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Abstract 

This thesis examined how light stable isotopic analysis could be used to examine the 

provenance of archaeological wool textiles preserved by anoxic waterlogging.  

Preliminary studies in modern sheep wool samples showed that their carbon (δ
13

C), nitrogen 

(δ
15

N), un-exchangeable hydrogen (δ
2
H) and oxygen (δ

18
O) composition varied 

systematically with geographical location in British Isles and Iceland, but were significantly 

influenced by farming practice (fodder provision, fertilizer use). Keratin and collagen isotope 

values within a single sheep were shown to be systematically related. Experimental 

characterisation of the isotopic effects of wool degradation by elemental, amino acid and 

isotopic composition showed that changes in experimentally buried samples were minimal 

compared to samples treated under high-temperature hydrous conditions, which showed 

significant hydrolysis, oxidation and racemisation.  

These results were used to interpret data from 101 archaeological textiles from contexts 

dated between AD 7001600 from excavations at Reykholt, Iceland; York and Newcastle, 

Britain; Hessens, Germany; and Birka, Sweden. Local isotope range for each location was 

defined by assemblage median ± maximum variation derived from a modern flock. Isotopic 

identifications of local/non-local wool did not always correspond to typical/atypical 

interpretations of textile origin based on features of textile construction, fibre type and dye 

use. Thus distinctions could be made between the movement of textiles (atypical 

construction, non-local composition), movement of textile techniques (atypical construction, 

local composition) and movement of raw wool (typical construction, non-local composition). 

The most significant limitation of the technique was insufficient isotopic difference between 

regions of origin and deposition. The results made a significant contribution to understanding 

the origin of a number of specific textile types, including the much-discussed ‘Frisian cloth’. 
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1. Introduction 

The purpose of this section is to provide a context for the research chapters that follow, by 

(1) introducing the study of medieval textiles, focusing particularly on (2) how assessments 

of origin have been made; (3) explaining the basis of studies of isotopic composition, with 

particular reference to the biochemical structure of hair; and (4) exploring how these two 

methods of understanding archaeological medieval textiles can be combined to understand 

their origin. 

1.1. Research into medieval textiles 

Wool textiles are among the most complex artefacts found in medieval archaeological 

deposits in Europe. Their technology of manufacture and some aspects of their use are 

largely reconstructable from the artefacts themselves, even where the tools do not survive 

(Walton Rogers 2011b). These objects are the products of multi-stage and multi-tool 

manufacturing processes (Jenkins 2003; Table 1.1), leading to a very wide range of possible 

textile types, which varied across Europe. Wool textiles were bulky, non-fragile, varied and 

valuable, and constituted the most important class of manufactured object in long-distance 

trade in the later Middle Ages, and possibly well before this (Munro 2003, 181). 

Non-mechanised textile production is a highly labour-intensive process. Andersson (1999, 

11-13) calculated that using a drop spindle to spin enough yarn for the clothing of two people 

requires nearly 2,000 hours, or for a single sail, 3 person-years. Textile manufacture is also 

characterised by its potential for high specialisation. From the beginning of the medieval 

period (5
th
 century onwards) and in rural settlements, all manufacturing steps (Table 1.1) 

were probably carried out by the same group of people within a community; however 

towards the end of the period (13
th
 century onwards), and in urban settlements, each stage 

is likely to have been practised by a different group of specialised craftspeople (Munro 2003; 

Andersson 2007). Such industry, whether on a domestic or workshop scale, was therefore a 

significant investment in time for a society, and its organisation was socially meaningful 

(Barber 1991; Costin 2001). Medieval textile manufacture is therefore of great importance for 

understanding contemporaneous society. 

The raw material for many of these artefacts and activity, wool, was produced across Europe 

throughout the Middle Ages (Ryder 1984; Costin 2001). Sheep could be kept successfully on 

land where arable cultivation or cattle farming would be more difficult (e.g. McGovern et al. 

2007), and hence were an important feature of farming on poor soils e.g. in upland 

environments. Indeed it is speculated that the finest (i.e. narrowest) fibres were produced 

then, as today, from animals raised on poor grazing (Munro 2003, 186-9). However, in areas 

of good soil, sheep could also be important adjuncts to arable farming, with their manure 
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Table 1.1. Medieval wool textile manufacturing processes (see e.g. De Poerck 1951; Hoffmann 1964; Walton 1989; Hoffmann 1991; Walton 1991; Walton 

Rogers 1997; Cardon 1999; Jenkins 2003; Walton Rogers 2007c). 

Element Process Objective 

Fibre Farming and shearing/rooing Produce raw fibre and remove from sheep either by cutting or plucking 

 Selection* Select wool of desired fibre diameter range, length and crimp (waviness); ensure uniformity of 
fibre 

 Scouring, washing
†
 Remove lanolin and dirt 

 Combing, carding, bowing Align fibres to desired degree and remove particulates 

 Scouring, washing
†
 Remove lanolin and dirt 

 Dyeing
†
 Produce desired colour 

Yarn Spinning, plying Produce yarn of desired twist, thickness, uniformity and strength; combine single yarns into cord 
or plied yarns 

 Scouring, washing
†
 Remove lanolin and dirt 

 Dyeing
†
 Produce desired colour 

Textile Preparing warp for loom Measure out lengths required, (depending on loom type ) create starting border, attach to loom, 

 Weaving Interlock warp and weft to create textile. The warp is tied to the loom under tension; the weft is 
drawn through the warp yarns at right angles. Add finishing border  

Finishing Fulling Remove dirt and shrink cloth to strengthen 

 Tentering Stretch shrunken cloth to desired weight 

 Teaselling, shearing Brush surface to raise nap, cut nap to desired length and evenness 

 Dyeing
†
 Produce desired colour 

Use/Reuse Cutting, sewing Produce desired shape 

*Selection of wool is not likely to have been universal.  

†
Scouring, washing and dyeing may be carried out at several stages during textile preparation, but need not necessarily be carried out more than once. 

2
0
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used as fertilizer (e.g. Biddick 1989, 103). The importance of wool production in sheep-

keeping however depended on a complex interaction between the genetic potential for wool 

quality of local sheep, the nature of agricultural land, workforce availability and prices for 

agrarian products of all types (Stone 2003). Medieval wool textiles therefore lie at the 

intersection of technology, society and environment (Andersson Strand et al. 2010). The 

archaeological remains of these spheres of activity are objects of wide application to 

understanding the medieval past.  

Note that in the following sections, a ‘wool textile’ denotes a textile made of wool, as the 

term ‘woollen’ is reserved for a specific preparation technique in a medieval textile context 

(Table 1.2). Discussion includes finds from 7
th
-16

th
 centuries from across northern Europe, 

from Greenland to Finland, and from Norway to Italy. 

1.1.1 Sources of evidence for medieval textile research 

The modern study of textiles from the Middle Ages employs evidence from archaeological, 

documentary, iconographic, ethnographic, experimental and scientific fields. Archaeological 

textiles are the most important source of evidence for the earlier part of the period (to the 

12
th
 century, approximately), while documentary records dominate understanding of later 

medieval textiles: compare the following representative bibliographies: Coatsworth and 

Owen-Crocker (2007) for the earlier period and Munro (2011) for the latter. 

Archaeological textiles have been recovered from northern European graves of the 5
th 

century onwards, mostly in the form of mineralised pseudomorphs (e.g. Bender Jørgensen 

1986; Bender Jørgensen 1992; Médard et al. 2007; Walton Rogers 2007c) or as material 

preserved by anoxic waterlogging (e.g. Geijer 1938; Hägg 1991; Christensen and Nockert 

2006). Material preserved by anoxic waterlogging predominates in settlement deposits in the 

7
th
 century and later. A number of very large assemblages of this type have been recovered 

(e.g. Hägg et al. 1984; Walton 1989; Hägg 1991; Maik 1991; Crowfoot et al. 2001; Østergård 

2004; Brandenburgh 2010). In addition to the textiles themselves, archaeological finds of the 

tools used in textile manufacture have been investigated to explore the nature of production 

(e.g. Walton Rogers 1997; Andersson 1999; Walton Rogers 2001; Walton Rogers 2007b; 

Mårtensson et al. 2009). 

Analysis of this material has included collaboration with craft weavers (Hoffmann 1964; 

Hammarlund and Vestergaard Pedersen 2007; Hammarlund et al. 2008) and experimental 

archaeologists (Pfarr 1999; Goldmann 2007; Reurink and Pedersen 2009), and has 

incorporated a number of ethnographic parallels (Hoffmann 1964; Weir 1970; Grenander 

Nyberg 1974; Ling Roth 1981; Schneider and Weiner 1986; Schneider 1987; Hurcombe 

2007, 136-7, 140-1). Archaeobotanical and zooarchaeological data have been used to 

explore dyeing (Hall 1996) and sheep management practices (Crabtree 1996; Loveluck 

2007, 96-8). The history of sheep farming has also been of interest (Malden 1915; Trow-

Smith 1957; Donkin 1958; Ryder 1983; Stone 2003). Finally, collaboration with natural  
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Table 1.2. Glossary: relationships of technical terms and tools in medieval textile manufacture. For further details see e.g. Walton (1991), Coatsworth and 

Owen-Crocker (2007) or Munro (2003). 

Element Process Tools Features 

Fibre Combing, 
carding, bowing 

Wool combs Of several types:  

(1) short-toothed wool combs used as later cards until their introduction (see below);  

(2) long-toothed wool combs used for longer, straighter fibres: aligns them tightly, for 
spinning into smooth, dense, shiny yarn (‘worsted’ type) , from 13th-14th century;  

(3) tog combs used in Nordic countries to divide coarse hairs from undercoat in double-
coated fleeces 

  Wool cards Introduced 14
th
 century. Best suited for shorter, crimpier fibres: aligns them loosely for 

spinning into soft fluffy yarns (‘woollen’ type) 

  Wool bow (rare) As for carding (Chorley 1987) 

Yarn Spinning, plying (Drop) spindle with 
whorl, or thigh-rolling 
with a spindle 

Oldest spinning tool: weight and diameter of whorl affect diameter and degree of twist of 
yarn spun, but this is very dependent on the spinner’s skill. Spinning and winding on 
(winding up the yarn produced) are two separate processes. 

  Spindle wheel, also 
called ‘great wheel’ or 
‘walk wheel’ 

Introduced late 12
th
/early 13

th
 century. Approximately three times as efficient as spindle 

with whorl but some differences in quality. Spinning and winding on are separate 
processes. 

  Spinning wheel, also 
called Saxony wheel 

Introduced late 15
th
 century. Has U-shaped flyer which allows simultaneous spinning and 

winding on: twice as fast as spindle wheel.  

  Distaff (optional) Tool to hold combed/carded/bowed wool fibres as they are spun 

 General remarks on spinning directions Clockwise spinning is denoted Z; anti-clockwise S.  

Fabric Weaving Warp-weighted loom Warp is tensioned with weights. Weaving proceeds downwards from top of loom. Weft 
yarns are beaten into place using a weaving sword. The heddles, which are bar and loop 
systems producing the temporary separation of warp yarns (shed) to allow the weft to 
pass, are moved by hand.  

 

2
2
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Table 1.2 continued. 

Element Process Tools Features 

Fabric Weaving Upright, two-beam 
loom 

Warp is tensioned between two beams in an upright frame. Weaving proceeds upwards 
from bottom of loom. Weft yarns are packed into place using a toothed beater. The 
heddles are moved by hand. 

  Horizontal, treadle 
loom 

Introduced c. 10
th
-13

th
 century. Warp is tensioned between two beams in a horizontal 

frame. Weaving proceeds forwards, away from the weaver. Weft yarns are packed into 
place using a reed, a slotted wooden frame attached to the loom. The heddles are moved 
using a lever and pulley system operated by the foot (hence ‘treadle’). Faster to operate 
than other loom types but more costly to set up.  

 General remarks on loom-woven textile 
types 

All three looms can produce the two basic ways of combining warp and weft: tabby (over-
one-under-one) and twill (over-more-than-one-under-one-or-more), with an offset between 
each successive weft, producing a diagonal rib (the wale) on the surface of the cloth.  

Tabby requires only one shed per loom. 2/1 twill (over-two-under-one) requires three and 
2/2 twill (over-two-under-two) four. The number of heddles required per loom for each of 
these options differs: tabby requires one on warp-weighted looms but two on upright and 
treadle looms; 2/2 twill requires three plus the natural shed on warp-weighted looms, and 
four on upright and treadle looms; 2/1 twill requires three on warp-weighted and upright 
looms, but a variety of systems are possible on treadle looms.  

Twills can be made in plain, chevron, diamond or broken variants, where the direction of 
the wale is reversed at regular or irregular intervals to create a pattern. Such patterned 
fabrics are typically made of combed wool, and are not fulled or napped, so that the 
pattern is visible, but this is not invariably the case. In diamond and chevron variants, the 
pattern repeat, that is, the number of yarns before the wale is reversed to form the chevron 
or diamond, is an important variable. 

 Narrow- 
weaving 

Weaving tablets or no 
special tools 

A variety of methods of producing tapes and cords: tablet-weaving, finger-looping, braids 
(Walton Rogers 2007c, 35-6) 

 

2
3
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Table 1.2 continued. 

Element Process Tools Features 

Fabric Non loom-
woven textiles 

Frame or needles A variety of methods of producing textiles using a warp yarns in a frame (sprang), a single 
needle and warp yarn (nålebinding) or two needles and warp yarn (knitting). Sprang 
existed before the medieval period and was largely superseded by knitting from the 14

th
-

15
th
 centuries (Buckland 1979; Turnau 1983).  

 Non-woven 
textiles: felt 

No special tools Production of cloth from carded wool by pressure and friction (no spinning or weaving) 

Finishing Fulling and 
tentering 

Tank/trough; (if 
mechanised) fulling 
mill with tilt hammers; 
hooks, frame 

Cleans cloth, strengthens cloth by shrinkage, slight matting of surface, stretch cloth 
afterwards to standard size 

 Teaselling, 
shearing 

Teasel frame, shears Brush surface to raise nap, cut nap to desired length and evenness, repeat until desired 
quality reached. Typically carried out on textiles made from carded yarn, as their fluffy 
short fibres make a better surface. 

Use/Reuse Cutting, sewing Shears, needles Cutting and re-cutting clothing; joining sections, decorative stitching 

2
4
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scientists has developed methods to identify dyes (Walton and Taylor 1991; Ferreira et al. 

2004; Clementi et al. 2007), date finds (Arneborg et al. 1999; Araki and Moini 2011) and 

analyse fleece quality (Ryder 1968; Walton Rogers 1995; Rast-Eicher 2008; Gleba 2012b). 

Understanding the nature of decay in archaeological wool textiles is also an important field 

of study (Needles and Regazzi 1987; Peacock 1996; Chen et al. 1998; Peacock 2001). 

The manufacture of wool textiles was of central economic importance to a number of 

European countries during the later Middle Ages, with both raw materials and finished 

products being traded considerable distances. The documentary records of this industry and 

trade have generated a very substantial literature (e.g. Salzman 1923; Power 1941; De 

Poerck 1951; Carus-Wilson 1952; Salzman 1964; Chorley 1987, 1988; Biddick 1989; Munro 

1994; Cardon 1999; Munro 2003; Spufford 2006, 232-41, 326-9; Bell et al. 2007; Jahnke 

2009). The sparse documents referring to wool or wool textiles before the 12
th
 century have 

also been examined, as have contemporaneous iconographic sources, such as manuscript 

illustration, painting and sculpture (Owen-Crocker 2004; Walton Rogers 2007c). 

Iconographic sources are also of use in the later medieval period (Scott 1986; Monnas 

2008). Linking documentary references to textiles to specific find types is however difficult 

and relatively rarely attempted (e.g. Carus-Wilson 1969; Nahlik 1976; Hägg 1994; Walton 

Rogers 2002, 2882-3; Pritchard 2003; Pedersen and Nosch 2009; Walton Rogers 2011a). 

Exceptional finds of cloth samples attached to associated contracts are therefore of great 

interest (Wolff 1983; Cardon 1991).  

1.1.2 Foci of medieval archaeological textile research 

Archaeological data relating to textiles in the Middle Ages have been used to investigate a 

range of questions. Most are primarily textile-related, such as the adoption of new weaving 

technologies (Walton Rogers 2001), the use of textile technical features as markers of 

culture groups (Bender Jørgensen 1992; Walton Rogers 2007c, 229-52), reconstruction of 

costume (Hägg 1983; Walton Rogers 2007c, 139-228; Fransen et al. 2011), organisation of 

textile production (Henry 1999; Crummy 2002; Andersson 2007; Walton Rogers 2007a) and 

identification of trade and cultural links between sites or areas (e.g. Geijer 1980; Ingstad 

1982; Bender Jørgensen 1986; Walton 1989; Maik 1990; Bender Jørgensen 1992; Tidow 

1995; Rammo 2009). These topics have wider implications for questions of economic and 

social development in the European Middle Ages, such as the interrelationship between 

organisation of craft production and gender identity (Härke 2003; Speed and Walton Rogers 

2004), or settlement character (e.g. Walton Rogers 1997; Andersson 2003; Walton Rogers 

2007a).  

Understanding these patterns is however complicated by chronological imbalances of 

sources of evidence. For example there are no data on the prices of specific textiles from the 

8
th
 century, as contemporaneous documents do not record this, and it cannot be measured 

in archaeological finds; however in the 15
th
 century there are abundant documents referring 
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to prices of textiles (e.g. Chorley 1987) and raw wool (Munro 1978). Conversely, there is 

little data on rural textile consumption in the 15
th
 century, as contemporary documents focus 

on urban concerns, and waterlogged textiles are almost universally found in towns; but rural 

textile consumption of the early medieval period has been reconstructed from grave good 

remains (Walton Rogers 2007c). Thus the relative abundance of historical data in the later 

Middle Ages, and of archaeological data from the earlier period, has meant that different 

questions have been asked about textile manufacture, distribution and consumption in each 

period. 

Historical thinking about the range and volume of movements of raw wool and wool textiles 

during the medieval period developed significantly during the 20
th
 century. Writing in 1975, 

Postan devoted 8 out of 12 pages in a summary of Britain’s international trade in the later 

Middle Ages to a discussion of the wool trade (Postan 1975, 208-21). This is indicative of the 

dominance of this activity in discussions of later medieval economic development at the mid 

20
th
 century (Power 1941; Carus-Wilson 1952). For the earlier medieval period, scholars 

have suggested or implied that it: 

 was close to nil (Grierson 1959; de Roover 1965, 42; Riu 1983; Maik 1983), 

 showed continuity with Roman patterns (Ponting 1961, 1; Munro 2003, 216), 

 foreshadowed 13
th
 century trade patterns (Sawyer 1965; Lloyd 1977, 1-6), 

 was primarily associated with the major trade fairs from the 7
th
 century onwards 

(Verlinden 1965, 121), 

though none of these suggestions claimed mutual exclusivity. By the early 21
st
 century, 

however, a different historical picture of early medieval economic development had 

emerged, in which scholars specifically focused on shorter-term fluctuations and regional 

patterns of economic activity (Hodges 1982; McCormick 2001; Verhulst 2002; Wickham 

2008; Barrett 2008; Sindbæk 2011). Thus the historical understanding of medieval wool 

textile trades can be shown to have shifted its perspective considerably over the last 60 

years.  

One of the drivers of this change has been the rapid accumulation of archaeological data 

from excavations in European medieval towns from the 1970s onwards (e.g. Clarke and 

Ambrosiani 1991; Schofield and Vince 1994; Arnold 1997; Swanson 1999; Richards 2000), 

which has included significant quantities of textiles. Their analysis has consistently been 

carried out with reference to historical data and its terms (e.g. Geijer 1938, 40-7; Crowfoot et 

al. 2001; Pedersen and Nosch 2009). Recently there has been an increase in work which is 

primarily archaeological, focusing on the earlier part of the Middle Ages (Walton Rogers 

2007c, a; Siegmüller and Peek 2008).  



27 
 

1.1.3 Established methods of analysis 

Modern analysis of an archaeological wool textile assemblage is likely to include: (1) 

description of all finds in the assemblage in terms of technical features of structure and 

evidence for subsequent use; and possibly (2) examination of a subset of samples for fleece 

types and/or dye use. The established core group of variables and their modes of 

measurement are listed in Table 1.3. Some of these features have functional dependence, 

e.g. the uniformity of fibre diameter in a sample of fleece can limit the regularity of yarn that 

can be spun from it. Most features do not have functional dependence, such as spin 

direction with selvedge type, or yarncount with weave type. However in archaeological 

assemblages, strong associations between such technical variables are often discernible, 

and may show strong geographical or temporal variation.  

 

1.2 Identifying the provenance of archaeological textiles 

Distinguishing local from non-local artefacts in an archaeological assemblage from a site is 

an essential step towards understanding the economic, technological, social and cultural 

links between that site and others, and to establish the range of craft processes occurring 

there. Textile specialists acknowledge that identifying non-local textiles in an assemblage 

using analysis of technical features, even combined with dye and fibre characterisation, is 

‘difficult if not impossible’ (Gleba 2012a). Instead the focus has been on distinguishing 

typical from atypical textiles in an assemblage, with an awareness that this is not the same 

as distinguishing local from non-local material. However the bases for such identifications 

are often similar (e.g. Olausson 1988), incorporating assessments of the frequency of 

specific technical features in objects from similar sites, overall spatial distribution of similar 

objects, and the identification of raw materials which could not have a local origin. 

Arguments for and against the identification of an atypical textile as non-local are highly 

specific to region and time period, and typically incorporate evidence from other sources 

(section 1.1.1). This section examines a number of examples where provenance has been 

suggested, showing how these ideas have been contextualised.  

1.2.1 Interpreting atypical/typical technical features 

Table 1.4 lists a number of examples of atypical textiles found in medieval contexts, showing 

the other sources of information which have been used to support a suggestion of non-local 

origin; examples considered typical of local production are listed in Table 1.5. For the later 

medieval period documentary sources of evidence are used to support these identifications, 

but this is more difficult earlier than c. AD 1200, when most arguments are based on 

frequency and quality. It is clear that analysts are aware of a number of potential 

confounding factors in these identifications, which include: 
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Table 1.3. Variables measured in medieval archaeological wool textile analysis (Walton and Eastwood 1984). *denotes not recorded by all researchers. 

†
denotes typically carried out on a subset of textiles in an assemblage.  

Element Feature Measurement Measurement type 

Overall Size of find Maximum width and height parallel to weave systems Quantitative 

 Present colour* Visual impression Qualitative 

 Dye
†
 Identification of dye source(s), sometimes mordant or other special 

conditions of dye bath (Walton and Taylor 1991) 
Qualitative 

Fibre Fleece type
†
 Diameter range and distribution of 100 fibres Quantitative and 

qualitative 

Yarn Yarn spin/ply direction Z or S Qualitative 

 Yarn spin/ply tightness* Angle to direction of yarn Quantitative 

 Yarn diameter* Maximum and minimum  Quantitative 

Textile Yarncount  Average per cm in both warp and weft Quantitative 

 Construction (weave type) Typically tabby, 2/1 twill, 2/2 twill, tablet weaving, braid techniques. Twill 
subtypes: chevron (regular reverses in either warp or weft), diamond (regular 
reverses in both systems) or broken (irregular reverses in one system). The 
nature of the reverse and the regularity of the patterns are also recorded. 

Qualitative 

 Structural features Nature of selvedges, starting borders, pile, weaving faults (if present), 
number of wefts in use 

Qualitative 

Finishing Napped surface, pile Density, evenness (if present) Qualitative 

Use/Reuse Cutting, sewing Folds and fold marks (hems or seams), sewing (structural or decorative), 
fastenings, cut edges, items joined together, stitching holes, knots, etc. 

Qualitative 

 Wear Worn patches, matting (if present), presence of paint, tar or resin  Qualitative 

 Context Deposit type (cess pit, midden, land reclamation dump, ritual deposit, etc). In 
graves: location on body, relationship to other textiles in grave 

Qualitative 

2
8
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Table 1.4. Interpreting atypical textiles from medieval assemblages. Sample ID refers to analyses in Chapters 78. 

Textile description Region/site  Period  Suggested 
interpretation 

Other data used Reference Sample 
ID  

Plain 2/2 ZZ twills 
(‘Haraldskjær’ type) 

Norway  3
rd

 century 
onwards 

Local: spread of the 
warp-weighted loom 
and abandonment of 
the upright loom 

Widespread earlier in DK; associated 
with finds of loom weights 

(Bender 
Jørgensen 
2003b, 93-6)  

 

Diamond twill with Z-spun 
warp and S-spun weft, 
mostly 20/18 pattern unit 
(‘Virring’ type) 

Scandinavia 3
rd
4

th
 

centuries 

Non-local Usually in more developed (finer) 
wool types than Haraldskjær and 
Huldremose types (both widespread) 

(Bender 
Jørgensen 
2003b, 93-6)  

 

Textiles with tubular 
selvedges, 2/1 twills, and 
textiles with soft finishing 
found at same sites 

East Anglia 5
th
7

th
 

century 

Local: survivals of 
Romano-British 
textile cultures within 
Anglian dominated 
area 

Toponymic evidence of 
geographic/political boundaries; grave 
goods in local cemeteries; earlier 
archaeology of wider region; 
documentary sources 

(Walton Rogers 
2012a) 

 

Madder-dyed 2/1 twill Hessens, 
North 
Germany 

7
th
8

th
 

century 

Possibly non-local Both 2/1 twills and madder dye are 
rare in textile collections from this 
region at this date 

(Tidow 1995; 
Walton Rogers 
1995) 

4329 

2/1 twills Urban 
deposits in 
England 

10
th
 

century 
onwards 

Local: re-
introduction of the 
upright loom 

Iconographic evidence; historical 
evidence; absence of loom weights; 
change of tool types to those 
associated with upright loom; nature 
of 2/1 twill textile construction 

(Walton Rogers 
2001) 

4081-3 

Tabby textiles, heavily 
fulled and napped, mostly 
in SS yarns 

Reykholt, 
Iceland 

c. AD 

14001600 

Non-local Technical features (individually and in 
combination) are rare in Scandinavia 
but widespread in mainland Europe, 
where manufacture is supported by 
historical, archaeological and 
iconographic data 

(Walton Rogers 
2012b) 

2903, 
3966, 
3967 

2
9
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Table 1.4 continued.  

Textile description Region/site  Period  Suggested 
interpretation 

Other data used Reference Sample 
ID  

Fulled, dyed textiles in 
Fine-type wool 

Tartu, 
Estonia 

14
th
15

th
 

century 

Non-local Wool type rare in region; cloth types 
resemble those from more western 
regions of Europe, where local 
manufacture is supported by 
historical, archaeological and 
iconographic data 

(Rammo 2009)  

Knitting fragment, kermes 
dyed, in Fine-type fleece 

Newcastle 
upon Tyne 

Early 15
th
 

century 
Non-local Unusual fleece type; unusual and very 

costly dye; unusual technique for 
region and period 

(Walton 1981, 
200) 

3944 

Knitted caps Newcastle 
upon Tyne 

Early 16
th
 

century 
Local: introduction of 
technique 

Fleece types resemble other local 
material; documentary evidence for 
arrival of technique; 
contemporaneous finds of knitting at 
other sites in Britain 

(Walton 1981, 
200) 

3950, 
3951 

 

3
0
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Table 1.5. Interpreting typical textiles from medieval assemblages. Sample ID refers to analyses in Chapters 78. 

Textile description Region/site  Period  Interpretation Other data used Reference Sample ID 

Spin-patterned tabby, 
normally striped but 
occasionally checked 
(‘Gudmingegaard’ type) 

South eastern 
Germany 

5
th
8

th
 century Typical Predominant in this area, 

infrequent in other areas 
(Bender Jørgensen 
2003a) 

 

ZS tabbies North 
Germany 

7
th
10

th
 centuries Typical Ubiquitous in this region and period (Hägg et al. 1984, 

111) 
4331 

ZS tabbies and 2/2 twills York, North 
East England 

9
th
11

th
 centuries Typical Common types; unremarkable 

quality 
(Walton 1989; 
Walton 1990) 

4060a, 
4064, 
4066-70, 
4073, etc 

ZS 2/2 twills with pigmented 
hard-spun warp in Hairy 
fleece and pale, loosely-
spun weft in Hairy Medium 
fleece (waðmál) 

Reykholt, 
Iceland 

c. AD 10001600 Typical Abundant in Greenland and across 
Scandinavia in the later medieval 
period (Walton 1989, 340-1; 
Østergård 2004) 

(Walton Rogers 
2012b) 

2895-9, 
3962-4, 
2902, 4120 

Fulled woollen SS tabbies 
and plain twills 

Newcastle 
upon Tyne 

15
th
16

th
 century Typical Widespread in contemporaneous 

urban assemblages; documentary 
evidence for local production of 
woollens 

(Walton 1981, 194, 
204-5) 

3946-8, 
3952-7 

3
1
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 rarity due to low volumes of production, either because of high cost (in materials or 

time), or low demand, e.g. considering an item appropriate for only a small number of 

uses or occasions (Schneider 1987). 

 movement of technology or of textile style rather than movement of textiles. The 

processes of development, adoption and competition of technologies depend on their 

functional, political, economic and social contexts (Pfaffenberger 1992; Dobres and 

Hoffman 1994). Geographical spread of technology need not proceed at the same 

rate or involve the same places as the spread of goods.  

1.2.2 Exotic raw materials 

For a number of the interpretations included in Tables 1.4 and 1.5, arguments for local/non-

local origin have been supported by analyses of the range of fibre diameters in a wool 

textile. Sheep were farmed across northern Europe in the medieval period, but the type and 

quality of fleece they produced varied (Munro 1978; Ryder 1984). Fleece quality refers to 

both fibre diameter and uniformity, and reflects genetic inheritance, environmental conditions 

and farming practice (e.g. Short 1955; Brown and Crook 2005; Safari et al. 2005; Geenty et 

al. 2009). A single fleece contains wool of several different qualities, being finest around the 

neck and roughest in the britch, and these can be separated by sorting and the initial fibre 

preparation step of combing, carding or bowing. Systems for analysing fibre characteristics 

in archaeological wool samples and relating them to breed groups (e.g. mountain, hill, 

downland, longwool) have been developed by Ryder (1968, 1981, 1991) and Rast-Eicher 

(2008). However relatively few examples of non-local textiles have been identified in this 

way, as fleece type analysis is laborious and not universally applied.  

There is an obvious qualification to using non-local fleece types as evidence of non-local 

origin: a non-local raw material is not the same as non-local textile, and identification of 

movement of raw materials is not a direct marker of movement of textiles, but could mark 

independent movements of raw materials. Large international markets in raw wool existed 

by the 13
th
 century, and for dyes even at the beginning of the 10

th
 century (e.g. madder in 

McCormick 2001, 651), and it is not clear how far back either of these trade flows existed. 

Therefore archaeological identifications of non-local textiles on the basis of their raw 

materials are typically combined with other non-local indicators.  

1.2.3 Competing interpretations 

The debate over the identity of ‘Frisian cloth’ provides an example of how textile 

interpretation can change depending on the interpretation and importance placed on 

different types of auxiliary data. This historical term, used in the 8
th
10

th
 century, mostly in 

the Frankish Empire (references in Ingstad 1979; van Uytven 1983; Walton 1989, 416; Hägg 

1994), clearly refers to cloths that were moved long distances.  

Geijer first associated this term with the finest 2/1 and 2/2 ZZ diamond and chevron twills 

from 9
th
10

th
 century Birka, Sweden (1938, 25) because of their very high quality which was 
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almost without parallel at the time. She considered that they must have been imports to 

Viking Age Sweden, possibly by Frisian merchants, and that the most plausible 

interpretation of the available documentary evidence was that they were mostly made in 

Frisia in specialist workshops (Geijer 1938, 40-7). Alternative suggestions for the origins of 

these finds were: the Levant, because of technical similarities to finds from Palmyra 

(Hoffmann 1964, 227-57; Nockert 1988); Western Norway, because of technical similarities 

to finds in graves there (Bender Jørgensen 1992, 138); or the British Isles, because these 

textiles were frequently found in graves with Anglo-Irish metalwork (Ingstad 1979). More 

recently however, Andersson Strand has demonstrated that the fine yarns and weave 

patterns in these textiles could have been made with the spinning and weaving equipment 

found at the settlement of Birka (Andersson 2003).  

An alternative identification of ‘Frisian cloth’ was made by Bender Jørgensen, who 

suggested that the term probably referred to 2/2 ZS chevron and diamond twills with a 

20Z/18S pattern repeat (Bender Jørgensen 1992, 142-3) because these types are common 

at sites in Frisia (Tidow 1995). A further suggestion by Hägg argued that plain fulled 2/2 ZS 

twills should be so considered, because this textile type was used for cloaks or coats in 

earlier men’s costume in Northern Germany (identified from grave goods), and historical 

references suggest the use of ‘Frisian cloths’ as coat/cloak materials (Hägg 1994). This 

position was seconded by Siegmüller and Peek (2008) who stressed the waterproof nature 

of fabrics made in this way from relatively primitive wool types, which are common at coastal 

sites in northern Germany and the Netherlands (Walton Rogers 1995).  

At present therefore, there is no consensus on which of the above mutually exclusive 

hypotheses may be correct, nor on which set of data should have precedence. Without the 

trial of new methodologies or new ways of interpreting the data already gathered, there can 

be no resolution to these inquiries. In particular, the null hypotheses that the above-

discussed works have sought to disprove would themselves be interesting to explore in 

more detail, for example that:  

1. the meaning of ‘Frisian cloth’ changed significantly over the period of its attestation, 

either in the nature of the cloth made or the location(s) of its manufacture; 

2. the term may have been a portmanteau word for a range of textiles made in Frisia or 

made elsewhere but traded by Frisian merchants. This range may itself may have 

changed over time.  

3. the methods employed currently by textile archaeologists do not record the features 

which distinguished ‘Frisian cloths’ from other cloths to contemporaneous observers. 

These alternative hypotheses all point to a more variable, less structured conception of early 

medieval textile movements than has so far been considered, but which is not inherently 

unlikely. It is possible to suggest methods of inquiry which could explore them, particularly if 

provenancing methods could be developed which are independent of textile structure. 
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1.2.4 Summary 

This discussion has illustrated the willingness of textile researchers to incorporate data from 

other disciplines into assessments of textile origin. Information on the nature of construction 

of a textile has been combined with: assessments of find frequency and distribution; 

associated archaeological finds of clothing accessories and textile tools; ethnographic and 

experimental explorations of textile manufacturing processes; understanding of the 

relationship between wool type and sheep breed group; and multiple interpretations of 

historical documents. This section has also explored an example where this flexibility has led 

to competing assessments of textile origin. Continuing to improve our understanding of 

movements of textiles and their raw materials throughout the Middle Ages is important 

because of the economic significance of these commodities, and the social significance of 

how their manufacture was organised. An independent method of establishing the origin of a 

sample of archaeological wool would be very useful in this context.  

 

1.3 Isotopic provenancing of organic materials  

1.3.1 Previous applications  

Most isotopic investigations of provenance of organic materials in archaeology have used a 

combination of oxygen (δ
18

O) and strontium (
87

Sr/
86

Sr) isotopes (e.g. Turner et al. 2009; 

Viner et al. 2010; Evans et al. 2012; Sjögren and Price 2013). Strontium is a trace element, 

found in relatively-to-very low concentrations, where it derives principally from soils and 

bedrock in any location (Sealy 2001). In contrast, oxygen is much more abundant in organic 

materials, and its isotopic composition is related to temperature, altitude, precipitation and 

distance from a coast, i.e. local climate (Pollard and Willson 2001). Combining these two 

independent measures allows tighter resolution of provenancing. The first investigations into 

isotopic provenancing in wool textiles focused on the strontium isotopic system (von Carnap-

Bornheim et al. 2007; Frei et al. 2009a; Frei et al. 2009b; Frei et al. 2010). However concern 

has been raised regarding the robustness of 
87

Sr/
86

Sr measurements to diagenesis in 

organic materials (Budd et al. 2000; Trickett et al. 2003), which is at least in part due to the 

fact that it is a trace element. 

The elements carbon, nitrogen, hydrogen and sulfur, are like oxygen, abundant in organic 

materials: it is of these atoms that the overwhelming majority of the soft tissues of organisms 

are built. Their isotopes (δ
13

C, δ15
N, δ2

H and δ34
S, respectively) have only occasionally been 

used in archaeology to explore geographic origin (Arnay-de-la-Rosa et al. 2010; Barrett et al. 

2008; Schroeder et al. 2009; Pollard et al. 2011), but have instead been widely employed to 

investigate diet (e.g. Sealy 2001; Craig et al. 2006; Reynard and Hedges 2008; Nehlich et al. 

2012). However, there is extensive evidence of these isotopes’ geographic variation from 

analysis of keratin in studies of modern human hair (Ehleringer et al. 2008; Valenzuela et al. 
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2011; Valenzuela et al. 2012) and bird feathers (Hebert and Wassenaar 2005; Brattström et 

al. 2010) and from food traceability studies (Hedges et al. 2005; Camin et al. 2007; Camin et 

al. 2009; Schellenberg et al. 2010). They are therefore also good candidates for exploring 

the geographical origin of archaeological material artefacts made from organic raw 

materials.  

1.3.2 Isotope basics  

All isotopic tracing techniques (Wassenaar and Hobson 2008) examine the chemical 

composition of a tissue, focusing on the number of neutrons in the nuclei of the atoms of a 

particular element. Some nuclei with additional neutrons are unstable (such as carbon-14) 

and these are not studied using this technique. However carbon, nitrogen, hydrogen, oxygen 

and sulfur all have stable versions of their atoms with different numbers of neutrons: carbon-

12 vs. carbon-13, nitrogen-14 vs. nitrogen-15, hydrogen-1 vs. hydrogen-2, oxygen-16 vs. 

oxygen-18, and sulfur-34 vs. sulfur-32. For all these elements, the fewer-neutron, lighter 

version (or isotope) is far more abundant (>94%) than the heavier. Isotopic analysis 

measures the proportion of the two versions of an element, compared to an external 

standard.  

All the atoms in the body of an organism are derived from the organism’s food, water and 

air. The isotopic composition of their body tissues therefore depends on the isotopic 

composition of diet, drinking water and air (this last affects oxygen isotope composition 

only). Different organisms (e.g. bacteria, algae, fungi, plants, birds, reptiles, mammals, etc.) 

concentrate the heavier isotopes to a greater or lesser extent in each of their tissues, 

depending on the nature of the sequences of reactions needed in the organism’s body to 

synthesise the tissue from its precursors absorbed from the environment. The isotope value 

of a sample of organic tissue therefore provides information about the diet and metabolism 

of the organism that grew it, which are dependent on the environment, and hence the 

location in space and time, of the organism. These relationships are the basis of many 

applications of isotope measurements to questions of ecology, climatology, and 

oceanography, as well as palaeo-applications of all these fields (Hoefs 1997). The 

relationships between isotopic composition and geographic location is a recognised subfield 

within isotopic bio- and geo-chemistry (Bowen 2010). 

1.3.3 Specific application to sheep wool samples 

In the case of sheep wool, its isotopic composition indicates the sheep’s dietary, drinking 

and respiratory consumption. Sheep diet consists of local plants and groundwater. The 

isotope values of the plants depend on plant species and growing conditions (Sealy 2001), 

and on rainwater isotope values (Wassenaar and Hobson 2008). Plants and rainfall isotope 

values vary across Europe with climate, reflecting the various influences of latitude, 

longitude, altitude, continentality and season (Bowen and Revenaugh 2003; Darling and 

Talbot 2003; Darling et al. 2003; Martin and Martin 2003; e.g. Camin et al. 2009). The 
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isotope values of sheep tissues therefore reflect the location and nature of the pasture(s) 

they graze (Piasentier et al. 2003; Hedges et al. 2005; Camin et al. 2007; Perini et al. 2009), 

with additional contributions reflecting the tissue under study and metabolic variations 

between individual sheep. Therefore the isotopic composition of a sample of sheep wool will 

vary systematically with geographic location, and can be used as an indicator of origin if 

geographic patterns of isotopic variation are known or can be predicted (compare Chesson 

et al. 2010; Valenzuela et al. 2011). The resolution of the technique for provenancing is 

limited by the inherent variability in isotope composition between tissues from individual 

sheep in the same flock, e.g. due to differences of age, sex, fleece colour and health status.  

Complicating this analysis are the effects of differences in farming practice. The types of 

plants consumed by domesticated sheep are controlled by humans (Figure 1.1) , either by 

designating grazing location or providing fodder (compare the effects of cultural dietary 

practices on human hair isotopic composition: Valenzuela et al. 2012). The ‘natural’ local 

isotope values for any location may therefore be affected by practices such as 

transhumance to altitude, intensive vs. extensive stock keeping, and provision of fodder 

during seasons of low plant growth (winter in cold areas and summer in hot). Unusual past 

foddering practices, such as the use of fish meal (Kosiba et al. 2007) and seaweed (Balasse 

et al. 2006), are discernible isotopically. Therefore the isotopic composition of a sample of 

sheep wool must be interpreted not only with reference to its location but also to its method 

of rearing. 

In summary, we expect that the isotope values of sheep wool from a single flock will cluster 

(but they will not be identical), and that the values of wool from flocks kept in different 

vegetation zones/climates and/or under different farming conditions will differ. These 

hypotheses were tested in chapters 2 and 3 respectively.  
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Figure 1.1. Schematic interrelationship of environmental and husbandry practices and their 

influence on sheep tissue isotope values.  

 

 

1.3.3 Significance of taphonomic decay in archaeological wool samples 

Wool is composed largely of proteins called keratins (Popescu and Wortmann 2010). There 

are several hundred types, which are combined to form the various structures of the wool 

fibre (Plowman 2003; Figure 1.2).  

 

  

Figure 1.2. Structure of a mammalian hair fibre. 
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Proteins are composed of long chains of amino acids (AAs; Figure 1.3). Twenty different 

types occur in mammalian proteins, and they show a range of isotope values due to the fact 

that they are synthesised in the body in a variety of ways, and from different components of 

diet (McCullagh et al. 2005; Styring et al. 2010; Fogel et al. 2010; cited in Boecklen et al. 

2011). The bulk isotopic composition of a hair fibre is therefore an average of those the AAs 

which make it up. Other minor components of a hair fibre, such as lipids and melanin, also 

make small contributions to overall isotope values. 

The proportions of the different types of keratin proteins differ little between wool from 

different sheep breeds (Flanagan et al. 2002), but do vary significantly as hair fibres decay 

during burial (Wilson et al. 2007). Pre-burial treatments of the fibres, such as exposure to 

light during use, mechanical stress during manufacture, and chemical change caused by 

mordanting or washing, may also directly affect protein proportions and additionally may 

promote or retard decay during burial. Therefore it is possible that the changes which have 

occurred in archaeological wool samples during burial may have affected their isotope 

composition. These effects were examined in samples of modern wool which had been 

experimentally buried (Chapters 4 and 5) or degraded in water at high temperature (Chapter 

4). The state of degradation of the residual decayed wool fibres was also assessed by: 

 elemental analysis, quantifying the proportions of carbon, nitrogen, hydrogen, oxygen 

and sulfur present, and  

 AA analysis, quantifying the proportions of AAs present, to indicate the degree of (long 

chain) protein breakdown into smaller units (peptides and/or individual AAs). 

The aim of these analyses was to gain additional information on the nature of the changes 

occurring in the hair fibre during decay, and thus gain insight into the mechanisms of any 

isotopic change. 

 

Figure 1.3. The primary structure of proteins. Image from Wikimedia commons.  
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1.3.4 Synthesis 

Chapters 25 of this thesis, which focused entirely on modern samples of sheep wool, 

established the scientific context in which isotopic data obtained from archaeological wool 

samples can be interpreted. They established the degree of resolution of this provenancing 

technique in samples from modern flocks (Chapter 3) and how much this was affected by 

flock composition and husbandry practice (Chapters 2 and 3), and diagenesis (Chapters 4 

and 5). At a single archaeological site, wool imported from areas of different climates and/or 

different farming practice are expected to show isotope composition which are outlying from 

site median, established by analysis of local-type textiles, but confirmed by analysis of raw 

wool and bone collagen isotope values from the same site. Suspected imported material is 

therefore not identified in isolation, but by comparison to local textiles’ and bone samples’ 

isotope compositions.  

 

1.4 Integrating isotopic data with established artefact approaches  

Identifying the origin of the raw material in an archaeological object is only one part of 

understanding that object. The isotopic composition of a sample of wool can only indicate 

the environment, and hence location, of the sheep that grew the sample, which need not 

correspond to the location of manufacture of a textile, or of is subsequent use(s). At rural 

sites, and in the early medieval period, it is likely that most textiles were made domestically 

from local wool (Walton Rogers 2007c, 41-8), but in the later period, and at urban sites, this 

is much less likely (Munro 2003). For a fuller understanding of an artefact’s biography, 

features of construction, wear and deposition must be considered with the analytical data.  

This thesis (Chapters 7 and 8) therefore considered isotopic composition data in the context 

of artefactual understandings of the textiles and the assemblages from which they were 

drawn, to attempt to distinguish between the movement of  

 raw wool (typical construction, non-local composition)  

 finished textiles (atypical construction, non-local composition) and 

 textile techniques (atypical construction, local composition). 

These three commodities (textiles, raw wool and textile craft knowledge) were unlikely to be 

under the same pressures of economic or social selection, and could therefore in theory 

move independently. In practice, this is not universally likely, because the nature of the 

finished textile is often closely related to the technical affordance of its raw materials 

(Knappett 2005; cited in Hodder 2011), though this can be mediated by craft knowledge. 

This integration therefore offered an opportunity to examine the underlying hypotheses of 

established methods of textile provenancing, which have rarely been explicitly articulated or 

debated (Chapter 6). 
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1.5 Summary and research questions 

This research applied stable isotope analysis to wool textiles in order to explore their origin. 

The study focused on textiles from AD 700-1600 from sites bordering the North Sea, a 

period and region for which there is historical evidence for textile movement which cannot 

always be closely related to extant archaeological wool samples.  

Research questions were as follows: 

1. Can light stable isotopic analysis identify the origin of samples of archaeological wool?  

To answer this, the analytical method was applied to modern wool samples from the 

region in question (environmental context) and to wool samples which had been 

experimentally decayed (taphonomic context) before being applied to archaeological 

samples.  

2. How can isotopic data can be understood in textile artefactual context? 

Isotopic data, indicating local/non-local raw material, was considered in the light of 

analyses of structural and stylistic features of textiles, indicating typical or atypical 

manufacturing for the site in question. Agreements and disagreements between 

isotopic and established provenancing methods (by dye, fibre and textile construction) 

were considered in detail.  
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2. Isotopic relationships between bone collagen and wool 

keratin in domesticated sheep 

 

Abstract 

A variety of metabolic, dietary and climatic influences on isotopic variation have been 

established in mammalian hair. The relevance of these factors to collagen isotopic 

composition is unknown, but would be of great interest to zooarchaeological analyses of 

faunal skeletal tissue. 

The relationships between carbon (δ
13
C), nitrogen (δ

15
N), non-exchangeable hydrogen (δ

2
H) 

and oxygen (δ
18

O) values of defatted, demineralised and gelatinised bone collagen and 

defatted wool keratin from two sheep flocks (n=20,5) in the UK were investigated, including 

testing for the effects of nutritional plane, sex, pregnancy and season of slaughter. Sulfur 

(δ
34

S) composition was also investigated for tissues from the smaller flock. Single amino 

acid (AA) δ
13

C composition were examined by liquid chromatography-isotope ratio mass 

spectrometry (LC–IRMS) (n=2), which resolved 19 of 22 constituent AAs.  

Bulk collagen was enriched over bulk keratin in δ
13

C by 2.02.7‰ and in δ
2
H by 2940‰ but 

depleted relative to keratin in δ
18

O by 1.8‰. Differences in δ
15

N were within experimental 

error. Collagen samples were generally more enriched in δ
34

S than keratin, but this was vary 

variable (range -0.13.3‰). Both collagen and keratin bulk δ
13

C showed seasonal variation. 

Collagen δ
13

C and δ
15
N were depleted in pregnant compared to empty ewes; δ

15
N in keratin 

showed the same pattern. For collagen, δ
15
N and δ

18
O were depleted and δ

2
H was enriched 

in males compared to females. The difference in δ
2
H between keratin and collagen was 

significantly greater in males than females. Nutritional plane did not significantly affect 

isotope values. Single AA δ
13

C values were almost universally slightly enriched in collagen 

over keratin (median 0.70.9 ± 0.10.5‰ per AA), but serine and glycine showed greater 

enrichment (2.7 .4 ± 0.5‰).  

This study established isotopic offsets between bulk sheep bone collagen and hair keratin 

for δ
13
C, δ

2
H and δ

18
O. Pregnancy, sex and season of slaughter significantly affected 

isotope values but did not change overall keratin-collagen relationships. Inter-tissue offsets 

were due to differences in composition, AA routing and probably turnover time. This dataset 

forms a baseline for isotopic investigations into archaeological sheep tissues. 

Keywords: protein, amino acid, collagen, keratin, metabolism, environment, sheep, wool, 

light stable isotopes 
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2.1 Introduction 

Isotope ecology studies of domesticated mammals typically focus on tissues which can be 

sampled non-invasively, such as hair, blood, or breath (e.g. Ayliffe et al. 2004; Cryan et al. 

2004; Männel et al. 2007; Wassenaar and Hobson 2008; Wittmer et al. 2010; Longinelli and 

Selmo 2011; Zazzo et al. 2011), or those which are of agricultural interest, such as milk (e.g. 

Kornexl et al. 1997; Chesson et al. 2010; Bontempo et al. 2012) or muscle tissue (e.g. 

González-Martín et al. 2001; Schmidt et al. 2005; Camin et al. 2007; Bahar et al. 2008). 

These tissues are however found rarely or not at all in archaeological deposits (Karsten et 

al. 2012). Zooarchaeological isotope analysis has instead focused on bone and tooth 

tissues, as they are more resistant to degradation and are widely preserved (e.g. Copley et 

al. 2004; Balasse et al. 2006; Henton et al. 2009; Viner et al. 2010; Towers et al. 2011; 

Makarewicz and Tuross 2012). Here, analysis of skeletal elements of domesticate species 

for size, stage of development and markers of damage are used to examine herd/flock age, 

sex structures, pathology, and hence animal management practices (e.g. Greenfield et al. 

1988; Crabtree 1996; Thomas 2005). Being able to apply the isotopic features of animal 

metabolism and management identified in modern studies to archaeological tissues is of 

great interest and would add significantly to understanding of past husbandry practices.  

This study therefore focused on hair keratin and bone collagen, probably the most widely 

used tissues in domesticate mammalian ecological and archaeological research 

respectively. The relationships between bulk hair keratin and bone collagen isotope values 

have been examined in a number of species (Table 2.1; to the authors’ knowledge there is 

no such δ
24

S data). Both collagen and keratin are typically enriched over diet in both δ
13

C 

and δ
15

N, with a greater enrichment for collagen than keratin in both isotopes. Patterns are 

less clear for δ
2
H and δ

18
O where very little collagen data has been obtained. For these 

isotopes, inputs from drinking water and atmospheric O2 are significant in addition to dietary 

inputs. However for organisms consuming both food and water of local origin, both values 

should show a systematic relationship, and both should be strongly related to local 

precipitation values (Bowen et al. 2009).  

Tissue is ultimately derived from that of an organism’s dietary, drinking water and respiratory 

intake over the period of tissue formation. The isotopic composition of the tissues are 

therefore related to the compositions of intake. These relationships can be extremely 

complex (Caut et al. 2009 and commenting articles). The various tissues within an organism 

differ in: (1) composition, (2) rate of growth, (3) rate of turnover, and (4) routing of nutrients 

(Boecklen et al. 2011). In addition to dietary inputs, their isotopic compositions therefore 

reflect: (1) molecular and elemental composition, (2) catabolic and anabolic pathways to 

tissue formation and breakdown, (3) different exposure times to the various metabolic pools 

of nutrients in the body, and (4) differences in routing to tissue from these pools. As collagen 

and keratin are both proteins, comparison between them focuses on amino acid (AA) 

metabolism, period of growth and turnover, and routing of nutrients.  
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Table 2.1. Previously published relationships between keratin and collagen isotope values in mammals.  

 Contributions Species  Relative positions Reference 

δ
13

C Dietary 
carbohydrate, 
protein, lipid 

Humans Collagen enriched 0–1‰ over keratin, high 
degree of individual variability 

(O'Connell and Hedges 1999; 
O'Connell et al. 2001) 

 Mammoths  Collagen enriched 1.3‰ over keratin (Iacumin et al. 2005) 

  Mice  Collagen enriched c. 1.8‰ over keratin (DeNiro and Epstein 1978) 

  Mice Collagen enriched by 14‰ over (non-
defatted) hair samples on adequate-nutrient 
diets, larger offset with low protein diet (7‰), 
smaller with high protein diet (1%) 

(Tieszen and Fagre 1993) 

  Pigs (juvenile) Collagen enriched 0–4‰ over keratin, high 
degree of variability with growth rate 

(Warinner and Tuross 2010) 

  Greater kudu, springbok, 
warthog, oryx, blue 
wildebeest  

Collagen enriched 0–2‰ over keratin (Codron et al. 2012) 

  Blesbok, red hartebeest Collagen enriched 2–3‰ over keratin (Codron et al. 2012) 

     

δ
15

N Dietary protein Humans Collagen enriched 0–2‰ over keratin, high 
degree of individual variability 

(O'Connell and Hedges 1999; 
O'Connell et al. 2001) 

  Mammoths  Collagen enriched 1.7‰ over keratin (Iacumin et al. 2005), 

  Mice  Collagen enriched -0.4+0.7‰ over keratin (DeNiro and Epstein 1978) 

  Pigs (juvenile) No clear pattern: all collagen and keratin within 
±1‰  

(Warinner and Tuross 2010) 

 

  

5
6
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Table 2.1 continued. 

 Contributions Species  Relative positions Reference 

δ
15

N Dietary protein Greater kudu, warthog, 
blue wildebeest, blesbok, 
red hartebeest 

Collagen and keratin within ±1‰  (Codron et al. 2012) 

  Springbok Keratin enriched 34‰ over bone collagen (Codron et al. 2012) 

     

δ
2
H Dietary 

carbohydrate, 
protein, lipid; 
drinking water 

Rats  Collagen enriched 32–44‰ over keratin (Kirsanow and Tuross 2011) 

 Pigs Collagen enriched 1020‰ over keratin (Tuross et al. 2008) 

 Pigs (juvenile) Collagen enriched 2540‰ over keratin (Warinner and Tuross 2010) 

     

δ
18

O Dietary 
carbohydrate, 
protein, lipid; 
drinking water; air 

Rats  No difference between tissues (Kirsanow and Tuross 2011) 

 Pigs Collagen depleted 23‰ relative to keratin (Tuross et al. 2008) 

 Pigs (juvenile) Collagen enriched 1.53.0‰ over keratin (Warinner and Tuross 2010) 

     

δ
34

S Dietary protein - - - 

 

5
7
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2.1.1 Tissue composition 

Keratin proteins make up more than 90% of the dry hair fibre by mass (Washburn et al. 

1958; Popescu and Höcker 2007), and collagen makes up 2550% of dry bone mass 

(Rogers et al. 1952). The individual AAs in both collagen and keratin have been shown to 

differ strongly in δ
13

C (e.g. Hare et al. 1991; Fogel et al. 1997; Howland et al. 2003; 

McCullagh et al. 2005; Honch et al. 2012) and δ
15

N (Hare et al. 1991; Fogel et al. 1997; 

Styring et al. 2010) values, because of differences in their synthetic and metabolic pathways 

within the body. Single AA δ
13

C analysis in both collagen and keratin from a number of 

human individuals showed that different bulk compositions of collagen and keratin were 

largely due to their different AA compositions (Raghavan et al. 2010), but suggested that 

seasonal variation in diet and/or differences in routing of nutrients to the two tissues were 

not negligible factors. 

2.1.2 Tissue turnover rate 

Collagen, a storage tissue, is continually laid down and remobilised over an organism’s 

lifetime. Rate of total turnover however varies greatly by age, health status, and skeletal 

element (e.g. Delmas 1995; Babraj et al. 2002) and also by species. Rates as low as 

1.54% per year have been measured for human cortical bone in adulthood, or up to 15% 

per year in adolescence (Hedges et al. 2007), and as high as 135% per year in beagle 

trabecular bone (Kimmel and Jee 1982). At present therefore it is not clear whether turnover 

rates in domesticate mammalian species should be measured in terms of months or years. 

Keratin proteins, in contrast, are not remodelled after formation (Popescu and Höcker 2007), 

and their composition therefore reflects a shorter period of dietary intake and remobilised 

material, measured in weeks (e.g. Schwertl et al. 2003; Zazzo et al. 2008; Cerling et al. 

2009; Auerswald et al. 2011; Zazzo et al. 2011). Comparison between hair keratin and bone 

collagen isotope values (Δkeratin-collagen) may therefore discern both shorter and longer term 

dietary inputs. 

Isotopically significant short-term changes in diet in domesticated animals can be either 

environmental or anthropogenic. Sources of environmental variation include seasonal 

changes in forage type availability (Kohn et al. 1998; Wittmer et al. 2010), forage isotopic 

composition (Kohn 1996; Heaton 1999; Dawson et al. 2002), and drinking water isotopic 

composition (Kirsanow et al. 2008). Anthropogenic effects include provision of fodder during 

non-plant-growth seasons (Ayliffe et al. 2004; Makarewicz and Tuross 2006; Schnyder et al. 

2006), and transhumance to alternative pastures, whether horizontal (Zazzo et al. 2011) or 

vertical (Männel et al. 2007). In addition, weathering of keratin tissues can affect keratin 

δ
34

S, which is affected by stalling practices (Auerswald et al. 2011). It is therefore likely that 

bone collagen and hair keratin in domesticate mammals integrate different periods of 

dietary, climatic and metabolic input, and that this contributes to the difference in isotope 

values between these tissues. 
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2.1.3 Factors affecting nutrient routing to tissue 

Isotopic offsets between keratin and collagen (Δkeratin-collagen) can be considered a compound 

of the offsets between each tissue and diet, i.e. Δdiet-keratin - Δdiet-collagen. These trophic 

relationships have been much more extensively studied than Δkeratin-collagen (Boecklen et al. 

2011) and are not constant for a particular tissue within a species even within a given 

environment. Both changes in diet (Codron et al. 2012) and changes in metabolism over the 

life of an organism can be significant here.  

The central concept in understanding dietary effects on Δdiet-tissue is nutritional status, that is 

diet quality and quantity relative to organism requirements. Isotopic composition of tissues 

has been shown to be related to adequacy of overall dietary intake (Fuller et al. 2005; 

Mekota et al. 2006; Warinner and Tuross 2010) for δ
13
C and δ

15
N, and quantity of protein in 

diet for δ
15

N (Hobson and Clark 1992; McCutchan Jr et al. 2003; Cherel et al. 2005; 

Podlesak and McWilliams 2006) and δ
2
H (Birchall et al. 2005). In addition to catabolic states 

of nutritional stress, the anabolic state of pregnancy (Fuller et al. 2004) has also been shown 

to have measureable isotopic effects.  

These changes are thought to be related to the remobilisation of endogenous reserves as 

precursors during protein synthesis. The effects of this can be complex, for example in δ
15

N, 

causing either enrichment of high-turnover tissues by a pseudo trophic level effect (Cherel et 

al. 2005) or conversely depletion of tissues by the rerouting of depleted metabolic waste to 

tissue synthesis (Fuller et al. 2004; Zazzo et al. 2010). Similarly, a switch from a C3 silage to 

a C4 concentrate diet caused a depletion in sheep tooth enamel δ
13

C, the converse of that 

expected from the composition of dietary input, which was attributed to an decrease in 

(highly depleted) digestive methane production on the lower roughage concentrate diet 

(Zazzo et al. 2010).  

Nutrient routing to tissue is also related to age, as tissue growth and turnover rates vary over 

an organism’s lifetime. A number of studies have examined how isotopic variables differ 

between animals of different growth rates (Zazzo et al. 2008; Warinner and Tuross 2010; 

Kirsanow and Tuross 2011; Harrison et al. 2011). Tissues laid down during periods of high 

growth typically reflect diet more strongly than during periods of slower growth, as the 

contribution from endogenous reserves is less important. Trophic enrichment is therefore 

lower, the inverse of the pattern with nutritional stress. An additional factor is that the diet 

during a high growth period will make a disproportionate contribution to storage tissues used 

for endogenous remobilisation later in life (Hedges et al. 2007).  

In summary, isotopic offsets between collagen and keratin tissues in domesticated animals 

are expected to reflect animals’ environment and metabolism over differing timescales. A 

considerable quantity of evidence has been gathered for understanding the behaviour of 

δ
13
C and δ

15
N in both keratin and collagen in response to these factors. Less data is 
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available to understand inputs to δ
2
H, δ

18
O and δ

34
S in domesticates, particularly for 

collagen.  

2.1.4 This study 

This study examined bulk δ
13
C, δ

15
N, δ

2
H, and δ

18
O values in bone collagen and hair keratin 

in two groups of sheep (Ovis aries) from the UK. δ
34

S data was also obtained for the smaller 

of these groups of animals. Single AA δ
13

C was used to investigate the role of differences in 

composition in bulk isotopic differences between tissues.  

The aims of the study were to: (1) compare the isotopic relationships between these tissues 

in sheep to those in other species; (2) relate single AA δ
13
C to bulk δ

13
C for both tissues and 

compare the results to those of Raghavan et al. (2010); and (3) explore contributory factors 

to these relationships by examining the effects of differences in nutritional plane, sex, 

breeding history and season of sample collection on isotope values.  

Specific hypotheses were that: 

 as in species previously tested (Table 2.1), sheep bone collagen show higher values of 

δ
13
C, δ

15
N and δ

2
H than sheep wool keratin. A variety of behaviours for Δ

18
Okeratin-collagen 

have been recorded so no hypothesis was made for δ
18

O behaviour. Similarly, due to 

the lack of previously published evidence, no hypothesis was made for δ
34

S behaviour; 

 individuals on a higher nutritional plane will show more depleted values of δ
13
C, δ

15
N 

and δ
2
H in both tissues than those on a lower nutritional plane, i.e. Δdiet-tissue will be 

smaller, for both tissues; 

 sex will make no difference to isotope value in either tissue; 

 as early bred ewes were empty but lactating in the half-year before slaughter they will 

show more depleted δ
15

N values than unbred ewes, but no differences in any other 

isotope; 

 keratin isotope values will differ more than collagen isotope values between slaughter 

groups, reflecting seasonal changes in fodder composition in the tissue with faster 

turnover. 

 

2.2 Experimental 

2.2.1 Sample origin and selection 

To maximise comparability to archaeological samples, the main focus of this study was 

animals from a ‘medieval model’ of sheep husbandry, the English Heritage Sheep Project 

flock (Dingwall et al. unpublished; EH, n=20). An additional comparator dataset of carcase 

samples was acquired from an abattoir in South Yorkshire (Escrick, n=5). 
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EH flock animals were raised at the Scottish Agricultural College (SAC) at Penicuik, UK, on 

a diet entirely of local grazing. Sheep were derived from a first generation of animals, bred 

from ewes of the unimproved Shetland type raised in the Voe area of Shetland, and rams of 

the pure Shetland breed bought at Lerwick Auction Market, also on Shetland. The lambs 

were born in late April/early May 19961999, and raised at SAC, pastured on two different 

nutritional levels (‘Low’ diet  unimproved pasture; ‘High’ diet  improved pasture, with 

supplementary hay and grass pellets during snow cover), in two adjacent fields at an altitude 

of 200 m. The high plane pasture consisted of well-drained rotational grassland while the low 

plane field consisted of poorly drained native grassland (Popkin et al. 2012). Males were 

either entire (‘Male’) or castrated (‘Castrate’), and females were bred ‘Early’ (first lamb at 2 

years old) or ‘Late’ (first lamb at 3 years old) or not bred (‘Unbred’) (P. Baker, pers. comm.). 

The combination of sex, age and breeding time produced a total of 12 treatment cohorts. 

Annual shearing was in late May/early June. Animals were slaughtered at uneven intervals 

in either August/September or November/December 1999-2001 (‘Slaughter Groups’, 46 

animals per treatment cohort). Sheep within a slaughter group (i.e. of the same age) were 

not necessarily born and/or slaughtered in the same years. 

This study focused on four treatment cohorts: male low diet, male high diet, female low 

diet/early bred, and female low diet/unbred. Five adult animals in each treatment cohort 

were chosen at random: two animals from slaughter group 6 (aged 36 months, slaughter in 

August/September) and three from slaughter group 7 (aged 42 months, slaughter in 

November/December). Early bred ewes had each lambed twice, the last time in the May 

before slaughter. Wool samples from slaughter group 6 represented 34 months’ growth, 

and those from group 7 represented 67 months’. Bone and wool samples from each were 

prepared for isotope analysis. The bone collagen δ
13
C and δ

15
N data was taken from a 

larger study of 20 animals from each of the four treatment cohorts examined here (Hamilton 

unpublished). 

There was no data on breed, age, sex, origin, or husbandry practice for carcase samples 

from Escrick, which were obtained in February 2009. Previous shearing was assumed to 

occur in late May/early June, which is typical for the UK (Chapter 3), so wool samples 

represented 89 months’ growth.  

2.2.2 Sample preparation  

Bone collagen. The EH skeletons were prepared by English Heritage at Portsmouth by 

boiling/simmering, defleshing with enzymes (neutrase, Biotex), and degreasing with 

acetone. 0.51.0 g of bone was taken from a rib. The surfaces of the bone pieces were 

cleaned by shotblasting and demineralised in 0.5 M HCl at 4°C at the Research Laboratory 

for Archaeology and the History of Art, Oxford, UK (Hamilton unpublished). Samples were 

rinsed with distilled water and then gelatinized in pH 3 water at 75°C for 48 h. The 
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supernatant containing the gelatinized protein (collagen) was filtered (8 m), frozen, and 

lyophilised.  

The Escrick carcase samples were prepared at BioArCh, York by degreasing in 2:1 

methanol/dichloromethane. 0.51.0 g of bone was taken from a metatarsal and 

demineralised in 0.6 M HCl at 4°C. Samples were rinsed with distilled water and then 

gelatinized in pH 3 water at 75°C for 48 h. The supernatant containing the collagen was 

filtered (30 kDa, Amicon
®
 Ultra-4 Centrifugal Filter Units, Millipore, Billerica, MA, USA), 

frozen, and lyophilised. 

Wool keratin. Approximately 0.30.5 g wool, in the form of 12 staples (the locks of hair into 

which the fleece naturally falls), was selected from each fleece. At York, UK, samples were 

hand-cleaned to remove particulate matter but without breaking up the staples, and washed 

according to the procedure in Hedges et al. (2005), but with the following changes: using 

dichloromethane (HPLC grade, Fisher Scientific, Loughborough, UK) instead of chloroform 

in all solvent mixtures, and employing an additional initial ultra-pure water (ELGA Purelab 

Ultra, Marlow, UK) wash to ensure thorough cleaning. 

2.2.3 Measurement of δ2H and δ18O in proteins 

Uncertainty associated with measurements of δ
2
H in proteinaceous tissues is greater than 

for δ
13
C and δ

15
N because of the need to compensate for the sorption of atmospheric water 

by the tissue, and the exchangeability of H atoms in proteinaceous materials with H from 

atmospheric water (Bowen et al. 2005). Determination of δ
2
H is therefore achieved by 

methods involving comparative equilibration (Wassenaar and Hobson 2003; Sauer et al. 

2009) with well-characterised standards of similar exchangeability, i.e. similar molecular 

structure and state of division (cut/ground: Chesson et al. 2009).  

Many aspects of the experimental conditions for equilibration have recently been shown to 

affect δ
2
H results (Qi and Coplen 2011). Inter-laboratory equilibration standards have 

therefore been developed for measurement of δ
2
H in keratinous materials (Qi and Coplen 

2011; Coplen and Qi 2012). No such equivalents have yet been developed for collagen, 

though collagen δ
2
H measurements are becoming more widespread in recent literature 

(Cormie et al. 1994; Leyden et al. 2006; Tuross et al. 2008). This is potentially problematic 

because: 

 sorption of water into extracted collagen is unlikely to be the same as into keratin, 

 collagen and keratin H exchangeabilities are not identical: theoretical whole protein 

values are 21% for collagen (sequences from The UniProt Consortium 2012; cf Birchall 

et al. 2005, who use a figure of 25%) and 2425% for the dominant keratin proteins in 

wool (sequences from Clerens et al. 2010), not including racemisation, that is exchange 

at the α-carbon (Chapter 4). In practice hair keratin exchangeability depends on its state 

of division, varying between 6 and 17% (Chesson et al. 2009). 
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 collagen may react differently to keratin in the high temperature conditions used in some 

equibration experimental set-ups (Sauer et al. 2009; Qi and Coplen 2011). 

Collagen equilibration standards are therefore necessary for δ
2
H measurements in collagen. 

In addition, the measurement of δ
18

O in collagen is potentially problematic, as O in protein 

has been shown to be exchangeable in conditions of low pH (Niles et al. 2009), such as 

those used during demineralisation and/or gelatinisation of collagen (Brown et al. 1988; 

Tuross 2002). Extracted collagen is therefore likely to incorporate an isotopic signal from the 

water supply of the laboratory where it was prepared. In addition, O exchange between 

collagen and adsorbed water at high temperature during an equilibration step is possible, as 

for cellulose (Brand et al. 2009). 

This study therefore prepared two collagen standards for determination of δ
2
H and δ

18
O in 

collagen samples, in addition to keratin standards for the analysis of keratin substrates. 

Elephant ivory from 1980s Zaire was supplied by H.G.M. Edwards, University of Bradford, 

and mammoth long bone of indeterminate age from Yukon, Canada by Grant Zazula, 

Government of Yukon Department of Tourism and Culture. Both were milled (Spexmill 6750 

Freezer/Mill, Metuchen, NJ, USA), and collagen was extracted at BioArCh, York, as 

described above (i.e. using acid demineralisation and gelatinisation).  

2.2.4 Sample analysis 

EH  one  o  agen  u   δ
13
C and δ

15
N analysis (Oxford). Portions of 2.53.5 mg prepared 

collagen were weighed into Sn capsules. Samples were processed in an automated carbon 

and nitrogen analyser (Carlo Erba carbon and nitrogen elemental analyser) coupled with a 

continuous-flow isotope ratio-monitoring mass spectrometer (Europa Geo 20/20 mass 

spectrometer). δ
13
C values were measured relative to the VPDB standard, and δ

15
N values 

were measured relative to the AIR standard reference. Each result is the mean of 24 

measurements. Precision of both δ
13
C and δ

15
N was better than ±0.2‰. 

Es ri    one  o  agen  u   δ
13

C, δ
15

N and δ
34

S analysis (Iso-Analytical). δ
13

C, δ
15

N and δ
34

S 

data for the Escrick carcase samples were obtained from Iso-Analytical (Crewe, Cheshire). 

Isotope ratio mass spectrometric (IRMS) analyses were carried out on a 20-20 mass 

spectrometer with a Roboprep-CN elemental analyser (Europa Scientific, Crewe, UK); 

Control standards are reported in Table 2.2. Each result is the mean of 2 measurements. 

Woo   eratin  u   δ
13
C and δ

15
N analysis (Natural Environment Research Council Life 

Sciences Mass Spectrometry Facility, East Kilbride). 0.7 mg of washed wool in the form of 

uncut, whole-length fibres was weighed into 4 x 3.2 mm Sn capsules (Elemental 

Microanalysis, Okehampton, UK). Whole hairs were analysed to obtain a average value for 

the whole period of growth. δ
13
C and δ

15
N analyses were carried out on a ThermoElectron 

Delta Plus XP with Costech ECS 4010 elemental analyser; internal standards were a 

gelatine, an alanine enriched with 
13

C, and a 
15

N-enriched glycine. C and N content were 
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calculated using a tryptophan standard. δ
13
C and δ

15
N results are reported in per mille (‰) 

relative to PDB and AIR respectively. No duplicate analyses were made. Control standards 

are reported in Table 2.3. 

Bone collagen and wool keratin 
2
H and 

18
O analysis (East Kilbride). 0.1 mg of wool was 

weighed into 4 x 3.2 mm Ag capsules (Elemental Microanalysis, Okehampton, UK and 

Pelican Scientific, Stockport, UK). Whole hairs were analysed to obtain a year average 

value. δ
18
O and δ

2
H analyses were carried out on a Thermo Fisher Scientific Delta V Plus 

with TC/EA high temperature furnace.  

The contribution of exchangeable hydrogen and oxygen was calculated using: keratin 

standards BWB-II (whale baleen), CFS (feathers), ISB (feathers) and WG (feathers); 

collagen standards 3614 (elephant ivory) and 3615 (mammoth long bone) and a 

comparative equilibration method (Wassenaar and Hobson 2003). Inorganic δ
18

O standards 

were IAEA  01, IAEA CH  and IAEA  00. The δ
2
H and δ

18
O of the un-exchangeable H and 

O in the four keratin and two collagen standards was previously determined using a steam 

equilibration technique. Calculation of un- exchangeable δ
2
H assumed a fractionation factor 

α = 1.080 (εx-w = 80‰). δ
18
O and δ

2
H results are reported in per mille relative to VSMOW. All 

such results are for the non-exchangeable portion of H and O in these samples. No 

duplicate analyses were made. Linearity in δ
18

O results for Escrick samples was poor, so 

these data were rejected. Control standards are reported in Table 2.3. 

Bone collagen and wool keratin single AA 
13

C analysis (Leipzig). Prepared collagen and 

washed wool samples from Escrick 3 and Escrick 4 were analysed as in Smith et al. (2009). 

Most sample peaks contained the equivalent of 66080 ng carbon. Results for Escrick 4 are 

the mean of 2 measurements. Tryptophan (Trp) is not retrieved using this LC-IRMS 

technique. Aspartic acid (Asp) and asparagine (Asn) are retrieved together and reported as 

Asx, and glutamic acid (Glu) and glutamine (Gln) as Glx. 

2.2.5 Data analysis 

Statistical analysis was carried out using R (R Development Core Team 2008). The dataset 

was non-parametric (univariate and multivariate Shapiro-Wilk tests, P<0.05). No effective 

data transformations were found.  
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Table 2.2. Isotopic analytical precision for data from Iso-Analytical: mean ± maximum s.d. in any single run. For abbreviations, see text. Obs. = observed 
values, Acc. = accepted values. 

  δ
13

C/‰ δ
15

N/‰ δ
34

S/‰ 

Standard n Obs. Acc. Obs. Acc. Obs. Acc. 

IA-R042 (Bovine liver) 3 -21.56 ± 0.09 -21.60 7.60 ± 0.04 7.65 - - 

IA-R045 ((NH4)2SO4) 2 - - -4.65 ± 0.04 -4.71 - - 

IA-R046 ((NH4)2SO4) 2 - - 22.05 ± 0.06 22.04 - - 

IA-R005 (Beet sugar) 2 -25.97 ± 0.04 -26.03 - - - - 

IA-R006 (Cane sugar) 2 -11.76 ± 0.03 -11.64 - - - - 

IA-R036 (BaSO4) 4 - - - - 20.55 ± 0.21 20.74 

IAEA-SO-5 (BaSO4) 2 - - - - 0.56 ± 0.00 0.50 

IA-R027 (whale baleen) 2 - - - - 16.37 ± 0.23 16.30 

 

 

 

  

6
5
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Table 2.3 Isotopic analytical precision for data from LSMSF: mean ± maximum s.d. in any single run. For abbreviations, see text. Obs. = observed values, 
Acc. = accepted values. 

  δ
13

C/‰ δ
15

N/‰ δ
2
H/‰ δ

18
O/‰ 

Standard n Obs. Acc. Obs. Acc. Obs. Acc. Obs. Acc. 

13
C-enriched alanine 9 -10.65 ± 

0.05 
-10.58 ± 

0.03 
-5.18 ± 0.06 -5.09 ± 0.12 - - - - 

15
N-enriched alanine 9 -35.5 ± 0.02 -35.46 ± 

0.09 
19.93 ± 0.25 20.01 ± 0.31 - - - - 

13
C-enriched 

tryptophan 
4 -10.5 ± 0.09 -10.49 ± 

0.11 
-2.41 ± 0.41 -2.31 ± 0.14 - - - - 

IAEA 601 24 - - - - - - 23.23 ± 0.20 23.14 ± 0.19 

IAEA CH6 5 - - - - - - 36.57 ± 0.27 36.4* 

IAEA 600 6 - - - - - - -3.58 ± 0.39 -3.48 ± 0.53 

CFS 8 - - - - -142.56 ± 
3.44 

-148.61* 5.55 ± 0.05 Unknown 

BWB-II 9 - - - - -100.93 ± 
1.74 

-109.51* 12.88 ± 0.16 Unknown 

ISB 9 - - - - -59.70 ± 
2.26 

-68.80* 12.89 ±0.33 Unknown 

WG 6 - - - - -134.64 ± 
1.69 

-146.57* 6.09 ± 0.16 Unknown 

3614 (elephant ivory) 5 - - - - -36.06 ± 
2.65 

Unknown 17.44 ± 0.22 Unknown 

3615 (mammoth 
bone) 

5 - - - - -168.76 ± 
7.74 

Unknown 0.00 ± 0.82 Unknown 

*s.d. undetermined. 

6
6
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2.3 Results 

2.3.1 Bulk samples 

Full δ
13
C, δ

15
N, δ

2
H, δ

18
O and δ

34
S results for all samples are given in Tables 2.4 (wool 

keratin) and 2.5 (bone collagen). Results are plotted in Figures 2.1 and 2.2. For δ
13

C and 

δ
15

N measurements of bone collagen samples, analytical error (1) was better than ±0.2‰ 

for both isotopes. For wool keratin samples, analytical error was better than ±0.1‰ for δ
13

C 

and ±0.4‰ δ
15

N. Analytical error in δ
34

S was better than 0.3‰ for both collagen and keratin. 

Analytical error in δ
2
H and δ

18
O varied by substrate, being ±2.1‰ for δ

2
H and ±0.3‰ for 

δ
18
O in keratin, and ±7.7‰ for δ

2
H and ±0.8‰ for δ

18
O in collagen. Determined non-

exchangeable δ
2
H values in keratin was 513‰ more depleted than accepted values (Table 

2.3). The precision of δ
2
H results in collagen, and δ

18
O for both proteinaceous tissues, could 

not be established because accepted standard values for these materials have not been 

determined.  

EH flock and Escrick group median collagen and keratin isotope values are reported in 

Table 2.6. In the EH flock, keratin isotope values were more depleted than collagen isotope 

values for δ
13

C (median -2.0‰ , range -2.4-1.4‰) and δ
2
H (median -29‰, range -44-

21‰), and more enriched than collagen values for δ
15

N (median 0.5‰, range -0.6+1.3‰) 

and δ
18

O (median 1.8‰, range 0.42.8‰). In the Escrick group, the depletion in keratin 

isotope values with respect to collagen values was greater than in the EH flock: median 

2.7‰ for δ
13

C (range -2.9-2.2‰) and median 40.5‰ for δ
2
H (range -43-40‰). δ

15
N values 

showed very little difference between tissues (median difference -0.2‰, range -0.5+0.1‰). 

Offset in δ
18

Okeratin-collagen was not measured. Offset in δ
34

Skeratin-collagen was highly variable 

(median -2.5‰, range -3.30.1‰). 

The magnitude of these differences was significant for all isotopes in the EH flock (Mann-

Whitney U tests, P<<0.001 for δ
13
C, δ

2
H and δ

18
O; P<0.05 for δ

15
N), and for δ

13
C and δ

2
H 

but not δ
15

N in the Escrick group (Mann-Whitney U tests, P<0.01 for δ
13
C and δ

2
H; P>0.05 

for δ
15

N; Table 2.7). Differences in δ
34

S between tissues in the Escrick group was also not 

significant (P>0.05). Distributions of isotope values were also significantly different between 

tissues in the EH flock (Kruskal-Wallis tests, P<<0.001 for δ
13
C, δ

2
H and δ

18
O; P<0.05 for 

δ
15
N), but again only for δ

13
C and δ

2
H but not δ

15
N or δ

34
S in the Escrick group (Kruskal-

Wallis tests, P<0.01 for δ
13
C and δ

2
H; P>0.05 for δ

15
N and δ

34
S; Table 2.7).  

In the EH flock, δ
13
C, δ

2
H and δ

18
O were strongly correlated to each other both within and 

between tissues (Spearman’s rank correlation coefficient, all P<<0.001). δ
15

N was correlated 

between tissues but not to any other isotope (Spearman’s rank correlation coefficient, 

P<<0.001). Offsets between tissues (Δkeratin-collagen) were not correlated to each other or to 

any tissue isotope value (Spearman’s rank correlation coefficient, all P>0.05). In the Escrick 

group, the same correlations were significant (though they could not be calculated for δ
18

O), 
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Table 2.4. Isotopic and elemental composition results, with metabolic and husbandry details, 
for all wool keratin samples. L= low diet, H = high diet; M = male, F = female; E = early bred, 
U = unbred; SG = slaughter group; / = not measured; - = not known. 

 

  

ID D
ie

t 

S
e
x

 

B
re

e
d

in
g

 

S
G

 

δ
13

C/‰ δ
15

N/‰ δ
2
H/‰ δ

18
O/‰ δ

34
S/‰ C:Natom 

EH33 L M / 7 -26.3 7.7 -103.2 12.7 / 3.5 

EH8 L M / 7 -26.7 7.0 -105.8 12.2 / 3.5 

EH34 L M / 7 -26.2 6.7 -104.3 11.4 / 3.5 

EH30 L M / 6 -26.2 6.7 -101.4 12.5 / 3.5 

EH31 L M / 6 -26.1 6.8 -103.0 11.8 / 3.5 

EH2 L F E 6 -26.2 6.1 -105.5 13.5 / 3.5 

EH37 L F E 6 -26.6 6.3 -107.7 12.6 / 3.5 

EH3 L F E 7 -26.7 6.2 -96.9 14.3 / 3.5 

EH40 L F E 7 -26.3 6.7 -103.1 12.9 / 3.5 

EH41 L F E 7 -26.8 6.5 -103.0 12.9 / 3.5 

EH52 H M / 6 -26.2 7.3 -104.4 11.9 / 3.5 

EH57 H M / 7 -26.5 7.1 -100.2 12.5 / 3.5 

EH60 H M / 7 -26.6 6.9 -102.5 12.4 / 3.5 

EH50 H M / 6 -25.9 7.0 -103.3 12.5 / / 

EH58 H M / 7 -26.3 6.8 -97.2 12.3 / 3.5 

EH66 L F U 7 -26.4 7.0 -101.3 12.9 / 3.5 

EH64 L F U 7 -26.0 8.0 -98.5 11.7 / 3.5 

EH65 L F U 6 -25.5 7.6 -99.5 12.2 / 3.5 

EH70 L F U 6 -25.5 7.6 -103.6 13.2 / 3.5 

EH77 L F U 7 -26.2 8.6 -99.4 13.4 / 3.5 

Escrick 1 - - - - -27.2 8.3 -117.9 / 4.0 3.6 

Escrick 2 - - - - -26.5 6.9 -109.6 / 2.1 3.6 

Escrick 3 - - - - -27.7 8.3 -114.3 / 4.8 3.6 

Escrick 4 - - - - -26.2 7.9 -105.3 / 6.1 3.6 

Escrick 5 - - - - -27.4 8.0 -103.1 / 5.3 3.6 
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Table 2.5. Isotopic and elemental composition results, with metabolic and husbandry details, 
for all bone collagen samples. L= low diet, H = high diet; M = male, F = female; E = early 
bred, U = unbred; SG = slaughter group; / = not measured; - = not known. 

ID
 

D
ie

t 

S
e

x
 

B
re

e
d

in
g

 

S
G

 δ
13

C/
‰ 

δ
15

N/
‰ 

δ
2
H/

‰ 
δ

18
O/

‰ 
δ

34
S/

‰ 
C:N 

atom 
% 

yield 

EH33 L M / 7 -24.2 6.7 -69.3 10.0 / 3.2 25 

EH8 L M / 7 -24.6 6.3 -71.1 10.7 / 3.3 26 

EH34 L M / 7 -24.3 6.7 -71.7 9.7 / 3.3 23 

EH30 L M / 6 -24.1 5.8 -67.4 9.8 / 3.2 18 

EH31 L M / 6 -23.9 5.8 -68.5 9.8 / 3.2 24 

EH2 L F E 6 -24.5 6.7 -62.5 11.5 / 3.3 28 

EH37 L F E 6 -24.2 6.3 -63.7 10.7 / 3.1 21 

EH3 L F E 7 -24.7 6.0 -73.0 11.8 / 3.3 25 

EH40 L F E 7 -24.3 6.3 -67.2 11.1 / 3.2 23 

EH41 L F E 7 -24.6 6.1 -80.7 11.4 / 3.3 28 

EH52 H M / 6 -24.2 5.9 -75.1 10.4 / 3.2 19 

EH57 H M / 7 -25.0 6.7 / 11.4 / 3.5 22 

EH60 H M / 7 -24.6 6.9 -76.4 12.0 / 3.3 / 

EH50 H M / 6 -23.9 5.9 -73.5 10.0 / 3.2 25 

EH58 H M / 7 -24.2 6.4 -74.7 9.8 / 3.2 24 

EH66 L F U 7 -24.0 6.3 -77.1 11.4 / 3.2 25 

EH64 L F U 7 -24.1 7.9 -77.8 10.8 / 3.2 24 

EH65 L F U 6 -24.0 7.6 -73.5 11.3 / 3.2 19 

EH70 L F U 6 -24.1 7.0 -77.8 10.7 / 3.2 25 

EH77 L F U 7 -24.3 7.8 -76.2 12.1 / 3.2 13 

Escrick 1 - - - - -24.4 8.1 -74.5 / 6.6 3.3 21 

Escrick 2 - - - - -24.1 6.5 -68.9 / 4.6 3.4 21 

Escrick 3 - - - - -24.8 8.1 -74.6 / 8.1 3.4 20 

Escrick 4 - - - - -24.0 7.3 -64.8 / 7.2 3.3 21 

Escrick 5 - - - - -24.7 8.1 -63.3 / 5.1 3.3 20 
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Figure 2.1. Collagen and keratin δ
13
C and δ

15
N results by flock and treatment cohort.  

 

 

 
Figure 2.2. Collagen and keratin δ

2
H and δ

18
O results by treatment cohort. Local 

precipitation values calculated using the Online Isotopes in Precipitation Calculator (Bowen 
and Revenaugh 2003; Bowen 2008). Global meteoric water line (solid) according to Craig 
(1961), UK meteoric water line (dashed) from Darling and Talbot (2003). 
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Table 2.6. Overall and treatment cohort isotopic medians and ranges. M = male, F = female; L = low diet, H = high diet; E = early bred, U = unbred; SG = 
slaughter group; NA = not measured. 

 
  

Wool keratin isotope values/‰ 
 

Bone collagen isotope values/‰ 
 

Δkeratin-collagen/‰ 

Flock Cohort Statistic δ
13

C δ
15

N δ
2
H δ

18
O δ

34
S 

 
δ

13
C δ

15
N δ

2
H δ

18
O δ

34
S 

 
δ

13
C δ

15
N δ

2
H δ

18
O δ

34
S 

EH Overall Median -26.3 6.9 -103.0 12.5 / 
 

-24.2 6.4 -73.5 10.7 / 
 

2.0 -0.5 29.3 -1.8 / 

 
 

Minimum -26.8 6.1 -107.7 11.4 / 
 

-25.0 5.8 -80.7 9.7 / 
 

2.0 -1.3 29.3 -1.8 / 

 
 

Maximum -25.5 6.9 -103.0 12.5 / 
 

-24.2 6.4 -73.5 12.1 / 
 

2.4 0.6 44.0 -0.4 / 

 
      

 
     

 
     

 

EH M H Median -26.3 7.0 -102.5 12.4 / 
 

-24.2 6.4 -74.9 10.4 / 
 

2.0 -0.4 27.7 -1.5 / 

 
 

Minimum -26.6 6.8 -104.4 11.9 / 
 

-25.0 5.9 -76.4 9.8 / 
 

2.0 -1.3 27.7 -1.5 / 

 
 

Maximum -25.9 7.0 -102.5 12.4 / 
 

-24.2 6.4 -74.9 12.0 / 
 

2.1 0.0 29.8 -0.4 / 

EH M L Median -26.2 6.8 -103.2 12 / 
 

-24.2 6.3 -69.3 10.0 / 
 

2.1 -1.0 34.0 -2.1 / 

 
 

Minimum -26.7 6.7 -105.8 11.4 / 
 

-24.6 5.8 -71.7 9.7 / 
 

2.1 -1.0 34.0 -2.1 / 

 
 

Maximum -26.1 6.8 -103.2 12.2 / 
 

-24.2 6.3 -69.3 10.7 / 
 

2.2 0.0 34.7 -1.6 / 

EH F L E Median -26.6 6.3 -103.1 12.9 / 
 

-24.5 6.3 -67.2 11.4 / 
 

2.0 -0.2 35.9 -1.9 / 

 
 

Minimum -26.8 6.1 -107.7 12.6 / 
 

-24.7 6.0 -80.7 10.7 / 
 

2.0 -0.6 35.9 -1.9 / 

 
 

Maximum -26.2 6.3 -103.1 12.9 / 
 

-24.5 6.3 -67.2 11.8 / 
 

2.3 0.5 44.0 -1.5 / 

EH F L U Median -26.0 7.6 -99.5 12.9 / 
 

-24.1 7.6 -77.1 11.3 / 
 

1.9 -0.6 24.1 1.2 / 

 
 

Minimum -26.4 7.0 -103.6 11.7 / 
 

-24.3 6.3 -77.8 10.7 / 
 

1.9 -0.8 24.1 -1.2 / 

 
 

Maximum -25.5 7.6 -99.5 12.9 / 
 

-24.1 7.6 -77.1 12.1 / 
 

2.4 0.0 26.0 -0.9 / 

 

  

7
1
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Table 2.6 continued. 

 
  

Wool keratin isotope values/‰ 
 

Bone collagen isotope values/‰ 
 

Δkeratin-collagen/‰ 

Flock Cohort Stat. δ
13

C δ
15

N δ
2
H δ

18
O δ

34
S 

 
δ

13
C δ

15
N δ

2
H δ

18
O δ

34
S 

 
δ

13
C δ

15
N δ

2
H δ

18
O δ

34
S 

EH SG 6 Med. -26.1 6.9 -103.5 12.5 / 
 

-24.1 6.1 -71.0 10.5 / 
 

2.0 -0.8 31.9 2.0 / 

 
 

Min. -26.6 6.1 -107.7 11.8 / 
 

-24.5 5.8 -77.8 9.8 / 
 

2.0 -1.3 31.9 -2.0 / 

 
 

Max. -25.5 6.9 -103.5 12.5 / 
 

-24.1 6.1 -71.0 11.5 / 
 

2.3 0.6 44.0 -0.9 / 

EH SG 7 Med. -26.4 7.0 -101.9 12.6 / 
 

-24.3 6.5 -74.7 11.2 / 
 

2.0 0.4 24.1 1.5 / 

 
 

Min. -26.8 6.2 -105.8 11.4 / 
 

-25.0 6.0 -80.7 9.7 / 
 

2.0 -1.0 24.1 -1.5 / 

 
 

Max. -26.0 7.0 -101.9 12.6 / 
 

-24.3 6.5 -74.7 12.1 / 
 

2.4 0.0 35.9 -0.4 / 

 
      

 
     

 
     

 

Escrick Overall Med. -27.2 8.0 -119.6 / 4.8 
 

-24.4 8.1 -68.8 / 6.6 
 

2.7 -0.2 -40.5 / 2.5 

 
 

Min. -27.7 6.9 -118.0 / 2.1 
 

-24.7 6.5 -74.6 / 4.6 
 

2.2 -0.5 -43.4 / -0.1 

 
 

Max. -26.2 8.3 -103.0 / 6.1 
 

-24.0 8.1 -63.3 / 8.1 
 

2.9 -0.1 -39.8 / 3.3 

 

7
2
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but relationships were not as strong (P=0.02). There were no correlations between δ
34

S and 

any other isotope in either tissue (all P>0.5). 

2.3.2 Effect of diet, sex and metabolism on values and offsets (EH flock) 

Significant isotopic differences (greater than experimental error) existed between the 

following treatment cohorts in the EH flock (Table 2.8): 

2.3.2.1 Season of sample collection 

 δ
13

C values for slaughter group 6 were more enriched than those slaughter group 7 by 

0.2‰ in keratin and 0.3‰ in collagen (Mann-Whitney U tests, P<0.01 for keratin, P<0.05 

for collagen).  

 Both keratin and collagen δ
13

C values differed in distribution between slaughter groups 

(Kruskal-Wallis test, P<0.01 for keratin, P<0.05 for collagen). 

2.3.2.2 Breeding history (comparing low diet females only)  

 δ
13

Ccollagen values in bred females were 0. ‰ more depleted in δ
13

C than those from 

unbred females (Mann-Whitney U test, P=0.03). There was no significant difference 

between bred and unbred females in δ
13

Ckeratin. 

 Both collagen and keratin δ
13

C values differed in distribution between bred and unbred 

females (Kruskal-Wallis tests, P<0.05 for both tissues). 

 δ
15
N values in bred females were 1.4‰ more depleted in collagen and 1.3‰ more 

depleted in keratin than those from unbred females (Mann-Whitney U tests, P<0.01 for 

keratin, P<0.05 for collagen). 

 Both collagen and keratin δ
15

N values differed in distribution between bred and unbred 

females (Kruskal-Wallis tests, P<0.01 for keratin, P<0.05 for collagen). 

2.3.2.3 Sex (comparing low diet animals only, all females unbred) 

 δ
15

Ncollagen in males was 1.3‰ more depleted than in females (Mann-Whitney U test, 

P=0.03).  

 Distribution of δ
15

N values in collagen and keratin was significantly different between 

males and females (Kruskal-Wallis test, P<0.05 in both tissues).  

 δ
2
Hcollagen in males was 8‰ more enriched than in females (Mann-Whitney U test, 

P<0.01).  

 Distribution of δ
2
H values in collagen and keratin was significantly different between 

males and females (Kruskal-Wallis test, P<0.05 for keratin, P<0.01 for collagen).  

 δ
18

Ocollagen from males was 1. ‰ more depleted than in females (Mann-Whitney U test, 

P=0.03).  

 Distribution of δ
18

O values in collagen only was significantly different between males and 

females (Kruskal-Wallis test, P<0.01).  

 Δ
2
Hkeratin-collagen was 10‰ greater in males than females (Mann-Whitney U test, P<0.01). 
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 Distribution of Δ
2
Hkeratin-collagen and Δ

18
Okeratin-collagen was significantly different between 

males and females (Kruskal-Wallis tests, P<0.01 for Δ
2
H, P<0.05 for Δ

18
O). 

2.3.2.4 Diet quality (comparing males only) 

 Distribution of δ
2
Hcollagen, and Δ

2
Hkeratin-collagen were significantly different between from 

high and low diet males (Kruskal-Wallis test, P<0.05). 

2.3.3 Single AA δ13C values 

Single AA δ
13

C values for samples Escrick 3 and Escrick 4 are reported in Table 2.9. Keratin 

and collagen values are plotted against each other in Figure 2.3.  

Single AA δ
13
C values were used to calculate bulk protein δ

13
C values of the corresponding 

tissues. Collagen AA composition was calculated for whole triple helices, composed of one 

collagen -1(I) and two collagen -2(I) chains, for Mus musculus, Rattus norvegicus, Homo 

sapiens and Bos taurus: protein sequences were obtained from UniProt (The UniProt 

Consortium 2012). Instead of deriving an overall keratin fibre AA composition, the 

compositions of the 10 most abundant proteins in wool, which are all Intermediate Filament 

Proteins (IFPs: protein sequences from Clerens et al. 2010) were calculated. These results 

are compared in Figure 2.4.  

 

 
 
Figure 2.3. Collagen and keratin single AA δ

13
C values for samples from Escrick group. 

Only those AAs present in both collagen and keratin are plotted. Error bars for bulk 
measurements are no larger than the error marker.  
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Table 2.7. Significance of differences between tissues of value (Mann-Whitney U test) and distribution (Kruskal-Wallis test) of isotope composition data. /, 
difference was less than experimental error; ns, not significant; * P <0.05; ** P <0.01, *** P<0.001. NA = not measured. 

Flock  Statistic δ
13

C δ
15

N δ
2
H δ

18
O δ

34
S 

EH (n=20
§
) Mann-Whitney  *** / *** *** NA 

 

Kruskal-Wallis  *** * *** *** NA 

Escrick (n=5) Mann-Whitney  ** / ** NA ns 

 

Kruskal-Wallis  ** ns ** NA ns 
§
n=19 for δ

2
Hcollagen.  

 
Table 2.8. Significance of differences between EH group treatment cohorts in value (Mann-Whitney U test) and distribution (Kruskal-Wallis test) of isotope 
composition data. M = male, F = female, L = low diet, SG = slaughter group. /, difference < experimental error; ns, not significant; * P <0.05; ** P <0.01.  

 

 

 

Wool keratin isotope values/‰ 

 

Bone collagen isotope values/‰ 

 

Δkeratin-collagen/‰ 

EH group N Statistic δ
13

C δ
15

N δ
2
H δ

18
O 

 

δ
13

C δ
15

N δ
2
H δ

18
O 

 

δ
13

C δ
15

N δ
2
H δ

18
O 

Diet  

(M only) 

nhigh=5
§
 

nlow=5 
Mann-Whitney  / / / /  / / / /  / / / / 

Kruskal-Wallis  ns ns ns ns  ns ns * ns  ns ns * ns 

Sex  

(L only) 

nM=5 

nF=5 

Mann-Whitney  ns ns ns ns  ns * ** *  ns / ** / 

Kruskal-Wallis  ns * * ns  ns * ** **  ns ns ** * 

Breeding  

(L F only) 

nbred=5 
nunbred=5 

Mann-Whitney  ns ** ns /  * * ns /  / / ns / 

Kruskal-Wallis  * ** ns ns  * * ns ns  ns ns ns ns 

SG n6=8 
n7=12

#
 

Mann-Whitney  ** / / /  * ns / /  / / / / 

Kruskal-Wallis  ** ns ns ns  * ns ns ns  ns ns ns ns 
§
n=4 for δ

2
Hcollagen, 

#
n=11 for δ

2
Hcollagen. 

7
5
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Table 2.9. Single AA δ
13
C values (in ‰) of wool keratin and bone collagen from Escrick 3 

and Escrick 4 individuals. Error estimates are taken from Smith et al. (2009) for samples 
containing c. 660 ng C per peak. N = non-essential; N* conditionally non-essential; E = 
essential. 

   Error Escrick 3 Escrick 4 

AA Essential? 1σ Collagen Keratin Collagen Keratin 

Aspartic acid/ 
Asparagine 

Asx N 0.2 
(Asp) 

-26.1 -26.8 -24.4 -25.5 

Hydroxyproline Hyp N* 0.2 -24.3 - -23.4 - 

Serine Ser N* 0.5 -16.1 -22.5 -15.5 -20.0 

Glutamic acid/ 
Glutamine 

Glx N 0.2 (Glu) -22.9 -24.6 -22.2 -23.2 

Threonine Thr E 0.2 -20.6 -20.6 -19.3 -19.1 

Glycine Gly N* 0.5 -17.9 -21.9 -18.3 -21.1 

Alanine Ala N 0.1 -28.4 -27.5 -28.1 -27.2 

Proline Pro N* 0.3 -25.0 -25.3 -23.8 -24.0 

Valine Val E 0.1 -31.8 -32.1 -30.7 -31.8 

Cysteine Cys N* - - -28.1 - -26.2 

Methionine Met E 0.2 - -23.0 - -22.8 

Hydroxylysine Hyl N 0.3 -25.5 - -24.6 - 

Isoleucine IIe E 0.3 -30.2 -30.7 -28.8 -30.6 

Leucine Leu E 0.4 -35.0 -35.5 -33.9 -34.5 

Lysine Lys E 0.4 -26.5 -27.0 -26.0 -26.8 

Histidine His E* 0.3 -25.5 -27.0 -25.3 -24.2 

Tyrosine Tyr E 0.2 -31.6 -32.7 -30.2 -32.2 

Arginine Arg N* 0.5 -27.1 -28.0 -26.1 -26.8 

Phenylalanine Phe E 0.2 -32.4 -33.8 -31.7 -32.5 
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Figure 2.4. Observed (dark bar) vs. calculated (filled diamonds) bulk collagen δ

13
C values, 

and observed bulk wool (grey bar) vs. IFP (unfilled circles) δ
13

C values, for two individual 
animals. Collagen calculations were made twice: assuming all Pro and Lys were un-
hydroxylated (dark filled diamonds) and assuming all were hydroxylated (lighter filled 
diamonds). Error bars are ±2.5‰ for calculated keratin values, ±2.4‰ for fully hydroxylated 
collagen; and ±2.7‰ for fully un-hydroxylated collagen. 

 

2.4 Discussion  

2.4.1 Uncertainty in δ2H and δ18O 

Experimental uncertainty was greater for collagens than for keratins. Collagen standards’ 

δ
18

O values differed substantially (by 107110‰) after exposure to waters of known isotope 

composition during the equilibration step at high temperature (data not shown). The 

experimental set-up used (Sauer et al. 2009) has been shown not to remove all adsorbed 

water after equilibration (Qi and Coplen 2011), so it was not clear whether this effect was 

due to incomplete desiccation or O-exchange with collagen. The mammoth collagen 

standard in particular showed greater variation than the elephant standard in both δ
2
H 

(maximum ±7.7‰ vs. ±2.7‰) and δ
18
O (±0.8‰ vs. ±0.2‰). Given the similarity of species 

and difference in age between these two samples, this was most likely due to differences in 

the degradation state of the collagen present (Tuross 2002), leading to either more variable 

collagen composition and/or different molecular responses to the high temperature humid 

conditions of equilibration (Sauer et al. 2009). Characterisation of these samples, to assess 

the percentage of degraded or non-helical collagen, by microscopic (Koon et al. 2003) or x-

ray diffractive (Gonzalez et al. 2012) methods, would be interesting.  
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The precision of collagen δ
2
H and δ

18
O measurements could be improved by: (1) 

demineralisation of collagen with EDTA to reduce exposure to acidic conditions (Tuross 

2002); (2) use of ambient temperature equilibration procedures (Qi and Coplen 2011); and 

(3) the use of a third collagen standard in all experimental runs. The accuracy of standard 

measurements used in this study is currently not known, as ‘true’ isotope values have not 

been established: in order to do this, measurements from more than one laboratory are 

necessary. The effect of any contribution to δ
18

O from laboratory water could also be 

assessed by an inter-laboratory comparison. 

Uncertainty in keratin δ
2
H and δ

18
O values (maximum ±3.4‰ and ±0.3‰, respectively) was 

higher than optimum, which is c. ±2.8‰ for δ
2
H and ±0.15‰ for δ

18
O (Qi and Coplen 2011; 

Qi et al. 2010) but was comparable to values from other studies (Ehleringer et al. 2008; 

Bowen et al. 2009; Kirsanow and Tuross 2011). The precision of these measurements was 

undoubtedly affected by differences in equilibration methods between the LSMSF laboratory 

and others (Qi and Coplen 2011) as these values are stable at LSMSF. Absolute δ
2
H, δ

18
O, 

Δ
2
Hkeratin-collagen and Δ

18
Okeratin-collagen values are therefore difficult to compare between this 

study and others, but their relative magnitudes within the present study are likely to be 

robust.  

2.4.2 Keratin and collagen isotope values  

Sheep δ
13

Ckeratin from both EH and Escrick was typical of mammalian herbivore hair from 

northern Europe. δ
13

Ckeratin values (-27.7-25.5‰) resembled those from wool from adult 

sheep in Ireland (-27.0--2 .2‰  Zazzo et al. 2008), and were more depleted than sheep 

wool from the Alps (-27--24‰  M nnel et al. 2007), Turkey (-26--19‰  Hedges et al. 2005), 

China (C3 feeds only, c. -23--21‰  Sun et al. 2010) or lamb wool from Sicily (C3 feeds only, 

-27--23‰  Moreno-Rojas et al. 2008). C3 herbage only δ
13

Ckeratin values were consistent with 

wholly C3 pasture-fed animals: compare wool data from sheep grazing mixed C3/C4 pastures 

in Mongolia (-21.5--1 .5‰  Wittmer et al. 2010) and China (c. -19‰  Sun et al. 2010), or 

lambs receiving concentrate or mixed feed in Sicily (c. -24‰ and -21--19‰, respectively  

Moreno-Rojas et al. 2008). Sheep wool from animals grazing wholly C4 pasture was even 

more enriched (c. -1 ‰  Sun et al. 2010).  

δ
15

Nkeratin values (6.18. ‰) were generally at the high end of ranges for cattle tail hair from 

Germany (Schwertl et al. 2003; Schwertl et al. 2005; Auerswald et al. 2011) and Ireland 

(Osorio et al. 2011), and were higher than values for sheep wool from the Alps (3.5- .5‰  

Männel et al. 2007), Mongolia (c. 5.8- .4‰  Wittmer et al. 2011), China (c. 2.9-7.8‰  Sun et 

al. 2010) and lamb wool from Sicily (4.1- .7‰  Moreno-Rojas et al. 2008). They lay within 

the very wide range for sheep wool from Turkey (2.8-10.1‰  Hedges et al. 2005). The 

consistently elevated values for the UK may be due to fertilizer use (as suggested in Camin 

et al. 2007) but may also be related to typical pasture composition, as low δ
15

N values in 
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Chinese flocks (c. 2.9 vs. 4.5-7.8‰  Sun et al. 2010) were linked to grazing on leguminous 

plants. This may imply smaller use of legumes as graze in the UK than in mainland Europe. 

There is little comparative data on modern herbivore bone collagen isotope values from 

Europe. Wild deer (Cervus elaphus, Capreolus capreolus) values from the UK were c. 

-24.8-21.2‰ for δ
13

Ccollagen and c. 1.58.0 for δ
15

Ncollagen (Birchall et al. 2005; Stevens et al. 

2006), while those from Poland were c. -23‰ for δ
13

Ccollagen and 2-5‰ for δ
15

Ncollagen 

(Bocherens and Drucker 2003; Stevens et al. 2006) while cattle fed a diet comprising C4 

plants showed δ
13

Ccollagen range of -19.2-13.5‰ and δ
15

Ncollagen range 4.9 .9‰ (Balasse et 

al. 1999). Collagen values in the present study are more depleted in δ
13

C (-25.0-23.9‰) 

and more enriched in δ
15

N (5.88.1‰) than any of these sets of data. These differences are 

likely to be in part due to European geographic isotope variation, but features of diet and 

species metabolism cannot be excluded.  

An alternative proxy for modern collagen data is archaeological bone collagen values. Data 

from the UK lies in the range -22.8-20.1‰ for δ
13

Ccollagen and 2.610‰ for δ
15

Ncollagen (Table 

2.10). If δ
13

Ccollagen values are corrected in line with recent anthropogenic 
13

C change (Friedli 

et al. 1986), this gives a modern equivalent range of approximately -23.9-21.2‰, which is 

still more enriched than samples in this study. Total collagen isotope ranges for the EH flock, 

of 0.79‰ for δ
13
C, 0. 4‰ for δ

15
N, and 7.20‰ for δ

2
H, were generally small compared to 

archaeological site ranges from the UK (Table 2.10). This suggested the presence of sheep 

from more than one flock in most or all archaeological assemblages, which is not 

unexpected. 

There is much less comparator data available for δ
2
H and δ

18
O of sheep tissues. Values of 

δ
2
Hkeratin and δ

18
Okeratin in this study were consistent with those of cattle tail hair (Auerswald 

et al. 2011), despite any potential differences in experimental precision from different 

calibrations of exchangeability. δ
2
Hcollagen values for UK herbivores have been determined at 

c. -34-15‰ (Birchall et al. 2005), much more enriched than data in this study, but this study 

a different (offline) experimental method, so direct comparison is difficult. Archaeological 

values or δ
2
Hcollagen for herbivores from the UK show a range of 70.1-9. ‰ (Reynard and 

Hedges 2008, assuming a fractionation factor of 80‰, as in this study) which is much  

wider and also more enriched than with sheep δ
2
Hcollagen data in this study (-80.7- 2.5‰). 

This may however reflect differences in climate over time, or differences in experimental 

precision between equilibration methods, plus the likely presence in the archaeological 

assemblage of sheep from more than one flock. equilibration methods, plus the likely 

presence in the archaeological assemblage of sheep from more than one flock.  
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Table 2.10. Caprine collagen isotopic composition variability at archaeological sites in the UK. 
§
 sheep, 

#
 sheep/goat 

   δ
13

C/‰ δ
15

N/‰ δ
2
H/‰  

Site N Period(s) Minmax Range Minmax Range Minmax Range Reference 

Berinsfield, 
Oxfordshire 

2
#
 Early medieval -21.4-21.2 0.2 6.45.8 0.6 - - (Privat et al. 2002) 

St Giles by 
Brompton Bridge, 
North Yorkshire 

9
§
 Late medieval -22.2-21.3 0.9 4.58.8 4.3 - - (Müldner and Richards 

2005) 

Wharram Percy, 
North Yorkshire 

5
#
 HighLate 

medieval 
-22.2-21.4 0.8 5.07.6 2.6 - - (Müldner and Richards 

2005) 

Wetwang Slack, 
East Yorkshire 

16
§
 Iron Age -22.8-20.9 1.9 3.57.3 3.8 - - (Jay and Richards 

2006) 

York, North 
Yorkshire 

4
§
 + 13

#
 RomanLate 

medieval 

§
-22.0-21.0 

#
-22.3-21.1 

§
1.0 

#
1.2 

§
2.76.6 
#
48.5 

§
3.9 

#
4.5 

- - (Müldner and Richards 
2007) 

Brean Down, 
Somerset 

11
#
 Bronze Age -22.7-20.1 2.6 5.99.7 3.8 - - (Britton et al. 2008) 

Yarnton, 
Oxfordshire  

10
§
 Iron Age, 

Romano-British 
-21.8-21.3 0.6 4.510.0 5.5 -70.1-9.6 -60.5 (Reynard and Hedges 

2008) 

Whithorn, Dumfries 
and Galloway 

6
#
 Late medieval -22.3-21.4 0.9 6.29.3 3.1 - - (Müldner et al. 2009) 

Danebury Hillfort, 
Hampshire  

57
§
 Iron Age -22.2-20.3 1.9 2.66.0 3.4 - - (Stevens et al. 2010) 

8
0
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Table 2.11. Derivation of H and O elements elemental contributions to hair. These 
relationships have not been derived for bone (Kirsanow and Tuross 2011). 

 H O  

Species Drinking 
water % 

Food % Drinking 
water % 

Food, air 
% 

Reference 

Humans 31 69 - - (Sharp et al. 2003) 

Humans 36 64 27 73 (O'Brien and Wooller 2007) 

Humans 27 73 35 65 (Ehleringer et al. 2008) 

Rats 25 75 45 55 (Podlesak et al. 2008) 

Quails 20-30 60-70 - - (Hobson et al. 1999) 

 

The depletion of sheep tissue δ
2
H values relative to local meteoric water (by 30 0‰ for 

keratin and 05‰ for collagen) and enrichment of δ
18

O (by 2124‰ for keratin and 1921‰ 

for collagen; Figure 2.2), is likely to reflect the balance between dietary and drinking water 

contributions to tissue isotope values. C3 plants discriminate strongly against 
2
H during 

photosynthesis, leading to depletion of plant tissues relative to plant water (Leaney et al. 

1985), but incorporation of water O into carbonyl groups leads to an enrichment of δ
18

O in 

plant tissues (Barbour 2007). Given the substantial contributions to keratin H and O from 

both food and water (Table 2.11), sheep keratin δ
2
H and δ

18
O values may be expected to be 

intermediate between food and water δ
2
H and δ

18
O values. The same is likely to be true of 

collagen isotopic composition. However as graze and water δ
2
H and δ

18
O composition were 

not measured directly in this study, this could not be verified. 

Finally, sheep δ
34

Skeratin from Escrick animals was generally depleted (range 2.1 .1‰) and 

less variable than data from Ireland (5.3-17.0‰  Zazzo et al. 2011) and Turkey (2.0-9.7‰  

Hedges et al. 2005). The Escrick data was consistent with an origin in a much less oceanic 

climate than that of Ireland, and was similar to that from cattle hair from Germany (3.5- .5‰  

Auerswald et al. 2011), though the comparability of δ
34

S between mammalian species is 

currently uncertain. Results probably also reflect contributions from greater fossil fuel 

burning in the UK and possibly also different bedrock and soil δ
34

S contributions (Peterson 

and Fry 1987; Krouse and Herbert 1988; Herut et al. 1995). Bone collagen δ
34

S values from 

the same animals (range 4.68.1‰) are likely to be dominated by the same factors.  

2.4.3 Isotopic differences between keratin and collagen  

Highly significant differences were detected between keratin and collagen δ
13
C, δ

2
H and 

δ
18
O compositions, but not for δ

15
N (Table 2.7). Keratin was more depleted than collagen in 

δ
13

C (EH median offset -2.0‰, Escrick -2.7‰) and δ
2
H (EH median offset -29‰, Escrick 

-40‰). Collagen was depleted relative to keratin in δ
18

O (EH median offset 1.8‰, Escrick 

not measured). Collagen and keratin were similar in δ
15

N value (EH median offset 0.5‰, 

Escrick -0.21‰). δ
13
C, δ

2
H and δ

18
O values were correlated between each other and 
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between tissues in both groups of animals; δ
15

N was correlated between tissues in the EH 

flock only. The small differences between EH and Escrick groups may have been due to 

differences in the variability of dietary isotopic inputs under to different flock management 

(Codron et al. 2012). 

In δ
15

N, the differences between collagen and keratin were minimal compared to those 

previously observed in other mammals (Table 2.1). Routing of N was clearly different to the 

routing of C, H and O. Firstly, Δkeratin-collagen was smaller for δ
15
N than for δ

13
C, δ

2
H and δ

18
O. 

Secondly, δ
15

Ncollagen was correlated only with δ
15

Nkeratin (cross-tissue correlation) but not with 

any other isotope. This contrasted with the behaviour of δ
13
C, δ

2
H and δ

18
O, which were co-

correlated in both tissues (within-tissue correlation) and across tissues. This behaviour 

probably reflected the homogeneity of dietary inputs of δ
15

N compared to other elements 

(Table 2.1), as it was drawn from a restricted number of sources in a monotonous, relatively 

low-protein herbivorous diet (contrast Codron et al. 2012). In addition, it is likely that a 

significant proportion was routed directly to proteinaceous tissue, further limiting the impact 

of within-body fractionation for N.  

In contrast, C in both collagen and keratin can be derived from all biochemical components 

of the herbivore diet: protein, carbohydrate and lipid, though cellulose made very little 

contribution (Tieszen and Fagre 1993). These components vary considerably in isotopic 

composition, with alkanes and lipids more depleted than monosaccharides, which are similar 

to bulk measurements (Hobbie and Werner 2004; Dungait et al. 2008). The contribution of 

protein to bulk δ
13
C is currently not clear  individual AA δ

13
C in C3 plants ranged from -3 ‰ 

(Val) to -17‰ (Gly), around a bulk value of -27‰ (Fogel and Tuross 2003), but these values 

may have been compromised by experimental procedure (Lynch et al. 2011). Inputs to δ
13

C 

are therefore more heterogeneous, and undergo more a wider range of biochemical 

conversions to AAs in the organism (Bohinski 1979, 366-411, 498-574), leading to a wider 

offset between proteinaceous tissues. Enrichment in collagen over keratin δ
13

C values were 

consistent with mammalian results so far determined (Table 2.1). 

Enrichment of keratin over collagen δ
18

O values found in this study was observed in a 

previous study of pigs (Tuross et al. 2008), but not two other studies, one of juvenile pigs 

(Warinner and Tuross 2010) and the other of rats (Kirsanow and Tuross 2011). In contrast, 

enrichment in collagen over keratin in δ
2
H has been widely reported in other species (Table 

2.1). For animals consuming an exclusively local, C3 plant-based diet, δ
2
H and δ

18
O in food 

and local water are expected to be systematically related (Sternberg et al. 1984; Sternberg 

et al. 1986). Plant δ
2
H was expected to be strongly depleted compared to local water δ

2
H 

(Leaney et al. 1985), and plant δ
18
O more enriched than local water δ

18
O. However for O, an 

additional contribution of atmospheric O2, where δ
18
O = 23.88‰ (Barkan and Luz 2005) 

must also be considered. The relative contributions of these factors have been estimated for 

keratin in a number of species (Table 2.10), but not in sheep or other ruminants. These 
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factors have also not been established in collagen. However without information on dietary 

isotopic inputs, it is not possible to apply these models to data in this study.  

To the authors’ knowledge, δ
34

S in collagen and keratin have not previously been compared 

for any species. All S in collagen and keratin is present in the AAs Cys and Met, derived 

directly from diet, though Cys can also be synthesised from Met in the body (Bohinski 1979, 

546-7). The most abundant keratin proteins contain 0.7-1.4% Cys and 0.1-0.4% Met 

(Clerens et al. 2010), whereas collagens have 0.2% of each AA (The UniProt Consortium 

2012). Differences in δ
34

S value between keratin and collagen are therefore likely to reflect 

(1) differences in AA composition between tissues; (2) variation in δ
34

S of diet over time, 

incorporated into the tissues at differing timescales; and/or (3) differences in Cys routing 

(directly from diet or via endogenous synthesis from Met) to tissue.  

In this study, δ
34

S data was only obtained for animals from the Escrick group. Here, collagen 

was generally enriched over keratin, but not in all individuals tested: three of five showed 

enrichment of 2.53.3‰; the remaining two showed much smaller differences, which were 

less than experimental error. It therefore appeared that within a single group of sheep, 

significant variability exists in diet-tissue fractionation of δ
34

S. It was unclear whether this 

was related to environmental, metabolic or anthropogenic factors, for example a period of 

nutritional stress (Harrison et al. 2011), change in pasture type (Schmidt et al. 2005) or 

provision of dietary supplements (Bahar et al. 2008) for these two animals. The extension of 

this methodology to samples from the EH flock, where more details are known, could clarify 

this.  

2.4.3.1 Differences in protein AA composition 

Isotope values have been shown to vary substantially between AAs in keratin and collagen 

(Raghavan et al. 2010; Styring et al. 2010), so differences in protein composition between 

these tissues are likely to account for a large proportion of the difference between their bulk 

values. This was examined by using single AA δ
13

C values to calculate bulk collagen and 

keratin isotope values, and comparing these to observed values.  

Calculated bulk δ
13

Ccollagen were within 0. ‰ of observed δ
13

Ccollagen, and calculated δ
13

CIFPs 

within 0.4‰ of observed bulk δ
13

Ckeratin (Figure 2.4), well within calculation error (±2.4 

2.7‰). The non-essential AA fraction was more enriched than the essential fraction in both 

tissues, reflecting both enrichment of AA δ
13

C during biosynthesis, and the δ
13

C values of 

the various dietary precursors to each AA. Calculated values of bulk δ
13

Ccollagen were more 

enriched than calculated bulk δ
13

Ckeratin, regardless of which set of single AA data was used 

for the calculation (that is, using single AA δ
13

C values from collagen to calculate bulk IFP 

values in addition to bulk collagen values, and vice versa; cross-calculated data not shown). 

This was true not only of the whole protein, but also of the non-essential AA fraction and the 

essential AA fraction. Differences in AA composition between collagen and keratin therefore 

explained only part of the isotopic offset between these tissues, and suggested some 



84 
 

difference in AA origin (either by routing or period of growth) between collagen and keratin. 

However, these calculations were based on only two sets of AA δ
13

C data, which may vary 

significantly between sheep breeds, locations or husbandry methods. Confirming AA δ
13

C 

patterns in other sheep samples is therefore necessary for increased confidence. 

The same calculations were also carried out for δ
15

N data from Styring et al. (2010). Here 

sheep collagen single AA δ
15

N values were used to calculate bulk collagen and IFP values, 

though only the former could be compared to observed values. This GC-C-IRMS technique 

recovered 8 of the 22 AAs present in collagen and keratin, which accounted for 6768% of N 

in collagen, and 2432% of N in keratin IFPs. Calculated IFP bulk δ
15

N values were more 

depleted than collagen bulk values (Figure 2.5). This was however only true of the non-

essential contribution to collagen, as the essential component of both proteins showed bulk 

δ
15

N values in the same range. The result of these calculations was very different to 

observed bulk keratin and collagen results in the present study, where bulk protein δ
15

N 

values were very similar. These differences may have been due to (1) the contributions to 

bulk δ
15

N from the AAs not recovered in Styring et al. (2010), and/or (2) differences in δ
15

N 

metabolism between sheep tested in Styring et al. (2010) and those in the present study. 

Error in these calculations was however large. 

 

 

Figure 2.5. Calculated bulk collagen (filled diamonds) and keratin (empty circles) δ
15

N 
values vs. observed bulk collagen δ

15
N values (dark bar) for Upper Palaeolithic 

archaeological sheep bone from Kasteelberg, South Africa (data from Styring et al. 2010).  
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2.4.3.2 Differences in protein AA routing 

Direct comparison of single AA δ
13

C values between tissues (Figure 2.3) indicated that 

almost all were more enriched in collagen than in keratin, the exceptions being His, Ala and 

Thr. Ser and Gly showed the greatest deviation from a 1:1 correspondence. They were 

enriched in collagen over keratin by 4.6 .4‰ and 2.74.0‰ respectively (both ±0.5‰), 

while other isotopes shown an enrichment range of -1.1+2.0 ± 0.10.4‰. This behaviour of 

Ser and Gly could not be accounted for by error bar magnitude and was not observed in 

human bone collagen and hair keratin (Raghavan et al. 2010). Ser and Gly are linked by an 

important biosynthesis pathway in which Gly is produced from Ser, though Gly can also be 

synthesised via the carnitine pathway, and routed directly from diet (Meléndez-Hevia et al. 

2009). It was therefore clear that the metabolic routing of Ser and Gly was different between 

collagen and keratin, but not whether the values were unusually depleted for keratin or 

unusually enriched for collagen. 

Gly and Ser make up 27% and 45% of AA residues in collagen, respectively, and 29% 

and 812% of AA residues in keratin IFPs. Collagen therefore shows very high demand for 

Gly in synthesis, which diet is unlikely to supply in total (Meléndez-Hevia et al. 2009). If the 

animal’s diet included high-protein supplements, these are more likely to be routed high-

demand AAs in both tissues. The samples were from the Escrick flock of unknown 

husbandry, so the use of high-protein supplements was not excluded. If the supplements 

were in part C4-based, which is likely in Europe (Kornexl et al. 1997; Schmidt et al. 2005) 

then this could account for the enrichment in Gly values in sheep collagen. However, the 

high demand of wool for Ser, Leu and Glu (all 812% of IFPs) could be expected in the 

same circumstances to lead to preferential incorporation of enriched versions of these AAs 

into keratin, which was not observed.  

An alternative hypothesis was that the pattern originated in depleted Ser synthesis in keratin, 

and that Gly values reflected partial routing from this pool of Ser, and partial routing via 

other, more enriched pathways, e.g. from diet. Ser is an essential reagent in the production 

of Cys from Met via the transsulfuration pathway (Bohinski 1979, 546-7). Supply of these S-

containing AAs, and therefore of Ser, is a major limiting factor for wool growth, though in vivo 

capacity for synthesis of Ser was determined to be high as wool growth rate was little 

increased by its supplementation (Liu et al. 2000). It is possible that high demand for Cys in 

sheep skin (Liu and Masters 2000) leads to compartmentalised production of highly depleted 

Ser (and hence Gly) in the skin, which is incorporated into keratin but not collagen. Possible 

evidence for this in this study was that Cys in sheep wool was highly depleted in δ
13

C for a 

non-essential AA (values -28.1-2 .2‰; Table 2.9; Figure 2.3).  

This hypothesis would be very interesting to test in further samples of sheep keratin and 

collagen, in particular both high and low diet individuals from the EH flock, to explore 

whether nutrient adequacy is a relevant factor here. (This was not carried out in this study 
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because Escrick samples were acquired much earlier than EH samples, and were thus the 

only material available for sampling at the time). Analysis of samples of a variety of sheep 

breeds might also be illuminating, for example including improved and un-improved wool 

breeds, as well as hair (non-wool) breeds, in addition to samples from other herbivores (e.g. 

ruminant/non-ruminant), if this pattern is related to the greater production of hair fibre as a 

proportion of body mass in sheep compared to other mammals. High mass of clean fleece 

produced in a year is a trait deliberately selected for in modern sheep (Safari et al. 2005). 

Clean fleece weight in yearling sheep averaged 1.72.3 kg per year in animals which 

weighed 3441kg (Wuliji et al. 1999; Wuliji et al. 2011), that is 47% of body mass, 

compared to 2% for rodents (Bedford and Christian 2000), 3% for lemmings (Reid et al. 

1997) or 1% in seal pups (Brookens et al. 2008). Unfortunately, given the availability of 

human collagen/keratin AA δ
13

C data (Raghavan et al. 2010), no estimates for human hair 

production were found (see Park and Ihm 2010).  

2.4.4 Metabolic and dietary factors significantly affecting protein isotope 

values 

2.4.4.1 Season of sample collection 

Animals slaughtered in November/December (group 7) had more depleted δ
13

Ccollagen values 

(median -24.33‰) than those slaughtered in August/September (group    median -24.07‰). 

Keratin tissues showed the same relationship (Nov/Dec median -26.4‰, Aug/Sep median 

-26.1‰). These small differences were nevertheless significant (Table 2.8). 

Significant variation in δ
13

Ccollagen by season of sample collection was also present in the 

larger study of bone isotope values (Hamilton unpublished), where it was ascribed to 

seasonal variation in diet. Plant tissue δ
13

C has a complex seasonal pattern, depending on 

features of soil type, humidity, temperature, and irradiance, but generally increases in 

summer (Smedley et al. 1991; Garten and Taylor 1992). Lower δ
13

Ccollagen values in 

November/December-slaughtered samples were therefore generally consistent with this 

annual variation. The potential effects of natural weathering from environmental humidity 

and light exposure on keratin isotopic composition can be rejected (Auerswald et al. 2011). 

Analysis of shorter segments of fleece samples, capturing shorter periods of input, could be 

used to examine seasonal variation in detail.  

If seasonality were the causal factor for variation in δ
13

C between slaughter groups, it was 

interesting that no significant variability in δ
15
N, δ

2
H or δ

18
O was detected, as these isotopes 

are also known to cycle seasonally in plant tissues (Handley and Scrimgeour 1997) and 

rainwater (Darling and Talbot 2003). In these isotopes, other effects were apparently 

dominant.  
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2.4.4.2 Breeding history 

A history of pregnancy and lactation were significantly associated with depletion in 

δ
13

Ccollagen (median -24.5‰ vs. -24.1‰) and δ
15

Ncollagen (median  .3‰ vs. 7. ‰), and also 

δ
15

Nkeratin (median  .3‰ vs. 7. ‰; Table 2.8). This depletion in δ
15

N is in line with data from 

human hair (Fuller et al. 2004), which also reported no effect on δ
13

Ckeratin. No isotopic effect 

of pregnancy on human bone collagen has been reported (Nitsch et al. 2010). However it is 

possible that such an effect was more readily discernible in sheep because of (1) shorter 

turnover rates of sheep bone leading to greater isotopic variability in the tissue, and (2) more 

frequent pregnancies, meaning that a greater proportion of an individual’s life was spent 

pregnant or lactating, thus producing a greater cumulative effect on bone isotopic 

composition. Depleted δ
13

Ccollagen in bred ewes might however not be a direct effect of 

pregnancy or lactation. Although all females tested in this study received the ‘low’ diet with 

no supplementation, in practice ‘low’ animals did receive supplementation if they lost too 

much weight (Hamilton unpublished). Pregnant ewes are likely to lose weight with 

inadequate diet (Vincent et al. 1985), so it is possible that this supplementation could explain 

δ
13

Ccollagen change. However, consumption of silage and hay has previously been reported to 

enrich δ
13

Ckeratin over fresh pasture values in cattle (Schnyder et al. 2006) rather than 

producing depletion as observed here. It therefore remained unclear what caused this effect 

in this study if it was not caused by metabolic changes associated with pregnancy. 

2.4.4.3 Sex 

Collagen from male sheep was significantly more depleted in δ
15
N and δ

18
O, and more 

enriched in δ
2
H, than collagen from females (Table 2.8). Differences between these isotopes 

were not significant in keratin. Δ
2
Hkeratin-collagen was greater in males (median -34‰) than 

females (median -24‰). The distributions of δ
15
N and δ

2
H were significantly different 

between males and females in both keratin and collagen. In addition, the distributions of 

δ
18
O, Δ

2
Hkeratin-collagen, Δ

18
Okeratin-collagen were also significantly different between sexes. All 

animals in this comparison were on the low diet, and all females were unbred, so these 

effects were unlikely to be due to differences in nutrition or the effects of pregnancy or 

lactation. 

Previously identified differences in isotope value between sexes (mostly in δ
15

N) have been 

attributed to social factors in humans (e.g. Barrett and Richards 2004; Fuller et al. 2006; 

Craig et al. 2009; Chenery et al. 2011) or to food selection behaviour in birds (e.g. Forero et 

al. 2002; Mariano-Jelicich et al. 2008). The differences in δ
2
H and δ

18
O between male and 

females sheep in the present inquiry have no parallels in these studies. Potential 

contributing factors to these differences include: (1) different browse or water intake 

behaviour, or (2) sex-dependent physiological variations in isotope fractionation during 

production of collagen or keratin. More specific suggestions regarding their nature could not 

be made at present. 
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2.4.4.4 Diet quality 

No association with diet quality was present in any isotope or tissue offset. This was in 

contradiction to the larger bone collagen only study (Hamilton unpublished), in which high 

diet males had significantly lower δ
13
C and higher δ

15
N than low diet males. In the males of 

the same population, low nutrition was been found to delay epiphyseal bone fusion and tooth 

eruption, but had little effect on bone size (Popkin et al. 2012). The isotopic results were 

unexpected because previous studies showed variable offsets between δ
13

C of muscle 

tissue fractions (protein and lipid) in lambs raised on different diets, being greater with 

pasture-based diets than on concentrate or milk diets (Piasentier et al. 2003; Sun et al. 

2010). Additional keratin samples from individuals in the EH flock, for which δ
13
C and δ

15
N 

collagen values have already been determined, would be useful to confirm this effect. 

 

2.5 Conclusion 

Isotope analysis of bone collagen and wool keratin from two sheep flocks in the UK showed 

that collagen protein was enriched over keratin in δ
13
C and δ

2
H, and depleted in δ

18
O, while 

δ
15

N values for the two tissues were very similar. Data for δ
34

S also suggested an 

enrichment in collagen over keratin. These patterns were generally in line with other 

mammalian species for δ
13
C, δ

2
H and δ

18
O but differed for δ

15
N, possibly reflecting the low 

protein diet of these grazers. Both AA composition and AA routing were important factors 

explaining the offset in bulk isotopic composition between sheep collagen and keratin. In 

particular, single AA δ
13

C analysis identified very different routing of Ser and Gly between 

keratin and collagen proteins, which was suggested to be related to the high demand for Cys 

synthesis in sheepskin for wool production. However due to uncertainty in the turnover rate 

of sheep bone, differences in turnover time, and therefore in dietary and metabolic input, 

could not be excluded as contributory factors.  

A number of specific metabolic and dietary factors were tested for their effect on isotope 

values and offsets between tissues. Both keratin and collagen δ
13

C were found to vary 

seasonally, suggesting that collagen turnover in sheep ribs is relatively rapid. Pregnancy and 

lactation depleted δ
15

N in both keratin and collagen, in line with expectations, but a depletion 

in δ
13
C in collagen was also observed. Bone collagen δ

15
N and δ

18
O was found to be 

significantly depleted, and δ
2
H enriched, in males compared to females, which was 

unexpected. No such effects were found for keratin. Finally, and again unexpectedly, diet 

quality did not affect significantly isotopic composition in either tissue.  

Keratin and collagen isotopic composition has been compared for only a small number of 

species. This study has added data from a relatively large mammalian herbivore, with results 

that depend on dietary and metabolic factors differently from species previously tested. It is 

the first such study to include five independent isotopic measurements. In a 
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zooarchaeological context, this study provides a baseline for understanding archaeological 

sheep populations from bone assemblages, and also for relating the isotopic composition of 

keratin-based artefacts (Hedges et al. 2005; Chapter 7) to better-established bone collagen 

isoscapes. Potential difficulties with this application include differing degrees of dietary 

heterogeneity between modern and ancient flocks (Codron et al. 2012; Chapter 7); potential 

differences between modern and ancient breeds, for example in rate of maturation; inter-

annual isotopic variation; in addition to questions of diagenesis of keratin (Wilson et al. 2010; 

Chapter 4) and collagen (Tuross 2002; Dobberstein et al. 2009). In particular, isotopic 

variability due to differences in sex, if confirmed, will be of great importance in an 

archaeological context, as sex balance in sheep populations can vary drastically depending 

on whether farming focuses on meat, milk or wool (Payne 1973; Mainland and Halstead 

2005; Warn et al. 2006).  

Future work suggested by this study includes: 

 testing of further individuals from the EH sheep flock to examine effects of castration and 

frequency of pregnancy.  

 direct comparison of single AA δ
15

N (Styring et al. 2010) and possibly δ
2
H (Fogel et al. 

2010; cited in Boecklen et al. 2011) in sheep keratin and collagen, to gain additional 

perspectives of AA routing. 

 further examination of Ser and Gly routing in herbivore keratin, to examine the effects of 

e.g. species, breed and diet. 

 examination of seasonal variability in keratin isotope values, to compare to average 

(whole-hair) keratin values and also collagen values of uncertain turnover rate. 

 inter-laboratory development of collagen standards for δ
2
H and δ

18
O measurements, 

and optimisation of collagen equilibration procedures by analogy to Qi and Coplen’s 

work on keratin substrates (Qi and Coplen 2011), including examination of the effect of 

acid exchange of O during collagen preparation. 
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3. Provenancing modern sheep wool using carbon, nitrogen, 

hydrogen, oxygen and sulfur isotopes 

 

Abstract 

An isotopic method to provenance sheep wool would be useful to examine trade in wool 

textiles across the North Atlantic in the past, where these objects have long been of great 

economic and social importance. Previous studies have indicated that metabolic and farming 

practice variation in sheep wool isotope values may be significant confounding factors of 

geographic origin, with metabolic effects relatively insignificant. Samples of wool from four 

sheep flocks in the UK and one in Iceland (total 67 animals) were analysed for carbon 

(δ
13
C), nitrogen (δ

15
N), un-exchangeable hydrogen (δ

2
H), oxygen (δ

18
O) isotopic 

composition to establish the resolution of the technique in this region. Sulfur (δ
34

S) 

composition data was also obtained for one UK flock. δ
13
C, δ

15
N, δ

2
H, and δ

18
O isotope 

values clustered strongly by flock. All were significantly related to flock northing, and δ
15

N 

and δ
2
H were additionally related to flock easting. Variation in farming practice (fodder, 

fertilizer) increased differentiation in δ
13
C and between δ

15
N between UK flocks, but masked 

their geographical origin. δ
34

S values were more depleted than expected. Differentiation 

between UK and Icelandic material in δ
15

N, δ
2
H and δ

18
O was however clear. This is the first 

study to report geographical variation in un-exchangeable δ
2
H and δ

18
O values in wool. 

Combined light stable isotope analysis shows potential as a provenancing tool for sheep 

wool.  

Keywords: Stable isotope analysis; sheep; wool; keratin; provenance 
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3.1. Introduction 

Geographical variation of light stable isotope values of keratinous tissues such as 

mammalian hair and bird feathers is the basis of isotope studies of migration (Hobson 1999; 

Ehleringer et al. 2008; Bowen 2010; Brattström et al. 2010; Valenzuela et al. 2011; Wunder 

2012). For domesticate species, this methodology offers a way to authenticate animal 

products, e.g. food. Previous studies of herbivorous mammalian tissues have shown that 

carbon (δ
13
C), nitrogen (δ

15
N), un-exchangeable hydrogen (δ

2
H), oxygen (δ

18
O) and sulfur 

(δ
34

S) isotope values reflect geographical origin across Europe (Kornexl et al. 1997; 

Piasentier et al. 2003; Schmidt et al. 2005; Camin et al. 2007). Similar approaches have 

been tested in China (Guo et al. 2010; Sun et al. 2010).  

Geographical gradients in δ
13
C and δ

15
N in mammalian tissue largely reflect environmental 

gradients (e.g. temperature, humidity) affecting local food plant species and growing 

conditions (Craine et al. 2009) and hence indirectly climate. Tissue δ
2
H and δ

18
O reflect both 

diet and drinking water isotopic composition, both related to climate, which varies predictably 

across landscapes (Hobson 1999; Fricke et al. 1998; Wassenaar and Hobson 2008). In 

addition, δ
18

O partly reflects air composition, which does not vary geographically (Barkan 

and Luz 2005). Tissue δ
34

S is related to the origin of S in the diet (marine or terrestrial) and 

can thus distinguish coastal from inland areas (Zazzo et al. 2011; Osorio et al. 2011). For 

human tissues, social and cultural practice in food choice may be more dominant than 

geographical variation in δ
13
C and δ

15
N (O'Connell and Hedges 1999; Valenzuela et al. 

2011; Valenzuela et al. 2012) though not δ
2
H or δ

18
O, which are more directly derived from 

local drinking water (Ehleringer et al. 2008). 

Because they are largely not exposed to the ‘continental supermarket’ diet (Ehleringer et al. 

2008), whereby modern food distribution systems ensure isotopic homogeneity over large 

areas, isotope values in the tissues of domesticated animals should reflect local pasture 

plants’ physiology and growing conditions. However a number of agricultural practices have 

been shown to affect tissue isotope values (Table 3.1). Further, farmers control metabolic 

features of livestock such as age, pregnancy and fleece colour, all of which have also been 

found to affect isotope values, the first in sheep wool δ
13

C (Zazzo et al. 2008), the second in 

human hair δ
15

N (Fuller et al. 2004) and the third in bird feather δ
13
C and δ

15
N (Michalik et 

al. 2011). These factors are likely differ between sheep flocks and may have to be taken into 

account when interpreting isotope values for geographical origin. 

Keratin proteins, which make up 90% of wool by mass (Popescu and Wortmann 2010) are 

metabolically inactive and not remodelled once formed (Schwertl et al. 2003; Wassenaar 

and Hobson 2008). Therefore wool records a highly time-resolved isotopic signal, reflecting 

seasonal change in diet due to both climate and farming practice cycling, as well as short-

term metabolic changes, such as pregnancy. Because the absence of subsequent 

remodelling, wool is likely to show greater isotopic variation than more slowly growing  
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Table 3.1. Summary of metabolic and farming practice factors found to affect domesticate mammalian herbivore tissue isotope values. 

Factor Isotope Species Tissue Environment Relationship Reference 

Stocking level δ
15

N Cattle Hair keratin Temperate and alpine 
grassland 

Positive correlation (Schwertl et al. 
2005) 

 δ
15

N Sheep Hair keratin Semi arid grassland No relationship (Wittmer et al. 
2011) 

 δ
15

N Cattle Hair keratin Temperate grassland No relationship (Wrage et al. 
2011) 

Water availability δ
13

C Cattle Hair keratin Temperate humid 
grassland 

Positive correlation to plant available 
soil water; dependent on soil type 
(peat/mineral) 

(Schnyder et al. 
2006) 

Transhumance to 
altitude 

δ
13

C, 
δ

15
N 

Sheep, goat, 
cattle 

Hair keratin Alpine grassland δ
13

C : positive correlation, c. 1.1‰ 
km

−1
; δ

15
N: negative correlation, c. 

1.1‰ km
−1

 

(Männel et al. 
2007) 

Salt marsh grazing δ
15

N Cattle Bone collagen Coastal salt marsh c. 1.5‰ enrichment (Britton et al. 
2008) 

Feed type: C3 vs. C4  δ
13

C, 
δ

15
N 

Sheep 
(juvenile) 

Hair keratin, 
perirenal fat, 
muscle  

Indoor pen  Tissue δ
13

C herbage diet <C3 
concentrate diet < C4 concentrate diet 

(Moreno-Rojas et 
al. 2008) 

 δ
13

C, 
δ

15
N 

Cattle  Defatted muscle 
protein, muscle 
lipid 

Pen C4 proportion of diet proportional to 
δ

13
C of muscle protein (r

2
=0.98) and 

lipid (r
2
=0.93); tissue δ

15
N mean grass 

> mixed > maize silage  

(Bahar et al. 2005) 

 δ
13

C Cattle Hair keratin Temperate and alpine 
grassland 

C4 proportion of diet accounted for 
9 % of δ

13
C variation in hair 

(Schwertl et al. 
2005) 

 

1
0

4
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Table 3.1 continued. 

Factor Isotope Species Tissue Environment Relationship Reference 

Feed type: protein 
content 

δ
15

N Llama, 
alpaca, goat, 
cattle, horse, 
rabbit 

Hair keratin Indoor pen  Higher range of increase of δ
15

N for 
higher protein diets (19% vs. 9%) 

(Sponheimer et al. 
2003) 

 δ
34

S Horse Hair keratin Indoor pen Greater positive fractionation with low-
protein diet 

(Richards et al. 
2003) 

Feed type: seaweed δ
13

C, 
δ

18
O 

Sheep Tooth enamel Coastal grassland and 
seaweed from beach 

δ
13

C reflects enriched marine values; 
low amplitude δ

18
O variation 

(Balasse et al. 
2005) 

Feed type: nutritional 
stress 

δ
34

S Sheep Defatted muscle 
protein 

Indoor pen δ
34

S depleted during and following 
(putative) stress period 

(Harrison et al. 
2011) 

Seasonal foddering δ
13

C, 
δ

15
N 

Wild/ 
domesticate 
sheep, goat  

Dentine 
collagen 

Desert steppe, rocky 
plateau and mountain, 
arid valley grassland 

Enriched δ
13

C in domestic animals vs. 
wild, due to C4 winter foddering 

(Makarewicz and 
Tuross 2006) 

 δ
13

C, 
δ

15
N 

Cattle Hair keratin Temperate grassland in 
summer; grass silage 
and hay in winter 

δ
13

C: summer values depleted 
compared to winter; δ

15
N: summer 

values enriched compared to winter 

(Schwertl et al. 
2003) 

 δ
13

C, 
δ

15
N, 

δ
34

S 

Cattle Defatted muscle 
protein 

Temperate humid 
grassland  

Tissue δ
13
C  +>2‰ in winter and 

spring; δ
15
N invariant; δ

34
S complex 

(conventional farming) 

(Bahar et al. 2008) 

Weaning age δ
15

N Sheep, goat  Dentine 
collagen 

Desert steppe, rocky 
plateau and mountain, 
valley and alpine 
grassland 

Approx 1.5‰ enrichment with 
prolonged weaning 

(Makarewicz and 
Tuross 2006) 

Climatic variation δ
18

O Sheep, 
cattle, elk, 
pigs 

Tooth enamel Wide range Correlated with precipitation values, 
especially where large annual 
temperature variation 

(Fricke et al. 
1998) 

 

1
0
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Table 3.1 continued. 

Factor Isotope Species Tissue Environment Relationship Reference 

Intensive vs. 
extensive agriculture 

δ
13

C, 
δ

15
N 

Cattle Cows’ milk  
whole, casein, 
whey 

Temperate and alpine 
grassland 

Intensive enriched over extensive in 
δ

13
C due to use of C4 feeds; in δ

15
N 

due to use of fertilizer 

(Kornexl et al. 
1997) 

Organic vs. 
conventional 
agriculture 

δ
13

C, 
δ

15
N, 

δ
34

S 

Cattle Defatted muscle 
protein 

Temperate humid 
grassland  

Conventional tissues enriched over 
organic in δ

13
C due to use of C4 feeds, 

and in δ
15

N due to use of fertilizer; 
depleted relative to organic in δ

34
S, 

reasons unclear  

(Schmidt et al. 
2005) 

Distance from coast δ
34

S Sheep Hair keratin Temperate humid 
grassland 

δ
34

S increasingly depleted with 
increasing distance from coast; effect 
was greater against prevailing wind 
direction. 

(Zazzo et al. 
2011) 

Bedrock and soil 
type 

δ
34

S Sheep Defatted muscle 
protein 

Wide range δ
34

S higher in rocks and soils derived 
from evaporates; lower in volcanic and 
sulfide sediments 

(Camin et al. 
2007) 

Weathering 
(photodegradation 
and abrasion) 

δ
34

S Cattle Hair keratin Temperate humid 
grassland  

Enrichment in δ
34

S with increased 
weathering 

(Auerswald et al. 
2011) 

 

1
0

6
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tissues such as muscle protein (Balasse et al. 2005; Bahar et al. 2008). This may obscure 

geographical resolution of isotope values.  

This study examined the resolution of a multi-isotope provenancing technique based on wool 

keratin δ
13
C, δ

15
N, δ

2
H and δ

18
O isotope values within a small geographical region. It 

therefore extended the approach of Hedges et al. (2005) from a Mediterranean to a 

temperate Atlantic climate. The study applied δ
34

S to one flock only, due to cost and 

availability. This work is the first stage in establishing a provenancing method for historical 

and archaeological sheep wool textile artefacts from the North Sea area, objects of central 

economic and political concern to a number of countries in this region since at least the high 

Middle Ages (AD 1100-1500: Munro 2003; Spufford 2006, 232-41, 326-9).  

 

3.2. Samples, analytical and statistical methods 

The effect of metabolic (breeding history, sex) and dietary (seasonality, diet quality) factors 

on wool isotope values have already been examined (Chapter 2). This study investigated 

whether geographic variation in isotope values was obscured by these factors and real 

variability in flock structure and management, including breed, management, flock size, sex 

and age balance and wool colour. 

The study examined 86 samples of wool from 67 animals from five flocks (Table 3.2, Figure 

3.1). Staples represented a year’s hair growth (±2 weeks), except for UK Penicuick and UK 

Escrick where the growth period was shorter. The flocks represented a range of husbandry 

types:  

 grazing on non-fertilised pasture, supplementation with local (unfertilized) hay only, no 

concentrates (UK Tollesbury and UK Penicuick) 

 grazing on pasture receiving fertilizer, with concentrate supplementation during snow 

cover in winter and during lambing (UK Seaton Ross)  

 grazing on fields that may have been treated with a small amount of artificial fertiliser, 

supplementation with local (possibly fertilized) hay (Iceland Kalmanstunga) 

 unknown conditions (UK Escrick).  

Animals were mostly of relatively unimproved breeds (Table 3.3). The majority (66%) were 

female, with 25% male, 7% and 1% castrate (1 animal). Three quarters (74%) were adults 

(>12 months old), and 18% yearlings (<12 months old). More than half of adult ewes were 

empty (that is, had not had a lamb; 59%) during the period of wool growth, while 41% had 

carried a pregnancy (lambed) during this period. Wool colour varied, with most animals 

having light coloured wool (white 21%, cream 54%) but tan, brown, grey and black fleeces 

were also sampled. 
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Table 3.2. Origin of samples of wool: flock location and management details.
 
 

Flock Latitude/ 
longitude 

Altitude 
/m 

Mean temp. 
range/°C

a
 

Mean annual 
rainfall /mm

a
 

Farming type Wool 
growth 
period 

Pasture Feeds 

Seaton Ross, 
North Yorkshire, 
UK 

55.85866 N 
-0.80955 E 

7 Jan: 3.5–4.5; 
Jul: 15.5–
16.5 

 

400–800 

 

Modern (C. 
Johnstone, 
pers. comm.) 

Jun 

2008Jun 
2009 

Converted to 
pasture from 
fertilized 
agricultural land, 

winter 20078. 

Fresh pasture, 
local hay, mixed 
C3/C4 
concentrate 
feeds 

Tollesbury, 
Essex, UK  

51.75345 N 
0.86480 E 

2 Jan: 3.5–4.5; 
Jul 16.5–19.0 

 

400–800 

 

SSSI 
(Anonymous 
1993) 

Jun 

2008Jun 
2009 

Unfertilized 
embanked salt 
marsh 

Fresh SSSI 
pasture and 
SSSI hay 

Escrick, North 
Yorkshire, UK 

(53.87573 N 
-1.04112 E)

b
 

Not 
known 

Not known Not known 

 

Not known 
(Chapter 2) 

Not known 
(probably 
May/June 

2008)Feb 
2009 

Not known Not known 

Penicuick, 
Midlothian, UK 

55.85839 N  
-3.20955 E 

190 Jan: 2–3.5;  
Jul 13.5–14.5 

400–800 

 

Traditional 
(Dingwall et al. 
unpublished; 
Chapter 2) 

May/Jun 

19969 to 
Aug/Sep or 
Nov/Dec 

19992001 

High: improved 
pasture 

Low: 
unimproved 
pasture 

High: fresh 
pasture, hay 
during snow 
cover. Low: fresh 
pasture 

Kalmanstunga, 
Borgarfjörður, 
Iceland 

64.73067 N 
-20.79693 E 

253 0–2 

 

1000–1500 

 

Traditional (E. 
Eyþórsdóttir, 
pers. comm.) 

Apr 

2009Apr 
2010 

Small quantity 
artificial fertilizer 

Fresh highland 
pasture, local 
hay 

a
(Jebson 2007; Nawri and Björnsson 2010) 

b
Abattoir location. Flock origin unknown but very likely North Yorkshire, within 30km of abattoir. 

1
0

8
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Table 3.3. Flock composition. 

Flock Breed Sex Age Lambing
a
 

Seaton Ross, North Yorkshire, 
UK 

Shetland n=11 
Wensleydale n=1 

Male n=2  
Female n=10 

Adult n=9 
Yearling n=3 

Lambed n=4  
Empty n=3 

Tollesbury, Essex, UK  Shetland n=9 
North Ronaldsay n=11 

Male n=3  
Female n=16 
Castrate=1 

Adult n=14 
Yearling n=6 

Lambed n=6 
Empty n=7 

Escrick, North Yorkshire, UK Not known n=5 Not known Not known Not known 

Penicuick, Midlothian, UK Shetland n=20 Male n=10 
Female n=10 

Adult n=20 Empty n=10  

Kalmanstunga, Borgarfjörður, 
Iceland 

Icelandic n=10 Male n=2 
Female n=8 

Adult n=7 
Yearling n=3 

Lambed n=5 

a
Adult females only. Wool sampling was after birth for animals from UK, during pregnancy for animals from Iceland.  

1
0

9
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Figure 3.1. Origin of samples of wool: map of flock locations. 

 

3.2.1. Sample cleaning  

Approximately 0.30.5 g of wool, in the form of 12 staples (the locks of hair into which the 

fleece naturally falls), was selected from each fleece. Samples were hand-cleaned to 

remove particulate matter but without breaking up the staples, and washed four times with 

organic solvents and ultra-pure water (ELGA Purelab Ultra, Marlow, UK) according to the 

protocol in Hedges et al. (2005), but using dichloromethane (HPLC grade, Fisher Scientific, 

Loughborough, UK) instead of chloroform in all solvent mixtures, and employing an 

additional initial water wash to ensure thorough cleaning. Between 1 and 3 whole fibres were 

coiled into metal capsules for IRMS analysis without milling. Triplicate samples were 

selected from eight animals in the UK Tollesbury and Seaton Ross flocks. 
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3.2.2 Sample analysis 

δ
13

C, δ
15

N and δ
34

S analysis on samples from UK Escrick was carried out at Iso-Analytical, 

(Crewe, Cheshire) as reported in Chapter 2. All remaining analyses were carried out at the 

Natural Environment Research Council Life Sciences Mass Spectrometry Facility (NERC 

LSMSF) in East Kilbride. 

For δ
13
C and δ

15
N analyses, 0.7 mg of washed wool was weighed into 4 x 3.2 mm Sn 

capsules (Elemental Microanalysis, Okehampton, UK). For δ
18
O and δ

2
H analyses, 0.1 mg 

of wool was weighed into 4 x 3.2 mm Ag capsules (Elemental Microanalysis, Okehampton, 

UK and Pelican Scientific, Stockport, UK). Whole hairs were analysed to obtain a period 

average value. δ
13
C and δ

15
N IRMS analyses were carried out on a ThermoElectron Delta 

Plus XP with Costech ECS 4010 elemental analyser; internal standards were a gelatine, two 

alanines enriched with 
13

C and 
15

N respectively, and a 
15

N-enriched glycine (Table 3.4). C 

and N content and C:N atomic ratios (C:Natom) were calculated using a tryptophan standard. 

δ
18
O and δ

2
H IRMS analyses were carried out on a Thermo Fisher Scientific Delta V Plus 

with TC/EA high temperature furnace. The contribution of exchangeable hydrogen was 

calculated using keratin standards BWB-II (whale baleen), CFS (feathers), ISB (feathers) 

and WG (feathers) and a comparative equilibration method (Wassenaar and Hobson 2003; 

Sauer et al. 2009). δ
18
O standards were IAEA  01, IAEA CH  and IAEA  00; the δ

2
H of the 

un-exchangeable H in the four keratin standards was previously determined using a steam 

equilibration technique. Calculation of un-exchangeable δ
2
H assumed a fractionation factor 

α = 1.080 (εx-w = 80‰). δ
13
C and δ

15
N results are reported in per mille (‰) relative to PDB 

and AIR respectively; δ
18
O and δ

2
H results are reported in per mille relative to VSMOW.  

3.2.3 Statistical treatment 

Statistical analysis was carried out using R (R Development Core Team 2008). Where 

multiple samples were tested from a single animal, the arithmetic mean of isotope and 

elemental composition values was used in statistical calculations at flock level. The dataset 

was non-parametric (univariate and multivariate Shapiro-Wilk tests, P<0.05). No effective 

data transformations were found. Continuous surface assignment models, based on 

regression, are therefore no appropriate for this data, despite their wide use elsewhere in 

isoscape investigations (Wunder et al. 2005; Wunder 2012). As an alternative, standard 

deviations for flocks in this study were estimated using a bootstrapping method. Calculations 

were made within R using package boot (Davison and Hinkley 1997; Canty and Ripley 

2011). 
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Table 3.4. Isotopic analytical precision: mean ± maximum s.d in any single analytical run. For abbreviations, see text. *s.d. undetermined. 

  

δ
13

C/‰ δ
15

N/‰ δ
2
H/‰ δ

18
O/‰ 

Standards n Observed Accepted Observed Accepted Observed Accepted Observed Accepted 

Gelatine 130 -20.34 ± 0.12 -20.35 ± 0.04 5.89 ± 0.14 5.95 ± 0.11 

 

   

13
C-enriched 

alanine 45 -10.68 ± 0.14 -10.69 ± 0.09 -4.94 ± 0.19 -4.97 ± 0.12 

 

   

15
N-enriched 

alanine 27 -23.52 ± 0.07 -23.51 ± 0.02 17.11 ± 0.11 17.06 ± 0.14 

 

   

15
N-enriched 

glycine 18 -35.99 ± 0.22 -36.01 ± 0.06 19.72 ± 0.08 19.71 ± 0.13 

 

   

CFS 9 

    

-140.4 ± 1.5 -148.6* 5.80 ± 0.53 

 BWB-II 9 

    

-100.3 ± 2.1 -109.5* 13.15 ± 0.23 

 ISB 9 

    

-59.9 ± 2.5 -68.8* 13.13 ± 0.56 

 WG 9 

    

-136.5 ± 2.1 -146.6* 6.43 ± 0.62 

 IAEA-601 41 

     

 23.07 ± 0.24 23.14 ± 0.19 

IAEA-CH6 16 

     

 36.52 ± 0.41 36.40* 

IAEA-600 8 

     

 -3.29 ± 0.44 -3.48 ± 0.53 

1
1

2
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3.3. Results 

Full δ
13
C, δ

15
N, δ

2
H, δ

18
O, and C:Natom results for samples from UK Tollesbury, UK Seaton 

Ross and Iceland Kalmanstunga flocks are given in Appendices 3.1 (all individuals) and 3.2 

(triplicate raw data); data from UK Penicuick and UK Escrick flocks is reported in Chapter 2.  

Isotopic effects of breed, sex, age, and lambing status could not be statistically compared 

within or between flocks in this study because of unequal numbers of samples in each 

cohort. In the previous study with a balanced block design (Chapter 2), the only metabolic 

effect to show a significant effect on the isotope composition of keratin was the breeding 

status of adult ewes  δ
15

N in wool from bred ewes was median 1.3‰ more depleted than 

wool from empty ewes. In this study, lambed and empty ewes’ wool isotopic composition 

could be compared for UK Seaton Ross (nlambed=4, nempty=3) and UK Essex flocks (nlambed=6, 

nempty=7). Median values were in all cases within experimental error.  

Maximum standard deviation (s.d.) in isotope ratio within a single fleece was 0.2‰ for δ
13

C, 

0.3‰ for δ
15
N,  .9‰ for un-exchangeable δ

2
H, 0.7‰ for δ

18
O, 0.4 for δ

34
S and 0.07‰ in 

C:Natom (n=3 except for δ
34

S where n=2). Flock medians, interquartile ranges (IQR) and 

bootstrapped s.d. 95% confidence intervals (CI) are reported in Table 3.5 and illustrated in 

Figure 3.2.  

 

  

 
Figure 3.2. Box plots of sheep flock isotope medians and IQRs (circles indicate statistical 
outliers). (a): δ

13
C; (b)  δ

15
N; (c)  δ

2
H; and (d)  δ

18
O. 

 

 

      Iceland                 UK                   UK                    UK                   UK 
Kalmanstunga        Escrick             Essex             Penicuick      Seaton Ross 
       (n=10)               (n=5)              (n=20)               (n=20)              (n=12) 
 
 
 
 
 

(a) 

δ
1
3
C
/‰
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Figure 3.2. continued  

 

(b) 

 

 

δ
1
5
N
/‰

 

      Iceland                 UK                   UK                    UK                   UK 
Kalmanstunga        Escrick             Essex             Penicuick      Seaton Ross 
       (n=10)               (n=5)              (n=20)               (n=20)              (n=12) 
 
 
 
 
 

(c) 

      Iceland                 UK                   UK                    UK                   UK 
Kalmanstunga        Escrick             Essex             Penicuick      Seaton Ross 
       (n=10)               (n=5)              (n=20)               (n=20)              (n=12) 
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Figure 3.2. continued  

 

Raw isotope values of wool samples clustered strongly by flock (Figure 3.3, Table 3.5). 

Significant differences in isotope value distribution (Kolmogorov-Smirnov tests, P<0.05) and 

median (Mann-Whitney U test), existed between almost all pairs of flocks (Table 3.6). 

Negative correlations existed between all four isotopes and flock northing: these were 

significant for δ
13
C and δ

15
N (Spearman’s rank correlation coefficient, ρ=-2.8, -2.7; both 

P<0.05) and highly significant for δ
2
H and δ

18
O (Spearman’s, ρ=-0.78, -0.75; both 

P<<0.001). Flock easting was highly significantly positively correlated to δ
15
N and δ

2
H 

(Spearman’s, ρ=0.71, 0. 5; both P<<0.001). 

δ
13
C was negatively correlated with δ

15
N (Spearman’s, ρ=-0.37; both P<0.01) and positively 

correlated with δ
2
H and δ

18
O (Spearman’s, ρ=0.39, 0.2 ; both P<0.05). δ

2
H and δ

18
O were 

also highly positively correlated (Spearman’s, ρ=0. 7; both P<<0.001). 

Linear discriminant analysis (LDA) based on the four isotope values for which data from 

more than one flock was available (omitting UK Escrick data) resulted in 94% correct flock 

classification. Omission of δ
18

O did not affect these results. LDA analysis of all five flocks 

using only δ
13
C, δ

15
N and δ

2
H values resulted in 90% correct classification; using only δ

15
N 

and δ
2
H 94%; using only δ

13
C and δ

2
H 90%; and using only δ

13
C and δ

15
N 85%.  

Principal component analysis of δ
13
C, δ

15
N and δ

2
H measurements of wool samples 

generated two components (PC1 and PC2) which explained 93% of sample variance (Figure 

3.4). δ
18

O was omitted from this analysis as this data was not obtained for UK Escrick 

(Chapter 2). 

no 
data 

(d) 

      Iceland                 UK                   UK                    UK                   UK 
Kalmanstunga        Escrick             Essex             Penicuick      Seaton Ross 
       (n=10)               (n=5)              (n=20)               (n=20)              (n=12) 
 
 
 
 
 

(c) 

δ
2
H
/‰

 
δ

1
8
O
/‰
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Table 3.5. Flock medians, IQRs and bootstrapped 95% CIs of s.d. for δ
13

C, δ
15

N, δ
2
H, δ

18
O, δ

34
S and C:Natom ratio.  

  UK Tollesbury UK Seaton Ross UK Escrick UK Penicuick Iceland Kalmanstunga 

δ
13
C/‰ Median -27.3 -25.7 -27.2 -26.3 -25.8 

 IQR 0.4 0.2 0.8 0.4 0.8 

 σ (95% CI) 0.3–0.5 0.2–0.3 0.5–1.0 0.3–0.5 0.4–0.7 

δ
15
N/‰ Median 12.0 8.1 8.0 6.9 3.1 

 IQR 0.8 0.6 0.4 0.6 1.8 

 σ (95% CI) 0.5–0.7 0.4–0.7 0.4–1.0 0.4–0.9 0.9–1.6 

δ
2
H/‰ Median -105.9 -93.8 -109.6 -103.0 -112.9 

 IQR 4.3 5.9 9.1 3.7 5.7 

 σ (95% CI) 2.7–4.7 2.8–4.4 4.7–10 2.3–3.8 3.4–7.6 

δ
18
O/‰ Median 11.8 13.1 - 12.5 10.7 

 IQR 1.2 0.8 - 0.7 1.0 

 σ (95% CI) 0.7–1.1 0.4–0.7 - 0.5–0.9 0.5–1.2 

δ
34

S/‰ Median - - 4.8 - - 

 IQR - - 1.3 - - 

 σ (95% CI) - - 1.02.6 - - 

C:Natom Median 3.52 3.52 3.60 3.47 3.42 

 IQR 0.04 0.06 0.01 0.02 0.02 

 σ (95% CI) 0.02–0.04 0.04–0.07 0.01–0.03 0.01–0.02 0.02–0.06 

 

1
1
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Table 3.6. Significant differences in isotope value distribution (Kolmogorov-Smirnov tests, P<0.05) and median (Mann-Whitney U test, P<0.05) between 

flocks. Underlined: both median and distribution are significantly different; italic: only median is significantly different; plain: only distribution is significantly 

different. NB: δ
18

O differences were not calculable for comparisons to UK Escrick; no comparisons were possible for δ
34

S. 

 
UK Seaton Ross UK Escrick UK Penicuick Iceland Kalmanstunga 

UK Tollesbury δ
15

N δ
13

C δ
18

O δ
2
H C:Natom δ

13
C δ

2
H C:Natom δ

15
N δ

13
C δ

2
H C:Natom δ

15
N δ

18
O δ

2
H C:Natom 

UK Seaton Ross / δ
15

N C:Natom δ
15

N δ
13

C δ
18

O δ
2
H C:Natom δ

15
N δ

13
C δ

18
O δ

2
H C:Natom 

UK Escrick 
 

/ δ
15

N δ
13

C δ
2
H C:Natom δ

15
N δ

13
C C:Natom 

UK Penicuick 
 

 / δ
15

N δ
13

C δ
18

O δ
2
H C:Natom 

 

 

1
1
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Figure 3.3. Wool keratin δ

15
N vs. δ

2
H for all individual animals, with median ± 2 s.d. 

bootstrapped 95% CI (minimum: solid line; maximum: dashed line) for each flock.  
 

 
Figure 3.4. Scatter plot of first two principal components of δ

13
C, δ

15
N and δ

2
H data for wool 

samples from UK and Iceland. 
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2.4. Discussion 

3.4.1 Flock medians and ranges 

The range of sheep wool δ
13

C values observed in this study (-27.7-25.0‰) was consistent 

with values from wool and other mammalian herbivore hair from northern Europe (see 

discussion in Chapter 2). δ
13

C values were consistent with wholly C3-fed animals. Values of 

δ
2
H (-119-87‰) and δ

18
O (9.114.9‰) in this study were similar to those previously 

obtained for sheep wool, but δ
15

N value range (1.512.9‰) was much wider than that 

previously reported (Chapter 2). Wool δ
15

N values within the UK were very similar (c. 78‰; 

Figure 3.2b) except for data from UK Seaton Ross (range 11.212.9‰) which were higher 

than any previously reported for modern mammalian herbivore hair. These were not without 

parallel among archaeological sheep/goat collagen data (e.g. Britton et al. 2008; Reynard 

and Hedges 2008; Hakenbeck et al. 2010; nitrogen isotope values in sheep bone collagen 

and wool keratin are directly comparable: Chapter 2). In contrast, the generally depleted 

δ
13
C and δ

15
N values in wool from Iceland relative to wool from the UK was consistent with 

the geographical pattern observed in lamb muscle protein (Piasentier et al. 2003), which was 

attributed to variation in fodder δ
15

N values, themselves depending on soil type, humidity, 

plant type and fertilizer use.  

There were no consistent patterns in isotopic range between flocks, for example with flock 

size. Total δ
13

C ranges were relatively large (0.81.7‰) compared to total observed range 

(2.7‰), but the inverse was true for δ
15

N (flock ranges 1.43.3‰, total range 11.4‰). 

Degrees of variability in δ
2
H (flock ranges 917‰, total range 32‰) and δ

18
O (flock ranges 

1.53.2‰, total range 5.8‰) were not correlated between flocks. It is interesting that UK 

Seaton Ross (n=12) showed the smallest δ
13
C, δ

2
H and δ

18
O ranges, even though animals 

in this flock were in receipt of more varied feeds than those in other UK groups where 

husbandry was known (Essex and Penicuick, both n=20). This was against expectations 

from Codron et al. (2012). 

3.4.2 Differentiation between flocks 

Raw sheep wool δ
13

C, δ
15

N, δ
2
H and δ

18
O isotope values clustered strongly by flock. All 

isotope values were significantly negatively related to flock northing, and both δ
15
N and δ

2
H 

were correlated with to flock easting. Within-flock variation was not sufficient to confound 

flock differentiation. Icelandic samples were clearly differentiated from UK samples, 

particularly by δ
15

N.  

Differences in flock and pasture management therefore clearly affected δ
15

N values, in 

agreement with previous results (Schwertl et al. 2005; Hedges et al. 2005). Within the UK, 

these masked geographical differentiation due to climate gradients. UK Tollesbury and 

Penicuick had the most similar farming types (non-concentrate-fed, non-fertilised pasture 

and local hay) and had the most similar isotope values, despite their wide geographical 
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separation. Samples from three of the four UK flocks had δ
15

N values within a narrow range 

(6.19.2‰) but samples from the UK Seaton Ross flock were strongly enriched compared to 

this (range 11.212.9‰). This variation was larger than that expected from geographic 

variation in plant δ
15

N between the flock locations, due to either mean annual temperature 

differences (approximately 1‰; compare to 3‰ across mainland Britain or 4.4‰ between 

Britain and Iceland) or mean annual precipitation differences (maximum 3‰ within Britain, or 

4‰ between Britain and Iceland  Craine et al. 2009). Some additional contribution, probably 

from previous manuring (Bateman and Kelly 2007), the isotope effect of which can be 

remarkably long lasting (Commisso and Nelson 2008), could be responsible at the UK 

Seaton Ross pasture (grass δ
15

N 11.611.8‰ in June 2009, data not shown).  

Variation in δ
13

C within the UK may also have been related to differences in farming 

practice. Flocks not receiving concentrate (UK Essex and Penicuick) were similar and 

relatively enriched, whereas UK Seaton Ross (receiving concentrate) and UK Escrick 

(unknown farming conditions) were 11.5‰ more depleted. This depletion cannot be 

accounted for by depletion in overall diet isotopic content, as concentrates were likely to be 

at least part based on C4, and therefore relatively enriched. A 4‰ depletion in sheep tooth 

enamel with C4 concentrate supplementation has however been observed (Zazzo et al. 

2010). Here it was ascribed to a decrease in digestive methane production (which is highly 

depleted relative to diet) with decreased diet roughage, and a consequent incorporation of 

depleted metabolic material into tissue. If this effect was present in this study, then it was 

much smaller, which was consistent with routing of only part of the C in wool from the 

general body pool, with the remainder being routed from dietary amino acids. 

UK samples in this study were all depleted in 
13

C and enriched in 
15

N compared to samples 

from elsewhere in Europe (Figure 3.5). This mirrored the geographic pattern found in lamb 

muscle protein, where samples from the UK showed higher δ
13
C and δ

15
N than samples 

from mainland Europe (Camin et al. 2007; Piasentier et al. 2003). For δ
13

C, this effect was 

ascribed to the higher humidity of an Atlantic temperate climate affecting pasture isotopic 

composition; for δ
15

N it was it was ascribed to different fertilizer use, though pasture plant 

composition may plausibly also be a factor (Chapter 2). Icelandic samples in this study were 

depleted in 
15

N compared to samples from elsewhere in Europe, and showed δ
13

C 

intermediate between UK and (most) Mediterranean values, as in Piasentier et al. (2003). 

Samples from France and Germany showed a range of compositions intermediate between 

UK and Mediterranean in both δ
13
C and δ

15
N. It was likely that the spread in δ

13
C values 

visible in Mediterranean samples is at least partly due to C3/C4 composition of diet: this was 

clearly shown by the data from Moreno-Rojas et al. (2008) which examined the effect of diet 

composition in samples from Sicily.  
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Figure 3.5. Results from this study compared to published sheep wool δ
13
C and δ

15
N 

composition data from other regions of Europe. 

 

To the authors’ knowledge there is no other published δ
2
H and δ

18
O data from sheep wool, 

though Hedges et al. (2005) indicated that some δ
2
H analyses have been carried out. Given 

that combined δ
15
N and δ

2
H was the most useful bivariate visualisation for data from north-

western Europe in this study, it would be interesting to obtain additional δ
2
H data from sheep 

wool samples across Europe to examine geographic discrimination with this method. Some 

systematic variation in δ
2
H with geography is evident in defatted lamb muscle (Camin et al. 

2007) though this did not usefully distinguish Mediterranean from mainland European 

samples, and did not test samples from Iceland. It is not currently possible to combine the 

muscle dataset with wool data, however, as offsets in δ
2
H between muscle and wool from 

sheep have not been estimated, though they have for δ
15

N (±1‰  Moreno-Rojas et al. 2008; 

Sun et al. 2010). The utility of δ
2
H and/or δ

18
O data, in combination with δ

13
C and δ

15
N 

results, to provenance samples of sheep wool was however strongly suggested by this study 

The δ
34

S composition of UK Escrick wool samples was depleted compared to material from 

Ireland and Turkey, and similar to values from cattle tail hair from south Germany (Figure 3.6 

and Chapter 2). This was unexpected as UK values were anticipated to be intermediate 

between Irish and continental values, because of its relative exposure to marine sulfate from 

aerosol deposition (Herut et al. 1995; Zazzo et al. 2011). For this flock however, other 

sources of sulfur, such as bedrock, bacteria and fossil fuel burning, must have been 

significant (Peterson and Fry 1987; Krouse and Herbert 1988; Zhao et al. 2003). The 

potential of δ
34

S for provenancing samples of sheep wool remained therefore unclear.  
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Figure 3.6. Results from this study compared to published sheep wool δ
34

S composition 
data from other regions of Europe. Data from Auerswald et al. (2011) indicates maximum 
and minimum only. Error bars are 2 s.d. (not reported for Hedges et al. 2005). 

 

3.5. Conclusion 

The gradients in δ
13

C and δ
15

N composition observed in this study of sheep wool from north-

western Europe paralleled those found in other sheep tissues (Piasentier et al. 2003; Camin 

et al. 2007), which suggested that common Europe-wide isotopic gradients for sheep tissues 

exist. Un-exchangeable δ
2
H and δ

18
O data also usefully distinguished between samples 

from the UK and those from Iceland. This differentiation was not confounded by within-flock 

variation but was affected by farming practice, particularly for δ
13
C and δ

15
N. In the UK, this 

increased resolution of provenancing while obscuring geographic origin. Icelandic material 

was nevertheless differentiated from UK material in δ
13

C, δ
15

N, δ
2
H and δ

18
O isotopic 

composition. The degree of farming variability in a region, determined in part by climate and 

soil characteristics and in part by social patterns of land use and production, will therefore 

affect the resolution of this provenancing technique in the present and past. Geographic 

variability has also been established in 
87

Sr/
86

Sr measurements of sheep wool from the 

North Sea region (Frei et al. 2009). This technique, which is not affected by farming practice 

but which depends on geology (principally bedrock age), might therefore usefully be 

combined with light stable isotope analysis to differentiate between areas with similar 

environment but different geological substrates, e.g. Iceland vs. Norway.  
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4. Microbiological and hydrolytic degradation of wool keratin 

proteins: amino acid, elemental and isotopic composition 

 

Abstract 

Archaeological hair samples have recently become a focus of analytical interest in 

palaeodietary, provenancing and dating studies. Microbiological and hydrolytic processes in 

temperate waterlogged conditions cause degradation of proteinaceous hair fibres. The 

relationship between these processes and the integrity of isotopic properties of the wool fibre 

are unknown. This study explored the nature of diagenesis in (1) experimental burial for up 

to 8 years in temperature marine sediment, fenland bog and raised bog environments, and 

(2) laboratory isothermal hydrous conditions at 80°C, 110°C, and 140°C. The effects of 

degradation were characterised by amino acid (AA) concentration and racemisation, 

elemental composition, and isotopic composition in samples of raw wool and wool textiles.  

AA, elemental and isotopic composition changes in experimentally buried samples were 

generally slight, despite extensive macroscopic alteration. AA composition and racemisation 

change in isothermally heated samples increased with increasing temperature. The more 

hydrophilic AAs (Asx, Glx, Ser, Gly) were more quickly lost by hydrolysis, leading to an 

accumulation of hydrophobic AAs (Val, Phe, Leu, Ile) in the residue. The extent of Asx 

racemisation was significantly higher than all other AAs, rising to a maximum greater than 

0.5 at both 110°C and 140°C before decreasing. Change in elemental composition of the 

fibre with hydrolysis was consistent with loss of AAs, extensive deamidation and oxidation of 

AAs, elimination of S and retention of melanins. δ
15

N showed strong depletion (up to -2.3‰) 

in densely pigmented samples at low temperatures (80°C). δ
13

C was also depleted (up to 

-0.8‰) in densely pigmented samples, and showed slight enrichment elsewhere. δ
2
H and 

δ
18

O both became strongly depleted with increasing temperature of degradation (up to -73‰ 

for δ
2
H and -2. ‰ for δ

18
O).  

Diagenesis in experimentally buried samples was concluded to have been largely 

microbiological and non-protein-selective. In contrast, high-temperature isothermal hydrous 

degradation was strongly selective of portions of the protein. Dating methods based on Asx 

racemisation were undermined by the data. Changes in δ
13
C and δ

15
N may be significant in 

archaeological material and not correlated with extent of elemental or AA change. 

Keywords: protein, keratin, diagenesis, hydrolysis, racemisation, light stable isotopes 
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4.1 Introduction 

Archaeological mammal hair, including woven textiles, furs and human hair, has recently 

become the focus of considerable bioanalytical interest (e.g. Araki and Moini 2011; Solazzo 

et al. 2011; Brandt et al. 2011). Of these fibres, the most economically important today (and 

in the past) is sheep wool (Popescu and Wortmann 2010; Ryder 1983). The exploitation of 

wool occurred early in the development of agriculture (Greenfield 2010), and has continued 

to be important to sheep breed development (Chessa et al. 2009). Wool fibres are found in 

archaeological deposits across the Old World, often in the form of textiles (Geijer 1938; 

Bichler et al. 2005; Wagner et al. 2009). Textile manufacture, which is highly laborious, is 

important for our understanding of past societies (Barber 1991; Costin 1998; Walton Rogers 

2007) and has been highly economically and politically significant (e.g. Murra 1962; 

Oikonomides 1986; Spufford 2006, 232-41,326-9). Archaeological wool finds therefore 

represent a potential repository of information on sheep breed development, flock 

management, and the development of textile trade and technologies.  

Previous analytical work on archaeological hair has focused on samples preserved in 

permafrost or by desiccation (Lubec et al. 1987; Macko et al. 1999; Iacumin et al. 2005; 

Wilson et al. 2007b; Raghavan et al. 2010). However in northern Europe, samples preserved 

by burial under waterlogged conditions are not rare (Karsten et al. 2012). Such samples 

show a range of macroscopic (Wilson et al. 2010; Peacock 1996) and chemical (Kempson et 

al. 2010) changes during burial. Microbiological activity is clearly indicated as part of these 

processes, with some aspects of this activity, such as fungal tunnelling, not apparently 

selective of particular hair structures (Wilson et al. 2007a). However, other degradation 

processes occur in which different parts of the fibre degradation at different rates (Peacock 

1996; Wilson et al. 2007a; Chang et al. 2005). This degradation may be microbiological or 

chemical (hydrolytic, oxidative) in origin. Analytical work on ancient proteinaceous fibres, for 

example for provenancing (Hedges et al. 2005; Chapter 3) or dating (Moini et al. 2011), must 

take into account the extent and nature of degradation of the fibre. 

The bulk of a hair fibre (c. 90% by weight: Brebu and Spiridon 2011) consists of several 

hundred keratin proteins, distributed differently across the structures of the fibre (Plowman et 

al. 2007). Hydrolytic protein degradation has been extensively studied in biomineralised 

proteins, as it forms the basis of amino acid (AA) racemisation dating techniques (e.g. 

Brooks et al. 1990; Sykes et al. 1995; Penkman et al. 2011). The intra-crystalline fraction of 

biomineralised proteins forms a closed system which can be isolated by preliminary 

bleaching (Penkman et al. 2008; Demarchi et al. unpublished-b). Studying this fraction 

ensures analysis of indigenous protein only. Wool, in contrast, is an open system which 

means that: (1) the presence of exogenous peptides introduced by microbiological activity or 

diffusion cannot be excluded, and (2) the residue represents the insoluble, most 

diagenetically-resistant parts of the original fibre.  
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Hydrolytic protein degradation is the sum of at least three sets of reactions: peptide bond 

hydrolysis, AA racemisation (the interconversion of L- and D- enantiomers of an AA) and AA 

decomposition to either other AAs or other organic compounds. All three sets of reactions 

are peptide-selective, depending on AA identity and protein structure (primary or higher, 

depending on cross-linking); their rates also depend on factors such as temperature, ionic 

strength and pH (see references in Collins et al. 1999; Collins and Riley 2000). In open 

systems, any metal ions present may additionally catalyse the racemisation, degradation 

and cross-linking of AAs in residual proteins and in soluble peptides produced by 

degradation (Pasini and Casella 1974; Beck 2011). This is expected to be particularly 

important in wool samples which have been dyed using natural dyes, as these processes 

often require the use of a metal salt as a mordant to fix the dye to the fibre (Ferreira et al. 

2004). 

Bulk measurements of elemental and isotopic composition are also expected to be affected 

by these reactions. For example, isotopic change may be introduced by: 

 alteration of the AA composition of the fibre. Substantial isotopic differences exist 

between δ
13
C and δ

15
N of AAs in proteins (Raghavan et al. 2010; Hare et al. 1991; 

Styring et al. 2010), and the same is likely to be true of δ
2
H and δ

18
O;  

 isotopically selective hydrolysis reactions (Bada et al. 1989; Silfer et al. 1992);  

 isotopically selective AA decomposition reactions such as transamination (Macko et 

al. 1986); 

 introduction of environmental H via racemisation, thus altering even the ‘non-

exchangeable’ fraction of δ
2
H (e.g. Amelung and Brodowski 2002; Chesson et al. 

2009) though not δ
13
C or δ

15
N (Engel and Macko 1986).  

 

The behaviour of the non-protein fraction of hair must also be considered. This consists 

principally of melanin pigments and lipids: the former make up 28% of the fibre by mass 

(Washburn et al. 1958) and the latter up to 2% (Popescu and Höcker 2007). Melanins are 

complex polymers composed of monomer units derived from Tyr and Cys (Borges et al. 

2001). They are present as granules even in white hair, and overall melanin content 

depends on season, environment, genotype and area of body (Washburn et al. 1958; Brebu 

and Spiridon 2011). The isotopic composition of melanins is likely to reflect their AA origin 

(Michalik et al. 2011). Fatty acid residues are present on the surface of hair fibres (Popescu 

and Höcker 2007). Their isotopic ratios probably reflect whole diet values, as do other lipids 

(Howland et al. 2003; Kirsanow and Tuross 2011). The degradation behaviour of these 

portions of the hair fibre under burial conditions is not known. 

The degradation of wool textiles has been examined via experimental burials, although focus 

on waterlogged preservation remains rare (Peacock 1996). Thermal and hydrolytic protein 

degradation is typically investigated using high-temperature isothermal heating experiments, 
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as a convenient method of artificially accelerating protein degradation reactions. High 

temperature experiments may however be poor mimics of archaeological diagenetic 

processes as hydrolysis, racemisation and decomposition reaction rates display different 

temperature sensitivities (Crisp et al. unpublished; Demarchi et al. unpublished-b; Tomiak et 

al. unpublished). Unfortunately the kinetic parameters for each of these reactions are poorly 

known. 

This study therefore compared and contrasted the diagenesis of wool fibres under high-

temperature isothermal hydrolytic conditions and in experimental burials. The study aimed 

to: (1) identify features of wool degradation at a range of temperatures by measurement of 

AA concentrations and extent of racemisation; (2) relate elemental and isotopic changes in 

bulk wool fibres to AA changes in the protein fraction of the fibre; (3) examine how AA and 

bulk composition variables are affected by the presence of natural pigment and 

dyeing/mordanting; and (4) provide a model of an open system of protein degradation for 

comparison to intra-crystalline protein behaviour in closed systems. 

 

4.2 Materials and methods 

4.2.1 Sample origins 

Four contrasting sample types were used to examine the role of melanin concentration and 

pre-burial treatments on subsequent degradation: unpigmented raw wool, strongly 

pigmented raw wool, undyed unpigmented wool textile and madder-dyed/alum-mordanted 

unpigmented wool textile. Dyeing with madder root and an alum mordant was a widespread 

pre-industrial wool dyeing method (Chenciner 2000). 

4.2.1.1 Experimental burials 

Samples of experimentally-buried wool textile were supplied by Elizabeth Peacock (Peacock 

2004; Bergstrand and Nyström Godfrey 2007; Turner-Walker and Peacock 2008). Undyed 

and madder-dyed/alum-mordanted sub-samples of the same fabric (Røros Tweed A/S, 

Røros, Norway) were buried in three different environments: raised bog (Rørmyra, Norway), 

fenland bog (Lejre, Denmark), and marine sediment (Marstrand, Sweden) for up to 8 years 

before retrieval. Raw wool samples were not included in experimental burials.  

4.2.1.2 High-temperature isothermal hydrous experiments 

Both raw wool and woven textiles were included in the high-temperature degradation 

experiments. Raw wool samples were from Shetland sheep: samples 2588 (white) and 2589 

(dark grey) from the UK Essex flock in Chapter 3. Woven textile samples were the control 

samples from experimental burial experiments.  
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4.2.2 Sample cleaning 

All samples (buried and unburied) were washed with organic solvents and ultra-pure water 

(ELGA Purelab Ultra, Marlow, UK) according to the protocol in Hedges et al. (2005) but 

using dichloromethane (HPLC grade, Fisher Scientific, Loughborough, UK) instead of 

chloroform in all solvent mixtures. A test sieve (Endecotts Ltd, London, UK; aperture 63 µm) 

was employed to retain fragmentary sections. The most exposed samples from each site 

from which enough material was available after washing were selected for analysis.  

For isothermal heating experiments, 15 mg aliquots of each sample were weighed into 

sterile glass ampoules. 900 µL ultrapure water was added, and each ampoule was flame-

sealed. Samples were placed in an oven maintained at a constant temperature of either 

80°C, 110°C or 140°C, for a specified time, ranging from 1 to 1440 h (Table 4.1). Two 

laboratory replicates were prepared for each time point. At the designated time point, 

samples were removed from the oven. The supernatant water was removed, the sample 

rinsed twice with ultrapure water and dried at <40°C for a maximum of 12 hours. The most 

exposed samples for which enough material was available were selected for analysis.  

Table 4.1. Time points per temperature in isothermal heating experiments. 

Temperature Time points (hours) 

Controls 0 

80°C 120, 720, 1440 

110°C 120, 240, 480 

140°C 1, 2, 4, 6, 8, 24, 48, 72, 96, 120 

 

4.2.3 Sample analysis 

Determination of AA concentration and racemisation ratios was by Reverse-Phase High 

Performance Liquid Chromatography (RP-HPLC) (Kaufman and Manley 1998) following the 

methodology for unbleached samples described in Penkman et al. (2008) with the following 

adjustment  hydrolysis was carried out using 50 μL 7 M HCl (HPLC grade, Fisher Scientific) 

per mg washed wool. Buried samples were analysed in duplicate and isothermally heated 

samples uniquely (but each time point had a laboratory replicate). The concentration of L-

and D-enantiomers of 10 AAs were analysed routinely, and three AAs were recovered as L-

enantiomers only. Data are reported as concentration of each AA, percentage of recovered 

AAs and racemisation ratio (D/L). It is not possible to distinguish between the acidic AAs and 

their amine derivatives because both asparagine (Asn) and glutamine (Gln) undergo rapid 

irreversible deamination during preparative hydrolysis to aspartic acid (Asp) and glutamic 

acid (Glu) respectively (Hill 1965). Asp and Asn are therefore reported together as Asx, and 

Glu and Gln as Glx. Instrument calibration is currently based on a collagen standard which is 

known to yield inaccurate absolute AA concentrations. Relative concentrations are however 

robust, with the exception of glycine (Gly) which is consistently underestimated (B. 
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Demarchi, pers. comm.). Instrument precision for racemisation values in standard solutions 

is reported in Table 4.2 (Powell 2012). For comparison to sample data, the value for the 

standard solution closest in D/L to the group of measurements of interest was selected. 

Instrument precision for concentration or relative concentration values has not been 

systematically investigated. None of these measures have been established for keratins 

substrates in particular.  

 

Carbon, hydrogen, nitrogen, sulfur and oxygen (CHNS-O) elemental analysis (EA) was 

performed using a Thermo Flash 2000 elemental analyser configured with furnaces, fitted 

with MAS200R autosamplers. The instrument was calibrated with cystine and sulphanilimide 

standards (purity >99.97%, Thermo Fisher Scientific, Loughborough, UK). Combustion 

gases were separated chromatographically and detected using a thermal conductivity 

detector. For C, H, N and S analysis, samples (c. 2 mg) were weighed into 8 x 5 mm Sn foil 

capsules (Elemental Microanalysis, Okehampton, UK) which were folded to exclude air. The 

quartz reactor was packed with granules of copper oxide and electrolytic copper wires and 

held at 900°under a flow of helium carrier gas (140 mL/min) during analysis. Combustion of 

the sample was achieved in oxygen (250 mL/min for 5 s). For O analysis, samples (c. 2 mg) 

were weighed into 8 x 5 mm Ag capsules (Elemental Microanalysis), which were folded to 

exclude air. The reactor was packed with nickel plated carbon and quartz turnings and held 

at 1060°C under a flow of helium (140 mL/min) during analysis. Thermal decomposition of 

the sample was conducted under helium. An absorption filter, containing granules of soda 

lime and magnesium perchlorate, was fitted post column. Instrument precision is reported in 

Table 4.3. 

Isotope analysis was carried out at the Natural Environment Research Council Life Sciences 

Mass Spectrometry Facility (NERC LSMSF) in East Kilbride. 0.7 mg of washed wool was 

weighed into 4 x 3.2 mm Sn capsules (Elemental Microanalysis, Okehampton, UK). For δ
18

O 

and δ
2
H analyses, 0.1 mg of wool was weighed into 4 x 3.2 mm Ag capsules (Elemental 

Microanalysis, Okehampton, UK and Pelican Scientific, Stockport, UK). Whole hairs were 

analysed to obtain a year average value. δ
13
C and δ

15
N IRMS analyses were carried out on 

a ThermoElectron Delta Plus XP with Costech ECS 4010 elemental analyser; internal 

standards were a gelatine, two alanines enriched with 
13

C and 
15

N respectively, and a 
15

N-

enriched glycine. C and N content and C:N atomic ratios (C:Natom) were calculated using a 

tryptophan standard. δ
18
O and δ

2
H IRMS analyses were carried out on a Thermo Fisher 

Scientific Delta V Plus with TC/EA high temperature furnace. The contribution of 

exchangeable hydrogen was calculated using keratin standards BWB-II (whale baleen), CFS 

(feathers), ISB (feathers) and WG (feathers) and a comparative equilibration method 

(Wassenaar and Hobson 2003; Sauer et al. 2009). δ
18

O standards were IAEA 601, IAEA 

CH  and IAEA  00; the δ
2
H of the un-exchangeable H in the four keratin standards was  
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Table 4.2. HPLC instrument precision (three York instruments combined, outliers removed by Cochran’s and Grubb’s outlier tests) for standard solutions of 

mixtures of AAs (Powell 2012). Sr: precision of the replicate analyses (analytical precision). sL: between-sample variability, for a given sample material. sR: 

reproducibility, or overall estimate of the variability expected for a given AA for different sample materials.  

AA 

 

Standard solution mean final N Sr sL sR 

Aspartic acid/ 
asparagine 

Asx 0.167dH20 0.168027034 405 0.001318 0.002219 0.002581 

 

0.5d 0.506097894 645 0.00453 0.003506 0.005745 

 

0.91d 0.896268312 571 0.003959 0.017185 0.017635 

Glutamic acid/ 
glutamine 

Glx 0.167dH20 0.192719859 425 0.001857 0.003042 0.003564 

 

0.5d 0.570822934 656 0.004546 0.006657 0.008061 

 

0.91d 1.006509728 643 0.012148 0.011229 0.016543 

Serine Ser 0.167dH20 0.13176973 423 0.001211 0.001741 0.002121 

 

 

0.5d 0.408904167 685 0.003268 0.003832 0.005083 

 

 

0.91d 0.70034735 642 0.006299 0.005515 0.008534 

Arginine Arg 0.167dH20 0.167270359 377 0.009045 0.045344 0.046642 

 

 

0.5d 0.483270727 636 0.022858 0.090909 0.093732 

 

 

0.91d 0.803841066 587 0.040279 0.154176 0.159351 

Alanine Ala 0.167dH20 0.158723208 400 0.00525 0.005208 0.007406 

 

 

0.5d 0.55746241 663 0.004492 0.007651 0.0089 

 

 

0.91d 0.934813305 583 0.005799 0.008769 0.010513 

Valine Val 0.167dH20 0.1454837 385 0.001274 0.002298 0.002628 

 

 

0.5d 0.474500122 627 0.004118 0.005317 0.006725 

 

  

1
3

4
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Table 4.2 continued. 

AA 

 

Standard solution mean final N Sr sL sR 

Valine Val 0.91d 0.760088117 574 0.006022 0.006979 0.009218 

Methionine Met 0.167dH20 0.19958694 392 0.002668 0.005221 0.005863 

 

 

0.5d 0.592124485 617 0.00513 0.008832 0.010214 

 

 

0.91d 1.021334034 576 0.009134 0.012175 0.015226 

Phenylalanine Phe 0.167dH20 0.157247747 368 0.000896 0.001798 0.002009 

 

 

0.5d 0.486099394 600 0.002818 0.003802 0.004733 

 

 

0.91d 0.804942517 566 0.005632 0.007054 0.009027 

Isoleucine Ile 0.167dH20 0.191752549 363 0.002161 0.009694 0.009931 

 

 

0.5d 0.580326075 583 0.006911 0.014706 0.016249 

 

 

0.91d 0.989155425 553 0.009998 0.018099 0.020677 

Leucine Leu 0.167dH20 0.201701744 387 0.008137 0.016239 0.018155 

 

 

0.5d 0.600586407 605 0.011453 0.015071 0.018929 

 

 

0.91d 1.061650016 529 0.010795 0.016313 0.019561 

 

Recovered AAs for which racemisation was not calculated: threonine (Thr), histidine (His), tyrosine (Tyr). Glycine (Gly) is also recovered but does not have 

enantiomers. 

1
3

5
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Table 4.3. EA instrument precision: (a) difference from theoretical elemental % by mass (b) difference from manufacturer’s elemental % by mass; (c) s.d. of 

measurement. 

Standard n  C N H S  n  O 

Cysteine 11 (a) +0.061 -0.108 +0.007 +0.033  7 (a) -0.136 
  (b) 0.000 0.000 0.000 0.000   (b) -0.114 
  (c) ± 0.000 ± 0.000 ± 0.000 ± 0.000   (c) ± 0.212 
           
Sulfanilimide 3 (a) -0.056 -0.042 -0.064 +0.118  2 (a) +0.293 
  (b) -0.044 -0.048 -0.061 +0.118   (b) +0.295 

  (c) ± 0.000 ± 0.000 ± 0.000 ± 0.000   (c) ± 0.394 

1
3

6
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previously determined using a steam equilibration technique (Wassenaar and Hobson 2000; 

Table 4.4). Calculation of un-exchangeable δ
2
H assumed a fractionation factor α = 1.080 

(εx-w = 80‰). δ
13
C and δ

15
N results are reported in per mille (‰) relative to PDB and AIR 

respectively; δ
18
O and δ

2
H results are reported in per mille relative to VSMOW.  

4.2.4 Statistical analysis 

Statistical analysis was carried out using R (R Development Core Team 2008).  

 

Estimation of effective relative racemisation rates used a ‘model-free’ approach in which log-

transformed time data from each temperature experiment was scaled to overlie as much as 

possible (Crisp et al. unpublished; Demarchi et al. unpublished-b; Tomiak et al. 

unpublished). Models were fitted so as to minimise the least squares difference of 17 

separate time points derived from third order polynomial functions fitted to the raw (un-

averaged) data, using a Generalized Reduced Gradient Algorithm (Microsoft Solver). This 

allows the user to limit the range of fitting, omitting ranges where the polynomial functions 

diverge from the overall trend, typically with either very high or very low time points (i.e. very 

high and very low extents of degradation) in each temperature series. These ranges are 

reported alongside the relative rates of reaction (normalised to the middle temperature, 

110˚C).  

 

4.3 Results  

Single AA raw concentrations, percentage contents, racemisation ratios, and isotopic 

composition variables for all buried samples is reported in Appendix 4.1, and for isothermally 

heated material in Appendix 4.2. Full raw chromatographic data is reported in Electronic 

appendix 4.3. The dataset was non-parametric (univariate Shapiro-Wilk test, P>0.05). No 

effective data transformations were found. Grouped data are therefore described throughout 

by median and inter-quartile range (IQR). Full data from the calculation of effective relative 

racemisation rates are reported in Electronic appendix 4.4. 

4.3.1 Experimental precision of RP-HPLC 

Observed AA concentrations, % AA contents derived from these, and D/L values were 

compared for standard solutions between RP-HPLC runs. No AA concentrations or DL 

values were significantly different between analytical HPLC runs (Mann-Whitney U tests, all 

P>0.05). However the following % AA contents varied by run: Asx for G483; Glx, Ser, L-His, 

Arg and Phe for H391 (Mann-Whitney U tests, nG483=12, nH391=9, nH397=5, nH398=7, others too 

small to test for significance; all P>0.05). Run G483 was the pilot run, and samples in it were 

100 times more concentrated than in following analyses. This indicated that the accuracy of 

Asx % content measurements were concentration-dependent. For run H391, a laboratory 
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Table 4.4. Isotopic analytical precision: mean ± maximum s.d. in any single run. For abbreviations, see text.  

 
 

δ
13

C/‰ δ
15

N/‰ δ
2
H/‰ δ

18
O/‰ 

Standard n Observed Accepted Observed Accepted Observed Accepted Observed Accepted 

Gelatine 52 -20.29 ± 0.21 -20.34 ± 0.03 5.83 ± 0.19 5.67 ± 0.13 - - - - 

13
C-enriched Ala 18 -10.63 ± 0.14 -10.58 ± 0.03 -4.86 ± 0.12 -5.09 ± 0.12 - - - - 

15
N-enriched Gly 18 -35.67 ± 0.16 -35.46 ± 0.09 20.21 ± 0.14 20.01 ± 0.31 - - - - 

13
C-enriched Trp 8 -10.60 ± 0.12 -10.49 ± 0.11 -2.03 ± 0.21 -2.31 ± 0.14 - - - - 

IAEA 601 12 - - - - - - 23.32 ± 0.28 23.14 ± 0.19 

IAEA CH6 3 - - - - - - 35.63 ± 0.13 36.4* 

IAEA 600 3 - - - - - - -3.70 ± 0.17 -3.48 ± 0.53 

CFS 3 - - - - -143.3 ± 2.3 -148.6* 5.88 ± 0.40 Unknown 

BWB-II 3 - - - - -102.9 ± 2.4 -109.5* 13.37 ± 0.21 Unknown 

ISB 3 - - - - -61.7 ± 2.9 -68.8* 13.58 ± 0.22 Unknown 

WG 3 - - - - -140.0 ± 1.9 -146.6* 6.66 ± 0.16 Unknown 

* s.d. undetermined

1
3

8
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error in buffer pH adjustment affected some results from almost all unpigmented raw wool 

samples (n=36). Data from experimental runs G483 and H391 was nevertheless included in 

all statistical analysis, except the model-free estimation of observed racemisation rates.  

4.3.2 Macroscopic features of degradation 

Experimentally buried samples showed major macroscopic changes from controls (Table 

4.5). Textiles were increasingly heavily stained with time (Figure 4.1). The felted surface of 

the cloth disappeared from some samples (fenland bog 4 year undyed, raised bog 8 year 

undyed), leaving the underlying weave visible. In all buried samples, fibres were more brittle 

to handling, readily losing short sections or dust. During washing some samples crumbled 

into a mass of short sections (‘sludge’) or into dust which was lost through the sieve. Red-

dyed samples were typically less fragile than their undyed counterparts.  

 

 

Figure 4.1. Undyed samples buried at Lejre, during washing. Left to right: buried 1, 2, 4 and 
8 years. 

 

In contrast, isothermally heated material lost mass very quickly at 140°C (Table 4.6), with 

median 3% left after 120 hr; 57% and 97% remained after the same time at 110°C and 80°C 

respectively. Samples heated for more than 24 hours at 140°C became brittle and inflexible, 

with fibres aggregated. Samples heated at 110°C and 80°C were discoloured and more 

brittle than controls, but still fibrous (Figure 4.2).  
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Table 4.5. Buried samples: macroscopic description and mass remaining after washing.  

  Undyed  Madder-dyed/alum-mordanted 
 Years buried As retrieved After wash Mass/%  As retrieved After wash Mass/% 

Controls 0 White Whole 84  Red Whole 87 
Marine 
sediment  

1 Grey Whole 89  Red Whole 88 

2 Cream Whole 90 
 Red, fragmenting 

fibres 
Sludge 35 

3 Grey Whole 58  Red Some structure Not recorded 
Fenland bog  1 Grey Whole 86  Red Whole 90 
 2 Grey Sludge 61  Pink Some structure 22* 

 4 
Dark grey, 

weave visible 
Some structure 11 

 
Orange Sludge 40 

 8 Dark grey Dust 4*  Pink, stained Few fibres 7* 
Raised bog 1 Cream Whole 92  Red Whole 89 
 2 Cream Whole 90  Red Whole 92 
 4 Cream, soily Whole 92  Dark red Whole 90 

 8 
Grey, weave 

visible 
Whole 73 

 
Dark red Whole 87 

*insufficient material for isotope analysis.  

1
4

0
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Table 4.6. Description and mass remaining of kinetic samples after isothermal heating. n=2 for each time point. 

  Unpigmented raw wool  Pigmented raw wool  Undyed textile  Madder/alum-dyed textile 

Temp./°C 
Time 

/ h 
Colour Mass/%  Colour Mass/%  Colour Mass/% 

 
Colour Mass/% 

Control 0 White 100  Black 100  White  100  Red 100 
80 120 Off-white 100  Black 98  Cream 97  Dark red, fragments 89 
 720 Yellow 88  Brown black 87  Grey, fragments 82  Dark red, fragments 97 
 1440 Yellow 69  Black 77  Not recorded 67  Red, fragments 66 

110 120 Dark tan 51  Black 56  Tan 60  Brown, fragments 59 
 240 Dark tan 32  Black 39  Brown 33  Brown 40 
 480 Brown 18  Black 22  Brown 20  Brown 23 

140 1 Yellow 95  Black 100  Yellow 97  Orange-red 92 
 2 Dark yellow 86  Black 91  Yellow 89  Orange-red 92 
 4 Dark yellow 74  Black 81  Dark yellow 77  Dark red 71 
 6 Dark yellow 64  Black 63  Dark yellow 58  Dark red 64 
 8 Yellow-brown 53  Black 53  Tan 54  Brown 58 
 24 Tan 16  Black 19  Brown 18  Black 20 
 48 Tan 6  Black 12  Brown 8  Black 9 
 72 Brown 3  Black 11  Brown 5  Black, fragments 6 
 96 Brown 3  Black, fragments 4  Black 3  Black 4 
 120 Brown 2  Black, fragments 17*  Brown 3  Black 4 

* glass present in sample 

1
4

1
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Figure 4.2. Isothermally heated undyed textile samples after heating at 110°C and drying. 
Left to right: controls (2 x), 120 h (2 x), 240 h (2 x) and 480 h (2 x) time points. 

 

4.3.3 AA composition 

4.3.3.1 Initial control values 

The AAs recovered with the RP-HPLC technique employed represented approximately 86% 

of the residues present in the most abundant protein type in wool, intermediate filament 

proteins (IFPs; see Appendix 4.5 for derivation from Clerens et al. 2010). The most 

abundant AAs observed were Glx, Ser and Leu, with Phe, Tyr and His the least abundant 

(Figure 4.3a).  

4.3.3.2 Buried samples 

Overall AA concentration per unit mass of the samples was on the lower end of the range of 

modern controls, with marine sediment-buried samples most depleted, and those from the 

raised bog least depleted. Changes in %AA recovered were minimal: Figure 4.3b shows that 

greatest variability occurred in the AAs which are least abundant in wool fibres (i.e. L-His, 

Tyr, Phe). Data are shown normalised to control median to compare variability among buried 

samples to that among unburied controls. Racemisation was increased in all AAs over 

control samples, with Ser DL ratios most increased over control median (Figure 4.3c), 

though Asx DL ratios were highest overall (range 0.085-0.098%; other AAs ranged between 

0.013-0.063%). Samples buried in marine sediment showed higher racemisation ratios than 

samples from other sites.  

Samples buried in marine sediment contained significantly less Glx, L-Arg, Phe and Leu per 

unit mass than samples buried in a raised bog (Mann-Whitney U tests, nmarine=6, nraised bog=8, 

ncontrols=15, all P<0.05). Marine sediment-buried samples also contained significantly less 

L-Thr and Tyr than all samples from both other sites and from modern control material 

(Mann-Whitney U tests, nmarine=6, nfenland bog=6, nraised bog=8, ncontrols=15, all P<0.05).  
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Figure 4.3. AA content and racemisation of buried samples compared to non-buried control 
median (red). Undyed samples: grey lines; madder/alum-dyed samples: black lines. Red 
error bars show the IQR of control samples. (a) absolute % recovered AAs. (b) % AA 
content as a proportion of control median. 

(a) 

(b) 
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Figure 4.3 continued. (c) extent of racemisation as a proportion of control median. Dashed 
black error bars indicate reproducibility (sR) of DL measurement of each AA as a proportion 
of control median (Table 4.2).  

 

Percentage Leu content was significantly less than modern controls at all sites, as was % 

Tyr in marine sediment and fenland bog environments (Mann-Whitney U tests, nmarine=6, 

nfenland bog=6, nraised bog=8, P<0.05). Percentage content of Tyr and Ile were significantly 

different between all burial sites (Tyr: marine < fenland bog <raised bog; Ile inverse pattern; 

Mann-Whitney U tests, nmarine=6, nfenland bog=6, nraised bog=8, all P<0.05). Additionally, % Ala 

and Phe distinguished marine sediment samples from those at other burial sites (Mann-

Whitney U tests, nmarine=6, nfenland bog=6, nraised bog=8, all P<0.05). 

The distribution of racemisation DL values was significantly different between sites for all 

AAs except Glx, Val and Ile (Kruskal-Wallis tests, all P<0.5). Marine sediment-buried 

samples was significantly differentiated from all other sites and controls by D/L ratio of Ser, 

Ala and Tyr (Mann-Whitney U tests, nmarine=6, nfenland bog=6, nraised bog=8; all P<0.05). 

4.3.3.3 Isothermally heated samples 

Isothermally heated wool samples showed much greater changes in AA profile than buried 

material.  

AA concentration per unit mass decreased with time in all samples: decreases were greater 

with longer heating and higher temperatures. All AAs were lost but not equally: the decrease 

in concentration was greater for the more hydrophilic AAs (Asx, Glx, Ser, L-Thr, L-His and 

Gly) than for the more hydrophobic AAs (L-Arg, Ala, Val, Phe, Leu and Ile). As expected, AA 

concentration was significantly different between temperature groups (except between 

(c) 
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140°C and 110°C, and between 80°C and controls) but only for hydrophilic AAs (Mann-

Whitney U tests; n140=94, n110=26, n80=25, ncontrol=15; all P<0.05).  

% AA content was also strongly related to temperature, heating time and AA identity. At all 

three temperatures, proportions of hydrophilic AAs (Asx, Glx, Ser, L-Thr) decreased steadily 

with increasing time, whereas proportions of hydrophobic AA (Arg, Ala, Tyr, Val, Phe, Leu 

and Ile) increased steadily with increasing time; extent of change was highest at 140°C and 

lowest at 80°C (Figure 4.4). The behaviour of % Gly content was complex, rising for an initial 

period before a decrease. Significant differences were present in % content of all AAs 

between temperatures (except between 140°C and 110°C, and between 80°C and controls, 

as for AA concentration), with the exception of Glx, L-His, Gly, L-Ala and Tyr (Mann-Whitney 

U tests; n140=94, n110=26, n80=25, ncontrol=15; all P<0.05).  

 

 

Figure 4.4. % AA content of isothermally heated samples (median for each time point) 
plotted relative to non-buried modern control median (red). Error bars show IQRs as a 
proportion of control median. Only the five most abundant AAs in the fibre that are recovered 
using RP-HPLC are shown. (a) Evolution of % AA content at 140°C (time plotted in log10 to 
clarify early time points). 

 

(a) 
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Figure 4.4 continued. (b) evolution of % AA content at 110°C. (c) evolution of % AA content 
at 80°C. 

 

Finally, AA racemisation ratios of all isothermally heated samples were higher than controls’, 

and racemisation increased with increasing temperature and time, up to 25 times greater 

than control for Ser in 140°C-samples. Extent of racemisation for Asx was the highest, rising 

to >0.6 after 8 hours exposure at 140°C, and decreasing thereafter (Figure 4.5).  

(c) 

(b) 
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Figure 4.5. Evolution of AA racemisation (median per time point; error bars show IQRs) from 
140°C, 110°C and 80°C sequences. Only the four most abundant AAs in the fibre that are 
recovered using RP-HPLC, and Asx, are shown. sR indicates reproducibility for each 
individual AA in the standard solution of closest DL equivalence (Table 4.2): in most cases 
this is smaller than the data point. (a) Evolution of AA racemisation at 140°C (time plotted in 
log10 for clarity). (b) evolution of AA racemisation at 110°C. 

 

(a) 

(b) 
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Figure 4.5 continued. (c) evolution of AA racemisation at 80°C. 
 

4.3.3.4 Differences between sample types 

Pigmented vs. unpigmented raw wool. No significant differences in AA response to 

isothermal heating were securely detected between unpigmented and pigmented wool (see 

Statistical analysis above), with the exception of higher D/L values in pigmented wool at high 

time points at 140°C (Figure 4.6). This pattern was not discernible at 110°C or 80°C. The 

raw wool samples were not included in the experimental burials.  

Dyed vs. undyed samples. In experimentally buried samples, dyed samples showed 

significantly higher Glx and lower Ser % content than undyed samples (Mann-Whitney U 

test, n=6 for each group; P<0.05). Dyeing had no effect on AA concentration per unit mass 

or extent of racemisation.  

In isothermally heated material, undyed samples contained significantly lower concentrations 

of all AAs except Gly; and also significantly lower % contents of Glx and L-Arg, and higher of 

L-His and Gly (Mann-Whitney U, ndyed=37, nundyed=38; all P<0.05). Dyeing had no effect on 

extent of racemisation in these samples either. 

Raw vs. finished wool. The comparison could only be made for isothermally heated samples. 

Raw wool samples contained significantly lower Glx and Gly concentrations than finished 

wool textiles; significantly less % content of hydrophilic AAs (Glx, Ser and L-His), 

significantly more % content of hydrophobic AAs (L-Thr, Gly, L-Arg, Tyr, Val, Leu, Ile); 

significantly lower Leu DL and significantly higher Ile DL (Mann-Whitney U test, nraw=76, 

nfinished=75, all P<0.05). 

(c) 
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Figure 4.6. Evolution of racemisation ratios of two contrasting, relatively abundant AAs in 
keratin, Asx (hydrophilic) and Leu (hydrophobic), at 140°C (time plotted in log10 to clarify 
early time points): comparison between sample types. In both cases, pigmented raw wool 
samples showed greater extent of racemisation than all other samples at time points over 72 
hours. Leu racemisation ratios of unpigmented raw wool samples were depressed by 
laboratory error in experimental run H391. 

 

4.3.3.5 Modelling of effective relative rates of racemisation 

Any accurate calculation of rate constants must a priori be carried out in a closed system, so 

that reagents and products can be accurately quantified. However, unlike degradation due to 

isothermal heating in biomineralised proteins (Crisp et al. unpublished; Demarchi et al. 

unpublished-b; Tomiak et al. unpublished), this reaction in wool is not a closed system. As 

keratin proteins are hydrolysed, peptides are lost from the fibre, and the racemisation of AAs 

in these peptides will not be reflected by measurements made on the residual wool fraction. 

The following calculations are therefore interesting as a comparison to biomineralised 

systems, but are not especially indicative of real racemisation rates in wool.  

The ‘model-free’ method for calculating relative kinetic parameters for the high temperature 

racemisation data is reported in electronic appendix 4.4, summarised in Table 4.7. Despite 

the fact that D/L values of standard solutions in run H391 were not significantly different from 

those of other runs, degree of racemisation for a number of AAs in samples in this run were 

depressed compared to data from other runs. Affected samples from run H391 (which 

include most unpigmented raw wool samples) were therefore excluded from modelling 

calculations except for Asx and Ser where no depression was apparent. Fitting together the 

scaled data from the three temperature series was complicated by the relative paucity of 

data points for 110°C and 80°C as opposed to 140°C. Fitting the scaled data by least   
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Table 4.7. Estimated activation energies for racemisation of AAs. Biomineralised tissue data 
is from ostrich egg shell (OES: Crisp et al. unpublished), mollusc shell Patella vulgata 
(Demarchi et al. unpublished-b), and massive coral Porites (Tomiak et al. unpublished). 

  
EA range (kJmol

-1
) 

  

Wool 
(degraded)  

Wool 
(archaeological)  

OES Patella Porites  

AA Notes Max Min Max Min Mean Max Min Max Min 

Asx  -187 -82 -144 -124 -125 -136 -99 -110 -110 

Glx H391 removed -147 -127 -151 -127 -143 -143 -104 -128 -124 

Ser  -159 -123 -153 -116 -122 -116 -97 / / 

Ala H391 removed -147 -137 -154 -129 -133 -128 -106 -100 -87 

Val H391 removed 

from 110°C and 

140°C data 

-147 -112 -147 -116 -122 -133 -121 -108 -104 

Phe H391 removed 
from 110°C and 

140°C data 

-137 -106 -137 -126 -134 -132 -110 -92 -89 

Leu H391 removed -127 -121 -143 -122 / -130 -124 / / 

Ile H391 removed -167 -129 -158 -130 -124 -135 -110 / / 

 

squares generated a plausible solution for only Ser and Val. In all other cases, manual fitting 

was more credible. Activation energy ranges were estimated by exploring the extremes of 

fitting data from archaeological samples to the fitted curves based on data from isothermally 

heated samples. 

4.3.4 Elemental analysis 

For all samples, elemental content of the bulk fibre was measured directly by mass 

spectrometric methods (either EA or IRMS, denoted bulk). This was compared to the 

elemental content of the protein fraction of the fibre, calculated from observed % AA content 

(i.e. relative AA concentration) and the molecular formulas of the AA residues, denoted protein, 

as follows:   

            
       

                                

 

where 

     

  

                                                            

                                                 

and  
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This calculation assumes that all AA residues are intact. This is unlikely, so values were also 

calculated for (1) deamidated proteins (deamid, Asn -> Asp and Gln -> Glu), and (2) heavily 

oxidised proteins (oxid, which includes the above deamidations; Table 4.8). Oxidative 

changes are complex as multiple products are possible for a single AA (Dyer et al. 2010; 

Berlett and Stadtman 1997). In addition, a number of oxidative changes are likely to lead to 

cross-linking or breaking of peptide bonds. This calculation assumes that neither of these 

reactions took place. 

Changes in elemental % mass content with heating are shown in Figures 4.7 (140°C) and 

4.8 (80°C). Elemental % massprotein was significantly higher in controls than in heated 

samples for O and N, and lower for C and H (Mann-Whitney U tests, n140=89, n110=24, 

n80=24, ncontrol=14, all P<0.001). In contrast, the only significant differences in elemental % 

massbulk were in C (lower in controls than heated samples), S (higher in control than heated 

samples), and O (lower in controls than in 140°C-heated samples), (Mann-Whitney U tests; 

n140=59, n110=24, n80=24, ncontrol=8; all P<0.05). 

 

Table 4.8. Deamidative and oxidative changes to AA residues. 

Reaction Reagent AA residue Product residue 

Deamidation Asn Asp 
 Gln Glu 
 All other recorded AAs No change 
   
Oxidation Asx Asp 
 Glx Glu 
 Thr 2-Amino-3-ketobutyric acid 
 His Asp 
 Arg Glutamic semialdehyde 
 Tyr A dihydroxyphenylalanine 
 Phe A dihydroxyphenylalanine 
 All other recorded AAs No change 

 

Percentage weight Sprotein could not be calculated as none of the AAs measured by RP-

HPLC contain S. Both bulk and protein elemental content were compared to theoretical 

values (denoted theor) for the 10 most abundant proteins in wool fibres, derived from protein 

sequences in Clerens et al. (2010; Appendix 4.5 and Table 4.9). This calculation was made 

for the proportion of the protein recovered by RP-HPLC (denoted recorded) and again for 

the total protein (all), and assumed these proteins were intact. 

Changes in C % massbulk with heating largely followed changes in C %massprotein at all three 

temperatures. The complex evolution of N, H and O % massbulk at 140°C compared to their 

respective % massprotein suggested that the non-protein fraction lost N and H and gained O. 

These changes were not evident at lower temperatures (Figure 4.8), except for H % mass at 

110°C (data not shown).  
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Differences between samples. There were no significant differences in elemental content 

between dyed and undyed samples (bulk or protein) except in H % massbulk which was 

higher in un-dyed samples (Mann-Whitney U test; ndyed=28, nun-dyed=28; P<0.05).  

H % massbulk was significantly higher in un-pigmented samples than in pigmented samples 

(Mann-Whitney U test; npigmented=27, nun-pigmented=32; all P<0.05). However all elements’ % 

massprotein were significantly different between un-pigmented and pigmented samples, with 

C, H and O % massprotein being higher in un-pigmented samples, and N % massprotein higher 

in pigmented samples (Mann-Whitney U test; npigmented=34, nun-pigmented=42; P<0.05). 

Raw samples were significantly higher in C, N, H and S % massbulk than finished samples 

(Mann-Whitney U tests; nraw=59, nfinished=56; all P<0.05), and in all elements’ % massprotein 

(raw > finished for C and H; finished > raw for N and O; Mann-Whitney U tests; nraw=76, 

nfinished=75; all P<0.05).  

 

 
 
Figure 4.7. Evolution of elemental % content (median ± IQR) of isothermally 140°C-heated 
samples (time plotted as log10 to clarify early time points). Bulk, protein and theoretical 
contents are shown. Error bars for EA measurements of C, N, H and S are within markers; 
those for O are shown. Error bars for AA calculations are >50. (a) C; (b) N; (c) H; (d) O; (e) 
S; (f) C:Natombulk. 

 

(a) 
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Figure 4.7 continued. 

 

(b) 

(c) 
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Figure 4.7 continued. 

 

(d) 

(e) 
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Figure 4.7 continued. 

 

  
 
Figure 4.8. Evolution of elemental % content (median ± inter quartile range) of isothermally 
80°C-heated samples. Bulk and protein contents are shown. 

 

(f) 
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4.3.5 Isotopic results 

Isothermally heated material showed greater changes in isotope values from controls than 

experimental burials, with the exception of δ
18

O (Figure 4.9). The extent of change was 

dependent on sample type and temperature of exposure, and varied between isotopes.  

In isothermally heated samples, change from control values were significant for δ
13

C at 80°C 

only (Mann-Whitney U tests, n140=10, n110=9, n80=15; P<0.05) but for δ
2
H and δ

18
O for 

140°C-heated material only (Mann-Whitney U tests, n140=12, n110=8, n80=8; all P<0.05). 

Changes in δ
18

O were significantly different between all temperatures (Mann-Whitney U test, 

n140=12, n110=8, n80=8, P<0.05; Figure 4.9d). Changes from controls in δ
13
C and δ

15
N 

depended on sample type, specifically the presence of pigmentation, showing greater 

depletion in pigmented samples (Mann-Whitney U tests, nunpigmented raw=8, npigmented raw=11; 

P<0.001 for δ
13

C, P<0.05 for δ
15

N). Change in isotope values from control did not 

differentiate dyed and undyed samples but did finished and un-finished samples in δ
15

N and 

δ
18

O (Mann-Whitney U tests, nfinished=15, nun-finished,δ
15

N=19, nun-finished,δ
18

O13, P<0.05).  
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Table 4.9. Elemental analysis mass % results for control wool samples. *median calculated for 10 most abundant proteins (see Appendix 4.5). 

 C% N% H% O% S% 

Bulk fibre (observed) 44.9 15.1 6.7 27.4 3.2 
IQR 44.545.3 14.815.2 6.76.8 27.227.7 3.13.5 
Protein fraction (calculated) 50.9 17.7 7.0 24.5 † 
IQR 50.951.1 17.517.7 6.97.0 24.424.5 † 

      
Theoretical, recorded AAs* 49 17 6.7 23 0.0 
Theoretical, all AAs* 49 17 6.7 22 1.9 
      
Elöd & Zahn (1943) 51 16 6.9 23 3.6 
      
Eumelanin (brown/black) 72-74 9.6-11 5.3-5.5 11-12 0.0 
Pheomelanin (red) 62-64 9.3-10 3.7-4.7 0.0 21-24 
Fatty acids  50-83 0.0 6-14 43-2 0.0 

†not calculable

1
5

7
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In experimentally buried samples, there were no significant differences between burial 

environments in change from control values for any isotope (Mann-Whitney U tests, 

nmarine=6, nfenland bog=6, nraised bog=8, all P>0.05). Dyed and undyed samples differed 

significantly in extent of δ
2
H depletion (Mann-Whitney U test; ndyed=10, nundyed=11; P<0.01). 

There were no significant relationships between isotope change and site of burial or duration 

of burial.  

  

 

 

Figure 4.9. Changes in textile (a) δ
13
C, (b) δ

15
N, (c) δ

2
H (d) δ

18
O compositions from control 

sample median values. 

(a) 

(b) 
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Figure 4.9 continued. 

(c) 

(d) 



 

160 
 

4.4 Discussion 

4.4.1 Composition of intact wool 

Relative AA concentrations in wool determined by RP-HPLC (Figure 4.3a) closely resembled 

previous determinations in wool (Bradbury et al. 1965; Zahn et al. 2005; all differences less 

than 2%; Table 4.10) and human hair (Macko et al. 1999). Median % AA content of un-

degraded wool samples was very similar to the theoretical % AA contents of IFP proteins 

which make up the bulk of the wool fibre (Clerens et al. 2010; Plowman 2003) but with a 

greater proportion of Ser and Thr. Ser contents are higher in the cuticle than in the cortex 

(Behn (1992) cited in Zahn et al. 2005), but other than this, presence of non-IFP proteins in 

hair appeared to make little contribution to overall AA contribution, as expected. 

Elemental composition of the bulk fibre and its protein fraction differed substantially. The 

protein fraction was calculated to contain more C, more N, and less O than the bulk fibre. 

Error in error in calculated % massprotein values (>50 for each element) is much larger than 

that in observed % massbulk (Table 4.3), which is likely to explain this. Contributing factors 

include:  

 inaccuracies in the calculation of its elemental composition, which was based on AAs 

recovered from the fibre, that is lacking Cys, Lys, Met, Pro and Trp, and also a 

proportion of D-racemised AA material. In intact wool, the latter is likely to be small, 

but the missing residues make up 11-16% of the residues in keratin proteins. These 

AAs contain generally less %Owt than recovered AAs (range 816% as opposed to 

1037%) but are not generally different to recovered AAs in %Cwt or %Nwt.  

 the presence of an important non-protein component to wool fibres containing less C, 

less N, less H and more O than protein. The non-protein fraction of hair was expected 

to be largely composed of melanin, but the results for C and O are not consistent with 

this, which may be due to the contribution from fatty acid residues, though these are 

more likely to have been removed by washing during sample preparation. 

 

4.4.2 Effects of degradation on AA composition 

4.4.2.1 Buried samples 

Experimentally buried samples, at an effective temperature less than 10°C (Turner-Walker 

and Peacock 2008), showed small changes in AA % content (i.e. relative AA composition) 

over up to 8 years’ burial, indicating little peptide hydrolysis. Changes were smallest in the 

most abundant AAs (e.g. Glx, Ser, Gly, Val, Leu; c. 10% Figure 4.3b). Larger % changes 

were observed in L-His, Tyr, and Phe, probably an effect of their scarcity in wool fibre  
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Table 4.10. Median % AA content (of AAs recovered by HPLC technique). 

 Asx Glx Ser L-Thr L-His Gly L-Arg Ala Tyr Val Phe Leu Ile 

Control median observed 8.9 17 14 9.0 1.0 10 8.6 6.9 3.8 8.7 3.4 12 5.5 

IQR 0.48 0.57 0.98 0.80 0.24 2.24 0.41 0.46 0.68 0.45 0.32 1.07 0.41 

              

Bradbury et al. (1965) 8.0 15 13 8.2 1.2 11 8.5 6.7 5.0 6.9 3.7 9.6 3.9 

Zahn et al. (2005) 7.8 16 14 8.2 0.96 9.8 8.5 6.5 4.8 6.9 3.6 10 3.1 

 

1
6

1
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proteins. The increase in % content in Ala may have been due to its formation by the 

breakdown of Ser (Vallentyne 1964) and probably represents a small amount of AA 

decomposition. All buried samples were more racemised than controls in all AAs measured 

(Figure 4.3c). The isotopic compositions of all buried samples were statistically 

indistinguishable from unburied controls (Figure 4.9). 

The consistency of AA composition and racemisation in buried samples was surprising 

because wool is not a closed system. Buried samples were expected to have acquired some 

exogenous material from adjacent soil, and washing was expected to remove only the 

particulate and lipid fractions of this. Its contribution was however apparently negligible, 

probably because wool is almost wholly proteinaceous, so that the indigenous protein 

dominated AA results.  

The extensive macroscopic degradation of these samples (Figure 4.1) must therefore be 

reconciled with this lack of change in AA parameters. We hypothesise that degradation in 

experimentally-buried samples was not primarily protein-specific, but instead degraded all 

parts of the fibre non-selectively. This is consistent with some aspects of microbiological 

activity, e.g. fungal tunnelling (Wilson et al. 2007a, 2010). However, some AA hydrolysis or 

decomposition is apparent in: (1) the increase in Ala concentration, and (2) the increased DL 

values over controls. All AAs are thought to racemise only at the N-terminal position except 

Asx (Clarke 1994) and possibly Ser (Demarchi et al. unpublished-a), so this increase in 

racemisation rate suggests an increase in N-termini and hence peptide cleavage.  

Though changes in AA variables were small, some patterns of change were significant. AA 

variable values were significantly dependent on site of burial, but not dyeing treatments (with 

the exception of Glx and Ser %) or duration of burial. Macroscopic features of these samples 

also supported the idea that the environment of burial was the most important factor 

controlling the degradation of hair fibres (Wilson et al. 2007a). In this study, material buried 

in a raised bog was the best preserved, despite having been buried the longest (up to 8 

years). The material buried in marine sediment was the worst preserved of the samples 

tested, with fenland bog-buried material in an intermediate position. However, the marine 

sediment samples had been buried 3 years, and fenland bog samples only 1 or 2, all older 

samples being too degraded to provide adequate mass for analysis. Relative preservation 

therefore appears to be raised bog > marine sediment > fenland bog. This variability is 

unlikely to have a simple relationship to temperature or pH of ambient water (Table 4.11). 

Good preservation in the raised bog may be related to the presence at this site of sphagnan, 

a polysaccharide derived from sphagnum moss, which has anti-microbial properties and acts 

as a sequestering agent for metal cations (Turner-Walker and Peacock 2008). It is not clear 

why a fenland bog environment should lead to quicker degradation than burial in marine 

sediment.  
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Table 4.11. Environmental variables for experimental burial sites (Bergstrand and Nyström 

Godfrey 2007; Turner-Walker and Peacock 2008). 

 Marine sediment Raised bog Fenland bog 

Location Marstrand, SE Rørmyra, NO Lejre, DK 
Topography Marine harbour  

(in use) 
Below wooded 
upland 

Low, rolling hills 

Geology Seawater sediment/ 
clay/silt (some 
anthropogenic 
contribution) 

Glacial till Clay 

Latitude 57.88678° 63.525° 55.60833° 
Longitude 11.58732° 10.29722° 11.93889° 
Elevation -1+2.5 m 175 m 58 m 

Soil water pH c. 7.0 5.0 5.6 
Soil water Eh - +152 ms −104 ms 
Dissolved O2 <0.01 mg dm

-3
 1.6% 0.5% 

Average annual air 
temp. 

- 3.30°C 9.25°C 

Average annual 
temp at 1m 

- 4.22°C 8.60°C 

Water content 33% 100% 100% 
Reducing potential -160–-250 mV (vs. 

standard hydrogen 
electrode). 

- - 

 

4.4.2.2 Isothermally heated samples 

In contrast to buried samples, high-temperature hydrous heating substantially changed the 

AA composition of wool fibres, indicating significant peptide cleavage. Patterns of protein 

degradation varied across temperatures. There was a difference in behaviour between the 

more hydrophilic and the more hydrophobic AAs: hydrophilic AAs were lost from the fibre 

more quickly than hydrophobic AAs, with the result that the % content of the latter increased 

over time at all three temperatures (Figure 4.4). Ser was especially susceptible to hydrolysis. 

Extent of racemisation was substantially increased over control samples at all three 

temperatures (Figure 4.5), with Asx exhibiting a very different response to experimental 

conditions to all other AAs. AA change and racemisation was dependent on temperature, 

being for all AAs highest at 140°C and lowest at 80°C. [Ser]% and Asx D/L usefully 

characterised the differences between temperatures (Figure 4.10). 

No temperature used in the isothermal heating experiments was high enough to cause 

thermal degradation of keratin, which occurs c. 170°C (Brebu and Spiridon 2011). The 

highest was close to the temperature of denaturation of keratin in the presence of water, that  
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Figure 4.10. Evolution of [Ser]% against Asx D/L with time in isothermally degraded and 
buried samples. Temperature-dependent decay trajectories are indicated. Only that for 
140°C differs by sample type, with pigmented samples showing higher Asx D/L than undyed 
samples at high timepoints only. Data for run H391 (most unpigmented raw wool) is omitted 
as [Ser]% values for these samples were depressed by laboratory error. Experimental error 
in Asx D/L is smaller than the error marker point. 
 

is the disruption of the protein higher-order structures (c. 140°C: Wortmann and Deutz 

1998). This was likely to have accelerated degradation observed in 140°C-heated samples, 

but the similarity between 140°C and 110°C patterns of AA loss (Figure 4.4 a and b) and 

racemisation (Figure 4.5 a and b) indicated that it did not change the pathways involved. 

Therefore hydrolysis in wool proteins was not greatly affected by the higher order structure 

of proteins. The differential loss of hydrophilic AAs over hydrophobic AAs suggests that 

peptide bonds between hydrophobic AAs were less prone to hydrolysis than those of 

hydrophilic AAs, as has been previously found (Hill 1965). The availability of water cannot 

have been a limiting factor in this open system (Walton 1998 and references therein). 

Therefore peptide hydrolysis in wool was dependent on protein primary structure and 

temperature, rather than aspects of higher-order structure. 

Asx showed the highest extents of racemisation in wool, as in carbonate fossils (e.g. 

Goodfriend 1991, 1992; Collins et al. 1999; Figure 4.5). Additionally, Asx racemisation ratios 

rose quickly (at all three temperatures) to a peak above 0.5, after which they fell again (at 

140°C and 110°C only). The initial rapid racemisation was consistent with the existence of 

the in-chain cyclic succinimide mechanism for Asx racemisation (Clarke 1994) but only N-

terminal racemisation for other AAs. In-chain racemisation of Ser residues (Demarchi et al. 

unpublished-a) did not appear to occur. The evolution of Asx D/L in Figure 4.5 can therefore 
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be attributed to: (1) an initial phase, where the rate of Asx racemisation was greater than 

that of Asx loss by chain hydrolysis, leading to build-up of D-Asx in the fibre; followed by (2) 

a phase where peptide hydrolysis was dominant, leading to the preferential loss of highly 

degraded peptide sections more likely to contain L-Asx, thus reducing Asx D/L ratio. The 

peaking behaviour demonstrated at 140°C and 110°C in these experiments may be 

demonstrated at lower temperatures after sufficient time. Therefore dating methods based 

on Asx D/L values (Moini et al. 2011) could not be applied to waterlogged wool, because a 

single Asx D/L value could apply to two degradation states. This behaviour of Asx may also 

occur for other proteins: artificial degradation experiments, such as those examined in this 

study, are recommended to clarify the situation for silk proteins.  

 

4.4.3 Effects of degradation on elemental composition (isothermally heated 

samples) 

Care must be taken in interpreting composition variables from an open system in water from 

which mass was being lost. In this situation, any increase in % mass of C, N and S implies 

either the greater loss of a different element, while decrease in % mass C, N and S does 

indicate loss of that element. In the case of H and O, increase in % mass could indicate 

acquisition of these elements from ambient water (by hydrolysis or oxidation), or greater loss 

of a different element, while decrease in % mass H and O indicates loss of that element, as 

above. 

In this discussion of elemental composition data, % massbulk and % massprotein values and 

their change over time were compared. Error in error in observed % massbulk (Table 4.3) is 

however very much smaller than calculated % massprotein values (>50 for each element) so 

these comparisons can be taken as indicative only. However some general trends were 

evident. Changes in elemental composition were greater at higher temperatures. In all 

elements, % massprotein elemental values approached melanin values with increasing 

degradation (Table 4.9).  

C % massbulk and % massprotein both increased over time (Figure 4.7a), indicating loss of 

other elements from the fibre. This change was consistent with the survival of the melanin 

fraction of the fibre while proteins are lost, as melanins have a higher % C mass (6272%) 

than do keratin proteins (49%; Table 4.9). The changes in C % massbulk and C % massprotein 

were largely parallel. This suggests that overall fibre C % mass change can be explained in 

terms of changes to the AA composition of the protein fraction. Decomposition reactions 

affecting the carbon backbone of AAs (e.g. decarboxylation) cannot have been significant in 

keratin degradation, as these would have led to a decrease in C % mass, which was not 

observed.  
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At 140°C and 110°C, the offset between bulk and protein C % mass values narrowed after 8 

hours and 120 hours respectively, approaching 34% from c. 6%. This indicated a further 

contribution to changes in C % mass in addition to AA change. This could have been (1) a 

change in the composition of the non-protein fraction of the fibre, and/or (2) greater AA 

degradation than was accounted for in C % massprotein calculations, including deamidated 

and oxidised versions, leading to the build-up of degraded AAs in the fibre which were not 

identified and quantified by RP-HPLC. This is probably more likely than the degradation of 

the non-protein fraction, chiefly melanins, as the degradation of melanins typically requires 

strong redox conditions not present in this study (Ito et al. 2011). 

Both N % massbulk and % massprotein decreased over time. Again, survival of the melanin 

fraction while AAs are lost was consistent with the observed fall in N % massbulk. This value 

will however also depend on loss of N from keratin proteins, by (1) deamidation of protein 

side chains, and/or (2) oxidation of protein side chains. Deamidation of Asn and Gln to Asp 

and Glu was calculated to decrease N %massprotein by c. 1%, but the extent to which this 

occurred could not be measured as any remaining Asn and Gln were deamidated during 

preparative hydrolysis. Secondly, the oxidation of protein side chains (Asn, Gln, Thr, His, 

Arg, Tyr, Phe: that is, including the deamidations discussed previously) was calculated to 

reduce N % mass by a further 2.5% (Figure 4.7b). These however clearly do not account for 

all the decrease in N % massbulk observed. As for C % mass above, further loss of N % mass 

by additional deamidation or oxidation of AAs (causing increase in O % mass) is the most 

likely explanation.  

For H, % massbulk decreased while % massprotein increased, and the inverse pattern was 

shown for O. H % mass was expected to increase over time due to hydrolysis of hydrophilic 

AAs, which typically contain greater proportions of N, O and S; by the same logic O % mass 

was expected to decrease. These patterns were observed in H and O % massprotein, but the 

inverse was observed in H and O % massbulk (Figure 4.7c and d). Much of these changes 

could be explained by the cumulative effects of deamidation and oxidation of the fibre, but 

patterns after 8 hours exposure at 140°C (and 240 hours at110°C for H only) implied more 

extreme protein oxidation than assumed in Table 4.8.  

For S, % massprotein could not be calculated, but % massbulk showed a slight decrease. These 

values showed a complex pattern, leading overall to a decrease in S content from 

approximately 2.5 to 1.5%. This is consistent with the elimination of S from Cys under 

conditions of moist heat (Volkin and Klibanov 1987; Walter et al. 2006). The range of % 

mass of S in Cys in IFPs is 12% (with a contribution of c. 0.2% from Met). The changes in 

overall S content were therefore consistent with changes in the protein moiety only. 

In summary, changes in elemental composition of the wool fibre suggested: (1) loss of AAs 

from the wool fibre by protein hydrolysis, (2) deamidation of Asn, Gln, His and Arg, (3) 
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oxidation of Thr, Tyr, Phe and probably further AAs, (4) elimination of S, and (5) the survival 

of melanins unchanged. 

4.4.4 Effects of degradation on isotopic composition 

Change in δ
13
C, δ

15
N, and δ

2
H values from controls was greater in high-temperature 

isothermal hydrous experiments than in experimental burials. Change in δ
18

O was of 

approximately equal extent in both models but clearly had different mechanisms (Figure 

4.9). This discussion assumed that complete preparative acid hydrolysis of the peptide bond 

to extract individual AAs did not fractionate any isotopes: however this has so far only been 

shown for δ
13

C (Jim et al. 2003). 

4.4.4.1 Experimentally buried samples 

Though experimentally buried samples differed considerably in macroscopic indicators of 

degradation, they showed small isotopic changes from control values in δ
13

C (range 

-0.1+0.3‰) and δ
15

N (-0.9+0.3‰). Ranges of change in δ
2
H and δ

18
O were larger 

(-22.14.2‰ and -0.6+3.0‰ respectively).  In δ
18

O, the largest enrichments were in the 

most degraded samples (<40% remaining after washing: 2879u and 2874m; Table 4.5), with 

better preserved material showing modest shifts (0.580.75‰).  

In buried samples, therefore, macroscopic integrity was no indicator of δ
13

C or δ
15

N isotopic 

integrity. This was also the case for δ
18

O until degradation had gone beyond a certain point, 

which could be ascertained during washing. The exception was δ
2
H which showed 

significant changes in these degradation states.  

4.4.4.2 High-temperature isothermally heated samples 

Hydrolysis of the peptide bond was expected a priori to favour bonds containing the light 

isotopes 
12

C and 
14

N, leading to enrichment of the residue. As the peptide backbone 

comprises median 46% of the C in IFPs, but 78% of N (Appendix 4.5), hydrolysis was likely 

to enrich residual δ
15
N more than residual δ

13
C.  

Evidence for the response of δ
13

C to peptide hydrolysis is mixed: enrichment was reported 

for GlyGly, proportional to extent of hydrolysis (Silfer et al. 1992), but depletion was found for 

collagen (Bada et al. 1989). In this study, patterns of enrichment or depletion were 

dependent on sample identity: unpigmented samples showed a small enrichment (median 

+0.55‰, range -0.78+0.98‰) while pigmented samples showed a depletion at 80°C and 

110°C but an enrichment at 140°C (overall median -0.29‰, range -0.70+0.13‰). Wool 

melanin was likely to have δ
13

C values more depleted than bulk protein (McCullagh et al. 

2005; Michalik et al. 2011). If wool keratin and melanin δ
13

C values were different, then the 

isotopic effect of relative loss of protein was expected to be greater in highly-pigmented 

samples. This was consistent with data in this study. However it was also expected to be 

strongest in samples showing the greatest change in AA content and composition, that is 
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those heated to 140°C. This was not consistent with the data in this study, which showed 

much greater depletion in bulk δ
13

C at 80°C (Figure 4.9a). 

An alternative explanation for the behaviour of δ
13

C in pigmented samples was that 

degradation of melanins themselves caused overall fibre depletion. Given the general 

resistance of melanins to chemical alteration (cf Liu et al. 2003; Ito and Fujita 1985), this 

appears unlikely. Elemental analysis data from the same wool samples additionally 

suggested the survival of at least a proportion of the melanin content of the fibres, and 

again, this effect was expected to be greater in samples exposed to higher temperatures. 

The behaviour of δ
13

C in highly pigmented wool samples under moderate wet heat therefore 

remained unexplained.  

Enrichment in residual δ
15

N due to peptide hydrolysis has been reported in collagen (Bada 

et al. 1989) and GlyGly dipeptides (Silfer et al. 1992), and was suggested by the behaviour 

of keratin in unpigmented samples in this study (median change +0.05‰, range -0.23–

+0. 9‰), but changes were not large. In contrast, strong depletion in δ
15

N was observed in 

pigmented samples (median change -0.53‰, range -2.3–+0.05‰), and the largest 

depletions were seen at the lowest temperature. This was unlikely to be primarily due to 

hydrolysis. 

An alternative source of isotopic change in δ
15

N was deamidation of Asp and Glu. Sacks and 

Brenna (2005) found that side chain N was typically more enriched than peptide N in AAs 

from a number of sources. Deamidation of keratin proteins was therefore expected to lead to 

more depleted bulk δ
15

N values. This effect was not generally apparent in samples from this 

study, as only pigmented samples showed net depletion, but it may be masked by the kinetic 

enrichment described above.  

A third potential source of change in bulk δ
15
N, as for δ

13
C, was alteration of the proportions 

of protein and non-protein moieties of the fibre, if these have significantly different isotope 

ratios, or (less likely) degradation of the melanin moiety. Tyr, from which melanins are 

largely derived, was depleted relative to bulk in zooplankton (McClelland et al. 2003) but the 

melanin contribution to δ
15

N showed a variable relationship to bulk keratin values in bird 

feathers (Michalik et al. 2011). It was therefore not clear what relationship should be 

expected in mammalian proteins and melanins. However, as for δ
13

C, any such effects were 

expected to be greater in more degraded samples, which was not the case (Figure 4.9b). 

The behaviour of δ
15

N in highly pigmented wool samples under moderate wet heat therefore 

also remained unexplained.  

The relationship between δ
2
H and δ

18
O ratios and temperature of degradation was clearer. 

Both isotopes showed similar behaviour, becoming depleted, with stronger depletion at 

higher temperatures and longer time points, with the exception of raw wool samples at 80°C, 

which showed enrichment. This pattern was clearer in δ
18
O than in δ

2
H. This is probably due 



 

169 
 

to the higher proportion of exchangeable O in proteins than H, between 50 and 100% of 

each AA residue for O (including carboxyl Os: Murphy and Clay 1979; Wedeking and Hayes 

1983; in whole proteins: Niles et al. 2009) but only 2263% for H (all N-, O- and S-bound H, 

plus racemisation, i.e. exchange of the H at the -carbon). The extent of O exchange was 

probably increased by deamidation and oxidation of the protein, as this created new side-

chain carboxyl groups.  

The overall pattern of depletion in both δ
18
O and δ

2
H was most likely a kinetic isotope effect, 

with faster exchange of the lighter isotope (Hallaway and Benson 1971; Amelung and 

Brodowski 2002). This reaction was found to be pH-dependent for H in a study by Leach et 

al. (1964), where alkaline pre-treatment of the wool fibre strongly increased exchangeability 

of N-, O- and S-bound H atoms. It would be interesting to test whether wool dyed with woad, 

a process which requires alkaline conditions (Ferreira et al. 2004), showed a substantially 

enhanced extent of racemisation over material in this study. In contrast, the enrichment of 

δ
2
H and δ

18
O ratios in raw wool samples at 80°C must have been due to a different 

mechanism, possibly either the elimination of a depleted fraction from the wool fibre or an 

equilibrium isotope effect (Wedeking and Hayes 1983).  

However this pattern did not hold for all samples, in particular raw wool samples degraded at 

80°C (both isotopes). Therefore kinetic enrichment is not the only mechanism acting on δ
18

O 

and δ
2
H in degraded wool samples, though it is dominant at high temperature. This suggests 

that it may not be dominant in archaeological samples either. Changes causing enrichment 

in isothermally hydrolysed material are probably to be due to equilibrium effects, which are 

well known for δ
2
H in proteins (e.g. Bowers and Klevit 1996) and have been identified for 

δ
18

O in other organic molecules (Rishavy and Cleland 1999). These effects are likely to be 

present at all temperatures, but dominant only at lower temperatures. It is not clear why they 

were more evident in raw wool samples than in wool made up into a textile. In contrast, the 

enrichment in 
18

O only, seen in experimentally buried material, was probably due to bacterial 

mechanisms. 

4.4.4.3 Indicators of isotopic change in keratin 

In previous isotopic work, a bulk fibre C:Natom ratio of 2.93.8 has been taken as the 

accepted range for intact human hair (e.g. Wilson et al. 2007b; based on O'Connell and 

Hedges 1999). Given the similarity of mammalian hairs (Popescu and Höcker 2007), this 

range can be taken to apply to wool, especially as the theoretical C:Natom for the most 

abundant proteins in wool is in the range 3.33.5 (Table 4.9).  

It is therefore important that this study has shown that the change of total fibre C:Natom with 

high-temperature degradation is not straightforward (Figure 4.7f). Moreover, isotopic change 

does not necessarily correlate with elemental or AA change. In particular, isotopic change of 

up to +1.0‰ for δ
13

C and -2.3‰ for δ
15

N was observed in densely pigmented wool samples 

heated at 80°C, which had median C:Natom 3.57 (IQR 3.533.66), that is, within the 
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‘acceptable’ range. AA composition and racemisation for these samples is also relatively 

unchanged from controls (Figures 4.4c and 4.5c). The situation is more straightforward for 

δ
2
H and δ

18
O, where greater degradation is seen at 110°C (median C:Natom 3.85, IQR 

3.733.96) and 140°C (median C:Natom 3.72, IQR 3.554.05). Thus currently, AA 

composition or elemental composition variables cannot be guides to δ
13
C or δ

15
N integrity in 

densely pigmented mammalian hair samples, though for unpigmented samples, and for δ
2
H 

and δ
18

O, these indicators are useful. However, the range of ‘acceptable’ values should 

probably be revised for degraded and intact unpigmented sheep wool samples, towards 

3.43.7, derived from measurements in modern sheep wool (Chapters 23) and the limits of 

elemental change observed without significant isotopic change (this chapter). In general, this 

data indicates that simple X:Y atomic ratios may not be an appropriate measure of integrity 

for a tissue like hair, composed of moieties with very different X:Y atomic ratios, unlike bone 

collagen (Van Klinken 1999; Harbeck and Grupe 2009; Nehlich and Richards 2009). 

4.4.5 Comparison to observed racemisation rates in biomineralised tissues 

AA concentration data in this study indicated that peptides were lost from wool during high-

temperature degradation as a result of hydrolysis. Racemisation ratios for highly degraded 

residual wool samples were therefore not representative of the fibre as a whole, but were 

biased towards the most hydrolysis-resistant parts of the fibre, with a higher content of 

hydrophobic AAs. Comparison of racemisation ratios from early and late in degradation 

sequences therefore were not strictly comparing like with like. Nevertheless these 

calculations are reported because they formed an interesting comparator to biomineralised 

systems, where the residual insoluble fraction of protein could not be analysed separately, 

being instead subsumed into the Total Hydrolysable AA fraction together with any soluble 

peptides produced during degradation.  

Given that racemisation rates in residual wool samples are biased towards the more 

degradation-resistant parts of the fibre, it was not surprising that estimates of activation 

energy were generally higher than for biomineralised systems (Crisp et al. unpublished; 

Demarchi et al. unpublished-b; Tomiak et al. unpublished; Table 4.7), dipeptides or free AAs 

(e.g. Collins et al. 2000; Smith and Sivakua 1983), and consistently higher than those of 

hydrolysis. Estimates from wool are likely to have overestimated activation energies and 

underestimated average reaction rates in wool peptides.  

4.4.6 The influence of sample type on decomposition 

Pigmented vs. unpigmented raw wool. The effect of the presence of natural pigment in raw 

wool on AA composition and racemisation was difficult to evaluate because of the 

unreliability of data from run H391 which contained most unpigmented raw wool samples. 

Nevertheless, the extent of racemisation in pigmented wool samples was strikingly higher 

than those of unpigmented raw wool and finished textiles (both of which are also made from 

unpigmented wool) at time points greater than 48 hours at 140°C (Figure 4.6). This 
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behaviour may have represented a change in balance between racemisation and hydrolysis 

reactions, dependent on the presence of natural pigment. This suggested that additional 

covalent or H-bonding between peptides and melanin granules inhibited the solubilisation of 

highly degraded protein sections, allowing the accumulation up of highly racemised AAs in 

highly-degraded wool residues.  

Elemental analysis indicated that unheated wool fibres contained a smaller % mass of C, N 

and H and a greater % mass of O than the protein fraction of the fibre. This suggested the 

presence of a non-protein moiety with lower C, N and H and higher O % mass than protein. 

These results for C and O % mass were not consistent with the elemental content of 

melanin, expected to be the dominant species here, though they were consistent for N and 

H % mass. This difference have been due to the presence of water in these samples, which 

were not freeze-dried prior to elemental analysis. However, because all samples were 

treated equally, this should not have affected the patterns of change of these values with 

diagenesis. Only H % massbulk differed significantly between pigmented and unpigmented 

samples, being higher in the latter. This was consistent with the presence of melanin in the 

pigmented fibres, though it is unlikely that this effect should only be discernible in H.  

Unexpectedly, C, N, O and H % massprotein were significantly different between pigmented 

and unpigmented raw wool samples. This indicated differences in protein composition 

between (partially degraded) pigmented and unpigmented samples. This may be related to 

bonding between melanin granules and protein AAs limiting the solubilisation of hydrolysed 

peptides. However error bars were very large (c. 50 for each element).  

Presence of pigmentation was an important factor in understanding change in isotope 

composition, specifically δ
13
C and δ

15
N. Both became depleted in pigmented samples at 

80°C, and δ
13

C also was at 110°C, but not at the highest temperature. Unpigmented 

samples in contrast showed a slight enrichment in both isotopes. Importantly, these strong 

depletions were not correlated with C:Natom. The reasons for this behaviour were obscure. 

Change in δ
2
H and δ

18
O values were not significantly different between degraded pigmented 

and unpigmented samples.  

Dyed vs. undyed wool textile. Madder dye and alum mordant were widespread dyeing 

technologies in antiquity (Chenciner 2000). The mordant, a mixture of aluminium salts 

(Jecock 2009), was expected slow degradation in experimentally buried samples because of 

the toxicity of aluminium to many organisms (Wood 1995). This was supported by the 

observation of the greater fragility of undyed samples than undyed in experimental burials. 

AA composition indicated that dyeing and/or mordanting also appeared to protect against 

hydrolysis, as dyed samples contained higher AA concentrations per unit mass than undyed 

samples.  
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The active constituents of the dyestuff, alizarin and purpurin (Ferreira et al. 2004), were 

present in quantities too small to affect elemental ratios or isotope values, which were not 

significantly different between dyed and undyed samples. Madder/alum dyeing, and 

probably more generally mordant dyeing, was unlikely to be a confounder of origin in 

isotopic provenancing studies of archaeological textiles, though vat or direct dyes may have 

other effects. 

Raw wool vs. finished textiles. Understanding the differences between these groups of 

samples was difficult because they had different origins (UK vs. Norway), represented 

different breeds (Shetland vs. unknown, though this may well have been of the Northern 

Short Tail breed group, which is closely related: Chessa et al. 2009) and were of different 

ages (raw wool samples were shorn in June 2009: Chapter 3; finished wool samples were 

bought in 1997: E. Peacock, pers. comm.). Differences between the groups could therefore 

not necessarily be ascribed to the mechanical and chemical processes of modern textile 

manufacture.  

 

4.5 Conclusions 

This study examined wool diagenesis in high temperature isothermal hydrous conditions and 

experimental burials. High temperature experiments caused extensive wool protein 

composition change, which was evident in elemental composition, AA composition or 

racemisation, and δ
2
H and δ

18
O isotopic composition. Degradation of hair fibres was a 

complex process, probably composed of multiple reactions: hydrolysis of peptide bonds, in-

chain and chain-end racemisation, AA decomposition (deamidation and oxidation), and 

peptide chain denaturation. These processes were differently temperature-sensitive, so they 

varied in importance between experimental temperatures. Caution must therefore be used in 

extrapolating the patterns of degradation of keratin from high temperature experiments to 

archaeological material, which has survived at a much lower average temperature, at which 

a number of the reactions seen at high temperatures may not have occurred. 

Degradation in buried samples was consistent with domination by microbiological activity 

causing major macroscopic change but without being protein selective. These samples 

showed little change in elemental composition, AA composition or racemisation, or isotopic 

composition, except for enriched δ
18

O in the most highly degraded samples. The extent of 

macroscopic change occurring in less than 10 years of burial presents problems. These 

processes can destroy the sample rapidly, before hydrolytic changes can develop. 

Additionally, in ancient samples, the co-facilitation of microbiological and hydrolytic aspects 

of degradation should also be considered. However, wool samples which appear badly 

degraded to the curator, but of which more than approximately 40% mass remains after 

washing, should still be suitable for isotopic analysis.  



 

173 
 

The presence of natural pigmentation in the wool fibre, in the form of melanins, was 

important for understanding (1) hydrolysis-associated changes in δ
13
C and δ

15
N at relatively 

low temperatures (though still elevated over archaeological degradation conditions) and (2) 

extent of racemisation in very highly degraded samples. The effect of the presence of 

pigment (quantified microscopically: e.g. Walton Rogers 2004) will be specifically examined 

in archaeological textile material. Other future work includes: 

 development of a wool standard for RP-HPLC measurements to examine substrate-

specific accuracy of the method. Furthermore the re-calibration of the raw 

concentration data for this method is in hand (B. Demarchi, pers. comm.).  

 examination of δ
15

N of individual AAs in wool (Styring et al. 2010). 

 investigation of the δ
13
C, δ

15
N, δ

2
H and δ

18
O values of melanins isolated from wool 

(Liu et al. 2003). 

 identifying histological correlates for hydrolytic degradation (Wilson et al. 2010) by 

microscopy of samples examined analytically in this study. 

 exploration of the effect of alkaline treatment of the wool fibre, as in woad dyeing 

(Hurry 1973), on subsequent degradation in experimental burial and high-temperature 

isothermal hydrous conditions. 

 examination of the AA composition and racemisation of the soluble peptides and free 

AAs released by isothermal hydrous heating of wool samples (the counterpart to the 

residues examined in this study).  
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5. An assessment of procedures to remove exogenous Sr 

before 87Sr/86Sr analysis of waterlogged archaeological wool 

textiles  

 

Abstract 

RATIONALE Strontium (
87

Sr/
86

Sr) isotope analysis has been suggested as a method to 

provenance archaeological samples of wool textiles, which were extensively traded in 

medieval Europe. The effect of post-discard (environmental) contamination on keratin 

samples, which contain only low concentrations of Sr, has not been investigated. 

METHODS We compared published methods of removing exogenous Sr from keratinous 

samples, using compressed N2 gas, HF(aq) wash and organic solvent wash. 
87

Sr/
86

Sr 

isotope ratios and Sr content of undyed and madder-dyed/alum-mordanted moieties of the 

same wool textile, buried for up to three years in contrasting environments (marine 

sediment/fenland bog), and two archaeological samples from Iceland (one typical and one 

atypical of local manufacture), were investigated with ultra-low blank ion-exchange chemistry 

combined with thermal ionisation mass spectrometry. 

RESULTS Experimental burial increased Sr content of wool samples over controls. 
87

Sr/
86

Sr 

ratios of all buried samples were enriched over local environmental values. Efficacy of Sr 

removal was: organic solvents > HF(aq) > compressed N2. Difference of cleaned samples’ 

87
Sr/

86
Sr ratios to controls was: compressed N2 < organic solvents < HF(aq). Both 

archaeological samples showed Sr contents greater than experimental burials (1.19118 

µg g
-1

), and 
87

Sr/
86

Sr values consistent with Icelandic origin (0.70360.7054).  

CONCLUSIONS For undyed samples only, cleaning with compressed N2 adequately 

removed exogenous Sr from waterlogged buried wool textiles. No cleaning methods were 

effective on dyed material. Archaeological samples from Iceland showed 
87

Sr/
86

Sr ratios 

suggesting strong contamination from the local environment. We conclude that 
87

Sr/
86

Sr 

ratios of archaeological waterlogged wool textiles do not accurately reflect wool provenance.  

Keywords: strontium isotope; wool; diagenesis; dye; mordant 
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5.1 Introduction 

Wool textiles are a class of artefact widespread in the historic and prehistoric past in Europe 

(e.g. Bender Jørgensen 1992; Munro 2003; Walton Rogers 2007). A method to establish the 

provenance of samples of archaeological textile from waterlogged archaeological deposits 

would expand our knowledge of the movement of these objects of considerable economic, 

artistic, technological and social importance (Schneider 1987). Sr isotope provenancing has 

proved exceptionally useful to discriminate local from non-local enamel in human and animal 

archaeological remains (Alexander Bentley 2006; Viner et al. 2010; Chenery et al. 2010), in 

modern human forensic studies (Aggarwal et al. 2008; Font et al. 2012) and in ecological 

studies (Hobson 1999; Ben-David and Flaherty 2012) including in modern bird feather 

keratins (Font et al. 2007; Evans and Bullman 2009; Sellick et al. 2009). The approach has 

been extended to archaeological wool finds (von Carnap-Bornheim et al. 2007; Frei et al. 

2009a; Frei et al. 2009b; Frei et al. 2010). These studies did not, however, explicitly test the 

effect of diagenesis under burial conditions on wool textiles’ 
87

Sr/
86

Sr isotope signatures, a 

process which is known to overprint the Sr isotope signature in bone (e.g. Trickett et al. 

2003).  

Wool has a known affinity for heavy metal cations (Popescu and Wortmann 2010) and is 

used industrially as a sequestering agent for them (e.g. Homonoff et al. 2001). 

Archaeological and experimentally degraded human hair has been shown to absorb a 

number of metal ions from the environment (Kempson et al. 2003; Kempson et al. 2010), 

including Ca
2+

 which can be interpreted as a proxy for Sr
2+

, as the ions have similar mass 

and size. Sr is also present in the lipid fraction of hair (Attar et al. 1990). Metal ions in hair 

are removed with differing efficiency by a variety of washing methods (e.g. studies cited in 

Morton et al. 2002; Chittleborough 1980), with individual element behaviour at least partially 

dependant on pH (Kar and Misra 2004). It is therefore possible that burial in waterlogged 

environments, pre-burial washing procedures, including dyeing and mordanting (the 

application of a complexing agent to bind a dye molecule to the fibre; historically often a 

mineral ore: Jecock 2009) and post-excavation conservation wet cleaning may all remove 

endogenous Sr from wool and/or introduce exogenous Sr. If the 
87

Sr/
86

Sr isotope ratio of the 

burial environment or of cleaning washes is significantly different from that of the fibre, this 

may obscure the original provenance signal of the fibre rendering it impossible to retrieve 

provenance from wool. 

The most probable mechanism for long-term entrapment of metals in wool is reaction with 

the abundant cysteine residues in the keratin associated proteins (KAPs) to form stable 

metal mercaptides, and ultimately the precipitation of nano-crystalline metal sulphides (a 

Greco-Roman hair-dyeing method: Walter et al. 2006). Metals may also bind to 

exchangeable (pH reversible) sites, most likely free carboxyl groups of acidic amino acids in 

KAPs and intermediate filament proteins (IFPs), and in melanins (Morton et al. 2002). There 

may also be some coordination with nitrogen atoms of amine and amide groups at alkaline 
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pH. The hundreds of proteins present in wool fibres (Clerens et al. 2010) decay at different 

rates under burial conditions (Wilson et al. 2007). Thus the decay of the wool fibre itself is 

therefore likely to change the number and type of binding sites available, which may lead to 

change of 
87

Sr/
86

Sr ratios.  

This study compared the efficiency of three published methods of cleaning keratin fibres for 

Sr isotope analysis: method A: high pressure N2 (Font et al. 2007); method B: 20% HF(aq) 

(Frei et al. 2009b); and method C: organic solvents and water (standard light isotope wool 

preparation procedure: Hedges et al. 2005; Chapter 7). We hypothesise that if endogenous 

Sr in wool binds primarily to: 

 exchangeable sites on the protein, HF(aq) cleaning should remove it but not 

compressed N2 cleaning, (Font et al. 2007) although both should remove exogenous 

Sr from silicates; 

 lipids, organic solvent cleaning (Hedges et al. 2005) should remove it but not HF(aq) 

or compressed N2 cleaning;  

 melanin or cysteine residues, none of these cleaning procedures will show significant 

differences. 

 

5.2 Experimental 

5.2.1 Sample origin 

Samples of experimentally-buried wool textile (Bergstrand and Nyström Godfrey 2007; 

Turner-Walker and Peacock 2008) were supplied by Elizabeth Peacock. Un-dyed and 

madder root-dyed/alum-mordanted sub-samples of the same wool cloth (Røros Tweed A/S, 

Røros, Norway) were selected for analysis. Madder root/alum mordant treatment was a 

widespread pre-industrial wool dyeing method (Walton 1991; Walton Rogers 1997, 1766-71; 

Chenciner 2000). Un-dyed and dyed aliquots of the same textile were buried in a fenland 

bog (Lejre, Denmark) and in marine sediment (Marstrand, Sweden) (Table 5.1).  

Samples 2000-6-187(b) and 1989-33-380(f) were selected from the 1314
th
 and 1516

th
 

century phases of the wool textile assemblage at Reykholt, Borgarfjörður, Iceland, 

respectively (Walton Rogers 2012). The former was identified as of Icelandic origin, and the 

latter as probably of European manufacture on artefactual/stylistic grounds, and this 

identification was supported by light stable isotope analysis (Chapter 7; Chapter 8). The 

young basaltic volcanic rocks of Iceland yield some of the lowest 
87

Sr/
86

Sr values in Europe 

(
87

Sr/
86

Sr of the rocks, soils and waters lie in the range 0.7030–0.7040 (Evans and Bullman 

2009; Voerkelius et al. 2010) and it is highly unlikely that the European import had original 

87
Sr/

86
Sr values as low as this. 
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Table 5.1. Sample descriptions: origin, burial site and pre-burial treatment. 

Sample type Origin Geology of origin Site of burial 
Geology of 
burial site 

Approx. soil 
87

Sr/
86

Sr 
Burial 

period / y 
Dye/mordant 

Control Rørøs, NO 
Caledonian nappe 
complexes 

/ / 0.7050* 0 None 

 “ “ “ “ “ “ Madder/alum 

Experimentally 
buried 

Rørøs, NO 
Caledonian nappe 
complexes 

Lejre, DK Quaternary drift 0.70760.7096* 1** None 

 “ “ “ “ “ “ Madder/alum 

 “ “ Marstrand, SE Marine sediment 0.7092
†
 3 None 

 “ “ “ “ “ “ Madder/alum 

Archaeological 
Unknown 
(Icelandic) 

Tertiary or Quaternary 
volcanic rock 

Reykholt, 
Iceland 

Tertiary volcanic 
rock >3.1mya 

0.70360.7033
‡
 c. 500 Unknown 

 
Unknown 
(mainland Europe) 

Unknown “ “ “ “ “ 

Data from: *Frei et al. (2009a), 
†
Veizer (1989), 

‡
O’Nions and Pankhurst (1973).  

**Longer-buried samples were too degraded to provide adequate mass for analysis. 

1
8

4
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5.2.2 Reagents 

35% nitric acid (HNO3) and 20% hydrofluoric acid (HF(aq)) were purified by sub-boiling 

distillation in PTFE from initial pro analisi > 65% HNO3 (Sigma-Aldrich, USA) and analysis 

grade 40% HF (Merck, Germany). 2226% hydrochloric acid (HCl) was purified by sub-

boiling distillation in quartz equipment from initial pro analisi > 37% HCl (Sigma-Aldrich, 

USA). 31% hydrogen peroxide (H2O2) of ultra pure quality (Merck, Germany) was used for 

removal of organic material. Organic solvents dichloromethane (DCM) and methanol 

(MeOH), both HPLC grade (Fisher Scientific, UK), were used for sample cleaning. Ultra pure 

water (resistivity >18 MΩ) used throughout the chemistry procedure and for dilution of 

concentrated acids was obtained from a Milli-Q element system (Millipore, USA).  

5.2.3 Sample cleaning  

Up to 0.7 g of experimentally-degraded and archaeological wool was taken from each 

sample/find and subjected to each of the three cleaning methods. Methods A and C were 

carried out at BioArCh, York, UK under standard laboratory conditions. Method B and all 

dissolution and spiking procedures were carried out under clean lab conditions (Class 100) 

at the Petrology Department, Vrije Universiteit (VU) Amsterdam, The Netherlands. 

Samples cleaned with N2 (Series A) were secured in a small plastic container on PTFE 

mesh, and exposed to several 30 s blasts of high pressure N2 gas (oxygen-free nitrogen, 

Linde Group, Munich, Germany). Samples cleaned with HF (Series B and BL) were placed 

in 7 mL Teflon screw-cap beakers (Savillex™, Minnetonka, USA) and exposed to 20% 

HF(aq) for 60 minutes in the case of experimentally buried textiles, or 30 minutes in the case 

of archaeological textiles. The supernatant solution was then removed by pipette and the 

sample rinsed twice with 1 mL Milli-Q water (Series B). The combined rinsing solution and 

supernatant was retained for analysis (Series BL). Samples cleaned with organic solvents 

(Series C) were washed with mixtures of DCM and MeOH, and with Milli-Q water (based on 

the protocol in Hedges et al. 2005), using a test sieve (Endecotts Ltd, London, UK; aperture 

63 µm) to retain fragmentary sections. 

5.2.4 Sample dissolution 

All samples (Series A, B, BL and C) were placed in 7 mL Teflon screw-cap beakers, and a 

highly enriched 
84

Sr spike (0.030.28 g) was added. To remove organic compounds, 1:1 v/v 

mixtures of 35% HNO3 and 31% H2O2 were added to each sample for closed-vessel 

digestion. Samples did not dissolve within 30 min as described previously (Frei et al. 2009b), 

even with heating on a hotplate at 90°C. Larger samples were slower to digest; all samples 

in series B were quicker to dissolve than their moieties in A and C; red colouration in dyed 

samples faded within 24 hours. The following additional dissolution steps were carried out 

with 30 min ultrasonication and digestion on a hotplate at 110140°C at each step, with 

partial evaporation between each, as necessary until samples were completely dissolved, 

over a period of up to 9 days: (1) addition of 50% HNO3; (2) addition of 4:1 v/v mixture of 
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50% HNO3 and 31% H2O2; (3) addition of 2226% HCl; (4) addition of 3:1 v/v mixture of 

2226% HCl and 50% HNO3 (Font et al. 2007).  

The residues were taken up with 0.5 mL 50% HNO3. A number contained a precipitate; all 

were centrifuged for 5 min at 5000 rpm. The supernatant was removed by pipette and 

loaded onto cleaned quartz columns containing preconditioned Sr-Spec™ resin (100–

125 µm) suspended in Milli-Q water (Horwitz et al. 1992). After several washes with 20% 

HNO3, Sr was eluted in Milli-Q water and dried before final nitration in 88% HNO3.  

5.2.5 Sample analysis  

Sr isotope ratios were measured on a ThermoElectron Triton plus Thermal Ionization Mass 

Spectrometer (TIMS) at the Petrology department of the VU Amsterdam. The Sr fractions 

were loaded onto Re filaments using a TaCl5 activator to enhance ionization (Font et al. 

2012). 

87
Sr/

86
Sr ratios were measured using a static multi-collection routine. An analysis consisted 

of 20 blocks of 10 cycles with an integration time of 8 s per cycle. 
87

Sr/
86

Sr and 
84

Sr/
86

Sr 

ratios were corrected for mass fractionation using an exponential law and 
86

Sr/
88

S ratio of 

0.1194.  

During the period of this study (2011), 58 analyses of the international Sr standard NBS987 

were carried out on load sizes ranging from 10 ng to 100 ng to monitor and document the 

system’s performance. The 10 ng average 
87

Sr/
86

Sr and 
84

Sr/
86

Sr ratios for the NBS987 

measurements were 0.710242 ± 0.000016 (2SD) and 0.056493 ± 0.000008 (2SD), 

respectively. The 100 ng average 
87

Sr/
86

Sr and 
84

Sr/
86

Sr ratios for the NBS987 

measurements were 0.710242 ± 0.000008 (2SD) and 0.056492 ± 0.000004 (2SD), 

respectively. The external reproducibility of the standards is below 0.0032 %. 

 

5.3 Results 

Results are given in Table 5.2. The total procedure blank contained <50 pg Sr. 

5.3.1 Control samples: effect of dyeing 

Undyed and dyed control sample residues differed in 
87

Sr/
86

Sr ratio and Sr content. Undyed 

samples showed ratios of 0.71170.7118 and a narrow range of Sr content between 

cleaning methods (0.0670.207 µg g
-1

), compared with 0.70870.7088 and a much wider 

range of Sr content (0.9038.92 µg g
-1

) for dyed samples (Figures 5.1 and 5.2).
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Table 5.2. Sample results. Series A: compressed N2 residue; series B: 20% HF(aq) residue; series BL: 20% HF(aq) combined supernatant; series C: 

DCM/MeOH/H2O residue. 

 

  

Type Burial site (yrs) Dye/mordant Wash Mass / mg HF(aq) / mL 
87

Sr/
86

Sr ± 2SE (abs) Sr content (µg g
-1

) 

Control None (0) None A 0.192 / 0.711709 ± 0.000112 0.207 

  B 0.201 6 0.711755 ± 0.000074 0.082 

  BL 0.201 “ 0.711875 ± 0.000188 0.114 

  C 0.071 / 0.711766 ± 0.000244 0.067 

Experimental 
burial 

Lejre, DK (1) None A 0.018 / 0.711615 ± 0.000172 1.02 

  B 0.016 2 0.714161 ± 0.000113 0.573 

  BL 0.016 “ 0.720987 ± 0.000113 1.45 

  C 0.098 / 0.713010 ± 0.000134 0.535 

Experimental 
burial 

Marstrand, SE (3) None A 0.732 / 0.711626 ± 0.000137 0.156 

  B 0.032 2 0.716373 ± 0.000179 2.69 

  BL 0.032 “ 0.721322 ± 0.000138 2.74 

  C 0.021 / 0.717900 ± 0.000817 0.111 

Control None (0) Madder/alum A 0.134 / 0.708776 ± 0.000129 8.92 

  B 0.303 6 0.708815 ± 0.000154 1.45 

  BL 0.303 “ 0.708905 ± 0.000154 3.12 

  C 0.216 / 0.708706 ± 0.000088 0.904 

1
8

7
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Table 5.2 continued. 

Type Burial site (yrs) Dye/mordant Wash Mass / mg HF(aq) / mL
 87

Sr/
86

Sr ± 2SE (abs) Sr content (µg g
-1

) 

Experimental 
burial 

Lejre, DK (1) Madder/alum A 0.022 / 0.711210 ± 0.000199 2.19 

 B 0.016 2 0.713407 ± 0.000262 1.29 

 BL 0.016 “ 0.719100 ± 0.000096 1.78 

 C 0.031 / 0.710613 ± 0.000066 0.834 

Experimental 
burial 

Marstrand, SE (3) Madder/alum A 0.013 / 0.709981 ± 0.000133 14.9 

 B 0.012 2 0.711037 ± 0.000081 5.37 

 BL 0.012 “ 0.711734 ± 0.000112 16.8 

 C 0.006 / 0.710103 ± 0.000249 1.88 

Archaeological 
(typical of 
Icelandic 
manufacture) 

Reykholt, IS (c. 
500) 

Unknown A 0.029 / 0.704285 ± 0.000089 36.4 

 B 0.088 3 0.703571 ± 0.000012 118 

 BL 0.088 “ 0.703767 ± 0.000195 2.15 

 C 0.016 / Failed - 

Archaeological 
(atypical of 
Icelandic 
manufacture, 
probably 
imported from 
mainland Europe) 

Reykholt, IS (c. 
500) 

Unknown A 0.008 / 0.704369 ± 0.000136 5.63 

 B 0.004 2 0.704568 ± 0.000158 28.7 

 BL 0.004 “ 0.704277 ± 0.000126 16.0 

 C 0.016 / 0.705398 ± 0.000165 1.19 

Blank 2:1 MeOH/DCM / C 1.710 / 0.709248 ±0.000506 0.0002 

Blank 2:1 MeOH/DCM / C 1.171 / 0.709128 ±0.001733 0.0002 

Blank 2:1 DCM/MeOH / C 1.134 / 0.708407 ±0.000344 0.0002 

1
8

8
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Figure 5.1. 

87
Sr/

86
Sr values for all samples. Error bars are ± 2 SE (abs). Environmental 

values for seawater and Rørøs are predicted (Table 5.1) rather than measured directly, as 
was the fenland bog range. 

 

 

Figure 5.2. Sr content (µg g
-1

) for all samples.  

 

5.3.2 Experimental burials: effect of burial 

All buried samples had equally or more radiogenic 
87

Sr/
86

Sr ratios than their respective 

unburied controls, and also varied more between cleaning methods. Buried undyed samples 
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had 
87

Sr/
86

Sr ratios of 0.71160.7179, compared with 0.71170.7118 for controls; dyed 

samples showed ratios of 0.71000.7134 compared with 0.70870.7088 for controls (Figure 

5.1).  

Buried samples also had more radiogenic 
87

Sr/
86

Sr ratios than expected for their local 

environments. Burials in the fenland bog showed isotope values of 0.71060.7142 

compared with expected values of 0.7088 (Frei et al. 2009a). Burials in marine harbour 

sediment showed isotope values of 0.71000.7179 compared with expected values of 

0.7092 (Veizer 1989; Figure 5.1). 

Finally, buried samples also showed greater Sr content, and greater variability in content 

between cleaning methods, than controls. Dyed samples had greater Sr content than 

undyed samples (0.83414.9 µg g
-1

 vs. 0.1112.69 µg g
-1

) regardless of burial environment. 

Samples buried in a marine environment showed higher Sr concentrations (0.11114.9 

µg g
-1

) than samples buried in a fenland bog (0.5352.19 µg g
-1

). 

5.3.3 Experimental burials: effects of cleaning methods 

In control samples, 
87

Sr/
86

Sr ratios did not differ greatly between cleaning methods. This was 

not the case in buried material (Figure 5.1). Residues treated with methods A (compressed 

N2) and C (organic solvents/water) showed differences in 
87

Sr/
86

Sr ratios from their 

respective control samples of approximately the same order of magnitude (method A: range 

-0.00010.0024; method C: range -0.00170.0061), though undyed samples treated with 

method A differed very little from controls (range -0.00010-0.00008). Residues treated with 

method B (HF(aq)) showed differences in 
87

Sr/
86

Sr ratios between buried samples and 

controls an order of magnitude greater (range 0.00220.0046). In all HF-treated samples, 

buried samples showed more radiogenic 
87

Sr/
86

Sr ratios than controls.  

Sr content also differed between cleaning methods. Residues treated with method A 

(compressed N2) had the highest Sr contents (range 0.15614.9 µg g
-1

), with method B 

(HF(aq)-treated material) showing intermediate values (0.5735.37 µg g
-1

) and method C 

(organic solvents/water-treated samples) the lowest values (0.1111.88 µg g
-1

). The leaches 

from the HF procedure (samples BL) showed a range of 1.4516.8 µg g
-1

.  

5.3.4 Archaeological textiles 

The 
87

Sr/
86

Sr ratios of both typical (local) and atypical (non-local) samples were similar with 

all cleaning methods (local: 0.70360.7043, non-local: 0.70440.7054), and both show un-

radiogenic isotope values, consistent with Icelandic origin, previously established in avian 

bone as 0.7056 ± 0.0012 (Evans and Bullman 2009) or in mineral waters as 0.70350.7055 

(Voerkelius et al. 2010). Archaeological textiles showed a wide range of Sr content 

(1.19118 µg g
-1

).  
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5.4 Discussion 

5.4.1 Control samples: effect of dyeing 

The quantity of Sr present in dyed/mordanted samples was much higher (and more variable) 

than that recovered from undyed samples. However 
87

Sr/
86

Sr ratios from all cleaning 

residues of each sample type were in close agreement. This indicated that dye/mordant 

contaminant Sr was present in the dyed/mordanted sample, and that this dominated all 

binding sites in the fibre, as the 
87

Sr/
86

Sr ratio was insensitive to washing methods suited to 

the removal of particulate, lipid-, or protein-bound fractions of Sr.  

The dye/mordant contribution to Sr content of red wool samples persisted after burial 

regardless of cleaning method used: buried dyed samples had higher Sr contents than 

buried undyed samples (range 0.83414.9 µg g
-1

 compared with 0.1112.69 µg g
-1

). The 

dye/mordant contribution to
 87

Sr/
86

Sr ratio also persisted after burial, as dyed/mordanted 

samples were less radiogenic than their undyed moieties (true for each sample/procedure 

method pair).  

Both dyes and mordants can contain Sr, and their relative contributions a wool sample will 

vary on the masses of each added to the dye-bath, and the nature of each material. Many 

historically-used dyestuffs, including madder, are derived from plants (Ferreira et al. 2004). 

The Sr content of plants varies by species, and lies between 01500 µg g
-1

: (Kabata-

Pendias and Pendias 2001, 128). Historically-used mordants were one of a small number of 

mineral ores such as hydrated potassium aluminium sulphate (alum, used in this study) or 

hydrated ferrous sulphate (copperas) (Jecock 2009). These minerals can have highly 

variable contents depending on their specific genesis (2–500 µg g
-1

). Both dyes and 

mordants have been traded to a significant degree in the past (e.g. McCormick 2001, 651; 

Spufford 2006, 334) and thus neither may be local to the site of production of a wool fibre. 

Unless the contribution of Sr from the dye and mordant can be removed from the fibre, it 

represents a significant confounder of origin. 

5.4.2 Experimental burials: effect of burial 

The experimentally degraded textiles used in this study have been shown to have 

undergone relatively little peptide change (Chapter 4). Therefore the number and nature of 

acidic/basic and reversible binding sites in the protein fraction of the fibre is likely to be little 

different between controls and seawater- or bog-buried samples. Burial in a marine 

environment significantly increased Sr content over unburied controls (0.11114.9 µg g
-1 

vs. 

0.0678.92 µg g
-1

), whilst fenland bog burial had little effect on Sr content (0.5352.19 

µg g
-1

). We hypothesise that this was related to the higher Sr content and more neutral pH in 

the marine burial, leading to precipitation of Sr-containing mineral phases. The effect of 

location of burial was less significant than the effect of dyeing/mordanting.  
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Buried samples also had more radiogenic 
87

Sr/
86

Sr ratios than expected for their local 

environments. For samples buried in a marine environment, this may not be significant as 

local 
87

Sr/
86

Sr ratios were not measured directly but were estimated from literature data, and 

may therefore not reflect local bio-available 
87

Sr/
86

Sr ratios. However local environmental 

87
Sr/

86
Sr ratios for the fenland bog were measured directly in soil and snail shell at that site 

(Frei et al. 2009a). In that study, samples of modern sheep wool generally showed more 

radiogenic 
87

Sr/
86

Sr ratios than local soil values, so this enrichment may be a general feature 

of wool samples rather than a feature of burial.  

5.4.3 Experimental burials: efficacy of cleaning procedures 

Compressed N2-cleaned samples (series A) contained more Sr than samples in other 

cleaning series. However the 
87

Sr/
86

Sr ratios of series A samples resembled control 

samples’ values more closely than those of series B or C. This suggests that most 

diagenetic Sr, including that from the dye/mordant, is present as particulates, which are 

removed by high-pressure gas treatment.  

Samples treated with procedure B (HF(aq)) contained less Sr than series A and their 

87
Sr/

86
Sr ratios differed more than those of any other cleaning method from control values. 

We hypothesise that the HF method removed exogenous (silicate) particulates by 

dissolution (Frei et al. 2009a) and also removed an additional fraction of the Sr in the fibre, 

probably that bound exchangeably to the protein. This process was not isotopically neutral, 

as both the residual (B) and leach (BL) fractions showed higher 
87

Sr/
86

Sr ratios than control 

samples. It is possible that this was caused by addition of HF contaminated with Sr with a 

very high 
87

Sr/
86

Sr ratio, but as there was no correlation between amount of HF added and 

Sr content (Table 5.2), this effect is unlikely to account for all the elevated 
87

Sr/
86

Sr ratios of 

series B and BL. The Sr content and 
87

Sr/
86

Sr ratio of the HF acid is nevertheless currently 

under investigation. Alternatively, it may be possible that exogenous Sr from the burial was 

fractionated by HF treatment, either by mobilisation of the heavier isotope or acid-insoluble 

precipitation of the lighter.  

Frei et al. (2010) acknowledged that dye/mordant treatments have the potential to 

significantly change 
87

Sr/
86

Sr ratios in wool fibres, and suggest an additional treatment with a 

strong oxidant (ammonium peroxodisulfate) to remove their contribution. However in the 

undyed samples in this study, where this procedure should not be necessary, buried 

samples treated with HF still differed substantially in 
87

Sr/
86

Sr ratio from controls (fenland 

bog sample by 0.0024, marine sediment sample by 0.0046). Additional work is underway to 

directly test the effect of peroxodisulfate treatment to the madder/alum-treated samples 

tested in this study. 

Finally, samples treated with procedure C (DCM/MeOH/H2O) contained the smallest quantity 

of Sr of any of the three cleaning methods. We hypothesised that this procedure, which 

includes 6 separate solvent steps, most efficiently removed Sr from the fibre, including 
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contaminant particulates by agitation or dissolution, and also some endogenous lipid-bound 

Sr, resulting in very low Sr contents in the residua. In all buried samples, as for series B, 

87
Sr/

86
Sr ratios were higher than in controls, which again suggests precipitation/mobilisation 

of a fraction of the exogenous Sr from the burial environment by this solvent treatment. 

These differences cannot be explained by the Sr content or 
87

Sr/
86

Sr ratios of the solvent 

mixtures used in this procedure, which are reported (Table 5.2). 

5.4.4 Archaeological textiles 

Both archaeological samples contained higher concentrations of Sr than experimentally 

buried textiles (Figure 5.2). This is consistent with the results of Kempson et al. (2003), and 

is most likely due to greater exposure time. Both archaeological textile samples show 

87
Sr/

86
Sr ratios consistent with Icelandic origin, despite the fact that sample 2903 has been 

independently identified (on art-historical/technical and light stable isotopic grounds) as 

manufactured in continental Europe (Chapter 7; Chapter 8). The similarity in 
87

Sr/
86

Sr ratio 

between cleaning methods in samples 8 (0.7044–0.7054) suggests that soil Sr was present 

in all fractions of the fibre (cysteine-, lipid- and protein-binding sites).  

 

5.5 Conclusion 

We conclude that high pressure N2 pre-treatment (Font et al. 2007) can accurately retrieve 

original 
87

Sr/
86

Sr ratios of waterlogged wool textiles, but only in undyed samples. For 

samples dyed with an mineral mordant, and those given other pre-treatments, measured 

87
Sr/

86
Sr ratios reflect a combination of pre-burial treatment of the fibre and burial site 

contamination. 
87

Sr/
86

Sr ratios may differ significantly between cleaning methods, which also 

vary in the amount of Sr they remove from the fibre.  

The application of 
87

Sr/
86

Sr ratio provenancing to archaeological samples of wool textile is 

problematic because: 

 the influence of the burial environment on 
87

Sr/
86

Sr ratio appears to be strong, though 

this was only tested in one sample in this study. Provenancing of unburied or dry-

buried undyed hair samples by this method is in contrast likely to be robust (Benson et 

al. 2006; Coutu 2011; Font et al. 2012). 

 it is not possible to confidently identify samples which have never been dyed with a 

mineral mordant. A negative dye test indicates only that a sample at present contains 

no detectable level of organic dyestuff (e.g. Vanden Berghe et al. 2009), not that it has 

never been dyed. However, the suitability of any of these methods for determining 

provenance of samples dyed with direct dyes, such as woad (that is, without the use 

of a mineral mordant), is not established. 

 it is likely that post-excavation conservation wet cleaning with organic solvents may 

change Sr content and 
87

Sr/
86

Sr ratios. 
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6. Provenancing archaeological wool textiles from the 

European Middle Ages: theoretical and methodological 

background 

 

 

Abstract 

Manufacture of wool textiles, and trade in both the finished artefacts and their raw materials, 

were of fundamental economic and social importance to countries of northern and western 

Europe throughout the Middle Ages. The archaeological remains of processes, medieval 

archaeological textiles, have been used to examine their industrial, social, environmental 

and cultural contexts. This chapter examines the theoretical basis for the investigation of the 

provenance of these objects, drawing on examples from the 7
th 

to the 16
th
 centuries from 

countries around the North and Baltic Seas. It identifies a number of ambiguities and makes 

a number of suggestions for additional approaches to understanding provenance.  

Keywords: textile, wool, provenance, theory, methodology, empirical 
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6.1 The theoretical basis of archaeological textile analysis 

The theoretical basis of archaeological textile analysis and interpretation has so far received 

little explicit published discussion within any period, not just the Middle Ages, though a 

number of review articles on the subject are apparently forthcoming (P. Walton Rogers, 

pers. comm.). Theory and methodology are typically not explicitly addressed in textile 

publications, in either primary (e.g. Crowfoot et al. 2001; Østergård 2004; Gardiner et al. 

2005, 27-37) or secondary literature (Bichler et al. 2005; Gillis and Nosch 2007; Walton 

Rogers 2007; Gleba and Mannering 2012). There is an exception in Bender Jørgensen’s 

work (1986, 285; 1992, 11-3). Where introductory review matter is present, it most often 

focuses on explaining the relationships between the many technological processes of textile 

preparation, their effect on the finished object and the tools used (Crowfoot et al. 2001, 15-

25; Østergård 2004, 37-61; Walton Rogers 2007, 9-48) or lists and defines the variables 

measured (Ingstad 2006, 185-6).  

Within this unspoken context, archaeological textile analysis includes elements from 

theoretical traditions which are often considered to be in opposition (Jones 2002, 2004; 

Pollard and Bray 2007; Hurcombe 2007, 92), though not all researchers agree (Killick 2005). 

The recording of the textiles themselves is consciously empirical, which is reminiscent of 

positivist theoretical approaches (Hurcombe 2007, 92). Analysis of European medieval wool 

textiles is almost entirely technical rather than stylistic, as there are few features to discuss 

which can be considered purely elements of design (some exceptions are Walton 1983, 222-

4; Crowfoot et al. 2001, 50-5), unlike excavated figured silks and embroideries (Granger-

Taylor 1989; Crowfoot et al. 2001, 82-126; Coatsworth 2005). Features typically considered 

cardinal are weave type and spin direction (e.g. Walton 1981; Bender Jørgensen 1992, 11; 

Tidow 1995; Crowfoot et al. 2001; Østergård 2004), and in some cases additionally 

judgments of fineness/coarseness (Geijer 1938; Hedges et al. 1982; Hägg et al. 1984, 100-

3; Hägg 1991) or, more technically, measurement of yarncount (Bender Jørgensen 1986). 

Analysis of later medieval material can also include grouping by yarn preparation technique 

(woollen vs. worsted) and degree of soft-finishing (fulling, napping, shearing), together with 

yarncount and weave type (Walton 1981; Rammo 2009). 

In opposition to this focus on measurable features of object construction, the interpretation of 

the data is typically very aware of specific context, incorporates evidence from multiple 

disciplines (section 1.1.1), and focuses on the social contexts of textile production, including 

ethnic and especially gender approaches (e.g. Walton 1989, 418; Henry 2004; Walton 

Rogers 2007, 45-7, 234-5; Andersson 2007; Brandenburgh 2010). These foci are more 

characteristic of interpretative perspectives in archaeological theory (Hurcombe 2007, 92).  

Textile specialists have ascribed the absence of published theoretical and methodological 

discussion in the field to its international and interdisciplinary nature. In a recent discussion 

in response to a highly critical article written by a non-textile specialist (Sletmo 2009), 
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Bender Jørgensen (2009) stressed the presence in the field of numerous analysts from 

countries where processualist approaches continue to dominate, for example in Denmark 

and Germany as opposed to the UK, Norway and Sweden. Andersson and Mannering 

(2009) pointed out the importance of contributions from art historians, craftspeople, 

conservators, people with a background in industrial textile manufacture, and natural 

scientists, all of whom have relatively little exposure to archaeological artefact theory. A 

great deal of textile research is published in the form of technical excavation reports, in 

which a detailed exploration of theoretical context may not be considered appropriate, but 

where modern archaeological theoretical approaches can underlie interpretation (Blinkhorn 

1997, 114; P. Walton Rogers, pers. comm.). Finally, the widespread underrepresentation of 

textile studies in academic institutions and museums in Europe (Andersson 1996; 

Bridgeman 2012; Granger-Taylor 2012) is also likely to have contributed to the absence of 

published theoretical and methodological discussion of textiles (Sommer 2011/12).  

The above observations apply to textile research in all archaeological periods. An additional 

factor is present in the context of textiles from the Middle Ages: the general reluctance of the 

wider medieval archaeological field to engage in theoretical or methodological discussion 

(Austin 1990; Gerrard 2003, 217-20; Johnson 2010, x). This may in turn be related to 

broader perceptions of the relative primacy of historical over archaeological evidence 

(Moreland 2006; Johnson 2010, 154), which have discouraged the development of 

independent theoretical frameworks in the cadet discipline.  

In summary, medieval textile analysis focuses strongly on a mutually agreed set of core 

variables, the recording of which is intentionally empirical, though their interpretation is 

informed by a number of currents of archaeological thought. This can be considered to 

embody a theoretical contradiction, in which variable selection and measurement is 

considered a neutral activity, natural to the objects and unaffected by 20
th
21

st
 century 

biases, resulting in a single valid description of a find, which can be more-or-less complete 

depending on number of variables investigated. However interpretation of finds is highly 

context-specific, acknowledging differences in past societies over time and place, and also 

within society, between, for example, ethnic, age or gender groups. The first position, that of 

neutral recording, has recently been queried, with a growing interest in the difference in 

points of view between the craftsperson and the academic (Hammarlund 2005; Bender 

Jørgensen 2007; Ciszuk 2007). However the potential for the recording itself to vary in 

response to the research question, and conversely the limitations of current descriptive 

paradigm because of its basis in 20
th
/21

st
 century research concerns, have not yet been 

examined. This goes beyond responding to the presence or absence of specific features in 

assemblages, to a research practice in which the selection of variables to record, their 

relative importance for understanding textile use and meaning (not just production), and their 

modes of measurement are acknowledged to be features of their interpretation (cf Rice 

1987, 274-88 for pottery). 
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6.2 Empirical identification of atypical textile features: variable 

selection 

The emphasis in recording archaeological textiles has been described as obtaining the 

empirical, technical data needed to recreate a specific textile by a skilled craftsperson 

(Desrosiers 2012). In practice, analysis also includes details of use and wear (Table 1.3; 

Gleba and Mannering 2012, 4). However, the majority of variables typically recorded focus 

on the processes of production of a textile. Describing a textile in this way thus emphasises 

the understanding of these objects by the producers. The view of the textile analyst is thus 

already close to that of the textile craftsperson, making the recent theoretical explorations of 

the craftsperson’s point of view a short and natural step.  

However, later medieval documents generally fail to report the core variables used in 

archaeological textile analysis, describing their material by perception, such as colour, 

pattern, weight and feel, as well as by socioeconomic criteria such as origin and price (e.g. 

van Uytven 1983; Chorley 1988; Walton 1991, 337-42; Munro 2003, 228-31; Spufford 2006, 

232-41). Many of these variables are related to technical features of production (Table 1.2), 

for example cloth weight with total wool content, or fibre type with woollen/worsted 

production (Munro 2003, 182-4). These relationships were probably evident to 

contemporaneous observers. However for modern observers, the criteria listed are difficult 

to relate to features of fragmentary archaeological finds, and only in relatively few cases 

have specific textile descriptions been matched with objects recovered (see section 1.1.1). 

This is partly because many of the features recorded in the documents are no longer 

measureable in samples recovered from archaeological deposits, and partly because it is 

only rarely clear how to relate the variables measured today to the features described. 

However, the point remains that even contemporaneous descriptions of textiles do not 

exclusively focus on the perceptions of producers, and show a range of variables used to 

characterise these objects which are not directly captured by current standard modes of 

analysis of archaeological textiles. 

Current analysis can therefore be challenged on the basis that it does not fully reflect either 

the nature or the plurality of contemporaneous textile perception. This is in line with the 

criticisms made by post-processualist archaeologists in the 1980s (Lucas 2001, 86-8; 

Hurcombe 2007, 97-9; Johnson 2010, 101-8), who strongly disputed the idea that an 

archaeological artefact can be completely and objectively described by a modern analyst, 

and argued that any such measurements and categorisations were not neutral but 

interpretative. According to them, there is no such thing as a neutral description of an object, 

which is true and meaningful for all people in contact with that object past and present. 

Therefore the modern selection of variables to describe a textile is not strictly empirical, but 

has been guided by the perspective and interests of 20
th
 21

st
 century textile archaeologists. 

Since the frequency of occurrence of these variables is one of the factors used in arguments 
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for typical- or atypical-ness, it is possible that these discussions omit textiles which are 

outstanding in variables not currently measured, but which may have been important to 

contemporary users of these objects.  

Processualist vs. post-processualist divergences are also evident in the treatment of 

identified groups of textiles in an assemblage. Explicit construction of typologies is generally 

avoided in medieval textiles: only the work of Bender Jørgensen (1986; 1992) is of this 

nature. However other workers have used implicit typologies, discussing an assemblage in 

terms of groups identified by technical features, rather than only describing it in those terms 

(Nahlik 1976; Pritchard 1984; Tidow 1995; Crowfoot et al. 2001, 26; Ingstad 2006, 390, 392-

3; Østergård 2004, 127-35). The choice of variables varies by assemblage. In this work, the 

selection of these particular categories for discussion (e.g. ZZ tabbies as opposed to all ZZ 

textiles, all tabbies, or grouping by context or any other variable), however pragmatic, 

implies that these objects form a coherent group which is more worthy of commentary than 

the alternatives, that is, that they form a type. Other workers have considered finds using 

two parallel categorisations, such as both construction features and use group (Hägg et al. 

1984, 100-49 vs. 19-100; Gardiner et al. 2005, 29-30 vs. 31-5, 48-58; Walton Rogers 2007, 

67-99 vs. 139-228) or multiple overlapping criteria (Walton 1981). The implications of these 

differences in approach have not been discussed, but it is clear that processualist 

approaches have not been entirely rejected in this field of study. 

It is therefore significant that there have been two recent developments of alternative sets of 

variables to understand textiles: surface texture and weave character (Hammarlund 2005) 

and sensory experience (Harris 2008). Hammarlund’s work can be seen as an extension of 

previous studies examining degree of finish (e.g. Walton 1981; Rammo 2009), but applies 

this method to a much wider range of textile types. This approach, applied to a medieval 

archaeological assemblage, grouped textiles very differently to the traditional approach 

(Hammarlund et al. 2008). Assessments of frequency of occurrence of a particular textile 

type were markedly different between this and traditional methods. Assessments of typical- 

or atypical-ness could therefore differ between methods, though Hammarlund et al. (2008) 

did not address this specific question.  

In contrast, Harris (2008) focused on the approach of a non-specialist observer to a textile. 

This work explored the point of view of a (modern) consumer and is difficult to apply to 

archaeological medieval textiles because: (1) their physical nature (e.g. smoothness, 

flexibility, smell) has been altered by their preservation in the ground; and (2) the 

perceptions of an observer are rooted in their socialisation and experience (see references 

in Harris 2008). However, like traditional approaches to archaeological textiles, this work 

was strongly observational, focusing on empirical responses to a finite series of variables. It 

differed in that it was interested in the plurality and subjectivity of responses.  
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These developments are important because they have suggested the possibility of adding 

variables to the list of those which can be assessed in a textile by observation, not just 

incidentally as notes or comments in a catalogue, but systematically, as a category of 

analysis. The authors of these new approaches did not suggest that these variables should 

replace the traditional set, but instead could be used in parallel, thus adding to potential 

perspectives. An important novel characteristic of these methods is their relative subjectivity. 

Assessment of surface type or feel is not as direct as numerically-quantifiable features of 

yarncount. However this does not make these features incapable of objective measurement 

by multiple researchers, for example with the aid of image analysis software, or a reference 

collection. It is worth noting that other fields have developed robust objective measurements 

of subjective responses, for example quality-of-life data in medical research (Andresen et al. 

2001; Lohr 2002; Rothman et al. 2007). Thus, the development of multiple parallel 

descriptions of a textile could allow a new focus on the multiplicity and subjectivity of 

contemporaneous reactions to an artefact, while maintaining the current emphasis on 

measurement. 

Post-processualist challenges to the validity of variable selection are not limited to 

humanities research: scientific variables can also be considered in this light. In the case of 

this thesis, the perspectives gained on medieval textiles from isotope analysis (Chapter 7; 

Chapter 8) are a product of the current popularity of isotopic approaches in archaeological 

research in the UK (UK Archaeological Sciences Biennial Conference programme, Anon. 

2011), due to their relative cost-effectiveness, reliability and accessibility in western 

industrialised nations in the early 21
st
 century. The data itself must be considered within its 

temporal and geographical context (Kuhn 1996). Thus scientific methods focus on sets of 

variables that are not of themselves more neutrally chosen than those examined by any 

other approach. There is no reason why the same approach could not be extended to other 

methods of observational measurement, if they can be shown to be valid and reliable. 

The textile analysis field has therefore recently started to explore the potential for multiple 

alternative methods of measuring textile variables. This has included scientific and artefact-

based analyses. These methods maintain the existing focus on measurement and 

observation, but suggest the existence of multiple empirical viewpoints, e.g. those of the 

non-specialist textile consumer in addition to the producing craftsperson. This plurality is 

important for studies of provenance, as new identifications of typical or atypical textiles are 

thus possible. This may allow insight into the relative importance of different aspects of the 

perception of a textile which contributed to why it was moved. 

6.3 Empirical identification of atypical textile features: variable 

quantification 

The lack of explicit discussion of the theoretical or methodological underpinnings of textile 

studies has an important and unfortunate consequence: it makes it difficult to judge any 
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variation in robustness. A number of standardised vocabularies and technical guides have 

been produced (e.g. Centre international d'étude des textiles anciens 1964; Guicherd et al. 

1987 and other CIETA publications; Walton and Eastwood 1984), and inter-laboratory 

comparison of features of textile construction have been carried out (P. Walton Rogers, 

pers. comm.). However these are not typically cited in publications of archaeological textiles, 

either primary (e.g. Crowfoot et al. 2001; Østergård 2004; Ingstad 2006) or secondary (e.g. 

Bichler et al. 2005; Kirjavainen 2007; Walton Rogers 2007; Brandenburgh 2010), which 

undercuts their utility. It would be interesting to see the rigorous observational focus of textile 

studies extended to examine explicitly the relative validity, robustness and utility of 

established and new variables and/or new modes of measurement of existing variables. This 

work might include: 

 examination of researcher definitions of ‘fine’, ’medium’ and ’coarse’ categories to 

describe and understand textile assemblages, to look at how variable these 

categories are between sites, regions, periods, degradation states, or construction 

techniques, and how this affects the impact of this variable.  

 new measurements of regularity in textiles. At present this is characterised 

qualitatively, using statements such as ‘very even’ (see examples in Chapter 8) but it 

could be approached via more quantitative methods, such as mean and standard 

deviation of yarncount, yarn diameter, or angle of ply. In this case, the variability of 

these measurements between samples, assemblages or conditions of degradation 

would also have to explored to establish their robustness and relevance. The use of 

image analysis techniques to do this would be very interesting to explore (Cork et al. 

1996; Cork et al. 1997). 

In addition, the currently established methodological approaches are not universally 

equivalently applied, and a number of empirical disagreements exist: 

 Where assemblage analysis is based on the established group of variables, selection 

of technical features to report on can differ (Table 1.3; compare for example Walton 

1981; Tidow 1995; Crowfoot et al. 2001; Østergård 2004). These differences are in 

part pragmatic responses to differences in the assemblages themselves. However, a 

direct examination of how variable selection affects assemblage interpretation would 

be useful.  

 Characterisation of fibre diameter range and distribution in fleeces has included the 

mean, standard deviation, maximum, range and skew of distribution of fibre 

diameters, depending on researcher, though all methods have a basis in 20
th
 century 

wool science (for archaeological material, compare Ryder 1974; Walton Rogers 1995; 

Rosenqvist 2006, 171; Rast-Eicher 2008; for modern fleeces, see comparison of 

methods in Qi et al. 1994). Technologies of measurement have also varied: for 
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archaeological material, transmitted light microscopy of longitudinally mounted fibres 

(Walton Rogers 2004) or scanning electron microscopy of cross-sections of fibres 

(Rast-Eicher 2008); for modern fleeces, an optical fibre diameter analyser is typically 

used (e.g. McGregor and Butler 2009). The selection of archaeological samples for 

analysis also differs: Walton Rogers (Bender Jørgensen and Walton 1986) excludes 

heavily mineralised samples, but Rast-Eicher (2008) does not. A recent paper (Gleba 

2012) has compared fleece type definitions between Ryder and Rast-Eicher’s 

methods. However it remained unclear how comparable results from different 

archaeological researchers are, as this work did not take into account differences in 

(1) technology of measurement, or (2) criteria for the selection of samples well 

preserved enough for analysis. It is therefore not difficult to develop an argument for 

the correlation of methodological approaches in this area, in order to allow 

comparisons between archaeologists’ work on different assemblages, but also to 

relate these results to research in modern breeds into environmental and 

management constraints on fibre diameter types (Geenty et al. 2009).  

In summary, textile analysis could be strengthened by the expansion of a methodological 

literature and its wider citation, explicitly establishing relationships between currently used 

measurements, exploring new methods to measure existing variables, and developing new 

variables to understand archaeological textiles. The same is true of scientific approaches, 

discussed in more detail below. 

6.4. The development of multiple parallel approaches 

The previous two sections have argued that the established empirical focus in 

archaeological textile analysis could interestingly be extended to include a number of parallel 

observational approaches to characterising finds. Researchers in other archaeological fields 

have shown that they can maintain an empirical focus while employing multiple theoretical 

approaches from related fields, e.g. from economics and the social sciences (Smith 2011). 

Section 6.2 examined an example (Harris 2008) of the use of concepts of materiality to 

develop new variables for characterising textiles. A number of such theoretical concepts 

have been developed by researchers working primarily on prehistoric artefacts. These 

methods have been little applied to medieval material (section 6.1), possibly because the 

questions they ask appear to be answered by historical sources for this period. The interest 

in applying them to medieval material is therefore to see whether the results they generate 

are consistent with data from historical sources, thus informing on the quality of the method, 

and/or the relevance of historical data. This section discusses a number of additional ideas 

which may be of importance to exploring textile provenance.  

6.4.1 Concepts of textile value  

Isotopic analysis of medieval textiles identified a significant number of textile samples with 

non-local isotope values which had not previously been identified as atypical (Chapter 7; 
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Chapter 8), suggesting that current methods of textile analysis may underestimate the 

movement of textiles, particularly coarse or simple ones. Reasons to value an ordinary or 

coarse, rough textile are easy to find in a medieval context: consider the strength of sailcloth 

(Andersson 1999, 13) or sacking (Möller-Wiering 2005), the personal value of an inheritance 

(Burkholder 2005), or the political value of a gift (Hägg 1994; Curta 2006). Further, by the 

13
th
 century, cheap wool cloths were moved via long-distance commercial mechanisms 

(Chorley 1987), and such movements may have been present earlier. It must also be 

remembered that some features of quality, such as evenness of finish and desirability of dye 

colour, may no longer be evident in archaeological material due to decay (Walton and Taylor 

1991; Chapter 4). Alternative concepts of value, explored by, among others, Bailey and Mills 

(1998) and Humphrey and Hugh-Jones (1992), may be of use here.  

6.4.2 Concepts of textile markets  

Understanding mercantile activity in early medieval towns has advanced greatly in the last 

thirty years (Hodges 1982; Clarke and Ambrosiani 1991; Graham-Campbell et al. 2011) but 

their role in any contemporaneous textile markets is not yet clear. Here, independently-

developed ways of understanding the development of markets (Feinman and Garraty 2010; 

Garraty and Stark 2010) could be applied to textiles. Alternative ways of exploring the spatial 

distributions of particular artefact types focus on relationships between sites, through 

regional market system mapping (Minc 2006), or network analysis (Sindbæk 2007), rather 

than mapping finds geographically as has been the case with textiles (e.g. Bender 

Jørgensen 1984; Walton 1989, 415, 417; Bender Jørgensen 1992, 140-6; Walton Rogers 

2007, 230-1). In contrast to commercial or down-the-line exchanges, new examinations of 

the social context(s) of gift-exchange (Muldrew 1998; cited in Tilly 2001; Marcoux 2009) 

have also been developed, as well as how these might be identified in the archaeological 

record (Hirth 1998).  

6.4.3 Concepts of specialisation in textile production  

The organisation of textile production is of interest to provenancing studies because of the 

association between high volume, standardised production by full-time workers, and 

production for commercial distribution (Andersson Strand 2011). Additionally, the 

identification of textiles of ‘specialist quality’, with evidence for standardisation, has been 

used as an argument for suggesting types which might have been traded (Bender 

Jørgensen 1984; Walton 1989, 414; Andersson 2003, 13; Walton Rogers 2007, 68-9). Wider 

inquiries into the organisation of craft production and its relationships to specialisation 

(Brumfiel and Earle 1987; Costin 1991), innovation (Doyon-Bernard 1990; Senior 2000) and 

standardisation (Eerkens and Bettinger 2001) are therefore of interest.  

6.4.4 Scientific approaches 

Isotopic analysis has already been applied to provenancing textiles, as in the work of Frei et 

al. (2009a; 2009b; 2010) and the present thesis. It is possible that additional approaches 
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may also be able to identify non-local material, for example by distinguishing between 

different breeds of sheep by proteomics (Plowman et al. 2012) or DNA (Kijas et al. 2012; but 

see Brandt et al. 2011).  

Bioarchaeological and artefact methods are based in a very different epistemological 

traditions. Artefact research has a long history of incorporating highly technical research 

methods (e.g. Geijer 1938, 180-6), but this is not the same as incorporating scientific 

methodology. This ‘aims to be cumulative, evidence-based (empirical), falsifiable, 

generalizing, nonsubjective, replicable, rigorous, skeptical, systematic, transparent, and 

grounded in rational argument’ (Gerring 2011, 11). The absence of specific hypotheses and 

explicitly tested methodology in artefact analysis is surprising to researchers trained in the 

scientific tradition, whereas the scientific preference for generalisable conclusions can 

appear as a tendency to oversimplify to artefact researchers, even where, as in textile 

studies, both groups are focused on the generation of empirical data.  

In contrast to previous researchers who have been concerned about differences between 

‘scientific’ and ‘theoretical’ approaches in archaeology (Jones 2004), both biogeochemical 

and artefact methodologies are capable of multiple parallel understandings of an 

archaeological object. These can be conceived as dimensions of measurement: thus weave 

type/spin direction/threadcount (e.g. Maik 1991; Crowfoot et al. 2001; Christensen and 

Nockert 2006), surface texture/weave character (Hammarlund et al. 2008), proteomic 

(Solazzo et al. 2011), genetic (Kijas et al. 2012; but see Brandt et al. 2011) and isotopic (Frei 

et al. 2009a; 2009b; 2010; and this thesis) analysis of a wool textile can all generate different 

sets of empirically verifiable data which represent aspects of that artefact. Attempting to 

reconcile any potential contradictions between them opens the way towards exploring the 

nature and weaknesses of any single approach, which could be methodological (e.g. 

susceptibility of a variable to diagenesis) or theoretical (e.g. concepts of mass production).  

 

6.5 Conclusion 

This chapter has surveyed the theoretical and methodological context of medieval 

archaeological textile analysis. This has been largely unspoken, and has included strong 

emphasis on the importance of observation and measurement. Recent development of new 

textile descriptive variables has suggested the potential of alternative ways to characterise 

textiles, leading to new groupings of typical or atypical material. These developments have 

interesting consequences for arguments of provenance based on the frequency of a group 

of technical features: as choice of variables differs, so can resultant typical/atypical 

groupings. This chapter argued that this plurality was potentially beneficial, as it reflected the 

non-uniformity of contemporaneous perceptions of textiles. It also suggested that the 

application of empirical rigour to developing new textile analysis variables and new methods 

of measuring existing variables was possible and valuable, which again had consequences 
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for the identification of textiles as typical or atypical. Finally it suggested a number of 

alternative theoretical approaches which could provide new perspectives on concepts 

important to interpreting the features of medieval textiles, such as value, markets and 

specialisation of production.  

The aims of this chapter were not to promote a particular theoretical school of thought, or to 

suggest that the established empirical methodologies should be replaced. Instead it 

suggested that multiple parallel empirical ways of understanding textiles were possible. 

None of these methods are more neutral than others, as all involve some selection of 

variables in describing an archaeological object. These steps should be consciously 

described and their implications explored. Comparison between the results and biases of 

different approaches could help explore the multifaceted meanings and uses of textile 

artefacts among both producers and consumers in medieval Europe 
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7. Provenancing medieval archaeological wool textiles by 

light stable isotope analysis 

 

Abstract 

Light stable isotope analysis is widely applied to keratinous tissues, including mammalian 

hair and bird feathers, for geographical provenancing in ecological and forensic studies. In 

this study, analysis of carbon (δ
13

C), nitrogen (δ
15

N), non-exchangeable hydrogen (δ
2
H) and 

oxygen (δ
18

O) isotopic composition were used to investigate the origin of samples of sheep 

wool preserved by anoxic waterlogging in medieval archaeological deposits from Northern 

Europe (c. AD 6001600). These objects represent a wide range of textile types and 

qualities, from both domestic and specialist production, and are of importance because 

trans-European movements of raw wool and wool textiles were a cornerstone of economic 

and political development in the Middle Ages.  

 

δ
13
C, δ

15
N, δ

2
H and δ

18
O isotope values in wool textile samples (n=90) clustered by location. 

Degradation in wool samples, examined by elemental and amino acid composition, was 

more significant in samples from Iceland (Reykholt) than in samples from Great Britain 

(York, Newcastle upon Tyne), Germany (Hessens) or Sweden (Birka), but was not 

significantly associated with outlying isotope values at any site. Local isotope range for an 

assemblage was defined by assemblage median ± modern sheep flock wool isotopic 

ranges. Local/non-local isotope results were compared to typical/atypical textile categories 

identified from the established methods of analysis of these artefacts. In total 70 textiles 

showed isotope values consistent with find site, and 20 did not. Isotopic and established 

analysis methods were not always in agreement: 15 textiles with technical features 

interpreted as typical of local manufacture had non-local isotope values, and 9 atypical 

textiles had local isotope values. Multiple light stable isotope analysis provided valuable new 

insights into the origins of wool textiles. Close integration of these results with established 

methods of artefact analysis are essential in order to distinguish between the movement of 

raw materials, movement of finished textiles, and movement of manufacturing techniques or 

stylistic ideas.  

 

Keywords: European Middle Ages, wool textiles, light stable isotopes, provenancing, 

diagenesis 
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7.1 Introduction  

7.1.1 Archaeological context 

Trans-European trade of raw wool and wool textiles was a cornerstone of economic and 

political development in the later Middle Ages, (c. AD 1100-1500, e.g. Chorley 1987; Munro 

1994; Cardon 1999; Spufford 2006, 232-41, 326-9; Bell et al. 2007). Documentary sources 

of this period record professional production and wide distribution of standardised textiles 

but rarely describe these objects in technical detail, focusing instead on mercantile activity 

and high-status consumption. These records are thus difficult to relate to archaeological 

finds of medieval wool textiles, which are regularly found in anoxic waterlogged deposits 

(Karsten et al. 2012) across northern Europe from the 7
th
 century onwards (e.g. Geijer 1938; 

Walton 1989; Hägg 1991; Maik 1991; Tidow 1995; Crowfoot et al. 2001; Østergård 2004). 

Finds of textile tools in these deposits indicate that many of these finds are the products of 

small-scale domestic textile manufacture. This was ubiquitous in Europe throughout the 

medieval period, and coexisted with professional production, the advent of which is 

unknown. Archaeological wool textiles therefore have a wider chronological and social range 

than documentary records. Their analysis can: (1) trace the development of the highly-

sophisticated later medieval industries and markets from their early medieval village or 

estate-centre beginnings; and (2) examine production, distribution and consumption of 

textiles by portions of society or in areas of Europe which are poorly recorded in the 

documents.  

Wool textiles typically require multiple stages of manufacture, to prepare the fibres, produce 

the yarn and finally cloth, braid or other object (e.g. Walton Rogers 1997; Jenkins 2003). 

These vary with the environmental, technological and social context of their production 

(Schneider 1987). In excavated textiles, technical features of textile finds, such as yarn spin 

direction, yarn diameter, and weave type (Figure 7.1) are identified and quantified, which 

allows assessment of many of the stages of manufacture. In selected samples, fibre 

diameter range or dye presence may also be examined. An important aspect of these 

investigations is the assessment of the typical or atypical nature of each find, within the 

assemblage, period and region in which they are found. Some atypical textiles may be 

identified as of non-local origin, in conjunction with other sources of evidence, e.g. textile 

tools, iconographic evidence, or documentary sources (Chapter 6). Analysts are however 

aware that atypical nature need not necessarily indicate non-local origin. Alternative 

hypotheses for differences in frequency of technical textile features include: the advent of 

new technologies or techniques at a site; differences in volumes of production between 

textile types; or differential patterns of discard, since wool textiles are relatively highly 

susceptible to decay (Peacock 1996; Karsten et al. 2012; e.g. Crowfoot et al. 2001, 2-4). A 

direct analytical method to establish the origin of the raw material in these finds has 

therefore been sought.  
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Figure 7.1. Fragment of sample 2897, an example of waðmál, the most abundant textile 
type at RKH. In this image, the warp runs vertically and weft horizontally. It is clear that warp 
yarns are more tightly spun than wefts, are spun clockwise (Z) where the wefts are spun 
anti-clockwise (S), and contain a greater percentage of pigmented fibres. The weave type is 
2/2 twill: each yarn runs over-two-under-two of the opposing system. Scale indicates mm. 

 

7.1.2 Isotopic detection of geographical origin 

Light stable isotope analysis of modern keratinous tissues, such as mammalian hair and bird 

feathers, has been shown to reflect geographic origin in humans (Ehleringer et al. 2008; 

Valenzuela et al. 2011; Valenzuela et al. 2012) and other species (Wassenaar and Hobson 

2008). Continental-scale variation in the carbon (δ
13
C), nitrogen (δ

15
N), un-exchangeable 

hydrogen (δ
2
H), oxygen (δ

18
O) and sulfur (δ

34
S) isotopic composition of animal tissues 

reflects gradients in the isotope composition of vegetation, precipitation and groundwater 

with climate, bedrock and vegetation type (West et al. 2010 and references in Chapter 3). In 

tissues derived from domesticated animals, farming practice has been shown to be an 

important confounding factor, as the isotopic inputs related to provision of fodder during non-

growth seasons, or fertilizer use, can obscure geographic variability (see discussion in 

Chapter 3). Nevertheless, significant variation across the European continent existed in 

samples of modern sheep muscle tissue (Piasentier et al. 2003; Camin et al. 2007) and wool 

(Hedges et al. 2005; Chapter 3) in δ
13
C, δ

15
N, δ

2
H and δ

34
S.  
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Light stable isotopic approaches to geographic origin in archaeology have typically focused 

on δ
18

O in tooth dentine (e.g. Sykes et al. 2006; Viner et al. 2010) because of this tissue is 

mineralised and resistant to diagenesis. Some work in other isotopes (δ
13
C, δ

15
N and δ

2
H) 

has additionally been carried out on bone collagen (e.g. Arnay-de-la-Rosa et al. 2010; 

Barrett et al. 2011; Pollard et al. 2011), in which diagenetic parameters are also largely 

understood (Dobberstein et al. 2009). Analysis of archaeological keratinous tissues has 

been carried out only on unusually well-preserved material, such as by permafrost or 

desiccation (Macko et al. 1999; Iacumin et al. 2005; Wilson et al. 2007b; Raghavan et al. 

2010), and has included δ
13
C, δ

15
N, δ

2
H, δ

18
O and δ

34
S analysis. Hair from anoxic 

waterlogged deposits is, in contrast to these samples, clearly altered by diagenesis 

(Peacock 1996; Wilson et al. 2010; Kempson et al. 2010). The effects of these changes on 

isotopic composition must be taken into account when analysing keratin samples preserved 

in this way. In particular, because of concerns about the possible formation of metal 

mercaptides in keratin samples during burial (Walter et al. 2006), as well as cost and 

availability, it was decided not to include δ
34

S analysis in the present study of archaeological 

wool samples. 

In the present study, isotopic composition of archaeological wool textile samples was 

compared within and between assemblages. The ‘local isotope zone’ was defined as the 

median for an assemblage ± the maximum estimated flock variability for that isotope 

(Chapter 3). Local range was confirmed by comparison of medians for both finished and un-

finished wool objects, that is cloth, yarn and cord vs. raw fleece. Sample composition outside 

this range was taken to indicate a difference in origin, either geographically (non-local 

origin), or in husbandry type. Sample composition within this range did not necessarily 

indicate local origin, as it could be consistent with origin in another region of similar 

environment and husbandry practices. Artefact features of the textile samples and their 

parent assemblages were used to contextualise these alternatives.  

7.1.3 Isotopic integrity of degraded samples 

The degradation of wool textiles is largely a question of protein diagenesis, as wool is 

composed of approximately 90% protein by mass (Brebu and Spiridon 2011). Several 

hundred different keratin proteins are present in wool (Lee et al. 2006), which are distributed 

heterogeneously throughout the fibre (Plowman et al. 2007) and which decay at varying 

rates under burial conditions (Wilson et al. 2007a). Proteins are composed of long chains of 

amino acids (AAs), which have a wide range of isotope values because some are routed 

directly from diet while others are synthesised in the body (Raghavan et al. 2010; Styring et 

al. 2010; Chapter 2). Isotopic changes due to wool decay can therefore originate from: (1) 

changes in proportions of AAs present by the degradation of portions of the protein chains; 

(2) isotopic fractionation (preferential loss of one isotope over the other) during scission of 

AA chains by hydrolysis, or degradation of individual AAs by oxidation or other reactions; (3) 

exchange of H and O in proteins with the burial environment; and (4) deposition of 
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exogenous material in the hair fibre (Chapter 4). The total process of wool decay is therefore 

extremely complex, and has the potential to alter the original bulk isotopic composition of the 

fibre substantially.  

In previous studies (e.g. Wilson et al. 2007b), bulk fibre C:N atomic ratio (C:NatomB) was used 

to identify samples whose isotope values might be compromised by diagenesis. Samples 

with values outside range 2.93.8 were excluded. This range is based on the natural 

variation of this measure in human and horse hair (O'Connell and Hedges 1999). 

Experimental bleaching with hydrogen peroxide, which produced definite macroscopic 

change, was however associated with only small changes in δ
13
C, δ

15
N and C:NatomB, which 

were not significant, and dyeing treatments had even smaller effects. It is therefore clear that 

keratin protein and/or melanin change may occur without measurable change in C:NatomB. 

The study by O’Connell and Hedges (1999) did not however extend to further 

characterisation of damage to these samples, such as using AA composition or protein mass 

spectrometry. Alternative methods of characterising hair fibre damage were therefore sought 

for the present study.  

In modern sheep wool, C:NatomB ranged between 3.43.6 (Chapters 2 and 3), in close 

agreement with theoretical values of 3.33.5 for the ten most abundant proteins in wool 

(calculated from sequences in Clerens et al. 2010). However, C:NatomB also reflects the 

presence of the non-protein fraction of the fibre, largely composed of melanins, which have 

very different C:Natom ratios of 7.09.0 per melanin monomer. The effects of diagenesis on 

protein and melanin fraction isotope values and overall fibre C:NatomB were investigated in 

two models: experimental burial for 18 years at three different sites in Scandinavia, and 

high-temperature (80°C, 110°C, 140°C) hydrous laboratory conditions for up to 1440 hours 

(Chapter 4). Results can be summarised as follows: 

 in experimentally buried samples, changes in δ
13

C, δ
15

N, δ
18

O, C:NatomB and AA 

composition were not significant and within experimental error, though all samples 

changed markedly in visual appearance. Change in δ
2
H was larger (range -16+4. In 

samples which lost more than  0% mass during preparation, larger changes in δ
18

O 

(up to +3.0‰) were observed, though in these samples δ
13

C, δ
15

N and C:NatomB could 

not be measured because not enough material remained to carry out the analysis.  

 in high-temperature experiments, δ
2
H and δ

18
O were increasingly depleted with 

increasing change in AA and elemental composition, which was characterised by loss 

of hydrophilic AAs, gain in percentage composition of hydrophobic AAs, and 

increased racemisation. Maximum depletion in δ
2
H was -3‰ at 80°C but -73‰ at 

140°C; maximum depletion in δ
18

O was -0.2‰ at 80°C but -2. ‰ at 140°C. C NatomB 

range at 80°C was 3.53.7 but range at 140°C was 3.75.0. In contrast, at 80°C, both 

δ
2
H and δ

18
O were enriched over controls in raw wool samples only (ranges 

7.013.4‰ and 1.03.0‰ respectively). 
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 again in high-temperature experiments, significant depletion in δ
13

C and δ
15

N 

occurred only in densely pigmented samples and at relatively low temperatures, 

without significant associated AA and elemental composition change. Maximum 

depletion in δ
13

C was -0.7‰ for pigmented samples but -0.4‰ for unpigmented 

samples at 80°C, and for δ
15

N it was -2.3‰ for pigmented samples but -0.3‰ for 

unpigmented samples, at the same temperature. However C:NatomB for all 80°C-

exposed samples was 3.53.7, only slightly elevated over control values. 

Therefore from human and horse hair we have evidence of keratin protein change without 

isotope or C:NatomB change; from pigmented sheep wool evidence of δ
13
C and δ

15
N change 

without C:NatomB change; and, in sheep wool generally, evidence of δ
2
H and δ

18
O change 

with AA and C:NatomB change. In archaeological wool samples preserved by anoxic 

waterlogging, C:NatomB is therefore unlikely to be an adequate guide to preservation. In this 

study, C:NatomB data were compared with measures of degradation based on AA 

composition, specifically the most sensitive AA variables in decay experiments: percentage 

serine composition ([Ser]%) and aspartic acid/asparagine racemisation rate (rate of 

conversion of the naturally occurring L isomer to its D mirror image; Asx D/L). Unlike other 

AAs, Asx D/L values showed a reversal at higher temperatures (140°C and 110°C but not 

80°C). This was interpreted as indicating rapid initial racemisation (a process which is highly 

sensitive to temperature), followed by an apparent decrease as highly degraded sections of 

the fibre were lost by hydrolysis (which is less sensitive to temperature; Chapter 4).  

7.1.4 Special considerations due to the nature of textiles 

Unlike hair fibres examined in previous light stable isotope studies, wool fibres in textiles 

have been processed by a combing/carding step (Chapter 1), which de-aligns the individual 

fibres from their original relative positions in the fleece. Continuously growing fleeces were 

shorn once a year across most of Europe (Ryder 1983, 646, 694-708), except in some very 

hot (Ryder 1983, 646, 373) or very cold/Alpine climates (Ryder 1983, 359-62, 378, 386, 393, 

534). Here two shearings were carried out, typically at end of winter (March-May) and end of 

summer (September-November). Even more frequent shearing was also possible (Ryder 

1983, 534). At the combing stage, the wool from several fleeces may be combined. 

However, given the volume of material that can be processed at a time with hand tools (e.g. 

Hannaford 2008; Macniven 2008), the combination of fibres from more than one fleece into a 

single yarn is generally unlikely, unless similar parts of many fleeces have been selected to 

make a particular type of object, e.g. with either very good or very bad fleece qualities. 

Additionally, within a single environmental zone, different husbandry practices between 

flocks may significantly affect wool isotope values (Hedges et al. 2005; Chapter 3).  

We therefore tested the following hypotheses: 

1. a cross-sectional sample of yarn from a medieval textile represented an annual 

average value from a single flock, with seasonal variation due to annual cycles of 
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temperature, rainfall and farming practice (e.g. Schwertl et al. 2003; Wittmer et al. 

2010; Zazzo et al. 2010; Auerswald et al. 2011) largely obscured. Wool grows 

continuously throughout the year, generally fastest in summer and slowest in autumn, 

due to responses to photoperiod, temperature and nutrition which are breed-

dependent (Winder et al. 1995). Average wool isotopic composition is therefore likely 

to reflect summer inputs more strongly than those from other times of year. In 

medieval samples, annual wool growth rate is likely to differ between sheep stock 

from different parts of Europe (Ryder 1984) but to an unknown extent. 

2. wool from a single yarn in a textile was drawn from a single flock, and probably from a 

single fleece. 

3. local isotopic range could be defined relative to the size of maximum estimated 

variation expected within a single modern flock of sheep (Chapter 3). Assuming the 

existence of only one grazing zone or system is reasonable at rural or low status sites, 

but less realistic at urban or high status sites, where wool is likely to have been 

sourced from across a region. At these sites, expected ‘local’ variation may be greater 

than that from a single flock, so confirmation of this by analysis of caprine bone 

collagen from the same or contemporaneous contexts as the textiles will be necessary 

for confirmation. 

In summary, the aims of this study were to: (1) characterise the degree of degradation in 

archaeological wool textile samples from a variety of locations, with reference to previously 

established models of diagenesis; (2) evaluate the integrity of light stable isotope data from 

archaeological wool textiles in the context of degradation results; and (3) compare isotopic 

and technical indicators of origin in archaeological wool textiles, to inform about medieval 

movements of these objects and their technology.  

 

7.2 Material and methods  

The study examined 90 textiles from eight excavations at five locations, both rural and 

urban, from Reykholt (RKH), Iceland; York (YCG, YLB and YSG) and Newcastle upon Tyne 

(NBG and NQS), Great Britain; Hessens (HSS), Germany; and Birka (BKA), Sweden (Table 

7.1; Figure 7.2). Samples included both fully processed (combed, spun and woven) and 

unprocessed (raw staple) textile finds, and were dated by context to the 7
th
16

th
 centuries. 

One phase was tested at HSS and BKA, three at RKH and Newcastle, and five at York.  

With the exceptions of BKA and NQS, where sample availability was restricted, sampling 

focused on the finds identified as atypical, and therefore possibly non-local, by technical 

criteria (Chapter 6, Chapter 8). Typical material was selected from the same contexts and/or 

periods as the selected atypical objects, with additional sampling to represent all medieval 

phases of the site, and including both finished and unfinished objects in each period where 
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possible (Appendix 7.1). Fleece type definitions follow Ryder’s system, as summarised in 

Walton Rogers (1995), but using the updated term ‘Semi-fine’ (SF) instead of the earlier 

‘Shortwool’ (S) (as in Walton Rogers 1997, 1714). 

7.2.1 Sample preparation 

Approximately 0.1 g wool was selected from each sample, and washed according to a 

procedure amended from Hedges et al. (2005). Samples were sonicated in ultra-pure water 

(ELGA Purelab Ultra, Marlow, UK; 2 x 30 mins), and four times in mixtures of 

dichloromethane and methanol (both HPLC grade, Fisher Scientific, Loughborough, UK; 2 x 

30 mins in 2:1 v/v mixture; 2 x 30 mins in 1:2 v/v mixture). A test sieve (Endecotts Ltd, 

London, UK; aperture 63µm) was employed to retain fragmentary sections. The exceptions 

were sample 2950, a raw staple, which was subdivided before washing by cutting across the 

lock into ten c. 1 cm segments representing sequential (but unequal) periods of growth, and 

sample 4120, for which a range of the standard and published conservation and analytical 

washing methods employed for keratin samples were compared, to examine their effects on 

isotope variability. Washes of sample 4120 were with:  

1. Triton X100 (Fisher Scientific, Loughborough, UK) (Hedges et al. 1982), 

2. sodium dodecyl sulfate (Melford Laboratories Ltd, Ipswich, UK) (I. Panter, pers. 

comm.), 

3. 2% solution disodium EDTA (Sigma-Aldrich, St Louis, MO, USA) (Pritchard 1984) 

4. pyridine (Fisher Scientific) (Walton and Taylor 1991),  

5. dichloromethane/methanol (both HPLC grade, Fisher Scientific) (Hedges et al. 2005), 

6. deionised water, (ELGA Purelab Ultra, Marlow, UK) (Sharp et al. 2003), 

7. 2:1 chloroform (VWR International, Fontenay-sous-Bois, France)/methanol (as above) 

(Bowen et al. 2009), 

8. 2:1 methanol/chloroform (both as above) (Mekota et al. 2006),  

9. no treatment (Macko et al. 1999; Ehleringer et al. 2008).  
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Table 7.1. Archaeological find sites of samples tested in this study 

Excavation Code 
Latitude/ 
longitude 

Altitude/
m 

Period 
selected Type 

N samples 
(multiples) 

Reference IRMS HPLC 

Reykholt, Borgarfjörður RKH 64.66469°/-
21.29224° 

45 C1116 Rural, inland 21 (22) 22 (3) (Walton Rogers 2012)  

Hessens HSS 53.51684°/ 
8.07130° 

0 C78 Rural, coastal 
(salt marsh) 

10 10 (Tidow 1995; Walton 
Rogers 1995) 

16-22 Coppergate, York YCG 53.95765°/ -
1.08083° 

20 C915 Urban, inland 21 (3) 26 (Walton 1989; Walton 
Rogers 1997) 

6-8 Pavement (Lloyds 
Bank site), York 

YLB 53.95850°/ -
1.07990° 

21 C11 Urban, inland 11 (2) 15 (Hedges et al. 1982; 
Walton 1989, 396) 

Rear of 7-15 
Spurriergate, York 

YSG 53.95791°/ -
1.08244° 

18 C11 Urban, inland 4 5 (Walton Rogers 
unpub) 

Black Gate, Newcastle 
upon Tyne  

NBG 54.96929°/ -
1.61088° 

19 C1516 Urban, inland 12 14 (Walton 1981) 

Queen Street, Quayside, 
Newcastle upon Tyne 

NQS 54.96960°/ -
1.60584° 

12 C13 Urban, inland 4 4 (Walton Rogers 1988) 

Birka cemetery BKA 59.33720°/ 
17.55040° 

23 C810 Proto-urban, 
coastal 

7 7 (Geijer 1938, 1980) 

2
2

4
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Figure 7.2. Map of annual mean δ

2
H (in ‰) in precipitation in north-west Europe, with 

locations of assemblages tested superimposed (Bowen and Revenaugh 2003; Bowen 2008; 
adapted from 
http://wateriso.eas.purdue.edu/waterisotopes/media/IsoMaps/jpegs/h_Euro/hma_Euro.jpg). 

 

7.2.2 Isotopic analyses 

For δ
13
C and δ

15
N analysis, 0.7 mg washed wool was weighed into 4 x 3.2 mm Sn capsules 

(Elemental Microanalysis, Okehampton, UK). For δ
2
H and δ

18
O analysis, 0.1 mg washed 

wool was weighed into 4 x 3.2 mm Ag capsules (Elemental Microanalysis, Okehampton, UK 

and Pelican Scientific, Stockport, UK). Analysis was carried out at the Natural Environment 

Research Council Life Sciences Mass Spectrometry Facility in East Kilbride (grants EK153-

15/09 and EK163-08/10). When sub-sampling staples, whole fibres were selected; for 

finished textiles, cross-sectional samples of yarn (typically >50 fibres) from a single yarn 

were taken.  

δ
13
C and δ

15
N isotope ratio mass spectrometric (IRMS) analyses were carried out on a 

ThermoElectron Delta Plus XP with Costech ECS 4010 elemental analyser; internal 

standards were a gelatine standard, two alanine single AA standards enriched 

with 
13

C and 
15

N respectively, and a 
15

N-enriched glycine single amino acid standard (Table 

7.2). C and N content and C:N atomic ratios were calculated using a tryptophan standard. 
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δ
2
H and δ

18
O analyses were carried out on a Thermo Fisher Scientific Delta V Plus with 

TC/EA high temperature furnace. The contribution of exchangeable hydrogen was 

calculated using keratin standards BWB-II (whale baleen), CFS (feathers), ISB (feathers) 

and WG (feathers) and a comparative equilibration method (Wassenaar and Hobson 2003). 

The δ
2
H of the un-exchangeable H in the four keratin standards was previously determined 

using a steam equilibration technique (Sauer et al. 2009). Calculation of un-exchangeable 

δ
2
H assumed a fractionation factor α = 1.080 (εx-w = 80‰). δ

13
C, δ

15
N, δ

2
H and δ

18
O results 

are reported in Appendices 7.2 (individual textiles) and 7.3 (duplicate analyses) in per mille 

(‰) relative to PDB, AIR and VSMOW respectively. 

7.2.3 AA content analysis 

AA content and racemization analysis was carried out using Reverse-Phase High 

Performance Liquid Chromatography (RP-HPLC: Kaufman and Manley 1998) following the 

methodology for unbleached samples described in Penkman, et al. (2008) with the following 

adjustment  hydrolysis was carried out using 50 μL 7 M HCl (HPLC-grade, Fisher Scientific) 

per mg wool, which had previously been prepared as for isotope analysis above. Data are 

reported in Appendix 7.4 as AA concentration (pmol mg
-1

), AA % recovered and 

racemisation ratio (D/L). Full raw chromatographic data is reported in Electronic appendix 

7.5. The following AAs were retrieved: aspartic acid/asparagine (Asx), glutamic 

acid/glutamine (Glx), serine (Ser), threonine (L-isomer only, L-Thr), histidine (L-isomer only, 

L-His), glycine (Gly), arginine (L-isomer only, L-Arg), alanine (Ala), tyrosine (Tyr), valine 

(Val), phenylalanine (Phe), leucine (Leu), and isoleucine (Ile). 

 7.2.4 Statistical analysis 

Statistical analysis was carried out using R (R Development Core Team 2008). Where 

multiple samples were tested from a single textile, the arithmetic mean of isotope and AA 

composition values was used in statistical calculations at excavation/location level. All 

isotope and AA data was non-parametric (univariate Shapiro-Wilk test, P<0.001). No 

effective data transformations were found, so parametric statistical tests were not 

appropriate. Groups were described by median and inter quartile range (IQR), which were 

calculated using all data points from a excavation, including any potential non-local textiles 

and any outliers.  

Non-local textiles were identified if: (1) the distance of any isotope measurement from 

excavation/location median was more than twice the standard deviation for that isotope in a 

modern sheep flock; and (2) the sample’s values were identified as outliers using two robust 

multivariate outlier detection tests, aq.plot and ddplot in R package mvoutliers (Filzmoser et 

al. 2005), applied to all four isotope values. Because flock isotope ranges (Chapter 3), like 

archaeological sample ranges, were non-parametric, standard deviation was estimated 

using  
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Table 7.2. Isotopic analytical precision: mean ± maximum s.d in any single analytical run. For abbreviations, see text. 

  δ
13

C/‰ δ
15

N/‰ δ
2
H/‰ δ

18
O/‰ 

Standard n Observed Accepted Observed Accepted Observed Accepted Observed Accepted 

Gelatine 156 -20.3 ± 0.21 -20.3 ± 0.04 5.7 ± 0.16 5.8 ± 0.18 - - - - 

13
C-enriched 

alanine 54 -10.7 ± 0.14 -10.6 ± 0.09 -5.1 ± 0.13 -5.1 ± 0.12 - - - - 

15
N-enriched 

alanine 9 -23.6 ± 0.06 -23.5 ± 0.02 17.1 ± 0.10 17.1 ± 0.14 - - - - 

15
N-enriched 

glycine 45 -35.7 ± 0.22 -35.7 ± 0.09 19.9 ± 0.27 19.9 ± 0.31 - - - - 

13
C-enriched 

tryptophan 12 -10.6 ± 0.09 -10.5 ± 0.11 -2.3 ± 0.41 -2.3 ± 0.14 - - - - 

CFS 18 - - - - -143 ± 1.9 -149* 6.0 ± 0.22 Unknown 

BWB-II 18 - - - - -102 ± 1.1 -110* 13.4 ± 0.18 Unknown 

ISB 18 - - - - -62 ± 2.3 -69* 13.4 ± 0.30 Unknown 

WG 18 - - - - -138 ± 1.7 -147* 6.6 ± 0.24 Unknown 

IAEA-601 78 - - - - - - 23.2 ± 0.21 23.1 ± 0.19 

IAEA-CH6 24 - - - - - - 36.3 ± 0.19 36.4* 

IAEA-600 17 - - - - - - -3.5 ± 0.28 -3.5 ± 0.53 

* s.d. undetermined.

2
2

7
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bootstrap methods (Canty and Ripley 2011; Davison and Hinkley 1997). Values used 

constitute the maximum bootstrapped 95% confidence interval for the standard deviation. 

 

7.3 Results  

A total of 90 textiles were analysed isotopically, and 108 were examined by HPLC. 

7.3.1 Keratin degradation: C:NatomB 

Archaeological samples showed C:NatomB between 3.3 and 4.6. Maximum variability within a 

single sample was 0.4 (YCG 4078, n=3). A total of 32% of textiles analysed had C:NatomB 

outside the limits defined by O’Connell and Hedges (1999), and 79% showed C:NatomB 

outside the normal range for modern sheep wool (Figure 7.3).  

C:NatomB distribution was strongly associated with location (Kruskal-Wallis test, P<<0.001), 

significantly differentiating YLB and YCG from all other assemblages, and also BKA from all 

except RKH. However C:NatomB was not significantly associated with any isotope overall 

(Spearman’s rank correlation coefficient, all P>0.1), or at any individual assemblage or 

location, 

 

 
 
Figure 7.3. C:NatomB for archaeological wool samples, plotted against δ

18
O as an example. 

The dark grey area indicates the modern range for sheep wool C:NatomB (Chapter 3), and the 
light grey area that for all modern samples, including horse and human hair (O'Connell and 
Hedges 1999). Also indicated are samples whose isotope values lie outside maximum flock 
range for their location (see below). Isotopic outliers (see below) are labelled by sample 
number. 
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for both raw isotope values and assemblage-normalised isotope values (assemblage 

median value subtracted from each sample value), except at YLB where a significant 

positive association with δ
2
H was present (Spearman’s, ρ= 0.74, P<0.01).  

7.3.2 Keratin degradation: AA composition 

AA compositions of samples from all archaeological assemblages were significantly different 

from those of modern control samples (Kolmogorov-Smirnov tests, nRKH=22, nNewcastle=18, 

nYork=46, ncontrol=9; all P<0.003; HSS and BKA sample sizes too small to test). The extent of 

racemisation in the archaeological material was lower than in material degraded by high-

temperature isothermal hydrolysis, and comparable with that in experimentally buried 

material (Figure 7.4). In contrast, change in AA % content, which is linked to the extent of 

hydrolysis, was greater in archaeological material than in experimental burials, tending 

towards values from the 80°C isothermal heating experiment. The highest degree and the 

widest range of both racemisation and hydrolysis was present in samples from RKH, 

Iceland, where the distribution of % AA recovered and D/L values were significantly different 

from those at other assemblages (Kolmogorov-Smirnov tests, nRKH=22, nNewcastle=18,  

 

  
 
Figure 7.4. AA indicators of diagenesis in archaeological wool samples (grouped by 
excavation), compared to isothermal hydrolysis (median ± IQR per time point; arrows 
indicate time sequences at each temperature) and burial experiments (Chapter 4). The initial 
rapid racemisation of Asx observed in high temperature experiments did not occur in 
archaeological samples. Experimental error in Asx D/L is smaller than the error marker point. 
Outliers are marked by sample number. The circled group includes the following samples: 
RKH 3962, 3963, 3964, 3966, 2896a+b, 2897, 2898, 2899a+b, 2901, 4120ave; YCG 4095; 
YLB 4093; YSG 4123; BKA 5173; Buried 2873m.  
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nYork=46; all P<0.05; Figure 7.4). There were no consistent relationships (i.e. that were 

present at more than one excavation/location) between any AA variable and the presence of 

natural melanin pigmentation, evidence of dyeing, degree of wool processing or phase of 

sample, but these tests were weakened by unequal numbers of samples in comparison 

groups (Kolmogorov-Smirnov and Mann-Whitney U tests; nunpigmented=30, npigmented=12; ndye 

detected=19, nno dye detected=50; nprocessed wool=108, nraw staple=18; Newcastle phases 

n4=4,n6=6,n8=8; RKH phases n1=3, n2=12, n3=7; York phases n3=4, n4B=12, n5B=3, n6=4, 

nAnglo-Scandinavian=23; all P>0.05). In addition, Asx D/L values were not related to sample age, 

either within or between assemblages, as suggested by Moini et al. (2011) for museum-kept 

silks (Figure 7.5). 

 

  
 
Figure 7.5. Asx D/L against median context date for each sample. Horizontal error bars 
indicate total range of context date; vertical error bars indicate within-sample Asx D/L s.d. 
(from duplicate analyses, n=3). Figure omits sample 2895 (RKH) at date AD 1100 ± 100 
years, AsxD/L 0.77.  
 

C:NatomB values were very strongly positively correlated with the percentage composition of 

Glx, Ala, Val, Leu and Ile, and with racemisation ratios of Glx and Arg (Spearman’s rank 

correlation coefficients, ρ=0.3 0.55, P<<0.001). C:NatomB values were very strongly 

negatively correlated with the percentage composition of Gly and Tyr (Spearman’s, ρ=-

0.42-0.38, P<<0.001).  

 

C:NatomB also showed significant (but weaker) positive correlations with percentage 

composition of L-His and racemisation ratios of Tyr, Val and Ile (Spearman’s, ρ=0.230.32, 

P<0.01), and negative correlations with composition of Ser, L-Thr, L-Arg and Phe 

(Spearman’s, ρ=-0.31-0.23, P<0.01; Figure 7.6). AA variables were tested for association 
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with isotope values. Only the following relationships were present at more than one 

excavation/location  [Asx]% and [Leu]% with δ
2
H at York and Newcastle (Spearman’s, ρ=-

0.60-0.30, P<0.05). 

 

 

Figure 7.6. AA indicators of diagenesis in archaeological wool samples compared to 
C:NatomB value. Comparator data, errors and outliers as in Figure 7.4. C:NatomB showed a 
significant negative correlation with [Ser]% but none with Asx D/L.  

 

7.3.3 Wool fibre integrity 

The types of isotopic change observed in degradation experiments (Chapter 4) were 

specifically tested for in archaeological samples:  

7.3.3.1 Enrichment in δ18O in samples which lost >60% mass during 

preparation (yield <40%). 

Only five samples yielded less than 40% of initial mass after washing, all from RKH. There 

were no significant differences in isotope value distribution or C:NatomB between yield groups 

at this assemblage (Kolmogorov-Smirnov test, n>40%=14, n<40%=5, all P>0.5). Yield and 

C:NatomB were however significantly negatively correlated overall (Spearman’s rank 

correlation coefficient, ρ=-0.27, P<0.5).  

7.3.3.2 Depletion of δ2H and δ18O in samples with large losses of hydrophilic 

AAs. 

There was no relationship between the offset between δ
2
H or δ

18
O and respective 

assemblage medians and any composition variable, with the single exception of [Asx]% and 

Δmedian
2
H.  
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7.3.3.3 Depletion of δ13C and δ15N in pigmented samples only, in relatively 

intact samples. 

There was no relationship between δ
13
C and δ

15
N value or distribution, and presence or 

density of pigmentation (Kolmogorov-Smirnov and Mann-Whitney U tests, P>0.05) in any 

assemblage. 

7.3.4 Sources of isotopic variation other than origin 

Sources of isotopic variability in wool textile samples are compared in Table 7.3. Within-

sample variability (2σ) was of the same order of magnitude as experimental error (maximum 

0.4‰ for δ
13

C, 0.4‰ for δ
15

N, 5.0‰ for δ
2
H and 1. ‰ for δ

18
O) . For samples tested from 

the same rural assemblage (RKH), within-sample variation was larger in raw wool (sample 

2950) than in finished textiles (samples 2896 and 4120), even where the latter had been 

prepared using a variety of washing methods (sample 4120, Appendix 7.3). However, larger 

within-sample variabilities were found in finished textiles from York (samples 4078 and 

4087). Maximum within-sample variability (1σ) was 1.2‰ for δ
13

C, 1.0‰ for δ
15

N, 7.0‰ for 

δ
2
H and 1. ‰ for δ

18
O. Within-sample variabilities were therefore smaller than maximum 

estimated flock range for δ
15

N and δ
2
H, and of the same order of magnitude for δ

13
C and 

δ
18

O. There was no relationship between settlement nature (rural/urban) or date range of 

sample contexts and assemblage isotopic ranges (Table 7.4).  

7.3.5 Geographic origin discrimination 

δ
13
C, δ

15
N, δ

2
H and δ

18
O isotope values in wool textile samples clustered by location (Figure 

7.7a-d). Maximum within-site range was 0.5‰ in δ
13
C, 1.9‰ in δ

15
N, 13.2‰ in δ

2
H and 

2.48‰ in δ
18

O compared to a total ranges of 3.1‰, 10.7‰, 40.5‰ and 7.7‰ respectively. 

The relationships between the median compositions of Icelandic and UK samples were very 

similar to those obtained in Chapter 3. No such comparison could be made for the data from 

HSS and BKA. 

Linear discriminant analysis (LDA) on the basis of all four isotope values permitted 

discrimination of 73% of samples to location and 85% to region (grouping York and 

Newcastle together). Among trivariate models, LDA based on δ
13
C, δ

15
N and δ

2
H allowed 

discrimination of 73% of samples to location; regional discrimination was better with δ
13

C, 

δ
15
N and δ

18
O at 83%. LDA based only on δ

13
C and δ

15
N allowed discrimination of 62% to 

location and 84% to region;  
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Table 7.3. Sources of variation in wool textile bulk isotope composition (1σ). Experimental error and flock range maxima from Chapter 3. 

 δ
13

C/‰ δ
15

N/‰ δ
2
H/‰ δ

18
O/‰ C:NatomB 

Experimental error 0.22 0.19 2.48 0.53 - 

Processed wool textile RKH 4120 (n=9) 0.09 0.19 2.06 0.75 0.12 

Non-processed wool (staple) RKH 2950 (n=10) 0.15 0.26 3.00 0.82 0.04 

Maximum wool textile: YCG 4078 (n=3) or YLB 4087* (n=2) 0.58 0.49 3.49* 0.79 0.20 

Bulk raw wool flock 95% CI 1.04 1.58 10.34 1.19 0.07 

 

Table 7.4. Location median and IQR (maximum difference) of isotope composition and C:NatomB.  

  δ
13

C/‰ δ
15

N/‰ δ
2
H/‰ δ

18
O/‰ C:NatomB 

RKH  
(n=21) 

Median -23.9 2.8 -101.6 13.8 3.88 

IQR -24.1-23.7 (0.31) 2.363.87 (1.51) -104.4-93.7 (10.7) 12.815.3 (2.48) 3.72 4.25 (0.53) 

Newcastle 
(n=16) 

Median -24.3 6.1 -89.0 13.8 3.71 

IQR -24.7-24.0 (0.71) 5.297.22 (1.93) -90.4-87.5 (3.0) 12.814.2 (1.38) 3.63 3.76 (0.14) 

York  
(n=36) 

Median -24.0 7.0 -92.1 14.3 3.42 

IQR -24.17-23.78 (0.39) 6.227.57 (1.34) -97.5-89.0 (8.5) 13.6714.95 (1.29) 3.36 3.54 (0.18) 

HSS  
(n=10) 

Median -23.3 9.7 -88.0 12.8 3.83 

IQR -23.5-23. 0 (0.53) 9.0510.37 (1.32) -94.7-81.4 (13.2) 12.013.8 (1.81) 3.78 3.87 (0.08) 

BKA  
(n=7) 

Median -23.0 8.1 -89.2 14.6 3.98 

IQR -23.2-22.8 (0.48) 7.178.74 (1.57) -95.4-85.6 (9.8) 14.015.2 (1.22) 3.89 3.99 (0.10) 

 

 

2
3

3
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all other bivariate LDA models performed more poorly. RKH was significantly distinguished 

from other assemblages by δ
15
N and δ

2
H (n=22, Mann-Whitney U tests, P<0.05). BKA and 

HSS were distinguishable from UK and Iceland material by δ
13

C, but sample sizes were too 

small for significance testing. 

Overall, δ
13
C was significantly positively correlated to δ

2
H (Spearman’s rank correlation 

coefficient, ρ=0.28, P<0.05), as was δ
15
N (Spearman’s, ρ=0.44, P<<0.001) and δ

18
O 

(Spearman’s, ρ=0.4 , P<<0.001). 

 

 

 
 
Figure 7.7. Textile isotope values by location. Error bars indicate maximum estimated flock 
range around location median value. (a) δ

13
C; (b) δ

15
N; (c) δ

2
H; (d) δ

18
O. Outliers are 

marked by sample number. 

(a) 
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Figure 7.7 continued. 

(b) 

(c) 
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Figure 7.7 continued. 

 

7.3.6 Identification of non-local textiles 

Considering each isotope in isolation, 16 of the 90 textile samples showed isotope values 

lying more than one flock range from location median values  none in δ
13
C, two in δ

15
N only, 

one in δ
15
N and δ

2
H, one in δ

15
N and δ

18
O, one in δ

2
H and δ

18
O, two in δ

15
N, δ

2
H and δ

18
O, 

and nine in δ
18

O only (Table 7.5, Figure 7.7a-d). Four samples were outliers from flock range 

when two isotopes’ ranges were considered in combination (4329, 4331, 4095, 408 ). All 

these samples were also identified as outliers by both statistical methods, except for BKA 

where sample size was not sufficient to apply these tests. An additional seven samples were 

identified as outliers by statistical methods only (2895ave, 4062, 4073, 4082, 3949, 3957, 

4544), including one unprocessed fibre sample (raw staple: 4062). The other 10 raw staples 

were not isotopically outlying at location level.  

(d) 
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Table 7.5. Samples with isotope values outlying from settlement median. 

   

Type 

In one dimension 
In two isotope 

dimensions 

In four dimensions 

ID Excavation Location δ
13

C/‰ δ
15

N/‰ δ
2
H/‰ δ

18
O/‰ By aq.plot By dd.plot 

2894 RKH RKH typical - - - YES YES YES - 

2895 RKH RKH typical - - - YES YES - - 

3961 RKH RKH typical - - - YES YES YES YES 

2896ave RKH RKH typical - - - - - YES YES 

2903 RKH RKH atypical - YES YES - YES YES YES 

3966 RKH RKH atypical - YES YES YES YES YES YES 

3967 RKH RKH atypical - - - YES YES YES YES 

3968 RKH RKH atypical - - - YES YES YES - 

4329 HSS HSS atypical - - - - YES, δ
2
H/δ

18
O - - 

4330 HSS HSS typical - YES - - YES YES YES 

4331 HSS HSS typical - - - - YES, δ
2
H/δ

18
O - - 

4336 HSS HSS typical - YES - YES YES YES YES 

4060b YCG York typical - YES - - YES YES YES 

4073 YCG York typical - - - - - YES YES 

4075 YCG York typical - - - YES YES YES YES 

4077 YCG York typical - - - - YES, δ
15
N/δ

18
O - - 

4095 YCG York typical - - - - YES, δ
13
C/δ

15
N YES YES 

4082 YLB York unknown - - - - - YES - 

4085 YLB York typical - - - - YES, δ
15
N/δ

18
O YES - 

4094 YLB York typical - - - YES YES - - 

 

2
3

7
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Table 7.5 continued. 

   

Type 

In one dimension 
In two isotope 

dimensions 

In four dimensions 

ID Excavation Location δ
13

C/‰ δ
15

N/‰ δ
2
H/‰ δ

18
O/‰ By aq.plot By dd.plot 

4123 YSG York typical - YES YES YES YES YES YES 

3949 NBG Newcastle typical - - - - - YES YES 

3957 NBG Newcastle typical - - - - - YES - 

4544 NQS Newcastle typical - - - - - YES - 

4546 NQS Newcastle typical - - - YES YES YES YES 

4547 NQS Newcastle typical - - - YES YES YES YES 

5175 BKA BKA typical - - YES YES YES * * 

* aq.plot and dd.plot could not be applied to BKA samples because they were too few.

2
3

8
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7.4 Discussion 

7.4.1 Wool fibre integrity 

AA composition of archaeological samples showed that diagenesis in these objects was 

consistent with low temperature, hydrolytic and oxidative degradation of wool fibre proteins 

(Figure 7.4), by analogy with experimental data on wool decay (Chapter 4). Hydrolytic 

change in archaeological material was greater than that observed in samples from short-

term experimental burials, but not as great as that generated by high-temperature hydrous 

laboratory conditions. Clustering of AA variables by assemblage indicated that the primary 

determinant of wool fibre integrity was environment, not date of context (Figure 7.5) or pre-

burial processing (e.g. weaving, dyeing). Overall, RKH samples showed the highest degree 

of protein change, and York samples the least. This was consistent with microscopic 

characterisation of degradation in this material (P. Walton Rogers, pers. comm.). 

The higher degree and variability of decay at RKH suggested that the lower average 

temperatures at this high-latitude location allowed the survival of wool fibres beyond the 

point at which they would have become invisible to the archaeological record at other sites. 

Dating methods based on AA variables, for example Asx racemization value (Moini et al. 

2011), are clearly not appropriate for buried wool samples (Figure 7.5), as these values 

reflect environment of burial more strongly than age of sample.  

According to the previously-employed measure of keratin fibre diagenesis, bulk C:N atomic 

ratio (C:NatomB), the majority of samples in this study were degraded and potentially 

unsuitable for isotopic analysis. However, AA variables indicated that elevated C:NatomB 

values could be present even in samples which show good protein preservation (e.g. 3950, 

NBG), and conversely, acceptable C:NatomB values present in samples which show 

considerable protein change (e.g. 3962, RKH; Figure 7.6). These measures, however, differ 

in that C:NatomB reflected the composition of the whole fibre, not just the protein component, 

in contrast to AA data which reflect protein only. It was therefore possible that the generally 

high C:NatomB values observed in this study indicated diagenesis principally of the non-

protein moiety of the fibre (composed of melanins and fatty acids, up to 10% of fibre dry 

mass) and/or the presence of exogenous material, despite washing.  

Both measures of decay were tested for association with isotope values. No relationships 

between isotope value (raw or assemblage-normalised) and C:NatomB were present at any 

excavation/location, with the exception of δ
2
H at YLB, which was positively correlated with 

C:NatomB, the inverse pattern to that detected in Chapter 4. Though a number of individual AA 

variables indicated significant correlations with isotope values in individual assemblages, no 

patterns of general change in either hydrophilic or hydrophobic AAs were present, of the 

types observed in Chapter 4. Only two relationships were present at more than one 

excavation/location  [Asx]% and [Leu]% (which differ strongly in hydrophobicity) with δ
2
H at 
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York and Newcastle. In addition, specific features of isotope change associated with 

experimental diagenesis (yield, degree of pigmentation) were tested for: again, no 

relationships were found. It appeared therefore that isotope values of wool samples in this 

study were not significantly related to elemental or AA composition change, with the possible 

exception of δ
2
H in samples from YLB.  

7.4.2 Other sources of isotope variability 

Comparison of within-sample isotope variability at RKH suggested that the combing of wool 

averaged the seasonal variation in isotope values down the length of a year’s growth of 

fibre. Thus the hypothesis that a cross-sectional sample of yarn represented a year-average 

isotope value from one sheep was not rejected. However, the magnitude of within-sample 

variation differed between assemblages, being larger in the York material than amongst the 

RKH samples. It is possible that this indicated the combination of wool from multiple flocks 

into textiles from York, but may also reflect greater variability in wool isotopic composition 

(and/or its exaggeration or mitigation by farming practices) in the region supplying York (a 

major medieval city) with wool, than at RKH (a remote rural farm). Similar complexities may 

also have lain behind the absence of relationship between total assemblage isotope range 

and rural or urban settlement type (Table 7.4).  

The range of cleaning methods typically used in textile conservation did not significantly 

change isotope values compared to no treatment (washing with ultra-pure water or no 

washing at all) or the standard dichloromethane/methanol wash sequence used in this study. 

Typical conservation cleaning is therefore unlikely to be a barrier to wool keratin light stable 

isotopic analysis. However the potential effects of consolidants were not tested and these 

are likely to be prohibitive. These data also suggested that the six-stage cleaning method 

used in this study, based on that required for modern raw wool samples, was unnecessarily 

thorough and could be shortened in future.  

7.4.3 Assemblage median isotope values 

The RKH samples were strongly differentiated from those from all other locations by δ
15

N 

and δ
2
H values. Similar depletions in modern Icelandic sheep tissue δ

15
N relative to material 

from mainland Europe was reported by Piasentier et al. (2003) and in Chapter 3. 

Differentiation in δ
2
H between samples from Iceland and those from the British Isles was 

greater in archaeological than in modern material; the reverse was true for δ
18

O ranges 

(Chapter 3). The reasons for these differences were unclear but they could be related to 

climate differences between AD 1000 and the present day. 

Though total δ
13

C range in this study was small, the HSS and BKA samples were 

consistently more enriched than samples from other locations. The HSS δ
15

N values were 

also consistently high on a European scale (compare the following which all report 

sheep/goat collagen values over 9 per mille: Britton et al. 2008; Reynard and Hedges 2008; 

Müldner et al. 2009; Fuller et al. 2010; Hakenbeck et al. 2010; sheep collagen and keratin 
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nitrogen isotope values can be directly compared: Chapter 2). One possible explanation for 

this is salt-marsh grazing (Britton et al. 2008) for livestock at HSS and probably at 

contemporaneous terp sites in the region, where very high δ
15

N values have also been 

found (W. Prummel, pers. comm.), but other explanations, such as highly manured pasture 

or relatively high-protein diets, are possible (Chapter 3). 

The isotope values obtained for samples from BKA were intriguing, as δ
13
C, δ

15
N and δ

2
H 

values were all more enriched than expected from the sparse extant sheep/goat isotope 

data from Scandinavia (Eriksson 2004; Craig et al. 2006; Kosiba et al. 2007; Linderholm et 

al. 2008). Both δ
2
H and δ

18
O values had been expected to resemble those from Iceland 

more strongly than those from the UK on the basis of modern precipitation values (Bowen 

and Revenaugh 2003; Bowen 2008) (Figure 7.2). However the assemblage tested from this 

location was very small (n=7), and might not include any material of local origin. Additional 

textile and sheep/goat bone samples from the site are needed to explore this further.  

7.4.4 Resolution of geographic provenancing 

Isotope values for wool textile samples clustered strongly by location (Figure 7.7a-d). Local 

isotope ranges were defined by assemblage median ± maximal estimated flock range, and 

these overlay significantly. Calculation of local median included the values of any outliers, 

which made it strongly dependent on sampling strategy, and also made the subsequent 

identification of outliers rather circular. Comparing values from more than one excavation at 

a location (as in this study for York and Newcastle) increased confidence. Alternatively, 

examining isotopic composition of contemporaneous sheep/goat bone from the same sites 

could provide an independent confirmation of local isotope median values, assuming that 

local wool and mutton were drawn from the same groups of animals. Geostatistical 

approaches (e.g. Voerkelius et al. 2010; Valenzuela et al. 2011) may eventually be feasible 

if a large enough database of period-defined background data can be collected, for example 

from collagen samples. 

In contrast to assemblage medians, assemblage ranges were independently estimated from 

maximal modern flock ranges (Chapter 3). These were likely to overestimate the degree of 

isotopic variation due to intra-flock variability in diet and metabolism. They did not, however, 

take into account two important sources of variability which may be relevant in 

archaeological assemblages: 

 variability in isotope value between flocks due to differences in farming practice, which 

can be significant even within a single climatic environment (e.g. Bahar et al. 2005; 

Schmidt et al. 2005; Britton et al. 2008; Chapter 3).  

 inter-annual variability in isotope values, which may be negligible over the life of a 

single animal (compare Auerswald et al. 2011) but significant over a 10 to 100year 

timescale due to changes in climate (Patterson et al. 2010) or developments in 

farming practice (Müldner and Richards 2007; Hamilton et al. 2009). 
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It was therefore encouraging that no relationship was detected in this study between isotope 

value range and/or assemblage type (urban/rural), or the date range of sample contexts 

(e.g. AD 10001600 for RKH). Though this is a simplistic approach, isotope variation due to 

change over time and/or differences in environment or farming in the supply region of a 

settlement did not appear to dominate the (over-)estimated metabolic variability in flock wool 

isotope samples. Flock ranges were also an order of magnitude greater than either 

experimental error or within-sample repeatability. Outlying isotope values were therefore 

unlikely to be due to experimental error, within- or between-flock variation, intra-sample 

variability, inter-annual change, or (as demonstrated above) diagenesis, and instead reflect 

differences in geographical origin between wool samples. 

Identification of outlying samples differed between flock-range estimate and statistical 

methods. The isotope compositions of unprocessed wool material (raw staples) were used 

as partial confirmation of local range. None of these samples (YCG, RKH, HSS; n=11) were 

identified as outliers by flock-range estimates, though one was by statistical methods (4062 

YSG). Because of this, and the fact that flock range-estimates were generally more 

conservative than the statistical methods, they were preferred in the following discussion. 

7.4.5 Archaeological implications 

Isotopic identifications of local/non-local wool fibres and technical features/fleece type/dye 

type identifications of typical/atypical textile character were not unanimous, and there was 

considerable variation in their agreement between assemblages. Detailed archaeological 

and methodological implications of these results are discussed in Chapter 8. All samples, 

however, fell into one of four categories:  

7.4.5.1 Typical textiles with local isotope values (n=53) 

The isotope values of the majority of samples from all locations were within flock range of 

local medians. At none of the locations tested was movement of raw wool (as opposed to 

movement of finished textiles) detected. All these samples were interpreted as of local 

manufacture on both technical and isotopic bases, the simplest explanation. However results 

were also consistent with the following three hypotheses: (1) the samples were 

manufactured in another site/area/region with similar environment and similar textile 

production; (2) they were made with non-local wool from another site/area/region with similar 

environment; (3) they were made with local wool in another site/area/region with similar 

textile production. 

7.4.5.2 Typical or ‘unknown’-type textiles with non-local isotope values (n=16) 

Among the 70 textiles with wholly typical features tested in this study, 15 showed non-local 

isotope values (Table 7.5), as did the sample of ‘unknown’ technical type (typical or atypical 

nature could not be interpreted) from RKH (3968). Of these, 6 were among the more highly 

degraded group of samples identified by AA variables (Figure 7.4). Nevertheless, as no 

relationship was identified between degree of degradation and isotope value in any 
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assemblage (except δ
2
H at YLB, but no samples at this site were outlying in this measure), it 

is likely these objects’ isotope values were due to origin rather than decay. Interesting 

examples of this group of samples include: three of the four earliest textiles from RKH (2894, 

2895 and 3961); 4060b from YCG, a yarn sewn through 4060a, a textile showing features 

typical of local origin and with local isotope values; 4336, a tabby ?band from HSS; and 

4123 from YSG, of construction typical for the British Isles but with relatively unusual use of 

dye. It is likely that most of these samples were not made at the locations where they were 

found, despite their technical similarity to local types; alternatively they indicated that local 

manufacture employed a wider range of techniques than expected. A further hypothesis, that 

they are the products of unusual farming practices not otherwise represented in the 

assemblage, may be true for some, e.g. 40 0b, outlying in δ
15

N only, as this variable is 

strongly affected by farming practice (Chapter 3). Isotopic identification of non-local origin 

could be confirmed by better definition of the local isotopic ranges by analysis of 

contemporaneous sheep/goat bone collagen. 

7.4.5.3 Atypical, hybrid or ‘unknown’-type textiles with local isotope values 

(n=17) 

Of the 13 textiles which were considered atypical of local manufacture, nine had isotope 

values which did not fall outside the local isotope range. The three hybrid textiles from York 

had isotope values consistent with local origin (4064/4065, 4078, 4087), as did the four 

textiles of ‘unknown’ technical type (4081-3, YLB; 4121, YSG) from the same location. None 

of these samples showed AA values consistent with higher protein diagenesis. This 

combination of results could be due to: (1) similarity of climate and/or husbandry practice in 

two regions of differing textile production; (2) local production being more varied than 

previously thought; (3) movement of raw wool (from the local region or another similar in 

environment/husbandry) to a region of different textile production before movement to the 

site of recovery. 

A number of these results were probably due to the first explanation, the overlap between 

British flock ranges and those from BKA. Assuming that values from the latter are indicative 

of southern Scandinavia as a whole, then isotope values from all the Scandinavian-type 

textiles from York (3959, 4068 YCG; 4125 YSG) were consistent with origins in either 

location. This combination of light stable isotope analyses may be unable to examine 

movement of wool between Great Britain and southern Scandinavia.  

Any of the three explanations given above could apply to what are probably the most 

significant results in this group, samples 5169 and 5170, examples of the much-discussed 

very high-yarncount ZZ diamond twills from BKA (Geijer 1938, 40-7; Hoffmann 1964, 227-

57; Ingstad 1979; Hägg 1994). Isotope results in this study suggest that the raw material of 

these is very unlikely to be consistent with an origin in Syria as suggested by Hoffmann 

(1964, 227-57):  
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 Calculated annual average δ
2
H and δ

18
O in precipitation in eastern Mediterranean 

climates are 30- 0‰ more enriched in δ
2
H and 3-7‰ more enriched in δ

18
O than 

values for locations in this study (Bowen and Revenaugh 2003; Bowen 2008). 

However, the δ
2
H and δ

18
O values of samples are 5169 and 5170 were not enriched 

over those from textiles from other locations tested in this study (Figures 7.7c and d), 

suggesting a northern European origin.  

 In modern wool, there was little difference in δ
15

N composition between Turkish and 

northern European (UK) samples, though δ
13

C was generally much more enriched in 

Turkish samples (range -25.6-19.5‰ vs. -27.7-25.0; Chapter 3). The similarity of 

δ
13

C between archaeological UK range (-25.3-23.2‰) and samples 5169 and 5170 

(-22.4‰ and -22.7‰, respectively) therefore also suggested an origin in northern 

Europe but could not exclude an origin in the eastern Mediterranean.  

These results do not, of course, disprove the suggestion that the finds were made by 

craftspeople working in a Levantine tradition in northern Europe, as has been suggested 

elsewhere (Christensen and Nockert 2006, 392) 

Alternative hypotheses of origin for these finds were Frisia (Geijer 1938, 40-7) and western 

Norway (Bender Jørgensen 1992, 138). As to the former, only one BKA sample (5169) had 

δ
15

N values consistent with Frisian origin, assuming that HSS isotope values are indicative 

of Frisia as a whole. The latter hypothesis could not be tested with the present data set. 

Furthermore, at present, there is no isotopic evidence to suggest that these samples were 

not made from wool from Sweden.  

In addition, the third explanation suggested above, export of wool from Sweden (or a region 

of similar climate) to the Levant, Frisia or elsewhere for textile production, before further 

movement of the finished product to Sweden, cannot be excluded on isotopic grounds. This 

explanation is likely to apply to very high quality textiles only, like the material from BKA. 

However because it is more complex, and assumes a higher degree of complexity in 

contemporaneous economic systems, it can be considered less likely than either of the other 

explanations. 

7.4.5.4 Atypical textiles with non-local isotope values (n=4) 

Four textiles with atypical technical features also had non-local isotope values. These 

included three of the four tabby textiles at RKH (those which were expected to be imports 

into Iceland), and sample 4329 at HSS. Given the current generous estimate of local flock 

range, and the minimal isotopic effects of diagenesis observed in this study, these samples 

seem very unlikely to be mistakenly identified as non-local when they were in fact local.  
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7.5 Conclusion 

This study was the first application of combined δ
13
C, δ

15
N, δ

2
H and δ

18
O stable isotope 

analysis to geographical provenancing of archaeological artefacts of mammalian tissue from 

Europe. It is also the first application of light stable isotope analysis to archaeological 

samples of wool keratin preserved by anoxic waterlogging. Wool fibre integrity results, from 

C:NatomB values and AA profile, suggested some keratin compositional change, consistent 

with low-temperature hydrolysis, but without detectable isotopic change. Greatest variability 

in composition and net change were observed in material from RKH, suggesting that the 

conditions at more southerly sites promoted the complete degradation of compromised wool 

samples, while conditions at the Icelandic site did not to the same extent. If this was the 

case, then the absence of significant effect of diagenesis on isotope values in any of the 

samples tested in this study appears less surprising. 

Confident provenancing of samples was limited by: (1) current generous estimates of flock 

range based on a single study in modern sheep flocks (Chapter 3); (2) patchy background 

data for the variation of δ
13

C and δ
15

N in sheep tissues with geography across Europe; and 

(3) the almost total lack of δ
2
H and δ

18
O data from archaeological or modern sheep tissues 

(exceptions: Balasse et al. 2006 and other work by the same author; Camin et al. 2007; 

Reynard and Hedges 2008). In general, identification of non-local raw material was of 

greater certainty than its assignment to location of origin. An additional weakness in this 

study was sampling bias, because sample selection was based on technical attributions of 

origin. In the case of such perishable archaeological artefacts, such bias may be 

unavoidable, but deliberate sampling across all periods in assemblages, as well as the 

deliberate inclusion of raw wool samples where available, and contemporaneous sheep 

bone collagen, should help to reduce it.  

Provenancing by δ
13
C, δ

15
N, δ

2
H and δ

18
O values is unlikely to be universally applicable to 

questions of textile movement. Movement of wool objects between areas of similar climate 

are unlikely to be discernible by this method. Such movements include: those between the 

UK and Flanders, which were of fundamental economic and political importance from the 

early 13
th
 century onwards (Lloyd 1977); and possibly those between the UK and southern 

Scandinavia, also of great interest to understanding Viking settlement. Movement of textiles 

to and from regions with highly variable climates and/or farming practices may also be 

difficult to examine because the extremes of local isotope variability may overlap 

substantially with non-local values. However the present study showed that discrimination 

between Iceland and mainland Europe was clear, which indicated that the North Atlantic 

islands, and probably by extension most of Norway, cannot have been the source of the 

Scandinavian-style textiles from York. In addition, Syria is unlikely to have been the source 

of the fine ZZ diamond twills from BKA tested in this study. Established patterns of isotopic 

geographic discrimination across Europe in modern sheep tissues (Chapter 2) and in 

precipitation (Figure 7.2), suggest that useful discrimination in wool origin is probable in at 
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least the following regions: (1) along the length of the Baltic, i.e. GermanyFinland; (2) 

between the UK/Flanders and Spain/Italy; (3) within Scandinavia, possibly complicated by 

highland/lowland variation. Textile trades in the former two areas are known to have been 

significant in the later medieval period (see Jahnke 2009; and Munro 2005, respectively), 

and movement of wool within the latter is suggested by results in the present study. This 

methodology could additionally be applied not only to well-preserved keratinous materials 

(textiles, caulking, fur, hides, pelts) but also to objects of collagenous tissue, including 

animal bone, antler, parchment and leather, though the potential effects of (non-mineralised) 

collagen diagenesis on the latter two materials have yet to be examined. 

Close integration of analytical results with established artefact-based methods of 

understanding textiles was an essential component of this study (Chapter 8). Only by 

combining artefactual and analytical methodologies can distinctions be made between 

objects made locally of non-local raw materials, those manufactured elsewhere of local raw 

materials, and those of wholly non-local origin. This integration also allows distinction 

between objects which were atypical because they are not of local manufacture, and those 

which were atypical for other reasons, e.g. low frequency of manufacture, or low rates of 

preservation. In all cases, information derived from artefactual analysis will be an essential 

part of interpreting isotope results. These insights have the potential to add significantly to 

understanding of artefacts in both prehistoric and historic periods. 
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8. Staple diets: provenancing archaeological wool textiles 

from the European Middle Ages with light stable isotope 

analysis 

 

Abstract 

Manufacture of wool textiles, and trade in both the finished artefacts and their raw materials, 

were of fundamental economic and social importance to countries of northern and western 

Europe throughout the Middle Ages. Identifying non-local textiles in archaeological 

assemblages is therefore essential to understanding the production, distribution and 

consumption of these goods, and how this changed over time. This article discusses in detail 

the archaeological implications of results from the first application of a scientific 

provenancing technique, combined carbon, nitrogen, hydrogen and oxygen stable isotope 

analysis, to wool samples preserved by anoxic waterlogging. This included 90 medieval 

textiles from eight archaeological sites in Iceland, Great Britain, Germany and Sweden, from 

contexts dating from the 7
th 

to the 16
th
 centuries (Chapter 7). This data is integrated into 

current understanding of these objects, based on established methods of archaeological 

textile analysis, including technical details of textile type, dye identification and fleece type 

analysis. In general, isotopic and established methodologies were in agreement on sample 

origins, but some discrepancies were observed. The implications for understanding textile 

manufacture and movement of materials at each site are explored in detail, leading to a 

number of new insights into medieval textile production and distribution.  

Keywords: textile, wool, provenance, light stable isotopes, Frisian cloth 
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8.1 Introduction 

Wool textiles are among the most complex artefacts found in medieval archaeological 

deposits in Europe. Their technology of manufacture and some aspects of their use are 

largely reconstructable from the artefacts themselves, even where the tools do not survive 

(Walton Rogers 2012b). These objects are the products of multi-stage and multi-tool 

manufacturing processes (Jenkins 2003), leading to a very wide range of possible textile 

types (Figure 8.1), which varied across Europe. Because textiles can be used to encode 

complex social messages, such as gender, age, origin (however defined), profession, 

allegiance or occasion (Schneider and Weiner 1986), analyses of these objects have the 

potential to be highly socially informative.  

Wool textiles are bulky, non-fragile, varied and valuable, and constituted the most important 

class of manufactured object in long-distance trade in the later Middle Ages, and possibly 

well before this (Munro 2003, 181). Distinguishing local from non-local textiles in an 

 

Figure 8.1. Contrasting textile types from Reykholt, Iceland. Left: a 2/2 twill (1988-214-481); 
right: a napped tabby (2000-6-063(i)). Scale in cm. © The Anglo-Saxon Laboratory. 



 

256 
 

archaeological assemblage is an essential step towards (1) establishing the range of textile 

manufacturing processes occurring locally, and (2) understanding the economic, 

technological, social and cultural links between that site and others. Established methods of 

recognising non-local objects rely on: 

 identifying technical features of a textile’s construction which are atypical for a site, 

region or period. Such identifications are highly contextualised, depending for 

example on which technical feature (or more typically, which group of technical 

features) is under consideration, whether these features are typical at other sites in 

other regions or periods, the quality of the textile in question, and other historical and 

archaeological data.  

 identifying raw materials which cannot be of local origin on environmental grounds. 

These include dyes derived from plants or animals whose distributions cannot include 

the site in question (Ferreira et al. 2004), and also fleece types, or wool fibre diameter 

distributions (e.g. Walton Rogers 2004; Kirjavainen 2005; Rosenqvist 2006; Gleba 

2012a). This feature of a sheep’s fleece is primarily genetically controlled (Ryder 

1968, 1983) and therefore depends on landrace, which varies with geography in the 

medieval period, though husbandry practices and fibre processing can both alter 

fleece type also. Both dye and fleece types are however typically measured only on a 

subset of textiles from an assemblage, if at all,. 

Textile archaeologists acknowledge that these methods do not allow absolute confidence in 

establishing the origin of a textile in deposit (Gleba 2012b). Independent methods of 

provenancing these objects have therefore been sought. Analysis of the chemical 

composition of wool fibres to establish origin parallels the well-established use of 

geochemical provenancing techniques on the inorganic raw materials of other 

archaeological artefacts (Wilson and Pollard 2005; e.g. Lezzerini et al. 2012; Kalkreuth et al. 

2012), and is also in line with the recent upsurge of interest in applying biochemical 

techniques to archaeological artefacts made from organic raw materials (Pichler et al. 2001; 

Frei et al. 2009b; Araki and Moini 2011; Coutu 2011; Moini et al. 2011; Solazzo et al. 2011; 

Brandt et al. 2011; von Holstein et al. in preparation-a). 

The reliability of analytical data from archaeological artefacts must however be clearly 

established, as the potential effects of diagenesis are significant. For example, 
87

Sr/
86

Sr 

results of bone was found to be changed by burial environment, unlike measurements on 

tooth enamel from the same deposit (Trickett et al. 2003). The same factors have now been 

shown to apply to 
87

Sr/
86

Sr analysis of wool (Chapter 5), which makes previous data of this 

type difficult to interpret (von Carnap-Bornheim et al. 2007; Frei et al. 2009a; Frei et al. 

2009b; Frei et al. 2010). In addition, a dating method based on molecular decay (Moini et al. 

2011) is not likely to be applicable to buried wool textiles (Chapter 4) despite being 
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appropriate and widely used for closed-system biomineralised tissues (e.g. Smith et al. 

1978; Kimber and Griffin 1987; Penkman et al. 2011). 

 

8.2 Understanding light stable isotopic composition of sheep 

wool textiles 

The isotopic composition of wool fibres reflects the isotopic composition of the diet the sheep 

consumed, i.e. largely that of the plants and water in the pastures on which they were 

grazed. These values depend on vegetation type(s), climate and soil type (Chapter 1). Both 

non-exchangeable hydrogen (δ
2
H) and oxygen (δ

18
O) are strongly linked to the isotopic 

composition of precipitation, which varies geographically with latitude, longitude, altitude and 

continentality. In contrast, carbon (δ
13
C) and nitrogen (δ

15
N) can indicate specific features of 

farming practice, such as transhumance between pastures (Biddick 1989, 100-15; Stone 

2005, 115-8; McGovern et al. 2007) or foddering (Amorosi et al. 1998; Stone 2003; Stone 

2005, 77; Kosiba et al. 2007), which also vary in space due to differences in environment 

and culture. δ
34

S values are related to soil type and distance from a coast, reflecting the 

origin of S from bedrock, soil bacteria or seawater (Zazzo et al. 2011). Taken together, δ
13

C, 

δ
15
N, δ

2
H, δ

18
O and δ

34
S values reflect geographical origin (Piasentier et al. 2003; Hedges 

et al. 2005; Camin et al. 2007; Chapter 3). Values of the first four isotopes additionally cycle 

annually in hair fibres, reflecting seasonal variation in temperature, rainfall and farming 

practice (Auerswald et al. 2011). Light stable isotope analysis is therefore more likely to 

detect long-distance movements of sheep wool than movement within a single climatic or 

environmental region, as the greater the difference in original environment and climate 

between two wool samples, the greater the difference between their isotopic composition.  

In an archaeological assemblage, the isotope values of textiles made from local wool were 

therefore expected to cluster, and values from wool from different environments in more 

distant areas to be outliers (Chapter 7). Local values can be confirmed by testing 

unprocessed wool finds and sheep bone collagen from the same site and period (corrected 

to account for the difference in values between bone collagen and wool keratin in a single 

animal: Chapter 2). When analysing finished textiles, the practical effects of wool fibre 

preparation must be taken into account: the hypothesis that a single textile contained wool 

from at least one sheep, and that fibre preparation by combing/carding/bowing (Chapter 1) 

de-aligned the fibres so that a sample represented a year-average value of wool 

composition, with seasonal variation obscured, was supported (Chapter 6). The local isotope 

range for an assemblage was defined with reference to the variability in year-average 

samples within a whole sheep flock (Chapter 2, Chapter 3). This estimate was conservative 

and was likely to under-identify non-local material: this increased the likelihood that material 

with outlying isotope values identified in such a study were non-local.  
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Chapter 7 described isotope analysis of 90 archaeological textile samples from medieval 

contexts, including raw wool, spun yarn and finished textiles, from eight archaeological sites 

at five settlements (Table 8.1; Figure 8.2). This focused on establishing the resolution of the 

technique and the reliability of the data, in the light of previous studies of experimental wool 

decay (Chapter 4) and the range of isotopic variability in wool from modern sheep flocks 

(Chapter 2 and Chapter 3). This showed that, though the wool samples analysed were not 

intact, isotopic composition could not be shown to be systematically affected by either 

microbiological or chemical decay. The effect of a variety of solvents and detergents on 

isotope values was found to be negligible. However the effects of consolidants was not 

tested.  

 

8.3 Materials and methods 

The present chapter examines in detail the implications for understanding textile movements 

in the Middle Ages by integrating Chapter 7’s isotopic and amino acid composition results 

from with those from established textile analysis methodologies. 

This thesis tested samples from textile assemblages (Table 8.1) which were (1) preserved 

primarily by anoxic waterlogging and (2) included some finds thought to be non-local to the 

find site, because they showed atypical features of textile construction, dye type and/or 

fleece type. Assemblages are listed in Table 8.1. Sampling was targeted to the atypical 

finds, selecting additionally artefacts of typical types from the same contexts and/or periods, 

with additional material to represent all medieval phases of the site, and including both 

processed and unprocessed objects in each phase where possible. The exceptions were 

excavations at BKA and NQS, where sample availability was restricted.  

Subsamples of approximately 0.1 g wool were selected from each find, washed, and 

analysed for δ
13
C, δ

15
N, δ

2
H and δ

18
Oisotope composition by standard isotope ratio mass 

spectrometric (IRMS) methods. Measurement of δ
13
C and δ

15
N data also generated a 

measure of sample integrity, carbon to nitrogen bulk atomic ratio (C:NatomB). An additional 

subsample of the washed fibre was hydrolysed with acid, and analysed for amino acid 

content using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). This 

measured the concentration of 13 amino acids (of the 20 present in wool), and also 

examined the degree of conversion of 10 of them into their mirror images (racemisation). 

Full details of isotope, elemental and amino acid results were reported in Chapter 7. 
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Table 8.1. Origin of samples tested in this study. 

Site Code Location Region Period selected Type Reference 

Reykholt, Borgarfjörður RKH Reykholt Western 
Iceland 

C1116 Rural, inland (Walton Rogers 2012a)  

Hessens HSS Hessens Northern 
Germany 

C78 Rural, coastal (salt 
marsh) 

(Tidow 1995; Walton 
Rogers 1995) 

16-22 Coppergate, York YCG York Northeast 
England 

C915 Urban, inland (Walton 1989; Walton 
Rogers 1997) 

6-8 Pavement (Lloyds 
Bank site), York 

YLB York Northeast 
England 

C11 Urban, inland (Hedges et al. 1982) 

Rear of 7-15 
Spurriergate, York 

YSG York Northeast 
England 

C11 Urban, inland (Walton Rogers unpub) 

Black Gate, Newcastle 
upon Tyne  

NBG Newcastle Northeast 
England 

C1516 Urban, inland (Walton 1981) 

Queen Street, Quayside, 
Newcastle upon Tyne 

NQS Newcastle Northeast 
England 

C13 Urban, inland (Walton 1988) 

Birka graveyard BKA Birka Eastern 
Sweden 

C810 Proto-urban, coastal (Geijer 1938, 1980) 

 

2
5

9
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Figure 8.2. Map of annual mean δ
2
H (in ‰) in precipitation across Europe, with locations of 

assemblages tested superimposed (Bowen and Revenaugh 2003; Bowen 2008; adapted 
from 
http://wateriso.eas.purdue.edu/waterisotopes/media/IsoMaps/jpegs/h_Euro/hma_Euro.jpg) 

 

For the purpose of examining origin using light stable isotopes, all three York sites (YCG, 

YLB and YSG) were considered together, as were the two sites from Newcastle upon Tyne 

(NBG, NQS). A local range of wool isotopic composition was established for each location 

based on the maximum degree of variability in wool from a single modern sheep flock 

(Chapter 2, Chapter 3) around the median isotope value for each location. Individual results 

from each sample were compared to these ranges: where these values lay more than the 

flock range away from the local median, the sample was considered isotopically outlying. An 

outlying isotope value was taken to indicate that the sample’s isotopic composition was 

incompatible with an origin in the same composite (i.e. multi-year, whole-site) sheep flock as 

the site median values. The truth of this statement was clearly dependent on factors such 

as: 

 sampling strategy, which could affect site median; 

 diagenesis, which could change individual sample isotope values, and also affect site 

median; 

 changes in farming practice or climate over time, causing alteration of site median; 
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 variability within a single textile caused by combination of wool from several flocks 

and/or seasonal variation in wool isotope values. 

The potential impacts of all these factors were discussed in detail in Chapter 7 and were 

established to be negligible in comparison to the large range of isotope variability present 

within a single sheep flock. Identification of isotopic outliers as flock and/or site outliers, and 

therefore likely to be non-local, was therefore robust. 

 

8.4 Results and discussion 

Core technical descriptions of all samples, with a summary of isotope results, are listed in 

Appendix 8.1. Isotope distributions are plotted in Figures 8.3, 8.4 and 8.5, in which samples 

which had isotopic compositions outlying at location level are underlined.  

Results are summarised in Table 8.2. Depending on location, 6494% of samples were 

expected to have isotope results consistent with local origin. In fact 60-88% of samples had 

composition typical of local origin. In general therefore, isotopic results were less 

conservative than established artefact methodologies. However this varied strongly by site: 

at BKA and York, isotope analysis identified 1419% fewer outliers than expected, while at 

HSS, RKH and Newcastle, isotope analysis identified 620% more outliers than expected. 

8.4.1 Reykholt, 10th16th centuries 

At the high-status lay rural site of RKH (Sveinbjarnardóttir 2012), at least three of the four 

tabby textiles in the assemblage were expected to be imports to Iceland from continental 

Europe. These showed multiple features not typical of textiles from Scandinavian sites, such 

as SS spinning, a dense teaselled and sheared nap, and a soft, lightweight character 

(samples 2903, 3966, 3967). Sample 3968, the fourth tabby find, was not napped and was 

of unknown origin. All remaining material, overwhelmingly ZS 2/2 twills of the type called 

waðmál, and waðmál-like tabby weaves, but also unspun fibre (3960, 3965, 2950, 2906), a 

cord (39 1), and spinners’ waste (2894), were expected to be of Icelandic origin (Walton 

Rogers 2012a).  

All four tabby textiles (2903, 3966, 3967, 3968) were isotopic outliers from RKH median. The 

four tabbies as a group showed the highest δ
15
N and δ

2
H values of all samples tested at this 

site. Their isotope values were consistent with an origin on the European continent, insofar 

as this can yet be defined isotopically (Figures 8.3, 8.4 and 8.5). Samples 2903 and 3966 

showed δ
18

O values higher than those from all other settlements except York, and 

δ
2
Hvalues higher than those from all other settlements except HSS. These values suggest 

an origin of their raw material further south on the European continent than any site tested 

(Figure 8.2). However this suggestion must remain speculative until (1) typical isotope 

ranges for wool from sheep flocks and/or archaeological sites are more tightly defined, and  
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Figure 8.3. Carbon (δ
13

C) vs. nitrogen (δ
15

N) isotope values for all wool textile samples. The shaded areas represent the local isotope zone 

(maximum flock variability around site median) for each location. Blue = all Newcastle assemblages; green: all York assemblages. 
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Figure 8.4. Nitrogen (δ
15

N) vs. hydrogen (δ
2
H) isotope values for all wool textile samples. Shaded areas as for Figure 8.3. 
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Figure 8.5. Hydrogen (δ
2
H) vs. oxygen (δ

18
O) isotope values for all wool textile samples. Shaded areas as for Figure 8.3. 
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Table 8.2. Summary of provenancing results: established methods compared to isotopic methods, by site. 

 

 

 Stylistic/technical category 

 

Isotopic category 

Site/location n Typical Atypical Unknown Hybrid % typical 

 

Inlier Outlier % inlier 

RKH 21 17 3 1 0 81% 

 

14 7 67% 

York 36 23 5 4 4 64% 

 

30 6 83% 

Newcastle 16 15 1 0 0 94% 

 

14 2 88% 

HSS 10 8 2 0 0 80% 

 

6 4 60% 

BKA 7 5 2 0 0 71% 

 

6 1 86% 

 

 

         NBG 12 11 1 0 0 92% 

 

12 0 100% 

NQS 4 4 0 0 0 100% 

 

2 2 50% 

YCG 21 14 4 0 3 67% 

 

18 3 86% 

YLB 11 7 0 3 1 64% 

 

9 2 82% 

YSG 4 2 1 1 0 50% 

 

3 1 75% 

2
6

5
 



 
 

(2) δ
2
H and δ

18
O values from archaeological sheep tissues (wool or bone collagen) are 

available from a wider area of Europe (Chapter 7). 

Of the textiles which showed typical features of Scandinavian manufacture, samples 2894, 

2895 and 39 1 showed δ
18

O values outside local range at RKH. Values for 2894 and 2895 

were lower than expected, while the δ
18

O value for 3961 was the highest for any sample 

tested in this study at any site. These samples are all from the earliest phase of the site (AD 

10001200). Sample 2895 showed the greatest degree of protein degradation of any sample 

tested in this study  its depleted δ
18

O values may therefore be due to exchange of O 

between protein and ambient water during burial, an effect also observed under strong 

conditions of experimental degradation (Chapter 5). However no relationship between 

protein preservation and δ
18

O was observed in samples from any archaeological site, 

possibly because the overall degree of degradation observed in these samples was 

relatively low. Protein composition variables for 3961 were, in contrast, consistent with good 

sample preservation, and were not tested for 2894 as insufficient sample remained after 

preparation to carry out both this and isotopic analysis. This may also indicate a greater 

degree of degradation. For these three samples, an indication of origin outside Iceland could 

therefore be made only for 3961, despite its technical features indicating manufacture within 

a Scandinavian tradition. Its origin remained obscure until further isotope data is available 

from across Scandinavia.  

No further textiles identified as structurally typical lay outside the maximum typical flock 

isotope range, including the raw staples. This suggests that the RKH range included material 

from sheep local to RKH itself (supported by the presence of sheep keds in the 

palaeoecological assemblage there: Buckland 2012, 259) and textiles made from this wool, 

but cannot exclude the presence of textiles from similar environments, probably within 

Iceland. At this site, therefore, traditional methods of textile analysis in conjunction with 

isotopic analysis identified textiles of non-local origin only from contexts dated before 

approximately AD 1200 and after approximately AD 1400. This was interesting because it 

excluded the period when RKH first grew into an important central site, including very 

remarkable built structures, but nevertheless few indications of overseas trade 

(Sveinbjarnardóttir 2012, 262-70). 

8.4.2 Hessens, 7th8th centuries 

At the coastal salt-marsh terp site of HSS in east Frisia, unusual 7
th
8

th
 century wooden 

structures were identified as a freshwater sheep dip and a tidal creek-side landing site, 

suggesting the importance to the inhabitants of both sheep husbandry and exchange links 

(Siegmüller and Peek 2008). The textiles from contemporaneous contexts were interpreted 

as mostly typical of the region, with the exception of samples 4329 (2/1 plain twill with 

madder dye), and 4332 (open weave tabby) because these show technical features which 

are rare in assemblages of this period (Tidow 1995; Walton Rogers 1995). The open weave 
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tabbies (‘veil weaves’) have been identified at a large number of sites, and their distinctive 

features interpreted as evidence for specialised production (Walton Rogers 2007, 68-9), 

although no locations for this have yet been indicated. Also of particular interest were results 

from samples 4330, 4337 and 4338 are 2/2 ZS chevron and diamond twills, identified by 

Bender Jørgensen as ‘Hessens-Elisenhof type’ and very widespread in excavations around 

the English Channel (Bender Jørgensen 1992, 142-3). She suggested that a subset of these 

textiles, including diamond twills with a pattern repeat (number of warp and weft threads per 

woven-in diamond) of 20Z (warp) to 18S (weft), could be identified with ‘Frisian cloth’, a 

historical term used in the 8
th
-10

th
 century which clearly referred to cloths that were moved 

long distances (references in Ingstad 1979; van Uytven 1983; Walton 1989, 416; Hägg 

1994). Of the 37 diamond twills recovered from excavations in HSS, 33 showed the 20/18 

pattern repeat, though it is not clear whether those selected for this study were of this group 

(Tidow 1995, 359).  

Isotopic analysis showed that the composition of the majority of samples from HSS, 

including the three raw staples, was similar, and consistent with a single local origin. The 

typical δ
15

N value range (8.9–11.1‰) was high compared to results from medieval sheep 

tissues from elsewhere in Europe (e.g. Müldner and Richards 2007a; Fuller et al. 2010; 

Hakenbeck et al. 2010; nitrogen isotope values for bone collagen and wool keratin in sheep 

are directly comparable: Chapter 2). Such high values have been linked with salt-marsh 

grazing at coastal sites (Britton et al. 2008), which would be credible for HSS. Importantly, 

sample 4332, the open weave tabby, had isotopic composition consistent with local origin. 

This did not imply that all such textiles were made in Frisia, still less at HSS, but there is no 

reason to suggest that this find was not of local manufacture. However, it remains to be 

established how region-specific these isotopic compositions were. 

Isotopic outliers were the following  4330 (the chevron twill), in δ
15

N; 4336 (the tabby ?band) 

in δ
15
N and δ

18
O; and both 4329 (2/1 twill, madder dye) and 4331 (ZS tabby) in δ

2
H and 

δ
18

O, but only when both isotopes were considered in combination (Figure 8.5). Samples 

4330 and 433  also had the lowest δ
13
C and δ

2
H values at the site, though they lay within 

flock range of the median (Figures 8.3 and 8.4). Commentary on these results is complex: 

 low δ
13
C and δ

15
N values in sample 4330 may be a feature of diagenesis in this 

sample, which was densely naturally pigmented. Significant depletion in both these 

isotopes was observed only in experimentally degraded samples which were densely 

pigmented (Chapter 2). Nevertheless, these changes were associated with amino acid 

composition changes greater than those observed for this sample, for which 

preservation was excellent. This suggested that the wool in this textile originated in a 

similar climatic environment to HSS, but not on coastal salt marsh, which could 

account for the relatively depleted δ
15

N values. 
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 relatively low values in all four isotopes tested for 4336 were likely to indicate non-

local origin. δ
13
C, δ

15
N and δ

2
H values were not inconsistent with values from York, 

Newcastle, or BKA, but δ
18

O values were too depleted for any of the sites tested in 

this study (Figure 8.5). The origin of this sample remained unknown, but might 

plausibly be north or east of Frisia (Figure 8.2). The same was true for samples 4329 

and 4331, both showing low δ
2
H and δ

18
O. 

These results, in particular the high δ
15

N values for probably local material, have implications 

for the ‘Frisian cloths’ debate. If the term did refer to textiles manufactured in Frisia using 

local wool, then δ
15

N values could be a new biomarker for these textiles in other 

assemblages. The question of the identification of ‘Frisian cloths’ will be returned to in the 

discussion of the material from BKA. 

8.4.3 York, 9th15th centuries 

δ
13
C, δ

15
N, δ

2
H and δ

18
O isotope values from York textiles were very similar to those from 

Newcastle and London (Watson 2010). δ
13
C and δ

15
N values were comparable to the 

(tissue-adjusted) total range of medieval sheep/goat bone collagen values across Great 

Britain (Figure 8. ). Given the similarity of collagen δ
13
C and δ

15
N values from across the 

British Isles, it is unlikely that keratin isotopic data (even with the addition of δ
2
H and δ

18
O 

values) will be able to demonstrate movement of wool textiles within Great Britain. This 

question will be returned to in the discussion of the Newcastle assemblage, below. 

Figure 8.6. Wool textile isotopic data from York and Newcastle assemblages compared to 
sheep/goat bone collagen data from other medieval sites in the British Isles: Fishergate, 
York (Müldner and Richards 2007b), Wharram Percy (Müldner and Richards 2005), 
Berinsfield (Privat et al. 2002) and Whithorn (Müldner et al. 2009). Two adjustments of 
literature bone collagen δ

13
C data to keratin equivalents are shown: EH flock (black) and 

Escrick group (grey), based on results in Chapter 2.  
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Among the textiles from the three assemblages from York, established methods of textile 

analysis had identified the following samples as atypical, and ‘undoubtedly of Scandinavian 

influence if not necessarily of Scandinavian origin’ (Walton 1989, 418, 421; Walton Rogers 

unpub): sample 3959, a sock in nålebinding, a technique of one-needle knitting widespread 

in medieval Scandinavia (Walton 1990, 66); sample 4068, a fragment of waðmál, the textile 

type common at RKH and other Scandinavian sites; and sample 4125, a tabby with shaggy 

surface, a surface treatment widely found at Hedeby (Walton Rogers unpub). In addition, 

there was one textile with a pile made by darning threads into the fabric after weaving 

(samples 4064/4065), rather than being inserted during the weaving process, as is typical of 

piled fabrics found elsewhere in northern Europe (Walton 1990). These objects were 

interpreted as local copies of non-local cloth types (Walton 1989, 336; Walton Rogers 1997, 

1826).  

Unfortunately, due to the similarity in isotope values between samples from Great Britain 

and BKA, it was difficult to comment on the origin of most of these samples. Their isotope 

values were consistent with an origin in the British Isles, but also at BKA, or even HSS 

(exceptions  3959 and 40 4 by δ
15
N and δ

18
O values; 4125 by δ

15
N). While it is possible that 

these textiles could have been made in York under Scandinavian influence (Richards 2000, 

34-8; Hadley 2009b, 205-6), most evidence for Scandinavian craftspeople in the town 

relates to male-gender crafts such as metal-working (Walton Rogers 1997, 1821-2; Speed 

and Walton Rogers 2004, 84-7). Alternatively, assuming that the BKA sample values are 

representative of southern Sweden and Denmark generally (compare Figure 8.2), they may 

have been made in this region. Further textile and bone samples from sites across this 

region are needed to assess this possibility. A final alternative is that these textiles were 

made in one of the Scandinavian colonies, which had trade links to York. A candidate for this 

is Ireland, in a similar climatic zone to Great Britain, but in an area of stronger Scandinavian 

cultural influence (Clarke and Ambrosiani 1991, 102-6; Hadley 2009b, 198-203; Hadley 

2009a, 222-3) as demonstrated in textiles from Dublin and other sites around the Irish Sea 

(Pritchard 1992; Heckett 2003; Henry 2004). It is doubtful that they were made in Iceland or 

northern Scandinavia, as these regions are unlikely to have produced wool with δ
2
H and 

δ
18

O values similar to those of York (Figure 8.2). 

Also of interest at York were five textiles of excellent quality identified as possibly specialist 

products: samples 4070 (YCG), a 2/2 chevron twill dyed with lichen purple, which showed 

affinities with Frisian material (Walton 1989, 414-8); and samples 4081, 4082, 4083 and 

4121, all 2/1 diamond twills, which are early examples of a textile type probably to be 

identified with the term haberget which later became widespread (Walton Rogers 2001). 

Significantly, δ
15

N values for 4070 were inconsistent with an origin in Frisia, as defined by 

the 7
th
8

th
 century HSS isotope values. Assuming that these were characteristic of the same 

region in the 9
th
10

th
 centuries, this suggested that the textile was not made of wool from  



 

270 
 

Frisia, though it may well have been made in a Frisian tradition outside the region, possibly 

within one of the communities of Frisian merchants present at a number of early urban 

centres around the North Sea (Walton 1989, 416), its isotope values being consistent with 

samples from York, Newcastle and BKA. Alternatively, the dye used in this textile, lichen 

purple, may indicate an origin in Ireland (Walton 1998), also consistent with isotope results. 

These suggestions were however speculative. Little could be said about the probable origins 

of samples 4081-3 and 4121, as their isotopic composition was consistent with an origin at 

any of the sites tested in mainland Europe, except δ
18

O values for 4081 and 4083 which 

excluded HSS. 

In addition, seven samples of typical textile types were isotopically outlying. Samples 4060b, 

a Z2S plied yarn and 4095, a coarse ZS tabby, had the lowest δ
13
C and highest δ

15
N values 

of the York assemblages, though their δ
2
H and δ

18
O values were not significantly different 

from the median. This may indicate difference in origin (location unknown, as these values 

are unlike any others tested) or alternatively an origin local to York but with unusual farming 

practice. Farming practice has been shown to significantly affect both δ
13
C and δ

15
N in 

modern samples of sheep tissue (Chapter 3). Sample 4060a, a ZS tabby through which 

4060b was sewn, showed isotope values consistent with York, Newcastle and BKA, which 

may make this latter possibility more likely.  

Sample 4123 (2/2 ZS twill in pigmented wool with tannin dye) showed the lowest δ
15
N, δ

2
H 

and δ
18

O values of all York samples. This suggested an origin for the wool raw material in a 

region colder and drier than Iceland (Figure 8.5), for example in northern Scandinavia 

(Figure 8.2). Tannin dyeing on top of natural pigment has been identified in late Norse 

Greenlandic textiles (Walton Rogers 2004, 90). It is therefore interesting that the isotope 

composition of sample 4123 was consistent with a North Atlantic origin. Tannin dying of 

naturally pigmented wool should perhaps be considered more indicative of origin than 

hitherto. An alternative explanation for the highly depleted δ
15

N values of this sample is the 

pattern of diagenesis also potentially observed in sample 4330. However this cannot also 

account for the low values of δ
2
H and δ

18
O, as elemental indicators of diagenesis were not 

outside the acceptable range. 

Samples 4075 (Z/S+Z 2/1 plain twill) and 4094 (ZZ tabby repp) both showed δ
18

O values 

higher than York flock range (Figure 8.5), inconsistent with any other site tested in this study 

for 4075, and consistent only with BKA for 4094. It was therefore unlikely that these samples 

originated in the British Isles, although no suggestion as to their origin can be attempted. 

Finally sample 4085 (ZS 2/1 chevron twill) was an isotopic outlier from York when δ
15

N and 

δ
18

O values were considered in combination. These values were consistent with samples 

from Newcastle, as well as RKH, and may not indicate an exotic origin. 
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8.4.4 Newcastle upon Tyne, 13th16th centuries 

The assemblages from Newcastle included only two samples identified as atypical on 

technical grounds. Sample 3944 (knitted cap with kermes dye in Fine-type fleece) was 

expected to be made of Spanish or French wool (Walton 1981, 200) because the fleece 

type, dye and knitting itself are all unusual for the British Isles in the mid-15
th
 century. There 

is documentary evidence for the import of knitted caps from France to Britain at this period 

(e.g. 'Frenche cappes syngle tarfed [with a turn-up] the dossen xiii.s.iiii.d': Edwards and 

Nevinson 1970), and the fleece type and dye are both associated with high prices. Sample 

3952 (worsted ZZ 2/2 twill), though typical of Great Britain as a whole, is a textile type 

strongly associated with manufacture in East Anglia, and therefore atypical of Newcastle 

(Walton 1981, 205).  

Neither of these samples were, however, isotopically outlying (Figures 8.3, 8.4 and 8.5). 

There was therefore no isotopic evidence that sample 3944 originated outside the British 

Isles, and the origin in Spain previously suggested can be ruled out (Figure 8.2). Either the 

technique of knitting arrived in Britain earlier than previously thought, or the garment 

originated in a region which has a similar climate to that of Great Britain, such as northern 

France (where knitting was established at an earlier stage than in England), northern 

Germany or southern Scandinavia.  

In contrast, two of the very coarsest textiles in this study, identified as sackcloth, samples 

454  and 4547, had very depleted δ
18

O values. In neither of these very similar artefacts was 

there strong amino acid composition evidence for significant decay, so it was unlikely that 

these values were due to diagenesis. Sample 4547 was made of goat hair, while the 

identification for 4546 as wool was tentative: it is therefore possible that both these artefacts 

were made of goat hair, and that it was the difference in species metabolism and/or 

husbandry that caused these outlying values. The question might be resolved by 

comparison to sheep and goat bone collagen or tooth enamel δ
18

O values on samples from 

sites in Newcastle, if necessary using ZooMS (Buckley et al. 2010) to confirm osteological 

species identification. Alternatively, if the species difference were not significant, or if it 

applied only to sample 4547, then it remains possible that one or both of these objects was 

not made of raw material from the British Isles, but potentially from Scandinavia. Coarse 

plied tabbies are a widespread textile type in the later medieval period, probably associated 

with mercantile activity, as packing, wrapping or caulking (Walton 1988). This particular site 

(Queen Street) included material from a Scandinavian ship: it would not be unlikely, 

therefore, for these two textiles to have been Scandinavian in origin. 

8.4.5 Birka, 8th10th centuries 

The BKA material was the most difficult assemblage to interpret of those tested in this study. 

Firstly, the seven samples examined constituted a tiny proportion of the total published 

(Geijer 1938), themselves only 5% of those excavated (E. Andersson Strand, pers. comm.). 
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Further, these samples did not include any unspun wool or yarn, but only finished cloth, so 

the local ‘isotope zone’ could only be tentatively identified. Thirdly, these samples were 

recovered from graves in a cemetery, rather than deposits from a settlement. They were 

therefore: (1) probably biased towards the better quality textiles in use in the settlement at 

the time, and therefore more likely to included non-local objects; and (2) preserved by a 

process of mineral-preservation (in contact with iron or copper alloy objects in the graves) in 

addition to anoxic waterlogging. However AA analysis of the protein composition of these 

samples showed few differences to that of samples from other sites in this study (Chapter 7). 

Previous analyses of the BKA assemblage, on the basis of technical features of textile types, 

concluded that the very high threadcount ZZ diamond twills, here represented by samples 

5169 (ZZ 2/2 diamond twill) and 5170 (ZZ 2/1 diamond twill), were unlikely to be of local 

manufacture. The original analyst suggested that this textile type might be ‘Frisian cloth’, and 

suggested that they originated in Frisia (Geijer 1938, 40-7). A number of alternative 

suggestions for their origin have since been made (Chapter 6), including Syria (Hoffmann 

1964, 227-57; Nockert 1988), the British Isles (Ingstad 1979) and western Norway (Bender 

Jørgensen 1992, 138). All other, coarser, textiles were expected to have been made on site 

from wool from the area around Lake Mälaren.  

All the BKA samples show δ
13
C, δ

15
N, δ

2
H and δ

18
O values broadly intermediate between 

those for material from the British Isles and Frisia. The possibility that any of them originated 

in Syria can therefore be excluded, as their values are consistent with temperate 

environments of north-western Europe, and not with the warmer and drier environment of 

the eastern Mediterranean (Figure 8.2). The suggestion that they might be Frisian in origin 

was next considered. Sample 51 9 had δ
15

N values consistent with a Frisian origin (as so 

far defined by analysis of samples from HSS), but 5170 did not. The possibility that the high-

threadcount, highly elaborate wool twill textiles at this site did not all have the same origin 

has not been previously discussed. The hypothesis of an origin in western Norway, or 

indeed elsewhere, either within or outside Scandinavia, could not be tested without 

comparator samples from these areas.  

In contrast, the single isotopic outlier at BKA was sample 5175 (a coarse twill with pile) 

which had not previously been identified as atypical. Its δ
2
H and δ

18
O values suggested an 

origin in a colder/drier/more continental environment than BKA (Figure 8.2). Piled fabrics 

from Iceland, Ireland and possibly Frisia featured in medieval international trade from the 8
th
 

century onwards (Guðjónsson 1962; cited in Walton 1989). However the isotope values from 

sample 5175 appear to exclude all three of these origins (Figure 8.5). This sample may 

represent an additional movement of piled textiles inside Scandinavia. However, 

confirmation of typical isotope values at BKA, by testing of further textile and bone samples, 

is necessary before this interpretation can be made with confidence. 
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8.4 Conclusions and implications  

This study of 90 samples of medieval wool textiles from five settlements integrated 

established methods of wool textile analysis with isotopic data from the objects’ raw 

materials. The combination of these approaches led to new insights into the origin of 

individual textile finds, textile types, and the nature of textile manufacture, distribution and 

consumption at specific settlements.  

In the majority of samples in this study (63%), established and isotopic methodologies were 

in agreement. Samples with atypical features had non-local isotope values in 4 of 13 cases 

(e.g. 2903, RKH). These were therefore confirmed as originating in a site/area/region with 

both different environment (climate/farming practice) and different textile production. 

Samples with typical technical features showed local isotope values in 53 of 68 cases (e.g. 

4089, YCG). However the interpretation here had to be more subtle: though this could mean 

that the sample was of local manufacture and of local wool, an alternative suggestion, that it 

originated in another site/area/region with similar environment and similar textile production, 

could not be excluded. Thus identifications of atypical textiles can be confirmed using 

isotopic methods, but identifications of typical textiles may always include some material not 

made locally. This uncertainty is likely to be greater at highly networked settlements, 

especially urban sites. Interpretation of isotope data must therefore take into account the 

larger archaeological and historical picture. 

Where methods were not in agreement (27% of samples), potential interpretations were 

more numerous. Samples with atypical technical features showed isotope values within the 

local zone in 9 of 13 cases (e.g. 3944, NBG). This may mean that: (1) typical manufacture 

had wider range of techniques than expected; or (2) there was movement of textile 

techniques and technology; or (3) there was movement of textiles from a site/area/region of 

similar environment but different textile production. Samples with typical technical features 

showed non-local isotope values in 15 of 68 cases (e.g. 4123, YSG). For these, possible 

interpretations included: (1) typical manufacture had narrower range of techniques than 

expected; or (2) there was movement of raw wool independently of the movement of finished 

textiles; or (3) there was movement of textiles from a site/area/region with similar textile 

production but different environment. 

In adding the capability to distinguish ‘a textile from X’ from ‘a textile in the style/technology/ 

technique of X’, isotopic analysis has deepened understanding of the origin and movement 

of textiles. In general, isotopic identification of non-local material was more conservative 

than artefact methods at two locations tested, and less conservative at three. Data 

supported the majority of previous suggestions of textile origin made on the basis of 

technical features of textiles, dye analysis and fleece type identifications. The only one 

definitely refuted was the suggestion that the high quality ZZ diamond twills at BKA might 

originate in the Levant. In the majority of cases, isotope data modified previous proposals: 
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 Tannin-dyeing on top of pigmented wool may be more closely associated with North 

Atlantic origin than previously thought for 9
th
10

th
 century samples from the British 

Isles (sample 4123, YSG). If ‘Frisian cloths’ were made in Frisia, they probably do not 

include 2/1 twills (sample 5170, BKA) but could include 2/2 twills (diamond and 

chevron), both ZS (samples 4337 and 4338, HSS) and ZZ (sample 5169, BKA).  

 Either high-quality knitted garments were being made in Britain by the mid 15
th
 

century, earlier than previously thought, or they were imported from an area with a 

similar climate, such as northern France. Southern France and Spain, the areas of 

origin previously identified, can be discounted (samples 3944 NBG).  

 The Scandinavian type textiles in York (samples 3959 and 4068, YCG and 4125, 

YSG) are very unlikely to have originated in a North Atlantic colony or in northern 

Scandinavia, given the similarity of their isotope composition to material from the 

British Isles, and dissimilarity to material from RKH.  

These results have implications for methods of textile analysis. This was clearest in the RKH 

assemblage, where understanding of origin was not complicated by significant overlap with 

other sites (as for material from the British Isles), or uncertainty regarding the local median 

(as for BKA). At RKH, all material identified as atypical or unknown type was shown to be 

isotopically non-local (n=4). However, three typical textiles were also shown to have isotopic 

composition consistent with non-local origin. It would now be interesting to re-examine these 

objects to see whether they show technical features, perhaps not among those typically 

recorded, which might be proxies for non-Icelandic origin, and then extrapolate these to 

other sites. The same approach might be also be extended to other find types at other sites. 

It is important to state that the light stable isotopic approach used in this study has a number 

of drawbacks. First, since the method relies on differences of environment between origin of 

wool and find site, trade between areas of similar climate (such as that between Britain and 

Flanders: Lloyd 1977) will not be isotopically visible, unless systematic differences in farming 

practice somehow exaggerate the distinction. This method will therefore not be universally 

applicable to all questions of European wool textile trade. 

Second, the sampling strategy of this study was based on technical criteria, such that 

isotopic results are not wholly independent of technical features. The discrepancies between 

technical and isotopic identifications of typical/atypical origin indicated, however, that this is 

likely to overlook samples of typical technical types but non-local origin. Random sampling 

across all periods and areas of a site is therefore recommended, in addition to analysis of 

objects of interest.  

Third, the geographical resolution of the technique is likely to improve as the isotopic effects 

of sheep metabolism and farming become better understood, and as more data on 

geographical variation in isotope values of archaeological material are generated. This 



 

275 
 

should lead to a reduction of the estimated flock range for a site, defined conservatively in 

this study, and consequently to an increase in the potential for identifying non-local material, 

and for estimating its origin.  

Finally, understanding the effects of fibre decay on wool isotope values was very important. 

Significant changes in fibre structure are visible microscopically in archaeological samples 

(e.g. Wilson et al. 2007; Rast-Eicher 2008; Wilson et al. 2010; Kempson et al. 2010). The 

relationship between these changes and diagenesis in isotope values was fundamental to 

confidence in isotope data: wool fibre integrity was therefore a central focus in the 

development of this technique (Chapter 7).  

Future applications of isotopic analysis to provenancing medieval textiles could include: 

 analysis of the other types of 8
th
10

th
 century textiles identified as ‘Frisian cloth’, to 

compare their isotopic composition to those of samples from HSS and other sites in 

the coastal marshes of northern Germany and the Netherlands (Tidow 1995);  

 sampling a greater proportion of the 9
th
10

th
 century assemblage from BKA, to explore 

the relationship between production and import of a complex manufactured product in 

an early urban setting;  

 identifying Hanseatic trade in 13
th
16

th
 century assemblages from Baltic towns (e.g. 

Turku, Tartu, Gdansk: Jahnke 2009), to link documentary and archaeological indices 

of trade more closely, and compare biases in each; 

 identifying wool from Spain in northern European or Italian assemblages of the 

13
th
16

th
 centuries: here isotope analysis might be used to identify samples for aDNA 

testing to examine the development of the Merino breed (Sabatino Lopez 1953; 

Lawson Handley et al. 2007; Chessa et al. 2009; Brandt et al. 2011; Kijas et al. 2012).  

In addition, correlation of microscopic and analytical observations for fibre integrity would be 

useful to improve selection of appropriate samples for analysis. In addition, the potential for 

links between isotope values, pasture type, pasture adequacy and wool fibre diameter 

warrant further investigation.  

Isotopic analysis of wool textiles from medieval deposits has been shown to add 

considerably to current understanding of trade and exchange in this important commodity. It 

must be stressed that the new methodologies currently being piloted (Barrett et al. 2000; 

Orton et al. 2011; Lezzerini et al. 2012; von Holstein et al. in preparation-b) will be of most 

use when combined with existing methods of knowledge. The isotope methodology used in 

this study to examine provenance of textiles could also be developed to apply to other 

proteinaceous raw materials present in the archaeological or historical record, such as 

leather, parchment, silk and animal bone, and thus examine movements of objects made 
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from these materials. Analysis of technical and/or stylistic features of these objects, as for 

textiles, will provide important information on the technological and cultural context in which 

to interpret isotope data. Textile studies are in a position to establish new interdisciplinary 

ways of understanding among the most complex and informative of archaeological artefacts.  
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9. Conclusions 

9.1 Answers to research questions 

This thesis described the development and application of a biochemical provenancing 

method, light stable isotopic analysis of carbon (δ
13

C), nitrogen (δ
15

N), non-exchangeable 

hydrogen (δ
2
H), oxygen (δ

18
O) and sulfur (δ

34
S), to wool textiles from the European Middle 

Ages preserved by anoxic waterlogging. Chapters 24 focused on studies of modern wool 

samples to examine the resolution of the technique in northern Europe, and identify and 

quantify possible confounding factors. Chapter 5 explored the possible confounding effects 

of diagenesis on another isotopic technique based on a radiogenic isotope system 

(
87

Sr/
86

Sr). Chapters 68 focused on archaeological samples, summarising the theoretical 

background to artefactual methods of provenancing in Chapter 6 before combining these 

with light stable isotopic results in Chapters 7 and 8. 

The research questions asked in this thesis were: 

3. Can light stable isotopic analysis identify the origin of samples of archaeological wool?  

4. How can isotopic data can be understood in textile artefactual context? 

The answer to the first was emphatically that it can. However confidence of provenancing 

was affected by: (1) the existence (or otherwise) of comparator data from modern sheep 

tissue samples from the region(s) of interest; (2) the existence (or otherwise) of useful 

isotopic variation between regions of interest; and (3) the expected degree of isotopic 

variation between samples of wool from a single flock, which was probably overestimated in 

this work. In contrast, the effects of degradation during burial (chemical and microbiological) 

proved to be relatively minor for most light stable isotopic data (δ
13
C, δ

15
N, δ

2
H and δ

18
O) 

but significant for 
87

Sr/
86

Sr. 

To answer the second question, isotopic data indicating local/non-local raw material origin 

were considered alongside artefactual data indicating typical/atypical manufacture. Different 

combinations of these results could be read in different ways for individual textiles (Table 

9.1). However, at this stage, it was often impossible to distinguish between alternative 

interpretations of these results for each specific sample. This may be achievable via further 

development of either isotopic or artefactual methods, that is: (1) improvement of resolution 

of isotopic provenancing to better distinguish between sites/areas/regions of relatively similar 

environment and/or husbandry practice(s); and/or (2) reassessment of textile technical 

variables, either by developing new ones or re-interpreting existing ones, to modify 

judgments of the typical/atypical nature of a given textile. It was argued that the latter step 

would be aided by greater theoretical discussion and exploration in the field of textile 

studies, to increase awareness of the potential implications of variable selection on 

interpretative scope. 
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Table 9.1. Possible interpretations of isotopic and artefact provenancing results. 

Isotopic 
composition 

Artefactual 
category 

Interpretation(s) 

Local Typical (1) local manufacture from local wool. 
(2) manufacture of textiles in another site/area/region 

with similar environment and similar textile 
production. 

(3) local manufacture from wool from another 
site/area/region with similar environment. 

(4) movement of local wool to another 
site/area/region with similar textile production. 

Local Atypical (1) local manufacture had wider range of techniques 
than expected, i.e. previous identification of a 
particular technique as ‘atypical’ was incorrect. 

(2) movement of finished textiles manufactured in a 
site/area/region of similar environment but 
different textile production. 

(3) movement of local wool to site/area/region of 
different textile production for manufacture, 
before another movement of finished textiles to 
site/area/region of recovery. 

Non-local Typical (1) local manufacture had narrower range of 
techniques than expected, i.e. previous 
identification of a particular technique as ‘typical’ 
was incorrect 

(2) wool was product of unusual farming practices 
not otherwise represented in the assemblage. 

(3) movement of raw wool produced in a 
site/area/region of different environment towards 
site/area/region of recovery for manufacture. 

Non-local Atypical (4) from a site/area/region with both different 
environment (climate/farming practice) and 
different textile production. 

 

9.2 Commentary on research design 

9.2.1 Strengths 

Interpretation of isotope results from medieval wool textiles was strengthened by the 

inclusion of studies of modern wool in three ways: (1) ascertaining the nature of 

geographical variation in isotope values in the region(s) of interest; (2) establishing the 

degree of isotopic variance due to metabolic, environmental and farming factors within a 

single population of sheep; and (3) finding out the nature and degree of isotopic changes 

expected in degraded wool, and linking these to other measures of fibre integrity.  

Establishing the existence of geographical variation in modern material strengthened 

confidence when the same patterns were found in archaeological material. In addition to the 

δ
13
C, δ

15
N, δ

2
H and δ

18
O data reported in this thesis, and the modern sheep wool 

comparator data examined, a meta-analysis of published δ
13

C and δ
15

N data from medieval 
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archaeological collagen samples from across Europe was carried out (non-systematic data 

collection; data not shown). This work established that even in archaeological material, 

some of the same geographical patterns are evident (e.g. samples from mainland northern 

Europe are slightly more enriched in 
13

C than those from the British Isles; samples from the 

Mediterranean show greater enrichment and greater range than either), which do not appear 

to be affected by chronological changes. 

The examination of isotopic variance in both sheep wool and bone within a given 

environment has implications for the interpretation of work in this thesis and elsewhere. 

Natural isotopic variation within a single group of mammals, constrained by climatic, 

vegetation and animal husbandry factors, has not previously been characterised. However it 

is fundamental to interpretation of mammalian archaeozoological isotope data (Hamilton and 

Thomas 2012; Fisher and Thomas 2012). as for fish data (Barrett et al. 2008; Barrett et al. 

2011; Orton et al. 2011). The difference between these two contexts is that in domesticated 

animals, the isotopic unit is the flock/herd, whereas in (unfarmed) fish, it is a regional 

population. The estimates for intra-flock variability made in this thesis are however 

preliminary and likely to be overestimates, even though they do not take into account inter-

annual variation.  

A second strong point of this thesis was the molecular perspective on diagenesis employed 

in Chapters 4 and 5. This comprised the use of: (1) two different models of keratin 

diagenesis, by experimental burial and high-temperature isothermal hydrous laboratory 

conditions; and (2) elemental and amino acid (AA) measures of composition, in addition to 

δ
13
C, δ

15
N, δ

2
H and δ

18
O isotope data, to characterise the results of these experiments. 

Chapter 4 in particular was parallels studies in other materials (Dobberstein et al. 2009; 

Demarchi et al. unpublished; Tomiak et al. unpublished; Crisp et al. unpublished). The 

inclusion of multiple measures of composition allowed exploration of the possible 

mechanisms behind isotopic change, and the conditions under which these are likely to 

occur. The work on 
87

Sr/
86

Sr indicated the cardinal role of such direct studies of diagenesis 

when applying biomolecular methods for archaeological material. 

Finally, the discussion of the theoretical background of textile provenancing by artefactual 

(technical/technological/stylistic) methods has contributed to the sparse theoretical literature 

in the field of textile studies. This work was prompted by the need to be able to understand 

the relative epistemological bases of isotopic and artefactual modes of analysis and 

interpretation of origin. However this work showed that the identification of provenance in 

archaeological textiles is currently unexamined and unsystematic. The identification of a 

textile as atypical at a site depends on the choice of technical or stylistic variables used to 

characterise the assemblage and develop counts of relative frequency: what has not been 

examined is how the choice of variables (including that of features which are currently not 

systematically recorded) can affect results. In particular, the acquisition of isotopic data 

focused understanding on the difference between the origin of a textile’s raw material and 
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cultural context of its production. In cases where results were unexpected, it is hoped that 

the isotopic data will prompt identification and possibly re-examination of the hypotheses 

underlying artefactual interpretation of provenance. 

9.2.2 Weaknesses 

The interpretation of archaeological isotope data from Iceland and the British Isles was aided 

by the collection of data from modern sheep wool from the same regions. However the data 

from archaeological finds from sites in Sweden and Germany, and that from textile samples 

with outlying isotope values, could not be interpreted with the same confidence. This part of 

the work would have been improved by the inclusion of samples from flocks in Scandinavia 

and mainland Europe, as a minimum, and ideally from all areas of interest in this study 

(Syria, Spain, France, Norway, the Baltic area). This was however beyond the scope of the 

present thesis. Appropriate flocks for sampling, that is those kept without modern feeds, may 

be difficult to identify in some regions, especially in Mediterranean environments (C. Spiteri, 

pers. comm.). A future study of this type should ideally include more than one flock in each 

region, including a second from Iceland. 

Though δ
34

S data has been employed in other studies provenancing sheep tissues (Camin 

et al. 2007; Perini et al. 2009; Zazzo et al. 2011), this experimental approach was not widely 

used in this thesis due to the cost and availability of these analyses. What little δ
34

S data 

was obtained (Escrick group: Chapter 2) suggested that the metabolism of S in sheep wool 

and bone is complex, and dependent on factors which are less well understood than those 

controlling other isotopes. A further study in samples from the EH sheep flock, about which 

considerable details of animal management are known, could be a way of pursuing this. This 

work could provide useful preliminary information on the likely resolution of δ
34

S data 

between sheep flocks, before direct testing of its geographical variation across the study 

area.  

While the single AA δ
13

C data described in Chapter 2 had very interesting implications for 

the relative metabolic origins of Ser and Gly in keratin and collagen, interpretation of this 

data would have been stronger if the samples tested had come from a well-characterised 

flock, rather than a blind control group. This data was obtained at pilot stage, and further 

analyses were not available. However, given the difference between results here for sheep 

and those obtained for humans (Raghavan et al. 2010), analysis of additional material, for 

example from the EH flock, is warranted. 

As discussed above, the inclusion of multiple measures of fibre integrity (elemental, 

molecular and isotopic: Chapters 4 5) was a strength of this thesis. However this data was 

not related to existing methods of characterising fibre integrity, using microscopy (Wilson et 

al. 2010; see also Walton Rogers 2004; Rast-Eicher 2008). Microscopic methods are 

generally more available to textile researchers than are analytical methods. The 

identification of histological correlates of the analytical measures of decay employed in this 
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thesis would be useful to: (1) allow textile specialists to identify samples appropriate for 

isotopic analysis with confidence; and (2) explore the relationships between fibre structural 

change and elemental, molecular and isotopic change. 

The limited number of isotopic analyses available for this thesis meant that few samples 

were tested more than once. At least duplicate analysis is standard in zooarchaeological 

studies even in well-characterised tissues (e.g. Fisher and Thomas 2012; Hamilton and 

Thomas 2012). This meant that the inherent variation isotope value in degraded keratin, and 

within a single textile, was only briefly examined (Chapter 7), so that uncertainty of isotopic 

composition within a single archaeological textile is currently tentatively identified. Though 

this analysis must currently be regarded as preliminary, the data suggested that the 

contribution to error from within-sample variation was relatively minor. More accurate 

characterisation of this factor would however be useful. 

This work did not attempt to pursue an isoscape approach, generating a map of isotope data 

across the study area (West et al. 2010). This approach has been used elsewhere in keratin 

provenancing studies (Ehleringer et al. 2008; Valenzuela et al. 2011) and in archaeological 

material (Coutu 2011). Such model-based approaches used so far have relied on the 

assumption of normality in the data (Wunder 2012), and typically require very widespread 

sampling patterns. Data in the present study could clearly not be described using Gaussian 

statistics, and sampling was highly targeted. For these reasons, a nominal assignment 

approach (Is composition of sample X consistent with location A? Yes/No) was used. 

However the usefulness of this paradigm depends on the selection of target locations. 

Confidence is higher where locations are well defined and highly contrasted (e.g. UK and 

Iceland data) and lower where locations are less defined (e.g. samples not consistent with 

any of the locations sampled) or less clearly differentiated (e.g. Sweden and the British 

Isles).  

The development of a model-based method may not be feasible in archaeological sheep 

tissue in Europe because of:  

 the relative complexity of isotopic patterning across the region (e.g. Figure 8.2) 

compared to the continental USA, due to climatic, geological and vegetation factors 

(Ehleringer et al. 2008; Valenzuela et al. 2011) and also cultural factors (Valenzuela et 

al. 2012), 

 potentially larger error estimates associated with non-Gaussian probability models to 

predict variation in non-normal datasets, 

 the greater time-range of archaeological inquiry, taking into account both inter-annual 

variation and also long-term environmental and/cultural trends (e.g. Fisher and 

Thomas 2012; Hamilton and Thomas 2012). 
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An area of considerable difficulty in developing the nominal approach, however, was how to 

define the local isotope range for a location, given that textile sample groups included 

material expected to be non-local. This was achieved by, firstly, using two different methods 

to define outliers and inliers: (1) median ± range, but here the value of the median was 

calculated including outlying values, and therefore depended strongly on sampling strategy; 

and (2) statistical methods of robust outlier detection. These were less dependent on 

sampling strategy. These two methods were generally in agreement (Chapter 7).  

A second strategy for confirming the local isotopic range at any site is to use independent 

sample sets from a site/area/region to confirm its isotopic range (e.g. Barrett et al. 2008). In 

the present study, these included raw staples and sheep/goat bone collagen samples. 

However neither of these were ideal, because both groups of samples could also include 

non-local material. No raw staples included in this study (n=11) had isotopic composition 

identified as non-local. Collagen from bone samples from the same contexts as the textiles 

at RKH, York, Newcastle and HSS were also analysed for δ
13
C, δ

15
N, δ

2
H and δ

18
O (n=59, 

data not included), and at three sites outliers were identified (RKH: 1 of 7; NBG: 1 of 14; 

NQS: 1 of 15). This data was therefore difficult to use to confirm local isotope zones, 

especially as this process also requires a conversion calculation which is dependent on the 

universality (and relevance to medieval husbandry) of offset data obtained in Chapter 2.  

Published collagen composition data from other research groups can also be used in this 

way (Figure 8. ), but this is currently almost universally restricted to δ
13
C and δ

15
N. 

However, given the usefulness of δ
2
H data in distinguishing between samples from Iceland 

and the British Isles (Chapters 2 and 7), the wider availability of such data from 

archaeological samples would be very interesting for provenancing studies. Gathering this 

dataset would however probably require a separate dedicated study, not least to improve the 

accuracy of δ
2
H and δ

18
O determination in collagen samples, where uncertainty is currently 

much greater than in keratin samples (Chapter 2).  

Finally, the sampling strategy for archaeological textiles used in this study was shown to be 

weak by scientific standards. It was clear that artefactual identifications of local and non-

local material were not always correct. Targeting sampling towards atypical objects therefore 

risks failing to identify non-local samples which are not technically, technologically, or 

stylistically different from the bulk of the material. Alternative strategies include:  

 universal sampling, which is inefficient and destructive, but might be acceptable for a 

pilot study in an assemblage of low profile, at least to explore the risk of Type 2 errors 

(failure to reject a false null hypothesis, in this case that typical textiles are local). 

 random sampling across assemblages, which risks omitting atypical material, and a 

different Type 2 error (in this case that atypical textiles are non-local). 

 a balanced block design, controlling for example for pigmentation, fleece type, age of 

sample, effects of pre-burial processing, or AA composition. This method would 
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increase confidence in the robustness of isotopic data to these potential confounding 

factors, and would probably be worth pursuing in a low profile assemblage as a 

preliminary part of further studies.  

Many of these weaknesses (definition of local isotope zone, archaeological sampling 

strategy, requirements for duplicates, insufficient background data to understand regional 

variation) could be addressed by careful design of future studies applying isotope analysis to 

modern sheep wool and archaeological textiles. This data will allow interpretation of the data 

in this thesis with greater confidence. 

9.3 Contributions 

9.3.1 To scientific methods in archaeology 

This study applied a biomolecular provenancing method to objects from a relatively recent 

period of human development, from which both historical and archaeological evidence is 

available. These other sources of information provided a framework in which the scientific 

data could be understood, for example regarding the size and nature of the settlements 

where samples were found, and the probable origin of certain samples. Had δ
13
C, δ

15
N, δ

2
H 

and δ
18

O results in archaeological samples been widely affected by diagenesis, for example, 

this would have been evident. Thus, developing and testing a new method in a historical 

period (e.g. Orton et al. 2011; Lamb et al. 2012) is an advantage over doing so initially in a 

prehistoric period, where potentially misleading results may be less readily identifiable. 

This thesis established that light stable isotopic analysis can be used to provenance 

archaeological artefacts composed of proteinaceous animal tissues. Though data has so far 

only been obtained for sheep wool and bone, important potential applications include studies 

of the origins of leather, silk, antler, feather, fur and parchment. This work established that 

these studies will need to include observation of: (1) modern baseline isotopic trends in the 

region(s) in question; (2) modern inherent variation in isotopic composition within the basic 

unit of animal population, however defined; (3) data from archaeological samples of a 

comparator tissue, element or species to confirm the existence of isotope trends and 

variance in archaeological material independently; and (4) direct testing of the effects of 

diagenesis on the material of interest. The epistemological gap between scientific and 

artefactual approaches to empirical data will also be relevant to such studies.  

9.3.2 To textile studies  

This study has provided the first opportunity for testing hypotheses of origin based on 

technical, technological and stylistic analysis of medieval wool textiles. This has been useful 

for, firstly, understanding of origin of particular textile samples, and secondly, exploring how 

these hypotheses have been constructed. 
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In the first case, results in this study have made a real contribution to the debate over the 

nature and origin of ‘Frisian cloth’ (Chapter 8). Though no definite conclusions can be 

reached, a number of previously-suggested hypotheses (made in Syria, made in Frisia, 

made in Norway) have been evaluated and some have been rejected (composition was not 

consistent with origin in a Mediterranean climate; only one sample had composition 

consistent with Frisian origin, at least as so far defined). Testing of additional material from 

BKA and other highly-networked proto-urban sites, as well as from sites in putative regions 

of origin, should help further address this question. The same isotopic methodology should 

be able to make a useful contribution to questions regarding long distance movements of 

raw wool and/or textiles between western and eastern Europe (Russia: Nahlik 1976; or the 

Baltic region: Jahnke 2009), or northern and southern Europe (England and Flanders to/from 

Spain and Italy, looking for archaeological correlates of the movements described in Chorley 

1988; Munro 2005). 

In the second case, isotopic analysis clearly focused attention on the difference between the 

location of production of the raw material and that of the finished textile, and provided a clear 

framework for interpretation (Table 9.1). The methods used to identify the location of 

production of a textile are currently based on a frequency analysis of a number of standard 

variables, which are then interpreted in context. This process depends on the selection of 

variables, which can differ between analysts and sites, at least partly in response to the 

nature of the assemblage (Chapter 6). Results from this study suggested that the most 

appropriate variables to differentiate local from non-local material may not always have been 

selected (Chapter 8). It was also suggested that additional features of textiles not currently 

measured (or only measured qualitatively) could be investigated if they show a correlation 

with isotopic indicators of origin.  

9.3.3 To other research fields  

Results from Chapters 24 are readily applicable to non-archaeological fields. Analyses 

reported in Chapters 2 and 3 made a useful contribution to the literature on bulk isotopic 

composition of domesticate tissues and the relative importance of metabolic, farming 

practice, dietary and climatic inputs. The archaeological results from RKH and BKA reported 

in Chapter 7, in addition to the Icelandic samples in Chapter 3, add significantly to the body 

of isotopic data from Scandinavia, which is as yet relatively sparse (see Piasentier et al. 

2003 and references in Chapter 8). The isotopic patterns associated with sex (Chapter 2: 

δ
15
N and δ

18
O depleted and δ

2
H enriched in males compared to females) were without 

reported precedent. The very striking differences in the δ
13

C values of Ser/Gly compared to 

other AAs in sheep collagen and keratin suggested that further single AA δ
13

C studies of 

routing to these tissues in other species of herbivorous mammal and/or sheep breeds would 

be informative.  
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Keratin δ
2
H and δ

18
O isotopic methodologies are currently well developed compared to such 

measurements in collagen. However the latter tissue is more important in archaeological 

studies because of its more frequent preservation. Results in Chapters 2 and 3 indicate that 

δ
2
H and δ

18
O measurements would be useful indicators of the geographic origin of sheep 

bone. Further research to strengthen the precision and comparability of these 

measurements, such as the development of inter-laboratory collagen standards, and 

optimisation of collagen preparation protocols, is therefore important. 

The investigations of diagenesis reported in Chapters 4, 5 and 7 have implications for 

establishing the reliability of isotopic analysis of industrial, forensic and archaeological hair 

samples. The AA composition data used in these investigations (Chapters 4 and 7) were an 

improvement on previous methods of assessing sample integrity based only on C:N atomic 

ratio. Comparison of preparative washing methods for 
87

Sr/
86

Sr analysis provided 

information on the binding sites of Sr in the wool fibre (Chapter 5). The molecular 

perspective of these chapters provided a useful link to proteomic investigations of keratinous 

tissues (Clerens et al. 2010; Dyer et al. 2010; Solazzo et al. 2011; Thomas et al. 2012; 

Plowman et al. 2012). Useful future work includes the identification of histological correlates 

for hydrolytic degradation by microscopy (Wilson et al. 2010). 

Though not closely linked, this set of ideas indicates that the research foci of archaeology 

can be a useful adjunct to more conventional approaches in mammalian ecology and protein 

science. Though sheep wool, as an important industrial product, has been widely studied 

from some perspectives (e.g. AA demand: Liu et al. 2000; genetic constraints of yield: Safari 

et al. 2005; proteome: Plowman et al. 2012), it has been relatively little used in ecological 

studies of bulk isotopes (compared to cattle hair; see Chapter 3), or in single amino acid 

isotope work (Chapter 2). Analysis of keratin has been generally overlooked in 

bioarchaeology in favour of analysis of collagen and tooth dentine, entirely understandably. 

This situation contrasts strongly with modern ecological research which has generated little 

data on these tissues, as they cannot be sampled non-invasively. Relating keratin and 

collagen metabolic behaviour (Chapter 2) is therefore an important step towards linking 

these bodies of research. This thesis has shown that combining ecological, diagenetic and 

archaeological research foci can lead to new and useful perspectives on organic raw 

materials of considerable industrial importance today and in the past. 
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Appendix 3.1. Metabolic parameters, δ
13

C, δ
15

N, δ
18

O, δ
2
H results and C:Natom ratios for animals from UK Seaton Ross, UK Tollesbury and Iceland 

Kalmanstunga flocks. For animals measured in triplicate (indicated by -ave affixed to sample ID), arithmetic mean is given. See Appendix 3.2 for full triplicate 
data. M = male, F= female, C = castrate. 

ID Flock Breed Sex Age Lambed? 
Main fleece 

colour 
δ

13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:Natom 

2368-70 UK Seaton Ross Shetland F Adult Empty white -27.46 11.97 -103 11.07 3.49 

2349 UK Seaton Ross Shetland F Adult Empty brown -27.30 12.03 -105 11.09 3.55 

2353 UK Seaton Ross Shetland F Adult Empty cream -27.26 11.40 -111 11.79 3.48 

2354 UK Seaton Ross Shetland F Adult Lambed white -27.07 12.01 -109 11.62 3.47 

2359ave UK Seaton Ross Shetland F Adult Lambed white -27.13 11.88 -111 11.90 3.49 

2363 UK Seaton Ross Shetland F Adult Lambed black -27.68 12.85 -103 10.83 3.59 

2350 UK Seaton Ross Shetland F Yearling Empty cream -27.14 11.79 -111 12.06 3.53 

2351 UK Seaton Ross Shetland F Yearling Empty black -27.60 11.36 -104 11.23 3.62 

2355 UK Seaton Ross Shetland F Yearling Empty brown -27.28 12.22 -109 11.76 3.52 

2365 UK Seaton Ross Shetland M Adult - tan -26.86 12.30 -105 12.27 3.55 

2367 UK Seaton Ross Shetland M Adult - white -27.09 12.60 -103 12.32 3.51 

2390ave UK Seaton Ross Wensleydale F Adult Empty white -27.30 11.21 -106 11.93 3.46 

2586 UK Tollesbury Shetland F Adult Empty grey -26.39 7.45 -94 11.99 3.51 

2593 UK Tollesbury Shetland F Adult Empty tan -25.94 7.36 -89 12.24 3.53 

2591ave UK Tollesbury Shetland F Adult Empty grey -25.47 7.90 -95 13.48 3.50 

2585ave UK Tollesbury Shetland F Adult Empty black -26.68 8.56 -98 12.56 3.57 

2592 UK Tollesbury Shetland F Yearling Empty cream -25.98 8.25 -96 12.62 3.49 

2595 UK Tollesbury Shetland C Yearling - brown -25.77 8.21 -87 13.47 3.53 

2601 UK Tollesbury Shetland F Adult Lambed grey -25.62 7.41 -93 11.68 3.56 

2
9

5
 

http://www.kvisoft.com/pdf-merger/
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Appendix 3.1 continued. 

ID Flock Breed Sex Age Lambed? 
Main fleece 

colour 
δ

13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:Natom 

2602 UK Tollesbury Shetland F Adult Lambed black -25.94 7.59 -99 12.17 3.57 

2603ave UK Tollesbury Shetland F Adult Lambed cream -25.61 7.75 -96 13.33 3.50 

2588ave UK Tollesbury North Ronaldsay F Adult Empty white -25.47 8.21 -90 12.90 3.53 

2589 UK Tollesbury North Ronaldsay F Adult Empty grey -25.64 8.05 -92 12.20 3.49 

2590 UK Tollesbury North Ronaldsay F Adult Empty white -26.18 7.78 -89 12.89 3.48 

2587 UK Tollesbury North Ronaldsay F Yearling Empty white -25.66 8.97 -91 14.15 3.51 

2594 UK Tollesbury North Ronaldsay F Yearling Empty white -25.70 8.65 -92 14.15 3.52 

2596 UK Tollesbury North Ronaldsay M Yearling - white -25.51 8.98 -101 13.85 3.52 

2597 UK Tollesbury North Ronaldsay M Yearling - white -25.87 8.52 -97 13.94 3.55 

2599ave UK Tollesbury North Ronaldsay M Adult - white -25.78 9.19 -94 13.66 3.57 

2600 UK Tollesbury North Ronaldsay F Adult Lambed cream -26.10 7.81 -96 12.56 3.52 

2604 UK Tollesbury North Ronaldsay F Adult Lambed tan -24.97 8.83 -94 14.89 3.50 

2605 UK Tollesbury North Ronaldsay F Adult Lambed white -25.57 7.91 -92 13.58 3.50 

3650 Iceland 
Kalmanstunga 

Icelandic 
F 

Adult Pregnant cream -25.09 2.80 -113 11.31 3.41 

3651 Iceland 
Kalmanstunga 

Icelandic 
F 

Adult Pregnant cream -25.35 1.45 -113 10.27 3.41 

3652 Iceland 
Kalmanstunga 

Icelandic 
F 

Adult Pregnant cream -25.87 3.77 -109 10.87 3.40 

3653 Iceland 
Kalmanstunga 

Icelandic 
F 

Adult Pregnant cream -25.30 3.18 -115 10.33 3.43 

2
9

6
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Appendix 3.1 continued. 

ID Flock Breed Sex Age Lambed? 
Main fleece 

colour 
δ

13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:Natom 

3654 Iceland 
Kalmanstunga 

Icelandic F Adult Pregnant black -26.31 3.09 -115 10.54 3.51 

3655 Iceland 
Kalmanstunga 

Icelandic M Adult - brown -25.86 4.77 -119 9.14 3.45 

3656 Iceland 
Kalmanstunga 

Icelandic F Yearling Empty cream -25.77 2.37 -109 12.01 3.42 

3657 Iceland 
Kalmanstunga 

Icelandic M Adult - cream -26.44 4.69 -116 10.30 3.42 

3658 Iceland 
Kalmanstunga 

Icelandic F Yearling Empty cream -25.12 4.44 -101 11.30 3.41 

3659 Iceland 
Kalmanstunga 

Icelandic F Yearling Empty cream -26.19 2.25 -107 11.18 3.43 

 

2
9

7
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Appendix 3.2. Metabolic parameters, δ
13

C, δ
15

N, δ
18

O, δ
2
H results and C:Natom ratios for all animals measured in triplicate. M = male, F= female. See 

Appendix 3.1 for mean data. 

ID Flock Breed Sex Age Lambed? 
Main fleece 

colour 
Section δ

13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:Natom 

2591-1 UK Tollesbury Shetland F Adult Empty grey Shoulder -25.46 7.74 -93 12.98 3.52 

2591-2 UK Tollesbury Shetland F Adult Empty grey Shoulder -25.65 7.95 -95 13.76 3.51 

2591-3 UK Tollesbury Shetland F Adult Empty grey Shoulder -25.30 8.02 -97 13.71 3.48 

2603-1 UK Tollesbury Shetland F Adult Lambed cream Shoulder -25.51 7.67 -100 13.15 3.49 

2603-2 UK Tollesbury Shetland F Adult Lambed cream Shoulder -25.71 7.82 -88 12.75 3.51 

2603-3 UK Tollesbury Shetland F Adult Lambed cream Shoulder -25.62 7.75 -99 14.08 3.49 

2588-1 UK Tollesbury North 
Ronaldsay 

F Adult Empty white Shoulder -25.51 8.14 -89 12.37 3.53 

2588-2 UK Tollesbury North 
Ronaldsay 

F Adult Empty white Shoulder -25.27 8.11 -92 12.98 3.52 

2588-3 UK Tollesbury North 
Ronaldsay 

F Adult Empty white Shoulder -25.64 8.38 -89 13.33 3.56 

2599-1 UK Tollesbury North 
Ronaldsay 

M Adult N/A white Shoulder -25.65 9.23 -89 13.63 3.66 

2599-2 UK Tollesbury North 
Ronaldsay 

M Adult N/A white Shoulder -25.85 9.08 -101 13.19 3.53 

2599-3 UK Tollesbury North 
Ronaldsay 

M Adult N/A white Shoulder -25.84 9.27 -93 14.15 3.52 

2585-1 UK Tollesbury Shetland F Adult Empty black Shoulder -26.66 8.50 -100 12.85 3.56 

2585-2 UK Tollesbury Shetland F Adult Empty black Shoulder -26.72 8.60 -89 12.23 3.58 

2585-3 UK Tollesbury Shetland F Adult Empty black Shoulder -26.67 8.58 -99 12.58 3.59 

 

2
9

8
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Appendix 3.2 continued. 

ID Flock Breed Sex Age Lambed? 
Main fleece 

colour 
Section δ

13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:Natom 

2359-1 UK Seaton Ross Shetland F Adult Lambed white Shoulder -27.16 11.53 -112 11.92 3.49 

2359-2 UK Seaton Ross Shetland F Adult Lambed white Shoulder -27.17 11.97 -109 11.79 3.49 

2359-3 UK Seaton Ross Shetland F Adult Lambed white Shoulder -27.06 12.15 -113 11.99 3.47 

2390-1 UK Seaton Ross Wensleydale F Adult Empty white Shoulder -27.51 11.38 -105 11.98 3.47 

2390-2 UK Seaton Ross Wensleydale F Adult Empty white Shoulder -27.23 11.05 -105 12.33 3.43 

2390-3 UK Seaton Ross Wensleydale F Adult Empty white Shoulder -27.17 11.20 -109 11.49 3.48 

2368 UK Seaton Ross Shetland F Adult Empty white Shoulder -27.52 12.08 -104 11.08 3.48 

2369 UK Seaton Ross Shetland F Adult Empty white Flank -27.41 11.92 -103 11.07 3.50 

2370 UK Seaton Ross Shetland F Adult Empty white Britch -27.44 11.90 -103 11.05 3.50 

 

 

2
9

9
 



Appendix 4.1. Experimentally buried samples: AA concentrations (pmol mg
-1

), % AA content, AA racemisation and isotopic composition.

ID Environment Years buried Dyed Pigmented RP-HPLC run [Asx] [Glx] [Ser] [L-Thr]

2876u.1 Marine sediment 3 N N H316 385568 713718 575294 397808

2876u.2 Marine sediment 3 N N H316 401882 749394 604620 417711

2876m.1 Marine sediment 3 Y N H316 382949 725066 625213 393860

2876m.2 Marine sediment 3 Y N H316 386484 740837 633553 401609

2878u.1 Fenland bog 2 N N H316 378171 719975 598715 390406

2878u.2 Fenland bog 2 N N H316 443258 849285 701750 458697

2877m.1 Fenland bog 1 Y N H316 411494 774771 656271 419220

2877m.2 Fenland bog 1 Y N H316 405005 766027 648712 414646

2884u.1 Raised bog 8 N N H316 400628 761445 628647 410319

2884u.2 Raised bog 8 N N H316 423835 809526 663016 432844

2884m.1 Raised bog 8 Y N H316 416209 772963 646406 408787

2884m.2 Raised bog 8 Y N H316 507231 947956 787266 501039
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Appendix 4.1 continued.

ID [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu] [Ile] [Asx]% [Glx]% [Ser]% [L-Thr]%

2876u.1 463416 375000 359556 114733 383566 158297 530168 232810 8.12% 15.04% 12.12% 8.38%

2876u.2 507813 389313 368098 118118 398983 163909 550622 245005 8.08% 15.07% 12.16% 8.40%

2876m.1 491702 376088 348835 139665 384132 162278 530069 232336 7.89% 14.94% 12.88% 8.12%

2876m.2 515874 378209 347711 140531 383077 163522 537262 235145 7.85% 15.05% 12.87% 8.16%

2878u.1 482948 383083 328821 159682 374536 162070 524373 225667 7.91% 15.06% 12.52% 8.16%

2878u.2 573483 441014 374614 186404 438951 187278 614401 263715 7.93% 15.19% 12.55% 8.20%

2877m.1 529217 411849 355472 165324 407656 178571 568683 243958 7.94% 14.96% 12.67% 8.09%

2877m.2 538334 405941 351464 163161 404153 175993 563228 242026 7.89% 14.92% 12.63% 8.08%

2884u.1 487624 403015 343569 194182 384375 171368 553371 236284 7.97% 15.14% 12.50% 8.16%

2884u.2 524275 421034 363114 203841 412395 178519 586212 250135 7.96% 15.21% 12.46% 8.13%

2884m.1 546878 408995 360947 179478 407116 184357 578197 243588 7.98% 14.83% 12.40% 7.84%

2884m.2 675349 491599 431916 217855 489548 222891 706048 297336 8.00% 14.94% 12.41% 7.90%
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Appendix 4.1 continued.

ID [Gly]% [L-Arg]% [Ala]% [Tyr]% [Val]% [Phe]% [Leu]% [Ile]% Asx DL Glx DL Ser DL

2876u.1 9.77% 7.90% 7.58% 2.42% 8.08% 3.34% 11.17% 4.91% 0.094 0.051 0.023

2876u.2 10.21% 7.83% 7.40% 2.38% 8.03% 3.30% 11.08% 4.93% 0.097 0.053 0.023

2876m.1 10.13% 7.75% 7.19% 2.88% 7.92% 3.34% 10.92% 4.79% 0.098 0.054 0.030

2876m.2 10.48% 7.68% 7.06% 2.85% 7.78% 3.32% 10.91% 4.78% 0.097 0.055 0.030

2878u.1 10.10% 8.01% 6.88% 3.34% 7.83% 3.39% 10.97% 4.72% 0.091 0.051 0.014

2878u.2 10.26% 7.89% 6.70% 3.33% 7.85% 3.35% 10.99% 4.72% 0.090 0.052 0.014

2877m.1 10.22% 7.95% 6.86% 3.19% 7.87% 3.45% 10.98% 4.71% 0.094 0.051 0.015

2877m.2 10.48% 7.91% 6.84% 3.18% 7.87% 3.43% 10.97% 4.71% 0.091 0.051 0.015

2884u.1 9.70% 8.02% 6.83% 3.86% 7.64% 3.41% 11.01% 4.70% 0.086 0.048 0.013

2884u.2 9.85% 7.91% 6.82% 3.83% 7.75% 3.35% 11.01% 4.70% 0.085 0.049 0.013

2884m.1 10.49% 7.85% 6.92% 3.44% 7.81% 3.54% 11.09% 4.67% 0.092 0.052 0.015

2884m.2 10.65% 7.75% 6.81% 3.43% 7.72% 3.51% 11.13% 4.69% 0.091 0.052 0.014
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Appendix 4.1 continued.

ID Ala DL Tyr DL Val DL Phe DL Leu DL Ile DL δ
13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:NatomISOT

2876u.1 0.063 0.042 0.019 0.039 0.050 0.022 -26.00 4.25 -113.3 11.06 3.54

2876u.2 0.053 0.040 0.019 0.040 0.050 0.024 - - - - -

2876m.1 0.056 0.045 0.021 0.043 0.052 0.023 -26.07 3.58 -115.3 11.58 3.59

2876m.2 0.049 0.041 0.021 0.043 0.051 0.025 - - - - -

2878u.1 0.038 0.039 0.020 0.039 0.047 0.024 -26.30 3.94 -108.1 10.83 3.51

2878u.2 0.032 0.038 0.020 0.040 0.050 0.028 - - - - -

2877m.1 0.043 0.037 0.020 0.040 0.048 0.025 -26.11 4.56 -109.0 11.72 3.50

2877m.2 0.039 0.037 0.020 0.040 0.048 0.026 - - - - -

2884u.1 0.039 0.039 0.021 0.037 0.044 0.024 -25.85 4.22 -107.9 11.27 3.53

2884u.2 0.039 0.038 0.020 0.037 0.048 0.028 - - - - -

2884m.1 0.042 0.037 0.020 0.039 0.048 0.024 -25.96 4.44 -112.5 11.31 3.54

2884m.2 0.034 0.036 0.020 0.040 0.047 0.025 - - - - -
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Appendix 4.2. Isothermally heated samples: AA concentrations (pmol mg
-1

), % AA content, AA racemisation, elemental composition and isotopic composition.

ID RP-HPLC run Sample Temperature/°C Time/h [Asx] [Glx] [Ser] [L-Thr] [L-His]

1402588030h G483 2588 0 0 962454 1905599 1681200 1072781 137529

1402588040h G483 2588 0 0 875082 1713415 1501549 942516 117600

Control2588-01 H391 2588 0 0 453803 786518 583010 494189 0

Control2588-02 H391 2588 0 0 354308 595635 480579 399748 0

802588120-01 H391 2588 80 120 416534 729419 494781 441504 0

802588120-02 H391 2588 80 120 381062 670216 463177 414972 0

802588720-01 H391 2588 80 720 422838 780830 450450 438723 0

802588720-02 H391 2588 80 720 323840 645817 629534 514751 0

802588720-02 H420 2588 80 720 543871 1184485 885192 599358 57623

8025881440-01 H420 2588 80 1440 538783 1212203 761539 555279 56180

8025881440-02 H420 2588 80 1440 517928 1125411 749513 554506 56721

1102588120-01 H391 2588 110 120 267038 632223 275592 305366 0

1102588120-02 H391 2588 110 120 352669 832031 427374 465538 0

1102588240-01 H391 2588 110 240 117633 352623 144193 183041 0

1102588240-02 H391 2588 110 240 237087 664748 218151 286078 0

1102588480-01 H391 2588 110 480 187422 641824 151663 243857 0

1102588480-02 H391 2588 110 480 124964 426192 96250 155351 0

140258801-01 H391 2588 140 1 249126 436560 340665 267860 0

140258801-01 H391 2588 140 1 347235 586454 448979 375227 0

140258801-02 H391 2588 140 1 357872 688902 464688 369808 0

140258801-02 H391 2588 140 1 454894 845812 557332 472185 0

140258802-01 H391 2588 140 2 271423 559684 323276 248609 0

140258802-01 H391 2588 140 2 473666 947828 529943 436465 0

140258802-02 H391 2588 140 2 240148 517605 252772 231505 0

140258802-02 H391 2588 140 2 528770 1172337 625512 520270 0

140258804-01 H391 2588 140 4 211965 414097 250352 237445 0

140258804-02 H391 2588 140 4 460442 849616 602240 550309 0

140258806-01 H391 2588 140 6 438560 822145 572178 556380 0

140258806-02 H391 2588 140 6 501097 981865 684475 660395 0

140258808-01 H391 2588 140 8 153570 325408 195517 202345 0

140258808-02 H391 2588 140 8 95968 207600 122179 132025 0
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Appendix 4.2 continued.

ID [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu] [Ile] [Asx] % [Glx] % [Ser] %

1402588030h 1398897 989013 790847 421248 969891 359138 1303579 597489 8.30% 16.43% 14.49%

1402588040h 1235970 878299 703632 327330 867404 322032 1164254 541094 8.49% 16.62% 14.56%

Control2588-01 46717 467671 303806 298738 465668 173293 724719 366731 9.66% 16.74% 12.41%

Control2588-02 82872 365239 276948 295283 371771 144662 573105 252048 9.26% 15.56% 12.56%

802588120-01 55345 439748 305282 221870 437879 147768 813380 336670 9.47% 16.58% 11.24%

802588120-02 54238 415131 278019 231578 407493 144395 818559 328611 9.09% 15.99% 11.05%

802588720-01 53683 431646 333179 101853 446371 143829 784074 329830 9.87% 18.22% 10.51%

802588720-02 408701 514264 393670 158265 471841 205543 816945 296630 6.66% 13.27% 12.94%

802588720-02 627205 578864 490362 68068 584164 189816 817206 383654 8.46% 18.42% 13.76%

8025881440-01 623299 557913 504941 91688 582989 200866 863834 381942 8.45% 19.02% 11.95%

8025881440-02 707382 535564 498488 105071 569966 213961 841014 364260 8.22% 17.85% 11.89%

1102588120-01 50359 326296 294271 79063 411203 164117 699601 307912 7.66% 18.13% 7.90%

1102588120-02 66887 463963 378849 130350 513010 166202 828692 368060 7.79% 18.37% 9.44%

1102588240-01 23313 212818 182564 98179 260982 119847 589978 248405 5.07% 15.19% 6.21%

1102588240-02 46628 377060 333580 117195 436904 151091 765417 335006 6.60% 18.51% 6.07%

1102588480-01 8392 355911 295895 126732 405338 134597 727363 330122 5.76% 19.73% 4.66%

1102588480-02 23951 247534 225718 119005 323389 142131 643204 278431 4.88% 16.66% 3.76%

140258801-01 102523 264077 208153 126200 266978 120680 417927 168912 9.21% 16.14% 12.59%

140258801-01 79856 353118 270567 172146 364061 139132 626306 249316 9.49% 16.03% 12.27%

140258801-02 115210 362447 281049 91992 363767 124797 507905 223880 9.97% 19.19% 12.94%

140258801-02 88182 457996 363503 145975 465886 156641 711790 322390 9.92% 18.45% 12.16%

140258802-01 82300 274224 217265 66914 272783 95365 400766 169403 10.02% 20.67% 11.94%

140258802-01 87295 469735 354246 134936 477711 161688 854593 336804 9.88% 19.77% 11.05%

140258802-02 57416 272978 206253 82771 247950 79654 401781 164882 9.67% 20.85% 10.18%

140258802-02 108089 561465 402092 174821 556907 185341 1000072 395750 9.33% 20.68% 11.03%

140258804-01 49361 265185 213753 90107 260061 84338 427801 178905 8.77% 17.12% 10.35%

140258804-02 116202 560991 444353 264273 554244 194487 854361 358330 8.77% 16.19% 11.47%

140258806-01 104415 566012 392309 191594 633461 269664 1145267 474416 7.83% 14.68% 10.22%

140258806-02 125200 611893 466961 249684 676176 228959 1101055 450926 8.18% 16.03% 11.17%

140258808-01 31089 225123 178278 98657 222860 73802 451721 172081 7.29% 15.46% 9.29%

140258808-02 21458 158376 125903 52777 136910 50623 286447 109515 7.15% 15.48% 9.11%
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Appendix 4.2 continued.

ID [L-Thr] % [L-His] % [Gly] % [L-Arg] % [Ala] % [Tyr] % [Val] % [Phe] % [Leu] % [Ile] %

1402588030h 9.25% 1.19% 12.06% 8.53% 6.82% 3.63% 8.36% 3.10% 11.24% 5.15%

1402588040h 9.14% 1.14% 11.99% 8.52% 6.82% 3.17% 8.41% 3.12% 11.29% 5.25%

Control2588-01 10.52% 0.00% 0.99% 9.96% 6.47% 6.36% 9.91% 3.69% 15.43% 7.81%

Control2588-02 10.45% 0.00% 2.17% 9.54% 7.24% 7.72% 9.71% 3.78% 14.98% 6.59%

802588120-01 10.03% 0.00% 1.26% 9.99% 6.94% 5.04% 9.95% 3.36% 18.48% 7.65%

802588120-02 9.90% 0.00% 1.29% 9.90% 6.63% 5.52% 9.72% 3.44% 19.53% 7.84%

802588720-01 10.24% 0.00% 1.25% 10.07% 7.77% 2.38% 10.42% 3.36% 18.30% 7.70%

802588720-02 10.58% 0.00% 8.40% 10.57% 8.09% 3.25% 9.70% 4.22% 16.79% 6.10%

802588720-02 9.32% 0.90% 9.75% 9.00% 7.62% 1.06% 9.08% 2.95% 12.71% 5.97%

8025881440-01 8.71% 0.88% 9.78% 8.75% 7.92% 1.44% 9.15% 3.15% 13.55% 5.99%

8025881440-02 8.80% 0.90% 11.22% 8.50% 7.91% 1.67% 9.04% 3.39% 13.34% 5.78%

1102588120-01 8.76% 0.00% 1.44% 9.36% 8.44% 2.27% 11.79% 4.71% 20.06% 8.83%

1102588120-02 10.28% 0.00% 1.48% 10.24% 8.36% 2.88% 11.33% 3.67% 18.29% 8.13%

1102588240-01 7.89% 0.00% 1.00% 9.17% 7.87% 4.23% 11.25% 5.16% 25.42% 10.70%

1102588240-02 7.96% 0.00% 1.30% 10.50% 9.29% 3.26% 12.16% 4.21% 21.31% 9.33%

1102588480-01 7.50% 0.00% 0.26% 10.94% 9.10% 3.90% 12.46% 4.14% 22.36% 10.15%

1102588480-02 6.07% 0.00% 0.94% 9.67% 8.82% 4.65% 12.64% 5.56% 25.14% 10.88%

140258801-01 9.90% 0.00% 3.79% 9.76% 7.69% 4.66% 9.87% 4.46% 15.45% 6.24%

140258801-01 10.25% 0.00% 2.18% 9.65% 7.39% 4.70% 9.95% 3.80% 17.12% 6.81%

140258801-02 10.30% 0.00% 3.21% 10.10% 7.83% 2.56% 10.13% 3.48% 14.15% 6.24%

140258801-02 10.30% 0.00% 1.92% 9.99% 7.93% 3.18% 10.16% 3.42% 15.53% 7.03%

140258802-01 9.18% 0.00% 3.04% 10.13% 8.02% 2.47% 10.07% 3.52% 14.80% 6.26%

140258802-01 9.10% 0.00% 1.82% 9.80% 7.39% 2.81% 9.96% 3.37% 17.82% 7.02%

140258802-02 9.32% 0.00% 2.31% 11.00% 8.31% 3.33% 9.99% 3.21% 16.18% 6.64%

140258802-02 9.18% 0.00% 1.91% 9.90% 7.09% 3.08% 9.82% 3.27% 17.64% 6.98%

140258804-01 9.82% 0.00% 2.04% 10.97% 8.84% 3.73% 10.75% 3.49% 17.69% 7.40%

140258804-02 10.48% 0.00% 2.21% 10.69% 8.47% 5.03% 10.56% 3.71% 16.28% 6.83%

140258806-01 9.93% 0.00% 1.86% 10.11% 7.01% 3.42% 11.31% 4.82% 20.45% 8.47%

140258806-02 10.78% 0.00% 2.04% 9.99% 7.62% 4.08% 11.04% 3.74% 17.97% 7.36%

140258808-01 9.61% 0.00% 1.48% 10.69% 8.47% 4.69% 10.59% 3.51% 21.46% 8.17%

140258808-02 9.84% 0.00% 1.60% 11.81% 9.39% 3.93% 10.21% 3.77% 21.35% 8.16%
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Appendix 4.2 continued.

ID Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

1402588030h 0.080 0.045 0.007 0.041 0.035 0.039 0.015 0.039 0.047 0.027

1402588040h 0.080 0.045 0.008 0.040 0.030 0.034 0.016 0.041 0.046 0.027

Control2588-01 0.076 0.029 0.008 0.074 0.029 0.022 0.012 0.027 0.003 0.346

Control2588-02 0.076 0.030 0.009 0.058 0.085 0.034 0.012 0.029 0.008 0.199

802588120-01 0.107 0.028 0.024 0.075 0.046 0.032 0.012 0.042 0.006 0.321

802588120-02 0.108 0.028 0.025 0.085 0.034 0.030 0.014 0.040 0.002 0.377

802588720-01 0.192 0.033 0.030 0.074 0.071 0.055 0.018 0.057 0.003 0.243

802588720-02 0.191 0.040 0.048 0.051 0.033 0.064 0.027 0.153 0.012 0.055

802588720-02 0.185 0.050 0.039 0.039 0.041 0.041 0.022 0.051 0.043 0.022

8025881440-01 0.235 0.061 0.049 0.044 0.045 0.059 0.024 0.063 0.046 0.024

8025881440-02 0.246 0.059 0.048 0.047 0.049 0.069 0.024 0.068 0.048 0.025

1102588120-01 0.506 0.073 0.108 0.098 0.122 0.091 0.074 0.240 0.014 0.124

1102588120-02 0.547 0.071 0.110 0.095 0.133 0.086 0.027 0.097 0.010 0.194

1102588240-01 0.469 0.102 0.177 0.148 0.245 0.091 0.092 0.446 0.005 0.318

1102588240-02 0.439 0.092 0.157 0.131 0.176 0.101 0.034 0.133 0.017 0.191

1102588480-01 0.321 0.096 0.170 0.142 0.175 0.099 0.049 0.149 0.023 0.174

1102588480-02 0.316 0.093 0.159 0.169 0.266 0.169 0.165 0.435 0.014 0.167

140258801-01 0.226 0.036 0.036 0.064 0.103 0.075 0.037 0.149 0.007 0.018

140258801-01 0.224 0.032 0.037 0.059 0.072 0.025 0.013 0.038 0.002 0.186

140258801-02 0.234 0.038 0.030 0.047 0.060 0.037 0.015 0.037 0.010 0.016

140258801-02 0.230 0.034 0.030 0.058 0.079 0.008 0.014 0.032 0.003 0.133

140258802-01 0.401 0.047 0.044 0.052 0.069 0.042 0.016 0.042 0.012 0.014

140258802-01 0.396 0.042 0.042 0.061 0.035 0.030 0.012 0.044 0.006 0.153

140258802-02 0.395 0.035 0.063 0.064 0.101 0.051 0.015 0.039 0.009 0.087

140258802-02 0.397 0.039 0.062 0.062 0.033 0.026 0.013 0.043 0.003 0.163

140258804-01 0.561 0.058 0.067 0.092 0.170 0.067 0.021 0.062 0.008 0.174

140258804-02 0.605 0.054 0.103 0.083 0.131 0.062 0.023 0.063 0.010 0.091

140258806-01 0.664 0.072 0.113 0.086 0.064 0.063 0.068 0.279 0.006 0.166

140258806-02 0.633 0.073 0.110 0.090 0.068 0.075 0.023 0.087 0.009 0.169

140258808-01 0.630 0.084 0.098 0.107 0.217 0.069 0.031 0.101 0.005 0.342

140258808-02 0.661 0.077 0.133 0.090 0.192 0.058 0.030 0.085 0.006 0.373

307



Appendix 4.2 continued.

ID C%wtEA N%wtEA H%wtEA O%wtEA S%wtEA C%wtAA N%wtAA H%wtAA O%wtAA

1402588030h - - - - - 50.50 17.84 6.87 24.79

1402588040h - - - - - 50.45 17.86 6.88 24.82

Control2588-01 46.43 15.53 7.06 27.30 3.79 52.77 16.57 7.23 23.43

Control2588-02 45.90 15.45 6.81 27.19 3.68 52.76 16.57 7.17 23.50

802588120-01 47.72 15.76 7.17 27.45 3.44 52.97 16.63 7.34 23.06

802588120-02 47.52 15.99 7.45 25.72 3.50 53.26 16.53 7.37 22.84

802588720-01 47.03 15.22 7.14 26.85 2.91 52.58 16.86 7.37 23.20

802588720-02 46.57 15.46 6.98 26.36 2.81 52.09 17.43 7.23 23.25

802588720-02 46.57 15.46 6.98 26.36 2.81 50.58 17.83 7.01 24.59

8025881440-01 45.78 14.58 6.76 27.91 3.45 50.94 17.74 7.04 24.28

8025881440-02 46.60 14.70 6.80 26.65 3.45 50.93 17.79 7.01 24.27

1102588120-01 46.13 14.59 6.64 29.42 3.28 53.79 16.56 7.53 22.13

1102588120-02 46.11 14.73 6.74 29.42 2.91 53.07 16.80 7.43 22.70

1102588240-01 49.06 14.45 6.76 25.67 3.17 55.50 16.03 7.78 20.68

1102588240-02 49.10 14.40 7.14 26.50 3.08 54.24 16.67 7.61 21.48

1102588480-01 51.41 15.02 7.23 24.06 2.32 54.76 16.55 7.69 21.00

1102588480-02 50.60 15.03 6.91 24.67 2.09 55.94 16.11 7.81 20.13

140258801-01 46.45 15.65 6.92 28.56 2.84 52.35 16.92 7.18 23.55

140258801-01 46.45 15.65 6.92 28.56 2.84 52.63 16.73 7.26 23.38

140258801-02 46.87 15.10 6.84 28.84 2.62 51.54 17.19 7.15 24.12

140258801-02 46.87 15.10 6.84 28.84 2.62 52.08 16.97 7.23 23.73

140258802-01 47.17 15.51 6.92 29.17 2.21 51.68 17.20 7.16 23.96

140258802-01 47.17 15.51 6.92 29.17 2.21 52.37 16.89 7.29 23.46

140258802-02 47.05 15.74 7.02 28.19 2.11 52.11 17.19 7.23 23.46

140258802-02 47.05 15.74 7.02 28.19 2.11 52.34 16.89 7.28 23.49

140258804-01 47.02 14.73 6.94 28.53 2.50 52.76 17.02 7.36 22.87

140258804-02 46.97 15.23 6.95 28.32 2.62 52.66 16.92 7.28 23.14

140258806-01 46.83 13.97 6.52 29.61 2.68 53.73 16.57 7.50 22.20

140258806-02 46.34 15.31 6.79 29.72 2.61 52.96 16.72 7.37 22.94

140258808-01 47.20 13.50 6.76 26.87 3.07 53.75 16.67 7.52 22.06

140258808-02 46.26 13.12 6.69 29.98 3.05 53.58 16.94 7.52 21.95
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Appendix 4.2 continued.

ID C%wtAA (deamid) N%wtAA (deamid) H%wtAA (deamid) O%wtAA (deamid)

1402588030h 50.63 16.69 6.83 25.85

1402588040h 50.58 16.69 6.83 25.90

Control2588-01 52.98 15.32 7.19 24.51

Control2588-02 52.96 15.39 7.13 24.53

802588120-01 53.18 15.40 7.31 24.11

802588120-02 53.47 15.34 7.34 23.85

802588720-01 52.79 15.54 7.33 24.34

802588720-02 52.22 16.52 7.20 24.06

802588720-02 50.71 16.59 6.96 25.74

8025881440-01 51.09 16.47 6.99 25.45

8025881440-02 51.07 16.58 6.97 25.38

1102588120-01 54.01 15.34 7.50 23.15

1102588120-02 53.27 15.58 7.40 23.74

1102588240-01 55.72 15.07 7.76 21.45

1102588240-02 54.47 15.50 7.58 22.45

1102588480-01 55.00 15.37 7.67 21.96

1102588480-02 56.17 15.10 7.79 20.93

140258801-01 52.54 15.73 7.14 24.59

140258801-01 52.83 15.51 7.23 24.43

140258801-02 51.72 15.83 7.10 25.35

140258801-02 52.28 15.63 7.19 24.91

140258802-01 51.88 15.77 7.11 25.24

140258802-01 52.59 15.49 7.25 24.68

140258802-02 52.32 15.78 7.19 24.71

140258802-02 52.56 15.48 7.24 24.73

140258804-01 52.96 15.82 7.32 23.90

140258804-02 52.85 15.76 7.24 24.15

140258806-01 53.93 15.51 7.48 23.08

140258806-02 53.16 15.59 7.34 23.92

140258808-01 53.95 15.61 7.50 22.95

140258808-02 53.78 15.90 7.50 22.82
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Appendix 4.2 continued.

ID C%wtAA (oxid) N%wtAA (oxid) H%wtAA (oxid) O%wtAA (oxid) δ
13
C/‰ δ

15
N/‰ δ

2
H/‰

1402588030h 50.40 14.44 6.44 28.72 -25.47 8.21 -99.17

1402588040h 50.37 14.45 6.45 28.74 - - -

Control2588-01 52.66 13.00 6.75 27.59 - - -

Control2588-02 52.55 13.14 6.68 27.63 - - -

802588120-01 52.98 13.08 6.87 27.07 - - -

802588120-02 53.22 13.04 6.91 26.83 -25.78 8.84 -

802588720-01 52.73 13.21 6.90 27.16 -25.82 9.35 -

802588720-02 52.14 14.09 6.77 27.00 - - -

802588720-02 50.69 14.30 6.58 28.43 - - -

8025881440-01 50.99 14.22 6.61 28.17 -24.91 7.90 -85.78

8025881440-02 50.92 14.38 6.59 28.11 -24.81 8.05 -88.66

1102588120-01 53.73 13.14 7.09 26.04 - - -

1102588120-02 53.17 13.22 6.97 26.64 - - -

1102588240-01 55.28 12.92 7.36 24.44 -25.08 8.11 -113.28

1102588240-02 54.26 13.08 7.18 25.48 -24.80 8.29 -99.55

1102588480-01 54.78 12.87 7.26 25.10 - - -

1102588480-02 55.66 12.83 7.41 24.09 - - -

140258801-01 52.23 13.43 6.71 27.63 - - -

140258801-01 52.58 13.26 6.79 27.37 - - -

140258801-02 51.67 13.48 6.67 28.18 - - -

140258801-02 52.17 13.31 6.76 27.76 - - -

140258802-01 51.80 13.40 6.70 28.10 - - -

140258802-01 52.47 13.20 6.84 27.50 - - -

140258802-02 52.28 13.25 6.76 27.71 - - -

140258802-02 52.45 13.17 6.82 27.56 - - -

140258804-01 52.88 13.31 6.89 26.92 - - -

140258804-02 52.67 13.30 6.80 27.23 - - -

140258806-01 53.66 13.17 7.04 26.13 - - -

140258806-02 52.98 13.27 6.90 26.84 - - -

140258808-01 53.80 13.17 7.07 25.97 -24.93 7.98 -97.27

140258808-02 53.72 13.25 7.06 25.98 -24.72 8.23 -
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Appendix 4.2 continued.

ID δ
18
O/‰ C:NatomISOT

1402588030h 12.90 3.53

1402588040h - -

Control2588-01 - -

Control2588-02 - -

802588120-01 - -

802588120-02 - 3.51

802588720-01 - 3.57

802588720-02 - -

802588720-02 - -

8025881440-01 15.91 3.66

8025881440-02 13.93 3.67

1102588120-01 - -

1102588120-02 - -

1102588240-01 13.22 3.93

1102588240-02 11.91 3.94

1102588480-01 - -

1102588480-02 - -

140258801-01 - -

140258801-01 - -

140258801-02 - -

140258801-02 - -

140258802-01 - -

140258802-01 - -

140258802-02 - -

140258802-02 - -

140258804-01 - -

140258804-02 - -

140258806-01 - -

140258806-02 - -

140258808-01 12.69 3.71

140258808-02 - 3.77
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Appendix 4.2 continued.

ID RP-HPLC run Sample Temperature/°C Time/h [Asx] [Glx] [Ser] [L-Thr] [L-His]

140258824-01a H391 2588 140 24 91260 286301 110117 154237 0

140258824-01b H420 2588 140 24 65536 296605 151105 127581 21147

140258824-02 H391 2588 140 24 103836 330215 108732 151054 0

14025880148h G483 2588 140 48 256290 1239853 372428 385810 68142

14025880248h G483 2588 140 48 229058 1149478 353390 360970 66495

140258848-01 H391 2588 140 48 115152 418945 99695 167650 0

140258848-02 H391 2588 140 48 138692 511996 119070 197983 0

140258872-01 H391 2588 140 72 97170 388477 80761 147776 0

140258872-02 H391 2588 140 72 100328 396959 73163 134884 0

140258896-01 H391 2588 140 96 102157 429328 77844 148351 0

140258896-02 H391 2588 140 96 99170 410826 80289 148281 0

1402588120-01 H391 2588 140 120 110602 463169 86664 168550 0

1402588120-02 H391 2588 140 120 67516 287587 55676 105194 0

Cont2589-01 H402 2589 0 0 525634 1028781 942795 577143 92750

Cont2589-02 H402 2589 0 0 578732 1184940 1067875 685888 120176

802589120-01 H397 2589 80 120 584770 1146848 1061364 645333 73679

802589120-02 H397 2589 80 120 625333 1257728 1042370 644335 84284

802589720-02 H397 2589 80 720 400946 804318 611430 404924 38629

802589720-02 H402 2589 80 720 324874 646270 490610 327968 35735

8025891440-02 H402 2589 80 1440 458463 998875 671893 470335 62212

8025891440-01 H402 2589 80 1440 563656 1208624 762031 538253 77670

1102589120-01 H397 2589 110 120 238133 639925 387152 289817 40326

1102589120-02 H397 2589 110 120 154570 408681 253362 184456 27371

1102589240-01 H397 2589 110 240 230275 756804 347093 298769 50609

1102589240-02 H402 2589 110 240 153117 508118 224222 192246 35478

1102589480-01 H397 2589 110 480 241751 974436 340157 348380 66668

1102589480-02 H402 2589 110 480 133792 532214 164198 169032 39689

140258901-01 H397 2589 140 1 513907 973002 832835 499628 67384

140258901-02 H397 2589 140 1 416457 831884 777807 483722 61487

140258902-01 H397 2589 140 2 552763 1134578 951462 606408 64143

140258902-02 H397 2589 140 2 501472 1021711 894281 563623 71662
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Appendix 4.2 continued.

ID [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu] [Ile] [Asx] % [Glx] % [Ser] %

140258824-01a 31807 225138 155812 99487 237387 76952 575948 232148 4.45% 13.96% 5.37%

140258824-01b 202278 139784 146669 68670 178294 73683 248342 123519 3.85% 17.41% 8.87%

140258824-02 5961 195502 208107 93863 252405 91527 454335 197685 5.20% 16.53% 5.44%

14025880148h 689712 501161 647984 243876 783364 341598 1176249 597284 3.77% 18.23% 5.47%

14025880248h 658212 475036 595763 257961 715572 319464 1065591 544872 3.63% 18.20% 5.59%

140258848-01 6359 265809 276465 145549 329420 118982 649964 297010 4.39% 15.96% 3.80%

140258848-02 8811 311839 320557 147186 411063 148634 675578 348931 4.58% 16.91% 3.93%

140258872-01 8775 259597 288196 131043 372912 159003 618510 325658 3.71% 14.84% 3.08%

140258872-02 6527 269923 283701 133425 352990 157307 726714 335664 3.71% 14.69% 2.71%

140258896-01 8399 283036 304257 130464 415563 186211 754918 368942 3.49% 14.67% 2.66%

140258896-02 10370 274990 312166 159509 454423 240278 843511 412280 3.13% 12.96% 2.53%

1402588120-01 8258 310454 360294 126361 508434 241353 918721 455452 3.21% 13.43% 2.51%

1402588120-02 5214 199540 245447 105652 362512 199810 676191 327830 2.77% 11.79% 2.28%

Cont2589-01 770135 567656 449974 304792 550413 219231 754886 354879 8.00% 15.66% 14.35%

Cont2589-02 721001 641559 504726 244472 623581 224505 803023 401369 8.08% 16.55% 14.91%

802589120-01 948359 620405 517331 262257 620842 251363 854065 376435 7.96% 15.62% 14.45%

802589120-02 751496 636206 548905 126105 648782 235970 887002 407130 8.61% 17.33% 14.36%

802589720-02 502012 399651 355062 88306 415866 150229 592494 260039 8.67% 17.39% 13.22%

802589720-02 373744 336807 290149 44090 349108 122273 480434 221732 8.76% 17.43% 13.23%

8025891440-02 538277 523081 446595 74206 523765 179405 734932 329260 8.35% 18.20% 12.24%

8025891440-01 633260 596697 506564 104848 592934 206881 870677 384749 8.74% 18.74% 11.81%

1102589120-01 426095 324084 295777 100386 348238 145597 492686 229426 6.55% 17.61% 10.65%

1102589120-02 259936 211888 185154 49223 218776 85153 312595 142004 6.78% 17.91% 11.11%

1102589240-01 436569 435893 358005 86678 434990 185866 640734 296874 5.58% 18.35% 8.42%

1102589240-02 255675 256320 227046 66821 276916 112924 410319 200129 5.75% 19.08% 8.42%

1102589480-01 432589 547829 443474 198952 556847 231126 840761 412536 4.75% 19.15% 6.69%

1102589480-02 220108 311447 245640 97835 306999 130457 470272 229572 4.88% 19.43% 5.99%

140258901-01 667541 512925 427015 199062 505904 240685 754991 324441 8.56% 16.20% 13.87%

140258901-02 653206 449877 365242 136833 452950 190611 619572 279688 7.90% 15.79% 14.76%

140258902-01 792871 580853 491541 199409 598072 238328 832543 374717 8.09% 16.60% 13.92%

140258902-02 737081 543890 446164 157453 545335 224223 752866 349780 8.00% 16.31% 14.27%
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Appendix 4.2 continued.

ID [L-Thr] % [L-His] % [Gly] % [L-Arg] % [Ala] % [Tyr] % [Val] % [Phe] % [Leu] % [Ile] %

140258824-01a 7.52% 0.00% 1.55% 10.97% 7.60% 4.85% 11.57% 3.75% 28.08% 11.32%

140258824-01b 7.49% 1.24% 11.87% 8.21% 8.61% 4.03% 10.47% 4.33% 14.58% 7.25%

140258824-02 7.56% 0.00% 0.30% 9.79% 10.42% 4.70% 12.63% 4.58% 22.74% 9.90%

14025880148h 5.67% 1.00% 10.14% 7.37% 9.53% 3.59% 11.52% 5.02% 17.29% 8.78%

14025880248h 5.71% 1.05% 10.42% 7.52% 9.43% 4.08% 11.33% 5.06% 16.87% 8.63%

140258848-01 6.39% 0.00% 0.24% 10.13% 10.53% 5.54% 12.55% 4.53% 24.76% 11.31%

140258848-02 6.54% 0.00% 0.29% 10.30% 10.58% 4.86% 13.57% 4.91% 22.31% 11.52%

140258872-01 5.64% 0.00% 0.34% 9.91% 11.01% 5.00% 14.24% 6.07% 23.62% 12.44%

140258872-02 4.99% 0.00% 0.24% 9.99% 10.50% 4.94% 13.07% 5.82% 26.90% 12.42%

140258896-01 5.07% 0.00% 0.29% 9.67% 10.40% 4.46% 14.20% 6.36% 25.80% 12.61%

140258896-02 4.68% 0.00% 0.33% 8.67% 9.84% 5.03% 14.33% 7.58% 26.60% 13.00%

1402588120-01 4.89% 0.00% 0.24% 9.00% 10.45% 3.66% 14.75% 7.00% 26.65% 13.21%

1402588120-02 4.31% 0.00% 0.21% 8.18% 10.06% 4.33% 14.87% 8.19% 27.73% 13.44%

Cont2589-01 8.78% 1.41% 11.72% 8.64% 6.85% 4.64% 8.38% 3.34% 11.49% 5.40%

Cont2589-02 9.58% 1.68% 10.07% 8.96% 7.05% 3.41% 8.71% 3.14% 11.21% 5.61%

802589120-01 8.79% 1.00% 12.92% 8.45% 7.05% 3.57% 8.46% 3.42% 11.63% 5.13%

802589120-02 8.88% 1.16% 10.35% 8.76% 7.56% 1.74% 8.94% 3.25% 12.22% 5.61%

802589720-02 8.76% 0.84% 10.86% 8.64% 7.68% 1.91% 8.99% 3.25% 12.81% 5.62%

802589720-02 8.85% 0.96% 10.08% 9.09% 7.83% 1.19% 9.42% 3.30% 12.96% 5.98%

8025891440-02 8.57% 1.13% 9.81% 9.53% 8.14% 1.35% 9.54% 3.27% 13.39% 6.00%

8025891440-01 8.34% 1.20% 9.82% 9.25% 7.85% 1.63% 9.19% 3.21% 13.50% 5.96%

1102589120-01 7.98% 1.11% 11.73% 8.92% 8.14% 2.76% 9.58% 4.01% 13.56% 6.31%

1102589120-02 8.09% 1.20% 11.39% 9.29% 8.12% 2.16% 9.59% 3.73% 13.70% 6.22%

1102589240-01 7.25% 1.23% 10.59% 10.57% 8.68% 2.10% 10.55% 4.51% 15.54% 7.20%

1102589240-02 7.22% 1.33% 9.60% 9.63% 8.53% 2.51% 10.40% 4.24% 15.41% 7.52%

1102589480-01 6.85% 1.31% 8.50% 10.77% 8.72% 3.91% 10.95% 4.54% 16.53% 8.11%

1102589480-02 6.17% 1.45% 8.03% 11.37% 8.97% 3.57% 11.21% 4.76% 17.16% 8.38%

140258901-01 8.32% 1.12% 11.11% 8.54% 7.11% 3.31% 8.42% 4.01% 12.57% 5.40%

140258901-02 9.18% 1.17% 12.40% 8.54% 6.93% 2.60% 8.60% 3.62% 11.76% 5.31%

140258902-01 8.87% 0.94% 11.60% 8.50% 7.19% 2.92% 8.75% 3.49% 12.18% 5.48%

140258902-02 9.00% 1.14% 11.76% 8.68% 7.12% 2.51% 8.70% 3.58% 12.02% 5.58%
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Appendix 4.2 continued.

ID Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

140258824-01a 0.495 0.145 0.198 0.167 0.131 0.096 0.047 0.165 0.006 0.601

140258824-01b 0.514 0.233 0.206 0.126 0.149 0.138 0.045 0.134 0.085 0.051

140258824-02 0.480 0.140 0.205 0.173 0.268 0.126 0.047 0.158 0.019 0.242

14025880148h 0.400 0.249 0.237 0.156 0.170 0.159 0.061 0.161 0.105 0.066

14025880248h 0.386 0.252 0.254 0.159 0.174 0.165 0.063 0.166 0.107 0.068

140258848-01 0.332 0.133 0.208 0.190 0.267 0.129 0.053 0.181 0.018 0.251

140258848-02 0.333 0.130 0.205 0.175 0.265 0.126 0.062 0.149 0.024 0.195

140258872-01 0.303 0.131 0.200 0.224 0.235 0.149 0.066 0.166 0.037 0.129

140258872-02 0.360 0.131 0.208 0.258 0.323 0.150 0.076 0.214 0.025 0.236

140258896-01 0.317 0.129 0.158 0.273 0.244 0.163 0.062 0.211 0.039 0.136

140258896-02 0.280 0.124 0.176 0.266 0.281 0.202 0.149 0.446 0.030 0.123

1402588120-01 0.315 0.133 0.151 0.313 0.211 0.167 0.070 0.212 0.045 0.131

1402588120-02 0.304 0.134 0.161 0.320 0.296 0.225 0.156 0.433 0.033 0.113

Cont2589-01 0.077 0.040 0.006 0.037 0.035 0.027 0.017 0.032 0.035 0.025

Cont2589-02 0.077 0.042 0.006 0.036 0.028 0.039 0.019 0.035 0.032 0.008

802589120-01 0.104 0.040 0.020 0.037 0.027 0.027 0.018 0.032 0.039 0.022

802589120-02 0.105 0.042 0.015 0.038 0.028 0.014 0.019 0.035 0.039 0.031

802589720-02 0.165 0.046 0.035 0.040 0.034 0.038 0.019 0.045 0.041 0.039

802589720-02 0.168 0.049 0.029 0.042 0.034 0.036 0.020 0.048 0.040 0.028

8025891440-02 0.207 0.056 0.038 0.047 0.044 0.044 0.024 0.060 0.041 0.032

8025891440-01 0.203 0.054 0.040 0.042 0.035 0.057 0.022 0.059 0.039 0.031

1102589120-01 0.530 0.104 0.097 0.079 0.074 0.088 0.043 0.105 0.053 0.044

1102589120-02 0.537 0.103 0.097 0.070 0.065 0.087 0.027 0.073 0.056 0.046

1102589240-01 0.467 0.135 0.137 0.102 0.089 0.110 0.036 0.106 0.071 0.055

1102589240-02 0.444 0.135 0.130 0.095 0.090 0.105 0.033 0.103 0.065 0.059

1102589480-01 0.352 0.152 0.188 0.123 0.107 0.118 0.048 0.129 0.078 0.059

1102589480-02 0.361 0.141 0.158 0.129 0.103 0.109 0.044 0.131 0.073 0.037

140258901-01 0.213 0.045 0.023 0.041 0.027 0.033 0.019 0.035 0.039 0.032

140258901-02 0.211 0.047 0.024 0.041 0.030 0.038 0.020 0.034 0.041 0.028

140258902-01 0.364 0.058 0.034 0.045 0.033 0.042 0.020 0.039 0.042 0.029

140258902-02 0.381 0.057 0.050 0.046 0.035 0.049 0.021 0.040 0.043 0.037
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Appendix 4.2 continued.

ID C%wtEA N%wtEA H%wtEA O%wtEA S%wtEA C%wtAA N%wtAA H%wtAA O%wtAA

140258824-01a 48.45 5.20 6.42 30.31 1.42 55.69 16.31 7.89 20.10

140258824-01b 48.45 5.20 6.42 30.31 1.42 52.55 17.46 7.18 22.81

140258824-02 48.66 9.02 6.56 29.04 2.45 55.18 16.28 7.72 20.82

14025880148h - - - - - 53.76 17.04 7.37 21.83

14025880248h - - - - - 53.72 17.07 7.35 21.87

140258848-01 50.63 13.58 6.44 - 2.18 55.92 16.18 7.84 20.06

140258848-02 51.70 14.02 6.81 - 2.16 55.65 16.30 7.79 20.26

140258872-01 - - - - - 56.50 16.08 7.90 19.52

140258872-02 - - - - - 56.78 16.01 7.97 19.24

140258896-01 - - - - - 56.86 15.96 7.97 19.20

140258896-02 - - - - - 57.57 15.60 8.02 18.82

1402588120-01 - - - - - 57.26 15.79 8.05 18.90

1402588120-02 - - - - - 58.00 15.45 8.10 18.45

Cont2589-01 45.02 14.78 6.65 27.70 3.50 50.86 17.76 6.89 24.49

Cont2589-02 45.33 15.04 6.49 27.66 3.47 50.68 17.81 6.92 24.59

802589120-01 47.21 15.48 6.96 27.31 3.49 50.62 17.85 6.89 24.65

802589120-02 47.53 15.71 6.94 26.56 3.38 50.58 17.84 6.96 24.62

802589720-02 45.85 15.04 6.72 27.54 2.76 50.73 17.79 6.98 24.49

802589720-02 46.06 14.78 6.72 27.97 3.28 50.77 17.85 7.02 24.35

8025891440-02 46.20 14.61 6.68 27.75 3.29 50.96 17.91 7.05 24.08

8025891440-01 45.66 14.38 6.46 27.94 3.34 50.96 17.86 7.03 24.14

1102589120-01 46.22 14.38 6.54 31.30 2.63 51.57 17.77 7.07 23.60

1102589120-02 45.89 14.33 6.59 29.40 2.59 51.37 17.87 7.07 23.68

1102589240-01 48.70 14.12 6.58 27.51 2.55 52.27 17.88 7.22 22.62

1102589240-02 49.38 14.20 6.97 26.66 3.05 52.37 17.65 7.22 22.75

1102589480-01 54.40 16.55 6.52 #REF! 2.51 53.13 17.57 7.32 21.98

1102589480-02 49.55 15.12 5.73 23.85 1.87 53.32 17.65 7.36 21.68

140258901-01 46.00 15.43 6.70 27.96 2.29 50.99 17.70 6.93 24.38

140258901-02 46.29 15.20 6.85 28.92 3.15 50.57 17.87 6.91 24.64

140258902-01 46.03 14.23 6.64 28.64 2.19 50.78 17.75 6.94 24.53

140258902-02 45.97 14.67 6.53 28.57 2.04 50.69 17.84 6.94 24.53
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Appendix 4.2 continued.

ID C%wtAA (deamid) N%wtAA (deamid) H%wtAA (deamid) O%wtAA (deamid)

140258824-01a 55.89 15.46 7.88 20.77

140258824-01b 52.69 16.49 7.15 23.67

140258824-02 55.40 15.27 7.70 21.64

14025880148h 53.93 16.01 7.34 22.71

14025880248h 53.89 16.06 7.31 22.74

140258848-01 56.14 15.23 7.82 20.81

140258848-02 55.87 15.31 7.77 21.06

140258872-01 56.71 15.22 7.88 20.19

140258872-02 56.99 15.16 7.95 19.90

140258896-01 57.07 15.11 7.96 19.86

140258896-02 57.77 14.84 8.00 19.39

1402588120-01 57.46 15.00 8.04 19.50

1402588120-02 58.19 14.76 8.09 18.97

Cont2589-01 51.00 16.66 6.84 25.50

Cont2589-02 50.81 16.67 6.87 25.65

802589120-01 50.75 16.75 6.84 25.66

802589120-02 50.71 16.64 6.91 25.73

802589720-02 50.88 16.58 6.94 25.61

802589720-02 50.91 16.64 6.98 25.47

8025891440-02 51.10 16.69 7.01 25.20

8025891440-01 51.12 16.60 6.98 25.30

1102589120-01 51.71 16.66 7.02 24.60

1102589120-02 51.51 16.75 7.03 24.71

1102589240-01 52.42 16.81 7.19 23.57

1102589240-02 52.54 16.52 7.18 23.76

1102589480-01 53.31 16.50 7.28 22.92

1102589480-02 53.50 16.57 7.32 22.61

140258901-01 51.13 16.55 6.89 25.43

140258901-02 50.70 16.78 6.87 25.66

140258902-01 50.91 16.61 6.89 25.59

140258902-02 50.82 16.72 6.89 25.57
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Appendix 4.2 continued.

ID C%wtAA (oxid) N%wtAA (oxid) H%wtAA (oxid) O%wtAA (oxid) δ
13
C/‰ δ

15
N/‰ δ

2
H/‰

140258824-01a 55.72 12.98 7.49 23.82 - - -

140258824-01b 52.24 14.28 6.78 26.69 - - -109.68

140258824-02 55.03 12.99 7.30 24.68 - - -

14025880148h 53.34 14.01 7.01 25.64 - - -

14025880248h 53.27 14.02 6.98 25.74 - - -

140258848-01 55.75 12.89 7.44 23.93 - - -

140258848-02 55.47 12.92 7.38 24.22 - - -

140258872-01 56.16 12.90 7.51 23.44 - - -

140258872-02 56.46 12.83 7.59 23.12 - - -

140258896-01 56.49 12.84 7.60 23.07 - - -

140258896-02 56.95 12.75 7.65 22.65 - - -

1402588120-01 56.81 12.87 7.69 22.63 - - -172.10

1402588120-02 57.31 12.77 7.75 22.17 - - -

Cont2589-01 50.66 14.35 6.46 28.54 -25.64 8.05 -101.84

Cont2589-02 50.57 14.25 6.47 28.71 - - -

802589120-01 50.49 14.55 6.46 28.49 -25.92 7.24 -

802589120-02 50.57 14.35 6.53 28.54 -26.29 6.39 -

802589720-02 50.74 14.37 6.56 28.33 -26.07 6.39 -

802589720-02 50.83 14.32 6.60 28.25 -26.33 5.72 -

8025891440-02 51.02 14.25 6.62 28.11 -25.91 6.22 -92.43

8025891440-01 50.99 14.20 6.60 28.21 -25.63 5.78 -94.85

1102589120-01 51.43 14.34 6.65 27.59 - - -

1102589120-02 51.31 14.34 6.65 27.70 - - -

1102589240-01 52.19 14.14 6.80 26.86 -26.11 7.67 -

1102589240-02 52.23 14.02 6.81 26.94 -25.99 8.10 -102.44

1102589480-01 52.96 13.77 6.89 26.38 - - -116.47

1102589480-02 53.15 13.70 6.93 26.22 - - -

140258901-01 50.79 14.29 6.51 28.41 - - -

140258901-02 50.47 14.53 6.48 28.52 - - -

140258902-01 50.68 14.41 6.51 28.40 - - -

140258902-02 50.60 14.45 6.51 28.44 - - -
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Appendix 4.2 continued.

ID δ
18
O/‰ C:NatomISOT

140258824-01a - -

140258824-01b 11.55 -

140258824-02 - -

14025880148h - -

14025880248h - -

140258848-01 - -

140258848-02 - -

140258872-01 - -

140258872-02 - -

140258896-01 - -

140258896-02 - -

1402588120-01 12.30 -

1402588120-02 - -

Cont2589-01 12.20 3.49

Cont2589-02 - -

802589120-01 - 3.55

802589120-02 - 3.57

802589720-02 - 3.62

802589720-02 - 3.62

8025891440-02 14.03 3.73

8025891440-01 14.22 3.73

1102589120-01 - -

1102589120-02 - -

1102589240-01 - 4.06

1102589240-02 12.21 4.02

1102589480-01 12.81 -

1102589480-02 - -

140258901-01 - -

140258901-02 - -

140258902-01 - -

140258902-02 - -
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Appendix 4.2 continued.

ID RP-HPLC run Sample Temperature/°C Time/h [Asx] [Glx] [Ser] [L-Thr] [L-His]

140258904-01 H397 2589 140 4 597447 1290987 1064153 670562 95804

140258904-02 H397 2589 140 4 213981 478615 437823 278233 38127

140258906-01 H397 2589 140 6 38512 91699 79057 51676 6497

140258906-02 H397 2589 140 6 147649 347027 291258 189443 23804

140258908-01 H397 2589 140 8 168875 507903 409879 283313 33071

140258908-02a H397 2589 140 8 35775 93068 84918 52621 7829

140258908-02b H402 2589 140 8 206128 568671 384725 269184 31903

140258924-01 H397 2589 140 24 203157 811034 359658 316101 54281

140258924-02 H402 2589 140 24 58849 236093 104412 92662 17625

140258948-01 H397 2589 140 48 100845 483647 144328 155325 34364

140258948-02 H397 2589 140 48 44215 220643 77872 80289 18883

140258972-01 H397 2589 140 72 25965 147462 48601 54852 15780

140258972-02 H397 2589 140 72 19313 112129 40548 43708 12901

140258996-01a H397 2589 140 96 11870 72567 24230 27789 9984

140258996-01b H402 2589 140 96 11654 68618 19795 24798 8908

140258996-02 H397 2589 140 96 44928 282385 86538 107750 34536

1402589120-02a H397 2589 140 120 7008 44771 14627 19255 7867

1402589120-02b H402 2589 140 120 7476 42069 13604 16371 5472

1402589120-02c H420 2589 140 120 5927 41349 12679 17456 5974

1404126030h G483 4126 0 0 1206964 2317868 1725591 1129001 137703

1404126040h G483 4126 0 0 938264 1782969 1400741 890910 105248

Cont4126-01 H398 4126 0 0 424406 827877 689913 431181 48750

Cont4126-02 H398 4126 0 0 440010 831393 695483 430543 52038

804126120-01 H398 4126 80 120 573487 1142016 791948 528531 43988

804126120-02 H420 4126 80 120 611905 1218690 883106 591511 67999

804126720-01 H398 4126 80 720 544249 1063144 851608 543774 59632

804126720-02 H420 4126 80 720 600541 1160119 979840 616168 81013

8041261440-01 H420 4126 80 1440 419300 889001 567513 412748 35263

8041261440-02 H420 4126 80 1440 212075 451289 291149 214662 18523

1104126120-01 H398 4126 110 120 416877 1088100 677217 503893 47113

1104126120-02 H398 4126 110 120 589919 1496163 928252 693151 66235
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Appendix 4.2 continued.

ID [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu] [Ile] [Asx] % [Glx] % [Ser] %

140258904-01 952254 685198 561425 216541 682808 283030 953142 450258 7.64% 16.51% 13.61%

140258904-02 414969 255694 209817 86295 264323 108014 348644 168218 7.02% 15.71% 14.37%

140258906-01 71512 48678 40880 13935 50641 20551 66083 32679 6.83% 16.27% 14.02%

140258906-02 270170 176396 156615 64479 192577 82230 259492 125052 6.87% 16.14% 13.55%

140258908-01 389332 257271 223674 80372 285887 112143 356268 182236 5.57% 16.75% 13.51%

140258908-02a 83928 48127 43120 24233 52099 22073 69713 34055 5.93% 15.42% 14.07%

140258908-02b 375127 267644 251166 47056 304312 126618 414427 203792 6.48% 17.87% 12.09%

140258924-01 522068 443129 411676 246241 477252 234253 722140 344760 4.32% 17.25% 7.65%

140258924-02 152224 134807 128187 48285 149693 70870 217037 109547 4.25% 17.04% 7.54%

140258948-01 267780 302804 265578 116148 325101 170051 511483 254226 3.56% 17.10% 5.10%

140258948-02 158969 174585 135329 66484 164411 88290 252422 127253 3.08% 15.38% 5.43%

140258972-01 133018 156242 111350 46268 142670 84931 217795 113213 2.27% 12.91% 4.26%

140258972-02 113873 132161 89005 41074 112715 69423 175344 90228 2.10% 12.18% 4.41%

140258996-01a 82526 95920 65408 34894 83537 53569 133068 70161 1.77% 10.84% 3.62%

140258996-01b 70437 92129 61402 33254 83398 49878 124860 67645 1.87% 10.99% 3.17%

140258996-02 294188 350826 247478 118798 315173 194082 486752 252455 1.82% 11.46% 3.51%

1402589120-02a 67288 72168 51213 21945 64622 40676 93421 50147 1.45% 9.27% 3.03%

1402589120-02b 51393 66404 44659 20756 61472 38323 91222 50043 1.69% 9.50% 3.07%

1402589120-02c 54321 66332 45626 21095 60867 37204 86864 47863 1.36% 9.46% 2.90%

1404126030h 1393436 1183109 863264 546661 1132113 473479 1658974 736373 9.06% 17.40% 12.95%

1404126040h 1164386 902842 700801 407829 881104 356985 1269194 564631 8.97% 17.04% 13.39%

Cont4126-01 414546 420551 353451 153023 422331 164976 594747 269672 8.85% 17.27% 14.39%

Cont4126-02 467725 422022 362231 189908 432398 186033 628969 275429 8.81% 16.65% 13.93%

804126120-01 549149 543850 486700 110326 572200 232131 856107 373449 9.16% 18.24% 12.65%

804126120-02 694966 588141 533291 166863 597554 229582 888758 393456 8.90% 17.72% 12.84%

804126720-01 551952 537208 453382 192763 539795 219706 779514 345889 8.86% 17.30% 13.86%

804126720-02 790920 600644 513849 228353 606991 250617 863474 392042 8.48% 16.38% 13.83%

8041261440-01 405941 419507 394832 126528 434796 155589 657896 285956 8.76% 18.58% 11.86%

8041261440-02 212891 213365 203062 31746 226643 77859 332386 149397 8.76% 18.64% 12.02%

1104126120-01 511380 511215 464143 23253 561714 214045 785721 375043 7.35% 19.20% 11.95%

1104126120-02 744205 718862 646317 95534 783925 305197 1095549 517526 7.41% 18.79% 11.66%
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Appendix 4.2 continued.

ID [L-Thr] % [L-His] % [Gly] % [L-Arg] % [Ala] % [Tyr] % [Val] % [Phe] % [Leu] % [Ile] %

140258904-01 8.58% 1.23% 12.18% 8.76% 7.18% 2.77% 8.73% 3.62% 12.19% 5.76%

140258904-02 9.13% 1.25% 13.62% 8.39% 6.89% 2.83% 8.67% 3.54% 11.44% 5.52%

140258906-01 9.17% 1.15% 12.69% 8.64% 7.25% 2.47% 8.98% 3.65% 11.72% 5.80%

140258906-02 8.81% 1.11% 12.57% 8.21% 7.29% 3.00% 8.96% 3.83% 12.07% 5.82%

140258908-01 9.34% 1.09% 12.84% 8.48% 7.37% 2.65% 9.43% 3.70% 11.75% 6.01%

140258908-02a 8.72% 1.30% 13.91% 7.98% 7.15% 4.02% 8.63% 3.66% 11.55% 5.64%

140258908-02b 8.46% 1.00% 11.78% 8.41% 7.89% 1.48% 9.56% 3.98% 13.02% 6.40%

140258924-01 6.72% 1.15% 11.10% 9.42% 8.75% 5.24% 10.15% 4.98% 15.36% 7.33%

140258924-02 6.69% 1.27% 10.99% 9.73% 9.25% 3.49% 10.80% 5.12% 15.67% 7.91%

140258948-01 5.49% 1.21% 9.47% 10.70% 9.39% 4.11% 11.49% 6.01% 18.08% 8.99%

140258948-02 5.59% 1.32% 11.08% 12.17% 9.43% 4.63% 11.46% 6.15% 17.59% 8.87%

140258972-01 4.80% 1.38% 11.65% 13.68% 9.75% 4.05% 12.49% 7.44% 19.07% 9.91%

140258972-02 4.75% 1.40% 12.37% 14.36% 9.67% 4.46% 12.25% 7.54% 19.05% 9.80%

140258996-01a 4.15% 1.49% 12.32% 14.32% 9.77% 5.21% 12.48% 8.00% 19.87% 10.48%

140258996-01b 3.97% 1.43% 11.28% 14.75% 9.83% 5.32% 13.35% 7.98% 19.99% 10.83%

140258996-02 4.37% 1.40% 11.93% 14.23% 10.04% 4.82% 12.79% 7.87% 19.75% 10.24%

1402589120-02a 3.99% 1.63% 13.94% 14.95% 10.61% 4.54% 13.38% 8.42% 19.35% 10.39%

1402589120-02b 3.70% 1.24% 11.60% 14.99% 10.08% 4.69% 13.88% 8.65% 20.60% 11.30%

1402589120-02c 3.99% 1.37% 12.42% 15.17% 10.44% 4.82% 13.92% 8.51% 19.87% 10.95%

1404126030h 8.48% 1.03% 10.46% 8.88% 6.48% 4.10% 8.50% 3.55% 12.45% 5.53%

1404126040h 8.51% 1.01% 11.13% 8.63% 6.70% 3.90% 8.42% 3.41% 12.13% 5.40%

Cont4126-01 8.99% 1.02% 8.65% 8.77% 7.37% 3.19% 8.81% 3.44% 12.40% 5.62%

Cont4126-02 8.62% 1.04% 9.37% 8.45% 7.26% 3.80% 8.66% 3.73% 12.60% 5.52%

804126120-01 8.44% 0.70% 8.77% 8.69% 7.77% 1.76% 9.14% 3.71% 13.68% 5.97%

804126120-02 8.60% 0.99% 10.10% 8.55% 7.75% 2.43% 8.69% 3.34% 12.92% 5.72%

804126720-01 8.85% 0.97% 8.98% 8.74% 7.38% 3.14% 8.78% 3.58% 12.68% 5.63%

804126720-02 8.70% 1.14% 11.16% 8.48% 7.25% 3.22% 8.57% 3.54% 12.19% 5.53%

8041261440-01 8.63% 0.74% 8.48% 8.77% 8.25% 2.64% 9.09% 3.25% 13.75% 5.98%

8041261440-02 8.86% 0.76% 8.79% 8.81% 8.39% 1.31% 9.36% 3.22% 13.73% 6.17%

1104126120-01 8.89% 0.83% 9.02% 9.02% 8.19% 0.41% 9.91% 3.78% 13.86% 6.62%

1104126120-02 8.71% 0.83% 9.35% 9.03% 8.12% 1.20% 9.85% 3.83% 13.76% 6.50%
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Appendix 4.2 continued.

ID Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

140258904-01 0.592 0.081 0.082 0.053 0.046 0.058 0.023 0.049 0.047 0.041

140258904-02 0.596 0.081 0.085 0.058 0.051 0.057 0.027 0.051 0.052 0.057

140258906-01 0.664 0.105 0.109 0.062 0.061 0.071 0.026 0.061 0.055 0.050

140258906-02 0.651 0.108 0.095 0.071 0.067 0.073 0.027 0.060 0.056 0.052

140258908-01 0.628 0.132 0.111 0.075 0.077 0.079 0.029 0.072 0.057 0.048

140258908-02a 0.670 0.130 0.111 0.099 0.087 0.097 0.033 0.077 0.071 0.082

140258908-02b 0.612 0.126 0.085 0.072 0.070 0.083 0.030 0.080 0.054 0.054

140258924-01 0.468 0.199 0.186 0.124 0.118 0.126 0.043 0.128 0.083 0.073

140258924-02 0.481 0.210 0.175 0.136 0.148 0.128 0.044 0.129 0.081 0.062

140258948-01 0.356 0.214 0.211 0.202 0.165 0.165 0.060 0.181 0.110 0.093

140258948-02 0.397 0.236 0.257 0.220 0.167 0.173 0.059 0.180 0.115 0.108

140258972-01 0.418 0.278 0.264 0.319 0.210 0.243 0.083 0.220 0.139 0.129

140258972-02 0.463 0.302 0.258 0.339 0.212 0.246 0.085 0.224 0.148 0.144

140258996-01a 0.490 0.337 0.262 0.411 0.241 0.295 0.092 0.258 0.164 0.185

140258996-01b 0.420 0.332 0.263 0.397 0.239 0.291 0.093 0.255 0.152 0.146

140258996-02 0.427 0.321 0.297 0.379 0.231 0.282 0.094 0.249 0.155 0.133

1402589120-02a 0.480 0.381 0.250 0.485 0.289 0.325 0.110 0.266 0.167 0.139

1402589120-02b 0.425 0.392 0.223 0.459 0.267 0.331 0.109 0.277 0.168 0.156

1402589120-02c 0.443 0.376 0.284 0.456 0.267 0.344 0.112 0.285 0.174 0.129

1404126030h 0.082 0.046 0.008 0.040 0.035 0.039 0.016 0.041 0.045 0.025

1404126040h 0.081 0.045 0.009 0.039 0.030 0.035 0.015 0.040 0.046 0.025

Cont4126-01 0.074 0.040 0.009 0.036 0.031 0.031 0.014 0.031 0.037 0.021

Cont4126-02 0.074 0.040 0.011 0.035 0.029 0.035 0.015 0.032 0.036 0.022

804126120-01 0.182 0.049 0.024 0.041 0.032 0.072 0.023 0.052 0.041 0.033

804126120-02 0.169 0.045 0.026 0.037 0.034 0.037 0.021 0.049 0.039 0.021

804126720-01 0.095 0.039 0.011 0.034 0.027 0.041 0.018 0.034 0.036 0.024

804126720-02 0.102 0.042 0.012 0.035 0.034 0.038 0.021 0.035 0.041 0.019

8041261440-01 0.231 0.055 0.041 0.044 0.047 0.073 0.021 0.062 0.043 0.024

8041261440-02 0.233 0.061 0.042 0.053 0.057 0.059 0.024 0.074 0.047 0.027

1104126120-01 0.555 0.105 0.101 0.068 0.076 0.097 0.029 0.086 0.061 0.047

1104126120-02 0.571 0.105 0.105 0.069 0.073 0.107 0.036 0.090 0.062 0.042
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Appendix 4.2 continued.

ID C%wtEA N%wtEA H%wtEA O%wtEA S%wtEA C%wtAA N%wtAA H%wtAA O%wtAA

140258904-01 46.61 15.02 6.83 28.38 2.65 50.84 17.87 6.95 24.34

140258904-02 45.67 14.61 6.69 26.88 2.46 50.61 17.93 6.91 24.56

140258906-01 46.80 14.75 6.66 29.50 3.00 50.76 17.88 6.95 24.41

140258906-02 45.57 13.50 6.46 29.22 2.72 50.99 17.75 6.96 24.30

140258908-01 46.11 13.09 6.39 29.48 4.24 50.98 17.80 6.99 24.23

140258908-02a 46.42 12.17 6.51 29.90 3.42 50.96 17.78 6.92 24.34

140258908-02b 46.42 12.17 6.51 29.90 3.42 51.20 17.76 7.05 23.99

140258924-01 0.68 3.79 5.75 31.10 1.86 53.02 17.47 7.20 22.31

140258924-02 48.76 0.00 5.95 - 1.67 52.98 17.62 7.27 22.14

140258948-01 215.91 72.44 32.52 - 12.41 54.07 17.45 7.42 21.07

140258948-02 - - - - - 53.94 17.78 7.40 20.88

140258972-01 - - - - - 54.62 17.94 7.53 19.91

140258972-02 - - - - - 54.58 18.07 7.51 19.83

140258996-01a - - - - - 55.12 17.95 7.57 19.35

140258996-01b - - - - - 55.34 17.91 7.61 19.14

140258996-02 - - - - - 55.04 17.95 7.57 19.44

1402589120-02a - - - - - 55.09 18.23 7.58 19.10

1402589120-02b - - - - - 55.59 17.91 7.67 18.83

1402589120-02c - - - - - 55.42 18.05 7.64 18.90

1404126030h - - - - - 51.04 17.66 6.93 24.38

1404126040h - - - - - 50.86 17.71 6.91 24.53

Cont4126-01 44.57 14.73 6.65 27.95 3.10 50.95 17.57 6.97 24.51

Cont4126-02 43.73 14.61 6.43 27.98 3.07 51.13 17.52 6.95 24.40

804126120-01 45.90 14.73 6.64 26.99 2.81 51.11 17.58 7.04 24.27

804126120-02 45.47 14.93 6.90 26.71 2.58 50.90 17.71 6.98 24.42

804126720-01 10.11 2.80 1.15 28.33 0.32 51.02 17.58 6.97 24.43

804126720-02 44.40 14.51 6.92 27.52 3.36 50.85 17.74 6.93 24.48

8041261440-01 45.21 14.31 6.61 27.65 3.01 51.25 17.55 7.05 24.15

8041261440-02 44.34 14.03 6.55 27.73 2.51 51.05 17.66 7.07 24.22

1104126120-01 45.15 14.15 6.84 28.00 2.60 51.23 17.69 7.12 23.96

1104126120-02 45.35 14.14 6.57 31.06 2.48 51.34 17.67 7.11 23.89
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Appendix 4.2 continued.

ID C%wtAA (deamid) N%wtAA (deamid) H%wtAA (deamid) O%wtAA (deamid)

140258904-01 50.97 16.76 6.90 25.37

140258904-02 50.72 16.88 6.87 25.53

140258906-01 50.88 16.82 6.91 25.39

140258906-02 51.12 16.68 6.92 25.28

140258908-01 51.09 16.79 6.95 25.17

140258908-02a 51.07 16.80 6.88 25.25

140258908-02b 51.34 16.64 7.01 25.02

140258924-01 53.17 16.50 7.17 23.16

140258924-02 53.13 16.66 7.23 22.98

140258948-01 54.23 16.53 7.39 21.85

140258948-02 54.08 16.98 7.37 21.56

140258972-01 54.74 17.30 7.51 20.45

140258972-02 54.70 17.48 7.49 20.33

140258996-01a 55.23 17.43 7.55 19.79

140258996-01b 55.45 17.37 7.60 19.58

140258996-02 55.16 17.39 7.56 19.90

1402589120-02a 55.18 17.79 7.57 19.46

1402589120-02b 55.69 17.44 7.66 19.21

1402589120-02c 55.51 17.60 7.63 19.26

1404126030h 51.19 16.42 6.88 25.50

1404126040h 51.00 16.49 6.86 25.64

Cont4126-01 51.10 16.35 6.92 25.63

Cont4126-02 51.28 16.33 6.91 25.49

804126120-01 51.28 16.30 6.99 25.43

804126120-02 51.05 16.47 6.93 25.55

804126720-01 51.17 16.36 6.93 25.54

804126720-02 50.99 16.58 6.89 25.55

8041261440-01 51.41 16.27 7.00 25.31

8041261440-02 51.21 16.39 7.02 25.38

1104126120-01 51.38 16.47 7.08 25.07

1104126120-02 51.49 16.46 7.06 24.99
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Appendix 4.2 continued.

ID C%wtAA (oxid) N%wtAA (oxid) H%wtAA (oxid) O%wtAA (oxid) δ
13
C/‰ δ

15
N/‰ δ

2
H/‰

140258904-01 50.72 14.45 6.53 28.30 - - -

140258904-02 50.48 14.65 6.48 28.39 - - -

140258906-01 50.66 14.56 6.53 28.25 - - -

140258906-02 50.82 14.51 6.54 28.13 - - -

140258908-01 50.87 14.57 6.56 28.00 -25.51 7.94 -96.58

140258908-02a 50.72 14.64 6.50 28.14 -25.56 7.51 -

140258908-02b 51.11 14.44 6.64 27.81 - - -

140258924-01 52.65 14.05 6.79 26.51 - - -115.28

140258924-02 52.69 14.14 6.86 26.30 - - -

140258948-01 53.70 13.82 7.02 25.46 - - -

140258948-02 53.62 13.99 6.98 25.41 - - -

140258972-01 54.27 14.02 7.11 24.60 - - -

140258972-02 54.24 14.07 7.09 24.59 - - -

140258996-01a 54.68 14.01 7.15 24.15 - - -

140258996-01b 54.92 13.89 7.20 23.99 - - -

140258996-02 54.64 14.01 7.16 24.20 - - -

1402589120-02a 54.66 14.25 7.17 23.92 - - -

1402589120-02b 55.16 13.96 7.26 23.62 - - -

1402589120-02c 55.00 14.06 7.22 23.71 - - -

1404126030h 50.88 14.11 6.49 28.51 -26.01 4.45 -113.16

1404126040h 50.72 14.24 6.48 28.56 - - -

Cont4126-01 50.86 14.08 6.53 28.54 - - -

Cont4126-02 50.94 14.11 6.52 28.43 - - -

804126120-01 51.09 14.10 6.61 28.21 - - -

804126120-02 50.84 14.24 6.55 28.36 - - -

804126720-01 50.92 14.09 6.54 28.45 -25.97 4.85 -

804126720-02 50.71 14.34 6.51 28.44 - - -

8041261440-01 51.23 14.05 6.62 28.10 -25.71 4.33 -113.89

8041261440-02 51.11 14.16 6.64 28.09 -25.45 4.43 -116.29

1104126120-01 51.28 14.18 6.69 27.84 - - -114.96

1104126120-02 51.34 14.17 6.68 27.81 - - -
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Appendix 4.2 continued.

ID δ
18
O/‰ C:NatomISOT

140258904-01 - -

140258904-02 - -

140258906-01 - -

140258906-02 - -

140258908-01 11.64 3.87

140258908-02a - 3.81

140258908-02b - -

140258924-01 11.76 -

140258924-02 - -

140258948-01 - -

140258948-02 - -

140258972-01 - -

140258972-02 - -

140258996-01a - -

140258996-01b - -

140258996-02 - -

1402589120-02a - -

1402589120-02b - -

1402589120-02c - -

1404126030h 11.45 3.53

1404126040h - -

Cont4126-01 - -

Cont4126-02 - -

804126120-01 - -

804126120-02 - -

804126720-01 - 3.53

804126720-02 - -

8041261440-01 11.30 3.70

8041261440-02 11.63 3.69

1104126120-01 10.65 -

1104126120-02 - -
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Appendix 4.2 continued.

ID RP-HPLC run Sample Temperature/°C Time/h [Asx] [Glx] [Ser] [L-Thr] [L-His]

1104126240-01 H398 4126 110 240 127033 416535 186461 160011 20504

1104126240-02 H398 4126 110 240 260252 837518 359316 317011 35606

1104126480-01 H398 4126 110 480 269357 1066373 293238 309597 47747

1104126480-02 H398 4126 110 480 174931 691393 188863 201076 31800

140412601-01 H397 4126 140 1 416075 830334 700997 444216 52092

140412601-02 H420 4126 140 1 431629 836955 678983 426239 57255

140412602-01 H397 4126 140 2 521865 1047490 863051 554209 69128

140412602-02 H397 4126 140 2 517189 1051998 863977 550389 58776

140412604-01 H397 4126 140 4 387564 856483 703868 470582 59498

140412604-02 H397 4126 140 4 589158 1279229 1017967 672670 84141

140412606-01 H397 4126 140 6 460325 1127744 873610 610170 66227

140412606-02 H398 4126 140 6 381829 897121 663259 458021 59728

140412608-01 H398 4126 140 8 387935 984315 701480 496242 61373

140412608-02 H398 4126 140 8 420083 1036901 754260 522596 51276

140412624-01 H398 4126 140 24 228397 885531 349664 312885 29458

140412624-02 H398 4126 140 24 236511 865521 371859 317148 34549

14041260148h G483 4126 140 48 516098 2396720 497934 575280 86215

14041260248h G483 4126 140 48 438451 2020695 396245 473118 95532

140412648-01 H398 4126 140 48 185076 735077 215610 208537 34814

140412648-02 H398 4126 140 48 177842 795598 186182 206544 40643

140412672-01 H420 4126 140 72 156006 737096 147131 169045 36085

140412696-01 H398 4126 140 96 81993 417428 82420 94510 21927

140412696-02 H398 4126 140 96 91901 445200 85300 99338 25352

1404126120-01 H420 4126 140 120 166813 872506 167018 192824 55909

1404126120-02 H420 4126 140 120 113896 597625 113137 133204 41363

1404129030h G483 4129 0 0 1171091 2195579 1771849 1110645 125762

1404129040h G483 4129 0 0 897653 1688520 1347494 843249 95885

Cont4129-01b H429 4129 0 0 362383 687927 588858 370574 49884

Cont4129-01 H420 4129 0 0 39418 78120 59995 36183 3932

Cont4129-02 H402 4129 0 0 239365 469255 395812 248310 33939

804129120-01 H398 4129 80 120 239271 465198 382207 244813 33778
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Appendix 4.2 continued.

ID [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu] [Ile] [Asx] % [Glx] % [Ser] %

1104126240-01 167976 188996 180622 35826 216780 83148 316533 153022 6.15% 20.18% 9.03%

1104126240-02 326195 382678 361425 56216 434056 170929 640759 304542 6.34% 20.41% 8.76%

1104126480-01 277425 472190 448299 114197 550307 210300 865478 409804 5.54% 21.93% 6.03%

1104126480-02 185769 314125 293143 86987 363381 142906 578245 278602 5.44% 21.49% 5.87%

140412601-01 565706 422776 362615 117484 421709 176937 613052 271438 8.37% 16.70% 14.10%

140412601-02 541154 419516 382407 181879 434598 176308 629643 282630 8.53% 16.54% 13.42%

140412602-01 761621 530824 465651 127055 553640 224647 781262 345012 8.26% 16.59% 13.67%

140412602-02 709857 528140 456713 101020 545677 218896 768704 343561 8.36% 17.00% 13.96%

140412604-01 664534 440539 387637 174061 478975 196746 634876 300841 7.29% 16.11% 13.24%

140412604-02 957721 650830 573174 150641 687316 282053 937797 434270 7.69% 16.69% 13.28%

140412606-01 832061 557467 515708 144255 641317 256787 833435 405002 6.80% 16.67% 12.91%

140412606-02 622519 428328 387915 110399 480494 188986 645231 310795 7.33% 17.23% 12.74%

140412608-01 686766 467032 424296 126390 523767 203939 685419 333413 6.91% 17.53% 12.49%

140412608-02 554301 511875 459003 119309 577539 233102 757190 367325 7.18% 17.72% 12.89%

140412624-01 327743 373651 403684 136663 480619 190526 689476 333370 5.23% 20.27% 8.01%

140412624-02 352927 372325 395447 156020 479870 196454 684737 332525 5.35% 19.57% 8.41%

14041260148h 690808 913639 967889 562657 1233032 514073 2039192 990303 4.66% 21.65% 4.50%

14041260248h 610764 768930 820458 381999 1050888 423776 1740459 851759 4.71% 21.72% 4.26%

140412648-01 227154 304680 334183 137777 407035 167389 640093 312374 5.13% 20.39% 5.98%

140412648-02 226362 330546 365694 157738 445625 187442 725658 353851 4.60% 20.56% 4.81%

140412672-01 207507 296914 356154 152149 419493 167225 698601 352960 4.33% 20.48% 4.09%

140412696-01 107285 190181 205858 94334 262491 118442 437729 221312 3.82% 19.45% 3.84%

140412696-02 118490 208562 219715 98002 274053 127812 463449 233416 4.03% 19.51% 3.74%

1404126120-01 261447 389162 442630 196622 562288 247294 944635 490149 3.63% 18.97% 3.63%

1404126120-02 181651 262266 302214 121966 384083 168248 643819 333154 3.63% 19.07% 3.61%

1404129030h 1526495 1104273 892166 515013 1075550 436220 1538439 684438 8.98% 16.83% 13.58%

1404129040h 1146933 844536 687158 346925 825505 337831 1182623 522872 9.05% 17.02% 13.58%

Cont4129-01b 462962 361702 318257 159666 364032 148934 517482 235566 9.18% 17.42% 14.91%

Cont4129-01 43949 37581 35251 9123 39112 15242 56771 25951 8.90% 17.63% 13.54%

Cont4129-02 264680 245483 201955 92960 244592 90331 327545 154059 8.66% 16.98% 14.33%

804129120-01 292963 236143 201846 79533 240549 97956 333335 149356 8.67% 16.85% 13.84%
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Appendix 4.2 continued.

ID [L-Thr] % [L-His] % [Gly] % [L-Arg] % [Ala] % [Tyr] % [Val] % [Phe] % [Leu] % [Ile] %

1104126240-01 7.75% 0.99% 8.14% 9.15% 8.75% 1.74% 10.50% 4.03% 15.33% 7.41%

1104126240-02 7.72% 0.87% 7.95% 9.32% 8.81% 1.37% 10.58% 4.17% 15.61% 7.42%

1104126480-01 6.37% 0.98% 5.71% 9.71% 9.22% 2.35% 11.32% 4.33% 17.80% 8.43%

1104126480-02 6.25% 0.99% 5.77% 9.76% 9.11% 2.70% 11.30% 4.44% 17.97% 8.66%

140412601-01 8.93% 1.05% 11.38% 8.50% 7.29% 2.36% 8.48% 3.56% 12.33% 5.46%

140412601-02 8.42% 1.13% 10.70% 8.29% 7.56% 3.59% 8.59% 3.48% 12.44% 5.59%

140412602-01 8.78% 1.09% 12.06% 8.41% 7.37% 2.01% 8.77% 3.56% 12.37% 5.46%

140412602-02 8.90% 0.95% 11.47% 8.54% 7.38% 1.63% 8.82% 3.54% 12.42% 5.55%

140412604-01 8.85% 1.12% 12.50% 8.29% 7.29% 3.27% 9.01% 3.70% 11.94% 5.66%

140412604-02 8.77% 1.10% 12.49% 8.49% 7.48% 1.97% 8.97% 3.68% 12.23% 5.66%

140412606-01 9.02% 0.98% 12.30% 8.24% 7.62% 2.13% 9.48% 3.79% 12.32% 5.99%

140412606-02 8.80% 1.15% 11.96% 8.23% 7.45% 2.12% 9.23% 3.63% 12.39% 5.97%

140412608-01 8.84% 1.09% 12.23% 8.32% 7.56% 2.25% 9.33% 3.63% 12.21% 5.94%

140412608-02 8.93% 0.88% 9.47% 8.75% 7.84% 2.04% 9.87% 3.98% 12.94% 6.28%

140412624-01 7.16% 0.67% 7.50% 8.55% 9.24% 3.13% 11.00% 4.36% 15.78% 7.63%

140412624-02 7.17% 0.78% 7.98% 8.42% 8.94% 3.53% 10.85% 4.44% 15.48% 7.52%

14041260148h 5.20% 0.78% 6.24% 8.25% 8.74% 5.08% 11.14% 4.64% 18.42% 8.95%

14041260248h 5.09% 1.03% 6.56% 8.26% 8.82% 4.11% 11.29% 4.55% 18.71% 9.15%

140412648-01 5.78% 0.97% 6.30% 8.45% 9.27% 3.82% 11.29% 4.64% 17.76% 8.66%

140412648-02 5.34% 1.05% 5.85% 8.54% 9.45% 4.08% 11.52% 4.84% 18.75% 9.15%

140412672-01 4.70% 1.00% 5.76% 8.25% 9.89% 4.23% 11.65% 4.65% 19.41% 9.81%

140412696-01 4.40% 1.02% 5.00% 8.86% 9.59% 4.40% 12.23% 5.52% 20.40% 10.31%

140412696-02 4.35% 1.11% 5.19% 9.14% 9.63% 4.29% 12.01% 5.60% 20.31% 10.23%

1404126120-01 4.19% 1.22% 5.68% 8.46% 9.62% 4.27% 12.22% 5.38% 20.53% 10.66%

1404126120-02 4.25% 1.32% 5.80% 8.37% 9.64% 3.89% 12.25% 5.37% 20.54% 10.63%

1404129030h 8.52% 0.96% 11.70% 8.47% 6.84% 3.95% 8.25% 3.34% 11.79% 5.25%

1404129040h 8.50% 0.97% 11.56% 8.51% 6.93% 3.50% 8.32% 3.40% 11.92% 5.27%

Cont4129-01b 9.39% 1.26% 11.73% 9.16% 8.06% 4.04% 9.22% 3.77% 13.11% 5.97%

Cont4129-01 8.17% 0.89% 9.92% 8.48% 7.96% 2.06% 8.83% 3.44% 12.81% 5.86%

Cont4129-02 8.99% 1.23% 9.58% 8.89% 7.31% 3.36% 8.85% 3.27% 11.86% 5.58%

804129120-01 8.87% 1.22% 10.61% 8.55% 7.31% 2.88% 8.71% 3.55% 12.07% 5.41%
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Appendix 4.2 continued.

ID Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

1104126240-01 0.475 0.142 0.141 0.104 0.116 0.113 0.039 0.114 0.076 0.066

1104126240-02 0.479 0.139 0.143 0.100 0.106 0.114 0.043 0.119 0.076 0.052

1104126480-01 0.337 0.143 0.149 0.120 0.119 0.111 0.046 0.138 0.079 0.040

1104126480-02 0.342 0.145 0.147 0.122 0.124 0.116 0.047 0.144 0.086 0.064

140412601-01 0.197 0.045 0.020 0.037 0.033 0.046 0.017 0.038 0.041 0.029

140412601-02 0.203 0.049 0.022 0.044 0.051 0.040 0.018 0.041 0.041 0.019

140412602-01 0.358 0.057 0.039 0.043 0.039 0.042 0.019 0.042 0.043 0.031

140412602-02 0.354 0.056 0.036 0.041 0.037 0.041 0.020 0.044 0.043 0.038

140412604-01 0.615 0.095 0.087 0.062 0.074 0.062 0.039 0.061 0.055 0.044

140412604-02 0.567 0.084 0.073 0.058 0.065 0.066 0.027 0.059 0.052 0.035

140412606-01 0.668 0.123 0.106 0.070 0.083 0.075 0.031 0.074 0.064 0.042

140412606-02 0.638 0.108 0.098 0.065 0.071 0.067 0.030 0.068 0.058 0.043

140412608-01 0.627 0.126 0.107 0.071 0.083 0.081 0.033 0.079 0.061 0.044

140412608-02 0.659 0.127 0.114 0.075 0.090 0.092 0.034 0.082 0.064 0.044

140412624-01 0.459 0.201 0.184 0.121 0.149 0.125 0.051 0.141 0.092 0.059

140412624-02 0.492 0.196 0.163 0.117 0.141 0.122 0.046 0.132 0.090 0.064

14041260148h 0.336 0.206 0.168 0.145 0.171 0.134 0.059 0.174 0.108 0.065

14041260248h 0.339 0.193 0.139 0.141 0.175 0.130 0.058 0.175 0.106 0.061

140412648-01 0.371 0.174 0.129 0.129 0.151 0.126 0.051 0.156 0.099 0.070

140412648-02 0.319 0.187 0.161 0.142 0.161 0.133 0.055 0.171 0.103 0.072

140412672-01 0.272 0.171 0.116 0.154 0.173 0.134 0.056 0.187 0.108 0.064

140412696-01 0.241 0.171 0.119 0.199 0.180 0.159 0.064 0.211 0.122 0.097

140412696-02 0.279 0.180 0.136 0.225 0.183 0.170 0.065 0.212 0.120 0.094

1404126120-01 0.254 0.175 0.107 0.211 0.186 0.163 0.071 0.234 0.124 0.076

1404126120-02 0.251 0.173 0.109 0.205 0.180 0.155 0.068 0.220 0.118 0.068

1404129030h 0.081 0.045 0.009 0.040 0.030 0.034 0.015 0.041 0.047 0.027

1404129040h 0.084 0.046 0.008 0.039 0.030 0.034 0.014 0.039 0.047 0.026

Cont4129-01b 0.080 0.042 0.010 0.043 0.045 0.032 0.022 0.038 0.054 0.044

Cont4129-01 0.165 0.052 0.022 0.078 0.050 0.000 0.027 0.065 0.031 0.000

Cont4129-02 0.077 0.038 0.008 0.040 0.031 0.035 0.015 0.033 0.030 0.008

804129120-01 0.107 0.044 0.017 0.039 0.039 0.035 0.021 0.037 0.037 0.009
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Appendix 4.2 continued.

ID C%wtEA N%wtEA H%wtEA O%wtEA S%wtEA C%wtAA N%wtAA H%wtAA O%wtAA

1104126240-01 48.49 14.02 6.87 26.50 2.79 52.20 17.49 7.23 23.08

1104126240-02 48.60 14.64 7.23 27.11 2.91 52.22 17.50 7.25 23.03

1104126480-01 51.66 15.18 6.66 26.45 2.09 53.28 17.24 7.39 22.09

1104126480-02 51.41 15.19 6.79 25.60 2.66 53.43 17.20 7.41 21.96

140412601-01 44.88 15.25 6.80 28.51 2.05 50.68 17.80 6.94 24.59

140412601-02 44.65 15.14 6.82 28.38 1.80 51.01 17.65 6.94 24.40

140412602-01 44.25 14.65 6.63 27.43 2.34 50.66 17.86 6.94 24.53

140412602-02 44.60 15.63 6.50 27.91 2.42 50.61 17.84 6.96 24.59

140412604-01 45.58 13.72 6.80 29.71 2.00 50.97 17.76 6.95 24.32

140412604-02 44.80 14.08 6.74 28.34 2.12 50.75 17.89 6.96 24.40

140412606-01 45.15 12.60 6.31 30.44 2.22 51.01 17.76 7.00 24.23

140412606-02 45.24 14.21 6.46 30.40 2.32 50.95 17.78 6.99 24.29

140412608-01 45.53 13.18 6.56 29.09 2.54 50.97 17.80 6.99 24.25

140412608-02 44.96 13.89 6.26 8.12 2.72 51.32 17.58 7.06 24.04

140412624-01 41.60 12.10 5.25 34.30 2.07 52.85 17.16 7.28 22.71

140412624-02 45.71 12.97 5.89 32.51 1.61 52.82 17.16 7.25 22.77

14041260148h - - - - - 54.15 16.75 7.41 21.69

14041260248h - - - - - 54.06 16.87 7.43 21.64

140412648-01 47.96 12.85 5.93 29.67 1.59 53.72 16.94 7.39 21.95

140412648-02 46.50 12.17 5.48 - 0.90 54.18 16.85 7.45 21.51

140412672-01 - - - - - 54.46 16.76 7.51 21.27

140412696-01 - - - - - 55.02 16.67 7.58 20.72

140412696-02 - - - - - 54.94 16.77 7.57 20.73

1404126120-01 - - - - - 55.07 16.68 7.60 20.65

1404126120-02 - - - - - 55.01 16.71 7.60 20.68

1404129030h - - - - - 50.73 17.74 6.88 24.65

1404129040h - - - - - 50.70 17.77 6.89 24.65

Cont4129-01b 44.53 15.16 6.68 24.05 3.16 50.94 17.69 6.93 24.44

Cont4129-01 44.53 15.16 6.68 24.05 3.16 50.85 17.70 6.98 24.46

Cont4129-02 44.88 15.12 6.88 27.42 2.64 50.82 17.70 6.94 24.53

804129120-01 45.22 15.70 6.89 26.68 3.06 50.79 17.75 6.93 24.53
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Appendix 4.2 continued.

ID C%wtAA (deamid) N%wtAA (deamid) H%wtAA (deamid) O%wtAA (deamid)

1104126240-01 52.37 16.28 7.19 24.15

1104126240-02 52.40 16.28 7.20 24.12

1104126480-01 53.48 15.98 7.35 23.18

1104126480-02 53.64 15.97 7.37 23.02

140412601-01 50.81 16.63 6.89 25.66

140412601-02 51.15 16.48 6.90 25.47

140412602-01 50.80 16.71 6.90 25.60

140412602-02 50.75 16.66 6.91 25.68

140412604-01 51.10 16.68 6.90 25.32

140412604-02 50.88 16.77 6.91 25.44

140412606-01 51.14 16.67 6.96 25.23

140412606-02 51.08 16.64 6.94 25.34

140412608-01 51.10 16.67 6.94 25.29

140412608-02 51.46 16.43 7.02 25.08

140412624-01 53.03 15.98 7.24 23.75

140412624-02 52.99 16.01 7.21 23.79

14041260148h 54.38 15.52 7.37 22.73

14041260248h 54.29 15.64 7.39 22.69

140412648-01 53.93 15.75 7.35 22.97

140412648-02 54.39 15.68 7.42 22.50

140412672-01 54.68 15.61 7.47 22.24

140412696-01 55.24 15.60 7.55 21.61

140412696-02 55.16 15.68 7.54 21.62

1404126120-01 55.28 15.63 7.57 21.51

1404126120-02 55.22 15.66 7.57 21.55

1404129030h 50.87 16.54 6.83 25.76

1404129040h 50.84 16.55 6.84 25.77

Cont4129-01b 51.08 16.54 6.89 25.49

Cont4129-01 51.00 16.46 6.94 25.60

Cont4129-02 50.97 16.51 6.89 25.63

804129120-01 50.93 16.56 6.89 25.62
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Appendix 4.2 continued.

ID C%wtAA (oxid) N%wtAA (oxid) H%wtAA (oxid) O%wtAA (oxid) δ
13
C/‰ δ

15
N/‰ δ

2
H/‰

1104126240-01 52.13 13.94 6.81 27.12 -25.69 5.04 -

1104126240-02 52.18 13.91 6.83 27.08 -25.60 5.14 -129.07

1104126480-01 53.16 13.52 6.98 26.33 - - -

1104126480-02 53.29 13.50 7.00 26.22 - - -

140412601-01 50.60 14.41 6.51 28.48 - - -

140412601-02 50.84 14.28 6.52 28.36 - - -

140412602-01 50.59 14.50 6.52 28.39 - - -

140412602-02 50.59 14.45 6.53 28.43 - - -

140412604-01 50.80 14.48 6.52 28.19 - - -

140412604-02 50.67 14.54 6.54 28.26 - - -

140412606-01 50.91 14.52 6.58 27.99 - - -

140412606-02 50.84 14.45 6.57 28.13 - - -

140412608-01 50.87 14.48 6.57 28.09 -25.24 4.48 -117.74

140412608-02 51.24 14.19 6.63 27.94 - - -

140412624-01 52.66 13.80 6.87 26.67 - - -

140412624-02 52.57 13.83 6.84 26.75 -25.99 4.67 -131.32

14041260148h 53.77 13.36 7.02 25.84 - - -

14041260248h 53.72 13.44 7.05 25.79 - - -

140412648-01 53.41 13.54 7.00 26.06 - - -

140412648-02 53.82 13.43 7.07 25.68 - - -

140412672-01 54.10 13.43 7.14 25.33 - - -

140412696-01 54.59 13.28 7.21 24.92 -26.79 5.11 -

140412696-02 54.51 13.30 7.19 25.00 - - -162.27

1404126120-01 54.61 13.37 7.23 24.78 - - -

1404126120-02 54.56 13.40 7.24 24.81 - - -

1404129030h 50.59 14.33 6.46 28.63 -26.19 4.38 -119.35

1404129040h 50.58 14.33 6.47 28.63 - - -

Cont4129-01b 50.78 14.30 6.50 28.42 - - -

Cont4129-01 50.81 14.27 6.57 28.35 - - -

Cont4129-02 50.73 14.18 6.50 28.58 - - -

804129120-01 50.67 14.29 6.50 28.54 - - -
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Appendix 4.2 continued.

ID δ
18
O/‰ C:NatomISOT

1104126240-01 - 4.03

1104126240-02 11.09 4.04

1104126480-01 - -

1104126480-02 - -

140412601-01 - -

140412601-02 - -

140412602-01 - -

140412602-02 - -

140412604-01 - -

140412604-02 - -

140412606-01 - -

140412606-02 - -

140412608-01 9.78 3.79

140412608-02 - -

140412624-01 - -

140412624-02 10.02 4.11

14041260148h - -

14041260248h - -

140412648-01 - -

140412648-02 - -

140412672-01 - -

140412696-01 - 4.97

140412696-02 8.84 -

1404126120-01 - -

1404126120-02 - -

1404129030h 11.41 3.50

1404129040h - -

Cont4129-01b - -

Cont4129-01 - -

Cont4129-02 - -

804129120-01 - -
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Appendix 4.2 continued.

ID RP-HPLC run Sample Temperature/°C Time/h [Asx] [Glx] [Ser] [L-Thr] [L-His]

804129120-02 H398 4129 80 120 216986 427927 356904 226281 30544

804129720-02 H398 4129 80 720 198477 401285 284537 192715 21247

804129720-01 H420 4129 80 720 108048 214541 156941 106889 11560

8041291440-02 H398 4129 80 1440 536368 1149559 688307 517529 54001

8041291440-01 H398 4129 80 1440 670258 1433794 878817 656477 69744

1104129120-01 H398 4129 110 120 296681 775014 453657 339195 39612

1104129120-02 H398 4129 110 120 110308 284257 178439 130875 20130

1104129240-01 H398 4129 110 240 40536 132701 55202 45082 10762

1104129240-01b H402 4129 110 240 75113 235044 99294 83951 12954

1104129240-02 H398 4129 110 240 56590 188042 93238 78445 13679

1104129480-02 H420 4129 110 480 180849 689120 209308 209370 33204

1104129480-01 H398 4129 110 480 47739 185110 59084 54667 12923

1104129480-02 H398 4129 110 480 15498 58020 21594 16810 5786

140412901-01 H398 4129 140 1 223740 452380 378579 232930 23954

140412901-02 H398 4129 140 1 156820 306407 241886 149713 15384

140412902-01 H398 4129 140 2 317987 875719 889155 523615 0

140412902-02 H398 4129 140 2 213355 431724 336749 221452 25478

140412904-01 H398 4129 140 4 329920 712856 564002 367261 49788

140412904-02 H398 4129 140 4 478317 1040226 836440 545400 63061

140412906-01 H398 4129 140 6 215648 504105 372271 249902 30143

140412906-02 H398 4129 140 6 453522 1037684 810694 550002 68167

140412908-01 H398 4129 140 8 271866 710299 545589 381404 47848

140412908-02 H398 4129 140 8 342321 833824 615143 422887 46617

140412924-01 H398 4129 140 24 78589 308739 134935 114831 23905

140412924-02 H398 4129 140 24 111132 418926 187155 163631 28749

14041290148h G483 4129 140 48 314585 1497148 367300 414170 82208

14041290248h G483 4129 140 48 387781 1794839 469628 496472 99702

140412948-01 H398 4129 140 48 47933 219736 67856 64493 18966

140412948-02 H398 4129 140 48 167489 772663 205047 217130 45121

140412972-01 H398 4129 140 72 241627 993204 333669 310701 69475

140412972-02 H398 4129 140 72 195496 649960 149395 170400 50811
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Appendix 4.2 continued.

ID [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu] [Ile] [Asx] % [Glx] % [Ser] %

804129120-02 273998 214704 187742 82732 221568 86047 309549 141897 8.47% 16.70% 13.93%

804129720-02 242253 191387 173441 45757 201724 77922 294935 128908 8.77% 17.73% 12.57%

804129720-01 117648 102011 97115 32217 109083 39663 158596 72505 8.82% 17.52% 12.81%

8041291440-02 589981 521021 498024 95838 558239 203616 842284 363365 8.80% 18.85% 11.29%

8041291440-01 773344 659180 623422 106767 701906 256197 1049077 453595 8.73% 18.69% 11.45%

1104129120-01 448179 343483 332778 70838 394583 155036 566415 263046 7.17% 18.74% 10.97%

1104129120-02 169147 130119 119516 51863 146728 54399 200487 94712 7.07% 18.21% 11.43%

1104129240-01 64406 56250 57796 21767 67695 27490 107291 48913 5.96% 19.53% 8.12%

1104129240-01b 102248 106220 103372 36332 123550 47927 188195 89394 6.27% 19.63% 8.29%

1104129240-02 97123 87873 80828 28223 98876 36405 141671 68574 5.76% 19.15% 9.50%

1104129480-02 208164 304259 301128 90450 356583 135710 575384 282433 5.53% 21.06% 6.40%

1104129480-01 63979 81071 79814 34670 96195 37828 154808 76649 5.28% 20.49% 6.54%

1104129480-02 24266 24253 26691 11715 29419 12159 52289 25061 5.18% 19.38% 7.21%

140412901-01 241535 230416 191885 56407 234888 92228 323236 146147 8.61% 17.41% 14.57%

140412901-02 164191 151361 133327 35796 156788 65434 227960 100996 8.94% 17.46% 13.78%

140412902-01 1833864 573891 454972 99619 463419 206542 758152 294864 4.73% 13.04% 13.24%

140412902-02 429898 211041 189161 55899 225155 92653 318186 141287 7.96% 16.10% 12.56%

140412904-01 544180 347650 316137 106480 385002 157668 528381 240689 7.67% 16.57% 13.11%

140412904-02 808500 515951 458059 166074 560898 227186 754931 353977 7.60% 16.53% 13.29%

140412906-01 384343 232698 223130 82685 270608 114461 369281 172113 7.22% 16.87% 12.46%

140412906-02 821404 513928 472603 200468 574734 237651 765387 367961 7.13% 16.32% 12.75%

140412908-01 552628 334133 312746 123648 390962 152457 503573 248021 6.41% 16.75% 12.86%

140412908-02 628174 398497 374904 111942 464860 193420 620896 293893 6.92% 16.85% 12.43%

140412924-01 182457 129461 146732 62015 174569 75058 257393 126171 4.66% 18.32% 8.01%

140412924-02 262473 185499 201317 72831 242877 101432 348179 171557 4.81% 18.13% 8.10%

14041290148h 679809 634606 749262 284508 918891 430750 1477821 752859 3.95% 18.79% 4.61%

14041290248h 777605 708852 887679 346204 1067173 473237 1694738 865332 4.14% 19.17% 5.02%

140412948-01 109217 97093 112606 52175 130918 61891 208313 102007 4.01% 18.37% 5.67%

140412948-02 338015 338114 377168 167846 443039 206297 731221 362130 4.15% 19.16% 5.08%

140412972-01 459834 455408 492130 207933 594533 280213 964827 491428 4.44% 18.26% 6.13%

140412972-02 266533 305684 341030 149859 416914 214584 705590 362472 5.32% 17.70% 4.07%
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Appendix 4.2 continued.

ID [L-Thr] % [L-His] % [Gly] % [L-Arg] % [Ala] % [Tyr] % [Val] % [Phe] % [Leu] % [Ile] %

804129120-02 8.83% 1.19% 10.69% 8.38% 7.33% 3.23% 8.65% 3.36% 12.08% 5.54%

804129720-02 8.52% 0.94% 10.70% 8.46% 7.66% 2.02% 8.91% 3.44% 13.03% 5.70%

804129720-01 8.73% 0.94% 9.61% 8.33% 7.93% 2.63% 8.91% 3.24% 12.95% 5.92%

8041291440-02 8.49% 0.89% 9.68% 8.55% 8.17% 1.57% 9.16% 3.34% 13.81% 5.96%

8041291440-01 8.56% 0.91% 10.08% 8.59% 8.12% 1.39% 9.15% 3.34% 13.67% 5.91%

1104129120-01 8.20% 0.96% 10.84% 8.31% 8.05% 1.71% 9.54% 3.75% 13.70% 6.36%

1104129120-02 8.38% 1.29% 10.84% 8.34% 7.66% 3.32% 9.40% 3.49% 12.84% 6.07%

1104129240-01 6.63% 1.58% 9.48% 8.28% 8.50% 3.20% 9.96% 4.04% 15.79% 7.20%

1104129240-01b 7.01% 1.08% 8.54% 8.87% 8.63% 3.03% 10.32% 4.00% 15.72% 7.47%

1104129240-02 7.99% 1.39% 9.89% 8.95% 8.23% 2.87% 10.07% 3.71% 14.43% 6.99%

1104129480-02 6.40% 1.01% 6.36% 9.30% 9.20% 2.76% 10.90% 4.15% 17.59% 8.63%

1104129480-01 6.05% 1.43% 7.08% 8.97% 8.83% 3.84% 10.65% 4.19% 17.13% 8.48%

1104129480-02 5.62% 1.93% 8.11% 8.10% 8.92% 3.91% 9.83% 4.06% 17.47% 8.37%

140412901-01 8.97% 0.92% 9.30% 8.87% 7.39% 2.17% 9.04% 3.55% 12.44% 5.63%

140412901-02 8.53% 0.88% 9.36% 8.63% 7.60% 2.04% 8.94% 3.73% 12.99% 5.76%

140412902-01 7.79% 0.00% 27.30% 8.54% 6.77% 1.48% 6.90% 3.07% 11.29% 4.39%

140412902-02 8.26% 0.95% 16.04% 7.87% 7.06% 2.09% 8.40% 3.46% 11.87% 5.27%

140412904-01 8.54% 1.16% 12.65% 8.08% 7.35% 2.47% 8.95% 3.66% 12.28% 5.59%

140412904-02 8.67% 1.00% 12.85% 8.20% 7.28% 2.64% 8.91% 3.61% 12.00% 5.62%

140412906-01 8.36% 1.01% 12.86% 7.79% 7.47% 2.77% 9.05% 3.83% 12.36% 5.76%

140412906-02 8.65% 1.07% 12.91% 8.08% 7.43% 3.15% 9.04% 3.74% 12.03% 5.79%

140412908-01 8.99% 1.13% 13.03% 7.88% 7.37% 2.92% 9.22% 3.59% 11.87% 5.85%

140412908-02 8.55% 0.94% 12.69% 8.05% 7.58% 2.26% 9.39% 3.91% 12.55% 5.94%

140412924-01 6.81% 1.42% 10.83% 7.68% 8.71% 3.68% 10.36% 4.45% 15.27% 7.49%

140412924-02 7.08% 1.24% 11.36% 8.03% 8.71% 3.15% 10.51% 4.39% 15.07% 7.43%

14041290148h 5.20% 1.03% 8.53% 7.96% 9.40% 3.57% 11.53% 5.41% 18.54% 9.45%

14041290248h 5.30% 1.07% 8.31% 7.57% 9.48% 3.70% 11.40% 5.06% 18.11% 9.24%

140412948-01 5.39% 1.59% 9.13% 8.12% 9.41% 4.36% 10.95% 5.17% 17.42% 8.53%

140412948-02 5.38% 1.12% 8.38% 8.38% 9.35% 4.16% 10.98% 5.12% 18.13% 8.98%

140412972-01 5.71% 1.28% 8.45% 8.37% 9.05% 3.82% 10.93% 5.15% 17.74% 9.03%

140412972-02 4.64% 1.38% 7.26% 8.32% 9.28% 4.08% 11.35% 5.84% 19.21% 9.87%
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Appendix 4.2 continued.

ID Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

804129120-02 0.105 0.043 0.020 0.040 0.040 0.037 0.020 0.032 0.040 0.031

804129720-02 0.194 0.050 0.031 0.043 0.040 0.065 0.023 0.046 0.042 0.032

804129720-01 0.189 0.047 0.030 0.048 0.048 0.069 0.019 0.041 0.042 0.036

8041291440-02 0.251 0.059 0.044 0.046 0.038 0.049 0.026 0.059 0.043 0.031

8041291440-01 0.237 0.058 0.045 0.047 0.041 0.062 0.027 0.058 0.043 0.031

1104129120-01 0.558 0.111 0.104 0.069 0.069 0.091 0.032 0.079 0.058 0.045

1104129120-02 0.571 0.106 0.108 0.072 0.073 0.097 0.030 0.077 0.056 0.022

1104129240-01 0.454 0.140 0.130 0.100 0.097 0.126 0.034 0.101 0.073 0.077

1104129240-01b 0.470 0.140 0.128 0.101 0.098 0.105 0.035 0.114 0.070 0.058

1104129240-02 0.491 0.148 0.149 0.098 0.100 0.094 0.037 0.102 0.073 0.059

1104129480-02 0.343 0.140 0.161 0.108 0.115 0.096 0.047 0.133 0.075 0.051

1104129480-01 0.338 0.138 0.130 0.125 0.122 0.157 0.044 0.111 0.077 0.081

1104129480-02 0.340 0.143 0.126 0.158 0.148 0.098 0.042 0.128 0.118 0.113

140412901-01 0.223 0.047 0.030 0.041 0.037 0.041 0.017 0.036 0.034 0.012

140412901-02 0.292 0.053 0.029 0.047 0.045 0.045 0.020 0.037 0.044 0.034

140412902-01 0.381 0.060 0.046 0.041 0.032 0.045 0.017 0.037 0.035 0.020

140412902-02 0.379 0.059 0.041 0.047 0.045 0.037 0.018 0.038 0.041 0.030

140412904-01 0.597 0.085 0.080 0.054 0.052 0.054 0.023 0.051 0.050 0.038

140412904-02 0.611 0.086 0.087 0.056 0.051 0.053 0.028 0.053 0.049 0.037

140412906-01 0.655 0.114 0.094 0.067 0.067 0.067 0.029 0.068 0.060 0.042

140412906-02 0.689 0.112 0.113 0.066 0.066 0.065 0.030 0.063 0.054 0.037

140412908-01 0.678 0.134 0.122 0.072 0.078 0.082 0.030 0.072 0.061 0.049

140412908-02 0.689 0.133 0.118 0.072 0.076 0.080 0.036 0.073 0.060 0.049

140412924-01 0.485 0.213 0.177 0.119 0.136 0.122 0.043 0.118 0.084 0.067

140412924-02 0.530 0.217 0.200 0.119 0.132 0.118 0.047 0.122 0.082 0.061

14041290148h 0.379 0.235 0.207 0.162 0.169 0.140 0.063 0.171 0.110 0.069

14041290248h 0.377 0.229 0.208 0.147 0.162 0.130 0.060 0.157 0.102 0.064

140412948-01 0.356 0.199 0.171 0.152 0.143 0.138 0.050 0.154 0.093 0.051

140412948-02 0.338 0.193 0.186 0.141 0.131 0.124 0.053 0.145 0.089 0.066

140412972-01 0.338 0.169 0.129 0.144 0.132 0.122 0.052 0.144 0.090 0.070

140412972-02 0.313 0.191 0.178 0.186 0.147 0.146 0.056 0.169 0.102 0.080
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Appendix 4.2 continued.

ID C%wtEA N%wtEA H%wtEA O%wtEA S%wtEA C%wtAA N%wtAA H%wtAA O%wtAA

804129120-02 45.67 15.66 7.05 26.28 2.65 50.83 17.70 6.93 24.54

804129720-02 44.94 14.87 6.83 27.48 3.39 50.88 17.74 6.99 24.39

804129720-01 43.70 14.27 6.73 26.88 3.33 51.01 17.61 7.00 24.38

8041291440-02 44.42 14.25 6.70 26.89 3.02 51.09 17.69 7.05 24.18

8041291440-01 45.07 14.51 6.46 26.78 2.94 51.00 17.75 7.04 24.22

1104129120-01 45.38 14.37 6.64 30.20 2.58 51.35 17.67 7.07 23.91

1104129120-02 45.58 14.66 6.66 28.05 2.37 51.37 17.64 7.02 23.98

1104129240-01 48.78 14.78 6.47 27.81 3.19 52.50 17.43 7.19 22.87

1104129240-01b 48.78 14.78 6.47 27.81 3.19 52.50 17.40 7.22 22.88

1104129240-02 49.31 14.76 7.39 26.49 2.79 52.00 17.61 7.15 23.24

1104129480-02 50.73 16.30 6.49 23.73 2.28 53.24 17.21 7.37 22.18

1104129480-01 50.57 15.35 6.81 14.59 2.38 53.31 17.20 7.33 22.16

1104129480-02 50.73 16.30 6.49 23.73 2.28 53.24 17.22 7.30 22.25

140412901-01 46.12 14.90 6.89 28.01 2.01 50.79 17.68 6.98 24.55

140412901-02 45.49 15.04 6.79 28.65 1.95 50.94 17.64 6.99 24.43

140412902-01 45.21 15.70 6.74 27.59 2.51 49.31 19.02 6.76 24.92

140412902-02 44.71 14.27 6.80 28.02 1.97 50.39 18.09 6.88 24.64

140412904-01 45.92 13.13 6.31 30.51 2.44 50.85 17.81 6.95 24.40

140412904-02 45.73 13.98 6.91 28.68 2.28 50.79 17.82 6.94 24.45

140412906-01 45.92 13.83 6.96 30.04 2.41 51.04 17.71 6.96 24.28

140412906-02 46.34 13.35 6.92 26.49 2.35 51.02 17.76 6.95 24.27

140412908-01 44.20 12.79 6.09 29.94 1.98 50.98 17.74 6.96 24.31

140412908-02 46.32 13.51 6.79 26.41 2.83 51.08 17.74 7.00 24.18

140412924-01 56.03 16.14 7.74 30.84 2.58 52.74 17.33 7.20 22.72

140412924-02 48.34 14.20 6.03 30.91 1.60 52.55 17.45 7.20 22.79

14041290148h - - - - - 54.21 16.94 7.45 21.40

14041290248h - - - - - 54.04 16.90 7.42 21.64

140412948-01 50.98 13.48 6.75 - 1.77 53.84 17.12 7.35 21.69

140412948-02 50.86 14.67 6.49 30.26 1.20 53.98 17.03 7.40 21.59

140412972-01 - - - - - 53.80 17.07 7.38 21.74

140412972-02 - - - - - 54.56 16.89 7.47 21.09
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Appendix 4.2 continued.

ID C%wtAA (deamid) N%wtAA (deamid) H%wtAA (deamid) O%wtAA (deamid)

804129120-02 50.97 16.53 6.89 25.62

804129720-02 51.03 16.51 6.94 25.52

804129720-01 51.17 16.37 6.95 25.51

8041291440-02 51.25 16.40 7.00 25.35

8041291440-01 51.15 16.47 6.99 25.38

1104129120-01 51.50 16.47 7.03 25.00

1104129120-02 51.51 16.47 6.97 25.04

1104129240-01 52.68 16.25 7.15 23.92

1104129240-01b 52.68 16.20 7.18 23.93

1104129240-02 52.16 16.47 7.11 24.26

1104129480-02 53.44 15.99 7.34 23.24

1104129480-01 53.51 16.02 7.29 23.18

1104129480-02 53.43 16.08 7.26 23.24

140412901-01 50.93 16.47 6.93 25.66

140412901-02 51.09 16.41 6.95 25.56

140412902-01 49.37 18.23 6.72 25.68

140412902-02 50.51 16.97 6.83 25.68

140412904-01 50.98 16.68 6.90 25.43

140412904-02 50.92 16.70 6.89 25.49

140412906-01 51.18 16.59 6.92 25.31

140412906-02 51.15 16.67 6.91 25.27

140412908-01 51.11 16.67 6.92 25.30

140412908-02 51.22 16.64 6.95 25.19

140412924-01 52.91 16.27 7.17 23.66

140412924-02 52.71 16.40 7.16 23.73

14041290148h 54.40 15.88 7.42 22.30

14041290248h 54.24 15.81 7.39 22.57

140412948-01 54.02 16.09 7.31 22.58

140412948-02 54.17 15.95 7.36 22.51

140412972-01 53.99 16.03 7.35 22.64

140412972-02 54.77 15.81 7.44 21.98
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Appendix 4.2 continued.

ID C%wtAA (oxid) N%wtAA (oxid) H%wtAA (oxid) O%wtAA (oxid) δ
13
C/‰ δ

15
N/‰ δ

2
H/‰

804129120-02 50.70 14.30 6.51 28.49 - - -

804129720-02 50.84 14.31 6.57 28.29 - - -

804129720-01 50.95 14.21 6.57 28.27 - - -

8041291440-02 51.09 14.20 6.62 28.09 -25.38 4.68 -120.18

8041291440-01 51.01 14.25 6.61 28.12 -25.33 4.33 -114.92

1104129120-01 51.27 14.29 6.66 27.77 - - -119.39

1104129120-02 51.20 14.23 6.59 27.97 - - -

1104129240-01 52.23 13.97 6.79 27.01 -25.83 4.72 -

1104129240-01b 52.33 13.89 6.82 26.96 - - -

1104129240-02 51.86 14.09 6.73 27.31 - - -132.05

1104129480-02 53.09 13.60 6.97 26.33 -25.46 4.30 -

1104129480-01 53.04 13.62 6.93 26.41 - - -

1104129480-02 52.87 13.77 6.92 26.44 - - -

140412901-01 50.76 14.20 6.55 28.50 - - -

140412901-02 50.88 14.19 6.57 28.37 - - -

140412902-01 49.44 16.20 6.39 27.96 - - -

140412902-02 50.30 14.89 6.48 28.33 - - -

140412904-01 50.71 14.52 6.53 28.24 - - -

140412904-02 50.67 14.54 6.52 28.26 - - -

140412906-01 50.86 14.52 6.55 28.07 - - -

140412906-02 50.84 14.52 6.54 28.10 - - -

140412908-01 50.82 14.56 6.55 28.07 -25.20 4.68 -127.80

140412908-02 50.95 14.53 6.58 27.94 -25.48 4.44 -121.38

140412924-01 52.38 14.13 6.81 26.68 - - -

140412924-02 52.26 14.23 6.81 26.70 - - -

14041290148h 53.77 13.75 7.08 25.39 - - -

14041290248h 53.61 13.76 7.05 25.58 - - -

140412948-01 53.34 13.83 6.97 25.85 - - -

140412948-02 53.57 13.72 7.02 25.69 - - -

140412972-01 53.39 13.77 7.00 25.84 - - -

140412972-02 54.03 13.54 7.09 25.34 - - -
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Appendix 4.2 continued.

ID δ
18
O/‰ C:NatomISOT

804129120-02 - -

804129720-02 - -

804129720-01 - -

8041291440-02 12.16 3.73

8041291440-01 11.49 3.67

1104129120-01 10.86 -

1104129120-02 - -

1104129240-01 - 3.94

1104129240-01b - -

1104129240-02 10.55 -

1104129480-02 - 3.74

1104129480-01 - -

1104129480-02 - -

140412901-01 - -

140412901-02 - -

140412902-01 - -

140412902-02 - -

140412904-01 - -

140412904-02 - -

140412906-01 - -

140412906-02 - -

140412908-01 10.49 3.75

140412908-02 10.39 3.77

140412924-01 - -

140412924-02 - -

14041290148h - -

14041290248h - -

140412948-01 - -

140412948-02 - -

140412972-01 - -

140412972-02 - -
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Appendix 4.2 continued.

ID RP-HPLC run Sample Temperature/°C Time/h [Asx] [Glx] [Ser] [L-Thr] [L-His]

140412996-01 H398 4129 140 96 72250 377134 82693 96805 29364

140412996-02 H398 4129 140 96 77974 424595 91779 109849 32745

1404129120-01 H398 4129 140 120 174027 971809 203287 253051 70326

1404129120-02 H398 4129 140 120 45641 247580 58545 66567 19211
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Appendix 4.2 continued.

ID [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu] [Ile] [Asx] % [Glx] % [Ser] %

140412996-01 154052 185610 211175 94823 262644 140491 452126 233732 3.27% 17.09% 3.75%

140412996-02 179217 209626 245978 116229 312333 166325 530405 275305 3.04% 16.57% 3.58%

1404129120-01 416440 488315 594094 234740 760898 426411 1318045 698025 2.84% 15.88% 3.32%

1404129120-02 102815 113823 152720 59950 191656 102512 331593 173467 2.94% 15.95% 3.77%
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Appendix 4.2 continued.

ID [L-Thr] % [L-His] % [Gly] % [L-Arg] % [Ala] % [Tyr] % [Val] % [Phe] % [Leu] % [Ile] %

140412996-01 4.39% 1.33% 6.98% 8.41% 9.57% 4.30% 11.90% 6.36% 20.48% 10.59%

140412996-02 4.29% 1.28% 6.99% 8.18% 9.60% 4.54% 12.19% 6.49% 20.70% 10.74%

1404129120-01 4.13% 1.15% 6.80% 7.98% 9.71% 3.83% 12.43% 6.97% 21.53% 11.40%

1404129120-02 4.29% 1.24% 6.62% 7.33% 9.84% 3.86% 12.35% 6.60% 21.36% 11.18%
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Appendix 4.2 continued.

ID Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

140412996-01 0.303 0.193 0.161 0.226 0.148 0.162 0.060 0.177 0.106 0.080

140412996-02 0.318 0.209 0.151 0.253 0.154 0.168 0.066 0.175 0.114 0.087

1404129120-01 0.302 0.203 0.147 0.269 0.155 0.175 0.071 0.186 0.115 0.082

1404129120-02 0.296 0.200 0.128 0.242 0.151 0.151 0.063 0.153 0.107 0.084
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Appendix 4.2 continued.

ID C%wtEA N%wtEA H%wtEA O%wtEA S%wtEA C%wtAA N%wtAA H%wtAA O%wtAA

140412996-01 - - - - - 55.23 16.72 7.58 20.47

140412996-02 - - - - - 55.43 16.63 7.60 20.34

1404129120-01 - - - - - 55.73 16.53 7.67 20.07

1404129120-02 - - - - - 55.62 16.45 7.66 20.28
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Appendix 4.2 continued.

ID C%wtAA (deamid) N%wtAA (deamid) H%wtAA (deamid) O%wtAA (deamid)

140412996-01 55.42 15.78 7.55 21.25

140412996-02 55.62 15.72 7.58 21.08

1404129120-01 55.92 15.66 7.65 20.78

1404129120-02 55.81 15.56 7.63 21.00
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Appendix 4.2 continued.

ID C%wtAA (oxid) N%wtAA (oxid) H%wtAA (oxid) O%wtAA (oxid) δ
13
C/‰ δ

15
N/‰ δ

2
H/‰

140412996-01 54.63 13.50 7.21 24.65 - - -168.58

140412996-02 54.80 13.50 7.24 24.46 - - -169.91

1404129120-01 55.08 13.50 7.32 24.11 - - -

1404129120-02 54.96 13.52 7.31 24.21 - - -
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Appendix 4.2 continued.

ID δ
18
O/‰ C:NatomISOT

140412996-01 10.25 -

140412996-02 9.80 -

1404129120-01 - -

1404129120-02 - -

351



352 
 

Appendix 4.5. AA composition (of AAs recovered by RP-HPLC) of the 10 most important proteins in the wool fibre. Data from Clerens et al. (2010). Ordering 
derived by multiplying Score (combined Mascot score), Mr (molar mass) and Coverage (sequence coverage %) as a proxy for abundance. 

(a) protein identity. 

 
Protein Score Mr /kDa Coverage/% 

N unique 
peptides 

% AA residues 
recovered 

1 IFP Type II K86 20036.2 54.8 98.2 325 85.2 

2 IFP Type II K81 20490.7 55.1 89.2 332 85.4 

3 IFP Type II K83 18237.1 53.6 93.1 300 85.1 

4 IFP Type I K31 18627.2 46.6 98.5 307 86.2 

5 IFP Type I k33b 16984.7 47.7 94.3 291 88.2 

6 IFP Type II K85 14750.3 55.3 93 242 87.1 

7 IFP Type I K34 15665.3 46.6 92.1 255 88.7 

8 IFP Type I K33a var1 13551.3 46 93.5 234 87.3 

9 IFP Type I K35 8339.7 50.4 89.5 136 84.4 

10 IFP Type II K87 4799.3 52.9 39 82 87.5 

 

  

3
5

2
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Appendix 4.5 continued. (b) protein % AA content (of recovered AAs only). 

 
Asx Glx Ser L-Thr L-His Gly L-Arg Ala Tyr Val Phe Leu Ile 

1 8.86 15.99 11.37 4.82 0.58 8.86 8.09 11.18 3.28 9.63 2.12 10.60 4.62 

2 9.01 16.40 10.39 4.62 0.46 10.39 9.01 10.16 3.23 8.08 2.77 10.62 4.85 

3 9.57 17.46 9.57 4.78 0.48 9.81 8.61 9.57 2.87 8.37 3.35 10.53 5.02 

4 12.96 20.85 9.58 6.48 0.56 3.38 9.01 6.76 2.82 7.04 2.25 13.80 4.51 

5 12.90 20.97 10.48 6.45 0.54 3.76 8.33 6.45 3.23 7.26 2.15 13.71 3.76 

6 8.90 16.21 11.87 4.79 1.14 7.99 8.90 10.73 3.65 7.99 2.97 9.82 5.02 

7 11.91 21.05 13.57 5.82 1.11 1.94 9.42 5.82 3.32 5.82 2.22 13.85 4.16 

8 12.78 21.31 9.38 6.25 1.14 3.13 9.38 5.68 2.56 7.67 2.56 13.92 4.26 

9 10.16 18.75 11.98 5.21 1.04 6.77 8.07 8.85 2.86 5.99 2.60 14.06 3.65 

10 8.35 16.71 13.60 5.25 1.67 8.59 8.35 8.83 4.30 7.64 2.39 9.31 5.01 

 

3
5

3

3
 



Appendix 7.1. Technical description of archaeological textiles selected for isotope and AA analysis. 

ID Site Context date Sf/context no Type Spin Density

2894 RKH 1000-1200 2001-26-30 (i) Yarn S+Z -

2895 RKH 1000-1200 2001-26-31 2/2 plain twill ZS 8 x 8

3960 RKH 1000-1200 2001-26-30 (ii) Staple - -

3961 RKH 1000-1200 2001-26-46 Cord Z2S -

2896ave RKH 1200-1400 1999-18-57 2/2 plain twill ZS 11 x 8

2897 RKH 1200-1400 2000-6-187 (a) 2/2 plain twill ZS 10 x 9

2898 RKH 1200-1400 2000-6-187 (b) 2/2 plain twill ZS 13 x 10

2899 RKH 1200-1400 2000-6-208 Box 1 (f) 2/2 plain twill ZS ?

2901 RKH 1200-1400 2000-6-208 Box 2 (g) 2/2 plain twill ZS 12 x 8

3962 RKH 1200-1400 2000-6-187 (c) 2/2 plain twill ZS 12 x 9

3963 RKH 1200-1400 2000-6-208 Box 1 (f) 2/2 plain twill ZS ?

3964 RKH 1200-1400 2000-6-208 Box 2 (c) 2/2 plain twill ZS 10 x 9

3965 RKH 1200-1400 2001-26-76 (iii) Staple - -

2902 RKH 1400-1600 1989-33-380 (a) 2/2 plain twill ZS 8 x 7

2903 RKH 1400-1600 1989-33-380 (f) Tabby ?SS 16 x 8

2904 RKH 1400-1600 1989-33-380 (g) Yarn Z -

2950ave RKH 1400-1600 1989-33-380 (iii) Staple - -

3966 RKH 1400-1600 2000-6-130 Tabby Z+S/S 10 x 8

3967 RKH 1400-1600 1989-33-380 (c) Tabby SS 12 x 12

3968 RKH 1400-1600 1989-33-380 (d) Tabby SS 10 x 10

2906 RKH 1400-1600 1989-33-380 (i) (b) Staple - -

4120ave RKH 1200-1400 2000-6-208 Box 1 2/2 plain twill ZS ?

4329 HSS C7-8 HE4 2/1 plain twill ZS 14 x 10

4330 HSS C7-8 HE21b 2/2 chevron/ diamond twill ZS 11 x 8

4331 HSS C7-8 HE27 weft Tabby ZS 3.5 x 3

4332 HSS C7-8 HE33a Tabby ? ?

4333 HSS C7-8 HE41 Staple - -

4334 HSS C7-8 HE50 Staple - -

4335 HSS C7-8 HE69a Staple - -

4336 HSS C7-8 HE76c Tabby (?band) ZS -

4337 HSS C7-8 HE77a 2/2 diamond twill ZS 7 x 8
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Appendix 7.1 continued.

ID Dye Pigment Fleece Other Category

2894 nt nt nt typical

2895 nt nt nt typical

3960 nt nt nt typical

3961 nt nt nt typical

2896ave nt nt nt typical

2897 nt nt nt typical

2898 nt nt nt typical

2899 nt nt nt typical

2901 nt nt nt typical

3962 nt nt nt even typical

3963 nt nt nt typical

3964 nt nt nt typical

3965 nt nt nt typical

2902 nt nt nt typical

2903 nt nt nt napped atypical

2904 nt nt nt typical

2950ave nt nt nt typical

3966 nt nt nt atypical

3967 nt nt nt napped atypical

3968 nt nt nt unknown

2906 nt nt nt typical

4120ave nt nt nt typical

4329 madder none HM x HM atypical

4330 ndd dense HM x HM typical

4331 ndd dense on coarse fibres HM typical

4332 ndd none ?M x ?M open atypical

4333 ndd none H typical

4334 ndd dense HM typical

4335 ndd medium on coarse fibres HM ?fell wool typical

4336 ndd dense HM x HM ?band typical

4337 ndd moderate/light HM x HM typical
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Appendix 7.1 continued.

ID Site Context date Sf/context no Type Spin Density

4338 HSS C7-8 HE92 2/2 diamond twill ZS 10 x 10

3959 YCG 930-975 Cat. no 1309 Context 32725 sf no 13517 Nålebinding S2Z -

4058 YCG 850-900 Cat. no 1255 Context 34882 cess pit fill Sf no 13584 Staple - -

4059 YCG 850-900 Cat. no 1257 Context 32722 pit fill Sf no 13499 Tabby ZS 4 x 2-3

4060a YCG 850-900 Cat. no 1259 Context 34910 pit fill Sf no 13382 Tabby ZS 12 x 8

4060b YCG 850-900 Cat. no 1259 Context 34910 pit fill Sf no 13382 Yarn Z2S -

4061 YCG 930-975 Cat. no 1285 Context 34558 Sf no 13020 Staple - -

4062 YCG 930-975 Cat. no 1289 Context 32725 Sf no 13525 Staple - -

4063 YCG 930-975 Cat. no 1290 Context 28432 Sf no 10519 Staple - -

4064 YCG 930-975 Cat. no 1295 Context 32725 Sf no 13520 Tabby, piled ZS 5 x 4

4065 YCG 930-975 Cat. no 1295 Context 32725 Sf no 13520 Yarn S -

4066 YCG 930-975 Cat. no 1300 Context 28432 Sf no 10535 2/2 plain twill ZS 14 x 7

4067 YCG 930-975 Cat. no 1302 Context 34558 pit fill Sf no 13019 2/2 chevron twill ZS 8 x 5-6

4068 YCG 930-975 Cat. no 1303 Context 32725 Sf no 13524 2/2 chevron twill ZS 10-11 x 6-7

4069 YCG 930-975 Cat. no 1305 Context 27093 Sf no 9633 2/2 chevron twill ZS 16 x 12

4070 YCG 930-975 Cat. no 1306 Context 27093  Sf no 9633 2/2 chevron twill ZS 18 x 16

4071 YCG 975-1150 Cat. no 1374 Context 1473 Sf no 407 Staple - -

4072 YCG 975-1150 Cat. no 1377 Context 1473 Sf no 407 Staple - -

4073 YCG 975-1150 Cat. no 1381 Context 1473 Sf no 12912 2/2 diamond twill ZS 14 x 11

4074 YCG C13-14 Cat. no 1413  Context 4829 Sf no 16063 Staple - -

4075 YCG C13 Cat. no 1415 Context 10879 Sf no 2703 2/1 plain twill Z/S+Z 11 x 6-7

4076 YCG C13-14 Cat. no 1419 Context 10758 cess pit fill Sf no 16064 Tabby ZS 12-14 x 12-14

4077 YCG C13 Cat. no 1423 Context 10879 Sf no 2692 Yarn Z -

4078ave YCG Anglo-Scandinavian Cat. no 1460 Context 2070 Sf no 247(a) Tabby, piled ZS 5 x 5

4079 YCG Anglo-Scandinavian Cat. no 1460 Context 2070 Sf no 247(b) Tabby ZZ 24 x 16

4080 YCG Anglo-Scandinavian Cat. no 1460 Context 2070 Sf no 247 Yarn Z2S -

4095 YCG 930-975 Cat. No 1297 Context 28432 Sf no 10519 Tabby ZS 4 x 3-4

4081 YLB 930-1040 Cat. no 565 Context Trench II, 10 Sf no 5075 2/1 diamond twill ZZ 22 x 11

4082 YLB 930-1040 Cat. no 569 Context Trench II, 10  Sf no 5252 2/1 diamond twill ZZ 20 x 11

4083 YLB 930-1040 Cat. no 570 Context Trench III, 6 Sf no 5073 2/1 diamond twill ZZ 16 x 10

4084 YLB 900-1000 Cat. no 571 Context Trench II, 7 Sf no ?5267 2/2 chevron twill ZS 18 x 15
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Appendix 7.1 continued.

ID Dye Pigment Fleece Other Category

4338 ndd none H x H typical

3959 ndd none nt sock atypical

4058 ndd none H typical

4059 nt none H x H fringe of knotted warps typical

4060a ndd dense H x HM loose typical

4060b ndd none nt sewn through 4060a typical

4061 nt none H typical

4062 ndd none HM typical

4063 ndd none HM typical

4064 ndd none H x H ground of 4065 hybrid typical/atypical

4065 ndd none H pile of 4064 hybrid typical/atypical

4066 ndd none GM x H typical

4067 indigotin none M x H soft uneven yarn typical

4068 ndd dense (warp) /none (weft) H x HM waðmál atypical

4069 ndd none GM x HM typical

4070 lichen purple none HM x M v even atypical

4071 nt none H tips and roots present typical

4072 ndd none GM typical

4073 madder nt nt typical

4074 ndd none SF typical

4075 ndd none M x SF+HM typical

4076 nt none nt matted typical

4077 ndd none H typical

4078ave madder none H x H+H locks of loosely twisted wool darned in hybrid typical/atypical

4079 ndd none nt lining of 4078 atypical

4080 ndd none nt thread joining 4078 and 4079 typical

4095 ndd none M x HM uneven, loose typical

4081 nt nt nt offcut unknown

4082 nt nt nt unknown

4083 nt nt nt unknown

4084 nt nt nt irregular pattern typical
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Appendix 7.1 continued.

ID Site Context date Sf/context no Type Spin Density

4085 YLB 930-1040 Cat. no 574 Context Trench II, 10 f no 5077 2/1 chevron twill ZS 20 x 14

4086 YLB 930-1040 Cat. no 577 Context Trench II, 10 Sf no 5076 2/2 diamond twill Z/Z+S 14 x 9

4087ave YLB 930-1040 Cat. no 579 Context Trench II, 16 Sf no ?5098 2/2 diamond twill, piled ZS 12 x 7

4088 YLB 900-1000 Cat. no 580 Context Trench II, 7 Sf no 5275 Tabby(?) ZS 4 x 3

4089 YLB 900-1000 Cat. no 582 Context Trench II, 7 Sf no 5276 Tabby SS 5 x 3.5

4090 YLB 930-1040 Cat. no 584 Context Trench II, 10 Sf no 5078 Tabby SS 3.5 x 3.5

4091 YLB 930-1040 Cat. no 584 Context Trench II, 10 Sf no 5078 Tabby SS 3.5 x 3.5

4092 YLB 900-1000 Cat. no 587 Context Trench II, 10 Sf no 5281 ?2/2 plain twill Z/S+Z 6 x 5

4093 YLB 930-1040 Cat. no 588  Context Trench II, 10 Sf no 5282 ?2/1 plain twill Z/S+Z 4.5 x 5

4094 YLB 930-1040 Cat. no 591 Context Trench II, 30  Sf no 5176 Tabby repp ZZ 22 x 12

4121 YSG Anglo-Scandinavian Sf 19b, context 5021 2/1 diamond ZZ 22-24/14-16

4122 YSG Anglo-Scandinavian Sf 19c, context 5021 2/2 plain twill ZS 10 x 7

4123 YSG Anglo-Scandinavian Sf 19e, context 5021 2/2 twill ZS 10 x 10

4124 YSG Anglo-Scandinavian Sf 19h, context 5021 2/1 twill SS 5 x 4

4125 YSG Anglo-Scandinavian Sf 404, context 9021 Tabby ZS 6-8 x 4

3944 NBG 1st half C15th BGT26, T13 Knit Z2S 15 x 27*

3945 NBG 1st half C15th BGT26, T11 2/2 plain twill ZZ 14 x 12

3946 NBG 1st half C15th BGT26, T12 Tabby SS 5-6 x 5

3947 NBG 1st half C15th BGT21, T6 2/2 plain twill ZZ 14 x 84-104

3948 NBG 1st half C15th BGT14, T4 2/2 plain twill SS 22 x 20

3949 NBG 1st half C15th BGT14, T5 Tabby SS 6 x 5

3950 NBG Beginning C16th BGT59, T47-50 Knit ?Z2S 17 x 25*

3951 NBG Beginning C16th BGT59, T51-55 Knit ?Z2S 22 x 35*

3952 NBG Beginning C16th BGT63, T64 2/2 plain twill ZZ 13 x 86-96

3953 NBG Beginning C16th BGT63, T65 Tabby SS 11 x 8

3954 NBG Beginning C16th BGT59, T33 Tabby SS 7 x 5

3955 NBG Beginning C16th BGT59, T41 Tabby SS 14 x 11

3956 NBG Beginning C16th BGT59, T25 Tabby SS 9 x 9

3957 NBG Beginning C16th BGT59, T27 Tabby SS 8 x 8

4544 NQS mid-late C13th T4, context 574 2/1 plain twill ZS 10 x 7

4545 NQS mid-late C13th T5, context 574 2/1 plain twill ZS 7 x 5
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Appendix 7.1 continued.

ID Dye Pigment Fleece Other Category

4085 nt nt nt typical

4086 nt nt nt typical

4087ave nt nt nt S-spun thread darned in hybrid typical/atypical

4088 nt nt nt fulled/matted typical

4089 nt nt nt errors in weave typical

4090 nt nt nt dark system typical

4091 nt nt nt light system typical

4092 nt nt nt typical

4093 nt nt nt typical

4094 madder nt nt typical

4121 nt moderate/light H/HM unknown

4122 ndd moderate/light nt typical

4123 tannin moderate/light nt typical

4124 ndd none HM x HM typical

4125 Indigotin + tannin none GM x HM shaggy pile both faces atypical

3944 kermes none F atypical

3945 nt nt nt heavily fulled typical

3946 nt nt nt light-medium fulled typical

3947 nt nt nt worsted atypical

3948 nt nt nt lightly fulled typical

3949 nt nt nt medium fulled typical

3950 nt moderate/light SF cap, lightly fulled typical

3951 nt nt nt cap typical

3952 nt nt nt worsted typical

3953 nt nt nt lightly fulled typical

3954 nt nt nt typical

3955 nt nt nt lightly fulled typical

3956 nt nt nt lightly fulled, scalloped edge typical

3957 nt nt nt medium fulled, ?weft-faced typical

4544 madder none H/HM typical

4545 ndd none HM/M typical
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Appendix 7.1 continued.

ID Site Context date Sf/context no Type Spin Density

4546 NQS mid-late C13th T7, context 630 Tabby S2Z/S2Z 2 x 2

4547 NQS mid-late C13th T8, context 639 Tabby S2Z/S2Z 2-3 x 3

5169 BKA c. 750-850 W10 (f) 2/2 diamond ZZ 32 x 16

5170 BKA c. 950-end C10th W20 2/1 diamond ZZ 55-60 x 17

5171 BKA  c.950 W9 Tabby or 2/1 plain twill, piled ?? ?

5172 BKA  c.950 W1 Tabby, piled ZS 4 x 3

5173 BKA c. 950-975 W6 2/1 plain twill Z? 10 x 4-5

5174 BKA  c.950 W2 Tabby ZS 5 x 4-5

5175 BKA  c.950 W8 Twill ZZ ?
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Appendix 7.1 continued.

ID Dye Pigment Fleece Other Category

4546 ndd none nt ?wool typical

4547 ndd none nt goat hair typical

5169 nt nt nt atypical

5170 nt nt nt atypical

5171 nt nt nt pile (unspun) typical

5172 nt nt nt rough and thin, pile typical

5173 nt nt nt typical

5174 nt nt nt regular, felted on one side typical

5175 nt nt nt typical
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Appendix 7.2. Isotope (δ
13

C, δ
15

N, δ
2
H and δ

18
O) and C:NatomB results of all textile samples.

ID Site Yield % δ
13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:NatomB

2894 RKH 72% -24.27 1.92 -118.3 10.22 4.28

2895 RKH 30% -24.05 3.15 -111.4 9.68 4.55

3960 RKH - - - - - -

3961 RKH 85% -23.26 0.39 -93.7 17.37 4.07

2896ave RKH 67% -23.11 3.87 -92.5 15.20 4.25

2897 RKH 40% -23.74 2.28 -101.7 13.19 3.95

2898 RKH 41% -23.67 2.36 -101.6 13.57 3.95

2899 RKH 73% -24.03 4.07 -103.0 14.03 4.36

2901 RKH 54% -24.14 3.51 -100.8 13.40 4.26

3962 RKH 25% -23.91 2.20 -98.9 12.33 3.55

3963 RKH 63% -24.23 2.78 -104.1 13.79 3.86

3964 RKH 88% -24.21 3.32 -109.3 15.28 3.72

3965 RKH 58% -23.83 2.63 -100.5 11.70 3.32

2902 RKH 32% -23.96 2.82 -95.0 14.51 3.79

2903 RKH 70% -24.06 6.80 -77.8 15.81 3.87

2904 RKH 91% -23.68 2.55 -105.9 13.53 3.88

2950ave RKH - -23.86 2.40 -102.8 14.61 3.84

3966 RKH 61% -23.64 6.01 -80.4 17.15 4.36

3967 RKH 40% -24.36 5.50 -86.8 16.12 3.54

3968 RKH 69% -23.88 4.86 -89.5 16.01 3.65

2906 RKH - -23.78 1.14 -105.8 12.42 3.43

4120ave RKH 68% -24.03 3.69 -104.4 12.80 4.24

4329 HSS 75% -23.34 8.92 -94.0 10.66 3.78

4330 HSS - -23.52 4.69 -107.9 12.13 3.79

4331 HSS 89% -23.24 9.43 -78.8 14.86 3.87

4332 HSS 82% -24.30 10.67 -94.9 13.02 3.96

4333 HSS 81% -22.20 10.40 -86.4 11.97 3.76

4334 HSS 93% -23.46 10.26 -80.5 14.65 3.86

4335 HSS 64% -22.89 11.11 -89.7 12.54 3.80

4336 HSS 86% -24.38 6.22 -102.9 10.27 3.85

4337 HSS - -23.24 9.43 -82.4 13.01 3.87

4338 HSS - -22.56 9.92 -81.1 14.09 3.68

3959 YCG 72% -23.53 6.23 -85.0 15.77 3.39

4058 YCG - -24.03 7.02 -104.4 12.78 3.37

4059 YCG 87% - - - - -

4060a YCG - -24.24 6.47 -95.8 14.32 3.30

4060b YCG 90% -25.29 11.03 -102.6 13.93 3.49

4061 YCG 91% - - - - -

4062 YCG 92% -23.79 4.34 -97.6 14.88 3.31

4063 YCG - -23.64 4.95 -89.2 13.78 3.37

4064 YCG 86% -23.73 5.92 -88.0 15.15 3.38

4065 YCG 97% -24.09 7.22 -98.8 14.82 3.35

4066 YCG 82% -24.36 7.89 -89.1 15.20 3.47

4067 YCG 80% - - - - -

4068 YCG 87% -23.49 8.70 -88.0 14.31 3.48

4069 YCG 60% -24.17 6.21 -89.4 13.93 3.43

4070 YCG 74% -23.56 6.26 -85.0 14.43 3.36

4071 YCG 87% - - - - -

4072 YCG 95% -23.97 5.55 -98.3 13.68 3.31
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Appendix 7.2 continued.

ID Site Yield % δ
13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:NatomB

4073 YCG 60% -24.95 6.64 -92.3 13.63 4.38

4074 YCG - -23.97 7.30 -100.4 13.97 3.59

4075 YCG 94% -24.52 4.86 -90.1 17.09 3.83

4077 YCG 85% -23.77 5.62 -86.5 15.36 3.39

4078ave YCG 85% -24.24 7.45 -93.2 14.95 3.71

4079 YCG 81% -23.22 7.09 -91.7 14.91 3.52

4080 YCG 82% -23.85 7.57 -97.4 14.34 3.51

4095 YCG 74% -25.23 9.63 -99.5 13.30 3.40

4081 YLB 56% -23.66 6.87 -88.2 15.36 3.46

4082 YLB 60% -24.08 8.42 -85.1 13.53 3.55

4083 YLB 62% -24.06 7.03 -83.2 15.75 3.36

4076 YCG - - - - - -

4085 YLB 71% -23.78 4.30 -90.0 12.88 3.33

4086 YLB 66% -23.88 6.41 -93.2 13.62 3.36

4087ave YLB - -24.03 7.16 -89.6 14.79 3.55

4088 YLB 71% -24.11 7.94 -97.2 13.97 3.29

4089 YLB 82% -24.08 8.08 -93.7 14.37 3.34

4084 YLB 73% - - - - -

4090 YLB 61% - - - - -

4092 YLB 76% -23.99 8.78 -92.0 13.52 3.39

4093 YLB - -24.09 7.53 -101.4 13.31 3.28

4094 YLB 95% -23.94 7.57 -91.9 16.65 3.54

4121 YSG 81% -24.54 7.15 -95.2 14.17 3.58

4091 YLB 79% - - - - -

4123 YSG 81% -24.17 3.27 -117.4 11.55 3.72

4124 YSG 80% -24.12 6.90 -97.0 14.95 3.65

4125 YSG 62% -23.36 6.38 -88.8 14.43 3.51

3944 NBG 84% -24.18 6.98 -87.9 13.64 3.73

3945 NBG 80% -24.41 7.18 -86.9 12.85 3.56

3946 NBG 73% -24.78 5.68 -89.3 13.06 3.68

3947 NBG 52% - - - - -

3948 NBG 90% -23.93 4.85 -87.5 14.63 3.57

3949 NBG 76% -24.87 5.04 -98.4 13.70 3.69

3950 NBG 84% -24.82 7.55 -88.7 13.87 4.09

3951 NBG 81% -24.57 7.33 -87.2 14.06 3.75

3952 NBG 90% -23.29 7.08 -86.5 14.84 3.63

3953 NBG 75% -24.43 5.26 -89.2 14.22 3.60

3954 NBG 74% -24.76 5.60 -91.4 14.24 3.72

3955 NBG 85% -23.98 5.30 -86.5 12.67 3.74

3956 NBG 81% - - - - -

3957 NBG 86% -24.66 5.31 -94.8 14.00 3.60

4544 NQS 66% -23.81 8.72 -90.1 12.80 3.81

4545 NQS 42% -23.76 8.68 -88.5 14.28 3.95

4546 NQS 78% -23.98 4.42 -92.5 10.72 3.85

4547 NQS 51% -24.00 6.60 -89.3 10.92 3.68

5169 BKA 80% -22.39 6.15 -100.2 13.49 3.90

5170 BKA 70% -22.65 9.66 -85.0 14.56 3.98

5171 BKA 67% -23.45 6.87 -89.2 14.50 3.99

5172 BKA 53% -22.99 8.16 -86.2 15.03 3.85
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Appendix 7.2 continued.

ID Site Yield % δ
13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:NatomB

5173 BKA 44% -22.88 7.47 -85.0 15.41 4.01

5174 BKA 51% -23.24 8.06 -90.7 15.77 3.99

5175 BKA 50% -23.25 9.32 -110.0 10.73 3.88
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Appendix 7.3. Isotope (δ
13

C, δ
15

N, δ
2
H and δ

18
O) and C:NatomB results of all textile samples 

with multiple measurements.

ID Site δ
13
C/‰ δ

15
N/‰ δ

2
H/‰ δ

18
O/‰ C:NatomB

4120-I RKH -24.03 3.48 -105.4 13.22 4.16

4120-II RKH -23.98 3.52 -104.5 12.01 4.16

4120-III RKH -23.88 3.65 -106.8 11.99 4.13

4120-IV RKH -23.95 3.54 -101.6 11.73 4.13

4120-V RKH -24.01 3.62 -104.8 13.21 4.16

4120-VI RKH -24.13 3.63 -102.7 12.86 4.40

4120-VII RKH -24.12 4.05 -107.1 13.85 4.27

4120-VIII RKH -24.01 3.82 -101.5 12.71 4.27

4120-IX RKH -24.13 3.87 -105.2 13.60 4.44

2896-I RKH -23.15 3.92 -92.9 14.47 4.33

2896-II RKH -23.21 3.57 -93.6 15.54 4.18

2896-III RKH -22.96 4.11 -91.0 15.59 4.23

4078-I YCG -24.91 7.73 -94.1 15.85 3.48

4078-II YCG -23.89 7.74 -93.5 14.62 3.82

4078-III YCG -23.93 6.88 -91.9 14.38 3.84

4087-I YLB -24.08 7.03 -87.1 14.97 3.60

4087-II YLB -23.97 7.29 -92.1 14.60 3.50

2950-I RKH -23.56 2.75 -104.7 15.23 3.92

2950-II RKH -23.85 2.26 -103.7 15.23 3.80

2950-III RKH -23.83 2.37 -105.4 14.71 3.80

2950-IV RKH -23.73 2.37 -99.0 15.60 3.82

2950-V RKH -23.84 2.41 -105.5 14.43 3.78

2950-VI RKH -23.80 2.03 -102.4 14.84 3.81

2950-VII RKH -23.96 2.29 -99.7 15.43 3.83

2950-VIII RKH -24.01 2.62 -98.8 13.34 3.89

2950-IX RKH -24.08 2.79 -101.3 13.96 3.85

2950-X RKH -23.95 2.06 -107.2 13.37 3.87
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Appendix 7.4. AA concentrations, % AA content, and AA racemisation data for all textile samples.

ID Location [Asx] [Glx] [Ser] [L-Thr] [L-His] [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu]

2894 RKH - - - - - - - - - - - -

2895 RKH 171484 464286 62261 111233 15726 245372 159075 245516 41937 245382 90897 322143

3960 RKH 711809 1753002 589798 744275 75223 715194 776432 785998 157281 884964 171068 1134547

3961 RKH 557081 1101100 792386 551350 47066 549354 489686 436329 202187 541066 186070 731460

2896a RKH 309001 736220 326797 292698 34955 260887 248755 297418 19450 312631 102436 480570

2896b RKH 290741 704312 316044 291700 35860 276102 243033 281374 19107 309553 101051 456958

2897 RKH 285042 663906 331088 292612 35978 276025 262646 275378 7604 279518 89937 423740

2898 RKH 307837 747563 423042 397737 47459 328330 335631 299923 85716 351016 102570 460728

2899a RKH 310418 722696 324364 302192 36414 252137 269283 292283 20374 302762 86071 449223

2899b RKH 330156 735098 316216 269611 32697 246807 265079 316717 24423 314266 92503 477725

2901 RKH 269722 616128 281764 254544 29883 222578 238195 256005 24039 262339 79100 395942

3962 RKH 457165 1121513 585635 569889 52980 426242 475174 446155 90668 500653 135661 674474

3963 RKH 606715 1341101 537584 469329 53174 381719 495403 500026 71789 528207 151303 867139

3964 RKH 564667 1264594 576274 527060 46964 408660 501769 469667 64225 529357 153043 804330

3965 RKH 572143 1173658 966141 655865 73407 901367 586344 496297 241975 595045 220247 804483

2902 RKH 282726 600855 388792 303054 29694 335032 260212 262102 21258 277686 107377 394529

2903 RKH 410144 872763 573511 422098 52226 476688 359288 381894 12910 409773 150685 588636

2904 RKH 318499 660051 409529 310470 37689 293717 292857 276844 48701 306497 100473 444075

2950ave RKH - - - - - - - - - - - -

3966 RKH 434183 1056653 519396 467132 29649 446690 377536 407482 72016 484163 149958 649869

3967 RKH 560285 1247605 815237 670532 0 773534 551191 533929 85818 575945 191943 827995

3968 RKH 566309 1330334 784307 672739 0 653376 547148 571111 52208 613868 183094 851947

2906 RKH 751203 1650519 1123658 796828 76955 865716 719908 677968 115425 772220 237721 1069767

4120-IX RKH 324924 719876 278546 235366 30465 218502 261638 300336 36981 289784 85222 481497

4120-V RKH 221447 502522 207101 171911 21618 135749 187554 194800 24792 201573 56034 326491

4120-VIII RKH 208711 472641 190428 165368 20620 135453 175477 192601 27300 189621 52624 314163
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Appendix 7.4 continued.

Lotno [Ile] [Asx]% [Glx]% [Ser]% [L-Thr]% [L-His]% [Gly]% [L-Arg]% [Ala]% [Tyr]% [Val]% [Phe]% [Leu]%

2894 - - - - - - - - - - - - -

2895 153080 7.36% 19.94% 2.67% 4.78% 0.68% 10.54% 6.83% 10.54% 1.80% 10.54% 3.90% 13.84%

3960 549932 7.87% 19.37% 6.52% 8.22% 0.83% 7.90% 8.58% 8.69% 1.74% 9.78% 1.89% 12.54%

3961 342635 8.53% 16.87% 12.14% 8.45% 0.72% 8.42% 7.50% 6.68% 3.10% 8.29% 2.85% 11.21%

2896a 198981 8.53% 20.33% 9.03% 8.08% 0.97% 7.21% 6.87% 8.21% 0.54% 8.63% 2.83% 13.27%

2896b 193727 8.26% 20.01% 8.98% 8.29% 1.02% 7.84% 6.91% 7.99% 0.54% 8.80% 2.87% 12.98%

2897 173076 8.39% 19.55% 9.75% 8.61% 1.06% 8.13% 7.73% 8.11% 0.22% 8.23% 2.65% 12.48%

2898 209689 7.51% 18.25% 10.33% 9.71% 1.16% 8.01% 8.19% 7.32% 2.09% 8.57% 2.50% 11.24%

2899a 187914 8.73% 20.32% 9.12% 8.50% 1.02% 7.09% 7.57% 8.22% 0.57% 8.51% 2.42% 12.63%

2899b 200432 9.12% 20.30% 8.73% 7.44% 0.90% 6.81% 7.32% 8.74% 0.67% 8.68% 2.55% 13.19%

2901 166821 8.71% 19.89% 9.10% 8.22% 0.96% 7.19% 7.69% 8.27% 0.78% 8.47% 2.55% 12.78%

3962 315958 7.81% 19.16% 10.01% 9.74% 0.91% 7.28% 8.12% 7.62% 1.55% 8.56% 2.32% 11.53%

3963 351885 9.55% 21.10% 8.46% 7.38% 0.84% 6.01% 7.80% 7.87% 1.13% 8.31% 2.38% 13.64%

3964 348574 9.02% 20.20% 9.21% 8.42% 0.75% 6.53% 8.02% 7.50% 1.03% 8.46% 2.45% 12.85%

3965 347192 7.49% 15.37% 12.66% 8.59% 0.96% 11.81% 7.68% 6.50% 3.17% 7.79% 2.89% 10.54%

2902 174686 8.22% 17.48% 11.31% 8.81% 0.86% 9.74% 7.57% 7.62% 0.62% 8.08% 3.12% 11.48%

2903 250008 8.27% 17.59% 11.56% 8.51% 1.05% 9.61% 7.24% 7.70% 0.26% 8.26% 3.04% 11.87%

2904 186173 8.64% 17.91% 11.11% 8.42% 1.02% 7.97% 7.95% 7.51% 1.32% 8.32% 2.73% 12.05%

2950ave - - - - - - - - - - - - -

3966 297984 8.05% 19.59% 9.63% 8.66% 0.55% 8.28% 7.00% 7.56% 1.34% 8.98% 2.78% 12.05%

3967 366948 7.78% 17.33% 11.32% 9.31% 0.00% 10.74% 7.65% 7.41% 1.19% 8.00% 2.67% 11.50%

3968 389459 7.85% 18.44% 10.87% 9.32% 0.00% 9.05% 7.58% 7.91% 0.72% 8.51% 2.54% 11.81%

2906 481319 8.04% 17.67% 12.03% 8.53% 0.82% 9.27% 7.71% 7.26% 1.24% 8.27% 2.55% 11.45%

4120-IX 199786 9.38% 20.79% 8.04% 6.80% 0.88% 6.31% 7.56% 8.67% 1.07% 8.37% 2.46% 13.90%

4120-V 138990 9.26% 21.02% 8.66% 7.19% 0.90% 5.68% 7.85% 8.15% 1.04% 8.43% 2.34% 13.66%

4120-VIII 132100 9.17% 20.76% 8.36% 7.26% 0.91% 5.95% 7.71% 8.46% 1.20% 8.33% 2.31% 13.80%
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Appendix 7.4 continued.

Lotno [Ile]% Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

2894 - - - - - - - - - - -

2895 6.57% 0.7746 0.1827 0.2268 0.1436 0.1885 0.1164 0.0573 0.1130 0.0884 0.0604

3960 6.08% 0.2978 0.0896 0.1426 0.0617 0.1193 0.0677 0.0285 0.0941 0.0637 0.0478

3961 5.25% 0.1030 0.0465 0.0110 0.0414 0.0373 0.0416 0.0167 0.0378 0.0411 0.0277

2896a 5.50% 0.1437 0.0581 0.0248 0.0769 0.0309 0.0663 0.0227 0.0493 0.0463 0.0314

2896b 5.50% 0.1531 0.0632 0.0230 0.0780 0.0336 0.0666 0.0249 0.0511 0.0507 0.0395

2897 5.10% 0.1459 0.0475 0.0988 0.0488 0.0352 0.2452 0.0212 0.0423 0.0354 0.0223

2898 5.12% 0.1607 0.0579 0.1048 0.0597 0.0412 0.0596 0.0227 0.0455 0.0419 0.0218

2899a 5.28% 0.1267 0.0552 0.1112 0.0781 0.0469 0.0758 0.0232 0.0463 0.0441 0.0258

2899b 5.53% 0.1403 0.0648 0.1131 0.0875 0.0657 0.0566 0.0250 0.0505 0.0521 0.0267

2901 5.39% 0.1395 0.0603 0.1282 0.0712 0.0668 0.0784 0.0237 0.0488 0.0483 0.0226

3962 5.40% 0.1601 0.0545 0.1013 0.0446 0.0877 0.0465 0.0182 0.0458 0.0488 0.0270

3963 5.54% 0.1290 0.0507 0.1061 0.0513 0.0521 0.0337 0.0155 0.0421 0.0434 0.0252

3964 5.57% 0.1302 0.0522 0.1017 0.0471 0.0478 0.0673 0.0159 0.0417 0.0439 0.0252

3965 4.55% 0.1095 0.0454 0.0366 0.0493 0.0559 0.0429 0.0147 0.0368 0.0545 0.0220

2902 5.08% 0.1189 0.0570 0.0240 0.0630 0.0655 0.0950 0.0211 0.0431 0.0483 0.0193

2903 5.04% 0.1077 0.0486 0.0270 0.0612 0.0405 0.0441 0.0198 0.0414 0.0388 0.0182

2904 5.05% 0.1129 0.0494 0.0231 0.0610 0.0362 0.0480 0.0224 0.0410 0.0420 0.0076

2950ave - - - - - - - - - - -

3966 5.53% 0.1495 0.0593 0.0250 0.0495 0.0640 0.0610 0.0192 0.0463 0.0474 0.0316

3967 5.10% 0.1078 0.0488 0.0206 0.0494 0.0640 0.0609 0.0148 0.0406 0.0488 0.0184

3968 5.40% 0.1141 0.0523 0.0199 0.0515 0.0612 0.0506 0.0154 0.0404 0.0351 0.0185

2906 5.15% 0.1009 0.0483 0.0132 0.0412 0.0681 0.2129 0.0154 0.0485 0.0454 0.0344

4120-IX 5.77% 13.77% 4.93% 9.01% 5.48% 6.36% 3.86% 1.59% 4.33% 3.52% 1.04%

4120-V 5.81% 12.79% 5.07% 10.63% 5.11% 4.27% 3.57% 1.48% 4.77% 3.24% 1.64%

4120-VIII 5.80% 13.40% 4.84% 9.89% 5.72% 6.68% 5.05% 1.66% 4.03% 3.88% 4.07%
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Appendix 7.4 continued.

ID Location [Asx] [Glx] [Ser] [L-Thr] [L-His] [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu]

4329 HSS 545324 1080198 758776 557856 49283 568041 520570 465839 104106 535806 175285 748568

4330 HSS 327701 671265 555866 369597 30736 375983 329687 286013 71205 346873 109216 465248

4331 HSS 483423 975737 702303 484282 33101 461485 468299 437424 76446 488323 148055 666664

4332 HSS 305825 585054 387906 280111 18007 257264 272372 252957 66537 291001 99548 403732

4333 HSS 548260 1086427 761234 518728 61547 513641 551217 478214 105733 551907 172367 775069

4334 HSS 469779 969683 747957 510511 61523 543863 487387 427185 62569 501856 152006 673252

4335 HSS 444232 920823 667107 471594 41896 425139 455260 399167 63022 464647 133544 621837

4336 HSS 474626 978921 770554 548008 60354 520343 499332 421229 77793 513512 153078 642754

4337 HSS 540438 1089485 775759 520707 57145 490887 553240 478902 96745 526506 160813 717660

4338 HSS 520535 1047006 734739 510830 50836 479221 524958 438024 40858 505190 160580 698092

3959 YCG 654877 1350846 1027486 749544 81154 843349 666921 555807 167180 681003 221953 916709

4058 YCG 495785 1041869 835252 526073 58273 576499 505116 427897 92754 514602 163332 689819

4059 YCG 757046 1555560 1108875 800227 91301 887087 756075 618557 157084 763480 244664 1027222

4060a YCG 581997 1245173 966884 738548 0 879312 610354 527550 140927 629516 205845 844420

4060b YCG 655452 1318847 932123 700689 0 846386 615769 582253 134188 653701 222373 913330

4061 YCG 622849 1262672 887838 639218 76162 736779 609175 514025 152760 624988 206035 860401

4062 YCG 929959 1871246 1350916 958467 106855 1076972 920462 760344 210853 921970 299988 1252589

4063 YCG 542660 1137349 846831 641020 0 814441 568326 485410 183435 565318 188120 776088

4064 YCG 559658 1156647 895363 658942 0 845381 567986 508365 147777 578049 202677 796740

4065 YCG 673419 1352719 1020235 718592 82304 859248 681531 560140 186606 679308 229681 916203

4066 YCG 456381 962475 750327 573793 0 1142625 448421 411860 94826 476839 166495 636010

4067 YCG 643080 1300886 905980 696804 0 830863 610835 569093 154169 644337 225441 907644

4068 YCG 517997 1060338 828290 623012 0 1200659 517283 466682 129103 535809 194427 723887

4069 YCG 147057 284318 232111 149995 14168 214846 133995 132424 36283 146380 47678 194506

4070 YCG 723673 1471043 1101983 780588 70745 864766 711336 595087 133479 728684 218704 967601

4071 YCG 635320 1244558 909981 587782 59896 720613 624806 519064 144312 605227 204404 833334
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Appendix 7.4 continued.

Lotno [Ile] [Asx]% [Glx]% [Ser]% [L-Thr]% [L-His]% [Gly]% [L-Arg]% [Ala]% [Tyr]% [Val]% [Phe]% [Leu]%

4329 351223 8.44% 16.72% 11.74% 8.63% 0.76% 8.79% 8.06% 7.21% 1.61% 8.29% 2.71% 11.59%

4330 223114 7.87% 16.13% 13.35% 8.88% 0.74% 9.03% 7.92% 6.87% 1.71% 8.33% 2.62% 11.18%

4331 315534 8.42% 17.00% 12.23% 8.44% 0.58% 8.04% 8.16% 7.62% 1.33% 8.51% 2.58% 11.61%

4332 187486 8.97% 17.17% 11.38% 8.22% 0.53% 7.55% 7.99% 7.42% 1.95% 8.54% 2.92% 11.85%

4333 365164 8.45% 16.74% 11.73% 7.99% 0.95% 7.91% 8.49% 7.37% 1.63% 8.50% 2.66% 11.94%

4334 329511 7.91% 16.33% 12.60% 8.60% 1.04% 9.16% 8.21% 7.20% 1.05% 8.45% 2.56% 11.34%

4335 304602 8.21% 17.01% 12.32% 8.71% 0.77% 7.85% 8.41% 7.37% 1.16% 8.58% 2.47% 11.49%

4336 320602 7.94% 16.37% 12.88% 9.16% 1.01% 8.70% 8.35% 7.04% 1.30% 8.59% 2.56% 10.75%

4337 352351 8.50% 17.13% 12.20% 8.19% 0.90% 7.72% 8.70% 7.53% 1.52% 8.28% 2.53% 11.28%

4338 332370 8.61% 17.33% 12.16% 8.45% 0.84% 7.93% 8.69% 7.25% 0.68% 8.36% 2.66% 11.55%

3959 414821 7.86% 16.21% 12.33% 9.00% 0.97% 10.12% 8.00% 6.67% 2.01% 8.17% 2.66% 11.00%

4058 320807 7.93% 16.68% 13.37% 8.42% 0.93% 9.23% 8.08% 6.85% 1.48% 8.24% 2.61% 11.04%

4059 468910 8.20% 16.84% 12.01% 8.66% 0.99% 9.60% 8.19% 6.70% 1.70% 8.27% 2.65% 11.12%

4060a 385412 7.50% 16.05% 12.47% 9.52% 0.00% 11.34% 7.87% 6.80% 1.82% 8.12% 2.65% 10.89%

4060b 417713 8.20% 16.50% 11.66% 8.77% 0.00% 10.59% 7.70% 7.28% 1.68% 8.18% 2.78% 11.43%

4061 380920 8.22% 16.67% 11.72% 8.44% 1.01% 9.73% 8.04% 6.79% 2.02% 8.25% 2.72% 11.36%

4062 570920 8.28% 16.66% 12.03% 8.53% 0.95% 9.59% 8.20% 6.77% 1.88% 8.21% 2.67% 11.15%

4063 350107 7.64% 16.02% 11.93% 9.03% 0.00% 11.47% 8.01% 6.84% 2.58% 7.96% 2.65% 10.93%

4064 360371 7.69% 15.89% 12.30% 9.05% 0.00% 11.62% 7.80% 6.98% 2.03% 7.94% 2.78% 10.95%

4065 420990 8.04% 16.14% 12.17% 8.57% 0.98% 10.25% 8.13% 6.68% 2.23% 8.11% 2.74% 10.93%

4066 287879 7.12% 15.02% 11.71% 8.95% 0.00% 17.83% 7.00% 6.43% 1.48% 7.44% 2.60% 9.93%

4067 396335 8.16% 16.50% 11.49% 8.84% 0.00% 10.54% 7.75% 7.22% 1.96% 8.17% 2.86% 11.51%

4068 325120 7.27% 14.89% 11.63% 8.75% 0.00% 16.86% 7.26% 6.55% 1.81% 7.52% 2.73% 10.16%

4069 90843 8.06% 15.58% 12.72% 8.22% 0.78% 11.77% 7.34% 7.26% 1.99% 8.02% 2.61% 10.66%

4070 455601 8.20% 16.67% 12.49% 8.85% 0.80% 9.80% 8.06% 6.74% 1.51% 8.26% 2.48% 10.97%

4071 397149 8.49% 16.62% 12.16% 7.85% 0.80% 9.63% 8.35% 6.93% 1.93% 8.08% 2.73% 11.13%
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Appendix 7.4 continued.

Lotno [Ile]% Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

4329 5.44% 0.1266 0.0438 0.0523 0.0388 0.0418 0.0464 0.0177 0.0378 0.0369 0.0279

4330 5.36% 0.1105 0.0371 0.0425 0.0366 0.0240 0.0469 0.0158 0.0349 0.0333 0.0278

4331 5.50% 0.1235 0.0430 0.0587 0.0410 0.0589 0.0494 0.0157 0.0339 0.0369 0.0276

4332 5.50% 0.1359 0.0406 0.0632 0.0424 0.0284 0.0385 0.0157 0.0410 0.0320 0.0104

4333 5.63% 0.1067 0.0416 0.0447 0.0370 0.0358 0.0395 0.0198 0.0408 0.0332 0.0253

4334 5.55% 0.1113 0.0434 0.0489 0.0420 0.0474 0.0473 0.0203 0.0436 0.0489 0.0406

4335 5.63% 0.1204 0.0442 0.0465 0.0427 0.0542 0.0515 0.0176 0.0383 0.0366 0.0288

4336 5.36% 0.1221 0.0419 0.0552 0.0402 0.0386 0.0425 0.0158 0.0392 0.0310 0.0092

4337 5.54% 0.1225 0.0436 0.0574 0.0429 0.0500 0.0486 0.0157 0.0399 0.0329 0.0093

4338 5.50% 0.1060 0.0391 0.0460 0.0369 0.0294 0.0437 0.0169 0.0355 0.0305 0.0070

3959 4.98% 0.1133 0.0452 0.0519 0.0430 0.0552 0.0396 0.0156 0.0720 0.0522 0.0228

4058 5.13% 0.1127 0.0427 0.0802 0.0395 0.0480 0.0501 0.0155 0.0396 0.0395 0.0221

4059 5.08% 0.1151 0.0456 0.0533 0.0430 0.0422 0.0440 0.0164 0.0424 0.0433 0.0234

4060a 4.97% 0.1188 0.0457 0.0582 0.0409 0.0403 0.0339 0.0146 0.0426 0.0477 0.0169

4060b 5.23% 0.1203 0.0459 0.0530 0.0442 0.0413 0.0412 0.0153 0.0438 0.0364 0.0178

4061 5.03% 0.1168 0.0451 0.0534 0.0407 0.0389 0.0341 0.0167 0.0403 0.0429 0.0245

4062 5.08% 0.1091 0.0444 0.0459 0.0409 0.0379 0.0404 0.0161 0.0409 0.0426 0.0232

4063 4.93% 0.1179 0.0458 0.0522 0.0396 0.0400 0.0388 0.0136 0.0400 0.0460 0.0153

4064 4.95% 0.1165 0.0454 0.0562 0.0404 0.0440 0.0371 0.0143 0.0416 0.0476 0.0180

4065 5.02% 0.1119 0.0447 0.0475 0.0443 0.0489 0.0441 0.0150 0.0373 0.0412 0.0228

4066 4.49% 0.1286 0.0465 0.0737 0.0399 0.0358 0.0433 0.0144 0.0421 0.0381 0.0114

4067 5.03% 0.1255 0.0461 0.0611 0.0440 0.0384 0.0359 0.0142 0.0396 0.0471 0.0152

4068 4.56% 0.1141 0.0454 0.0470 0.0404 0.0348 0.0369 0.0141 0.0397 0.0349 0.0122

4069 4.98% 0.1234 0.0464 0.0566 0.0408 0.0437 0.0517 0.0185 0.0463 0.0449 0.0366

4070 5.16% 0.1278 0.0460 0.0681 0.0395 0.0389 0.0428 0.0161 0.0414 0.0448 0.0289

4071 5.30% 0.1137 0.0464 0.0795 0.0393 0.0533 0.0449 0.0154 0.0414 0.0442 0.0298

371



Appendix 7.4 continued.

ID Location [Asx] [Glx] [Ser] [L-Thr] [L-His] [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu]

4072 YCG 444899 891125 720965 478371 60039 606613 448524 403551 123276 457248 172235 644886

4073 YCG 565028 1139953 897607 623060 50972 768942 488612 523050 107526 609121 182008 752695

4074 YCG 496431 970471 850976 561142 0 726192 480770 429238 105604 513163 194893 700000

4075 YCG 742369 1613173 1207562 877043 89888 986224 691197 639494 141333 830084 260036 1038380

4076 YCG 498557 1002843 758720 569806 0 696237 472812 458212 115116 518242 181932 711503

4077 YCG 552081 1120486 839419 628118 0 732144 559255 487819 119060 576949 192816 793233

4078 YCG 833910 1658382 1104173 796718 86789 940333 794980 650370 200368 792980 271101 1123927

4079 YCG 797056 1614511 1066297 795436 65518 873852 741890 633640 180797 770328 259648 1074457

4080 YCG 784356 1552484 1012076 737389 81909 833983 732299 623699 185640 747183 264134 1078403

4095 YCG 326819 590745 336823 330376 0 78619 331537 266211 71484 341134 106227 517405

4081 YLB 626469 1246229 921217 687579 0 809382 614182 548454 116523 630387 215564 877175

4082 YLB 667437 1456780 1145382 822526 67271 878548 689024 595427 176067 731400 217223 922381

4083 YLB 648761 1266171 849058 613198 56146 677239 593466 531557 130306 618009 204659 855015

4084 YLB 716404 1488850 1122827 824154 73621 894976 724493 596675 325739 740390 250326 990945

4085 YLB 722708 1467755 1038334 787036 55099 786970 680024 616250 118993 723742 226829 963507

4086 YLB 662457 1313737 922537 656027 57014 736393 616523 560201 159715 644617 217587 891403

4087a YLB 629178 1245953 817038 613008 49716 701541 555461 513953 109269 614816 204006 845124

4087b YLB 785985 1568344 1050782 768219 62835 902471 724329 650352 144151 764538 247252 1048857

4088 YLB 559402 1059102 657521 579830 0 293167 603721 458219 132129 595344 192920 884705

4089 YLB 804972 1602614 1148970 823913 70635 994632 773866 670145 187825 784028 258257 1077846

4090 YLB 762590 1468974 993462 698768 58496 858535 673290 638608 163773 702496 251464 995861

4091 YLB 661031 1323210 990114 690474 56084 854851 629618 569541 157589 666333 236640 913858

4092 YLB 774092 1511426 1064303 754295 76143 952056 716503 650987 211543 740429 275774 1060732

4093 YLB 293171 517657 309121 287270 0 68160 301409 236704 80387 302896 103268 486371

4094 YLB 736173 1456342 1024651 721444 69679 859369 695340 611906 143986 719211 248723 1009236

4121 YSG 768071 1536424 1060668 758543 73176 785575 710387 621413 157119 735954 227058 1012286
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Appendix 7.4 continued.

Lotno [Ile] [Asx]% [Glx]% [Ser]% [L-Thr]% [L-His]% [Gly]% [L-Arg]% [Ala]% [Tyr]% [Val]% [Phe]% [Leu]%

4072 274826 7.77% 15.56% 12.59% 8.35% 1.05% 10.59% 7.83% 7.05% 2.15% 7.98% 3.01% 11.26%

4073 371502 7.98% 16.10% 12.68% 8.80% 0.72% 10.86% 6.90% 7.39% 1.52% 8.60% 2.57% 10.63%

4074 310029 7.83% 15.31% 13.42% 8.85% 0.00% 11.46% 7.58% 6.77% 1.67% 8.10% 3.07% 11.04%

4075 505516 7.72% 16.76% 12.55% 9.11% 0.93% 10.25% 7.18% 6.65% 1.47% 8.63% 2.70% 10.79%

4076 312297 7.92% 15.93% 12.05% 9.05% 0.00% 11.06% 7.51% 7.28% 1.83% 8.23% 2.89% 11.30%

4077 348083 7.94% 16.12% 12.08% 9.04% 0.00% 10.54% 8.05% 7.02% 1.71% 8.30% 2.77% 11.41%

4078 505762 8.54% 16.99% 11.31% 8.16% 0.89% 9.63% 8.15% 6.66% 2.05% 8.12% 2.78% 11.52%

4079 483695 8.52% 17.25% 11.40% 8.50% 0.70% 9.34% 7.93% 6.77% 1.93% 8.23% 2.77% 11.48%

4080 468179 8.62% 17.06% 11.12% 8.10% 0.90% 9.16% 8.05% 6.85% 2.04% 8.21% 2.90% 11.85%

4095 213177 9.31% 16.83% 9.59% 9.41% 0.00% 2.24% 9.44% 7.58% 2.04% 9.72% 3.03% 14.74%

4081 394834 8.15% 16.21% 11.98% 8.94% 0.00% 10.53% 7.99% 7.13% 1.52% 8.20% 2.80% 11.41%

4082 448039 7.57% 16.52% 12.99% 9.33% 0.76% 9.96% 7.81% 6.75% 2.00% 8.29% 2.46% 10.46%

4083 384420 8.73% 17.05% 11.43% 8.26% 0.76% 9.12% 7.99% 7.16% 1.75% 8.32% 2.76% 11.51%

4084 450110 7.79% 16.18% 12.21% 8.96% 0.80% 9.73% 7.88% 6.49% 3.54% 8.05% 2.72% 10.77%

4085 458785 8.36% 16.98% 12.01% 9.10% 0.64% 9.10% 7.87% 7.13% 1.38% 8.37% 2.62% 11.14%

4086 403544 8.45% 16.75% 11.76% 8.37% 0.73% 9.39% 7.86% 7.14% 2.04% 8.22% 2.77% 11.37%

4087a 384263 8.64% 17.11% 11.22% 8.42% 0.68% 9.63% 7.63% 7.06% 1.50% 8.44% 2.80% 11.60%

4087b 492865 8.53% 17.03% 11.41% 8.34% 0.68% 9.80% 7.86% 7.06% 1.56% 8.30% 2.68% 11.39%

4088 0 9.30% 17.60% 10.93% 9.64% 0.00% 4.87% 10.04% 7.62% 2.20% 9.90% 3.21% 14.71%

4089 502856 8.30% 16.52% 11.84% 8.49% 0.73% 10.25% 7.98% 6.91% 1.94% 8.08% 2.66% 11.11%

4090 438447 8.76% 16.88% 11.41% 8.03% 0.67% 9.86% 7.73% 7.34% 1.88% 8.07% 2.89% 11.44%

4091 400373 8.11% 16.24% 12.15% 8.47% 0.69% 10.49% 7.73% 6.99% 1.93% 8.18% 2.90% 11.21%

4092 458315 8.37% 16.35% 11.51% 8.16% 0.82% 10.30% 7.75% 7.04% 2.29% 8.01% 2.98% 11.47%

4093 196216 9.21% 16.27% 9.71% 9.03% 0.00% 2.14% 9.47% 7.44% 2.53% 9.52% 3.24% 15.28%

4094 445202 8.42% 16.66% 11.72% 8.25% 0.80% 9.83% 7.95% 7.00% 1.65% 8.23% 2.85% 11.55%

4121 471131 8.61% 17.23% 11.89% 8.51% 0.82% 8.81% 7.97% 6.97% 1.76% 8.25% 2.55% 11.35%
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Appendix 7.4 continued.

Lotno [Ile]% Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

4072 4.80% 0.1227 0.0445 0.0790 0.0510 0.0330 0.0398 0.0110 0.0351 0.0491 0.0164

4073 5.25% 0.1591 0.0489 0.1196 0.0455 0.0570 0.0478 0.0151 0.0442 0.0476 0.0352

4074 4.89% 0.1102 0.0455 0.0309 0.0450 0.0270 0.0399 0.0176 0.0355 0.0525 0.0169

4075 5.25% 0.1833 0.0491 0.1234 0.0422 0.0438 0.0468 0.0169 0.0472 0.0445 0.0302

4076 4.96% 0.1244 0.0459 0.0643 0.0440 0.0404 0.0420 0.0189 0.0446 0.0411 0.0173

4077 5.01% 0.1209 0.0455 0.0540 0.0415 0.0283 0.0450 0.0170 0.0404 0.0516 0.0164

4078 5.18% 0.1206 0.0462 0.0466 0.0393 0.0355 0.0425 0.0168 0.0447 0.0439 0.0294

4079 5.17% 0.1256 0.0456 0.0525 0.0368 0.0363 0.0401 0.0150 0.0407 0.0477 0.0287

4080 5.14% 0.1176 0.0451 0.0459 0.0401 0.0388 0.0453 0.0156 0.0415 0.0488 0.0267

4095 6.07% 0.1293 0.0378 0.1340 0.0598 0.0950 0.0357 0.0303 0.0982 0.0088 0.0246

4081 5.14% 0.1250 0.0463 0.0673 0.0435 0.0332 0.0418 0.0156 0.0408 0.0514 0.0176

4082 5.08% 0.1258 0.0462 0.0663 0.0404 0.0518 0.0461 0.0165 0.0424 0.0492 0.0294

4083 5.18% 0.1254 0.0466 0.0643 0.0432 0.0527 0.0502 0.0164 0.0458 0.0459 0.0242

4084 4.89% 0.1170 0.0424 0.0587 0.0371 0.0347 0.0400 0.0151 0.0340 0.0393 0.0237

4085 5.31% 0.1327 0.0469 0.0744 0.0415 0.0505 0.0517 0.0169 0.0417 0.0442 0.0230

4086 5.15% 0.1297 0.0470 0.0751 0.0428 0.0655 0.0463 0.0159 0.0387 0.0445 0.0239

4087a 5.28% 0.1412 0.0490 0.0686 0.0435 0.0453 0.0522 0.0192 0.0440 0.0441 0.0266

4087b 5.35% 0.1387 0.0489 0.0631 0.0407 0.0440 0.0523 0.0175 0.0454 0.0468 0.0301

4088 0.00% 0.1195 0.0391 0.0746 0.0437 0.0318 0.0362 0.0182 0.0449 0.0217 0.0000

4089 5.18% 0.1239 0.0467 0.0634 0.0399 0.0497 0.0463 0.0157 0.0409 0.0473 0.0293

4090 5.04% 0.1299 0.0473 0.0716 0.0416 0.0615 0.0473 0.0162 0.0400 0.0504 0.0218

4091 4.91% 0.1318 0.0482 0.0650 0.0407 0.0513 0.0544 0.0162 0.0400 0.0474 0.0313

4092 4.96% 0.1229 0.0463 0.0563 0.0399 0.0466 0.0478 0.0156 0.0421 0.0495 0.0270

4093 6.17% 0.1181 0.0347 0.0545 0.0587 0.0948 0.0274 0.0328 0.1499 0.0072 0.0316

4094 5.09% 0.1212 0.0468 0.0642 0.0410 0.0470 0.0568 0.0173 0.0430 0.0521 0.0316

4121 5.28% 0.1276 0.0496 0.0653 0.0401 0.0438 0.0387 0.0174 0.0486 0.0473 0.0300
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Appendix 7.4 continued.

ID Location [Asx] [Glx] [Ser] [L-Thr] [L-His] [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu]

4122 YSG 807109 1664572 1137891 854182 87156 903436 808189 672721 189237 797789 237925 1077369

4123 YSG 318861 568970 301577 309894 0 68593 323931 261652 69487 320713 89974 481023

4124 YSG 853148 1708925 1165071 838490 80264 982640 808518 711423 210749 855129 276787 1169675

4125 YSG 725713 1484078 1090837 801855 61800 1038247 688201 606786 150492 729692 243614 991146

3944 NBG 412166 949596 863513 608401 46731 730643 412809 467737 117792 513864 133984 563186

3945 NBG 534128 1195408 992946 752684 48763 817722 552385 490712 148361 610885 175008 702926

3946 NBG 804369 1582734 1225753 826193 61524 1142177 732609 664604 205534 799958 291255 1083121

3947 NBG 715356 1716299 1428832 1160680 78492 1149338 797552 706936 146246 853718 222808 987492

3948 NBG 634454 1354310 1090452 811595 62581 1027446 636802 632255 196730 728051 215423 879224

3949 NBG 662940 1318043 1087690 740923 50237 1144931 585450 608902 180215 677929 242239 881858

3950 NBG 449808 951123 850001 577324 41783 774127 436337 460644 122322 506197 152587 604387

3951 NBG 644761 1367345 1144994 817530 61699 1071621 606914 650581 176577 699909 224984 871056

3952 NBG 504049 1117574 939482 676983 43712 804358 502283 492677 120048 590309 168839 694487

3953 NBG 598523 1330321 1245326 826506 67001 1046609 610842 584124 155596 723460 209884 839624

3954 NBG 664040 1318647 1044301 712306 57648 998672 588822 555403 147033 673171 235400 914113

3955 NBG 473867 1124860 1049760 750737 52168 914646 523241 535976 130111 625394 152670 659987

3956 NBG 608840 1297201 1092859 776097 56208 1021794 610438 544195 173138 675408 218155 839804

3957 NBG 824012 1671810 1365806 901526 77173 1344313 783208 691297 233587 850020 299781 1126864

4544 NQS 346654 670093 582680 330115 45815 709383 285162 302275 117275 321009 126394 440293

4545 NQS 715833 1371504 889006 646220 70970 647532 655933 620521 101162 679648 237673 969838

4546 NQS 415959 846909 577029 434282 39693 395269 365876 381204 69144 420503 115707 563548

4547 NQS 481980 1000925 676623 480811 39972 487537 475223 431960 116770 495010 145644 655713

5169 BKA 328212 658360 392440 309357 0 308623 294106 294185 64135 323209 96674 470817

5170 BKA 618032 1271351 739308 623928 0 596219 574643 550650 93399 628008 171791 869129

5171 BKA 560887 1146105 712623 584307 0 547678 549169 491792 103917 578020 155079 787927

5172 BKA 578003 1158239 776175 604155 0 655003 558621 513402 145002 575482 189951 840222
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Appendix 7.4 continued.

Lotno [Ile] [Asx]% [Glx]% [Ser]% [L-Thr]% [L-His]% [Gly]% [L-Arg]% [Ala]% [Tyr]% [Val]% [Phe]% [Leu]%

4122 497678 8.29% 17.10% 11.69% 8.77% 0.90% 9.28% 8.30% 6.91% 1.94% 8.19% 2.44% 11.07%

4123 203702 9.61% 17.15% 9.09% 9.34% 0.00% 2.07% 9.76% 7.88% 2.09% 9.66% 2.71% 14.50%

4124 523614 8.38% 16.78% 11.44% 8.23% 0.79% 9.65% 7.94% 6.99% 2.07% 8.40% 2.72% 11.48%

4125 452986 8.01% 16.37% 12.03% 8.85% 0.68% 11.45% 7.59% 6.69% 1.66% 8.05% 2.69% 10.93%

3944 287405 6.75% 15.55% 14.14% 9.96% 0.77% 11.96% 6.76% 7.66% 1.93% 8.41% 2.19% 9.22%

3945 361683 7.23% 16.19% 13.45% 10.19% 0.66% 11.07% 7.48% 6.65% 2.01% 8.27% 2.37% 9.52%

3946 496270 8.11% 15.96% 12.36% 8.33% 0.62% 11.52% 7.39% 6.70% 2.07% 8.07% 2.94% 10.92%

3947 507471 6.83% 16.39% 13.65% 11.08% 0.75% 10.98% 7.62% 6.75% 1.40% 8.15% 2.13% 9.43%

3948 428574 7.29% 15.57% 12.54% 9.33% 0.72% 11.81% 7.32% 7.27% 2.26% 8.37% 2.48% 10.11%

3949 409018 7.72% 15.34% 12.66% 8.63% 0.58% 13.33% 6.82% 7.09% 2.10% 7.89% 2.82% 10.27%

3950 307264 7.22% 15.26% 13.64% 9.26% 0.67% 12.42% 7.00% 7.39% 1.96% 8.12% 2.45% 9.70%

3951 416004 7.37% 15.62% 13.08% 9.34% 0.70% 12.24% 6.93% 7.43% 2.02% 8.00% 2.57% 9.95%

3952 344193 7.20% 15.97% 13.42% 9.67% 0.62% 11.49% 7.18% 7.04% 1.72% 8.43% 2.41% 9.92%

3953 412901 6.92% 15.38% 14.40% 9.55% 0.77% 12.10% 7.06% 6.75% 1.80% 8.36% 2.43% 9.71%

3954 416936 7.98% 15.84% 12.54% 8.55% 0.69% 11.99% 7.07% 6.67% 1.77% 8.08% 2.83% 10.98%

3955 345406 6.46% 15.33% 14.30% 10.23% 0.71% 12.46% 7.13% 7.30% 1.77% 8.52% 2.08% 8.99%

3956 404068 7.32% 15.59% 13.14% 9.33% 0.68% 12.28% 7.34% 6.54% 2.08% 8.12% 2.62% 10.10%

3957 534137 7.70% 15.62% 12.76% 8.42% 0.72% 12.56% 7.32% 6.46% 2.18% 7.94% 2.80% 10.53%

4544 211302 7.72% 14.93% 12.98% 7.35% 1.02% 15.80% 6.35% 6.73% 2.61% 7.15% 2.82% 9.81%

4545 453182 8.88% 17.02% 11.03% 8.02% 0.88% 8.03% 8.14% 7.70% 1.26% 8.43% 2.95% 12.03%

4546 276540 8.49% 17.28% 11.77% 8.86% 0.81% 8.06% 7.46% 7.78% 1.41% 8.58% 2.36% 11.50%

4547 313099 8.31% 17.25% 11.66% 8.29% 0.69% 8.40% 8.19% 7.45% 2.01% 8.53% 2.51% 11.30%

5169 218640 8.73% 17.52% 10.44% 8.23% 0.00% 8.21% 7.82% 7.83% 1.71% 8.60% 2.57% 12.53%

5170 409089 8.65% 17.79% 10.35% 8.73% 0.00% 8.34% 8.04% 7.71% 1.31% 8.79% 2.40% 12.16%

5171 386774 8.49% 17.35% 10.79% 8.85% 0.00% 8.29% 8.32% 7.45% 1.57% 8.75% 2.35% 11.93%

5172 393150 8.27% 16.58% 11.11% 8.65% 0.00% 9.37% 7.99% 7.35% 2.08% 8.24% 2.72% 12.02%
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Appendix 7.4 continued.

Lotno [Ile]% Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

4122 5.11% 0.1214 0.0486 0.0605 0.0397 0.0479 0.0450 0.0147 0.0436 0.0484 0.0243

4123 6.14% 0.1221 0.0375 0.0427 0.0661 0.1090 0.0307 0.0193 0.0430 0.0082 0.0423

4124 5.14% 0.1296 0.0485 0.0498 0.0407 0.0371 0.0440 0.0184 0.0490 0.0504 0.0309

4125 5.00% 0.1299 0.0482 0.0414 0.0411 0.0448 0.0582 0.0171 0.0445 0.0494 0.0290

3944 4.71% 0.1364 0.0497 0.0579 0.0425 0.0954 0.0613 0.0172 0.0404 0.0577 0.0383

3945 4.90% 0.1277 0.0493 0.0341 0.0405 0.0443 0.0565 0.0162 0.0423 0.0214 0.0359

3946 5.00% 0.1156 0.0477 0.0203 0.0382 0.0418 0.0467 0.0160 0.0414 0.0508 0.0300

3947 4.85% 0.1422 0.0487 0.0642 0.0410 0.0641 0.0765 0.0162 0.0476 0.0567 0.0372

3948 4.93% 0.1208 0.0501 0.0345 0.0409 0.0566 0.0496 0.0162 0.0517 0.0602 0.0337

3949 4.76% 0.1235 0.0486 0.0283 0.0394 0.0738 0.0432 0.0168 0.0427 0.0534 0.0265

3950 4.93% 0.1390 0.0513 0.0505 0.0419 0.0750 0.0471 0.0178 0.0431 0.0644 0.0454

3951 4.75% 0.1407 0.0500 0.0478 0.0409 0.0862 0.0454 0.0159 0.0426 0.0581 0.0357

3952 4.92% 0.1713 0.0505 0.0726 0.0429 0.0658 0.0653 0.0174 0.0459 0.0539 0.0334

3953 4.77% 0.1285 0.0484 0.0396 0.0398 0.0499 0.0496 0.0160 0.0401 0.0563 0.0367

3954 5.01% 0.1220 0.0481 0.0269 0.0408 0.0435 0.0478 0.0168 0.0442 0.0510 0.0300

3955 4.71% 0.1424 0.0506 0.0410 0.0403 0.0840 0.0490 0.0173 0.0462 0.0584 0.0278

3956 4.86% 0.1171 0.0473 0.0204 0.0381 0.0426 0.0437 0.0159 0.0415 0.0510 0.0245

3957 4.99% 0.1140 0.0464 0.0266 0.0397 0.0408 0.0407 0.0162 0.0415 0.0499 0.0281

4544 4.71% 0.1347 0.0431 0.0566 0.0476 0.0668 0.0438 0.0153 0.0368 0.0330 0.0101

4545 5.62% 0.1296 0.0455 0.0524 0.0403 0.0567 0.0376 0.0196 0.0429 0.0348 0.0081

4546 5.64% 0.1533 0.0514 0.3154 0.0521 0.0748 0.0476 0.0159 0.0503 0.0449 0.0264

4547 5.40% 0.1651 0.0519 0.3332 0.0498 0.0467 0.0474 0.0146 0.0508 0.0346 0.0100

5169 5.82% 0.0962 0.0456 0.0266 0.0461 0.0479 0.0415 0.0162 0.0339 0.0471 0.0348

5170 5.73% 0.0963 0.0465 0.0259 0.0460 0.0404 0.0384 0.0153 0.0398 0.0451 0.0279

5171 5.86% 0.0898 0.0439 0.0213 0.0400 0.0386 0.0355 0.0131 0.0337 0.0451 0.0298

5172 5.63% 0.0928 0.0470 0.0209 0.0423 0.0391 0.0357 0.0146 0.0354 0.0488 0.0343

377



Appendix 7.4 continued.

ID Location [Asx] [Glx] [Ser] [L-Thr] [L-His] [Gly] [L-Arg] [Ala] [Tyr] [Val] [Phe] [Leu]

5173 BKA 124360 256537 136873 116708 0 110754 114432 115668 27431 121448 35093 185981

5174 BKA 427112 944156 597100 475023 47158 479514 432041 418778 116170 461160 140454 644910

5175 BKA 83916 162163 94253 1089 147675 7414 31647 16810 4226 17968 25895 120099
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Appendix 7.4 continued.

Lotno [Ile] [Asx]% [Glx]% [Ser]% [L-Thr]% [L-His]% [Gly]% [L-Arg]% [Ala]% [Tyr]% [Val]% [Phe]% [Leu]%

5173 86029 8.69% 17.92% 9.56% 8.15% 0.00% 7.74% 7.99% 8.08% 1.92% 8.49% 2.45% 12.99%

5174 291705 7.80% 17.24% 10.91% 8.68% 0.86% 8.76% 7.89% 7.65% 2.12% 8.42% 2.57% 11.78%

5175 54033 10.94% 21.14% 12.29% 0.14% 19.25% 0.97% 4.13% 2.19% 0.55% 2.34% 3.38% 15.65%

379



Appendix 7.4 continued.

Lotno [Ile]% Asx D/L Glx D/L Ser D/L Arg D/L Ala D/L Tyr D/L Val D/L Phe D/L Leu D/L Ile D/L

5173 6.01% 0.0918 0.0445 0.0237 0.0501 0.0517 0.0353 0.0159 0.0371 0.0532 0.0769

5174 5.33% 0.1017 0.0499 0.0292 0.0512 0.0580 0.0367 0.0153 0.0399 0.0549 0.0421

5175 7.04% 0.0940 0.0437 0.0179 2.3635 4.1621 0.1551 0.0717 0.0421 0.0501 0.0392
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Appendix 8.1. Technical description (Chapter 6) of all samples, with summary isotope results. For full analytical details see Chapter 7. Density was 
measured in yarns per cm, except for knitted samples (*) which are in stitches per cm. For fleece type abbreviations, see summary in Walton Rogers (1995). 
nt = not tested. ndd = no dye detected. Where more than one isotope is listed as an outlier, a comma between them indicates the sample was an outlier from 
excavation/location median in each independently; a stroke between them indicates that the sample was outlying only when both isotopes were considered 
together. 

ID Site Context date Type Spin Density Dye Pigment Fleece Other Character Outlier? 

2894 RKH 10001200 Yarn S+Z - nt nt nt  typical δ
18

O 

2895 RKH 10001200 2/2 plain twill ZS 8 x 8 nt nt nt  typical δ
18

O 

3961 RKH 10001200 Cord Z2S - nt nt nt  typical δ
18

O 

2896ave RKH 12001400 2/2 plain twill ZS 11 x 8 nt nt nt  typical - 

2897 RKH 12001400 2/2 plain twill ZS 10 x 9 nt nt nt  typical - 

2898 RKH 12001400 2/2 plain twill ZS 13 x 10 nt nt nt  typical - 

2899 RKH 12001400 2/2 plain twill ZS ? nt nt nt  typical - 

2901 RKH 12001400 2/2 plain twill ZS 12 x 8 nt nt nt  typical - 

3962 RKH 12001400 2/2 plain twill ZS 12 x 9 nt nt nt even typical - 

3963 RKH 12001400 2/2 plain twill ZS ? nt nt nt  typical - 

3964 RKH 12001400 2/2 plain twill ZS 10 x 9 nt nt nt  typical - 

3965 RKH 12001400 Staple - - nt nt nt  typical - 

2902 RKH 1400-1600 2/2 plain twill ZS 8 x 7 nt nt nt  typical - 

2903 RKH 1400-1600 Tabby ?SS 16 x 8 nt nt nt napped atypical δ
15

N, δ
2
H 

2904 RKH 1400-1600 Yarn Z 0 nt nt nt  typical - 

2950ave RKH 14001600 Staple - - nt nt nt  typical - 

3966 RKH 14001600 Tabby Z+S/S 10 x 8 nt nt nt  atypical δ
15

N, δ
2
H, 

δ
18

O 

3
8

1
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Appendix 8.1 continued. 

ID Site Context date Type Spin Density Dye Pigment Fleece Other Character Outlier? 

3967 RKH 14001600 Tabby SS 12 x 12 nt nt nt napped atypical δ
18

O 

3968 RKH 14001600 Tabby SS 10 x 10 nt nt nt  unknown δ
18

O 

2906 RKH 14001600 Staple - - nt nt nt  typical - 

4120ave RKH 12001400 2/2 plain twill ZS ? nt nt nt  typical - 

4329 HSS C78 2/1 plain twill ZS 14 x 10 madder none HM x HM  atypical δ
2
H/δ

18
O 

4330 HSS C78 2/2 chevron/ 
diamond twill 

ZS 11 x 8 ndd dense HM x HM  typical δ
15

N 

4331 HSS C78 Tabby ZS 3.5 x 3 ndd dense on 
coarse 
fibres 

HM  typical δ
2
H/δ

18
O 

4332 HSS C78 Tabby ??  ndd none ?M x ?M open atypical - 

4333 HSS C78 Staple - - ndd none H  typical - 

4334 HSS C78 Staple - - ndd dense HM  typical - 

4335 HSS C78 Staple - - ndd medium on 
coarse 
fibres 

HM ?fell wool typical - 

4336 HSS C78 Tabby (?band) ZS ? ndd dense HM x HM ?band typical δ
15

N, δ
18

O 

4337 HSS C78 2/2 diamond 
twill 

ZS 7 x 8 ndd moderate/ 
light 

HM x HM  typical - 

4338 HSS C78 2/2 diamond 
twill 

ZS 10 x 10 ndd none H x H  typical - 

3959 YCG 930975 Nålebinding S2Z - ndd none nt sock atypical - 

 

3
8

2
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Appendix 8.1 continued. 

ID Site Context date Type Spin Density Dye Pigment Fleece Other Character Outlier? 

4058 YCG 850900 Staple - - ndd none H  typical - 

4060a YCG 850900 Tabby ZS 12 x 8 ndd dense H x HM loose typical - 

4060b YCG 850900 Yarn Z2S - ndd none nt  typical δ
15

N 

4062 YCG 930975 Staple - - ndd none HM  typical - 

4063 YCG 930975 Staple - - ndd none HM  typical - 

4064 YCG 930975 Tabby ZS 5 x 4 ndd none H x H ground of 
4065 

hybrid 
typical/ 
atypical 

- 

4065 YCG 930975 Yarn S - ndd none H pile of 4064 hybrid 
typical/ 
atypical 

- 

4066 YCG 930975 2/2 plain twill ZS 14 x 7 ndd none GM x H  typical - 

4068 YCG 930975 2/2 chevron 
twill 

ZS 10-11 x 
6-7 

ndd dense 
(warp)/ 

none (weft) 

H x HM waðmál atypical - 

4069 YCG 930975 2/2 chevron 
twill 

ZS 16 x 12 ndd none GM x HM  typical - 

4070 YCG 930975 2/2 chevron 
twill 

ZS 18 x 16 lichen 
purple 

none HM x M v even atypical - 

4072 YCG 9751150 Staple - - ndd none GM  typical - 

4073 YCG 930975 2/2 diamond 
twill 

ZS 14 x 11 madder nt nt  typical - 

4074 YCG C1314 Staple - - ndd none SF  typical - 

 

3
8

3
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Appendix 8.1 continued. 

ID Site Context date Type Spin Density Dye Pigment Fleece Other Character Outlier? 

4075 YCG C13 2/1 plain twill Z/S+Z 11 x 6-7 ndd none M x 
SF+HM 

 typical δ
18

O 

4077 YCG C13  Yarn Z - ndd none H  typical - 

4078ave YCG Anglo-
Scand. 

Tabby, piled ZS 5 x 5 madder none H x H+H locks of 
loosely 
twisted wool 
darned in 

hybrid 
typical/ 
atypical 

- 

4079 YCG Anglo-
Scand. 

Tabby ZZ 24 x 16 ndd none nt lining of 
4078 

atypical - 

4080 YCG Anglo-
Scand. 

Yarn Z2S - ndd none nt thread 
joining 4078 
and 4079 

typical - 

4095 YCG 930975 Tabby ZS 4 x 3-4 ndd none M x HM uneven, 
loose 

typical δ
13

C/δ
15

N 

4081 YLB 9301040 2/1 diamond 
twill 

ZZ 22 x 11 nt nt nt offcut unknown - 

4082 YLB 9301040 2/1 diamond 
twill 

ZZ 20 x 11 nt nt nt  unknown - 

4083 YLB 9301040 2/1 diamond 
twill 

ZZ 16 x 10 nt nt nt  unknown  

4085 YLB 9301040 2/1 chevron 
twill 

ZS 20 x 14 nt nt nt  typical δ
15

N/δ
18

O 

4086 YLB 9301040 2/2 diamond 
twill 

Z/Z+S 14 x 9 nt nt nt  typical - 

4088 YLB 9001000 Tabby(?) ZS 4 x 3 nt nt nt fulled/matted typical - 

3
8

4
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Appendix 8.1 continued. 

ID Site Context date Type Spin Density Dye Pigment Fleece Other Character Outlier? 

4089 YLB 9001000 Tabby SS 5 x 3.5 nt nt nt errors in 
weave 

typical - 

4092 YLB 9001000 ?2/2 plain twill Z/S+Z 6 x 5 nt nt nt  typical - 

4093 YLB 9301040 ?2/1 plain twill Z/S+Z 4.5 x 5 nt nt nt  typical - 

4094 YLB 9301040 Tabby repp ZZ 22 x 12 madder nt nt  typical δ
18

O 

4121 YSG Anglo-
Scand. 

2/1 diamond ZZ 22-24/14-
16 

nt moderate/ 
light 

H/HM  unknown - 

4123 YSG Anglo-
Scand. 

2/2 twill ZS 10 x 10 tannin moderate/ 
light 

nt  typical δ
15

N, δ
2
H, 

δ
18

O 

4124 YSG Anglo-
Scand. 

2/1 twill SS 5 x 4 ndd none HM x HM  typical - 

4125 YSG Anglo-
Scand. 

Tabby ZS 6-8 x 4 Indigotin 
+ tannin 

none GM x HM shaggy pile 
both faces 

atypical - 

3944 NBG 1
st
 half C15 Knit Z2S 15 x 27* kermes none F  atypical - 

3945 NBG 1
st
 half C15 2/2 plain twill ZZ 14 x 12 nt nt nt heavily 

fulled 
typical - 

3946 NBG 1st half C15 Tabby SS 5-6 x 5 nt nt nt light-medium 
fulled 

typical - 

3948 NBG 1st half C15 2/2 plain twill SS 22 x 20 nt nt nt lightly fulled typical - 

3949 NBG 1st half C15 Tabby SS 6 x 5 nt nt nt medium 
fulled 

typical - 

3950 NBG  Early C16 Knit ?Z2S 17 x 25* nt moderate/ 
light 

SF cap, lightly 
fulled 

typical - 

 

3
8

5
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Appendix 8.1 continued. 

ID Site Context date Type Spin Density Dye Pigment Fleece Other Character Outlier? 

3951 NBG  Early C16 Knit ?Z2S 22 x 35* nt nt nt cap typical - 

3952 NBG  Early C16 2/2 plain twill ZZ 13 x 86-
96 

nt nt nt worsted typical - 

3953 NBG  Early C16 Tabby SS 11 x 8 nt nt nt lightly fulled typical - 

3954 NBG  Early C16 Tabby SS 7 x 5 nt nt nt  typical - 

3955 NBG  Early C16 Tabby SS 14 x 11 nt nt nt lightly fulled typical - 

3957 NBG  Early C16 Tabby SS 8 x 8 nt nt nt medium 
fulled, ?weft-
faced 

typical - 

4544 NQS Mid-late C13 2/1 plain twill ZS 10 x 7 madder none H/HM  typical - 

4545 NQS Mid-late C13 2/1 plain twill ZS 7 x 5 ndd none HM/M  typical - 

4546 NQS Mid-late C13 Tabby S2Z/S2Z 2 x 2 ndd none nt ?wool typical δ
18

O 

4547 NQS Mid-late C13 Tabby S2Z/S2Z 2-3 x 3 ndd none nt goat hair typical δ
18

O 

5169 BKA c. 750850 2/2 diamond ZZ 32 x 16 nt nt nt  atypical - 

5170 BKA c. 950end 
C10 

2/1 diamond ZZ 55-60 x 
17 

nt nt nt  atypical - 

5171 BKA  c.950 Tabby or 2/1 
plain twill, piled 

?? ? nt nt nt pile 
(unspun) 

typical - 

5172 BKA  c.950 Tabby, piled ZS 4 x 3 nt nt nt rough and 
thin, pile 

typical - 

5173 BKA c. 950975 2/1 plain twill Z? 10 x 4-5 nt nt nt  typical - 

 

3
8

6
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Appendix 8.1 continued. 

ID Site Context date Type Spin Density Dye Pigment Fleece Other Character Outlier? 

5174 BKA  c.950 Tabby ZS 5 x 4-5 nt nt nt regular, 
felted on 
one side 

typical - 

5175 BKA  c.950 2/1 or 2/2 plain 
twill, ?piled 

ZZ ? nt nt nt  typical δ
2
H, δ

18
O 

 

3
8

7
 


