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ABSTRACT 

Biosilicification and silica nanoparticle formation occur in many modem terrestrial 

environments and they also played an important role in ancient geological settings. This thesis 

presents results from (i) field studies in Icelandic geothermal waters that aimed at quantifying 
the parameters that control the growth rate and texture of sinters and the diversity and 

silicification of associated microbial communities and (ii) lab studies that focussed on the 

kinetics and mechanisms of silica nanoparticle forination under conditions mimicking natural 

geothermal environments. 

The analysis of growth rates and textures of sinters from five geochemically very different 

Icelandic geothermal areas showed that the inorganic silica precipitation rate was strongly 
influenced by temperature, pH, ionic strength, and silica concentration. In addition, the presence 

of thick biofilms seemed to have aided the precipitation process by simply providing "sticky" 

surfaces. In turn, the structural and textural development of sinters was affected by the 

precipitation rate and mechanism (subaqueously and/or subaerially) as well as the presence and 

absence of microbial communities. As a result, porous, subaequeous sinters developed at sites 

with medium to high sinter growth rates and low microbial activity. Conversely, dense, 

heterogeneous sinters formed in geothermal waters characterized by low precipitation rates and 

extensive biofilms. With time these biofilms became fully silicified and well preserved within 

the sinter edifices. The diversity of microbial communities in hot spring environments appeared 
to be directly controlled by the physico-chernical conditions of the geothermal waters (i. e., T, 

pH, salinity and sinter growth rate) and the most dominant phylotypes were related to 4quificae, 

Deinococci and 7-Proteobacteria. 

The rates and mechanisms of the initial steps of silica polymerisation and silica nanoparticle 
formation were quantified in-situ and time-resolved using synchrotron-based small angle x-ray 

scattering (SAXS). The experiments were carried out in near neutral pH solutions with initial 

Si02 between 640 - 1600 ppm, ionic strength of 0.02 - 0.22 M, and added organics (glucose, 

glutarnic acid, xanthan gum). The polymerization reactions were induced either by neutralising 

a high pH solution or by rapid cooling of a supersaturated hot silica solution. From the analysis 

of the time-resolved SAXS data, a kinetic model for the nucleation and growth of silica 

nanoparticles was derived suggesting a3 stage process: (1) homogeneous nucleation of critical 

nuclei (I -2 run; depending on the concentration regimes), (2) 3-dimensional, surface-controlled 

particle growth following I" order reaction kinetics and (3) Ostwald ripening and particle 

aggregation. At the end of this 3-stage process, regardless of the tested silica concentration, 
ionic strength or added organics, the final particle diameter was about 8nm characterised by 
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open, polymeric (i. e., mass fractal) structures. The kinetics of particle growth were unaffected 
by the two different methods to induce silica polymerisation (pH-drop vs. T-drop) however, the 

growth processes proceeded substantially slower if silica polymerisation was induced by fast 

cooling as opposed to pH-drop. In contrast, the addition of organics did not affect the reaction 

rates. 

The nucleation and growth of silica nanoparticles under constant re-supply Of fresh silica 

solution (i. e., hot springs) was simulated using a flow-through geothermal simulator system. 
The effect of silica concentration ([Si02D, ionic strength (IS), temperature and organic additives 

on the size and polydispersity of silica nanoparticles was quantified. VVhile the applied increase 

in IS did not affect the size (30 - 35 nm) and polydispersity (± 9 nm) observed at 58*C, an 
increase in [Si02] notably enhanced silica polymerisation and also resulted in slightly smaller 

particle sizes. The biggest effect was observed with a decrease in temperature (58 to 33'C) or 
the addition of glucose: in both cases particle growth was restricted to sizes below 20 mn. 
Conversely, the addition of xanthan gum induced the development of a thin silica-rich film that 

enhanced silica aggregation. 
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1 INTRODUCTION 

This chapter summarizes the background and settings to the research and describes the 

motivation for this study. The importance of silica nanoparticle formation and biosilicification 

as it occurs in geothermal'environments is outlined and the main aims along with the specific 

research objectives and a brief summary of the experimental approach are presented. The 

chapter ends with an outline of the thesis. 

1.1 Background 

The study of extreme environments and the organisms that inhabit them, i. e. extremophiles, has 

made the search for extinct and extant life on the ancient Earth as well as on other planets more 

plausible. Amongst terrestrial extreme environments, geothermal hot springs and vents and the 

associated silica sinters are well known analogues for early Earth conditions and several studies 
have characterised the structure and textures of silica sinters as well as the microbial 

communities thriving in these systems. These studies have shown that abundant and diverse 

microbial biofilms develop within and along silica-precipitating geothennal waters. With time 

these biofilms become completely silicified and ultimately end up being fully incorporated 

within the sinter rock record. The role microorganisms play in this silicification process seems 

minor and to date there are no signs that microorganisms influence the processes and kinetics of 

silica precipitation. However, microbial abundance and diversity as well as the process of 

microbial silicification are strongly influenced by the physico-chernical conditions of the waters 
in hot spring environments (e. g., temperature, pH, water chemistry) and they in turn affect sinter 

structure and texture as well as growth rates within individual geothermal systems. Therefore, in 

order to gain a more complete knowledge of the mechanisms leading to the microbial 

silicification and thus the preservation and fossilization of microorganisms in geothermal 

environments, the overall process of biosilicification has to be analysed step by step and the 

impact of individual parameters on each step has to be assessed. Furthermore, the rates and 

mechanisms of nucleation, growth and aggregation of silica nanoparticles in silica saturated 

geothermal waters and in the absence or presence of microbial surfaces have to be quantified. 

Although silica precipitation aids microbial silicification and fossilization in geothermal 

environments, it is however of great disadvantage for geothermal power stations where heat 

extraction from fast cooling of high-temperature fluids supersaturated with silica can often lead 

to the formation of silica scales and thus blocking of the geothermal pipes. Therefore, a 

reduction or even a full inhibition of the silica scaling via appropriate handling procedures of 
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the geothermal 
* 
waters might increase the efficiency of high-temperature geothermal resources. 

Again, for this a full understanding of the mechanisms and kinetics of silica polymerisation and 

silica nanoparticle formation as well as the parameters controlling these processes is needed. 

Several experimental studies have focused on silica precipitation in inorganic natural solutions 

with the aim of understanding the natural formation of silica precipitates in geological settings. 
In most of these studies the main aim and approach was to quantify the changes in silica 

speciation in solution. So far, little effort has been made to quantify the formation of silica 

nanoparticles within the polymerising solution and to extract kinetic information on this process 
in the absence or presence of microorganisms and under conditions that min-& processes in 

geothermal settings. 

Thus, there is still a need for (a) a more quantitative understanding of the formation of modem 

and ancient siliceous, sinters (b) a more comprehensive quantification of the parameters that 
influence silica precipitation and microbial abundance and diversity in geothermal 

environments, and (c) a quantification of the mechanisms and kinetics of silica polymerisation. 

and silica nanoparticle precipitation. 

1.2 Research Objectives 

The main aim of this research project was to quantify, via field and laboratory experimental 

studies, the molecular level mechanisms and processes leading to biosilicification in geothermal 

environments. The specific research objectives focused on two main elements: 

To quantify how geothermal solution chemistry, pH, and temperature, as well as the 

presence of microbial communities, affect the growth rates and structures of sinters 
fbrn-ýing in various active geothermal systems in Iceland and vice versa to link the 

geochernical / hydrodynamic regime with the community diversity found in these 

ecosystems. 

To quantify the initial steps of silica polymerisation and silica nanoparticle 
formation in both inorganic and organic, low temperature solutions and to follow 

the same process under simulated hot spring conditions using microscopic, 

scattering and spectroscopic methods. 
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1.3 Experimental Approach 

Details of all experimental approaches are fully described in chapter 3. Here, just a brief 

overview is given. 

1.3.1 Field work 

Field work concentrated on quantifying the sinter growth rates at several different Icelandic 

geothermal systems exhibiting very different physico-chemical conditions. At each location, in- 

situ sinter growth rates were quantified based on the amount of newly formed material that 

deposited on glass slides which acted as precipitation substrates. In addition, the morphology, 

textures and structures of the precipitates along with the associated microbial assemblages were 

characterised using electron microscopic techniques. The water chemistry at each location was 

analysed for cations and anions as well as total and monomeric silica contents, while powder X- 

ray diffraction was used to determine the mineralogy of the in-situ grown sinters. Finally, the 

diversity of the microbial assemblages was analysed and quantified using several molecular 

microbiology techniques. 

1.3.2 Laboratory studies 

For the laboratory studies, various flow-through systems, mimicking processes in active 

geothermal systems were developed. This permitted the quantification of the silica precipitation 
in both inorganic and biogenic systems. Several studies aimed at elucidating the initial steps of 

nucleation and growth of silica nanoparticles were carried out and the reactions were followed 

by a combination of solution and solid particle analyses. The nucleation and growth of the 

precipitating silica nanoparticles were monitored in-situ and in realtime using synchrotron- 
based Small Angle X-ray Scattering (SAXS) and conventional Dynamic Light Scattering 

(DLS). With both these methods, the changes in the size of growing silica nanoparticle could be 

followed from the very beginning of the reaction and at short time scales (seconds to minutes). 
These data were complemented by data from a suite of electron n-dcroscopic; techniques. The 

microscopic data helped verify the results obtained by SAXS and DLS by providing snap-shots 

of the particle sizes and shapes at specific time steps during the reaction. Furthermore, the 

monomeric and total silica content as well as the concentration of added organics (in the 
biogenic systems) throughout the reactions were monitored using chemical analyses combined 

with spectrophotometric methods. 



33 

1.4 Thesis outline 

This thesis consists of 9 chapters. Chapter 1 includes the introduction, background and the 

relevance of silica nanoparticle formation and biosilicification in geothermal environments 

whereas chapter 2 described the state of the art in our current knowledge. A detailed description 

of all methodologies and theoretical backgrounds used throughout the research are described in 

chapter 3. This is followed by four results chapters: Chapter 4 (Field Research - Part 1) 

describes the field study in Iceland and discusses the links between solution chemistry and 

sinter growth rates, sinter textures and structures as well the effects of microbial abundance on 

sinter growth. Chapter 5 (Field Research - Part 2) describes the molecular diversity of the 

mesophilic and thermophilic microbial communities associated with the various geothermal 

springs in Iceland. Chapters 6 to 8 describe the laboratory experiments designed to quantify the 

initial steps of the nucleation and growth of silica nanoparticles under various conditions using 
three different experimental set-ups. Finally, results from the entire thesis are discussed and 

surnmarised in chapter 9. 
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2 LITERATURE REVIEW 

'17his chapter summarizes the literature related to biosilicification in hot spring environments and 

also provides an introduction into the literature on the mechanisms and kinetics of silica 

precipitation. The chapter is divided into two sections: 

The chemistry of silica; detailing the significance of silica in natural systems as well 

as the mechanisms and kinetics of silica polymerisation and silica nanoparticle 
fonnation in natural envirorunents. 

Silicification processes in geothermal areas; describing the process of sinter 
formation as well as the diversity of microbial communities in hot spring 

environments and detailing the interaction processes between microorganisms and 

silica during biosilicification. 

2.1 The chemistry of silica 

2.1.1 Silica in natural systems 

Silicon (Si) is one of the most abundant elements in the Earth's crust, second only to oxygen. 

Due to its insoluble nature most of this silicon is found in rocks (as Si02(,, )) and, is thus not 

available to organisms. When silicon is in solution it is usually present in the form of 

monosilicic acid (dissolved silica, 114SiO4(,, q)) comprising a silicon atom tetrahedrally 

coordinated to 4 hydroxyl groups. In aqueous solutions, as long as the silica concentration is 

below the equilibrium concentrations for amorphous hydrated silica (-110-120ppm at 25'C; 

Gunnarsson and Arnorsson, 2000) monosilicic acid remains stable in solution. The 

concentration of dissolved silica varies significantly between different natural environments 

(e. g., freshwater, seawater, hot springs) and is mostly determined by physico-chen-dcal 

parameters including T, pH and salinity but also by processes such as water-rock interactions 

(mainly in geothermal areas) or the growth of diatoms and radiolarians (in marine settings). As 

a result, the concentration of dissolved silica in natural waters can be as low as 100ppb 

(seawater; Treguer et al., 1995) or as high as 1000ppm (geothen-nal deep waters at 300'C; 

Am6rsson et al., 1983b or surface effluents < 100*C, Mountain et al., 2003). 

In geothermal environments when deep, hot and silica-rich fluids reach the surface, the 

immediate temperature and pressure drop will cause the solution to be highly supersaturated 
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with silica. At this point this will lead to the polymerisation of silica monomers due to a sudden 

surpassing of the equilibrium concentration, i. e., a drastic change in silica solubility. This in turn 

will result in the precipitation of silica nanoparticles that adhere/aggregate onto any substrate 

provided by the hot spring forming soft hydrated deposits which over time will transform into 

hard and compact sinters (a chemical, mainly siliceous sedimentary rock deposited by mineral 

springs, Fig. 2.1). 
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Figure 2.1: A) Teflon tray holding 20 glass slides covered in soft, white-orange precipitate 

(placed within the wastewater at Wairakei Terraces, Taupo, NZ, for 2 months) and B) dense 

compact sinter formed by the Pohutu Geyser, Whakarewarewa, Rotorua, NZ. In both 

pictures, the various colourations of the sinter deposits indicate the presence of diverse 

microbial biofilms. 

2.1.2 Process of silica polymerisation and silica nanoparticle formation 

Overview 

Silica polymerisation and silica nanoparticle fori-nation occur in diverse natural environments 

(e. g., brines, hot springs) and are crucial to the understanding of various geological and 

industrial processes (e. g., biosilicification, biomineralisation, silica diagenesis, silica sot 

fori-nation). Several studies have focused on these processes with the aim to elucidate the exact 

mechanisms and kinetics behind silica polymerisation and the concomitant nucleation and 

growth of silica nanoparticle (e. g., Her, 1979; Rothbaurri and Rhode, 1979; lcopini et al., 2005). 

Overall, it is widely accepted that these processes are governed by three stages where the 

nucleation period of a silica nanosphere is followed by particle growth and particle 
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coarsening/aggregation. The initial step of silica polymerisation occurs via the coalescence of 

monosilicic acid molecules and the expulsion of water: 

H4SIO4 + H4SiO4 ý-ý (HO)3Si -0-Si(OH)3 + H, O (Eq. 2.1) 

Further polymerisation leads to the formation of trimers, tetramers etc. to cyclic oligorners and 

eventually three-dimensional internally condensed nanospherical polymers (Fig. 2.2) which can 

also be described as (SI02*xH20), 
- 

II 

monomers 
H4S'04(aq) 

f e" 

monomers, precipitate 
dimers, trimers, 
colloids 

Figure 2.2: The process of silica polymerisation where silica monomers polymerise via dimers, 

trimers etc. to internally condensed silica nanoparticles that in turn further condense to large 

aggregates (blue spheres represent Si atoms and red spheres represent OH-groups). 

During the second stage this nucleus (which is believed to be highly hydrated and to have a 
diameter of approximately 1-2nm; Iler, 1979) then grows by further accretion of monomers to 

trimers or larger oligomers (Perry and Keeling-Tucker, 2000). The last stage is known as 

coarsening or Ostwald ripening where larger particles grow at the expense of smaller ones 

which eventually dissolve. Particle coarsening will set in when the concentration of monosilicic 

acid approaches the solubility level and theoretically, the end of this three-stage process is 

reached when only clusters of particles remain in equilibrium with the monomeric solution 
(Madras and McCoy, 2002). However, in most natural cases the nanoparticles are not stable 

within the polymerising solution and they will start to aggregate before completion of the 

coarsening process (e. g., Iler, 1979; Perry, 2003; Benning et al., 2004 a, b and 2005; lcopini et 

al., 2005). Also, due to constant re-supply of silica within geothennal systems nucleation and 

growth will be a continuous process. 

Nucleation mechanisms 

Nucleation of a new phase (i. e., critical nucleus) can occur when the overall free energy of the 

system is at its lowest. If nucleation is initiated at nucleation sites (i. e., surfaces, suspended 
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particles, or bubbles) the process is called heterogeneous nucleation. During this process, some 

energy is released by the partial destruction of the previous surface allowing the new phase to 

form without the need of supersaturation. However, if nucleation occurs randon-dy and 

spontaneously without the use of surfaces, it is called homogeneous. For this, the solution needs 

to be supersaturated with respect to the new forming phase. 

For homogeneous nucleation, the radius of the critical nucleus, Ro, in a supersaturated solution 

can be expressed using the Gibbs-Kelvin equation (Gibbs, 1961): 

RO=2V. alR, Tln(S+I) (Eq. 2.2) 

where V. is the molar volume, a is the interfacial surface energy, R,, the gas constant, and S is 

the supersaturation defined as S= (C - C, ) / C, with C being the actual concentration and C, 

the solubility. 

In the case of silica, a supersaturated solution as used in laboratory studies may undergo 
homogeneous nucleation from solution when care is taken to avoid impurities (e. g., colloids 

with large receptive surface areas). In most natural waters, however, where a variety of surfaces 
(e. g., colloids, rocks, microorganisms, plants) are present, nucleation will occur both in solution 
but also on any available surface (i. e., both homogeneous and heterogeneous processes). 
Therefore, depending on the natural system studied (e. g., brines, hot springs, seawater) the 

resulting silica phase will be highly variable from site to site. Microscopic observations of in- 

situ grown sinters (e. g., Mountain et al., 2003; Handley et al., 2005 and chapter 4 of this study) 
indicate that silica precipitates basically consist of mn sized silica nanoparticles and aggregates 

of up to 100 mn in size. From previous laboratory studies, the critical nucleus was estimated to 

be around I-2 nm (e. g., Iler, 1979). This value is significantly smaller than the - first 

nanoparticulate silica observed in field studies indicating that the bigger particles observed in 

natural samples will most probably represent either nanoparticles that have further grown 
(monomer/oligomer addition and/or Ostwald ripening) or larger aggregates of smaller nuclei. 

Growth mechanisms 

The classical growth theory assumes that the growth of the critical nucleus proceeds by atom- 
by-atom or molecule-by-molecule attachment. For this, the molecule diffuses to the particle 

surface where it will attach itself to a suitable growth site. This theory was originally developed 

for the growth on substrates but has also been shown to fit data obtained for the growth of 

nanoparticles (e. g., Matsoukas and Gulari, 1989; Andreassen, 2005; Zhai et al., 2006). 

LEEDS UNIVERSITY LIBRARY 
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An alternative growth model is Ostwald ripening or coarsening (OR), which was first observed 
by Ostwald (190 1). OR is essentially a mass transfer process where the larger particles grow at 
the expense of the smaller, less stable particles, which redissolve into the polymerising solution. 
The driving force for this coarsening process is the reduction of total surface free energy 

resulting in a decrease in number of particles per unit volume and an increase in mean particle 

size (Fig. 2.3). Furthermore, the shape of the size distribution is also affected and with 
increasing particle coarsening, the skewness of the particle size distribution will get more and 

more negative (Fig. 2.3; Nielsen, 1964 and references therein). 

t, 

I 

F -. + 

Figure 2.3: Time evolution of the particle size distribution during Ostwald ripening. Note that 

N(r) is the number of particles with mean radius, r. Besides the shift of the mean radius (r) to 

higher values, the distribution tends to broaden and also changes its skewness: its maximum 

moves to the right hand side of the mean radius, i. e., it has a negative skewness (adapted from 

Eberl, 1998). 

Wagner (1961) and Lifshitz and Slyozov (1961) independently derived theoretical expressions 
for this process which are referred to as the LSW theory. Since then, several papers have 

analysed this process in more detail and have extended the LSW theory (e. g., Voorhees and 
Glicksman, 1984; Voorhees, 1985; Tokuyama et al., 1986; Yao et al., 1993; Madras and 
McCoy, 2001,2002 and references therein). OR has been suggested as a suitable growth 

mechanisms for many systems, including crystallisation of metal alloys (e. g., Hardy and 
Voorhees, 1988; Lu, 1996), crystal growth in solution (e. g., Solomatov and Stevenson, 1993; 

Wong et al., 1998) or silica sols (e. g., Wijnen et al., 1991 and references therein). Despite this, it 

is quite difficult to fit the OR model to data from the growth of nanoparticles thus suggesting 
that Ostwald ripening may not occur in that many systems. 'This may be a consequence of the 
dependency of the process on the saturation state of the solution as this will determine the rate at 

which critical nuclei form and grow. If the solution is highly supersaturated, a lot of small 

nuclei will form instantaneously and before these nuclei can grow, the solution will have 
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reached the equilibrium concentration, i. e., the end of the reaction. However, if nucleation 

proceeds very slowly (e. g., due to less saturated conditions) fewer particles nucleate and these 

have time to coarsen as supersaturation slowly decreases. 

Aggregation mechanisms 

Concomitant with, and following particle growth and coarsening, particles tend to aggregate as 

a result of inter-particle forces. This process is essentially unavoidable and thus frequently 

encountered in natural environments. The formation of colloidal aggregates is random, ' resulting 
in different aggregate sizes. In general, aggregation depends on the repulsive forces between 

particles and thus the repulsive energy barrier between the two approaching particles. If this 

barrier is too high to be overcome, particles will not stick to each other and are thus stable 

within the solution. However, if this barrier is lowered particles will be able to aggregate. The 

two main models that are used to describe the aggregation of monodisperse colloids are 
difftision-limited colloid aggregation (DLCA) and reaction-limited colloid aggregation (RLCA). 

If the aggregation process is only limited by the movement of two polymer units toward each 

other prior to encounter and formation of a cluster, aggregation is difftision-limited. In such 

reactions, monomers or oligomers collide and combine instantaneously, producing a relatively 

porous aggregate. For the formation of critical nuclei of silica, the DLCA process has been 

confirmed experimentally (e. g., Beelen et al., 1989; Martin et al., 1990; Lin et al., 1990; Pontoni 

et al., 2002; Benning et al., 2005; Benning and Waychunas, 2008). However, if the aggregation 

rate is limited by the probability of these collisions to overcome the repulsive barrier (termed 

sticking probability; Everett, 1988; Gedde, 1995) the process is reaction-limited. Therefore, 

usually RLCA is much slower than DLCA as in RLCA only a small fraction of all collisions are 

successful whereas in DLCA every collision will lead to the fonnation of a new aggregate. For 

silica, the RLCA process occurs in reactions with organics (i. e., alkoxide-driven St6ber process) 

and results in a more compact aggregate structure during slow condensation (Martin, 1987; Lin 

et al., 1990). It needs to be not ed that for silica nanoparticles, aggregation is an irreversible 

process and the formed clusters/aggregates will continue to diffuse, collide and aggregate to 

form even larger and more complex structures (Lin et al., 1990). 

To describe the structure and complexity of the formed aggregates, a fractal geometry concept 
has been introduced (Pfeifer and Obert, 1989; Lin et al., 1990). In this concept, the various 

phases that form during the process of nucleation, growth and aggregation are described by 

fractal objects with a fractal dimension Df. The fractal dimension, Df, usually lies between 1.4 

and 3 and is related to the number of primary particles (A) by a power law N-R DI where Rf is f 
the radius of the aggregate spatial dimension. 
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For silica, the relationship between aggregation mechanisms and fractal dimension has been 

investigated by only a few organically controlled silica nanoparticle formation studies (e. g., 
Martin et al., 1990; Lin et al., 1990). It has been shown that for DLCA, Df = 1.7 - 1.8 

(determined experimentally by light and X-ray scattering methods) whereas for RLCA, Df was 
found to vary between 2.1 and 2.2 (Martin, 1990; Lin et al., 1990). This indicates that these 

fractal dimensions can be associated with a kinetic process: objects that form during fast 

aggregation (DLCA) have low fractal dimensions whereas slow aggregation (RLCA) produces 

objects with high fractal dimensions thus exhibiting a more compact aggregate structure. 

These results were supported by Benning et al. (2004b) who derived aggregation rates and 

mechanisms from silicification experiments in the presence of cyanobacterial cells. They did not 
determine the fractal dimensions directly from their experiments but based on theoretical 

calculations (after Hulbert, 1969 and Gedde, 1995), Benning et al. (2004b) were able to show 

that the nucleation, growth and aggregation of silica nanoparticles on cynanobacterial surfaces 
is governed by a2 stage process. The initial phase where the formation of new hydrated 

polysaccharides polymers leads to the increase in thickness of the exopolymeric polysaccharide 

sheath and where silica nanoparticles nucleate and grow was dominated by a fast, diffusion- 

limited process (n - Df, n of 1.8 and 2.2). This was then followed by a slower, reaction-limited 

process (n of 3.4 and 3.8) where silica nanoparticles accumulate on cyanobacterial sheaths 
(Benning and Waychunas, 2008). 

2.1.3 Factors goveming silica polymerisation and silica nanoparticle fonnation 

To induce extensive silica polymerisation, a pH around 6 to 9 is needed (Fig. 2.4). Minimum 

polymerisation rates are found at pH below 3, while above pH 9, the solubility of amorphous 

silica increases rapidly, thus also reducing the extent to which polyinerisation takes place (Fig. 

2.4, e. g., Alexander et al., 1954; Her, 1979; Chan et al., 1989; Gunnarsson and Am6rsson, 

2003). 
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Figure 2.4: Silica solubility as a function of pH (Alexander et al., 1954). 
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Figure 2.5: Solubility of amorphous silica as a function of temperature (A) in pure solutions 

and (B) in solutions with added NaCl (data from Chen and Marshall, 1982). 

Next to solution pH, other factors like temperature, ionic strength, and silica concentration 

influence the degree of silica saturation and thus the kinetics of silica polymerisation (e. g., 

Moulik and Mullick, 1966; Iler, 1979; Crerar et al., 1981; Rothbaurn and Wilson, 1977; 

Rothbaum and Rhode, 1979; Makrides et al., 1980; Weres et al., 1981; Icopini et al., 2005, 

Conrad et al., 2007). Despite some discrepancy between reported solubility data, the solubility 

of amorphous silica is enhanced with increasing temperature (Fig. 2.5A) which in turn reduces 

the rates of silica polymerisation and precipitation (Gunnarsson and Arn6rsson, 2003). In Figure 

2.513 the effects of moderate to high salt concentrations (i. e., ionic strength) on amorphous silica 

solubility are shown ("salt-effect"). With increasing salt concentration, the silica solubility 

decreases and the polymerisation rate is thus enhanced (Fig. 2.513; Marshall and Warakomski, 

1980; Marshall and Chen, 1982). In addition, the "salt effect" is more pronounced at higher 

temperatures. However, the degree of silica saturation (i. e., silica polymerisation) mainly 
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depends on the concentration of dissolved silica within the studied water. In the case of 

geothermal systems, the dissolved silica concentration within the ascending geothermal fluid 

(Fig. 2.4 and 2.5) is controlled by chalcedony and quartz equilibrium in deep aquifer geothermal 

waters below and above 1801C (Am6rsson, 1975). 

Overall, an induction period can precede the polyrnerisation reaction during which little or no 

silica polyrnerisation takes place. The length of this induction period is controlled by the same 
factors that detennine silica polymerisation (i. e., T, pH, IS and silica concentration) and it is 

lowered by an increasing degree of supersaturation. (e. g., White et al., 1956; Her, 1979; 

Rothbaurn and Rhode, 1979; Gunnarsson and Am6rsson, 2003; Icopini et al., 2005, Conrad et 

al., 2007). 

2.1.4 Kinetic models proposed for silica polymerisation / silica nanoparticle formation. 

In the last few decades a range of reaction kinetic models have been suggested for silica 

polymerisation with reaction orders ranging between I and 5 (Table 2.1). Most of these studies 
followed the changes in monosilicic acid and inferred a rate of silica nanoparticle formation 

from these results. Also note that the time length chosen for monitoring the decrease in 

monosilicic acid varied significantly between the mentioned studies (i. e., 1.5 - 3000 hours; 

Table 2.1). 

Early studies by Alexander (1954), Goto (1956) and Okamoto et al. (1957) indicated that the 

reaction order was dependent on the solution pH, with a 2nd order rate dependence for silica 

condensation between pH 3-7 and a third order rate dependence for pH >7 and pH <3 (Table 

2.1). These results agreed with observations made by Kitahara (1960). In contrast, Baumann 

(1959) proposed that during silica polymerisation the reaction order varied between 1 and 5 as a 
function of both silica concentration and pH. 

Most of these reaction orders were determined by fitting the time-dependent depletion of 

monosilicic acid (in the reacting solution) to the rate equation first used by Goto (195 6): 

-dCldt=k(C-C, )" (Eq. 2.3) 

where k is the rate constant, C the concentration of monosilicic acid, Cs the solubility of 

amorphous silica at a given temperature and n, the reaction order. 
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Table 2.1: Summary of reported experimentally derived kinetic models for the decrease in 

monosilicic acid during the process of silica polymerisation. 

max. 
Si02 reaction 'Reaction 

Study pH T (*C) (Ppm) time (h) order, n 

Alexander 3 for pH<3.2 
(1954) 1-6 1.9 6000 170 2 for pH>3.2 

Goto (1956), 
Okamoto et aL (1957) 7-10 22.3 200-900 144 3 

Baumann 
(1959) 0.5-9 30 400-4000 71 to 5 

Kitahara 2 for pH<7.5 
(1960) 3-10 0-100 500-800 53 for pH>7.5 

Bishop and Bear 
(1972) 8.5 25-45 300 200 2 

Rothbaurn and Wilson 
(1977) 7.8-8.7 50-120 500-1000 1000 5 to 8 

Rothbaurn and Rhode 
(1979) 7-8 5-180 300-1300 1200 4 

Markrides et al. 
(1977,1980) 4.5-6.5 75-105 700-1200 22 3o 

2 Peck and Axtmann 
(1979) 4.5-8.5 25-95 400-1000 1 
4 -'Weres et al. I for S>S, 
(1981) 2.5-8 50-100 500-1200 1.5 5 for S<St 

Crerar et al. 
(1981) 7 25 1000 22 1 

lcopini et al. (2005), 
Conrad et al. (2007) 3-11 25 250-1250 3000 4 

'Reported rate laws were derived via the equation -dC I dt - k(C-Cr following the method described by Goto (1956). 
2 Peck and Axtmann (1979) analysed experiments reported b y Makrides et al. (1980) and Rothbaum and Wilson (1977). 
3Makrides (1977,1980) postulated that particle growth preceeding the induction and nucleation phase was linear with time. 
4Weres et al. (1981) used the same model as proposed by Makrides et al. (1977.1980) and Peck and Axtmann (1979). 
5Weres et al. (1981) proposed ae order rate law up to a certain silica concentration. S, (unknown), and a 1" order rate > St. 

More recent studies (Peck and Axtrnann, 1979; Crerar et al., 198 1; Rothbaurn and Rhode, 1979; 

Weres et al., 1981; lcopini et al., 2005, Conrad et al., 2007) have successfully described the 

complete polymerisation process with a single kinetic model (i. e., with no variation in reaction 

order with p1l), yet the results of these studies disagree on the order of the reaction (Table 2.1). 

Peck and Axtmann (1979) proposed a first order reaction with respect to monosilicic acid 

concentration and a dependency on the total surface area of the growing particles. Furthermore, 

they postulated that towards the later stages of silica polymerisation, the reaction may be limited 
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by monomer diffusion to the particle surface. Crerar et al. (1981) supported these findings but 

indicated that the end of the reaction was not diff-usion-limited as proposed by Peck and 
Axtmann (1979) and instead was characterised by ripening. Interestingly, Rimstidt and Bames 

(1980) have successfully employed a first order reaction model to both silica precipitation as 

well as silica dissolution. 

Other studies postulated reaction orders higher than I (Table 2.1). Rothbaurn and Rhode (1979) 

investigated the effect of temperatures (between 5 and 180'C) and pH (7 to 8) on the kinetics of 

silica polymerisation and showed that, after an initial induction time, the maximum reaction rate 
had a fourth order dependence relative to the normalised monosilicic acid concentration. More 

recently, Icopini et al. (2005) and Conrad et al. (2007) reported a fourth order decrease of 

monosilicic acid over time (Table 2.1) and showed that the rate constant was linearly dependent 

on solution pH. 

The plethora of reported reaction models for the kinetics and mechanisms of silica 

polymerisation demonstrates that the polyinerisation reaction maybe too complex to be 

described by a single equation. It is also possible that different mechanisms of polymerisation / 

silica nanoparticle growth operate under different physico-chemical conditions and time scales 

which can be ftirther complicated by the occurrence of an induction period. Therefore, in order 
to obtain a full understanding of this process, a molecular approach that follows the changes in 

monosilicic acid concentration combined with the quantification of the forming silica 

nanoparticles is needed. 

2.1.5 Organic-templated silica polymerisation and nanoparticle fonnation for industrial 

applications 

The formation of silica nanoparticles is also important in industrial processes. For example, 

applications where the specific structural properties of silica nanoparticles (e. g., swelling 

capacity, strength, durability, thermal stability) make them highly desirable nanomaterials such 

as computer, biotechnology, catalysis and chromatography. As a result, the synthesis of highly 

monodisperse, spherical and compact silica particles (Fig. 2.6) through techniques such as the 

St6ber method (St6ber et al., 1968) is well established. The St6ber method is based on the 
hydrolysis and condensation of tetraalkoxysilane (TEOS) in alcoholic solutions (e. g., ethanol, 

methanol) and under basic conditions (ammonia). 
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Figure 2.6: Highly monodisperse and spherical silica nanoparticles synthesised during the 

current study using the St6ber method. 'FFoS: 1120: NH3 ratio for A) 0.1 :3: 0.5 M and for 11) 

0.1 : 20 : 0.5 M. 

The mechanisms and kinetics underlying these processes have been the subject of extensive 
laboratory invest igations. Multiple techniques such as Small Angle X-Ray Scattering (SAXS), 

Dynamic and Static Light Scattering (DLS, SLS), 2"Si NMR, Raman spectroscopy and 

Transmission Ficctron Microscopy (e. g., Bogush et al., 1988; Matsoukas and Gularl, 1988; 

Moreira et al., 1991; van Blaaderen et al., 1992; Bailey and Mecartney, 1992; Boukarl et al., 

1997,2000; Pontorn ct al., 2002, Green et al., 2003a, b) have been applied to derive models that 

describe tile Iorniation of alkoxide based silica particles and their growth under a variety of' 

reactants (e. g., silicon alkoxidcs and water) and catalysts (e. g., aninionia) concentrations. 

Despite the plethora of research for industrial applications, the Stoeber method is not 

representative of silica nanoparticle formation in natural environments and the derived models 

are not transferable. Nevertheless, it is worth noting that the fOrniation of silica sols via the 

alkoxidc route and the changes in properties of' the silica nanoparticles themselves have been 

studied using in-sint and tinie-resolved methods similar to those that were applied in the present 

study. Therefore, these alkoxide studies are very useful in terms of' data processing and 

interpretation (specifically for SAXS data) and will thus be important for data analysis in 

chapter 6 and 7. In contrast, most studies of inorganic silica polymerisation and riatioparticle 

formation (see previous section 2.1.4) f'Ollowed the polyinerisation processes via the changes in 

solution cliernistry and did not quantify the nucleation and growth ofthe silica nanoparticles. 
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2.2 Silicification processes in geothennal areas 

2.2.1 Chemical composition of hot spring waters 

Most geothermal systems are the result of infiltration of meteoric fluids into the Earth's crust, 
heating of those fluids up to T> 300'C, and consequent buoyant upflow. The heat engines for 

these systems in most areas of the world are considered to be igneous intrusions associated with 

active or very recent volcanic activity. The geothermal fluids discharged at the surface therefore 

may contain components of surface water (including rainwater, lake and river water, and 

shallow groundwater), deeply penetrating groundwaters and seawater (in the vicinity of the 

coast), metamorphic and also magmatic waters. Due to the interactions processes between the 

circulating fluids and the enclosing wall rocks (in the subsurface), the chemistry of the effluent 

waters can differ enormously between hot springs and are generally char-acterised by high 

amounts Of Si02 and variable concentrations of Na+, W, Li+, Ca2+, A13% Fe2+13% M 2+, AS3-, Cl-, 6' 
HC03- and 112S- Similarly, the wide varieties in circulating fluids and wall rock composition 

also lead to large differences in the effluent fluid pH, which can displays highly acidic to 

alkaline values (with extremes of pH 2-3 and > 11 having been measured at e. g., Rotokawa, 

New Zealand and The Cedars, N-California, respectively). Overall, acidic spring waters are 

predominantly the result of abiotic oxidation of H2S and / or S02 that move upward with the 

geothermal steam and by mixing with the shallow groundwater. In contrast, alkaline waters 

mainly result from quickly ascending deep fluids which exhibit H2S Separation and loss Of C02 

during boiling / evaporation. 

2.2.2 Silica precipitation in geothermal waters 

In the case of silica the first phase which precipitates from a supersaturated silica solution is 

opal-A (Si02*nH20), a non-stoichiometric inorganic polymer made up of a mixture Of Si02 and 

H20 units in various ratios. The water content of opal-A can be between 1-15% (e. g., 

Krauskopf, 1956; Segnit ct al., 1965; Huang and Vogler, 1972; Jones and Renault, 2004) and 

this water is either bound as network water or as liquid water in interstices (e. g., Langer and 

Florke, 1974; Knauth and Epstein, 1982). The majority of siliceous sinter forming within 

geothermal hot springs in New Zealand, Iceland or Yellowstone (USA) are composed of opal- 

A. However, opal-A is an unstable, hydrous mineral that will transform to moganite, 

christobalite or opal-CT and eventually to chalcedony and quartz. These transfonnations are 
favoured by the passage of time, high-temperature and high-pressure conditions and/or alkaline 

pH-conditions (e. g., Williams et al., 1985; Fournier, 1985; Herdianita et al., 2000; Lynne et al. 
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2006). They involve loss of water, repeated dissolution-precipitation, replacement and 

recrystallisation reactions which generally lead to an increase in particle density and an overall 

reduction in porosity (e. g., Her, 1979; Fournier, 1985, Herdianita et al., 2000). 

The precipitation of opal-A and the formation of silica sinters requires that the rising fluids are 

supersaturated with respect to amorphous silica, a steady supply of solute that carTies dissolved 

silica and the presence of suitable nucleation sites. In hot spring pools where high silica 

supersaturation prevails, the precipitation of amorphous silica (opal-A) will occur via silica 

polymerisation, which will lead to the precipitation of nanoparticulate amorphous silica in the 

aqueous phase (homogeneous nucleation) as well as on any substrate present in the pool basins 

(heterogeneous nucleation on microbial mats, plants, trees, etc. ). The rate of amorphous silica 
deposition is invariably linked to the rate of silica polymerisation, and thus an increased rate of 

silica polymerisation will lead to an increased silica precipitation. Mechanisms triggering silica 

polymerisation and precipitation are either rapid cooling of geothermal fluids at ambient air 

temperatures, pressure drop, evaporative concentrations, rapid acidification of alkaline silica- 

supersaturated waters at fluid interfaces (change in pH), steam loss of a rising fluid or cation 

effect (Al in solution). From all these parameters influencing silica precipitation and 

polymerisation, cooling is believed to be the predominant abiotic process controlling the 

precipitation of sub-aqueous amorphous silica (Guidry and Chafetz, 2002). It has to be noted 

that many silica sinters encountered in thermal hot spring areas are often formed sub-aerially 
(above the air-water interface, AWI) and therefore other hydrodynamic processes including 

wave action, capillary action, diffusion and splash must also be invoked to fully explain their 

formation (e. g., Mountain et al., 2003; Handley et al., 2005). 

2.2.3 Microbial'communities within silica depositing hot springs 

In the past, the microbial diversity of natural environments has mainly depended on the ability 
to isolate into pure culture sample from the field. However, most organisms can not be 

"captured" in this way and it has been estimated that more than 99% of organisms seen 

microscopically can not be isolated by cultivable techniques (e. g., Amann et al. 1995, Pace, 

1997). Therefore, the diversity of many microbial ecosystems is now usually studied with 

molecular methods (e. g., analysis of small-subunit rRNA / rDNA by sequencing, denaturing 

gradient gel electrophoresis, restriction fragment polymorphism analysis, i. e., RFLP) for which 

only a gene sequence, not a functioning cell, is required to identify the organism in terms of its 

phylogenetic type. Several studies indicated that using molecular techniques the detected 

microbial diversity is 100 to 1000 times greater than that by cultivation alone (e. g., Hugenholtz 

et al., 1998; Pace, 1997; Skirnisdottir et al., 2000 and references therein). Furthermore, 
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sequencing of rRNA genes from the environment is a very powerful tool as it provides 
information on both the phylogenetic relationship and the population structure of the microbial 

community. 

Phylogenetic studies using 16S rRNA analysis combined with cultivation studies have shown 
that an abundant diversity of thermophilic microorganisms are inhabiting neutral to alkaline (pH 

7- 9), silica precipitating hot springs around the world (e. g., Japan, New Zealand, Iceland, 

Yellowstone National Park). The bacterial communities in these springs are dominated by 

organisms belonging to the order Aquificales (e. g., Reysenbach et al., 1994; Huber et al., 1998; 

Hugenholtz et al., 1998; Skirnisdottir et al., 2000; Hjorleifsdottir et al., 2001; Takacs et al., 
2001; Blank et al., 2002; Eder and Huber, 2002; Nakagawa and Fukui, 2002). Aquiflicales 

species are mainly obligatory chemolithotropic, aerobic organisms that belong to one of the 

earliest branching orders of the domain Bacteria. Recent cultivation of Aquificales species, i. e., 
Thertnocrinis ruber, (a pink filament isolated from Octopus Sping in Yellowstone National 

Park; Huber et al., 1998) and Sulfurihydrogenibium krisyanssoni (isolated from a terrestrial 
Icelandic hot spring; Flores et al., 2008) suggested that primary production in these ecosystems 
is by chemoautrotrophic hydrogen and sulfur oxidation. Other abundant organisms in these 

ecosystems include members of the genus Thermus (e. g., Brock and Freeze, 1969; Kristjansson 

and Alfredsson, 1983; Hudson et al., 1987; Kristjansson et al., 1994; Williams et al. 1995; 

Skirnisdottir et al., 2000; Reysenbach et al., 2000; Chung et al., 2000; Hjorleifsdottir et al., 
2001; Blank et al., 2002). Thermus species are chemoorganotrophic, aerobic bacteria using 

organic substrates for their growth and are ubiquitous to most hot springs with neutral to 

alkaline pH (max. pH - 9.5) and temperatures up to 85T (Alfredsson and Kristjansson, 1995). 

The most abundant Thermus species isolated from these environments include Thermus 

aquaticus (so far only isolated in hot springs in Yellowstone National Park, Brock and Freeze, 

1969), Thermusfilifionnis (so far only found in New Zealand, Hudson et al., 1987), Thermus 

scotoductus (Iceland, Kristjansson et al. 1994), Thermus brockianus (Yellowstone National 

Park, Williams et al. 1995), Thermus igniterra and Thermus antranikianii (Iceland, Chung et al. 
2000). Other organisms in these ecosystems include members of the Bacilli, the Nitrospira, the 
fermentative Thermotogales, and the sulphate-reducing Thernodesuffibbacterium group. Similar 

to Thennus, Bacilli and Nitrospira species are chemoorganothrophic, aerobic bacteria while 

representatives of the Thermotogales and Thennodesuy'obacterium are 'mostly anaerobic 
bacteria but can also use organic substrates for their growth (i. e., chemoorganotrophic). 
However, the phylogenetic analysis via sequencing also reveals many new and unknown species 
(e. g., new candidate division from Obsidian Pool, YNP; Blank et al., 2002 and reference 
therein) and unless new cultured representatives from these divisions can be found, a definitive 

placement of their root is not possible. 
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Compared to bacterial community studies, the diversity of archaeal species in high temperature 
hot springs has so far not been analysed as frequently. A reason for this may be that PCR 

amplification using archaeal-specific primers was not always successful (e. g., Graber et al., 
2001; Blank et al., 2002). Nevertheless, a few studies (e. g., Bams et al., 1994; Reysenbach et 

al., 2000; Skirnisdottir et al., 2000) were successful in detecting archaeal communities in 

geothermal ecosystems and they revealed the existence of a plethora of novel Archaea. 

Representatives of Korarchaeota, Thermofilum and uncultured Crenarchaeota are the most 

abundant archaeal species in these systems and these have been detected in several hot springs 
in Yellowstone National Park (e. g., Obsidian Pool, Sylvan Spring, Calcite Spring; Barns et al. 
1994; Reysenbach et al., 2000; Meyer-Dombard et al., 2005) as well as in Iceland (e. g., Hengill 

area, Skirnisdottir et al., 2000; Kvist et al., 2006). 

A few studies (e. g., Skirnisdottir et al., 2000; Fouke et al., 2003; Meyer-Dombard et al., 2005; 

Purcell et al., 2006) have tried to link the diversity of microbial communities with the physico- 

chemical conditions of the studied hot spring. They showed that the complexity of the metabolic 
framework and the microbial community structure correlate well with temperature and sulphide 

concentration but they also noted that other parýmeters including pH, availability of other 

energy sources and organic substrates have to be considered. These studies further demonstrated 

the high variations in physico-chemical conditions between hot springs and thus the need for 

more analogues studies to obtain a more in depth understanding of the parameters that control 

the biodiversity pattern in these ecosystems. 

2.2.4 Textures and structures of silica sinters, 

Several studies have reported on the close association of microorganisms with the formation of 

silica sinters from a variety of hot springs, including Yellowstone National Park, USA (e. g., 
Walter et al., 1972,1976; Ferris et al., 1986; Hinman and Lindstrom, 1996; Cady and Farmer, 

1996; Guidry and Chafetz, 2003; Lowe et al., 2001), Geysir and Krisuvik, Iceland (e. g., 
Schultze-Lam et al., 1995; Konhauser and Ferris, 1996), Kenya (e. g., Jones and Renaut, 1996), 

Otake geothermal power plant, Japan (e. g., Inagaki et al., 1997; Inagaki et al., 2003) and several 

sites in the Taupo Volcanic Zone, New Zealand (e. g., Renault et al., 1996; Jones et al., 1997, 

1998,2000; Mountain et al., 2001,2003; Handley et al., 2005). These studies also showed that 

the development of sinter textures is dependent on the relative rates of silica precipitation and 
biofilm growth, the mechanisms triggering precipitation as well as the type of microorganisms 
thriving within these systems. Therefore, depending on the hot spring's hydrodynamic and 

geochernical regime a series of different biofacies can be identified (e. g., spicules, columnar and 
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stratiform microstromatolites, oncoids and coccoid microbial mats; Jones et al., 1997,1998, 

2000,2003,2004). 

To date, only few studies (e. g., Mountain et al., 2003; Handley et al., 2005) have quantified the 

rate of sinter formation and linked the observations to the formed textures and structures as well 

as the geochernical / hydrodynamic regime of the studied waters. For example, during high 

silica growth rates (2: 2mg/slide/day; Handley et al., 2005) sinter formation can exceed biofilm 

growth and the fabric of sinters formed will be governed only by physico-chemical parameters 
(e. g., Mountain et al., 2003; Handley et al., 2005). The sinter textures that develop in the 

vicinity of the AWI, where evaporation and cooling processes dominate, are dense and mostly 
dominated by'fine granular silica layers. In contrast, in the submerged parts of the slides, 

porous-granular sinter deposits form due to the prolonged period of polymerisation. Conversely, 

at moderate to low deposition rates, extensive biofilms; can develop and sinter fabrics will be 

influenced by these microbial mats, as they provide the architectural framework upon and 

around which sinters will grow (e. g., Cady and Fanner, 1996; Mountain et al., 2003; Handley et 

al., 2005). Close to the AWI, spicular sinters and silica terraces (subaerially) form whereas 

porous-filamentous or flat, laminated silica crusts dominate the subaqueous parts of the slides. 
This has been observed previously by Mountain et al. (2003) and Handley et al. (2005) who 

characterized in-situ grown sinters from Champagne Pool, in the Waiotapu geothermal area, 
NZ. In the case where silica precipitation rates are lower than biofilm growth, extensive 

microbial mats will form along and within hot springs and continuous deposition of silica 

nanospheres onto their surfaces will eventually lead to complete microbial silicification and 

preservation within the sinter edifice (e. g., Walter et al., 1972; Ferris et al., 1986; Schultze-Lam 

et al., 1995; Cady and Farmer, 1996; Konhauser and Ferris, 1996; Jones et al., 1998; Konhauser 

et al., 2001; Mountain et al., 2003). 

2.2.5 Process of biosilicification 

Most studies related to biogenic silicification processes focus on the role of amorphous silica in 

the build-up of diatoms, radiolarians and sponges in the modem oceans (which are 

undersaturated with respect to silica). It is well-known that the amorphous silica in these 

organisms (particularly in size, shape and orientation) is controlled primarily by the templating 

functions of glycoproteins and polypeptides (e. g. silaffin and silicatein; Benning et al., 2005 and 

references therein). Furthermore, amorphous silica is also known to cycle through higher plants 
in which silica appears to protect the plants against pathogens and insects (Benning et al., 2005 

and references therein). However, this thesis focus solely on the silicification of microorganisms 
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in geothen-nal enviromnents and the following literature review will thus only discuss laboratory 

and field studies that analysed microbial silicification processes in such cnviromnents. 

Microbial cell wall properties and silicification process 

Most microorganisms have no known metabolic requirement for silica, and thus the 

silicification of microorganisms is mostly controlled by the physical nature of their surfaces. 
Several studies (e. g., Schultze-Lam et al., 1996; Fein et al., 1997; Cox et al., 1999, Yee et al., 
2004) have shown that the microbial surface exhibits a wide variety of different functional 

groups (i. e., carboxyl, hydroxyl, phosphate and an-dne) and that at neutral pH microbial surfaces 

are usually neutrally or negatively charged. Similarly, dissolved silica (H4Si04) is neutrally 

charged at - pH 7, while silica nanoParticles are negatively charged (Iler, 1979 and references 
therein). As a result silica has a very low affinity for the microbial surface. 

Phoenix et al. (2002) and Yee et al. (2004) showed that the sheath of Calothrix (cyanobacteria 

common in hot springs) is electrically neutral at pH 7, and that its surface consists 

predominantly of neutral sugars, along with smaller amounts of negatively-charged carboxyl 

groups and positively-charged amino groups, in approximately equal proportions. They 

suggested that the low reactivity of the exopolymeric sheath of Calothrix gives its surface 
hydrophobic characteristics facilitating their attachment to solid submerged substrates (i. e., 

siliceous sinters). In addition, the sheath's electroneutrality makes it less repulsive towards the 

polymeric silica fraction and colloidal silica in solution and these properties may actually aid in 

the silicification process. 

In an early attempt to describe the mechanism of silicification Leo and Barghoom (1976) 

suggested that monomeric or low molecular weight polymeric silica was bound to the microbial 

surface through hydrogen bonding. Heaney and Yates (1998) supported this idea, although their 

study indicated that it was not the monomeric silica that bound to the surface but that the 

polymeric/colloidal fractions (where hydroxyl groups are still exposed on the surface) were 

responsible for the immobilization of the silica from solution. These results were recently 

confirmed by Lalonde et al. (2005) who studied the silicification of thermophilic bacteria 

(Suffiurihydrogenibium azorense). They showed that silica adsorption is limited to silica 

nanoparticles, but also that the magnitude of silica adsorption, i. e., the degree of silicification, 

was dependent on its chemolithoautotrophic pathway; H2-oxidizing cultures removed small 

quantities of nanoparticulate silica, whereas S"-oxidizing cultures did not. 

Adhesion of silica nanoparticles onto the microbial cell wall may also occur via cation bridging. 

This process mainly applies for negative charged microbial surfaces (e. g., Bacillus subtilis) 
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which exhibit a much larger electrostatic repulsion towards polymeric silica than cyanobacteria 
like Calothrix (e. g., Yee et al., 2003). For such anionically-charged cell wall surfaces, 

silicification requires a cation bridge (e. g., Fe3', A13) in order to overcome the electrostatic 

charge repulsion between the organic ligands and silica species. Several studies (e. g., Fein et al., 
2002, Urrutia and Beveridge, 1994; Yokoyama et al., 2004; Yee et al., 2003; Phoenix et al., 
2003) have demonstrated that dissolved cations like Fe3+ and A13+ readily bind to the organic 
ligands that occur on the cell surface. Furthermore, Fein et al. (1997) showed that in 

undersaturated systems, bacteria pre-coated with Fe3+ and A13' hydroxides could act as 

templates for silica deposition and that virtually all of the monomeric silica was removed from 

solution. 

Phoenix et al. (2003) and Yee et al. (2003) did similar studies to Fein et al. (1997) but they used 

supersaturated solutions exhibiting a higher Si/Fe-ratio, which was more representative to those 

found in modem hot springs. In their experiments they measured the effects of iron bridging in 

mixed Fe-Si solutions but the Bacillus subtilis cells they used were not pre-coated with iron. 

Their results suggested that in natural hot spring systems, where the concentration of soluble 

silica far exceeds that of iron, the amount of iron immobilized onto the microbial mats is 

insignificant compared to the abiotic reactions of silica with Fe(OH)3 and thus, the vast majority 

of silica precipitated will occur without the aid of a cation bridge. 

Yokoyama et al. (2004) presented a method to distinguish between siliceous sinter formed 

purely inorganically or by cation-bridging on microbial surfaces. They showed that if 

aluminium ions embedded in siliceous sinter deposits are present as 4-coordinated Al, then the 

deposit was formed by inorganic reactions between monosilicic acid and Al ions. Al ions bound 

to the surface of microbes, however seem to be present as 6-coordinated Al and can thus be 

distinguished from pure inorganic precipitation. They also showed that the effect of cation- 
bridging was more pronounced further downstream the studied hot spring at lower temperature 

and where biofilms were more abundant. 

Yee et al. (2000) studied adsorption behaviour of Bacillus subtilis cells onto either corundum or 

quartz as a function of time, pH, ionic strength and biomass to mineral ratio. Their results 
indicated that bacterial-mineral adsorption is mainly driven by hydrophobicity, but that 

electrostatic interactions also play an important role. Furthermore, they showed that increasing 

ionic strength limited interaction between the bacterial and mineral surface and despite being 

oppositely charged, adsorption was reduced. 
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Microbial response to silica biomineralisation 

Batch silicification experiments with undersaturated silica solutions equilibrated with microbial 

cells (e. g., Fein et al., 2002, Yee et al., 2003) showed that monomeric silica immobilization by 

microbes is minimal and that the role microorganisms play in the silicification process may 
have been overestimated. However, these studies are not representative of a true silicification 

process taking place in natural hot spring systems, where a constant re-supply of aqueous silica 

guarantees supersaturated conditions and a continual polymerisation reaction controlled by 

various physico-chemical parameters. Recent studies (Phoenix et al., 2000, Benning et al., 
2004a, b) have demonstrated that cyanobacteria (Calothrix) repeatedly exposed to regularly 

refreshed, supersaturated polymerising silica solution can lead to extensive biomineralisation 

and that similar textures and structures to natural sinter deposits are formed. 

Benning et al. (2004a, b) used high resolution synchrotron radiation Fourier-transform infrared 

micro-spectroscopy (SR-FTIR) to study in-situ and in vivo, the effect of increasing silica load 

on cyanobacterial filaments. Their results suggested a three-step reaction, where in the first 

stage the sheath (exopolysaccharides, EPS) of the cyanobacteria thickens in response to 

incubation in a silica-supersaturated medium. This occurs in parallel with the 

thermodynamically driven polymerisation of the monosilicic acid and the formation of silica 

nanoparticles. In a second stage, the thick EPS acts as a template for the accumulation of 

amorphous silica nanoparticles on the cell surface (Benning et al., 2004a, b). During the last 

step, silica particles grow progressively by the continuous formation of inorganic silane bonds, 

and by the aggregation of the existing particles leading ultimately to the development of thick 

aggregates, and eventually full cyanobacterial encasing / fossilization. 

Similar, Lalonde et al. (2005) demonstrated that S. azorense (grown as a H2-oxidizer) produced 

a protein-rich biofilm when exposed to increasing silica concentrations and that this biofilm was 

rich in amino functional groups thus enhancing the adsorption of silica nanoparticles onto the 

surfaces of S. azorense. From this, they suggested that microbial silicification may lead to 

increased rates of sinter formation, but due to the observed restricted silicification to the biofilm 

matrix, speculated that the studied organism had a low preservation potential. 

Microbial viability during silica biomineralisation 

Microorganisms living in natural hot springs that are supersaturated with dissolved silica will 
invariably become silicified and fossilized (Fig. 2.7) and this process is unavoidable. However, 

the question whether microbes actually can survive the mineralization process and continue to 

function with a silica coating still remains unclear. 
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Figure 2.7: A) TEM photomicrograph of a naturally silicified microorganism (probably 

cyanobacteria) collected from the Strokkur hot spring, Iceland (from Phoenix, 2001). The 

bacterial cells (C) have acted as a nucleation site/surface for the precipitation of the 

amorphous silica spheres (arrow). Scale bar = 5gm. B) Fully silicified filaments on slides 

collected after 25 months from an outflow channel at Krafla Power Station in Iceland (this 

study). 

Previous studies (Schultze-Larn et al., 1995; Konliauser and Ferris, 1996) focussing on the 

silicification ofcyanobactcria suggested that if mineralization would occur inside the microbial 

cell this would initiate cell lysis by disrupting metabolic processes, whereas mineralization 

restricted to the microbial surface (i. e., cell wall, ITS sheath) may not be detrimental. However, 

as soon as the cell lyses, silicification will also proceed intracellularly. The decay of' filaincritous 

cyanobacteria starts quite rapidly, only a few days after cell death (Bartley, 1996). Thus, 

cyanobacterial trichornes and sheaths will only be preserved if silica mincralization is rapid and 

occurs while cells are still alive or shortly after their death (Jones ct al., 1998). It follows that 

the style of silicification of microbes in hot springs waters is a function of the rates of silica 

precipitation, secondary precipitation and organic matter decay. In addition, the availability of 

nucleation sites and the constant new delivery ofmonosilicic acid to the surface of microbes or 

nanoparticles (all controlled by tile degree of supersaturation in tile fluid; e. g., Ounnarsson and 

Arnorsson, 2000; Jones et al., 2001 ) will strongly influence the textures and preservation mode 

of' the siliciticd microbe in the sinter deposit. Ferns et al. (1988) proposed that iron-loaded 

bacterial cells may be better protected against cell wall degradation in the presence of inetal 

cations due to the inhibition of autolytic activity (cell walls degradation by the microbe's own 

lytic enzymes). As a result, preservation of intact cellular structures is better maintained if 
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microbes display a "metal coating" before they get silicified. These results were later confirmed 
by Urrutia and Beveridge (1994). 

Phoenix et al. (2000) applied autofluorescence analyses and measurements of the rate of 

photosynthesis to determine whether cyanobacterial cells (i. e., Calothiix) remained viable once 

silicified. They showed that intact, healthy cells exhibited only extracellular mineralisation (Fig. 

2.7A) and that mineralised cyanobacteria remained both intact and functioning while encrusted 
in an extensive (-5gm) crust. However, unhealthy and damaged cells were silicified also 
intracellularly (Phoenix et al., 2000) suggesting that sheaths can play a vital role for the microbe 

to survive in hot spring environments subjected to extensive silicification. This correlates well 

with other experimental work by Benning et al. (2004a, b) which showed that the sheath of 
Calothrix when exposed to silica rich media increase in thickness prior to silicification. 

Some studies (e. g., Merz, 1992; Verrecchia et al.,, 1995; Phoenix et al., 1999) argued that 
biomineralization (both calcite and silica) is restricted to the surface of healthy microbial cells 
due to metabolic processes (e. g., photosynthesis) of the microbial cell. In addition, Phoenix et 

al. (1999) showed that the sheath of certain cyanobacteria can act as a diffusion barrier for 

particles 2: 11 nm, thus inhibiting internal mineralization. 

Despite silicification being detrimental to the microbial cell, it has been shown (e. g., Phoenix et 

al. 2001 a, b) that prior to full silicification, the silica crusts can provide some advantages for 

microorganisms inhabiting hostile environments such as silica saturated hot springs. A thin 

layer of silica can protect microorganisms against high intensity light (UV light, Fig. 2.8; 

Phoenix, 2001; Phoenix et al, 2001) and predation and intrusion by other microorganisms but 

also prevent them from dehydration (the amorphous silica matrix is highly hydrated). Simply by 

acting as a viable site for mineral nucleation, microorganisms may passively allow the 
formation of their own siliceous shield. This process has also been proposed to have aided the 

survival of microorganisms in the silica-enriched shallow-water environments in the Archean 

era where high levels of UV radiation prevailed (Phoenix, 200 1; Phoenix et al, 200 1). 

Based on these findings, Phoenix et al. (2000) and Benning et al. (2005) developed a 

silicification model (Fig. 2.8) where the accumulation of silica nanoparticles is restricted to the 

outer surface of the sheath due to the impenetrability of the sheaths to larger particles. The 

model also indicates that the accumulating silica colloids will protect the microbial cell from 

damaging UV light, while the photosynthetically active radiation (PAR) can still penetrate 
through the layer to ensure the perpetuation of photosynthesis. 
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Figure 2.8: Silicification model illustrating the advantages of the microbial sheath (see text) to 

silicification (Benning et al., 2005). 

Finally, biosilicitication is also very important in the formation of siliccous microstromatolitcs 

as microbes act as nucleation and growth sites but also provide the growing microstrornatolite 

with structural integrity and thus longevity (Konliauser et al., 1999,2001 ). All these advantages 

arc quite similar to the function of the FPS sheath thus indicating that the sheath and the 

precipitated silica crust may work together to protect microorganisms within the hostile 

conditions prevalent in hot springs (Benning et al., 2005). 
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3 METHODOLOGY AND METHOD DESIGN 

This chapter details the methodologies and procedures used throughout the course of this study 

and is divided into two main sections: 

(i) Field sampling methods: 

a. Silicification and sampling protocol; describes on site pH, T, and flow rate 

measurements, collection of geothermal waters, and set-up of in-situ sinter growth 

experiments. 

b. Characterization of geothennal waters; details analyses carried out on collected 

geothermal waters and describes the geochernical modelling applied to evaluate the 

silica saturation state within each studied water. 

c. Characterization of in-situ grown sinters; sinter texture and structure were analysed 

using scanning electron microscopy (SEM) and sinter mineralogy was detennined 

with X-ray diffraction (XRD). 
I 

d. Molecular techniques; describes extraction of bacterial and archaeal DNA from 

sediments and the subsequent analyses to determine the microbial diversity. 

(ii) Laboratory methods 

a. Synthesis of silica nanoparticles; details analytical methods to prepare a 

supersaturated silica solution and describes the procedures to initiate silica. 

polymerisation. 

b. Experimental designs; experimental set-ups employed to monitor initial steps of 

nucleation and growth of silica nanoparticles from a supersaturated fluid. 

c. Analysis of aqueous solutions; spectrophotometric methods used to determine 

dissolved Si02 and carbohydrates. 

d. Optical characterisation of solid phases; details a suite of microscopic methods 

applied to image synthesised silica nanoparticles. 

e. Dynamic Light Scattering (DLS); describes the DLS theory and details the specifics 

of DLS measurements and data processing. 
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f Synchrotron-based Small Angle X-ray Scattering (SAXS); gives an introduction 

into synchrotron radiation and SAXS theory; details the station configuration used 

at ESRF (Grenoble, France) and SRS (Daresbury, UK); specifies the protocols used 
for data reduction and analysis and describes two kinetic models employed for the 

interpretation of the SAXS data. 

Many of the details described below are in part repeated in the results chapters in order for the 

chapters to be clearer and self-contained. 

3.1 Field sampling methods 

3.1.1 Silicification and sampling protocol. 

In September 2005 short- and long-term in-situ sinter growth experiments were set up in five 

geothermal areas in Iceland: Geysir, Hveragerdi, Reykjanes, Svartsengi and Krafla (see Fig. 

4.1). Prior to each silicification experiment, the temperature and pH of the geothermal waters 

were determined in-situ using a KT-thermocouple (±0.2) and a Hanna pH meter with a NIST pH 

electrode (±0.05, calibrated at temperature). The lateral water flow rates were determined at 

each site by measuring the time for a floating object (e. g., leaves, paper) to pass a certain 
distance (usually at least 2-7 m). Subsequently, 150 ml samples of spring or drain water were 
filtered through a sterile single-use 0.2 pm polycarbonate filter unit for cation (acidified on site 

with concentrated RN03, ratio 1: 50) and for anion (non-acidified) determination. The 

polycarbonate filter papers were stored in 15 ml tubes for later analysis of suspended 

particulates > 0.2 gin. Additionally, 50 ml were filtered through the 0.2 pm polycarbonate filter 

unit for monosilicic acid (acidified on site with concentrated HN03,1: 10 ratio) and total silica 
(concentrated NaOH added on site, 1: 10 ratio) analysis. All solution samples were stored in the 

fridge at -4*C. 

At each site a teflon tray holding 20 microscope glass slides (surfaces sterilised with 70% 

ethanol) was immersed into the geothermal water either within an outflow channel or close to a 

pool rim. Each tray contained four rows with five 25x75mm slides. They were placed in such a 

way that the top section of each slide (max. lcm) was partially exposed to air. Over a time 

period between 30 min and 25 months, usually sets of five slides were collected at specific time 

intervals and analysed. For each site, the relative time steps for the collection of slides were 

estimated from the visible amounts of sinter deposited within and along the outflow channels or 

pool rims. 
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At each sampling interval, immediately after removal from the trays, individual slides were 

transferred into sterile 50nil tubes and subsequently stored in the fridge at -40C. Three out of 
five collected slides (at each sampling step) were used to determine precipitation rates after 
drying in an oven at 60'C (to constant weight) and weighing. The difference in weight between 

sinter covered and uncovered slides provided an average sinter growth rate and standard 
deviation in kilograms of precipitate per year and per square meter. The remaining two slides 

were fixed in-situ (in the field) with filtered 2.5 % glutaraldehyde solutions and used for the 

SEM characterization of biological material. 

3.1.2 Characterization of geothennal waters 

For cation analysis, prior to analysis, acidified samples were diluted with deionised water 
(DIW) to yield element concentrations within the range of the quantification method. Total 

concentrations of Al, B, Ca, Fe, K, Li, Mg, Mn, Na and Sr were determined using Inductively 

Coupled Plasma Optical Emission Spectroscopy (ICP-OES, Thermo Jarell Ash IRIS 

spectrophotometer). The estimated error (2%) of the measurements was calculated as twice the 

standard deviation from certified standard solutions. 

For total anion content (i. e., Cl-, F, N03- and SO 4 2- ), filtered, non-acidified waters were also 
diluted and analysed by ion chromatography (IC) using a Dionex DX-600 ion chromatograph 

with an EDS50A UVD 170U detector, an lonpac AS16 column and KOH as eluent. The 

estimated error (4%) of the measurements was calculated as twice the standard deviation from 

the mean of 3 repeat measurements. 

Total and monomeric silica (i. e., monosilicic acid) were analysed with the spectrophotometric 

molybdate yellow method (Greenberg et al., 1985) which is described in more detail in section 
3.2.3. 

Geochemical modelling 

To calculate the saturation state of silica within each geothermal system studied, the major 

chemical constituents, temperature and pH of the geothermal waters were used as inputs for 

geochemical modelling using the geochernical code PHREEQC (version 2.13.3; Parkhurst and 
Appelo, 1999) and the wateq4 database (Ball and Norstrom, 1992) with the amorphous silica 
data updated using the values from Gunnarsson and Arn6rsson (2000). The saturation indices, 

SI = log (IAP/Kp), were determined for each geothermal system, with IAP being the ionic 

activity product and Kp the solubility product and where Sl>O represents supersaturation and 
SI<O undersaturation. 
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3.1.3 Characterization of in-situ grown sinters 

Upon return to the laboratory the glutaraldehyde fixed slides were washed once with a 

phosphate buffer (pH 7) and then continuously dehydrated using a series of ethanol exchange 

steps (30%, 50%, 70%, 90%, 100%). In addition, at Reykjanes and Svartsengi, the untreated 

sterile filters used for the water collection were analysed for particulates. 

Field Emission Gun (FEG) Scanning Electron Microscopy (SEM) 

For microscopic imaging and qualitative elemental analysis, slides or filters were dried and 

placed on a sticky carbon pad covering an aluminium stub, then coated with a3 nm platinum 
layer and analysed using a Field En-dssion Gun Scanning Electron Microscope (FEG-SEM, 

LEO 1530) equipped with an Oxford Instruments energy dispersive X-ray (EDX) detector and 
INCA software. Images were collected at 3W and a working distance of 4 nun, while for EDX 

analysis the working distance was increased to 8mm and the accelerating voltage to l5kV. More 

information on scanning electron microscopy is given in section 3.2.4. 

To determine the silica particle size distribution on the slides from Svartsengi and Reykjanes, 

high-resolution SEM photomicrographs were imported into CorelDraxNM and the diameter of 
individual silica colloids was measured by drawing an appropriately sized square around each of 

the particles and converting the width of the squares into real dimensions. For both sites, about 
140 nanoparticles each were measured and a mean particle diameter and the polydispersity (i. e., 

standard deviation) were calculated. 

. 
X-ray Diffraction (XRD) 

The mineralogical composition of the fresh precipitates that formed on the slides at each 

sampling site was analysed using X-ray powder diffraction (XRD). XRD is a non-destructive 

technique for textural and structural characterisation (e. g., crystal orientation, crystallinity, 

crystal defects) of crystalline materials. Diffraction occurs when penetrating radiation, i. e., X- 

rays, that interacts with a crystalline substance is scattered due to the orientation of the crystal 
lattice. Diffraction peaks are produced by constructive interference of a monochromatic beam 

scattered from each set of lattice planes at specific angles. The peak intensities are determined 

by the atomic arrangements within the lattice planes. Consequently, an XRD pattern can be 

looked upon as a fingerprint of the periodic atomic arrangements in a given material (Evans and 
Radosavljevi6-Evans, 2004). 
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About 200 mg of precipitate was carefully scraped off the unfixed glass slide, the materials were 
dried and ground to a fine powder and deposited on a silicon sample holder. Analyses were 

carried out with a Philips PWI050 diffractometer and scans were acquired from 5 to 70'20 at 
I'/min with a step size of 0.02' (total scan length of -1 hour) and operating conditions of 40kV 

and 30mA using CuKoc radiation. Data was analysed and compared to published data for 

standard minerals in the JCPDF files (International Center for Diffraction Dataý). 

3.1.4 Molecular techniques 

DNA extraction and PCR amplification 

DNA extractions were carried out from water-saturated sediments using the FastDNAOSPIN 

Kit for soils (Qbiogene; according to the manufacturer's instructions). This DNA kit is designed 

efficiently to isolate bacterial and archaeal as well as fungal, plant and animal genomic DNA 

from soil and other environmental samples. Samples were placed into sterile 2.0 n-A tubes 

containing a lysing matrix together with irregularly shaped garnet particles and a single ceramic 

sphere to break up hard samples such as bones or seeds. Following lysis, samples were 

centrifuged to pellet debris and the lysing matrix. The supernatant was purified using a silica- 
based gene cleaning procedure along with SPIN filters. The eluted DNA was used for 

polymerase chain reactions (PCR, Fig. 3.1) and the selective amplification of bacterial and 

archaeal 16S rDNA (small-subunit ribosomal Deoxyribonucleic Acid). 

PCR is a molecular genetic technique for making multiple copies of a DNA template (Fig. 

MA) and consists of three basic steps which are repeated several times (Fig. MB). First, the 

target genetic material must be denatured, i. e., the DNA helix must be unwound and separated 
by heating to 90-960C. The second step involves hybridization or annealing, in which the 

primers (known DNA sequences from the beginning and end of the gene of interest) bind to 

their complementary bases on the now single-stranded DNA (Fig. 3.1 B, Step 2). The third step 
is the synthesis of a complementary DNA strand by a DNA polymerase. Starting from the 

primer, the polymerase can read a template strand and match it with complementary nucleotides 

resulting in one new strand which fonns a helix with the template (Fig. 3.1% Step 3). This way 

each helix is composed of one of the original strands plus its newly synthesised complementary 

strand. 
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Figure 3.1: A) The exponential amplification of the gene during PCR, and B) the three basic 

steps of PCR (both pictures taken from http: //users. ugent. be/-avierstr). 

For this study, PCR reaction mixtures (50ýtl) contained I xTaq PCR buffer (I OxNH4 Buffer), IU 

Taq DNA Polymerase and 1.5mM MgC12 (all included in BIOTAQ'rm DNA Polymerase 

product purchased from BIOLINE), 5xenhancer (BIOLINE), IOOuM dNTP (i. e., 

deoxyribonucleotide triphosphate), Ing of extracted DNA and 0.5uM of a specific bacterial or 
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archacal primer were used. For bacterial PCR, primers Eu9f (GAG TTT GAT CMT GGC TCA 

G, M=A/C) and Eu I 492b (ACG GYT ACC TTGYFA CGA CTT, Y=T/C) were used (Lane et 

al., 1985; Weisburg et al., 1991) whereas for archaeal PCR, primers ArI09f (ACK GCT CAG 

TAA CAC GT, K=G/T) and Ar9l2r (CTC CCC CGC CAA TTC CTT TA, K=G/T) were 

employed (Ramakrishnan et al., 2001). PCR amplifications of 16S rDNA sequences were 

performed with a Corbett Research Palm-Cycler using a initial denaturation step at 94'C for 

5min and then 33 cycles at 94'C for 45s, 48'C for I min, and 72'C for 2 min. 

PCR amplifications were visualised by electrophoresis (Fig. 3.2) on a 1% agarose gel in TAE 

(Tris-Acetate-EDTA buffer) stained with lxSYBR Safe DNA stain (Invitrogen). Gel 

electrophoresis is based on the movement of negatively charged nucleic acid molecules through 

an agarose matrix (under an electric field; 8OV, 30mA) whereby shorter molecules can move 

faster and further than longer ones. Distinct bands of DNA corresponding to sequence length 

can be visualized by the excitation of SYBR Safe bound to DNA under UV-light (Fig. 3.2). 

DNA ladder 

al 1%, Pl L L.; IIM 

fragment 

Figure 3.2: Visualisation of amplified DNA by gel electrophoresis. The line indicates the 

sequence length (-1500 base pairs) for amplified 16S rDNA. Short-failed PCR products will 

move further as indicated by the circled DNA sequence. 

After amplification the PCR products were purified using a PureLink PCR Purification Kit 

(Invitrogen). This is a simple procedure to remove short primers, dNTPs, enzymes, short-failed 

PCR products, and salts from PCR products. 

It should be noted that PCR can produce artefacts including chimeric sequences and DNA 

polymerase copy errors. A chimeric sequence is a sequence comprised of two or more 

phylogenetically distinct parent sequences. Chimeras are thought to occur when a prematurely 

tenninated aniplicon reanneals to a foreign DNA strand and is copied to completion in the 

following PCR cycles. DNA polymerase copy errors normally result in single base changes 

which will only have significance at the genus level. 
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Producing clone libraries 

Cleaned up PCR products from bacterial isolates were cloned using the TOPO TA Cloning Kit 

(Version S) vector (pCR2.1-TOPO, Fig. 3.3) and host Escherichia coli strains (MachlTM-TIR 

strain, Invitrogen). 

"Activated" TOPO', Cloning Vector Taq-amplified PCR product 
with 3 -A overhangs 
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Figure 3.3: A) Mechanisms of TOPO TA cloning. B) The pCR2.1-TOPO vector showing 

position where Taq-amplified PCR products are inserted (both pictures were taken from 

www. invitrogen. com). 
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The key to TOPO TA Cloning is the enzyme, DNA topoisomerase I, which functions both, as a 

restriction enzyme (cuts only double-helical segments that contain a particular nucleotide 

sequence) and as a ligase (to join together DNA fragments). Furthermore, it enables the direct 

ligation between Taq-amplified PCR products equipped with Y-A overhangs and the linearized 

TOPO TA Cloningg vectors provided with 3'-T overhangs (Fig. 3.3A). The vectors also 
include kanamycin and ampicillin resistance genes (Fig. 3.313) which only select for E. coli cells 

that have incorporated the vector. If the ligation between the PCR products -and the vector is not 

successful, E. coli colonies will produce P-galactosidase which in the presence of the X-gal 

substrate (5-bromo4-chloro-3-indolyl-b-D-galactoside) will form blue colonies. However, if 

the PCR product is incorporated within the vector, i. e., inserted within the functional lacZ gene 

(Fig. 3.3B) encoding for the protein P-galactosidase, the protein can not be produced and white 
E. coli colonies will form. For more detailed information on gene cloning and PCR 

amplification please refer to Sambrook et al. (1989) and Brown et al. (2006). 

Cloning resulted in five bacterial libraries and from each of these libraries an average of 100 

white colonies was picked. This was then followed by PCR amplification (primers were 

complementary to the flankingregions on the vector; M13f. GTAAAACGACGGCCAGand 

Ml3r: CAG GAA ACA GCT ATG AC; Invitrogen) of plasmid-bome cloned gene from the 

isolates. A touchdown cycle was chosen with 20 touchdown steps from 62 to 55'C and 15 

further cycles at annealing temperature (52'C). No enhancer was used for this reaction mix 

(50gl) and the concentrations of all the other constituents were kept the same as above. Once 

again, PCR products were verified by gel electrophoresis (Fig. 3.2). 

Groups of clones were subdivided on the basis of restriction fragment-length polymorphism 
(RFLP) analysis following MSPI(Hpall) and Hin6l(HhaI) digests with lOxBuffer Tango (all 

purchased from Fermentas). A RFLP is a variation in the DNA sequence of a genome and it is 

thus an important tool in genome mapping, i. e., to differentiate between different organisms. To 

detect RFLPs, restriction enzymes (RE) are used to cut DNA at specific recognition sites. The 

resulting fragments are then run on a 3% Agarose gel (as described above but ran at 40V, 

30mA) to identify unique banding patterns (Fig. 3.4). 

Differences in fragment length result from base substitutions, additions, deletions or sequence 

rearrangements within RE recognition sequences. Although two individuals of the same species 
have almost identical genomes, they will always differ at a few nucleotides. Some of these 

differences will produce new restriction sites (or remove them) which will affect the banding 

pattern on the gels. Therefore, the less related the individuals, the more divergent their DNA 

sequences and the more likely it is to find a RFLP. 
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Figure 3.4: RFLP-pattern of 13 clones detected in sediments collected at Svartsengi based on 

11IN61 restriction. 8 different RFLP patterns (i. e., phylotypes, nr. I- 8) were identified among 

these 13 clones. Nr. 5 appears to be the most abundant clone sequence (i. e., 6 clones with 

identical pattern). 

Based on results from the RFLP analysis, selected subgroups from each sample were sent to the 

Center for Genornics, Proteomics, and Bioinformatics Research Initiative (CGPBRI), University 

of Hawaii at Manoa (Honolulu, USA) for sequencing (ABI 3730XL capillary-based DNA 

sequencers). In DNA sequencing, the order of the nucleotide bases (i. e., adenine, guanine, 

cytosine, and thyinine) in a DNA strand is determined. For more inforination on DNA 

sequencing please refer to Graham and Hill (2001). 

All molecular work described above was carried out in the Wairakei Analytical Laboratory at 

GNS Science, Taupo, New Zealand. 

Rarefaction analysis 

Rarefaction is used to standardise and compare species richness / diversity between clone 
libraries with different sizes. For this, rarefaction curves are constructed in which the number of 

expected richness (e. g., RFLP patterns) is plotted against the number of individual clones 

subsampled from the clone library. If the curve exhibits a steep slope (i. e., increase in richness), 

a large fraction of the species diversity is not sampled and more clones need to be sequenced. 
However, if the curves approach a flat plateau, a sufficient number of clones were analysed and 

more intensive sampling will probably only yield a small number of additional species. In this 

study, rarefaction curves were generated using a programme written by Bailly et al. (2007). 
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Sequence assemblage and phylogenetic analysis 

Contiguous sequences were assembled using Sequencher 4.7 (Gene Code Corporation) and then 

uploaded into the ribosomal database project (RDP-II; Cole et al., 2006 and references therein) 

in which all sequences were aligned and tested for sequence anomalies (e. g., chimeric artefacts). 
Closest relatives were found using the RDP-11 Sequence Match and phylogenetic trees were 

constructed by the Weighbor weighted neighbor-joining (Weighbor) algorithm using the RDP-II 

Tree Tool. Weighbor is a distance-based phylogeny reconstruction method where the 

evolutionary distances between every two species is estimated. This results in a "distance 

matrix" which can then be used to reconstruct a phylogenetic tree that best fits the matrix. The 

Weighbor criterion for choosing a pair of taxa to join takes into account that errors in distance 

estimates are exponentially larger for longer distances (Bruno et al., 2000). 

3.2 Laboratory methods 

3.2.1 Synthesis of silica nanoparticles 

Nucleation and growth of silica nanoparticles was determined in aqueous solutions with initial 

Si02 concentrations ranging from 320 to 1600ppm and ionic strengths (IS) from 0.02 to 0.22 M. 

The chosen range Of Si02 and IS represents the concentrations most often found in geothermal 

waters and fluids of geological importance (e. g., seawater, brines). Stock solutions of aqueous 

Si02 were prepared by dissolving specific amounts of Na2Si02,5H20 and NaCl (Analar grade 

reagents) in deionised water (DIW) producing an alkaline (pH - 12) silica solution in which all 

silica was present as monosilicie acid (H4SiO4(,, q)). Silica polymerisation and silica nanoparticle 

formation were induced either by lowering the pH to 7 (with IM HCI, at 30'Q where silica 

solubility is lowest (Fig. 2.4) or by fast cooling a high temperature (230*C), near- neutral pH 

(pH 7-8) and silica supersaturated solution to temperatures between 30 and 60'C. 

To determine the impact of specific organic molecules on the process of silica polymerisation 

and silica nanoparticle formation, a few experiments were carried out in the presence of organic 

compounds (representing microbial cell envelope functional groups; chapter 6 and 8). The 

organics used were glucose', glutamic aci& and xanthan guirO and were prepared by dissolving 

1 glucose (C611 1206) is a monosaccharide (pKa at 0.94 and 6.11; McElroy and Glass, 195 1). 
2 glutamic acid (C5H9N04) is an acidic amino acid (pKa at 2.13,4.31 and 9.67; Weast, 1972). 
3 xanthan gum is a complex anionic polysaccharide produced by the bacterium Xanthomonas campestri 
(Sutherland, 1994). 
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specific amounts of Analar grade reagents in DIW. The concentrations of the organics used 

were comparable with the biomass used in batch silicification experiments (e. g., Phoenix et al., 
2003) but were also restricted by the low solubility of xanthan gum in water. 

3.2.2 Experimental designs 

The kinetics and mechanisms of the nucleation and growth of silica nanoparticles in inorganic 

and organicibiological systems were quantified in two systems; (1) via neutralisation of a high 

pH solution using a continuously stirred low temperature flow-through set-up (Fig. 3.5 and 3.6) 

that ensured complete mixing and homogeneity, and (2) a high-temperature system (Fig. 3.7) 

that was designed to mimic the polymerisation processes as they occur in natural geothermal 

environments where polymerisation is induced by a sudden temperature drop. 

Low temperature flow through set-up 

The continuous flow set-ups for SAXS and DLS are illustrated in Fig., 3.5 and 3.6. The 

experiments were carried out with polymerising silica solutions that were prepared in a plastic 
beaker (see section 3.2.1) just prior to commencement of the data collection. Note that a pH 
between 7 and 8 was reached in less than 30 s but a stable pH reading of 7.0 usually needed 2- 

3 minutes. The pH adjusted solutions were circulated via a peristaltic pump through a quartz 

capillary for the SAXS measurements (Fig. 3.5) or through a plastic cuvette for the DLS 

measurements (Fig. 3.6) and back into the beaker in which the solutions were continuously 

stirred. In contrast to SAXS measurements, the constant flow of solution in and out of the 

plastic cuvette affected the DLS data acquisition. As a consequence, the continuous flow was 
temporarily stopped during DLS measurements (5 min / pattern and 30 s delay time in between 

to exchange solution) and the solution in the cuvette was replaced in between measurements. 
The pH of the solutions in both measurement types were monitored every 5 minutes to make 

sure that no significant changes occurred. For most experiments an increase of about 0.5 pH 

units was observed (over -3 hours), however, this shift was ignored during data processing as 

pH fluctuations between 7 and 8 hardly affect the silica polymerisation rate (Iler, 1979). 
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Figure 3.5: A) Schematic diagram of low temperature flow-through system used for SAXS 

experiments and B) experimental set-up at station 6.2m at SRS, Daresbury Laboratory, UK. 
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Figure 3.6: A) Schematic diagram of low temperature flow-through system used for DLS 

experiments and B) experimental set-up using a Malvern Zetasizer Nano ZS at Leeds 

University. 

High-temperature, simulated geothermal system 

In a second procedure, a flow-through geothermal simulator was designed to mimic the 

polymerisation process as it occurs in natural geothen-nal environments (Fig. 3.7). The system 

consists of a) a storage bottle that contains the experimental solutions (at 25'C), b) a HPLC 

pump to maintain a continuous flow of the solution at high pressures (p = 750psi), c) a high- 

temperature oven (kept at 230'C) with a 6m stainless steel coil, d) a backpressure regulator 
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(BPR) to build up the required pressure to prevent the solution from boiling and e) tubing to 

connect all the different parts. 

A supersaturated (320 - 960ppm Si02 and IS of 0.02 and 0.11) and partly polymerised silica 

solution (at neutral pH, see section 3.2.1) was pumped from a storage bottle into a high 

temperature oven via a HPLC pump. Inside the oven, the fluid passed through a 6m stainless 

steel coil and the high temperature caused the solution to fully de-polymerise thus producing a 

pure monomeric silica solution (Fig. 3.7). This approach mimicked the conditions of silica-rich 
fluids in the Earth's crust at about 2-3 km depths and under hydrostatic pressures. After the hot 

solution emerged from the high-T oven (i. e., solution immediately starts to cool), it passed 

through the BPR located - 15 cm after the ovcn. This distance assured a fast temperature drop 

(within -1 min) from 230"C to -900C (measured at BPR outlet) and this caused the silica to 

become again highly supersaturated and hence induced silica polymerisation (Fig. 3.7). This 

rapid cooling process simulates the conditions when a supersaturated hot spring fluid is 
discharged at the Earth's surface and polyrnerisation of the monomeric silica and thus the 

nucleation and growth of silica nanoparticles is initiated. 
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Figure 3.7: Schematic sketch of simulated hot spring environment used to characterise silica 

nanoparticle formation (modified from Benning and Mountain, 2004). 
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This high temperature set-up was used for two different sets of experiments (Fig. 3.7): 

Stopped-flow experiments where the initial steps of nucleation and growth of silica 

nanoparticles were monitored and quantified in-situ and time-resolved as a function of 
Si02 and IS using SAXS and DLS (chapter 7). For this, the SAXS cell or DLS cuvette 

were first filled with polymerising solution and then disconnected from the high-T 

system for subsequent data acquisition. 

(ii) Continuous flow experiments where the size and polydispersity of silica nanoparticles 

were monitored under constant re-supply of fresh silica solution (various tested Si02, IS 

and T) and added organics (glucose and xanthan gum) in a tray placed within the 
incubator (for 3042 hours, at 58 and 33*C respectively). Silica polymerisation and 

silica nanoparticle fonnation were quantified using spectroscopic and microscopic 
techniques (chapter 8). 

3.2.3 Analysis of aqueous phase 

Spectrophotometric molybdate yellow method 

To fix the concentration of the monomeric and total silica of synthesised silica solutions at the 

time of collection, samples for monomeric silica were acidified in-situ to pH 2 using IM HCI 

and samples for total silica were mixed with IM NaOH to produce a pH above 12. Monomeric 

silica, 114Si04(, q), was then measured using the spectrophotometric; molybdate yellow method 
(within I-2 hours of sample collection, Greenberg et al., 1985). 

The basic principal behind this method is the reaction of molybdate ions and silicic acid to form 

the yellow P-molybdosilicate anion. The concentration of P-molybdosilicate complex is 

analysed with a UVNIS spectrophotometer at 410 nrn and the resulting absorbance is then 

compared against standards. In this study the following procedure was applied. Two stock 

solutions were prepared, one containing 1.5 N sulphuric acid and the other 1 00gl-I of ammonium 
heptamolybdate and 47gl-1 of concentrated aqueous ammonium hydroxide (28 w/v%). The 

molybdic acid reagent was made up from 200 nil of the 1.5 N sulphuric acid solution, 100 ml of 

the molybdate stock solution and 500 n-A of distilled water. To analyse a sample, 20 n-A of this 

reagent were mixed with less than 5 n-d of a sample (Si02 content no higher than 20ppm) and 
diluted to 25 nil with deionised water. After equilibration for 10 minutes, the absorbance of each 

sample was measured at 410 nrn on a CECIL 3041 UVNIS spectrophotometer. The resulting 

values were compared with standards (8,12,16 and 20ppm) prepared using Na2Si03*5H20. The 
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final concentrations of the samples were calculated from the calibration curve (regression 

coefficient, W-0.998) as defined by the four measured standards and the blank. The estimated 

error of this method, i. e., twice the relative standard deviation of the mean (6%), was evaluated 
from repeated analyses of standards. 

Determination of total carbohydrate - the phenol-sulphuric acid method 

To determine the amount of sugars (e. g., glucose, xanthan gum) within the experiments, a 

colorimetric method based on the Molisch test (Molisch, 1886) for carbohydrates was applied. 
This method is based on the hydrolysis of polysaccharides to monosaccharides and their 

susequent dehydration by sulfuric acid to produce an aldehyde. This product then condenses 

with a colour developer (aromatic amine or phenol) to form a yellow-orange complex which is 

subsequently analysed with a spectrophotometer. 

The method used in this thesis was developped by Dubois et al. (1956) and its reagents consist 

of a 5% (w/v) phenol solution and concentrated sulphuric acid (>95%). The procedure involves 

the following steps: into glass test tubes I ml of sample containing the equivalent of 20-100 Pg 

glucose and I nil of phenol solution were mixed. In a second step, 5 ml of concentrated 

sulphuric acid were added to the solution in a way to ensure fast and complete n-dxing. The 

solutions were left for 10 minutes, shaken and left for another 20 minutes before measuring the 

adsorbance at 488 nrn on the CECIL 3041 UVNIS spectrophotometer. For comparison a set of 

glucose standards as well as a blank were prepared with each set of sample analysis. These 

standards (10,20,30,40 and 50ppm) along with the blank defined a calibration curve (Rý - 
0.999) with which final concentration were calculated. Similar to the molybdate yellow method, 
the estimated error of this method (-6% for both glucose and xanthan gum) was determined 

from repeated analysis of standards. 

3.2.4 Optical characterisation of solid phase 

Field Emission Gun (FEG) Scanning Electron Microscopy (SEM) 
I 

The basic principle behind scanning electron rnicroscopy is the detection of secondary electrons 

that are released when an electron beam is scanning the surface of a sPecirnen. The secondary 

electrons are detected by a scintillation material that produces flashes of light which are 

subsequently amplified by a photomultiplier tube. 

The main difference between SEM and FEG-SEM is the electron emitter type. For conventional 
SEM imaging, a thennionic ernitter is used (a Tungsten filament is heated up by electrical 
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currents to a point where electrons can escape) while for FEG-SEM, electron emission is 

induced by applying a electrical potential gradient to a small tip radius (- 100 nm) of a filament 

(e. g., Tungsten). The advantages of FEG-SEM over conventional SEM include higher spatial 

resolution (- 3 or 6 times better) as well as cleaner images with less electrostatic distortions. 

For elemental analysis of imaged surfaces, an EDX (Energy Dispersive X-ray) analyser was 

used. EDX is based on a high voltage electron beam (10-20keV), which causes X-rays specific 

to the elements under examination to be emitted from the scanned specimen. 

Samples of synthesised silica nanoparticles were prepared by filtering a few millilitres of 

polyrnerising solution through 0.1 or 0.21im polycarbonate filters. The filter papers were 

subsequently washed with DIW to remove remaining salt and silica solution and left to dry at 

ambient temperature. The filter papers were placed on SEM Al-stubs using sticky carbon pads 

and then coated with 3 nm of platinum. Analyses were done on a LEO 1530 FEG SEM 

equipped with an Oxford Instruments EDX detector and INCA software using a working 
distance of 3mm and an accelerating voltage of AV. For EDX analysis, the working distance 

was increased to 8nun and the accelerating voltage to l5kV. 

Transmission Electron Microscopy (TEM) 

In the TEM electrons are emitted at the top of the microscopic column (under vacuum) and are 
focussed by electromagnetic lenses to produce a very thin beam, which is then passed through 

the specimen to produce an image on the fluorescent screen placed at the bottom of the 

microscope. 

Similar to the FEG-SEM a field emission gun can be incorporated into the TEM to produce a 
brighter, more coherent electron beam (thus allowing higher resolution) as well as an EDX 

system allowing highly spatially resolved elemental analysis and nano-diffraction of the 

material under consideration. 

TEM samples of synthesised silica colloids were prepared by placing a droplet of diluted 

polymerising solution on a forrnvar coated copper grid which was then dried in air to form a 

thin film. TEM grids were analysed with a Philips CM 10 TEM using an accelerating voltage of 
80M 

CRYO-TEM 

To test for artefacts (e. g., shape distortions, aggregation) caused by sample dehydration or the 

high vacuum of standard SEM and TEM analytical approaches, some samples were also imaged 
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using a cryo-TEM combined with an ultra-rapid freezing technique. Cryo-TEM allows the 
imaging of materials suspended in a solution in-situ in their native environment with minor 

artefacts from sample handling (Hansen and Slavin, 1993). 

In order to prepare the cryo-TEM samples, 5 gL of the reacting solutions were deposited on a 
TEM grid and specimens were flash-frozen in liquid ethane (maintained at liquid nitrogen 
temperatures; Egelhaaf et al., 2000) using a standard guillotine plunging device (vitrobot) that 
instantaneously (< I sec) vitrified the samples and avoided ice fon-nation. Ethane was used as a 

cryogen due to its high thermal conductivity and its large heat capacity at low temperatures, 

which in turn prevents the formation of ice and microbubbles around the sample. The vitrified 

specimens were transferred at -180'C onto a Gatan 626 cryo-holder and into a FEI T20FEG 

TEM operated at 200 M After an equilibration time of 1 hour (until no apparent drift was 

observed), the specimens were examined at -I 800C and low dose images were recorded on a 4k 

x 4k Gatan CCD camera. 

Particle size analysis 

To detennine the particle size distribution of silica particles imaged by both SEM and TEM, 

photomicrographs were imported into CorelDraw" and the diameter of individual silica 

nanoparticle was measured by drawing an appropriately sized square around each of the 

particles. The widths of the squares were converted into real dimensions using the pixel: real size 

ratio of the scale bar at the bottom of the photon*rographs. To obtain a size distribution with 

reasonably high precision, about 100 - 200 particles were measured in each image and the mean 

particle diameter (i. e., mean value) and the polydispersity (i. e., standard deviation) were 

calculated. 

3.2.5 Dynamic light scattering (DLS) 

DLS is a well-established, non-intrusivc technique to probe the size and polydispersity of 

spherical, colloidal particles. DLS is effective in the size range 0.6 mn -6 gm (Fig. 3.8, 

(http: //www. malvem. com/LabEng/products/zetasizer/zetasizer; May 2008) and allows the in- 

situ investigation of the particle growth process (i. e., nucleation, growth and aggregation) in a 

single experiment. However, at particle sizes smaller -10 nrn, the % errors of individual DLS 

measurements can be as large as 50% (see chapter 6 and 7). 

DLS measures particle growth by tracing changes in the scattering pattern of lager light caused 
by the Brownian motion of the particles (Brownian motion of larger particles is slower than for 
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smaller particles). The particle size can be calculated from the translational diffusion coefficient, 
D, using the Stokes-Einstcin equation: 

d(H) = KT131MD (Eq. 3.1) 

where d(H) is the hydrodynamic diameter (refers to how a particle diffuses within a fluid), K is 

the Boltzmann constant (1.38x 10-23 m2kgs-2K-'), T is the absolute temperature in Kelvin, and q is 

the viscosity of the fluid. Note that the DLS assumes particle sphericity. 

All DLS measurements were performed with the Malvern Zetasizer Nano ZS (Malvern 

Instruments) equipped with a He-Ne laser (X=633mu) and a backscatter detector at a fixed angle 

of 173'. The instrument recorded the intensity autocorrelation function, which was then 

transformed into volume functions using various algorithms to obtain size information. 

DLS measurements allow easy data acquisition and fast data processing, however, compared to 
SAXS (see below) the accuracy of DLS measurements is far lower especially in the size range 

studied here (Fig. 3.8,1 to 10nin). Therefore, this method was mainly used to verify and 

corroborate the SAXS results. 

10-11 m 10-9 m 10-7 M 10-5 m 10-3 

WAXS/XRD SAXS TEM 

,q............. 
Optical Microscopy 

DLS 

Figure 3.8: Resolution limits for some microscopic and spectroscopic methods. The dotted line 

indicates that DLS measurements at these small sizes are characterised by large errors. 

3.2.6 Synchrotron-based Small Angle X-ray Scattering (SAXS) 

Small Angle X-ray Scattering (SAXS) is a non-intrusive, time-resolved and in-situ method to 

monitor nucleation and growth of crystalline as well as non-crystalline particles suspended in 

solution with dimensions typically between 1 and 100nm (Fig. 3.8). SAXS can be universally 

applied to studies of nanostructures and it can provide (among others) information about particle 

size, shape and polydispersity. 



76 

Synchrotron radiation 

The X-ray beam used for SAXS can have different sources. In this study, SAXS experiments 

were carried out using synchrotron light which has several advantages over laboratory sources 

including high flux and brightness as well as low divergence thus allowing SAXS 

measurements to be collected at low angles (-0.05'). This results in high quality data that can be 

acquired at very fast time steps (<10ms) and thus the processes and kinetics of particle 

fon-nation can be quantified in-situ and in realtime. 

Synchrotron light, i. e., X-rays, are produced by accelerating electrons around a storage ring 

close to the speed of light (Fig. 3.9A). The electrons are generated by an electron gun and are 

first accelerated in a linear accelerator (Linac) and the booster ring where they reach their final 

speed (99.9% speed of light). They are then injected into the storage ring where they circulate 

(forced by powerful electromagnets), producing synchrotron radiation, but without gaining 

further energy. The radiation is projected at a tangent to the electron storage ring and captured 

by beamlines (Fig. 3.9A). 

Bearnfines are positioned at bending magnets marking the "comers" of the storage ring or at 
insertion devices (wigglers or undulators, both periodic magnetic structures forcing the 

electrons to undergo oscillations and radiate) which are located in the straight sections of the 

storage ring (Fig. 3.9A). The front of the beamline houses the optical devices (i. e., slits, 

attenuators, crystal monochromators and mirrors; Fig. 3.9B) to control the bandwidth, photon 
flux, beam dimensions, focus, and collimation of the X-rays, while the end of the beamline 

consists of the experimental hutch, where X-rays are focussed onto the samples, and the control 

cabin (Fig. 3.913). 
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Figure 3.9: A) Schematic sketch of a synchrotron (www. diamond. ac. uk) and B) close-up of a 

beamline (rectangle in A) consisting of the optics cabin, the experimental hutch and the control 

cabin (www. esrteu). 
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SAXS theory 

Using a synchrotron source, SAXS is performed by focusing an intense, monochromatic and 

collimated photon beam with wavelengths between 0.8 and 1.4 A (5 -9 keV) onto a sample and 

observing a coherent scattering pattern that arises due to the differences in electron density 

between the solute and the solvent (Fig. 3.10). 

Bragg's law, d=A /(2 sin 0) 
, is the basic law that governs SAXS and it states that the 

dimensions, d, of an object are reciprocal to the angles (0) to which the X-rays are scattered. 
Thus, information pertaining to nano- to colloidal-scale structures can only be obtained by 

measuring at very small angles (20<6'). 

For SAXS we can consider a generalized rule that describes the behaviour of the scattered 
intensity as a function of the Bragg size, d that is observed at a given scattering angle 20, where 
d=2; r/q and q=4; r/AsinO: 

I(q) =N VP2 (Ap)2 P(q)S(q) (Eq. 3.2) 
v 

The total scattering intensity (eq. 3.2) is proportional to the number of scattering elements, N, 

the irradiated volume, V, the volume of individual scattering entity, Vp, and the electron density 

contrast between solute and solvent, Ap =pp-p.,. Furthermore, the intensity is proportional to a 
forr-n factor, P(q), and a structure factor, S(q), both dimensionless parameters. P(q) gives 
information about shape and size whereas S(q) accounts for inter-particle scattering in non- 
dilute systems. Particle interactions are only expected in concentrated systems which will 

manifest themselves at low q values as a sharp increase or decrease in the scattering intensity 

(Fig. 3.10, dotted line). However, in dilute systems (e. g., 0.5-1%; Glatter and Kratky, 1982 and 

all studies discussed in this thesis) where scattering is solely produced by individual particles 
(Fig. 3.10, solid line), S(q) does not affect the scattering profile. 
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Figure 3.10: Idealized SAXS scattering profile for a dilute (solid line) and a non-dilute solution 

(dotted line) with monodisperse spherical particles (modified from www. ansto. gov. au). 

A plot from the scattering intensity versus the scattering vector, q, provides information about 

two main regimes (Fig. 3.10). The area at low q angles is known as the Guinier regime. Its slope 

can be used to approximate the radius of gyration of the particles, i. e., the Guinier radius (Rg). 

Rg is basically the mechanical equivalent of the average distance inside a particle to the centre 

of inertia of the particle. In dilute, monodisperse systems, Rg can be determined from the 
following equation: 

_q2R, 
2- 

I(q) = Ioe ' (Eq. 3.3) 

where 10 is the intensity of the scattering curve at q=0 and 10 is related to the square of the 

volume, V, and the electron density contrast, Ap, of the illuminated scattering material: 

10 =(A P)2 V2. Using equation 3.3, Rg can be evaluated from a plot of log I(q) vs. q2, known 

as the Guinier plot. The slope of the linear region found in the low q range, a limit usually 

defined as qRg < 1, can be used to derive Rg. Depending on the particle shape, specific 

equations can be used to calculate the real particle radius. For a sphere (as in the case of silica 

nanoparticles) with a radius R, the following relation is valid (see Glatter and Kratky, 1982 for 

other shapes): 

Rg 23R2 (Eq. 3.4) 
5 
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At high q values, the scattering is mainly produced by the surfaces of the scattering particles. 

This part of the plot is known as the Porod regime and its slope gives information about the 

shape of the scattering particles. This is of little importance to this study, as the shape of silica 

nanoparticles is known to be spherical. 

As shown above, Rg can be obtained from the Guinier region however, Rg detennined this way 

are very susceptible to errors introduced by selecting the Guinier region (i. e., low-q range for 

each SAXS pattern; qRg < 1). In this case, a more precise Rg can be obtained by using the entire 

scattering profile to derive the pair distribution function (PDF). The PDF is the indirect Fourier 

transform of the scattering curve (Fig. 3.11) and it is a measure of the probability of finding any 

two scattering centres, or atoms, at any given scattering vector, within a particle, assuming a 

monodisperse distribution. The PDF thus also imparts information on particle shape. In the case 

of monodisperse spheres, the PDF distribution is Gaussian-shaped and Rg is given by the 

maximum. Figure 3.11 summarises some idealised PDF distributions and the equivalent particle 

shapes. 
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Figure 3.11: (A) Idealized SAXS scattering profiles and (B) corresponding PDF curves of 

various geometrical bodies as a function of particle radius (in ideal monodisperse and dilute 

systems; after Svergun and Koch 2003). 

Another parameter of importance is the invariant, Q, defined as the integral of I(q). It is related 

to the total scattering volume, V, produced by the shape and size of the fori-ning particles and 

thus represents the total scattering power law of the sample. Q can be written as: 

Q=2 T2 (A p )2V (Eq. 3.5) 

where Ap is the electron density contrast (e. g., Glatter and Kratky, 1982; Bras et al., 2005). For 

classical growth processes (see section 2.1.2) it would be expected that the invariant continually 

increases with time due to continuous particle growth by monomer / oligomer addition from the 
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solution. However, during Ostwald ripening or coarsening (OR) (see section 2.1.2), no new 

material precipitates and the invariant should, therefore, remain constant. 

Station configuration 

All SAXS measurements were carried out either on the Dutch-Belgian (DUBBLE, BM26) 

beaniline at the European Synchrotron Radiation Facility (ESRF), France or at station 6.2m at 
the Synchrotron Radiation Source (SRS), Daresbury Laboratory, UK. Here, only the parameters 
that affected the data collection in this study are detailed but the full configuration for DUBBLE 

and station 6.2m can be found in Borsboom et al. (1998) and Cernik et al. (2004) respectively. 

At DUBBLE, the incident X-ray (with an energy of l2keV) was supplied by a dipole magnet 

and the q-range was optimized so that the final configuration used a wavelength of IA and a 

sample-to-detector distance, i. e., camera length (evacuated camera tube), of 3.5m with an 

optimal derived q-range between 0.0005 to 0.223. At the end of the SAXS camera, a two- 
dimensional multiwire proportional detector (gas-filled and equiped with a CCD-camera - 
Photonic Science Xios-II) was positioned which provided 512 pixels of data. 

At station 6.2m, the radiation source was provided by a multi-pole wiggler (MPW) insertion 

device and the energy used was 8.5 keV (X = 1.4 A). The length of the SAXS camera was set to 

3.75 m to derive a q-range similar to the one chosen at DUBBLE. At the end of the camera, a 
60* quadrant one-dimensional small-angle detector (gas microgap, multi-wire; Ben-y et al., 
2003; Helsby et al., 2003) was positioned providing 1024 channels of data. 

At both stations, a beam-stop was set such that it prevented detector damage by the direct beam 

and minimized the parasitic scatter. A pair of ion chambers (positioned pre- and post-sample), 

monitored the incoming and transmitted beam intensities, respectively. The q-axis was 

calibrated with the scattering pattern of wet rat-tail collagen. Images of the SAXS configuration 

at station 6.2 (SRS, UK) are shown in Fig. 3.12. 
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Figure 3.12: Set-up of station 6.2m at Synchrotron Radiation Source, Daresbury Laboratory, 

UK as discussed in the text. 

Data reduction and treatment 

2-D data collected at DUBBLE were first transforined to I-D data by sector integration using 

BSL (a 2-1) data manipulation package for image data, SRS, Daresbury). The converted 

DUBBLE data and the I-D data collected at station 6.2m were then processed using the 

program XOTOKO (SRS software packages, Daresbury). The data were first normallsed to the 

beam intensity (as measured by the pre-sample ion chamber) to compensate for the variation in 

the intensity of the incident beam flux as well as the decay of the beam current over the 

experimental time length. The data were then corrected for detector alinearities (i. e., each 

detector element does not have a uniform response to the incident X-rays) by dividing the data 

by a frarne of fluorescence data collected from a zinc foil for station 6.2m and from a Fe 55 

source for DUBBLE respectively. Files processed this way provided ASCII file outputs that 

were loaded into excel for initial data analysis and to correct for scattering produced by the 

capillary, air, and the aqueous phase (i. e., water). These corrections are ten-ned background 

subtraction. This was perforrned by subtracting a data set obtained for DIW (collected either 
before or after the experiments) from the normalised reduced scattering data. 

The entire corrected intensity profiles were then read into GNOM (Svergun, 1992 and 

references therein), an indirect transform program for SAXS data processing. In the case of 

dilute and monodisperse systems, GNOM evaluates a pair distribution function (PDF) and 

provides an estimate for the radius of gyration, Rg. Furthermore, GNOM extrapolates the data to 

q=0 and thus provides a value for 10. As mentioned earlier, the use of the entire scattering 

profile is more accurate than the classical Guinier approximation (see SAXS theory above) 

which only evaluates the slope in the Guinier regime and in chapter 6 and 7, the final reported 

Rg values were thus evaluated using the GNOM code. 
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Data accuracy 

In general, the high resolution of the SAXS detectors as well as the intense and highly 

collimated beam suggests small errors (<I%) for synchrotron-based SAXS data. But to date 

there is no standard method of determining the errors in SAXS measurements and actually, it is 

not unusual to see data in which no attempt to quantify errors has been made. The difficulty lies 

partially in the facts that (1) there is no standard way of reducing and analysing the data; 

background subtraction can be somewhat subjective in nature and can significantly affect the 

result and (2) that there is no standard methodology for SAXS measurements either. Therefore, 

it was necessary to replicate experimental and data reduction procedures precisely and to 

produce internally consistent SAXS data but also to ensure minimal errors. 

In this study, the error for individual SAXS measurements was evaluated by GNOM which 

estimates the errors on the scattering data (usually < 3%) automatically using a polynomial 

smoothing procedure. 

Kinetic analysis 

To fit an appropriate kinetic model to the quantitative and time resolved SAXS and DLS data, 

the Johnson-Mehl-Avrami-Kolmogorov (JMAK) kinetic model and Thetadash kinetic model 

were used. 

The JMAK kinetic model. The Johnson-Mehl-Avran-d-Kolmogorov kinetic model (JMAK) 

was derived by Johnson and Mehl (1939), Avran-d (1939,1940) and Kolmogorov (1937) and it 

has been widely used to describe re-crystallization processes but also phase transformation 

processes. This model attempts to predict the fraction of crystallized material at every given 

point in time with the following assumptions: (1) the new phase nucleates as infinitely small, 

rigid, independent units that are able to overlap, (2) nucleation occurs randomly and uniformly 
(3) the nucleation rate is time-independent (4) the sample is of infinite size and boundary effects 

can be ignored, and (5) grain growth continues until impingement occurs. 

The JMAK model has been applied in various studies including the growth of zeolite crystals 
(e. g., Thompson, 1992), polymerisation in layered phosphate salts (e. g., Cao and Mallouk, 

1991), the formation of nano-zirconia (e. g., Malek et al., 1999) as well as the formation kinetics 

of oxyhydroxide nanoparticles (e. g., Shaw et al., 2005; Davidson et al., 2007). However, some 

studies (e. g., Allia et al., 1993; Illekova et al., 1996) struggled to fit the JMAK approach to their 

experimental data set thus indicating that similar to many other kinetics models the JMAK 

model may only provide a qualitative interpretation. In addition, Banfield and Zhang (2001) 
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suggested that the JMAK theory may not be optimal for analysis of reactions involving 

nanoparticles. 

The essence of the model can be written as a very simple formula commonly referred to as the 

Avrami cquation: 

a=l-e -(k(I-to))" (Eq. 3.6) 

where a is the degree of the reaction, to is the induction time, k is the reaction constant and n is a 

constant related to the nucleation mechanisms (i. e., instantaneous, decreasing rate, or constant 

rate), the growth dimensionality (i. e., 1,2, or 3-D) and the reaction mechanisms (i. e., diffusion- 

or surface-controlled; Table 3.1). 

To obtain cý the Rgý values from the SAXS data were normalised using the following equation: 

3 

3 (Eq. 3.7) 

where Rg, is Rg at a given time, t, and Rg,,,,,, is Rg at the end of the reaction. Both k and n can 

then be determined from the intercept and slope, respectively, of a In(- In(I -a)) versus In t 

plot of the experimental data. 

I 
Table 3.1: Interpretation of the JMAK model constant, n, according to Hulbert (1969). 

Growth Nucleation Surface- Difftision- 

dimensionality rate controlled controlled 

constant 4 2.5 
3-D 

decreasing 3-4 1.5-2.5 

constant 
2-D 

decreasing 2-3 1-2 

constant 3 1.5 
I-D 

decreasing 1-2 0.5-1.5 

The Thetadash kinetic model. An alternative kinetic model is Thetadash, a population- 
dynamics based kinetic model developed by Hounslow et al (unpublished, University of 
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Sheffield). Similar to the JMAK approach, it describes the changes in volume fraction during 

nucleation and growth of nanoparticles. However, Thetadash assumes instantaneous and 

monodisperse nucleation, followed by classical growth. In a first step, Thetadash converts and 

normalises the experimentally obtained growth profiles (particle radius versus time) according 

to the degree of the reaction, a (similar to the JMAK kinetic model). In a second step, 3 

different types of reaction mechanisms (chemical, surface, or diffusion controlled) and varying 

reaction orders are fitted to cc in order to obtain the best fit in terms of the regression coefficient, 
R2. For the best fit, the program also provides information about the critical nucleus size, RO, (by 

extrapolating to t= 0) and the initial growth rate, Go (s-1). 

The initial growth rate obtained from Thetadash can then be used to calculate the rate constant 

which will allow a direct comparison to the rate constant calculated with the JMAK model (eq. 

3.6): 

Go 
(Eq. 3.8) SR 

-1 

SR is the saturation ratio which is defined as SR = S, I I' 
where SI is the saturation index and v 

is the stoichiometric coefficient (i. e., the sum of the stoichiometry of the products in the 

solubility expression). Sl is defined as: 

SI = IAPI Kp (Eq. 3.9) 

T 

where IAP is the ionic activity product and Kp is the solubility product. The Sl values were 

calculated using the geochemical code PHREEQC (version 2.13.3; Parkhurst and Appelo, 1999) 

and the wateq4 database (Ball and Norstrom, 1992) with the amorphous silica data updated 

using the values from Gunnarsson and Arn6rsson (2000). 
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4 SINTER GROWTH STUDIES IN ICELANDIC GEOTHERMAL 

AREAS 

4.1 Abstract 

Field in-situ sinter growth experiments have been carried out in five geochernically very 
different Icelandic geothermal areas with the aim to quantify the effects of water chemistry, 
[e. g., silica content (250 to 695 PPM SiOA salinity (meteoric to seawater), pH (7.5 to 10)], 

temperature (42-96'C), and microbial communities (prevalence, density, type) on the growth 

rates, textures and structures of sinters forrmng within and around hot springs. At each location, 

in-situ silica precipitation was monitored over time periods between 30 minutes and 25 months 

using glass slides that acted as precipitation substrates and sinter growth rates were derived. 

In geothermal areas like Svartsengi and Reykjanes, subaqueous sinters developed rapidly with 

growth rates of 10 and 304 kg Y1 in72 respectively, and this was attributed primarily to the near 

neutral pH, high salinity and medium to high silica content within these geothermal waters. The 

porous and homogeneous precipitates that formed at these sites were dominated by aggregates 

of amorphous silica but they contained few if any microorganisms. At Hveragerdi and Geysir, 

the geothermal waters were characterized by slightly alkaline pH, low salinity and lower silica 

content, resulting in undersaturated waters with low rates of sinter growth (0.2-1.4 kg Ylniý). At 

these sites sinter formation was restricted to the vicinity of the air-water interface (AWI) where 

evaporation and condensation processes predominated, with sinter textures being governed by 

the formation of dense and heterogeneous crusts with well-defined spicules and silica terraces. 
In contrast, the subaqueous sinters at these sites were characterised by extensive biofilms, 

which, with time, became ftilly silicified and thus well preserved within the sinter edifices. 
Finally, at Krafla, the geothermal waters exhibited high sinter growth rates (19.5 kg YIm7 2) 

despite being considerably undersaturated with, respect to amorphous silica. However, the bulk 

of the sinter textures and structure were made up of thick silicified biofilms with intermittent 

minor accessory minerals including albite, iron sulphides and oxides and minor traces of quartz. 
This suggested that in these waters, sinter growth was aided by the presence of thick biofilms 

which provided surfaces for the adhesion (e. g., via hydrogen bonding or entrapment within the 

complex structure of the exopolyssacharides) of pre-formed silica colloids. These results thus 

suggest that the interplay between purely abiotic processes and the ubiquitous presence of 

mesophilic and thermophilic microorganisms in modem silica rich terrestrial hydrothermal. 

settings provides an excellent analogue for processes in Earth's and possibly Mars's ancient 

past. 
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4.2 Introduction 

Iceland is well known for its geothennal areas which are the surface expression of the narrow 
belt of active faulting and volcanism caused by the Mid-Atlantic Ridge and the Greenland- 

Iceland-Faeroes Ridge. The geothennal areas include features such as mudpots, geysers, 
fumaroles and hot springs, most of which are inhabited by diverse mesophilic and thermophilic 

microbial life. In addition, outflow waters and condensed steam from wells and geothermal 

power stations created various man-made features, i. e., channels and pools (e. g., Blue Lagoon). 

The precipitation of silica in these systems is a well know process leading to the formation of 

silica sinters (e. g., Am6rsson, 1975) and the full silicification and subsequent fassilisation of 

microorganisms (Schultze-Lam et al., 1995; Konhauser et al., 2001). These microfossils are 

preserved in modem siliceous sinters; and thus provide a modem analogue to fossilization in 

ancient siliceous terrestrial environments (Cady and Farmer, 1996; Konhauser and Ferris, 1996) 

and may even be important for our understanding of the siliceous sinter deposits postulated to 

exist in Gusev Crater on Mars (Squyres et al., 2007; 2008; Ruf et al., 2007). 

The structures and fabrics of siliceous sinters deposited in and around Icelandic hot springs have 

been described as being partly governed by the encrustation, replacement and cementation of 

growing microbial mats (Schultze-Lam et al., 1995; Konhauser and Ferris, 1996). However, 

based on laboratory experiments and studies on natural geothermal environments (e. g., Taupo 

Volcanic Zone, New Zealand; Yellowstone, USA), it is evident that the mechanisms triggering 

silica precipitation are purely abiotic (e. g., Walter et al., 1972; Mountain et al., 2003 and 

references therein) and that silica saturation and precipitation is mostly induced by rapid cooling 

and boiling of geothermal waters or by co-precipitation with auxiliary minerals (e. g., Guidry 

and Chafetz, 
' 

2003; Mountain et al., 2003). Cooling seems to be the predominant process 

controlling the deposition of subaqueous sinter within geothermal systems. However, many 

silica sinters encountered in thermal hot spring areas are often formed subaerially (at or above 

the air-water interface, AWI) and therefore, in order to understand the formation and growth 

rates of silica sinters other hydrodynamic processes including wave action, capillary action, 
diffusion and splash must also be invoked (e. g., Mountain et al., 2003 and references therein). 

Variations in silicification textures and structures have received considerable attention (e. g., 

Walter et al.; 1972, Ferris et al., 1986; Hinman and Lindstrom, 1996; Cady and Farmer, 1996; 

Schultze-Lam et al., 1995; Konhauser and Ferris, 1996; Renault et al., 1996; Jones et al., 1997, 

1998; Phoenix, 2001; Konhauser et al., 2001; Mountain et al., 2003; Lalonde et al., 2005) as 

well as analysing the microbial diversity associated with silica precipitating springs (e. g., 
P6tursd6ttir and KristjAnsson, 1996; Blank et al., 2002). From these studies, it follows that 

microorganisms play an indirect role in the silicification process as there are no metabolic 
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advantages to microbial silicification. However, their surfaces (e. g., cell walls, extracellular 

polysaccharides) provide suitable sites for the adhesion of silica particles and thus they allow 
different styles of silicification (governed by microbial morphology, e. g. filaments, bacillus, 

cocci) to develop. 

Despite the plethora of silicification studies, the kinetics of sinter formation and the relationship 
between the inorganic precipitation rate, the sinter fabric and the associated microbiology are 

still poorly understood mostly due to a dearth of quantitative and in-situ lab and field analyses. 
Only few studies (e. g., Jones et al., 1999; McKenzie et al., 2001; Konhauser et al., 2001; 

Mountain et al., 2003; Smith et al., 2003; Handley et al., 2005, Schinteie et al., 2007) 

determined sinter growth rates using artificial substrates and amongst them even fewer 

(Mountain et al., 2003; Smith et al., 2003 and Handley et al., 2005) monitored growth rates over 
long time scales and characterised the structure and texture of the forming sinters at periodic 

time steps. Such in-situ field studies of sinter growth were mostly done in geothermal areas in 

New Zealand (e. g., Mountain et al., 2003, Handley et al., 2005) and only one short-term study 

was carried out at Krisuvik spring in Iceland (Konhauser et al., 2001). 

Most studies related to Icelandic geothermal systems focussed on the characterization of 

siliceous sinters and the impact of microbes on sinter structure and texture (Schultze-Lam et al., 
1995; Konhauser et al., 2001), the analysis of specific microbial assemblages and diversities in 

geothermal fields (e. g., Sonne-Hansen and Ahring, 1997; Kvist et al., 2007; Skirnisdottir et al., 
2000), the inorganic chemistry of geothennal waters (e. g., Arn6rsson et al., 1983a, b; 

Arn6rsson, 1985; Steffnsson and Arn6rsson, 2000), or silica scaling in geothermal power 
developments (e. g., Thordarson and T6masson, 1989; Kristmannsd6ttir 1989; Gunnarsson and 
Arn6rsson, 2003). However, there is as yet no comparative, combined geochernical and 

structural study of the formation and growth rates of silica sinters in Icelandic hot spring 

systems. 

To overcome this gap, in this study, in-situ sinter growth experiments were carried out in five 

different Icelandic geothermal discharges and hot springs (Fig. 4.1) with the main aim to 

quantify how pil, temperature, salinity and different microbial communities affect the growth 

rate and structure of silica sinters. At each location, in-situ growth of silica sinter was quantified 
based on precipitates that formed on glass slides that acted as substrates. The resulting sinter 
deposits were characterised using spectroscopic and microscopic methods and the effects of the 

various physico-chemical and microbial parameters on the growth rates and structures of sinters 

were assessed. 
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Figure 4.1: Map of sampling locations in Iceland where in-situ sinter growth experiments were 

carried out. 

4.3 Methods 

4.3.1 Sampling protocols 

In September 2005 short- and long-term in-situ silica precipitation and sinter growth 

experiments were set up in five geothermal areas in Iceland including Geysir, Hveragerdi, 

Reykjanes, Svartsengi and Krafla (Fig. 4.1). Prior to each sinter growth experiment, the 

temperature and pH of the geothermal waters were determined in-situ using a KT-thermocouple 

(±0.2) and a Hanna p1l meter with a NIST pH electrode (±0.05, calibrated at temperature). The 

water flow rates were determined at each site by measuring the time for a floating object (e. g., 
leaves, paper) to pass a certain distance (usually at least 2-7 in). Subsequently, 150ml samples 

of spring or drain water were filtered through a sterile single-use 0.2 ýim polycarbonate filter 

unit for cation (acidified on site with concentrated HN03, ratio 1: 50) and for anion (non- 

acidified) determination. Additionally, 50 mL were filtered through the 0.2ýim polycarbonate 
filter unit for monomeric (acidified on site with concentrated HN03,1: 10 ratio) and total silica 
(concentrated NaOll added on site, 1: 10 ratio) analysis. 

At each site a teflon tray holding 20 microscope glass slides (surfaces sterilised with 70% 

ethanol) was immersed into the geothermal water either within an outflow channel or close to a 

pool rim. Each tray contained four rows with five 25x75mm slides. They were placed in such a 

way that the top section of each slide (max. lcm) was partially exposed to air. Over a time 
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period between 30 n-dn and 25 months, sets of five slides were collected at specific time 

intervals and analysed. For each site the relative time steps for the collection of slides were 

estimated from the visible amounts of sinter deposited within and along the outflow channels or 

pool rims. 

At each sampling interval, immediately after removal from the trays, individual slides were 

transferred into sterile SOn-A tubes and subsequently stored in the fridge at -4'C. Three out of 
five collected slides (at each sampling step) were used to detennine precipitation rates after 
drying in an oven at 60'C (to constant weight) and weighing. The difference in weight between 

sinter covered and uncovered slides provided an average sinter growth rate and standard 

deviation in kilograms of precipitate per year and per square meter. The remaining two slides 

were fixed in the field with filtered 2.5 % glutaraldehyde solutions and used for the 

characterization of biological material. Upon return to the laboratory the glutaraldehyde fixed 

slides were washed once with a phosphate buffer (pH=7) and then stepwise dehydrated using a 

series of ethanol exchange steps (30%, 50%, 70%, 90%, 100%). In addition, at Reykjanes and 
Svartsengi, the sterile filters used for the water collection were preserved and the untreated 
filters were analysed for particulates. 

4.3.2 Characterization protocols 

Solution analyses 

All solution samples were stored in the fridge at -4'C. Cations were measured by inductively 

coupled plasma optical emission spectrometer (ICP-OES) using a Thermo Jarell Ash RUS 

spectrometer and anions were determined using a Dionex DX-600 ion chromatograph (IC) 

using an IonPac AS 16 column and a KOH eluent. Total and monomeric silica -were analysed 

with the spectrophotometric molybdate yellow method (Greenberg et al., 1985). 

To calculate the saturation state of silica within each geothermal system studied, the major 

chen-dcal constituents, temperature and pH of the geothermal waters were used as inputs for 

geochemical modelling using the geochernical code PHREEQC (version 2.13.3; Parkhurst and 
Appelo, 1999) and the wateq4 database (Ball and Norstrom, 1992) with the amorphous silica 
data updated using the values from Gunnarsson and Arn6rsson (2000). Saturation indices, SI = 
log (LAP/Kp), were calculated for each geothermal system, with IAP being the ionic activity 

product and Kp the solubility product and where SI>O represents supersaturation and Sl<O 

undersaturation. 



90 

Solids analyses 

For microscopic imaging and qualitative elemental analyses, slides or filters were dried and 

placed on a sticky carbon pad covering an aluminiurn stub, then coated with a3 nm platinum 
layer and analysed using a Field Emission Gun Scanning Electron Microscope (FEG-SEM, 

LEO 1530) equipped with an Oxford Instruments energy dispersive X-ray (EDX) detector and 
INCA software. Images were collected at 3 kV and a working distance of 4 nun, while for EDX 

analysis the working distance was increased to 8mrn and the accelerating voltage to l5kV. To 

determine the silica particle size distribution on the slides from Svartsengi and Reykjanes, high- 

resolution SEM photomicrographs were imported into CorelDrawe and the diameter of 
individual silica colloid was measured by drawing an appropriately sized square around each of 
the particles and converting the width of the squares into real dimensions. For both sites, about 
140 colloids each were measured and a mean value and standard deviation was calculated. 

The mineralogical composition of the fresh precipitates that formed on the slides at each 

sampling site was analysed using X-ray powder diffraction (XRD). For this, about 200 mg of 

precipitate was carefully scraped off the unfixed glass slide, the material was dried and ground 
to a fine powder and deposited on a silicon sample holder. Analyses were carried out with a 
Philips PWI050 diffractometer and scans were acquired from 5 to 70020 at I'/min with a step 

size of 0.02' and operating conditions of 40kV and 30mA using CuK(x radiation. Data was 

analysed and compared to published data for standard minerals in the JCPDF files (International 

Center for Diffraction Data! ). 

4.4 Results 

4.4.1 Geysir geothenml area 

The Geysir geothermal area is situated on the Southern Lowlands (Fig. 4.1) at an elevation of 

about 120m. The geothermal activity is characterised by hot springs and geysers ranging from 

<20'C to 100'C. The main geothermal activity occurs within an area of only a few hundred 

metres across, but thermal manifestations are spread over an area of approximately 3 kn?. The 

waters at Geysir geothermal field are meteoric of origin (Table 4.1) and are characterised by low 

abundance of dissolved solids (<150 ppm Cl) with Si, Na, CI and S04 being the dominant 

dissolved elements. Based on chemical geothermometry, the underground aquifer temperatures 

are >250'C and the composition with respect to major elements is considered to be controlled 
by equilibrium with mineral-buffer reactions at the aquifer temperature or in the upflow zone 

with rhyolitic and basaltic rocks (Am6rsson, 1985). 
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Table 4.1: Chemical composition of geothermal waters in which in-situ experiments were 

conducted. 

Krafla 

wastewater 
drain 

GY1 
Upper 
spring 

GY2' 

Sodi 
spring 

Hveragerdl 

wastewater 
drain 

Svortsengi 

wastewater 
drain 

Reykjanes 

wastewater 
drain 

Date 22109/2005 20/09/2005 20/09/2005 25/09/2005 21/0912005 21/09/2005 
pH/*C 9.95/50 8.47/48 8.45/43 9.05/55 7.74/41.9 7.50/39.8 
T (*C) 80 70-96 b 82 66 42 75 
Flow rate (m/s) 0.44 up to 0.5 b 0.25 0.42 C d 

PPM 

Al 1.72 0.52 0.23 0.74 2.00 <0.1 
B 0.98 0.79 1.00 0.42 6.01 5.49 
Ca 3.85 1.12 1.34 3.26 1332 2550 
Fe 0.08 0.09 0.12 0.05 2.80 5.90 
K 39 11 13 13 1316 2314 
Ll 0.27 0.24 0.27 0.07 3.81 7.67 
Mg 0.03 0.01 0.07 0.11 0.62 0.71 
Mn <0.005 <0.005 <0.005 <0.005 0.22 2.01 
Na 269 234 242 168 8067 14657 
SiO2* 603 363 372 304 250f 695 
Sr <0.1 <0.1 <0.1 <0.1 9.0 9.4 

Cl 74 114 117 120 14854 27174 
F 2.08 20 15 3.24 <0.2 <0.2 
N03 <0.2 <0.2 <0.2 0.76 23 43 
S04 262 91 107 60 30 18 

Slide 25 months 5d 0 3 months 0.5 h i St 2 nd 

collection' 3 months (both 5 months 1h 3h4d 
5 months GY2&3) 8 months 2h 6h7d 
8 months 13 months 3h 19 h 11d 

5h 24 h 17d 
7.5 h 5d 

'Water chemistry at GY3 (T = 61'C) was assumed to be identical to GY2 due to their proximity (-10m) 
'temperature and flow rate fluctuated due to frequent surges 
cwastewater pool where water flow was minor and wave action predominated 
dwater flow rate could not be determined 
SSi02 was measured from filtered water samples to which base was added 
1d: days, h: hours 
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Figure 4.2: a) Spring and outflow channel of GY1, b) close up of sampling tray, and c) glass 

slides collected at GYI with typical increase in silica deposits for time periods between 3 and 8 

months (m). 

Two different thermal features were chosen for the in-situ sinter growth experiments at Geysir: 

upper spring (thereafter called GYI, Fig. 4.2a), representing the outflow from an old borehole, 

and Sodi spring (Fig. 4.3a), a natural thermal spring where two different temperature regimes 

were studied (thereafter called GY2 and GY3, Fig. 4.3b and c). At both Geysir sites, the 

moderate high silica content (363 and 372 PPM Si02 at GYI and GY2 respectively) and the hard 

and compact sinter deposits that formed within and along the outflow channels (e. g., Fig. 4.2b 

and 4.3b) indicated relatively low precipitation rates. XRD analyses of the newly formed sinter 
deposits showed opal-A, (i. e., amorphous silica) as the sole precipitating phase (Fig. 4.4; GY 1 -3 

patterns). 
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a 

micro- terraces 
at AWI 
T= 77 - 82*C 

soft yellow- 
brown precipitate 
developed after 
3 months 
T= 82*C 

I) 

poorly defined 
micro-terraces 
T= 61 - 66*C 

very porous 
and fragile 
precipitate 
T= 66*C 

Figure 4.3: a) Spring and outflow channel of Sodi spring, b and c) position of sampling trays at 

GY2 and GY3 respectively, dande) slides collected from the tray placed at GY2 and GY3 

respectively for a time period between 3 and 8 months (m). 

ha: halite. sy sylvite, cc: calcite, s: sulfur 

Figure 4.4: XRD pattern of precipitates from Hveragerdi (HV), Reykjanes (RK), Svartsengi 

(SV), and Geysir (GYI-3). Shaded area shows 20-range characteristic for the broad XRD peak 

of opal-A, i. e., amorphous silica (Herdianita et al., 1999). 

10 20 30 ' 20 50 60 
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Upper Spring (GY1) 

Sampling and sinter growth experiments were carried out in the outflow channel of GY1 (Fig. 

4.2b) at an average water temperature of 80'C (in the constantly submerged parts of the slides) 

and at pH 8.47 (at 48'C). This site was characterized by frequent violent surges (every I-2 

minutes) which affected the temperature, the flow rates and the level of immersion of the slides 

at the AWI (Fig. 4.2c). As a result, the temperatures measured at the AWI fluctuated between 70 

and 96C and the flow rates varied between 0 and 0.5m/s. From the slides collected over a time 

period of 8 months (Table 4.1, Fig. 4.2c) an average precipitation rate of 0.2 ± 0.1 kg Y-1 nf2 was 
derived. 

FEG-SEM examinations of the slides collected after 5 days (Fig. 4.5) showed an extremely 
heterogeneous texture of the precipitate that consisted of a combination of amorphous silica and 

various n-dcrobial cell morphologies. The top sections of the slides, frequently fully submerged 
due to the occasional surges, were dominated by dense silica layers and spicular structures (Fig. 

4.5a). These dense layers formed at the AWI presumably due to fast evaporation and cooling 

processes and consisted of silica nanoparticles that coalesced into smooth films. The spicules 
(defined as vertical columnar or domal structures; Handley et al., 2005 and references therein) 

consisted primarily of alternating layers of silica sinter and microorganisms (Fig. 4.5b). 

Although microorganisms were present in these upper zones, the significant temperature 

fluctuations were less favourable for the growth and stability of large microbial communities 

and the colonisation was sparse. Further down the slides, a transitionzone with no spicules, 

thinner, more heterogeneous silica crusts and greater quantities of microorganisms were 

observed (Fig. 4.2c). It is unclear if these zones were submerged at all times or if they were 

temporarily above the AWI, but the deposition of dense silica layers points towards the latter 

alternative. It is worth mentioning that after 5 days some microorganisms were already partly 

silicified. 'The bottom of the slides, which were permanently submerged (T - 80*C), showed 
little silica deposition but in all cases dense microbial biofilms were present (not shown here). 

Overall, in this zone the microbes were mainly filamentous with a diameter of approximately 

0.3prn and a length ranging between 2 and 15 gm, interspersed with- few rod shaped 

microorganisms. 
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Figure 4.5: Photomicrographs of slides collected at GV I (a-b: after 5 days, c-e: after 3 months, f: after 8 months). a) Multiple dense silica layers and sPicules at the AWI, b) close-up of a , single sPicule, 0 cocci and rod-shaped microbes found on the side of a spicule, d) microbial filaments, possibly sporulating, surrounded by silica aggregates from the transitions zone, e) empty silica casings left behind by encrusted microbial filaments, and f) mix of fully silicified microbial filaments and silica aggregates in the lower parts of the slides. 

After 3 Months, tile slides were covered with considerably larger amounts of' silica, yet the textural and structural characteristics of the precipitates were basically unchanged. However, rod-shaped bactcria as well as cocc i had colonised the side of spicules (Fig. 4.5c). Further down the slides (in the transition zone, Fig. 4.5d), a few filaments were possibly sporuiating. 
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Sporulation might have been triggered by the harsh temperature variations induced by the 
frequent surges. The lower parts of the slides were still covered with dense microbial mats, but 

after 3 months extensive silicification was observed (Fig. 4.5e). Slides collected after 5 and 8 

months showed almost identical features to those observed in the 3 month slides, the main 
difference being the amount of silica precipitated and the degree of silicification of the 

microorganisms (silicified both externally and internally, Fig. 4.5f). 

Sodi Spring (GY2 and GY3) 

Sodi spring is located to the north-west of the main entrance to the Geysir geothermal area. 
Trays with glass slides were placed at two different sites within the outflow channel of Sodi 

spring. The first sampling site (GY2, Fig. 4.3b) was in an outflow channel -5m away from the 

emergence point of Sodi spring. The average water temperature was 80'C, the pH was 8.45 (at 

43'C) and the flow rate was 0.25 ms-1. The second tray (GY3, Fig. 4.3c) was placed in the same 

outflow channel but about 15 rn away from the spring where the temperature was 20*C lower (T 

= 61'C). The goal of the two sets of experiments within the same outflow channel was to 
determine how sinter growth rates as well as microbial communities were affected by 

temperature while all other conditions were similar. 

At both sites slides were removed at specific times between 5 days and 8 months (Table 4.1, 

Fig. 4.3d, e) from which a silica growth rate of 0.7 ± 0.3 kg y1ff 2 was estimated for GY2 and 
1.4 ± 0.4 kg Y'ni72 for GY3 

At GY2, after 5 days considerable amounts of silica precipitated as layers and terraces but no 

spicules and only few microbes were observed in the vicinity of the Awl. The few 

microorganisms present were mostly rod-shaped with lengths between 1.5 to 3 grn and an 

average width of 0.3 gm. with some already partly silicified after this short time (Fig. 4.6a). A 

bit further down the slides, long filaments became more abundant and they mainly covered 

small terraces that had formed between the various silica layers (Fig. 4.6b). In the subaqueous 

parts of the slides, dense biofilms consisting of very long and thin microbial filaments (width - 
0.3 gm, 10-50 prn long) were observed (Fig. 4.6c) and hardly any silica precipitates were 

associated with these filamentous mats. 
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Figure 4.6: Photomicrographs of slides collected from GY2 (a-c: after 5 (lays, d: after 3 

months). a) Unsilicified rod-shaped microorganisms, very thin and long microbial filaments as 

well as silicified microbes on dense silica substrate, precipitated in the vicinity of the AWI, b) 

terraces formed by silica layers densely populated by long, thin filaments from the middle part 

of the slides, c) dense microbial biotilm from the fully submerged part of the slides, and (1) 

spicule-like structure surrounded by coarse and very porous silica aggregates at the AWL 

After 3 months, tile appearance of the slides changed significantly with yellow-white 

precipitates covering about two third of tile slides (Fig. 4.3d). In the vicinity of' tile AWI, 

distinct silica terraces (overall vertical height up to Imm) and spicule-like structures (Fig. 4.6d) 

developed as a consequence of evaporation and cooling. The texture of' these terraces seerned 

very different compared to the sinall terraces observed after 5 days (Fig. 4.6b) and consisted of 
dense layers of silica covering accurnulations of partly to fully silicified ill Icroorgan Is ills 

interspersed with silica aggregates (Fig. 4.6d). The heterogeneous, yellow-white precipitate 

covering the bottorn part of tile slides (Fig. 4.3d) showed very similar characteristics to the 

texture at the AWI, however, no dense silica layers developed. ']'he precipitates consisted solely 

of a network of silicilicd as well as unsilicified filaments, free silica aggregates and aI cw 
diatoms. Thc diatorns interspersed with tile silicified filaments, although not indigenous (water 

temperature was far too high for diatonis to survive; Brock, 1978), were probably blown into the 

spring as aerosols. 
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After 8 months, the silica terraces on the slides reached a height of up to 3 nim and far more 

precipitates were covering the slides; however tile structure and texture of the precipitates did 

not change significantly during the latter 5 months of growth. 

At GY3, the slides were dominated by porous and fragile precipitates (Fig. 4.3c) densely 

covered with microorganisms. The textures in the submerged parts of the slides were uniform 

regardless of the time interval at which they were collected and basically consisted of silica 

layers and porous silica aggregates in part intertwined with filamentous or rod-shapcd rincrobes 

(both exhibiting various stages of silicification) as well as a few diatorns (Fig. 4.7a, b). The 

characteristics at the AWI were dominated by poorly defined silica terraces and the absence of 

spicules. At a closer look, the terraces consisted of silica spheres and b1ofilins cemented 

together in the l'orin oflayers (Fig. 4.7c). 

Figure 4.7: Photomicrographs of slides collected at GY3 (after 3 months). a) Compact network 

of microbial filaments in between dense blocks of amorphous silica, b) dense network of 

microbial filaments exhibiting different stages of silicification together with a few diatoms all 

associated with porous silica aggregates, c) silicified microbial filaments interdispersed 

between flat layers of amorphous silica, and d) close-up of an empty silica shell covered by 

silica nanoparticles (hat coalesce into a smooth silica layer. 
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After 5 months the slides at GY3 developed a thin green layer at the AWI where the 

temperature was about YC lower than within the constantly submerged part (Fig. 4.3e arrows). 
These green layers increased in thickness significantly over the following 3 months and their 

formation indicated the colonisation of the silica deposited on or above the AWI with photo- 

synthesising microorganisms. Interestingly, in these green layers only large accumulations of 

partly to fully silicified filaments, interlinked and embedded in layers of blocky silica (Fig. 4.7a, 

b) were observed which did not differ from the textures ad structures from the rest of the slide. 
The silicification of microorganisms followed the same patterns as seen in the other two Geysir 

sites, with silica spheres adhering to the surface of microbial cells and covering them totally 

(Fig. 4.7d). 

4.4.2 Hveragerdi wastewater drain (HV) 

The Hveragerdi geothermal area is located on the Southern Lowlands, approximately 45 km east 

of the capital, Reykjavik. The area is characterized by hot springs ranging from <20'C to 1 OOC 

and steam fumaroles. Several drill holes which have been sunk into the area have shown deep 

aquifer temperatures up to 200'C (Arn6rsson et al., 1983a). The waters at Hveragerdi 

geothermal field are of meteoric origin (Table 4.1) and their chemistry is considered to be 

controlled by basalt-water interaction at >200'C and mixing with colder, shallower 

groundwaters. The analysed waters were characterised by low abundance of dissolved solids 
(<150 ppm Cl) with Si, Na, Cl and S04 being the dominant dissolved compounds. The- 

increased values of N03 (Table 4.1) presumably developed due to the presence of nitrifying 
bacteria within the thick biofilms growing along and within the wastewater drain (e. g., 
Skimisdottir et al., 2000; Chapter 5). 

The sinter growth experiments were carried out in a wastewater drain downstream of a steam 

separator (Fig. 4.8a). A slide tray was placed in a channel where the flow rate was 0.4 M/s and 
the temperature was 66'C (Fig. 4.8b). The pH of the wastewater was slightly alkaline (pH 9.05 

at 55'C) and the Si02 concentration was 304 ppm. 

The XRD analyses of the fresh precipitates revealed calcite and small amounts of elemental 

sulphur as the main precipitates (Fig. 4.4; HV pattern), however, amorphous silica was clearly 
forming within and around the outflow channel. The precipitation of calcite within geothermal 

waters at Hveragerdi has been previously shown by Am6rsson (1978a). To verify the presence 

of amorphous silica, the crystalline calcite was removed by reacting with 10% HCI (weight loss 

of about 50%) and the remaining precipitate was re-analysed by XRD. This procedure exposed 

the characteristic broad peak of amorphous silica at 20 of about 22.2* (Herdianita et al., 1999). 
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From the slides collection at Hveragerdi (Table 4.1) a silica precipitation rate of 0.7 ± 0.3 kg y-1 
-2 M was estimated. 

Fa .. 
- 

Figure 4.8: a) Outflow channel from the steam separator from Hveragerdi with marked 

position of the tray, b) close up of sampling tray, and c) slides collected from the tray over a 

time period of 13 months (m). 

As expected, the amount of precipitation on the RV slides increased with time however, the 

position of the AWI changed over the 13 month course of the experiments (moved upwards, 

Fig. 4.8c). This was probably the result of increased water flow from the steam separator which 

then caused an increase in water depth within the outflow channel. Even though extensive silica 

precipitates were present in the vicinity of the AWI, no dense and well-defined terraces or 

spicule-like structures developed. The fabric of the precipitate was quite homogeneous from the 

top to the bottoin of the slides and was dominated by extensive biofilms (Fig. 4.9a). These 

biofilms were weakly to fully silicified and frequently interspersed with amorphous silica 

aggregates as well as some calcite precipitates (Fig. 4.9a insert), with calcite precipitation 

primarily restricted to the submerged part of the slides. 
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Figure 4.9: Photomicrograph of slides collected at Ilveragerdi (a-b: after 3 months, c-d: after 8 

months). a) Dense filamentous biofilm in the bottom parts of the slides; insert sho"s a calcite 

crystal, b) dense silica layers made up of small silica nanoparticles covering rod-or coccus- 

shaped microbes formed in the submerged parts of the slides, c) mix of silicified filaments, 

empty silica casings and silica aggregates, and d) accumulation of silica nanospheres of 
different sizes forming layers interspersed with microbial cells (both c and d were close to the 

ANVI). 

Similar to the processes observed at GY3, oil the slides from Ilveragerd', grcen-yellow and 

bright orange biofilnis developed after about 8 months suggesting the presence of photo- 

syntlicsising microorganisms (green-yellow) and orange pignienting microbes (bright orange 

layer, Fig. 4.8c). Tlicsc biofilins formed above the AWI where temperatures were lower (-5"C) 

than within the submerged parts ofthe slides, mimicking microbial inats that grew on sinters on 

the sides or within the wastewater drain (Fig. 4.8a, b). Slides collected after 3 and 5 moriths did 

not yet exhibit visible green or orange microbial layers, yet, they exhibited extensive layers of 

silica and calcite densely populated with niats of filamentous microorganisms (Fig. 4.9a) as well 

as significant amounts of' rod-shapcd microbes and cocci (Fig. 4.9b). The degree of microbial 

silicification varied substantially along the vertical length ofthe slides, with silicification being 

more pronounced in the upper parts close to the AWL The comparison between the orange and 
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green layers fonned on the slides after 8 months showed very similar textures and consisted 

primarily of a dense network of silicified filaments, empty silicified microbial cell walls and 

silica aggregates (Fig. 4.9c, d). 

4.4.3 Reykjancs Power Station wastewater drain 

The Reykjanes geothernial field is situated on the Reyk-janes peninsula (Fig. 4.1). The 

geotlicri-nal waters are of seawater origin (Table 4.1) and have reacted with basalts at X250'C 

(Arn6rsson, 1978b). In-sim sinter growth experiments were carried out in a terraced, man-made 

wastewater drain of' a stearn seperator (Fig. 4.10a). The flow rate at this site could not be 

determined with accuracy due to the terraced configuration ofthe outflow channel however, a 

rate ofO. 5 - 0.7m/s was estimated. The temperature at the sampling site was 75"C and the pl I of 

the wastewater was near neutral (pl-l 7.50 at 39.8"C). The measured SiO, concentration within 

the studied wastewater was 695 ppni. 

The base and sides of' the wastewater drain were covered with thick deposits of' white, soft, 

highly hydrated and porous precipitates (Fig. 4.10a). Due to the high precipitation rate, the 

power station operators remove the precipitated material every few months from this drain. X- 

ray diffraction analysis (FIg. 4.4, RK pattern) showed that this porous material consisted of 

amorphous silica, with small amounts of halite and sylvite, the precipitation of which was solely 

due to drying ofthe untreated (unwashed) precipitates. 

A first in-sitit precipitation experiment was carried out for 5 days, however, after this time 

period tile whole tray was covered with soft and porous silica precipitate (Fig. 4.10b, c) and 

sampling of' single slides was not feasible without losing considerable arnounts of material. 

I I'licrctore, a second experiment with a much shorter time interval (Table 4.1) was carried out 

frorn which an average silica precipitation rate ofroughly 304 ± 20 kg y-1n1-2 was estimated. 

The second slide series showed that already after 30 minutes a fine layer of amorphous silica 

formed on the slides, and within 7.5 hours the slides were covered with a 2min thick porous 

layer (Fig. 4.1 Od). SIN analysis showed homogeneous precipitates over the full vertical length 

ot'llic slides consisting ofaggregates of different sized silica spheres ranging from II nni up to 

106 nin (mcan diameter 43.2 ± 20.1 rim; n=140; Fig. 4.11 a). 
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Figure 4.10: a) Outflow channel from a steam separator at Reykjanes Power Station, b) tray 

after 5 days, c) close up of a single slide fully covered in soft and highly hydrated amorphous 

silica precipitates, and d) glass slides collected from the second (short-term) experimental set 

as a function of time (h: hours). 

Interestingly, microscopic analyses of the slides collected from this site showed a total lack of 

microorganisms within the porous precipitates. In addition, elemental mapping using SEM- 

EDX (energy dispersive X-ray) analyses also failed to reveal traces of phosphate, or carbon, 

which could indicate the presence of microorganisms. However, this was not surprising as the 

high precipitation and flow rate (i. e., constant re-supply of water from the separator) also 

prevented the formation of microbial features (e. g., streamers, colored mats, polysaccharides) on 

the sides of the wastewater drain. To further investigate whether this sampling location was 
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poor or totally lacking in microbial activity, single-use, sterile filter papers used for water 
filtration were cxannncd under the SEM, but again no microbial cells were found. However, it 

should be noted that about 30 in further down the drain, a large standing pool (20x5O in, 40'C) 

ofwastewater had formed where the pool edges exhibited some green - yellow tainted sintcrs. 

Figure 4.11: a) SEM photomicrographs of silica nanoparticles accumulated on slides collected 

at a) Reykjanes after I hour and b) Svartsengi after 6 hours. 

4.4.4 Svartseilgi Power Station wastewater pool 

Svartsengi Power Station is located on the Reykjanes peninsula about 20km east of tile 

Reykj anes Power Stat ion (Fig. 4.1 ). The wastewaters from the power station exhibit an intense 

blue coloration (Fig. 4.12a) which is caused by the presence ofcolloidal silica suspended within 

tile wastewater. The geothermal waters represent seawater-i-neteoric water mixtures (Table 4.1) 

with Na, Ca, K, and CI being the most important elements. 

Two sets of' in-sitit experiments (5 days, 17 days) were carried out in a pool (situated a few 

hundred nietres downstream from a steam separator, Fig. 4.12a, b) where the water was mostly 

stagnant (low flow and controlled by wind and wave action). During the first set of experiments, 

the temperature at the study site was 42"C and the pf I was 7.7 (at 42C) while during the second 

set the temperature had increased to 60T, with no change in p1l. The dissolved S102 

concentration in the pool water was 250pprn, which was primarily a consequence of the fact that 

(a) the bulk of' the total silica (- 630 ppin after it leaves the steam separator; Th6rdarson & 

'1'6niasýsson, 1989) had already precipitated in large settling tanks located close to the steam 

separator outflow and (b) the SV waters contained high loads of suspended colloidal silica (blue 

colour of' the sampling pool, Fig. 12a, b) which led to a lower measured total silica 

concentration within the studied wastewater (colloids removed during water filtration). XRD 
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analysis showed amorphous silica as the sole precipitation phase with halite being present as a 

result of drying (<I% of total precipitate; Fig. 4.4, SV pattern). 

steam separator 

Figure 4.12: a) Blue wastewater pool at Svartsengi Power Station with sampling tray in the 

foreground, b) close up of trays left for 6 hours (left tray) and 5 days (right tray); note detail of 

sampling method; c) Slides collected from the tray over a time period of 5 days. 

From the first set of in-situ silica growth studies (Table 4.1) an average silica precipitation rate 

of 9.7 ± 3.5 kg y-Im -2 was determined whereas from the second set, a slightly lower precipitation 

-1 -2 rate of 8.8 ± 3.4 kg YM was obtained. It is important to note that the water temperature at the 

sampling site had increased from 42 to 60'C between the two studies. The water composition 

was not analysed during the second experimental period and was assumed to be equal to that in 

the first experimental period. 

Microscopic analyses (SEM/EDX) of the precipitates on the slides revealed that they were 

covered with fine aggregates of silica particles (Fig. 4.11b). However, the aggregates, when 

compared to those from Reykjanes, were far smaller, more fragile and had an almost gel-like 

appearance. Individual particles exhibited diameters between 10 and 36 nm (mean 18.4 ± 4.0 

nm, n=140, Fig. 4.1 lb). Similar to Reykjanes, the Svartsengi slides, as well as the filter paper 

used to collect the spring waters, revealed no traces of microorganisms. These findings were not 

surprising. The static nature and long residence time of the waters in the pool allowed silica to 

precipitate at a high rate on the slides. However, the short tenure of the slides (<I 7days) in the 

pool waters coupled with the high precipitation rate prevented microbial colonization of the 
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slides. In contrast, the silica-rich pool sediments were more likely to be colonized because of the 

static nature and longer residence time of the waters in the pool. 

4.4.5 Krafla Power Station wastewater drain 

The Krafla geothermal area is situated in north eastern Iceland near lake Mývatn and the 

volcano Krafla (Fig. 4.1). The fluids circulating within the geothen-nal system are dominated by 

meteoric water with increased concentrations of sulphate (Table 4.1), a consequence of 
interactions with basalts at >250'C (Am6rsson et al., 1983a). 

Figure 4.13: a) Steam separator and outflow channel at Krafla Power Station with location of 

sampling tray, b) close up of tray left for 25 months within the wastewater drain, c) coalesced 

slides on the tray after collection, and d) close up of 2 separated and dried slides showing a 

heterogeneous texture and colour. 

The sampling location was situated in a wastewater drain of the Krafla Power Station where the 

temperature was 80'C (Fig. 4.13a). The pH was very alkaline (pH 10.0) and the Si02 

concentration was 603ppm. Hard and compact, black-coloured sinter deposits observed along 

the wastewater channel indicated relatively low sinter growth rates and the in-situ sinter growth 

experiments were sampled only once after 25 months (but also as this was the most inaccessible 
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site). Surprisingly, the growth rate was far higher than expected and the whole tmy was covered 
in dense, black precipitate (Fig. 4.13b, c). All slides were carefully separated and a precipitation 

rate of 19.5 kg yIM72 was estimated. 

XRD examination of fresh precipitates scraped off the top (Fig. 4.14, KF-T pattem) and bottom 

(Fig. 4.14, KF-B pattem) of the slides revealed that amorphous silica was the main mineral 

phase present within the black precipitate. Interestingly, the XRD pattem of the precipitates 
from the constantly submerged parts of the slides revealed the presence of minor amounts of 

quartz (Fig. 4.14, KF-B, note small q-labelled peak above amorphous background). which could 
have either formed authigenically within the sinter (see discussion) or could be detrital and be 

brought to the surface by the circulating geothermal waters. The occurrence of quartz in aged 

modem geothermal sinters in New Zealand was demonstrated by Lynne et al. (2006), who 

reacted freshly precipitated microbe-rich, amorphous silica sinters from the Wairakei Power 

plant drain (see also Mountain et al., 2003) in a low pH (3.5-5.5), high temperature (75-94*C) 

steam vent at Orakei Korako, NZ for up to 2 years. Based on changes in XRD pattems they 

concluded that quartz peaks developed after -5 months, which could support the observations 

presented here where quartz peaks were observed in the subaqueous Krafla sinters (made up 

primarily of amorphous silica) that had reacted with the effluent solutions for 25 months (in 

contrast to Lynne et al., 2006 who reacted their sinter samples in steam vents). However, it is 

noteworthy that no quartz crystals were identified in the SEM study, yet this could be a 

consequence of the selective sampling and examination protocols. 

The black colour of the precipitate was mainly caused by accessory minerals, including 

pyrrhotite, magnetite, and marcasite (Fig. 4.14, KF-T and KF-B pattern) which have all 

previously been identified as being in equilibrium with the geothermal waters at Krafla 

(Gunnlaugsson and Arn6rsson, 1982). In addition, a red layer was observed in the middle part 

of the slides (Fig. 4.13d) consisting primarily of hematite (red colour), magnetite, marcasite and 

albite (Fig. 4.14, KF-R pattern). Pyrrhotite was absent within this red layer indicating a possible 

oxidation of the sulfides to their oxide counterp&ts, i. e., hematite. Albite is 'not a common 

mineral in silica sinter deposits but it has been shown to occur as an alteration product in both 

low and high temperatures geothermal environments (e. g., Miyashiro, 1975; Browne, 1978 and 

references therein). Furthermore, Steffinsson and Am6rsson (2000) demonstrated that 

geothermal waters are in equilibrium with low-albite at temperatures between as low as 20 to 

3000C. It is important to note that the precipitation of albite, iron sulphides and oxides 

contributed only little (<5%) to the measured growth rate as indicated by XRD (XRD peaks of 

these crystalline minerals are small compared to the broad opal-A peak). 
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Figure 4.14: XRD patterns of precipitates scraped off different parts of the slides collected at 

Krafla (top of slide, KF-T; bottom of slide, KF-B, red precipitate, KF-R). For comparison, the 

XRD patterns from Ilveragerdi (11V) and Geysir ((, V2) and the position of the opal-A 20- 

range are shown. 

All glass slides were covered with a 0.5 to I cm thick layer of compact black sinter (Fig. 4.13) 

which made a microscopic cxamination of individual slides difficult and thus precipitates, 

scraped off close to the AWI, the middle and the bottorn of the slides, were analysed. At the 

AWI, dense columnar textures developed consisting mainly of spherical aggregates of 

amorphous silica with tcw interspersed larger iron sulphides and oxides (conlinned by FDX and 

XRD; Fig. 4.14 and 4.15a) and a few rod-shaped microorganisms (Fig. 4.15a). Further down the 

slide, the amount of' microorganisms increased but overall, the slides were dominated by 

perfectly smooth silica spheres that coalesced into larger aggregates (Fig. 4.15b), a few larger 

crystals of 1ron oxides, sulfides and albite (Fig. 4.15c and Fig. 4.14). In the constantly 

submerged parts of the slides thick silicified biol-ilms developed (Fig. 4.13d), consisting of long 

and fully silicified filarnents (Fig. 4.15d) with lengths up to several hundreds of pin. 
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Figure 4.15: Photomicrographs of precipitate from KF after 25 months. a) Rough surface with 

columnar-like structures at the AWI consisting mainly of amorphous silica, iron sulphides and 

oxides (confirmed by EDS and XRD) interspersed with microbes and larger crystals of iron 

sulphides, b) aggregates of silica spheres, c) albite crystals surrounded by silica aggregates and 

microbes, (1) dense accumulation of silicified microbial filaments in the lower parts of the 

slides. 

4.5 Discussion 

The main objectives ofthis study were threefold: (i) to quantify the growth rate ot'silica sinters 

as a function of temperature (42-96'C), pH (7.5-10) and geothenrial water composition 

(specifically silica content; 250-695 pprn), (11) to ascertain the variations in sinter structure and 

texture as a function of sintcr growth rate and microbial communities and, (111) to compare and 

contrast these fcatures. 

As mentioned previously, a few studies (Mountain et al., 2003, Smith et al., 2003 and Handley 

et al., 2005) have carried out similar in-sim sinter growth field studies in various geothernial 

, areas in the Taupo volcanic zone in New Zealand (NZ) thus allowing a direct comparison 

between geothermal systerns in Iceland and New Zealand. Similarly, in-sim growth studies 

(e. g., Blank et al., 2002; Spear et al., 2005; Kandianis et al., 2008 and ret'erences therein) have 
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been done in Yellowstone National Park, US, however, no actual sinter growth rates were 
determined or they concentrated on calcite precipitation, i. e., fonnation of travertine, thus a 

comparison with these studies was not possible. 

4.5.1 Spring and drain water chemistry, pH and T-regimes 

Within the geothcnml areas at Gcysir, Hveragerdi and Krafla, the spring and drain waters were 

characterized by low salinity and alkaline pH, wheras, the geothermal waters at Svartsengi and 
Reykjanes were highly saline (seawater-meteoric water mixtures) with near neutral pH (Table 

4.2). Temperature, one of the major controls on silica solubility, and one of the prime reasons 
for choosing the various experimental sites, ranged between 42 and 96'C. This was to a certain 
degree also mirrored by the measured silica concentrations which varied substantially between 

the five studied geothermal systems (695ppm to 250 PPM Si02) with the highest values at 
Reykjanes and Krafla and the lowest at Svartsengi (Table 4.2). 

Table 4.2: Comparison of physico-chemical parameters of the studied geothermal waters as 

well as measured silica growth rate and degree of silica saturation (using PHREEQC). 

Location -T (-C) b pHrC 
[SiO2]tot 'Salintly Growth rate 

4 2 
Saturation 

. PPM % kg y m* Index, SI 

Krafla 80 10.0/50 603 0.06 19.5 12.4 -0.94 
GYl 70-96 9.0/86 363 0.05 0.3 ± 0.1 -0.54 
GY2 76-82 8.7178 372 0.05 0.7 0.3 -0.38 
d GY3 61-70 9.0/68 

. 
d 372 do. 05 1.4 0.5 -0.4 

Hveragerdi 66-74 9.1/71 304 0.04 *1.1 0.4 -0.49 
Svartsengi 42 7.7142 250 2.56 9.7 3.5 -0.09 

60 7.6/21 8.8 3.4 

Reykjanes 75 7.5/40 695 4.67 304 ± 20 0.17 

*temperature fluctuations over the experimental period 
b mean value of measured pH over time period studied (variationst 0.2 units) 
Ocalculated with the ion concentrations listed in Table I 
"water chemistry at GY3 was assumed to be Identical to GY2 due to their proximity (-10m) 
eoverall growth rate, including calcite and silica precipitation In equal amounts, was 2.1 :t0.7 kgy4nf 2 
'solution composition during the second experimental period was assumed to be equal to that In the 
first experimental period. 

The main factor governing silica precipitation from geothermal waters is the silica solubility 
(i. e., degree of silica saturation) which is a function of pH, temperature, salinity and silica 

concentration (Fig. 4.16; see section 2.1.3 for more details). It follows that the degree of silica 



saturation, i. e., silica precipitation rates, are highest in near-neutral, saline, low-ternperature 

geothermal waters with high silica concentrations (Fig. 4.16). 

-1.6 
- 

-1.9 

-x-601C meteoric -X- 601C saline 

-100, Cmeteoric -- 100*Csaline 

amorphous 
silica 

RK, 75*C 

GY3 
-2.2 o0'GY2:. 4* 

SV, 42 - WC 
X, 

X-X---x -2.5 X-X-x x 

-x- -- -x- -x- _X 
Si02 (aq) 

-2.8 --- -- -- -- - -- ---u --- 
56 78 

pH 

KF, 80'C 

T= 61 - 96'C 

10 11 

Figure 4.16: Diagram of log activity (log a) of silica as a function of p1l, showing the effects of 

temperature and salinity. Also plotted are the p1l - Si02 - conditions representing the five 

studied geothermal systems. The full lines depict the solubility of amorphous silica in meteoric 

waters at 50 and 100"C whereas the shaded area represents the 50 - 1001' silica solubility 

region in highly saline waters (contain - 0.7M NaCl, represents salinity of geothermal waters 

at Reykjanes). Data from geochemical modelling using IIllREEQC (see methods, Table 4.2). 

As illustrated in Figure 4.16, the surface waters sampled at Geysir, Ilveragerdi and Krafla 

appeared to be undcrsaturatcd with respect to amorphous silica (Table 4.2, Sl,,, ()2<0 and Fig. 

4.16 points below the stability line between amorphous silica and SiO-'(,, q)) while the saline 

waters at Reyk-janes were supersaturated (Table 4.2, SISiO2>0 and Fig. 4.16, RK is significantly 

above the -stability line). Despite its low temperature and near-neutral p1l, tile geothernial water 

at Svartsengi seemed slightly undcrsaturated with respect to amorphous silica (Table 4.2, 

SISiO2-0), which was due to the fact that most silica precipitation had occurred in the settling 

tanks located a few hundred meters upstrearn. Although the waters at the experiniental site were 

close to eqUIlibruini with amorphous silica, the total silica concentration may have been 

underestimated due to removal of suspended silica particulates by filtration. 
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In general, the calculated SI values are representative for equilibrated systems and this 

assumption is only partly valid for the studied waters. Furthermore, Sl values can be 

substantially different if calculated with another geochernical code and a different database (data 

not shown). As a result, the reported SI values most likely deviate from the true saturation state 

of the studied waters, but nevertheless provide information of the general trends. 

4.5.2 Sinter growth rates 

The variations in temperature, pH salinity, amorphous silica saturation and abundance of 

microorganisms between the five studied Icelandic geothermal systems are reflected in the wide 

range of measured sinter growth rates (0.2 to 304 kg yl nf2 , Table 4.2). 

The effect of temperature is best exemplified by the growth rates determined at Svartsengi and 

the three Geysir sites. At Svartsengi, the difference in sinter growth rate between September 

2005 (10 kg Y' m72 at 42'Q and July 2007 (9 kg y' ni2 at 60'Q was most certainly caused by 

an increase in water temperature at the sampling sites (assuming the water chemistry did not 

change between the two studies). Similarly, the differences in growth rates between the three 

sampling site at Geysir was simply due to temperature dependent solubility of amorphous silica 
(Iler, 1979) ) because at all Geysir sites pH, silica concentration and salinity were equivalent. As 

a result, the highest precipitation rates were measured at GY3 (1.4 kg y-1 ff2 
, 
T. a,, = 70'Q and 

the lowest at GY1 (0.2 kg yl rrf 2 ), where the maximum temperature was about 26'C higher 

(Table 4.2). The water temperature at GY2 (T. X= 82'C) lead to a growth rate (0.7 kg Y, m7 2) in 

between the values determined for GY1 and GY3. The findings are consistent with the degree of 

silica saturation at GY1 (SI = -0.54) as compared to GY3 (SI = -0.40). It has to be noted that all 

studied spring waters at Geysir were undersaturated with respect to silica (Fig. 4.16, Table 4.2), 

suggesting that subaqueous silica precipitation was inhibited. This was consistent with SEM 

results showing that sinter mostly grew close to the AW1 due to evaporation and condensation 

processes. Similar observations were made by Mountain et al. (2003) in geothermal pools at 
Ngatamariki and Orakei Korako, NZ, in which sinter growth was also dominated by the 

formation of subaerial spicular structures. Note that the hydrodynamic and geochernical 

conditions at these sites were comparable with those in the Icelandic Geysir springs. 

The geothermal waters at Hveragerdi had similar salinity, silica concentration, pH and 

temperature to GY3. After correction due to calcite precipitation, a sinter precipitation rate of 
0.7 kg Y'm72 was calculated which is substantially lower compared to GY3 (1.4 kg Y-Inf 2) 

. This 

lower rate is reflected in the lower SI at Hveragerdi (SI = -0.49) when compared with GY3 (SI = 

-0.40, Fig. 16) and was due to the lower silica concentration in the waters at HV (ASi02, GY3-HV 

-70ppm). As mentioned before, calcite precipitation was restricted to the submerged part of the 
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slides while silica mainly formed in the vicinity of the AWI (Fig. 9). Equivalent processes have 

been described in geothermal waters in New Zealand, e. g., Orakei Korako (Mountain et al., 
2003) and Waikite (Jones et al., 2000; Mountain et al., 2003). At Waikite only calcite was found 

to precipitate subaqueously at high temperatures, while at Orakei Korako - 26% of the sinter 

growth contribution stemmed from subaqueous calcite precipitation with the remainder of the 

sinter growth being due to silica precipitation. 

Much higher precipitation rates were observed for the saline waters at Reykjanes and 
Svartsengi. At Reykjanes the waters were supersaturated with respect to amorphous silica (Sl = 
0.18,675 PPM Si02(,, q), Fig. 4.16) and the measured growth rate (304 kg y-1 rif 2) was between 

200 and 1000 fold higher than at Geysir and Hveragerdi. This high rate was the result of the 

high dissolved silica concentration, the near neutral pH, and to a lesser extent, the high salinity 

of the drain waters. The Reykjanes growth rate is comparable to sinter growth rates within a 

wastewater drain at Wairakei Power Station, NZ (Mountain et al., 2003) where a similar growth 

rate (350 kg Y' rn72) was measured, although the drain waters at Wairakei were colder (62'C), 

more alkaline (pH=8.5) and less saline (meteoric water origin) thus more comparable to Geysir 

and Hveragerdi. The similarity in growth rates between Wairakei and Reykjanes may be 

primarily the consequence of the fast re-supply of highly silica saturated solutions, while 

salinity and temperature may play a lesser role. 

At Svartsengi, the growth rates (9 kg Y1 nf2 at 600C and 10 kg y7l m72 at 42'C) were a thirtieth of 

those at Reykjanes. Although, salinity at both sites was high, the lower total silica concentration 
(measured after filtration and colloid removal), i. e., degree of silica saturation (SI = -0.09, Table 

2), and the slow re-supply of fresh silica-rich solution resulted in a much lower precipitation 

rate compared to Reykjanes. As mentioned previously, the bulk of the total silica had already 

precipitated in form of colloids along the outflow channels (blue colour in Fig. 12a). As a result, 

sinter growth at this site was mainly controlled by aggregation of the suspended silica colloids, 

and to a lesser extend by evaporation and cooling processes. 

As discussed previously, the pH of geothermal waters has a strong effect on the solubility of 

amorphous silica (Fig. 4.16) and thus on sinter growth rates. As a result of this, it was not 

surprising to find the most undersaturated waters at Krafla (Fig. 4.16, SI = -0.94) where the 

geothermal water had a pH of 10. However, the precipitation rate determined for Krafla (19.5 kg 

YA M72) was - 10 times higher than within the undersaturated geothermal waters at Geysir and 
Hveragerdi although the waters at all these three sites were of equivalent salinity and 

temperature. Furthermore, the Krafla rate was twice as high as at Svartsengi where the 

wastewaters were only slightly undersaturated with respect to silica yet the waters were highly 

saline, near neutral, lower in temperature and contained high loads of suspended silica colloids. 
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As shown by the SEM analyses (Fig. 4.15a, b), at Krafla a large proportion of silica precipitated 
in the vicinity of the AWI due to evaporation and condensation processes. This was not 

surprising as the total silica concentration was twice as high as at Geysir and Hveragerdi, which 

resulted in a substantially higher polymerization and precipitation rate at the AWI. However, 

most silica was found in the submerged parts of the slides which were dominated by thick 

silicified biofilms (Fig. 4.13d, 15d). This suggests that once the slides were densely colonized 
by microorganisms, silica colloids that formed close to the AWI quickly adhered to the surfaces 

of the biofilm leading to its complete silicification (e. g., Mountain et al., 2003; Benning et al., 
2004 a, b; Lalonde et al., 2005). Note that the adhesion of silica colloids most likely occurred 

via hydrogen-bonding as well as entrapment of colloids within the complex structure of the 

biofilms exopolysaccharides. 

4.5.3 Comparison of sinter growth rates and structures/textures 

Overall, in the five studied geothennal areas, the influence of microorganisms on the texture and 

structure of sinters was variable but, the sinter fabrics correlated well with the growth rates 
detennined at each locality as well as other in-situ studies (e. g., Mountain et al., 2003; Handley 

et al., 2005, see section 2.2.4). 

In spring and drain waters at Geysir, Hveragerdi and Krafla where the precipitation rates were 
low to high, sinter fabrics consisted of dense, weakly laminated and quite heterogeneous 

deposits. The sinter structures and textures were dominated by the high abundance of 

thermophilic microorganisms (60 to 96'C), and thick biofilms developed both in the submerged 

parts as well as at the AWL At GY1, after only 5 days a dense mat of filaments fully covered 

the submerged part of the slides where the temperatures were consistently at -80'C. Even at the 

AW1 where the water temperature reached values as high as 96'C microorganisms were still 

present. Due to the slow precipitation rates at this sites, microbial surfaces became continuously 

covered with silica particles and with time these particles joined together to form dense layers. It 

has to be noted that this consolidation process did not happen rapidly but rather took weeks to 

months, leading to the full silicification of the microbial communities and the subsequent 
incorporation into the compact sinters (Handley et al., 2005). Nevertheless, at GYI and GY2 

after only 5 days, microorganisms were already partly silicified. Similar high silicification rates 

were observed in a spring outflow channel at Krisuvik, Iceland (Konhauser et al., 2001) as well 

as in various geothermal waters in New Zealand, e. g., Iodine Pool, Waimangu (Jones et al., 
2004), Champagne Pool, Waiotapo (e. g., Jones et al., 1999; Handley et al., 2005). 

The sinter structures and textures at Geysir and Hveragerdi were very similar. The texture of the 

precipitates in the subaqueous parts of slides varied mainly due to the presence of differently 
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shaped microorganisms (filaments, cocci, rod-shaped microbes, diatoms) as well as their 

abundance. At sites with lower temperatures, i. e., GY3 and HV, microbial mats colonized the 

slides faster and the range of microbial cell morphologies was significantly higher than at GY1 

and GY2 (higher temperatures). This larger diversity was confirmed by 16S rDNA analysis of 

microbial mats from these sites (Chapter 5). On slides from GY3 and HV thick coloured 
biofilms also developed at the AWI (Fig. 4.8 and 4.11) whereas at GY1 and GY2 microbial 

mats were restricted to the submerged parts of the slides. The textures that dominated the 

vicinity of the AWI at GY1 and GY2 included compact silica crusts interspersed with spicules 

and terrace-like structures, which were sporadically covered with microorganisms. The best 

defined spicules were observed at GY1 which were very similar in character to those observed 

at Octopus Spring, Yellowstone National Park (a gently surging, near-neutral spring with T 

varying from <73 to >85*C, Braunstein and Lowe, 2001). A few spicules also formed on slides 

collected at GY2, however the dominant features at the AWI were distinct silica terraces that 

increased in height up to 3 mm over the time period studied (Fig. 4.6). Conversely, at GY3 and 
HV, microbial growth was much higher and the development of spicules and well defined 

terraces was inhibited. The latter two sites could be compared with Pavlova spring, 
Ngatamariki, NZ (pH = 7.2, T= 71*C, Mountain et al., 2003) where biofilms fully covered the 

slides after only 6 days and sinter development was far slower. 

Interestingly, at Krafla, the textures and structures of the black sinters; were similar to GY1 

where the bottom parts of the slides were characterised by biofilms. However, most silica 

precipitated initially in the vicinity of the AWI (subaerially) and was enhanced by the presence 

of microbial surfaces in the submerged parts. 

Lastly, at Svartsengi and Reykjanes where the precipitation rates were intermediate to very 
high, sinters forming within and along the wastewater drains and pools (both subaqueous and 

subaerially) were very porous and homogeneous. It is worth noting that particle interactions are 

aided by the presence of salts (i. e., interparticle bonding through cations such as Na'; e. g., Iler et 

al., 1979 and refemces therein; Smith et al., 2003). This suggests that silica particle aggregation 

was enhanced in the highly saline geothermal waters at Svartsengi and Reykjanes which also 

explained the formation of the porous, gel-like precipitates in these waters. Intriguingly, the size 
distribution of the silica aggregates as well as of the individual silica nanoparticles differed 

between the two sampling locations. At Reykjanes, at higher temperature and precipitation rate, 

a wider size distribution was observed (11-106 nm), while at Svartsengi (far lower temperatures, 

slower precipitation rates and stagnant water) a very narrow distribution of the individual silica 

particles (10-36 nm) was observed. From this data, it is not possible to pinpoint the governing 
factor leading to this discrepancy and most probably more than one factor, e. g., temperature, 

precipitation rate as well as flow rate influences the size of the precipitating silica colloids. The 
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high precipitation rates as well as high salt contents at Reykjanes and Svartsengi was also not 

conducive to microbial colonization and SEM observation of slides or filters from both sites 
failed to reveal any microbial presence. However, successful DNA extraction from loose 

sediments collected at Svartsengi indicated that over longer time periods microorganisms 

actually adapted to conditions present in the studied pool. In contrast, DNA extraction at 
Reykjanes was not successful (chapter 5) which suggested that due to the high salinity, high 

temperature, high flow rate as well as high sinter growth rate (304 kg y-1 m7 2) the microbial 

abundance was low at this site. 

4.6 Conclusions 

In-situ sinter growth experiments carried out in natural geothermal areas are uniquely suited to 

provide data on the mechanisms and processes affecting or governing sinter formation as a 
function of a complex set of parameters. In this study, growth rates and the structural and 
textural developments of sinters from five diverse geothermal sites in Iceland were analyzed 
from both an abiotic and a biotic perspective. The fact that the physico-chemical conditions 

varied significantly between these sites allowed a realistic comparison of sinter growth rates, 

sinter structures and textures between the different hydrodynamic and geochemical settings. The 

results clearly showed that the mesoscopic and microscopic textural development of silica 

sinters was strongly influenced by (1) the inorganic silica precipitation rate which itself was a 
function of temperature, pH, salinity, silica saturation and flow rates, (2) the precipitation 

mechanism (subaqueously and/or subaerially) and (3) the presence of mesophilic and 
thermophilic microorganisms. The analysis showed that in all geothermal areas where the 

waters exhibited near neutral pH, moderate to high silica content and high salinity (i. e., 
Reykjanes and Svartsengi) silica precipitation rates were high. These physico-chernical 

parameters led to the growth of porous and homogeneous sinters that developed predominantly 

subaqueously. In addition, due to the high salt contents and high growth rates, microbial activity 

was very low and microbial fossilization and preservation was poor. Conversely, in the 

geothermal sites where the waters were undersaturated with respect to silica (i. e., Geysir, 

Hveragerdi and Krafla), subaqueous silica precipitation was inhibited and sinter growth was 

mostly restricted to the AWI where evaporation and condensation processes dominated. As a 

consequence, dense and heterogeneous sinters with well defined spicules and silica terraces 
formed in the vicinity of the AWI. Despite the temperatures being quite high in these springs, 

extensive biofihns mainly developed in the submerged zone, and in turn due to the low silica 

precipitation rates these biofilms became fully silicified (externally and internally) and were 

well preserved within the growing sinters. Nevertheless, they also substantiate the strong abiotic 
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- biotic relationship and their complementary roles in the build up of the silica sinter structures 

and textures. Naturally, the observed processes also emphasize the importance of in-situ studies 
in natural settings with a view towards enhancing our understanding of processes on the modem 
Earth, but with equivalent applications to ancient geological processes observed on the 

Precambrian Earth. Lastly, silica rich deposits recently described in Gusev Crater on Mars were 

postulated possibly to have derived from hydrothermal solutions supersaturated in silica. 
Although, obviously so far no microbial evidence has been documented, the preponderance and 

close association of microbial communities with silica sinters on Earth, make this a good 

analogue for future missions to Mars. 
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5 THE EFFECTS OF TEMPERATURE, SALINITY, PH AND SINTER. 

GROWTH RATE ON MICROBIAL DIVERSITY IN ICELANDIC 

HOT SPRINGS 

5.1 Abstract 

The microbial ecology associated with siliceous sinters; was studied in five geocherrdcally 
diverse Icelandic geothermal systems (described in chapter 4) and analysed in terms of 

variations in geochernical conditions (i. e., T, pH, salinity and sinter growth rate). The diversity 

of microbial communities was investigated by polymerase chain reaction (PCR) amplification 

of 16S rDNA gene sequences from DNA extracted from sediments of each study site, followed 

by molecular cloning and sequencing. Both bacterial and archaeal DNA was retrieved from 

sediments at the two Geysir sites (GY1 and GY2), Hveragerdi (HV) and Svartsengi (SV) while 

only bacterial DNA was detected at Krafla (KF). No microbial DNA was found at Reykjanes 

(RK) suggesting that the physico-chetriical conditions at this site, i. e., high salinity (2: 4.7%), 

high temperature (ý: 75'Q and high sinter growth rates (2! 300 kg y-1 rrf2), were too challenging 
(i. e., too extreme) for the development of thermophilic microbial communities. Findings from 

the other sites indicated that the detected bacterial phylotypes fall mainly into the same 

phylogenetic classes (i. e., Aquificae, Deinococci, r-Proteobacteria). Aquificae (mostly closely 

related to Thermocrinis) was ubiquitous at GY1 (site with the highest temperature) but also 

occurred at all other high-T sites, i. e., GY2, HV and KF, while close relatives of the Deinococci 

(Thennus species) were restricted to GY2 and HV- r- Proteobacteria were the predominant 

class at KF and SV but a few clones were also found at GY1 and HV. The observed 

phylogenetic diversity (i. e., number and composition of detected phylotypes) is argued to be 

strongly related to the geochernical regime of the studied geothermal waters showing a decrease 

in bacterial diversity with an increase in T, salinity, sinter growth rates and more alkaline pH. 

5.2 Introduction 

The study of extreme environments and the org*sms that inhabit them, i. e., extremophiles, has 

made the search for extinct and extant life in the ancient Earth as well as on other planets more 

plausible. Amongst terrestrial extreme environments, geothermal hot springs and the associated 

silica sinters are well known analogues for early Earth (e. g., Cady and Farmer, 1996; 

Konhauser, 2000; Cady, 2001; Toporski, 2002 and references therein) and early Mars (e. g., 
Walter and Des Marais, 1993; Farmer and Des Marais, 1994; Farmer, 1996) conditions and the 
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silicification and preservation of microorganisms in these systems have thus been the focus of 

extensive research (see section 2.2.5 for more details). Furthermore, a plethora of studies have 

characterised the microbial communities found in various hot springs and analysed their 

metabolic pathways and how they adapted to these extreme conditions (see section 2.2.3 for 

more details). However, the parameters controlling the diversity of such microbial communities 
(i. e., the potential for microbial fossilisation and preservation) as well as the links between 

community diversity and geochernical/ hydrodynamic regimes prevalent in hot springs are still 

poorly understood. 

Here we present results from phylogenetic analyses of microbial diversity in five geochemically 
diverse (T, pH, salinity, sinter growth rate) Icelandic geothermal systems where silica 

precipitation leads to the preservation/fossilization of microbial biomarkers. At each location, T, 

pH, salinity and water chemistry were analysed and sinter growth rates were monitored in-situ 

using glass slides that acted as precipitation substrates (chapter 4). Standard molecular 

techniques that targeted both bacterial and archaeal 16S rDNA were employed and five bacterial 

clone libraries were derived. The majority of the sequences were closely (>96%) related to 

currently known sequences, but representatives of new divisions were also found. The diversity 

of bacterial communities was determined for each site and subsequently analysed in terms of 
how four major geochernical factors (temperature, pH, salinity and sinter growth rate) affect the 

microbial community structure. The data were compared with other molecular studies on the 

bacterial diversity in Icelandic and other hot springs. 

5.3 Methodology 

At all sites (except GY3) sediments were sampled aseptically in sterile vials from the same 

sampling sites as described in chapter 4. The characterisation of the physico-chemical 

conditions (i. e., T, pH, salinity and water chemistry) and the in-situ determination of the sinter 

growth rates at these sites were described in section 4.2. 

Full details of the molecular techniques are given in section 3.1.4. Briefly, DNA was extracted 
from the collected sediment samples using the FastDNASSPIN Kit for soils (Qbiogene). This 

was followed by amplification of 16S rDNA using both bacterial and archaeat specific primer 

sets: Archaea Arl09f - Ar9l2r, Bacteria Eu9f - Eu1492b. PCR products were run on a 1% 

Agarose gel to identify bacterial and archaeal bands. Thereafter, PCR products were purified 

using PureLink PCR Purification Kit (Invitrogen). 

The bacterial PCR products were cloned using a TOPO TA cloning kit (Invitrogen) according to 

the manufacturer's instructions which resulted in five bacterial clone libraries (see section 3.1.4 
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for more details). Plasmid DNA from single colonies (-100 colonies per library) was isolated 

and amplified, using M 13 f and M 13 f primers. Groups of clones were subdivided on the basis of 

restriction fragment-length polymorphism (RFLP) analysis following MSPI(Hpall) and Hin61 

digests. Digests were run on a 3% Agarose gel to identify unique banding patterns and based on 
these results, subgroups were sent off for sequencing. Returned contiguous sequences were 

assembled using Sequencher 4.7 (Gene Code Corporation), uploaded into the Ribosomal 

Database Project - 11 (RDP-Il; Cole et al., 2006 and references therein) in which all sequences 

were aligned'and tested for sequence anomalies (e. g., chimeric artefacts). Closest relatives were 
found using RDP-11 Sequence Match and phylogenetic trees were constructed with the 
Weighbor weighted neighbor-joining algorithm using the RDP-II Tree Tool. 

5.4 Results 

The six sampling sites, i. e., Geysirlj Geysir2, Hveragerdi, Krafla, Svartsengi and Reykjanes 

(chapter 4) were characterised by relatively large variations in geochemical parameters (near- 

neutral to alkaline spring waters, temperatures ranging between 40-90'C, low to high salinity; 
Table 5.1) and where siliceous sinter deposits were observed at the side of outflow channels of 
hot springs and steam separators. 

5.4.1 Community structure analysis 

Archaeal and bacterial DNA was successfully extracted and amplified from both Geysir sites 
(GYI and GY2), Hveragerdi (HV) and Svartsengi (SV), while only bacterial DNA could be 

amplified at Krafla (KF). At Reykjanes (RK), despite multiple attempts neither archaeal nor 
bacterial DNA could be extracted from the collected sediments suggesting that at this site 

microbial activity is very low. 

Bacterial PCR products from all extractions were pooled and bacterial clone libraries were 

constructed for GYI (61 clones), GY2 (89 clones), HV (81 clones), KF (46 clones) and SV (95 

clones). The archaeal PCR products were not further analysed due to time constraints. The 

biodiversity patterns found at each sampling site are summarised in Table 5.1, while a more 

specific inventory including the phylogenetic affiliation, the closest RDP match with accession 

number, percentage similarity to the RDP data, and the number of clones related to this 

sequence (i. e., screened by RFLP patterns) are given in Table 5.2 and 5.3. 
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Table 5.2: Summary of bacterial 16S rDNA gene sequencing results at GY1, GY2 and HV. 

For each analysed clone, the % identity (based on RDP-II Sequence Match), the closest RDP 

match with accession number, class - level affiliation, and the number of clones related to the 

RDP match (i. e., screened by RFLP patterns) are given. 

ID % Access Closest database match Phylogenetic class 
# 

clones 

GYI (total number of clones = 61) 

100 AF255599 Aquificales str. SRI-48 Aquificae 58 

100 AM749791 Geobacillussp. K8 Bacilli 2 

99 AF188300 Acinetobacterjohnsonii y- Proteobacteria 1 

GY2 (total number of clones = 89 

93-100 Y18411 Thermus antranikianus str. HN3-7T Doinococci 51 

99-100 AF255599 Aquificales str. SRI-48 Aquificae 26 

99-100 DQ1 08401 Bacillus sp. Tibet-S2a2 Bacilli 4 

99 AB055093 Bacillus sp. KSM-KP43 Bacilli 3 

99 EF554889 Ralstonia sp. H13 8- Proteobacteria 1 

<85 unidentified unidentified 4 

HV (total number of clones = 81 

88-99 AF255590 Thermus sp. SRI-96 Deinococci 33 

97-99 AF255591 Thermus sp. SRI-248 Deinococci 4 

95-99 AF407742 Thermus sp. B70-05 Deinococci 2 

93 AF020205 Thermus scotoductus SA-01 Deinococci 2 

91-99 L09661 Thermus sp. L09661 Deinococci 3 

98 AF407746 Thermus sp. Y55-1 0 Deinococci 1 

89-97 AF027045 Candidate division OP1 clone OPB14 Aquificae 11 

90-99 AM778960 Sulfurihydrogenibium kristiansson! Aquificae 8 

86 AF255598 Aquiticales str. SRI-40 Aquiticae 1 

89-99 DQ862553 Stenotrophomonas maltophilia PTB2063 r- Proteobacteria 4 

93-99 AF255603 Nitrospira sp. SRI-9 Nitrospira 3 

92 AF255602 Nitrospira sp. SRI-237 Nitrospira 1 

90-99 EF111105 Variovoraxsp. RBElCD-35 Proteobacteria 2 

99 AB245358 Variovorax ginsengisoli Gsoil 3165 Proteobacteria 1 

100 AM749791 Geobacillus sp. K8 Bacifli 1 

<88 unidentified unidentified 4 
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Table 5.3: Summary of bacterial 16S rDNA gene sequencing results at KF and SV. For each 

analysed clone, the % identity (based on RDP-11 Sequence Match), the closest RDP match with 

accession number, class - level affiliation, and the number of clones related to the RDP match 
(i. e., screened by RFLP patterns) are given. 

ID % Access Closest database match Phylogenetic class 
# 

clones 

KF (total number of clones = 46) 

99-100 AF058286 Pseudomonas mandefii (T) 7- Proteobacteria 18 
98-99 D0628970 Gamma proteobactedum SOC A20 7- Proteobacteda 2 
99 DQ257426 Acinetobacterjohnsonii strain CAI-6 7- Proteobacteria 1 
99-100 AJ551154 Arthrobactersp. An 16 Actinobacteria 9 
99-100 DQ515962 Flavobacterium sp. W133.4-82 Flavobacteria 8 
99-100 AF255599 Aquificales str. SRI-48 Aquificae 4 
99 AJ227789 Caulobactersp. DSM 6811 a- Proteobacteria 2 
100 AY315163 Glacier bacterium FXI 13 a- Proteobacteria 1 
100 EF554889 Ralstonia sp. H13 6- Proteobacteria 1 

SV (total number of clones = 95 

88-100 AB166980 Marinobactersp. NIT N31 Proteobacteria 66 

99-100 DQ270762 Marinobactersp. B-3091 Proteobacteria 4 

99-100 AY690679 Sphingomonas sp. GC 14 a- Proteobacteria 5 

93-100 AJ309862 Oceanicaulis alexandrY Cl 16-18 ct - Proteobacteria 3 

92 EF061106 Mesorhizobium amorphae CCBAU a- Protoobacteria 1 

96 DQ486495 Oceanicaulis sp. DG1 255 a- Proteobacteda 1 
98 AJ440996 Flavobacterium gelidilacus str. LMG21619 Flavobacteria 4 
91 AM709630 Microcoleus chtonoplastes PCC 7420 Cyanobacterla 2 
91 DQ460703 Chroococcus turgidus HUW 799 Cyanobacteria 1 
91 AY032933 Symploca sp. VP642b Cyanobacteria 1 
99 DQ836305 Fulvivirga kasyanovii Sphingobacteria 1 
91 AM411964 Spingobacterium sp. P-7 Sphingobacteria 1 
99 Y08957 Trossianum str. SC-1 Sphingobacteria 1 
99 "328846 drinking water bacterium M131 6 6- Proteobacteria 1 

94 DQ486503 Limnobactersp. DG1290 6- Proteobacteria 1 

<88 unidentified unidentified 2 
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Rarefaction analysis helps to compare species richness and diversity between clone libraries 

having different sizes. Furthermore, this method provides information on whether the bacterial 

libraries were adequately sampled (i. e., the true total bacterial phylogenetic diversity within 

these systems has been analytically determined) which is indicated by a plateau-shaped curve. 

For this study, rarefaction analysis was carried out using a programme written by Bailly et al. 

(2007) and results are illustrated in Figure 5.1. The rarefaction curves show that the bacterial 

clone library for KF, and almost for GYI and GY2, was adequatley sampled (i. e., a plateau was 

reached). However, this was not the case for the HV and SV clone libraries (i. e., plateau was not 

fully reached). It is thus likely that at these sites additional sampling of clones may have 

resulted in a larger number of species detected. Note that a valid comparison of species richness 

/ diversity between study sites can only be done if all bacterial libraries are fully saturated. 

However, despite incomplete sampling (at HV and SV), the rarefaction curves indicate that the 

bacterial diversity was significantly lower at the high temperature sites (i. e., GY I, GY2 and KF) 

than at the low-T sites (i. e., SV and HV; Fig. 5.1). This is in good agreement with previous 

studies (e. g., Skirnisdottir et al., 2000; Blank et al., 2002; Fouke et al., 2003; Meyer-Dombard et 

al., 2005) which showed that a higher number of phylotypes is observed at lower temperatures. 
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H_V: 66-740C, PH 9.1 
(n = 81) 

Bacilli Unidentified 
u- Proteobacteria ji - Proteobacteria 

Aquificae '-1 

Flavo- 
bacteria 

Dein(woccl Actinobacteria 

SV: 4211C, PH 7.7 
(n = 95) 

Proteobacteria 

Sphingobacteria Unidentified 

4) Cyanobacteria 

Flavobacteria 

Proteobacterla 

y- Proteobacteria 

roteobacterla 

Figure 5.2: Class-level distribution and diversity of partial 16S rDNA sequences within 
bacterial clone libraries for both Geysir sites (GYI and GY2), Hveragerdi (HV), Krafla (KF) 

and Svartsengi (SV). For reference, the total number of analysed clones (n) as well as the T-pH 

regime for each site are also given. 

GY2: 76-82*C. 
-pH-8.7 (n = 90) 

Proteobacteria 
'Unidentified 

juificae 

Aquificae 

Deinococci 

KF: 80*C. g)H 10.0 
(n = 45) 

The class-level diversity and distribution of the partial 16S rDNA bacterial sequences identified 

at each site is illustrated in Figure 5.2. The five pie charts represent the bacterial clone libraries 

GY1: 70-96*C. pH 9.0 
(n = 61) 

R., ifli -Proteobacteria 
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from GYI, GY2, IIV, KF and SV with pie-wedges showing the percentages of each class in the 

total library; in addition each class is colour coordinated such that the class distribution can be 

readily compared among the five sampling sites. Note that these pie charts do not necessarily 

provide a quantitative representation of the microbial diversity within the studied geothermal 

systems. Nevertheless, Figure 5.2 indicates that although certain classes were found at more 

than one study sites (e. g., Aquificae, y- and 8- Proteobacteria; each of them was found at 4 

out of 5 sites), the class distribution and diversity varied substantially between sites. 

5.4.2 Phylogenetic analysis of bacterial clones 

As shown by the phylogenetic inferences from the bacterial sequences (Table 5.1, Fig. 5.2), 

none of the detected phylogenetic classes was ubiquitous to all sampling sites and 3 out of 5 

sites contained unidentified bacterial clones. However, the majority of the analysed clones were 

affiliated to, 4quiflcae, Deinococci and y- Proteobacteria. 

Aquificae 

Aquificae was well represented at all sites with water temperatures above 50'C, i. e., GY1, GY2, 

IIV and KF (Fig. 5.2, Table 5.1). Some clones from each of these sites branched in the genus 
Yher7nocrinis (Fig. 5.3) and were closely related to the Iceland clone sequences SRI-48, p1cel 

and 117LIB which all represent apparent subspecies of Thennocrinis ruber, the pink filament 

forming hyperthermophiles identified in a number of hot springs also in Yellowstone National 

Park, YNP (e. g., Reysenback et al., 2000; Eder and Huber, 2002; Blank et al., 2002; Spear et al., 
2005; Fig. 5.3). Clones belonging to the genus Sulfur1hydrogenibium were only identified at HV 

and were closely related to the Iceland clone sequence SRI-40 and SRI-240 (the two most 
dominant bacterial phylotypes in an Icelandic high sulphide mat, Skirnisdottir et al., 2000), to 

NAK9 from a high sulphide mat in Japan (Yamamoto et al., 1998), and to YNP-SSp_jB90 from 

Sylvan Spring in YNP (Meyer-Dombard et al., 2005, Fig. 5.3). All these strains affiliated to 

Suyiurihydrogenibium krisyanssoni, a hydrogen and sulfur-oxidizing thermophile isolated in 

Iceland (Flores et al., 2008). Clones from HV were also similar to strains found by other- studies 
(OPB14 and a2bOO8, Fig. 5.3) that may represent a new phylotype within Aquijlcae. However, 

for a more definite placement of this outgroup within the Aquificae, new cultivable 

representatives are needed. 
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Figure 5.3: Evolutionary distance dendogramm of Aqufflicae 16S rDNA gene sequences 

detected in this study in the context of currently recognized bacterial divisions in the RDP-11. 

Thermocrinis ruber was used as an outgroup. Sequences designated SRI are from a high 

sulphide mat in Iceland, pleel from Haegindi and Fluidir Springs in Iceland, H7L1B from a 

mud hole at Ilveragerthi in Iceland, EM from Octopus spring in Yellowstone National Park 

(YNP), OPB14 from Obsidian Pool in YNP, YNP-SSp_jl90 from Sylvan Spring in YNT, 

a2bOO8 from a hydrothermal sediments in the Guaymas Basin, and NAK9 from a high 

sulphide mat in Japan. The scale bar is in nucleotide substitution per sequence position. 

Bacilli 

Similarly to Aquilicae, clones related to Bacilli were only found at the high-temperature sites, 

i. e., GY1, GY2 and HV (except KF, Fig. 5.2, Table 5.1). GY2 clones branched in the genus 

Bacillus and Marinibacillus and were most closely related to KSM-KP43 (an alkaliphilic 

Bacillus strain from Japan) and to Tibet-S2a2 (an alkaliphilic psychrotolerant strain from the 

QInglial Tibet Plateau) respectively (Fig. 5.4). In contrast, Bacilli clones identified at GYI and 

HV belonged to the genus Geohacillus and were most closely related to Geobacillus sp. K8 

(Fig. 5.4), an isolate from geothermal soils in New Zealand. 
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Figure 5.4: Evolutionary distance dendogramm of Bacilli 16S rDNA gene sequences detected 

in this study in the context of currently recognized bacterial divisions in the RDP-11. 

Geobacillus' stearothertnophilus was used as an outgroup. Sequences designated KSM-KP43, 

Tibet-S2a2, and VIM C596 are all alkaliphilic Bacillus strains from Japan, the Qinghai-Tibet 

Plateau and China respectively. Geobacillus sp. K-8 is an isolate from geothermal soils in New 

Zealand and sequence 2216.25.27 is from a sub-seafloor sediment core from the southwestern 
Sea of Okhotsk. Origin of strain YT0027 is unknown. The scale bar is in nucleotide 

substitution per sequence position. 

Deinococci 

Interestingly, Deinococci representatives were only found at GY2 and HV (Fig. 5.2, Table 5.1) 

and all clones clustered in the genus Thermus (Fig. 5.5). This indicated that the alkaline spring 

waters (pll -9) and high temperatures (66 - 820C) that characterised these sites were most 

favourable flor the growth of Thei-mus species. GY2 clones had the closest database match to 

Thertnus antranikianii IIN3-7T and HN3-10 (branch A in Fig. 5.5), two Icelandic isolates that 

grow in alkaline waters (up to pH 10) and at temperatures around 800C (Chung et al., 2000). 
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Figure 5.5: Evolutionary distance dendogramm of Deinococci 16S rDNA gene sequences 
detected in this study in the context of currently recognized bacterial divisions in the RDP-11. 

Thermus aquatiCUN was used as an outgroup. Sequences designated SRI are from a high 

sulphide mat in Iceland, strains T. igniterrae GE-2, T brockianus 15038T, T. scotoductus ITI- 

252T, T. antranikiand HN3-71' and HN3-10 were isolated from hot springs in eastern and 

southeastern Iceland and Y55-10 from the Great Artesian Basin of Australia. Origin of NMX2 

A. 1 is not known. The scale bar is in nucleotide substitution per sequence position. 

In contrast, Therinus clones found at HV were far more diverse and affiliated with 4 different 
lineages within the Therinus genus (branch B to E in Fig. 5.5). Most IN clones belonged to the 

C branch and were closely related to the Icelandic strain SRI-96 (identified in a high sulphide 

mat, Skirnisdottir et al., 2000) and to T. scotoductus (detected in Iceland hot springs by Chung 

et al., 2000). Most clones belonging to branch D (Fig. 5.5) were very similar (>97%) to SRI-248 

(same origin as SRI-96), while one clone (I A-1 1) was more closely related to T igniterrae and 
7'. brockianus (isolated From Icelandic hot springs; Chung et al., 2000). The three clones 

constituting branch B (Fig. 5.5) and strain IA-30 (i. e., branch E) may represent novel lineages 

within the genus Thermus as indicated by the absence of any close relatives. 
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a-, #- and y- Proteobacteria 

Close relatives of(x-, 13- and y- Proleohacteria did not appear to be restricted by temperature, 

pH or salinity and together they were the predominant classes at KF (55% of the clones) and SV 

(86% ofthe clones), especially a- and y- Proteobacteria (Fig. 5.2, Table 5.1). However, few 

clones belonging to #- and y- Proteobacteria were also identified in the GY 1 (2%), GY2 

(1%) and HV (9 %) libraries (Fig. 5.2, Table 5.1). 
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Figure 5.6: Evolutionary distance dendogramm of a- Proteobacteria 16S rDNA gene sequences 

detected in this study in the context of currently recognized bacterial divisions in the RDP-11. 

Brevundinionas alba was used as an outgroup. Sequences designated GC are from rhizosphere 

soil of salt marshes in Korea, DG1237 and DG1255 is associated with dinonagellates 

Scrippsiella and Lingulodinium in seawater, DSM 6811 is from filtered seawater, DSM 4736 

and CCBAU45139 from soils, and FX113 is from sub-glacial sediments and ice from glaciers in 

New Zealand., rhe scale bar is in nucleotide substitution per sequence position. 

The bacterial sequences affiliated to a- Proleobacteria (i. e., clones from KF and SV) 

represented four distinct lineages (Fig. 5.6). Clones identified at KF branched within 
Brevundimonas and were most closely related to isolates from both freshwater (Brevuridimonas 

alba, glacier bacterium) and saline environments (Caulobacter, Fig. 5.6). In contrast, SV clones 

were more diverse and belonged to the genus Sphingpyxis, Oceanicaulis and Mesorhizobium. 

Closest relatives included a variety of species commonly found in seawater and salt marshes 
(e. g., Oceanicaulis alexamb-ii (T) C 116-18, Sphingomonas sp. GC14) and soils (Mesorhizobium 

amorphav CCBAU 45139, - Fig. 5.6). 

Close relatives of the #- Profeohacfet-ia were found at GY2, HV, KF and SV (Fig. 5.7) and 

affiliated to the genus Variovorax (HV clones), Ralstonia (GY2 and KF clones) and 
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Limnobacter (SV clones, Fig. 5.7). Similar to above, the closest relatives were isolates from 

both freshwater, seawater and soils (Fig. 5.7). 
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Figure 5.7: Evolutionary distance dendogramm of 0- Proteobacteria 16S rDNA gene 

sequences detected in this study in the context of currently recognized bacterial divisions in the 

RDP-11. Limnobacter sp. ý-IV was used as an outgroup. Sequences designated EFI and H13 

are both alkaliphilic bacteria, strain DG1290 is associated with dinoflagellates Scrippsiella and 

Lingulodinium in seawater, RBElCD-35 is from Bogota River, and Gsoil 3165 from soil of a 

ginseng field in Korea. The scale bar is in nucleotide substitution per sequence position. 

The y- Pi-oleohacteria clones were numerically well-presented in the KF and SV libraries but 

were also found at GYI and HV (Fig. 5.8, Table 5.1). Clones that branched in the genus 

Marinobacter (i. e., genus of Proteohacteria found in sea water) were solely observed at SV 

(Fig. 5.8) which was not unexpected due to the high salinity of the SV geothermal waters and 

the proximity to the coast. In contrast, KF clones were most doininant in the genus 
Pseudomonas but also related to isolates within the genus Lysobacter and Acinetobacter (Fig. 

5.8). The only GY I clone that affiliated with y- Proteobacteria related to Acinetobacter, while 
IIV clones belonged primarily to the genus Stenotrophomonas. One clone from HV (IA-20) 

branched well outside the established Stenotrophomonas and may thus represent a new 

phylotype within the y- Proteobacteria (Fig. 5.8). Note that representatives of the genus 

Lysobacter and Mai-inobacter are common inhabitants of soils and waters. Similarly, 

Pseudomonas, Stenotrophomonas and Acinetobactet- have a widespread occurrence in nature 

(e. g., water, soil, plants) however, they also include various pathogenic strains. 
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Figure 5.8: Evolutionary distance dendogramm of y- Proteobacteria 16S rDNA gene sequences 

detected in this study in the context of currently recognized bacterial divisions in the RDP-11. 

Ly. sobacter koreensis was used as an outgroup. Sequence designated SOC A20(46) is from 

beneath a high Arctic glacier in Canada, and NT N31 is a euryhaline halophilic strain isolated 

from deep sea sediments. Depicted sequences belonging to the genus Stenotrophomonas (i. e., 
LE/61, P'1'112063), Pseudomonas (i. e., CIP 105273, CT-1) and Acinetobacter (i. e., CAI-6, P152) 

are not common representative in natural environments and are thus not further described 

here. The scale bar is in nucleotide substitution per sequence position. 

The remaining five identified bacterial classes included Flavobacteria, Cyanobacteria, 

Sphingobacteria, Nitrospira, and Actinobacteria which were mainly found at SV and / or KF 

(except Nitrospira at I IV, Fig. 5.2). Clones belonging to these classes are included in Table 5.2 

and 5.3 and more details on their phylogenetic inference are given in Appendix A. I. Similarly, 

the phylogenctic placement of the unidentified bacterial clones found in the GY2, HV and SV 

Fig. 5.2) bacterial clone libraries are not discussed here but illustrated in Appendix A. 2. 

5.5 Discussion 

The molecular phylogenetic approach applied in this study is well known and increasingly used 

to describe microbial diversity in various natural envirom-nents, thus by-passing the requirement 

for cultivation. However, it is worth mentioning that this technique has potential bias (e. g., 

PCR-bias such as preferential amplification, different susceptibility to cell lysis, analysis of non- 

indigenous strains; e. g., Sambrook et al. 1989; Ward et al., 1997; Hurst et al., 2002; Fouke et al., 

2003) which need to be kept in inind during data interpretation. Also, the microbial diversity of 

the studied environment are ollen not fully represented within the constructed clone library (see 

rarefaction curves above), mainly because this technique is time consuming and expensive. 
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However, many molecular studies (e. g., Reysenbach et al., 1994; Hugenholtz et al., 1998; 

Skirnisdottir et al., 2000; Fouke et al., 2003) faced and addressed this problem and the general 

consensus is that although this method does not provide a quantitative picture of the microbial 
diversity, it gives a reliable first estimate of the microbial community structure. 

An advantage of this study is that the geochernical and hydrodynamic regimes of the study sites 

are well described (chapter 4) and the results presented here (i. e., information on bacterial 

community structure) have thus a direct physical and chemical environmental context. So far, 

only few other studies (e. g., Skirnisdottir et al., 2000; Fouke et al., 2003; Meyer-Dornbard et al., 
2005; Purcell et al., 2006) have followed a similar approach and they showed that the 

complexity of the metabolic framework and the microbial community structure strongly 

correlates with the geochernical and hydrodynamic regime of the studied geothermal waters. 
However, these studies also demonstrated that due to the high degrees of variability amongst hot 

springs (in terms of physico-chemical conditions), many more similar studies are needed to 

obtain a full understanding of the diversity of microbial communities in such environments. 

5.5.1 Effects of abiotic variables on bacterial diversity 

The bacterial diversity within sediments from six different geothermal waters was studied 
(Table 5.4). The archaeal diversity was not analysed in this study but PCR amplification using 

archaeal specific primers showed that archaeal species (i. e., archaeal DNA) were present at 
GY I, GY2, I IV and SV but not at KF. 

Table 5.4: Summary of physico-chemical conditions and microbial diversity at each site. 

GY1 GY2 HV KF Sv RK 

physico-chemical conditions 

T/ *C 70-96 76-82 66-74 80 42 75 

salinity low low law low medium high 

sinter growth rate low low low medium medium high 

pH -9 -9 -9 10 7.7 7.5 

bacterial diversi 

# phylogenetic 3 4 6 6 6 
classes 
# unidentified - 1 4 - 2 

# RFLP patterns is 22 43 17 38 

archaeal preýence yes yes yes no yes no 
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No bacterial nor archaeal DNA was detected at RK suggesting that the physico-chemical 

conditions at this site, i. e., high salinity, high T and high sinter growth rates, were too 

challenging (i. e., too extreme) for the development of thermophilic microbial communities. 

Each of the remaining five study sites (i. e., GYI, GY2, HV, KF and SV) was characterised by a 
distinct bacterial community structure each being dominated by one phylogenetic class which 

represented between 47 to 97% of the total clone library (Table 5.1): Aquificae was most 

abundant at GYI, Deinococci at GY2 and HV and y-Proteobacteria at KF and SV (Fig. 5.2). 

Despite the apparent similarities in class distribution and diversity between some sites (e. g., 
GY2 & IIV and between KF & SV), the compositions and relative ratios of the dominant 

organisms were very different (Table 5.2 and 5.3). 

The geochemical parameters that varied most between the five geothermal sites were 
temperature, p1l, salinity and sinter growth rate (Table 5.1 and 5.4) and the observed differences 

in bacterial diversity between sites can in part be explained by these vanations. It is known that 

the availability and composition of energy sources (e. g., total sulfide concentration, dissolved 

112) and organic substrates is another key factor that can affect the microbial community 

structure within hot springs (e. g., Spear et al, 2005; Meyer-Dombard et al., 2005 and reference 
therein). However, these properties were not quantified in this study and their impact on the 
bacterial diversity observed at the study sites could thus not be assessed. 

The effect of temperature 

The effect of temperature on microbial diversity and phylogenetic inference is best exemplified 
by comparing the bacterial clone libraries for GYI, GY2 and HV. All these sites were 

characterised by p1l - 9, low salinity and low sinter growth rates. The main difference between 

these sites was water temperature (Table 5.4). The highest bacterial diversity (i. e., greatest 

number of RFLP patterns) was found at HV (43) and the smallest at GYI (15), where the 

maximum temperature was about 20'C higher than at HV. The water temperature at GY2 (76 - 
82'C) lead to 22 different RFLP patterns indicating that the bacterial diversity at GY2 was 

slightly higher than at GYI but significantly smaller than at HV. These findings indicated that 

the observed differences in phylogenetic diversity between GYI, GY2 and HV may be simply 
due to temperature differences. This confirmed previous observations (see rarefaction curves, 
Fig. 5.1) which showed that a higher number of phylotypes was found at lower temperatures. 

As illustrated in Fig. 5.2 and Table 5.3, temperature appeared to also affect the phylogenetic 
inference of the bacterial communities at these sites. Despite some common traits in class - level 

diversity, distinct differences were observed. Close relatives of the Aquificae were numerically 
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well represented at all three sites but were most dominant at GYI (97% of total analysed 

clones). Species belonging to Aquificae are mainly obligatory chemolithotropic, aerobic bacteria 

using molecular hydrogen or reduced sulfur compounds as energy donors (Skimisdottir et al., 
2000). Furthermore, Aquiflicae belong to one of the earliest branching orders of the domain 

Bacteria. GYI and GY2 clones all branched in the genus Thermocrinis whereas HV clones 

affiliated to three different lineages, SulCurihydrogenibium, Thermocrinis and a new phylotype 

not yet classified. This revealed a higher diversity of the Aquificae clones at HV but also 

suggested that species belonging to Sulrurihydrogenibium and to the novel phylotype were 

confined to temperatures :5 74*C (i. e., max. temperature at HV). Again, this showed that 

temperature is a key discriminating factor (assuming that all other parameters were equal). 

The dominant bacteria at GY2 and HV belonged to Thermus, a genus of Deinococci, which was 

absent at GYL Thermus species are aerobic, heterotrophic thermophiles that are ubiquitous to 

most hot springs with neutral to alkaline pH (max. pH - 9.5) and temperatures up to 85'C 

(Alfredsson and Kristjansson, 1995). This also explained the absence of these bacteria at GYI 

as the frequent temperature fluctuations (from 70 to 96'C in I min) at this site were probably 
too high for their growth. 

Note that all three sites were also occupied by the aerobic, heterotrophic Bacilli species, while 

close relatives of fi - and ), - Proteobacteria as well as representatives of the nitrite-oxidizing 
Nitrospira-Group were mostly restricted to HV. 

The effect of pi I 

The potential effect of p1l on bacterial diversity is best analysed by comparing the bacterial 

clone library at GY2 and KF as the geothermal waters at both sites have similar salinities and 
temperatures (Table 5.4) and only differ in pH (pH 9 vs. 10 respectively) and sinter growth rate. 

The class - level diversity at KF was higher than at GY2 (6 vs. 4 phylogenetic classes), but the 

overall bacterial diversity detected at KF was lower than at GY2 (17 vs. 22 RFLP patterns, 
Table 5.4). This suggested that the higher pH and sinter growth rate might have restricted 
bacterial diversity at KF. This was further demonstrated by the absence of archaeal DNA at this 

site. However, it should be noted that the higher sinter growth rate at KF was partly due to the 

presence of thick biofilms (EPS enhances silica aggregation, section 4.4.2) thus indicating that 

the higher sinter growth rate was probably not the discriminating factor at this site. . 

The variations in geocheniical conditions between GY2 and KF also resulted in substantial 
differences in the bacterial community structure. At both sites, close relatives of Aquificae and 

,8- 
Proteobacteria were found, however, most other phylotypes identified at KF were 
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significantly different to GY2 (Table 5.2 and 5.3). The key differences included the absence of 
Deinococci, i. e., Thennus species, and the dominance of r- Proteobactelia (e. g., 
Pseudomonas) within the KF clone library. The lack of Thermus clones was probably a result of 
the higher p1l as these species are know to grow best at pH 7 to 9 (Alfredsson and Kristjansson, 

1995) while the abundance of Pseudomonas is not necessarily related to the variation in pH. The 

remaining bacterial phylotypes that were identified at KF belonged to Flavobacteria, 

Actinobacteria, a- and 8- Proteobacteria. It should be noted that most KF clones closely 

related to species extracted from various natural environments (e. g., freshwater, soils, glaciers, 

plants, Table 5.3), however their occurrence could not be linked to the geochemical / 

hydrodynamic regime present at this site. Furthermore, there is no known study that described 

similar strains in other hot spring environments and a comprehensive evaluation of these clones 

was thus not possible. These differences might be partly explained by the nature of the KF 

sample. At KF, DNA was extracted from hard sinter sediments (i. e., older sinters) collected 
from the bottom of the channel (close to the channel'rim which was covered with snow) while at 

all other sites (e. g., GY2) DNA was obtained from loose sediments. The close relationship of 
KF clones to species extracted from soils, glaciers, etc. might thus be best explained by 

"contamination" from the surrounding field (e. g., channel rim sediments, snow, plants, blown in 

microorganisms, contaminants from animals and humans). 

The effect of salinity 

SV was characterised by near-neutral pH, high salinity, low temperatures and medium high 

precipitation rates (Table 5.1). These were substantially different to all other sites (Table 5.4) 

thus making a comparison difficult. Overall, the bacterial diversity identified at SV (39 RFLP 

patterns, 42'C) was almost twice as high as at GY 1, GY2 and KF (15 - 22 RFLP patterns, 70 - 
96'C, Table 5.4) which agreed with the findings that phylogenetic diversity is enhanced at lower 

T. However, despite the lower temperature, the microbial diversity identified at SV was slightly 
lower than at HV (43 RFLP patterns, 66 - 74'C). This suggested that other parameters, i. e., high 

salinity, near-neutral pH and medium high sinter growth rates, may have limited the microbial 
diversity at this site. The near-neutral pH is unlikely to be a discriminating factor (e. g., 
Skirnisdottir et al., 2000; Meyer-Dombard et al., 2005; Purcell et al., 2006) and similarly, the 

sinter growth rate was not expected to play a key role at this site. This assumption was based on 

observations at KF where sinter growth rates were almost twice as high as at SV and, these did 

not seem to have affected the microbial diversity at KF. As a result, the high salinity was 

probably the most important parameter that was different at SV. The bacterial community 

structure at SV confirmed this hypothesis as most detected bacterial clones were related to 
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species isolated from marine environments, saline soils and coastal hot springs (i. e., close 

relatives of a-, P- and y- Proteobacteria and Sphinobacteria, Table 5.3). This is important 
because similar halophilic species were not identified at any other study site. The remaining SV 

clones were related to Flavobacteria and Cyanobacteria. Identified close relatives of 
Flavobacteria were similar to KF clones while clones belonging to Cyanobacteria were only 
found at SV. This was not unexpected as Cyanobacteria preferentially grow at temperatures 
below 70'C (Madigen et al. 1997) and were thus absent at all other study sites (Table 5.4). 

In summary, it has been shown that the presence and absence of bacteria appears to be directly 

controlled by the geochernical and hydrodynamic regime of the studied geothermal 
environment, which included parameters such as T, pH, salinity and sinter growth rate. 
However, despite substantial variations in physico-chemical conditions between sites (Table 
5.3), it was not possible to identify a single parameter that had a more profound effect on 
microbial diversity than all others. Instead, it emerged that the combination of T, pH and salinity 
may control the biodiversity pattern observed at each site while sinter growth rate is only an 
important parameter in ecosystems where the rates are as high as 300 kg yý' rný. This is nicely 
illustrated with results obtained at RK and KF. No microbial traces were found at RK, a site 
which is characterized by high temperatures, high salinity and high sinter growth rates, while 
high microbial diversity was detected at KF, exhibiting similar temperatures but higher pH, 
lower salinity and medium high sinter growth rates (Table 5.4). In this case, the higher salinity 
(RK: 4.7% vs. KF: 0.1%) and the more then 10 times higher sinter growth rate (RK: 304 vs. KF: 
20 kg Yl m2) at RK resulted in a far more extreme environment than at KF, i. e., prevented 
microbial colonization of the growing sinters. 

5.5.2 Comparison to bacterial communities identified in other Icelandic hot springs 

While a few studies on n-&robial ecology have been carried out at Svartsengi and Geysir (e. g., 
Petursdottir and Kristjansson, 1996, Chung et al., 2000), none have been done at Krafla and 
Reykjanes. Several investigations have analysed the archaeal and bacterial diversity of 
microbial mats from the Hengill area (i. e., includes Hveragerdi and other surrounding 

geothermal fields like Grensdalur). For example, Skirnisdottir et al. (2000) analysed the 
bacterial diversity of a sulphur mat hot spring (T = 67C, pH 6.7) from the riverbank in 
Grensdalur and found almost exclusively Aquificae (sequences designated SRI in Fig. 5.3) and 
low percentages of clones that affiliated with Deinococci, Nitrospira and Thermotogales. These 

observations agree well with the results at HV, GY1 and GY2 although in this study Deinococci 

clones were numerically better represented than Aquificae (except at GY1 where Deinococci 

were absent, Fig. 5.2). In addition, clones related to Nitrospira were also found at HV however, 
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close relatives of the Thermotogales were absent at all three sites (Fig. 5.2). It should be noted 
that compared to the sulphur mat hot spring (T = 67C, pH 6.7), both temperature and pH were 
higher at the two Geysir sites (T = 70 - 96'C, pH -9), whereas HV featured very similar 
temperatures but also a higher p1l (T = 66 - 74'C, pH-9). Another difference between the 

results of Skin-dsdottir et al. (2000) and the HV findings (from this study) was that the DNA 

from the sulphur mat hot spring was extracted from microbial mats and the DNA analysed here 

(i. e., GYI, GY2 and IIV) was extracted from loose sediments. The variations in community 

structures between these sites are thus best explained by the difference in T- pH regime and the 

origin of the samples, although even small geographical variations should be -considered 
(Hjorleifsdottir et al., 2001). 

From comparison to other molecular studies on microbial communities, Skimisdottir et al. 
(2000) concluded that the composition of the Aquijlcae clones is influenced not only by 

temperature but also by varying sulphide concentration. They showed that close relatives of the 

genus Themocrinis are more dominant in high -T (84 - 88"C) and low sulphide springs (0.2 - 
1.7 ppm) while SulCurihydrogenibium affiliated clones are abundant in low -T (52 - 72'Q and 
high sulphide (3 - 12 ppm) springs. Note that sulphide concentrations were not evaluated in the 

present study. However, the presence of elemental sulphur in in-situ grown sinters at HV 

(section 4.3.2) suggested higher dissolved sulphide values at HV (low - T) than at GY1 and 
GY2 (high - T, where no sulphur minerals were observed). In this study, all Aquificae-related 

clones at GY were close relatives of the genus Thermocrinis while HV clones related to both 

genus Suffiurihydrogenibium and Thermocrinis thus agreeing with the interpretations of 
Skirnisdottir et al. (2000). 

The microbial community structure of filamentous mats in the Hengill area was also 

characterised by lljorleifsdottir et al. (2001), who selected a hot spring in Olkelduhals which 
had a temperature of 85 to 88'C, p1l 6.9 and abundant filamentous mats. They found that all 
detected bacterial phylotypes belonged to Aquificae and Deinococci. The most dominant 

phylotype was closest related (99%) to the Icelandic Aquificales clone sequences SRI-48 

(Skirnisdottir et al., 2000) and plcel (Takacs et al., 2001) and also clustered with EM17, the 

most dominant clone sequence detected in filamentous mats from Octopus spring, Yellowstone 

National Park (Fig. 5.3). Note that EM17 was later isolated from Octopus spring and described 

as Thermocrinis ruber (Huber et al. 1998). These findings fit well with observations made at 
GY1 and GY2 (Fig. 5.3) which featured very similar temperatures (T= 70 - 96'C) to the 

Olkelduhals hot spring. The two Thermus phylotypes described by Hjorleifsdottir et al. (2001) 

were identical to Thennus scotoductus NMX2. A. I and to Thennus str. SRI-248 respectively. 
Similarly, about 73% of the Yhennus clones identified at HV (in this study) affiliated with T 

scotoductus (Fig. 5.5, C branch) but significantly less (-9%) to strain SRI-248 (Fig. 5.5, D 
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branch). Most of the remaining HV clones that belonged to the genus Thermus suggested new 

phylotypes (Fig. 5.5, E and B branch). 

Thermus clones identified at GY2 branched well outside the Thermus clades represented by the 
HV clones and closely related to T antranikianii which was isolated from hot springs in eastern 

and south-eastem Iceland by Chung et al. (2000). In addition to T antranikianii, Chung et al. 
(2000) isolated one other Thermus species, T igniterrae and also detected two new species of T. 

brockianus and T. scotoductus respectively, which were all closely related to the HV clones in 

the present study (Fig. 5.5). 

Findings from this study and observations from other molecular studies from Iceland, 

Yellowstone NP, USA and New Zealand (e. g., Brock and Freeze, 1969; Kristjansson and 
Alfredsson, 1983; Hudson et al., 1987; Kristjansson et al., 1994; Reysenbach et al., 1994; 

Williams ct al. 1995; Hugenholtz et al., 1998; Skirnisdottir et al., 2000; Reysenback et al., 2000; 

Chung et al., 2000; lljorleifsdottir et al., 2001; Eder and Huber, 2002; Blank et al., 2002; Spear 

et al., 2005) thus indicate that Thennus spp. and Yhennocrinis spp. are abundant in many hot 

springs with temperatures between 75-92'C and -pH 8-9. Thennus species including T 

scotoductus, SRI-248 and T. antranikianii are particularly common in Icelandic hot springs 
(e. g., Chung et al., 2000; Skirnisdottir et al., 2000; Hjorleifsdottir et al., 2001 and this study) 

while T aquaticus was so far only found in Obsidian Pool, YNP (e. g., Brock and Freeze, 1969; 

Hugenholtz et al., 1998) and T filiformis seems (so far) strictly confined to New Zealand (e. g., 
Hudson et al., 1987; Williams et al. 1995). In contrast, Thennocrinis species are common to 

many terrestrial hot springs in Iceland (e. g., Chung et al., 2000; Skirnisdottir et al., 2000; 

11jorleifsdottir et al., 2001 and this study) and Yellowstone NP, US (e. g., Reysenbach et al., 
1994; Blank et al., 2002; Eder and Huber, 2002; Reysenbach et al., 2005; Spear et al., 2005). 

Several other studies analysed the microbial communities in Icelandic hot springs including 

sites at Ilveragerdi, Geysir and Svartsengi (e. g., Kristjansson and Alfredsson, 1983; Hollocher 

and Kristjansson, 1992; Petursdottir and Kristjansson, 1996; Sonne-Hanson and Ahring, 1997; 

Chung et al., 1997). However, these mostly employed culture-based techniques and the detected 

diversity in these studies was thus far lower (most microorganisms identified by genetic 
techniques can currently not be cultured). It should be noted however, that culture-based studies 

provide essential information on the metabolism and function of the isolated species within the 

microbial communities which in molecular-based studies can only be inferred from the 

phylogenetic inference. Therefore, to obtain a comprehensive assessment of the microbial 
diversity within natural environments, a combination of culture- and molecular-based 
techniques is probably necessary (Chandler et al., 2000). 
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5.6 Conclusions 

The microbial community was investigated in water-saturated sediments from six different 

Icelandic geothen-nal sites and analysed in terms of variations in geochernical and 
hydrodynamic conditions. 

Five 16S rDNA bacterial clone libraries were derived for the two Geysir sites (GY1 and GY2), 

Hveragerdi (IIV), Krafla (KF) and Svartsengi (SV) while no microbial DNA was detected at 
Reykjanes (RK): 

(1) Aquificae (mostly related to Thermocrinis) was ubiquitous at GY1 (site with the highest 

temperature) but also occurred at all other high-T sites, i. e., GY2, HV and KF. 

(2) Deinococci (Thermus species) dominated the GY2 and HV bacterial clone libraries but 

were not observed at any other site. 

(3) r- Proteobacteila was most abundant at KF (mostly freshwater and soil genera) and 
SV (primarily marine genera) but few clones were also found at GYI and HV. 

The high site-specific distribution of bacterial 16S rDNA gene sequences observed in this study 
is argued to be strongly related to changes in T, pH, salinity and sinter growth rate. Even 

relatively minor differences in T (±IO'C) correlated with the immense differences in bacterial 

community structure. Overall, observations indicate that the phylogenetic diversity (i. e., number 

and composition of detected phylotypes) decreased with increasing T, more alkaline pH, 
increasing salinity, and higher sinter growth rates. However, it was not possible to single out 

one parameter that affected the microbial community structure more than the others. This led to 

the conclusion that the biodiversity patterns determined at each site were controlled by a 

combination of these parameters. In this study, the most extreme habitat seemed to be defined 

by high temperatures (2: 751C), high salinity (2: 4.7%) and high sinter growth rates (2: 300 kg y-1 
ff 2) and neither bacteria nor archaea were found (i. e., RK). Higher diversity was detected at all 

other less extreme conditions. These results further indicated that the physico-chernical 

conditions defining the precipitation of amorphous silica (i. e., sinter growth rates, chapter 4) 

may also be the dominant controls on microbial ecology and distribution. Similarly, Fouke et al. 
(2003) showed that the composition of bacterial communities is distinctively partitioned 
between travertine depositional facies (that are characterised by specific water chemistry, 

travertine chemistry and travertine morphology) in the surface drainage system of Spring AT-1 

at Angle Terrace, Mammoth Hot Springs, Yellowstone National Park. 

The comparison to other molecular studies on bacterial diversity in hot springs showed that the 

dominant phylotypes fall mainly into the same phylogenetic classes (i. e., . 4quiftcae, Deinococci, 
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y-Proteobacteria). Furthermore, some phylotypes (e. g., Thermus spp, Thermocrinis ssp) were 
found in a variety of hot springs indicating that they can adapt to different geochemical / 

hydrodynamic regimes. However, these studies also demonstrate that the parameters controlling 
the diversity of these phylotypes are still not well understood and future studies should thus 
focus more on the correlation of conununity diversity and geochemical variation in hot springs. 
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6 QUANTIFICATION OF INITIAL STEPS OF NULCEATION AND 

GROWTH OF SILICA NANOPARTICLES: AN IN-SITU SAXS AND 

DLSSTUDY 

6.1 Abstract 

Here we present results from an in-situ time-resolved study providing quantitative information 

on the initial steps of silica polymerisation and silica nanoparticle formation. The experiments 

were carried out in near neutral pH (7 - 8) solutions with initial silica concentrations of 640 and 
1600 PPM Si02 and ionic strengths (IS) of 0.02,0.05,0.11 and 0.22 M. The polymerisation 

reactions were induced by neutralising a high pH silica solution (from pH 12 to 7) and 

monitored by the time dependent depletion in monosilicic acid over time. The accompanied 

nucleation and growth of silica nanoparticles (i. e., change in particle size over time) was 
followed in-situ and time-resolved using synchrotron-based Small Angle X-ray Scattering 

(SAXS) and conventional Dynamic Light Scattering (DLS) combined with scanning and (cryo-) 

transmission electron microscopy (SEM / cryo-TEM). 

The critical nucleus diameter was quantified (1.4 -2 nin) and results from SAXS and DLS 

showed that over 3 hours the particle diameter increased to a final size of -8 mn. SEM and 
TEM photomicrographs verified SAXS and DLS data and confirmed the spherical and hydrous 

structure of the fonning silica nanoparticles. Furthermore, fractal analysis (i. e., fractal 

dimension, D. -2.2) indicated that the formed particles consisted of open, polymeric, low- 

density structures. 

A kinetic model for the nucleation and growth of silica nanoparticles was derived suggesting a3 

stage growth process: (1) homogeneous and instantaneous nucleation of silica nanoparticles, (2) 

3-dimensional, surface-controlled particle growth following l't order reaction kinetics and (3) 

Ostwald ripening and particle aggregation. 

6.2 Introduction 

Silica polymerisation and the subsequent fonnation of silica nanoparticles occur in many 

modem terrestrial environments (e. g., hot springs, brines, deep reservoirs) but they have also 

played an important role in ancient geological settings (e. g., most Archean fossils were 

preserved in silica cherts; e. g., Barghoom and Tyler, 1965; Knoll, 19 85; Carson, 199 1; Monty et 

al., 1991; Westall and Walsh, 2000). Furthermore, these processes are believed to have been 
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crucial to the formation of silica-rich deposits recently observed on Mars (Squyres et al., 2007, 

2008; Ruf et al., 2007). 

The processes and mechanisms controlling silica precipitation are essential to the understanding 

of natural processes such as sinter formation (e. g., Guidry and Chafetz, 2002; Mountain et al., 
2003), biosilicification (e. g., Jones et al., 1996,2001; Konhauser et al., 2003,2004), silica 
diagenesis (e. g., Rimstidt and Barnes, 1980; Williams and Crerar, 1985; Williams et al., 1985; 

Hinman, 1990), formation of diatoms (e. g., Kr6ger et al., 2001; Perry and Keeling-Tucker, 2000 

and references therein) and silica scaling in geothermal power developments (e. g., Gunnarsson 

and Arnorsson, 2003). The formation of silica nanoparticles is also important in industrial 

processes and applications (e. g., computer, biotechnology, catalysis and chromatography) where 
the specific structural properties of silica nanoparticles (e. g., swelling capacity, strength, 
durability, thermal stability) make them highly desirable nanomaterials. As a result, the 

synthesis of highly monodisperse, spherical silica particles through techniques such as the 

St6ber method (the base catalysed hydrolysis and condensation of silicon alkoxides in low- 

molecular-weight alcohols; St6ber, 1968) are well established. The mechanisms and kinetics 

underlying these processes have been the subject of extensive laboratory investigations. 

Multiple techniques such as Small Angle X-Ray Scattering (SAXS), Dynamic and Static Light 

Scattering (DLS, SLS), 29 Si NMR, Raman spectroscopy and Transmission Electron Microscopy 

(e. g., Matsoukas and Gulari, 1988; Bogush et al., 1988; van Blaaderen et al., 1992; Bailey and 
Mecartney, 1992; Boukari et al., 1997,2000; Pontorii et al., 2002; Green et al., 2003a, b) have 

been applied to derive models that describe the formation of alkoxide based silica particles and 
their growth under a variety of reactants and catalysts concentrations. Despite the plethora of 

research for industrial applications, the St6ber method is not representative of silica nanoparticle 
formation in natural environments and the derived models are not transferable. 

In natural systems, the mechanisms of silica polymerisation and silica nanoparticle formation 

have also been widely investigated (e. g., Alexander, 1954; Goto, 1956; Baumann, 1959; 

Kitahara, 1960; Iler, 1979; Crerar et al., 1981; kothbaum and Rhode, 1979; Weres et al., 1981; 

Carroll et al., 1998; Icopini et al., 2005, Conrad et al., 2007; Table 6.1). Overall, it is accepted 

that silica polymerisation and silica nanoparticle formation follows a 3-stage process where (1) 

silica polymerization and nucleation of silica nanospheres is followed by (2) particle growth and 
/ or ripening and (3) particle aggregation. In the first stage, silica monomers polymerise via 
dimers, trimers etc. to cyclic oligomers; which then form three-dimensional internally condensed 

nanospherical particles. During the second stage the particles grow by further accretion of silica 

oligomers and / or by Ostwald ripening. However, in most natural cases colloidal silica particles 

are not stable within the polymerising solution and they tend to aggregate (stage 3) before 
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completion of the ripening process (e. g., Her, 1979; Perry, 2003; Benning et al., 2005; Icopini et 

al., 2005). 

In the last few decades a range of reaction kinetic models have been derived from the 

measurements of the time dependent decrease in monosilicic acid concentration with reaction 

orders ranging between I and 5 (Table 6.1). A more detailed discussion of these studies is given 
in section 2.1.4. 

Table 6.1: Summary of reported experimentally derived kinetic models for the decrease in 

monosilicic acid during the process of silica polymerisation. 

Study pH T (*C) 
SiO2 

(ppm) 

max. 
reaction 
time (h) 

'Reaction 
order, n 

Alexander 3 for pH<3.2 
(1954) 1-6 1.9 6000 170 2 for pH>3.2 
Goto (1956), 
Okamoto et al. (1957) 7-10 22.3 200-900 144 3 

Baumann 
(1959) 0.5-9 30 400-4000 7 1 to 5 

Kitahara 2 for pH<7.5 
(1960) 3-10 0-100 500-800 5 3 for pH>7.5 

Bishop and Bear 
(1972) 8.5 25-45 300 200 2 

Rothbaurn and Wilson 
(1977) 7.8-8.7 50-120 500-1000 1000 5 to 8 

Rothbaurn and Rhode 
(1979) 7-8 5-180 300-1300 1200 4 

Markrides et al. 
(1977,1980) 4.5-6.5 75-105 700-1200 22 30 

2 Peck and Axtrnann 
(1979) 4.5-8.5 25-95 400-1000 1 
4 'weres et al. 1 for S>S, 
(1981) 2.5-8 50-100 500-1200 1.5 5 for S<St 

Crerar et al. 
(1981) 7 25 1000 22 1 

Icopini et al. (2005), 
Conrad et al. (2007) 3-11 25 250-1250 3000 4 
'Reported rate laws were derived via the equation -dC I dt - k(C-Cr following the method described by Goto (1956). 
2 Peck and Axtmann (1979) analysed experiments reported by Makrides et al. (1980) and Rothbaum and Wilson (1977). 
3Makrides (1977,1980) postulated that particle growth preceeding the induction and nucleation phase was linear with time. 
4Weres et al. (1981) used the same model as proposed by Makrides et al. (1977,1980) and Peck and Axtmann (1979). 
5Weres at al. (1981) proposed ae order rate law up to a certain silica concentration, St (unknown), and aI st order rate> St 
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The parameters that influence the mechanisms and kinetics of silica polymerisation and silica 

precipitation include temperature, pH, ionic strength and silica concentration (i. e., degree of 

silica saturation; e. g., White et al., 1956; Baumann, 1959; Her, 1979; Rothbaurn and Rhode, 

1979; Marshall and Warakomski, 1980; Weres et al., 1981; Marshall and Chen, 1982; 

Gunnarsson and Am6rsson, 2003; Icopini et al., 2005, Conrad et al., 2007). An induction period 

can precede the polymerisation reaction during which little or no silica polymerisation takes 

place. The length of this induction period is controlled by the same factors that determine silica 

polymerisation (i. e., T, pH, IS and silica concentration) and it decreases with increasing degree 

of supersaturation (e. g., White et al., 1956; Her, 1979; Rothbaum. and Rhode, 1979; Gunnarsson 

and Arn6rsson, 2003; Icopini et al., 2005; Conrad et al., 2007). 

So far few attempts were made to image and quantify the size of the nanoparticles forming 

within the polymerising solution. Rothbaurn and Rhode (1979) determined the relative size of 

silica nanoparticles at different temperatures using chromatography, viscosity measurements 

and light scattering and concluded that with increasing temperature (5 to 1801C), the average 

molecular weight of the polymers formed increased from approximately 10' to 109 (in Daltons). 

Makrides et al. (1980) used light scattering to follow the polymerisation process and proposed a 

size of the primary nuclei in the order of a few angstroms which towards the end of the reaction 

reached several nm in size. More recently, Icopini et al. (2005) and Conrad et al. (2007) used 
Atomic Force Microscopy. (AFM) to image the nanoparticulate silica fraction grown for 12h and 

suggested that the primary particles were about 3mn in diameter. These data supported previous 

results by Iler (1979) who postulated that at pH 2 to 7 the silica particles are unlikely to grow 
larger than 2- 3nm. 

However, none of these studies provide any direct evidence for the mechanisms and kinetics of 

silica polymerisation and little to no quantitative or time-resolved data on the size of the 

nanoparticles forming within the polymerising solution. In addition, despite the wide-ranging 

research efforts to elucidate the reaction mechanisms and rates of silica polymerisation (Table 

6.1), a molecular level mechanistic understanding of the nucleation and growth of primary silica 

particles in natural aqueous solution is still lacking. 

Ijere we present the first direct quantification of the initial steps of silica polymerisation and 

silica nanoparticle formation in inorganic solutions that mimicked natural waters. The reaction 

progress (i. e., nucleation and growth of silica mnoparticles) was followed in-situ and in real- 
time using synchrotron-based Small Angle X-ray Scattering (SAXS) and conventional Dynamic 

Light Scattering (DLS) combined with electron microscopic, techniques (Scanning and 
Transmission Electron Microscopy, SEM / TEM). A series of experiments were carried out at a 

range of silica concentrations and ionic strengths and a kinetic model was developed for the 
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growth of silica nanoparticles divided into 3 stages: (1) nucleation of critical nuclei, (2) particle 

growth and (3) particle coarsening and aggregation. 

6.3 Methodology 

6.3.1 Silica nanoparticle synthesis 

The nucleation and growth of silica nanoparticles was followed in aqueous solutions with initial 

silica concentrations (Si02) of 640 and 1600pprn and ionic strengths (IS) of 0.02,0.05,0.11 and 

0.22 (i. e., concentrations most often found in geothermal systems; e. g., Arn6rsson et al., 1983). 

High p1l stock solutions (-pH 12) of aqueous Si02 at the desired ionic strength were prepared 
by dissolving specific amounts of Na2Si02'5H2O and NaCI in deionised water. Silica 

polymerisation and silica nanoparticle formation was induced by adjusting the high pH solution 

to 7 with IM HCL Data acquisition started immediately after the pH stabilized at 7 (usually 

within 5 minutes) and all reactions were carried out at 30 ± 2* C. The length of each experiment 

varied between I and 3 hours. The pH of the reacting solution was automatically recorded (at 5 

min time intervals) via a pH meter (Orion 710 with a gel electrode) interfaced with a computer. 

In all experiments, the pH increased by 0.5 to 0.8 pH units. 

Concomitant with the polymerisation process, the decrease of monosilicic acid was analysed 

over a time period of 3 hours. A few millilitres of the reacting solution were removed after 

specific time steps and each aliquot was analysed for monomeric and total silica using the 

spectrophotometric molybdate yellow method (Greenberg et al., 1985). 

6.3.2 Small Angle X-ray Scattering (SAXS) procedure 

All SAXS measurements were carried out on the Dutch-Belgian beamline (DUBBLE) BM26 at 
the European Synchrotron Radiation Facility (ESRF), Grenoble, France. Here, we only detail 

the parameters that affected the data collection in this study and the full DUBBLE configuration 

can be found in Borsboom et al. (1998). A wavelength of 1A and a sample-to-detector distance 

of 3.5m were used. Data were collected with a 2-dimensional multiwire proportional detector 

(gas-filled and equiped with a CCD-camera - Photonic Science Xios-II) and a pair of ion 

chambers (positioned pre- and post-sample) that monitored the inconiing and transmitted beam 

intensities, respectively. The q-axis was calibrated with the scattering pattern of wet rat-tail 

collagen. 
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SAXS experiments were carried out in flow-through mode to ensure that the solutions were well 

mixed at all times (Fig. 6.1 A). The initial high pH (-pH 12) silica solutions were prepared in a 

plastic beaker that was connected to both ends of a quartz capillary SAXS cell (1.5 mm OD and 
10 mm walls) via Teflon tubing. The solution in the beaker was continuously stirred and just 

prior to commencement of the SAXS data acquisition the pH of the initial solution was adjusted 

to 7 (rnax. 5 rnin). The pi I adjusted solutions were circulated via a peristaltic pump from the 

beaker through the quartz capillary of the SAXS cell and back into the beaker (Fig. 6.1 A). 

Date tor 

silica P-Waltic (at IC730) 
purnp 

solution SAX2ý611 
(quaft (PH =7) 
capilimly) 

III 

DLS cell stirrer 
(plastic 
cuvette) Laser 

(1=633nm) 
peristaltic 
pump 

0 Ut 11 
(P, -Fý 1) ,- 't"", 

Figure 6.1: Low temperature flow through set-up of (A) SAXS and (B) DLS experiments. 

Time-resolved SAXS spectra from the polymerising silica solution were collected every 5 

minutes over time periods between I and 3 hours. Data-reduction (i. e., correction for detector 

alinearities, decaying ioii bearn - using the post-sample ion chamber values, and background 

scattering) as well as sector integration to convert the 2D to ID SAXS patterns were carried out 

using XOTOKO and BSL (SRS software packages, Daresbury) respectively. The reduced data 

were analysed using GNOM, an indirect transform program for SAXS data processing 

(Svergun, 1992). In the case of a dilute, monodisperse system GNOM evaluates a pair 

distribution function (PDF) and provides an estimate for the radius of gyration, Rg. For 

spherical particles, the PDF should be Gaussian-shaped (Svergun and Koch, 2003) and Rg is 

given by the maximum. GNOM also calculates 1() which is the intensity at q=O (i. e., a direct 

measure of the electron density contrast and the total scattering volume; Glatter and Kratky, 

1982) and an error of the fit (<O. IA for Rg). 

6.3.3 Dynamic Light Scattering (DLS) 

All DIS measurements were done with a Zetasizer Nano ZS (Malvern Instruments) equipped 

with a Ile-Ne laser (? ý=633nrn) and a backscatter detector at a fixed angle of 173". The 
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instrument recorded the intensity autocorrelation function, which was transformed into volume 
functions to obtain size information. All DLS results presented below are shown as volume 
distributions. 

DLS experiments were carried out using a flow through system (Fig. 6AB) similar to the one 
described above for the SAXS experiments. Teflon tubing was connected to a disposable plastic 

cuvette (stationary in the DLS instrument) and to a plastic beaker from which the constantly 

stirred and p1l adjusted solutions were pumped through the cuvette using a peristaltic pump 
(Fig. 6.1 B). In contrast to the SAXS experiments, the continuous flow was stopped during the 

recording of each DLS pattern (5 min / pattern and 30 s delay time in between to exchange 

solution) in order to avoid interferences with the data acquisition. Time-resolved DLS 

experiments were run up to 3 hours using the same Si02 concentrations and IS conditions as for 

the SAXS experiments. Despite the low data accuracy of DLS (errors can reach 40% at small 

particle sizes), this method was used to verify results obtained from SAXS. Furthermore, DLS is 

far more sensitive to the presence of aggregates as compared to SAXS and therefore it was 

appropriate for monitoring the beginning of aggregation processes. 

6.3.4 Electron Microscopy 

Silica nanoparticles were imaged using field emission gun scanning electron microscopy (FEG- 

SEM), transmission electron microscopy (TEM) and cryo-TEM. For FEG-SEM, samples were 

preparpd by filtering a few millilitres of the polymerising solution at specific time intervals 

through 0.1ýtm polycarbonate filters, which were immediately washed with deionised water to 

remove the remaining salt and silica solution and left to dry at ambient temperatures. The filter 

papers were placed on SEM Al-stubs, coated with 3 run of platinum and analysed with a LEO 

1530 FEGSEM using a working distance of 3mm and a beam intensity of 3kV. TEM samples 

were prepared by depositing a droplet of the reacting solutions on forrnvar coated copper grids. 
The grids were air dried and imaged using a Philips CMIO TEM at an accelerating voltage of 
80M 

One sample was also imaged using cryo-TEM combined with an ultra-rapid freezing technique. 

In order to prepare the cryo-TEM samples, 5 gL of the reacting solution was deposited on a 
TEM grid which was then flash-frozen in liquid ethane (Egelhaaf et al., 2000) using a standard 

guillotine plunging device (vitrobot) that instantaneously vitrified the sample and avoided ice 

fopnation. The vitrified specimen was transferred at -180'C onto a Gatan 626 cryo-holder and 
into a FEI T20FEG TEM operated at 200 M After an equilibration time of I hour (until no 

apparent drift was observed), the specimen was examined at -180'C and low dose images were 

recorded on a 4k x 4k Gatan CCD camera. 
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The size distributions of the silica particles were determined from the recorded images (both 

SEM and TEM). To obtain a size distribution with reasonably high precision, about 100 - 200 

particles were measured in each image and the mean values and standard deviations were 

calculated. 

6.3.5 Kinetic data analysis 

For the kinetic analysis of the nucleation and growth of silica nanoparticles, the time-resolved 
SAXS data were tested against two particle nucleation and growth models: (a) the Thetadash 

kinetic model (Hounslow et al. unpublished) and (b) the Johnson-Mehl-Avrami-Kolmogorov 

QMAK) kinetic model (Kolmogorov, 1937; Avrami 1939,1940; Johnson and Mehl 1939). 

Thetadash kinetic model 

Thetadash is a population-dynamics based kinetic model which converts and normalises the 

experimentally obtained growth profiles (particle radius versus time) according to the degree of 

the reaction, a (i. e., 0< cc: 5 1 with cc =I denoting the end of the reaction). In asecond step, 3 

different types of reaction mechanisms (chemical, surface, or diffusion controlled) and varying 

reaction orders are fitted to cc in order to obtain the best fit in terms of a regression coefficient, 
Rý. From the best fit, information about the critical nuclei radii, RO, (by extrapolating to t= 0) 

and the initial growth rate, Go (s-1), can be obtained. 

For a direct comparison to the JMAK kinetic model (see below), the initial growth rate (Go) was 

used to determine the reaction rate constant using the equation k= Go I(S,, - 1) (eq. 3.8 in 

section 3.2.6) where SR is the saturation ratio which is defined as S. = SI"' where SI is the 

saturation index and v is the stoichiometric coefficient (i. e., the sum of the stoichiometry of the 

products in the solubility expression). The SI values were calculated using the geochemical code 
PIIREEQC (version 2.13.3; Parkhurst and Appelo, 1999) and the wateq4 database (Ball and 
Norstrom, 1992) with the amorphous silica data updated using the values from Gunnarsson and 
Arn6rsson (2000). 

The JMAK kinetic model 

The JMAK model is based on the Avrami equation (Avrami, 1939): a=I_ e-(k(t-t. ))" (eq. 3.6 

in section 3.2.6) where a is the degree of the reaction, to is the induction time, k is the reaction 

constant and n is a constant related to the nucleation mechanism (i. e., instantaneous, decreasing 
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rate, or constant rate), growth dimensionality (i. e., 1,2, or 3-D) and reaction mechanism (i. e., 
diffusion- or surface-controlled; Hulbert, 1969). Note that in a surface-controlled mechanism 
the reactions are limited by the amount of interface available whereas a difftision-controlled 

mechanism is limited by the rate of transport of reactants through the matrix to the particle 

surface. 

To obtain c4 Rg values (i. e., radius of gyration) from the SAXS data were nonnalised using the 

following equation: a= Rg3t / Rg3nex (eq. 3.7 in section 3.2.6) where Rg, is Rg at a given 

time t, and Rg.,,., is Rg at the end of the reaction. Both k and n can be determined from the 

intercept and slope, respectively, of a In(-In(I-a)) vs. In t plot of the experimental data. Note 

that calculated JMAK rate constants are only conditional rate constants as they imply several 

processes occurring simultaneously (e. g., dissolution, nucleation, growth; Lasaga, 1998). 

6.4 Results 

6.4.1 Time evolution of monosilicic acid concentration 

The decrease of monosilicic acid, [Si02(aq)], was monitored over 3 hours in aqueous solutions 

with 640 and 1600 PPM Si02 and varying ionic strengths, IS (Fig. 6.2). In the experiments with 
high initial silica concentration (Fig. 6.2, open symbols), about 80% Of [Si02(aq)] (with respect 
to silica solubility at 30'C; dotted line in Fig. 6.2) polymerised within the first 5 minutes, 

whereas only 15% Of [Si02(aq)] was removed at the lower concentration (640 PPM Si02, Fig. 

6.2, full symbols). This showed that the initial silica concentration and the degree of silica 

supersaturation respectively had a major impact on the rate of silica polymerisation, i. e., on the 

time length to establish steady state (silica solubility at 30'C; Fig. 6.2). In contrast, ionic 

strength seemed to have had less of an effect on the overall decrease Of [Si02(aq)] over time 
(were within errors of each other), nevertheless solutions with higher IS consistently exhibited 

slightly higher polymerisation rates. In all data sets, a steady state close to the saturation level 

was obtained after only 3 hours. 

Note that after five minutes, for all experiments with high initial SiO2 concentration (1600 

ppm), the monosilicic acid concentration had dropped significantly lower (-25%) than in the 

experiment at lower concentration (i. e., 640ppm SiO2, Fig. 6.2). It is only after approximately 
60 minutes that similar [Si02(aq)] values were established for all studied SiO2 and IS 

conditions. The fact that [Si02(aq)] values are not identical between the different tested 

concentrations indicates that the polymerisation reaction cannot be described by a simple 
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chemical kinetic model, i. e., reaction rate is not solely governed by silica concentration but also 

affected by other parameters (e. g., surface area of forming particles, pl]). 
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Figure 6.2: Decrease of nionosilicic acid, ISiO2(aq)l, in solutions with 640ppm and 1600ppm 

SiO, and IS of 0.02,0.05,0.11 and 0.22 (at pli 7, T= 30"C). Errors on individual data points 

are <V/o. 

6.4.2 SAXS 

In Figure 6.3, the log-log plot ol'a typical time-resolved SAXS profile from an experiment with 

640ppin Sio, and IS 0.11 is shown. Note that in this experiment SAXS patterns were collected 

every 5 minutes over a time length of' 155 minutes but tor clarity only a few profiles were 

plotted. '['lie solid line,,, depict the GNOM tits, demonstrating both tile quality ol'thc SAXS data 

and the suitability ol'the GNOM model applied to the current data. The two dominant features 

in these plots were (i) the change in scattering intensity, I(q) with time and (n) tile increase in 

the slope at low q (i. e., Guinicr region with qRg < 1; Guinicr, 1939). The increase in scattering 

intensity at low q is related to a change in electron density contrast between the matrix and the 

newly Conned particles and a change in the total scattering volume (i. e., increase in particle 

in tile particle si volunic or number) whereas the increase in the slope indicates an increase I Ize 

With tillic. 
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Figure 6.3: Log-log plot of the scattering intensity as a function of scattering angle and time 

(640ppm Si02,0-11 IS). Note that SAXS profiles for the other data sets (i. e., low/high Si02 or 

low/high IS) exhibited similar characteristics. Solid lines depict GNOM fits. For clarity, the 

errors for individual SAXS measurements (<3%) are not shown. 

The log-log plot also showed that the chosen system was sufficiently dilute (i. e., to make the 

analysis described above appropriate for the data), as indicated by the absence of a sharp 

increase or decrease in the scattering intensity at low q (i. e., the scattering profiles did not 

exhibit a structure factor, Glatter and Kratky, 1982; Fig. 6.3). 

The radius of gyration, Rg was evaluated from the full scattering pattern using GNOM and the 

assumption ofa inonodisperse distribution of spherical particles (GNOM fits shown in Fig. 6.3). 

Note that under these assumptions (i. e., low polydispersity) Rg values extracted from the time 

dependent SAXS profiles represent average values. The real particle radius, R, was then 

evaluated from the following equation (valid for a sphere with a radius R; Guinier, 1939) 

Rg 2=3R2 (eq. 3.4 in section 3.2.6). 
5 

The tirne evolutions of the radius of a spherical silica particle, R, as a function of different Si02 

and IS are shown in Figure 6AA and 6.413. In these plots, time =0 minutes denotes the point 

where silica polymerisation was initiated (i. e., pH adjusted to 7). It should be noted that no 

SAXS data could be obtained for the initial 10 minutes due to the experimental set-up (i. e., -5 

min to stabilise pH at 7, securing the hutch and start experiment) and the time needed to acquire 

the first data point (i. e., 5 minutes). 
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Figure 6.4: Time evolution of particle radius obtained from the GNOM analysis showing the 

growth of silica nanoparticles in solutions with A) 640ppm and B) 1600ppm Si02 at 3 different 

IS each. Note that the errors were typically <3%. C) Comparison of R obtained from the 

GNOM analysis and from the Guinier plot showing the agreement between the GNOM and 

Guinier approach (for solutions with 1600ppm Si02 and IS = 0.05 and 0.22). 

For all tested conditions (i. e., SiO, and IS), the radius of the particles increased from about 1.5 

(at low SiO, ) and -3 nm (at high Si02) to - 4ni-n (both concentration regimes) over 3 hours 
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confinning the growth of the particles (Fig. 6AA, B). As expected from the time evolution of 

the monosilicie acid (Fig. 6.2), the growth rate of the silica nanoparticles was enhanced in 

solutions containing higher initial silica concentrations (Fig. 6.4A, B). At 1600 ppm Si02, a 
final radius of -4 nrn was reached after only -40 minutes (at high IS), while at the lower 

concentration (640 PPM Si02, high IS), the same radius was reached only after about 95 min. 
From the SAXS data it was evident that the ionic strength had a more pronounced effect on 

particle growth rate when compared to the time evolution of the monosilicic acid (Fig. 6.2). For 

both tested silica concentrations (640 and 1600pprn Si02). the growth rate was significantly 
higher in solutions with high IS (0.22) than with low IS (0.02 and 0.05 respectively) confirming 
the relationship between silica polymerisation and IS (e. g., Marshall and Warakomski, 1980; 

Marshall and Chen, 1982). Despite differences in the apparent reaction rates, in all experiments 

particles were detected from the start (time 5 min) of the SAXS measurements (i. e., 5 minutes 

after pII was adjusted to 7). 

Alternatively, Rg can be determined from the Guinier analysis in which Rg is evaluated from a 

plot of log I(q) vs. q2, known as the Guinier plot (Guinier, 1939). The slope of the linear region 
found in the low q range (qRg < 1) detennines Rg (eq. 3.3) which can then be used to determine 

R of a sphere using equation 3.4. 

The comparison between R values calculated by the GNOM analysis and R extracted from the 

Guinier region (Fig. 6.4C) showed a good agreement between the two methods. However, R 

values determined using the Guinier approximation are very susceptible to errors introduced by 

selecting the Guinier region (i. e., low-q range for each SAXS pattern; qRg < 1). In contrast, the 

GNOM code fits the whole scattering curve to obtain R and therefore R values used for ftirther 

calculations were evaluated using the GNOM code. 

Figure 6.5A shows the reaction progress, cý, for all tested [Si02] and IS conditions determined 

from the changes in the scattering volume of the growing particles, 10, over time using the 

following equation: a, = I(t) / I.,, where I(t) is Io at a given time, and I.,, is 10 at the end of 

the reaction. Similar to the radius profiles (Fig. 6.4), the reactions proceeded fastest in solutions 

with the highest initial Si02 and IS, as demonstrated by the fast increase in % at the beginning 

of the reaction and the early completion of the reaction (%7--l) at higher[Si02] and IS. 

An example of a time-resolved PDF plot for a polymerising solution with initial Si02 Of 
1600ppm and IS=0.05 is shown in Figure 6.5B. Over time, the PDF showed an increase in both 

the area under the curve and a shift in the apex of the curve indicating an increase in particle 

size. In the case of perfect, monodisperse spheres (a valid assumption for silica nanoparticles), 

the shape of each individual PDF curve should be Gaussian. Despite the PDF being slightly 

skewed towards the right, the near-Gaussian shape of the PDF curves obtained in this study 
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(Fig. 6.511) supported this assumption. The observed tail could be induced by the presence ofa 

Few aggregates or it COUld IISO indicate the presence of some degree of polydispersity. Note that 

the shape ol'the I'DF curves did not differ between experiments (i. e., over the studied silica and 

salt conmitration). 
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Figure 6.5: A) Tinic evolution of the normalised scattering intensity, (x,, in solutions with 

640ppm and 1600ppni SiO, at three different IS each. 11) PDF of scattered silica nanoparticles 

as a function of Rg and time (1=10-55niin with time steps of 5 min) evaluated with CNOM 

(1600ppm Si, 0.05 IS). 

6.4.3 DI's 

The time dependent growth of silica nanoparticles was monitored in 6 different solutions by 

DLS (Fig. 6.6, for clarity only 4 data sets are shown). Note that DI-S measures the 

hydrodynamic dianicter of' the growing particles via changes in the scattering of laser light 

cause(] by the Brownian motion oftlic particles. In contrast to the SAXS measurements, the data 

showed large variations between single data points. Furthennore, due to the lower resolution of' 

DES at small particle sizes the average % error of DLS measurements ranged between 27 and 

40 (Fig. 6.6). Despite these larger errors, overall, the trends between particle growth profiles and 

Sio-, / IS were similar to those observed with SAXS. I lowever, the DLS growth curves differed 

front the SAXS results in two ways: (i) the appearance of the first detectable particle was 

delayed at lower SIO) concentrations (-30 n-un; Fig. 6.6, full symbols) and (d) following an 

initial steady growth it Sudden increase in particle size was observed for higher concentrated 

solutions (aficr 30min t'or 1600ppin SIOVO. 22 IS and after 120min for 1600ppin SiO, /0.05 IS, 

Fig. 6.6). The observed delay at low concentrations probably represents an amcfact of the lower 

detection limits oftlic DLS its conipared to synchrotron-based SAXS measurements (-I i, s. 0.1 

rini). Conversely, the dramatic increase in growth probably indicates aggregation as even a 

sniall percentage ( 1-2`0) ot'larger particles in a particle suspension would drarriatically increase 

R, m) 
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the overall R derived by DLS (http: //www. inalvem. coin/LabEng/products/zetasizer/zetasizer; 

May 2008). 
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Figure 6.6: Gro " th of silica nanoparticles in solutions with varying Si02 and IS as determined 

by DLS. The arrows indicate the start of particle aggregation for solutions with 1600ppm Si02 

and IS of 0.05 and 0.22; 'Vo errors are average values. 

6.4.4 FIcctron Microscopy 

To image and verify the size ol'silica natioparticles evaluated with SAXS and DLS, samples of 

the reacting solutions were removed after specific tirne steps for SEM and'I'EM analysis. Figure 

6.7A shows a FFO-SFM photornicrograph of silica nanoparticles after 1.5 hours of 

polyincrisation in a solution with an initial silica concentration of 1600pprn SiO, and 0.22 IS. 

The particles are all aggregated but from image analyses an approximate particle size ot'4 to 8 

11111 Could be estimated for the individual particles within the aggregates. 

A more accurate estimate of' the particle size distributions was derived troin the TFIM 

photoinicrogi-aphs (Fig. 6.711) where the individual particles could be distinguished. The 

micrographs confirmed that the particles are approximately spherical and monodisperse. Using 

the TIN photonilcrographs, the average particle diameter and the polydispersity (i. e., ± 

standai-d deviation) were determined for a variety of' experimental conditions. The results are 

listed in Table 6.2 along with the results from DLS and SAXS (R values from SAXS are 

converted to particle diameter). 
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Figure 6.7: A) FEC-SEM and 13) TEM photomicrograph of silica nanoparticles grown for 30 

minutes in a solution with 1600ppm Si02 and IS of 0.22. Q Cryo-TEM photomicrograph of 

silica nanoparticles quenched after 1.5 hours from a solution with 1600ppm Si02 and IS of 
0.05. 

Table 6.2: Comparison of particle diameters obtained from SAXS, DLS and TEM. 

Si02 

(ppm) Is 
Time 

(h) 
Particle diameter (nm) 

SAXS DLS TEM 

640 0.02 1 5.8 4.6 ±1.0 3.1 ± 0.4 

2 6.7 4.7 ±1.1 3.3 ± 0.4 

0.11 1 7.0 - - 
2 7.7 4.5 ±0.7 

0.22 1 7.2 5.8 ± 1.9 5.2 ± 0.9 

2 8.0 8.0 ± 5.0 3.6 ± 0.5 

1600 0.05 1 6.9 8.7 2.2 

1.5 -7.2 b 10.1 3.1 6.1± ., 
a 

2 -7.5 
b 9.6± 1.8 

0.11 1 7.6 9.9 ± 3.5 5.4 0.5 

2 7.9 Aggregation 

0.22 0.5 7.5 8.0 ± 1.0 5.1 0.6 

1 7.9 Aggregation 6.7 0.9 

2 7.9 Aggregation 

ý'Result from cryo-TEM 
"Estimates based on the progression of growth curves obtained from SAXS 
'Error of SAXS < 0.3nm 
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Finally, to test for artefacts caused by sample dehydration and the high vacuum of standard 

SEM and TEM analytical approaches, cryo-TEM photomicrographs of silica particles that were 

flash-frozen in solution in their native state from an experiment with 1600 ppm Si02 and IS = 

0.05 were evaluated (Fig. 6.7Q. The particle diameters obtained from cryo-TEM matched those 

derived from the SAXS measurements better than the results from conventional TEM (Table 

6.2). 

6.4.5 Kinetic analysis of SAXS data 

The evaluation of the reaction kinetics of silica nanoparticle nucleation and growth was carried 

out with the time-resolved SAXS data from the experiments with 640ppm Si02 and IS of 0.02, 

0.11 and 0.22. The growth profiles of particles fort-ning in the higher concentrated solutions 

(I 600pin SIO, ) did not provide enough data points for a thorough kinetic analysis but they could 

be used for comparative analyses. 

Nucleation 

In the case ot'silica, a supersaturated solution is assumed to undergo homogeneous nucleation 

when care is taken to avoid impurities, i. e., existing surfaces, on which heterogeneous 

nucleation could occur. Furthermore, the goodness of fit of the data to the Thetadash kinetic 

model (see below; Fig. 6.8), which assumes instantaneous nucleation, indicates that particle 

nucleation was instantaneous. This is supported by the immediate decrease in monosilicic acid, 
i. e., instantaneous silica polyinerisation, after the pH was lowered to 7 (Fig. 6.2). 

For homogeneous nucleation, the radius of the critical nucleus, RO', forming within a 

supersaturated solution can be expressed using the Gibbs-Kelvin equation (Gibbs, 1961): 

RO+ ,.,: 2va/ RTln(S + 1) (eq. 2.2 in section 2.1.2) where v is the molar volume (27.2 cmi ; 

Her, 1979), cr is the interfacial surface energy (80 erg CM-2 ; Her, 1973), R, the gas constant, and 

S is the supersaturation defined as S= (C - C, )/C, with C being the actual concentration and 

C, the solubility. Cs for amorphous silica was obtained from Gurmarsson and Arn6rsson (2000). 

Calculated [to' values for all experiments are listed in Table 6.3. In all 640ppm SiO, 

experiments, Rj)' varied between 1.04 (IS = 0.22) and 1.07 (IS = 0.02) while in the 1600pprn 

SiO, experiments, Rý), = 0.67 - 0.68 run. Note that the effect of IS on the critical nuclei radius 

was only minor. 
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Table 6.3: Summary of the derived kinetic parameters. Critical nuclei radii, RO ., were 

calculated from the Gibbs-Kelvin equation (eq. 2.2). An independent evaluation of the critical 

nuclei radius, K), along with the initial growth rate, Go, were obtained from the Thetadash 

kinetic model. The Thetadash reaction constants, k, were calculated using Go (eq. 3.8). Finally, 

the JMAK reaction constants, k* were determined with the JMAK kinetic model (eq. 3.6). 

RO+ (nm) 
Thetaclash model JMAK model 

Si02 Gibbs -aR, (n m) 
Go k k* 

(ppm) Is Kelvin c (X, 0-12S-1) (xi O's-1) (xi O's-1) 

640 0.02 1.07 1.07 2.16 3.18 2.77 
0.11 1.06 1.05 3.22 4.61 3.34 
0.22 1.04 1.06 3.70 5.02 3.61 

1600 0.05 0.68 ---- 
0.22 0.67 

'Using RO an average interfacial surface energy of 85.4 ± 1.6 erg cm- 2 was calculated. 
b The 1600 PPM S'02 experiments did not provide enough data points for Thetadash and JIMAK analysis. 

Growth mechanism: classical growth 

In classical growth theory, particles grow by atom-by-atom or molecule-by-molecule 
attachment to a pre-existing surface. The growth profiles obtained from SAXS showed an initial 

fast and steady increase concomitant with the depletion of monosilicic acid to the point where 

saturation was almost reached and classical growth was no longer occurring. To test data from 

this initial growth phase, the SAXS data were fitted to two kinetic models, the Thetdash and the 
JMAK kinetics models, both of which are based on classical growth approaches. 

Results from the Thetadash analysis for experiments with initial S102 of 640ppm and IS = 0.02, 

0.11 and 0.22 are shown in Figure 6.8. Exceptionally good fits between the data and the kinetic 

model were obtained using a first order rate law with a surface-controlled mechanism. Data 

analysis with Thetadash also provided information on the size of the critical nuclei, Ro and the 

initial growth rate, Go which are listed in Table 6.3. While Go was used to calculate the rate 

constants, k (eq. 3.8; Table 6.2), the R() values were used to estimate an interfacial surface 
-2 energy for arnorphous silica (eq. 2.2). From these calculations a value of 85.4 ± 1.6 erg CM was 

2 
obtained which agrees exceptionally well with the value used in this study (80 erg cm- , Her, 

1973; also used by Conrad et al., 2007) and the literature data for the interfacial surface energy 
for amorphous silica (i. e., between 50 and 100 erg CM-2, Her, 1979 and references therein). 
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Figure 6.8: Plots showing a (At-A3) and R (131-133) fits to the Thetadash model (solid line) for 

three SAXS experiments with initial Si02 of 640ppm and IS of 0.02 (At, BI), 0.11 (A2,132) and 

0.22 (A3,133). 

For comparison with the Thetadash analysis, the 3 different data sets were also fitted to the 

JMAK kinetic model (Fig. 6.9) and an average exponent n of 1.7 ± 0.1 (eq. 3.6) was obtained. 

The fit ofthe SAXS data with the JMAK model is reasonably good (Fig. 6.9) suggesting that 

the initial steps ofsilica nanoparticle growth proceeded via classical growth. The rate constants 

detcrnilned from the JMAK analysis are given in Table 6.3. 
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Figure 6.9: Reaction process, (x, with time for polymerising solutions with 640ppm Si02 and IS 

of 0.02,0.11 and 0.22. The dotted lines represents the fits to the JMAK kinetic model with n set 

to 1.7 and to=Os. 

Growth mechanism; Ostwald Ripening 

Ostwald Ripening (OR) has been suggested to be an important growth mechanism during the 

late stages of silica particle growth (e. g., Her, 1979; Perry and Keeling-Tucker, 2000; section 

2.1.2). The particle size infori-nation from the SAXS data was evaluated to deten-nine if OR 

played a role in the final stages of silica nanoparticle formation. Wagner (196 1) and Lifshitz and 

Slyozov (1961) independently derived theoretical expressions which are referred to as LSW 

theory. They described the coarsening of a precipitate (i. e., Ostwald Ripening) due to the 

tendency to minimize the total particles surface free energy. According to the LSW theory, the 

average particle radius follows a growth rate proportional to t L2 for interface kinetic limited 

growth, or proportional to t' /3 
, 

for diffusion limited growth. Plots representing the evolution of 

the radius R vs. tI 2 and tI 3 are shown in Figure 6.10. Note that the complete growth profiles (i. e., 

0< (x < 1) are shown while the trendlines were only fitted to the later growth phases, which 

approximately fitted a linear trend. These plots show a minimal difference in the goodness of fit 

(R squared; Fig. 6.10) between the two different growth processes thus indicating that an OR 

model fit in this study fails to discriminate between a surface- (tI12 ) and diffusion controlled (tI 3) 

mechanisin (Fig. 6.10). The discrepancy between the OR model and the SAXS data indicates 

that it might be problematic to use the OR model as a growth mechanism for silica 

nanoparticles. 
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Figure 6.10: Based on the LSW theory, the average particle radius, R, follows the growth rate 

proportional to (A) t 1/2 for interface kinetic limited growth or to (B) t113' where growth is 

diffusion limited (shown for solutions with 640ppm Si02 and varying IS). 

Besides an increase in mean particle radius, the LSW theory also indicates that during OR the 

particle size distribution broadens (i. e., increase in polydispersity) and its skewness changes to 

the right (e. g., Fberl, 1998; section 2.1.2). This was tested with the silica particle size 

distribution as detcrnimed for 2 different aging times (30 and 60 minutes) in a solution with 

1600ppni SIO, and IS of0.22 (Fig. 6.11) using TEM photomicrographs. The results show that at 

30 minutes a fairly narrow size distribution (5.1±0.6 nm, 200 particles measured) with almost 

Gaussian distribution was obtained. At 60 minutes, the size distribution broadened significantly 

(6.7 ± 0.9 nin, 200 particles measured) but no shift in skewness was observed (Fig. 6.11). 

Despite tile absence ofa slilft in skewness, the increase in polydispersity supports OR, however 

this could also be indicative of particle aggregation. 
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Figure 6.11: Particle size distributions for two different aging times obtained from TEM 

photomicrographs of samples with initial 1600ppm Si02 and IS=0.22 (200 particles were 

measured for each time step). 
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Finally, further support for Ostwald ripening can be derived from the time evolution of the 

invariant, Q, which is defined as the integral of I(q)*q 2 (i. e., Kratky curve, Fig. 6.12). Q is 

related to the scattering intensity produced by the shape and size of the forming particles and 

thus represents the total scattering power law of the sample. For classical growth processes it 

would be expected that the invariant continually increases with time due to continuous growth 

of the silica nanoparticles from solution. However, during OR, no new material should 

precipitate and the invariant should, therefore, stay constant. The invariant indicates an increase 

over the first 60 minutes (insert in Fig. 6.12) in the experiment with 640ppm SiO-' and IS = 0.11 

supporting classical growth for this initial fast growth phase, however, thereafter the invariant 

does not further increase and stays reasonably constant supporting OR for the second growth 

stage of silica nanoparticle growth. Note that with increasing scattering (i. e., particle growth), 

the scattering profiles migrate to higher q-values (Fig. 6.12) which might not be fully covered 

by the probed q-range. Therefore, the observed constancy of the invariant could also be due to 

an incompletc Kratky plot. 
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Figure 6.12: The Kratky plot of SAXS data obtained from the experiment with 640ppm Si02 

and IS=O. 11. The insert shows the time evolution of the invariant, Q, as derived by integrating 

the Kratky plot. 

Growth mechanism: Aggregation 

Aggregation of nionodisperse nanoparticles is generally described by two main models, 

diffusion-Innited colloid aggregation (DLCA) and reaction-limited colloid aggregation (RLCA) 

(e. g., Weitz and Huang, 1985; Weitz et al., 1985). The DLS and SEM/TEM results confirmed 
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the occurrence of aggregation processes (Fig. 6.6 and 6.7) within the latter stages of silica 

particle growth; however these data sets did not provide enough data points for a thorough 

analysis ofthe aggregation mechanisms. 

Nevertheless, some infon-nation about the aggregates can be derived. The structure and 

complexity of' the aggregates formed can be described by a fractal geometry concept (e. g., 
Pfeifer and Obert, 1989; Lin et al., 1990) in which the objects that form during particle growth 

and aggregation are charactensed with a fractal dimension Df. Boukari et al. (1997) employed 

the fractal geornetry concept on alkoxide silica particle growth by analysing the power-law 

regime (Rg-1<<q<<a-1; where a is the size of the smallest unit building the fractal structure) of 
SAXS patterns. In this regime, I(q) - q', where the exponent p is related to the fractal 

dimension. For mass fractals (D ), which can be described as open, polymeric, low-density 

structures, p=D,,, with I<p<3 (3-D space) whereas surface fractals (DJ have unifonn cores 

but open surface structures, p=6-D, with 3<p<4. The SAXS data from four experiments 

were least-square fitted with the power law of I(q) - q-P with p being the fitting parameter. The 

changes ot'p over time are shown in Figure 6.13. 
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Figure 6.13: Plot of exponent p determined from the power law range of four SAXS profiles as 

a function of time. 

The time evolution of p correlated well with the tested [Si02] and IS (i. e., the saturation state): 
higher saturated solutions (high SiO, ) induced fast changes in p while lower saturated solutions 

(low SiO, ) exhibited slower changes. Note that besides a shift in time, the trends of the p vs. t 

curves (Fig. 6.13) were identical for all fitted SAXS curves suggesting that the nucleation and 

growth processes did not change between experiments. This was in agreement with previous 

studies oii silica aggregates (Boukari et al., 1997). Despite a continuous change in particle 
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structure, as indicated by the increase in p, all formed particles can be described as mass-fractals 
(I <p<3; Fig. 6.12) with a fractal dimension of D. =p and no transition to surface-fractal was 

observed. 

6.5 Discussion 

All experiments were conducted at neutral pH and 30'C, where silica solubility is at a minimum 

(Iler, 1979). The SAXS'and DLS results along with the time-dependent depletion of monosilicic 

acid, [Si02(, q)), confirmed previous studies that concluded that the rate of silica polymerisation 

and nanoparticle formation increased with increasing ionic strength and silica concentration 

(e. g., Rothbaurn and Rhode, 1979; Icopini et al., 2004; Conrad et al., 2007). In all experiments 

the reacting solutions were highly supersaturated with respect to amorphous silica and the 

degree of saturation invariably affected the growth rate and hence the time length for the 

reaction to be completed. In addition, due to the highly supersaturated state of the solutions 

studied, silica polymerisation occurred instantaneously during pH adjustment prior to data 

collection suggesting that the first silica nanoparticles (critical nuclei) formed immediately after 

the initiation of the silica polymerisation reaction. Note that IS had a more profound effect on 

particle growth (Fig. 6.4) than on the time-dependent depletion of monosilicic acid (Fig. 6.2). 

This was not unexpected as the formation of silica nanoparticles involves multiple steps (i. e., 

formation of dimers, trimers up to cyclic oligorners and polymers) and the reaction rate of each 

of these steps is slightly increased at higher IS thus resulting in a higher overall effect. In 

contrast, the time-dependent depletion of monosilicic acid only records the initial steps of silica 

polymerisation (i. e., formation of dimers and trimers) and the effect of IS will thus not be as 

pronounced. 

6.5.1 Particle size analysis 

Particle growth curves obtained from SAXS showed that over 3 hours the particle radii 
increased from about 1.5 -3 rim (depending on the concentration regimes) to a final radius of 

-4nm (Fig. 6.4). The maximum radii at the end of the initial growth were identical for all tested 

Si02 and IS conditions and thus not affected by the degree of silica saturation (i. e., Si02 and IS). 

In contrast, the first particle size probed by SAXS differed significantly between experiments as 

a result of the different sized critical nuclei as well as the different growth rates, particularly in 

higher silica saturated solutions. Due to the experimental set-up the formation of the critical 

nuclei could not be probed directly by SAXS or any other. method applied in this study. 
However, the size of the critical nuclei was calculated using the Gibbs-Kelvin approach and was 
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also determined using data from the Thetadash analysis (Table 6.3). The agreement between 

these values was exceptionally well and the comparison showed that in all solutions with 
640ppm Si02 the critical nuclei radius, RO' was about I nm with little influence of IS. In 

solutions with higher silica concentrations (I 600ppm Si02). the critical nuclei radius could only 
be determined via the Gibbs-Kelvin approach (RO+ - 0.68 mn, Table 6.3) and these values were 

substantially smaller than in the less concentrated solutions (Table 6.3). Note that the stability of 
the critical nuclei decreases with decreasing size (more energy is needed to sustain a higher 

surface to volume ratio). However, the nucleation process has a higher driving force in more 

concentrated solutions thus enabling the stabilisation of smaller nuclei. The values for the 

critical nuclei radius, RO obtained in this study were in good agreement with results from Her 

(1979) who calculated that the first stable silica particle would range between I and 2 nrn in 

diameter. 

In order to compare SAXS results with DLS and TEM data, R values determined from SAXS 

were converted to particle diameter (Table 6.3). In Figure 6.14, the direct comparison between 

the SAXS and DLS results for the growth of silica nanoparticles in a solution with 1600pprn 

Si02 and IS of 0.05 are shown. Particularly in the initial stages of the reaction (< 60 minutes) 
both growth curves follow the same trends, although the errors in the DLS data are substantially 
larger due to the lower accuracy when compared to the SAXS data. In both data sets the 
diameter of the first detected particle was -4 nm. This was followed by a steady increase in 

particle diameter towards a final value of 8 nm. After about 70 minutes, the DLS derived 

particle diameter increased to sizes > 15 nm (Fig. 6.13) while the SAXS average particle 
diameter stabilised at a final size of 8 nm (Fig. 6.4A, B). These differences are likely to be due 

to the formation of aggregates. In DLS, even 1-2% by volume of larger particles can 

significantly change the DLS derived particles sizes while SAXS measurements are less 

susceptible to the presence of larger aggregates. Note that the formation of aggregates was also 

shown by SEM (Fig. 63A) while with TEM and cryo-TEM (Fig. 6.7 B, Q only few aggregates 

were observed. However, it is possible that a significant proportion of the aggregates observed 

with. SEMITEM were induced by sample preparation (i. e., dehydration) and therefore did not 

provide a true picture of the proportion of the particles and aggriegates within the suspension. 
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Figure 6.14: Growth of silica nanoparticles as a function of time in a silica solution with 
1600ppm SiO2 and IS of 0.05 measured by SAXS and DLS. 

As shown in Table 6.3, the particle diameter obtained from SEM and (cryo-)TEM were 

generally smaller than DLS and SAXS. The smaller particles sizes were not unexpected as the 

SEM and TEM analysed samples were placed within a high vacuum and thus undergo 
dehydration and relaxation processes causing the highly hydrous (up to 13 wt% water; e. g., 
Krauskopf, 1956; Jones and Renault, 2004) and open-structured particles to collapse. Particle 

diameters obtained from cryo-TEM better matched the SAXS derived particle sizes because the 

flash-frozen particles do not dehydrate within the high vacuum of the electron microscope. The 

difference observed (e. g., SAXS: 7.2 ± 0.3 and cryo-TEM: 6.1 ± 1.1) most likely resulted from 

the lower accuracy of determining sizes from cryo-TEM. 

6.5.2 Analysis of the reaction kinetics 

The initial stage of silica nanoparticle formation was characterised by silica polymerisation 

where monosilicic acid coalescence to form dimers, then trimers up to cyclic oligomers (Perry 

and Keeling-Tucker, 2000, section 2.1.2). This oligornerisation process eventually led to the 

formation of stable nuclei having a diameter of approximately I-2 nm (Table 6.3). Due to the 
dilute and highly supersaturated state of the silica solutions (which would enhance the diffusion 

of monosilicic acid to the forming nuclei), silica polymerisation was instantaneous. This 

suggested that particle nucleation must have also occurred instantaneous. This was further 

supported by the good fits of the SAXS data to the Thetadash model in which instantaneous 

nucleation was assumed. 
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The second step of silica nanoparticle, formation was characterised by the fast decrease of 

monosilicic acid concentration and the 3-dimensional growth of silica nanoparticles (Fig. 6.15, 

-5 - 100 min). The dimensionality of the growth was shown by the Gaussian-shaped PDF 

curves as well as SEM and TEM photomicrographs which all indicated that the particles 

remained spherical throughout the reaction. Further evidence was provided by the quality of the 
fits to the Thetadash model (Fig. 6.8), which assumes 3-D growth and where the best fit in terms 

of the regression coefficient was obtained using a first order rate law with a surface-controlled 

mechanism. For a surface-controlled, 3-D growth mechanism, following a zero nucleation rate, 
the JMAK model should yield an value of 3 (Hulbert, 1969) however, the n value calculated 
form the particle growth data was 1.7. This might indicate a growth dimensionality <3 or the 
inappropriateness of the JMAK model for the growth of silica nanoparticles. Results from this 

study as well as from the literature (e. g., Iler, 1979; Icopini et al. 2005; Conrad et al., 2007) 

have shown that silica nanoparticles are spheres and n should therefore yield a value close to 3. 

This suggested that the use of the JMAK model for the growth of silica nanoparticle was 

problematic. Similar problems were reported by Banfield and Zhang (2001) and they concluded 
that the JMAK theory may not be that suitable for analyses of reaction kinetics involving nano- 

phases and that the fitting constants should be interpreted with care. This led to the conclusion 
that the Thetadash model was more appropriate and the parameters and mechanisms obtained 

more accurate. 
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Figure 6.15: Schematic illustration of the growth stages of saica nanoparticles from 

supersaturated solutions. Instantaneous homogeneous nucleation occurs at t= Omin, followed 

by initial fast particle growth concomitant with the decrease in monosilicic acid (5 - 100 min) 

and by Ostwald ripening / particle aggregation at longer time scales. 
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Nevertheless, the calculated rate constants, regardless of the kinetic model from which they 

were derived, showed similar values and trends (Table 6.3). In both models, the rate constant 
increased with increasing IS (i. e., increasing supersaturation), with the Thetadash rate constants 
being larger than those obtained from the JMAK model (Table 6.3). 

Rimstidt and Bames (19 80) obtained a reaction constant of 2.7xI 0-4 s-1 using a first order kinetic 

model to describe silica polymerisation (pH 7, T=25*C) which compares well with the values 

obtained in this study. Unfortunately, most other studies have used a reaction order >1 and the 
few that agreed on I" order reaction kinetics differed in the reaction mechanisms (i. e., diffusion 

vs. surface-controlled mechanisms) making comparisons with other studies difficult. 

Furthermore, most previous studies followed the time-dependent decrease in monosilicic acid, 
i. e., the silica polyinerisation process, and only inferred the reaction kinetics and mechanisms 
for silica nanoparticle growth. Despite silica polymerisation and silica nanoparticle growth 
being intimately connected, they are two very different processes (chemically-controlled 

polymerisation vs. 3-D, surface-controlled particle growth). Therefore, the reaction kinetics for 

the growth of silica nanoparticles can not be derived from the kinetics of the silica 

polymerisation process alone. The kinetic pathways seem to be further complicated by the 

complexity of the silica polymerisation process which to date is not well understood as indicated 

by the plethora of suggested reaction models for this process (Table 6.1). Furthermore, as shown 
by Harrison and Loton (1995) it might be necessary to divide the polymerisation process into 

distinct stages (e. g., dimerisation, oligomerisation) and to determine the mechanisms and 
kinetics for each stage in order to derive an overall mechanism of silica polymerisation in 

natural waters. This supports the approach employed in this study where the reaction kinetics 

for silica nanoparticle formation was determined by following in-situ and time resolved the 

nucleation and growth of silica nanoparticles in solution. 

Ostwald ripening has been suggested by several studies to be involved in the process of silica 

nanoparticle growth. The fit of the SAXS data to the OR model was very poor for the initial 

stages of particle growth and only improved slightly for the later stages of growth as indicated 

by the somewhat linear trends in R vs. t1/2 ,t 
1/3 plots (Fig. 6.10), the increased polydispersity (Fig. 

6.11) and the constancy of the invariant at later time points (Fig. 6.12). It seems reasonable to 

assume that OR did not occur within the initial stages of nucleation and growth of silica 

nanoparticles (within the time scale studied here), but may become more significant in the later 

stages of growth when the concentration of monosilicic acid approaches the solubility level and 

classical growth is energetically less favourable (Fig. 6.15). 
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6.5.3 The structure of silica nanoparticles 

Analysis of the power-law regime of SAXS profiles showed that the structure of the scattering 
particles was continuously changing (i. e., increase in p and D. respectively; Fig. 6.13) but that 
they were all mass fractals (p < 3) characterised by polymeric, open structures. This agrees well 

with previous studies (e. g., Der, 1979, 
'Perry 

and Keeling-Tucker, 2000) that have commented 

on the hydrous and porous structure of silica nanoparticles. A good illustration of the open 

nature of amorphous hydrated silica can be found in Perry and Keeling-Tucker (2000). It is not 

surprising, therefore that sample dehydration and exposure to high vacuum in the SEM and 
TEM measurements caused the particle structures to collapse, which explained the smaller 

particle sizes measured relative to SAXS/DLS and cryo-TEM (Table 6.2). 

As shown in Figure 6.14, D. increased from -1 to a final size of 2.2-2.3 for the tested 

suspensions. This steady increase was 6aused by the continuous hydrolysis of the growing 

particles, with hydroxyl groups being removed from the particles by intra-particle densification / 

. dehydration (Boukari et al., 1997). The establishment of the maximum D. indicated the end of 
the densification process. Further growth of D. to values >3 which would mark the transition 
from mass to surface fractals (i. e., hydrolysis continues at the particle surface) was not 

observed. This is possibly a consequence of the short time scale probed in this study. Boukari et 

al. (1997) showed that depending on the saturation state of the solution as well as the physico- 

chemical conditions of the experiments, the transition from open, polymeric structures to 

smooth silica nanoparticles can take hours to weeks. 

For alkoxides, Martin et al. (1990) and Lin et al. (1990) associated the fractal dimensions with 

an aggregation mechanism where objects that form during diffusion-limited colloid aggregation 
(DLCA; fast process) have low fractal dimensions (Df = 1.7-1.8, porous aggregates) whereas 
during reaction-limited colloid aggregation (RLCA; slow process) compact aggregates with 
high fractal dimensions (Df = 2.1-2.2) are produced. Applied to this study, the high fractal 

dimension, D. = 2.2-2.3, obtained for the later stages of growth suggested slow, reaction-limited 

colloid aggregation. This is in good agreement with the decreased growth rates observed 
towards the end of silica nanoparticle growth where classical growth was no longer favourable 

and processes including OR and aggregation dominated. 

6.5.4 Implications 

Silica polymerisation and the formation of silica nanoparticles are widespread in nature and 

occur in many terrestrial environments (e. g., geothermal waters, brines, seawater). Silica 

nanoparticles are also extensively used in industry and medicine where they can be produced by 
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various methods to suit specific industrial applications. Regardless of the natural environment or 

the industrial application of silica nanoparticle formation, it is the size and structure' that 

determines the chemical and physical behaviour (e. g., dissolution, adsorption, precipitation) of 
the nanoparticles. Therefore, it is essential to obtain a good understanding of the mechanisms 

and kinetics controlling the formation of silica particles including accurate measurements of the 

particle sizes and structures. The inforination obtained in this study demonstrated for the first 

time that the final diameter of silica nanoparticles precipitated from supersaturated silica 

solutions (-8nm from SAXS) was more than double the size cited in the literature (-34nm; 

e. g., Her, 1979 and references therein, Icopini et al, 2005). This significant difference has a huge 

impact on the physico-chernical properties (e. g., specific surface area, chemical stability and 

reactivity) of the particles and therefore needs to be included in energetic considerations and 
kinetic analyses of chemical and physical processes that involve silica nanoparticles. 

6.6 Summary 

The time dependent decrease of monosilicic acid gave insight into the dynamics of silica 

polymerisation, whereas in-situ time-resolved SAXS and DLS measurements provided the 

essential tools to monitor and quantify the initial steps of nucleation and growth of silica 

nanoparticles in aqueous solutions. SEM and high-resolution TEM were used to image and 

verify results obtained by SAXS and DLS providing snap-shots of particle size and shape at 

specific time steps during the reaction. 

Overall, the nucleation and growth of silica nanoparticle is governed by a series of processes 

governed by different kinetic mechanisms which can be divided into 3 main stages (Fig. 6.15): 

(1) the nucleation stage characterised by instantaneous homogeneous nucleation where 

monosilicic acid polymerises, to form stable nuclei with a diameter of between I and 2 rim 

(2) the 3-dimensional growth of silica nanoparticles following first order reactions kinetics 

coupled with a surface controlled reaction mechanisms 

(3) the late growth stage where classical growth ends and processes including Ostwald ripening 

and aggregation set in (especially at longer time scales). 
i Note that stage (1) and (2) are governed by the fast decrease of monosilicic acid while during 

the last stage the solubility level is almost established. At the end of this 3-stage process, 

regardless of the tested silica concentration and ionic strength, the fmal particle diameter was 

about 8nm characterised by mass fractal structure (i. e., open, polymeric structure). 
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6.7 Supplementary data 

The initial steps of silica polymerisation and silica nanoparticle formation were also quantified 
in organic solutions (i. e., added glucose, glutamic acid or xanthan gum) using the same 

methodology as in the inorganic experiments. However, no effect on silica polymerisation and 

silica nanoparticle growth was observed and results were thus not further discussed here. A 

summary of the results is given in Appendix B. 
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7 THE FORMATION OF SILICA NANOPARTICLES INDUCED BY 

COOLING A SUPERSATURATED SOLUTION: STOPPED-FLOW 

EXPERIMENTS 

7.1 Abstract 

Stopped-flow experiments were carried out to quantify the formation of silica nanoparticles in- 

situ and in real-time with the polymerisation being induced by rapid cooling of a supersaturated 

silica solution. For this, a novel flow-through geothermal simulator system was designed to 

work on-line with a synchrotron-based Small Angle X-ray Scattering (SAXS) or a conventional 
Dynamic Light Scattering (DLS) detector system. The CffeCtS Of Si02 concentration (640 vs. 
960ppra), ionic strength (0.02 vs. 0.06) and temperature (30 to 60'C) on the initial steps of 

nucleation and growth of silica nanoparticles were determined. 

Both SAXS and DLS results showed that the rate of silica polymerisation and nanoparticle 
formation was enhanced with increasing silica concentration while only minor changes were 

observed with increasing ionic strength or temperature. SAXS data showed that the size of the 

first detected particles ranged between 3-4 mn and that particles were still growing after 3 

hours. Extrapolation of the SAXS growth curves suggested a final particle diameter of -8nin. 

Comparison to results from pH-drop experiments (chapter 6) showed that the mechanisms and 
kinetics of particle growth were unaffected by the two different methods to induce silica 

polymerisation (both following first order reactions kinetics coupled with a surface controlled 

reaction mechanism). However, the fonnation of silica nanoparticles from a supersaturated 

silica solution proceeded substantially slower if silica polyrnerisation was induced by fast 

cooling as opposed to pli-drop. This was evidenced by the occurrence of an induction period, 
the formation of larger critical nuclei, reduced particle growth rates and the absence of particle 

aggregation in the T-drop experiments. This is argued to be due to differences in (1) time length 

to establish supersaturation and (2) pH- and T-dependency of amorphous silica solubility. 

7.2 Introduction 

The precipitation of silica in active geothermal systems is a well known process leading to the 

silicification of microorganisms and to the formation of silica sinters. Several studies have 

considered the interaction processes between microorganisms and the inorganically nucleating 

silica particles (e. g., Ferris et al., 1988; Urrutia et al., 1992; Urrutia and Beveridge, 1994; Fein 
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et al., 1997,2002; Cox et al., 1999; Phoenix et al., 2003; Yee et al., 2003,2004; Benning et al., 
2004a, b), or have studied the rates of amorphous silica nucleation in hot springs (e. g., 
Rothbaurn et al., 1979; Weres, 198 1; Carroll et al., 1998). Furthennore, a plethora of laboratory 

studies (e. g., Her, 1979; Fournier, 1985; Rimstidt and Barnes, 1980; Icopini et al., 2005; Conrad 

et al., 2006 and chapter 6 in this study) investigated the mechanisms and kinetics of silica 

nanoparticle formation in solutions mimicking natural fluids, yet, silica polymerisation was 

usually induced by lowering the pH of a supersaturated, high-pH silica solution to near neutral 

values where silica solubility is at a minimum. However, in many natural systems (e. g., 

geothermal pools or deep-sea vents) silica polymerisation and silica colloid formation is the 

result of rapid cooling of a high-temperature, supersaturated near neutral fluid to ambient 
(geothermal) or low temperatures (deep sea) rather than a pH change. 

So far, experimental challenges to simulate natural geothermal processes in the laboratory 

precluded the quantification of the Idnetics and mechanisms of silica nanoparticles formation 

from cooling hot fluids. To overcome this gap, experiments were performed that aimed at 

elucidating the mechanisms of silica polymerisation and silica nanoparticle formation where 

polymerisation was induced by rapid cooling of a supersaturated silica solution. For this, a 

novel flow-through geothermal simulator system (modified after Benning and Mountain, 2004) 

was designed to work on-line with a synchrotron-based Small Angle X-ray Scattering (SAXS) 

or conventional Dynamic Light Scattering (DLS) cell and detector systems that permitted the in- 

situ and in real-time quantification of the nucleation and growth of silica nanoparticles. The 

SAXS and DLS data were complemented by electron n-&roscopic imaging (Scanning and 
Transmission Electron Microscopy, SEM / TEM) to determine the size and polydispersity of the 

nucleating and growing silica nanoparticles. The reactions were monitored for a range of silica 

concentrations, ionic strengths and temperatures and results were compared to data from 

experiments where the polymerisation reaction was triggered by pH-drop (see chapter 6). 

7.3 Methodology 

7.3.1 Experimental set-up 

The flow-through geothermal simulator designed to mimic the polymerisation process as it 

occurs in natural geothermal environments is illustrated in Figure 7.1. The system consists of a) 

a storage bottle that contains the experimental solutions (at 25T), b) a HPLC pump to maintain 

a continuous flow of the solution at high pressures (p = 750psi), c) a high-temperature oven 
(kept at 230'C) with a 6m stainless steel coil, d) a backpressure regulator (BPR, set at 750psi) to 
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build up the required pressure to prevent the solutions from boiling and e) tubing to connect all 

the different parts. 

A supersaturated ([SIOj = 640 or 960ppm, and ionic strengths of 0.02 and 0.06) and partly 

polyinerised silica solution (at neutral pH) was pumped from the storage bottle into the high-T 

oven via the IIPLC pump (Fig. 7.1). Inside the oven, the fluid passed through the steel coil and 

the high temperature caused the solution to fully de-polymerise, thus producing a pure 

monomeric silica solution (i. e., all silica is dissolved). This approach mimicked the conditions 

of silica-rich fluids in the Earth's crust at about 2-3 km depths and under hydrostatic pressures. 
After the hot solution emerged from the high-T oven (i. e., solution immediately starts to cool), it 

passed through the BPR located - 15 cm after the oven. This distance assured a fast temperature 

drop (within -I inin) from 230'C to -80'C (measured after BPR outlet) which caused the silica 

to become again highly supersaturated and hence induced silica polymerisation. This rapid 

cooling process simulates the conditions when a supersaturated hot spring fluid is discharged at 

the Earth's surface and polymerisation of the monomeric silica (i. e., monosilicic acid) is 

initiated. 

Starting Si solutions with 
monomeric, polymeric and 
colloidal Si species 

;P 

Simulated geothermal fluid at 
depth (2,3 km) before issuance 

Si solutions depolymerise as 
they are heated to 2300C 
-4 only monomeric Si species 

el " 

Simulated hot spring pool 

Solutions slowly polymerise as 
they cool down --) Si colloids form 
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X-rays or 
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Figure 7.1: Schematic diagram of simulated hot spring system used to quantify silica 

nanoparticle formation induced by fast cooling of a solution saturated with silica (modified 

after Benning and Mountain, 2004). 
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This geothermal simulator allowed the in-situ and time-resolved monitoring of the very first 

steps of nucleation and growth of silica nanoparticles within the cooling polymerising solution. 
This was done by connecting the outlet of the BPR to a quartz capillary SAXS cell (1.5 mm OD 

and 10 mm walls) or a DLS cell (disposable plastic cuvette stationary placed in the DLS 

instrument) via Teflon tubing. Once filled, the SAXS and DLS cells were disconnected from the 

BPR and data acquisition was started (i. e., stopped-flow experiments; Fig. 7.1). 

The initial supersaturated silica solutions were prepared by dissolving specific amounts of 

Na2SiO2'51120 and NaCl in deionised water. The pH of the highly alkaline solutions (-pH 12) 

was adjusted to 7 using IM HCI and then filled into the storage bottle from where the solutions 

were pumped through the system (Fig. 7.1). During all experiments an increase of about 0.5 to 

0.8 pH units was measured in the solutions emerging from the BPR. However as shown by 

previous studies (e. g., Iler, 1979) the rate of silica polyrnerisation is not affected by this pH 
increase and this could therefore be discounted in the data processing. 

The silica polymerisation process was followed by the time-dependent decrease in monosilicic 

acid (up to 2 hours). For this, about 5 ml of the cooling polymerising solution (from the BPR) 

were filled into a separate plastic beaker and then disconnected from the system. Small aliquots 

of solution were then removed after specific time steps and analysed for monomeric and total 

silica using the spectrophotometric molybdate yellow method (see section 3.2.3 for details). 

7.3.2 Characterisation of silica nanoparticle fonnation 

The SAXS methods used in this study have been outlined in Chapter 3 and 6. Briefly, all SAXS 

measurements were carried out at station 6.2m at the Synchrotron Radiation Source (SRS), 

Daresbury Laboratory, UK. Specifically for the experiments presented here, the system was 

optimized using an energy of 8.5 keV (X = 1.4 A) and a SAXS camera length of 3.75 m. 

All SAXS measurements were carried out at 30*C and time-resolved spectra were collected 

every 5 minutes over time periods between I and 3 hours. The I-D data collected at station 
6.2m were processed using the program XOTOKO and further corrected for background 

contributions (i. e., scattering produced by air, water and SAXS capillary). The corrected 
intensity files were analysed using GNOM to derive information about the size and 

polydispersity of the growing particles (see section 3.2.6 and 6.2.2 for details). " 

To corroborate SAXS results, in-situ dynamic light scattering (Zetasizer Nano ZS, Malvern 

Instruments; see section 3.2.5 for details) experiments were performed up to 3 hours using the 

same Si02 and IS conditions as for the SAXS experiments. In addition, the heating capability of 
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the DLS instruments (to 60*Q allowed particle growth (i. e., particle size and polydispersity) to 
be monitored also as a function of temperature (at 30,40,50 and 60*C). 

Silica nanoparticles were imaged using field-ernýission gun (FEG) scanning electron microscopy 
(SEM) and transmission electron microscopy (TEM). More details of FEG-SEM and TEM 

sample preparation and imaging conditions are given in section 3.2.4 and 6.2.4. The size 
distributions of the silica particles were determined from the recorded TEM images. To obtain a 

size distribution with reasonably high precision, about 100 particles were measured in each 
image and the mean particle diameter and standard deviations (i. e., polydispersity) were 

calculated. 

7.4 Results 

7.4.1 Time course of the monosilicic acid concentration 

In Figure 7.2A, the decrease in concentration of monosilicic acid, [Si02(aq)], is shown as a 
function of silica concentration (640 and 960pprn Si02) and ionic strength (0.03 and 0.06 IS). 

The plot reveals that the initial silica concentration and the degree of silica supersaturation 

respectively had a major impact on the rate of silica polymerisation as indicated by the fast 

depletion Of [Si02(aq)] in the 960ppm SiO2 experiment as compared to the delayed 

polymerisation reaction within the lower concentrated solution (640ppm Si02, Fig. 7.2A). In the 

960ppm Si02 experiments (Fig. 7.2A, full and open squares), about 75% of [SiO2(aq)] (with 

respect to amorphous silica solubility at 30'C; dotted line in Fig. 7.2A) polymerised within the 
first 20 minutes, *whereas only 28% Of [Si02(aq)] was removed at the lower concentration (Fig. 

7.2A, crosses). In contrast, ionic strength had little effect on the overall decrease Of [Si02(aq)] 

over time and the two data sets with 960ppm Si02 but with varying IS (0.03 vs. 0.06; Fig. 7.2A, 

full vs. open squares) were within error of each other. Note that after 2 hours, all three data sets 

reached a monosilicic acid concentration close to the amorphous silica solubility, indicating the 

end of the initial fast depletion in [Si02(aq)] (Fig. 7.2A). 
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Figure 7.2: Time-dependent decrease in monosilicic acid, Si02(aq), as a function of (A) silica 

concentration (640 vs. 960 ppm Si02) and ionic strength (0.03 vs. 0.06 IS; all experiments were 

carried out at 30"C) and (B) temperature (30 to 60"C) for experiments with 960ppm Si02 and 

IS=0.03. Dotted lines represent amorphous silica solubility from Gunnarsson and Arn6rsson 

(2000). 

The effect ofternperature (30 to 60'Q on the polymerisation process for solutions with 960ppm 

SiO, and IS=0.03 is illustrated in Figure 7.2B. During the initial fast depletion in [Si02(aq)] 

(-80% with respect to silica solubility at the respective temperature, within the first 20 minutes) 

only small differences between the four tested temperatures were observed. Thereafter, the 

polymerisation process proceeded significantly faster at 30'C than at 60'C as expected from the 

decreased silica solubility at lower temperatures (dotted lines in Fig. 7.213). 
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7.4.2 SAXS 

The log-log plot of the time-resolved SAXS patterns from the experiment with initial Si02 Of 
960ppm and IS=0.03 (at 30"C) is presented in Figure 7.3. Profiles for the other data sets (i. e., 
960ppm SIO, / 0.06 IS and 640ppm Si02 / 0.03 IS) exhibited similar characteristics. The plot 

revealed a change in scattering intensity, I(q) with time which corresponds to a change in the 

total scattering volume (i. e., increase in particle size or number) and in electron density contrast 

between the matrix and the newly formed particles. The increase in the slope at low q angles 

(Guinier region, qRg < 1; Guinier, 1939) relates to an increase in the particle size with time. The 

solid lines depict the GNOM fits demonstrating both, the quality of the SAXS data and the 

suitability of the GNOM model (dilute monodispersed spheres) for the current data. The 

absence of a structure factor component in the scattering profiles (i. e., no sharp increase or 

decrease in the scattering intensity at low q; Glatter and Kratky, 1982) along with the flat 

Guinier region further demonstrated that the expefimental solutions were sufficiently dilute and 
that the q-range (i. e., experimental set-up) was appropriate to the particle sizes probed. 

Guinier regime (low q): 
Increase in slope with time 

Increase 

in time 

red line: GNOM fit 

data 

0.02 0.1 0.2 

Figure 7.3: Log-log plot of the scattering intensity as a function of scattering angle and time 

(960ppm SiO2.0.03 IS, 30'Q. The solid lines depict GNOM fits. For clarity, the errors for 

individual SAXS measurements (<3%) are not shown. 

The radius of gyration, Rg was evaluated from the full scattering pattern using the GNOM code 

and the assumption of a monodisperse distribution (GNOM fits shown in Fig. 7.3). The real 

particle radius, R, was then calculated using Rg and equation 3.4 (section 3.2.5). 
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Figure 7AA shows the increase in R over time as a function of different SiO2 and IS. In this 

plot, t=O denotes the point where the hot solutions reached the SAXS cell (i. e., about 1-2 

minutes after emerging from the high-T oven). Note that no SAXS measurements could be 

obtained for the initial 10 minutes due to the experimental set-up (i. e., -5 min preparation time 

to start SAXS experiments and securing the hutch) and the time needed to acquire the first data 

point (i. e., 5 minutes) 

No differences were observed in either the particle size or the particle growth rate between data 

obtained for the reactions with high Si02 (960ppm) but different IS (0.03 vs. 0.06). In contrast, 

particle growth was significantly delayed in the lower concentrated solution (640ppm SiO2,0.06 

IS; Fig. 7AA crosses) with an induction time of approximately 60 min. These results agreed 

with the observations from the depletion of monosilicic acid over time (Fig. 7.2A) and 

reaffirmed that silica concentration (i. e., silica supersaturation) was the prime control for the 

rate of silica polymerisation and silica particle growth, while the differences in IS did not cause 

any deviations. Based on the observations from the depletion in monosilicic Si02, SAXS 

patterns were acquired for 3 hours, yet a final particle size was not reached (i. e., particles were 

still growing after 3 hours, Fig. 7.4A). Nevertheless, in the experiments with 960ppm Si02 the 

growth rate slowed down significantly after 90 minutes and by extrapolating the progression of 

the growth curve to a flat plateau, a final particle radius of 4nm was estimated. Due to the 

delayed initiation of silica particle growth (-60 min) in the lower concentrated experiment (640 

Si029 Fig. 7.4A), the particle radii were still steadily increasing after 3 hours suggesting that the 

time length to reach the end of particle growth would take significantly longer (about 5 to 6 

hours). In the experiments with 960pprn Si02, where no induction periods were observed, the 

extrapolation of the growth curves to t=0 (solid line in Fig. 7.4A) also provided an estimate of 

the critical nuclei radius (i. e., the size of the primary particles)'of about 1.2 run. 

The pair distribution functions (PDF) for a polyinerising solution with 960pprn Si02 and 
IS=0.03 are illustrated in Figure 7.413. Note that the shape of the PDF curves did not differ 

between experiments (i. e., over the studied silica and salt concentration). The PDF plots were 

slightly skewed towards the right but the near-Gaussian shape of the PDFs supported the 

assumption of fairly monodisperse, spherical silica nanoparticles. The observed tails could 

either relate to the presence of aggregates or the presence of some degree of polydispersity. The 

increase in both the area under the curve and the'apex of the curve indicated an increase in 

particle size. 
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Figure 7.4: A) Time course of R as obtained from the GNOM analysis in solutions with 
640ppm and 960ppm Si02 and different IS (note that the errors were typically -3%). The solid 
line shows the extrapolation of the growth curve to t=0 to estimate the critical nuclei radius 
(RO - 1.2 nm). B) PDF of scattered silica nanoparticles as a function of Rg and time evaluated 

with GNOM (960ppm SiO2t 0.03 IS). 

7.4.3 DLS 

The time-resolved DLS data are illustrated in Fig. 7.5A. Due to the lower resolution of DLS at 

small particle sizes, DLS data displayed substantially more scatter and the average % error of 
DLS experiments ranged between 27 and 56% (for clarity these errors are not shown in Fig. 7.5) 

as compared to the I- 3% error for the SAXS data. Despite these larger errors, overall, the 

trends between particle growth rate and Si02 concentration and IS respectively were similar to 

those observed with SAXS. VVUle in the 960ppin SiO2 experiments the first particles (-3 nrn in 

diameter) were detected after 15 minutes, an induction period of about 35 minutes was observed 
for the first particles in the 640ppin Si02 experiment. Compared to the SAXS results, this 

4 
Rg (nm) 
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inductioii time was -25min shorter, but the large scatter in the DLS data (particularly below t= 

60 min) indicated that these initial data points might not be reliable. In contrast to the SAXS 

data, the particle diameters derived by DLS seemed less affected by SIO, and were within the 

average % error of each other. Note that this was most certainly the result of the lower 

resolution ofDLS indicating the limitation of this method for the size analysis of nanoparticles 

in the range between I and 10 rim. 
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Figure 7.5: A) Growth of silica nanoparticles in solutions with varying 8i02 and 18 as 
determined by DLS (at 30"C). The arrow indicates the induction period (i. e., first detectable 

particle) for the 640ppm Si02 experiment (listed % errors are average values for a specific 

experiment). B) Growth of silica nanoparticles in solutions with 960ppm Si02 and 0.03 IS as a 
function of temperature (30 to 60'C). 

In Figure 7.511 the influence oftemperature (30 - 60*C) on the growth of silica nanoparticles is 

shown for solutions with 960ppm SiO, and 0.03 IS. The plot indicates that the temperature 

change From 30 to 60'C appeared to have no detectable effect on particle size and growth rate. 

in all growth profiles, the first detectable particles had a diameter of around 3 nm which then 

increased to about 5nin within the first 90 minutes. Due to enhanced silica solubility at higher 
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temperature, one would expect lower polymerisation rates (similar to the tinie-dcpciident 

depletion in nionosilicic acid; Fig. 7.2) and therefore slightly different particle growth profiles. 

I lowcvcr, the substantial errors in DIS experiments indicated that even it'differences in particle 

size and particle growth rate were present they could not have been revealed by DLS. 

7.4.4 Fleetron Microscopy 

Thc particle sizes obtaincd frorn SAXS and DLS were verified by removing samples at various 

time stcl), during the reactions Ior SEM and TFM analysis. Figure 7.6A shows a FFG-SFM 

photoinicrograph of' silica nanoparticles after 3 hours of polynierisation in a solution with 

960ppin Sio, and 0.03 IS (at 30"C). 'rhe photornicrograph indicates that the SI'M resolution is 

slightly too low to get accurate measurements of the particle diameter but a rough estimate ot'3 

to 10 nin could be made. Note that the larger particles, i. e., 5- 10 nin in size in Fig. 7.6A, 

possibly represent aggrcgatcs of'sinaller particles. 

A more precise value t'or tile size ot* tile growing particles was derived froin tile TEM 

pliotonucrograplis (Fig. 7.611) where the individual particles could be distinguished and the 

spherical sliape and fairly nionodisperse distribution could be confirincd. Using TEM 

pliolonucrograplis, the average particle diameter and the polydispersity (i. e., standard deviation) 

was docrinincd I'Or two aging times (2 and 3 hours) for the 960ppm SIO, / 0.03 IS experiment. 

Rcsults ire listed in Table 7.1 along with SAXS and DLS data for comparison. Note that TEM 

values are consistently sniallcr than SAXS and DLS measurements (Table 7.1). 

20 nm 

6 S'. "" ... ... 
�. 

�. 

Figure 7.6: Photomicrograph of silica nanoparticles grown for 3 hours in a solution with 

960ppm Sio, and IS of 0.03 (at 30"C) imaged by A) FEG-SEM (white spots = particles) and B) 

TEM (black spo(s ý particles). 

Ivi-tic1c diameter 4.4 1 1.6 tim 
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Table 7.1: Comparison of particle diameter obtained from SAXS, DLS and TEM. 

SiO2 
is Time Particle diameter (nm) 

(ppm) (h) SAXS DLS TEM 

960 0.03 2 6.8 ± 0.2 5.7 ± 2.9 3.2 ± 0.6 

3 7.3 ± 0.2 6.6 ± 3.3 4.4 ± 1.6 

7.4.5 Kinetic analysis of SAXS data 

To evaluate the reaction kinetics for the formation of silica nanoparticles, the time-resolved 
SAXS data from the experiments with 640 and 960 PPM Si02 and IS of 0.03 and 0.06 were 
fitted with the Thetadash and the JMAK kinetic models which are both based on classical 

growth theory (see section 3.2.6 and 6.3.6 for details). However, the fitting of the SAXS data to 

these two models turned out to be problematic due to the following three reasons: 1) the final 

particle size was not reached within the tested time period (particularly in the 640ppm Si02 

experiment), 2) the poor quality of the scattering pattern for the first 10 - 20 minutes in both 

960ppm Si02 experiments (this is because >300 data points from individual scattering profiles 

needed to be ornitted during GNOM analysis) and 3) the occurrence of an induction period in 

the 640ppm Si02 experiment (i. e., point in time where particles nucleated is unknown). As a 

consequence, the kinetic modelling of the SAXS data from the 640ppm Si02 / 0.06 IS and the 
960ppm Si02 / 0.06 IS experiment did not yield reasonable results and were excluded in the 
following discussion. 

In Figure 7.7, the fits to the Thetadash and to the JMAK model are shown for the 960ppm Si021 

0.03 IS experiment (i. e., most complete growth profile). The fitting procedure showed that the 
fit between the SAXS data and the Thetadash kinetic model were exceptionally good with a first 

order rate law coupled with a surface-controllcd mechanism (Fig. 73A). Data analysis with 
Thetadash also provided information on the size of the critical nuclei (Ro = 1.47 mn) and the 
initial growth rate (Go = 1.52 x 10-12 s-1). Go was then used to calculate the rate constant (k = 
1.46 x 10-4 s") using eq. 3.8 to compare to the rate constant obtained from the JMAK model 
(fig. 7.7B). 

The fit between the JMAK model and the SAXS data was also very good (Fig. 7.7B) supporting 

that the initial steps of silica nanoparticle growth proceed via classical growth. The fitting 

procedure also provided a value for the JMAK exponent n (13) and the rate constant 2.12 

x 104 s-1, eq. 3.6). 
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Figure 7.7: Reaction process, a (eq. 3.7), with time for the 960ppm Si02 0.03 IS experiment. 

The solid lines represent the fits to the (A) Thetadash and the (B) JMAK kinetic model. Also 

shown are the parameters that were obtained from the fitting procedure to both the Thetadash 

and JMAK kinetic models. 

7.5 Discussion 

For the first time, the nucleation and growth of silica nanoparticles was quantified in-situ and 

under simulated hot spring conditions using a flow-through geothermal simulator. All 

experiments were conducted at neutral pH with varying silica concentrations (640 vs. 960 ppm 
SiOA ionic strengths (0.03 vs. 0.06 IS) and temperatures (30 to 60*Q. Both SAXS and DLS 

exponent n: 1.3 

rate constant, W: 2.12 x 10-4 a-' 
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results confirmed previous studies that concluded that the rate of silica polymerisation and 

nanoparticle fonnation was affected by increasing silica concentration (e. g., Rothbaurn and 
Rhode, 1979; Icopini et al., 2004; Conrad et al., 2007). Similarly, a change in ionic strength or 
temperature was expected to affect the silica solubility and hence the polymerisation reaction 

and particle growth rate (see chapter 6). However the tested IS (0.03 vs. 0.06) and T (30 to 
60*Q variations may have been too small to have an observable effect, i. e., the differences 

could not be resolved with the techniques employed. 

In all experiments the reacting solutions were supersaturated with respect to amorphous silica 

and the degree of saturation (i. e., the silica concentration) invariably affected the growth rates 

and hence the time lengths for the reactions. In the 960ppm Si02 experiments, the 

polymerisation reaction did not exhibit an induction period (Fig. 7.2), i. e., the first silica 

nanoparticles were detected 10 min after the initiation of the silica polymerisation reaction (i. e., 
time required to prepare / start the SAXS experiment and to acquire the first data point, Fig. 

7.4A). In contrast, the polymerisation process and particle growth was delayed in the 640pprn 

Si02 experiments (Fig. 7.2) and particles were not detected until 60 min after cooling the 

solution (Fig. 7.4A). Note that in the 640ppm Si02 experiments, although scattering patterns 

were recorded (from t= 10 - 55min, Fig. 7.4A), the patterns were indistinguishable from the 
background, i. e., no particles were detected. Nevertheless, particles might have already 

nucleated after about 10 to 15 minutes (at the time when polymerisation started; Fig. 7.2) but 

may have been unstable within the polymerising solution and re-dissolved again. Once a certain 
degree of polymerisation was reached (i. e., -65% had polymerised at t= 60 inin) the critical 

nuclei were energetically stable and started growing. 

7.5.1 Particle size analysis 

Particle growth curves obtained from SAXS showed that the size of the first detected particles 

ranged between 3-4 nm (depending on the concentration) and that particles were still growing 

after 3 hours (based on the observation of the time-dependent depletion in monosilicic acid, data 

acquisition stopped thereafter). Although at 960ppm Si02, a plateau (i. e., a final particle size) 

was almost reached, at 640ppm Si02 the particles were still increasing in size substantially after 
3 hours. By extrapolating the progression of the growth curve, a final particle diameter of -8 run 

was estimated for the 960ppm SiO2 experiments. For the 640ppm Si02 experiment, a similar 
final size was expected from the trend of the growth curve but also from previous observations 

which suggested that the final particle size was not affected by the degree of silica saturation 
I (see section 6.4.1). 
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Although the formation of the critical nuclei could not be quantified, the radius of the critical 

nuclei was calculated using the Gibbs-Kelvin approach (eq. 2.2) and was also obtained from the 
fitting to the Thetadash kinetic model (Fig. 7.7A, Table 7.2). Furthermore, by extrapolating the 

growth curve to t=0, a third estimate of RO could be derived (Table 7.2). 

Table 7.2: Summary of evaluated critical nuclei radius, Ro (RO+ was calculated using the Gibbs- 

Kelvin approach; RO was obtained from Thetadash analysis and RO E was estimated by 

extrapolating the progression of the growth curve to t--O). 

Experiment 
la, + 

0 

Gibbs - Kelvin 
Approach 

Ro 
Thetadash kinetic 

model 

ROE 

Extrapolation of 
growth curve 

640ppm Si02,0.06 IS 1.07 nm - - 

960ppm Si02,0.03 IS 0.85 nm 1.47 mn -1.2 run 

960ppm Si02,0.06 IS I 0.85 nm I- - I - II 

The Rý' values obtained from the Gibbs-Kelvin approach showed that the critical nuclei radius 

was significantly lower (-20%) in higher concentrated silica solutions and little influenced by 

IS (Table 7.2). This is not surprising as the nucleation process has a higher driving force in more 

saturated solutions (i. e., higher concentrations) thus enabling the stabilisation of smaller nuclei 
(more energy is needed to sustain a higher surface to volume ratio). Only one SAXS profile 

could be used for the Thetadash analysis (see above) and therefore, only one Ro value (from the 
960ppm Si02 10.03 IS experiment) was evaluated to compare to the R, ý values calculated with 
the Gibbs-Kelvin approach (Fable 7.2). The disagreement between theses two values, i. e., Ro is 

almost twice as big as Ro, is probably the result of the poor quality of the SAXS data at the start 

of data acquisition (in both 960ppm. Si02 experiments) and thus, Ro obtained from Thetadash 

might not be as accurate. This was further supported by the critical nuclei radius obtained from 

the extrapolation of the full growth curves (RoE - 1.2 nm, Fig. 7.4A) which better matched the 

Roý value calculated with the Gibbs-Kelvin approach W=0.85 mn). It should be noted that the 

critical nuclei size obtained from the Gibbs-Kelvin approach is solely controlled by the degree 

of supersaturation (assuming molar volume and surface free energy remain constant) and thus 
does not consider any other parameters (e. g., induction time, presence of salts / organics) that 

could potentially influence the critical nuclei size. 
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To compare the SAXS results with the DLS and TEM data, the particle radii determined from 

SAXS were converted to particle diameters (Table 7.1). Figure 7.8 shows the direct comparison 
between the SAXS and DLS results for the growth of silica nanoparticles in solutions with 
960ppm Si02 and IS of 0.06. For clarity, the errors of the DLS measurements are not shown. 
Both growth curves followed similar trends, although the DLS data scatter substantially more 
than the SAXS data due. to the lower accuracy of the DLS measurements. In both data sets the 

diameter of the first detected particle ranged between 3 and 4 nm which then steadily grew by 

the addition of monomers to trimers and oligomers (e. g., Perry and Keeling-Tucker, 2000). 

After 3 hours they reached a size of about 6-7 nm (Fig. 7.8) but were still growing (although at 

a substantially slower rate). 
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Figure 7.8: Change In particle diameter during the growth of silica nanoparticles as a function 

of time In a silica solution with 960ppm SiO2 and IS = 0.06 measured by SAXS and DLS. 

From previous results (chapter 6), one might expect particle aggregation towards the end of the 

growth process, however only few aggregates were seen with SEM and TEM. Furthermore, 

despite DLS measurements being highly susceptible to the presence of larger aggregates (see 

section 6.3.3) no indications for particle aggregation (e. g., sudden increase in particle size) were 

observed in any of the acquired DLS profiles. This suggests that for the tested conditions, the 

nucleating and growing particles were relatively stable within the polymerising solution and did 

not aggregate over the studied 3 hours. 

The particle diameters obtained from TEM were significantly smaller (up to 50%) than those 

derived from DLS and SAXS (Table 7.1). This was not unexpected as for TEM analyses 

samples are dried and placed under high vacuum and thus they undergo dehydration and 

relaxation processes causing the highly hydrous (up to 13 wt% water, section 2.2.2) and open- 

30 60 120 150 180 
Time (min) 
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structured particles to collapse. Furthermore, the errors on single size measurements obtained 
from TEM images are in the order of 15-30% as compared to <3% for SAXS data points. 

Note that so far the assumption was made that the scattering (for both DLS and SAXS) was 

produced by monodisperse particle suspensions. This means that all particles have the same size 

at all times during the reaction and that all particles nucleated at the beginning of the reaction. 
However, as indicated by the slightly skewed PDF distribution (Fig. 7.4B), the large average 

errors of the DLS measurements (Fig., 7.5) and the SENUTEM photornicrographs (Fig. 7.6), the 

studied systems exhibited some degree of polydispersity. 

Comparison to plI-lowering experiments (chapter 6) 

Most previous experimental studies that followed silica polymerisation and silica nanoparticle 

growth have induced silica polymerisation by lowering the solution pH from highly alkaline pH 
to near neutral values where silica solubility is at a minimum (e. g., Alexander et al., 1954; Iler, 

1979; see also chapter 6). Yet, in natural geothermal systems the polymerisation reaction is a 

result of rapid cooling of a supersaturated near neutral fluid. Naturally, one would expect that 

the polymerisation reaction and thus silica nanoparticle growth should be similar regardless of 

the method applied (i. e., pII- vs. T- drop) to induce silica supersaturation (assun-dng the tested 

solutions are identical). However, the comparison between results from this and the previous 

chapter (Fig. 7.9, Table 7.3) as well as data in the literature indicates substantial differences in 

polymerisation and particle growth rates between the two methods. Note that the slight 
difference in IS between the two illustrated data sets (Fig. 7.9; pH-drop/0.02 IS vs. T-drop/0.06 

IS) could be neglected as demonstrated above (Fig. 7.4). - 
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Figure 7.9: The effect of T- and pH- induced silica supersaturation on (A) the time-dependent 

depiction in monomeric SiO2 and (B) the increase in SAXS particle radius over time in 

solutions with 640ppm SiO2 (both experiments were carried out at 30'Q. 

The dominant trend observed in Figure 7.9A indicates that the polymerisation reaction proceeds 
faster when induced by pH-drop than by fast cooling. This is shown by the slight delay in the 
depletion in monosilicic acid in the T-drop experiments (- 5-10 min) compared with the more 
immediate decrease in monosilicic acid in the pH-drop experiment (Fig. 7.9A). A similar trend 

was observed in the growth profiles (Fig. 7.9B): in the T-drop experiment, the particles started 

growing after -60 minutes while growth seemed instantaneous in the pH-drop experiment (first 

detected particle at 10 min, Table 7.3). 1 
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Table 7.3: Comparison of reaction kinetics between pH- and T-drop experiments (see text) for 

solutions with 640ppm. SiO2. 

pH - drop T- drop 
640ppm Si02 640ppm Si02, 

0.031S 0.061S 

Nucleation 
RO Gibbs-Kelvin Approach 1.07 1.07 
RoThetadash 1.07 1.47 
Instantaneous nucleation yes no 
Induction period no 60 min 
Particle growth 
1 st order reaction, surface-controlled yes yes 

Thetadash rate constant (xl 0-4 s*') 3.18 1.46 

JMAK rate constant (Xj 0-4 S-) 2.77 2.12 

Aggregation 

DLS yes no 

_SEM/TEM 
yes no 

The discrepancy in polymerisation and particle growth rates seem to be the result of differences 

in time to establish supersaturation. In the pH-drop experiments, the sudden change in pH from 

12 to 7 (<30 s) induces instantaneous supersaturation and thus forces the monosilicic acid to 

polymerise. In contrast, the "fasf' cooling process of the hot fluid from 230'C to 30'C occurs 

over 2 to 3 minutes as a result of which supersaturation is not reached instantaneously but rather 
increases continuously as T decreases. Therefore, the polymerisation process is less driven and 

proceeds slower. In addition, the pH- and T-dependency of silica solubility differ substantially 
from each other (Fig. 7,10). In the case of pH, silica solubility is at a minimum around pH 6 to 9 

but then increases drastically at pH >9 (Fig. 7.1 OA) whereas in the case of T, the solubility does 

not exhibit any dramatic changes but steadily increases with increasing T (Fig. 7.1013; more 
details are given in section 2.1.3). This further suggests that the radical change in pH will 

enforce the polymerisation reaction substantially more than the change in T. Interestingly, the 
final particle size was not affected by these different methods and for various silica 

concentrations and ionic strengths (Fig. 6.4,7.4) a final particle diameter of 7-8 nm was 
derived. 
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Figure 7.10: Amorphous silica solubility as a function of A) pH (Alexander et al., 1954) and B) 

temperature (in salt-free solutions). 

7.5.2 Kineticsand mechanism of particle growth 

The initial stage ot'silica nanopartictc fon-nation from a supersaturated solution is characterised 

by silica polymerisation and the nucleation of stable nuclei with sizes around 2-3 nm (Table 

7.2). The nucleation mechanism is assumed to be homogeneous and instantaneous (see section 

6.5.2 for details). SAXS results presented here however, do not support instantaneous 

nucleation in the case of T-drop due to the occurrence of an induction period in the 640ppm 

SiO, experiment. In addition, the poor quality of the scattering data at the start of the 960 ppm 

Sio, experiments concealed essential particle size information for the initial 10-20 minutes. 

Nevertheless, tile good fit of the SAXS data to the Thetadash kinetic model, which assumes 

instantaneous nucleation (Fig. 7.7A) suggested that in the 960ppm Si02 experiment, 

instantaneous nucleation might have occurred. 

The second stage of silica nanoparticle fori-nation is governed by the fast decrease of 

nionosilicic acid (Fig. 7.2) and the 3-dimensional growth of spherical silica nanoparticles (Fig. 

7.4A). The shape ofthe silica particles was verified by SEM and TEM (Fig. 7.6) but also by the 

near Gaussian-shaped PDF curve (Fig. 7.4B). Furthermore, the good fits to the Thetadash model 

(FIg. 7.7A), which assurnes 3-D growth and where the best fit in terms of the regression 

coellicicilt was obtained using a first order rate law with a surface-controlled mechanism, 

confirmed the 3-1) radial growth. The fitting procedure to the JMAK model resulted in an value 

of 1.3 (FIg. 7.713). According to Hulbert et al. (1969), for a surface-controlled, 3-D growth 

inechaiusin, the JMAK model should yield an value between 3-4. This discrepancy might 

indicate 1) a growth dimensionality < 3,2) a diffusion-controlled mechanism or 3) the 

inappropriateness of the JMAK model for the growth of silica nanoparticles. SEM/TEM 
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photomicrographs and other studies (e. g. Her, 1979; Icopini et al. 2005; Conrad et al., 2007) 
have shown that silica nanoparticles are spheres therefore a growth dimensionality <3 is not 
reasonable. Furthermore, a diffusion-lin-ýited growth mechanism is unlikely, as indicated by the 

good fit to the Thetadash kinetic model supporting a surface-controlled mechanisms and 
previous results (section 6.5.2). This leads to the conclusion that the use of the JMAK model for 

the growth of silica nanoparticles; at these small scales and via homogenous nucleation from 

solution is problematic as it was already discussed in the previous chapter (section 6.5.2). 

Interestingly, the calculated JMAK rate constant, k* = 2.12xlO4 s-1, compared well to the rate 
constant, k=1.46x 10-4 s-1 obtained from the Thetadash model. 

There are no studies in the literature with similar experiments to compare the rate constants to. 
The kinetic studies that investigated the processes of silica polymerisation and silica 

nanoparticle formation looked at the time-dependent decrease in monosilicic acid and then 
inferred the reaction kinetics for silica nanoparticles growth from these results (see section 
2.1.4). However, these are two very different processes (chemically-controlled polymerisation 

vs. 3-D, surface-controlled particle growth) and should therefore be separated for kinetic 

considerations (see section 6.5.2 for more details). 

Ostwald ripening and particle aggregation has been suggested by several studies to dominate the 
later stages of silica nanoparticle growth (e. g., Her, 1979; Perry and 

' 
Keeling-Tucker, 2000). 

However, in the experiments discussed here (polymerisation induced by T-drop) aggregation 

was not observed. This could be a consequence of slower particle growth, as evidenced in the 
SAXS data (Fig. 7.913) which prevented the reaction and invariably later aggregation to be fully 

monitored. 

Comparison to pli-lowering experiments (chapter 6) 

Results from this study support the first two of the three stage process for the formation of silica 

nanoparticles proposed in the previous chapter: (1) silica polymerisation and nucleation of silica 

nanospheres, (2) particle growth and (3) particle ripening and aggregation (see section 6.4.2 for 

details). The general mechanisms and kinetics of silica nanoparticle growth were thus not 

affected by the different approach to induce silica polymerisation (i. e., T-drop vs. pH-drop; both 

support I" order, surface-controlled particle growth). However, the rate of silica polymerisation 

and particle growth was substantially lowered when'polymerisation was induced by T-drop (i. e., 

occurrence of an induction period, smaller rate constants; Fig. 7.9 and Table 7.3). Furthermore, 

no aggregation processes were observed in this study, while several signs of particle 

aggregation (i. e., data from DLS, SEM and TEM) were found in the pH-drop experiments. This 
further conf irmed that particle growth was retarded in the T-drop experiments. 
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This might also explain the discrepancy in critical nuclei sizes (obtained from Thetadash) 

between the two experiments (pH-drop: 1.07 nm vs. T-drop: 1.47 mn). As mentioned before, 

smaller critical nuclei form (i. e. are stable) in more saturated solutions due to a higher driving 

force. However, as shown above this rrýght not solely be controlled by the degree of 

supersaturation but could potentially be also influenced by how supersaturation is induced. 

Therefore, the bigger critical nuclei determined for the T-drop experiments (using Thetadash 

extrapolation of growth curves) might thus be another consequence of the slower reaction 
kinetics in these experiments. Equally, this could explain the differences in critical nuclei size 
between values determined with the Gibbs-Kelvin approach and with Thetadash (as well as the 

extrapolation of the growth curve) in this study (Table 7.2). The Gibbs-Kelvin critical nuclei 

size is only dependent on the degree of supersaturation and will not take into account that in the 

T-drop experiments, the overall reaction is retarded. Therefore, the extrapolation of the growth 

curve to t=O (i. e. Thetadash, Table 7.2) might give a more accurate estimate of the critical nuclei 

size. 

7.5.3 Comparison to the literature 

Few studies looked at silica polymerisation and precipitation in natural geothermal waters (e. g., 
Rothbaum et al., 1979; Weres, 198 1; Carroll et al., 1998) or have simulated natural geothermal 

processes within the laboratory (e. g., Rothbaurn and Rhode, 1979; Carroll et al., 1998). Similar 

to the present study, Rothbaurn and Rhode (1979) investigated the polymerisation process in 

near neutral solutions with varying Si02 and at varying T in which silica supersaturation was 

also induced by fast cooling. Their data showed that in solutions with 600 - 650ppm Si02 and at 
30'C, silica polymerisation was delayed by up to 20 minutes thus supporting the T-drop data 

presented above (Fig. 7.9A, open symbols). In contrast, Icopini et al. (2005) and Conrad et al. 
(2007) showed that in pl 1-drop experiments using similar experimental solutions (PH 7,750ppm 

SiO2,25'C) no induction periods were observed which confirmed the pH-drop data presented 
here (Fig. 7.9A, full symbols). 

Rothbaum ct al. (1979) examined the depletion in monosilicic acid within freshly discharged 

geothermal waters (polymerisation is induced by T-drop). For this, they removed freshly 
discharged geothermal waters from various wells from Broadllands and Wairakei (NZ) into 

teflon bottles which were then kept at sampling temperature (i. e., 80 - 90'Q to follow the 

polyincrisation process up to 4 hours. Sin-dlar to Rothbaurn and Rhode (1979) and the results 
from the present study, Rothbaurn et al. (1979) showed that in geothermal waters with 570 and 
620 SiO2 an induction period delayed the polymerisation process in their experiments. It should 
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be noted that their experiments were carried out at a higher temperature and the observed 
induction periods were accordingly longer (40 - 60 minutes). 

All these studies support the hypothesis that silica polymerisation is delayed in systems where 

silica supersaturation is induced by fast cooling (compared to pH drop). However, so far none of 
these studies (nor any other studies) were able to derive quantitative information on the 

mechanism and kinetics of silica nanoparticles formation, i. e., have monitored in-situ and time- 

resolved the nucleation and growth of silica nanoparticles. Furthermore, despite efforts to 

quantify the precipitation rates of amorphous silica in natural geothermal systems (e. g., Weres, 

198 1; Carroll et al., 1998) there is currently no data set available to compare to the kinetic data 

presented here. This is mainly due to different experimental set-ups used in these field and lab 

studies (e. g., usage of silica gels, quantifying total silica scale) as well as differences in the 

evaluation of the reaction kinetics (e. g., precipitation rate as a function of the Gibbs free energy 

of reaction). 

7.6 Conclusions 

The time-dependent depletion in monosilicic acid provided information on the silica 

polymerisation process, while in-situ time-resolved SAXS and DLS measurements were used to 
follow and quantify the initial steps of nucleation and growth of silica nanoparticles. SAXS and 
DLS results were supported by SEM and high-resolution TEM photornicrog'raphs providing 
information on the size and shape of the growing silica particles at various stages, during the 

reaction. 

Combining the results from the pH-drop experiments (chapter 6) with data obtained in this 

k study, it was found that the nucleation and growth of silica nanoparticles from a supersaturated 

silica solution proceeds substantially slower if silica polymerisation was induced by fast 

cooling. This was evidenced by the occurrence of an induction period at the start of both the 

time-depcndcnt depletion in monosilicic; acid and particle growth in the T-drop experiments. 
Therefore, the assumption of instantaneous homogeneous nucleation (as postulated in chapter 6) 

might only be valid under certain conditions (i. e., only occurs in solutions with a certain degree 

of supersaturation but it also depends on how supersaturation. is induced / established). 
Furthermore, the delayed reaction kinetics in the T-drop experiments also seemed to have 

affected the critical nuclei size (i. e., are larger in T-drop experiments). Nevertheless, the 

mechanisms and kinetics of particle growth seemed unaffected by the two different methods to 

induce silica polymerisation as evidenced by the good fits to the Thetadash model using first 

order reactions kinetics coupled with a surface controlled reaction mechanism. Unfortunately, 

the late growth stage was not monitored in this study but in comparison with the previous 
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literature and the results from chapter 6, it is most probable that the late stages will be 

characterised by Ostwald ripening and particle aggregation. 
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8 THE SIZE AND POLYDISPERSITY OF SILICA NANOPARTICLES 

UNDER SIMULATED HOT SPRING CONDITIONS: CONTINUOUS- 

FLOW EXPERIMENTS 

8.1 Abstract 

The nucleation and growth of silica nanoparticles in geothermal waters, i. e. under constant re- 
supply of supersaturated silica solution, was simulated using a flow-through geothermal 
simulator system. The effect of silica concentration ([SiO2]), ionic strength (IS), temperature 

and organic additives on the size and polydispersity of the silica nanoparticles formed was 
quantified. While the applied increase in IS did not affect the size (30 - 35 mn) and 

polydispersity (± 9 nm) observed at 58*C, an increase in [Si02] notably enhanced silica 
polymerisation and also resulted in slightly smaller mean particle sizes. The biggest effect was 
observed with a decrease in temperature (58 to 33'Q or the addition of glucose; in both cases 

particle growth was restricted to sizes below 20 nin. Conversely, the addition of xanthan gum 
induced the development of a thin film that enhanced silica aggregation. 

8.2 Introduction 

Several studies have characterized biosilicification. occurring in hot spring pools by quantifying 
interaction processes and mechanisms between microorganisms and silica (see section 2.2 for 
details). Overall, it has been shown that microorganisms play a rather passive role in the 

silicification process and simply provide surfaces for silica nanoparticles to adhere (e. g., 
Benning et al., 2004a, b, 2005; Lalonde et al., 2005; section 2.2.5). This suggests that the 

microorganisms might therefore not necessarily influence the kinetics of silica nanoparticle 
formation. However, to understand biosilicification occurring in modem hot springs, the 

mechanisms by which silica particles nucleate, grow and aggregate have to be quantified in the 
first place. Furthermore, the impact of varying geochemical conditions (e. g., [Si021, IS, T, pH) 

as well as the presence of microorganisms (i. e., functional groups of microbial cell envelope) on 
these processes have to be assessed. Lastly, biosilicification needs to be further investigated 

under simulated hot spring conditions, i. e., under constant re-supply of fresh supersaturated 

solution and where silica polymerisation and nanoparticle fonnation are induced by rapid 

cooling (e. g., Benning and Mountain, 2004). 

The aims of this study were, therefore, to elucidate the mechanisms of silica polymerisation and 

silica nanoparticle formation with the polymerisation being induced by rapid cooling of a 
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supersaturated silica solution and under constant re-supply of silica supersaturated solution. For 

this, a flow-through geothermal simulator system was designed to follow the formation of silica 

nanoparticles in both inorganic and organic solutions. The experiments were carried out with 

near neutral p1l solutions and at a range of silica concentrations, ionic strengths and 
temperatures most often found in natural geothermal systems. Furthermore, the effect of specific 

organics (e. g., glucose and xanthan gum; representing rrAcrobial cell wall functional groups, 

exopolysaccharides) on the polymerisation process was iested. The silica polymerisation 

process was monitored by following the time dependent depletion in monomeric silica and 

complemented by scanning electron microscopy (SEM) and dynamic light scattering (DLS) to 
image and quantify the size and polydispersity of the growing silica nanoparticles at various 
time steps. Variations related to the different tested parameters (i. e., Si02 concentration, IS, T, 

organics) on the size and polydispersity of silica nanoparticles will be discussed. 

Note that the high-temperature flow-through geothermal simulator system used here simulates 

processes in stagnant (water flow < 0.5 mls-1) outflow pools of natural hot springs (e. g., Octopus 

Spring, Yellowstone National Park, US) and geothermal power plants (e. g., Svartsengi, Iceland, 

this study). Therefore, in part results from this study can be directly applied to field studies 
described in chapter 4. 

8.3 Methodology 

A high-temperature flow. -through geothermal simulator system (Fig. 8.1, more details in section 
7.2.1) was used to equilibrate a supersaturated silica solution ([SiO2] = 320 - 960ppm; ionic 

strengths, IS = 0.02 or 0.11; pH 7) in a high temperature oven (at 230'C and for 2.5 h residence 
time) in order to achieve full de-polymerisation prior to the experiments. After passing through 

a backpressure regulator, BPR, the solutions were led via Teflon tubing into a Teflon tray inside 

an incubator (at 33 or 58'C, Fig. 8.1). This cooling simulated the conditions of a supersaturated 
deep fluid being discharged in a hot spring. Organics were added to the tray via an additional 

pump which metered out exact concentrations of glucose or xanthan gum in order to obtain the 
desired concentrations within the tray. 
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Starting Si solutions with 
monomeric, polymeric and 
colloidal Si species 

Simulated geothermal fluid at 
depth (2-3 Jun) before issuance 

Si solutions depolymerise as 
they are heated to 230*C 

only monomeric Si species 

Simulated hot sping pool 
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�p 
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waste 
Synthetic Si solution 
320 - 960 ppm SiO. 

Incubator (33 or 5M) 
with Teflon tray 

Figure 8.1: Sketch of the simulated hot spring system (modified after Benning and Mountain, 

2004). 

The growth of silica nanoparticles under permanent supply of fresh silica solution was 

monitored over 31 or 46 hours with samples removed at specific time steps from (1) the BPR 

outlet (T - 80"C; solutions cooled for -1 min), (2) the middle of the tray (solutions polymerised 

for -I hour) and (3) the outlet of the tray (solutions polymerised for -2 hour, Fig. 8.1). An 

aliquot of the sample was used for analysis of the monomeric silica, [SI02(aq)] and total silica 

concentration, total [Si021 (section 3.2.3; molybdate yellow method). In the experiments with 

organics, sinall aliquots of these samples were also used to determine the concentration of the 

added organics within the tray (section 3.2.3; the phenol-sulphuric acid method for sugars) in 

order to ensure a constant concentration of organics. Lastly, the remaining sample was filtered 

and the filter papers were analysed using a LEO 1530 FEG SEM (section 3.2.4). Changes in 

size distribution of silica nanoparticles (i. e., mean particle diameter and polydispersity) were 

derived from SIN photornicrographs (see section 3.2.4) or via direct analysis of the particles in 

solution using standard dynamic light scattering (DLS, Malvern Nanosizer, section 3.2.5). Note 

that for DLS, samples were acidified (with IM HCI to pH 2) immediately after removal from 

the tray to stop the polymerisation reaction, i. e., particle growth. Before DLS analysis, samples 

were sonicated for 3 ininutes (using an ultrasonic bath) to disperse aggregated silica particles. 

To calculate the saturation state of silica (within the tray) for all experiment (except organic 
experiments), the parameters listed in Table 8.1 (i. e-, [Si021, IS, T) were taken as inputs for 

geochernical modelling using the geochernical code PHREEQC (see section 3.1.2 for details). 
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The saturation indices, SI, where Sl>O represents supersaturation and SI<O undersaturation, are 
listed in Table 8.1. 

Table 8.1: Experimental conditions (within the tray), saturation index (SI) and critical nuclei 

radius (RO) for all experiments. GL: 300ppm glucose, XG: 50 ppm xanthan gum. 

Exp. [SiO21 Sl Ro (nm) 

(Ppm) IS T ("C) (pll 8) Gibbs - 
Kelvin 

Inorganic experiments 

El 640 0.02 58 0.14 1.4 

E2 320 0.02 58 -0.17 
E3 430 0.02 58 -0.04 - 
E4 960 0.02 58 0.31 1.0 

E5 640 0.11 58 0.14 1.4 

E6 640 0.02 33 0.33 1.1 

Organic experiments 
E7 identical to El + GL - - 
E8 identical to El + XG 

As mentioned previously (chapter 6& 7), the size of the critical nuclei (i. e., primary particle) 

can not be detennined using SEM and DLS. However, in order to obtain an estimate of the size 

of the critical nuclei, the critical nuclei radius, RO, was calculated using the Gibbs-Kelvin 

approach (eq. 2.2 in section 2.1.2). Ro for all inorganic experiments (except undersaturated, S<O, 

experiments) is given in Table 8.1. 

8.4 Results and Discussion 

Below most results will be compared to the El experiment. Experiments E2 to E8 were 
designed in such a way that only I parameter was varied in comparison to El (either initial 

[SiO2]9 IS, T or organics; Table 8.1). Each section will therefore start with general observations 
from the El experiment, followed by the comparison and discussion of the results obtained from 

the other experiments. 
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8.4.1 The monomeric and total silica concentration 

General observations 

The polymerisation reaction was followed via the changes -in the monomeric silica 

concentration, [Si02(aq)], while the total silica concentration, total [Si021 was used to verify 
that no silica was removed from the solution while passing through the system. In Figure 8.2 the 

time course of the monomeric and total silica concentrations at three different sampling 

positions (i. e., (1) BPR, (2) tray - middle and (3) tray - outlet; Fig. 8.1) is shown over 46 hours 

for the EI experiment (Table 8.1). 

The constant total [Si021 measured at the BPR, in the middle and at the outlet of the tray (Fig. 

8.2, full symbols) demonstrated that over the entire length of the experiment no silica was 

removed from the solution (by adhesion to tubes or tray walls or settling of aggregates, etc. ). 

Furthermore, [Si02(aq)] in solutions collected at the BPR (Fig. 8.2, open triangles) was identical 

to the total [Si021 which showed that despite the rapid cooling (-1 min) from 230 to -80*C (i. e., 
T at the BPR), polymerisation was not yet 

- 
initiated (i. e., no decrease in [Si02(aq)]). This also 

suggested the occurrence of an induction period which delayed silica polymerisation adequately 

so that the polymerisation reaction did not start until the solution reached the tray. 
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E 500 - CL 
CL 
6 450- 
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98 13 ja Ig 400- 

350- 
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w Tray - middle a Tray - middle 250- 

silica solubilit y at 580C * Tray - outlet * Tray - outlet 
200 1 FI 
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Time h 

Figure 8.2: Variations in monomeric (open symbols) and total (full symbols) silica 

concentrations measured at three different sampling positions, i. e., BPR, tray - middle and 

tray - outlet, In a 640ppm SiO2 solution (El experiment) over 46 hours. Errors of individual 

data points <6%. 
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[SiO2(aq)] measured in the middle (solution polymerised for -1h) and at the outlet of the tray 
(solution polymerised for -2h) were almost identical and values were generally about 200- 

250ppm lower than the total [Si02] at the same position (Fig. 8.2). This showed that about 50% 

Of [Si02(aq)] (with respect to silica solubility at 58'C; solid line in Fig. 8.2) had polymerised 

within the 1-2 hours the solution needed to pass through the tray. The similarity in [Si02(aq)] 

between the two sampling positions (i. e., tray-n-Liddle and -outlet) indicated that the 

polymerisation process was extremely slow (i. e., an additional hour of polymerisation hardly 

affected the monomeric MD. This also confirmed that the constant re-supply of fresh silica 

solution maintained constant conditions in the experiments. 

It is worth mentioning that during the first 9-11 hours, a 10-15 % increase in [Si02(aq)] was 

observed which correlated with the time needed to establish a steady state within the tray (Fig. 
8.2). At equilibrium (t>l lh), the [Si02(aq)] values were about twice as high (-420ppm) as the 

silica solubility (209ppm at 58*C; Gunnarsson and Am6rsson, 2000), confirming that the 

constant re-supply of new solution guaranteed a continual polymerisation reaction. 

Lastly, all these results were in good agreement with the calculated saturation state for this 

experiment (SI = 0.14) showing that the solutions passing through the tray were oversaturated 

with respect to silica and polymerisation was favoured. Also, the proximity of SI to 0 (i. e., 

saturation) correlated with the observed low rates of silica polymerisation. However, note that 

the calculated SI Values are representative for equilibrated systems and this assumption is only 

partly valid for the studied systems, nevertheless, the calculated SI values give information 

about the general trends observed. 

For all other experiments (i. e., E2 to E8, Table 8.1) the same general trends were observed, e. g., 

no polymerisation at the BPR (Appendix C. 1), no silica was removed from the solutions by 

adhesion / settling (Appendix C. 2, C. 3), and similar [Si02(aq)] values in tray and at the outlet 
(Appendix C. 2, C. 3). Therefore, the following comparison and discussion of the experiments E2 

to E7 will mainly focus on the changes in [Si02(aq)] measured in the middle of the tray. 

The effect of varying inorganic parameters 

Influence of silica concentration. The influence of initial silica concentration (320 - 960 ppm 
Si02) on the polymerisation process via the changes in [SiOj(aq)] is shown in Figure 8.3. At 

lower Si02 concentrations (E2 and E3), despite variations between individual data points, the 
[SiO2(aq)] values did not differ from the total silica concentration (i. e., 320 and 430 PPM Si02 

respectively). This showed that although fresh silica solution was continuously supplied, no 

silica polymerisation occur-red in these experiments. This also agreed well with the saturation 
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indices determined for these experiments (E2: SI = -0.17, E3: SI = -0.04) showing that in both 

cases the solutions were undersaturated with respect to silica (specifically in E2). 
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Figure 8.3: Variations in monomeric silica concentration, [SiWaq)], as a function of silica 

concentration over 31 hours (measured in the middle of the tray). 

At the highest SiO, concentration (E4,960ppm SiOA the monomeric silica, [SiO, (aq)], 

followed a similar trend as observed for El (640ppm SiO, ) but values were generally 20-100 

ppm lower (Fig. 8.3, black vs. white squares). This was due to the increased degree of silica 

saturation (i. e., higher Si02) in this experiment which enhanced the polymerisation rate within 

the tray. This was also reflected in the higher SI obtained for E4 (Sl = 0.31) when compared 

with El (Sl = 0,14, Table 8.1). Note that [SI02(aq)] measured after 23 and 27 hours were 

substantially lower than after 10 hours which suggested an imbalance of the physico-cheinical 

conditions within the tray. This could have resulted from changes in water volume or T over 

night. I lowever, steady state seemed re-established again after 31 hours. 

Influence of ionic strength. The influence of ionic strength (E5,0.11 IS) on the time course of 

[SI02(aq)] is illustrated in Figure 8.4 (triangles). Note that data were only collected until t=I Ih 

due to a pressure failure of the system over night (i. e., corrosion of the stainless steel tube). The 

initial 9-11 hours were characterised by an increase in [SI02(aq)], which similar to El and E4 

suggested the establishment of a steady state within the tray. The [Si02(aq)] for E5 were 

generally about 50-1 00ppiyi lower when compared to EI (Fig. 8.4 open squares) indicating that 

the higher IS of E5 increased the polyincrisation of silica. However, the Sl value calculated for 

E5 was identical to El (SI = 0.14, Table 8.1) suggesting that the slight increase in IS did not 
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affect the saturation state of the solution (i. e., polymerisation rate) within the tray. The observed 

changes might therefore be related to corroding stainless steel tubes within the high-T oven 
(e. g., [SI02(aq)] removal by Fe(111) surfaces). Yee et al. (2003) and Phoenix et al. (2003) have 

showed that in the presence of Fe (>50ppm Fe), the removal of monomeric silica from solution 
is enhanced. In the systems studied here, corrosion of the steel coil within the oven (230'C, 

saline silica solutions, constant flow) was a natural and expected occurrence. Iron release by 

corrosion of the steel tube could therefore have affected the polymerisation process. 
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Figure 8.4: Variations in monomeric silica concentration, lSi02(aq)l, as a function of higher 

ionic strength (E5,0.11 IS) or lower T (E6,33"C) over 31 hours (measured in the middle of the 

tray). 

Influence of temperature. In the experiment at lower temperature (E6,33'C), monomeric silica 

[SiO-, (aq)] was lower than in El (58'C), thus indicating that silica polymerisation was enhanced 

in this experiment (compared to El, Fig. 8.4 crosses vs. squares). This was not surprising as 

silica solubility is strongly affected by T (e. g., 136ppm Si02 at 33'C and 209ppm Si02 at 58'C; 

Gunnarsson and Am6rsson, 2000). In addition, the degree of silica saturation was substantially 

higher in E6 (SI = 0.33) compared to El (SI = 0.14, Table 8.1). Similar to observations made 

above, the first 9-11 hours were dominated by substantial scatter but they showed a general 

increase in [Si02(aq)] which at t-IIh reached a steady state (Fig. 8.4). At steady state (i. e., t> 

II h), the [Si02(aq)] values in E6 were still about twice as high as the silica solubility calculated 

for the lower temperature (i. e., 136 ppm for 33'C). This confirmed previous results that the 

constant re-supply of new solution guaranteed a continual polymerisation reaction. 
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The effect of organic additives 

It should be noted that the concentration of the added organics (monitored in samples collected 
from both the middle and the outlet of the tray) was constant over the 31 hours (Appendix C. 2). 

This verified that no organics were removed from the solution (e. g., adhesion to tray walls) 

while passing through the tray. 

The experiments with added organics (glucose, E7 or xanthan gum, E8) were characterised by 

fluctuations in [SiO, (aq)], specifically in the presence of glucose (Fig. 8.5). This may have been 

the result of non-homogeneous mixing of the organics with the silica solution within the tray but 

it could also indicate that a steady state could not be established within the monitored 31 hours. 

The observed fluctuations made it difficult to ascertain the impact of the organics on the 

polymerisation process but overall, the generally lower [Si02(aq)] values (compared to El) 

suggested that in the presence of the tested organics, silica polymerisation was somewhat 

enhanced. 
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Figure 8.5: Variations in monomeric silica concentration, [SiO2(aq)] as a function of added 

glucose (300ppm) and xanthan gum (50ppm) in experiments with initial 640ppm Si02 over 31 

hours (measured in the middle of the tray). 

Previous studies (e. g., Richardson, 1957; Iler, 1979; Coradin et al., 2004 and references therein) 

have shown that sugars, hydroxylated polymers and gelatine can interact with the molybdate 

reagent which will then decrease the amount of available molybdic acid to forrn the yellow 
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The size distributions obtained from El showed an increase in mean particle diameter from 16 

rim to 34 nin over the first 9 hours. Upon continual reaction the particle diameter stabilised at a 

value between 30 and 35nm (Fig. 8.7, white squares). Similarly, the polydispersity of the 

particles (error bars in Fig. 8.7) continuously increased from ±2.3 to J-4.7 rim until t= 9h but 

then substantially increased to ±15.6 nm over the following 2 hours revealed by the occurrence 

of two size populations (see Fig. 8.6,11 h). At t> 11 h, the polydispersity dropped to about ±9 

mn. These results suggested that due to the continuous re-supply of fresh silica solution, new 

particles were nucleating continuously throughout the entire experimental time period while the 

older particles were still growing in size. However, once steady state was established hardly any 

changes in mean particle diameter and polydispersity were observed suggesting that particles 
larger than -60 rim (max. diameter measured after t= 11 h) were not stable within the 

polymerising solution and nucleation and growth of new particles was favoured. These 

observations correlated well with results from the time course Of [Si02(aq)] (Fig. 8.3) which 

also showed an initial increase over the first 9-II hours before a steady state was established 

within the tray. 

Using the Gibbs-Kelvin approach, the critical nuclei radius, Ro (i. e., the size of the primary 

particles) was determined to be 1.4mn (Table 8.1). This indicated that at the beginning of the 

experiments a nucleation event lead to the formation of many nuclei which then grew by 

addition Of Si02 oligomers to the particle sizes described above. As a result, after only I hour 

(and under constant re-supply of fresh silica solution), these nuclei (diameter - 2.8mn) have 

grown to about l6nm in diameter (Fig. 8.7). Note that the residence time of these growing 

particles within the incubation tray may be longer than I or 2 hours respectively, as particles 

will get caught in eddies and comers of the tray. This may also explain the observed 

polydispersity (i. e., some particles grow for a longer time period than others). 

To verify the size and polydispersity measurements obtained from SEM photomicrographs, a 
few samples were also analysed with DLS (Fig. 8.7, red squares). The DLS results were in good 

agreement with the SEM results indicating that the applied SEM approach provided accurate 

size measurements. 

The effect of varying inorganic parameters 

Influence of silica concentration. No particles were observed in the two experiments with the 

lowest Si02 concentrations (E2 and E3). This was not unexpected as the experiments were 

undersaturated. with respect to Si02 (negative SI values, Table 8.1) and silica polymerisation did 

thus not occur([Si02(aq)] = total Si02, Fig. 8.3). 
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The time course showing the size and polydispersity for the experiment with the highest Si02 

concentration (E4) is shown in Figure 8.8 (black squares). The comparison to results from El 

(white squares) showed minor differences but all E4 size distributions were slightly shifted to 
lower values. This suggested that under these conditions (i. e., higher SiO2) the size of the 

primary particles (i. e., critical nuclei) was smaller and / or the nucleation rate was enhanced 
both of which would result in slightly smaller mean particles sizes. This is not unexpected as the 

nucleation process has a far higher driving force in more concentrated solutions (Table 8.1) thus 

producing more nuclei but also enabling the stabilisation of smaller nuclei. At higher [Si021 the 

calculated critical nuclei radius (RO = 1.0) was almost 30% smaller than the RO obtained for El 

(RO = 1.4, Table 8.1) which correlates with the above observations. 

Influence of ionic strength. No major differences were observed between the size distributions 

obtained from E5 (0-11 IS) and El (0.02 IS, Fig. 8.8, white triangles vs. squares) which 
indicated that the increase in ionic strength did not affect the growth pattern within the tray. 
This was not unexpected as the saturation state (SI =0.14) and the critical nuclei radius (RO = 
1.4) were both identical to values obtained for El (Table 8.1). This demonstrated that the 
increase in IS from 0.02 to 0.11 was not sufficient to cause noticeable differences in particle size 
(see also chapter 6 and 7 where IS was shown to have a minor effect on silica particle size). 
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Figure 8.8: Variation in mean diameter and polydispersity (=error bars) of silica nanoparticles 

with incubation time as a function of varying parameters, i. e., [Si021, IS, T (evaluated from 

SEM; -100 particles were measured for each data point). 

Influence of temperature. The size distributions obtained at lower temperature (E6, Fig. 8.8, 

crosses), although constant over the studied 31 hours, differed substantially from all other 
inorganic experiments at T=58'C. Once nucleated, the particles did not grow larger than - l5mn 
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(max. particle diameter measured, Appendix CA), and due to the continual re-supply of fresh 

solution the steady formation of new, smaller particles was favoured. Similar to E4 (higher 

SIO,, Fig. 8.8, full squares), this is partly due to the formation of smaller primary particles 

(critical nuclei) as shown by the smaller R() value obtained for E6 compared to El (I. Inm vs. 

1.4ni-n). This also correlates with the classical nucleation theory which predicts that with an 

increase in temperature, a decrease in the energy per unit volume of the nucleus versus matrix is 

needed. It follows, therefore, that the nuclei have to grow larger in size in order to reach 

stability. However, the constancy of both the mean particle diameter and the polydispersity in 

the experiment F6 (33'Q suggested that at this lower temperature particles with a sizes > l5nm 

were energetically not stable and the growth of new, smaller particles was favoured. Note that 

from the experiments described here, no particle number or volume could be evaluated but 

presumably if smaller particles dominated, a higher number of particles was expected (assuming 

similar degree of'silica polymerisation). 

The effect of organic additives 

Influence ofglucose. In the experiments with added glucose (E7) the size distribution followed 

the same trend as observed for the lower temperature experiment (E6, Fig. 8.9). However, the 

mean diameter and polydispersity of the particles in the glucose experiments were about 15% 

higher than in the purely inorganic experiment but at lower T (Fig. 8.9). 
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Figure 8.9: Variation in mean diameter and polydispersity (=error bars) of silica nanoparticles 

with incubation time as a function of T and added glucose (evaluated from SEM; -100 

particles were measured for each data point). 
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Although it has been shown in the literature (e. g., Richardson, 1957) and in Appendix B that 

glucose is unlikely to interfere with molybdic acid (i. e., the molybdate yellow method) and 

monomeric silica in solution, it is possible that the organic molecules acted as templates to 

stabilize / enhance the formation of small particles. 

Influence of xanthan gum. In the presence of xanthan gum (E8) only few small particles (sizes 

<10nm) could be detected in suspension (i. e., in the middle of the tray, Fig. 8.10A). However, 

after 7-9 hours a thin film formed at the air-water interface where xanthan gum was added to 

the tray. SEM analysis showed that this film (Fig. 8.9B) consisted of large silica aggregates far 

bigger (-200nin, Fig. 8.10C) than the single particles observed in solution from the middle of 
the tray (-10nin, Fig. 8.10A). Furthennore, despite stefilisation of the system and the organic 

solutions, the tray and the thin film respectively were colonised by microorganisms (Fig. 
8.10D). Most certainly, the complex structure of xanthan gum (i. e., high-molecular weight 

polysaccharide) enhanced the aggregation of silica (via hydrogen bonding / entrapment of 

colloids within the complex structure) but also provided substrate for microbial colonisation. 

loonm 

Figure 8.10: SEM photomicrographs of filter papers collected after 31 hours from the 

experiment with added xanthan gum (E8). A) Silica nanoparticles (sizes < 10nm) removed 
from the middle of the tray, B) thin film at the inlet of the tray, Q close-up of the thin film 

with the mean diameter and polydispersity of the aggregates and D) close-up of 

microorganisms within the tray. 
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8.4.3 Sununary of observations 

The monomeric and total silica concentration 

In most inorganic experiments, the monomeric silica [Si02(aq)] measured in the tray showed 
that about 50% Of [Si02(aq)] (-200-300ppm with respect to silica solubility) had polymerised. 
In the experiment with initial 960ppm. Si02 (E4), -80% Of [Si02(aq)] (-600ppm) polymerised. 
In most inorganic experiments during the first 9-11 hours, a 10-15 % increase in [Si02(aq)] was 

observed which correlated with the time needed to establish a steady state within the tray (Fig. 

8.3 and 8.4). At steady state, the [Si02(aq)] values were about twice as high as the silica 

solubility calculated for the tested conditions. This confirmed that the constant re-supply of new 

solution guaranteed a continual polymerisation reaction. 

In tenns Of [Si02(aq)] few differences were observed as a consequence of changing 
temperature, [Si021, IS or organics, and the trends followed those dictated by the degree of 

silica saturation, i. e., silica polymerisation was enhanced in solutions with higher saturation 
indices (i. e., E4 and E6, Table 8.2). Despite constant re-supply of fresh silica solution, no 

polyinerisation was observed in solutions that were undersaturated with respect to silica (E2 and 
E3, Table 8.2). 

For the experiments with organics it is worth noting that large fluctuations in [Si02(aq)] were 

observed (Fig. 8.5) and it was thus difficult to ascertain their impact on the polymerisation 

process. However, interference of molybdic acid with the tested organics could be ruled out and 
the observed [SiO2(aq)] fluctuations might thus be better explained by non-homogeneous 

mixing of the organics with the silica solution and the absence of a steady state. 

Size analysis 

Identical to the time course Of [Si02(aq)], the size distributions obtained from all inorganic 

experiments at 58*C showed an increase in mean particle diameter and polydispersity over the 
first 9 hours followed by the stabilization at a constant value (Fig. 8.7 and 8.8). As the system 

stabilized (>I lh), the polydispersity equilibrated and this suggests that new particles nucleated 

continuously while older particles were still growing. However, once steady state was 

established the mean particle diameter and polydispersity were constant and no additional 

growth was observed, i. e., continuous nucleation and growth of new, 9maller particles was 
favoured. 

The increase in IS from 0.02 to 0.11 did not affect the size and polydispersity observed at 58 *C 

while the increase in [SiO2] notably enhanced silica polymerisation and also induced slightly 
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smaller mean particle sizes. This was due to the higher silica saturation in the E4 experiment 

resulting in smaller critical nuclei and a higher nucleation rate (Table 8.2). Overall this led to a 

higher number of particles where the particles sizes were slightly smaller compared to El. 

The biggest effects on size distribution were observed with decreasing temperature and added 

glucose (Fig. 8.9). At 33*C (E6), smaller critical nucleii, RO, and higher nucleation rates were 

noted (Table 8.2) but little growth was observed (i. e., particles did not grow larger than 12 ± 1.5 

nm). This was due to higher degree of silica saturation, however, the lower average particle 

sizes further suggested that temperature had a major influence on the stability of the forming 

particles favouring the growth of smaller particles with decreasing temperature. 

Glucose (E5) followed the same trend with particle growth being restricted to sizes around 15 

4 nm (Fig. 8.9) which suggested that the glucose molecules acted as templates to stabilize 

enhance the formation of small particles. Conversely, in the presence of xanthan gum (E6) only 

few particles could be detected in suspension but a thin film developed at the AWI at the inlet of 

the tray (Fig. 8.10). This film enhanced the aggregation of silica to large clusters (<200mn). In 

contrast, the simple structure of glucose did not lead to the formation of a thin film which was 

not unexpected as glucose molecules are less likely to bind to each other (i. e., dispersed within 

the polymerising silica solutions) while the high molecular weight xanthan gum forms viscous 

solutions. 

The findings from the inorganic experiments compared well with field observations from in-situ 

sinter growth studies carried out in Icelandic hot springs (Chapter 4) where the size range of 

silica nanoparticles within freshly deposited sinters (exhibiting low microbial activity) was 
found to be significantly larger in high-T geothermal waters (i. e., Reykjanes) than in low-T 

waters (i. e., Svartsengi) but were less affected by silica concentration or ionic strength. Similar 

observations were made by Iler (1979) who showed that particles grew only half as big at SOT 

than at 90T. 

The observations from the xanthan gum experiments were in good agreement with the sinter 

growth study presented in chapter 4 which showed that in geothermal waters (e. g., Krafla, 

Geysir and Ilveragerdi) where silica precipitation was less favoured (i. e., undersaturated 

conditions), substantial amounts of sinters nonetheless developed due to the presence of thick 

biofilms (i. e., microbial exopolymeric sheath, EPS) that enhanced aggregation of silica 

nanoparticles. This was also demonstrated by Benning et al. (2004a, b) and Lalonde et al. 
(2005). They showed that in the presence of increasing silica load, the sheath (i. e., EPS) of 

certain microorganisms (i. e., Calothrix, S. azorense) thickens. This occUrS in parallel with the 

thermodynamically driven polymerisation of the monosilicic acid and the formation of silica 

nanoparticles. In a second step, the thick EPS acts as a template for the accumulation / 
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adsorption of amorphous silica nanoparticles on the sheaths surface (via hydrogen bonding or 

entrapment of particles within the complex structure of the EPS; e. g., Benning et al., 2004a, b 

and chapter 4). These results along with the findings presented above thus demonstrate that 

exopolysaccharides (e. g., xanthan gum, cyanobacterial sheath) are able to accelerate the process 

of silica nucleation and growth. This was also supported by other laboratory studies (e. g., Perry 

and Keeling-Tucker, 2000 and reference therein) that showed that other biopolymers such as 

proteinaceous extracts from diatoms, sponges and higher plants can enhance the process of 

silica formation. 

A summary of all observations and interpretations of the experiments discussed in this chapter 
is given in Table 8.2. 
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8.5 Conclusions 

A successful hydrothermal experimental approach that simulates processes observed in natural 

geothermal springs has been developed. In most tested solutions, silica was supersaturated and 

silica polymerisation and silica nanoparticle formation was initiated once the solution entered 
the tray (i. e., geothennal water is discharged at the surface). Over the duration of the 

experiments (3142 hours), the major observations on the formation of silica nanoparticles were: 

i) An increase in ionic strength or silica concentration affected the size and polydispersity of 

silica nanoparticles precipitated from aT- induced, supersaturated solution only in a minor 

way. In contrast, a temperature change (i. e., different spring water temperature) substantially 
influenced the size range of the forming particles (i. e., smaller particle sizes at lower 

temperatures). 

ii) The addition of glucose restricted particle growth to sizes < 20nm whereas the addition of 

xanthan gum induced the development of a thin silica-rich film at the air-water interface. This 

showed that exopolysaccharidcs (abundant in natural biofilms) do enhance the aggregation of 

silica and thus aid in the silicification process observed in geothermal hot springs. 
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9 SUMMARY AND CONCLUDING REMARKS 

This thesis contains (1) field studies in which the formation of silica sinters and the associated 

microbial diversity in Icelandic geothermal waters was quantified and (2) lab studies that 
focussed on the formation of silica nanoparticles under conditions mimicking the geothermal 

environments surveyed in the field. From the findings herein it is possible to get a more 

comprehensive understanding of the parameters that control silica precipitation (i. e., sinter 
formation) and the structure of microbial communities in modem hot spring environments. 
Furthermore, it allows the identification of the geochemical / hydrodynamic conditions needed 
for microbial silicification and fossilisation; essential knowledge in the search for extinct and 

extant life in the ancient Earth as well as on other planets. Lastly, a molecular level knowledge 

of the nucleation and growth of silica nanoparticles in inorganic experiments provide 

quantitative data on the rate and mechanisms of the initial steps of biosilicification. 

9.1 Sinter growth and microbial diversity in Icelandic geothermal waters 

The analysis of growth rates and the structural and textural developments of sinters from five 

diverse geothermal sites in Iceland showed that the inorganic silica precipitation rate was 

strongly influenced by temperature, pH, salinity, and silica concentration. Furthermore, the 

mesoscopic and microscopic textur-al development of the sinters was affected by the 

precipitation mechanism (subaqueously and/or subaerially) and the presence and absence of 

microbial communities. In turn, the microbial abundance and the diversity of microbial 

communities appeared to be directly affected by the physico-chemical conditions of the 

geothermal waters, i. e., T, p1I, salinity and sinter growth rate. 

In geothermal areas where the waters exhibited near neutral pH, high salinity, high T and high 

silica content (i. e., waters are highly supersaturated with silica; e. g., Reykjanes), silica 

precipitation rates were highest. These physico-chemical conditions led to the formation of 

porous and homogeneous sinters made of aggregates of silica nanoparticles (particle size range: 
II- 106 nrn) that developed predominantly subaqueously. In turn, due to the high salt contents, 
high T and high growth rates, microbial activity could not be detected. In geothermal waters 

with a similar salinity and p1l (e. g., Svartsengi) but lower temperatures and lower precipitation 

rates (due to lower total SiOA the forming sinters were also porous and dominated by 

aggregates of silica nanoparticles but with a significantly smaller size distribution (10-36 rim). 
Furthermore, microbial abundance and diversity was substantially higher and the most dominant 

phylotypes found in these waters belonged to marine genera of the Proteobacteria (e. g. 
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Marinobacter, Sphingpyxis, Oceanicaulis). The preservation and fossilization of 

microorganisms in the porous silica precipitates was argued to be low; partly due to the low 

affinity between the negatively charged silica nanoparticles and the neutral to negatively 

charged microbial surfaces at near-neutral pH (e. g., Fcin et al. 1997; Cox et al. 1999, Yee et al. 
2004) which hinder adhesion of silica nanoparticlcs onto microbial surfaces. In addition, as 

previously shown (e. g., Her et al., 1979 and refcmccs therein; Smith et al., 2003), particle 
interaction is aided by the presence of salts such as Na cations (i. e., flocculation due to 
interparticle bonding through the cations). This suggests that in near-neutral geothermal waters 

with high salinity silica nanoparticles tend to aggregate with each other (forming porous 

precipitates) rather than adhering to microbial surfaces. 

In geothermal areas that were characterised by alkaline pH, low salinity, high T and medium- 
high silica content (i. e., Geysir and Hveragerdi), silica was undersaturated and subaqueous silica 

precipitation was inhibited. As a result, sinter growth was mostly restricted to the air-water 
interface (AWI; where evaporation and condensation processes dominate) which led to the 
formation of dense and heterogeneous sinters with well defined spicules; and silica terraces. 
Despite the temperatures being quite high (66 - 960C) extensive biofilms developed in the 

submerged zones which were don-driated by representatives of the class Aquificae (mostly 

related to Yhennocrinis) and Deinococci (Thermus species). Note that Aquijlcae species can 
thrive in highly alkaline waters (up to pH 10) with temperatures up to 950C (e. g., Geysir I and 
Krafla) while members of the Deinococci are restricted to water temperatures below 850C and 

pH below 10 (e. g., Geysir 2 and Hveragerdi). Due to the low precipitation rates within these 

waters, microorganisms became fully silicified and were well preserved within the growing 

sinters. The fossilization process was further aided by the enhanced rate of particle growth 

coalescence (to form smooth films) at high temperatures (see 9.3). 

In geothermal waters characterised by highly alkaline pH, low salinity and high T (i. e., Krafla) 

even at high silica contents, silica was undersaturated. Nevertheless, the presence of thick 

microbial biofilms enhanced sinter growth within the geothermal waters by acting as a template 
for the adhesion of suspended silica nanoparticles on the microbial surface (via hydrogen 

bonding or entrapment of colloids within the biofilm). This process was aided by the complex 

structures of the EPS (e. g., Benning et al., 2004a, b; Benning et al., 2005; Lalonde et al. 2005) 

and eventually led to the complete silicification and fossilisation of the biofilm (which again 

was also aided by the higher water temperature). The microorganisms that thrived in these 

systems mostly belonged to freshwater and soil genera of the Proteobacteria, but 

representatives of the Aquificae as well as freshwater and soil species from other phylogenetic 

classes were also present (e. g., Flavobacteria and Actinobacteria). 
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These results demonstrate the importance of in-situ studies to identify the parameters controlling 
the diversity of n-dcrobial communities and their silicification and fossilisation in modem 

geothermal sinter deposits. Furthermore, it emerges that the observed differences between sites 

could not be explained by the variation of a single parameter. Instead, the combination of T, pH, 

salinity and precipitation rate together appeared to be most significant in determining the sinter 

growth rates and biodiversity patterns found at each site. In this study, the most extreme habitat - 

was defined by temperatures - 75'C, high salinity (- 4.7%) and high sinter growth rates (- 300 

kg Y1 nf2) as a result of which no / low microbial activity was found. Conversely, geothermal 

waters that were characterised with T- 80'C, highly alkaline pH (-10), low salinity and 

medium-high precipitation rates (- 20 kg Y1 m7 2) were "less extreme" environments and the 

development and fossilisation of microbial communities in these systems was frequently 

observed. 

The results sununarised above showed a close link between geochernical / hydrodynamic 

conditions and microbial fossilisation in modem hot spring sinters and inference and possibly 

reconstruction of the ecology and diversity of ancient microorganism (e. g., Precambrian Earth) 

from fossilized terrestrial hot spring sedimentary deposits may be possible. Similarly, the 

preponderance and close association of microbial communities with silica sinters on Earth, 

make this a good analogue for future missions to Mars, especially, since silica-rich 
hydrothermal deposits were recently described on the Martian surface (e. g., Squyres et al., 2007, 

2008). 

9.2 The initial steps of nucleation, growth and aggregation of silica nanoparticles 

The initial steps of silica polymerisation and silica nanoparticle formation were quantified in 

both inorganic and organic solutions using synchrotron-based Small Angle X-ray Scattering 

(SAXS) and conventional Dynamic Light Scattering (DLS) combined with conventional or 

cryo-high-resolution scanning and transmission electron microscopy (SEM/cryo-HR-TEM). The 

experiments were carried out in near neutral pH solutions with initial Si02 between 640 - 1600 

ppm and IS of 0.02 - 0.22 M (concentrations most often found in natural geothermal systems). 
Furthermore, the presence of specific organics (50 - 300 ppm of glucose, glutamic acid or 

xanthan gum; representing microbial cell envelope functional groups) on the nucleation and 

growth process was also examined. The polymerisation reactions were induced either by 

neutralising a high pH solution (from pH 12 to 7) or by rapid cooling of a supersaturated hot 

silica solution (from 230'C to T between 60 and 30'Q. 
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Independent of the tested solutions and the protocols used to induce polymerisation (pH-drop vs. 
T-drop) the initial steps of nucleation and growth of silica nanoparticle could be divided into 3 

main stages (Fig. 9.1): 

(1) the nucleation stage characterised by homogeneous nucleation where monosilicic acid 
(H4SiO4) polymerises to form stable nuclei having a diameter of 1-2 mn. 

(2) the 3-dimensional growth of silica nanoparticles following first order reactions kinetics 

coupled with a surface-controlled reaction mechanisms. 

(3) the late growth stage where classical growth ends and processes including Ostwald ripening 

and particle aggregation set in. 

Note that stage (1) and (2) were governed by a fast decrease of monosilicic acid concentration 

while during the last stages the solubility level was slowly established. At the end of this 3-stage 

process, regardless of the tested silica concentration, ionic strength or added organics, the final 

particle diameter was about 8nm, characterised by a mass fractal structure (i. e., open, polymeric 

structure). 

In both pII-drop and T-drop experiments, SAXS and DLS results, along with the time- 
dependent depletion of monosilicic acid, showed that the rate of silica polymerisation and 

nanoparticle formation increased with increasing ionic strength and silica concentration (i. e., 
increasing silica supersaturation, Fig. 9.1). 

The presence of added organics (i. e., glucose, glutamic acid or xanthan gum) did not'modify the 

rate and mechanisms of silica nanoparticle formation (in the pH-drop experiments) compared to 

the equivalent inorganic experiment, as evidenced by comparable rates of silica polymerisation 

and particle growth (as obtained from the time-dependent depletion of monosilicic acid, SAXS 

and DLS data). 
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SILICA POLYMERISATION 

monomer dimer trimer oligorner particle Process is enhanced by: 
increase in S'02 
increase in IS 
decrease in T 
If polymerisation is 
induced by pH-drop 

PRECIPITATION OF CRITICAL NUCLEUS 

Instantaneous after an induction time 
If polymerisation is If polymerisation is 

induced by pH-drop induced by T-drop 
high S'02 and high IS low S'02 and low IS 

- low T0 high T 

Inm to 2nm 

PARTICLE GROWTH 
Vt order reaction coupled wth surface-controlled mechanism 

v 

high growth rate 
0 

final size at t<2 hours 
-induced by pH-drop 

0 

slow growth rate 
-high S'02 0 final size at t>3h 

-high IS -induced by T-drop 
'low SiO2 

low IS 
0 

OSTWALD RIPENING / 
PARTICLE AGGREGATION 

OR and 
aggregation v 
at t> 2h 

OR and 
aggregation at 
t> 3h 

Note: the addition of glucose, glutamic acid and xanthan gum did not affect 
the processes illustrated above, 

Figure 9.1: Schematic summary of the processes governing silica polymerisation and the 

formation of silica nanoparticles. 
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The effect of temperature (in the range of 40 to 60'Q on silica nanoparticle formation was 
tested using DLS (in the T-drop experiments), but no differences were observed compared to 

the experiment carried out at 30'C. This was probably due to the lower detection limit of DLS 

and due to the fact that a 30'C change in temperature does not change the silica solubility by a 
high degree. 

The formation of silica nanoparticles from a supersaturated silica solution proceeded 

substantially slower if silica polymerisation was induced by fast cooling as opposed to pH-drop 
(Fig. 9.1). This was evidenced by the occurrence of an induction period at the start of both the 

time-dependent depletion in monosilicic acid and the particle growth. Further evidence for this 

retardation included the formation of larger critical nuclei, reduced particle growth rates and the 

absence of particle aggregation (within the studied time frame, Fig. 9.1). The rate of silica 

nanoparticle formation might therefore not only be affected by the degree of silica saturation but 

also by how supersaturation was established (pH-drop vs. T-drop). Two possible explanations 
for these differences are (1) time taken to establish supersaturation (-30s in pH-drop as opposed 
to 2-3 min in the T-drop experiments) and (2) pH- and T-dependency of amorphous silica 

solubility (pll-drop: drastic change at pH>9 vs. T-drop: steady increase with T). As a result, in 

the pH-drop experiments the final degree of supersaturation was reached almost instantaneously 

forcing the monosilicic acid to polymerise. In contrast, in the T-drop experiments the degree of 

supersaturation increased continuously as T decreases and hence the polymerisation process 
(i. e., silica nanoparticle formation), was less driven and proceeded slower. 

The mechanisms and kinetics of silica polymerisation and silica nanoparticle 
formation presented above can help to better understand the parameters that affect the formation 

of silica scales (i. e., the blocking of geothermal pipes) in geothermal power stations. However, 

the development of appropriate handling procedures (of the geothermal waters) for a reduction 

or even a full inhibition of the silica scaling was outside the scope of this thesis. 

9.3 The formation of silica nanoparticles under simulated hot spring conditions 

To mimic successftilly processes observed in natural geothermal springs, silica polymerisation 

and silica nanoparticle formation was monitored under constant re-supply of fresh polymerising 

solution using a high-temperature flow-through geothennal simulator system. The effect of 

silica concentration (320 - 960pprn Si02). ionic strength (0.02 M and 0.11 M), temperature 
(33"C and 58'Q and organic additives (glucose and xanthan gum) on the size and polydispersity 

of the forining silica nanoparticles was quantified and discussed. 
. 
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In solutions with initial 640ppm SiO2, IS=0.02 and T=58C, the size distributions showed an 
increase in mean particle diameter from 16 nni to 34 nni over the first 9 hours followed by a 

plateau at a value between 30 and 35nm (up to t= 42h). Similarly, the polydispersity of the 

particles continuously increased from : E2.3 to ±1 5.6 Mn until t=IIh before stabilising at ±9 

nm. These observations were supported by results from the time course for the monosilicic acid 

concentration which also showed an initial increase by -50ppm Si02 over the first 9- 11 hours 

before a steady state was established with a monosilicic acid concentration of about 420ppm 

Si02 (i. e., 50% polymerised with respect to silica solubility). Due to the continuous re-supply of 
fresh silica solution, new particles constantly nucleated throughout the entire duration of the 

experiment, while the older particles (first ones formed) were still growing in size, leading to a 

polydisperse particle size distribution (Fig. 9.2 B). 

Interestingly, an increase in ionic strength (0.11 vs. 0.02 M) did not affect the size and 

polydispersity of silica nanoparticles precipitated from aT- induced, supersaturated solution. 
Conversely, the increase in silica concentration (960 vs. 640ppm) lowered the average particle 
diameter (22 ±7 nm). This was associated with the higher polymerisation rate (evidenced by 

lower concentrations in monosilicic acid) resulting in smaller critical nuclei and a higher 

nucleation rate. Overall this led to a higher number of particles where the particles sizes were 

slightly smaller compared to those at lower Si02 concentrations (Fig. 9.2 A). These results were 

somewhat contradictory to the field findings where in geothermal waters with high IS and high 

Si02 (i. e., Reykjanes), the formed silica particles were generally larger and more polydisperse 
than at the site with lower IS and Si02 (i. e., Svartsengi). However, the temperatures at these 

sites were also very different (i. e. 75'C vs. 42'C respectively) which may have influenced the 
fonnation of silica nanoparticles; much more than a change in Si02 and IS (see below). 

The decrease in temperature (33 vs. 58'C) substantially enhanced the polymerisation rate and 
thus the nucleation process. While the size of the critical nucleus was almost identical to the 

experiment with higher silica concentrations, the average particle diameter (12 ± 1.5 mn) was 

substantially smaller than in all other inorganic experiments. This suggested that with 
decreasing temperature, the nucleation of small particles was favoured over particle growth 

resulting in the precipitation of small and fairly monodisperse silica nanoparticles (Fig. 9.2 A). 

These results better matched the particle sizes measured at Rey1danes (I I- 106 rim, 75'C) and 
Svartsengi (10-36 run, 42*C) indicating that a change in temperature might have affected 

particle nucleation and growth substantially more than variations in IS and Si02- 
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GROWTH AND AGGREGATION UNDER CONSTANT RE-SUPLLY OF SUPERSATURATED 
SILICA SOLUTION 

ABC 
low temperatures, high high temperatures high temperatures, low IS 

SIO, or glucose or low SiO2 and xanthan gum (i. e., EPS) 

4) 
1 

E 

D 

73 ED 
monodisperse particles polydisperse particles thin films composed of large aggregates 

(particle sizes: 10 to 20 nm) (particle sizes: 10 to 100 nm) due to particle coalescence 
(particle sizes: 10 to >100 nm) 

Decrease in nucleation rate 
Increase In particle growth I coalescence 
Decrease In porosity of forming sinter deposits 
Increase In silicification I fossilisation potential 

Note: the Increase in Ionic strength (IS) did not affect the size and polydispersity of the particles, but the 
addition of salt cations, e. g, Na4 enhances particle-interactions, thus hinders microbe-silica interactions 

Figure 9.2: The effects temperature, IS, SiO2 and added organics (A -Q on the growth and 

aggregation of silica nanoparticles under simulated hot spring conditions (i. e., constant re- 

supply of fresh silica solution). 

The effect of added organics did not show any consistent trends; the addition of glucose 

restricted particle growth to sizes < 20nm (Fig. 9.2 A) whereas the addition of xanthan gum 
(i. e., complex EPS) induced the development of thin silica-rich films at the air-water interface. 

This showed that the presence of complex polysaccharides (i. e., EPS) does enhance the 

aggregation of silica (Fig. 9.2 Q and thus aid in the silicification process observed in 

geothennal hot -springs while the addition of glucose did not induce the development of a thin 

film. This was not unexpected as glucose molecules are less likely to bind to each other (i. e., 
dispersed within the polymerising silica solutions) while the high molecular weight xanthan 
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gum forms viscous solutions. Nevertheless, the addition of glucose enhanced silica 

polyinerisation and restricted particle growth to sizes below 20 ru-n which suggested that the 

nucleation rate was increased (Fig. 9.2 A). This might be because the dispersed glucose 

molecules acted as templates for the formation of small particles. 

9.4 Links between field and lab observations 

It has been shown that microbial silicification occurs by the immobilization of pre-formed silica 

nanoparticles (e. g., Schultze-Lam et al., 1995; Konhauser and Ferris, 1996; Phoenix et al., 2000; 

Benning et al., 2004b, 2005 and references therein). Therefore, an accurate knowledge of the 

mechanism and kinetics of nucleation, growth and aggregation of silica nanoparticles along with 

the parameters that control these processes is fundamental to understanding the pathways 
leading to silicification and fossilization of microorganisms in modem geothermal systems. 

Using a flow-through geothermal reactor, a natural hot spring system was successfully 

simulated in the lab and the findings from these experiments accurately matched observations 

obtained from the field. 

In both field and lab studies the enhancing effects of exoplysaccharides, (EPS) on silica particle 

growth / coalescence (to from smooth silica films, Fig. 9.2 Q was demonstrated. In the field, at 

various field sites (e. g., Geysir sites, Hveragerdi and Krafla) despite the waters being 

undersaturated with respect to amorphous silica, the microbial communities (subaqueous) 

became fully silicified. Similarly, in the lab studies where silica nanoparticle formation was 

studied in the presence of xanthan gum (i. e. EPS), it was shown that xanthan gum acted as a 

template for silica aggregation which resulted in the development of a thin silica-rich film 

(which was absent in the inorganic experiments, Fig. 9.2 Q; 

Other similarities between field and lab studies included the strong influence of temperature on 

the size of silica nanoparticles, i. e., particle nucleation and growth. In the field, the particle size 
distribution at Svartsengi (10-36 mn, 42'C) was substantially smaller than at Reykjanes (11-106 

rim, 75'C). Similarly in the lab, the sizes of the precipitating silica nanoparticles were observed 

to be significantly smaller at lower than at higher temperatures; at 33'C the particle size range 

was 8- 14 run whereas at 58'C the size range was 15 - 48 nm. This is also in agreement with 

previous results by Iler (1979) who showed that particles grown at 50'C were only half as big as 

those grown at 90'C. Thus with decreasing temperatures particle growth and coarsening is 

hindered and nucleation of new particles is favoured leading to the precipitation of small and 
fairly monodisperse particles (Fig. - 9.2 A). As a result, sinter deposits forming at lower 

temperatures will be quite porous while at higher temperatures particle growth and coarsening 
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will lead to polydisperse size distributions and denser sinter textures and structures (Fig. 9.2 B, 

Q. It should be noted that no major differences in particle size distribution were observed with 
increasing ionic strength (neither in the field nor in the lab experiments). However, the addition 

of salt cations (e. g., Na+, Ca2', K) enhances particle-interactions resulting in the formation of 

gel-like structures (e. g., Her et al., 1979). Similar structures were also observed at Svartsengi 

and Reykjanes where the geothermal waters exhibited high amounts of salts (2: seawater 

concentrations). 

In summary, the field and lab results presented above indicate that the complete microbial 

silicification involves the attachment of silica nanoparticles formed in solution (via hydrogen 

bonding or entrapment within the biofilm; e. g., Berining et al., 2004a, b and Lalonde et al., 
2005) followed by the further growth and aggregation of these particles on the microbial surface 

until they coalesce (the individual precipitates are no longer,, distinguishable, i. e., smooth thin 

silica layers form). This silicification process is aided by the complex structure of the biofilms 

exopolysaccharides. Furthermore, as particle growth and coarsening are favoured with 
increasing temperatures and decreasing ionic strength (see above), silicification and 

preservation of microbial communities are more likely to occur in high-temperature geothermal 

waters characterized by low contents of dissolved solids (e. g., Krafla, Geysir; Fig. 9.2 Q than in 

low-temperature, saline waters (e. g., Svartsengi; Fig. 9.2 A). It should be noted that similar 

processes have been described by previous studies (e. g., Schultze-Lam et al., 1995; Konhauser 

and Ferris, 1996; Phoenix et al., 2000; Benning et al., 2005 and references therein). 

9.5 Future work 

The scope for possible future work in identifying the kinetics and mechanisms of 
biosilicification in modem geothermal systems is extensive. In the realm of field studies, due to 

the large variety of geochemical / hydrodynamic regimes of geothermal systems, the parameters 

controlling the abundance and diversity of microbial communities and hence the potential for 

microbial preservation within sinters are still not well understood. Future studies should thus 
focus more on the correlation of community diversity and geochemical variation in hot springs. 
More specifically, it would be of considerable interest to investigate the microbial diversity 

(both bacterial and archaeal) as a function of T, water chemistry (including potential energy 

sources, e. g., dissolved 112, sulphide, dissolved oxygen, organic substrates) and sinter growth 

rate along an outflow channel of a single hot spring. In addition, such an approach would be 

strengthened by combining the genetic approach with culturing methods to obtain information 

on the metabolic pathways of the microbial communities. This in turn will help to better link the 

microbial community structure to specific geochemical environments. Lastly, a complementary 
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study of biomarkers (e. g., phospholipid fatty acids, ether lipids; Pancost et al., 2005,2006) in 

both young and old sinter deposits that flank hot spring rims would help quantifying the 

preservation of specific organic molecules (or their degradation) in these ecosystems over time. 

In the laboratory, to simulate geothermal waters more accurately it would be worthwhile to 

quantify the nucleation, growth and aggregation of silica nanoparticles in more complex 

solutions (e. g., different salts, presence of various mineral substrates, combinations of organics, 
free living or attached microorganisms) using the low temperature flow through system (i. e., 

pH-drop experiments) in combination with SAXS and DLS. In addition, experiments should be 

carried out at higher temperatures (e. g., 50 - 90'Q although this would require several 

modifications in the flow through system as well as data acquisition and data handling methods 

used in this work. 

As shown in this thesis, a natural hot spring was successfully mimicked in the laboratory using a 
flow-through geothermal simulator (i. e., T-drop experiments). However, this system also has its 

limitations, specifically in terms flow rates as well as water chemistries that can be analysed: 
high salt contents lead to corrosion of the stainless steel tubing, high Si02 concentrations require 
higher temperatures to fully depolymerise but will also cause blockages within the tubing during 

cooling, etc. Nevertheless, as initially planned for this thesis, this system could be further used 

to determine the influence of specific organic functional groups derived from thermophilic and 

mesophilic microorganisms (by separating cell walls and sheath material, i. e., EPS) on growth 

and aggregation of silica nanoparticles under constant re-supply of silica supersaturated 

solution. In a second step silicification in the presence of bacteria could be simulated by using 

glass slides covered with cultures of different bacterial species (e. g., Bacillus flavothermus and 
Calothrix; both well studied isolates from geothermal waters in New Zealand and Iceland 

respectively). The degree of silicification could then be analysed over time and as a function of 

varying temperatures and silica concentrations using both SEM and TEM. Ultimately, the 

techniques could be developed so that these processes could be investigated in combination with 
SAXS and DLS in order to obtain more accurate measurements of the size and polydispersity of 

the particles that form in solution but also to derive information on the mechanisms and kinetics 

of biosilicification. Lastly, to better match temperatures regimes in hot spring environments, 
these processes should be also studied at higher temperatures (50 <T<I OOOC). 
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APPENDIX A 
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A. I: Evolutionary distance dendogramm of Flavobacetria, Cyanobacteria, Actinobactcria, 

Nitrospira and Sphinobacteria 16S rDNA gene sequences detected in this study in the context of 

currently recognized bacterial divisions in the RDP-11. Thermonema rossianum (detected in 

saline hot springs in Naples, Italy) was used as an outgroup. Sequence designated LGM 21477 

was detected in microbial mats from Antarctic lakes, WB3.4-82 is from river water, EP125 

from River Taff, Wales, HUW799 from a lake in the High Tatra Mountains, Slovakia, VP642P 

is a marine cyanobacteria, An 16 is from deep sea in Antarctica, CABI from Canadian oil sand, 
SRI strains are from a high sulphide mat in Iceland, P-7 from paddy soil, and KNIM 6220 

from seawater. Origin of PPC7420 and F13-4B-FL is not known. The scale bar is in nucleotide 

substitution per sequence position. 
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A. 2: Evolutionary distance dendogramm of unidentified 16S rDNA gene sequences detected in 

this study in the context of currently recognized bacterial divisions in the RDP-11. Thermus sp. 

SRI-96) was used as an outgroup. Sequence designated NP31 is from cold perennial springs of 

the Canadian high Arctic, C 116-18 is associated with the dinoflagellate Ale-vandrium, SW- 145 

is slightly halophilic organisms from seawater of Yellow Sea in Korea, NT N31 is a euryhaline 

halophilic strain isolated from deep sea sediments, BL from seawater, ODBI4, OPB7 and 

A3DB-AI2 are from Obsidian Pool in YNP, B17_otuI4 from high-temperature horizons of the 

Dagang Oilfield in China, SRI strains are from a high sulphide mat in Iceland, SK454 from 

Rainbow and Joseph's Coat Hot Springs in YNP, and SM2GO8 from Angel Terrace, 

Mammoth Hot Springs in YNP. The scale bar is in nucleotide substitution per sequence 

position. 
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APPENDIX B 

The experiments were carried out in near neutral pH (7 - 8) solutions with initial 1600 ppm 

Sl(),, IS - 0.11 and in the presence of specific organics (150 - 300 ppm of either glucose, 

glutaniic acid and xanthan gum; representing microbial cell envelope functional groups). 

Identical to the inorganic expcfinients, silica polymerisation was induced by neutralizing a high 

pi I solution (froni pli 12 to 7) and then followed by the time-dependent depletion in monosilicic 

acid (Fig. 13.1). Concomitant to the polymerisation reaction, the formation of silica 

natioparticics (i. e., change in particle size over time) was quantified in-situ using SAXS (Fig. 

13.2A), itid DLS (Fig. B. 213) 

1600 

4500 
Zýý 

600 - 

CL 500 - 

'0' 

300 

200 

0 

100 1 amorphous 

20 40 60 

Time (min) 

--o-inorganic 
300ppm gkicose 
300ppm gkitamic acid 
150ppm xarthan gum 

and Amorsson, 2000) 

80 1ý0 120 

B. 1: Time dependent decrease in monosilicic acid, lSi02(aq)], in solutions with 1600ppm Si029 

IS of 0.11 and added organics, i. e., glucose, glutamic acid or xanthan gum. Note that the errors 

(<6%) are about the size of the symbols. 

The comparison to the inorganic experiment with identical Si0-' and IS (1600 ppm Si02,0-11 

IS) showed that the presence of glucose, glutamic acid or xanthan guin did not affected the 

polyincrisation reaction (Fig. B. 1). In all organic and inorganic experiments with 1600 ppm 

Si02 and 0.11 IS, about 80% Of Si02(aq) (with respect to silica solubility at 30OC; solid line in 

Fig. B. 1) polymerised within the first 5 minutes and after 2 hours a steady state was almost 

approached (-93% polymerised). 
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B. 2: Time evolution of the particle diameter obtained from A) SAXS (i. e., GNOM analysis) 

and B) DLS showing the growth of silica nanoparticles in solutions with 1600ppm Si02, IS ý 

0.11 without and with added organics (i. e., glucose, glutamic acid or xanthan gum). Q The 

comparison of results obtained from SAXS and DLS showed the agreement between these two 

methods (for solutions with 1600ppm S021 IS = 0.11 and with / without added glucose). 

Similarly, no major differences were observed in particle diameter (i. e., particle growth profile) 

between the inorganic and the organic experiments as illustrated by both SAXS (Fig. B. 2A) and 

DLS (Fig. 13.213). It should be noted that the errors of the DLS experiments were quite high 

(specifically for the experiment with xanthan gum; Fig. 13.213) and the bigger differences in 
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particle sizes between the inorganic and the organic solutions (compared to SAXS results; 
B. 2A) thus have to be interpreted with care. 

Overall, these results suggested that during the initial stages (i. e., first 2 hours) silica 

polymerisation and silica nanoparticle growth was not affected by the presence of these organic 

molecules (i. e., glucose, glutarnic acid or xanthan gum). It might be possible that interaction 

processes between the organics and the monosilicic acid or particles / aggregates occur at a later 

stage of the reaction but these seem to be absent within the initial two hours. This further 

indicated that the mechanisms and kinetics of silica polymerisation and silica nanoparticles were 

not influenced by the presence of these organic molecules and a thorough kinetic analysis of the 

SAXS data was thus not neccssary. 



In 
In 

u 
x 

AM 

r4 «b 4) 0 in 
12. MK 

ti Co CI) 
11 ul r14 - 0 

.E iä 18 15 - Q (00 
0) E. CL CL N x 0.9 W0 'E E c5 
(0 3 11 E 

C, 
8 

ch Co 0N Co 
i w 0 c 

- (D (0 (D (0 0 

9- w 1 11 ý9 
r 

iý U) ý -q -: 
:i . ,0 'n 2 -A CO 0 C) in '. CL 

E 0 
E 

x E 
w30 
e0 

4) 0. 
Ea 

Co ei e C'3) 
10 

j -: ý w c4 0 ý I h c2 (4 rý4 .2 
E 

cý 
C) 

V) 

.E E 2 1 . CL M 
x CL 4R r9 

j' 
W CD c3 

to 0 00 ON 
c» 11 

30 E 
0ý -2 (6 ci rg M" ei ýr 6Q (» (» (» <» (» 
E U) 

5p 
Qg ci <,! r4 -: -: "e 

0w 00 C) 
CL 

-a CL N 00 (D CN Co (D 
r: Z 

E CL CL N 
x 12.9 

0, 
.- iý 

w CD CD 
P, mm 11 

br 
L 

Ea 
(D Ln 0 c2 Ln 02 

Cd 4 i zN 
w 0ý r c r Zm e) c4 (1 0 0. - 

e 
E (0 

q cq ri wý 
C) tn 00 

E CL ci. rj X C26 gý 0- *r- E W CD cz (4 0 CL 9 IR t? 11 c4 M w 
E 
0 CD r, P, ty t4 M--- Co) C0 0 
E 

r- A Co !n v) 03 -0om . -2 _: i 0: 00 - 
0. Ir ne'. r V) V) in r 

r= 

CL 0. N x9 0- *1' E w CD 
1- 11 

0 CL ge r. ý i <d fß Cd Cd cö 
r- ý 0 

CN c2 c4 KC) c9 0 CD to (0 Co (D (0 CD Co 0 

E 

(9 r- - CN cg 0 r- 0 l -" c4 c9 e 

U-e 
.A 0- -A (A rm (A e 
ce 

.0 ýc .E 

24 =3 ce 

r. v r. e 

c- 
-CJ ci Q 

.sme ce ci ýw 
c3 ce 4. ) 

* E7 ce Z 0= 

Ea lw 0 
UW 

NW = 

E 
q (3ý Ui Ci 

a 
4D C L 

-'a " r4 
0) 
N 

= E LLI G) C) 0) C) Q 

CL X x E LLI r: 
40 0. 4) CL Ea U) 

; It 0N I, - 
o. (Y c6 Fi 6 

cl, 40 
r -0 0 CO (3) f, C) CD 

+ E 

N 0 
Co E N Lf) CO) I, CD 

0 u ul 
0. -1-0 CL cl) co V) :3 O)m CD 

to :E 
CL 
x a. i a ., E w 

0& 0 0 0. E5 m .ý to N, 
C) Go - 

LU 0 0 cr) to 
+ r- 6 0 Go ca C)C) (7) E 

-C 
E cq U) r, (7) ';: C') I- N 



\0 

N 

.0 't U. ) m E Md 9 

g 
Co Co w CD m (D 

. 
0 . 0. N 
x 06 R 0- 

'r- E uj CD CD 
w3 11 

0) E r. t, U) co U) Lo C4 1-. 1- : : - v ui " tri ui c6 6 ai ui LU 0 1N 

o 
(D co cr) 1ý It cr) v It N 
0 ce) v) n ce) v) m c, ) ce) 

E 

0- tm 
e) (D 

Co E C 0 
<6 (Y; tlý 2 

0N 
co 

A 'N 

11 
-,, rL 

- 15 
to cr) CN V) 
(D co CD (D 4q 

- 0 
4) E 'ý 

-- m 
CL CL 'W" X rL ý o- 'r- E GE 
UJ C, 0 
tq a 11 

4) CL 
E- C4 MýV 20ý 

- (, i C'i 4 Cý Cý t(i w 0 ý c Q 
N I-- to -6 m ce) c) o 0 

E U) 

(4 

Q- CF) 'r C'j (3 c') r- - to C'4 U 

r.. (/) E : ci .: 6i c6 4 c6 cd Nw 
ei in -is CL 

a- T- - (D (1) CD CO (D C*4 Nr 
C) 0) d ; 

11 (a 0 
- )C ) 0) m (; ) (3) 0) 

. L- F- - 

CL M 
x E LU 
Iq 

CL 
E n I,. Ln LO CN 

w i . o- ci (6 yj ci (6 "r co (3) co N It cc T c 
C4 

o0 m (q 0 C') (q C') C') V) m 
E 

L) - .0 ý. p 
33 (/) E 

a 
to r, c o) cj 0 of, 

(6 C6 06 cli Ci C-i tri C6 .0 CV E - ii cl- , cj C4 F) vovv vv v- v 't v 't 
- I: 

0E 1- 
a r. L eq 
x rL 0 ') - 'a E W0C; o CL U) to v co C; ) ý co It V) ce) 11 

LU 
g -r-L C6 oi t,: 4 C6 ai N C6 C'i 
r4 
09 

N LO N It N V) 
v lqr IT vvv 

E U) 

p 
m )- Q , co Go v C-4 cj , (D (D (7) 

5 C4 00 U) E 
CL Cý ci r,: 6 ui C6 (6 4 -; 4 

0 E 
N CA CIJ MMý C*4 V It CN 

c) cq 0m V) c) m co m 

0 
E CL N 

xaq -r- E uj CD o 0 ck. co 0 (3) 40 0 kn (n rý 1ý- NN cn 11 w 
E- 
o ... 06 wrl C--) 

:02 C', AqA 
It c 0 m cq c) A0 Cl) Cl) m Cl) Cf) 

E 05 

Q- C- ' ' 
p 

00 u) E 
CL 

400( )C j -0 0 tQ Uý (ý t,: C4 (6 4 (C) Cl) It CL , 98GS9 ell G2 E -d 
E CL CL CV 

x CL R -C E uj CD CD a 4) cx E0 m (D cw) (, 4 cj r- r- (c) t, o : : : , 11 . 0- " t, ' (6 Cýj 6 Ui 46 (6 w a 
C4 

oQ 
0 CO MMVM V) 04 C'4 N 
v Cf) It It vvv It It v 

E Q) 

c) U) tý- o) 04 N cf) 't 

rA 

C6) 
10 924 

Ici 0 
ri .2 ct 10 Iti 
u 

. - 

.ZE 

Q Ici 

rj 0 

m CL 
£; CL (1) 9- to (0 tfi Q 

d ý 
E E 

ci e cý rZ ai to LD to Kn tn LO 
Z X= 

4- Co r_ 
Co 

0 N- r- 
LLI 0 

M 
(0) 

c4 0- 
ul 'n " 0 (0 `t 2» 4) (U 9 Fo E " , v) 4» 

Co cr) 11 cý rý cis czi vi vi r. L. x - CL ry r4 "t let, (D KO in (N 
(0 (0 CD 0 (0 KO. CO (0 0 

E 
a 
CD 
vi 0- -r- E 

'q» CD 0) 0 tn CD Ir 0n 
Ee le: pl: -: (-li -: c-; ci ei ci 0ý 
80 Co c2 (» p Co (0 a in r- 

cleclentlenn 
r= 

oE : 0a ai �. ggg ci 3 CL 
-a - ci (1) (4 N CN V) 

4) 
0 

CD le' 0 2 ro 
0 E 

u5 
CL 

0e Co (D 
M" CO (» CD (D vi q-ý 

CL «@ C, 0 

22 

CV) 
+ 0- E 

0. (» r- CD CD 0 4n cr) a) Co - - c; 'q; id -4 td r. ý ci ci m 0 c 
r4 

c) 9 
(0 CO tý (N V) CO (D M c2 

E (0 
1 

E m 
- C. 4 rq 0 

- 



r- 
kf) 
cq 

E ui cs cj hz rq oö UD (D vi q- 00 cr) 
0 E 

92- CD CD (D (0 Ko (D CD Lo 

. (D E 12 ' . CL C 4 
x CD E w C: 5 
(0 ll ýi E - -: ti -e 0 -: 9 KP aý 
ui - 04 - Ln o to Co 0t Lo r4 CD CD (4 ý0N"M CI) 

c 
0 LD ce clý m ei cl m V) CY ry 

E 

- cn te 
(4 CO (0 E r, 0 :3 

--d0 
' 

0 tn 

E 
CL ) to (9 U 

(0 (0 m 

. E 
CL X CL E 

W CD 0 r- 0 le er) f- 
i v N0 (0 ýo e r- (0 r- r- 

0 
E 

C4 

m rq tn oo 
(D o(4 

Cn0 
E 

-ii CL 
CL 

(b Qi rý ý cc; CD m te ci ýf (0 00 to m 
JE Q Co CD a) cri a) cri cr) 0 

0 . rL M 
x CL 9 

w0 
0- 'r- E CD 

to 
0 CL ry r, 1 Co 0 Co (0 cl (D 0 

qcr c» 11 E 
�e: rz L6 cKi c: i cd 0; oc 

C)- XX2 Pi 2 P; CN9 2 c"ri 0 

(D ( 
r- 

'; Co 

0 Kn 
(i) r= 

- CL 
kn 00 D (0 ID (9 't (D 

N4 -2 ui ei ci cö N «i 

vm r', 
. 
E- 

E CL CL CN 
X CL 9 t) - -r- E w CJ CD 0a Ln r4 t ei rq P, c) r4 ci ri e 11 w 

E- 
f4 cd cb N rz ci . e: rz I: N 

80 

E U5, 

f4 
Q- 

m (D m 
r- 4 CO U) E 

0 
m c4 r- rg 0 4) 

3; i L6 äý Co kn Co r4 Ln 0 
E . - 

. cl- Id 
- ry m- r4 le V) m ii . Co - ß- ih- 0E 

CL CL rj () - 
w CD CD r4 

0 CL 
E ci 

M CD 0 tý. Co N 0) e r- e **-, - 11 (4 0 . 0- mö Ci �6 PZ <3i ý Ln " LO (D 
rq (N n ci - V) pl eý 
cl 0 V) ci ce ce V) ce m 

t4 

r9 
.w 

9- 

u) E r L 
ry v) m CD Co rý e T- 0 ci 

ä ri 0; wi vi -- (0 "" ' D c" ' CY w> E . - 
-� 

- 
. c" 23232 , , 39 ý>, 

11 . Z: Co 
F- 

15 - 
0E- 
CL CL r4 0- 

r= 
w CD CD 0 CL E 0- - 

e Ln CD r- Co N0 c» tn rg 
ci ai ej (6 rz Cid r-z 0 0 c4 C) 

ry cri 't NN 
r= 

cu 

12 
ce 

Ici 
C6) 

rA 

cl 
ej 

ci 

ce 

ci 

cy a to c» ci en <o cD 
cm E 6 rZ i ci 6 cL 

12- rq e Lo N cD rD c) 

EW Z- to (D 0 (D (D (D CD 00 

CL ID X 
XÜ1- 'r- E . 

0 CL Co 
CL 

E 0. 
e) Co c» ei ce) zr Co oý 
tz czi <ö NZ Co 0; �.: .i CL w CD 

0- 
c4 CD - CO CD (D Cr) KO e CD 

Kn 
c 
op 

nn r2 (4) m 

+ 1E 
r. 4 0 r4 (3) c2 %- 00 (» u5 E (ý4 ji i ý6 (D 4- fj 

w 
CL w CL (0 

E Z Z- 

X rL E w rL 
08 

, 0. E ry Co c» t r- r- mN rg ih- - - 2iö r4 N ci cj �: w cn 0 
8 r4 

0 
r- (0 (D (N ýI, M n» (D CD 
ti ce ei ei 0m V) V) e 

E 
T--EE 

- 
r 



00 WI) 
CA 

Z 

412 

fýO 

13 

E 

0 

E 
E 

Zý 

4.8 c 
CD 

04 
l 

0) ce) 
4) V.. 

0 
0 0 a) 

Q. C i 
T- I ol 

C, 4 co I LO I 1 0 

r uj 

LU tv 0 -0 ý CF) Clf) ce) C. 0 CY) 
U) C3, 

e te (1) 
E 

0 
ý 

04 
0 

t- 

li 
co 

ui e ) ca Co C V-- IT- V- T- t6 + CL 

u 
0 0 0 

I 
0 0 C) 

(D r4ce) 
' 0 Cl I LO LO co q: r IT 

qC ) a. CL 

Mo 
T- V- T- T- %- V- 

.; = U) il v (1) E CL . r. L N X CLO 
0 C5 

L- 
(U 0 0 0 0 0 0 
(D 
E 

c) 

-4 
'D 
6 

co 

-; 
o 
q 

cl 
LLI to co ou V-- C C T- " V- c 0 

CL 

r .9 C4 00 ,E ;ý (1) to co CN 9 CY) tq co cq (D V: 
L- 

ý ý2 4) 0 W) C) Q. CL c) cv) m C-4 cn :r E 
IL- 

.- 11 U) .9 'D 
.SE a) CL E 

CL a) U) 0) = X UJ 0. V- 
C; 

L- 

:r o r- to cc) -q- 
Co EM 

E 
co 

j 
I- 

: 
CD 
ý 

cy) 
6 

- 
6 

o 
6 o2 U) co 

. 
a , - N C CN C CA 

C 
Ce) ( 0 :5 ;G 

2: 1 
a a o a o C: ) 0 

0 C'M 
O'n 0 

4) 

rL 
tq -44: 

, 
-7 d 

4 o 6 - 
to 

j , r- 
E . - 

c'. DO - 
C 4 c) C a li 

. 11 co . ' " 0) 0 
r-L CL Vý 
X 

uj 
0.0 

Co. 6 
CD -2 

ý, 
0 , C) o o o o o o C> 

--T (7) 11 f! E 
IC) C) 

: 
CA (0 P- 0) IRT 

1 
9 

uj U) 0 q c6 "i Ci c6 "i 1 
(3) 

CN CA CN C 4 

4-0 
r_ -0 cq(o 

ý, E2 - 0) cl ce) C, 4 C: ) c) - co o m r- C') q r, to m r- cr I U (1) E 
O'n 

. - 
o 
5. 

CL C'q CV5 v: 4 ti U) 
CL CL CST 
X 

W 0.0 (D c; T 4) C) to 'gr Co C4 -q- tt Itt C) 
E 

wt co to 
: 

co (D 
w U) (o q CN 

6 
CN 

4 
cy) C'i V) c6 04 t6 m cli co 

ce) U-) r, 0) r- 04 04 CY) 


