
Bicolored tilings and the totally non-negative
Grassmannian

Joel Costa da Rocha

June 2023

Submitted in accordance with the requirements for the degree of Doctor of
Philosophy.

The University of Leeds, School of mathematics



1

The candidate confirms that the work submitted is his own and that appropriate
credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material
and that no quotation from the thesis may be published without proper acknowl-
edgement.



2

Acknowledgements

This research has been supervised by Karin Baur and João Faria Martins.
The author was supported by Royal Society Wolfson Fellowship 180004.

The author would like to thank Karin Baur and João Faria Martins for
their help, and insightful comments during the writing of this thesis and the
work that preceded it.

The author would also like to thank the Isaac Newton Institute for Math-
ematical Sciences, Cambridge, for support and hospitality during the pro-
gramme Cluster algebras and representation theory where work on this paper
was undertaken. This work was supported by EPSRC grant no EP/K032208/1.



3

Abstract

Bicolored tilings are a generalization of triangulations of a surface. These
tilings naturally map to a variety of combinatorial objects, namely Postnikov
diagrams, plabic graphs, quivers, and positroid cells.

We will first generalize the notion of edges to hyperedges to allow them
to connect any number n of vertices (n > 1), and define tilings as a surface
equipped with a collection of compatible hyperedges. Bicolored tilings are
considered up to isotopy, and will also be subject to two equivalences that
preserve some of the combinatorial properties of the tiling. We will also define a
flip/mutation on the hyperedges of a tiling, which will correspond to equivalent
local transformations in other combinatorial objects.

We then define the Scott map and the stellar-replacement map, drawing
inspiration from their definitions in [16, p.14-15] and [4, 2.1], where these maps
have already been defined for triangulations and monocolored tilings. These
will allow us to map bicolored tilings onto Postnikov diagrams and plabic
graphs. In particular, we establish a bijection between reduced tilings and
reduced Postnikov diagrams.

We will dedicate a section of this paper to discuss different classes of tilings,
as well as how to construct a tiling for any given permutation.

Finally, we use bicolored tiling to parametrize positroid cells in the totally
non-negative Grassmannian. The construction will resemble the parametriza-
tion of these cells found in [15, 12.7] and [21, 2.17], now using bicolored tilings.
This will establish a bijection between the reduction-flip-equivalence classes of
tilings and the positroid cells that stratify the totally non-negative Grassman-
nian. Degenerations of tilings will then allow us to find tilings associated to
lower-dimensional positroid cells in the same Grassmannian, which also gives
us a partial ordering on bicolored tilings.
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0 Introduction

In [15, 14.1], Postnikov introduced Postnikov diagrams (Definition 1.5), which are a
collection of strands in a closed disk with endpoints on the disk, satisfying some con-
ditions. In the same paper, Postnikov relates Postnikov diagrams to plabic graphs,
graphs embedded in a disk with black and white internal vertices and boundary ver-
tices on the disk, (Definition 1.11), as well as positroid cells (Definition 1.21), cells
that decompose the totally non-negative Grassmannian Gr≥0

k,n of k-subspaces in Rn

(Definition 1.19).
In particular, plabic graphs can be used to parametrize corresponding positroid

cells, as described with different approaches in [15, 3.2] by Postnikov, in [18, 1.1] by
Talaska, and in [21, 2.17] by Williams.

In [16, Thm.3 p.24], Scott used Postnikov diagrams to show that the homogeneous
coordinate ring of the Grassmannian Grk,n is a cluster algebra of geometric type.
Cluster algebras are a class of commutative rings introduced in [9] by Fomin and
Zelevinsky, and expanded upon in [10] and [5]. In [17] Serhiyenko, Sherman-Bennett,
and Williams generalise this result to Schubert cells, and finally in [11] Galashin and
Lam generalise the result to open positroid varities, proving that the coordinate
ring of an open positroid variety coincides with the cluster algebra associated to a
Postnikov diagram.

Each Postnikov diagram of permutation i 7−→ i+ k (p.13) gives rise to a cluster,
with each alternating region corresponding to a different cluster variable in the cluster
[16, Thm.2 p.24]. Mutations of cluster variables can be achieved through a local
transformation of the corresponding region in the Postnikov diagram.

Scott also introduces the Scott map in [16, p.14-15], which maps triangulations of
a regular n-gon to Γ2,n-diagrams (Postnikov diagrams with decorated permutation
i 7−→ i+ 2 mod n).

Figure 1
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The mutable cluster variables are the diagonals of the triangulation, and flipping
the diagonal corresponds to a mutation of the corresponding cluster variable, as de-
scribed in [16, p.6-7] and [2, p.4-5]. Consequently, every triangulation of the n-gon
corresponds to a different cluster for the corresponding cluster algebra. Scott fur-
thermore introduces quadrilateral arrangements in [16, p.18-21], giving us a recursive
way to generate Γk,n-diagrams for any 1 < k < n.

In [4, 2.1], Baur and Martin generalize the Scott map to tilings of polygons, giving
a construction for more Postnikov diagrams that aren’t Γk,n-diagrams. Naturally, we
ask ourselves the question if this construction can be further generalized to allow us
to generate more Postnikov diagrams.

One can naturally extend this mapping to a larger class of Postnikov diagrams [4,
2.1], by applying the Scott map to a general tiling of a polygon, which can be defined
similarly to a triangulation, e.g. by removing the requirement that the collection of
non-crossing chords in the polygon is maximal, or by allowing for internal vertices
in the polygon. Two examples of such tilings and their corresponding diagram are
as follows.

Figure 2

The first tiling maps to a Postnikov diagram of type permutation π = (143)(25),
while the second tiling has an internal vertex and maps to a Γ4,6-diagram. However,
there is no canonical way to flip diagonals in these tilings. This setup also does not
generate all Postnikov diagrams. Moreover, we may encounter tilings that do not
map to Postnikov diagrams, such as the example below.



7

Figure 3

This motivates the introduction of bicolored tilings, which help us construct
similar correspondences with Postnikov diagrams and positroid cells for any given
decorated permutation, which is reflected in our first main result.

Theorem A (Theorem 3.24). For any decorated permutation π, there is a tiling T
whose permutation is π. Alternatively, any Postnikov diagram can be obtained as
the image of a bicolored tiling by the Scott map.

Furthermore, these bicolored tilings naturally map to plabic graphs via the stellar-
replacement map Φ and can be used to parametrize corresponding positroid cells
(drawing inspiration from the method described in [21, 2.17]), allowing for a more
explicit description of the bijections between the different combinatorial objects.
That correspondence is given by the second main result of this paper.

Theorem B (Theorem 5.22). Reduced (bicolored) tilings of type (k, n) up to tiling
equivalence are in bijection with positroid cells of the totally non-negative Grass-
mannian Gr≥0

k,n.

Bicolored tilings also allow us to read off some important information geometri-
cally, such as what type (k, n) of Grassmannian the corresponding diagram/plabic
graph/positroid cell belongs to, and what dimension the corresponding positroid cell
has.

There are more approaches to describing bijections between combinatorial objects
related to the Grassmannian. In [20], Thurston defines triple crossing diagrams,
which map onto a subset of Postnikov diagrams as described in [15, p.56]. Similarly
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to Postnikov diagrams, triple crossing diagrams induce a permutation of [n], but
describe it as a matching of 2n points 1, 1′, . . . , n, n′. In that setup, [20, Theorem 3]
proves an analogous result to Theorem 3.24.

In [13] Mohammadi and Zaffalon construct another representation of positroids
in the form of graphs defined in [13, 3.2], which allow for easy computation of the
dimension of the positroid, (which is related to the dimension of the positroid cells as
described in Definition 2.12), as well as the boundary and intersection of positroids.

While the plabic cycles described in [1, p.15] by Baltisky and Wellman visu-
ally resemble the bicolored tilings the most, and while plabic cycles are related to
plabic graphs and triple crossing diagrams, the connection to plabic cycles remains
unexplored, and is, therefore, a source for more research.

Chapter 1 contains the necessary background. Chapter 2 and 3 are submitted
for publication [7] and introduce bicolored tilings and how they map to Postnikov
diagrams and plabic graphs. Chapter 4 introduces some examples of bicolored tilings
and is a work in progress [6]. Chapter 5 is submitted for publication [8] and analyzes
the connection between bicolored tilings and the totally non-negative Grassmannian.

Chapters 4 and 5 may be read in any order. Chapter 4 uses some propositions
proven in Chapter 5 and thus follows it in terms of mathematical consistency. How-
ever, it is advised to read Chapter 4 before Chapter 5, as it shows some examples of
tilings, which may facilitate the understanding of propositions proven in Chapter 5.

1 Background

We will start by recalling cluster algebras that arise from finite quivers, and how
to geometrically interpret a class of such cluster algebras using triangulations of a
polygon. Then we recall Postnikov diagrams and describe their relation to triangu-
lations. This will motivate our search for a generalization of triangulations, namely
bicolored tilings, that extend the correspondence to Postnikov diagrams.

Definition 1.1. [9] [12, 2.1.1-2.1.2] A quiver Q is a directed graph without 2-cycles
and loops. Let V be the vertex set of Q. We define the mutation µv(Q) of Q with
respect to the vertex v ∈ V to be the quiver Q′ obtained by the following steps:

(i) we reverse the orientation of all arrows in Q adjacent to v.

(ii) for each path u −→ v −→ w in Q, we add an arrow u −→ w.

(iii) we remove all 2-cycles that appear in the resulting graph.
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The final graph is Q′ = µv(Q).

Figure 4

The mutation of a quiver with respect to a given vertex is an involution, that is
µv ◦ µv(Q) = Q.

The mutation class of a quiver Q is the class of all quivers obtained by a sequence
of finite mutations of Q. A quiver is said to be of finite mutation type if its mutation
class has finitely many quivers.

Definition 1.2. A seed is a pair (Q, u), where Q is a quiver with vertices v1, . . . , vn,
and u = (u1, . . . , un) is a set of rational functions in variables x1, . . . , xn. We denote
µi = µvi . Then we define the seed mutation µi of (Q, u) to be the seed (µi(Q), µi(u)),
where µ(u) = (u1, . . . , u

′
i, . . . , un), with the exchange relation

u′
i · ui =

∏
uj−→v

uj +
∏

v−→uj

uj

The set u is called a cluster, and any function ui in a seed is called a cluster variables.
The mutation class of (Q, u) is the class of all seeds (Q′, u′) obtained by a finite
sequence of mutations of (Q, u).

We choose an initial seed (Q, x), with x = (x1, . . . , xn). Then a cluster algebra
A(Q) is the Q-subalgebra of Q(x1, . . . , xn) generated by all cluster variables in the
mutation class of (Q, x). A cluster algebra is of finite type if it contains finitely many
cluster variables.
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Remark 1.3. In Definition 1.2 we do not set restrictions on which vertices can and
cannot be mutated. However, we may select a subset of vertices of the quiver and
decide that they cannot be mutated. In that case, we call those vertices frozen, and
the corresponding cluster variables coefficients. When we do that, we find that the
arrows between frozen vertices do not affect the mutated vertices and their relations,
and thus we simply omit them for simplicity.

An example of finite-type cluster algebras can be described via triangulations.

Definition 1.4. [16, p.6-7] [2, p.4-5] Let X be a regular n-gon (regular polygon
with n sides) with its vertices labeled 1, . . . , n in clockwise order. A chord in X is a
straight line segment [ij] between any two distinct vertices i and j. Two chords are
said to be crossing if they cross in the interior of X. Then a triangulation T of X is
a maximal collection of non-crossing chords in X.

Figure 5

Any two edge-adjacent triangles in T form a quadrilateral with a diagonal d
between two oppositve vertices. A (quadrilateral) flip of T is obtained by removing
such a diagonal and replacing it with the other diagonal in the same quadrilateral.

Figure 6

Then we can map any triangulation T to a quiver Q with frozen boundary ver-
tices, by mapping each edge in T to a vertex in Q, and by adding an arrow to any
two consecutive edges of a triangle in counter-clockwise order. The frozen vertices of
Q are those that map from boundary vertices of T . As noted in Remark 1.3, arrows
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between frozen vertices can be omitted, which in this case corresponds to arrows
between boundary edges.

Figure 7

Then mutating a vertex in Q is equivalent to flipping the corresponding edge in
T . In other words, each triangulation is a cluster, and each edge of a triangulation
is a cluster variable. Moreover, the exchange relation of the cluster variable can
described as a Ptolemy relation in the quadrilateral [2, 1.11]. Let’s consider the
following quadrilateral.

Figure 8

If we label each edge in the triangulation by its endpoints, the Ptolemy relation
gives us the following exchange relation:

[ij] · [kl] = [ik] · [jl] + [il] · [jk]

And if the cluster variable corresponding to an edge [ij] is denote ∆ij, this gives
rise to the exchange relation

∆ij ·∆kl = ∆ik ·∆jl +∆il ·∆jk

in the corresponding cluster algebra AT = A(Q), where A(Q) is the quiver of the
triangulation T . Every mutation gives rise to another triangulation, and thus all
clusters are given by a triangulation of the same polygon and the above relations.
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Definition 1.5. [3, 2.1] Consider a disk with n vertices drawn on its boundary,
labeled by the elements in {1, . . . , n}, in clockwise order. A Postnikov diagram, or
alternating strand diagram, consists of a collection of n oriented curves called strands,
such that each curve has boundary vertices as endpoints, with every boundary ver-
tex having exactly one incoming and outgoing strand, and satisfying the following
conditions:

(i) A curve does not cross itself in the interior of the disk.

(ii) No three curve cross in one single point.

(iii) All crossings are transversal, i.e. the curves have different tangents on their
intersection (left figure as opposed to right figure).

Figure 9

(iv) There are finitely many crossings between strands.

(v) Following any curve in one direction, the strands that intersect it must alternate
in orientation.

Figure 10

(vi) If two strands cross at two points A and B, then one strand is oriented from
A to B, and the other from B to A (left figure as opposed to right figure). In
other words, no two strands create unoriented lenses, or more informally, there
are no bad double crossings.
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Figure 11

We define alternating strand diagrams up to equivalence of two local transformations,
namely twisting and untwisting oriented lenses inside the disk or on the boundary.

Figure 12

We call the transformations from left to right a reduction, and diagrams to which
no further reduction can be applied reduced diagrams. If two Postnikov diagrams
D1, D2 are equivalent up to these transformations, we write D1 ≡ D2. The set of
Postnikov diagrams in a disk with n boundary vertices up to equivalence is denoted
Diagn. The set of all Postnikov diagrams is denoted Diag =

⋃
Diagn. Further-

more, we treat every diagram up to isotopy with the boundary vertices fixed. When
necessary, we denote this equivalence ∼. For any i ∈ {1, . . . , n}, the strand that
starts at the boundary vertex i is denoted γi.

A decorated permutation π of {1, . . . , n} is a pair (π, c) consisting of a permutation
π of {1, . . . , n} and a coloring map c that maps any fixed point of π to an element
in {−1, 1} (or {black,white}) . Any Postnikov diagram defines a permutation π of
{1, . . . , n} where π(i) = j when γi ends at the boundary vertex j. For any fixed
point i where γi is oriented clockwise, c(i) = 1 (white). Otherwise c(i) = −1 (black).
We call i the source (vertex) and π(i) = j the target (vertex) of γi.

Example 1.6. The following Postnikov diagram in a disk with 6 boundary vertices.
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Figure 13

Every strand in a Postnikov diagram divides the disk into two parts, one to its
left and one to its right (with respect to the orientation of the strand). Furthermore,
every Postnikov diagram subdivides the disk into alternating and oriented regions.
We label each alternating region of the diagram with a subset I ⊂ [n] := {1, . . . , n},
such that i ∈ I if the corresponding region is to the left of the strand γi. Then, every
label is a k-subset of [n] ([16, Prop. 5]), for a fixed 1 < k < n.

Figure 14

If a Postnikov diagram has n boundary vertices and each of its alternating regions
is labeled with k-subset I of [n], we say that the diagram has rank k and is of type
(k, n). Any diagram with decorated permutation i 7−→ i + k for all i is a (k, n)-
diagram, and denoted a Γk,n-diagram.

Definition 1.7. Let D be a Postnikov diagram, and ∆ an internal quadrilateral
alternating region of D. We define the geometric exchange of D with respect to ∆
as the local transformation on the diagram illustrated as follows
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Figure 15

We denote the resulting diagram µ∆(D). It is easy to check that the geometric
exchange does not change the type or permutation of a diagram.

Proposition 1.8. Let D be a Postnikov diagram of type (k, n). Let π be the a
decorated permutation of D, written as π : i 7−→ i + s(i), where s(i) ∈ {0, . . . , n},
such that s(i) = n exactly then when col(i) = 1, i.e. γi is a clockwise loop starting
and ending at i. Then the rank of D is also given by

k =
1

n

n∑
i=1

s(i)

Proof. Every alternating region of D has k labels, and there are n such regions on
the boundary. Thus the following statement is true for exactly nk couples of (∆, γ)
where ∆ is an alternating boundary region and γ is a strand:

“∆ is to the left of γ”

The number of such couples can also be counted by counting over strands and looking
at boundary regions to the left of them, i.e.

nk =
n∑

i=1

# of boundary regions to the left of γi

The number of regions to the left of a strand γi is just s(i), and thus

nk =
n∑

i=1

s(i) ⇐⇒ k =
1

n

n∑
i=1

c(i)

Which concludes the proof.
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In other words, the rank of a diagram can be viewed as the average number of
boundary points s(i) a strand γi “shifts” in the diagram between its source vertex i
and its target vertex π(i). This gives us an alternative way of defining the rank and
type of a Postnikov diagram. This also gives us the following definition.

Definition 1.9. Let π be the a decorated permutation of [n], written as π : i 7−→
i + s(i), where s(i) ∈ {0, . . . , n}, such that s(i) = n exactly then when col(i) = 1.
Then the rank of π defined as

k =
1

n

n∑
i=1

s(i)

The type of π is defined as the pair (k, n). The set of (k, n)-permutations is denoted
Sk,n.

We can map a triangulation T of an n-gon to a Γ2,n-diagram by mapping every
triangle t in T to a collection of three strand segments on the inside of t, following
along the edges of t in a counterclockwise order

Figure 16

Then if two triangles are edge-adjacent, we join the pairs of oriented strand
segments along their shared boundary. The oriented strands obtained from concate-
nating all strand segments make up the full diagram.

Figure 17
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We call this map S the Scott map, as it was first described in [16, p.14-15]. The
Scott map maps every chord of a triangulation T to a quadrilateral alternating region
of S(T ). If T1 and T2 are two triangulations related by a flip, then D1 = S(T1) and
D2 = S(T2) are related by a geometric exchange. More precisely, we obtain D2 from
D1 by mutating the quadrilateral region in D1 that corresponds to the edge in T1

that is flipped to obtain T2. This is visualized by the following figure (which we will
recall in Proposition 3.8).

Figure 18

If D = S(T ), we also notice that if the labels of the alternating regions of D are
the same as the labels of the corresponding chord in T , that is if a region in D is
labeled with the 2-subset {i, j}, it is mapped from the chord [ij] in T .

We will later extend this map to bicolored tilings (Definition 3.1). We will also use
bicolored tilings to parametrize positroid cells in the Grassmannian (Definition 5.8).
In order to facilitate that, we want to recall a method used in [21, Ch. 2.2] using
plabic graphs.

Definition 1.10. A graph G is a triple (V,E, ϕ), where V is a finite set of vertices,
E a finite set of edges, and ϕ : E −→ V ×V a function called the incidence function
that maps every edge in E to a pair of vertices in V .

Definition 1.11. [21, 2.11] A plabic graph G is a planar graph embedded into a
closed disk with n boundary vertices labeled 1, . . . , n in clockwise order for n > 0,
such that

(i) every boundary vertex is incident to a single edge.

(ii) every vertex is connected by a path to some boundary vertex.

(iii) every internal vertex is colored black or white.
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(iv) if an internal vertex v of G is a leaf, the second endpoint of its incident edge
is a boundary vertex.

We consider three local transformations, called moves on plabic graphs:

(M1) Square move: if four vertices form a square such that each vertex is trivalent
and their colors alternate, we may switch the colors of the vertices

Figure 19

(M2) Edge (de)contraction: if two adjacent vertices u and v are of the same color, we
may replace them with one single vertex w whose incident edges are those of u
and v combined. Conversely, we may replace any vertex w with two adjacent
vertices u and v of the same color such that the edge set of w is the union of
the edge sets of u and v.

Figure 20

(M3) Vertex removal: if a vertex v is 2-valent, we may replace v and its incident
edges with one single edge. Conversely, we may replace a single edge with two
edges incident on a single vertex v.

Figure 21

Furthermore, we define a (parallel edge) reduction on plabic graphs
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(R) If two adjacent vertices are connected by more than one edge, we may remove
an edge.

Figure 22

We say that two plabic graphs G and G′ are move-equivalent, and denote G ≡ G′,
if one can be obtained by the other by a finite sequence of moves (M1)-(M3). We
say that a plabic graph is reduced if no graph in its move-equivalence class can be
reduced by (R).

We further note that G is a bipartite graph if and only if its internal vertices
can be colored in an alternating pattern. Thus, when referring to a bipartite plabic
graph, its internal vertices are assumed to be colored in an alternating pattern.

Definition 1.12. [15, p.47] [21, 2.13] Let G be a reduced bipartite plabic graph. A
trip is an oriented path in G that starts at a boundary vertex i, such that the path
turns maximally right at every black vertex, maximally left at every white vertex,
and stops at the second boundary vertex it meets.

A graph with n boundary vertices has n trips. Every trip starts at a boundary
vertex i and ends in a boundary vertex j. This defines a permutation π(i) = j.

We define a coloring c on the fixed points of π. If i is a fixed point, the boundary
vertex i is vertex-adjacent to an internal leaf v. Then c(i) = −1 if v is black, and
c(i) = 1 if v is white. This assigns a decorated permutation to any reduced plabic
graph.

Example 1.13. Here is an example of a reduced bipartite plabic graph G with 6
boundary vertices, and a trip of G mapping 1 7−→ 5.
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Figure 23

Completing the remaining trips, we obtain the trip permutation π = (15)(264)
with the coloring on the fixed point c(3) = 1.

Proposition 1.14. [15, 13.1] Let G and G′ be reduced plabic graphs with decorated
permutations π and π′. If G′ can be obtained from G by a finite sequence of moves
(M1)-(M3), then π = π′.

Lemma 1.15. [15, 13.6] Any plabic graphG can be transformed by moves (M1)–(M3)
and the reduction (R) into a reduced plabic graph.

Definition 1.16. [15, 14.1] Every reduced bipartite plabic graph G can be mapped
to a Postnikov diagram D as follows

(i) draw a dot de in the middle of every edge e, and a dot di at every boundary
vertex i.

(ii) for any internal black vertex v, and any edge e that is incident to v, draw
an oriented edge from the dot de to the dot of the next edge of v in counter-
clockwise order.

(iii) for any internal white vertex v, and any edge e that is incident to v, draw an
oriented edge from the dot de to the dot of the next edge of v in clockwise
order.
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Figure 24

The result is a directed graph D inside the disk with n boundary vertices of
degree 2, and with each internal vertex having degree 4. The strands of the diagram
D are the paths of the graph D between boundary vertices such that all crossings of
the paths are transversal.

Example 1.17. The following plabic graph maps into a Γ2,5-diagram.

Figure 25

As a result, there is also a correspondence between triangulations and plabic
graphs, which we will define explicitly later in the context of bicolored tilings (Defi-
nition 3.26). In Remark 3.27 we will see that the square move (M1) corresponds to
a quadrilateral flip in the corresponding triangulation.

Proposition 1.18. [15, 14.2] Let G be a reduced plabic graph, and let D be the
corresponding Postnikov diagram as described in Definition 1.16. Let πG be the
decorated (trip) permutation of G and πD the decorated permutation of D. Then
πG = πD.

We will recall the definition of the totally non-negative Grassmannian and its
decomposition into positroid cells.
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Definition 1.19. [14, p.193] [15, 2.1] The Grassmannian Grk,n of type (k, n) is the
set of k-dimensional subspaces in an n-dimensional vector space V. Here, V = Rn.

A point V ∈ Grk,n can be described by a full-rank k × n-matrix M , with V
being the row-space of M . The row-space of M is invariant under left action by a
non-singular k × k-matrix. Thus, we can identify the Grassmannian as

Grk,n = GLk\Matk×n

where Matk×n is the set of full-rank k × n-matrices. We can embed Grk,n into the

projective space P(
n
k)−1 by setting a coordinate for any k-subset I of [n] := {1, . . . , n}

∆I = ∆I(M)

where ∆I(M) is the minor of the matrix composed of the column vectors of M
enumerated by I. Then the collection (∆I)I∈([n]

k )
gives us projective coordinates for

V . This is called the Plücker embedding of Grk,n [14].
The totally non-negative Grassmannian Gr≥0

k,n is the subset of subspaces in Grk,n
for which all the projective coordinates are all non-negative up to simultaneous
scaling with a factor λ ̸= 0.

Gr≥0
k,n can be decomposed into so-called positroid cells. An in-depth analysis of

the stratification of the Grassmannian can be found in [15, 3.2,3.5] and [19, 2.1-2.3].
For our intents and purposes, it is sufficient to define positroid cells as follows.

Definition 1.20. [19, 2.8] A matroid M of type (k, n) is a non-empty collection of
k-subsets of [n], i.e. M ⊂

(
[n]
k

)
satisfying the exchange relation:

∀I, J ∈ M : ∀i ∈ I : ∃j ∈ J : I \ {i} ∪ {j} ∈ M

The elements of M are called bases.

Definition 1.21. [19, 2.2] [15, 3.2] Let M ⊂
(
[n]
k

)
be a matroid. The positroid cell

SM ⊂ Grtnnk,n is defined as

SM = {V ∈ Gr≥0
k,n |∆I(V ) ̸= 0 if and only if I ∈ M}

= {V ∈ Gr≥0
k,n |∆I(V ) > 0 if and only if I ∈ M}

If V ∈ Gr≥0
k,n, and SV denotes the positroid cell such that V ∈ SV , then

SV := {W ∈ Gr≥0
k,n | ∀I ∈

(
[n]

k

)
: ∆IV = 0 iff ∆IW = 0}
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In other words, V and W are in the same positroid cell, if they share the placing
of their zero coordinates. Positroid cells in (k, n) are in bijection with decorated
permutations of type (k, n) [15, 17.1]. Thus, if we index positroid cells SM by
their corresponding decorated permutation π, and denote it Sπ, this gives us the
decomposition of Gr≥0

k,n:

Gr≥0
k,n =

⊔
π∈Sk,n

Sπ

where Sk,n is the set of decorated permutations of type (k, n).

Theorem 1.22. [15, 3.5] Each positroid cell Sπ is homeomorphic to an open ball
of some dimension dimSπ.

A more explicit connection between a decorated permutation and its correspond-
ing positroid cell will be explored via bicolored tilings. For now, let us note that
plabic graphs can be used to parametrize positroid cells. Two methods are described
in [15, 12.7] and [21, 2.17]. We will use the latter method.

Definition 1.23. [21, 2.15] Let G be a bipartite plabic graph such that every bound-
ary vertex is incident to a white vertex. An almost perfect matching m of G is a
subset of edges of G such that each internal vertex is incident to exactly one edge
in m. The boundary ∂m of m is the set of boundary vertices that are incident to an
edge in m. We recall that boundary vertices of G are labelled 1, . . . , n, thus

∂m = {i ∈ {1, . . . , n} | i is incident to an edge of m}

We denote M(G) the set of matchings of G.

Remark 1.24. We may define almost perfect matchings for bipartite plabic graphs
that have boundary vertices adjacent to black vertices as well. In that case, if W
denotes the set of boundary vertices of G adjacent to a white vertex, and B the set
of boundary vertices of G adjacent to a black vertex, we would define the boundary
of a matching m as

∂m = {i ∈ W | i is incident to an edge of m}∪{i ∈ B | i is not incident to an edge of m}

Proposition 1.25. Let G be a bipartite plabic graph with n boundary vertex such
that every boundary vertex is incident to a white vertex. Let m1,m2 ∈ M(G) be
matchings of G. Then |∂m1| = |∂m2|.
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Definition 1.26. Let G be a bipartite plabic graph with n boundary vertices such
that every boundary vertex is incident to a white vertex, and such that G has a
perfect matching. The rank of G is k = |∂m|, where m ∈ M(G). We say that G is
of type (k, n).

Example 1.27. The following plabic graph with 6 boundary vertices has a matching
m with ∂m = {1, 2, 3, 6}, and is thus a graph of type (4, 6).

Figure 26

It is the graph obtained by mapping a rhombic tiling (Section 4.3) to its corre-
sponding plabic graph.

Theorem 1.28. [21, 2.17] Let G be a bipartite plabic graph of type (k, n). Let E be
the set of its edges. Let w : E −→ R>0 be a weight function on the edges of G. For
any m ∈ M(G), we set

w(m) =
∏
e∈m

w(e)

Then there is a point Vw ∈ Grk,n such that for any k-subset I of [n], we have

∆I(Vw) =
∑

m∈M(G)
∂m=I

w(m)

Varying over all such weight functions we get the positroid cell

SG = {Vw |w : E −→ R>0}

Proposition 1.29. [15, 12.2] Let G and G′ be bipartite plabic graphs of type (k, n)
such that G′ can be obtained from G by a finite sequence of moves (M1)-(M3) and
reduction (R) (as defined in Definition 1.11). Then SG = SG′ .
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Proposition 1.30. [15, 13.4] [21, 2.10] Let G and G′ be reduced, bipartite plabic
graphs of type (k, n), with decorated permutation π and π′, respectively. If π = π′,
then SG = SG′.

Thus we can index positroid cells as described in Theorem 1.28 by the decorated
permutation of a graph. Any decorated permutation of type (k, n) gives us a different
graph.

Proposition 1.31. [15, 12.7] Let G be a bipartite plabic graph of type (k, n), F the
set of faces of G, and SG be the corresponding positroid cell. Them dimSG = |F|−1.

Remark 1.32. In Definition 1.21 we denoted the positroid cells by indexing them
via matroids, vector spaces, and decorated permutations (SM, SV , and Sπ), and via
plabic graphs in Theorem 1.28 (SG). All these notations refer to the same positroid
cells, but are just indexed differently. We may use the notations interchangeably,
depending on what object we use to infer the corresponding positroid cell. Later in
Definition 5.8, we will see how we can index the positroid cells by tilings (ST ).

To sum up, triangulations can be mapped to quivers, Γ2,n diagrams, and plabic
graphs of type (2, n), with the flip of a diagonal corresponding to the mutation of
a vertex, a geometric exchange, and a square move, respectively. Triangulations of
an n-gon are linked to the totally non-negative Grassmannian Grtnn2,n . We generalize
this connection to objects of any type (k, n) by introducing bicolored tilings.

2 Bicolored tilings

In a first instance, bicolored tilings can be thought of as triangulations where we
removed some diagonals and then colored each tile black or white.

Figure 27

From there, we extend this idea to constructions with internal vertices, loops,
and digons. In terms of the Scott map, black tiles will behave similarly to edges,
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and as we will see later, some of the propositions count black tiles as edges as well.
To this end, we will first define those black tiles as edges between any number of
vertices, before we define bicolored tilings as a collection of compatible edges in a
disk or polygon, similar to how triangulations are a collection of non-crossing chords
in a polygon.

Remark 2.1. In [7, 2.3], tilings are defined as a collection of smooth curves with a
coloring on the faces that these curves delimit. However, here we adopt the definition
of bicolored tilings in the setup of [8, 2.4], as it allows us to restrict bicolored tilings
to a smaller collection to avoid odd examples and exceptions.

Definition 2.2. [8, 2.4] Let X be a 2-dimensional connected oriented surface with
boundary, with n distinct boundary vertices, enumerated {1, . . . , n}, and x1, . . . , xm

internal vertices, form ≥ 0. Let V be the set of vertices, both boundary and internal.
A hyperedge or r-edge e = (v1, . . . , vr) is a finite sequence of vertices vi ∈ V such
that

(i) There are no repetitions of vertices in v1, . . . , vr, with the exception of bound-
ary vertices which may appear exactly twice in consecutive order (with the
convention that vr and v1 are consecutive).

(ii) There is a collection of smooth curves ϵ1, . . . , ϵr on the surface such that ϵi has
endpoints vi and vi+1 (with the convention that vr+1 = v1), and such that no
two curves intersect, other than at the endpoints of any two consecutive curves
ϵi and ϵi+1. Furthermore, there are no vertices of V boundary components of
X in the interior of the disk with boundary

⋃
ϵi.

We call v1, . . . , vr the endpoints of e. Hyperedges are treated up to cyclical shift of
the sequence.

Remark 2.3. We draw an hyperedge with e with boundary
⋃
ϵi by drawing the

curves ϵi and shading the area between those curves. Hyperedges between 2 distinct
vertices can be drawn like regular edges, i.e. as either an arc between the vertices
or black digons with the vertices as endpoints (and are considered equivalent), and
are also called (simple) edges. A hyperedge consisting of a single vertex is drawn as
a black 1-gon (a loop whose interior is shaded).

As stated in Definition 2.2(i), we can choose boundary vertices twice as endpoints
of a hyperedge. This allows us to create white loops, i.e. white 1-gons, in a tiling,
which will map to counter-clockwise loops under the Scott map (Definition 3.1).
Conditions (ii) and (iii) ensure that the hyperedge can be embedded in the disk such
that each hyperedge is a black r− gon (up to isotopy), and such that no such r-gon
contains another vertex inside.
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Example 2.4. We consider the disk D6 with 6 boundary vertices and 3 internal
vertices x1, x2, x3.

Figure 28

Then for bi = (i, i+1) (for i = 1, . . . , 6), the following are examples of hyperedges.

· b1, . . . , b6, e1 = (2, x1), e2 = (x1, x2, x3), e3 = (5, x3)

· b1, b2, b3, b5, b6, e4 = (2, x1), e5 = (3, 4, 5, x1)

· b2, . . . , b5, e6 = (1, 2, x1), e7 = (1, x1, 6), e8 = (x2)

Figure 29

As previously noted, if a boundary vertex i appears twice in the sequence that
describes an hyperedge, the curve that has both endpoints i forms a white loop at the
boundary, as seen in the second example. If two vertices u, v appear as consecutive
vertices in two (or more) hyperedges, this creates (multiple) white digons, as seen
in the third example. All three collections of hyperedges are pairwise compatible.
We note that in each of the collections, we added hyperedges that serve as boundary
components of the construction, namely b1, . . . , b6. In the second example, e5 serves
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as a boundary component between boundary vertices 4 and 5. On the other hand, we
notice that by having both b3 and e5 being hyperedges between the boundary vertices
3 and 4, we create a white digon at the boundary, if we assume the hyperedges to
be compatible.

Definition 2.5. Two hyperedges are compatible if they can be embedded in the disk
such that they do not intersect other than at their shared endpoints.

Definition 2.6. LetX be a 2-dimensional connected oriented surface with boundary,
with n distinct boundary vertices, enumerated {1, . . . , n}, and x1, . . . , xm internal
vertices. We denote the set of these vertices by V . A bicolored tiling T = (X, V,E)
is the surface X equipped with a finite collection of hyperedges E such that

· the hyperedges are pairwise compatible.

· for any boundary segment between two consecutive boundary vertices u, v,
there is exactly one black tile intersecting that whole boundary segment, in-
cluding the endpoints u, v.

We define tilings up to equivalence given by the following two local transformations

· Hourglass equivalence:

Figure 30

· Digon equivalence:
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Figure 31

where x1 and x2 are not simultaneously boundary vertices.

For the rest of this paper, the surface X will always be a disk, unless otherwise
specified. The set of tilings (in a disk) up to tiling equivalence, i.e. hourglass/digon
equivalence, is denoted Til. The set of tilings with n boundary vertices is denoted
Tiln. Furthermore, we define themutation/flip of a simple edge inside a quadrilateral
within the tiling, as described in the following figure

Figure 32

We say that two tilings are flip/mutation-equivalent if one can be obtained from
the other by a finite sequence of flips and tiling equivalences. We denote Til the set
of flip/mutation-equivalence classes of tilings in Til. For simplicity, we will identify T
with its flip-equivalence class T for the rest of this paper, unless otherwise specified.

Example 2.7. The following is a tiling of D6, a tiling that is equivalent to it, and
a tiling that is flip-equivalent to it.
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Figure 33

We will usually draw Dn as an n− gon, as we work with tilings up to homotopy.
This would make our tiling of D6 look as follows

Figure 34

Remark 2.8. The number of internal vertices varies between equivalent tilings. The
hourglass equivalence adds or removes the middle vertex when we go right or left
in the above depicted transformation, respectively. The digon equivalence contracts
two vertices into one from left to right in the depiction above.

A tiling consists of several “ingredients” that we will distinguish in the rest of
the paper as follows.

Definition 2.9. Let T be a tiling of a surface X. The set of vertices and hyperedges
of T are denoted V and E, respectively. We sometimes refer to the hyperedges of E
as black tiles.

The faces T are the connected components of X \ (
⋃
te). We also call the faces

of a tiling white tiles. The set of faces of T is denoted F .
An angle α of T is a quadruple (v, e1, e2, f) ∈ V × E × E × F , such that e1

and e2 are consecutive hyperedges around the face f intersecting in v. Angles are
symmetrical with respect to the hyperedges e1 and e2. Informally, we choose a vertex
around which the angle α lies, and a face inside which α lies. However, this is not
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enough in some cases, such as when there is a 1-edge, and thus we need to specify
between which two hyperedges α lies. The set of angles of T is denoted A.

Figure 35

We can use the hourglass equivalence of tilings to flip edges between any two
white tiles of size greater than 2. We may do that by adding hourglasses around the
edge that we want to flip in order to inscribe it in a white quadrilateral, which may
then be flipped.

Figure 36

In other words, any edge that acts as the diagonal of a white polygon can be
flipped that way.

Example 2.10. We consider the following rhombic tiling (see Section 4.3) with
internal edges labeled e1, e2, e3 clockwise, starting with the left one. To mutate the
edge e1, we add two hourglasses inside the adjacent tiles, which then circumscribe
the edge inside a quadrilateral, allowing us to flip it. We denote µi := µei .
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Figure 37

Further flipping the edges e2, e3, e1 in that order indeed returns another rhombic
tiling, which is the original tiling to which we applied a Yang-Baxter move. We will
see the full mutations in Section 4.3, when discussing rhombic tilings in more detail.

For the rest of this paper, unless otherwise specified, we only consider tilings for
the disk Sn = Dn with n boundary vertices, and the boundary vertices are labeled
1, . . . , n in clockwise order.

Finally, we are going to define one more important transformation of tilings,
called a reduction. This transformation is linked to parallel edge reductions of plabic
graphs in [15][12.4, p.43] and will allow us later to describe which tilings map to Post-
nikov diagrams (Proposition 3.14). Furthermore, reductions on tilings preserve some
combinatorial properties of the tilings, such as the positroid cell of the Grassmannian
(Definition 5.8) associated to tilings, as we will see in Proposition 5.17.(iii).

Definition 2.11. Let T be a tiling, and let e ∈ E be a black 1-gon whose only
neighboring tile is a white tile. Then the tiling T ′ = T − e is called a reduction of
T . We denote this reduction Re.

Figure 38

A tiling T is said to be reduced if no reduction Re can be applied to any tiling in
its mutation-equivalence class.

It can be hard to see when a tiling is reduced. However, we will see in Proposi-
tion 3.14 that reduced tilings map to Postnikov diagrams. Thus, if a tiling does not
generate a Postnikov diagram under the Scott map, we know it is not reduced, and
try to find a tiling in its mutation-equivalence class to reduce it. We do this until
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we obtain a reduced tiling that maps to a Postnikov diagram. Later, we will see
that the reduced tiling preserves some combinatorial properties of the initial tiling
(particularly in Proposition 5.17).

Definition 2.12. Let T be a reduced tiling. Then the dimension of T is dimT =
|E| − 1.

We will later see in Proposition 5.23 that the dimension of T is the same as the
dimension of the positroid cell associated to T .

Example 2.13. Two special cases of the hourglass equivalence are the following

Figure 39

The vertical edge can be viewed as a black 2-gon, which can then be viewed as
a black triangle (shaded in a lighter grey) added along the edge of a black 1-gon
(shaded in darker grey). With the bottom triangle, this is another hourglass.

Similarly, an internal vertex with two incident edges is another hourglass that
can be removed or added.

Figure 40

3 Scott map and stellar-replacement map

In this section, we will generalize the Scott map on bicolored tilings. As previously
alluded to (p.25), the Scott map will behave the same on white tiles, but will treat
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black tiles like edges (i.e. strands will simply go through them and continue along
the boundary of the next white tile) (p.17). We also previously noted that not all
tilings map to Postnikov diagrams. We will therefore define a more general version
of diagrams that allows for closed, oriented cycles, as well as bad double crossings
(i.e. unoriented lenses created between two strands).

Definition 3.1. Consider a disk with n vertices drawn on its boundary, labeled
by the elements in {1, . . . , n}, in clockwise order. An (alternating) curve diagram
consists of a finite collection of oriented curves, such that each curve is either a
closed cycle or has boundary vertices as endpoints, in which case we call it a strand,
with every boundary vertex having exactly one incoming and outgoing strand, and
satisfying the following conditions:

(i) A curve does not cross itself in the interior of the disk.

(ii) No three curve cross in one single point.

(iii) All crossings are transversal, i.e. the curves have different tangents on their
intersection.

(iv) There are finitely many crossings between curves.

(v) Following any curve in one direction, the curves that intersect it must alternate
in orientation.

We define alternating curve diagrams up to the same equivalence as Postnikov dia-
grams, i.e. twisting and untwisting oriented lenses inside the disk or on the boundary.
If two curve diagrams D1, D2 are equivalent up to these transformations, we write
D1 ≡ D2. The set of alternating curve diagrams in a disk with n boundary vertices
up to equivalence is denoted Diagn. The set of all alternating curve diagrams is
denoted Diag =

⋃
Diagn. Furthermore, we treat every diagram up to isotopy with

the boundary vertices fixed. When necessary, we denote this equivalence ∼. For
any i ∈ {1, . . . , n}, the strand that starts at the boundary vertex i is denoted γi.
Any curve diagram has exactly n boundary-to-boundary strands γ1, . . . , γn, and may
have closed cycles in the interior of the disk.

In essence, it is the same definition as Definition 1.5 without condition (vi), and
where the collection of strands consists of n strands and any finite number of closed,
oriented cycles.
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Example 3.2. Two examples of alternating curve diagrams with 5 boundary ver-
tices.

Figure 41

Definition 3.3. [16, p.14-15] [7, 3.1] We define the Scott map

S : Tiln −→ Diagn, T 7−→ D

to be the map such that

· any white tile is mapped to a configuration consisting of m curve segments,
where m is the size of the tile, following around the border in a counter-
clockwise orientation. For example:

Figure 42

· any black tile is mapped to a configuration consisting of m curve segments,
where m is the number of vertices of the tile, such that each curve forms an
arc around a vertex inside the tile in a clockwise orientation. For example:
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Figure 43

· If two tiles are adjacent, join the pairs of oriented curves segments along their
shared boundary. The oriented curves obtained from concatenating all curve
segments make up the full curves of the diagram. One can check that these are
consistently oriented. Indeed, the only intersections of curves occur in white
tiles. Following a single curve, these intersections always come in pairs of two,
the first being from left to right, and the second being from right to left. Thus
the intersections keep alternating as the curve passes through white tiles.

· The curves join at the boundary, i.e. for any boundary vertex, we take the two
curves that intersect the boundary on either side of the vertex closest to it and
join them.

Example 3.4. We consider the image of a bicolored tiling of an octagon with one
internal vertex under the Scott map. The image is a Postnikov diagram of type
(5, 8).

Figure 44

Lemma 3.5. For any tiling T , S(T ) is an alternating curve diagram.

Proof. By construction, all intersections of curves are given by the intersections
of curves within white tiles. They are trivially pairwise, transversal, and there are
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finitely many. It is also easy to see that the endpoints of strands are on the boundary
of T . Any endpoints of a strand can only arise as the endpoint of a curve in the
configuration if that endpoint is not attached to another curve. However, that is
only the case if there is no tile adjacent to the boundary hyperedge of the tile on
which that endpoint lies, which means that the endpoint lies on the boundary of T .

Following any strand from its source vertex to its target vertex, any crossings
occur only in white tiles and come in pairs of two, always crossing from left to right
first (after entering the tile), and from right to left second (before leaving the tile).
Thus the alternating property is satisfied for any strand in T . If the curve is a cycle,
we choose any point of the cycle that lies on a hyperedge of a white tile and treat it as
both source and target vertex, and the same reasoning follows. Thus the alternating
property is satisfied everywhere in T .

Thus the resulting construction is an alternating curve diagram.

Remark 3.6. There is a correspondence between the parts that make up a tiling
T and the regions of the diagram Γ = S(T ). More precisely, if v is a vertex, e an
hyperedge, and f a face in T , then

· v maps to a clockwise oriented region in Γ.

· e maps to an alternating region in Γ.

· f maps to a counterclockwise oriented region in Γ.

Proposition 3.7. Let T, T ′ ∈ Til. If T ≡ T ′ then S(T ) ≡ S(T ′).

Proof. Since both relations are equivalence relations, it is sufficient to show that if
T ′ is obtained from T by the addition of an hourglass or by digon (de)contraction,
then S(T ) ≡ S(T ′). Indeed, adding an hourglass results in locally twisting two paths
of the diagram into a clockwise-oriented lens,

Figure 45
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whereas contracting a digon results in locally untwisting two paths of the diagram
into a counterclockwise oriented lens.

Figure 46

In both cases, S(T ) ≡ S(T ′).

The following is pointed out in [16, p.16] and still remains true in bicolored tilings.

Proposition 3.8. The flip of an edge in a quadrilateral corresponds to a geometric
exchange in the strand diagram that the tiling maps to, i.e. S(µe(T )) ≡ µS(e)S(T )
for any edge e in a tiling T .

Figure 47

Remark 3.9. As previously stated, Postnikov diagrams map to quivers, which gen-
erate cluster algebras, with the vertices of the quiver corresponding to cluster vari-
ables. The geometric exchange and consequently the flip of an edge correspond to
the mutations of cluster variables, with each tiling corresponding to a cluster.

Definition 3.10. The rank k of a tiling T is defined as the rank of the diagram
S(T ). Similarly, a tiling is of type (k, n) if the diagram S(T ) is of type (k, n).

Proposition 3.11. Let T be a tiling of permutation π, e be a black 1-gon, and
T ′ = Re(T ). Let γi and γj be the strands in T that pass through e and go around e,
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respectively. Then the permutation π′ of T ′ is given by

π′(l) =


π(l), if l ̸= i, j

π(j) if l = i

π(i) if l = j

In other words, π′ = (π(i) π(j))π.

Proof. We observe the effect that reductions have from the diagram S(T ) to S(T ′).

Figure 48

We observe that the strands γi and γj simply swap target from S(T ) to S(T ′).

Example 3.12. The following tiling of a hexagon is equivalent (by hourglass equiv-
alence) to a tiling with a black 1-gon e.

Figure 49

If π is the permutatation of these tilings, we can see that π(2) = 2 and π(4) = 1.
By applying Re to the tiling, we obtain a tiling
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Figure 50

If π′ is the permutation of the resulting tiling, then π′(2) = 1 and π′(3) = 2. It
is easy to verify that for any i ̸= 2, 3, π(i) = π′(i).

Proposition 3.13. Let T be a tiling, e be a black 1-gon, and T ′ = Re(T ). Then T
and T ′ have the same type.

Proof. T and T ′ have the same number of boundary vertices, so it remains to show
that T and T ′ have the same rank. Let γi and γj be the strands in T that pass
through e and go around e, respectively (as shown in the previous figure). Let γ′

i

and γ′
j be the strands that intersect at the angle (Definition 2.9) in T ′ where e was.

If π is the permutation of T , then the permutation π′ of T ′ is given by

π′(l) =


π(l), if l ̸= i, j

π(j) if l = i

π(i) if l = j

Then, s′(i) = s(i) + π(j)− π(i), and s′(j) = s(j) + π(i)− π(j) Then the rank k′ of
T ′ is given by

k′ =
1

n

n∑
l=1

s′(l) =
1

n

n∑
l=1

s(l) + [π(j)− π(i) + π(i)− π(j)] = k

The following proposition generalizes the result in [4, 3.5] which states that - in
the classic setup for tilings - tilings map to Postnikov diagrams under the Scott map.
Once we introduce internal vertices and black tiles, this statement does not hold for
every tiling anymore. An analogous statement for plabic graphs is given in [15, 14.2].

Proposition 3.14. T is a reduced tiling if and only if S(T ) is a Postnikov diagram.
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Proof. Let T be non-reduced. Then there is T ′ ≡ T such that T ′ has a 1-edge e.
Then, locally, e maps to a bad double crossing under the Scott map, thus S(T ) is
not a Postnikov diagram. Hence, if S(T ) is a Postnikov diagram, then T is a reduced
tiling.

Let T be a reduced tiling, and G = Φ(T ) the corresponding plabic graph as
described in Definition 3.26. If F is the set of faces of G, then |E| = |F|. Assume
S(T ) is not a Postnikov diagram, then by [15, 14.12], G is not reduced. Then by
[15, 12.5], |F| is not minimal in the movement-reduction class of G. Then |E| is
not minimal within the reduction-equivalence class of T , and thus T is not reduced,
which is a contradiction. Hence, S(T ) is a Postnikov diagram.

Definition 3.15. A matching m ⊂ A of a tiling T is a choice of angles of T such
that.

(i) Each face is matched exactly once, i.e. for any two angles α, β ∈ m : f(α) ̸=
f(β), and for any face f of T , there is α ∈ m such that f = f(α).

(ii) Each vertex is matched at most once, i.e. for any two α, β ∈ m : v(α) ̸= v(β).

(iii) Each internal vertex is matched exactly once, i.e. on top of the second condi-
tion, for any internal vertex v of T , there is α ∈ m such that v = v(α).

We denote ∂m = {v ∈ V | v is a boundary vertex and not matched in m} the bound-
ary of m. The set of matchings of a tiling T is denoted M(T ).

The following proposition gives us an easy way to determine the type of a tiling.
We will prove this statement later in Proposition 5.7.

Proposition 3.16. Let T be a tiling with a matching of type (k, n). Then k =
|V | − |F |.

By defining an inverse to the Scott map, we can, in particular, construct a tiling
for any Postnikov diagram, and as a consequence construct a tiling of any type and
permutation as well. This mostly serves the purpose of establishing a bijection be-
tween reduced bicolored tilings and Postnikov diagrams, as we will later in Section 4.6
describe a method to directly construct a tiling given any decorated permutation.

Definition 3.17. Let D ∈ Diagn be an alternating path diagram, and let r be a
region of D, then the size of r is the number of crossings in D which lie on the
boundary of r.
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Definition 3.18. We define the map

S : Diagn −→ Tiln

that maps any curve diagram to a tiling of an n-gon such that

· any counterclockwise region of size m is mapped to a white m-gon.

· any clockwise region of size m is mapped to an m-antigon for m > 1, while a
clockwise region of size 1 (i.e. a clockwise loop) is mapped to a black 1-gon.

· any alternating and any boundary region of size m is mapped to a black m-gon.

· if two regions are hyperedge- or vertex-adjacent, then their images are also
hyperedge- or vertex-adjacent, respectively.

Proposition 3.19. S is the inverse of S, i.e. SS = idDiagn and SS = idTiln. We
call S−1 = S the inverse Scott map.

Proof. Since both maps are defined locally, we can simply look at how applying those
maps in succession locally returns the initial construction.

· SS = idDiagn : We look at the intersection of two curves. The curves divide
the region locally into 4 smaller regions, one of which is clockwise oriented.
Assume that the clockwise-oriented region is of size m > 1, which means that
S maps it to an m-antigon. We see that applying S followed by S returns the
same intersecting sections of paths

Figure 51
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Thus SS does not locally change the diagram, and therefore maps the diagram
to itself. The case where m = 1 is similar.

· SS = idTiln : Similarly, we look at how SS applies locally on a tiling. More
precisely, we look at where intersections of the diagram would occur after
mapping the tiling by S, which would be at the corner of each white tile. In
the illustration below the white tile is adjacent to two black tiles around that
corner. However, as seen before, edges can be treated as black 2-gons and
drawn as such, hence we do not lose generality with this construction.

Figure 52

We observe that SS does not locally change the diagram, and therefore maps
the diagram to itself.

Once again, in the left figure of second line, we assume that m > 1, where m is
the size of the clockwise oriented region, which maps the region to an antigon
under S. The result is similar if m = 1.

Thus we conclude that S = S−1.

Example 3.20. We show the effect of S−1 on a diagram of type (3, 6)
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Figure 53

Remark 3.21. The inverse Scott map as defined above helps us determine that
every diagram has a corresponding tiling, i.e. a tiling that maps to that diagram.
However, the result is not always “clean”, in the sense that it contains a lot of digons
and hourglasses that we can simplify to obtain a cleaner result.

Example 3.22. Using the equivalences on tilings, we obtain the following tiling for
the strand diagram of Example 3.20.

Figure 54

(a) We contract the two horizontal lenses to the left/right of the top-right/bottom-
left white triangle, respectively.

(b) We contract the two vertical lenses to the bottom/top of the top-right/bottom-
left triangle, respectively.

(c) We contract the two remaining lenses on the boundary.
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Theorem 3.23. [15][14.2, 14.4 -14.7] For any decorated permutation π, there is a
Postnikov diagram Γ with permutation π .

Theorem 3.24. [7, 4.7] For any decorated permutation π, there is a tiling T whose
permutation is π. Alternatively, any Postnikov diagram can be obtained as the image
of a bicolored tiling by the Scott map.

Proof. By Theorem 3.23, there is a Postnikov diagram Γ with permutation π for any
decorated permutation π. If T = S−1(Γ), then S(T ) = S(S−1(Γ)) = Γ. And thus T
maps to Γ by the Scott map and, by definition, T has permutation π.

We will see in later Chapter how to obtain a tiling for a specifically given per-
mutation, specifically one that maps to a Postnikov diagram.

Remark 3.25. We could skip diagrams altogether and define the type and permu-
tation of tilings in the same vein as trips in plabic graphs [15, p.47]. If T is a reduced
tiling with boundary vertices {1, . . . , n}, we would define the trip at boundary vertex
i is the oriented path p constructed by the boundaries of the tiles of T as follows.

1. We start at the vertex i. By convention, we consider the boundary segment
between i− 1 and i the last hyperedge traveled by the path, oriented towards
i.

2. Any time we reach a vertex v, let e1 and e2 be the first and second edges
clockwise (around v) from the last hyperedge that p traveled. Let f be the
face between the e1 and e2. Then we add the boundary of f adjacent to e2 to
the path, oriented from v to the second endpoint u.

Figure 55

3. Once we reach a boundary vertex after our starting vertex i, the path is com-
plete.
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Any trip at a boundary vertex i arrives at a boundary vertex j. Then any tiling
defines a permutation π : i 7−→ j. For instance, the following tiling of type (5, 8)
has a trip starting at 1 and ending at 6. Thus its decorated permutation π maps
1 7−→ 6.

Figure 56

This construction does not give us new insights, and it is clear that a trip is just
a strand (or cycle) that is drawn on the hyperedges rather than along the them.
However, this can be used to define tilings entirely on their own, and can be used
where discussing Postnikov diagrams would only be useful to define the type and
permutation of a tiling, as is done in [6].

Now we are going to connect tilings to plabic graphs, which will be useful later.
The construction was first introduced in [4, p.48] for the case of unicolored tilings
(bicolored tilings whose hyperedges are all simple edges). The map naturally extends
to the bicolored set-up.

Definition 3.26. [4, p.48] [8, 2.17] We define the stellar-replacement map

S : Tiln −→ Gn, T 7−→ G

such that

· Any vertex v of T is mapped to a white vertex Φ(v) of G.

· Any face f of T is mapped to a black vertex Φ(f) of G.

· If v ∈ ∂f , then there is an edge between Φ(v) and Φ(f) in G. In other words,
any angle α ∈ A around v and in f is mapped to an edge Φ(α) in G between
Φ(v) and Φ(f).
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· We draw a circle with n vertices labeled 1′ to n′ in clockwise order. These will
be the boundary vertices of G. Then for any boundary vertex i in T , we add
an edge from Φ(i) and i′ in G.

Then the resulting construction is the plabic graph Φ(T ).

Figure 57

Remark 3.27. If T is a tiling and G = Φ(T ) its corresponding plabic graphic, then
mutating an edge in T corresponds to applying a square move (M1) to the plabic
graph. A quadrilateral with one diagonal maps to a plabic graph as follows.

Figure 58

By symmetry, after flipping the diagonal, it maps to

Figure 59

The two resulting plabic graphs are linked my a square move (M1).
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After defining triangulations in Definition 1.4, we described how to map a trian-
gulation to a quiver (which then generates the corresponding cluster algebra). We
can imitate this process for bicolored tilings, and the same mapping rules apply: If T
is a tiling, and Q the corresponding quiver, hyperedges (which includes black tiles)
of T map to vertices of Q, and we add an arrow to any two consecutive hyperedges
of a tile in T in counter-clockwise order. Boundary hyperedges of T once again map
to frozen vertices of Q, and arrows between frozen vertices can be omitted.

Figure 60

Note that internal m-edges, for m ≥ 2, have m incoming and m outgoing arrows,
alternating in their orientation.

Similarly to the setup of triangulations, flipping a simple edge in T is equivalent
to mutating a vertex in Q. In the following example, we mutate the only simple edge
on the left of the tiling.

Figure 61

However, one must note that the inverse is not necessarily true. Some vertices in
Q are also mapped from non-simple hyperedges in T , as is true for the black triangle
in the center of the tiling above. That means that while we can mutate those vertices
in Q, we still do not have a corresponding transformation for the black tiles in T . If
we mutate the vertex in Q, the resulting quiver is not plane anymore, which means
that tilings on their own can not fully describe all clusters of a cluster algebra.
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Figure 62

We will write AT for AQ, where Q is the quiver of the tiling T .

4 Examples of tilings

In this section, we are going to explore different classes of tilings. Triangulations of
the n-gon and diagonal tilings will be the most basic form of reduced tilings, only
containing simple edges. Rhombic tilings are a series of (m+ 1, 2m)-tilings that can
be defined recursively. Quadrilateral tilings are reduced Γk,n-tiling, i.e. tilings of
permutation π : i 7−→ i + k, but can also be used to derive other tilings of same
type (but different permutation). In the end, we will describe a way to generate a
reduced tiling for any given permutation.

Before we go into those explicit examples, we first introduce composed tilings.

4.1 Composed tilings

Some tilings behave as if they were two separate tilings, in the sense that they contain
two or more subtilings whose edges mutate independently of each other. Consider
the following tiling T

Figure 63

The middle black 3-edge is a boundary hyperedge and thus frozen. Furthermore,
it separates T into two triangulations TL and TR.
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Figure 64

The internal edge of TL mutates independently of the internal edges of TR, and
vice-versa. We may identify T with those two triangulations instead. More gener-
ally, any tilings which is separated by such a boundary 3-edge may be viewed as a
composition of two smaller tilings.

Definition 4.1. Let TL, TR be two tilings. Let a, b be boundary hyperedges of TL

and TR, respectively. The composition T of TL and TR along the boundaries a and b
is the tiling obtained by concatenating TL and TR to a common 3-edge c along their
boundary hyperedges a and b as follows.

Figure 65

We denote T = TL ∧a,b TR, or simply T = TL ∧ TR if the context allows it.

Naturally, we ask the question how separating a tiling into two smaller tilings
translates into the behavior of the cluster algebras of the three tilings involved. The
result is fairly straightforward.

Proposition 4.2. Let T = TL ∧a,b TR. Then

AT
∼= ATL

⊗ATR

/
(a⊗ 1− 1⊗ b)

Proof. Let c be the 3-edge that joins a and b in T . We label every other hyperedge
in T the same as their counterpart in TL or TR. Let xe = ρ(e). Then we construct
the map ϕ : TL ⊗ TR −→ T, x 7−→ φ(x) by setting
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· φ(xe ⊗ 1) = xe for e ̸= a

· φ(1⊗ xe) = xe for e ̸= b

· φ(a⊗ 1) = c

· φ(1⊗ b) = c

and extending φ linearly. Then, AT
∼= ATL

⊗ATR

/
kerφ, and kerφ = (a ⊗ 1 − 1 ⊗

b).

Remark 4.3. From this point forward, we concern ourselves more with the subtilings
that a tiling is composed of, rather than along which boundary edges we attach the
subtilings are attached. In accordance with that, we may simplify the notation of
composed tilings by omitting the boundaries, i.e. we simply write T = TL ∧ TR.

For the following two gluing constructions of tilings, we obtain similar results as
Proposition 4.2.

1. We denote T = TL ||TR the tiling obtained by concatenating TL and TR to a
common 4− edge.

Figure 66

2. We denote T = TL × TR the tiling obtained by concatenating TL and TR to
two common 3 − edges that form an hourglass, this time joining them along
two consecutive boundary hyperedges a, c in TL to two consecutive boundary
hyperedges b, d in TR.

Figure 67
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We call all three constructions compositions of TL and TR. Similarly to before,
the two subtilings mutate independently from each other in the composed tilings T .
And similarly, the cluster algebra of the composed tiling can be described as the
quotient of the product of the two smaller algebras over some ideal.

Proposition 4.4. Let T = TL ||TR, along the hyperedges a and b. Then

AT
∼= ATL

⊗ATR

/
(a⊗ 1− 1⊗ b)

Let T = TL × TR, along the pair of hyperedges a, c and b, d. Then

AT
∼= ATL

⊗ATR

/
(a⊗ 1− 1⊗ b, c⊗ 1− 1⊗ d)

We omit this proof as it is analogous to the proof of Proposition 4.2.

4.2 Triangulations and diagonal tilings

The first class of tilings one considers are triangulations of n-gons, which we already
discussed in the introduction. Triangulations are a special class of tilings of type
(2, n). Every simple edge is inscribed in a quadrilateral, thus we can mutate every
edge throughout the entire mutation-equivalence class. That way, the tilings in the
mutation class give us all the clusters of the cluster algebra associated to the tiling.
The mutation-equivalence class of a triangulation consists of all the triangulations
of that n-gon. We previously defined triangulations as maximal collections of non-
crossing chords in a polygon. We may also describe them in the context of tilings.

Definition 4.5. A triangulation is a tiling with n boundary vertices and no internal
vertices with n− 2 simple edges with no parallel edges, i.e. no edges share the same
two endpoints. In other words, the tiles of the tiling are all triangles, and the only
edges are diagonals.

The following proposition is found in [16, Cor. 2].

Proposition 4.6. Triangulations are of type (2, n) and of permutation i 7−→ i+ 2.

Definition 4.7. A diagonal tiling is a tiling with n boundary vertices and no internal
vertices with at most n− 2 simple edges with no parallel edges. In other words, all
edges are diagonals of the polygon.
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Figure 68

A triangulation is a diagonal tiling with a maximal number of edges. Any other
diagonal tiling is obtained by removing diagonals from a triangulation. If a diagonal
tiling has d diagonals, it has d + 1 faces. Thus the rank of a diagonal tiling is
k = n− d− 1 by Proposition 5.7 below.

We previously noted that triangulations give us all the clusters of their corre-
sponding cluster algebras. This is not necessarily true for all bicolored tilings. The
reason is that we only have a way to mutate simple edges in a tiling, when internal
edges between more than 2 vertices also map to non-frozen vertices in the corre-
sponding quiver.

When it comes to diagonal tilings, we have a subset of such tilings that give us
all clusters, namely all the diagonal tilings that can be expressed as a composition
of triangulations. Consider, for instance, the following diagonal tiling:

Figure 69

We can see that the left and right parts (from the hourglass) of the figure in
the middle act independently of each other, as previously detailed in Section 4.1.
Each part is in fact a smaller diagonal tiling. Thus the tiling can be expressed as
a composition of two smaller diagonal tilings. By repeating this process, we can
describe the diagonal tiling as a composition of smaller triangulations.
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Figure 70

However, this is unfortunately not always possible. If we take the first figure in
Definition 4.7, then some of the edges do not mutate independently. Consider the
edges e and f as shown below. If we mutate e, f becomes a black triangle, and is
thus locked from being mutated in the context of a tiling, while not being frozen
when mapped to vertices in the corresponding quiver.

Figure 71

We insert an hourglass into the quadrilateral to flip edge e. But now f is black
3-edge, and cannot therefore not be flipped. However f is an internal edge, and maps
to a non-frozen vertex in the corresponding quiver.

Thus, this tiling cannot be decomposed into triangulations. Generally, we can
describe a diagonal tiling as a composition of two smaller diagonal tilings if one of the
tiles has two non-adjacent boundary edges that are also boundary edges of the tiling
(in other words, the tile has two non-consecutive frozen edges). In that case, we can
inscribe an hourglass into that tile that divides the tiling into two parts. If we can
repeat this process, the tiling can be described as a composition of triangulations,
and its flip-equivalence class gives us all the clusters of the corresponding cluster
algebra.

If on the other hand, a tiling has a tile of size 3 or more, and that tile has
2 consecutive boundary edges e, f that are interior edges of the tiling (in other
words, 2 consecutive mutable boundary edges), then mutating e requires inscribing
an hourglass into the tile that transforms f into a black triangle, and thus does not
allow it to be mutated. In that case, the tiling cannot be described as a composition
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of triangulations, and its flip-equivalence class does not give us all the clusters of the
corresponding cluster algebra.

4.3 Rhombic tilings

Rhombic tilings are a class of tilings of type (m+1, 2m) form > 1 that can be defined
recursively. Rhombic tilings have the property that certain sequences of mutations
generate a local transformation that resembles that of a Yang-Baxter move. To
define rhombic tilings we start with the base case.

Definition 4.8. The rhombic tiling of type (3, 4) is the diagonal tiling of type (3, 4)
with no diagonals, i.e. a square with no internal vertices or hyperedges.

Definition 4.9. Let T be a rhombic tiling of type (m+1, 2m). We define a rhombic
tiling T ′ of type (m+ 2, 2(m+ 1)) as follows:

· Rotate and redraw T such that the boundary vertices 1 andm+1 are positioned
at the top and bottom respectively.

· Draw a copy of the boundary of T between 1 and m + 1 outside the bound-
ary disk of T parallel to the original boundary segment, and label the copied
vertices 1′ to (m+ 1)′.

· For each 1 ≤ i ≤ m+ 1, connect the vertices i and i′.

· The resulting tiling has 2m + 2 boundary vertices. Finally, relabel the new
boundary vertices 1, . . . , 2m+ 2.

Figure 72

Then the resulting tiling is the rhombic tiling T ′ of type (m+ 2, 2(m+ 2)).
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Remark 4.10. We denote R̃m the constructed rhombic tiling of type (m+ 1, 2m).

Example 4.11. The rhombic tilings R̃2, R̃3, R̃4 are as follows.

Figure 73

Lemma 4.12. The rhombic tiling R̃m has a matching (Definition 5.1).

Proof. We prove this by induction on m. The tiling R̃2 has a trivial matching given
by the choice of any of its four angles. Let R̃m be a rhombic tiling with matching x.
When constructing R̃m+1, we add exactly m faces f1, . . . , fm such that each top left
vertex of fi is the boundary vertex i of R̃m, and the top right vertex of fi is the new
parallel vertex i′. We construct a matching x′ of R̃m+1 as follows

· If i is matched in x, then i is matched to the same face in x′.

· If i is not matched in x, then i is matched to fi in x′.

· For any remaining fi that is not matched yet, match fi to i′ in x′.

Then x′ is a matching of R̃m+1. Thus, by induction, all rhombic tilings R̃m have a
matching.

Example 4.13. If we start with a matching of R̃3, we obtain a matching of R̃4 as
follows.

Figure 74
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Proposition 4.14. The rhombic tiling R̃m is indeed a tiling of type (m+ 1, 2m).

Proof. R2 is of type (3, 4). Assume that R̃m is of type (m+1, 2m). While constructing
R̃m+1, we add m + 1 new boundary vertices 1′, . . . , (m + 1)′. At the same time the
m− 1 vertices 2, . . . ,m become internal vertices in R̃m+1. Thus the total number of
boundary vertices of R̃m+1 is 2m+ (m+ 1)− (m− 1) = 2(m+ 1).

Meanwhile, when going from R̃m to R̃m+1 we add m faces and m + 1 vertices.
Since R̃m+1 has a matching by Lemma 4.12, the rank of R̃m+1 is the difference
between vertices and faces, which goes up by 1 compared to the difference in R̃m.
Thus the rank is m+ 1 + 1 = m+ 2.

Thus R̃m+1 if of type (m+ 2, 2(m+ 1)). The result follows by induction.

Example 4.15. We consider the rhombic tiling R̃3 and label its internal edges
e1, e2, e3.

Figure 75

We denote the mutation µi := µei for any i. Then mutating the edges e1, e2, e3, e1
in succession in that order applies a transformation to the initial tiling that resembles
a Yang-Baxter move. We can do this by inserting hourglasses when necessary to flip
an edge as we now show step by step.
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Figure 76

We can do the same procedure as in Example 4.15 to any such subtiling R̃3 of a
rhombic tiling R̃m, i.e. whenever we have three rhombi sitting together at an internal
vertex, we can rotate them inside the hexagon they span. This also means that the
orientation of a tiling R̃m does not matter when using it to construct the next tiling
R̃m+1 since we treat the tilings up to mutation-equivalence. The class of rhombic
tilings of type (m+ 1, 2m) up to a Yang-Baxter move is denoted Rm.

Remark 4.16. This is not the only sequence of mutations that generates this trans-
formation. The second tiling in the mutation sequence above (µ2 ◦µ1) is an example
of a quadrilateral tiling (up to isotopy) (Section 4.4).
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Figure 77

Using Remark 4.21, we can mutate that tiling (∗) such that it rotates or mirrors
itself. Then we can mutate it back into the original form of a rhombic tiling. Doing
so in different ways gives us different sequences of mutations that result in a Yang-
Baxter move the identity. The difference between the different sequences is how edge
individually evolves within the tiling.

For instance, in the first example above (µ1 ◦ µ3 ◦ µ2 ◦ µ1), the edges move inside
the tiling as follows.

Figure 78

Whereas if we take the the sequence µe1 ◦µe3 ◦µe1 ◦µe2 ◦µe1 , we obtain the same
final transformation, but the edges within the tiling move to different locations.

Figure 79

On the other hand, we can also find sequences that result shuffle around the
mutable edges, such µ1 ◦ µ2 ◦ µ1 ◦ µ2 ◦ µ1 = id.
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Figure 80

4.4 Quadrilateral tilings

The quadrilateral arrangements in [16, p.17-20] are Postnikov diagrams defined re-
cursively, by starting with the base case of a (2, n)-diagram and adding rows of
strands to increase n. We define a similar construction for tilings. We could use the
same recursive procedure, but we can also directly obtain the maximal quadrilateral
tiling for a given type (k, n), i.e. a tiling made out of quadrilaterals (almost) with
maximum dimension for that type (and corresponding to the positroid cell in Grk,n of
highest dimension (Proposition 5.23)). We explain this now. Consider the following
mesh in R2.

Figure 81

The mesh cuts the plane into squares, which can be divided into columns, with
each column consisting of a square and all the squares that lie exactly above or
below it (left figure shades one such column). Similarly we define the rows of the
mesh (right figure).
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Figure 82

Let k, n ∈ N, with 1 < k < n. We cut out a rectangle of size k × (n − k) from
the mesh, with k being the number of columns delimited by the rectangle, and n−k
being the number of rows. The bottom left corner of the rectangle sits in the center
of one of the squares.

Figure 83

The mesh now prescribes the tiles we get from the rectangle. Any square that is
entirely within the rectangle is a tile. Any half of a square of the mesh that is on
the top or bottom border of the rectangle is a 3-edge between the three vertices of
that triangle. The remaining half-squares on the side borders are ignored. We set
the vertices of the tiling to be the minimum set of vertices required such that the
resulting object is a tiling, i.e. anywhere where more than 3 hyperedges coincide.
This construction defines a tiling Tk,n for any k, n ∈ N with 1 < k < n, called the
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maximal quadrilateral tiling for (k, n). In our example, we obtain the tiling T11,18.
Later we will define quadrilateral tilings more generally in Definition 4.24.

Figure 84

Remark 4.17. Instead of fixing the bottom left corner to be in the center of one
of the squares, we can also choose it to be on a corner/crossing of the mesh. This
produces a different quadrilateral tiling with the same number of columns and rows.
We denote this tiling T ′

k,n.

Figure 85

We will prove a list of properties for Tk,n and T ′
k,n. The proofs detail the case for

Tk,n, but similar reasoning applies to T ′
k,n.

Lemma 4.18. For any (k, n) with 1 < k < n, Tk,n and T ′
k,n have a matching.

Proof. In any quadrilateral Tk,n, choose the bottom angle. Then any face is matched,
and any vertex is matched other than the boundary vertices that are adjacent to 3-
edges on the half-row of the figure. Thus Tk,n has a matching.

Proposition 4.19. For any (k, n) with 1 < k < n, Tk,n and T ′
k,n are of type (k, n).
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Proof. In the matching mentioned in Lemma 4.18, the only vertices not matched are
the boundary vertices on the top half-row of Tk,n adjacent to the black 3-edges of
Tk,n. There are exactly as many such vertices as there are columns in Tk,n, i.e. k
such vertices. Hence, the rank of the tiling is |V | − |F | = k.

Proposition 4.20. For any (k, n) with 1 < k < n, S(Tk,n) and S(T ′
k,n) are Γk,n-

diagrams, i.e. the corresponding permutation is i 7→ i+ k.

Proof.

Let us consider the quadrilateral tiling T = T4,8. The internal edges of T can be
partitioned into two sets E+ and E−, with the edges in each set being parallel to
one another in our embedding of T . We choose E+ to be the internal edges that go
from the top left to the bottom right, and E− the internal edges that go from the
bottom left to the top right.

Figure 86

The edges in E+ mutate independently of each other, and so do the edges in E−.
We can therefore mutate all edges in E+ in any order, in other words, the mutations
µe for e ∈ E+ commute. The same goes for E−. Let µE+ and µE− be the sequences
of mutations

∏
e∈E+ e and

∏
e∈E− e, respectively. Then the mutations µE+ and µE−

lead to the following transformations
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Figure 87

It seems like T flips along a different axis. If we take a look at T3,6, we see a
slightly different transformation.

Figure 88

Instead of flipping the tiling, it seems as if we obtained version T ′
3,6 (a rotated

version, if we labeled the boundary vertices). This suggests that we may obtain
the transformed tiling by moving the initial tiling horizontally in the mesh that we
previously used to defined it on.

Let’s consider the same mesh, but remove the parts above and below the mesh,
only focusing on the horizontal strip in which the tiling lies. Let us label the vertices
on the bottom line by cycling through {1, . . . , n} in a descending order, starting with
1 as the bottom left vertex of the tiling. For our example, T = T5,8.
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Figure 89

Then µE+(T ) is the tiling obtained by shifting T by one column to the right, and
µE−(T ) is the tiling obtained by shifting T by one column to the left, and labeling
the vertices {1, . . . , n} in a clockwise orientation, starting with the vertices on the
bottom lattice of the tiling as given by the labels on the bottom of the mesh.

Figure 90

Remark 4.21. If (k, n) are both even, e.g. (4, 8), this will then look like mirroring
the tiling (if we disregard the labels). And mutating any quadrilateral tiling in the
same direction twice yields a rotation of the tiling.

Using this, we may obtain the different sequences of Remark 4.16. First we
mutate the tiling to its quadrilateral form by mutating the edges e1 and e2 (any two
distinct edges would work and would return either T4,6 or T ′

4,6 up to rotation of its
boundary vertices).
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Figure 91

Now we rotate, or mirror the tiling as often as we want. And finally, we mutate the
tiling back to its rhombic appearance. By experimenting with possible combinations
to obtain a Yang-Baxter move that way, we get the sequences of mutations described
in Remark 4.16.

The tiling Tk,n gives us the tiling of type (k, n) whose permutation is π : i 7−→ i+k
mod n. It is associated to the positroid cell of maximum dimension in Gr≥0

k,n, with
its dimension being k(n − k). In [8, 5.3-5.7] we described a way to find tilings of
lower dimension. From the quadrilateral tiling Tk,n, we can derive several tilings of
the type (k, n) of lower dimension. Consider the tiling T = T7,12

Figure 92

We construct two new tilings T1, T2, and T3 by cutting one or more full diagonal
lines of quadrilaterals on the boundary of T , such that the number of columns and
row does not change.
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Figure 93

Then T1 and T2 are of type (7, 12) as well, but of different permutation and of
lower dimension. We do not necessarily need to cut off an entire diagonal. Instead,
we can “fold” a boundary tile over itself or “collapse” its boundary vertex onto its
opposite vertex and obtain a new tiling of the same type, but lower dimension.

Figure 94

Cutting off a diagonal line of quadrilaterals can be achieved by removing indi-
vidual tiles in succession. More generally, we describe the following transformations

(D1) If we have three boundary vertices in a quadrilateral, with one vertex v being
of degree 2 (vertex on top in the figure below), and the vertex opposing v is not
on the boundary of the tiling, then we remove the quadrilateral by removing
the two edges incident to v. In doing so, the vertex opposite to v becomes a
boundary vertex

Figure 95
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(D2) Same as (D1), except the tile adjacent to the removed quadrilateral is a 3-edge.

Figure 96

(D3) Similar to (D1), but the quadrilateral is a tile of size 3, and we also remove
one of the boundary vertices.

Figure 97

(D4) Same as (D3), except the tile adjacent to the removed quadrilateral is a 3-edge.

Figure 98

Lemma 4.22. Let T be a tiling obtained by applying a finite sequence of transfor-
mations (D1)−(D4) on Tk,n. Then T has a matching.

Proof. The result is straightforward. We shall give the reasoning for the case of D1,
the remaining cases are similar. Let T be the tiling obtained from Tk,n after D1.
Let m be a matching of Tk,n. Let u be the internal vertex in Tk,n that becomes a
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boundary vertex after D1, f be the face we remove with D1, and α the angle in f
around u. If f is matched to u in m, i.e. α ∈ m, then m \ α is a matching of T , as
u is now a boundary vertex and does not need to be matched. If f is not matched
to u in m, then there is some other angle β ̸= α in f such that β ∈ m, with β being
around one of the three boundary vertices on the boundary of f . Then m \ β is a
matching of T . Thus, either way, T has a matching.

A similar reasoning applies to D1-D4. Then, the reasoning applies recursively to
a finite sequence of transformations D1-D4.

Lemma 4.23. Let T = Tk,n. The transformations (D1)−(D4) return a new tiling
T ′ of type (k, n) with dimT ′ < dimT .

Proof. By Lemma 4.22, T ′ has a matching. In (D1)−(D4), the number of vertices
removed is 1, and the number of faces removed is 1, thus the rank remain constant.
The number of boundary vertices also remains constant. Thus the type remains
constant. The number of hyperedges are reduced in all cases, thus the dimension of
the associated positroid cell is reduced as well.

We can define quadrilateral tilings recursively, by starting with the tilings Tk,n

of maximum dimension defined at the beginning of this section and generating more
tilings by either mutating already existing quadrilateral with µE+ or µE− , or with
the transformations (D1)−(D4).

Definition 4.24. A tiling T is quadrilateral if it satisfies either of the following
conditions

(i) T = Tk,n for some 1 < k < n.

(ii) T = µE+(T ′) or T = µE−(T ′) for some quadrilateral tiling T ′ of maximal
dimension.

(iii) T is obtained by applying a transformation among (D1)−(D4) to another
quadrilateral.

Example 4.25. If we take T4,7 and apply some of the above transformations, we
obtain some of the quadrilateral tilings of type (4, 7) as follows.

Figure 99
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4.5 Loops, shifts, and other useful tilings

Until now, we have mostly ignored permutations of tilings in this section. We now
want to explore ways to generate tilings for several permutations. To so, we need
to construct tilings whose permutations and diagrams have fixed points and loops,
respectively, as well as tilings with permutation i 7−→ i + 1. We first note that
a simple n-gon with no internal hyperedges gives us the permutation i 7−→ i − 1
mod n for all i.

Figure 100

We obtain the dual version of that as follows.

Definition 4.26. The n-antigon is the tiling with n boundary vertices {1, . . . , n},
one internal vertex v, and hyperedges (i, v, i+1) for each i (with the convention that
n + 1 = 1). In other words, we align n tiles of size 2 around v, such that the other
endpoint of each such tile is a different boundary vertex. We denote the n-antigon
by P ∗

n .

Example 4.27. The 4-antigon P ∗
4 looks as follows.

Figure 101

Proposition 4.28. The n-antigon is a tiling of type (1, n) with permutation i 7−→
i+ 1.

Proof. A matching of P ∗
n is given by choosing any one of the n faces and matching

it to internal vertex, then matching the remaining faces to the boundary vertex



71

they are adjacent to. P ∗
n has n + 1 vertices and n faces, hence the rank of P ∗

n is
k = n + 1 − n = 1, and the type is (1, n). It is easy to verify that each strand
originating in i ends in i+ 1, thus the permutation is i 7−→ i+ 1.

Next, we are looking at fixed points of decorated permutations, which in terms
of strands appear in two forms: clockwise loops and counter-clockwise loops.

Definition 4.29. We say that a tiling T has a loop at its boundary vertex i if there
is a hyperedge e such that (i, i) is a subsequence of e. In other words, there is a
tile of size 1 at the boundary vertex i. We say that T has a co-loop at v if there is
a hyperedge e such containing the subsequence (i − 1, i, i + 1). In other words, the
vertex i is not adjacent to any face.

Example 4.30. The following tiling of type (3, 6) has a loop at the boundary vertex
6 and a co-loop at 3.

Figure 102

Proposition 4.31. If T has a loop or co-loop at i, then in the permutation π of T , we
have i 7−→ i, with its strand being a counter-clockwise or clockwise loop, respectively.

Example 4.32. Using this, we can construct all the tilings of type (2, 4) and their
permutations (up to rotation). We list them here grouped by the dimension of the
corresponding positroid cell (Definition 2.12).
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Figure 103

4.6 Tilings of any type and permutation

In this last part, we will finally introduce a way to generate tilings for any permuta-
tions. For simplicity, we are going to omit the decoration of the permutation, i.e. we
are going to ignore the coloring of the fixed points of the permutation. Given that
the difference between either coloration is the addition or removal of a loop (a white
1-gon) on the boundary of the corresponding fixed point, the procedure to generate
decorated permutations is the same, with the addition of adding loops to some of
the boundary vertices that correspond to fixed points of the permutation.

We take a look at the following tiling T and its corresponding Postnikov diagram
Γ = S(T ), or permutation π = (13524).
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Figure 104

The diagram can be divided into two parts, indicated by the dotted line. The
dotted line goes through two intersection points of the strands of the diagram that
we label 4′ and 5′. Then we may see the left part as a diagram with 5 boundary
vertices 1, 2, 3, 4′, 5′. If we drop the dashes on 4′ and 5′, permutation of that diagram
is σ = (134)(25). The corresponding diagram would be

Figure 105

And we have π = (45)σ. For the part of the diagram to the right of the dotted
line, we have the tiling with boundary vertices 4, 5, 5′, 4′ as follows.

Figure 106
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We can connect the two tilings into a tiling of a pentagon, by gluing them together
along the border between vertices 4′ and 5′, and completing the areas between 3, 4, 4′

and 1, 5, 5′ with a black triangle each. The resulting tiling is equivalent to the initial
triangulation.

Figure 107

With this in mind, we can develop a general method to describe a tiling for
any permutation by first writing the permutation of transpositions between adjacent
vertices, i.e. transpositions of the form (i i+ 1) mod n.

We describe a transformation of a tiling with T with n boundary vertices 1, . . . , n
as follows.

(i) We start with an empty n-gon with vertices labeled 1, . . . , n.

(ii) We add an internal vertex i′, preferably drawn near the boundary vertex i
(given that we treat tilings up to isotopy, the exact position of i′ does not
matter).

(iii) We add an edge between i′ and i+ 1, and replace the boundary edge [i− 1, i]
with a boundary hyperedge between i − 1, i, i′. In other words, we will have
a black triangle with endpoints i− 1, i, i′, and a white triangle with endpoints
i′, i, i+ 1.

(iv) We fill the n-gon with boundary vertices 1, . . . , i−1, i, i+1, . . . , n with the tiling
T , gluing the boundary segments [l, l + 1] of T with the boundary segments
of the n-gon labeled the same way (treating i′ as if it was the vertex i of that
n-gon).

Then the denote the resulting tiling τi(T ).
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Figure 108

The following proposition is easy to verify by applying the Scott map locally on
the boundary between T and the double triangle we constructed.

Proposition 4.33. If a tiling T is of permutation π, then τi(T ) is of permutation
(i i+ 1) π.

If we write a permutation in the form π = τi1 · · · · · τim , we can use the above
construction m times to generate a tiling with permutation π.

Example 4.34. Let π = (14)(356) = (34)(45)σ with σ = (134)(56). Then a tiling
with permutation σ is

Figure 109

Then we use the above steps for τ3 and τ4 inwards in that order:

Figure 110
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And finally we fill the remaining space with the tiling T ′ for σ, returning the
tiling T = τ3(τ4(T

′)) with permutation π = τ3τ4σ:

Figure 111

Furthermore, T is reduced.

Next, we want to find a way to write the permutation as a product of adjacent
transpositions. Ideally, we want to generate only reduced tilings. To facilitate this,
we define two reductions given by the figures below

Figure 112

These will come in handy in cases where the new vertex i′ does not attach to any
other hyperedge, as well as when the tiling with permutation σ has a white 1-gon.
In Example 4.34, we gave the permutation written in the form that we needed it.
But depending on how we write the permutation, we may obtain a tiling with the
right permutation, but that is not reduced.

Example 4.35. We write π = (16)(34)(56)(16)σ′ with σ′ = (13)(456). Then the
above procedure returns the non-reduced tiling and corresponding diagram as follows:
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Figure 113

To understand why we obtain this, we can look at the permutation diagram of π
and how it evolves during the process.

Definition 4.36. Let π be a decorated permutation of {1, . . . , n}. LetDn be the disk
with distinct boundary vertices 1, . . . , n in clockwise order. Then the permutation
diagram of π is the collection of n arrows γi that have i as tail and π(i) as head. If
i is a fixed point, γi is a loop.

Example 4.37. The permutation diagram of π = (14)(356) is

Figure 114

When we perform a transpositions πi, what happens is that the arrows whose
target vertices are i and i + 1 swap those targets. Let us call these arrows αa and
αb, so π(a) = i and π(b) = i + 1. Then when we cross/uncross αa and αb, the
corresponding strands in the strand diagram γa and γb intersect. Thus, if two such
arrows cross/uncross multiple times, this will lead to a bad double crossing in the
strand diagram, making the tiling not reduced. Equally, if we cross two arrows, and
those two arrows remain crossed in the final permutation σ as part of the same cycle,
then there will be at least two intersection between the corresponding strands in the
same direction, thus, again, creating a double crossing. In Example 4.35, two arrows
behave that way, namely α4 and α5 (the dashed and dotted arrows, respectively).
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Figure 115

Thus, to write a permutation as π = τi1 ·· · ··τimσ such that using the above proce-
dure returns a reduced tiling, we may use the permutation diagram of π and uncross
arrows with neighboring target vertices i, i+ 1, avoiding creating new crossings.

Example 4.38. Let π = (14)(356). Then we can use the permutation diagram to
uncross arrows until we obtain a permutation whose tiling we can easily derive.

Figure 116

We write π = (34)(45)σ, with σ = (134). This gives us the correct way of writing
this permutation as shown in Example 4.34.

Remark 4.39. When we uncross the permutation diagram, it is sufficient to do so
until no arrows cross other than on the boundary of the disk. In other words, the
collection of arrows is made up of isolated cycles. Then the tiling for those cycles
is easy to derive; the tiling for clockwise oriented cycles is given in Definition 4.26,
while the tiling for a counterclockwise cycle with m vertices is an empty m-gon.

Alternatively, we can uncross arrows until all arrows are loop, leaving us with
the identity as the tiling to fit into the center of our construction. The tiling for the
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identity with m boundary vertices (ignoring the orientation of the fixed points) is a
black m-gon. For m = 4 we have

Figure 117

The method described so far assumes that we can always find neighboring arrows
that cross while uncrossing the permutation diagram. That is, however, not always
given. For instance, the permutation diagram of π = (15)(37) with 8 vertices looks
as follows

Figure 118

This permutation diagram has no two crossing arrows with targets i,i+1 for any
i. However, we also see that the diagram is composed of five different components:
four loops, and one subdiagram with boundary vertices 1, 3, 5, 7. In that subdiagram,
the arrows with target vertices 1 and 3 do cross, and are neighbors within that
subdiagram. We could apply our method on that component by uncrossing 1 and 3,
while still avoiding to add any new crossing. It would be therefore sufficient to check
that any permutation either has neighboring vertices or is disconnected to show that
we can always rely on our method. In the former case, we can apply a transposition
to uncross those arrows, and in the latter, we divide the diagram into its connected
components and apply the same process on those components.

Definition 4.40. A permutation is disconnected if there is an embedding of the
permutation diagram in the disk such that the collection of arrows are disconnected,
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i.e. we can write the collection of arrows as a disjoint union A ∪ B where for any
arrow α ∈ A and any arrow β ∈ B, α and β do not cross.

Remark 4.41. Some notation is required for the proof that follows. For two distinct
boundary vertices i and j, we denote (i, j) the set of boundary vertices stricly between
i and j in a clockwise order. For instance, if n = 9, then (3, 7) = {4, 5, 6}, and
(8, 3) = {9, 1, 2}. Furthermore, j − i is the number of vertices counted from i to
j clockwise including j, i.e. j − i = |(i, j)| + 1. Finally, if x ∈ {0, . . . , n − 1, then
j − x is the xth vertex counted counter-clockwise from j, i.e. if i = j − x, then
(i, j) = {i+ 1, . . . , i+ (x− 1)}.

Proposition 4.42. Any permutation π is either disconnected or has crossing neigh-
bors.

Proof. If π has a fixed point, it is trivially disconnected. Suppose that π has no fixed
point. Then we have two cases to check

(i) ∃i : π(i) = i+ 1. In that case, let a = π−1(i) Then the arrows αi and αa cross
and have endpoints i and i+ 1 respectively, hence π has crossing neighbors.

Figure 119

(ii) ∀i : π(i) > i+1. In that case, we will look for the arrows that travels minimally
from one vertex to the other. For that, we define s(i) ∈ {0, . . . , n−1} such that
π(i) = i + s(i). In other words, s(i) is how many vertices arrow αi “jumps”
ahead from its source to its target. Let m := min{s(i) : i ∈ [n]}, which is the
smallest such jump. Let i ∈ [n] such that π(i) = i + m =: j. Since m > 1,
j − 1 ∈ (i, j).

Figure 120
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Let a := π−1(j − 1). Then j − 1 = a+m′ for some m′ ≥ m. Then

a = j − 1−m′ ≤ j − 1−m = (j −m)− 1 = i− 1 =⇒ a ≤ i− 1

Thus π has crossing neighbors i 7→ j and a 7→ j − 1.

Figure 121

Example 4.43. Let π = (15)(37) with 8 boundary vertices. We apply the transpo-
sitions on π as follows

Figure 122

Then π = (13)(35)σ with σ = (137). The tiling for σ = (137) restricted to the
boundary vertices 1, 3, 5, 7 is

Figure 123
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Since 2, 4, 6, 8 are fixed points of π, we add black triangles at these vertices in
the tiling and apply our method within the quadrilateral with boundary vertices
1, 3, 5, 7. First we apply the transformations for the transpositions (13) and (34)

Figure 124

Then, we inscribe the tiling for σ inside the quadrilateral with vertices 1′, 3′, 5, 7,
and obtain the tiling up to equivalence.

Figure 125

Example 4.44. Let π = (1479)(28)(35 10 6). Then

π = (45)(67)(56)(89)(9 10)(1 10)(12)(78)(9 10)(1 10)(13)σ

for σ = (16)(345)(8 10).
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Figure 126

Then we apply the transpositions to the empty decagon, fill in σ, and simplify
the tiling by equivalence.

Figure 127
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5 The totally non-negative Grassmannian through

the lens of bicolored tilings

In this section, we will introduce a method to parametrize the positroid cells defined
in Definition 1.21 using bicolored tilings. This method will mirror the method used in
[21, 2.17] described in Theorem 1.28. We will demonstrate that this parametrization
is invariant under equivalence, mutation, and reduction of tilings. This gives us
a decomposition of the Grassmannian that is indexed by the mutation-reduction-
equivalence classes of tilings.

From there, we introduce the notion of degenerations of tilings. Positroid cells
admit a partial order defined by the inclusion of the closure of the cells. We can
observe this partial order in tilings as well.

5.1 Parametrizing positroid cells in the totally non-negative
Grassmannian

We recall that the Grassmannian Grk,n is the set of k-dimensional vector spaces in
an n-dimensional space (in our case, that is Rn). A point V ∈ Grk,n can be expressed
as a full rank k × n matrix M , where V is the row-space of M . Since the row-space
of M is invariant under left action by a non-singular k × k-matrix, we can identify
the Grassmannian as

Grk,n = GLk\Matk×n

We can also describe V in projective coordinates by taking the collection of all
maximal minors of M . The totally non-negative Grassmannian Gr≥0

k,n is the subset of
Grk,n consisting of all the points for which all projective coordinates are non-negative
(up to simultaneous scaling with a factor λ > 0). We can decompose Gr≥0

k,n as follows

Gr≥0
k,n =

⊔
π∈Sk,n

Sπ

where Sk,n is the set of all decorated permutations of [n]. We will now introduce
a way to parametrize these cells using bicolored tilings.

We recall the definition of matchings of tilings. For the rest of this paper, unless
otherwise specified, the set of vertices, hyperedges, faces, and angles of T will be
denoted V , E, F , and A, respectively. If we have a second tiling T ′, we use V ′,E ′,F ′,
and A′, respectively. We denote the angle near v ∈ V inside the face f by αv

f . In
that case, we also denote v = v(α) and f = f(α).
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Definition 5.1. A matching m ⊂ A of a tiling T is a choice of angles of T such
that.

(i) Each face is matched exactly once, i.e. for any two angles α, β ∈ m : f(α) ̸=
f(β), and for any face f of T , there is α ∈ m such that f = f(α).

(ii) Each vertex is matched at most once, i.e. for any two α, β ∈ m : v(α) ̸= v(β).

(iii) Each internal vertex is matched exactly once, i.e. on top of the second condi-
tion, for any internal vertex v of T , there is α ∈ m such that v = v(α).

We denote ∂m = {v ∈ V | v is a boundary vertex and not matched in m} the bound-
ary of m. The set of matchings of a tiling T is denoted M(T ).

Example 5.2. Consider the following tiling T of type (4, 6) with one internal vertex
and 12 angles.

Figure 128

Then three examples of matchings of T would be

Figure 129

For simplification, we often denote the k-subsets I simply by concatenating their
elements, that is ∂m1 = 2456, ∂m2 = 3456, and ∂m3 = 1246.
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Definition 5.3. Let G be a plabic graph. A perfect orientation of G is a choice
of an orientation of its edges such that each black vertex has exactly one outgoing
arrow, and each white vertex has exactly one incoming arrow.

We recall that an almost perfect matching of G is a subset of edges of G such
that each internal vertex of G is adjacent to exactly one edge in that subset of edges.
We also recall that if T has n boundary vertices, then G = Φ(T ) has n boundary
vertices too, which are all of degree 1 and incident to a single boundary edge.

Remark 5.4. Let T be a tiling, and G = Φ(T ) the corresponding plabic graph
(Definition 3.26). Any matching m of T gives rise to an almost perfect matching of
G and a perfect orientation of G. This works as follows:

Any angle α of T maps to a unique edge eα of G: Let m = {αi | i ∈ I} be a
matching of T . Let Ẽ be the set of boundary edges in G that are adjacent to white
vertices in G whose pre-image under Φ is in ∂m, i.e. they are not matched in m.
Then m = {eαi

| i ∈ I} ∪ Ẽ is an almost perfect matching of G.
At the same time, an almost perfect matching results in a perfect orientation of

G by orienting all edges in m from the black vertex to the white vertex, and all other
edges that are not in m the other way around.

Example 5.5. Consider the tiling T from Example 5.2, and the matching m =
{α1, γ2, η3}. For simplicity, we will label a = α1, b = γ2, and c = η3.

Figure 130

Let G = Φ(T ) be the corresponding plabic graph.
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Figure 131

Then the corresponding almost perfect matching of G and perfect orientation of
G are

Figure 132

This also gives us the following proposition.

Proposition 5.6. If T is a tiling of type (k, n) with a matching m, then |∂m| = k.

Proof. Let G = Φ(T ) be the bipartite plabic graph associated to T . Let m = Φ(m)
be the almost perfect matching of G described in Remark 5.4. Then i ∈ ∂m if and
only if i is not matched in m. Any boundary vertex i maps to a white vertex w in G
that is exactly adjacent to the boundary vertex i in G and one internal black vertex
b. Since i is not matched in m, the edge between w and b is not in m either. This
means that the edge between w and i in G is in m. Thus if a vertex i of T is not
matched in m, the corresponding boundary vertex i of G is matched in m. Hence
∂m = ∂m. Since G is of type (k, n), |∂m| = |∂m| = k.

Proposition 5.7. Let T be a tiling with a matching of type (k, n). Then k =
|V | − |F |.
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Proof. If m is a matching of T , then every face is matched to exactly one vertex.
Then, k = |∂m| is given by the number of boundary vertices that are not matched,
which is the number of total vertices minus the number of faces of the tiling.

We will now parametrize positroid cells using bicolored tilings.

Definition 5.8. We consider any matching m of T as a monomial given by the
product of its elements. Then for any k-subset I of [n], we set

∆I =
∑

m∈M(T )
∂m=I

m

where M(T ) is the set of all matchings of T . The positroid cell ST associated to T
is given by all the points (∆I)I∈([n]

k )
for which the parameters α ∈ A are all positive,

i.e.
ST = {(∆I)I |α ∈ R>0 ∀α ∈ A}

We call PT = (∆I)I the parametrization, and ∆I the Plücker coordinates of T and
ST . The closure ST of a positroid cell ST is given by

ST = {(∆I) | α ∈ R≥0 ∀α ∈ A}
The closure of one cell ST is nested in another cell ST ′ if the zero coordinates of ST ′

are also zero coordinates of ST . An in-depth view of this partial order can be found
in [15, Ch.17]. We will later explore this partial order through the lense of bicolored
tilings. For our purposes, it is sufficient to know that ST = ST ′ =⇒ ST = ST ′ , since
positroid cells are homeomorphic to open balls as given in Theorem 1.22 (the converse
is evidently true as well). Thus if we wanted to show that two positroid cells are the
same, we may instead prove that their closures are the same (e.g. Lemma 5.15).

Example 5.9. We consider the tiling T of type (4, 6) from the previous example.
Let I = 2456. Then the matchings m with ∂m = I are

Figure 133
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Then ∆2456 = β2ζ3η1 + β1ζ3η2 + β2ζ1η3. Doing this for every k-subset I of [n], we
obtain

PT = (∆1234,∆1235,∆1236,∆1245,∆1246,∆1256,∆1345,

∆1346,∆1356,∆1456,∆2345,∆2346,∆2356,∆2456,∆3456)

with

∆1234 = δ2ε3η1

∆1235 = γ2ε3η1

∆1236 = γ2δ3η1

∆1245 = β1ε3η2 + β2ε3η1

∆1246 = β1δ2η3 + β1δ3η2 + β2δ3η1

∆1256 = β1γ2 + η3

∆1345 = α1ε3η2

∆1346 = α1δ2η3 + α1δ3η2

∆1356 = α1γ2η3

∆1456 = α1β2η3

∆2345 = ε3ζ1η2

∆2346 = δ2ζ1η3 + δ2ζ3η1 + δ3ζ1η2

∆2356 = γ2ζ1η3 + γ2ζ3η1

∆2456 = β2ζ3η1 + β1ζ3η2 + β2ζ1η3

∆3456 = α1ζ3η2

And finally, ST = {PT |α1, β1, β2, γ2, δ2, δ3, ε3, ζ1, ζ3, η1, η2, η3 > 0}.

Using the allocation of matchings of tilings to almost perfect matching of plabic
graphs described in Remark 5.4, it follows that the parametrization described in
Definition 5.8 aligns with the parametrization described in Theorem 1.28. We make
this more explicit in Proposition 5.21.

Before we do that, we want to prove that equivalences, mutations, and reductions
of a tiling preserve the corresponding positroid cell. To do so, we first define subtilings
of tilings, which are simply the result of “cutting out” a piece of the tiling along
the boundaries of its hyperedges, with the rest of the tiling being referred to as
the remainder. This allows us to explore how local changes of a tiling change the
positroid cell of the whole tiling. We also introduce the union of tilings, since “cutting
out” a subtiling from a tiling might result in the remainder not being connected.
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Definition 5.10. Let C = X1∪· · ·∪Xr be a finite union of 2-dimensional connected
oriented surfaces Xi with n1, . . . , nr boundary vertices, such that the intersection of
any two surfaces Xi and Xj is either empty or a common boundary vertex. Then a
tiling T of C is the union of tilings T1 ∪ · · · ∪ Tr such that Ti = (Xi, Vi, Ei) is a tiling
of Xi, where Ti ∪ Tj = (Xi ∪Xj, Vi ∪ Vj, Ei ∪ Ej).

Definition 5.11. Let T be a tiling of a surface X with vertex set V and hyperedge
set E. Let v1, . . . , vm be vertices of T such that for any i ∈ [m], there is a curve γi
with endpoints vi, vi+1 (with vm+1 = v1), as described in Definition 2.2. Let X ′ ⊂ X
be a surface with boundary

⋃
γi and boundary vertices v1, . . . , vm. Then we define

a tiling T ′ of X ′ as follows

· hyperedge set E ′ = {e ∩X ′ | e ∈ E and e ∩X ′ ̸= ∅},

· vertex set V ′ = V ∩X ′,

· boundary vertices ∂V ′ = {v1, . . . , vm} ∪ (∂V ∩ ∂X).

We say that T ′ is a subtiling of T under X ′. Let X̃ = X \ int(X ′) ⊂ X be the surface
with boundary ∂X̃ = ∂X ∪ ∂X ′ \ (∂X ∩ ∂X ′). Then we call the subtiling T̃ under
S̃ the remainder of T under X ′. We also denote T̃ = T \ T ′.

Remark 5.12. Let T be a tiling of type (k, n) of a disk Dn. Let T ′ be a subtiling
of T under a disk Dm ⊂ Dn as in Definition 5.11, and T̃ = T \ T ′. We can extend
the definition of matchings to tilings of surfaces other than disks, such as T̃ , i.e. we
choose angles in T̃ satisfying the conditions (i)-(iii) in Definition 5.1.

Figure 134

We partition the boundary of a matching of T̃ . If m̃ is a matching of T̃ , we will
denote ∂1m̃ the set of boundary vertices of T̃ on the boundary of T that are not
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matched in m̃, and we will denote ∂2m̃ the boundary vertices of T̃ on the boundary
of T ′ that are matched in m̃. Then, similarly, we define the I-th coordinate of T̃ as

∆̃I =
∑

m̃∈M(T̃ )
∂1m̃=I

m̃

If m is a matching of T , we will write m◦ for the angles of m inside T ′, and m̃
for the angles of m inside T̃ , i.e. m◦ = m|T ′ and m̃ = m|T̃ . Note that in that case,
m = m◦ ⊔ m̃, and we have ∂1m̃ = ∂m and ∂2m̃ = ∂m◦.

Example 5.13. Here is an example of a tiling T of type (8, 13) and a matching
m ∈ M(T ).

Figure 135

Then we can “cut out” the subtiling T ′ consisting of the four white tiles in the
center of T . The remainder is the tiling T̃ .

Figure 136
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The following lemma separates the variables in the coordinates ∆I in the parametriza-
tion of a tiling into variables that come from angles inside a subtiling and outside
of it. This allows us to prove Lemma 5.15 and Corollary 5.16, which state that if a
local transformation on a tiling does not change the positroid cell of the subtiling it
was applied on, then it does not change the positroid cell of the full tiling.

Lemma 5.14. Let T be a tiling of type (k, n). Let T ′ be a subtiling of T , and
T̃ = T \ T ′. Then for any k-subset I of [n], the I-th coordinate of the positroid cell
ST is given by

∆I =
∑

m̃∈M(T̃ )
∂1m̃=I

∆◦
∂2m̃

· m̃

where ∆◦
J denotes the J-th coordinate of the positroid cell ST ′ .

Proof. Let m ∈ M(T ) be a matching of T with ∂m = I. We write m = m◦ ⊔ m̃,
where m◦ denotes the angles of m that are inside T ′, and m̃ the angles outside T ′

(that is, they are in T̃ ). Then m◦ is a matching of T ′ and m̃ is a matching of T̃ .
Let J = ∂m◦. Then for any matchingm′ of T ′ with ∂m′ = J , m′⊔m̃ is a matching

of T with ∂(m′ ⊔ m̃) = I. In other words, all the matchings m of T with ∂m = I are
given as a combination of a matching m̃ of T̃ with ∂1m̃ = I and a matching m◦ of T ′

with ∂m◦ = ∂2m̃. By summing them as monomials, we obtain the I-th coordinate

∆I =
∑

m̃∈M(T̃ )
∂1m̃=I

m̃ ·

 ∑
m◦∈M(t)
∂m◦=∂2m̃

m◦


where the second sum is the coordinate ∆◦

∂2m̃
of the positroid cell ST ′ . Thus,

∆I =
∑

m̃∈M(T̃ )
∂1m̃=I

m̃ ·∆◦
∂2m̃

We remind that if the closures of two positroid cells are the same, then the cells
themselves are as well, i.e. ST1 = ST2 =⇒ ST1 = ST2 (p.88). Thus, in the following
three statements (Lemma 5.15, Corollary 5.16, Proposition 5.17), we will work with
the closures of the cells, as they also give us ways to describe inclusions (which the
positroid cells themselves don’t give, as they are disjoint). Any equalities of the
closures also give us the equalities of the cells themselves.
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Lemma 5.15. Let T1 be a tiling with subtiling A. Let T2 be the tiling obtained
by replacing A in T1 with a new subtiling B of same type as A such that SA ⊂ SB.
Then ST1 ⊂ ST2 .

Proof. Let α1, . . . , αr and αr+1, . . . , αR be the angles in A and T̃ = T1 \ A, respec-
tively. Let β1, . . . , βs be the angles in B.

Consider a point x = PT1(x1, . . . , xr, xr+1, . . . , xR) ∈ ST1 , with xi ≥ 0. We
want to express x as a point in ST2 , parametrized by PT2 . We know that x◦ =
PA(x1, . . . , xr) is a point in SA. Since SA ⊂ SB, there are y1, . . . , ys ≥ 0 such that
x = PB(y1, . . . , ys) ∈ SB.

In other words, if ∆A
J and ∆B

J are the J-th coordinate in PA and PB, respectively,
then there is a λ ∈ R>0 such that

∆A
J (x1, . . . , xr) = λ∆B

J (y1, . . . , ys) (∗)

Then for any k-subset I of [n], if ∆
(1)
I and ∆

(2)
I are the I-th coordinate in PT1 and

PT2 , we have by Lemma 5.14

∆
(1)
I (x1, . . . , xr, xr+1, . . . , xR)

=
∑

m̃∈M(T̃ )
∂m̃=I

∆A
∂2m̃

(x1, . . . , xr) · m̃(xr+1, . . . , xR) by Lemma 5.14

=
∑

m̃∈M(T̃ )
∂m̃=I

λ ·∆B
∂2m̃

(y1, . . . , ys) · m̃(xr+1, . . . , xR) using (∗)

=λ ·
∑

m̃∈M(T̃ )
∂m̃=I

∆B
∂2m̃

(y1, . . . , ys) · m̃(xr+1, . . . , xR)

=λ∆
(2)
I (y1, . . . , yr, xr+1, . . . , xR) by Lemma 5.14

Thus x = (∆
(2)
I (y1, . . . , ys, xr+1, . . . , xR))I∈([n]

k )
∈ ST2 . Hence ST1 ⊂ ST2 , which con-

cludes the proof.

Corollary 5.16. Let T1 be a tiling with subtiling A, and T2 the tiling obtained
by replacing A in T1 with a new subtiling B with SA = SB. Then ST1 = ST2 .
Equivalently, if SA = SB, then ST1 = ST2 .

Proposition 5.17. The positroid cell associated to T is invariant under

(i) mutation of a tiling.
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(ii) tiling equivalence.

(iii) reductions of a tiling.

Proof. For all three parts of the proof we will pick a point in the open cell ST1 of
a tiling T1 and show that that point can be expressed as a point in the closed cell
ST2 where T2 is the tiling obtained after transforming T1 as described in (i),(ii),
and (iii), respectively, thus showing that ST ⊂ ST ′ . It is crucial that we use the
open positroid cell of T ′, to avoid division by 0 in some of the calculations. Since
ST ⊂ ST ′ =⇒ ST ⊂ ST ′ , we still obtain the desired result.

Moreover, by Corollary 5.16 it is sufficient to show that these transformations
preserve the positroid cell locally.

(i) Consider the two triangulations T1 and T2 of a quadrilateral and their parametriza-
tions as described in Definition 5.8.

Figure 137

PT1 = (a1β1, α1γ2, α1δ2, β1γ2, β1δ2 + β2δ1, γ2δ1)

PT2 = (α4β3, α3γ4 + α4γ3, α3δ4, β3γ4, β3δ4, γ3δ4)

Let x ∈ ST1 given by the fixed parameters a1, b1, b2, c2, d1, d2 > 0, i.e.

x = (a1b1, a1c2, a1d2, b1c2, b1d2 + b2d1, c2d1)

Then let y ∈ ST2 be the point given by the fixed, non-negative parameters

β3 = a1 δ4 =
b1d2 + b2d1

a1

α4 = b2 α3 =
a1d2
δ4

γ4 =
b1c2
a1

γ3 =
c2d1
δ4
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Then y = (a1b1, a1c2, a1d2, b1c2, b1d2 + d2d1, c2d1) = x, thus x ∈ ST1 . Hence
ST1 ⊂ ST2 . Then we also have ST2 ⊂ Sµe(T2) = ST1 , and thus ST1 = ST2 .

(ii) (a) (Hourglass equivalence) Consider the tiling T1 that is an empty n-gon,
and T2 that is obtained by adding an hourglass inside T1.

Figure 138

We call αi the angle at the boundary vertex i in both tilings, and β1 and
β2 the angles around the internal vertex in T2. The parametrizations of
these tilings are

PT1 = (αn, . . . , α1)

PT2 = (αnβ2, . . . , αs+1β2, αsβ1, . . . , α1β1)

· Let x = (an, . . . , a1) ∈ ST1 with ai > 0 for any i = 1, . . . , n. We
construct y ∈ ST2 , with parameters αi = ai ≥ 0 and β1 = β2 = 1.
Then

y = (an · 1, . . . , a1 · 1) = x,

thus x ∈ ST2 . Thus, ST1 ⊂ ST2 .

· Let y ∈ ST2 with parameters ai, bj > 0, that is

y = (anb2, . . . , as+1b2, asb1, . . . , a1b1).

We construct x ∈ ST1 with parameters

αi =

{
aib2, if i = 1, . . . , s

aib1, if i = s+ 1, . . . , n.
∈ R≥0

Then x = y, and y ∈ ST1 . Thus, ST2 ⊂ ST1 .

We conclude that ST1 = ST2 .
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(b) Consider the tiling T and one of its boundary vertices i. Let T ′ be the
tiling obtained by decontracting at i, i.e.

Figure 139

We call α1, . . . , αr the angles in the angles in T , with α1, . . . , αs being the
angles around vertex i in T . We call β1, β2 the angles in the digon. Let I
be a k-subset of [n]. Let ∆I be the I-th coordinate of PT , and ∆′

I be the
I-th coordinate of PT ′ .

· If i ∈ I, then for all matchings m of T with ∂m = I, m′ = m ⊔ β1 is
a matching of T ′, with ∂m′ = I.

· If i /∈ I, then for all matchings m of T with ∂m = I, m′ = m ⊔ β2 is
a matching of T ′, with ∂m′ = I.

Thus by defining

λI(β1, β2) =

{
β1 if i ∈ I

β2 if i /∈ I

we get that for matching m of T , m′ = m ⊔ λ∂m is a matching of T ′, and
for any I, ∆′

I = λI∆I .

· Let x = PT (a1, . . . , ar) ∈ ST . In other words, the I-th coordinate of x
is ∆I(a1, . . . , ar). Then we construct y ∈ ST ′ with parameters αi = ai
and βi = 1. Then the I-th coordinate of y is

∆′
I(a1, . . . , ar, 1, 1) = λI(1, 1)∆I(a1, . . . , ar) = ∆I(a1, . . . , ar)

Thus y = x, and thus x ∈ ST ′ . Hence, ST ⊂ ST ′ .

· Let y = PT ′(a1, . . . , ar, b1, b2) ∈ ST ′ . In other words, the I-th co-
ordinate of y is ∆′

I(a1, . . . , ar, b1, b2). We recall that monomials ap-
pearing in any coordinate have the same length p (i.e. the num-
ber of angles/variables in the monomial which equals the number
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of faces of the tiling). We denote q = p−1. Then we construct

x = PT (a1µ, . . . , asµ, as+1ν, . . . , arν) ∈ ST , where µ = b2b
−q(p−1)
1 and

ν = bq1. Then

∆I(a1µ, . . . , asµ, as+1ν, . . . , arν) =
∑
∂m=I

m(a1µ, . . . , asµ, as+1ν, . . . , arν)

Evaluating a monomial on the parameters equates to multiplying p
of the parameters (corresponding to the angles in the matching). We
distinguish two cases

− i ∈ I. Then α1, . . . , αs /∈ m. Thus the monomial is completely
independent of those first s parameters and is a product of p of
the remaining parameters. We can then write

m(a1µ, . . . , asµ, as+1ν, . . . , arν) = νpm(a1, . . . , as, as+1, . . . , ar)

= b1m(a1, . . . , ar)

Thus

∆I(a1µ, . . . , asµ, as+1ν, . . . , arν) = b1
∑
∂m=I

m(a1, . . . , ar)

= λI(b1, b2)∆I(a1, . . . , ar)

= ∆′
I(a1, . . . , ar, b1, b2)

− i /∈ I. Then there is exactly one j ∈ {1, . . . , s} such that αj ∈
m, which means exactly one copy of µ appears. The remaining
{α1, . . . , αs}\{αj} do not appear in the monomial m, and instead
p− 1 of the angles αs+1, . . . , αr do. Thus

m(a1µ, . . . , asµ, as+1ν, . . . , arν) = µνp−1m(a1, . . . , as, as+1, . . . , ar)

= b2m(a1, . . . , ar)

Thus

∆I(a1µ, . . . , asµ, as+1ν, . . . , arν) = b2
∑
∂m=I

m(a1, . . . , ar)

= λI(b1, b2)∆I(a1, . . . , ar)

= ∆′
I(a1, . . . , ar, b1, b2)
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Thus for any k-subset I of [n], ∆′(a1µ, . . . , asµ, as+1ν, . . . , arν) =
∆′

I(a1, . . . , ar, b1, b2), thus x = y, and thus y ∈ ST . Hence ST ′ ⊂ ST .

We conclude that ST = ST ′ .

(iii) Consider the tiling T1 that is an n-gon with one 1-edge e (w.l.o.g at boundary
vertex n). Let T2 = Re(T1), i.e. T2 is an empty n-gon.

Figure 140

We call αi the angle at the boundary vertex i in both tilings, except for the
angles at the vertex n in T1 which we call β1 and β2. The parametrizations of
these tilings are

PT1 = (β1 + β2, αn−1, . . . , α1)

PT2 = (αn, . . . , α1)

· Let x ∈ ST1 with parameters αi = ai, βj = bj > 0, that is

x = (b1 + b2, an−1, . . . , a1)

We construct y ∈ ST2 with parameters αn = b1 + b2 ≥ 0, and αi = ai ≥ 0
for i = 1, . . . , n− 1. Then y = x, and x ∈ ST2 . Thus, ST1 ⊂ ST2 .

· Let y = (an, . . . , a1) ∈ ST2 with parameters ai > 0. We construct x ∈ ST1

with parameters{
αi = ai, for i = 1, . . . , s− 1

β1 = β2 =
1
2
an

∈ R≥0

Then x = y, and y ∈ ST1 . Thus ST2 ⊂ ST1 .
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Hence, ST1 = ST2 .

In order to prove Proposition 5.21, we introduce the following construction.

Definition 5.18. Let T be a tiling of type (k, n). We construct a tiling T ′ of type
(k, n), called the expansion of T , as follows.

(i) Draw a disk Dn with n boundary vertices 1′, . . . , n′.

(ii) Draw the tiling T inside the disk D.

(iii) Between each pair of vertices i and i′, draw two curves that form a digon with
endpoints i and i′.

(iv) The area between any two digons is black.

Example 5.19. An example of a tiling T of type (3, 5) and its expansion T ′ is

Figure 141

Remark 5.20. By Proposition 5.17.(ii).b, ST = ST ′ . Any matching m of T induces
a matching m′ of T ′ by choosing one of the angles of each digon, which depends on
which boundary vertex i of T was matched and which was not. The boundary vertex
i′ of T ′ is matched in m′ exactly when the boundary vertex i of T is matched in m.
Otherwise, the other vertex of the digon is matched.
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Figure 142

Let us take a look at the corresponding plabic graphs G = Φ(T ) and G′ =
Φ(T ′) and their corresponding almost perfect matchings m and m′ as described in
Remark 5.4.

Figure 143
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As described in Remark 5.4, G has some extra edges compared to angles in T that
appear on the boundary and that we labeled Ẽ. This means that any matching m of
T translate into an almost perfect matching m of G with some extra elements, which
translates into extra variables in the parametrization of SG. This makes it easy to
describe a point of ST as a point in SG. The same is true for ST ′ and SG′ . However
T ′ has some extra angles compared to edges of G as well. We denote Ã = {αi | i ∈ Ĩ}
the boundary angles of T ′. Any almost perfect matching m of G thus translates into
a matching m′ of T ′ with some extra elements, which, again, translate into extra
variables in the parametrization of ST ′ , namely the angles found in A′. This allows
us to describe a point in SG as a point in ST ′ , as we will do in Proposition 5.21.

We are now ready to prove that the parametrization of positroid cells using
bicolored tilings described in Definition 5.8 aligns with the one using plabic graphs
described in Theorem 1.28, also found in [21, 2.17].

Proposition 5.21. Let T be a tiling and G = Φ(T ). Then ST = SG.

Proof. Let m be a matching of T and m = {eαi
| i ∈ I}∪ Ẽ the corresponding almost

perfect matching of G as described in Remark 5.4. We recall that a point x ∈ SG is
given by a weight function w : E −→ R>0, and each coordinate is given by

∆I(x) =
∑

m∈M(G)
∂m=I

w(m), where w(m) =
∏
e∈m

w(e)

Let x ∈ ST , i.e. x = PT ((ai)i∈I) for some values ai > 0. We construct y ∈ SG by
choosing the weight function wy such that

wy(e) =

{
ai, if e = eαi

1, if e ∈ Ẽ.

Then for any matching m and m = Φ(m)

wy(m) =
∏
e∈m

wx(e) =
∏

eαi∈m
e=eαi

ai =
∏
αi∈m

ai

which is just the matching m identified as the product of its members evaluated at
αi = ai, as explained in Definition 5.8. Hence, the I − th coordinate ∆I of y is given
by

∆I(y) =
∑

m∈M(T )
∂m=I

m((ai)i∈I) = ∆I(x)
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and thus y = x, and x ∈ SG. Thus, ST ⊂ SG.
Let T ′ be the expansion of T as described in Definition 5.18. Let x ∈ SG given by

some weight function wx : E −→ R>0. We construct the point y = PT ′((bi)i∈I′) ∈ ST ′

given by

bi =

{
wx(eβi

), if i ∈ I
1, if i ∈ Ĩ = I ′ \ I.

Then for any matching m′ of T ′ and corresponding matching m of G, we have∏
αi∈m′

bi =
∏

eαi∈m
i∈I

bi =
∏

eαi∈m
i∈I

wx(eβi
) =

∏
e∈m

wx(e) = wx(m)

Then y = x, and thus x ∈ ST ′ . And since ST = ST ′ by Proposition 5.17.(ii).b,
SG ⊂ ST .

We conclude that ST = SG.

Now that we defined bicolored tilings, as well as described how they map onto
positroid cells, we can state the main result of this paper.

Theorem 5.22. Reduced (bicolored) tilings of type (k, n) up to tiling equivalence are
in bijection with positroid cells of the totally non-negative Grassmannian Gr≥0

k,n.

Proof. This follows from the fact that positroid cells are in bijection with Postnikov
diagrams [15, 14.2,14.7] up to geometric exchange, which are in bijection with re-
duced tilings up to tiling equivalence. More explicitly, any reduced tiling T is in
bijection with the Postnikov diagram Γ = S(T ) as described in Definition 3.1, and
with the positroid cell ST as described in Definition 5.8.

Proposition 5.23. Let T be a tiling and ST its corresponding positroid cell. Then
dimT = dimST .

Proof. If F is the set of faces of G, then dimST = |F| − 1 by [15, 12.7]. Since
hyperedges of T map to faces of G, we have dimT = |E|−1 = |F|−1 = dimST .

5.2 Degenerations of tilings

We recall from Definition 5.8 that the closure of a positroid cell is given by

ST = {(∆I) | α ≥ 0 ∀α ∈ A}

We can describe this order in terms of tilings by defining the degeneration of tilings.
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Definition 5.24. We define a partial order on Til by

T < T ′ ⇐⇒ ST ⊂ ST ′ ⇐⇒ ST ⊂ ST ′

Degenerations of a tiling happen with respect to angles of that tiling. In order
to get consistent results, we distinguish between two types of angles as follows.

Definition 5.25. An angle α of a tiling T is said to be essential if for any matching
m ∈ M(T ), we have α ∈ m. Similarly, α is said to be non-essential if there is a
matching m ∈ M(T ) such that α /∈ m.

Definition 5.26. Let T be a tiling, and α ∈ A a non-essential angle of T . Let
v = v(α) be the vertex at α, and f = f(α) the face in which α lies. Let e1 and e2 be
the two hyperedges adjacent to α, and let v1 and v2 be the second endpoints of e1
and e2, respectively. Let T ′ be the tiling obtained by constructing a black triangle
with endpoints v,v1, and v2 inside f , such that the hyperedges e1, e2 of T merge with
the black triangle.

Figure 144

Then T ′ is called the degeneration of T with respect to α, and is denoted dαT .

Proposition 5.27. The type of a tiling T is invariant under degeneration.

Proof. Let T be a tiling of type (k, n) and α an angle of T . Let T ′ = dαT . Let m be
a matching of T such that α /∈ m. Then m is a matching of T ′. Thus T ′ has rank
∂m = k. Since the number of boundary vertices are not changed when degenerating,
the type of T ′ is (k, n).

If T is a tiling with diagram S(T ), then any intersection between two strands in
S(T ) determines an angle. This follows from the definition of the Scott map (see
Definition 3.1). If two strands γi and γj intersect and determine the angle α, we
denote α = γi ∧ γj. Since strands may intersect more than once, we choose α to be
the last intersection between γi and γj when following the orientation of γi.
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Proposition 5.28. Let T be a tiling of permutation π, and γi, γj be two distinct,
intersecting strands of S(T ). Let α = γi ∧ γj be a non-essential angle of T . Let π′

be the permutation of T ′ = dαT . Then π′ = (π(i) π(j)) ◦ π.

Proof. This result is immediate if we observe how degenerations affect the diagram
locally from T to T ′.

Figure 145

Proposition 5.29. Let T be a tiling with angles α1, . . . , αr. Let PT = PT (α1, . . . , αr).
Let T ′ = dαi

T for some non-essential angle αi ∈ A. Then the parametrization of ST ′

is

PT ′ = PT ′(α1, . . . , αi−1, αi+1, . . . , αr) = PT |αi=0
= PT (α1, . . . , αi−1, 0, αi+1, . . . , αr)

Proof. Let m be a matching of T with αi /∈ m. Then m is also a matching of T ′.
Conversely, if m′ is a matching of T ′, then m′ is a matching of T as well, with
αi /∈ m′. In other words, the matchings of T ′ are exactly the matchings of T that
do not contain αi. Thus, if ∆I and ∆′

I denote the I-th coordinate of T and T ′,
respectively, we get

∆′
I =

∑
m∈M(T ′)
∂m=I

m =
∑

m∈M(T )
∂m=I
αi /∈m

m =
∑

m∈M(T )
∂m=I

m|αi=0
=

 ∑
m∈M(T )
∂m=I

m

 |αi=0
= ∆I |αi=0

Hence
PT ′ = (∆′

I) = (∆I |αi=0
) = PT |αi=0

which concludes the proof.

Corollary 5.30. If T ′ = dαT , then T ′ < T .
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Proof. This follows directly from Proposition 5.29, as ST ′ ⊂ ST .

The number of hyperedges is reduced by exactly 1 after degenerating a tiling,
as two hyperedges are merged together into one by adding a black triangle. From
Definition 2.12 the following immediately follows.

Corollary 5.31. Let T ′ = dα(T ) be the degeneration of a tiling T with respect to
the angle α. Then dimST ′ ≤ dimST − 1.

Remark 5.32. The reason why we do not have an equality dimST ′ = dimST − 1 is
that the equality dimST = E−1, where E is the set of hyperedges of T , is only true
if T is reduced. After degenerating, the resulting tiling is not necessarily reduced.

Example 5.33. The following reduced tiling T of type (3, 6) and of dimension 7
can be degenerated at α. The resulting tiling T ′ is not reduced. After reducing
T ′ to a tiling T ′′, we see that the dimension of the corresponding positroid cell is
dimST ′′ = 5.

Figure 146

The steps applied to the degenerated tiling T ′ are as follows

(i) Any simple edge is also a black digon/2-hyperedge.

(ii) We decontract two white digons. It may be easier to see the transformation
from right to left, by contracting the two digons that are adjacent to the
boundary.

(iii) We contract the central digon. This transforms the black digon into a 1-gon
that can be reduced to arrive at T ′′.
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We summarize the main results of this section.

Theorem 5.34. Let T be a tiling of type (k, n) with permutation π, and let α ∈ A
such that ∃ distinct i, j ∈ [n] with γi ∧ γj = α. Let T ′ := dα(T ) be the degeneration
of T at α, and let P = P (α)α∈A be the parametrization of T . Then

• T ′ is of type (k, n).

• T ′ has decorated permutation π′ = (π(i) π(j)) ◦ π.

• T ′ parametrizes the positroid cell Sπ′ by P |α=0
.

• T < T ′ and dimST < dimST ′.

Example 5.35. Consider the Grassmannian of type (1, 3), i.e. the set of lines
through the origin in the 3-dimensional real space. We may represent this as a
projective space in a half-sphere model, where each point of the half-sphere represents
a line (more precisely the line going through that point and the origin), identifying
antipodal points in the plane 0xy, i.e. [x : y : 0] = [−x : −y : 0].

Figure 147

If we divide this dome into four quadrants, divided by the planes 0xz and 0yz, the
totally non-negative Grassmannian Gr≥0

1,3 is then given by the points in the quadrant
facing towards us in the figure above.
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Figure 148

Let us now find the positroid cells of Gr≥0
1,3. There are a total of 7 reduced tilings

of type (1, 3), namely

Figure 149

In this chart, if two tilings are connected by a line, the upper tiling degenerates
into the lower tiling with respect to one of its non-essential angles. In other words,
it is the Hasse diagram for the partial order on tilings of type (1, 3) defined in
Definition 5.24. The first tiling parametrizes the positroid cell of maximal dimension,
dim = 2, as follows
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Figure 150

Since the coordinates are projective, we may divide each parameter by αβγ > 0
simultaenously, which gives us the parametrization

PT = (βγδ1, αγδ2, αβδ3) = (
δ1
α
,
δ2
β
,
δ3
γ
) = (a, b, c)

after a change of variables a = δ1
α
, b = δ2

β
, c = δ3

γ
. We see that the open cell it

parametrizes is simply the quadrant without its boundary. Two of the other cells
are parametrized as follows.

Figure 151

giving us parametrizations

PT2 = (0, b, c), PT3 = (a, 0, 0)

with the other 4 cells parametrizing the same cells, up to rotation of the coordinates.
We see that the three 1-dimensional tilings parametrize the three open segments that
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are part of the boundary of the quadrant, while the three 0- dimensional tilings gives
us the three points that are the boundaries of those segments.

Figure 152

We further notice that the degenerations of the maximal tiling T are its three
open boundary segments. While any boundary segment degenerates into both its
boundary points. If we take the closure of each cell, we can see how each of the
positroid cells is nested inside the other, as explained in Definition 5.8. This corre-
lates with the partial order we defined in Definition 5.24.

In terms of the corresponding decorated permutations, this order is called the
circular Bruhat order [15, 17.5], which is given by π ≤ σ ⇐⇒ Sπ ≤ Sσ. The top
element of this ordering in any Grassmannian Gr≥0

k,n is the permutation i 7−→ i + k
mod n, whose positroid cell is of dimension k(n− k). The minimal elements are all
the

(
n
k

)
decorated identities i 7−→ i mod n, with each choice of k white-colored fixed

points (p.13) corresponding to a different positroid cell of dimension 0 [15, 17.6].

6 Closing thoughts

We summarize what we achieved in this paper. We defined bicolored tilings as the
collection of compatible hyperedges in a surface (in our case a disk) with a finite
number of marked points, where hyperedges act as a generalization of edges between
any positive number of vertices. We then extended the Scott map to map bicolored
tilings to alternating curve diagrams, and discovered which bicolored tilings map to
Postnikov diagrams in particular.

This gave us a reduction-flip-equivalence class of tilings that is in bijection with
Postnikov diagrams up to geometric exchange. Consequently, bicolored tilings (up
to equivalence) are in bijection with a variety of objects, such as plabic graphs,
or positroid cells. We described the mapping to plabic graphs via the stellar-
replacement map, and we parametrized positroid cells using bicolored tilings. Finally,



110

we introduced a partial ordering on bicolored tilings that aligns with the partial order
of the corresponding positroid cells, and described how to obtain lower-dimensional
tilings via degenerations.

One future point of interest would be to describe the connection between bicolored
tilings and cluster algebras more explicitly and more comprehensively. As previously
seen (p.48), tilings naturally map to quivers with frozen vertices, which means every
tiling represents a cluster in a cluster algebra. This mapping aligns with the mapping
of Postnikov diagrams to quivers seen in [3, 2.5] and the mapping to seeds found in
[16, Thm.2 p.24].

It would be interesting to explore what information about the corresponding
cluster algebra can be read off the tiling. When is the cluster algebra of finite or
infinite type? Which cluster variables can be obtained within the flip-equivalence
class of a tiling? One obstacle lies in generalising the mutation of hyperedges. In this
paper we described how to mutate any simple edge, but non-boundary hyperedges
map to mutable cluster variables in quivers as well. Bicolored tilings in their current
form are not sufficient to describe this mutation in a “nice” geometrical way.

More beginner-friendly approaches could include the search for more easily identi-
fiable classes of tilings and patterns that emerge from their mutations. Triangulations
give us the maximum-dimensional tiling of type (2, n) with their flip-equivalences
class giving us all cluster variables of the corresponding cluster algebra. Rhombic
tilings give us the maximum-dimensional tiling of type (m + 1, 2m) in a format
where certain sequences of mutations perform a Yang-Baxter move on the tiling.
Quadrilateral tilings generalise this a little bit, giving us all (k, n)-tilings of maximal
dimension, where certain sequences of mutations shift the tiling in the mesh we used
to create it. Exploring more such patterns could serve as an introduction to bicolored
tilings.
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