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Abstract.

This thesis is concerned with an investigation of the vibrational
characteristics of oil lubricated journal bearings and, in particular,
the instability known as oil whirl, which is a self-excited oscillation
induced by the hydrodynamic forces generated in the bearing. The thesis
is divided into two parts. In Part 1, linear stability theory is used
to determine the critical parameter values at which oil whirl is initiated.
This information is conveniently expressed on a two dimensional stability
chart, separating regions of stability from those of instabilitv, The
vibrational characteristics of a variety of bearing models are contrasted
with'particular emphasis on the effect of adopting different cavitation
boundary conditions at film rupture and the effect of oil film behaviour
during journal vibration. An analysis of the single axial groove journal
bearing is presented and the effects of groove location and oil supply
pressure on the vibrational characteristics of the bearing are examined.,

In Part 2, attention is focused on the nonlinear aspects of oil whirl,
one objective being to determine the motion of the journal beyond its
stability threshold. Several nonlinear techniques are employed to analyse
the nonlinear equations of motion and to identify different features
(bifurcation theory, multiple scaling, the method of averaging and numer-
ical integration). Particular emphasis is placed on examining the structure
of periodic solutions of the equations of motion at and close to the
position of neutral stability., It is shown that the onset of oil whirl
1s a bifurcation phenomenon in which the equilibrium position gives way
to a small amplitude whirl orbit (limit cycle). Two different types of
bifurcation behaviour are possible, depending on the operating parameters
of the bearing. Results obtained from the different nonlinear techniques

are contrasted and an assessment 1s made of how suitable these methods

are for examining the phenomenon of oil whirl.
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NOTATION

journal centre

non-dimensional bearing velocity coefficients

bearing diameter
bearing load

non-dimensional bearing displacement coefficients .

radial and tangential hydrodynamic force components
non-dimensional force comnonents (fr=Fr/SF,etc.)

Cartesian force components

non-dimensional force components (fx=Fx/SF,etc.)

b

axial bearing length
bearing centre
bearing radius

Sommerfeld number (LR3wu/Fc2)

modified Sommerfeld number (RL3yp/Fc2)

journal centre co-ordinates
non-dimensional co-ordinates (X=X!/c, etc.)

Tavlor expansion coefficients

bearing radial clearance (R-r)
logarithmic decrement
journal eccentricity
fluid film thickness

journal mass
non-dimensional mass (mcw?/F)
hydrodynamic pressure

non-dimensional pressure (c2p/R%wu)



r journal radius

t time

x!,yl journal centre co-ordinates

X,¥ non-dimensional co-ordinates (x=xl/c, etc.)
Z axial co-ordinate

o real part (})

6 angular co-ordinate

A eigenvalue

A non~-dimensional elgenvalue (i=k/w)
u lubricant viscosity

T small parameter

v stability parameter (F/mcw?)

o system parameter (S/w)

T non-dimensional time (wt)

¢ attitude angle

W rotational speed

W non-dimensional speed ((mc/F)llzw)
Q whirl frequency

0 whirl frequency ratio (Q/w)
SubsériEts

S refers to steady state conditions
crit denotes the threshold of instability

time derivative (d/dt)
non-dimensional time derivative (d/drt)

Note

Where the use of a symbol is confined to a short section of the thesis

it 1s defined when 1t 1is introduced.



INTRODUCTION,




A basic requirement of any piece of rotating machinery is that it
should operate in a stable manner. This is equally true of a shaft of
diameter 6mm in a dentist's drill rotating at half a million rpm and
a 500MW steam turbine rotating at 3000rpm with a shaft diameter of 600mm.
In recent years, with modern technology demanding larger machines oper-
ating at greater speeds, much attention has focused on the vibrational
characteristics of rotating machinery, A major factor influencing the
vibrational characteristics of such machinery is the support bearings
which are usually of the journal bearing type.

This thesis is concerned with an investigation of the vibrational
characteristics of a simple rotor system mounted symmetrically on two
plain, cylindrical, oil lubricated journal bearings. This type of
machinery may, under certain conditions, devé10p an instability due to
the o0il film in the bearings. The hydrodynamic forces so generated
are capable of sustaining a self excited oscillation in which energy
is transferred from the rotation of the rotor into a whirling motion
of the journal,

0il whirl, which is the name given to the type of instability
mentioned above, occurs above a specific rotor speed (the threshold
speed). Once initiated, the instability may take either of two
different forms. One possibility is for large amplitude motion in
which the journal whirls around the bearing centre at a frequency close
to half the running speed (for this reason the instability is often
referred to as "half frequency whirl"). This is a dangerous operating
condition for the machine since 1t may result in contact between the
bearing and journal surfaces causing excessive wear and a sharp rise
in temperature. The second possibility for whirling is a small amp-
litude motion in which the journal centre whirls around the steady state
equilibrium position in a stable closed orbit (limit cycle). Providing

the amplitude 1s not too large this may well be an acceptable operating



condition for the machine. The parameters which determine the form of
oil whirl are unclear, this being one of the objectives of the present
investigation.

The model under investigation is of a rotor supported on two plain,
cylindrical journal bearings (Figure 1). It is assumed that:
1) the rotor is rigid, symmetric and perfectly balanced.

1ii) the rotor spins with constant angular velocity about its axis,

111) the load supported by the bearings is due to gravity and is
divided equally between the two bearings.

iv) the bearings are identical and have rigid supports.

v) the hydrodynamic pressure generated in the bearings may be determined
by solving the lubrication equation - the Reynolds equation. The ass-
unmptions made in deriving the Reynolds equation are given 1in Chapter

1. To examine the qualitative features of oil whirl two approximate
analytic solutions to the Reynolds equation are used throughout this

work (see Chapter 1).

A rigid rotor may whirl in two different modes:- cylindrical whirling,in
which the two ends of the rotor are in phase (Figure 2(a)) and conical
whirling,in which the two ends of the rotor are 180 degrees out of phase
(Figure 2(b)). This investigation is confined to cylindrical whirling,
which is the most frequently encountered form of whirling. This addit-
ional assumption means that every point on the rotor performs the same
planar motion,perpendicular to the rotor axis and it is sufficient to
consider only one bearing.

The objectives of the investigation are:
i) to examine the role which cavitation plays in determining the vib-
rational characteristics of the journal with particular emphasis on:

a) the effect of using different cavitation boundary conditions

at film rupture.



bearing 1 bearing 2

rigid support load

Figure 1. A rigid rotor supported in fluid film bearings. The fluid in the

bearings is represented by a spring-dashpot system.

!
T oy
2(b). Conical whirling. i % ; 7 ; i

Figure 2., Whirling modes of a rigid rotor supported in fluid film bearings.



b): the behaviour of the oil film during journal vibration.
ii) to investigate the influence of groove position and oil supply
pressure on the vibrational characteristics of the single axial groove
journal bearing.

1ii) to determine the motion of the journal once oil whirl has been
initiated and to investigate the factors governing the size and shape
of any closed whirl orbits.

This thesis 1s divided into two parts. Part 1 involves the use of
linear stability theo?y to achieve objectives (i) and (ii). In part 2
the followingnonlinear techniques are used to pursue objective (ii1i):-
bifurcation theory, multiple scaling, the method of averaging and num-
erical integration.

Two further objectives of the present work are:

iv) to assess the limitations of a purely linear approach.
v) to determine the applicability of the various non-linear techniques

to the. investigation of the phenomenon of oil whirl,



Part 1.

INVESTIGATION OF THE VIBRATIONAL CHARACTERISTICS OF OIL LUBRICATED

JOURNAL BEARINGS USING LINEAR STABILITY THEORY.




CHAPTER 1T

BASIC CONCEPTS AND HISTORICAL REVIEW,




1,1 DESCRIPTION OF A PLAIN JOURNAL BEARING.

A plain journal bearing is shown in Figure 1.,1. It consists of a
circular shaft rotating within a stationary, circular bearing shell.
Under normal operating conditions the journal takes up a position in
the bearing which is eccentric to the bearing centre. Thus, the annulus,
which i1s wholly or partially filled with lubricant, is divided into a
converging and a diverging region. Lubricant, which is generally forced
into the begring under a small supply pressure, is dragged into the con-
verging film section by the rotation of the journal. Since the lubricant
has progressively less space to occupy, fluid film pressure forces are
generated which in turn support the applied load. This pressure generating
mechanism is the principle upon which hydrodynamic lubrication is based.

The various paraﬁéters required to Specify the bearing geometry are;

the bearing radius R the journal radius r

the radial clearance ¢ = R=-r the axial béaring length L.

Two co-ordinates are required to specify the position of the journal
centre., They are normally taken to be the eccentricity (e) of the journal
centre with respect to the bearing centre and the attitude angle (¢),

the angle between the direction in which the applied load acts and the
line connecting the centres of the journal and the bearing. The ecc-

ectricity ratio (e) is defined as the eccentricity normalised with respect

to the radial clearance (¢ = e/c). An angular co-ordinate 6 1is used
to locate positions round the bearing relative to the line of centres:-
0 = O(r) corresponds to the position of maximum (minimum) film thickness.

The film thickness (h) is very small (the ratio ¢/R is typically 1/1000)

and to a good approximation it can be shown that;

h = ¢(1l+ccosh)

1.2 THE REYNOLDS EQUATION.

The equation describing the pressure distribution in a thin film



cavity

oil supplv

position
film rupture
position
o1l fil
6=
U
= bearing centre ¢ = attitude angle
= journal centre p = hydrodynamic pressure
= rotational speed F = load
= angular co-ordinate Fr,Ft-hydrodynamic force components

journal eccentricity

Figure 1.1. Journal bearing under dynamic conditions.
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was first derived by Reynolds (1886) and is known as the Reynolds equation.

The full Reynolds equation for an incompressible lubricant in the

lubrication situation shown in Figure 1.2 is:

5 [h3 3p 3 [h33pl _ . 3h
5; v Bx + -5-;- -1-1— -3-; = 6U -3-;; + 12V (1-1)

The co-ordinate system 1s as shown in Figure 1.2 (with z into the paper);
p 1s the hydrodynamic pressure, u 1s the lubricant viscosity, U 1is the
tangential surface velocity and V the normal surface velocity. The terms
on the right hand side of equation (l1.1) contribute to the generation

of pressure 1n the bearing in different ways:

i) the first term represents the familiar "wedge-shaped" fluid film

and arises because the film thickness varies with distance.

ii) the second term represents the variation of film thickness with

respect to time and 1s referred to as the '"squeeze film" effect.

moving surface

lubricant

A

Figure 1.2. A typical lubrication situation.
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Equation (1.1) may be derived from the full Navier Stokes equations

of motion (Pinkus and Sternlicht (1961)). It is based upon the following

assumptions:
i) the film thickness is small and the effect of film curvature may
be neglected.
ii) fluid inertia is small compared to the viscous shear.
111) no external body forces act on the film.,
1v) there is no variation of pressure across the oil film (3p/3y = 0).
v) the flow is laminar.
In addition to the assumptions listed above 1t is assumed throughout
this work that the lubricant viscosity remains constant,

To write down the Reynolds equation for a journal bearing, consider
a point M on the journal surface at an angular co-ordinate g (Figure 1.1).
M has tangential and normal velocities relative to the point M! on the
surface of the bearing. These velocities are made up of the components

of the velocity of the shaft centre relative to the bearing centre plus

the velocity of the surface of the shaft Rw about its own centre. Thus:

L

U=Rw + €& sing - e § coso

\Y é cosp + e § sing

also x = Rg and h = c(1l+ccosg)

Substituting into equation (1l.1) yields:

2
= 6y (—E-) -c (W=20)sind + 2¢&cosd6 + O0(c/R){ (1.2)

The terms of order (c/R) inside the bracket on the right hand side of

equation (1.2) are small compared with the remaining terms and are neg-

lected.

Equation (1.2) is a second order partial differential equation for



p(6,2z). In its complete form it can only be solved numerically for all
but the most special cases. The solution of equation (1.2) requires the
specification of boundary conditions on pressure and it is here that
problems arise since it 1s rarely clear where the fluid film starts and
terminates. The geometry of a journal bearing, being typical of many
hydrodynamic lubrication situations, is such that the bearing has a
converging and a diverging film section. In general this means the fluid
film pressure will be superambient over the converging film section,

but will fall below atmospheric in the diverging film section. Consequently
the oil film will not be continuous: film rupture will occur and the space
between the position of film rupture and film reformation will be filled
with a mixture of oil and air. Although a considerable amount of work

has been done in this area the exact boundar& conditions which determine
the film rupture and film reformation positions are not known precisely.
Some of the models which have been developed to describe the oil film in
the bearing are used in this thesis (see Chapters 2,3 and 4).

There are two approximations of the full Reynolds equation which

enable analytic solutions to be obtained.

The Long Bearing Approximation.,

This approximation is due to Sommerfeld (1904). It is assumed that
the bearing is of sufficient length in the axial direction to neglect

the z dependence in equation (1.2), which then reduces to:

2
.g_e. {(14-&:(:039)3 %} = 61U (—E—) (‘E(w“ZCb)Sine + Zécoseg (1.3)

The assumption is equivalent to neglecting side leakage in the bearing.

The Short Bearing Approximation.

Short bearing theory was developed by Ocvirk (1953). 1It is based

on the fact that in many applications the bearing is rather short ie.

the length to diameter ratio L/D is small (L/D = } to i). Ocvirk assumed
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that the pressure gradient in the circumferential direction can be ignored

in comparison with the pressure gradient in the axial direction.

iE. L h3 _a_E_ < < 2__ h3 _B__E_
90 36 3z 2z

Based on this assumption the Reynolds equation (1.2) reduces to:

mI Q
M

,

b
+

M

0

0O

N

D

o’
)

Q| Q>
IS
w
|
@)
I\It

f-e (w=2¢)sinb + 25(:059} (1.4)

Although equations (1.3) and (1.4) are only approximations to the
real situation they do provide analytic expressions for the pressure
distribution and the force components which are valuable, not only in
checking numerical procedures, but in examining the qualitative features
of oil whirl. Both long and short bearing theory are used in this thesis,

Having solved a particular version of the Reynolds equation,the
hydrodynamic forces are calculated by integrating the pressure distri-
bution over the oil film domain (Ar). It is usual to resolve the forces
into two perpendicular components:

1) a radial force component F_ acting along the line connecting the

centres of the journal and the bearing.

ii) a tangential force component Ft perpendicular to the line of centres:

Referring to Figure 1l.1l:

Fr = JI pcosf® d(Ar) Ft = JI psin® d(Ar) (1.5)

Ar Ar

1.3 DIFFERENT TYPES OF FLUID FILM INSTABILITY,

Newkirk and Lewis (1956), Pinkus (1956), Hori (1959) and Tondl (1961)

have classified unstable whirling of rotor-bearing systems into two

different types of motion:
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i) half frequency whirl

11) resonant whip

Sternlicht (1962) has classified three different tvpes of rotor whirl

motions:

1) half frequency whirl
11) fractional frequency whirl
111) resonant whip

Smith (1970) also found three different types of fluid film instability:
1) light-load instability
11) half frequency whirl

1ii1) low frequency whirl (similar to resonant whip)

There 1s general agreement thatlight load instability as well as fractional
frequency whirl are of the same general nature as half frequency whirl.
This type of instability is most commonly observed with rigid rotors

in plain fluid film bearings and occurs above a specific rotor speed (the
threshold speedz’which.is a function of the stiffness and damping properties
of the o1l film. The frequency of the whirling motion is typically one
half of the rotor speed. This type of instability, which is the subject

of this investigation, will be referred to as oil whirl throughout this

work.

Resonant whip is a violent whirling of the rotor in its bearings.
It is found with flexible rotors in plain fluid film bearings and occurs
at rotor speeds above twice the first critical speed in bending of the
rotor. The frequency of the whirling motion is typically the first crit-
ical speed in bending of the rotor. This type of instability is not
investigated in this thesis.

It may therefore be concluded that there are two fundamentally
different types of fluid film instability:

1) oil whip

ii) resonant whip
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Unfortunately, owing mainly to confusion regarding the names given to

these types of instability, they are sometimes confused in the literature.

1.4 HISTORICAL REVIEW,

Fluid film instability was first identified by Newkirk (19242,who
subsequently carried ;ut a detailed experimental program involving a
parametric study of both rigid and flexible rotor instability (Newkirk
(1930,1956,1957), Newkirk and Taylor (1925), Newkirk and Grobel (1934),
Newkirk and Lewis (1956).

Both types of fluid film instability were encountered and it is
clear that Newkirk was able to distinguish between them. Newkirk (1956)
contrasted results obtained previously with a flexible rotor and a rigid
‘roto¥. The flexible rotor had a first critical speed in bending of
1210rpm. The rotor whirled over the speed range 2300-5000rpm with a
frequency around 1250rpm. The amplitude of the whirl orbit increased
with increasing speed. The results were compared with those obtained
using a very stiff rotor for which there were no discernible (bending)
critical speeds up to 30,000rpm. This shaft whirled at low speeds with
a frequency slightly less than half the running speed. It was also noted
that the rigid rotor whirl died out at higher speed, which varied from
7,000 to 18,000rpm, an effect which defies a simple explanation.

The first attempt to investigate the motion of a rigid journal with-
in a bearing using hydrodynamic theory was made by Harrison (1919), who
derived expressions for the radial and tangential components of the fluid
film forces. These expressions were based on the Reynolds assumptions
applied to an infinitely long bearing operating with a complete film,
Harrison neglected the inertia of the rotor in formulating the equations
of motion of the journal and concluded that stable whirl orbits were
possible once the journal was displaced from its steady state equilibrium

position.,
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Robertson (1933) reconsidered Harrison's work and formulated the
equations of motion for a journal supported in very long bearingg)includ—
ing the inertia of the rotor. Although Robertson was unable to solve
the equations of motion to determine the path of the journal, he was able
to show qualitatively th;t the journal was inherently unstable and once
whirling commenced the journal spiralled outwards towards the bearing
side with a frequency approaching one half of the running speed.

Around the time that oil whip was identified by Newkirk in 1924,
Stodola (1925) undertook a theoretical investigation of the influence
of the journal bearings on the critical speeds of the rotor. In the
course of this investigation both he and Hummel (1926) arrived independ-
ently at the conclusion that the fluid film forces in a bearing induce
rotor instabilitywhen the journal eccentricit)'r is less than O0.7.

Stodola's model, which neglected subambient pressures in the bearing,
was based upon a linearisation of the fluid film forces. It was then
possible to calculate the stability of the equilibrium position. The
linearisation procedure has subsequently been greatly developed. To
illustrate Stodola's analysis let the journal have a mass m and let the

journal centre position have Cartesian co-ordinates (x,y). The fluid
film force components F_ and Fy depend on the instantaneous position
and velocity of the journal centre such that the linearised equations

of motion become:

| [ oF ( an) BFX) OF '
mx = Fx(X.Y,X?Y) =\ 3% | X + 3y y * Pl B 3y y (1.6)
~ 3F 3F 3F. 3F.
0y = F GGy = | g ) x| g |y | ik (P

where the partial derivatives are evaluated at the equilibrium position

(x =y =% =y =0), The equations are two simultaneous second order

ordinary differential equations with constant coefficients which are

readily tested for stability once the eight partial derivatives are known



(see section 1.5).

Although Stodola's method is correct and simple it presents the
problem of obtaining accurate values for the eight Taylor expansion
coefficients (the bearing coefficients)., Stodola neglected the four
velocity coefficients (BFx/Bi,BFX/3§ etc.) and arrived at values for the
four displacement coefficients (an/Sﬁ,an/By etc.) from an estimate of
the functional relationship between the applied load and the steady state
equilibrium position of the journal centre.

The interest in the problem of hydrodynamic instability increased
considerably after World War II, beginning with Hagg (1946), and has
grown ever since, primarily because of the trend towards high-speed
machinery. This interest was reflected in a number of experimental
investigations carried out in the 1950's (Pinkus (1956), Newkirk and
Lewis (1956), Hori (1959), Tondl (1961)). However, experimental invest-
igations are not so numerous as the analytic studies and frequently they
are somewhat inconclusive owing to the lack of adequate instrumentation,
or failure to recognise the governing system parameters. Furthermore,
it is not always clear if extraneous factors have been e}iminated

totally from the test apparatus (eg. external damping and external

vibration sources).

An important contribution to the understanding of hydrodynamic in-
stability was made by Poritsky (1953). He analysed a flexible rotor
operating in fluid film bearings., In the first part of his paper he
used the long bearing)full film solution to the Reynolds equation, but
confined his attention to small eccentricities., He reached the same
conclusion as Robertson (1933) that the journal was inherently unstable
and would whirl at all rotor speeds. However, Poritsky, unlike Robertson
and many of the other early investigators, appreciated the significance
of film rupture in the bearings. He postulated that the inclusion of

cavitation would introduce a radial force component which i1s absent when

17
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cavitation is neglected. Poritsky showed that when this term was incorp-

orated into the equations of motion stability was predicted provided:

2 (1., 1
mo Kr-l-KS < 4 or w < Zml (1.7)

where Kr and Ks are the rotor stiffness and oil film stiffness respect-

ively, m is the rotor mass, w the rotational speed and W, the first crit-

ical speed of the rotor supported on the oil film, For w > 2u ’Poritsky

1
showed that the rotor was unstable and would whirl at a frequency equal
to in accordance with observed performance. This is an important
result since it suggests that cavitation, which is generally considered
to be an undesirable feature of journal bearings, is nevertheless
crucial i1n providing stability.

Poritsky's analysis neglected the influence of fluid film damping
and no attempt was made to determine the value of the fluid film stiff-
ness except to postulate that thesé would be linear with displacement
for small amplitude motions. Later investigations into the elastic and
damping properties of the cavitated fluid film (Sternlicht (1959))
verified the existence of the radial force component and also provided
values for the velocity and displacement coefficients.

Poritsky's work was extended by Hori (1959) in a particularly
lucid investigation of hydrodynamic instability in fluid film bearings.
Hori's model was similar to Poritsky's. Hori used the long bearing
approximation to solve the Reynolds equation and allowed for cavitation
by assuming that the oil film only occupied the converging filﬁ.section
of the bearing. Having formulated the equations of motion of the rotor,
Hori analysed small amplitude vibrations by linearising the equations

about the steady state equilibrium position. The linearised equations

were then tested for stability by using Routh's criterion which led to

the condition:
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F >1{ (e )] K. (e ) + -L- F for stability (1.8)
2 1 S 2 s 2
mew wl mc

where F 1s the load supported by the bearing
m 1s the rotor mass

¢ 1s the radial clearance

€ 1s the steady state value of the eccentricity ratio

Wy 1s the first critical speed in bending of the rotor (by itself).
The quantities K1 and K2 are functions only of the steady state eccen-

tricity ratio. The stability condition described by equation (1.8)

may be expressed as a two dimensional stability chart with axes F /mcw?

and € A different stability borderline, which separates regions of

stability from those of instability, is obtained for each value of

llmi (F/mc). Hori's stability chart is reproduced in Figure 1.3. Such
a stability chart may be used to determine whether or not a rotor will

run stably at a given rotor speed. It can also be seen that a rotor is

always stable above an eccentricity ratio of 0.8 and that the threshold

of instability for a flexible rotor is lower than for a rigid rotor.

Hori then examined the stability of large amplitude vibrations such
that the shaft bends considerably and the journal centre rotates about
the bearing centre. He showed that large amplitude vibrations (resonant
whip) could not occur below a speed of twice the first critical speed
in bending of the rotor. Although Hori's analysis of the large amplitude
motion is based on some dubious assumptionsyhis results did enable him
to explain successfully several observations made by Newkirk and Lewis
(1956) and Pinkus (1956). He also obtained modest agreement with his
own experimental results,

Up to the 1950's the only available solution of the Reynolds
equation was that for the long bearing approximation. Ocvirk's short
bearing theory was developed in 1953 and it subsequently became fashion-

able to use short bearing solutions (eg. Holmes (1960), Huggins (1963-64),
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Figure 13. Hori’s stability chart'
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Lund (1966)). In one of the first investigations, Holmes (1960) analysed
the vibrational characteristics of a rigid rotor supported on two short
journal bearings. He allowed for cavitation by assuming the lubricant
only occupied the converging film section of the bearing. He adopted
the now well-tested procedure of linearising the hydrodynamic forces
about the steady state equilibrium position to obtain the eight bearing
coefficients and tested for stability by using Routh's criterion. Holmes
presented his results in terms of a two dimensional stability chart
similar to the approach adopted by Hori (1959).
With the development of high-speed digital computers in the early

1960's it became possible to solve the full Reynolds equation by the

. finite difference method. The eight bearing coefficients and stability
curves were presented by Lund (1966) for bearings with a range of L/D
ratios. Several numerical methods were developed in the early 1970's

to determine the bearing coefficients for bearings with finite L/D ratios



(Woodcock and Holmes (1970), Lundholm (1971), Lund and Thomsen (1978)).

These methods are discussed in Chapter 4. This work has led to a wide

variety of different bearing geometries being examined (Allaire (1980),

Most of the recent experiments on rotor stability have been per-

formed in connection with the validation of computer programs for stab-
ility analysis. One such experimental study was made by Lund and

Tonnesen (1978). Experiments were conducted on two rotor systems having

the following details:

Rotor 1 Rotor 2
Rotor mass 40kg 187.5kg
Rotor length 1040mm - 1190mm
Bearing span 8 80mm 8 80mm
Shaft diameter 80mm 80mm
Journal diameter 62, 7mm 62, /mm

Two types of bearipgs and‘supportswere tested:
1) rigid bearing with axial grooves.
1i) cylindrical bearing mounted on a flexible support with a squeeze
film damper.

Lund and Tonnesen calculated the stability threshold and whirl
frequency ratio by a computer program and verified the predicted results

experimentally with the two rotors described above. For the heavier
rotor, the stability threshold in rigidly mounted bearings was found

to be 12,600rpm. The use of flexible foundations with a squeeze film
damper enabled the same rotor to be operated at its maximum speed of
20,000rpm without any indication of instability,

Lund and Tonnesen obtained the following conclusions from their

test program:

i) the experiments confirmed the general validity of using an analytic



model to predict the threshold speed and whirl frequency of a rotor-bearing

system. The linear model predicted the instability threshold in good
agreement with the experimental findings., Discrepancies can more readily
be ascribed to other causes than deficiencies in the analytic model,

11) wunbalance vibrations were found to initiate a self-excited whirl,

with the result that the instability threshold speed was lowered.

22

111) unstable whirling was itself found to excite a spectrum of frequencies

in the rotor system but the whirl orbit was a stationary limit cycle,
associated with a single frequency. If a large limit cvcle amplitude
can be accented 1t 1s feasible to operate the test rotors past the onset

of instability. In practice, however, the threshold speed should be

considered the maximum acceptable speed.

iv) the addition of flexibility and damping to the foundation is the
crucial point in the suppression of instability for a rotor—-bearing
system,

In recent years attention has also focused on the nonlingar aspects
of oil whirl. This interest has arisen from the observation that several
machines have operated successfully at speeds considerably in excess
of the instability threshold speed (Newkirk and Lewis (1956), Mitchell,
Holmes and Byrne (1965-66), Tondl (1965)). It has been suggested that
the nonlinearity of the hydrodynamic forces may be the stabilizing factor
in the sense that, even if the steady state equilibrium position becomes
unstable and therefore whirl is initiated, the whirl amplitude does not
grow without bounds, but whirls in a closed orbit (limit cycle),

Most of the investigations which have included nonlinear effects
have been based upon numerical integration of the equations of motion
using either:

i) standard step~by-step marching techniques (eg. Runge-Kutta) on a
digital computer (Reddi and Trumpler (1962), Mitchell, Holmes and Byrne

(1965-66), Tolle and Muster (1969), Badgley and Booker (1969), McKay

(1981)).
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1i) an analogue computer (Jennings (1960), Huggins (1963-64), Mitchell,
Holmes and Byrne (1965-66)).

Mitchell, Holmes and Byrne (1965-66) performed a numerical invest-
igation of the nonlinear equations of motion using both long and short
bearing theory. They assumed the oil film was complete and integrated
the equatioﬁs using both an analogue and a digital computer. Whirl orbits
. were shown for a large range of parameter values., From their detailed
investigations the authors concluded that the journal was inherently
unstable for all rotor speeds and spiralled outwards towards the bearing
side at a frequency close to half the running speed. This work confirmed
the much earlier work of Robertson (1933) and Poritsky (1953), who had
reached the same conclusion using linear techniques.

It 1s of interest to note, however, that both Reddi and Trumpler
(1962) and Tolle ‘and Muster (1969), who both analysed a bearing with a
complete film, did not reach this conclusion, Under certain conditions
they found that stable whirl orbits did exist for € < 1. The vibration-
al characteristics of bearings with complete films are discussed in
Chapter 2 as a starting point for this investigation. This work confirmed
the results of Mitchell, Holmes and Byrne (1965-66) and McKay (1981).

These discrepancies illustrate the limitations of a purely numer-
ical approach, The difficulties of using a digital computer are that
many time . steps are needed to determine the journal path with the
result thaterrors accumulate. The difficulty of using an analogue
computer is that it is difficult to simulate exactly the fluid film
forces, It is evident that where it 1s possible more rigorous mathemat-
1cal techniques should be employed in order to verify the numerical results

and to highlight the important regions of parameter space.

Surprisingly the author has found only a few numerical studies which

have included nonlinear effects and allowed for cavitation. Badgley

and Booker (1969) investigated the stability of plane cylindrical motion



of a rotor supported in plasm, cylindrical journal bearings. They ob-
tained expressions for the hydrodynamic forces by using long bearing
theory, short bearing theory and Warner's finite length bearing approx-
imation to the Reynolds equation (Warner (1963)). They included the
effect of film rupture by considering only the superambient pressure
region. The nonlinear equations of motion were solved on a digital
computer. Results were presented only in terms of a two dimensional
stability borderline., For given initial conditions they determined whe-
ther or not the journal spiralled into or away from the equilibrium pos-
ition. Not surprisingly the stability borderlines which they presented
were in very good agreement with those obtained using linear theory.
Badgley and Booker did not address themselves to the more interesting

problem as to the motion of the journal above'the threshold speed.

Other nonlinear investigations which have included the effect of
film rupture (Jennings (1960), Huggins (1963-64), Someya (1963-64)) are
somewhat inconclusive owing to the difficulties already mentioned and
the number of parameters involved.

An alternative technique to numerical integration was developed by

Lund (1966). By employing the method of averaging to solve the nonlinear

equations of motion he was able to determine the size and orientation
of any closed whirl orbits directly, not as a result of transient growth
or decay. Lund presented results for the short bearing although in
principle it can be employed with any bearing type.

Broadly speaking the approach adopted by Lund is followed in this
thesis, 1e.:
1) determine the onset of instability using linear theory
1i) and then employ a combination of numerical and analytic techniques

to solve the nonlinear equations of motion as the speed i1s altered away

from the threshold speed.

Lund found that stable small amplitude whirl orbits could exist at

24
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speeds both above and below the threshold sPeeq,but were confined to a
narrow speed range about the threshold speed. The method of averaging,

together with Lund's results, is discussed fully in Chapter 7.

Summa Ve

The various investigations of fluid film instability cited above

may be conveniently classified into four categories:

1) qualitative studies.

ii) evaluation of the threshold of instability by linearising the equations

of motion.

111) studies of nonlinear effects.

iv) experimental investigations.

The important contributions to each of these categories are listed in

Table 1.1. The list is not meant to be a complete bibliography of the

'subject.

1.5 GENERAL THEORY OF LINEAR STABILITY ANALYSIS.

For a - journal of mass 2m, with a load of 2F, the equations of motion

are, in polar co-ordinates (e, ¢ ):

2 2
. E_i- © (ﬂ) =F cosp +F (ea '('i'ss $s 'El"'?') (1.9)
dt dt "\ de dt
2
m e-‘-i—-?--i- 2-51-?-2?-=-Fsin¢+1=’t(e,-§£, ¢,-§E’-
dt? dt dt dt dt

(see Figure 1.1).

In general, the hydrodynamic force components are nonlinear functions of

the journal centre's displacement and velocity.

The equations may be non-dimensionalised by substituting:

F F 3
e - r - t F LR wu
C t Fr SF Ft F 2 > (1'10)

mow Fcz

S 1s a non-dimensional bearing parameter referred to as the Sommerfeld

number. The non-dimensional equations of motion are:
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’ - '
€ - e¢2= \V {coscb + SFr(e,;,¢,¢)] (1.11)

ed + 2cd = -vfsincb- Sf‘t(e,é,q),c;a)f

The steadv state solution to equation (1l.11l) 1is:

- SFrS 51n¢S = SFtS (1.12)

cos¢s

g = (Fr + Fy"1/2

) ts) (1.13)

=> = - -—
tan¢S Fts/ Frs

denoting steady state conditions by the subscript "s".

Since equations (1.11) are nonlinear, it is not possible to solve
them analvtically without first simplifying them. During a small amplitude

vibration of the journal about its equilibrium position (Figure 1.4):

1.]-4
g+gs+6’¢+¢s+y (6<<ES’Y<<1) ( )

O.,bearing centre

Aq. steadv state positionof journal centre

A, journal centre during vibration

A(ES+5,¢Q+Y) or A(x,vy)

nb. the journal co-ordinates shown

: : ® -— _U
are nondlmen81onal.x = e y A

X

Figure l.4. Journal centre during small amplitude vibration about its
steadv state eaqullibrium position.

Substituting equations (l.14) into equations (1l.11), neglecting terms
higher than the first order and expanding the force components in a

first order Taylor expansion yields:
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" oF ' 3F oF oF
S ! -
S
€

S ts
d€ . < 3o < o€ o Es dd ;
(1.15)

y 3F \ F 3F 5 F
ey-vs(té-vi(—rt- (ey)-vs té-vg—F-l--——(EY)“O
de e \ 3¢ 15 > IS 3¢

S S S S S S

It 1s convenient, at this stage, to introducg a Cartesian co-ordinate
system (x,y), centred upon the steady state position of the journal centre.
The x-axis is taken along the line connecting the centres of the bearing
and the journal (in equilibrium) and the y=-axis is perpendicular to this
line, (Figure 1.4).

Thus x = § and y ~ ¢_y for small journal displacements from (1.16)
the equilibrium position.

Introduce the following notation:

aF 5F 3 F 5F
XX aa Xy e \3¢ y& Y yy € \93¢

3F IF 3F . 9F
K = = S (_r") K = e §-— —F ot —E K = o S (J_) K = - .§-—- F - —-—E.
S S S S S
(1.18)

Equations (1.17) and (1.18) define the eight bearing coefficients, which

consist of four velocity coefficients (equation 1.17) and four displ-
acement coefficients (equation 1.18). The linearised equations of motion

(equations 1,15) may now be written in the form:

" | !
x + vaxx + vayy + vaxx + vayy = (1.19)
" |
+ VB x + B + VK X + K = ()
7 yX yy’ yX yy’

Seeking a solution of the form:

A A
x =x e’ y =y.e t (1.20)

leads to the characteristic equation:
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At o+ v(Bxx+Byy)X3 + v (R K )+ V(B B -B B )} A2 (1.21)
+v2{B K +B K =B K =B K } x+v? {K K -K K =0
XX Yy YY XX Xy YX yX Xy XX Yy Xy YX
The equation may be written:
A% + BA3 + CA2 + DA + E = 0; (1.22)

The stability of the equilibrium position is determined by an appl-

ication of Routh's criterion, which for a quartic equation is:

"A necessary and sufficient condition for the quartic equation (1.22)

to have all four roots with negative real parts 1s:

i) B > 0.

ii) C > 0,

iii) D > O,

iv) E > 0, (1.23)
v) R = D(BC-D) - B%E > 0," Hartog (1947),

Thus, for equation (1.21), the stability conditions are:

i) v(B_+B ) > 0.

XX Yy
. . . ~
11) v{(Kxx Kyy) + v(BxxByy BxyByx)} > 0.
iii) vV {B K 4B K -B K =B K } > 0, (1.24)

XX yy YY XX Xy yX yX Xy

iv) v¥ {K_ K -K K } >0,
XX yy Xy yX

v). R=v {B K +B K =B K -B K } {(K +K )+v(B B =-B B )}

XX VY VY XX XY VX VX XY XX Yy XX yy Xy yX
(B _+B
XX Yy
-vV [B K +B K =B K =B K }2-v%(B +B )2{K K =K K }>0
XX Yy J¥ XX Xy yX yX Xy XX vy XX Yy Xy yX 1

In the vast majority of cases, the first four conditions are automatically

satisfied and the fifth condition becomes a condition on v for stability;

namely that:




+ -
(B +B )(KxxK KX K x) (B K +B K +Bx K +B xK )

v > XX . XX XX 2 z z z z X}C x Ez
(B K +B K -B K =B K ) (B +B )
XX XX

Vy XX X X X X

Brxlyy Py Py’ (1.25)

for stability

4

or v >v_ .. for stability, (1.26)

Extensive use of the stability condition described by equation (1.25) is

made throughout Part 1 of this thesis.

At the position of neutral stability, two of the eigenvalues are

purely imaginary:

A = +iQ .

ile, at v =v .
* crit crit

Substituting into equation (1.21):

1/2

- O _ (B K +B K ~-B K ~-B K )v .
> Qi _XX VY VY XX Xy yX VyX Xy  crit (1.27)

(Bxx+Byy)

from which the critical value of the whirl frequency ratio may be cal-

culated.

For v > v , the journal is stable to small perturbations from

crit
its equilibrium position. The degree of stability may be measured by

calculating the logarithmic decrement associated with each mode of

vibration. For example, suppose that:

V>V ., = XA =-0*i{Q, A = - B+ib with B >> a > O,
crit

In this case, the degree of stability may be measured by calculating the

logarithmic decrement associated with the first pair of roots:

logarithmic decrement, d =-%£- o (1.28)
{2

The logarithmic decrement represents the logarithm of the decay in the
amplitude of the vibration during one period of the oscillation (2m/9).

'The larger the value of d, the greater the stability of the journal.

Conversely, if d is negative, it may be used to measure the degree of

30




instability.

Note.

It is important to remember that the linearised equations of motion

are valid only for small amplitude journal motion about the equilibrium

position,

31




CHAPTER 2

THE VIBRATIONAL BEHAVIOUR OF JOURNAL BEARINGS OPERATING

WITH COMPLETE FILMS.

32

N
—
e e el — e —




33

In this Chapter an investigation of the vibrational characteristics
of a journal bearing operating with a complete film is made (Figure 2.1).
Long and short bearing theory are used and it is shown that both models
lead to the same conclusion - the steady state equilibrium position 1is
unstable. This result is well known and has been shown several times
(eg. Poritsky (1953), Holmes (1963)). The analysis is repeated here
since it is appropriate to begin with a study of the simplest model.
It is also important to understand the deficiencies of any mathematical
model when compared to the real physical situation. It is the task of
the applied mathematician to try and eliminate these deficiencies by

refining the model.

2.1 AN ANALYSIS USING LONG BEARING THEORY.

The Reynolds equation for a long bearing was shown in Chapter 1 to be:

d ((1+¢cos6)3dp/ _ 6u(_§)2 (2¢-w)esinbB+2€cosb (2.1)
do db « .

This equation may be integrated twice using:
i) the appropriate boundary conditionsj p=0 at 6=0, 2w, which model a

complete film.
1-g2

ii) the Sommerfeld substitution 1l+€cosgb %'T:EEE§$"

Details of the substitution, together with a list of inteSrals required

throughout this work may be found in Appendix I.

The pressure distribution may be re-written in terms of 0 as:

(c)2 P 6c(1-24) (2+ecosf)sind + 6 1 - 1 :: (2.2)
R) W0 .. onie.. N2 5 1 o
(2+¢2) (1+ecosh)? (1+ecosH) (1+¢)

The hydrodynamic forces generated in the bearing are calculated by
integrating the pressure distribution over the bearing in two perpendicular

directions (Figure 2.1).
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Figure 2.1.

ail film

Journal bearing operating with a complete film.
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d 2 L d |
F_ = Radial Force =LEJ Trp(e)cosedﬁ = -LEJ2ﬁ9251n6d9 (By parts)
dé

F_ = Tangential Force =LEJ2"p(6)sin9d9 = L%JZTngosede.
do

Substituting for‘dp/de and evaluating the integrals (Appendix I):
-(E)Z Fr _ IZHé (;_2 Ft _ 12né(1-2$) (2.3)
R/ LRuwy (1—&2)3 9 ‘R / LRwu (1_62)1;*2(24_82)

The equations of motion of the journal in polar co-ordinates (e,¢)
are:
mc (e - e&z) = Fcos¢p + Fr (Figure 2,.1) (2.4)

mc (¢ + 26¢) = -Fsind + Ft

Substituting for F_ and F (equations 2.3) and putting T=wt yields the

non-dimensional form of the equations of motion.

g-e$2 = v{;os¢- IZSﬂé (2.5)

(1-e2)3'2,

428l = —ulsino-1257e (1-24)
1257 (0-20)
(1-e2) 1/ 2 (2+€2)

where v= F , S = LR3wy ,the Sommerfeld number,

mcw2 Fr.'.2

The equations have a unique steady state solution for each value .

of the Sommerfeld number denoted by (ss,¢s)where:

¢ o=

# and S = (l-¢ 2)1/2(2+e 2 (2.6)
S 'i' S S

12T€
S

Thus the theoretical locus of the journal centre under steady state
conditions is a straight line with an attitude angle of 90° (Figure 2.2).
Equation (2.6) establishes the relationship between the Sommerfeld number

S and €. (Figure 2.3).

The non-dimensional steady state pressure distribution 1s found

: : I . . :
by substituting é=¢=0 in equation (2.2):

35




- ‘E)Zp . 6es(2+escose)31n6 (2.7)

S RIuw (2+e§)(1+sscose)2

This is frequently referred to as the Sommerfeld pressure distribution.
A typical profile is shown in Figure 2.4 for es=0.6. It 1s anti-

symmetric about 6=m, the importance of which will be discussed later in

this Chapter.

The steady state forces are:

- Frs
Frs=SF =0

|

(2.8)

011 film

Figure 2.2. Theoretical steady state behaviour of a journal bearing

operating with a complete film,

The absence of a radial force means the load is supported entirely by
the tangential component (hence ¢s=ﬂ/2).

The equations of motion (2.5) are nonlinear and cannot be solved
analytically. However, following the procedure outlined in Chapter 1,

the equations may be linearised about the equilibrium position. The

linearised equations are:
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- 0 (2.9)

The eight velocity and displacement coefficients are:

(2+e§)
B =——— B _=B =0 B =2 (2.10)
e (1-82) Xy Yy Yy e
S S S
- (2-¢2+2¢"
Kxx.=K = () K = —-S 5 K =1
77 YR g (1-€2) (2+¢2) A
s S S S

The characteristic or frequency equation 1is:

- 2333 2y32 2(0wp? L
qu W Gme X3 o (24€2)X2, v2(2-e242¢)

- 0 (2.11)
—l 2(1wel 2 2 -l
es(l es) es(l es) es(2+es)(1 es)
B C E

Applying Routh's criterion to this equation it is easily seen that:

1) B,C,E>O\fnon-zero values of v and Es'

ii) R=D(BC-D)-B?E=-B2E <0,

Thus the condition,R>0)for stability cannot be satisfied. Therefore the
equilibrium position is unstable for all values of v and € (apart from

the special cases discussed below).

1) As es+0 the frequency equation (2.11) reduces to:

(A2 +1=0 => f*ii/Z (neutrally stable).

11) As e§+1 equation (2.11) reduces to:

IX3+6VA2+v=0=> as V-0 A0

as V- i+i1//3



iii) As v>oo XA >3 (neutrally stable).

The analysis above suggests that the parameters v and € may play

a role in determining the degree of instability, This 1s discussed in

more detail in section 2.3.

2.2 AN ANALYSIS USING SHORT BEARING THEORY.

The Reynolds equation for a short bearing was shown in Chapter 1

to be:

d { (1+ecose)3dp} - 6u {c(28-w)sind+2¢coso) (2.12)
dz

Y

Integrating twice with the boundary conditions:

p=0atz=0,L

=S (E.)z p _ 3z(z-L) f-e(1-2$)sin6+25cose} (2.13)
Lo L2 (1+ccosf)?

The pressure 1s zero (ie. ambient) when:

,
8 =6, ™+ 0 - 28 _ 2.14
1? 1° 2T + Blwhere tan 61 'ETT:E$) ( )

To investigate a short hearing operating with a complete film, the

pressure distribution must be taken over 360°. Therefore the hydro-

dynamic forces are calculated by integrating the pressure over the bearing

from z = O,L and 6 = O, 27 (which 1is equivalent to integrating from.ﬁl,
to 2w + 61).

L 2 L
=>F_ = RJ* } " p(6,2)costdbdz F, = RI IZ“ p(6,z)sin6dodz
o° o 0 O

substituting for p(6,z) from equation (2.13) and evaluating the integrals:

y) F 24 1 2 F !
-{c r _ n(1+2e‘)e c t - _71e(1-2¢) (2.15
(L LRwy (1-52)572 (L) LRwu 2(1_52)3 2 )
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The non-dimensional form of the equations of motion are:

'l ¥

€ = €0 = vicosd - Ss ‘rr(1+2€2)é (2.16)

(1"82) 5;.2

' / . |
e& + 28$ = -vysin¢g¢ - SS e (1=-2¢)
2(1-¢2)3'2 J

2 . oo
Where Ss RL3wp 4(1..1_) S, a modified Sommerfeld number.
Fc?

The steady state solution to these equations 1is:

__2v3/2
¢S -~ 1 SS = if.]_.._ig.)_-— (2'17)
2 TE
S

For each value of the modified Sommerfeld number Ss there is a unique
steady state solution. The relationship between SS and € 1S

illustrated in Figure 2.3.

The steady state pressure distribution 1is:

ES _ (%)2 Ef... ] -3z(z-L)ess'm-9 (2.18)
HO L2(1+gscose)3

A typical pressure profile is shown in Figure 2.4 for €_ = 0.6, z = L/2.
It is similar to the Sommerfeld pressure profile, but with smaller
magnitudes.

The steady state forces are:

Frs Frs - 0 Fts _ Fts _ Teg _ 1 (2.19)
=_- L ﬁ i
S F S F 2(1-e%)3'2 g
S S S S

There is a great similarity between the two models., Again the absence of

a radial force means the theoretical steady state locus of the journal

centre 1s at an attitude angle of 90° (Figure 2.2).

The linearised form of the equations of motion are:
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X + 2v s 7+ Yy _, (2.20)
e (1-¢2) £ )
S
T 2
Y+ 2'3.§_.v(1+2€s)x o
€ e (1-¢2)

The eight velocity and displacement coefficients are:

: 2
B = «=2K = 2(1.'-265) B =2K = ) (2.21)
XX yx ———— yy Xy =
e (1-¢2) “s
S s . )
B = B = K = K =0
Xy yx xx yy
The frequency equation 1is:
- ARY 21372 2
At + 2v(2+es)l + 4\)2(“283)A + v2(1+259) 0 (2.22)
_ -2 (1.2 2(1..2
es(l es) es(l es) es(l cs)

This equation is very similar to equation (2.11). Again the absence

of a ) term means Routh's criterion cannot be satisfied. Hence the

journal always has an unstable equilibrium position (apart from the
special cases discussed below). In fact the result is known to be true

for a bearing with any L/D ratio operating with a complete film (Marsh

(1965)).

As for the long bearing several limiting cases of the frequency

equation may be discussed.

1) As € >0 A =>2+1/2 (neutrally stable)
ii) As e, > 1 the frequency equation (2.22) reduces to:
223 + 4y A2 + v=0=>as v>0 A-+0
Vo>t if2 (neutrally stable)

iii) As vV &> = A >t 1/2 (neutrally stable)

2.3 RESULTS AND DISCUSSION.

The two frequency equations (2.11 and 2.22) were solved numerically

for a range of values of  and eg (0,02 ¢ v& 15, 0,05 e, < 0.95).



. It was found for both equations that only one complex pair of roots had
a positive real part. Typical roots were:

"X =-1.17 £+ 0.25i ; X = 0,11 * 0.35i

STABLE UNSTABLE

Therefore, by calculating the logarithmic decrement associated with the
unstable root, it is possible to determine the degree of instability.
The logarithmic decrement will always be negative - the greater the
value of its modulus the greater will be the instability (see Chapter
1).

Curves of constant logarithmic decrement are shown in Figure 2.5.

Both models show the same trends (the two charts are in fact very similar).

It can be seen that the parameter v is an important factor influencing
the degree of instability - the system becomes less unstable on

increasing v. The same effect, but to a smaller degree, is achieved

by decreasing €

The imaginary part of the unstable root corresponds to the whirl
frequency ratio. Frequency curves are shown in Figure 2.6, and it may
be observed, that for the cases studied, the ratio is always less than
0.5.
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