
Deep Learning for the
Synthesis of Sound Effects

Adrián Barahona-Ŕıos

PhD

University of York

Department of Computer Science

August 2023

ii

ABSTRACT

In media production, the sound design process often involves the use of pre-
recorded sound samples as the source of the audio assets. However, the
increasing size and complexity of interactive media such as video games,
may render this process very time-consuming and memory-demanding.

In contrast, the use of sound synthesis for sound effects can improve
the sound palette of media, tackling the challenges derived from current
workflows. These synthesised sound effects are usually generated using digital
signal processing (DSP) methods. Nonetheless, creating sound effects using
DSP methods may be challenging, and can produce unsatisfactory results,
which hampers their adoption among audio professionals.

Recent data-driven approaches propose an alternative to these DSP meth-
ods for the synthesis of audio, surpassing them and establishing the state of
the art in sound generation. This thesis explores the suitability of DSP sys-
tems, generative deep learning architectures, and a combination of both for
the synthesis of sound effects, with an especial focus on game audio.

The results show that some DSP methods, with constraints, can be per-
ceptually effective for this task. Furthermore, it is shown: how generative
deep learning methods, not necessarily bound by those constraints, are not far
from achieving a plausibility comparable to pre-recorded samples; how they
can also be trained in data-scarce scenarios outperforming DSP approaches
in plausibility and variation of the synthesised sounds; and how a combi-
nation of deep learning and DSP processes can be used to build expressive
models, linking human-interpretable controls to the output audio.

The implications of the proposed work suggest that both generative deep
learning methods and a combination of them alongside DSP approaches con-
tribute to addressing the challenges hampering the adoption of synthesised
sound effects. This work could lead to the establishment of novel data-driven
workflows tailored to the preferences of audio professionals, in line with cur-
rent industry demands.

iv

CONTENTS

List of tables ix

List of figures ix

1 Introduction 1
1.1 Motivation . 2
1.2 Scope . 5
1.3 Research Questions . 6
1.4 Contributions . 6
1.5 Statement of Ethics . 7
1.6 Thesis Structure . 8

2 DSP-Based Sound Synthesis 11
2.1 Fundamentals of DSP . 11
2.2 DSP-Based Sound Synthesis Techniques 15

2.2.1 Abstract Techniques 17
2.2.1.1 Modulation Techniques 17
2.2.1.2 Piecewise or Brute Force 19
2.2.1.3 Digital Waveshaping 19

2.2.2 Sample-Based Techniques 19
2.2.2.1 Wavetable Synthesis 20
2.2.2.2 Concatenative Synthesis 20
2.2.2.3 Granular Synthesis 21

2.2.3 Spectral Models . 21
2.2.3.1 Additive Synthesis 22
2.2.3.2 Subtractive Synthesis 23
2.2.3.3 Spectral Modelling Synthesis 23

2.2.4 Physical Modelling . 24
2.2.4.1 Finite Difference Models 25
2.2.4.2 Mass-Spring Networks 25

vi

2.2.4.3 Modal Synthesis 26
2.2.4.4 Digital Waveguides 27
2.2.4.5 Wave Digital Filters 27
2.2.4.6 Source-Filter Models 28

2.2.5 Statistical Approaches 28
2.3 DSP-Based Synthesis of Sound Effects 29
2.4 Chapter Summary . 33

3 Deep Learning 35
3.1 Fundamentals of Deep Learning 35
3.2 Generative Deep Learning . 40

3.2.1 Autoencoders . 42
3.2.2 Generative Adversarial Networks 43
3.2.3 Autoregressive Models 45
3.2.4 Normalising Flows . 47
3.2.5 Diffusion Probabilistic Models 48

3.3 Neural Audio Synthesis . 50
3.3.1 Differentiable Digital Signal Processing 59

3.4 Chapter Summary . 63

4 Effective DSP Techniques: Modal Synthesis 65
4.1 Introduction . 65
4.2 Method . 67
4.3 Experiments . 69
4.4 Evaluation . 72

4.4.1 Metrics . 72
4.4.2 Listening Study . 77
4.4.3 Participants . 79
4.4.4 Results . 79

4.5 Use Case: Interactive Real-Time Procedural Audio Models in
a Virtual Environment . 82

4.6 Chapter Summary . 87

5 Class-Conditional Neural Audio Synthesis 93
5.1 Introduction . 93
5.2 The Knocking Sound Effects Dataset 95
5.3 Method . 97

5.3.1 Architecture . 98
5.3.2 Training and Inference 100

5.4 Experiments . 102
5.5 Evaluation . 104

vii

5.5.1 Subjective Evaluation 104
5.5.2 Feature Analysis . 111

5.6 Chapter Summary . 116

6 Addressing Data Scarcity: Single-Example Audio Genera-
tion 121
6.1 Introduction . 121
6.2 Method . 124

6.2.1 Audio Representation 124
6.2.2 Architecture . 127
6.2.3 Training and Inference 129

6.3 Experiments . 131
6.4 Evaluation . 133
6.5 Chapter Summary . 140

7 Sound Effects Synthesis Using Differentiable DSP 145
7.1 Introduction . 145
7.2 Method . 148

7.2.1 Filterbank Design . 149
7.2.2 Deterministic Loopable Noise Bands 151
7.2.3 Architecture . 155
7.2.4 Training and Inference 157

7.3 Reconstruction . 158
7.3.1 Experiments . 158
7.3.2 Results . 161

7.4 Creative Uses . 163
7.4.1 Amplitude Randomisation 165
7.4.2 Loudness Transfer . 166
7.4.3 Training and Synthesis using User-Defined Control Pa-

rameters . 170
7.5 Chapter Summary . 172

8 Conclusions 179
8.1 Discussion . 179
8.2 Assumptions and Limitations 183
8.3 Future work . 184
8.4 Concluding remarks . 187

Appendices 189

A Questionnaires 191

viii

References 197

LIST OF TABLES

4.1 Bayes factor BF10 interpretation for hypotheses H1 and H0. . 75
4.2 RS listening test discrimination factor and F-measure. 80
4.3 RS listening test raw results broken down into the different

materials. 82

5.1 RS listening test discrimination factor d and F-measure. . . . 109
5.2 RS listening test raw results showing the percentage of par-

ticipants correctly labelling the recorded and the synthesised
sounds. 109

5.3 Recorded stimuli percentage of intended and perceived emo-
tion labeling by the participants 111

5.4 Synthesised stimuli percentage of intended and perceived emo-
tion labeling by the participants. 111

6.1 Listening study raw results for all the systems considered. . . 138

7.1 MRSTFT loss and FAD results for the reconstruction task. . . 162

x

LIST OF FIGURES

2.1 Diagram of an AM (a) and a FM (b) circuit. 18
2.2 Mass-spring system diagram. 26

3.1 Diagram of a multi-layer perceptron. 37
3.2 Diagram of a single neuron. 38
3.3 Diagram of a generative adversarial network. 45
3.4 Diagram of a typical recurrent neural network. 46
3.5 Simplified diagram of the DDSP architecture. 61

4.1 Waveform and magnitude spectrogram of a recorded coffee
mug impact sound. 67

4.2 Overview of the objects used to record the target sounds. . . . 70
4.3 Diagram of the modal analysis/synthesis process. 72
4.4 Waveform and magnitude spectrogram pairs of the synthesised

impact sounds for each of the objects considered. 73
4.5 Screenshot of the online test interface presented to the partic-

ipants in the listening study. 78
4.6 Self-reported level of expertise in sound design of the 19 par-

ticipants in the listening study. 80
4.7 RS listening test results for all participants. 81
4.8 Procedural audio demo indoor scene. 83
4.9 Schematic of the fan blade model signal flow. 85
4.10 Procedural audio demo outdoor scene. 86

5.1 Microphone placement during the knocking sound effect dataset
recording. 97

5.2 Conditional WaveGAN architecture. 98
5.3 Waveform and magnitude spectrogram pairs of synthesised

knocking sound effects with different emotions. 103
5.4 Screenshot of the online test interface. 107

xii

5.5 Self-reported level of expertise in sound design of the 21 par-
ticipants in the listening study. 108

5.6 RS listening test discrimination factor and F-measure values
for all participants. 110

5.7 Example of the root-mean-square energy (RMSE) slope feature.112
5.8 Recorded (left) and synthesised (right) knocking action dura-

tion per emotion. 114
5.9 Recorded (left) and synthesised (right) number of knocks in

each action per emotion. 114
5.10 Recorded (left) and synthesised (right) knocking rate per ac-

tion per emotion. 115
5.11 Recorded (left) and synthesised (right) knocking regularity per

action per emotion. 115
5.12 Recorded (left) and synthesised (right) action RMS energy

slope per emotion. 115

6.1 SpecSinGAN architecture. 127
6.2 Multi-channel synthesis during inference. 131
6.3 Waveform and magnitude spectrogram pairs of recorded and

synthesised sound variations produced by SpecSinGANsingle

and SpecSinGANmulti. 134
6.4 Screenshot of the online test interface presented to the partic-

ipants in the listening study. 136
6.5 Listening study results for the different sound effects and sys-

tems considered. 137

7.1 Reconstruction task comparison between the DDSP time-varying
FIR noise synthesiser and NoiseBandNet. 147

7.2 Detail of the frequency response of some of the filters employed
in a 2048-filter filterbank. 151

7.3 Loopable noise bands. 154
7.4 Overview of the NoiseBandNet architecture and training process.156
7.5 Log-magnitude spectrograms from the result of the different

randomisation schemes. 164
7.6 Waveforms and log-magnitude spectrograms pairs resulting

from the loudness transfer experiments. 168
7.7 Graphical user interface used to manually label the data. . . . 171
7.8 Waveforms and log-magnitude spectrograms pairs resulting

from the training on user-defined control experiments. 173

A.1 Participant information form. 192

xiii

A.2 Demographic information collected. 192
A.3 Participant information form. 193
A.4 Demographic information collected. 194
A.5 Participant information form. 195
A.6 Demographic information collected. 196

xiv

ACRONYMS

ADSR Attack Decay Sustain Release

AE Autoencoder

AI Artificial Intelligence

ANN Artificial Neural Network

BFA Bayes Factor Analysis

CNN Convolutional Neural Network

DAW Digital Audio Workstation

DDSP Differentiable Digital Signal Processing

DL Deep Learning

DSP Digital Signal Processing

FAD Fréchet Audio Distance

FFT Fast Fourier Transform

FIR Finite Impulse Response

Fs Sampling Rate

GAN Generative Adversarial Networks

GRU Gated Recurrent Unit

IFFT Inverse Fast-Fourier Transform

IIR Infinite Impulse Response

xvi

ISTFT Inverse Short-Time Fourier Transform

LSTM Long-Short Term Memory

MLOps Machine Learning Operations

MRSTFT Multi-Resolution STFT

NAS Neural Audio Synthesis

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RS Real Or Synthetic

SMS Spectral Modelling Synthesis

STFT Short-Time Fourier Transform

Tanh Hyperbolic Tangent

VAE Variational Autoencoder

VR Virtual Reality

WAV Waveform Audio File Format

ACKNOWLEDGEMENTS

This thesis was supported by the EPSRC Centre for Doctoral Training in
Intelligent Games & Game Intelligence (IGGI) [EP/L015846/1] and Sony
Interactive Entertainment Europe. Part of this thesis work was undertaken
on the Viking Cluster, which is a high performance computing facility pro-
vided by the University of York. I am grateful for computational support
from the University of York High Performance Computing service, Viking
and the Research Computing team.

I would like to especially thank Sandra Pauletto, Jez Wells and Tom
Collins for their guidance and support, and the current and past thesis advi-
sory panel members James Walker, Rebecca Fiebrink, Danjeli Schembri and
Oliver Hume for their feedback during the course of this work.

Also to my friends, colleagues and staff at the IGGI programme who
made every step of this journey more enjoyable, and to the University of
York Music Computing and Psychology Lab, the KTH Division of Media
Technology and Interaction Design and SIEE, especially the London Audio
Team, for being excellent peers.

Finally, to my family for their constant support throughout the years, and
to Laura, who has been a source of light and joy during all these adventures,
academic or otherwise.

Adrián Barahona-Ŕıos,
York,
2023.

xviii

DECLARATION

I declare that this thesis is a presentation of original work and I am the
sole author. This work has not previously been presented for an award at
this, or any other, University. All sources are acknowledged as References.
Publications that contribute to this thesis are listed below.

Chapter 4 is based on the following publications:
Conference paper:

Barahona, Adrián, and Sandra Pauletto. “Perceptual Evaluation
of Modal Synthesis for Impact-Based Sounds,” 16th Sound and
Music Computing Conference, Málaga, Spain. 2019.

Demo:

Barahona-Ŕıos, Adrián. “Procedural Audio Models for Video
Games with Chunity,” Audio Developer Conference (ADC), Lon-
don, UK. 2019.

Chapter 5 is based on the following publication:
Conference paper:

Barahona-Ŕıos, Adrián, and Sandra Pauletto. “Synthesising Knock-
ing Sound Effects Using Conditional WaveGAN,” 17th Sound and
Music Computing Conference, Torino, Italy. 2020.

Chapter 6 is based on the following publication:
Conference paper:

Barahona-Ŕıos, Adrián, and Tom Collins. “SpecSinGAN: Sound
Effect Variation Synthesis Using Single-Image GANs,” 19th Sound
and Music Computing Conference, Saint-Étienne, France. 2022.

xx

Chapter 7 is based on the following publication:
Journal paper:

Barahona-Ŕıos, Adrián, and Tom Collins. “NoiseBandNet: Con-
trollable Time-Varying Neural Audio Synthesis of Sound Effects
Using Filterbanks,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing 32: 1573-1585. 2024.

Other related work undertaken during this thesis is listed below.

Conference papers (co-author):

Houel, Malcolm, Abhilash Arun, Alfred Berg, Alessandro Iop,
Adrián Barahona-Ŕıos and Sandra Pauletto. “Perception of Emo-
tions in Knocking Sounds: An Evaluation Study,” 17th Sound and
Music Computing Conference, Torino, Italy. 2020.

Sandra Pauletto, Adrián Barahona-Ŕıos, Vincenzo Madaghiele
and Yann Seznec. “Sonifying Energy Consumption Using Spec-
SinGAN,” 20th Sound and Music Computing Conference, Stock-
holm, Sweden. 2023.

Patents:

Barahona-Ŕıos, Adrián. “Audio Generation Methods and Sys-
tems,” European Patent number EP4120259A1. 2023.

Barahona-Ŕıos, Adrián. “Audio Generation Methods and Sys-
tems,” European Patent number EP4120262A1. 2023.

Barahona-Ŕıos, Adrián. “Audio Generation Methods and Sys-
tems,” European Patent number EP4120258A1. 2023.

CHAPTER 1

INTRODUCTION

Sound effects can be generally defined as those sound elements other than

music or speech [1], and their origin can be traced back to the early days

of theatre in ancient Greece, where they were performed live. Between the

late 1920s and early 1930s, recorded sound effects proliferated as a solution to

the increasing technical sophistication required by radio dramas, which made

live performance of sound effects impractical [2]. Since then, radio, film, and

television have contributed to developing the medium to its current standard.

Video game audio, however, had a parallel development due to its younger

nature and its particular technical challenges. It was 1972 when “Pong”, the

first commercial video game with sound, was released [3]. “Pong”, which

is a top-down-view table tennis simulator, produced its very simple – by

current standards – sound effects by synthesising a square-wave at different

frequencies every time the ball touched either the court walls, the player’s

paddles, or in the event of a score. Advances in technology, such as frequency

modulation (FM) synthesis and especially sampling, which allowed for the

use of pre-recorded audio in games, increased the complexity of the video

2 Introduction

game audio palette, eventually elevating it to the same level as the film

industry [4].

1.1 Motivation

Currently, the sound effects used in game audio or film are typically pre-

recorded and created by either Foley artists or sound designers. To source

these sounds effects, designers either: record the sounds on demand (e.g., in

order to sound design footsteps in grass, they may record the source material

directly); take them from pre-recorded sound libraries (e.g., a pre-existing

sound library may contain those footsteps in grass); or, more commonly,

take a mixed approach where sounds are recorded directly and obtained

from libraries, then layered and processed together to create the final sound

effect. In the context of game audio, once these sound effects are created,

they need to be implemented, which consists of creating the logic, audio

hooks and behaviours to determine when and how a sound effect is triggered

during gameplay [5]. This implementation is usually done by employing

middlewares such as Audiokinetic Wwise1 or FMOD,2 which link the audio

logic with the game engine and gameplay mechanics. This is a consequence of

video games being typically nonlinear where, unlike film or television, actions

are not pre-determined, and players may potentially interact with the virtual

environment freely at any moment.

Thus, since games are interactive and actions may be repeated an arbi-

trary number of times, it is common to use multiple sound files to sound

1https://www.audiokinetic.com/en/products/wwise/
2https://www.fmod.com/

https://www.audiokinetic.com/en/products/wwise/
https://www.fmod.com/

1.1 Motivation 3

design different audio variations of a single in-game interaction. Usually, this

is done to prevent listener fatigue and avoid repetition [5], as well as to mimic

reality (increase verisimilitude), where two sounds are hardly identical. To

provide further variation to the sonic interactions, regularly, the sound de-

sign process involves also the use of different sound layers for a single sound

effect [5]. For instance, a footstep sound effect can be broken down into the

tip, the heel, and the shoe fabric layers. Considering the size of some of the

current games [6], the number of audio interactions may make the current

workflow involved in producing the game audio very time-consuming.

Apart from repetition – and its associated challenges – pre-recorded sam-

ples have several limitations in highly interactive scenarios such as in vir-

tual reality (VR), where haptic controllers are commonly used. Unlike most

games, where the interactions with the environment are discrete (e.g., push-

ing a button, clicking a mouse), VR interactions may be continuous (e.g.,

handling an object, shaking it, scrapping it). Some of these interactions also

occur to a degree in non-VR situations (e.g., a car accelerator pedal linked

to a game controller shoulder button), but in general virtual reality presents

its own challenges and demands VR-specific solutions [7].

To illustrate the above point, let us consider what it is, in principle, a sim-

ple experience in VR, discussed in [8]: the sound design of a ping-pong ball.

Because users are allowed to have 1 : 1 interactions with the environment us-

ing haptic controllers, sound designers need to create all possible sounds and

interactions of handling and releasing the ball itself. Moreover, as the virtual

experience happens in a room with a set of different interactable objects,

they also need to create the sound of a ping-pong ball being struck by other

4 Introduction

objects, which increases the complexity of the sound design task further.

Considering that the previous example is somewhat simple, more complex

scenarios such as bigger open-world games may increase the complexity and

audio storage burdens considerably when using current workflows.

An alternative to using pre-recorded sound samples is the use of sound

synthesis to generate the sound assets. This is often called generative or

procedural audio [9]. Procedural audio usually refers to the use of real-time

digital signal processing (DSP) systems such as sound synthesisers, while

generative (audio) can be defined as “algorithms to produce an output that

is not explicitly defined” [10, p.1]. Apart from sound synthesisers, other

DSP methods involve the manipulation of audio files in order to obtain a

desired effect, transforming the source asset [11, 12]. Thus, generative and

procedural audio allow the dynamic creation of sound assets on demand.

The dynamism of generative and procedural audio systems make them well

suited to use in video games. “Grand Theft Audio V” by Rockstar Games,

which became the most profitable entertainment product of all time in 2018

[13], uses procedural audio extensively [14]. Another example is “No Man’s

Sky” by Hello Games, which uses sound synthesis for the creature vocals and

background fauna [15].

However, as outlined before, nowadays most video games are sound de-

signed by using pre-recorded samples – as happens in the film industry or,

in general, entertainment media. So if the use of procedural audio has mul-

tiple benefits over the use of pre-recorded samples, why is it not yet broadly

adopted? Farnell [9] identifies a series of challenges that hampers the prolifer-

ation and adoption of procedural audio. Among others, lack of: plausibility

1.2 Scope 5

(i.e., the synthesised sounds suffer from low perceived quality when com-

pared to pre-recorded samples); appropriate tools (i.e., there is a scarcity of

procedural audio software tools catered to the needs of audio professionals);

procedural audio-specific skills and industry inertia (i.e., related – and ar-

guably a consequence of the previous challenges, audio professionals may not

consider procedural audio as a viable option) [9].

In other words, creating or using procedural or generative audio models

may prove challenging for sound designers, and the results may be perceived

as unsatisfactory. While some of these problems are currently being ad-

dressed (see Section 2.3 for mention of new tools), synthesis of sound effects

remains an open research problem [9, 16, 17, 18, 8].

However, recent data-driven techniques, such as those presented in [19],

have attained the state of the art in sound synthesis, surpassing “classic” DSP

methods and offering alternative approaches for sound generation. Conse-

quently, and with a specific focus on game audio, this thesis will investigate

the applicability of DSP techniques and novel deep learning methods for

sound effects synthesis, addressing the research questions outlined in Sec-

tion 1.3.

1.2 Scope

The work carried out throughout this thesis is focused on the evaluation and

development of algorithms for the synthesis of sound effects, and it is partic-

ularly centered around interactive environments such as video games. The

main aims of this thesis are the evaluation of classic digital signal processing

algorithms devoted to this task, and the exploration, development and eval-

6 Introduction

uation of novel generative deep learning architectures capable of producing

audio both unconditionally and with intuitive control schemes derived from

game audio workflows.

Specifically, the work carried out during this thesis primarily engages with

filter-based modal synthesis, generative adversarial networks, and a combina-

tion of digital signal processing and deep learning for the synthesis of sound

effects, having an emphasis on the usage of limited training data. The algo-

rithms and approaches proposed in this work are evaluated either subjectively

by performing a listening study, objectively, or both.

1.3 Research Questions

1. To what extent can DSP-based procedural audio techniques be applied

to video games in terms of perceived plausibility?

2. How can novel deep learning techniques be applied directly to the syn-

thesis of sound effects?

3. To what extent can a combination of DSP-based techniques and ma-

chine learning methods be applied to the synthesis of sound effects?

1.4 Contributions

The main contributions of this thesis are listed below.

• A subjective evaluation of the plausibility of filter-based modal syn-

thesis for the generation of impact-based sound effects, plus an open-

source demo comprised of the algorithm evaluated, alongside other in-

1.5 Statement of Ethics 7

teractable real-time DSP procedural audio models implemented in a

virtual environment.

• An exploration of the suitability of generative adversarial networks

for the class-conditional synthesis of sound effects, including its open-

source implementation and the dataset created for this study.

• The development and evaluation of a generative adversarial network

architecture capable of synthesising variations of one-shot sounds effects

by training on a single audio example.

• The development and evaluation of an architecture combining deep

learning and DSP capable of synthesising controllable time-varying

sound effects training on limited data, including its open-source im-

plementation.

1.5 Statement of Ethics

This thesis carries out experiments (i.e., listening studies) that involve the

participation of human subjects. The participants were informed of the na-

ture of the studies, and the studies were approved by the University of York

Physical Sciences Ethics Committee board, in compliance with the Univer-

sity’s Code of practice and principles for good ethical governance.3 The

consent forms and the demographic questions that participants were asked

in the listening studies can be found in the Questionnaires appendix.

3https://www.york.ac.uk/staff/research/governance/research-policies/

ethics-code/

https://www.york.ac.uk/staff/research/governance/research-policies/ethics-code/
https://www.york.ac.uk/staff/research/governance/research-policies/ethics-code/

8 Introduction

It is also acknowledged that the field of knowledge engaged by this the-

sis could further automate human creative processes, potentially negatively

impacting those who work in such areas. However, the primary goal of the

algorithms explored in this thesis is to assist, not replace, individuals in these

roles.

1.6 Thesis Structure

The thesis is organised as follows.

Chapter 1 is the introduction to this thesis, outlining the research motiva-

tions and the gap in knowledge that this work seeks to fill. Chapter 2 contains

an introduction to digital signal processing methods employed in the synthe-

sis of audio, and their applications in the context of sound effects. Chapter 3

contains an introduction to the field of deep learning and generative deep

learning, including an overview of neural audio synthesis and differentiable

digital signal processing, again with an emphasis on sound effects.

Chapter 4 evaluates filter-based modal synthesis against pre-recorded

samples for the synthesis of percussive sound effects. It also showcases a

real-time demo implementation of this and other DSP techniques within

a video game engine. This chapter addresses the first research question

(RQ 1). Chapter 5 assesses the use of generative adversarial networks for

class-conditional4 sound effects synthesis. This chapter partially addresses

the second research question (RQ 2). Chapter 6 addresses the problems

derived from potential data scarcity when using deep learning methods for

4Training on a dataset comprised of multiple sound classes such as emotions in knocking
sound effects, being able to select which class – or emotion, in this case – the synthesiser
outputs.

1.6 Thesis Structure 9

the synthesis of sound effects. This chapter completes addressing the second

research question (RQ 2). Chapter 7 investigates the use of DSP elements

alongside deep learning for the synthesis of controllable sound effects. This

chapter addresses the third research question (RQ 3).

Finally, Chapter 8 summarises the findings and outlines the future direc-

tions of this work.

10 Introduction

CHAPTER 2

DSP-BASED SOUND SYNTHESIS

2.1 Fundamentals of DSP

Signals can be defined as something that conveys information, and they

are represented mathematically as functions with one or more independent

variables [20]. In audio, signals are usually functions of time, split onto

continuous-time signals (i.e., analog signals, represented by a continuous in-

dependent variable), and discrete-time signals (i.e., signals where the inde-

pendent variable is discretised); with their amplitude (i.e., their values with

respect to time) being also either continuous or discrete [20]. In digital sig-

nals, both the time and the amplitude values are discrete [20], with digital

signal processing (DSP) being the techniques and algorithms devoted to ma-

nipulate those signals [21]. This section will glance over important DSP

concepts related to this work.

In Chapter 1, it is described how the source of most sound effects in

media are pre-recorded samples. Commonly, the starting point of those sound

effects are real-world sounds, which are recorded using a transducer (i.e., a

12 DSP-Based Sound Synthesis

microphone) and stored as digital audio files. The process of transforming a

continuous signal (e.g., a sound happening in the real world) into a digitalised

version of itself is done through sampling, where amplitude values of the

signal are measured at a particular rate in time – conveniently called the

sampling rate – and quantised to discrete values [22]. The sampling rate,

Fs, has an important effect on the ability to capture the details of an analog

signal. By the sampling theorem [23], it is stated that, if a signal is band-

limited to a frequency half of the sampling rate (i.e., Fs/2, also known as

the Nyquist frequency), this can be sampled (i.e., digitalised) without any

loss of information [24]. Thus, the sampling rate determines the maximum

frequency a system is able to capture. For instance, an audio signal sampled

at 16 kHz will be able to contain frequencies up to 8 kHz.

Band-limiting the signal is done through filtering. Generally speaking,

filtering consists of attenuating – and also boosting – certain frequencies, or

frequency regions, by using a filter. Among others, popular filter frequency

responses include highpass filters (they remove low frequencies, letting high

frequencies pass above a cutoff), lowpass filters (they remove high frequen-

cies, letting low frequencies pass below a cutoff, used for instance to band-

limit a signal), or bandpass filters (they allow frequencies between a range,

attenuating the frequencies outside them, or boosting the frequencies within

the band edges) [21]. When multiple filters are configured in parallel, the

arrangement is commonly referred to as a filterbank, which is a collection of

– usually – bandpass filters that cover different, often contiguous, frequency

regions of the input signal.

While analog filters exist (and in fact they were the first ones, using

2.1 Fundamentals of DSP 13

components such as resistors or capacitors), in the digital realm, digital fil-

tering is done by using mathematical algorithms to process discrete-time (i.e.,

sampled) signals, handling delayed (i.e., time-shifted) versions of either the

input signal, or both the input and output signals. Depending on this factor,

digital filters can be categorised as finite impulse response (or FIR, if they

process a finite delayed version of its inputs), or as infinite impulse response

(or IIR, if they process both past inputs and past outputs to generate the

current output) [22]. FIR and IIR filters have distinctive characteristics each:

FIR filters are more suitable for applications requiring strict phase linearity

(i.e., having uniform signal delay across all frequencies), while IIR filters are

more efficient at achieving complex filter responses with fewer computational

resources.

DSP also provides a wide range of tools to analyse signals, and one of

the most relevant algorithms to this end is the Discrete Fourier Transform

(DFT). At the core of the DFT is the Fourier analysis, which is the decompo-

sition of a signal as a sum of sine and cosine functions [25]. Thus, the DFT

is the application of the Fourier transform to digital signals, which when

used, results in a decomposed signal consisting of a set of sinusoids [21]. This

representation is called the frequency domain, and carries information about

how much of each of the sinusoidal frequencies is present in the analysed

signal, including both their magnitudes (i.e., their amplitudes) and phases

(i.e., their time shifts) [21]. When computing the DFT is also common to

multiply the signal by a smoothing curve (commonly referred to as a window

function), such as the Hamming or the Hanning windows, to increase its ac-

curacy [21]. The DFT is also invertible: it is possible to retrieve the original

14 DSP-Based Sound Synthesis

time-domain signal from its frequency-domain representation by computing

an Inverse Discrete Fourier Transform (IDFT) [21]. The Fast Fourier Trans-

form (FFT) [26] is an important algorithm that builds upon the DFT (more

specifically, the complex DFT) to provide a more computationally efficient

solution to calculate the transform.

However, the DFT (and therefore the FFT) computes a static snapshot

of the spectrum. For instance, for a time-varying signal (e.g., a chirp, which

is a signal whose frequency increases or decreases over time), the DFT will

identify all the frequencies present on it, but not their evolution over time

(e.g., ascending or descending frequencies in the chirp case). To overcome

this limitation, the Short-Time Fourier Transform (STFT) breaks up the

signal into – usually overlapping – segments and computes their FFT. This

approach is characterized by two main parameters: the window length, which

is the length in samples of the signal segment (this length can match the

FFT size, especially when they are equal, or when the signal segment is zero-

padded to this length), and the hop size, which is the number of samples

by which the window is advanced at each step [22]. As with the DFT or

FFT, it is possible to invert the STFT and retrieve the original time-domain

signal from the time-varying spectrum by computing an Inverse Short-Time

Fourier Transform (ISTFT). From a data representation point of view, it

is common to discard the signal phase spectrum, since it does not carry as

much information as the magnitude [21]. It is however possible to retrieve the

phase from a magnitude-only STFT using DSP algorithms such as Griffin-

Lim [27], which exploits redundancies in the STFT to iteratively estimate its

phase – thus making it feasible to approximate a time-domain signal from

2.2 DSP-Based Sound Synthesis Techniques 15

only its magnitude spectrum.

2.2 DSP-Based Sound Synthesis Techniques

While Section 2.1 starts by describing how most sound effects are built from

pre-recorded audio files, it is also possible to generate synthetic signals either

directly or by analysing and processing such pre-recorded samples. Digital

sound synthesis is defined as numerical algorithms that produce audio, often

in real-time [28]. The field of digital sound synthesis started in the 1950s [29],

usually involving methods that combined different basic elements together,

such as oscillators (i.e., generators that produce periodic waveforms [9]) or

filters. Using substantially more computational power today, combined with

advancements in software tools and a body of creative and engineering work,

sound synthesis now addresses a wide range of practical uses, such as speech

synthesis, musical instrument simulation, sound effect synthesis or data soni-

fication. This section will summarise some of these advancements and their

applications to the synthesis of sound effects.

Sound synthesis techniques have historically been categorised into var-

ious groups, often within a musical context rather than sound effects. In

1991, Julius Smith developed a taxonomy dividing techniques into four cate-

gories: processed recordings, spectral models, physical models, and abstract

algorithms [30]. The processed recordings category refers to sample-based

techniques, where the sound source of the synthesiser is a pre-recorded sam-

ple. Spectral modelling techniques parameterise the sounds from a perceptual

standpoint [31]. Physical modelling techniques aim to replicate the physical

behaviour of a system by describing it through mathematical models. Ab-

16 DSP-Based Sound Synthesis

stract techniques refer to the use of fundamental DSP components – such

as generators or filters – to shape a desired sound, often without consider-

ing the physical behaviour of the sound source. Smith also predicted that

sound synthesis will be dominated by spectral and physical models in the

future, with abstract techniques potentially fading away, and with sample-

based techniques absorbed into spectral modelling techniques.

On the other hand, Stefan Bilbao divides sound synthesis techniques into

two main categories: abstract techniques and physical models [29]. To Bil-

bao, abstract techniques lack realism (“plausibility”) and control schemes

compared to physical models, and overall the abstract category includes all

techniques that are not based on a physical principle but on a perceptual

one.

Alternatively, Moorer [32] splits sound synthesis approaches into three

categories, basing them on how the computer is used to produce the sounds:

direct synthesis, analysis-based synthesis and musique-concrète. Direct syn-

thesis is similar to Smith’s [30] “abstract synthesis”, where the sounds are

produced by directly combining different computational modules to achieve

a desired sound. Analysis-based synthesis is rooted in the analysis of a pre-

existing digitalised sound, somewhat akin to Smith’s [30] “spectral models”.

Musique-concrète is also similar to Smith’s [30] “sample-based” category,

where a pre-recorded sound is processed by the computer in diverse ways to

achieve a desired sound. Additionally, regardless of the synthesis approach,

Moorer [32] classifies the processes used in sound creation as additive (sum

of components), subtractive (removing spectral content) or modulation (any-

thing not covered by the previous two). Finally, Moorer [32] categorises syn-

2.2 DSP-Based Sound Synthesis Techniques 17

thesis systems based on their turnaround time as offline (the computation is

performed once, and the results are “baked”), interactive (the computation

is carried out over a short segment of audio, with the results displayed to

collect user feedback for refining the output), and online (the output and

control parameters are listened and modified in real-time, respectively).

There are more general sound synthesis surveys and taxonomies, such as

[33, 34, 35, 36]; and specific to sub-set of techniques, such as [37] for physics-

based synthesis. However, regardless of the taxonomy used, there can often

be a fine line between the different categories, and this line can often be

subjective. For this thesis, with the aim of providing a granular context

regarding the most relevant techniques for synthesizing sound effects, the

DSP-based synthesis methods will be divided into five different categories:

the four categories proposed by Smith [30] (abstract, sample-based, spectral

and physical models), plus statistical techniques. The motivation to include

statistical approaches is to bridge the gap between “classic” DSP methods

and the deep learning domain (introduced in Chapter 3).

2.2.1 Abstract Techniques

Abstract techniques were the first synthesis methods explored, dating back

to the 1950’s [29]. They are based on the combination of different basic

components, such as oscillators or filters.

2.2.1.1 Modulation Techniques

Modulation techniques are based on the modification of part of a target sig-

nal, called carrier, by another signal, called modulator [38]. These signals,

18 DSP-Based Sound Synthesis

often oscillators, can be of different shapes (e.g., sinusoidal, square or saw-

tooth). It is possible to use more than two oscillators by adding modulators

(e.g., a carrier modulated by two signals).

Amplitude modulation (AM) synthesis, depicted in Figure 2.1a, is based

on the modulation of the amplitude of the carrier by the modulator. The

modulator amplitude controls the amount of the modulation on the carrier

amplitude, while the modulator frequency affects the rate of the carrier am-

plitude modulation. A variant of this technique is ring modulation, where

the amplitude of the carrier is determined by the modulator alone [33].

Frequency modulation (FM) synthesis, depicted in Figure 2.1b, is based

on the modulation of the frequency of the carrier by the modulator [39].

Again, the modulator amplitude (called modulation index in FM synthesis)

controls the amount of modulation affecting the carrier. The modulator

frequency controls the carrier frequency modulation.

A1

f1

x(t)

Modulator

Carrier

f0

A0

(a) AM synthesis diagram

A1

f1

x(t)

Modulator

Carrier
A0

f0

(b) FM synthesis diagram

Figure 2.1: Diagram of an AM (a) and a FM (b) circuit. A0 and f0 are the
carrier amplitude and frequency. A1 and f 1 are the modulator amplitude
and modulator frequency.

While FM synthesis can produce a rich time-varying spectra, creating

complex time-varying sounds can be challenging. Since FM synthesis be-

haves mostly like a black box with its parameters acting in a non-linear way,

they may not be easily linked to the sound produced from a perceptual point

2.2 DSP-Based Sound Synthesis Techniques 19

of view. Thus, Chowning compiled in the 1970s a series of parameter config-

urations to obtain sounds such as brass-like tones, woodwind-like tones, or

percussive sounds [39].

2.2.1.2 Piecewise or Brute Force

Given that abstract techniques are based on combining basic components, a

very direct approach is to craft a sound by combining these components until

the result is perceptually satisfactory. This approach is called “brute force”

or “piecewise” [9].

While effective for certain sounds, brute force techniques are limited as

their effectiveness will depend directly on the skill of the sound designer, the

complexity of the sound to model, and the time available to craft the sound.

Thus, brute force techniques may not be “time-effective” for complex sounds

or interactions.

2.2.1.3 Digital Waveshaping

Digital Waveshaping synthesis consists of introducing distortion to a signal

x(t) by computing some function f(t), called the “shaping function” [40]. If

it is assumed that x(t) is for instance a sinusoidal, processing the signal x(t)

with the shaping function f(t) alters its timbre x′ = f [x(t)], producing rich

spectra from a single pure tone.

2.2.2 Sample-Based Techniques

Sampling or sample-based techniques are those which use a – generally short

– pre-recorded sample as the sound source [36].

20 DSP-Based Sound Synthesis

2.2.2.1 Wavetable Synthesis

A wavetable is defined as a block of memory (i.e., a “table”) where a dis-

cretised signal is stored [38]. Wavetable synthesis consists of reading and

looping through the values of the table, which is computationally inexpen-

sive. The stored signal may have any length, although it is generally short,

and usually of one period of a waveform.

2.2.2.2 Concatenative Synthesis

Concatenative synthesis consists of dividing a dataset of source sounds into

smaller segments called units, usually of length between 10ms to 1s. The

resulting database of units is also called corpus. The units are selected (and

played back) employing an unit selection algorithm which, by comparing

their acoustic features or descriptors, chooses which units are more suitable

to synthesise a target sound [41, 42]. The selected units are then concatenated

to produce the target sound. In other words, concatenative synthesis aims

to select the best sounds (“units”) from a database (“corpus”) in order to

reproduce a signal (“target”), based on features or descriptors.

Concatenative synthesis can be seen, in a way, as an hybrid between

sample-based techniques and statistical approaches (see Section 2.2.5). While

the sound source (i.e., the unit) is a pre-recorded sample, the unit selection al-

gorithm selects the units using statistical methods, such as the the Euclidean

distance in the multi-dimensional feature-descriptor space [43].

2.2 DSP-Based Sound Synthesis Techniques 21

2.2.2.3 Granular Synthesis

Granular synthesis is based on the concept of slicing a pre-recorded sound

into small sonic events (called “grains”), and playing them back [44]. The

length of the grains can vary from 200µs to 200ms, although it is typically in

the range of 1− 50ms. When played back, the frequency of grain occurrence

(i.e., the number of grains played over time) is referred to as grain density.

Each of these grains has a distinct amplitude envelope, frequency content,

and even a different length. The length of the grains lead to different effects

on the synthesised sound, which Roads documented in [45], varying from

loss of pitch from the original sound (≈ 1ms grains), to stable pitch (≈ 50ms

grains), or periodic tremolo (≈ 200ms grains). Grain length can be also

constant, time-variant, randomised, or parameter-dependant.

2.2.3 Spectral Models

Spectral models are based on the perceptual modelling of sounds as they

are perceived by the listener [28]. These techniques usually fall into the

“analysis-synthesis” paradigm, where sounds are computationally analysed

and reconstructed (i.e., synthesised) by means of DSP components. There

are numerous techniques apart from the ones that will be described in this

section, such as the phase vocoder [46] or the inverse fast-Fourier transform

(IFFT) synthesis [47]; as well as techniques derived from them, like the sines

plus transients plus noise method [48], which adds transient modelling to a

sinusoidal plus noise model. However, the focus will be on the main building

blocks that are most relevant to the current work.

22 DSP-Based Sound Synthesis

2.2.3.1 Additive Synthesis

Additive synthesis consists of summing individual sinusoidal partials with

different amplitudes and frequencies to create sounds [38]. It is rooted in

the Fourier theorem, which states that any periodic function f(x) can be

expressed as a sum of sinusoids with different phases and amplitudes. For in-

stance, a signal x(t) comprised of N sinusoidal partials with ϕN initial phases

and fN and AN frequencies and amplitudes respectively, can be defined as

[29]:

x(t) =
N∑

n=1

Ancos(2πfnt + ϕn) (2.1)

Alternatively, a signal x(t) comprised of N sinusoidal partials with AN(t)

and ϕN(t) time-varying instantaneous amplitudes and phases respectively,

can be created as [49]:

x(t) =
N∑

n=1

An(t)cos [ϕn(t)] (2.2)

with the formula to calculate the instantaneous frequency fi(t) from the

instantaneous unwrapped phase ϕ(t) of a sinusoidal partial given by [50]:

fi(t) =
1

2π

dϕ(t)

dt
(2.3)

A sound is described as harmonic when the partial frequencies are integer

multiples of a fundamental frequency F0, and the relationships between the

amplitudes of these different harmonic partials contribute to the perceived

timbre of the sound [38]. However, unlike musical sounds, most sound effects

may not contain a harmonic spectrum.

2.2 DSP-Based Sound Synthesis Techniques 23

In an analysis-synthesis framework, there are multiple “pure additive”

approaches for extracting the time-varying sinusoidal partials of a sound.

For instance, in [51] they estimate the sinusoidal partial parameters from

the short-time Fourier transform (STFT) using a peak-picking algorithm; or

in [52, 49] they use the complex continuous wavelet transform (CCWT) to

perform a similar task.

2.2.3.2 Subtractive Synthesis

In subtractive synthesis, also known as source-filter modelling, particularly

in the physical modelling literature [29], the sound is modeled by passing an

excitation function through a filter [32]. For instance, a white noise signal,

which has a spectral flatness close to 1 (i.e., all frequencies are equally repre-

sented in the spectrum), can be processed with a low-pass filter to remove its

high frequencies from a certain cutoff frequency Fcutoff. Note that, despite the

technique commonly being referred to as subtractive, the filters may also am-

plify frequencies from the source signal [37]. Hence, the term “source-filter”

modelling is preferred when this amplification is prone to occur, especially

in physical models.

2.2.3.3 Spectral Modelling Synthesis

Spectral modelling synthesis (SMS) combines additive and subtractive syn-

thesis to generate sounds. SMS divides sounds into deterministic (modeled

with sinusoidal partials) and stochastic (modeled with filtered white noise)

components [31]. Thus, a signal x(t) comprised of N sinusoidal partials with

AN(t) and ϕN(t) time-varying instantaneous amplitudes and phases respec-

24 DSP-Based Sound Synthesis

tively can be represented as:

x(t) =
N∑

n=1

An(t)cos [ϕn(t)] + e(t) (2.4)

where e(t) is the noise component, defined as [31]:

e(t) =

∫ t

0

h(t, τ)u(τ)dτ (2.5)

with u(τ) being a white noise signal and h(t, τ) a time-varying filter.

SMS has the advantage of being able to produce noise-like signals (such as

the attack of instruments) that otherwise would be expensive to model using

pure additive approaches. This is because, in theory, in order to produce a

noise signal using sinusoids there would have to be a single sinusoid at every

frequency of the spectrum [31].

2.2.4 Physical Modelling

Physically-Inspired, Physically-Derived, Physical Models, and Physics-Based

Synthesis aim to either incorporate physical elements of the sound source to

the model (e.g, a synthesiser) or to fully simulate the sound of a physical

phenomenon using numerical methods. All these concepts can be broadly

grouped into the physical modelling umbrella.

There are multiple pieces of work that explore the various techniques

employed in this category. For instance, Bilbao [29] categorises them into

lumped mass-spring networks, modal synthesis, digital waveguides, hybrid

methods, and direct numerical simulation. In a somewhat similar man-

ner, Välimäki et al. [37] classify discrete-time physical models into six main

2.2 DSP-Based Sound Synthesis Techniques 25

paradigms: finite difference models, mass-spring networks, modal decompo-

sition, digital waveguides, wave digital filters and source-filter models. The

categories in the latter will be adopted since they provide a comprehensive

overview of this field.

2.2.4.1 Finite Difference Models

Finite difference models (grouped under direct numerical simulation in [29])

are based on solving partial differential equations (PDEs) using a finite dif-

ference approximation. They are also referred to as “finite difference time

domain” (FDTD) methods in time-dependent systems [29]. They consist of

discretising a continuous system described by PDEs (such as those of a vi-

brating string, or the membrane of a drum) onto a grid, where the numerical

solution is calculated [29, 37].

2.2.4.2 Mass-Spring Networks

In mass-spring networks (categorised as lumped mass-spring networks in

[29]), a physical system is modelled as a set of mass elements connected by

springs and dampers [37]. The simplest example would be a mass suspended

by a spring, which has a solution of [22]:

y(t) = y0e
(−rt/2m)cos

(
t
√

k/m− (r − 2m2)
)

(2.6)

with y0 being the initial position, m the mass, k the spring constant and r

the damping, as depicted in Figure 2.2. Building upon this idea, if a series

of lumped mass-spring systems are interconnected to form a lumped mass-

spring network, it is possible to model a string by placing them in a linear

26 DSP-Based Sound Synthesis

configuration, or a drum membrane by arranging them in a grid configuration

[29].

Figure 2.2: Mass-spring system diagram (reproduced from [22]).

2.2.4.3 Modal Synthesis

Modal synthesis is rooted in the idea of simulating the vibration of linear

systems, decomposing them as a series of modes (also called the modal rep-

resentation) that are derived from the physical (e.g., mechanical, geometri-

cal) characteristics of the object to be modelled [53, 54]. These modes are

represented by frequencies and amplitudes.

There are multiple forms of obtaining the modal data of a system. For

instance, a method to extract these modes from an object is by performing a

system eigendecomposition to simulate the behaviour of its surface at differ-

ent points as it is deformed by being struck [55]. Another option is to extract

these modes from real recordings with the objective of modelling the phys-

ical object. For instance, this could be accomplished by analysing various

recordings of an object being struck using a frequency domain representation

in an analysis-synthesis approach. Following this concept, Cook [56, 22] pro-

2.2 DSP-Based Sound Synthesis Techniques 27

posed the use of filter-based modal synthesis to build a “physically-informed”

model, which can be used in real-time with intuitive controls (e.g., striking

position, material or impact force), building it from the sound recordings

themselves.

2.2.4.4 Digital Waveguides

Digital waveguides (DWG) are based on discretising and sampling the solu-

tion of the traveling wave equation across time and space [57]. For instance,

for a one-dimensional system such as a string or a tube, the solution to the

aforementioned equation can be implemented using a bi-directional delay line

simulating two waves propagating independently in the left and right direc-

tions [57]. Two-dimensional systems such as membranes can be also modelled

in a relatively similar way as in finite difference models (see Section 2.2.4.1),

but easing the computational burdens [58]. Three-dimensional systems also

exist, such as those applied to the simulation of room acoustics [59]. Digital

waveguides have been broadly used, from simulating musical instruments, to

room acoustics, or the human vocal tract [60].

2.2.4.5 Wave Digital Filters

Wave digital filters (WDFs) are a type of digital filters that are conceptually

inspired by classic circuit theory [61]. WDFs are highly modular as the dif-

ferent circuit components and derived configurations can be seen as “building

blocks” of the system. Thus, they are especially suited for lumped mass mod-

elling approaches [37], or for finite-difference schemes when they are used in

conjunction with digital waveguides [29] (see previous Section 2.2.4.4).

28 DSP-Based Sound Synthesis

2.2.4.6 Source-Filter Models

As in their abstract counterpart (see Section 2.2.3.2), source-filter models

consist of filtering an excitation signal through a filter to remove or accentuate

certain frequencies. Välimäki et al. [37] argue that in order to consider a

source-filter model part of the physical modelling category, the source signal

has to convey some information of the physical system, and the filter has to

be derived from the physical structure of the object being modelled.

2.2.5 Statistical Approaches

While the statistical modelling of audio signals only gained popularity in

recent years due to the proliferation of novel deep learning techniques, there

were attempts to model audio signals using statistical approaches before the

popularity of neural networks.

Despite being considered part of the spectral models and a subtractive

synthesis method by Smith [30] and Cook [22] respectively, Linear Predictive

Coding (LPC) [62] could be seen as a statistical approach too. LPC, which

has been extensively used in speech signal processing, involves modelling a

signal as a linear combination of its past samples with the aim to predict

the next one. Arguably leaning more towards the statistical category, Mc-

Dermott et al. [63] approached sound texture synthesis by decomposing a

target sound into sub-bands using a cochlear filterbank in order to extract

a set of statistics from their sub-band amplitude envelopes. Another ap-

proaches treat signal processing problems, such as sub-band demodulation

or time-frequency analysis, as inference problems to obtain alternative rep-

resentations using Bayesian probability [64].

2.3 DSP-Based Synthesis of Sound Effects 29

2.3 DSP-Based Synthesis of Sound Effects

Following from the previous Section 2.2, where an overview of popular sound

synthesis techniques were presented (i.e., the theory), this section introduces

how these techniques can be used to create sound effects (i.e., the tools

and applications). There is an abundance of resources on the synthesis of

sound effects, ranging from academic research and industry products, includ-

ing books that approach the subject from a practical perspective [9, 22], to

reviews and surveys of the field [65, 66, 67, 68, 69, 34].

Sound synthesis of sound effects is an open research problem, encom-

passing a wide range of approaches and methodologies from various schools

of thought. This chapter compiles a representative set of these approaches.

Starting with categories of sounds that are somewhat related to video games

and media, in [70] they used an analysis-synthesis modal approach – sim-

ilar to spectral modelling – to generate weapon sounds, resynthesising the

deterministic part using sinusoidal modelling and the stochastic part using

subtractive synthesis. Recently, in [71] they used subtractive synthesis to

produce ocean waves, implementing the procedural audio model in the Web

Audio API and outperforming, in a listening study, other methods such as

spectral modelling synthesis [31] or the statistical approach described in [63].

Selfridge thoroughly studied the simulation of aeroacoustic sound effects us-

ing physically-inspired models, modelling sounds such as sword swings or

propellers [72, 73, 74, 75]. Footsteps, which are ubiquitous in games and

virtual reality scenarios, have been also addressed using techniques such as

physical models [76, 77, 78]. Other sounds like hand clapping have been also

studied, employing resonator filters and controlling high-level parameters in

30 DSP-Based Sound Synthesis

real-time, such as the number of people in the audience or the synchronisa-

tion of the claps [79, 80, 81, 82, 83]. In [84, 85, 86] they employed a series of

synthesis techniques to propose an alternative way of thinking about sound

design, calling their framework “TAPESTREA” (Techniques and Paradigms

for Expressive Synthesis, Transformation and Rendering of Environmental

Audio). They use an analysis-synthesis approach to produce an adaptive

soundscape, splitting it into foreground events and background environmen-

tal cues. Other examples of environmental sound synthesis can be found in

the works of [87, 88, 89], where they employ a method derived from the IFFT

synthesis, addressing the sound spatialisation as well.

Regarding other work emerging from the computer animation and physic-

based simulation field, in [90] they computed the propagation of the waves

resulting from analysing the deformation in solid objects being struck. Alter-

natively, in [91] they begin with a 3D object to build a physics-based model

and simulate user interactions. Another example is [92], where they aim to

resolve the sound radiation resulting from computer animations, incorporat-

ing also near-field scattering and diffraction effects. However, approaches of

this type are typically computationally expensive to run in real-time.

Concatenative synthesis has been used to produce sounds driven by vir-

tual graphic animations, such as cloth [93] or paper [94]. In [95] they also used

concatenative synthesis to perform controllable audio texture synthesis of

sounds such as rain, modulating its intensity (e.g., light, heavy). Continuing

with texture synthesis, in [96] they introduced the Cascade Time-Frequency

Linear Prediction (CTFLP) algorithm for resynthesising sounds such as rain

or footsteps; and in [97], they used a granular overlap-add synthesis approach

2.3 DSP-Based Synthesis of Sound Effects 31

to produce sound textures of shore or stream sounds.

There is also work done in the area of filterbanks, multi-rate systems and

sub-band processing, such as in [98, 99] where they synthesised noisy environ-

mental sounds such as rocks crumbling or a fireplace; or in [63] where they use

the sub-band amplitude statistics to build a synthesis model. Wavelets have

been also used in this context, with studies such as [100] where they use the

discrete wavelet transform (DWT) and its inversion coefficients to produce

stochastic-based sounds; or in [101, 102], where they adapted a texture syn-

thesis method from the computer vision domain to the audio domain using

the Dual-Tree Complex Wavelet Transform (DT-CWT), performing audio

texture synthesis derived from short sound excerpts.

In terms of studies comparing different procedural audio and sound syn-

thesis approaches, there is work exploring multiple sound categories and in-

teraction types such as [66, 103, 104], which can serve as a guide to choose

suitable models depending on the context. There is also extensive research

on how to design interactions with synthesisers and procedural audio mod-

els. For instance, in [105] they studied mapping strategies for modelling

a squeaking door; or in [106] they proposed a control framework based on

audio features to synthesise sounds. Other approaches use latent force mod-

elling [107, 108] to discover high-level and meaningful control parameters for

synthesisers.

There are some readily available commercial procedural audio tools catered

towards sound designers. Nemisindo1 [16] is a sound design service that pro-

vides a variety of interactive procedural audio models – ranging from foot-

steps to impacts – in a web-based experience. They also offer procedural

1https://nemisindo.com/

https://nemisindo.com/

32 DSP-Based Sound Synthesis

audio models packs integrated into popular commercial game engines, in-

cluding a nature sound pack for the Unreal Engine and a combustion engine

sound pack for the Unity game engine. GameSynth by Tsugi2 is another pro-

cedural audio tool that offers multiple models, all housed within a dedicated

standalone program. Apart from model presets, their software offers a mod-

ular design (somewhat similar to visual audio programming languages such

as Pure Data), allowing the users to not only adjust the model’s parameters

but also to change their signal flow and modules. The Wwise middleware

by Audiokinetic also offers some plugins build upon sound synthesis, such

as Impacter,3 a tool that employs an analysis-synthesis approach to gener-

ate controllable variations of impact sounds. Yet another range of products

are the ones offered by LeSound,4 which develops digital audio workstation

(DAW) plugins using procedural audio technologies for sounds such as fire

or rain. Another popular product is REV by CrankcaseAudio,5 which uses

sampling-based methods such as granular synthesis to produce engine sounds.

There are also tools and resources coming out from the research commu-

nity that can be used to synthesise sound effects or ease the development of al-

gorithms using different techniques. The Synthesis ToolKit (STK) [109, 110]

is an open source cross-platform C and C++ programming language library

released in the 1990’s, featuring a wide range of synthesis algorithms and

convenient functions (e.g., audio callback, audio effects). Around the same

date, SynthBuilder [111] was introduced, providing a graphical environment

for creating signal-processing algorithms by combining building blocks. Fol-

2http://tsugi-studio.com/web/en/products-gamesynth.html
3https://www.audiokinetic.com/en/products/plugins/impacter/
4https://lesound.io/
5http://www.crankcaseaudio.com/

http://tsugi-studio.com/web/en/products-gamesynth.html
https://www.audiokinetic.com/en/products/plugins/impacter/
https://lesound.io/
http://www.crankcaseaudio.com/

2.4 Chapter Summary 33

lowing the graphical environment paradigm, in the book “Designing Sound”

Farnell [9] introduces multiple Pure Data patches of sound effects with para-

metric controls. There are also high-level spectral analysis tools that facilitate

the adoption of analysis-synthesis methods, such as SPEAR [112]. Concern-

ing frameworks tailored specifically for physical models, examples include

Modalys [113] or MOSAIC [54].

More recently, there have been a series of tools and libraries released for

the Faust functional programming language, such as the Faust-STK (inspired

by the original Synthesis Toolkit) [114]; or the Faust Physical Modelling

Library [115] which, as it is built upon Faust, it is able to export its code

to other platforms such as Pure Data or the Unity game engine. Another

compelling tool built upon Faust is Mesh2Faust [116], which takes a 3D mesh

– such as a bell – and transforms it into a physical model, extracting its modal

information by performing a finite element analysis. Additionally, there are

other audio programming languages incorporating physical models libraries,

such as ChucK [117], which can also be integrated in interactive platforms,

such as in the Unity game engine via the Chunity plugin [118].

2.4 Chapter Summary

Modelling audio signals using digital signal processing components is a field of

knowledge that has been active for more than 70 years. Research in digital

sound synthesis has led to multiple techniques to this end, some of them

catered towards the generation of sound effects – often called procedural

audio in this context [9]. This chapter summarises those techniques and

provides examples of their applications, as well as tools coming from both

34 DSP-Based Sound Synthesis

academia and industry products.

However, while some techniques may be effective (refer to Chapter 4),

digital sound synthesis remains an open research problem [9, 16, 17, 18, 8],

which causes – at least, partially – the limited adoption procedural audio has

among audio professionals [9]. Nonetheless, novel data-driven approaches

have shown promise in audio generation, outperforming “classic” DSP tech-

niques for tasks such as speech synthesis [19]. Chapter 3 introduces those

novel techniques and highlights their applications for sound synthesis.

CHAPTER 3

DEEP LEARNING

3.1 Fundamentals of Deep Learning

While some of the techniques illustrated in Chapter 2 can be used to effec-

tively create procedural audio models – as it will be shown in Chapter 4,

crafting such models usually relies on a time-consuming process of adjusting

the algorithm until it produces the desired result. Additionally, more com-

plex sounds or interactions may result in highly-engineered and hand-crafted

algorithms to capture the granularity of their behaviour. Thus, automating

– at least part of – this process can help building these systems. Conve-

niently, machine learning is the field of knowledge that studies programming

computers so they learn from experience rather than being explicitly pro-

grammed [119]. In other words, machine learning models learn from data

(i.e., examples), extracting patterns from it [120]. Deep learning (DL) is a

form – or a subset – of machine learning that learns complex concepts from

simpler concepts [120], typically stacking multiple layers (hence the deep)

to hierarchically extract features from the data. Both machine learning and

36 Deep Learning

deep learning are under the broader artificial intelligence (AI) umbrella [120].

Despite artificial neural networks (ANNs), which are loosely biologically-

inspired and at the core of deep learning, were introduced back in 1943

[121], it is only in recent years that their adoption has become widespread.

This is partly due to the – relative – abundance of data available to train

the models, the increase in computing power over the years, and the im-

provement of the algorithms coupled to the research output available [122].

The proliferation of deep learning techniques has inspired multiple reviews

(e.g., [123, 124, 125, 126, 127, 128, 129, 130, 131, 132]) and books (e.g.,

[120, 133, 134, 122]) about the field, both on general deep learning and on

audio-oriented topics. From automatic speech recognition to text-to-image

applications, a wide range of deep learning architectures have been exten-

sively employed across multiple industries for different tasks, outperform-

ing other “classic” approaches and achieving state-of-the-art results. Con-

sequently, it is also an attractive method to explore in the context of the

synthesis of sound effects.

The most archetypal deep learning architecture is the feed-forward multi-

layer perceptron (MLP), depicted in Figure 3.1. Multi-layer perceptrons

just map some inputs to some outputs by stacking many simple functions

together [120]. For each of the neurons, their inputs are scaled by a series of

weight w parameters, summed together, and the result is added with a single

bias b parameter. Those two parameters (weights and biases) are in fact

the learnable parameters of a basic MLP. Finally, the output of each of the

neurons is typically processed by an activation function, which enables the

network to introduce non-linearities. This process is depicted in Figure 3.2.

3.1 Fundamentals of Deep Learning 37

Figure 3.1: Diagram of a multi-layer perceptron. The network consists of
3 inputs that are fed into n hidden layers comprised of 4 hidden units (i.e.,
neurons) each, and finally to a last output layer, yielding two outputs. The
number of inputs, hidden layers, hidden units, and outputs can be modified.

Different activation functions are suitable for different tasks or approaches,

leading to a difference in performance depending on this choice [135]. Among

others, two typical activation functions are the rectifier linear unit (ReLU),

which sets negative values of x to 0, defined as [136]:

ReLU(x) = max(0, x), (3.1)

or the hyperbolic tangent (Tanh), which effectively squashes x to a [−1, 1]

range, defined as [135]:

Tanh(x) =
exp(x) − exp(−x)

exp(x) + exp(−x)
(3.2)

A MLP learns by adjusting its parameters (i.e., its weights and biases)

to minimize the loss on its training data. This process involves backprop-

agation, which computes the gradient of the parameters with respect to a

38 Deep Learning

Figure 3.2: Diagram of a single neuron. Two inputs, x1 and x2 are multiplied
by two weights w1 and w2 and summed together. A bias b parameter is
summed to the result, which is then processed by an activation function,
yielding the neuron output y1.

loss (i.e., a fitness function or metric that measures the performance of the

network for a given task), often using automatic differentiation libraries such

as TensorFlow1 or PyTorch.2 The computed gradients are then used by a

gradient descent optimisation algorithm to update the network parameters in

a direction that reduces the loss (thus improving its performance) [120]. The

size of the step that the gradient descent algorithm takes in the direction of

the negative gradients is determined by the learning rate, a hyperparameter

(i.e., a variable that is not inherently part of the parameters of a network)

which constitutes an important factor to consider to ensure a stable and opti-

mised training. The process of updating the network parameters is repeated,

step by step, until it converges to the point where further iterations do not

improve the network’s performance.

During the training process, it is common to use techniques to aid the

network to learn in a stable manner. For instance, initialising the network

1https://www.tensorflow.org/
2https://pytorch.org/

https://www.tensorflow.org/
https://pytorch.org/

3.1 Fundamentals of Deep Learning 39

parameters with a specific strategy, such as the Xavier [137] or He [138]

initialisations, may help it to converge faster [120]. Likewise, normalisation

techniques, such as batch [139] or layer [140] normalisations can significantly

improve the training process [141], ensuring that the activations throughout

the network maintain a consistent scale and distribution. Another important

factor is the network’s ability to perform well on inputs apart from those seen

in training data, increasing its generalisation. The group of strategies aimed

at increasing a network’s generalisation is called regularisation, defined as

modifications made to a learning algorithm aimed to reduce its generalisation

error but not its training error [120]. Common regularisation techniques are

dropout [142], which randomly deactivates a subset of neurons in a network

layer, or data augmentation, which applies transformations to the training

data (e.g., rotating an image or pitch-shifting an audio signal) in order to

increase the amount examples in the dataset without actually collecting new

data [120].

Apart from the MLP example illustrated above, deep learning offers a

large array of networks and layers, each one tailored to different types of data.

Namely, convolutional neural networks (CNNs) [143] employ convolutional

layers, which use convolutional operations instead of matrix multiplications

as in traditional neural networks [120] to extract feature maps from the data,

usually in the form of multi-dimensional arrays (i.e., tensors). Convolutional

layers usually involve pooling, where the output feature maps are downsam-

pled by replacing the outputs of a certain region with a statistic of those

values [120], effectively reducing their dimensionality and helping to capture

complex features from the data as the networks grows deeper.

40 Deep Learning

3.2 Generative Deep Learning

Generative models learn to represent an estimate of a probability distribu-

tion, pmodel, learning it from a training dataset pdata [124]. Generative models

traditionally encounter challenges such as the interdependency among fea-

tures (e.g., the relationship between two pixels in an image) or the fact that

only a small set of solutions provide a satisfactory sample (e.g., the chances of

producing a plausible image by just shuffling pixel values are remote) [133].

Deep learning addresses these challenges by using representation learning,

where a model automatically learns hierarchical representations from the

data, capturing complex patterns from it. Therefore, when using deep learn-

ing for generating data, this is usually referred to as generative deep learning

or deep generative modelling. When high-level features are not directly mod-

elled, they are described as lower-level latent representations, learning the

mapping between the training examples and their representation in the la-

tent space [133]. Although not all generative deep learning models necessarily

produce a latent space or use latent variables explicitly (i.e., learn compressed

or intermediate representations from the data) such as – in general – autore-

gressive models (see Section 3.2.3), latent variable models are very extended

in generative deep learning.

While there are multiple methods for estimating the probability distribu-

tion pmodel, most deep learning approaches employ the principle of maximum

likelihood, defined as [120]:

θ∗ = argmax
θ

m∑
i=1

log pmodel

(
x(i); θ

)
(3.3)

3.2 Generative Deep Learning 41

where θ are the model parameters and x(i) is the i instance of a dataset

comprised of m examples. This principle seeks to tune the model parame-

ters θ so they maximise the likelihood of the training data [124]. In simpler

terms, once trained, generative models aim to produce data in the style of

the data they were trained on. Also, depending how they compute or rep-

resent the likelihood, deep generative models can be seen as explicit density

models when they explicitly define a density function pmodel (x; θ), such as

autoencoders, autoregressive models, flow-based models, or diffusion models;

or implicit density models when they learn the density function pmodel (x; θ)

indirectly, such as generative adversarial networks [124].

Generative deep learning offers a wide set of creative possibilities and

applications in the audio domain. For instance, it can be used to: synthe-

sise new data from a dataset (e.g., generating novel footstep sounds [18]);

manipulate generated data by traversing the latent space (e.g., traversing a

region in the latent space to increase or decrease a desired feature [144]);

learn control mappings (e.g., generating audio by specifying an instrument

pitch and loudness [145]); perform inpainting (e.g., reconstructing a section

of a data instance that has been masked [146]).

This section will introduce multiple generative deep learning techniques

that are currently being employed in state-of-the-art approaches within the

field of sound generation. While there are more generative modelling tech-

niques prior to deep learning, and other deep learning approaches and hybrid

models that combine multiple of these methods together, they are left out

of this section due to the scope of this thesis, such as energy based models

[147].

42 Deep Learning

3.2.1 Autoencoders

Autoencoders (AEs), which were formally proposed back in the 1980s [148],

are a class of models that aim to reconstruct an output from its input [123].

They are usually comprised of two networks: an encoder that compresses

high-dimensional data X to a lower-dimensional representation z; and a de-

coder that reconstructs the original data X̂ back from this lower-dimensional

representation z [133]. They can be seen as unsupervised compression algo-

rithms, where the – unless conditioned, unlabelled – data is passed through

a bottleneck network to end up mapped as a set of latent variables X → z,

forming the latent space. The decoder learns the inverse mapping z → X̂

which results, once trained, in a deterministic set of latent variables for each

data instance (i.e., each data instance is “projected” to a deterministic point

in the latent space). This deterministic nature makes traditional autoen-

coders not very good at either structuring the latent space or compressing

(i.e., reconstructing) the data [134], as the latent space may not be contin-

uous (i.e., neighboring points do not necessarily contain similar features) or

complete (i.e., regions of the latent space may not produce relevant content).

Variational autoencoders (VAEs) [149, 150] aim to solve these issues by

encoding the data not as a deterministic point in the latent space, but as a

probability distribution p(z) of µ mean and σ2 variance instead. Thus, the

encoder computes qϕ(z|x) and the decoder pϕ(x|z). To prevent p(z) from

being skewed and impose a prior, a regularisation Kullback-Leibler (KL) di-

vergence loss is used to penalise p(z) from deviating from a normal Gaussian

distribution N (0, 1). β-VAEs [151] introduce an additional constraint by

scaling the KL regularisation term in the loss function, which aids in dis-

3.2 Generative Deep Learning 43

entangling the latent space. The objective function can be then written as

follows [151]:

L(θ, ϕ;x, z, β) = Eqϕ(z|x)[log pθ(x|z)] − β DKL[qϕ(z|x)∥p(z)] (3.4)

where the first term is the reconstruction loss, the second term is the KL

divergence loss, and β is the parameter that controls how much of the reg-

ularisation affects the expression. Higher (i.e., > 1) values of β increase the

latent space disentanglement, but reduce the reconstruction capabilities in

return.

There are many other relevant VAE-based architectures. For instance,

the Vector Quantised Variational Autoencoder (VQ-VAE) [152, 153], which

instead of learning a continuous latent representation as in a “regular” VAE,

it generates a discretised latent space, contributing to a more efficient latent

space representation and – in general – to a higher quality output and a

more stable training process; or the Nouveau VAE (NVAE) [154], which

implements a deep hierarchical structure alongside a carefully selected set of

normalization and regularization techniques, making it capable of producing

large images and yielding state-of-the-art results.

3.2.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [155] are a generative deep learning

modelling technique where – at least – two networks compete against each

other. These networks are the discriminator, which tries to differentiate

between real and fake data; and the generator, which learns to produce

44 Deep Learning

plausible data by attempting to fool the discriminator. During training both

networks are trained jointly. On the one hand, the discriminator D is trained

in a supervised learning fashion [124], predicting whether the input data is

real or fake. On the other hand, the generator G tries to learn a probability

distribution pg over the real data x by sampling from a – usually Gaussian

– prior distribution pz(z) to generate data that is indistinguishable from the

real data x to the discriminator [155]. Thus, the two networks engage in a

min-max game, the solution of which is a Nash equilibrium [124], and the

value function V (D,G) is defined by [155]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 −D(G(z)))] (3.5)

In other words, D tries to both maximise and minimise the values of

D(x) and D(G(z)) respectively, and G tries to maximise D(G(z)) [124]. The

process is depicted in Figure 3.3. Once trained, sampling from pz(z) results

in new data in the style of the training data x (i.e., G(z) → x′).

GANs are, however, hard to train. Among other issues, their loss is not

informative during training (i.e., the generator loss is only compared against

the discriminator), they suffer from mode collapse (i.e., the generator can

find small subsets of generated data that constantly fool the discriminator),

and their hyperparameters can also be large and difficult to adjust [133].

Wasserstein GAN (WGAN) [156] and Wasserstein GAN + Gradient Penalty

(WGAN-GP) [157] address these problems by introducing a loss that corre-

lates with the generator performance, achieving also a better training stabil-

ity.

3.2 Generative Deep Learning 45

Figure 3.3: Diagram of a generative adversarial network. The generator aims
to fool the discriminator by synthesising outputs that resemble the real data,
while the discriminator aims to distinguish between real and synthetic data.

GANs have been very prolific in the generative deep learning litera-

ture (especially before the recent proliferation of diffusion models, see Sec-

tion 3.2.5), obtaining the state-of-the-art results at multiple points in time

with popular architectures such as Deep Convolutional GAN (DCGAN) [158],

BigGAN [159], Progressive Growing GAN (PGAN) [160] or StyleGAN [161,

162, 163].

3.2.3 Autoregressive Models

Autoregressive models [164] are especially suited to model sequential data

such as text or audio, where each new sample in a sequence depends on the

past ones [131]. They are based in the chain rule of probability, where the

probability of a variable that can be decomposed as x = x1, ..., xn can be

represented as a product of conditional probabilities [128]:

46 Deep Learning

p(x) = p(x1, ..., xn) =
n∏

i=1

p(xi|x1, ..., xi−1) =
n∏

i=1

p(xi|x<i) (3.6)

Figure 3.4: Diagram of a typical recurrent neural network. At each timestep
t the hidden states ht are computed, parametrised by an input-to-hidden
weight matrix U , a hidden-to-hidden weight matrix W , and a hidden-to-
output weight matrix V .

Over the years, there have been multiple architectures and models that fit

into the autoregressive paradigm. In this context, particularly relevant are

recurrent neural networks (RNNs), which are neural networks containing an

internal loop (hence the recurrent) that iterate over sequences, keeping track

of an internal state based on the elements seen at each time step [134], as

depicted in Figure 3.4. However, RNNs suffer from a vanishing gradient prob-

lem in longer sequences [133], where the gradients become increasingly small

over it and effectively prevents the network from learning, as the update to

its weights becomes proportionally small. To solve this problem, Long-Short

Term Memory (LSTM) networks [165] were proposed, which expand RNNs

by introducing a memory cell that allows the network to selectively remem-

ber (or forget) information, allowing it to model longer sequences without the

3.2 Generative Deep Learning 47

vanishing gradient problem. Another popular RNN architecture are Gated

Recurrent Units (GRUs) [166], which are somewhat similar to LSTMs in

terms of design and performance [167], but simpler conceptually.

Apart from RNNs, other autoregressive methods use temporal (i.e., causal)

convolutions to model sequential data, such as in [168, 169] where they em-

ploy this method applied to the computer vision domain. A similar approach

is used in the audio field in the WaveNet architecture [19]. Yet another very

popular autoregressive architecture, different from the aforementioned ones,

is the transformer architecture [170]. Transformers use self-attention (a mech-

anism to determine which previous time steps to consider at the current time

step [128], or in other words, select which ones to pay attention to), granting

them the ability to connect distant dependencies and therefore model longer

sequences. Transformers are currently very prolific, being widely employed

in the context of large language models (LLMs), such as GPT-4 [171]. Beside

such approaches, there are also models that mix multiple methods, such as

in [172], where they combine causal convolutions with self-attention.

3.2.4 Normalising Flows

Normalising flows are rooted in the idea of directly modelling a complex data

distribution by transforming a simpler data distribution (e.g., a standard

normal N (0, 1)) through a series of invertible and differentiable mappings

[173]. This series of invertible mappings transform the input data into latent

representations [131]. Thus, a vector x can be represented as the result of

applying a transformation T to a vector z sampled from pz(z) [174]:

48 Deep Learning

x = T (z),where z ∼ pz(z) (3.7)

Since it is common to link k transformations together, these can be ex-

pressed as follows [131]:

x = T0 ◦ T1 ◦ ... ◦ Tk(z) (3.8)

z = T−1
k ◦ T−1

k−1 ◦ ... ◦ T
−1
0 (x) (3.9)

with those mappings parameterised by the deep learning model. The term

“normalising flows” is given by these transformations: a collection of sam-

ples from px(x) are “normalised” to pz(z), and the trajectory that maps the

samples from pz(z) is known as the “flow” [174].

3.2.5 Diffusion Probabilistic Models

Diffusion probabilistic models [175, 176], more commonly referred to as sim-

ply “diffusion models”, are based on the concept of gradually introducing

noise to a data sample x0 ∼ q(x0) using a noise schedule β1:T so the re-

sulting data xT at the end of the process (i.e., after T iterations of adding

noise) is normally distributed [128] (i.e., p(xT) ≈ N (0, I) for large values of

T [176]). More formally, diffusion models typically consist of two processes:

the forward (or diffusion) process and the reverse process. First, the diffu-

sion process, where the data x0 ∼ q(x0) is gradually corrupted by noise over

T steps, is defined by a Markov chain as follows [176]:

3.2 Generative Deep Learning 49

q(x1, ..., xT |x0) =
T∏
t=1

q(xt|xt−1), (3.10)

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) (3.11)

where the resulting x1, ..., xT at each time step are latents of the same di-

mensionality of the original data x0 ∼ q(x0) [176], T are the diffusion steps

(the length of the Markov chain) and β1, ..., βT are typically small positive

constants that relate to the noise variance schedule.

The reverse process (the process that transforms xT back to x0) is also

defined by a Markov chain parametrised by θ as follows [177, 176]:

pθ(x0, ..., xT−1|xT) =
T∏
t=1

pθ(xt−1|xt) (3.12)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (3.13)

with p(xT) = N (0, I). Thus, the aim of pθ(xt−1|xt) is to remove the noise

added in the forward process [177]. By doing so, new data can be generated

by drawing a sample xT ∼ N (0, I) and iteratively transforming it through

the reverse process (i.e., xt−1 ∼ pθ(xt−1|xt) for t = T, T − 1, ..., 1) until x0 –

the denoised data point – is produced [177].

Diffusion models have recently emerged as one of the most promising

paradigms in generative deep learning, achieving state-of-the-art performance

in tasks such as large-scale text-to-image using a combination of diffusion

models and CLIP embeddings [178],3 with models like the popular DALL-E

3“Contrastive Language-Image Pretraining”, used to capture relations between images

50 Deep Learning

2 [179] among many others.

3.3 Neural Audio Synthesis

Neural audio synthesis refers to the use of deep learning techniques for the

synthesis of sounds [180]. Similar to Chapter 2 on DSP, this section will

introduce the applications of the theory that has been discussed immediately

prior (see Section 3.2).

It is common that advancements in the deep learning domain generally

appear first in the computer vision field (such as image synthesis), and they

are then adapted to the audio domain. Audio however has its own challenges,

such as the high dimensionality of the data [181] where, for instance, a second

of audio sampled at 44.1 kHz contains 44 100 data points, all of them related

to each other at different scales. Thus, the audio representation (i.e., how

the audio is fed to the network) is an important factor to consider. Deep

learning models usually work in either the time domain (i.e., raw audio sam-

ples) or in the frequency domain (i.e., spectrograms) [131]. In [182], they

compared different representations for an audio PGAN [160] architecture

trained on musical notes, ranging from raw audio to different frequency do-

main representations, such as complex values taken directly from the STFT

or the constant-Q transform [183]. In their context, they found that complex

values and magnitude and instantaneous frequency spectrograms performed

the best as audio representations for the task. Alternatively to time or fre-

quency domain representations, another approach may consist of using DSP

components such as filters or oscillators in conjunction with deep learning

and text descriptions.

3.3 Neural Audio Synthesis 51

(see Section 3.3.1).

Another fact to consider when modelling audio is the suitability of the loss

(i.e., fitness) function used during training; and the objective and subjective

metrics used to evaluate the performance of a model on a particular task.

Apart from methods that do not “see” the data directly and model it

by proxy (e.g., adversarial training in GANs), it is important to be able to

compute the similarity among two signals for tasks such as reconstruction

in VAEs. While this could be done by performing a point-wise compari-

son between two waveforms, identical waveforms may sound different, and

perceptually identical audio samples may have different waveforms [145]. An-

other approach could be comparing the STFT of two audio samples, but the

STFT suffers from a time and frequency resolution trade-off, where higher

FFT values lead to a better frequency resolution but poorer time resolution,

and vice-versa. As an alternative, a multi-scale short-time Fourier transform

can be used, where instead of a single FFT, a series of STFTs with different

FFT values are computed to compensate for their time and frequency trade-

off [184, 185, 145]. There are other alternative representations, such as the

wavelet-based joint time-frequency scattering (JTFS) [186], used recently in

the context of deep learning and audio classification with promising results

[187, 188]. Incorporating perceptual considerations have been also explored,

such as in [189, 190], where they build a differentiable perceptually-driven

similarity metric by asking participants to discriminate between perceptually

similar samples. In terms of usability, there are packages such as auraloss

[191] which implements multiple audio-focused loss functions in Pytorch.

Regarding the evaluation (i.e., assessing how well a model accomplishes

52 Deep Learning

a task), this is usually achieved through subjective evaluations, objective

evaluations, or both. Subjective evaluations typically consist of conducting

a listening study in which participants are asked to rate the data generated

by the model. This could be done to assess the quality (e.g., how plausible

a sound is for a certain category), the diversity (e.g., how different multiple

samples generated by a model are) or the similarity (e.g., how close the gener-

ated and ground truth samples are, useful in reconstruction tasks), to name a

few; assessing either a particular model alone (e.g., “Are the sounds produced

by the model plausible?”) or several models against each other (e.g., “Is this

model more plausible than the other?”). On the other hand, objective met-

rics rely on computational methods to assess a model’s performance. While,

for purely reconstruction tasks, the loss functions outlined above can be used

to evaluate a model’s reconstruction capabilities, there are also other metrics

that can be used to objectively evaluate deep learning models. For instance,

the Fréchet Audio Distance (FAD) [192] is a popular reference-free evaluation

metric that correlates well with human judgment. The FAD is calculated by

extracting the embeddings from both the generated sounds and the ground

truth audio using a pre-trained VGGish [193] classification model and com-

puting multivariate Gaussians on them to calculate their Fréchet distance

[194]. There are other objective metrics, such as the Inception Score (IS),

[195] which is a metric created to assess class-conditioned GANs on quality

and diversity, the Number of Statistically-Different Bins (NDB) [196] to mea-

sure the generated output diversity, or the Kernel Inception Distance (KID)

[197] to compare distributions of the generated and ground truth data, to

name a few.

3.3 Neural Audio Synthesis 53

With regards of the methods themselves, one of the first major leaps in

audio synthesis using deep learning was WaveNet [19], introduced in 2016.

WaveNet, which is an autoregressive method based on the PixelCNN archi-

tecture [168, 198], employs dilated convolutions to increase the network’s re-

ceptive field and capturing long-term dependencies in the waveform domain.

This approach granted WaveNet the ability to generate raw audio at a 16 kHz

sampling rate, establishing the state of the art in text-to-speech applications

at its time, reducing the gap with human performance by 50%. WaveNet-

like architectures have been proposed to perform other tasks, such as musical

note generation [180], among many others. While successful, WaveNet suf-

fers from a very slow inference time, as the audio samples are synthesised

sequentially, one after the other. Parallel WaveNet [199] addresses this prob-

lem by proposing a flow-based approach, speeding up the architecture by a

factor of 1000 with no perceptual differences. Another autoregressive ap-

proach that generates raw audio, released very close to WaveNet in time, is

SampleRNN [181], which introduces a model comprised of multiple RNNs

using a hierarchy of different scales to overcome the challenge of modelling

high dimensional data.

Neural audio synthesis has made significant progress since its early stages

and, while it is arguably still in an early phase of development, it has been

a very active area of research, employing a wide range of techniques. For

instance, regarding GANs, a notable architecture is WaveGAN [200], which

was the first attempt at generating unconditional raw audio with an ad-

versarial training approach, proposed in 2018. WaveGAN is based on the

DCGAN architecture [158], but adapting it to model raw audio by replac-

54 Deep Learning

ing DCGAN’s two-dimensional convolutions (designed for processing two-

dimensional data like images) by one-dimensional convolutions, effectively

“flattening” the DCGAN architecture, allowing the processing of time-series

data. In the WaveGAN paper, Donahue et al. also proposed a frequency

domain variant of the architecture: SpecGAN [200]. SpecGAN produces log-

magnitude spectrograms that are then transformed back to audio using the

Griffin-Lim algorithm [27], mimicking the DCGAN architecture in this case,

but using spectrograms as the data representation (instead of images). Its

non-autoregressive nature granted WaveGAN an inference speed orders of

magnitude faster than, for instance, WaveNet. Very close in appearance to

WaveGAN, another popular audio GAN architecture was introduced: GAN-

Synth [201]. GANSynth is built upon the PGAN architecture [160] but

adapting it to generate audio spectra instead of images, incorporating also

a pitch conditioning vector and an auxiliary loss to aid the discriminator in

the pitch label classification [202]. They experimented with multiple audio

representations, such as a model using magnitude and phase spectrograms,

a model using instantaneous frequency as a replacement for the phase, or a

model using instantaneous frequency along with – invertible – mel-scale mag-

nitude spectrograms. In their experiments, they outperformed WaveGAN in

the task of producing pitched musical notes. Like WaveGAN, GANSynth

produces audio orders of magnitude faster than WaveNet (54K times faster,

specifically). Regarding other generative methods, flow-based modelling is

used in models like FloWaveNet [203] or WaveFlow [204]; or diffusion models,

which are used in architectures such as DiffWave [177] or WaveGrad [205] for

waveform generation. Lately, there has been an emphasis on achieving real-

3.3 Neural Audio Synthesis 55

time performance, desirable for live adaptability and audio manipulation.

RAVE (“Realtime Audio Variational autoEncoder”) [206] is an example of

this, capable of producing waveforms at a 48 kHz sampling rate with an in-

ference speed 20 times faster than real-time on a consumer laptop CPU.

Apart from the choice of different generative methods, yet another rel-

evant factor to consider is how a particular model produces the data, and

whether this can be controlled or not. Unconditional models (such as the orig-

inal WaveGAN [200]), generate samples from the learned data distribution

without any conditioning information or control. Depending on the model, it

is possible however to affect the output data by, for instance, steering the la-

tent space in a particular manner, such as in [207], where they use interactive

machine learning to learn mappings between a RAVE [206] model’s latent

space and human performances. RAVE is also capable of timbre transfer,

which involves using a model trained on a specific category of sounds (e.g.,

sax improvisations) to apply the acoustic characteristics of an out-of-domain

sound (e.g., singing voice; or a different sax sound) to the timbre of the

former. This effectively transforms one audio into the other and drives the

synthesis in this manner. Other models take conditional inputs, such as in

the aforementioned GANSynth [201], where the synthesis is conditioned by

the pitch of a musical note. Apart from pitch, the – discrete – conditioning

labels could represent other characteristics of the sound, such as high-level

timbral features, demonstrated in [208]. It is also possible to provide continu-

ous conditioning, such as in [145], where pitch and loudness vectors are used.

Another approach is to generate music for a particular genre, as in Jukebox

[209]; or to describe the sound through natural text prompts, as recently

56 Deep Learning

introduced in MusicLM [210] or MusicGen [211]. Apart from explicitly spec-

ifying desired controls, another option could involve masking (i.e., removing)

a section of an audio file or spectrogram, and subsequently reconstructing

(i.e., generating) a new version of the masked section, such as in [146].

While most of the focus on neural audio synthesis has been on either the

speech or music synthesis domains, there has been work addressing sound ef-

fects specifically. One of the challenges to bring data-driven methods to this

category of sounds has been the scarcity of high-quality data, as training au-

dio deep learning architectures typically demands a large amount of samples.

However, there has been an effort to collect and bring annotated datasets to

the public. These datasets are mostly catered to the sound event recognition

(SER) task, but may be compatible with sound generation nonetheless, de-

spite the quality expectations from one task to the other may differ (i.e., for

SER applications, sounds may be noisy and mixed with other background

sounds as the aim is to recognise events in a real-world scenario, while in

the generation task one of the aims is to generate high-quality sounds com-

parable to those found in a professional sound library). The UrbanSound8K

dataset [212] is an example of this, containing almost 9000 ≈4-second audio

clips from 10 categories of urban sounds. Likewise, the ESC-50 dataset [213]

brings a collection of 2000 short clips of 50 sound classes. The Audio Set

[214] is a human-annotated dataset comprised of over 1 700 000 10-second

segments of 632 sound classes collected from YouTube videos, distributed

as pre-computed features rather than raw audio. The FSD50K dataset [215]

brings more than 50K manually-annotated clips of 200 different sound classes,

sourcing the sounds from the Freesound [216] website and distributing them

3.3 Neural Audio Synthesis 57

as raw audio with a permissive license. Recently, the Epic-Sounds dataset

[217] was released, comprising of more than 70K categorised segments across

44 classes, containing the sound events alongside a first-person video of the

actions that produced them. Additionally, there are datasets focused on

the vocal imitation of sound effects, such as [218, 219]; or datasets of specific

sounds, such as gunshots originating from different weapons and perspectives

[220]. Apart from curated datasets, there are platforms such as Freesound

[216], where users can upload sounds and distribute them with a permissive

license at no cost.

Regarding research on sound generation for sound effects using deep learn-

ing, [221] proposes the use of a conditional SampleRNN [222] to generate

acoustic scenes (e.g., the sound of an office, a beach or a park). In [18] foot-

steps are synthesised conditioned on surface materials using a hybrid network

comprised of a conditional WaveGAN generator [223] and a HiFi-GAN dis-

criminator [224]. In [225] they use a VQ-VAE [152] to generate sounds of the

10 categories of the UrbanSound8K dataset [212], such as siren or street mu-

sic. [226] uses a WaveFlow [204] architecture to synthesise explosion sound

effects, successfully achieving timbre-transfer as well. There has also been re-

search on the use of vocal imitations [227] or onomatopoeic words [228, 229]

to condition the sound effect generation. Regarding situations where the

data is either scarce or difficult to obtain, in [230] they synthesised longer

audio streams from just ≈20s of data. Especially relevant for VR scenarios,

in [231] they propose using a Y-Autoencoder [232] to disentangle gestures

and material interactions within the context of sound effect synthesis.

With the recent increase of popularity of diffusion models and text-

58 Deep Learning

conditioned architectures, there has been a proliferation of studies combining

these approaches with sound effects. For instance, in [233] they generated

sound effects conditioned on several classes, such as air conditioner or chil-

dren playing; or in [234, 235, 236, 237, 238] they conditioned the generation

with natural text prompts (e.g., “a dog barking in a park”). There has also

been research to automatically incorporate sound to silent videos using a di-

verse set of methods, synchronising the generated sound effects to the actions

in the video such as, for instance, in [239, 240, 241, 242, 243].

Due to its relatively early stage, the adoption of neural audio synthesis

among users has not yet reached the same level of widespread usage as its

equivalent DSP counterparts, particularly within the field of sound design.

Computing requirements such as the need – in some cases – of high-end

GPUs to run the models, the lack of established workflows and a higher

bar to access user interfaces (such as command-line applications) may have

hampered their adoption, keeping the use of these models to the research

community. However, there has been an increasing interest in bringing neu-

ral audio synthesisers to the general public using tools that prospective users

are already familiar with. A middle-ground between command-line appli-

cations and high-level tools are web services such as Hugging Face spaces,4

where they offer a front-end platform backed by computational resources to

run models directly from the web. For instance, the AudioLDM [236] text-to-

audio model is accessible trough it.5 There have been recent model-specific

solutions to deploy neural audio synthesisers to existing tools, such as Drum-

GAN VST [244], integrated in the Steinbergs’s Backbone drum VST,6 or

4https://huggingface.co/spaces/
5https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation
6https://www.steinberg.net/vst-instruments/backbone/

https://huggingface.co/spaces/
https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation
https://www.steinberg.net/vst-instruments/backbone/

3.3 Neural Audio Synthesis 59

VST versions of the DDSP architecture [145, 245].7 Another recent exam-

ple is Neutone,8 a platform that aims to bring pre-trained models (including

neural audio synthesisers) to digital audio workstations in the form of a

VST plugin, offering a simple interface for tasks such as timbre transfer, but

with a “model-sceptic” approach. Audio-centric GPU acceleration is also be-

ing actively developed in projects such as GPU Audio.9 Regarding specific

frameworks, recently ChAI10 (ChucK for AI) was released with the aim of

providing a real-time interactive platform for musicians, incorporating ma-

chine learning algorithms to the ChucK programming language. There is

also an audio-centric neural network library, RTNeural,11 which is built with

a performance and real-time usage in mind.

Outside of the synthesis context, there are other existing AI-powered tools

within the audio and music industry, such as the LANDR online mastering

service12 or the NeuralDSP13 AI-powered digital guitar amplifier simulation

suite, to mention two relevant examples.

3.3.1 Differentiable Digital Signal Processing

Differentiable digital signal processing (DDSP) [145] is based on the idea of

employing DSP techniques and components like those introduced in Chap-

ter 2 – such as oscillators or filters, and optimise their parameters through

gradient descent, often integrating them to a deep learning architecture. Pre-

7https://magenta.tensorflow.org/ddsp-vst
8https://neutone.space/
9https://www.gpu.audio/

10https://chuck.stanford.edu/chai/
11https://ccrma.stanford.edu/~jatin/rtneural/
12https://www.landr.com/online-audio-mastering/
13https://neuraldsp.com/

https://magenta.tensorflow.org/ddsp-vst
https://neutone.space/
https://www.gpu.audio/
https://chuck.stanford.edu/chai/
https://ccrma.stanford.edu/~jatin/rtneural/
https://www.landr.com/online-audio-mastering/
https://neuraldsp.com/

60 Deep Learning

cisely, in the original DDSP paper [145], they address the challenge of build-

ing expressive sound models that can be trained using gradient-based optimi-

sation methods. Traditional DSP algorithms are typically non-differentiable

(i.e., they do not allow gradients to propagate through them), making them

difficult to incorporate into deep learning frameworks. DDSP provides a so-

lution by introducing a set of differentiable DSP modules that can be used

as building blocks for constructing complex sound models. To illustrate their

approach, they build a differentiable spectral modelling synthesiser [31] (see

Section 2.2.3.3) comprised of a harmonic (i.e, harmonic sinusoids) and a

stochastic (i.e., subtractive synthesiser) components, conditioning the model

on pitch and loudness. They also compute the room acoustics of the sound

source during training by modelling an impulse response common to the

dataset. An overview of their proposed architecture is depicted in Figure 3.5.

As a result, they were able to build a synthesiser with human-interpretable

controls, capable of producing plausible musical notes. Since the control pa-

rameters (i.e., pitch and loudness) are extracted from the data itself, they can

also achieve timbre transfer. This is done by extracting the desired features

from a target audio to be transformed (e.g., a voice), feeding them to the syn-

thesiser and transforming that audio into musical notes with the timbre of the

instrument the model is trained on (e.g., a violin). The effectiveness of DDSP

(i.e., high-fidelity synthesis capabilities alongside human-interpretable con-

trols) is due to exploiting the inherent biases of the DSP components which,

in contraposition of the undesired potential biases introduced by waveform

or Fourier-based models, are in fact beneficial to the synthesis task [145].

While there was some work combining DSP component with neural net-

3.3 Neural Audio Synthesis 61

Figure 3.5: Simplified diagram of the DDSP architecture [145]. The funda-
mental frequency F0 is extracted using a pre-trained CREPE [246] encoder,
while the loudness is extracted directly from the target audio signal. The de-
coder predicts N harmonic sinusoidal amplitudes (using the extracted F0 as
their pitch) and a time-varying FIR filter, comprising the harmonic and noise
synthesisers respectively. The output from both synthesisers is summed, and
convolved with a dataset-wide learned impulse response (i.e., its reverb). The
final output is compared against the ground truth using a multi-scale spec-
trogram loss.

works prior to the work of [145], such as in [247, 248] where they use neural

networks to estimate the parameters of physical models; or in [184], where

the use a differentiable waveshaping method for text-to-speech synthesis,

DDSP [145] established the current basis – and arguably more relevant to

this chapter, the naming convention – of the technique. Since then, multi-

ple approaches have been proposed using DDSP-inspired architectures. For

instance, within a harmonic musical context, there have been architectures

using waveshaping [249], wavetable [250], frequency modulation [251, 252], or

subtractive [253] synthesis methods. There has also been research on exper-

imenting with network-bending techniques on top of the DDSP architecture

[254].

Other approaches focus on synthesizing rigid-body impacts by estimating

the parameters of differentiable modal resonators based on the object’s shape

[255], which they recently implemented in an interactive application [256]. In

a somewhat related manner, and closer to physics-based synthesis methods

62 Deep Learning

(see Section 2.2.4), in [257] they synthesise modal impacts from 3D shapes;

and in [258] they take a similar approach, addressing the acoustic transfer

as well. Regarding procedural audio-oriented work specifically, in [259] they

build a highly-engineered system to synthesise harmonic engine sounds using

a variant of the DDSP architecture and recently, in [260], they synthesised

footsteps and pouring water sounds using the DDSP time-varying FIR noise

synthesiser.

Another relevant approach related to differentiable digital signal pro-

cessing is sound matching and automatic synthesiser programming, where

a model aims to reconstruct a sound using parametric audio synthesis [261].

In other words, the model takes a target sound as its input, and outputs the

synthesiser parameters that reconstruct it. There has been research on this

direction such as, for instance, in [262] where they use normalising flows and

VAEs for this task; or in [263] where they used a novel convolutional neural

network to approximate sounds using a FM synthesiser. To support these

efforts, there have been open datasets pairing sounds with synthesiser con-

trols, such as [264], where they released a billion 4-second long synthesised

sound corpus along with the associated parameters used in their creation.

It is worth mentioning that, beyond neural audio synthesis, DDSP meth-

ods have been also used to model audio effects and audio production pro-

cesses. For instance, they have been used to model dynamic compressors

[265], automatic Disc Jockey (DJ) transitions [266], retrieve audio effect pa-

rameters from recordings [267], or distortion modelling in the context of data

augmentation for automatic speech recognition [268], to enumerate some ex-

amples.

3.4 Chapter Summary 63

3.4 Chapter Summary

Deep learning techniques have recently achieved state-of-the-art performance

in diverse disciplines for multiple tasks, ranging – for instance – from speech

recognition [269] to image generation [175, 176] or natural language under-

standing [171]. Generative deep learning refers specifically to a series of deep

learning architectures designed to generate data that resembles the training

data of a dataset.

This chapter summarises those techniques, with particular emphasis on

deep learning architectures relevant to audio generation – also called neural

audio synthesis [180]. The chapter also addresses differentiable digital signal

processing, which employs gradient descent to optimise DSP components

(such as the ones discussed in Chapter 2), often embedding them within

neural networks. Chapters 5, 6 and 7 of this thesis will use the methods

introduced in this chapter, but bringing them to the sound effect synthesis

domain, and assessing their performance for this task.

64 Deep Learning

CHAPTER 4

EFFECTIVE DSP TECHNIQUES: MODAL

SYNTHESIS

4.1 Introduction

Going back to Chapter 1 – the introduction of this thesis – it was outlined

that one of the possible causes hampering a wider adoption and spread of

procedural audio models according to [9] is the perceived plausibility (i.e., the

“realism”) of the synthesised sounds. This chapter investigates the suitability

of classic (i.e., non-neural network based) DSP techniques, such as the ones

described in Chapter 2, evaluating them from a perceptual standpoint in

order to assess whether or not they can be perceived as “synthetic”.

More specifically, this chapter addresses filter-based modal synthesis [56,

22], and evaluates its perceptual performance against pre-recorded samples

for a series of impact sounds in a listening study. Filter-based modal synthe-

sis is a technique derived from physical models which is especially indicated

for the synthesis of percussive sounds [56, 22], and can be seen as a spe-

66 Effective DSP Techniques: Modal Synthesis

cial case of subtractive synthesis. From a high-level perspective, filter-based

modal synthesis uses M narrow parallel filters with their center frequencies

defined by, for instance, the frequency peaks extracted from the spectral

analysis of a target sound. The resulting sound obtained by filtering white

noise through those M filters is subtracted from the original sound source,

obtaining a noisy sound envelope from it. The final sound is obtained by

combining those two sounds (the result from the filters, also know as the de-

terministic part of the signal, and the extracted noise envelope, also known

as the stochastic part or the residue of the signal) together, summing them in

the time-domain. Considering this method uses time-invariant filters and a

pre-recorded extracted residue, its computational burden is compatible with

real-time scenarios such as video games, making it an attractive method in

this context.

Hit or impact-based sounds are the acoustic consequence of physical col-

lisions. Changes in an object material or size will produce changes to the

resulting impact sound. For games or interactive applications with hundreds

or thousands of interactable assets, such as open world games or VR experi-

ences, combinatorial explosion awaits the sound designer hoping to use pre-

recorded samples to design any particular scenario where assets collide [8].

Thus it is desirable, in the context of game audio, to synthesise such sounds

in order to overcome those potential time (i.e., designing all the sounds)

and storage (i.e., disk space needed to store them) burdens. This chapter

addresses the first research question of this thesis (RQ 1), aiming to assess

whether or not it is possible for listeners to detect synthesized impact sound

effects using filter-based modal synthesis from pre-recorded samples.

4.2 Method 67

4.2 Method

As outlined in Section 2.2.4.3, there are multiple methods to extract the

modal information of a system. Modes are the individual sinusoidal frequen-

cies to which an object vibrates. Impact (or percussive) sounds are charac-

terised by a series of decaying modes resulting from striking the object that

produces the sound [56]. As an example, Figure 4.1 depicts the waveform

(top) and the spectrogram (bottom) of a recorded sound resulting from strik-

ing a coffee mug, where the horizontal straight lines in the spectrogram are

the modes (or partials) of the sound.

Figure 4.1: Waveform (top) and magnitude spectrogram (bottom) of a
recorded coffee mug impact sound.

68 Effective DSP Techniques: Modal Synthesis

To extract the modes, it is possible, for instance, to simulate the deforma-

tion of objects being struck by performing a system eigendecomposition [55].

However, this chapter adopts an approach derived from physically informed

sonic modelling (PhISM) [56], where the modes are extracted from an impact

recording by using spectral analysis. This approach allows for the relatively

simple extraction of the modal information of any impact recording, granting

the source sound exhibits clear modes when struck.

More specifically, to extract the modes from a recorded sound, the code

provided by [270], written in the ChucK programming language [117], is used.

The process consists of computing a STFT with an FFT of size LFFT =

16384, a hop size of Lhop = LFFT/8 and a Blackman-Harris window of size

Lwindow = LFFT/4 to extract an user-defined M modes. The modes are

computed by detecting the largest peaks in the the frame-averaged magnitude

spectrum. Once extracted, these peaks are sorted in pairs (mode frequency

in hertz, amplitude) and their amplitudes normalised to a [0, 1] range, where

1 corresponds to the most prominent mode in the analysed sound. Those

frequency and amplitude pairs represent the deterministic portion of the

signal. The extracted modes are then subtracted from the original sound

in the frequency domain, obtaining the residue by computing an IFFT. The

residue, which represents the stochastic component of the signal, is stored

in an audio file and it is triggered alongside the deterministic component in

order to synthesise the final output signal.

4.3 Experiments 69

4.3 Experiments

To evaluate the synthesis method through a listening study, nine sounds will

be recorded from materials that exhibit clear modes when struck. The choice

of the materials is constrained to those that are a) likely to be suitable for

modelling with modal synthesis (i.e., they exhibit clear frequency-invariant

modes when struck); b) relevant to game audio (i.e., they are common ma-

terials that could appear in interactive environments).

These materials are:

• Ceramic (2 instances): a plate and a coffee mug.

• Glass (3 instances): an empty bottle, a water glass and a pint glass.

• Metal (3 instances): a flask and two metal lids of different sizes.

• Wood (1 instance): a short wooden rod.

The nine objects are depicted in Figure 4.2. The objects are struck using

a metal spoon, and the resulting audio is recorded using a Zoom H6 handheld

recorder at ≈15cm from the sound source, using the built-in XY capsules.

All sounds are recorded at 44.1 kHz/24 bit and downmixed to mono. The

materials are struck multiple times and one representative impact is selected

in order to analyse it. 100 modes are then extracted from each of the objects,

which are subtracted from the original recording to generate the residue, as

described above.

As with the analysis code, the modal synthesizer is also programmed in

ChucK [117], using a modified version of a modal synthesizer found in [270].

The sound is synthesised by shaping white noise with an ADSR envelope and

70 Effective DSP Techniques: Modal Synthesis

Figure 4.2: Overview of the objects used to record the target sounds, includ-
ing ceramic, glass metal and wood materials.

filtering it through a series of IIR resonant biquad bandpass filters using the

built-in ChucK “ResonZ” class,1 setting their center frequencies and ampli-

tudes to those resulting from the modal analysis. The result of the filtering

operation is summed, in the time-domain, with the extracted residue – which

is stored in an audio buffer – producing the final output. The synthesiser

responds to a user’s “on-click” events with a new impact sound for each click.

Since the DSP components used to synthesise the sounds are interpretable

(i.e., IIR filters and audio buffers), it is possible to randomise the signal each

time an output is generated. The aim of this randomization is to create

a natural variation when comparing any two hits. This is desirable in the

context of game audio, where, as outlined above, it is common to use several

audio clips to sound design the same in-game interaction in order to avoid

repetition [8, 5]. For each mode, F , the randomisation scheme includes:

1https://chuck.stanford.edu/doc/program/ugen_full.html#ResonZ

https://chuck.stanford.edu/doc/program/ugen_full.html#ResonZ

4.3 Experiments 71

the individual mode frequency Ffreq, the individual mode amplitude Famp,

the filter Q factor FQ; and also the residue playback speed Srate (hence, its

pitch), and the gain that scales the deterministic Dgain and stochastic Sgain

components. The level of randomization is different for each of the materials.

Thus, for each impact sound, the output pulse code modulation signal y is

defined as:

y =

(
Dgain ·

M∑
m=1

τm(Ffreq, Famp, FQ)

)
+ Sgain · φ(Srate) (4.1)

where τm is the signal resulting from processing white noise with the m-filter,

and φ is the residue. This process is depicted in Figure 4.3.

In order to produce the synthesised sounds, a live performance of the

modal synthesiser is recorded. Specifically, an audio file, ranging from 3

to 6 seconds in length and comprising a series of consecutive hits for each

object, is produced. Since the synthesized versions do not have any reverber-

ation, as they were not recorded in any physical environment (i.e., they are

synthesised, and therefore “dry”), and to avoid any potential biases in the

perceptual evaluation, an impulse response of the room where the original

source sounds were recorded is created. The impulse response is used by

convolving it with the synthesised sounds, in order to simulate the acoustic

environment of the recorded sounds. An example of the synthesised sounds

for each of the different materials is depicted in Figure 4.4. It is worth men-

tioning that, while the sounds for each of the materials are synthesised using

the same modal data, it can be seen that each of the individual impacts in

the waveform and spectrogram pairs are slightly different from each other,

thanks to the aforementioned randomisation scheme.

72 Effective DSP Techniques: Modal Synthesis

Figure 4.3: Diagram of the modal analysis/synthesis process. An impact
sound is analysed to extract its deterministic and stochastic components.
During the synthesis stage, the deterministic component is synthesised by
shaping a white noise signal with an ADSR envelope, filtering it through M
bandpass filters, summing them together, and scaling the output by a gain
factor. The stochastic component is built by playing the residue back, setting
the playback rate to a variable range, and also scaling the output by a gain
factor. Both outputs from the deterministic and stochastic components are
summed together to render the final synthesised audio.

The recorded and synthesised sounds as well as the code for the modal

synthesiser can be found at the project repository.2

4.4 Evaluation

4.4.1 Metrics

In order to evaluate whether the synthesised sounds can be perceived as

“synthetic” (i.e., not plausible), a listening study to assess their performance

2https://github.com/adrianbarahona/SMC-Conference-2019_

Perceptual-Evaluation-of-Modal-Synthesis-for-Impact-Based-Sounds/

https://github.com/adrianbarahona/SMC-Conference-2019_Perceptual-Evaluation-of-Modal-Synthesis-for-Impact-Based-Sounds/
https://github.com/adrianbarahona/SMC-Conference-2019_Perceptual-Evaluation-of-Modal-Synthesis-for-Impact-Based-Sounds/

4.4 Evaluation 73

Figure 4.4: Waveform (top) and magnitude spectrogram (bottom) pairs of
the synthesised impact sounds for each of the objects (i.e., materials) consid-
ered. The individual impacts are generated by triggering the synthesiser and
randomising multiple properties of the deterministic and stochastic compo-
nents of the sound, effectively creating natural variations between the im-
pacts.

is designed. To this end, the RS (real or synthetic) listening test guidelines

[271] are employed. The RS listening test describes a series of guidelines

to perform subjective evaluation when comparing real recordings of musi-

cal instruments and algorithms aimed at reproducing the real instrument

behaviour. In other words, it establishes a test and guidelines to inquire

74 Effective DSP Techniques: Modal Synthesis

whether or not synthesised sounds can be discriminated from recording sam-

ples. While the test was originally proposed in the context of the subjective

evaluation of musical instruments, there is nothing that prohibits its use in

the context of sound effects.

To analyse the results and evaluate the statistical significance of the lis-

tening study outcomes, a one-sample parametric t-test on the participants’

classification accuracy is conducted. The the participants’ accuracy is defined

as the percentage of correctly labeled sounds (i.e., recorded sounds labelled as

recorded and synthesised sounds labelled as synthetic). The null hypothesis is

that there would be no difference between the two systems (i.e., the recorded

and synthesised sounds are perceived similarly), thus the participants will

perform as a classifier with 50% accuracy, akin to random guessing. The

alternative hypothesis is that participants can reliably distinguish between

recorded and synthesised sounds. The t-value of the participants’ accuracy

is computed as follows [272]:

t =
X − µ

S√
n

(4.2)

where X and S are the mean and standard deviation of the participants’

accuracy respectively, µ is the hypothetical mean (50% in this case) and n

is the sample size. The calculated t-value is used as a foundation for making

inferences through the application of Bayes Factor Analysis (BFA). Bayesian

hypothesis testing is widely regarded as superior to the frequentist variety,

with the former allowing for finding evidence in favour of the null hypothesis

(“no difference between systems”) if the data suggest as much [273]. The

Bayes factor BF10 resulting from the BFA can be interpreted using Table 4.1

4.4 Evaluation 75

Table 4.1: Bayes factor BF10 interpretation for hypotheses H1 and H0.

Bayes factor BF10 Interpretation

>100 Extreme evidence for H1

30 – 100 Very strong evidence for H1

10 – 30 Strong evidence for H1

3 – 10 Moderate evidence for H1

1 – 3 Anecdotal evidence for H1

1 No evidence
0.33 – 1 Anecdotal evidence for H0

0.1 – 0.33 Moderate evidence for H0

0.03 – 0.1 Strong evidence for H0

0.01 – 0.03 Very strong evidence for H0

< 0.01 Extreme evidence for H0

[274, 275], which summarises how two hypotheses H1 (e.g., difference between

systems) and H0 (e.g., no difference between systems) compare.

Apart from the BFA, the the RS listening guidelines are also followed,

evaluating the listening study results employing two more metrics: the dis-

crimination factor d and the F-measure. In a binary classification problem

(e.g,, discriminating between real and synthesised audio), the discrimination

factor d is defined as [276]:

d =
PCS − PFP + 1

2
(4.3)

where PCS is the ratio in a 0 − 1 range of correctly detected synthesized

sounds, and PFP the ratio of false positives (recorded samples perceived as

synthetic). For d values below 0.75, the two sound groups compared are

considered indistinguishable from each other. Values of d around 0.5 are not

different from random guessing.

The F-measure, which is favoured over the discrimination factor d by

76 Effective DSP Techniques: Modal Synthesis

[271], especially when the number of real and synthetic samples is not equal,

is defined as:

F-measure =
(β2 + 1) · Precision · Recall

β2 · Precision + Recall
(4.4)

where precision is defined as

Precision =
PCS

PCS + PFP

(4.5)

and recall defined as

Recall =
PCS

PCS + PFN

(4.6)

where again PCS is the number of correctly detected synthesized sounds, PFP

the number of false positives (recorded samples perceived as synthetic), PFN

the number of false negatives (synthetic sounds labeled as recorded) and

β = 1 is a standard choice. The interpretation of the F-measure values is

similar to the d values.

Apart from the evaluation metrics, the RS listening test also proposes

a series of guidelines to carry out a successful listening study, called the

RS procedure [271]. These guidelines recommend recruiting 20 participants

for the listening study with a diverse range of expertise in the instrument

being modelled, including experts. Since the present study is not aimed at

modelling musical instruments but sound effects instead, the level of expertise

in sound design is considered to be equivalent to this criterion. The guidelines

also suggest employing a clear user interface to label the sounds, where the

user should label each sound as either “recorded” or “synthesised”. To test

the attention and reliability of the provided answers, they also recommend to

4.4 Evaluation 77

include a clearly synthesised sample (called the “acid test”), in anticipation

that any user who is maintaining attention during the test would label it as

synthetic. Ideally, the number of real and synthesised stimuli should be equal

(i.e., the same number of synthesised and recorded sounds are presented to

the users). Finally, the test should not last longer than 15 minutes, where

each sound is only heard once before labelling, and the test should be carried

out in a controlled environment using headphones.

4.4.2 Listening Study

In preparation for the listening study, the original non-synthetic recordings

(the sounds used to extract their modal data from) are sliced to generate one

audio file for each object comparable in length to the performed synthesised

sounds, such as the ones depicted in Figure 4.4. All audio files (recorded an

synthesised) were normalised to 0 LU loudness and exported to Ogg Vorbis.

The choice of Ogg Vorbis instead of uncompressed WAV was determined

by the technical limitations of Qualtrics, the questionnaire platform used.3

However, this should not drastically affect the outcome of the listening study

[277]. No further processing was applied to the audio files.

Contrary to the RS guidelines, in this study the test was not carried

out in a controlled listening environment. This is due to the listening study

being conducted online with no information of the playback device used by

the participants, although they were encouraged to use headphones. This

however may help to replicate more closely the playing environment in the

context of video games, where the participants are likely to use their own

3https://www.qualtrics.com

https://www.qualtrics.com

78 Effective DSP Techniques: Modal Synthesis

equipment to play the game or interactive application. The participants are

asked to identify, stimuli by stimuli, whether the sound played is recorded or

synthesized. The user interface from the study is depicted in Figure 4.5. As

suggested by the RS guidelines, a minimal interface that clearly conveys the

purpose of the test is designed.

Figure 4.5: Screenshot of the online test interface presented to the partici-
pants in the listening study. Participants are asked to listen to the stimuli
once and select whether they think the sound is either recorded or synthe-
sised.

Participants classify the samples without being asked to specify the ma-

terial to which a sample belongs. The participants are presented with the

same 18 sounds (9 recorded and 9 synthesized), with their order shuffled, and

they are asked to listen to each sound only once. As suggested in the RS test

guidelines, an acid test (i.e., a clearly synthesized sound, which in this study

4.4 Evaluation 79

is a burst of white noise) is included to act as an attention control. The

participants are also asked for their demographic background and their level

of expertise in sound design, ranked from 1 (no expertise) to 5 (professional).

The online test can be accessed at the online platform.4 The consent form

and the demographic questions that participants were asked can be found in

the Questionnaires appendix.

4.4.3 Participants

The participants were recruited both at the University of York (e.g., peers)

and online (e.g., audio professionals). A total of 19 participants, 12 males

and 6 females (1 participant did not disclose this information) with ages

between 18 and 58 and a diverse level of self-reported expertise in sound

design participated in the listening study. A breakdown of the participants

level of expertise in sound design is depicted in Figure 4.6.

4.4.4 Results

All participants correctly labelled the acid test as synthetic, so no partici-

pant’s data were discarded at this stage, and the acid test was removed from

the analysis of the results. The numerical results of the RS listening test

can be found in Table 4.2. A visualisation of these results is depicted in

Figure 4.7. It can be clearly seen that both descriptive statistics (the dis-

crimination factor d and the F-measure) are below the 0.75 threshold (no

difference between systems) and their means closer to the 0.5 mark, which

is equivalent to random guessing. Thus, the listening study results suggest

4https://york.qualtrics.com/jfe/form/SV_0Ipmi7JUFd3FaVT

https://york.qualtrics.com/jfe/form/SV_0Ipmi7JUFd3FaVT

80 Effective DSP Techniques: Modal Synthesis

Figure 4.6: Self-reported level of expertise in sound design of the 19 partici-
pants in the listening study.

Table 4.2: RS listening test discrimination factor d and F-measure (mean±sd
and maximum value) results for all participants.

d Max d F-measure Max F-measure
0.5 ± 0.12 0.72 0.43 ± 0.16 0.73

that recorded and synthesised sounds are indistinguishable from each other.

There is also a relatively low variance among the participants’ answers, as

can be seen in Figure 4.7.

Regarding the t-test and BFA results, a t-value of t = 1.911e−08 is com-

puted using the participants’ accuracy scores, µ = 50 and n = 19. The BFA

found moderate evidence in favour of the null hypothesis (BF10 = 0.237),

supporting the RS test outcome which indicates no difference between sys-

tems.

The listening study raw results broken down into the different materials

4.4 Evaluation 81

Figure 4.7: RS listening test results for all participants. The discrimination
factor d is depicted on the left, and F-measure on the right. For each plot,
the mean is annotated by a green triangle, while the median is annotated by
a horizontal orange line.

are also provided, represented in Table 4.3. The data suggest that some

material categories are harder to distinguish than others. For instance, the

synthetic version of the wood rod was successfully identified by 13 of the 19

participants. On the other hand, the synthetic version of the mug was only

identified by 4 of 19.

The data also suggest that the level of expertise in sound design was

not a decisive factor for identifying synthetic sounds. Participants with an

expertise in sound design ranked between 1 and 2 out of 5 obtain d = 0.48±

0.10 and F = 0.42 ± 0.14. Participants with the highest level of expertise in

sound design, 4 and 5 out of 5, score d = 0.55 ± 0.11 and F = 0.46 ± 0.17.

82 Effective DSP Techniques: Modal Synthesis

Table 4.3: RS listening test raw results broken down into the different ma-
terials. The left column represents the correctly labelled recorded sounds,
while the right column represents the correctly labelled synthesised sounds.

Material
Correctly
labelled

(as recorded)
Material

Correctly
labelled

(as synthesised)

R
e
co

rd
e
d Ceramic 66%

S
y
n
th

Ceramic 29%
Glass 54% Glass 37%
Metal 60% Metal 40%
Wood 68% Wood 68%

In fact, the participant who obtained the highest d and F-measure (0.72 and

0.73, respectively), has no expertise (i.e., they report 1 out of 5) in sound

design.

4.5 Use Case: Interactive Real-Time Proce-

dural Audio Models in a Virtual Environ-

ment

Since, as described at the introduction (see Section 4.1), the computational

burden of the evaluated system is compatible with real-time scenarios thanks

to the DSP components used, and given that the perceptual evaluation is

satisfactory for the system, a real-time demo of it is built to highlight its

usability in the context of game audio. To this end, the Unity game engine5

is used in order to design a virtual environment to deploy some of the modal

synthesiser configurations (i.e., some materials) employed in this chapter.

There are some other procedural audio models included, inspired by the

5https://unity.com/

https://unity.com/

4.5 Use Case: Interactive Real-Time Procedural Audio Models in
a Virtual Environment 83

Figure 4.8: Procedural audio demo indoor scene. To the left there are multi-
ple bars whose sound is produced using filter-based modal synthesis. To the
right there is a fan whose sound is designed using subtractive and modulation
techniques.

design principles proposed by [9].

The procedural audio models are implemented in the Unity engine using

the Chunity plugin, which allows for the use of the ChucK programming

language within the Unity game engine. The built-in Unity spatialiser is

used to render the sound within the game environment. The code for the

standalone ChucK code alongside the Chunity integration can be found at

the online project repository,6 and a video of the demo can be found online.7

The demo comprises two scenes: an indoor scene and an outdoor scene.

The indoor scene, depicted in Figure 4.8, consists of two procedural audio

models:

• Modal bars: The modal bars, depicted on the left, are built upon the

6https://github.com/adrianbarahona/Procedural_Audio_Chunity
7https://www.youtube.com/watch?v=1q5gbQq7CUw&

https://github.com/adrianbarahona/Procedural_Audio_Chunity
https://www.youtube.com/watch?v=1q5gbQq7CUw&

84 Effective DSP Techniques: Modal Synthesis

synthesiser and some materials evaluated in this chapter. Users are al-

lowed to select from 3 different materials in a drop-down menu, allowing

them to choose from two types of metal and glass. To take into account

the different bar lengths, principles from physically-inspired synthesis

are employed, where some physical characteristics of the sound source

are embedded into the synthesiser [22, 9]: the frequency of the modes

and the playback rate of the residue are adjusted, setting them higher

(faster for the playback rate) for smaller bars, and lower (slower for the

playback rate) for longer bars, by applying a global frequency modifier

to the modal center frequencies and playback rate.

To interact with the bars, users can click on top of them, triggering

an ADSR envelope and residue file, and therefore an impact each time

the system registers an on-click event. A “slide” interaction is also

implemented, where the residue is removed and the attack is slowed

to a user-defined range of the ADSR envelope that controls the noise.

Finally, to further reduce the computational burden of the system, via

the code users can the set the minimum and maximum of number of

resonators Mfilters (i.e., narrow IIR filters) to use, in the range Mfilters =

[20, 100], in case the demo needs to run on very limited hardware.

• Fan blade model: The fan model, depicted on the right, is built

by processing a continuous white noise stream through three parallel

bandpass filters. The amplitude of the synthesiser is modulated with a

sinusoidal oscillator to produce a distinct, “choppy” fan-blade sound.

A schematic of the model signal flow is depicted in Figure 4.9. Users

can interact with the model by increasing or decreasing the fan speed

4.5 Use Case: Interactive Real-Time Procedural Audio Models in
a Virtual Environment 85

Figure 4.9: Schematic of the fan blade model signal flow. A white noise
stream is passed through a series of bandpass filters and their amplitude is
modulated by a sinusoidal oscillator.

via a slider. The slider is connected both to the filters and sinusoidal

oscillator frequencies, thus increasing their overall pitch and amplitude

modulation rate controlled by the user-defined fan speed parameter.

Likewise, the outdoor scene, depicted in Figure 4.10, comprises two dif-

ferent procedural audio models, and creates a weather audio system:

• Wind model: For the wind model, a continuous white noise signal

is processed through two parallel bandpass filters. One of the filters

covers the lower end of the frequency spectrum, synthesising the wind

rumble. The other filter covers the higher end of the frequency spec-

trum, synthesising the sound of the wind against the tree branches.

The output amplitudes from both of the filters are gently modulated

by a sinusoidal oscillator to create a natural variation to the wind am-

plitude envelope. Users can interact with the model by using a “wind

intensity” slider. The wind intensity affects the frequency and quality

Q of the filters and the sinusoidal oscillator frequency.

86 Effective DSP Techniques: Modal Synthesis

Figure 4.10: Procedural audio demo outdoor scene. The weather system is
comprised of two procedural audio models: a modulated subtractive synthe-
siser for the wind and a subtractive plus sample-based model for the rain
sounds.

• Rain model: The rain model uses lowpass and highpass filters to

shape a continuous white noise instance to create a frequency spectrum

comparable to rain sounds. The individual rain drops are generated by

triggering a short percussive finger snap recording. Users can control

the rain intensity using a slider, which affects the amplitudes of both

the output from the filters and the finger snap recording, and the cutoff

frequency of the lowpass filter. The intensity slider also controls the

trigger rate of the recording, increasing its frequency of occurrence the

more intense the rain is (i.e., the density of drops increases with the

rain intensity, and vice-versa). Somewhat similar to the wind model,

the rain intensity value is modulated by a sinusoidal oscillator to create

a non-static amplitude envelope.

4.6 Chapter Summary 87

4.6 Chapter Summary

The perception of synthesised sound effects, more specifically their perceived

plausibility, is an issue that may hamper the adoption of procedural audio

[9], and creating plausible procedural audio models may be challenging and

time-consuming for sound designers.

This chapter evaluates the perception of filter-based modal synthesis for

impact sound effects using a subjective evaluation method inspired by the

RS listening test [271], as well as supplementing this with an inferential-

statistical test called Bayes factor analysis (BFA). The RS listening test sug-

gests a series of guidelines and metrics aimed at carrying out a listening

study where participants are asked to discriminate between real and syn-

thesised sounds. Results show that, for the analysed materials, recorded

and synthetic samples are indistinguishable from each other. The BFA also

found moderate evidence supporting this outcome. Therefore, this chapter

addresses the first research question (RQ 1) of this thesis.

A demo of the modal synthesiser evaluated in this chapter is also pre-

sented, which runs in real-time within a video game engine, highlighting its

suitability in the context of game audio. The demo also introduces other

procedural audio models (a fan blade and a weather system) running also in

real-time and inspired by the design principles of [9].

The process to build a procedural audio model using filter-based modal

synthesis can be further streamlined. This process consists of three steps:

1. The election of the target sound to be analysed, which can be either

recorded on demand or sourced from pre-recorded sound libraries;

88 Effective DSP Techniques: Modal Synthesis

2. The analysis of the target sound, extracting its modal information and

residue;

3. The synthesiser model, where the end user selects the number of res-

onators Mfilters to employ, their randomisation range, and their control

scheme.

Those three steps may be unified to build a tool sound designers can

use and understand end-to-end, directly transforming a target sound into a

deployed procedural audio model. There are, however, some improvements

to the modal synthesiser in terms of efficiency. In this chapter, for the lis-

tening study, a fixed number of filters of Mfilters = 100 is set. It is desirable

nonetheless to establish an amplitude threshold value where filters whose am-

plitude fall under this value are discarded, leading to a more compact model

(i.e., a model that employs less filters and therefore less computational re-

sources). Another consideration could be the effect of frequency masking,

where sounds that are either played in a very busy soundscape or far away

from the user could potentially reduce their number of filters, which can be

somewhat equivalent of the concept of “level of detail” in computer graphics,

where the polygon count or texture quality of 3D models increases as a user

approaches them [9]. These two improvements (the optimal number of filters

per material and the optimal number of filters as a variable of distance or

frequency masking) are left as future work.

Yet another improvement to the modal synthesiser could be the extrac-

tion of individual modal decay times. As it can be clearly appreciated in

Figure 4.1, each of the modes have a distinct decay time (i.e., the individual

frequencies “fade out” at a different rate). However, the evaluated modal

4.6 Chapter Summary 89

synthesiser does not take this factor into account. This effect is compensated

for somewhat by the mode amplitudes (i.e., modes with a higher amplitude

will decay slower, as can be seen in Figure 4.4). While the perceptual eval-

uation suggests the synthesised sounds are indistinguishable from recorded

samples in isolation, the individual mode decay time may be desirable in

situations where the aim is to resynthesise the target sound with precision.

This may be especially relevant to materials that performed comparatively

worse, such as wood (see Table 4.3).

Regarding the evaluation, a different approach could have been to com-

pare recorded and synthesised sounds side by side, ranking them in terms of

perceived plausibility. However, in this chapter it is opted to compare them

independently – the experimentees are shown a single sound at a time, and it

is evaluated whether or not that sound, in isolation, is perceived as synthetic.

The motivation of taking this approach relies in the idea that if pre-recorded

and synthesised impact sound effects are indistinguishable from each other

in isolation, the synthesised sounds can be used without perceptual loss of

authenticity and obtaining all the benefits procedural audio presents. While

the synthesised version derived from analysing a sound may or may not be

an exact reconstruction of the original pre-recorded sample, it is remarkable

that it still could be employed to sound design plausible sonic interactions,

assuming the perceptual evaluation is favorable for the synthesised sounds.

Finally, while the listening study outcome suggests that the use of filter-

based modal synthesis is a perceptually effective technique in this context,

this is evaluated only for a subset of sounds (i.e., impacts) with certain

characteristics (i.e., objects that exhibit clear modes when they are struck),

90 Effective DSP Techniques: Modal Synthesis

and for time-invariant filters (i.e., the filters do not change their frequency

bands dynamically).

Despite this technique having the potential of being relatively easy to

adopt by sound designers for creating bespoke procedural audio models,

other sounds or types of interactions (e.g., 1 : 1 interactions using haptic

controllers) may need different techniques, which could be time-consuming to

craft, or their result unsatisfactory from a perceptual standpoint. Moreover,

the rest of the procedural audio models described in Section 4.5 are built us-

ing the design principles in [9], falling under the “piecewise” or “brute force”

synthesis category (see Section 2.2.1.2), where multiple DSP components are

combined until the resulting sound is perceptually satisfactory, thus relying

on the skill of the sound designer. Additionally, it has been shown that,

in most cases and depending on the technique used, sound effects synthe-

sised using DSP may still lack plausibility compared to pre-recorded samples

[104, 17, 18].

Alternatively, machine learning (which, as described in Chapter 3, is

rooted in the concept of training computational models via examples [119])

may be an attractive solution to the problem of sound synthesis. As out-

lined before, recent breakthroughs in deep learning such as the emergence of

WaveNet [19] (see Chapters 1 and 3) closed the gap with human performance

by 50%, outperforming the previous DSP-based state of the art for English

text-to-speech. Thus, to address the above issues and motivated by these

recent advancements in generative deep learning, Chapters 5, 6, and 7 of

this thesis explore data-driven methods capable of potentially synthesising

arbitrary sounds, and opening up the possibility of novel interactions and

4.6 Chapter Summary 91

sound transformations.

92 Effective DSP Techniques: Modal Synthesis

CHAPTER 5

CLASS-CONDITIONAL NEURAL AUDIO

SYNTHESIS OF SOUND EFFECTS

5.1 Introduction

As described in Chapter 3, from a high-level perspective, generative deep

learning techniques are capable of creating new data in the style of the data

on which they are trained. Generative adversarial networks (GANs) [155]

have performed well on tasks in the field of computer vision (e.g., [160, 161,

162, 163]), and they have been also applied to audio, with architectures such

as WaveGAN [200], which models waveforms directly, or GANSynth [201],

which uses an intermediate spectral representation. While GANSynth [201]

could be potentially used to generate sound effects, the architecture focuses

on modelling harmonic musical notes, which differs from the nature of most

sound effects as they do not necessarily exhibit an harmonic spectrum. On

the other hand, in [278] they use a WaveGAN architecture [200] to synthesise

drum sounds within a virtual environment, a case that is closely related to the

94 Class-Conditional Neural Audio Synthesis

synthesis of sound effects for video games or interactive applications. Thus,

taking inspiration from [278], this chapter employs a WaveGAN architecture

for the class-conditional synthesis of sound effects, as defined on p. 8.

More specifically, the potential user controllability over the synthesised

audio is refined by using a conditional WaveGAN architecture [223]. Unlike

the original WaveGAN architecture [200], which produces signals without

any control from users, conditional architectures – such as conditional GANs

[279] – incorporate a label (or a series of labels) that allow for the global latent

conditioning of the model. For instance, if an unconditional model is trained

on a corpus of knocking sound effects with different emotional intentions,

it will synthesise a sound with a random emotional intention each time the

generator is called. However, if an emotional intention label is added to the

model, the model can be prompted to synthesise a knocking sound effect

using any of the dataset’s emotional intentions (i.e., any of the conditioning

labels), with the user specifying it at the time of generation. This allows the

user to achieve finer control over the synthesis without the need to rely on

multiple parallel models – each trained on a different class of the dataset.

In this chapter, the focus is set on the synthesis of knocking sound ef-

fects with emotional intention. Knocking sound effects, which are are usually

composed from one or more impact-sounds against a surface, are a key el-

ement in storytelling as they are often used as a transition element. For

example, in films or video games, a knocking action can express the emo-

tions of the person at the door, as well as create expectations in the audience

or player about the possible reactions of a player or character hearing the

knock. Knocking sound effects are an interesting subject of study for sound

5.2 The Knocking Sound Effects Dataset 95

synthesis since they have a distinctive frequency-domain component (i.e.,

the individual knock synthesis derived from the material of the door, the

force of the impact, etc.) as well as a highly articulated time-domain com-

ponent (i.e., the arrangement and relationship of the individual knocks in

time, forming a knocking action). While impact sounds such as knocking

sound effects could be synthesised using modal synthesis [22] as shown in

the previous Chapter 4, novel architectures in machine learning, and more

specifically deep learning, offer the possibility of synthesising sounds using

alternative methods, introducing control schemes such as label conditioning

(e.g., emotional intention) as previously outlined. Moreover, unlike Chap-

ter 4, which is focused on one-shot impacts, here complete knocking actions

are modelled, learning the emotional intention from the data itself and also

not necessarily limiting the synthesiser to a particular subset of sounds (i.e.,

sounds that exhibit clear modes as in Chapter 4). Thus, the modeling here

aims not only to generate plausible knocking sound effects but also to create

knocking actions that resemble the emotional intention behind the person

knocking on the door, going further than Chapter 4.

5.2 The Knocking Sound Effects Dataset

Generative adversarial networks, such as WaveGAN [200], need large amounts

of data to train, and can potentially increase their performance the more

data they are trained on [159]. Since knocking sound effects performed with

emotional intention are not a common category of sounds, and in order to

synthesise high-quality sound effects that convey the intended emotions, a

Foley artist is commissioned to create a dataset. Specifically, Ulf Olausson

96 Class-Conditional Neural Audio Synthesis

is asked to record a dataset of knocking sound effects with emotional inten-

tion at the FoleyWorks studios in Stockholm.1 Inspired by previous work on

knocking sounds [280], five basic emotions [281] are chosen to be portrayed

in the dataset: anger, fear, happiness, neutral and sadness.

In order to portray a plausible rendition of the emotions, the Foley artist

is given the following scenarios to perform the knocking actions:

• Anger: telling a flatmate for the 4th time to turn down the very loud

music.

• Fear: alerting a neighbour of a possible risk.

• Happiness: telling a flatmate that they won a prize.

• Neutral: a parcel delivery.

• Sadness: telling a friend that someone passed away.

The Foley artist is also asked to perform diverse interpretations of the

provided scenarios in order to produce a wider variety of sounds. The dataset

was recorded with a Rode NT1 microphone, performing the knocks to a closed

wooden door inside the Foley studio facilities, as depicted in Figure 5.1.

A total of 600 knocking actions (120 actions per emotion) are recorded.

Here, “knocking action” refers to a sequence of individual knocks that con-

vey a certain emotion. 20 actions per emotion were discarded to filter out

undesirable noise or artifacts. The final 500 audio files are trimmed so each

action starts on the first knock onset and finish on the last knock decay. The

dataset can be accessed at the online repository [282].2

1http://www.foleyworks.se/
2https://doi.org/10.5281/zenodo.3668503

http://www.foleyworks.se/
https://doi.org/10.5281/zenodo.3668503

5.3 Method 97

Figure 5.1: Microphone placement during the knocking sound effect dataset
recording. The knocks are performed to a closed wooden door.

5.3 Method

The proposed method consists of using a conditional WaveGAN architecture

[200, 223] conditioned on the emotions of knocking sound effects to produce

raw audio (i.e., the architecture outputs audio samples directly, without using

any intermediate representation such as spectrograms), learning to synthe-

sise those sound effects alongside their intended emotion from the training

98 Class-Conditional Neural Audio Synthesis

Figure 5.2: Conditional WaveGAN architecture. The discriminator – or critic
in this particular case –, depicted on top, takes a signal and a conditioning
label and processes them through a series of strided convolutions to make
predictions of the “realness” or “fakeness” of the input data. The generator,
depicted at the bottom, takes a noise vector from a normal Gaussian dis-
tribution N (0, 1) alongside a label, and processes them through a series of
strided transposed convolutions to produce a signal.

dataset described in Section 5.2. Once trained, the model is able to synthe-

sise knocking sound effects with emotional intention by simply sampling from

the latent space and specifying the target emotion at the time of generation.

5.3.1 Architecture

The conditional WaveGAN architecture used, depicted in Figure 5.2 is com-

prised of two neural networks: the discriminator and the generator.

5.3 Method 99

The discriminator takes two inputs: a signal of length Lsignal, which in

this case it is a real or synthesised knocking sound effect; and a conditioning

label, which in the particular case of this study is an integer number in a

[0, 4] range, representing each one of the possible values one of the emotions

in the dataset. The label is processed through an embedding layer with a

hidden size of 20 ·Nlabel, where Nlabel is the number of labels in the dataset (5

in this case, thus 20 ·Nlabel = 100). Its output is processed through a linear

layer with a hidden size of Lsignal immediately after. The processed label

is then concatenated along its channel axis with the unaltered input signal.

The concatenated tensor (i.e., the embedding layer concatenated with the

input signal) is processed through 6 blocks of one-dimensional convolutions,

followed by Leaky ReLU activations. Each one-dimensional convolutional

layer has a kernel size of 25, stride 4 and 64, 128, 256, 512, 1024 and 2048

filters respectively; and a α = 0.2 for all Leaky ReLU activations. The output

from the last convolutional layer is flattened and processed through a linear

layer comprised of a single neuron to make the discriminator predictions.

through

Similarly, the generator also receives two inputs: a 100-dimensional la-

tent vector z comprised of values drawn from a normal Gaussian distribution

z ∼ N (0, 1); and a global conditioning label similar to the conditioning la-

bel in the discriminator. The latent vector z is processed through a linear

layer with a hidden size of 215, followed by a batch normalization operation

and a ReLU activation. The label is processed exactly as in the discrim-

inator. The output from processing the latent vector z and the label are

concatenated along their channel axis, and processed through 5 blocks of

100 Class-Conditional Neural Audio Synthesis

transposed one-dimensional convolutional layers, followed by ReLU activa-

tions and batch normalisation operations. The transposed one-dimensional

convolutional layers have a kernel size of 25, stride 4 and 1024, 512, 256, 128

and 64 filters respectively. The result is processed by a last transposed one-

dimensional convolutional layer with kernel size 25, stride 4 and a single

filter. Finally, the output from this layer is scaled to a [−1, 1] range with a

hyperbolic tangent (Tanh) activation in order to produce the audio signal.

While most of the architectural considerations proposed in the Wave-

GAN paper [200] are followed, it was observed in pilot experiments that

the proposed phase shuffle operation worsened the output of the model with

this particular dataset, thus it was discarded. The Keras implementation of

the conditional WaveGAN architecture used in this study is available at the

online repository.3

5.3.2 Training and Inference

During training, for every training iteration, the initial step involves opti-

mising the discriminator. To this end, a batch of knocking sound effects is

synthesised using the generator and passed to the discriminator alongside

the labels used to generate the audio. The logits (i.e., the predictions) of the

discriminator are computed for this fake data. Then, real recordings from

the dataset are passed alongside their corresponding emotion label to the

discriminator and its predictions are registered as well. To assess the dis-

criminator performance a WGAN-GP loss function [157] is used. Thus, the

discriminator (which is also called critic when using Wasserstein distance

3https://www.github.com/adrianbarahona/conditional_wavegan_knocking_

sounds

https://www.github.com/adrianbarahona/conditional_wavegan_knocking_sounds
https://www.github.com/adrianbarahona/conditional_wavegan_knocking_sounds

5.3 Method 101

[156], as in this case) is incentivised to correctly label the “realness” and

“fakeness” of real and synthetic data respectively (i.e., to output values that

separate their distributions as far apart as possible) by its objective function.

As suggested in [155], the discriminator is trained for Dsteps steps per training

step.

The generator is trained after the discriminator, during the same train-

ing step. To do so, a batch of synthesised sound effects is generated and

passed – alongside the labels used to generate them – to the discriminator

in order to obtain its predictions. The generator is incentivised to “fool” the

discriminator by its objective function, aiming to obtain predictions from

the discriminator that are as close as possible to the real data (i.e., reducing

the Wasserstein distance between the two distributions). This process (i.e.,

training the discriminator and the generator) is repeated for Nepochs epochs.

Both the generator and the discriminator process data in chunks of size

Lsignal. Thus, the input of the discriminator and the signal produced by the

generator are fixed and cannot be extended in time or altered. In practice,

this constraint implies that the length of the generated audio must fall within

the range of [0, Lsignal]. For shorter sounds (i.e., sounds with a length of

L < Lsignal), the generator will ideally produce silence from the end of the

sound to the end of the generated signal of length Lsignal.

During inference, the discriminator can be discarded as it fulfilled its

purpose of training the generator, which is ready to be used as a neural

audio synthesiser. To synthesise a knocking sound effect of length Lsignal,

a 100-dimensional Gaussian noise latent vector z ∈ R100 is passed to the

generator, where z ∼ N (0, 1), alongside an integer in [0, 4], representing

102 Class-Conditional Neural Audio Synthesis

each of the 5 emotions, to obtain the signal.

5.4 Experiments

To later assess the performance of the proposed conditional WaveGAN ar-

chitecture, it is trained using the dataset introduced in Section 5.2. Con-

sidering the longer knocking action in the dataset is of 125 685 samples at

48 kHz, accommodating such a duration would require a very large architec-

ture configuration. Since the proposed configuration (see Section 5.3.1) is

able to process up to 65 536 samples, the sampling rate is halved to fit all

the possible training examples in the architecture, thus processing audio at

22 050 Hz. At this sampling rate, the longest sound in the dataset is of 62 843

samples. Thus, all sounds can fit in the architecture.

As described in Section 5.3.1, most WaveGAN architectural considera-

tions (e.g., kernel size or stride in convolutional layers) and hyperparameters

are used. However, during pilot experiments, it was found that using a

learning rate of 0.0002 (instead of 0.0001) for both the discriminator and

generator, and a batch size of 128 (instead of 64) helped the network con-

verge faster. The network is trained for Nepochs = 600K epochs, employing

an Adam optimiser, and using a WGAN-GP loss as described above. The

discriminator training steps are set to Dsteps = 5, as in the original WaveGAN

paper [200]. On a NVIDIA Tesla V100, the training process takes ≈72 hours.

Once trained, the generator model has a total of 73M parameters and a size

of ≈286 MB on disk.

During inference, the time required to synthesise a single batch signal

with an output length of 65 536 samples (around 3 seconds of audio at a

5.4 Experiments 103

Figure 5.3: Waveform (top) and magnitude spectrogram (bottom) pairs of
synthesised knocking sound effects with different emotions. Each column
represents a different instance of a synthesised sound effect with a particular
emotion. Each row contains contains the sound synthesised per emotion:
anger, fear, happiness, neutral and sadness respectively.

22 050 Hz sampling rate) is 66.9 ± 5.9 (mean ± sd) milliseconds on a con-

sumer GPU (NVIDIA GTX 1060), measured on a 100-run test. Alternatively,

the time required to synthesise a 100-batch signal with an output length of

65 536 samples each (around 3 seconds of audio each at a 22 050 Hz sampling

rate, or ≈5 minutes of audio if combined) is of 726.5 ± 12.5 (mean ± sd)

milliseconds on a consumer GPU (NVIDIA GTX 1060), measured also on a

104 Class-Conditional Neural Audio Synthesis

100-run test.

Examples of the synthesised sounds per emotion are depicted in Fig-

ure 5.3. Sound examples of both the recorded dataset and the synthesised

sounds can also be found at project website.4

5.5 Evaluation

To evaluate the performance of the proposed method we: 1) design a listen-

ing study aimed to assess both whether or not the synthesised sounds are

distinguishable from recorded samples and to understand how the intended

emotions are perceived; 2) extract and compare a series of acoustic features

from the knocking sound effects introduced in Section 5.2 and the synthesised

knocking sound effects produced by the model.

To this end, to compare the recorded and synthesised sounds in equal

number, a total of 500 knocking sound effects (100 sounds effects per emotion)

are synthesised.

5.5.1 Subjective Evaluation

A listening study is designed to assess the plausibility of the sounds synthe-

sised by the model, and to understand how listeners interpret the intended

and perceived emotions from both the recorded and synthesized sounds.

As in Chapter 4, to learn how the synthesised sounds are perceptually

perceived compared to the recorded dataset in terms of plausibility, the lis-

tening study is designed using the RS (real and synthetic) guidelines [283].

4https://www.adrianbarahonarios.com/conditional_wavegan_knocking_

sounds/

https://www.adrianbarahonarios.com/conditional_wavegan_knocking_sounds/
https://www.adrianbarahonarios.com/conditional_wavegan_knocking_sounds/

5.5 Evaluation 105

The listening test results are evaluated using the two metrics suggested by

the RS listening guidelines: the discrimination factor d and the F-measure.

Regarding the interpretation of both metrics, considering a [0, 1] scale, values

up to 0.5 are no different from random guessing, values between 0.5 and the

0.75 mark show no clear distinction between the recorded and synthesised

sounds, and values closer to 1 show the recorded and synthetic sounds are

clearly distinguishable from each other. Likewise, as in Chapter 4, the statis-

tical significance of the listening study outcome is evaluated by performing a

one-sample parametric t-test on the participants’ classification accuracy (i.e.,

the percentage of recorded and synthesised sounds labelled correctly). The

computed t-value is used to perform a Bayes factor analysis (BFA), where

the null hypothesis is that participants would not be able to differentiate

between the recorded and the synthesised sounds (i.e., there would be no

difference between systems), thus they would have a classification accuracy

of 50%, similar to random guessing. The alternative hypothesis is the op-

posite (i.e., participants can distinguish between recorded and synthesised

sounds). The Bayes factor BF10 resulting from the BFA can be interpreted

using Table 4.1 on p. 75.

Following the RS test guidelines [283], people with a diverse set of exper-

tise in the topic at hand (sound design, in this case) are recruited. A clear

interface is designed to ask the participants whether they consider a sound

is either recorded or synthesised, and they are asked to listen to each sound

only once. A clearly synthesised sound (called “acid test”) is also included

to ensure that participants are paying attention. The listening test is carried

out online. The participants are encouraged to use headphones, which could

106 Class-Conditional Neural Audio Synthesis

be comparable to the scenario of a person playing video games with their

own equipment.

Additionally, to understand how the emotions are perceived in both the

recorded and synthesised audio, the participants are asked to label the emo-

tion each of the stimuli represent the most, giving them the 5 considered

emotions (anger, fear, happiness, neutral and sadness) to choose from. The

participants are also asked to introduce their demographic information, and

to report their level of expertise in sound design ranked from 1 (no expertise)

to 5 (professional). A screenshot of the listening test interface used in the

listening study can be seen in Figure 5.4. The online listening study, hosted

in the Qualtrics platform, can be accessed online,5 and the consent form and

the demographic questions that participants were asked can be found in the

Questionnaires appendix.

Each participant is presented with a total of 51 sounds: 25 sounds are

recorded (5 per emotion), 25 sounds are synthesised (5 per emotion) and 1

sound is the “acid test”. The selection of sounds (i.e., the 50 sounds out of

the 1000 from both the recorded and synthesised corpus displayed to each

participant), and the order in which they are presented, are randomised

for each participant. The sounds are presented in their original sampling

rate: 48 000 Hz WAV for the recorded sounds, and 22 050 Hz WAV for the

synthesised sounds. While this discrepancy in sampling rates between the

recorded and synthesised sounds may affect the perceptual evaluation, the

original sampling rates are maintained since they can better represent the

performance of the proposed model against pre-recorded sounds.

A total of 22 participants (17 males, 5 females) with ages from 18 to

5https://york.qualtrics.com/jfe/form/SV_9HTTm9ggUIvt3Ct

https://york.qualtrics.com/jfe/form/SV_9HTTm9ggUIvt3Ct

5.5 Evaluation 107

Figure 5.4: Screenshot of the online test interface presented to the partici-
pants in the listening study. Participants are asked to listen to the stimuli
once and select whether they think the sound is either recorded or synthe-
sised, and to choose which of the 5 considered emotions the stimuli represent
the most.

58 participate in the listening study. A breakdown of the participants self-

reported level of expertise in sound design is depicted in Figure 5.5. One

participant failed to identify the “acid test” correctly, and therefore was

removed from the evaluation completely. Another participant did not label

the emotion of one stimuli, and therefore was removed from the evaluation

of the emotion labeling.

The results from the RS listening test are displayed in Table 5.1. The raw

percentage of participants who correctly labeled the recorded and synthesised

sounds can be seen in Table 5.2. A visualisation of the RS test results with the

individual participant scores broken down by the level of the participants level

of expertise in sound design is shown in Figure 5.6. While the RS listening

108 Class-Conditional Neural Audio Synthesis

Figure 5.5: Self-reported level of expertise in sound design of the 21 partici-
pants in the listening study.

test results are on average below the 0.75 threshold, synthesised samples

can be identified almost consistently by participants with medium to high

expertise in sound design, as depicted in Figure 5.6 in blue. However, most

of the participants with low expertise in sound design fail to discriminate

between the recorded and synthesised sound effects.

Regarding the t-test and the BFA, a t-value of t = 3.207 is computed using

all participants’ accuracy scores, µ = 50 and n = 21. The BFA found strong

evidence in favour of the alternative hypothesis (BF10 = 10.05), suggesting

that, in general, participants can discriminate between the recorded and the

synthesised sounds. Breaking down the listening study results based on the

participants’ expertise in sound design, similar to the depiction in Figure 5.6,

it is found that this factor has an impact to the perceived plausibility of the

sounds. Specifically, participants with medium to high expertise in sound

design (i.e., ≥ 3 out of 5) obtain a t-value of t = 10.025 using their accuracy

5.5 Evaluation 109

Table 5.1: RS listening test discrimination factor d and F-measure (mean ±
sd) results for all participants.

d F-measure
0.63 ± 0.31 0.67 ± 0.24

Table 5.2: RS listening test raw results showing the percentage of participants
correctly labelling both the recorded sounds (as recorded) and the synthesised
sounds (as synthesised).

Emotion
Correctly
labelled

(as recorded)
Emotion

Correctly
labelled

(as synthesised)

R
e
co

rd
e
d Anger 73.3%

S
y
n
th

e
si
se
d Anger 60.9%

Fear 72.4% Fear 60.0%
Happiness 80.9% Happiness 63.4%
Neutral 68.6% Neutral 65.7%
Sadness 60.9% Sadness 65.7%

scores, µ = 50 and n = 6. The BFA found extreme evidence (BF10 > 100) in

favour of the alternative hypothesis, reinforcing the RS test outcome, which

indicates that participants with medium to high expertise in sound design

are able to discriminate between recorded and synthesized sounds. On the

other hand, participants with low expertise in sound design (i.e., ≤ 2 out of

5) obtain a t-value of t = −1.023 using their accuracy scores, µ = 50 and

n = 15. The BFA found anecdotal evidence (BF10 = 0.41) in favour of the

null hypothesis (i.e., the model is no far from “fooling” non-experts).

The raw percentage of the participant emotion labeling for the recorded

and the synthesised stimuli are shown in Table 5.3 and Table 5.4 respectively.

To assess the statistical significance of how the emotions are perceived in

both the recorded dataset and in the synthesised sounds, a Chi-squared test

on the emotion labeling by the participants is performed.

110 Class-Conditional Neural Audio Synthesis

Figure 5.6: RS listening test discrimination factor d and F-measure values
for all participants. The left box plot represents the discrimination factor d,
with the individual score per participant represented by a circle, where the
red and blue colours indicate low and medium to high expertise in sound
design respectively. The right plot represents the F-measure, with the indi-
vidual participant scores annotated to its right. For each box plot the mean
is annotated by a green triangle, whereas the median is annotated by a hor-
izontal orange line.

For the recorded stimuli the Chi-squared is performed with χ2(16, N =

500) = 564.341, p = .000 < .05 (columns compared with a z-test and p values

adjusted with Bonferroni method). Results show that anger, happiness, neu-

tral and sadness are statistically different from others. Anger and fear are

not statistically different from each other, but they are statistically different

from the other emotions. This indicates that fear is confused with anger.

For the synthesised stimuli the Chi-squared test is performed with χ2(16, N =

5.5 Evaluation 111

Table 5.3: Recorded stimuli percentage of intended and perceived emotion
labeling by the participants. The most perceived emotion per intended emo-
tion is highlighted in bold.

Perceived
Anger Fear Happiness Neutral Sadness

In
te
n
d
e
d

Anger 68.0% 12.0% 10.0% 10.0% 0.0%
Fear 60.0% 28.0% 5.0% 5.0% 2.0%
Happiness 4.0% 2.0% 64.0% 27.0% 3.0%
Neutral 5.0% 6.0% 15.0% 63.0% 11.0%
Sadness 2.0% 10.0% 2.0% 29.0% 57.0%

Table 5.4: Synthesised stimuli percentage of intended and perceived emo-
tion labeling by the participants. The most perceived emotion per intended
emotion is highlighted in bold.

Perceived
Anger Fear Happiness Neutral Sadness

In
te
n
d
e
d

Anger 47.0% 19.0% 8.0% 18.0% 8.0%
Fear 40.0% 44.0% 9.0% 7.0% 0.0%
Happiness 1.0% 12.0% 44.0% 37.0% 6.0%
Neutral 6.0% 6.0% 17.0% 62.0% 9.0%
Sadness 0.0% 16.0% 3.0% 34.0% 47.0%

500) = 376.371, p = .000 < .05 (columns compared with a z-test and p val-

ues adjusted with Bonferroni method). Identically to the recorded stimuli

emotion labeling results, the Chi-squared test shows that anger, happiness,

neutral and sadness are statistically different from others and that anger and

fear are not statistically different from each other, but they are statistically

different from the other emotions.

5.5.2 Feature Analysis

Research in music performance and speech has demonstrated that sound

performed with different intended emotions present emotion-specific acous-

112 Class-Conditional Neural Audio Synthesis

Figure 5.7: Example of the root-mean-square energy (RMSE) slope feature.
The x-axis represents knocking action duration in seconds. The y-axis rep-
resents the RMSE of the individual knocks. The individual knock positions
and computed RMSE values in the action are represented by the black dots.
The fitted line indicates the result of regressing Knock RMSE against time.
The slope of the fitted line, depicted in red, is negative, therefore the action
has a decrescendo energy pattern.

tic patterns [284]. Thus, in order to understand the variations of the knock-

ing patterns for different emotions, and to compare the original dataset to

the synthesised sounds, a series of acoustic features are extracted from the

dataset. The different features used for the analysis are the following:

• Action duration: Length of the knocking action. The knocking action

length is the time passed from the first knock onset to the last knock

decay.

• Number of knocks per action: The number of knocks are retrieved

5.5 Evaluation 113

by counting the number of onsets detected in each audio file.

• Knocking rate: The knocking rate is retrieved by dividing the number

of knocks in an action by the total time of the action. This feature is

computed only in actions with 2 or more knocks.

• Knocking regularity: The knocking regularity measures how regular

in time (i.e., how steady) are the knocks in an action. Actions where

the knocks are performed on a steady pace will have a higher regularity.

To extract this feature, the inter-onset interval (IOI) of each action is

calculated, followed by its coefficient of variation (the IOI standard

deviation divided by the mean). Irregular actions will have higher

coefficient of variation. This feature is computed only in actions with

more than 2 knocks.

• Root-mean-square energy (RMSE) slope: This feature retrieves

the crescendo or decrescendo energy pattern of an action. The root-

mean-square energy of each individual knock is computed and, using

these, a linear regression is calculated for each action. The slope of

the fitted line determines whether an action has a crescendo (positive

slope values) or decrescendo (negative slope values) energy pattern. An

example of this feature computed to an individual action is depicted

in Figure 5.7. This feature is computed only in actions with 2 or more

knocks.

These features are also used in a parallel study [285], where the emotions

of knocking sound effects performed by non-Foley artists are analysed to

understand how they relate to the ones in this chapter.

114 Class-Conditional Neural Audio Synthesis

The computed action duration, number of knocks, knocking rate and

knock regularity are depicted Figures 5.8, 5.9, 5.10, 5.11 and 5.12 respec-

tively. It can be seen that the synthesised sounds retain the features from

the recorded dataset and, while their distributions are not identical, synthe-

sised sounds follow the recorded dataset trend in all the computed features.

Figure 5.8: Recorded (left) and synthesised (right) knocking action duration
per emotion.

Figure 5.9: Recorded (left) and synthesised (right) number of knocks in each
action per emotion.

5.5 Evaluation 115

Figure 5.10: Recorded (left) and synthesised (right) knocking rate per action
per emotion.

Figure 5.11: Recorded (left) and synthesised (right) knocking regularity per
action per emotion. Higher values indicate less regularity.

Figure 5.12: Recorded (left) and synthesised (right) action RMS energy slope
per emotion.

116 Class-Conditional Neural Audio Synthesis

5.6 Chapter Summary

While effective for certain sounds and interactions, creating plausible pro-

cedural audio models for arbitrary sounds using DSP methods may be a

challenging and time consuming task for sound designers. This chapter pro-

poses the use of conditional WaveGAN, a deep learning architecture tailored

towards the modelling of audio in the waveform domain, as an alternative to

“traditional” DSP methods for the synthesis of sound effects. More specif-

ically, this chapter focuses on the modelling of knocking sound effects with

emotional intention. The proposed system is evaluated both subjectively and

by analysing a series of audio features from the recorded and synthesised

sounds. Thus, this chapter addresses the second research question (RQ 2) of

this thesis.

Regarding the subjective evaluation of the plausibility of the synthesized

sounds, results from the RS listening test show that the model is close to be

able to synthesise sounds that would be indistinguishable from pre-recorded

samples to persons without expertise in sound design. This is supported by

the BFA, which found anecdotal evidence in favour of the null hypothesis

(i.e., no difference in perception) among this group of participants. How-

ever, RS listening test results show that participants with medium to high

expertise in sound design can consistently discriminate between recorded and

synthesized sounds, a fact for which the BFA found extreme evidence. This

could be due to participants with medium to high expertise in sound design

being familiar with the quality expectations of sound effects, thus being more

sensitive to artifacts and sampling rate discrepancies between the recorded

and synthesized sounds. Another factor could be the playback device used,

5.6 Chapter Summary 117

where participants proficient in sound design may have professional equip-

ment that aids in detecting possible artifacts in the synthesized sounds.

In terms of the intended and perceived emotions, results show that, on

average, most emotions are correctly labelled in both the recorded and the

synthesised sound groups, with the exception of fear and anger, which are

confused with each other for both the recorded and synthesised sounds. Re-

sults suggest that, even though the synthesised sounds are identified by peo-

ple with expertise in sound design, the perceived emotion ratings are similar

to the ones in the pre-recorded samples. Since the acoustic features of the

synthesised dataset are very similar to those of the recorded dataset, it is

hypothesised that they strongly contribute to the perception of emotions,

and that they are sufficiently well modelled in the synthesised dataset to

allow listeners to perceive the intended emotions, to a similar degree to the

recorded dataset. Thus, the generator is able to capture the emotional inten-

tions from the data. Additionally, the acoustic features distribution is not

exactly the same in the two datasets. This is desirable considering that the

aim is to generate new data and not to resynthesise data that was already in

the training dataset.

In terms of applications, this approach could be used in video games and

post-production. While sound synthesis using GANs is not done in real-time

(GANs synthesise one or several sounds at a time, not a continuous stream of

sound, sample by sample), it has been shown in a comparable scenario that

the sound generation may be fast enough to be used in real-time without

perceived latency [278]. In the experiments reported in [278], they achieved

a latency of ≈ 25ms using a smaller model than the one used in this chapter,

118 Class-Conditional Neural Audio Synthesis

generating 4096 samples at a time, a lower sampling rate than the one used in

this work (16 000 Hz), and a GPU with more capacity (NVIDIA GTX 1080).

In contrast, a latency of 66.9 ± 5.9 (mean ± sd) ms is achieved to generate

65 536 samples at 22 050 Hz using a less capable GPU (NVIDIA RTX 1060).

While the threshold of ≈60 milliseconds is larger than that required to avoid

the perception of latency between an action and the resulting sound (≈30

milliseconds, [286]), by reducing both the architecture size and the sampling

rate, and increasing the hardware specifications, it is possible to synthesise

audio without perceived latency, as reported in [278].

Alternatively, instead of generating a new audio asset in reaction to a

player performing an action, a batch of sounds may be created and stored in

a buffer to play them sequentially. Once the buffer is close to its exhaustion,

another newly synthesised batch of sounds could replace it. In the experi-

ments, it has been shown that generating a batch of 100 sounds (equivalent

of generating ≈5 minutes of audio) takes 726.5 ± 12.5 milliseconds with the

proposed configuration.

Regarding the control over the synthesised samples, the model is capable

of synthesise knocking sound effects with emotional conditioning, passing

the desired emotion at the time of generation. It may be useful, however, to

include other acoustic features, such as the features used for the analysis in

Section 5.5.2, to further refine the control possibilities. This control scheme

would allow, for instance, to specify the number of knocks to synthesise or

their energy pattern within the knocking action.

While the sounds synthesised by the model can be identified as “syn-

thetic” by people with expertise in sound design, it is not far from consis-

5.6 Chapter Summary 119

tently “fooling” non-experts. Nonetheless, to explore how to improve the

perceptual performance of the model it is planned, in future work, to use the

GANSynth [201] architecture, to compare it against the proposed conditional

WaveGAN architecture on the synthesis of knocking sound effects. While

GANSynth is designed for the synthesis of musical notes with pitch condi-

tioning – a domain somewhat separate from sound effects, especially from

percussive sounds – it received positive perceptual results in their evalua-

tion, and may yield favourable perceptual outputs in the context of knocking

sound effects as well.

Yet another consideration to potentially improve the models performance

is the use of sub-band decomposition as in [206], where raw audio is modelled

by predicting sub-band signals using a pseudo-quadrature mirror filterbank

(PQMF) [287]. It is also possible to employ a different discriminator, such

as in [18], where they replace the WaveGAN discriminator for a HiFi-GAN

discriminator [224]. Alternatively, a different audio representation could be

considered also, such as those proposed in [182].

However, regardless of the architecture used, a problem when training

data-intensive deep learning models – such as most GAN architectures – is

precisely the data itself, or lack thereof. For this chapter, a professional

Foley artist was commissioned to record a dataset of knocking sound effects

with emotional intentions, since such sounds are challenging to find in the

necessary quantity and quality to train a model like the one proposed above.

However, it is not practical to record or commission a dataset for every new

model trained on a different sound category. Moreover, lack of training data

may hamper the quality and diversity of the synthesised data [159], which is

120 Class-Conditional Neural Audio Synthesis

a challenging issue when using generative methods, especially for audio [288].

Chapter 6 of this thesis will address these issues, proposing an architecture

that relies on a single sound effect only in order to be trained.

CHAPTER 6

ADDRESSING DATA SCARCITY:

SINGLE-EXAMPLE AUDIO GENERATION

6.1 Introduction

In the previous chapter, the synthesis of class-conditional sound effects us-

ing GANs was investigated. To that end, a professional Foley artist was

commissioned to record a dataset of knocking sounds with emotional inten-

tions. However, recording or commissioning datasets on demand each time

a new generative architecture is trained is time-consuming, especially with

the amount of data some of these architectures – such most GANs – may

need. To contextualise this, in [208] they use a dataset comprised of ≈300K

samples of kick, snare and cymbal sounds to train a GAN and synthesise

drum sounds conditioned on timbral features. In Chapter 5, the focus was

on an arguably more scarce category of sounds: knocking sound effects per-

formed with emotional intentions. Hence, creating a dataset was necessary

to train the network. Other more common categories of sound effects, such

122 Addressing Data Scarcity: Single-Example Audio Generation

as footsteps, may be more suitable to model using data-intensive approaches

given their wider availability. However, depending on the granularity of the

desired control scheme, they may be also challenging to model. For instance,

while the floor surface can be a natural choice to condition a footstep sound

effect model, it may also be desirable to specify the type and material of

the shoe (e.g., boots or trainers; leather or fabric), the perspective and dis-

tance of the recording (e.g., first or third person; close-up or far away), the

articulation (e.g., walking, running), to name a few. This potential granu-

larity becomes even more troublesome when the category of sounds is rare

or scarce. Moreover, while audio augmentation techniques such as adding

noise to a signal, shifting its pitch, performing time stretching, or masking

section of its spectrogram are commonly used in deep learning [289], those

will not necessarily produce a novel sound effect. Instead, they modify the

existing sound effect, which – especially in situations where the sound cate-

gory is particularly scarce – will not result in a suitable dataset for training

a model.

In this chapter these issues are addressed by proposing the use of single-

image generative adversarial networks (single-image GANs) to generate vari-

ations of a single training example, removing the need of a large dataset.

Thus, instead of training on a curated – and potentially, large and difficult

to obtain – dataset aimed towards the synthesises of a particular category

of sounds, it is left to a prospective user (e.g., a sound designer) to decide

which sound is the best suited to, for instance, design an action. That sound

will be used to train the network and generate infinite variations from it, as

if they where different takes from the same recording session.

6.1 Introduction 123

Single-image GANs exploit the internal statistics of a single training ex-

ample to generate novel variations from it. An example of these architectures

is SinGAN [290]. SinGAN is an unconditional generative model that uses a

progressive growing multi-scale approach, training a fully convolutional GAN

on a different resolution at each stage. The model starts producing small-

sized images, which are upsampled and fed to the next stage alongside a

random noise map. SinGAN uses patch-GANs [291], training on overlapping

patches of the training image at the different stages. Given the GAN recep-

tive field is fixed with respect of the image size, the model learns to capture

finer details as the training progresses. This fully convolutional design also

enables image generation of arbitrary size just by changing the dimensions of

the input noise maps. ConSinGAN [292] is another single-image GAN archi-

tecture. Built upon SinGAN, the authors proposed some improvements to

it, such as concurrent training of the different stages or the resizing approach

when building the image “pyramid” for the different resolutions, reducing the

number of parameters and the training time. These architectures are also

capable of performing other tasks such as retargeting, animation or super-

resolution. Regarding the audio domain, Catch-A-Waveform (CAW) [230]

is a recent audio time-domain architecture inspired by single-image GANs

that is capable of producing novel audio samples of arbitrary length with

just 20 seconds of training data. They demonstrate the architecture’s per-

formance on music, speech and environmental sounds (such as applause or

thunderstorm), yielding promising results. CAW is also capable of perform-

ing different tasks directly on the audio domain, such as bandwidth extension,

denoising or audio inpainting. However, this chapter is focused on the mod-

124 Addressing Data Scarcity: Single-Example Audio Generation

elling at the individual sound effect level, with the aim of producing novel

one-shots instead of streams of audio such as music excerpts or speech. As

in Chapter 5, this chapter addresses the second research question (RQ 2) of

this thesis.

6.2 Method

From a high-level perspective, the method consists on using a single-image

GAN architecture and train it using a single sound effect to synthesise infinite

variations from it. To potentially increase the level of variation, game audio

workflows are adopted, where it is common to use different sound layers

for a single sound effect in the sound design process in order to increase

its variability [5]. Thus, the use of multi-channel spectrograms to train the

model on the various layers that comprise a single sound effect (such as, for

instance, the heel, the tip and the shoe Foley in a footstep), is explored. Once

trained, the model is able to produce infinite unconditional variations of the

sound – or the layers, for models trained on multi-channel spectrograms.

6.2.1 Audio Representation

This section starts by describing the audio representation used by the model,

both for training and inference. Since the approach is based on computer

vision single-image GAN architectures, such as SinGAN [290] or ConSinGAN

[292], spectrograms are employed as the audio representation of the model.

Despite that, from a data representation point of view, spectrograms are not

equal to images, they can be trained in a somewhat similar manner.

6.2 Method 125

While a 2-channel frequency-domain representation consisting of a magni-

tude spectrogram and instantaneous frequency (IF) has been used to achieve

state-of-the-art results on GAN audio synthesis of pitched musical notes

[201, 182], [293] recently studied the use of 1-channel phaseless log-magnitude

spectrograms as an alternative for synthesising non-harmonic sounds (such as

chirps or pops), achieving better perceptual results in this context. To invert

the phaseless log-magnitude spectrogram back to audio, they reconstruct the

phase using the Phase Gradient Heap Integration (PGHI) algorithm [294].

Another popular phase reconstruction method is the Griffin-Lim [27] algo-

rithm. A pilot experiment is conducted with a phaseless log-magnitude spec-

trogram representation, reconstructing its phase with both the PGHI the

Griffin-Lim algorithms and, in these preliminary tests and context, Griffin-

Lim produced better perceptual results using a 75% frame overlap. The FFT

size choice also has a significant impact on the results, being 512 the size that

produced the best consistent results in the pilot experiments. It is opted then

to use a phaseless log-magnitude spectrograms with a FFT size of 512, 75%

overlap, a Hanning window of the same size of the FFT and reconstructing

the phase with Griffin-Lim [27].

Similar to [295], multi-channel spectrograms are used as the input to

the model. The use of multi-channel spectrograms instead of single-channel

spectrograms in the context of sound effects synthesis presents some benefits

such as, for instance, allowing for some parametrisation of the sound synthe-

sis, as the layers could be synced to an animation, triggered asynchronously,

have different amplitude from each other, etc. While in [295] the authors use

the multi-channel spectrograms to represent the pitch and intensity of mu-

126 Addressing Data Scarcity: Single-Example Audio Generation

sical notes, here they are used to represent the different layers of the sound

effect. To be precise, multi-channel spectrograms are built by stacking mul-

tiple sound layers along the channel axis, and these layers are provided by

the user to the network directly (they are not extracted programmatically

from layered sounds). The multi-channel spectrogram term is used (instead

of multi-layer) for consistency with the literature.

To build the multi-channel spectrograms the different sound layers are

loaded and their amplitudes normalised in a range of [−1, 1]. Next, the

longest sound effect layer (in the time-domain) is measured, and the remain-

ing layers are zero-padded to this length. Then, the multiple audio layers are

transformed into log-magnitude spectrograms by taking the STFT with, as

described above, FFT size of 512, 75% overlap and a Hanning window of the

same size of the FFT. The phase information is discarded immediately after,

and the different log-magnitude spectrograms are stacked along the tensor

channel axis, as if they were different channels of an image. Finally, the

multi-channel spectrograms are standardised (mean 0, standard deviation

1). During inference this standardization is reverted, the logarithm inverted,

and the channel and batch dimensions are permuted (so the layers appear

as different sounds in a batch of sounds instead as if they where different

channels), reconstructing the phase using the Griffin-Lim algorithm [27] and

transforming the spectrograms back to audio by taking the ISTFT. If the

training sound effect has only one layer, a single-layer log-magnitude spec-

trogram is used. Unless stated otherwise, all sound layers are mono, with a

sampling rate of 44.1 kHz.

6.2 Method 127

Figure 6.1: SpecSinGAN architecture. The generator is depicted on the
left, while the discriminator is depicted on the right. For reading simplicity,
the internal upsampling and padding operations in the generator are not
represented in the image.

6.2.2 Architecture

SpecSinGAN, depicted in Figure 6.1 is built upon the ConSinGAN [292]

architecture. ConSinGAN [292] retains the benefits of SinGAN [290], but

proposing multiple improvements to it, achieving state-of-the-art results,

hence its use as a foundation to develop SpecSinGAN.

The SpecSinGAN discriminator, depicted to the right in Figure 6.1, takes

– depending on the model configuration – either single or multi-channel log-

magnitude spectrograms as its input. Thus, the SpecSinGAN discriminator

128 Addressing Data Scarcity: Single-Example Audio Generation

will have as many input blocks in parallel as the number of channels (i.e.,

sound effect layers) of the training spectrogram, each one of them consisting

of a convolutional layer followed by a Leaky ReLU activation. For instance,

for a 3-channel spectrogram, the discriminator will have 3 input blocks, and

each channel of the spectrogram will be processed individually by just one

of them in parallel. The resulting feature maps are stacked along the batch

axis, in a somewhat similar manner to [295]. Then, those feature maps go

onto 3 groups of convolutional layers followed by Leaky ReLU activations,

and finally onto a last convolutional layer. All the convolutional layers have a

kernel size of 3, stride 1, 1 dilation rate and a Nfilters filters, except for the last

layer where Nfilters = 1. For the Leaky ReLU activation an α = 0.05 is used.

As suggested by the ConSinGAN authors [292], a second discriminator – used

during the final training stages – is also implemented, as slight improvements

on the results were found. The second discriminator is identical to the first

one, but with dilation on all its convolutional layers to increase its receptive

field.

The SpecSinGAN generator, depicted to the left in Figure 6.1, is similar

to the growing generator in ConSinGAN. Thus, the generator trains on Nstage

stages, increasing the spectrogram scale from an user-defined minimum scale

at stage 0, to the full-band spectrogram at the last scale. For the first

training stage, the generator has 4 convolutional layers, each one of them

followed by batch normalisation and a Leaky ReLU activation, and a final

output convolutional layer. As the output range of the feature maps (i.e.,

the different scale spectrograms) is not constrained, a hyperbolic tangent

activation is not used in the output of the generator. At each subsequent

6.2 Method 129

training stage, 3 more convolutional layers with batch normalisation and

Leaky ReLU activations are added just before the output convolutional layer,

increasing the generator capacity (i.e., producing “larger” spectrograms) as

the training progresses. All layers have the same hyperparameters as the

intermediate layers in the first discriminator.

6.2.3 Training and Inference

The training stages in the training process are set to Nstage = 10. At the

start, an “image pyramid” of training spectrograms is built, going from the

first stage where the spectrograms are downsampled to a coarser scale, to

the last stage, where the spectrograms are at the original resolution. The

maximum size of the image is set to its original resolution, and the minimum

size depending on the sound. The training starts at the coarsest scale, where

a noise map (i.e., a Gaussian noise N (0, 1) “image”) with the shape of the

user-defined minimum size at scale 0 is created. The generator receives those

noise maps and produces a spectrograms at that scale. As can be seen in

Figure 6.1, the features maps (i.e., “coarse” spectrograms) from previous

stages are upsampled and passed directly to the current stage, mixing them

with the corresponding noise at that scale to increase diversity. The default

noise amplification (i.e., a multiplier to weight the noise against the feature

maps) is set to 0.1. The feature maps from the previous stage are also

upsampled and summed after the convolutional block at each stage. Overall,

the training process is identical to ConSinGAN, with the exception of adding

a second discriminator halfway through training.

As with [292], 3 stages are trained concurrently, using a learning rate of

130 Addressing Data Scarcity: Single-Example Audio Generation

0.0005 for the current stage and a 0.1 scaling for the other 2 stages below.

WGAN-GP [157] is used for the adversarial loss, in combination with a re-

construction loss with a weight of 10 to increase the training stability, where

the generator learns to resynthesise the training spectrograms. Because the

receptive field of the discriminator is fixed, at stage 0, due to the spectro-

grams being smaller, there are less overlapping patches to evaluate than in

the final stages, thus the discriminator is able to assess the global structure

of the spectrogram. As the produced spectrograms “grow” in resolution (i.e,

they increase their size) during the training process but the receptive field

of the discriminator remains unchanged, the discriminator focuses more on

the details of the spectrograms as the training progresses. The second dis-

criminator – with an increased receptive field – introduced halfway through

training prevents the generator from deviating from a coherent global struc-

ture at the final training stages. The ConSinGAN upsamplig strategy for

the generator is also used, where the feature maps after the first convolu-

tional block are slightly upsampled to increase the diversity at the edge of

the spectrograms.

As depicted in Figure 6.2, during inference, the x-axis dimension of the

noise maps that go into the generator is randomised. As a result, each multi-

channel spectrogram of a generated batch has a different length. This is

thanks to the fully-convolutional nature of the network, where the input noise

maps are not constrained to be of a specific shape. Note the x-axis dimension

of the noise maps is not randomised during training, but only during inference

once the model is trained. The spectrograms are transformed into audio

using the process described in Section 6.2.1, and the layers of the batch are

6.3 Experiments 131

Figure 6.2: Multi-channel synthesis during inference: the generator pro-
duces multi-channel log-magnitude spectrograms that are slightly different
in length on their x-axis. They are transformed back to audio by recon-
structing their phases using the Griffin-Lim algorithm and taking the ISTFT
of the different layers, shuffling the different length layers afterwards. Finally,
a randomised delay and gain is applied to the individual layers that comprise
the sound effect, combining them to render the final audio files.

shuffled, combining the different-length layers. Finally, the delay and gain

of the layers are randomised with respect to each other, and the layers are

summed into a single audio file.

6.3 Experiments

Four one-shot sound effect categories that are commonly found in video

games and media are selected, using three sound layers for each of them:

footsteps on concrete (heel, tip and shoe fabric), footsteps on metal (heel,

tip and metal rattle), gunshots (noise/body, mechanic component and tail)

and character jump (human efforts, Foley of the character clothes and metal

clinks of character equipment). The training sound effects are collected from

the Freesound website [216]. To assess the effect of the multi-channel spec-

trogram approach, two SpecSinGAN models are trained per sound effect:

132 Addressing Data Scarcity: Single-Example Audio Generation

one with single-channel spectrograms and another with multi-channel spec-

trograms. The models trained with single-channel spectrograms use a single

training audio file with all the different layers combined.

SpecSinGAN allows the input of both arbitrary length audio files and

arbitrary numbers of layers. However, it was found that different sound

effects require different training hyperparameters, depending on the number

of layers, the shape (i.e., length) of the training sound, the frequency content,

and the desired degree of variation. For this study purposes, three layers of

relatively short one-shots (≈200-750 ms) are a good compromise. In general,

more layers or reverberant sounds will require a higher number of iterations

per training stage. For sounds with very sharp transients at the beginning,

adding a small zero-padding at the start of the audio file before training

can prevent artifacts. Other parameters could be changed to accommodate

longer or more challenging sounds, such as the the number of training stages

or even the sampling rate or the FFT size.

In the experiments, both the single and multi-channel spectrograms of

the footsteps on concrete and metal are trained for 2000 iterations per stage,

using Nfilters = 64 filters in the convolutional layers, a dilation rate of 3 in the

second discriminator, and setting the minimum tensor size of the training

pyramid (on any axis) to 50. Gunshots are trained for 8000 iterations per

stage using Nfilters = 128 filters, a dilation rate of 2 in the second discrimi-

nator, and setting the minimum size to 11. Finally, the character jumps are

trained for 8000 iterations per stage using Nfilters = 128 filters, a dilation rate

of 3 in the second discriminator, and setting the minimum size to 25. As an

indication, training on an NVIDIA Tesla V100 takes approximately 50 min-

6.4 Evaluation 133

utes for single and multi-layer footsteps on concrete and metal, 200 minutes

for single-layer gunshots, 600 minutes for multi-layer gunshots, and 240 and

500 minutes for single and multi-layer character jumps respectively. Once

trained, the saved models have a size on disk of ≈4.5 MB and ≈330K param-

eters for all the footsteps models and of ≈17.5 MB and ≈1.3M parameters

for the gunshot and character jump models.

During inference the delay and gain of the different layers are randomised

so they are coherent with the aesthetics of the final sound effect. In terms

of retargeting, no more than a randomised ±15% range multiplier is applied

to the x-axis (corresponding with the spectrogram time axis) of the input

noise maps. Multiplying the input noise maps by a larger number may re-

sult in audible artifacts. For reference, synthesising 1000 sound effects on a

NVIDIA Tesla V100 took approximately 60 and 100 seconds for single and

multi-channel footsteps in concrete respectively. An example of some of the

recorded sounds alongside synthesised sounds using single and multi-channel

configurations of SpecSinGAN is depicted in Figure 6.3. Sound examples can

be also find at the project website.1

6.4 Evaluation

A listening study is designed to evaluate the sounds resulting from the ex-

periments in Section 6.3, for the 4 categories of footsteps on concrete, metal,

gunshot, and character jump. 4 different systems are compared on plau-

sibility and variation: real recordings (hereafter, Real), SpecSinGAN with

single and multi-channel spectrograms (denoted by the subscript “single” or

1www.adrianbarahonarios.com/specsingan

www.adrianbarahonarios.com/specsingan

134 Addressing Data Scarcity: Single-Example Audio Generation

Figure 6.3: Waveform (top) and magnitude spectrogram (bottom) pairs of
recorded and synthesised sound variations produced by SpecSinGANsingle

and SpecSinGANmulti. The first column depicts an example of the
recorded sounds, the second and third columns depict SpecSinGANsingle and
SpecSinGANmulti respectively. Each of the rows depicts one of the sound
effects considered: footsteps on concrete, footsteps on metal, gunshots and
character jumps respectively. Note the network outputs a single sound effect
at a time, and they are concatenated along their x-axis for this example.

“multi” respectively), and Nemisindo [16, hereafter, NM]. NM is a web-based

procedural audio service that enables the creation of synthesised sound effects

using DSP methods. For the character jump sounds, only Real and SpecSin-

GAN variants were compared, as NM does not offer this type of sound at the

6.4 Evaluation 135

time the study was carried out. Sounds for the Real category are sourced

from the same Freesound [216] training examples used in Section 6.3, taking

sound variations from the same file or designing them (e.g., cutting, equalis-

ing, fading) when needed. The SpecSinGAN sounds are those of Section 6.3.

NM sounds are taken directly from their presets (without searching the pa-

rameter space), finding the closest ones to the target category of sounds.

136 Addressing Data Scarcity: Single-Example Audio Generation

Figure 6.4: Screenshot of the online test interface presented to the partici-
pants in the listening study. Participants are asked to listen to the stimuli
once and select on a [1..7] scale their perceived level of plausibility an varia-
tion. The image depicts the rating of a footstep in concrete sound effect.

6.4 Evaluation 137

Figure 6.5: Listening study results for the different sound effects and sys-
tems considered. Real recordings are denoted by ‘Real’, Nemisindo by
‘NM’ and SpecSinGAN using either single or multi-channel spectrograms
by ‘SpecSinGANsingle’ and ‘SpecSinGANmulti’ respectively. Participants were
asked to rate each stimuli on both plausibility and variation on a [1..7] scale.
Note the scatter plot represents the individual ratings, with jitter added to
prevent overlapping as only natural numbers were given as rating options.

1
3
8

A
d
d
re
ssin

g
D
a
ta

S
ca

rcity
:
S
in
g
le
-E

x
a
m
p
le

A
u
d
io

G
e
n
e
ra

tio
n

Table 6.1: Listening study raw results (mean ± sd) for real recordings (Real), Nemisindo (NM), single-channel SpecSinGAN
(SpecSinGANsingle) and multi-channel SpecSinGAN (SpecSinGANmulti). The first half of the table shows the results for sound
effect plausibility, and the bottom half the results for sound effect variation. The sounds are evaluated on a [1..7] scale where
higher values are better (best performers highlighted in bold).

Sound effect plausibility
Footsteps on concrete Footsteps on metal Gunshots Character jump All sounds

Real 5.16±1.32 5.74±1.32 5.21±1.33 5.59±1.28 5.42±1.33
NM 3.33±1.95 1.44±0.89 2.05±1.34 - 2.27 ±1.65
SpecSinGANsingle 3.68±1.45 3.96±1.60 3.97 ±1.71 4.13±1.45 3.93±1.56
SpecSinGANmulti 3.95±1.45 4.29±1.46 4.87±1.56 4.44±1.39 4.38±1.50

Sound effect variation
Footsteps on concrete Footsteps on metal Gunshots Character jump All sounds

Real 4.55±1.69 5.81±1.35 4.51±1.66 6.06±1.04 5.23±1.62
NM 3.76±1.83 3.00±1.76 2.04±1.40 - 2.93±1.82
SpecSinGANsingle 3.13±1.66 3.09±1.67 2.87±1.46 2.13±1.55 2.80±1.63
SpecSinGANmulti 3.73±1.85 3.81±1.73 4.16±1.66 2.53±1.60 3.55±1.82

6.4 Evaluation 139

The sounds are presented concatenated to make sound actions (e.g., foot-

steps turned into walking), resulting in audio clips of ≈5-seconds long. Par-

ticipants rated 5 sounds per category per system in terms of plausibility and

variation on a scale of 1 (not at all plausible/varied) to 7 (completely plau-

sible/appropriately varied). As in Chapters 4 and 5, a clearly synthesised

sound (a burst of noise) is included to test the attention and reliability of the

participants. The Prolific platform is used to conduct the listening study,

pre-screening participants such that only those over 18 years old who play

video games for at least 6 hours a week are selected, encouraging them to use

headphones during the evaluation. A total of 30 participants are recruited,

with ages ranging from 18 to 40 years old, and a diverse set of expertise in

sound design (from non-experts to professionals), compensating them £9/h.

The online listening study interface presented to the participants is depicted

in Figure 6.4, and the consent form and the demographic questions that par-

ticipants were asked can be found in the Questionnaires appendix. The raw

answers from the participants are visualised in Figure 6.5 and numerically

presented in Table 6.1.

While in Chapters 4 and 5 the RS listening test [271] and a parametric

Bayes factor analysis (BFA) are used to assess the performance of the pro-

posed system compared to pre-recorded samples in terms of plausibility, here

non-parametric BFA is used instead, because the ratings are collected on a

Likert scale. Multiple systems are also compared (i.e., pre-recorded samples,

two variants of SpecSinGAN and DSP procedural audio models), and not

just the plausibility is evaluated, but the plausibility and variation of the

recorded and synthesised sounds. Thus, the BFA may provide a more com-

140 Addressing Data Scarcity: Single-Example Audio Generation

prehensive interpretation of the results based on the hypotheses of how the

systems compare to each other. To conduct the BFA the method proposed

in [273] is used, with the interpretation of how two hypotheses H0 and H1

compare from [274, 275] summarised in Table 4.1 on p. 75.

It was hypothesised that Real would have better plausibility and variation

than any other system, and the BFA found extreme evidence for this (BF10 >

100). It was also hypothesised SpecSinGAN would have slightly more plau-

sibility than NM for footsteps on concrete, finding anecdotal and strong

evidence for this for SpecSinGANsingle (BF10 = 1.09) and SpecSinGANmulti

(BF10 = 12.5) respectively. In addition, it was hypothesised that SpecSin-

GAN would have higher plausibility ratings than NM for footsteps on metal,

and the BFA found extreme evidence for this (BF10 > 100). Finally, it

was hypothesised SpecSinGAN and NM would have similar plausibility for

gunshots, and the BFA rejected this (BF10 > 100). The data suggested

SpecSinGAN having more plausibility than NM for gunshots. Regarding

variation, it was hypothesised SpecSinGAN and NM would have similar val-

ues, confirmed for SpecSinGANsingle according to the BFA (BF10 = 0.09)

and rejected for SpecSinGANmulti (BF10 > 100). In the latter case, the data

suggest SpecSinGANmulti had higher variation values than NM.

6.5 Chapter Summary

Audio asset creation can be a time-consuming process. In this chapter Spec-

SinGAN was introduced, an unconditional generative architecture capable of

synthesising novel variations of one-shot sound effects training on a single

training example.

6.5 Chapter Summary 141

SpecSinGAN performed statistically significantly better in the listening

study, compared to the procedural audio models considered. NM presets

available at the time of the listening study were used instead of searching

the parameter space, so, while this is a reasonable choice, it is possible that

NM (or any other DSP tool) would produce better results following a more

exhaustive search of its parameter space.

In future work, it is planned to introduce user control over the synthe-

sis, allowing users to define certain high-level properties of the synthesised

sounds. For instance, for a footstep model user could specify the articulation

(e.g., walking, running), the type of shoe, or the surface by either incorporat-

ing that information onto the model in the form of additional sound layers;

or by using an ensemble system, where each of the models is devoted to one

property. Additionally, to both increase the plausibility and the control of

the sounds produced by SpecSinGAN, it may be worth considering novel

single-image diffusion models such as [296], which have outperformed other

GAN approaches such as SinGAN [290], as well as introduced text condition-

ing to the architecture. Another improvement could be the implementation

of automatic hyperparameter tuning, given that, as discussed in Section 6.3,

different sounds required different hyperparameters and, despite there being

some intuitions on how to tune them, this still involves a manual process.

While this chapter is focused on the synthesis of one-shot sound effects,

in [297] this system was also used to produce continuous streams of sounds in

the context of data sonification. Specifically, in [297] SpecSinGAN is used as

the sound source to sound design the energy consumption drawn from a smart

plug by generating a fire-like sound that increases or decreases in intensity

142 Addressing Data Scarcity: Single-Example Audio Generation

depending on the energy used. The fire sound is comprised of two elements,

each one of them synthesised by a different SpecSinGAN model: the fire

crackles and the fire base layer. The fire crackles are generated by training a

model on three different crackle sounds, and generating variations of them as

one-shots – similar to the procedure introduced in this chapter. The fire base

layer is generated by training a model on three fire sound intensities (low

rumble, middle rumble and hiss), and overlapping the variations resulting

from the model in the time-domain, achieving a continuous time-varying

layer that never repeats itself. In this particular case, all sounds are generated

offline and used as the source for the sonification.

Finally, it is also acknowledged that, while the focus has been on arbitrary

sound effects, further listening studies need to be carried out to understand

how SpecSinGAN compares to DSP methods such as [12] for generating

variations of target percussive sounds and to [230], adapting it to work with

shorter sounds at 44.1 kHz. It is also observed that, despite showing Spec-

SinGAN is a viable alternative to synthesise arbitrary one-shot sound effects,

DSP-based systems are capable of not only producing controllable continu-

ous streams of audio, but also of running in real-time with direct input from

either human-interpretable controls or in-game parameters, granting them

great adaptability. Chapter 7 will address these challenges, focusing on the

controllability and introducing an architecture that combines DSP compo-

nents with deep learning for this task. However, SpecSinGAN can be useful

in two main contexts. First, in a context where sound designers need to pro-

duce novel variations of a specific pre-recorded sound, avoiding hand-crafting

multiple versions of it. Second, as a data augmentation tool where, unlike

6.5 Chapter Summary 143

common audio augmentation techniques that do not necessarily lead to a

novel sound effect but to the same sound effect with some transformations

applied to it, the resulting variations are akin to different takes from the

same recording session.

144 Addressing Data Scarcity: Single-Example Audio Generation

CHAPTER 7

SOUND EFFECTS SYNTHESIS USING

DIFFERENTIABLE DSP

7.1 Introduction

Back in Chapter 4 of this thesis it is demonstrated that, with constraints,

DSP systems can be an effective method for the synthesis of sound effects.

Chapters 5 and 6 focus on the synthesis of sound effect using deep learning

methods directly, disregarding part of the vast wealth of knowledge described

in Chapter 2. In this chapter, a combination of DSP methods alongside

deep learning (i.e., DDSP, as described in Section 3.3.1) are used to achieve

controllable sound effect synthesis.

In the original DDSP paper [145], they synthesise harmonic musical notes

controlled by pitch and loudness using a harmonic plus noise synthesiser [31].

Once trained, the resulting synthesiser is able to produce sounds with human-

interpretable controls (e.g., pitch and loudness). In the context of the syn-

thesis of sound effects, and particularly in game audio, human-interpretable

146 Sound Effects Synthesis Using Differentiable DSP

continuous controls are desirable, as the synthesiser could adapt its output

to, for instance, in-game events (in the case of running in real-time) or to

animations (running offline). DDSP-based models also benefit from requir-

ing comparatively less data to train than other data-driven approaches [145].

Additionally, DDSP synthesisers have been demonstrated to be able to run

in real-time [245], offering the potential of being integrated into live scenarios

such as video games.

The end goal here is to build a general-purpose DDSP synthesiser capa-

ble of producing 1) sounds with acceptable time and frequency resolution,

and 2) audio of arbitrary length, just by providing conditioning vectors con-

taining the desired parametric controls. The original DDSP synthesiser [145]

relies on the premise that the audio it aims to model is harmonic, which is

not the case for most sound effects. Very recently, [298] proposed a method

to estimate sinusoidal components using gradient descent, which has been

a challenging task when using Fourier-based loss functions [299], opening

the possibility of modelling inharmonic sinusoids using DDSP synthesisers.

Sound effects, however, may contain noisy or very narrow-band elements

that are difficult to model using sinusoidal partials [98], plus the method of

[298] has yet to be applied to the context of sound effects. Another option

could be to use a time-varying finite impulse response (FIR) filter as in the

original DDSP subtractive noise synthesiser, but it suffers from a time and

frequency trade-off, where, in order to obtain good frequency resolution, the

number of taps in the FIR filter need to be relatively high, which in return

smears the transients, and vice-versa. This phenomenon is depicted in the

middle columns of Figure 7.1, where multiple configurations of the original

7.1 Introduction 147

Figure 7.1: Reconstruction task comparison between the DDSP time-varying
FIR noise synthesiser and NoiseBandNet. The top row shows the waveform
of the entire sound, the middle row its log-magnitude spectrogram and at
the bottom a detail of the transient. The transient spot is annotated with
a vertical dashed line in the first and third rows. The left column shows
the original training sample: a short metal impact. The middle columns
show the resulting audio reconstructions of five different configurations of
the DDSP time-varying FIR noise synthesiser with 128, 512, 1024, 4096 and
8192 taps respectively, chosen with the aim of covering a range going from
sharp transient reconstruction to clear transient smearing, all of them with
a hop size of 32 samples. Observe its time and frequency trade-off: the
frequency resolution increases with the number of taps at the same time the
time resolution decreases, and vice-versa. Using the same hop size for all
configurations highlights that a short hop size does not necessarily enhance
the transient reconstruction capabilities in filters with more taps, and it
simultaneously ensures that the shortest filter configuration (i.e., 128 taps)
has at least a 75% overlap (i.e., 32 samples). The right column shows the
NoiseBandNet reconstruction using 2048 filters and a synthesis window size
of 32 samples, maintaining both good time and frequency resolution.

DDSP [145] time-variant FIR filter synthesiser are used to reconstruct an im-

pact sound effect, which contains a sharp transient. As an alternative, and

148 Sound Effects Synthesis Using Differentiable DSP

inspired by the work of [98] where they use multi-rate filterbanks and sub-

band processing to overcome the time and frequency trade-off of the inverse

FFT method (very closely related to the DDSP FIR-noise synthesiser case),

this chapter explores the use of filterbanks in this context, leading to a defini-

tion of a new architecture called NoiseBandNet. While sub-band processing

is not used in the present work, some of the ideas from [98] are incorporated

into a differentiable pipeline, linking human-interpretable control parameters

to the output audio. NoiseBandNet is compared to the original DDSP noise

synthesiser, establishing a more suitable method to generate time-varying

inharmonic sound effects of arbitrary length using DDSP synthesisers, with

both good time and frequency resolution. Code and audio examples can be

found at the project website.1

7.2 Method

The proposed method consists of using a deep learning model similar to the

original DDSP architecture, conditioned on high-level audio controls to out-

put M -channel time-varying amplitudes, and multiply them by the M bands

resulting from processing white noise through a filterbank. From a high-level

perspective, first, a filterbank is built comprised of adjacent FIR filters with

narrow frequency responses that jointly cover an arbitrarily wide-ranging fre-

quency spectrum. Then, the filtering operation of a white noise instance with

all the different filters of the filterbank is precomputed, “baking” those noise

bands in order to ease the computational burden of this approach. Lastly,

an architecture similar to the original DDSP paper is used to predict the

1https://www.adrianbarahonarios.com/noisebandnet/

https://www.adrianbarahonarios.com/noisebandnet/

7.2 Method 149

time-varying amplitudes of each of the bands for a target dataset, condition-

ing it on high-level controls, and effectively linking control parameters to the

output of the synthesiser. The final output is generated by summing all the

bands together in the time-domain.

7.2.1 Filterbank Design

Since the method does not make assumptions about the frequency content

of the sound to be modelled, and in order to allow for the synthesis of both

narrow and broad frequency components, narrow bandpass filters need to be

designed, with the union of their combined frequency responses covering the

whole frequency spectrum [0,Fs/2], where Fs is the sampling rate, which is

set to Fs = 44.1 kHz. Thus, two adjacent bandpass filters will share one of

their two band edges with each other to cover the totality of the frequency

spectrum.

The process begins by deciding the number of filters M that will comprise

the filterbank to obtain a good frequency resolution, which, based on pilot

experiments, is set to M = 2048 filters. Second, it is decided how those

filters will be distributed across the frequency spectrum. As in [98], the lower

end of the frequency spectrum is emphasised by covering those frequencies

with more filters than at the higher end. Specifically, half of the filters

(1024 in this case, [1, ..., 1024]) are employed to cover the first quarter of the

frequency spectrum [0,Fs/8], distributing their center frequencies linearly in

the interval. The other half of the filters (the other 1024 filters, [1025, ...,M])

cover the remaining interval of the frequency spectrum, [Fs/8,Fs/2], with

their center frequencies spaced evenly on a logarithmic scale, thus increasing

150 Sound Effects Synthesis Using Differentiable DSP

their bandwidth along it (i.e., filters at the higher end of the spectrum have

a greater bandwidth than filters at the lower end).

To implement the filterbank, real FIR filters are used, designing them

with the Kaiser window method with a transition width ∆ω of 20% of the

filter bandwidth:

∆ω =
|ω1 − ω2|

Fs
· 0.2 (7.1)

where Fs is the sampling rate, and ω1 and ω2 are the left and right band

edges respectively. A stopband attenuation of As = 50 dB is used. All the

filters are bandpass except for the first one, which is a lowpass filter that

covers the [0, fmin] interval, with fmin = 20 Hz; and the last one, which is a

highpass filter that covers the [ω1,Fs/2] interval, were ω1 is the right band

edge of the penultimate bandpass filter.

An example of the frequency response of some of the filters is depicted in

Figure 7.2. For reference, using the configuration described above, the longer

FIR filter in the filterbank has a total of 120 287 taps. The bandwidth of the

linearly-distributed (bandpass) filters in the low end is B(1,...,1024) ≈5.4 Hz,

and the bandwidth of the last (highpass) filter is BM ≈30 Hz. Once the

filterbank is built, all the filters’ impulse responses are zero-padded to the

next power of 2 of the length of the filter with more taps, so they all have the

same length. Using the proposed configuration, this results in filters with

131 072 taps. The large length of these filters is due to their very narrow

nature.

7.2 Method 151

Figure 7.2: Detail of the frequency response of some of the filters employed
in a 2048-filter filterbank. Each of the filters is represented by a different
colour.

7.2.2 Deterministic Loopable Noise Bands

Considering the system uses many (M = 2048) and long (131 072−tap)

FIR filters, generating the noise bands themselves (i.e., a convolving a noise

instance with all the filters) is a computationally expensive operation, which

can bottleneck both the training and inference of the model. This is especially

true during training where, at each training step, the noise bands may need

to be recalculated; or in longer sequences during inference (e.g., generating

120-seconds’ worth of audio).

To ease the computational burden of the system, the technique described

in [300] is followed, where they propose a method to extend stationary sounds

such as airplane cabin noise, but applying it to the noise bands resulting from

filtering a white noise instance with all the filters of the filterbank. The aim

152 Sound Effects Synthesis Using Differentiable DSP

is to compute these noise bands only once and store (“bake”) them, removing

the need of recomputing the operation each time the synthesiser generates

an output.

More specifically, their proposed FFT convolution approach is used, lead-

ing to sounds that can be concatenated along their x-axis thanks to circular

convolution. By the convolution theorem, it is known that convolution in

the time-domain is equivalent to point-wise frequency-domain multiplica-

tion, which can be written as follows for the filtering of a white noise signal

with an FIR filter [300]:

Y = RnoiseRfiltere
j(θnoise+θfilter), (7.2)

with R and θ representing the magnitude and phase respectively resulting

from the FFT. Since white noise ideally has a flat magnitude response, they

set it to unity Rnoise = 1, and since the phase of the noise signal, θnoise,

already randomises the phase of the operation (θnoise + θfilter), they replace it

with a random phase, obtaining the final expression [300]:

Y = Rfiltere
j(θrandom), (7.3)

where θrandom is formed by uniformly distributed random values drawn from a

[−π, π] interval and having its first and last values (DC and Nyquist frequen-

cies, respectively) set to 0 [300]. Since the FFT exhibits Hermitian symmetry

for real-valued data, the values beyond the Nyquist frequency (the negative

frequency values) are just the complex conjugate of the positive ones mir-

rored from the Nyquist frequency, excluding the Nyquist and DC elements.

7.2 Method 153

Finally, by taking the inverse FFT of Equation 7.3, the “loopable” noise

band is created due to the resulting circular convolution operation described

above.

Using the proposed configuration, each of the noise bands have a length

of 131 072 samples, corresponding to ≈ 3 seconds of audio at 44.1 kHz. A

deterministic behaviour is also enforced by setting the same random seed

each time a noise band is generated. This is done to 1) maintain coherence

each time noise bands are built (i.e., the noise bands used during training

and inference will be identical) and 2) being able to share the same noise

band instances across multiple models, granting they have the same filter-

bank configuration. Also, since the amplitude of each of the resulting noise

bands may be very small, due to the narrow portion of the frequency spec-

trum they focus on, the maximum amplitude value Amax across all the noise

bands that comprise the filterbank is found, and all the bands are divided

by this Amax value, effectively scaling their amplitudes up to what it was

found to be a reasonable level. While this leads to neither homogeneous

amplitude distribution across bands, nor a normalised amplitude (i.e., in the

range [−1, 1]), when all the bands are summed together without further in-

tervention, the scale of the individual noise bands will be handled by the

time-varying amplitude predicted by the model (see Section 7.2.3).

Thus, by using the method proposed in [300], deterministic and loopable

noise bands that only need to be computed once and can be extended arbi-

trarily in time by just concatenating them along their x-axis, are generated.

An example of this is depicted in Figure 7.3, where two instances of the same

noise band are concatenated, one after the other. Conceptually, each of those

154 Sound Effects Synthesis Using Differentiable DSP

noise bands could be somewhat seen as a wavetable. A wavetable is defined

as a block of memory (i.e., a “table”) where a discretised signal is stored [38]

and, while they are usually employed to store a single period of a waveform,

a loopable noise band may be regarded as a period – as it can be looped –

of the portion of the frequency spectrum it captures.

Figure 7.3: Loopable noise bands. Two instances of the same noise band
are concatenated along their x-axis. The top figure shows the waveform of
both noise bands, one after the other, each one with a distinctive colour.
The bottom figure shows the detail of the point where the end of the first
noise band instance meets the start of the second one. Notice how, thanks to
circular convolution, the start and the end of the segments are “joined up”.

7.2 Method 155

7.2.3 Architecture

NoiseBandNet, depicted in Figure 7.4, is built upon the original DDSP ar-

chitecture [145], but replacing their harmonic-plus-noise synthesiser with a

filterbank structure. As in DDSP, the internal sampling rate of the model is

a fraction of the target dataset sampling rate Fs. To obtain a good time res-

olution, and as in [98], a synthesis window size W of 32 samples is selected,

granting the model an internal sampling rate of Fs/W , thus producing an

amplitude value every W samples. Greater W values will lead to poorer time

resolution but less computational burden, and vice-versa.

The inputs to the neural network component of NoiseBandNet are the

control parameters, which in the Figure 7.4 are loudness and spectral centroid

extracted from the training data. These control parameters may be different

depending on the control scheme, such as only loudness, or other user-defined

controls. Independently of the control scheme, and to synchronise the control

parameters to the training data (i.e., to have a 1 : 1 mapping between the

control parameters and the samples in the target audio), originally the control

parameters will have the same length as the dataset waveforms, interpolating

them to this length if needed. Before passing the control parameter vectors

to the network, they are resampled to Fs/W , the internal sampling rate of

the model.

Similar to [145], the control vectors are passed through a time-distributed

multi-layer perceptron (MLP) block (one per control parameter vector and

in parallel, as depicted in Figure 7.4) and a gated recurrent unit (GRU)

[166]. The output of the GRU is passed through a series of time-distributed

MLP blocks leading to final time-distributed dense layer which outputs the

156 Sound Effects Synthesis Using Differentiable DSP

Figure 7.4: Overview of the NoiseBandNet architecture and training process.
In this case, loudness and spectral centroid features are extracted from the
training audio and passed to the network, which predicts an M -band ma-
trix of time-varying amplitudes at a Fs sampling rate divided by a synthesis
window size W . Depending on the control scheme, these features or con-
trol parameters may be different (e.g., only loudness or user-provided control
parameters). The predicted amplitudes are upsampled using linear interpo-
lation by a factor of W to match the audio length, and multiplied by the
M noise bands. The output audio is generated by summing all the bands
together. Finally, the model is optimised by comparing the resulting sound
against the target audio using a multi-resolution STFT (MRSTFT) loss.

the M -channel time-varying amplitudes (each one of them corresponding to

each of the noise bands), with a sampling rate of Fs/W . As in [145], to

avoid negative amplitude values the resulting amplitudes are scaled using a

modified sigmoid activation function, in this case:

y = 2.0 · sigmoid(x)log10 + 10−18 (7.4)

Then, to bring them to audio rate Fs, these amplitudes are upsampled

by a factor of W using linear interpolation. The amplitudes are multiplied

by the noise bands in the time-domain, and summed together to produce the

final output audio. Unless stated otherwise, mono audio is modeled, with a

sampling rate Fs of 44.1 kHz.

7.2 Method 157

7.2.4 Training and Inference

The network is trained on batches of audio chunks of length Lchunk. All the

training waveforms are concatenated along the time dimension, and random

chunks of length Lchunk are selected from them. This avoids the network

memorising predicted amplitude values to the position of the training exam-

ples with respect of time, and so increases its generalisation capabilities when

generating longer sequences (especially important when training with small

datasets or one-shots). If the training dataset is comprised of a very short

(Ldataset < Lchunk) training example, it is simply repeated along the x-axis

until Ldataset ≥ Lchunk. As the control parameters have the same length as

the audio, the same chunk is selected and resampled to Fs/W before passing

them to the network.

Likewise, it is possible that the length of the training chunks Lchunk may

be smaller than the length of the noise bands Lbands. To prevent the network

being exposed to portions of the noise bands that were never seen during

training, the noise bands are “rolled” along their x-axis at each training step,

to a randomised integer shift drawn from a uniformly distributed random

value in [0, Lbands], achieving the use of a different, randomised portion of

the noise bands at each training step. During training, the output audio is

compared against the target audio using a multi-resolution STFT (MRSTFT)

loss [185], with the aim of reconstructing the input audio for the given control

parameters.

Once trained, the model needs only control parameter vectors of arbitrary

length Lcontrol to produce an output of Lcontrol · W length in samples. Due

to the nature of the architecture used, this output is deterministic (i.e., the

158 Sound Effects Synthesis Using Differentiable DSP

model produces the same output amplitudes for the same control parameter

input). However, in practice, the output audio resulting from multiplying

the noise bands by the same predicted amplitudes may be slightly different

since, as described above, the start of the noise bands is randomised by a

[0, Lbands]-shift, and their energy is not constant over their length (refer to

Figure 7.3, where the amplitude of the band fluctuates over time).

7.3 Reconstruction

First, NoiseBandNet is evaluated by comparing its reconstruction capabili-

ties to different configurations of the original DDSP time-varying FIR noise

synthesiser [145]. Their synthesiser produces an output by convolving white

noise frame-by-frame with an FIR filter predicted by the network and then

overlap-adding the frames. As in [145], the FIR filters’ impulse responses are

not modelled directly, but their magnitudes are instead.

7.3.1 Experiments

To evaluate the reconstruction capabilities of the systems, five sound effect

categories relevant to video games which exhibit both broad and narrow

spectral components and a wide range of amplitude envelopes are selected

[9, 301]:

• Footsteps (≈4.4 seconds): Footsteps on a metallic staircase.

• Thunderstorm (≈14.0 seconds): Rain and close thunder sounds.

• Pottery (≈95.0 seconds): Breaking and scrapping pottery shards.

7.3 Reconstruction 159

• Knocking (≈11.0 seconds): Knocking sound effects with different in-

tensities and emotional intentions.

• Metal (≈19.0 seconds): Hitting and scrapping metal bars.

All the training sound effects are sourced from the Freesound website [216],

except for the knocking sound effects, where an excerpt of the dataset pro-

vided by [301] is used.

Loudness and spectral centroid are used to evaluate the reconstruction

capabilities of the systems, as they are related to the original DDSP loudness

and pitch control vectors, but without the constraint of being harmonically-

oriented. To extract the loudness and the spectral centroid, FFT sizes of

128 and 512 are used, respectively, both with 75% overlap. For each sound

category, each of the features is normalised to a [0, 1] range. Note this nor-

malisation is dataset-dependent: the control parameters are not normalised

using their their full range (e.g., [0,Fs/2] in the spectral centroid case), but

using the maximum and minimum values computed for the feature across a

particular dataset. This prevents feature values being localised to a small

portion of the [0, 1] interval for certain sounds (e.g., quieter sound categories

would have most of their loudness values close to 0).

A NoiseBandNet model is trained for each of the sound categories us-

ing a hidden size of 128 for all layers, a M = 2048 band filterbank, and a

synthesis window W of 32 samples, following the same design described in

Section 7.2. All models are trained for 10 000 epochs using a learning rate

of 0.001, batch size of 16, an audio chunk size of 65 536 samples, Adam op-

timiser, and an MRSTFT loss [185] (with FFT sizes for the MRSTFT of

8192, 4096, 2048, 1024, 512, 128, 32, 75% overlap, and window lengths of the

160 Sound Effects Synthesis Using Differentiable DSP

same size as the FFTs), employing the auraloss implementation [191].

Using an NVIDIA Tesla V100, the training process takes ≈45 min for all

models, except for the pottery model, which takes ≈180 min. Once trained,

the saved model weights have a size of ≈1.8 MB, with each model having a

total of 464K parameters. During inference, the time required to synthesise

a single batch signal with an output length of 1 322 976 samples (around 30

seconds of audio at 44.1 kHz) is of 529.5 ± 2.4 (mean ± sd) milliseconds on

a consumer GPU (NVIDIA GTX 1060), and 13.4 ± 0.3 (mean ± sd) seconds

on a consumer CPU (AMD Ryzen 5 1600), measured on a 100-run test.

NoiseBandNet resynthesis capabilities are evaluated against four variants

of the original DDSP model filtered noise synthesiser [145], with a config-

uration of FIR filter taps of 256 (DDSP256 taps), 512 (DDSP512 taps), 1024

(DDSP1024 taps) and 4096 (DDSP4096 taps). A hop size of 32 samples is used

for all of the models. While such hop size is small for some models compared

to a more standard 75% overlap, this value is used to 1) compare Noise-

BandNet and DDSP using a configuration that is as close as possible for

all systems, and 2) demonstrate that a smaller hop size does not necessarily

improve the time resolution for the DDSP time-varying FIR noise synthe-

siser (refer to Figure 7.1). A hidden size of 128 is used for all of the models,

with and a single input MLP per input feature, as in NoiseBandNet (see

Figure 7.4). The DDSP noise synthesiser Pytorch implementation found in

[253]2 is used, reverb is not modelled, and the same training configuration

and loss function as in the NoiseBandNet models are employed.

2https://github.com/YatingMusic/ddsp-singing-vocoders

https://github.com/YatingMusic/ddsp-singing-vocoders

7.3 Reconstruction 161

7.3.2 Results

Two objective metrics are used to assess all five models’ reconstruction fideli-

ties. First, the MRSTFT loss described above, measured from 19 different

values at training time as models converged near their final epochs, to com-

pensate for small possible fluctuations occurring during training. Second, the

Fréchet Audio Distance (FAD) [192], a quality metric that correlates to hu-

man listeners better than spectral distances, using the implementation found

in.3 MRSTFT loss and FAD results are reported in Table 7.1.

A two-way ANOVA on the MRSTFT loss data with factors for model (five

levels, of NoiseBandNet and the four variants of the original DDSP model)

and sound effect (five levels of footsteps, thunderstorm, pottery sounds,

knocking sound effects and metal sounds) reveals significant main effects of

model (F (4, 450) = 2128, p < .001) and sound effect (F (4, 450) = 1217, p <

.001) and a significant interaction (F (16, 450) = 193, p < .001), suggesting

that the type of model drives differences in loss, so does the type of sound

effect, and that certain combinations of model and sound effect lead to either

particularly low or high loss values.

3https://github.com/gudgud96/frechet-audio-distance

https://github.com/gudgud96/frechet-audio-distance

1
6
2

S
o
u
n
d

E
ff
e
cts

S
y
n
th

e
sis

U
sin

g
D
iff
e
re
n
tia

b
le

D
S
P

Table 7.1: MRSTFT loss (mean ± sd) and FAD results for the reconstruction task. Lower values of MRSTFT loss and
FAD are better (best performers highlighted in bold).

Footsteps Thunderstorm Pottery Knocking Metal Average values
MRSTFT FAD MRSTFT FAD MRSTFT FAD MRSTFT FAD MRSTFT FAD MRSTFT FAD

NoiseBandNet 1.14±0.01 5.41 1.24±0.01 9.06 1.22±0.04 1.33 1.10±0.01 2.44 1.15±0.01 4.65 1.17 4.578
DDSP256 taps 1.29±0.01 8.45 1.44±0.01 10.08 1.38±0.02 2.17 1.32±0.01 8.68 1.60±0.01 34.64 1.40 12.804
DDSP512 taps 1.26±0.01 9.22 1.41±0.02 10.10 1.37±0.02 1.22 1.30±0.01 5.17 1.46±0.01 28.75 1.36 10.89
DDSP1024 taps 1.24±0.01 9.89 1.42±0.01 10.33 1.38±0.03 1.55 1.29±0.01 5.35 1.35±0.01 25.92 1.34 10.61
DDSP4096 taps 1.22±0.02 7.02 1.42±0.02 9.58 1.39±0.04 2.06 1.32±0.02 4.23 1.27±0.01 15.53 1.32 7.69

7.4 Creative Uses 163

An analysis of multiple pairwise comparisons (Tukey’s Honest Significant

Difference method) was conducted to investigate which pairings of groups dif-

fer. It was found that NoiseBandNet significantly outperforms DDSP256 taps

(mean diff = 0.234, p < .001), DDSP512 taps (mean diff = 0.189, p < .001),

DDSP1024 taps (mean diff = 0.164, p < .001) and DDSP4096 taps (mean diff =

0.150, p < .001). Thus, NoiseBandNet obtains significantly better MRSTFT

reconstruction values compared to the variants of the original DDSP noise

synthesiser. In terms of the DDSP model variants’ performance across the

different sound effect categories, they were most effective for footsteps, fol-

lowed by knocking, pottery, and thunder, with relatively small differences in

performance between variants. This was in contrast to the metal category,

where DDSP variants displayed relatively large differences in performance.

The FAD results follow a very similar pattern to those for MRSTFT, with

the exception of DDSP512 taps, which performs better than NoiseBandNet in

terms of FAD for the pottery sound effect category. This discrepancy may be

caused by the small size of the datasets, which negatively affects the accuracy

of the metric [192].

7.4 Creative Uses

As a second evaluatory perspective on NoiseBandNet, this section highlights

some potential creative uses to which NoiseBandNet can be put.

164 Sound Effects Synthesis Using Differentiable DSP

Figure 7.5: Log-magnitude spectrograms from the result of the different ran-
domisation schemes. The left column represents a non-randomised (just re-
constructed) sound: a metal impact. The second and third columns show two
examples of the resulting randomised sound. In the first row the top k ran-
domisation scheme is employed, using Lframe = 430 (3 frames), k = 100 and
a randomised multiplier in a [0.0, 1.0] range. The second row depicts the fre-
quency shift randomisation scheme with Lframe = 645 (2 frames), finit = 30
and fshift = 3. The third row shows both randomisation combined, using
Lframe = 645 (2 frames), k = 100, a [0.0, 1.0] multiplier, finit = 30 and
fshift = 3.

7.4 Creative Uses 165

7.4.1 Amplitude Randomisation

Given that NoiseBandNet uses DSP components at its core to produce au-

dio, their inherent biases can be exploited to further alter the output signal.

As outlined in Section 7.2.4, the output amplitudes of the model using the

proposed architecture is deterministic. Here, as an example, two strategies

to generate variations from the predicted time-varying amplitudes are pre-

sented. This may be especially relevant to game audio, where it is common to

use multiple audio clips to sound design the same in-game interaction in or-

der to avoid repetition [5]. The proposed randomisation scheme is somewhat

conceptually similar to the randomisation scheme used in Chapter 4 with the

filter-based modal synthesiser, where the properties of the filters were modi-

fied for each sound in order to produce different variations between impacts.

First, it is proposed to randomise the top k amplitudes kamp within a

desired frame length Lframe (i.e., the output amplitudes are randomised each

Lframe amplitude values). To achieve this, first the frame length Lframe is

selected and the output amplitudes are split to non-overlapping frames of

that length. Note these frames are split before performing the linear inter-

polation operation that upsample the amplitude values to audio rate. Then,

the desired top amplitudes kamp on each frame are found by summing the

amplitude values for each of the bands on that frame across the time-axis,

selecting the greater k values. After that, a randomised amplitude modifier

in a user-defined range of [multmin,multmax] is applied by multiplying the

amplitude values on that frame by it, scaling them up or down. Since all

amplitudes still need to be interpolated to audio rate, the transition between

their values is smoothed. It was also found that, if a different amplitude

166 Sound Effects Synthesis Using Differentiable DSP

randomisation for the same amplitude output is computed, stereo sequences

can be generated by panning them left and right, as the resulting signal,

in combination to the variation introduced by the band shift explained in

Section 7.2.4, will be slightly different for relatively small [multmin,multmax]

values.

Second, another strategy is proposed to perform frame-wise pitch-shift on

the output amplitudes. Again, a desired frame length Lframe is selected and

the output amplitudes are split to non-overlapping frames of it before the lin-

ear interpolation operation. Within that frame, all the amplitude values are

“rolled” to a randomised integer value [−fshift, fshift] on their band-axis, ef-

fectively transposing the bands from one amplitude to another. The previous

fshift values are taken into account to compute the current shift, implement-

ing a process somewhat similar to a random walk. An initial frequency shift

finit that rolls all the amplitude values in a randomised [−finit, finit] range

is also allowed, which effectively transposes the entire sound. Likewise, the

subsequent linear interpolation operation to audio rate will provide a relative

smooth transition between shifts.

An example of both schemes is depicted in Figure 7.5, showing the top

k randomisation in the first row, the frequency shift randomisation in the

second row and both randomisation schemes applied together in the third

row.

7.4.2 Loudness Transfer

In [145] they were capable of performing timbre transfer (i.e., transferring

the pitch and loudness of an incoming audio to the instrument the model

7.4 Creative Uses 167

is trained on) using just 13 minutes of expressive solo violin performances.

However, unlike harmonic sounds that are constrained by a discretised and

well-defined pitch, in Section 7.3.1 spectral centroid is used as an alternative

control vector for inharmonic sounds (such as in most sound effects), thus

introducing a higher degree of freedom to the control parameters. Consider-

ing the deterministic nature of the output amplitudes from the model, and

since obtaining enough expressive data to represent all possible loudness and

spectral centroid and interactions may be challenging in the context of sound

effects, a control scheme is employed here such that it only relies on one of

the features: loudness. The aim is to transfer the relative loudness envelope

of one sound to another, training the network in the latter and using the

extracted loudness envelope of the former during inference. This is possible

due to loudness being mathematically defined (i.e., it can be extracted pro-

grammatically) and normalised to a [0, 1] range relative to the training and

inference data, as described in Section 7.3.1, thus covering the full loudness

range regardless of the training data.

To demonstrate the loudness transfer capabilities of the model, the same

training procedure than in Section 7.3.1 is followed, but using loudness as

the only control parameter. Three different models are trained on the fol-

lowing short sounds: a metal impact (≈1.0 second), the Wilhelm scream

(≈1.2 seconds), and an electric drill sound (≈3.4 seconds). Due to having a

single control parameter and therefore a single input MLP, the trained models

are slightly smaller than the ones trained on two control parameters. More

specifically, they have a total of ≈414K parameters (as opposed to 464K)

and their weighs a size of ≈1.6 MB (as opposed to ≈1.8 MB). For reference,

168 Sound Effects Synthesis Using Differentiable DSP

Figure 7.6: Waveforms (top) and log-magnitude spectrograms (bottom) pairs
resulting from the loudness transfer experiments. The extracted loudness of
each sound is represented in black, superimposed on the waveforms in a
[0, 1] range. The first row depicts the three sounds used to train each of
the models: a metal impact, the Wilhelm scream. and an electrical drill
sound effect. The first column contains the sounds used for transferring their
loudness envelopes. Starting from the second row, the second, third, and
fourth columns contain the loudness transfer results for the different sound
combinations.

7.4 Creative Uses 169

the MRSTFT reconstruction loss for the different models is of 1.04 ± 0.01

for the metal impact model, 1.09 ± 0.01 for the Wilhelm scream model and

1.17 ± 0.01 for the drill model using the same objective as in Section 7.3.1.

Another three sounds are then chosen to transfer their loudness envelopes

to all the trained models: a rhythmic beatbox sound effect, scribbling using

a pencil onto paper sounds, and a squeaky toy sound effect. All the training

and inference sound effects are collected from the Freesound website [216].

The loudness transfer is performed by simply extracting the loudness from

the target sounds (beatbox, scribbling and drill in the examples) computing

it using the same procedure described in Section 7.3.1 (including normalising

it to a [0, 1] range), and using the resulting vector (interpolated accordingly

to the internal Fs/W sampling rate) as the input to the trained models (metal

impact, Wilhelm scream and electric drill). A 219 sample length excerpt from

the target sounds (≈12 s at 44.1 kHz) is chosen, and the operation described

above is applied.

While both the loudness of the target and trained models sounds are

normalised in a [0, 1] range, it may occur that most (or the most perceptually

relevant) of their values are contained on an specific interval, and outliers

distort it. To solve this potential issue, and to allow for a finer control over the

output of the model, a user-defined scale modifier is applied to the loudness

values. In the experiments, the following modifiers were applied to the input

loudness values of the sounds depicted in Figure 7.6: metal impact (+0.1 on

beatbox, −0.1 on scribbling, −0.1 on squeaky toy), Wilhelm scream (+0.3

on beatbox, +0.15 on scribbling, no modification on squeaky toy), electric

drill (+0.25 on beatbox, no modification in scribbling, −0.1 on squeaky toy).

170 Sound Effects Synthesis Using Differentiable DSP

The result from the experiments is depicted in Figure 7.6. It can be

discerned how the target loudness envelope, depicted in the first column is

successfully transferred to the trained models, depicted in the second, third

and fourth columns, starting from the second row. It is also noticeable how

the frequency content of the resulting transferred sounds is time-varying,

changing over time depending on the input control parameter.

7.4.3 Training and Synthesis using User-Defined Con-

trol Parameters

Since loudness (or spectral centroid) curves may be challenging to control and

interpret from a user-perspective, or may not be adequate for the potential

use-cases of a particular model, here the training on user-provided control

parameters is explored, taking inspiration from the Wwise audio middleware

Real-Time Parameter Controls (RTPCs).4 RTPCs can be used to attach

in-game parameters (e.g., the speed of a car) to sound properties (e.g., the

pitch of the engine), linking game events to sound control curves. In this

scenario, by anticipating the creative use of the synthesiser, a user (e.g., a

sound designer) may directly draw the desired control curves used during

training and, once trained, use them to control the output of the model.

To this end, a graphical user interface is designed to manually label the

data based on potential control curves. The tool is depicted in Figure 7.7,

containing a waveform of the sound to be modelled on top and its spec-

trogram at the bottom. By clicking on top of the spectrogram, a user can

manually draw the control curve. Once drawn, this curve is normalised to

4https://www.audiokinetic.com/en/library/edge/?source=SDK&id=concept_

rtpc.html

https://www.audiokinetic.com/en/library/edge/?source=SDK&id=concept_rtpc.html
https://www.audiokinetic.com/en/library/edge/?source=SDK&id=concept_rtpc.html

7.4 Creative Uses 171

[0, 1], in preparation for use with the model. The same three sounds used

in Section 7.4.2 are chosen, envisioning a user who wishes to control the fol-

lowing aspects with their control curves: for metal impact, the curve might

control impact force; for the Wilhelm scream, the curve might control scream

intensity; for the electric drill, the curve might control drill power. The three

models are then trained with those hand-drawn control curves as their single

input control parameter. For reference, in this case the MRSTFT reconstruc-

tion loss for the different models is of 1.05±0.01 for the metal impact model,

1.01±0.01 for the Wilhelm scream model and 1.23±0.01 for the drill model,

using the same objective and configuration as in Section 7.3.1.

Figure 7.7: Graphical user interface used to manually label the data. The
image depicts the waveform (top) and the magnitude spectrogram (bottom)
of an electric drill sound. The cyan line on top of the spectrogram is the
hand-annotated control curve.

To control the synthesiser, a corresponding UI tool for drawing the infer-

ence control parameters is provided. The control tool functions exactly as

the tool depicted in Figure 7.7, but now the user has a blank canvas to draw

172 Sound Effects Synthesis Using Differentiable DSP

their desired control curve for driving the synthesiser. Three hand-crafted

curves per model, with a length of 214 each, are drawn (second, third, and

fourth columns of Figure 7.8). Since the output amplitudes are upsampled

to audio rate interpolating them by a factor defined by the synthesis win-

dow size W = 32, the output signal length is of 214 · 32 = 524 288 samples

or ≈12 seconds at 44.1 kHz. The results of the experiments are depicted in

Figure 7.8. The first column contains the original sounds along their user-

defined control curves used during training, represented in black on top of

the waveforms. The subsequent columns are the synthesised sounds resulting

from using the new user-defined inference curves, depicted also in black on

top of their waveforms. For each sound category, it can be seen that the

resulting audio is broadly consistent with the intended control curve.

7.5 Chapter Summary

The combination of DSP components (such as in Chapter 4) alongside deep

learning techniques (such as in Chapters 5 and 6) for the synthesis of sound

effects is a method that has shown promise in recent years, at least where

assumptions hold regarding the harmonicity of the sounds being modeled

[145]. Harmonic sounds represent only a portion of sound effects, however,

and so it remained an open problem how to model and then synthesise arbi-

trary sounds with acceptable time and frequency resolution, and of arbitrary

length.

The contribution of this chapter is to address the modelling and synthesis

of arbitrary sounds using DDSP synthesisers, tackling both the problem of re-

construction fidelity (see Section 7.3) and exploring some of the creative uses

7.5 Chapter Summary 173

Figure 7.8: Waveforms (top) and log-magnitude spectrograms (bottom) pairs
resulting from the training on user-defined control experiments. The train-
ing sounds are depicted in the first column, with their user-defined training
control parameters represented in black superimposed on the waveforms in
a [0, 1] range. The second, third, and fourth columns contain the sounds
generated by using user-defined inference curves for the three models, each
one in a different row. The user-defined inference control curves are also
represented in black on top of the waveforms in a [0, 1] range.

174 Sound Effects Synthesis Using Differentiable DSP

(see Section 7.4). The proposed solution is encapsulated in a model called

NoiseBandNet, an architecture capable of synthesising continuous sound ef-

fects conditioned on high-level parametric controls with consistently good

time and frequency resolution. The use of filterbanks to shape white noise

is proposed, establishing a suitable approach towards modelling non-musical

or inharmonic sound effects using DDSP synthesisers. NoiseBandNet is also

lightweight and can be trained on very limited data (≈1 second of audio), as

shown in the experiments. The potential creative uses of the architecture are

also highlighted by generating sound variations, performing loudness transfer,

and training and synthesising audio with user-defined control parameters.

NoiseBandNet is evaluated against four configurations of the original

DDSP filtered noise synthesiser [145], and it was found that NoiseBandNet

significantly outperforms all DDSP variants on the task of resynthesising

sounds from different categories, for nine out of ten (sound category, eval-

uation metric) combinations – the exception being for the metric of FAD

on pottery sounds. In addition to overall better reconstruction capabilities

compared to the original DDSP noise synthesiser, the proposed filterbank is

not constrained by having its frequency response distributed linearly, such

as in the case of a time-varying FIR filter. Thus, both the number of filters

and their distribution across the frequency spectrum is flexible and can be

altered to accommodate other use cases.

Taking inspiration from current game audio workflows, the creative pos-

sibilities of NoiseBandNet are also outlined through a series of experiments,

providing examples of amplitude randomisation, automatic loudness transfer

and training models using user-defined controls. The code employed to gen-

7.5 Chapter Summary 175

erate those sounds alongside the audio examples described throughout the

chapter can be found in the accompanying material at the project website.5

While a filterbank configuration with a higher frequency resolution on the

low end (broadly inspired by [98]) which provided satisfactory results on pilot

experiments was used, the design could be further improved by considering

auditory perception, for instance increasing the emphasis between 500 and

4000 Hz, where the sensitivity of frequency changes to pure tones is higher

[302]. Apart from the effect of the number of filters and their distribution

on synthesis quality, it is also planned to explore the use of alternative loss

functions, such as the differentiable joint time-frequency scattering (JTFS),

used recently in the context of audio classification with promising results

[187].

Since the proposed noise band structure is not tied to the network ar-

chitecture itself, for future work it is aimed to use noise bands with other

approaches. For instance, the architecture could be replaced with a more

lightweight temporal convolutional network (TCN) [303], which has been

successfully employed to model audio effects [265] and in differentiable FM

synthesisers [251]. Another option may be using adversarial training [155] or

a variational autoencoder (VAE) [149, 150], which opens up the possibility of

non-deterministic behaviour. Additionally, NoiseBandNet could be applied

to harmonic and musical signals, replacing the original DDSP noise synthe-

siser, or potentially in combination with it when sounds contain inharmonic

partials (e.g., training using an approach derived from [298]).

Despite the saved model weights being small in size (≈1.8 MB and ≈1.6 MB

for two and one control parameters, respectively), the size of the noise bands

5https://www.adrianbarahonarios.com/noisebandnet/

https://www.adrianbarahonarios.com/noisebandnet/

176 Sound Effects Synthesis Using Differentiable DSP

is large (≈1 GB on disk for the proposed configuration), due to their the

number and length. However, as described in Section 7.2.2, thanks to the

deterministic nature of the noise bands when using the same filterbank con-

figuration, a single instance can be used across multiple models, thus only

needing to create a single set of them. Nonetheless, to further optimise the

model size and alleviate the computational burden involved in multiplying

the output amplitudes from the model with the noise bands in the time-

domain, it is planned to investigate the use of neural audio codecs such as

Encodec [304], and multi-rate filterbanks and sub-band processing as in [98].

As it was reported in Section 7.3.1, the offline generation on a consumer

GPU is fast (≈529.5 milliseconds to generate 30 seconds of audio), but it is

much slower on CPU (≈13.4 seconds to generate the same length). While

more research needs to be conducted to address these points, it is hypothe-

sised that a combination of architectural changes (such as the use of TCNs),

a more efficient auditory-informed filterbank configuration, and the use of

neural audio codecs and sub-band processing as described above may result

in faster generation, which is especially relevant for real-time synthesis in the

context of game audio.

Regarding the automatic extraction of control parameters from the audio,

above (Section 7.3.1) loudness and spectral centroid are used, computed using

DSP methods. Other approaches, such as [259], develop highly engineered

solutions to extract control parameters from the target audio, such as engine

RPM in their case. It is desirable, however, to accommodate a wider range

of sounds and use cases. While a first approach could be the use of sound

event detection to extract similar sounding clips from longer signals in data-

7.5 Chapter Summary 177

scarce scenarios, such as in [305], achieving the potential granularity required

to successfully label continuous data (e.g., drill power in the examples) may

be challenging. Another direction, inspired by the recent proliferation of

text-to-audio models such as [235, 236], could be the generation short audio

clips catered towards being controlled by a model such as NoiseBandNet.

For instance, a text-to-audio model could be prompted to generate a drill

sound effect with a linearly increasing drill power, and the output audio

could be used as the input to NoiseBandNet alongside a linearly increasing

control parameter vector going from [0, 1] (minimum and maximum drill

power values), granting the text-to-audio model successfully renders a sound

with those properties.

It is acknowledged that while three different experiments exploring the

creative uses of the architecture are presented, these could be expanded and

evaluated in a user study. Future work will comprise carrying out a study

with audio experts to evaluate the creative possibilities of the model, and the

plausibility of the synthesised sounds. The study will also inform the amount

and type of data needed to satisfactorily accomplish a control task, and the

feasibility of training with multiple user-defined control parameters (e.g., a

weather audio model with both “rain and thunder intensity” control curves).

Since NoiseBandNet uses DSP components (time-varying amplitudes applied

to filters) that audio experts are familiar with, it is also planned to evaluate

and expand the randomisation schemes outlined in Section 7.4.1. Ultimately,

the aim is to understand how the model introduced in this chapter could affect

the workflows of sound designers and, more generally, audio experts in years

to come when using controllable neural audio synthesisers in the context of

178 Sound Effects Synthesis Using Differentiable DSP

game audio.

CHAPTER 8

CONCLUSIONS

8.1 Discussion

How high-fidelity sound effects can be generated 1) automatically or 2) with

dynamic or creative control where necessary or desired – all without compro-

mising the quality or plausibility of the output audio – is a topic of interest

to the fields of sound design and game audio [9, 5], psychoacoustics [63], and

extended reality [8]. However, the efficient creation of plausible and/or con-

trollable sound synthesis models for the generation of sound effects remains

an open research problem [9, 16, 17, 18, 8]. This thesis explores methods

to solve these problems by surveying the suitability of DSP approaches for

certain sounds, by employing novel deep learning architectures for general

sound effect synthesis, and by using a combination of DSP and deep learning

methods for the controllable synthesis of arbitrary sound effects.

First, Chapter 4 addresses the first research question (RQ 1): “To what

extent can DSP-based procedural audio techniques be applied to

video games in terms of perceived plausibility?”

180 Conclusions

To this end, Chapter 4 assesses the perceived plausibility of filter-based

modal synthesis [56, 22] for the synthesis of sound effects. Filter-based

modal synthesis is a DSP-based subtractive synthesis approach derived from

physical-inspired synthesis, especially suited for the synthesis of percussive

sounds. A diverse set of objects from four different types of materials (ce-

ramic, glass, metal and wood) that may be relevant to video games and

that are suitable for the considered synthesis method (i.e., they exhibit clear

modes when struck) is selected. Aiming to synthesise impact sounds, proce-

dural audio models are constructed for each object, followed by an evaluation

of their perceived plausibility in a listening study. Results show that for the

sounds considered, presented in isolation, recorded and synthesised sounds

are indistinguishable from each other. In other words, all participants of the

listening study were unable to detect the synthesised sounds, and this fact

did not depend on the expertise in sound design of the listener. To emphasise

the suitability of the synthesis method in the context of game audio, an in-

tractable real-time implementation of the evaluated procedural audio models

was also presented within a virtual environment. Thus, it is demonstrated

that, from a perceptual point of view and for a certain subset of sounds and

interactions, filter-based modal synthesis is a suitable method to create pro-

cedural audio models in the context of video games, hence addressing the first

research question (RQ 1) of this thesis. As outlined in Section 4.6, this chap-

ter focuses on a particular category of sounds (time-invariant impact sounds

of objects that exhibit clear modes when struck), which only represent a

small percentage of sound effects. Hence, driven by recent advancements in

the field of deep learning that have surpassed “classic” DSP methods (see

8.1 Discussion 181

Section 3.3), the next chapters of the thesis explore data-driven techniques.

These methods are not necessarily bound by specific sound characteristics,

and offer opportunities for novel interactions and control schemes.

Second, Chapters 5 and 6 address the second research question (RQ 2):

“How can novel deep learning techniques be applied directly to

the synthesis of sound effects?” They do so by describing how one

can both: a) synthesise sound effects with class conditioning by training on

a dataset, and b) generate variations from single sound effects using deep

learning methods.

Chapter 5 focuses on the class-conditional synthesis of sound effects. That

is, by learning from a dataset of sounds belonging to different classes (e.g.,

emotional intentions in knocking sound effects), a generative deep learning

model is capable of synthesising novel sounds, controlling which of those

classes the synthesised sound belong to. To achieve this task, a conditional

WaveGAN architecture [200, 223] is used, training it on a dataset of knock-

ing sound effects with emotional intentions commissioned to a professional

Foley artist [282]. The plausibility and the intended and perceived emotion

of the synthesised sound effects are evaluated in a listening study. Results

show that, while synthesised sounds can be identified by participants with

expertise in sound design, they are not far from being indistinguishable from

the pre-recorded samples by non-experts. The intended and perceived emo-

tion labeling by participants in both the recorded and synthesised sounds is

similar, being all of them correctly labelled, except for anger and fear, which

are confused with each other. A series of acoustic features extracted from the

recorded and synthesised sounds are also compared. These features are also

182 Conclusions

similar in both groups of sounds, suggesting that they may have an effect on

the perception of emotions in knocking sound effects.

To address the challenges derived from likely data-scarce scenarios in the

context of sound effects modelling, Chapter 6 focuses on training a generative

deep learning model using just a single sound. To achieve this single-image

GANs [290, 292] are used, bringing them to the audio domain and encapsu-

lating the approach in an architecture called SpecSinGAN. Inspired by game

audio workflows, multi-channel log-magnitude spectrograms are used to train

the network on the different layers that comprise a sound effect, synthesising

variations from them. The approach is evaluated in a listening study against

pre-recorded samples and DSP-based procedural audio model variants [16],

assessing their plausibility and variation. Results demonstrate that SpecSin-

GAN significantly outperforms the procedural audio model variants, for both

evaluation metrics. SpecSinGAN is not as plausible or varied as pre-recorded

samples, however.

Third, Chapter 7 addresses the third research question (RQ 3): “To what

extent can a combination of DSP-based techniques and machine

learning methods be applied to the synthesis of sound effects?”

Chapter 7 focuses on the controllable time-varying synthesis of sound

effects. To achieve this, a network is trained to predict the time-varying

amplitudes of a series of narrow noise bands produced by filtering white

noise through a filterbank of adjacent FIR filters, conditioning it on time-

varying control parameters. The method, encapsulated in an architecture

called NoiseBandNet, effectively links those input feature vectors – repre-

senting control parameters – to the synthesised audio. The reconstruction

8.2 Assumptions and Limitations 183

(i.e., resynthesis) capabilities of the approach are evaluated against a baseline

state-of-the-art differentiable digital signal processing architecture [145], for

five categories of sound effects. Results show that this method outperforms

the baseline in objective evaluations, achieving both good time and frequency

resolution.

To emphasise the usability of the approach, a series of creative experi-

ments were performed. These experiments allow prospective users to generate

variations, perform loudness transfer or, inspired by game audio workflows,

train and synthesise audio according to user-defined control curves. Thus,

Chapter 7 addresses the third research question (RQ 3), by using DSP com-

ponents (FIR filters, time-varying amplitudes) alongside deep learning to

synthesise sound effects.

8.2 Assumptions and Limitations

It is assumed that the third-party software tools (e.g., automatic differenti-

ation libraries or DSP components) utilised throughout the development at

various stages (e.g., analysis, training, or inference) of the algorithms dis-

cussed in this thesis are reliable and stable, yielding the anticipated outputs.

It is also assumed that the participants responded honestly to the listening

studies conducted as part of this work.

In addition to the specific limitations outlined in each chapter, the scope

of the studies conducted in this thesis adheres to what is described in Sec-

tion 1.2, thus there are certain areas that are not prioritised, such as ma-

chine learning operations (MLOps), inference time optimisation (including

real-time generation), or user experience design. Similarly, within the scope

184 Conclusions

of this thesis, each chapter comprising this work considers a single solution

to its problem statement. However, while multiple approaches (e.g., different

architectures) could lead to similar solutions, they are not explored due to

time constraints.

8.3 Future work

Throughout this thesis, sound has been modelled with deep learning methods

using multiple audio representations. Specifically, sound has been modelled

in the waveform domain (Chapter 5), using phaseless log-magnitude spectro-

grams (Chapter 6), and DSP components (Chapter 7). While, as outlined in

Section 3.3, those are arguably the three most common representations (i.e.,

raw audio, spectral, DDSP-based), other forms of audio representation may

also be desirable. For instance, especially relevant for the methods consid-

ered in Chapters 5 and 6 that address the second research question (RQ 2)

may be, respectively: the use of alternative waveform representations, such as

the discrete representations derived from neural audio compressors like [306],

which have been used already in the context of text-to-audio generation in

[235]; or alternative time-frequency representations such as the wavelet-based

joint time-frequency scattering [186].

Regarding the use of alternative DSP representations, those will depend

on the differentiable DSP systems considered. An option could be to employ

bespoke procedural audio models, such as proposed in [9, 16], and to use a

gradient descent optimisation process in order to match a target sound (e.g.,

a physically-informed footsteps model trained on real footsteps sound effects,

retaining the physical information of the system).

8.3 Future work 185

Considering the quality – or plausibility – of the generated audio, it was

found that the methods considered in Chapters 5 and 6 still lack plausibility

when compared to pre-recorded samples. However, while in those chapters

GANs are employed, more recent diffusion models (see Section 3.2.5) can be

considered for future work, as they have shown promise in the field of com-

puter vision, outperforming GANs in terms of quality [179]. Nonetheless, in

Chapters 4 and 7 it was shown that DSP components offer exceptional syn-

thesis capabilities from a plausibility point of view. Thus, the exploration of

further DDSP-based neural audio synthesisers is left as a desirable direction

for future work.

In respect of the control schemes, this thesis has explored the synthesis

of variations from user-provided sound assets (Chapters 4, 6 and 7), class-

conditional synthesis (Chapter 5), and user-defined time-varying parametric

controls (Chapter 7). In a recent survey conducted with film audio pro-

fessionals, when questioned about the desired control scheme when using

generative deep learning methods, most of the participants were interested

in generating samples from a user-provided reference audio file [307]. This

supports the ideas behind Chapters 6 and 7, where users are able to train

models with very limited user-provided data (e.g., a single sound) to syn-

thesise variations or build controllable synthesisers, thus establishing a clear

user-centric direction to take into account for future work.

Another point to consider, especially relevant to game audio, is the time

required to produce an output (i.e., the synthesis turnaround time – either

real-time or not). Chapter 4 demonstrates the implementation of real-time

DSP-based procedural audio models in a virtual environment. However, in

186 Conclusions

Chapters 5, 6 and 7), the sound is generated offline. Nonetheless, similar

neural audio synthesis approaches have been demonstrated to run in real-

time [278, 245, 206]. Thus, a desirable future direction would be to adapt

and implement the methods introduced in Chapters 5, 6 and 7 so they can

run in real-time, which, in the context of game audio, could be done natively

either in a game engine or as an audio middleware plugin; or as a DAW VST

as in [244].

Another factor to consider is the location of the device used to generate

the sounds, which can either be remote (on the server-side) or local (on the

client-side). While remote generation may be compatible with offline systems

since there are no latency burdens or immediate output expectations, online

generation (i.e., real-time sound synthesis) may be challenging on a server-

side configuration, due to latency constraints. However, with the continuous

enhancement of bandwidth speeds [308] and the development of high-quality

neural audio compressors (e.g., [306, 304]) capable of significantly reducing

the required data packages for sound transmission, real-time sound synthesis

on the server-side without latency burdens becomes feasible. This concept

is already being used in cloud gaming solutions, which run the entire game

on the server-side and stream its content at a rate of 44 Mbit/s to end users

[309]. Client-side generation relies on both the available hardware resources

and the computational demands of the model. As mentioned earlier, while

certain neural audio synthesisers are capable of real-time execution on a CPU

(e.g., [278, 245, 206]), other models may be too computationally intensive to

run locally, especially if the resources, in the context of game audio, are

allocated to other processes (e.g., graphics rendering or physics simulation).

8.4 Concluding remarks 187

With regard to the field of knowledge itself, as outlined in Chapter 3,

most previous research in neural audio synthesis has focused on either the

speech or music domains. Thus, while some of the ideas and concepts can

be carried over to the topic of study of this thesis, the synthesis of sound

effects lags behind its other audio counterparts. There is, however, a growing

interest in this topic. For instance, the emergence of LLMs and text-to-

audio architectures such as [234, 235, 236, 237, 238] may put the topic of the

synthesis of sound effects in the spotlight. Another example is the DCASE

“Foley Sound Synthesis” challenge [310], where, alongside DCASE’s usual

tasks on sound event detection and recognition, the 2023 edition included a

generative task aimed at the class-conditional synthesis of sound effects for

the first time.

8.4 Concluding remarks

To conclude, with a higher research output that addresses the aforementioned

challenges and caters to the preferences of audio professionals, coupled with

an already increasing industry demand and interest in this technology, the

arrival and adoption of data-driven sound effects synthesis for video games,

extended reality, interactive applications, or film, is poised to become a mat-

ter of when, rather than if.

188 Conclusions

Appendices

APPENDIX A

QUESTIONNAIRES

The figures depicting the consent forms and demographic information sheets

showed to the participants are listed below.

• The consent form and demographic information collected in Chapter 4

can be seen in Figure A.1 and Figure A.2 respectively.

• The consent form and demographic information collected in Chapter 5

can be seen in Figure A.3 and Figure A.4 respectively.

• The consent form and demographic information collected in Chapter 6

can be seen in Figure A.5 and Figure A.6 respectively.

192 Questionnaires

Figure A.1: Participant information form in the listening study that con-
tributes to Chapter 4.

Figure A.2: Demographic information collected in the listening study that
contributes to Chapter 4.

193

Figure A.3: Participant information form in the listening study that con-
tributes to Chapter 5.

194 Questionnaires

Figure A.4: Demographic information collected in the listening study that
contributes to Chapter 5.

195

Figure A.5: Participant information form in the listening study that con-
tributes to Chapter 6. The session ID is randomly generated for each partic-
ipant.

196 Questionnaires

Figure A.6: Demographic information collected in the listening study that
contributes to Chapter 6.

REFERENCES

[1] C. Hausman, F. Messere, and P. Benoit, Modern Radio and Audio
Production: Programming and Performance. Cengage Learning, 2015.

[2] R. L. Mott, Sound Effects: Radio, Television and Film. McFarland,
2014.

[3] C. Hopkins, Video Game Audio: A History, 1972–2020. McFarland,
2022.

[4] K. S. Chang, G. B. Kim, and T. Y. Kim, “Video Game Console Audio:
Evolution and Future Trends,” in Computer Graphics, Imaging and
Visualisation (CGIV 2007), pp. 97–102, IEEE, 2007.

[5] G. Zdanowicz and S. Bambrick, The Game Audio Strategy Guide: A
Practical Course. Focal Press, 2019.

[6] “The Biggest Maps in Video Games.” https://eloutput.com/en/

videojuegos/listas/mapas-mas-grandes/. Accessed: 2023-08-06.

[7] L. P. Berg and J. M. Vance, “Industry Use of Virtual Reality in Product
Design and Manufacturing: A Survey,” Virtual reality, vol. 21, pp. 1–
17, 2017.

[8] “Post-Keynote Panel: Procedural Sound Synthesis for AR/VR.”
https://www.youtube.com/live/9ngwhfF0FhA?feature=share&t=

6368/. Accessed: 2023-02-09.

[9] A. Farnell, Designing Sound. MIT Press, 2010.

[10] M. Yee-King and I. Dall’Avanzi, “Procedural Audio in Video Games,”
2018.

https://eloutput.com/en/videojuegos/listas/mapas-mas-grandes/
https://eloutput.com/en/videojuegos/listas/mapas-mas-grandes/
https://www.youtube.com/live/9ngwhfF0FhA?feature=share&t=6368/
https://www.youtube.com/live/9ngwhfF0FhA?feature=share&t=6368/

198 References

[11] D. B. Lloyd, N. Raghuvanshi, and N. K. Govindaraju, “Sound Synthe-
sis for Impact Sounds in Video Games,” in Symposium on Interactive
3D Graphics and Games, pp. 55–62, 2011.

[12] J. Fagerström, S. J. Schlecht, V. Välimäki, et al., “One-to-Many Con-
version for Percussive Samples,” in International Conference on Digital
Audio Effects, pp. 129–135, 2021.

[13] “9 Years Ago, One Action Game Changed Entertainment Forever.”
https://www.inverse.com/gaming/gta-v-9th-anniversary. Ac-
cessed: 2023-02-09.

[14] A. MacGregor, “The Sound of Grand Theft Auto V,” 2014.

[15] “Behind the Sound of “No Man’s Sky”: A Q&A With
Paul Weir on Procedural Audio.” https://www.asoundeffect.com/

no-mans-sky-sound-procedural-audio/. Accessed: 2023-02-09.

[16] P. Bahadoran, A. Benito, T. Vassallo, and J. D. Reiss, “Fxive: A Web
Platform for Procedural Sound Synthesis,” in AES Convention 144,
Audio Engineering Society, 2018.

[17] A. Barahona-Ŕıos and T. Collins, “SpecSinGAN: Sound Effect Varia-
tion Synthesis Using Single–Image GANs,” in 19th Sound and Music
Computing Conference, Saint-Étienne, France, 2022.

[18] M. Comunità, H. Phan, and J. D. Reiss, “Neural Synthesis of Foot-
steps Sound Effects with Generative Adversarial Networks,” in Audio
Engineering Society Convention 152, Audio Engineering Society, 2022.

[19] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“WaveNet: A Generative Model for Raw Audio,” arXiv preprint
arXiv:1609.03499, 2016.

[20] A. V. Oppenheim and R. W. Schafer, Discrete-Time Dignal Processing.
Prentice-Hall, 1999.

[21] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing. California Technical Publishing, 1999.

[22] P. R. Cook, Real Sound Synthesis for Interactive Applications. CRC
Press, 2002.

https://www.inverse.com/gaming/gta-v-9th-anniversary
https://www.asoundeffect.com/no-mans-sky-sound-procedural-audio/
https://www.asoundeffect.com/no-mans-sky-sound-procedural-audio/

REFERENCES 199

[23] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[24] W. Pirkle, Designing Audio Effect Plug–Ins in C++: With Digital
Audio Signal Processing Theory. Routledge, 2012.

[25] P. Bloomfield, Fourier Analysis of Time Series: An Introduction. John
Wiley & Sons, 2004.

[26] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calcu-
lation of Complex Fourier Series,” Mathematics of computation, vol. 19,
no. 90, pp. 297–301, 1965.

[27] D. Griffin and J. Lim, “Signal Estimation From Modified Short-Time
Fourier Transform,” IEEE Transactions on acoustics, speech, and sig-
nal processing, vol. 32, no. 2, pp. 236–243, 1984.

[28] T. Tolonen, V. Välimäki, and M. Karjalainen, “Evaluation of Modern
Sound Synthesis Methods,” 1998.

[29] S. D. Bilbao, Numerical Sound Synthesis. Wiley Online Library, 2009.

[30] J. O. Smith, “Viewpoints on the History of Digital Synthesis,” in Pro-
ceedings of the International Computer Music Conference,, pp. 1–10,
1991.

[31] X. Serra and J. Smith, “Spectral Modeling Synthesis: A Sound Analy-
sis/Synthesis System Based on a Deterministic Plus Stochastic Decom-
position,” Computer Music Journal, vol. 14, no. 4, pp. 12–24, 1990.

[32] J. A. Moorer, “Signal Processing Aspects of Computer Music: A Sur-
vey,” Proceedings of the IEEE, vol. 65, no. 8, pp. 1108–1137, 1977.

[33] E. Miranda, Computer Sound Design: Synthesis Techniques and Pro-
gramming. Routledge, 2012.

[34] S. Liu and D. Manocha, “Sound synthesis, propagation, and rendering:
A survey,” arXiv preprint arXiv:2011.05538, 2020.

[35] H. G. Alles, “Music Synthesis Using Real Time Digital Techniques,”
Proceedings of the IEEE, vol. 68, no. 4, pp. 436–449, 1980.

[36] C. Roads, The Computer Music Tutorial. MIT press, 1996.

200 References

[37] V. Välimäki, J. Pakarinen, C. Erkut, and M. Karjalainen, “Discrete–
time modelling of musical instruments,” Reports on progress in physics,
vol. 69, no. 1, p. 1, 2005.

[38] D. Creasey, Audio Processes: Musical Analysis, Modification, Synthe-
sis, and Control. Routledge, 2016.

[39] J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means
of Frequency Modulation,” Journal of the audio engineering society,
vol. 21, no. 7, pp. 526–534, 1973.

[40] M. Le Brun, “Digital Waveshaping Synthesis,” Journal of the Audio
Engineering Society, vol. 27, no. 4, pp. 250–266, 1979.

[41] D. Schwarz, G. Beller, B. Verbrugghe, and S. Britton, “Real–Time
Corpus–Based Concatenative Synthesis With Catart,” in 9th Interna-
tional Conference on Digital Audio Effects (DAFx), 2006.

[42] D. Schwarz, “Current Research in Concatenative Sound Synthesis,” in
International Computer Music Conference (ICMC), pp. 1–1, 2005.

[43] D. Schwarz, “Distance Mapping for Corpus–Based Concatenative Syn-
thesis,” in Sound and Music Computing Conference, 2011.

[44] C. Roads, “Introduction to Granular Synthesis,” Computer Music
Journal, vol. 12, no. 2, pp. 11–13, 1988.

[45] C. Roads, Microsound. MIT press, 2004.

[46] J. L. Flanagan and R. M. Golden, “The Phase Vocoder,” Bell System
Technical Journal, vol. 45, no. 9, pp. 1493–1509, 1966.

[47] X. Rodet and P. Depalle, “Spectral Envelopes and Inverse FFT Synthe-
sis,” in Audio Engineering Society Convention 93, Audio Engineering
Society, 1992.

[48] T. S. Verma and T. H.-Y. Meng, “An Analysis/Synthesis Tool for Tran-
sient Signals That Allows a Flexible Sines + Transients + Noise Model
for Audio,” in Proceedings of the 1998 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), vol. 6, pp. 3573–3576, IEEE, 1998.

[49] J. Ponce de León, J. R. Beltrán, and F. Beltrán, “Instanta-
neous Frequency Estimation and Representation of the Audio Signal

REFERENCES 201

Through Complex Wavelet Additive Synthesis,” International Jour-
nal of Wavelets, Multiresolution and Information Processing, vol. 12,
no. 03, p. 1450030, 2014.

[50] B. Boashash, “Estimating and interpreting the instantaneous frequency
of a signal. I. Fundamentals,” Proceedings of the IEEE, vol. 80, no. 4,
pp. 520–538, 1992.

[51] R. McAulay and T. Quatieri, “Speech Analysis/Synthesis Based on a
Sinusoidal Representation,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 34, no. 4, pp. 744–754, 1986.

[52] J. P. de León Vázquez, Análisis y Śıntesis de Señales de Audio a
Través de la Transformada Wavelet Continua y Compleja: el Algo-
ritmo CWAS. PhD thesis, Universidad de Zaragoza, 2012.

[53] J.-M. Adrien, “The Missing Link: Modal Synthesis,” in Representa-
tions of Musical Signals, pp. 269–298, 1991.

[54] J. D. Morrison and J.-M. Adrien, “MOSAIC: A Framework for Modal
Synthesis,” Computer Music Journal, vol. 17, no. 1, pp. 45–56, 1993.

[55] C. Bruyns, “Modal Synthesis for Arbitrarily Shaped Objects,” Com-
puter Music Journal, pp. 22–37, 2006.

[56] P. R. Cook, “Physically Informed Sonic Modeling (PHISM): Synthesis
of Percussive Sounds,” Computer Music Journal, vol. 21, no. 3, pp. 38–
49, 1997.

[57] J. O. Smith, “Physical Modeling Using Digital Waveguides,” Computer
music journal, vol. 16, no. 4, pp. 74–91, 1992.

[58] S. Van Duyne and J. O. Smith, “The 2–D digital waveguide mesh,” in
Proceedings of IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, pp. 177–180, IEEE, 1993.

[59] L. Savioja, T. Rinne, and T. Takala, “Simulation of Room Acoustics
With a 3–D Finite Difference Mesh,” in The 1994 International Com-
puter Music Conference, Aarhus, September 12-17, 1994, pp. 463–466,
Int. Computer Music Ass. and Danish Inst. of Electroa. Music, 1994.

[60] J. Mullen, D. M. Howard, and D. T. Murphy, “Digital Waveguide Mesh
Modeling of the Vocal Tract Acoustics,” in 2003 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (IEEE Cat.
No. 03TH8684), pp. 119–122, IEEE, 2003.

202 References

[61] A. Fettweis, “Wave digital filters: Theory and practice,” Proceedings
of the IEEE, vol. 74, no. 2, pp. 270–327, 1986.

[62] D. O’Shaughnessy, “Linear Predictive Coding,” IEEE potentials, vol. 7,
no. 1, pp. 29–32, 1988.

[63] J. H. McDermott and E. P. Simoncelli, “Sound Texture Perception via
Statistics of the Auditory Periphery: Evidence From Sound Synthesis,”
Neuron, vol. 71, no. 5, pp. 926–940, 2011.

[64] R. E. Turner, Statistical Models for Natural Sounds. PhD thesis, UCL
(University College London), 2010.

[65] G. Widmer, D. Rocchesso, V. Välimäki, C. Erkut, F. Gouyon, D. Press-
nitzer, H. Penttinen, P. Polotti, and G. Volpe, “Sound and Music Com-
puting: Research Trends and Some Key Issues,” Journal of New Music
Research, vol. 36, no. 3, pp. 169–184, 2007.

[66] A. Misra and P. R. Cook, “Toward Synthesized Environments: A Sur-
vey of Analysis and Synthesis Methods for Sound Designers and Com-
posers,” in ICMC, 2009.

[67] D. Schwarz, “State of the Art in Sound Texture Synthesis,” in Digital
audio effects (DAFx), pp. 221–232, 2011.

[68] S. Serafin, M. Geronazzo, C. Erkut, N. C. Nilsson, and R. Nordahl,
“Sonic Interactions in Virtual Reality: State of the Art, Current Chal-
lenges, and Future Directions,” IEEE computer graphics and applica-
tions, vol. 38, no. 2, pp. 31–43, 2018.

[69] D. Moffat, R. Selfridge, and J. D. Reiss, “Sound Effect Synthesis,”
in Foundations in Sound Design for Interactive Media, pp. 274–299,
Routledge, 2019.

[70] L. Mengual, D. Moffat, and J. D. Reiss, “Modal Synthesis of Weapon
Sounds,” in Audio Engineering Society Conference: 61st International
Conference: Audio for Games, Audio Engineering Society, 2016.

[71] H. E. Tez, R. Selfridge, and J. Reiss, “Ocean Wave Sound Synthesis
and Perceptual Evaluation,” in Audio Engineering Society Convention
151, Audio Engineering Society, 2022.

[72] R. Selfridge, J. D. Reiss, E. J. Avital, and X. Tang, “Physically Derived
Synthesis Model of an Aeolian Tone,” in Audio Engineering Society
Convention 141, Audio Engineering Society, 2016.

REFERENCES 203

[73] R. Selfridge, D. Moffat, and J. D. Reiss, “Physically Derived Sound
Synthesis Model of a Propeller,” in Proceedings of the 12th Inter-
national Audio Mostly Conference on Augmented and Participatory
Sound and Music Experiences, pp. 1–8, 2017.

[74] R. Selfridge, D. Moffat, E. J. Avital, and J. D. Reiss, “Creating Real-
Time Aeroacoustic Sound Effects Using Physically Informed Models,”
Journal of the Audio Engineering Society, 2018.

[75] R. Selfridge, Real-Time Sound Synthesis of Aeroacoustic Sounds Us-
ing Physically Derived Models. PhD thesis, Queen Mary University of
London, 2019.

[76] R. Nordahl, S. Serafin, and L. Turchet, “Sound Synthesis and Evalua-
tion of Interactive Footsteps for Virtual Reality Applications,” in 2010
IEEE Virtual Reality Conference (VR), pp. 147–153, IEEE, 2010.

[77] L. Turchet, S. Serafin, S. Dimitrov, and R. Nordahl, “Physically Based
Sound Synthesis and Control of Footsteps Sounds,” in Proceedings of
the 13th International Conference on Digital Audio Effects (DAFx-10),
pp. 161–168, 2010.

[78] L. Turchet, “Footstep Sounds Synthesis: Design, Implementation, and
Evaluation of Foot–Floor Interactions, Surface Materials, Shoe Types,
and Walkers’ Features,” Applied Acoustics, vol. 107, pp. 46–68, 2016.

[79] L. Peltola et al., “Analysis, Parametric Synthesis, and Control of Hand
Clapping Sounds,” Master of Science Thesis, Helsinki University of
Technology, 2004.

[80] C. Erkut, “Towards Physics-Based Control and Sound Synthesis of
Multi-Agent Systems: Application to Synthetic Hand Clapping,” in
Proc. Nordic Music Technology Conf, 2006.

[81] C. Erkut and K. Tahiroğlu, “ClaPD: A Testbed for Control of Multiple
Sound Sources in Interactive and Participatory Contexts,” in Proceed-
ings of the PureData Convention, vol. 7, 2007.

[82] L. Peltola, C. Erkut, P. R. Cook, and V. Valimaki, “Synthesis of Hand
Clapping Sounds,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15, no. 3, pp. 1021–1029, 2007.

[83] A. Jylha, C. Erkut, I. Ekman, and K. Tahiroglu, “iPalmas - An Inter-
active Flamenco Rhythm Machine,” in 4th Conference on Interaction
with Sound: Audio Mostly 2009, 2009.

204 References

[84] A. Misra, P. R. Cook, and G. Wang, “A New Paradigm for Sound De-
sign,” in Proceedings of the International Conference on Digital Audio
Effects (DAFx), 2006.

[85] A. Misra, P. R. Cook, and G. Wang, “TAPESTREA: Sound Scene
Modeling by Example,” in ACM SIGGRAPH 2006 Sketches, pp. 177–
es, 2006.

[86] A. Misra, G. Wang, and P. R. Cook, “TAPESTREA: A New Way to
Design Sound,” in Proceedings of the 17th ACM international confer-
ence on Multimedia, pp. 1033–1036, 2009.

[87] C. Verron, M. Aramaki, R. Kronland-Martinet, and G. Pallone, “Spa-
tialized Additive Synthesis of Environmental Sounds,” in Audio Engi-
neering Society Convention 125, Audio Engineering Society, 2008.

[88] C. Verron, M. Aramaki, R. Kronland-Martinet, and G. Pallone, “A 3-D
Immersive Synthesizer for Environmental Sounds,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18, no. 6, pp. 1550–
1561, 2009.

[89] C. Verron, M. Aramaki, R. Kronland-Martinet, and G. Pallone, “Spa-
tialized Synthesis of Noisy Environmental Sounds,” Auditory Display.
Springer-Verlag, pp. 392–407, 2010.

[90] J. F. O’Brien, P. R. Cook, and G. Essl, “Synthesizing Sounds From
Physically Based Motion,” in Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pp. 529–536, 2001.

[91] K. Van Den Doel, P. G. Kry, and D. K. Pai, “FoleyAutomatic:
Physically-Based Sound Effects for Interactive Simulation and Ani-
mation,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pp. 537–544, 2001.

[92] J.-H. Wang, A. Qu, T. R. Langlois, and D. L. James, “Toward
Wave-Based Sound Synthesis for Computer Animation,” ACM Trans.
Graph., vol. 37, no. 4, pp. 109–1, 2018.

[93] S. S. An, D. L. James, and S. Marschner, “Motion-Driven Concate-
native Synthesis of Cloth Sounds,” ACM Transactions on Graphics
(TOG), vol. 31, no. 4, pp. 1–10, 2012.

[94] C. Schreck, D. Rohmer, D. L. James, S. Hahmann, and M.-P. Cani,
“Real-Time Sound Synthesis for Paper Material Based on Geometric

REFERENCES 205

Analysis,” in ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (SCA’16), pp. 211–220, Eurographics Association,
2016.

[95] D. Schwarz and N. Schnell, “Descriptor-Based Sound Texture Sam-
pling,” in Sound and music computing (SMC), pp. 510–515, 2010.

[96] M. Athineos and D. P. Ellis, “Sound Texture Modelling With Linear
Prediction in Both Time and Frequency Domains,” in 2003 IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing,
2003. Proceedings.(ICASSP’03)., vol. 5, pp. V–648, IEEE, 2003.

[97] M. Fröjd and A. Horner, “Sound Texture Synthesis Using an Overlap–
Add/Granular Synthesis Approach,” Journal of the Audio Engineering
Society, vol. 57, no. 1/2, pp. 29–37, 2009.

[98] D. Marelli, M. Aramaki, R. Kronland-Martinet, and C. Verron, “Time-
Frequency Synthesis of Noisy Sounds With Narrow Spectral Compo-
nents,” IEEE transactions on audio, speech, and language processing,
vol. 18, no. 8, pp. 1929–1940, 2010.

[99] D. Marelli, M. Aramaki, R. Kronland-Martinet, and C. Verron, “An
Efficient Time-Frequency Method for Synthesizing Noisy Sounds With
Short Transients and Narrow Spectral Components,” IEEE transac-
tions on audio, speech, and language processing, vol. 20, no. 4, pp. 1400–
1408, 2011.

[100] N. E. Miner and T. P. Caudell, “Using Wavelets to Synthesize
Stochastic-Based Sounds for Immersive Virtual Environments,” Geor-
gia Institute of Technology, 1997.

[101] D. O’Regan and A. Kokaram, “Multi-Resolution Sound Texture Syn-
thesis Using the Dual-Tree Complex Wavelet Transform,” in 2007 15th
European Signal Processing Conference, pp. 350–354, IEEE, 2007.

[102] A. Kokaram and D. O’Regan, “Wavelet Based High Resolution Sound
Texture Synthesis,” in Audio Engineering Society Conference: 31st In-
ternational Conference: New Directions in High Resolution Audio, Au-
dio Engineering Society, 2007.

[103] N. Böttcher and S. Serafin, “Design and Evaluation of Physically In-
spired Models of Sound Effects in Computer Games,” in Audio Engi-
neering Society Conference: 35th International Conference: Audio for
Games, Audio Engineering Society, 2009.

206 References

[104] D. Moffat and J. D. Reiss, “Perceptual Evaluation of Synthesized
Sound Effects,” ACM Transactions on Applied Perception (TAP),
vol. 15, no. 2, pp. 1–19, 2018.

[105] C. Heinrichs and A. McPherson, “Mapping and Interaction Strategies
for Performing Environmental Sound,” in 2014 IEEE VR Workshop:
Sonic Interaction in Virtual Environments (SIVE), pp. 25–30, IEEE,
2014.

[106] M. Hoffman and P. R. Cook, “Feature-Based Synthesis: Mapping
Acoustic and Perceptual Features Onto Synthesis Parameters,” in
ICMC, Citeseer, 2006.

[107] W. J. Wilkinson, J. D. Reiss, D. Stowell, et al., “Latent Force Mod-
els for Sound: Learning Modal Synthesis Parameters and Excitation
Functions From Audio Recordings,” 2017.

[108] W. J. Wilkinson, J. D. Reiss, and D. Stowell, “A Generative Model
for Natural Sounds Based on Latent Force Modelling,” in Latent
Variable Analysis and Signal Separation: 14th International Confer-
ence, LVA/ICA 2018, Guildford, UK, July 2–5, 2018, Proceedings 14,
pp. 259–269, Springer, 2018.

[109] P. R. Cook, “Synthesis ToolKit in C++, Version 1.0,” in SIGGRAPH
1996, Course #17 &18, Creating and Manipulating Sound to Enhance
Computer Graphics, 1996.

[110] P. R. Cook and G. P. Scavone, “The Synthesis Toolkit (STK),” in
ICMC, 1999.

[111] N. Porcaro, D. Jaffe, P. Scandalis, J. Smith, T. Stilson, and
S. Van Duyne, “SynthBuilder: A Graphical Rapid-Prototyping Tool
for the Development of Music Synthesis and Effects Patches on Mul-
tiple Platforms,” Computer Music Journal, vol. 22, no. 2, pp. 35–43,
1998.

[112] M. Klingbeil, “Software for Spectral Analysis, Editing, and Synthesis,”
in ICMC, 2005.

[113] R. E. Causse, J. Bensoam, and N. Ellis, “Modalys, A Physical Modeling
Synthesizer: More Than Twenty Years of Researches, Developments,
and Musical Uses,” The Journal of the Acoustical Society of America,
vol. 130, no. 4, pp. 2365–2365, 2011.

REFERENCES 207

[114] R. Michon and J. O. Smith, “Faust-stk: A set of linear and nonlinear
physical models for the faust programming language,” in Proceedings of
the 14th International Conference on Digital Audio Effects (DAFx-11),
Paris, France, pp. 19–23, 2011.

[115] R. Michon, J. Smith, C. Chafe, G. Wang, and M. Wright, “The Faust
Physical Modeling Library: A Modular Playground for the Digital
Luthier,” in International Faust Conference, 2018.

[116] R. Michon, S. Martin, and J. Smith, “MESH2FAUST: a Modal Physical
Model Generator for the Faust Programming Language-Application
to Bell Modeling,” in Proceedings of the 2017 International Computer
Music Conference, ICMC., 2017.

[117] G. Wang, P. R. Cook, et al., “ChucK: A Concurrent, On-The-Fly,
Audio Programming Language,” in ICMC, 2003.

[118] J. Atherton and G. Wang, “Chunity: Integrated Audiovisual Program-
ming in Unity,” in NIME, pp. 102–107, 2018.

[119] A. L. Samuel, “Some Studies in Machine Learning Using the Game
of Checkers,” IBM Journal of research and development, vol. 3, no. 3,
pp. 210–229, 1959.

[120] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press,
2016.

[121] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Im-
manent in Nervous Activity,” The bulletin of mathematical biophysics,
vol. 5, pp. 115–133, 1943.

[122] A. Géron, Hands-on Machine Learning With Scikit-Learn, Keras, and
Tensorflow. ” O’Reilly Media, Inc.”, 2022.

[123] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[124] I. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Net-
works,” arXiv preprint arXiv:1701.00160, 2016.

[125] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L.
Shyu, S.-C. Chen, and S. S. Iyengar, “A Survey on Deep Learning:
Algorithms, Techniques, and Applications,” ACM Computing Surveys
(CSUR), vol. 51, no. 5, pp. 1–36, 2018.

208 References

[126] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S.
Nasrin, M. Hasan, B. C. Van Essen, A. A. Awwal, and V. K. Asari, “A
State-Of-The-Art Survey on Deep Learning Theory and Architectures,”
electronics, vol. 8, no. 3, p. 292, 2019.

[127] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A Survey
of Deep Learning and Its Applications: A New Paradigm to Machine
Learning,” Archives of Computational Methods in Engineering, vol. 27,
pp. 1071–1092, 2020.

[128] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, “Deep Gener-
ative Modelling: A Comparative Review of VAEs, GANs, Normalizing
Flows, Energy-Based and Autoregressive Models,” IEEE transactions
on pattern analysis and machine intelligence, 2021.

[129] I. H. Sarker, “Deep Learning: A Comprehensive Overview on Tech-
niques, Taxonomy, Applications and Research Directions,” SN Com-
puter Science, vol. 2, no. 6, p. 420, 2021.

[130] S. Dong, P. Wang, and K. Abbas, “A Survey on Deep Learning and Its
Applications,” Computer Science Review, vol. 40, p. 100379, 2021.

[131] A. Natsiou and S. O’Leary, “Audio Representations for Deep Learning
in Sound Synthesis: A Review,” in 2021 IEEE/ACS 18th International
Conference on Computer Systems and Applications (AICCSA), pp. 1–
8, IEEE, 2021.

[132] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A Com-
prehensive Survey of AI-Generated Content (AIGC): A History of Gen-
erative AI from GAN to ChatGPT,” arXiv preprint arXiv:2303.04226,
2023.

[133] D. Foster, Generative Deep Learning: Teaching Machines to Paint,
Write, Compose, and Play. O’Reilly Media, 2019.

[134] F. Chollet, Deep Learning With Python. Simon and Schuster, 2021.

[135] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation Func-
tions in Deep Learning: A Comprehensive Survey and Benchmark,”
Neurocomputing, vol. 503, pp. 92–108, 2022.

[136] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Proceedings of the 27th international confer-
ence on machine learning (ICML-10), pp. 807–814, 2010.

REFERENCES 209

[137] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural
Networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pp. 315–323, JMLR Workshop and
Conference Proceedings, 2011.

[138] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep Into Rectifiers:
Surpassing Human-Level Performance on Imagenet Classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[139] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift,” in International
conference on machine learning, pp. 448–456, pmlr, 2015.

[140] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[141] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How Does Batch
Normalization Help Optimization?,” Advances in neural information
processing systems, vol. 31, 2018.

[142] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving Neural Networks by Preventing Co-
adaptation of Feature Detectors,” arXiv preprint arXiv:1207.0580,
2012.

[143] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hub-
bard, and L. Jackel, “Handwritten Digit Recognition With a Back-
Propagation Network,” Advances in neural information processing sys-
tems, vol. 2, 1989.

[144] K. Tahiroğlu, M. Kastemaa, and O. Koli, “GANSpaceSynth: A Hy-
brid Generative Adversarial Network Architecture for Organising the
Latent Space using a Dimensionality Reduction for Real-Time Audio
Synthesis,” in Proceedings of the 2nd Joint Conference on AI Music
Creativity, (Online), p. 10, AIMC, July 2021.

[145] J. Engel, C. Gu, A. Roberts, et al., “DDSP: Differentiable Digital Sig-
nal Processing,” in International Conference on Learning Representa-
tions, 2020.

[146] T. Bazin, G. Hadjeres, P. Esling, and M. Malt, “Spectrogram Inpaint-
ing for Interactive Generation of Instrument Sounds,” in Proceedings of

210 References

the 2020 Joint Conference on AI Music Creativity, (Stockholm, Swe-
den), KTH Royal Institute of Technology, July 2020.

[147] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A
Tutorial on Energy-Based Learning,” Predicting structured data, vol. 1,
no. 0, 2006.

[148] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal
Representations by Error Propagation,” tech. rep., California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[149] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
in Proc. 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

[150] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic Backprop-
agation and Approximate Inference in Deep Generative Models,” in
International conference on machine learning, pp. 1278–1286, PMLR,
2014.

[151] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “β-VAE: Learning Basic Visual Con-
cepts With a Constrained Variational Framework,” in International
conference on learning representations, 2017.

[152] A. Van Den Oord, O. Vinyals, et al., “Neural Discrete Representation
Learning,” Advances in neural information processing systems, vol. 30,
2017.

[153] A. Razavi, A. Van den Oord, and O. Vinyals, “Generating Diverse
High-Fidelity Images With VQ-VAE-2,” Advances in neural informa-
tion processing systems, vol. 32, 2019.

[154] A. Vahdat and J. Kautz, “NVAE: A Deep Hierarchical Variational Au-
toencoder,” Advances in neural information processing systems, vol. 33,
pp. 19667–19679, 2020.

[155] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,”
Advances in Neural Information Processing Systems, vol. 27, 2014.

[156] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative Ad-
versarial Networks,” in International conference on machine learning,
pp. 214–223, PMLR, 2017.

REFERENCES 211

[157] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved Training of Wasserstein GANs,” Advances in neu-
ral information processing systems, vol. 30, 2017.

[158] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning With Deep Convolutional Generative Adversarial Networks,”
in 4th International Conference on Learning Representations, ICLR,
San Juan, Puerto Rico, May 2–4, 2016.

[159] A. Brock, J. Donahue, and K. Simonyan, “Large Scale GAN Training
for High Fidelity Natural Image Synthesis,” in International Confer-
ence on Learning Representations, 2018.

[160] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of
GANs for Improved Quality, Stability, and Variation,” in International
Conference on Learning Representations, 2018.

[161] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Archi-
tecture for Generative Adversarial Networks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp. 4401–4410, 2019.

[162] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and Improving the Image Quality of Stylegan,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8110–8119, 2020.

[163] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen,
and T. Aila, “Alias–Free Generative Adversarial Networks,” Advances
in Neural Information Processing Systems, vol. 34, pp. 852–863, 2021.

[164] Y. Bengio, R. Ducharme, and P. Vincent, “A Neural Probabilistic
Language Model,” Advances in neural information processing systems,
vol. 13, 2000.

[165] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[166] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural Machine Transla-
tion by Jointly Learning to Align and Translate,” 3rd International
Conference on Learning Representations, ICLR, 2015.

[167] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence Modeling,” 2014.

212 References

[168] A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel
Recurrent Neural Networks,” in International conference on machine
learning, pp. 1747–1756, PMLR, 2016.

[169] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “PixelCNN++:
Improving the PixelCNN With Discretized Logistic Mixture Likelihood
and Other Modifications,” 2016.

[170] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[171] OpenAI, “GPT-4 Technical Report,” 2023.

[172] X. Chen, N. Mishra, M. Rohaninejad, and P. Abbeel, “PixelSNAIL: An
Improved Autoregressive Generative Model,” in International Confer-
ence on Machine Learning, pp. 864–872, PMLR, 2018.

[173] I. Kobyzev, S. J. Prince, and M. A. Brubaker, “Normalizing Flows: An
Introduction and Review of Current Methods,” IEEE transactions on
pattern analysis and machine intelligence, vol. 43, no. 11, pp. 3964–
3979, 2020.

[174] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan, “Normalizing Flows for Probabilistic Modeling
and Inference,” The Journal of Machine Learning Research, vol. 22,
no. 1, pp. 2617–2680, 2021.

[175] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep Unsupervised Learning Using Nonequilibrium Thermodynam-
ics,” in International Conference on Machine Learning, pp. 2256–2265,
PMLR, 2015.

[176] J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic
Models,” Advances in Neural Information Processing Systems, vol. 33,
pp. 6840–6851, 2020.

[177] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave:
A Versatile Diffusion Model for Audio Synthesis,” 2020.

[178] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning Transferable
Visual Models From Natural Language Supervision,” in International
conference on machine learning, pp. 8748–8763, PMLR, 2021.

REFERENCES 213

[179] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierar-
chical Text-Conditional Image Generation With Clip Latents,” arXiv
preprint arXiv:2204.06125, 2022.

[180] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and
K. Simonyan, “Neural Audio Synthesis of Musical Notes With Wavenet
Autoencoders,” in International Conference on Machine Learning,
pp. 1068–1077, PMLR, 2017.

[181] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo,
A. Courville, and Y. Bengio, “SampleRNN: An Unconditional End-
To-End Neural Audio Generation Model,” in International Conference
on Learning Representations, 2017.

[182] J. Nistal, S. Lattner, and G. Richard, “Comparing Representations
for Audio Synthesis Using Generative Adversarial Networks,” in 2020
28th European Signal Processing Conference (EUSIPCO), pp. 161–165,
IEEE, 2021.

[183] J. C. Brown, “Calculation of a Constant Q Spectral Transform,” The
Journal of the Acoustical Society of America, vol. 89, no. 1, pp. 425–
434, 1991.

[184] X. Wang, S. Takaki, and J. Yamagishi, “Neural Source-Filter Wave-
form Models for Statistical Parametric Speech Synthesis,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 28,
pp. 402–415, 2019.

[185] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel WaveGAN: A Fast
Waveform Generation Model Based on Generative Adversarial Net-
works With Multi-Resolution Spectrogram,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 6199–6203, IEEE, 2020.

[186] J. Andén, V. Lostanlen, and S. Mallat, “Joint Time-Frequency Scatter-
ing,” IEEE Transactions on Signal Processing, vol. 67, no. 14, pp. 3704–
3718, 2019.

[187] J. Muradeli, C. Vahidi, C. Wang, H. Han, V. Lostanlen, M. Lagrange,
and G. Fazekas, “Differentiable Time-Frequency Scattering On GPU,”
in Digital Audio Effects Conference (DAFx), 2022.

214 References

[188] C. Vahidi, H. Han, C. Wang, M. Lagrange, G. Fazekas, and
V. Lostanlen, “Mesostructures: Beyond Spectrogram Loss in Differ-
entiable Time-Frequency Analysis,” Journal of the Audio Engineering
Society, vol. 71, no. 9, pp. 577–585, 2023.

[189] P. Manocha, A. Finkelstein, R. Zhang, N. J. Bryan, G. J. Mysore,
and Z. Jin, “A Differentiable Perceptual Audio Metric Learned From
Just Noticeable Differences,” in Proceedings of the Annual Conference
of the International Speech Communication Association, Interspeech,
vol. 2020, pp. 2852–2856, 2020.

[190] P. Manocha, Z. Jin, R. Zhang, and A. Finkelstein, “CDPAM: Con-
trastive Learning for Perceptual Audio Similarity,” in ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 196–200, IEEE, 2021.

[191] C. J. Steinmetz and J. D. Reiss, “Auraloss: Audio Focused Loss Func-
tions in PyTorch,” in Digital music research network one-day workshop
(DMRN+ 15), 2020.

[192] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi, “Fréchet Audio
Distance: A Metric for Evaluating Music Enhancement Algorithms,”
in Proc. Interspeech 2019, pp. 2350–2354, 2019.

[193] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C.
Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, et al., “CNN
Architectures for Large-Scale Audio Classification,” in 2017 ieee inter-
national conference on acoustics, speech and signal processing (icassp),
pp. 131–135, IEEE, 2017.

[194] D. Dowson and B. Landau, “The Fréchet Distance Between Multivari-
ate Normal Distributions,” Journal of multivariate analysis, vol. 12,
no. 3, pp. 450–455, 1982.

[195] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved Techniques for Training GANs,” Advances in neu-
ral information processing systems, vol. 29, 2016.

[196] E. Richardson and Y. Weiss, “On GANs and GMMs,” Advances in
Neural Information Processing Systems, vol. 31, 2018.

[197] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demys-
tifying MMD GANs,” in International Conference on Learning Repre-
sentations, 2018.

REFERENCES 215

[198] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves,
et al., “Conditional Image Generation With PixelCNN Decoders,” Ad-
vances in neural information processing systems, vol. 29, 2016.

[199] A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. Driessche, E. Lockhart, L. Cobo, F. Stimberg,
et al., “Parallel WaveNet: Fast High-Fidelity Speech Synthesis,” in
International conference on machine learning, pp. 3918–3926, PMLR,
2018.

[200] C. Donahue, J. McAuley, and M. Puckette, “Adversarial Audio Synthe-
sis,” in International Conference on Learning Representations, 2018.

[201] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts, “GANSynth: Adversarial Neural Audio Synthesis,” 2018.

[202] A. Odena, C. Olah, and J. Shlens, “Conditional Image Synthesis With
Auxiliary Classifier GANs,” in International conference on machine
learning, pp. 2642–2651, PMLR, 2017.

[203] S. Kim, S.-g. Lee, J. Song, J. Kim, and S. Yoon, “FloWaveNet: A
Generative Flow for Raw Audio,” pp. 3370–3378, 2019.

[204] W. Ping, K. Peng, K. Zhao, and Z. Song, “WaveFlow: A Compact
Flow-based Model for Raw Audio,” in International Conference on
Machine Learning, pp. 7706–7716, PMLR, 2020.

[205] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan,
“WaveGrad: Estimating Gradients for Waveform Generation,” 2020.

[206] A. Caillon and P. Esling, “RAVE: A Variational Autoencoder for
Fast and High-Quality Neural Audio Synthesis,” arXiv preprint
arXiv:2111.05011, 2021.

[207] G. Vigliensoni and R. Fiebrink, “Steering Latent Audio Models
Through Interactive Machine Learning,” in ICCC’23: 14th Interna-
tional Conference on Computational Creativity, Waterloo, Canada,
2023.

[208] J. Nistal, S. Lattner, and G. Richard, “DrumGAN: Synthesis of drum
sounds with timbral feature conditioning using generative adversarial
networks,” in Proc. 21st International Society for Music Information
Retrieval Conference, pp. 590–597, ISMIR, Nov. 2020.

216 References

[209] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and
I. Sutskever, “Jukebox: A Generative Model For Music,” arXiv
preprint arXiv:2005.00341, 2020.

[210] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon,
Q. Huang, A. Jansen, A. Roberts, M. Tagliasacchi, et al., “MusicLM:
Generating Music From Text,” arXiv preprint arXiv:2301.11325, 2023.

[211] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve, Y. Adi,
and A. Défossez, “Simple and Controllable Music Generation,” Ad-
vances in Neural Information Processing Systems, vol. 36, 2024.

[212] J. Salamon, C. Jacoby, and J. P. Bello, “A Dataset and Taxonomy for
Urban Sound Research,” in Proceedings of the 22nd ACM international
conference on Multimedia, pp. 1041–1044, 2014.

[213] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,”
in Proceedings of the 23rd ACM international conference on Multime-
dia, pp. 1015–1018, 2015.

[214] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio Set: An Ontology and
Human-Labeled Dataset for Audio Events,” in 2017 IEEE interna-
tional conference on acoustics, speech and signal processing (ICASSP),
pp. 776–780, IEEE, 2017.

[215] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “FSD50K: An
Open Dataset of Human-Labeled Sound Events,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 30, pp. 829–852,
2021.

[216] F. Font, G. Roma, and X. Serra, “Freesound Technical Demo,” in
Proceedings of the 21st ACM international conference on Multimedia,
pp. 411–412, 2013.

[217] J. Huh, J. Chalk, E. Kazakos, D. Damen, and A. Zisserman, “Epic-
Sounds: A Large-Scale Dataset of Actions that Sound,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1–5, IEEE, 2023.

[218] M. Cartwright and B. Pardo, “Vocalsketch: Vocally Imitating Audio
Concepts,” in Proceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems, pp. 43–46, 2015.

REFERENCES 217

[219] B. Kim, M. Ghei, B. Pardo, and Z. Duan, “Vocal Imitation Set: A
Dataset of Vocally Imitated Sound Events Using the Audioset Ontol-
ogy,” in DCASE, pp. 148–152, 2018.

[220] R. Kabealo, S. Wyatt, A. Aravamudan, X. Zhang, D. N. Acaron, M. P.
Dao, D. Elliott, A. O. Smith, C. E. Otero, L. D. Otero, et al., “A
Multi-Firearm, Multi-Orientation Audio Dataset of Gunshots,” Data
in brief, vol. 48, p. 109091, 2023.

[221] Q. Kong, Y. Xu, T. Iqbal, Y. Cao, W. Wang, and M. D. Plumb-
ley, “Acoustic Scene Generation With Conditional SampleRNN,”
in ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 925–929, IEEE, 2019.

[222] C. Zhou, M. Horgan, V. Kumar, C. Vasco, and D. Darcy, “Voice
Conversion with Conditional SampleRNN,” in Proc. Interspeech 2018,
pp. 1973–1977, 2018.

[223] C. Y. Lee, A. Toffy, G. J. Jung, and W.-J. Han, “Conditional Wave-
GAN,” arXiv preprint arXiv:1809.10636, 2018.

[224] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative Adversarial Net-
works for Efficient and High Fidelity Speech Synthesis,” Advances in
Neural Information Processing Systems, vol. 33, pp. 17022–17033, 2020.

[225] X. Liu, T. Iqbal, J. Zhao, Q. Huang, M. D. Plumbley, and W. Wang,
“Conditional Sound Generation Using Neural Discrete Time-Frequency
Representation Learning,” in 2021 IEEE 31st International Workshop
on Machine Learning for Signal Processing (MLSP), pp. 1–6, IEEE,
2021.

[226] S. Andreu and M. V. Aylagas, “Neural Synthesis of Sound Effects Us-
ing Flow-Based Deep Generative Models,” in Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, vol. 18, pp. 2–9, 2022.

[227] Y. Okamoto, K. Imoto, S. Takamichi, R. Nagase, T. Fukumori, and
Y. Yamashita, “Environmental Sound Conversion From Vocal Imita-
tions and Sound Event Labels,” arXiv preprint arXiv:2305.00302, 2023.

[228] Y. Okamoto, K. Imoto, S. Takamichi, R. Yamanishi, T. Fukumori, and
Y. Yamashita, “Onoma-to-wave: Environmental Sound Synthesis from
Onomatopoeic Words,” APSIPA Transactions on Signal and Informa-
tion Processing, vol. 11, no. 1, 2022.

218 References

[229] H. Ohnaka, S. Takamichi, K. Imoto, Y. Okamoto, K. Fujii, and
H. Saruwatari, “Visual Onoma-To-Wave: Environmental Sound Syn-
thesis From Visual Onomatopoeias and Sound-Source Images,” in
ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1–5, IEEE, 2023.

[230] G. Greshler, T. Shaham, and T. Michaeli, “Catch-A-Waveform: Learn-
ing to Generate Audio from a Single Short Example,” Advances in Neu-
ral Information Processing Systems, vol. 34, pp. 20916–20928, 2021.

[231] S. Schwär, M. Müller, and S. J. Schlecht, “A Variational Y-
Autoencoder for Disentangling Gesture and Material of Interaction
Sounds,” in Audio Engineering Society Conference: AES 2022 Inter-
national Audio for Virtual and Augmented Reality Conference, Audio
Engineering Society, 2022.

[232] M. Patacchiola, P. Fox-Roberts, and E. Rosten, “Y-Autoencoders: Dis-
entangling Latent Representations via Sequential Encoding,” Pattern
Recognition Letters, vol. 140, pp. 59–65, 2020.

[233] S. Pascual, G. Bhattacharya, C. Yeh, J. Pons, and J. Serrà, “Full-Band
General Audio Synthesis With Score-Based Diffusion,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1–5, IEEE, 2023.

[234] D. Yang, J. Yu, H. Wang, W. Wang, C. Weng, Y. Zou, and D. Yu,
“Diffsound: Discrete Diffusion Model for Text-To-Sound Generation,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
2023.

[235] F. Kreuk, G. Synnaeve, A. Polyak, U. Singer, A. Défossez, J. Copet,
D. Parikh, Y. Taigman, and Y. Adi, “AudioGen: Textually Guided
Audio Generation,” in Proc. The Eleventh International Conference
on Learning Representations, 2023.

[236] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic, W. Wang, and
M. D. Plumbley, “AudioLDM: Text-to-Audio Generation with Latent
Diffusion Models,” in Proc. 40th International Conference on Machine
Learning (A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, eds.), vol. 202 of Proceedings of Machine Learning
Research, pp. 21450–21474, PMLR, 23–29 Jul 2023.

[237] R. Huang, J. Huang, D. Yang, Y. Ren, L. liu, M. Li, Z. Ye, J. Liu,
X. Yin, and Z. Zhao, “Make-An-Audio: Text-To-Audio Generation

REFERENCES 219

with Prompt-Enhanced Diffusion Models,” in Proceedings of the 40th
International Conference on Machine Learning, 2023.

[238] D. Ghosal, N. Majumder, A. Mehrish, and S. Poria, “Text-to-Audio
Generation using Instruction-Tuned LLM and Latent Diffusion Model,”
arXiv preprint arXiv:2304.13731, 2023.

[239] A. Owens, P. Isola, J. McDermott, A. Torralba, E. H. Adelson, and
W. T. Freeman, “Visually Indicated Sounds,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2405–
2413, 2016.

[240] S. Ghose and J. J. Prevost, “Autofoley: Artificial Synthesis of Syn-
chronized Sound Tracks for Silent Videos With Deep Learning,” IEEE
Transactions on Multimedia, vol. 23, pp. 1895–1907, 2020.

[241] S. Ghose and J. J. Prevost, “FoleyGAN: Visually Guided Generative
Adversarial Network-Based Synchronous Sound Generation in Silent
Videos,” IEEE Transactions on Multimedia, 2022.

[242] S. Li, L. Zhang, C. Dong, H. Xue, Z. Wu, L. Sun, K. Li, and H. Meng,
“FastFoley: Non-autoregressive Foley Sound Generation Based on Vi-
sual Semantics,” in National Conference on Man-Machine Speech Com-
munication, pp. 252–263, Springer, 2023.

[243] Y. Du, Z. Chen, J. Salamon, B. Russell, and A. Owens, “Conditional
Generation of Audio from Video via Foley Analogies,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 2426–2436, 2023.

[244] J. Nistal, C. Aouameur, I. Velarde, and S. Lattner, “DrumGAN VST:
A Plugin for Drum Sound Analysis/Synthesis with Autoencoding Gen-
erative Adversarial Networks,” in International Conference on Machine
Learning (ICML), Workshop on Machine Learning for Audio Synthe-
sis, 2022.

[245] F. Ganis, E. F. Knudsen, S. V. Lyster, R. Otterbein, D. Südholt, and
C. Erkut, “Real-Time Timbre Transfer and Sound Synthesis Using
DDSP,” in Proc. 18th Sound and Music Computing Conference, SMC
2021, pp. 175–182, Sound and Music Computing Network, 2021.

[246] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “CREPE: A convolu-
tional representation for pitch estimation,” in 2018 IEEE International

220 References

Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 161–165, IEEE, 2018.

[247] A. T. Cemgil and C. Erkut, “Calibration of Physical Models Using
Artificial Neural Networks With Application to Plucked String Instru-
ments,” Institute of Acoustics, vol. 19, pp. 213–218, 1997.

[248] L. Gabrielli, S. Tomassetti, S. Squartini, and C. Zinato, “Introducing
Deep Machine Learning for Parameter Estimation in Physical Mod-
elling,” in Proceedings of the 20th International Conference on Digital
Audio Effects, 2017.

[249] B. Hayes, C. Saitis, and G. Fazekas, “Neural Waveshaping Synthesis,”
in Proc. 22nd International Society for Music Information Retrieval
Conference, pp. 254–261, ISMIR, Oct. 2021.

[250] S. Shan, L. Hantrakul, J. Chen, M. Avent, and D. Trevelyan, “Differ-
entiable Wavetable Synthesis,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2022.

[251] F. Caspe, A. McPherson, and M. Sandler, “DDX7: Differentiable FM
Synthesis of Musical Instrument Sounds,” in Proc. 23rd International
Society for Music Information Retrieval Conference, pp. 608–616, IS-
MIR, 2022.

[252] Z. Ye, W. Xue, X. Tan, Q. Liu, and Y. Guo, “NAS-FM: Neural Ar-
chitecture Search for Tunable and Interpretable Sound Synthesis based
on Frequency Modulation,” pp. 5869–5877, 8 2023. AI and Arts.

[253] D.-Y. Wu, W.-Y. Hsiao, F.-R. Yang, O. D. Friedman, W. Jackson, Y.-
W. Liu, Y.-H. Yang, et al., “DDSP-Based Singing Vocoders: A New
Subtractive-Based Synthesizer and a Comprehensive Evaluation,” in
Ismir 2022 Hybrid Conference, 2022.

[254] M. Yee-King and L. McCallum, “Studio Report: Sound Synthesis With
DDSP and Network Bending Techniques,” 2021.

[255] R. Diaz, B. Hayes, C. Saitis, G. Fazekas, and M. Sandler, “Rigid-Body
Sound Synthesis with Differentiable Modal Resonators,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, 2023.

[256] R. Diaz, C. Saitis, and M. Sandler, “Interactive Neural Resonators,”
2023.

REFERENCES 221

[257] X. Jin, S. Li, T. Qu, D. Manocha, and G. Wang, “Deep-Modal: Real-
Time Impact Sound Synthesis for Arbitrary Shapes,” in Proceedings of
the 28th ACM International Conference on Multimedia, pp. 1171–1179,
2020.

[258] X. Jin, S. Li, G. Wang, and D. Manocha, “NeuralSound: Learning-
Based Modal Sound Synthesis With Acoustic Transfer,” ACM Trans-
actions on Graphics (TOG), vol. 41, no. 4, pp. 1–15, 2022.

[259] A. Lundberg, “Data-Driven Procedural Audio: Procedural Engine
Sounds Using Neural Audio Synthesis,” Master’s thesis, KTH School
of Electrical Engineering and Computer Science (EECS), 2020.

[260] D. Serrano, “A Neural Analysis–Synthesis Approach to Learning Pro-
cedural Audio Models,” Master’s thesis, New Jersey Institute of Tech-
nology, Department of Computer Science, 2022.

[261] H. Han, V. Lostanlen, and M. Lagrange, “Perceptual-Neural-Physical
Sound Matching,” in Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, 2023.

[262] P. Esling, N. Masuda, A. Bardet, R. Despres, and A. Chemla-Romeu-
Santos, “Flow Synthesizer: Universal Audio Synthesizer Control With
Normalizing Flows,” Applied Sciences, vol. 10, no. 1, p. 302, 2019.

[263] Z. Chen, Y. Jing, S. Yuan, Y. Xu, J. Wu, and H. Zhao, “Sound2Synth:
Interpreting Sound via FM Synthesizer Parameters Estimation,” in
Proceedings of the Thirty-First International Joint Conference on Ar-
tificial Intelligence, IJCAI-22 (L. D. Raedt, ed.), pp. 4921–4928, In-
ternational Joint Conferences on Artificial Intelligence Organization, 7
2022. AI and Arts.

[264] J. Turian, J. Shier, G. Tzanetakis, K. McNally, and M. Henry, “One
Billion Audio Sounds From Gpu-Enabled Modular Synthesis,” in
2021 24th International Conference on Digital Audio Effects (DAFx),
pp. 222–229, IEEE, 2021.

[265] C. J. Steinmetz and J. D. Reiss, “Efficient Neural Networks for Real–
Time Modeling of Analog Dynamic Range Compression,” in Audio
Engineering Society Convention 152, Audio Engineering Society, 2022.

[266] B.-Y. Chen, W.-H. Hsu, W.-H. Liao, M. A. M. Ramı́rez, Y. Mitsufuji,
and Y.-H. Yang, “Automatic dj transitions with differentiable audio ef-
fects and generative adversarial networks,” in ICASSP 2022-2022 IEEE

222 References

International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 466–470, IEEE, 2022.

[267] C. J. Steinmetz, N. J. Bryan, and J. D. Reiss, “Style Transfer of Audio
Effects With Differentiable Signal Processing,” Journal of the Audio
Engineering Society, vol. 70, no. 9, pp. 708–721, 2022.

[268] Z. Guo, C. Chen, and E. S. Chng, “DENT-DDSP: Data-Efficient Noisy
Speech Generator Using Differentiable Digital Signal Processors for
Explicit Distortion Modelling and Noise-Robust Speech Recognition,”
2022.

[269] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak super-
vision,” in International Conference on Machine Learning, pp. 28492–
28518, PMLR, 2023.

[270] P. Cook and J. O. Smith, “Physics-Based Sound Synthesis for Games
and Interactive Systems,” 2023.

[271] L. Gabrielli, S. Squartini, and V. Välimäki, “A Subjective Validation
Method for Musical Instrument Emulation,” in Audio Engineering So-
ciety Convention 131, Audio Engineering Society, 2011.

[272] A. Ross and V. L. Willson, Basic and Advanced Statistical Tests: Writ-
ing Results Sections and Creating Tables and Figures. Springer, 2018.

[273] J. van Doorn, A. Ly, M. Marsman, and E.-J. Wagenmakers, “Bayesian
Rank-Based Hypothesis Testing for the Rank Sum Test, the Signed
Rank Test, and Spearman’s ρ,” Journal of Applied Statistics, vol. 47,
no. 16, pp. 2984–3006, 2020.

[274] H. Jeffreys, The Theory of Probability. Oxford University Press, 1961.

[275] M. D. Lee and E.-J. Wagenmakers, Bayesian Cognitive Modeling: A
Practical Course. Cambridge university press, 2014.

[276] C.-W. Wun and A. Horner, “Perceptual Wavetable Matching for Syn-
thesis of Musical Instrument Tones,” Journal of the Audio Engineering
Society, vol. 49, no. 4, pp. 250–262, 2001.

[277] H. P. S. Selasky, “Evaluation of Perceptual Sound Compression with
Regard to Perceived Quality and Compression Methods,” Master’s the-
sis, Høgskolen i Agder ; Agder University College, 2006.

REFERENCES 223

[278] M. Chang, Y. R. Kim, and G. J. Kim, “A Perceptual Evaluation of
Generative Adversarial Network Real-Time Synthesized Drum Sounds
in a Virtual Environment,” in 2018 IEEE International Conference on
Artificial Intelligence and Virtual Reality (AIVR), pp. 144–148, IEEE,
2018.

[279] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,”
arXiv preprint arXiv:1411.1784, 2014.

[280] R. Vitale and R. Bresin, “Emotional Cues in Knocking Sounds,” in 10th
International Conference on Music Perception and Cognition, Sapporo,
Japan, August 25-29, 2008, p. 276, 2008.

[281] P. Ekman, “Basic emotions,” Handbook of cognition and emotion,
vol. 98, no. 45-60, p. 16, 1999.

[282] A. Barahona-Ŕıos and S. Pauletto, “Knocking Sound Effects With
Emotional Intentions.” https://doi.org/10.5281/zenodo.3668503,
Feb. 2020.

[283] L. Gabrielli, S. Squartini, and V. Välimäki, “A Subjective Validation
Method for Musical Instrument Emulation,” in AES 131st Convention,
(New York, USA), 2011.

[284] P. N. Juslin and P. Laukka, “Communication of emotions in vocal
expression and music performance: Different channels, same code?,”
Psychological bulletin, vol. 129, no. 5, p. 770, 2003.

[285] M. Houel, A. Arun, A. Berg, A. Iop, A. Barahona-Ŕıos, and S. Pauletto,
“Perception of Emotions in Knocking Sounds: An Evaluation Study,”
in 17th Sound and Music Computing Conference, Torino, Italy, 2020.

[286] T. Mäki-Patola and P. Hämäläinen, “Latency Tolerance for Gesture
Controlled Continuous Sound Instrument Without Tactile Feedback,”
in ICMC, Citeseer, 2004.

[287] T. Q. Nguyen, “Near-Perfect-Reconstruction Pseudo-QMF Banks,”
IEEE Transactions on Signal Processing, vol. 42, no. 1, pp. 65–76,
1994.

[288] J. M. Antognini, M. Hoffman, and R. J. Weiss, “Audio Texture Synthe-
sis With Random Neural Networks: Improving Diversity and Quality,”
in ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3587–3591, IEEE, 2019.

https://doi.org/10.5281/zenodo.3668503

224 References

[289] S. Wei, S. Zou, F. Liao, et al., “A Comparison on Data Augmentation
Methods Based on Deep Learning for Audio Classification,” in Journal
of physics: Conference series, vol. 1453, p. 012085, IOP Publishing,
2020.

[290] T. R. Shaham, T. Dekel, and T. Michaeli, “SinGAN: Learning a Gen-
erative Model From a Single Natural Image,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4570–
4580, 2019.

[291] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-To-Image Trans-
lation With Conditional Adversarial Networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1125–
1134, 2017.

[292] T. Hinz, M. Fisher, O. Wang, and S. Wermter, “Improved Techniques
for Training Single-Image GANs,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 1300–
1309, 2021.

[293] C. Gupta, P. Kamath, and L. Wyse, “Signal Representations for
Synthesizing Audio Textures with Generative Adversarial Networks,”
pp. 159–166, 2021.

[294] Z. Pr̊uša, P. Balazs, and P. L. Søndergaard, “A Noniterative Method for
Reconstruction of Phase From STFT Magnitude,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 25, no. 5,
pp. 1154–1164, 2017.

[295] G. Le Vaillant, T. Dutoit, and S. Dekeyser, “Improving Synthe-
sizer Programming From Variational Autoencoders Latent Space,” in
2021 24th International Conference on Digital Audio Effects (DAFx),
pp. 276–283, IEEE, 2021.

[296] V. Kulikov, S. Yadin, M. Kleiner, and T. Michaeli, “SinDDM: A Sin-
gle Image Denoising Diffusion Model,” in International Conference on
Machine Learning, pp. 17920–17930, PMLR, 2023.

[297] S. Pauletto, A. Barahona-Ŕıos, V. Madaghiele, and Y. Seznec, “Soni-
fying Energy Consumption Using SpecSinGAN,” in 20th Sound and
Music Computing Conference, Stockholm, Sweden, 2023.

REFERENCES 225

[298] B. Hayes, C. Saitis, and G. Fazekas, “Sinusoidal Frequency Estimation
by Gradient Descent,” in ICASSP 2023-2023 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2023.

[299] J. Turian and M. Henry, “I’m Sorry for Your Loss: Spectrally-Based
Audio Distances Are Bad at Pitch,” in ”I Can’t Believe It’s Not Bet-
ter!” NeurIPS 2020 workshop, 2020.

[300] V. Välimäki, J. Rämö, and F. Esqueda, “Creating Endless Sounds,” in
Proc. 21st Int. Conf. Digital Audio Effects (DAFx-18), Aveiro, Portu-
gal, pp. 32–39, 2018.

[301] A. Barahona-Rı́os and S. Pauletto, “Synthesising Knocking Sound Ef-
fects Using Conditional WaveGAN,” in 17th Sound and Music Com-
puting Conference, Torino, Italy, 2020.

[302] A. J. Oxenham, “How We Hear: The Perception and Neural Coding
of Sound,” Annual review of psychology, vol. 69, pp. 27–50, 2018.

[303] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Model-
ing,” arXiv preprint arXiv:1803.01271, 2018.

[304] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High Fidelity Neu-
ral Audio Compression,” Transactions on Machine Learning Research,
2023.

[305] Y. Wang, J. Salamon, N. J. Bryan, and J. P. Bello, “Few-Shot Sound
Event Detection,” in ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 81–85,
IEEE, 2020.

[306] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and M. Tagliasacchi,
“Soundstream: An End-To-End Neural Audio Codec,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 30,
pp. 495–507, 2021.

[307] S. Oh, M. Kang, H. Moon, K. Choi, and B. S. Chon, “A Demand-
Driven Perspective on Generative Audio AI,” 2023.

[308] U. Cisco, “Cisco Annual Internet Report (2018-2023) White Paper,”
Cisco: San Jose, CA, USA, vol. 10, no. 1, pp. 1–35, 2020.

226 References

[309] A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, and D. Giordano,
“A Network Analysis on Cloud Gaming: Stadia, GeForce Now and
PSNow,” Network, vol. 1, no. 3, pp. 247–260, 2021.

[310] K. Choi, J. Im, L. Heller, B. McFee, K. Imoto, Y. Okamoto, M. La-
grange, and S. Takamichi, “Foley Sound Synthesis at the DCASE 2023
Challenge,” 2023.

	List of tables
	List of figures
	Introduction
	Motivation
	Scope
	Research Questions
	Contributions
	Statement of Ethics
	Thesis Structure

	DSP-Based Sound Synthesis
	Fundamentals of DSP
	DSP-Based Sound Synthesis Techniques
	Abstract Techniques
	Modulation Techniques
	Piecewise or Brute Force
	Digital Waveshaping

	Sample-Based Techniques
	Wavetable Synthesis
	Concatenative Synthesis
	Granular Synthesis

	Spectral Models
	Additive Synthesis
	Subtractive Synthesis
	Spectral Modelling Synthesis

	Physical Modelling
	Finite Difference Models
	Mass-Spring Networks
	Modal Synthesis
	Digital Waveguides
	Wave Digital Filters
	Source-Filter Models

	Statistical Approaches

	DSP-Based Synthesis of Sound Effects
	Chapter Summary

	Deep Learning
	Fundamentals of Deep Learning
	Generative Deep Learning
	Autoencoders
	Generative Adversarial Networks
	Autoregressive Models
	Normalising Flows
	Diffusion Probabilistic Models

	Neural Audio Synthesis
	Differentiable Digital Signal Processing

	Chapter Summary

	Effective DSP Techniques: Modal Synthesis
	Introduction
	Method
	Experiments
	Evaluation
	Metrics
	Listening Study
	Participants
	Results

	Use Case: Interactive Real-Time Procedural Audio Models in a Virtual Environment
	Chapter Summary

	Class-Conditional Neural Audio Synthesis
	Introduction
	The Knocking Sound Effects Dataset
	Method
	Architecture
	Training and Inference

	Experiments
	Evaluation
	Subjective Evaluation
	Feature Analysis

	Chapter Summary

	Addressing Data Scarcity: Single-Example Audio Generation
	Introduction
	Method
	Audio Representation
	Architecture
	Training and Inference

	Experiments
	Evaluation
	Chapter Summary

	Sound Effects Synthesis Using Differentiable DSP
	Introduction
	Method
	Filterbank Design
	Deterministic Loopable Noise Bands
	Architecture
	Training and Inference

	Reconstruction
	Experiments
	Results

	Creative Uses
	Amplitude Randomisation
	Loudness Transfer
	Training and Synthesis using User-Defined Control Parameters

	Chapter Summary

	Conclusions
	Discussion
	Assumptions and Limitations
	Future work
	Concluding remarks

	Appendices
	Questionnaires
	References

