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Abstract

Agent-based models are an incredibly flexible tool that among other things, allow modellers to

capture heterogeneity in agent attributes, characteristics, and behaviours. This study defines het-

erogeneity in agent-based models as agent granularity: the level of description used to define the

agent population. Consequently, this increased complexity can make the already challenging tasks

of calibration and parameter identification, even more difficult. Although modellers recognise the

significance of model calibration, the process of uniquely determining model input from any given

model output is overlooked. This thesis proposes an impact of heterogeneity in agent-basedmodels

is parameter non-identification

To this end, this research conducts a thorough examination of agent heterogeneity by the com-

parative study of homogeneous and heterogeneous scenarios in agent-based models. Using an

emotional contagion case study model and approximate Bayesian computation calibration, it finds

that the introduction of heterogeneity results in inaccurate parameter calibration compared to the

homogeneous case. This study proposes the inaccurate results as the consequence of a failure

to uniquely distinguish the effect of additional parameters in the model. Furthermore, failing to

identify model parameters limits the predictive or forecasting power of the agent-based model.

A simple case study is used to demonstrate that the use of unidentifiable models to inform real-

world governmental and social policies can lead to erroneous conclusions and potentially unsound

interventions.
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Chapter 1

Introduction

Contents

1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Research Motivation

Agent-based models (ABMs) are an exemplary tool, well-known for their use in analysing the in-

herent and intricate complexities of many systems (Buchmann, Grossmann, and Schwarz 2016).

They can uncover system patterns and characteristics of large-scale hierarchical structures from

simple individual-level processes. Choosing to simulate a system with ABMs has its advantages,

but there are two main attractions: (1) capturing the heterogeneity of agent attributes and, (2) cre-

ating a network of interactions (Bonabeau 2002). In this study, heterogeneity refers to the concept

of agent granularity but this idea will be explored further in Chapter 2. Modelling a system het-

erogeneously oftentimes enriches the understanding and interpretability of the system dynamics;

it connects attributes to observed behaviours and then to model outcomes. The insights gathered

from connecting these facets may uncover incredibly valuable information about the system’s dy-

16



1.1. RESEARCH MOTIVATION CHAPTER 1. INTRODUCTION

namics that may have otherwise remained unknown (Reeves et al. 2022). Capturing heterogeneity

allows the modeller to simulate various behaviours directly reflecting the target system. On a

micro-scale, agents interact and form relationships with each other and their shared environment;

on a macro-scale, this creates a network of interactions.

Researchers have applied ABMs to the study of biological (Politopoulos 2007; An et al. 2009),

social (Epstein and Axtell 1996; Gilbert and Terna 2000; Conte and Paolucci 2014), physical (Tor-

rens 2010; Heppenstall, Crooks, See, et al. 2012; Zhu et al. 2013) and economic (Tesfatsion 2002;

LeBaron 2006; Arifovic and Duffy 2018) phenomena, with the hopes of explaining the connection

between individual behaviours and aggregate outcomes. Nonetheless, the application and scope of

ABMs are not limited to the above; they are a tremendously pliable tool with an exhaustive list of

actual and potential applications. For example, one of the earliest ABMs was created by Schelling

(1971) which aimed to describe segregation as an emergent behaviour. Using a few parameters

Schelling-Sakoda demonstrated how segregated neighbourhoods might emerge as the result of in-

dividual decision rules. These decision rules were ultimately governed by a preference to reside

with neighbours which they considered similar. More recently, Gatti and Desiderio (2015) created

a macroeconomic model addressing monetary policy; in the model, consumers and prices changed

according to simple expectations. From the simple rules, they were able to reproduce business

cycles similar to those observed in real life. With ABMs it is possible to define and display various

characteristics and behavioural types through agents, these types of models are referred to as het-

erogeneous. Although ABMs can accommodate the differences in agent attributes and behaviours,

they also allow for the study of systems that assume uniformity, these types of models are referred

to as homogeneous. The flexibility of ABMs provides modellers with the choice to produce aggre-

gate or individual outcomes, but even aggregate results can be examined on a micro-scale; unlike

other methods, such as differential equations, that assume homogeneity in agent attributes and can

only be evaluated aggregately.

Nevertheless, the choice between assuming homogeneity or heterogeneity depends on the mod-

eller’s primary objectives and the nature of the real-world system. When choosing underlying

assumptions, modellers should always consider the perceived level of detail within the real-world

17



1.1. RESEARCH MOTIVATION CHAPTER 1. INTRODUCTION

system (e.g. degree of complex individual behaviours, the resolution quality of the environment,

etc.) and aim to represent it as accurately as possible. Detail refers more generally to model at-

tributes, both the agent and environment attributes. However, within the constraints of this thesis,

detail will refer specifically to the number of agent attributes or agent granularity. Highly granular

models are usually characterised by an increasing number of agent parameters, and consequently,

these are high-dimensional models. Modellers could also consider the impact either assumption

may have on the validity of the model. In other words: if the system is modelled adequately when

assuming homogeneity, what is the perceived impact of introducing heterogeneity on the model

outcomes? Could the model with heterogeneous attributes better capture the dynamics evident in

the real-world system?

For example, modelling heterogeneity plays an important role in epidemic modelling and eval-

uating interventions (Thieme 1985; Mollison 1995; Berestycki et al. 2023). Though modelling

COVID-19 homogeneously has been successful (Wang, Zhou, et al. 2022), Ellison (2020) pro-

poses that calibrating the classic epidemic model to data generated by a heterogeneous model

of COVID-19, results in biased forecasts and uncertainty. The particular biases identified were

the underestimation of how quickly herd immunity is reached, an underestimation of differences

across regions, and biased estimates of the impact of endogenous and policy-driven social dis-

tancing. Donnat and Holmes (2023) identifies modelling the reproductive number for COVID-19

heterogeneously as paramount in the quantification of the potential scope of the pandemic and the

selection of an appropriate course of action. In their study of contact networks, Thomas, Huang,

et al. (2020) proposes that uneven population distribution on the spread of the COVID-19 disease,

produces dramatic differences in social exposures to those with the illness and increases pressure on

health care systems in ways that are not well captured by classic epidemic models (Lu et al. 2021).

These studies demonstrate the significance of heterogeneity and the importance of considering its

potential impact on model results.

The aim of scientific exploration is explanatory power; the ability to explain and outline rela-

tionships, dynamics and interactions. Despite models being typically viewed as a reflection of a

system, a more pragmatic approach has been proposed, whereby models are viewed as tools de-
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signed for specific purposes. Thus, model performance or model goodness can be assessed against

how good it is for its declared purpose (Edmonds et al. 2019).

As computational resources and capabilities have increased in time, modellers might assume

the more descriptive a model, through an increasing number of variables, the better its explanatory

power. Empirically, however, this may not always prove to be true as the potential to overfit will

always exist, regardless of the method’s structural flexibility.

More specifically with ABMs, the model input could be described as a distribution of initial

states and behaviours for each agent and the output would be distributions of what is observable

(Wallace and Ogawa 2015). For example, when the correct vector of parameter values is known

(from real data), then changing the values could produce different outcomes using the same model

structure. Then, if each parameter value can be directly mapped to the distribution of observ-

ables one-to-one, then there is parameter identification. But through the introduction of additional

parameters, the effect of each parameter value becomes difficult to distinguish therefore harder to

map directly to the distribution of observables. The added dimensionality and complexity observed

in the model make parameter identification more challenging to achieve.

Now, consider a case where the parameter values are used to simulate the behaviour of different

policies, including policies not tried in the original environment. Where each parameter represents

a specific policy, then successfully identifying their parameter values means capturing the effect

of each parameter on the output, with some certainty. And with this, modellers can consider each

policy according to appropriate needs. Regardless of the purpose of the ABM, predictive or ex-

planatory, if parameters are unidentifiable, this indicates that the effects of the model input are

indistinguishable. Therefore, full knowledge of parameter values becomes irrelevant and policy

suggestions redundant, as the relative strength of each parameter is unknown and cannot bemapped

to the distribution of observables. Parameter identification is often overlooked in the process of

parameter estimation, as in most cases parameter values are known from real data, so identifying

the effect of each input from the output seems futile.

But as with the dangers of overfitting, it is possible that the more heterogeneous the model, the

greater the potential for parameter non-identification. This problem serves as motivation for this
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thesis which proposes parameter identification issues as an impact of heterogeneity in ABMs. This

thesis will use a case study of emotional contagion, which should be considered as a toy model

for demonstrative purposes, to present the problem of parameter identification as an impact of het-

erogeneity. This study considers the variety of ways that heterogeneity features in ABMs, and

hence concludes that an all-inclusive precise definition is unfeasible. Thus, this study proposes

heterogeneity refers specifically to agent granularity. Agent granularity indicates the coarseness

of descriptive attributes and behaviours assigned to the agent population. Typically, the more de-

scriptive an ABM, the more parameters are included in the model. Therefore, this study proposes

that the impact of creating increasingly descriptive models can lead to parameter identification

issues. This is demonstrated in the calibration of a case study model, where the introduction of

heterogeneity is shown to negatively impact the accuracy of parameter calibration. Though this

study is successful in highlighting the impact of heterogeneity, it highlights the following: the crit-

ical need for an established method which examines the identification of parameters in ABMs. As

will be proposed in this investigation, the process of calibration and identification cannot be sepa-

rated, hence ABM calibration methods should aim to integrate indicators that represent how well

ABM input (i.e., distribution of initial states) maps directly to the ABM output (i.e., distribution

of observables).

1.2 Aims and Objectives

The overarching aim of this thesis is to investigate the impact of heterogeneity on the parameter

identification of agent-based models. To achieve this, the following objectives were formalised:

1. Review and discuss the literature related to ABMs, with a focus on heterogeneity as a char-

acteristic. Also, briefly review the literature on emotional contagion and compartmental

models to facilitate the design and development of the case study model.

2. Design and build the case study ABM, simulating the transmission and infectiousness of

emotional contagion. Then determine optimal values for the ABM using sensitivity analysis.

3. Evaluate the ABM by assessing its response to varying parameter values using calibration

20



1.3. MAIN CONTRIBUTIONS CHAPTER 1. INTRODUCTION

to examine the parameter space.

4. Define and investigate the problem of parameter identification in heterogeneous ABMs.

1.3 Main Contributions

The section summarises the main contributions of this thesis in the following points:

1. This thesis proposes a specific definition of heterogeneity in ABMs for which its impact

can be measured. Heterogeneity is limited to the agent component and is defined as agent

granularity; which refers to the coarseness of descriptive attributes and behaviours assigned

in the agent component e.g. the number of model parameters used to describe the agent

class.

2. This thesis proposes an impact of modelling heterogeneously in ABMs is parameter non-

identification. This study demonstrates the existence of parameter identification issues in

heterogeneous ABMs and how they can be detected using approximate Bayesian computa-

tion calibration.

3. Parameter identification i.e. the ability to identify a unique set of parameter values that pro-

duce a particular model output, should be included in the standard ABM calibration process.

This thesis proposes: that to successfully calibrate an ABM should go beyond presenting a

single parameter point or capturing uncertainty by presenting a selection of best-fitting pa-

rameters, and go a step further by uniquely distinguishing the model input from the given

output.

1.4 Thesis Structure

This section presents the structure of this thesis.

Chapter 2 introduces ABMs and outlines their characteristics and methodology. It begins with

an introduction to complex systems and computational models. The chapter then presents ABMs,

highlighting their components, features and characteristics. To conclude, the chapter discusses
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relevant literature illustrating the impact of agent heterogeneity.

Chapter 3 extends the literature review to the study of emotional contagion and compartmental

models. The purpose of this review is to frame the design and development of the case studymodel.

Informed by the previous chapters, Chapter 4 outlines the case study model. It describes model

construction using the ODD protocol, presenting each element of the emotional contagion model.

It includes the results of model exploration to shed some light on the system dynamics. In addition,

presents the full results of the sensitivity analysis conducted on the case study model.

Chapter 5 and Chapter 6 are complimentary. Chapter 5 evaluates the case study model using

simulated data using approximate Bayesian computation calibration. Although calibration meth-

ods are typically used to validate models, Chapter 6 will use them as tools to introduce parameter

identification in ABMs.

Finally, Chapter 7 concludes this study with a summary, critical reflection and suggestions for

future research.
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2.1 Chapter Overview

This chapter will provide a brief overview of Agent-basedmodels (ABMs). It begins in Section 2.2,

by outlining the challenge in modelling complex systems and subsequently presents suitable com-

putational approaches, including ABMs in Section 2.3. To consider its potential application, Sec-

tion 2.4 highlights the standard ABMs components, features and characteristics and also presents

capturing heterogeneity as a key advantage. Finally, Section 2.5 evaluates agent heterogeneity fur-

ther, first by offering a definition and second by undertaking a comparative study of homogeneous

and heterogeneous scenarios in ABM literature to assess the impact of modelling heterogeneity.

This section presents the following observations: i) agent heterogeneity is often displayed in two
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non-mutually exclusive forms: the categorisation and/or variability of the agent population and

attributes, ii) agent heterogeneity is extrinsic, in that heterogeneity is initialised into a model but

the evolution away from the initial heterogeneity is rarely monitored. Heterogeneity which devel-

ops outside of the initial conditions is referred to as generated heterogeneity, iii) the variable used

to demonstrate agent heterogeneity can impact model results, iv) undetected pre-conditions be-

tween components can affect the impact of agent heterogeneity, v) the object of study and research

purpose are contributing factors to deciding between imploring homogeneous or heterogeneous

assumptions, vi) If agent interactions generate network effects, then the types and effects of het-

erogeneity found in network sciences apply to agent-based models. Two types of heterogeneity

found in network sciences are structural and relational heterogeneity. Structural refers to the dif-

ferent structural changes that arise as a direct result of agent heterogeneity; relational heterogeneity

emerges directly from agent interactions and finally, vii) Comparative homogeneous and heteroge-

neous scenarios should be a standard, to help evaluate the impact heterogeneity has on the system

being modelled. Modelling heterogeneity may be a computationally expensive task, but in some

cases has been made unnecessarily so; thus it is important to discern when the increased granularity

no longer enriches the model’s explanatory or predictive powers.

2.2 Complex Systems

Complex systems are systems that are difficult to model as a result of the inherent dependencies,

relationships and interactions between their parts or their environment (Bar-Yam 2002). To inves-

tigate any system, animate (i.e., living organisms) or inanimate (i.e., lifeless objects), learning what

they are comprised of is an important initial step (Sterman 1994). Although identifying each part

or component is essential, studying them individually is an impractical task as the more complex

a system, the more components (Hmelo-Silver and Azevedo 2006). The deeper the investigation

goes, the more complex the system gets and the harder it becomes to piece each component back to-

gether. Each component is rich and has depth, this is why researchers dedicate their whole careers

to the understanding of one area (Newman 2011).

An example of this is the study of Sciences which has three broad branches: formal sciences,
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natural sciences and social sciences. If these branches are considered as components, they can be

broken down further into sub-components e.g., natural sciences is the study of natural phenomena,

this includes biology, physics, chemistry, cosmology and geology. Again, these sub-components

can be broken down even further. By focusing on individual components of a system in complete

isolation, science has made great progress (Wimsatt 2006). This approach is known as reduction-

ism, which implies that a system is no more than the sum of its parts (Kricheldorf 2016). However,

in instances where interactions are present in systems, this strategy falls short by ignoring the value

of each connection present in the system.

Hence, to effectively study a complex system is to investigate the relationship and interactions

between the individual components, the whole system and the environment (Arthur 1993; Gell-

Mann 1995). The object of study is the collective behaviours that emerge from each component,

which may differ in terms of characteristics, properties and behaviours (Fisher and Pruitt 2020).

The challenge then lies in identifying an appropriate methodology that captures interactions such

as non-linearity, spontaneous order, adaption, feedback loops and emergence sufficiently (Flake

2008; Mitchell 2011).

To confront this challenge, researchers propose computational models as an appropriate ap-

proach to modelling complexity (Schweber andWächter 2000). The following section will present

some computational methodologies.

2.3 Computational Models

Computational models are simulations that act to represent the processes and interactions which

standardly comprise a system (NIH 2020). Computational models can take the form of simplified

mathematical expressions (Li, Ban, et al. 2018), but can also describe linear and nonlinear complex

systems (Grubb et al. 2020) where intuitive analytical solutions are not readily available. These

types of computational models simulate various experiments with the model by adjusting the pa-

rameters of the system and studying the differences in the outcome of the experiments (BenYoussef

2016). The computational methodology approach is widely used across disciplines, from physics

and engineering (Oberkampf, Trucano, and Hirsch 2004; Schäfer and Schäfer 2006; Liu, Feng,
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et al. 2022; Omelchenko et al. 2023), mathematics (Stoer 2006; Akin 2014) to psychology and

cognitive sciences (Fodor 2000; Sun 2008; Palminteri, Wyart, and Koechlin 2017; Putnam 2018).

There is no argument against the key contributions computational methods have made toward un-

derstanding the intricacies and dynamics of complex systems, across disciplines and specialities

from public policy to autonomous systems (Calder et al. 2018).

There is a wide range of computational models frequently implored in the study of complex

systems. The choice of which to use depends on the underlying assumptions and abstractions

about the target system. The main types of computational models are now reviewed in brief:

• Deterministic models produce the same outcome on multiple runs with the same inputs.

There is no randomness or spontaneity in these models. Determinism allows for absolute

assertions which can be incredibly valuable. However, it is important to consider whether

determinism is evident in the target system first before implementation.

• Non-deterministic models produce different outputs on different runs, even when the inputs

are the same. They do not specify a path of execution, thus any behaviours observed as an

outcome could present in any number of ways.

• Static models have outputs that do not vary or change over time. Model input is studied in

isolation with no concept of time. An example of this is spreadsheets with no time explicitly

encoded as an input.

• Dynamicmodels have outputs that do vary or change over time. Some examples of dynamic

models are ordinary and partial differential equations (Ockendon et al. 2003; Witelski and

Bowen 2015), they represent the rate of change over time and are used in areas including,

finance, economics and engineering. Similarly, system dynamics (Forrester 1968) uses or-

dinary differential equations to explore the possible effects of different scenarios to unveil

some unanticipated consequences; they are a useful tool to discover structural changes in

behavioural patterns.

• Discrete models use values that increase in steps (i.e., a series of integers) to represent

objects or events. An example of discrete models is transition systems which are based on
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the observation of a set of discrete states (Keller 1976).

• Continuous models observe events which could occur at any point in time, they often use

real numbers and can be visualised as ‘smooth’ or ‘dense’. Differential equations are an

example of continuous models.

• Stochastic models (Pinsky and Karlin 2010) or probabilistic models have an inherent el-

ement of random, or uncertain, behaviour and the events are assigned probabilities. This

can be viewed as a special case of a non-deterministic model in which the probabilities are

known.

• Individual-based models follow individuals through a system, tracking changes to be-

haviour and their interactions. Together individuals form a complex and emergent system,

and individual behaviours cannot be derived from simple aggregation. Agent-based mod-

els (Gilbert 2019) are an example of individual-based models and have been used to model

social insects, telecommunications networks and stock markets.

• Population models represent large groups of homogeneous individuals. Population mod-

els can also model individuals with attributes that vary on a small scale based on counter-

abstraction (Pnueli, Xu, and Zuck 2002), which records the number of individuals with each

trait.

• Logic models are descriptions or statements which outline a chain of cause and effect which

have led to the desired outcome. Formal logic models range from classical predicate logic

(Kleene 2002), to temporal logic (Fisher 2011) for future behaviours, and probabilistic tem-

poral logic (Hansson and Jonsson 1994) for future certainties and uncertainties.

• Automata and process algebraic models (Baeten 2005; Milner 2009) are simple represen-

tations of concurrent events. These models follow algebraic laws to define how operators

relate to each other.

• Black-box models are machine learning devices which fit data and trends without revealing

internal workings. Machine learning (Murphy 2012) uses algorithms to learn from the past,

data and experience. These models are useful where there is little knowledge about how the
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system works, but where data is available.

Each of these computational models has its advantages and disadvantages. The choice of model

is often based on the system dynamics, theoretical assumptions or researcher expertise. This thesis

proposesABMs as a sufficient computational approach to simulating complex systems, particularly

where the complex systems are comprised of heterogeneous components. The following section

will present ABMs in detail and evaluate their suitability for modelling heterogeneity.

2.4 Agent-Based Models

The previous section briefly presented a variety of computational models commonly used to study

complex systems. This thesis will consider a particular type, namely individual-based models

or agent-based models (ABMs). Agent-based modelling may not have a long history but exten-

sive contributions have been made across many disciplines (Heath, Hill, and Ciarallo 2009). Its

widespread use is accredited to the ability to simulate theories, particularly in cases where data is

unavailable (Abdou, Gilbert, and Tyler 2008), but there are numerous characteristics and unique

features which modellers consider to be incredibly beneficial.

ABMs are an immensely powerful tool used to model systems containing a collection of au-

tonomous decision-making entities called agents. Each agent assesses their circumstances and

relationships before making decisions based on a set of governing rules (Bonabeau 2002). As a

result, agents can display a range of behaviours given the dynamics of the system. This is referred

to as a “bottom-up approach” i.e., the development and growth of whole systems from individual

interactions (Epstein and Axtell 1996). Crucially, the bottom-up approach gives rise to emergent

phenomena, even in the simplest ABMs (Reynolds 1987). Asmentioned previously, there is a great

deal of valuable insight that can be extracted from modelling complex systems, which ABMs can

provide. Further, the evolution of agents and their environments allows for the unpredictable to

emerge. More sophisticated ABMs, tend to be less abstract and incorporate more detailed repre-

sentations of the real world (Zhang, Valencia, and Chang 2021).

The earliest and most recognised historical influence on the development of ABMs is Cellular
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Automata (CA) (Wolfram 1983). CA is defined as “discrete spatiotemporal dynamic systems based

on local rules” (Miller 2009) and are considered the simplest framework for modelling complex

systems (Clarke 2014). CA are usually one- or two-dimensional lattices (Janssen 2005). They

have simple rules which generate complex behaviour; these rules describe the cell state for t + 1

by first considering the neighbouring cell states, where time is t and t = 0, 1, 2, ..., n. In their

simplest form, cells are representedwith binary states (0 or 1) (Wolfram 1983). CA is an established

methodology in its own right and has seen considerable application due to its simplistic nature.

However, this same advantage of simplicity can be considered a disadvantage. CA only uses a few

rules to update cell state depending on neighbourhood states and therefore has limited application.

Some complex behaviours do not depend solely on the neighbourhood but on internal factors.

So, to model more realistic situations agents need extensive capabilities more than CA provides.

Having said that, determining an appropriate methodology for research should always consider the

type of complexity the system possesses.

Following CA came Schelling-Sakoda-Sakoda’s Segregation Model (Schelling 1971), which is

widely accepted as the first agent-based model (Hatna and Benenson 2012). The model had two

main features: i) cells which represented residences in urban areas and, ii) two types of agents

which populated those areas. Throughout the simulation, agents would move residences based on

a satisfaction value they derived. This resulted in the clustering of the same types of agents within

the same neighbourhoods. In comparison to CA, Schelling-Sakoda’s model produced complex

behaviours which considered the environment and internal factors (i.e., the satisfaction or comfort

threshold values) which more naturally emulated the dynamics of the residential segregation of

ethnic groups in real life. The segregation model embodied what is now considered fundamental

features of ABMs: agent autonomy, emergent phenomenon, a shared environment and interactions.

The advantages of ABMs can be summarised as: i) ABMs can capture emergent phenomena, ii)

ABMs are a “natural” descriptor of systems and, iii) ABMs are agile and incredibly flexible.

Emergent phenomena are the observed result of interactions between individual entities, it is the

outcome of the system as a whole (Bonabeau 2002). An emergent phenomenon can have properties

dissimilar to the system’s individual parts, i.e. a traffic jam moves in the opposite direction to
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the vehicles that give rise to it. Additionally, when the investigation of individual behaviour is

essential, ABMs incorporate the use of thresholds and if-then rules. Individual behaviours may also

exhibit memory, path-dependence, learning and adaption and many other features that effectively

introduce heterogeneity (Bazghandi 2012).

Moreover, ABMs are natural descriptors of behavioural entities; from describing traffic jams,

and financial markets to simpler mechanisms such as people walking through exits, ABMs make

it possible to model reality closely (Eberlen, Scholz, and Gagliolo 2017). For example, in crowd

management studies with the aim of calculating the density of people in an area, it is more natural

to describe how people walk through doorways than to use equations. This is because density

equations only produce aggregate results of behaviours shown, whereas the agent-based model

approach enables the modeller to examine both aggregate and individual behaviours. Therefore,

ABMs are a great tool for modelling multi-scale systems and processes.

Lastly, flexibility refers to the adaptability of the ABM framework: the structure of an ABM

allows for the easy adjustment of model parameters according to the objective (Grimm, Berger,

Bastiansen, et al. 2006).

To summarise, this subsection provides an overview of ABMs. It introduces ABMs as a concept,

and then briefly outlines their history and influences. The following subsections will explore the

key features, characteristics and components which typically comprise ABMs.

2.4.1 Components, Features and Characteristics

There are three key components to any agent-based model: (1) agents, (2) their environment and,

(3) governing rules, behaviours and relationships. These components are visualised in Figure 2.1,

which illustrates an agent population attributed with a list of descriptive features. The environment

is the encompassing system inwhich the agents exist and varies from spatially to abstract constructs

(e.g., network structures, grid cells or attribute measures). Agents’ behaviours are determined by

governing rules which determine how agents interact and form relationships (Macal and North

2005; Abdou, Hamill, and Gilbert 2012). ABMs are fairly simple to implement, they rarely have

complicated architectures and designs but can accommodate complexities.
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Figure 2.1: The Agent-Based Model Framework

Now, depending on research objectives, disciplines and applications, these components are ad-

justable and can be computed to suit specific purposes. For this reason, it would be a challenge to

list every potential characteristic a model could have. However, there is some agreement on the

basic characteristics of each component.

As previouslymentioned, agents are a collection of autonomous decision-making entities. Agents

can be animate or inanimate, they can take any form from insects and humans to buildings, wa-

ter droplets and cars (Heppenstall, Crooks, See, et al. 2012). Some modellers class any type of

singular component, whether it be software, model or individual, as an agent (Bonabeau 2002).

Although there is no universal definition for an agent, some consider agents to have the following

characteristics:

• Autonomy: Agents are self-governed, they fulfil their own interests without the influence of

any centralised control (Jennings 2000). Agents can freely interact, consume and exchange
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information with others and the shared environment and make decisions independently of

each other (Wellman 2016).

• Heterogeneity: Agents can differ individually in their preferences, according to their own

rules of action (Gilbert 2008). When modelling human attributes, each agent may have

an age, sexual orientation, socio-economic status, etc. Agents need not be identical but

can be if preferred. Agent groups can be generated from initialisation, but in time agents

can form groups organically (Castle and Crooks 2006). Within the scope of this research,

heterogeneity will refer to agent granularity, which is the coarseness of descriptive attributes

and behaviours assigned in the agent component (Gao, Song, and Wang 2013). The more

detailed or granular agent attributes, the more heterogeneous; the coarser agent attributes,

the less heterogeneous agents are considered.

• Actions: Agents have full autonomy and are considered active as they can all influence the

outcome individually. Active agents tend to have the following features, but are not limited

to them:

– Goal-orientated or Pro-active: This refers to agent behaviour being influenced by the

instruction to achieve particular goals (Deadman and Gimblett 1994).

– Bounded Rationality: The rational-choice paradigm assumes agents are perfectly ratio-

nal with unlimited access to information and infinite analytical ability (Simon 2000).

Whereas bounded rationality places limits on agent knowledge and information, this

allows them to be inductive and adaptive (Parker et al. 2003).

– Mobility: Agents can move freely within an allocated space or be static. The type of

movement agents display would be dependent on the research objectives.

– Adaptation or Evolution: Modellers can design agents to ‘learn’ and make informed

decisions frommemory. Agent’s learning can occur on both an individual or aggregate

level, which changes the initial rules for behaviour (Casti 1997).

– Interactive: Agents can choose to interact amongst themselves and with their environ-

ment.
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It is important to note that agent characteristics and features are not limited to the ones outlined

above, they can be further customised in line with the research objectives and application.

As illustrated in Figure 2.1, agents can have a selection of features and characteristics. The space

in which agents exist and exhibit these features is known as their environment. Environments can

be spatial or abstract. A spatial environment could take the form of a geometrical space, where

agents have specific coordinates or locations. The distance between agents is then captured in the

continuous space by adjacency for grid cells or by connectivity in social networks (Heppenstall,

Crooks, See, et al. 2012). Abstract environments include spaces where agents are static, but infor-

mation regarding their behaviour and interactions can be captured numerically and visualised in a

time series or frequency distribution. Abstract environments are for models in which the location

is nonessential. ABM’s pliability allows for scenario-based experimentation, where variables and

the environment can be controlled, adjusted and then observed. When investigating multi-layer

and multi-dimensional system processes, ABMs methodology is flexible enough to capture the

dynamics (Brown 2006).

As mentioned above agents are self-governing, meaning they act according to a set of rules

that determine their behaviour, how they interact and form relationships. Rules are designed by

modellers and can be informed directly from expertise, extracted from published literature or as

the result of some numerical analysis. Agent behaviours can range from the simple, reactive “if-

then” rules to incorporating standard behavioural frameworks, a popular example being the Belief-

Desire-Intent (BDI) model (Macal and North 2008). Behaviours can also be more intricately de-

termined by some artificial intelligence or machine learning algorithms. This also allows for the

scheduling of behaviours to occur synchronously or asynchronously. Furthermore, rules can apply

to specific groups of agents, ranging in size from the entire population down to a single agent,

or can be hierarchical, where layers of rules may apply to smaller subsets of agents. Rules can

ensure agents achieve an outlined goal or make them act in complete ignorance of others (Malle-

son, Heppenstall, and See 2010). But if directed to, agents can interact with each other and their

environment and form relationships. Agents can form relationships to help achieve a goal or re-

lationships can be formed as the result of actions; as with the other components, the type of rules,
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behaviours and relationships modellers choose to incorporate must consider their specific objective

and application.

Agent-basedmodelling has been used to successfully emulate some real-life complexities. ABMs

have been used to investigate molecular systems in biology to better understand the pathways of

health and disease (Soheilypour and Mofrad 2018), simulate cancer growth (Wang, Butner, et

al. 2015) and bacterial populations (Gorochowski et al. 2012). ABMs have also been applied to

translational systems biology, which simulates drug and device design, clinical trials, and drug

effectiveness eventually to predict the effects of drugs on individuals (An et al. 2009). In ecology,

ABMs have been used to model habitats to better preserve and manage them (McLane et al. 2011),

the impact of human disturbances on wildlife (Bennett et al. 2009) and animal behaviour (Tang

and Bennett 2010). In social sciences, ABMs have simulated the impact of social influence (Ax-

elrod 1980) and collective behaviour (Epstein and Axtell 1996). In economics and finance, ABMs

have explored stochastic volatility on the pricing dynamics of assets (Franke andWesterhoff 2012)

and following the 2009 financial crisis ABMs have evaluated the impact warning signals of future

crises (Buchanan 2009).

ABMs have an extensive list of applications due to their multitude of advantages. Be that as it

may, as with any tool, agent-based modelling has its limitations. When modelling a phenomenon,

it is critical to ensure the ABM includes the optimal amount of detail required for the model to

serve its purpose (Couclelis 2000). This remains a difficult criterion to satisfy, specifically in

systems where there do not yet exist adequate methods to collect data. Although the world has

become more data-centric, the availability and accessibility to quality data which appropriately

describe real-world systems remain challenging to obtain and fully understand. This introduces

further challenges in validating and calibrating the model all of which limit its explanatory power.

Nonetheless, computational tools increase the utility of simulation models through customisation

and subsequent analysis to meet the requirements of the modeller (Parker et al. 2003).

ABMs facilitate the investigation of whole systems from the bottom up, which means consid-

ering individual components in significant detail. It is important then to evaluate model results

systematically in the form of sensitivity analysis. To ensure the model results are appropriately
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interpreted, the modellers must have a robust understanding of the results; typically this would

involve varying the initial conditions or model parameters (Axtell 2000). Assessing the model’s

robustness can be a computationally extensive and time-consuming task. Yet as computing power

increases, notably through the utilisation of tools like high-performance computing, model evalu-

ation for large systems can still pose a challenge.

Finally, the replicability of ABMs is rare and is seen as a difficult task. Replication involves the

careful examination of models and facilitates robustness analysis which results in increased model

reliability and increased literature supporting the observed output (Easterbrook 2014; Thiele and

Grimm2015). Replication and the reuse ofmodels wouldmake a significant contribution toABMs,

but model complexity complicates the task. To overcome this challenge, ABMs should be pub-

lished with clear documentation and source code. Even though there exist excellent frameworks,

such as the ODD protocol to help facilitate this, published models often lack the required detail

(Rollins et al. 2014; Thiele and Grimm 2015; Donkin et al. 2017). Despite these limitations, ABMs

continue to grow in popularity and remain a useful tool for exploring complex systems. However,

there remains notable work to address these limitations and strengthen the agent-based modelling

methodology.

2.5 Heterogeneity in Agent-Based Models

The previous section introduced ABMs by outlining their key features and characteristics. One

of the main advantages of ABMs is their ability to represent various characteristics (i.e. param-

eter values, attributes behavioural rules, etc.) through individual agents. This section will begin

by briefly discussing the application of ABMs specifically in Economics and Biology, to identify

some of the ways heterogeneity has been presented in research. Finally, to investigate the im-

pact of heterogeneity, this section broadly reviews comparative experiments of homogeneous and

heterogeneous scenarios in agent-based model literature. Most agent-based model literature does

not include comparative scenarios, in turn, the impact of heterogeneity and its significance within

those studies are unobservable.

Heterogeneity within the social sciences refers to individual features and attributes that create
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differences within populations (Xie 2013). As aforementioned, a prominent feature of ABMs is

heterogeneity, which can be used to model individual attributes such as age, gender, and social or

health status. The choice of attributes depends on the specific research objectives. Heterogene-

ity can be presented not only through agents but in their environments and behaviour. Due to

this diversity, successfully capturing some attributes in a controlled experiment poses a difficult

challenge, most especially when exploring the effects of individual behaviours on a macro-scale.

Investigating relationships between individual behaviours and societal macroscopic regularities

can be considered the fundamental reason and ultimate motivation for continued research into

modelling human behaviour (Epstein and Axtell 1996).

In economics, researchers assume people form rational expectations (Muth 1961). i.e., people

will usually make rational decisions assisted by their access to unlimited information and posses-

sion of perfect analytical skills. Thus, for a significant amount of time, researchers would only use

representative agents in economic models (Nature 2009). A representative agent assumes that all

agents are identical, which is a fundamentally untrue assumption to apply when modelling pop-

ulations. This homogeneous approach to population modelling in economics failed to consider

how inherent differences in people greatly impact the decisions they make as consumers. This

was highlighted in the wake of the 2007/08 financial crisis, where differences in decision-making

and preferences affected the decisions consumers made in the financial markets (Farmer and Foley

2009). However, Tesfatsion (2002) proposed a new methodology for the effective modelling of

economic processes called agent-based computational economics (ACE). Rather than modelling

agents using the same decision-making process, they allowed agents to choose from a set of pos-

sible forecasting strategies. Arthur et al. (1996) created a model where agents could choose from

a set of possible forecasting strategies to predict stock prices. They achieved this by assuming

agents had bounded rationality i.e. the idea that agents had limited knowledge of market forces. In

ACE and heterogeneous-agent models (HAM), heterogeneity is introduced through the bounded

rationality assumption and allows for agents to choose their decision-making process from a set

of possible strategies. The consequence of this were studies which produced similar dynamics to

that observed in real-world financial systems (Hommes 2006; LeBaron 2006; Arifovic and Duffy

2018).
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Agent-based modelling in biology has many applications, primarily due to the characteristics

listed in the previous section. Specifically when modelling in epidemiology, ABMs can examine

the progression of a disease through heterogeneous populations. In ABM models of epidemiol-

ogy, it is common to include attributes such as health statuses, social networks for contact trac-

ing and spatial/geographical areas. The most important element of modelling epidemics spatially

is how the infection spreads (Epstein 2006). Perez and Dragicevic (2009) created an ABM that

integrated geographic information systems (GIS) to simulate the spread of measles in an urban

environment, as a result of individuals’ interactions. They considered the nonlinear behaviour of

epidemic spreading by creating a population of agents who were involved in a sequence of het-

erogeneous stationary and mobile activities. The stationary activities were at fixed locations, such

as a home, schools, workplaces, and commercial and shopping areas, whereas the mobile activi-

ties included daily commuting activities of individuals through the public transportation system.

Moreover Carley et al. (2006) developed a multi-agent network numerical model which was used

to simulate the malicious dispersion of 62 diseases. An interesting agent attribute they included

was a display of symptoms, they ensured that not every agent with the same disease presented

the same symptoms. In epidemic ABMs, to model the spread of diseases means to model agent

interactions; not only with each other but with their environment. Therefore, heterogeneity can

be represented in both agent individual attributes (i.e., socio-demographic factors, health statuses,

symptoms, social network, etc.) but is also presented spatially (i.e., specific geographical loca-

tions, stationary and mobile activities) (Teweldemedhin, Marwala, and Mueller 2004; Cliff et al.

2018; Hunter, Mac Namee, and Kelleher 2019).

Although this section considered just two applications of ABMs briefly, they outline credible

ways in which heterogeneity can be represented, as its presence is critical to the design of successful

interventions of any complex systems (Wallace and Ogawa 2015). From this brief discussion, two

challenges when capturing heterogeneity have been identified: First, there is no standard definition

for heterogeneity, nor is there a framework or guideline that constitutes the types or uses across

disciplines. The second challenge lies in the discerning of an appropriate level of heterogeneity to

include inmodels, that would adequately represent the given research objective (Smajgl, Bohensky,

and Bohnet 2007). That being said, deriving an all-encompassing definition of heterogeneity that
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applies to all possible ABMs across various disciplines and purposes is an impossible task; neither

could an appropriate level of heterogeneity be specified, and it is important to recognise this.

However, what is clear is the following: specifying the appropriate degree of agent hetero-

geneity which satisfies specific research objectives remains a fundamental challenge. When the

research objective or modelling goal is to explore macro-level consequences of theoretical pref-

erences or behaviours, then the researcher may prefer to formulate behaviours that correspond

to theory. However, if the goal of the model is to understand the micro-level consequences of

real-world phenomena, then the formulation of agent behaviours must be empirically defensible

(Hedström 2005; Bruch and Atwell 2015). Most real-world complex systems contain varying de-

grees of heterogeneity due to differences in the component properties. These differences can have

radical impacts on the system’s functioning and overall dynamics (Fisher and Pruitt 2020). When

modelling systems which relate to humans, an animate object, it is important to consider that indi-

viduals are diverse in their biology (i.e., genetics, microbiome, blood types), behaviours (i.e., psy-

chology, personality, decision-making propensities) and demographics (i.e., socioeconomic status,

racial identities, age, sex). Thus accommodating such diversity creates a rich representation of the

system and will result in successful interventions.

To facilitate the investigation into the impact of heterogeneity, the following section contin-

ues the review of the literature but differentiates between the agent type, as each type has unique

attributes that structurally describe each agent. Two agent types are proposed: animate and inan-

imate agents. Agents are representations of autonomous entities within the boundary of a model,

they can take on any form or structure (i.e., humans, buildings, cars, land parcels, water droplets

or insects). Humans are animate, with an exclusive list of structural descriptors (i.e., age, gender,

weight etc.) that would be different to structural descriptors of inanimate agents like organisations

or agricultural products (i.e., size, density and location). It is important that these differences in

structural descriptors are acknowledged, as they each have a significant impact on system dynam-

ics. However, given the scope of this research, this section will only present the approaches in

which heterogeneity has been displayed in animate agents.
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2.5.1 Animate Agent Heterogeneity

As previously mentioned, an example of animate agents are humans and there are a plethora of

ABMs which have studied population dynamics across multiple disciplines. For example, in stud-

ies which are used to simulate urban land-use change phenomena, such as residential segregation,

agents are categorised by their preferences for co-ethnic contact. These types of models tend to be

spatial, as the interactions agents have with each other are equally as important as the interactions

they have with the environment.

Brown, Robinson, et al. (2008) modelled the complex processes of land-use and land-cover

change in exurban parts of Southeastern Michigan. Their model described the evolution of the

urban form as a consequence of residential preferences. In their agent-based model, there were

four agent typologies or actors: residential land purchasers, developers, farmers and townships.

All actors had their own specific behavioural rules which corresponded with their typology. A

township represented an area, which was divided into farms. Farmers would then offer up parts

of their farms for sale, which were ill-suited to their needs i.e., poor-quality soil land or areas lo-

cated near county roads. Developers would determine how and what the area would be used for

depending on lot size, effects on tree cover and proximity to amenities. Additionally, develop-

ers are driven by residential demand for particular lot types. Residential land owners or residents

were characterised with variable preference weights for environmental characteristics and heuris-

tics describing their desired lot type. Their preference weights and lot choices were determined

by their socioeconomic characteristics, including income, parental status, and whether or not they

belonged to an environmental group. These heterogeneous attributes and preferences were derived

from survey responses and factor analysis (Fernandez et al. 2005). The residential agent’s main ob-

jective was to maximise their utility, but their rationality was bounded by incomplete information

about the real estate market. Following some analysis, Brown, Robinson, et al. (2008) found the

simulations which included heterogeneous residential preferences exhibited more sprawling and

fragmented patterns than the homogeneous runs; agents achieved higher levels of average utilities.

They concluded that the distribution of residential preferences and behaviours affected settlement

patterns; this indicates that the inclusion of different agent types and corresponding typologies
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significantly impacted the overall dynamics of the model. In other words, agent heterogeneity

is captured in both the categorisation of agent types e.g., having four agent typologies: residen-

tial land purchasers, developers, farmers and townships. Also, agent heterogeneity is captured

in the variability in the agent attributes e.g., residents having different preference weights indi-

cates a desired environment choice unique to the agent. By including comparative homogeneous

and heterogeneous agent scenarios in the study, the impact of agent heterogeneity on residential

preferences was made observable.

In addition, Wahyudi, Liu, and Corcoran (2019) investigated different land developers’ be-

haviours and their consequences on urban development in Jakarta, Indonesia. In their agent-based

model, developers were the only agent type but there were three typologies: small, medium and

large developers, where their size denoted capital resources, and lending capacities and develop-

ment preferences. The developer’s characteristics were determined by interviews with experts in

urban development, literature studies and newspaper articles. They compared the results of homo-

geneous simulation (i.e., scenarios where all agents were either small, medium or large), to hetero-

geneous simulations (i.e., an equal hierarchical mix of developer typologies); they found that each

developer typology produced significantly diverse spatial patterns. It confirmed that urban areas

developed by small developers tend to have a small disconnected shape with high edge density and

low clumpiness index (McGarigal and Marks 1995; Deng et al. 2009). Whereas, large developers

produced more connected urban patterns with low edge density and high clumpiness index. In

the heterogeneous cases, the spatial patterns produced were more mixed and complicated. There

were also noticeable differences in simulated land prices: when compared to Jakarta’s initial land

value map in 1994, the marginal land value increased more in the heterogeneous scenarios than in

the homogeneous scenarios of single-type agents. Wahyudi, Liu, and Corcoran (2019) found that

larger developers were capable of selecting land in the most profitable locations, whereas smaller

developers chose smaller blocks of land to develop, this resulted in a fragmented distribution of

new urban areas. Despite modelling just one agent type, the diversity in typologies accounted for

differences amongst developers which had rarely been included in other residential segregation

models. With that said, researchers agree that developers play a critical role in shaping new de-

velopments, there are seemingly few studies that have attempted to model developer’s behaviours
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to understand their direct impact on urban growth (Coiacetto 2001). As did the previous study,

agent heterogeneity captured in the categorisation of agents into typologies and the introduction of

variability in typology attributes proved to significantly impact the model dynamics and the overall

results.

Moreover, Bruch and Mare (2006) used social survey data from the Multi-City Study of Urban

Inequality (MCSUI) to build an agent-based model to investigate racial attitudes and racial residen-

tial segregation in contemporary urban America. The survey data identified some consequential

results: at the time it revealed the overall unwillingness white people possessed to live in neigh-

bourhoods with substantial presence of black people. Therewithal, they discovered a pattern that

white people shared in neighbourhood preferences: the number of white people monotonically

declined with an increase in black people. They categorised agents by two typologies: agents

were either white or black. The monotonic pattern in white people’s preferences was assumed to

mean homogeneity in neighbourhood preferences. Therefore, white agents shared similar prefer-

ence thresholds and the same average level of tolerance. Bruch and Mare (2006) compared dif-

ferent preference functions (i.e., Schelling-Sakoda threshold, Continuous Linear and Non-Linear,

Nonzero Probability and the Staircase function) using the same average level of tolerance and

identified differences in neighbourhood formation patterns. In comparing preference functions, it

allowed for an evaluation of the underlying assumptions which governed agent mobility choices.

In the Schelling-Sakoda threshold and staircase function simulations, the assumption that agents

were indifferent to neighbourhood preferences resulted in higher levels of segregation. While

in simulations which used the continuous and nonzero probability functions, the assumption that

agents were more sensitive to changes in the neighbourhood proportion of their group, led to lower

segregation. In that same way, Bruch and Mare (2006) simulated segregation with heterogeneous

neighbourhood preferences, but found that allowing for heterogeneity did not change the results.

In fact, the segregation observed in heterogeneous agents was identical to those observed for ho-

mogeneous agents.

On the other hand, Xie and Zhou (2012) treated the monotonic pattern in white people’s pref-

erences as different levels of tolerance for black neighbours. They introduced heterogeneity by
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formulating six agent typologies, all with different tolerances which were informed by the MCSUI

dataset; and found it significantly impacted the model results when compared to the Bruch-Mare

model. They found that in the long term segregation under the heterogeneous model was notably

lower than the Bruch-Mare results. Xie and Zhou (2012) attributed the difference to there being

a small subset of the white agent populations with higher tolerances of the other race, which low-

ered segregation long-term. These studies examined the same phenomena, using the same data

and methods, yet they produced significantly different results. The differences observed relate to

how heterogeneity was presented: in the Bruch-Mare model agent heterogeneity was demonstrated

through the varying neighbourhood preferences, compared to the Xie-Zhou model which formally

categorised agents by tolerances. These models illustrate a critical point to consider: how agent

heterogeneity is presented can impact model results. Although, heterogeneity in varying neigh-

bourhood preferences had no impact on segregation in the Bruch-Mare model, heterogeneity in

tolerances from the Xie-Zhou model changed the observed dynamics of the phenomenon. These

studies capture agent heterogeneity in the categorisation and variability of typologies and attributes,

but they also demonstrate how the choice of variable used to present agent heterogeneity can im-

pact model results e.g., Bruch and Mare (2006) interpreted the monotonic pattern in preferences

as homogeneous neighbourhood preferences, whereas Xie and Zhou (2012) interpreted the pattern

as different levels of tolerance. Ultimately the interpretation of the monotonic patterns produced

different model results.

Filomena et al. (2022) simulated pedestrian movement in urban areas incorporating behavioural

heterogeneity in pedestrian route choice strategies using agent-based models. They studied how

variation in agent attributes could impact movement patterns using survey data collected in Mün-

ster, Germany. Agent heterogeneity was presented in agent attributes: they identified six clusters

with differing likelihoods of engaging in walking trips for different purposes. When compared to

the homogeneous population where all agents shared a similar likelihood of walking trips, Filom-

ena et al. (2022) observed very few differences in pedestrian flows in the heterogeneous case with

six agent typologies. They claimed that movement patterns which emerged from the heterogeneous

simulations were more plausible than in the homogeneous simulations. However, in running their

model multiple times there were no observable differences between the homogeneous and het-
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erogeneous simulations on this global urban scale; a phenomenon observed in previous works on

residential choice (Buchmann, Grossmann, and Schwarz 2016). Although the impact of hetero-

geneity in pedestrian route choice is seemingly insignificant here, there remains an effort to identify

other key individual aspects for which its heterogeneity may alter the model dynamics. As in the

Segregation studies, how agent heterogeneity is presented matters too. An example would be to

investigate the impact peer influence would have on pedestrian route choice strategies, which is

evident in studies examining emergency evacuations. Generally speaking, choices are rarely made

in isolation, there are always contributing factors. It is well-established that exposure to others’ de-

cisions may influence an individual’s own (Baddeley 2010), specifically on route choice in urban

networks or built environments (Papadimitriou, Yannis, and Golias 2009; Kinateder et al. 2014).

As mentioned above, the impact of heterogeneity is insignificant here, but this may depend on how

it is presented. In addition to that, the impact of heterogeneity is observable in cases with agent

interaction as they tend to lead to surprising deviations in the resulting patterns (Brown, Page, et al.

2005; Railsback 2019). It is possible that in adapting the model to accommodate the above, the

impact may become observable in pedestrian movement models. This study demonstrates the cap-

turing of agent heterogeneity in the categorisation and variability in typologies and attributes. In

addition, it presents a supporting case for the use of comparative homogeneous and heterogeneous

scenarios. Although the clustering identified from the survey data presented motivation to model

agents heterogeneously, it was only in modelling both homogeneous and heterogeneous scenar-

ios that an impact could be observed. This comparative study presents as an example whereby

increased granularity or heterogeneity fails to further enrich the model’s explanatory or predictive

power.

Similarly, Muhammad et al. (2018) employed a microscopic approach to investigate crowd sim-

ulation using flocking behaviour characteristics (Reynolds 1999). The microscopic approach pre-

sented heterogeneity through variability in agent attributes, whereas the macroscopic approach

would assume crowds were homogeneous to study aggregate effects. Their microscopic model

categorised agents into two agent typologies: independent or cooperative agents. Independent

agents were affected only if they observed another agent being influenced to respond differently

to their environment. In this way, just the presence of an influential agent could affect decision-
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making but not result in cooperation. Cooperative agents were considered dependent, in that their

behaviour would be directly impacted by inter-agent communication; they were either leaders or

followers. For navigation, each agent used its own finite-state machine to seek out their destina-

tions, but they were all equipped with different speed capabilities. In simulations where agents

were homogeneous in speed and relations, there was the least number of collisions; and on aver-

age, these simulations had shorter running times. In comparison to the heterogeneous simulations

with variance in agent’s speed and relations, there were a higher number of collisions and longer

running times. Muhammad et al. (2018) proposed the differences in simulation running times were

due to agents taking longer to navigate from the start to the destination. Interestingly, they found

that leader agents tended to have dense crowds of follower agents; the denser the crowds around a

leader, the more collisions were experienced. Choosing to investigate flocking behaviour micro-

scopically, allowed the researchers to examine the individual interactions which lead to a display

of collective behaviour. Another fascinating viewpoint: outside of the heterogeneity initialised

into the model through speed and relations, the heterogeneity observed evolved. This was indi-

cated by the increased collision rates, which changed agents’ speed and relations i.e., independent

agents being influenced into exhibiting Cooperative ”follower” behaviours. Further study into

generative heterogeneity, especially in crowd simulations, is imperative. Agents within the het-

erogeneous scenario not only had varying speeds and relations, but they also had their finite-state

machine leading to heterogeneous interactions with the environment and each other. As collective

behaviours, such as crowds, result from individual interactive objects, monitoring heterogeneity

that was generated may have uncovered further significant results. In this study, modelling agent

heterogeneity in crowd simulations produced realistic simulations of high-density crowds.

Furthermore, Entwisle et al. (2016) examined the effect of climate shocks on migration in rural

agricultural areas using a combination of empirical survey and ethnographic data from the Nang

Rong District, Thailand. They categorised agents into five types: individuals, land parcels, house-

holds, social networks, and villages. The model explored agent migration response to four differ-

ent climate scenarios. They investigated the effect individual characteristics had on migration and

found very few differences in migration rates in homogeneous and heterogeneous simulations. The

individual characteristics considered were attributes such as age, gender, marital status and other

44



2.5. HETEROGENEITY IN AGENT-
BASED MODELS

CHAPTER 2. AGENT-
BASED MODELS

socio-demographic descriptors. Household agents had attributes such as assets, land ownership,

centrality of the household in village networks, and ties to the wealthy. Land parcels had attributes,

such as size, distance from the village, flooding potential, land use type, and soil suitability for

various agricultural uses. Finally, villages had attributes that aggregate individual, household, and

parcel attributes (e.g., population size, migration prevalence) as well as a social network variable

(connectivity). This suggested that while heterogeneous agent characteristics were an important

component of migration, they did not significantly impact migration response to extreme climate

scenarios. Entwisle et al. (2016) reasoned that most rural agricultural areas had pre-existing con-

ditions to migrate even when experiencing ‘normal’ weather; in this case, migration could not be

established as a direct response to climate change. Further, they argued that the true impact of

heterogeneity was dulled by the pre-existing condition of the environment. To identify the impact

agent heterogeneity has on migration due to climate shocks, a comparative study of areas not typi-

cally characterized by high migration in response to extreme climate would need to be undertaken.

Although the impact of agent heterogeneity is seemingly insignificant it does raise another impor-

tant point: the presence of detected pre-conditions can affect the observability of the true impact

of agent heterogeneity on system dynamics.

In less spatially explicit ABMs, specifically economic or financial models, heterogeneous inter-

acting agents have been richly documented (Chiarella, Dieci, and He 2008; Hommes and Wagener

2009; Lux 2009; Westerhoff 2009). Standardly, economic models assume an individual’s expecta-

tions are formed rationally (Muth 1961). To form rational expectations means on average individu-

als make rational decisions, informed by access to unlimited information and possession of perfect

analytical skills. For some time, only representative agents informed by the rational expectation

assumption were used to observe and study the dynamics of the macroeconomy (Nature 2009). By

using representative agents, researchers could assume homogeneity to simplify the complexities

of individual differences introduced to consumers’ interactions with the real economy. However,

Tesfatsion (2002) proposed agent-based models as an effective modelling technique for economic

processes, called agent-based computational economics (ACE). In ACE, rather than modelling a

single agent as a representative, the behaviour of whole populations through multiple agents could

be observed. The individual economic interactions occurring on a micro-level could be linked
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to what was observed on the macro-level. This research area demonstrates the impact and signifi-

cance of agent heterogeneity as researchers have been able to reproduce market dynamics observed

in real financial markets.

Bertella et al. (2014) used an agent-based model to study the impact of behavioural bias in fi-

nancial markets. They constructed an artificial stock market comprised of two agent typologies:

fundamentalists and chartists to model different decision-making processes. Given their typology,

each agent would utilise a specific strategy to evaluate stock prices; in addition to this, each agent

would have different memory length and confidence levels. Fundamentalist agents would estimate

the future value of the stock by using the future Discounted Dividend Flow Model (Gordon and

Shapiro 1956; Gordon 1959), whereas Chartist agents keep track of past average prices to inform

future decisions and they can either be trend followers or trend contrarians. To explore the dynam-

ics of the artificial stock market, Bertella et al. (2014) carried out a series of simulations. In the

homogeneous simulations, agents were all fundamentalists with the same decision-making strategy

and they found the fundamental value of asset prices fully reflected all the information available

to market agents. In the heterogeneous simulations with chartist agents that had varying memory

lengths, they observed excess volatility and kurtosis, in agreement with real market fluctuations. In

reproducing behaviours observable in real-world financial markets, Bertella et al. (2014) proposed

differences in memory lengths as the main source of fluctuations in asset stock prices. Agent het-

erogeneity had a significant impact on model results, they demonstrated differences in how people

process information and their confidence, which could directly influence real-world asset stock

prices.

In further examples, specifically models which utilise information diffusion frameworks, agent

heterogeneity has played an integral role in understanding how new ideas, technologies and prac-

tises can spread throughout a social system. This spread or diffusion acts as a movement flow

between the source and an adopter, usually through some interpersonal communication or wider

influence e.g., mass media (Rogers, Singhal, and Quinlan 2014). Most research on innovation dif-

fusion has been based on the seminal work of Bass (1969). The Bass model contrives the aggregate

level of penetration of a new product based on two communication processes: external influence
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from advertising or mass media and internal influence from word-of-mouth. All consumers follow

the same decision-making process described as a probability to adopt the new product during a

time and depend linearly on internal and external influences. The Bass model and other variations

have been utilised to explain different aspects of diffusion (Mahajan and Muller 1979; Mahajan,

Muller, and Wind 2011), and they hold a significant amount of value. However, a shortcoming

of Bass is the assumption that all consumers are homogeneous; it did not consider how a con-

sumer’s decision-making, communication and influence could evolve or change over time. One

of the first examples of agent heterogeneity in innovation diffusion modelling was Chatterjee and

Eliashberg (1990). Chatterjee and Eliashberg (1990) presented an analytical model based on indi-

vidual decision-making that determined the adoption of agents one by one. The decision to adopt

was dependent on a set of consumer characteristics e.g., perception of innovation, personal pref-

erences and perceived reliability of the information they received. Building on this, Delre, Jager,

and Janssen (2007) built an agent-based diffusion model which studied how social processes could

affect diffusion dynamics and how the speed of the diffusion depended on the network structure

and on consumer heterogeneity. Agent heterogeneity was introduced through the allocation of

personal thresholds which determined whether they would choose to be involved or not in a group

behaviour. Delre, Jager, and Janssen (2007) found when compared to homogeneous simulations

where agents shared the same threshold, the heterogeneous simulations resulted in faster diffusion

speeds. The Bass Model remains a popular method used to explore information diffusion, most

especially when examining aggregate effects. However, in proposing that consumers as hetero-

geneous, the observable dynamics of information diffusion change. This suggests that the impact

of agent heterogeneity may be dependent on the object of study, it could be that homogeneous

assumptions most appropriately capture system dynamics.

Comparably, there is a significant amount of research exploring the impact of heterogeneity

in network structures in innovation diffusion models. Classically, an aggregate diffusion model

would assume that innovation adopters would have the same chance of communicating with every-

one within the network; whereas newer models allow for heterogeneous interactions which assume

innovation adopters may have a limited set of interactions within the social network (Midgley, Mor-

rison, and Roberts 1992; Valente 1995). Bohlmann, Calantone, and Zhao (2010) studied the impact
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interpersonal communication between adopters could have on the diffusion process; their goal was

to understand how adopter’s network connections could affect innovation diffusion. The two types

of heterogeneities they addressed were structural and relational. Where structural heterogeneity re-

ferred to the different social network structures that could arise amongst a select number of adopters

but not all (Thieme 2007); and relational heterogeneity emerged from varying strengths and de-

grees of interpersonal communication amongst connected adopters (Goldenberg, Libai, andMuller

2002). Bohlmann, Calantone, and Zhao (2010) found network topology had a more pronounced

effect on diffusion processes for higher adoption thresholds (i.e., the more difficult innovation

is to diffuse). To investigate relational heterogeneity, the agent population was divided into two

types: innovators and followers. In application, the nature of relational heterogeneity, specifically

for marketing efforts, suggests taking advantage of the most influential communicators to avoid a

short initial period of sales followed by a noticeable trough. To avoid these troughs they suggest

targeting the innovators or ‘opinion leaders’ of the community first to ensure the follower agents

adopt and eventually saturate the market. The impact of agent heterogeneity within the context

of this product diffusion study was significant; this study proposed that only understanding the

communication influences within a heterogeneous network structure, could inform decisions re-

garding effective marketing decisions be made. Moreover, if agent interactions generate network

effects (Bonabeau 2002), then the types and effects of heterogeneity found in network sciences

could be applied to this study of heterogeneity in agent-based models. Structural heterogeneity

refers to the structural changes that would arise as a direct result of agent heterogeneity; relational

heterogeneity would emerge directly from agent interactions. However, as individual behaviours

in agent-based models are considered nonlinear, there may be difficulty in distinguishing between

the effect of structural and relational heterogeneity.

In light of the above analysis, several critical points to consider when investigating the impact of

agent heterogeneity have been formed. Firstly, comparative studies of homogeneous and heteroge-

neous scenarios should be considered a standard; only in doing so can the impact of heterogeneity

be observed. Secondly, agent heterogeneity is often presented in two forms, which should be

considered non-mutually exclusive: categorisation and/or variability of the agent population and

attributes. Studies which used categorisation (typologies) would categorise agents by a specific
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agent attribute; to do this there would have to be an indication of an underlying assumption that

agent characteristics or attributes were correlated. Studies which used variability would also dis-

tinguish agents by typology and in addition, would vary agent attributes and characteristics values,

informed by real or simulated data. Thirdly, agent heterogeneity is introduced in the model ini-

tialisation stage but rarely is the evolution of the initial heterogeneity ever monitored. The type of

heterogeneity which was developed from initial conditions can be referred to as generated hetero-

geneity. Fourthly, the choice of the variable used to demonstrate agent heterogeneity should be

considered when evaluating the impact of heterogeneity on results. Fifthly, there may be some un-

detected preconditions between agent attributes and characteristics that could affect the observable

impact of agent heterogeneity on model results. If agent heterogeneity is seemingly insignificant,

researchers should consider the potential existence of underlying relationships that could obscure

the observability of significance.

The sixth and final point, the target system (i.e., the object of study or the system beingmodelled)

and research purpose are factors to consider when choosing between homogeneous or heteroge-

neous assumptions, it is possible that the target system may have a predisposition to one more so

than the other. Though these points are critical, they only cover studies with animate agent ob-

jects. In addition, this review includes spatially explicit ABM literature but it does not consider

the impact differences in the spatial location of an agent (and the location’s attributes) have on the

model results. Including heterogeneity in location attributes veers the study from the agent com-

ponent to the environment component1. As the objective of this thesis is to establish the impact

of agent heterogeneity exclusively, the emphasis is on agent components and not the environment

components of ABMs.

2.6 Summary - Agent-Based Models

This chapter presented agent-based models as a method for modelling complex systems. The pop-

ularity of agent-based models has been attributed to their flexibility in application; this chapter

proposed heterogeneity as its source. Within the scope of this research, heterogeneity was defined

1ABM components were outlined in Section 2.4.1.
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as agent granularity, which would refer to the coarseness of descriptive attributes and behaviours

assigned in the agent component (Gao, Song, and Wang 2013).

Having established the agent-based model framework, the role and potential impact heterogene-

ity may have on system dynamics, the following chapter will briefly review the literature relating

to modelling emotional contagion as an agent-based model.
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3.1 Chapter Overview

The objective of this research is the study the impact of heterogeneity in agent-based models using

emotional contagion as a case study. To develop this model, a comprehensive understanding of

the dynamics of contagion is imperative. This chapter will explore models of emotional contagion

as collective behaviour, with a focus on infectious disease frameworks. To begin, Section 3.2 will

outline forms of collective behaviour. Section 3.3 will explore the proposed theories of collective

behaviour with a focus on contagion theory. Lastly, Section 3.4 will outline compartmental models

as an approach to modelling emotional contagion.
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3.2 Collective Behaviour

A recent example of collective behaviour occurred during the early stages of the global pandemic

in 2020. As a result of this period of uncertainty, individuals experienced extreme cases of fear,

panic and anxiety (Lins and Aquino 2020). In response to the media coverage of global shortages

of toilet paper, hand sanitiser and food supplies, there was a sharp increase in the purchase of these

items (Bentall et al. 2021). Panic buying is defined as a behavioural phenomenon that occurs in

response to environmental stressors (Cooper and Gordon 2021). In essence, it is a display of col-

lective behaviour, an instance where the behaviours of heterogeneous or homogeneous populations

governed by their social norms are abandoned, and the population combine to present a singular

common display of behaviour.

An objective of collective behaviour research is to both understand and predict how collec-

tive patterns emerge from the behaviour and social interactions of individuals (Jolles, King, and

Killen 2020). Collective behaviour research is an interdisciplinary field which has utilised quanti-

tative approaches of physicists, computer scientists and mathematicians to investigate underlying

mechanisms (Ioannou and Laskowski 2023). Through the theoretical and experimental work of

social scientists, they agree that many complex collective behavioural patterns can emerge through

self-organising processes using simple interaction rules (Bonabeau et al. 1997; Parrish, Viscido,

and Grünbaum 2002; Sumpter 2006; Herbert-Read 2016). Collective behaviour has been studied

in animal populations (Sumpter 2010; Aplin et al. 2014; Ward and Webster 2016; Hughey et al.

2018) and humans (Dyer et al. 2009; Goldstone and Gureckis 2009; Smelser 2013; Whiten et al.

2022) using agent-based models (Macy and Willer 2002; Kleinmeier, Köster, and Drury 2020).

Thus, this study of collective behaviour, specifically the modelling of emotional contagion, serves

as an adequate example that enables the display of homogeneous and heterogeneous population

tendencies.

3.2.1 Forms

This section will briefly present different forms of collective behaviour and the extent proximity

is a useful criterion in the digital age. The most common forms of collective behaviour can be
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differentiated by whether or not the actors need to be in close proximity. Crowds, panics, riots and

disaster behaviour involve physical interaction between the participants (Tilly 1992). In contrast,

rumours, mass hysteria, moral panics, and fads and crazes, are not constrained by geographical

locations or physical proximity, the only requirement for participants is a shared belief or concern.

This section will only explore a few examples of the forms and events of collective behaviour,

therefore this review should not be considered exhaustive.

The most obvious form of collective behaviour, particularly where physical proximity and ge-

ographical location are present is a crowd. Crowds are the only form of collective behaviour

acknowledged and included by all scholars and authors. Blumer (1995) identified four types of

crowds (i.e., large groups of people): the casual crowd, the conventional crowd, the expressive

crowd and the acting crowd. When defining these crowds, Blumer considered the varying degrees

of emotional intensity they may exhibit.

Casual crowds are groups of people with little in common, and no shared purpose or identity.

Participants of the casual crowd scarcely interact; an example is people gathered at a pedestrian

crossing along a busy road. In this case, a temporary common goal between participants to cross the

road exists, but quickly dissipates once the goal has been reached. Goode (1992, p.22) emphasised

that participants of causal crowds have nothing in common besides their physical location and,

therefore may not truly be displaying collective behaviour as participants still follow conventional

behavioural norms.

Conventional crowds are groups of people gathered for a specific purpose or planned event.

Some examples include participants attending a movie, play, concert or lecture. As with casual

crowds, Goode (1992) found participant behaviours to be relatively structured and would conform

to the appropriate set of norms for the situation.

Expressive crowds gather to be excited and to express one or more emotions. These types of

crowds include religious gatherings, political rallies and festivals such as Mardi Gras. The dif-

ference between conventional and expressive crowd activity lies in how participants view the as-

sembly. In conventional crowds, participants being members of the crowd is secondary or irrele-

vant; their primary objective would be the consumption of the specific purpose or planned event.
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Whereas in expressive crowds, participants desire to be members of these crowds and therefore

participate in associated behaviours, by cheering, stomping, shouting and clapping (Goode 1992,

p.23). It’s important to note that the features of conventional and expressive crowds are not always

definite. Conventional crowds may become expressive when displaying any emotional expression,

as long as the crowd engages collectively. This suggests that crowds and crowd activity are not

fixed behaviours and should be considered fluid.

The fourth and final crowd identified by Blumer was an acting crowd. Acting crowds would

gather energetically to ‘act on’ a specific goal, they could be characterised as violent and destruc-

tive types of crowds as participants usually act on the basis of ‘aroused impulse’. An example is a

“mob” (Couch 1968). Mobs are an unruly and volatile emotional crowd that commit to pure vio-

lence, a recent example is the Pro-Donald Trump mob that stormed the US Capitol in 2021. Also,

the killing of Mark Duggan by UK police in 2011 set off a wave of violence across the country. In

addition to mobs, panic is an example of an acting crowd. This type of crowd acts on a sudden re-

action that is often self-destructive. Section 3.3 will explore panic or emotional contagion in detail,

but examples of panicked crowds include incidents where participants sustain life-threatening in-

juries during stampedes or evacuations. Acting crowds can grow exponentially in size and quickly

out of control, to the extent of full-scale riots. Given the ideas discussed above, acting crowds are

in effect the more violent extension of expressive crowds.

Although Blumer’s work is widely accepted and considered the foundation of crowd behaviour

studies, some alternative forms have been proposed. For example, McPhail and Wohlstein (1983)

distinguished a fifth type of crowd, the protest crowd from the expressive crowd. As implied

by its name, a protest crowd is a group of people gathering together to protest political, social,

cultural, or economic issues. Some examples include demonstrations, marches, rallies and sit-ins.

Further, Lofland (1991) proposed crowds as the origin of specific shared human emotions. Lofland

identified three types based on three fundamental human emotions: fear, joy and anger. From fear,

a panicked crowd could form; from joy, a crazed crowd; from anger, a hostile crowd.

A further form of collective behaviour contingent on geographical and physical proximity is

disaster behaviour. When disasters occur, for instance, hurricanes, earthquakes, fires and floods,
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standard routines are disrupted and survival is prioritised. During and after disaster impact, partic-

ipants have to manage fears and anxieties whilst looking after their own and others’ safety (Miller

2014, p.250). An intuitive belief regarding disaster behaviour is a display of selfish, individualis-

tic and exploitative behaviour. However, current knowledge of disaster behaviour indicates that

participant’s reactions are more complex and context-dependent. Participants present diverse be-

haviours during a disaster depending on the severity of a hazard; meaning they tend to exhibit a

wide range of unexpected reactions due to panic and stressful situations (Bakhshian and Martinez-

Pastor 2023). Disaster behaviours can also change over time, whereby initial solidarity and altru-

ism previously proposed by Goode (1992, p.181) can descend into social disintegration and decline

(Ntontis et al. 2020).

To point out, the forms of collective behaviour outlined so far involve interacting participants

within physical proximity discussed. As proposed earlier, however, some forms of collective be-

haviour are not constrained by the need for interaction or shared geographical locations. In spite

of that, sociologists agree that these participants display collective behaviour through their shared

beliefs and perceptions. Collective behaviours that involve shared beliefs and perceptions can be

categorised into the following two groups: 1) rumours, mass hysteria, and moral panics; and 2)

fashion, fads and crazes.

Rumours are uncorroborated and unverified assertions unaccompanied by evidence (DiFonzo,

Bordia, and Rosnow 1994). Rumours can be presented in different forms including exaggerations,

explanations, total fabrications and fears (Prasad 1935; Knapp 1944). Buckner (1965) regarded

rumours as collective behaviour which through time, can increase or decrease in accuracy when

being passed on; this variability is introduced through participant’s individual interpretations.

Similarly, fashion and fads are impulses that are enthusiastically followed by large groups for

a short period; they are seen as sudden, quick-spreading, and even referred to as crazes (Aguirre,

Quarantelli, and Mendoza 1988). Fashion is an expressive form of collective behaviour, which

does not aim to bring profound change to the social order, but rather should be viewed as “positive

wish-fulfilment” (Smelser and Marx 1962; Horowitz 1975). Van Ginneken (2003) identified some

differences between fashion and fads; the first being their distribution curves and the length of
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time taken to fully saturate target groups. Classical fashion would have a very flat profile, indicat-

ing very little and slow changes to preferences. Normal fashion would mirror a bell-shape curve

suggesting the annual pattern of preferences coming and going guided by the fashion industry and

seasonal presentations. In contrast, fads have steep curves, indicating rapid adoption.

To summarise this section, collective behaviour can be categorised in terms of the physical prox-

imity of the participants. However, it is important to emphasise that collective behaviour always

emerges from interactions whether through close physical proximity or other forms of interactions.

The following sections explore theories of contagion that underpin collective panic behaviour.

There are many important types of collective behaviour, but the focus of the following sections

will be on human behaviours.

3.3 Social Contagion as Collective Behaviour

This section will explore theories of collective behaviour; before focusing on explanations that

describe collective behaviour as contagion.

3.3.1 Collective Behaviour Theories

Sociologists, psychologists and an assemblage of scholars have proposed many theories and ex-

planations of collective behaviour over the years. These theories focus on explaining collective

behaviours that involve little social interaction between participants, for instance, crowds, riots

and social movements.

The main theories developed to explain these types of collective behaviours include:

1. Convergence theory: proposes participants of crowd behaviour hold and share similar beliefs

and intentions, before joining a crowd (Allport 1924; Miller et al. 1941).

2. Emergent norm theory: proposes initially, participants are unsure of how to behave when be-

ginning to interact in collective behaviour. They choose to discuss their potential behaviours

and from this, societal norms emerge and a social order is created that governs subsequent

displays of behaviour (Turner and Killian 1957).
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3. Value-added theory: proposes collective behaviour as the result of preconditions; including

generalised beliefs, structural strain and lack of social control (Smelser and Marx 1962).

4. Threshold model: proposes the existence of threshold effects in complex contagion, whereby

participants observe the behaviour of others before deciding to join in. In essence, the

stronger a participant’s interest in the outcome, the lower the number of others needed to

trigger that member’s participation (Granovetter 1978).

Allport (1924) developed convergence theory which suggests crowd behaviour is a reflection

of individual behaviour and attitudes of participants that join the crowd. Thus, crowds do not

influence individual participants to act, rather their behaviour is a result of shared attitudes and

beliefs. Convergence theory proposes crowds do not affect individuals instead individuals affect

crowds. In essence, participants converge to a single mood, emotion, idea or issue and elicit herd

behaviour in which they are connected to and process stimuli in a similar manner (Goode 1992;

Raafat, Chater, and Frith 2009). Interestingly, in convergence theory crowds may act in a manner

that individual participants are unlikely to; for example, when large mobs commit targeted violent

acts. It can be assumed that the targeted attack by the mob is a result of individual personal beliefs

or ideas of participants.

In contrast, Turner and Killian (1957) proposed emergent norm theory as an alternative expla-

nation for collective behaviour. According to them, in the initial stages of collective behaviour

participants are not entirely sure how to behave. As participants begin to interact, they discuss po-

tential behaviour and settle on a select few governing norms; from this, ‘new’ behaviour emerges

and this new social order and rationality continually guide group behaviours. Emergent norm the-

ory views collective behaviour as less predictable than convergence theory, as before joining the

crowd participants may not share similar beliefs or attitudes. Rather than participants converg-

ing to a specific cause, idea or issue, as indicated in convergence theory, emergent norm suggests

participants allow for rationality and social order to guide behaviours.

The most popular explanation of collective behaviour and social movements is proposed by

Smelser and Marx (1962). The value-added theory, often referred to as structural-strain theory,

suggests preconditions must be present before collective behaviour or social movements can oc-
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cur. Of these preconditions is the existence of structural strains, which refers to societal problems

that anger or frustrate people. Structural strain serves as motivation for protests and the rise of

similar social movements. Generalised beliefs are a further precondition for collective behaviour,

these beliefs serve as reasoning behind poor conditions of societies and their proposed solutions

for improvement. If people conclude their conditions are poor as a direct result of their decisions,

they will not protest. In addition to this, if people deduce that protests and social movements will

not improve conditions, they will not participate in protests. Further, a set of precipitating fac-

tors (sudden events) must exist that trigger collective behaviour. As mentioned in Section 3.2.1, a

real example of an acting crowd in the UK was the series of violent protests which erupted across

London following the killing of Mark Duggan by police in 2011 (Akram 2014). These violent

waves were ignited by the contradictory and defaming news reports which falsely described the

incident to the public. The final precondition is lack of social control which proposes collective

behaviour as more likely if participants do not expect to be held accountable i.e., no threat of arrest

or punishment, or being harmed. The value-added theory gained popularity by identifying several

contributing factors that must hold true to facilitate a condition for the occurrence of collective

behaviour or social movement. However, even if the preconditions are wholly satisfied, collective

behaviour still may not occur. There is also a lack of clarity regarding the predictions; for in-

stance, how much of these preconditions are necessary to initiate a display of collective behaviour

(Rule 1988; White 1989). In comparison to both convergence and emergent theory, value-added

theory removes focus from individual participants and broadens it to consider societal structures.

The value-added theory proposes some underlying determinants that facilitate an environment for

collective behaviour to occur.

Granovetter (1978) aimed to explain the emergence of collective behaviours in a manner which

considered individual norms and preferences as crucial contributing factors to the outcome (Gra-

novetter and Soong 1983, 1986, 1988). Under the threshold model, participants are presented with

a simple binary choice to partake in a collective behaviour or not. To inform their decision, partic-

ipants would have an reach a ‘threshold’ for participation. The threshold indicates the proportion

of the wider group that chooses to partake in the display of the collective behaviour before a given

participant chooses to join. An early example of thresholds was illustrated by Berk (1974) using
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riots suggesting, that the cost of joining a riot declines as the number of participants increases, as

the probability of being apprehended decreases. More recently, Grabisch and Li (2020) studied a

threshold model where both conformist and anti-conformist participants coexist, rather than fol-

lowing the basic assumption that participants tend to follow the trend (they are conformist) and

that nobody will have a kind of opposite behaviour (anti-conformism), choosing action 0 if too

many people take action 1. Essentially thresholds emerge from the norms, preferences, goals and

beliefs of each participant. The applications of this model or variations are not limited to simple

crowd-like behaviours, but more broadly e.g., voting (Kaempfer and Lowenberg 1993), diffusion

of innovations (Zeppini, Frenken, and Kupers 2014), migration (Hunter 2005), social movements

(Lohmann 1994) and social tipping (Wiedermann et al. 2020).

An interesting consideration here is that none of the above theories fully explain all forms of

collective behaviour; they simply propose alternative perspectives to explain the dynamics of col-

lective behaviour.

3.3.2 Social Contagion

Plato’s theory of mimesis was one of the earliest works that referenced the combined concepts of

infection and imitation to explain human nature (Plato 1997). The figurative use of these concepts

continued into early modern literature; contagion became a popular descriptive device for social

phenomena through the work of Baldwin (1894), LeBon (1896) and Tarde (1903), on imitation

and collective behaviour in 19th century France.

One of the earliest explanations of collective behaviour is contagion theory, which was first

proposed by LeBon (1896) and has subsequently been examined in a wide range of work beyond

sociology (Castellano, Fortunato, and Loreto 2009). LeBon’s concerns were centred around the

collapse of social order occurring during the French Revolution in the 18th century. At that time,

mob violence was common in cities across Europe and the United States. The intellectuals and

aristocrats viewed the violence as disturbing and a display of irrational behaviour; they saw par-

ticipants as being under the influence of strong emotions and the opinions of charismatic leaders.

These ideas served as the foundation of contagion theory. Contagion theory suggests individual
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participants are rational until they form a crowd at which point they fall under hypnotic influence

and act blindly out of emotion and irrationality. Participants under this influence lose control of

their unconscious instincts and evolve into violence. This display of collective behaviour was

likened to the dynamics of contagion, which passed the irrationality from person to person. In

contrast, convergence, emergent-norm and value-added theories argue that strong emotions may

influence collective behaviour, but those emotions are not irrational. In fact, Turner and Killian

(1957) argue against the existence of contagion, as participants in collective behaviour do not lose

the capacity to think and act rationally.

The term “social contagion” was coined by Herbert Blumer in his study of collective behaviour

(Blumer 1939). Although empirical studies investigating social contagion have become more fre-

quent; in those early days findings ranged widely as there was no shared definition. As a result,

social contagion research has been described as incoherent and unorganised, lacking principles and

conceptual framework (Levy and Nail 1993). For example, the Penguin Dictionary of Psychology

defined social contagion as the spread or transmission of an activity or a mood through a popula-

tion (Reber 1995). The Concise Oxford Dictionary of Sociology described social contagion as the

flow or movement of ideas through a population (Marshall 1996). The Macmillian Dictionary of

Psychology defined social contagion as the spread or transmission of ideas and feelings through a

population by suggestion, gossip or imitation (Sutherland 1995). Other definitions have focused

on the non-intentionality in transmissions, they suggest social contagion as the spread of an atti-

tude or behaviour from an initiator to a recipient, where the initiator’s actions, influential or not,

are not perceived to be intentional by the recipient (Levy and Nail 1993). Contrastingly, some

definitions explain social contagion as a type of inheritance, which are uncritical behaviours based

on intuitive judgements rather than rational thinking; the Encyclopedic Dictionary of Psychology

defined social contagion as the quick spread of emotions and behavioural patterns that are adopted

uncritically within populations (Furnham 1988). There are some definitions that refer to disinhibi-

tion more so than the intentionality of transmission or inheritance. Wheeler (1966, p.180) define

social contagion as:

If the set of test conditions T1 exists, then contagion has occurred if and only if Person
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X (the observer) performs behaviour N (BN) where T1 is specified as follows:

(a) A set of operations has been performed on Person X which is known to produce

instigation toward BN in members of the class to which X belongs;

(b) BN exists in the response repertoire of X, and there are no physical restraints or

barriers to prevent the performance of BN;

(c) X is not performing BN;

(d) X observes the performance of BN by Person Y (the model).

With no standardised definition of social contagion, the studies produced have little in common

except the observable phenomenon of spreading through contact. The definitions suggest the pres-

ence of individual internal states and mechanisms, such as intentionality and conflict, to explain

the spreading process. Although important, understanding each individual component has overrid-

den the fundamental need to understand the nature of social contagion. And the distinguishing of

each individual component has made the study of social contagion more complex. These develop-

ments have deterred focus from the central rationale of the metaphor; which is, that the observable

phenomenon spreads as if it has contagious properties (Marsden 1998).

The Handbook of Social Psychology has the clearest definition of social contagion since it re-

frains from placing caveats or further conditions on the process. It describes social contagion as the

spread of behaviour amongst participants of a crowd and describes a single person as the catalyst

for the transmission (Lindzey and Aronson 1985). This type of definition serves as an umbrella

that more appropriately captures the scope of the phenomena. Unlike the other definitions, there

is little focus on satisfying preconditions. Further, this broad definition can be applied to an array

of social contagion examples, whether they be physical crowds or virtual social media/mass media

crowds.

Additionally, there are thought to be two branches within social contagion: behavioural and

emotional contagion. Behavioural contagion follows the spread of behaviour through groups. It

focuses on the propensity of participants to mimic certain behaviours they are exposed to. The term

‘behavioural contagion’ was conceived to explain the disagreeable elements of crowd behaviours
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(Stephenson and Fielding 1971). Digitally, behavioural contagion is concerned with the spread

of online behaviour and information (Harrigan, Achananuparp, and Lim 2012). In addition to the

above, an array of behavioural contagion mechanisms are incorporated in models of collective

human behaviour (Castellano, Fortunato, and Loreto 2009). A prominent theory of behavioural

contagion was proposed by Redl (1949) and further analysed by Wheeler (1966), which proposed

the phenomenon as the result of the reduction of personal restraint (i.e., self-control). Some social

psychologists suggest a number of factors that influence the likelihood of behavioural contagion for

instance, deindividuation and the emergence of social norms (Festinger, Pepitone, and Newcomb

1952; Turner 1964). Likewise, Freedman, Birsky, and Cavoukian (1980) focused on the effects

of physical factors on behavioural contagion, specifically density and number. Ogunlade (1979)

described behavioural contagion as “spontaneous, unsolicited and uncritical imitation of another’s

behaviour” which occurs following the satisfaction of preconditions. For example, the initiator

and recipient share a similar situation or mood and the initiator’s behaviour would encourage the

recipients to review their condition and motivate a change.

On the other hand, emotional contagion involves the spontaneous transmission of emotions

overtly or covertly through groups. A broader definition proposed emotional contagion as an ex-

ample where the initiator influences the recipient consciously or unconsciously to adopt certain

emotional states or attitudes (Schoenewolf 1990). It has been proposed that emotions may be trans-

mitted through facial expressions, voice, posture, movements, and other instrumental behaviours

(Hatfield, Cacioppo, and Rapson 1993). Facial expressions were considered a form of nonverbal

communication used to display a range of emotions (Brown 2004). Some laboratory studies have

proven the existence of emotional contagion, where the recipient participant displayed an emo-

tional response that mimicked the emotions expressed by the initiator participant (Lundqvist 1995;

Hess and Blairy 2001). Researchers attribute mimicry to an attempt for people to empathise with

each other (Barger and Grandey 2006).

Be that as it may, following on from Granovetter (1978), collective behaviours such as social

contagion have been understood to spread through social contact. But when these behaviours

are controversial, participation requires independent affirmation or reinforcement from multiple
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sources (Centola and Macy 2007). Therefore, social contagion has been further defined as a type

of complex contagion whereby successful transmission depends on interaction with multiple car-

riers. Social contagion is considered complex for several reasons, such as the need for social

legitimisation, the need for credibility, or the complementarity of a behaviour, externalities and

uncertainty (Guilbeault, Becker, and Centola 2017).

For example, public health studies have been linked to both biological and social contagions. It

is suggested that simple contagions do not adequately capture the network dynamics that govern

the diffusion of health behaviours as they require reinforcement from peers and are strongly influ-

enced by cultural practices and group norms (Centola 2010, 2011). Christakis and Fowler (2007)

conducted the Framingham Heart Study and found obesity spread socially through a densely in-

terconnected network of 12,067 people, assessed between 1971 to 2003. They found that either

biological or normative mechanisms are expected to yield very different diffusion dynamics. Sim-

ilarly, a series of studies have demonstrated how clustered networks that facilitate the spread of

social norms, such as anti-vaccination behaviours, can make populations susceptible to epidemic

outbreaks of simple contagions, such as measles (Salathé and Bonhoeffer 2008; Campbell and

Salathé 2013; Fügenschuh and Fu 2023). These studies examine the diffusion of anti-vaccine at-

titudes as echo chambers which intensify the likelihood of disease outbreaks through the wider

population; echo chambers are an example of complex contagion (Törnberg 2018).

Furthermore, the diffusion of technological innovations through populations is seen as a com-

plex contagion, rather than simple as first proposed by Bass (1969). For instance, Bandiera and

Rasul (2006) found that the adoption of new crops by farmers in Mozambique would depend on

their number of network neighbours who had already adopted it. Oster and Thornton (2012) il-

lustrated the adoption of women’s menstrual cups depends on influence from multiple peers who

transferred technology-relevant knowledge. Billard (2021) found that under a complex contagion

approach, the diffusion of green technologies may be affected by the social network structure, so-

cial dimensions and the technologies’ learning effects. The complex contagion approach has been

examined empirically across a variety of domains, including social media (Kooti et al. 2012; Møn-

sted et al. 2017) and politics (Romero, Meeder, and Kleinberg 2011; Traag 2016; León-Medina
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2023).

Recent work aimed at investigating the transmission of social contagion throughout groups and

whole populations has involved researchers across a range of disciplines, from psychology, and

sociology to network science. Although social contagion was originally theorised, defined and

modelled using a simple contagion approach e.g., a single source can be sufficient for transmission,

now social contagion is more widely accepted as a type of complex contagion e.g., transmission

relies on contact with multiple sources of infection. Having now understood the complexity behind

social contagion mechanisms and dynamics, to sufficiently investigate the impact of heterogeneity

in agent-based models a simple case study model is required. Therefore, this study will consider

emotional contagion within the context of a simple contagion. The following section will explore

compartmental models in epidemiology as a methodology to investigate emotional contagion.

3.4 Modelling Emotional Contagion

Human behaviour and emotions are inherently complex, meaning they do not develop smoothly

or logically (Brown 1995). Notwithstanding, mostly analytical models have been used to study

social behaviours sciences (Rodgers, Rowe, and Buster 1998). Analytical models are well ac-

cepted amongst researchers and policymakers, as they are mathematically tractable and simple to

fit empirical data. That being said, the more complex the social-behavioural model, the more chal-

lenging it is to solve analytically. This study will model emotional contagion using an ABM in

Chapter 4, but to develop a model it must be informed by a framework. To identify which frame-

work to use, the following subsections will briefly outline compartmental models as an approach

to modelling contagion. This study uses the mathematical tool developed by epidemiologists to

study the spread of emotional contagion, as these compartmental models can be generically used

to study the dynamics of social, cultural and political change.

3.4.1 Compartmental Models

Compartmental models are a popular tool used to study the mechanisms by which diseases spread

and to predict and mitigate future courses of outbreaks (Daley and Gani 2005). Compartmental
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models are generally expressed mathematically; the underlying statistical assumptions simplify

the parameterisation of the infectious disease model to calculate the effects of different interven-

tions. The first mathematical model used to study infectious disease dates back to a seminal paper

published by Daniel Bernoulli in 1766 in support of smallpox inoculation. Bernoulli’s calcula-

tions helped to illustrate how widespread inoculation would increase life expectancy by three years

(Bernoulli and Blower 2004). By the 1920s, the development of compartmental models produced

two more formative works: Kermack and McKendrick (1927) and Reed-Frost Epidemic Process

(1928). These models were able to describe the relationship between susceptible, infected and

immune groups within a population. Furthermore, Kermack and McKendrick (1927) successfully

predicted behavioural patterns of outbreaks, which mirrored patterns that were observed from pre-

vious epidemics (Brauer and Castillo-Chavez 2012).

Susceptible-Infectious-Recovered (SIR)

After years of development, compartmental models are considered the primary method for mod-

elling infectious diseases. The simplest example of a compartmental model is the Susceptible-

Infectious-Recovered (SIR), which consists of the following three compartments (Harko, Lobo,

and Mak 2014; Kröger and Schlickeiser 2020):

• Susceptible, S: represents the proportion of susceptible individuals within the populations.

• Infectious, I: represents the proportion of infectious individuals.

• Recovered, R: represents the proportion of previously infectious individuals that recover or

have died. This compartment may also be referred to as removed or resistant.

The dynamics of the classical SIR model are visualised in a diagram, see Figure 3.1.

The SIR model is a fairly strong predictive tool for human-borne infectious diseases where

recovery provides a degree of immunity (Yang, Zhang, et al. 2020). The variables S, I and R

depict the proportion of individuals in each compartment at a certain time; this proportion may

fluctuate in time even if the total population size stays constant. To accommodate for this the

susceptible, infectious and recovered proportions are expressed as functions of time, t: S(t), I(t)
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Figure 3.1: Diagram of Susceptible, Infectious and Recovered Model and Compartmental Transi-

tion Rates

and R(t). A strength of this model is its applicability, it can be widely applied to investigate and

predict outbreaks and control measures for diseases across populations.

The SIR model can be adapted to accommodate for the inclusion or exclusion of vital dynamics

i.e., births and deaths. The dynamics of some infectious diseases, such as the common cold or

influenza, are expeditious when compared to the dynamic of birth and death, thus these tend to be

excluded from such models. In omitting vital dynamics, the SIR model can be expressed by a set

of ordinary differential equations:

dS

dt
= −βSI

N
, (3.1)

dI

dt
=

βSI

N
− γI, and (3.2)

dR

dt
= γI. (3.3)

Although this model is non-linear it can be solved analytically (Harko, Lobo, and Mak 2014).

Furthermore, the dynamics of the infectious compartment depend on the basic reproduction ratio

R0 =
β

γ
,

which suggests that the basic reproduction ratio R0 of an infection is the expected number of

further infections spread by one infectious individual, where all individuals are susceptible and

have no immunity (Fraser et al. 2009). R0 is derived from the ordinary differential equations used

to describe the SIR system and is affected by the duration of infection, disease infectiousness and

the number of infectious individuals that have been in contact with the susceptible (Delamater et al.
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2019). Generally, the largerR0 the more infections, which become hard to control; the smallerR0

the less likely the infection is to spread.

When choosing to include vital dynamics, the SIR model can be expressed as the following:

dS

dt
= Λ− µS − βSI

N
, (3.4)

dI

dt
=

βSI

N
− γI − µI, (3.5)

dR

dt
= γI − µR, (3.6)

where Λ denotes the birth rate and µ is the death rate of the population. In this case, the basic

reproduction ratio, R0 is:

R0 =
β

µ+ γ
(3.7)

(Beckley et al. 2013). To model infections that do not have long-lasting immunity, such as

the common cold or flu, a more appropriate model is the Susceptible-Infectious-Susceptible (SIS)

model. Alternatively, there are versions that model periods of latency where individuals may not

be infectious, these are the Susceptible-Exposed Infectious-Susceptible (SEIS) and Susceptible-

Exposed Infectious-Recovered (SEIR) model variations.

Susceptible-Infectious-Susceptible (SIS)

In this thesis, a version of the Susceptible-Infectious-Susceptible (SIS) model will be used in Chap-

ter 4 to investigate the impact of heterogeneity in ABMs. Figure 3.2 summarises the SIS frame-

work.

Figure 3.2: Diagram of Susceptible, Infectious and Susceptible Model and Compartmental Tran-

sition Rates
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Unlike the SIRmodel, the SISmodel has only two compartments: the Susceptible and Infectious.

Thesemodels aremost useful for modelling epidemics that do not have long-lasting immunity, such

as the common cold or the flu. But as with the SIR model, the SIS transition rates are the same,

as shown in Figure 3.2. Where βSI
N can be summarised as the proportion of newly infectious

individuals who were previously susceptible. And γI is the recovery rate of the individuals in

the infectious compartment. Similar to SIR with no immunity, in SIS a constant rate of recovery

exists which implies the number of recovered infections would be proportional to the size of the

infectious compartment (Kuhl 2021).

Susceptible-Infectious-Susceptible-Spontaneous (SISa)

In more recent times, variations of the SIR and SIS models have been used to explain the spread of

emotions and sentiments. Notably, Hill et al. (2010) modified the SIS model to not only demon-

strate the spread of emotions through contact but also to account for the spontaneous transmission

of emotions. To capture this they supplemented the standard SIS model with an additional param-

eter, a, to capture the spontaneity of emotional infection at a constant rate, independent of their

infectious contacts. This version of the classical SIS model was named the Susceptible-Infectious-

Susceptible-Spontaneous (SISa) model. Figure 3.3 illustrates the modified compartments and tran-

sition rates.

Figure 3.3: Diagram of Susceptible, Infectious, Susceptible and Spontaneous Model and Compart-

mental Transition Rates

The transition rate between the susceptible and infectious compartment is α + βnI , where a is

the rate where a susceptible individual automatically becomes infectious, β is the rate at which an

infectious individual transmits the infection to a susceptible individual and nI denotes the number

of infectious contacts.

In this novel approach, Hill et al. (2010) developed SISa to investigate emotions on a social net-
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work. They defined emotion as a scale containing three levels increasing in duration and perma-

nence, that would be subjective to each individual: fleeting moods, transitory states or personality

traits. They defined their focus as the examination of transitory states, which they referred to as

“long-term emotional states”. They limited the types of long-term emotional states to just two,

individuals could either be ‘content’ or ‘discontent’; these terms had been likened to happiness

and depression in previous works. Having established a framework and model, Hill built a social

network using survey data from the Framingham Heart Study (Dawber 1980) to validate whether

the data fit the dynamics of an infectious disease. Following some parameter estimation and fur-

ther analysis, they proved that long-term emotional states could be spread between individuals

who were connected socially. Their findings provided evidence in support of emotions exhibiting

a transmissive nature. They summarised that the ‘catching’ of content and discontent emotions

depended on social contacts, whereas recovery to a neutral state did not. However, they concluded

that the mechanisms behind the transmission of long-term emotional states merited further study.

Susceptible-Optimistic-Susceptible (SOS) and Susceptible-Pessimistic-Susceptible (SPS)

By the same token, Liu, Zhang, and Lan (2014) extended the SISa framework to model social con-

tagion or sentiment. They proposed modelling two infectious states rather than one, as observed in

real-life sentiment with positive (optimistic) and negative (pessimistic) states. In treating optimism

and pessimism as contagious states, they proposed two processes to describe sentiment contagion

dynamics: Susceptible-Optimistic-Susceptible (SOS) and Susceptible-Pessimistic-Susceptible (SPS).

Figure 3.4: Diagram of Susceptible, Optimistic, Susceptible, Spontaneous (SOSa) and Susceptible,

Pessimistic, Susceptible and Spontaneous (SPSa) Model with Transitional Rates

The dynamics of SOSa-SPSa model are shown in Figure 3.4. The qO and qP parameters are

probabilities of a Susceptible individual becoming Optimistic or Pessimistic, respectively. And

gO and gP are recovery rates from either the optimistic or pessimistic state to susceptible. They
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assumed that the process of transition to the optimistic and the pessimistic are independent, and they

have fixed population sizes. Using the estimated data from Hill et al. (2010) on the Framingham

Heart Study, they analysed this process of sentiment contagion using numerical and agent-based

simulations. They found that the results of the SOSa-SPSa model matched the SISa experimental

data and they were able to demonstrate that the probability of spontaneous infection or infection

through contact would increase with the number of optimistic and pessimistic individuals, but

would decrease with the probability of recovery back to susceptible.

There is a vast range of compartmental models, ranging from the most simple frameworks to

complex frameworks1. Even the most simple of these models have produced accurate represen-

tations of real-world dynamics and successful forecasting measures (Guan et al. 2020; Lin et al.

2020; Siegenfeld and Bar-Yam 2020; Zhang, Feng, et al. 2022). The popularity of compartmen-

tal models in part may be due to this very simplicity that allows modellers to estimate disease

behaviour using a small number of parameters (Lourenço et al. 2020; Weissman et al. 2020). A

further advantage of compartmental modelling is its adaptability; areas of applications continue

to grow, from economics and psychology (Liu, Wu, and Zhu 2007; Øverby, Audestad, and Sza-

lkowski 2023; Szalkowski and Mikalef 2023) to computer science (Piqueira et al. 2008; Shahrear

et al. 2018). Adaptability refers to the addition of compartments given the object of study. Com-

partmental modelling offers the advantage of aggregating information from both local and system

scale models. Furthermore, compartmental models allow multi-scale modelling with low compu-

tational time compared to other methods (Jourdan et al. 2019).

Be that as it may, compartmental models are not without their limitations. Although the simplic-

ity of compartmental models makes them easy to compute, they oversimplify complex infection

processes (Sharov 2020). For example, the basic SIR model does not account for the latent period

between when an individual is exposed to a disease and when that individual becomes infected

and contagious, whereas extensions of the SIR model, such as the SEIR model, accommodate for

this parameter (Clancy and O’Neill 2008). Further, compartmental models have limiting assump-

tions about the population (Roberts et al. 2015; Dhar 2020). They assume homogeneous mixing,

1See Tang, Zhou, et al. (2020) for a comprehensive review of compartmental models.
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meaning all individuals share an equal probability of becoming infectious following contact with

one another. This may not reflect the dynamics evident in real life where infection may depend on

social networks, individuals would then have different propensities of becoming infectious as the

result of a series of contributing factors (Brauer 2008).

To model emotional contagion using compartmental models remains particularly challenging as

there exists no widely accepted definition for emotional contagion (Hernandez-Lallement, Gómez-

Sotres, and Carrillo 2022). Moreover, the adaptability and choice that compartmental models offer

may result in modellers producing discordant results. During the COVID-19 pandemic, the results

of SIR models were compared with network transmission models (Zlojutro, Rey, and Gardner

2019; Jewell, Lewnard, and Jewell 2020), to the Institute for Health Metrics and Evaluation’s

COVID-19 pandemic model based on fitting curves to empirically observed data (Murray 2020).

Where different modelling approaches using the same data, produce qualitatively different results

it is likely due to differences in underlying assumptions. It is crucial then to consider which of the

assumptions are valid explanations of disease dynamics. It is also possible that the data used in

these models are insufficient to draw a reliable conclusion. Nevertheless, no model will accurately

predict the future but good models should provide approximation sufficient to inform public policy

(Tolles and Luong 2020).

3.4.2 Emotional Contagion, Agent-Based Models and Heterogeneity: a discussion

The objective of this section is to present a selection of theoretical frameworks that could be used to

develop a case study ABM to investigate heterogeneity in later chapters. Of the many approaches

to modelling complex systems that exist, this study models emotional contagion using the famil-

iar dynamics of pathogenic contagion. This is because traditional epidemiology techniques and

assumptions, such as compartmental models, have an extensive range of applications and long-

standing history (Hethcote 2000; Barrat, Barthélemy, and Vespignani 2008; Rock et al. 2014;

Pastor-Satorras et al. 2015; Billah, Miah, and Khan 2020; Øverby, Audestad, and Szalkowski

2023). Furthermore, in the study of complex systems, compartmental models are an established

type of system dynamics model (Jourdan et al. 2019).
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Compartmental models can be visualised easily, showing all compartments (e.g., individuals in

a susceptible or panicked state), flows between states, and feedback loops controlling the flow of

panic (Ackley et al. 2017). It is just as simple to express the model using ordinary differential

equations (ODE) (Bassingthwaighte et al. 2012). Although they are simple to construct they are

often hard to solve analytically (Sterman 2010; Morecroft 2015). Even still, compartmental models

allow modellers to experiment with different assumptions and investigate the effect change of

system parameters may have on the system dynamics. Compartmental modes are adaptable which

means modellers choose which details to include: for example, they tend to include details on

disease stages but exclude stochasticity and heterogeneity. It has been proposed that excluding

elements of heterogeneity has a larger effect on forecasting the epidemic trajectory, estimating the

final epidemic size, and analyzing the impact of interventions (Siegenfeld, Kollepara, and Bar-Yam

2022).

Traditional deterministic compartmental models assume homogeneous mixing, which proposes

each individual shares the same probability of contact with all of the others in the population (Keel-

ing and Rohani 2008). Yet, there is a growing consensus that the homogeneous mixing assump-

tion does not hold in the real world because heterogeneity can emerge from numerous sources

(Rodríguez and Torres-Sorando 2001), such as age (Brauer and Watmough 2009; Kim, Kang, and

Lee 2022), sex (Worden, Porco, et al. 2017; Razak and Zamzuri 2021), susceptibility to disease

(Smilkov, Hidalgo, and Kocarev 2014; Yan and Yuan 2020), position in space and the activities

and behaviours of individuals (Goscé, Barton, and Johansson 2014; Viguerie et al. 2021), and

many others (Bansal, Grenfell, and Meyers 2007). Scientists have continued to develop different

approaches to model these various sources of heterogeneity, but it is no easy task.

Compartmental models have been developed to accommodate different objects of study (Kong,

Duan, et al. 2022). For example, to study heterogeneity in host contact rates at the population level

scientists modified the infection term of the homogeneous mixing compartmental models (Liu,

Hethcote, and Levin 1987; Hochberg 1991; Stroud et al. 2006). Other studies have gone further by

dividing the compartments into multiple subgroups with similar behavioural characteristics such

as risk (May and Anderson 1988) and demography (Schenzle 1984; Babad et al. 1995). In recent
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developments in complex network research, a subset has examined the effects of the heterogeneous

contact structure on disease spread in networks (Keeling and Eames 2005; Danon et al. 2011).

Alongside the above, there is rapid development in the area of modelling of infectious diseases

heterogeneously using ABMs (Dunham 2005; Chen andXu 2006; Roche, Drake, and Rohani 2011;

Hunter, MacNamee, andKelleher 2018; Gomez et al. 2021). Thesemodels represent heterogeneity

through the individual attributes and behaviours (Ajelli et al. 2010; Doussin, Adam, and Georges

2021). Other researchers are working to close the gap between traditional compartmental models

and ABMs (Keeling 2005; Roy and Pascual 2006; Aparicio and Pascual 2007; Kong, Wang, et al.

2016).

In light of the above, the rationale for modelling emotional contagion using ABMs over other

modelling approaches can be summarised into the following (Smith et al. 2018): 1) ABMs rep-

resent stochasticity often excluded from mathematical modelling of infectious diseases, it allows

for an examination of disease dissemination in small or large populations (Maude et al. 2009), 2)

ABMs can be used to produce high-resolution spatial simulations (Raimbault et al. 2020) and 3)

ABMs can capture heterogeneities in individual characteristics (Yu and Bagheri 2020). Therefore,

the compartmental model approach specifically the SISa framework, will be used to build the case

study ABM in Chapter 4. In addition to this, the SISa framework will be expressed in an ODE

model which will be used in this investigation of heterogeneity in Chapter 6.

3.5 Summary - Understanding Contagion

To build a contagion case study model, a theoretical and empirical understanding of collective

behaviour is crucial. This chapter begins with an outline of various definitions and forms of col-

lective behaviour, followed by some proposed theories. One of these theories described collective

behaviour as a contagion, proposing that it is usually emotionally driven and borne from irra-

tionality. An extension of contagion theory is social contagion theory, which describes collective

behaviour as the spread of affect (emotional contagion) and behaviour (behavioural contagion)

between participants. Within social contagion theory, emotional contagion is defined as the trans-

mission of emotion between individuals. To model emotional contagion, this chapter considers the
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use of compartmental models. Although compartmental models have some limitations, their struc-

tural simplicity makes it straightforward to develop into an agent-based model. The adaptability

of compartmental models will also allow for modifications as needed to investigate the impact of

heterogeneity. The SISa framework described above will be used to build the case study model in

Chapter 4.
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4.1 Chapter Overview

Chapter 3 presented a range of potential underlying theories all of which were suitable frameworks

to formulate the case studymodel, particularly the emotional contagion theorems. This chapter will

present a simple agent-based model based on the Susceptible-Infected-Susceptible-Spontaneous

(SISa) model framework, which will serve as a case study or a tool to investigate heterogeneity

in subsequent chapters. In the wake of COVID-19 and the influx of truly significant impactful
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studies using compartmental models, the one presented here should be considered no more than a

toy model for illustrative purposes. This chapter is organised as follows: Section 4.2 will present

the case study agent-based model using the overview design concepts and details (ODD) protocol

outlined by Grimm, Berger, DeAngelis, et al. (2010) to describe the systems processes most ap-

propriately. Section 4.3 will explore the case study model configurations and results to investigate

the system dynamics. Section 4.4 and Section 4.5 presents the sensitivity analysis results and the

justifications for fixing parameter values. Finally, section 4.6 introduces an ordinary differential

equation (ODE) model based on the SISa framework, which will be used in subsequent chapters

to demonstrate the potential impact of modelling heterogeneity in ABMs.

4.2 ODD Protocol

4.2.1 Purpose

The case study model proposed here was created to simulate the process and spread of emotional

contagion, specifically panic within an agent population1. Figure 4.1 presents the SISa framework

used to design and build the model. Given the simplicity and flexibility of the framework, it serves

as an adequate method to compare and examine homogeneous and heterogeneous populations.

Figure 4.1: SISa framework (Hill et al. 2010, p.3828)

Figure 4.1 summarises the transmission of emotional contagion into two states and three pro-
1Code for this model can be found on GitHub, here
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cesses. Agents can occupy one of two states by the end of each time period (iteration): they are

either susceptible or infected. There are three processes through which an agent can move between

each state:

• Inter-agent infection rate: a transmission rate of infection to susceptible contacts, denoted

here as β.

• Background rate of infection: the constant spontaneous rate of infection that exists within

the population, transmitting the infection to a susceptible agent regardless of the state of their

contacts, referred to as α.

• Recovery rate: the rate of recovery from the infected to susceptible state, independent of

the state of their contacts, known as γ.

The processes outlined above are the model attributes and variables used to create the case study.

4.2.2 State Variables and Scales

The case study model is comprised of two configurations: homogeneous and heterogeneous. Both

configurations share the same fundamental model and Agent Parameters and processes. In the

homogeneous configuration, all agents share the same Agent parameter values; heterogeneity is

then introduced through the dividing of agents into groups, where agents in the same group share

the same parameters, but agents in different groups have different parameters.

Table 4.1 summarises the parameters and values used to initialise both configurations. Parameter

values were chosen arbitrarily for the purpose of model exploration, as a thorough understanding

of model dynamics is essential.

There are two broad types of parameters: model-specific and agent-specific parameters. Model

Parameters are user-specified inputs that construct the attribute-based environment; these inputs

are external and are fixed in both configurations so as not to impact the model results. Agent

Parameters are user-specified inputs that construct the agent population of which changes would

directly impact model results. The Model Parameters are integers: the Number of Agents, Itera-

tions (Time), Single Instances and Multiple Instances. Agent Parameters are: Alpha (α), Beta (β)
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and Gamma (γ) which are rates between 0-1, and Number of Agent Groups.

ABM Parameters

Homogeneous Config. Heterogeneous Config.

Parameter Value Value

Number of Agents 10-1000 10-1000

Iterations (Time, t) t t

Single Instance 1(t) 1(t)

Multiple Instances 100(t) 100(t)

Number of Agent Groups 1 N

Alpha (α) 0.1 0.1

Beta (β) 0.386 βN

Gamma (γ) 0.2 0.2

Table 4.1: Overview of parameters and default values of the panic model

Unless later specified, the parameter values outlined above are to be considered the default or

standard for all subsequent experiments. As mentioned previously, heterogeneity will be presented

formally through an introduction of Agent Groups, where the Number of Agent Groups = 1 refers

to the homogeneous configuration and in the heterogeneous configuration N = (1, 2, 3, ..., N)

denotes the number of groups within the whole population (Number of Agents); each Group is

assigned a unique Beta (β), where Alpha (α) and Gamma (γ) are be held constant. Thus, βN

where N = (1, 2, 3, ..., n) denotes the number of groups. Further, each Group would have an

equal Number of Agents. Similarly, Iterations (Time, t) refers to the length of one simulation,

which is a standard t = 100. Single and Multiple Instances refer to the number of simulations:

where 1(t) refers to one simulation and 100(t) refers to an average of over 100 simulations.

Lastly, to ensure reproducibility and consistency in the comparative study of model configura-

tions, prior to initialising parameters a random seed was set. Random seeds are stored to ensure

that model results are reproducible.
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4.2.3 Process Overview and Scheduling

As previously outlined, the case study model is comprised of three simple processes based on the

SISa framework. The model operates using a predetermined number of Iterations t, and at each

step, agents occupy one of two states: susceptible or infected.

Figure 4.2 illustrates the entire model process. The parameters of which the model is initialised

are user-specific and thus are exogenous; agents use the Agent Parameters, α and or β, to form a

Likelihood, L, of becoming panicked (or infected). Likelihoods must be greater than 0 but cannot

exceed 1, in other words, 0 < L ≤ 1. All agents begin in a susceptible state and given their like-

lihood, they can become infected with panic or avoid infection entirely. Agents evaluate whether

to change state once per iteration and do so in no particular order. And once panicked, agents

can recover or remain infected. Model processes are the same in both model configurations; this

process repeats until the model satisfies the specified number of iterations.

As part of an agent’s assessment of their condition, they compare their state to that of another

randomly chosen Agent; the former agent can be referred to as AgentA and the latter agent as

Agenti. When constructing their likelihood of infection AgentA would account for the state of

Agenti in the previous iteration. Therefore, if Agenti were susceptible, AgentA would construct

their likelihood only using the background rate of infection i.e., L = α. If Agenti were infected,

AgentA would construct their likelihood using α and β i.e., L = α+ β. To recover, the agent

likelihood is L = γ.

To recapitulate, when the agent population are homogeneous they construct their likelihood

using the same α, β values; when the agent population are heterogeneous they construct their

likelihood using α which is fixed, and an exclusive β unique to their Agent Group. To formally

switch states, agent likelihood and recovery rate must satisfy the following condition: L > r,

where r is a randomly generated number.
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Figure 4.2: Panic ABM Full Process Overview and Agent Lifecycle

4.2.4 Design Concepts

The most important design concepts of the model are outlined in Table 4.2.
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Design Concepts

Emergence

Larger scale population dynamics emerge from the behaviour of the

individual agents. All agent behaviours are initiated through a rule set

i.e., how agents compute their individual likelihoods and when agents

should switch states from Susceptible to Panicked (Infected).

Adaptation
The Panic ABM does not model adaptation, although extensions of the

model that include adaptation could be designed.

Fitness

At an individual agent level, fitness is measured by agents likelihood.

Although likelihoods are bound between 0-1, the actual value does not

determine whether they become infected or remain susceptible.

Prediction Agents hold no predictive abilities, they cannot predict future outcomes.

Sensing
Agents have a list of the number of panicked agents at all times which

updates at each new time-step.

Interaction
Agents interact indirectly on a local level. At a local level, the state of an

infected agent can affect the state of other susceptible agents.

Stochasticity

A randomly generated number is used to become panicked and recover

from infection. The agent order and the comparative agent i.e., Agenti, are

also randomised. A random seed makes a specific stochastic run reproducible.

Collectives

The agent population is divided by the specified number of agent groups.

Each agent group has a specific beta value that agents adopt. Agents

can observe others within the same group, but they do not interact directly.

Observation

Observations are a graphical display of the number of infected agents

through time. For model exploration and sensitivity analysis, the number

of infected for each beta parameter and the cumulative distribution of the

number of infected is recorded.

Table 4.2: Design Concepts Checklist
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4.2.5 Initialisation

To initialise the case studymodel, all the ABMParameters listed in Table 4.1 have to be determined

by the modeller.

The Model Parameters: Number of Iterations, Number of Agents, and Single and Multiple In-

stances, were to be held constant or fixed for the benefit of comparative study and scientific in-

tegrity. The user would then have to determine whether they are assuming heterogeneity or homo-

geneity by specifying a Number of Agent Groups. Agents are then created based on the specifica-

tion. To model homogeneity, the Number of Agent Groups cannot exceed one, as this parameter

value predetermines the number of β values to be created and incorporated into the ABM. When

the Number of Agent Groups is greater than one, the total agent population would be divided by

this value, and each Group is designated a unique β value.

The agent parameter value: α, β and γ can be chosen arbitrarily or better informed by sensi-

tivity analysis or expertise. In the homogeneous configurations, α, β and γ values are fixed. In

heterogeneous configurations, α and γ are fixed whereas β varies.

Initialisation, regardless of the user’s choice of configuration, the process remains the same and

does not change.

4.2.6 Input

The dynamics of this case study ABM are informed only by agent attributes or parameters. Agents

do not interact with an environment that changes over space and time, the agent environment is

extremely abstract. The only dimensions captured within this model are iterations, which are pre-

determined by the modeller at the point of initialisation.

4.2.7 Sub-models

The panic ABM is a simple model which does not include any sub-models.
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4.3 Model Exploration

This case study model consists of the parameters outlined in Table 4.1. As previously mentioned,

the Agent Parameters were formed based on the three model processes outlined in the previous

section, α, β and γ with the addition of the Number of Agent Groups, the heterogeneity indicator.

Model Parameters are assigned at the point of initialisation, and unlike the Agent Parameters, are

fixed regardless of the user’s choice of configuration. This section will explore the relationship

between the ABM input and output, namely, the effect that Agent Parameters have on the Number

of Infected Agents in the homogeneous and heterogeneous configurations.

All agents begin in a Susceptible state i.e. free of any infection, which in this case, means they are

free of panic. In time, given their likelihood of infection, agents develop a propensity to become

panicked and to assume an Infected state. Agents interact indirectly through the observation of

Agenti present state, where Agenti is randomly selected from the population. If Agenti is Infected,

that agent’s probability of becoming infected increases. Agents recover in the same fashion, given

their probability informed by γ, a fixed rate.

The following sections will present the homogeneous and heterogeneous configurations and

provide insights into the system dynamics.

4.3.1 Homogeneous Configuration

The values used to initialise the homogeneous configuration were outlined in Table 4.3 and were

chosen arbitrarily. To begin with, the Agent Parameters α, β, γ and Number of Agent Groups were

fixed, whilst the Number of Agents and Iterations varied for the specific purpose of evaluating their

impact on the Number of Infected Agents or model output.
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Homogeneous Config: ABM Parameters

Parameter Value

Number of Agents 10-1000

Number of Iterations (Time, t) 10-1000

Number of Agent Groups 1

α 0.1

β 0.386

γ 0.2

Table 4.3: Homogeneous Configuration Parameter Values

Figure 4.3 illustrates the Number of Infected with total populations of 10, 100 and 1000 agents,

over 10 iterations. Given the method by which agents construct their likelihoods, it seems that as

long as α and or β > γ, there would be an initial increase in the Number of Infected Agents that

would eventually reach a constant rate or steady state.

And as expected, Figure 4.3 satisfies this assumption. As the Number of Agents increased from

10 to 100 (Figure 4.3b) and 1000 (Figure 4.3c), the Number of Infected exhibited a less sporadic,

fluctuating nature but it will become clear that the simulations reach a “steady state” toward the

latter stages.
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(a) Number of Panicked Agents with Total Population of

10 Agents

(b) Number of Panicked Agents with Total Population of

100 Agents

(c) Number of Panicked Agents with Total Population of

1000 Agents

Figure 4.3: Number of panicked agents with an increasing agent population over 10 iterations
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To explore the effects of Time on the Number of Infected, the model was simulated over 100 and

1000 Iterations, see Figure 4.4. In comparison to Figure 4.3, in Figures 4.4a and 4.4b increasing the

Number of Iterations whilst the agent population is kept small, introduced a sporadic, fluctuating

nature. With fewer agents, there seemed to be a larger variance in the Number of Infected as

illustrated by the extreme peaks and troughs.

When increasing the Number of Agents to 100, as shown in Figures 4.4c and 4.4d, the variance

of the Number of Infected shrinks. Though there was still some irregular oscillation, there were

far less observable extremes. Similarly, Figures 4.4e and 4.4f present the results of 1000 agents

over 100 and 1000 iterations, respectively. An immediate observation was how little variance was

present in the dynamics of the Number of Infected, though there was still some noise or oscillation.

Moreover, when considering the stationary distribution and how it could be achieved, there

were three Model Parameters that became the subject of focus: Number of Agents, Iterations and

Instances (Single and Multiple)2. Figure 4.5 presents the effect of each Model Parameter.

2For more on Single and Multiple Instances, see Table 4.1.
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(a) Number of Panicked Agents with Total Population of

10 Agents

(b) Number of Panicked Agents with Total Population of

10 Agents

(c) Number of Panicked Agents with Total Population of

100 Agents

(d) Number of Panicked Agents with Total Population of

100 Agents

(e) Number of Panicked Agents with Total Population of

1000 Agents

(f) Number of Panicked Agents with Total Population of

1000 Agents

Figure 4.4: Number of panicked agents with an increasing agent population over 100 and 1000

iterations
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(a) Single Instance: Number of Panicked Agents with

Total Population 1000 over 100 Iterations

(b) Single Instance: Number of Panicked Agents with

Total Population 100, 000 over 100 iterations

(c) Single Instance: Number of Panicked Agents with

Total Population 1000 over 1000 Iterations

(d) Single Instance: Number of Panicked Agents with

Total Population 1000 over 100, 000 Iterations

(e) Multiple Instances: Average Number of Panicked

Agents with Total Population 1000 and 100 Iterations

over 100Model Instances

(f) Multiple Instances: Average Number of Panicked

Agents with Total Population 1000 and 1000 Iterations

over 100Model Instances

Figure 4.5: The effect of Number of Panicked Agents, Number of Iterations and Model Instances

has on Stochasticity
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Figures 4.5a and 4.5b were model results over a Single Instance and 100 iterations; the visual-

isations demonstrate that increasing the Number of Agents from 1000 to 100, 000 approximately

the same steady state is reached. Figures 4.5c and 4.5d allude to the same findings, albeit the be-

haviours present differently. Showing that increasing the Number of Iterations has no observable

effect on the Number of Infected; that being said, it is indicative of potentially having reached a

steady state. Although there are some observable peaks and troughs, the variance is unchanged

through time, it remains stationary.

And finally, when the ABM was simulated over Multiple Instances, as in Figures 4.5c and 4.5d,

the Number of Infected denotes the Average specifically over 100 instances. In contrast to Fig-

ures 4.5a and 4.5b where the Number of Iterations increased from 100 to 1000, the variance mirrors

behaviours exhibited when increasing the Number of Agents (see, Figures 4.5a and 4.5b). This sug-

gests that simulating the ABM with a larger Number of Agents in a Single Instance has a similar

smoothing effect on the Number of Infected, to the Average Number of Infected from a smaller

Number of Agents and Number of Iterations. Leading on from this, as there are no observable or

unexpected deviations, there is a sensible degree of confidence and certainty that can be assumed

by the user when considering the performance of this case study model.

To supplement the above, Ordinary Differential Equations (ODE) will be used to reproduce the

ABM scenario illustrated in Figure 4.5e later in this Chapter. The purpose of this comparison will

be to investigate whether an inherently deterministic model (ODE) and stochastic model (ABM)

could ever match. Figure 4.6 presents the Number of Infected, where the ODE and ABM were

initialised with the same Number of Agents (1000) and Number of Iterations (100). As the ABM

was inherently stochastic, the AverageNumber of Infected over Multiple Instances (100) was used,

rather than over a Single Instance. From this model comparison, there is evidence of some con-

vergence, as both exhibit qualitatively similar dynamics.
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Figure 4.6: Model Comparison: Deterministic ODE and Stochastic ABM
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4.3.2 Heterogeneous Configuration

Heterogeneity is introduced through the Number of Agent Groups parameter, first outlined in Ta-

ble 4.1. Whereby, the Number of Agents would be divided by the Number of Agent Groups. Each

Group would then be assigned a unique β value which was chosen arbitrarily; where α and γ were

held constant. To first present this configuration, extreme values of β were selected to investi-

gate whether the dynamics of high and low infectious rates could be observable in model output.

Table 4.4 outlined the parameter values used to initialise the heterogeneous configuration of the

ABM. The exploration began by increasing the Number of Agent Groups = 2.

Heterogeneous Config: ABM Parameters

Parameter Value

Number of Agents 10-1000

Number of Iterations (Time, t) 10-1000

Number of Agent Groups 2

α 0.1

βGroup 1 0.8957

βGroup 2 0.0508

γ 0.2

Table 4.4: Heterogeneous Configuration Parameter Values

The Number of Infected with total populations of 10, 100 and 1000 agents over 10 iterations can

be found in Appendix A; Figure A.1 presents the same smoothing effects as it previously observed

in Figure 4.3. Moreover, Figure 4.7 illustrates the Number of Agents and Number of Iterations at

100 and 1000, which reproduce similar dynamics seen in Figure 4.4. When the Number of Agents

is held constant at 100, but the Number of Iterations increases from 100 (Figure 4.7a) to 1000

(Figure 4.7b), the Number of Infected presents a familiar sporadic, oscillating nature.
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(a) Number of Panicked Agents with Total Population of

100 Agents over 100 Iterations

(b) Number of Panicked Agents with Total Population of

100 Agents over 1000 Iterations

(c) Number of Panicked Agents with Total Population of

1000 Agents over 100 Iterations

(d) Number of Panicked Agents with Total Population of

1000 Agents 1000 Iterations

Figure 4.7: Number of panicked agents with increasing agent population over 100 and 1000 itera-

tions

When the Number of Agents increased and fixed at 1000, but the Number of Iterations was

increased from 100 (Figure 4.7c) to 1000 (Figure 4.7d), the variance of the Number of Infected is

significantly smaller and there are less observable extremes; but the overall dynamics of the model

do not diverge from what was previously seen. Furthermore, βGroup 2 = 0.0508 has the smallest

proportion in the Number of Infected; be that as it may, the steepness of each slope is not as clear.

Another area of interest in the exploration of the heterogeneous configuration was: to investigate
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whether the proportion of the Number of Agents within each Group, would impact the nature of

the Number of Infected. Figure 4.8 presents these results but to comprehend the behaviours, the

dynamics of the heterogeneous configurations were expressed algebraically.

The Number of Agents or total agent population could then be expressed as:

N = N1 +N2, (4.1)

where N1 was the Number of Agents in Group 1 and N2 was the Number of Agents in Group 2

respectively. Each Group were assigned their own unique β values in this case:

N1 = βGroup 1 = 0.8957

N2 = βGroup 2 = 0.0508.

Eqn. (4.1) implies,

1 =
N1

N
+

N2

N

where 1 denotes the total agent population.

Therefore, the proportion of the Number of Agents in Group 1 could be defined as the following:

θ1 =
N1

N
, (4.2)

where θ1 = [0, 1] and expresses a proportion of agents between 0% − 100%.

Given Eqn. (4.2), it stands that:
N2

N
= 1− θ1.

Then,
β̂ =

N1

N
β1 +

N2

N
β2

= θ1β1 + (1− θ1)β2

(4.3)

93



4.3. MODEL EXPLORATION CHAPTER 4. MOD-
ELLING CONTAGION: AN
AGENT-BASED MODEL

In essence, Figure 4.8 illustrates how varying the proportion of the Number of Agents within

each Group, would impact the nature of the Number of Infected. For reference, the parameter

values used in initialising the ABM for this investigation are in Table 4.5.

To begin, the Average Number of Infected was approximated over 100 instances in both the

homogeneous and heterogeneous cases. The homogeneous cases referred to the scenarios where

100% of the Number of Agents were either Group 1 or Group 2, respectively; and the heteroge-

neous cases referred to the scenarios where the Proportion of the Number of Agents allocated to

either Group 1 or Group 2, decreased and increased respectively.

In Figure 4.8, where 100% of the Number of Agents were allocated to Group 1, the Average

Number of Infected was depicted by the static blue line. And when, 100% of the Number of

Agents were allocated to Group 2, the Average Number of Infected was depicted by the static

magenta line. As one would expect, Group 1 presented a higher steady-state than Group 2, which

reflects the size of their β values.

In addition to the above, particularly in reference to the scenario where 100% of the Number

of Agents were allocated to Group 2, the Average Number of Infected at each incremental +1%

change is captured by the increasing grey bars. This insinuates that as the Number of Agents in

the simulation increases, so does the Fraction of Infected.

As the Number of Agents in Group 1 decreases in increments of 1%, the Number of Agents

in Group 2 increases by the same proportion. This negative relationship is captured by the green

dashed line, which is the Heterogeneous Total Infected Fraction. Therefore, it can be reasoned that

the proportion of the Number of Agents in each group is what matters most, as the changes in Total

Infected Fraction reflect the β of the group with a larger fraction of the Number of Agents, not the

group with the highest β.

94



4.3. MODEL EXPLORATION CHAPTER 4. MOD-
ELLING CONTAGION: AN
AGENT-BASED MODEL

Heterogeneous Config: ABM Parameters

Parameter Value

Number of Agents 100

Number of Iterations (Time, t) 100

Multiple Instances 100(t)

Number of Agent Groups 2

α 0.1

βGroup 1 0.8957

βGroup 2 0.0508

γ 0.2

Table 4.5: Parameters for the investigation of varying Proportion of Agents in Agent Groups

Figure 4.8: The impact of Agent Groups (Heterogeneity) on the dynamics of the Number of In-

fected (Panicked) Agents
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4.3.3 Homogeneous and Heterogeneous Configuration Comparison

Figure 4.9 compares the dynamics of Average Number of Infected for Homogeneous and Het-

erogeneous configurations, where Table 4.6 contains the parameter values used to initialise each

model.

ABM Parameters

Homogeneous Config. Heterogeneous Config.

Parameter Value Value

Number of Agents 1000 1000

Iterations (Time, t) 100 100

Multiple Instances 1000(t) 1000(t)

Number of Agent Groups 1 2

Alpha (α) 0.1 0.1

Beta (β) 0.386 0.8957, 0.0508

Gamma (γ) 0.2 0.2

Table 4.6: Configuration Comparison: Agent and Model Parameter Values

Figure 4.9: Comparison of the Number of Infected in Homogeneous and Heterogeneous Configu-

rations.
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The dynamics of the homogeneous and heterogeneous configurations were compared. In the

homogeneous case where β = 0.386, the Average Total Number of Infected was 62. In the hetero-

geneous case, where β1 = 0.8957 and β2 = 0.0508, the Average Total Number of Infected was

56.

Figure 4.9 indicates that both configurations follow similar dynamics and there are no unex-

pected deviations. However, even when α and γ are held constant, the proportion of the Average

Number of Infected is significantly higher in the Homogeneous Configuration. A possible expla-

nation for this may relate to the investigation of Agent Groups in the previous section: in that, only

50% of the agents have a higher β, these are agents in Group 1 of the Heterogeneous configuration.

Agents in Group 2 have a lower infection rate and thus are less likely to become infected. This

reduces the Total Number of Panicked agents in the Heterogeneous configuration. To supplement

the above, not only does the size of β significantly affect the Average Number of Infected, but so

does the proportion of the Number of Agents in each group.

On a final note, this comparison suggests a possibility of equivalent homogeneous and hetero-

geneous models if attention is paid to selecting β values which produce approximate Average Total

Number of Infected. This exercise suggests that closing the distance of the Average Number of In-

fected between Homogeneous and Heterogeneous Configurations in Figure 4.9 could be achieved

by purposefully selecting combinations of β values which reflect approximate Average Total Num-

ber of Infected values. Though this may be a significant observation from model exploration, the

objective of this study is to investigate the impact of the introduction of heterogeneity using this

toy model, not to necessarily prove the equivalence between homogeneous and heterogeneous. Be

that as it may, an investigation into potential equivalence could be explored in future work.
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4.4 Sensitivity Analysis

The previous section explored the dynamics of the homogeneous and heterogeneous configurations

of the case study model; however, the values used to simulate the findings were chosen arbitrarily.

Thus, it is paramount to conduct further study of the robustness and overall uncertainty of the

ABM. In other words: how different values of α, β and γ affect the Number of Infected? And

with the analysis, Section 4.5 will use it to present the rationale underpinning the fixing of Agent

Parameters in subsequent chapters. The aim of this sensitivity analysis3 is to distinguish optimal

parameter values based on their effect on model output.

4.4.1 Background Rate Of Infection: α

As mentioned previously, as Agent Parameters are rates, they are bound between 0-1 to demon-

strate the growth and decline of infection. In this study, α was defined as the background rate

of Infection. Thus, α was the constant spontaneous rate of infection that existed within the pop-

ulation, transmitting the infection to a susceptible agent regardless of the state of their contacts.

To evaluate the effect of its fluctuations on the Number of Infected, β, γ and all the other ABM

parameters were held constant (See Table 4.7). As done earlier, it is assumed that α will have a

positive, increasing effect on the Number of Infected.

In Figure 4.10, γ is held constant along rows at 0.25 and 0.75 in the top and bottom rows re-

spectively. Similarly, in Figure 4.10, β is held constant down columns and has the values 0.25

and 0.75 in the left and right columns respectively. Along the y-axis is the Average Number of

Infected as α increases between 0-1.0. As expected, as α increases, so does the Average Number

of Infected. And as previously seen, α and or β > γ continue to determine the steepness of the

slope in the Average Number of Infected, before reaching a steady state.

The figures in the top-row suggest that when γ is small: on the left column, as α increases so

does the Average Number of Infected. On the right column, where β is high so is the Average

Number of Infected. But the effect of α is less noticeable. On the bottom-row, where γ is high,

as α increases as does the Average Number of Infected. In both columns, as α and β increase so
3The sensitivity analysis script can be found on GitHub, here.
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Homogeneous Config: ABM Parameters

Parameter Value

Number of Agents 1000

Number of Iterations (Time, t) 100

Multiple Instances 100(t)

Number of Agent Groups 1

α 0.0-1.0

β 0.025, 0.075, 0.25, 0.75

γ 0.025, 0.075, 0.25, 0.75

Table 4.7: Homogeneous Configuration Parameter Values: Sensitivity Analysis of α

Figure 4.10: Alpha on the Average Number of Panicked Agents (0.0-1.0)

does the Average Number of Infected. Though compared to the top-row, the Average Number of

Infected is significantly smaller. Figure 4.11 considers the Average Number of Infected when α

ranges between 0-0.1, where β and γ are still fixed at 0.25 and 0.75. Here, though smaller, as α

increases so does the Average Number of Infected. Though this is less noticeable where β = 0.75

and γ = 0.25. Compared to Figure 4.10, the comparatively lower α values reflect in the lower

Average Number of Infected.
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Further, Figure 4.12 considers Average Number of Infected when α ranges 0-0.001, where β

and γ are fixed at 0.025 and 0.075. This Figure suggests, that when α is significantly small there

is a variability in its effect on the Average Number of Infected. These Figures serve as motivation

to keep α between 0.0 − 0.1, as this is when the effect of α is most observable on the Average

Number of Infected. That being said, where β and γ are too large, the effect of α is less apparent.

Figure 4.11: Alpha on the Average Number of Panicked Agents (0.0-0.1)

Figure 4.12: Alpha on the Average Number of Panicked Agents (0.0-0.001)
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4.4.2 Inter-agent Infection Rate: β

The inter-agent infection rate, β, refers to the transmission rate at which susceptible contacts be-

come infected. The analysis above was repeated to capture the effect of β on the Average Number

of Infected. Once more the ABM parameters were held constant, see Table 4.8.

Homogeneous Config: ABM Parameters

Parameter Value

Number of Agents 1000

Number of Iterations (Time, t) 100

Multiple Instances 100(t)

Number of Agent Groups 1

α 0.025, 0.075, 0.25, 0.75

β 0.0-1.0

γ 0.025, 0.075, 0.25, 0.75

Table 4.8: Homogeneous Configuration Parameter Values: Sensitivity Analysis of β

As assumed with α, β is expected to exhibit similar positive behaviours, in that it should have

an increasing effect on the Average Number of Infected.

In Figure 4.13, γ is held constant along rows at 0.25 and 0.75 in the top and bottom rows re-

spectively. Similarly, in Figure 4.13, α is held constant down columns and has the values 0.25 and

0.75 in the left and right columns respectively.

Along the y-axis is the Average Number of Infected as β increases between 0-1.0. On the top-

row, the left figure shows, that as β increases so do the Average Number of Infected; however,

this is effect not evident in the right figure where Average Number of Infected remains constant.

Likewise on the bottom-row, β increasing does not seem to significantly affect Average Number

of Infected. This Figure suggests that even when β increases particularly when α is high, Average

Number of Infected remains constant.
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Figure 4.13: Beta on the Average Number of Panicked Agents (0.0-1.0)

Unlike with behaviours exhibited by α when smaller, Figure 4.14 presents β between 0-0.1.

And in both top and bottom-rows, the behaviour of the Average Number of Infected are somewhat

identical. There is no observable effect of β as it increases on the Average Number of Infected,

it actually remains constant. Figure 4.15 presents the case where β ranges between 0.0 − 0.001,

and γ and α are fixed at 0.025 and 0.075. The behaviours present mirror those previously seen: as

β increases, the Average Number of Infected maintains a constant rate and does not vary. These

Figures suggest that the effects of β are most noticeable between 0.0 − 1.0, any smaller than its

effect becomes practically unobservable.
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Figure 4.14: Beta on the Average Number of Panicked Agents (0.0-0.1)

Figure 4.15: Beta on the Average Number of Panicked Agents (0.0-0.001)

103



4.4. SENSITIVITY ANALYSIS CHAPTER 4. MOD-
ELLING CONTAGION: AN
AGENT-BASED MODEL

4.4.3 Recovery Rate: γ

The rate of recovery, γ, was described as the rate at which infected agents would return to a suscep-

tible state, independent of the state of their contacts. To capture its effect, the experiments above

were replicated and the ABM Parameters were held constant (See Table 4.9).

Homogeneous Config: ABM Parameters

Parameter Value

Number of Agents 1000

Number of Iterations (Time, t) 100

Multiple Instances 100(t)

Number of Agent Groups 1

α 0.025, 0.075, 0.25, 0.75

β 0.025, 0.075, 0.25, 0.75

γ 0.0-1.0

Table 4.9: Homogeneous Configuration Parameter Values: Sensitivity Analysis of γ

Although γ is non-negative, given its dynamics, it can be assumed that γ will have a negative

effect on the Average Number of Infected agents.

In Figure 4.16, β is held constant along rows at 0.25 and 0.75 in the top and bottom rows re-

spectively. Similarly, in Figure 4.16, α is held constant down columns and has the values 0.25 and

0.75 in the left and right columns respectively.

Along the y-axis, as γ increases between 0-1.0 the Average Number of Infected decreases. This

negative effect observed as γ increases does not change in either top and bottom-rows. In Fig-

ure 4.17 γ ranges between 0.0-0.1, and as it γ increases, the Average Number of Infected still

decreases. However, there is a noticeably shallower decline observed in the Average Number of

Infected.
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Figure 4.16: Gamma on the Average Number of Panicked Agents (0.0-1.0)

Figure 4.17: Gamma on the Average Number of Panicked Agents (0.0-0.1)

In Figure 4.18 γ spans between 0.0-0.001 and β and α are fixed at 0.025 and 0.075. Here, the

AverageNumber of Infected follows similar dynamics observed in Figure 4.14 and Figure 4.15. As,

γ increases, there is no observable change in the Average Number of Infected, it remains constant.

These Figures suggest that the effect of γ on Average Number of Infected is most perceptible

between 0.0− 1.0, this serves as motivation to keep γ relatively high.
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Figure 4.18: Gamma on the Average Number of Panicked Agents (0.0-0.001)
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4.5 Parameter Value Selection: Distinguishing Initial Input Values

The sensitivity analysis conducted in the previous section evaluated the parameter space of each

Agent Parameter. Thus, it can be utilised to distinguish and justify suitable values for each param-

eter given research objectives. Furthermore, fixing parameters ensures consistency throughout the

remaining chapters. This will be demonstrated by scaling all parameters to show that time yields

qualitatively similar results, thus one parameter can be justifiably fixed. In this case, the fixed

parameter will be γ, see Figure 4.19.

Figure 4.19: Demonstrating the Impact of Gamma by Rescaling Time

Figure 4.19, presents a two-case study and the Agent Parameters used to initialise the models

are summarised in Table 4.10. Case 1, depicted by the turquoise-blue line, was simulated with the

following values: α = 0.005, β = 0.5, γ = 0.05. Case 1 presents an initial increasing slope in

the Average Number of Infected, before eventually reaching a steady-state. In Case 2, depicted by

the yellow line, α, β, γ were multiplied by 2; when compared to Case 1, the line is characterised

by a comparatively steeper slope. The steeper gradient is the result of a higher likelihood, which

then paired with a higher rate of recovery, resulting in the steady-state being reached sooner than

in Case 1. By rescaling Time, multiplying t by 2 on Case 2, and is depicted by the purple dashed
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Homogeneous Config: ABM Parameters

Parameter Value

Number of Agents 100

Number of Iterations (Time, t) 25, 50

Multiple Instances 100(t)

Number of Agent Groups 1

α 0.005, 0.01

β 0.5, 1.0

γ 0.05, 0.1

Table 4.10: Homogeneous Configuration Parameter Values: Effect of γ by Rescaling Time

line. Most interestingly, Case 2 and Case 2 with rescaled Time converge at the same steady-state

rates. This Figure shows that qualitatively similar dynamics as the result from rescaled parameters

when time is appropriately rescaled. Thus, one of the parameters can be fixed while the other two

are varied, since the dynamics resulting from any other combination of parameters will be captured

in those considered via an appropriate rescaling. Based on this γ will be fixed at 0.1 hereinafter

Sections 4.4.1 and 4.4.2 presented the interesting dynamics of of α and β, respectively. Both

α and β presented an increasing relationship with the Average Number of Infected. When α was

significantly small, there was more variability in the behaviour of the AverageNumber of Infected;

in contrast to β, which proved to have very little variability overall but was most dynamic when α

was comparatively smaller. To continue the identification of optimal parameter values, γ was held

at 0.1 then α and β were varied between 0.0-0.01 and 0.0-1.0 respectively, Figure 4.20 presents

the Average Number of Infected Agents as a Heatmap.
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Figure 4.20: Examining the relationship between Alpha, Beta and the Mean Number of Infected

Agents

In Figure 4.20, where α is very low then increasing β initially has no effect, but then rather

quickly Average Number of Infected increases. For larger α values, this effect is evident in lower

values of β. Thus, α will be held constant at 0.01. As demonstrated in 4.4.2, where α is large

the effect of β becomes imperceptible, which serves as a further motivation to constrain α to

comparatively smaller values.

And lastly, when considering β in the Homogeneous Configuration, where α = 0.01, any value

between 0.0-0.6 would be appropriate. Naturally, as β is a rate, to observe the effect of the inter-

agent infection rate the selected value should be greater than 0. But when introducing Heterogene-
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ity, it may be worth considering allocating β values to Agent Groups which are distinctive, so the

dynamics of Average Number of Infected are comparatively different and effects are distinguish-

able.

4.6 Modelling Contagion: an ODE Illustration

This section introduces an ODE model based on the SISa framework used to develop the case

study ABM. The ODE model only considers a homogeneous population but will be used later in

Chapter 6 to propose parameter identification issues as an impact of modelling heterogeneity.

The dynamics of the emotional contagion SISa model can be expressed by the following set of

ordinary differential equations,

dI

dt
= aS + bSI − gI,

dS

dt
= −aS − bSI + gI,

(4.4)

where I(t) and S(t) are the number of infected and susceptible agents respectively at time t, b

is the transition rate from infected to susceptible, a is the rate of spontaneous infection, and g the

recovery rate. This model assumes a constant population size N , neglecting birth and death, so

I + S = N . The objective of this section is to determine the evolution of the number of infected

individuals, I(t), through time t, in order to show formally that identifiability will be a problem.

The number of susceptible agents can be written in terms of the total population size and the

number of infected agents, specifically S = N −I . Thus only a single ODE need to be considered

to calculate the rate of change in the number of infected agents

dI

dt
= a(N − I) + b(N − I)I − gI. (4.5)

To simplify the notation it is rescaled. This involves replacing I by the scaled variable x with

rescaling parameter D,

I = Dx,
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and t is replaced by the scaled time τ with rescaling parameter T ,

τ = Tt.

The time rescaling can be interpreted in the following way: assuming τ = 1 hour, and t = 1

minute, then the conversion factor from minutes to hours is T = 1
60 . The time derivative then

becomes

d

dt
=

dτ

dt

d

dτ
,

= T
d

dτ
.

Substituting the new units into Eqn. (4.5) yields

TDẋ = a(N −Dx) + b(N −Dx)Dx− gDx, (4.6)

where the dot still refers to differentiation with respect to time. Dividing through by T and D

gives

ẋ =
a

T

(
N

D
− x

)
+

b

T

(
N

D
− x

)
Dx− gx

T
,

which motivates choosing T = g to set the rate of recovery (from infected to susceptible) to 1,

and D = N to make x the fraction of infected agents. Setting

α = a
g and β = bN

g results in the rescaled differential equation

ẋ = α(1− x) + β(1− x)x− x. (4.7)

This process began with three unknown parameters in Eqn. (4.5), rescaling has reduced the

unknowns to just α and β.

Note that
ẋ = α(1− x) + β(1− x)x− x

= α+ (β − α− 1)x− βx2.
(4.8)
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Writing the right-hand side of Eqn. 4.7 as a quadratic can help understand the dynamics and

derive the steady-state equilibrium. In solving the quadratic for the roots, unstable and stable roots

respectively, would describe the equilibria.

The equilibria can be found by solving

0 = α+ (β − α− 1)x− βx2,

or equivalently

0 = x2 − β − α− 1

β
x− α

β
,

which has solutions

x± =
1

2

β − α− 1

β
±

√(
β − α− 1

β

)2

+
4α

β

 . (4.9)

To determine whether the roots are real or complex conjugate roots, the numbers under the

square root in Eqn. (4.9) should be considered. From this square root, observe that
(
β−α−1

β

)2
is

squared and so will always be positive and since α and β are both positive rates, 4αβ is also positive.

Thus everything under the square root will always be positive and so are real equilibria, with one

positive root and one negative root.

Also, in this study of the ODE model, bifurcations are a possibility. Bifurcations occur when

a small smooth change made to the parameter values changes the behaviour of the entire system

(Blanchard, Devaney, and Hall 2006). In this case, if parameter values were changed so that the

equilibria were to disappear, the parameter values would have to be negative. Therefore, though

bifurcations can occur, they won’t be considered and focus is placed on positive parameter values.

To learn the evolution of the number of infected through time, Eqn. (4.9) can be rewritten and

then solved using the separation of variables. Then, the roots in Eqn. (4.9) can be used to factorise

the right-hand-side of the ODE,

ẋ = −β(x− x+)(x− x−),

then separation of variables yields
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∫
dx

(x− x+)(x− x−)
=

∫
−βdτ. (4.10)

Eqn. (4.10) can be solved with partial fractions, from which the following is found

1

(x− x+)(x− x−)
=

1

(x− x+)(x+ − x−)
− 1

(x− x−)(x+ − x−)
,

and substituting this into Eqn. 4.10 results in∫
1

(x− x+)
− 1

(x− x−)
dx = −β(x+ − x−)τ + constant.

Thus

ln
(
x− x+
x− x−

)
= −β(x+ − x−)τ + constant,

and so

x− x+
x− x−

= A exp (−β(x+ − x−)τ) , (4.11)

where A is a constant of integration.

Setting x(0) = x0, the following is found

x0 − x+
x0 − x−

= A.

Then, plugging the above into Eqn. (4.11) which gives

x− x+
x− x−

=
x0 − x+
x0 − x−

exp (−β(x+ − x−)τ) .

To return to solutions for I(t), the results from rescaling can be plugged in

x± =
I±
N

,

where

I± = I± =
1

2b

(
bN − a− g ±

√
(bN − a− g)2 + 4abN

)
. (4.12)

Consequently
I − I+
I − I−

=
I0 − I+
I0 − I−

exp
(
−b��N

�g

I+ − I−

��N �gt

)
(4.13)
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which can be rearranged to give

p =
I0 − I+
I0 − I−

,

q = b(I+ − I−),

then
I − I+
I − I−

= p exp(−qt),

I − I+ = p(I − I−) exp(−qt)

I − I+ = p exp(−qt)I − p exp(−qt)I−

I(t) =
I+ − p exp(−qt)I−
1− p exp(−qt)

. (4.14)

From I± (Eqn 4.9), the evolution of I(t) (Eqn 4.14) has been found. With these solutions, the

Number of Panicked agents can be visualised, as done in previous sections with the case study

ABM. Using the similar parameter values that were used to initialise the homogeneous configu-

ration of the case study ABM, Table 4.11 summarises the values used to initialise the ODE. Fig-

ure 4.21 presents the evolution of I(t), otherwise known as the Number of Panicked Agents.

ODE Parameters

Parameter Value

Number of Agents 1000

Number of Iterations (Time, t) 100

Number of Agent Groups 1

α 0.1

β 0.386

γ 0.2

Table 4.11: ODE Model: Parameter Values

As anticipated, Figure 4.21 presents similar dynamics as seen in the homogeneous configuration

of the case study ABM, over 100 iterations. The most perceivable difference is the absence of
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Figure 4.21: Number of Panicked Agents: Evolution of I(t) (Eqn 4.14)

stochasticity, formally presented in the peaks and troughs as seen in Figure 4.4. Having established

the similarities between the homogeneous case study ABM and ODEmodel dynamics and findings

will allow for parallels to be drawn in the investigation of parameter identification in Chapter 6.

In addition to the above, Table 4.12 presents the roots of the quadratic Eqn. (4.9), that were used

to find the evolution of I(t).

I(m) I(p)

-409.635 632.433

Table 4.12: Solutions for I± (Eqn 4.9)
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4.7 Summary - Modelling Contagion

The chapter began by first presenting the simple ABMbased on the SISamodel framework outlined

in Chapter 3. The ABM was outlined using the overview design concepts and details (ODD)

protocol outlined by Grimm, Berger, DeAngelis, et al. (2010) to describe the systems processes

most appropriately. Section 4.3 presented the dynamics of the homogeneous configuration by

fixing the Agent Parameters: α, β, γ and Number of Agent Groups, whilst varying the Model

Parameters: Number of Agents, Number of Iterations and Model Instances. Then, heterogeneity

was introduced by increasing the Number of Agent Groups. The dynamics of the output in the

homogeneous and heterogeneous configurations were compared and found to be fundamentally

similar. Section 4.4 investigated the impact of Agent Parameters on the output, whilst fixing the

Model Parameters. Section 4.5 distinguished parameter values which were suitable based on the

size of their effect on the output: in summary, the impact of α was most observable when small,

whilst β and γ were most effective when bigger. Finally, Section 4.6 introduced an ODE model of

emotional contagion that will be used in subsequent chapters to further investigate the impact of

heterogeneity.
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5.1 Chapter Overview

Validation provides an assessment of how well the model approximates the real-world system

and satisfies the research objectives; which in turn depends on parameter estimation and model

calibration (Zhang, Li, and Zhang 2020). Model validation determines the robustness of statistical

or computational experiment results and it serves as a basis for decision-making and future research

(Berger, Manson, and Parker 2002).

Parameter estimation attempts to approximate the unknown parameters from empirical data,

given some stochasticity. Estimated parameters discovered from the parameter estimation process

fulfil a selection of conditions that distinguish them as true values. Effectively, parameter esti-

mation presents the effects of a subset of parameter values within the model (Aster, Borchers, and

Thurber 2019). Although the effects of the estimated parameters can be recognised and accepted as
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significant, they may not be uniquely distinguishable from a wider subset of estimates. Model cal-

ibration is the process of distinguishing the estimates that reflect a particular known dataset (Tsai

et al. 2021). When parameter estimates cannot be uniquely determined from the observed data,

there exist one or more potential estimates that may produce predicted results similar to the ob-

served data. This is known as the parameter identification problem which will be explored further

in Chapter 6.

Even so, this is why model calibration is an essential process, as ideally, it determines a unique

set of model parameters that provide a good description of the system behaviour (Judd and Judd

2011). Generally, calibration is an iterative process that fine-tunes the estimated parameters, hold-

ing its kind and structure constant. It effectively captures uncertainty so it can be understood but

also quantified to help determine model reliability. Quantifying uncertainty, as with calibration

and validation remains an ongoing challenge in agent-based modelling (Windrum, Fagiolo, and

Moneta 2007; Crooks, Castle, and Batty 2008; Filatova et al. 2013; Heppenstall, Crooks, Malle-

son, et al. 2021). Uncertainty quantification is crucial to verifying model credibility when much

has been invested in deterministic analyses and unwarranted assumptions (Smith 2013). This can

be captured in calibration, as the process describes the inverse operation targeting optimal predic-

tion and refers to the inference of best uncertain model estimates from experimental data (Hessling

2017).

Literature has defined two types of uncertainty quantification: forward uncertainty propagation

and inverse uncertainty quantification. Forward uncertainty propagation investigates the impact

of random inputs on the model outputs, this is commonly referred to as sensitivity analysis as seen

in Chapter 4. On the other hand, inverse uncertainty quantification uses model outputs to deter-

mine sources of modelling uncertainty, through the process of parameter estimation or calibration

(Arendt, Apley, and Chen 2012). This chapter will present inverse uncertainty quantification,

mainly the model calibration process within the context of the case study ABM.

The calibration of ABMs is a challenging task. Due to the complexity of real systems in which

ABMs are modelled, they typically contain a large number of parameters that need to be calibrated.

And as the parameter space increases geometrically, this introduces a dimensionality problem (Lee
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et al. 2015). High dimensionality, or increasing heterogeneity, requires increased computational

capabilities when searching for significant parameter combinations, which can be computationally

expensive for researchers (Zhang, Li, and Zhang 2020). One of the criticisms against ABMs is the

lack of objective verification criteria, which affect replicability and scientific validation achieved

through further study (Assenza, Delli Gatti, and Grazzini 2015; Caiani et al. 2016; Popoyan, Napo-

letano, and Roventini 2017). Consequently, there are a plethora of sources from which uncertainty

can stem through the model. Some acknowledged sources include parameter uncertainty, model

discrepancy, ensemble variance, and observation uncertainty (Kennedy and O’Hagan 2001).

Given this study’s overarching aim, the calibration application differs from the common use in

empirical ABMs. Calibration often involves the fine-tuning of estimates to observed or observa-

tional data, within this process, parameter uncertainty is captured. Parameter uncertainty can result

from difficulties distinguishing which parameter values to use. Thus, calibration will be used as

a detection tool to examine the parameter space to understand the impact heterogeneity may have

on the case study model using synthetic data. To conduct this examination Approximate Bayesian

Computation (ABC) calibration will be used. The following sections will briefly describe the

method and present the results of the case-study model outlined in Chapter 4.
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5.2 Approximate Bayesian Computation (ABC)

Bayesian statistics express probability as a degree of belief in the occurrence of an event (Gelman

2014), it considers old and new information through the systematic updating of beliefs (Forbes

2011). Bayes’ theorem, which underpins all Bayesian statistical methods, suggests that given two

events A and B, the probability of A occurring is conditional on event B having already occurred.

This conditional probability is expressed mathematically as:

P (A|B) =
P (B|A)P (A)

P (B)
. (5.1)

Where, P (A|B) describes the probability of A occurring given B has already happened and

P (B|A) is the probability of B given A has happened, P (A) and P (B) are the unconditional

probabilities of A and B happening respectively. Principally, all the available information is used

to infer the likely value of the given parameter.

Bayesian statistical methods are comprised of three components (Bayes 1763; Stigler 1986):

1. A Prior distribution, P (A), that describes all the knowledge and information available or

prior beliefs regarding the occurrence of the event. Uncertainty is captured by the variance

of the priors distribution; the larger the variance the more perceived uncertainty is assumed

to exist.

2. A Likelihood, P (B|A), that poses the following question: Given the model parameters and

available information, such as the mean and variance of the prior distribution, what is the

probability of the event occurrence?

3. A Posterior distribution, P (A|B), is the combination of the prior distribution and likelihood

function. It reflects the updated knowledge, balancing prior knowledge with the observed

data.

Hence, Equation 5.1 can be simplified to Posterior ∝ Likelihood × Prior, where the posterior

probability is proportional to the result of the prior probability and the likelihood function. When

the likelihood is known, the posterior distribution can be easily derived directly and continuously
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inferred as new data becomes available. However, in most cases, the likelihood function can be

nearly impossible to derive, depending on the complexity of the problem. In these instances, Ap-

proximate Bayesian Computation (ABC) methods can be implemented to replace the likelihood

function and determine an approximation for the posterior distribution based on samples. In ABMs,

likelihood functions are often intractable due tomodel complexity; butmore recentlyABChas been

proposed as an adequate substitute to achieve calibration (Turner and Van Zandt 2012; Grazzini,

Richiardi, and Tsionas 2017).

ABC methods are algorithms used to estimate the posterior distributions of given parameters

by sampling and simulating values from the prior repeatedly to produce synthetic datasets. The

distance between the synthetic dataset and the observed data is calculated, and samples with com-

paratively smaller distances are accepted and form part of the posterior distribution. There are

various ABC algorithms which have been applied in literature (Beaumont, Zhang, and Balding

2002; Beaumont 2010; Sottoriva and Tavaré 2010; Hartig et al. 2011; Martínez et al. 2011; May,

Giladi, et al. 2013; Thiele, Kurth, and Grimm 2014; McCulloch et al. 2022; Zbair, Qaffou, and

Hilal 2023), although the common ones are rejection sampling and sequential Monte Carlo.

5.2.1 ABC in Python: pyABC Package

The objective of this study is not the calibration process, but more to evaluate parameter space

to conceive the impact of heterogeneity. The algorithm applied to the case-study ABM was the

Approximate Bayesian Computation SequentialMonte Carlo (ABC-SMC)method, first developed

by Del Moral, Doucet, and Jasra (2006) and Sisson, Fan, and Tanaka (2009); and made accessible

through the open-source python toolbox pyABC package (Schälte et al. 2022).

The ABC-SMC algorithm filters samples of proposed values for a given parameter, the accepted

values form the desired posterior distribution for the parameter. At each step of the algorithm,

different combinations of parameter values are assigned weights proportional to their likelihood or

posterior value. To avoid equal or close to zero weights, ABC-SMC includes a resampling step that

adds new sets of values based on the weight distribution of accepted values (Grazzini, Richiardi,

and Tsionas 2017).
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To solve this parameter inference problem in the observation of the parameter space, as in to ap-

proximate model inputs from the model output, pyABC can be described as a backward parameter

inference step. To operate, pyABC would require the following properties:

• A Model: pyABC accepts any model that produces a form of experimentally observed or

synthetically generated data.

• A Distance Function: the specified measurements of the closeness between the observed

and simulated data.

• Parameter Priors: probability distributions which represent uncertainty about the unknown

parameters.

• Algorithm Stopping Functions: tolerance thresholds that must be satisfied will stop further

sampling and terminate the algorithm.
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Figure 5.1 summarised the pyABC process.

Figure 5.1: Flowchart summarising pyABC process.
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5.2.2 Homogeneous Configuration

Table B.1 contains the input used to initialise the model and Figure B.1 presents the output or

observed data, the Number of Infected. The CDF of the observed data, also pyABC1 input, is

illustrated in Figure 5.2.

Figure 5.2: Cumulative Distribution of the Number of Infected

Three different observation formats were considered: the Number of Infected as a single value

(i.e., the Total Number of Infected from a Single Iteration), a list (i.e., the full Number of Infected

of a Single Iteration) or as a cumulative distribution function (CDF) of the Number of Infected.

Following some initial experiments, the CDF produced themost accurate results; this is because the

CDF accumulates probabilities for all possible values of the observed data and more appropriately

captures dynamics that a single value or array could not. Figure 5.2 presents the CDF of theNumber

of Infected.

The distance between the observed and simulated data is calculated using the root mean square

error (RMSE). Of the two stopping functions the Maximum Number of Populations was chosen

over the use of Epsilon (ϵ) or both. As the aim was to minimise the distance between observed

1The script for pyABC calibration can be found on Github, here.
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and simulated data, the objective would be to achieve ϵ = 0 which would be difficult to achieve;

nevertheless, capturing how long (i.e., Maximum Number of Populations) it would take to achieve

this was a more attainable experiment.

The Maximum Number of Populations denotes the number of generations by which the popula-

tion is refined, each generation sequentially improves the approximation until the final population

is reached. Selecting an appropriate population size is case-dependent, thus it is unfortunately dif-

ficult to give useful general guidelines (Del Moral, Doucet, and Jasra 2012). However, it is under-

stood that too small of a population size yields large approximation errors, which hampers conver-

gence, while too large population sizes result in an unnecessary computational burden (Klinger and

Hasenauer 2017). This investigation will consider the Maximum Number of Populations typically

used in pyABC examples as default, this number is 10 but will explore a further 2 generations

to investigate whether the additional generations improved model performance. Therefore, the

Maximum Number of Populations will be fixed at 12.

Additionally, each population sequentially generates particle populations of size 1000. And

lastly, the mean for each parameter prior is assumed to be uniform over the intervals 0.0-0.1 and

0.0-1.0, for α and β, respectively (see, Figure 5.3). As α and β were rates of infection, a lower

bound of 0.0 is specified to ensure posteriors were always non-negative.

pyABC ABC-SMC Algorithm Input

Parameter Value

Data CDF (Number of Infected)

Distance Function RMSE

Max. No of Populations 12

Population Size 1000

Epsilon (ϵ) Unspecified

α U (0.0, 0.1)

β U (0.0, 1.0)

Table 5.1: pyABC ABC-SMC Algorithm Input: Homogeneous Configuration
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Figure 5.3: pyABC Priors: Alpha and Beta Parameters are Uniformly Distributed

To operate, pyABC required four properties: the model, a distance function, parameter priors

and algorithm-stopping functions, which are outlined in Table 5.1.

Effectively, pyABC identifies which particle parameters are well-matching and which ones are

not. The conditional probabilities are revised and updated until the select stopping criteria are

satisfied; in this case, Max. No of Populations = 12.

Figure 5.4 presents the evolution of α and β from uniformly distributed priors to posterior distri-

butions; where the final population (No. of Populations= 11) is assumed to be the most improved

posterior, attributed with the smallest ϵ. To indicate the true values for reference, each figure is

annotated with a blue-dashed line. As predicted, there seems some gradual convergence of the

distributions so that they peak around the true values, with the width of the distribution captur-

ing the uncertainty. The maximum a posteriori probability (MAP) estimate or the mode of the

posterior distributions in each Population and credibility intervals are captured and presented in

Table 5.2. As the final population (No. of Populations = 11) is the most improved, pyABC iden-

tifies 0.01595468 and 0.18851214 as the most common Bayesian point estimates for α and β,

respectively.
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pyABC then uses the information provided to produce conditional probabilities of the unknown

parameters, α and β. The result, the posterior distributions, are visualised in Figure 5.4.

Figure 5.4: pyABC Posteriors: Conditional Probability of Alpha and Beta Parameters
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Most interestingly, the true values of α and β, denoted by the blue-dashed line, are off-peak,

this could potentially be attributed to the inherent stochasticity of the case study ABM. Essentially,

given the observed data, these values could be substitute inputs used to initialise the case study

ABM and reproduce dynamics that resemble the true CDF.

pyABC Algorithm Output: Posterior Modes

Mode
No. of Populations

α CI β CI

0 0.07139129 0.000155-0.099863 0.27874183 0.000211-0.568936

1 0.0490366 0.000122-0.099990 0.17799358 0.000151-0.348723

2 0.07540661 0.000108-0.099828 0.13861517 0.003125-0.268686

3 0.08566693 0.001589-0.099680 0.07797279 0.005606-0.242005

4 0.08360147 0.000003-0.099913 0.09069103 0.016513-0.230320

5 0.08573803 0.000294-0.099979 0.06979561 0.019479-0.224940

6 0.06521725 0.000034-0.099846 0.09823501 0.032885-0.221247

7 0.04069004 0.000156-0.099465 0.13899384 0.029131-0.221391

8 0.02032493 0.000016-0.099529 0.18239518 0.036208-0.219879

9 0.02034568 0.000023-0.099606 0.18306601 0.0336880-0.221368

10 0.02016144 0.000060-0.098556 0.17749642 0.037910-0.222768

11 0.01595468 0.000026-0.097591 0.18851214 0.039572-0.222024

Table 5.2: pyABC Posteriors: Posterior Mode of Alpha and Beta Parameters
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Figure 5.5 visualises the credibility intervals around these posterior modes which show that the

true values are within the 95% credibility interval and the maximum a posteriori probability (MAP)

estimate (i.e., the posterior mode) seems to converge.

Figure 5.5: pyABC Posteriors: Credible Intervals for Alpha and Beta
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Correspondingly, Figure 5.6 summarises the posterior estimation analysis, it considers the con-

vergence and stability of each parameter by assessing posterior approximations at different gen-

erations and effective population sizes, across multiple runs. Figure 5.6a presents the Required

Samples which captures the number of accepted samples required before particles are eventually

rejected in each generation. Given the minimisation objective of pyABC, the initial generations

are expected to have lower accepted samples which eventually improved through generations (or

populations). This is demonstrated in this exercise, as the last generation, Generation 11, had the

largest number of required samples and is considered the most improved posterior.

Figure 5.6b presents the Epsilon Values which denotes the decreasing acceptable threshold, ϵ,

where Generation 11 achieves the lowest value. And lastly, Figure 5.6c presents the Effective Sam-

ple Size of each population and illustrates the most effective sample sizes through each generation.

It suggests, that even though each particle considers the sample of 1000, by Generation 11, 1000

proves to be no more robust than a random sample of 600.

This exercise demonstrates model calibration using ABC to determine posterior distributions

for α and β from a parameter space. pyABC provides significant results in the homogeneous

configuration of the case study ABM this is proven by the success of parameter estimation and

calibration. This begs to question whether the added complexity of heterogeneity could impact the

quality of the results. This subsequent section considers this case by introducing heterogeneity,

through additional β parameters.
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(a) Posterior Estimation Analysis: Required Samples

(b) Posterior Estimation Analysis: Epsilon Values

(c) Posterior Estimation Analysis: Effective Sample Size

Figure 5.6: Homogeneous Config: pyABC Posterior Estimation Analysis
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5.2.3 Heterogeneous Configuration

In this study, heterogeneity refers distinctively to agent granularity. As defined in previous chap-

ters, agent granularity considers the coarseness of descriptive attributes and behaviours assigned to

the agent component of ABMs. Though various approaches and methods exist to introduce hetero-

geneity, in this exercise, heterogeneity is introduced by increasing the Number of Agent Groups

and assigning each group a unique rate of infection, β.

The simple sensitivity analysis conducted in Section 4.4, proposes assigning β values to Agent

Groups which produce dynamic outputs that are distinguishable. Thus, βGroup 1 and βGroup 2 were

assigned the values 0.2 and 0.6, respectively. Figure B.2 illustrates the Number of Infected for

βGroup 1, βGroup 2 which produces the expected dynamics: the group with the highest β presents

with a larger proportion of infected agents. The Total Number of Infected will be used as model

output, to ensure consistent results against the homogeneous configurations. Table B.2 contains

input used to initialise the ABM and can also be found in Appendix B.

Table 5.3 contains the input used to initialise pyABC and Figure 5.7 visualises the CDF of the

Total Number of Infected.

Figure 5.7: Heterogeneous Config: Cumulative Distribution of the Total Number of Infected
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pyABC2 properties are fixed, sharing the same values as in the homogeneous configuration.3

Figure 5.8 visualises the priors.

pyABC ABC-SMC Algorithm Input

Parameter Value

Data CDF (Number of Infected)

Distance Function RMSE

Max. No of Populations 12

Population Size 1000

Epsilon (ϵ) Unspecified

α U (0.0, 0.1)

βGroup 1 U (0.0, 1.0)

βGroup 2 U (0.0, 1.0)

Table 5.3: pyABC ABC-SMC Algorithm Input: Heterogeneous Configuration

Figure 5.8: pyABC Priors: Alpha and Beta Parameters are Uniformly Distributed

2The script for pyABC calibration can be found on Github, here.
3A further experiment constraining the prior distributions were performed any better than when the priors were

constrained, see Appendix B.3.
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Figure 5.9 depicts the evolution of α, βGroup 1 and βGroup 2. Where the true parameter values are

indicated by the vertical blue-dashed lines, α and βGroup 1 posteriors perform adequately in their

movement and convergence towards the truth, with some uncertainty. However, pyABC seemingly

presents with some difficulties when estimating βGroup 2 and the difference is noteworthy. Table 5.4

presents the posterior modes and credible intervals, from here the most improved generation (No.

of Populations = 11), produced 0.01850757, 0.24232129 and 0.23383305 as estimate values for

α, βGroup 1 and βGroup 2, respectively. Figure 5.9 illustrates the credible intervals for each posterior.

Although the true values and posterior modes are within the 95% credibility interval, MAP fails to

converge around the true βGroup 2 value.

To consider pyABC performance, Figure 5.11 presents the posterior estimation analysis. As with

the homogeneous configuration, Figure 5.11a presents the Required Samples which captures the

number of accepted samples required before particles are eventually rejected in each generation.

As generations progress, pyABC accepts more samples and as one might expect, Generation 11

has the largest number of accepted samples and thus is considered the most improved posterior.

Similarly, the true values of α and βGroup 1 are off-peak but still within proximity of the true values.

As previously suggested in the homogeneous Configuration, this off-peak could be attributed to

the inherent stochasticity. However, βGroup 2 has been gravely underestimated by pyABC. This

distance may be more indicative of poor parameter estimation.

Similarly, Figure 5.11b presents theEpsilon Valueswhich exhibits a decreasing acceptable thresh-

old, ϵ, where Generation 11 achieves the lowest value. And lastly, Figure 5.11c presents the Ef-

fective Sample Size illustrating the most effective sample size through each generation. Though

decreasing through generations, it suggests that by Generation 11, 1000 particles prove to be no

more robust than a random sample of 700.
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Figure 5.9: pyABC Posteriors: Conditional Probability of Alpha and Beta Parameters
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pyABC Algorithm Output: Posterior Modes

Mode
No. of Populations

α CI βGroup 1 CI βGroup 2 CI

0 0.04283452 0.000014-0.099929 0.26767779 0.003541-0.999132 0.24527902 0.000716-0.999349

1 0.08366699 0.000213-0.099951 0.16416398 0.001548-0.997573 0.16355329 0.000814-0.997592

2 0.04898953 0.000025-0.099995 0.14920186 0.008112-0.995739 0.16330774 0.000282-0.998817

3 0.05940693 0.000672-0.099914 0.14652457 0.028646-0.991324 0.15906474 0.019704-0.995232

4 0.0814778 0.000053-0.099798 0.16532287 0.027080-0.994782 0.15327569 0.0152142-0.981645

5 0.05839731 0.000088-0.098610 0.15024702 0.036793-0.963336 0.14823908 0.030032-0.995388

6 0.07337076 0.000540-0.099671 0.16676716 0.030604-0.983748 0.16708658 0.030072-0.989175

7 0.03661728 0.000046-0.099601 0.18288615 0.027461-0.979439 0.17787507 0.051866-0.933927

8 0.02457723 0.000158-0.099869 0.20158132 0.057027-0.844045 0.21761184 0.051663-0.955160

9 0.01609001 0.000039-0.098353 0.23377126 0.091506-0.788605 0.20786238 0.078748-0.869573

10 0.02655735 0.000168-0.099635 0.21832509 0.092031-0.779631 0.2167801 0.087887-0.789639

11 0.01850757 0.000245-0.099676 0.24232129 0.112738-0.818246 0.23383305 0.089382-0.797193

Table 5.4: pyABC Output: Posterior Mode of α, βGroup 1 and βGroup 2
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As with the previous exercise, pyABC determines approximate posterior distributions for the

unknown parameter values α, βGroup 1 and βGroup 2. Although the algorithm succeeds in deter-

mining multiple β values from uniform priors, it does not succeed in uniquely identifying all of

them. Further, it has been shown that adjusting prior knowledge (i.e., constraining prior distribu-

tions of α and β to smaller intervals in both model configurations) only slightly improves pyABC

performance (see Appendix B.3).

pyABC and the wider ABC framework provide a straightforward way to investigate the good-

ness of fit of the model, particularly when likelihood functions are unavailable or intractable, as

in ABMs (Rogers-Smith, Pesonen, and Kaski 2018). Generally, the likelihood function would

indicate the extent to which parameter values are congruent to the observed data. Approximate

likelihoods can also achieve this, where a flat approximate likelihood surface would indicate is-

sues with the distance function struggling to measure the differences between the observed and

simulated data accurately. This is known as a parameter identification problem, where there exist

several other parameter values that could produce data similar to the observed, true data (Lintusaari

et al. 2016). This problem occurs when the model fails to appropriately capture the dynamics

through the model inputs. It could be the result of practical identification issues, which relate to

the data failing to provide sufficient information to identify the model parameters; or, a structural

identification issue, which relates directly to inadequate model structures that prevent the effec-

tive capturing of information to identify the model parameters. Parameter identification will be

investigated further in Chapter 6.
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Figure 5.10: pyABC Posteriors: Credible Intervals for Alpha and Beta
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(a) Posterior Estimation Analysis: Required Samples

(b) Posterior Estimation Analysis: Epsilon Values

(c) Posterior Estimation Analysis: Effective Sample Size

Figure 5.11: Heterogeneous Config: pyABC Posterior Estimation Analysis
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5.3 Summary - Model Calibration

In this chapter, a series of calibration exercises were undertaken to explore the parameter space of

the case study ABM. The purpose of this is to lay the groundwork for the investigation into the im-

pact of heterogeneity as the result of a parameter identification problem in Chapter 6. Section 5.2

presents a series of exercises using pyABC on the case study model. This section demonstrates

ABC methods as a robust tool, able to deliver accurate results and capture uncertainty. The ac-

curacy is observed in the defined peaks which characterise the α and β posterior distributions. In

light of the chapter objective, pyABC stand as an excellent tool for ABM calibration; but it does

force researchers to consider their robustness when attempting to detect parameter identification.
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6.1 Chapter Overview

Heterogeneity refers to the individual features and attributes that form observable differences in

human populations; within the scope of ABMs however, it relates to the concept of agent gran-

ularity as defined in Chapter 2. Agent granularity refers to the coarseness of the descriptive at-

tributes and behaviours assigned in the agent component of ABMs (Gao, Song, and Wang 2013).

This study assumes the more detailed or granular the agent attributes the more heterogeneous the

agent population; the coarser the agent attributes the less heterogeneous the population. To assume
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uniformity in agent granularity would be to define agent attributes in a single dimension or homo-

geneously. Whereas, assuming variability would define agent attributes multi-dimensionally or

heterogeneously.

Modelling heterogeneously is the main advantage of ABMs, but due to their increasingly com-

plex nature, it can make calibration a computationally challenging task. An often overlooked part

of calibration, particularly with highly dimensional models, is the identification of parameters.

Identification or identifiability issues refer to the presence of multiple plausible or ‘optimal’ model

inputs that fit observed output reasonably well. This would have large implications for the appli-

cation of the model and findings, as failure to identify parameters means the true model dynamics

cannot be understood fully. Therefore, this thesis proposes parameter identification as the im-

pact of heterogeneous modelling in ABMs. As heterogeneity refers to the number of parameters

used to describe agents, where there is an increasing number of parameters this may introduce

identification issues.

The previous chapters presented a simple toy model ABM as a tool to illustrate the concepts of

homogeneity and heterogeneity; furthermore, sensitivity analysis and a series of calibration exer-

cises were undertaken to explore the model dynamics and the parameter space. Briefly, sensitivity

analysis and calibration are used as tools to capturemodel uncertainty, hence a degree of confidence

can be assumed in model outputs. However, the various methods and approaches which exist for

model calibration and analysis, either explicitly or implicitly acknowledge parameter identifica-

tion. Therefore, parameter identification analysis cannot be separated from the model calibration

process, and in fact, should be considered most pertinent to the calibration and model development

cycle (Grimm and Railsback 2005).

This chapter will begin by presenting the concept of parameter identification and the standard

analytical approaches to remedying the issue. Followed by an illustration of parameter identifica-

tion issues using the ODE model and the case study ABM from Chapter 4. This study will then

conclude by considering the implications of unresolved parameter identification issues in ABMs.
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6.2 Parameter Identification

Chapter 2 presented the distinct forms of heterogeneity and advantages in ABM research. As

already proposed, heterogeneity plays a central role in the appeal of ABMs and their widespread

application; because of this, it is important to consider the possible impact of choosing to model

heterogeneously.

The outcome of increasing agent granularity can be likened to the concept of overfitting seen in

the evaluation of traditional statistical models. Overfitting arises from the structure of the machine-

learning task; it occurs from the overtraining of a statistical algorithm to data which increases the

risk of fitting noise, rather than finding general predictive rules (Dietterich 1995). Models which

overfit are characterised by too many model terms for the number of observations. And the more

“free” parameters in the model than the number of data points used to calibrate it, there exists

an infinite number of observable equivalent parameterizations. This is known as the parameter

identification issue (Brown, Hill, et al. 2004; Lipniacki et al. 2004; Achard and De Schutter 2006).

Parameter identification is relevant to ABMs. Most ABMs are complicated as they contain a large

number of parameters and structural assumptions (Sun et al. 2016). With limited knowledge of

the processes and mathematical intractability, paired with limited empirical data to compare model

output (Augusiak, Van Den Brink, and Grimm 2014; Ligmann-Zielinska et al. 2014); this gives

rise to a mismatch between model and data dimensionality and multiple structures that generate

outputs inconsistent with the data.

Furthermore, assessing model fit is a review of elements that constitute a useful model. A useful

model is comprised of three components: firstly, it captures the main effects in the data with rea-

sonable accuracy. Secondly, they produce hypotheses that can be tested experimentally. Thirdly,

the model should gather insights about the target system. If a model satisfies the first and second

components, it can be considered a good model. In fully parametric models, these components

can be measured through the observation of information criterion which assesses the quality of a

statistical model. However, due to stochasticity, feedback loops, and the non-analytical (i.e., no

fixed structural form) nature of ABMs, the construction of the initial model is based on current

knowledge or expertise. At this stage, the model cannot explain the data and therefore is consid-
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ered a bad model. Based on trial and error, one increases model complexity until the data can be

fitted which is a common approach. It is not hard to see how this approach can easily lead to the

over-parameterization of the model to data. The model parameters and predictions are not well

determined, and it thus remains a bad model.

Polhill and Salt (2017) demonstrate that the traditional measure of model goodness in measures

of fit-to-data is not enough to determine how ‘good’ an ABM is. They propose that in addition to

fit-to-data measures, the ABM’s ontological structure should also be assessed. In computer sci-

ence, ontology refers to a specification of a conceptualization of a given domain (Gruber 1993).

Concerning ABMs, ontology refers generally to the development of a formal methodology which

establishes common vocabulary used to define the concepts and relationships between those con-

cepts of the system. As well as the reasoning about the objects, behaviours, and knowledge that

comprise the system (Christley, Xiang, andMadey 2004). Themost prevalent ontology language is

the Web Ontology Language (OWL) (Horrocks, Patel-Schneider, and Van Harmelen 2003; Grau

et al. 2008). The application of OWL to agent-based modelling has been discussed by several

authors (Gotts and Polhill 2009; Pierre Livet 2010).

Polhill and Salt (2017) went on to compare various metrics andmeasures of validation, including

vector norms, sum of squared and root mean squared errors stochastic methods such as likelihood,

Akaike Information Criterion and Bayes Information Criterion. They concluded that there were

clear advantages and disadvantages to each method, regardless of the results. Likewise, Brewer,

Butler, and Cooksley (2016) previously demonstrated some controversy around determining which

validation measures prediction ability could be the ‘best’.

Notwithstanding, the general approach to improving the quality of a bad model involves the

integration of additional data whilst simultaneously reducing model complexity until there is a

balance between available data and model parameters. This process is iterative and can be labori-

ous as it can be a computationally intensive task, and where data is unavailable may not even be

possible. Parameter identification analysis has been linked to the improvement of bad models to

good models; as the objective of this process is to create good models that can describe the data

and have well-determined parameters and predictions.
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Parameter identification has two types: structural and practical identification (Godfrey and DiS-

tefano 1985). A structural identification problem would arise a-priori on the structural properties

of a model which depends only on system dynamics, the observation and the stimuli functions

(DiStefano and Cobelli 1980; Walter and Pronzato 1997). A practical identification problem arises

a-posteriori and relates to the numerical values of parameters determined from data (DiStefano and

Mori 1977). The objective of this section is to present a brief summary of traditional approaches

used to conduct analysis.

6.2.1 Practical Identification

The task of defining practical identification has been a challenging one. What is well understood

amongst researchers, is the need to create models that adequately describe the data and have well-

determined parameters to ensure robust predictions (Brown, Hill, et al. 2004; Lipniacki et al. 2004;

Achard and De Schutter 2006). Identification literature describes the concept of practical identi-

fication rather broadly; generally across disciplines, it refers to a powerful, yet under-utilised tool

able to support model-based analysis (Raue, Kreutz, Maiwald, et al. 2009; Hines, Middendorf, and

Aldrich 2014; Saccomani and Thomaseth 2018;Wieland et al. 2021). Practical identification issues

are variations in parameter estimates that arise as the result of experimental conditions and model

structure issues1. Conducting practical identification analyses provides useful quantification of pa-

rameter uncertainty (Lam, Docherty, and Murray 2022). In essence, practical identification would

evaluate the size of measurement errors from parameter estimates and determine whether they fall

within practically ‘acceptable’ bounds (Vajda, Rabitz, et al. 1989). Consequently, a precise defi-

nition for this phenomenon is difficult to construct, as what is considered acceptable bounds will

be distinctive across research and disciplines.

Based on identification literature, practical identification reaches beyond the assessment ofmodel

fit, as does parameter estimation, calibration and validation. It specifically considers the unique-

ness of parameter fits in the presence of experimental considerations. In response to this gap in

research, a field of study that explores the interconnections between optimal experimental design

1Practical identification is also referred to as deterministic, numerical, or a-posteriori identifiability
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and parameter estimation has increased in recent times (Balsa-Canto, Banga, and Alonso 2008;

White et al. 2016; Krausch et al. 2019). An optimal experimental design, also refers to experimen-

tal infrastructure, optimises the quality of information obtained through model inputs, sampling

times, initial conditions, and experiment duration (Pronzato 2008). Thus the overlap between

practical identification analysis and optimal experimental design methods which this section will

briefly present.

Sensitivity analysis is a standard tool used to capture uncertainty present in model outputs that

are directly generated by uncertainty in the model input and parameterisation (Saltelli et al. 2008).

From the sensitivity analysis, sensitivity matrices are created to rank the influence of parameters

on model output, which in turn serves as an indication of unidentifiability (Gábor, Villaverde,

and Banga 2017). Practical non-identification (or unidentifiability) in sensitivity analysis presents

through parameters that would have no influence on model output. On the other hand, in cases

where combinations of model inputs exhibit substantial yet similar model outputs, sensitivity

analysis processes may incorrectly infer the practical identification from the observed sensitivity;

though what this may indicate is the indistinguishable effects between model inputs, suggesting

their influential effects could be compensated by equivalent changes to the other (Docherty et al.

2011; Joubert, Stigter, and Molenaar 2018).

The Fisher information matrix (FIM) measures the amount of information about parameters

provided by experimental data (Fisher 1997) and is often used in experimental design to assess

and optimise the design for maximizing the expected accuracy of parameter estimates (Kreutz and

Timmer 2009). Fisher information is defined as the variance in the expected value of the observed

information; if the function is characterised by a clear peak in the data the easier it is to indicate

the ‘correct’ value of the model input from the model output. For multiple model inputs, fisher

information takes the form of a matrix, describing the covariance between each pair of parameters.

Along with sensitivity analysis, FIM can be used to investigate practical identification. It can

be expressed with the normalised sensitivity matrix and a measurement noise covariance matrix.

FIM and the normalised sensitivity matrix are analysed through eigen-decomposition to determine

whether the system may have identifiability issues. The eigenvalues and eigenvectors of FIM in-
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dicate the principal components and the directions of the variances (Yang, Langley, and Andrade

2022); a ‘small’ eigenvalue would indicate ill-conditioning of the matrix, due to there being an

under-constrained parameter direction (Chis et al. 2016). Eigenvalues were also used to measure

the ‘sloppiness’ or ‘stiffness’ of parameter estimates (Waterfall 2006; Gutenkunst, Casey, et al.

2007; Gutenkunst, Waterfall, et al. 2007; Transtrum, Machta, and Sethna 2010a,b; Transtrum,

Machta, Brown, et al. 2015; Mannakee et al. 2016). Sloppy models are characterised by estimates

that could vary massively without significantly influencing the model output. Whereas, stiff mod-

els produce parameter estimates which could be determined with great certainty (Raman, Ander-

son, and Papachristodoulou 2017). In this case, a ‘large’ eigenvalue would indicate a sloppymodel.

Although the concepts of practical identification and sloppiness have been likened, sloppiness may

not imply the presence of non-identification and to achieve precise parameter estimation optimis-

ing practical identification would take priority over reducing model sloppiness (Chis et al. 2016).

Nonetheless, considering multiple experimental protocols that enable changes in eigenvector from

the concepts of sloppiness could be applied to identification problems (White et al. 2016). The

types of experimental protocols that could impact eigenvectors include sampling times, varying

inputs, and changing initial conditions (Gottu Mukkula and Paulen 2017). While sensitivity-based

approaches to practical identification have low computational costs, the perturbations observed in

sensitivity analysis have been questioned for even the simplest nonlinear models (Joshi, Seidel-

Morgenstern, and Kremling 2006). It implies when measurement uncertainty is discrete, local

sensitivity characteristics typically give poor approximations to uncertainty in parameter estimates.

Moreover, some Bayesian sampling approaches utilise Monte Carlo (MC) methods (Metropo-

lis and Ulam 1949), and have been employed to assess the practical identification of parameter

estimates (Siekmann, Sneyd, and Crampin 2012; Zuo et al. 2019). MC repeatedly simulates mea-

surement noise on a dataset and can conduct backward parameter inference (or the inverse problem)

on the noisy data to produce parameter estimates. This process is repeated many times to aggregate

a set of parameter estimates. The following procedure using MC sampling was proposed (Miao

et al. 2011): (1) identify the nominal parameter vector for study; (2) simulate the model with the

parameter vector and obtain its measurements; (3) generate N sets of simulated data from the

measurements with a given measurement error level; (4) fit the model to each of the N simulated
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datasets to obtain parameter estimates in the parameter vector; (5) calculate the average relative

estimation error (ARE) for the parameter estimate.

The steps outlined above can be repeated for multiple noise levels to understand the relationship

between practical identification and measurement noise. The ARE values indicate the identifica-

tion of the parameter estimate; for example, if ARE produces a significantly higher noise value than

the expected value, this implies practical non-identification. Naturally, what is declared as ‘accept-

able’ or ‘high’ values would be distinct across variousmodel-based analyses, thus there are noARE

thresholds to follow as guidance. This provides researchers with total decision-making power to

determine practical identification based on the model context and their expertise. Yet, there are

some limitations to ARE. ARE assumes the parameter estimates are centred around the param-

eter vector and do not indicate relationships behind parameters, which sensitivity-based analysis

approaches accomplish. To overcome this problem, some studies have calculated pairwise corre-

lations from the parameter estimates, even if they can only reveal linear relationships (Pironet et al.

2019; Lizarralde-Bejarano et al. 2020).

Another approach to conducting practical identification analyses is in the observation of pa-

rameter estimate confidence intervals (Busch et al. 2015; David and Ricard 2019; Duchesne et al.

2019; Zhou et al. 2020; Johnson et al. 2021). Confidence intervals are derived using FIM; where

large individual and joint confidence regions were indicative of practical non-identification. Some

studies proposed the large limits were linked to there being too many parameters to be estimated

from the available measurements (Nihtilä and Virkkunen 1977; Holmberg 1982). Similarly, Lam,

Docherty, and Murray (2022) constructed sensitivity-based 95% confidence intervals using FIM

and compared results to the MC sampling approach to assessing practical identification in a linear

toy model. They found that both methods produced similar results: where, 95.1 and 96.0% of the

MC samples fell within the confidence intervals for the high and low noise levels, respectively.

Despite these results, they proved the MC sampling approach to be more advantageous in cases

where non-linearity is present (Krausch et al. 2019). Non-linearity is common in real-world mod-

els and FIM has the potential to misrepresent confidence intervals, therefore MC simulations are

considered more appropriate to ensure parameter variances are quantified effectively.
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Furthermore, the profile likelihood approach to assessing parameter estimates for practical iden-

tification has grown in popularity in recent times but has widespread use in system biology studies

where it first emerged (Hug et al. 2013; Eisenberg and Hayashi 2014; Baker et al. 2015). The

method generates ‘profiles’ of parameters by fixing a single parameter and fitting the remaining

parameters to the data. The likelihood corresponding to each parameter value forms the likeli-

hood profile across parameter space. This method can detect both structural and practical non-

identification in parameter estimates. Most practical identification studies use likelihood-based

approaches, rather than asymptotic confidence intervals. Asymptotic confidence intervals, as seen

above, use quadratic approximations of model residual error in close proximity to the estimated pa-

rameter values to extrapolate to a maximum estimated likelihood, whereas, likelihood-based con-

fidence intervals are represented as borders of the neighbourhood of parameters around parameter

estimates within a confidence region. Unlike asymptotic confidence intervals, likelihood-based

confidence intervals are able to capture asymmetric parameter profiles and are considered superior

when samples are finite (Neale and Miller 1997).

The likelihood approach iteratively profiles individual parameters to determine whether a pa-

rameter is unbounded in one direction. If so, then practical non-identification exists. As parameter

profiles are created independently, the method can be parallelized for bigger models and larger

datasets. Further, the profile likelihoods can be visually inspected over several model trajectories

and indicate where additional measurements may capture more information (Raue, Becker, et al.

2010). What is most apparent from this short review, is the profile likelihood and MC approaches

require robust optimisation methods to properly assess identification. The likelihood calculations

re-optimise non-fixed parameters across regions where the likelihood may be flat or near-flat, evi-

dence of practical non-identification. Failing to determine the global minima across the profile will

result in an erratic profile, which can indicate possible optimisation failure or unusual local minima

characteristics. A recent method extends the method to 2D profile likelihoods which can explore

pairwise parameter interdependence, though it brings a significant increase in computational time

(Brastein et al. 2019).

Though essential, the practical identification of ABMs will not be the focus of this study. This
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study will consider identification issues which arise more specifically from the fundamental struc-

ture of ABMs and less so from the experimental designs and the description of data. This type of

identification is referred to as structural identification, this concept will be presented and elaborated

on in the following section.

6.2.2 Structural Identification

The definition of structural identification, in contrast to practical, has been more refined in param-

eter identification literature (Anstett-Collin, Denis-Vidal, and Millérioux 2020). Also referred to

as theoretical or a-priori identification, structural identification investigates whether model inputs

could be uniquely determined from any given model output (Bellman and Åström 1970; Cobelli

and DiStefano 1980; Ljung and Glad 1994; Saccomani 2013). This type of issue often arises from

the model and measurement (input–output) structure and is unrelated to model stimuli or experi-

mental designs, thus cannot be resolved numerically (Massonis, Banga, and Villaverde 2021). Al-

though overlooked due to the challenging nature of the problem, structural identification analysis

is fundamental to guarantee unique parameterization exists regardless of the numerical estimation

procedure implemented (Thomas, Chappell, et al. 1989; Pia Saccomani, Audoly, and D’Angiò

2003; Xia and Moog 2003; Verdiere et al. 2005; Raue, Karlsson, et al. 2014; Saccomani and

Thomaseth 2016; Varghese, Narasimhan, and Bhatt 2018).

When parameters cannot be structurally identified, this suggests that changing the parameter

does not affect the model’s trajectory or output as its change could be compensated by altering

other parameters (Wieland et al. 2021). There exists some distinction within structural identifica-

tion globally and locally: where structural global identification refers to the distinguishing of all

unknown parameters within a parameterised state space and structural local identification restricts

the parameter space to a neighbourhood (Chappell, Godfrey, and Vajda 1990; Saccomani, Audoly,

et al. 1997; Karlsson, Anguelova, and Jirstrand 2012; DiStefano 2015; Stigter and Molenaar 2015;

Stigter, Beck, and Molenaar 2017). That said, it is possible for some parameters to be locally iden-

tifiable, but not globally. Structural identification analysis is partly comprised of methodologies

that assist in a-priori model adaptation, as some analysis can be performed before evaluating model
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fit. But in most cases, identification issues can only be remedied by reformulating2 the model in-

formed by model fit information. The relationship between practical and structural identification

is most interesting; in that achieving structural identification would not imply the practical identifi-

cation of model parameters. This would arise if there was an insufficient amount of data or data of

poor quality and can be demonstrated through confidence intervals which are infinite (Saccomani

and Thomaseth 2018).

Aswith practical identification and optimal experiments design, structural identification analysis

has been linked to observability analysis. This section will briefly outline some approaches to con-

ducting structural identification analyses, which involve the verification of the systems structure.

The earliest technique employed the transfer function from system and control theory, specifically

the input-output systemmap, for linear models but with a Laplace transform. Bellman and Åström

(1970) proposed: as a systems input-output relation could be given by its impulse response, then

structural identification could be achieved from impulse response measurements. Laplace trans-

formation has an extensive history of successful applications and is still utilised in present times

(Skinner et al. 1959; Distefano et al. 1975; Cobelli and DiStefano 1980; Godfrey 1986; Ovchin-

nikov, Pogudin, and Thompson 2019).

Another proposed method for analysing the structural identification in linear dynamic models

is generating power series expansion. The generating power series expansion methods identify

model symmetries using Lie algebra (Pohjanpalo 1978; Walter and Lecourtier 1982; Ligon et al.

2018). Methods based on Lie group theory propose symmetries in the system can be indicative

of structural non-identification (Yates, Evans, and Chappell 2009; Merkt, Timmer, and Kaschek

2015; Villaverde et al. 2019; Massonis and Villaverde 2020). Essentially, the parameters which are

observable are expanded in a series where the coefficients are the output functions and their suc-

cessive Lie derivatives, with respect to time and inputs. Structural identification is achieved when

the exhaustive summary coefficients and Lie derivatives are unique. However, the minimum num-

ber of required Lie derivatives to reach uniqueness is unknown and likely dependent on the model.

2In this case, model reformulation would involve reducing the number of states and parameters and fixing parameter

values (Bandara et al. 2009). Whereas to solve practical non-identification thismay involve considering the experimental

constraints and designing sufficiently rich experiments (Balsa-Canto, Banga, and Alonso 2008)
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The taylor series approach is based on a similar assumption: observations and their derivatives

with respect to time should be unique. Therefore, observables can be represented by Taylor series

expansion and its uniqueness would guarantee the structural identification of the system.

Further, the similarity transformation approach was derived from the local state isomorphism

theorem (Walter and Lecourtier 1981; Vajda, Godfrey, and Rabitz 1989). Some pre-conditions to

applying this method are controllability and observability3 and once fulfilled the model is locally

reduced. Also, it’s assumed that all bounded and measurable functions are available for stimu-

lus. From here, the objective is to identify state variable transformations that leave the stimuli-

observables map and the structure of the system unchanged. The local state isomorphism estab-

lishes a set of first-order linear in-homogeneous partial differential equations that are then used

to construct the functional form of such transformations. However, the solution of the partial dif-

ferential equations can be complex, and testing for controllability and observability conditions is

difficult for non-linear systems. Although an alternative method was proposed that would capture

direct relations of the components of the isomorphism, the process of assessing the observability

condition remains challenging and the solving of the differential equations complex (Vajda and

Rabitz 1989; Denis-Vidal and Joly-Blanchard 1996; Peeters and Hanzon 2005).

Moreover, the differential algebramethod replaces the stimuli-observables behaviour of the sys-

temwith polynomial or rational mapping (Ljung and Glad 1994). Differential state variables which

are non-observable are removed to derive direct relationships between inputs, outputs and param-

eters. These relations are derived using Ollivier’s method (Ollivier 1990). These relationships

are collated into an exhaustive summary that can be obtained and solved using rigorous algebraic

methods, such as the Buchberger algorithm (Buchberger 1976). The differential algebra approach

utilises a variety of strategies which has been proposed for models described linearly and non-

linearly, with or without information on the initial conditions. Naturally, the method assumes the

model can be expressed in terms of polynomials or rational functions and controllability (Bellu

et al. 2007). The exhaustive summary is considered an observable representation of the model,

3When controllability is assumed, the model can be used to illustrate or demonstrate any purpose, as the given

dynamic system is controllable; Observability assumes the modeller has a full understanding of internal intricacies of

model dynamics (Kalman 1960).
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derived from differential polynomials and ranking processes. Structural identifiability is assessed

by first normalising the differential polynomials, then checking the injectivity of the exhaustive

summary (Margaria et al. 2001). This method provides precise information about parameter iden-

tification, but it comes with great computational requirements which only increase with model

complexity.

The approaches outlined above can only be applied to rather low-dimensional systems, due

to their computational and algebraic complexity. Most recently, there have been developments

focusing on improving the computational efficiency of the algorithms, particularly for non-linear

and increasingly complex models.

Developments on local sensitivity calculations and processes have been proposed, for example,

the introduction of a comprehensive processwhich proposed to resolve structural non-identification

by reparameterization of the model (Joubert, Stigter, andMolenaar 2020). The underlying concept

of reparameterization assumed that the unidentified parameters could be categorised into differ-

ent subsets of correlated or aliased parameters (Li and Vu 2013). This implied that the columns

of a sensitivity matrix associated with specific parameters were linearly dependent. And, where

the correlation between parameters existed revealed a structural identification issue, which would

need to be removed to be remedied.

The reparameterization approach included the following five steps: (1) conduct numerical iden-

tification analysis to determine the potentially unidentifiable parameters (Stigter, Joubert, and

Molenaar 2017). This process would involve the construction of a full-ranked sensitivity ma-

trix. Rank deficiencies indicated insensitivities between model output and input, these parameters

would be unidentified (Reid 1977); (2) conduct symbolic identification analysis to pinpoint sets of

totally correlated parameters. These symbolic calculations were conducted using a Jacobi matrix

of the coefficients in a Fliess series expansion (Fliess 1981; Tunali and Tzyh-Jong Tarn 1987).

As with the sensitivity matrix, a rank-deficient Jacobi matrix suggested the presence of zeros or a

linear dependency in two or more matrix columns. This step would confirm the numerical find-

ings from the first step; (3) define new model parameters which are solutions calculated in the

previous step. In essence, this step computes the algebraic relationship between parameters which
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were confirmed as correlated (Choquet and Cole 2012); (4) replace model parameters in the origi-

nal model with new ones, this step simplifies the original model by lowering its dimensionality in

the removal of the correlated or unidentifiable parameters; (5) re-evaluate the structural identifica-

tion of the reparameterized model by starting with different initial conditions to detect any further

structural identification issues that may exist (Pia Saccomani, Audoly, and D’Angiò 2003).

The approaches outlined above are considered a-priori algorithms, in that they assess struc-

tural identification by the use of model definition. That being said, there are some a-posteriori

approaches that use available data to detect parameters which are structurally non-identifiable.

For example, one study applied mean optimal transformations, a non-parametric bootstrap-based

algorithm to test the structural identification of model parameters (Hengl et al. 2007). Mean opti-

mal transformations reveal the parameters which are functionally related, indicative of structurally

non-identifiable parameters. The approach involved the performance of numerous fits to investi-

gate non-parametrically whether the final parameter estimates form a low-dimensional manifold

in parameter space.

Additionally, the construction of profile likelihoods has proved to be a successful method to as-

sess identification (Murphy and Van Der Vaart 2000). This approach involved varying each model

parameter around the maximum likelihood estimates and then reoptimizing the remaining ones.

Profile likelihoods would reveal the dynamics of parameter identification; likelihoods that reached

the upper and lower threshold of the confidence intervals were identifiable, whereas the noniden-

tifiable parameters yielded flat profile likelihoods. Plotting the other parameters along the profiled

parameter would also reveal potential relationships with nonidentifiable ones (Raue, Kreutz, Mai-

wald, et al. 2009). The profile likelihood approach was extended to allow for the identification of

parameter interdependence (Brastein et al. 2019). Though informative, this process of constructing

profile likelihoods can be computationally demanding for larger systems because of the numeri-

cal reoptimization. To resolve this issue, a faster method to test identification without the need to

calculate complete profiles using radial penalization was recently developed (Kreutz 2018).

Further,BayesianMarkovChainMonte Carlo (MCMC) sampling has been proposed as amethod

to investigate structural identification. But in systems that are nonidentifiable, efficient mixing
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and convergence of the Markov chains is difficult (Raue, Kreutz, Theis, et al. 2013). This problem

could be cured by informative priors, though should only be implemented if they are based on

actual insights and prior information.

Identification or identifiability has also been referred to as equifinality in the evaluation of

process-based models (Guillaume et al. 2019). Generally, these models are purposed to directly

inform policy recommendations so the quality of model output and capturing of uncertainty is a pri-

ority. Model outputs are dependent on the chosen model structure and parameterization (Van Vliet

et al. 2016). And given the complexities of these models there exists multiple plausible model con-

figurations that reasonably fit observed outcomes (Oreskes, Shrader-Frechette, and Belitz 1994).

In other words, model inputs cannot be uniquely distinguished from the model output and under

this condition, thusmodel behaviour represents a full range of indistinguishable plausible outcomes

that may result in biased policy recommendations (Leclère et al. 2014). To conduct policy analysis

on these types of studies the traditional ‘best-fit’ approach is utilised (Brown, Verburg, et al. 2013;

O’Sullivan et al. 2016; Huber et al. 2018). An optimisation-based approach, Diverse Model Cal-

ibration for Robust Policy Analysis (DMC-RPA), was presented as a method to identify equifinal

models and their implications on policy analysis (Williams et al. 2020). DMC-RPA contains two

steps: (1) identify maximally diverse parameter sets that describe the structural characteristics that

each match calibration data within a specified level of fitness, yet are as diverse as possible (DMC)

(Brill, Chang, and Hopkins 1982; Zechman and Ranjithan 2004); (2) analyse the performance and

consistency of policy effects over the equifinal model set (RPA); (3) choose the more robust model

to inform policy. The main motivation behind the DMC-RPA approach rests with the argument,

that due to the complexity of process-based models and data limitations, it is more instructive to

accept the use of multiple “optimal” calibrated solutions, rather than a single solution. This would

allow for the thorough exploration of the full parameter space and each solution would be selected

based on their performance concerning modelled issues, whilst presenting as significantly different

with respect to the decisions they specify.
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6.2.3 Summary

Structural identification analysis involves the assessment of the structural equations of the model

and can be undertaken without observational data. Practical identification analysis focuses on the

ability to estimate parameters from observational data. That being said, when a model is struc-

turally unidentifiable, this would imply the model was also practically unidentifiable. The reason

is, that if model equations were structurally unidentifiable, then data elements, such as, the condi-

tions of data collection conditions, data quality and quantity were redundant as without success-

fully determining the model structure it would not be possible to uniquely estimate parameters in

practice. Furthermore, structural identification of a model would not imply practical identification

because even if the model structure theoretically allows parameters to be estimated, there would

still be the need for appropriate data to uniquely estimate parameters.

The methods outlined above are mathematical approaches to remedying practical and structural

identification and they have a long history. The underlying assumptions which underpin the use

of these traditional approaches however cannot be applied to complex ABM methodology e.g.,

linearity, equilibrium, normality, and insensitivity to initial conditions do not hold in complex

systems e.g., non-linearity, out-of-equilibrium, no law of large numbers and path dependence/non-

Markovian processes (Thurner, Klimek, and Hanel 2018).

Although practical and structural identification of the model parameters is equally important to

the success of any model, the most challenging of the two to achieve in ABMs is structural iden-

tification. The challenge arises from the large number of parameters and structural assumptions

characterising ABMs. As a result, properties of the macro-level cannot be explained directly from

the properties of the micro-level (Giuseppe 2016). Due to stochasticity, feedback, and the non-

analytical (i.e., no fixed, structural form) of ABMs, structural identification is extremely difficult.

Compared to models that can be defined through a set of equations (i.e. identifying the relationship

between the dependent variables and exploratory variables), in ABMs the relationship is implicitly

defined through the numerical code (Giuseppe 2016); ABMs are mathematically intractable, thus

rendering the traditional approaches to identification analysis redundant. Though difficult, struc-

tural identification should not be ignored as the very nature of ABMs, exhibits high degrees of path
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dependence and non-linear dynamics, which could lead to significant implications if identification

issues are not acknowledged (Windrum, Fagiolo, and Moneta 2007). An example of structural

identification will be presented in the following section using the case study ABM.
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6.3 Identification Analysis of Agent-Based Models

Chapter 5 presented the calibration results of the case study ABM using ABC. The ABC rejec-

tion method replaces the likelihood function by sampling and simulating the model with parame-

ter values selected from a prior distribution. A set of summary statistics based on observed data

would be derived and compared with the experimental data using a prespecified distance function.

However, in cases such as these, where real data captured from a real-world system cannot be ob-

served, synthetic data serves as a proxy. The distance function would produce a value and its size

would indicate its proximity to that of the observed data. The results demonstrated how calibra-

tion could be used to successfully examine the parameter space and serve as a potential indicator of

parameter identification issues. The vast majority of methods that exist in literature to determine

and/or resolve identification issues all rely on the ability to analyse the model mathematically;

concise methods for intractable models such as ABMs do not yet exist. That being said, the same

SISa framework used to create the case study ABM was used to create an emotional contagion

model using a set of ordinary differential equations (ODE) that could be analysed mathematically

to demonstrate the parameter identification problem in its simplest form, in Chapter 4. The ODE

model does not describe the case study ABM but rather is a simpler mathematical model that has

similar characteristics when assuming homogeneity. This section will continue the investigation

by first demonstrating how identifiability issues could arise in the parameter estimation process

using the homogeneous emotional contagion ODE model. Following this demonstration, the same

will be presented using pyABC as a tool on the case study ABM.

6.3.1 Structural Identification Analysis: ODE illustration

Parameter identifiability is often overlooked during the process of parameter estimation. As de-

scribed earlier, structural identification of model parameters is achieved when a set of parameters

can be uniquely estimated from a given model and real data (Kao and Eisenberg 2018). When there

is non-identifiability this suggests there are multiple sets of parameter values that fit the model to

data (Roosa and Chowell 2019). In other words, given a theoretical model of a phenomenon and

specific input-output experiments, can parameters be uniquely determined?
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Chapter 4 first introduces the ODE model of emotional contagion, and here it will be used to

demonstrate structural identification issues. The first case considers observing the stable equilib-

rium x+ to infer the rescaled parameters α and β. It is known that x+ satisfies

α+ (β − α− 1)x+ − βx2+ = 0, (6.1)

which indicates that even if x+ is known it would not be possible to directly estimate α and β, as

they are both described by one equation. However, the relationship between the parameters can be

investigated, by rewriting one in terms of the other. Here, the equation is rewritten for α in terms

of β, giving

α =
x+

1− x+
− βx+. (6.2)

Figure 6.1 is a graphical illustration of Eqn. (6.2), which shows that even with full knowledge

of x+, there are infinitely many pairs of α and β that would produce the same equilibrium value,

thus a structural identification issue exists.

Figure 6.1: Plot of Eqn. (6.2) with different values of x+

Essentially, Figure 6.1 illustrates different x+ values and their corresponding lines given by

equation Eqn. (6.2). In this regard, even if I+ is known, the structural identification issue could
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only worsen if an attempt is made to estimate the other parameters: a, g and N .

Further, if x+ is known and for some time t, x(t) and ẋ is known, it could infer β and hence, α.

To do this, substitute Eqn. (6.1) into Eqn. (4.8), to give

ẋ =

[
x+

1− x+
− βx+

]
(1− x) + β(1− x)x− x

β =
ẋ(1− x) + x− x+

(1− x+)(1− x)(x− x+)
(6.3)

Now consider the case where the full evolution of I(t) is known (see Eqn. (4.14)), could all of

the parameter values be inferred? Well, α and β could be inferred, but it would not be enough

information to infer a, b, g and N .

Take the explicit solution Eqn. (4.13),

I − I+
I − I−

=
I0 − I+
I0 − I−

exp (−b(I+ − I−)t) .

For given values of I±, b and t, can different values of a, g andN produce the same values of I±?

If so, there exists a structural identification issue.

From Eqn. 6.3, it is known that there are two numbers dependent on a, g and N . Let

∆ =
bN − a− g

b

and

Γ =
aN

b
,

then I± are fixed if∆ and Γ are fixed. Thus assuming that b,∆ and Γ are fixed, do these uniquely

define a, g and N?

Note that for fixed b and Γ, a and N will need to be chosen such that

a =
bΓ

N
. (6.4)

It follows that

∆ =
bN − a− g

b
,

= N − bΓ + gN

bN
,
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when rearranged, can find

g = b

(
N −∆− Γ

N

)
, (6.5)

and so for fixed b and Γ, any choice ofN such that a > 0 and is chosen according to Eqn. 6.4, and

g > 0 and is chosen according to Eqn. 6.5 will give exactly the same evolution of I(t).

This outcome indicates a structural identification issue.
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6.3.2 Structural Identification Analysis: ABM illustration

The previous section used the ODE emotional contagion model to demonstrate the structural iden-

tification problem. Models of complex systems, such as the one above, can be described in their

functional form and thus be analysed for structural identifiability. But with computational mod-

els such as ABMs, which are mathematically intractable, the challenge lay in proving that ABMs

can be affected by parameter identification issues, specifically the structural type. The ODE illus-

tration demonstrated that even with the full knowledge of the steady-state equilibrium, infinitely

many pairs of α and β would present the same equilibrium value. This section will present inves-

tigations into structural identification in both the homogeneous and heterogeneous configurations

of the case study ABM.

To begin, the objective of this section was to reproduce the dynamics observed in Figure 6.1 but

in the case study ABM. As previously demonstrated, calibration is an excellent tool to examine the

parameter space and discover the existence of α and β pair values that would reproduce dynamics

similar to that observed in the model output, the cumulative distribution. Parameter identification

analysis should not be separated from the entire parameter estimation procedure but rather should

be considered a significant step in the process. As calibration and identification analysis go hand-

in-hand, this section uses pyABC as a structural identification detection tool. pyABC captures

uncertainty and can be used as an indication of identification issues.

Homogeneous Configuration

Section 5.2 presented the calibration results for both the homogeneous and heterogeneous configu-

rations. In the case of homogeneity, Figure 5.4 illustrated the evolution of α and β from uniformly

distributed priors to defined posterior distributions; where the final population (No. of Populations,

T = 11) is assumed to be the most improved posterior, attributed with the smallest ϵ. Each posterior

distribution was made up of the accepted prior samples, in this case, 1000 particles. In the final

posterior (No. of Populations, T = 11), each accepted particle presented with a cumulative distri-

bution that was approximate to the true data. Ergo, pyABC was able to realise 1000 combinations

of α and β values which presented the same equilibrium values, given some uncertainty.
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These 1000 potential combinations were visualised in Figure 6.2, with a line of best fit. In this

figure, each dot represents a particle that forms the final posterior (No. of Populations, T = 11).

Figure 6.2: Homogeneous Config: Accepted Particles in Final Population

pyABC Algorithm Output

Parameter True Values Posterior Modes

α 0.01 0.01595468

β 0.2 0.18851214

Summary Stat: Average 534.104 535.318213

Table 6.1: Summary Statistic Comparison from Parameter Values

For reference, the true α and β values are annotated in green, and pyABC posterior modes or

parameter estimates are annotated in red. The most interesting observation of this figure comes

from the line of best fit and its expression of a linear relationship similar to the dynamics uncovered

from the analysis of the ODE emotional contagion model in Figure 6.1.

Figure 6.2 effectively demonstrates the existence of structural identifiability issues in the homo-

geneous configuration of the case study ABM; as each accepted particle could be interpreted as a
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potential combination of α and β parameter values that could produce results similar to the true

model output i.e., the cumulative distributions of the Number of Infected Agents per Iteration.

However, when considering the success of parameter estimation, the pyABC process produces

posterior distributions from the final population to predict and forecast. This is considered a suc-

cessful implementation. Yet, success should also be determined by a lack of errors that arise during

the implementation of the algorithm and the accuracy of the posterior mode. Nonetheless, in this

case, as the true values are known, the distances or proximity between the summary statistics and

true and estimated parameter values are observable close (See Table 6.1) which indicates success.

That being said, it is worth noting that the Average Number of Infected, the summary statistic, was

not as exact.

In addition to this, Figure 6.3 presents the evolution of the posterior distributions from the initial

population to the final posterior, which is considered the most improved. This comparison demon-

strates the effective iterative pyABC process and convergence around both the true and estimated

parameter values.

Moreover, this figure illustrates the density of accepted particles which form the initial and

final posterior distributions. The area of the parameter space characterised by the lightest hue

is a high-density area; in other words, most particles are concentrated within this area. More

noticeably, the identifiable parameter space has contracted through the populations and by T =

11, the estimates (posterior modes) sit centrally on the line of best fit. This is indicative of the

unique determination of α and β values from all the other potential combinations. Therefore, the

homogeneous configuration parameters of the case study ABM are structurally identifiable.
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Figure 6.3: Homogeneous Config: Initial and Final Posterior Distribution

Heterogeneous Configuration

To introduce heterogeneity, the Number of Agent Groups was increased from one to two groups.

Table 5.3 summarises the input used to initialise the pyABC algorithm and Figure 5.9 illustrates the

evolution of the posterior distribution through the populations, the accompanying posterior modes

and estimation analysis were summarised in Table 5.4 and Figure 5.11, respectively.

Figure 5.9 presents the convergence around the true βGroup 1 and α values, but not very well

around βGroup 2. And as with the homogeneous case, the 1000 potential combinations of βGroup 1

and βGroup 2 were visualised in Figure 6.4. Unlike the ODE model and the homogeneous configu-

ration, Figure 6.4 presents a non-linear relationship between the β parameters.
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Figure 6.4: Heterogeneous Config: Accepted Particles in Final Population for Beta Parameters

Yet it proves that pyABC was able to identify 1000 other combinations of βGroup 1 and βGroup 2,

which can reproduce similar dynamics to that observed in the model output. Table 6.2 presents the

true and estimated values, as well as the summary statistic. Although the posteriormode forβGroup 2

is significantly lower than the true value, the summary statistic of the model output is incredibly

close. This suggests, that though the parameter estimation process was successful, there exists a

structural identification issue.

pyABC Algorithm Output

Parameter True Values Posterior Modes

α 0.01 0.01850757

βGroup 1 0.2 0.24232129

βGroup 2 0.6 0.23383305

Summary Stat: Average 700.173 699.732148

Table 6.2: Summary Statistic Comparison from Parameter Values

166



6.3. IDENTIFICATION ANALYSIS
OF AGENT-BASED MODELS

CHAPTER 6. IMPACT OF
HETEROGENEITY: PARAM-

ETER IDENTIFICATION

Figure 6.5: Heterogeneous Config: Initial and Final Posterior Distribution

Figure 6.5 presents the evolution of initial and final posterior distributions of the β parameters.

As seen previously, the area with the lightest hue is characterised by the highest number of particles

by potential combinations of βGroup 1 and βGroup 2 whichwould reproduce dynamics observed in the

model output. Although the posterior modes are near the concentrated area, it is a notable distance

from the true values. The question of how unique themodel inputs are is worth considering, as even

after changing β values (see Appendix C.2), the posterior modes were almost always relatively

identical. Introducing heterogeneity through α presented the same issue, pyABC failed to produce

distinct estimate values for both α parameters (see Appendix C.1). Given these observations,

evidently, the introduction of heterogeneity impacts the structural identifiability of the model.

Furthermore, Figure 6.6 presents the evolution of the initial and final posterior distributions of

the α and β parameters.
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(a) Heterogeneous Config: α and βGroup 1 Posteriors

(b) Heterogeneous Config: α and βGroup 2 Posteriors

Figure 6.6: Heterogeneous Config: Initial and Final Posterior Distributions
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Figure 6.6a presents the posterior distribution ofα and βGroup 1. Unlike the homogeneous config-

uration, there is no observable linear relationship between the parameters. Instead, the pyABC iter-

ative process reduces the parameter space and converges towards the pyABC estimate, which falls

into the lightest hue of the high-density area. pyABC only slightly overestimates α and βGroup 1,

as the values are approximate in the second and first decimal points respectively. Although pa-

rameter estimation is successful and the true value sits on the cusp of the high-density area, there

is evidence of a structural identifiability issue.

Similarly Figure 6.6b presents the posterior distribution of α and βGroup 2. There is some clear

convergence around the pyABC estimates but the true values fall dramatically outside of the high-

density area. Also, the distance between the true and estimated is considerably large. These find-

ings indicate a structural identifiability issue. pyABC estimates of βGroup 1 and βGroup 2 are near

approximates; it is possible that pyABC is unable to distinguish between the effects of two β pa-

rameters in the data, even though they are distinct. Thus, pyABCwas unable to uniquely determine

βGroup 1 from βGroup 2.

A final yet notable finding is that α remains structurally identifiable as in the Homogeneous

Configuration, it consistently remains within the lightest hue of the high-density area.

The implications of these unresolved structural identification issues presented in the β parame-

ters will be further explored in the following section.
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6.4 The Implications of Unresolved Structural Identification Issues

This section will begin by first presenting an example in which failing to address structural identi-

fication issues may impact agent-based model results; before further discussing the implications.

6.4.1 Unresolved Structural Identification Issues: An Illustration

Pandemics have had unprecedented catastrophic implications on the health, social and economic

well-being of the global community, as proven by the Coronavirus disease 19 (COVID-19) (WHO

2019). Vaccine development is typically a long, complex process, often lasting 10-15 years (Rap-

puoli, Black, and Bloom 2019), but COVID-19 vaccines were developed in under a year. With this

rapid research development, the public grew concerned that the speed of development must have

compromised the vaccine safety in some way. With these concerns came vaccine hesitancy.

Vaccine hesitancy is not a new problem it is a long-standing problem, that urgently needs to be

addressed with care and tact (Chadwick et al. 2021). Vaccine hesitancy in the UK is a compounded

issue and is connected to the long-term decline of trust in public and private institutions (Devine

et al. 2021); but from the start of the global pandemic, there was a range of disinformation and

conspiracy theories about the origins and severity of COVID-19 spread online and on personal

messaging platforms, partially undermining policy on social distancing (Miller 2020; Freeman et

al. 2022). Ultimately these misconceptions regarding vaccine safety and efficacy undermine the

long-term goal of total population immunity (Thunstrom et al. 2020).

Vaccine hesitancy can be contagious and the associated attitudes of an individual’s network can

influence another’s decision to vaccinate (Konstantinou et al. 2021). This phenomenon is known

as Social Contagion as described in Chapter 3.3.2; whereby the spread of affect from Person A

(the initiator) to Person B (the recipient) is defined as emotional contagion. Attitudes and ideas to-

wards vaccination can disseminate through networks and an individual can adopt and demonstrate

behaviours modelled by another person they are connected to (Christakis and Fowler 2010, 2013;

Karashiali et al. 2023).

As vaccine hesitancy is a social information problem, the success of any vaccination programme
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depends on where and how information about vaccine safety and efficacy is disseminated. Thus,

public opinion research specifically into uncertainty suggests some people who have not yet formed

firm opinions may be receptive to gaining information and some may find that new information

resolves any ambivalence (Conner and Sparks 2002; Berinsky 2006). Therefore, identifying what

explains the social endorsement of vaccines can help inform a non-coercive approach (Giubilini et

al. 2019; Vanderslott 2019). Studies into misinformation have suggested that older adults are sig-

nificantly more susceptible to it than younger adults (Mitchell, Johnson, and Mather 2003; Davis

2014). When it comes to mitigating or correcting the effects of vaccine hesitancy with new infor-

mation through social endorsement, strategies must accommodate socio-demographic groups and

their susceptibilities. Thus the question of which groups to first prioritise is critical.

Consider this very example as the heterogeneous scenario explored in Subsection 6.3.2. Hypo-

thetically, βGroup 1 could represent the transmission rate of vaccine hesitancy in older adults and

βGroup 2 represents the transmission rate in younger adults, as summarised in Table 6.2. Table B.2

presents the observed data. As the true β values would be unknown for each group, pyABC would

be implemented to construct posterior distributions from which samples for β are drawn and pre-

dictions made, which policymakers could use to develop policies to mitigate the effects of panic

around vaccine hesitancy. The posterior distributions effectively capture any uncertainty associ-

ated with these predictions (Ferguson et al. 2020). In this example, Figure 5.9 are pyABC posteri-

ors for βGroup 1 and βGroup 2. Failing to structurally identify the parameters means that the samples

from which βGroup 2 values are drawn will underestimate the true rate of transmission in younger

adults.

For this illustration, the ABM output, Average Number of Panicked Agents, is calculated using

the posterior modes in Table 6.2, over 100 iterations. Standardly, ABM output is estimated by

sampling values from the posterior distributions and using the average values as the estimated

parameter value.
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(a) Number of Panicked Agents in Group 1 (Older Adults)

(b) Number of Panicked Agents in Group 2 (Younger

Adults)

Figure 6.7: Comparison between True and Predicted Number of Panicked Agents over 100 itera-

tions

Figure 6.7 compares the predicted Number of Panicked Agents in Older Adults (Group 1) and

Younger Adults (Group 2), respectively. Figure 6.7a presents little deviation between the predicted

Number of Panicked Agents in the true and estimated simulations.

Whereas predictions made with the structurally unidentifiable parameter as seen in Figure 6.7b,

present significantly different dynamics in the predicted Number of Panicked Agents. Now, con-

sidering the task of information dissemination regarding vaccine safety and efficacy to mitigate the

effects of panic, policymakers must decide on how to appropriately target each age demographic.
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To do this, policymakers would need to identify susceptibility to panic for each age demographic:

this information is drawn from pyABC predictions of the Number of Panicked Agents and not

the true data. As the dynamics of each β estimate in Group 1 and Group 2 are indistinguishable,

policymakers may incorrectly assume that age does not affect the Number of Panicked Agents in

their population. Rather than appropriately targeting each age demographic with tailored social

endorsements according to their susceptibility to panic, policymakers may choose not to prioritise

either group. In doing so, policymakers fail to consider the impact younger people have on dis-

ease transmission and will counteract efforts made to manage vaccine hesitancy perpetuated by the

spread of panic.

6.4.2 Unresolved SI Issues: A Discussion

Although the example above is hypothetical and incredibly simplified, it presents a strong argument

for a very real and critical issue in ABM research. It cannot be reiterated enough times: parameter

identification is fundamental to the success of parameter estimation. Uncovering identification

issues is equally as important as conducting sensitivity analysis and each procedure reinforces the

other. Failure to identify parameters in ABMs is common but can be spotted with the same cross-

validation tests as demonstrated by Carrella (2021). Carrella (2021) compared the performance of

9 parameter estimation algorithms across 41 models and found no single algorithm was the best

for all or even most of the models.

Most especially resolving identification issues analytically remains an arduous task for mathe-

matically tractable systems and is yet to be accomplished in intractable systems. For systems such

as these, it is important to explicitly acknowledge and document the influence of identification on

the modelling process, and how they have been recognised (Guillaume et al. 2019).

Given the stochastic nature of ABMs, there is some uncertainty involved in the simulation pro-

cess. That being said, when calibrating the model with the chosen algorithms different runs should

not return different parameter value estimates. And though trivial, the modeller should repeat the

calibration process with different initialisations, ideally with randomly selected initial parameter

values, to check if it returns unique values for parameters (Shin et al. 2015).
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ABMs are microscale models which simulate the simultaneous interactions of multiple agents,

usually to reproduce dynamics observed in real-world systems (Gustafsson and Sternad 2010).

Nonetheless, discussions and proposals for ABMs as predictive tools, have begun to form (Chattoe-

Brown 2023). If the model is structurally unidentifiable, then the model cannot be used for pre-

dictive analysis. Failing to uniquely determine the input from output during parameter estimation

or calibration will lead to inaccurate predictions as key behaviours of the system were not cap-

tured during model development (Williams 2011). However, there has been some debate about

prediction in the ABM literature and its utility (Elsenbroich and Polhill 2023).

Polhill, Hare, et al. (2021) presented path dependency as a contributing factor to inaccurate

ABM predictions due to the intractability of exhaustively searching the space of models that might

match the available data. Though they emphasise that there are other purposes for ABMs beyond

prediction, and even if the predictions are considered inaccurate there is still some predictive utility

in being able to detect transitions between states in the real world as observed in the model.

While non-identification indicates a lack of appropriate information to choose between alterna-

tive models, in practice the “right” information may take a considerable length of time to obtain,

or may never be available at all (Rothenberg 1971). So, depending on the necessary predictions,

having multiple plausible models may not be of any consequence as differences in prediction may

be small enough to be acceptable, or able to be addressed by decision-makers through adaptive

management.

Regardless of the response to identification analysis, the modeller bears the responsibility of

transparency about their source and treatment of identifiability. The modeller should include doc-

umentation that describes whether model parameters have been parametrically identified and how

it was assessed. If the model parameters were non-identifiable, the documentation should describe

the anticipated consequences and the responses undertaken.

But why does all this matter, especially if calibration is successful? Well, the implication of

unresolved structural identification issues depends on the purpose of the empirical ABM: is the

model’s purpose exploratory or predictive? Edmonds et al. (2019) presents a robust review of the

different purposes for a simulation model of complex social phenomena. An exploratory ABM
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allows for unbounded experimentation as the output is simply meant to educate and broaden un-

derstanding of a target system. But even in this case, a structural unidentified model means that the

modeller may not necessarily learn the right or relevant information about the model. Whereas an

ABM built for predictive or forecasting power is made to inform and govern the target system in

the real world (Chattoe-Brown 2023). Therefore, ensuring this type of ABM is structurally iden-

tifiable directly impacts the accuracy of the forecasts which will impact real-world social policy.

As seen in the example above, the ability to correctly and uniquely determine the β values for each

Agent Group is detrimental to the success of the ABM and its predictive utility. Naturally, it is

important to consider that the true values of the models are unknown in the real world and so the

impact of identification issues may not be so apparent to modellers. This is why implementing

some of the above guidelines in the course of their research, may help bring to light this issue and

reevaluate the strength and purpose of the ABM.

6.5 Summary - Parameter Identification

This chapter began by presenting the issue of parameter identification. Section 6.2 outlined the

two types of identification: practical and structural identification and the traditional analytical

approaches taken to remedy unidentifiablity. Here, Structural identification was defined as the

process of uniquely determining model input from any given model output. As there is seemingly

little research on structural identifiability in ABM, this study aimed to establish the existence of

this problem, particularly as the result of increasing heterogeneity. Thus, Section 6.3 demonstrates

structural identification issues in the ODE model of the emotional contagion ABM used as a case

study in this thesis. Using calibration as a tool, specifically pyABC, the results demonstrated that

the introduction of heterogeneity had the potential to impact the structural identification of the

model. And lastly, Section 6.4 considered the implication of unresolved structural identification

issues in ABMs.
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7.1 Chapter Overview

Chapter 1 presented a set of research objectives. These objectives were as follows:

1. Review and discuss the literature related to ABMs, with a focus on heterogeneity as a char-

acteristic. Also, briefly review the literature on emotional contagion and compartmental

models to facilitate the design and development of the case study model.

2. Design and build the case study ABM, simulating the transmission and infectiousness of

emotional contagion. Then determine optimal values for the ABM using sensitivity analysis.
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3. Evaluate the ABM by assessing its response to varying parameter values using calibration

to examine the parameter space.

4. Define and investigate the problem of parameter identification in heterogeneous ABMs.

The overarching aim of this study was to investigate heterogeneity in ABMs and it proposes pa-

rameter identification as a potential impact. This study sits within a relatively new field of research

and as there exists no established method to investigate parameter identification in ABMs, it is im-

portant to consider the constraints of this experiment. However, this study has shown that structural

identification arises in ABMs, particularly as the direct result of heterogeneity in Chapter 6.

This chapter marks the conclusion of the investigation and will summarise the results of the

work undertaken thus far to satisfy the aims and objectives of this thesis. Further, this chapter will

include an evaluation of the results and some recommendations for future work.

7.2 Summary of Results

This section aims to summarise the results of this study and in doing so addresses objectives 1, 2,

3 and 4.

Chapter 2 presented ABMs as a method for modelling complex systems. Its popularity is ac-

credited to its flexibility in application which effectively captures the presence of heterogeneity in

a system. This chapter defines heterogeneity as agent granularity, referring to the coarseness of de-

scriptive attributes and behaviours assigned in the agent component (Gao, Song, and Wang 2013).

This chapter also considers the impact of heterogeneity in ABM literature, in the examination

of comparative homogeneous and heterogeneous scenarios spatial. The following observations

were formed: i) agent heterogeneity is often displayed in two non-mutually exclusive forms: the

categorisation and/or variability of the agent population and attributes, ii) agent heterogeneity is

extrinsic, in that heterogeneity is initialised into a model but the evolution away from the initial

heterogeneity is rarely monitored. Heterogeneity which develops outside of the initial conditions

is referred to as generated heterogeneity, iii) the variable used to demonstrate agent heterogeneity

can impact model results, iv) undetected pre-conditions between components can affect the im-

177



7.2. SUMMARY OF RESULTS CHAPTER 7. CONCLUSION

pact of agent heterogeneity, v) the object of study and research purpose are contributing factors to

deciding between imploring homogeneous or heterogeneous assumptions, vi) If agent interactions

generate network effects, then the types and effects of heterogeneity found in network sciences

apply to agent-based models. Two types of heterogeneity found in network sciences are structural

and relational heterogeneity. Structural refers to the different structural changes that arise as a di-

rect result of agent heterogeneity; relational heterogeneity emerges directly from agent interactions

and finally, vii) Comparative homogeneous and heterogeneous scenarios should be a standard, to

help evaluate the impact heterogeneity has on the system being modelled. Modelling heterogeneity

may be a computationally expensive task, but in some cases has been made unnecessarily so; thus

it is important to discern when the increased granularity no longer enriches the model’s explanatory

or predictive powers.

Chapter 3 presents the literature used to build a theoretical understanding of emotional contagion

as a form of collective behaviour. This chapter began with an outline of a range of definitions and

forms of collective behaviour. More specifically, emotional contagion was defined generally as

the transmission of emotion between individuals. This chapter also presented two methods for

modelling emotional contagion: compartmental models and information diffusion models. This

chapter provided literature on compartmental models which facilitated the design and development

of the case study ABM in Chapter 4. Chapter 2 and Chapter 3 addressed objective 1.

Chapter 4 presented the simple ABM based on the SISa model framework outlined in Chapter 3.

It presented the dynamics of the homogeneous configuration by fixing the Agent Parameters: α,

β, γ and Number of Agent Groups, whilst varying the Model Parameters: Number of Agents,

Number of Iterations and Model Instances. Then, heterogeneity was introduced by increasing the

Number of Agent Groups. The dynamics of the output in the homogeneous and heterogeneous

configurations were compared and found to be fundamentally similar. Some sensitivity analysis

was conducted to investigate the impact of Agent Parameters on the output, whilst fixing theModel

Parameters. From this, parameter values were identified which could be considered optimal based

on the effect on the output: in summary, the impact of α was most observable when small, whilst

β and γ were most effective when larger. This chapter addressed objective 2.
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Chapter 5 included a series of calibration exercises undertaken to explore the parameter space

of the case study ABM. The purpose of this was to investigate the impact of heterogeneity, which

could materialise as a parameter identification problem. The simple approximate Bayesian compu-

tation (ABC) exercises presented significant results for both the homogeneous and heterogeneous

configurations. This was observed in the defined peaks which characterised the α and β posterior

distributions. This chapter addressed objective 3.

Lastly, Chapter 6 presented the issue of parameter identification. It outlined the two types

of identification: practical and structural identification, as well as the traditional analytical ap-

proaches taken to remedy unidentifiablity. This study defined structural identification as the pro-

cess of uniquely determining model input from any given model output. Though the research area

was small, this study aimed to establish the existence of this problem, particularly as the result of

increasing heterogeneity. This chapter first illustrated structural identification issues in the emo-

tional contagion ODE model and was later able to present the same issue in the case study ABM

using pyABC. This chapter demonstrated that the introduction of heterogeneity, even on a small

scale, had the potential to impact the structural identification of model parameters. This chapter

addressed objective 4.

In light of the above summary, the main contributions of this thesis are:

1. This thesis proposes a specific definition of heterogeneity in ABMs for which its impact

can be measured. Heterogeneity is limited to the agent component and is defined as agent

granularity; which refers to the coarseness of descriptive attributes and behaviours assigned

in the agent component e.g. the number of model parameters used to describe the agent class.

This definition was proposed following the detailed literature review in Chapter 2, which

comparatively reviews homogeneous and heterogeneous scenarios in agent-based models.

2. This thesis proposes the impact of modelling heterogeneously in ABMs is parameter non-

identification. This study demonstrates the existence of parameter identification issues in

heterogeneous ABMs and how they can be detected using approximate Bayesian computa-

tion calibration. To establish parameter identification issues as a potential impact of hetero-

geneity in ABMs, this study first considers the concept of parameter identification. Chapter 5
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defines parameter identification and uses a case study model of emotional contagion intro-

duced in Chapter 4 to prove its existence analytically (using the emotional contagion ODE

model) and computationally (using the emotional contagion ABM).

3. Parameter identification i.e. the ability to identify a unique set of parameter values that pro-

duce a particular model output, should be included in the standard ABM calibration process.

This thesis proposes: that to successfully calibrate an ABM should go beyond presenting a

single parameter point or capturing uncertainty by presenting a selection of best-fitting pa-

rameters, and go a step further by uniquely distinguishing the model input from the given

output. This was demonstrated in Chapter 6, which used approximate Bayesian computation

calibration not only to achieve parameter estimation but also to examine the wider parame-

ter space and determine whether the estimated parameters were uniquely identified from the

model output.

7.3 Evaluations

The purpose of this section is to evaluate the results of the investigation, which will determine key

areas for future work and development. This study ascertains that an impact of heterogeneity is

parameter identification, specifically the structural type. Before investigations into identification,

the first challenge lay in simply defining agent heterogeneity and understanding its broader impact

on ABM research. This study had to limit the definition of heterogeneity and could only consider

a specific type, namely animate agent objects. A shortcoming of this approach is potentially the

oversimplification of a massively complex phenomenon, which most definitely would influence

the course of this investigation. Though it may be considered a rudimentary step, formulating such

a precise definition was crucial in developing the working framework of the research study.

Having established a definition for heterogeneity, the next task was to select a sufficient method

to model emotional contagion. Compartmental models of infectious diseases were the ideal choice

due to their widespread use and application, as well as their analytical tractability. However, the

SISa framework was used because it could model a topic of interest, namely emotional conta-

gion, and could be represented analytically using tractable ODEs (to help inform intuition about
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model dynamics and parameter identification) and as an ABM through which heterogeneity could

be incorporated. Though successful, it is important to note that the simple model may not suf-

ficiently capture the full complexity of parameter identification in ABMs. This study aimed to

examine the impact of heterogeneous models which often contain too much information to ex-

plain the dataset, but this study does not support the use of homogeneous models if they too fail

to adequately describe the dataset. Thus, this study urges modellers to consider the number of het-

erogeneous parameters they include in their ABMs. In limiting heterogeneity to a small number,

specifically βGroup 1 and βGroup 2 the computational running times were constrained. Attempting

to fit many more parameters would have made the task numerically difficult. However, the het-

erogeneity captured with two β parameters may not be an adequate sample for this study. Thus

findings are limited and cannot be extrapolated. Increasing the model complexity through the ad-

dition of heterogeneous parameters could also impact the results of the structural identification

analysis attained in this study.

A further challenge lay in defining structural identification. Though more established in litera-

ture than practical identification, the difference between the two types is not particularly distinct.

This study assumes practical identification issues arise from the experimental conditions andmodel

structures and as a consequence creates variation in parameter estimates. Whereas structural iden-

tification focuses primarily on model structures which create variation in the estimates. Both of

these concepts exhibit a great deal of overlap, especially in the proposed methods used to remedy

the issue. Some additional work is needed to establish whether the two types should simply be

merged or made more distinct.

Research into detecting and remedying structural identification inABMs is relatively new. There

are no widely accepted approaches to apply. So, to undertake this experiment the inverse problem

approach was utilised and calibration was used as a tool. The case study ABMproduced a synthetic

dataset which was used as a substitute for real data. As synthetic data was used, investigating

the practical identifiability of the parameters would be ineffectual. However, the parameter that

was selected to introduce heterogeneity was of the most importance, as introducing an additional

parameter to the ABM changes the model structure which was the object of study. It is important
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to consider the significance of the chosen parameter i.e., would structural identification present

in the same way, if heterogeneity was introduced in α or γ, rather than in β? This is a critical

question as each parameter played a specific role in the spread of emotional contagion and thus

would have distinguishable impacts on the model structure. Although there is an indication of a

structural identification in β, this may not hold in the case of multiple α or γ parameters.

A further shortcoming lay in the choice of calibration method, as the chosen method affects the

efficacy of the parameter identification analysis. As emphasised by Carrella (2021) made signifi-

cant contributions to this field of study: they compared the performance of 9 parameter estimation

algorithms across 41 ABMs and found that no single algorithm was the best for all or even most of

the models. Furthermore, using rank estimation algorithms they determine model identifiability.

The model would be classified as unidentifiable if all 9 algorithms fail to achieve cross-validation

performance above a threshold then the parameter cannot be identified. They used two perfor-

mance thresholds: where the best performance among all algorithms was less than 0.1 known as

“serious identification failures” and when the best performance was below 0.3 this was referred to

as “identification failures”. They conclude that identification failure or unidentifiability is common

in ABMs but can be determined through cross-validation tests.

In this study, ABC was selected as it is considered the most robust and successful calibration

method, though can be used to conduct identification analysis some improvements could be made.

There is a need for an established method for parameter identification in ABMs, as simple differ-

ences in how modellers implement or initialise the ABC algorithm could yet influence the identifi-

cation results. As previously indicated by Polhill and Salt (2017), determining ABM performance

should consider more than just the model fitness. They suggest paying more attention to expres-

sivity of a formal language for ABM ontologies. Expressivity refers to the logic behind the axioms

used to freely create, whilst maintaining decidable reasoning. Thus modelling approaches can

be compared according to their ontological expressivity which captures descriptions of the model

states. Expressivity in ABMs refers to classes, inheritance, individuals, data properties, object

properties, lists, arrays, domains and ranges needed. Due to the very flexible nature of ABMs on-

tology is largely subjective, but there is still value in knowing how ‘good’ the subjective choice is.
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Polhill and Salt (2017) propose assessing ontologies in the following ways: logical consistency,

populating it with instances, stakeholder and/or expert evaluation and comparison with existing on-

tologies. That being said, even though ABC was used to calibrate the emotional contagion ABM,

there exist other validation methods to determine model quality that could be used to evaluate

parameter spaces and model identifiability.

7.4 Recommendations for Future Work

Having offered some critique of this investigation in the previous section, this section contains

some proposals for future work which might expand upon what has been formally presented in this

thesis. The larger goal for this field of study should lie in constructing an appropriate definition

of structural identification in ABMs. A distinct definition would come with clearer indicators for

which to detect potential identifiability issues. From that point only, can a suitable method to

resolve the issue form which goes beyond the process of cross-validation.

Following on from the research undertaken in this study, smaller more incremental steps can

be made towards achieving this goal. The first of which is a further examination of heterogeneity

expressed inα and γ. Asmentioned previously, it is important to establish the effect each parameter

could have on the output to gain certainty in identification analysis. Additionally, increasing the

number of parameters is pertinent to achieving a degree of certainty in the results obtained from

identification analysis.

Furthermore, this study compared the homogeneous and heterogeneous configurations of the

emotional contagion model in Chapter 2.3. This exercise indicates that closing the distance of

the Average Number of Infected between Homogeneous and Heterogeneous Configurations could

be achieved by purposefully selecting combinations of β values which reflect the approximate

Average Total Number of Infected values. An extension of this study could be to investigate the

potential equivalence between the model configurations.

Another way in which this investigation could be expanded upon is by exploring the choice

of compartmental models. The SISa framework is adequate but may be too simplistic to capture

183



7.5. CONCLUDING REMARKS CHAPTER 7. CONCLUSION

the complexity of heterogeneity. These frameworks feed into the construction of the ABM and

therefore directly impact the structural identification of model parameters.

A final way to improve and expand this study is through a comparative study of calibration tools

as detection for identification analysis. As mentioned in Chapter 6, calibration and identification

analysis cannot be separated as they are interdependent. However, results fromChapter 5 suggested

caution should be exercised in the use of current calibrationmethods as an effective tool. That being

said if the study into ABC as a tool continued, then there lay potential in attempting to measure

the high-dense areas in the posterior joint distributions. This area would be an indicator of what is

considered the identifiable zone within the parameter space.

7.5 Concluding Remarks

This chapter provides an overview of the results of the investigation presented in this thesis, noting

the limitations and recommendations for future research. This study has presented parameter non-

identification as a potential impact of heterogeneity in ABMs. This research serves as a motivation

to the wider ABM research community, to encourage further work into this new field. Whilst this

investigation has been successful, there remain fundamental challenges that need to be addressed.

In addressing these limitations, there is hope for an established and widely accepted method for

both the detection and resolution of structural identification issues which may arise in empirical

agent-based models, such that practitioners and policymakers can utilise agent-based models with

greater confidence and certainty in model results.
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Chapter 4

This Appendix presents Figures of the Number of Infected in the exploration of Heterogeneous

Configuration in Chapter 4.
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(a) Number of Panicked Agents with Total Population of 10

Agents

(b) Number of Panicked Agents with Total Population of 100

Agents

(c) Number of Panicked Agents with Total Population of 1000

Agents

Figure A.1: Number of Infected with an increasing agent population over 10 iterations



Appendix B

Chapter 5

This Appendix describes the Observed Data already seen in Chapter 4, that will be used in the

model calibration.

B.1 Homogeneous Config. Data

Homogeneous Config: ABM Parameters

Parameter Value

Number of Agents 1000

Number of Iterations (Time, t) 1000

Single Instances 1(t)

Number of Agent Groups 1

α 0.01

β 0.2

γ 0.1

Table B.1: Homogeneous Configuration Parameter Values: Observed Data

187



B.2. HETEROGENEOUS CONFIG.
DATA

APPENDIX B. CHAPTER 5

Figure B.1: Number of Infected

B.2 Heterogeneous Config. Data

Heterogeneous Config: ABM Parameters

Parameter Value

Number of Agents 1000

Number of Iterations (Time, t) 1000

Single Instance 1(t)

Number of Agent Groups 2

α 0.01

βGroup 1 0.2

βGroup 2 0.6

γ 0.1

Table B.2: Heterogeneous Configuration Parameter Values: Observed Data
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Figure B.2: Heterogeneous Configuration: Number of Infected
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B.3 Approximate Bayesian Computation Exercise: Constrained Pri-

ors

This section contains the results of the ABC exercise in which the prior were constrained.

B.3.1 Homogeneous Config.

pyABC ABC-SMC Algorithm Input: Constrained Priors

Parameter Value

Data CDF (Number of Infected)

Distance Function RMSE

Max. No of Populations 12

Population Size 1000

Epsilon (ϵ) Unspecified

α U (0.01, 0.05)

β U (0.0, 0.4)

Table B.3: pyABC ABC-SMC Algorithm Input: Heterogeneous Configuration

Figure B.3: pyABC Constrained Priors: Alpha and Beta Parameters are Uniformly Distributed
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Figure B.4: pyABC Posteriors: Conditional Probability of Alpha and Beta Parameters
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pyABC Algorithm Output: Posterior Modes

Mode
No. of Populations

α β

0 0.05182242 0.17333339

1 0.04777098 0.16533711

2 0.0506588 0.13098779

3 0.04875285 0.13049924

4 0.05276988 0.12174599

5 0.03644685 0.15099122

6 0.02836106 0.17095419

7 0.02425427 0.17129444

8 0.02429455 0.17147166

9 0.01812292 0.18238673

10 0.01816963 0.18468046

11 0.01815208 0.18410205

Table B.4: pyABC Output: Posterior Mode of α and β
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Figure B.5: pyABC Priors: Alpha and Beta Parameters are Uniformly Distributed
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B.3.2 Heterogeneous Config.

pyABC ABC-SMC Algorithm Input: Constrained Priors

Parameter Value

Data CDF (Number of Infected)

Distance Function RMSE

Max. No of Populations 12

Population Size 1000

Epsilon (ϵ) Unspecified

α U (0.01, 0.05)

βGroup 1 U (0.0, 0.4)

βGroup 2 U (0.5, 0.8)

Table B.5: pyABC ABC-SMC Algorithm Input: Homogeneous Configuration

Figure B.6: pyABC Constrained Priors: Alpha and Beta Parameters are Uniformly Distributed
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Figure B.7: pyABC Posteriors: Conditional Probability of Alpha and Beta Parameters
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pyABC Algorithm Output: Posterior Modes

Mode
No. of Populations

α βGroup 1 βGroup 2

0 0.04058033 0.19115846 0.69644518

1 0.0445686 0.14632727 0.82708123

2 0.0365159 0.12790874 0.61589995

3 0.05182846 0.1332135 0.63173797

4 0.0305015 0.12402448 0.61640069

5 0.04261005 0.12485908 0.68144975

6 0.02025336 0.13630381 0.63168193

7 0.01809786 0.14361261 0.59856792

8 0.02531923 0.14233784 0.59680371

9 0.0201772 0.14533129 0.5983028

10 0.01608586 0.1500786 0.57679122

11 0.02332019 0.14365612 0.5933509

Table B.6: pyABC Output: Posterior Mode of α, βGroup 1 and βGroup 2
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Figure B.8: pyABC Priors: Alpha and Beta Parameters are Uniformly Distributed
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Chapter 6

C.1 PyABC: Heterogeneous Configuration of Alpha Parameters

This section contains the results of the pyABC exercise on the Heterogeneous Configuration of the

case study ABM. Heterogeneity was expressed in α, rather than β.

pyABC ABC-SMC Algorithm Input

Parameter Value

Data CDF (Number of Infected)

Distance Function RMSE

Max. No of Populations 12

Population Size 1000

Epsilon (ϵ) Unspecified

β U (0.0, 0.1)

αGroup 1 U (0.0, 1.0)

αGroup 2 U (0.0, 1.0)

Table C.1: pyABC ABC-SMC Algorithm Input: Heterogeneous Configuration
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Figure C.1: pyABC Priors: Alpha and Beta Parameters are Uniformly Distributed
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Figure C.2: pyABC Posteriors: Conditional Probability of Alpha
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Figure C.3: pyABC Output: Conditional Probability of Alpha
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pyABC Algorithm Output: Posterior Modes

Mode
No. of Populations

β αGroup 1 αGroup 2

0 0.03660193 0.32527573 0.34632693

1 0.06994286 0.2435832 0.24325429

2 0.0147038 0.23212959 0.21397648

3 0.08230054 0.19566246 0.2358787

4 0.06880536 0.21258378 0.20694185

5 0.02181635 0.20824475 0.22295073

6 0.07319986 0.230185 0.22739194

7 0.0737856 0.206936 0.18706675

8 0.06382852 0.20486102 0.21697969

9 0.06126214 0.20990235 0.24698206

10 0.07378815 0.18564859 0.2395132

11 0.07763232 0.19090389 0.20896333

Table C.2: pyABC Output: Posterior Mode of β, αGroup 1 and αGroup 2
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C.2 PyABC: Varying Beta Parameters

This section presents the results of pyABC analysis on the Heterogeneous Configuration of the

case study ABM, where the β parameters are numerically closer.

Heterogeneous Config: ABM Parameters

Parameter Value

Number of Agents 1000

Number of Iterations (Time, t) 1000

Single Instance 1(t)

Number of Agent Groups 2

α 0.01

βGroup 1 0.5

βGroup 2 0.6

γ 0.1

Table C.3: Heterogeneous Configuration Parameter Values: Observed Data
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Figure C.4: pyABC Posteriors: Conditional Probability of Beta
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Figure C.5: pyABC Output: Conditional Probability of Alpha
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pyABC Algorithm Output: Posterior Modes

Mode
No. of Populations

α βGroup 1 βGroup 2

0 0.01128307 0.14378275 0.14259804

1 0.00777791 0.14270492 0.18310219

2 0.01255396 0.18349323 0.18344775

3 0.01378332 0.16319265 0.14309561

4 0.01254974 0.16510232 0.1422163

5 0.01188563 0.16462569 0.34549207

6 0.01162137 0.46900349 0.40747905

7 0.01285864 0.38665268 0.46991308

8 0.0114102 0.32709762 0.47142065

9 0.01034748 0.40785543 0.73983918

10 0.01060047 0.34838488 0.57239132

11 0.01171806 0.63207576 0.29613587

Table C.4: pyABC Output: Posterior Mode of α, βGroup 1 and βGroup 2
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