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Summary 

Meiotic recombination in Saccharomyces cerevisiae is initiated by the formation of DNA 

double strand breaks (DSBs), which are created by Spoil protein. Recombination 

preferentially occurs between homologous chromosomes, in order to establish 

interhomologue connections. These connections serve as a platform for genetic 

recombination and to promote accurate homologue disjunction at the first meiotic division 

(MI). Specific mechanisms are in place to ensure that meiotic DSB repair is directed 

towards interchromosomal repair, and genes thought to be involved in these mechanisms 

were examined in a DSB assay, where interchromosomal repair was precluded. Genes 

involved in the formation and processing of Spol1-DSBs were also examined. In meiosis, 

the regulation of resectioning is critical to repair outcome, and this assay was designed to 

measure two different lengths of resection tract. 

In a mekl mutant, there was an increase in the generation of longer resection tracts, 

suggesting that Mekl protein may exert its influence over repair template choice by 

negatively regulating DSB resectioning. An sae2 mutant was found to generate fewer 

shorter resection tracts, and was delayed for DSB repair. This suggested that Sae2 protein 

may have an early role in resectioning, by influencing repair template choice. Mutants of 

the MRX complex were all compromised for DSB repair, while an exol mutant failed to 

generate long resection tracts only. 

Finally, from work on a dmcl mutant, the prospect of protein sequestration at sites of 

excess single stranded DNA was proposed. 
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Chapter 1 

Introduction 

1.1 Saccharomyces cerevisiae 

Saccharonzyces cerevisiae (budding yeast) is a model organism for studying cellular 

processes in higher eukaryotes. S. cerevisiae has several qualities making it well suited for 

molecular genetic experimentation. Most importantly, it represents a simplified version of 

higher eukaryotes, it is unicellular, the genome is fully sequenced, annotated and readily 

manipulated, it is easy to culture and yields large numbers of progeny. 

S. cerevisiae is particularly suited to experiments examining the meiotic cell cycle as 

specific strains have the ability to undergo rapid and synchronous sporulation (Kane and 

Roth, 1974). 

1.2 The Meiotic Cell Cycle 

The eukaryotic nucleus divides in one of two ways, by meiosis or mitosis. While mitosis 

represents asexual cell division, the process of meiosis facilitates sexual reproduction, 

(comprehensively reviewed in (Zickler and Kleckner, 1998)). Meiosis enables two 

important functions in the eukaryotic cell, a haploid stage in the lifecycle and the 

generation of genetic recombinant progeny. Two nuclear divisions occur in meiosis, the 

first reduces chromosome number, and the second is an equational division of the genetic 

material. As meiosis is an essential process for sexual reproduction, it is logical that the 

genes regulating the process show considerable conservation throughout eukaryotes. 

Although the key characteristics of meiosis have been studied and understood for the last 
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Figure 1.2i: Chromosome Segregation in Mitosis and Meiosis: Prior to the one 
mitotic and two meiotic nuclear division(s), the chromosomes are replicated (S- 
phase) to create identical sister chromatids. (a) During mitosis, sister chromatids 
are intimately associated, through sister chromatid cohesion to ensure bipolar 
orientation on the metaphase plate. Spindle fibres from opposite poles become 
attached to the sister kinetochores, and via poleward forces, the chromosomes 
become appropriately orientated. At anaphase, loss of sister chromatid cohesion 
along the chromatid arms, (then at the centromeric regions), permits sister 
chromatid disjunction to opposite poles (equational segregation). (b) Prior to the 
first meiotic division, homologous chromosomes become aligned and recombine, 
creating interhomologue connections termed chiasmata (prophase I). Pairs of 
connected homologues (bivalents) undergo bipolar orientation on the MI spindle 
(analogous to sister chromatids in mitosis). At anaphase I, loss of sister 
chromatid cohesion along the chromosomal arm regions permits the homologue 
kinetochores to move to opposite poles, while maintenance of sister chromatid 
cohesion at the centromeric regions ensures that the segregation is reductional. 
For the second meiotic division, sister chromatids become aligned, again via 
spindle fibre attachment at the sister kinetochores. Loss of sister chromatid 
cohesion in the centromeric regions marks anaphase If, permitting the disjunction 

of recombinant sister chromatids (equational segregation). (Figure taken from 
Zickler and Kleckner, 1998). 



Figure 1.2ii: Meiotic divisions I and 11 in the rye Secale cereale 
microsporocytes: (A-F) prophase 1, (A) cars /vgotcnc, chro, nosomal 
condensation and earlv pairing. (B-D) carN to late pack; -tcnc; 
continued chromosomal condensation and homologuc pairing, 
follo«-cd by synapsis. (E) diplotcne progressive loss of' sister 
chromatid cohesion. (F) diakinesis homologous chromosomes are 
distinguishable, connected by chiasmata. (G, H) metaphase I; 
homologous chromosomes align on the MI spindle. (I, J) anaphase I; 

reductional segregation of homologues (K) telophasc I. (L) prophase 
II. (M) metaphase Il; sister chromatids align along the MII spindle. (N) 

anaphase II; equational segregation of' sister chromatids. (0) Four 
haploid pollen cells. (Bar = 5µ). (Figure taken from Zickler and 
Kleckner l998) 
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Chapter 1: Introduction 

the last 30 years that have provided an insight into the molecular and ultrastructural aspects 

of meiosis (John, 1990). 

The function of the meiotic cell cycle is to generate genetically diverse offspring with 

exactly half the parental chromosome complement. This occurs by one round of DNA 

replication (S-phase), followed by two rounds of nuclear division (MI/MII) (Figure 1.2i and 

Figure 1.2ii). At MI, replicated homologous chromosomes (maternal and paternal) move to 

opposite poles, in a reductional segregation. At MII, sister chromatids disjoin, in an 

equational segregation. This is in contrast to the mitotic cell cycle, where only one 

(equational) nuclear division follows S-phase, thus maintaining chromosome number 

(Figure 1.2i). 

At the first meiotic division, centromere number is reduced from diploid to haploid, while 

the genetic content reduces from 4x to 2x. In order to achieve this, meiotic cells must 

undergo homologous chromosome alignment, pairing and synapsis, which occur during 

prophase I of the meiotic cell cycle. MI consists of four cytologically distinguishable 

stages: prophase I, metaphase I, anaphase I and telophase I (Figure 1.2iii). Near identical 

stages are found in all organisms. 

1.2.1 Prophase I 

Prior to prophase I, premeiotic cells exist in a G1/GO state, characterised by nuclear 

expansion. Premeiotic S-phase follows, which is a period of DNA replication. Specific 

connections form between sister chromatids (sister chromatid cohesion, Section 1.3.1), and 
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Figure 1.2iä: Stages in Meiosis The top two panels show the extended meiotic 
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prophase homologous chromosomes result in the formation of paired homologues 
(bivalents) and the reciprocal exchange of sister chromatid arms, from crossing-over. 
Homologous chromosomes disjoin at anaphase 1, and sister chromatids in anaphase II, 
(analogous to mitotic division). Virtually identical stages are found in all organisms 
studied (Figure from Pawlowski and Cande, 2005). 
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Chapter 1: Introduction 

S-phase is distinguishable by the presence of diffuse chromatin. Mitotic and meiotic S- 

phases are largely analogous, with the exception that meiotic S-phase is of much longer 

duration. In S. cerevisiae, some argue that premeiotic pairing of homologous chromosomes 

occurs, with these associations being lost during S-phase, to be re-established prior to 

chromosome synapsis (Klein, 1994; Scherthan et al., 1994; Weiner and Kleckner, 1994). 

Early prophase is termed leptonema, once cells enter this stage they are committed to the 

meiotic cell cycle. At preleptotene, chromosomes are compacted, but on entering leptotene, 

they thin out and become discernibly individualised. The array of thread-like chromosomes 

appears as a dense disorganised tangle, however it is likely that a fundamental order is 

already in place. During the next stage, zygotene, the homologous chromosomes become 

aligned and pairing occurs. As homologues move towards each other, the chromosomes 

appear shorter and fatter. At the leptotene/zygotene transition, chromosomes adopt a 

distinctive arrangement, which is formation of the `bouquet'. Bouquet formation represents 

the spatial association of telomeres, through their clustering on the nuclear periphery 

(reviewed in (Scherthan et al., 1994)). Meanwhile the chromosome arms loop out into the 

nucleus in a flower-like array, (hence ̀ bouquet'). The bouquet stage is universally observed 

in meioses, and is lost during pachytene. Around this time, the homologous chromosomes 

become completely synapsed along their length, via the formation of a proteinaceous 

structure, termed the synaptonemal complex (SC, Section 1.3.3). Each set of synapsed 

homologues is termed a bivalent. Each bivalent contains two sets of sister chromatids, one 

pair originating from each parental chromosome. 

3 



Chapter 1: Introduction 

The tight associations between homologues cause pachytene chromosomes to appear at 

their most short and thick. In the next stage, diplotene, the SC is dissembled and individual 

homologues become distinguishable again. When the chromosomes move apart, chiasmata 

can be visualised at the points where the homologues remain connected. The final stages of 

prophase are diakenesis and prometaphase, when in readiness for chromosomal segregation 

at MI, the homologues undergo shortening and compaction. 

13 Meiosis in Detail 

It is during prophase I that the most striking modifications to chromosome organisation in 

the meiotic nucleus occur. Gross conformational changes include chromosome 

condensation, pairing, and synapsis. Recombination alters chromosomal conformation at 

both a nucleotide level, in the generation of gene conversions, and also at a structural level, 

in the formation of chiasmata. 

1.3.1 Sister Chromatid Cohesion 

Sister chromatid cohesion is established during S-phase, where premeiotic DNA replication 

produces sister chromatids that are tightly bound. In mitosis, cohesion between sister 

chromatids prevents their premature disjunction during attachment to the mitotic spindle. 

The cohesin proteins Smcl, Smc3, Sccl and Scc3 make up a multisubunit complex that is 

required for cohesion between mitotic sister chromatids, while in meiosis Sccl is 

substituted for the meiosis-specific homologue, Rec8 (Klein et al., 1999). Sister chromatid 

cohesion occurs along the length of the chromatids, excluding the sites of chiasmata, and is 

present until anaphase I. During the first meiotic division, sister chromatids must remain 
4 



Chapter 1: Introduction 

tightly bound, to ensure disjunction of homologues and not sisters. In order to resolve 

chiasmata, cohesion between sister chromatids is lost only in regions distal to the crossover, 

that is, along the chromosome arms. The cohesin complex is maintained at the centromeric 

region through to anaphase II, thus preventing premature sister chromatid disjunction. 

Moreover, by tying the sisters together until the second meiotic division, promotes their 

correct orientation on the meiotic spindle, and accurate disjunction at MII (reviewed in 

(Nasmyth et al., 2000)). 

1.3.2 Homologous Chromosome Pairing 

Homologous chromosome pairing requires homologues to overcome spatial separation 

within the nucleus, in order to become associated. Once in close proximity, the homologues 

are able to compare sequence homologies (reviewed recently in (Pawlowski and Cande, 

2005)). Fluorescence in situ hybridisation (FISH) of S. cerevisiae has been used to 

demonstrate multiple pairing sites along chromosome lengths (Scherthan et al., 1994; 

Weiner and Kleckner, 1994). Although the mechanism of homologue pairing is not widely 

understood, there appears to exist a strong connection with meiotic recombination. Pairing 

of homologous chromosomes in prophase seemingly occurs independently of chromosome 

condensation and SC formation. However, the correlation between pairing sites and future 

recombination events supports the proposal that these early pairing sites later become 

recombination initiation sites. (Scherthan et al., 1994; Weiner and Kleckner, 1994). 

5 
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133 Synaptonemal Complex 

While pairing is based on homology recognition for homologue interaction, synapsis is the 

process of cementing that association by creation of the synaptonemal complex (SC). The 

SC is a tripartite proteinaeous zip-like structure, which establishes and maintains the close 

association between homologous chromosomes along their entire length during meiotic 

prophase (reviewed in (Heyting, 1996). The SC is thought to influence the number and 

distribution of crossovers, plus convert these crossovers into stable chiasmata, thus 

ensuring accurate disjunction of homologues at MI (reviewed in (Roeder and Bailis, 2000). 

Sister chromatids of each meiotic prophase chromosome develop a single proteinaceous 

axis, termed the axial element (AE). Through meiotic prophase, the AEs of homologous 

chromosomes become connected along their length by multiple transverse filaments, 

forming the SC. Between the axial connections, which are now termed lateral elements 

(LE), a third longitudinal structure, the central element (CE), forms ('the zip'). Hence, the 

tripartite structure of the SC comprises of two lateral and a single central element. The 

tripartite SC structure is universally conserved among organisms, although differences exist 

at an ultrastructural level. Interestingly, meiotic cells of Schizosaccharomyces pombe and 

Aspergillus nidulans do not possess a detectable SC, although LEs are present in S. pombe, 

similar to those contained within the SC. 

In S. cerevisiae there are three meiosis-specific components of the SC, Redl, Hopl and 

Zipl. While the protein products of HOPI and REDI are localised to the AEs, the protein 

product of ZIP] is required for the formation of the CE. 

6 



Chapter 1: Introduction 

The interplay between chromosome synapsis and recombination appears to differ, 

depending on the organism being studied. In S. cerevisiae, mutants blocked for SC 

formation, still create Spol l-double strand breaks (DSBs, Section 1.5), while in spoil 

mutants, where meiotic DSBs are prevented, SC formation is also blocked. This suggests 

that in yeast, Spol l-DSBs are not only initiated before synapsis, but they are also required 

for the formation of the SC. Therefore, synapsis is not required for the initiation of 

recombination. This is in accord with studies of the timing of recombination and synapsis 

in S. cerevisiae, where it was reported that meiotic DSBs were created in early prophase, 

prior to the appearance of the SC (Padmore et al., 1991). Furthermore, in the organisms 

previously mentioned, that don't create SC (that is, A. nidulans and S. pombe), 

recombination still occurs. 

Conversely, in Drosophila melanogaster and Caenorhabditis elegans, it is homologue 

pairing that initiates synapsis, only then are Spol l-DSBs formed. 

Events subsequent to the initiation of recombination also appear to influence the onset of 

synapsis in S. cerevisiae. Mutants that create wildtype (WT) levels of Spol l-DSBs, but are 

blocked from generating recombination intermediates, accumulate unresected breaks, and 

form only partial SC (Alani et al., 1990; McKee and Kleckner, 1997; Prinz et al., 1997). 

Meanwhile, mutants that accumulate Spol1-DSBs with long 3' single-stranded (ss)DNA 

tails, assemble almost wildtype levels of SC, but synapsis is delayed (Bishop et al., 1992; 

Rockmill et al., 1995). 

7 



Chapter 1: Introduction 

1.4 Recombination 

DSB repair is classified into two major categories, homologous recombination (HR) and 

nonhomologous or illegitimate recombination. HR is characterised by broken DNA strands 

base pairing with a homologous partner. While HR typically requires many hundreds of 

bases of homology, nonhomologous repair ligates DNA termini that display 

microhomology, that is, a very limited number of homologous bases pairs. These repair 

pathways are conserved between S. cerevisiae and higher eukaryotes, although their 

relative contributions depend on the organism, cell type and stage of the cell cycle (Pastink 

et al., 2001). HR is the predominant DSB repair method in S. cerevisiae, while it is 

nonhomologous repair in mammalian cells. 

Meiotic recombination is initiated during zygotene, when homologous chromosomes 

become aligned and paired. Interhomologue recombination normally results in a gene 

conversion, which involves the transfer of genetic material from one nonsister chromatid to 

another. Gene conversion events are associated with crossovers at a frequency of 

approximately 50% (Fogel and Hurst, 1967; Jinks-Robertson and Petes, 1986; Orr-Weaver 

and Szostak, 1985). Reciprocal gene conversion events are required for chiasmata 

formation and the accurate disjunction of homologous chromosomes at MI. 

1.4.1 Double Strand Break Repair Model 

DSB repair by homologous recombination can occur by a number of different mechanisms 

(reviewed in (van den Bosch et al., 2002)). A universal feature of homologous 
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recombination is the generation of 3'-ssDNA tails. The canonical model for DSB repair 

was described by Szostak et al, (1983), whereby the linear 3' ssDNA tails which are highly 

recombinogenic, invade an intact homologous DNA duplex generating the characteristic 

four-stranded branch structure, termed a Holliday junction (HJ) (Figure 1.4.1). The 3' ends 

of the invading DNA strands serve as primers for the initiation of novel DNA synthesis. 

Two HJs form a joint molecule, which can be visualised on a two-dimensional gel 

(Schwacha and Kleckner, 1997) (Schwacha and Kleckner, 1994). Strand invasion is 

catalysed by the DNA strand exchange proteins, Dmcl and Rad51 ((Kadyk and Hartwell, 

1992; Symington, 2002) (Bishop et al., 1992). Creation of the double HJ permits the 

generation of recombination crossover products, via the alternative resolution of this joint 

molecule. If both of the HJs are cleaved equally, that is both sets of noncrossed or crossed 

strands, the gene conversion is not associated with crossing over. If there is cleavage of 

noncrossed strands from one HJ, and of crossed strands from the other, this causes the 

crossover of flanking markers. Novel DNA synthesis generates heteroduplex sequence, 

which needs to be fixed. Mismatch repair proteins target these regions of heteroduplex and 

re-establish DNA strand homology. 

The Szostak model for DSB repair predicts that novel DNA is generated in both donor and 

recipient. However it has been widely reported that heteroduplex DNA is only observable 

in the recipient molecule, while donor DNA appears to remain unaltered (Fan et al., 1995; 

Gilbertson and Stahl, 1996; Goyon and Lichten, 1993). Furthermore, if the formation of 

crossovers and noncrossovers derive from the resolution of HJs, both repair products would 

be expected to appear concurrently. However, it has been demonstrated that noncrossovers 

appear with similar timing to joint molecule resolution, while there is a lag of 
9 



Chapter 1: Introduction 

approximately 30 minutes until crossovers are formed (Alters and Lichten, 2001). Thus, 

noncrossovers may be formed through a different pathway, one that is independent of joint 

molecule formation. This has lead to the development of a modified version of the gene 

conversion model, called synthesis-dependant strand annealing (Figure 1.4.2). 

1.4.2 Synthesis-Dependant Strand Annealing 

This DSB repair model predicts that the two DNA termini act independently of each other 

in the homology search, and that stable heteroduplex intermediates between the 3'-ssDNA 

tails and the template regions do not form (Figure 1.4.2). Thus, after strand invasion, the HJ 

does not enlarge but instead migrates into the gap created. Following DNA synthesis, the 

newly synthesised strands are displaced and anneal to the 5' ends of the DSB. Synthesis- 

dependant strand annealing has been suggested to be involved in mating-type switching in 

S. cerevisiae and more recently in meiotic gene conversion (Allers and Lichten, 2001). 

1.4.3 Single Strand Annealing 

Another homologous recombination repair pathway is single strand annealing (SSA), which 

is very efficient when a DSB occurs between two flanking homologous regions (Figure 

1.4.3). SSA was first studied in Xenopus laevis oocytes, and is by some considered to be a 

subpathway of homologous recombination. 

Following DSB formation (Figure 1.4.3a), the SSA pathway requires the 5'-3' resectioning 

of DNA to extend as far as the homologous sequences, in order to uncover them (Figure 

1.4.3b). These complementary regions are used to align the broken DNA strands, before 
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they anneal and become ligated (Figure 1.4.3c and Figure 1.4.3d). SSA requires the 

nucleotide excision repair proteins Radl and Rad10, to remove the nonhomologous 3' 

ssDNA tails. A single copy of the homologous sequence remains, termed deletion product. 

The efficiency of SSA is dependent on the length and sequence identity of the flanking 

complementary regions (Sugawara et al., 2000). SSA is almost 100% efficient when the 

repeated sequences share 400bp of homology, although SSA can still occur with as little as 

60bp of homology, (but efficiency drops to 5%) (Sugawara and Haber, 1992). Furthermore, 

SSA repair of a DSB can even occur if the repeats are separated by up to 15kb of DNA 

(Paques and Haber, 1999). In mitosis, SSA is the predominant DSB repair mechanism in S. 

cerevisiae, and this may be a manifestation of unrestrained DSB resectioning. In meiosis 

however, the 5'-3' DSB resectioning is carefully regulated, and generally shorter resection 

tracts are created (Section 1.6). Thus, a search for homologous sequences in the flanking 

regions may be abandoned, if a homologue, available as a repair template, is encountered 

first (Haber, 2000; Neale et al., 2002). 

1.5 DSB Formation Initiates Meiotic Recombination 

All meiotic recombination pathways are initiated by the induction of meiosis-specific 

DSBs, and these breaks were first observed in genomic regions that recombine at high 

frequencies (Nicolas et al., 1989). Evidence to support the proposal that DSBs are the 

catalyst for meiotic recombination, include the observed increase in recombination 

frequency when DSBs are introduced into wildtype cells (Kolodkin et al., 1986; Malkova et 
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al., 1996), and the correlation shown between DSB formation and recombination kinetics 

(Cao et al., 1990; Goyon and Lichten, 1993; Padmore et al., 1991). 

Meiotic DSBs are not sequence-specific, but have a high prevalence in potential 

transcription promotor regions (Baudat and Nicolas, 1997; Wu and Lichten, 1994). One 

theory is that chromatin structure may determine the sites of meiosis-specific DSBs. 

Alterations to chromatin structure lead to corresponding changes in the occurrence of 

DSBs, and DSB hotspots demonstrate hypersensitivity to deoxyribonuclease I, in both 

meiotic and mitotic cells (Wu and Lichten, 1994). These results indicate that chromatin 

remodelling prior to meiosis may be important for determining break sites. Meiotic DSB 

formation has an absolute requirement for the protein products of at least 11 genes, ME14, 

MERZ, MER2, REC102, REC104, REC114, MRE2 and SPO11, which are all meiosis- 

specific, plus MREI J, RAD50 and XRS2 (MRX) (comprehensively reviewed in (Krogh and 

Symington, 2004)). Null mutations of any of these genes abolish both DSB formation and 

meiotic recombination. 

The catalyst of meiotic DSBs was first discovered in cells carrying a rad5OS mutation, 

where unresected breaks were found to accumulate with a covalently linked protein at the 

5' strand termini (Keeney and Kleckner, 1995; Liu et al., 1995). A short time afterwards the 

protein was identified as Spol I (Keeney et at., 1997). 

12 
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attached to an oligonucleotide with a free 3' -hydroxyl group. (Figure taken 
from Neale et at 2005). 
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Spoil protein creates meiotic DSBs via a reversible transesterase reaction, analogous to 

those catalysed by DNA topoisomerases. Indeed, Spol l protein contains several motifs that 

are common to Type II topoisomerases (Bergerat et al., 1997). Covalently-bound Spol l 

attacks the DNA backbone via a tyrosine side chain, generating a phosphodiester linkage 

between the 5' terminus and Spoil protein. A major step forward has been made recently 

in the elucidation of Spol l protein-release from the sites of DSB formation (Neale et al., 

2005). Spol 1 is released from the break site, attached to an oligonucleotide with a free 3' - 

hydroxyl group, via endonucleolytic cleavage (Figure 1.5). Two distinct Spoll- 

oligonucleotide complexes were identified, differing in nucleotide length. Tantalisingly, 

this may be the result of strand cleavage at different intervals flanking the DSB site, raising 

the possibility of asymmetrical DSB processing (Neale et al., 2005). 

Studies in S. cerevisiae of a null and catalytic mutation of SPD11, (spoll-Y135F, 

substitution of active tyrosine), demonstrated a defect in homologue pairing and SC 

formation (Loidl et al., 1994; Neale et al., 2002; Weiner and Kleckner, 1994). Furthermore, 

Spol l protein has been shown to influence DSB resectioning (Neale et al., 2002). 

1.5.1 The Components of DSB Repair 

A universal feature of meiotic recombination is that after Spol l protein removal, DSBs 

undergo a process of 5'-3' resectioning, generating 3'-ssDNA tails. The resection 

machinery comprises the MRX complex, Sae2, and maybe other, as yet unknown proteins. 

Null mutations of MREII, RAD50 and XRS2 prevent the formation of Spoll-DSBs 
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altogether, while a null mutation of SAE2, causes unresected breaks to accumulate (Alani 

et al., 1990; McKee and Kleckner, 1997; Prinz et al., 1997). 

Sae2 protein was first isolated and characterised in a screen for mutants blocked at 

intermediate stages of meiotic prophase, it is required for the removal of Spoil protein 

from meiotic DSB sites. (McKee and Kleckner, 1997; Prinz et al., 1997). Loss of Sae2 

protein function causes Spoll to remain covalently bound to meiotic DSBs, effectively 

blocking the DNA termini from the resectioning machinery. Sae2 protein functions jointly 

with the MRX complex during meiotic DSB processing and in the DNA damage response 

in mitosis. 

The protein products of the MREII, RADSO and XRS2 genes form a stable complex, which 

appears to have separate and specific roles in meiosis and mitosis (Cao et at., 1990; Ivanov 

et al., 1992; Johzuka and Ogawa, 1995). Unique amongst the genes involved in meiotic 

DSB formation and processing in S. cerevisiae, the MRX complex is involved in certain 

metabolic events, including telomere maintenance, the cell cycle response to DNA damage 

(with Tell, an ATM homologue), intraS-phase checkpoint, alongside more explicable roles 

in mitotic DSB repair, homologous recombination and NHEJ (reviewed in (Haber, 1998)). 

Two Mrell molecules bridge together two Rad5O molecules, with one Xrs2 molecule 

(Hopfner et al., 2002; Johzuka and Ogawa, 1995; Usui et al., 1998). MREII and RAD50 

encode evolutionarily conserved multi-domained proteins homologous to E. coil SbcC and 

SbcD proteins, respectively. SbcC and SbcD interact physically, and possess double- 

stranded (ds)-exonuclease activity and single-stranded (ss)- endonuclease in vivo (Paull and 
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Gellert, 1998). The homology shared between the proteins added weight to the proposal 

that the MRX complex formed the resectioning machinery that was required in meiotic 

DSB processing (Sharpies and Leach, 1995). 

The MRX complex possesses DNA binding, end recognition and nuclease activities, and as 

a physical complex, it stabilises sister chromatid and homologous chromosome 

interactions, thus fulfilling a structural role in homologous recombination (Bressan et al., 

1999). Null mutations of MREI1, RAD50 and XRS2 fail to create Spol1-DSBs, thus 

meiotic recombination cannot be initiated, and meiotic lethality ensues. 

Through various studies, including the discovery of a number of separation of function 

mutations, the many roles of the MRX complex have been delineated, with a primary 

function being described in the 5'-3' resectioning of DSBs. For example, a rad5OS mutant 

was found to create Spol 1-DSBs, but these breaks accumulate unresected, analogous to the 

sae2 phenotype (Alani et al., 1990). It was observed that HO-DSBs at the MAT locus 

experience delayed, and reduced levels of 5'-3' resectioning in MRX null mutants (Ivanov 

et al., 1994; Llorente and Symington, 2004; Tsubouchi and Ogawa, 1998), while nuclease- 

defective alleles, mrell -H125N and mrel l -D56N, convey sensitivity to IR and methyl 

methanesulfonate (MMS), but to a less severe degree than a null MREI 1 mutation (Moreau 

et al., 1999). 

Given the amount of evidence that has accumulated, the exact role of the MRX complex in 

Spol 1-DSB processing remains unclear, due to a significant anomaly. The 3'-5' polarity of 

the exonuclease activity displayed by the MRX complex in vitro, is opposite to that 

observed in meiotic DSB resectioning (Furuse et al., 1998; Trujillo et a!., 1998; Usui et al., 
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1998). However, the polarity of the endonuclease activity of MRX is in the appropriate 

direction. An attractive prospect therefore, is that the ssDNA endonuclease activity of 

MRX, in concert with a helicase, degrades the 5' ssDNA termini at Spol1-DSB sites 

(Moreau et al., 1999). Alternatively, the MRX complex may have a more indirect role in 

DSB resectioning, by recruiting other 5'-3' polarised exonucleases to the sites of Spol l- 

DSBs. 

Exol (exonuclease I) protein was first isolated in S. pombe cells induced to undergo 

meiosis (Szankasi and Smith, 1992). Subsequently, the transcription of Exol protein was 

found to be meiotically induced in S. cerevisiae, suggesting a role for Exot in meiotic DNA 

metabolism (Tsubouchi and Ogawa, 2000). Exol protein has the apposite polarity for 5'-3' 

DSB resectioning, and in high-copy number EXOI suppresses the MMS sensitivity of 

mrell, rad5O and xrs2 strains (Lewis et al., 2002; Tsubouchi and Ogawa, 2000). A null 

exol mutation increases MMS sensitivity in mrell and rad50 mutants, while mrell exol 

double mutants are more delayed for HO-DSB resectioning than the single well mutant. 

Despite this seemingly compelling evidence , because Spol l-DSBs are still created and 

processed in an exol mutant, the Exol protein discounts itself as the primary activity of the 

DSB resectioning machinery. 

Interestingly, another potential role for Exol protein has been described in meiosis, that of 

promoting crossing over, to ensure accurate homologue disjunction at MI (Khazanehdari 

and Borts, 2000; Kirkpatrick et al., 2000). Strains mutant for EXOJ display reduced levels 

of crossing over, causing a reduction in spore viability, which is associated with 

homologous chromosome nondisjunction (reviewed in (Tran et al., 2004)). 
16 



Chapter 1: Introduction 

1.5.2 The MRX Complex and Genome Stability 

While Mrel I and Rad50 are highly conserved proteins, the Xrs2 sequence has diverged 

more rapidly, with Xrs2 substituted for human (h)Nbsl protein in the mammalian complex 

(Petrini, 1999; Tauchi et al., 2002). The metabolic defects observed in yeast null MRX 

mutants are also observed in mammalian cells. Chromosomal instability syndromes are 

caused by mutations in the mammalian MRX complex; Nijmegan breakage syndrome is 

caused by truncations in hNBSI, and Ataxia-telangiectasia-like disorder is caused by 

hypomorphic mutations of hMREI 1 (Stewart et al., 1999; Varon et al., 1998). Cells derived 

from sufferers of these disorders are characterised by common DNA damage response 

defects, that is hypersensitivity to ionising radiation and defective checkpoint responses. 

Thus both of these disorders cause genome instability, predisposing affected individuals to 

cancer (D'Amours and Jackson, 2002) (Petrini, 1999). 

1.6 Regulation of DSB Resectioning 

The 5'-3' DSB resectioning step, common to all homologous recombination pathways 

requires stringent control. The degree to which DNA is resected during DSB processing is 

critical to repair outcome. The generation of longer resection tracts can lead to the exposure 

of intramolecular flanking homologies, causing DSB repair to be directed along an 

intrachromosomal repair route, for example nonhomologous end joining (NHEJ) or SSA 

(SSA, Section 1.4.3). This may be advantageous to the cell, especially if a homologous 

chromosome is not available as a repair template. However intrachromosomal 

recombination does not fulfil the essential requirements of meiosis, that is, the generation 
17 
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of interhomologue crossovers. The risk of loss of heterozygosity, which would be increased 

in these deleterious repair processes, further highlights how critical the process of 

regulating DSB resectioning is. 

1.7 Repair Template Choice 

Mitotic recombination, which is required for DNA repair caused by replication problems or 

by exogenous factors (such as ionising radiation or genotoxins), is mediated by using sister 

chromatids as repair templates, by the RecA homologue Rad51 (Kadyk and Hartwell, 1992; 

Symington, 2002). However in meiosis, cells must respond to the programmed action of 

meiotic DSBs differently, by mediating DSB repair between nonsister chromatids. Thus, 

the preferential direction of DSB repair in meiosis is towards the homologous chromosome, 

which also requires the meiosis-specific RecA homologue, Dmcl protein (Bishop et al., 

1992; Schwacha and Kleckner, 1997). The bias shown by the meiotic cell is purposeful; 

permitting crossover formation exclusively between homologous chromosomes, not only 

maintains their tight association until reductional segregation, but also allows for the 

reciprocal exchange of genetic material between homologues. 

Still under investigation is whether the interhomologue bias displayed by meiotic cells is a 

manifestation of active promotion of interhomologue recombination, or active suppression 

of intersister recombination. Alternatively, a combination of both processes may be at 

work. 

Dmcl protein has a pivotal role in establishing and facilitating meiotic interhomolog 

exchange, along with Redl, Mekl, Rad5l, Rad55 and Rad57 (Schwacha and Kleckner, 
18 



Chapter 1: Introduction 

1997; Wan et al., 2004). The loss of strand exchange function causes dmcl cells to 

accumulate Spoll-DSBs, with the broken DNA termini undergoing additional 5' to 3' 

resectioning (Bishop et al., 1992). However, whether Dmcl protein is a component that 

provides specificity for nonsister strand exchange is doubtful. It has been demonstrated that 

overexpression of Rad51 protein largely suppresses the recombination defect of a dmcl 

mutant (Tsubouchi and Roeder, 2003). While in other organisms that undergo Spo11-DSB 

mediated meiotic recombination, such as C. elegans and D. melanogaster, no Dmcl 

orthologue exists at all (Villeneuve and Hillers, 2001). 

As meiotic DNA strand exchange preferentially occurs between homologous chromosomes, 

even in the absence of Dmcl protein, the possibility of a block to intersistcr repair appears 

to be a feasible alternative to explain the observed repair bias. Recently, a separate 

mechanism for ensuring that crossovers occur between homologues only, has been 

described (Wan et al., 2004). This involves three meiosis-specific chromosomal core 

proteins, Mekl, Redl and Hopl. Activation of Mekl kinase, (which coincides with the 

formation of Spol1-DSBs), is thought to mediate inhibition of the proteins required for 

repair between sister chromatids, such as Rad54 (Wan et al., 2004). Thus, during Spol l- 

DSB processing, Mekl protein effectively creates a barrier to intersister repair, thus 

pushing repair towards the homologous chromosome (Wan et at., 2004). Further work on 

the Mekl protein complex has demonstrated that it is Hopi. activation of Mekl protein, 

through dimerisation, that enables Mekl to target proteins involved in intersister repair 

(Niu et al., 2005). 
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1.8 Origins of the Assay in this Study 

Repair of a meiosis-specific DSB has been previously studied in a different reporter assay 

(Neale et al., 2002). In that assay, a DSB created by VDE endonuclease was flanked by WT 

and mutant URA3 alleles (Figure 1.8a). Following formation of the VDE-DSB (Figure 

1.8b), four repair outcomes were possible: a gene conversion event using the arg4-bgl 

allele as repair template, yielding ARG4 (Figure 1.8c) or arg4-bgl alleles (Figure 1.8d), or a 

SSA event between the flanking URA3 homologous sequences, yielding deletion products 

ura3:: Ty (Figure 1.8e) or URA3 alleles (Figure 1.8f). Therefore, the assay was designed to 

distinguish between, and report on both interchromosomal and intrachromosomal DSB 

repair. 

1.9 Initial Aims 

To create a novel DSB repair assay for studying meiotic recombination; that does not 

require Spol l protein as the DSB catalyst, and is designed to report on intrachromosomal 

DSB repair only. 

Characterise a number of mutants for DSB repair and DNA resection tract length. 

Screen for novel mutants that affect regulation of DSB resectioning. 
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Materials and Methods 

Table 2.1 Escherichia coli Strains 
Name Genotype Source 
DH5a supE44 AlacU169(¢80 lacZZM15) hsdR17 recAl endAl 

rA96 thi-I relA1 
Laboratory 
Resource 

Table 2.2 Plasmids 
Name Description Source 
pAG72 kanMX4 cassette in pBS423 M. Lichten 
pAG73 XRS2 expression vector driven by PMJ704, V. Borde 

HOPI pro hphMX4 cassette 
pAG126 natMX4 cassette in pFA6 (Goldstein and McCusker, 1999) 
AG 157 hphMX4 cassette in pFA6 (Goldstein and McCusker, 1999) 

pAG304 xrs2-1 1 fragment in TA vector This Study 
(Invitrogen) (hAG 1161, primers xrs2- 
11 F/R, Table 2.4) 

pAG406 Precursor cassette, containing Dade2 PMJ113_115Aura3, M. 
ura3A arg4-nsp URA3 (clockwise Ramachandran and A. Goldman, 
orientation) Un ub. 

pAG407 pAG405 with arg4-VDE insert at BamHl PMJ113_115Aura3+URA3Rev, 
site (BamH! fragment from pAG404), This Study 
making Aade2 ura3A arg4-VDE URA3 
(anticlockwise orientation 

pAG408 pAG406 with arg4-VDE insert at BamHl PMJ 1 13_1 15Aura3+URA3, 
site (BamHI fragment from pAG404), This Study 
making Dade2 ura3A arg4-VDE URA3 
(clockwise orientation 

2.3 Saccharomyces cerevisiae Strains 

Table 2.3.1 Haploid Strains 

All haploid strains are derivatives of SKI (Kane and Roth, 1974), unless stated otherwise. 

All haploid strains are ura3 lys2 ho:: LYS2, unless stated otherwise. Only mutant alleles 

shown. 

Name Genotype Source 

hAG2 MATa t l:: hisG S55, M. Lichten 
hAG3 MATa trpl:: hisG S56, M. Lichten 
hAG55 MATa ura2 (URA3) S317, M. Lichten 
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hAG56 MATa ura2 (URA3) 5318, M. Lichten 
hAG287 MATa arg4-nsp, bgl leu2-K sae2:: kanMX 51195, V. Borde 
hAG320 MATa arg4-nsp dmclt\:: ARG4 DKB195, D. Bishop 
hAG416 MATa ade2A(EcoRV-Stul) arg4-nsp, bgl leu2-R 

nuclA:: LEU2 TFPI:: VDE 
(Neale et al., 2002) 

hAG417 MATa ade2A(EcoRV-Stul) arg4-nsp, bgl leu2-R 
nuc10:: LEU2 TFPI:: VDE 

(Neale et al., 2002) 

hAG418 MATa ade2A(EcoRV-Stu! ) arg4-nsp, bgl leu2-R 
nuc1A:: LEU2 

M. J. N and A. S. H. G 
(Unpub. ). 

hAG419 MATa ade2A(EcoRV-Stul) arg4-nsp, bgl leu2-R 
nuc1h:: LEU2 s oll Y135F -HA3His6:: kanMX 

(Neale et al., 2002) 

hAG678 MATa arg4-bglleu2:: hisG his4B:: LEU2 trp1 mre11- 
58s 

51359, H. Ogawa 

hAG684 hAG3 transformed with AG408 This Study 
hAG690 MATa cyh2-z rad50A:: hisG ORT4603, V. Borde 
hAG692 MATa arg4-nsp, bglleu2-Kxrs2A:: kanMX ORT4620, V. Borde 
hAG693 MATa arg4-nsp, bgl leu2 mre110:: kanMX ORT4700, V. Borde 
hAG695 hAG2 transformed with AG407 This Study 
hAG1161 
(W303) 

MATa-inc ADH4cs:: HIS2 adel his2leu2 trp1 ura3 
xrs2-11:: KANMX 

KSC1621, (Nakada et 
al., 2003 

Table 2.3.2 Diploid Strains 

All diploid strains are SKI, MATa/a and homozygous for ura3 lys2 ho:: LYS2, unless stated 

otherwise. Only mutant alleles shown. 

Name Genotype Source 
dAG630 ade2:: URA3 -(arg4-VDE. ura3) trpl:: hisG ARG4 This Study 

Aade2(EcoRV-Stuf) TRP1 arg4-nsp, bgl 
LEU2 TFPI 
leu2-R nuc1z:: LEU2 TFPI:: VDE 

dAG646 ade2:: URA3 -(arg4-VDE, ura3) trpl:: hisG ARG4 This Study 
Aade2(EcoRV-Stuf) TRP1 arg4-nsp, bgl 
LEU2 
leu2-R nuc10:: LEU2 

dAG649 ade2:: URA3 -(arq4-VDE, ura3) trpl:: hisG ARG4 This Study 
Aade2(EcoRV-Stu! ) TRP1 arg4-nsp, bgl 
LEU2 TFPI 
leu2-R nuc1&:: LEU2 TFPI:: VDE 

dAG720 ade2:: URA3 -(arg4-VDE, ura3) trpl:: hisG ARG4 This Study 
Aade2(EcoRV-Stu! ) TRP1 arg4-nsp, bgl 
LEU2 TFPI:: VDE 
leu2-R nuc10:: LEU2 TFPI:: VDE 

dAG732 ade2:: URA3 -(arg4-VDE, ura3) trpl:: hisG leu2 This Study 
Aade2(EcoRV-Stul) TRP1 1eu2 nucl:: LEU2 
ARG4 TFPI mek1A:: LEU2 

ade2:: URA3' denotes opposite orientation of URAS in Inverted Cassette strain, dAG649 
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ar 4-ns TFPI:: VDE meklA:: LEU2 
dAG759 ade2:: URAS-(arg4-VDE, ura3) leu2-R This Study 

Aade2(EcoRV-Stuf) leu2-R nuci. 1:: LEU2 
arg4-nsp, bgl TFPI spo 11(Y135F)-HA3His6:: kanMX 
a 4-ns ,bl TFPI:: VDE s o11 Y135F -HA3His6:: kanMX 

dAG946 ade2:: URA3-(arg4-VDE, ura3) trpl:: hisG ARG4 This Study 
Aade2(EcoRV-Stuf) TRPI arg4-nsp, bgl 
LEU2 TPFI xrs2:: kanMX 
leu2-R TFPI:: VDExrs2:: kanMX 

dAG951 ade2:: URA3-(arg4-VDE, ura3) ARG4 LEU2 This Study 
Aade2(EcoRV-Stul) arg4-nsp, bglleu2:: hisG 
TFPI rad50A: hisG 
TFPI:: VDE rad50A: hisG 

dAG975 ade2:: URA3-(arg4-VDE, ura3) trpl:: hisG arg4-bgl This Study 
Aade2(EcoRV-Stu! ) TRPI arg4-bgl 
LEU2 TFP1 mre11-58s 
his4:: LEU2 TFP I:: VDE mre ll -58s 

dAG 1000 ade2:: URA3-(arg4-VDE, ura3) leu2-K ARG4 This Study 
Aade2(EcoRV-Stuf) leu2-R arg4-nsp, bgl 
TFPI NDT80 xrs2:: kanMX 
TFPI:: VDE ndt80:: NATMX xrs2:: kanMX 

dAG1010 ade2:: URA3-(arg4-VDE, ura3) LEU2 arq4-nsp, bql This Study 
Aade2(EcoRV-Stu! ) leu2-R arg4-nsp, bgl 
TFPI mreIIA:: kanMX 
TFPI:: VDE mre 1lA:: kanMX 

dAG1093 ade2:: URA3-(arq4-VDE, ura3) ) LEU2 ARG4 This Study 
Aade2(EcoRV-Stuf) jeu2-K arg4-nsp, bgl 
TFPI ndt80:: NATMX xrs2:: kanMX 
TFPI:: VDE ndt80:: NATMX xrs2:: kanMX 

dAG1200 ade2:: URA3-(arg4-VDE, ura3) LEU2 This Study 
Aade2(EcoRV-Stuf) leu2-R nuc10:: LEU2 
ARG4 TFPI sae2:: kanMX 
ar 4-ns ,bl TFPI:: VDE sae2:: kanMX 

dAG1215 ade2:: URA3-(arg4-VDE, ura3) trpl:: hisG 1eu2 This Study 
Aade2(EcoRV-Stul) TRPI leu2 nucl:: LEU2 
ar0-nsp, bgl TFPI meklA:: LEU2 sae2:: KanMX 
a 4-ns TFPI:: VDE meklA:: LEU2 sae2:: KanMX 

dAG1236 ade2:: URA3-(arq4-VDE, ura3) LEU2 ARG4 HIS4 This Study 
Aade2(EcoRV-Stul) leu2-R arg4-bgl his4B 
TFPI rad54A 
TFPI:: VDE rad54A 

dAG1265 ade2:: URA3-(arq4-VDE, ura3) LEU2 arg4-nsp TFP1 This Study 
Aade2(EcoRV-Stuf) leu2-R arg4-nsp TFPI:: VDE 
dmclA:: ARG4 
dmc1L:: ARG4 

dAG1271 ade2:: URA3-(arq4-VDE, ura3) LEU2 This Study 
Aade2(EcoRV-Stuf) leu2-R nuc10:: LEU2 
ARG4 trp1:: hisG TFP1 xrs2-11:: kanMX 
a 4-ns ,bl TRP1 TFPI:: VDE xrs2-11:: kanMX 

dAG1284 ade2:: URA3-(arg4-VDE, ura3) leu2-R arg4-nsp This Study 
Aade2(EcoRV-Stuf) leu2-R nuclA:: LEU2 arg4-nsp 
TFP1 dmclA:: ARG4 s oll Y135F -HA3His6.: kanMX 
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TFPI:: VDE dmclA:: ARG4 s o11 Y135F -HA3His6:: kanMX 
dAG1300 HO TRP1 1eu2 VMAI-201 exolA:: kanMX YOC3121 

ho:: hisG trill leu2 LEU2:: VMAI:: URA3 exo1E:: kanMX (Fukuda et 
al., 2003) 

dAG1305 ade2:: URA3-(arg4-VDE, ura3) trpl:: hisG LEU2 ARG4 This Study 
Aade2(EcoRV-Stul) TRP1 leu2-R arg4-nsp, bgl 
TFPI exolA:: kanMX 
TFPI:: VDE exolh:: kanMX 

2.4 PCR Primers 

Synthesised by MWG-Biotech, with high-purity salt free purification 
Name DNA Sequence Description 
MN03 GGTACAATCACTTGGATTGCTCC TFPI locus 
MN04 AAGCTTCTCTGGCTGCAACCGGC TFPI locus 
xrs2-11 F TGAGGGACAGTCATAGCGG XRS2 locus 
xrs2-11 R AGAGGCTACGTTGTTCTGGC XRS2 locus 
XRS2-F AACGTGGGTACAGACGGG XRS2 locus 
XRS2-R CAAGAGTTGCCAAAGACGGG XRS2 locus 
drugpromotor CCTTGACAGTCTTGACGTGC TEF promoter 
drugterminator CAGATGCGAAGTTAAGTGCG TEF terminator 
Leftconstruct F GCCCAATGTGTCCATCTGAC ADE2 locus, (upstream) 
Leftconstruct R GCCTGTTTGCTGCCTCAAC ADE2 locus, (upstream) 
ABO1 CTTGTTGCATGGCTACGAACCG 5' ADE2 locus 
AB02 CCCAATGCGTCTCCCTTGTC 5' URA3 locus 
AB03 TAGGCGTATCACGAGGCCC pBR322 specific 
AB04 ATCCTCGGTTCTGCATTGAGCC ADE2 locus, (downstream) 
se P1 F CCCTGAGCTGCGCACGTCAAG XRS2 ORF 
se P2 F CGGATCTGAAACACAGTAGC XRS2 ORF 
se P3 F GGCTGAATAATATCAGAGTG XRS2 ORF 
se P4 F CCCAACATTGCAGAGGCAG XRS2 ORF 
se P5 F CGCACGCATTTGTTGAAGC XRS2 ORF 
se P6 F GGGCACAGAAGAAAACGAAG XRS2 ORF 

2.5 Growth Media and Stock Solutions 

All media and stock solutions were made in dH2O and autoclaved at 15lbs/in2 for 15min at 

121°C, or filter sterilised through 0.45um filters. UP-H2O used in DNA reactions, was 

distilled water passed through a Millipore system and autoclaved to make it ultra pure. 

Reagents were mainly from the companies Sigma-Aldrich, Difco and BDH. Percentage 

concentrations given throughout the study are w/v for solid and v/v for liquid chemicals. 
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25.1 Media 

2TY: 

1.1% tryptone, 1% yeast extract, 0.5% sodium chloride, 1.5% agar (solid media) pH7.4. For 

selection of DH5a strains that contained a plasmid conveying drug resistance, antibiotic 

was added to autoclaved cooled 2TY: 

amp': 50pg/ml ampicillin, (Sigma-Aldrich) 

hph': 100pg/ml hygromycin B (Sigma-Aldrich) 

natR: 50pg/ml nourseothricin (Werner BioAgents) 

YEAPD: 

1% yeast extract, 2% peptone, 2% D-glucose, 2% agar (solid media), 40pg/ml adenine. 
Yeast strains containing MX drug resistance genes were selected for on YEAPD medium 

plus antibiotic, (added to autoclaved, cooled YEAPD): 

kanMX: 200µg/ml G418 (Melford) 

hphMX: 300µg/ml hygromycin B (Sigma-Aldrich) 

natMX: 100µg/ml nourseothricin (Werner BioAgents) 

Minimal: 

2% D-glucose, 0.68% yeast nitrogen base (w/o amino acids), 2% agar. 

Synthetic complete (Sc): 

Made up as minimal media plus 0.85g/l of complete master mix and lpI/ml of 2M NaOH 

(liquid Sc, no agar). Complete master mix contained 0.8g adenine, 0.8g arginine, 4. Og 

aspartic acid, 0.8g histidine, 2.4g leucine, 1.2g lysine, 0.8g methionine, 2. Og phenylalanine, 

8. Og threonine, 0.8g tryptophan, 1.2g tyrosine and 0.8g uracil. Dropout master mix was as 

Complete, minus the amino acid(s) used for selection. 

5-FOA: 

2x stock made in 500m1 dH2O: 1.4% yeast nitrogen base w/o amino acids, 4% agar, 4% D- 

glucose, 100µg/ml uracil, plus appropriate supplemental amino acids. 
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lg 5-fluoorotic acid dissolved in 500ml dH, O, filter sterilised, and then added with thorough 

mixing to autoclaved cooled 2x stock. 

PSP2 (pre-sporulation medium): 

0.67% yeast nitrogen base w/o amino acids, 0.1% yeast extract, 1% potassium acetate, 

1.02% potassium hydrogen phthalate, 40µg/ml adenine. 

K-Ac (sporulation medium): 

Liquid media: 1% potassium acetate (J. T. Baker), supplemented with 10yg/ml adenine, plus 

appropriate amino acid supplements at 10µg/ml to complement the auxotrophies of the 

yeast strain. Solid media: 2% potassium acetate, 2% agar, 0.1% yeast extract, 0.05% D- 

glucose, 10µg1ml adenine. 

25.2 Solutions 

1OxTE: 

100mM Tris base, 10mM EDTA, pH7.5 

1OxTNE: 

100mM Tris. HCI, 2M NaCl, 10mM EDTA, pH7.4 

50xTAE: 

2M Tris base, 100mM EDTA, 0.95M acetic acid 

20xSSPE: 

3.6M NaCl, 200mM NaH2PO4,20mM EDTA, pH7.4 

Plasmid TENS: 

IM NaOH, 10% SDS, IOxTE 
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Genomic TENS: 

2% Triton-X-100,1% SDS, 100mM NaCl, 10mM Tris. HCI pH8.0,1mM EDTA 

6x Loading Dye: 

0.25% Bromophenol-blue, 20% sucrose 

Heavy Loading Dye (southern gels): 

0.25% Bromophenol blue, 0.25% xylene cynanol, 20% ficol 

Proteinase K Solution: 

10mM Tris. HCl pH7.5,20mM CaC12,50% glycerol, filter sterilised before addition of 

20mg/ml Proteinase K 

RNase Solution: 

10mg/ml RnaseA, 10mM Tris. HC1 pH7.5,22.5mM NaCl. Incubated at 100°C for 15 mins, 

cooled slowly. 

Spheroplasting Solution (±20% glycerol): 

IM sorbitol, 50mM KPO4, pH7.5,10mM EDTA, pH7.5, (20% glycerol) 

CTAB Extraction solution: 

3% CTAB, O. 1M Tris-HCI pH7.5,25mM EDTA, 2M NaCl, 2%PVP40 

CTAB Dilution solution: 

1% CTAB, 50mM Tris-HCl pH7.5,10mM EDTA pH8.0 

Sodium Phosphate Buffer, pH7.5 (plasmid rescue): 

100mM Na2HPO4,100mM NaH2PO4.2H20 

Hydroxylamine solution (plasmid mutagenesis): 

1M hydroxylamine, 50mM sodium pyrophosphate pH7,100mM sodium chloride, 2mM 

EDTA 
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Prehybridisation solution: 

2x SSPE, 1% SDS, 03% non-fat dry milk, 5µg/ml boiled salmon sperm DNA 

Hybridisation solution: 

2x SSPE, 1% SDS, 0.5% non-fat dry milk, 5% dextran sulphate (Sigma-Aldrich) 

Washing buffers (southern hybridisation): 

First wash: 2% SSPE, 1% SDS, Second wash: 0.5% SSPE, 1% SDS, Third wash: 0.1% 

SSPE, 1% SDS 

2.6 Escherichia coli Techniques 

2.6.1 E. coli Growth Conditions 

All plasmids were maintained in E. coli DH5a cells, which were chemically competent for 

transformation. Fresh colonies were obtained by streaking out cells from glycerol stocks 

onto solid 2TY plus 30µg/ml ampicillin, to maintain selection of the amp'-containing 

plasmids, and then incubated at 37°C overnight. 

2.6.2 Preservation and Storage of DHSa Cells 

Transformed E. coli cells were stored in 50% sterile glycerol at -80°C. Fresh colonies were 

inoculated into 5m1 of 2TY plus 50µg/ml ampicillin media and incubated at 37°C 

overnight. The cultures were spun at 3000g for 5min and the pellets resuspended in lml 

glycerol. The resuspensions were aliquoted into duplicate sterile glass screw-capped vials, 

and stored at -80°C. 
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2.6.3 Transformation of DH5a Cells 

The chemically competent DH5a cells were transformed with plasmid DNA using a heat- 

shock method. 50µl of cells were mixed with a small amount of transforming plasmid DNA 

and incubated on ice for 15min. The cell reactions were heat shocked at 42°C for 90sec and 

then 450µl of 2TY media was added and the cells incubated at 37°C for Ihr with agitation 

(no selection). Cells were plated out onto solid 2TY media plus antibiotic for plasmid 

selection, (typically ampicillin or hygromycin B) and incubated overnight at 37°C. 

2.7 Saccharomyces cerevisiae Techniques 

2.7.1 S. cerevisiae Growth Conditions 

All S. cerevisiae strains were of the SKI background. Diploid SKI cells are universally 

used in meiotic studies due to their ability to sporulate rapidly (Kane and Roth, 1974). 

Consequently, all diploid (and haploid) cells were struck out fresh from glycerol stock for 

each experiment, onto solid media and incubated at 30°C for 48hr. 

2.7.2 Preservation and Storage of Yeast Clones 

To prevent spontaneous sporulation of diploid cells, strains were stored in 50% sterile 

glycerol at -80°C. Fresh colonies were inoculated into 5ml of YEAPD media and incubated 

at 30°C overnight. The cultures were centrifuged at 3000g for 2min and the pellets 

resuspended in lml glycerol. The resuspensions were aliquoted into duplicate sterile glass 

screw-capped vials, and stored at -80°C. 
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2.73 Haploid Cell Mating 

Diploidisation occurs when two haploid cells of opposite mating type (MATa/a) undergo 

cell fusion. Fresh single colonies of equal size and opposite mating type were mixed 

together, in a small patch on solid YEAPD medium. After an overnight incubation at 30°C, 

a small amount of cells (consisting of a mixture of parental haploids and diploids) was 

restreaked onto YEAPD. After 48hr incubation at 30°C, single colonies were tested for 

diploidisation. 

2.7.4 Diploid Testing 

After mating, single colonies were tested for their ability to mate with tester haploid strains, 

hAG55 and hAG56 (ura2), exploiting the fact that diploid cells are sterile, thus unable to 

mate. All strains used in this study were URA2, so if mating occurred, there would be 

complementation of the nutritional mutation in hAG55 or hAG56. Each potential diploid 

was mated with both tester strains, and incubated at 30°C overnight. The matings were 

replica plated to solid minimal media and following an overnight incubation at 30°C, the 

presence or absence of growth was assessed. Growth on minimal medium indicated 

complementation of the ura2 mutation; therefore the parental colony was a haploid. A lack 

of growth indicated that complementation had not occurred with either mating type, so the 

parental colony must have been diploid. Diploidisation could be further confirmed by 

testing for the ability to sporulate. 
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2.75 Sporulation on Solid Medium 

To induce asynchronous meioses in diploid cells, single fresh colonies were patched onto 

YEAPD plates and incubated overnight at 30°C. The patches were replica-plated onto solid 

2% K-Ac medium and incubated at 30°C for 2-3 days. The presence of mature asci 

(tetrads) in the patch was used to measure the degree of sporulation. 

2.7.6 Tetrad Dissection 

Following sporulation on solid K-Ac medium, a small amount of tetrads were incubated in 

2Oµ1 ß-glucuronidase (9.45U/µ1, Sigma-Aldrich) at 30°C for 20min. ß-glucuronidase 

breaks down the asci that hold spores together, thus allowing tetrads to be broken down 

into their component spores. 200µl UP-H20 was added to the cells, vortexed and then 20µl 

of the suspension plated out onto a level YEAPD plate, ready for spore dissection, using a 

micro-manipulater (Singer). After tetrad dissection, the spores were incubated at 30°C for 

48hr to allow germination and cell growth. To assess spore segregation patterns, the 

YEAPD plates were replica plated to selective media and incubated overnight at 30°C. 

Spore mating types were ascertained by replica plating the YEAPD plates with confluent 

cultures of tester strains, hAG55 and hAG56, incubated overnight at 30°C and replica 

plated to minimal media. Complementation with hAG55 or hAG56 denoted that spores 

were MATa or MATa respectively. (Haploids only selected from four-spore viable tetrads). 

2.7.7 Selection of Ura- Colonies 

To counter select against Ura+ yeast strains, fresh colonies were patched onto solid 

YEAPD, incubated overnight at 30°C, and then replica plated onto 5-FOA solid medium. 5- 
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fluoroorotic acid disrupts the uracil biosynthetic pathway in S. cerevisiae, so following a 2- 

3 day incubation at 30°C, Ura+ cells are screened out. 

2.7.8 Chemical Transformation of S. cerevisiae 

For high efficiency transformation of haploid cells with plasmid DNA or linear DNA 

fragments, a modified lithium acetate method was used (Gietz et al., 1995). A 5ml YEAPD 

culture was incubated overnight at 30°C, and the OD6. of 40-fold diluted cells measured. 

Cells were then inoculated into 20m1 YEAPD in 250m1 conical flasks, to OD« of 0.1 and 

0.2. The cultures were incubated at 30°C at 200rpm for 3-5hr, to allow at least two cell 

divisions. Cell cultures grown to an ODD of 0.6-0.8 were centrifuged at 3000g for 2min 

and the harvested cells washed in 10ml of UP-H20, centrifuged as before, and then 

resuspended in lml of 100mM lithium acetate. The cells were spun at 17,000g for 15sec 

and the pellets resuspended in 160µl of 100mM lithium acetate. 50µl aliquots of cells were 

pelleted at 17,000g for 15sec and the supernatant removed. 240[d of 50% PEG was added 

(to shield the cells from the high concentration of lithium acetate), followed by 36µl IM 

lithium acetate, 10[u1 10mg/ml (heat) deNatured salmon sperm DNA, 1-10µg transforming 

DNA and UP-H20 to a total volume of 36011. The reactions were vortexed vigorously for 

lmin, and then incubated for two 30min intervals, first at 30°C, then at 42°C to heat shock. 

The reactions were gently pelleted at 4,000g for 15sec and the supernatant removed. The 

cells were resuspended in lml UP-H20 and plated out onto appropriate selective solid 

media and incubated at 30°C (2-3 days). For hphR selection of episomal xrs2 transformants, 

the transformation reactions were plated onto YEAPD media and incubated at 30°C for 

48hr, to allow confluent cell growth. The plates were then replica-plated onto YEAPD plus 

hygromycin B and incubated at 30°C for 48hr. 
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2.7.9 Electroporation Transformation of S. cerevisiae 

5ml YEAPD cultures were incubated overnight at 30°C: and then pelleted at 3000g for 

2min. The pellets were washed three times in 3ml 1.2M ice-cold sorbitol, centrifuged as 

before, and then resuspended in a minimum volume. 5-101. tg of transforming DNA was 

ethanol precipitated with 5µl heat deNatured salmon sperm DNA (10mg/mi), and 

resuspended in 5 t1 of 1xTE. 40µI of washed cells was mixed with the DNA and gently 

pipetted into a Gene Pulser cuvette (BioRad), where the cells were exposed to an electrical 

pulse. 400µl of ice-cold 1.2M sorbitol was added to the electroporated cells to buffer the 

cells. The cells were plated out onto selective media containing 1.2M sorbitol, and 

incubated at 30°C for 72hr. Sizeable colonies were struck out onto selective media and 

incubated at 30°C for a further 48hr to select for true transformants. 

2.7.10 Meiotic Timecourses (Synchronous) 

A fresh diploid colony was inoculated into 5ml YEAPD in a 50m1 conical flask. The 

culture was vortexed and then grown in a shaking incubator at 30°C, 300rpm for 24hr. To 

measure cell density, the ODD of 20-fold diluted cells was taken. Cultures with an OD. of 

14-22 were used to inoculate multiple dilutions of the presporulation media, PSP2. 

Dilutions of between 1/100 and 1/1000 of the YEAPD starter culture were made into 300m1 

of PSP2 in 21 conical flasks and incubated at 30°C, 300rpm for 24hr. Cell density was 

measured by taking the OD,, of 2-fold diluted cells, and cultures with an ODD of 1.4-1.8 

were selected for inoculation into sporulation media. To ensure that the cell cultures were 

ready to enter synchronous meioses, they were examined under a light microscope to 
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ensure they contained a large proportion of swollen unbudded cells. The cells were pelleted 

at 3000g for 2min at 28°C and then rapidly washed in 300ml of 1% liquid K-Ac. The cells 

were centrifuged as before, and the pellet resuspended in 300m1 1% K-Ac plus 0.001% 

adenine, 0.001% arginine and 0.001% PPG 1000. The cells were then transferred into 31 

baffled flasks, and incubated at 30°C, 300rpm for the duration of the time course. The first 

time point was taken immediately. The cells' passage from presporulation to sporulation 

was completed in the minimum amount of time, to ensure that the first time point taken 

truly represented the initiation of meiosis. To this end, all media and flasks were 

prewarmed to 30°C. Cells samples were taken at hourly time points, up to and including 

T=8hr. 

2.7.11 Processing Meiotic Time Point Cells 

At each time point, 25m1 of cells were aliquoted into 6ml 50% glycerol (ice-cold) and 

300µl 10% sodium azide. The tubes were inverted and left on ice for 15min. Cells were 

pelleted at 3000g for 2min and then washed in 8m1 of spheroplasting solution (plus 20% 

glycerol) and centrifuged as before. The supernatant was removed and the pellets snap- 

frozen in a dry ice/ethanol bath, the cells were then stored at -80°C. 

2.7.12 DAPI Staining of Cells to Monitor Meiotic Progression 

For each meiotic time point, 500[u1 of cells were fixed in 500µl of 100% ethanol (ice-cold), 

and stored at -20°C. The cells were centrifuged at 17,000g for 1min and the pellets 

resuspended in 1 ml UP-H20.1µl of DAPI (0.5mg/ml) was added and the cells incubated in 

darkness for 5min for nuclear staining. The cells were pelleted as before, and resuspended 
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in a small volume of 1xTE. Cell nuclei were visualised using a fluorescence microscope 

(Leica DMLB Epifluorescence). At least 200 cells per time point were counted and scored 

for the number of DAPI-staining bodies present. 

2.8 Molecular Biology Techniques 

2.8.1 Small Scale Plasmid DNA Extraction from E. coli (miniprep). 

A fresh E. coli colony was inoculated into 5ml of 2TY plus ampicillin and incubated 

overnight at 37°C with agitation. 1.5mi of the culture was pelleted at 17,000g for 1min, 

most of the supernatant was removed and the pellet resuspended in the residual 50-100µ1. 

300µl of plasmid TENS was added and the mixture vortexed before the addition of 150µl 

of sodium acetate (3M, pH5.5). The mixture was again vortexed until a white precipitate of 

protein and cell debris had formed, it was then centrifuged at 17,000g for 10min and the 

DNA-containing supernatant retained ready for ethanol precipitation. 

2.8.2 Large Scale Plasmid DNA Extraction from E. coli (midiprep). 

Iml from a 5ml overnight E. coli culture was inoculated into 100ml 2TY plus ampicillin and 

incubated at 37°C overnight. Cells were harvested and processed using a DNA Purification 

System (Promega), following the manufacturers guidelines. After DNA elution from the kit 

column, it was centrifuged for 5min at 17,000g to remove any residual column resin. To 

ensure maximum purity, the DNA was further cleaned by ethanol precipitation. 
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2.8.3 Ethanol Precipitation 

Following small-scale (Section 2.8.1) or large-scale (Section 2.8.2) plasmid DNA 

extraction, the DNA was reprecipitated by the addition of sodium acetate (10% v/v, 3M 

pH5.5) and ice-cold ethanol (200% v/v). Miniprep DNA was incubated at -80°C for 20min 

to encourage precipitation, and then pelleted at 17,000g for 30min (these steps not 

generally required for midiprep DNA). The supernatant was removed and the DNA washed 

twice in lml of 70% ethanol. Great care was taken to remove all of the ethanol from the 

DNA, with any residual ethanol removed by bench centrifuge-pulsing down and pipetting 

off. Miniprep DNA was typically resuspended in 30µl of TE-RNase (10µg/ml Rnase A in 

1xTE), and midiprep DNA, in 100.1 of 1xTE. 

2.8.4 Hydroxylamine Mutagenesis 

A modified hydroxylamine method was used for plasmid mutagenesis (Busby et at., 1982). 

Hydroxylamine causes the conversion of cytosine (C) bases into hydroxylaminocytosine, 

which base pairs with adenosine, creating GC to AT transition mutations in dsDNA. 20µg 

target plasmid was added to lml fresh hydroxylamine solution, the mixture was vortexed 

and incubated at 75°C. The degree of mutagenesis was titered by removing 100.1 aliquots 

at several time points (T=O, 10,20,60 and 90min) into new tubes, and the reactions rapidly 

stopped on ice. The hydroxylamine was removed using a PCR purification kit (Qiagen) and 

the plasmid DNA resuspended in 30µl 1xTE. (Parallel time points taken with no 

hydroxylamine removal, as a positive control for mutagenesis). 1µl of mutagenised DNA 

per time point was transformed into E. coli (Section 2.6.3), and following incubation, 

colony counts were performed on the 2TY plus ampicillin plates. The degree of 

mutagenesis per time point was calculated by scoring null mutations in amp', as compared 
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to T= Ohr (no mutagenesis). Plasmid DNA with a mutagenesis rate of approximately 5% 

was amplified, by pooling and scraping the selected E. coli colonies into 100µl 2TY plus 

ampicillin, ready for large scale DNA extraction (Section 2.8.2), and transformation into 

yeast (Section 2.7.9). 

2.8.5 Episomal Plasmid Rescue from S. cerevisiae 

Transformed cells were harvested at 3000g for 1min from 5ml YEAPD plus hygromycin B 

cultures. The cells were washed in lml dH2O, centrifuged at 15,000g for lmin, and then 

resuspended in 800µl of 50mM sodium phosphate buffer plus 0.9M sorbitol and 0.01% 2- 

mercaptoethanol. 25µl of 20T zymolyase (10mg/ml) was added to the cells and the 

reactions incubated at 37°C for 30min with agitation, to allow the cells to become 

spheroplasted. Incubating the spheroplated cells at 70°C for 20min inactivated the 

zymolyase, before the addition of 2O01A1 potassium acetate (5M). The cells were rested on 

ice for 45min, to encourage the separation of cellular debris from plasmid DNA. The 

precipitate was pelleted at 15,000g for lmin and the plasmid-containing supernatant 

removed into a fresh tube. 0.55m1 of isopropanol was added and the DNA left to precipitate 

out of the alcohol for 5min at room temperature (RT). The DNA was pelleted at 15,000g 

for 10min, and the excess salt removed by washing the pellet in 70% ethanol. Following 

centrifugation, the pellet was air-dried and resuspended in 100µl 1xTE. 10µl of plasmid 

DNA was used for transformation into E. coli, for plasmid amplification. 
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2.8.6 Yeast Genomic DNA Extraction 

A simple and quick technique was used to extract genomic DNA for routine analysis, using 

sterile glass beads. 1.5ml of an overnight YEAPD culture was centrifuged at 17,000g for 

1min. The pelleted cells were resuspended in 2O0µ1 genomic TENS and vortexed with 

sterile glass beads for 1min. 100[ul isoamyl: phenol: chloroform (1: 24: 24) was added, and the 

cells re-vortexed, before centrifugation at 17,000g for 2min. The DNA-containing aqueous 

layer was removed into a new tube and 200µl phenol was added to increase the DNA 

purity. The mixture was vortexed and centrifuged as before, and the top layer removed into 

a new tube, before DNA extraction via ethanol precipitation. 

2.8.7 Yeast Genomic DNA Extraction using CTAB 

A modified CTAB method was used to extract high quality genomic DNA from meiotic 

cells for southern analysis, (Allers and Lichten, 2000). Cell pellets from meiotic time 

courses were thawed on ice and washed in lml spheroplasting solution (ice-cold). The 

washed pellets were then resuspended in 100µl spheroplasing solution plus 0.5mg/ml lOOT 

zymolyase and 1% ßmercaptoethanol, then incubated at 37°C for 6min (tubes inverted once 

during incubation). 200µl of CTAB extraction solution was added to the spheroplasted cells 

and the tubes gently vortexed to aid resuspension. 51AI of 20mg/ml Proteinase K and 0.5µ1 

of 10mg/ml Rnase were added and the tubes gently mixed further. The cells were incubated 

at 37°C for 15min, with a tube inversion and gentle vortexing twice during the reactions. 

100µ1 of chloroform: isoamylalcohol (24: 1) was added to the reactions to extract the DNA- 

CTAB complexes that had formed. The reactions were vigorously vortexed for 20sec, 

rested for 2min, and re-vortexed. The reactions were spun at 17,000g for 5min to separate 
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out the aqueous layer containing the DNA-CTAB complexes, which was removed into a 

fresh tube. An equal volume (typically 200µl) of CTAB dilution solution was very gently 

layered on top of the DNA-CTAB solution, and the tubes agitated very slightly to gently 

disturb the two phases. The tubes were then left for 5min before more gentle agitation to 

encourage the precipitation of the DNA-CTAB complexes. When a white precipitate began 

to form, 200[u1 CTAB dilution solution was again layered on top and the tubes gently 

agitated to encourage further precipitation. This layering and phase disturbance process was 

repeated until typically 800µ1 of CTAB dilution solution had been added, by which time 

more vigorous agitation was used to maximise the precipitation. The DNA-CTAB 

complexes were washed twice in iml of 0.4M NaCl in 1xTE solution (ice-cold) and then 

carefully resuspended in l00µ1 of 1.4M NaCl in 1xTE solution (ice-cold). The DNA was 

reprecipitated in 200µl 100% ethanol (ice-cold) and then washed twice in lml 70% ethanol. 

All residual ethanol was removed by centrifuge pulsing down and pipetting off. The DNA 

was then resuspended in 30-50µl 1xTE (ice-cold). 

2.8.8 PCR 

For routine extensions using purified DNA as template, 50µ1 PCR reactions consisted of 2x 

PCR master mix (ABgene), 200nM forward and reverse primers and 100ng yeast genomic 

DNA. The reactions were mixed on ice, and a typical PCR programme was used (with hot 

start): 

(94°C 30sec) x1 cycle 

(94°C 10sec, x°C 30 sec, 72°C y min) x 30 cycles 

(x= primer-specific annealing temperature, y= lmin per lkb DNA to be amplif ied). 
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For long range PCR, Extensor Hi-Fidelity PCR master mix (ABgene) was used and the 

PCR cycling included modifications for optimal primer annealing and DNA extension 

(with hot start): 

(94°C 2min) x1 cycle 

(94°C 10 sec, x°C 30 sec, 72°C y sec) x 30 cycles 

(72°C 7min) x1 cycle 

(x= primer-specific annealing temperature, y= 1min per 1.5kb DNA to be amplified). 

2.8.9 Colony PCR 

For PCR using crude genomic DNA as template, a small amount of yeast or bacterial 

colony was spheroplasted in 10µl 20T zymolyase (5mg/ml) for 15min at 37°C. The 

zymolyase mix was centrifuged at 17,000g for lmin and the spheroplasted cell pellet was 

incubated at 100°C for lmin to inactivate any nucleases present. The cell pellet was 

resuspended in UP-H20 and made up to a 50µI reaction by the addition of 2x PCR master 

mix (ABgene) and 200nM forward and reverse primers. 

2.8.10 Quantification of DNA Concentration 

The concentration of DNA solutions was measured using a fluorometer (Hoefer DyNA 

Quant), with DAPI as the fluorophore. Measurements were taken in a 3m1 quartz cuvette, 

with filter-sterilised 1xTNE buffer plus 1.5µg DAPI. The fluorometer was calibrated for 

DNA concentration using 100ng/µl lambda BstEII (New England Biolabs) as a standard. 
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Three readings per sample were performed; this along with precision pipetting and 

adequate mixing of the cuvette was essential to ensure accuracy. 

2.8.11 Restriction Enzyme Digestion of DNA 

Ethanol purified DNA was digested with restriction enzymes under the conditions specified 

by the enzyme manufacturer, (typically New England Biolabs, Promega or MBI 

Fermentas). Digest volumes were made up with UP-H20, and analytical digests incubated 

for 1-2hr. Yeast genomic DNA for Southern analysis was digested for 4-5hr, with 1% BSA 

in the digest volume. 

2.8.12 DNA Ligation 

DNA ligations were performed with an insert: vector ratio of approximately 3: 1 molecules, 

and linearised plasmids with coordinate ends (e. g. digested with one enzyme) were first 

treated with SAP (USB) to prevent plasmid religation. Plasmid DNA was incubated with 

SAP (following manufacturers instructions), at 37°C for lhr, and the enzyme then 

inactivated at 65°C for 15min. The plasmid DNA was concentrated via ethanol 

precipitation and typically 100ng was mixed with insert DNA, 1% T4 ligase buffer and 

O. IU T4 ligase enzyme (Promega). Ligation reactions were made up to 10µl with UP-H20 

and incubated at 14°C overnight, before being used for transformation into E. coli. 

2.8.13 Native DNA Electrophoresis 

For routine analysis, DNA (plus 6x loading dye) was fractionated in agarose gels, made up 

to the appropriate percentage for optimum band separation, (typically 0.7-1.0%). (For 
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preparative purification, DNA was fractionated in low gelling temperature agarose 

(Biogene). Gels were run in BioRad tanks for 1-10V/cm in 1xTAE, plus ethidium bromide 

(10mg/ml, BioRad). For preparative Southern analysis, 1µg of digested DNA per meiotic 

time point was fractionated in 25cm x 15cm 250ml 0.5% agarose gels, using 16- or 20-well 

combs. Samples were mixed with heavy loading dye prior to electrophoresis and run at 70V 

for 17hr to obtain optimal band separation, in IxTAE plus 10µI ethidium bromide 

(10mg/ml, BioRad) (buffer circulated). 

2.8.14 DNA Purification and Gel Extraction 

DNA from PCR and restriction enzyme digests was purified using a PCR purification kit 

(Qiagen), following the manufacturer's instructions. DNA products could also be separated 

from contaminating fragments by gel electrophoresis, in low gelling temperature agarose. 

After optimal band separation, the fragment of interest was excised from the gel, under 

(minimal) UV guidance for DNA visualisation. DNA was then gel extracted using either a 

gel extraction kit (Qiagen), following the manufacturer's instructions or phenol chloroform: 

The DNA-agarose block was melted at 55°C, an equal volume of phenol was added, and 

the mixture vortexed vigorously for 20sec. The phenol-DNA suspension was allowed to 

rest for 2min and re-vortexed, then centrifuged at 17,000g, 18°C for 5min. The aqueous 

layer was removed into a clean tube, and an equal volume of chloroform was added, to 

remove any residual phenol. The mixture was vortexed for 20sec and centrifuged as before. 

The aqueous layer was removed into a clean tube, and the DNA extracted via ethanol 

precipitation. 
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2.8.15 Southern Blotting 

Following gel electrophoresis, stained DNA was visualised with minimal UV exposure, to 

ensure adequate band separation. The gels were rinsed three times in dH2O to remove the 

ethidium bromide and then depurinated in 11 1/40 IICI for 15min. The HCI was removed by 

rinsing the gels three times in dH2O and then soaked in 500m1 0.4M NaOH to deNature the 

DNA, for a short time. The ssDNA was blotted from the gels onto nylon Zetaprobe 

membranes (Biorad) via vacuum blotting at 50mbars for 2hr. Throughout blotting, the gel 

was continually soaked in 0.4M NaOH. Following blotting, the membrane was rinsed three 

times in 2xSSPE and the blotted DNA UV-crosslinked twice to the membrane to create a 

permanent transfer. 

2.8.16 Generating 32P-labelled DNA Probe 

The DNA probe was prepared by a two-step PCR method using genomic DNA as the 

template for amplification. Products from the first round of PCR were gel purified to enrich 

for the desired probe fragment, which was then used as the template for the second round of 

PCR. These secondary PCR products were ethanol precipitated to purify the probe 

fragment. Labelled DNA probe was made using High Prime Random Labelling (Roche). 

40ng purified DNA probe and 0.25ng lambda BstEII were incubated at 100°C for 3min to 

deNature and then 4µt of High Prime was added. 5µ132P dCTP (ICN) was added and the 

labelling reaction proceeded at 37°C for 30min. Unincorporated nucleotides were removed 

from the probe through a spin column (BioRad). Prior to its addition to the hybridisation 

solution, 300µl of heat deNatured salmon sperm was added to the labelled probe and the 

reaction incubated at 100°C for 2min. 
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2.8.17 Southern Hybridisation 

Cross-linked membranes were prehybridised in glass bottles that had been siliconised to 

encourage a clean hybridisation (bottles washed with concentrated Forward cleaner, rinsed 

thoroughly with dH2O, then sequentially coated with 2ml 100% ethanol (removed), 2m1 

Sigmacote (Sigma-Aldrich) (removed) and 2ml 100% ethanol (removed), then rinsed 

thoroughly). The hybridisation bottles were prewarmed to 65°C and membranes were 

incubated in 40ml prehybridisation solution for a minimum of 4hr in a rotation oven. The 

prehybridisation solution was removed and replaced with hybridisation solution containing 

32P-labelled probe the filter was then hybridised at 65°C for at least 18hr. The hybridised 

filters were sequentially washed in the three washing buffers, with agitation at room 

temperature for 15min. The filters were lightly patted-dry, to remove excess liquid and then 

wrapped in Caterwrap. Hybridised bands were visualised via exposure to a Phosphor 

imaging screen (Kodak), through a protective sheet of screen guard (BioRad). 

2.8.18 Scanning Densitometry 

A Personal FX phosphorimager (BioRad) was used to scan the density of radiation emitted 

from the hybridised filter (in complete darkness). Quantification of the emitted signal was 

assessed using Quantity One software. To quantify the signal in each band, upper and lower 

boundaries were created, and the signal within each band was calculated automatically, via 

integration of the area under each peak. (Background hybridisation signal subtracted). 
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2.8.19 DNA Sequencing 

Plasmid DNA recovered from the genetic screen (Chapter 6) was sent to MWG-Biotech for 

sequencing, following the recommended guidelines for DNA concentration and primer 

concentration and volume. CodonCode Aligner software was used for analysis of DNA 

sequences. 

2.9 Description of S. cerevisiae Strains Used 

2.9.1 Strain Nomenclature 

All of the experimental diploid strains were homozygous for the defined mutation, for 

example xrs2A indicates homozygous xrs2A.: kanMX alleles. TFPI/TFPI indicates 

homozygosity at the TFPI allele. TFPI:: VDE/TFPI indicates heterozygosity at the TFPI 

allele. 

2.9.2 Inclusion of Strain Information 

The haploid strain list (Table 2.3.1) contains only the yeast strains from which specific 

alleles originate, rather than the manifold intermediate strains used to create the 

experimental diploids. The diploid strain list (Table 2.3.2) contains all of the experimental 

diploids used in this study. 

2.93 General Methods for Creating Yeast Strains of the Desired Genotype 

Where a deletion or disruption cassette was available, appropriate haploid strains were 

directly transformed via the lithium acetate method, to achieve the desired genotype. Where 
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a mutant allele originated from a non-SKI strain, (e. g. xrs2-11, hAG1161), locus-specific 

primers were used to amplify the appropriate region via PCR. The PCR product was cloned 

into a TA vector (Invitrogen) and then transformed into an SKI strain as before. To create 

the experimental diploids, intermediate strains were routinely made by mating haploids 

with appropriate genotypes, followed by sporulation and tetrad dissection. The haploid 

genotype of spores was determined largely by identifying mutant alleles marked with 

amino acid biosynthetic genes, or antibiotic resistance genes. 

The requisite and non-requisite phenotypes of each mating cross were scored to confirm the 

expected marker segregation. To ensure haploid ploidy, colonies were selected from four 

spore viable tetrads only. When alleles disrupted by the same marker were required in a 

haploid strain, diploids heterozygous for the markers were made and dissected. Only 

marker+ haploids from 2+: 2- segregations were selected, thus ensuring the presence of both 

alleles in the haploid. When no protrophic or antibiotic resistance markers were available, 

(e. g. VDE insertion at the TFPI locus, creating TFPI:: VDE), locus-specific primers were 

used to amplify the appropriate region via PCR. The size of the PCR product, and/or the 

presence or absence of restriction sites (relative to a reference PCR), was indicative of the 

genotype. 

2.9.4 Methodology for Creating Experimental Diploids for the Repair Assay 

Mutant alleles were crossed into an ade2:: arg4-VDE TFP1 haploid strain (hAG684) and a 

ade2A(EcoRv-StuI) TFPI:: VDE haploid strain (hAG416 or hAG417), via coatings with the 

originator mutant allele haploids. These mutant ade2:: arg4-VDE TFPI and ade2i (EcoRv- 

Stul) TFPI:: VDE haploids were mated to create an experimental diploid, homozygous for 
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the chosen mutation. This approach was used to prevent the crossing of arg4-VDE and 

TFPI:: VDE containing strains prior to creation of the final experimental diploid. 

2.10 Southern Analysis of Meiotic Cells 

For the WT strain (dAG630), and all of the mutants examined, T=8hr post meiotic 

induction represented a time where both meiotic divisions were complete (MI and MII), 

(Figure 2.10). Therefore when measuring VDE-DSB repair and deletion product formation 

via southern analysis, (Chapters 4 and 5), data from meiotic time point T=8hr was used. 

2.11 Significance Testing of Repair Data 

The Student's T-test (one-tailed, heteroscedastic) was applied to data collected from DNA 

southern analysis to determine whether any of the mutant strains repaired the VDE-DSB 

significantly differently to WT. A one-tailed T-test was used because the mutant mean 

values were expected to be in only one distribution tail from the WT mean value. A 

heteroscedastic test (unequal variance) was used because the variances of the WT and 

mutant data ranges were assumed to be unequal. A statistical computer package (Microsoft 

Excel) was used to calculate P(probability) values for the mutant data using a percentage 

cut-off of 5%. Therefore, mutant P values <0.05 denoted a significant result, (less than 5% 

probability that the differences between observed and WT means was random). Conversely, 

mutant P values >0.05 were judged not to be significantly different from WT, (more than 

5% probability that differences in mean values were random). 

(Equation for Student's T value given for completion): 
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2.10i Normalisation of Southern Repair Data 

For each meiotic timepoint, total VDE-chromatid DNA was calculated as the sum of all 

of the bands in that lane (excluding the loading control), i. e. parental DNA, VDE-DSB, 

first deletion product and second deletion product. Quantification of VDE-DSB repair 

was then expressed as a percentage of total VDE-chromatid DNA (% VDE-chromatid 

DNA). 
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t=_X J_ 

s/Vn 

(t = Student's t value, n= number of observations-, x= mean of observations, s= standard 

deviation, µ= WT mean). 

2.12: Mutant Screening 

xrs2A homozygous diploids (dAG946, NDT80/NDT80, and dAG1093, ndt80lndt8O) were 

transformed episomally with hydroxylamine-mutagenised copies of the XRS2 expression 

plasmid (pAG73). The heterogenous population of transformants was then screened for 

adenine prototrophy, using a (qualitative) solid media screen (Section 2.12.1), before being 

superseded by a quantitative liquid media screen (Section 2.12.2). Prior to screening, 

plasmid loss was minimised by maintaining episomal transformants in selective media. 

2.12.1 Use of ndt80 Strains 

Ndt80 protein is a meiosis-specific transcription factor that is required for exit from 

pachytene. An ndt80/ndt8O mutant strain background was used in the genetic screen to 

retain meiotic inviable mutants. 

2.12.2 Solid Media Screen 

Single colonies from transformation were patched onto solid YEAPD medium (Figure 

2.12.2a), and following 24hr incubation at 30°C, the patches were replica plated onto K-Ac 

medium to induce meiosis (Figure 2.12.2b). (Pre-meiosis plates retained). Following 48hr 
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Figure 2.12.2: Solid Media Screen. (a) Single colonies from transformation 
were patched onto solid YEAPD medium, and after incubation, (b) were 
replica plated onto K-Ac medium to induce meiosis. After VDE-endonuclease 
induction, (c) the transformants were replica plated to Sc-Ade, Sc-Ura and 
YEAPD media. Following incubation, the transformants were screened for 
adenine prototrophy. (Thick arrow shows example of dense growth of 
potentially interesting transformant. The original patch (a) returned to for 
retesting and then plasmid recovery. 
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incubation, a sample of cells was examined for sporulation, to ensure that expression of 

VDE-endonuclease had occurred. The patches were replica plated to Sc-Ade medium, 

along with Sc-Ura and YEAPD (Figure 2.12.2c), then incubated at 30°C for 48hr, and 

screened for adenine prototrophy. Patches of potential interest were identified (and 

retested), and the (pre-meiosis) original strains returned to, in order to restreak them onto 

fresh YEAPD plus hygromycin B medium, ready for plasmid recovery. The potential for 

selecting false positives, as a result of replica plating from a densely populated cell patch, 

was discounted by comparing colony growth on Sc-Ade with the parallel YEAPD plates. 

(Cross checking of the parallel Sc-Ura plates confirmed the correct patterns of uracil 

auxotrophy, as conferred by cassette design (Figure 3.1). 

2.12.3 Liquid Media Screen (Microtitre Plate Method) 

Single yeast colonies from transformation were suspended in 100µ1 K-Ac in 96-well round- 

bottomed microtitre plates (Bibby-Sterilin) and pinned onto solid K-Ac and YEAPD plates 

(single well omnitray, NUNC). The K-Ac plates were incubated at 30°C for 48hr to induce 

meiosis and VDE-endonuclease expression, and a sample of cells checked for sporulation. 

The transformants were pinned into 50µl UP-H20, and 10µl of the evenly suspended spores 

inoculated into 100µl liquid Sc-Ade and YEAPD. The microtitre plates were Parafilm- 

sealed to prevent evaporation, and incubated with agitation at 30°C. A Multiskan Ascent 

plate reader was used to measure the cell densities (OD595) of the cultures at different time 

points during the exponential growth phase, (as determined by growth curves). To correct 

for higher initial cells innoculums that may create false adenine prototrophy, the cellular 

growth of transformants in Sc-Ade was normalised to their corresponding growth in 
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YEAPD, (i. e. OD595Sc-Ade/OD595YEAPD). Transformants with a significantly higher ratio 

value than the reference strains were picked from the original (pre-meiosis) YEAPD plates, 

and struck out onto YEAPD plus hygromycin B, in preparation for plasmid recovery. 

2.13 Assaying for SSA Repair by Dissection 

To determine the repair patterns of the VDE-DSB in the reference and experimental diploid 

strains, spore dissection was used. Spore colonies were replica plated onto YEAPD, Sc-Ade 

and -Ura media, and Ade+ and Ura+ recombination frequencies measured per VDE- 

chromatid, (only two spores per tetrad contained the arg4-VDE allele). Spore phenotypes 

were then examined, to determine the amount of deletion repair products. Three spore 

phenotypes were observed; i) adenine auxotroph/uracil prototroph, ('parental DNA', VDE- 

DSB not created, or created and repaired via a nonSSA pathway), ii) adenine auxotroph/ 

uracil auxotroph, (VDE-DSB repaired via SSA using the proximal URA3 repeated 

sequences), iii) adenine prototroph/uracil auxotroph, (VDE-DSB repaired via SSA using 

the distal ade2 repeats). Only spores containing the ade2:: arg4-VDE chromatid had the 

potential to be Ura+ or Ade+ so by measuring Ade and Ura prototrophy, only cassette- 

containing spores were assayed. 
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Figure 3.1: Parental arg4-VDE Reporter Cassette and Associated Deletion 

Repair Products (a) Parental cassette DNA, containing the arg4-VDE allele 
(yellow box; black box denotes VDE recognition sequence), flanked proximally by 

URA3 and ura3 direct repeated sequences (blue arrows), and distally by ade2 direct 

repeated sequences (red (part)arrows). When VDE-endonuclease cleaves the arg4- 
VDE allele, the VDE-DSB can be repaired via SSA deletion repair by the 

generation of: (b) Resection tracts of length 2.5kb and 2.5kb (5kb total), that 

uncover the proximal URAS repeated sequences, creating first deletion product. (c) 

Resection tracts of length 7kb and 3.5kb (10.5kb total), that uncover the distal ade2 

repeated sequences, creating second deletion product. Following meiosis, diploid 

experimental strains can be phenotypically screened for (a) Parental DNA (Ura+ 

Ade-), (b) First deletion product (Ura- Ade-), and (c) Second deletion product (Ura- 

Ade+). 
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Figure 3.2.1: Construction of arg4-VDE Reporter Assay. (a) pAG406, a 
derivative of pMJ113, {Wu, 1995 #194}, was made available by M. 
Ramachandran. The arg4-nsp allele was liberated from the pBR322-based 
plasmid via BamHI digestion, to leave a cassette vector containing URAS and 
ura3 alleles (blue boxes) and a ade2A allele (red box, see below). (b) The arg4- 
VDE insert (pAG404, BamH1-BamHI) was made available (M. Ramachandran) 

and (c) ligated into the cassette vector making pAG408. (d) pAG407 was made 
by ligating the arg4-VDE insert (b) into a modified version of pAG406 (made 

available by M. Ramachandran, not shown), in which the URAS allele was in 

reverse orientation. (Arrows show allele orientation). 
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Chapter 3 

Development of a Repair Assay Reporting on an Extrinsic Meiotic DSB 

3.1 Introduction 

This study was designed to examine the effects of specific and random mutations on the 

repair of a meiotic double strand break (DSB), where repair was constrained to single 

strand annealing (SSA). The homing endonuclease, VDE (VMAI-derived endonuclease, 

formerly PI-Scel) was chosen as the DSB catalyst for the DSB repair assay, because it is 

both site-specific and meiosis-specific, (Bremer et at., 1992; Gimble and Thorner, 1993;; 

Gimble and Thorner, 1992). Furthermore, examining repair of an extrinsic DSB permitted 

the study of meiotic mutants that either prevent the formation of Spo1l-DSBs, or block 

their repair at an intermediate stage. VDE protein has been used in the study of meiotic 

DSBs, in a parallel assay (Neale et al., 2002), and demonstrated its potential as a valuable 

tool for assaying DSB repair in meiosis. 

Figure 3.1a shows a diagram of the reporter cassette used in this study, it was based on a 

SSA competition assay. In a previous SSA competition assay, an HO-DSB cut site was 

flanked by three ura3 direct repeated sequences, (one repeated sequence on one side of the 

HO-DSB, and two on the other side) (Sugawara and Haber, 1992). That study demonstrated 

that deletion repair of a DSB preferentially occurs between the two closest homologous 

repeats, a fundamental principle of optimal SSA repair. The repair assay used in this study 

capitalised on the concept of using competing homologous repeated sequences, by studying 

the repair of a DSB flanked by two sets of direct repeated sequences (Figure 3.1a) The 

VDE-DSB cut site was flanked proximally by URA3 and ura3 (URA3) homologous 

sequences, and distally by two ade2 homologous sequences. The VDE cut site was 
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contained within a mutant arg4 allele, arg4-VDE (Neale et al., 2002). Hemizygosity in the 

experimental strains (Figure 3.2.4a), ensured that VDE-DSB repair was directed towards 

the SSA pathway and two deletion repair outcomes were predicted: Generation of DSB 

resection tracts of approximately 2.5kb on both sides of the VDE-DSB site were required to 

uncover the proximal URA3 repeated homologies. Therefore, a total of 5kb of resectioning 

was required to generate first deletion product, (Figure 3.1b). To uncover the distal ade2A 

repeated sequences, approximately 7kb of DSB resectioning was required on one side of 

the VDE-DSB site, and 3.5kb of DSB resectioning on the other. Thus, a total of 10.5kb of 

DSB resectioning was required to create second deletion product, (Figure 3.1c). Both 

genetic and molecular biology techniques were employed to study VDE-DSB repair and to 

distinguish between first and second deletion product formation, as a measure of DSB 

resection tract length. 

3.2 Results 

3.2.1 Creating the SSA Reporter Assay 

pAG406, a derivative of pMJ113 (Wu and Lichten, 1995), contained an arg4-nsp allele, 

flanked by URA3 and ura3 repeated sequences and ade2 sequence, was made available for 

this study (M. Ramachandran) (Figure 3.2.1a). pAG406 was BamHI-digested to liberate the 

arg4-nsp allele and the arg4-VDE allelic insert (BamHl-BamHI, pAG404, (MJ. Neale) 

(Figure 3.2. Ib) was ligated in. This created the reporter cassette plasmid, termed pAG408 

(Figure 3.2.1c). A modified version of pAG406 was made available (M. Ramachandran, 

not shown), where the URA3 allele was inserted in the opposite orientation. The arg4-VDE 

allele was ligated in as before and this plasmid termed pAG407 (Figure 3.2.1d). 
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3.2.2 Creating arg4-VDE Haploid Strains 

pAG407 and pAG408 were transformed into DH5a E. coli cells and following small-scale 

plasmid extraction, diagnostic DNA digests were performed to ensure the correct 

orientation of the allelic elements. Large-scale plasmid extraction was used to amplify 

plasmid DNA from transformants, which was then linearised by Af1Il-digestion (Figure 

3.2.2a). The linearised plasmids were transformed into Ade+ Ura- yeast strains, disrupting 

the ADE2 locus (Chromosome XV), via electroporation (Figure 3.2.2b and Figure 3.2.2c). 

Transformants were selected on Sc-Ura +1M sorbitol medium, and the correct integration 

of the reporter cassette into the yeast genome was checked via diagnostic PCR. To check 

the relative positioning of the plasmid on Chromosome XV, plasmid-specific primers 

(AB02 and AB03) were used in conjunction with genome-specific primers (ABO1 and 

AB04), (Figure 3.2.2b and Figure 3.2.2c). Transformants (ade2:: arg4-VDE) were selected 

and the strains named hAG684 and hAG695, (transformed with pAG408 and pAG407, 

respectively). 

3.2.3 Measuring Spontaneous Deletion of the ade2:: arg4-VDE Cassette 

To assess spontaneous deletion of the ade2:: arg4-VDE reporter cassette, the number of 

Ura- colonies in a mitotic culture of ade2:: arg4-VDE TFPI haploid cells (hAG634) was 

measured. Spontaneous cleavage of the arg4-VDE allele, or at other locations within the 

cassette DNA, could cause partial or complete deletion of the cassette DNA from the 

genome, resulting in uracil auxotrophy. Deletion between the proximal URA3 repeated 

sequences, (Figure 3.1b), or between the distal ade2 repeated sequences (Figure 3.1c), 

would both cause the loss of the URA3 allele. Mitotic liquid cultures of hAG684 were 

plated onto medium containing 5-FOA and YEAPD. The frequency of obtaining Ura- 
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Figure 3.2.2: Creating arg4-VDE Haploid Strains. (a) AflII-linearised 

pAG408 and pAG407 were integrated into hAG2 and hAG3, disrupting the 
ADE2 locus (red hatched box) of Chromosome XV. This created (b) hAG684 

and (c) hAG695. (ade2 deleted regions indicated by white boxes. Thin black 
line denotes pBR322-plasmid DNA, red dotted line denotes yeast genomic 
DNA). (Arrows show allele orientation). Cassette integration was confirmed by 

PCR using a combination of genome-specific (ABO! and AB04), ura3 locus- 

specific (AB02), and pBR322-specific (AB03) primers. 
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Table (c) 

Strain Number Strain Name Relevant Genotype 
dAG630 WT ade2:: arg4-VDE/ade2d(EcoRV-Stuf) TFP1:: VDE/TFP1 
dAG649 Inverted-URAS ade2:: arg4-VDE/ade2d(EcoRV-Stul) TFP1:: VDE/TFP1 
dAG646 TFPI TFP1 ade2:: ar 4-VDE ade2d EcoRV-Stul TFPI TFP1 

Figure 3.2.4: Creating Diploid Strains. (a) dAG630 and (b) dAG649, diploid strains 
heteroallelic at the ADE2 locus (Chromosome XV). (a)i The ade2:: arg4-VDE 

chromatid originated from hAG684 and (b)i from hAG695. (a)ii The ade2A allele 

chromatid (red hatched box) originated from hAG416 and (b)ii from hAG417, 

(M. J. Neale). (Thin black line denotes pBR322-plasmid DNA, red dotted line denotes 

genomic DNA). (a)ii and b)ii The ade2A allele contained a 645bp EcoRV-Stul (+ 175- 

819) deletion (A. Goldman), which prevented repair of the arg4-VDE allele via 

interchromosomal repair. (Arrows show allele orientation). Table (c) contains relevant 

genotype data for the S. cerevisiae diploid strains used in Chapter 3. (For complete 

genotypic information, see Table 23.2). 
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colonies from mitotically growing ade2:: arg4-VDE TFPI cells was 8.15E-4 (±0.4) 

calculated as the number of uracil auxotrophs relative to the number of viable colony 

forming units (CFUs). This low level of spontaneous deletion would not interfere with the 

study of meiotic VDE-DSBs at the ade2:: arg4-VDE allele, as VDE-endonuclease cuts with 

approximately 100% efficiency, (Bremer et al., 1992; Gimble and Thorner, 1993; Neale et 

al., 2002)(. 

3.2.4 Creating Reporter Cassette Diploid Strains 

To create diploid strains for the study of VDE-DSB repair in meiosis, the ade2:: arg4-VDE 

TFPJ haploids, hAG684 and hAG695 were mated with ade20(EcoRV-Stul) TFPI:: VDE 

haploids, hAG416 and hAG417, respectively (M. J. Neale). This created the diploid strains, 

dAG630 and dAG649, (Figure 3.2.4a, Figure 3.2.4b and Table 3.2.4c). The use of a 

deletion allele at the homologous ADE2 locus (A645bp, Figure 3.2.4aii and Figure 

3.2.4bii), created hemizygosity and prevented VDE-DSB repair via an interchromosomal 

exchange, thus forcing repair along the SSA pathway. Strain dAG630, where the arg4-VDE 

allele was flanked by two sets of direct flanking repeated sequences (Figure 3.2.4a), was 

the primary reference strain in the study, and henceforth is referred to as Wildtype (WT). In 

dAG649, the proximal URA sequences in the reporter cassette were inverted, (Figure 

3.2.4b), henceforth, this strain is referred to as Inverted-URA3. It was predicted that SSA 

repair in the Inverted-URA3 strain would only be possible between the distal ade2 repeated 

sequences. The diploid strain, dAG646 was made as a negative control for VDE-cleavage, 

henceforth referred to as TFPJ/TFPJ strain (Table 3.2.4c). (See Table 2.3.2 for complete 

genotypic information on dAG630, dAG649 and dAG646. 
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3.2.5 Measuring Spore Viability 

Tetrad dissection was used to assess spore viabilities (See Figure 3.2.5b for example 

dissection plate of WT spores (dAG630)). Data were collected for all spores, and for spores 

from four-spore viable tetrads. The total spore viability of the WT strain was 64.75%, 

compared to 61.62% in the Inverted-URA3 strain, and 95.00% in the TFP1/TFPI strain 

(Table 3.2.5a). Scoring phenotypes in four-spore viable tetrads provided the opportunity to 

examine all chromatids following meiosis. The proportion of tetrads that had four viable 

spores in WT was 10.00%, compared to 7.00% in the Inverted-URA3 strain, and 85.00% in 

the TFPI/TFPI strain (Table 3.2.5a). Therefore, while the TFPI:: VDE/TFPI strains shared 

similar reduced spore viabilities, the TFPI/TFP1 diploid was not compromised. This 

suggested that expression of VDE-endonuclease was the cause of reduced spore viability. 

3.2.6 First and Second Deletion Product Formation Frequencies 

Following tetrad dissection, the frequencies of Ade+ and Ura- spores were calculated 

(Table 3.2.6a). By considering VDE-chromatids from four-spore viable tetrads, three 

different spore phenotypes were expected (Section 2.13). The combination of adenine and 

uracil auxotrophies demonstrated that 40% of VDE-chromatid containing spores from the 

WT strain (dAG630) contained first deletion product (Table 3.2.6a, and Figure 3.2.6e). 

There were 15% of spores from the WT strain that contained second deletion product 

(Table 3.2.6a and Figure 3.2.6f). A surprisingly large amount of spores from the WT strain 

were Ura+ Ade- (45%), i. e. had maintained parental cassette DNA. There were 64.29% of 

spores from the Inverted-URA3 strain that contained second deletion product (Table 3.2.6a 

and Figure 3.2.6f). The remaining 35.71% of spores were Ura- Ade-, indicating first 
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deletion product formation. From the TFPI/TFPI strain, all of the spores contained 

parental cassette DNA, (Table 3.2.6a and Figure 3.2.6b). 

3.3 Southern Analysis of Cassette-Containing Diploids 

The ade2:: arg4-VDE assay was designed to report on VDE-DSB repair and on resection 

tract length, in a variety of mutants that were unable to generate viable spores. As this 

precluded meiotic genetic experimentation, southern analysis was used. The WT and 

Inverted-URA strains were assayed for VDE-DSB repair ability and resection tract length 

via southern analysis (Figure 3.3a shows example gels). The graphs in Figure 3.3b contain 

the quantified amounts of DNA repair intermediates, measured through meiosis, (as a 

proportion of VDE-chromatid DNA), at T=8hr. 

3.3.1 Repair Ability and Resection Tract Length of the ade2:: arg4-VDE allele 

Figure 3.3.1a displays the proportions of VDE-chromatids that had suffered a VDE-DSB at 

T=8hr. Approximately 90% of the VDE-chromatids had been cleaved by VDE- 

endonuclease in the WT and Inverted-Ura3 strains. Figure 3.3.1b displays the proportion of 

VDE-DSB repair of the ade2:: arg4-VDE allele, normalised to the amount of VDE- 

chromatids that had suffered VDE-DSB, at T=8hr. Figure 3.3.1c contains the proportions of 

first and second deletion products formed in the strains at T=8hr. The WT strain generated 

60.2% first deletion product and 16.7% second deletion product, while the Inverted-URA3 

cassette-containing strain formed 1.0% first deletion product and 90.8% second deletion 

product. To examine the WT regulation of DSB resectioning, it was appropriate to express 

the amount of second deletion product as a proportion of total deletion product (Repair 
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(a) Viability% 
All Spores Four-Spore 

WT dAG630 64.75 10.00 
Inverted-URAS (dAG649) 61.62 7.00 

TFP1/TFPI dAG646 95.00 85.00 

Figure 3.2.5: Spore Viability Table (a) contains the spore viabilities of the diploid 

strains dAG630, dAG649 and dAG646. (80 tetrads per strain spore-dissected). 
Viabilities calculated as proportion of viable spores or four spore viable tetrads, out 
of the total number plated. (b) An example dissection plate for the WT strain. Tetrads 

plated out in 2x10 grid. 17 out of 20 tetrads plated (85%) contain two or three viable 
spores (*). (c) A dissection plate of a TFPI:: VDE/TFPI:: VDE homozygous diploid 

strain (dAG720), average spore viability 97% (n=80 tetrads dissected). 

Sporadic cleavage at the TFPI allele by VDE-endonuclease, without subsequent 
repair, may cause reduced spore viabilities in the WT and Inverted-URA3 strains. 

(b) WT (TFPI--VDE/TFP1) (c) TFP1 VDE/TFP1 : VDE 



(a) 

First Deletion Product% 
Ura- Ade-sores 

Second Deletion Product% 
Ura- Ade+ spores 

Parental DNA% 
Ura+ Ade-sores 

WT 40.00 15.00 45.00 
Inverted-URA3 35.71 64.29 0.00 

TFPZ TFP1 0.00 0.00 100.00 

X 
(b) 

ade2 ura3k arg4-VDE URAS ade2, 

VDE protein 

ýýý 
ade2 uraa arg4- VDE URAS ade2 

(d) ade2 ura3 arg4 
ne . .... 

(e) ade2 ura3 ade2 

(jr) 
ADE2 

Figure 3.2.6: Genetic Analysis of DSB Repair of arg4-VDE allele. Table (a) The DSB 

repair outcomes at the arg4-VDE allele. Spores auxotrophic for adenine and uracil 
contained first deletion product. Spores prototrophic for adenine and auxotrophic for uracil 
contained second deletion product. Spores auxotrophic for adenine and prototrophic for 

uracil indicated Parental cassette DNA. (b-f): Repair outcomes of VDE-DSB repair of the 

arg4- VDE allele and the associated genotypes. (b) Parental cassette DNA, resulting from no 
VDE endonuclease cleavage, phenotype: Ura+ Ade-. (c) VDE-DSB cleavage of the arg4- 
VDE allele and (d) DSB repair via a non-homologous repair process (Diagonally-lined box 
denotes repair event, e. g. NHEJ): Ura+ Ade-. (e) First deletion product created after SSA 

repair of the arg4-VDE allele using the URA3 repeated sequences: Ura- Ade-. (f) Second 
deletion product created after SSA repair of the arg4-VDE allele using the ade2 repeated 
sequences: Ura- Ade+. (Data from n=3 experiments per strain) 
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product ratio = secondA/(first0 + second0). This calculation revealed how many of the 

DSB resection tracts generated at the arg4-VDE allele, reached the distal repeated ade2 

homologous sequences, as a proportion of all resection tracts generated. The repair product 

ratio values are given in Figure 3.3.1d. 

3.4 Discussion 

The aim of the experiments in this opening chapter was to create a DSB reporter assay that 

relied on a DSB catalyst other than Spoil protein. Thus, by using VDE-endonuclease, 

mutants that failed to create Spol l-DSBs could be assayed for repair ability and resection 

tract length. 

VDE Cleavage at the Homologous TFP1 Locus Reduces Spore Viability 

Spore viabilities of the WT, Inverted-URA3 and TFPI/TFP1 strains were measured to look 

at the influence the reporter assay may have. Spores from the WT and Inverted-URA3 

diploids demonstrated reduced spore viabilities, while spores from the TFPI/TFPI strain 

displayed a similar viability to those reported for the SKI background in S. cerevisiae 

(Table 3.2.5a), (Kane and Roth, 1974). This indicated that it was not the presence of the 

ade2:: arg4-VDE cassette that compromised spore viability in the cassette-containing 

strains, but rather the TFPI:: VDE allele. Previously, spores from TFPI:: VDE/TFPI strains 

have been shown to have reduced viability (M. J. Neale, Unpub. ). The most likely 

explanation is that VDE-endonuclease sometimes cleaves the homologous TFPI locus 

(Chromosome IV), to initiate intron homing. Without subsequent repair of the TFPI allele, 

the chromosome would be lost, resulting in spore death. The majority of tetrads from the 

WT and Inverted-URA3 strains contained two or three viable spores, leading to overall 
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(a) Southern Analysis of DSB Repair of the arg4-VDE allele 

WT (dAG630) Inverted-URA3 (dAG649) 

012345678 
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10kb ýýýý 
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ýýýýý. ýý 
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Second deletion Product 
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(b) Quantification of DSB Repair Intermediates of the arg4-VDE allele 
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Figure 3.3: DNA Quantification of Cassette-Containing Strains. (a) DNA 
extracted from WT (dAG630) and Inverted-URA3 (dAG649) synchronous meiotic 
cultures, digested with Spei (arrow heads), and after fractionation and blotting, the 
DNA-membrane was hybridised with a probe specific to the upstream region of the 
ADE2 locus (black box). (Time points shown above gel images). (b) DNA repair 
intermediates as a proportion of VDE-chromatid DNA: parental DNA (dark blue), 
VDE-DSB DNA (yellow), first deletion product (pink) and second deletion product 
(light blue). The most striking difference between these strains is the large 

accumulation of second deletion product in the Inverted-URA3 strain. (Data from 

n=4 experiments per strain) 
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(b) Proportion of VDE-Chromatids that Suffered a DSB 
and Repaired by T=8hr 
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Figure 3.3.1: Repair Ability and Deletion Product Formation. (a) The proportion of 
VDE-chromatids that had suffered a DSB by T=8hr. (b) The proportion of VDE-chromatids 
that had suffered a VDE-DSB and repaired by T=8hr. (c) Deletion product formation 
measured at T=8hr. (d) Repair product ratio values, calculated as second deletion product as 
a proportion of total deletion product formation at T=8hr. (Error bars display standard 
deviation). 
Inversion of the WT URAS allele (Inverted-URAS strain) biased SSA deletion repair to the 
distal ade2 repeated sequences, resulting in an accumulation of second deletion product. 
(Data from n=4 experiments per strain) 
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Chapter 3: Creating the arg4-VDE Reporter Assay 

spore viabilities of approximately 60% (Table 3.2.5a). Figure 3.2.5b shows that 85% of 

tetrads from a typical WT tetrad dissection contained two or three viable spores. The 

incidence of tetrads carrying just one viable spore was very rare. To confirm that spore 

inviability arose from segregants carrying a cleaved but unrepaired TFPJ allele, colony 

PCR was performed on spores originating from two and three spore viable tetrads (MN03 

and MN04 primers used). As expected from Mendelian segregation, all of the inviable 

spores would have contained the TFPJ allele (data not shown). Spore viability was 

measured in a TFPI:: VDE/TFP1:: VDE homozygous strain, (97%, Figure 3.2.5c), and was 

found to have a very similar phenotype to the TFPI/TFPI homozygous strain (95%, Table 

3.2.5a). This confirmed that spore viability was uncompromised in strains homozygous at 

TFPJ or TFPI:: V DE loci. 

SSA Repair is biased to the Proximal Repeated Sequences 

It was demonstrated that 40% of spores from the WT strain had repaired to first deletion 

product, and 15% to second deletion product (Table 3.2.6a). A greater proportion of repair 

using the proximal URA3 repeated sequences was predicted from the reported bias of the 

SSA process for deletion repair using the closest set of available repeated sequences 

(Sugawara and Haber, 1992). Optimal SSA repair involves the minimum of DNA deletion 

from the genome, which is why the closest set of flanking repeated sequences to the DSB 

site are preferentially selected for repair. 

Inversion of Proximal Repeated Sequences biased SSA Repair to Distal Repeats 

The Inverted-URA3 strain generated both first and second deletion product, although in 

different proportions to the WT strain (Table 3.2.6a). A greater proportion of spores from 
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the Inverted-URA3 diploid were Ura- Ade+, indicating second deletion product formation 

(64.29%). This was evidence that inversion of the URA3 sequence in this cassette had 

biased SSA repair of the DSB to the distal ade2 homologies, as expected. However, Ura- 

Ade- spores from the Inverted-URAS strain were also created, at a frequency of 35.71%, 

implying the formation of first deletion product. It was predicted that SSA repair was not 

possible between indirect repeated URA3 homologies. A model for homologous 

recombination between the indirect proximal repeated sequences is suggested in Figure 3.4. 

Briefly, it would involve contortion of the ade2:: arg4-VDE cassette DNA, bringing the 

URA3 and ura3 repeated sequences into direct orientation. Alignment of the homologous 

regions in the URA3 and ura3 fragments would then permit DSB repair via homologous 

strand exchange (Figure 3.4). 

All spores from the TFPI/TFP1 diploid strain were Ura+ Ade-, and therefore contained 

parental DNA. Thus, DSB formation in the reporter assay was prevented in the absence of 

VDE protein expression, (Figure 3.2.6b). 

Contribution of NIIEJ 

The large proportion of spores from the WT strain that displayed a parental DNA 

phenotype (Ura+ Ade-) was not predicted (45%, Table 3.2.6a). It was unlikely that 

cleavage had failed at ade2:: arg4-VDE allele (Figure 3.2.6b), because VDE has been 

shown to cut with high efficiency (Bremer et al., 1992; Gimble and Thorner, 1993; Neale et 

al., 2002). A possible explanation is that VDE endonuclease had cleaved the DNA, but the 

DSB had repaired by a non-homologous repair method, (for example nonhomologous 

endjoining (NHEJ), Figure 3.2.6c and Figure 3.2.6d). On sustaining a lesion, DNA is 
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(a) 
ade2 ura3 arg4-VDE URA3 ade2 

(b) 

Figure 3.4: Proposed Model for Recombination between the Proximal URA3 

repeated sequences in the Inverted-URA3 strain. The generation of Ura- Ade- 

spores from (a) the Inverted-URA3 strain (dAG649), suggested the generation of 
first deletion product. This was not a predicted repair outcome, due to inversion of 
the URA3 allele preventing homology alignment between the URA3 and ura3 
alleles. (b) A model by which the URAS and ura3 homologous regions could be 
brought into direct orientation through twisting of the cassette DNA. 
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capable of knitting back together, with the addition or loss of a limited number of DNA 

bases. NHET is not a common DSB repair method in S. cerevisiae, but it makes a large 

contribution to the repertoire of DNA repair systems in humans (reviewed in (Cromie et at., 

2001)). 

Southern analysis of the WT and Inverted-URA3 strains demonstrated that a large 

proportion of VDE-chromatids that had suffered a DSB, had repaired by T=8hr (Figure 

3.3.1b). This is contrary to the findings of the genetic experiments (Section 3.2.6). If the 

assay was repairing the DSB by a non-homologous ligation event, parental-sized DNA 

molecules would remain. The reason for this disparity is unknown. The most striking 

contrast between the WT and Inverted-URA3 strains was the amount of second deletion 

product generated (Figure 3.3 and Figure 3.3.1c). Consequently, the repair product ratio 

value for the Inverted-URA3 strain was much higher than for WT (Figure 3.3.1d). Very 

little first deletion product was generated in the Inverted-URA3 strain (1.0%, Figure 3.3.1c), 

which is also disparate with the results of the genetic experiments. The reason for the 

discrepancies between genetic and DNA data are currently being investigated. However, it 

is reasonable to surmise that southern analysis of DSB repair provides a more detailed and 

accurate view of repair events at the ade2:: arg4-VDE allele. 
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Chapter 4 

Genetic Requirements for Intrachromosomal Repair of the ade2:: arg4-VDE Allele 

4.1 Introduction 

The ade2:: arg4-VDE repair assay used in this study was designed so that the double strand 

break (DSB) could only be repaired by single strand annealing (SSA), via the generation of 

first or second deletion product, (Figure 3.1). 5kb of DSB resectioning of the VDE-DSB 

was required to uncover the proximal URAS repeated sequences, and 10.5kb of 

resectioning was required to uncover the distal ade2A repeated sequences. The genetic 

requirements and influences over this type of repair were explored. The DSB was created 

by the meiosis-specific VMAJ-derived endonuclease (VDE) (Bremer et al., 1992; Gimble 

and Thorner, 1993). SSA is an example of intrachromosomal DSB repair, which can occur 

in meiosis. Under normal circumstances the favoured DSB repair mechanism is 

interchromosomal repair that is, using the homologous chromosome as repair template. 

Intrachromosomal repair using the sister chromatid as repair template is also possible in 

meiosis, but occurs at a much lower frequency to interchromosomal repair, (Collins and 

Newlon, 1994; Schwacha and Kleckner, 1994; Schwacha and Kleckner, 1997). The assay 

developed in this study therefore provided the opportunity to study a meiosis-specific DSB, 

constrained to a distinctly `unmeiotic' repair process. A brief explanation of the S. 

cerevisiae mutant strains studied in this chapter is given below. 

The preferential direction of meiotic DSB repair towards the homologous chromosome, 

requires the meiosis-specific RecA homologue, Dmcl (Bishop et at., 1992). In this study, 

repair of the ade2:: arg4-VDE allele using the homologue as a repair template was 
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Figure 4.1: Southern Analysis of VDE-DSB Creation and Repair of the arg4-VDE allele: (Top panel): 
DNA extracted from WT (dAG630) synchronous meiotic cultures, digested with Spe! (black arrows), and 

after fractionation and blotting, the DNA-membrane was hybridised with a probe specific to the upstream 
region of ADE2 (black box). (Timepoints shown above gel images). 15kb band: parental DNA, 10kb band: 

first deletion product, 5.5kb band(smeared): VDE-DSB, 4.2kb: second deletion product, 3.6kb: loading 

control. (Middle panel): Southern analysis of DNA from synchronous meiotic cultures of dmc1A (dAG1265), 

rad54A (dAG 1236), spoll-Y135F (dAG759) and spoil -Y135F dmclA (dAG 1284). (Bottom panel): sae2A 
(dAG12(X)), meklA (dAG732) and meklA sae2A (dAG1215) mutant strains. Smearing of the VDE-DSB 
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prevented due to hemizygosity of the experimental strains (Figure 3.2.4a). It was therefore 

predicted that VDE-DSB repair would not require Dmcl protein. 

Rad54 protein is a member of the Rad52 epistasis group and is required for intersister 

chromatid repair, in conjunction with the RecA homologue Rad51 (Arbel et al., 1999). The 

VDE-DSB was expected to heal by SSA deletion repair only, however an unequal DNA 

strand exchange between sister-chromatids was a potential means of generating the deletion 

products. The fact that both sisters were cleaved by VDE-endonuclease, made this repair 

event unlikely, but a null mutation of RAD54 was used to check for intersister repair. 

Spoil protein is an atypical type II topoisomerase that is essential for meiotic DSB 

formation (Keeney et at., 1997). A catalytic mutant of SPO11, spoll-Y135F, has lost the 

active tyrosine that catalyses the formation of meiotic DSBs, therefore no Spol 1-DSBs are 

created in a spol l -Y135F background (Bergerat et al., 1997) (Cha et al., 2000). When a 

spoll-Y135F mutant was tested in a parallel VDE-DSB assay, it was found to generate 

longer resection tracts and more SSA deletion product than WT (Neale et al., 2002). The 

role of Spoil protein in regulating DNA resectioning was examined in this assay, to 

examine whether the absence of WT meiotic DSBs would impact on repair of the 

ade2:: arg4-VDE allele in the context of a SSA-only repair process. 

Sae2 protein is required for the removal of Spol l protein from meiotic DSBs and it was 

first isolated and characterised in a screen for mutants blocked at intermediate stages of 

meiotic prophase (McKee and Kleckner, 1997; Prinz et al., 1997). Loss of Sae2 protein 

function causes Spol l protein to remain covalently bound to meiotic DSBs, creating an 
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accumulation of unresected breaks. 

A contributory mechanism for ensuring that crossovers in meiosis occur between 

homologous chromosomes has been identified. This involves three meiosis-specific 

chromosomal core proteins, Mekl, Redl and Hopl (Wan et al., 2004). Activation of the 

Mekl kinase, (which coincides with the formation of Spol l-DSBs), is thought to mediate 

inhibition of the components required for intersister repair, e. g. Rad54 protein (Wan et at., 

2004) (Niu et at., 2005). Thus, during Spoll-DSB processing, Mekl protein would 

effectively create a barrier to sister chromatid repair, and through this action, bias repair 

towards the homologous chromosome (Wan et al., 2004). The argument that the Mekl 

protein complex is required for the meiotic cells' drive towards interchromosomal repair is 

a robust one, however the proposed mode of action, that is, specific inhibition of 

intrachromosomal repair is worth exploring. To test this idea, a meld L mutant was 

examined in this study, where assay design prevented DSB repair of the ade2:: arg4-VDE 

allele via an interhomologue exchange. Particular emphasis was placed on VDE-DSB 

resection tract length in the mek10 mutant, with the aim of elucidating the mechanism by 

which Mekl protein exerts its influence over partner choice. 

4.2 The impact of Candidate Mutations on Repair of the VDE-DSB 

The reporter assay was used to determine whether any of the genes outlined in Section 4.1, 

were required for repair of the ade2:: arg4-VDE allele. The experimental diploids consisted 

of homozygous deletion mutants: dmc10 (dAG 1265), rad54A (dAG 1236), spoi1- Y135F 

(dAG759), sae20 (dAG1200), spol l -Y135F dmc10 (dAG1284), mek10 (dAG732) and 
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meklAsae2A(dAG1215). The mutant strains were assayed for their SSA repair ability via 

southern analysis and compared to the WT strain (dAG630), (Figure 4.1). 

Results 

Figure 4.2a contains the data for the amount of VDE-chromatids cleaved in the WT and 

experimental diploid strains. Due to small variations in the amount of VDE-chromatids 

suffering a DSB (Figure 4.2a), the amount of VDE-DSB repair calculated in the diploids 

was normalised to the amount of VDE-chromatids that had suffered a DSB (Figure 4.2b). 

The rad54Et mutant displayed a WT proficiency in repairing the ade2:: arg4-VDE allele, 

demonstrating that the repair process was Rad54-independent (Figure 4.2b). A striking 

result is that of the dmc10 mutant, where almost 70% of the VDE-chromatids that had 

suffered a break, remained unrepaired at T=8hr (Figure 4.2b). This represented a significant 

VDE-DSB repair defect in dmcl E cells, compared to the WT strain (-13% unrepaired 

DSBs at T=8hr). This result was highly surprising, because Dmcl protein was not expected 

to be required for repair of a VDE-DSB, where a DNA strand exchange step between 

homologous chromosomes was precluded by strain hemizygosity. 

The spoll-Y13SF mutant strain repaired the ade2:: arg4-VDE allele to approximately WT 

levels (Figure 4.2b), demonstrating that the absence of meiotic DSBs did not hinder repair 

of the single ade2:: arg4-VDE allele. As Dmcl protein was found to be required for repair 

of the VDE-DSB, a spoil -Y13SF dmcI Adouble mutation was used to test this dependency. 

The spoll -Y135F mutation rescued the repair defect of dmc10,94.5% of broken DNA was 

repaired in the spoll-Y135F dmc10 double mutant, compared to 31.4% in the dmcl A 
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single mutant (Figure 4.2b). This result matched the findings of the parallel study, that 

VDE-DSB repair was Dmc1-independent in cells lacking functional Spoil protein (MJ. N 

and A. S. H. G, Unpub. ). 

Interestingly, the sae2A mutation conveyed a defect in DSB repair of the ade2:: arg4-VDE 

allele: 60.7% of VDE-chromatids that had suffered a VDE-DSB had repaired at T=8hr in 

sae2A, compared to 86.8% in WT (Figure 4.2b). 

The mekl A and rnekl Asae2A mutants were also found to repair the ade2:: arg4-VDE allele 

to WT levels (Figure 4.2b). 

4.3 An Assay to Compare Deletion Product Formation 

The reporter assay was used to indicate whether any of the candidate genes influenced the 

regulation of VDE-DSB resectioning, by considering first and second deletion product 

formation. Cells that had repaired the ade2:: arg4-VDE allele by generating DSB resection 

tracts spanning a distance of 5kb would preferentially use the proximal URAS direct 

repeated sequences, thus creating first deletion product (Figure 3.1b). While cells that 

repaired the VDE-DSB by generating resection tracts spanning a distance of 10.5kb, would 

preferentially use the distal ade2 repeated sequences, to create second deletion product 

(Figure 3.1c). The repair product ratio values for the experimental diploids were determined 

via southern analysis (Figure 4.1). The amount of second deletion product, as a proportion 

of total deletion product formation at T=8hr, was calculated for each strain (Repair product 

ratio = secondN(first0+ secondis). Consequently, an altered ratio value (compared to the 

WT strain, dAG630) indicated that the balance between 5kb and 10kb DSB resection tract 

formation had been disturbed, signalling irregularity in the critical regulation of DSB 
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resectioning. 

Results 

Figure 4.3a and Figure 4.3b contain the amounts of first and second deletion products and 

the calculated repair product ratio values, in the WT and mutant strains at T=8hr. 

Significance testing was performed on the mutant repair product ratio values, using the 

Students T-test (one-tailed, unequal variance). The following mutants had aP value <0.05, 

and so were judged to have repaired significantly differently to WT: drncl A, spol 1- Y135F, 

spoil -Y135F dmcl A, sae2E, mek10 and mek10 sae2A (Table 4.3, shaded boxes). All of 

these mutant strains had higher ratio values than WT, signalling a loss of regulation at the 

DSB resectioning step. 

The dmc10 ratio value was significantly elevated, 32.1% compared to 21.7% in WT 

(Figure 4.3b and Table 4.3), and less overall deletion product was formed (15.5% first 

deletion product and 8.0% second deletion product in drncl0, compared to 60.2% and 

16.7% respectively in WT, Figure 4.3a). The elevated repair product ratio value for the 

spoll -Y13SF mutant (Figure 4.3b and Table 4.3), was a result of an increased formation of 

second deletion product, 40.9%, compared to 16.7% in WT, (Figure 4.3a). Therefore, the 

spoll -Y135F mutant generated a larger number of very long resection tracts when repairing 

the VDE-DSB, and as expected, this was also true of the spol l -Y135F dmc10 double 

mutant, which generated 38.2% second deletion product (Figure 4.3a). In the sae20 mutant 

(dAG1200), the observed increase in repair product ratio was caused by a proportional 

reduction in the generation of first deletion product, 39.4%, compared to 60.2% in WT. 

This suggested that sae2t\ cells were defective in creating resection tracts that spanned 

10.5kb. Both the mek10 and mek10 sae20 mutants created increased amounts of second 
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deletion product (26.6% in mekl Aand 223% in mekl Asae2A, compared to 16.7% in WT), 

while the amount of first deletion product remained similar to WT (Figure 4.3a). 

4.4 Discussion 

The genetic requirements for repairing a meiotic DSB, and the regulation of DNA 

resectioning were examined in the ade2:: arg4-VDE DSB assay in this chapter. 

Influence of Dmcl Protein 

Repair of the VDE-DSB was found to be independent of Rad54 protein, (Figure 4.2b), 

which supported the view that repair was only occurring via SSA. In light of this result, it 

was surprising to discover that repair of the VDE-DSB was affected by a dmc10 mutation 

(Figure 4.2b). The dmcl A mutation blocked repair in almost 70% of VDE-chromatids that 

had suffered a DSB by T=8hr, resulting in a large reduction in deletion product formation 

(Figure 4.3a). There is no previous evidence to suggest a role for Dmcl protein in any 

homologous recombination repair process other than that involving a strand exchange step. 

The idea that Dmcl protein impacted on repair of the ade2:: arg4-VDE allele was 

reinforced by the fact that a spoll-Y135F mutation relieved the dependency on Dmcl 

protein in meiotic cells (Figure 4.2b and Figure 4.3a). It has previously been demonstrated 

that Spo11, along with Sae2 and Mekl proteins are required to establish Dmcl-dependent 

DSB repair in meiotic cells (MJ. N and A. S. H. G, Unpub. ). It was assumed that this was to 

allow DSB repair to be directed towards the homologous chromosome as repair template, 

fulfilling both the mechanical and evolutionary requirements of meiotic recombination. 

However, the assay used in this study reported exclusively on SSA repair, a route that does 

not provide the fundamental requirements of meiosis, that is, promoting the accurate 
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segregation of homologues at MI. The fact that a spoll-Y135F mutation relieved the SSA 

repair defect observed in Dmcl-deficient cells, supported the idea that DSB repair at a 

VDE-DSB site allele can be influenced by events at Spol 1-DSB sites (Neale et at., 2002), 

(Figure 4.4i and Table 4.4i). 

Protein Sequestration in dmcl A 

An explanation for the observed repair defect in the dmcl A mutant is that the single VDE- 

DSB site has to compete for the components of DSB repair, and may be affected by protein 

sequestration at multiple Spol l-DSBs sites, (previously suggested in (Neale et at., 2002). 

At the same time that VDE endonuclease cleaves the DNA, more than 200 Spol 1-DSBs are 

created in the S. cerevisiae genome to induce meiotic recombination (Gimble and Thorner, 

1992) (Cao et al., 1990). The Spol l-DSBs are then resected, ready for interhomologue 

recombinational repair. The turnover of resected DNA at Spol1-DSB sites generates 

transient levels of (single-stranded) ssDNA molecules, which become coated with the 

proteins required for homologous recombination, including the ssDNA-binding protein, 

RPA and Rad52 (reviewed in (Symington, 2002)). As these proteins are required for 

recombination between direct DNA repeated sequences (Davis and Symington, 2001) 

(Shinohara et al., 1998), their availability at the ade2:: arg4-VDE allele may be reduced, 

particularly if they are derived from a limited pool. In a dmc10 mutant a defect in the 

conversion of Spoll-DSBs into the recombination intermediates required for 

interhomologue repair, causes an accumulation of meiotic DSBs (Bishop et al., 1992). The 

broken DNA termini undergo 5'-3' resectioning, which generates large amounts of ssDNA. 

The accumulated ssDNA within dmc10 cells may sequester the Rad52 and RPA proteins, 

preventing their recruitment to the VDE-DSB site. This inhibition to the VDE-DSB repair 
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process would account for the severe repair defect demonstrated in the dmcl A mutant 

(Figure 4.2b), and the decreased amounts of deletion products generated (Figure 4.3a and 

Figure 4.4i). 

As predicted from the protein sequestration model, a spoll -Y135F mutation rescued the 

repair defect of dmc10, because no Spol l-DSBs are created (Figure 4.2b and Figure 4.3a). 

Interestingly, repair of VDE-chromatids that had suffered a DSB in the spoll-Y135F and 

spo ll -Y135F dmc10 mutants, exceeded that observed in the WT strain, (93.9% in spoil- 

Y135F, 94.6% in spol l -Y135F dmcl A and 86.8% in WT). In agreement with the previous 

study, this demonstrates the influence that the creation of WT Spol1-DSBs can have on 

repair of a DSB created by VDE-endonuclease (Neale et at, 2002). 

To help validate the protein sequestration model, a sae20 dmc10 mutant would have been 

very useful. In a sae2A dmcl A mutant background, a WT number of Spol 1-DSBs are 

created, but the removal of Spoil protein from the break sites is prevented (McKee and 

Kleckner 1997; Prinz, Amon et al. 1997). As Spoil protein effectively blocks the DNA 

termini, the ends are rendered inaccessible to the resectioning machinery, and there is an 

absolute lack of ssDNA. Unfortunately, due to technical difficulties, a sae20 dmcl A mutant 

was unavailable for this study. 

Preliminary chromatin immunoprecipitation (ChIP) experiments using anti-RPA1 antibody 

directed to a Spol 1-DSB hot spot, have demonstrated an enrichment of hot spot DNA in a 

dmcl i mutant, as compared to WT (S. H and A. S. H. G, Unpub. ). Corresponding to this, at 

an equivalent VDE-DSB hotspot, there was an enrichment of VDE-DSB DNA in WT, 
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compared to dmc10. These preliminary findings support the idea that VDE-DSB repair is 

subject to inhibition by sequestration of RPA protein, at Spol 1-DSB sites. in dmc10 cells 

(Figure 4.4i and Table 4.4i). Further ChIP experiments are currently underway to examine 

how robust this model is. 

The idea that protein sequestration could inhibit SSA repair at the VDE-DSB is compatible 

with the proposal that optimal SSA repair of a DSB occurs between the closest set of 

flanking repeated sequences (Sugawara and Haber, 1992). Minimising genome deletion 

reduces the risk of loss of heterozygosity, however, the generation of ssDNA repair 

intermediates generated in SSA may also be important. VDE-DSB repair using the 

proximal URA3 homologous sequences requires a minimum of 5kb of resectioning, 

compared to a minimum of 10.5kb for the distal ade2 repeated sequences. Therefore VDE- 

DSB repair using the closest set of available repeated sequences would minimise the 

burden on the ssDNA-binding proteins, especially if they were limiting factors. 

Absence of Spoll-DSBs Affect VDE-DSB Resection Tract Length 

As expected of a mutant that has previously been demonstrated to generate longer resection 

tracts, (Neale et al., 2002), the spoil-Y135F mutant created more second deletion product 

than WT in this study, confirming that this mutant created a greater number of 10.5kb 

resection tracts (Figure 4.3a). As a consequence, the spoll -Y135F mutant had a 

significantly greater repair product ratio value than WT (Figure 4.3b). It is likely that the 

spoll-Y135F mutant phenotype of creating longer resection tracts was accompanied by a 

faster turnover of broken DNA, evidenced by the discrete Nature of the VDE-DSB band 

(Figure 4.1). 
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Sae2 Protein is required for First Deletion Product Formation 

The proportion of ade2:: arg4-VDE chromatids that suffered a DSB and then repaired by 

T=8hr, was lower in the sae2A mutant, 60.7%, compared to 86.8% in WT (Figure 4.2b). 

Less first deletion product was also generated in sae20,39.4%, compared to 60.2% in WT 

(Figure 4.3a). As similar proportions of second deletion product were formed, 14.8% in 

sae2A and 16.7% in WT, this suggests that impairment of VDE-DSB repair in the sae2A 

mutant was due to a failure of some cells to resect the DSB-DNA as far as the proximal 

URA3 repeated sequences. Hoýever, cells that were able to resect this far, displayed no 

defect in resecting out to the distal ade2A repeated sequences. 

In the ade2:: arg4-VDE repair assay, resectioning of the VDE-DSB can be considered as 

three distinct steps. An initial resectioning step of a limited number of DNA bases, 

involving the generation of `short' resection tracts. A second resectioning, step, involving 

the generation of `long' resection tracts, required for deletion repair of the ade2:: arg4-VDE 

allele utilising the proximal URAS repeated sequences (5kb resectioning required). The 

third resectioning step would involve the generation of `very long' resection tracts, required 

for deletion repair using the distal ade2 repeated sequences (10.5kb DNA resectioning 

required). It is possible that Sae2 protein is required for the initial resectioning step in the 

VDE-DSB assay, because of its essential function in Spoil protein removal from the sites 

of meiotic DSBs (Prinz et al., 1997; McKee and Kleckner, 1997). It has recently been 

reported that Spol l protein is released from the DSB site, via endonucleolytic cleavage 

(Neale et al., 2005). It can be surmised that helicase activity is also required to unwind the 
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double-stranded (ds)DNA, before a ssDNA endonuclease, such as Mre11 snips off the 

terminal bases, coated with Spol l protein. The MRX complex is known to be involved in 

this initial resectioning step ((Moreau et al., 1999)), and Sae2 protein is also required. In the 

ade2:: arg4-VDE assay, the sae2A mutant was defective in creating resection tracts that 

spanned 5kb, which resulted in the reduction of first deletion product formation. It is 

therefore plausible that Sae2 protein is also required for the (so-called) second resectioning 

step at the VDE-DSB. That is, Sae2 protein is required for the generation of 5kb resection 

tracts, in order to utilise the proximal URAS repeated sequences. In support of this, a 

previous assay that reported specifically on VDE-DSB resection tract length, demonstrated 

that 80% of resection tracts generated in a sae20 mutant background were less than 1.8kb 

in length. (Neale et al, 2002). 

In a parallel VDE-DSB reporter assay, a sae2L mutation was found to impede the turnover 

of VDE-DSBs and also reduce the proportion of VDE-DSB repair via SSA, when a 

homologue was available (MJ. N and A. S. H. G, Unpub. ). Examining the kinetics of VDE- 

DSB repair in this reporter assay, the sae2A mutant also demonstrated a delay in the 

turnover of VDE-DSBs, as compared to WT (Figure 4.4ii). This further supports the 

suggestion that Sae2 protein may have an additional role downstream of Spoil protein 

removal from DSB sites. This function in early resectioning may help to influence repair 

template choice. When no homologous chromosome is available, like in this SSA assay, 

further progression of resection is indistinguishable from WT; hence similar amounts of 

second deletion product are formed. Recently, Sae2 protein has been examined in a mitotic 

SSA assay, where it was found to slow down HO-DSB induced resectioning (Clerici et al., 

2005). 
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Mekl Protein Negatively Regulates VDE-DSB Resectioning 

The mek10 mutant conveyed no defect in repair of the VDE-DSB, as compared to WT 

(Figure 4.2b). However, when considering resection tract length at the VDE-DSB, the 

mek1 L mutant was markedly different (Figures 4.3a and 4.3b). While similar amounts of 

5kb resection tracts were created (first deletion product: 60.2% in WT and 64.2% in 

mekl A), the mek10 mutant created more 10.5kb resection tracts than WT, (second deletion 

product: 26.6% and 16.7%, respectively). This suggests that the Mekl-dependent push 

towards DSB-repair, using the homologue as partner, may be mediated by resection tract 

length. That is, the Mekl protein negatively regulates the resectioning of VDE-DSB DNA, 

and by limiting resection tract length, both minimises the possibility of uncovering flanking 

homologies and improves the probability of a homologous chromosome becoming captured 

as repair template. As the ade2:: arg4-VDE reporter assay reports on resection tract length 

during SSA repair only, the previously proposed mode of action of Mekl protein (that is, 

promoting interchromosomal DSB repair through blocking the sister-chromatid) is not 

discounted. 

The VDE-DSB resectioning demonstrated in the mek10 sae20 mutant was very similar to 

the mek10 single mutant, and consequently both the single and double mek10 mutations 

conveyed significantly increased repair product ratio values (Figure 4.3b). The fact that 

MEKJ was epistatic to SAE2 was not expected, and suggests that Mekl protein is a major 

regulator of VDE-DSB repair upstream of Sae2. 
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Chapter 5 

Repair of a VDE-DSB in Mutants that Prevent Spoil-DSB Formation and Processing 

5.1 Introduction 

The data presented in Chapter 4, along with those from a parallel VDE-assay, have 

demonstrated that repair of a VDE-DSB is influenced by events at Spol l-DSB sites (Neale 

et al., 2002; This Study). The arg4-VDE repair assay was also used to examine VDE-DSB 

repair in mutants of genes specifically involved in the formation and processing of Spol l- 

DSBs, that is MRE11, RAD50 and XRS2 (MRX) (reviewed (Krogh and Symington, 2004)). 

The protein products of these genes form a stable complex, which is involved in a myriad 

of cellular functions in yeast and human cells. Pertinent to this study, the MRX protein 

complex plays an integral role in meiotic recombination events, that is, in the creation and 

processing of meiotic DSBs. The ability to study DSB repair at a VDE-DSB, provides a 

unique opportunity to examine the MRX complex, because a null mutation in any of these 

genes prevents the formation of Spol 1-DSBs. The MRX complex is required for the critical 

step of regulating DSB resectioning. In the arg4-VDE reporter assay, cells have the 

opportunity to repair the VDE-DSB by using proximal URA3 repeated sequences, or distal 

ade2 repeated sequences. This choice of deletion repair is dependant on DSB resection tract 

length. It was demonstrated in Section 3.3.1 that the WT strain (dAG630) preferentially 

created first deletion product when repairing the arg4-VDE allele. Null. and functional 

mutants of the MRX complex, along with EXO1, were examined for their ability to repair 

the VDE-DSB and their influence over the regulation of DSB resectioning. A brief 

explanation of the mutant alleles is given below. 

74 



Wildtype 

78787878 
1& 10 rar r flo r15kbý- ................. 

(Product of f 5kb total 
.............. ... 0kb t .......... . .. t resectioning) 

.......... 

4 2kb` - IN* ................. ." (Product of 10.5kb total resectioning) 

36kb 

mrellA mre11-58s rad5OA xrs20 xrs2-11 exo10 

787878787878787878787878 

15kb 40 ot was 

10kb.. loo 04600 t* 10 fto Is vw up 40 _ 

55kb (» 0 f» - 

4.2kbp0r* 

3.6kb (Loading cantrc4 cui , df) 

6"Ahba qm 

" 

to s 4040 

toga - I" 

wagon 

F 

Figure 5.1: Southern Analysis of VDE-DSB Creation and Repair at the arg4-VDE allele: (Top panel): 
DNA extracted from WT arg4-VDE "I'FPI:: VDE (dAG630) synchronous meiotic cultures, digested with Spel 
(black arrows), and after fractionation and blotting, the DNA-membrane was hybridised with a probe specific 
to the upstream region of ADE2 (black box). (T=7 and 8hr of 4 WT meioses shown). 15kb band: uncut 
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deletion product, 3.6kb: homologous copy of ade2, (loading control). Smearing of the VDE-DSB DNA was 
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An mrell-58S allele contains a mutation in the phosphoesterase motif, (His213-Tyr), 

which conveys similar mitotic phenotypes to a null MRE11 mutation (Tsubouchi and 

Ogawa, 1998). Crucially in mrell-58S, Spol1-DSBs are created, but accumulate with 

unresected termini. 

The xrs2-11 allele (kindly gifted by K. Sugimoto) was created after a 2-hybrid screen 

detected an interaction between the ATM homolog Tell and the C-terminus of Xrs2 protein 

(Nakada et al., 2003). The xrs2-11 allele has a C-terminal deletion of 162aa and 

coimmunoprecipitation experiments have demonstrated that it is via this region that Xrs2 

interacts with Tell, an interaction that is strengthened by the presence of DNA damage. 

5.2 The impact of Candidate Mutations on Repair Ability of the VDE-DSB 

The reporter assay (Figure 3.1.1) was used to determine whether any of the candidate genes 

were required for repair of the arg4-VDE allele. The experimental diploids consisted of 

homozygous deletion mutants: mrell A (dAG 1010), mrel l -58s (dAG975), rad5OA 

(dAG951), xrs2A (dAG946), xrs2-11 (dAG1271) and exolA (dAG1305), The mutant 

strains were assayed for their SSA repair ability via southern analysis and compared to the 

WT strain (dAG630) (Figure 5.1). 

Results 

Figure 5.2a and Table 5.2 contain the data for the amount of VDE-chromatids cleaved in 

the WT and experimental diploid strains. As there was some variation in the amount of 

VDE-chromatid cleavage (Figure 5.2a), the amount of VDE-DSB repair calculated in the 
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experimental diploids was normalised to the amount of VDE-chromatids that had suffered a 

DSB (Figure 5.2b and Table 5.2). All of the candidate mutant strains exhibited a 

statistically significant defect in DSB repair of the VDE-DSB, with the exception of the 

xrs2-11 strain (dAG1271). 

53 An Assay to Compare Deletion Product Formation 

The reporter assay was used to indicate whether any of the candidate genes influenced the 

regulation of VDE-DSB resectioning, by considering first and second deletion product 

formation. Cells that repaired the arg4-VDE allele by generating resection tracts that 

spanned 5kb would preferentially use the proximal URAS direct repeated sequences, thus 

creating first deletion product. While cells that repaired the VDE-DSB by generating 

10.5kb resection tracts would preferentially use the distal ade2 repeated sequences, thus 

creating second deletion product. The repair product ratio values for the experimental 

strains were determined via southern analysis (Figure 5.1). The ratio values were calculated 

as the amount of second deletion product, as a proportion of total deletion product 

formation at T=8hr, (Repair product ratio = secondh/(first0+ secondA). Consequently, the 

repair product ratio value was sensitive to changes in the proportions of 5kb and 10kb 

resection tract formation. An elevated ratio value, compared to the WT strain, would 

indicate a proportional increase in the amount of 10.5kb resection tracts. 

Results 

Figure 5.3a contains the amounts of first and second deletion products formed in WT and 

the mutant strains, as a proportion of VDE-chromatid DNA. It was then informative to 

calculate the repair product ratio values, (Figure 5.3b and Table 5.3). Significance testing 
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Table 5.2 

Broken VDE-Chromatids% Repaired/Broken DNA% 
WT 88.6 86.8 

mrelld 76.0 64.7 (7.85E-06) 
mrel l -58s 67.8 72.3 0.02 

rad50d 82.7 52.3 0.02 
xrs2d 73.2 52.7 (1.25E-05) 

xrs2-11 84.8 82.0 (0.06) 
exold 88.0 68.0(0.02) 

Figure 5.2: Amount of SSA Repair at the arg4-VDE Allele. (a) Amount of VDE- 
chromatids that had suffered a DSB ('broken') at T=8hr in WT and mutant strains (See 
Figure 5.1 for strain information). Calculated as (total VDE-chromatid DNA)-(parental 
DNA). (b) Amount of repair at the arg4-VDE allele, as a proportion of broken VDE- 

chromatids. Calculated as (total deletion repair product)/(broken VDE-chromatids). All 

values expressed as percentage of total VDE-chromatid DNA. (Error bars display 

standard deviation). Table 5.2 contains tabulated data from (a) and (b). Numbers in 

parentheses are the associated P values, calculated using the Students T-test, (Section 
2.11). The mutant values that differ significantly from WT, (p<0.05), are shaded. (Data 
from n=3 experiments per strain) 
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was performed on the mutant repair product ratio values, using the Students T-test (one- 

tailed, unequal variance). Apart from the mrell-58s strain (dAG975), all of the mutant 

strains had P values <0.05, indicating that DNA resectioning of the arg4-VDE allele was 

significantly different to WT. 

The well A, radSOA, xrs2A and xrs2-11 mutants had elevated repair product ratio values, 

due to a reduction in the formation of first deletion product, (31.5% in mrell L\, 27.4% in 

rad5OA, 27.0% in xrs2A and 48.3% in xrs2-11), compared to 60.2% in WT (Figure 5.3a). 

This suggests that the proteins of the MRX complex were required for generating 5kb 

resection tracts, but not for 10.5kb resection tracts. Interestingly, the repair product ratio 

value of the exo10 mutant was much lower than WT, 11.1% compared to 21.7% (Figure 

5.3b). This was a result of the exol A mutant generating less second deletion product than 

WT, 6.53% compared to 16.7%, (Figures 5.3a). This would implicate Exol protein in the 

generation of 10.5kb DSB resection tracts in the ade2:: arg4-VDE assay. 

5.4 Discussion 

The influence of Spol1-DSB formation and processing on VDE-DSB repair and resection 

tract length were examined in this chapter. 

Strains containing null mutations of the MREIJ, RAD50 and XRS2 genes, were all 

compromised for VDE-DSB repair of the arg4-VDE allele, with each mutation conveying a 

significant reduction in the proportion of repaired VDE-chromatids at T=8hr (Figure 5.2b). 

The mrell-58S allele conveyed a less profound VDE-DSB repair defect, 72.3% of broken 

VDE-chromatids repaired in mrell-58s, compared to 64.7% in well A, and 86.8% in WT 
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Table 5 
. 
31 Renair Product Ratio Values and their Associated Significances 

Repair Product Ratio % P value <0.05 
wildtype 21.7 - 

mrella 37.1 0.04 
mrel 1-58s 23.0 0.30 

rad50a 36.6 0.03 
xrs24 30.0 0.01 

xrs2-11 30.7 2.61E-04 
exola 11.1 4.14E-04 

Figure 5.3: Deletion Product Formation and Repair Product Ratio values in 

arg4-VDE assay at T=8hr (a) Amounts of first and second deletion product 
formation in WT and mutant strains, (expressed as a percentage of total VDE- 

chromatid DNA). (see Figure 5.1 for strain information). (b) Repair product ratio 
values, calculated as second deletion product as a proportion of total deletion 

product formation. (Error bars display standard deviation). Table 5.3 contains 
tabulated data from (b), and the associated P values (calculated using the Students 
T-test, Section 2.11). (Mutant ratio values significantly different to WT (p<0.05), 

shaded). (Data from n=3 experiments per strain) 
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(Figure 5.2b). The xrs2-11 allele conveyed no defect on DSB repair of the VDE-DSB 

allele, while the repair defect conveyed by the exo10 mutation, was less severe than those 

of the null MRX mutations. 

The MRX Complex is required for First Deletion Product Formation 

The arg4-VDE assay was designed to also report on DNA resection tract length generated 

at the VDE-DSB site, and all of the null mutations of the MRX complex conveyed elevated 

repair product ratio values, due to a decrease in first deletion product formation. This 

demonstrates that in mre11 L, rad5OA and xrs2A backgrounds, cells generate fewer 5kb 

resection tracts, thus implicating these genes in the creation of first deletion product. 

However similar amounts of second deletion product were created as compared to WT, 

suggesting the action of other nucleases in the generation of 10.5kb VDE-DSB resection 

tracts. Exol protein is a candidate for this function, based on the results presented in this 

work. 

Exol protein is required for the Formation of Second Deletion Product 

Uniquely, the exol A mutant generated less second deletion product than WT, a 

manifestation of reduced levels of 10.5kb resection tracts, (6.5% in exol A and 16.7% in 

WT, Figure 5.3a). However, the exol A mutant generated similar amounts of 5kb resection 

tracts to WT, demonstrating that Exol resectioning function was constrained to 10.5kb 

VDE-DSB resection tracts only. The demonstration that an exo10 mutation caused a defect 

in the generation of 10.5kb resection tracts at the arg4-VDE allele is in accord with a 

previous study on EXO1. In that HO-DSB mitotic assay, an exol A mutation demonstrated a 

fourfold decrease in an ssDNA intermediate, resultant from extensive DNA resectioning 
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(5kb), at the MAT locus (Liorente and Symington, 2004). Like in this meiotic assay, similar 

amounts of shorter resection tracts were created, and a small delay in resectioning was 

reported in exo10. 

Exol and the Rate of VDE-DSB Resectioning 

To expand on the exo1 L results, DNA from full WT (dAG630) and exol i\ (dAG1305) 

meiotic time courses was compared (Figure 5.4i(a)). By studying complete meioses, the 

kinetics of arg4-VDE allele repair and resection tract length could be examined. 

Graphically, it was demonstrated that the exo10 mutant accumulated far more VDE-DSB 

DNA than the WT strain, peaking at T=5hr, with 75.3% in exol A and 35.9% in WT (Figure 

5.4ii, yellow plot). The amount of DNA present in the VDE-DSB band is dependent on the 

amount of parental DNA that has suffered a VDE-DSB and on the amount of repair. To 

account for the effects of different VDE-DSB formation rate the amounts of VDE-DSB 

DNA created in exo10 and WT, were expressed as a proportion of residual parental DNA 

(Figure 5.4i(b)). The exol A mutant accumulated four times more VDE-DSB DNA than WT 

at T=5hr. The idea that an exol A mutation caused an accumulation of DSB-DNA, and a 

decrease in the formation of 10.5kb resection tracts, leads to the proposal that when Exol 

protein is involved in resection of the VDE-DSB, it creates long resection tracts. Further 

evidence to support this is the high visibility of the VDE-DSB band in the exo10 strain, 

caused by smearing (Figure 5.4aii). Smearing of the VDE-DSB band is due to the 5'-3' 

DNA resectioning process, generating increasingly longer single stranded (ss)DNA 

molecules. Figure 5.4ii displays the signal intensities running through the WT and exo10 

VDE-DSB bands at T=4hr, (normalised to the maximum signal). The wider span of the 
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Figure 5.4i: Physical Analysis of DNA Repair Events at the arg4-VDE Allele (a) DNA 

extracted from WT (dAG630) and exolA (dAG1305) strains and southern analysis 
performed (see Figure 5.1 for strain information). (Time points shown above gel images). 
Graphs below gels display DNA repair intermediates as a proportion of VDE-chromatid 
DNA: parental DNA (15kb band on gel, blue plot on graph), VDE-DSB DNA (5.5kb band, 

yellow plot), first deletion product (10kb band, pink plot) and second deletion product 
(4.2kb band, turquoise plot). (b) Accumulation of VDE-DSB DNA in WT and exolA 
strains, (normalised to amount of residual parental DNA). (Data from n=3 experiments per 
strain) 
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Figure 5.4ii: Signal Intensities of VDE-DSB bands: Profiles of signal 
intensities running through the VDE-DSB bands of WT (dAG630) and exo1A 
(dAG 1305) strains at T=4hr (see Figure 5.4i(a), time points boxed). The 

curves are normalised to the maximum signal within the bands and stacked for 

comparison. The wide shoulder of the exo1A graph reflects smearing of the 
VDE-DSB, while the narrower (symmetrical) curve of WT reflects discrete 
VDE-DSB banding. (Data from n=4 experiments per strain) 
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exol Acurve reflects DSB smearing, while the more narrow WT curve results from a more 

discrete DSB band. 

The kinetics of first deletion product formation was also of interest, as it was sugoestivc of 

a defect in the rate of DNA resectioning in exo/A(Figure 5.41, pink plot). The appearance 

of first deletion product was delayed in the e. va/ A , natant, the DIA band beconuino 

quantifiable only at T=6hr, which was considerably later than in W"1 (Figure 5.4i). The 

delay in first deletion product formation was potentially a reflection of the time taken by 

the exo/A mutant to create resection tracts long enough (5kb) to be able to uncover the 

proximal (, 'R. 4-)' repeated sequences. 

The data presented here supports the findings frone previous studies, where the processing 

of meiotic DSBs in an eXO/Amutant was shown to be impaired at a Spoil -DSB hot spot, 

with the disappearance of DSBs delayed by 1-2 hours (Tsubouchi and Oýgawa, 1998). 

Furthermore in a clnu /A mutant background, an c'. r(/A mutation reduced the amount of 

excessive DNA resectioning, characteristic of these breaks(Bishop 1994).. 

The exo/ A mutation conveyed a weaker defect in VDE-DSB repair compared to the MRXA 

mutations, confirming that the Exol protein is not an essential exonuclease for DSB 

resectioning, but rather contributes to the process (probably in conjunction with other 

nucleases, for example Mrel I/Rad27/Fenl)(Moreau, Morgan et al. 2001). Interestingly, the 

idea that ExoI protein is required for the generation of 10.5kb resection tracts, fits in with 

the demonstration that in null mutations of the MRX complex, these resection tracts were 

still created. 
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The C-terminal of Xrs2 Protein is required for VDE-DSB Resectioning 

There was a phenotypic difference in the amount of VDE-DSB repair in the truncated and 

null mutant alleles of XRS2 (Figure 5.2b and Table 5.2). In xrs2A. the amount of VDE-(ESB 

chromatids that had suffered and then repaired a VDE-DSB, was significantly reduced at 

T=8hr, (52.7%) while repair in the . trs2-/1 mutant was very similar to WT, (82. (YX and 

86.8%, respectively). As the C-terminal deletion of XRS2 did not convey a defect in VD[ 

DSB repair, it is likely that this region of the protein is non essential for SSA repair of a 

VDE-DSB. This result correlates with a previous study of an _rrs2-1/ mutation, where it 

was demonstrated that the mutant allele did not convey sensitivity to DNA damaging 

agents in mitosis (Nakada et at.. 2003). Furthermore, a recent meiotic study that examined 

the effects of a larger truncation at the C-terminal of Xrs2 protein (A190aa, xr. s2-664) did 

not convey a defect in either DSB formation or recombination (Shima et at., 2005). 

When the VDE-DSB reporter assay was used to examine DNA resection tract length, the 

xrs2-II mutant strain displayed the same phenotype as. vrs2A. While there was more overall 

deletion repair in 
. vr. %2-I1 than in the null mutant (Figure 5.3a), both mutants had repair 

product ratio values of approximately 30(Ic,, which was significantly different from the WT 

value of 21.7% (Figure 5.3b and Table 5.3). This indicates that the C-terminal region of 

Xrs2 protein does influence VDE-DSB resectioning. 

This idea contrasts with the previous findings of an . vr. t2-11 study, where the mutant 

demonstrated WT levels of DNA resectioning, although that was in mitosis (Nakada et al., 

2003). This implies that the C-terminal region of Xrs2 protein may function specifically in 

VDE-DSB resectioning in meiosis. One explanation could be that it is the Xrs2-Tell 
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protein-protein interaction that influences resection tract length at VDE-DSBs. Therefore, it 

is predicted that the xrs2-664 mutant allele (Shima et al., 2005), would share the same DSB 

resectioning phenotype as xrs2-11, as Tell interaction would likewise be prevented. (See 

Chapter 7 for discussion on Tell and xrs2-11 proteins). 
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Chapter 6 

A Genetic Screen for Mutations that Affect Regulation of DSB Resectioning 

6.1 Introduction 

A qualitative genetic screen was developed in order to identify novel mutations that 

compromise VDE-DSB repair in S. cerevisiae (Section 2.12.2 and Figure 2.12.2). Through 

this screening process, and with the availability of new equipment, a quantitative genetic 

screen was then developed (Section 2.12.3). The ability of the arg4-VDE assay to report on 

resection tract length was used to assess the critical process of regulation of DNA 

resectioning. Solid and liquid media were used to report on adenine prototrophy created at 

the ade2:: arg4-VDE allele, as conveyed by randomly mutagenised plasmid-borne XRS2 

alleles. The rationale for comparing adenine prototrophy in wildtype (WT) and mutant 

strains following VDE-DSB formation and repair was that this permitted the measurement 

of resection tracts of approximately 10.5kb (total length). Consequently, mutants that were 

found to generate significantly higher amounts of 10.5kb resection tracts were considered 

to be deficient in the regulation of DSB resectioning. This loss of regulation could be a 

result of a failure to recognise the proximal URA3 sequences as being homologous, and/or 

by a failure to regulate the rate or degree of DNA resectioning, beyond the minimum 5kb 

required. Whichever the cause, these mutants would be compromised for DSB repair, 

increasing their risk of genomic instability and loss of heterozygosity. Initially, three 

candidate genes were considered for the genetic screen; MREI1, RAD50 and XRS2 (MRX). 

Most progress was made on mutagenising XRS2, therefore most of the data presented here 

are from these experiments. Null mutants of MREI1, RAD50 and XRS2 do not form Spoi l- 
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DSBs, therefore are sporulation deficient. The MRX complex has been specifically 

implicated in the regulation of resectioning at Spol 1-DSBs. 

6.2 Rescue of xrs2Aand rad5OAMutants by Plasmid-Borne XRS2 and RADSO 

Expression plasmids containing XRS2 (pAG73, pXRS2:: hphMX) and RADSD (pAG75, 

p. RAD50:: natMX) alleles, were episomally transformed into xrs2A and rad5OA diploid 

strains, (dAG946 and dAG951, respectively). Transformant growth was shifted to K-Ac 

medium and meiosis-competency was assessed by tetrad dissection. The xrs20 strain 

transformed with pXRS2:: hphMX had an average spore viability of 82.5%, while the 

radSOA strain transformed with p. RAD50:: natMX had a spore viability of 85.5%. 

Therefore, plasmid-borne XRS2 and RAD50 alleles were able to rescue the non-sporulation 

phenotype of xrs2A and rad500 mutants. The dissection plates were replica plated to 

selective media, and there was 14% plasmid loss in the pXRS2:: hphMX containing spores 

and 4.5% in the p. RAD50:: natMX containing spores. 

6.3 Expression of Plasmid-Borne Drug Resistance in E. coli 

The genetic screen involved the amplification of plasmid DNA rescued from S. cerevisiae 

transformants, Therefore plasmid selection had to be maintained through bacterial growth. 

Bacterial transformations with pAG73 (pXRS2:: hphMX) yielded cells that were growth 

competent on 2TY plus hygromycin B medium, while transformation with pAG75 

(p. RADSO:: natMX) yielded cells growth competent on 2TY plus nourseothricin. Therefore 

the drug resistance marker genes of pXRS2:: hphMX and p. RAD50:: natMX plasmids were 

expressed in E. coli cells. 
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6.4 Transformant Screening 

An approximately equal number of xrs20/xrs2A NDT80/NDT80 - (dAG946) and 

xrs2Alxrs2A ndt80/ndt8O (dAG 1093) strains were episomally transformed with 

mutagenised p.. xrs2:: hphMX plasmids. In total, approximately 1,500 XRS2 transformants 

were tested via the solid medium screen, and 8,500 transformants tested via the liquid 

medium screen. From the solid medium screen, one transformant emerged from the 

retesting process as being of possible interest, and five transformants from the liquid 

medium screen. 

6.4.1 Plasmid Sequencing and Retransformation 

The plasmids recovered from the six transformants, plus WT (pAG73) were sequenced, 

(sequencing primers in Table 2.4). The WT pXRS2:: hphMX plasmid was found to contain 

a number of point mutations in the XRS2 open reading frame (ORF), and the sequences 

from the recovered plasmids were not useful. Meanwhile the six transformants from the 

solid and liquid media screens were tetrad dissected for adenine prototrophy, and for every 

transformant examined, approximately 100% of the VDE-chromatid containing spores were 

Ade+. Plasmids recovered from these strains and retransformed into xrs20 strains did not 

however yield the same phenotype. The original transformants were re-examined and found 

to be Ade+ prior to meiosis. The screen was stopped here. 

6.6 Discussion 

Two genetic screens for novel mutants that are defective in the regulation of VDE-DSB 

repair were established in this chapter. 
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Discovering that theXRS2 ORF of expression plasmid pXRS2:: hphMX (pAG73) 

contained a number of mutations, and having screened 10,000 transformants, with no 

interesting transformants identified, the genetic screen was abandoned. In order to screen 

for novel mutations in a gene, the original ORF must contain the consensus sequence for 

that gene. However, the version of XRS2 contained on the expression plasmid 

pXRS2:: hphMX, was able to rescue the sporulation deficiency of an xrs2E mutant (82.5%). 
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Chapter 7 

General Discussion 

Meiosis is an essential process for sexual reproduction, and it comprises of one round of 

DNA synthesis followed by two successive nuclear divisions. The first meiotic division 

(MI) is a reductional segregation of nonsister chromatids (homologous chromosomes), and 

the second division is an equational segregation of sister chromatids. Recombination 

between homologous chromosomes is initiated at high levels by DNA double strand breaks 

(DSBs), created by Spol l protein, and repair of these breaks is essential for the production 

of interhomologue connections (chiasmata; observed genetically as crossovers). These 

connections serve as a platform for genetic recombination and to promote accurate 

homologue disjunction at MI. Specific mechanisms are in place to ensure that meiotic DSB 

repair is directed towards the homologue as repair template, and the components of these 

mechanisms were examined in a DSB assay where interhomologue repair was precluded. In 

meiosis, the regulation of resectioning is critical to repair outcome, and this assay was 

designed to measure two deletion products arising from DSB resectioning repair. 

In Chapter 3, a meiotic repair assay was created that did not require Spoil protein as a 

DSB catalyst, and was designed to repair using homologous sequences that flanked the 

DSB site. In Chapters 4 and 5, candidate genes were examined for their influences over 

single-stranded annealing (SSA) repair and resection tract length. Finally, in Chapter 6a 

genetic screen was performed to search for novel mutations that affect the regulation of 

resectioning. 
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Modifications to Flanking Sequences Affects Resection Tract Length 

SSA repair preferentially utilises the nearest set of available repeated homologies to the 

DSB site (Sugawara and Haber 1992), and this was confirmed in Chapter 3. When the 

proximal flanking sequences became inverted, a majority of repair was switched to the 

distal repeated sequences (Table 3.2.6a and Figure 3.3.1c). However, there was some 

disparity between the genetic and southern analysis data, particularly in terms of the 

amount of residual parental DNA in the genetic experiments. One explanation was that 

VDE-endonuclease was failing to cut 100% of the arg4:: VDE chromatids, or alternatively, 

a proportion of the VDE-DSBs created were repaired by nonhomologous endjoining 

(NHEJ). In order to discount NHEJ as a potential repair pathway, null mutants of KU70 and 

KU80 could be utilised in the assay. 

Sites of Excess single-stranded (ss)DNA May Sequester Repair Proteins 

The genetic requirements for SSA repair of the ade2:: arg4:: VDE allele was examined in 

Chapter 4, and it was discovered that SSA annealing repair was profoundly affected in a 

dmc10 background. One explanation is that the accumulation of resected Spol l-DSBs, 

characteristic of dmc10 cells, sequesters the proteins required for homologous 

recombination between direct flanking homologies, limiting their availability at the single 

VDE-DSB site (Figure 4.4i). This is an idea previously suggested by Neale et al, (2002). 

A Role in Repair Template Choice for Sae2 Protein 

Cells mutated for SAE2 were found to be defective in VDE-DSB repair (Figure 4.2b), 

created fewer resection tracts that spanned 5kb (Figure 4.3a), and were delayed for VDE- 

DSB turnover (Figure 4.4ii). These results indicate that Sae2 protein is required early in the 
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DSB resectioning process, which suggests a possible role in the promotion of 

interchromosomal repair. This would be an additional role for Sae2 protein, downstream of 

Spol l protein removal at meiotic DSB sites. In this reporter assay, where no homologue 

was available for interchromosomal repair, the delay in resectioning was resolved, followed 

by wildtype (WT) levels of resectioning (Figure 4.3a, second deletion product). In a parallel 

VDE-DSB assay, where both interchromosomal and intrachromosomal repair were 

possible, the turnover of VDE-DSBs was also impeded and less deletion repair occurred in 

a sae2 A background (MJ. N and A. S. H. G, Unpub. ). 

Mekl Protein Negatively Regulates VDE-DSB Resectioning to Influence Repair 

Partner Choice 

Recent studies of Mekl protein have implicated it in the push towards interhomologue 

repair, by creating a block to intersister repair (Wan, de los Santos et al. 2004; Niu, Wan et 

al. 2005). In Chapter 4, the influence of resection tract length on repair template choice was 

examined and interestingly, a mekiA mutation caused an increase in the number of 

resection tracts that spanned 10.5kb (Figure 4.3a). This lead to the suggestion that Mekl 

protein negatively regulates VDE-DSB resectioning, and it is this action that both 

minimises the possibility of exposing flanking homologies, and improves the chances of a 

homologue being used as a repair template in meiosis. Deletion of MEKI has been 

demonstrated to reduce the steady state levels of Spol1-DSBs, (Leem and Ogawa 1992; 

Xu, Weiner et al. 1997)(this study, data not shown), which may indeed be a reflection of 

increased resectioning in a mek10 background. As outlined in Chapter 4, this proposed 

mode of action does not preclude a role for Mekl in blocking intersister repair, however 

both mechanisms may contribute in the push towards interhomologue repair. 
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The fact that MEKJ was epistatic to SAE2, in the repair assay (Figure 4.2b), places Mekl 

protein at an early stage of regulation of VDE-DSB repair. 

In Chapter 5, genes known to be involved in the formation and processing of Spol 1-DSBs 

were studied. As expected, null mutations of MREII, RAD50 and XRS2 (MRX) were 

demonstrated to reduce repair of the VDE-DSB (Figure 5.2b), and were also impaired for 

resectioning that spanned 5kb (Figure 5.3a, first deletion product). 

Exol Protein is required to Create Longer Resection Tracts 

A null mutation of EXOI was found to cause a decrease in second deletion product 

formation (Figure 5.3a), implicating Exol protein in the generation of 10.5kb resection 

tracts. Indeed, Exol protein may be the redundant nuclease that creates these longer 

resection tracts in the absence of components of the MRX complex. Furthermore, the rate 

of resectioning in an exol it background appeared to be retarded (Figure 5.41 and Figure 

5.4ii). The next logical experiment would be to examine VDE-DSB repair in a double 

mre110 exo10 mutant, where it would be predicted that little/no deletion repair would 

occur. 

Requirement of Tell-Xrs2 Protein Interaction for DSB Repair Response 

Chapter 5 examined VDE-DSB repair in a truncated allele of XRS2, (xrs2-11, C-terminal 

A162aa), and it is via this region that Xrs2 protein interacts with the ATM homologue, Tel 1 

(Morrow, Tagle et al. 1995; Mallory and Petes 2000; Nakada, Matsumoto et al. 2003). 

Therefore, the xrs2-11 mutant was used to test a hypothesis about Tell protein that has 

emerged from preliminary experiments in the laboratory. Initial studies have demonstrated 

90 



(a) Southern Analysis of DSB Repair at the arg4-VDE allele 
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Figure 7i: Physical analysis of DNA repair events at the arg4-VDE allele (a) DNA 
extracted from WT (dAG630) and xrs2-1I (dAG 1271) strains and southern analysis 
performed (see Figure 5.1). (Time points shown above gel images). Graphs below gels, 
display DNA repair intermediates as a proportion of VDE-chromatid DNA: parental DNA 
(15kb band on gel, blue plot on graph), VDE-DSB DNA (5.5kb band, yellow plot), first 
deletion product (10kb band, pink plot) and second deletion product (4.2kb band, turquoise 
plot). (b) Accumulation of VDE-DSB DNA in WT and xrs2-11 strains, (normalised to 
amount of residual parental DNA). (Data from n=4 experiments per strain) 



(c) VDE-DSB Band Profiling 
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Figure Iii: Signal Intensities of VDE-DSB bands: Profiles of signal 
intensities running through the VDE-DSB bands of WT (dAG630) and xrs2- 
11 (dAG 1271) strains at T=4hr (see Figure 7i, time points boxed). The curves 
are normalised to the maximum signal within the bands and stacked for 

comparison. The narrow, symmetrical curves of WT and xrs2-11 reflect 
discrete VDE-DSB banding. (Data from n=4 experiments per strain) 



Chapter 7: General Discussion 

that a partial deletion of TEL1 causes a delay in DSB resectioning at both Spol l- and 

VDE-induced DSBs, prior to VVT levels of repair (M. J. N and A. S. FI. G Unpub. ). It was 

surmised that the observed delay in DSB resectioning could be caused by the inability of 

tell cells to induce an appropriate DSB repair response. This is reasonable, as Tell protein 

and the MRX complex comprise a DNA damage response pathway (Usui, Ogawa et al. 

2001). Thus, in the presence of WT Spol l-DSBs, the role of Tell protein would be to 

transmit the damage signal, for activation of the MRX-mediated DNA damage response. 

Resolution of the DSB resectioning delay may occur when the accumulating DSBs 

eventually trigger activation of the MRX complex, via a secondary Tell 

protein-independent mechanism. 

r 
The ade2:: arg4-VDE reporter assay was used to examine whether an xrs2-11 mutation 

would also cause a delay in VDE-DSB resectioning, possibly due to a failure of 

transmission of the Tel l-signal. When comparing the kinetics of VDE-DSB repair from full 

WT and xrs2-11 meiotic time courses, there was a transient accumulation of VDE-DSB 

DNA in the xrs2-11 mutant, up to T=5hr (Figure 7i(a), yellow plot). When normalised to 

the amount of residual parental DNA, there was a greater than two-fold increase in VDE- 

DSB DNA in xrs2-11 compared to WT, at T=3hr (Figure 7i(b)). Figure 5.2b demonstrates 

that by T=8hr, repair of the VDE-DSB in the xrs2-11 mutant has been restored to a WT 

level. 

The phenotype observed in xrs2-11 suggests a delay in DSB resectioning at the VDE-DSB 

site, which concurs with the previous tell study (M. J. N and A. S. H. G Unpub. ). This 

suggests that it is not the presence of Tell protein at the VDE-DSB site per se, that 
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Chapter 7: General Discussion 

generates the DNA damage response, but rather the specific protein interaction between 

Tell and Xrs2. It is expected that DSB resectioning at SpoI l-DSB sites would be similarly 

delayed in an xrs2-11 mutant, due to the mutual requirements of Spol 1- and VDE-DSBs on 

the Tell-Xrs2 interaction for the DNA damage response. (Figure Iii displays the signal 

intensities running through the WT and xrs2-11 VDE-DSB bands at T=4hr, (normalised to 

the maximum signal). Despite the delay in VDE-DSB resectioning in xrs2-11, the banding 

profile remains almost identical to WT). 

When XRS2 was examined in a genetic screen for mutations that affect the regulation of 

resectioning, (Chapter 6), no novel mutants were identified. The human (h)NBSI gene is 

mutated in the human chromosomal instability disorder, Nijmegen breakage syndrome 

(NBS), however no resectioning phenotypes pertaining to a loss of regulation of DSB 

repair were identified in random xrs2 mutants. NBS is caused by a truncated allele, and one 

possibility is that the method of mutagenesis used in this study did not provide a wide 

enough spectrum of mutations in XRS2 (base transitions). Therefore, a different method of 

mutagenesis could be employed if this screen was to be repeated, for example library 

mutagenesis by PCR (reviewed in (Ling and Robinson 1997)). 
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Figure 4.4i: Protein Sequestration at Sites of Excess ssDNA. A schematic representation 
of the events at multiple Spol 1-break sites and the singular VDE-DSB site during meiotic 
DSB repair. Transient ssDNA formation at Spoll -DSBs in WT. is not sufficient to 
sequester the SSA proteins away from the VDE-DSB site. In sae2A and spoilt mutants. 
(also spo//f dm(-IA, not shown), the absolute lack of ssDNA at Spol I-DSB sites frees up 
all of the available RPA/Rad52 protein for coating the ssDNA at the arg4-VDE allele, 
allowing optimal repair. In dme/A cells. hyperresectioning of the accumulating Spol I- 
DSBs generates sufficient ssDNA to sequester the SSA-required proteins away from the 
VDE-DSB, therefore impairing SSA repair of the arg4-VDE allele. Table 4.4i summarizes 
the predictions for protein sequestration and the associated VDE-DSB repair data, based on 
the results from Section 4.2. 
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Figure 4.4ii: Quantification of VDE-DSB Turnover in sne2A. DNA 
extracted from WT (dAG630) and sue2A (dAG 1200) strains and 
southern analysis performed (see Figure -I. I ). Turnover of VDE: -DSI3 
is delayed in sae2A . (Turnover expressed as a proportion of' VDF- 
chronmatid DNA). (Data from n=4 experiments per strain) 
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Figure 5.4ii: Signal Intensities of VDE-I)Sll bands: Profifes of signal 
intensities running through the VDE-DSB hands of' WT (dAG630) and ce. re, /A 
(dAG 1305) strains at I =4hr (see Figure 5.4i(a), time points boxed). The 
curves are normalised to the maximum signal within the hands and stacked 
for comparison. The wide shoulder of the e. re/A graph rýtflccts smearing of 
the VDE-DSB, while the narrower (symmetrical) curve of WT reflects 
discrete VDE-DSB banding. (Data from n=4 experiments per strain) 

High MW Low MW 


