instances.

A method, by which the results of the above performance analysis can be

utilised by the database designer to seek optimal relational storage models for

XML-encoded partially-structured data.

1.5 Outline of the Thesis

This thesis is organised as follows:

9 Chapter 2- Research Background: This chapter sets the scene for the

subsequent study of this research. It presents the literature review of relevant to

the research. This chapter starts by introducing semi-structured data, its origin,
definition, characteristics, data models and its query languages. Then it moves to

the second key technology to this study which is XML. It presents its origin,

strengths and weaknesses, its data models, and its query languages. Then it

5

compares and contrasts semi-structured data and XML. Finally, the different

storage models for XML encoded data are discussed.

Chapter 3- Partially Structured XML: This chapter builds upon the literature

review in chapter two by firstly presenting the research motivations for the study

presented in this thesis and formulating the hypothesis it addresses. Then it

discusses a categorization of XML documents according to their degree of
structuredness, so as to analyse structural properties for which this approach is

applicable. Accordingly, it defines the class of partially-structured XML

documents as a hybrid of highly-structured and semi-structured data. Then it

shows an example of this class of data and presents its advantages. Appropriate

storage models must be utilised in order to exploit structural pre-knowledge,
hence, a review and discussion of different storage models for XML data

proposed by research are presented and their potential for storing and querying

partially-structured data are analysed. The conclusion of this analysis is an

elaboration of the hypothesis, in which a storage structure is proposed, which
has the potential to realise performance enhancements for partially-structured
data.

Chapter 4- Experiment Design: This chapter presents the design of a series of

experiments to evaluate the research proposed storage model as a mean of
testing the research hypothesis. These experiments are designed to compare the

relative performance of the proposed hybrid model against the two base models
it combines. This chapter discusses the objective of the experiment, followed by

the strategy for achieving those objectives. It then presents the current
SQUXML standard and describes the different storage models that are used in

the experiment. Then it discusses the current benchmarking techniques proposed
by the research for XML, it compares between these different benchmarking

techniques and nominates the most suitable benchmark technique that can be

adopted by the research. It then discusses the adaptation needed for this
technique; this includes both the data set and query set used in the experiment. It

shows how the experiments are designed and how the results are to be evaluated.
The chapter concludes by presenting both the hardware and the software to be

used in the experiment.

6

Chapter 5- Experiment Analysis: In this chapter, the experiments designed

earlier are analysed. The chapter presents and discusses the results of the

experiments grouped by their query functionality. This is followed by an overall

analysis of the different storage strategies with respect to the different variants

the experiments were designed to measure. These variants are: storage strategy,

query type, data structuredness, scalability and database storage size. This is

followed by a discussion about the experiments' limitations and general finding

of the experiments' results.

* Chapter 6- Conclusion and Future Directions: This chapter concludes this

research. The chapter discusses the main findings and contribution of this

research. It also outlines some avenues of the future research work.

7

Chapter 2 Research Background

2.1 Introduction

This chapter sets the scene for the subsequent chapters in that it presents the literature

related to this study. The chapter introduces semi-structured data, its origin, definition,

characteristics, data models and its query languages. It then moves on to the second key

technology relevant to this study which is XML. It presents the origins of XML, its

strengths and weaknesses, its data models, and its query languages. Then it compares

and contrasts semi-structured data and XML. Finally, the different storage models for

XML are discussed.

2.2 Semi-Structured Data

Nowadays, huge amounts of data are stored outside the rigid boundary of traditional

database management systems. One example is the World Wide Web, the largest source

of data by volume ever created by human beings. Other examples include application
data that deals with non-standard data formats, legacy systems and structured
documents (Suciu 1998). On one hand, this data cannot conform to a pre-defined

structure and on the other hand it is not completely un-structured. This data can be

classified as semi-structured data (Abiteboul 1997, Buneman 1997, Suciu 1998,

Abiteboul et al. 1999, Abiteboul 2001 and Florescu 2005). There is a need to store and

manage the large collection of such data and to query it efficiently in a way similar to

traditional databases, but as yet, a mature technology for doing so does not exist.

This section discusses semi-structured data by firstly introducing it. Then section 2.2.2

describes the defacto data model for semi-structured data, followed by a discussion of
its query languages in section 2.2.3. The research issues related to semi-structured data

are presented in section 2.2.4. Finally, section 2.2.5 concludes this discussion.

2.2.1 Introduction

This section presents the origin of semi-structured data, followed by the motivation for

the research in this area. Then semi-structured data is defined and finally semi-

structured data characteristics are presented.

S

2.2.1.1 Semi-Structured Data's Origin

The concept of semi-structured data was firstly introduced in 1995 in the context of data

integration between heterogeneous information systems in the TSIMMIS project,

Stanford University (Chawathe et al. 1994, Garcia-Molina et al. 1995,1995a and

Hammer et al. 1997). The main motivation was that the rigid traditional data models

were not flexible enough to cope with the demands of data integration. The Object

Exchange Model (OEM) (Papakonstantinou et al. 1995) was developed within the

TSIMMIS project as a graph based approach. The OEM became the "de facto standard

data model for the semi-structured data" (Suciu 1998) and it has been widely adopted in

semi-structured data research. For example, it was used to provide the theoretical basis

for the Lore project (McHugh et al. 1997) in which a complete semi-structured database

was researched and developed. The OEM model is further discussed in section 2.2.2.1.

2.2.1.2 Motivations to Study Semi-Structured Data

Semi-structured data has become a focus for research in the database research field. The

motivations for this can be summarised as follows:

* Data management: A huge amount of data is stored outside structured database

systems in different formats such as text markup languages for example SGML

(SGML 8879: Online, Goldfarb 1990), HTML (HTML: online) and XML

(XML: online), legacy systems, scientific data that is stored in a very complex

structure and file systems. Such data does not fit into the highly structured data

models of database technology, but there is a need for it to be treated as a
database. Treating this data as a database will allow an efficient way to organise,

store, query, restructure and manipulate this data, while controlling redundancy,
concurrency and security of the data.

Data Integration: semi-structured data is used to facilitate data integration

because of its flexible structure (as in the TSHAMIS project, Chawathe et al.
1994, Garcia-Molina et al. 1995,1995a and Hammer et al. 1997). Although

some source data may be highly structured and stored in a database system,

other sources may lack this structure and must therefore be stored in an

unstructured manner, such as a text format. However, because there is a need to

integrate these heterogeneous data sources, it creates a need for a highly flexible
data format to facilitate the integration of both structured and semi-structured

9

data. Another example of data integration research project was by Al-Wasil et al.

(2006 and 2006a). They established an XML Metadata Knowledge Base

(XMKB) to assist in the integration of distributed heterogeneous structured data

residing in relational databases and semi-structured data held in well-formed

XML documents.

Data Exchange: the semi-structured data model has proven to be flexible enough

to be used as a data exchange data model between different data sources (as in

the OEM Papakonstantinou et al. 1995).

XML: XML is emerging as the lingua franca of the web (Vianu 2003) and can

be seen as "the forthcoming semi-structured standard of the Web" (Abiteboul

2001). Studying semi-structured data models and query languages directly affect

the studying of XML data models and its query language. For example, Lore

(McHugh et al. 1997 and Abiteboul et al. 1997) was firstly designed as a semi-

structured database management system but then was migrated to store XML

data as well (Goldman, R. et al. 1999). Section 2.4 discusses this relation in

more detail.

Browsing: Techniques are also required to view structured data as a semi-

structured data for browsing purposes and sometimes ignore the schema, if it

exists, for this purpose.

These are the main motivations for researchers to study semi-structured data. These

motivations therefore pose the question: To what extent can these problems be solved
by adapting the mature theories and technologies of relational database? This question
is the focus of this thesis and is discussed in more detail in the following sections.

2.2.1.3 Definition of Semi-Structured Data

There are two keywords that can describe semi-structured data. (Abiteboul 1997,

Buneman 1997, Suciu 1998, Abiteboul et al. 1999 and Abiteboul 2001) 'Self-describing
data' is the first, where data structure is stored with the data itself as metadata using
labels. These labels represent the semantic of each data element. Further, data values are
associated with each other by an embedded hierarchy which represents the natural

relationship between data elements. 'Schema-less' is the second, where there is no
fixed, rigid schema that the data should follow.

10

The above features allow semi-structured data to be flexible enough to host irregular

structures, represented by missing data on the one hand and duplicate data on the other.
Further more, it allows the data structure to change rapidly and unpredictably.

The definitions of semi-structured data are based around the irregularity of the data it

can represent. For example: Abiteboul (2001) defined semi-structured data as "Data that
presents some regularity (it is not an image or plain text) but perhaps not as much
(structured) as some relational data or ODMG data. " In another paper, Abiteboul et al.
(1999) defined it as "Data that is irregular or that exhibits type and structural
heterogeneity since it may not conform to a rigid, predefined schema".

Neither of the two definitions is precise. Moreover, there is no clear cut formal

definition of semi-structured data which all researchers have agreed upon.

In the context of this research, the second definition by Abiteboul et al. (1999) is used:

Semi-structured data is data that is irregular or that exhibits type and structural
heterogeneity since it may not conform to a rigid, predefined schema.

This definition fits this research, as it shows the flexibility of semi-structured data in its

ability to host irregular data without a prerequisite rigid and predefined schema.

After defining semi-structured data in this section, the following section presents its

characteristics in more detail.

2.2.1.4 Semi-Structured Data Characteristics

Characteristics of semi-structured data can be split into two main groups; from the
structure point of view and from the schema point of view. The key characteristics of

semi-structured data that relate to structure can be summarised as follows (Abiteboul

1997, Buneman 1997, Suciu 1998, Abiteboul et al. 1999 and Abiteboul 2001)

The Structure is irregular: it is not totally unstructured (as images and plain
text), on the other hand it does not conform to a rigid structure. As such, data
does not fit, for example, into a tabular format as in relational data model. Data

collections often contain heterogeneous and incomplete data elements or extra
information for some data elements.

e Heterogeneous representation of information: semi-structured data is flexible

enough that within the same data collection, the same data elements can be

11

diverse in kind or nature. For example, part of the data may contain temperature

stored in Fahrenheit and in another part as Celsius. Data can be represented in

one part of the collection as a string (name of person) and in another part as a

tuple (first and last name of a person).

An implicit structure: the structure is embedded inside the document itself and
there is no attached external structure. Although there have been some attempts

such as Data Guide in Lore (Goldman and Widorn 1997) to discover the

structure from the data itself and store it in a structure equivalent, in a sense, to

the relational schema for relational databases called data guide.

A partial structure: semi-structured data may comprise both fully and partially

structured data. For example, portions of the data, such as bitmaps, may not have

any formal structure, while other parts may have a rigid formal structure.

The above characteristics lead to the definition of semi-structured data as the class of

data that has a degree of irregularity in its structure. This represents the first part of the

adopted definition by Abiteboul et al. (1999).

The second view point that semi-structured data characteristics can be seen from is the

schema and its role in defining the data. In general terms, a schema for any data

collection defines the data objects that are permissible in that collection. An explicit

schema exists in conventional structured data models to define the organisation or

structure of the data. In fact, the schema is a key component of a database system, since

the database design process leads to the definition of a schema which then prescribes
how the data is structured. Also, the schema plays a very important role in query

optimization, since it provides pre-knowledge of how data is structured.

The concept of a schema is also applicable to semi-structured data collections.
However, unlike structured data models, a schema for a semi-structured data collection
is not always explicitly defined. In some forms of semi-structured data, an explicit

separate schema does not exist while in other forms an explicit schema exists, but it

places loose constraints on the data (Buneman 1997). This directly indicates that the

schema does not play the same role in seird-structured data as in conventional data

models (such as relational and object oriented data models). In particular schema rules

are normally violated by the different structural irregularities that typically occur within

semi-structured data, either in missing or duplicated data elements.

12

The other issue related to the schema is that it can be contained within the data itself.

Whether the schema for a semi-structured data collection is implicit or explicit, the

heterogeneous structures within the collection require that the structure of each item in a

collection must be made explicit, thus in addition to the schema which constrains the

content of the collection, each item within the collection must have its own schema.

The above situation requires terminology to distinguish the different forms of schema

associated with semi-structured data. Accordingly, I shall refer to the implicit or explicit

collection schema which defines those items which may be part of the collection and the

item schemas embedded in each data item within a collection.

Note that the requirement for item schernas leads to inefficiency in storing semi-

structured data, since an item schema needs to be stored with each data element, even

where they have an identical structure. This can also lead to inefficient query

evaluation. Also, without having access to an explicit collection schema in advance, it

may be necessary to traverse the whole data collection to look for a simple regular path

expression. Furthermore, it is not an easy task to formulate queries without knowing the

structure of the data (Suciu 1998). These problems have motivated research into

collection schema extraction (such as Data Guides (Goldman and Widom 1997), adding

structure to unstructured data (Buneman et al. 1997) inferring structure in semi-

structured data (Nestorov et. al. 1997) and discovering structure associations of semi-

structured data (Wang and Liu 1999)). These research efforts tried to discover the

schema from semi-structured data using data mining techniques, and then used this

schema to enhance query performance.

Other characteristics of semi-structured data from the schema point of view were
described by Abiteboul (1997) as follows:

"A priori schema vs. a posterior data guide: unlike traditional structured data

sources in which the structure is designed before the data, in semi-structured
data the structure is discovered from the data itself.

" Indicative structure vs. constraining structure: since the schema does provide a
loose constraint over the semi-structured data, the structure here is indicative

rather than constraining.

41 The schema can be very large: large irregularity of the data leads to a large

description of the data structure.

13

* The schema collection may be ignored: in some queries of a discovery nature,
data browsing or information retrieval search is used instead.

e The schema collection may evolve rapidly: because of the nature of the data, the

schema can change much more rapidly than in the traditional databases.

The types of data elements are eclectic: the data types are not precise. The same
data element maybe represented by different data types in the same data

collection.

* The distinction between a schema item and data is blurred: there are no border
lines between the schema and the data; this is due to the schema being

embedded inside the data and putting loose constraints on the data.

An important consequence of the above characteristics is that, because of the lack of a

predictable pre-defined structure for data within a collection, the description of the data,

that is to say, its schema item, is specific to each document or record, and is therefore

contained within the data itself. This represents the second part of the definition by

Abiteboul et al (1999), the data may not conform to a predefined schema.

The above discussion has focused on the inherent irregularity of semi-structured data

and the consequential need to embed a definition of structure within the data itself. In

addition, a definition of semi-structured data should define how the data may be

structured. The latter is the focus of various attempts to design a semi-structured data

model. The next section presents semi-structured data models in general. Then it is

followed by the discussion of the de facto standard semi-structured data model; the
Object Exchange Model OEM (Papakonstantinou et al. 1995).

2.2.2 Semi-structured Data Model

Having discussed the characteristics and importance of semi-structured data, this section
discusses the ways in which semi-structured data can be modelled.

Semi-structured data comprises self-explanatory data, which means that associated with
data values are labels that represent the semantics of the respective pieces of data.

Further, data values are associated with each other by an embedded hierarchy which

represents the natural relationship between data. Therefore semi-structured data has a

natural representation as a rooted directed graph or a rooted directed tree with labelled

14

edges. Although cycles are allowed in the data, generally the term tree is used

(Buneman 1997).

In the tree, the leaf nodes represent the data values; the edges represent the embedded
hierarchy and the relation between different data. The edge labels denote the semantics

of the data represented by the child node. Figure 2.1 shows an example of a semi-

structured data represented as a label-edge graph. For example, the 'Author'

(represented as edge label) is 'Miguel Nunes' (represented as a leaf node).

Papers and
Proceedings

Data

Miguel
Nunes Y

1997

2002

Peter
Buneman

Magg McPh 7ournal

The managemeni The Institute

2002

of information for the Sernistructured
Management Data
of Information

Systems Journal

Title

Springer

Itor Advances in r

obh Databases, Si I

ournal
Barry

Eaglestone
North\ 19th British

National
Conference on

Alexandra Databases,
Tutorial in Proceedings of Poulovassilis BNCOD 19

the 16th ACM
Symposium on Principles

of Database Systems

Figure 2.1 Semi-structured Data as Edge Labelled Directed Graph

The type of this kind of labelled tree can be represented, as in (Buneman 1997):

type label = int Istring /... Isymbol

type tree = set (label xtree)

15

The type label describes a tagged union of variant, while the type tree consists of a set

of label/tree pairs. This model represents unordered edges in the tree.

A small variation to the above model was described in Loral (Abiteboul et al. 1997).

There the leaf nodes are labelled with data, internal nodes are node labelled and edges

are labelled only with symbols.

type base = int Istring /

type tree = base Iset (symbol xtree)

The Object Exchange Model OEM model (Papakonstantinou et al. 1995) is an example

of the above representation. It is discussed in more detail in the following section.

The third possibility is to allow labels on internal nodes.

type label = int Istring /... Isymbol

type tree =Iabelx set (label xtree)

These models are all equivalent, in that each model can easily be transformed into either

of the others. Specifically, it is easy to define mapping between the first two models. In

addition to that, by introducing extra edges into the third representation, this model can
be converted to one of the first two models. In the following section, the OEM model
(Papakonstantinou et al. 1995) is presented in more detail as it is considered as "the de
facto standard data model for the semi-structured data" (Suciu 1998).

2.2.2.1 OEM Data Model

In the Object Exchange Model OEM (Papakonstantinou et al. 1995), the graph structure

of semi-structured data is represented as nested quadruple structures, which correspond

to the nodes of the graph structure, comprising the following elements:

e Label: which describes what the object represents

* Type: the data type of the object's value, which can be either an atomic type

(such as integer or string) or type set.

Value: the value of the object. It can also be an object-Id value where the type is

object-Id; this means that links can be provided in the model thus defining the

edges of the graph structure.

* Object-ld: a unique identifier for the object or null

16

OEM is a logical data model, since it does not specify how data is stored physically. It

is much simpler than the Object-Oriented data model since it supports only object

nesting and object identifying. Other features such as classes, methods and inheritance

are omitted. Also, labels are used to define item schemas instead of a schema in a

similar object oriented model (therefore, the collection schema is implicit)

(Papakonstantinou et al. 1995). This makes it simple enough to cope with the frequent

changes typical in semi-structured data.

Abiteboul et al. (1999) have demonstrated that the OEM is sufficiently expressive to

represent highly structured data such as the relational data model and the object-oriented
data model or semi-structured data or even unstructured data. Also, it can represent, in a

natural way any missing attributes, duplicate attributes with the same name and
different types for the same attribute in different objects. It can also represent attributes

with irregular structure, for example, in one object as an atomic element while in

another as a record such as a name of a student as one field or as a record with first and
last name fields.

This and the preceding sections have described some of the approaches to modelling

semi-structured data, and the de facto standard semi-structured data model, OEM in

more detail. There are variations to this model, i. e., the labels which denote the

semantics of the data can either be associated with nodes or edges (Abiteboul et al.
1999). However, since it is possible to transform between these variations, the choice

of which variant to use is determined by other factors, such as the ease of data

manipulations and query operations. This latter aspect is overviewed in the following

sections by presenting semi-structured data query languages.

2.2.3 Query Languages for semi-structured Data

This section presents the query languages for serni-structured data. In particular, it

traces how they evolve to cope with its flexibility and its data model.

A number of query languages have been proposed to deal with serni-structured data and
XML such as UnQL (Buneman et al. 1996), MSL (Papakonstantinou et al. 1996), Lorel

(Abiteboul et al. 1997), StruQL (Fernandez et al. 1997), XQL (Robie et al. 1998),

XML-QL (Deutsch et al. 1998) and Quilt (Chamberlin et al. 2000). Generally,

researchers have explored two approaches to construct a query language for semi-

structured data (Buneman 1997). The first is to adapt a conventional database query

17

language, such as Structured Query Language SQL (SQL: 2006) or Object Query
Language OQL (Cattell et al 2000), by redefining the semantics and adding the

appropriate features to cope with the new requirement needed to query semi-structured
data. The second is to start from a language based on some formal notion of
computation appropriate to navigating tree structures and filtering text data, and then to
convert this language into an acceptable syntax. Section 2.3.3 presents querying XML

in more detail. The following subsections present an example of each class, section
2.2.3.1 presents Lorel (Abiteboul et al. 1997) as an example of the first class while

section 2.2.3.2 presents UnQL (Buneman et al 2000) as an example of the second class.

2.2.3.1 Lorel

Lore (Lightweight Object REpository) (McHugh et al. 1997) is a complete general

purpose semi-structured database management system. Lorel (Abiteboul et al. 1997) is

its query language. Lorel can be viewed as an extension of the Object Query Language

OQL (Cattell et al 2000) while Lore as an extension of the ODMG data model

(Abiteboul et al. 1997).

A typical example of a Lorel query is:

Select X. Title

From Paper X

Where X. Year > 2000

This query returns the titles of all papers where its year is greater than 2000.

There are a number of differences between Lorel and OQL (Suciu 1998):

Type coercion: Lorel deals with type coercion while OQL does not. For

example, if in the where statement the Year = 2000, then Lorel returns the data

with a string data type as "2000" and integer as 2000

Missing Attributes: OQL produces an error if an attribute is missing, while Lorel

simply ignores any missing attribute.

Singletons or sets attributes: If the data contains a set of attributes, then Lorel

returns this data item as long as at least one of the data items satisfy the where

statement condition. Meanwhile, OQL returns this data if all the data items

18

satisfy the where statement condition. They will produce the same behaviour in

the case of a singleton data item.

Generalized path expressions: by extending the OQL-like path expressions with

wild characters to arbitrary regular expressions. For example, T denotes an

optional path expression. '*' denotes Kleene closure. Y denotes strict Kleene

closure.

Finally, Lorel does not require afrom clause, so the above query can be rewritten as

Select Paper. Title

Where Paper. Year > 2000

It has a rule that the common paths correspond to the same object (unless otherwise

specified).

After illustrating briefly Lorel in this section as an example of adapting a query
language for semi-structured data based on OQL, the next section presents UnQL as an

example of a query language based on a formal notion.

2.2.3.2 UnQL

Unstructured Query Language UnQL (Buneman et al. 2000) presents an example of a

query language based on formal notation (in contrast to Lore which was based on
OQL)-

UnQL model is based on structure recursion functions on a tree data structure. It can be

extended to work on arbitrary graphs. These functions are introduced in UnQL query in

a top-down manner. They use pattern matching to provide a means of selecting data. A

typical example of an UnQL query syntax which returns all titles in a graph is:

fun fI (TI UT2)=fl(TI)Uf I (T2)

IfIQL: T)) = if L= title then [result: T) else fI (T)

If IM) =I)
I fl (V) = 1)

The uppercase symbols are variables. The patterns are represented in the left hand side

of each equation. These functions are applied in order. L represents the label while T

represents the value and hence the condition is to return a value when the label equals

19

the title. The third line represents that for an empty set, no variables are bound. V

represents a catch-all clause, it matches anything and in particular it matches atomic

values. The result is a set and therefore the duplication is eliminated. (Buneman et al.

2000).

UnQL was one of the first introduced query languages for semi-structured data which is

simple and has an optimisable algebra. The following section compares Lorel and
UnQL.

2.23.3 Lorel vs. UnQL

There are a number of points on which Lorel and UnQL can be contrasted:

e Base: Lorel is an extension of OQL, while UnQL is based on structure recursion.

Coercion: Lorel uses coercion, while UnQL does not. For example. Lorel deals

with the data if its type is integer (as 2000) or if its type is string (as "2000")

while UnQL deals with the data either as an integer or as a string. Lorel is more

flexible than UnQL in this scenario as a more precise knowledge of structure is

needed for UnQL to express queries (Abiteboul et al. 1999).

Complex restructure: UnQL allows a more complex restructure than Lorel by

using the structural recursion. This complex transformation involves deep

traversal of the data followed by a reconstruction of an entirely new graph. This

can be done in UnQL by creating recursive functions based on a certain strict

pattern (Abiteboul et al. 1999).

After briefly describing the two ways to construct a query language for semi-structured
data and then contrasting them, the following section discusses in general the research
issues surrounding semi-structured data.

2.2.4 Semi-structured Data Research Issues

Research in semi-structured data complements previous research in conventional
databases. It started in the mid 1990's after the invention of the OEM model in 1995.

The invention of the World Wide Web (and specifically XML in 1998) directed the

research towards covering both technologies (semi-structured data and XML). This is

because of the clear analogy between them which is discussed in more detail in section
2.4.

20

As evidence of this analogy, Lore (McHugh et al. 1997) started as a semi-structured
database management system and then migrated (Goldman et al. 1999) to host XML

data. Another recent example is in the Dagstuhal Seminar 'Foundations of
Sernistructured DaU (Neven et al. 2005). Almost all the research issues discussed are

related to both semi-structured data and XML. In this section, the research conducted in

general areas related to semi-structured data is discussed while in sections 2.5 and 3.5,

research issues related explicitly to XML storage strategies are presented.

The literature on semi-structured data and XML varies across data representation,

management and administration issues (such as web site management, general purpose

management of semi-structured data, data conversion, schema specification and schema

extraction) and performance issues (such as optimisations and formal aspects and
ind exing). Based on the discussion of semi-structured research issues by Suciu (1998),

this section presents a summary of these research issues:

e General purpose management of semi-structured Data such as Lore system
(McHuge et al. 1997 and Abiteboul et al. 1997). It was built in Stanford

University. It is a complete database management system for semi-structured
data. Lore started from scratch to cover all the aspects for a semi-structured
database management. It used the OEM (Papakonstantinou et al. 1995) as its

data model. The project was closed as a success in year 2000.

* Web Site Management: Fernandez et al. (1998,2000) developed STRUDEL

system for web site management by separating the management of the site's
data, the creation and management of the site's structure and the visual

representation of the site's pages The management of the site's data

21

Browsable Web Site

HTML Template HTML Generator

itio

Site Gravh

Site Definition
Query StruQL

Processor Queries Data Graph

4 -"r Mediator L

Wrappers

RDBMS Structured HTNE
Files Pages

Figure 2.2 Strudel Architecture (Fernandez et al. 1998)

STRUDEL
Data

Repository

STRUDEL first integrates data from any number of heterogeneous data sources into a

semi-structured repository. Then it applies a site-definition query to declaratively define

the Web site's structure with the result called site graph which represents both site

contents and structure and finally presents the visual presentation in Strudel's HTML-

template language (Figure 2.2).

Data Conversion: Sim6on and Cluet (1998) and Cluet et al. (1998) proposed a
YAT system for data conversion among heterogeneous data sources based on a

middleware model which is named tree with ordered and labelled nodes (similar

to a sen-d-structured Data model). YATL (YAT Language), the conversion
language, is declarative, rule-based and features an enhancement pattern-

matching custornisation mechanism.

Schema Specification: Buneman et al. (1997) proposed a new schema for semi-

structured data by presenting both data and schema as edge-labelled graphs.
They then studied the analogy between the graph database and graph schema

22

and showed how schema can improve the optimisation and decomposition of

queries.

e Schema Extraction: Another example is the Data Guides (Goldman and Widorn

1997), which is one of the novel features of Lore. They are concise and accurate

structural summaries of data stored and are created from the data itself. They are

used in browsing data, formulating queries, storing information such as statistics

and enabling query optimisation. The paper by Buneman et al. (1997), which

was previously mentioned in Schema Specification, can also be considered as a
form of schema extraction.

* Optin-dsations and Formal Aspects: Abiteboul and Vianu (1997) introduced a
web model as an infinite semi-structured set of objects. They studied declarative

query languages (such as first-order logic, Datalog and Datalog with negation)
based on that model.

e Indexing: McHugh and Widom (1999) studied the indexing of semi-structured
data in the Lore DBMS and they developed the following indices:

o Vindex: a value index over atomic values (such as integer, string and
real) based on the type coercible which can be built selectively.

o Tindex: a text index which locates string atomic values containing

specific words or groups of words that can be built selectively.

o Lindex: a link index locates the parent of a specific object.

o Pindex: a path index for fast access to all objects reachable via given
labelled paths.

The above body of research addresses a number of general areas. Each of these areas
has potential for valuable research. However, this research focuses on the performance

and flexibility of storing and querying semi-structured data in general.

2.2.5 Conclusion and Way Forward

The preceding sections of this chapter have discussed semi-structured data. Its origins,

motivations, definition, characteristics, data models and query languages as well as its

related research issues.

23

An understanding of semi-structured data is a necessary preliminary to the research into

issues related to the XML database and to be explored in the rest of this thesis, since
XML implements a specialised form of semi-structured data. Accordingly, the basics of
XML are discussed in the following section. Section 2.4 compares and contrasts semi-

structured data and XML.

2.3 XML

The Extensible Markup Language (XML) has become, in a very short period, the base

for data presentation and data exchange between homogenous and heterogeneous

applications on the Internet and Intranets. Moreover, it is now fundamental to emerging

applications both in the academic and business domains such as e-learning and e-

commerce. For example, BizTalk (a business process management server software) is

based on XML technology and is used in more than 6000 organizations world wide to

enable them to automate the exchange of information and integrate business processes
(BizTalk web site).

This following section 2.3.1 introduces XML. Then section 2.3.2 describes its data

model followed by a discussion of its query languages in section 2.3.3. Finally, section
2.3.4 concludes this discussion about XML.

2.3.1 Introduction

In this section, XML, another key technology to this research is presented. Firstly, it

discusses the origins of XML, followed by how it can be categorised, its strengths and

weaknesses and finally its related technologies.

2.3.1.1 XML Origins

The Extensible Markup Language (XML) was adopted by the World Wide Web

Consortium (W3C: Online) as a technology used for storing and exchanging structured
documents and data on the Web (XML: online). The first working draft of XML was

published by the W3C in November 1996 (XML: 1996 Online). The first XML

recommendations were published in February 1998 (XML: 1998 Online). The most
recent XML recommendations (fourth edition) were published in August 2006 and
edited September 2006 (XML: 2006 Online).

24

XML's roots belong to the document community not to the database community
(Widorn 1999, Vianu 2003), since XML is a simplified subset version of the Standard

Generalized Markup Language (SGML 8879: Online). SGML is the widely used
international standard for text processing defined by the International Organization for

Standardization (ISO: online). A comparison between XML and SGML is beyond the

scope of this research but can be found online in Clark (1997). XML documents can be

easily sent, received, and processed on the Web in a similar way to HTML documents

(XML: online).

Despite the fact that XMI: s roots belong to the document community, there is a clear

analogy between XML and database theories in general and sen-d-structured data in

particular. Section 2.4 discusses this relationship in more detail.

XML was introduced to complement HTML rather than to replace it. XML's goal is to
describe data, in contrast with HTML, where the goal is to format data. WX introduced

XHTML (XHTML: 2002 online) as the new generation of HTML as a reformulation of

HTML 4.0 in XML 1.0 format. The basic differences between XML and HTML are

(Abiteboul et al. 1999):

New tags can be defined in XML documents, whereas in HTML all tags are pre-
defined within the language.

9 XML structure can be nested to arbitrary depth, whereas HTML does not have

this flexibility.

eA description of XML grammar can be stored within the document. This

contrasts with HTML, since HTML is used for data presentation, there is no

need for a definition of the data's grammar.

After presenting XMI2s origins and its relation with HTML in this section, the

following section presents the different categories of XML documents.

2.3.1.2 XML Document Categories

As defined by W3Schools (W3Schools web site: online), "An XML document contains
structured or semi-structured data in verbose user-defined tags presented in a
hierarchical way (tree-like structure)". XML documents can be categorized into two

main types (Bourret 2005), data-centric and document-centric. The former uses XML as
a method of data transport and is mainly designed for machine representation of highly

25

structured data, such as product lists and inventories. The second category uses XML to

store documents with less regular structure and is mainly designed for human

consumption, such as book contents, emails and advertisements.

The following table summarizes the differences between a data-centric and a document-

centric XML document (Kirn et al. 2002)

Document- Centric XHL Data-Centric XML

Irregular and un-structure content Structured content

Large amount of mixed content Little or more probably no mixed content

Order is significant Order is insignificant

Human consumption Machine consumption

Table 2.1 Document-Centric vs. Data-Centric XML (Kim et al 2002)

XML documents can also be categorised as a hybrid of these two types. For example, a

collection of XML documents that contain data about products may contain some
highly structured data such as the price and a product's name combined with semi-

structured data such as a product's specifications. Section 3.3 discusses in more detail

the categorisation of XML documents according to their degree of structuredness.

2.3.1.3 XML Strengths and Weaknesses

Since the first XML recommendation in 1998 (online), XML has become a focus for

research in both the document and the database research communities. The widely

acknowledged strengths of XML include:

* Its simple format: since it is a plain text format.

The separation of the data from how this data is formatted: Users can display

XML data in any electronic device such as computers, mobile phones and

personal digital assistants (PDA) using a stylesheet language such as XSLT

(XSLT: 1999 online).

* Modelling capability: it can model highly-, semi- and un-structured data.

Platform independence: It is not bound to a specific platform. It is an open

standard technology that uses Unicode in its implementation.

26

e Extensibility: the keyword for XML. It allows users to add their own tags to

describe the data.

9 Human readability as well as machine readability.

e Processing Instruction: XML may contain extra processing instructions using the

PI element.

* The large investment in XML applications that already exists nowadays.

These strengths make XML appropriate as a way to store and exchange data on the web.

However, there are widely acknowledged weakness of XML listed below:

The relational database model was built upon a strong mathematical and

theoretical foundation; while in contrast, XML as a subset of SGML does not
have the same theoretical foundation.

Although XML by itself is a simple plain text format, it is surrounded by a huge

amount of different technologies that can make it too complex to work with and

benefit from all its advantages. For example: DTD, XML Schema, XPath,

XQuery, XSLT, Xpointer, DOM, SAX, XForms, XLink. etc. are different

technologies related to XML. The related technologies to this research are to be

discussed later in this chapter.

XML is a verbose text format and not a binary format; this makes its storage (if

it is stored naturally as a text file format) and/or transmission less efficient
(although neither storage nor bandwidth is such a significant problem

nowadays).

Despite these weaknesses, XML's strengths make it very widely accepted and used. In

2003, it was anticipated by the database community and document community that a
huge number of web sites would store their data as XML in the future, beside XML is

emerging as the linguafranca of the web (Vianu 2003). Various organizations (such as

the Cooperative Association for Internet Data Analysis (www. caida. org) and Internet

Domain Survey (www. isc. org/ds/) statistically analyze the growth of the web from the

network point of view (that is to say from the number of servers connected to the
internet) but not based on the web contents and type of files used. Therefore it is hard to

give an estimate of the XML content of the web. On the other hand, other researches

such as Barbosa et al. (2006) statistically analysed a sample of about 200,000 XML

27

documents from two broad categories: a) macro-level describing the XML web and its

contents and b) document level describing structural properties of typical XML
documents. This study showed that there is an increase of the use of the XML as a data

storage media on the web.

2.3.1.4 XML Technologies

XML is a crowded field with many different technologies related to it. Some of the
technologies are discussed in section 2.3.2.2 such as XML Info Set, XPath 1.0, DOM

and XQuery and XPath data model. XQuery is presented in detail in section 2.3.3.2. In

this section, other YML technologies are briefly discussed to show their purpose, status
and description.

SAX (online): stands for Simple API for XML. It was originally released in

1998 as a common event-based API for parsing XML documents. While DOM

(online) creates a tree of nodes into the memory to access data in XML

documents, SAX uses a different approach. It notifies the application by a

stream of parsing events. Although SAX accesses the data sequentially, it is

useful when the document is relatively big, since there is no need to load the

entire document into memory.

9 DTD (online): stands for Document Type Definition. Its purpose is to define the

structure of a collection of XML documents. It can be stored internally inside

the XML document itself or externally with a reference from within the
document. It only supports one data type (string). It was inherited from SGML.

* XML Schema (online): as DTD, its purpose is to define the structure of a
collection of XML documents. It was designed to overcome the shortcomings of
DTD. It is anticipated that it will replace DTD in the future since it is much

richer and covers more issues than DTD. For example, it supports different data

types and XML Name Space (online). Although this was not the case in a recent

study by Barbosa et al. (2006), they showed in a sample of about 200,000 XML

documents that 48% of the documents referenced DTD while only 0.09% of the
documents referenced XML Schema. This may be likely to be due to the fact

that the sample of this experiment was gathered a short time after the release of
the XML Schema.

28

There are many more technologies related to XML such as XForms (online), XSLT

(online), XLink (online), XPointer (online), RDF (online), SOAP (online) and others.

They are not discussed here since they are not related directly to this line of research.

After introducing XML in this section, the following section describes its data model
followed by its query languages.

2.3.2 XML Data Model

XML is a document markup format and not a data model (Widom 1999, Vianu 2003) as
it lacks the basic definitions required of a data model such as an abstract definition of its

components. However, in order to establish efficient XML-encoded data management
and querying technologies, there is a need to map XML-encoded information into a true

data model. This is the first step toward query transformation and optimisation.

In order to make the following discussion tangible, Figure 2.3 shows an example of an

XML document.

<Publication>
<Paper>

<Author>Migual Nunes<lAuthor>

<Author> <First>Maggie<1First> <Last>McPherson<1Last> <lAuthor >

<Title>The Management of Information<lTitle>

<Title>The Institutefor the Management of Information Systems

JournaklTitle>

< Year>2002 <lYear>

<lPaper>

<Paper>

<Author>Peter Buneman<lAuthor>

<Title>Semi-structured Data<lTitle>

<Journal> Tutorial in Proceedings of the 16th A CM Symposium on
Principles of Database Systems<17ournal >

<Year> I 997<lYear>

<lPaper>

<Proceeding>

29

<Author> Barry Eaglestone<lAuthor>

<Author> Siob, han North<lAuthor>

<Author> Alexandra Poulovassilis<lAuthor>

<Title> Advances in Databases, 19th British National Conference on
Databases, BNCOD 19<1Title>

<Publisher> Springer<1 Publisher >

<Year>2002<1Year>

</Proceeding >

</Publication>

Figure 2.3 XML as Node Labelled Directed Graph

From the above example, it can be seen that the basic building block of any XML

document is an XML element (such as paper element). Any element is bounded by

matching tags. It may contain raw data, other element(s) or a mixture of both (an author

element is contained within the paper element). An XML document should have one

root element at the top of the document hierarchy (in the above example, it is the

publication). Since XML is a document format, the order of the elements is important

and therefore it has to be considered when designing the XML data model.

XML attributes can be associated with elements in order to give more information about

the element. Attributes must be strings. There is no clear rule when to use a sub-element

and when to use an attribute. The following XML data has the same semantics.

<Proceeding year = "2000 '5

<I Proceeding

And

<Proceeding>

<Year>2002<1Year>

<I Proceeding >
Attributes can not be repeated inside the same element and their order inside the

element is not relevant.

As semi-structured data, XML can be modelled as a directed graph, in which the nodes
represent XML elements. Attached to each node is the element data. The edges

30

represent the hierarchical relationship between different XML elements. For example, in

figure 2.4, Paper element is represented as a node in the graph and its relation with the
Author element is represented by an edge. The main difference between this

representation and the semi-structured data representation is that XML is a "Node

Labelled Graph", where XML denotes a graph with labels on nodes while semi-

structured data is an "Edge Labelled Graph", since it denotes a graph with labels on

edges (Abiteboul et al. 2001).

To describe this difference in a formal way, a directed graph G can be defined as a set
of N as nodes and a set of E as Edges. G= (NE). Where each edge E is a pair of nodes
(x, y) where x represents the source while y represents the target.

In an edge-labelled graph G= (N, E, FE), FE is an edge labelling function that maps each

edge to a label while in a node-labelled graph G= (NEFN), FN is a node labelling

function that maps each node to a label. (Wood online)

It is an easy process to convert between the two models especially in the case of a tree

although it is more complex in the case of graph data representation (to resolve the issue

of reference between elements) (Abiteboul et al. 1999). The following figure (2.2)

represents the previous example (Figure 2.1) as a node labelled graph.

31

Q Author -N
Author

Miguel
Nunes

Firs CLast

Maggi
McPherson

CTitle:

The management
of information

Paper

Paper ...

Year

lrAuthor-.,

o

2002

The Institute
for the Management

of Information
Systems Journal

Peter 1997

Buneman

/I

Year

2002

Publisher

Qt xý nger ý

Barry Siobhan Title
)

Eaglestone North
Journal

(ý5 Advances in
Sernistructured Databases,

Data
Tutorial in Proceedings of the 19th British

16th ACM Symposium on National
Principles of Database Conference on

Systems Databases,
BNCOD 19

Figure 2.4 XML as Node Labelled Directed Graph

This is not the only difference between XML and semi-structured data. For example,
XML is ordered while a semi-structured data model is not ordered and there is no

analogy to XML attributes in semi-structured data models. These differences are
discussed in more detail in section 2.4.

Defining a formal data model for XML is the subject of the following section followed

by the proposed data models by the WK for XML documents.

2.3.2.1 Formal XML Data Model

Defining a formal data model for XML provides a solid basis for a rigorous
investigation of query optimisation and transformation for XML databases. This section
describes the data models proposed by various researchers to formally define XML.

Proceeding

32

XML is a document format and not a data model (Widom 1999, Vianu 2003). In

particular, the XML definitions (XML [Online]) lack operations that can manipulate
XML data, structures and queries. However, definition of a formal data model for XML

is a popular research topic, and a number of studies into XML databases propose formal

data models (Lore (McHugh and Widom 1999), Beech et al. 1999, SAL (Beeri and
Tzaban 1999), TAX (Jagadish et al. 2001), XAL (Frasincar et al. 2002), Kim et al.
2002, Paparizos et al. 2002, W3C XQuery data model (Online 2003), Novak, L. and
Zamulin 2005 and 2006 and Paparizos and Jagadish (2006)).

XML data models can be briefly categorized into two main types:

Relational-based data models (Codd 1970). In this type of model, the data

structure used is the relation (table). The data is modelled using tables and
relations between tables and within them.

Graph-based data model (for example Beech et al. 1999). The data structure

used in this type of model is the graph, consisting of nodes (vertices) and edges

that represent the relation between different nodes. The graph could be cyclic
(for example XAL: (Frasincar et al. 2002)) or acyclic (tree) (for example TAX:

A tree algebra for XML (Jagadish et al. 2001)), depending on how the reference

edge (IDREF and IDREFS) in an XML document is represented. An example of

a model that works both ways is Lore (McHugh and Widom 1999). There are a

number of proposals defining graph-based formal models such as "A formal data

model and algebra for XMI: ' (Beech et al. 1999), Lore (McHugh and Widorn

1999), W3C XQuery data model (Online 2003), XAL (Frasincar et al. 2002),

SAL (Beeri and Tzaban 1999), A data model and algebra for document-centric

XML (Kim et al. 2002), a Physical Algebra for XML (Paparizos et al. 2002).

Both approaches are relevant to this research. While the relational-based approach

provides a way of applying relational query optimisation techniques, the graph-based

model provides the most direct and natural formalism for XML documents. It directly
describes the hierarchical composition of an XML document, as nested tagged elements,
and links within and between documents. Each one of these models has some
advantages and disadvantages regarding the modelling of XML data. These can be

summarized as follows:

33

Relational Model: It is too rigid to easily contain semi-structured data. It has

well-defined theories regarding query optimisation and operations. Also, there

are some major differences. For example, the XML data is ordered while the

relation is a set, and therefore unordered. The handling of duplicate as well as

non-complete data is another major difference between the two.

Graph-based Models: graphs are a natural representation of XML documents.

Since XML is based upon nested tagged nodes (represented by graph vertices or

nodes) that contain the data in elements or attributes and inter-document links

with intra-document links represented by the graph edges. So, the graph-based

data model is most commonly used for XML data since it can represent its

complex structure. However, the query optimisation techniques are still

emerging and there is no solid mature technique compared to the relational

approach.

So, based on that, the Graph-based model is the appropriate way to define a data model

that can represent XML documents. One good example of these data models is 'A

formal data model and algebra for XMI: (Beech et al. 1999) for the following reasons:

* It is a very well defined and simple data model.

* It can represent both data-centric and document-centric collections of XML

documents.

4, It is based on XML Infoset (Online 2001) which is a WK recommendation that
defines a set of specifications needed to refer to the information in an XML

document. XQuery (the de facto standard query language for XML) is based on
XML Infoset and is described in more detail in section 2.3.3.3.

9 It defines a number of operations to deal with collections of XML documents.

Although it does not define oPtimisation strategies or physical algebra

operations, it allows scope to develop such optimisation techniques.

A number of formal models such as YCAL (Frasincar et al. 2002) were inspired

by it.

The next section describes in more detail this data model.

34

2.3.2.1.1 Detailed Description of the Formal XML Data Model

The formal XML data model by Beech et al. (1999) can be described as follows:

eA node-labelled directed ordered graph

V. The graph vertices (or nodes) are either an element or a data value. Each

vertex must have a parent (another element vertex) with the exception of the root
(as a special case which has a fictitious root vertex). Each vertex has a unique,
immutable and system generated identifier. This is different to the ID which may
be used for internal referencing between XML elements.

9 The graph directed edges are one of three types; E, A or R:

o E: a set of directed elements on containment edges. It relates a parent

element to a child which could be another element where the name of the

edge is the generic identifier of the child's name or a data value with a

special name -data, a comment with a special name -comment or a

processing instruction with a special name -PI

o A: a set of directed attribute edges. It relates an element to its attribute
data value.

o R: a set of referenced edges. It relates an element to another referenced

element via IDREFs or IDREFSs or XLinks, URIs or other reference
mechanisms.

0: represents a set of ordering relations of child elements within a parent

element. It represents the total order among all edges; while it does not represent
order among different types nor elements with a different parent vertex. This

order is defined for the three different types of edges as follows:

o E: the order of the children as they appear within the parent element

o A: not defined, since the XML attributes are un-ordered

o R: the order as they were in the document in the case of IDREFS

e Vertices have two basic properties:

o value: returns the system generated identifier for this element, and in the

case of a value vertex it returns its value

35

o type: which is either the element in the case of an element vertex or the

data type of the value in the case of a value vertex

Element vertices derived properties (based on edge and order information)

" gi: name of this vertex (namespace qualified if relevant)

" parent: vertex parent

" referredby: set of vertices that reference this vertex through a reference

edge

" childelements: set of all element containment edges from this vertex

" attributes: set of all attribute edges from this vertex

" references: set of all reference edges from this vertex

E: has the following basic properties

" Parent: returns the 'from vertex'

" Child: returns the 'to vertex'

" Name: returns the name of the edge

" Type: returns E

A: has the following basic properties

" Parent: returns the referring vertex

" Name: returns the name of the edge

" Value: the attribute value

" Type: always A

R: has the following basic properties

" Parent: returns the'frorn vertex'

" Child: returns the'to vertex'

" Type: Rx where R indicate that this is a reference and X indicates the
kind of that (XLink, URI, ...)

" Refedge: the set of attributes or element edges that provide the reference
information

36

* E, A, R has the following derived properties

o Next: returns the following edge

o Previous: retums the previous edge

* 0: has the following basic properties

o e: returns the current edge

o successor: the successor of the current edge

So, briefly based on the previous definitions, a formal data model can be defined as
follows:

*A graph G= (V, E, A, R, 0) represents the data model for XML elements, where

0V -ý
V

element UV int UV string U ...

0 E: represents the set of directed element containment edges

* A: represents the set of directed attribute edges

* R: represents the set of directed reference edges

* 0: represents the total order between edges of a particular class E, A or
R, that connect a parent element to its children

In Appendix A, there are three examples showing how to model an XML document

using the above data model. The first example is a data-centric XML document, the

second is a document-centric XML document and the last one is a hybrid document.

These XML documents were extracted - with some modifications - from the department

of Information Studies, University of Sheffield web site (Online).

Following the discussion of the formal data model for XML in this section, section
2.3.3.2 discusses the XML query algebra based on this formal data model. The next

section discusses the proposed data models by the WK for XML.

2.3.2.2 WX proposed data models for XML

The World Wide Web Consortium (W3C Online) proposed different data models for an
XML document for different purposes. These data models are:

XML Info Set (2nd recommendation online 2004): its purpose is to refer to

information stored inside XML documents. Therefore it is used by other

37

technologies as the base to refer to data inside an XML document. It consists of

eleven node types and it does not require a DTD or XML Schema validation.

* XPath 1.0 Data Model (recommendation online 1999): its purpose is to address

parts of the XML document. It is used by other specifications such as Xpointer

and XSLT. It consists of seven elements and it does not require DTD or XML

Schema validation.

DOM (recommendation level 3 online 2004): stands for document object model.
Its purpose is to access and update the structure of a document dynamically. It

can be used to model both XML and HTML. It consists of twelve elements and
it does not require DTD or XML Schema validation.

XQuery 1.0 and XPath 2.0 data model (XDM candidate recommendation online
2005). It is the only data model that can be used to model a collection of XML

documents. It consists of eight elements and it can use DTD or XML Schema to

validate a document if it exists.

Salminen and Topma (2001) summarised these different data models. The summary is

presented in the following table.

XMI, Info Set Xpath 1.0 Dom 1.0 Level XQuery 1.0 and
2.0 XPath 2.0

To refer to the To address parts To access and To define precisely
information in an XML update the the information

stored in the document (it contents and the contained in the input

Purpose XML document works as a query structure of to an XSLT or
language but for documents XQuery processor.
one document dynamically

only)

2 nd Edition Recommendation Level 3 Recommendation
Status Recommendation (1999) Recommendation (2007)

(2004) (2004)

What is XML XML XML or HTML Collection of XML or
modelled

--- L I
parts

I

38

XML Info Set Xpath 1.0 Dom 1.0 Level XQuery 1.0 and
2.0 XPath 2.0

No of 11 7 12 8

Nodes

1. Document 1. Root 1. Document 1. Document

2. Element 2. Element 2. Document 2. Element

3. Attribute 3. Text Fragment 3. Attribute

4. Processing 4. Attribute 3. Document 4. Text

Instruction 5. Namespace
Type

5. Namespace

5. Unexpanded 6. Processing
4. Entity

6. Processing
Entity Reference instruction 5. Notation instruction

6. Character 7. Comment 6. Element 7. Comment
Node

Type
7. Comment 7. Attr (Attribute) 8. Reference

8. The Document 8. Processing

Type Declaration Instruction

9. Unparsed 9. Comment

Entity 1O. Entity

10. Notation Reference

11. Namespace 11. CDATA

Section

12. Text

DTD XML document can

validity No No No be validated against a

required DTD if it exists.

Table 2.2 Different XUL Data Models Proposed by the WX Salminen and Topma

(2001)

Each of the above models tries to solve a specific problem and to satisfy a specific

requirement. Tberefore, these models are used in different contexts in the XML world.

39

They are there to model XML from a technology point of view while the other formal

models are used to model XML from a theoretical point of view.

After presenting the formal data models for XML proposed by researchers and those

proposed by WK, the following section discusses query languages for XML.

2.3.3 Query Languages for XML

The analogy between semi-structured data and XML leads to the possibility that the

query language discussed in section 2.2.3 for semi-structured data could be suitable for

XML as well. There are a number of query languages designed from the start for XML

such as XQL (Robie et al. 1998), XML-QL (Deutsch et al. 1998) and XQuery (online).

In the following section, XML query requirements in general are discussed followed by

a discussion of the XML query algebra. Then XQuery, the query language adopted by

the WX as the defacto standard for querying XML is discussed in section 2.3.3.2.

2.3.3.1 XML Query Requirements

There are a number of main requirements for the XML Query Languages, (for example:
Maier 1998, XML Query Requirements 2001 (Online), Bonifati and Ceri 2000 and
Fernandez et al. 1999). Maier's list (1998) addresses a number of issues, i. e.,
implementation strategy, the design characteristics of the query language, and its

expressiveness. The following list summarises these requirements:

* Orthogonal

c, XML Output: The result of the XML query is an XML document. This

also allows compositionality (Abiteboul et al. 1999) as the result of the

query can be used as an input for another query and the result must be in

the same data model.

0 Expressiveness and completeness

o Query Operations: The Query language must perform the following

operations

0 Selection: Selecting a subset of the document or the whole
document based on content, structure or attributes.

w Extraction: Removing particular elements of a document.

40

I r. "' '-:
'(

cT:
': TD

" Reduction: Removing selected sub-elements of an element.

" Restructuring: Constructing a new set of element instances to

hold queried data.

" Combination: combining more than one element into one.

" Preservation of Order and Association: as XML is an ordered
document, the query language must preserve this order in the

results

" Mutually Embedding with XML: XML can contain query statements

while a query statement can contain XML elements.

" Xlink (Online) and Xpointer (Online) Cognizant: a query language

should be aware of XLinks and XPointers.

" Namespace Alias Independence: The query language should not depend

on namespace aliases local to an XML document

" Support for New Data types

" Suitable for Metadata

Implementation

" Server-side Processing: Queries can be executed remotely on the server

with no dependence on resources in its creation context for evaluation.

" Programmatic Manipulation: the query statements can be easily created

by software applications rather than by being written by the system users

or programmers.

" XML Representation: the representation of the language is in XML, so

there is no need for a special mechanism to store the query statements.

Schema Features

" No Schema Required: If the schema is not known, the XML Query must

depend on the self-describing feature of the XML Document.

" Exploit Available Schema: If the schema is known, the Query language

must make use of it for error detection

41

* The Query Language Semantics: The language must have a clear definition to

allow efficient processing.

o Precise Semantics: this is to allow the determination of the result

structure, equivalence and containment.

0 Compositional Semantics: the query expression should be the same wherever it

appears.

However, the above features do not address in detail, the expressiveness of XML query

languages, for example, in the way in which the notion of relational completeness does

for relational languages. To do so, it is first necessary to establish some formal

description of the manipulations that an XML query language should be able to apply to

an XML database. Such formalism will have a role equivalent to that of relational

algebra for relational databases. It is then possible to evaluate the expressiveness of any
XML query language, in terms of those expressions in the formalism that the language

can also express.

After describing the general requirements of the XML query language, the following

section presents in more detail XML Query algebra.

2.3.3.2 XML Query Algebra

The XML query algebra discussed in this section is based on the formal XML data

model (Beech et al. 1999) presented in section 2.3.2.1. Its goal is to operate on a

collection of XML documents, allowing the selection of a whole document or a part of a

document based on specific criteria, and restructuring the results as a new XML

document. It allows the use of joins between XML documents. It deals with XML's

graph structure, heterogeneity of types, ownership vs. reference and finally the order of

the document. It also allows composability and therefore transformation and

optimization. Its operation can be summarized as follow:

Navigation Operations: the 'follow' operation (0) starts with a set of vertices and

then follows edges of a given type (E, A, R, or any) and with a given name

returns a set of edges. To get a set of vertices it must be composed with a child

operation. The 'inverse follow' operation ýj., also takes the edge type and name

as parameters and a set of vertices, it returns all the edges of that type and name

that lead to the specified set of vertices.

42

* Selection Operation: the 'selection' operation (c;) allows the selection of a given

collection based on a given criteria, it returns a collection where the criteria is

true. Properties of vertices and edges can be used to construct the selection

criteria as well as standard comparison operations (=, <>, <, >, <=, >=) and

Boolean operations (and, or, not). The selection operation also supports
Existential and Universal qualification.

Join Operation: when two documents are queried with a join condition between

them, the Cartesian product is calculated. Then, for the true join condition only
between the two vertices, a virtual reference edge is created and can be used as a

normal reference edge during the evaluation of the query only.

Construction Operations: are used in building a new fragment of a document

based on the selection conditions. The "expose" operation returns the fragment

of a document identified by navigation operations in conjunction with selection

operations. The "return" operation returns copy of the fragment of a document

identified by navigation operations in conjunction with selection operations. The

44 create edge" and "create vertex" are used to create a new fragment of XML by

attaching edges and vertices to the root and recursively attaching edges and

vertices to the attached vertices.

9 Other Operations:

o 'T sort" which orders a set of edges

o "X unorder" which indicates that the order is not important and this can
help in the query optimization

o 64g map" which applies a specified function to a collection of edges or

vertices. It does not include the input collection in the result collection
(Unlike the kleene star *)

o" kleene star" operator is used to indicate the possibility of infinite

repetition of a function. It can for example allow the navigation among
paths repeatedly until reaching a fixed point.

o "8 distincf' which eliminates duplicates from a set of vertices or edges.

o "picV' transforms an element of a collection into a singleton

43

o "flatten" flattens any collection of any nesting depth into a flat collection

o "y group by" operator is used to create element and attribute vertices in

the result that aggregate or summarize information from a group of

similar vertices or edges.

The section presented the basic operations of the XML algebra. The following section
briefly discusses Xquery, the defacto XML query language standard.

2.3.3.3 XQuery

XQuery (online) is a query language maintained by WX (online) as the de facto XML

query language. Its status is a candidate recommendation (November 2005). It is

derived from Quilt (Chamberlin et al. 2000) and has a lot of features from other
technologies such as XPath 1.0 (online), XQL (Robie et al 1998), XML-QL (Deutsch et
al. 1998), SQL (SQL: 2003) and OQL (Cattell et al 2000). It is based on the XML data

model in XQuery 1.0 and XPath 2.0 (online). It was designed to query XML data as

well as XML documents.

XQuery is a functional language with XPath (online) expressions as its basic building

blocks. It is a case sensitive language (as XML). It follows the FLWOR model
(inherited from Quilt (Chamberlin et al. 2000)) which can be described as:

* For., optional clause, it is used to bind variables to an expression. The variable
name starts with $ such as $x in the following example.

Let. optional clause, it is used to bind variables as well. The difference is that
Let avoids repeating the variable in the result. For example, it can be used to

represent an average result which is similar in a way to Group By in SQL.

* Where: optional clause, it is used to specify the selection criteria.

0 Order by: optional clause, it used to specify sort-order the results.

9 Retum: it specifies what the result will look like.

An example of an XQuery is:

for $x in doc ("documenLname. xml"yPublicationlpaper

where $x1year > 2000

Order by $x1title

44

Retum $xltitle

This query returns the titles (ordered alphabetically) of all papers where its year is

greater than 2000.

Although XQuery is not a standard yet, it has a wide support by all the major DBMSs

such as Oracle (Krishnaprasad et al. 2005, Murthy et al. 2005), Microsoft SQL Server
(Pal et al. 2005 and 2006, Rys 2005, Rys et al. 2005 and Lacoude 2006), IBM DB2
(Beyer et al. 2005 and Ozcan et al. 2006) and Sybase (Singh et al. 2005). It is

anticipated that it will be the XML query language for the future. XQuery is further
discussed in chapter five since it is used in the evaluation of the proposed model.

2.3.4 Conclusion and Way Forward

Throughout section 2.3, XML origins, strengths and weaknesses, data models and query
languages were discussed. This follows the discussion of semi-structured data in section

2.2. Both of them are key to this research. So, the next section compares and contrasts

semi-structured data and XML in more depth.

2.4 Semi-Structured Data and XML

Having introduced the OEM as a semi-structured data model (see 2.2.2.1) and XML

(see 2.3), this section now presents a comparative analysis to establish where

commonalities exist between these and conventional data models (relational and object-
oriented data models). The aim is to show that despite the differences, XML and OEM

are more related than XML and traditional database data models. The following

comparison is based on the analysis by Abiteboul (1997) and Abiteboul et al. (1999)

9 Natural: XML is a document markup format; it is not a data model (see 2.3.1.1).
While OEM is a data model (see 2.2.2.1).

Origin: The XML is a subset version of the Standard Generalized Markup

Language (SGML [Online]). A comparison between XN4L and SGML can be

found online in Clark (1997). XML documents can be easily sent, received, and

processed on the Web in a similar way to HTML documents (XML: online).
This means that the roots of the XML belong to the document community.
Consequently, it differs from OEM, which was originally inspired by the
database community to be used for data integration between heterogeneous data

45

sources in the TSMIMIS project, Stanford University (Chawathe et al. 1994,

Garcia-Molina et al. 1995,1995 and Hammer et al. 1997, OEM

(Papakonstanfinou et al. 1995)).

Schema: XML may or may not have associated schema. Consequently, there are

two levels of XML validation. A 'Well formatted' XML document must be

syntactically correct, for example, the tags must be nested correctly. The

stronger notion of correctness is that of 'validity'. A 'Valid XML' is a document

that is well formatted and conforms to an explicit collection schema, for

example, in the form of a DTD or XML Schema. In comparison, the semi-

structured data's schema is discovered from the data itself (self-describing), i. e.,
the collection schema is implicit such as Data Guide of Lore (Goldman and
Widorn 1997). Where it discovers the schema from the semi-structured data. In

both cases the schema may be ignored for browsing purposes. This contrasts

with both the relational and object-oriented data models, where the schema must
be fixed, and fully defined prior to data entry. Consequently, XML and OEM are

more flexible than traditional data models.

Structure: both XML and OEM can be used to represent data with irregular,

implicit and partial structures. The most natural way to model XML-encoded

data is as a node-edge graph whereas the OEM data model is most naturally

represented as a labelled-edge graph (section 2.3.2). This difference is minor

compared with the regular, explicit and highly structured nature of relational and

object-oriented data models.

Order. a major difference between XML as a document format and OEM and
the relational model is that XML preserves the order of data because it is a
document format. In contrast the relational model is based on the set theory and
by definition a set is not ordered. The object-oriented model re-introduces the

order of the data into its model by using other data types such as list and arrays.

Textual Data: XML is a text document format, and therefore it provides only

text data types while a semi-structured model allows for non-textual data types.

To represent a binary data in an XML file, it has to be linked as an external

entity.

46

e Mixing Elements and Text. - this is purely a document feature in the XML

documents whereby inside a text there may be another element. For example

<address> West Street <city> Sheffield </city> </address>. There is no analogy
to these features in any of the other database data models.

e Constructs: another feature of the XML document is that it may contain
constructs, such as comments and processing instructions (PI) that give some
instruction regarding the XML document to the receiving application. The first

line of an XML document is given as an example (<? xml version="1.0"

encoding=" ISO-8 859-1 "? >). Another example is a CDATA element; It is

ignored by the parser and therefore it can contain any special character inside it

such as ("<", '5"). There is no analogy for these constructs in OEM or the

relational data model. For the object-oriented data model, some analogy exists
by using of the object's methods (compared with processing instructions).

Reference: XML elements can be referenced by defining the "Id" attribute with

an element and then using IDRef and IDRefs in another element to reference this

element. OEM has an analogy by creating an edge from one node to another

node. The foreign key in the relational model and OID and relationship in an

object-oriented model can be seen as some sort of referencing although the

reference in XML and OEM is much richer than in database data models.

The following table summarises the above comparison between XML, OEM, relational

and object-oriented Data models.

Object-
Feature XML OEM Relational

Oriented

Document Database Database Database
Origin

Community Community Community Community

Optional Post Data Fixed, defined Fixed, defined
Schema

May be ignored May be ignored prior to data prior to data

47

Object-
Feature XML OEM Relational

Oriented

Irregular, Irregular,
Regular,

Implicit, may be Implicit, may be Regular, Explicit
Explicit

Structure partial partial

Labelled-Edge
Node-Edge Graph Tables Objects

Graph

Using lists and
Order Ordered Not Ordered Not Ordered

Arrays for Order

Mixing

Elements Available Not Available Not Available Not Available

and Text

Comments,

Processing

Instruction, Start

with an optional Using methods
Constructs No Analogy No Analogy

construct (<? xml analogy with PI

version ="I. 0"?),

CDATA, Entities

(&It = <)

XML Reference OID and
Reference No Analogy Foreign Keys

(IDRef, IDRefs) Relationships

Nesting Available Available N/A Available

Table 2.3 Comparing XMI, OEM, Relational and Object-Oriented Data Models

The above comparison shows that XML has a more complex data structure and is more

naturally related to the OEM model rather than conventional database data models.
Consequently, to store XML data into a relational database, there is a need to shred the

data into smaller parts or to store the whole document as a CLOB data field. The next

section and section 3.5 discuss the different storage models proposed by the research to

store XML data.

48

2.5 XML Storage Strategies

The XML storage strategy is a core subject to this research, as the research is centred on

achieving a query processing performance enhancement for a hybrid class of XML

documents (which is explored thoroughly in chapter 3). XML Storage strategies can fall

broadly into three main categories as follows:

9 Use of the file system to store XML documents in their native text file format

(Abiteboul et al 1993, Milo and Suciu 1999, Rizzolo and Mendelzon 2001,

Cooper et al. 2001, Tian et al. 2002 and Madria et al. 2007).

Use of relational database management systems: They store XML data in

relational or object-relational databases, and thus utilise established relational
technology such as query optimisation (Shanmugasundaram et al. 1999 and
2001, Shimura et al. 1999, Florescu and Kossmann 1999, Schmidst et al. 2000,

Klettke and Mayer 2001, Yoshikawa and Amagasa 2001, Kudrass 2002,

Kudrass and Conrad 2002, Runapongsa and Patel 2002, Tian et al. 2002, Amer-

Yahia and Srivastava 2002, Bohannon et al. 2002, Kuckelberg and Krieger

2003, Han et al. 2003, Harding et al. 2003, Leonov and Khusnutdinov 2004, Pal

et al. 2004, Lu et al. 2006, Na and Lee 2005, Balmin and Papakonstantinou

2005, Chaudhuri et al. 2005, Qin et al. 2005, Pardede et al. 2005,2006 and Pal

et al. 2006)

Use of novel storage structures: such as object-oriented databases (Christophides

et al 1994, Chung et al. 2001), native XML databases (as in Salminen and

Tompa 2001, Information Manager (Interleaf. online), Astoria (Astoria

Software: online), Timber (Paparizos et al 2003), Tamino (Schoning and Wasch

2000 and software age: online), Teratext DBS (Teratext: online)) or semi-

structured databases (as in Lore (McHugh et at 1997 and McHugh and Widom

1999, Goldman et at 1999)), storing XMI, semantics (Pasila, 2002) or using the

vectorizing technique (Buneman 2005).

The scope of this study is explicitly focused on the relational model approach, as

presented in chapter one. This is because the relational database is the most widely
database technology used nowadays and will probably remain in a dominant position
for the foreseeable future. Therefore in this section the first and the third approaches are
discussed in sections 2.5.1 and 2.5.2 respectively, while the relational approach is

49

discussed later in depth in section 3.5. Added to that, there are two specific storage

models (Ozone (Lahiri et al. 1999) and STORED (Semi-structured TO Relational Data

Deutsch et al. 1999) which are very much related to this study and are discussed in

detail in section 3.5 too.

2.5.1 Using the He System

In the first approach, the XML documents are stored in a file system in their native text

file format (Tian et al. 2002). This is a similar approach to the one proposed by

Abiteboul et al (1993) to store and query SGML documents using the file system. It can

be used with any XML document regardless of its level of structuredness, which makes
it suitable for un-structured, semi-structured, highly-structured or hybrid documents. It

is the simplest and easiest approach to implement since it does not require any

processing of XML documents prior to their storage, and hence does not need any

middleware or DMBS to manage the document collections. To query any XML

document, the document has to be parsed and loaded into the memory (for example, as a

DOM tree) and then standard techniques such as Xpath (Online) and XQuery (Online,

Fernandez et al. 1999) can be used to query it. However, as found by Tian et al. (2002),

this approach shows serious limitations arising from the need to load the whole XML

document into the memory. This results in an increase of the query response time in

proportion to any increase in the size of the document.

This performance limitation can be reduced by using external indices to address part of

the XML document directly. For example, indices have been used by Rizzolo and
Mendelzon (2001) to improve the query performance by summarizing path information.

They developed ToXin as an indexing scheme for XML data. Their storage model

consists of two different types of structures: a path index that summarizes all paths in

the database and can be used for both forward and backward navigation starting from

any node, and a value index that supports predicates over values. Another system in the

same family is that presented by Madria et al. (2007) who use indices for regular path
expressions to efficiently process Xpath queries. Other examples of the use of indices

are T-indexes (Milo and Suciu 1999) and that proposed by Cooper et al. (2001). As in

any storage structure, there is a performance penalty in managing such indices when
inserting and deleting data to and from the XML documents. The other main
disadvantage of this approach is the lack of the DBMS features such as concurrency

50

control, redundancy control, security, access and transaction control etc. Nevertheless, it

can be used efficiently in some scenarios, such as a collection of small XML

documents, which are not frequently updated. In such cases, the above disadvantages

are minimised.

2.5.2 Using Novel Storage Structure

In this section, novel approaches to storing and querying XML are described. These

include using object-oriented databases, native XML databases, semi-structured
databases such as Lore (McHugh et al 1997 and McHugh and Widom 1999, Goldman et

al 1999), storing XML semantics (Pasila 2002) or using the vectorizing technique

(Buneman et al. 2005).

2.5.2.1 Object-Oriented Databases

Using an object-oriented database is in a sense similar to using a relational database to

store an XML document (Chung and Kim 2003). It can be achieved either by mapping

the YML graph to the object-oriented structure or by mapping XML data itself to an

object-oriented equivalent schema. The object-oriented paradigm provides more

modelling power than the relational data model, for example by using lists, arrays and

union types, and has the potential to capture behavioural semantics. Christophides et al
(1994) proposed a natural mapping from SGML documents to object-oriented
databases. They proposed a formal extension to query languages to deal with SGML

documents. Chung et al. (2001) extended the same approach by using inheritance to

extract the equivalent object-oriented schema.

The problems with using object-oriented rather than relational database generally are
(Leavitt 2000)

Object-Relational Databases: The development of object-relational databases

reduces the gap between relational and object-oriented databases in storing

complex and multimedia data. This means that it is no longer an advantage for

object-oriented databases to deal with this type of data over relational databases.

Performance: Although object-oriented databases can store data objects as units,

and therefore retrieve them faster than the relational database which has to break

them into smaller parts, the optimization techniques used in relational databases

give them an edge over the object-oriented databases.

51

Standardization: A long established mathematical standard is the basis for

relational databases which is not the case for object-oriented databases.

Thus, despite the advantage of better modelling using the object-oriented paradigm, the

above problems create a barrier to the widespread use of object-oriented databases in

general and in dealing with XML data in particular.

2.5.2.2 Native XML Databases

The aim of the native XML databases (NXD) is to provide a means to define, create,

store, validate, manipulate, publish, and retrieve XML documents acting as its native

storage unit (Salminen and Tompa 2001 and Fiebig et al. 2002). They can be

categorized into two main approaches, document management systems (Information

Manager (Interleaf. online) and Astoria (Astoria Software: online)) and data

management systems (Timber (Paparizos et al 2003), Tamino (Schoning and Wasch

2000 and software age: online), Teratext DBS (Teratext: online)).

XML: DB Initiative (Online) defined Native XML Databases (NXD) as follows:

* NXI)s define a (logical) model for anNML document -as opposed to the data in

that document - and store and retrieve documents according to that model. At a

minimum, the model must include elements, attributes, PCDATA, and the
document order. Examples of such models are the XPath data model, the XML

Infoset, and the models implied by the DOM and the events in SAX 1.0.

A NXD has an XML document as its fundamental unit of (logical) storage, just

as a relational database has a row in a table as its fundamental unit of (logical)

storage.

Is not necessary to have any particular underlying physical storage model. That

is to say, the NXD can be built on top of a relational, hierarchical, or object-

oriented database, or use a proprietary storage format such as indexed and/or

compressed files. This is hidden from the database user.

As Staken (2001) summarises; native XML databases mainly store XML documents

and their components, the basic unit to deal with the database is the XML document,

NXD may not be a standalone database, it can be built over any other DBMS and it

does not necessary store XML in a native text format.

52

The advantages of using NXD are:

* There is no need for mapping the XML data to a different data model as the data

is mapped to a tree data model

As the data will not be dispersed into small parts and stored in different disk

parts, this will probably lead to a better data retrieval performance.

The disadvantage of this approach is its lack of a single and common well-defined data

model. This leads to the absence of a solid base for formally defined query operations
and therefore optimisation. As these databases evolve, and the database management

kernel becomes more optimised, better performance can be expected to be achieved in

the foreseeable future.

2.5.2.3 Lore

A Lightweight Object REpository for Sernistructured Data (Lore) (McHugh et al 1997

and McHugh and Widorn 1999) started as a complete semi-structured database

management system in Stanford University then it was migrated to host XML data

(Goldman et al 1999). Lore was built from scratch, so all the database management

system functions (such as query language, multiple indexing techniques, a cost-based

query optimizer, multi-user support, logging, and recovery) had to be designed and
implemented. Loral (Abiteboul et al. 1997) is the query language for Lore (described in

section 2.3.2.1). Lore advantages include its novel technologies such as DataGuides

(Goldman and Widorn 1997), indexing techniques (Vindex, Tindex, Lindex and Pindex,

as discussed in section 2.2.4), management of external data, and proximity search. The

project produced an academic prototype for a semi-structured database management

system and was completed in year 2000. However, Lore remained as an academic

prototype and did not developed more toward becoming a database management system
product. This could be considered as its disadvantage.

2.5.2.4 Store XML Semantics

In this approach Pasila (2002) proposed the ERX model (Entity Relationship for XMQ.
This model stores the semantics of XML rather than modelling the XML document to a
relational model or to a tree structure. It describes concepts and complex relationships
of the data. However, there is a need for the complete DTD for the XML document to

53

be converted either manually or automatically (Pasila 2003) to an ERX model which in

some cases is not available.

2.5.2.5 Vectorizing Approach

The final approach uses Vectorizing storage for XML (Buneman et al. 2005): The idea

behind this technique is to decompose an XML document into a set of vectors that

contain the data values and a compressed skeleton that describes the structure. Storing

data by column (as opposed to storing it by row) is an old technique (Batory 1979)

which is especially useful when using a small number of columns from the database.

This technique is similar in a way to the structured mapping approach and shares its

strengths and weaknesses (instead of storing the XML document by rows, it will be

stored by columns). These weaknesses are mainly the complexity of the generated

schema, the inherent ambiguities and contentions that must be resolved and the

inflexibility of the resulting relational schema, especially in situations where the

structure of the XML document collection is volatile.

In this section, different storage models used to deal with the problem of storage of
XML-documents were presented. Research in XML Benchmarking (XMach-1 (B6hme

and Rahm, 2001,2002), XMark (Schmidt et al. 2002), X007 (Brassan et al. 2002), and
XBench (Yao et al. 2002,2003,2004) and The Michigan Benchmark (Runapongsa et

al. 2002a, 2006) shows that there is no absolute correct way to store XML. Each one of

these models has its advantages and disadvantages and its successful and un-successful

scenarios based on the type of the data and the query scenarios used. XML

Benchmarking is further discussed in Chapter 4.

2.6 Conclusion

In this chapter, the base for this research has been presented. First, it introduced semi-

structured data, its origin, definition, characteristics, data models and query languages.

Then XML was presented also with its origin, strengths and weaknesses, data models,

and query languages. Then semi-structured and XML were compared and contrasted in

section 2.4. Finally, in section 2.5, some of the different storage models for XML were
discussed in more depth.

The discussion in the next chapter builds upon this by firstly presenting the research

motivations and formulating the research hypothesis. Then, a categorization of XML

54

documents according to their degree of structuredness is discussed. The research
narrows down to a class of hybrid-structured XML document defined as containing

partially-structured data. How relational databases can be utilized to store and query this

class of documents is also explored. This is followed by a presentation of the different

storage models based on the relational model to store and query XML data as well as

related storage models proposed by the literature to store and query partially-structured
data. This leads to an elaboration of the hypothesis, in which a storage structure is

proposed, which has the potential to realise performance enhancements for partially-
structured data. Chapter three concludes by presenting the storage model proposed by

this research to deal with partially-structured XML documents. Chapter four presents
the design of the experiments to evaluate the performance of this proposed model

55

Chapter 3 Partially Structured XML

3.1 Introduction

Chapter two presented a review of XML databases in general to establish the context

and motivation of this research. It defined semi-structured data and XML, their data

models and query languages. It compared and contrasted them and then it reviewed the
different storage models proposed for collections of XML documents in general. This

chapter builds upon the review by firstly presenting the research motivation for the

study in this thesis and formulating the hypothesis it addresses in section 3.2. The

hypothesis is a proposition that performance enhancements can be achieved by

exploiting pre-knowledge of consistent structure within XML documents and/or across
XML document collections. Section 3.3 therefore discusses a categorization of XML

documents according to their degree of structuredness, so as to analyse structural

properties for which this approach is applicable. Accordingly, section 3.4 defines the

class of partially-structured XML data as a hybrid of highly-structured and semi-

structured data, shows an example and presents its advantages. Appropriate storage

models must be utilised in order to exploit structural pre-knowledge. Accordingly,

section 3.5 reviews and discusses storage models for XML data, and analyses their

potential for storing and querying partially-structured data. Special attention is given to

relational approaches to storing XML data and the related storage models proposed for

partially-structured data in this section. The conclusion of this analysis is an elaboration

of the hypothesis, in which a hybrid relational and XML storage structure is proposed

which has potential to realise performance enhancements for partially-structured data.

This storage model is presented in Section 3.6. Finally, section 3.7 summarises the

chapter, presents its conclusions and outlines how the issues raised in this chapter are

addressed in subsequent chapters.

3.2 Research Motivations and Hypothesis

This section presents the research motivations and hypothesis based on the issues that

emerged in the previous chapter, in which the tension between technologies and models
for XML document collections and databases were identified. The motivation for this

study is presented in section 3.2.1. This is followed by the hypothesis in section 3.2.2.

56

3.2.1 Motivation

The motivation behind this research is rooted in issues relating to the structuredness of

XML document collections (as in section 3.3) and the implications for the query

processing performance. This section further discusses the class of XML data which is a
hybrid between highly-structured and semi-structured data, referred to as partially

structured XML (as in section 3.4). Specifically, the study seeks to exploit the
knowledge of the highly-structured part to improve query processing performance. The

latter is the focus of this research, documented in the remainder of this thesis.

As discussed in section 2.3.1.3, XML has become a focus for research in both the
database and document research communities. This research effort is motivated by

strengths of XML, including: its simple format, the separation of the data from how it is

formatted, the internationalisation capability, platform independence, extensibility,
human as well as machine readability, processing instruction and the large investment in

XML applications that already exists nowadays. These strengths make XML

appropriate as a way to store and exchange data on the web. However, achieving good
XML query processing performance is problematic because the irregular structures
inherent in sen-d-structured data mean that the conventional query optimisation

technology cannot be used in a straightforward way (section 2.2.3).

One possible approach to addressing the querying efficiency problem is to exploit the

inherent structures of specific XML documents. In developing this approach it is useful
therefore to classify XML documents according to their structuredness, as has been

done in Barbosa et al. 2001, Yao et al. 2002 and Bourret 2005, where XML documents

are classified either as highly-structured, semi-structured or un-structured (see section
3.3). As has been discussed in 2.2.3, querying semi-structured or un-structured data is

problematic for query processing and incurs significant overheads, whereas the pre-
knowledge of the uniform structures of highly structured data opens the gate to more

efficient query processing using well established technologies, such as those developed

for relational databases. However, many XML documents are in fact a combination of
highly-, semi- and un-structured data. This poses a question; can querying overheads
associated with these documents be reduced by exploiting the knowledge of the parts of

a document for which the data is highly-structured? In order to address this question, it

is necessary to focus on a class of hybrid highly-structured and semi-structured
documents, which can be defined as partially-structured (as further explored in section

57

3.4). In such documents, there is a well defined and prescribed structure in part of the
document as well as an ad-hoc semi-structured part.

There are a number of examples of databases that deal with XML data and can be

considered as partially-structured data, among them:

Bibliographic Databases such as Medline (http: //www. ncbi. nlm. nih. gov/) and
DBLP (http: //dblp. uni-trier. de/). The highly-structured part contains the authors,
title and year published while the semi-structured part contains text description

and comments on publications.

e Movies Databases such as IMDB (http: //www. inidb. coin): the highly structured

part includes the title, year, director of the movie while the semi-structured part
includes film reviews.

0 Health care systems: the highly-structured part includes the name, address and

date of birth of patients and the serni-structured part includes the description of

the illness or doctor visits. (for example a health care system in Brazil using both

Java and XML available at

htti2: Hiava. suil. coin/devell2er/technica]Articies/XMUbra7ii)

9 Product catalogue: the highly-structured part includes the name, price, make and

model of the product while the semi-structured part includes the specification

and reviews of that product.

Given the existence of large data sets and applications, such as the above, there is

clearly a need for data management functionality for this class of documents. That is to

say, to organise, store, query, restructure and manipulate large collections of partially-

structured XML documents in an efficient way. This requirement is being addressed at

present by applying two main strategies, i. e., developing native XML database

management systems, and developing systems which utilise and extend conventional
relational database management systems. A potential advantage of the latter approach is

that it applies and builds on the years of research and development that provided a
mature, stable, scalable and effective technology for query optimisation and processing
of highly-structured data. The relational database is the major database technology in

use nowadays and is likely to maintain its dominant position in the foreseeable future.

58

So, the research concentrates on using relational databases for XML data management,

but seeks a better way to store and query the class of partially-structured data.

Therefore, the basic motivation for this research is the need for improved query

processing performance of partially structured XML documents using relational

database management systems. The following section presents the hypothesis based on

this motivation.

3.2.2 Research Hypothesis

Following on from the argument developed in the preceding section, the research
hypothesis is:

For the class of XML documents which contains both a prescribed highly-

structured part and a semi-structured part, performance enhancement may be

achieved over existing query processing techniques for semi-structured

documents by using relational database query processing and optimisation

technology to exploit pre-knowledge of the prescribed highly-structured part of

the data

The research tests this hypothesis by introducing and evaluating a new model to store

partially-structured documents (as explained in section 3.6). In this model, the highly-

structured part is stored using a highly-structured data model (relational database), this

allows it to utilise existing optimisation techniques developed for conventional

databases to deal with the structured part of the data instead of treating data as if it is

totally semi-structured. On the other hand, the proposed model deals with the semi-

structured part as a semi-structured data model, and therefore allowing flexibility in

dealing with this part of the document. A number of experiments are designed to

compare and evaluate the performance of this proposed hybrid model against the two

base models. The research is concerned only with large, possibly complex documents,

where query processing performance becomes an issue.

The hypothesis narrows this research to study a class of partially-structured XML

documents. The next section presents how XML documents can be categorized

according to the degree of structuredness. A partially-structured XML document is

defined later based on this classification.

59

3.3 XML Degree of Structuredness

This section discusses how XML documents can be categorised according to their
degree of structuredness. The section firstly discusses different ways to categorise XML

documents, then the categorization adopted in this thesis is presented.

In the previous chapter, section 2.3.1.2 explained how an individual XML document

can be classified into two main categories (Bourret 2005), data-centric and document-

centric. The following table summarizes the differences between a data-centric and a
document-centric XML document (Kim et al. 2002)

Document- Centric XUL Data-Centric XML

Irregular and un-structure content Structured content

Large amount of mixed content Little or more probably no mixed content

Order is significant Order is insignificant

Human consumption Machine consumption

Table 3.1 Document-Centric vs. Data-Centric XHL (Kim et al 2002)

Barbosa et al. (2001) categorized XML documents according to their degree of

structuredness as textual documents (e. g. books) and data documents (e. g. a catalogue of
books). Each of these categories can have different characteristics as well as different

indexing and querying scenarios. They proposed a fuzzy measure to determine how

close a document is to each extreme. According to their definition, a document has low

structuredness if it is similar to a textual document while it has a high structuredness if

it is similar to a data document. Suciu (2002) proposed a similar classification, un-

structured (the web) and fully structured (relational data) with a spectrum of partially

structured data in between. In this context, partially-structured data was defined in a
different manner (different to the definition adopted by this research in section 3.4, this

research considers the data which belongs to the spectrum between highly-structured

and un-structured as semi-structured data). Yao et al. (2002,2003,2004) developed

XBench, a family of XML benchmarks. They classified XML applications into data-

centric (DQ and text centric (TC), then classified the XML data into single document

(SD) and multiple documents (MD) scenarios. Using this classification produces four

different scenarios (TC/SD, TOMD, DC/SD and DC/MD). The single document

60

scenario can cover databases such as an e-commerce catalogue that consists of a single
document with complex structures (deep nested elements) or dictionaries. The multiple
document scenarios cover databases that consist of a set of XML documents, such as an

archive of news documents or order transaction data.

This research concentrates on the single document scenario. However, the research

generalises to multiple documents scenarios, since the multiple document collections
can be trivially transformed into a single document by concatenating these documents

into one single document and adding one top level in the document hierarchy. For

example, a collection of N documents can trivially be transformed into a single
document in which the level 0 tag corresponds to the collection as a whole, and with the

N level one sub-elements, which represent each document in the multiple documents

scenario.

This research takes these classifications further by classifying XML documents into

three categories instead of two according to the degree of structuredness of the data. The

main reason for this is to exclude the un-structured documents from the scope of this

research, since there is no possibility of exploring their structured part, and concentrate

on both highly-structured and semi-structured documents. In this classification, the

documents can be categorized as:

A highly-structured document contains only highly-structured data, i. e. data that
has a common and defined structure or organization. Normally, the data can fit

easily into a relational data model (Codd 1970) or an object-oriented data model
(Cattell et al 2000).

*A semi-structured document contains only semi-structured data (Abiteboul
1997, Buneman 1997, Suciu 1998, Abiteboul et al. 1999 and Abiteboul 2001).

For example, data that is irregular or that exhibits type and structural
heterogeneity since it may not conform to a rigid, predefined schema as defined

in section 2.2.1.3

An un-structured document contains only un-structured data (Buneman et al
1996, Buneman et al 1997) with no structure defined at all for the data, i. e., raw
data or images that lack defined structure or organization.

This classification (as discussed in the next section) provides the base for defining a
partially-structured XML document as a hybrid of a highly-structured and a semi-

61

structured data. As explained in the previous chapter, XML as a document format is

flexible enough to represent any of these classifications (section 2.3).

An individual XML document can be classified as highly-structured if it has a well
defined and regularly repeated structure. For example, if a relational table is represented

as an XML document (as in figure 3.1), this XML document could be classified as
highly structured. In such a case, there is a higher probability that the document will be

validated against a DTD or an XML schema (some form of explicit collection schema).
This is not mandatory, since the existence of a DTD or XML schema does not indicate

that the document has a specific degree of structuredness. For example, an un-structured
XML document could be validated against a DTD.

An XML document could hold a more complex structure and still be classified as highly

structured. The key factor is that the hierarchy that it represents is well defined and

repeated regularly. A data-centric document is a highly-structured document in nature
because, as defined earlier, its main use is to transfer structured data between different

information systems.

62

Tablel

Id Name Phone

I John Smith 1234567

2 Mick Hunter

3 John Cameron 7654321

<Tablel>

<Record>

<Id>l<lld>

<Name>John Smith</Name>

<Phone> I 234567</Phone>

</Record>

<Record>

<Id>2</Id>

<Name> Mick Hunter </Name>

<Phone></Phone>

</Record>

<Record>

<Id>3<tld>

<Name> John Cameron</Narne>

<Phone>7654321</Phone>

</Record>

</Tablel>

Figure 3.1 An Example of a Highly-Structured XML Document

On the other hand, an XML document is flexible enough to host semi-structured data,

with all its irregularity in type and structure. For example, in the same XML document,

data elements with the same tag could be represented in more than one structure or they

could be missing altogether. Figure 3.2 shows an example of a semi-structured XML

document. As this example shows, the first contact element contains a person "name"

tag with a "phone no" tag, the second contact element contains "first name" and "last

name" tags (an example of data represented in more than one structure), it contains a

"fax no" tag while a "phone no" tag is missing, and finally, the last contact element

contains a "name" tag, but it is a University "name" tag and not a person "name" tag. It

63

contains a "web site" tag but the "phone no" and "fax no" tags are missing. Normally,

there is no XML schema to validate the XML document, but if it exists, it is a complex

one and must contain all the different scenarios for different data representation.

<Contacts>

<Contact>

<Name>John Smith</Name>

<Phone>1234567</Phone>

</Contact>

Contact>

<FirstName>Mick</FirstName>

<LastName>Hunter</LastName>

<Fax>165235</Fax>

</Contact>

< Contact>

<Name>University of Sheffield</Name>

<Website>www. shef. ac. uk</ Website >

</Contact>

</Contacts>

Figure 3.2 An Example of a Semi-Structured XML Document

Finally, an XML document could represent un-structured data. Figure 3.3 shows an

example of an unstructured XML document.

64

<BBC Website Address:

"http: //news. bbc. co. uklsportllhilfootballlworld-cup-20061teamslportugaII5116722. st

m">

Figo cleared for England showdown

Van Bornmel and Figo went head to head on Sunday

Luis Figo can play in Saturday's World Cup quarter-final against England after Fifa

ruled out further action for a headbutt on Holland's Mark van Bommel.

The Portuguese skipper was booked and because referee Valentin Ivanov took action,
Fifa will not intervene.

Fifa communications director Markus Siegler said: "He was sanctioned immediately

by the referee at the time.

"The referee's report is being analysed but it is very unlikely anything will happen as
he has been sanctioned. "

</BBC Website

Figure 3.3 An Example of an Un-Structured XHL Document

As the above example shows, there is no common structure between the data inside the
document or the document can be just a plain text document, for example, data that is

not related to each other or mixed data elements.

A document-centric (or text-centric) XML document can be classified as highly-

structured or somewhere in between semi-structured and un-structured depending on the
degree of structuredness of its data. An example of document-centric would be an XML
document containing a text book. If it has a regular structure such as chapters, sections,
paragraphs and so on, then it can be classified as a highly-structured XML document.
On the other hand, if it is just a plain text it is considered as un-structured.

Categorizing XML according to its degree of structuredness can be seen on the level of
XML elements. An XML document consists of elements; these elements could be

complex elements containing other elements, or simple elements containing only raw
data. An XML document must have one complex element as a root element (if it has a

simple element, this means that the XML document has only one data element). A

complex element by itself could be considered according to its degree of structuredness;

65

it can be considered as highly-structured if it always has the same sequence of complex

sub-elements and / or the same sequence of simple sub-elements, or it could be

considered as semi-structured or un-structured, if this condition is not met. In other

words, an XML document can be classified as highly-structured if its root element is

considered as a highly-structured element. Taking this classification to the level of the

elements opens the door to documents that are a hybrid between highly-structured and

semi-structured; that is to say, contain highly-structured elements as well as semi-

structured elements.

There is no clear-cut line between defining a document as highly-structured, semi-

structured, or un-structured. The document may appear as un-structured initially, but

after analysis, it could become semi-structured or highly-structured. This classification

of XML documents is important to this research, since this study is concerned with the
hybrid of highly-structured and semi-structured. The following section builds upon this

informal classification to define this hybrid model.

3.4 Partially-Structured XML

Partially-structured data is a hybrid of highly-structured and semi-structured data (Lahiri

et al. 1999). A partially-structured XML document is defined in section 3.4.1, followed

by an example, then its advantages compared to highly-structured and semi-structured

data.

The next section, 3.5, discusses the proposed storage model in the literature for XML

and how these models perform when used to store partially-structured data.

3.4.1 Deflning a Partially Structured XML Document

Lahiri et al. (1999) introduced the notion of partially-structured data in the Ozone

system. Their definition is as follow:

"A hybrid data that is partially structured and partially semi-structured. It

contains entry points from structured data to semi-structured data and vice

versa. "

The above provides a general definition of data sets that comprise a mixture of both

highly-structured and semi-structured data. However, the definition is not specific to

XML-encoded data, since the focus of Lahiri et al's work was on managing hybrid data

66

set in general. Since, the focus of this research is partially-structured XML-encoded

data; a more specific definition is required. This definition builds upon definitions of the
degree of structuredness of XML elements (defined and discussed in section 3.3). In this
discussion, XML element is defined as a highly-structured element if it has the same

sequence of complex sub-elements and / or the same sequence of simple sub-elements.
Otherwise, the element can be defined as a semi-structured element. The definition must
include the notion of hierarchical structuring between the different element components,

since this is an inherent feature in an XML document. Also, the definition must include

the notion of "entry points" for access to, and navigation between the highly-structured

and semi-structured elements and vice versa contained within, or linked to the same or

other XML document. Specifically, entry points can be accessed and navigated using
the XML technologies which provide inter and intra links between different elements

within the same document or in another document, such as IDREF, XLink and XPath.

The proposed definition, therefore, is:

A partially-structured XHL Document comprises within its hierarchical

structure at least one highly-structured element and at least one semi-structured

element, where

* Each sub-tree rooted by a highly-structured element can contain a

combination of highly-structured sub-elements andlor semi-structured

sub-elements as its nodes.

9 Each sub-tree rooted by a semi-structured element, must comprise only

semi-structured sub-elements, as its nodes.

The relationship (or the entry point) from any element (either highly-structured

or semi-structured) to any other element within a partially-structured XHL
document is defined by the document's hierarchical structure. Or, is defined by

an element link, which is implemented using inter andlor intra XHL

technologies to link to different parts inside or outside the document (such as
IDREF, XLink and XPath).

As the above definition states, a partially-structured XML document allows the mixture

of both highly-structured and semi-structured data in the same XML document, where
an entry point (or a relationship) exists between these two parts. This research is

concerned with an individual and complex partially-structured XML document (single

67

document scenario - as explained in section 3.2.1). Based on the classification of XML

documents according to its degree of structuredness, an XML document can be seen as

a structured document that hosts semi-structured components. It contains one or more

complex elements that can be classified as highly structured as well as one or more

complex elements that can be classified as semi-structured. The highly-structured

elements could contain other highly-structured or semi-structured elements, while once

an element is defined as seird-structured; all its sub-elements are defined as semi-
structured. The relationship between different elements can be presented in the

hierarchy of the document or by using normal linking techniques defined by XML

technologies such as IDREF to link to another element inside the same document or

XLink to link to another XML document or XPointer to link to a specific element in

another XML document.

This definition is adopted throughout this research to represent a partially-structured

XML document. The next section shows that no extension is needed to the XML

Schema to validate a partially-structured XML document.

3.4.2 XML Schema Representing a Partially-Structured XML Document

A defining aspect of partially-structured data is that it contains a part that is structured

and therefore has a prescribed structure. The structure of XML-encoded data can be

made explicit using a variety of XML technologies, including DTD and XML Schema.

In my research I assume that the structure of the structured component of a partially-

structured XML document is prescribed by an XML schema. Specifically, the XML

Schema (W3C XML Schema online) can be defined as a formalization of constraints

that apply to a class of XML documents (Vlist 2002). It can be used to validate any
document inside a collection of partially-structured documents. There is no extension

needed to the XML Schema to validate a partially-structured XML document. Any

semi-structured part of the document can be defined in the schema as anyType (XML

Schema Part 0 Online). The definition of an element in this way allows the

unconstrained definition of this element and all its sub-elements. This represents exactly
the semi-structured part inside a partially-structured document, since the tree starting
from this element represents the senii-structured part.

The following section gives an example of a partially-structured document and how its

XML Schema is defined using anyType element definition.

68

3.4.3 Example of a Partially-Structured XML Document

A number of domains where partially-structured data scenarios occur have already been

identified (in 3.2.1). One example can be found within the health care domain, an XML

document containing patients' information can include:

" Highly-Structured part: patient Id, name, address, phone, email and date of birth

" Semi-Structured part: description of the illness, doctor visits

Figure 3.4 shows an example of a patients XML document.

<Patients>

<Patient>

<Id>l2345</Id><Name>George Wilson</Name>

<Address> <Street>West Street</Street><City>Sheff ield</City>

<PostalCode>S 12345</PostalCode>

</Address>

<Phone>2345678</Phone>

<Phone>077343545</Phone>

<DateofB irth>O 1/0 1/ 1 972</DateofBirth>

<Illnesses>

<Illness> Pneumonia

<Description>xlink: type=" simple"

xlink: href="http: //Illness Description. com/List. xm]#Pneumonia">
</Description>

<Date>25/12/2004</Date> Advised to rest for 5 days

<DoctorName>Mick Bil</DoctorName>

</Illness>

<Illness> <Date>25/ll/2003<1Date> car accident leading to an X-

Ray on his leg <XRayDate>25/II/2003</XRayDate >

<XRayTechnitionId>LK<1 XRayTechnitionId >

</Illness>

</Illnesses>

<1 Patient>

69

Figure 3.4 An Example of Partially-Structured XHL document

Figure 3.5 shows the XML Schema for the XML document shown in figure 3.4, the

main issue is that the Illness sub element is represented by anyType. This means that

there is no constraint on it and all its sub-elements

<? xml version=" 1.0"? >
<xs: schema xmlns: xs="http: //www. w3. org/2001/XMLSchema"

targetNamespace="http: //www. PatiantSystem. com"

xmlns=" http: //www. PatiantSystem. com"

elementFormDefault="qualified">

<xs: element name=" Patients">

<xs: complexType>

<xs: sequence>

<xs: element name=" Patient">

<xs: complexType>

<xs: sequence>

<xs: element name=ld" type="xs: integer"/>

<xs: element name="Name" type="xs: string"/>

<xs: element narne="Address'5

<xs: complexType>

<xs: sequence>

<xs: element name=" Street" type="xs: string"/>

<xs: element name="City" type="xs: string"/>

<xs: element name="PostalCode" type="xs: string"/>

</xs: sequence>

<Ixs: complexType>

</xs: element>

<xs: element name="Phone" type="xs: string"/>

<xs: element name="DateofBirth" type="xs: date"/>

<xs: element name="Illnesses" type="xs: anyType"/>

</xs: sequence>

</xs: complexType>

70

</xs: element>
</xs: sequence>

</xs: complexType>

</xs: element>

</xs: schema>

Figure 3.5 XUL Schemafor Partially-StructuredXML document

As this example shows, a partially-structured XML document is a hybrid of highly-

structured and semi-structured. The entry point from structured part to the semi-

structured part is represented in the hierarchy of the document as an illness element

which is a child element of the patient element. The reverse is represented inside the
illness element itself as it references another element inside another XML document

using XLink/XPointer.

The above illustrates that there is no need to extend the XML Schema to validate a

partially-structured XML document.

3.4.4 Advantages of Using a Hybrid Model to Store Partially-Structured

Data

Based on the previous discussion, a number of questions arise; can a purely highly-

structured data model be used efficiently alone to store and query partially-structured
data? Can a purely semi-structured data model be used efficiently alone to store and

query partially-structured data? Or is there a need for a hybrid model to better deal with

partially-structured data? This section discusses these questions by presenting the
disadvantages of using either these systems alone to reach a conclusion on the need for

a hybrid model.

* Using a highly-structured data model alone to store partially-structured data

Representing partially-structured data using a highly structured data

model (such as a relational data model) yields a complex data structure

with redundancies when storing the semi-structured part of the
document. This arises when mapping the semi-structured data part into

the highly-structured data model due to the structural complexity of the

semi-structured part. Any small change to the data structure could yield a
large evolution in the highly structured data schema. The structured data

71

model does not provide the navigational search approach to its data (data

browsing) which is a useful feature of the semi-structured data especially

when the structure of the data is not known.

* Using a semi-structured data model alone to store partially-structured data

A purely semi-structured data model such as Lore (McHugh et al. 1997)

does not take into consideration the structured part of the data for the
highly-structured part of the document. This means that it deals with the

whole document as if it were semi-structured without taking advantage
of its strong structure and typing of its highly-structured part to provide

optimisation either for storing or querying.

As the above two points showed, there are disadvantages of using a pure highly-

structured data model or pure semi-structured data models to store and query partially-

structured data. This poses a question; can a hybrid model produce a better performance

in storing and querying partially-structured data?

To answer the above question, the research proposes a partially-structured data model.
This model deals with the highly structured part of the document as highly-structured

data and therefore benefiting from the optimization technique available for this part of

the document, and it deals with the semi-structured part of the document as semi-

structured data and therefore providing a flexible approach to storing and querying this

part of the document. This model is explained in section 3.6 after discussing the use of

relational databases to store and query XML documents in general and the other related

storage models proposed in the literature to deal with partially-structured data in

particular. These are explored in the next section.

3.5 Related Work

As discussed in section 2.5, XML storage models can be categorized in three main

sections; those using the file system, those using mature database management systems

and those using novel storage structures. Two of these categories were discussed in this

section (2.5), namely storing XML as its native text files and novel storage structures. In

this section, a more in-depth and detailed discussion of using relational database

management systems to store XML data is presented, this is because the research
hypothesis (see 3.3.2) explicitly limits the scope of this study to use relational

72

databases. Their suitability for dealing with partially-structured data is presented. Two

other systems, which are related to storing partially-structured XML documents, are
discussed as well. These systems are the Ozone system (Lahiri et al. 1999) and
STORED (Semi-structured TO Relational Data) System (Deutsch et al. 1999). The

Ozone system was designed primarily for partially-structured data and is described in

section 3.5.2 while the STORED system was designed for semi-structured data in

general, but can deal with partially-structured data. The STORED system is described in

section 3.5.3. Finally section 3.5.4 discusses the pros and cons of these models, builds

upon them and motivates the hybrid model proposed in this thesis to store and query

partial ly-structured data.

3.5.1 Using Relational Database Management Systems

Since the emergence of XML as a new technology in 1998 (XML 1998: online), using

relational or object-relational database management systems to store XML documents

was considered as an option (Shanmugasundaram et al. 1999 and 2001, Shimura et al.

1999, Florescu and Kossmann 1999, Schmidst et al. 2000, Klettke and Mayer 2001,

Yoshikawa and Amagasa 2001, Kudrass 2002, Kudrass and Conrad 2002, Runapongsa

and Patel 2002, Tian et al. 2002, Amer-Yahia and Srivastava 2002, Bohannon et al.
2002, Kuckelberg and Krieger 2003, Han et al. 2003, Harding et al. 2003, Leonov and

Khusnutdinov 2004, Pal et al. 2004, Lu et al. 2006, Na and Lee 2005, Balmin and

Papakonstantinou 2005, Chaudhuri et al. 2005, Qin et al. 2005, Pardede et al. 2005,

2006 and Pal et al. 2006). This is due to the robust, well established and optimised

performance a relational database can offer. A recent empirical study of XML data

management shows that relational database management systems outperform native
XML database systems in processing XML data (Lu et al. 2006). This finding depends

on a number of factors such as document structuredness, data size and the queries'

workload. As this research hypothesis stated in section 3.2.2, this study uses relational
database management systems as the base to store and query partially-structured XML

documents.

Due to the mismatch between the complex tree structure of XML and the simple flat

structure of relational databases, there are many possible frameworks in which to store

an XML document into a relational structure. These frameworks can be categorized into

two main groups. The first is to "shred" the document into smaller parts (as in

73

Shanmugasundaram. et a]. (1999), Shimura et al. (1999) and Florescu and Kossmann

(1999), YJettke and Mayer (2001), Yoshikawa and Amagasa (2001), Kudrass and
Conrad (2002), Runapongsa and Patel (2002), and Kudrass (2002)) and the second is to

store the whole document as one part into a relational structure (as in Kudrass 2002,

SQL Server 2005 XML online, Oracle Database IOG Release 2 Online).

Shredding an XML document into smaller parts that can fit into a relational structure

can be subcategorized into the following approaches:

0 Structured-Mapping Approach: Shamnugasundaram et al. (1999), Klettke and
Mayer (2001), Kudrass and Conrad (2002) and Runapongsa and Patel (2002). In

this approach, the XML document is mapped to an equivalent relational

structure. Thus, the hierarchical structure of an XML document is mapped as a
collection of tables, one of which represents the document itself and the others

represent its nested tagged elements. The lowest-level of tagged elements are

represented as table columns. For example, if an XML element contains the first

name, last name and date of birth, it can be mapped to a relation containing three

columns (first name, last name and date of birth) as well as any other columns to

represent the hierarchal link between this element and other elements and to

represent the order. To implement this approach, there are four steps to be

followed (Atay et al. 2004,2007)

1. Schema mapping: Build the appropriate relational structure to host XML

data.

2. Data mapping: inserting XML data into the target structure.

3. Query mapping: translate XML queries into SQL queries.

4. Reverse data mapping: publish XML data from relational data.

Model-Mapping Approach: Shimura et al. (1999) and Florescu and Kossmann

(1999), Yoshikawa and Amagasa (2001) and Kudrass (2002). This approach

maps XML to a generic schema. The XML graph structure itself is mapped into

a relational schema in contrast to mapping the XMEL data structure as the

previous approach. That is to say, this approach models XML nodes and edges

not the XML data itself. There are three different ways to store the graph edges;
Edge, Binary, and Universal (Florescu and Kossmann 1999).

74

0 The Edge approach stores all edges of the graph that represent an XML

document in a single table (named the edge table). This table contains

object identifiers for the source and the target objects. It also contains the

label of the edge, a flag to indicate if it is an inner node or a value node

and an ordinal number indicating the order of the elements (Florescu and
Kossmann 1999).

o The Binary approach stores all edges with the same label into one table.

This approach corresponds to horizontal partitioning of the Edge

approach (Florescu and Kossmann 1999).

o The Universal approach creates a single table to store all the edges in the

XML document. This table corresponds to the results of a full outer join

of all binary tables (Florescu and Kossmann 1999).

There are two different ways to store the values; as separate value tables and
Inlining (Florescu and Kossmann 1999).

o The separate value tables approach creates a value table for each

conceivable data type. There is a link between the graph edge table and

these value tables. In this case, the flag in the edge table indicates which

value table to reference (Florescu and Kossmann 1999).

o The Inlining approach stores the value on the node in the same edge table

and there is a value column for each data type (Florescu and Kossmann

1999).

The three ways to store the graph's edges and the two ways to store the values
lead to six alternative mapping schemas.

XPath-Based Mapping Approach: XRel (Yoshikawa and Amagasa 2001) used

the XPath (Online) data model to model XML documents into elements,

attributes and text nodes. These nodes are stored in three different tables.

Another table used is the Path table, which contains pathid and pathexp (path

expression), pathid is a unique number per path while path expression contains

the actual path expression starting from the root for this node. The main feature

of this system is that recursive queries (expressed as V in XPath expression)

can be transformed to a string match. For example, if the XPath expression is

75

deptl1firstname, this means any path expression that starts with dept and ends

with firstname (for example, depOecturerlfirstname, department1papersl

authors1firstname), this can be expressed as pathexp like '#1dept#19v'#1

firstnanieff. Handling the recursive approaches in other models (such as model-

mapping approach) could produce a number of joins equal to the length of the

longest path matching the query. A similar approach is the one used by (Khan

and Rao 2001 and Khan et al. 2002). In this approach, the path approach uses
dot '. ' instead of slash 'P, so the path expression is specified as
(. dept. lecturerfirstname). They utilised the DTD to solve the problem of set

value (as it is defined in DTD using *). It used a unique sequence number

starting from zero to identify the element position in the set. This is unlike XRel

approach, which uses the region concept, as each element has a start and end

attribute defining the number of bytes counted from the beginning of the

document till the start and end of this element. The start attribute can tell the

order of the elements inside the set and start and end is also used to identify the

ancestor/descendant relationship (for example, if an element starts at 10 and

ends at 100, and another element starts at 50 and ends at 60, then the second

element is a descendant element of the first one).

The structure mapping approach is suitable for highly structured documents (Lu et al.
2006) and specifically for storing a large number of XML documents that conform to a

static and limited number of document structures or DTDs (Yoshikawa and Amagasa

2001). The model-mapping approach is more suitable for the semi-structured or un-

structured documents. Its disadvantage is that when querying the data, it can produce a
huge number of internal joins.

The alternative approach to "shredding" XML into a relational database is to store the

whole XML document as one unit. This can be subcategorized into the following two

types:

Storing the document as CLOB field (Kudrass 2002). To query an XML

document stored in a CLOB field, a similar approach to the one used to query an
XML document stored in a text file is used. The document is loaded in the

memory (for example, as a DOM tree) and accessed using standard techniques

such as Xpath (Online) and XQuery (Online, Fernandez et al. 1999). As found

by Tian et al. (2002) this approach shows serious limitations with big XML

76

documents since it requires the presence of the whole XML document in the

memory. Therefore, the query response time increases linearly with the size of
the document. One approach to overcome this problem is to create text aware
index and store it in the database (as in Grossman et al. 1997) to use it to retrieve
XML data from the CLOB field. In both cases (with and without the indices), it
is not possible to retrieve a part of the document, the system has to retrieve the

whole CLOB field, then either use the DOM approach or indices to retrieve the

necessary data from it. Another scenario is to use the tools provided by the
DBMS for searching text, such as full-text, proximity, synonym and fuzzy

searches. DBMS are starting to make these searches XML-aware which may
improve the use of this technique in the future (ORACLE Database I OG Release
2 Online).

* The second approach is to store the document as an abstract XML data field.

This was recently introduced in the relational model. SQL: 2006 (online) is the
latest standard for relational databases and it standardises the use of XML data

types in relational databases. Currently, a number of commercial database

systems implement this standard in their DBMS, for example Oracle, Microsoft,
IBM... etc. These DBMSs offer a number of ready-to-use indices which will
inevitably show better performance in querying the document as opposed to

accessing the document in CLOB (for example, SQL Server 2005 XML online).

Storing the whole XML document in a relational database provides a flexible way to

store un-structured and semi-structured XML documents, simply because these

documents are stored without any need for pre-processing. The round-trip problem
(reconstruction of the whole document from its shredded parts) does not exist. This

simplicity comes at a price when using the CLOB approach, a similar approach to

querying XML document stored in the file system is used to query XML document

stored in CLOB. In this case, these two approaches (using the file system and CLOB

approach) share the same serious limitations as explained in section 2.5.1 (Tian et al.
2002), since they require loading of the whole XML document into memory. So, the

query response time increases linearly with the size of the document. While storing
XML documents as the new XML data type with the use of indices offered by the
DBMS is a more promising approach, its performance has yet not been tested because

this feature was recently released (for example, MS SQL Server 2005 which was

77

released in December 2005). This approach is used in this study and is explained in

more detail in the following chapter.

3.5.2 Ozone System

In the previous section, the storage models based on the relational data model to store
and query XML documents in general were presented. In this section, a storage model
which was proposed especially for partially-structured data is presented, the Ozone

system (Lahiri et al. 1999).

The Ozone system introduced partially-structured data as an integration of highly-

structured and semi-structured data. It extended the structured object database model
ODMG (Cattell et al. 2000) to host both semi-structured data as well as the Object

Query Language OQL (named OQLs) to store and query semi-structured data, and is

based on the Object Exchange Model OEM (Papakonstantinou et al. 1995) and the

Lorel Language (Abiteboul et al. 1997).

The idea behind the Ozone system is to extend the ODMG model by a new, built-in

class type OEM which then allows crossover points from the structured part of the data

the semi-structured part and vice versa. It extends the semantics of OQL to cover this
extension by introducing new semantic operations that allow this crossover. The syntax

of the extension (which is called OQLs) is identical to OQL. The semantics is also

identical in the case of a query on only the highly-structured part of the database. The
following subsections explore the Ozone system in more detail by describing its

motivating example, and then its design concepts.

3.5.2.1 Ozone Motivating Example

The Ozone system (Lahiri et al. 1999) uses an example of a simplified on-line broker

that sells products on behalf of different companies. This is a good example of partially-

structured data since some information such as a product's number and name and

companies' details are highly structured while product information and reviews about

products are semi-structured because each type of product can have details which are
specific to it and not applicable to other product types. For example, computers may
have a processor attributes while monitors may have a screen size attribute. Figure 3.6

shows the design of the structured part of the data, while figure 3.7 shows a possible

semi-structured part for the 'product info' attribute. This reveals how a link could be

78

made from the structured part to the semi-structured through the 'product info' attribute

and also the reverse through the 'competing' attribute.

79

Broker

Catalogue

Vendors

I
Produces (I to

Company 1_

Products

Product

Made by (many to

Figure 3.6 Structured ODMG classes in the retail-agency databasefor the Ozone

System Example (Lahiri et al. 1999)

01: Product
Attribute (OEM) productinfo

Compatible

Weight

100 "16oz"

1 04: Product I

Competing
Name /\ Madeby

I 02: Product 03: Company I"Svsteml2" "XylemInc. "

Figure 3.7 Example OEM graph for the prodinfo attribute of a Product objectfor the

Ozone Example (Lahiri et al. 1999)

Finally, the semi-structured part is flexible enough to show a competing product such as

"System 12" which is not part of the structured database as a complex OEM object.

3.5.2.2 Ozone Design Concept

The previous example shows how both structured and semi-structured data can be

linked. In this section, some design concepts of the Ozone system are discussed.

The Ozone system proposed adding a new OEM class; this allows the storage of semi-

structured data in the ODMG model. This OEM class can be classified into two

80

categories, OEMcomplex and OEMatomic representing complex and atomic OEM

objects respectively. OEMcomplex is a collection of pairs (label (as string), value (as
OEM object)). Because an XML document represents an ordered graph; there are two

subclasses for this collection as OEMcomplexset for the unordered collection and
OEMcomplexlist for the ordered one.

OEMatomic represents atomic values, which are also represented by subclasses. For

example OEM-integer encapsulates the type integer. It represents OEM (integer)

objects. And so on for the other atomic types such as OEM-real, OEM-string, and
OEM_Boolean ... etc. OEM-object can be used to reference any other class inside the
database and to be the cross over point from the semi-structured to the structured part
since the object class is a super class of all the classes inside the database, but for

performance reasons, and instead of making it general, which leads to determining the
type of the class at run time, the Ozone system defines an OEM class for each class in

the database to be used as a reference to that class such as OEM-product and
OEM-company. Finally, the atomic OEM objects encapsulate non-atomic literal values
(tuple, set, list ... etc), which could be represented by equivalent complex objects. But

also for performance reasons, the Ozone system defines additional OEM subclasses

encapsulating the types of non-aton-dc literal types that most likely to be used in queries.

3.5.3 STORED System

After presenting relational storage models and the Ozone system in the last two

sections, in this section, a storage model proposed for semi-structured data but relevant
for partially-structured data is presented, it is the STORED (Semi-structured TO

REIational Data) System (Deutsch et al. 1999).

The STORED system defines a declarative query language that specifies a storage

mapping from a semi-structured data model (an ordered version of the OEM data model
(Papakonstantinou et al. 1995)) to a relational data model and an overflow graph. Using

data mining, the mapping tries to exploit any patterns in the data and then create the

equivalent relational structure to store this data, and any part of the data which cannot
be fitted into the relational structure, is stored in an overflow graph. When a query is

executed, it is re-written into a query over the relational store. Any update over the

semi-structured data is also re-written into an update over the relational store. The two

possible applications of this system are:

81

* To store and manage existing semi-structured data sources efficiently.

e To convert relational sources into a semi-structured format such as XML.

The STORED system can accept partially-structured data and store the highly-

structured part of it into a relational structure while storing the semi-structured part of it

as an overflow graph. This idea of dividing the document into two parts and storing
each part according to its natural format is important and this research will follow it up
as described later in this chapter.

3.5.4 Discussion

The Ozone system is very specific about the problem that it is applied to. For example,
it defines a class called OENI-product, which is only applicable for the problem
definition it is designed for. For the STORED system, although the initial mapping of

semi-structured data into the relational data model may yield a good result, with time,

the performance can degrade, because of changes in both the data and the query mix;
this requires a new mapping to be generated. On the other hand, there is an overhead in

dealing with the overflow graph to store semi-structured data.

One of the future extensions of the the Ozone system as described in the Ozone research

paper (Lahiri et al. 1999) was:

* Object-relational Ozone: to define a similar semi-structured extension to the

object-relational data model

This is the first point that this research takes further. An XML data type is introduced in

SQL: 2003 and implemented in a number of database management systems such as
Microsoft SQL Server (SQL Server 2005 XML online) and Oracle (Database IOG
Release 2 Online). This is the base for extending the object-relational data model to host
the semi-structured part of the document. The second point is based on STORED

system. The proposed system follows the idea proposed by STORED to store the
structured part of the document by mapping it to an equivalent relational structure. The

proposed model is different in the way the semi-structured part of the document is

stored. In STORED this part is stored as an overflow graph while in the proposed
system it is stored as an NML data type. Storing the semi-structured part in XML data
type provides a more flexible approach compared to the overflow graph proposed by

82

STORED. There is no need for a special algorithm to insert data or to query data

compared with the overflow graph data representation.

The following section describes in more detail the model proposed in this research to

store and query partially-structured XML data.

3.6 The Proposed Model for Partially-Structured XML Documents

As explained previously, partially-structured data is a hybrid model between highly-

structured and semi-structured data. The proposed model for partially-structured XML

documents is a hybrid between a structure mapping approach and storing XML as an
XML data type. The mapping of the XML document is as follows:

The highly-structured part is mapped into an equivalent relational schema,
therefore benefiting from the optimisation techniques offered by the relational
database for this part of the document.

e The semi-structured part is stored as XML data type, therefore allowing a
flexible way to manage this part of the document.

Comparing this model with the existing models for partially-structured data as they

were discussed in the previous section, this model is based on the relational data model
(vs. Ozone (Lahiri et al. 1999) model which was based on the object oriented data

model). There is a similarity between The STORED (Deutsch et al. 1999) model and
the proposed model when dealing with the highly-structured part, as both of them map
the highly-structured data part to an equivalent relational schema. The difference is

when dealing with the semi-structured part. In STORED, the semi-structured part is

mapped to an overflow graph. Using the overflow graph needs a special algorithm to
insert and update data in this part of the document. However, in the proposed model,
there is no need for a special algorithm to deal with this part as it is mapped to an XML
data type.

To query the proposed storage model, the query language is a mix between SQL and
XQuery, where SQL can be used to query the structured part while XQuery can be used
to query the semi-structured part.

In the proposed model, the inflexibility of dealing with the semi-structured part using a
relational structure can be avoided as the semi-structured part of the document is

mapped to an XML data type, whereas the highly-structured part is mapped to an

83

equivalent relational structure. This allows the structured part to take advantage of the

full power of the query optimisation offered by the relational database management

system while allowing more flexibility for the semi-structured part of the document.

Hence, the irregularity and type and structure heterogeneity of the semi-structured part

of the document does not present a problem in the proposed model.

To summarise, the proposed hybrid system accepts both highly-structured and semi-

structured data, stores them as their natural data model, taking the advantage of both of

them and providing links between them so users can query and navigate both

simultaneously.

3.7 Conclusion

In this chapter, the research's motivations were presented and the hypothesis was
derived. That hypothesis postulates that better query processing can be achieved using

relational database technology to exploit pre-knowledge of XML data structure.

Accordingly, a proposed hybrid model for partially-structured data was presented. This

hybrid approach is based on two base models; structured mapping approach and storing

the whole XML document into an XML data type. Further, the chapter argues that in

addition, the hybrid approach is likely to have performance advantages over storing the

whole XML document into an XML data type and can be more flexible than in storing

the whole document as a structured mapping approach.

A number of experiments were constructed to test the performance of this proposed

mode. Chapter four discusses in more detail the construction of these experiments while

the results of the experiments and the analysis of these results are presented in chapter
f ive.

84

Chapter 4 Experiment Design

4.1 Introduction

In the previous chapter, the research motivations were discussed and the research
hypothesis was formulated. The research hypothesis is a proposition that performance

enhancements can be achieved by exploiting pre-knowledge of prescribed structure

within XML documents and/or across XML documents collections. This was followed

by a discussion of how XML documents can be categorised according to their degree of

structuredness, so as to analyse structural properties for which this approach is

applicable. Accordingly, the definition of the class of partially-structured XML

documents as a hybrid of highly-structured and semi-structured data was presented.
This was followed by a discussion of different XML storage models for XML data, and

an analysis of their potential for storing and querying partially-structured data. The

conclusion of this analysis was an elaboration of the hypothesis, in which a proposed

storage model was presented, which may have a potential to realise performance

enhancements for partially-structured data.

The proposed model was designed to exploit pre-knowledge of highly-structured

components of the data, while at the same time allowing flexibility in storing ad-hoc

semi-structured data. Specifically, my hypothesis is that enhanced querying can be

achieved by storing partially structured XML documents in a relational database so that

mature relational query optimisation technology can be applied when querying the

structured part of the document. In order to test this hypothesis, a model has been

developed to achieve this relational representation. The structured parts of the document

are mapped onto a relational structure that models their structures, while the semi-
structured parts are stored as instances of the XML data type.

This chapter presents the experiments' design to evaluate the proposed storage model as

a mean of testing the research hypothesis. These experiments were designed to compare

the relative performance of the proposed hybrid model against the two base models it

combines; mapping the whole XML document to an equivalent relational structure and

storing the whole XML data into an XML data type.

Accordingly, to achieve this objective, this chapter is organised as follows: section 4.2
discusses the objective of the experiments, followed by the strategy for achieving those

85

objectives, then it presents the current SQLIXML standard and it ends by describing the
different storage models that were used in the experiments. Section 4.3 discusses the

current benchmarking techniques proposed by the research for XML in general, and this

section concludes with a comparison between these different techniques and identifying

one of these techniques to be used in the experiments. Section 4.4 presents the

adaptation needed for the chosen XML benchmark technique to deal with partially-

structured XML documents. This includes both the data set and the query set used in the

experiments. Section 4.5 shows how the experiments are conducted and how the results
are evaluated while section 4.6 presents the experimental environment which includes

both the hardware and the software used in the experiments. Finally section 4.7

concludes this chapter. The experiments' results and analysis are discussed in the
following chapter.

4.2 Experimental Design

This section outlines the experimental design. Section 4.2.1 defines the objectives of the

experiments, followed by section 4.2.2 which explores the strategy to achieve these

objectives. Section 4.2.3 discusses the SQUXML standard. Finally, section 4.2.4

presents the storage models used in the experiments.

4.2.1 The Objective of the Experiments

The research hypothesis as it was presented and discussed in more detail in section 3.2.2

is:

For the class of XML documents which contains both a prescribed highly-

structured part and a semi-structured part, performance enhancement may be

achieved over existing query processing techniques for semi-structured
documents by using relational database query processing and optimisation

technology to exploit pre-knowledge of the prescribed highly-structured part of

the data.

In accordance with this hypothesis, a hybrid model was proposed (section 3.6) to deal

with partially-structured XMLencoded data. This model takes into consideration the

utilisation of the known knowledge of the prescribed structured part of a partially-

structured data collection. This model is a hybrid model which combines a storage

mapping approach (Shanmugasundaram et al. 1999 and 2001, Shimura et al. 1999,

86

Schmidst et al. 2000, Klettke and Mayer 2001, Yoshikawa and Amagasa 2001, Kudrass

and Conrad 2002, Runapongsa and Patel 2002, Tian et al. 2002, Amer-Yahia and
Srivastava 2002, Bohannon et al. 2002, Kuckelberg and Krieger 2003, Han et al. 2003,

Harding et al. 2003, Leonov and Khusnutdinov 2004, Pal et al. 2004, Lu et al. 2006, Na

and Lee 2005, Balmin and Papakonstantinou 2005, Chaudhuri et al. 2005, Pardede et al.
2005,2006 and Pal et al. 2006) to represent the highly structured component and which

utilises an XML data type (SQL: 2003, SQL: 2006 (ISO/IEC 9075, part 14, XML-related

specifications - SQLIXML), Krishnaprasad et al. 2005, Murthy et al. 2005, Singh et al.
2005, Rys 2005, Rys et al. 2005, Beyer et al. 2005, Pal et al. 2005 and 2006, Ozcan et
al. 2006 and Lacoude 2006) to represent the semi-structured data component. So, the

main objective of these experiments is to test the relative performance of this hybrid

model against the two base models, storage mapping and the use of XML as a data type.
The strategy to achieve this objective is presented in the next section.

4.2.2 The Experiments' Strategy

To achieve the experiments' objective discussed in the previous section, it is necessary
to determine appropriate metrics and analysis methods to compare performance, and

establish appropriate data sets, query sets, scenarios and an operational environment

within which meaningful comparisons can take place. It is also necessary to determine

the significance and limitation of the results achieved in this way. Accordingly, the

strategy to achieve the above objective is:

e Review the current SQUXML standard, and the different implementations in the
database industry, and choose which database management system to be used as
a test bed for these experiments. Section 4.3.2 presents the results of this review

and ends up with the chosen database management system.

Determine exactly which XML storage approaches can be compared within the

experiments, and present the rational for these choices as in section 4.3.3.

Specifically, XML storage approaches must be selected which characterise the
intrinsic properties of the hybrid approach, proposed in section 3.6, and the two

approaches that it combines, i. e., storage mapping and XML as a type, such that

valid and generalisable comparisons can be made.

Review the current XML benchmarks and choose the most appropriate one to be

used as the basis for the experiments. Section 4.3 reviews and analyses current

87

XML benchmarks and compares and contrasts between them. Then nominate the

most appropriate one to be used in this research.

Adapt the chosen XML benchmark technique to address the aim of the

experiments, specifically to test partially-structured data. This includes the

choice of the data set as well as the adaptation of the query set to match the

partially structured document requirements. These adaptations are presented in

section 4.4 which includes two parts; a section for the adaptation of the data set

and another section for the adaptation of the query set.

The method of comparison must be established. Specifically, metrics relating to

performance and invariants must be identified and appropriate analysis methods

must be designed, such that relative performances of the three approaches being

compared can be evaluated across the range of relevant variable. Section 4.5

presents this method of comparison.

The operational environment - within which the experiments are conducted - is

described. In particular, consideration must be given to the hardware/software

environment within which the experiments are executed and how its stability can
be established, the way in which the chosen systems as well as the proposed

system are implemented. This point is discussed in section 4.6.

Finally, the experiments must be conducted and results analysed, including an

analysis of their significance and limitation. This is presented in the following

chapter.

The above steps outline the strategy used to conduct these experiments. Each step is

elaborated in more detail in the following sections in this chapter. The analysis of the
results takes place in the following chapter.

4.2.3 SQLJXML Standard

Since the emergence of XML as a new technology in 1998 (XML 1998: online), the
international standard agency (ISO) started to incorporate this new technology into the

well established SQL standard. The first appearance of the XML into the SQL standard
was in the SQL: 2003 (ISO/IEC 9075, part 14, XML-related specifications -
SQUXML). In this standard, the XML data model was based on the XML Infoset data

model (as described in section 2.3.2.2). The XML data type was firstly introduced in

88

this standard to store an XML document as a column inside a relational table. The

second emerging standard from ISO was recently published in SQL: 2006 (ISO/IEC

9075, part 14, XML-related specifications - SQUXML). One of the major

enhancements was the change of the XML data model from the Infoset to XQuery 1.0

and XPath 2.0 data model (XDM, W3C Candidate Recommendation 11 July 2006)

(Eisenberg and Melton 2004, Krishnaprasad et al. 2005). XQuery 1.0 and XPath 2.0

data model was not considered mature enough when the SQL: 2003 was published.

Every major database management system vendor has followed suit, by incorporating

XML into their DBMS products, for example Oracle (Krishnaprasad et al. 2005, Murthy

et al. 2005), Microsoft SQL Server (Pal et al. 2005 and 2006, Rys 2005, Rys et al. 2005

and Lacoude 2006), IBM DB2 (Beyer et al. 2005 and Ozcan et al. 2006) and Sybase

(Singh et al. 2005). However, as the XML standard is still emerging, the

implementation is still far from standardised within the different database management

systems. There is no way of knowing just how well each DBMS will process XML data

as each database vendor has taken different approaches to represent and manage XML

data inside their respective database management systems.

In order to run the experiments, there is a need to choose an existing DBMS that

supports XML data fields. Due to the time limitations, repeating the experiments with

other DBMS is beyond the scope of this project. In particular, the aim of the

experiments is to establish the impact of the trade off, as the ratio of highly structured to

semi-structured data varies, between database complexity and increased size which are a

consequence of storage mapping approaches, and the relative structural simplicity and

compactness which is a consequence of XML as a type approach. The analysis of the

results - as it will be discussed later in more detail - would focus on the relative
performance rather than the absolute performance as far as possible. Therefore, it was
decided that one DBMS which supports an XML data type would be selected to provide

a common test bed for experimental comparison approaches, to establish the relative

performance between these different approaches. Accordingly, the choice of DBMS was

seen as arbitrary, and a decision was made to use MS SQL Server 2005 (Pal et al. 2005

and 2006, Rys 2005, Rys et al. 2005 and Lacoude 2006) database management system,
because it is the available DBMS in the Department of Computer Science, University of
Sheffield, it is widely used internationally and is representative example of SQL/XML

technology.

89

4.2.4 Storage Model Used in the Experiment

The three XML storage models used in the experiments are the hybrid approach
described in section 3.6 and the two approaches it combines, Le.:

41 The Structure Mapping Approach: in this case, the whole partially structured
XML document is mapped to an equivalent relational structure
(Shanmugasundaram et al. 1999 and 2001, Shimura et al. 1999, Florescu and
Kossmann 1999, Schmidst et al. 2000, Klettke and Mayer 2001, Yoshikawa and
Amagasa 2001, Kudrass 2002, Kudrass and Conrad 2002, Runapongsa and Patel

2002, Tian et al. 2002, Amer-Yahia and Srivastava 2002, Bohannon et al. 2002,
Kuckelberg and Krieger 2003, Han et al. 2003, Harding et al. 2003, Leonov and
Khusnutdinov 2004, Pal et al. 2004, Lu et al. 2006, Na and Lee 2005, Balmin

and Papakonstantinou 2005, Chaudhuri et al. 2005, Qin et al. 2005, Pardede et

al. 2005,2006 and Pal et al. 2006).

To store XML as an XML data type: the whole partially structured XML

document is stored as an XML data type instance (SQL: 2003, SQL: 2006

(ISO/IEC 9075, part 14, XML-related specifications - SQUXML),

Krishnaprasad et al. 2005, Murthy et al. 2005, Singh et al. 2005, Beyer et al.
2005, Rys 2005, Rys et al. 2005, Pal et al. 2005 and 2006, Ozcan et al. 2006 and
Lacoude 2006).

The proposed hybrid approach: in this case, the highly-structured part of the

document is stored as an equivalent relational structure while the semi-

structured part is stored as an XML data type instance (as described in section

3.6).

The following subsections briefly describe each of these models and present the rational
for these choices.

4.2.4.1 Structured Mapping Approach

The first base storage model is the one using structured mapping approach (Document
Dependent Approach) (Shanmugasundaram et al. (1999), Klettke and Mayer (2001),
Kudrass and Conrad (2002), Runapongsa and Patel (2002) and Amer-Yahia et al.
(2004)) (see section 3.5.1 for more detail). In this approach, the XML document is

mapped to an equivalent relational structure. Thus, the hierarchical structure of an XML

90

document is represented as a collection of tables, one of which represents the document

itself and the other tables represent the document's nested tagged elements. The lowest-

level tagged elements are represented as table columns. To implement this approach,
four steps must be followed (Atay et al. 2004,2007)

1. Schema mapping: build the appropriate relational structure to host XML data.

2. Data mapping: inserting XML data into the target structure.

3. Query mapping: translate XML queries into SQL queries.

4. Reverse data mapping: publish XML data from relational data.

This approach is suitable for highly structured documents (Lu et al. 2006) and

specifically for storing a large number of XML documents that conform to a limited

number of document structures, (typically defined as DTDs or XML Schema) and
which are static over time (Yoshikawa and Amagasa 2001).

However, if storage models in this category are to be applied to partially structured data,

they must also be able to represent the semi-structured components of large collections

of XML documents, which is problematic. Specifically, the problems for the semi-

structured part of the document to be stored using the structure mapping approach

relates to the complexity of the generated schema, the inherent ambiguities and

contentions that must be resolved and the inflexibility of this resulting relational schema
in situations where the structure of the XML document collection is volatile (as

discussed in 3.5.1)

The above problems derive from the fact that, in some respects, XML has more

expressive power than the relational model (Yoshikawa and Amagasa 2001). This is due

to the hierarchical and ordered nature of XML data compared to the simple, flat and

unordered nature of relational data (Atay et al. 2007). Therefore, preserving an XML
document's semantic content when mapping it to a relational representation is

problematic. For example, the relational model cannot directly model the tree structure

of the semi-structured part, such as the hierarchies of elements (for example, if it is un-
limited recursive elements) as explained by Pasila (2002). Also, XML includes

structural directives, such as the Or (T) choice in an XML document, which cannot be

mapped naturally in a relational data model (Yoshikawa and Amagasa 2001).

Furthermore, it is hard to force the semi-structured part to adhere to an explicitly

specified rigid schema because of its irregularity and because it can evolve rapidly and

91

data elements may change their data type. Thus, it may be difficult to decide in advance

on a single correct schema that can match all the possible variations of the semi-

structured part of the document (McHugh et al. 1997). For example, part of the data

could hold an author's first name and last name while another part could have the

author's full name in one field; this can yield redundancy in storing the data and an

ambiguous situation when querying it. So, using such a model can restrict the full

flexibility of the semi-structured part. Also, a small change of the structure in part of the
document could lead to a series of complex changes in the equivalent relational

structure. For example, if the author element in the document changed from one author
(this means one field inside a record) to multiple authors (a new table to hold these

multiple authors' names must be added to the equivalent relational structure).

The important issue is how schema mapping can be executed. Basically, there are three

approaches to map XML documents to a relational presentation:

41 From the XML data itself, by using data mining techniques to extract the

structure from within a collection of XML documents, such as STORED system

(Deutsch et al. 1999), see section 3.5.3.

* From DTD (or XML Schema), by analysing the DTD structure and converting it

to a relational structure. Examples of this approach include the basic inlining

technique, shared inlining, hybrid inlining (Shanmugasundararn et al. 1999), the

new inlining (which is an improvement to the shared inlining technique, Lu et al.
2003), DOM-based approach (which is based on the new inlining technique,
Atay et al. 2004 and 2007) and mapping DTD to relational with semantics

constrains (such as functional dependences, domain constrains, choice

constrains, reference constrains and cardinality constrains, Lv and Yan 2006). A

similar approach is to map XML Schema to ER diagrams (Penna et al 2006),

and then map the ER diagram to a relational structure.

Using a manual approach by analysing the XML document and/or its DTD, if it exists,
and creating an equivalent relational structure. This approach follows the same normal
procedure for database design and therefore it is a subjective approach. Two database
designers can produce two different and valid schemas for the same XML document.
The other important factor in this approach is the query workload; this could lead to

some changes in the schema design, for example, by de-normalising parts of the

92

schema, rather than fully normalising it, or by using alternative modelling capabilities

such as sub-types (Elmasri and Navathe 2006). The first two automated approaches can

be adapted manually later on to put the final touches to the automated, generated,

equivalent relational schema.

This research uses the manual approach. This suits the partially-structured document

collection better since it gives more control and flexibility over categorizing the
document into highly-structured and semi-structured parts. The XML document used
and its DTD are fully analysed to produce such a schema to host XML data into the

relational structure.

4.2.4.2 Store the Whole XML Document as an XML Data Type

As presented in section 4.2.3, storing XML documents as an XML data type

(SQL: 2003, SQL: 2006 (ISOJEC 9075, part 14, XML-related specifications -
SQLJXML), Eisenberg and Melton 2004, Krishnaprasad et al. 2005) is an emerging

approach. It is promising but its performance is yet to be tested. This is because this

feature is still emerging and recently released in new software versions releases (such as
MS SQL Server 2005 which released in December 2005).

NIS SQL Server 2005 provides not only the storage of XML inside an XML data type,
but it implements other parts from the SQUXML standard. It supports indices for XML

data inside YML data type as well as using XQuery to query XML data (Pal et al. 2005

and 2006, Rys 2005, Rys et al. 2005 and Lacoude 2006).

So, storing an XML document as a new XML data type is used as the second base

storage model in the experiment, including the utilization of indices provided by the
DBMS to improve query performance. In this approach, the structured part of the
document is ignored and the whole document is stored as a semi-structured document.
That is to say, the document is dealt with as if it is 100% semi-structured.

4.2.4.3 The Proposed Hybrid Approach

The proposed hybrid model is a combination of the above two base models. The idea

behind this model is to take the advantage of both the two base systems, as described in

3.6. Mapping the structured part into a relational structure allows the use of relational

query optimisation for the highly-structured part of the data. Mapping the semi-

93

structured part to XML data type allows more flexibility when dealing with this part of
the document.

The aim of the experiments is to test the query performance of the proposed models

against the two base models, and to determine weather this hybrid model has any

advantages/disadvantages compared with its two base models. This entails the

benchmarking of the performance of the proposed model, to compare with the other
data models. Instead of creating a benchmark from scratch, one of the available
benchmark techniques in the XML data management research field was adapted to

support the research aim. This is considered appropriate given that the aim of existing
benchmarks is to compare the relative performance of different system to store and

query XML documents. The chosen benchmark was adapted in view of the specific
features of the experiments. This adaptation is explained in full in section 4.4. In the

next section, the different benchmark systems are explained, followed by a comparison

of these systems and the selection of the benchmark system chosen for the experiments.

4.3 XML Benchmarking

In the field of database benchmarks, there are a number of benchmarking techniques

used to measure the performance of a specific application or domain. The Transaction

Processing Performance Council (http: //www. tpc. org) provides the database industry

with a number of these domain-specific benchmarking such as TPC-C for online
transaction processing, TPC-H, TPC-R for decision support systems and TPC-W for

transactional web e-commerce benchmarking. Database researchers provide a number

of other benchmarks such as the Wisconsin benchmark (DeWitt 1993) and the 007

Benchmark which represents a comprehensive test of OODBMS (Carey et al. 1993).

XML DBMS Benchmarking - as a domain specific benchmarking - receives a lot of

attention in the XML data management research field because of the need to compare
the performance of different XML data management systems. This is due to the increase

usage of XML documents and the variety of different models and techniques used to

store and query XML databases and therefore the need to compare their performances.
Although one of the primary uses of XML is in web e-commerce transactions, TPC-W,

as a transactional web e-commerce benchmark, was not sufficient by itself to
benchmark XML databases because of the complexity of XML DBMS activities many

94

of which are not covered in what TCP-W measures, i. e., the number of web interactions

processed per second.

XML benchmarking can be divided into two main categories; the first is application
benchmarking, in which the benchmark is designed to measure the overall performance

of any XML database. There are four major XML benchmarks in this category in the
XML data management research field. They are XMach-I (B6hme and Rahm 2001,
2002), XMark (Schmidt et al. 2002), X007 (Brassan et al. 2002), and XBench (Yao et
al. 2002,2003,2004). The second category is the micro benchmark. This class is
designed to test basic query system components such as selections, joins and
aggregations inside the XML DBMS. Testing these individual components leads to the
ability to isolate any problem and improving such components leads to an overall
improvement of the XML DBMS performance. The Michigan Benchmark (Runapongsa

et al. 2002a, 2006) is an example of this class.

The following subsections describe each of these benchmarks in more detail followed
by a comparison of them all.

4.3.1 XMach-l

B6hme and Rahm proposed XMach-1 in 2001. It is a multi-user benchmark for XML
data management system. XMach-I is based on a web application scenario. This system
uses a multiple documents data set. The majority of documents in this scenario are
document-centric (such as books or essays) as well as a minority of data-centric
document which contains meta data about documents such as document Id, URL, insert

and update times. XMach-l consists of eight retrieval queries as well as three update
operations (one insert, one delete and one update operation).

4.3.2 XMark

Schmidt et al. (2002) proposed XMark. It is a single-user benchmark for an XML data

management system. XMark is based on an internet auction web site. So, it uses a single
big XML document. The majority of the elements inside this single XML document are
data-centric which cover the data of the items, the bids and so on. While the minority
cover document-centric which are the textual description of items (which is a good
example of a partially structured document). XMark consists of twenty different

95

retrieval queries which cover more aspects than XMach. It does not have any update

queries.

4.3.3 X007

Brassan et al. (2002) developed X007 based on the 007 object oriented database

management system benchmark (Carey et al. 1993) with some minor changes to both

data structure and additional operation types to cover XML usage patterns. X007 is a

single-user benchmark for an XML data management system. X007 is not based on a

specific application domain; it rather focuses on a single XML document with a

majority of the components represented as complex objects using component-of

relationship. So, the majority of the elements inside this single XML document are data-

centric, while the minority are document-centric, represented by elements with mixed

content (yet again another good example of a partially structured document). X007

consists of twenty three different retrieval queries and it does not have any update

queries.

4.3.4 XBench

Yao et al. (2002,2003,2004) developed a family of XML benchmarks (XBench). It is a

single-user benchmark for XML data management systems. What really makes XBench

different from the others, is that it does not consider only one type of application, it

covers four different types by classifying the application into two different classes

(Data-Centric (DC) and Text Centric (TC)) and also classifying the data into two

different classes (Single document (SD) and multiple documents (MD)). Using these

two classifications will produce four different designs (TC/SD, TC/MD, DC/SD,

DC/MD). The second feature which makes XBench unique among the others is that it

covers all the XQuery (Online 2003) features. So, XBench deals equally between the

different classes of XML documents.

4.3.5 The Michigan Benchmark

Runapongsa et al. (2002a, 2006) developed the Michigan Benchmark as a micro
benchmark. It is currently the only one in this category of benchmarking in the XML
database research field. This type of benchmarks is designed to test individual system
characteristics. And by doing that, this could allow the system designer to identify the

parts of the system that needs more attention and more development, for example, basic

96

query components such as selections, joins and aggregations inside the XML DBMS.

The queries are categorised into six main categories (Selection, Value-Based Join,

Pointer-Based Join, Aggregation and Update Queries, Aggregation, Update) with a

number of different queries in each category.

4.3.6 A Comparison between Different XML Benchmarking Techniques

The following table is a comparison between these five XML benchmarks. It is

compiled based on two different comparisons in Yao et al. (2002a) and B6hme and

Rahm (2003).

XMach, 'I XMark '' X007 ',, XBench '' Michigan

Scope Application Application Application Application Micro
Users Multi-user Single-User Single-User Single-User Single-User
DB Size _ 16KB * No IOMB - 10 4MB - 10 Various, 50MB * lOn

of GB GB depending where n=1,2,3,4
documents on domain

Document Multiple Single Single Both Single
Environment Documents Document Document Document
DTD Support Multiple, One One Multiple One

same
structure

XML No No No Yes Yes
Schema
Support
No of 8 20 23 20 49
Queries
No of Update 3 - - - 7
Operations
All XQuery No No No Yes N/A since it
Features tests the

functionality of
the core query
language

Table 4.1 A Comparison between Different XML Benchmarking Techniques

For the purpose of this research, the Michigan Benchmark is excluded, since the main

research aim is not to develop a new query engine, and therefore the micro benchmark

is not applicable. XBench is the only one that supports both single document and

multiple document scenarios. It is also support all the different XQuery use cases. The

following table shows in details the XQuery use cases (Yao et al. 2003).

97

Query Functionality XMach-1 XMark"' "'' 'XO07 XBench

Exact Math
Shallow Q1 Q1
Deep Q1 Q1 Q2

Function Application Q3, Q7 Q18, Q20 Q3, Q7, QI5 Q3
Ordered Access

Relative Q8 Q2-Q3 Q2 Q4
Absolute Q4 Q17-Q18 Q5

Quantifier
Existential Q8 Q14 Q6
Universal - Q7

Regular Path Expressions
Unknown Element Q2 Q15-Q16 - Q8
Unknown Sub path Q4-Q5 Q6-Q7 - Q9

Sorting
By String Q8 Q19 - Q10
By Non-string - Q8 Q11

Document Construction
Structure Preserving - Q13 Q16 Q12
Structure - Q10 Q6, Q9, Q13

Transforming Ql2, QI
Irregularity

Missing elements - - Q14
Empty (Null) Values - Q17 - Q15

Retrieve Individual Q1 - Q16
Documents
Text Search

Uni-gram Search Q14 - Q17
N-gram Search Q2 Q5 Q18

Reference and Joins Ql-Q2, Q6 Q8-Q9, QIO-Qll, Q19
Qll-Q12 Q15,

Data Type Cast Q5 Q20

Table 4.2 XQuery Use Cases

The application benchmark system which is used in this research is the XBench. This is

mainly because it covers all the XQuery use cases as in (XQuery use case, online) as
XQuery becomes the de facto query language for XML. Also, XBench provides the
flexibility of dealing with different document scenarios in four different ways (TC/SD,
TOMD, DC/SD, DC/MD) compared with other benchmarks which deals with only one
scenario.

98

Applying XBench is not directly applicable to the research problem since it involves

partially-structured data. This is mainly because of the features of partially-structured
data that needs to be tested when designing the experiment (for example, dealing with
differently structured parts inside the document). The next section shows how this
benchmark can be adapted.

4.4 Adapted XBench

This section shows the adaptation of the XBench benchmark to support the aims of the

experiment. Section 4.6.1 describes the data set proposed by XBench and then presents

the data set used in the experiment. Following from that, section 4.6.2 describes the

query set proposed by the XBench and its adaptation for testing partially-structured
XML documents.

4.4.1 Data Set

As explained in section 4.3.4, XBench is based on four different scenarios. These

scenarios are:

" Data-Centric - Single Document

" Data-Centric - Multiple Document

" Text-Centric - Single Document

" Text-Centric - Multiple Document

XML documents are generated using ToXGene (Barbosa et al. 2002). The following

parameters characterise each generated XML document (Yao et al. 2002)

0 Elements Types: presents the collection of elements' types to be used in the

generated document.

9 Tree structure of element types: shows the relationship between element types.
For example if there is a parent/child relation between two elements.

e Distribution of children to elements: shows the probability distribution of child
elements for each type (directly sub-element types).

e Distribution of element values to types: shows the probability distribution of
values of each element type.

99

9 Attribute names: present the collection of attribute names to be used in the

generated document.

9 Distribution of attribute values to name: shows the probability distribution of

values of each attribute

9 Distribution of attributes to elements: shows the probability distribution of the

attributes to each element.

The minimum and maximum of each distribution parameter is defined in order to

generate finite documents with specific distribution.

Rather than adopting the above approach of synthesising data sets, the experiments were

conducted using the large XML document from DBLP (Digital Bibliography & Library

Project http: //db]12. uni-ti-ier. de/xmi . The DBLP is bibliographic information specifically
in computer science journals and proceedings. The characteristics of this bibliographic

database can be found in Reuther et al. (2006) and Ley and Reuther (2006). The rational

for using this data set in the experiments is:

* It consists of one XML document (so it suits the single document scenario
adopted by this research, section 3.2.1)

o The data conforms to a DTD from which it was possible to derive the structure
for all or part of the data set though analysis of this DTD. This allowed
flexibility in varying interpretations of the document so as to simulate varying
the ratios between semi-structured and highly-structured content instead of
dealing with the whole data set as totally highly-structured, totally semi-

structured or partially-structured. This point is discussed in more detail later in

this section.

It is a large document (More than 750,000 publications, 450,000 authors stored
in 335 Megabyte as of September 2006). This means that the performance

results are credible.

It is widely used in XML database research as a model for a bibliography data
(such as Elmacioglu and Lee 2005, Low et al. 2002, Ley 2002 and Reuther et al.
2006), thus allowing a possible comparability of the results.

e Finally, the use of "natural", rather than artificially synthesized data sets adds to
the validity of the research.

100

There are two important points that shape the implementations used in the experiment.

The ratio between semi-structured and highly-structured data parts inside the XML

document and the use of typed and un-typed XML data fields.

Firstly, the structure of the DBLP XML document (its DTD is shown in Figure 4.1)

consists of articles, in-proceedings, proceedings, books, in-collections, PhD Theses,

Master Theses and WWW sites. The majority of publications are conference papers (in-

proceedings) (about 60% of all the publication) followed by articles in journals (about

37% of all the publication 2). While the remaining represent the other forms of

publication.

One aim of the experiments is to determine the effect of the relationship between the

ratio of semi-structured to highly-structured data within an XML document and the

query performance for a range of storage strategies. Accordingly, within the experiment,

the structure of the DBLP data set is interpreted in two different dimensions to vary this

ratio. The first dimension, which is referred to as the vertical dimension because of the

conventional tabular representation of data in which schema elements and their

instances are denoted as columns, concerns the ratio of semi-structured to structured

components of the schema. This dimension can be seen as a schema dimension. The

second, which can be called the horizontal dimension, is the ratio of semi-structured to

structured data instances. This dimension can be seen as the data instances dimension.

In the first vertical scenario, only the document key is considered as highly-structured

while the reminder of the data is stored in an XML data field, as such the remaining data

is considered to be semi-structured. This is annotated as 'PSY, a Partially-Structured

model with only the 'Document key' only as highly-structured data. In the second

vertical scenario, both 'document key' and 'author' data were treated as highly-structured

while the rest of the data was considered as semi-structured. This is annotated as

'PSDA', a Partially-Structured model with 'Document key' and 'Author' data as highly-

structured. In the final vertical scenario, both 'document key' and 'title' data were treated

as highly-structured while the rest of the data was considered as semi-structured. This is

annotated as 'PSDI", a Partially-Structured model with 'Document key' and 'Title' data

1 Number of in-proceedings publications represent 60.28% of the total number of publications in this
document. This does not means that it represents 60.28% of the storage size of the document, since each
publication data is different in its storage size from the others, for example, a Phd Thesis has one author
while an article could have one or more authors.
2 Number of articles publications represent 37.15% of the total number of publications in this document.

101

as highly-structured data. In this way, the data was interpreted in different ways so as to

explore the effect on performance of the ratio of structured to semi-structured data

definitions within the schema.

In order to investigate the impact of the second "horizontal" scenario, all in-proceedings

publications were treated as semi-structured data, while the rest of the publications were

considered as highly-structured. This is annotated as '60cloXW', as the in-proceedings

publications represented approximately 60% of the data total number of publications
(approximately 60% of the whole data set). In the second "horizontal" scenario, all the

article publications were treated as semi-structured data while the remaining

publications were considered as highly-structured. This is annotated as '37%vXW', as the

articles publications represented approximately 37% of the total number of publications
(approximately 37% of the whole data set). In these two scenarios, the document key is

stored in the relational table, which means the document key is considered as highly-

structured while the remaining data (such as authors, titles, URL ...) are considered as

semi-structured. In this way, the same data was interpreted in different ways so as to

explore the effect on performance of the ratio of structured to semi-structured data

instances. Dividing the data in the horizontal dimension as 60% and 37% are a specific
to the DBLP data set and it maybe not possible in another case to divide the data in the
horizontal dimension with the same percentage. Nevertheless, partitioning the data in

the horizontal dimension showed that in some cases there is an advantage to divide the
data in a similar manner, possibly with different percentages as opposed to dealing with
the data as totally highly-structured or totally semi-structured.

MS SQL Server 2005 can store XML data (either document or content fragments of the
document) in two different ways, un-typed and typed XML data fields (MS SQL Server
web site). In the un-typed scenario, there is no XML schema associated with the
document, therefore SQL Server only checks that the document (or the content
fragments) is well formatted, that is to say, it can accept any well formatted XML
document or document extract. This scenario is useful when the schema is not known at
the design stage. In the Typed XML data type, the XML data must conform to an XML

schema defined beforehand. This associated schema is used to validate the data, perform

more accurate type checks and to optimize both storage and query processing. The early

results of the experiments showed that the un-typed XML field performance was

extremely un-reliable. Therefore the experiments include only testing the typed XML

102

data field. More information about SQL Server can be found in (Pal et al. 2005 and
2006, Rys 2005, Rys et al. 2005 and Lacoude 2006).

Therefore, and based on the above discussion, three storage models are tested in this

experiment with seven implementations as follows:

9 Structured Mapping Approach: 100% of the data is mapped to a relational

structure. This is annotated as MOM.

e XML data field: 100% of the data is mapped to one typed XML data field.

This is annotated as 1000loXW ('W' refers to that data With schema).

Proposed hybrid model: with five implementations so as to vary the ratios,

respectively, of semi-structured to structured data instances and schema. In the
first implementation, the document key is treated as highly-structured and this

model is annotated as PSD. In the second implementation, the document key

and author are treated as highly-structured and this model is annotated as

PSDA. In the third implementation, the document key and title are treated as

highly-structured and this model is annotated as PSDT. In the final two

implementations, approximately 60% and 37% of the data are mapped as

semi-structured data to a typed XML data field and the rest are mapped as

highly-structured. These are annotated as 600loXW and 370loXW respectively.

The final important factor related to the data set is its size. The DBLP document is

considered as a large XML document (335 Megabyte). To study the effect of the data

set size, the experiments are conducted in three different databases; the first is on the

whole data set (coded as DB313), the second is on approximately two-thirds of the

whole data set by deleting one third of the in-proceedings and one third of the articles
(coded as DB213). Finally, the third data set consists of approximately one third of the

whole data set by deleting two thirds of the in-proceedings and two thirds of the articles
publications (coded as DBIB). This allows the results to be compared over different
data set sizes (approximately 33%, 66% and 100% of the original data set size).

103

!EL EMENT rAl',

. 'ENTITY %
I ti. tIe booktit. l. r. lpages I year i

11 cdrori I cite 1 publisher i no-'r, ' I crossref I
L, EME NT C, (%field;)*, ý

'ATTLIST #REQUIRE1,
CTATA #ITIF7

A IMP;
',! ELEMENT (%field;)*, -

1ATTLIST VýT. -'ý 4PEQU. I
41MI

'ELEMENT (%field;)*>
! ATTLIST 'o I 4REQU. i-]

'ýW, I'J'\ #IMF1

, 'ELEMENT (%field;)*, -
, ý'ATTLIST PFQU7J-

/V 1A ýi I M1,1,1 i i)
! ELEMENT iI (%field;)*--

IIect. "'DATA 4REQUIRED
':.)AT"' 4IMPLIED>

E,: ýEMENT "'1 11 ei (%field;)*. -
! ATTLIST i-Ale #REC)UIRFD

4IMPLIF!

--LWMENT (%field;)*>
', 'ýTTLIST CDATA #REQUIREF,

-DATA 4IMPLTF'1

.. -,, 7-MENT (%field;)*>
! ATTLTST 4F', FO, 7jTRFý'

, 'ELEMENT (OPCDATi%)

, ! ELEMENT (0,

ý! ELEMENT 0K CDA T. -,.)
ENT I TY %

, 'ELEMENT I lo (%titlecontents;)*,
'ELEMENT 0 C. V.. T "'!),
! ELEMENT 0 C")A. TA.

,! ELEMENT (0

,! ELEMENT (#PC--)ATA)

, 17LEMENT 0 PýI'DATI,)

,! ELEMENT 0 !;, '.)A Tiý

,! ELEMENT
ý! ELEMENT U T-- PC`) A I'A.)

-ýIELEMENT 41, ':: -, 1,, 1'.)
ELEMENT PC: A)
ELEMENT

ý! ELEMENT
1, T, ! -ELEMENT

: IATTLIST

,! ELEMENT

<! ATTLIST :IC -DAT7\ 4 M. P1, ii
, 'ELEMENT 0 "DATA)

11 'ELEMENT ýi ý'(ý DA r A)
,! ELEMENT 0ý1, -')ATA)

ýýIELEMENT (PP, ")ATA)

, ''ATTLIST
ELEMENT

104

<! ATTLIST layout logo CDATA #IMPLIED>
<! ELEMENT ref (#PCDATA)>
<! ATTLIST ref href CDATA #REQUIRED>
<! ELEMENT sup (%titlecontents;)*>
<! ELEMENT sub (%titlecontents;)*>
<! ELEMENT i (%titlecontents;)*>
<! ELEMENT tt (%titlecontents;)*>

Figure 4.1 DBLP DTD (http: //d`blp. uni-trier. delxmYdblp. dtd)

Using an existing data set gives the experiments more credible results, because this is a

real life data set. However, the disadvantage of using existing data (such as DBLP) is

that, it does not provide a range of partially-structured data sets with different degrees of

structuredness, as would be possible if the data sets were synthesised. Instead, since the

separation between highly-structured and semi-structured data is not naturally defined

inside the data set, it is defined artificially.

This point was taken into consideration when designing the above data set by having

two ways to interpret the structuredness of the data (vertically and horizontally) as
discussed earlier. It was also taken into consideration when designing the query set, as
is explained in section 4.4.2.

In Appendix B, the full SQL script to create the tables used in the experiments is

presented. The following subsections show the schema design for the above scenarios.
These schemas are exactly the same for the three database sizes (coded DB113, DB213

and DB313).

4.4.1.1 Schema Design for Structured Mapping Approach

In this model, 100% of the data is mapped to a relational structure. SQL is used to query
this model. The relational schema representing this model consists of the following

tables (with the A_ prefix):

A. Doc (Q.)odd DocTypeId, MDate, DocKey, ReviewId, Rating)

A. Doctype (Loctypeld, , DocType)

A. Doc is the main table which contains all the publications. DocKey is a unique value
for each document. There are eight different document types represented in the

A DocT
- ype table. The other tables in this schema are:

A_Address (ld, Docld, Address)

A-Author (Id., Dodd, Author)

105

A. BookTitle (1d, Doc1d, BookTitle)

A_CDROM (Id, Docld, CDROM)

A-Chapter (1d, Doc1d, Chapter)

A_Cite (Ld., Docld, Cite)

A_CrossRef (1d, DocId, CrossRej)

A. Editor (Ld, DocId, Editor)

A. EE (Ld,,, Docld, EE)

A_jSBN (Id , DocId, ISBN)

Ajournal (1d, DocId, Journal)

A. Month Qd Docld, Month)

A_Note (1, d Doc1d, Note)

A-Number (1dj, Docld, Number)

A2ages (1, d Doc1d, Pages)

A. Publisher (1d, Doc1d, Publisher)

A-School (Id, Docld, School)

A_., Series (1d, DocId, Series)

A-Title (1d, DocId, Title)

A URL (Ld , Docld, URL)

A_Volume (1d, Docld, Volume)

A_Year (1d, Doc1d, Year)

In all these tables, Docld is a foreign key linked to the main A. Doc table. All the

possible indices are used to improve the query performance. For example, in the Author

table, there are three indices on the Id, DocId and the Author fields. In the title table,

there are three indices on the Id, DocId and the Title fields.

106

4.4.1.2 Schema Design for Using an XML Data Field

In this model, 100% of the data is mapped to an XML data field. The relational schema
representing this model consists of one table (its name is Bý_XMLDocumenffithkhema

in the 100%XM. The table structure is:

Bý_XMLDocument (Rod'd XMLDoc)

This table contains one record only, where the whole XML document is loaded into the
XMLDoc field. XQuery is used to query this model.

The indices used in this mode and supported by NIS SQL Server 2005 (Pal et al. 2005

and 2006, Rys 2005, Rys et al. 2005 and Lacoude 2006) are:

Primary XML index: a B+ tree and similar to a primary key in a relational

table. It can be seen as a hidden table which contains PK, XML node values,
XML node paths, node types, document order and other relevant information.

This primary index must exist before creating any of the following secondary

indices.

e Value Secondary XML index: a B+ tree on the value column of the primary

index. This index is used for value-based queries.

0 Path Secondary XML index: a B+ tree on the path column of the primary
index. This index is used for path-based queries.

Property Secondary XML index: It is a B+ tree built on PK, path and node

value). This index is used when retrieving object properties (attributes).

All the above indices are used in this storage model as the experiments are concerned

with the query performance, and using such indices can enhance this model's query

performance.

4.4.1.3 Schema Design for the Proposed Model

There are five storage representations for the proposed model (as described in section
4.4.1). The first scenario defines the in-proceedings as the semi-structured part (for the

systems 609o'XM with the prefix Cý_ and with the postfix WithSchema for the typed
XML data field. The second scenario defines the articles as the semi-structured part (for

the system 3717cXM with the prefix D_ and with the postfix WithSchema for the typed

107

XML data field. A combination of SQL and XQuery is used to query this model
depending on the situation. This is described in the beginning of each query group.

These storage models have the same schema as the structured mapping approach except

there is an extra field in the
-DocWithSchema

table which is an XULExtract.

Cý_Doc (DocId,, DocTypeId, MDate, DocKey, Reviewk4 Rating, XHLExtract)

XHLExtract is an XML data type. It contains the in-proceedings element which
represents semi-structured data in the Cý_DocWithSchema table and contains the articles

element in the Lý_DocWithSchema table. All in-proceedings data are deleted from the

other Cý_ tables (Q-Address, Cý_Author ...) since that data is stored as an XML data field

in the XMLExtract field. The same procedure was applied for the articles data in the

other Lý_ tables.

All the indices used in the storage mapping approach are used in the above two

scenarios. Adding to them, XML indices are used for the XAILExtract field. There is a

primary index as well as value, path and property secondary indices on the two tables
(C-DocWithSchema and D-DocWithSchema).

For the other three systems (namely PSD, PSDA and PSDI), the queries were adapted
to retrieve their data from the same tables (with prefix A_ and Q- or D_) as need arises.
In that sense, they do not have their own table structures. For example, searching for in-

proceedings' title in the case of PSDA, A_Author table is used to search for an 'author'.

Then if the document type is 'in-proceedings', table Q_DocWithSchema is used to

retrieve the 'title' data while if the document type is 'article', table Eý_DocWithSchema is

used.

4.4.2 Query Set

In this section, the query set used by XBench is presented and then adapted to the

purpose of this experiment. The previous section described, how the publications are

classified inside the document (in-proceedings publications presented semi-structured
data and the remaining publications presented highly-structured data in the C_ schema,

while the articles publications presented semi-structured data in the BL schema), the

two types of publications that are used in the experiments are in-proceedings and

articles (as both together represent 97.43 of all publications).

los

The queries were designed to query only the semi-structured part of the document. This

is due to the fact that all the hybrid models use the same structure mapping approach to

store highly-structured data that is used in the 100%R model, and therefore will produce
the same performance as the 100"IcR model.

The following subsections show each query group within the XBench query set and
how it has been adjusted to query the experiments' data set.

4.4.2.1 Exact Match

The queries in this group require string exact match with specified and possibly long

path expressions, depending on the levels of predicates being queried in XML

documents. Consequently, they can be shallow queries that match only at the top level

of XML document trees (example query Ql), or deep queries that match the nested

structure of XML document trees (query Q2).

This group is adapted as follow:

QI: Return in-proceeding's titles in 'C-' tables (or article's titles in 'D_' tables)

that have the key value X.

9 Q2: Return in-proceeding's titles in 'C_' tables (or an article's titles in 'P_'

tables) that have the same author X.

4.4.2.2 Function application

The query in this group challenges the system with aggregate functions such as count,

avg, max, min and sum. This group is adapted as follows:

Q3: counts in-proceeding's titles in 'C_' tables (or article's titles in 'D_' tables)

that have the same author X.

4.4.2.3 Ordered access

The queries in this group test the performance of the system when it preserves the

document order during retrieval. This could be a relative order (Q4) based on the

current matching position, or an absolute order (Q5), which is the order in the

document. This group is adapted as follows:

Q4: Return in-proceeding's titles in 'C_' tables (or an article's titles in 'Dý_'

tables) that have the same author X. In-proceeding's titles in 'C_' tables (or

109

article's titles in 'D-' tables) that have the same author X ordered by the relative

order in the original document.

Q5: Return the first in-proceeding's title in T_' tables (or article's title in 'P-'

tables) that has the same author X order by their absolute ordered in the original
document.

4.4.2.4 Quantification

The queries in this group test the existentially (Q6) and universally (Q7) quantified

queries. This group is adapted as follow:

e Q6: Return in-proceeding's titles in 'C-' tables (or article's titles in T_' tables)
that exist among their authors for two specific authors (author X and author Y)

9 Q7: Return in-proceeding's titles in 'C-' tables (or article's titles in 'Ek_' tables)

that have exactly two authors (author X and author Y)

4.4.2.5 Path expressions

The queries in this group involve path expressions: Q8 queries data where one element

name in its path is unknown. Q9 queries data where multiple consecutive element

names in its path are unknown. This group is adapted as follow:

* Q8: Return in-proceeding's titles in 'C-' tables (or article's titles in 'D_' tables)
that contain word XYZ among their title.

* Q9: Return in-proceeding's authors in 'C-' tables (or article's authors in 'P-7

tables) for a specific publication that has a key value X. The (//) is used inside

this query to direct the query to look for any path inside the document.

4.4.2.6 Sorting

Even though the generic data type of element content in XML documents is string, users

may cast the string type to other types. Therefore, the queries in this group test sorting

both string types Q 10) and non-string types Q 11). This group is adapted as follows:

0 QIO: List all in-proceeding's titles in 'C-' tables (or article's titles in TL'

tables), publication date, authors sorted by title for specific author.

Q11: List all in-proceeding's titles in T_' tables (or article's titles in 'D-'

tables), publication date, authors sorted by publication date for specific author.

110

4.4.2.7 Document construction

Structure is important in many XML documents. However, some systems experience

difficulties in even preserving the document's original structure. This class of queries

tests the performance of the system in preserving the structure Q12) and in

transforming the structure Q13). This group is adapted as follows:

Q12: List all in-proceeding's titles in 'C_' tables (or article's titles in TL'

tables), publication date, authors for specific document preserving the original
document structure.

Q13: List all in-proceeding's titles in 'C_' tables (or article's titles in 'D-'

tables), publication date, authors for specific document transforming the original
document structure to another structure.

4.4.2.8 Irregular data

Irregularity is common in XML documents. This class of queries tests missing elements

(Q14) and empty (null) value Q15). Since there are no empty elements in the data set

used in this experiment, Q15 tests that the year equals a specific number instead of it

equalling null. This group is adapted as follows:

" Q14: List all in-proceeding's titles in 'C-' tables (or article's titles in 'Dý_'

tables), publication date, authors where 'ee' element is missing.

" Q15: List all in-proceeding's titles in T_' tables (or article's titles in 'D-'

tables), publication date, authors where the 'year' element equals a specific

number.

4.4.2.9 Retrieval of individual documents

The query in this group tests an essential function of an XML DBMS to retrieve
individual XML documents (or an XML extract in this case) while preserving the

contents of those documents. This group is adapted as follows:

Q16: Retrieve in-proceeding data in 'Cý_' tables (or article data in 'D_' tables)

that has a key value X keeping its original structure.

III

4.4.2.10 Text search

These queries test the information retrieval capabilities of systems. Two cases are

tested: uni-gram search Q17) where the query contains one particular word and bi-gram

and n-grarn search (Q 18) where multiple words are involved. This group is adapted as
follows:

* Q17: Search for the word XYZ in any field in the in-proceeding data in 'Cý_'

tables (or article data in 'D_' tables).

* Q18: Search for the phrase XX YY ZZ in any field in the in-proceeding data in

'C_' tables (or article data in 'D_' tables).

4.4.2.11 References and Joins

Data-centric documents usually have references to identify the relationship between

related data, even among different XML documents. Sometimes users want to combine

separate information using join-by values. The original version of this query tests the

references and joins. Since the data set consists of a single XML document, and as this

query group requires joining two documents, it is executed in two phases, in the first

phase it retrieves an author of a specified article (or in- proceeding) then using this

author name, another query is executed to retrieve all the articles he/she wrote. This

group is adapted as follow:

Q19: Retrieve the first author for in-proceeding data in 'C_' tables (or article
data in 'D_' tables) that has a key value X. Using this author; retrieve all his

publication's titles.

4.4.2.12 Datatype casting

The element values in XML documents are of a string type, but sometimes there is a

need to cast them into other data types. This group is adapted as follows:

* Q20: returns all in-proceedings' titles 'C-' tables (or articles' titles in 'P_'

tables) where their title's length is longer than a specific random size.

In this section, the different queries that are used in the experiment are described and

adapted toward the aim of testing partially-structured data. The following section

presents the performance metrics for the experiments.

112

4.5 Performance Metrics

As the experiments' aim is to test the relative performances between different storage

models, each execution of an experiment records the following measures:

Execution time: for each query, how many milliseconds are needed to get the

result

* CPU busy time: the time (in milliseconds) that is consumed by the CPU to run
this query

* 10 busy time: the time (in milliseconds) that is consumed in 10 related

operations to run this query

e 10 read: number of disk reads by SQL Server to run this query

0 10 write: number of disk writes by SQL Server to run this query

The following figure shows a template to run each of the experiment's queries

Declare @Clock DATETIME,
@CPU BIGINT,
@10 BIGINT,
@IOr BIGINT,
@IOw BIGINT,
@ExecutionTime BIGINT

SELECT @Clock = GetDateo,
@CPU ý WPU-FUSY,
@10 = @RIO-Lusy,
@IOr = @nTOTAI,

_Read, @IOw = tRTotal--ý4rite
/* QlA, The Query syntacs will be executed here For Storage System
100%R*/
Select @ExecutionTime - DateDitt(ms, @Clock , GetDateo),

@CPU = (@ýdCPU_Busv @CPU) * @@TLricTicýs,
@IOr = @RTOTAL-Rk: ad Mr,
@IOw = @@Total-write - @IOw,
@IO= (@R1O_Lýusv-@IO * P@TimeTicks

If @CPU >= 0 Print 'CPU: ' + -, ýtr(@cpu /1000.0 , 8,0) +I millisecond'
If @10 -0 Print 110 Busy: ' + sLr(@IO /1000.0,8,0) +
millisecond'
If @IOr >- 0 Print '10 reads: ' + sLr(@Ior, 8,0)
If @IOw >= 0 Print '10 write: ' + str(@IOw, 8,0)
Print 'Execution time: ' + str(@ExecutionTime, 8,0)+ I millisecond,
/* The following Stored Procedure will store these results for QlA,
for the system code 100%R */
Execute StoreResults 'Q11, '100%Rl, @ExecutionTime, @CPU, @10, @IOr,
@IOW

Figure 4.2 Query Template

The final line shows the StoreQueryResults stored procedure which stores all the above
data for each query run in the following table:

113

Results (. Id QueryRunDate, QueryCode, SystemCode, ExecutionTime, CPU, 10,

10r, IOw)

The QueryRunDate field stores the system's current date and time when this query is

executed. Each query runs for twenty times as a minimum. The twenty runs were

chosen initially because it is often suggested that this is the minimum sample size

necessary for any conclusions based on standard deviations to have much meaning. Two

runs are excluded (the maximum and minimum execution time, the maximum was
always the first cold run) and then the average of the remaining runs was computed.
Standard deviations were calculated for each query and for each storage model, to
identify any instability. As the results will be shown in the next chapter, each
experiment produced a small standard deviation which reassured that the choice of the
twenty runs for each query is sufficient. A target value for the standard deviation was
set in advance, that it should not exceed 50% of the mean value. The maximum and the

minimum were excluded so as not to skew the results and to eliminate any

circumstantial running errors. They might represent anomalous cases, as illustrated by

the fact that the maximum was always the first cold run, because of the additional
overhead of loading indexes into the system's cache.
The aim of the experiment is to test the relative performance and therefore only the

execution time is taken into consideration when analysing the results. Other data is

available for further analysis if needed. The analysis of the results is discussed in the
following chapter and the full results are presented in appendix C.

4.6 Experimental Operational Environment

This section presents the experimental operational environment within which the

experiments were conducted by showing the hardware and the software used.

The experiment runs on a single machine environment. The machine specifications are:

* Intel@ Pentium@ CoreTm Duo processor T2250,1.73 Ghz

* 1536 MB Ram

* 120 GB Hard Disk Drive.

* Microsoft Windows XP Professional 5.1.2600 service pack 2

114

The software environment is based on Microsoft SQL Server 2005 (Pal et al. 2005 and

2006, Rys 2005, Rys et al. 2005 and Lacoude 2006). This database management system

was released on December 2005. Its main features are:

eA Relational Database management system

eA new XML data type, which support the storage of XML documents naturally

as an XML data type according to the SQL: 2003 standard.

o Includes XML indexing and full-text XML search

e Supports XQuery and XPath.

NIS SQL Server's language (Transact-SQL) is used as the main language to access the

data and execute the experiment's queries.

4.7 Conclusion

This chapter introduces a series of experiments to evaluate the research hypothesis.

These experiments are designed to compare the relative performance of the proposed
hybrid model against the two base models it combines. These two models are: mapping

the whole XML document to an equivalent relational structure (structure mapping

approach) and mapping the whole XML document as an XML data type. The following

chapter presents and discusses the experiments' results.

115

Chapter 5 Experiment Results and Analysis

5.1 Introduction

The goal of the previous chapter was to design a series of experiments to evaluate the

research hypothesis. The detailed design of these experiments was discussed. In this

chapter, the results of the experiments are discussed. Firstly, Section 5.2 briefly
discusses the experiments' environment. This is followed by the results for each of the

twenty queries in section 5.3. The overall analysis of these results is presented in section

5.4. The experiments' limitations are discussed in section 5.5 and this is followed by the

findings and conclusion in section 5.6.

5.2 Experiments' Environment

This section recaps briefly on the experiments' environment, which includes the data

set, the query set, performance metrics and the experiments' operational environment.

The detailed discussion of these issues was presented in chapter four.

5.2.1 Data Set

These experiments were conducted using the data set of the DBLP (Digital

Bibliography & Library Project http: //dblp. uni-trier. de/xinl/ . The DBLP contains

bibliographic information specifically from computer science journals and proceedings.

It consists of more than 750,000 publications, 450,000 authors and was stored in 335

Megabyte as of September 2006. The properties of this data set were explained in

section 4.4.1.

The first two storage strategies used in the experiments were 100,11OR which represents

mapping the entire DBLP data to the relational data model (see section 4.4.1.1) and the
100%XW which represents mapping the entire document into one XML data field (see

section 4.4.1.2).

The third storage strategy used in the experiments was the proposed model (see section

4.4.1.3) with five different implementation scenarios to vary the ratio between the semi-

structured and the highly-structured parts in two different dimensions. The first

dimension, referred to as the vertical dimension because of the conventional tabular

representation of data in which schema elements and their instances are denoted as

columns, concerns the ratio of semi-structured to structured components of the schema.

116

The second dimension, referred to as the horizontal dimension, is the ratio of semi-

structured to structured data instances.

In the first vertical scenario, only the document key is considered highly-structured

while the remaining data is stored in the XML data field, so the remaining data is

considered to be semi-structured. This was annotated as 'PSY a Partially-Structured

model with the 'Document key' only considered highly-structured data. In the second

scenario, both 'document key' and 'author' data were treated as highly-structured while
the rest of the data was considered to be semi-structured. This was annotated as 'PSDA'

a Partially-Structured model with 'Document key' and 'Author' data as highly-structured.

In the final scenario, both 'document key' and 'title' data were treated as highly-

structured while the rest of the data was considered to be semi-structured. This was
annotated as 'PSD7" a Partially-Structured model with 'Document key' and 'Title' data

considered highly-structured data.

In order to investigate the impact of the second "horizontal" scenario, all in-proceedings

publications were treated as semi-structured data, while the rest of the publications were

considered as highly-structured. This was annotated as '6001OXW', as the in-proceedings

publications represented approximately 60% of the total number of publications
(approximately 60% of the whole data set). In the second "horizontal" scenario, all the

article publications were treated as semi-structured data while the remaining

publications were considered as highly-structured. This was annotated as '37cloXW', as
the articles publications represented approximately 37% of the total number of

publications (approximately 37% of the whole data set). In these two scenarios, the
document key is stored in the relational table, which means that the document key is

considered highly-structured data while the remaining data (such as authors, titles,
URL ... etc) are considered to be semi-structured. As discussed in section 4.4.1, the 37%

and 60% are specific to the DBLP data set. In other data sets, there is a possibility to use

a different percentage to partition the data differently in the horizontal dimension.

Thus, through these strategies of different interpretation of the structuredness of the data

set, the experiments were designed to evaluate the relative performance between these
different storage strategies and their different implementations, as the ratio of semi-
structured to structured data instances varies, and as the ratio of semi-structured to

structure schema elements varies.

117

MS SQL Server (Pal et al. 2005 and 2006, Rys 2005 and Lacoude 2006) was used as the
database management system in the experiments (as explained in section 4.2.3). NIS

SQL Server can store XML data (either as a document or content fragments of the
document) in two different ways, i. e., un-typed and typed XML data fields (MS SQL

Server web site). In the un-typed XML data field, data has no XML schema associated

with the document. Therefore SQL Server only checks that the document (or the content
fragments) is well formatted. In the typed XML data field, the XML data must conform
to a pre-defined XML schema. This associated schema is used to validate the data and

perform more accurate type checks and to optimise both storage and query processing.
The typed XML field was coded as 'W (with Schema). (The details of the storage

structures used by MS SQL Server for typed and un-typed XML data fields were
discussed in section 4.4. L).

Predictably, un-typed XML gave an extremely poor performance in almost all the query

runs (for example, the average execution time for Q2 using the relational model was

148 milliseconds, for the un-typed 100%X it was 43097 milliseconds, for the un-typed

37%X it was 78440 milliseconds and for the un-typed 60%X it was 183616

milliseconds). This was most likely to be due to the lack of schema information, and

consequently the database management system could not optimise the query process

effectively. Therefore, the results of the un-typed scenario are not considered as a viable

option for storing data of the type characterised by the data set, and are not presented or

analysed in this chapter. In appendix C, the full results including the un-typed scenarios

are presented.

To summarise, three storage models were tested in the experiments with seven

implementations as follows:

9 Structured Mapping Approach (see 4.4.1.1): 100% of the data was mapped to a

relational structure. This was annotated as 100"IcR.

XML data field (see 4.4.1.2): 100% of the data was mapped to one typed XML

data field. This was annotated as 100%XW.

Proposed hybrid model (see 4.4.1.3): with five implementations so as to vary the

ratios of semi-structured to structured data instances and schema. In the first

implementation, the document key was treated as highly-structured and this

model was annotated as PSD. In the second implementation, the document key

118

and author were treated as highly-structured and this model was annotated as

PSDA. In the third implementation, the document key and title were treated as

highly-structured and this model was annotated as PSDT. In the final two

implementations approximately 60% and 37% of the data was mapped as semi-

structured data as typed XML data field and the rest was mapped as highly-

structured. These were annotated as 6010loXW and 3751cXW respectively (see Fig.

5.1).

Structured Mapping
Approach

XML data field I
Proposed hybrid model I

100%R

100% of the data mapped to a
relational structure

100%XW

100% of the data mapped to

one typed XML data field

Implementations

PSD
document key mapped as highly-

structured

PSDA
document key and author mapped as

highly-structured

PSDT
document key and title mapped as

highly-structured

60%XW
60% of the data mapped as semi-

structured data

37%XW
37% of the data mapped as sen-ii-

structured data

Figure 5.1 Storage models tested in the experiments

Three database sizes were used in the experiments so as to evaluate the impact of data

set size, with respect to all of the above variants. The first database was the same as the

initial DBLP document (335 Megabyte as of September 2006) and was annotated as

DB313. The second database was approximately two-thirds of the initial document size

and was annotated as DB213 and the final database was approximately one-third of the

initial document size and was annotated as DBI13. The three databases had exactly the

same data structure. The variation in the database size enables the database size

scalability analysis which is explained later in this chapter (in section 5.3.2).

119

5.2.2 Query Set

The experiments' query set was based on the XBench XML benchmark (Yao et al.
2002). The query set consists of twenty queries (Ql, Q2 ... Q20) grouped as twelve
different groups based on their functionality. These groups are: exact match, function

application, ordered access, quantification, path expressions, sorting, document

construction, irregular data, retrieval of individual documents, text search, references
and joins and datatype casting. The main reason behind choosing XBench as the base

query set was because it covers all the XQuery use cases as in XQuery use case
(online). The full discussion and the rational behind this decision was discussed in detail
in section 4.3. These twenty queries were re-formulated to access the data set used in

the experiments and for each storage strategy employed. Each of these queries is further

explained in section 5.3 in which the results are presented.

5.2.3 Performance Metrics

The main aim of the experiments was to establish the relationship between query

performance, data structuredness with respect to schema and to data instances, storage

strategy and database size for different queries grouped by their functionality. As

explained in section 5.2.1, different storage strategies, database sizes and different
interpretations of the structuredness of the data were planned when running these

experiments. To test the query performance, the experiments were designed to measure
the execution time for each query in milliseconds (as it was the minimum time period
that can be measured using MS SQL Server). Each query was executed 20 times, two

runs were excluded (the maximum and the minimum execution time, the maximum was

always the first cold run). Performance was then computed as the average. Also,

standard deviations were calculated for each query and for each storage model, to
identify any instability. The detail of the performance metrics was discussed in section
4.5.

5.2.4 Operational Environment

The experiments were conducted in a single machine environment. The machine

specifications were:

9 Intel 0 Pentium 0 CoreTm Duo processor T2250,1.73 Ghz

o 1536 MB Ram

120

o 120 GB Hard Disk Drive.

* Microsoft Windows XP Professional 5.1.2600 service pack 2

The software environment was based on Microsoft SQL Server 2005 (Pal et al. 2005

and 2006, Rys 2005, Lacoude 2006). Transact-SQL (the SQL language used by MS

SQL Server) was used as the main language to access the SQL Server and to execute
the different queries. The detail of the experimental operational environment was
discussed in section 4.6.

5.3 Experiments' Results

The results of the experiments are presented and discussed in this section. In appendix
C, the full results including the un-typed scenarios are presented. The results are
presented and analysed in three main groups:

1. In the first group 'Using Document Key Queries', the queries targeted

semi-structured data using the 'document key' data. In this group, all the

storage systems were tested apart from PSDA and PSDT. The latter two

models were excluded because these two systems will give results
similar to PSD, which is included in this group of experiments.
Specifically, in these three models, the 'document key' is stored as
highly-structured data and this group of queries select the data based on
the 'document key' and neither the 'author' nor the 'title' data.

2. In the second group 'Using Author Queries', the queries targeted semi-

structured data using the 'Author' data. In this group, all the storage

systems were tested apart from PSDT. This is because PSDT will give

similar results as PSD. In these two models, the queries will only benefit

from the 'document key' as being highly-structured data and not from the

'title' data being highly-structured as in PSDT.

3. In the final group 'Using Title Data Queries', the queries targeted semi-
structured data using the 'Title' data. In this group, all the storage
systems were tested apart from PSDA. This is because PSDA will give
similar results as PSD, as these queries will not benefit from the 'Author'
data as being highly-structured.

121

The results are sub-grouped within each of these main groups according to the query

group functionality, using the grouping defined by XBench XML benchmarking (Yao et

al. 2002). Each of these query groups is discussed in a separate subsection. Each

subsection introduces the query group, and then presents the interpretation of this query

group into meaningful queries to match the experiment data set by presenting the query

semantics and syntax (SQL syntax for the relational storage model, XQuery syntax for

the 100%XW and the SQUXQuery syntax for the proposed hybrid model). The results

for each are presented graphically such that the relationship between of the performance

for each representation and the database size is depicted. Accordingly, in the first graph,

the x-axis represents the different storage strategies used in this experiment (100%R,

100%X, 37tloXW ...), and the y-axis represents the three database sizes used in this

experiment (DB113, DB213 and DB313), while the z-axis represents the execution time

in milliseconds. In the second graph, the x-axis represents the 'Data Instances

Dimension'. It contains the different hybrid models in the horizontal dimension

(100%R, 37cloXW, 60cloXW and 10MUM. The y-axis represents the execution time.

Each line on the graph represents a different database size (DBI13, DB213 and DB313).

It uses the same colour key as the first graph for the different database sizes. Finally, in

the third graph, the x-axis represents the 'Schema Dimension'. It contains the different

hybrid models in the vertical dimension (1000M, PSD, PSDA, PSDT and 100%XM.

The y-axis, the data series and the database size colour are similar to graph two. These

graphs are followed by a table showing the average execution time and the standard

deviations for the different runs for this query. The graphical representation of each set

of results is followed by an analysis of the results based on the storage strategy, the data

structuredness and finally the different database sizes.

5.3.1 Using 'Document Key' Queries

The queries in this group access documents by specifying a unique document key value.
Eight queries are included in this section. They are: shallow exact match (Ql), path

expressions Q9), document construction Q 12 for preserving the structure and Q 13 for

transforming the structure), irregular data (Q14 for missing elements and Q15 for empty
(null) values), retrieval of individual documents (Ql 6) and references and joins Q20).

The following subsections discuss each of these queries in turn.

122

5.3.1.1 Exact Match (Shallow)

The queries in this group required exact string match with specified and possibly long

path expressions, depending on the levels of predicates being queried in the XML

documents. Consequently, they can be shallow queries that match only at the top level

of the XML document trees (for example query Ql), or deep queries that match the

nested structure of the XML document tree (query Q2, this query is discussed in section

5.3.2.1).

The queries in this group were re-formulated to query the data set used in the

experiments, while retaining the functionally they were defined to characterise within

the benchmark. Thus, the query within this group "Shallow Exact Match" was re-

formulated to return in-proceeding's titles in the case of the 60%XW or article's titles in

the case of the 37t7oXW, to query the semi-structured part of the data. For the 100%R,

100cleX and PSD, half of the runs returned in-proceedings' titles and the other half

returned articles' titles, this is because in these three cases the data was: shredded in

relational tables in the first case, stored as one XML data field in the second case and

stored inside document fragments in the third case.

Also, it is necessary to express the re-formulated query in three different forms, so as to

query data stored using the three different storage strategies. This is the case for all the

queries and this is shortly explained in detail for the first query. As the following table

presents, for the 100%R, the query is expressed in purely SQL syntax. For 100%XW,

the query is expressed in XQuery format (using SQL syntax for MS SQL Server).

Finally for the proposed model, the query syntax is expressed in a combined SQL and

XQuery format. Further explanations of these different storage schemas are presented in

section 4.4.1. The equivalence of these queries were established by checking the first

couple of runs for each query and making sure that all these queries returned the same

exact results.

The following paragraphs show a brief query description followed by a table showing

the formulation of each query into SQL, XQuery and SQI_/XQuery syntax.

123

0 QI: Return in-proceeding's titles (or article's titles) that has key value X.

SQL. Syn. ax A-Title . Title A. ', QOIAIOCR ý, ýý A_Title Iýmer , in A-Doc ., ý,
A-Title. DocId

A-: ' -,;

A_Doc. Docld dockey ? RandoT. ArticleDocKey Fjr

XQuery SE-L--l @Rando. TArticleDocKey

Syntax ý-itle') QCIA100XW B_XMLDocument;

SQL/XQuery SE-ECT xmlextract. query AS QOlA60XW C_Doc

ISyntax I WHERL dockey -
@RandomInProCeedirigsDocKey;

The following graphs show the results for this query:

A verWe Execufton
__--r- Tifm in M1111seconds

600

500

400

300 M DB 1/3
Cl DB 2/3,

200 13 DB 3/3

100

DB 3/3
0 DB 2/3

1 00%R 100%XW DB 1/3
37%X Vý

60'/. XW
PSD

Q1 - Graph 1: Database Size vs. Storage Strategy vs. Performance
-600-- - F - ---- ----- -

1
600,

500
500

400
400

2 300 300
D

t

x
LU 200

lq-

200

100 100

0 0
0 20 40 60 80 100 100%R PSD 1 00%XW

Q1 - Graph 2: Data Instances Dimension
_Ql -

Graph 3: Schema Dimension

124

DB 113 DB 213 DB 313
Model Average Std. Dev. Avera e Std. Dev. Average Std. Dev.
100%R 91 18.95 121

FW

24.90 156 73.50
100%XW 221 26.54 3 64.06 522 100.41
37%XW 38 10.18 42 6.28 63 20.42
60%XW 39 9.42 50 8.83 74 13.65

PSD 24 8.19 55 8.27 65 30.92

Figure 5.2 Query 1: Shallow Exact Match

From the storage strategy point of view, the query group "shallow exact match" (Ql)

and as the first graph shows, the hybrid models produced the best query performance.
For example in the DB313, it took on average between 63 and 74 milliseconds for the

hybrid model, 156 milliseconds for the relational model and 522 milliseconds for the

100%XW. The relative performance of the different storage techniques is not surprising

and can be explained in terms of the number of joins required. Specifically, as the

SQUXQuery syntax showed, it selected the data based on the document key value
(which is a unique and indexed data field) from the same record in the same table using
the 'document key' to access that record. The SQL syntax showed that the relational data

model needed to do one join to get the data (from title and document tables).

From the data structuredness - data instances dimension point of view, as the second

graph shows, dealing with 37% of the data as serni-structured gave slightly better

performance than dealing with 60% of the data as semi-structured. Both of them gave
better performances than 100%R and IOOOIoXW. From the data structuredness - schema
dimension point of view, as the third graph shows, dealing with a specific part of the

schema as highly-structured and the remaining as semi-structured, as is the case in PSD,

gave the best performance compared to the MOM and 100%XW strategies.

125

200.00%

150.00%

100.00%

50.00%

0.00%:

Xll

lOO-,. xw 37%XW 60%XW PSD

* DB1 /3 to DB2/3 32.97% 1 73.30% 10.53% 28.21% 129.17%

* DB1 /3 to DB3/3 71.43% 136.20% 65.79% 89.74% 170.83%

Figure 5.3 Query 1: Performance Deterioration When Database Size Doubled (DBI13

to DB213) and Tripled (DB113 to DB313)

From the database size point of view, the above figure shows the performance

deterioration when the database size doubled and tripled for Q1. The worst performance

was for the hybrid model PSD.

5.3.1.2 Path expressions

The queries in this group involved path expressions: Q8 queries data where one element

name in its path was unknown (this query is discussed in section 5.3.3.1), Q9 queries
data where multiple consecutive element names in its path were unknown.

The query in this group was interpreted to match the data set used in the experiments as
follows:

Q9: Return in-proceeding's authors (or article's authors) for specific

publications that had key value X. The (//) was used inside XQuery

syntax to direct the query to look for any path inside the document.

SQ- Svntax
SE-"': A Author. Author AS Q09AlOOR FR,. V dbo. A_Author
WtIE!, 1L A_Author. docId in DocId A Doc 'oý! IERE DocKey
@Randc, nArticleDocKey) For XYý, Auto;

XQuery
SL-.!, "I xmldoc. query('for $x in /dblo/article WHERF $x[@key-'- ,
@RandomArticleDocKey + '"I return $x//authorl) AS Q09AIOOX Syntax
B_XMLDocument;

SQL/XQuery
SLý, _ -or

/author' xmlextract. query(" $x in /inprý, L
Q09A6CX Fro. -T C Doc

Syntax _
1 dockey @RandomInProceedingsDocKey

126

Average Execution
Time in Milliseconds

250-

200

150

IN DB 1/ý3
0 DB 2/31 100
El DB 3/3

50

DB 3/3
0 DB 2/3

100%R 1 001/. XW DB 1/3
37%XW

60%XW
PSD

Q9 - Graph 1: Database Size vs. Storage Strategy vs. Performance

250
250

200
200

E 150 - i- 150
C 0
U a) 100 X 100
Ui A\

50 0 5

0 0

0 20 40 60 80 1()Ol 100%R PSD 1 00%X W

Q9 - Graph 2: Data Instances Dimension Q9 - Graph 3 : Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
100%R 117 8.46 124 15.04 142 13.11

100%XW 108 16.21 188 43.60 222 49.97

37%XW 15 1.46 15 2.28 17 0.98

60%XW 15 2.52 15 1.14 21 8.31

PSD 14 5.54 1 15 1 0.62 1 18 1.08

Figure 5.4 Query 9: Path expressions

127

From the storage strategy point of view, the query group "path expressions" (Q9) where

multiple consecutive element names in its path were unknown, the typed XML hybrid

models showed the best query performance. For example in the DB313, it took on

average between 17 and 21 milliseconds for the hybrid model, 142 milliseconds for the

relational model and 222 milliseconds for the 100%XW. The relational model showed a

poor performance likely to be due to the fact that it consisted of a sub-query, while this

was not the case in the hybrid models.

From the data structuredness - data instances dimension point of view, as the second

graph shows, dealing with 37% of the data as semi-structured gave a similar

performance to dealing with 60% of the data as semi-structured. Both of them gave

better performances than 100%R and 100%XW. From the data structuredness - schema
dimension point of view, as the third graph shows, dealing with a specific part of the

schema as high ly- structured and the remaining as semi -structured, as is the case in PSD.

gave the best performance compared to the 100%R and 100%XW strategies.

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0 00% . 1 00%R 1 001, xw 37%XW 60%XW PSD

D81/3 to DB2/3 5.98% 74.07% 0.00% 0.00% 7.14%

DB1/3 to DB3/3 21.37% 105.56% 13.33% 40.00% 28.57%

Figure 5.5 Query 9: Performance Deterioration When Database Size Doubled (DB]13

to DB213) and Tripled (DBI13 to DB313)

From the database size point of view, the above figure illustrates the performance
deterioration when the database size doubled and tripled for Q9. The worst performance

was for the model 100%XW.

5.3.1.3 Document construction

Structure is important in many XML documents. However, some systems experience
difficulties in even preserving the document's original structure. This class of queries : _I

128

tested the performance of the system in preserving the structure (Q12) and in

transforming the structure Q13). The queries in this group were interpreted to match

the data set used in the experiments as follows:

Q12: List all in-proceeding's titles (or article's titles), publication date,

authors for specific document preserving the original document structure.

JLL, 1-7: dbo. A Title. Title AS Q12A100R, dbo. A_Author. Author, dbo. A-Doc. MDate
!. 'ROY dbo. A_Title INNER --OlN dbo. A_Doc ON dbo. A_Title. DocIci

SQL Syntax dbo. A_Doc. DocId INNER JOIN dbo. A Author ON dbo. A Doc. Docld
dbo. A Author. DocId

WHERE A-Doc. dockey = @RandomArticleDocKey For XYL, A, -, ý;
ECI WHERE $x - xmldoc. query('for $x in /dblp/article

XQuery @RandonArticleDocKey + '"I return <doc
Syntax Tciateý"ý$x/? mdateý">ý$x/l. itle)<authors>ý$x/authorý</autlýorý; -,

Q12A100X Fr::)m B_XMLDocument;

-'E'-ECI' xmlextract. query('for $x in /inproceedings return <d---,
SQL/XQuery

' ' l '
Syntax

I

hor ý <, a, -, $x :, - au eý<, authors >ý $x.

Q12A6_OX C Doc - bockey - qRando. T. InProceedingsDocKe y

Q13: List all in-proceeding's titles (or article's titles), publication date,

authors for specific document transforming the original document

structure to another structure.

SELECI A-Title. Title ALý Q13A100R, A_Author. Author, A_Doc. MDate,
A_BookTitle. BookTitle, A_Journal. Journal, A_EE. EE, A- URL. URL FROY A_Title

INNER : CIN A_Doc -'N A_Title. Docid ý A_Doc. DocId INNER : 01N A Author
Doc. DocId ý A Doc. DocId -A Author. DocId LEFT O'ý; TER jCIN A URL ON A

SQL Syntax - - -
A_URL. DocId LEFT OUTER ; OIN A-EE ON A-Doc. DocId ýA- EE. DocId LEFT OUTER

,: OIN A- Journal C\: A_Doc. DocId - A_journal. DocId LEFT O=EP A_BookTitle
ON A_Doc. Docld -- A-BookTitle. DocId
WHERE A_Doc. ciockey @RandomArticleDocKey L-or XYL AUrC;

SELECI xmldoc. query("or Sx in /dblu, ir--cle WHERE $x[? kev-"'
@RandomArticleDocKey + '"j re-urn <cýo-

XQuery
,,, nciate="ý$x/2, T. dateý">ý$x/tlrlel<authors>($x/authorý</a, ithors>, boo. ":

- -, x,
Syntax

booktitlel</booktitle><ýournal>ý$x/ýournalý</ýournal><ee>i$x/'eeý,, e-, ---
$x/url)</url></doc>') Aý Q13AIOCX 'i-m B XMLDocument;

SELECT xmlextract. query("or $x in /incroceedings return <doc

. T. date=" ý $x/@rndate) "> ý $x/title ý <authors> ý $x/author I </auth,)rs><boc., t' t 1,1$.
SQL/XQuery - ', - 4t! eý</boo. Ktitle><ýournal>($x/4ournalý, xe cktý , Syntax - ýýx/ur-'ý</url></doc>') AS Q13A60X FroT C-Doc AHEý, I- dockey

I@RandomInProceedingsDocKey

The following graphs show the results for these queries

129

Average Execution
Tirnein Milliseconds

700

600

500

400
0 DB 1/3

300 C1 DB 2/3'
i 0 DB 3/3

200-'

100-
DB 3/3

0 DB 2/3
1000% R

1 00%XW DB 1/3
37%XW

60%X VV PSD

Q 12 - Graph 1: Database Size vs. Storage Strategy vs. Performance

800
700,

700
600

600
500

E 500

400

.2 400

X 300 LU
,j

300

200 200

100 100

.
0ý 0 20 40 60 80 10

PSD 100%R 1 00%X W

Q12 - Graph 2: Data Instances Dimension Q 12 - Graph 2: Data Instances Dimension
Model Average i Std. Dev. Average Std. Dev. Average Std. Dev.
I 00%R 227 9.81 256 90.74 259 47.26

100%XW 231 57.75 507 51.37 686 52.76

37%XW 98 35.84 100 34.52 107 19.20

60%XW 112 14.11 115 9.37 124 21.87

L PSD 36 6.68 1 37 8.17 1 44 13.61
-

Figure 5.6 Query 12: Document Construction - Structure Preserving

Model Average Average Std. Dev. Average Std. Dev.
I 00%R 227 9.81 256 90.74 259 47.26

100%XW 231 57.75 507 51.37 686 52.76
37%XW 98 35.84 100 34.52 107 19.20
60%XW 112 14.11 115 9.37 124 21.87

PSD 1 36 6.68 37 8.17 44 1 13.61

130

Average Execution
Time in Milliseconds

14000

12000-

10000

8000
0 DB 1/3

6000 0 DB 2/3
11 DB 3/31

4000

2000
DB 3/3

0 DB 2/3
100% R1 OOI. XW DB 1/3

37%XW 60%XW PSD

Q 13 - Graph 1: Database Size vs. Storage Strategy vs. Performance
14000

14000,
12000

12000
10000

10000 (U E
l- 8000
C 8000
0

I 6000

1

U 6000 Q) X
4000 4000

2000 0\0 4, 2000 J

0 I
T-- ii

I

- 0
100%R PSD 1 00%X W

L 0 20 40 60 80 1 00ý

Q1 3 -Graph 2: Data Instances Dimension Q 13 - Graph 2: Data Instances Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
I 00%R 420 36.06 515 24.18 739 78.69

I 00%XW 3082 992.17 6882 1419.22 13138 2761.02
37%XW 1 55 18.45 57 7.12 79 32.56
60%XW 72 23.67 80 5.85 102 36.87

PSD 12 1 1.57 1 13 1.17 15 1.21

Figure 5.7 Query 13: Document Construction - Structure Transforming

131

From the storage strategy point of view, the query group "document construction" either

for preserving the document's original structure (Q12) or transforming the structure

(Q 13), the typed XML hybrid models showed the best query performance. For example

in the DB313, it took on average between 44 and 124 milliseconds for the hybrid model,

259 milliseconds for the relational model and 686 milliseconds for the 100%XW in

Q12. It took on average between 15 and 102 milliseconds for the hybrid model, 739

milliseconds for the relational model and 13138 milliseconds for the 100%XW in Q 13.

The relational model showed a poor performance likely to be due to the fact that it

consisted of a sub-query, while this was not the case in the hybrid models. This was

probably due to the data being selected from one table and returned as it is from the

XML extract using the document key. The poor performance of the relational storage

model was expected due to the fact that the data was shredded in more than one table

and more than one join was needed to get it.

From the data structuredness - data instances dimension point of view, as the second

graph shows for both Q12 and Q13, dealing with 37% of the data as semi-structured

gave slightly better performance than dealing with 60% of the data as semi-structured.

Both of them gave better performances than 100%R and 100%XW. From the data

structuredness - schema dimension point of view, as the third graph shows for both Q12

and Q13, dealing with a specific part of the schema as in PSD as highly-structured and

the remaining as semi-structured gave the best performance compared to the 100%R

and 100%XW strategies.

250.00%

200.00%

150.00%

100.00%

50.00%

0.00%
100%R I 00%XW 37%XW 60%XW PSD

0 DB1 /3 to DB2/3 12.78% 119.48% 2.04% 2.68% 2.78%

EDBl/3toDB3/3 14.10% 196.97% 9.18% 10.71% 22.22%

Figure 5.8 Query 12: Performance Deterioration When Database Size Doubled (DB113

to DB213) and Tripled (DB113 to DB313)

132

From the database size point of view, the above figure shows the performance

deterioration when the database size doubled and tripled for Q12. The worst

performance was for the model 100%XW.

400.00%

300.00%

200.00%

100.00%

0.00%
100%R 1 00%XW 37%XW 60%XW PSD

0 DB1 /3 to DB2/3 22.62% 123,30% 3.64% 11.11% 8.33%

M DB1 /3 to DB3/3 1 75.95% 326.28% 43.64% 41.67% 25.00%

Figure 5.9 Query 13: Performance Deterioration When Database Size Doubled (DB113

to DB213) and Tripled (DBl13 to DB313)

From the database size point of view, the above figure shows the performance

deterioration when the database size doubled and tripled for Q13. The worst

performance was for the model 100%XW.

5.3.1.4 Irregular data

Irregularity of schema is a common feature in XML databases. This class of queries

tested missing elements (Q14) and empty (null) values (Q15). Since there were no

empty elements in the data set used in this experiment, Q15 tested the 'year' data as a

specific number instead of it equalling null. The queries in this group were interpreted

to match the data set used in the experiments as follows:

Q14: List all in-proceeding's titles in 'C-' tables (or article's titles in

'D-' tables), publication date, authors where 'ee' element was missing.

SE1, E--= dbo. A-Title. Title Q14A100R, dbo. A
-

Author. Author, dbo. A Doc. YDate
FRO. ', ý dbo. A-Title 1NNER jCIN dbo. A_Doc dbo. A-Title. DocId -
dbo. A Doc. DocId INNER ; OIN dbo. A Author CIN dbo DocId - A Doc SQý, Syntax - - . . _ dbo. A_Author. DocId
KliERL A-Doc. dockey @RandomArticleDocKey And A_Doc. DocId not in (SLý--ý
DocIdýijm

-A-E
E) I ý, i ,,: ý- Au tý;

xrnldoc. query('for $x in /dblr)/article WHERE $x[? key="'
XQuery @RandomArticleDocKey and e-7. uty($x/ee) return <coc
Syntax -rd a ýe-" ý $x / 2., rd ate ý "> ý ýx/t it! eý <a,,! S- 'X 1 -3

Q14AICOX F,
-cT

B_XMLDocument;

133

SE-ECI xrr. lextract. query('for $x in /iniDroceedings return

SQ-/XQuery raate="ý$x/ý',. -7da-el">I$x/1-itlel<aul-hcrs>ý$x/author)</autho, ý,
Q14A60X Fro- C_Doc

XY:. Extract., -

Q15: List all in-proceeding's titles in 'C_' tables (or article's titles in 'D-'

tables), publication date, authors where 'year' element equals specific

number.

SEL, LCI dbo. A Title. Title AS Q15AIOOR, dbo. A Author. Author, dbo. A-Doc. MDate

FR-'X dbo. A-Title INNER ýOIN dbo. A_Doc - dbo. A
-

Title. DocId -
Doc. DocId - Author ON dbo. A Doc. DocId INNER jOlN dbo. A dbo. A

SQL Syntax _ _ _
dbo. A Author. DocId

WHERE A-Doc. dockey ý @RandomArticleDocKey And A_Doc. DocId in DocId
from A_Year WTHLRE ýeai - 2003) lor Xý', ý, Auto;

SE--ECr x. mldoc. query('for $x in /dblp/article WHERE $x[@key="' +
XQuery @RandornArticleDocKey + '"I and ($x/year)[l]="2003" return <doc
Syntax -rdalýe-"ý$x/? 7dateý">i$x/title)<aulýhc)rs>ý$x/authorý</aulýhc)rs></do

Q15AlCCX ý'ro: r, B_XMLDocument;

SELECI xnlextract. query('for $x in /inproceedings return <doc
: ndaý: e-"ý$x/2-rdat: eý">ý$x/titleý<aut--hors>ý$x/authorý</authors></d-ý, SQL/XQuery
Q15A60X i:, m C_Doc

Syntax
ido clk ey ? Rancio. T. InProceedingsDocKey ar, ý' XMLExtract .

ý-e, i i:, ýý , -i)[1]', 'varcha, (5) ')- '2 '- ý'

The following graphs show the results for these queries

Average Execution
Time in Milliseconds

450

400

350

300

250

200
M DB 1/3

Io DB 2/3 ,

150 o DB 3/3

100

50
DB 3/3

0 DB 2/3

1 001/. >= 37%XVV
DB 1/3

603,. XVV
PSD

Q 14 - Graph 1: Database Size vs. Storage Strategy vs. Performance

134

500
450,

450 Ma
400

400
350

350
a) E 300

300
ýz

IC \0 1
1 250 '*"

C) 250

(L) 200
200

x
LU 150

150

1
1

100
100

50
I 0\0 i

50

0 0 1
1

0 20-- 40 60 80 100
j

1
100%R PSD 100%X

L

W

Q14 - Graph 2: Data Instances Dimens on Q14 - Graph 2: Data Instances Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average
_Std.

Dev.
100%R 19 7.53 76 13.50 219 23.33

100%XW 193 51.00 331 121.47 447 221.15

37%XW 14 1.55 19 7.00 20 8.52

60%XW 14 1.30 15 1.50 17 1.51

PSD 1 13 1.63 1 13 0.87 1 14 1.44

Figure 5.10 Query 14: IrregularitY - Missing Elements

135

Average Execution
Time in M illiseco nds

3000

2500

2000

1500 DB 1/3ý
II o DB 2/3ýý

1000 C3 DB 3/3

500

0-
DB 3/3 19

4U, 1 DB 2/3
1 00%R 1001- XW 1/3

37/oXVV 60%>=
PSD

Q 15 Graph 1: Database Size vs. Storage Strategy vs. Performance

3000

3000,
2500

2500

2000
' E 2000

ZO; 1500 1500

X
LU 1000

--- ---- 1000

500 500

0 1 100% R PSD 1 00%XW
0 20 40 60 80 1 00, 1

Q15 - Graph 2: Data Instances Dimension Q15 - Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
100%R 2519 144.27 2630 90.00 2772 27.85

100%XW 112 15.63 187 68.54 271 61.72

37%XW 15 1.39 15 1.71 20 7.60

60%XW 14 2.12 16 2.00 18 4.90

PSD 13 1 1.36 1 13 1 1.44 15 1.45

Figure 5.11 Query 15: Irregularity - Empty (Null) Values

136

From the storage strategy point of view, the query group "Irregularity of schema -

missing elements" (Q14A) or "Irregularity of schema - for specific data" (Q15), the

typed XML hybrid models showed the best query performance. For example in the

DB313, it took on average between 14 and 20 milliseconds for the hybrid model, 219

milliseconds for the relational model and 447 milliseconds for the 100%XW in Q14. It

took on average between 15 and 20 milliseconds for the hybrid model, 2772

milliseconds for the relational model and 271 milliseconds for the 100%XW in Q 15. In

Q14. This was expected since the relational model had a sub-query to check the non

existence of the 'ee' data in a different table. Shredding the XML elements into small

extracts (as in the hybrid model) provided a better performance than keeping the data in

one large XML data field. In Q15, The main reason for the poor performance of the

relational model was that the 'year' field did not have an index, besides it had a sub-

query to check the non existence of the 'ee' data in a different table.

From the data structuredness - data instances dimension point of view, as the second

graph shows for both Q14 and Q15, dealing with 37% of the data as semi-structured

gave a similar performance than dealing with 60% of the data as semi -structured. Both

of them gave better performances than 100%R and 100%XW. From the data

structuredness - schema dimension point of view, as the third graph shows for both Q14

and Q15, dealing with a specific part of the schema as in PSD as highly- structured and

the remaining as semi-structured gave the best performance compared to the 100%R

and 100%XW strategies.

1200.00%

1000.00%

800.00%

600.00%

400.00%

200.00%

0.00%

M DB 1 /3 to DB2/3

ýM D_B 1 /3 to DB3/3

10 %R 100%XW 37%XW 60%XW PSD

300.00% 71.50% 35.71% 7.14% 0.00%

1052.63% 131.61% 42.86% 21.43% 7.69%

Figure 5.12 Query 14: Performance Deterioration When Database Size Doubled

(DB 113 to DB213) and Tripled (DB 113 to DB313)

137

From the database size point of view, the above figure illustrates the performance

deterioration when the database size doubled and tripled for Q14. The worst

performance was for the model 10051R.

150.00%

100.00%

50.00%

0.00%
100%R 1 00ý. Xw 37%XW 60%XW PSD

FN-DB1 /3 to DB2/3 4.41% 66.96% 0.00%
1

14.29% 0.00%

0 DB1 /3 to DB3/3 1 10.04% 141.96% 33.33% 28-57% 15.38%

Figure 5.13 Query 15: Performance Deterioration When Database Size Doubled

(DB]13 to DB213) and Tripled (DBI13 to DB313)

From the database size point of view, the above figure shows the performance

deterioration when the database size doubled and tripled for Q15. The worst

performance was for the model 100%XW.

5.3.1.5 Retrieval of individual documents

The queries in this group tested an essential function to retrieve individual XML

documents while preserving the contents of those documents. The queries in this group

were interpreted to match the data set used in the experiments as follows:

Q16: Retrieve all in-proceeding data in 'C_' tables (or article data in 'D-'

tables) that had a key value X keeping its original structure.

A dbo. A author. author Q16A100R
vi. dbo. A_author INNER J, 'I', dbo. A-Doc dbo. A-author. DocId
dbo. A_Doc. DocId WHERE A-Doc. DocKey - @RandomArticleDocKey
'-'NI ON ALL
jE:, ECT cast ('<! [CDATA[' + dbo. A

-
Editor. Editor + ']]>' AS XX-) AS Q16AICOR

SQL Syntax
I-'ROM dbo. A

-
Editor INNER JOIN dbo. A

-
Doc ON dbo. A-Editor. DocId -

dbo. A_Doc. DocId WHERE A Doc. DocKey = @RandornArticleDocKey
'ý'N ION AT L

And so on for the remaining 20 tables (Address, Title, Booktitle, Pages,
Year, Journal, volume, month, URL, EE, CDRom, Cite, Publisher, CrossRef,
ISBN, Series, School, Chapter, Number, Note)

XQuery SE!, EC' x. mldoc. query('/dblo/arýicle[? kev-"' @Rando. mArticleDocKey
Syntax AS Q16AIOOX From B_XMLDocument;
SQL/XQuery ýILýý!. ý ý, - II XXLExtract Q16A6CX i -. C_Doc DocKey
Syntax ORandominProceedingsDocKey;

The following graphs show the results for this query

138

Average Execution
Time in M 11iseco nos

30000

25000

20000

15000 DB 1/3

DB 2/3

10000 DB 3/3'1

5000

DB 3/3
0B 2/3

100%R 1 00%XW DB 1/3
37ý-XVV 60%XVV

PSD

Q 16 - Graph 1: Database Size vs. Storage Strategy vs. Performance

30000

30000
25000

25000

2 00 00
E 20 0

0 15000 Z, 15000
U

L

10000 10000

5000

L\

5000

ONO
AIN I I, 0

0 1 00%R PSD 100%XW
0 20 40 60 80 N1 00

Q 16 - Graph 2: Data Instances Dimension Q16 - Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
100%R 17721 570.33 25304 1042.22 25938 313.36

100%XW 107 40.36 163 36.46 263 107.13

37%XW 19 7.49 24 1.73
1

37 18.28

60%XW 23 8.78 34 2.08 54
- ,

16.60

PSD 13 1.00 14
1

1.56 1 6 1.38

Figure 5.14 Query 16: Retrieve Individual Docunients

139

From the storage strategy point of view, the query group "retrieve individual XML

documents" for semi-structured data only (Q16), and as the first graph shows, the

hybrid models produced the best query performance. For example in the DB313, it took

on averacye between 16 and 54 milliseconds for the hybrid model, 25938 milliseconds Z__
for the relational model and 263 milliseconds for the 100%XW. The main reason for the

extremely poor performance of the relational model was that it constructed the data

from twenty three different tables while the hybrid model just got the data from one

record in one table using the unique "document key".

From the data structuredness - data instances dimension point of view, as the second

graph shows, dealing with 37% of the data as semi-structured gave slightly better

performance than dealing with 60% of the data as semi-structured. Both of them gave
better performances than 100%R and 100%XW. From the data structuredness - schema
dimension point of view, as the third graph shows, dealing with a specific part of the

schema as in PSD as highly-structured and the remaining as semi-structured gave the

best performance compared to the 100cloR and 100%XW strategies,

200.00%

150.00%

100.00%

50.00%

0.00% I 00-ýR I 00', XW 37'. XW 601AW PSD

DB1/3 to DB2/3 42.79% 52.34% 26.32% 4T83% 7.69%

DB 1 /3 to DB3/3 46.37% 145.79% 94.74% 134.78% 23.08%

Figure 5.15 Query 16: Performance Deterioration When DatabaseSi7e Doubled

(DB 113 to DB213) and Tripled (DB 113 to DB313)

From the database size point of view, the above figure shows the performance
deterioration when the database size doubled and tripled for Q16. The worst

performance was for the model 100%XW.

140

5.3.1.6 References and joins

Data-centric documents usually have references to identify the relationship between

related data, even among different XML documents. Sometimes users want to combine

separate information together using join by values. The original version of this query

tests the references and joins. Since the data set consisted of a single XML document,

and as this query required the join operation between two documents, it was executed in

two steps. In the first step involved finding an author of a specified article (or in-

proceeding), then in the second step, by using this author's name, another query was

executed to retrieve all the articles he/she wrote. The queries in this group were

interpreted to match the data set used in the experiments as follows:

0 Q19: Retrieve the first author for in-proceeding data in 'C' tables (or

article data in 'D-' tables) that has a key value X. Using this author;

retrieve all his publications' titles.

SEIECT Top 1 @Author = Author from A-Author WHERE DocId in (SELECT DocId
SQL Syntax from A-Doc WHERE Dockey ý @RandomArticleDocKey)

SELECT A_Title. Title AS Q19A100R_2 FROM A_Title INNER J01N A_Doc ON
A-Title. Docld ý A-Doc. DocId INNER jOIN A_Author ON A-Doc. DocId =
A_Author. Docld WHERE (A_Author. Author " @Author) AND (A_Doc. DocTypeId - 1)

: or XY! auto;
SELECT xmldoc. query('/dblp/article[@key="' + @RandomArticleDocKey +

XQuery AS Q19AlOOX_l From B_XMLDocument;
Syntax SELECT XMLdoc. query('/dblp/article[author="N'+ @Author + -]/tiole') A;

Q19Al CX_2 Prom B_XMLDocument

SELECT XMLExtract. query('/inproceedings/author[ll') AS Q19A60X_l From C_Doc
WHERE DocKey = @RandomInProceedingsDocKey;

SQL/XQuery
' SELECT XMLExtract. query(/inprocepýiqqs/title') AS Q19A60X_2 FiDT C-Doc

Syntax
' ' " ' WHERE doctypeid 2 and XMLExtract. exist(/inproweedina, i"týý: N

@Author +1;

The following graphs show the results for this query

141

Average Executior
Time in M Ifiseco rds

300,,

250

200

150 0 DB 1/3

ci DB 2/3,

100 Ci DB 3/3,

50

DB 3/3

DB 2/3
100%R 1001% Xý% DB 1/3

60%)M
PSD

Q19 - Graph 1: Database Size vs. Storage Strategy vs. Performance
F

300 Z.
300,

250
250

200
200

ýE
C: 0 150

1 150 "' \O
W
x

LU 100

100
50 50

0 0

L-- -
0 20 40 60 80 1001
---- ---- --- - ---

1 00%

-- -

R PSC) 100%X

-- --

W

-

Q 19 - Graph 2: Data Instances Dimension Q 19 - Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
100%R 261 7.07 270 17.32 277 110.44

100%XW 143 52.88 220 39.47 285 59.26

37%XW 69 10.33 99 2.12 103 14.62

60%XW 84 10.74 99 11.09 104 7.30

PSD 1
14 1 1.52 1 15 1 1.29 1 16 1

1.83

Figure 5.16 Query 19: Reference and Joins

142

From the storage strategy point of view, the query group "references and joins" (Q 19),

the typed XML hybrid models PSD showed the best query performance. For example in

the DB313, it took on average 16 milliseconds for the PSD model, 103 and 104

millisecond for the 37%XW and 60%XW, 277 milliseconds for the relational model and

285 milliseconds for the 100%XW. The relational model showed a poor performance

likely to be due to the fact that it consisted of a sub-query.

From the data structuredness - data instances dimension point of view, as the second

graph shows, dealing with 37% of the data as semi-structured gave a similar

performance to dealing with 60% of the data as semi-structured. Both of them gave
better performances than 100%R and 100%XW. From the data structuredness - schema

dimension point of view, as the third graph shows, dealing with a specific part of the

schema as highly-structured and the remaining as semi-structured, as is the case in PSD,

gave the best performance compared to the 100%R and 100%XW strategies.

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%
FIE-

100%R 1 00%XW 37%XW 60%XW PSD

13 DB1 /3 to DB2/3 3.45% 53.85% 43.48% 17.86% 7.14%

M DBI /3 to DB3/3 6.13% 99.30% 49.28% 23.81% 14.29%

Figure 5.17 Query 19: Performance Deterioration When Database Size Doubled

(DB 113 to DB213) and Tripled (DB 113 to DB313)

From the database size point of view, the above figure shows the performance

deterioration when the database size doubled and tripled for Q19. The worst

performance was for the model 100%XW.

143

5.3.2 Using 'Author' Queries

5.3.2.1 Exact Match (Deep)

The queries in this group required exact string match with specified and possibly long

path expressions, depending on the levels of predicates being queried in the XML

documents. Consequently, they can be shallow queries that match only at the top level

of XML document trees (example Q 1, this query was presented in section 5.3.1.1), or

deep queries that match the nested structure of an XML document tree (Q2).

0 Q2: Return in-proceeding's titles (or an article's titles) that has the same

author Y.

A Title. Title L; QC2A1OCR V Title IN A_ R ý'I A Doc 0. ",
A Title. DocId -A Doc .

Docld INNER ýý)iN A Author A Doc. DocId - SQL Syntax - -
A_Author. DocId ýHEPE (A-Author. Author - @Author) AND (A-Doc. DocTypeId
'or XML auto;

XQuery
_ýý. ý, ECT XMLdoc. query(' /dlolo/article[author-"', @Author + -]/title')

Syntax Q02AIOOXW FRCý' B-XMID ocunent;
SL - LCI XMLExtract. auery('/iriorc)-e-cii. ngs/ti* i_ Q02A60XW C_Doc

SQL/XQuery
1

ý ' ' 4HERL DocTypeld 2 i + !,., XYý, E xtract exist,
Syntax

'" ' Muthor ý)-1; 1

Average Execution
Time in Milliseconds

600

500

400

300 0 DB 1/3'
0 DB 2/3

200 13 DB 3/31

100

0 DB 3/3
DB 2/3 1 00%R 1 00%XW DB 1/3 37%XW 60%XW PSD PSDA

Q2 - Graph 1: Database Size vs. Storage Strategy vs. Performance

144

F-700-

6001

600
500

500

a) 400 E
F- 400

.2 300
U 300
X LU 200

200

100
100

0 O-
A

0 20 40 60 80 1 00ý 100%R PSDA PSD 100% XW

Q2 - Grap h 2: Data Instances Dimension Q2 - Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev
100%R 148 26.94 196 94.89 262 40.93

I 00%XW 210 59.34 379 90.90 580 144.30

37%XW 181 75.33 207 54.65 293 121.92

60%XW 237 102.97 274 73.94 301 124.83

PSD 215 35.99 276 13.80 317 168.16

PSDA 70 23.98 75 19.27 120 63.36

Figure 5.18 Query 2: Deep Exact Math

From the storage strategy point of view, the query group "deep exact match" (Q2), the

PSDA hybrid models showed the best query performance. For example in the DB313, it

took on average between 120 milliseconds for the PSDA, 317 for the PSD model, 293

and 301 for the 37%XW and 60%XW models, 262 milliseconds for the relational model

and 580 milliseconds for the 100%XW.

From the data structuredness point of view, the results were similar to shallow exact

match, dealing with 37% of the data as semi-structured gave better performance than

dealing with 60% or 100% of the data as semi-structured. This query can be considered

as more complex than the shallow exact match (Q 1), and there was a difference between

the performance of Q1 and Q2. The reason for that was probably due to the technique

for selecting the data for this query, which involved retrieving the data from inside each

XML extract versus using the document key value as in Q1.

145

200.00%

150.00%

100.00%

50.00%

0.00%
100%R 100%XW 37%XW__60%XW

,
PSD_

.
PSDA

ýNDBlMoDB2/3 32.43% 80.48% 14.36% 1 15.61% 28.37% 7.14%

M DB1 /3 to DB3/3 77.03% 176.19% 61.88% 27.00% 47.44% 71.43%

Figure 5.19 Query 2: Performance Deterioration When Database Size Doubled (DBI13

to DB213) and Tripled (DBl13 to DB313)

From the database size point of view, the above figure illustrates the performance

deterioration when the database size doubled and tripled for Q2. The worst performance

was for the model 100%XW.

5.3.2.2 Function application

The queries in this group challenged the system with aggregate functions such as count,

average, maximum, minimum and sum. The queries in this group were interpreted to

match the data set used in the experiments as follows:

Q3: counts in-proceeding's titles in 'C_' tables (or article's titles in 'D-'

tables) that have the same author X.

SELL, ' I'', ý, 7 (A_DOC. Doc I d) AS Q03 A 10OR ý A-Doc ý ý-', ýAý , 'IN A-Author

SQL Syntax A_Doc. Docld -A Author. Docld WHERE (A Author. Author - @Author) ANL

(A Doc. DocTypeId = 1);

XQuery SL-IECV XMLdoc. query('C-"ýý'. %T(/dblo/article[author-"', @Author + '"! /title)')

Syntax AS Q03AIOOXW FIýOY. B_XMLDocument

SELECT CO', ýNT (XMLExtract query(' r ýs Q03A60X
SQL/XQuery

+ C doc WHERE doctypeid -2 and XMLExtract. exist i
Syntax A

uthor +-1; I@ 1

The following graphs show the results for this query

146

Average Execulion
Time in Millisecon ds

450

400

350

300

250
IEDB 3

200 1 0 DB 2/31
150 0 DB 3/3

100

50

0 iI DB 3/3

1 00%R 1
DB 2/3

1 00 ý. Xvv 37%XW DB 1/3
60%XW

PSE)
PSDA

Q3 Graph 1: Database Size vs. Storage Strategy vs. Performance
500

450
450

IZP

400
400

350
350

E 300
300

F-
C 250 250
.2

U 0) 200 200
LU

150 150
ONO

100 too

50 50

0
0 20 40 60 80 100

0

100%R PSDA PSD 100 % XW--j

Q3 - Grap h 2: Data Instances Dimension Q3 Graph 3 : Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
100%R 139 23.98 169 39.29 241 18.13

100%XW 166 63.49 300 66.31 441 96.34

37%XW 77 1.92 82 8.05 93 2.57

60%XW 70 8.07 78 5.63 83 9.10

PSD 94 17.81 111 23.09 1 116 3.25

PSDA 1 12 1 0.44 1 12 1 0.45 1 14 1 1.48

Figure 5.20 Query 3: Function Application

147

From the storage strategy point of view, the query group "function application" (Q3),

the PSDA hybrid models showed the best query performance. For example in the

DB313, it took on average between 14 milliseconds for the PSDA, 116 for the PSD

model, 83 and 93 for the 37%XW and 60%XW models, 241 milliseconds for the

relational model and 441 milliseconds for the 100%XW.

From the data structuredness - data instances dimension point of view, as the second

graph shows, dealing with 37% of the data as semi-structured gave slightly better

performance than dealing with 60% of the data as semi-structured. Both of them gave

better performances than 100%R and 100%XW. From the data structuredness - schema

dimension point of view, as the third graph shows, dealing with a specific part of the

schema as in PSDA as highly-structured and the remaining as semi-structured gave the

best performance compared to the 100%R and 100%XW strategies.

200.00%

150.00%

100.00%

50.00%

0.00%
100%R 100%XW 37%XW 60%XW PSI) PSDA

DBl/3toDB2/3 21.58% 8-0.72% 6.49% 11.43% 18.09% 0.00%

DB113 to DB3/3 73.38% 165.66% 20.78% 18.57% 23.40% 16.67% Ii

Figure 5.21 Query 2: Performance Deterioration When Database Size Doubled (DBl13

to DB213) and Tripled (DB]13 to DB313)

From the database size point of view, the above figure illustrates the performance
deterioration when the database size doubled and tripled for Q2. The worst performance

was for the model 100%XW.

5.3.2.3 Ordered access

The queries in this group test the performance of the system when it preserves the

document order during retrieval. This could be in a relative order (Q4) based on the

current matching position, or an absolute order (Q5). The queries in this group were
interpreted to match the data set used in the experiments as follows:

148

Q4: Return in-proceeding's titles in 'C-' tables (or an article's titles in

'D-' tables) that has the same author X. in-proceeding's titles in 'C'

tables (or article's titles in 'D-' tables) that have the same author X sorted

by their relative order in the original document.

A Title. Title AS Q04A100R A-Title INXII%,., ý A Doc CN

Doc. DocId Title. DocId =A A A-Author ,. \ A Doc. DocId -
SQ:, Syntax _ _

A-Author. DocId ', ýHERE (A_Author. Author ýAuthor) AND (A Doc. DocTypeId = 1)

CRDER EY A_Doc. DocId for XY:, A=O;

XQuery S; -ECII xnldoc. query('fcr $x in /dbi, ý, WHERE $x/auth-)i-- + @Author +

Syntax '" return $x, title') AS Q04A1OOXW I'P. - BXMLIDocument;

SE:, ECT XMLExtract. query('/incrc)-, eeci, -: i t-*'-') ,, S Q04A60XW FRCX C_Doc
SQL/XQuery

DocTypeid 2 and XMLExtract. ex ist('
-: ýz- L+

Syntax I OAuthor -1 -iýLLP, 1-'i DocId;

0 Q5: Return the first in-proceeding's title in 'C' tables (or article's title in

'D-' tables) that has the same author X sorted by their absolute order in

the original document.

t-, P 1A Title. Title i QOSA100R I'RC.. V A Title INNER 0IN A Doc
Author C, A_Doc. DocId - Doc. DocId INNER jOiN A Tit1e. DocId ýA A

SQL, Syntax _ _ _
A_Author. DocId K111-IL (A_Author. Author - @Author) AND (A_Doc. DocTypeld

, "ER BY A_Doc. DocId for XM:, AJrC;

XQuery FOP 1 xmldoc. query('for $x in /dblp/articie WHERE $x/authorý"'

Syntax @Author + '" return $x/title') 3s Q05A100XW b'ROý', B_XMLDocument;

SE-LCT ICP 1 XMLExtract. query('/inproceedings/title') as Q05A60X C_Doc
SQL/XQuery "' ' i /incroceedinqs[author- Wllý, RE DocTypeId 2 anu XMLExtract. exist(
Syntax

@Author +1 11]')1',
-' LR BY Doc1d;

The following graphs show the results for this query

Average Execultion
Time in Milliseconds

600

500

400

300 0 DB 1/3

11 DB 2/3
200 0 DB 3/3!

100

DB 3/3 0
DB 2/3

1 00%R 1 00%XW DB 1/3 37'/. XVV 60%XW PSD PSDA

Q4 - Graph 1: Database Size vs. Storage Strategy vs. Performance

149

i 700 9- \0 600

600 500
500

E 400
400

C:
300

300
(U
x LU

200 i
200

100 100

01
0 20 40 60 80 1 001 100% R PSDA PSD 100% XW

Q4 - Grap h 2: Data Instances Dimension Q4 - Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
100%R 314 141.63 323 102.72 592 124.93

100%XW 188 57.45 316 81.70 454 97.89
- 37%XW 90 5.65 95 9.81 100 12.35

60%XW 83 7.53 84 7.42 86 10.77

PSD 81 22.73 92 14.20 97 7.23

PSDA 1 12 0.51 1 13 1.83 14 1.57

Figure 5.22 Query 4: Relative Ordered Access

150

Average Execubon
Time in Milliseconds

450

400

35

30

250
' 0 DB 1/3

200 C1 DB 2/3
ý

150 El ClB 3/31

100

50
DB 3/3

0
DB 2/3

1 00*/. R 1 000/. XW DB 1/3 37%XVV 60'/. XW PSD PSDA

Q5 Graph 1: Database Size vs. Storage Strategy vs. Performance

500
450

450
-Z' 400

400
350

350
300

E 300
250

0 250

200
x

200 1

LU 150
150

1 0 100 0

50 50

0
0 20 40 60 80 1 00ý

0
100%R PSDA PSD 1 00% XW

Q5 - Grap h 2: Data Instances Dimension Q5 - Graph 3: Schema Dimension

DB 113 DB 213 DB 313

Model Average Std. Dev. Ave rage Std. Dev. Average Std. Dev.

100%R 195 36.85 2 32 34.19 241 80.36
100%XW 190 66.03 3 15 84.30 444 99.89

37%XW 89 6.57 92 4.32 96 8.02
60%XW 81 7.08 89 6.56 96 6.44

PSD 93 1.08 94 4.09 99 7.60
PSDA 12 1.07 17 1 1.04 19 1 1.57

Figure 5.23 Query 5: Absolute Ordered Access

151

From the storage strategy point of view, the query group "ordered access" (Q4 or Q5),

the PSDA typed XML hybrid models showed the best query performance. For example

in the DB313, it took on average 12 milliseconds for the PSDA in both Q4 and Q5. The

bad performance by the relational data model was likely to be due to the need to do

more than one join to get the data (from Author, Title and Doc tables) while the hybrid

model gets the data from the same record in the same table. Both relational and hybrid

model use the DocId to sort the results, since the Docld follow the same order that is

inside the original data. Storing the data in typed XML data field (100%XW) showed a

good performance compared to the relational model.

From the data structuredness - data instances dimension point of view, as the second

graph shows for Q5, dealing with 37% of the data as semi-structured gave a similar

performance than dealing with 60% of the data as semi-structured while the 60% gave a

better performance than the 37% in the case of Q4. Both of them gave better

performances than 100%R and 100%XW. From the data structuredness - schema

dimension point of view, as the third graph shows for both Q4 and Q5. dealing with a

specific part of the schema as in PSD and PSDA as high] y-structured and the remaining

as semi-structured gave the best performance compared to the 100%R and 100%XW

strategies.

150.00%

100.00%

50.00%

0.00%
1 00%R 1 00%XW 37%XW 60%XW

13 DBI /3 to DB2/3 2.87% 68.09% 5.56% 1.20%

N DB1 /3 to DB3/3 88.54% 141.49% 11.11% 3.61%

PSD PSDA

13.58% 8.33%

19.75% 16.67%

Figure 5.24 Query 4: Performance Deterioration When Database Size Doubled (DB113

to DB213) and Tripled (DBI13 to DB313)

From the database size point of view, the above figure illustrates the performance

deterioration when the database size doubled and tripled for Q4. The worst performance

was for the model 100%XW.

152

150.00%

100.00%

50.00%

0,00%
100%R 100%XW 37%XW 60%XW PSD PSDA

DB1 /3 to DB2/3 18.97% 65.79% 3.37% 9.88% 1.08% 41.67%

DB1/3 to DB3/3 23.59% 133.68% 7.87% 18.52% 6.45% 58.33%

Figure 5.25 Query 5: Performance Deterioration When Database Size Doubled (DB. 113

to DB213) and Tripled (DB. 113 to DB313)

From the database size point of view, the above figure shows the performance

deterioration when the database size doubled and tripled for Q5. The worst performance

was for the model 100%XW.

5.3.2.4 Quantification

The queries in this group test the existentially (Q6) and universally (Q7) quantified

queries. The queries in this group were interpreted to match the data set used in the

experiments as follows:

Q6: Return in-proceeding's titles (or article's titles) where author X and

author Y are among their authors

SE-ECE Llsl'INCI dbo. A_Title. Title AS Q06A100R FROY dbo. A_Title INNER JOIN
dbo. A_Doc ON dbo. A_Title. DocId = dbo. A Doc. DocId INNER jOIN dbo. A-Author ON
dbo. A-Doc. DocId - dbo. A Author. DocId

SQL Syntax WHERE (dbo. A_Title. DocId IN (SELECT DocId FROM dbo. A_Author AS A- Author-3
, WHERE (DocId IN (SE: =Ir DocId FROV dbo. A Author AS A_Author-2 WHERE (Author

- @Author))) AND (DocId IN (SE-E(-, DocId FROM dbo. A Author AS A-Author-1
WHERE (Author ý @CoAuthor))))) AND (dbo. A_Doc. DocTypeId ý 1) I-or XYL Auto

SELECE xrnldoc. query('for $x in /dblp/article WHERL $x/authorý'- + @Author +
XQuery

-" and $x/author-" '+ @CoAuthor + ret uin $x/title') AS Q06Al00X F, Zn
Syntax

B_XMLDocument;
SELECI XMLExtract. query(', 'inuroceedings/title') AS Q06A60X Fro. T C_Doc WHERE

SQL/XQuery XMLExtract. existý'/inproceedings[author-"' + ', 2Author + '"]') -1 and
Syntax XMLExtract. exist('/inproceedingstauthor="' ý ? CoAuthor + '"I') -1 and

doctypeid - 2;

Q7: Return in-proceeding's titles in 'C_' tables (or article's titles in 'D-'

tables) that have the two exact authors (author X and author Y)

ýE-ý-'T dbo. A Title. Title AS QC7AlOCR dbo. A Title INNER COIN
SQL, Syntax dbo. A Doc dbo. A-Title. DocId = dbo. A-Doc. DocId INNER cibo. A-Author

ýdbo.

A-Doc. DocId dbo. A-Author. Docid

153

bbo. AT itle. Docld i\ Docid .
dbo. A Author A-3 A-Author

-3
(Docld ':, Docid dbo. A

-
Author A, 'ý A_Author-2 1411ERE (Author

- @Author))) AND (DocId I'.,, DocId FROM dbo. A_Author AS A Authorl

W!; E, RE (Author = @CoAuthor))))) AND (dbo. A
-

Doc. DocTypeId = 1) AND ((SE: ýEC,
A- Author AS A_Author_3 WHERE (A_Author_3. DocId -

A_Title. DocId)) - 2) For XXL, Auto;

xin1doc . query('for $x in /dblo/article WHERE $x/authorý'- + @Author +
XQuery

and $x/aul hor-'- , @CoAuthor + and count($x/author) -2 ret=ý
Syntax

$x/title') AS Q07AlOCX ýror. B-XMLDocument;

Stý, ECT XMLExtract. query('/int)roceedings/title') AS Q07A60X From C_Doc WHERE

SOL/XQuery doctypeid ý2 and XMLExtract *ex
ist ('/incroceedings[author-"' + @Author +

Syntax I and XMLExtract. exist('/inproceeciings[author-"' + @CoAuthor +
1 : i: ý, ý XYý, Extract. val,,)e(',, -ount (/article /author) ', 'int 2;

The following graphs show the results for this query

Average Execub on
Time in Milliseconds

500

450

400

350

300

250 0 -DB II 33ý

200 i C3 DB 2/3

150 C3 DB 3/3

100
50

0 DB 3/3
DB 2/3

100%R 100%XW 37%XW DB 1/3
60'/. XW PSD PSDA

Q6 - Graph 1: Database Size vs. Storage Strategy vs. Performance

500
500

450
1 450 0\0

400
400

350
350

300
300

C:
2 250
. 250
a) 200
x 200
LLJ

150 150-

100 100

50 50

0 0
0 20 40 60 80 11 100% R PSDA PSD 1 00% XW

154

Q6 - Grap h 2: Data Instances Dimension Q6 - Graph 3 : Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
I 00%R 365 72.24 398 40.06 468 171.06

I 00%XW 206 76.64 387 72.81 459 164.03

37%XW 349 29.72 359 32.42 367 59.20

60%XW 356 66.94 373 43.64 438 31.49

PSD 360 121.43 377 68.03 396 44.31
PSDA 61 1 31.01 138 1 63.38 238 1 165.46

Figure 5.26 Query 6: Existential Quantifier

Average Execution
Time in Milliseconds

1400-

1200

1000

800
01 DB 1/3ý ý
C3 DB 2/3 600 3DB 3
3 DB 3/3 ODB 3/3

400

200

00 DB 3/3
DB 2/3

100%R 1 001/. X 37%XW DB 1/3
60%XW PSD

PSDA

Q7 - Graph 1: Database Size vs. Storage Strategy vs. Performance

155

1 1400
1400 1 1

1200
1200

1000 1000
E
F- Boo 800

U 600 600
x LU

400 400-
1 <, O 0,

200 200 1

0 0
100% R PSDA PSD 1 00%XW

0 20 40 60 80 100,

Q7 - Grap h 2: Data Instances Dimension Q7 - Graph 3 : Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
100%R 509 32.59 1076 28.28 1209 164.76

100%XW 227 87.64 249 86.76 308 51.33
- 37%XW 440 79.62 537 211.12 553 77.03

60%XW 413 52.97 493 99.64 532 60.43

PSD 472 107.79 484 79.72 511 139.74

PSDA 236 147.69 1 261 1 129.82 294 1 190.84

Figure 5.27 Query 7: Universal Quantifier

From the storage strategy point of view, the query group "Quantification" (either

existentially (Q6) or universally (Q7)), the typed PSDA XML hybrid models showed

the best query performance. For example in the DB313, it took on average 294 for Q6

and 238 for Q7. The good performance of the 100%XW (especially in Q6) was likely to

be due to the 'where' statement inside the XQuery which checked both Author and

CoAuthor in the same condition inside the XQuery while in the proposed system it had

to be checked in two different conditions as the SQL and XQuery syntax showed.

From the data structuredness - data instances dimension point of view, as the second

graph shows for Q6, dealing with 37% of the data as semi-structured gave slightly better

performance than dealing with 60% of the data as semi-structured. For Q7, dealing with

60% of the data as semi-structured gave a slightly better performance than dealing with

37% of the data as semi-structured. From the data structuredness - schema dimension

point of view, as the third graph shows for both Q6 and Q7, dealing with a specific part

156

of the schema as in PSDA as highly-structured and the remaining as semi-structured

gave the best performance compared to the 100%R and 100%XW strategies.

400.00%

300.00%

200.00%

100.00%

0.00%
A

IML- 1 00'oR 100'. XW 37%XW 60%XW PSD PSDA

13 DB1 /3 to DB2/3 9.04% 87.86% 2.87% 4.78% 4.72% 126.23%

M DB1 /3 to DB3/3 1 28.22% 122.82% 5.16% 23.03% 10.00% 290.16%

Figure 5.28 Query 6: Performance Deterioration When Database Size Doubled (DB113

to DB213) and Tripled (DB113 to DB313)

From the database size point of view, the above figure represents the performance
deterioration when the database size doubled and tripled for Q6. The worst performance

was for the hybrid model PSDA.

150.00%

100.00%

50.00%
A

0.00% -1 1 00%R 1 00%XW 37%XW 60%XW PSD PSDA

* DB1 /3 to DB2/3 111.39% 9.69% 22.05% 19.37% 2.54% 10.59%

* DB1 /3 to DB3/3 137.52% 35.68% 25.68% 28.81% 8.26% 24.58%

Figure 5.29 Query 7: Performance Deterioration When Database Size Doubled (DBI13

to DB213) and Tripled (DB113 to DB313)

From the database size point of view, the above figure shows the performance
deterioration when the database size doubled and tripled for Q7. The worst performance

was for the model 100%R.

157

5.3.2.5 Sorting

Even though the generic data type of element content in XML documents was strmg,

users may cast the string type to other types. Therefore, the queries in this group test

sorting both string types (QIO) and non-string types (Ql I). The queries in this group

were interpreted to match the data set used in the experiments as follows:

QIO: List all in-proceeding's titles in 'C_' tables (or article's titles in 'D_

tables), publication date, authors sorted by title for specific author.

dbo. A_Title. Title . -'. 3 QICAlCCR, dbo. A_Author. Author, dbo. A-Doc. yDale
dbo. A- Title -X. %ýP cibo. A-Doc -', cibo. A_Title. Docid -

Doc. DocId INNER JOIN dbo. A Author ON dbo. A Doc. DocId dbo. A
SQL Syntax - -

dbo. A Author. DocId
WHERE A-Author. Author - @Author and A-Doc. DocTypeId =1 ORDER Bý
A_Title. Title For XYL, Auto;

.., Eý, ECT xmldoc. query('for $x in /dblo/article WHERE $x/authcr-"' + Muthor +
XQuery '" ORDER BY ($x/ý ýt le/ýexý ())ý1ý r-furn <do c
S vnt ax ,i iteý" ýa -e t "> ý $x/- -ý -- ,!, I --c, "X/, !Iý, r :th or s></Qc_,,, - A

QC6AlCCX ýrjm BMILDocument;

,!. -LCI xmlextract. query('foi 'ýx -, m /inproceedings ORDER BY
x/title/texto)ý11 return

SQ: ý/XQuery Tu ate="1$x/2, T. d ateý">$x/tit1e<au 'n ors>i$x/author</authors></doc>AS
Syntax QIOA60X Fiý,: r C_Doc

WliLi, lz. DocTypeld 2 XMLExtract. exist(' +
ýqAuthor

Q11: List all in-proceeding's titles in 'C' tables (or article's titles in 'D_

tables), publication date, authors sorted by publication date for specific

author.

SE-L,
--l

dbo. A-Title. Title AS Q11A100R, dbo. A-Author. Author, dbo. A_Doc. MDate
FROX dbo. A_Title INNER ý01TN dbo. A

-
Doc : ýN dbo. A-Title. Docld

dbo. A Doc. DocId INNER ýOIN dbo. A Author ON dbo. A Doc. DocId
SQL Syntax _ _ dbo. A_Author. DocId

RE A- Author. Author = @Author anc A-Doc. DocTypeld -1 2rdei Bý
A Doc. MDate Fo: Xý! L, Auto;

. ý-i. ý, ECT xmldoc. query('for $x in /dbliz, /article WMERE $x/author="' + @Author +
XQuery order by $x/O. T. date return <aoc
Syntax T. ciate="ý$x/?, r. datel">ý$x/titleý<authors>f$x/authorý</authors></doc>') AS

QllAlOOX Fio., r B_XMLDocument;

SE-ECI xmlextract. query('for $x in /inproceedings order by $x/@mdate return
CI CC Tdate="ý$x/2mdatel">ý$x/titlel<authors>ý $x/authorl</authors></doc>')

S, ':, /XQuery ,
QllA60X Fiom C Doc

Synt ax _
DocTypeld 2 inýi XMLExtract. exist('/i ri- ýý-Ts +

@Author + '"'') 1;

The following graphs show the results for this query

158

Average Execution
Timein Milliseconds

800,

700

600

500

400 E DB 1/3
13 DB 2/3

300
ii D-B 3/31

200

100

0 DB 3/3
DB 2/3

1 00%R 1 001/ XW 6 37%XVv DB 1/3
60'/oXW PSD PSDA

Q 10 Graph 1: Database Size vs. Storage Strategy vs. Performance
800 - 800

700
700

600 600

E 500 500

r
0 400

+41
400

X 300
LLJ

-
-4 300,

200 200

t

100 100

0 O

0 20 40 60 80 100 100%R PSDA PSD 1 00% XW

Q 10 - Graph 2: Data Instances Dimension Q 10 - Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
I 00%R 290 134.70 351 12.02 393 21.66

100%XW 303 16.69 548 55.64 703 66.32

37%XW 170 18.44 227 49.83 238 76.46

60%XW 231 85.10 238 31.56 276 78.46

PSD 71 4.47 75 5.57 80 11.73

PSDA 14 1 1.35 14 1.51 1 14 1 1.58

Figure 5.30 Query 10: String Sorting

159

Average Execub on
Time in Millisecon ds

9000-

8000

7000

6000

5000
0 DB 1/31

4000 El DB 2/3
3000 1: 1 DB 3/3,

2000

1000
DB 3/3

0
DB 2/3

1 00'/. R 1 001/ XW O DB 1/3 37%XW
60'/. XW PSD PSDA

QII- Graph 1: Database Size vs. Storage Strategy vs. Performance

1 - , - 0000
+- 9 000 I 9000 - a,

8000
8000

7000
7000

6000 6000

C
0 5000 5000

4000 4000
x
LU 3000 3000

+_ I 2000 _ 2000

1000 1000

0 100%R PSDA PSD 1 00% XW

0
20 40 60 80 100

QII- Graph 2: Data Instances Dimension QII- Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
I 00%R 213 53.84 234 12.02 280 34.41

100%XW 1438 675.21 4384 1535.07 8672 1976.47

37%XW 96 20.16 102 25.59 111 6.46

60%XW 121 7.63 125 23.16 139 13.28

PSD 75 6.08 86 8.04 90 7.81

PSDA 12 1.63 13 1.17 15 1 1.06
Figure 5.31 Query Ik Non-string Sorting

160

From the storage strategy point of view, the query group "sorting" either by using string

data type (as in QIOA) or non-string data type (as in Q1 I), the typed XML hybrid

models PSDA showed the best query performance. For example in the DB313, it took

on average 14 for QIO and 15 for Q1 1. This is followed by PSD model, 37CIOXW,

60%XW, relational model and finally the 100%XW model.

From the data structuredness - data instances dimension point of view, as the second

graph shows for Q 10 and Q 11. dealing with 37% of the data as semi-structured gave

slightly better performance than dealing with 60% of the data as semi-structured. From

the data structuredness - schema dimension point of view, as the third graph shows for

both Q 10 and Q 11, dealing with a specific part of the schema as in PSDA as highly-

structured and the remaining as semi-structured gave the best performance compared to

the 100%R and 100%XW models.

15M0%

100.00% f-

50.00% 1-

0.00%
100%R 100'. XW 37%XW 60%XW PSD PSDA

DB 1 /3 to DB2/3 21.03% 80.86% 33.53% 3.03% 5.63% 0.00%

DB1; 3 to DB3/3 35.52% 132.01% 40.00% 19.48% 12.68% 0.00%

Figure 5.32 Query 10: Performance Deterioration When Database Size Doubled

(DB 113 to DB213) and Tripled (DB 113 to DB313)

From the database size point of view, the above figure shows the performance
deterioration when the database size doubled and tripled for QIO. The worst

performance was for the model 100%XW.

161

600.00%

500.00%

400.00%

300.00% -
200.00% -
100.00%

0.00%
100%R 100%XW 37%XW 60%XW , PSD PSDA

" DB1 /3 to DB2/3 9,86% 204.87% 6.25% 3.31 % 14.67% 8.33%

" DB1 I to DB3/3 31.46% 503.06% 15.63% 14.88% 20.00% 25.00%

Figure 5.33 Query 11: Performance Deterioration When Database Size Doubled

(DB 113 to DB213) and Tripled (DB 113 to DB313)

From the database size point of view, the above figure shows the performance

deterioration when the database size doubled and tripled for Qll. The worst

performance was for the model 100%XW.

5.3.3 Using 'Title' Queries

5.3.3.1 Path expressions

The queries in this group involved path expressions: Q8 queries data where one element

name in its path was unknown, Q9 queries data where multiple consecutive element

names in its path were unknown. The queries in this group were interpreted to match the

data set used in the experiments as follows:

Q8: Return in-proceeding's titles (or article's titles) that contain word

XYZ within their title.

SQL Syntax
5Eý, ECF Title AS QC8A1CCR frcm A_Title WHLi,, Title like + @SearchWord +
'%' Ani Doc Id in '. Doc Id- ý- A_Doc Doc Type ID- 1)

XQuery SL-L7. ' XMLDoc. query ('(dbiýj, /article/title/l. exto)[c--rtiaý-ns(., "'
Syntax @SearchWord + ýS Q08A10OX from B_XMLDocument

SELEC. XMLExtract. query('/inproceedings/t4ýtle') AS Q08A60XW C_Doc
SQL/XQuery WHERE DocTypeId -2 And
Syntax (XXLExtr act -exist -x'

@SearchWord 1

The following graphs show the results for this query

162

Average Execubon
Time in Milliseconds

70000

60000

50000

40000-

N DB 1/3
30000 0 ClB 2/3ý

20000 0 DB 3/3

10000

0 DB 3/3
DB 2/3

1 00%R 1 00%XW 37'/. XW DB 1/3
60'/. XW PSD

PSDT

Q8 Graph 1: Database Size vs. Storage Strategy vs. Performance

45000 F-

70000 - ---- ------
40000

35000 60000

30000 50000
E
l'- 25000 40000 C
.0 20000

30000
X LU 15000

0 \11
20000- -"

10000 - --- - - I i

10000 5000

l
0

O
100%R PSDT PSD 1 00%XW

0 20 40 60 80 10 0, 1

Q8 - Graph 2: Data Instances Dimension Q8 - Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
I 00%R 2557 347.21 4866 146.37 5855 1341.39

100%XW 3121 959.70 24962 1803.61 42579 1185.69
37%XW 816 83.08 2174 1075.81 18810 5005.49
60%XW 1316 285.40 2595 642.92 29199 7401.66

PSD 1822 634.72 23193 3497.09 61481 9052.65
PSDT 1734 1 837.26 1 4509 1 1354.14 7855 3082.74

Figure 5.34 Query 8: Regular Path Expressions - Unknown Element

163

From the storage strategy point of view, the query group "path expressions" where one

element name was unknown (Q8), the relational model showed the best performance

(for DB313, on average 5855 milliseconds) followed by the partially- structured PSDT

model (on average 7855 milliseconds). The good performance by the relational model

was possibly due to the use of the full text indexing feature provided by the DBMS.

From the data structuredness - data instances dimension point of view, as the second

graph shows for Q8, either dealing with 37% or 60% of the data as semi-structured gave

a good performance as the relational, but they gave a better performance than dealing

with 100% of the data as semi -structured. From the data structuredness - schema

dimension point of view, as the third graph shows for Q8, dealing with a specific part of

the schema as in PSDT as highly- structured and the remaining as semi-structured gave

better performance compared to the 100%XW model but not compared to the relational

model.

From the data structuredness point of view, dealing with 37% of the data as semi-

structured gave a better performance than dealing with 60% of the data as semi-

structured. As the previous query groups showed (apart from the qualification group),

the typed hybrid model showed better performance than storing the whole data as one

XML data field (100%XM.

4000.00%

3000.00%

2000.00%

1000.00%

0.00%
100'ýR 1 CO'AW 37%XW 60%XW PSD PSDT

DB1/3 to DB2/3 90.30% 699.81% 166.42% 97.19% 1172.94%ý 160.03%

DBl/3toDB3/3 128.98% 1264.27% 12205.15% 2118.77% 3274.37% ý 353.00%

Figure 5.35 Query 8: Performance Deterioration When Database Size Doubled (DBI13

to DB213) and Tripled (DBl13 to DB313)

164

From the database size point of view, the above figure represents the performance

deterioration when the database size doubled and tripled for Q8. The worst performance

was for the model PSD followed by 37%XW and 60%XW.

5.3.3.2 Text search

These queries tested the information retrieval capabilities of the systems. Two cases

were tested: uni-gram search (Q17) where the query contained one particular word and

bi-gram and n-gram search (QI8) where multiple words were involved. The queries in

this group were interpreted to match the data set used in the experiments as follows:

e Q1 7: Search for the word XYZ in any field in the in-proceeding data in

tables (or article data in 'D-' tables).

+ dbo. A author. author + >' AS XYL) AS Q17A100R

dbo. A-author INNER ýOiN dbo. A Doc ON dbo. A_author . DocId -
dbo. A_Doc. DocId WHERE Author li.. ýe -+ @SearchWord + "' And

A-Doc. DocTypeID

-.. 'ýION ALL

('<! ýCDATA[' + dbo. A Editor. Editor + ']]>' AS XNýL) A'] Q17AIOOR

Editor 1NNER jOIN dbo. A Doc CX dbo. A_Editor FROM dbo. A . DocId - SQL Syntax _
dbo. A-Doc. DocId Editor like + @SearchWord + '',)), And

A-Doc. DocTypeID -1

And so on for the remaining 20 tables (Address, Title, Booktitle, Pages,

Year, Journal, volume, month, URL, EE, CDRom, Cite, Pu blisher, Cr ossRef,
ISBN, Series, School, Chapter, Number, Note)

SELECT xmldoc. query("or $x in /dblu/article
Xýýuery

WHERE ($x)/, ýitle/ýextoýcontains(., "- + @SearchWord + '")] iet=, I ýx') AS
Syntax

Ql-7AlCCX F-, cm B_XMLDocument;
SELECT XMLExtract. query('/ini oroceedinas') AS Q17A60X F rom C_Doc

SQL/XQuery - 2 An(ý (XMLExtract. exist DocTypeId
Syntax

I ,ý'(/* itle --ex- ())ý(., "'+ @Sear chWord + '- ") ý')- 1) ;I

9 Q18: Search for the phrase XX YY ZZ in any field in the in-proceeding

data in 'C-' tables (or article data in 'D-' tables).

SQL Syntax

Title AZ Q18A1COR A_Title WEERE Title li, - -, @SearchPhrase

An-- Docid in (SE-LCI DocId A_Doc WHLiýL DocTypeID - 1) X:,

Au ý: Z,

XQuery XM:, Doc. query ('(6lDlp/article/title/texto)[co. nta, -., is(., "'

Syntax CýSearchPhrase + '")]') AS Q18AlOCX from B_XMLDocument

XM:, Extract. query('/ini-Droceedings/title') AS Q18A60X 1', -!. C-Doc

SQL/XQuery DocTypeId 2 And

Syntax : XY'-Extract exist le 'text [conta-, +
? SearchPhrase 1

The following graphs show the results for this query

165

Average Executon
Tinnein Milliseco nds

60000

50000

40000

30000

20000

10000

0 DB 3/3
B 2/3

1 00%R 1 001/ XW . 37'/OX VV 1/3
60%XW PSD

PSDT

Q 17 Graph 1: Database Size vs. Storage Strategy vs. Performance

40000 .I

60000-"F------
35000

30000 50000

E 25000 40000

2 20000 , \O
-I 30000-

D
X 15000
LLJ 20000

10000
10000

5000

0
0

1 100%R PSDT PSD 100%XW
0 20 40 60 80 100

Q17 - Graph 2: Data Instances Dimension Q17 - Graph 3: Schema Dimension
T DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
100%R 11288 2523.41 30252 2647.40 34549 3981.95

100%XW 3315 1286.83 7408 1485.64 30749 2392.47
37%XW 820 132.63 1452 286.89 16635 2283.69
60%XW 1223 255.90 2159 288.54 25848 2136.88

PSD 1298 92.07 23844 1392.61 52799 2350.26
PSDT 999 1 231.92 1 4645 1 1729.06 1 7140 1 2529.06

Figure 5.36 Query 17: Text Search - Uni-gram Search

166

Average Execution
Time in Milliseco nds

600001

50000

40000

30000 0 DB 1/3
ý
C3 DB 2/31

20000 13 DB 3/3

10000

DB 3/3 0
DB 2/3

1 00%R 100%XW 37%XVV B 1/3
60',,. XW PSD

PSDT

Q 18 - Graph 1: Database Size vs. Storage Strategy vs. Performance
F- - 0-0 35 0

60000
30000

50000
25000

E
1-- 20000

40000

C 1 1ý .0
1ý I - 30000

15000
X
LU 20000

10000

10000
5000

0
ý 0

100%R PSDT PSD 1 00%XW

L-
0

--
20 40 60 80 1 00

--- --- - -- -I
-- -- -- -- - -- -- -- -- j

Q 18 - Graph 2: Data Instances Dimension Q1 8- Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
I 00%R 1832 76.54 4573 226.27 4791 913.81

1 00%XW 2913 1318.59 7148 1525.97 30355 3798.85
37%XW 695 7.99 1269 45.44 15187 915.10
60%XW 1054 199.85 1926 35.79 23960 1284.36

PSD 1290 97.35 23687 1659.29 50928 3895.13

PSDT 1098 39.61 1 2983 462.78 3602 243.65

Figure 5.37 QuerT 18: Text Search - N-gram Search

167

From the storage strategy point of view, the query group "information retrieval" (Q17

and Q18), the typed XML hybrid models PSDT showed the best query performance.
For example in the DB313, it took on average 7140 for Q 17 and 3602 for Q 18. The poor

performance of the relational model in Q 17 was predictable since it involved searching
for a word in twenty three different tables. Even while using the full text indexing

feature provided by the DBMS.

From the data structuredness - data instances dimension point of view, as the second

graph shows for Q17. dealing with 37% or 60% of the data as semi-structured gave
better performance than dealing with 100% of the data as XML, while the relational

model gave better performance than both of these two models. For Q18, dealing with
37% or 60% of the data as semi-structured gave better performance than dealing with
the data as relational model and as 100%XW model. From the data structuredness -
schema dimension point of view, as the third graph shows for both Q 17 and Q8, dealing

with a specific part of the schema as in PSDT as highly-structured and the remaining as

semi-structured gave the best performance compared to the 100%R and 100%XW

strategies.

5000.00%

4000.00%

3000.00%

2000.00%

1000 00%

000% -M
1 00%R 100%XW 37%XW 60%XW PSD PSDT

ODBl/3toDB2/3 168.00% 123.47% 77.07% 76.53% 1736.98% 364.96%
ýl DB1 /3 to DB3/3 206.07% 827.57% 1 1928.66% 2013 49%

13967
72%1 614.71 %

Figure 5.38 Query 17: Performance Deterioration When Database Size Doubled

(DB]13 to DB213) and Tripled (DB113 to DB313)

From the database size point of view, the above figure illustrates the performance
deterioration when the database size doubled and tripled for Q17. The worst
performance was for the model PSD.

168

5000.00%

4000.00%

3000.00%

2000.00%

1000.00%

0.00%
100%R 100%XW 37%XW 60%XW PSD PSDT

DB 1 /3 to DB2/3 149.62% 145.38% 82.59% 82.73% 1736.20% 171.68%

DB1/3 to DB3/3 161.52% 942.05% '2085.18%'2173.24% 3847.91% 228.05%

Figure 5.39 Query 18: Performance Deterioration When Database Size Doubled

(DB. 113 to DB213) and Tripled (DBl13 to DB313)

From the database size point of view, the above figure shows the performance

deterioration when the database size doubled and tripled for Q18. The worst

performance was for the model PSD followed by 37%XW and 60%XW.

5.3.3.3 Datatype Casting

The element values in XML documents are of the String type, but sometimes there is a

need to cast them into other data types. The queries in this group were interpreted to

match the data set used in the experiments as follows:

Q20: returns all in-proceedings' titles 'C_' tables (or articles' titles in

'D_' tables) where their title's length was longer than a specific random

size.

SQL, Syntax
('ý'[CDAIAF' i Title + ']]>' AS XML,) AS

(Eitle) , @Tit le_engthBiggerThan and docid
A_Doc WHERL doctypeid - 1)

Q2CA1CCR -
in

-: 7 A-Title
docid

SE-EC-r xmldoc. cruery('-'or $x in /dbllD/article/title WHE, ýL XQuery
($x)/tex'-()ýs-r

.
ina--'encthoý' + CAS-I(@Tit leLengthB iggerThan

+ý, S v,, r, -hi (5))
Syntax '' ' + return $, x) AJ Q2CAlOOX F, c., r. B_XMLDocument;

ýLý, E, 'I XMLExtract. query('/ini_Droceedings/titie') AS Q20A6CX ý'rom C_Doc
SQL/XQuery WýILPII DocTypeId -2 And

Syntax XMLExtract. exist('(+
I ? Title:, engthBiggerThan Aý; (5)

I he tollowing graphs show the results tor this query

169

Average Execution
Time in Milliseconds

160000-1-

140000

120000

100000

80000 E DB 1/31
0 DB 2/3

60000
C3 DB 3/3

40000

20000
DB 3/3

DB 2/3
10011-ý 1 OO1/oxVV DB 1/3

37%XW
60%XW

PSD

Q20 - Graph 1: Database Size vs. Storage Strategy vs. Performance
180 000

160000
ONO 100000

90000

1400 0 0

80000
120000 70000

E
10 0 60000 000

.2 80000
50000

x 40000
Uj 60000

30000
40000 20000
20000

10000

0

XW
-

100%R PSDT PSD 1 00%

0 20 40 60 80 1 00

Q20 - Graph 2: Data Instances Dimension Q20 - Graph 3: Schema Dimension
DB 113 DB 213 DB 313

Model Average Std. Dev. Average Std. Dev. Average Std. Dev.
I 00%R 184 22.26 387 72.31 566 104.07

100%XW 2706 306.89 6272 1409.53 34161 7450.52
37%XW 7906 408.88 8506 737.72 97616 5672.99
60%XW 7242 777.86 16091 718.23 155156 7462.53

PSD 2331 497.50 53715 5678.67 91635 18660.45
PSDT 314 40.62 33312 1 2807.87 50176 1796.30

Figure 5.40 Query 20: Data Type Cast

170

From the storage strategy point of view, the query group "datatype casting" (Q20) and

as the first graph shows, the relational model produced the best query performance. For

example in the DB313, it took on average 566 milliseconds for the relational model,
34161 milliseconds for the 100%XW model and between 50176 and 155156

milliseconds for the hybrid models. The most probable reason for this extremely poor

performance of the 100%XW and the hybrid models might be due to that this function

was better optimized in SQL than XQuery in this implementation of the MS SQL

Server database.

From the data structuredness - data instances dimension point of view and from schema
dimension point of view, the relational model gave the best model and the other models
produced an extremely poor performance.

20000.00%

15000.00%

10000.00%

5000.00%

0.00%
100%R 100%XW 37%XW 60%XW PSD PSDT

-- --- -- -- II--I-,
DB1/3 to DB2/3 110.33% 131.78% 1 7.59% 1 122.19% 2204.38%ý10508.9,

DB1/3 to DB3/3
1 207.61% 1162.42% 1 1134.71% 12042.45% ý 3831.15% 115879.6' ,

Figure 5.41 Query 20: Performance Deterioration When Database Size Doubled

(DB 113 to DB213) and Tripled (DB 113 to DB313)

From the database size point of view, the above figure shows the performance
deterioration when the database size doubled and tripled for Q20. The worst

performance was for the model PSDT.

5.4 Results Analysis

The previous section presented the experiments' results and explained them based on
their individual query functionality (from Ql to Q20). This section is dedicated to an

analysis of the overall queries performance with respect to the different variants these

171

experiments were designed to measure. These variants are: storage strategy, query type,

data structuredness, scalability and database storage size.

The interdependencies of the first three variants are presented in the following

subsection 5.4.1 "experiments' overall analysis", while the following two subsections

are dedicated to scalability and database storage size respectively. This is followed by a

discussion about the experiments' limitations and general findings from these results in

sections 5.5 and 5.6 respectively.

5.4.1 Experiments' Overall Analysis

The main aim of the experiments, as explained in the previous chapter, was to compare
the relative performance of the different storage models when dealing with partially-

structured data by using different queries functionality. Reflecting on the results

produced by the experiments, it can be seen that none of the systems performed well in

all the query groups. For example, in the first eight queries grouped as 'Using

Document Key Queries', the best performance came from the PSD model. In the second

eight queries grouped as 'Using Author Queries', the best performance came from the
PSDA model. In the last four queries grouped as 'Using Title Queries', the best

performance came from the 37%XW apart from Q20 where the best performance came
from the relational model (possibly because this function is better optimised in SQL

than in XQuery in this version of the MS SQL Server database).

In some of the query groups, the pure relational model produced poor performance

compared to the proposed hybrid model (such as irregular data and retrieval of
individual documents). This is likely to be due to the fact that the relational model

shreds the data and it took more time to reassemble it using the join operation. Storing

all XML data into one field always produced a poorer performance than dividing the
data into smaller XML elements. In a number of queries, the 100%XW model showed a

good performance, but the other hybrid models also showed a good performance (such

as quantification group Q6 and Q7).

The main hypothesis of the thesis from section 3.2.2 was:

For the class of XML documents which contains both a prescribed highly-

structured part and a semi-structured part, performance enhancement may be

achieved over existing query processing techniques for semi-structured
documents by using relational database queq processing and optimisation

172

technology to exploit pre-knowledge of the prescribed highly-structured part of

the data.

The question that this hypothesis poses is: can dealing with parts of the XML document

as structured and other parts as semi-structured produce better query performance than

storing the whole of the data as semi-structured or all of it as highly-structured? To

answer this question, the following table summarises the results for DB313 (the biggest

database in size) for the different queries functionality and gives them a relative score

according to their performance. Each column represents a storage strategy and each row

represents a query type. In each cell, the number indicates the score of the relative

perfonnance of the specific storage strategy for specific query type against the best

performance in this query type. One represents the best performance and other numbers

represent the relative performance of this model in comparison to the best performance.

For example, In Ql, the best performance was achieved by 37%XW with 63

milliseconds, so its relative performance is one. The PSD average performance was 65

milliseconds. So its relative performance is 65/63 = 1.03, and is considered as 1. The

60%XW average performance was 74 milliseconds. So its relative performance is 74/63

= 1.17, and is considered as 1. The 100%R average performance was 156 milliseconds.

So its relative performance is 156/63 = 2.47, and is considered as 2. Finally, The

100%XW average performance was 522 milliseconds. So its relative performance is

522/63 = 8.28, and is considered as 8.

173

100%R 100%XW 37%XW 60%XW PSD PSDA PSDT

Q1 Exact Match 2 8 1 1 1
(Shallow)
Q9 Path expressions 8 13 1 1 1
(Multiple unknown
elements)
Q1 2 Document 6 16 2 3 1
construction (preserving
the structure)
Q13 Document
construction 49 876 5 7 1
(transforming the
structure)
Q14 Irregular data 16 32 1 1 1
(missing elements)
Q15 Irregular data 185 18 1 1 1
(empty values)
016 Retrieval of 1621 16 2 3 1
individual documents
Q19 References and 17 18 6 7 1
joins
Q2 Exact Match (Deep) 2 5 2 3 3 1 -

Q3 Function application 17 32 7 6 8 1 -
(Count)
Q4 Ordered access 42 32 7 6 7 1 - (current matching
position)
Q5 Ordered access 13 23 5 5 5 1 -
(absolute order)
Q6 Quantification 2 2 2 2 2 1 -
(existentially)

- 07 Quantification 4 1 2 2 2 1 -
(universally)
Q1 0 Sorting (string type) 28 50 17 20 6 1 -

Q1 1 Sorting (non-string 19 578 7 9 6 1 -
type)
Q8 Path expressions 1 7 3 5 11 - 1
(one unknown element)
Q17 Text Search (uni- 5 4 2 4 7 - 1
gram)
018 Text Search (n- 1 8 4 7 14 - 1
gram)
Q20 Datatype Casting 1 60 172 T 274 162 89

Table 5.1 Summary of all the relative performance results

The relative performance in Table 5.1 suggests some interesting relative characteristics

of the storage strategies. None performed well for all query groups. For example,

though PSD performed well for accessing via the document key (Qs 1,9,12-16 and 19),

it was relatively poor where author names are queried (Qs 3-5,10 and 11). In the latter

group, the PSDA model had the best performance, which possibly demonstrates the

174

relative efficiency of querying conventional atomic attributes via indices, in contrast to

using typed XML instances. However, the poor performance of 100%R compared to the

hybrid approach, illustrates the advantage of storing semi-structured data into an XML

data field rather than shredding it into a relational structure. Examples of the superiority

of the hybrid model over pure structure mapping include irregular data Q14,15),

document construction Q12 and 13) and retrieval of individual documents (Q16). This

is likely to be due to the fact that the relational model shreds the data, thus incurring the

overhead of multiple join operations to re-assemble a document. This was very clear in

Q16. This shredding is reduced by the hybrid approach, thus reducing the number of
joins and disk access. However, as a counter example, though three of the queries in

which article titles are queried Qs 8,17 and 18) performed well with PSDT, this was

not the case for the fourth (Q20), in which the length of the title was tested, where best

performance was achieved using 100%R. Other examples include queries (Q1, Q2, Q6,

Q8, Q18 and Q20) where the 100%R model produced a good performance. Storing the

whole XML data as a typed XML instance (100%XM always produced a poorer

performance than strategies which divided the data into smaller XML elements. In a

small number of queries, the 10001cXW model showed good performance, but in these

cases so did the other hybrid models (e. g., quantification (Q6-7)).

Thus, the messages are mixed. However, if we consider the performance of the specific

strategies the results give a clearer view.

Pure structure mapping (100%R): In most instances this approach produced poor

performance, relative to the hybrid approaches. The exceptions were Ql, Q2, Q6, Q8,

Q18 and Q20. This was unexpected, since the DBLP data set is relatively well

structured and is therefore well suited to a structure mapping approach. Experiments

with different data set sizes demonstrated a near linear deterioration in query time as

size increased, with an average deterioration of 58.52% to 124.87%, respectively, as the

size doubled and tripled. However, this representation seems particularly ill-suited for

irregular data (Q14), with a possibly exponential deterioration from 300% to 1052.63%,

as the size doubled and tripled. Thus, data set size and application characteristics are
important factors when considering this storage strategy.

Pure use of typed XML data types (100%XM: Using only typed XML instances

produced poor performance in 90% of the cases. The exceptions are Q6 and Q7

(quantification). However, in general, this approach was poor for all conventional

175

relational-style retrievals, involving selection, projection and join. Also, the
deterioration in query performance was more extreme than for 1000leR. On average
deterioration was, respectively, 120.68% and 344.53% as the data set size doubled and

tripled. The worst case was for the path expression query, Q8, where the deterioration

was from 699.81% to 1264.27%. Thus, average performance was poor and the
deterioration associated with the increase in the data set size is worse than linear,

suggesting this approach has viability only for small data sets.

Vertical hybrid approaches (PSD, PSDA and PDS7): In this approach part of the XML

schema common to all repeating instances is structure mapped, and the rest are

represented as typed XML instances. As expected, this approach outperformed the two

pure base approaches in cases where the query keywords were within the structure

mapped part. However, this superiority was surprising for the text searches Q17 and
18) where all fields had to be accessed. Also, our anticipation was that performance

would continue to improve as the ratio of structured to semi-structured data increased,

since we believed conventional relation querying was likely to outperform the added
XML facilities. But, given the fact that the DBLP data set is mainly well structured, if

this were true, the best performances would be for 100%R, which was not the case,

since there seems to be a threshold beyond which performance then starts to deteriorate.

In most cases, the query performance deterioration with increase in data set size was

near linear. For PSD, PSDA and PSDT this deterioration was respectively from

355.07% to 768.81%, 25.29% to 62.85%, and 2801.40% to 4268.85% as size doubled

and tripled. PSDA's worst deterioration was when processing quantification (Q6),

where the increase in query time was from 126.23% to 290.16%, as the size doubled

and tripled. PSDT deteriorated most for datatype casting Q20), from 10508.92% to

15879.62% as size doubled and tripled. PSD has two step changes with respect to query

performance. These were, also for datatype casting Q20), with a deterioration of
2204.38% when the size doubled, and for text searching Q17), where there was
3968.72% deterioration when size tripled. Thus, though our hypothesis is largely born

out by these results, there are other factors which any decision model must take into

account, including the overheads incurred by data shredding, and the impact of data set
size.

Horizontal hybrid approaches (370loXW, 60cloXTIV): In this approach some types of
repeating instances are structure mapped and the others are stored as typed XML

176

instances. This approach mainly produced a middle ranking performance, with similar
performances from 37cloXW and 60'I'vXW, and neither consistently outperforming the

other. However, in the majority of cases, both out performed 100%R and IOOOIcXW.

Specifically, in 85% and 80% of cases this hybrid models respectively gave better or

similar performance than 100%R and 100%XW. Thus, there seems to be an advantage
in horizontally partitioning data into structured and semi-structured representation, as
well as the more obvious benefits of the vertical approach. More worryingly, the

approach also demonstrated a possibly exponential deterioration, as data set size
increased. Both 37%XW and 60%XW exhibited a similar average deterioration, from
27.49% to 394.70% and from 28.82% and 444.63%, as the size doubled and tripled.
However, for the path expression query, Q8, the deterioration in performance was from
166.24% to 2205.15%. Thus, although in most cases this approach improves on pure
structure mapping, data set size is a critical consideration, as the approach does not
appear to scale to very large data sets.

5.4.2 Scalability

In this section, the results are analysed from the scalability point of view. Scalability

can be seen in three different ways; database size, database complexity or the query or

application complexity. The later is dealt with in the experiment by using different

query sets, some of which were more complex than the others (for example, shallow

exact match and deep exact match).

The experiments were designed to test the impact of database size growth for the
different query performances in that there were three database sizes. These three sizes

were DB313 which represents the original XML document, DB213 which represents
approximately two thirds of the original XML document and finally DBI13 which
represents approximately one third of the original XML document size. They had

exactly the same structure and varied in database size only.

When the results were presented in section 5.3 for each query group, the effect of the

change of the database size was presented for each query group; when the database

sized doubled from DB313 to DB213 and when the database size tripled from DB113 to
DB313. To summarize these results:

In the relational model 100%R, the maximum increase in performance when the
database size doubled was 300.00% and when the database size tripled was

177

1052.63% in Q14. The average increase in all queries was 58.52% and 124.87%

when the database size doubled and tripled respectively.

9 In the 100%XW, the maximum increase in performance when the database size
doubled was 699.81% and when the database size tripled was 1264.27% in Q8.

The average increase in all queries was 120.68% and 344.53% when the

database size doubled and tripled respectively.

In the 37tloXW, the maximum increase in performance when the database size
doubled was 166.24% and when the database size tripled was 2205.15% in Q8.

The average increase in all queries was 27.49% and 394.70% when the database

size doubled and tripled respectively.

In the 6001vXW, the maximum increase in performance when the database size

doubled was 122.19% in Q20 and when the database size tripled was 2118.77%

in Q8. The average increase in all queries was 28.82% and 444.63% when the

database size doubled and tripled respectively.

In the PSD, the maximum increase in performance when the database size
doubled was 2204.38% in Q20 and when the database size tripled was
3968.72% in Q17. The average increase in all queries was 355.07% and
768.8 1% when the database size doubled and tripled respectively.

41 In the PSDA, the maximum increase in performance when the database size

doubled was 126.23% and when the database size tripled was 290.16% in Q6.

The average increase in all queries was 25.29% and 62.85% when the database

size doubled and tripled respectively. These results were based on eight queries

only as shown in the group 'using author queries'

In the PSDT, the maximum increase in performance when the database size
doubled was 10508.92% and when the database size tripled was 15879.62% in

Q20. The average increase in all queries was 2801.40% and 4268.85% when the

database size doubled and tripled respectively. These results were based on four

queries only as in the group 'using title queries'

178

The above data can be surnmarised in the following table

System Database Size Doubled Database Size Tripled

I 00%R 58.52% 124.87%

1 OOc/cXW 120.68% 344.53%

37%XW 27.49% 394.70%

60%XW 28.82% 444.63%

PSD 355.07% 768.81%

PSDA 25.29% 62.85%

PSDT 2801.40% 4268.85%

Table 5.2 A verage Deterioration In Quetil Peifin-mance

The above table shows that when the database doubled, the 37%XW, 60%XW and

PSDA gave - on average of the twenty queries - the lowest deterioration in query

performance. However, when the database tripled, the hybrid model PSDA gave the

lowest deterioration in query performance. This shows that from the database size

scalability point of view, hybrid models can produce good overall performance. The

other hybrid models (PSD and PSDT) gave a worse performance than the relational

model.

The above conclusion is indicative and can not be interpreted as a general rule. This is

due to the fact that this is the average deterioration and in a specific case one model

COUld be better or worse than the other model. The above results -should be interpreted

only in the scope of the hardware and the software used in the experiments. Any change

ofthe processing power or the available memory (therefore the available caching) to the

database management system or the sol'tware Used in rLI1111ilIg the experiment COUld

produce different results.

5.4.3 Database Storage Size

The impact of the storage size (the amount of storage space needed to store the data in

the storage media, i. e. the computer disk) for the different storage models is one of the

factors affecting the choice of a storage model. However, it is not an important factor, in

view of the sharp decrease in cost of the storage media in the recent years. This section

179

presents the different storage models used in the experiments and discusses their storage

size.

As all the models used NIS SQL Server as the database management System, the relative

storage size for each of the storage strategies is calculated in relation to the original

XML document size. This gives a relative indication of how each storage model was

used in terms of storage space. This comparison is based on the biggest database

(DB313), where the size of the initial XML document was 341,503 kilobytes (KB). The

following table summarises this comparison. The 'data' column shows how many KB

, was used to store the data, the 'indices' column shows how many KB was used to store

the different indices and finally the 'unused' column shows how many KB was reserved

by the database management systern but not actually used for either data or indices

storage. The 'total' column is the summation of' the previous three columns ('data',

'indices' and 'Unused'). Finally, the last column shows the ratio between the total size

and the original XMI. document size.

Ratio between total size
Storage Data Indices Unused Total

and the original XML
Model (KB) (KB) (KB) (KB)

document size

100%R 355,824 231,728 3,120 590,672 1.73

37%XW 520,400 1,365,480 6,992 1,892,872 5.54

60%XW 661,480 2,065,568 19,272 2,746,320 8.04

100%XW ý 563,448 3,455,800 288 4,019,536 11.77

Table 5.3 Database Storage Sizes

As the above comparison shows, the best model in terms of the storage size is the

relational model with about 1.73 times of the original document size. The worse storage

size cornes as a result of storing the entire document in one XML data field with about
11.77 tirnes of the original document size. The hybrid models are in the middle between

these two extremes as they are a hybrid between relational and XMIL data fields. This is

probably dUe to the fact that storing data into an XML data field as a new technology is

not optimised in terms of storage size and there maybe in the future more optimised

ways to store XML data using less storage size.

180

5.5 Experiments Limitations

The first limitation of the experiment is that it depends on one data set (that is to say one
XML document) to represent its verdict. The choice of this data set was discussed and
justified in section 4.4.1. The design of the experiments took this limitation into

consideration by varying the different ratios of semi-structured data to highly-structured
data (for example by using two different ways to slice the data (horizontal and vertical)
and by using different percentages of the data as semi- and highly-structured as
explained in details in section 5.2.1). However, the consequence of using one XML
document was that a variant within the experiment had to be the extent to which the
structured data was interpreted as partially structured data, since it was not possible to
vary the inherent structuredness of the data.

Another limitation regarding the use of existing data is that some of the query groups
were not be tested properly due to the nature of the data set as follows:

" Irregular data - empty elements: there were no empty data in the data set
" References and joins: the data set consists of a single XML document

Finally, using only one XML document with the same structure allows only testing the

scalability from the database size point of view and not from the database complexity

point of view. This is because the experiments used three different database sizes

(DBI13, DB213 and DB313) for the same data set, which means the same structure

complexity.

The second limitation was using one database technology in all the experiments (that is

to say using MS SQL Server as the test bed for all the different storage models). This is

a general problem to any researcher in this field. As storing XML in relational database

is still emerging and in its early days, new versions would be expected with more

storage and query optimisations and there is a higher probability of variations in

performance between different database management systems. To overcome this point,
the analysis of the results was represented in a relative manner whenever possible, to

give an indication of how the performance between the different storage models could
be compared.

181

5.6 Findings and Conclusions

The above results showed that there was no single storage model that outperforms all

other models in all casses. The choice of the right storage strategy must depend on the

query work load, the type of the data used and the degree of structuredness of the data.

Also, although the absolute timing are specific to the experiment set up, they are

indicative of relative performance, given the database and application characteristics.

Therefore a potential application of these results could be an evidence-based method to

inform the design of relationally-represented XML databases. To conclude this chapter,

I elaborate on this possibility by proposing a flow chart to give the database designer a

logical path to follow in order to build his/her database storage structure or to enhance

an existing database storage structure based on the experiments' results. Each question

or decision in this flow chart is based on the previous experiments and their results.

The main flow chart is divided into several smaller flow charts (numbered 1,11,111...

Each of these flow charts are described first then presented and linked to another flow

chart as appropriate.

In the flow chart 1, the basic question is how the database designer can describe the

structuredness characteristics of the data. This is based on the analysis of the degree of

the structuredness as in section 3.3. The possible responses are either totally structured,

totally unstructured or somewhere in between. In the first case, the best storage scenario
is to use the relational model only. In case that the data is totally un-structured there are

two ways to go, if there is an XML Schema or DTD that can describe the structure of

this data, the base scenario is to store the data into one XML data field (as in the

100%XW scenario) and if not, then the best scenario is to use the Information Retrieval

techniques to store the data. The final possible response is that the data is described as a
hybrid between highly-structured and semi-structured (or un-structured). This is the area

specific to this research and this branch is continued in flow chart II.

182

(I
Start

How can you
describe the structuredness
characteristics of the dataZ

Highly- Un-Structured Hybrid between
Highly-Structured
and Semi- or Un-

Use the Structured
Relational Yes XML Nio

Model Schema

Use Use
End 100%XW Information

I Retrieval

End
End

Figure 5.42 Flow Chart I

In the second flow chart (II), the basic question is how the main query work load can be

described. There are three different scenarios; the first scenario involves querying the

data using the key value, this is similar to the queries in section 5.3.1 'Using Document

Key'. The result of this path is described in now chart III. The second scenario follows

querying the data using a string value, this is similar to the queries in section 5.3.2

'Using Author Queries'. The result of this path is described in flow chart IV. The last

scenario involves querying the data using a part of a string value, this is similar to the

queries in section 5.3.3 'Using Title Queries'. The result of this path is followed in flow

chart V.

183

Using Key Value Using the whole Using Part
(Similar to use String Value of String Value

Document Key) (Similar to use (Similar to use
Full Author part of the title)

Name)

Figure 5.43 Flow Chart II

184

Ici u

Ln 0

x ý:

rn 1-ý r

%Z "
r4

:DZZ 0

e Z!

-N,. uý ' >e
-

>ý 0
Ici

Zm
.uU=- 2 r. A

12
A (D IL)

:D .- Ici
10

-b %) > (L) -9,0

-: S
0

:xg
:Z r- -- ug --*

--> to 12 ---*

r, ,ý CZ
tj3

>% "0 cn - r. -u
=

z2 >, 1)

j

-b.
2U

e t2 Z uý Go2
0

-9ý c2ýý e j.. e, --> =

d '-" ý- 1 > \lý

COI
10 ui

n. 4 >- 0 \Z

0 mi u cn e ý--
-b> ý>=*r. A Po r- >< cli .0 -9, C: L, -4 cl ---> r.

=u (A 0 ý-11 e_ w cn M
X Z) Z2 "ö c CD

Q

Ez
It
Itt

tf)
00

1.0 00 -4

iý

o

C-)

0

to u -CJ le
, 1-1

. E5 -: s -ý -um u -g> ýý 0 u2 --
"Ci

> C-'

g'

'
2 r24 --, g00 "0 < 9)

j-- lcj Xlý

lle le 1-1
Z 0 -c & . g, (U cDý 0

u2 . O-on le
Z -- 'ý, 0 -5, ýI, 0 cn -

'Z2>Z.
-* j

-Z 9) Ici t) ý<
. GA tu

U2

U
0

L4

to

.- T3
C.) 1ý

10

4) lý - ý-
-5

= On-
10

. 2- (U

0 u F: Co 0

ý C: ý -a Itj

c) ý

0

U2

Iti

U
0

2

r-
00

In the last three flow charts (III, IV and V), the basic question is to identify the most

commonly used scenario (or scenarios) used to describe in detail the query work load.

Flow chart III is based on section 5.3.1 where the most common scenario to query the

data was using the key value. There were six different sub-scenarios as follows: 5.3.1.1

shallow exact match, 5.3.1.2 path expressions, 5.3.1.3 document construction, 5.3.1.4

irregular data, 5.3.1.5 retrieval of individual documents and 5.3.1.6 References and
joins. Each scenario was described in more detail in its relevant section. The outcome

will define the best possible storage scenario (or scenarios) that can be used in this case.
Flow chart IV is based on section 5.3.2, where it is expected that the most common

scenario to query the data will use a string value. There were five different sub-

scenarios as follows: 5.3.2.1 deep exact match, 5.3.2.2 function application, 5.3.2.3

ordered access, 5.3.2.4 quantification and 5.3.2.5 sorting. Finally, flow chart V is based

on section 5.3.3 as the most common scenario to query the data using a part of a string

value, there were three different sub-scenarios as follows: 5.3.3.1 path expressions,
5.3.3.2 text search and 5.3.3.3 datatype casting.

In this chapter, the results of the experiments were discussed and analysed. The

experiments' results were grouped by the different query functionalities. This was
followed by an overall analysis of the different storage strategies with respect to the

different variants the experiments were designed to measure. The experiments'
lin-dtations and general findings were finally presented. The next chapter concludes this

thesis by discussing the main findings and contributions of this research in general and

presents the future research work envisaged to further develop this research.

188

Chapter 6 Conclusion and Future Work

6.1 Introduction

The research presented in this thesis is concerned with seeking better ways to store and
query XML data using relational database technology. Specifically, the research

considers a class of XML data which is partly structured and partly semi-structured,

referred to as partially structured data. The aim is to establish for this class of XML

data, whether pre-knowledge of the structured component can be exploited when storing

the data within a relational database, such that query processing efficiency can be

improved by exploiting relational query processing and optimisation technology, while

at the same time, providing a flexible way to store the semi-structured part. To that end,
the research proposed a hybrid XML-Relational model to store and query partially-

structured XML documents.

This chapter concludes the thesis by discussing two final and important points. Section

6.2 discusses the main findings and contributions of this research and section 6.3

proposes future research work to further develop this research.

6.2 Main Findings and Contributions

This research contributes to the ever evolving field of XML database management. In

the existing literature, there have been many examples for different storage models to

manage XML-encoded data. However, the main research streams dealt with highly-

structured XML data or semi-structured XML data. This research has contributed in

regard to this body of literature by addressing XML documents which combine both

highly-structured and semi-structured data, defined as partially-structured XML data. In

this section, the main findings and contributions are discussed in detail.

The research has contributed by proposing a hybrid relational-XML storage model to

store partially-structured XML encoded data, in which a combination of structure

mapping and XML types are used within a relational database, so as to exploit pre-
knowledge of the structured part in query processing. In this hybrid approach, an
information-preserving mapping to a relational schema is defined for the highly-

structured parts of a document, such that conventional relational optimisation
techniques can be applied when querying this data. The semi-structured parts are stored

189

as instances of the XML data type, so as to provide a flexible way to manage and

manipulate this part of the document using regular-expression based querying (see

section 3.6).

The main contribution of this research is the performance analysis of the above

proposed hybrid relational-XML model for storing and querying partially structured
data, based on a standard benchmark set of queries (XBench, Yao et al. 2002,2003,

2004), which establishes the impact on query performance as the structuredness,
database size and the different query characteristics. The results of the experiments

showed that there was no single storage model that outperforms all other models'

performance in all different scenarios. In most of the cases, the hybrid models

performed better than the relational and XML data type models (see section 5.4).

Another contribution of this research is to explore two different dimensions to vary the

ratio of semi-structured to highly-structured parts inside a partially-structured XML

document. The first dimension, which is called the vertical dimension because of the

conventional tabular representation of data in which schema elements and their

instances are denoted as columns, concerns the ratio of semi-structured to structured

components of the schema. This dimension can be seen as a schema dimension. The

second, which can be called the horizontal dimension, is the ratio of semi-structured to

structured data instances. This dimension can be seen as the data instances dimension

(see section 4.4.1). Varying these two dimensions can lead to a better storage model to

store and query partially-structured data.

As result of the analysis described above, a heuristic method has been developed, by

which the results of the performance analysis can be utilised by the database designer to

seek optimal relational storage models for XMI., encoded partially-structured data. This

heuristic method has been translated into a flow chart which showed the potential

application of the experiments' results. It can be used as an evidence-based method to

guide the designer of the relationally represented XML databases (see section 5.6).

6.3 Future Research Work

In terms of future research work, there are certain aspects on which further research can
build on. These can be defined in two categorizes: to address general limitations of the

research and to address the limitations of the experiment design. Both are discussed

below.

190

6.3.1 Future Work Related to the Research Limitation

The future work building on the research presented in this thesis can be surnmarised as
follows:

Investigate the other storing systems (such as the native XML database

management system, Vectorizing approach (Buneman et a). 2005) ... etc.) and
incorporate their features into the current proposed model. As these storing

systems are evolving, they could lead to a good performance to the general
problem of manipulating XML data.

9 Investigate the possibility of automating the adjustment of the different ratio of

semi-structured and highly-structured based on the query work load and the

system performance. This could lead to an intelligent system that could adapt the

ratio between semi-structured and highly-structured data inside the database to

achieve better performance. This could be achieved by varying both the vertical

and horizontal dimensions based on the query work load, the characteristics of

the data and the data distfibution.

Applying multi-thread experiment testing in a network environment compared to

a single thread testing in a stand alone machine. This could affect the way the

data is modelled and stored. For example, dedicating one thread to deal with
highly-structured data while the other to sen-d-structured data. Using the same

model in network environment could lead to different results based on different

query work load.

* Building an expert system that utilizes the results and scaling the different

output and producing a compromise or a combined storage model to produce the

best storage model based on the data and query work load information. This

could lead to a further developed heuristic model towards helping the data base

designer to design his storage model. This system could weight the designer

input, for example in 80% of the cases the data will be searched by using the

document key, while in the remaining 20% of the cases the data will be searched
by using the author name.

191

6.3.2 Future Work Related to the Design of the Experiments

The limitations of the experiments were discussed in more detail in section 5.5. To

address these limitations, the future work suggested in this direction can be surnmarised

as follows:

Use more than one data set to test the proposed system instead of using one data

set to deliver the verdict. This will give wider and more diverse results that

could lead to different findings based on different scenarios. Especially, it would
be useful to explore more partially-structured data sets where the boundary

between the highly-structured and the semi-structured is much more defined.

Calibrating the proposed model by using different database management

systems. In such case, the results from one DBMS can be compared to the other
DBMS. This will generalize the findings. At present, they are restricted to a

specific DBMS (MS SQL Server).

Use other different intermediate percentages in partitioning the data in the
horizontal dimension (as 60% and 37% are specific to the DBLP data set). This

can be done when running the experiment on different data set or by engineering
the percentage for the same data set (for example by deleting potion of the data

to create a different data instance percentages).

Re-design the query set to test the highly-structured part of the data and/or a

combination of highly-structured and semi-structured part of the data instead of

testing only the semi-structured part of the data.

Use a data set where the two un-tested groups in the XML benchmark (irregular

data and references and join) can be tested. This limitation was specific for the

DBLP data set used in the experiments. This can lead to using multiple
document scenarios specifically to test the reference and join query group.

Test the scalability from the complexity point of view. This adds a new
dimension to the analysis when testing the complexity of different data sets for

the same query group.

192

6.4 Final Remarks

This thesis has presented a performance analysis of storage strategies for representing

partially-structured data within a relational database. The hybrid approach, in which

storage mapping is combined with the use of XML data type instances, was shown to
have query performance advantages over pure structure mapping and sole use of XML

data types. However, the results are inconclusive, since they identify a number of
anomalies, problems of scaling these approaches to large data sets, and the existence of
thresholds where the cost of data shredding appears to outweigh the advantages of

utilizing relational query processing. Each of these is a motivation for further research.
Also, the experiments described are confined to a certain type of data, but nonetheless
they provided valuable insights into the relative performance of different storage models
as has been discussed in the body of this thesis.

The main contributions of this research were in the analysis of relative performances

within a specific configuration, rather than across systems, as in other performance

studies. The research also contributes by focusing on partially-structured data and the
impact of the horizontal and vertical dimensions of data structuredness, which is under
researched in the field of XML database management. Finally, a heuristics-based model

was devised to inform XMIJrelational design.

193

References

Abiteboul, S. (1997) Querying Semi Structured Data. In Proceedings of
International Conference on Database Theory ICDT, p. I -- 18.

Abiteboul, S. (2001) Sernistructured Data: from Practice to Theory. In

Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science LICS,

IEEE Computer Society, Washington, DC, United States of America, p. 379.

Abiteboul, S. and Vianu, V. (1997) Queries and Computation on the Web.

International Conference on Database Theory ICDT, p. 262 -- 275.

Abiteboul, S., Bunernan, P. and Suciu, D. (1999) Data on the Web: From

Relations to Semistructured Data and XHL, Morgan Kaufmann, ISBN: 1-55860-622-

X.

Abiteboul, S., Cluet, S. and Milo, T. (1993) Querying and updating the file. In

Proceedings of 19th International Conference on Very Large Databases, Dublin,

Ireland, p. 73 - 84.

Abiteboul, S., Quass, D., McHugh, J., Widom, J. and Wiener, J. (1997). The

Lorel Query Language for Semistrucutred data. International Journal on Digital

Libraries, Volume 1, Issue 1, p. 68 -- 88.

Al-Wasil, F., Fiddian, N. J. and Gray, W. (2006) Query Translation for

Distributed Heterogeneous Structured and Semi-structured Databases. British National

Conference on Databases BNCOD, Belfast, p. 73 -- 85.

Al-Wasil, F., Gray, W. A., and Fiddian, N. J. (2006a). Establishing an XML

metadata knowledge base to assist integration of structured and semi-structured
databases. In Proceedings of the 17th Australasian Database Conference. Volume 49.
Hobart, Australia, p. 69 -- 78.

Amer-Yahia, S. and Srivastava, D. (2002) A Mapping Schema and Interface for
XML Stores. In Proceedings of the 4th international Workshop on Web information

and Data Management WIDM, Mclean, Virginia, United State of America.

Amer-Yahia, S., Du, F., and Freire, J. (2004). A Comprehensive Solution to the
XML-to-Relational Mapping Problem. In Proceedings of the 6th Annual ACM

194

international Workshop on Web information and Data Management, WIDM.

Washington DC, United State of America, ACM Press, New York, NY, p. 31--38.

Astoria - Astoria Software [online]. Available form:

http: //www. astofiasoftware. coin/ [Accessed 10.06.2006]

Atay, M., Chebotko, A., Liu, D., Lu, S. and Fotouhi, F. (2007). Efficient schema-

based XML-to-Relational data mapping. Information Systems, Volume 32 (3), p. 458 -

-476.

Atay, M., Liu, D., Sun, Y., Lu, S. and Fotouhi, F. (2004). Mapping XML data to

relational data: A DOM-based approach. In 8th IASTED International Conference on

Internet and Multimedia Systems and Applications, Kauai, Hawaii, p. 59 -- 64.

Balmin, A and Papakonstantinou, Y (2005) Storing and Querying XML data

using denormalized relational databases The VLDB Journal, Volume 14, p. 30 -- 49.

Barbosa, D., Barta, A., Mendelzon, A., Mihaila, G., Rizzolo, F. and Rodriguez-

Gianolli, P. (2001). ToX: The Toronto XML Engine. In Proceedings of the Workshop

on Information Integration on the Web, Rio de Janeiro, Argentina.

Barbosa, D., Mendelzon, A., Keenleyside, J. and Lyons, K. (2002). ToXgene: A

Template-Based Data Generator for XML. In Proceedings of the 5th International

Workshop on the World Wide Web and Databases (WebDB), p. 49--54.

Barbosa, D., Mignet, L., and Veltri, P. (2006). Studying the XML Web:

Gathering Statistics from an XML Sample. World Wide Web, Volume 9, Issue 2, p.

187--212.

Batory, D. (1979). On searching transposed files. ACM Transactions on

Database Systems TODS, Volume 4, Issue 4, p. 531 -- 544.

Beyer, K., Cochrane, R. J., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G.,

Lyle, B., Ozcan, F., Pirahesh, H., Seemann, N., Truong, T., Van der Linden, B.,

Vickery, B., and Zhang, C. (2005). System RX: one part relational, one part XML. In

Proceedings of the 2005 ACM SIGMOD international Conference on Management of

Data, Baltimore, Maryland, United State of America.

BizTalk web site [online]. Available form:

195

http: //www. iriicrosoft. com/biztalk/(Ief, tult. mspx [Accessed 30.05.2006]

Bohannon, P., Freire, J. Haritsa, J., Ramanath, M., Roy, P. and Simon, J. (2002)

LegoDB: Customizing Relational Storage for XML Documents. Proceedings of the
29h VLDB Conference, Hong Kong, China.

B6hme, T. and Rahm, E. (2001). XMach-1: A benchmark for XML data

management. In Proceedings of Data Bank Systeme, Technik und Wissenschaft

(BTW). Oldenburg, Germany, p. 264 -- 273.

Bbhme, T. and Rahm, E. (2002) Multi-user Evaluation of XML Data

Management Systems with XMach-1. Efficiency and Effectiveness of XHL Tools, and

Techniques EEX7T, p. 148 -- 158.

Bourret, R. [online] (2005) XML and Databases. Available from:

http: //www. ipbourret. conVxmVXMLAndDatabases. htin

Brassan, S., Lee, M., Li, Y., Lacroix, Z. and Nambiar, U. (2002) The X007

benchmark. In Proceedings of Very Large Data Bases 2002 Workshop Efficiency and
Effectiveness of XML Tools, and Techniques EEXTT, Lecture Notes in Computer

Science Volume 2590, p. 146 -- 147.

Buneman, P. (1997) Semistructured Data. Symposium On Principles Of

Database Systems PODS, p. 117 - 121

Buneman, P. et al (2005) Vectorizing and Querying Large XML Repositories.

International Conference on Data Engineering, ICDE, Tokyo, Japan.

Bunernan, P., Davidson, S., Fernandez, M. and Sucui, D. (1997) Adding

Structure to unstructured data. In proceeding of the international conference on
Database Theory, Dep1hi, Springer Verlag, p. 336 -- 350.

Buneman, P., Davidson, S., Hillebrand, G. and Suciu, D. (1996) A query
language and optimization techniques for unstructured data. In Proceedings of ACH-

SIGMOD International Conference on Management of Data, Montreal, Canada, p. 505

-516.

Buneman, P., Fernandez, M. and Suciu, D. (2000) UnQL: A query language and

algebra for sernistructured data based on structural recursion. VLDB Journal.

Carey, M., DeWitt, D. and Naughton, J. (1993) The 007 benchmark. In ACM

196

SIGMOD Conference. p. 12 -- 21.

Cattell, R. G. G., Barry, D. K., Berler, M., Eastman, J., Jordan, D., Russell, C.,

Schadow, 0., Stanienda, T. and Velez, F. (2000) The Object Data Standard ODMG

3.0. Morgan Kaufmann, ISBN: 1558606475.

Chamberlin, D., Robie, J. and Florescu, D. (2000) Quilt: An XML Query
Language for Heterogeneous Data Sources. International Workshop on the Web and
Databases (WebDB'2000), Dallas, United State of America.

Chaudhuri, S, Chen, Z, Shim, K and Wu, Y (2005) Storing XML (with XSD) in

SQL Databases: Interplay of Logical and Physical Designs. IEEE transactions on
knowledge and data engineering, volume 17 (12).

Chawathe, S., Garcia-Molina, G., Hammer, J., Ireland, K., Papakonstantinou, Y.,

Ullman, J. and Widom, J. (1994). The TSIMMIS Project: Integration of Heterogeneous

Information Sources. In Proceedings of 10th Meeting of the Infonnation Processing

Society Conference, Tokyo, Japan, p. 7 -- 18.

Christophides, V., Abiteboul, S., Cluet, S., and Scholl, M. (1994) From

structured documents to novel query facilities. SIGMOD Record, Volume 23 (2), p.
313--324.

Chung, T et al (2001) Extracting Object-Oriented Database Schemas from XML
,)nd DTI)s Using Inheritance, Proceedings '. International Conference EC-Web.

Chung, T. and Kim, H. (2003). Techniques for the evaluation of XML queries: a

survey. Data Knowledge Engineeting, Volume 46 (2), p. 225 -- 246.

Clark, J. (1997) Comparison of SGML and XML World Wide Web Consortium

Note 15-December-1997 [online]. Available from: http: //www. w3. ori,, /TR/NOTE-, sgi-n-L-

xml-971215 [Accessed 01.05,2006]

Cluet, S., Delobel, C., Sim6on, J. and Smaga, K. (1998) Your mediators need
data conversion! In Proceedings of the 1998 ACM SIGMOD international conference
on Management of data, Seattle, Washington, United States of America, p. 177 -- 188.

Cooper, B., Sample, N., Franklin, M., Hjaltason, G. R. and Shadmon, N. (2001)

A fast index for sernistructured data. Proceedings of the 271h International Conference

on Very Large Data Bases. Rome, Italy, Morgan Kaufmann, Los Altos, CA, p. 341 --

197

350.

Deutsch, A., Fernandez, A and Suciu, D. (1999). Storing sernistructured data

with STORED. In Proceedings of the 25th ACM SIGMOD International Conference

on Management of Data.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., and Suciu, D. (1998) XML-

QL: A Query Language for XML. World Wide Web Consortium Note NOTE-xml-ql-

19980819. [online]. Available from: hiti): //www. w3. orgaR/NOTE-xmiý: aV- [Accessed
1.10.20041.

DeWitt, D. (1993) The Wisconsin Benchmark: Past, Present, and Future. The

Benchmark Handbook for Database and Transaction Systems (2nd Edition). Morgan

Kaufmann, ISBN 1-55860-292-5.

Document Object Model (DOM) Level 3 Core Specification Version 1.0 WX

Recommendation 07 April 2004 Available form: http: //www. w3. oriz/TR/2004/REC-

DOM-I. evel-3-Core-20040407/ [Accessed 10.06.2006]

Eisenberg, A. and Melton, J. (2004) Advancements in SQL/XML. SIGMOD

Record 33. Volume (3), p. 79--86.

Elmacioglu, E. and Lee, D. (2005). On six degrees of separation in DBLP-DB

and more. SIGMOD Record. Volume 34 (2), p. 33 -- 40.

Elmasri, R. and Navathe, S. (2006) Fundamentals of Database Systems, 5nd

Edition, Pearson/Addison-Wesley, ISBN 032141506X.

Fernandez M., Florescu D., Levy A., Suciu D. (1997) A Query Language for a
Web-Site Management System. SIGMOD Record, Volume 26 (3), p. 4 -- 11.

Fernandez, M., Florescu, D., Levy, A. and Suciu, D. (1998) Web-Site

Management: The Strudel Approach. IEEE Data Engineering. Bull. Volume 21 (2), p.
14--20.

Fernandez, M., Florescu, D., Levy, A., Suciu, D. (2000) Declarative

Specification of Web Sites with Strudel. VLDB Joumal, Volume 9 (1), p. 38-55

Fernandez, M., Simeon, J., Wadler, P. (eds.), Cluet, S., Deutsch, A., Levy, A.,
Maier, D., McHugh, J., Robie, J., Suciu, D. and Widom, J. (1999) XML Query

Languages Experiences and Exemplars. Draft manuscript, communication to the XML

198

Query WX Working Group http: //www. w3. org/1999/ 09/ql/docs/xquery. html.

Fiebig, T. , Helmer, S., Kanne, C., Mildenberger, J., Moerkotte, G., Schiele, R.

and Westmann, T. (2002) Anatomy of a native xml base management system.
Technical Report 01, University of Mannheim, Germany.

Florescu, D. (2005) Managing semi-structured data. Queue 3,8.

www. acmqueue. cojn. p. 18 -- 24.

Florescu, D. and Kossmann, D. (1999) Storing and Querying XML Data using an
RDMBS. IEEE Data Engineering Bulletin Volume 22 (3), p. 27 -- 34.

Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J.

and Widom, J. (1995). Integrating and Accessing Heterogeneous Information Sources
in TSIMMIS. In Proceedings of the AAAI Symposium on Infonnation Gathering,
Stanford, California, United State of America, p. 61 -- 64.

Garcia-Molina, H., Quass, D., Papakonstantinou, Y., Rajaraman, A., Sagiv, Y.,

Ullman, J. and Widom, J. (1995a) The TSIMMIS Approach to Mediation: Data

Models and Languages. Next Generation Infonnation Technologies and Systems
(NGITS '95), Second International Workshop, Naharia, Israel.

Goldfarb, C. F. (1990) The SGML Handbook. Oxford University Press, Oxford,

United Kingdom.

Goldman, R. and Widom, J. (1997) DataGuides: Enabling query formulation and

optimization in sernistructured databases. In Proceedings of the Twenty-Third

International Conference on Very Large Databases, Athens, Greece, p 436 -- 445.

Goldman, R., McHugh, J. and Widom, J. (1999). From Sernistructured Data to
XML: Migrating the Lore Data Model and Query Language. Proceedings of the 2nd
International Workshop on the Web and Databases (WebDB '99), Philadelphia,
Pennsylvania, United State of America.

Grossman, D., Holmes, D. Frieder, 0. and Roberts, D. (1997) Integrating
Structured Data and Text: A Relational Approach. Journal of the American Society of
Information Science.

Hammer, J., Garcia-Molina, H., Ireland, K., Papakonstantinou, Y., Ullman, J.

and Widom, J. (1995). Information Translation, Mediation, and Mosaic-Based

199

Browsing in the TSIMMIS System. In Exhibits Program of the Proceedings of the
ACM SIGMOD International Conference on Management of Data, San Jose,

California, United States of America, p. 483.

Hammer, J., McHugh, J. and Garcia-Molina, H. (1997) Sernistructured Data: The
Tsimmis Experience. Proceedings of the First East-European Symposium on Advances

in Databases and Information Systems (ADBIS'97), St. -Petersburg, p. I -- 8.

Han, W., Lee, K. and Lee, B. (2003) An XML Storage System for Object-

Oriented/Object-Relational DBMSs. Journal of Object Technology, Volume 2 (3).

Harding, P., Li, Q. and Moon, B. (2003) XISS/R: XML Indexing and Storage

System Using RDBMS. Proceedings of the 29h VLDB Conference, Berlin, Germany.

HTML - Hypertext Markup Language [online]. Available from:

http: //www. w3c. orgLMarkUp [Accessed 1.10.2002].

Information Manager - Standard-Based Content Management Interleaf [online].

Available form: httl!: //www. interleaf. com/ [Accessed 10.06.2006]

Khan, L. and Rao, Y. (2001) A Performance Evaluation of Storing XML data in

Relational Database Management Systems. In proceedings of the international

workshop on the web information and data management, Atlanta, Georgia, United

States of America.

Khan, L., Chen, Q. and Rao, Y. (2002) A Comparative Study of Storing XML

data in Relational and Object-Relational Database Management Systems. In

proceedings of the international conference on internet computing, Las Vegas,

Nevada, United States of America, p 277 -- 282.

Kim, S., Shin, P., Kim, Y., Lee, J. and Lim, H. (2002) A Data Model and
Algebra for Document-Centric XML Document. Information Networking, Wireless

Communications Technologies and Network Applications, International Conference.

Cheju Island, Korea, Volume 2, p. 714 -- 723

Klettke, M. and Mayer, H. (2001) XML and Object-Relational Database Systems

Enhancing Structural Mappings Based on Statistics WebDB, Lecture Notes in

Computer Science 1997, Springer-Verlag, p. 151 - 170.

Krishnaprasad, M. Liu, Z., Manikutty, A., Warnerj. and Arora, V. (2005)

200

Towards an Industrial Strength SQL/XML Infrastructure. Proceedings of the 21st

International Conference on Data Engineering, ICDE 2005. Tokyo, Japan, p. 991--

1000.

Kuckelberg, A. and Krieger, R. (2003) Efficient Structure Oriented Storage of
XML Documents Using ORDMS. In Proceedings of Very Large Data Bases 2002

Workshop EEX7T and DIWEB, LNCS 2590, p. 131-142.

Kudrass, T. (2002) Management of XML Documents without schema in

relational database systems Infonnation and Software Technology, Volume 44, p. 269-

-275.

Kudrass, T. and Conrad, M. (2002) Management of XML Documents in Object-

Relational Databases EDBT 2002 workshops, Lecture Notes in Computer Science

2490, Springer-Verlag, p. 210-227.

Lacoude, P. (2006) Pushing SQL Server 2005 Limits, Dealing with Oversized

XML Documents [online] Available from:

http: //www. lzicOude. conVDocs/i)ublic/-`vtiblic., ispx? doc=SQL90XML. PD [Accessed

25.09.2006]

Lahiri, T., Abiteboul, S. and Widom, J. (1999) Ozone: Integrating Structured and
Sernistructured Data. In Proceedings of the Seventh International Conference on
Database Programming Languages, Kinloch Rannoch, Scotland.

Leavitt, N. (2000) Whatever Happened to Object-Oriented Databases? IEEE

Computer Volume 33, p. 16-19

Leonov, A. V. and Khusnutdinov, R. R. (2004) Construction of an Optimal

Relational Schema for Storing XML Documents in an RDBMS without Using

DTD/XML Schema Programming and Computer Sojhvare, Volume 30 (6), p. 323--

336.

Ley, M. (2002) The DBLP Computer Science Bibliography: Evolution, Research

Issues, Perspectives. SPIRE, p. 1-10

Ley, M. and Reuther, P. (2006) Maintaining an Online Bibliographical Database:

The Problem of Data Quality. Extraction et gestion des connaissances EGC 2006,

Lille, France, p. 5--10.

201

Low, W., Tok, W., Lee, M. and Ling, T. (2002) Data Cleaning and XML: The

DBLP Experience. ICDE 2002, p. 269

Lu, E. J., Wu, B., and Chuang, P. (2006) An empirical study of XML data

management in business information system. The Journal of Systems and Software

Volume (79), p. 984 -- 1000

Lu, H., Xu Yu, J., Wang, G., Zheng, S., Jiang, H., Yu, G. and Zhou, A. (2005)

What Makes the Differences: Benchmarking XML Database Implementations. ACM

Transactions on Internet Technology (ACM TOM, Volume 5 (1), p. 154 -- 194.

Lu, S., Sun, Y., Atay, M. and Fotouhi, F. (2003) A new inlining algorithm for

mapping XML DTDs to relational schemas. In Proceedings of the Ist International

Workshop on XML Schema and Data Management. Lecture Notes in Computer

Science, Chicago, Illinois, United States of America.

Lv, T. and Yan, P. (2006) Mapping DTDs to relational schemas with semantic

constraints. Information and Sojhvare Technology, Volume 48 (4), p. 245-252

Madria, S., Chen, Y., Passi, K. and Bhowmick, S. (2007) Efficient processing of
XPath queries using indexes. Information Systems, Volume 32 (1), p. 131 - 159.

McHugh, J. and Widom, J. (1999) Query Optimization for XML. In Proceedings

25th International Conference on Very Large Databases, Morgan Kaufmann, p. 315--

326.

McHugh, J., Abiteboul, S., Goldman, R., Quass, D. and Widom, J. (1997). Lore:

A Database Management System for Sernistructured Data. SIGMOD Record, Volume
26 (3), p 54 -- 66.

Microsoft SQL Server Database Management System [online]. Available from:

http: //www. microsoft. com/sql/default. insl2x [Accessed 1.7.2005]

Milo, T. and Suciu, D. (1999) Index Structures for Path Expressions.

International Conference on Database Theory ICDT, p. 277 -- 295

Murthy, R., Liu, Z. H., Krishnaprasad, M., Chandrasekar, S., Tran, A., Sedlar,

E., Florescu, D., Kotsovolos, S., Agarwal, N., Arora, V., and Krishnamurthy, V.

(2005). Towards an enterprise XML architecture. In Proceedings of the 2005 ACM
SIGMOD international Conference on Management of Data, Baltimore, Maryland,

202

United States of America, p. 14-16.

Na, G. and Lee, S. (2005) A Relational Nested Interval Encoding Scheme for

XML Storage and Retrieval Information retrieval technology. Second Asia information

retrieval symposium, AIRS, Jeju Island, Korea, LNCS 2689, p. 715 -- 720.

Namespaces in XML World Wide Web Consortium 14-January-1999 [online].

Available from: http: //www. w3. orcJTR/REC-xml-names/ [Accessed 22.05.2006]

Nestorov, S., Abiteboul, S., and Motwani, R. (1997). Inferring structure in

semistructured data. SIGMOD Record, Volume 26 (4), p. 39 -- 43.

Neven, F., Schwentick, T., Suciu, D. (Eds.) (2005) Foundations of

Semistructured Data. Dagstuhl Seminar Proceedings 05061 Intemationales

Begegnungs- und Forschungszentrurn fUr Informatik (IBFI), Schloss Dagstuhl,

Germany/IBFI, Schloss Dagstuhl, Germany.

Novak, L. and Zamulin, A. (2005) Algebraic Semantics of XML Schema.
Proceding ADBIS 2005, LNCS, Volume 363 1, p. 209 -- 222.

Novak, L. and Zamulin, A. (2006) An XML Algebra for XQuery. ADBIS 2006,
4 -- 21.

ORACLE Database IOG Release 2 XML DB & XML DB Repository [online].

Available from:

http: //www. oracle. coi-n/technolop, y/tech/xmVxmldb/Current/xiuldb datqsh! ie-Lp-df [Accessed

15.06.20061.

Oracle Database Management System [online]. Available from:

littp: //www. oracle. coirdindex. html [Accessed 1.10.2003]

Ozcan, F., Chamberlin, D., Kulkarni, K., and Michels, J. (2006). Integration of

SQL and XQuery in IBM DB2. IBM System Journal. Volume 45 (2), p. 245 -- 270.

Pal, S., Cseri, I., Seeliger, 0., Rys, M., Schaller, G., Yu, W., Tomic, D., Baras,

A., Berg, B., Churin, D., and Kogan, E. (2005). XQuery implementation in a relational

database system. In Proceedings of the 31st international Conference on Very Large

Data Bases. Trondheim, Norway, p. 1175-4186.

Pal, S., Cseri, I., Seeliger, 0., Schaller, G., Giakoumakis, L. and Zolotov, V.

(2004) Indexing XML Data Stored in a Relational Database. Proceeding of the 30th

203

VLDB conference, Toronto, Canada.

Pal, S., Tomic, D., Berg, B. and Xavier, J. (2006) Managing Collections of XML

Schemas in Microsoft SQL Server 2005. EDBT 2006, p. 1102--1105.

Papakonstantinou, Y., Abiteboul, S. and Garcia-Molina, G. (1996). Object fusion

in mediator systems. In Proceedings of the International Conference on Very Large

Data Bases (VLDB), Bombay, India.

Papakonstantinou, Y., Garcia-Molina, H. and Widorn, J. (1995) Object exchange

across heterogeneous information sources. In Proceedings of the Eleventh

International Conference on Data Engineering, Taipei, Taiwan, IEEE Computer

Society Press, p. 251 -- 260.

Paparizos, S and Jagadish, H. V. (2006) The Importance of Algebra for XML

Query Processing. In EDBT 2006 Workshop on XML Data Management, Munich,

Germany.

Paparizos, S. et al (2003) TIMBER: A Native System for Querying XML.

SIGMOD Conference, Volume 2003, p. 672.

Paparizos, S., Al-Khalifa, S., Jagadish, H. V., Niermann, A. and Wu, Y. (2002).

A physical algebra for XML. Technical report, University of Michigan.

Pardede, E., Rahayu, J. and Taniar, D. (2005) Preserving Composition in XML

Object Relational Storage. 19th International Conference on Advanced Information

Networking and Applications AINA, Fukuoka, Japan, p. 695 -- 700.

Pardede, E., Rahayu, J. and Taniar, D. (2006) Object-relational complex

structures for XML storage. Information & Software Technology Volume 48 (6), p.
370-384

Penna, G;, Marco, A., Intrigila, B., Melatti, I. and Poerantonio, A. (2006)

Interoperability mapping from XML schemas to ER diagrams. Data & Knowledge

Engineering, Volume 59 (1), p. 166 -- 188.

Psaila ,G (2002) ERX: An Experience in Integrating Entity-Relationship

Models, Relational Databases, and XML Technologies. EDBT Workshops Lecture

Notes in Computer Science 2490, Springer-Verlag, p. 242 -- 265.

Psaila, G (2003) From XML DTDs to Entity-Relationship Schemas. ER

204

Workshops, Chicago, IL, United States of America, p. 378 -- 389.

Qin, J., Zhao, S., Yang, S. and Dou, W. (2005) XPEV: A Storage Model for

Well-Formed XML Documents. FSKD, Volume 1, p. 360 -- 369

Reuther, P. Walter, B., Ley, M., Weber, A. and Klink, S. (2006) Managing the
Quality of Person Names in DBLP. Research and Advanced Technology for Digital

Libraries, 10th European Conference, ECDL 2006, Alicante, Spain, p. 508 -- 511.

Rizzolo, F. and Mendelzon, A. (2001) Indexing XML Data with ToXin. WebDB

2001, p. 49 -- 54

Robie, J., Lapp, J. And Schach, D. (1998) XML Query Language (XQL)

[online]. Available from htti): //www. w3. orýýjTandS/OUOL98/i)nlxql. htn-d [Accessed
22.05.20061.

Runapongsa, K, Patel, J. M. (2002) Storing and Querying XML Data in Object-

Relational DBMSs. EDBT 2002 Workshop on XML-Based Data Management

(XMLDM'02), Prague, Czech Republic.

Runapongsa, K., Jignesh A Patel, J. A and Al-]Khalifa, S. (2002a). The

Michigan benchmark: A microbenchmark for XML query processing systems. In

Proceedings of Very Large Data Bases 2002 Workshop EEX7T. Lecture Notes in

Computer Science Volume 2590, p. 160 -- 161.

Runapongsa, K., Patel, J. M., Jagadish, H. V., Chen, Y. and Al-Khalifa, S.

(2006). The Michigan benchmark: towards XML query performance diagnostics.

Information Systems, Volume 31 (2), p. 73 -- 97.

Rys, M. (2005). XML and relational database management systems: inside

Microsoft@ SQL ServerTm 2005. In Proceedings of the 2005 ACM SIGMOD

international Conference on Management of Data Baltimore, Maryland, United States

of America, p. 14-16.

Rys, M., Chamberlin, D. and Florescu, D. (2005). XML and relational database

management systems: the inside story. In Proceedings of the 2005 ACM SIGMOD

international Conference on Management of Data. Baltimore, Maryland. SIGMOD

'05. ACM Press, New York, NY, United States of America, p. 945 -- 947.

Salminen, A. and Tompa, F. (2001): Requirements for XML document database

205

systems. A CM Symposium on Document Engineering. p. 85--94.

ýec". or [Accessed 18.05.2006] SAX [online]. Available from: http: //www. saxpro

Schmidt, A. R., Kersten, M. L., Windhouwer, M. A., Waas, F. (2000) Efficient

Relational Storage and Retrieval of XML Documents. Workshop on the Web and
Databases (WebDB), Dallas, United States of America.

Schmidt, A., A., Waas, F., Kersten, M., Carey, M. J., Manolescu, I. And Busse,

R. (2002). XMark: A benchmark for XML data management. In Proceedings of the

28th International Conference on Very Large Data Bases. Hong Kong, China, p. 974 -

-985.

Schoning, H. and Wasch, J. (2000). Tamino - An Internet Database System" in

Advances in Database Technology. EDBT 2000,6th International Conference on
Extending Database Technology. Konstanz, Germany, Proceedings (C. Zaniolo, P. C.

Lockemann, M. H. Scholl, and T. Grust, eds.), Volume - 1777 of Lecture Notes in

Computer Science, Springer, p. 383 -- 387.

Shanmugasundaram. et al. (1999) Relational Databases for Querying XML

Documents: Limitations and Opportunities. Proceeding of the 25th VLDB Conference,

Edinburgh, Scotland.

Shanmugasundaram, J., Shekita, E., Kiernan, J., Krishnamurthy, R., Viglas, S.,

Naughton, J. and Tatarinov, 1. (2001) A General Techniques for Querying XML

Documents using a Relational Database System. SIGMOD Record, Volume 30(3). p.
20-26.

Shimura, T., Yoshikawa, M., Uemura, S. (1999) Storage and Retrieval of XML

Documents using Object-Relational Databases. International Conference on Database

and Expert Systems Applications (DEXA). Springer-Verlag, LNCS 1677, Florence,

Italy.

Sim6on, J. and Cluet, S. (1998) Using YAT to build a web server. In

International Workshop on the Web and Databases (WebDB98), Volume 1590 of
Lecture Notes in Computer Science, Valencia, Spain, p. 118 -- 135.

Singh, A. et al. (2005) NXS: Native XML processing in Sybase RDBMS. ICDE

Workshops 2005. p. 1280

206

SQL Server 2005 XML [online]. Available from:

http: //insdn. n-ticrosoft. con-dsql/learninp-/proOxml/defýiult. a. sRx [Accessed 15.06.2006].

SQL: 2003. International Organization for Standardization (ISO). Information

Technology-Database Language SQL. Standard No. ISO/IEC 9075: 2003. (Available

from American National Standards Institute, New York, NY 10036, United States of
America.)

SQL: 2006. International Organization for Standardization (ISO). Information

Technology-Database Language SQL. Standard No. ISO/IEC 9075-14: 2006. Part 14:

XML-Related Specifications (SQL/XML) (Available from American National

Standards Institute, New York, NY 10036)

http: //www. iso. ch/iso/en/CataloiztieDetai]Paize. Catalo2ueDetail? CSNUMBER=38647&ICS]

35&ICS2=60&ICS3

Staken, K. (2001) Introduction to Native XML Database [online]. Available

from: httT): //www. xml. conAN/a/2001/10/31/nativexmldb. html [Accessed 29.11.2002]

Suciu, D. (1998) Semistructured Data and XML. In Proceedings of the

international conference on Foundations of Data Organization. p. 9 -- 30.

Suciu, D. (2002) Distributed query evaluation on sernistructured data. ACM

Trans. Database System, Volume 27 (1), p. I -- 62.

Tamino - Software Age [online]. Available from:

http: //www. softwarea2. coi-n/cori)orate/products/twnino/defatilt. a,, p [Accessed 08.06.2006].

TeraText DBS [online]. Available from: bttp: //www. teratext. coin. au/index. litm]

[Accessed 12.06.2006].

The Transaction Processing Performance Council [online]. Available from:

http: //www. tpc. orO [Accessed 24.11.2005]

Tian, F., DeWitt, D. J., Chen, J. & Zhang, C. (2002). The design and performance

evaluation of alternative XML storage policies. ACMSIGMOD Record, Volume 31 (1),

p. 5 -- 10.

Timber - Tree-structured native XML database Implemented at the University of
Michigan by Bright [online]. Available form: http: //www. eecs. iiniich. edu/db/timber/

207

[Accessed 08.06.2006]

Vianu, V. (2003) A Web Odyssey: from Codd to XML. Symposium on

Principles of Database Systems archive, proceedings of the twentieth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, Santa Barbara,

California, United States of America.

Vianu, V. (2003a) XML: From Practice to Theory. SBBD 2003. p. 11--25.

Vlist, E. (2002) XHL Schema. O'Reilly. ISBN 0-596-00252-1

WK XML web site [online]. Available fonn: http: //Nvww. w3. orp-, /XMU

[Accessed 30.05.20061

Wang, K. and Liu, H. Q. (1999) Discovering Structural Association of
Sernistructured Data. IEEE Transactions on Knowledge and Data Engineering,

Volume 12 (3), p. 35 3 -- 37 1.

XHTMLTm 1.0 The Extensible HyperText Markup Language (Second Edition) A

Reformulation of HTML 4 in XML 1.0 W3C Recommendation 26 January 2000,

revised 1 August 2002 [online]. Available from: httl2: //www. w3. oriz/TR/xhtmll/#xhtini

[Accessed 22.05.2006]

XML Information Set (Second Edition) WK Recommendation 4 February 2004

Available form: httl2: //www. w3. ora/TR/xml-infoset/ [Accessed 10.06.2006]

XML Path Language (XPath) Version 1.0 [online]. Available from:

http: //www. w3. orýzR'R/xl2ath [Accessed 10.06.2006]

XML Query Use Cases [online] Available from: httl2: //www. w3. orgdR/2005/WD-

xquery-use-cases-20050915/ [Accessed 1.11.2006]

XML W3C Recommendation (Fourth Edition) 16 August 2006 edited in place

29 September 2006 [online]. Available form: httl2: //www. w3. OrWTR/2006/REC-xmi-

2006081 [Accessed 22.01.2007]

XML W3C Working Draft 14-Nov-96 Available form:

http: //www. w3. ordTRIWD-xml-961114 [Accessed 10.06.2006]

XPath - XML Path Language [online]. Available from:

htt]2: //www. w3. orý-, JMxpath [Accessed 1.8.2003]

208

SOAP [online] Version 1.2 Part 1: Messaging Framework, WX

Recommendation 24 June 2003. Available from: http: //www. w3. or. e, 7WsoaT)12-T)artl/

[Accessed 2.1.2007]

XQuery 1.0 An XML Query Language, WX Recommendation 23 January 2007

[online]. Available from: h-ttp: //www. w3. orii/TR/xquery [Accessed 1.3.2007]

XQuery 1.0 and XPath 2.0 Data Model (XDM) WX Candidate
Recommendation II July 2006 [online]. Available from: http: //www. w3. orp, -/TR/xVath-
datainodel/ [Accessed 07.11.2006]

XSLT: 1999 [online]. Available form: http: //www. w3. OrdTR/xslt [Accessed

30.05.20061

Yao, B., Ozsu, A and Keenleyside, J. (2002) XBench A Family of Benchmarks

for XML DBMSs", In Proceedings of EEX7T 2002 and DiWeb 2002, Lecture Notes in

Computer Science, Volume 2590, Springer-Verlag, p. 162 -- 164.

Yao, B., Ozsu, M. and Keenleysidem J. (2002a) XBench A family of

benchmarks for XML DBMSs. In Proceedings of Very Large Data Bases 2002

Workshop EEXTT. Lecture Notes in Computer Science, Volume 2590, p. 162 -- 163.

Yao, B., Ozsu, M. and Keenleysidem J. (2003) XBench--A family of

benchmarks for XNIL DBMSs. Technical Report, CS-2002-39 University of Waterloo,

Waterloo, Ontario, Canada N2L 3GI.

Yao, B., Ozsu, M. and Keenleysidem J. (2004) XBench Benchmark and
Performance Testing of XML DBMSs. In Proceedings of 20th International
Conference on Data Engineering, Boston, MA, United States of America, p. 621 --
632.

Yoshikawa, M. and Amagasa, T. (2001) Xrel: A Path-Based Approach to
Storage and Retrieval of XML Documents Using Relational Databases. ACM
Transaction on Internet Technology, Volume 1 (1), p. I 10-- 14 1.

209

Appendix A Examples of Formal XML Data Model

In this appendix, three examples show how to model XML into a formal data model.

Example 1: A Data-Centric XML document

Figure A. I shows an examPle of a data-centric XML document. Then figure A. 2 shows

the graph representation of this XML document and finally, table A. I shows how this
document is mapped using the previous data model. This document was taken - with

slight modifications - from the department of Information Studies, University of
Sheffield web site (Online).

<University>
<Department>

<Name> Information Studies</Name>
<ResearchGroup>

<Name> Computational Informatics Research Group</Name>
<Director>Peter Wi I lett </Director>
<Focus>database management systems</Focus>
<AcademicStaff HeadofResea rchArea ="Barry Eaglestone">

<StaffName> Barry Eag lestone </Staff Name>
< StaffName >Angela Lin</StaffName>
<StaffName> Miguel Nunes </StaffName >

</AcademicStaff>
</ResearchGroup>

</Department>
</University>

Figure A. 1: Sample Data-Centric XML Document

210

I
University

V University

Department

All ResearchGroup
Information

Studies

I

V ResewchGroup

Name -, -""Dire or Focus

V RGName V RGDirectcw V RGFocus

-data a,

ý

-da -data

Computational Pe ter Willett database
Informatics management

Research Group systems

AcademicStaff

RGAcademic

IfeadofResearchArea

A"'. --.

Barry StaffNa Name 7t

Eaglestone

V SLaffNI V StaffN2 V StafIN3

-7dat -datý,,

ý

A Ar"'
Barry Angela Lin Miguel

Eaglestone Nunes

Figure A. 2: Graph Representation of Data-Centric XHL Document

211

E
Edg

e
Name Parent Child

el "University" v root
V Universitv

e2 "Department" V University V Department
e3 -data V Department "Information

Studies"
e4 "ResearchGroup" V DeDartment V ResearchGroup
e5 "Name" V ResearchGroup V RGName
e6 -data V RGName Computational

Informatics
Research Group

e7 "Director" V ResearchGrouo V RGDirector
e8 -data V RGDirector Peter Willett
eq "Focus" V ResearchGroup V RGFocus

elo -data V RGFocus database
management

systems
ell "AcademicStaff" V ResearchGroup V RGAcademic
e13 "StaffName" V RGAcademic V Staff NI
e14 -data V StaffNl Barry

Eaqlestone
e, 5 "Staff Name" V RGAcademic V Staff N2
e16 -data V StaffN2 Angela Lin
e17 "StaffName" V RGAcademic V Staff N3
e, 8 -data V StaffN3 Miguel Nunes

e12 "Headof Research
Area"

V RGAcademic Barry
Eaglestone

0

e1 Succ

ei null
e2 null
e3 e4
e4 null
e5 e7
e6 null

e7 eg
e8 null
eg ei,
eio null

ei, null
e12 ei3
em ei5
e14 null
ei5 e17
e, 6 null
e17 null

e1 ia null

Table AJ: Data Modelfor Data-Centtic XML Document

212

Example 2: A Document-Centric XML document

Figure A. 3 shows an example of a document-centric XML document. Then figure AA

shows the graph representation of this XML document and finally, table A. 2 shows how

this document is mapped using the previous data model. This document was also taken -
with slight modifications - from the department of Information Studies, University of
Sheffield web site.

Department webaddress="http: //www. shef. ac. uk/uni/academic/1-M/Is/">
<Name>Department of Information Studies </Name>
<Description>

<Para>Welcome to the Department of Information Studies World
Wide Web pages where you will find Information about the
Department. Information about

<List>
<Item xlink:: HREF=".. /peopie/people. html"> the staff </Item>
<Item xlink:: HREF=".. /courses/index. html"> our degree

courses</Item>
</List>

Thank you for visiting our web site
</Para>

<Description>
</Department>

Figure A. 3: Sample Document-Centric XHL Document

213

I
Department

Department

webaddress.. --" Na Description

"http: //www. sheLac. uk/uni/academi V DepNarne

V Demiption

ClI-M/iS/'5

-daýtý

Para

Department of v P. Information Studies

-dat list -data
AV,.

"

+

Welcome to ... Thank you
v iiýt

Ite Item

xlirýk
Ar

=". Jpeople/p the staff
eople. html"

Item2

x1irik" ta

Aw
courses Our degree

/index. html" courses

Figure A. 4: Graph Representation of Document-Centric XHL Document

214

E
_ Edqe Name Parent Child

el "Department" V root
V Department

e3 "Name" V Deoartment V DeoartmentName
e4 -data V DepartmentName "Department of

Information
Studies"

e5 "Description" V Der)artment V Description
e6 Para" V Description V para
e7 -data V

para "Welcome to
ea "list" V

para
v list

eg "Item" v liýt v It. ml
ell -data V lteml "the staff"
e12 "Item" v list V ltem2
e14 -data V ltem2 "our course

ata"
e15 -data V

para "Thank you... "

e2 "webaddress" V Department "httpl/www. shef
. ac. uk/uni/acade

mic/I-M/is/">
elo Vink" V Iteml ".. /people/peopl

e/htmi"
e13 "Aink" V ltem2 ".. /courses/index

html"

0
e1 Succ
ei 1 null]
e2 1 e3

e3 e, 5

e4 null
e5 null
e6 1 null

10

e8
e7 e8

,1

e15

e,
eio ei,
ell null
e12 null
e13 e14
e14 null

e15 null

Table A. 2: Data Modelfor Document -Centric XHL Document

215

Example 3: A hybrid XML document

The following example is a combination of the previous two examples showing a link

between the structured part of the document to the unstructured part (such as

<Description>) and showing also a link between the unstructured part to the structured

part (such as <Head of Department>). Figure A. 5 shows the XML document. Then
figure A. 6 shows the graph representation of this XML document and finally, table A. 3

shows how this document is mapped using the previous daa model.

<University>

<Department webaddress="http: //www. shef. ac. uk/uni/academic/I-
M/is/">

<Name> Information Studies</Name>
<Description>

<HeadofDepartment IDREF="PWO/>
<Para>Welcome to the Department of Information Studies World

Wide Web pages where you will find information about the
Department. Information about

<List>
<Item xlink:: HREF=".. /people/people. html"> the staff </Item>

</List>
Thank you for visiting our web site

</Para>
<Description>
<Stafr'>

<Name Id ="PW"> Peter Willett</Name>
<Narne Id="BE">Barry Eag lestone </Name>
<Name Id="MNo>Miguel Nunes</Name>

</Staff>
<ResearchGroup>

<Name> Computational Informatics Research Group</Name>
<Director IDREF ="PW"/>
<Focus>database management systerns</Focus>
<AcademicStaff >

<Head ofResea rchArea IDREF="BE"/>
<StaffName IDREFS=NBE, MN"/>

</AcademicStaff>
</ResearchGroup>

</Department>
</University>

-Figure
A. 5. - Sample Hybrid XML Document

216

I
University

V University
I

Department

webaddress Name

"http: //www. shef. ac. uk/uni/academi V Name
c/I-M/is/">

-da

'ie Information
Studies

V Description

HeadofDe Para I

Staff/ V Name

-dala

Computational
Informatics

staff Research
Group

V Focus
VAcademicStaff

-dala

database management
systems

Headof Staff
Res:

arcfhl
Nýarne

Area

V Dimctoi

IDRýF

PW

Ar*ý
v

V Head V Para

Name N une Name

/NameN

me"N
16. REF -data/ ljsjN'Ný-data

PW Welcome IF Thank I

to ...
list YOU ...

V Name IV Name2 V Name3
II

Item -data -data -data Id Id Id
IF

V item

xlink,
""NN"'ý-data PIN Peter BE Barry MN L Miguel

AbWillett 4 Waglestone 11 Nunes

i =". Jpeople/p the staff
eople. html"

VHeadofRA V StaffName

IDRýF IDRýFS

BE BE, MW

Figure A. 6. - Graph Representation of Hybrid XUL Document

217

ResearchGroup

E 0
Edge Name Parent Child e Succ

el "University" V root V University el null
e2 "Department" V

University
V Department e2 null

e4 Name" V Department V Name e3 e4

e5 -data
V

Name "Information e4 e6
e6 "Description" V Department V Description e5 null
eg "Para" V Description V Para

-
e6 e16

elo -data V P.
-

"Welcome to... " e7 eg
ell "list" V

Para V
list es null

e12 Itern" V list
V

item eq null
e14 -data

V
item Ihe staff" elo ell

e15 -data
V

Para "Thank you ell e15

e16 "Staff" V
Department V staff e12 null

el7 "Namel" V
staff

V Name I e13 e14

eig -data
V Name I "Peter Willý-tt-" e14 null

e20 "NameT V
staff

V Name2 e, 5 null
e22 -data

V Name2 "Barry... " e16 e26

e23 NameT V
staff

V Name3 e17 e20

e25 -data
V

Name3 "Migual Nunes" e18 eig
e26 "ResearchGroup" V Department

V ResearchOroup eig null
e27 "Name V

ResearchGroup
V

Name e20 e23

e28 -data
V Name "Computational e2l e22

e29 "Director" V ResearchOroup V Director e22 null
e3l "Focus" V ResearchOroup

V Focus e23 null
e32 -data

V Focus "database e24 e25

e33 "AcademicStaff" V ResearchOroup V AcademicStaff e25 null
e34 "Headof Research

Area"
V Aad,, i, Staff V HeadoiResearchArea e26 null

e36 "Stafflame V AcadernicStafT V StafName e27 e29

e28 null
e3 webaddress"

V
Department "http: //www. e2g e3l

e7 "HeadofDept" V
Description ("PW", IDREF) e30 null

e13 Xlink:: HREF V item ".. /people/... " e3l e33

el8 "Id" V
namel Ipw" e32 null

e2l Id" V
name2 "BE" e33 null

e24 Id" V
namell OMN" e34 e36

e35 null
Edge Parent refedges child e36 null

e8 V
Head

(e7) V Name I e37 e38

e30 V
Director je29) V

Name I e38 null
e35 V HeadofRA je34) V Name2

e37 V
StaffName je36 I V Name2

e38 V
StaffName je36) V Name3

Table A. 3: Data Modelfor Hybrid XML Document

218

Appendix B Database Scripts

Figure BA shows the SQL Scripts to create the tables used in the experiments. Some of
the tables are omitted because they have similar structures. For example, all the 'D-'

tables have the exact same structure as 'C_2 tables.

CREATE TABLE [A_DocTypel(
[DocTypeIdl [intl NOT NULL,
[DocType] Invarchar](20) NULL,

CONSTRAINT [PK,
-JA-DocTypel

PRIMARY KEY CLUSTERED

[DocTypeId] ASC
)WITH (PAELINDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [B_XMLDocument](

[DocId] Cint] NOT NULL,
[XMLDoc] [xml] NULL,

CONSTRAINT [PK_B_XMLDocument] PRIMARY KEY CLUSTERED

[DocId] ASC
)WITH (PAELINDEX = OFF, IGNORE_DUP_KEY - OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_Authorl(

[Id] Cint] IDENTITY(l, l) NOT NULL,
[DocId] [intl NOT NULL,
[Author] [varchar](100) NOT NULL,

CONSTRAINT [PK_A_Author] PRIMARY KEY CLUSTERED

[Id] ASC
)WITH (PAELINDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY)
) ON (PRIMARY]
CREATE TABLE [A_crossref](

(Id] [int) IDENTITY(l, l) NOT NULL,
(DocIdl (int] NOT NULL,
[crossref] [varchar](200) NOT NULL,

CONSTRAINT [PK_, A-crossref] PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PADý_INDEX = OFF, IGNORE-DUP-KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_isbnl(

[Idl fintl IDENTITY(l, l) NOT NULL,
[DocId] [int] NOT NULL,
[isbnl [varchar](200) NOT NULL,

CONSTRAINT (PKjý_isbn] PRIMARY KEY CLUSTERED

[Id] ASC
)WITH (PAELINDEX = OFF, IGNORE_DUP_KEY = OFF) ON (PRIMARY]
) ON (PRIMARY]
CREATE TABLE [A-series](

[Idl [int) IDENTITY(l, l) NOT NULL,
(DocIdl [intl NOT NULL,
[series] (varchar](200) NOT NULL,

CONSTRAINT [PK_A-series] PRIMARY KEY CLUSTERED

(Idl ASC

219

)WITH (PAQ-INDEX = OFF, IGNORE-DUP-KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_school](

(Id] (int] IDENTITY(l, l) NOT NULL,
(DocIdl (int] NOT NULL,
[school] (varchar](200) NOT NULL,

CONSTRAINT [PK-A-school] PRIMARY KEY CLUSTERED

[Id) ASC
)WITH (PAD-INDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON (PRIMARY]
CREATE TABLE [A_chapterl(

[Id] [int] IDENTITY(l, l) NOT NULL,
[DocId) [int] NOT NULL,
[chapter] [varchar](200) NOT NULL,

CONSTRAINT [PK. A-chapter] PRIMARY KEY CLUSTERED

[Id] ASC
)WITH (PAD-INDEX = OFF, IGNORE_DUP-KEY - OFF) ON [PRIMARY]
) ON (PRIMARY]
CREATE TABLE [A_cdrom](

(Idl Cintl IDENTITY(l, l) NOT NULL,
[DocId] [int] NOT NULL,
fcdrom] [varchar)(200) NOT NULL,

CONSTRAINT [PK_A-cdrom] PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PAEL. INDEX = OFF, IGNORE-ýDUP-KEY - OFF) ON (PRIMARY]
) ON [PRIMARY]
SET ANSI-ýNULLS ON
CREATE TABLE [A_Titlel(

[Id] lint] IDENTITY(l, l) NOT NULL,
(DocId] lint] NOT NULL,
[Title] [varchar](700) NOT NULL,

CONSTRAINT [PK_A-Title) PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PAD_INDEX w OFF, IGNORE-DUP-KEY - OFF) ON (PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_EE](

[Id] lint] IDENTITY(l, l) NOT NULL,
(DocId] lint] NOT NULL,
CEE] [varchar](200) NOT NULL,

CONSTRAINT [PK-, A-EE] PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PAEL. INDEX = OFF, IGNORE-DUP__KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_editor](

[Id] lint] IDENTITY(l, l) NOT NULL,
[DocId] lint) NOT NULL,
[Editor] [varchar](200) NOT NULL,

CONSTRAINT [PK_A-editor] PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PAP_INDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_BookTitlel(

[Id] [int] IDENTITY(l, l) NOT NULL,
[DocId] (intl NOT NULL,
(BookTitlel [varchar](200) NOT NULL,

220

CONSTRAINT [PK_, ABookTitle] PRIMARY KEY CLUSTERED

[Idj ASC
)WITH (PAELINDEX = OFF, IGNORE-DUP-KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_Pages](

[Id] [int] IDENTITY(l, l) NOT NULL,
[DocId] [int] NOT NULL,
[Pages] [varchar](200) NOT NULL,

CONSTRAINT CPKJý,
_Pages]

PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PAD-INDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE (A-year](

[Idl (int] IDENTITY(l, l) NOT NULL,
[DocId] [int) NOT NULL,
[Year] [varchar](200) NOT NULL,

CONSTRAINT [PK_A_yearl PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PAELINDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON (PRIMARY]
CREATE TABLE [A_addressl(

[Id] (intj IDENTITY(l, l) NOT NULL,
(DocId] [int] NOT NULL,
[Address] [varchar](200) NOT NULL,

CONSTRAINT [PK_, A_address] PRIMARY KEY CLUSTERED

[Id] ASC
)WITH (PAP_INDEX = OFF, IGNORE_DUP_KEY = OFF) ON (PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_notel(

[Id] [int] IDENTITY(l, l) NOT NULL,
[DocIdl [int] NOT NULL,
[note] [varchar](500) NOT NULL,

CONSTRAINT [PK__A_note] PRIMARY KEY CLUSTERED

[Id] ASC
)WITH (PAD_INDEX = OFF, IGNORE_DUP_KEY = OFF) ON (PRIMARY]
) ON (PRIMARY]
CREATE TABLE [A_Journal](

[Id] [int] IDENTITY(l, l) NOT NULL,
[DocId] [int] NOT NULL,
[Journal] [varchar](200) NOT NULL,

CONSTRAINT [PK_A_Journal] PRIMARY KEY CLUSTERED

[Idj ASC
)WITH (PAD_INDEX = OFF, IGNORE_DUP_KEY = OFF) ON (PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_Volume](

[Idl Cint] IDENTITY(l, l) NOT NULL,
[DocId] [int] NOT NULL,
[Volume] [varchar](200) NOT NULL,

CONSTRAINT [PK_A_Volumel PRIMARY KEY CLUSTERED

[Id] ASC
)WITH (PAELINDEX = OFF, IGNORE_DUP_KEY = OFF) ON (PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_numberl(

[Idl fintl IDENTITY(l, l) NOT NULL,

221

[DocIdl tint] NOT NULL,
(Number] (varchar](200) NOT NULL,

CONSTRAINT [PK_A_number] PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PAD-INDEX = OFF, IGNORE-DUP-KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_Monthl(

[Id] [int] IDENTITY(l, l) NOT NULL,
[DocId] [int] NOT NULL,
(Month] [varchar)(200) NOT NULL,

CONSTRAINT [PK_A_Month] PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PAD-INDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_URLI(

[Id] (int] IDENTITY(l, l) NOT NULL,
[DocIdl [intl NOT NULL,
[URL] [varchar](200) NOT NULL,

CONSTRAINT [PK-A-URLI PRIMARY KEY CLUSTERED

[Id] ASC
)WITH (PAD_INDEX - OFF, IGNORE_DUP-KEY - OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_cite](

[Idl [int] IDENTITY(l, l) NOT NULL,
[DocId] (int] NOT NULL,
[cite] [varchar](200) NOT NULL,

CONSTRAINT [PK_A_cite] PRIMARY KEY CLUSTERED

(Idl ASC
)WITH (PACLINDEX = OFF, IGNORE-DUP-KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A_publisher)(

[1d] lint) IDENTITY(l, l) NOT NULL,
[DocId] lint] NOT NULL,
[publisher] [varchar)(200) NOT NULL,

CONSTRAINT [PK-A-publisher] PRIMARY KEY CLUSTERED

[Idl ASC
)WITH (PAD-INDEX = OFF, IGNORE-DUP_KEY - OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE CC-DocH

[DocId] lint] NOT NULL,
(DocTypeIdl lint] NOT NULL,
Mate] [datetimel NULL,
[DocKeyj (varchar](150) NOT NULL,
[ReviewId] [varchar](50) NULL,
[Rating) [varchar](10) NULL,
[XMLExtract] [xml] NULL,

CONSTRAINT [PK_C_Doc] PRIMARY KEY CLUSTERED

[DocIdl ASC
)WITH (PAD_INDEX = OFF, IGNORE_DUP_KEY - OFF) ON [PRIMARY],

CONSTRAINT [IX_C_Doc] UNIQUE NONCLUSTERED

[DocKey] ASC
)WITH (PAD-INDEX = OFF, IGNORE-DUP-KEY - OFF) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [A. Docl(

222

(DocIdl [intl IDENTITY(l, l) NOT NULL,
[DocTypeId] Cint) NOT NULL,
[MDate] [datetimel NULL,
[DocKey] [varchar](150) NOT NULL,
[ReviewIdl (varchar](50) NULL,
[Rating] (varchar](10) NULL,

CONSTRAINT [PK_A_Docl PRIMARY KEY CLUSTERED

[DocId] ASC
)WITH (PAEý-INDEX = OFF, IGNORE-DUP-ýKEY = OFF) ON [PRIMARY],
CONSTRAINT [IX_A_Doc] UNIQUE NONCLUSTERED

[DocKeyl ASC
)WITH (PAD-INDEX = OFF, IGNORE_ýDUP_KEY - OFF) ON [PRIMARY]
) ON [PRIMARY]
ALTER TABLE [A_Author] WITH CHECK ADD CONSTRAINT
[FK--A-Author_A_Doc) FOREIGN KEY([DocId])
REFERENCES [A. Doc] ([DocId])
ALTER TABLE [A_Authorl CHECK CONSTRAINT [FK_A_Author_A_Docl
ALTER TABLE [A_crossref] WITH CHECK ADD CONSTRAINT
[FK_A.

_crossref__A.
Docl FOREIGN KEY([DocId])

REFERENCES [A-Doc] ([DocIdl)
ALTER TABLE [A_crossref] CHECK CONSTRAINT [FK_. A_crossref_)k_Doc]
ALTER TABLE [A_isbn] WITH CHECK ADD CONSTRAINT CFF,,

_)%, _isbn_A_Docl
FOREIGN KEY([DocId])
REFERENCES [A_ýDoc] ([DocIdl)
ALTER TABLE [A_isbn] CHECK CONSTRAINT [FK_A_isbn_, A_Doc]
ALTER TABLE [A_series] WITH CHECK ADD CONSTRAINT
[FK_A_series_A_Doc] FOREIGN KEY([DocIdl)

REFERENCES [A_Doc] ([DocId])
ALTER TABLE [A_series] CHECK CONSTRAINT [FK__A_series_jý_Docj
ALTER TABLE [A_school] WITH CHECK ADD CONSTRAINT
jFK-A-school-A--Pocl FOREIGN KEY([DocIdl)
REFERENCES [A_Docl ([DocIdl)
ALTER TABLE [A_school] CHECK CONSTRAINT [FK_Aschool_A_Docl
ALTER TABLE [A_chapter] WITH CHECK ADD CONSTRAINT
[FK_A_chapter_A_Doc] FOREIGN KEY([DocId])

REFERENCES [A-Doc] ([DocIdl)
ALTER TABLE [A_chapter] CHECK CONSTRAINT [FK__A_chapter-A-Doc]

ALTER TABLE [A_cdrom] WITH CHECK ADD CONSTRAINT [FK_, k_cdrom-, A-Docl

FOREIGN KEY([DocIdl)
REFERENCES [A_Doc] ([DocId])
ALTER TABLE [A_cdrom] CHECK CONSTRAINT [FK_A_cdrom_A_Doc]
ALTER TABLE [A_Titlel WITH CHECK ADD CONSTRAINT [FK_. ATitle_A-Docl
FOREIGN KEY([DocIdl)
REFERENCES [A_Docl ([DocIdl)
ALTER TABLE [A_Title] CHECK CONSTRAINT [FK_A_Title-ýA-Docl
ALTER TABLE [A_EE] WITH CHECK ADD CONSTRAINT [FK-)k-EE-#a-Docl
FOREIGN KEY([DocId])
REFERENCES [A_Doc) ([DocId])
ALTER TABLE [A_EE] CHECK CONSTRAINT [FK__A_EE_, A-Docl
ALTER TABLE [A_editor] WITH CHECK ADD CONSTRAINT
[FK--A-editor-A-Docl FOREIGN KEY([DocId])

REFERENCES [A_Doc] ([DocIdj)
ALTER TABLE [A_editor] CHECK CONSTRAINT [FY%. A_editor_)k-Docl
ALTER TABLE [A_BookTitle] WITH CHECK ADD CONSTRAINT
[FY,

_A-BookTitle-A-Doc]
FOREIGN KEY([DocIdl)

REFERENCES [A_Doc] ([DocIdl)
ALTER TABLE [A_BookTitle] CHECK CONSTRAINT [FK_A-BookTitle-, A-Doc]

ALTER TABLE [A_Pages] WITH CHECK ADD CONSTRAINT [FK_A_Pages_A_Doc]

FOREIGN KEY(fDocIdj)

223

REFERENCES [A_Docl ([DocIdl)
ALTER TABLE [A_Pages] CHECK CONSTRAINT [FK_A_Pages-A_Docl
ALTER TABLE [A-year] WITH CHECK ADD CONSTRAINT CFK-A-year-A-Docl
FOREIGN KEY([DocId])
REFERENCES (A_Doc] ((DocIdl)
ALTER TABLE [A_year] CHECK CONSTRAINT [FK_A_year_A_Doc]
ALTER TABLE [A_address] WITH CHECK ADD CONSTRAINT
[FK_A-address_A_Doc] FOREIGN REY([DocId])
REFERENCES [A_Docl ([DocId])
ALTER TABLE [A_address] CHECK CONSTRAINT [FK_Aaddress_A_Docl
ALTER TABLE [A_note] WITH CHECK ADD CONSTRAINT [FK_A_note_j; ý-Docj
FOREIGN KEY((DocIdl)
REFERENCES [A_Doc] ((DocIdl)
ALTER TABLE (A_note) CHECK CONSTRAINT [FK_A_note_. A_Docl
ALTER TABLE [A_Journall WITH CHECK ADD CONSTRAINT
[FK_A_journal__A_Doc] FOREIGN KEY([DocId))
REFERENCES [A_Doc] ((DocIdl)
ALTER TABLE [A_Journall CHECK CONSTRAINT [FK_A_Journal_, aDocl
ALTER TABLE (A_Volume] WITH CHECK ADD CONSTRAINT
(FF. A_Volume_A_Docl FOREIGN KEY([Docld))
REFERENCES [A_Doc) ([DocIdl)
ALTER TABLE [A_Volumel CHECK CONSTRAINT [FK_, b, _Volume_A_Doc)
ALTER TABLE (A_numberl WITH CHECK ADD CONSTRAINT
IFK_A_number_A_Docl FOREIGN KEY([DocIdl)
REFERENCES [A_Doc] ([DocId])
ALTER TABLE (A.

_number)
CHECK CONSTRAINT [FK__A_number_A-Docl

ALTER TABLE [A_Month] WITH CHECK ADD CONSTRAINT [FK_A_Month__A_Docl
FOREIGN KEY([Docld))
REFERENCES [A_Doc) ([DocId))
ALTER TABLE [A_Month) CHECK CONSTRAINT EFK_A_Month_A_Docl
ALTER TABLE [A_URL) WITH CHECK ADD CONSTRAINT [FK_A_URL_A_Docl
FOREIGN KEY([Docldl)
REFERENCES [A_Docl ([DocId])
ALTER TABLE [A_URL] CHECK CONSTRAINT [FK_A_URL_, zi_Doc)
ALTER TABLE (A_citel WITH CHECK ADD CONSTRAINT [FK_, a,

cite,
A-Docl

FOREIGN KEY([Docld))
REFERENCES [A_Doc] ([DocId])
ALTER TABLE [A_citel CHECK CONSTRAINT [FK_A_cite_, A_Docl
ALTER TABLE [A_publisher] WITH CHECK ADD CONSTRAINT
[FK_A_publisher_A_Doc] FOREIGN KEY((DocIdj)
REFERENCES [A_Docl ((DocIdl)
ALTER TABLE (A,

_publisher]
CHECK CONSTRAINT [FK_A_publisher-A-Docl

ALTER TABLE [Cý_Doc] WITH CHECK ADD CONSTRAINT [FK_C_Doc_C_DocTypel
FOREIGN KEY([DocTypeldl)
REFERENCES (C_DocTypel ([DocTypeId])
ALTER TABLE [C_Doc) CHECK CONSTRAINT [FK-C-Doc-C-DocTypel
ALTER TABLE [A_Doc] WITH CHECK ADD CONSTRAINT (FK_A_Doc_A_DocTypel
FOREIGN KEY([DocTypeIdl)
REFERENCES tA_DocTypel ([DocTypeIdl)
ALTER TABLE [A_Doc] CHECK CONSTRAINT [FK_A_Doc_A_DocTypel

Figure B. 1: Database Scripts

224

Appendix C Full Experiments' Results

The fOllowmg, table shows all the results of the experinients.
Std3 DB 1/3 DB 2/3 DB 3/3

Query No System Code Avg Sid Avg Std Avg Std

Q01A 1 00%R 91 18.95
- - -

121 24.90 156 73-50

001 A 1 00%X 313 ý2
. 3 4 395 91.75 626 19.37

Q01A 1 00%XW 221 26.54 383 64.06 522 100.41
Q01A 37%X 45 14.29 46 4.66 71 10.39
Q01A 37%XW 38 10.18 42 6.28 63 20.42
001A 60%X 60 18.62 75 12.18 83 13.26
001A 60%XW 39 942 50 8.83 74 13.65
001A PSD 24 8.19 55 8.27 65 30.92
Q01A PSDA

001A PSDT

Q02A 1 00%R 148 26.94 196 94.89 262 40.93

002A 1 00%X 43097 5570.93
- -

58705 6427.60 73285 6044.47

Q02A 1 00%XW 210 ý 9 34 379 - 90.90 580 144.30
Q02A 37%X 78440 6435.08 193910 27243.26 335752 13621.31

Q02A 37%XW 181 75.33 207 54.65 293 121.92

002A 60%X 183616 23301.65 411405 16212.19 450089 22445.58

Q02A 60%XW 237 102.97 274 73.94 301 124.83

Q02A PSD 215 35.99 276 13.80 317 168.16

Q02A PSDA 70 23.98 75 19.27 120 63.36

Q02A PSDT

Q03A 1 00%R 139 23.98 169 39.29 241 18.13

Q03A 1 00%X 8538 11.31 22718 165.57 69272 268.23
Q03A 1 00%XW 166 63.49 300 66.31 441 96.34
Q03A 37%X 81499 4437.62 -1-61943 10-66-9.71 - 244896 23259.57
Q03A 37%XW 77 1.92 82 8.05 93 2.57
Q03A 60%X 127313 11448.45 308190 22140.57 389509 25956.89

Q03A 60%XW 70 8.07 78 5.63 83 9.10
003A PSD 94 17.81 ill 23.09 116 3.25
Q03A PSDA 12.00 0.44 12.00 0.45 14.00 1.48
Q03A PSDT

Q04A 1 00%R 314 141.63 323 102.72 592 124.93

Q04A 1 00%X 8766 150.61 42660 4941.41 70586 649.60

Q04A 1 00%XW 188 57.45 316 81.70 454 97.89

225

Q04A 37%X 57820 24774.23 174662 10191.38 282379 5817.15

Q04A 37%XW 90 5.65 95 9.81 100 12.35

Q04A 60%X 134342 13021-34 313742 10124.09 371523 11107.27

Q04A 60%XW 83 7.53 84 7.42 86 10.77

Q04A PSD 81 22.73 92 14.20 97 7.23

Q04A PSDA 12 0.51 13 1.83 14 1.57

Q04A PSDT

Q05A 1 00%R 195 36.85 232 34.19 241 80.36

Q05A 1 00%X 22552 1390.93 53622 743.89 75761 6366.67

Q05A 1 00%XW 190 66.03 315 84.30 444 99.89

Q05A 37%X 17471 1525.08 46501 6408.51 51709 20247.12

Q05A 37%XW 89 6.57 92 4.32 96 8.02

005A 60%X 23787 2020.37 66800 9578.58 89296 1348.45

Q05A 60%XW 81 7.08 89 6.56 96 6.44

Q05A PSD 93 1.08 94 4.09 99 7.60

Q05A PSDA 12.00 1.07 17.00 1.04 19.00 1.57

005A PSDT

Q06A 1 00%R 365 72.24 398 40.06 468 171.06

Q06A 1 00%X 9144 324.40 52225 2299.58 69593 264.10

Q06A I 00%XW 206 76.64 387 72.81 459 164.03

Q06A 37%X 54762 18426.13 148952 56531.47 278190 5949.33

006A 37%XW 349 29.72 359 32.42 367 59.20
- Q06A 60%X 137073 11138.42 315410 19450.43 361517 103. 'ý1.36

Q06A 60%XW 356 66.94 373 43.64 438 31.49

Q06A PSD 360 121.43 377 68.03 396 44.31

Q06A PSDA 61 31.01 138 63.38 238 165.46

Q06A PSDT
i

Q07A 1 00%R 509 32.59 1076 28.28 1209 164.76

Q07A 1 00%X 14101 5135.72 63671 4089.20 78963 9576.67

Q07A 1 00%XW 227 87.64 249 86.76 308 51.33

007A 37%X 82866 15721.11 167265 7894.11 277844 5372.91

007A 37%XW 440 --T9.62 537 211.12 553 77.03

Q07A 60%X 161802 6685.96 373685 189.23 440694 3850.19
-007A 60%XW 413 52.97 493 99.64 532 60.43

Q07A PSD 472 107.79 484 79.72 511 139.74

Q07A PSDA 236.00 147.69 261.00 129.82 294.00 190.84

Q07A PSDT

Q08A 1 00%R 2557 347.21 4866 146.37 5855 1341.39

Q08A 1 00%X 6663 720.85 57807 4999.97 74909 5251.58

226

Q08A 1 00%XW 3121 959.70 24962 1803.61 1 42579 1185.69

Q08A 37%X 156992 16775.18 288789 49676.01 404319 28077.93

Q08A 37%XW 816 83.08 2174 1075.81 18810 5005.49

Q08A 60%X 262185 35895.58 480492 46241.96 561375 9856.71

Q08A 60%XW 1316 285.40 2595 642.92 29199 7401.66

Q08A PSD 1822 634.72 23193 3497.09 61481 9052.65

008A PSDA

Q08A PSDT 1734.00 837.26 4509.00 1354.14 7855.00 3082.74

Q09A 1 00%R 117 8.46 124 15.04 142 13.11
Q09A 1 00%X 417 58.86 563 95.60 788 11.31
009A

-
1 00%XW 108 16.21 188 43.60 222 49.97

Q09A 37%X 50 18.23 83 6.50 102 37.75
Q09A 37%XW 15 1.46 15 2.28 17 0.98
Q09A 60%X 74 31.13 125 8.96 137 15.65

Q09A 60%XW 15 2.52 15 1.14 21 8.31

Q09A PSD 14 5.54 15 0.62 18 1.08

Q09A PSDA

009A PSDT

010A 1 00'YoR 290 134.70 351 12.02 393 21.66
010A 1 00%X 51475 9303.97 102641 464.57 142944 1911.31
Q10A 1 00%XW 303 16.69 548 55.64 703 66.32

010A 37%X 87260 3825.26 194477 6768.67 287414 2237.20

010A 37%XW 170 18.44
-

227 49.83 238 76.46
Q10A 60%X 14046F 4587.69 --d2--8393 - -8541.09 380233 -

010A 60%XW 231 85.10 238 31.56 276 78.46

Q10A PSD 71 4.47 75 5.57 80 11.73

Q10A PSDA 14 1.35 14 1.51 14 1.58

010A PSDT

Q11A 1 00%R 213 53.84 234 12.02 280 34.41
Q11A 1 00%X 61993 4470.36 104538 4847.92 148703 1414.21
Q11A 1 00%XW 1438 675.21 4384 1535.07 8672 1976.47
Q11A 37%X 83105 717.28 194539 4447.27 285851
011A 37%XW 96 20.16 102 25.59 ill 6.46
Q11A 60%X 135101 1665.82 327929 7566.20 380807 705.3-3
Q11A 60%XW 121 7.63 125 23.16 139 13.28
Q11A PSD 75 6.08 86 8.04 90 7.81

Q11A PSDA 1 12.00 1.63 13.00 1.17 15.00 1.06

Q11A PSDT

Q12A 1 00%R. 227 9.81 256 90.74 259 47.26

227

Ql 2A 1 00%X 453 218.90 3280 55.64 5364 1337.15
Q12A 1 00%XW 231 57.75 507 51.37 686 52.76
Ql 2A 37%X 46 21.01 145 24.57 150 17.32
01 2A 37%XW 98 35.84 lob 34.52 107 19.20

01 2A 60%X 90 30.39 125 21.21 239 53.31

Ql 2A 60%XW 112 14.11 115 9.37 124 21.87
Q12A PSD 36 6.68 37 8.17 44 13.61
Ql 2A PSDA

Q12A PSDT

Q13A I 00%R 420 36.06 515 24.18 739 78.69
01 3A 1 00%X 1160 195.92 4728 1616.62 5726 122.33
Ql 3A 1 00%XW 3082 992.17 6882 1419.22 13138 2761.02
01 3A 37%X 68 9.57 ill 11.53 145 22.48
Q13A 37%XW 55 18.45

57 7.12 79 32.56

Q13A 60%X 93 i-7.00 11-4 7.51- 140 42.15
013A 60%XW 72 23.67 80 5.85 102 36.87

Ql 3A PSD 12 1.57 13 1.17 15 1.21
Ql 3A PSDA

Ql 3A PSDT

01 4A 1 00%R 19 7.53 76 13.50 219 23.33
014A 1 00%X 118 11.31 188 45.25 522 158.19

Q14A 1 00%XW 193 51.00 331 121.47 447 221.15
014A 37%X 15 1.41 19 9.07 19 1.53
Q14A 37%XW 14 1.55 19 7.00 20 8.52
01 4A 60%X 41 7.51 43 4.24 51 18.25
014A 60%XW 14 1.30 15 1.50 17 1.51

Q14A PSD 13 1.63 13 0.87 14 1.44

Q14A PSDA

Q14A PSDT

Q15A 1 00%R 2519 144.27 2630 90.00 2772 27.85
Ql 5A 1 00%X 145 2.48 181 36.69 256 75.73
Ql 5A 1 00%XW 112 15.63 187 68.54 271 61.72
01 5A 37%X 14 1.73 17 1.41 18 1.00
Q15A 37%XW 15 1.39 15 1.71 20 7.60
Ql 5A 60%X 12 1.15 14 1.73 15 1.50
Ql 5A 60%XW 14 2.12 16 2.00 18 4.90
Ql 5A PSD 13 1.36 13 1.44 15 1.45
Ql 5A PSDA

- - - Ql 5A i5 S DT

228

01 6A 1 00%R 17721 570.33 25304 1042.22 25938 313.36

016A 1 00%X 146 21.37 344 157.78 1118 264.84

Q16A 1 00%XW 107 40.36 163 36.46 263 107.13

Ql 6A 37%X 39 5.32 41 7.55 81 19.19

Ql 6A 37%XW 19 7.49 24 1.73 37 18.28

Q16A 60%X 42 2.65 53 19.65 63 10.25

Q16A 60%XW 23 8.78 34 2.08 54 16.60

Ql 6A PSD 13 1.00 14 1.56 16 1.38

Q16A PSDA

Ql 6A PSDT

Q17A 1 00%R 11288 2523.41 30252 2647.40 34549 3981.95

Q17A 1 00%X 23620 3375.15 51883 1931.74 64787 957.22

Q17A 1 00%XW 3315 1286.83 7408 1485.64 30749
- - -

2392.47

Ql 7A 37%X 116991 7127.86 225209 1310-. 0-9 -3334 5 5 f625.73

Q17A 37%XW 820 132.63 1452 286.89 16635 2283.69

Q17A 60%X 182695 3916.78 393269 4773.90 443788 2927.84

Q17A 60%XW 1223 255.90 2159 288.54 25848 2136.88

Ql 7A PSD 1298 92.07 23844 1392.61 52799 2350.26

Ql 7A PSDA

Q17A PSDT 999.00 231.92 4645-00 1729.06 7140.00 2529.06

Ql 8A 1 00%R 1832 76.54 4573 226.27 4791 913.81

Ql 8A 1 00%X 6364 866.95 52873 782.95 74619 9859.38

018A 1 00%XW 2913 1318.59 7148 1525.97 30355 3798.85

Ql 8A 37%X 171813 35117.69 329583 1 173.51 396239 21116.28

Ql 8A 37%XW 695 7.99 1269 45.44 15187 915.10

Q18A 60%X 242382 19105.73 509806 48219.55 584999 57239.11

Ql 8A 60%XW 1054 199.85 1926 35.79 23960 1284.36

Ql 8A PSD 1290 97.35 23687 1659.29 50928 3895.13

Ql 8A PSDA

Q18A PSDT 1098.00 39.61 2983.00 462.78 3602.00 243.65

01 9A 1 00%R 261 7.07 270 17.32 277 110.44

Q19A 1 00%X 12671 2849.64 48664 2020.20 69508
- - -

251.73

Q19A 1 00%XW 143 52.88 220 39.47 28 5 59.26

Q19A 37%X 70127 1494.46 165332 4084.58 276913 3070.43

Q19A 37%XW 69 10.33 99 2.12 103 14.62

Ql 9A 60%X 125646 4073.28 294526 6584.09 370151 10995.98

Q19A 60%XW 84 10.74 99 11.09 104 7.30

Q19A PSD 14 1.52 15 1.29 16 1.83

Ql 9A PSDA

229

01 9A PSDT

Q20A 1 00%R 184 22.26 387 72.31 566 104.07

Q20A i oo%x 21115 792.58 42624 1339.62 58719 1064.98

Q20A 1 00%XW 2706 306.89 6272 1409.53 34161 7450.52

Q20A 37%X 92866 2230.11 200355 3959.68 327124 12867.55

020A 37%XW 7906 408.88 8506 ---ý37.72 97616 5672.99

020A 60%X 161818 3329.09 361084 9034.18 429261 20668.15

020A 60%XW 7242 777.86 16091 718.23 155156 7462.53

Q20A PSD 2331 497.50 53715 5678.67 91635 18660.45

Q20A PSDA

020A PSDT 314.00 40.62 33312.00 2807.87 50176.00 1796.30

Table C 1: The Average and Standard Deviation oj'All the Experiments'Run

130

