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Abstract

This thesis is split into two areas of interest. The first, a study of indestructibility
results for two variants of supercompactness; the second, a discussion of double-
membership graphs of models of Anti-Foundational set theory.
In Chapter 3 we will consider 𝛼-subcompact cardinals — which can be viewed as a
weakened version of supercompact cardinals — and we will show that, by defining a
suitable preparatory forcing, an 𝛼-subcompact cardinal (with 𝛼 ∈ Reg) can be made
indestructible by all < 𝜅-directed closed forcing.
We will then turn our attention to stronger forms of supercompactness, namely 𝐶 (𝑛)-
supercompacts, and answer (in part) open questions about their indestructibility,
by showing that, for a 𝐶 (2)-extendible, we can make its 𝐶 (2)-supercompactness
indestructible by < 𝜅-directed closed forcing.
We will then combine the concepts of 𝛼-subcompact cardinals and 𝐶 (𝑛)-cardinals
and show that, below an 𝛼-subcompact cardinal where 𝛼 ∈ 𝐶 (𝑛) with 𝑛 ≥ 1, there
is a stationary set of partial extendibles below 𝜅, determined by 𝛼-subcompactness
embeddings for 𝜅.
Lastly, we consider reducts of countable models of Anti-Foundational set theory to
the double-membership relation𝐷, where𝐷(𝑥, 𝑦) if and only if 𝑥 ∈ 𝑦 ∈ 𝑥. We show
that there are continuum many such graphs, and study their connected components.
We describe their complete theories, and prove that each one has continuum-many
countable models, some of which are not reducts of models of Anti-Foundation.
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Chapter 1

Introduction

In 1978, Laver showed that, using a suitably defined preparatory forcing, it is
possible to make the supercompactness of some 𝜅 indestructible by < 𝜅-directed
closed forcing. This can be seen as a starting point for the study of indestructibility
results for large cardinals, a field which has seen many advances in the decades since
Laver’s result. It is natural to wonder which large cardinals have indestructibility
results like this, and what variants of supercompactness may have similar techniques
applied to them.
This work is comprised of two parts. The first, a study of indestructibility results
for two large cardinals which may be considered variants of supercompactness,
namely 𝛼-subcompact cardinals and 𝐶 (𝑛)-supercompact cardinals. The second part,
in Chapter 6, is a continuation of previous work in the field of Anti-Foundational set
theory, from a joint paper .
The structure of the thesis is as follows. In Chapter 2 we provide some background
concepts and results which will be relied upon later, specifically regarding the
construction of ultrafilters and extenders, as well as a brief survey of supercompact
cardinals and iterated forcing. We also discuss indestructibility results in general,
and give an introduction to 𝐶 (𝑛)-large cardinals, with specific results regarding 𝐶 (𝑛)-
extendibles and 𝐶 (𝑛)-supercompacts which will be used in later chapters.
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In Chapter 3 we give an introduction to 𝛼-subcompact cardinals, and show that, for
𝛼 ∈ Reg, we may make the 𝛼-subcompactness of 𝜅 indestructible by all< 𝜅-directed
forcings in 𝐻𝛼. To do this we utilise the technique of lottery sums of minimal
counterexamples, as seen in the work of Schlicht and Lücke ([30]) and Schlöder
([41]). This machinery is well-suited to large cardinals which are defined as the
image of critical points of elementary embeddings.
In Chapter 4 we consider large cardinals which are strengthenings of supercompact
cardinals, namely𝐶 (𝑛)-supercompact cardinals, introduced by Bagaria in 2012 ([6]).
We show that, with the extra assumption that 𝜅 is 𝐶 (2)-extendible, we may make
the 𝐶 (2)-supercompactness of 𝜅 indestructible by all < 𝜅-directed closed forcing.
For this we leverage the power of 𝐶 (2)-extendibles and utilise the correspondence
between extenders and 𝐶 (𝑛)-supercompactness elementary embeddings.
Chapter 5 contains a discussion of how we may combine the concepts of 𝐶 (𝑛)-
cardinals with 𝛼-subcompact cardinals, and how doing so results in many partial
𝐶 (𝑛)-extendibles below any 𝛼-subcompact — so, in particular, since a supercompact
cardinal 𝜅 is 𝛼-subcompact for all 𝛼, there are many partial 𝐶 (𝑛)-extendibles below
every 𝜅, of increasing strength.
Finally, Chapter 6 contains joint work with John Howe and Rosario Mennuni, from
a paper ‘On double-membership graphs of models of Anti-Foundation’ ([2]). In a
previous paper ([1]) it is shown that, just as countable membership graphs of 𝖹𝖥𝖢
are isomorphic to the Random Graph, countable models of 𝖹𝖥𝖠1 (without multiple
edges) are isomorphic to the Random Loopy Graph, the Fraïssé limit of finite
graphs with loops. This structure has many desirable model-theoretic properties,
and echoes the well-founded case in a pleasing way.
However, in this Chapter we show that considering the double-membership

graphs — i.e reducts of the countable membership graph 𝑀 to the binary relation
1𝖹𝖥𝖠 is 𝖹𝖥𝖢 with the axiom of Foundation replaced by the Anti-Foundation Axiom, defined in

§ 6.3.
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𝐷 where 𝐷(𝑥, 𝑦) iff 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 — gives a much less straightforward picture.
We show that there are infinitely many countable double-membership graphs of
models of 𝖹𝖥𝖠, and continuum-many countable models of each of their theories.
We study the common theory of double-membership graphs, and show that it is
incomplete. The completions of this theory are then characterised, by showing
that double-membership graphs of two models of 𝖹𝖥𝖠 are elementarily equivalent
precisely when the models satisfy the same consistency statements.
Further we show that, in 𝖹𝖥𝖢 ⧵ 𝖥𝗈𝗎𝗇𝖽𝖺𝗍𝗂𝗈𝗇, with no axiom of Anti Foundation, the
double-membership graphs are almost arbitrary. Our final result gives that, for every
(single-)double-membership graph, there is a countable elementarily equivalent
structure which is not the (single-)double-membership graph of any model of 𝖹𝖥𝖠.
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Chapter 2

Preliminaries

This Chapter contains the main concepts and theorems which will be relied upon
throughout the document. It is not intended to provide a thorough grounding in
these topics, so references will be given to introductory texts for each Section.

2.1 Set Theory

In this Section we give a general overview of set theoretical concepts and key results
in the field. We also fix our notation, all of which is standard. For any omitted or
assumed definitions, we refer the reader to [27], [25], [33], [28] or to any other
references given in specific Sections.

2.1.1 Notation

For a set 𝑥, |𝑥| denotes its cardinality, TC(𝑥) its transitive closure, rk(𝑥) its rank,
and (𝑥) is its power set. For 𝜆 ≥ 𝜅, 𝜅(𝜆) — or equivalently, [𝜆]<𝜅 — consists of
all subsets of 𝜆 of cardinality less than 𝜅.
The class of all ordinals is denoted On, and Reg is the class of all regular cardinals.
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For an ordinal 𝛼,𝐻𝛼 is the set of all sets 𝑥with |TC(𝑥)| < 𝛼, i.e. the set of all sets of
hereditary cardinality less than 𝛼. The order type of a well-ordered set𝑋 is denoted
ot(𝑋).
For 𝑋 ⊆ On, an limit ordinal 𝛾 > 0 is a limit point of 𝑋 if sup(𝑋 ∩ 𝛾) = 𝛾 . We
denote the set of limit points of 𝑋 by lim(𝑋) and we denote by Lim the class of all
limit ordinals.
If 𝜅 is a regular uncountable cardinal, a set 𝐶 ⊂ 𝜅 is closed unbounded (or club) in
𝜅 if 𝐶 is unbounded in 𝜅 and contains all its limit points below 𝜅. A set 𝑆 ⊂ 𝜅 is
stationary if 𝑆 ∩ 𝐶 ≠ ∅ for all club subsets of 𝜅.
For an embedding 𝑗, its critical point is cf(𝑗), its range is range(𝑗) and its domain

is dom(𝑗). For any 𝑋 ⊆ dom(𝑗), we denote by 𝑗 ↾ 𝑋 the restriction of 𝑗 to 𝑋. The
pointwise image of some 𝑥 ⊆ dom(𝑗) under 𝑗 is 𝑗“(𝑥) = {𝑗(𝑦) ∶ 𝑦 ∈ 𝑥}.
A partial function 𝑓 with domain 𝑋 and range 𝑌 is denoted by 𝑓 ⫶𝑋 → 𝑌 .
Definition 2.1.2. For any cardinal 𝛼, a □𝛼-sequence (a ‘square-alpha sequence’) is
⟨𝐶𝛽 ∶ 𝛽 ∈ 𝛼+ ∩ Lim⟩ such that, for every 𝛽 ∈ 𝛼+ ∩ Lim:

• 𝐶𝛽 is a club subset of 𝛽;

• ot(𝐶𝛽) ≤ 𝛼;

• for any 𝛾 ∈ lim(𝐶𝛽), 𝐶𝛾 = 𝐶𝛽 ∩ 𝛾 .

If there exists an 𝛼-sequence, then we say that □𝛼 holds.

The Beth numbers are defined by transfinite recursion as follows: ℶ0 = ℵ0, ℶ𝛼+1 =
2ℶ𝛼 and ℶ𝜆 = sup{ℶ𝛼 ∶ 𝛼 < 𝜆} for 𝜆 a limit ordinal.
The Continuum Hypothesis (CH) states that ℶ1 = ℵ1, i.e. ℵ1 = 2ℵ0 . The
Generalised Continuum Hypothesis (or GCH), is the statement that, for all ordinals
𝛼, ℵ𝛼 = ℶ𝛼.
Until Chapter 6 we will be working in 𝖹𝖥𝖢, making tacit use of choice throughout.
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2.1.3 Elementarity

Throughout this thesis we will be dealing with many concepts involving
elementarity: all the large cardinals discussed are defined in terms of elementary
embeddings, and we deal in particular with correctness in Chapters 4 and 5, which
stipulates the elementarity of substructures of 𝑉 .

Definition 2.1.4. Let 0 = ⟨𝑀0,…⟩ and 1 = ⟨𝑀1,…⟩ be structures over the
same language . An injective function 𝑗 ∶𝑀0 →𝑀1 is an elementary embedding

of 0 into 1 (often written 𝑗 ∶ 0 ≺ 1) if and only if, for all formulas
𝜑(𝑣1,… , 𝑣𝑛) of , and 𝑥1,… 𝑥𝑛 ∈ 0,

0 ⊨ 𝜑[𝑥1,… , 𝑥𝑛] ⟺ 1 ⊨ 𝜑[𝑗(𝑥1),… , 𝑗(𝑥𝑛)]. (†)

If, further, 𝑗 is the identity on 0, then 0 is an elementary substructure of 1,
written 0 ≺1.
Where there is no confusion, we identify0 and1 with their underlying universes
𝑀0 and 𝑀1, respectively. Typically we omit mention of  if it is assumed clear —
for our purposes here we will be dealing with non-trivial elementary embeddings
𝑗 ∶ 𝑉 →𝑀 , where 𝑉 is the universe of sets and 𝑀 ⊆ 𝑉 is a transitive proper class
(hence  = ∈ ∶= {∈} is the language of set theory). Unless stated otherwise, all
elementary embeddings will be non-trivial.
In later Chapters we will be concerned with Σ𝑛-elementary embeddings, and
corresponding Σ𝑛-elementary substructures. Here recall that a formula is Σ0 and
Π0 if all of its quantifiers are bounded. By induction, we define Σ𝑛+1 formulas to be
those which have the form ∃𝑥𝜑, where 𝜑 is Π𝑛; and Π𝑛+1 to be those of the form
∀𝑥𝜑, where 𝜑 is Σ𝑛. If 𝜑 is both Σ𝑛 and Π𝑛, then it is Δ𝑛.
Accordingly, a Σ𝑛 (or Π𝑛) elementary embedding is 𝑗 ∶𝑀0 →𝑀1 with 0 and 1

as above, where (†) holds for all formulas 𝜑 which are Σ𝑛 (or Π𝑛). This is denoted
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𝑗 ∶ 0 ≺𝑛 1.
Sometimes we will need to be able to determine whether a substructure is elementary
or not, for this we will use the Tarski-Vaught criterion, namely:

Theorem 2.1.5. (Tarski, Vaught, as seen in [24]) Let  be a first-order language and
let 0 and 1 be -structures with 0 ⊆1. Then the following are equivalent:

• 0 is an elementary substructure of 1

• For every formula 𝜑(𝑣1,… 𝑣𝑛, 𝑦) of  and all 𝑥1,… 𝑥𝑛 in 0,
1 ⊨ ∃𝑦𝜑(𝑥1,… 𝑥𝑛, 𝑦) → 1 ⊨ 𝜑(𝑥1,… 𝑥𝑛, 𝑧) for some element 𝑧 of 0.

2.1.6 Ultrafilters

Ultrafilters and ultrapowers have been used extensively in set theory since the 1960’s,
as they provide equivalent formulations of many large cardinals. Their construction
is briefly outlined here.

Definition 2.1.7. For a non-empty set 𝑋,  ⊆ (𝑋) is an ultrafilter over 𝑋 if

• It is a filter, namely:

– 𝑋 ∈  and ∅ ∉  ;
– If 𝐴 ∈  and 𝐵 ∈  then 𝐴 ∩ 𝐵 ∈  ;
– If 𝐴, 𝐵 ⊆ 𝑋, 𝐴 ∈  and 𝐴 ⊆ 𝐵, then 𝐵 ∈  .

• Is is maximal, namely there is no filter 𝐹 over𝑋 such that  ⊆ 𝐹 but 𝐹 ≠  .
Equivalently, for every 𝐴 ⊆ 𝑋, 𝐴 ∈  or 𝑋 ⧵ 𝐴 ∈  .

Definition 2.1.8. An ultrafilter  over (𝑋) is 𝜅-complete for some 𝜅 if, for any
𝛾 < 𝜅 and {𝑋𝛼 ∶ 𝛼 < 𝛾} ⊆  , ⋂𝛼<𝛾 𝑋𝛼 ∈  .
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We will mainly be interested in ultrafilters over 𝜅(𝜆) (also denoted [𝜆]𝜅), since they
offer a characterisation of supercompactness (see §2.1.15), and because we use them
to define extenders (see §2.1.11).

Definition 2.1.9. An ultrafilter  over 𝜅(𝜆) is normal if:

• It is 𝜅-complete, i.e. for any collection {𝑋𝛼 ∶ 𝛼 < 𝛾} with 𝛾 < 𝜅 and each
𝑋𝛼 ∈  , then ⋂

𝛼<𝛾 𝑋𝛼 ∈  ;

• It is fine, i.e. for any 𝛾 < 𝜆, {𝑋 ∈ 𝜅(𝜆) ∶ 𝛾 ∈ 𝑋} ∈  ;

• It is closed under diagonal intersection, namely, for any {𝑋𝛼 ∶ 𝛼 < 𝜆} with
𝑋𝛼 ∈  for all 𝛼 < 𝜆, Δ𝛼<𝜆𝑋𝛼 = {𝑥 ∈ 𝜅(𝜆) ∶ 𝑥 ∈

⋂

𝑖∈𝑥𝑋𝑖} ∈  .

From an ultrafilter  over a set 𝑋 we may derive its ultraproduct as follows. For
each 𝑖 ∈ 𝑋 let 𝑖 = ⟨𝑀𝑖,…⟩ be a structure over some fixed language , with
universe 𝑀𝑖. Let ∏𝑖∈𝑋𝑀𝑖 be the Cartesian product of all the 𝑀𝑖, so elements are
functions 𝑓 with domain 𝑋 such that 𝑓 (𝑖) ∈ 𝑀𝑖 for all 𝑖 ∈ 𝑋. We construct an
equivalence relation = on ∏

𝑖∈𝑋𝑀𝑖 by:

𝑓 = 𝑔 ⟺ {𝑖 ∈ 𝑋 ∶ 𝑓 (𝑖) = 𝑔(𝑖)} ∈ 

and we denote by [𝑓 ] the equivalence class of 𝑓 (or, when clear, we simply denote
it [𝑓 ], or even 𝑓 ). Let ∏𝑖∈𝑋𝑀𝑖∕ =

{

[𝑓 ] ∶ 𝑓 ∈
∏

𝑖∈𝑋𝑀𝑖
}. For any 𝑛-ary

predicate symbol in  interpreted in 𝑖 by the 𝑛-ary relation 𝑅𝑖 ⊆ 𝑀𝑛
𝑖 , we define

its interpretation by:

⟨[𝑓1]… , [𝑓𝑛]⟩ ∈ 𝑅 ⟺
{

𝑖 ∈ 𝑋 ∶ ⟨𝑓1(𝑖)… , 𝑓𝑛(𝑖)⟩ ∈ 𝑅𝑖
}

∈  .

We interpret function and constant symbols the same way, so that we can define the
ultraproduct of the 𝑖 to be an -structure denoted by ∏

𝑖∈𝑋 𝑖∕ , which has
domain ∏

𝑖∈𝑋𝑀𝑖∕ .
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A fundamental result regarding ultraproducts and their first-order theory is Łos’s
Theorem:

Theorem 2.1.10. (Łos) For a formula 𝜑(𝑣1,… 𝑣𝑛) and 𝑓1,… , 𝑓𝑛 ∈
∏

𝑖∈𝑋𝑀𝑖,
∏

𝑖∈𝑋
𝑖∕ ⊨ 𝜑

(

[𝑓1],… , [𝑓𝑛]
)

⟺
{

𝑖 ∈ 𝑋 ∶ 𝑖 ⊨ 𝜑
(

𝑓1(𝑖),… , 𝑓𝑛(𝑖)
)}

∈  .

If we construct an ultraproduct where all the 𝑖 are equal to some  = ⟨𝑀,…⟩,
this is called the ultrapower of  by  , and is denoted 𝑋∕ , or Ult(, ).
For 𝑥 ∈ 𝑀 define 𝑐𝑥 ∶ 𝑋 → {𝑥} to be the constant function for 𝑥. Then the
embedding 𝑗 ∶  → Ult(, ) defined by 𝑗 (𝑥) = [𝑐𝑥] is an elementary
embedding. Provided Ult(𝑉 , ) is well-founded1 we may then take the Mostowski
collapse ⟨𝑀,∈⟩ of Ult(𝑉 , ), given by the collapsing map 𝜋 ∶ Ult(𝑉 , ) →

⟨𝑀,∈⟩, where ⟨𝑀,∈⟩ is a transitive class. Using this, we define the elementary
embedding 𝑗 ∶ 𝑉 → 𝑀 by 𝑗 = 𝜋◦𝑗 . It is common to abuse notation and identify
𝑗 with 𝑗 .

2.1.11 Extenders

Given an elementary embedding 𝑗 ∶ 𝑉 → 𝑀 between inner models it is possible
to derive an approximation for 𝑗 using sequences of ultrafilters, called an extender.
The formulation we will present is as seen in Cummings’s [14] and Kanamori’s [27]
work, though their construction comes from Dodd and Jensen (see [15]), themselves
simplifying work of Mitchell. This section is not intended to be a full introduction,
and details omitted can be found in the above sources, and the Appendix of
Tsaprounis’s [43], as well as Schindler’s [40].
First we give details on how to derive an extender from an elementary embedding.

1That Ult(𝑉 , ) is well-founded is actually equivalent to  being ℵ1-complete (see §5 of [27].)
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Definition 2.1.12. Suppose that 𝑗 ∶ 𝑉 → 𝑀 is an elementary embedding into a
transitive inner model 𝑀 , with cp(𝑗) = 𝜅. Let 𝜅 < 𝜆 and let 𝜁 ≥ 𝜅 be the least
ordinal such that 𝜆 ≤ 𝑗(𝜁 ). For each 𝑎 ∈ [𝜆]<𝜔, define 𝐸𝑎, an ultrafilter on [𝜁 ]|𝑎| by:

𝑋 ∈ 𝐸𝑎 ⟺ 𝑎 ∈ 𝑗(𝑋)

Now define 𝐸 = ⟨𝐸𝑎 ∶ 𝑎 ∈ [𝜆]<𝜔⟩, which we call the (ordinary) (𝜅, 𝜆)-extender

derived from 𝑗.

The basic (and perhaps most common) presentation of such an extender carries the
assumption that 𝜁 = 𝜅, however we will later be exploiting this more generalised
version of the definition. We say that 𝐸 is long if 𝜆 > 𝑗(𝜅), otherwise it is called
short.
From each of the ultrafilters 𝐸𝑎 we can construct ultrapowers, which, by the 𝜅-
completeness of each 𝐸𝑎, will be well-founded. Let 𝑀𝑎 ≅ Ult(𝑉 ,𝐸𝑎) be the
transitive collapse of the ultrapower. For each 𝑎 the following diagram commutes:

𝑉

𝑀𝑎

𝑀
𝑗

𝑗𝑎 𝑘𝑎

Here 𝑗𝑎(𝑥) = [𝑐𝑎𝑥]𝐸𝑎 for each 𝑥 ∈ 𝑉 , where 𝑐𝑎𝑥 ∶ [𝜁 ]|𝑎| → {𝑥} is the constant function,
and 𝑘𝑎([𝑓 ]𝐸𝑎) = 𝑗(𝑓 )(𝑎) for each 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 . Standard arguments show that, for
each 𝑎 ∈ [𝜆]<𝜔, 𝑘𝑎 is well-defined and elementary, and the diagram is commutative.
Each of the 𝑀𝑎 are interrelated by functions defined using projections between the
[𝜁 ]|𝑎|. For 𝑎 ⊆ 𝑏 in [𝜆]<𝜔, these projection functions 𝜋𝑏𝑎 ∶ [𝜁 ]|𝑏| → [𝜁 ]|𝑎| can be
thought of as ‘projecting down’ according to the relation between 𝑏 = {𝛾1,… , 𝛾𝑛}
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(where 𝛾1 < … < 𝛾𝑛) and 𝑎 = {𝛾𝑖1 ,… , 𝛾𝑖𝑚} (where 1 ≤ 𝑖1 < … < 𝑖𝑚 ≤ 𝑛).
Specifically, 𝜋𝑏𝑎

({

𝛿1,… , 𝛿𝑛
})

=
{

𝛿𝑖1 ,… , 𝛿𝑖𝑚
}, where 𝛿1 <… < 𝛿𝑛.

A key property satisfied by the ultrafilters 𝐸𝑎 involves the projections 𝜋𝑏𝑎, namely
the coherence property: that for all 𝑎, 𝑏 ∈ [𝜆]<𝜔 with 𝑎 ⊆ 𝑏,

𝑋 ∈ 𝐸𝑎 ⟺
{

𝑥 ∈ [𝜁 ]|𝑏| ∶ 𝜋𝑏𝑎(𝑥) ∈ 𝑋
}

∈ 𝐸𝑏.

Using the 𝜋𝑎𝑏 we now define elementary embeddings 𝑖𝑎𝑏 ∶𝑀𝑎 →𝑀𝑏 by:

𝑖𝑎𝑏
(

[𝑓 ]𝐸𝑎
)

=
[

𝑓◦𝜋𝑏𝑎
]

𝐸𝑏

for all 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 in𝑉 . These embeddings are also well-defined, elementary and
commute — this is shown by applying the coherence property alongside standard
arguments. We obtain the following commutative diagram:

𝑉

𝑀𝑎

𝑀

𝑀𝑏

𝑗

𝑗𝑎 𝑘𝑎

𝑖𝑎𝑏

𝑗𝑏
𝑘𝑏

Now, with these systems of embeddings and ultrafilters, we define the directed
system ⟨⟨𝑀𝑎 ∶ 𝑎 ∈ [𝜆]<𝜔⟩; ⟨𝑖𝑎𝑏 ∶ 𝑎 ⊆ 𝑏 ∈ [𝜆]<𝜔⟩⟩. Its corresponding direct limit

is 𝑀𝐸 , obtained by taking equivalence classes of a suitably defined equivalence
relation. A little work gives us that 𝑀𝐸 is well-founded (since it can be viewed as a
substructure of 𝑀), and its members have the form [

⟨𝑎, [𝑓 ]𝐸𝑎⟩
]

𝐸
where 𝑎 ∈ [𝜆]<𝜔
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and 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 . Let 𝑀𝐸 be the transitive collapse of 𝑀𝐸 . We will identify 𝑀𝐸

with 𝑀𝐸 throughout.
Now we define elementary embeddings between 𝑀𝐸 , the 𝑀𝑎 and 𝑀 by:

• 𝑗𝐸 ∶ 𝑉 →𝑀𝐸 , with 𝑗𝐸(𝑥) = [𝑎, [𝑐𝑎𝑥]], for 𝑎 ∈ [𝜆]<𝜔;

• 𝑘𝑎𝐸 ∶𝑀𝑎 →𝑀𝐸 with 𝑘𝑎𝐸([𝑓 ]) = [𝑎, [𝑓 ]], for 𝑎 ∈ [𝜆]<𝜔 and 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 ;

• 𝑘𝐸 ∶𝑀𝐸 →𝑀 with 𝑘𝐸([𝑎, [𝑓 ]]) = 𝑗(𝑓 )(𝑎) for 𝑎 ∈ [𝜆]<𝜔 and 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 .

We then obtain the following commutative diagram:

𝑉

𝑀𝑎

𝑀

𝑀𝐸

𝑗

𝑗𝑎 𝑘𝑎

𝑘𝑎𝐸

𝑗𝐸
𝑘𝐸

The structure𝑀𝐸 , and the embedding 𝑗𝐸 , have some valuable properties, which will
be used in later arguments regarding 𝐶 (𝑛)-supercompact cardinals. Namely:

• cp(𝑗𝐸) = 𝜅 and 𝑗𝐸(𝜁 ) ≥ 𝜆, and if 𝜆 = 𝑗(𝜅) then 𝑗𝐸(𝜅) = 𝑗(𝜅) = 𝜆;

• 𝑀𝐸 =
{

𝑗𝐸(𝑓 )(𝑎) ∶ 𝑎 ∈ [𝜆]<𝜔, 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 , 𝑓 ∈ 𝑉
}.

The proof of these results can be found, for example, in Lemma 26.1 of [27].
Now, having approached extenders from one direction by deriving them from an
elementary embedding, we show that we may also directly construct an extender



14 2. PRELIMINARIES

from ultrafilters, and from this extender derive an elementary embedding 𝑗𝐸 ∶ 𝑉 →

𝑀𝐸 , much like the one constructed above.

Definition 2.1.13. Let 𝜅 be a regular cardinal and let 𝜆 > 𝜅. Then 𝐸 = ⟨𝐸𝑎 ∶ 𝑎 ∈

[𝜆]<𝜔⟩ is a (𝜅, 𝜆)-extender if, for some 𝜁 ≥ 𝜅:

1. (a) For all 𝑎 ∈ [𝜆]<𝜔, 𝐸𝑎 is a 𝜅-complete ultrafilter on [𝜁 ]|𝑎|;
(b) There is some 𝑎 ∈ [𝜆]<𝜔 such that 𝐸𝑎 is not 𝜅+-complete;
(c) For all 𝛾 < 𝜁 there is an 𝑎 ∈ [𝜆]<𝜔 such that {𝑥 ∈ [𝜁 ]|𝑎| ∶ 𝛾 ∈ 𝑥} ∈ 𝐸𝑎.

2. (Coherence) For all 𝑎, 𝑏 ∈ [𝜆]<𝜔 with 𝑎 ⊆ 𝑏,

𝑋 ∈ 𝐸𝑎 ⟺
{

𝑥 ∈ [𝜁 ]|𝑏| ∶ 𝜋𝑏𝑎(𝑥) ∈ 𝑋
}

∈ 𝐸𝑏.

3. (Normality) If there is an 𝑎 ∈ [𝜆]<𝜔 and 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 such that

{

𝑥 ∈ [𝜁 ]|𝑎| ∶ 𝑓 (𝑥) ∈ max(𝑥)
}

∈ 𝐸𝑎

then there is some 𝑏 with 𝑎 ⊆ 𝑏 such that

{

𝑥 ∈ [𝜁 ]|𝑏| ∶ 𝑓◦𝜋𝑏𝑎(𝑥) ∈ 𝑥
}

∈ 𝐸𝑏

4. (Well-foundedness) For any 𝑎𝑛 ∈ [𝜆]<𝜔 and 𝑋𝑛 ⊆ [𝜁 ]|𝑎𝑛| with 𝑋𝑛 ∈ 𝐸𝑎𝑛 for
all 𝑛 ∈ 𝜔, there is an order-preserving function 𝑓 ∶

⋃

𝑛∈𝜔 𝑎𝑛 → 𝜁 such that
𝑓“𝑎𝑛 ∈ 𝑋𝑎𝑛 for all 𝑛 ∈ 𝜔. Equivalently, the direct limit 𝑀𝐸 is well-founded.

Here we construct the direct limit𝑀𝐸 as before: by first constructing the ultrapowers
for each 𝐸𝑎, the defining projection functions and elementary embeddings, then the
directed system with direct limit 𝑀𝐸 . Then, using the well-foundedness of 𝑀𝐸

we obtain, as before, the transitive collapse 𝑀𝐸 , and the elementary embedding
𝑗𝐸 ∶ 𝑉 →𝑀𝐸 .
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The same nice properties hold for 𝑀𝐸 and 𝑗𝐸 as before, namely:

• cp(𝑗𝐸) = 𝜅 and 𝜁 is the least ordinal such that 𝑗𝐸(𝜁 ) ≥ 𝜆;

• 𝑀𝐸 =
{

𝑗𝐸(𝑓 )(𝑎) ∶ 𝑎 ∈ [𝜆]<𝜔, 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 , 𝑓 ∈ 𝑉
}.

Every element of 𝑀𝐸 is of the form 𝑥 =
[

⟨𝑎, [𝑓 ]𝐸𝑎⟩
]

𝐸
for some 𝑎 ∈ [𝜆]<𝜔 and

[𝑓 ]𝐸𝑎 ∈𝑀𝑎, where 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 . For notational ease we will express this simply
as 𝑥 = [𝑎, [𝑓 ]].
For elements of 𝑀𝐸 , we can, using this characterisation, form equivalents for
equality and membership as follows:

Lemma 2.1.14. For 𝑎 ∈ [𝜆]<𝜔 and 𝑓 ∶ [𝜁 ]|𝑎| → 𝑉 we have that:

[𝑎, [𝑓 ]] =𝐸 [𝑏, [𝑔]] ⟺ 𝑗𝐸(𝑓 )(𝑎) = 𝑗𝐸(𝑔)(𝑏)

[𝑎, [𝑓 ]] ∈𝐸 [𝑏, [𝑔]] ⟺ 𝑗𝐸(𝑓 )(𝑎) ∈ 𝑗𝐸(𝑔)(𝑏).

So in fact we have that every extender is derived from an elementary embedding,
and that from an extender we can derive an elementary embedding. Despite this
correspondence we will be careful to specify whether the extenders we use are
derived from an elementary embedding or vice-versa.
As with extenders derived from an elementary embedding, we say that the extender
is long if 𝜆 > 𝑗𝐸(𝜅), otherwise it is short.

2.1.15 Supercompact cardinals

Many large cardinals are constructed using elementary embeddings, often as the
critical point of some non-trivial 𝑗 ∶ 𝑉 ≺ 𝑀 , where 𝑀 is a transitive class model
of 𝖹𝖥𝖢. Supercompact cardinals can be formulated in this way:
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Definition 2.1.16. For 𝜆 ≥ 𝜅 we say that 𝜅 is 𝜆-supercompact if there exists and
elementary embedding 𝑗 ∶ 𝑉 → 𝑀 with 𝑀 a transitive class such that 𝜆𝑀 ⊆ 𝑀 ,
where the critical point of 𝑗 is 𝜅 and 𝑗(𝜅) > 𝜆. If 𝜅 is 𝜆-supercompact for all 𝜆 ≥ 𝜅,
then we say it is supercompact.

An equivalent definition, shown in [32], will be relevant to later discussions of 𝛼-
subcompact cardinals, as, under this characterisation, the supercompact cardinal 𝜅
is no longer the critical point of the elementary embedding, but the image of the
critical point.

Definition 2.1.17. (Magidor Characterisation) Let 𝜆 ≥ 𝜅. Then 𝜅 is 𝜆-supercompact
if and only if, for some 𝛾 < 𝜅, there exists an elementary embedding 𝑗 ∶ 𝑉𝛾 → 𝑉𝜆
such that 𝑗 (cp(𝑗)) = 𝜅.

One final alternative characterisation which we will discuss is one in terms of normal
ultrafilters over 𝜅(𝜆), namely:

Theorem 2.1.18. (Solovay, Reinhardt) A cardinal 𝜅 is 𝜆-supercompact for 𝜆 ≥ 𝜅 if
and only if there exists a normal ultrafilter on 𝜅(𝜆).

2.1.19 Forcing

In this section we provide a survey of key forcing results and concepts which will be
used later. It is not intended to be an introduction to the rich topic of forcing and its
numerous applications across set theory. For a thorough treatment, see [28], [25]
or [27], to name but a few.

Notation

We denote using blackboard bold capital letters any posets used in forcing
constructions, e.g. ℙ andℚ, and we suppress, unless necessary for clarity, discussion
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of the ordering ≤ℙ, merely referring to it as≤. Conditions are 𝑝 and 𝑞 inℙ, and 𝑝 < 𝑞
means that 𝑝 is stronger than 𝑞, or extends it. The greatest element of a forcing poset
ℙ is denoted 1, or 1ℙ when it is important to differentiate it from some other 1ℚ.
We denote a ℙ-name by �̇�. The canonical name for 𝑥 is recursively defined as �̌� =

{⟨1, �̌�⟩ ∶ 𝑦 ∈ 𝑥}. For a ℙ-name �̇� and 𝐺 an 𝑀 generic filter, the interpretation

of �̇� is denoted �̇�𝐺, and is defined recursively as {�̇�𝐺 ∶ ∃𝑝 ∈ 𝐺, ⟨𝑝, �̇�⟩ ∈ �̇�}. This
notation may be suppressed when it is clear from context.
A notion of forcing ℙ has the 𝜅-chain condition (or, the 𝜅-c.c. for brevity) if it has
no antichain of size 𝜅. Here 𝐴 ⊆ ℙ is an antichain if every pair of 𝑝, 𝑞 ∈ 𝐴 are
incompatible, namely there is no 𝑟 such that 𝑟 ≤ 𝑝 and 𝑟 ≤ 𝑞.
It is 𝜅-closed if, for every decreasing sequence of conditions𝐷 = {𝑑𝛼 ∶ 𝛼 < 𝛾} ⊆ ℙ

with 𝛾 < 𝜅, there is some 𝑝 ∈ ℙ such that 𝑝 ≤ 𝑑𝛼 for all 𝛼 < 𝛾 .
A forcing ℙ is < 𝜅-directed closed if, whenever 𝐷 ⊆ ℙ is directed, with |𝐷| < 𝜅,
there is some 𝑝 ∈ ℙ such that 𝑝 ≤ 𝑑 for all 𝑑 ∈ 𝐷. Here, 𝐷 is directed if for any 𝑑1,
𝑑2 ∈ 𝐷 there is some 𝑒 ∈ 𝐷 such that 𝑒 ≤ 𝑑1 and 𝑒 ≤ 𝑑2.
A weaker (but nonetheless useful) property is defined using the following game:

Definition 2.1.20. Let ℙ be a notion of forcing, and let 𝛼 be an ordinal. The game
𝐺𝛼(ℙ) has two players, ‘Odd’ and ‘Even’, and is played with perfect information.
The players take turns playing conditions from ℙ, for up to 𝛼 many moves. Odd
plays at odd stages and Even plays at even (and limit) stages. In move zero, Even
plays 1. If 𝑝𝛽 is the condition played at turn 𝛽, then the player who played 𝑝𝛽 loses
immediately unless 𝑝𝛽 ≤ 𝑝𝛾 for all 𝛾 < 𝛽. If neither player loses at any stage before
𝛼, then Even wins.

A notion of forcing ℙ is < 𝜅-strategically closed if, for all 𝛼 < 𝜅, player Even has
a winning strategy for the game 𝐺𝛼(ℙ). If player Even has a winning strategy for
𝐺𝜅(ℙ), then ℙ is 𝜅-strategically closed.
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Iterated Forcing

The forcings utilised in later chapters will mostly be long iterations of ‘well-behaved’
forcings. We summarise here briefly how such iterations are generally constructed,
as well as specific types of iteration which will be used later. See [14] for any omitted
detail.
First we construct a two-step iteration, using some forcing ℙ, and a ℙ-name for a
forcing ℚ̇.

Definition 2.1.21. Let ℙ be a notion of forcing. A ℙ-name �̇� is canonical if there
is no ℙ-name �̇� such that |TC(�̇�)| < |TC(�̇�)| and 1 ⊩ �̇� = �̇�. If ℚ is a ℙ-name
for a notion of forcing, then ℙ ∗ ℚ̇ is the set of all pairs (𝑝, �̇�), such that 𝑝 ∈ ℙ,
1 ⊩ �̇� ∈ ℚ̇ and �̇� is canonical. It is ordered by (𝑝0, �̇�0) ≤ (𝑝1, �̇�1) if and only if
𝑝0 ≤ 𝑝1 (with respect to the ordering on ℙ) and 𝑝0 ⊩ �̇�0 ≤ �̇�1.

Now we build iterations of arbitrary length as follows:

Definition 2.1.22. An iteration of forcing of length 𝛼 is an object of the form

(⟨

ℙ𝛽 ∶ 𝛽 ≤ 𝛼
⟩

,
⟨

ℚ̇𝛽 ∶ 𝛽 < 𝛼
⟩)

where, for every 𝛽 ≤ 𝛼:

• ℙ𝛽 is a notion of forcing whose elements are 𝛽-sequences;

• If 𝑝 ∈ ℙ𝛽 and 𝛾 < 𝛽 then 𝑝 ↾ 𝛾 ∈ ℙ𝛾 ;

• If 𝛽 < 𝛼 then ⊩ℙ𝛽 ℚ̇𝛽 is a notion of forcing;

• If 𝑝 ∈ ℙ𝛽 and 𝛾 < 𝛽, then 𝑝(𝛾) is a ℙ𝛾-name for an element of ℚ̇𝛾 ;

• If 𝛽 < 𝛼 then ℙ𝛽+1 ≅ ℙ𝛽 ∗ ℚ̇𝛽 , via the map 𝑓 ∶ ℎ↦ (ℎ ↾ 𝛽, ℎ(𝛽));

• If 𝑝, 𝑞 ∈ ℙ𝛽 then 𝑝 ≤ℙ𝛽 𝑞 if and only if 𝑝 ↾ 𝛾 ⊩ℙ𝛾 𝑝(𝛾) ≤ℚ̇𝛾
𝑞(𝛾) for all 𝛾 < 𝛽;



2.1. SET THEORY 19

• 1ℙ𝛽 (𝛾) = 1̇ℚ𝛾
for all 𝛾 < 𝛽;

• If 𝑝 ∈ ℙ𝛽 and 𝛾 < 𝛽, with 𝑝 ≤ℙ𝛾 𝑝 ↾ 𝛾 , then 𝑞⌢𝑝 ↾ [𝛾, 𝛽) ∈ ℙ𝛽 .

For notational ease, we refer to the iteration (⟨

ℙ𝛽 ∶ 𝛽 ≤ 𝛼
⟩

,
⟨

ℚ̇𝛽 ∶ 𝛽 < 𝛼
⟩) as ℙ𝛼,

and write ⊩𝛽 instead of ⊩ℙ𝛽 .
Sometimes, however, it is useful to weaken the definition of an iteration of length
𝛼 to merely be some pair (⟨ℙ𝛽 ∶ 𝛽 < 𝛼⟩, ⟨ℚ̇𝛽 ∶ 𝛽 < 𝛼⟩

) where each ℙ𝛽 is a forcing
with conditions are sequences of length 𝛽; ℚ̇𝛽 is a ℙ𝛽-name for a forcing notion for
all 𝛽 < 𝛼; ℙ𝛽+1 ≅ ℙ𝛽 ∗ ℚ̇𝛽 and the restriction map from ℙ𝛽 to ℙ𝛾 is a projection for
all 𝛾 < 𝛽. This will allow us some flexibility with our definitions, while maintaining
the important properties of our iterations.
When constructing iterated forcing notions one has some choice over what to do at
limit stages, depending on the intended purpose of the iteration. In later Chapters
we will only need two types of limit behaviour, namely, for a limit ordinal 𝛼 and an
iteration ℙ𝛼:

Definition 2.1.23. • The inverse limit, often denoted lim
⃖⃖⃖⃖⃖⃖

ℙ ↾ 𝛼, is the set of
sequences 𝑝 of length 𝛼 such that, for all 𝛽 < 𝛼, 𝑝 ↾ 𝛽 ∈ ℙ𝛽 ;

• The direct limit, often denoted lim
⃖⃖⃖⃖⃖⃗

ℙ ↾ 𝛼, is the subset of the inverse limit
where each 𝑝 is such that 𝑝(𝛽) = 1̇ℚ𝛼

for sufficiently large 𝛽.

For an iteration of length 𝛼, the support of some condition 𝑝 ∈ ℙ𝛼 is supp(𝑝) = {𝛽 <

𝛼 ∶ 𝑝(𝛽) ≠ 1̇ℚ𝛽
}. So, for example, if a direct limit is taken at stage 𝛼, then 𝑝 ∈ ℙ𝛼

will have supp(𝑝) = {𝛽 < 𝛾 ∶ for some 𝛾 < 𝛼}.
It turns out that to preserve chain condition properties with an iterated forcing notion,
one should take many direct limits:

Lemma 2.1.24. (See [10]) Let 𝛼 be a limit ordinal and ℙ𝛼 an iteration of length 𝛼
with a direct limit taken at stage 𝛼. Suppose 𝜅 = cf(𝜅) > 𝜔, and, for all 𝛽 < 𝛼,
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ℙ𝛽 is 𝜅-c.c.. Also, if cf(𝛼) = 𝜅, then suppose that {𝛾 < 𝛼 ∶ ℙ𝛾 is a direct limit} is
stationary in 𝛼. Then the iteration ℙ𝛼 is 𝜅-c.c..

In order to preserve closure properties, however, one should take many inverse
limits:

Lemma 2.1.25. (See [10] and [14]) Let 𝜅 = cf(𝜅) > 𝜔, and let 𝑋 be any of the
properties ‘𝜅-closed’, ‘< 𝜅-directed closed’ or ‘𝜅-strategically closed’. Suppose
that, for each 𝛽 < 𝛼, ⊩𝛽‘ℚ̇𝛽 is 𝑋’. Suppose also that all limits are either direct or
inverse, with inverse limits at every limit stage of cofinality less than 𝜅. Then ℙ𝛼

has property 𝑋 also.

This leads us to Easton’s construction, which has as support a set of ordinals which
is bounded at each regular cardinal.

Definition 2.1.26. An iteration with Easton support is an iteration where direct
limits are taken at regular limit stages, and inverse limits are taken at all other limit
stages.

We note that this type of iteration has also been referred to as a reverse Easton

support iteration, to differentiate it from Easton’s product construction, but it is now
common to simply call this an Easton support iteration.
When working with iterated forcing later, we will perform a number of factorisation
arguments, for which we will use the Factor Lemma (Lemma 21.8 in [25]). This
result allows us to deduce that an iterationℙ𝛼+𝛽 is sometimes equivalent toℙ𝛼 ∗ ℙ̇(𝛼)

𝛽 ,
where ℙ̇(𝛼)

𝛽 is an iteration in 𝑉 ℙ𝛼 of length 𝛽.

Theorem 2.1.27 (The Factor Lemma). Let ℙ𝛼+𝛽 be an 𝛼+𝛽-length forcing iteration
(

⟨ℙ𝜉 ∶ 𝜉 ≤ 𝛼 + 𝛽⟩, ⟨ℚ̇𝜉 ∶ 𝜉 < 𝛼 + 𝛽⟩
) where each ℙ𝜉 is a direct or inverse limit. In

𝑉 ℙ𝛼 let ℙ̇(𝛼)
𝛽 be the forcing iteration of (⟨ℙ𝛼+𝜉 ∶ 𝜉 ≤ 𝛽⟩, ⟨ℚ̇𝛼+𝜉 ∶ 𝜉 < 𝛽⟩

), such that
ℙ̇(𝛼)
𝜉 is a direct or inverse limit, depending on whether ℙ𝛼+𝜉 is a direct or inverse

limit.
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Then if ℙ𝛼+𝜉 is an inverse limit for every limit ordinal 𝜉 ≤ 𝛽 with cf(𝜉) ≤ |ℙ𝛼|, then
ℙ𝛼+𝛽 is isomorphic to ℙ𝛼 ∗ ℙ̇(𝛼)

𝛽 .
In such an instance we say that we factor ℙ𝛼+𝛽 as ℙ𝛼 ∗ ℙ̇(𝛼)

𝛽 .

2.2 Indestructibility

The concept of making a large cardinal indestructible by a certain class of forcings
came to prominence in Laver’s paper [29] where it was showed that a supercompact
cardinal 𝜅 may be made indestructible by all < 𝜅-directed closed forcings — that
is, after some preparatory forcing, 𝜅 will remain supercompact after further forcing
with any < 𝜅-directed closed forcing.
In general, an indestructibility result has the form: for a large cardinal 𝜅 with large
cardinal property , it is indestructible by forcing of type  if, for any forcing
ℚ with property , 𝜅 maintains the large cardinal property after forcing with ℚ.
Typically (though not always) one has to first apply a preparatory forcing, as Laver
did, and show that it preserves the large cardinal notion, and that after this forcing,
any additional forcing in  cannot destroy the -largeness of 𝜅.
The preparatory forcing used by Laver for this result is known as the Laver

Preparation, which is defined relative to the Laver function, a partial function
𝑓 ⫶ 𝜅 → 𝑉𝜅 , with the property that, for all sets 𝑥 and every 𝜆 ≥ |TC(𝑥)|, there
is a normal ultrafilter on 𝜅𝜆 such that 𝑗𝜆(𝑓 )(𝜅) = 𝑥. Due to its anticipatory power,
Laver functions are sometimes referred to as Laver ◊ (Laver diamond).
Given such a partial function, the Laver preparation ℙ𝜅 is an Easton support iteration
of length 𝜅 with an associated sequence of 𝜆𝑖 for 𝑖 < 𝜅, where here, at limit 𝛾 , we
let 𝜆𝛾 = sup𝛽<𝛾 𝜆𝛽 . At successor stage 𝛾 + 1 < 𝜅, we do trivial forcing unless,
for all 𝛽 < 𝛾 , 𝜆𝛽 < 𝛾 , and 𝑓 (𝛾) = ⟨ℚ, 𝜆⟩ where 𝜆 is an ordinal and ⊩𝛾‘ℚ is a 𝛾-
directed closed forcing’. In such a case, let ℚ𝛾 = ℚ and 𝜆𝛾 = 𝜆. So the preparation
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is guided by the Laver function, and has long stages of trivial forcing, interspersed
with suitably directed-closed forcing.
This work was among the first of many indestructibility results that followed in the
next few years — see [20], where it is shown that a strongly compact cardinal 𝜅 may
be made indestructible under 𝜅+-weakly closed forcing notions satisfying the Prikry
condition. However much was still unknown in this area, including the answers to
such questions as: can a strongly compact cardinal 𝜅 be made indestructible by the
forcing Add(𝜅, 1) which adds a Cohen subset to 𝜅?
In 2000 Hamkins published ‘The Lottery Preparation’ [22], which answered this
question and more. It contained a new method of showing Laver’s result without
the use of Laver functions, and provided a plethora of other indestructibility results.
For example the indestructibility of strong compactness is shown, as well as a level-
by-level indestructibility result for supercompactness, provided one assumes some
degree of GCH. In this paper is defined the Lottery Sum of a collection of forcings,
which has also been referred to as the disjoint sum, side-by-side forcing, or choosing

which partial ordering to force with generically. The intuition behind the lottery sum
is that it ‘holds a lottery’ among all the notions of forcing in , and the generic filter
chooses a ‘winning’ poset ℚ and forces with it. More precisely:

Definition 2.2.1. The Lottery Sum of a collection  of forcing notions is the poset

⊕ ∶= {⟨ℚ, 𝑝⟩ ∶ ℚ ∈  ∧ 𝑝 ∈ ℚ} ∪ {1}

which is ordered with 1 larger than everything else, and ⟨ℚ, 𝑝⟩ ≤ ⟨ℚ′, 𝑝′⟩ if and only
if ℚ = ℚ′ and 𝑝 ≤ℚ 𝑝′.

Definition 2.2.2. The Lottery Preparation for a cardinal 𝜅 is an Easton support
iteration of length 𝜅 defined relative to a partial function 𝑓 ⫶ 𝜅 → 𝜅 as follows.
The iteration has trivial forcing at stage 𝛾 + 1, for 𝛾 < 𝜅, unless 𝛾 ∈ dom(𝑓 ) and
𝑓“(𝛾) ⊆ 𝛾 . At non trivial stage 𝛾 we take the lottery sum of all forcing notions in
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𝐻𝑓 (𝛾)+ which are < 𝛾-strategically closed.

The lottery preparation works best when defined relative to a fast function 𝑓 ,
or a function with the appropriate version of the Menas property, in Hamkins’s
terminology.
Definition 2.2.3. Let 𝜅 have large cardinal property . Then 𝑓 ⫶ 𝜅 → 𝜅 is a -

largeness Menas function if, for all 𝜆 > 𝜅, there is a 𝜆--largeness embedding
𝑗 ∶𝑀 → 𝑁 such that 𝑗(𝑓 )(𝜅) > 𝜆.
A function satisfying this definition is said to have the Menas property.

Such functions allow for 𝑗(𝑓 )(𝜅) to be sufficiently large that the preparation has vast
segments which are comprised of trivial forcing only, thus isolating the key property
of the Laver function, without requiring its full anticipatory strength.
The lottery preparation has a number of desirable properties, shown in [22]:
Lemma 2.2.4. (Hamkins) If in the lottery preparation there is no non-trivial forcing
until beyond stage 𝛾 , the preparation is ≤ 𝛾-strategically closed.

In order to show indestructibility, it is common to apply the lifting criterion, as
seen in Proposition 9.1 of [14], which provides a way to show that an elementary
embedding in 𝑉 has been lifted to an elementary embedding in some extension after
forcing.
Theorem 2.2.5. [The Lifting Criterion] Let𝑀 and𝑁 be transitive models of ZFC−,
let 𝜋 ∶ 𝑀 → 𝑁 be an elementary embedding, let ℙ ∈ 𝑀 be a notion of forcing
with 𝐺 generic over ℙ, and let 𝐻 be 𝜋(𝐺)-generic over 𝑁 . Then there exists an
elementary embedding 𝜋+ ∶ 𝑀[𝐺] → 𝑁[𝐻] — the lifted embedding of 𝜋 — with
𝜋+(𝐺) = 𝐻 and 𝜋+ ↾𝑀 = 𝑁 if and only if 𝜋(𝑝) ∈ 𝐻 for all 𝑝 ∈ 𝐺.

Another invaluable tool for indestructibility results is Silver’s concept of master

conditions. These allow us to arrange the compatibility between generic filters
required to apply the lifting criterion.
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Definition 2.2.6. For an elementary embedding 𝑗 ∶𝑀 → 𝑁 and a forcing ℙ ∈𝑀 ,
a master condition for 𝑗 and ℙ is a condition 𝑞 ∈ 𝑗(ℙ) such that, for every dense
𝐷 ⊆ ℙ, there is a condition 𝑝 ∈ 𝐷 such that 𝑞 ≤ 𝑗(𝑝).

Note here that it is enough that 𝑞 ≤ 𝑗(𝑝) for all 𝑝 ∈ 𝐺.

2.3 𝐶 (𝑛)-large cardinals

The notion of 𝐶 (𝑛) cardinals were introduced by Bagaria in [6], and offer a
strengthening of large cardinal concepts with strong reflection properties. For a fixed
natural number 𝑛, the closed unbounded (club) class 𝐶 (𝑛) is defined to be all ordinals
𝛼 such that 𝑉𝛼 is a Σ𝑛-elementary substructure of 𝑉 , written 𝑉𝛼 ≺𝑛 𝑉 . So such
ordinals reflect true Σ𝑛 statements with parameters in 𝑉𝛼.
The class𝐶 (0) consists of all ordinals, while𝐶 (1) consists of all uncountable cardinals
𝛼 with 𝐻𝛼 = 𝑉𝛼. Unfortunately, no such combinatorial characterisation of 𝐶 (𝑛), for
𝑛 ≥ 2 (yet) exists. We do, however, know that 𝐶 (𝑛+1) ⊂ 𝐶 (𝑛) for all 𝑛, since the least
ordinal in 𝐶 (𝑛) does not belong to 𝐶 (𝑛+1). Further, we have that the class 𝐶 (𝑛) is Π𝑛

definable:

𝛼 ∈ 𝐶 (𝑛) ⟺

𝛼 ∈ 𝐶 (𝑛−1) ∧ ∀𝜑(𝑥) ∈ Σ𝑛, ∀𝑏 ∈ 𝑉𝛼 ∶
(

⊨𝑛 𝜑(𝑏) ⟹ 𝑉𝛼 ⊨ 𝜑(𝑏)
)

.

Here it is worth noting that the class 𝐶 (𝑛) cannot be Σ𝑛-definable, since then if 𝛼
is the least 𝐶 (𝑛) ordinal, the sentence ‘There is a 𝐶 (𝑛) ordinal’ would be true in 𝑉𝛼,
contradicting its minimality. We also have the following observation:

Fact 2.3.1. • An ordinal 𝛼 is Σ𝑛-correct in 𝑉 if and only if it is Π𝑛-correct in 𝑉 .

• If 𝛼 is Σ𝑛-correct and 𝜑 is a Σ𝑛+1 sentence with parameters in 𝑉𝛼 that is true
in 𝑉𝛼, then 𝜑 holds in 𝑉 . Similarly, if 𝜓 is a Π𝑛+1 sentence with parameters in
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𝑉𝛼 that holds in 𝑉 , then it holds in 𝑉𝛼.

When considering a large cardinal 𝜅 defined as the critical point of an elementary
embedding 𝑗 ∶ 𝑉 → 𝑀 it is natural to ask what kind of properties 𝑉𝑗(𝜅) might
hold. Does it, for example, reflect some properties of 𝑉 ? To consider such questions
Bagaria introduced𝐶 (𝑛)-large cardinals in [6], which are cardinals 𝜅 typically defined
as being the critical point of some large cardinal elementary embedding 𝑗, with the
additional requirement that 𝑗(𝜅) ∈ 𝐶 (𝑛). For example, a 𝐶 (𝑛)-measurable is defined
to be the critical point of an elementary embedding 𝑗 ∶ 𝑉 →𝑀 , with𝑀 a transitive
class, such that 𝑗(𝜅) ∈ 𝐶 (𝑛). Similarly, if one takes the definition of a strong,
superstrong, supercompact or extendible elementary embedding and demands that
𝑗(𝜅) be Σ𝑛-correct, this gives the definition of their 𝐶 (𝑛) analogue.
For some 𝐶 (𝑛) versions of large cardinals, the result is not so interesting, for example
every measurable cardinal is𝐶 (𝑛)-measurable for all 𝑛, and the same is true for strong
cardinals. For other large cardinals the 𝐶 (𝑛) analogues form a true hierarchy. For
example, while every superstrong cardinal is 𝐶 (1)-superstrong, we have that the least
𝐶 (𝑛)-superstrong — if it exists — is not 𝐶 (𝑛+1)-superstrong.

2.3.2 𝐶 (𝑛)-extendible cardinals

The subject of 𝐶 (𝑛)-extendible cardinals is a rich one, and many papers have been
published discussing their properties and interrelation with other interesting large
cardinal notions.
Definition 2.3.3. A cardinal 𝜅 is 𝜆-𝐶 (𝑛)-extendible if there is an elementary
embedding 𝑗 ∶ 𝑉𝜆 → 𝑉𝜇 for some 𝜇 > 𝜆, with critical point 𝜅, such that 𝑗(𝜅) > 𝜆

and 𝑗(𝜅) ∈ 𝐶 (𝑛). If 𝜅 is 𝜆-𝐶 (𝑛)-extendible for all 𝜆 > 𝜅 then we say that 𝜅 is 𝐶 (𝑛)-
extendible.

An interesting result of Bagaria in [6] is that there is a strong level-by-level
relationship between 𝐶 (𝑛)-extendibility and Vopěnka’s Principle (VP).
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Definition 2.3.4. VP(Π𝑛) holds if, for every proper class  ofΠ𝑛-definable structures
of the same type, there are distinct𝐴 and𝐵 in  where𝐴 is elementarily embeddable
into 𝐵. If VP(Π𝑛) holds for all 𝑛 then we say VP holds.

Bagaria showed that, for 𝑛 ≥ 1, VP(Π𝑛+1) holds if and only if there exists a 𝐶 (𝑛)-
extendible cardinal. Further, full VP holds if and only if, for all 𝑛, there exists a
𝐶 (𝑛)-extendible cardinal.
In fact, there are many pleasing results about 𝐶 (𝑛)-extendibles, including the
following in [6].

Lemma 2.3.5. (Bagaria) A cardinal 𝜅 is𝐶 (1)-extendible if and only if it is extendible.

Theorem 2.3.6. (Bagaria) For 𝑛 ≥ 0, if 𝜅 is 𝐶 (𝑛)-extendible, then 𝜅 ∈ 𝐶 (𝑛+2)

Theorem 2.3.7. (Bagaria) For any 𝛼 > 𝜅, the relation ‘𝜅 is 𝛼-𝐶 (𝑛)-extendible’ is
Σ𝑛+1, and so ‘𝜅 is 𝐶 (𝑛)-extendible’ is Π𝑛+2.

2.3.8 𝐶 (𝑛)-supercompact cardinals

In general, 𝐶 (𝑛)-supercompacts seem more elusive than their extendible
counterparts, and while something is known about the interaction between 𝐶 (𝑛)-
extendibles and forcing, there are only a few results about how 𝐶 (𝑛)-supercompact
cardinals behave under forcing.
The definition of a 𝐶 (𝑛)-supercompact follows the usual paradigm for 𝐶 (𝑛)-versions
of large cardinals:

Definition 2.3.9. A cardinal 𝜅 is 𝜆-𝐶 (𝑛)-supercompact for some 𝜆 ≥ 𝜅 if there exists
an elementary embedding 𝑗 ∶ 𝑉 → 𝑀 with 𝑀 a transitive class, such that 𝜆𝑀 ⊆

𝑀 , 𝑗(𝜅) > 𝜆 and 𝑗(𝜅) ∈ 𝐶 (𝑛). If 𝜅 is 𝜆-𝐶 (𝑛)-supercompact for all 𝜆 ≥ 𝜅 then we say
that it is 𝐶 (𝑛)-supercompact.
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A key property of 𝐶 (𝑛)-supercompact cardinals, which makes them harder to
investigate than supercompact cardinals, is that they cannot be characterised by
normal ultrafilters of 𝜅(𝜆), since an ultrapower embedding 𝑗 arising from such an
ultrafilter would have that 2𝜆<𝜅 < 𝑗(𝜅) < (

2𝜆<𝜅
)+, and so cannot be a cardinal.

However, in [6], Bagaria shows that we can formulate 𝜆-𝐶 (𝑛)-supercompactness in
terms of Martin-Steel extenders with sufficiently rich transitive sets as their supports,
as seen in [34]. Such extenders are variants of the extenders seen in §2.1.11, but have
as a parameter some set 𝑌 instead of 𝜆.
A Martin-Steel (𝜅, 𝑌 )-extender over 𝑉𝛾 with critical point 𝜅 and support 𝑌 is a
sequence 𝐸 = ⟨𝐸𝑎 ∶ 𝑎 ∈ [𝑌 ]<𝜔⟩ such that:

• Each 𝐸𝑎 is a 𝜅-complete ultrafilter over 𝑎(𝑉𝛾), and at least one 𝐸𝑎 is not 𝜅+-
complete;

• For every 𝑎 ∈ [𝑌 ]<𝜔, {𝑓 ∶ 𝑎→ range(𝑓 ) ∶ 𝑓 is an ∈ -isomorphism} ∈ 𝐸𝑎;

• (Coherence) If 𝑎, 𝑏 ∈ [𝑌 ]<𝜔 and 𝑎 ⊆ 𝑏, then 𝑋 ∈ 𝐸𝑎 if and only if {𝑓 ∈𝑏

(𝑉𝛾) ∶ 𝑓 ↾ 𝑎 ∈ 𝑋} ∈ 𝐸𝑏;

• (Normality) If 𝐹 ∶𝑎 (𝑉𝛾) → 𝑉 is such that
{

𝑓 ∶ 𝐹 (𝑓 ) ∈
⋃

range(𝑓 )
}

∈ 𝐸𝑎

then there is a 𝑥 ∈ 𝑌 such that

{

𝑓 ∈ (𝑉𝛾)𝑎∪{𝑥} ∶ 𝐹 (𝑓 ↾ 𝑎) = 𝑓 (𝑥)
}

∈ 𝐸𝑎∪{𝑥};

• The ultrapower 𝑀𝐸 ≅ Ult(𝑉 ,𝐸) is well-founded.

Provided that 𝑌 is closed under 𝑗𝐸 and under 𝜆-sequences, the ultrapower embedding
𝑗𝐸 ∶ 𝑉 → 𝑀𝐸 ≅ Ult(𝑉 ,𝐸) is a 𝜆-𝐶 (𝑛)-supercompactness embedding. Similarly,
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from a 𝜆-𝐶 (𝑛)-supercompactness elementary embedding 𝑗 ∶ 𝑉 → 𝑀 one can
construct a (𝜅, 𝑌 )-extender as above, and so we have the following:

Theorem 2.3.10. (Bagaria) For 𝑛 ≥ 1, 𝜅 is 𝜆-𝐶 (𝑛)-supercompact if and only if:

∃𝜇, ∃𝐸, ∃𝑌 , ∃𝛾
(

𝜇 ∈ 𝐶 (𝑛) ∧ 𝜆, 𝐸, 𝑌 ∈ 𝑉𝜇 ∧ 𝑌 is transitive ∧ [𝑌 ]≤𝜆 ⊆ 𝑌 ∧

𝑉𝜇 ⊨ 𝐸 is a (𝜅, 𝑌 )-extender over 𝑉𝛾 with critical point 𝜅 and support 𝑌 ∧

𝑗𝐸“(𝑌 ) ⊆ 𝑌 ∧ 𝑗𝐸(𝜅) > 𝜆 ∧ 𝑗𝐸(𝜅) ∈ 𝐶 (𝑛))

This characterisation, apart from providing another way to show whether 𝐶 (𝑛)-
supercompactness holds, also gives that ‘𝜅 is 𝜆-𝐶 (𝑛)-supercompact’ is Σ𝑛+1
expressible, and so ‘𝜅 is 𝐶 (𝑛)-supercompact’ is Σ𝑛+2 expressible.
Further results about 𝐶 (𝑛)-supercompact cardinals are given in [23], where the
authors show that, under GCH, a supercompact cardinal 𝜅 may be forced to be
supercompact but not 𝐶 (1)-supercompact — indeed in this extension 𝑉 ℙ there can
be no elementary embedding 𝑗 ∶ 𝑉 ℙ →𝑀 with critical point 𝜅 such that 𝜔𝑀 ⊆ 𝑀

and where 𝑗(𝜅) is a limit cardinal. The authors also show a strong identity crisis
is possible; that after forcing with a Magidor iteration of Prikry forcings a 𝐶 (𝑛)-
supercompact can be made to be the least (𝜔1-) strongly compact. Indeed, in the
extension, the minimal 𝜔1-strongly compact is the minimal supercompact which is
equal to the minimal 𝐶 (𝑛) supercompact, all of which are smaller than the minimal
extendible.
These results lead us to conclude that the situation for 𝐶 (𝑛)-supercompacts is much
more complex than that of 𝐶 (𝑛)-extendibles, where 𝐶 (1)-extendibility is equivalent
to extendibility, and the classes of 𝐶 (𝑛)-extendibles form a strict hierarchy.
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Chapter 3

Indestructibility of 𝛼-Subcompact

Cardinals

3.1 𝛼-Subcompact cardinals

Subcompact cardinals were first introduced by Jensen [26], who showed that if 𝜅
is subcompact then □𝜅 fails. The definition was later stratified by Brooke-Taylor
and Friedman in [11], where they defined an 𝛼-subcompact cardinal 𝜅, which
generalises the original definition (equivalent to the case when 𝛼 = 𝜅+) and provides
a strict hierarchy in consistency strength all the way up to supercompact.

Definition 3.1.1. For 𝛼 > 𝜅, 𝜅 is 𝛼-subcompact if, for all 𝐴 ⊆ 𝐻𝛼 there exist
�̄� < �̄� < 𝜅, �̄� ⊆ 𝐻�̄� and an elementary embedding

𝜋 ∶
(

𝐻�̄�,∈, �̄�
)

→
(

𝐻𝛼,∈, 𝐴
)

with critical point �̄� such that 𝜋(�̄�) = 𝜅.

An immediate observation is that, if 𝜅 is 𝛽-subcompact for 𝛽 > 𝛼, then it is also
𝛼-subcompact.
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The definition of an 𝛼-subcompact cardinal invites comparison to the Magidor
characterisation of supercompactness (Definition 2.1.17), the only difference being
that the embeddings are between 𝐻�̄� and 𝐻𝛼, and we have added a predicate 𝐴
to the embedding. Indeed, a key result in [11] is that levels of subcompactness are
interleaved with levels of partial supercompactness in strength, giving the following:

Theorem 3.1.2. (Brooke-Taylor and Friedman)

1. If 𝜅 is 2<𝛼-supercompact, then 𝜅 is 𝛼-subcompact.

2. If 𝜅 is (2𝜆<𝜅)+-subcompact, then it is 𝛼-supercompact

In particular, 𝜅 is supercompact if and only if 𝜅 is 𝛼-subcompact for all 𝛼.

For the reader’s convenience we provide the proof of this result.

Proof. 1. Suppose 𝜅 is 2<𝛼-supercompact, witnessed by 𝑗 ∶ 𝑉 → 𝑀 with
critical point 𝜅, such that 𝑗(𝜅) > 2<𝛼, and <𝛼𝑀 ⊆ 𝑀 . For a given 𝐴 ⊆ 𝐻𝛼,
the restricted embedding

𝑗 ↾ 𝐻𝛼 ∶
(

𝐻𝛼,∈, 𝐴
)

→
(

𝐻𝑀
𝑗(𝛼),∈, 𝑗(𝐴)

)

is elementary. Since |𝐻𝛼| = 2<𝛼, and since 𝑀 is closed under 2<𝛼 sequences,
𝑗 ↾ 𝐻𝛼 ∈ 𝑀 . So 𝛼, 𝐴 and 𝑗 ↾ 𝐻𝛼 respectively witness the existential
quantifications below:

𝑀 ⊨∃�̄� < 𝑗(𝜅), ∃�̄� ⊆ 𝐻�̄�, ∃𝜋 ∶
(

𝐻�̄�,∈, �̄�
)

≺
(

𝐻𝑗(𝛼),∈, 𝑗(𝐴)
)

,

𝜋 (cp(𝜋)) = 𝑗(𝜅).

And so, by elementarity of 𝑗, we have:

𝑉 ⊨∃�̄� < 𝜅, ∃�̄� ⊆ 𝐻�̄�, ∃𝜋 ∶
(

𝐻�̄�,∈, �̄�
)

≺
(

𝐻𝛼,∈, 𝐴
)

,

𝜋 (cp(𝜋)) = 𝜅,
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thus giving an 𝛼-subcompactness elementary embedding for 𝜅 as required.

2. Suppose 𝜅 is (2𝜆<𝜅)+-subcompact, witnessed by

𝜋 ∶
(

𝐻�̄�,∈, {�̄�, �̄�}
)

≺
(

𝐻(2𝜆<𝜅 )+ ,∈, {𝜅, 𝜆}
)

for the predicate 𝐴 = {𝜅, 𝜆}, with critical point �̄�. By elementarity �̄� =
(

2�̄�<�̄�
)+, and since �̄� < 𝜅, we have that �̄� < 𝜅.

Define an ultrafilter  on �̄�(�̄�) by:

𝑋 ∈  ⟺ 𝑋 ⊆ �̄�(�̄�) ∧
{

𝜋(𝛾) ∶ 𝛾 ∈ �̄�
}

∈ 𝜋(𝑋)

We claim that  is normal. First,  is �̄�-complete since, if for some 𝛽 < �̄�,
⟨𝑋𝜃 ∶ 𝜃 < 𝛽⟩ is a family of sets in  , then {𝜋(𝛾) ∶ 𝛾 ∈ �̄�} ∈ 𝜋(𝑋𝜃) for all
𝜃 < 𝛽, and so {𝜋(𝛾) ∶ 𝛾 ∈ �̄�} ∈ 𝜋

(
⋂

𝜃<𝛽 𝑋𝜃
), so the intersection is in  .

It is also fine, since, for 𝜃 < �̄�, {𝑋 ∈ �̄�(�̄�) ∶ 𝜃 ∈ 𝑋} is in  if and only if

{

𝜋(𝛾) ∶ 𝛾 ∈ �̄�
}

∈ 𝜋
{

𝑋 ∈ �̄�(�̄�) ∶ 𝜃 ∈ 𝑋
}

=
{

𝑋 ∈ 𝜅(𝜆) ∶ 𝜋(𝜃) ∈ 𝑋
}

.

This holds since 𝜃 < �̄�, so 𝜋(𝜃) ∈ {𝜋(𝛾) ∶ 𝛾 < �̄�}.
It is also closed under diagonal intersection. To see this suppose ⟨𝑋𝜃 ∶ 𝜃 < �̄�⟩

is a family of sets in  . Then Δ𝜃<�̄�𝑋𝜃 =
{

𝑥 ∈ �̄�(�̄�) ∶ 𝑥 ∈
⋂

𝑖∈𝑥𝑋𝑖
} is in 

if and only if {𝜋(𝛾) ∶ 𝛾 ∈ �̄�} ∈ 𝜋
(

Δ𝜃<�̄�𝑋𝜃
). By the elementarity of 𝜋, this

holds if and only if:

{

𝜋(𝛾) ∶ 𝛾 ∈ �̄�
}

∈

{

𝑥 ∈ 𝜅(𝜆) ∶ 𝑥 ∈
⋂

𝑖∈𝑥
𝜋
(

⟨𝑋𝜃⟩
)

𝑖

}

.

So we wish to show that {𝜋(𝛾) ∶ 𝛾 ∈ �̄�} ∈
⋂

𝑖∈{𝜋(𝛾)∶𝛾∈�̄�} 𝜋
(

⟨𝑋𝜃⟩
)

𝑖. Since
𝑋𝛾 ∈  for every 𝛾 ∈ �̄�, {𝜋(𝛾) ∶ 𝛾 ∈ �̄�} ∈ 𝜋(𝑋𝛾) for each 𝛾 , and 𝜋 (𝑋𝛾

)

=

𝜋
(

⟨𝑋𝜃⟩𝛾
)

= 𝜋
(

⟨𝑋𝜃⟩
)

𝜋(𝛾) so the condition holds.
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Now,  ∈ 𝐻(2�̄�<�̄� )+ and:

𝐻(2�̄�<�̄� )+ ⊨  is a normal ultrafilter on �̄�(�̄�).

So, by elementarity of 𝜋:

𝐻(2𝜆<𝜅 )+ ⊨  is a normal ultrafilter on 𝛽(𝜆),

and𝐻(2𝜆<𝜅 )+ is correct for this statement. So 𝜅 is 𝜆-supercompact, as required.

Another key property of subcompactness embeddings is that an 𝛼-subcompactness
embedding may have as parameters finitely many subsets 𝐴𝑖, since we can encode
them all into one subset, for example by using pairs (𝑖, 𝑥) to denote that 𝑥 ∈ 𝐴𝑖.
Since we will be extensively dealing with𝐻𝛼 and its interaction with forcing, we give
two crucial lemmas, found across the literature. We provide proofs for completeness.

Lemma 3.1.3. (Folklore) If ℙ is a forcing notion which doesn’t collapse 𝛼 and �̇� ∈

𝐻𝛼 then ∀𝑝 ∈ ℙ, 𝑝 ⊩ �̇� ∈ 𝐻𝛼 i.e. 1 ⊩ �̇� ∈ 𝐻𝛼.

Proof. We induct upon rk(�̇�) for �̇� ∈ 𝐻𝛼. For rk(�̇�) = 0 the result is clear. So
suppose that the theorem holds for all �̇� ∈ 𝐻𝛼 with rk(�̇�) < rk(�̇�). Express �̇� as
{(

�̇�𝑖, 𝑝𝑖
)

∶ 𝑖 ∈ 𝐼
} where 𝐼 is some indexing set, and then note that, by the induction

hypothesis, each �̇�𝑖 has that 1 ⊩ �̇�𝑖 ∈ 𝐻𝛼. Since �̇� ∈ 𝐻𝛼, |�̇�| < 𝛼, and, since the
forcing doesn’t collapse 𝛼, 1 ⊩ |�̇�| < 𝛼. So 1 ⊩ �̇� ∈ 𝐻𝛼 as required.

Lemma 3.1.4. (Folklore, see e.g. 3.6 of [21]) Let 𝛼 be a regular cardinal, let ℙ ∈ 𝐻𝛼

be a notion of forcing. Then ∀𝑝 ∈ ℙ, if 𝑝 ⊩ �̇� ∈ 𝐻𝛼, then ∃�̇� ∈ 𝐻𝛼 such that
𝑝 ⊩ �̇� = �̇�.

Proof. To show this we will first prove that for all 𝑥 ∈ 𝐻𝛼, there is a 𝜆𝑦 < 𝛼 and
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(

𝑥𝛿
)

𝛿≤𝜆𝑦 with 𝑥𝛿 ∈ 𝐻𝛼 such that ∀𝛿 ≤ 𝜆, 𝑥𝛿 ⊆ {𝑥𝛽 ∶ 𝛽 ≤ 𝜆} and 𝑥 = 𝑥𝜆. To show
that this is the case we will induct upon 𝑥 ∈ 𝐻𝛼: the case when 𝑥 = ∅ is clear.
Now suppose that the above is true for all 𝑦 ∈ 𝑥, and for each such 𝑦 let 𝜆𝑦 < 𝛼

and (𝑥𝑦𝛿)𝛿≤𝜆𝑦 witness this. Then let 𝜆 = Σ𝑦∈𝑥𝜆𝑦. Now since |𝑥| < 𝛼 and 𝛼 is regular,
we must have that 𝜆 < 𝛼. Now define the witnessing sequence for 𝑥 to be the
concatenation of all the (𝑥𝑦𝛿)𝛿≤𝜆𝑦 , and set 𝑥𝜆 = 𝑥. Then this sequence will be a witness
to the property for 𝑥, since every 𝑦 ∈ 𝑥 appears at some point of the sequence.
Now since ℙ ∈ 𝐻𝛼, ℙ has the 𝛼-c.c. and so doesn’t collapse 𝛼. Let 𝑝 ∈ ℙ be such
that 𝑝 ⊩ �̇� ∈ 𝐻𝛼. Then there are names �̇� and (�̇�𝛿)𝛿≤�̇� for 𝜆 and (𝑥𝑦𝛿)𝛿≤𝜆𝑦 as above.
Further, there is an ordinal 𝜆 < 𝛼 such that 𝑝 ⊩ �̇� ≤ �̌�. Since in 𝑉 [𝐺] we may set
𝑥𝛿 = ∅ for all �̇�𝐺 < 𝛿 < �̌�𝐺 we can assume that �̇� = �̌�. Now define inductively:

�̈�𝛿 =
{

(�̈�𝛽 , 𝑞) ∶ 𝛽 < 𝛿 ∧ 𝑞 ≤ 𝑝 ∧ 𝑞 ⊩ �̈�𝛽 ∈ �̇�𝛿
}

and let �̈� = �̈�𝜆. By induction, all the �̈�𝛿 are in 𝐻𝛼. Finally we show that, for all
𝛿 < 𝜆, 𝑝 ⊩ �̇�𝛿 = �̈�𝛿, so in particular 𝑝 ⊩ �̇� = �̈�.
To see this, note that the base case, when 𝛿 = 0, is immediate. So suppose that the
statement holds for all 𝛽 < 𝛿, i.e. 𝑝 ⊩ �̇�𝛽 = �̈�𝛽 . Then, for any generic 𝐺 containing
𝑝:

�̈�𝐺𝛿 =
{

(�̈�𝛽 , 𝑞) ∶ 𝛽 < 𝛿 ∧ 𝑞 ≤ 𝑝 ∧ 𝑞 ⊩ �̈�𝛽 ∈ �̇�𝛿
}

=
{

(�̇�𝛽 , 𝑞) ∶ 𝛽 < 𝛿 ∧ 𝑞 ≤ 𝑝 ∧ 𝑞 ⊩ �̈�𝛽 ∈ �̇�𝛿
}

(by induction)
= �̇�𝐺𝛿 (by the Forcing Theorem)
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3.2 Minimal Counterexamples

In order to show that 𝛼-subcompact cardinals may be made indestructible, we first
introduce the concept of minimal counterexamples, which will aid us in construction
of an appropriate preparatory forcing.
Since Hamkins’s [22], much use has been made of the Lottery Preparation to show
indestructibility results. However, since its definition relies of the existence of
suitably fast-growing functions — e.g. Laver functions ot those with the Menas
property — it has been asked whether it is possible to show indestructibility results
without use of such functions.
In [4], Apter uses an iteration of lottery sums of forcings of ‘small’ rank to re-prove,
and improve upon, various indestructibility results. For example, a proof is given
that every supercompact cardinal 𝜅 can simultaneously be made indestructible by
𝜅-directed closed forcing, using an iteration which makes no mention of either a
Laver function or a fast function (though the proof does require a function with the
Menas property).
Building upon this work, Apter later published [5], extending the ideas of [4] to
other uses of Laver functions, in particular to show the consistency of the Proper
Forcing Axiom (PFA) and the Semiproper Forcing Axiom (SPFA) as seen in [31].
The iterations used are iterations of lottery sums of counterexamples of minimal

rank, i.e. forcings which destroy the property at hand, which are of minimal rank
among such counterexamples.
Based on a suggestion of Schlicht, the Master’s Thesis of Schlöder [41] detailed
a new method using iterations of lottery sums of counterexamples of minimal

hereditary cardinality. There they were used mainly in the context of PFA, but
their usage in other proofs, including indestructibility arguments, was suggested.
To this end, in the lecture notes of Lücke and Schlicht ([30]) the authors were able
to re-prove Laver’s original indestructibility result using these counterexamples of
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minimal hereditary cardinality.
In this Chapter we extend the results obtained using this method, and show that
an 𝛼-subcompact cardinal 𝜅 where 𝛼 ∈ Reg may be made indestructible by < 𝜅-
directed closed forcings ℚ ∈ 𝐻𝛼 using an Easton support iteration of length 𝜅
involving lottery sums of counterexamples to subcompactness of minimal hereditary
cardinality.
The key idea behind this method is to build a preparatory forcing, with non-trivial
stages which are lottery sums of forcings minimal among those that break a minimal
amount of subcompactness. Having forced with many minimal counterexamples,
any 𝛼-subcompact cardinal left standing will be indestructible. This idea has also
been referred to as a ‘trial by fire’, since whatever remains after our many forcings
will be very robust after an onslaught of small counterexample forcings (see [3]).
Let us now make this idea precise for the case of subcompactness.

Definition 3.2.1. A counterexample for the 𝜃-subcompactness of 𝜅 (often simply
written as a counterexample) is a triple (ℚ, 𝜃, 𝜅), where:

• ℚ is a < 𝜅-directed closed forcing;

• 𝜅 is 𝜃-subcompact;

• ⊩ℚ 𝜅 is not 𝜃-subcompact.

We say that (ℚ, 𝜃, 𝜅) is a minimal counterexample if (𝜃, 𝜂) is lexicographically least
among counterexamples, where 𝜂 = |TC(ℚ)|.

Our preparatory forcing is then defined as follows:

Definition 3.2.2. Fix a cardinal 𝜅 and 𝛼 > 𝜅. Define inductively an Easton support
iteration ⟨ℙ𝜅

𝛾 , ℚ̇
𝜅
𝛾 ⟩𝛾<𝜅 and a sequence (𝜃𝜅𝛾 , 𝜂

𝜅
𝛾 )𝛾<𝜅 as follows: suppose that ℙ𝜅

𝛿 has
been defined and that 𝜃𝜅𝛾 , 𝜂𝜅𝛾 have been defined for each 𝛾 < 𝛿.
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(i) If 𝛿 > 𝜃𝜅𝛾 , 𝜂
𝜅
𝛾 for all 𝛾 < 𝛿 then let ℚ̇𝜅

𝛿 denote a ℙ𝜅
𝛿 -name for the lottery

sum of all forcings ℚ with |TC(ℚ)| < 𝜅 such that (ℚ, 𝜃, 𝛿) is a minimal
counterexample for some 𝜃 ≤ 𝜅.
Let 𝜂𝜅𝛿 = |TC(ℚ)| and 𝜃𝜅𝛿 = 𝜃 for such ℚ and 𝜃.

(ii) Otherwise let ℚ̇𝜅
𝛿 denote a ℙ𝜅

𝛿 -name for the trivial forcing and let 𝜃𝜅𝛿 = 1 = 𝜂𝜅𝛿 .

We now show a number of results about the iteration defined above, which will
prove useful in our indestructibility argument. The proofs of the preliminary results
(Lemmas 3.2.3 - 3.2.6) are the same as those in Schlöder’s [41] — though we take
minimal counterexamples to different large cardinal properties — and are shown
here for completeness.
Firstly we have that the stages of the iteration are not large.
Lemma 3.2.3. For 𝛽 < 𝜅, |ℙ𝜅

𝛽 | < 𝜅.

Proof. Proceed by induction on 𝛽: for 𝛽 = 0, ℙ𝜅
0 is trivial.

If 𝜈 = 𝛽 + 1 and we are in case (i), ℙ𝜅
𝛽 forces that ℚ is a union of forcing notions

with hereditary cardinality 𝛾 = 𝜂𝜅𝜈 < 𝜅, so

⊩ℙ𝜅𝛽
|ℚ𝜅

𝜈 | ≤ |𝐻𝛾+| ≤ 2𝛾 .

Now, by induction |ℙ𝜅
𝛽 | < 𝜅, so

⊩ℙ𝜅𝛽

̂
2𝛾 ≤

̂

2𝛿 ≤

̂
(

2𝛿
)𝑉

for some 𝛿 with max(𝛾, |ℙ𝜅
𝛽 |) < 𝛿 < 𝜅. Since 𝜅 is inaccessible |ℙ𝜅

𝜈 | ≤ 2𝛾 ≤ 2𝛿 < 𝜅.
If we are in case (ii) then we perform trivial forcing so the same argument holds.
If 𝜈 < 𝜅 is a limit and the result holds below 𝜈, then since 𝜅 is regular, there exists
a 𝛿 < 𝜅 such that 𝛿 > |ℙ𝜅

𝛽 | for all 𝛽 < 𝜈. Since the function 𝑝 ↦ (𝑝 ↾ 𝛽)𝛽<𝜈 is
injective, |ℙ𝜅

𝜈 | ≤
∏

𝛽<𝜈 |ℙ𝜅
𝛽 |.
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So |ℙ𝜅
𝜈 | ≤

∏

𝛽<𝜈 𝛿 = 𝛿𝜈 < 𝜅 as required.

Not only are the stages of the iteration not too large, but in fact each stage below 𝜅

is in 𝐻𝜅 .

Lemma 3.2.4. For 𝛽 < 𝜅, ℙ𝜅
𝛽 ∈ 𝐻𝜅 .

Proof. Proceed by induction on 𝛽; again ℙ𝜅
0 is trivial. For successor 𝛽 = 𝛾 + 1 we

have, as in Lemma 3.2.3, that ⊩ℙ𝜅𝛾
ℚ̇𝜅
𝛾 ∈ 𝐻𝜅 . Of course, if the forcing at stage 𝛾

is trivial we are done, so let us assume that ℚ̇𝜅
𝛾 is a ℙ𝜅

𝛾 name for the lottery sum
of minimal counterexamples. By induction and by an application of Lemma 3.1.4
there is a name for ℚ𝜅

𝛾 in 𝐻𝜅 , and so ℙ𝜅
𝛽 = ℙ𝜅

𝛾 ∗ ℚ̇𝜅
𝛾 . Every canonical name (as in

Definition 2.1.21) for an element of ℚ𝜅
𝛾 is equivalent to a subset of dom(ℚ̇𝜅

𝛾 ) × ℙ𝜅
𝛾 ,

and 𝜅 is inaccessible, so ℙ𝜅
𝛽 ∈ 𝐻𝜅 .

For limit 𝛽 < 𝜅 we take either an inverse or a direct limit of forcings which are all
in 𝐻𝜅 , and so the result follows from the fact that 𝜅 is inaccessible.

Now, we have that the full iteration is not too large either.

Lemma 3.2.5. |ℙ𝜅
𝜅| ≤ 𝜅.

Proof. By the regularity of 𝜅 we take a direct limit at stage 𝜅. For 𝑝 ∈ ℙ𝜅
𝜅 let

𝛽𝑝 = sup(supp(𝑝)). For 𝛾 < 𝜅 let 𝐵𝛾 = {𝑝 ∈ ℙ𝜅
𝜅 ∶ 𝛽𝑝 = 𝛾}. Now the function

𝑓 ∶ 𝐵𝛾 → ℙ𝜅
𝛾 with 𝑓 (𝑝) = 𝑝 ↾ 𝛽 is an injection, so |𝐵𝛾| < 𝜅 for all 𝛾 < 𝜅, by

Lemma 3.2.3. Further ℙ𝜅
𝜅 =

⋃

𝛾<𝜅 𝐵𝛾 and so |ℙ𝜅
𝜅| ≤ 𝜅.

Indeed, we can consider the iteration to be a subset of 𝐻𝜅 , by utilising the direct
limit at stage 𝜅.

Lemma 3.2.6. We may, without loss of generality, assume that ℙ𝜅
𝜅 ⊆ 𝐻𝜅 .
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Proof. Since 𝜅 is a regular cardinal, we take a direct limit at stage 𝜅, and so each
𝑝 ∈ ℙ𝜅

𝜅 looks like 𝑝⌢1(𝜅). So we may ‘forget’ the trailing 1’s (though implicitly add
them back on when needed) and consider 𝑝 a member ofℙ𝜅

𝛽 where 𝛽 = sup(supp(𝑝)).
Then use Lemma 3.2.4 which gives us that ℙ𝜅

𝛽 ⊆ 𝐻𝜅 .

The following lemma is an adaptation of Lemma 3.2 of [22], which allows us to
show strategic closure of the tail of our iteration.
Lemma 3.2.7. If in ℙ𝜅

𝜅 there is no nontrivial forcing until beyond stage 𝛿 then the
iteration is 𝛿-strategically closed.

Proof. To see that this is true, recall that, at each stage 𝛽 > 𝛿 the forcings in the
lottery sum are chosen so that they are 𝛽-directed closed. So, in particular, they are
𝛽-strategically closed. Let 𝜎𝛽 be a strategy for the game of length 𝛿 on the forcing
at stage 𝛽. A partial play in the game on ℙ𝜅

𝜅 is a descending sequence ⟨𝑝𝛾 ∶ 𝛾 < 𝛿′⟩

for some 𝛿′ < 𝛿, where 𝑝𝛾 = ⟨1̌ ∶ 𝛼 ≤ 𝛿⟩⌢⟨�̇�𝛾𝛼 ∶ 𝛿 < 𝛼 < 𝜅⟩. Apply the strategies
𝜎𝛽 for each 𝛽 > 𝛿 to obtain the strategy

𝜎
(

⟨𝑝𝛾 ∶ 𝛾 < 𝛿′⟩
)

= ⟨1̌ ∶ 𝛽 ≤ 𝛿⟩⌢⟨�̇�𝛽 ∶ 𝛿 < 𝛽 < 𝜅⟩

where �̇�𝛽 is the name for the condition obtained by applying 𝜎𝛽 to ⟨�̇�𝛾𝛽 ∶ 𝛽 < 𝛿′⟩.
Each of the strategies 𝜎𝛽 can successfully navigate all limits up to 𝛿 and thus so can
𝜎. So 𝜎 gives a strategy for the game of length 𝛿 as required.

We now fix some non-standard terminology which will be used later.
Definition 3.2.8. We say that 𝛾 < 𝜅 is a closure point of ℙ𝜅

𝜅 if ℙ𝜅
𝛾 = ℙ𝛾

𝛾 .

So, if 𝛾 is a closure point of ℙ𝜅
𝜅 then the iteration for 𝜅 up to stage 𝛾 is the same as

the iteration ℙ𝛾
𝛾 defined for 𝛾 itself.

Note that the set of closure points of ℙ𝜅
𝜅 are club in 𝜅 and, in particular, 𝜅 itself is

a closure point. Note here that the closure points need not be inaccessible, but, by
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standard arguments about clubs closed under functions, the previous lemmata will
also hold for them.
In showing that some 𝛾 is a closure point of ℙ𝜅

𝜅 it is not sufficient to simply apply
the Factor Lemma (2.1.27), as we require not only that the longer iteration may be
‘cut’ into its first 𝛾 stages ℙ𝜅

𝛾 followed by the rest of the iteration ℙ𝜅
[𝛾,𝜅), but that

the first 𝛾 stages are exactly the stages of the corresponding lottery sum of minimal
counterexamples iteration for 𝛾 , namely ℙ𝛾

𝛾 .
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3.3 Indestructibility Result

Having laid the groundwork we are now ready to state the main Theorem of this
Chapter:
Theorem 3.3.1. Let 𝜅 be 𝛼-subcompact for some regular cardinal 𝛼 > 𝜅. Then,
after preparatory forcing with ℙ𝜅

𝜅 , the 𝛼-subcompactness of 𝜅 will be indestructible
under any < 𝜅-directed closed forcing ℚ ∈ 𝐻𝛼.

Proof. Suppose the theorem does not hold, so there is some minimal
counterexample (ℚ,Θ, 𝜅) in 𝑉 [𝐺𝜅], for some Θ ≤ 𝛼, where 𝐺𝜅 is ℙ𝜅

𝜅-generic over
𝑉 , and ℚ ∈ 𝐻𝛼. Note that, if ℚ breaks the Θ-subcompactness of 𝜅 for Θ < 𝛼 then
it also breaks its 𝛼-subcompactness. We will show that this gives a contradiction by
showing that 𝜅 is in fact Θ-subcompact in 𝑉 [𝐺𝜅 ∗ �̇�], where 𝑔 is a ℚ-generic over
𝑉 [𝐺𝜅].
So we must show that, for all 𝐴 ⊆ 𝐻Θ in 𝑉 [𝐺𝜅 ∗ �̇�] there is a Θ-subcompactness
elementary embedding

𝜋 ∶
(

𝐻𝑉 [𝐺𝜅∗�̇�]
Θ̄

,∈, �̄�
)

→
(

𝐻𝑉 [𝐺𝜅∗�̇�]
Θ ,∈, 𝐴

)

with critical point �̄�, 𝜋(�̄�) = 𝜅 for some �̄� < Θ̄ < 𝜅 and �̄� ⊆ 𝐻𝑉 [𝐺𝜅∗�̇�]
Θ̄

.
The general structure to do this will be by lifting an 𝛼-subcompactness embedding
for the ℙ𝜅

𝜅 ∗ ℚ̇ name in 𝑉 that 𝐴 interprets, and then restricting the lifted 𝛼-
subcompactness embedding to get a Θ-subcompactness embedding in the extension.
Note here that we will provide an 𝛼-subcompactness embedding for each 𝐴 ⊆ 𝐻Θ

in 𝑉 [𝐺𝜅 ∗ �̇�], not for all subsets of 𝐻𝛼 in the extension (unless of course Θ = 𝛼).
So let 𝐴 ⊆ 𝐻𝑉 [𝐺𝜅∗�̇�]

Θ . By Lemma 3.2.6 we can assume that ℙ𝜅
𝜅 ⊆ 𝐻𝜅 , so we have

that ℙ𝜅
𝜅 ∈ 𝐻𝛼. Now, since also 𝛼 is regular,we apply Lemma 3.1.41 to conclude that

𝐴 = �̇�𝐺𝜅∗�̇� for some �̇� ⊆ 𝐻𝛼 in 𝑉 .
1The repeated use of this Lemma is the key area where we utilise the assumption that 𝛼 ∈ Reg.
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Since 𝜅 is 𝛼-subcompact in 𝑉 , there exist �̄� < �̄� < 𝜅, �̄� ⊆ 𝐻�̄� and an elementary
embedding 𝜋 ∶ (𝐻�̄�,∈, �̄�) → (𝐻𝛼,∈, 𝐵) with critical point �̄� such that 𝜋(�̄�) = 𝜅.
Now let ℙ�̄�

�̄� be the �̄�-length lottery sum of minimal counterexamples iteration for �̄�,
and let 𝐺�̄� be a ℙ�̄�

�̄�-generic over 𝑉 . Let ℙ𝛼
𝛼 be the 𝛼-length lottery sum of minimal

counterexamples iteration for 𝛼. Below a condition which opts for ℚ in the stage 𝜅
lottery sum of minimal counterexamples, we may factor ℙ𝛼

𝛼 as ℙ𝛼
𝜅 ∗ ℚ̇ ∗ ℙ̇𝛼

(𝜅+1,𝛼).
We will also add in some extra predicates to the subcompactness embedding, namely
{Θ} and a ℙ𝜅

𝜅-name ℚ̇ ∈ 𝐻𝛼 that ℚ interprets. Thus the embedding looks like:

𝜋 ∶
(

𝐻�̄�,∈, ̇̄𝐵, ̇̄ℚ, {Θ̄}
)

→
(

𝐻𝛼,∈, �̇�, ℚ̇, {Θ}
)

.

Here ̇̄ℚ ∈ 𝐻�̄� is a name for a < �̄�-directed closed forcing whose interpretation is
some ℚ̄ ∈ 𝐻𝑉 [𝐺�̄�∗ ̇̄𝑔]

�̄� , where ̇̄𝑔 is a ̇̄ℚ-generic over 𝑉 [𝐺�̄�]. By elementarity this ℚ̄

breaks the Θ̄-subcompactness of �̄� and has |TC ℚ̄| < �̄�.
We now wish to perform lifting arguments to provide an 𝛼-subcompactness
embedding for 𝐴 in 𝑉 [𝐺𝜅 ∗ �̇�]. But to do this we first need to prove some
preliminary results about closure points.
In the following Lemmas we will show that we can factor ℙ𝛼

𝛼 as ℙ𝜅
𝜅 ∗ ℚ̇ ∗ ℙ̇𝛼

(𝜅+1,𝛼),
and that we can factor ℙ𝜅

𝜅 as ℙ�̄�
�̄� ∗ ℙ̇[�̄�,𝜅).

To begin we show:
Claim 3.3.2. ℙ𝜅

�̄� = ℙ�̄�
�̄� , i.e. �̄� is a closure point of ℙ𝜅

𝜅 .

Proof. To see this first note that 𝜋(ℙ�̄�
�̄�) = ℙ𝜅

𝜅 and that the critical point of 𝜋 is �̄�,
so that 𝜋 ↾ 𝐻�̄� is the identity function. Further, for 𝛾 < �̄�, each ℙ�̄�

𝛾 is a member
of 𝐻�̄� by Lemma 3.2.4, and by elementarity �̄� is inaccessible. So 𝜋(ℙ�̄�

𝛾 ) = ℙ𝜅
𝛾 , but

𝜋(ℙ�̄�
𝛾 ) = ℙ�̄�

𝛾 , so ℙ𝜅
𝛾 = ℙ�̄�

𝛾 , for every 𝛾 < �̄�.
At stage �̄� we take a direct limit, since �̄� ∈ Reg, so conditions are bounded below
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�̄�, and so 𝜋(𝑝) = 𝑝 for all 𝑝 in the stage 𝜅 forcing. So the 𝜅 length iteration and the
�̄�-length iteration are identical up to stage �̄�.

We also have that:
Claim 3.3.3. ℙ𝛼

�̄� = ℙ𝜅
�̄� , i.e. the iterations ℙ𝛼

𝛼 and ℙ𝜅
𝜅 up to stage �̄� are identical.

Proof. We proceed by induction, showing that ℙ𝛼
𝛿 = ℙ�̄�

𝛿 for all 𝛿 < �̄�. The base
case is ℙ𝛼

0 = ℙ𝜅
0 , since both are trivial. The result holds for limit stages since if

ℙ𝛼
𝛿 = ℙ𝜅

𝛿 for limit 𝛿 then both iterations take either a direct or inverse limit at stage
𝛿 depending on the regularity of 𝛿.
For successor stages suppose by induction that ℙ𝛼

𝛿 = ℙ𝜅
𝛿 . The forcing

done at successor stages is either trivial forcing or a lottery sum of minimal
counterexamples. We must now show that ℚ̇𝛼

𝛿 = ℚ̇𝜅
𝛿 , and for this we examine each

possible case.
If ℚ̇𝛼

𝛿 is a ℙ𝛼
𝛿 -name for trivial forcing, then so must ℚ̇𝜅

𝛿 be the ℙ𝜅
𝛿 -name for trivial

forcing. So let us consider when ℚ̇𝛼
𝛿 is not trivial. It is a ℙ𝛼

𝛿 -name for the lottery
sum of forcings ℝ such that (ℝ, 𝛾𝛼𝛿 , 𝛿) is a minimal counterexample with 𝛾𝛼𝛿 ≤ 𝛼

and 𝜂𝛼𝛿 < 𝛼, where 𝜂𝛼𝛿 = |TC(ℝ)|. If further ℚ̇𝜅
𝛿 is non-trivial, then actually it

must be equal to ℚ̇𝛼
𝛿 , since, by definition, they are both lottery sums of minimal

counterexamples, so the length of the iteration changes nothing.
Our final possibility is if ℚ̇𝜅

𝛿 is trivial but ℚ̇𝛼
𝛿 is not. By the definition of our iteration,

there are two ways in which ℚ̇𝜅
𝛿 may be trivial:

Case 1. There is some 𝛽 < 𝛿 such that either 𝛿 ≤ 𝛾𝜅𝛽 or 𝛿 ≤ 𝜂𝜅𝛽 .

Case 2. There does not exist a counterexample (ℝ, 𝛾𝜅𝛿 , 𝛿) with 𝛾𝜅𝛿 ≤ 𝜅 and
|TC(ℝ)| = 𝜂𝜅𝛿 < 𝜅.

Now Case 1 cannot hold: by induction, the stages up to 𝛽 will be the same for both
iterations, and so since ℚ̇𝛼

𝛿 is non-trivial, so must ℚ̇𝜅
𝛿 be.
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Also, Case 2 cannot hold: we show that if there exists a counterexample (ℝ, 𝛾, 𝛿) for
some 𝛾 < �̄� with |TC(ℝ)| ∈ [𝜅, 𝛼) then there exists a counterexample (𝕊, 𝛾, 𝛿) with
|TC(𝕊)| < 𝜅.
The first thing to note is that the counterexample forcing ℝ described above is in𝐻𝛼

and so, in 𝑉 , there are �̄�ℝ < �̄�ℝ < 𝜅, ℝ̄ ⊆ 𝐻�̄�ℝ and a 𝛼-subcompactness elementary
embedding

𝑗 ∶
(

𝐻�̄�ℝ ,∈, ℝ̄, �̄� , 𝛿
)

→
(

𝐻𝛼,∈,ℝ, 𝛾, 𝛿
)

with critical point �̄�ℝ such that 𝑗(�̄�ℝ) = 𝜅. Now, in 𝐻𝛼, ℝ is < 𝛿-directed closed
and breaks the 𝛾-subcompactness of 𝛿 for 𝛿 < 𝛾 < �̄�. So, by elementarity of 𝑗, ℝ̄ is
< 𝛿-directed closed and breaks the �̄�-subcompactness of 𝛿.
Observe that 𝛿 < �̄� < �̄�ℝ since 𝛿 < 𝛾 < 𝜅 and 𝑗 is elementary. Now, since the
critical point of 𝑗 is �̄�ℝ, we have that 𝛿 = 𝛿 and �̄� = 𝛾 , and so 𝛿 < 𝛾 < �̄�ℝ and
ℝ̄ in fact breaks the 𝛾-subcompactness of 𝛿, and is < 𝛿-directed closed, but has
|TC(ℝ̄)| ∈ [�̄�ℝ, �̄�ℝ), thus in particular |TC(ℝ̄)| < 𝜅.

So combining Claims 3.3.2 and 3.3.3 we get that:
Lemma 3.3.4. �̄� is a closure point of ℙ𝛼

𝛼 i.e. ℙ𝛼
�̄� = ℙ�̄�

�̄� .

Now, we show our final closure point Lemma; that 𝜅 itself is a closure point of the
long iteration ℙ𝛼

𝛼. This will allow us to factor ℙ𝛼
𝛼 as ℙ𝜅

𝜅 ∗ ℚ̇ ∗ ℙ̇𝛼
[𝜅+1,𝛼).

Lemma 3.3.5. 𝜅 is a closure point of ℙ𝛼
𝛼, i.e. ℙ𝛼

𝜅 = ℙ𝜅
𝜅 .

Proof. By Lemma 3.3.4 the iterations agree up to stage �̄�. Since we choose ℚ in the
stage 𝜅 lottery sum, which is a minimal counterexample to the Θ-subcompactness
of 𝜅, by elementarity we choose some ℚ̄ in the stage �̄� forcing of ℙ𝛼

𝛼, which is a
minimal counterexample to the Θ̄-subcompactness of �̄�, for some Θ̄ ≤ �̄�. Since we
only use properties of the iteration ℙ𝜅

�̄� to determine whether the forcing done at the
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�̄�th stage of ℙ𝜅
𝜅 is trivial or not, we also choose the same forcing ℚ̄ in the stage �̄�

forcing of ℙ𝜅
𝜅 .

Thus, by definition of our iterations, they have trivial stages up to at least stage Θ̄.
So we must show that, from stage Θ̄ to stage 𝜅 the two iterations are the same. For
this we argue inductively as in Claim 3.3.3, and it suffices to show that we cannot
have ℚ̇𝜅

𝛿 be trivial, while ℚ̇𝛼
𝛿 is non-trivial, for successor stages where 𝛿 ∈ [Θ̄, 𝜅).

Since, inductively, all the stages up to 𝛿 are the same for both iterations, we need to
show that, if there is a counterexample (ℝ, 𝛾, 𝛿) to the 𝛾-subcompactness of 𝛿, with
Θ̄ ≤ 𝛿 < 𝛾 < 𝜅 with |TC(ℝ)| ∈ [𝜅, 𝛼), then there is a counterexample (𝕊, 𝛾, 𝛿) with
|TC(𝕊)| < 𝜅.
As before, we have that ℝ ∈ 𝐻𝛼 so we obtain an 𝛼-subcompactness elementary
embedding 𝑗 ∶ (𝐻�̄�ℝ ,∈, ℝ̄, �̄� , 𝛿) → (𝐻𝛼,∈,ℝ, 𝛾, 𝛿) with critical point �̄�ℝ, where
�̄�ℝ ≤ 𝛿 < �̄� < �̄�ℝ and ℝ̄ breaks the �̄�-subcompactness of 𝛿. By elementarity,
|TC ℝ̄| ∈ [�̄�ℝ, �̄�ℝ).
Since 𝛿 < �̄� < �̄�ℝ, we have that 𝑗(𝛿) = 𝛿 and 𝑗(�̄�) = �̄� , meaning that ℝ̄ breaks the
𝛾-subcompactness of 𝛿 and has |TC ℝ̄| < �̄�ℝ < 𝜅 as desired.

From now we will implicitly use these closure results without comment. We now
progress by showing that we may lift the 𝛼-subcompactness embedding 𝜋 in 𝑉 to
an 𝛼-subcompactness embedding:

𝜋+ ∶
(

𝐻�̄�[𝐺�̄�],∈, ̇̄𝐵𝐺�̄� , ̇̄ℝ𝐺�̄� , ̇̄Θ𝐺�̄�
)

→
(

𝐻𝛼[𝐺𝜅],∈, �̇�𝐺𝜅 , ℝ̇𝐺𝜅 , Θ̇𝐺𝜅
)

.

For notational ease we will often suppress the extra parameters, and refer the the
embedding simply as 𝜋+ ∶ 𝐻�̄�[𝐺�̄�] → 𝐻𝛼[𝐺𝜅].
By the Lifting Criterion (Theorem 2.2.5) it suffices to show that 𝜋(𝑝) ∈ 𝐺𝜅 for all
𝑝 ∈ 𝐺�̄� . For this, note that such a condition 𝑝 is a member of ℙ�̄�

�̄� , and we take a
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direct limit at stage �̄�, so there is some 𝛽 < �̄� such that 𝑝(𝛿) = 1 for all 𝛿 ≥ 𝛽. Then

𝐻�̄�[𝐺�̄�] ⊨ ∀𝛾 < 𝛽 ∶ 𝑝(𝛾) = (𝑝 ↾𝛽)(𝛾)

and so for all 𝛾 < 𝜋(𝛽), 𝜋(𝑝)(𝛾) = (

𝜋(𝑝 ↾𝛽)
)

(𝛾). Now, by Lemma 3.2.4 we have
that ℙ𝜅

𝛾 ∈ 𝐻�̄�; also since the critical point of 𝜋 is �̄�, 𝜋 ↾ 𝐻�̄� is the identity function.
So 𝜋(𝑝) is 𝑝 followed by a sequence of length 𝜅, but in fact this sequence must be
a sequence of 1s only: 𝜋(𝛽) = 𝛽 since 𝛽 < �̄�, and 𝜋(𝑝) is a sequence of length
𝜋(�̄�) = 𝜅 with maximum support 𝜋(𝛽) = 𝛽. Thus 𝜋(𝑝) = 𝑝⌢1(𝜅) ∈ 𝐺𝜅 . So, as
desired we may apply the lifting criterion to obtain the lifted embedding 𝜋+.
Now that we have 𝜋+, we wish to lift again. To do this we will apply Silver’s Master
Condition argument (Definition 2.2.6). Since 𝑔 picks ℚ in the stage 𝜅 lottery sum,
we have by elementarity that there is ℚ̄ ⊆ 𝐻�̄� with 𝜋+(ℚ̄) = ℚ which is chosen in
the stage �̄� lottery by some generic �̄�. To see that we may indeed lift the embedding
𝜋+ note that 𝜋+“(�̄�) ⊆ ℚ is directed and has cardinality at most �̄� < 𝜅. So by the
< 𝜅-directed closure of ℚ there is some 𝑞 ∈ ℚ with 𝑞 ≤ 𝜋+(𝑝) for all 𝑝 ∈ �̄�. So we
specify that 𝑞 is a member of our generic 𝑔, and so 𝜋+“(�̄�) ⊆ 𝑔. This means that the
Lifting Criterion is satisfied, giving us a lifted elementary embedding

𝜋++ ∶
(

𝐻�̄�[𝐺�̄� ∗ ̇̄𝑔],∈, ̇̄𝐵𝐺�̄�∗�̄�, ℚ̄, Θ̄
)

→
(

𝐻𝛼[𝐺𝜅 ∗ �̇�],∈, �̇�𝐺𝜅∗�̇�,ℚ,Θ
)

.

But recall that �̇�𝐺𝜅∗�̇� = 𝐴 and so 𝜋++ is an 𝛼-subcompactness embedding for 𝜅
with predicate 𝐴 in the extension 𝑉 [𝐺𝜅 ∗ �̇�]. Now we restrict this embedding in
𝑉 [𝐺𝜅 ∗ �̇�] to give a Θ-subcompactness embedding

𝜋∗ ∶
(

𝐻Θ̄[𝐺�̄� ∗ ̇̄𝑔],∈, �̄�, Θ̄
)

→
(

𝐻Θ[𝐺𝜅 ∗ �̇�],∈, 𝐴,Θ
)

where �̄� = ̇̄𝐵𝐺�̄�∗ ̇̄𝑔.
All that remains to do now is to show that the domain of this embedding, 𝐻Θ̄[𝐺�̄� ∗
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̇̄𝑔], is equal to 𝐻𝑉 [𝐺𝜅∗�̇�]
Θ̄

and that its range, 𝐻Θ[𝐺𝜅 ∗ �̇�], is equal to 𝐻𝑉 [𝐺𝜅∗�̇�]
Θ .

We do this by showing the following three equalities:

𝐻Θ̄[𝐺�̄� ∗ ̇̄𝑔] = 𝐻𝑉 [𝐺�̄�∗ ̇̄𝑔]
Θ̄

(3.3.1)

𝐻𝑉 [𝐺𝜅∗�̇�]
Θ̄

= 𝐻𝑉 [𝐺�̄�∗ ̇̄𝑔]
Θ̄

(3.3.2)

𝐻Θ[𝐺𝜅 ∗ �̇�] = 𝐻𝑉 [𝐺𝜅∗�̇�]
Θ (3.3.3)

Equalities 3.3.1 and 3.3.3 can be seen by an application of Lemmas 3.1.4 and 3.1.3.
To see that Equality 3.3.2 holds we need to show that 𝐻Θ̄ has not been altered by
the forcing iteration from stage �̄� + 1 to stage 𝜅 + 1.
By standard encoding arguments, a forcing adds no new elements of 𝐻Θ̄ if and only
if it adds no bounded subsets of Θ̄. Now, a Θ̄-strategically closed forcing will add
no new bounded subsets of Θ̄. So we claim that ℙ𝛼

(�̄�, 𝜅+1) ≅ ℙ𝜅
(�̄�, 𝜅) ∗ ℚ̇ is < Θ̄-

strategically closed.
Factor ℙ𝜅

𝜅 as ℙ�̄�
�̄� ∗ ℚ̄ ∗ ℙ𝜅

(�̄�+1, 𝜅), then note that between stage �̄�+1 and stage Θ̄ there
can only be trivial forcing by the definition of the iteration. Thus, by Lemma 3.2.7
the tail of the forcing ℙ𝜅

(�̄�+1, 𝜅) is Θ̄-strategically closed. Also ℚ is < 𝜅-directed
closed in 𝑉 [𝐺𝜅], so the iteration ℙ𝛼

(�̄�+1, 𝜅+1) ≅ ℙ𝛼
(�̄�+1,𝜅) ∗ ℚ̇ between stage �̄� + 1 and

𝜅 + 1 will be Θ̄-strategically closed by Lemma 2.1.25.
So we have not altered 𝐻Θ̄ with our iteration, and so Equality 3.3.2 holds.
So in fact we have

𝜋∗ ∶
(

𝐻𝑉 [𝐺𝜅∗�̇�]
Θ̄

,∈, �̄�, Θ̄
)

→
(

𝐻𝑉 [𝐺𝜅∗�̇�]
Θ ,∈, 𝐴,Θ

)

which is a Θ-subcompactness elementary embedding in 𝑉 [𝐺𝜅 ∗ �̇�] for 𝜅 with
predicate 𝐴 ⊆ 𝐻𝛼 as required.
So we have a Θ-subcompactness elementary embedding 𝜋∗ in 𝑉 [𝐺𝜅 ∗ �̇�] for any
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subset 𝐴 in 𝐻Θ, and so 𝜅 is Θ-subcompact in the extension, which contradicts our
assumption that ℚ breaks the Θ-subcompactness of 𝜅. Thus 𝜅 is 𝛼-subcompact after
forcing with ℙ𝜅

𝜅 ∗ ℚ̇.

This leaves us with some questions.

Question 3.3.6. Is it possible to show indestructibility for a 𝛼-subcompact cardinal
where 𝛼 ∉ Reg?

Due to the fact that 𝛼-subcompactness interleaves with partial supercompactness,
the requirement that 𝛼 ∈ Reg is not so egregious — many large cardinals will
automatically be 𝛼-subcompact with regular 𝛼, but for finer detail it would be good
to do without the regularity condition. Our main use of this assumption was in
usage of Lemma 3.1.4, so it is possible that utilising some other techniques to ensure
membership in 𝐻𝛼 will allow us to do without the regularity of 𝛼.

Question 3.3.7. Can the techniques here be used to show indestructibility of other
large cardinals where other methods have proved unsuccessful?

Perhaps this approach would suit other large cardinals which are defined as the
image of the critical point of an elementary embedding, which makes defining an
appropriate Menas function challenging.
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Chapter 4

Indestructibility for

𝐶(𝑛)-Supercompact Cardinals

The preservation and indestructibility of 𝐶 (𝑛)-supercompact cardinals has been an
open topic since their definition in 2012. Some progress has been made in this
direction: in [44], Tsaprounis showed that𝐶 (𝑛)-supercompacts (and𝐶 (𝑛)-extendibles
and more) are preserved by small1 forcing, and that 𝜆-𝐶 (𝑛)-supercompactness is
preserved by ≤ 𝜆<𝜅-distributive forcing.
However we are still some distance from answering the open question in [23],
namely:

Let 𝜅 be a 𝐶 (𝑛)-supercompact cardinal. What kind of forcings preserve

the𝐶 (𝑛)-supercompactness of 𝜅? For instance, is it possible to add many

Cohen subsets to 𝜅, while preserving 𝐶 (𝑛)-supercompactness?

In this chapter we show that, provided we begin with a 𝐶 (2)-extendible cardinal,
we may make its 𝐶 (2)-supercompactness indestructible by all < 𝜅-directed closed
forcing. While this does not entirely answer the above question, this is the first such

1Here, ‘small’ forcing for a 𝐶 (𝑛)-supercompact 𝜅 means forcing of cardinality < 𝜅.
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indestructibility result for 𝐶 (𝑛)-supercompacts, and it is possible the techniques used
here could be used to show a similar result without the additional assumption of
𝐶 (2)-extendibility.
Note that in this argument we will not show that, in the forcing extension, 𝜅 is
𝐶 (2)-extendible, we merely leverage the properties of a 𝐶 (2)-extendible in 𝑉 to
allow us to define the preparatory forcing and lift the embedding. In fact, showing
any indestructibility arguments for 𝐶 (𝑛)-extendibles is impossible, by the following
theorem of Bagaria, Hamkins, Tsaprounis and Usuba [7].

Theorem 4.0.1. (Bagaria, Hamkins, Tsaprounis) Σ3-extendible cardinals 𝜅 are
never indestructible by < 𝜅-directed closed forcing.
In fact, they are superdestructible, meaning that, if 𝜅 isΣ𝑛-extendible with target 𝜃 or
higher in 𝑉 , then it is not Σ3-extendible with target 𝜃 or higher after any non-trivial
𝜅-strategically closed forcing ℚ ∈ 𝑉𝜃.

Here, we say that 𝜅 is Σ𝑛-extendible with target 𝜃 if there is a Σ𝑛-elementary
embedding 𝑗 ∶ 𝑉𝜅 ≺𝑛 𝑉𝜃 with critical point 𝜅.
This theorem implies that a wide class of cardinals including superstrong cardinals,
huge cardinals, 𝐶 (𝑛)-extendible (and extendible) cardinals, as well as 𝐶 (𝑛) cardinals
when 𝑛 ≥ 3, are superdestructible.
So for 𝐶 (𝑛)-extendibles we cannot show any indestructibility results, and any large
cardinal which is, by definition, Σ3-extendible, will also be superdestructible.
So we must be careful when discussing preservation and indestructibility of
𝐶 (𝑛)-supercompacts (and indeed any large cardinal property) to avoid violating
superdestructibility.
A promising result, which suggests that indestructibility for𝐶 (𝑛)-supercompacts may
not be a lost case is that, though some 𝐶 (𝑛)-supercompacts are in 𝐶 (𝑛), not all are.
By [23] the first 𝐶 (𝑛)-supercompact can be the first supercompact, which cannot be
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more than Σ2-correct since ‘there is a supercompact’ is Σ3, so this would contradict
minimality. So it does not follow, by definition of 𝐶 (𝑛)-supercompactness, that
every 𝐶 (𝑛)-supercompact is 𝐶 (𝑛). Our indestructibility result later will only claim
to hold for 𝐶 (2)-supercompactness, mainly because we leverage key properties of Σ2

formulas, but also because the Superdestructibilty Theorem seems to suggest that
the case when 𝑛 ≥ 3 is harder, or perhaps impossible.

4.1 Background

Since 𝐶 (𝑛)-supercompactness elementary embeddings require a degree of closure of
the target, we will be using the following Lemma, which tells us that 𝜆+-c.c. forcing
preserves the closure property we need.

Lemma 4.1.1. [Folklore] Let𝑀 be a transitive inner model with Ord ⊆ 𝑀 , ℙ ∈𝑀

a 𝜆+-c.c. forcing and 𝐺 a ℙ-generic over 𝑀 . Then, in 𝑉 [𝐺], if 𝑉 ⊨ 𝑀𝜆 ⊆ 𝑀 then
𝑀[𝐺]𝜆 ⊆ 𝑀[𝐺].

When dealing withΣ𝑛-correctness we will make use of the following folkloric result.

Lemma 4.1.2. Let 𝑀 be a set model of 𝖹𝖥− . Then the satisfaction relation ⊨ in
𝑀 is Σ1 definable.

The following definition, due to Tsaprounis, is one which we will exploit later.

Definition 4.1.3. A cardinal 𝜅 is jointly 𝜆-𝐶 (𝑛)-supercompact and superstrong if
there exists an elementary embedding 𝑗 ∶ 𝑉 → 𝑀 , which is simultaneously a
𝜆-𝐶 (𝑛)-supercompactness embedding, and witnesses the superstrongness of 𝜅 —
meaning that 𝑀 is transitive, 𝜆𝑀 ⊆ 𝑀 , 𝑗(𝜅) > 𝜆, 𝑗(𝜅) ∈ 𝐶 (𝑛) and 𝑉𝑗(𝜅) ⊆ 𝑀 .

Such large cardinals will be of use to us soon, as it turns out that they are equivalent
to 𝐶 (𝑛)-extendibles. We present Tsaprounis’s proof in [44] to show this equivalence.
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We will be relying upon this result in the indestructibility proof, and will modify
some of the arguments here to suit our purposes later.
We begin with one direction of the equivalence:

Theorem 4.1.4. (Tsaprounis) Suppose 𝜅 is 𝜆 + 1-𝐶 (𝑛)-extendible for some 𝑛 ≥ 1

and some 𝜆 = ℶ𝜆 with cf(𝜆) > 𝜅, witnessed by 𝑗 ∶ 𝑉 → 𝑀 . Then 𝜅 is jointly 𝜆-
𝐶 (𝑛)-supercompact and superstrong. Moreover this is witnessed by 𝑗𝐸 , the extender
embedding arising from the (𝜅, 𝑗(𝜆))-extender 𝐸 derived from 𝑗.

Proof. Fix 𝑛 ≥ 1 and 𝜆 = ℶ𝜆 with cf(𝜆) > 𝜅. Let 𝑗 ∶ 𝑉𝜆+1 → 𝑉𝑗(𝜆)+1 be a 𝜆 + 1-
𝐶 (𝑛)-extendibility elementary embedding for 𝜅. Let 𝐸 = ⟨𝐸𝑎 ∶ 𝑎 ∈ [𝑗(𝜆)]<𝜔⟩ be the
ordinary (𝜅, 𝑗(𝜆))-extender derived from 𝑗, where each𝐸𝑎 is a 𝜅-complete ultrafilter
on [𝜆]|𝑎| with 𝑋 ∈ 𝐸𝑎 if and only if 𝑎 ∈ 𝑗(𝑋).
We may make this definition, despite the fact that 𝑗 is an embedding between sets,
not inner models, since, for any 𝑚 ∈ 𝜔, ([𝜆]𝑚) ⊆ 𝑉𝑗(𝜆)+1. Further 𝐸 ∈ 𝑉𝑗(𝜆)+1 and
𝑉𝑗(𝜆)+1 is able to correctly verify that 𝐸 is a (𝜅, 𝑗(𝜆))-extender, since it contains the
𝐸𝑎 as well as all the projection functions.
Using the extender 𝐸 we derive, as in Definition 2.1.12, the extender embedding
𝑗𝐸 ∶ 𝑉 →𝑀𝐸 with cp(𝑗) = 𝜅. Now we construct a factor embedding

𝑘∗𝐸 ∶ 𝑉 𝑀𝐸
𝑗𝐸 (𝜆)

→ 𝑉𝑗(𝜆) with 𝑘∗𝐸([𝑎, 𝑓 ]) = 𝑗(𝑓 )(𝑎)

for all [𝑎, 𝑓 ] ∈ 𝑉 𝑀𝐸
𝑗𝐸 (𝜆)

, where 𝑎 ∈ [𝑗(𝜆)]<𝜔 and 𝑓 ∶ [𝜆]|𝑎| → 𝑉𝜆. Note that this
is a restricted version of the 𝑘𝐸 used in the discussion after Definition 2.1.12, but
standard arguments show that 𝑘∗𝐸 is a well-defined ∈-embedding, and is injective,
and we have a commutative diagram:
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𝑉𝜆

𝑉 𝑀𝐸
𝑗𝐸 (𝜆)

𝑉𝑗(𝜆)
𝑗 ↾ 𝑉𝜆

𝑗𝐸 ↾ 𝑉𝜆 𝑘∗𝐸

where 𝑗 ↾ 𝑉𝜆 = 𝑘∗𝐸◦(𝑗𝐸 ↾ 𝑉𝜆).
In fact, the embedding 𝑘∗𝐸 is surjective, and so — since its domain and range are
transitive sets — it is the identity function. For surjectivity, we note that, since
𝜆 = ℶ𝜆, we can fix some bijection 𝑔 ∶ [𝜆]1 → 𝑉𝜆, which is itself a member of 𝑉𝜆+1.
So, by elementarity, 𝑗(𝑔) ∶ [𝑗(𝜆)]1 → 𝑉𝑗(𝜆) is also a bijection with 𝑗(𝑔) ∈ 𝑉𝑗(𝜆)+1.
For a given 𝑥 ∈ 𝑉𝑗(𝜅) there is then some 𝛾 < 𝑗(𝜅) such that 𝑗(𝑔)({𝛾}) = 𝑥. But then,
by the definition of 𝑘∗𝐸 , 𝑥 = 𝑘∗𝐸 ([{𝛾}, [𝑔]]), so 𝑘∗𝐸 is surjective.
So we have that 𝑉 𝑀𝐸

𝑗𝐸 (𝜆)
= 𝑉𝑗(𝜆), meaning 𝑉𝑗(𝜆) ⊆ 𝑀𝐸 , and so 𝑗𝐸 is superstrong. This

gives that, for all 𝛼 < 𝜆, 𝑗𝐸(𝛼) = 𝑗(𝜆), so, in particular, 𝑗𝐸(𝜅) = 𝑗(𝜅). Since
(computed in 𝑉 ), cf(𝑗(𝜆)) > 𝜆, we have that 𝑗𝐸“(𝜆) = 𝑗“(𝜆) ∈ 𝑉𝑗(𝜆), so 𝑗𝐸“(𝜆) ∈
𝑀𝐸 .
It now suffices to show the remaining condition for 𝜆-𝐶 (𝑛)-supercompactness
holds — namely that 𝜆𝑀𝐸 ⊆ 𝑀𝐸 . To see this first recall that𝑀𝐸 can be formulated
as

𝑀𝐸 =
{

𝑗𝐸(𝑓 )(𝑎) ∶ 𝑎 ∈ [𝑗(𝜆)]<𝜔, 𝑓 ∶ [𝜆]|𝑎| → 𝑉 , 𝑓 ∈ 𝑉
}

.

So any subset of 𝑀𝐸 of cardinality 𝜆 looks like {𝑗𝐸(𝑓𝑖)(𝑎𝑖) ∶ 𝑖 < 𝜆} where 𝑎𝑖 ∈
[𝑗(𝜆)]<𝜔 and 𝑓𝑖 ∶ [𝜆]|𝑎| → 𝑉 , 𝑓𝑖 ∈ 𝑉 for all 𝑖 < 𝜆.
Now, using that cf (𝑗(𝜆)) > 𝜆, we have ⟨𝑎𝑖 ∶ 𝑖 < 𝜆⟩ ∈ 𝑉𝑗(𝜆) ⊆ 𝑀𝐸 . Since 𝑗𝐸“𝜆 ∈

𝑀𝐸 , the restriction 𝑗𝐸 ↾ 𝜆 ∶ 𝜆 → 𝑗𝐸“(𝜆) is in 𝑀𝐸 (where here the restriction is
viewed as an order-type function in 𝑀𝐸).
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Define 𝐺 ∶ 𝑗𝐸(𝜆) → 𝑀𝐸 by 𝐺 = 𝑗𝐸
(

⟨𝑓𝑖 ∶ 𝑖 < 𝜆⟩
), where 𝐺 ∈ 𝑀𝐸 . Further

define in𝑀𝐸 the function 𝐹 = 𝐺◦
(

𝑗𝐸 ↾ 𝜆
), with domain 𝜆 and range𝑀𝐸 . But, we

actually have that 𝐹 = ⟨𝑗𝐸(𝑓𝑖) ∶ 𝑖 < 𝜆⟩, since, for 𝑖 < 𝜆:

𝐹 (𝑖) = 𝐺
(

𝑗𝐸(𝑖)
) (by definition of 𝐹 )

= 𝑗𝐸
(

⟨𝑓𝑖 ∶ 𝑖 < 𝜆⟩
) (

𝑗𝐸(𝑖)
) (by definition of 𝐺)

= 𝑗𝐸
(

⟨𝑓𝑖 ∶ 𝑖 < 𝜆⟩(𝑖)
) (by elementarity of 𝑗𝐸)

= 𝑗𝐸(𝑓𝑖).

This, together with the fact that ⟨𝑎𝑖 ∶ 𝑖 < 𝜆⟩ ∈ 𝑀𝐸 , gives that
{

𝑗𝐸(𝑓𝑖)(𝑎𝑖) ∶ 𝑖 < 𝜆
}

∈𝑀𝐸 as required.

Now we consider the other direction of the equivalence, namely:

Theorem 4.1.5. (Tsaprounis) If 𝜅 is jointly𝐶 (𝑛)-supercompact and superstrong, then
it is 𝐶 (𝑛)-extendible (for 𝑛 ≥ 0).

Proof. We split into two cases, firstly, when 𝑛 ≥ 1, and the second when 𝑛 = 0.
For 𝑛 ≥ 1, fix some 𝜆 > 𝜅 with 𝜆 ∈ 𝐶 (𝑛+2) and let us suppose that the joint 𝜆-
𝐶 (𝑛)-supercompactness and superstrongness of 𝜅 is witnessed by 𝑗 ∶ 𝑉 → 𝑀 . So
cp(𝑗) = 𝜅, 𝑗(𝜅) > 𝜆, 𝑗(𝜅) ∈ 𝐶 (𝑛), 𝜆𝑀 ⊆ 𝑀 and 𝑉𝑗(𝜅) ⊆ 𝑀 . Now we apply the
following result:
Lemma 4.1.6. (Tsaprounis) If 𝜅 is 𝐶 (𝑛)-supercompact and superstrong, then 𝜅 ∈

𝐶 (𝑛+2) (for any 𝑛 ≥ 0).

The proof of the Lemma is by an induction on 𝑛 in the meta-theory. Full detail can
be found in Lemma 2.29 of [43].
Using this Lemma, we have that 𝜅 ∈ 𝐶 (𝑛+2), and so, by elementarity 𝑀 ⊨ 𝑗(𝜅) ∈

𝐶 (𝑛+2). Also, by definition of 𝜆, 𝑀 ⊨ 𝑗(𝜆) ∈ 𝐶 (𝑛+2). Since 𝑀 is closed under 𝜆
sequences, the restricted embedding 𝑗 ↾ 𝑉𝜆 → 𝑉 𝑀

𝑗(𝜆) is a member of 𝑀 . It is an
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elementary embedding, and has that 𝑗 ↾ 𝑉𝜆(𝜅) > 𝜆, so in fact it witnesses, in 𝑀 ,
that 𝜅 is < 𝜆-𝐶 (𝑛)-extendible — namely, for all 𝛾 < 𝜆, 𝜅 is 𝛾-𝐶 (𝑛)-extendible.
Now, by the Σ𝑛-correctness of 𝑗(𝜅), 𝑉𝑗(𝜅) ⊨ 𝜆 ∈ 𝐶 (𝑛+1) (recalling here Fact 2.3.1).
So, since 𝑉𝑗(𝜅) ⊆ 𝑀 by superstrongness, and 𝑀 ⊨ 𝑗(𝜅) ∈ 𝐶 (𝑛+2), we have that
𝑀 ⊨ 𝜆 ∈ 𝐶 (𝑛+1). So in fact the < 𝜆-𝐶 (𝑛)-extendibility of 𝜅 in 𝑀 can be verified in
𝑉𝜆, i.e. 𝑀 ⊨ 𝑉𝜆 ⊨ 𝜅 is 𝐶 (𝑛)-extendible.
But 𝑉𝜆 ⊆ 𝑀 so in fact 𝑉𝜆 ⊨ 𝜅 is 𝐶 (𝑛)-extendible. Since 𝜆 ∈ 𝐶 (𝑛+2), and, by
Theorem 2.3.6, ‘𝜅 is 𝐶 (𝑛)-extendible’ is 𝐶 (𝑛+2), so 𝜅 is in fact 𝐶 (𝑛)-extendible.
For the case when 𝑛 = 0, one follows the same argument, but with a 𝜆 chosen to be
in 𝐶 (3), and use that ‘𝜅 is extendible’ is Π3. Then, analogously to above, one verifies
that 𝑀 ⊨ 𝜆 ∈ 𝐶 (2) and argues the same.

Now combining Theorems 4.1.4 and 4.1.5 we obtain the equivalence:

Theorem 4.1.7. (Tsaprounis) A cardinal 𝜅 is𝐶 (𝑛)-extendible if and only if it is jointly
𝐶 (𝑛)-supercompact and superstrong.

The following theorem, from [45], will also be used extensively in later 𝐶 (𝑛)-
supercompactness arguments. Its form here is a summarisation of Corollary 2.32
of that paper, and the discussion afterwards.

Theorem 4.1.8. (Tsaprounis) Suppose that 𝑗 ∶ 𝑉 → 𝑀 is a 𝜃-𝐶 (𝑛)-
supercompactness elementary embedding for 𝜅, for some 𝜃 > 𝜅. Let 𝜆 = ℶ𝜆 ≥ 𝜃

and let 𝐸 be the (𝜅, 𝑗(𝜆))-extender derived from 𝑗. Then the extender embedding
𝑗𝐸 ∶ 𝑉 →𝑀𝐸 derived from𝐸 is a 𝜃-𝐶 (𝑛)-supercompactness elementary embedding
for 𝜅 with 𝑗𝐸(𝜅) = 𝑗(𝜅).
Further, if 𝑗 is also superstrong (i.e. 𝜅 is 𝜃-𝐶 (𝑛)-extendible, by Theorem 4.1.7) then
𝑗𝐸 will also be superstrong, so witnesses that 𝜅 is 𝜃-𝐶 (𝑛)-extendible.
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Proof. Fix 𝜃 > 𝜅, 𝑗 ∶ 𝑉 → 𝑀 a 𝜃-𝐶 (𝑛)-supercompactness elementary embedding,
and pick 𝜆 = ℶ𝜆 with cf(𝜆) > 𝜅. Let 𝐸 be the (𝜅, 𝑗(𝜆))-extender derived from 𝑗.
So 𝐸 = ⟨𝐸𝑎 ∶ 𝑎 ∈ [𝑗(𝜆)]<𝜔⟩, where each 𝐸𝑎 is a 𝜅-complete ultrafilter on [𝜆]|𝑎|

with 𝑋 ∈ 𝐸𝑎 if and only if 𝑎 ∈ 𝑗(𝑋). Let 𝑗𝐸 ∶ 𝑉 → 𝑀𝐸 be the derived extender
embedding, which has cp(𝑗𝐸) = 𝜅.
Now, as in the discussion after Definition 2.1.12, we define 𝑘𝐸 ∶ 𝑀𝐸 → 𝑀 by
𝑘𝐸([𝑎, 𝑓 ]) = 𝑗(𝑓 )(𝑎) for all [𝑎, 𝑓 ] ∈ 𝑀𝐸 . We consider its restriction to 𝑉 𝑀𝐸

𝑗𝐸 (𝜆)
and

obtain the following commutative diagram:

𝑉𝜆

𝑉 𝑀𝐸
𝑗𝐸 (𝜆)

𝑉 𝑀
𝑗(𝜆)

𝑗 ↾ 𝑉𝜆

𝑗𝐸 ↾ 𝑉𝜆
𝑘𝐸 ↾ 𝑉 𝑀𝐸

𝑗𝐸 (𝜆)

As in the proof of Theorem 4.1.4, we have that 𝑘𝐸 ↾ 𝑉 𝑀𝐸
𝑗𝐸 (𝜆)

∶ 𝑉 𝑀𝐸
𝑗𝐸 (𝜆)

→ 𝑉 𝑀
𝑗(𝜆) is

actually the identity function, and so 𝑉 𝑀𝐸
𝑗𝐸 (𝜆)

= 𝑉 𝑀
𝑗(𝜆). So, for all 𝛽 < 𝜆— in particular,

for 𝜅 — we have that 𝑗𝐸(𝛽) = 𝑗(𝛽). Indeed, since cf (𝑗(𝜆)) > 𝑗(𝜅) > 𝜃, we have that
𝑗𝐸“(𝜃) = 𝑗“(𝜃) ∈ 𝑉 𝑀

𝑗(𝜆), and 𝑗𝐸“(𝜃) ∈𝑀𝐸 .
Here, if 𝜅 is also superstrong, i.e. 𝑉𝑗(𝜅) ⊆ 𝑀 , then 𝑉𝑗(𝜅) ⊆ 𝑉 𝑀

𝑗(𝜆), so 𝑉𝑗(𝜅) ⊆ 𝑉 𝑀𝐸
𝑗𝐸 (𝜆)

⊆

𝑀𝐸 , but 𝑗𝐸(𝜅) = 𝑗(𝜅), so in fact 𝑉𝑗𝐸 (𝜅) ⊆ 𝑀𝐸 , so 𝑗𝐸 is a superstrong embedding too.
The last condition for 𝜃-𝐶 (𝑛)-supercompactness is closure in𝑀𝐸 under 𝜃-sequences.
For this we apply the exact same argument as was used in Theorem 4.1.4.
It is worth noting here that the assumption that cf(𝜆) > 𝜅, hence cf (𝑗(𝜆)) > 𝑗(𝜅) >

𝜆, is what allows the argument to work.

We now turn our attention to the function which will guide our preparatory forcing.
The following is a combination of Theorem 4.2 of [44] and Theorem 4.2 of [43], the
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latter of which was also independently shown by Corazza in [13].

Theorem 4.1.9 (Tsaprounis). Every 𝐶 (𝑛)-extendible cardinal (for 𝑛 ≥ 1) carries a
𝐶 (𝑛)-extendibility Laver function, namely 𝑓 ⫶ 𝜅 → 𝑉𝜅 such that, for every 𝜆 ≥ 𝜅

and any 𝑥 ∈ 𝐻𝜆+ , there is a jointly 𝜆-𝐶 (𝑛)-supercompact and superstrong elementary
embedding 𝑗 ∶ 𝑉 →𝑀 , such that 𝑗(𝑓 )(𝜅) = 𝑥.

For the preparatory forcing in the indestructibility argument we will utilise a weaker
version of this Laver function, namely a 𝐶 (𝑛)-extendibility Menas function. Using
Hamkins’s techniques in [22], we are able to isolate the important aspects of the
Laver function — namely its ‘fastness’ — and use it to insist that there are many
trivial forcings between each non-trivial stage of our iterated forcing. In this fashion,
we no longer need the full anticipatory power of a Laver function, as the ability of
the Menas function to create long periods of trivial forcing is enough.

Definition 4.1.10. For a 𝐶 (𝑛)-extendible cardinal 𝜅, a 𝐶 (𝑛)-extendibility Menas

function is 𝑓 ⫶𝜅 → 𝜅 such that, for all 𝜆 > 𝜅, there is a jointly 𝜆-𝐶 (𝑛)-supercompact
and superstrong elementary embedding 𝑗 ∶ 𝑉 →𝑀 , such that 𝑗(𝑓 )(𝜅) > 𝜆.

The existence of a 𝐶 (𝑛)-extendibility Laver function immediately gives us a 𝐶 (𝑛)-
extendibility Menas function.

4.2 Indestructibility Result

As is pointed out in [23], there are many issues with showing indestructibility results
for 𝐶 (𝑛)-supercompacts. Chief among them are concerns with lifting embeddings

and with defining extenders appropriately.
In order to lift elementary embeddings for𝐶 (𝑛)-supercompactness one needs to show
definability of the lifted embedding, i.e. if we wish to lift 𝑗 ∶ 𝑉 → 𝑀 to some
𝑗+ ∶ 𝑉 [𝐺] → 𝑀[𝐺 ∗ 𝐻], we need to show that the 𝑀[𝐺]-generic filter 𝐻 is in
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𝑉 [𝐺]. Many lifting arguments in the literature rely upon their 𝑗(𝜅) being ‘small’ in
𝑉 , together with distributivity or closure properties of the forcing used. However
with𝐶 (𝑛)-supercompacts, we must work a little harder, and we will show definability
in a somewhat roundabout way — by lifting an embedding, using this embedding
and a ground model condition to derive an extender, and from that extender defining
a new elementary embedding in the extension.
We begin our proof of indestructibility of a 𝐶 (2)-supercompact with a stronger
assumption, that of 𝐶 (2)-extendibility. The properties of 𝐶 (2)-extendibles, and the
existence of a suitable Menas function, will be used to show that we can make 𝐶 (2)-
supercompactness (but not 𝐶 (2)-extendibility) indestructible.

Theorem 4.2.1. Let 𝜅 be 𝐶 (2)-extendible, then after forcing with the Lottery
Preparation defined relative to a 𝐶 (2)-extendibility Menas function 𝑓 , the 𝐶 (2)-
supercompactness of 𝜅 is indestructible by < 𝜅-directed closed forcing.

Proof. Let 𝜃 ≥ 𝜅 and suppose that 𝐺𝜅 is ℙ𝜅-generic over 𝑉 and 𝑔 is ℚ-generic over
𝑉 [𝐺𝜅], for ℚ a < 𝜅-directed closed forcing in 𝑉 [𝐺𝜅]. Let 𝜆 > max(|ℚ|, 2𝜃<𝜅 ) be
such that 𝜆 = ℶ𝜆 and cf(𝜆) > 𝜅.
Let 𝑗 ∶ 𝑉 → 𝑀 be a jointly 𝜆-𝐶 (2)-supercompact and superstrong elementary
embedding witnessing the Menas property of 𝑓 ; so in particular 𝑗(𝑓 )(𝜅) > 𝜆. Note
that, below a condition which chooses ℚ in the stage 𝜅 lottery, 𝑗(ℙ𝜅) factors as ℙ𝜅 ∗

ℚ̇ ∗ ℙ̇tail in 𝑀 , and ℙtail is < 𝜆-strategically closed in 𝑀[𝐺𝜅 ∗ �̇�] by Lemma 2.2.4.
Now 𝑉 ⊨ 𝑗(𝜅) ∈ 𝐶 (1) and, by the superstrongness of 𝑗, we have that 𝑗(𝜅) is regular
(hence inaccessible).
We now lift the embedding 𝑗 ∶ 𝑉 →𝑀 to 𝑗+ ∶ 𝑉 [𝐺𝜅] →𝑀[𝐻] where𝐻 is 𝑗(ℙ𝜅)-
generic over 𝑀 , using the Lifting Criterion (Theorem 2.2.5), which holds since we
take a direct limit at stage 𝜅 and so 𝑗(𝑝) = 𝑝⌢1𝑗(𝜅) ∈ 𝐺𝜅 ∗ �̇� ∗ �̇�tail for all 𝑝 ∈ 𝐺𝜅 .
Now apply Lemma 4.1.1 to conclude that 𝜆𝑀[𝐻] ⊆ 𝑀[𝐻] — for this recall that
|ℙ𝜅| = 𝜅 and so it has the 𝜆+-c.c..



4.2. INDESTRUCTIBILITY RESULT 59

Now, since |ℙ𝜅| < 𝑗(𝜅), forcing with ℙ𝜅 cannot destroy the inaccessibility (hence
Σ1-correctness) of 𝑗(𝜅). So in 𝑉 [𝐺𝜅], 𝑗+(𝜅) = 𝑗(𝜅) ∈ 𝐶 (1).
Now we note that any Σ2 formula 𝜑 with parameters in 𝑉𝑗(𝜅) may be reformulated
as ∃𝛼 < 𝑗(𝜅) ∶ 𝑉𝛼 ⊨ 𝜑. By Lemma 4.1.2, for set models of 𝖹𝖥 −  , satisfaction
is Σ1 definable. Now, 𝑉 [𝐺𝜅] ⊨ 𝑗(𝜅) ∈ 𝐶 (1), and any Σ2 formula with parameters in
𝑉 [𝐺𝜅]𝑗(𝜅) is true in 𝑉 [𝐺𝜅] if and only if it’s true in 𝑉 [𝐺𝜅]𝑗(𝜅). Thus 𝑗(𝜅) ∈ 𝐶 (2) in
𝑉 [𝐺𝜅]. For clarity:

𝑉 [𝐺𝜅]𝑗(𝜅) ⊨ 𝜑 iff
𝑉 [𝐺𝜅]𝑗(𝜅) ⊨ ∃𝛼 < 𝑗(𝜅) ∶ 𝑉 [𝐺𝜅]𝛼 ⊨ 𝜑 iff
𝑉 [𝐺𝜅] ⊨ ∃𝛼 < 𝑗(𝜅) ∶ 𝑉 [𝐺𝜅]𝛼 ⊨ 𝜑 iff
𝑉 [𝐺𝜅] ⊨ 𝜑.

We now must lift the embedding again, and show that, after forcing with ℚ, 𝜅
is still 𝜆-𝐶 (2)-supercompact. Note here that we do not — and cannot — claim
that the lifted embedding is also superstrong like 𝑗, since this would violate the
Superdestructibility Theorem 4.0.1.
For the second lift note that ℚ is < 𝜅-directed closed, hence 𝑗+(ℚ) is < 𝑗+(𝜅)-
directed closed, so in particular it is< 𝜆-directed closed. Now |�̇�| < 𝜆, so |𝑗+“(�̇�)| ≤
𝜆, and since 𝜆𝑀[𝐻] ⊆ 𝑀[𝐻], there is some master condition 𝑞 ∈ 𝑗+(ℚ) such that
𝑞 ≤ 𝑗+(𝑝) for all 𝑝 ∈ 𝑔. Since 𝑞 ∈𝑀[𝐻] there is a ℙ𝜅 ∗ ℚ̇-name �̇� in 𝑀 , hence in
𝑉 , which 𝑞 interprets.
Using this master condition (and applying the lifting criterion) we lift again to an
elementary embedding 𝑗++ ∶ 𝑉 [𝐺𝜅 ∗ �̇�] → 𝑀[𝐻 ∗ ℎ̇], where ℎ is 𝑗+(ℚ)-generic
over 𝑀[𝐻] and contains the master condition 𝑞. This elementary embedding has
that 𝑗++(𝜅) = 𝑗+(𝜅) = 𝑗(𝜅) > 𝜆, and we can again apply Lemma 4.1.1 to conclude
that 𝜆𝑀 [

𝑗(𝐺𝜅) ∗ ̇𝑗+(𝑔)
]

⊆ 𝑀
[

𝑗(𝐺𝜅) ∗ ̇𝑗+(𝑔)
] since |ℚ| < 𝜆 so it clearly has the

𝜆+-c.c.
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As with the first lift we have that 𝑗++(𝜅) = 𝑗(𝜅) is Σ2-correct in 𝑉 [𝐺𝜅 ∗ �̇�], since
forcing with ℚ cannot break the inaccessibility, hence Σ1-correctness of 𝑗++(𝜅), and
Σ2 formulas are reflected down below 𝑗++(𝜅), with satisfaction in 𝑉 [𝐺𝜅 ∗ �̇�]𝑗++(𝜅)
being Σ1 definable.
We can now, in 𝑉 [𝐺𝜅 ∗ �̇�], define a (𝜅, 𝑗++(𝜆))-extender𝐸 = ⟨𝐸𝑎 ∶ 𝑎 ∈ [𝑗++(𝜆)]<𝜔⟩

by:
𝑋 ∈ 𝐸𝑎 ↔ 𝑋 ⊆ [𝜆]|𝑎| ∧ 𝑞 ⊩ 𝑎 ∈ 𝑗++(𝑋)

where 𝑞 is the master condition above.
Since the definition of each 𝐸𝑎 is different to the usual (namely 𝑋 ∈ 𝐸𝑎 if and only
if 𝑞 ⊩ 𝑎 ∈ 𝑗++(𝑋) instead of 𝑎 ∈ 𝑗++(𝑋)

), we will show that this definition does
indeed give rise to an extender. We verify each condition of Definition 2.1.13:

1. (a) First we show that each 𝐸𝑎 is a 𝜅-complete ultrafilter on [𝜆]|𝑎|.
First, we have that [𝜆]|𝑎| ∈ 𝐸𝑎 since 𝑎 ∈ [𝑗++(𝜆)]<𝜔, so 𝟙 ⊩ 𝑎 ∈

𝑗++([𝜆]|𝑎|). Clearly 𝑞 does not force that 𝑎 ∈ 𝑗++(∅) = ∅. If 𝐴 and
𝐵 are in 𝐸𝑎 then 𝑞 ⊩ 𝑎 ∈ 𝑗++(𝐴) and 𝑞 ⊩ 𝑎 ∈ 𝑗++(𝐵), so

𝑞 ⊩ 𝑎 ∈ 𝑗++(𝐴) ∩ 𝑗++(𝐵) = 𝑗++(𝐴 ∩ 𝐵).

So 𝐴 ∩ 𝐵 ∈ 𝐸𝑎. If 𝐴,𝐵 ⊆ [𝜆]|𝑎|, 𝐴 ∈ 𝐸𝑎 and 𝐴 ⊆ 𝐵, then 𝑞 ⊩ 𝑎 ∈

𝑗++(𝐴) ⊆ 𝑗++(𝐵), so 𝑞 ⊩ 𝑎 ∈ 𝑗++(𝐵), so 𝐵 ∈ 𝐸𝑎.
Since either 𝑞 ⊩ 𝑎 ∈ 𝑗++(𝑋) or 𝑞 ⊩ 𝑎 ∈ 𝑗++

(

[𝜆]|𝑎|
)

⧵ 𝑗++(𝑋) for any
𝑋 ⊆ [𝜆]|𝑎|, either 𝑋 ∈ 𝐸𝑎 or [𝜆]|𝑎| ⧵𝑋 ∈ 𝐸𝑎.
To see that 𝐸𝑎 is 𝜅-complete, let 𝛾 < 𝜅 and suppose 𝑊 = {𝑋𝛿 ∶ 𝛿 <

𝛾} ⊆ 𝐸𝑎. Then 𝑞 ⊩ ∀𝑋𝛿 ∈ 𝑊 ∶ 𝑎 ∈ 𝑗++(𝑋𝛿), and, since the critical
point of 𝑗++ is 𝜅, 𝑗++(𝑊 ) = 𝑗++“(𝑊 ). So in fact 𝑞 ⊩ 𝑎 ∈ 𝑗++(𝑋𝛿) for
each 𝛿 < 𝛾 , and so 𝑞 ⊩ 𝑎 ∈

⋂

𝛿<𝛾 𝑗
++(𝑋𝛿), so the intersection is in 𝐸𝑎

also.
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(b) We need now some 𝑎 ∈ [𝑗++(𝜆)]<𝜔 such that 𝐸𝑎 is not a 𝜅+-complete
ultrafilter on [𝜆]|𝑎|. Let us pick 𝑎 = {𝜅} and define, for each 𝛾 < 𝜅,

𝑋𝛾 = {{𝛿} ∶ 𝛾 < 𝛿 < 𝜆} ⊆ [𝜆]|𝑎| = [𝜆]1.

For all 𝛾 < 𝜅, we have that 𝑎 = {𝜅} ∈ 𝑗++(𝑋𝛾) since 𝑗++(𝑋𝛾) = {{𝛿} ∶

𝛾 < 𝛿 < 𝑗++(𝜆)} (recall that the critical point of 𝑗++ is 𝜅 and 𝛾 < 𝜅).
But ⋂𝛾<𝜅 𝑋𝛾 = ∅ so it is not in 𝐸𝑎, as required.

(c) Now we wish to show that for all 𝛾 < 𝜆 there is some 𝑎 ∈ [𝑗++(𝜆)]<𝜔 such
that {𝑥 ∈ [𝜆]|𝑎| ∶ 𝛾 ∈ 𝑥} ∈ 𝐸𝑎. Note that, for 𝛾 < 𝜆, 𝑗++(𝛾) < 𝑗++(𝜆).
So, for a given 𝛾 , let 𝑎 = {𝑗++(𝛾)} ∈ [𝑗++(𝜆)]<𝜔. Then 𝑋 = {𝑥 ∈ [𝜆]1 ∶

𝛾 ∈ 𝑥} ∈ 𝐸𝑎 if and only if 𝑞 ⊩ 𝑎 ∈ 𝑗++(𝑋), i.e.

𝑞 ⊩ {𝑗++(𝛾)} ∈ {𝑥 ∈ [𝑗++(𝜆)]1 ∶ 𝑗++(𝛾) ∈ 𝑥},

so we are done.

2. Now we show Coherence: that for all 𝑎, 𝑏 ∈ [𝑗++(𝜆)]<𝜔 with 𝑎 ⊆ 𝑏,𝑋 ∈ 𝐸𝑎 if
and only if 𝑊 = {𝑥 ∈ [𝜆]|𝑏| ∶ 𝜋𝑏𝑎(𝑥) ∈ 𝑋} ∈ 𝐸𝑏, where 𝜋𝑏𝑎 ∶ [𝜆]|𝑏| → [𝜆]|𝑎|

is as defined in §2.1.11. To see this first note that 𝑗++(𝜋𝑏𝑎)(𝑏) = 𝑎, so 𝑋 ∈ 𝐸𝑎
if and only if 𝑞 ⊩ 𝑎 ∈ 𝑗++(𝑋), i.e.

𝑞 ⊩ 𝑗++(𝜋𝑏𝑎)(𝑏) ∈ 𝑗++(𝑋).

This is true if and only if

𝑞 ⊩ 𝑏 ∈
{

𝑥 ∈ [𝑗++(𝜆)]|𝑏| ∶ 𝑗++(𝜋𝑏𝑎)(𝑥) ∈ 𝑗++(𝑋)
}

,

which is precisely 𝑞 ⊩ 𝑏 ∈ 𝑗++(𝑊 ), so 𝑎 ∈ 𝐸𝑎 if and only if 𝑊 ∈ 𝐸𝑏.

3. For Normality, let 𝑎 ∈ [𝑗++(𝜆)]<𝜔 and 𝑓 ∈ [𝜆]|𝑎|𝑉 [𝐺𝜅 ∗ �̇�] ∩ 𝑉 [𝐺𝜅 ∗ �̇�]

be such that {𝑥 ∈ [𝜆]|𝑎| ∶ 𝑓 (𝑥) ∈ max(𝑥)} ∈ 𝐸𝑎. So there is some name
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̇𝑓 for 𝑓 such that 1 ⊩ 𝑎 ∈ 𝑗++
(

{𝑥 ∈ [𝜆]|𝑎| ∶ ̇𝑓 (𝑥) ∈ max(𝑥)}
), so 1 ⊩

𝑗++( ̇𝑓 )(𝑎) ∈ max(𝑎) ∈ 𝜆. Since 𝑞 is a common extension for 𝑞 and 1, we have
that 𝑞 ⊩ 𝑗++( ̇𝑓 )(𝑎) ∈ 𝜆.
Now let 𝑏 = 𝑎 ∪ {𝑗++( ̇𝑓 )(𝑎)} and note that {𝑥 ∈ [𝜆]|𝑏| ∶ ̇𝑓◦𝜋𝑏𝑎(𝑥) ∈ 𝑥} ∈

𝐸𝑏 if and only if 𝑞 ⊩ 𝑏 ∈ 𝑗++
(

{𝑥 ∈ [𝜆]|𝑏| ∶ ̇𝑓◦𝜋𝑏𝑎(𝑥) ∈ 𝑥}
), i.e. if 𝑞 ⊩

𝑗++
( ̇𝑓◦𝜋𝑏𝑎(𝑏)

)

∈ 𝑏, which holds by definition of 𝑏.

4. For Well-Foundedness we verify the equivalent condition (as seen in [27]),
namely that the direct limit 𝑀𝐸 is well-founded. This holds since, if in 𝑀𝐸

there is an ∈𝐸-descending chain 𝑥𝑛 = [𝑎𝑛, [𝑓𝑛]] with 𝑥𝑛+1 ∈ 𝑥𝑛 for all 𝑛 ∈ 𝜔,
then there is, by the equivalence in Lemma 2.1.14, an ∈-descending chain
𝑗(𝑓𝑛)(𝑎𝑛) in 𝑀 , which contradicts that 𝑀 itself is well-founded.

Now, from the extender 𝐸 we derive the extender embedding 𝑗𝐸 ∶ 𝑉 [𝐺𝜅 ∗ �̇�] →

𝑁 for 𝑁 ≅ Ult
(

𝑉 [𝐺𝜅 ∗ �̇�], 𝐸
), which we show is a 𝜃-𝐶 (2)-supercompactness

embedding with 𝑗𝐸(𝜅) = 𝑗++(𝜅).
To see this we follow the same proof structure as that of Theorem 4.1.8, the only
difference will be that, instead of defining the ultrafilters 𝐸𝑎 by 𝑋 ∈ 𝐸𝑎 ⟺ 𝑎 ∈

𝑗++(𝑋), we have the requirement that 𝑋 ∈ 𝐸𝑎 ⟺ �̇� ⊩ 𝑎 ∈ 𝑗++(𝑋). For clarity
we will repeat the full argument here.
We define a restricted factor embedding

𝑘𝐸 ↾ 𝑉 𝑁
𝑗𝐸 (𝜆)

∶ 𝑉 𝑁
𝑗𝐸 (𝜆)

→ 𝑉 𝑀[𝐻∗ℎ̇]
𝑗++(𝜆)

by 𝑘𝐸 ↾ 𝑉 𝑁
𝑗𝐸 (𝜆)

([𝑎, [𝑓 ]]) = 𝑗++(𝑓 )(𝑎), where 𝑎 ∈ [𝑗++(𝜆)]<𝜔 and 𝑓 ∶ [𝜆]|𝑎| →

𝑉 [𝐺𝜅 ∗ �̇�]𝜆. For brevity, we refer to 𝑘𝐸 ↾ 𝑉 𝑁
𝑗𝐸 (𝜆)

as 𝑘∗𝐸 . We then obtain the following
commutative diagram:



4.2. INDESTRUCTIBILITY RESULT 63

𝑉 [𝐺𝜅 ∗ �̇�]𝜆

𝑉 𝑁
𝑗𝐸 (𝜆)

𝑉 𝑀[𝐻∗ℎ̇]
𝑗++(𝜆)

𝑗++ ↾ 𝑉 [𝐺𝜅 ∗ �̇�]𝜆

𝑗𝐸 ↾ 𝑉 [𝐺𝜅 ∗ �̇�]𝜆
𝑘∗𝐸

Claim 4.2.2. The restricted embedding 𝑘∗𝐸 is the identity function.

Proof. Injectivity follows since, if 𝑗++(𝑓 )(𝑎) = 𝑗++(𝑔)(𝑏), then this is precisely
equivalent to [𝑎, [𝑓 ]] = [𝑏, [𝑔]] as seen in Lemma 2.1.14. Similarly, this equivalence
gives that 𝑘∗𝐸 is well-defined. For surjectivity, since 𝜆 = ℶ𝜆, we may fix a bijection
𝑔 ∶ [𝜆] → 𝑉𝜆 in 𝑉 [𝐺𝜅 ∗ �̇�]. Now consider 𝑗++(𝑔) ∶

[

𝑗++(𝜆)
]1

→ 𝑉 𝑀[𝐻∗ℎ̇]
𝑗++(𝜆) ,

which is, by elementarity, also a bijection. So for any 𝑥 ∈ 𝑉 𝑀[𝐻∗ℎ̇]
𝑗++(𝜆) there is some

𝛾 < 𝑗++(𝜆) such that 𝑥 = 𝑗++(𝑔)({𝛾}). But, by the definition of 𝑘∗𝐸 , this is the same
as 𝑥 = 𝑘∗𝐸 ([{𝛾}, [𝑔]]). Since both the domain and range of 𝑘∗𝐸 are transitive sets, it
is the identity function.

So, this means that 𝑉 𝑁
𝑗𝐸 (𝜆)

= 𝑉 𝑀[𝐻∗ℎ̇]
𝑗++(𝜆) . Note here that, while this implies that

𝑉 𝑀[𝐻∗ℎ̇]
𝑗++(𝜆) ⊆ 𝑁 , it does not imply that 𝑉 𝑉 [𝐺∗�̇�]

𝑗++(𝜆) ⊆ 𝑁 , since 𝑗++ is not superstrong.
So we have not violated the Superdestructibility Theorem (4.0.1).
That 𝑘∗𝐸 is the identity also gives that, for every ordinal 𝛾 ≤ 𝜆, 𝑗𝐸(𝛾) = 𝑗++(𝛾),
so, in particular, 𝑗𝐸(𝜅) = 𝑗++(𝜅). Thus 𝑗𝐸(𝜅) ∈ 𝐶 (2). Now, since cf(𝜆) > 𝜅 and
𝑗++(𝜅) > 𝜃, we have that cf (𝑗++(𝜆)) > 𝜃 (when computed in 𝑉 [𝐺𝜅 ∗ �̇�]), and so
𝑗𝐸“(𝜃) = 𝑗++“(𝜃) ∈ 𝑉 𝑀[𝐻∗ℎ̇]

𝑗++(𝜆) . Since 𝑉 𝑁
𝑗𝐸 (𝜆)

= 𝑉 𝑀[𝐻∗ℎ̇]
𝑗++(𝜆) , it follows that 𝑗𝐸“(𝜃) ∈ 𝑁 .

All that remains to show that 𝑗𝐸 is a 𝜃-𝐶 (2)-supercompactness embedding is that
𝜃𝑁 ⊆ 𝑁 . This argument also follows the structure of Theorem 4.1.8.



64 4. INDESTRUCTIBILITY FOR 𝐶 (𝑛)-SUPERCOMPACT CARDINALS

We use the fact that, for our extender𝐸 derived from 𝑗++, with associated embedding
𝑗𝐸 , the transitive collapse of the direct limit can be expressed as follows:

𝑁 =
{

𝑗𝐸(𝑓 )(𝑎) ∶ 𝑎 ∈
[

𝑗++(𝜆)
]<𝜔 , 𝑓 ∶ [𝜆]|𝑎| → 𝑉

[

𝐺𝜅 ∗ �̇�
]

, 𝑓 ∈ 𝑉
[

𝐺𝜅 ∗ �̇�
]

}

.

So a subset of 𝑁 of cardinality 𝜃 can be expressed as {𝑗𝐸(𝑓𝑖)(𝑎𝑖) ∶ 𝑖 < 𝜃}, where
𝑎𝑖 and 𝑓𝑖 are as above. Since cf(𝑗++(𝜆)) > 𝜃 we have that ⟨𝑎𝑖 ∶ 𝑖 < 𝜃⟩ ∈ 𝑉 [𝐺𝜅 ∗

�̇�]𝑗++(𝜆) ⊆ 𝑁 . So we will show that the sequence ⟨𝑗𝐸(𝑓𝑖) ∶ 𝑖 < 𝜃⟩ is a member of𝑁 ,
so that𝑁 can compute our sequence ⟨𝑗𝐸(𝑓𝑖)(𝑎𝑖) ∶ 𝑖 < 𝜃⟩ using pointwise evaluation
of the 𝑎𝑖 under the 𝑗𝐸(𝑓𝑖).
To see this, note that 𝑗𝐸“(𝜃) ∈ 𝑁 means that 𝑗𝐸 ↾ 𝜃 ∈ 𝑁 , where here we consider
the restriction 𝑗𝐸 ↾ 𝜃 ∶ 𝜃 → 𝑗𝐸“(𝜃) as an order-type function in 𝑁 .
As in Theorem 4.1.8 we can define 𝐺 ∶ 𝑗𝐸(𝜃) → 𝑁 , where 𝐺 = 𝑗𝐸

(

⟨𝑓𝑖 ∶ 𝑖 < 𝜃⟩
).

Again, this 𝐺 is in 𝑁 . Define in 𝑁 the function 𝐹 = 𝐺◦𝑗𝐸 ↾ 𝜃 ∶ 𝜃 → 𝑁 , which is
equivalent to ⟨𝑗𝐸(𝑓𝑖) ∶ 𝑖 < 𝜃⟩ since for every 𝑖 < 𝜃,

𝐹 (𝑖) = 𝐺
(

𝑗𝐸(𝑖)
)

= 𝑗𝐸
(

⟨𝑓𝑖 ∶ 𝑖 < 𝜃⟩
) (

𝑗𝐸(𝑖)
)

= 𝑗𝐸
(

⟨𝑓𝑖 ∶ 𝑖 < 𝜃⟩(𝑖)
)

= 𝑗𝐸(𝑓𝑖).

So, as required, we have that 𝐹 = ⟨𝑗𝐸(𝑓𝑖) ∶ 𝑖 < 𝜃⟩ is a member of 𝑁 , being a
composition of functions in 𝑁 . So ⟨𝑗𝐸(𝑓𝑖) ∶ 𝑖 < 𝜃⟩ ∈ 𝑁 , and so 𝑁 is closed under
𝜃-sequences.
Hence, 𝑗𝐸 witnesses that 𝜅 is 𝜃-𝐶 (2)-supercompact in 𝑉 [𝐺𝜅 ∗ �̇�] and so, since this
holds for any 𝜃, we have that 𝜅 is indestructibly 𝐶 (2)-supercompact after any < 𝜅-
directed closed forcing.

Note that, an immediate corollary of this result is:

Corollary 4.2.3. Let 𝜅 be 𝐶 (1)-extendible (namely, extendible). Then we can make
the 𝐶 (1)-supercompactness of 𝜅 indestructible by all < 𝜅-directed closed forcing.
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To see this, one argues as above, and simply omits the argument about why the
image of the lifted embeddings is in 𝐶 (2), simply relying on the fact that ‘𝑗(𝜅) is
inaccessible’ is preserved.
Of course, this still leaves us with some questions to consider.

Question 4.2.4. Is it possible to make a 𝐶 (2)-supercompact cardinal which is not
𝐶 (2)-extendible indestructible by all < 𝜅-directed closed forcing?

The extra assumption of 𝐶 (2)-extendibility in our proof is mainly used to affirm
the existence of a 𝐶 (2)-extendibility Menas function, and to give that 𝑗(𝜅) ∈ Reg,
which helps with some preservation arguments. Due to the equivalence, shown my
Tsaprounis in [44], between 𝐶 (𝑛)-extendible cardinals and jointly 𝐶 (𝑛)-supercompact
and superstrong cardinals, it is difficult to add much extra strength to a 𝐶 (𝑛)-
supercompactness embedding without accidentally creating a 𝐶 (𝑛)-extendible one.
One possible avenue is to weaken the assumption that 𝑗 is a superstrong embedding
to merely 𝑗(𝜅) being a regular cardinal. This allows for the lifting arguments to
work, but we would have to show the existence of a Menas function for 𝐶 (2)-
supercompactness, where each witnessing embedding 𝑗 has that 𝑗(𝜅) ∈ Reg. Much
like the existence of a 𝐶 (𝑛)-supercompactness embedding, this is as yet unknown.

Question 4.2.5. What can be said about the indestructibility of a 𝐶 (𝑛)-supercompact
when 𝑛 ≥ 3?

With this question we have to carefully consider the Superdestructibility Theorem
(4.0.1), and whether the indestructibility of a 𝐶 (3)-supercompact would violate this
result. Further, the proof we have utilised relies upon reflection properties of Σ2

formulas, so for 𝑛 > 2 it isn’t clear how to use our methods, if they are even
applicable.
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Chapter 5

Combining Subcompactness with

𝐶(𝑛)

When considering 𝐶 (𝑛)-large cardinals it is natural to ask whether any given large
cardinal may be given a 𝐶 (𝑛) counterpart. For cardinals 𝜅 defined as the critical
point of an elementary embedding 𝑗 this is simple — we just require that the image
of the critical point 𝑗(𝜅) is in 𝐶 (𝑛). However, for other large cardinals, such as 𝛼-
subcompact cardinals, it is not so clear how a 𝐶 (𝑛) version might be defined. One
option is to stick with the paradigm of other 𝐶 (𝑛)-large cardinals, and, for an 𝛼-
subcompact 𝜅, require that the image of the critical point (namely 𝜅) is in 𝐶 (𝑛). This
would of course give a strengthening of 𝛼-subcompactness, but for our purposes
doesn’t appear to offer much interest.
A potentially more interesting option is to instead require that 𝛼 is 𝐶 (𝑛), so that the
witnessing embeddings have domain 𝐻𝛼 where 𝛼 ∈ 𝐶 (𝑛).
Note here that, if 𝜅 is 𝛽-subcompact then it is 𝛼-subcompact for any 𝛽 > 𝛼 > 𝜅 with
𝛼 ∈ 𝐶 (𝑛). Moreover, if 𝜅 is supercompact (hence 𝛼-subcompact for all 𝛼), then for
all 𝑛 ∈ 𝜔 and for all 𝛼 ∈ 𝐶 (𝑛), 𝜅 is 𝛼-subcompact.
Given such an 𝛼-subcompact cardinal, for 𝑛 ≥ 1, then we have the following:
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Theorem 5.0.1. Let 𝜅 be 𝛼-subcompact, where 𝛼 ∈ 𝐶 (𝑛) and 𝑛 ≥ 1. Let 𝜋𝐴 ∶ (𝐻�̄�,∈

, �̄�) → (𝐻𝛼,∈, 𝐴) be an 𝛼-subcompactness elementary embedding for 𝜅 with critical
point �̄�, such that 𝜋𝐴(�̄�) = 𝜅 (for some 𝐴 ⊆ 𝐻𝛼). Then �̄� is �̄�-extendible, witnessed
by 𝜋𝐴.

Proof. First note that, since 𝛼 ∈ 𝐶 (𝑛) and 𝑛 ≥ 1, 𝐻𝛼 = 𝑉𝛼. Note also that 𝜋𝐴(�̄�) =
𝜅 > �̄�. So to show that 𝜋𝐴 is indeed an �̄�-extendibility elementary embedding for
�̄�, it suffices to show that 𝑉�̄� = 𝐻�̄�.
To verify this condition we characterise 𝑉𝛼 = 𝐻𝛼 by:

𝐻𝛼 ⊨ ∀𝑥∃𝑦 (𝑦 = (𝑥)) .

Now, by elementarity of 𝜋𝐴, we have that 𝐻�̄� ⊨ ∀𝑥∃𝑦 (𝑦 = (𝑥)), and so 𝑉�̄� = 𝐻�̄�

also.

So we have deduced, from the existence of an 𝛼-subcompact cardinal, the existence
of an �̄�-extendible �̄� < 𝜅, where �̄� < 𝜅. But there are many more such critical
points below 𝜅, as we see in the following theorem.

Theorem 5.0.2. Let 𝜅 be an 𝛼-subcompact cardinal for any 𝛼 > 𝜅. Then there is a
stationary set of �̄�𝑖 below 𝜅, where each �̄�𝑖 is the critical point of a 𝛼-subcompactness
embedding for 𝜅.

Proof. Suppose 𝜅 is 𝛼-subcompact and let  be club in 𝜅. We show that there is a
critical point of an 𝛼-subcompactness embedding contained in .
Now, consider an 𝛼-subcompactness embedding with predicate , namely 𝜋 ∶

(𝐻�̄�,∈, ̄) → (𝐻𝛼,∈,), which has critical point some �̄�, with 𝜋(�̄�) = 𝜅.
Note that, by elementarity, ̄ is a club subset of �̄�. But, since the critical point of 𝜋
is �̄�, in fact ̄ =  ∩ �̄�. Since  is club, this means that �̄� ∈ , as required.
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Now we combine these two theorems to deduce the existence of many partially
extendible cardinals below an 𝛼-subcompact.

Theorem 5.0.3. Let 𝜅 be 𝛼-subcompact, for 𝛼 ∈ 𝐶 (𝑛) with 𝑛 ≥ 1. Then there is a
stationary set of �̄�𝑖 < 𝜅 where each �̄�𝑖 is �̄�𝑖-extendible, for �̄�𝑖 < 𝜅 which is given by
an 𝛼-subcompactness embedding.

With this shown, we can direct our attention to partially supercompact cardinals,
recalling the relationship between partial supercompactness and 𝛼-subcompactness.

Theorem 5.0.4. Let 𝜅 be 2<𝛼-supercompact for some 𝛼 ∈ 𝐶 (𝑛) with 𝑛 ≥ 1. Then
there is a stationary set of �̄�𝑖 < 𝜅, where each �̄�𝑖 is �̄�𝑖-extendible, and �̄�𝑖 < 𝜅 is given
by an 𝛼-subcompactness elementary embedding for 𝜅.

Proof. The result follows by Theorem 3.1.2, which states that any 2<𝛼-supercompact
is 𝛼-subcompact, and then applying Theorem 5.0.3.

So, taking this idea to its natural conclusion, we consider the case of full
supercompactness.

Corollary 5.0.5. Suppose 𝜅 is supercompact. Then there are unboundedly many
𝛼 ∈ 𝐶 (𝑛) for each 𝑛 ≥ 1, and for each such 𝛼 there exists a stationary set of
�̄�𝑖-extendible cardinals �̄�𝑖 < 𝜅, where �̄�𝑖 < 𝜅 is given by an 𝛼-subcompactness
embedding for 𝜅.

One thing to note here is that, if we were to make a supercompact cardinal 𝜅
indestructible by < 𝜅-directed closed forcing, then, since the existence of many
partial extendibles below 𝜅 follows by definition, we would make this property
indestructible too. However, we would not have that the same �̄�𝑖 are �̄�𝑖-extendible in
the forcing extension, since this would imply that �̄�𝑖 is indestructibly �̄�𝑖-extendible,
which clearly violates the Superdestructibility Theorem 4.0.1.



70 5. COMBINING SUBCOMPACTNESS WITH 𝐶 (𝑛)

Our final remark regarding this topic is that, should 𝜅 itself be a member of𝐶 (𝑛), then
in fact all the �̄�𝑖-extendible embeddings below 𝜅 are actually �̄�𝑖-𝐶 (𝑛)-extendibility
embeddings.

Theorem 5.0.6. Let 𝜅 be 𝛼-subcompact for any 𝛼, and suppose 𝜅 ∈ 𝐶 (𝑛) for 𝑛 ≥

0. Then there is a stationary set of �̄�𝑖 < 𝜅 where each �̄�𝑖 is an �̄�𝑖-𝐶 (𝑛)-extendible
cardinal, where �̄�𝑖 < 𝜅 is given by an 𝛼-subcompactness embedding for 𝜅.

Proof. This follows by Theorem 5.0.3, and by noting that, for a witnessing �̄�𝑖-
extendibility elementary embedding 𝜋𝑖 with critical point �̄�𝑖 < 𝜅, we have that
𝜋(�̄�) = 𝜅 ∈ 𝐶 (𝑛), thus fulfilling the extra requirement for an �̄�𝑖-extendibility
embedding to be an �̄�𝑖-𝐶 (𝑛)-extendibility embedding.

The analogue for fully supercompact 𝜅 follows as before:

Corollary 5.0.7. Suppose 𝜅 is supercompact and 𝜅 ∈ 𝐶 (𝑛). Then there are
unboundedly many 𝛼 ∈ 𝐶 (𝑚) with 𝑚 ≥ 1, and for each such 𝛼 there exists a
stationary set of �̄�𝑖-𝐶 (𝑛)-extendible cardinals �̄�𝑖 < 𝜅, where �̄�𝑖 < 𝜅 is given by
an 𝛼-subcompactness embedding for 𝜅.

In particular, since a supercompact cardinal is 𝐶 (2), there are, below any
supercompact 𝜅, unboundedly many 𝛼 ∈ 𝐶 (2), and for each such 𝛼 a stationary
set of partial 𝐶 (2)-extendibles (and the same holds for 𝑛 = 1).
Further, if we have a𝐶 (𝑛)-extendible cardinal 𝜅, then it is automatically Σ𝑛+2-correct,
and so the result gives us a stationary set of �̄�𝑖-𝐶 (𝑛+2)-extendibles below 𝜅, for
unboundedly many 𝛼, as above.
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Chapter 6

Anti Foundation

This Chapter is comprised of joint work with John Howe and Rosario Mennuni,
regarding reducts of countable models of Anti-Foundational set theory. The work
came about after I gave a seminar about my Master’s thesis, which culminated in
a paper ‘Undirecting membership in models of Anti-Foundation’ ([1]), co-authored
with my supervisor Peter Cameron. The joint paper with Howe and Mennuni has
now been published in the Bulletin of Symbolic Logic (‘On double-membership
graphs of models of Anti-Foundation’, [2]) and extends the results of the original
paper in new and perhaps unexpected ways.
In it we answer some questions about graphs that are reducts of countable models of
Anti-Foundation, obtained by considering the binary relation of double-membership
𝑥 ∈ 𝑦 ∈ 𝑥. Since its content is quite different from the rest of the thesis, some
additional preliminaries are required.

6.1 Background

We will give a brief survey of relevant definitions and results in the field of model
theory, more substantial detail can be found in e.g. [24], [33].
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Let  be a first-order language, and 𝑇 a theory in . Then 𝑇 is complete if it has
models, and any two of its models are elementarily equivalent.
We say that a structure𝑋 is ultrahomogeneous if every isomorphism between finitely
generated substructures of 𝑋 extends to an automorphism of 𝑋.
Let 𝜆 be a cardinal. A complete theory with exactly one model of cardinality 𝜆 up
to isomorphism is called 𝜆-categorical. A structure 𝑋 is 𝜆-categorical if the theory
of 𝑋 is 𝜆-categorical.
For a theory 𝑇 , an 𝑛-type is a set Φ(�̄�), where �̄� = (𝑥0,… , 𝑥𝑛−1) such that, for some
model 𝑀 of 𝑇 , and some 𝑛-tuple �̄� = (𝑎0,… , 𝑎𝑛−1) with 𝑎𝑖 ∈ 𝑀 , 𝑀 ⊨ 𝜓(�̄�) for
all 𝜓 ∈ Φ. In this case we say that the model 𝑀 realises the 𝑛-type Φ, and that �̄�
realises Φ in 𝑀 .
We say that 𝑀 omits Φ if no tuple in 𝑀 realises Φ.

Definition 6.1.1. The Random Graph 𝑅 is the Fraïssé limit of the class of finite
graphs. If a graph 𝐺 with countable vertices has edges placed between vertices 𝑥
and 𝑦 with some probability 𝑝 ∈ (0, 1), then, with probability 1, 𝐺 is isomorphic to
𝑅.

6.2 Introduction

Ultimately, models of a set theory are digraphs, where a directed edge between two
points denotes membership. To such a model, one can associate various graphs,
such as the membership graph, obtained by symmetrising the binary relation ∈, or
the double-membership graph, which has an edge between 𝑥 and 𝑦 when 𝑥 ∈ 𝑦 and
𝑦 ∈ 𝑥 hold simultaneously. We also consider the structure equipped with the two
previous graph relations, which we call the single-double-membership graph. In [1]
this kind of object is investigated in the non-well-founded case. We continue this
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line of study, and answer some questions regarding such graphs that were left open
in the aforementioned work.
It is well-known that every membership graph of a countable model of 𝖹𝖥𝖢 is
isomorphic to the Random Graph (see e.g. [12]). The usual proof of this fact goes
through for set theories much weaker than 𝖹𝖥𝖢, but uses the Axiom of Foundation
in a crucial way, hence the interest in (double-)membership graphs of non-well-
founded set theories.
In 1917 Mirimanoff [35, 36] discussed the distinction between non-well-founded
sets and their well-founded counterparts, and even presented a notion of
isomorphism between possibly non-well-founded sets. Throughout the years they
have appeared — implicitly and explicitly — in myriad places, and various
formulations of axioms allowing such sets to exist have been developed and utilised.
A uniform treatment of many of these axioms can be found in [38], along with
historical notes.
Perhaps the most famous non-well-founded set theory is obtained from 𝖹𝖥𝖢 by
replacing the Axiom of Foundation with the Anti-Foundation Axiom 𝖠𝖥𝖠, and is
called 𝖹𝖥𝖠 (not to be confused with another 𝖹𝖥𝖠, a set theory with Atoms). This
axiom provides the universe with a rich class of non-well-founded sets, the structure
of which reflects that of the well-founded sets: in models of 𝖹𝖥𝖠 there are, for
example, unique 𝑎 and 𝑏 such that 𝑎 = {𝑏, ∅} and 𝑏 = {𝑎, {∅}}, and a unique
𝑐 = {𝑐, ∅, {∅}}, pictured in Figure 6.1.
By facilitating the modelling of circular behaviours, 𝖹𝖥𝖠 has found applications
in computer science and category theory for the study of streams, communicating
systems and final coalgebras, and in philosophy, for the study of paradoxes involving
circularity and natural language semantics. We refer the interested reader to [38, 9,
8].
On many accounts, models of 𝖹𝖥𝖢 and of 𝖹𝖥𝖠 are closely related, and the two set
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theories behave very similarly, even under forcing extensions: see for instance [46,
17]. Now, when we symmetrise the membership relation, we have two choices: we
can either forget which edges were symmetric in the first place — that is, consider the
membership graph — or remember this information — that is, consider the single-
double-membership graph. In the first case, we find ourselves in yet another situation
where the behaviour of 𝖹𝖥𝖠 parallels closely that of 𝖹𝖥𝖢.
Namely, in [1] it was proven that all membership graphs of countable models of
𝖹𝖥𝖠 are isomorphic to the ‘Random Loopy Graph’: the Fraïssé limit of finite
graphs with self-edges. Much like the Random Graph, it can be obtained by
adding edges between (not necessarily distinct) vertices of a countable graph with
some probability 𝑝 ∈ (0, 1). This structure is easily seen to be ℵ0-categorical,
ultrahomogeneous, and supersimple of SU-rank 1. If instead we take the second
option, the situation changes drastically, and already double-membership graphs of
models of 𝖹𝖥𝖠 are, in a number of senses, much more complicated. For instance,
[1, Theorem 3] shows that they are not ℵ0-categorical, and here we show further
results in this direction.
In this Chapter we aim to answer some of the open questions in [1], namely

1. Is it true that the first-order theory of the membership graph of a countable
model of 𝖹𝖥𝖠 has infinitely many countable models?

2. Is it true that there are infinitely many non-isomorphic graphs which are
membership graphs of countable models of 𝖹𝖥𝖠?

3. Can more be said about infinite connected components of the double-edge
graph?

4. What about models of 𝖹𝖥𝖠 where the Axiom of Infinity is replaced with its
negation?
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5. Is it true that, if two countable multigraphs are elementarily equivalent, and
one is the membership graph of a model of 𝖹𝖥𝖠, then so is the other?

The structure of the Chapter is as follows. After a brief introduction to Anti-
Foundation in Section 6.3, and after setting up the context in Section 6.4, we
answer [1, Question 3] in Section 6.5 by characterising the connected components
of double-membership graphs of models of 𝖹𝖥𝖠. In the same section, we show that
if we do not assume Anti-Foundation, but merely drop Foundation, then double-
membership graphs can be almost arbitrary. Section 6.6 answers [1, Questions 1
and 2] by proving the following theorem.
Theorem (Corollary 6.6.5). There are, up to isomorphism, continuum-many
countable (single-)double-membership graphs of models of 𝖹𝖥𝖠, and continuum-
many countable models of each of their theories.

In Section 6.7 we study the common theory of double-membership graphs, which
we show to be incomplete. Then, by using methods more commonly encountered
in finite model theory, we characterise the completions of said theory in terms of
consistent collections of consistency statements.
Theorem (Theorem 6.7.14). The double-membership graphs of two models𝑀 and
𝑁 of 𝖹𝖥𝖠 are elementarily equivalent precisely when 𝑀 and 𝑁 satisfy the same
consistency statements.

We also show that all of these completions are wild in the sense of neostability
theory, since each of their models interprets (with parameters) arbitrarily large
finite fragments of 𝖹𝖥𝖢. Our final result, below — obtained with similar
techniques — answers [1, Question 5] negatively. The analogous statement for
double-membership graphs holds as well.
Theorem (Corollary 6.7.18). For every single-double-membership graph of a model
of 𝖹𝖥𝖠, there is a countable elementarily equivalent structure that is not the single-
double-membership graph of any model of 𝖹𝖥𝖠.
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6.3 The Anti-Foundation Axiom

There are a number of equivalent formulations of 𝖠𝖥𝖠. Expressed in terms of 𝑓 -

inductive functions, or of homomorphism onto transitive structures, it first appeared
in [19], under the name of axiom𝑋1. It gained its current name in [38], where it was
defined via decorations. The form that we shall be using is known in the literature
(e.g. [9, p. 71]) as the Solution Lemma. For the equivalence with other formulations,
see e.g. [38, p. 16].

Definition 6.3.1. Let𝑋 be a set of ‘indeterminates’, and𝐴 a set of sets. A flat system

of equations is a set of equations of the form 𝑥 = 𝑆𝑥, where 𝑆𝑥 is a subset of 𝑋 ∪𝐴

for each 𝑥 ∈ 𝑋. A solution 𝑓 to the flat system is a function taking elements of 𝑋
to sets, such that after replacing each 𝑥 ∈ 𝑋 with 𝑓 (𝑥) inside the system, all of its
equations become true.
The Anti-Foundation Axiom (𝖠𝖥𝖠) is the statement that every flat system of
equations has a unique solution.

Example 6.3.2. Consider the flat system with 𝑋 = {𝑥, 𝑦}, 𝐴 = {∅, {∅}} and the
following equations.

𝑥 = {𝑦, ∅}

𝑦 = {𝑥, {∅}}

The image of its unique solution 𝑥↦ 𝑎, 𝑦↦ 𝑏 is pictured in Figure 6.1.

Note that solutions of systems need not be injective, and in fact uniqueness
sometimes prevents injectivity. For instance, if 𝑥 ↦ 𝑎 is the solution of the flat
system consisting of the single equation 𝑥 = {𝑥}, then 𝑥 ↦ 𝑎, 𝑦 ↦ 𝑎 solves the
system with equations 𝑥 = {𝑦} and 𝑦 = {𝑥}, whose unique solution is therefore not
injective.
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Figure 6.1: On the left, a picture of the unique sets 𝑎 and 𝑏 such that 𝑎 = {𝑏, ∅} and
𝑏 = {𝑎, {∅}}. On the right, a picture of the unique set 𝑐 such that 𝑐 = {𝑐, ∅, {∅}}.
The arrows denote membership.

𝑎 𝑏

∅ {∅}

𝑐

∅ {∅}

Fact 6.3.3. 𝖹𝖥𝖢 without the Axiom of Foundation proves the equiconsistency of
𝖹𝖥𝖢 and 𝖹𝖥𝖠.

Proof. In one direction, from a model of 𝖹𝖥𝖠 one obtains one of 𝖹𝖥𝖢 by restricting
to the well-founded sets. In the other direction, see [19, Theorem 4.2] for a class
theory version, or [38, Chapter 3] for the 𝖹𝖥𝖢 statement.

Remark 6.3.4. There exists a weak form of 𝖠𝖥𝖠 that only postulates the existence
of solutions to flat systems, but not necessarily their uniqueness, known as axiom
𝑋 in [19] or 𝖠𝖥𝖠1 in [38]. Below, and in [1], uniqueness is never used, hence all
the results go through for models of 𝖹𝖥𝖢 with Foundation replaced by 𝖠𝖥𝖠1. For
brevity, we still state everything for 𝖹𝖥𝖠.

6.4 Set-Up

Since Anti-Foundation allows for sets that are members of themselves, in what
follows we will need to deal with graphs where there might be an edge between
a point and itself. These are called loopy graphs in [1] but, for the sake of concision,
we depart from common usage by adopting the following convention.

Notation. By graph we mean a first-order structure with a single relation that is
binary and symmetric (it is not required to be irreflexive).
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Since we are interested in studying (reducts of) models of 𝖹𝖥𝖠, we need to assume
they exist in the first place, since otherwise the answers to the questions we are
studying are trivial. Therefore, in this chapter we work in a set theory that is slightly
stronger than usual.
Assumption 6.4.1. The ambient metatheory is 𝖹𝖥𝖢 + Con(𝖹𝖥𝖢).
Definition 6.4.2. Let 𝐿 = {∈}, where ∈ is a binary relation symbol, and 𝑀 an
𝐿-structure. Let 𝑆 and 𝐷 be the definable relations

𝑆(𝑥, 𝑦) ∶= 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥

𝐷(𝑥, 𝑦) ∶= 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥

The single-double-membership graph, or SD-graph, 𝑀0 of 𝑀 is the reduct of 𝑀 to
𝐿0 ∶= {𝑆,𝐷}. The double-membership graph, or D-graph, 𝑀1 of 𝑀 is the reduct
of 𝑀 to 𝐿1 ∶= {𝐷}.

So, given an 𝐿-structure 𝑀 , i.e. a digraph (possibly with loops) where the edge
relation is ∈, we have that 𝑀0 ⊨ 𝑆(𝑥, 𝑦) if and only if in 𝑀 there is at least one
∈-edge between 𝑥 and 𝑦. Similarly 𝑀0 ⊨ 𝐷(𝑥, 𝑦) means that in 𝑀 we have both
∈-edges between 𝑥 and 𝑦. The idea is that, if 𝑀 is a model of some set theory,
then 𝑀0 is a symmetrisation of 𝑀 that keeps track of double-membership as well
as single-membership, and 𝑀1 only keeps track of double-membership.
In [1], 𝑀0 is called the membership graph (keeping double-edges) of 𝑀 and 𝑀1 is
called the double-edge graph of 𝑀 . Note that, strictly speaking, SD-graphs are not
graphs, according to our terminology.
For the majority of the chapter we are concerned with D-graphs, since most of
the results we obtain for them imply the analogous versions for SD-graphs. This
situation will reverse in Theorem 6.7.17.
Definition 6.4.3. Let𝑀 ⊨ 𝖹𝖥𝖠. We say that𝐴 ⊆ 𝑀 is an𝑀-set iff there is 𝑎 ∈𝑀

such that 𝐴 = {𝑏 ∈𝑀 ∶𝑀 ⊨ 𝑏 ∈ 𝑎}.
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So an 𝑀-set 𝐴 is a definable subset of 𝑀 that is the extension of a set in the sense
of 𝑀 , namely the 𝑎 ∈𝑀 in the definition. We will occasionally abuse notation and
refer to an 𝑀-set 𝐴 when we actually mean the corresponding 𝑎 ∈𝑀 .

6.5 Connected Components

Let 𝑀 ⊨ 𝖹𝖥𝖠. It was proven in [1, Theorem 4] that, for every finite connected
graph 𝐺, the D-graph 𝑀1 has infinitely many connected components isomorphic to
𝐺. It was asked in [1, Question 3] if more can be said about the infinite connected
components of𝑀1. In this section we characterise them in terms of the graphs inside
𝑀 .
Let 𝐺 be a graph in the sense of 𝑀 ⊨ 𝖹𝖥𝖠, i.e. a graph whose domain and edge
relation are 𝑀-sets, the latter as, say, a set of Kuratowski pairs. If 𝐺 is such a graph
and𝑀 ⊨ ‘𝐺 is connected’, then𝐺 need not necessarily be connected. This is due to
the fact that 𝑀 may have non-standard natural numbers, hence relations may have
non-standard transitive closures. We therefore introduce the following notion.

Definition 6.5.1. Let 𝑎 ∈𝑀 ⊨ 𝖹𝖥𝖠. Let 𝑏 ∈𝑀 be such that

𝑀 ⊨ ‘𝑏 is the transitive closure of {𝑎} under 𝐷’

The region of 𝑎 in 𝑀 is {𝑐 ∈ 𝑀 ∶ 𝑀 ⊨ 𝑐 ∈ 𝑏}. If 𝐴 ⊆ 𝑀 , we say that 𝐴 is a
region of 𝑀 iff it is the region of some 𝑎 ∈𝑀 .

Remark 6.5.2. For each 𝑎 ∈𝑀 , the region of 𝑎 in 𝑀 is an 𝑀-set.

For 𝑎 ∈ 𝑀 , if 𝐴 is the region of 𝑎 and 𝐵 is the transitive closure of {𝑎} under 𝐷
computed in the metatheory, i.e. the connected component of 𝑎 in 𝑀1, then 𝐵 ⊆

𝐴. In particular, regions of 𝑀 are unions of connected components of 𝑀1. If 𝑀
contains non-standard natural numbers and the diameter of 𝐵 is infinite then the



80 6. ANTI FOUNDATION

inclusion 𝐵 ⊆ 𝐴 may be strict, and 𝐵 may not even be an 𝑀-set. From now on, the
words ‘connected component’ will only be used in the sense of the metatheory.
Most of the appeals to 𝖠𝖥𝖠 in the rest of the chapter will be applications of the
following proposition. In fact, after proving it, we will only deal directly with flat
systems twice more.

Proposition 6.5.3. Let 𝑀1 be the D-graph of 𝑀 ⊨ 𝖹𝖥𝖠, and let 𝐺 be a graph in
𝑀 . Then there is 𝐻 ⊆ 𝑀1 such that

1. (𝐻,𝐷𝑀1 ↾ 𝐻) is isomorphic to 𝐺,

2. 𝐻 is a union of regions of 𝑀 , and

3. 𝐻 is an 𝑀-set.

Proof. Work in 𝑀 until further notice. Let 𝐺 be a graph in 𝑀 , say in the language
{𝑅}. Let 𝜅 be its cardinality, and assume up to a suitable isomorphism that dom𝐺 =

𝜅. In particular, note that every element of dom𝐺 is a well-founded set. Consider
the flat system

{

𝑥𝑖 = {𝑖, 𝑥𝑗 ∶ 𝑗 ∈ 𝜅,𝐺 ⊨ 𝑅(𝑖, 𝑗)} ∶ 𝑖 ∈ 𝜅
}

Let 𝑠∶ 𝑥𝑖 ↦ 𝑎𝑖 be a solution to the system. If 𝑖 ≠ 𝑗, then 𝑖 ∈ 𝑎𝑖 ⧵ 𝑎𝑗 , and therefore 𝑠
is injective. Observe that

(i) since 𝑅 is symmetric, we have 𝑎𝑖 ∈ 𝑎𝑗 ∈ 𝑎𝑖 ⟺ 𝐺 ⊨ 𝑅(𝑖, 𝑗), and

(ii) for all 𝑏 ∈ 𝑀 and all 𝑖 ∈ 𝜅, we have 𝑏 ∈ 𝑎𝑖 ∈ 𝑏 if and only if there is 𝑗 < 𝜅

such that 𝑏 = 𝑎𝑗 and 𝐺 ⊨ 𝑅(𝑖, 𝑗).

Now work in the ambient metatheory. Consider the 𝑀-set

𝐻 ∶= {𝑎𝑖 ∶𝑀 ⊨ 𝑖 ∈ 𝜅} = {𝑏 ∈𝑀 ∶𝑀 ⊨ 𝑏 ∈ Im(𝑠)} ⊆ 𝑀1
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By (i) above, (𝐻,𝐷𝑀1 ↾ 𝐻) is isomorphic to 𝐺 and, by (ii) above, 𝐻 is a union of
regions of 𝑀 .

We can now generalise [1, Theorem 4], answering [1, Question 3]. The words
‘up to isomorphism’ are to be interpreted in the sense of the metatheory, i.e. the
isomorphism need not be in 𝑀 .

Theorem 6.5.4. Let 𝑀 ⊨ 𝖹𝖥𝖠. Up to isomorphism, the connected components of
𝑀1 are exactly the connected components (in the sense of the metatheory) of graphs
in the sense of 𝑀 . In particular, there are infinitely many copies of each of them.

Proof. Let 𝐶 be a connected component of a graph 𝐺 in 𝑀 . By Proposition 6.5.3
there is an isomorphic copy 𝐻 of 𝐺 that is a union of regions of 𝑀 , hence,
in particular, of connected components of 𝑀1. Clearly, one of the connected
components of 𝐻 is isomorphic to 𝐶 .
In the other direction, let 𝑎 ∈𝑀1 and consider its connected component. Inside 𝑀 ,
let 𝐺 be the region of 𝑎. Using Remark 6.5.2 it is easy to see that (𝐺,𝐷 ↾ 𝐺) is a
graph in 𝑀 , and one of its connected components is isomorphic to the connected
component of 𝑎 in 𝑀1.
For the last part of the conclusion take, inside𝑀 , disjoint unions of copies of a given
graph.

If one does not assume some form of 𝖠𝖥𝖠 and, for instance, merely drops
Foundation, then double-membership graphs can be essentially arbitrary, as the
following proposition shows.

Proposition 6.5.5. Let 𝑀 ⊨ 𝖹𝖥𝖢 and let 𝐺 be a graph in 𝑀 . There is a model
𝑁 of 𝖹𝖥𝖢 without Foundation such that 𝑁1 is isomorphic to the union of 𝐺 with
infinitely many isolated vertices, i.e. points without any edges or self-loops.
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Note that the isolated vertices are necessary, as𝑁 will always contain well-founded
sets.

Proof. Let 𝐺 be a graph in 𝑀 , say in the language {𝑅}. Assume without loss of
generality that 𝐺 has no isolated vertices, and that dom𝐺 equals its cardinality 𝜅.
For each 𝑖 ∈ 𝜅 choose 𝑎𝑖 ⊆ 𝜅 that has foundational rank 𝜅 in𝑀 , e.g. let 𝑎𝑖 ∶= 𝜅⧵{𝑖}.
Let 𝑏𝑗 ∶= {𝑎𝑖 ∶ 𝐺 ⊨ 𝑅(𝑖, 𝑗)} and note that, since no vertex of 𝐺 is isolated, 𝑏𝑗 is
non-empty, thus has rank 𝜅+1. Define 𝜋 ∶ 𝑀 →𝑀 to be the permutation swapping
each 𝑎𝑖 with the corresponding 𝑏𝑖 and fixing the rest of 𝑀 . Let 𝑁 be the structure
with the same domain as 𝑀 , but with membership relation defined as

𝑁 ⊨ 𝑥 ∈ 𝑦 ⟺ 𝑀 ⊨ 𝑥 ∈ 𝜋(𝑦)

By [39, Section 3]1, 𝑁 is a model of 𝖹𝖥𝖢 without Foundation. To check that 𝑁1 is
as required, first observe that

𝑁 ⊨ 𝑎𝑖 ∈ 𝑎𝑗 ⟺ 𝑀 ⊨ 𝑎𝑖 ∈ 𝜋(𝑎𝑗) = 𝑏𝑗 ⟺ 𝐺 ⊨ 𝑅(𝑖, 𝑗)

so {𝑎𝑖 ∶𝑀 ⊨ 𝑖 ∈ 𝜅}, equipped with the restriction of 𝐷𝑁1 , is isomorphic to 𝐺. To
show that there are no other𝐷-edges in𝑁1, assume that𝑁1 ⊨ 𝐷(𝑥, 𝑦), and consider
the following three cases (which are exhaustive since 𝐷 is symmetric).

(i) 𝑥 and 𝑦 are both fixed points of 𝜋. This contradicts Foundation in 𝑀 .

(ii) 𝑦 = 𝑎𝑖 for some 𝑖, so 𝑁 ⊨ 𝑥 ∈ 𝑎𝑖, hence 𝑀 ⊨ 𝑥 ∈ 𝜋(𝑎𝑖) = 𝑏𝑖. Then 𝑥 = 𝑎𝑗
for some 𝑗 by construction.

(iii) 𝑦 = 𝑏𝑖 for some 𝑖. From 𝑁 ⊨ 𝑥 ∈ 𝑏𝑖 we get 𝑀 ⊨ 𝑥 ∈ 𝑎𝑖 ⊆ 𝜅, thus 𝑥
has rank strictly less than 𝜅. Therefore, 𝑥 is not equal to any 𝑎𝑗 or 𝑏𝑗 , hence

1Strictly speaking, [39] works in class theory. The exact statement we use is that of [28,
Chapter IV, Exercise 18].
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𝜋(𝑥) = 𝑥. Again by rank considerations, it follows that 𝑀 ⊨ 𝑏𝑖 ∉ 𝑥 = 𝜋(𝑥),
so 𝑁 ⊨ 𝑏𝑖 ∉ 𝑥, a contradiction.

6.6 Continuum-Many Countable Models

We now turn our attention to answering [1, Questions 1 and 2]. Namely, we compute,
via a type-counting argument, the number of non-isomorphic D-graphs of countable
models of 𝖹𝖥𝖠, and the number of countable models of their complete theories. The
analogous results for SD-graphs also hold.

Definition 6.6.1. Let 𝑛 ∈ 𝜔 ⧵ {0}. Define the 𝐿1-formula

𝜑𝑛(𝑥) ∶= ¬𝐷(𝑥, 𝑥) ∧ ∃𝑧0,… , 𝑧𝑛−1
(

(
⋀

0≤𝑖<𝑗<𝑛
𝑧𝑖 ≠ 𝑧𝑗

)

∧
(
⋀

0≤𝑖<𝑛
𝐷(𝑧𝑖, 𝑥)

)

∧
(

∀𝑧 𝐷(𝑧, 𝑥) →
⋁

0≤𝑖<𝑛
𝑧 = 𝑧𝑖

)

)

For 𝐴 a subset of 𝜔 ⧵ {0}, define the set of 𝐿1-formulas

𝛽𝐴(𝑦) ∶= {¬𝐷(𝑦, 𝑦)} ∪ {∃𝑥𝑛 𝜑𝑛(𝑥𝑛) ∧𝐷(𝑦, 𝑥𝑛) ∶ 𝑛 ∈ 𝐴}

∪ {¬(∃𝑥𝑛 𝜑𝑛(𝑥𝑛) ∧𝐷(𝑦, 𝑥𝑛)) ∶ 𝑛 ∈ 𝜔 ⧵ ({0} ∪ 𝐴)}

We say that 𝑎 ∈ 𝑀1 is an 𝑛-flower iff 𝑀1 ⊨ 𝜑𝑛(𝑎). We say that 𝑏 ∈ 𝑀1 is an 𝐴-

bouquet iff for all𝜓(𝑦) ∈ 𝛽𝐴(𝑦) we have𝑀1 ⊨ 𝜓(𝑏). Figure 6.2 gives a visualisation
of a 5-flower, which explains the reason for its name.

So 𝑎 is an 𝑛-flower if and only if, in the D-graph, it is a point of degree 𝑛 without a
self-loop, while 𝑏 is an 𝐴-bouquet iff it has no self-loop, it has 𝐷-edges to at least
one 𝑛-flower for every 𝑛 ∈ 𝐴, and it has no 𝐷-edges to any 𝑛-flower if 𝑛 ∉ 𝐴.

Lemma 6.6.2. Let 𝐴0 be a finite subset of 𝜔 ⧵ {0} and let 𝑀 ⊨ 𝖹𝖥𝖠. Then 𝑀1

contains an 𝐴0-bouquet.
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Proof. It suffices to find a certain finite graph as a connected component of 𝑀1, so
this follows from Proposition 6.5.3 (or directly from [1, Theorem 4]).

Figure 6.2: The set 𝑎 = {{𝑎, 𝑖} ∶ 𝑖 < 5} is a 5-flower. The reason for the name
‘𝑛-flower’ can be seen in this figure.

𝑎

{𝑎, 0}{𝑎, 1}

{𝑎, 2}

{𝑎, 3}

{𝑎, 4}

If 𝑀 is a structure, denote by Th(𝑀) its theory.
Proposition 6.6.3. Let 𝑀 ⊨ 𝖹𝖥𝖠. Then in Th(𝑀1) the 2ℵ0 sets of formulas 𝛽𝐴, for
𝐴 ⊆ 𝜔⧵{0}, are each consistent, and pairwise contradictory. In particular, the same
is true in Th(𝑀).

Proof. If 𝐴,𝐵 are distinct subsets of 𝜔 ⧵ {0} and, without loss of generality, there
is an 𝑛 ∈ 𝐴 ⧵ 𝐵, then 𝛽𝐴 contradicts 𝛽𝐵 because 𝛽𝐴(𝑦) ⊢ ∃𝑥𝑛 (𝜑𝑛(𝑥𝑛) ∧ 𝐷(𝑦, 𝑥𝑛))

and 𝛽𝐵(𝑦) ⊢ ¬∃𝑥𝑛 (𝜑𝑛(𝑥𝑛) ∧𝐷(𝑦, 𝑥𝑛)).
To show that each 𝛽𝐴 is consistent it is enough, by compactness, to show that if
𝐴0 is a finite subset of 𝐴 and 𝐴1 is a finite subset of 𝜔 ⧵ ({0} ∪ 𝐴) then there is
some 𝑏 ∈ 𝑀 with a 𝐷-edge to an 𝑛-flower for every 𝑛 ∈ 𝐴0 and no 𝐷-edges to
𝑛-flowers whenever 𝑛 ∈ 𝐴1. Any 𝐴0-bouquet will satisfy these requirements and,
by Lemma 6.6.2, an 𝐴0-bouquet exists inside 𝑀1.
For the last part, note that all the theories at hand are complete (in different
languages), and whether or not an intersection of definable sets is empty does not
change after adding more definable sets.
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To conclude, we need the following standard fact from model theory.

Fact 6.6.4. Every partial type over ∅ of a countable theory can be realised in a
countable model.

Corollary 6.6.5. Let 𝑀 be a model of 𝖹𝖥𝖠. There are 2ℵ0 countable models of
𝖹𝖥𝖠 such that their D-graphs (resp. SD-graphs) are elementarily equivalent to 𝑀1

(resp. 𝑀0) and are pairwise non-isomorphic.

Proof. Consider the pairwise contradictory partial types 𝛽𝐴. By Fact 6.6.4, Th(𝑀)

has 2ℵ0 distinct countable models, as each of them can only realise countably many
of the 𝛽𝐴. The reducts to 𝐿1 (resp. 𝐿0) of models realising different subsets of {𝛽𝐴 ∶

𝐴 ⊆ 𝜔⧵ {0}} are still non-isomorphic, since the 𝛽𝐴 are partial types in the language
𝐿1.

The previous Corollary answers affirmatively [1, Questions 1 and 2].

Remark 6.6.6. For the results in this section to hold, it is not necessary that 𝑀
satisfies the whole of 𝖹𝖥𝖠. It is enough to be able to prove Lemma 6.6.2 for𝑀 , and
it is easy to see than one can provide a direct proof whenever in 𝑀 it is possible
to define infinitely many different well-founded sets, e.g. von Neumann natural
numbers, and to ensure existence of solutions to flat systems of equations. This
can be done as long as 𝑀 satisfies Extensionality, Empty Set, Pairing, and 𝖠𝖥𝖠1

2.
If we replace, in Definition 6.3.1, ‘𝑥 = 𝑆𝑥’ with ‘𝑥 and 𝑆𝑥 have the same elements’,
then we can even drop Extensionality.

6.7 Common Theory

The main aim of this section is to study the common theory of the class of D-graphs
of 𝖹𝖥𝖠. We show in Corollary 6.7.11 that it is incomplete, and in Corollary 6.7.15

2Stated using a sensible coding of flat systems, which can be carried out using Pairing.
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characterise its completions in terms of collections of consistency statements.
Furthermore, we show that each of these completions is untame in the sense of
neostability theory (Corollary 6.7.8) and has a countable model that is not a D-
graph, and that the same holds for SD-graphs (Corollary 6.7.18), therefore solving
negatively [1, Question 5].

Definition 6.7.1. Let 𝐾1 be the class of D-graphs of models of 𝖹𝖥𝖠. Let Th(𝐾1) be
its common 𝐿1-theory.

Definition 6.7.2. Let 𝜑 be an 𝐿1-sentence. We define an 𝐿1-sentence 𝜇(𝜑) as
follows. Let 𝑥 be a variable not appearing in 𝜑. Let 𝜒(𝑥) be obtained from 𝜑 by
relativising ∃𝑦 and ∀𝑦 to 𝐷(𝑥, 𝑦). Let 𝜇(𝜑) be the formula ∃𝑥 (¬𝐷(𝑥, 𝑥) ∧ 𝜒(𝑥)).

In other words, 𝜇(𝜑) can be thought of as saying that there is a point whose set of
neighbours is a model of 𝜑.

Remark 6.7.3. Suppose 𝜑 is a ‘standard’ sentence, i.e. one that is a formula in the
sense of the metatheory, say in the finite language 𝐿′. Let 𝑀 ⊨ 𝖹𝖥𝖠, and let 𝑁
be an 𝐿′-structure in 𝑀 . Then, whether 𝑁 ⊨ 𝜑 or not is absolute between 𝑀 and
the metatheory. Every formula we mention is of this kind, and this fact will be used
tacitly from now on.

Definition 6.7.4. Let Φ be the set of 𝐿1-sentences that imply ∀𝑥, 𝑦 (𝐷(𝑥, 𝑦) →

𝐷(𝑦, 𝑥)).

Lemma 6.7.5. For every 𝐿1-sentence 𝜑 ∈ Φ and every 𝑀 ⊨ 𝖹𝖥𝖠 we have

𝑀 ⊨ Con(𝜑) ⟺ 𝑀1 ⊨ 𝜇(𝜑)

Moreover, if this is the case, then there is 𝐻 ⊆ 𝑀1 such that

1. (𝐻,𝐷𝑀1 ↾ 𝐻) satisfies 𝜑,

2. 𝐻 is a union of regions of 𝑀 , and
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3. 𝐻 is an 𝑀-set.

Proof. Note that the class of graphs in𝑀 is closed under the operations of removing
a point or adding one and connecting it to everything. Now apply Proposition 6.5.3.

define 𝐿𝖭𝖡𝖦 ∶= {𝐸}, where 𝐸 is a binary relational symbol. We think of 𝐿1 as ‘the
language of graphs’ and of𝐿𝖭𝖡𝖦 as ‘the language of digraphs’, specifically, digraphs
that are models of a certain class theory (see below), hence the notation. It is well-
known that every digraph is interpretable in a graph, and that such an interpretation
may be chosen to be uniform, in the sense below. See e.g. [24, Theorem 5.5.1].

Fact 6.7.6. Every 𝐿𝖭𝖡𝖦-structure 𝑁 is interpretable in a graph 𝑁 ′. Moreover, for
every 𝐿𝖭𝖡𝖦-sentence 𝜃 there is an 𝐿1-sentence 𝜃′ such that

1. 𝜃 is consistent if and only if 𝜃′ is, and

2. for every 𝐿𝖭𝖡𝖦-structure 𝑁 we have 𝑁 ⊨ 𝜃 ⟺ 𝑁 ′ ⊨ 𝜃′.

Corollary 6.7.7. For every 𝐿𝖭𝖡𝖦-sentence 𝜃, let 𝜃′ be as in Fact 6.7.6. For all 𝑀 ⊨

𝖹𝖥𝖠

𝑀 ⊨ Con(𝜃) ⟺ 𝑀1 ⊨ 𝜇(𝜃′)

Proof. Apply Lemma 6.7.5 to 𝜑 ∶= 𝜃′.

Corollary 6.7.8. Let 𝑀 ⊨ 𝖹𝖥𝖠. Then every model of Th(𝑀1) interprets with
parameters arbitrarily large finite fragments of 𝖹𝖥𝖢. In particular Th(𝑀1) has 𝖲𝖮𝖯,
𝖳𝖯𝟤, and 𝖨𝖯𝑘 for all 𝑘.

Proof. If 𝜃 is the conjunction of a finite fragment of 𝖹𝖥𝖢, it is well-known that
𝖹𝖥𝖠 ⊢ Con(𝜃). Since a model of 𝜃 is a digraph, we can apply Corollary 6.7.7. If
𝑎 witnesses the outermost existential quantifier in 𝜇(𝜃′), then 𝜃 is interpretable with
parameter 𝑎.
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We now want to use Corollary 6.7.7 to show that the common theory Th(𝐾1) of the
class of D-graphs of models of 𝖹𝖥𝖠 is incomplete. Naively, this could be done by
choosing 𝜃 to be a finite axiomatisation of some theory equiconsistent with 𝖹𝖥𝖠,
and then invoking the Second Incompleteness Theorem. For instance, one could
choose von Neumann-Bernays-Gödel class theory𝖭𝖡𝖦, axiomatised in the language
𝐿𝖭𝖡𝖦

3, as this is known to be equiconsistent with 𝖹𝖥𝖢 (see [18]), hence with 𝖹𝖥𝖠.
The problem with this argument is that, in order for it to work, we need a further
set-theoretical assumption in our metatheory, namely Con(𝖹𝖥𝖢+Con(𝖹𝖥𝖢)). This
can be avoided by using another sentence whose consistency is independent of 𝖹𝖥𝖠,
provably in 𝖹𝖥𝖢 + Con(𝖹𝖥𝖢) alone. We would like to thank Michael Rathjen for
pointing out to us the existence of such a sentence.
Let 𝖭𝖡𝖦− denote 𝖭𝖡𝖦 without the axiom of Infinity. We will use special cases of a
classical theorem of Rosser and of a related result. For proofs of these, together with
their more general statements, we refer the reader to [42, Chapter 7, Application 2.1
and Corollary 2.6].

Fact 6.7.9 (Rosser’s Theorem). There is a Π0
1 arithmetical statement 𝜓 that is

independent of 𝖹𝖥𝖠.

Fact 6.7.10. Let 𝜓 be a Π0
1 arithmetical statement. There is another arithmetical

statement �̃� such that 𝖹𝖥𝖠 ⊢ 𝜓 ↔ Con(𝖭𝖡𝖦− + �̃�).

Corollary 6.7.11. Th(𝐾1) is not complete.

Proof. Let 𝜓 be given by Rosser’s Theorem, and let �̃� be given by Fact 6.7.10
applied to 𝜓 . Apply Corollary 6.7.7 to 𝜃 ∶= 𝖭𝖡𝖦− + �̃� .

It is therefore natural to study the completions of Th(𝐾1), and it follows easily from
𝐾1 being pseudoelementary that all of these are the theory of some actual D-graph
𝑀1. We provide a proof for completeness.

3The reader may have encountered an axiomatisation using two sorts; this can be avoided by
declaring sets to be those classes that are elements of some other class.
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Proposition 6.7.12. Let 𝑇 be an 𝐿-theory, and let 𝐾 be the class of its models. Let
𝐿1 ⊆ 𝐿, and for 𝑀 ∈ 𝐾 denote 𝑀1 ∶= 𝑀 ↾ 𝐿1. Let 𝐾1 ∶= {𝑀1 ∶ 𝑀 ∈ 𝐾} and
𝑁 ⊨ Th(𝐾1). Then there is 𝑀 ∈ 𝐾 such that 𝑀1 ≡ 𝑁 .

Proof. We are asking whether there is any𝑀 ⊨ 𝑇 ∪Th(𝑁), so it is enough to show
that the latter theory is consistent. If not, there is an 𝐿1-formula 𝜑 ∈ Th(𝑁) such
that 𝑇 ⊢ ¬𝜑. In particular, since ¬𝜑 ∈ 𝐿1, we have that Th(𝐾1) ⊢ ¬𝜑, and this
contradicts that 𝑁 ⊨ Th(𝐾1).

In order to characterise the completions of Th(𝐾1), we will use techniques from
finite model theory, namely Ehrenfeucht-Fraïssé games and 𝑘-equivalence. For
background on these concepts, see [16].

Lemma 6.7.13. Let 𝐺 = 𝐺0 ⊔ 𝐺1 be a graph with no edges between 𝐺0

and 𝐺1, and let 𝐻 = 𝐻0 ⊔ 𝐻1 be a graph with no edges between 𝐻0 and
𝐻1. If (𝐺0, 𝑎1,… , 𝑎𝑚−1) ≡𝑘 (𝐻0, 𝑏1,… , 𝑏𝑚−1) and (𝐺1, 𝑎𝑚) ≡𝑘 (𝐻1, 𝑏𝑚), then
(𝐺, 𝑎1,… , 𝑎𝑚) ≡𝑘 (𝐻, 𝑏1,… , 𝑏𝑚).

Proof. This is standard, see e.g. [16, Proposition 2.3.10].

Theorem 6.7.14. Let 𝑀 and 𝑁 be models of 𝖹𝖥𝖠. The following are equivalent.

1. 𝑀1 ≡ 𝑁1.

2. 𝑀1 and 𝑁1 satisfy the same sentences of the form 𝜇(𝜑), as 𝜑 ranges in Φ.

3. 𝑀 and 𝑁 satisfy the same consistency statements.

Proof. For statements about graphs, the equivalence of 2 and 3 follows from
Lemma 6.7.5. For statements in other languages, it is enough to interpret them in
graphs using [24, Theorem 5.5.1].
For the equivalence of 1 and 2, we show that for every 𝑛 ∈ 𝜔 the Ehrenfeucht-Fraïssé
game between 𝑀1 and 𝑁1 of length 𝑛 is won by the Duplicator, by describing a
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winning strategy. The idea behind the strategy is the following. Recall that, for every
finite relational language and every 𝑘, there is only a finite number of ≡𝑘-classes,
each characterised by a single sentence (see e.g. [16, Corollary 2.2.9]). After the
Spoiler plays a point 𝑎, the Duplicator replicates the ≡𝑘-class of the region of 𝑎
using Lemma 6.7.5.
Fix the length 𝑛 of the game and denote by 𝑎1,… , 𝑎𝑚 ∈ 𝑀1 and 𝑏1,… , 𝑏𝑚 ∈ 𝑁1

the points chosen at the end of turn 𝑚. The Duplicator defines, by simultaneous
induction on 𝑚, sets 𝐺𝑚

0 ⊆ 𝑀1 and 𝐻𝑚
0 ⊆ 𝑁1, and makes sure that they satisfy the

following conditions.

(C1) 𝑎1,… , 𝑎𝑚 ∈ 𝐺𝑚
0 and 𝑏1,… , 𝑏𝑚 ∈ 𝐻𝑚

0 .

(C2) 𝐺𝑚
0 and 𝐻𝑚

0 are unions of regions of 𝑀 and 𝑁 respectively.

(C3) 𝐺𝑚
0 and 𝐻𝑚

0 are respectively an 𝑀-set and an 𝑁-set.

(C4) When 𝐺𝑚
0 and 𝐻𝑚

0 are equipped with the 𝐿1-structures induced by 𝑀 and 𝑁
respectively, we have (𝐺𝑚

0 , 𝑎1,… , 𝑎𝑚) ≡𝑛−𝑚 (𝐻𝑚
0 , 𝑏1,… , 𝑏𝑚).

Before the game starts (‘after turn 0’) we set 𝐺0
0 = 𝐻0

0 = ∅ and all conditions
trivially hold. Assume inductively that they hold after turn 𝑚− 1. We deal with the
case where the Spoiler plays 𝑎𝑚 ∈𝑀1; the case where the Spoiler plays 𝑏𝑚 ∈ 𝑁1 is
symmetrical.
Let 𝐺𝑚

1 be the region of 𝑎𝑚 in 𝑀 . If 𝐺𝑚
1 ⊆ 𝐺

𝑚−1
0 then, since by inductive hypothesis

condition (C4) held after turn 𝑚 − 1, the Duplicator can find 𝑏𝑚 ∈ 𝐻𝑚−1
0 such that

(𝐺𝑚−1
0 , 𝑎0,… , 𝑎𝑚) ≡𝑛−𝑚 (𝐻𝑚−1

0 , 𝑏0,… , 𝑏𝑚). It is then clear that all conditions hold
after setting 𝐺𝑚

0 = 𝐺𝑚−1
0 and 𝐻𝑚

0 = 𝐻𝑚−1
0 .

Otherwise, by (C2), we have 𝐺𝑚
1 ∩ 𝐺𝑚−1

0 = ∅. Let 𝜑 characterise the ≡𝑛−𝑚+1-class
of 𝐺𝑚

1 . Note that, if 𝑛 − 𝑚 + 1 ≥ 2, then 𝜑 ∈ Φ automatically. Otherwise, replace
𝜑 with 𝜑 ∧ ∀𝑥∀𝑦 (𝐷(𝑥, 𝑦) → 𝐷(𝑦, 𝑥)). By Remark 6.5.2, 𝐺𝑚

1 is an 𝑀-set, hence
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𝑀 ⊨ Con(𝜑). By Lemma 6.7.5 and assumption, there is a union 𝐻𝑚
1 of regions

of 𝑁 which is an 𝑁-set and such that 𝐺𝑚
1 ≡𝑛−𝑚+1 𝐻𝑚

1 . By inductive hypothesis,
𝐻𝑚−1

0 is also an 𝑁-set by (C3). Therefore, up to writing a suitable flat system in 𝑁 ,
we may replace 𝐻𝑚

1 with an isomorphic copy that is still a union of regions and an
𝑁-set, but with 𝐻𝑚

1 ∩𝐻𝑚−1
0 = ∅.

Let 𝑏𝑚 ∈ 𝐻𝑚
1 be the choice given by a winning strategy for the Duplicator in the game

of length 𝑛 − 𝑚 + 1 between 𝐺𝑚
1 and 𝐻𝑚

1 after the Spoiler plays 𝑎𝑚 ∈ 𝐺𝑚
1 as its first

move. Set 𝐺𝑚
0 = 𝐺𝑚−1

0 ∪𝐺𝑚
1 and 𝐻𝑚

0 = 𝐻𝑚−1
0 ∪𝐻𝑚

1 . Note that 𝐺𝑚−1
0 , 𝐺𝑚

1 ,𝐻
𝑚−1
0 ,𝐻𝑚

1

are all unions of regions and 𝑀-sets or 𝑁-sets, hence (C2) and (C3) hold (and (C1)
is clear). Moreover both unions are disjoint, so the hypotheses of Lemma 6.7.13 are
satisfied and (𝐺𝑚

0 , 𝑎1,… , 𝑎𝑚) ≡𝑛−𝑚 (𝐻𝑚
0 , 𝑏1,… , 𝑏𝑚), i.e. (C4) holds.

To show that this strategy is winning, note that the outcome of the game only depends
on the induced structures on 𝑎1,… , 𝑎𝑛 and 𝑏1,… , 𝑏𝑛 at the end of the final turn.
These do not depend on what is outside 𝐺𝑛

0 and𝐻𝑛
0 since they are unions of regions,

hence unions of connected components. As (C4) holds at the end of turn 𝑛, the
structures induced on 𝑎1,… , 𝑎𝑛 and 𝑏1,… , 𝑏𝑛 are isomorphic.
Corollary 6.7.15. Let 𝑁 ⊨ Th(𝐾1). Then Th(𝑁) is axiomatised by

Th(𝐾1) ∪ {𝜇(𝜑) ∶ 𝜑 ∈ Φ, 𝑁 ⊨ 𝜇(𝜑)} ∪ {¬𝜇(𝜑) ∶ 𝜑 ∈ Φ, 𝑁 ⊨ ¬𝜇(𝜑)}

Proof. Let 𝑁 ′ satisfy the axiomatisation above. Since 𝑁 and 𝑁 ′ are models of
Th(𝐾1) we may, by Proposition 6.7.12, replace them with D-graphs 𝑀1 ≡ 𝑁 and
𝑀 ′

1 ≡ 𝑁 ′ of models of 𝖹𝖥𝖠. By Theorem 6.7.14 𝑀1 ≡𝑀 ′
1.

By the previous corollary, combined with Lemma 6.7.5, theories of double-
membership graphs correspond bijectively to consistent (with 𝖹𝖥𝖠, equivalently
with 𝖹𝖥𝖢) collections of consistency statements.
The reader familiar with finite model theory may have noticed similarities between
the proof of Theorem 6.7.14 and certain proofs of the theorems of Hanf and Gaifman
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(see [16, Theorems 2.4.1 and 2.5.1]). In fact one could deduce a statement similar
to Theorem 6.7.14 directly from Gaifman’s Theorem:

Theorem 6.7.16 (Gaifman’s Theorem). Every first-order sentence is logically
equivalent to a local sentence.4

This would characterise the completions of Th(𝐾1) in terms of local formulas, of
which the 𝜇(𝜑) form a subclass, yielding a less specific result than Corollary 6.7.15.
Moreover, we believe that the correspondence with collections of consistency
statements provides a conceptually clearer picture.
Similar ideas can be used to study [1, Question 5], which asks whether a countable
structure elementarily equivalent to the SD-graph 𝑀0 of some 𝑀 ⊨ 𝖹𝖥𝖠 must
itself be the SD-graph of some model of 𝖹𝖥𝖠. We provide a negative solution in
Corollary 6.7.18. Again, Gaifman’s Theorem could be used directly to deduce its
second part.

Theorem 6.7.17. Let 𝑀 ⊨ 𝖹𝖥𝖠. There is a countable 𝑁 ≡ 𝑀0 such that 𝑁 ↾ 𝐿1

has no connected component of infinite diameter.

Before the proof, we show how this solves [1, Question 5].

Corollary 6.7.18. For every 𝑀 ⊨ 𝖹𝖥𝖠 there are a countable 𝑁 ≡ 𝑀0 that is not
the SD-graph of any model of 𝖹𝖥𝖠 and a countable𝑁 ′ ≡𝑀1 that is not the D-graph
of any model of 𝖹𝖥𝖠.

Proof. Let 𝑁 be given by Theorem 6.7.17 and 𝑁 ′ ∶= 𝑁 ↾ 𝐿1. Now observe that,
as follows easily from Proposition 6.5.3, any reduct to 𝐿1 of a model of 𝖹𝖥𝖠 has a
connected component of infinite diameter.

Note that this proves slightly more: a negative solution to the question would only
have required to find a single pair (𝑀0, 𝑁) satisfying the conclusion of the corollary.

4For definitions of this terminology see [16].
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Proof of Theorem 6.7.17. Up to passing to a countable elementary substructure,
we may assume that 𝑀 itself is countable. Let 𝑁 be obtained from 𝑀0 by
removing all points whose connected component in 𝑀1 has infinite diameter. We
show that 𝑀0 ≡ 𝑁 by exhibiting, for every 𝑛, a sequence (𝐼𝑗)𝑗≤𝑛 of non-empty
sets of partial isomorphisms between 𝑀0 and 𝑁 with the back-and-forth property
(see [16, definition 2.3.1 and Corollary 2.3.4]). The idea is to adapt the proof
of [37, Lemma 2.2.7] (essentially Hanf’s Theorem) by considering the Gaifman
balls with respect to 𝐿1, while requiring the partial isomorphisms to preserve the
richer language 𝐿0.
On an 𝐿0-structure 𝐴, consider the distance 𝑑 ∶ 𝐴 → 𝜔 ∪ {∞} given by the graph
distance in the reduct 𝐴 ↾ 𝐿1 (where 𝑑(𝑎, 𝑏) = ∞ iff 𝑎, 𝑏 lie in distinct connected
components). If 𝑎1,… , 𝑎𝑘 ∈ 𝐴 and 𝑟 ∈ 𝜔, denote by dom(𝐵(𝑟, 𝑎1,… , 𝑎𝑘)) the
union of the balls of radius 𝑟 (with respect to 𝑑) centred on 𝑎1,… , 𝑎𝑘. Equip
dom(𝐵(𝑟, 𝑎1,… , 𝑎𝑘)) with the 𝐿0-structure induced by 𝐴, then expand to an 𝐿0 ∪

{𝑐1,… , 𝑐𝑘}-structure 𝐵(𝑟, 𝑎1,… , 𝑎𝑘) by interpreting each constant symbol 𝑐𝑖 with
the corresponding 𝑎𝑖. We stress that, even though 𝐵(𝑟, 𝑎1,… , 𝑎𝑘) carries an 𝐿0 ∪

{𝑐1,… , 𝑐𝑘}-structure, and we consider isomorphisms with respect to this structure,
the balls giving its domain are defined with respect to the distance induced by 𝐿1

alone.
Set 𝑟𝑗 ∶= (3𝑗 − 1)∕2 and fix 𝑛. Define 𝐼𝑛 ∶= {∅}, where ∅ is thought of as the
empty partial map 𝑀0 → 𝑁 . For 𝑗 < 𝑛, let 𝐼𝑗 be the following set of partial maps
𝑀0 → 𝑁 :

𝐼𝑗 ∶= {𝑎1,… , 𝑎𝑘 ↦ 𝑏1,… , 𝑏𝑘 ∶ 𝑘 ≤ 𝑛 − 𝑗, 𝐵(𝑟𝑗 , 𝑎1,… , 𝑎𝑘) ≅ 𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘)}

We have to show that for every map 𝑎1,… , 𝑎𝑘 ↦ 𝑏1,… , 𝑏𝑘 in 𝐼𝑗+1 and every 𝑎 ∈𝑀0

[resp. every 𝑏 ∈ 𝑁] there is 𝑏 ∈ 𝑁 [resp. 𝑎 ∈ 𝑀0] such that 𝑎1,… , 𝑎𝑘, 𝑎 ↦

𝑏1,… , 𝑏𝑘, 𝑏 is in 𝐼𝑗 .
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Denote by 𝜄 an isomorphism𝐵(𝑟𝑗+1, 𝑎1,… , 𝑎𝑘) → 𝐵(𝑟𝑗+1, 𝑏1,… , 𝑏𝑘) and let 𝑎 ∈𝑀0.
If 𝑎 is chosen in 𝐵(2 ⋅ 𝑟𝑗 + 1, 𝑎1,… , 𝑎𝑘), then by the triangle inequality and the fact
that 2 ⋅ 𝑟𝑗 + 1 + 𝑟𝑗 = 𝑟𝑗+1 we have 𝐵(𝑟𝑗 , 𝑎) ⊆ 𝐵(𝑟𝑗+1, 𝑎1,… , 𝑎𝑘), and we can just set
𝑏 ∶= 𝜄(𝑎).
Otherwise, again by the triangle inequality, 𝐵(𝑟𝑗 , 𝑎) and𝐵(𝑟𝑗 , 𝑎1,… , 𝑎𝑘) are disjoint
and there is no 𝐷-edge between them. Note, moreover, that they are 𝑀-sets. This
allows us to write a suitable flat system, which will yield the desired 𝑏.
Working inside 𝑀 , for every 𝑑 ∈ 𝐵(𝑟𝑗 , 𝑎) choose a well-founded set ℎ𝑑 such that
for all 𝑑, 𝑑0, 𝑑1 ∈ 𝐵(𝑟𝑗 , 𝑎) we have

(H1) ℎ𝑑0 ∉ ℎ𝑑1 ,

(H2) if 𝑑0 ≠ 𝑑1 then ℎ𝑑0 ≠ ℎ𝑑1 ,

(H3) ℎ𝑑 ∉ 𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘),

(H4) ℎ𝑑 ∉ ⋃

𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘), and

(H5) ℎ𝑑 ∉ ⋃⋃

𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘).

Let {𝑥𝑑 ∶ 𝑑 ∈ 𝐵(𝑟𝑗 , 𝑎)} be a set of indeterminates. Define

𝑃𝑑 ∶= {𝑥𝑒 ∶ 𝑒 ∈ 𝐵(𝑟𝑗 , 𝑎),𝑀 ⊨ 𝑒 ∈ 𝑑}

𝑄𝑑 ∶= {𝜄(𝑓 ) ∶ 𝑓 ∈ 𝐵(𝑟𝑗 , 𝑎1,… , 𝑎𝑘),𝑀 ⊨ 𝑆(𝑑, 𝑓 )}

and consider the flat system

{𝑥𝑑 = {ℎ𝑑} ∪ 𝑃𝑑 ∪𝑄𝑑 ∶ 𝑑 ∈ 𝐵(𝑟𝑗 , 𝑎)} (∗)

Intuitively, the terms 𝑃𝑑 ensure that the image of a solution is an isomorphic copy
of 𝐵(𝑟𝑗 , 𝑎), while the terms 𝑄𝑑 create the appropriate 𝑆-edges between the image
and 𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘) (note that we do not need any 𝐷-edges because there are
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none between 𝐵(𝑟𝑗 , 𝑎) and 𝐵(𝑟𝑗 , 𝑎1,… , 𝑎𝑘)). The {ℎ𝑑} are needed for bookkeeping
reasons, in order to avoid pathologies. We now spell out the details; keep in mind
that each 𝑃𝑑 consists of indeterminates, and each 𝑄𝑑 is a subset of 𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘).
Let 𝑠 be a solution of (∗), guaranteed to exist by 𝖠𝖥𝖠. By (H1) and the fact that
each member of Im(𝑠) contains some ℎ𝑑 , we have {ℎ𝑑 ∶ 𝑑 ∈ 𝐵(𝑟𝑗 , 𝑎)} ∩ Im(𝑠) = ∅.
Using this together with (H2) and (H3) we have ℎ𝑑 ∈ 𝑠(𝑥𝑒) ⟺ 𝑑 = 𝑒, hence 𝑠 is
injective.
Let 𝑠′ ∶= 𝑑 ↦ 𝑠(𝑥𝑑) and 𝑏 ∶= 𝑠′(𝑎). By (H4) we have that Im(𝑠) does not intersect
𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘), and we already showed that it does not meet {ℎ𝑑 ∶ 𝑑 ∈ 𝐵(𝑟𝑗 , 𝑎)}.
By looking at (∗) and at the definition of the terms 𝑃𝑑 , we have that Im(𝑠) = 𝐵(𝑟𝑗 , 𝑏)

and that 𝑠′ is an isomorphism 𝐵(𝑟𝑗 , 𝑎) → 𝐵(𝑟𝑗 , 𝑏).
Note that the only 𝐷-edges involving points of Im(𝑠) can come from the terms 𝑃𝑑:
the ℎ𝑑 are well-founded, and there are no 𝑔 ∈ Im(𝑠) and 𝓁 ∈ 𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘) such
that 𝑔 ∈ 𝓁, since 𝑔 contains some ℎ𝑑 but this cannot be the case for any element of 𝓁
because of (H5). Hence Im(𝑠) is a connected component of 𝑀1 and it has diameter
not exceeding 2 ⋅ 𝑟𝑗 , so is included in 𝑁 .
Set 𝜄′ ∶= 𝑠′ ∪ (𝜄 ↾ 𝐵(𝑟𝑗 , 𝑎1,… , 𝑎𝑘)). This map is injective because it is the union of
two injective maps whose images 𝐵(𝑟𝑗 , 𝑏) and 𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘) are, as shown above,
disjoint. Moreover, there are no 𝐷-edges between 𝐵(𝑟𝑗 , 𝑏) and 𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘),
since the former is a connected component of 𝑀1. By inspecting the terms 𝑄𝑑 ,
we conclude that 𝜄′ is an isomorphism 𝐵(𝑟𝑗 , 𝑎1,… , 𝑎𝑘, 𝑎) → 𝐵(𝑟𝑗 , 𝑏1,… , 𝑏𝑘, 𝑏), and
this settles the ‘forth’ case.
The proof of the ‘back’ case, where we are given 𝑏 ∈ 𝑁 and need to find 𝑎 ∈ 𝑀0,
is analogous (and shorter, as we do not need to ensure that the new points are in𝑁):
we can consider statements such as 𝑒 ∈ 𝑑 when 𝑒, 𝑑 ∈ 𝑁 since the domain of the
𝐿0-structure 𝑁 is a subset of 𝑀 .
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Problems We leave the reader with some open problems.

1. Axiomatise the theory of D-graphs of models of 𝖹𝖥𝖠.

2. Axiomatise the theory of SD-graphs of models of 𝖹𝖥𝖠.

3. Characterise the completions of the theory of SD-graphs of models of 𝖹𝖥𝖠.
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