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Abstract 

The increasing popularity of the green industrial revolution has led to a rise, in the 

production and use of Electric Vehicles (EVs) and their associated parts, like motors, 

generators and transformers [1]. This surge was driven by a growing emphasis on sustainability 

and the need to shift towards alternatives especially in transportation [2]. However meeting the 

growing demand for these parts while maintaining production standards presents a challenge. 

To address this challenge it is important to improve manufacturing processes by prioritizing 

early detection of faults to reduce End of Line (EoL) tests and ensure efficient production.  

The efficiency and cost control of Electrical Machines (EM) greatly depend on the 

interactions, between components and subsystems. The inclusion of deformable materials such 

as copper wire introduces complexity owing to their nature. This study suggests various 

frameworks to improve efficiency by minimising the need for tests and effectively handle 

deformable materials during the manufacturing process. 

In this research, a framework that utilises Discrete Event Simulation (DES) was presented 

to investigate the interrelationships in EM manufacturing specifically focusing on the coil 

winding process. Through experiments, connections between winding speed, wire thickness, 

bobbin shape and variations in resistance were discovered. These findings highlight the 

importance of control features. Additionally, this study introduced an improved DES 

framework that combines the original DES model with a Supervised Machine Learning (SML) 

algorithm via Knowledge Distillation (KD). This integration significantly reduced simulation 

times while still maintaining accuracy. 

Lastly, a new approach was introduced with the aim to optimise the linear coil winding 

process by considering multiple objectives. The goal was to minimise production costs and 

decrease faults by examining the connections between these objectives. Advanced techniques 

like the NSGA-II algorithm were utilised to find a balance between faults and production costs 

resulting in enhancements, in operational efficiency and cost reduction. 
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CHAPTER I: INTRODUCTION 
 

1.1 Background 

 

The global shift towards sustainable and eco-friendly technologies has given rise to the 

green industrial revolution, a movement that the United Kingdom has eagerly embraced [1]. 

Consequently, there has been an exponential surge in demand for electrical products, 

particularly EVs [2]. At the heart of this rapidly evolving landscape is the manufacturing of 

EM, including motors, generators, and transformers. To satisfy the market's demands for high-

quality and cost-effective products, significant advancements in the manufacturing processes 

of EM are imperative. Manufacturing EM presents numerous challenges, such as striking a 

balance between the escalating demand and maintaining quality [2]. The intricate 

manufacturing process often leads to faults being detected at the end of production, resulting 

in costly and time-consuming EoL tests [3]. Consequently, early fault detection and mitigation 

are vital for maintaining production efficiency and product quality. To support the green 

industrial revolution's growth and development, efficient and cost-effective manufacturing 

processes are crucial. 

One crucial aspect that significantly impacts the performance and dependability of EM are 

the interdependencies among different components and subsystems. It is vital to strike the 

balance between these interdependent elements to maximise efficiency and minimise 

production costs. To ensure manufacturing processes and deliver high quality EM it is crucial 

to understand and manage these interdependencies effectively. The inclusion of materials in 

the manufacturing process adds another layer of complexity due to their unpredictable 

behaviour during production. This unpredictability makes it challenging to simulate and 

anticipate how these materials will interact with the product. The unique difficulties presented 

by these materials emphasise the need for approaches, in addressing them throughout the 

manufacturing process. 

This PhD research aims to delve into the aforementioned challenges, examining the intricate 

relationships between various factors contributing to the cost and quality of EM manufacturing. 

By conducting a comprehensive analysis of existing methods and technologies, the research 

proposes innovative solutions to enhance efficiency, reduce reliance on costly EoL tests, and 

better manage the interdependencies and deformable materials involved in the manufacturing 

process. 
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1.2 Motivation 

 

The motivation for this thesis is rooted in the necessity to enhance the efficiency and 

effectiveness of EM manufacturing processes, with a focus on minimising defects and 

maximising product quality. Achieving control over the production process is a critical aspect 

of reducing production defects and ensuring efficiency. As such, this research aims to develop 

a novel framework that seeks to understand the relationship between input parameters and the 

generation of faults. By gaining a deeper comprehension of these relationships, the proposed 

framework will enable better control over the production process, ultimately minimising 

defects and contributing to the overall improvement of EM manufacturing. The insights gained 

from this research will not only enhance the competitiveness of the EM industry but also 

support the broader goal of fostering a greener and more sustainable future. 

1.3 Research problem 

 

Existing literature demonstrates that understanding and modelling the interdependencies 

between parameters and outputs can yield significant benefits. However, it is important to note 

that, to date, no established methodologies or frameworks have explored the process 

characteristics of deformable materials and their impact on EM faults. Therefore, this research 

tries to answer the following question: “How can a novel framework that understands the 

relationship between input parameters and the generation of faults be developed to enable 

better control over the production process, minimise defects, and contribute to the overall 

improvement of EM manufacturing?”. Consequently, this PhD research addressed this gap by 

developing a framework that encompasses the process characteristics of deformable materials 

and their influence on faults, thereby contributing to the optimisation of EM manufacturing 

processes. 

 

1.4 Research aim and objectives 

The main aim of this research was to develop a model-based framework of the 

interrelationships among the various components of a shop floor manufacturing process in 

order to identify the source of defects or flaws in a real-world example from the electrical 

machine manufacturing industry involving deformable material. To accomplish this goal, four 

primary objectives were designed: 
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a) Identify and apply techniques that determine the key process characteristics in an EM 

during an error-prone manufacturing process, detecting interdependencies that lead to 

defects downstream.  

b) Develop a framework by using modelling techniques to understand how a combination of 

process variables influences the creation of defects. 

c) Integrate the established framework with a supervised learning algorithm to enhance the 

efficiency and reliability of quality control tests by predicting component states and 

accounting for interdependencies in the process. 

d) Establish a model-based framework for integrated fault detection and parameter 

optimisation in production processes. 

 

1.5 Research methodology 

An in-depth methodology was developed by examining each objective and determining the 

best approach to accomplish it, outlining the specific steps required for completion. This 

methodology was composed of three frameworks (further discussed in sections 1.5.3 to 1.5.5), 

each designed to solve a specific objective. Within each framework, various methods were 

employed (expanded upon in Chapter III ), with a predominant focus on modelling 

interdependencies, to accomplish their respective objectives effectively. The research 

methodology that directs this PhD thesis was illustrated in Figure 1.1, which included the 

workflow, research objectives, and their corresponding thesis chapters. 

1.5.1 Literature review 

In this chapter a literature review was presented, which played a vital role in any research. 

It entails a thorough and systematic exploration of existing scholarly work that pertains to the 

research question or topic being investigated.  The purpose was to understand what is currently 

known, identify any gaps or inconsistencies in the existing literature and build upon previous 

research findings. To do this, literature from various sources such as books, journal articles, 

conference proceedings and online databases were gathered. It was crucial to ensure that the 

sources used were reliable and up to date so that they provide a foundation, for this research. 
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Figure 1.1. Research Methodology 

1.5.2 Main steps 

This chapter outlined the methodology employed in the research, providing a detailed 

explanation of the approach taken to achieve the research objectives. The selection of an 

appropriate research methodology was crucial for ensuring the validity, reliability, and 

generalisability of the study's findings. This research methodology encompasses topics such as 

modelling interdependencies, hybrid computational models and multi-objective optimisation. 
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1.5.3 Interdependency modelling framework 

This chapter focused on developing a framework that models interdependencies between 

process variables, particularly in the context of EM involving deformable materials, to 

understand their influence on the occurrence of defects. The framework encompasses the 

identification of relevant process variables, the establishment of relationships among them, and 

the use of computational techniques for simulating the influence of these variables on the defect 

formation in EM. 

Identification of Relevant Process Variables 

The first step in developing the framework involved identifying the relevant process 

variables that have a significant impact on the occurrence of defects in EM with deformable 

materials. These variables included: 

• Material properties: Characteristics of the deformable materials used, such as 

elasticity, plasticity, and thermal conductivity, that could influence the behaviour of the 

material during the manufacturing process and contribute to defect formation. 

• Manufacturing parameters: Factors like temperature, pressure, and processing time 

could affect the material deformation and subsequent defect occurrence. 

• Geometrical factors: The design and dimensions of the electrical machine components 

could impact the material deformation and contributed to defect formation. 

Establishment of Relationships among Process Variables 

Once the relevant process variables had been identified, the next step was to establish 

relationships among them to model the interdependencies. This might involve: 

• Developing mathematical equations or empirical models that describe the relationships 

between the identified process variables. 

• Conducting experimental studies or analysing existing data to validate the proposed 

relationships and identify any correlations or patterns between variables. 

• Identifying potential causal mechanisms that explained the influence of one variable on 

another and how they collectively contribute to defect formation in EM with 

deformable materials. 
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Computational Techniques for Simulating the Influence of Process Variables on Defect 

Formation 

After establishing the relationships among process variables, computational techniques 

could be employed to simulate their influence on defect formation in EM. Some potential 

techniques included: Finite Element Analysis, Assembly Techniques and DES. 

Validation and Refinement of the Framework 

The developed framework should be validated and refined using experimental data or real-

world cases to ensure its accuracy and reliability. This might involve: 

• Comparing the predicted occurrence of defects with the actual observations or 

experimental results. 

• Identifying any discrepancies between the predictions and observations, and adjusting 

the framework or its parameters accordingly. 

• Iteratively refining the framework based on feedback from the validation process until 

a satisfactory level of accuracy and reliability was achieved. 

1.5.4 Hybrid computational framework 

This chapter delved into the integration of the established model into a hybrid computational 

framework that improves the efficiency and reliability of quality control tests by predicting 

component states and accounting for process interdependencies. The framework combined the 

model of interdependencies between process variables with other computational techniques 

and quality control methodologies to create a comprehensive approach to defect prediction and 

quality control in EM involving deformable materials. 

Integration of the Model with Other Computational Techniques 

To create a hybrid computational framework, the established model can be integrated with 

other computational techniques relevant to the context of quality control tests. Once the 

established model is integrate it with other computational techniques, quality control tests can 

be selected to be reduced or diminished based on the resulting hybrid computational 

framework. This new hybrid framework should aim to: 

• Detect defects at an early stage, minimising the need for rework or scrapping of 

defective components. 
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• Continuously monitor and control the manufacturing process to maintain product 

quality and reduce the occurrence of defects. 

Implementation and Validation of the Hybrid Computational Framework in Quality 

Control Tests 

The developed hybrid computational framework should be implemented in real-world 

quality control tests and validated to ensure its effectiveness, efficiency, and reliability. This 

may involve: 

• Conducting a case study in an industrial setting, where the hybrid computational 

framework can be applied to the quality control tests of EM involving deformable 

materials. 

• Comparing the performance of the hybrid computational framework with traditional 

quality control methods, assessing improvements in defect detection rates, process 

optimisation, and overall manufacturing efficiency. 

1.5.5 Multi-objective optimisation framework 

This chapter focused on developing a model-based framework that utilised a multi-objective 

optimisation approach to integrate interdependencies between fault detection and parameter 

optimisation in production processes. The aim was to simultaneously achieve efficient fault 

detection, minimise the occurrence of defects, and optimise process parameters, resulting in 

improved product quality and production efficiency. 

Identification of Key Objectives and Constraints 

The first step in developing the model-based framework was to identify the key objectives 

and constraints related to fault detection and parameter optimisation in production processes. 

These objectives included: 

• Minimising the occurrence of defects in the production process. 

• Maximising the efficiency of fault detection mechanisms. 

• Minimising the costs associated with the production process and quality control. 

• Maximising the overall productivity and throughput of the production process. 

Constraints may include limitations in available resources, such as time, budget, or 

equipment, as well as safety and environmental considerations. 
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Formulation of the Multi-Objective Optimisation Problem 

Once the key objectives and constraints have been identified, the multi-objective 

optimisation problem can be formulated. This involves: 

• Defining the decision variables, which may include process parameters, fault detection 

settings, and quality control strategies. 

• Developing objective functions that quantify the performance of the production process 

with respect to each identified objective. These functions should account for the 

interdependencies between fault detection and parameter optimisation, as well as their 

impact on the overall production process. 

• Defining the constraints, which may involve limits on the values of decision variables 

or specific requirements imposed by safety or environmental regulations. 

Selection of Optimisation Techniques 

The next step is to select suitable optimisation techniques to solve the formulated multi-

objective optimisation problem. Some potential techniques include: 

• Evolutionary Algorithms  

• Multi-objective Metaheuristics 

• Decision-Making Methods 

Implementation and Evaluation of the Model-Based Framework 

Upon selecting the appropriate optimisation techniques, the model-based framework can be 

implemented and evaluated using real-world production processes. Validation of the results of 

the optimisation process can be achieved by comparing the predicted outcomes with 

observations from the production process. Through the implementation of a correlation 

analysis, interdependencies among variables can be better understood by researchers, allowing 

for the identification of potential causal relationships, as well as an assessment of the strength 

and direction of these relationships. 

1.6 Thesis structure 

This section presents an outline of the thesis structure, providing a comprehensive overview 

of the chapters and their contents: 

Chapter 1: Introduce the background, aim and objectives, and the methodology of this 

research.  
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Chapter 2: Provide a review of relevant literature concerning interdependencies in EM 

involving deformable material, the state-of-the-art research, and identify any research gaps. 

Chapter 3: Outlines the methodology employed in the research, providing a detailed 

explanation of the approach taken to achieve the research objectives. 

Chapter 4: Develop a framework that models interdependencies between process variables, 

particularly in the context of EM involving deformable materials, to understand their influence 

on the occurrence of defects. 

Chapter 5: Integrate the established model to create a hybrid computational framework that 

improves the efficiency and reliability of quality control tests by predicting component states 

and accounting for process interdependencies. 

Chapter 6: Develop a model-based framework that utilises a multi-objective optimisation 

approach to integrate interdependencies between fault detection and parameter optimisation in 

production processes. 

Chapter 7: Discussion and conclusion of this research and its contribution to knowledge, as 

well as provision of information on its limitations and future work. 

 



 

Literature Review  10 
 

CHAPTER II: LITERATURE REVIEW 

2.1  Introduction 

The detection and modelling of interdependencies among input parameters during the 

manufacturing of EMs that contain copper wire as a deformable material are crucial in the 

modern industrial world [4]. The increasing demand for reliable and efficient motors, coupled 

with technological advancements, requires companies to keep up with the latest developments 

in this field to stay competitive [1]. During the manufacturing process, defects or faults are 

developed, sometimes they are accumulated  creating a negative impact on the quality of the 

finished product [5]. Understanding how crucial input process parameters and their 

interdependencies affect the occurrence of faults is essential for identifying the faults early in 

the process [6].  

Thus, this literature review focusses on exploring interdependencies during the 

manufacturing process and the creation of faults in EMs. When it comes to researching the 

production of EM there are several challenges that arise due to the use of flexible materials like 

copper wire. These materials can be tightly wound around stator cores, but this also brings 

complications during the manufacturing process. It becomes crucial to manage the deformation 

of copper wire to ensure optimal performance of EMs as it can affect their electrical resistance 

and efficiency [5].  

Understanding how stages in electrical manufacturing especially in stator fabrication are 

interconnected is a complex task. These interconnected stages can have an impact on outcomes 

and potentially lead to faults making it difficult to model the processes while considering time-

based dependencies. Moreover, detecting faults in materials like copper wire is challenging 

because their deformation and subtle internal defects make them difficult to identify using EoL 

tests. Using innovative approaches such as  Artificial Neural Networks (ANN) faces obstacles 

when dealing with deformable processes and lacks sufficient training data, which hinders fault 

detection in such scenarios [7]. 

Furthermore, incorporating a multi-objective approach in linear winding processes 

introduces complexities when it comes to adjusting and optimising the manufacturing process. 

The various interdependencies create cause and effect relationships that make it challenging to 

strike a balance, between reducing costs and minimising faults. Additionally, factors such as 
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speed limitations and wire gauge have an impact on the optimisation process. Achieving the 

desired objectives requires consideration in dealing with these constraints. Selecting the 

suitable algorithm for research purposes adds another layer of complexity as there is no 

universal solution that fits all scenarios. Each algorithm has its advantages and disadvantages 

making it crucial to make well informed decisions for successful research outcomes. It is 

essential to address these challenges in order to advance the field of EM production while 

improving the manageability and optimisation process by reducing costs and minimise faults. 

This will ultimately result in enhanced efficiency, reliability and quality, within manufacturing 

processes. 

This literature review discusses some areas where further research is needed in the field of 

fault detection and parameter optimisation in EM production processes specifically regarding 

interdependencies. Firstly, there is a need for better techniques to identify the characteristics 

and connections within the process that result in defects. Secondly, there is a lack of modelling 

techniques that can effectively understand the relationships between various parameters in real 

time manufacturing processes and predict the chances of defects occurring.  

Using a DES approach combined with machine learning algorithms shows promise in this 

area [8]. Thirdly, it is important to develop an integrated framework that considers 

interdependencies for both fault detection and parameter optimisation to enhance 

manufacturing operations efficiency and effectiveness. Addressing these research gaps will 

contribute significantly to developments in electrical machine manufacturing. 

2.2  Overview of electrical motors 

Manufacturing of electrical motors is a complex process that involves the design, 

fabrication, assembly and testing elements. This process requires a high level of precision and 

accuracy in order to create a reliable, efficient and safe product. As Hagedorn et al. [5] mention, 

as technology advances and electrical motors become increasingly complex, the need for 

specialised knowledge and expertise in the field of electrical motor manufacturing continues 

to grow. In this section, the basics of electrical motors manufacturing are discussed, including 

the main components, processes and techniques involved. 



 

Literature Review  12 
 

2.2.1 Components within an electrical motor 

EMs are essential for industrial and consumer applications, consisting of a housing, stator, 

rotor, and shaft as shown in Figure 2.1. Kißkalt et al. [9] state that the housing protects internal 

components, while the stator produces a rotating magnetic field using coils. The rotor, 

containing permanent magnets, rotates in response to the stator's magnetic field, and the shaft 

transfers this motion to external loads. Lauro et al. [10] mention that traditional manufacturing 

processes create these components, with the stator being the most complex and prone to 

defects. Nevertheless, Tiwari et al. [11] point out that the stator must be precisely designed and 

manufactured to withstand forces and deformations for optimal performance. 

 

Figure 2.1. Main components and manufacturing steps for an EM [9]. 
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A. Housing 

The housing is crucial for electromagnetic motors, providing protection and heat transfer 

support. Typically made of metals like aluminium and steel, the housing is produced using 

pressure die-casting and machining operations, such as turning, milling, and drilling. These 

methods ensure precise shapes, sizes, and structural strength for the stator housing [12]. As 

Grabowski et al. [13] mention, modern fabrication techniques enable more complex shapes and 

higher structural integrity. Achieving small tolerances with high precision is vital for the 

assembly process, as misalignments can cause motor vibrations. Consequently,  Mayr et al. 

[12] highlight that research on housing design, fabrication, and performance is essential for 

ensuring an EM’s motor durability, performance, and safety. 

B. Rotor 

The rotor is the rotating part of an EM, interacting with the stator's magnetic field to produce 

torque, generating rotational motion [5]. It is typically mounted within the stator and features 

a cylindrical steel lamination core with an internal copper winding. Wrobel & Mecrow [14] 

state that this winding comprises insulated copper conductors arranged in a coil to conduct 

electricity and create a magnetic field. As evidenced in Wu & El-Refaie’s [15] research, rotor 

design and construction are critical for the motor's successful operation, requiring proper 

design for specific environments, torque, and speed requirements. The winding must meet the 

stator's electrical specifications, and various configurations have been researched to maximise 

rotor performance. Careful rotor construction ensures motor quality and reliability. 

C. Shaft 

Shafts are crucial components of EMs, providing support and enabling proper functioning 

[9]. Made from materials like steel and aluminium, these cylindrical shafts allow the rotor to 

spin, generate power, and support stator windings. They also insulate windings from the core, 

prevent energy leakage, and absorb vibrations and impacts giving smooth motor operation [16]. 

Dong et al.  [17] support the idea that manufacturing techniques such as machining, extrusion, 

forging, and casting can be suitable for producing shafts, with the choice depending on motor 

requirements such as materials, tolerances, and production quantities. 

D. Stator 

The stator is a vital component in an EM, responsible for producing a magnetic field that 

interacts with the rotor to create rotational motion [18]. It typically comprises a laminated core 
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made of thin steel plates and windings wrapped around the core [19]. Nau et al. [19] explains 

that the stator's purpose is to generate a stable magnetic field, allowing the motor to convert or 

transform electrical energy. The core consists of insulated steel plates, while the winding is 

made of conductive materials like copper wire. As demonstrated in the research by Guo et al. 

[20], the stator’s design directly influences motor efficiency and performance, making proper 

component selection crucial for maximising performance. Oliveira et al. [21] agree that 

choosing the right component arrangement is essential for ensuring efficient and reliable stator 

performance. 

E. Final assembly 

The assembly of the motor is performed automatically or semi-automatically. The stator and 

the rotor, which already contain the lamination core and the shaft, are put together. To ensure 

good efficiency, Kißkalt et al. [9] suggest that the air gaps need to be kept as narrow as possible 

during assembly. In fact Tiwari et al. [11] support the idea that precision is essential to prevent 

any misalignments that result in vibration, decreasing the motor's efficiency and leading to 

malfunctions. The motor is then given a final inspection to check for any faults or defects and 

to ensure that it meets the required specifications. 

2.2.2 Common manufacturing processes used for EMs 

The manufacturing process of an EM is a complex operation involving a number of steps to 

ensure a high-quality product [9]. This literature review focuses on the typical manufacturing 

process steps of stators used in EMs. Stators are an essential component of an EM, and they 

play a critical role in converting electrical energy into mechanical energy [5]. However, they 

are also subject to a range of potential issues that can impact their performance, including 

deformation, vibration, and electrical faults [6]. Understanding and mitigating errors earlier in 

stators is crucial for ensuring the reliability and longevity of mechanical systems [4]. 

Furthermore, if not addressed promptly, these errors can lead to catastrophic failures, expensive 

repairs, and operational downtime [3][4][6]. 

The fabrication of stators involves manufacturing steps such as sheet cutting, stacking, 

joining, insulation, winding, impregnation, assembly, and contacting, as shown in Figure 2.2. 
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A. Sheet cutting 

Sheet cutting is the first process step used for fabricating a stator, which involves cutting 

sheets of material into specific shapes and sizes to create the individual components of the 

stator [6]. This process is commonly used in the production of stators made from laminated 

cores, which are typically composed of thin sheets of electrical steel or other magnetic materials 

[22]. Bayraktar & Turgut [23] point out that sheet cutting includes techniques such as punching 

and laser cutting. Urbanek et al. [16] explain that punching is widely used for EMs, while laser 

cutting offers accuracy for smaller-scale production. These techniques can alter the material 

structure near the edge, with degradation levels dependent upon the cutting method and input 

parameters. To mitigate risks, the cutting process must be carefully designed and optimised 

using appropriate parameters and tooling [6].  

B. Stacking 

Stacking is a step in stator manufacturing, involving the placement of laminations, spacers, 

and insulators in their designated positions [24]. The process begins with aligning the 

lamination stack, which can be done manually or by machines [25]. Next, spacers and 

insulators are set, providing insulation between laminations and mechanical stability. The final 

step is compressing the stack, ensuring proper contact and alignment, typically using a 

hydraulic press. Once completed, the stator coil is ready for testing and installing in the motor.  

C. Joining 

Joining is a process used during the fabrication of stators to connect the individual 

components of the stator together into a cohesive whole. Mayr et al. [26] suggest that joining 

is a critical step in stator manufacturing, ensuring structural integrity. Common joining 

 

Figure 2.2. Overview of manufacturing steps used to fabricate a stator. 
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techniques include welding, adhesive bonding, clinching, and fastening [27]. As proposed by 

Husain  et al. [24] welding is a popular joining technique for stator manufacture due to its 

minimal setup time, accuracy, and repeatability. Regardless of the technique used, De Oliveira 

et al. [28] explain that post-processing tests like mechanical fatigue testing and non-destructive 

testing (NDT) are crucial for ensuring joint quality. Inspecting joints for visual anomalies helps 

identify potential failures, ultimately maintaining the structural integrity and reliability of the 

stator [11]. 

D. Insulation 

Insulating involves applying insulating materials to the various components of the stator to 

prevent electrical losses and protect against electrical breakdown [29]. The process includes 

several steps, such as applying a lacquer coating to protect against abrasion and mechanical 

damage [24]. Insulation paper wraps around the stator, isolating it from the external 

environment and reducing the risk of short circuits and electrical noise. A layer of synthetic 

rubber, silicone, or other material adds an extra barrier against short circuits and provides 

thermal insulation, improving efficiency. Finally, a protective coating safeguards against 

environmental factors such as rain, dust, and corrosion. Zoeller et al. [30] support the idea that 

proper insulation is crucial for the efficient and reliable operation of the stator. 

E. Winding 

Winding is the process of placing insulated wire around a core to create an electrical coil as 

shown in Figure 2.3. The winding process typically involves the use of specialised winding 

machines, which are designed to wind the wires around the stator core in a precise and 

consistent manner [31]. Hofmann et al. [32] point out that computer-controlled machines 

ensure uniform wire winding while achieving the desired amount of electrical current to flow 

through the stator and motor. The winding process concludes with the installation of electrical 

connections and insulation [33]. Then, the completed stator is ready for integration into the 

motor system. 
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Figure 2.3. Representation of the linear winding process, adapted from Hagedorn et al. [5]. 

The winding process in EM is of particular interest because it is the process that involves a 

deformable material and contributes to  the highest number of faults [6]. The amount of force 

applied to a wire has an impact on how the wire bends and its electrical resistance. When the 

force is increased the wire stretches temporarily without causing any changes. This temporary 

stretching causes the electrical resistance to increase proportionally. However, if the force goes 

beyond a yield limit the wire bends permanently and its shape changes resulting in an 

irreversible increase in electrical resistance. Figure 2.4 shows how the relationship between 

wire force and bending shifts from temporary to permanent at a point. This emphasizes the  

 

Figure 2.4. Influence of the wire tensile force and the copper wire deformation on the electrical 

resistance [5]. 



 

Literature Review  18 
 

importance of managing tension to prevent any negative effects, on both the wire itself and the 

overall performance of EM.  

During the winding process, several factors can contribute to faults, such as the deformation 

of the wire, the formation of voids, and poor electrical insulation [3][6]. These faults can result 

in reduced efficiency, increased maintenance, and a decreased lifespan of the electrical 

machine. Therefore, Bermúdez  et al. [34] argue that understanding the winding process's 

intricacies is crucial for improving the reliability and performance of EM.  

Escudero-Ornelas et al. [4] emphasise the importance of the use of advanced modelling and 

simulation techniques that can aid the development of better winding processes. These 

techniques allow for a more detailed analysis of the winding process and enable the researcher 

to identify potential issues before they arise. Additionally, Abdallah & Benatman [35] mention 

that these techniques can be used to optimise the winding process to improve efficiency and 

reduce the number of faults. 

Classification of winding faults 

To ensure optimal performance and reliability of EMs, it is crucial to detect and classify 

faults in the coil-winding process [5]. Different types of faults can have varying impacts on 

motor performance, making the understanding of their classification important for improving 

overall quality [6]. Based on geometry in each turn and layer, Sell-Le Blanc et al. [3] identified 

and categorised faults in the coil-winding process. These faults include double winding, gap, 

cross-over, flange winding, loose wire, and bulgy turn, as shown in Figure 2.5. Double winding 

occurs when a wire shifts into one of the layers above, while gap happens when a wire turn is 

missing in a layer. Crossover results from a change in the feeding direction, and flange winding 

only happens at the beginning of a layer when there is a missing or defective first winding. 

Loose wire can arise at the end of the winding process when tension is low, and bulgy turn 

results when the winding is not tight enough due to tension variation, causing the wire to swell 

and have a curved appearance. 



 

Literature Review  19 
 

 

Figure 2.5. Classification of typical layering winding defects [3]. 

The occurrence of faults during the winding process can be linked to changes in winding 

pressure, which can result in variations in direction and physical properties [36][37]. A 

reduction in diameter can lead to increased electrical resistance in the bobbin, and variations in 

tension can cause the winding scheme to become deformed, resulting in issues such as bulging, 

convexity, concavity, or bending [38]. To prevent such faults, Vater et al. [39] discuss that it is 

important to analyse the interdependencies between the contributing factors of the process, 

including the machine, materials, environment, personnel, and method, in order to determine 

the underlying cause. 

To better understand and analyse these interdependencies, Sell-Le Blanc et al. [3] developed 

a matrix based on data obtained from workshops that perform winding operations, as shown in 

Figure 2.6. The parameters that influence the creation of faults during winding can be 

systematically represented, analysed, and studied through the use of the matrix which assigns 

values to each parameter. Prior to this classification, there was no specific focus on winding 

parameters. This matrix provides an efficient and methodical approach for assessing the factors 

that affect the occurrence of faults during the winding process. 

The matrix, composed of rows and columns, has been used to analyse the influence of faults 

during the winding process. The upper row of the matrix represents the faults classified into 

four categories related to electrical properties, wire properties, winding scheme, and 

dimensions. The first column holds parameters divided into categories such as process, wire, 

and coil bobbin, while values have been assigned to each parameter according to each fault. 

The analysis of the matrix revealed that the wire tension has the strongest influence on the outer 

diameter leading to faults in the winding process, as shown by the interference value between 

faults and parameters in the last row and column. 
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F. Impregnation 

Impregnation is a process where a fluid material such as resin is applied to fill the empty 

spaces between the laminations and windings of the stator core [40]. Vacuum Pressure 

Impregnation (VPI) and Resin-Rich Transfer Moulding (RRTM) are commonly-used methods 

that offer several advantages such as improved electrical insulation, mechanical strength, and 

heat dissipation [5]. During VPI, the stator core is placed in a vacuum chamber and 

impregnated with resin from a heated reservoir, with the pressure caused by heating the 

chamber forcing the resin into the empty spaces. RRTM, on the other hand, offers superior 

electrical insulation, mechanical strength, and heat dissipation. According to Liu et al. [41] 

 

Figure 2.6. Matrix by Sell-Le Blanc presenting the relationship between process parameters and 

faults during winding [3]. 
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both methods involve a vacuum and pressure, and offer benefits that contribute to the proper 

functioning and longevity of the stator in its intended application. 

G. Contacting 

The contacting process involves connecting the various electrical components of the stator 

to each other in order to form a complete electrical circuit [33]. Riedel et al. [42] mention that 

thermal crimping is a common technique due to its fast crimping times, tight seal, and reliable 

connections. In contrast, Hagedorn et al. [5] explain that welding is also common but has 

limitations such as increased hysteresis losses and corrosion. Soldering is another technique 

that uses metal heated to join wires and connectors, but it can lead to electrical losses and 

damage to the protective coating [5]. Proper contacting ensures the stator's efficient and reliable 

operation, and Alani et al. [43] support the idea that choosing the appropriate technique 

depends upon specific requirements and considerations such as cost, environment, and 

expected performance. 

2.2.3 Condition monitoring and fault detection in electrical motors 

The search for more efficient and reliable ways to identify potential problems in production 

processes, with the advancement of technology, has led to the development of analytical tools 

and approaches for identifying the sources of errors [44][45]. The focus of this section is on 

the condition monitoring and fault detection in EMs by way of identifying the most useful 

methods and techniques that aid the identification of error-prone manufacturing steps as 

presented in Figure 2.7. Advantages and disadvantages of the various techniques and methods, 

as well as their potential applications, are also considered. 

The selection of Assembly Sequence Planning, Precedence graphs, Liaison graphs and Petri 

Nets as techniques for condition monitoring was based on their ability to accurately model 

assembly processes and identify stages that may be prone to errors. This aligns with the 

research objective of identifying manufacturing errors. Similarly, fault detection techniques 

such as FMEA and Quality function deployment were chosen due to their proven track record 

in systematically identifying and prioritising potential failure modes while also implementing 

quality measures (further discuss in section 2.2.3 B). This aligns with the research focus on 

ensuring reliability and efficiency in electrical production processes. These techniques were 

preferred over other options because they have been extensively studied in the field of electrical  
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Figure 2.7. Flowchart of the condition monitoring and fault detection techniques implemented in 

EMs. 
 

manufacturing and have shown success, in similar scenarios (Sections 2.2.3 A and B). 

A. Conditional monitoring in electrical motors 

i. Assembly Sequence Planning (ASP) 

ASP is a set of methodologies used in industry to optimise the design of a product assembly 

sequence [46]. Ghandi & Masehian [46] mention that ASP uses a working model to create a 

sequence of steps to reduce errors in the manufacturing process. The ASP model considers the 

overall design of the product, the manufacturing process, and the resources required to produce 

the product, and creates an optimal assembly sequence that is error-free [47]. As Prajapat & 

Tiwari [47] discuss, the main objectives of ASP are to improve manufacturability, assembly, 

and reduce costs while maintaining essential product functions. This approach has proven to 

be highly beneficial in mapping a manufacturing process and isolating complex product 

assemblies into a limited number of subassemblies as presented in Table 2.1 [47][49]. 

As De Oliveira et al. [28] point out, the monitoring of faults in EM is essential to ensure 

optimal performance and prevent costly downtime. Various studies have reported the use of  
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ASP in monitoring faults in EM [46]. For instance, in a study by Ghandi & Masehian [46], 

ASP was used to optimise the assembly process of an electrical connector where deformable 

and flexible parts were involved while detecting assembly faults. The authors reported that 

ASP helped them in identifying potential faults and reduce assembly errors. Similarly, in a 

study by Guo et al. [48], ASP was employed in the disassembly of electronic appliances and 

electromechanical/mechanical products implementing methodologies from the Industry 4.0, 

which allowed them to reduce the cost of faulty products. Ultimately, the authors reported that 

ASP aided in detecting potential faults and improved the overall reliability of the system. 

ii. Precedence graph 

Precedence graphs are a method used to identify error-prone manufacturing steps [49]. It 

involves a graphical representation of the product design, the sequence of operations required 

to produce the product, and the resources needed. Burggräf et al. [50] suggest that the graph 

Table 2.1. Comparison table of condition monitoring techniques. 

 

 

Condition monitoring 

techniques
Advantages Disadvantages

-Optimises assembly sequence to reduce 

errors.

-Improves manufacturability and assembly.

- Helps identify potential faults and reduce 

assembly errors.

- Reduces the cost of faulty products.

-Identifies error-prone manufacturing steps.
-Inadequate in representing processes with 

deformable materials and their correlations.

-Provides an optimized sequence of 

operations.

-Suitable for agile assembly.

-Analyses complex problems and 

relationships between causes and effects.

-Helps determine efficient component 

arrangement and optimisation.

-Provides a formal model to describe and 

analyse information flow and fault 

scenarios.

-Time-consuming and not statistically 

representative.

-Used for reliability analysis in EM design 

and operation.

-Does not consider the combined effect of 

multiple faults.

Assembly sequence 

planning

- May not be effective in representing 

operations involving deformable materials 

and their interdependencies.

Precedence graph

Liaison graph
-Limited applicability in manufacturing 

processes and fault detection for EMs.

Petri nets

-Assumes independent operations, not 

suitable for highly interdependent tasks.
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can be used to create an optimised sequence of operations to reduce errors in the manufacturing 

process. This method has been applied in EMs to model the sequence of operations, capturing 

the characteristics of an electric vehicle by providing an agile assembly. However, Burggräf et 

al. [50] describe that this technique has been shown to be inadequate in representing operations 

such where deformable material is involved, and establishing correlations between them due 

to the constant change of the components.  

Echoing Burggräf, Riggs et al. [51] demonstrates that a precedence graph is inadequate in 

representing these processes because it assumes that each operation is independent and can be 

performed in isolation. This is not the case for magnet assembly and winding processes, as they 

are highly interdependent and must be performed in a specific order. For example, if the magnet 

assembly is done before the winding process, it may be difficult to wind the wires correctly 

around the magnets, leading to an incorrect final product [9]. Establishing correlations between 

these processes is also critical for ensuring the optimal performance of the electrical machine 

[6]. However, a precedence graph does not provide an effective way to represent these 

correlations. For instance, the quality of the final product may be affected by the number of 

turns in the winding process, which, in turn, affects the magnetic field produced by the machine 

[5]. Rocha & Ramos [49] emphasise that these correlations cannot be accurately represented 

by a precedence graph, as it only shows the sequence of operations and not the 

interdependencies between them. 

iii. Liaison graph 

 The Liaison graph is a tool used to analyse the connections between the causes and effects 

of a complex problem. It has been applied in engineering design to analyse the order of 

components  when assembling them to reduce difficulty and identify any relationships between 

their shape and size [52]. Pintzos et al. [52] provide the example where this method was used 

in the assembly of a wind-driven generator to determine the most efficient arrangement due to 

the large scale and load of the components. Drawing on the work by Giorgio et al. [53] it can 

be stated that the use of a Liaison graph allows for the creation of a model with the necessary 

instructions to construct the generator quickly and securely while also revealing the 

relationships between each component, allowing for optimisation of the output. 
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iv. Petri Nets 

Petri nets are a graphical, formal and abstract model used to describe and analyse the flow 

of information [54]. Pamuk [54] suggests that this model can capture and represent 

relationships between different scenarios in which a system may encounter faults. This 

technique has been applied in the realm of EV design to increase reliability through the 

mapping and evaluating of faults with Petri nets and fault tree analysis [55]. Utilising Petri nets 

allows for the construction of a reliability analysis tailored to the motor's characteristics [56]. 

Therefore, due to the goal of increasing reliability in EM production, Gaied et al. [57] mention 

that Petri nets have been used to map the operation sequence of EV, trains, and even winding 

machines. The downside of this technique is that it is time-consuming and not statistically 

representative, and it fails to take into account the combined effect of multiple faults [57]. 

B. Fault Detection in electrical motors 

i. Failure Modes and Effects Analysis (FMEA) 

FMEA is a method used to analyse a process and understand the relationship between its 

errors and output. Abhilash et al. [58] point out that FMEA is applied to identify and prevent 

errors in the early stages of development and improve product quality by assessing the severity, 

frequency, and detectability of possible failures. FMEA has been widely used in industries such 

as engineering, automotive, and aerospace, and has been explored from its historical roots in 

quality control to contemporary applications in risk management [59]. Jhorar & Kumawat [60] 

explain that this technique has been applied to identify parameters in a fractional horsepower 

AC motor failure and subsequent fault-proofing procedures developed using the Poka-yoke 

concept. Despite some limitations such as lack of standardisation and structure, FMEA is a 

widely-used method for evaluating potential failure modes and associated risks [58]. Its 

benefits outweigh any limitations and there is a large amount of literature available to explore 

its applications and potential improvements. 

ii. Quality Function Deployment (QFD) 

QFD is a widely used approach in product planning, design and quality management, which 

incorporates customer feedback into the development process by ranking product 

characteristics based on customer requirements [61]. Hariri et al. [62] proposed that QFD 

allows for a quick and efficient identification of relationships between customer requirements 
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and product characteristics, making it useful for detecting process issues and satisfying 

customer needs.  According to Anwar et al. [63] QFD has been implemented in various 

industries, including the automotive sector, especially in the design of electric cars. However, 

challenges associated with QFD include difficulty in obtaining customer feedback, lack of 

standardisation, and resource constraints such as the need for skilled personnel and time [64]. 

Despite these challenges, QFD is a useful tool for ranking process characteristics, but other 

techniques and expert opinions are necessary to detect correlations as QFD cannot take into 

account interdependencies [62]. 

2.3  Interdependencies in electrical motors 

Interdependencies in a manufacturing process entail the intricate relationships and 

interactions among diverse components, processes, and systems included in producing goods 

[6]. Mayr et al. [2] explain that these interdependencies profoundly influence the quality, 

efficiency, and cost-effectiveness of the manufacturing process. Following Mayr's line of 

reasoning, Escudero-Ornelas et al. [4] further explain that interdependencies are a critical 

aspect in the engineering field and a vital topic for enhancing the manufacturing process's 

efficiency. A comprehensive analysis of these interdependencies is necessary to optimise the 

manufacturing process and ensure that the final product meets the required specifications. 

The success of a manufacturing process depends on considering the specific dependencies 

and constraints of each component being assembled to produce the final product [65]. For 

example, Mayr et al. [2] discussed that in the case of an electrical motor, integration of multiple 

components such as the housing, stator, rotor, and shaft requires a comprehensive 

understanding of the interdependencies between these components. Neglecting these 

interdependencies can lead to delays, poor quality, and high costs [3][5]. Nishino et al. [66] 

proposed that incorporating interdependency analysis into the manufacturing process 

optimisation strategy is crucial to ensure efficiency and improve quality while reducing costs. 

This analysis can identify critical components and processes that need optimisation, and 

potential bottlenecks that may cause delays or quality issues [11]. Therefore, it is of great 

importance to accurately identify all existing interdependencies in EMs in order to determine 

the most relevant parameters and to monitor them efficiently in order to avoid any potential 

faults. 
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2.3.1 Techniques for measuring interdependencies 

Interdependencies in manufacturing processes can be measured through a variety of 

techniques. Mayr  et al. [26] describe that these techniques are employed to understand the 

complex relationships between different variables and how they interact with each other during 

the manufacturing process. In electrical machine manufacturing, Sell-Le Blanc et al. [3] 

demonstrated that interdependencies exist among various factors and stages playing a critical 

role in determining the efficiency and effectiveness of the overall system. Therefore, measuring 

these interdependencies is essential for improving the performance of EM processes. 

A. Correlation analysis 

Correlation analysis is a widely used statistical technique that measures the strength and 

direction of the relationship between two variables. In the field of electrical engineering, 

Shevkunova et al. [67] have employed the correlation analysis as a useful tool for measuring 

the interdependencies between different parameters in EM, such as voltage, current, speed, and 

torque. For example, Irhoumah et al. [68] point out that a correlation analysis can help identify 

the relationship between the input voltage and the output power of an EM. One of the main 

advantages of correlation analysis is that it provides a quantitative measure of the relationship 

between variables, making it useful for identifying the strength of interdependencies between 

different EM parameters [67]. Additionally, it is easy and quick to perform, making it a useful 

tool for researchers working with EM. 

However, there are also some limitations to using correlation analysis. Sasikala  et al. [69] 

mention that one potential drawback is that correlation does not necessarily imply causation, 

meaning that a correlation between two variables does not necessarily indicate that one causes 

the other. Furthermore, correlation analysis assumes that the relationship between variables is 

linear, which may not always be the case in EMs [69]. Nonlinear relationships may require 

more complex techniques such as nonlinear regression analysis or machine learning 

algorithms. 

B. Regression analysis 

Regression analysis is another statistical technique used to measure the relationship between 

a dependent variable and one or more independent variables in EM. This technique can help 

identify the impact of variations in the input voltage or frequency on the electrical machine's 
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output power and critical parameters affecting the overall performance of the machine [69]. 

Glučina et al. [70] state that this technique's advantages include providing a measure of the 

causal relationship between variables, identifying critical factors that impact the machine's 

performance, and determining the direction of the relationship between different parameters. 

However, Murthy & Kumar [71] argue that the regression analysis's limitations include 

assuming a linear relationship between variables and not accounting for other unmeasured 

factors that may impact the electrical machine's performance. 

2.3.2 Techniques for modelling and simulating interdependencies 

Modelling and simulating techniques have become increasingly important in the field of 

engineering, particularly in the study of interdependencies between different components and 

systems [72], [81]. Laprie et al. [74] state that the ability to accurately model and simulate 

complex systems allows for a better understanding of their behaviour and performance, as well 

as the identification of potential issues before they arise. In the context of EM, 

interdependencies between different components and systems are critical for achieving optimal 

performance and reliability. As such, Hawer et al. [75] mention that modelling and simulating 

techniques are becoming more prevalent in the design, manufacture, and maintenance of EM. 

Therefore, this section will explore the different modelling and simulating techniques used in 

the study of interdependencies in EM, their advantages and limitations, and the potential future 

developments in this field. 

The development of EMs has increased in recent years with new technologies and materials 

being utilised [1]. To produce high quality, reliable, and cost-effective motors, it is important 

to understand their behaviour [76]. Modelling EMs enables simulation of their behaviour in 

different scenarios and prediction of changes in process parameters [4], [36]. Currently, 

modelling and simulation tools are being used to study the behaviour of components such as 

the stator, resulting in cost and time savings [36], [77]. There are various modelling techniques 

as shown in Figure 2.8. The application areas and restrictions of these modelling techniques 

must be explored in the literature to compare and assess them. By using modelling techniques, 

more reliable motors with fewer faults can be produced [28], [78], [79].  

The choice of selecting these techniques for modelling and simulating electrical machines 

and their interconnections was based on a thorough literature research approach [4],[28]. These 

methods, as shown in Figure 2.8 have been carefully selected after reviewing existing literature,  
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Figure 2.8. Flowchart of techniques capable of modelling and simulating EMs and interdependencies.  

consulting the latest high-level academic journals and gathering valuable insights from the 

industrial and electric motor manufacturing stakeholder experiences. Each technique has been 

chosen considering its suitability in capturing aspects of interdependencies and electrical 

machines. This diverse selection is a combination of theoretical foundations, empirical 

evidence and practical considerations to ensure a robust approach to modelling 

interdependencies, in the context of electrical machines. 

A. Techniques for modelling an electric motor manufacturing process 

i. Discrete Event Simulation (DES) 

DES is a widely used and versatile method for decision-making in various aspects of the 

business world, particularly in the manufacturing industry [47]. Budgaga et al. [80] mention 

that DES evaluates systems where events change their state at periodic intervals and introduces 

random variables through discrete probability distributions. It provides valuable insights into 

system performance and has been used for fault detection and predictive maintenance in wind 

turbines, and for predicting energy consumption [8][81]. Greasley & Edwards [82] point out 

that the capability of DES to model discrete events and introduce random variables makes it a 

suitable tool for analysing complex systems and processes in the manufacturing industry. DES 
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is well-suited for creating a model that simulates the process flow and examines faults as 

discrete events to determine which parameters have the highest influence upon them. 

According to Prajapat et al. [83] DES is recommended in the literature as a beneficial 

technique for modelling process characteristics in manufacturing due to its adaptability. 

According to Albers et al. [72] they found that there is potential in utilising DES and combined 

it with the features offered by Industry 4.0 like simulation to analyse and understand how 

different aspects of a manufacturing process are interconnected. They explained that by 

modelling these relationships it becomes possible to achieve a level of control and stability, in 

the manufacturing process. In their study Capocchi et al. [89], employed a DES to simulate the 

parts of an electric motor, including the rotor and stator. They found that DES had shown 

potential as presented in Table 2.2, in detecting faults at a stage in a three-phase wound rotor 

induction machine, which led to its application in this research. The application of DES 

continues to grow as researchers and practitioners explore its potential to improve system 

performance, reliability, and safety [47], [84], [85]. 

ii. Finite Element Analysis (FEA) 

FEA is an accurate technique for modelling the behaviour of structurally complex 

components in engineering. Weigelt et al. [86] highlighted that FEA involves creating a 3D 

environment with a finite element mesh to represent changes in component behaviour when an 

applied load is imposed. Critical parameters can be identified through calculations and 

Computer-Aided Design (CAD) software when used in conjunction with FEA to create a model 

[32]. FEA is a numerical technique that can handle complex problems in areas such as 

deformable bodies, heat transfer, and fluid mechanics. Zaeh & Siedl [87] make the case that 

FEA can model both static and dynamic behaviour, including nonlinear outcomes, and generate 

time-dependent simulations .  

FEA has been widely used for examining faults in EMs, primarily in stators and rotors, and 

is capable of conducting structural analysis during winding when faults are more probable [32], 

[88]. FEA has also been used in combination with other techniques such as Monte Carlo 

simulation to predict the relationship between nucleus density, stored energy, and temperature 

[89]. However, Kazeminezhad et al. [89] explain that its limitations include its inability to 

identify long-term interdependencies across a manufacturing process and its high cost, as well 
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as the need for more advanced programming techniques compared to other techniques like 

DES. 

iii. Neural Networks (NNs) 

NNs are modelling techniques that use algorithms to identify relationships in sets of data 

from stochastic and predominantly non-continuous manufacturing processes. NNs have the 

ability to learn autonomously and generate an output independent of the input, and can perform 

multiple tasks without affecting system performance [90]. They are currently used in various 

fields such as image and language processing, route detection, speech recognition, and 

forecasting [91]. Raja  et al. [92] point out that NNs have also been used for quality testing in 

EMs to identify defects in the stator winding. Fischer et al. [7] discussed that attempts have 

been made to combine NNs with other modelling techniques such as DES to develop surrogate 

models of intricate systems, but it requires a large data set for training and takes a long time to 

process. Nevertheless, Gletter et al. [93] state that NNs are faster than FEA and more accurate 

than analytical modelling, but require a significant amount of training and are typically 

constructed for a specific type of electrical machine. 

iv. Fuzzy Cognitive Mapping (FCM) 

FCM is a modelling technique that uses a cognitive map to represent the relationships 

between elements in a system [79]. It calculates weighted edges to reflect the cause-and-effect 

relationships between elements, allowing for the modification of external influences and the 

creation of dynamic models. FCM has been applied in various fields, including business, 

economics, education, health, project planning, and engineering, and has been used in EMs for 

fault identification and control, improving performance through consideration of functional 

correlations in the process [94]. However, Groumpos [94] argues that constructing a model 

with FCM requires considerable effort and specialist skills, and it may not be suitable for 

nonlinear outputs. Despite its limitations, FCM has been demonstrated as a useful tool for 

analysing interdependencies to achieve optimal changeability in factory design. 

v. Design Structure Matrix (DSM) 

DSM is a modelling technique that provides insight into complex systems composed of 

interconnected components [95]. It can be used to optimise architecture in products, 

organisations, and manufacturing processes. By decomposing a system into subsystems, a 
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static or time-based model can be studied to better understand the relationships between 

parameters and how they affect system behaviour [96]. Lu & Sundaram [97] describe how a 

DSM has been applied to a range of applications – providing an example from the Boeing 

Commercial Airplane Group where they implemented a DSM as a foundation for developing 

a software tool to analyse the relationships between parameters and components of a wing. 

However, Browning [95] emphasises that DSM has limitations as shown in Table 2.2, as it can 

only model one single process flow at a time and cannot identify overlapping operations or 

interdependences among components, such as those in electronic manufacturing. 

Table 2.2. Comparison table for modelling techniques for EM. 

 

 

 



 

Literature Review  33 
 

B. Techniques for modelling interdependencies 

i. Qualitative models 

Qualitative models proposed by Laprie et al. [74] demonstrated the potential to model 

process characteristics associated with failures in electric and information infrastructures as 

presented in Table 2.3. Various tools are available to identify key process characteristics and 

interdependencies, including the Ishikawa Diagram and the Fuzzy Cognitive Map [94][98]. 

Pal et al. [98] describe that the Ishikawa Diagram is particularly useful due to its functionality 

and adaptability, but it has limitations as it can only consider a single variable at a time. 

Groumpos [94] points out that the Fuzzy Cognitive Map is a widely utilised tool to analyse 

interdependencies in a system Qualitative models have several limitations when used to model 

interdependencies in a manufacturing step [74]. Firstly, they tend to focus on individual 

components rather than how they interact with each other [75]. 

Table 2.3. Comparison table of techniques use for modelling interdependencies. 
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Secondly, qualitative models assume that the manufacturing process is linear and 

predictable, whereas it can be highly dynamic and subject to unexpected changes [60]. Thirdly, 

qualitative models often rely on historical data to make predictions, which may not be 

sufficient for modelling interdependencies. Fourthly, qualitative models can be complex and 

time-consuming to develop and implement. Lastly, they may not account for the human 

element of manufacturing, such as operator skill or decision-making, which can significantly 

impact the final product's quality [98]. 

ii. Spectrograms 

Identifying the root causes of faults is an essential step in preventing rejections in the 

manufacturing process [3] [99]. As products become increasingly complex, and processes 

interdependent, Baier et al. [99] developed a method to visualise interdependencies using 

spectrograms. This tool allows them to identify key factors contributing to EoL test failure 

[11]. Spectrograms have been found to reduce time for root cause analysis by half. However, 

a smart production system is still necessary in order to automatically identify root causes and 

take corrective action such as altering input parameters, as this technique cannot do this itself 

[99]. 

iii. Product Generation Engineering (PGE) and Model-Based System Engineering 

(MBSE)  

Albers et al. [72] propose a technique for modelling interdependencies which seeks to 

leverage the potential of Industry 4.0 technology. This technique analyses relevant product 

and process system characteristics using a three-level matrix to generate a comprehensive 

knowledge base. Subsequently, a PGE model is utilised to determine the effects of process 

parameters and the risk associated with their utilisation. Finally, MBSE is used for ascertaining 

relationships between process characteristics at the early stages of the process. Despite the 

effectiveness of this approach, Albers et al. [72] mention it is worthwhile noting that a limiting 

factor is the time-consuming and inconvenient manual extraction of all process parameters and 

their subsequent entry into the model. 

2.4  Optimisation process considering interdependencies 

Simulation models are used to analyse complex systems, such as manufacturing processes, 

that can be challenging to study using traditional analytical methods [100]. Although 
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simulation models are powerful tools for understanding such systems, they can be 

computationally intensive and require a considerable amount of time to execute [101]. Wang 

& Boyd [102] mention that simulation models should be designed to run as fast as possible for 

industrial settings in order to ensure a high level of accuracy and efficiency. Therefore, in this 

section, strategies and techniques were discussed for significantly optimising simulation 

models considering interdependencies to make them more efficient and effective. 

2.4.1 Model optimisation 

Model optimisation approaches are techniques used to improve the performance and 

accuracy of machine learning models, as shown in Figure 2.9. Thompson et al. [101] point out 

that model optimisation is an important aspect of machine learning as it can significantly 

improve the model's ability to make accurate predictions on new, unseen data. 

The choice to integrate parallel computing, analytical models and supervised machine 

learning as part of a model optimisation approach was based on a thorough analysis of existing 

literature (further explore in sections 2.4.1 A, B and C). These selected techniques provided 

adaptable approaches for optimising models. They allow for an understanding of system 

dynamics, scalability in handling large scale simulations and the ability to capture complex 

relationships between variables. By utilising these recognised and validated techniques, a 

strong foundation can be established for this research ensuring that the findings are credible 

and rigorous. 

 

Figure 2.9. Flowchart of model optimisation approaches that consider interdependencies. 
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A. Parallel computing 

Parallel computing has greatly impacted scientific research by reducing simulation time and 

speeding up the pace of research. It enables processing of a single task in multiple threads, 

leading to more complex simulations being run in shorter periods of time [103]. Furthermore, 

parallel computing technology allows multiple cores to work on the same task simultaneously, 

leading to an increased number of simulations run in a shorter timeframe. Eddelbuettel [104] 

explains that this has allowed researchers to quickly test and analyse research scenarios and 

make more informed decisions. One example of its application is provided by Deepak et al. 

[103] where an assembly sequence simulation time was reduced by a factor of ten by 

implementing parallel computing, leading to faster design iterations and better product 

performance. Another study is presented by Skowron et al. [105] in which they developed 

neural detectors and classifiers to help them enable an automatic model to distinguish between 

the stator and rotor winding faults for supplying various voltage frequencies and load torque 

values. By using parallel computing, the computing time was reduced by 50% compared to a 

sequential algorithm. 

B. Analytical models 

Analytical models are a cost-effective and time-saving approach used in research to 

understand the behaviour of complex systems or problems [65]. They use mathematical 

equations to describe the behaviour of a system, enabling researchers to identify important 

features and trends, debug and refine simulations, investigate the system under different 

conditions, and predict behaviour without running simulations. Analytical models have been 

applied in various fields, including the thermal analysis of stators in EM [106]. Studies have 

shown good agreement between the results of analytical models and experimental data, 

demonstrating their accuracy [107]. They have been used to optimise the cooling systems of 

stators, improving their cooling performance and reducing maximum temperatures [41].  

Analytical models are used to optimise a system based on mathematical computations but 

have several limitations. They rely on simplifying assumptions that may not fully capture the 

complexity of the system, are computationally expensive and time-consuming to develop, and 

may be limited in their ability to capture dynamic changes in the system [65]. Abdulah  et al. 

[108] mention that they may also require large amounts of data to develop and validate, and 

be limited in their ability to account for uncertainty in the system being modelled. 
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C. Supervised Machine Learning (SML) 

SML algorithms are becoming increasingly popular in the manufacturing process of EMs, 

particularly in the production of stators [109]. This is because these algorithms can model the 

interdependencies between variables, which affect the quality and efficiency of the final 

product [90]. Singh et al. [90] describe that by using a labelled dataset to train a model, the best 

performing design can be selected, reducing the time and effort required for optimisation and 

selection. Echoing this idea, Chen [110] makes the case that SML algorithms can also identify 

the key parameters that affect the quality and efficiency of the final product, thereby improving 

the accuracy of predictions.  

SML has been used before in EMs as an efficient model optimisation technique with 

multiple examples such as the one provided by Chen et al. [121] in which SML was 

implemented to obtain the optimal design and performance of a double stator with a multi-

excitation flux-switching machine. Another example was provided by Prajapat et al. [83] where 

the key parameters affecting the quality of the final product were identified using a DT model 

that was trained on a dataset of a turbine assembly. Overall, SML algorithms present several 

benefits in the EM manufacturing process as previously discussed, but they also have some 

limitations. A major limitation is mentioned by Parekh et al. [112] in which a large, labelled 

dataset is required to train the model, and the accuracy of the model depends on the quality of 

the labelled dataset. 

Supervised learning paradigms 

Supervised learning paradigms are techniques that involve training a model on data to 

predict or classify future observations, as shown in Figure 2.10. In supervised learning, the 

model is trained on a dataset that includes both input data and the corresponding output data or 

labels [90]. The goal is to learn a mapping between the input data and the output data to predict 

or classify future observations accurately [110]. 

One of the most common supervised learning paradigms is regression analysis, which 

involves predicting a continuous numerical output variable based on one or more input 

variables. Another popular supervised learning paradigm is classification, which involves 

predicting a categorical output variable based on one or more input variables. Regression and 

classification models were selected because they have proven to be effective in supervised 

learning scenarios [90]. In supervised learning the models learn from labelled data to make  
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Figure 2.10. Flowchart of the most common SML paradigms. 

predictions or classifications. Although there are other techniques available, for example, 

clustering algorithms for unsupervised learning or reinforcement learning for sequential 

decision-making [113], regression and classification were chosen as they are capable of 

handling both continuous and categorical output variables. This choice aligns well with this 

research objectives and characteristics of the dataset. 

Regression model 

A regression model in SML predicts a continuous numerical output based on one or more 

input variables. It uses algorithms like linear regression, polynomial regression, and support 

vector regression to learn a mapping between input and output data for accurate predictions on 

new data. Regression models are easy to interpret and can handle both linear and non-linear 

relationships, but they often assume a linear relationship which may not always be accurate 

[90]. The quality of their predictions depends heavily on the quality and representativeness of 

the input data. 

In the realm of EMs, regression models are used to identify dependencies and predict energy 

consumption, aiding energy optimisation efforts [113]. Common models used include linear 

regression, Support Vector Machines (SVM), Random Forest (RF), and XGBoost [90]. They 

can predict electric load and consumption in buildings, helping with energy-saving initiatives. 
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However, these models face challenges relating to data quality, complexity of factors 

influencing energy consumption, scalability, linearity assumption, and model selection. Data 

pre-processing is essential to ensure the validity of regression models, and, as the number of 

variables increases, the reliability of regression models decreases. Therefore, choosing the 

appropriate regression model for a specific application can also be challenging. 

Classification model 

A classification model in SML predicts a categorical output variable based on one or more 

input variables. It aims to learn a mapping between input and output data to accurately classify 

new, unseen data. In the context of EMs, classification models are used to detect and identify 

electrical appliances in real-time based on their electrical parameters [7]. These models aid in 

monitoring and controlling the operation of electrical devices, improving energy efficiency and 

reducing consumption [113]. They can also analyse the driving power and dependence of 

power infrastructure components, like substations, to support network analysis and 

management. Furthermore, they can be used in the design and application of EMs, helping to 

optimise performance and ensure reliability. 

Classification models have the advantage of handling categorical output variables with 

multiple categories and non-linear relationships between input and output variables [47]. 

However, they require a large amount of labelled data for training, and the quality of 

predictions is highly dependent upon the quality and representativeness of the input data. 

i. Popular supervised learning algorithms 

Supervised learning algorithms have many applications, including predicting customer 

behaviour, detecting fraud, image classification, and natural language processing [90]. They 

can learn complex patterns in data and make accurate predictions or classifications. However, 

Chen [110] discussed that they require a large amount of labelled data for training and can be 

susceptible to overfitting if the model is too complex or if the training data is too limited. Some 

of the most popular SML algorithms include DT, RF, SVM, K-Nearest Neighbours (KNN), 

Naïve Bayes (NB) and neural networks. 

The decision to use DT, RF, SVM, KNN, NB and neural networks to model 

interdependencies in the manufacturing process of electrical machines was based on their 

proven effectiveness, versatility and applicability across a wide range of data scenarios (expand 
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upon in this section). After conducting an extensive literature review research and examining 

real world evidence [90],[110-113], these algorithms were found to be a well-rounded choice 

because they offer interpretability, accuracy, versatility, performance and the ability to handle 

complex relationships. This ensures an approach to modelling interdependencies while 

maintaining computational efficiency. Hence, these algorithms were selected as the suitable 

options for capturing the diverse and intricate interdependencies during the manufacturing 

process of electrical machines. In addition, it is important to note that as the field progresses, 

new or more advanced algorithms may be considered for future research endeavours. 

Decision trees (DT) 

DT are a form of machine learning that is used in electrical machine simulations to reduce 

simulation times and improve accuracy [114]. By classifying and predicting outcomes based 

on data, DT can determine optimal operating conditions for EM more efficiently than 

traditional methods [114] [115]. They also provide a visual representation of the machine's 

behaviour and interactions between components, enabling engineers to make informed 

decisions and improve efficiency. Several studies have applied DT in stator manufacturing for 

fault prediction with high accuracy and better understanding of the underlying process 

mechanisms [116]. Despite its advantages, Géron [115] describes that DT can suffer from 

overfitting and bias towards dominant classes, and researchers can use ensemble methods to 

improve performance. 

Random Forests (RF) 

RF is a machine learning approach that can be used to speed up the simulation of EMs, 

such as stators, by providing accurate predictions of the system's behaviour in various 

conditions [117]. RF are a collection of DT that analyse the behaviour of the system from 

different viewpoints and identify the most important features for predicting that behaviour. By 

combining and weighing the predictions of the individual DT, an accurate and faster prediction 

of the system's behaviour can be obtained, reducing the simulation time of the stator [90]. As 

Peña-Graf  et al. [118] describe, RF also identify outliers in the data and can be used to identify 

which parameters have the most impact on the system's behaviour, allowing for better 

understanding and design optimisation. 

In a study by Marinov et al. [117], a RF algorithm was applied to decision making when 

designing power electronic converters, and achieved an accuracy of 97.45%, outperforming 
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other machine learning algorithms. It has also been used for process simulation in stator 

manufacturing to identify potential problems and optimisation opportunities. In a study by  

Thornton & Edward [113], a RF model was developed to simulate the winding process of a 

stator in an electric induction motor, with excellent results, showing comparable outcomes 

when validated against actual manufacturing data. However, RF require a large amount of data 

and can be computationally intensive, and the interpretability of the model may be reduced. 

Support Vector Machines (SVMs) 

SVMs are a popular technique capable of reducing the number of simulation iterations 

required by producing a more accurate model, leading to a reduced number of simulations for 

refinement [90]. The improved accuracy of the model also allows for more accurate 

performance predictions and better decision-making during the design process. SVMs can also 

reduce computational time by using algorithms such as kernel methods. Géron [115] explains 

that they are capable of predicting the stator's behaviour in different operating environments 

and under varying loads, further reducing the time and resources required for simulation. 

SVMs have been applied in several studies for stator fault prediction and efficiency 

prediction. For example, Cano-Lengua et al. [119] used an SVM-based model for stator 

winding inter-turn short circuit fault diagnosis, achieving a high accuracy of 96.15%. Géron 

[115] discusses the use of an SVM-based method for diagnosing stator winding faults in 

permanent magnet synchronous motors, while, in comparison, Singh et al. [90] used SVMs to 

predict the efficiency of stator windings in an axial flux permanent magnet synchronous motor 

with high accuracy. 

K-Nearest Neighbours (KNNs) 

A KNN algorithm is a data mining technique that is used to reduce simulation time and 

improve the accuracy of results. It works by finding the k-nearest neighbours to a test point in 

a dataset and using those neighbours to approximate the desired output. KNNs have been used 

in several studies to predict winding temperature and classify stator faults [120]. The algorithm 

outperformed other machine learning models, such as Artificial Neural Networks and SVM, 

in the prediction of winding temperature [121]. Similarly, it was able to accurately classify 

stator faults based on vibration signals [122]. However, KNNs have some limitations, 

including the requirement for a large number of training examples and poor performance in 
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high-dimensional spaces, which need to be considered when applying the algorithm in practice 

[123]. 

Naïve Bayes (NB) 

NB algorithms are used to reduce simulation time and improve accuracy by quickly 

identifying the most important parameters. The algorithm uses Bayesian probability theory to 

identify the most significant parameters and exclude those that have the least impact on the 

output [116]. The algorithm's simplicity and fast training time make it suitable for real-time 

applications like fault diagnosis [115]. However, the accuracy of the classifier depends on the 

quality and quantity of input data and the assumption that the input features are independent 

of each other may not be true in some cases. Studies have shown that NB algorithms provide 

more accurate results and are effective in diagnosing different types of faults in stator windings 

in induction and permanent magnet synchronous motors [116]. 

Artificial Neural Networks (ANNs) 

ANNs are a type of artificial intelligence that can be used to simulate the behaviour of 

electrical systems, such as stators, to reduce the simulation time [28][90]. ANNs can learn the 

relationship between electrical parameters and the stator behaviour, allowing for real-time 

approximation. The use of ANNs for simulation time reduction is a novel application of AI 

and has the potential to significantly reduce the time required for simulating complex electrical 

systems [90]. However, ANNs have a high computational cost, can be considered black boxes, 

and are susceptible to overfitting [91]. Researchers should consider these limitations when 

applying ANNs to real-world problems.  

ii. Performance Metrics and Evaluation 

In SML, the performance of a model is usually evaluated using various performance metrics 

that are appropriate for the task at hand and the type of problem being solved. Some of the 

most commonly used performance metrics for SML algorithms are presented in Table 2.4 [90] 

[91]. 

 



 

Literature Review  43 
 

Table 2.4. Performance metrics employed during SML to evaluate the model’s performance and 

accuracy [125].  

 

Evaluation Metric Description 

Accuracy 

It is the most commonly used performance metric and is simply the 

ratio of the number of correct predictions made by the model to the 

total number of predictions. It is a good metric for balanced datasets 

but can be misleading for imbalanced datasets. 

Confusion Matrix 

A table summarises the performance of a classification model by 

showing the number of true positives, false positives, true negatives, 

and false negatives. The confusion matrix provides a more 

comprehensive view of the model's performance, including its 

ability to make correct and incorrect predictions. 

Precision 
It is the ratio of true positive predictions to the total number of 

positive predictions made by the model. It measures the model's 

ability to avoid false positive predictions. 

Recall 
It is the ratio of true positive predictions to the sum of true positive 

and false negative predictions. It measures the model's ability to 

detect all positive instances. 

F1-Score 
It is the harmonic mean of precision and recall. It provides a balance 

between precision and recall and is a good metric to use when both 

precision and recall are important. 

ROC Curve and AUC 

ROC Curve is a plot of the true positive rate against the false 

positive rate for different threshold values. AUC is the area under 

the ROC curve and provides a single number summary of the 

model's performance. 

Mean Squared Error 

(MSE) and Mean 

Absolute Error 

(MAE) 

These are common performance metrics for regression problems, 

where the goal is to predict a continuous numerical value. MSE and 

MAE measure the difference between the true values and the 

predicted values. 

 

 

These are some of the most commonly used performance metrics in SML. The choice of 

metric depends upon the type of problem being solved and the desired trade-off between 

accuracy and other factors, such as precision, recall, and computational cost. 
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2.4.2 Process optimisation 

Process optimisation refers to the action of improving a specific process to achieve the 

desired outcomes more efficiently, effectively, and reliably [124]. Duan et al. [125] suggest 

that the winding process in an EM can be considered a multi-objective optimisation problem 

because it involves several parameters that need to be optimised simultaneously. The winding 

process needs to balance several objectives, including achieving the desired magnetic field, 

minimising energy consumption, reducing fault rates, and improving efficiency [5]. 

A multi-objective problem refers to a situation where multiple, conflicting objectives must 

be optimised simultaneously. This type of problem is common in real-world applications, 

including in EMs regarding stators [111][125]. Optimising the design of a stator, for instance, 

requires balancing multiple objectives such as reducing weight, increasing efficiency, and 

maintaining structural integrity. These objectives are often interdependent and require trade-

offs to find the optimal solution. 

The process optimisation of stators focuses on finding a set of solutions that balance multiple 

objectives such as reducing manufacturing costs, decreasing fault creation, and improving 

process efficiency. Solving multi-objective problems can be challenging as the objectives may 

conflict and be difficult to balance [126]. Costantino et al. [127] point out that traditional 

optimisation techniques, such as linear and non-linear programming, are not suitable for these 

problems as they can only optimise a single objective. 

Specialised techniques, such as multi-objective optimisation algorithms and metaheuristics, 

have been developed to address this challenge. The optimisation problem can be approached 

using various techniques, as shown in Figure 2.11, including evolutionary algorithms or 

scalarisation, which aim to find a set of non-dominated solutions that represent a trade-off 

between conflicting objectives. 

This research meticulously considered and selected these process optimisation techniques, 

based on its proven effectiveness in addressing optimisation challenges [125-127]. These 

challenges include converting multi-objective problems into single objective ones, evaluating 

alternative solutions systematically, identifying patterns, combining multiple approaches and 

dealing with conflicting objectives. Moreover, these techniques offer adaptability to 

optimisation scenarios. Furthermore, their track record of success in research studies and  
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Figure 2.11. Diagram of multiple approaches for process optimisation when dealing with a multi-

objective problem. 

practical applications (more insight offer in this section) offers confidence in their capability 

to provide outcomes. Lastly, by combining these techniques it is possible to address 

optimisation challenges using a holistic view to achieve efficient solutions. 

A. Scalarisation method 

This method converts a multi-objective problem into a single objective problem by defining 

a scalarisation function. The most popular scalarisation method is the weighted sum method 

(WSM). The WSM is a commonly used approach for solving multi-objective problems by 

aggregating multiple objectives into a single objective function by assigning weights to each 

objective [128]. WSM has been applied to optimise stator design, balancing conflicting 

objectives such as minimising weight and cost while maximising efficiency and structural 

integrity [129].  

Several studies have shown the effectiveness of WSM in optimising stator design [129], 

[130]. However, WSM has limitations, including difficulty in selecting appropriate weights for 

the objectives and difficulty in handling non-convex or non-linear problems [129]. To address 

these limitations, modifications such as the use of multi-objective evolutionary algorithms and 

fuzzy decision-making approaches have been proposed to improve the performance of WSM 

[131]. 

B. Decision-making method 

Decision-making methods are techniques used to solve multi-objective problems by 

determining the best solution among a set of alternatives. They can be based on mathematical 

models, expert judgment, or both. Common approaches include multi-criteria decision-making 
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(MCDM) methods [62], which help weigh the relative importance of conflicting objectives, 

and multi-objective decision-making (MODM) methods [61], which use various techniques to 

find optimal solutions. Data-driven approaches, like machine learning, can enhance these 

methods by incorporating historical data to improve accuracy. Decision-making methods offer 

a systematic and structured approach to problem-solving and can be customised to suit each 

problem and decision-maker's needs. 

C. Hybrid methods 

Hybrid methods combine multiple optimisation techniques to solve multi-objective 

problems, leveraging the strengths of different methods to overcome individual limitations. 

Techniques such as genetic algorithms, particle swarm optimisation, and artificial neural 

networks can be combined for improved performance [132] [133]. Hybrid methods efficiently 

and effectively solve multi-objective problems, addressing trade-offs between competing 

objectives and handling complex, non-linear relationships [134]. They can manage problems 

with multiple constraints and uncertainties by incorporating various optimisation techniques 

suited to different problem types. Hybrid approaches provide robust and accurate solutions in 

various applications, including the optimisation of EM like stators [135]. 

D. Machine learning methods 

Machine learning methods offer a computational approach to solve multi-objective 

problems by optimising multiple conflicting objectives, applicable to real-world situations such 

as stator design in EMs [39]. These algorithms learn from past data, identifying patterns and 

making predictions about system behaviour, which aids in optimising objectives like cost 

reduction and efficiency increase [116]. Techniques like DT or neural networks can determine 

optimal design parameters, considering trade-offs between conflicting objectives. 

Reinforcement learning can optimise system behaviour by learning from past actions to 

make decisions that maximise a set of reward functions [90]. Combining machine learning with 

multi-objective optimisation algorithms can lead to more sophisticated problem-solving 

methods [136]. However, machine learning methods can also pose challenges, such as the need 

for large data amounts, difficulties in interpreting complex models, and the risk of overfitting 

to the training data [137]. 
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E. Multi-Objective Evolutionary Algorithms (MOEAs) 

MOEAs are a class of optimisation algorithms that are designed to solve multi-objective 

problems. MOEAs are based on the principles of evolutionary algorithms and genetic 

algorithms, which mimic the process of natural selection to find an optimal solution [135]. 

MOEAs are specifically designed to handle multiple conflicting objectives and generate a set 

of non-dominated solutions that represent a trade-off between the conflicting objectives. The 

non-dominated solutions are known as the Pareto front and provide a comprehensive 

representation of the trade-off between the objectives [138]. 

In the context of multi-objective optimisation, MOEAs can be used to find the optimal trade-

off between multiple conflicting objectives. For example, in the design of EM such as stators, 

MOEAs can be used to minimise weight and manufacturing costs while maximising efficiency 

and structural integrity [111] [139]. MOEAs can also handle complex and non-linear 

relationships between objectives, which makes them well suited for solving multi-objective 

problems [126]. 

MOEAs use various strategies such as selection, crossover, and mutation to generate a new 

population of solutions [140]. The solutions are evaluated based on their performance with 

respect to the objectives, and the best solutions are selected for the next iteration. This process 

continues until a satisfactory set of non-dominated solutions is found. The use of MOEAs can 

provide a comprehensive representation of the trade-off between conflicting objectives, 

making it easier to identify the best trade-off for a particular application [135]. Overall, 

MOEAs are a powerful tool for solving multi-objective problems and provide a comprehensive 

representation of the trade-off between conflicting objectives.  

i. Multi-Objective Optimisation Techniques 

Multi-objective optimisation techniques can optimise complex systems with multiple 

objectives to be met simultaneously, such as EM that require efficiency, reduced losses, and 

minimised noise and vibrations [141]. Such machines have complex interdependencies 

between different parameters, requiring optimisation techniques that consider them 

simultaneously. Examples include NSGA-II, SPEA2 and MOEA/D as shown in Figure 2.12, 

which use mathematical models to simulate machine behaviour and optimise design parameters 
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[136][142]. Multi-objective optimisation techniques can handle trade-offs between different 

objectives and interdependencies between parameters, leading to more optimised designs.  

 

Figure 2.12. Diagram of the optimisation techniques used in multi-objective problems. 

However, they can be computationally expensive and rely on the accuracy of mathematical 

models [143].  

The selection of techniques such as NSGAII, SPEA2 and MOEA/D were chosen over other 

algorithms in this field was because they have shown to be effective when dealing with 

problems that involve multiple objectives [138],[141-143]. These algorithms helped in 

generating solutions that are robust and can effectively balance conflicting goals. They have 

also been proven to perform effectively in generating Pareto optimal solutions, which provides 

valuable insights, into complex optimisation scenarios and allows decision makers to explore 

different trade-offs productively. 

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 

The NSGA-II, a multi-objective optimisation algorithm based on the genetic algorithm 

framework, is widely used in stator manufacturing research. The algorithm has been applied to 

optimise the design of stator winding for various types of EMs, as demonstrated in studies by 

Thornton & Edward [113] and Malagoli et al. [144]. In Thornton & Edward’s [113] study, an 

NSGA-II was used to balance multiple objectives, such as torque, efficiency, and power factor 

during the inspection of apparatus with high flexibility for permanent magnet synchronous 

motors. 
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The algorithm was successful in finding multiple Pareto-optimal solutions that met the 

desired objectives. Similarly, in Malagoli et al.’s [144] study, an NSGA-II was successfully 

applied to a stator as part of an asynchronous machine to obtain the optimal design variables 

and therefore minimise the cost of materials, taking into account multiple objectives including 

torque, efficiency, and flux-weakening capability. The results showed that the NSGA-II was 

able to identify the optimal winding configuration that achieved the desired trade-off between 

the conflicting objectives. 

Strength Pareto Evolutionary Algorithm (SPEA2) 

An SPEA2 is a multi-objective optimisation technique that has the objective of finding a set 

of Pareto-optimal solutions, where one solution cannot be improved in one objective without 

sacrificing performance in another objective [143]. The algorithm works by maintaining a 

population of candidate solutions and using a fitness function to evaluate each solution's 

performance. Through selection, crossover, and mutation operations, the population is evolved 

over multiple generations to reach the optimal set of solutions. Nevertheless, the "niching" 

problem, which describes how challenging it is to keep a variety of solutions across the Pareto 

front, is one prominent drawback. Despite the fact that SPEA2 employs a density estimation 

approach to promote diversity, it could still have trouble keeping a diverse population of 

solutions. This might result in the loss of some of the Pareto front, particularly if the Pareto 

front is complex or discontinuous. 

An SPEA2 has been used in stator manufacturing research to optimise various design 

aspects, such as slot configurations and winding layouts. For example, Frutos et al. [143] used 

an SPEA2 to optimise the operations scheduling under machine availability constraints of a 

permanent magnet motor. Liu & Zhang [145] improved the SPEA2 algorithm with a local 

search for multi-objective investment decision-making with an application to permanent 

magnet synchronous motors. In both studies, the SPEA2 was able to identify multiple Pareto-

optimal solutions that achieved the desired objectives [145]. 

Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D) 

A MOEA/D is a well-regarded multi-objective optimisation algorithm that relies on 

decomposing the objective functions into smaller sub problems. It has been utilised in research 

on EM to optimise various aspects such as the design, slot configuration, and material selection 

[152]. For instance, Farnsworth et al. [152] applied a MOEA/D to optimise the design of a 
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programmable microelectromechanical bandpass filter, while Garcia & Trinh [146] utilised a 

MOEA/D to optimise the modular cell design. Garcia & Trinh [146] point out various 

limitations with this algorithm such as it demonstrates sensitivity to its parameters and 

scalability issues, especially with an increasing number of objectives, and it struggles to 

maintain diverse solutions for problems with complex Pareto fronts. It also exhibits 

dependency on the decomposition method used, faces challenges in handling complex 

constraints and dynamic problems, and can demand significant computational resources, 

particularly for high-dimensional or many-objective problems. 

2.5  Challenges encountered during stator manufacturing 

The production of an EM requires the fabrication of a stator, but issues may arise during the 

manufacturing process due to various factors such as material selection, machining accuracy, 

lamination quality, coil winding accuracy, assembly quality, and testing reliability [3]. Poor 

lamination quality can lead to excessive electrical losses and weakened mechanical integrity, 

while incorrect coil winding can result in lower efficiency and increased sound levels [20]. 

Additionally, unreliable testing can lead to incorrect measurements and hinder optimal 

performance [21]. 

Sell-Le Blanc et al. [22] pointed out that these issues can significantly affect the stator's 

performance, resulting in reduced efficiency, increased electrical losses, weakened mechanical 

strength, and the production of higher sound levels. Therefore, as Yang et al. [23] mention, it 

is crucial to address these issues during the manufacturing process to ensure the stator's 

efficient and reliable operation.  

Deformable material 

Deformable materials, such as copper wire, play a significant role in the production of EMs 

[1]. These materials possess mechanical properties that enable them to be easily shaped and 

bent into specific forms during the manufacturing process, allowing them to be wound tightly 

around a stator core or other components [24]. Komodromos et al. [25] stated that the 

deformability of these materials is due to their inherent ductility and malleability, which allow 

them to withstand the forces involved in the winding process without breaking or cracking. 

Sell-Le Blanc et al. [26] pointed out that the mechanical properties of these materials can be 

influenced by various factors such as the type and purity of the material, the temperature of the 
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environment, and the specific manufacturing techniques used. Understanding the properties of 

these materials is crucial for ensuring the efficient and reliable operation of EMs [27]. 

Coil winding is a complicated process used during the fabrication of stators that involves 

winding the copper wire onto the stator core while maintaining the wire's integrity [3]. The 

copper wire's capacity for ductility and deformation is essential in this process. However, the 

deformation of copper wire can cause issues in the winding process, leading to high electrical 

resistance or reduced efficiency as discussed by Hagedorn et al. [3]. To prevent these issues, 

several techniques have been proposed, including annealing, lubrication, variate winding 

tensions, and dynamic deformation methods [3][28]. Proper maintenance and inspection of the 

coils are also crucial in identifying any deformation issues and preventing further damage [19]. 

Overall, properly managing copper wire deformation during the winding process is crucial to 

achieve optimal performance from the EM [4]. 

Modelling interdependencies 

Interdependencies, within electrical manufacturing processes present a challenge as they 

necessitate an understanding of how input parameters and process outputs relate potentially 

leading to faults [3]. Specifically in the fabrication of components such as stators, there are 

interconnected stages involved, such as the insertion of copper wire into coils. The key 

challenge lies in comprehending how these interdependencies impact the outcome and 

identifying any signs of trouble before faults arise. Additionally, processes involving 

deformable materials further complicate matters since alterations made during steps can have 

repercussions on subsequent ones. Modelling processes while accounting for the time-based 

dependencies within each step is indeed complex. An example would be coil winding, where 

the shape of the copper wire undergoes changes throughout the process due, to these 

interconnected relationships. 

Reduction of End of the Line tests 

The current quality tests known as the EoL tests, which are typically used to identify faults 

during the manufacturing of stators have proven to be inefficient and result in increased costs 

and longer production times [1]. Particularly when it comes to identifying faults in materials, 

like copper wire, traditional techniques face challenges [4]. The reason for this difficulty lies 

in the dynamic nature of deformation the fast pace of manufacturing as well as the presence of 

subtle internal defects. Additionally, limitations in sensor technology and the absence of 
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models further complicate matters. Moreover, when it comes to using machine learning for 

fault detection in scenarios there are obstacles to overcome. These include a lack of training 

data issues with overfitting and difficulties, in dealing with non-linear deformable processes. 

Multi-objective optimisation involving interdependencies 

The use of a multi-objective approach in linear winding processes involves various 

interdependencies that lead to complex cause and effect relationships. As a result, making 

adjustments and optimising the process becomes challenging [6]. Finding the balance between 

reducing production costs and minimising faults is also difficult because improvements in one 

aspect may have negative consequences elsewhere. Additionally, there are constraints related 

to the achievable speed and wire gauge, which limit the range of possible solutions and impact 

the optimisation process. Lastly selecting a suitable algorithm, for research poses a challenge 

since there is no universal solution that fits all scenarios, and each algorithm comes with its 

strengths and weaknesses. 

2.6  Research Gaps and developed solutions 

This section aims to identify research gaps in the field of fault detection and parameter 

optimisation in production processes for EM where interdependencies has a major influence. 

The purpose is to provide a foundation for future research to address the limitations of existing 

research and develop more advanced and integrated approaches to improve the efficiency, 

reliability, and quality of EM manufacturing processes. The role of interdependences is crucial 

in this field, and research gaps has been identified with this in mind. 

Gap 1: Firstly, there is a lack of understanding and effective methods when it comes to 

identifying and implementing techniques that can accurately determine the characteristics of 

processes in the manufacturing of EM especially when dealing with defects or errors. In 

particular, the ability to detect the connections between factors that result in defects further, 

down the line is still not well developed and has not been adequately addressed.  

Solution 1: To address this identified gap and the first objective of this thesis (section 1.4), the 

existing literature offers techniques like Precedence Graphs, Liaison Graphs, Petri Nets and 

Graph Data Models [57] [59] [61]. This work utilised the Precedence Graph technique because 

it provides a visualisation of the system and the order of activities, which is crucial for 

understanding interdependency behaviour. To decompose activities, it is necessary to begin 
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with those related to the material specifically the copper wire coil. The purpose of the graph 

data model was to extracted process parameters and faults from existing literature. By 

analysing the graph, interdependencies between input parameters and faults were uncovered. 

Each fault was then ranked using severity, occurrence and detection scales to reveal how 

interdependencies affected outputs during coil winding. Insights were gained into how 

interdependencies manifested at stages of a process and may contribute to faults. 

Gap 2: Another gap was a need for modelling techniques that can effectively capture the 

complex relationships between different parameters, in the manufacturing process. 

Additionally, these techniques should be capable of providing real time predictions on the 

likelihood of defects occurring. Attempts have been made to model the behaviour of 

deformable material and its interdependencies during manufacturing [89]. However, these 

attempts often focus on specific steps rather than analysing the entire sequence to identify 

relationships.  

Solution 2: To study the interdependencies in a process involving deformable materials, a 

framework that utilises a DES approach was developed. The simulation model focussed on the 

process of noncircular orthocyclic coils in a linear manner. The DES model has the capability 

to identify faults and areas with higher resistance known as "hotspots". To validate the DES 

model accurately, experiments were conducted on a linear coil winding machine. Thanks to 

this model, the second objective of this thesis (section 1.4) was achieved, which focuses on 

creating a modelling framework to gain insights, into how different process variables interact 

and impact the occurrence of defects in processes involving materials that can be deformed. 

This solution enables an examination of the process by simulating interactions and optimising 

parameters leading to a reduction in defects and improved efficiency, in EM.  

Gap 3: There is a lack of research on how the developed framework can be integrated with a 

SML approach. This integration was anticipated, to allow for predicting the state of a 

component and reducing the time needed for online quality control tests by identifying how 

different factors, within the process affect each other. Numerous studies have explored ways 

to address the gap that was identified earlier. In the manufacturing industry, it is practice to 

conduct multiple quality tests after each step to identify any faults or defects [9].  

However, this approach can be costly and time consuming. Traditional tests for coil quality 

often involve using Dowell’s equation and winding resistance tests to spot anomalies in 
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resistance [3]. While these methods can be effective, they require an amount of time and 

expertise. Additionally, pattern recognition has been used to detect coil faults [99]. It does not 

consider outputs from previous manufacturing steps, which indicates a gap in existing research. 

These attempts have been valuable and underscore the need for a more integrated and efficient 

approach to detecting faults and ensuring quality control, in manufacturing processes. 

Solution 3: The proposed approach utilised a KD approach combining the DES model with a 

SML algorithm. It aims to overcome challenges in KD by using architecture search and data 

augmentation methods to enhance the generalization capabilities of the student model (SML 

algorithm). By employing the DES model to generate training data for the SML algorithm this 

framework greatly improves fault detection and prediction in machine manufacturing. 

Therefore, achieving the third objective of this research (section 1.4) which focus on combining 

the known framework, with a supervised learning algorithm in order to enhance the 

effectiveness and dependability of quality control tests. By predicting the states of components 

and taking into account the interdependencies, within the process.  

This framework holds promise, for reducing manufacturing time enhancing stator quality 

and ultimately improving reliability and safety. Furthermore, the developed framework plays 

a role, in real time monitoring by potentially being capable of acting as a digital twin. The use 

of a digital twin as an online model offers several advantages compared to relying solely on 

offline models such as the DES model. Offline models are valuable for analysis and prediction. 

However, they have limitations when it comes to real time monitoring and control of the 

manufacturing process. One significant drawback is their inability to promptly respond to 

changes or anomalies in the production environment since they are typically updated 

periodically based on data. 

In contrast a digital twin serving as an online model can mirror the actual production 

environment with great accuracy and provide continuous monitoring and control capabilities 

allowing for real time adjustments and interventions. To transform the current models into a 

digital twin, integration with sensors on the actual winding machine would be necessary, 

enabling real-time data collection and feedback. This aspect could be considered as potential 

future work, as it would enhance the model's ability to accurately reflect the current state of the 

manufacturing process. As a result, manufacturers could identify faults and predict outcomes 

as they happen enabling proactive measures for maintaining quality and efficiency. 
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Gap 4: Lastly, there is a gap in the literature regarding a multi-objective framework for 

integrating fault detection and parameter optimisation where interdependencies plays a crucial 

role in the production processes. There is a need to develop and successfully implement such 

framework that has the potential to greatly improve the efficiency and effectiveness of 

manufacturing operations. There are methods available to tackle complex problems at multiple 

levels, such as evolutionary learning, parallel and distributed algorithms, and the island model 

genetic algorithm [145]. These approaches have mostly been utilised in design optimisation 

rather than process optimisation, where a hierarchical approach is necessary.  

Solution 4: Evolutionary algorithms, which is a level scheme has demonstrated its 

effectiveness in optimising multi-objective problems by maintaining some level of 

independence between populations. To optimise the manufacturing process, it has been 

proposed to use the NSGA-II algorithm. This algorithm has shown great performance in 

solving multi-objective problems [123] [153]. The focus with the NSGA-II was on two 

objectives at both the component and process levels: reducing costs and improving quality.  

Taking a multi-objective approach to balance and optimise these objectives within linear 

winding processes is an innovative solution to challenges faced in this field and solving the last 

objective of this research, which focussed on establishing a model-based framework for 

integrated fault detection and parameter optimisation in production processes (section 1.4).  In 

addition, by creating correlation matrices from optimised models, insights into interactions 

could be gained and assessed how optimised input parameters correlate within resulting system 

faults. Utilising the NSGA-II algorithm to minimise interdependencies within the system, can 

aid in enhancing manageability and optimisation while also lowering expenses and mitigating 

faults.  
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2.7  Summary 

In this literature review, a comprehensive overview of EMs and their components has been 

provided, with special emphasis placed on the challenges encountered during the 

manufacturing of the stator when deformable material is involved. Common manufacturing 

processes have been explored, and the classification of winding faults, as well as the condition 

monitoring and fault detection techniques prevalent in the industry, have been discussed. To 

understand the complex interdependencies in EMs, various measuring and modelling 

techniques, along with simulation strategies, have been analysed. 

A detailed study on SML has been presented, with different supervised learning paradigms 

and the most popular supervised learning algorithms being explored, which have potential 

applications in enhancing the process optimisation and fault detection in EMs with deformable 

materials. This literature review lays a solid foundation for the potential development of a novel 

approach to model the interdependencies in electrical motors, especially where deformable 

materials are involved. Moreover, an exhaustive examination of process optimisation has been 

conducted, considering interdependencies. A variety of optimisation techniques, with a focus 

on Multi-Objective Evolutionary Algorithms like the NSGA-II, SPEA2, and MOEA/D, have 

been explored, with their merits and demerits highlighted. 
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CHAPTER III: TECHNIQUES AND METHODS 

The goal of this chapter was to provide a detailed understanding of the methodology 

employed whilst exploring interdependence modelling in an EM manufacturing process 

involving deformable materials. Three primary frameworks were outlined: 

• An interdependency modelling framework was created to further study the 

interdependencies, by modelling and simulating multiple stages of the coil winding 

process allowing for the detection of abnormalities in the winding scheme and fault 

creation scenarios such as increased electrical resistance, commonly known as 'hotspots'. 

• A hybrid computational framework for early fault detection in coil winding manufacturing 

process was created using a KD approach. This framework utilised a KD approach as a 

method to address the challenges associated with the technique and optimised the student 

model's performance by employing architecture search and data augmentation.   

• A multi-objective optimisation framework involving dependencies was created. This 

framework dealt with complex issues related to optimal decision-making using advanced 

multi-objective optimisation techniques as a method that generated solutions while 

balancing competing priorities simultaneously. 

Finally, the last framework was reinforced by implementing a novel correlation analysis 

method, which identified variable relationships by calculating an interdependency value 

between different system components. Multiple statistical methods for calculating and 

interpreting correlation coefficients and testing for statistical significance were also discussed 

(further discussed in Chapter VII) . The goal of this research was to develop a comprehensive 

and rigorous methodology composed of multiple frameworks with their own specific methods 

and techniques that contributed a valuable insight into the field of EMs and interdependencies, 

promoting further investigation. 

3.1 Proposed framework for modelling interdependencies 

As new technologies emerge across various industries today, modelling techniques has 

become increasingly relevant for simulating real-world manufacturing systems and processes. 

The value of such models lies in their ability to provide insight into how these systems may 

perform under varying circumstances. Given that there are correlations between input/output 

characteristics that affect error formation whilst producing goods, they must be taken into 

consideration whenever building out a digital representation of such environments. Figure 3.1  
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Figure 3.1. Research methodology for developing a framework capable of modelling 

interdependencies where deformable material was involved. 

provided an example of the research methodology used when devising a specific simulation 

model approach capable of modelling interdependencies. 

3.1.1 Identification of an error-prone manufacturing process  

A thorough literature review has revealed that producing an EM involves a complex 

procedure that comprises multiple steps [3][5]. Each phase of production was analysed, even 

those involving deformable materials. To provide an accurate understanding of the 

manufacturing process of an EM, a precedence graph was included depicting how each process 

fits together (Figure 3.2). Despite all key processes involved in an EM’s manufacture being 

shown on this graph, it is worth noting that errors occur most frequently when making stators, 

requiring them to be looked at more closely.  

To better understand these error’s origin points during stator production, every 

manufacturing step in the fabrication of the stator was examined thoroughly – from sheet 

cutting to the assembly of discrete parts. Copper wire, which is commonly used for making 

coils and classified as "deformable material", was identified as part of this problem, which gets 

its shape altered throughout the winding process due to operating tension inputs leading to a 

defective product [147]. Consequently, the process of coil-winding was selected as the starting  
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Figure 3.2. Precedence graph of an EM manufacturing process. 

point for the identification and elucidation of interdependencies in processes involving 

deformable material. 

3.1.2 Identification of critical inputs & output parameters 

Developing a robust simulation model required establishing vital parameters before 

formulating a convincing logic. An analysis drawn from a precedence graph (Figure 3.2) and a 

graph network (Figure 3.3) led to four critical input parameters: wire tension, winding speed, 

wire diameter, and bobbin shape. These variables create intricate interdependencies resulting 

in errors later in the coil-winding process indicating that a comprehensive understanding of the 

process parameters and their impact on the copper wire’s physical properties was needed to 

effectively prevent faults during production processes involving deformable materials. 

Ensuring that the coil diameters remained consistent was essential, for achieving performance. 

It necessitated monitoring especially to avoid any deviations, in wire properties that could 

potentially impacted the quality of the product during production. 

Furthermore, parameters such as tension and winding speed were established at the onset of 

the process, yet variations arise due to interdependencies exerting an effect on the wire. A 

software called NEO4J was utilised to analyse system elements and their relationships by using 
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graph diagrams consisting of nodes (circles) and lines representing relationships between 

inputs and outcomes in the process. A graph diagram showing connections makes it clear that 

input parameters such as tension are significant in fault production (Figure 3.3). This 

information can be utilised to design prevention strategies while maintaining connections to 

other elements within the system. Employing innovative tools such as graph diagrams, that 

categorise inputs precisely for effective modelling as a strategy, have shown important benefits 

for this research. 

 

Figure 3.3. Graph diagram of a stator representing the underlying relationship between the input 

parameters and the creation of faults during the winding step. 

3.1.3 Creation of the logic and rules 

To identify the causes of faults occurring during winding processes, this framework was guided 

by relevant literature to represent interdependencies between process parameters and faults 

during the winding process [5][148]. The corresponding logic developed for this framework 

was depicted visually through a flowchart, displayed as Figure 3.4. According to Hagedorn et 

al.’s [5] findings, initial wire touch points with bobbin surfaces cause the most defects among 

the first five wire layers during windings before later wires become securely set into grooves 

formed by previous wires layered just below them. Subsequent cycles saw rising tensions too,   
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Figure 3.4. Flowchart of the logic used in the DES model that represents a linear winding process. 
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yielding defects until limits were reached, thus limiting the damage done thereafter on affected 

coils or their turns, as well depending upon fault characteristics. 

Orthocycling design was employed for this research, due to the fact that it is the most popular 

winding scheme used in the industry, thanks to its high fill factor [5]. The model consisted of 

five winding layers with each having twenty turns. Each turn applied a variable tension that could 

either increase or decrease, leading to further faults if exceeding specific yield limits (61.75 

Newtons). To overcome these errors efficiently and effectively, a function was embedded within 

the model to calculate the tension values for every turn in the layer, and to recognise the type of 

variation (low or high). Elastic deformation would return the wire to its original shape post-

withdrawal of the applied load. Conversely, plastic deformation caused permanent deformation 

to the wires with defects persisting after the release of the applied load.  

The probabilities in the model with low variation received only a 20% chance, while potential 

for high variation was selected at an 80% probability. These probability percentages came from 

logical assumptions and the literature review [4][6], that indeed suggested that most process 

variations tend to be of the high variety. Upon receiving information about which variation would 

be applied during each individual turn, calculating how much variability must be accounted for 

can easily be done mathematically through usage of normal distribution calculations generated 

via a random number generator.  

Consequently, by adding these adjustments and instructions into the system, new tension 

values were conjured up through multiplication processes utilising both chosen variation datasets 

as inputs, as well as initial base tension inputs in some instances. Some geometrical faults were 

intentionally added into the system such as flange winding, double or multiple winding, cross 

over, gap, bulgy turn, and loose wire. These potential errors were foreseen early on, leading to 

research factors surrounding such failures until strict rules were crafted to be followed, as 

presented in Table 3.1. When under low-tension situations, faults such as bulgy turn formation 

or loose wire were triggered. These problems arise when elastic deformation occurred in the wire 

leading it to alter its shape under pressurisation during winding, often then returning to its natural 

form after pressure was no longer applied. This “spring-back effect” was precisely what triggered 

these incidents. 
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Table 3.1. Rules for faults occurrence in the DES model. 

 

3.1.4 Development and implementation of the DES model  

A DES model was developed to replicate how predefined process parameters affected the final 

wound coil’s  geometrical and electrical features (e.g., set wire tension relative to winding speed, 

caster angle of the wire, bobbin shape and aspect ratio) [6]. Witness Horizon simulation software 

provided by Royal Haskoning DHV (2021) was implemented for developing the DES model. 

This software allowed the user to simulate various discrete events efficiently, addressing intricate 

industrial issues where time dependence was critical. 

The DES model was made up of several process steps during the winding procedure, 

encompassing wire storage, wire break, and wire guide, as depicted in Figure 3.5. The initial step 

involved unwinding copper wire from a larger bobbin and transferring it to the winding machine 

via storage. Any abnormalities that might had occurred during fabrication were accounted for by 

introducing a minor variation to its cross-sectional area through use of the DES model. This 

procedure initiates constant tension on the wire. Although precautions were taken during the wire 

break, fluctuations in process elements like winding speed might impacted the wire’s cross-

sectional area. The subsequent stage utilised a wire guide designed to direct and position the wire 

accurately on the bobbin surface in order to minimise the probabilities of spatial disarrangement 

or geometrical faults that may arise from varying speeds during processes like winding. 
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Figure 3.5.  The DES model representing the linear winding process. 

To ensure precision across multiple turns while minimising space between them (fill factor), 

a well-structured winding scheme was implemented along with assigning positions to each 

section through specially programmed orthocycling schemes which boast of higher fill factors 

than other winding schemes [5]. However, the electrical resistance variation of each turn and the 

caster angle were also factored into the model, which could instigate geometrical faults during 

production. Chapter IV provided a detailed explanation on these processes. Expected outputs 

from the simulation model included: 

• A comprehensive mapping guide that models every turn and layer throughout the winding 

in detail, exhibiting geometrical faults and featuring locations for all turns including clusters like 

high electrical resistance or hotspot formations.  

• The simulation model also generated a database containing information on key parameters 

such as electrical resistance value, caster angle and geometrical fault display for each turn; this 

database would allow to pinpoint abnormalities in parameters such as winding speed, tension 

and wire cross-sectional area at any point in the production process. The harnessing of this data 

pool would later aid in training supervised learning algorithms during the optimisation process 

of the manufacturing processes, thus, high product quality was ensured. 

3.1.5 Selection of simulation running parameters 

In order to assess the effect that key input parameters had on the process output product, it 

was vital to undertake a systematic approach for the simulation experiments. Based on research, 



 

Techniques and Methods        65 
 

it was found that utilising a full factorial design of experiments approach has been effective in 

reducing cogging torque in electric motors while remaining cost-effective and adaptable [108].  

A 23 two-level full factorial design was selected to systematically assess each input 

parameter's influence on process output. This analysis explored both main effects and interaction 

effects by varying parameters at low or high levels. Understanding these effects was crucial 

during optimisation to achieve the desired outputs. Such comprehensive experimental designs 

provided straightforward interpretation of results while identifying significant factors when 

variable adjustments impacted process performance. This led to a robust analysis of the system 

and assisted in uncovering relationships between variables that could go unnoticed with less 

comprehensive experimental designs. In this case, k = 3 (input parameters), resulting in 23 (2 

settings high and low) = 8 possible combinations, as shown in Table 3.2. 

Table 3.2. A 23 two-level full factorial design with high and low levels for different process 

parameters. 

 

A. Rotational speed – Linear winding's fundamental process element was influenced by 

one critical factor: rotational speed – which directly influenced both winding rates and 

manufacturing times. To account for operational variability commonly faced during production 

periods, low (100 rpm) and high (800 rpm) limits were established within this spectrum. By 

analysing how these affected outputs measured by the DES model, as well as other factors 
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present within the experimental design involving rotation pace interactions, a deeper 

understanding of these dynamics was expected. 

B. Shape of the bobbin  – The impact of bobbin shape on fault occurrence during winding 

has been studied by Hagedorn et al. (2018), revealing that square and rectangular-shaped bobbins 

introduced immense variability due to constantly changing wire length between wire guides and 

winding positions compared to circular-shaped counterparts which exhibited minimal 

inconsistency throughout this procedure. Therefore, only non-circular-shaped bobbins 

underwent experimental testing. Fusion 360 CAD software from Autodesk (2022) was utilised 

to formulate individualised designs for each bobbin; finalised models were 3D printed as 

illustrated in Figure 3.6. 

 

C. Wire diameter – Dobroschke’s [150] research highlighted how crucial it was to consider the 

wire diameter when analysing fault occurrence throughout this process step. Various factors were 

directly affected by changes in gauge size like the caster angle, yield limit, and spring-back angle. 

By increasing a wire's diameter, its caster angle and yield limits tend to increase simultaneously 

resulting in being able to withstand greater tension levels while reducing potential for faults at 

larger diameters only, or above certain sizes; smaller cross-sectional areas had higher 

probabilities for geometrical deviations due to more noticeable spring-back angles hence leading 

one towards potential fault points if overworked during processes. 

To gain further insight into how specific diameters affected this stage of production, 

experiments using various gauges were carried out, which included two commonly found sizes 

within industries: 0.30 mm and 0.71 mm. These particular wire gauges were often utilised within 

  

Figure 3.6. a) Squared bobbin shape    b) Rectangular bobbin shape 

a) b) 
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the industry as they fall within an appropriate range to adequately fit the wire guide located in 

the machine without applying overwhelming tension on the wire as it proceeds through the 

nozzle. 

3.1.6 Run simulation model for testing 

To attain an understanding of the DES model's functionality and efficacy, it required being 

run for a specific phase or until specific requirements were met (namely, producing one bobbin 

comprising five layers of 20 turns per layer). During execution, state changes occurred discretely 

at different times. After execution was complete, data outputs were collected and analysed 

statistically to establish how modifications in input parameters impacted system efficacy. 

3.1.7 Validation of the DES model 

In order to validate the model, experiments were conducted on a lab-based linear winding 

machine following the input and output parameters presented in Table 3.3. By doing so, data 

could be generated and then compared against the DES model's predictions, thereby identifying 

any discrepancies that might needed correcting. Only when such corrections had been made, 

further steps could be taken to refine the model until it effectively mirrors both experimental 

findings as well as simulated results in an encompassing way. Alongside this empirical validation 

stage, feedback from industry experts was obtained. Suggestions by industry experts were 

incorporated into the final product version ensuring trustworthiness through a combined 

approach consisting of empirical validation alongside expert evaluation. 

Table 3.3. Input and output parameters selected for the model. 
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A. Validation by experiments on a coil winding machine 

The DES model outcomes were verified through a series of experiments conducted on a 

laboratory-grade linear winding machine used to create an orthocycling winding scheme. The 

lab-based linear winding machine, known as the 200mm CNC Coil Winder MK4, was 

presented in Figure 3.7 (a). Additionally, Figure 3.7 (b) showed the Coil Winder Controller 

MKII Software V4.5, which helps manage various process parameters such as speed, bobbin 

size, and the number of turns per layer. This particular winding machine has closed-loop motors 

both on the feeder and bobbin assembly that enhance torque, precision and speed, and reduce 

losing steps while producing small run quantities of coils or bespoke single-off coils suitable for 

a wide range of bobbin shapes for electronic projects. The maximum winding speed capability 

for the machine was 2000 rpm. To validate the findings, a comprehensive factorial design was 

utilised as suggested in Section 3.1.5. 

 

 

Figure 3.7. (a) Linear winding machine used for experimentation model "CNC Coil Winder MK4" 
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Figure 3.7. (b) Coil Winder Controller MKII Software V4. 

B. Validation with industry experts 

In this research, validation was conducted by gathering feedback, from four industry experts 

in multiple sectors. These experts were individuals who represented companies with different 

ownership structures.  

• Expert 1 represents a public limited company specializing in predictive simulation software 

and modeling services. Engaged in medium-value, high-volume production of simulation 

products, this company boasts a workforce of over 100 employees. The expert, serving as a 

simulation specialist, brings 25 years of extensive industry experience to the table. Their 

company operates globally, with its main sector revolving around the UK. 

• Expert 2 is associated with a private limited company focused on aerospace and defense 

products. With a substantial workforce exceeding 1000 employees, this company primarily 

deals with high-value, low to medium-volume manufacturing. The respondent, occupying the 

role of director of manufacturing, possesses 20 years of industry experience. Their company 

operates on a global scale, catering to clients worldwide. 

• Expert 3 represents another private limited company specializing in the manufacture of 

electrical machines. Engaged in medium to high-value, low to medium-volume production, 

this company also boasts over 1000 employees. The respondent, serving as a manufacturing 

specialist, brings 20 years of industry experience to the table. Their company operates 

globally, with operations primarily based in Italy. 
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• Expert 4 is affiliated with a public limited company involved in aerospace and automotive 

sectors. This company, with a workforce of over 100 employees, focuses on high-value, low-

volume manufacturing. The respondent, designated as a technical specialist, brings 8 years of 

industry experience. Their company operates mainly in the UK, serving clients domestically. 

Incorporating insights from industry experts was an integral aspect of validating the DES 

model effectively. Feedback from EM manufacturing professionals, alongside esteemed 

members of academia and simulation specialists, was extremely valuable during this process. 

The goal was to carefully evaluate underlying assumptions concerning the specific system being 

modelled. These reviewers analysed the logic flow while considering all relevant parameters that 

serve as structural components of said system towards improving fidelity along with accuracy 

for real-world operations modelling. Based on their feedback two main changes were made to 

the model; first the threshold level for identifying a bobbin as scrap was revised to be 10% of 

accumulated error; secondly, a more efficient method was adopted for storing all information 

obtained from the model in the form of tables. 

3.2 Proposed methodology for developing a hybrid computational framework 

The present methodology in Figure 3.8 employed KD to generate a complete framework from 

the DES model previously developed. This comprehensive framework, also known as the 

"teacher model", was capable of preparing appropriate datasets to train SML algorithms (the 

"student model"). Figure 3.9 presented the steps that were followed to develop the student model 

during the KD approach. Ultimately, this approach sought to enhance the efficiency and accuracy 

of fault prediction in manufacturing processes involving deformable materials in manufacturing 

steps such as linear winding. 
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Figure 3.8. Methodology for developing a hybrid computational framework. 

 

Figure 3.9. Methodology for developing a student model as part of a hybrid computational framework. 

3.2.1 Data collection 

The first step in gathering data involved systematically extracting a comprehensive dataset 

from the previously created and validated DES model. This dataset encompassed various 

parameters and outcomes associated with the coil winding process. Multiple simulations were 

conducted under different conditions and parameters to collect data from over 10,000 instances. 

Physical measurements such as tension, rotational speed and other pertinent inputs were included 
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in this dataset. It served as an essential component for training via KD by providing information 

on potential faults and their associations with input process parameters. 

3.2.2 Data pre-processing 

As part of the data pre-processing phase, the all-inclusive dataset was then split up into three 

distinct databases with unique size specifications – the small database containing 10,000 entries; 

the medium database twice that number (20,000 instances); and the large database having 

approximately four times (40,000 instances) as many as the small database. Employing an 

intense partitioning strategy granted the opportunity to obtained performance reliability under 

varied conditions while also reconciling with administration demands related to test-train 

segmentation in each subset. Each database was then divided using a 75–25% split, with 75% of 

the data reserved for training the KD model, and the remaining 25% allocated for testing. This 

type of split allowed the model to keep a proportionate ratio between datasets, enabling it for 

validation against those earmarked for training at fixed percentage points. 

3.2.3 Training the student model 

Effective training of the 'student' model hinges on utilising pre-processed data together with 

advanced methodologies such as deep neural networks or machine learning models. The goal 

was for the student model to mimic the teachers (DES model) performance while being 

computationally efficient. Both models used input parameters such as winding speed, wire gauge 

and bobbin shape and target labels for training data. In this scenario, the student model learning 

was supported by incorporating targets such as electrical resistance variation and number of 

geometrical faults per layer, in its output parameters.  

The training loss used for the student model in the KD framework was MSE. This specific 

loss function calculated the squared difference between the predicted and target values, which 

helped guide the learning process of the student model. While MSE was simple to implement 

and computationally efficient it might not fully capture all the subtleties of knowledge transfer 

as Kullback-Leibler divergence does. This could potentially result in an effective distillation of 

insights from the teacher model. Additionally, MSE might give much importance to outlier 

examples and if not carefully balanced, with regularization techniques it could lead to overfitting. 
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3.2.4 Knowledge distillation process 

A comprehensive approach to data analysis during coil winding for the KD process 

necessitated utilising two models. The initial step involved using a regression model for 

predicting percentage variation in electrical resistance per turn during coil winding. Next, a 

classification model forecasted the type of geometrical fault per turn. It was vital to compare 

actual and predicted resistance outcomes when assessing regression model performance while 

evaluating how well the classification technique performed. 

A. Comparison of SML algorithms 

While creating an effective KD process, it was important to consider comparisons of multiple 

SML algorithms like DT, RF, SVM, KNN, NB and ANN to determine their effectiveness. This 

included testing algorithms’ abilities when it came to capturing essential knowledge from their 

instructor model while utilising pre-processed data for procedures. To evaluate predictive 

capabilities effectively, consideration for different performance metrics such as accuracy, dataset 

size, number of parameters, noise level when handling complex dataset along with simulation 

timing, was assessed. Analysing results helped to identify the algorithm that outperforms others 

and thus could inform on the data's complexity pattern more effectively for better decision-

making in future learning processes. The rigorous selection greatly enhanced the overall KD 

process by selecting the more efficient supervising learning algorithm for the student model. 

B. Selection of the best SML algorithm 

Undertaking the KD process required thoughtful consideration when selecting an appropriate 

SML algorithm. Multiple algorithms were examined and evaluated based on their efficacy in 

capturing distilled knowledge. These algorithms were trained with pre-processed data before 

their performance was assessed through various metrics (more details presented in Section 5.3). 

After this evaluation, the best suited supervised learning algorithm is chosen to act as the student 

model, therefore enabling optimum knowledge transfer and better fault detection capabilities. 

3.2.5 Verification and Validation 

To ensure that a KD approach was successful it was important to evaluate and validate the 

chosen algorithms. This involved conducting benchmarking against independent datasets using 

a cross validation technique (Section A), as well as controlled experiments (Section B) in order 

to assess their reliability, functionality and consistent performance. By taking this approach, it 
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was possible to enhance the efficiency of fault detection, in coil winding, during the KD process 

by improving its robustness and output generation. 

A. Validation process using an independent dataset 

To achieve this aim, a 5-fold cross-validation approach was utilised to assess performance 

levels, as shown in Figure 3.10. In dividing the dataset into five discrete parts, every subset was 

assigned as either a source of data for training, or a means of conducting validations while all 

other leftover parts are employed accordingly too. Repeating this process provided reliable 

indications about an algorithm's abilities; it helped evaluate predictive accuracy levels alongside 

its generalisation capabilities. The evaluation measures, like accuracy, precision, recall and F1 

score, were computed for each iteration. This process generated five sets of evaluation scores. 

These scores were then averaged to give an assessment of how the model performs across the 

five different scenarios. This approach provided an estimate of the model’s effectiveness and its 

ability to generalize beyond specific instances. 

 

Figure 3.10. Diagram of the 5-fold cross-validation method (blocks in blue represent the testing folds 

at each step) by [149]. 

B. Validation process through experimentation on a coil winding machine 

To assess their efficiency and accuracy, multiple experiments utilising regression and 

classification models were conducted on a linear winding machine. By comparing predicted 

value outcomes from the selected algorithm with corresponding physical ones generated by the 
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same machine, it was possible to determine whether these calculations remained reliable for use 

in production settings utilising genuine datasets. As testing procedures were exclusively designed 

for use with this particular type of winding process these procedures cannot thus be directly 

extended towards other techniques such as needle winding, which presented different 

characteristics and challenges. 

3.2.6 Modification of hybrid model based on feedback 

Modifications were made to the hybrid model to improve fault detection by incorporating 

more data (10% more instances) into their database specifically for faults such as double winding 

and gaps located at the second layer. It was noticed that the model had difficulty predicting the 

placement of wires over wires, which resulted in false predictions. To address this issue, the 

model was modified by adjusting the error probabilities for the creation of faults when speed 

increased based on results and valuable feedback from the validation process. This refinement 

process also involved tuning hyperparameters, like increasing the n_estimators and max_depth 

in order to optimise the accuracy, robustness and generalizability of the model. The ultimate goal 

was to enhance its performance, in detecting faults within the coil winding process. 

3.3 Proposed framework for multi-objective optimisation involving interdependencies 

The manufacture of EMs entailed the intricate task of linear winding, which posed numerous 

challenges relating to costs and fault control. To confront this multi-objective problem, an 

approach that equally prioritises both aspects while focusing on the intricacies associated with 

linear-winding techniques was required. Thus, the proposed framework was illustrated in Figure 

3.11 as an effective way forward. 

In this research, a multi-objective approach was proposed to address the complex challenges 

related to linear winding. The goal of this research was to make the linear process more cost 

effective while reducing faults providing a solution to the problems encountered in such 

processes. However, it is important to note that the current implementation only focuses on 

optimising two objectives: cost reduction and fault minimisation. The intention was to utilise this 

as a foundation and in future phases expand this optimisation framework by incorporating a 

wider range of objectives. These objectives may include energy efficiency, increased production 

output, reduced material usage and environmental impact mitigating. By expanding the scope in 

this way, this research aims to continuously improve and strengthen the effectiveness of this 

optimisation strategy over time. 
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Figure 3.11. Proposed framework for multi-objective optimisation involving interdependencies. 
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This approach considered the effects that interdependencies has on multiple objectives, 

together providing a comprehensive framework capable of enhancing efficiency levels while 

reducing fault rates when winding coils. The subsequent sections introduced several different 

approaches to solve multi-objective problems showcasing their potential to achieve improved 

outcomes in terms of cost reduction and fault minimisation in the context of linear winding. 

To thoroughly evaluate the impact of multi-objective approaches on system 

interdependencies, a correlation analysis was conducted. The goal was to uncover the 

interconnected effects between objectives with a specific focus on the cost function and the 

number of geometrical faults as key objectives. By performing this analysis, this research 

aimed to gain insights into how changes in one objective could affect others. Then a Pearson 

correlation matrix was constructed for this assessment, incorporating results from both the 

original models and the new optimised models obtained through optimised input parameters 

derived from a multi- objective algorithm.  

3.3.1 Problem definition 

Reducing both costs and faults presented challenges that must be accounted for in linear 

winding processes. By prioritising these objectives, it provides immediate improvements in 

financial performance and product reliability setting a foundation, for further optimisation 

efforts.  There is a complex trade-off that required optimisation with regard to different 

variables like speed selection that impact the overall performance. For instance, slower speeds 

might cause longer production times thereby raising costs while they could also culminate in 

more frequent cases of malfunctioning products. Meanwhile, faster options considerably assist 

cost reduction by enabling greater output, but defects were more likely to happen at high 

winding speed. 

Achieving an ideal balance between costs and minimising flaws was key in maintaining 

smooth operation in the linear winding process. Careful deliberation on how speed, costs, and 

variations affect each other was necessary for decision-makers aiming to reach a favourable 

middle ground. By utilising appropriate optimisation techniques alongside multifaceted 

approaches enables a thorough analysis that resulted in identifying efficient operating 

conditions consisting of both cost-effectiveness as well as reduced error rates. 
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A. Optimisation objectives  

When determining optimisation goals, it was important to assess the needs of the problem. 

This included identifying desired results and considering performance indicators like reducing   

costs while improving quality and effectively utilising resources. To promote cost-effectiveness 

and attained optimal results within the linear winding process, it was vital to address two 

essential hurdles: the reduction of production costs and the decrease of fault occurrence as 

presented in the fitness function in Figure 3.12.  

The optimisation objectives for this problem have been expressed as follows: 

In this case, x represented the set of decision variables, which included parameters like the 

rotational speed, tension in the wire, wire gauge, etc. 

It was wanted to find the x that solves the following problem: 

Minimise F(x) = [f1(x), f2 (x)], 

Where: 

• f1(x) was the manufacturing cost. This function would depend on the specifics of 

the linear coil winding process such as energy consumption, rework, scrappage and 

throughput. 

• f2(x) was the number of geometrical faults during linear winding. This function 

would depend on the number of geometrical faults created per bobbin during the coil 

winding process. 

 

Figure 3.12. Example of fitness functions. 

 

B. Constraints on decision variables  

To conduct this research accurately whilst upholding necessary standards for performance 

quality, feasibility of operation, and overall product reliability, it was decided that rotational 

speed and wire gauge were crucial constraints for analysis. These two factors were chosen with 
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careful consideration on how they impact the linear winding process, keeping safety 

considerations as a top priority along with adherence to operational/technical 

specs/capabilities. Through selecting these particular restrictions, it would not only reach 

desired levels of optimisation within the multi-objective problem but also maintained each 

crucial standard mentioned previously. 

For this research, it was assumed that x[0] represents the rotational speed of winding and 

x[1] was the wire gauge. The goal was to find the values of x[0] and x[1] that solve this multi-

objective problem while respecting certain boundaries on these parameters. 

The constraints were expressed as follows: 

a <= x0 <= b 

c <= x1 <= d 

Here a and b represent the minimum and maximum feasible speed of winding, respectively. 

Similarly, c and d represent the minimum and maximum feasible wire gauge. Therefore, in this 

multi-objective problem it was required to find a solution for the x = [x0, x1] that minimises 

F(x) = [f1(x), f2(x)] while satisfying the constraints. 

In a complete mathematical form, the problem was: 

Minimise F(x) = [f1(x), f2(x)] 

Subject to 

a <= x1 <= b 

c <= x2 <= d 

or 

100 rpm <= speed <= 350 rpm 

0.30 mm <= wire gauge <= 1.0 mm 
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C. Decision variables  

Careful consideration of factors having direct impacts on underlying objectives and 

constraints was essential when selecting decision variables for addressing multi-objective 

problems. In the representation of the multi-objective problem for the linear winding problem, 

a significant number of decision variables were utilised. These variables were classified into 

three categories, as displayed in Table 3.4: 

Table 3.4. Definition of decision variables. 

Category Notation Description 

Input Arguments 
Yl Yield limit 

ȴ Number of layers 

Decision Variables 

x[0] Rotational speed 

x[1] Wire gauge 

x[4] Bobbin shape 

x[5] Caster angle 

Output Arguments 

C Cost 

Nf Number of faults 

Tf Type of faults 

ERv 
Electrical resistance 

variation value 
 

 

Input Parameters: Input variables were housed within the simulation model, inaccessible by 

the optimisation solver. These parameters marked a well-defined operational field, outlining 

viable boundaries defined by policy and environmental factors. 

Decision Parameters: The arrangement of these variables directly affected the performance 

of the coil winding process, and it was noteworthy that targeted optimisation problems were 

impacted. These decision parameters come with predetermined values but were adjusted by the 

optimisation solver. For every combination of decision parameter values, a distinct solution 

was produced, resulting in an array of possible solutions. 

Output Parameters: Output parameters were simulated by activating the model after input 

parameters and decision variables are provided. The key performance indicators (KPIs) 

pertaining to the coil winding process and the optimisation objectives being focused on were 
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reflected in the output parameters. To assess their suitability, these KPI values were passed on 

to the optimisation solver. 

D. Pareto-based approach 

For addressing multiple objectives at once, implementing a Pareto-based approach appeared 

more practical given its competence in providing comprehensive examination while 

simultaneously showcasing the adjustments required among conflicting goals. The problem 

faced required considering both production cost and the number of geometrical faults per layer. 

This approach helped generate a set of solutions that found a ground between these two 

conflicting objectives. Then, the Pareto frontier was carefully explored, which represented the 

possible solutions were improving one objective would mean sacrificing the other. This 

exploration allowed for an evaluation of trade-offs and made it possible to select solutions that 

achieved the best compromise between minimising costs and reducing geometrical faults. 

Further details about this approach were presented in Chapter VI. 

3.3.2 Solution generation 

This section has explored how to generate solutions for a problem with multiple objectives 

where interdependencies played a vital role, it has been broken down into three parts. First, it 

was discussed how to choose the correct multi-objective optimisation technique. Then, it was 

explained how to incorporate the already created simulation models (DES and Hybrid model), 

of the winding problem into the optimisation algorithm. Lastly, the specifics of configuring and 

implementing the chosen optimisation algorithm to effectively tackle the challenges posed by 

the objectives was discussed. 

A. Selection of optimisation technique 

The use of the NSGA-II method was employed due to its superior performance 

characteristics in this domain. The benefits of using this particular approach included being 

able to manage multiple objectives adeptly, together with being an extremely efficient sorting 

mechanism which allows us easier navigation through Pareto’s front towards determining 

optimal decisions relating to cost versus number of faults necessary in addressing a multi-

objective issue. 
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B. Simulation model of linear winding problem  

The development of the NSGA-II for a linear winding process started with identifying the 

objectives and quantifying them. Next, the solutions were encoded and determined by a fitness 

function that incorporated specific objectives and constraints of the process. Python version 

3.9 within JupyterLab environment version 3.3.2 was implemented as an encoding platform 

for the development of the optimisation solver alongside its simulation model's creation due to 

its remarkable flexibility and usability, as well as its robust abilities in relation to data analysis 

and modelling. These aspects were considered as vital factors in selecting these tools for this 

research – specifically considering the requirements to produce both accurate as well as 

efficient levels. 

The Pymoo library was chosen for its strong features, user-friendly interface, and specific 

multi-objective optimisation support during the development of the NSGA-II model in this 

research. Pymoo constituted an exceptional Python library housing state-of-the-art adaptations 

of numerous multi-objective optimisation algorithms, most notably NSGA-II. The library’s 

noteworthy feature was the high-level API, marked by adaptability and ease of use in 

accommodating personalised adjustments. Pymoo stood apart from its peers (DEAP, PyGMO 

and jMetalPy) since it offered a single point of entry to multiple-optimisation algorithms, thus 

making it effortless to alternate between approaches or track their relative performance. 

For this research, the fitness function for the NSGA-II model was designed differently from 

how it has been done traditionally. The use of a fitness function was customary in evolutionary 

algorithms like NSGA-II to measure how well-suited potential solutions were based on their 

decision variable sets' qualities or "fitness." In most instances, traditional fitness functions rely 

on mathematical equations that produce scalar fitness values after mapping decision variables 

appropriately. However, in this particular work's context, an alternative method have been 

selected by implementing a main component of the previously created hybrid model instead of 

relying on conventional techniques for determining solution quality.  

This novel approach integrated both regression and classification aspects to design an 

advanced technique for assessing alternatives proficiently. The hybrid model took into account 

the decision variables set given to it by making predictions (for regression) and classifications 

(for classification). Using these outputs' combined values ascertains each possibility's overall 

"fitness". While operating independently from the optimisation solver, the hybrid model does 
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contribute significantly to its process through being incorporated into programming code as a 

'function'.  

A specific set of decision variables triggered this function and led to a corresponding fitness 

value output. Such an output served as guidance for the NSGA-II algorithm's search towards 

optimal solutions. With its classification component, integrating the hybrid model as a fitness 

function offers far superior assessment than would be possible through traditional mathematical 

functions alone. In adopting this innovative approach towards multi-objective problem-

solving, greater optimisation effectiveness and improved solution quality could be achieved. 

After generating an initial population of possible solutions randomly, genetic operators were 

used such as selection, crossover and mutation. Finally, the NSGA-II ranked solutions based 

on their fitness and crowding distance, identifying Pareto-optimal solutions. The algorithm 

followed an iterative process in which it evolved the population to improve the quality of 

solutions until obtaining a set of near-optimal or optimal solutions for multi-objective 

problems. This method enabled an optimal control of the linear winding processes while 

considering multiple objectives. 

C. Set-up of the optimisation algorithm  

To understand how the NSGA-II algorithm in this research was set up, refer to Table 3.5. 

This table itemises all configurations used and enables replication or deeper investigation of 

this methodology going forward.  

Table 3.5. Set-up of the NSGA-II multi-objective optimisation solver. 

Parameter Value 

Population size 100|500|1000 

Number of generations 3|5|10 

Migration interval 5 

Selection BinaryRandomSampling 

Crossover TwoPointCrossover 

Mutation BitflipMutation 

Mutation probability prob=0.5, prob_var=0.3 
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Code for NSGA-II algorithm 

In order to understand how the multi-objective optimisation process was implemented, the 

code for the NSGA-II algorithm is available on an ORDA repository to enhance reproducibility 

and aid in comprehension (https://figshare.com/s/726d69c203325bac44b0). This code 

intelligibly outlined each operation with relevant details in sequence; starting from initialisation 

followed by selection, crossover, mutation, right up until completion. Revealing the code 

employed in this research facilitates transparency and replication by peers.  

3.3.3 Solution evaluation 

When faced with multiple goals it could be challenging to find the right path. However, by 

creating solutions using optimisation algorithms the process could be simplified. Assessing 

these options based on a set of functions aided in understanding how each solution might 

impact different scenarios ultimately leading to more effective decision making. To evaluate 

how well they perform while balancing achievements in areas (Pareto optimality) metrics such 

as hypervolume, spacing and generational distance could be useful for carefully comparing and 

ranking possibilities. By conducting experiments and measuring responses based on predefined 

goals, it became possible to assess the suitability of solutions and their interactions. Statistical 

analyses, including sensitivity analysis and ranking further guide towards outcomes providing 

a clear path, for making well informed decisions. 

3.3.4 Pareto front analysis 

Using a Pareto based approach the research aimed to find the possible solutions for a 

problem involving multiple objectives. As a result, it discovered a Pareto front that showcased 

high quality solutions each offering unique trade-offs between the objectives. The process 

would produce a Pareto front, which illustrated the intricate balance between two factors: the 

number of geometric faults per layer (X-axis) and production cost (Y-axis). This plot would 

present the fact that no solution dominated others within this front, highlighting how enhancing 

one objective without compromising another was simply not possible. Lower values were 

preferred for both objectives as they indicated faults and lower costs. In assessing cost 

effectiveness and comparing solutions, reference cost values obtained from existing literature 

played an important role, in achieving a comprehensive evaluation of this multi objective 

optimisation problem.  
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3.3.5 Decision-Making 

The process of making decisions would focus on finding a solution that addresses both cost 

and quality at the time. Along with this, it had to be considered the two constraints; the top 

winding speed and staying within the range of wire diameters that has been chosen beforehand. 

By taking this approach, it could be ensured that the solution struck a balance between cost 

reduction and reducing quality faults, while meeting the operational restrictions.  

3.3.6 Sensitivity analysis 

To conduct the sensitivity analysis, an approach was followed that involved creating 

correlation matrices that measured the interdependency value for each model. Initially, ordinal 

input parameters were used for this purpose. Then, a comparative analysis was performed by 

repeating the process with optimised parameters. These correlation matrices would provide the 

tools in quantifying and visualising the relationships between input variables and model 

outputs. They would provide insights into how changes in parameters influenced the outcomes. 

By following this two-step process, it was possible to gain an understanding of sensitivity 

uncovering how modifications, in both input parameter values and optimisation approaches 

affected the behaviour of the models. (This topic was further discussed in Section 6.7) 

3.3.7 Validation and verification of the NSGA-II algorithm 

The process for validating NSGA-II, when applied to a challenge involving multiple 

objectives, comprised various essential stages. Initially, proper functionality was necessary by 

comparing its execution against established analytical solutions (benchmark test) like prior 

models created for similar problems such as the DES or the Hybrid model using a. Once this 

first step proved successful in verifying how well it operates, then it was recommended to 

proceed to assess whether or not it delivers accurate performance in comparison to anticipated 

outcomes using a K-Fold cross-validation test for seamless resolution of the specific multi-

objective challenge.  

3.3.8 Correlation analysis for interdependencies 

The incidence of faults during winding and their impact on manufacturing costs could be 

understood by conducting a correlation analysis. Conducting a correlation analysis was 

imperative in gaining insight into the problem's dynamics by examining how input parameters 



 

Techniques and Methods        86 
 

correlate with output metrics like the cost and number of faults. This methodology would be 

employed across five different scenarios to explore various interdependencies.  

Firstly, to understand the interdependency value during linear winding, a correlation matrix 

was adopted based on Sell-Le Blanc’s work [3]. His established tool mapped out relationships 

between factors involved in the winding process granting insight into complexity while 

identifying potential areas where improvements could have been made, as changes in one factor 

might influence other factors, thereby creating ripple effects throughout it all. This revised 

matrix provided theoretical and empirical observations to create a comprehensive view of the 

findings. Furthermore, by visualising the interdependencies between different parameters in 

this way, the complexities of the process became more readily understood aiding decision-

making towards minimising faults and costs arising from it. 

Secondly, a unique approach was utilised – a new correlation matrix for linear coil winding 

was developed incorporating data from various sources and literature reviews [2][9], the 

developed DES model, and results from linear winding experiments. Thirdly, another 

correlation matrix was developed to further understand relationships using the Hybrid model. 

This model utilised a more diverse modelling technique to explore how different factors 

influence one another. Finally, correlations established that improved versions of these two 

models could offer valuable insights into refinement effects concerning the interplay between 

aspects involved in linear winding. 

The process commenced by using optimisation algorithms such as the NSGA-II for 

generating solution sets with distinct input parameters. After incorporating the output 

parameters that have been fine-tuned by means of the NSGA-II algorithm, there was an 

intention to execute models that strive towards a balance between reducing costs without 

compromising on minimising faults. Thereafter, evaluations on each model's performance shall 

proceed thoroughly, with special attention given to measuring how effective these new 

optimised parameter’s function. The contemplated evaluations aimed at providing insights 

regarding areas like the dependability of these models, the success rates achieved through the 

optimisation process, and how big a part the NSGA-II algorithm played in attaining both cost 

efficiency and reduced faults in linear winding. 

A statistical method such as Pearson’s correlation coefficient was then applied for 

quantifying their relationships (this was further discussed in Chapter VI). With this data 
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available, it became convenient to construct a correlation matrix illustrating co-relations 

coefficient-wise. Positive co-relations imply both variables move towards a similar direction 

when changed, while negative coefficients represent opposite directional changes among them. 

By analysing the patterns emerging from this research, this informs which inputs affect the 

outcome the most – helping steer decision-making in the right direction, guiding system 

improvements, and enabling the researcher to get targeted results which are more easily 

achievable through quick controls, enhancing functionality, and saving resources.
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3.4 Summary 

This chapter provided an understanding of a methodology composed of three frameworks 

that include specific methods and techniques used to explore interdependency modelling in an 

electrical manufacturing process that involved deformable materials. By presenting these 

frameworks in detail, this research aimed to contribute insights and promote a deeper 

understanding of electrical processes and their interdependencies. Three key frameworks were 

central to this research: 

The first framework focused on creating a customised model (DES model) to simulate and 

analysed the interdependencies within the coil winding process. In the manufacturing process 

of EM, there was a need to develop modelling techniques that could understand the 

connections, between input parameters. These models should also be able to make real time 

predictions, about the probability of defects. In the past there have been attempts to model 

deformable materials and their dependencies. However, attempts mainly focused on rigid 

material and individual stages instead of analysing the entire sequence to identify relationships.  

Therefore, this thorough analysis aimed to identify anomalies and abnormalities with 

attention given to "hotspots" characterised by increased electrical resistance. To ensure the 

accuracy of the DES model  experiments were conducted on a linear winding machine to 

validate the model. By examining the coil winding process, this framework aimed to 

significantly improved the understanding of potential inefficiencies and areas of concern during 

manufacturing thereby creating opportunities, for optimising these processes.  

The second framework played a significant role, in introducing a hybrid framework that 

improved the early detection of faults, in coil winding while reducing the computational 

burden. Previous research has acknowledged the need of a framework that anticipates 

component states and reduce the duration of quality control tests by understanding how 

different factors influence the process. In the manufacturing industry it is practice to conduct 

quality tests, which can be expensive and time consuming. While traditional tests like Dowell’s 

equation and winding resistance have been effective, they require a lot of time and expertise. 

This highlights a research gap that emphasizes the importance of an integrated and efficient 

approach, to ensuring manufacturing quality control.  

To deal with this problem, KD was utilised, which transfers knowledge from a teacher model 

(DES model) to a simpler student model (SML model). By generating SML training data using 
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the DES model this method greatly improves fault detection and prediction, in machine 

manufacturing. KD uses architecture search and data augmentation, which improves the 

generalization of the student model. Furthermore, the framework shows potential for reducing 

manufacturing time, enhancing stator quality, and improving reliability and safety. 

Additionally, transitioning to a digital twin could address the limitations of offline models, 

offering real-time monitoring, control capabilities, and prompt responsiveness to production 

changes, with integration of sensors on the winding machine being a crucial step for future 

enhancement. 

The third framework focused on an aspect of optimising multiple objectives to understand 

the connections between input parameters. This was especially important because there is no 

literature available on a framework that combines fault detection and parameter optimisation 

for interconnected electrical production processes. It was crucial to develop and implement this 

framework to improve manufacturing efficiency. Unlike frameworks that mainly focus on 

design optimisation (evolutionary learning and distributed algorithms) this research utilised 

techniques such as NSGA-II to generate well balanced solutions with the aim of making 

optimal decisions by considering interdependencies and multiple priorities (production costs 

and component quality). This framework also introduced a correlation analysis which 

calculated interdependency values from correlation matrices derived from optimised models, 

which helped in identify the relationships between system components and evaluate their 

behaviour when objectives were minimised. This provided a foundation, for assessing how 

optimised input parameters can influence system faults enhance manageability, optimise costs 

and prevent faults. 

 Overall, when these three different frameworks were combined, they have the power to 

bring about changes, in how the interdependencies in manufacturing processes are understood 

and control them. The goal was to create a foundation for understanding more efficient 

decision-making and improved optimisation strategies, in the field of electrical manufacturing. 
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CHAPTER IV: DEVELOPMENT AND IMPLEMENTATION OF A 

SIMULATION MODEL APPROACH TO EXPLORE 

INTERDEPENDENCIES IN THE COIL WINDING PROCESS OF 

ELECTRICAL MACHINES FOR ENHANCED OPERATIONS 

4.1. Introduction 

This chapter is dedicated to present the results from this research concerning 

interdependency interactions involving deformable materials underscored with specific faults 

and complexities present in an electrical machine’s operations. Firstly, section 4.2 explained 

the results obtained from the DES model highlighting critical inputs and output parameters 

identified during this research (Table 4.1). These key variables provided insights into how the 

interdependencies behaved in the system. Also, the results of the DES model also presented an 

understanding of how different components within the system are interconnected. 

Moving on to the next section, section 4.3 presented the results from the lab-based 

experiments using a linear coil-winding machine. These experiments aimed to validate the 

accuracy and predictions made by the DES model focusing on two types of faults; electrical 

resistance faults and geometrical faults. By comparing the data obtained from the literature 

[2][3] against the model’s predictions, a deeper understanding of how the system responds to 

these specific anomalies was gained. Finally, in section 4.4 a comparison between the results 

obtained from the DES model and those obtained through lab experimentation was carried out. 

This comparative analysis aided in evaluating how accurately and practically applicable the 

DES model was, in predicting real world behaviours. These discoveries help to gain an insight 

into how deformable materials were influenced by interdependencies in EM. This knowledge 

improved the capability to tackle issues and intricacies such as hotspots and geometrical faults 

that arise during their operations. 

4.2.  Results from the DES model 

The objective of this section was to present and elaborate on the findings obtained from the 

development and execution of a DES model based on a linear coil winding process. To begin, 

the DES model allowed for an examination of the interdependencies within the coil winding 

process filling a crucial gap in previous modelling techniques [2][99]. It provided real time 

predictions of probabilities, which is vital for quality control in manufacturing. Notably, the 
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model’s ability to consider deformable materials and their dependencies rather than just rigid 

materials was a noteworthy advancement. The specifications and capabilities of the DES model 

have been previously discussed in section 3.1.2. However, in this section the significant 

implications they have in the performance dynamics of the coil winding process in electrical 

machine manufacturing was understood.  

One of the discoveries from these implications was the identification of "hotspots" 

characterised by increased electrical resistance. This finding has implications for ensuring 

quality and optimising processes. These hotspots indicated areas during manufacturing where 

defects or inefficiencies were more likely to occur. By pinpointing these locations, the DES 

model offered a valuable tool to focus on optimising these specific areas ultimately resulting 

in improved overall process efficiency. In addition to its role in modelling interdependencies, 

the DES model's potential as a digital twin lies in its ability to facilitate prompt responsiveness 

to potential fault creations. Integration of sensors on the winding machine is crucial for future 

enhancement, as it would enable real-time data collection and feedback, further improving the 

model's accuracy and its capability for continuous monitoring and control of the manufacturing 

process. 

4.2.1 Identification of critical inputs & output parameters 

Drawing inspiration from Sell-Le Blanc et al.'s [3] ground breaking work, an abridged 

matrix that synthesises essential factors impacting the incidences of faults during the coil 

winding process was developed. Table 4.1 visually exhibits key process inputs within its 

columns, and potential faults within its rows; the colours correspond to various forms of faults 

caused by processes impacting on such inputs. Vital input parameters like wire tension, caster 

angle of wire, and especially winding speed were considered as critical to this model based on 

their prominence in previous findings, including those by Hagedorn et al. [5].  

In order for the DES model to operate effectively, input parameters must be entered into the 

system such as winding speed, tension, wire diameter and type of bobbin shape. Based on these 

inputs, the model generates deviations in the set value of applied tension. Studies have 

demonstrated that non-circular bobbins with higher winding speeds may have uneven process 

parameters, which can impact wire tensile force and consequently alter a wire's electrical 

properties [5].  



 

Development and implementation of a simulation model                   92 

 

 

 

Table 4.1. Main winding faults and influencing parameters during linear winding adapted from [3]. The influence level informs the impact of a particular 

parameter on the generation of faults. 
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A. Input parameters 

Winding speed 

Results showed that one critical factor affecting fault occurrence during coil winding was 

the winding speed. This aligns with the research provided by Hagedorn at al. [5], in which the 

quality of coils produced depends significantly on this parameter. When there are high-speed 

winds during coil production, results showed that errors like overlapping, or gap, can increase 

due to less precise wire placement control. Conversely, slow wind speeds may lead to 

inefficient production and hence negatively impact overall productivity [5][150]. Therefore, 

opting for an optimal winding speed assures that a balance between efficient production and 

quality output is achieved while minimising possible fault occurrences [5]. This proves the 

significance of winding speed in determining potential faults.  

Wire tension 

Tension has become an indispensable input factor influencing faults during coil winding 

processes due to its control over the tightness of windings [148]. With excess tension comes 

undue stress on wires, which can lead to breaks and deformations, while inadequate tension 

begets excessively loose coils resulting in sub-optimal efficiency and even unwinding events. 

Therefore, by balancing tension levels appropriately, one can minimise risks of faults while 

reaping maximal benefits from optimal performance and higher-quality outcomes [6]. 

Wire diameter 

During the process of coil winding, one input parameter stands out as being crucial – “wire 

diameter”. This parameter has a significant impact on fault incidence levels thanks to its effect 

on space usage within the coil [40]. Improper utilisation of this space can result in issues like 

gaps or overlaps [152]. Opting for thicker wires creates more tension during winding that may 

cause rupture or deformation, while thinner wires could be too loose for optimal performance 

and cause unwinding difficulties [26]. Henceforth, choosing an appropriate wire diameter is 

paramount when attempting to decrease fault frequency levels since it plays such an 

influential role in coil winding. 

Bobbin shape 

Creating faults during coil winding depends heavily upon selecting an adequate bobbin 

shape as an input parameter [4][6]. It determines how the wire gets wound around them and 
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their impact on uniformity during winding. Using incorrect bobbin shapes can cause 

irregularities leading to faults like double windings or gaps. This is due to inconsistent 

windings resulting from unsuitable proportions of different parts of the wires attached 

together using insulating material present between them [5]. This result on different layers 

been wound on top of each other over designated time intervals leading to 

breakage/deflection. Appropriate selection becomes essential for flawless operation without 

any mishaps, as they significantly affect whether faults occur. 

B. Output parameters 

The simulation model produces two main output forms. Firstly, it displays a winding 

scheme representation providing the location of all turns and layers involved in the winding 

process. This representation shows the precise position of every turn, including faults like 

high electrical resistance, geometric faults and hotspots. Secondly, the model calculates the 

cumulative error in electrical resistance, allowing the model to determine the moment when 

a bobbin should be considered scrapped due to the high percentage of accumulated faults. 

Electrical resistance  

During the coil winding process, results show that multiple interdependent factors such as 

wire diameter, winding tightness and uniformity must all be considered, since they directly 

impact the electrical resistance of the wire. Larger wire diameters or tighter windings can 

exacerbate this condition, while uneven coiling can also lead to irregular resistivity, which 

hampers overall performance [153]. Thus, gaining insight into these interdependent variables 

and effectively regulating them contributes towards successful electrical resistance control 

throughout the coil winding operation. With regard to the variation in applied tension levels 

under different conditions when fluctuations occur, exceeding yield limits while applying 

tension could potentially deform wires or decrease their cross-sectional areas, which would 

inevitably raise electrical resistance rates within this area [3][5].  

 Figure 4.1 displays the output obtained from the DES model. This figure represents the 

winding scheme displaying vital information such as the high electrical resistance, location 

of hotspots and geometrical faults. Once the input parameters were received, the model 

introduced variations in the value of applied tension based on the given inputs. The DES 

model analyses these variations in applied tension causing tension values to fluctuate as 

previously discussed by Escudero-Ornelas et al. [6]. If the tension exceeds its limit, it may 
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lead to wire deformation resulting in a reduced sectional area and an increase in electrical 

resistance, within that specific region.  

Then, the model then calculated the change in electrical resistance for each coil turn and 

determined the caster angle that causes geometric defects as later explain in section 4.2.2. As 

shown in Figure 4.1, this illustration provided the positioning of individual turns and 

identified any faults present. These faults can include electrical resistance (represented with a 

red circle), imperfections in shape (represented with a letter as explained in section 3.1.4) or 

clusters of electrical issues known as hotspots (represented as a group of three or more red 

circles). 

 

Another result obtained within this research was a database consisting of tables filled with 

critical data, which were discussed in depth in section 4.2.2. This database included specifics 

such as electrical resistance values of individual turns during the winding process and caster 

angles for each turn along with any geometrical faults present. The goal of this extensive 

database was to pinpoint precisely where troublesome abnormalities originate in order to 

make necessary adjustments towards preserving optimal production parameters. By using this 

 

Figure 4.1. Example of the DES model representing outputs such as electrical and geometrical 

faults.   
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same comprehensive set of data as training material for supervised learning algorithms, it is 

possible to elevate and improve manufacturing practices accordingly. 

Location of hotspots during coil winding 

Utilising the DES model yields a variable output facilitating predictions concerning 

potential hotspots during coil winding operations. Hotspots depict positions on copper wires 

with greater electrical resistance and mapping them out proves critical in avoiding setbacks 

in function and reliability. The methodology used by DES involves monitoring resistance 

levels throughout the entire length of wire being wound. By recording the changes in 

resistance for each turn, it was possible to identify areas with elevated electrical resistance 

within the coil winding. These regions were deemed as potential focal points for future 

inspection steps, as displayed in Figure 4.2. 

However, results show that in cases where hotspots go unchecked, elevations in 

temperature could cause damaging insulation breakdowns or create short circuits, which 

would lead to perceptible damage to the stator. Therefore, predictive determinations 

surrounding hotspot locations through DES findings present significant insights into 

promoting enhanced reliability and heightened performance levels during coil winding 

exercises. 

 

Figure 4.2. Representation of hotspots (in red) in different winding layers during an orthocycling 

winding.  
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4.2.2 Identification of interdependencies in linear winding 

Based on the findings from the linear winding process a flowchart was developed as 

presented in Figure 4.3. This flowchart captured the ever-changing aspects of the process 

including the interactions between wire laying, mechanical deformation, thermal behaviour 

and electrical properties. Despite the difficulties presented by using materials and nonlinear 

effects over time, it was managed to incorporate these factors into the flowchart. This 

comprehensive flowchart enables data analysis for simulation purposes. 

4.2.3 Displaying results from the DES model 

The DES model provided valuable insights regarding faults encountered during coil 

winding operations. The simulation model results were displayed in the form of tables formed 

of eight columns per layer in the coil, as shown in Figure 4.4. These columns provided 

information on the layer number, the individual tension value used for each turn according to 

variation, the potential faults that could arise, the type of deformation per turn, the percentage 

of variation added to the base tension, the wire diameter, the electrical resistance value, and 

the amount of variation detected in the electrical resistance.  

 

Figure 4.4. Representation of the first three layers while modelling the coil winding process using a DES 

model. 

• Geometrical defects such as double winding, gaps, crossings, among other issues stem 

from the mishandling of physical components affecting wire overlapping completeness, 

and the unbalanced tension or existence of gaps within wires.  

• Electrical failures due to increased electrical resistance relate to parameters such as wire 

diameter and tension levels (among others) directly influencing a coil's electromagnetic 

properties.  

Figure 4.4 offers further vital specifics concerning each fault – like its location within the 

windings and level of severity experienced. The information presented in this figure is of great 

worth in comprehending the root causes of issues and formulating plans to minimise them in 

forthcoming winding procedures for coils. 
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Figure 4.3. Flowchart of interdependencies in a linear coil winding process. 
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To determine values for each row in the aforementioned figure, several calculations using 

specific equations had to be undertaken. These equations were developed with an aim to 

reflect specific aspects paramount to the winding process while also accounting for interplay 

between various input parameters like wire diameter, winding speed, tension and bobbin 

shape among others. Due to its manifold nature and complexity involving multiple variables 

within its loop, such as turning times, considerations like those included in these diverse 

formulas become critical when collecting correct data about geometrical/electrical faults that 

manifest at given positions on coils, and in ascertaining the severity levels involved.  

These formulas enabled the model to have an accurate measurement of such outcomes 

regarding fault presence across varying assemblages of wound coils whose degree or type 

may differ based on varied input parameters. These equations allowed the model to capture 

any change in input parameters and their impact on the electrical and geometrical properties 

of the output, which is the wound coil. 

A. Calculating the number of turns during coil winding (column 1) 

The initial column of Figure 4.4 implements an iterative formula as shown in the Equation 

1, to determine the number of turns involved in the process of coil winding. The term "Number 

of Turns" indicates the number of loops made around the core, which has an impact on both 

the electrical and mechanical properties of the coil. The parameter "Length of wire" refers to 

the length of wire used in the winding process. It takes into account any variations or wastage 

that may occur during coil production. The "Pitch" parameter represents the distance between 

consecutive wire turns, indicating how closely spaced each loop is, along the length of the 

coil. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑢𝑟𝑛𝑠 =
𝐿𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑤𝑖𝑟𝑒

𝑃𝑖𝑡𝑐ℎ
       Eq. 1 

This count serves as a foundation for the simulation, enabling a thorough examination of 

possible faults and their occurrence timeframes by presenting a sequential account of the 

winding procedure. An iterative formula suits this purpose since it repeatedly computes the 

turns using input parameters like speed, providing means to track changes within the system 

that indicate potential faults. Furthermore, being able to associate turn counts with other 

variables or outputs allows for a complete understanding of interconnections among 

subsystems in coil winding processes. 
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B. Calculating the wire tension value with variation and the percentage variation 

(columns 2 & 5) 

In order to calculate varying tension values accurately during coil winding processes, 

Equation 2 was used to represent the tension value in the second column of Figure 4.4. 

Winding is prone to faults that can be caused or exacerbated by defective tensions; thus, it is 

pivotal to determine them with precision. To establish the degree of variation applied to each 

turn in a coil's tension level, an innovative function was created and shown in the form of 

Equation 2.  

𝑇 = 𝑇𝑚𝑖𝑛 + (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)𝑥
𝐿𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠
𝑥 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  Eq. 2 

The model that takes a probability distribution into account to assign a tension value. 

However, this probability is influenced by the speed at which the winding occurs. When the 

winding speed is higher there is a chance of tension fluctuations [153], which then impacts 

how the tension value for each layer is calculated. This dynamic approach acknowledges that 

in real world scenarios winding speed can have an effect on tension levels and introduces a 

level of uncertainty into the tension variation process. To ensure that defects are prevented it 

remains crucial to have lower boundaries (referred to as 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛) in place to maintain 

tension within acceptable limits. By incorporating adjustments based on probability and speed 

related factors, into this equation it enhances the adaptability of the winding process and 

improves precision when it comes to controlling tension.  

Then to calculate the variation percentage presented in column 5, Equation 3 was 

implemented. 

𝑇𝑒𝑛𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  
𝑇−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
𝑥100%  Eq. 3 

Equation 3 calculates the percentage of tension variation compared to the range between 

the tension (𝑇𝑚𝑖𝑛) and maximum tension (𝑇𝑚𝑎𝑥). It shows how far the actual tension value 

(T) deviates from the maximum tensions. This variation percentage gives information about 

the amount of tension fluctuation in a specific layer while winding. Such insights are crucial, 

for evaluating the quality and dependability of coil winding operations. 

An example of how the tension fluctuated throughout the winding process can be seen in 

Figure 4.5. In this example, the DES model provided the parameters for each layer and turn  
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Figure 4.5. Tension chart of the DES model using a rectangular bobbin. 

 

of wire in a rectangular bobbin at high speed (800 rpm). It highlights an upper boundary (yield 

limit), which could cause electrical faults if breached, and a lower boundary that results in 

loosely wound wire due to insufficient tension. The maximum limit for tension (also known 

as yield limit), was set at 61.75 Newtons as specify by existing literature[154]. This specific 

tension value is crucial as it marks a point in how the copper wire behaves when it is wound. 

Once the tension surpasses this threshold level, the copper wire shifts from being deformed 

elastically to being plastically deformed. By establishing the tension threshold at 61.75 

Newtons, the aim is to ensure that the applied tension on the copper wire remains within the 

deformation range thereby reducing the risk of plastic deformation and any resulting 

geometric flaws or defects, during the winding process. 

C. Calculating the type of geometrical fault (column 3) 

By referring to Table 3.1 (section 3.1.4), a series of guidelines dictate the creation of 

specific forms of geometrical fault based on process parameter values and modifications. It is 

important to bear in mind that certain lower layer faults could result in further complications 

with upper or neighbouring layers, which would ultimately impact the complete winding 

scheme. Thus, it is imperative that any electrical or geometrical defects from earlier rounds 

be taken into consideration while determining those for future rounds. 

To provide accurate representations of any geometric faults arising during the bobbin's 

surface winding process, caster angle values were calculated for every turn obtained based on 
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both wire guide positioning relative to wires [5]. Any caster angle value detected to be out of 

range in the simulation model was classified as a geometric fault. These faults were identified 

using initials as shown in Table 3.1 (section 3.1.4) and illustrated for each turn on Figure 4.6. 

The presented DES model approach mapped when and what type of geometrical fault had 

occurred during winding. The overall results highlighted that double winding occurred more 

frequently among geometrical faults, unlike flange winding, which had limited appearance on 

bobbin edges. 

According to the DES model, Equation 4 adapted from [150] was utilised for the 

calculation of the caster angle. 

𝐶𝐴 = 𝐴 + 𝐵 ∙ 𝑙𝑛 (𝑑𝑏)               Eq. 4 

When determining caster angle, Equation 4 was employed which involves taking the 

natural logarithm (𝑙𝑛) and multiplying it by the bobbin's diameter (𝑑𝑏), then multiplying that 

product by adding A and B angles occurring between the wire guide and winding location. 

Angle A stands between a winding location to an exact point located straight in front of a wire 

guide, whilst angle B occurs between the tip's end in front of the wire guide towards the 

winding area. After calculating the caster angle using the DES model, maximum limits for 

caster angles were also determined utilising Equation 5 – propounded by Dobroschke [150]. 

𝐶𝐴𝑚𝑎𝑥 = − +  0.4 ∙ [𝐴 + 𝐵 ∙ 𝑙𝑛 (𝑑𝑏)]   Eq. 5 

Results have revealed significant insights into how geometrical errors are linked to caster 

angles when rotational speeds rise above safe levels between predefined upper and lower 

limits of maximum angle permitted by manufacturers. Manufacturing companies try not only 

to prevent this, but also lessen risks associated with errors potentially arising from excessive 

oscillation or misaligned machinery parts. This increasingly complex issue, given the 

advances made over recent years, makes machines capable of working faster than ever before 

while requiring high precision standards. Moreover, this demonstrates how even small 

variations between wires’ diameters may impact weight reduction leading to changes 

occurring within guides’ velocities themselves, hence requiring further calculations found on 

Equations 6.1 and 6.2. 
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Figure 4.6. Lists obtain from the DES model using a rectangular bobbin: Geometrical fault type. 

Equation 6.1 entails the division of the force exerted upon the wire guide by the collective 

mass of both copper wire and wire guide.  

 

𝑎 =
𝐹

𝑚
               Eq. 6.1 

 

Equation 6.2 can be utilised to compute wire guide velocity, accounting for acceleration. 

Specifically, this equation requires the incorporation of the initial speed and product of 

acceleration, and elapsed time. Lastly, Figure 4.7 depicts changes to caster angle when using 

a rectangular bobbin. 

 

𝑣 = 𝑣0 + 𝑎𝑡              Eq. 6.2 
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Figure 4.7. Caster angle chart of the DES model using a rectangular bobbin. 

 

 
D.  Calculating the type of deformation in the copper wire (column 4) 

Once the percentage variation in tension was determined, it is essential for the model to 

recognise any potential defects caused by plastic deformation that arises when yield limits are 

crossed, as shown in the code presented in Figure 4.8. This applies throughout every layer and 

turn within these coils’ development process. Selecting faults from predetermined options 

depends on normal distributions: probabilities are calculated and recorded within column 3. 

Through analysis of the tension value after applying variation, the model accurately identified 

the type of deformation in each turn. To effectively present this finding, it expertly labelled each 

turn with either plastic or elastic deformation and displayed it in column 4.  
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Figure 4.8. Pseudo code for calculating the type of deformation during coil winding. 

E. Calculating the diameter (column 6) 

In the sixth column of the table, the current wire diameters can be found, which are subject 

to variation due to inherent interdependencies within the system, as well as fluctuations in 

tension and speed during winding. Results showed that when applied tension (adapted 

from[154]) exceeds a threshold of 61.75 Newtons, stretching occurs leading to a permanent 

change in wire diameter which has significant impacts on the coil winding process outcomes. 

To more accurately reflect these processes, a calculation formula was utilised incorporating 

original diameters, along with material properties like Young's modulus and yield strength, 

which allows for greater accuracy regarding how changing wires’ diameters impacts upon 

system performance, as shown in the pseudo code in Figure 4.9.  

 

 

Figure 4.9. Pseudo code for calculating the copper wire diameter during coil winding. 
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Once the diameter was calculated, the model stores the values for the creation of databases 

for further analysis in the form of tables, as shown in Figure 4.10. Additionally, after 

calculating the diameter the model stores the values for creating databases to conduct analysis. 

These values are stored in tables as depicted in Figure 4.10. This database was designed to 

highlight any abnormalities in the diameter and cross section by marking them with a colour. 

This feature makes it easier to identify the number and location of affected diameters, on a 

bobbin. 

 
 

Figure 4.10. List (diameter variation) obtained from the DES model using a rectangular bobbin. 

 

F. Calculating electrical resistance value and variation percentage (column 7 & 8) 

To calculate this variation in electrical resistance, it is first required to calculate the wire's 

total electrical resistance using Equation 7, 

 

𝑅𝐶𝑢 =
𝜌𝐶𝑢

𝐴𝐶𝑢
=

4∙𝜌𝐶𝑢

𝜋∙𝑑𝐶𝑢
                           Eq. 7 
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To calculate the electrical resistance in a copper wire (𝑅𝐶𝑢), its resistivity value 

(symbolised as ρ) represented by ρ=1.72x10^-8 Ωm must be divided by the wire’s cross-

sectional area 𝐴𝐶𝑢. Equation 8 calculates the sectional area (𝐴𝐶𝑢) of a copper wire. 

𝐴𝐶𝑢 =  𝜋 𝑥 (
𝑑

2
)2                                    Eq. 8 

By simply inputting the wire diameter (d) into Equation 7, it is possible to calculate the 

cross-section area. However, Dobroschke's [150] explains that the 𝑅𝐶𝑢 can also be calculated 

by using the diameter of the copper wire (𝑑𝐶𝑢) instead of the 𝐴𝐶𝑢. Therefore, the equation has 

to be adjusted by multiplying the resistivity value of copper wire (𝜌𝐶𝑢) times four and then 

divided by the product of multiplying 𝜋 times 𝑑𝐶𝑢. 

Dobroschke's [150] work observes how various factors affect coil conductivity, 

specifically noting that reduced fill factors lead to increased electrical resistance due to 

increased spacing between wires within the tightly wound structure. Notably however, 

research emphasises calculating measurements post-winding instead: Wolf [151] highlights 

instances where winding parameters such as the diameter and cross-sectional area 

approaching critical failure levels can contribute to a difference in electrical resistance. Of 

these parameters, the diameter wields the greatest interdependence on introduced errors and 

it can be analysed by using the next equation: 

∆𝑅 = 𝑅1 − 𝑅0 =
4𝐿1∙𝜌

𝜋∙𝑑𝑛𝑜𝑚1
2 −

4𝐿0∙𝜌

𝜋∙𝑑𝑛𝑜𝑚0
2      Eq. 9 

A decrease in the diameter of a wire labelled as d_nom1 is directly proportional to a 

decrease in its current-carrying capacity and, hence, an increase in electrical resistance. In 

multi-layering, utilising smaller diameter wires resulted from tightly compressed coils leading 

to shorter lengths [151]. Nonetheless, this compression also reduces cross-sectional area, thus 

resulting in increased electrical resistance. As a result of such, reductions that may possibly 

arise due to fluctuations throughout production processes or product tolerances may have 

significant effects on the electrical resistance, as shown in Figure 4.11. Figure 4.11 displays 

the variation of electrical resistance during winding, including incremental steps with each 

layer rolled onto the bobbin. 
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Figure 4.11. Electrical resistance chart of the DES model using a rectangular bobbin. 

The work carried out by Komodromos et al. [155] offers insights into how different copper 

wire diameters respond to tensile force and how this affects their electrical conductivity 

characteristics. Experimental results showed that increasing strain levels led to changes in 

cross-sectional areas for all tested wires, resulting in variations in resistivity metrics across 

samples with small diameter sizes (0.63mm vs 1.18 mm), where respective resistance 

increments were measured at 23% compared with 8%. As previously echoed by Dobroschke 

[150] and Wolf [151], however, determining actual resistivity values during winding 

processes remains a challenge. The calculation of the electrical resistance value can be 

obtained by using the formula presented in Equation 7, but it highly depends on the layer and 

the bobbin shape used in the model. This equation required the resistivity, length, and cross-

sectional area of the wire.  

The resistivity utilised in the simulation was specify in Equation 7, yielding a value of 

1.72x10^-8 Ωm. The total length of the wire was determined by Equation 10. 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑊𝑖𝑟𝑒 = 𝑃0 ∙ 𝑁 + (2 ∙ 𝐿 − 2) ∙ 𝑇 ∙ ℎ ∙ 𝑁       Eq. 10 

When: 

• 𝑃0 be the initial perimeter (circumference or sum of sides) of the bobbin. 

• N be the number of turns. 

• L be the number of layers. 

• T be the thickness of the wire. 
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• ℎ be the height increment added per layer for non-circular bobbins (0 for circular). 

Figure 4.12 displays an example of the first five layers of the simulation used to calculate 

the wire's length in the case of a circular bobbin. This calculation takes into account that each 

additional layer, the circumference of the bobbin increases by T (2.36 mm that represents 

twice the thickness of the copper wire). However, in the case of circular bobbins, there is no 

need to consider ℎ so the formula becomes simpler; 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑊𝑖𝑟𝑒 = 𝑃0 ∙ 𝑁                   Eq. 11  

 

 

Figure 4.12. Example of the first five layers where wire length was calculated for a circular bobbin. 

After determining the length of the wire, the electrical resistance was calculated in each 

layer to serve as a reference for detecting any variations in the process. This procedure allowed 

the quantification of the variation in the electrical resistance per turn. These parameters were 

incorporated into the model for a second trial run, with a base tension of 40 Newtons and a 

winding speed of 300 rpm adapted from [148][154]. These parameters were selected as 

standard from previous experiments in literature [154], since they marked common values 

utilised during linear winding. 

The simulation was validated against the model's logic and revealed that faults occur at 

300 rpm due to high variation, as depicted in Figure 4.13. This figure presented the results 

obtained from the simulation, specifically the results from the third layer during linear 

winding because this layer is known to present faults that accumulated from previous layers. 

During this trial the simulation presented a column for geometrical faults, where if a fault was 

presented, it would be highlighted in red, otherwise it would be stayed as green. The next 

column was dedicated to detecting the type of deformation, in which if the predicted 

deformation was permanent (plastic), it would be highlighted in pink for better visualisation.  
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Figure 4.13.  Example of a trial run where variation in the electrical resistance was detected. 

The rest of the columns presented key results such as the variation on tension, diameter 

and electrical resistance value as previously presented in Figure 4.4. It is worth noticing that 

if the values obtained during the trial stayed under the stablished threshold for each of the 

columns, the system would not highlight any turn specific turn. Finally, the last column 

presented the variation in electrical resistance, where if any variation above cero was detected, 

the system would identify it and highlighted as red. 

G. Cumulative error in electrical resistance 

The simulation model was modified to calculate the cumulative increase in electrical faults 

in the winding system, as presented in Figure 4.14. This addition takes into account the stage 

at which fault development exceeds a set threshold whereafter windings are unsuitable for 

use. In assessing cumulative errors throughout each layer of coil turns, industry experts were 

consulted, and they suggested on establishing a threshold value for cumulative error in 

electrical resistance as 10% for this model.  
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Figure 4.14. Representation of cumulative error calculation of high electrical resistance during coil 

winding. 

When the increase in electrical resistance surpassed the set threshold, the model 

automatically rendered the winding unsuitable for use, was determined faulty. The cumulative 

error was obtained by calculating the percentage error in each turn of every layer and adding 

it as the winding progressed, as shown in Figure 4.15. To prevent the production of nonviable 

coils, the model was set to stop the process when this threshold value was reached. 

Figure 4.15. Pseudo code for calculating the cumulative error during coil winding 
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4.2.4 Interdependencies from the DES model 

According to the DES model findings, it is possible to effectively detect and model 

interdependencies among input parameters as they relate to faults that arise during a winding 

process. The tension and winding speed were among the leading parameters that exhibit 

significant influence on the creation of these faults. Three different simulation experiments 

were carried out using the DES model. Each experiment focused on a different winding speed; 

one at a higher speed of 300 rpm, another at a medium speed of 200 rpm and a third at a lower 

speed of 100 rpm. The purpose of these simulations was to investigate how the different 

speeds affect the process of winding. 

In each experiment the wire was subjected to a tension of 40 Newtons during the winding 

process. Variation was added to the tension based on the winding speed as discuss in Equation 

2. Moreover, an established threshold for yield limit was maintain at 61.75 Newtons based on 

existing literature [154]. By conducting these simulation runs with varying speeds while 

keeping the yield limit constant, valuable insights can be gained regarding potential issues, 

like geometric faults and other variables that may arise during coil winding. 

Experiment 1- High rotational speed 

The occurrence of faults during winding can be attributed to variations in tension 

exceeding the yield limit per turn. At times, these variations can result in a significant uptick 

in tension levels by up to 70%. In the simulation experiment with the DES model Figure 4.16 

displays the data collected. The experiment was conducted at a winding speed of 300 rpm. 

The figure illustrates how winding speed, tension parameters and geometric faults are 

interconnected. It provides insights, into trends, patterns and potential correlations helping us 

understand how different winding speeds affect the performance and reliability of the coil 

winding process. 

Figure 4.16 offers a visual depiction of how different types of deformations variations in 

electrical resistance and their effects on tension values and geometric faults interact during 

the coil winding process. The type of deformation was highlighted according to the type of 

deformation for easier visualisation (green represents elastic deformation while red indicates 

plastic deformation). This colour coded system helps to quick identification. Moreover, the 

figure draw attention to points in the simulation where changes in electrical resistance were 
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detected highlighting them in red. This visual cue helps in detecting any deviations in 

electrical resistance during the winding process. 

An important discovery emerged from the experiment. It was observed that turns with a 

high variation in tension exceeding 23% caused high electrical resistance when the tension 

values surpassed the predetermined yield limit. As a result, certain geometric faults occurred, 

such as double windings and gaps in the wound coil. Furthermore, these geometric faults were  

 

Figure 4.16. Results from the DES model of the winding process at 300 RPM with a base tension 

of 40N. 

worsened by a decrease in wire diameter which further aggravated the issue. The decrease in 

diameter also caused an increase of over 1%, in electrical resistance. 

During another trial run, now using a base tension of 60 Newtons instead, variations in 

tension raise up to 42% resulting in faults such as crossovers to be identified as presented in 

Figure 4.17. This figure presents a comparison between a simulation run at high speed with a 

control tension value against a simulation with a higher tension value. This produce that the 

wire become permanently deformed and reduce its cross-section in the process. As the 

formula for the electrical resistance calculation suggests, changes within the cross-section and 

diameter bring about consequential increases in the electrical resistance. It should be notice 

that during simulations, fluctuation within electrical currents was usually recorded between 
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0.2% up to a maximum of 2.0% – often causing rises in coil temperature and thereby 

negatively affecting stator insulation and performance. 

 

 

Figure 4.17. Comparison between simulations trials, one with a control tension against another with a 

higher base tension. 

Experiment 2- Medium rotational speed 

Experiment 2 was conducted at medium speed, producing different results compared to the 

previous experiment. In this experiment the main focus was on keeping variations in tension 

below the base value. As a result, it was observed an increase of up to 10% in tension. This 

finding clearly demonstrates a significant relationship between winding speed and tension 

variations. It is worth noting that as the speed increases the magnitude of tension fluctuations 

also escalates. Figure 4.18 visually depicts this relationship by graphically representing the 

percentage changes in tension with respect to increasing winding speeds. 

Note: The data points shown in Figure 4.18 presents the outcomes of conducting 100 runs 

of the DES model in order to verify its consistency. Moreover, by using an averaging method 

it can be ensured resilience against fluctuations and increase the reliability of the findings. 

Running the model 100 times strikes a balance between obtaining statistically significant 

results, managing computational resources efficiently, and validating the model's repeatability 

and robustness. An example of using this averaging method was presented by Cossar & 

Rezaei [156], where they explored the application of averaging estimation models in 

simulating Permanent Magnet AC electric motor and generator drive systems using 

Matlab/Simulink. It compared the performance of these models with standard switching 

converter approaches, finding that the average voltage models accurately predict key 

operational parameters while significantly reducing simulation times, making them 

advantageous for system-level modelling incorporating detailed mechanical and aeronautical 

subsystems. 
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Figure 4.18.  Plot of the average variation percentage in tension at various speeds. 

Experiment 3- Low rotational speed 

In the last experiment, the simulation was run at a low winding speed. The simulation was 

set with a base tension of 40 Newtons and a winding speed of 100 rpm. The results showed 

there were no faults detected during the winding process. This important finding is clearly 

shown in Figure 4.19. The consistent tension of 40 Newtons along with the low speed seemed 

to effectively prevent any geometric faults or changes in electrical resistance. 

The reason why no faults were observed at lower winding speeds is because of the 

interaction between the controlled factors and the natural behaviour of the winding process. 

When the speed is slower there is less stress and tension on the wire during winding. By 

maintaining a controlled tension of 40 Newtons, it was ensure that there is not much strain on 

the wire, which helps prevent issues like double winding or gaps. This reduced tension also 

helps minimise variations in resistance, which ultimately leads to a decrease, in faults. This 

result highlights how important it is to control these winding parameters for the success of the 

process. 
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Figure 4.19. Results from the DES model of the winding process at 100 rpm with a base tension 

of 40N. 

A. Wire tension and electrical resistance variation 

According to the results from the DES model, it was found that changes in critical input 

parameters resulted in faults such as increased electrical resistance. The model revealed two 

significant associations among critical process parameters:  

• The first one being between wire tension and electrical resistance,  

• The second being between wire gauge, wire guide, and caster angle.  

Figure 4.20 graphically demonstrates how variation in the electrical resistance of a 

rectangular bobbin increases the tension applied to the wire. This fluctuation reached as high 

as 11% when tension (represented by a green solid line) surpassed the yield limit (indicated 

by a red dashed line) by nearly 40 N. In addition, this graph indicated that when annealed 

copper wire with a diameter of 0.71 mm encountered tension beyond its yield limit (61.75N), 

it transformed from elastic deformation into plastic deformation mode, resulting in a smaller 

diameter that escalated electrical resistance significantly, creating problems for the coil's 

overall electrical resistance which directly impacts motor performance and reliability. 
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Figure 4.20. Plot showing variation in electrical resistance for a rectangular bobbin with respect to 

tension in the wire. The red dashed line shows the yield point of the wire. 

B. Wire gauge, wire guide and caster angle 

The DES model revealed how specific parameters, such as wire diameter, could 

considerably affect both wire guide speed and caster angle. Figure 4.21 (a) demonstrates these 

impacts, the blue line depicts changes in decreased or increased diameters when there are 

fluctuations in the wire guide speed that then influence how much the purple line decreases 

or increases downwards when charted from 6.2 to 5.8 degrees. 

Results showed that improper tolerances during manufacturing or inappropriate levels of 

stress applied during winding could result in a variance in wire gauge. According to the DES 

model analysis, changes in wire gauge affected the speed of the wire guide as depicted by 

Figure 21 (a). In this figure, it illustrates that wire weight influences guide speed due to smaller 

diameters generating less weight resulting in faster guides than usual, while larger diameters 

generate extra weight causing slower movements which affect caster angles which alters the 

winding geometry resulting in various contours like convex or concave windings observed as 

a reduction in fill factors. 
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Figure 4.21. (a) Variation in winding speed and caster angle with respect to the diameter of the wire. 

 

 

Figure 4.21. (b)  Relationship between wire diameter, wire feed rate and variation of wire guide at 

turning points. 

The graph presented in Figure 4.21 (b) displays an interesting finding regarding wire 

diameter reduction. Specifically, when reducing it by half, there is a consequential increase 

of almost 40% in the green line, which represents the feed rate of the wire, as well as over a 

35% increment in the red line – indicating greater variation when stopping at turning points. 

As stipulated earlier, using thinner wires results in elevated speeds for both the guiding system 

and wires themselves, affecting said variability. The DES model was utilised to calculate 

variations occurring based on distance travelled after deceleration commenced. 
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In order to accurately calculate the wire displacement (𝑠) from a starting point to a critical 

turning juncture along a given wire guide path, Equation 12 was used, where velocity (𝑣), 

elapsed time (𝑡), acceleration (𝑎) and time elapsed squared (𝑡2) were used. However, quite often 

there exists only compounded variations within these calculations due largely to shifting 

conditions resulting from heightened momentum caused by an increasing wire feed.  

𝑠 = 𝑣𝑡 +
1

2
𝑎𝑡2                Eq. 12 

This anomaly initiates additional errors cumulatively experienced with every turn taken, 

effectively impacting proper alignment of wires whilst also distorting geometric shapes along 

with contributing, potentially, to what could be a poor fill factor. This generates a need for 

methods to calculate percentage variation between the precise stopping point required at the 

exact turning mark, and the actual final locations of the wire guide stopping, either before or 

after as per variance in the acceleration levels. In this regard, the DES model offers ideal 

opportunities to model correlations among various parameters of complicated processes 

involving deformable materials. 

When creating the simulation model for geometrical faults, the caster angle was 

determined by examining both wire guide position and the wire's location on the bobbin's 

surface [5]. By using the maximum caster angle as the benchmark for boundary determination 

purposes, it was possible to establish both upper and lower limits within which no geometrical 

faults should occur. However, should rotational speeds see excessive variation and cause the 

safety limit for caster angles to be exceeded, then a certain type of geometrical fault may 

result. It is imperative to consider that an increased span between safety limits in relation to 

measured rotational speed will ultimately yield unnecessary geometry failure; such failures if 

any must always be minimised.  

The rate at which the wire guide moves has a direct bearing on the caster angle relative to 

minimum threshold requirements expected from this action, which would produce a smooth 

circular motion during its rotation cycle around the coil (bobbin). If the wire's movement was 

not significantly reduced, gradually a decrease of the caster angle would occur resulting in 

gaps being produced in the coil structure. This will be observed in a significant reduction of 

the bobbin's fill factor from its standard 90.7% to just 65-75%. However, on the other hand, 
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when the wire guide speed is increased beyond required upper limits, double-winding faults 

will be generated, and major workflow disruption could ensue. 

A sudden change in wire guide speed can occur when the diameter of a wire keeps 

fluctuating. This can cause an increase in its feed rate but also make it impossible for it to 

reach the anticipated turning points (Figure 4.21 b). Known as abnormal acceleration, this 

anomaly arises due to mismatching between wire feed speed and winding location. For thinner 

wires, faster wire guide speeds lead to more significant differences while still reaching turning 

points. 

The typical approach for obtaining a positive caster angle during winding entails situating 

the wire guide behind the designated location. Such an approach ensures proper tensioning of 

wires and enables efficient wrapping progress. Results suggest that reduced weights of wires 

lead to an increase in speed once passing through guides, effectively reducing the caster angle 

and subsequently creating geometrical faults, such as gaps, upon surpassing designated areas 

intended for wrapping. Conversely, if too much weight is added onto wires, causing slower 

progression coupled with incorrect casters, this can lead to the inward dragging of wires 

creating double layering concluding in unsatisfactory filling factors for resulting coil 

geometries, which could be either bulgy or concave. 

4.3.  Results from the experiments on the coil winding machine 

This section presents results obtained through a series of experiments using a lab-based 

linear coil-winding machine. These results have been instrumental in validating the DES 

model and attention was paid towards exploring underlying findings and clarity around 

validation-critical results when compared to predictions, as guided by the DES Model.  

4.3.1. Electrical Resistance faults 

During the experimentation with a linear winding machine, it was aimed to assess how 

various process parameters, namely winding speed, wire diameter and bobbin shape impacted 

occurrences of faults within this system. The experimentation began by quantifying wire 

electrical resistance using a FLUKE 8808A bench digital multimeter prior to engaging in any 

tests as presented in Figure 4.22. 
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Figure 4.22. Fluke 8808A Bench Digital Multimeter used to measure the electrical resistance in 

the copper wire. (Adapted from Fluke) 

 The FLUKE 8808A multimeter was selected due to its level of accuracy, precision and 

stability. The Fluke 8808A multimeter has a specified DC voltage accuracy of 0.015% 

allowing it to provide precise resistance measurements within a deviation of only 0.0015 

Ohms, from the actual resistance value. This makes it ideal for detecting the smallest 

variations in electrical resistance. Its reputation as an instrument from a reputable brand, 

combined with its versatility and easy, to use interface ensures that it can effectively fulfil the 

precise measurement needs during this research. 

To account for changes resulting from experimental procedures associated with this 

research effort, measurements were recorded before and following every experiment 

conducted during this investigation to analyse what happens when rotational speed varies as 

specified in the design protocol per test round. Based on the findings, a plot was created, as 

presented in detail in Figure 4.23. This shows the electrical resistance's variation magnitudes 

across different bobbin shapes during varying rates of rotation. 

Note: The figures displaying plot charts in this results section (4.3 and 4.4) represent the 

averaged data points obtained from performing 33 experiments conducted on the linear 

winding machine. This limited number of experiments was attributed to the extensive setup 

requirements and the time-consuming nature of result analysis associated with running a 

linear winding experiment. Nonetheless, despite the relatively small number of trials, the 

averaged data points provide valuable insights into the performance and behaviour of the 

system under study. This averaging method not only enhances the reliability of the findings 

but also helps mitigate the impact of outliers or anomalies, thus ensuring the accuracy and 

validity of the results. 
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A. Winding speed and change in electrical resistance 

Findings from the experimental data, presented in Figure 4.23, reveal that maximum 

elevation in electrical resistance occurred when using a rectangular bobbin at a winding speed 

of 800 rpm. The trend reflected that augmentation in rotational velocity amplified variations 

seen within electrical resistance measures. Specifically, observations indicated significantly 

lower-level changes when speeds were kept low. This finding accentuates a clear correlation 

between increasing rotational speed and heightened levels of electrical resistance during 

winding procedures. The variation was created because the wire feed increases and creates a 

momentum that does not allow the wire guide to stop at the exact turning point causing extra 

tension on the wire as explained by Hagedorn et al. [5]. This extra tension causes the cross-

sectional area of the wire to be reduced creation a variation in the electrical resistance. 

 

Figure 4.23. Electrical resistance variation percentage with different wire gauges and bobbin shapes. 

B. Bobbin shape and change in electrical resistance 

An analysis was conducted to uncover how bobbin shape affects electrical resistance 

changes, finding that the rectangular shape presented an average increase in electrical 

resistance of 4% at high speeds, whereas its counterpart – square-shaped bobbins – displayed 

only a slight average increase of 2.7%. The aspect ratio greatly influences these differences 

in bobbin shapes. The height-to-base measurements dictate whether the bobbin will be 
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rectangular or square shaped – where a larger aspect ratio corresponds to more variation seen 

within resistive properties, and vice versa. Figure 4.23 showed that using bobbins with higher 

aspect ratios result in double or nearly double variations compared to their counterpart; 

rectangular results are nearly twice as high as those seen for squares. These findings suggest 

that careful consideration of bobbin shape may best address manufacturing needs when 

fabricating products reliant on electrical components. 

C. Wire gauge and change in electrical resistance 

The experiments investigated the complex relationship linking wire gauge to fluctuations 

in electrical resistance levels. It became apparent that as wire diameter increased, so did 

overall levels of electrical impedance – especially noticeable when comparing different 

gauges using square-shaped bobbins where nearly a 2.0% increment was observed between 

measurements for large versus smaller-sized wires, whereas when using rectangular-shaped 

bobbins, variations attributed to different diameters were less consequential, ranging at around 

only 0.2%. Therefore, results presented in Figure 4.23 showed that variations arising due to 

differences in both factors (i.e. wire gauge & bobbin shape) contribute to the accumulation of 

defects over time. 

4.3.2. Geometrical faults 

The approach taken to study the winding schema defects involved recording videos during 

experimentation so that it could be closely analysed to see how different forms of geometric 

flaws would manifest over time. Special care was taken to examine each individual video on 

a per-frame basis using an exhaustive checklist for identifying common forms of geometric 

errors within winding schemata. To give an example: Figure 4.24 shows multiple images 

taken from footage following high-speed (800 rpm) testing with square and rectangle bobbins. 

These images depict several types of geometric fault, including gaps, crossings, and double 

windings. From this collection of recorded data points, it was possible to produce a graphical 

representation (Figure 4.25) illustrating how changes in winding speed relate to alterations in 

the occurrence rate of particular geometrical faults.  
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Figure 4.24. Geometrical faults during linear winding at 800 rpm using a square bobbin (A & C) and rectangular bobbin (B & D). 

A) 
B) 

C) D) 
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A. Winding speed and geometrical faults 

Analysing the data presented within Figure 4.25 highlights some clear trends regarding their 

relation to geometric faulting tendencies while employing different winding speeds. The most 

notable being a substantial increase demonstrated among fold defects while utilising both 

bobbins shapes under either higher or lower rotational settings, particularly registered upon 

reaching either 200 or 800 rpm set points.  

The occurrence of faults when changing the speed at which the wire was wound can be 

attributed to several underlying factors. Firstly, variations in winding speed directly affect the 

tension applied to the wire during the process. This increased stress on the wire can lead to fold 

defects due to excessive stretching or bending. Secondly, the choice of bobbin shape, the wire 

length between the winding point and the wire guide interacts with the winding speed 

influencing how layers of wire are stacked. This interaction can cause misalignments 

contributing to a tendency for faults at specific speeds. Additionally, as the winding process 

involves accelerations and decelerations it can disrupt the smooth winding of the wire and 

potentially result in defects like double windings or gaps. Lastly, properties inherent to the 

copper wire itself such as its elasticity and resistance to deformation play a role in how it reacts 

to stress when wound at different speeds.  

 

Figure 4.25. Plot with the number of geometrical faults at different winding speeds variating input 

parameters. 
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Modifications in the diameter of the wire have an impact on the occurrence of geometric 

faults when the winding speed changes. The dynamic behaviour during speed changes in 

winding along with material properties like flexibility and elasticity and the need for tension 

adjustments all depend on variations in wire diameter. Additionally, changes in wire diameter 

from smaller to larger gauges can influence interactions with the bobbin including its shape 

and contours, which can affect how wire layers are stacked and aligned. 

This changed significantly though once testing under moderate operational ranges (500 

rpm); both trials exhibited lower counts in geometric anomalies noted during normal usage 

conditions. Conversely, this  led to further difficulties being experienced within subsequent 

trials where speed kept rising which consequently caused similar fault occurrences seen when 

executing standard procedures with minimal wind speeds (mentioned above) leading to the 

conclusion that these findings suggest a correlational association between winding velocity and 

geometrical faults that arise during winding.  

B. Bobbin shape and geometrical faults 

Modifying the shape of the bobbin can have an impact on the occurrence of geometric faults 

in coil winding processes. This is because there are interconnected factors involved. When the 

bobbin shape is change it directly affects how the layers stack and align which can lead to 

misalignments. It also has an effect on how tension is distributed along the wire potentially 

resulting in uneven winding. The altered shape may guide the wire in ways causing overlaps 

and uneven winding. Additionally new contact points and friction may arise, further 

contributing to faults [3]. Ensuring that the bobbin shape is compatible with the characteristics 

of the wire is crucial for achieving winding. It is important to understand and manage all these 

implications because changes in bobbin shape can compound with variables like dynamic 

behaviour disruptions during speed changes or interactions, with other factors. 

According to the data presented in Figure 4.25, choosing the right shape for the bobbin can 

have a significant impact on the outcome of the winding process. Notably, using a square-

shaped bobbin seems to result in substantially more geometrical faults compared to using a 

rectangular-shaped one. Specifically, it was found that running the winding machine at lower 

speeds with a square-shaped bobbin would lead to over double the number of errors than those 

resulting from utilising its alternative counterpart. While both shapes seem comparable 

regarding geometric troubles during medium-speed operations, faults amplify significantly, 
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and almost triple, when utilising thinner gauge wire with square-shaped bobbins. When 

working under higher speed conditions, selecting the rectangular shape delivered remarkably 

better results – yielding only two defects, compared to the eight presents (on average) when 

using a square bobbin. 

C. Wire gauge and geometrical faults 

Modifying the thickness of the wire used in coil winding processes can result in types of 

geometric issues such as double winding and gaps due to a combination of interconnected 

factors. When adjusting the wire thickness, it is important to make changes in tension to ensure 

proper winding. Thicker wire usually requires higher tension. The mechanical properties of the 

wire such as strength and resistance to deformation also change with thicknesses affecting how 

the wire responds to winding forces and potentially causing misalignments and geometric 

problems. Additionally, variations, in wire thickness can impact layer stacking and distribution 

of tension which may introduce overlaps and irregularities during the process.  

The insights offered by Figure 4.25 underscore the vital role played by wire gauge in 

creating geometric flaws during winding processes. Specifically, this impact is notable with 

reduced-sized wire gauges employed for winding tasks. In analysing both square- and 

rectangle-shaped bobbin performances under different conditions involving diverse wirings 

sizes, it was established that fine-gauged wiring sizes led to more fault appearances than larger 

ones did. Conversely, designing wound systems using heavy-duty wires produced fewer 

geometric anomalies across all bobbin categories analysed hereunder, although attention 

should be paid to these very fine wiring details so as not to cause irreparable deficiencies too 

often observed within various designed items. For example, when using square bobbins, thinner 

wiring created 25 fault spots. However, embracing thicker wire lowered this number to only 9 

faults, even at high winding speeds. It is evident that using reduced-sized wires produces 

profound effects on the occurrence of geometrical faults. 

4.4. Comparison of results between simulation model and physical experiments   

4.4.1. Electrical resistance faults 

The obtained results from the DES modelling were validated through experimentation 

conducted within laboratory settings utilising linear coil-winding machines. These experiments 

assessed key process parameters through their deliberate variation for increased accuracy 
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assurance purposes. Subsequently, the results were compared with those derived from the DES 

model. For analysis purposes of the electrical resistance variation upon different wires sizes, 

Figures 4.26 and 4.27 were developed.  

Figure 4.26 highlights correlations between rotational velocities, represented by rectangular 

bobbins, along with electrical resistance percentages presented as straight dashes depicting a 

series of experiments. While Figure 4.27 examines these same variables utilising square 

bobbins instead, each of these figures also analyses two variants: thicker wires (represented by 

blue lines 0.71mm) and thinner ones (represented by red lines 0.3mm). The findings show an 

established correlation between winding speed and electrical resistance percentual variation for 

this test setup, displaying higher percentage variations with utilisation of thicker wires – 

especially at increased velocities where changes can ascend to 4% as observed in Figure 4.26.  

Although both Figures 4.26 and 4.27 demonstrate uniform increases in percentage 

variations, which are consistent with winding velocity increases, results indicate that a 

rectangular bobbin's overall discrepancies are more significant compared to those exhibited via 

a square bobbin's analysis. Regarding the square bobbin, systematic variation increases were 

only witnessed at higher respective speeds and thicker wires ranging from 1.3% to a maximum 

of 3.7%. 

Based on these results, it is clear that the shape of the bobbin plays a critical role in the 

percentage variation of electrical resistance in copper wire. This research indicates that 

rectangular bobbins tend to create higher variations even when winding speeds are slow, 

whereas square bobbins remain relatively consistent until higher speeds are reached. This is 

due to the aspect ratio of the bobbin shape and its influence on tension during winding. A 

greater aspect ratio leads to rapid fluctuations in tension throughout the process and can exceed 

yield limits. In contrast, bobbin shapes with a square aspect ratio maintain consistent tension 

throughout the process, resulting in less variation during winding. This finding is crucial for 

manufacturers seeking to reduce variation in electrical resistance and improve coil quality.  
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Figure 4.26. Comparison for a rectangular bobbin with two different wire gauges using a DES model 

and linear winding experiments to determine the percentage error in electrical resistance. 

 

 

Figure 4.27. Comparison for a square bobbin with two different wire gauges using a DES model and 

linear winding experiments to determine the percentage error in electrical resistance. 
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4.4.2. Wire gauge 

In addition, experiments were conducted with different wire gauges, which showed 

correlation between winding speed and wire diameter. The comparisons between the DES 

model and physical experiments revealed that larger diameter wires tend to deform more easily 

at high speeds leading to greater electrical resistance. Conversely, the DES model confirmed 

that smaller diameter wires exhibited lower levels of electrical resistance variation. However, 

it is worth noting that the DES model considered only three input parameters with high 

influence, whereas realistic operational environments have multiple factors impacting fault 

creation such as friction in wire guides [3]. One possible input parameter that can influence the 

occurrence of faults during winding is friction within the wire guide. When friction increases 

it applies additional tension to the wire as explain by Le-Blanc [3], which can potentially create 

defects in the final product. 

4.4.3. Accuracy of the results from the DES model 

Following the physical experiments depicted in Figures 4.26 and 4.27, an evaluation of the 

DES model's accuracy was conducted by examining its percentage error or difference in results. 

Calculating the percentage error determines how much trend differs between the DES model 

and experiments using a linear winding machine. By referring to Table 4.2, it can be seen how 

the variation in electrical resistance differs between both these factors. For rectangular bobbins 

that use thinner wires (0.30 mm), there was an increased percentage of error (1.56%) compared 

to experiments, suggesting external factors were at play such as material handling or machine 

wear and tear. On the other hand, when testing square bobbins, a smaller percentage of errors 

were observed at only 0.27%. It's fair to say that out of these two models tested so far, the 

square bobbin appears more accurate owing to fewer discrepancies in results found – albeit 

both models remain relatively reliable, with under 5% errors overall. 

Table 4.2. The Percentage Error results for the rectangular and square bobbin when calculating the 

electrical resistance. 
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Table 4.3 summarises the calculated cumulative errors for different DES model scenarios. 

To determine this, the percentage difference between regular electrical resistance and high 

electrical resistance during winding was calculated, recorded and added up throughout the 

entire simulation process. The results indicated that, as winding speed increases in both types 

of bobbin shapes (square or rectangular), there is an increase in overall cumulative error rates. 

However, this tended to be more noticeable with rectangular ones because of the constant wire 

length changes that occur during winding due to their shape, leading to higher errors than those 

recorded on square ones. 

Table 4.3. The cumulative error results for the rectangular and square bobbin when calculating the 

electrical resistance in the DES model. 
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4.4.4. Geometrical faults 

To evaluate how accurately the DES model detects geometric faults on the first layer of a 

bobbin, two plots were generated (Figures 4.28 and 4.29). Both experimental data and the DES 

model revealed higher occurrences of geometric imperfections during high-speed runs (e.g., 

ramping up/down affects caster angles), but also noted considerable incidences when operating 

at slower speeds. In fact, thinner wires are especially problematic as their greater spring-back 

effect can be difficult to manage compared with thicker wires given up/down ramping issues, 

which exacerbate imperfections. Interestingly, a median speed indicates lower numbers of 

geometric faults as caster angles remain more stable. However, the square bobbin in Figure 

4.29 produced a significantly greater number of faults compared to the rectangular bobbin 

shown in Figure 4.28.  

 

Figure 4.28. Comparison for a rectangular bobbin with two different wire gauges using a DES 

model and linear winding experiments to determine the number of geometrical faults in the first 

layer. 
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Figure 4.29. Comparison for a square bobbin with two different wire gauges using a DES model 

and linear winding experiments to determine the number of geometrical faults in the first layer. 

Indeed, when using thinner wires at slower speeds rectangular bobbins showed only 7 

imperfections, whereas the same configuration with a square bobbin caused that number to 

increase to 16. This merits attention since having an aspect ratio of 1:1 appears to result in more 

imperfections that are geometric during winding processes. Additionally, it has been observed 

that processing speed plays an important role too, since wire guides move too fast at high 

speeds and they may miss turning points – thereby generating larger changes in casting angles 

leading ultimately to incorrect wire placement and resulting in double windings.  

Ensuring a caster angle within the established limits is reliant on both the aspect ratio of 

each bobbin and the speed variation. Therefore, regulating these parameters is essential for 

achieving proper winding. To achieve this, control features can be introduced to maintain a 

consistent caster angle throughout the process. One potential solution involves calculating 

turning points that are specific to the current winding speed, enabling the wire guide to halt at 

precise intervals and maintain a stable caster angle even at high speeds. 

As presented in section 3.1.5, findings showed that thinner wires are prone to a spring-back 

effect during coil winding leading to greater geometrical faults compared to their thicker 
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counterparts, an observation confirmed by comparing experimental results with those obtained 

through a DES modelling technique. It is thus advisable for manufacturers to use a uniform 

diameter of wire throughout all stages of coil-winding processing so as not to incur such 

difficulties.  

Experts within simulation and electrical motor manufacturing industries have approved the 

implementation of DES models given their accuracy in detecting fault-causing factors while 

maintaining quality standards during manufacture (with no other pre-existing fault detection 

technology providing enough detail about location within bobbins being available yet). 

Through utilisation of a specified turn's electrical resistance measurements, a manufacturer 

attains more confidence when conducting end-of-line tests.  

While validating effectiveness, the experiments only considered two different wire gauges 

at extreme ends of the size spectrum. Hence, it is important to conduct further tests to look at 

the effects resulting from variations in wire diameters on the electrical resistance observed after 

coil winding. With this strategy, it is possible to test the DES model using other winding 

techniques such as needle winding – according to experts familiar with simulation and 

electrical motor manufacturing processes.
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4.5.  Summary 

This chapter presented the results obtain from a DES model that addresses interdependency 

in processing criteria driving error-prone outcomes during electric motor manufacturing 

processes. This model includes time-dependency within the coil-winding stage to simulate 

deformable copper wire behaviour resulting from factors specifically addressing input 

variables, including wire tension, winding speed, bobbin shape and diameter.  

Both simulated and physical experiments on the coil-winding machine were conducted 

using validated critical parameters variation targeted at determining their effect on generating 

defects during primary steps towards electric motor manufacture, alongside expert feedback 

for validation purposes. The results demonstrated specific input variables such as wire tension 

and winding speed played essential roles throughout the various stages within the coil-winding 

stage required for fault detection accuracy, thus improving end-product quality expectations.  

Conducted experiments have uncovered a range of notable correlations influencing 

electrical resistance during the coil-winding process. Specifically, winding speed and wire 

thickness were observed to have a direct relationship with electrical resistance variation, 

resulting in greater variation when using thicker wires or higher speeds. Bobbin shape is 

another pivotal factor to consider; when using rectangular bobbins, significantly higher 

variations were noted at slower switching speeds. On the other hand, square-shaped bobbins 

remained consistent until higher wind speeds were used. These findings indicate that while 

DES models are reasonably reliable for predicting outcomes during winding processes, errors 

can emerge. In comparing models' efficacy at different configurations, thinner wires in 

combination with rectangular bobbins proved particularly challenging, generating up to 1.56% 

maximum error rates.  

Beyond these aspects, geometric faults were also noted throughout all tests conducted 

irrespective of wire size or speed setting (most prominently for square-shaped bobbins and 

thin-gauge wiring). To improve winding quality and achieve better end-products while 

reducing waste and inefficiencies in manufacturing processes altogether, strategies promoting 

control features aiming to maintain consistent caster angles need to be considered for wider 

implementation across the manufacturing floor as industry standards progress. Finally, this 

research advocates further observational testing aimed at measuring how different wire 
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diameters ultimately influence post-process electrical resistance levels after successful coil-

winding delivery has been achieved. 
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CHAPTER V: ENHANCING FAULT DETECTION IN COIL WINDING 

MANUFACTURING PROCESSES USING A HYBRID 

COMPUTATIONAL FRAMEWORK 

5.1 Introduction 

In this chapter, an analysis of the results obtained from the proposed hybrid computational 

framework for fault detection in the coil winding manufacturing process is presented as shown 

in Figure 5.1. Utilising a method called knowledge distillation for transferring knowledge 

presents an approach to condensing the valuable insights and expertise contained within a 

complex simulation model into a lighter and more efficient form. By simplifying this 

knowledge into a condensed model, it is possible to greatly reduce simulation time while still 

maintaining a level of accuracy [151]. This approach takes advantage of the ability of distilled 

models to capture patterns and relationships, from the original simulation optimising 

computational resources without sacrificing performance. 

 

 

Figure 5.1. Chapter Overview: Results from the hybrid computational framework for fault 

detection in the coil winding manufacturing process. 
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The approach of KD in this research entails transferring the understanding of a complex 

model, like the DES model, that represents how a bobbin behaves when being linearly wound 

to a faster and simpler model such as the RF model, which acts as a student. The purpose of 

this transfer is to distill the knowledge contained in the DES model into the student model so 

that it can make accurate predictions, about the state of the bobbin while also simplifying 

computations and improving efficiency. This chapter highlighted any potential benefits related 

to the modified strategy for the coil manufacturing process, which included a reduction in the 

manufacturing time, improved stator quality, substantial improvements towards overall 

machine safety, and an increase in overall level of trust towards future designs. 

5.2 Results and comparison of the SML models 

The linear winding process presented several challenges during the simulation process as 

discussed by Sell-Le Blanc et al. [3] because of its intricate and constantly changing nature due 

to the use of deformable material. Results showed that interactions between multiple physical 

phenomena during this process such as the motion of laying wire combined with mechanical 

deformation, thermal behaviour, and electrical properties, makes it difficult to accurately 

predict nonlinear influences over time [148]. Additionally, other external factors like material 

properties or operator behaviour introduce more variability into the system making data 

analysis for simulation difficult [161]. 

Next, the focus of the chapter was to demonstrate how well the new proposed framework 

presented in section 3.2 could predict and enhance the simulation speed for models simulating 

linear coil winding processes. The goal was achieved by comparing several SML algorithms 

with different datasets and selecting the one with the best performance. The process began by 

using the software “Witness Horizon” to develop a DES model that simulated the various 

interdependencies during the winding stages of the process as discussed in section 3.1. This 

model could be used for developing preventative maintenance plans aimed at reducing 

vulnerability when faults inevitably arise. Although the DES model delivered noticeable 

improvements in efficiency over other simulation models, such as FEA, the DES model took 

in average two minutes to simulate a single coil on a quad-core Intel Core i5-9300H 9th 

Generation processor with 8GB RAM. As Thompson et al. [101] mentions, currently industrial 

settings have a demand for even shorter computational times.  
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Therefore, there was a need of a technique capable of been used as a student model during 

the KD process while improving the accuracy and speed of predictions in the DES model. After 

a thorough review of the literature, SML algorithms was selected as a solution for the following 

reasons: 

• Availability of Labelled Data: In manufacturing settings labelled data is often easily 

accessible which is advantageous for learning. 

• Enhanced Prediction Accuracy: Supervised learning models are specifically designed to 

provide predictions based on historical data making them well suited for improving 

prediction accuracy. 

• Faster Simulation Speed: Once trained supervised learning models are computationally 

efficient. Can make faster predictions compared to time consuming DES simulations. 

• Sensitivity Analysis: Supervised learning models can be utilised for sensitivity analysis 

enabling the understanding of how variations in input parameters influence outcomes. 

• Model Generalisation: These models can learn patterns from training data and adapt to 

evolving manufacturing processes. 

Other approaches such as unsupervised learning, rule-based systems or reinforcement 

learning do not offer the same advantages in terms of prediction accuracy and simulation speed. 

• Unsupervised Learning: Unsupervised methods focus more on data exploration and 

grouping than providing accurate predictions, which makes them less suitable for predictive 

modelling in manufacturing. 

• Rule Based Systems: While rule-based systems are automated, they may not be well suited 

for ever changing manufacturing processes. They often require manual adjustments and 

maintenance.  

• Reinforcement Learning: While powerful reinforcement learning may not be practical for 

manufacturing processes due to its time-consuming trial and error approach and may not 

directly address the need, for simulation speed. 

Therefore, multiple SML algorithms such as DT, RF, SVM, KNN, NB, and Neural 

Networks were compared to select the most accurate and efficient algorithm in section 5.2.1. 

To assess the precision and accuracy of these learning algorithms and compare their 

performance, visual tools such as scatter plots and confusion matrices were utilised. Scatter 

plots has been used as visual representations when evaluating the connection between predicted 
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and real values, in regression or classification scenarios [37]. These charts provided insights 

into the models ability to differentiate between classes (fault types) and how their performance 

varies across decision boundaries. Confusion matrices were also used to provide a detailed 

breakdown of the models predictions in comparison to the actual labels (geometric faults) 

during the classification process. These matrices present information on positives true 

negatives, false positives and false negatives for each class. By analysing these matrices, it was 

possible to evaluate the accuracy of the models. This analysis helped identify strengths and 

weaknesses for each algorithm. 

Hyperparameter tuning within an SML algorithm like a neural network was also explored 

to understand whether it would yield better results than the other algorithms. During the 

hyperparameter tuning process, various parameters of a neural network such as learning rate, 

activation functions, number of layers and neurons per layer were adjusted while the objective 

of improving predictive accuracy of the network remains. This culminated in using a finely-

tuned neural network for comparison against other algorithms. 

When it comes to comparing various SML algorithms utilised in linear winding processes, 

Figure 5.2 highlights six primary process parameters that functioned as inputs for evaluation 

purposes: winding speed, wire gauge, bobbin shape, layer, yield limit, and caster angle. The 

first parameter, winding speed, represents the rotational speed of the shaft while winding. The 

second, wire gauge, refers to the diameter of the copper wire. Bobbin shape is another variable, 

limited to two shapes: square and rectangular. Layer refers to a specific coil-winding layer 

consisting of 20 turns each and a complete bobbin comprising five layers in total. Yield limit 

was another crucial parameter analysed that described the point where wire transitioned from 

elastic to plastic deformation with 0 or 1 representing two respective states. Caster angle was 

an angle that defined the orientation between the winding location at the bobbin and the wire 

guide.  
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Figure 5.2. Factors introduced to the SML algorithms for comparison. 

 

This research utilised two types of models to analyse the data, a regression and a 

classification model. While the regression model forecasted changes in electrical resistance by 

each coil winding turn's percentage variation, the classification model, on the other hand, 

successfully identified geometric faults per turn. To determine how well each model performed 

predictions, both models were evaluated using established techniques. 

Predictive accuracy was deployed successfully during the evaluations for both models, 

along with limited simulation periods and varied dataset sizes (Figure 5.2). The comparisons 

between the SML algorithm advantages and disadvantages were discussed using three crucial 

parameters initially (winding speed, wire gauge, and bobbin shape), rather than six. This was 

done to compare the different algorithms based on their computational complexities while 

increasing practical applicability through minimising overfitting risks as suggested by Greasley 

& Edwards [82].  

The framework involved utilising three distinct datasets (consisting of differing data sizes) 

containing various levels (ranging from 1% to 20%) of added white Gaussian noise through 

random perturbations inherent within each simulation model's output structure. Adding said 

noise levels into the model’s simulation would produce expected measurement errors or 

uncertainties associated with realistic industrial manufacturing scenarios necessary for testing 

the corresponding model's robustness effectively under varying data input conditions [6].  

5.2.1 Analysis of Supervised Learning Algorithms for Linear Winding Process 

In this analysis, it was examine how different supervised learning algorithms perform when 

it comes to predicting electrical resistance during the winding process. Accuracy charts have 
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been plotted which showcase how well these algorithms predict winding speed (which ranges 

from 100 to 350 rpm) and electrical resistance (which ranges from 100, to 900 milliohms). The 

original values are represented by the blue markers while the red markers indicate the 

predictions made by the algorithm. For this evaluation, a dataset comprising 40,000 data points 

was utilised and no noise was introduce during testing. 

A. Analysis of regression models for predicting electrical resistance during linear winding 

The DT algorithm has shown promising abilities when it comes to the linear winding 

process. The MSE of 0.156 indicates a reasonably accurate prediction. By looking at the 

accuracy plot (Figure 5.3), it is possible to see that the algorithms predictions (shown in red) 

closely match the resistance values (shown in blue) at different winding speeds. This suggests 

that the DT algorithm has the potential to accurately predict resistance during linear winding a 

factor, in the manufacturing process of EM. 

 

 

Figure 5.3. Regression model performance of the DT model showing the predicted electrical 

resistance (in red) compared to the actual values (in blue), with a MSE of 0.156. 
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The RF algorithm, which is a technique, for ensemble learning showed impressive accuracy 

when it came to predicting electrical resistance in the linear winding process. It achieved a level 

of precision with a MSE of 0.142 as shown in Figure 5.4. Its effectiveness comes from using 

ensemble learning, which combines the outputs of multiple trees to reduce overfitting and 

improve accuracy. Moreover, RF is known for its ability to handle linear relationships and 

accurately assesses the importance of features. These factors contribute to its predictive 

performance, in the manufacturing domain.  

 

Figure 5.4. Regression model performance of the Random Forest model showing the predicted 

electrical resistance (in red) compared to the actual values (in blue), with a MSE of 0.142. 

In this case the SVM algorithm, known for its flexibility and effectiveness showed a MSE 

of 40529 as shown in Figure 5.5. This indicates a difference, between the predicted electrical 

resistance and the actual values. There could be multiple reasons behind this less than ideal 

performance. Firstly, the accuracy of SVM is greatly influenced by the choice of 

hyperparameters. If these parameters are not properly tuned it can have an impact on the results. 

Secondly, if the relationship between winding speed and electrical resistance is highly non-

linear, SVM might struggle to model it. Another important factor is the pre-processing of data, 

including scaling and normalisation. This step is crucial for SVM to perform at its best because 

it is sensitive, to how features are scaled. Lastly, given the complexity of both, SVM models 

and the dataset itself there is a possibility that overfitting occurred. This highlights the 

importance of controlling model complexity to avoid such issues. 
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Importantly the analysed algorithm showed an enhancement in their predictive accuracy 

when it came to electrical resistance particularly within the 550 to 600 milliohm range. This 

specific interval seemed to be crucial as it exhibited a level of precision and better alignment 

with the actual values predicted by the algorithms. The reason behind this improvement can be 

attributed to the algorithms ability to effectively capture and understand the patterns and 

dynamics inherent in the winding process, within this particular resistance range.  

 

Figure 5.5. Regression model performance of the SVM model showing the predicted electrical 

resistance (in red) compared to the actual values (in blue), with a MSE of 40529. 

The KNN algorithm did not perform well as expected with a MSE of 39052 as shown in 

Figure 5.6. It particularly struggled in predicting electrical resistance values that were above 

600 or below 150 milliohms. Most of its predictions fell within the range of 150 to 600 

milliohms suggesting that it was more accurate in that specific zone. However, when it came 

to values outside this range the algorithm faced difficulties due to its reliance on neighbours 

for predictions. This made it sensitive to the distribution and density of data points. Therefore, 

the algorithms performance was affected by data representation and irregularity in data 

distribution beyond the mentioned range. To enhance its accuracy across all resistance values 

carefully should be given to the pre-process data and potentially explore weighted distances, 

for neighbour contributions.  
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Figure 5.6. Regression model performance of the KNN model showing the predicted electrical 

resistance (in red) compared to the actual values (in blue), with a MSE of 39052. 

The performance of the NB algorithm was not optimal as it had a high MSE of 32938 as shown 

in Figure 5.7. Interestingly the algorithm faced challenges in predicting a wide range of 

electrical resistance values. It often focused its predictions on points like 200, 300, 500 and 650 

milliohms. Among these, the algorithm frequently predicted values around 500 milliohms. This 

tendency to localize predictions indicates that the algorithm struggled to capture the 

complexities and variations within the continuum of resistance. The localized nature of its 

predictions may be attributed to assumptions about feature independence inherent to the NB 

algorithm. To improve its adaptability and accuracy across a range of electrical resistance 

values possible enhancements could include advanced feature engineering addressing 

assumptions, about feature independence and exploring ensemble techniques. 
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Figure 5.7. Regression model performance of the NB model showing the predicted electrical 

resistance (in red) compared to the actual values (in blue), with a MSE of 32938. 

The tune ANN showed promising performance with a MSE of 148 as shown in Figure 5.8, 

were most of the predictions were accurate and aligned well with the actual electrical resistance 

values. However, there was an anomaly in the predictions between 100 and 250 rpm, 

specifically at an electrical resistance of 650 milliohms. During this range, the model had some 

mispredictions that deviated from the values. These discrepancies might indicate that the ANN 

model is sensitive to combinations of speed and electrical resistance, which warrants further 

investigation into potential causes like insufficient training data in that range network 

architecture.  
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Figure 5.8. Regression model performance of the tune ANN model showing the predicted 

electrical resistance (in red) compared to the actual values (in blue), with a MSE of 148. 

In this evaluation of different supervised learning algorithms, each algorithm demonstrated 

its own unique strengths and weaknesses when it came to predicting electrical resistance during 

the linear winding process. The DT algorithm although it had a MSE of 0.156 showed only 

moderate predictive ability. However, the RF model outperformed it with a MSE of 0.142 

indicating its proficiency in capturing underlying patterns in the data. 

The SVM algorithm showed an MSE of 40529 suggesting non-accurate predictions for 

electrical resistance. On the hand both the KNN and NB algorithms had even higher MSEs 

(39052 and 329338 respectively) indicating significant challenges in making accurate 

predictions. Notably, NB exhibited a bias towards specific resistance values, which limited its 

ability to provide diverse predictions. 

Lastly, the tune ANN displayed promising potential with an MSE of 148. Although there 

were some mispredictions at data points, particularly around 650 milliohms within a specific 

range of speeds the ANN showcased overall accuracy. In conclusion, the RF algorithm 

emerged as the effective, in predicting electrical resistance followed closely by the DT and the 

tune ANN models. 
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B. Analysis of classification models for predicting geometrical faults during linear 

winding 

In this section, the goal is to assess how six different supervised learning algorithms perform 

on the winding model focusing on classification. To evaluate their performance confusion 

matrices were used to analyse how well each algorithm classifies data points into specific 

categories. A confusion matrix can be used to understand the algorithms accuracy, in 

identifying true positives true negatives, false positives and false negatives providing an 

overview of their classification accuracy. 

When evaluating the accuracy of classifications using confusion matrices geometric states 

that may occur during the linear winding process were represent. Each state signifies a 

condition or pattern that the model aims to classify. Here is a breakdown of the states shown 

on the axes: 

1. No Fault: This is when there are no irregularities or faults in the process, which is considered 

an ideal state. 

2. Double Winding: It refers to when the wire is wound in a double loop instead of a single 

one resulting in a fault. 

3. Gaps: This indicates gaps or spaces in the winding deviating from the desired uniformity. 

4. Crossing: This happens when wires cross or overlap, creating irregularities in the pattern. 

5. Flange Winding: It describes winding at the edges or flanges of the bobbin. 

6. Loose Winding: It represents winding that is too loose or slack deviating from the desired 

tightness. 

By utilising these states within a confusion matrix, it is possible to evaluate how accurately 

each algorithm classifies instances into these specific fault categories. This provides insights, 

into how well the classification models perform. 

The DT algorithm demonstrated an overall accuracy of 90.86% as shown in Figure 5.9, 

indicating its ability to correctly classify the majority of instances. However, it is important to 

investigate the misclassifications in the confusion matrix for an understanding of its 

performance. It seems that the algorithm sometimes misclassifies faulty winding as 'Double 

Winding' (110 cases). This could be due to the complexity involved in the process. In situations, 
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slight variations in the winding pattern may resemble a double loop leading to 

misclassification. The algorithm might struggle to distinguish these subtle differences. 

Moreover, there are instances where gaps are misclassified as 'Loose Winding' (399 cases). 

This could be because both types of faults exhibit irregularities that deviate from uniformity 

making it challenging for the algorithm to differentiate between them especially when the 

variations are subtle. Similarly, there is a tendency for 'Crossing' faults to be misclassified as 

'Double Winding' (363 cases) possibly because the algorithm finds it difficult to discern the 

nuanced differences between these fault types. 'Crossing' involves wires overlapping or 

crossing paths, which can resemble a pattern of 'Double Winding' in cases and cause confusion, 

for the model.  

 

Figure 5.9. Classification performance of the DT model, with an accuracy of 90.86%, highlighting 

misclassifications across different geometrical states. 

The RF algorithm obtained an accuracy rate of 98.83% as shown in Figure 5.10, which 

indicates its strong ability to correctly classify instances. While there are some 

misclassifications they are relatively minimal. When the algorithm misclassifies 109 instances 

as 'Double Winding' that were actually non faulty, it suggests a challenge in distinguishing 

normal winding patterns from those that resemble 'Double Winding.' This misclassification 

could occur when occasional variations in the winding process mimic the pattern of a loop 

causing confusion, for the model. However, it is more concerning when the algorithm 

misclassifies 11 actual 'Double Winding' instances as non-faulty. This implies that some 

genuine 'Double Winding' faults are not being accurately identified. It is possible that the 

algorithm fails to capture all the patterns that define 'Double Winding,' leading to these false 

negatives. 

Despite these misclassifications, the RF algorithm still demonstrates great accuracy. Its 

capability to handle DT and combine their results allows for highly accurate classification of 
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different geometrical states. However, further optimisation and fine tuning may be necessary 

to reduce the occurrences of misclassifying 'Double Winding' cases as non-faulty and improve 

the precision and reliability of the algorithm.  

 

 

Figure 5.10. Classification performance of the Random forest model showcasing an accuracy of 

98.83%, with minor misclassifications between geometrical states. 

The SVM algorithm achieved an accuracy rate of 98.48% as shown in Figure 5.11, 

indicating its proficiency in accurately classifying geometrical states. A notable concern is the 

misclassification of 110 instances as non-faulty when they were actually 'Double Winding.' 

This suggests that the SVM algorithm may struggle to distinguish between winding patterns 

and those resembling a 'Double Winding' pattern. It seems to be sensitive to variations in the 

process that occasionally mimic the 'Double Winding' pattern resulting in these false negatives. 

Another issue arises from the misclassification of 42 instances of 'Double Winding' as 'Flange 

Winding.' This indicates a similarity in patterns, between these two types that poses a challenge 

for the algorithm to differentiate accurately. Fine-tuning may be necessary to distinguish these 

distinct geometrical states.  

 

Figure 5.11. Classification outcomes of the SVM model with an accuracy of 98.48%, capturing 

slight misclassifications, particularly related to double winding. 
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The accuracy of the KNN algorithm is impressive at 92.93% as shown in Figure 5.12. 

However, it does have an issue where it sometimes misclassifies certain types of faults as non-

faulty except for the 'Loose Winding' fault. This drawback is concerning because 

misclassifying faults can have consequences in manufacturing processes. To be more specific 

when the algorithm misclassifies 'Double Winding,' 'Gap,' 'Crossing' and 'Flange Winding' as 

faulty instances it could potentially lead to overlooking important problems during the linear 

winding process. Gap had the highest rate of misclassification, where the KNN algorithm 

incorrectly classified up, to 249 instances. To address this concern, further investigation and 

adjustments, to the algorithms parameters may be necessary. This will help improve its 

sensitivity to fault patterns and ensure identification of various geometrical states.  

 

 

Figure 5.12. Classification results of the KNN model demonstrating an accuracy of 92.93%, 

displaying varying misclassifications, notably in recognizing loose winding. 

In the NB classification with a accuracy of 98.22% as shown in Figure 5.13, there is a pattern 

worth mentioning when it comes to misclassifications between 'Double Winding' and 'Flange 

Winding'. Specifically, there were 42 instances where 'Double Winding' was mistakenly 

labelled as 'Flange Winding’, which suggests some similarities in their features. Additionally, 

'Flange Winding' was incorrectly identified as 'Crossing' 22 times indicating an overlap or 

similarity, in their characteristics. This pattern highlights the importance of refining our 

features and fine tuning the algorithm to accurately differentiate between these complex 

geometric states.  
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Figure 5.13. Classification performance of the NB model with an accuracy of 98.22%, demonstrating 

some misclassifications, notably associated with double winding and flange winding. 

 

The classification model ANN had an accuracy rate of 98.35% when it comes to classifying 

different geometric states during the winding process as shown in Figure 5.14. However, upon 

examination of misclassifications valuable insights were obtained specifically in which 'Double 

Winding' appears to be a point of confusion. It has been misclassified as 'Flange Winding' 126 

times. This suggests that there may be some similarities in the patterns of features between 

these two states and it could be due to the complexities involved in wire placement and 

variations in tension that occur in both cases. 

Moreover, it is interesting to note that 'Crossing' has been misclassified once as 'Flange 

Winding.' This raises questions about how distinguishable these two states are based on their 

features. There may be characteristics shared between 'Crossing' and 'Flange Winding,' which 

could lead to this particular misclassification. It poses a challenge in defining features that 

clearly separate these states possibly requiring a more refined set of features or adjustments to 

the algorithm. 

Furthermore, the fact that Crossing' has been misclassified as ''Flange Winding' four times 

and 'Double Winding' seven times suggests a potential overlap in their feature space. These 

geometric states might exhibit similarities making it difficult for the algorithm to establish a 

clear boundary, between them. Improving feature selection by considering these nuanced 

differences could enhance the performance of the model.  
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Figure 5.14. Classification outcomes of the tune ANN model with an accuracy of 98.35%, 

highlighting misclassifications and trends in categorising different geometrical states. 

In summary, RF and SVM showed accuracies of 98.83% and 98.48% respectively making 

them stand out. These models excelled in distinguishing geometric states. RF displayed 

stability while SVM showcased separation boundaries. On the hand DT, KNN, NB and ANN 

achieved accuracies above 90% indicating their suitability for this task. However, they did have 

some misclassifications, particularly when categorizing 'Double Winding' and 'Flange 

Winding,' which suggests that there are overlapping feature patterns. 

The recurring trend of misclassifying 'Double Winding' as 'Flange Winding' across models 

(and vice versa in some cases) highlights the importance of having clearer feature definitions, 

between these states. Furthermore, distinguishing between 'Crossing' and 'Flange Winding' also 

proved challenging at times indicating an area where feature refinement is needed. 

5.3 Expansion of database through noisy data integration 

Expanding a database, by incorporating data using Gaussian noise has implications in the 

field of machine learning and data analysis. One essential benefit is improving the robustness 

and generalisation of the model. By introducing Gaussian noise into the dataset during training 

the model becomes more adept at handling variations and uncertainties present in real world 

data. This enhanced robustness ensures that the model can effectively adapt to noisy data it 

may encounter when used practically making it more reliable. 

Additionally, integrating data into the dataset promotes a diverse representation of 

information. Injecting noise expands the range of patterns and variations captured in the 

dataset. This increased diversity helps models identify features and patterns amid noise making 

them more versatile and adaptable to various scenarios they may encounter during application. 

NF            D            G            C             F           L 

L
  

 F
  

 C
  

  
G

  
  

D
  

  
N

F
 



 

Hybrid Computational Framework 154 

 

Another significant advantage of incorporating data is its role in preventing overfitting. 

Overfitting occurs when a model overly optimises for the training dataset potentially leading 

to performance on data. By including data, randomness and complexity are introduced into the 

dataset discouraging models from relying heavily on specific patterns that may be unique, to 

the training data itself. This helps in creating a model that can generalise better and is not 

overly dependent, on the details of the training data. 

Furthermore, including noisy data makes the dataset more similar to real world conditions 

making the models training more realistic and practical. Real world data often contains noise 

caused by factors like measurement errors, environmental conditions or human mistakes. By 

incorporating data, the model learns to identify patterns, amidst real world noise, which 

accurately represents its intended application environment. Lastly, integrating noisy data leads 

to an expanded dataset that acts as a form of data augmentation. This larger dataset allows for 

training potentially enhancing the models learning and overall performance.  

The preference, for using Gaussian noise as a technique to enhance datasets through data 

augmentation is rooted in its properties. Gaussian noise, characterized by a bell-shaped 

probability distribution known as the distribution offers a practical approach. This distribution 

is well defined making it easy to work with widely recognized in the fields of statistics and 

probability theory [161].  

Moreover the application of Gaussian noise is supported by the Central Limit Theorem [7]. 

This theorem states that when a large number of variables are summed together regardless of 

their original distributions, they tend to follow a Gaussian distribution. Therefore, Gaussian 

noise does not only possess elegance but also mirrors the aggregation of various random 

influences commonly observed in natural processes and measurements. The widespread 

occurrence of Gaussian noise, in processes makes it a suitable option for simulating 

uncertainties encountered in real world situations. This has led to its use in modelling and 

simulations. 

Although other types of noise such as uniform noise, Poisson noise or Laplace noise have 

their applications and advantages [109], Gaussian noise stands out due to its versatility and 

broad range of uses. It can represent a spectrum of uncertainties from fluctuations to significant 

deviations. This aligns well with inference, hypothesis testing and meaningful analysis of 
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results. Consequently, Gaussian noise is an appropriate choice for data augmentation as it 

enables models to handle uncertainties that arise across different domains. 

5.3.1 Steps to extend a data base using Gaussian noise 

Using Gaussian noise to enhance the dataset is a technique for introducing variability and 

resilience. Unlike other methods, like linear transformations or simple random noise addition, 

Gaussian noise offers a more realistic and flexible way to simulate various real-world 

scenarios [109]. This randomness follows a distribution enabling the generation of data points 

that closely mimic natural fluctuations observed in many real-world phenomena. As a result, 

it enriches the dataset by making it more adaptable and diverse.  

Figure 5.15 presents the steps involved in extending a database using Gaussian noise: 

 

Figure 5.15. Steps to extend a data base using Gaussian noise (adapted from [109]). 

In the first step, it is important to familiarise yourself with the dataset that is relevant to the 

winding process. This means examining features like speed, tension, bobbin shape, wire gauge 

and other relevant factors. Moving on to the second step, identify which specific variables 

associated with the process need to be enhanced or modified. These variables could include 

speed, tension or wire gauge. 

Moving on to the third step, the standard deviation for each selected variable based on the 

data from the dataset needs to be calculated. These statistical measures play a crucial role, in 

generating Gaussian noise that accurately reflects the characteristics of the dataset. Then in 

step four, generate Gaussian noise samples using these calculated average and standard 
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deviation values. It is essential to ensure that this generated noise truly captures the variability 

and distribution observed in the existing dataset. 

Now, in step five it involves integrating this generated Gaussian noise into their variables 

within the dataset from the linear winding process. This integration effectively expands the 

dataset by adding 10,000 extra data points. Step six requires adjusting or scaling these noise 

values so that they align appropriately with the context of the process. For example if certain 

variables such as wire gauge (0.30 to 1.10 mm) have defined ranges it's important to make 

sure that these adjusted noise values fall within those ranges. 

Finally, step seven focuses on validation and testing. Validate the dataset to ensure that the 

added noise aligns with the intended distribution and accurately represents the characteristics 

of the winding process. Evaluate how this expanded dataset affects model performance, by 

testing it within the RF model. These steps collectively outline how to extend a dataset using 

Gaussian noise and apply it to the winding process data set. 

5.4 Validation process through experimentation 

Experiments were conducted utilising a linear winding machine whereby validating 

regression and classification models was achieved by comparing predicted values against 

actual measurements obtained from the winding machine. The objective was to determine the 

extent of accuracy within each of the models while attempting to handle real-world data inputs 

effectively. Furthermore, it was demonstrated how well these models performed in providing 

accurate outputs when utilised in authentic production environments. It is worth noticing that 

this research was only able to verify the model's results in linear winding processes exclusively, 

limiting its abilities for generalisability outside this scope. However, other winding processes, 

such as needle winding, may include different applications and features that are subject to 

various challenges unique to themselves, making predictions of their outcomes an arduous task 

wherein new experimental techniques are required.  

To validate the results obtained from the chosen SML algorithms, a series of empirical 

experiments using a linear coil-winding machine (200 mm Coil Winder MK4) were conducted. 

These laboratory tests were structured according to the DoE principles [47] as presented in 

Table 5.1  and involved performing a total of 33 trials – divided into two sets – utilising a wire 

gauge measuring 1 mm (the most frequently used in industry). Throughout these experiments 

various input parameters were varied, such as alterations in bobbin shape as well as rotational 
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winding speed settings, while also examining their impacts on performance metrics within coil 

winding. 

Table 5.1. Experimental Design for Linear Winding Process: Variation in Speed, Copper Wire Size, 

Layers per Bobbin, and Bobbin Shape. 

 

First set of experiments: High-speed increments 

The first experimental set was made up of 22 test runs that incorporated significant speed 

variation through ramp-up intervals, these speed increments were measured at 200 rpm per 

interval. During this set of experiments, the copper wire size was kept constant, at 1 millimetre. 

However, the focus was on analysing how an incorrect wire laying when a defect was created 

in the first layer affected multiple number of layers per bobbin. Therefore, during this set, 

experiments using 1 to 2 layers per bobbin were conducted to observe and analyse any 

inaccuracies, in the wire laying process and their implications. Lastly, in these experiments, 

two different bobbin shapes were tested, which included square and rectangle bobbins. 
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Second set of experiments: Low-speed increments 

The second set of experiments consisted of 11 trials. These trials aimed to examine 

variations in speed with ramp up intervals at intensities (50 rpm per interval). Unlike the first 

set of experiments, for the second the number of layers per bobbin was kept consistent at only 

one layer. This allowed the analysis of how speed variation, on its own influenced the process. 

5.4.1 Results from the validation through experimentation 

Post-experiment evaluations evidenced remarkable correlations between predicted results 

obtained through the SML algorithms and the actual performance scores. This demonstrated 

the high level of accuracy anticipated for the proposed algorithm with the regression and 

classification models across numerous types of winding configurations available. The results 

highlight how effective an SML approach can be at predicting faults within coil winding 

processes. 

Tables 5.2 & 5.3 present the SML comparison results wherein every individual table 

corresponds to a certain model type, either regression or classification model. The tables 

offered concise insights into the efficiency of every algorithm concerning accuracy, 

computation time, and other important metrics. In fact, these tables presented comparisons 

between several SML algorithms used across databases of different sizes and were catered 

towards various models (regression and classification). Each table contained six columns that 

highlighted values obtained, corresponding to separate input parameters, like normal MSE or 

computational time required to run the algorithm expressed in seconds, together with 

associated accuracies and models having fewer inputs/noise levels. The rows within each table 

evaluate an algorithm's performance based on the selected input parameter. 

The assessment of the machine learning algorithm’s performances on test datasets without 

any modifications was referred to as the "Normal" column in this research. The effectiveness 

and quality of a regression model can be closely monitored through keeping track of its MSE 

value displayed in the normal column. To determine whether a regression model has 

performed well or not depends on whether it achieves low MSE values which ensure that 

predicted outcomes match closely with actual readings obtained from test data. Similarly, for 

classification models, accurate predictions would result in higher percentages showcased by 

its accuracy rate presented in its corresponding normal column against real-life classifications 

obtained from testing data. 
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Results affirmed that for multiple database sizes (small/medium/large), RF tend to perform 

better than competing algorithms when it comes to regression models, as shared in Table 5.2. 

Evaluating the model, with multiple data sizes can provide insights into whether the model 

tends to overfit or underfit in various scenarios thereby guiding the need, for appropriate 

adjustments. In terms of classification analysis (see Table 5.3), RF provided great outcomes 

with near-perfect accuracy stood out significantly among DT & ANN models in distinct 

databases.  

Incorporating Gaussian noise into a model is crucial as it helps replicate the unpredictability 

of real-world scenarios and introduces diversity. This in turn allows for an evaluation of the 

models capabilities and its ability to handle uncertain and noisy data. Remarkably enough, 

adding noise into datasets did not impacted significantly on the RF extraordinary proficiency 

over its fellows despite expected variations. The reason why RF’s are resilient to noise could 

be attributed to its structure, which combines predictions from multiple DT. This approach 

helps reduce the influence of data points ensuring that RF continue to perform exceptionally 

well even when there is additional noise present. 

 

Regarding the database sizes: 

• Small: 10,000 data points 

• Medium: 20,000 data points 

• Large: 40,000 data points 

 

 

As for the Gaussian Noise levels: 

• Low: 1% 

• Medium: 5% 

• High: 20% 

 

The Gaussian noise levels selected were determined through a comprehensive approach 

combining insights from literature review (reference), previous research experiences, and 

feedback from industrial experts. This multi-faceted strategy ensured that the chosen noise 

levels were both theoretically grounded and practically applicable, aligning with the research's 

objectives and the real-world scenario of the dataset. 

Through analysis, it was determined that SML algorithms were more accurate when more 

process parameters were included, as there is a positive correlation between their accuracy and 

parameter inclusivity in models. When all six parameters were utilised, heightened accuracy 

was achieved, signifying how vital utilising a comprehensive suite of input variables can be in 
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constructing model accuracies. Moreover, it was revealed that algorithmic computational 

times relied on parameter numbers; fewer inputs resulted in faster processing times. 

Irrespective of this, some algorithms like SVM and NB were not significantly impacted by 

increasing parameter numbers with normalised processing time-frames.  

NB and SVM are reliable algorithms for classification [37][82]. They are not easily 

influenced by an increase in input parameters or irrelevant features. SVM is particularly adept 

at handling outliers and can effectively establish decision boundaries even in high dimensional 

spaces [123]. Contrary, NB operates on a Bayesian probabilistic framework that performs well 

in higher dimensions by leveraging its assumption of independence, between features [82]. 

Lastly, a decrease in accuracy was observed with high noise levels for SML implementations, 

according to our results. The accuracy of these algorithms decreased when noise was 

introduced to the database because noise brings in irrelevant information that can confuse the 

classification process. NB assumes that features are independent and noise can disrupt this 

assumption resulting in dependable probability estimates [137]. SVM strives to identify 

decision boundaries and noise can cause misclassifications making it more challenging to 

accurately separate data points [107]. 

The decision-making difficulty arises from choosing between multiple effective methods 

based on comparability regarding factors such as MSE, which measures model accuracy 

concerning time consumption, computation-wise, among others considered for our evaluation 

[110]. The results reveal that among SML algorithms, RF demonstrated superior prediction 

accuracy and computational efficiency compared to ANN and DT during the experiment, as 

outlined in Table 5.4.  

RF was the best performing algorithm out of all those assessed. While other models varied 

between promisingly successful predictions rates, their datasets did not match the precision 

level presented by the preferred method (RF). It is recommended that during the selection 

process, algorithms should be selected based on their intended use of either regression or 

classification. Results have shown that RF remains a viable option in predicting faults 

(regression or classification) during coil winding.
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Table 5.2. Comparison of SML algorithms used to predict the electrical resistance variation using a regression model. 
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Table 5.3.  Comparison of SML algorithms used to predict the type of geometrical fault using a classification model. 
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Table 5.4. Results of the comparison between SML algorithms. 

 

 

5.5 Results from the validation process with experiments on a coil winding machine 

The results in section 5.4 suggests that an effective approach to predicting coil-winding 

faults is by utilising the RF algorithm. Results demonstrated outstanding performance by this 

method in both regression and classification models. To validate this claim, a linear coil 

winding machine was employed, which showed the accuracy rates of the model when 

variations were introduced in the form of four experiment configurations, as presented in Table 

5.5. For instance, findings indicated that the square bobbin classification model was 

exceptional with an accuracy rate of 99.33%, while its counterpart, a rectangular bobbin, 

showed lower performance at 94.17%. The reasons behind this difference is explained in the 

following sections. Nonetheless, while RF continues to be a feasible option in predicting coil 

winding faults, further investigation is necessary for identifying ideal algorithms and 

parameters fitting unique winding configurations. 

Table 5.5.  Experimental results comparing the accuracy of a train RF algorithm against a linear 

winding machine. 
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A. First Experiment Configuration: square bobbin regression model 

The square bobbin experiment highlights electrical resistance analysis through regression 

models with an impressive average accuracy rate of 94.85%. However, during initial 

experiments, when examining the first layer of bobbins within this model, there was a decrease 

in accuracy due to a higher percentage of faults present within this particular layer. The 

explanation of why this occurred could be linked back to a lack of support for wire motion 

since no prior wires helped guide its positioning (unlike those of the upper layers), as shown 

in Figure 5.16.  

 

Figure 5.16. Geometrical faults such as crossings detected in the first layer of the square bobbin 

configuration. 

Faults often arise on the first layer of winding because there is no existing support to guide 

the wires movement during this stage. When the winding process begins, the wire is placed 

directly onto the bobbin without any layers to help position it. Unlike, in upper layers, where 

the wires receive support and alignment from wound layers, the first layer lacks this 

foundational support. As a result, the wire on the first layer is more susceptible to instability 

and misalignment, which can cause problems like overlaps, gaps or uneven winding. These 

initial issues can spread through upper layers worsening as the winding process continues. The 

absence of wires to guide positioning makes the first layer particularly prone to faults, 

emphasizing how crucial it is to have control and monitoring during this phase of winding. 

Despite these challenges faced early on, subsequent modelling work improved 

significantly, as previous layers provided important guidance and information that contributed 

towards greater precision. Results from the second set of experiments, which featured much 
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smaller speed increments compared to earlier iterations, presented an exceptional average rate 

of 98% accuracy. When consideration was given to further enhancing the already elevated test 

experiences through regressive modelling techniques employed within these experiments 

going forward, KPIs such as additional training time should be considered if the desired 

objectives are missing from specific test requirements or evaluation criteria. 

B. Second Experiment Configuration: square bobbin classification model 

The results from the classification model were exceptional during the initial set of 

experiments, with an outstanding accuracy score of 99.33%. A subsequent run yielded even 

better results as it managed to achieve a perfect score of 100%. This means that the model 

excelled at identifying geometric faults with pinpoint accuracy along with determining their 

nature. It can conclusively be said that this model performed exceptionally well in forecasting 

defects and their respective types during coil winding. Furthermore, it demonstrated greater 

proficiency during what can be considered as more uniform conditions in its second round of 

testing. 

C. Third Experiment Configuration: rectangle bobbin regression model 

To evaluate the regression and classification models' precision levels, two configurations 

with different ramp speed variation using a rectangular bobbin shape were tested. In the initial 

experiment set-up, results showed that the regression model had a precision rate of 94.92%. 

However, during the testing of this configuration, the second layer exhibited a larger number 

of faults than its first one, resulting in decreased precision for its second iteration, as presented 

in Figure 5.17. This downgrade stemmed from an inequality in tension across various turns of 

coil winding caused by variations such as fluctuations in velocity [6]. This variance led to 

more stress being exerted on the copper wire, which ultimately results in electrical defects  as 

explain by Mayr et al. [159]. Conversely, higher precision rates were achieved by winding 

only one layer during the second testing phase while ensuring low speed disturbances. 
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Figure 5.17. Geometrical faults such as crossings and double windings detected in the second 

layer of the rectangular bobbin configuration. 

 

D. Fourth Experiment Configuration: rectangle bobbin classification model 

Based on the results, it was determined that the classification model demonstrated an 

average accuracy of 94.17%. During the initial round of tests, the model displayed a mean 

accuracy of 96%, which decreased during the second set of experiments due to increased fault 

occurrences. The factors behind these faults mostly include variations in rotational speed, 

which lead to inconsistencies and voids in the winding, as well as inaccuracies within the 

winding machinery when reaching the turning points, caused by speed variations such as 

ramp-ups. In a follow-up series of tests, it was found that the average accuracy further 

decreased to 91%, highlighting that low-speed variation can lead to poor coil winding tension 

and resulted in misclassified geometrical faults (while electrical faults remained unaffected). 

These results underscore that the model's performance would vary depending on bobbin shape 

and winding speed, emphasising that extensive experimentation and analysis are needed for 

improving accuracy, as well as for identifying the optimal parameters for various 

configurations. 
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Discrepancy between Simulation and Physical Experiments 

In this section the results obtained from the simulation model to those acquired through 

experiments conducted on the linear winding machine were compared. This comparison was 

crucial in verifying the accuracy and reliability of the simulation framework when it comes to 

replicating the linear winding process. While the initial findings showed promising alignment 

between the simulation and experimental results, there are some differences that require 

investigation (Section 5.5). These disparities in performance metrics may be attributed to the 

simplified nature of the simulation model and its limited parameterisation. To address this, it 

is suggested to expand the model parameters to include parameters such as friction which was 

discussed by Hoffman et. al. [32].  

Incorporating "friction" as a parameter in future work (as discussed in Section 4.4.2 and 

elaborated upon in Section 7.3.1) holds great potential, for improving simulation accuracy by 

accounting for frictional forces on the wire within the winding process. By implementing these 

enhancements, the goal is to achieve a comprehensive and accurate representation of winding 

process leading to a deeper understanding of the interdependencies and optimised 

manufacturing performance.
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5.6 Summary 

In this chapter the results from enhancing a DES framework that models interdependencies 

for the early detection of faults in an electrical process where deformable material is involved, 

were presented. The main objective was to reduce computational time and quality costs. A 

hybrid model using the KD approach was developed where a SML algorithm was trained using 

the DES model as a teacher model. This helped maintain accuracy whilst reducing simulation 

time. Multiple SML algorithms were evaluated, such as RF, which possess the ability to handle 

complex data while thoroughly identifying numerous interdependencies among production 

parameters, contributing immensely across a multitude of product quality features.  

During this research, a linear winding machine was used to validate the framework and 

compare its accuracy. It was observed that the RF algorithm significantly reduces simulation 

time from two minutes to less than a second. The potential applications of this model are 

extensive, including decreasing EoL test times, for example during winding resistance tests. 

Moving forward, future research can explore how scalable this approach could be for more 

intricate systems, such as needle winding, and for different industrial settings. 

Discussing further the results obtained in this chapter, the shape of the bobbin and the speed 

of winding resulted in having a significant impact on how accurate regression and 

classification models were at predicting changes in electrical resistance and identifying 

geometrical faults during coil winding. The regression model's accuracy was impacted notably 

by the layer of winding, indicating a need for better initial layer guidance. However, although 

the classification model generally showed strong accuracy, it was also vulnerable to bobbin 

shape and winding speed variability. To ensure that a more precise fault classification was 

feasible, it is necessary to gather additional data. This research demonstrated that RF models 

have the potential for modelling different winding set-ups while detecting and classifying 

faults, but there is a necessity for more experimentation to further enhance their efficiency. 

The proposed method can save time spent on testing, as well as reducing maintenance 

expenses, while improving electric motor reliability through algorithms that adapt as more 

information becomes available. 
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CHAPTER VI: EXPLORING INTERDEPENDENCIES: A MULTI-

OBJECTIVE OPTIMISATION APPROACH TO ENHANCE LINEAR 

WINDING PROCESSES 

6.1 Introduction 

This chapter intends to provide a discussion on the results obtained from the potential impact 

that a multi-objective optimisation approach has on a linear winding process. This approach 

aimed to balance and optimised multiple objectives simultaneously, initially two goals were 

selected for the multi objective optimisation approach: reducing costs and minimising faults. 

Practical examples illustrating this approach in action have been analysed to evaluate its 

effectiveness in achieving desired objectives. While these objectives are crucial, they are only 

the first of a list of objectives that can be incorporated into the optimisation framework. As this 

research progresses more objectives such as energy efficiency, increasing production 

throughput, minimizing material usage, and mitigating environmental impact can be introduced 

to further enhance the optimisation process.  

One key aspect that was explored was the interaction between different objectives within 

the system. It is important to recognise that these objectives were not independent, but rather 

interconnected. Making adjustments to one variable often resulted in changes in others creating 

a complex network of cause-and-effect relationships known as interdependencies [6]. 

Understanding these interdependencies was crucial for the success of the multi-objective 

optimisation approach. This chapter evaluated the correlation between the multiple objectives 

and interdependencies as a means of better understanding the impact of cross-relationships 

between various objectives. This analysis enabled the shedding of light on the underlying 

dynamics of the multi-objective approach, providing insights into how best to configure and 

adjust processes for maximum effectiveness and efficiency.  

6.2 Problem definition 

This research optimisation process aimed to achieve two primary goals: reducing production 

costs and minimising the number of faults. It can be challenging to find the balance, between 

increasing production speeds in manufacturing to reduce costs and ensuring product quality 

[160]. When the speed is increased, it adds extra tension on the wires, which can lead to 

permanent deformation and produce a misplacement in the surface bobbin, resulting in a 
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number of faults [113]. This emphasises the trade-off between speed and product quality, in 

winding processes. To achieve both cost reduction and minimise faults a strategic approach 

was needed, that took into account and addresses these interconnected factors. 

The objective functions played a crucial role in guiding this research for optimal solutions. 

By evaluating these functions, it was possible to determine how well a potential solution 

aligned with the goals. As discussed by Huber et al. [109] it is important to strike a balance 

between these objectives, as improvements in one area could potentially have negative 

consequences in another. 

6.3 Selection of the multi-objective optimisation algorithm 

The decision to use the NSGA-II over other highly regarded multi-objective optimisation 

algorithms like the SPEA2 or MOEA/D was primarily due to its well-established success and 

the unique features that align particularly well with this specific research problem, as presented 

in Table 6.1. This algorithm effectively tackles problems encompassing multiple objectives 

and constraints making it excellently suited for this complex optimisation task [128][144]. Its 

fast, non-dominated sorting approach and consideration of crowding distance contribute 

significantly to its efficiency in identifying Pareto-optimal solutions promptly [134]. 

Additionally, NSGA-II maintains an excellent balance between exploration and exploitation 

leading to a diverse yet convergent Pareto front.  

When this specific problem’s characteristics were considered, NSGA-II emerged as the 

most appropriate algorithm for this research. Its consistent performance, ability to handle 

multiple objectives and constraints effectively, alongside its flexibility with various variable 

types make it an obvious choice [128][161]. It is important to mention that the selection of the 

algorithm always relies on the specifics of the problem at hand and there is not a one-size-fits-

all solution. To make a well-informed decision, it is necessary to take into account both the 

limitations and advantages of all algorithms. 
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Table 6.1. Comparison table of multi-objective algorithms with its advantages and disadvantages [109][132] 

[160]. 

 

 

 

6.3.1. Influence of Population Size and Number of Generations on the runtime of the 

NSGA-II Algorithm 

In real-time or near-real-time contexts, the runtime of the NSGA-II algorithm holds 

immense significance. To measure the impact of diverse settings on the algorithm's time 

efficiency, several tests were conducted by manipulating population sizes and numbers of 

generations. Figure 6.1 below, displays the outcomes obtained: 
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Figure 6.1. Line chart of the influence that population size and number of generations has on the 

runtime of the NSGA-II algorithm. 

The chart clearly presents a notable trend: an upsurge in runtime accompanies an increase 

in both population size and number of generations. For instance, when the population size was 

held constant at 10, while doubling the number of generations from 50 to 100, a near doubling 

in runtime (approximately from 12 to 24 seconds) was observed. Similarly, by fixing the 

number of generations at 10, while raising the population size to 50, the runtime escalates from 

around 3 to 13 seconds. This was fully anticipated since a larger population necessitates 

evaluating more potential solutions within each generation [113]. Interestingly, enforcing both 

these factors ultimately leads to an escalation in computational expenditure presented in the 

form of a longer running period.  

On a final note, it is vital to highlight that, even though augmenting population size and 

number of generations can boost solution quality via a more comprehensive exploration of 

solution space, this improvement comes at the cost of temporal efficiency [135]. As such, the 

implementation of the NSGA-II algorithm mandates astute balancing between solutions quality 

and computational efficiency in tune with the system's unique stipulations and circumstances. 

 

 



 

Multi-Objective Optimisation Approach 173 

 

6.3.2. Plotting the solution space 

A parallel coordinate plot was used to represent the solution space and assess how well the 

NSGA-II algorithm performs in achieving its objectives of minimising cost and reducing 

geometrical faults in the linear winding process. Parallel coordinate plots are a valuable tool 

for visualising high-dimensional data – particularly in multi-objective optimisation problems 

like this one. In this type of plot, each dimension of the data was represented by a vertical axis 

and all these axes run parallel to each other. Each individual solution or population member 

was depicted as a line on the plot passing through all the axes, as presented in Figure 6.2. To 

conduct this simulation the following input parameter ranges were considered: 

• Speed (200 to 350 RPM)  

• Tension (50 to 95 Newtons)  

• Wire gauge (0.9 to 1.1 millimetres)  

• Number of layers (1 to 5 layers)  

• Bobbin shape (1= rectangle or 2= square)  

• Caster angle ( 2 to -2 degrees)  

• Yield limit (0 for below the limit and 1 for, above it). 

 

In the parallel coordinate plot, each line represents a combination of input parameters 

allowing the observation of how the NSGA-II algorithm explores and optimises these values. 

The colour-coded bar at the end of the plot indicates the winding speed of each solution. The 

brightness of the lines ranging from dark blue to bright yellow indicates how fast is the speed 

(winding speed) of the solution reach by the algorithm. Brighter colours represent solutions 

that achieves both objectives at faster manufacturing speeds while darker blue indicates slower 

speeds but still achieving the minimisation of cost and faults. 

The main objective of this analysis is to determine the set of input parameters that meet all 

constraints while efficiently minimising costs and reducing faults. This plot offers 

understanding of how the NSGA-II algorithm explores the solution space aiding researchers in 

comprehending its behaviour and its capacity to identify parameter combinations, for 

enhancing the linear winding process. Every solution represented on the plot enables the 

possibility to detect patterns, clusters, and potential outliers in the data while examining the 

range and distribution of solutions within the multi-dimensional solution space.  
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Figure 6.2. Parallel coordinate plot to represent the solution space using the NSGA-II algorithm with a Population: 100, N_Gen:10. 
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6.4 Evaluation phase 

During the evaluation phase, two fitness functions were utilised, each with its own unique 

strengths and challenges.  

6.4.1. First fitness function (Number of geometrical faults) 

The first fitness function deployed was derived from the hybrid model (RF regression 

model) [152] and presented in Equation 13. The RF regression model was utilised to predict 

the number of geometrical faults in the winding process of electrical machines. The RF model, 

denoted as RF(x1, x 2, x 3, x 4) where x1, x 2, x 3, x 4 represent the winding speed, wire gauge, 

bobbin shape, and caster angle, respectively, and y represents the number of geometrical faults, 

is expressed mathematically as: 

𝑅𝐹(𝑥1, 𝑥 2, 𝑥 3, 𝑥 4) =
1

n
Σ𝑖=1

𝑛 𝑇𝑖(𝑥1, 𝑥 2, 𝑥 3, 𝑥 4)                    Eq.13 

Here, n denotes the total number of decision trees in the RF model, and 

𝑇𝑖(𝑥1, 𝑥 2, 𝑥 3, 𝑥 4) represents the prediction made by the 𝑖𝑡ℎ decision tree based on the input 

features (𝑥1, 𝑥 2, 𝑥 3, 𝑥 4). This mathematical formulation captures the RF model's ability to 

estimate the number of geometrical faults, offering insights into the quality of the winding 

process. 

The RF regression model employed in this research was configured with careful 

consideration of several key parameters to optimise its performance for predicting the number 

of geometrical faults during linear winding.  

• n_estimators: A total of 100 decision trees were chosen to balance between predictive 

robustness and computational efficiency. 

• max_depth: Set to 20 to capture complex data relationships without overfitting. 

• min_samples_split: Ensured each node had at least 5 samples before making a split, 

promoting stable tree building. 

• min_samples_leaf: Required each leaf node to have at least 2 samples, preventing the 

model from being overly specific to the training data. 

• max_features: Set to 'auto', equivalent to using the square root of the total number of 

features (4 in this case), balancing model complexity and predictive power. 

• bootstrap: Enabled bootstrap sampling to maintain tree diversity and prevent overfitting.  
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This model was trained to predict the number of geometric faults and demonstrated a strong 

performance, achieving an accuracy of 93%, as shown in Figure 6.3. This figure suggests that 

the Hybrid model was highly capable of predicting fault occurrence [152]. However, it did 

have its limitations, for example, its struggle to accurately predict the double-windings faults, 

often misclassifying them as non-fault occurrences. It is important to note that double windings 

can significantly affect the quality of the end product [5].  

To address this issue, it was recommended to keep expanding the dataset used to train the 

RF model by adding more examples of double windings. As Reed & Lofstrand explain in their 

research [5], this could help improve the RF model’s ability to predict these faults. 

 

 

 

 

 

 

Figure 6.3. Scatter plot of Hybrid model for predicting number of geometrical faults. 



 

Multi-Objective Optimisation Approach 177 

 

6.4.2. Second fitness function (Cost function) 

The second fitness function used in the NSGA-II algorithm was a cost function. This 

function served as a key performance indicator for the system and incorporated several crucial 

aspects of production [124]. The original DES and Hybrid models lacked the ability to 

accurately measure and compare outcomes in terms of cost, which was limited without a 

suitable cost function [6]. During this research, throughout the optimisation phase a cost 

function was created for the DES model and then transferred to the Hybrid model with an 

accuracy of 99%, as presented in Figure 6.4. The introduction of the cost function has had a 

profound impact on the analysis and results sections. By minimising the cost function during 

the optimisation process, it was possible to simultaneously optimise these important aspects of 

the production process.  

 

 

Figure 6.4. Scatter plot representing the accuracy of the cost function in the hybrid model. 
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This function has been presented in Table 6.2, providing a quantifiable measure of the 

production costs associated with different operational strategies and system configurations. As 

a result, it is now possible to effectively identify and evaluate opportunities to save costs. 

 

Table 6.2. Parameters included in the cost function with their description. 

Parameters Description 

S as Speed Obtained directly from the DES model 

ER as Electrical Resistance 

variation (percentage) 
Obtained directly from the DES model 

Geo as Number of 

Geometric faults 
Obtained directly from the DES model 

E as Energy cost 

E = f(S): The energy cost depends on speed, which would 

vary based on the specific system details that have not 

been specified. This means that as the system operates 

faster it requires more energy. 

R as Rework cost 

R = f(ER) = (ER - 10%)*cost_per_unit_if_ER_>10%: 

Rework cost was calculated based on the extra percentage 

of ER over 10%. 

W as Waste cost 

W = f(Geo) = (Geo - 10)*cost_per_unit_if_Geo_>10: 

Waste cost was calculated based on the extra number of 

geometric faults over 10. 

TR as Throughput Rate 
TR = f(S): Throughput Rate is a function of speed, and if 

S>300, TR generates revenue. 

OC as Operational Cost 

OC = f(S): The operational costs are inversely proportional 

to speed, therefore as the system operates faster 

operational costs decrease. 

C as Total Cost function 

C = E + R + W + OC - TR: The overall cost encompasses 

the combined expenses of energy, rework, waste, and 

operational aspects minus the throughput rate. 
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Note: Please note that the formula assumes that both ER and Geo are above their respective 

thresholds. If they happen to be below these thresholds, it is advisable to refrain from 

calculating any additional costs.  

The cost function was implemented for one hour of production, aiming to ensure accuracy 

in calculating throughput. Throughput measures how quickly a system produces output and is 

vital for evaluating the performance of production systems over time. To accurately calculate 

throughput, the simulation waits until one hour of production has elapsed ensuring that there is 

sufficient data available. Waiting allows initial setup effects or ramp-up issues within this 

introductory period to settle down so that they do not distort long-term performance 

measurements inappropriately.  

 The creation of a cost function is crucial in gauging the financial performance of this 

system. This cost function acts as a KPI and provides an objective measure of how effectively 

the system is operating from a financial standpoint [124]. Numerous elements were considered 

when developing this cost function, including: input speed, electrical resistance variation, 

number of geometric faults, energy consumption, rework efforts, waste production, and 

throughput rate. Implementing this strategic timing creates meaningful context for analysing 

measured costs while providing valuable information about the production system's 

performance, thus informing decisions and optimisation processes. 

The cost function presented here offers a comprehensive perspective on the cost 

effectiveness of the system. Consequently, it aids in pinpointing areas that can be enhanced to 

achieve better cost efficiency. By simulating various scenarios under the DES model and using 

the cost function, it can be determined which approach yields the lowest production costs. Both 

the original DES model and the Hybrid model have been updated as a result of this new 

development. These models were incorporated with the new cost function providing a more 

comprehensive view of the system that considers not only operational efficiency and fault 

occurrence frequency but also associated production costs.  

This update represents a significant improvement in the model’s ability to make data-driven 

decisions about how best to optimise linear winding processes. These newly updated models 

allow the exploration of various scenarios and strategies enabling the identification of the 

optimal balance between cost, efficiency, and quality. Furthermore, these updated models also 
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provide a more robust tool for understanding how different objectives and variables within the 

system interrelate.  

6.5 Pareto Front 

The adoption of a Pareto-based approach was used to identify the most favourable solutions 

for this problem. In the context of multi-objective optimisation problems, it is common to 

encounter situations where it is not feasible to achieve optimal values for all objectives 

simultaneously [109]. Instead, a collection of optimal solutions known as the Pareto front are 

found. A noteworthy aspect of this front was that any enhancement in one objective would 

invariably result in the deterioration of at least one other objective [125]. With this approach a 

diverse range of high-quality solutions each offering distinct trade-offs between the objectives 

were ascertained. This comprehensive perspective explores multiple potential solutions more 

effectively. 

The process of objective optimisation resulted in a Pareto front, as shown in Figure 6.5, that 

illustrates the trade-offs between two conflicting objectives: the number of geometrical faults 

per layer (X-axis), and the production costs in British pounds (Y-axis). The Pareto front 

showcased a set of solutions that are not dominated by any solution, meaning that there is no 

way to improve one objective without compromising the other. For the X-axis, which 

represents the number of faults per layer, the range spans from 0 to 14. Lower values indicate 

fewer faults, which is more favourable during optimisation.  

On the Y-axis, which represents production costs, the range goes from 0 to 22. Lower values 

indicate reduced production costs – an important factor for manufacturing. It is important to 

note that the cost values used in this Pareto front were obtained from existing literature and 

should be regarded only as reference points [5][81][162]. These values help assess cost 

effectiveness and facilitate comparison among solutions.  
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Figure 6.5. Pareto front provided by the NSGA-II algorithm with 2 objective 

functions. 

6.6 Decision-making 

Among the solutions on the Pareto front, according to the NSGA-II algorithm 

recommendation, there is one solution, with 8 geometrical faults, and a production cost of 20 

British pounds. This particular solution stands out because it strikes a balance between the two 

objectives within the optimisation problem. The suggested solution was achieved by using the 

following input parameters: a speed of 234 rpm, a wire gauge of 0.708 mm and a squared 

bobbin. These input parameters play a role in determining the outcome and have been carefully 

chosen by the NSGA-II algorithm to find the best compromise between minimising faults and 

controlling production costs. In summary, both the obtained Pareto front and the recommended 

solution showcased how effective the multi-objective optimisation process can be. This 

empowers decision-makers to make choices based on their preferences and priorities, taking 

into account both faults and production costs while considering the specified input parameters. 
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6.7 Results from the correlation analysis involving interdependencies 

After successfully validating both the DES model as well as its Hybrid counterpart, it was 

time to implement the newly-acquired optimal parameter settings obtained using a multi- 

objective algorithmic approach. These fine-tuned parameters represented an ideal combination 

leading to lower overall production costs while minimising fault occurrence frequency. 

Subsequently, both models were executed utilising this set of optimised parameters and the 

subsequent outputs were then analysed. An essential part of the said analysis involved the 

development of new correlation matrices for both the DES as well as the hybrid model.  

During the analysis of the linear winding process, a detailed correlation analysis on the 

standard parameters of the process was conducted. This was done in order to comprehend how 

these parameters affected each other. It is important to note that the operational efficiency and 

cost effectiveness of the linear winding process depend on a complex interplay of multiple 

variables. Therefore, this analysis was critical in understanding the intricate relationships 

between them.  

6.7.1. Steps to create a correlation matrix 

To begin with, an adapted correlation matrix based on existing literature [3] and specifically 

adjusted for the linear winding case was created, as presented in Table 6.3. The focus of this 

matrix was on critical parameters such as winding speed, wire gauge, shape or aspect ratio, 

caster angle, and tension. In section 6.7.2, a more in deep explanation of the elements employed 

to create the correlation matrix are presented. This section offers insights, into the derivation, 

weights, interaction level and interdependency score of the correlation matrix, which aided in 

development an understanding of the analytical process and the relationships between 

variables. The five selected input parameters (winding speed, wire gauge, bobbin shape, caster 

angle and tension) were identified as having the most impact on the process and had the 

potential to be altered during the process to influence results.  

The correlation matrix presented here serves as a method of measuring the interaction and 

interdependence between different input parameters and various types of faults (ER fault, 

double winding, gaps, crossover, flange and loose winding).  
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Table 6.3. Adapted correlation matrix for the linear winding process involving interdependencies [3]. 

 

6.7.2. Procedure for calculating the interdependency value  

The method used to calculate the interdependency value was derived from the research 

conducted by Sell Leblanc [3]. By utilising and customising Sell- LeBlanc’s established 

method, this research took advantage of a validated and proven approach to measure 

interdependencies. This adaptation ensured a contextually appropriate analysis of 

interdependencies, within the parameters set for this research allowing for consistent and 

comparable assessment. 

1. Deviation: Each input parameter (e.g., winding speed, wire gauge) was assigned a 

deviation score ranging from 0 to 5 based on its perceived impact on the system. This score 

is recorded in the first column of the table.  

2. Weights: Similarly, each type of fault was assigned a weight based on its significance or 

impact on the system (1–6). These weights are listed in the rows below each fault name. 

The weight values in the system represent the relative importance or impact of each type 

of fault. These weights range from 0 to 6 with higher weights indicating greater 

significance. It is crucial to assign these weights accurately as incorrect assignments may 

lead to overlooking critical faults or overemphasising minor issues. Failure to determine 

these weights correctly can have detrimental effects on the results.   

To ensure accurate weight assignment a combination of techniques was employed. The 

first technique involves conducting a literature review of existing studies, research, and 

reports on similar systems or processes [3][5][147][148][154]. By analysing this 

information, common faults and their relative impacts can be understood, providing 

guidance for assigning weight values based on previous findings. Another valuable 

technique was seeking the advice of industry experts. Drawing on their years of knowledge 

and experience in the field, experts can offer insights into the relative importance of 
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different faults. They assess each fault based on its severity, frequency of occurrence and 

cost of rectification.  

Historical data about the system also played a significant role in determining weight 

assignments. Analysing past incidences of each fault and associated costs (both direct and 

indirect) provided valuable information for making informed decisions. The derived 

weight values from these sources were then used in correlation analysis to calculate 

interdependency values. This analysis quantifies how system variables and faults interact 

and influence one another. By following these techniques and accurately determining 

weight assignments, a comprehensive understanding of fault impact can be achieved 

within the system analysis process. 

3. Interdependency interaction level: In evaluating the interdependence between 

parameters, an approach similar to that of a traffic light system was adopted. The objective 

was to provide a clear interpretation of the correlation values and their significance. For 

this purpose, the Pearson correlation method was utilised as it quantifies the degree of 

relation between two variables. In this method, values range from -1 to +1 inclusive; a 

value close to +1 denotes perfect positive correlation while -1 indicates perfect negative 

correlation. Correspondingly, a 0 value signifies no relationship between variables. To 

categorise these correlation values into meaningful sections for both positive and negative 

correlations, a correlation-range matrix was provided, as shown in Table 6.4.  

Each input fault interaction was assessed and given a score of 1, 2 or 3 based on their 

level of interaction or interdependence: 

Table 6.4. Correlation-range matrix for interdependency interaction during linear winding. 
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• A score of 1 was assigned to correlation values falling within 0 and 0.33 (positive or 

negative) to indicate weak or low correlation 

• A score of 2 was assigned to values ranging from 0.34 through 0.66 (positive or negative) 

implying moderate correlation 

• A score worth 3 marks was assigned to measurements ranging from approximately 0.67 

through 1 (positive or negative), suggesting a strong correlation.  

This 'traffic light' approach efficiently simplifies interpretation enabling a quick 

identification of characteristics such as strength, direction, and level of interdependence 

involved in model building. The utilisation of this technique proves to be highly advantageous, 

especially when dealing with extensive sets of data or intricate models. It aids in easily 

comprehending the correlation between variables, thus making it an essential tool. 

4. Individual interdependency score: To calculate the individual interdependency score for 

each input parameter fault interaction, the deviation score of the input parameter has to be 

multiplied by the interaction score and then multiplied by the weight assigned to that 

particular fault. These scores were used to calculate individual interdependency values for 

each pair of input fault interactions. For example, the interdependency between winding 

speed and the ER fault can be calculated as follows: multiply 1 (deviation) by 3 (interaction 

score) resulting in an intermediate value of 3. This intermediate value is then multiplied 

by the weight assigned to the ER fault (which is equal to 6) resulting in a final 

interdependency value of 18. 

5. Total Interdependency value: By summing up all these individual interdependency 

scores the total interdependency value can be obtained. The total interdependency value 

(1188) represents the sum of the interdependency values for all input parameters. This 

value presents a holistic assessment of the system's interdependency, where higher values 

denote increased intricacy in how parameters and faults interact. 

6.7.3. Creation of correlation matrices 

A. Original models (DES & Hybrid model) 

A second correlation matrix was developed based on the results obtained from the DES 

model, as shown in Table 6.5. The DES model was enriched with a newly-introduced cost 

function (section 6.4.2) and proved to be a powerful tool for evaluating how alterations to 
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various parameters influenced each other, as well as the overall cost effectiveness and 

efficiency of the process.  

Table 6.5. Correlation matrix created from the results obtained from the original DES model [6]. 

 

Subsequently, a third correlation matrix was generated using data derived from the updated 

hybrid model (RF), as represented in Table 6.6. This RF model was specifically designed to 

incorporate strengths from the DES model and cater more specifically to the complexities of 

the linear winding process. It provided another unique perspective on parameter relationships. 

Table 6.6. Correlation matrix created from the results obtained from the original RF model [152]. 

 

 

B. Optimised models (NSGA-II DES & NSGA-II RF) 

After applying the NSGA-II algorithm to the original models to obtain a set of optimised 

input parameters, two new correlation matrices were constructed, as presented in Tables 6.7 & 

6.8. The first matrix (Table 6.7) was based on the data gathered from the DES model using the 

optimal input parameters while the other matrix was created using data obtained from the RF 

model.  

These updated matrices play a crucial role in understanding how the interactions between 

variables change after optimisation. The purpose of these matrices was to assess the 
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correlations between the optimised input parameters and the resulting faults in the system. They 

were able to calculate new interdependency values, which can be compared directly to the 

initial values before optimisation. By analysing these results, it can be determined whether the 

relationships between variables have become more or less intertwined after optimisation. This 

analysis provides valuable insights into how effective the NSGA-II algorithm was at 

minimising system complexity.  

Table 6.7. Correlation matrix created from the results obtained from the optimised DES model. 

 

Table 6.8. Correlation matrix created from the results obtained from the optimised RF model. 

 

6.7.4. Analysis and comparison of correlation matrices results 

DES model – NSGA-II (DES): The correlation matrices for the DES model (Table 6.5) and 

the NSGA-II model DES (Table 6.7) exhibited discrepancies in the correlation value, which 

can be attributed to the impact of the optimisation process on the system. This analysis aims 

to explore the alterations in correlations values between the original and optimised models for 

each input and fault type while also providing a rationale for these alterations. 

• The correlation value of winding speed (X0) decreases for most faults, specifically "double 

winding", "gap", "crossover" and "flange". This suggests that the NSGA-II algorithm has 

successfully optimised this parameter, resulting in a reduction in its influence on fault 

occurrence. As a result, the interdependency value decreases to 193.  
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• Wire gauge (X1) shows an increase in the correlation value for "crossover", indicating a 

slightly higher impact on this particular fault under optimised conditions. This leads to an 

increase in the interdependency value to 114.  

• The shape or aspect ratio (X3) and tension (X5) maintain their weights and 

interdependency values, indicating that their influence and interdependencies remain 

constant despite optimisation.  

• On the other hand, caster angle (X4) experiences a decrease in the correlation value for 

"crossover" and "flange", leading to a decrease in its interdependency value to 146.  

These changes in the correlation value reflect alterations in the system’s behaviour due to 

the application of the multi-objective NSGA-II algorithm. The algorithm modifies parameter 

interactions with the goal of minimising faults and costs, resulting in adjustments to the 

strengths of these interdependencies. These variances demonstrate that the algorithm has 

effectively reduced certain dependencies making it easier to manage and optimise the system. 

Hybrid model - NSGA-II (RF): The correlation matrices of the RF model (Table 6.6) and the 

NSGA-II RF model (Table 6.8) differ in terms of the correlation values assigned to variables 

and faults. These differences indicate changes in interdependencies resulting from the 

optimisation process. 

• The winding speed (X0) shows a decrease in the correlation values for "gap" "crossover" 

and "flange" indicating that the optimisation has reduced its influence on these faults. 

Consequently, its interdependency value decreases to 208.  

• The wire gauge (X1) retains its correlation values and interdependency value of 114, 

suggesting that its influence on the faults has not changed significantly.  

• Similarly, the shape or aspect ratio (X3) also maintains its correlation values and 

interdependency value of 243, indicating a consistent level of influence.  

• On the other hand, the caster angle (X4) experiences decreased correlation values for 

"crossover" and "flange" leading to a decrease in its overall interdependency value to 146.  

• However, tension (X5) maintains its correlation values and interdependency value of 333, 

implying that it remains a significant factor in causing these faults. 

The changes in correlation values observed in this study can be attributed to the impact of 

the NSGA-II optimisation algorithm on the system’s parameters. The main objective of this 

algorithm was to minimise the occurrence of faults and costs, thereby resulting in modifications 
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in the relationships between variables. Notably, there have been instances where these 

interdependencies have been reduced, leading to a simplification in both the management and 

optimisation of the system. 

Comparing these correlation matrices provides the opportunity to validate the 

interdependency values obtained from each model. A comparative analysis presented in Table 

6.9, identifies consistencies and differences between matrices providing robust evidence that 

supports the understanding of these critical interdependencies. These newly-created matrices 

provided an opportunity to study how variables interacted with one another concerning their 

new parameter settings. It also identified any alterations in interdependency values specifically 

arising from incorporating these optimised parameters. Thus, a comparison of them against 

previous correlation matrices became necessary. Consequently, it was determined whether 

interdependencies had increased or decreased or remained unaffected by these newly-

implemented optimal parameters. Analysing such correlations offered valuable insights into 

how optimal parameters affected associations among variables in the system.  

Table 6.9 offers a comparison of the outcomes achieved through various models utilised in 

this research. Specifically, the DES model, the RF model, and the optimal parameters obtained 

from the multi-objective algorithm (NSGA-II) applied to both DES and RF models. 

Table 6.9. Comparison between correlation matrices. 

 

A. Total interdependency value 

One of the main findings presented in Table 6.10 was the significant decrease in the 

interdependency value when comparing the original models (DES and RF) to the optimised 

models (NSGA-II applied to DES and RF). The interdependency value represented how closely 

linked the variables in the system were. A higher interdependency value implies complex 

relationships between variables, where a change in one variable can greatly affect others. This  
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complexity can make it difficult to optimise and manage the system due to the intricate 

interplay and potential trade-offs between different variables.  

The sensitivity analysis results shed light on how optimisation approaches affect the 

interdependency value of the models. Both the NSGA-II (DES) and NSGA-II (RF) algorithms 

successfully decreased the interdependency value when compared to the DES and RF models. 

This reduction implies system manageability, simplification of interactions, and improved 

optimisation capabilities. Furthermore, the NSGA-II (RF) model has an advantage in terms of 

speed and efficiency making it especially suitable for real time applications or situations that 

require decision-making. While both optimised models (RF and DES) showed improvements 

over the original models, the superior computational speed of NSGA-II (RF) made it the most 

favourable choice among all considered models. 

Overall, this sensitivity analysis provides insights into how optimisation techniques impact 

system complexity and interdependency value. The decrease in interdependency value 

Table 6.10. Comparison table of the total interdependency value between models. 
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indicates system performance and optimisation – potentially supporting the effective decision-

making and management of linear winding processes. 

B. Cost value 

The analysis of the cost changes associated with the different models and their optimisation 

parameters was a critical aspect that required careful consideration. The cost metric, which 

served as an essential indicator of both process efficiency and economic viability was 

thoroughly examined in relation to the correlation matrices, as presented in Table 6.11. Within 

each correlation matrix, the cost value was treated as an outcome variable when considering 

the optimised input parameters.  

This approach explored the relationship between each parameter and its impact on overall 

cost within the linear winding process. Whether comparing the DES model to the hybrid model, 

or examining the optimised versions through the NSGA-II algorithm, changes in cost were 

carefully studied. This comparative analysis provided essential insights into how effectively 

each model and its corresponding parameters managed costs while also potentially improving 

process quality. By comparing these values across different correlation matrices it was possible 

to determine which models were most effective and thus identify optimal parameter settings in 

terms of cost efficiency. 

As a result, this cost comparison provides insights into the cost effectiveness of models and 

optimisation approaches. The notable cost reductions achieved by NSGA-II (DES) and NSGA-

II (RF) demonstrate the effectiveness of multi-objective optimisation in minimising overall 

costs in the linear winding process, making them excellent choices for practical 

implementation. 

C. Number of faults 

The application of the NSGA-II optimisation algorithm has been proven to be highly 

effective in reducing the number of faults in both DES and RF models. The analysis results, as 

presented in Table 6.12, highlight how different approaches to modelling and optimisation 

affect the occurrence of faults in the winding process.  

This highlights the significance and efficiency of utilising this optimisation process in 

complex systems, as it allows for better management of parameter interdependencies leading to  
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Table 6.11. Comparison table of the cost value between models. 

 

notable improvements. Even though the NSGA-II (RF) model has a lower incidence of faults, 

its faster computational speed may make it more desirable in certain scenarios. 

Overall, this analysis offers insights into how optimisation approaches impact fault 

occurrences in the winding process. The optimised models (NSGA-II DES and NSGA-II RF) 

stand out for their improvement in the number of fault incidences, indicating their suitability for 

implementation and potential to enhance overall reliability and performance of the winding 

process. 

 

 

 



 

Multi-Objective Optimisation Approach 193 

 

Table 6.12. Comparison table of the number of faults between models. 

 

 

6.7.5. Effectiveness of NSGA-II Multi-Objective Optimisation in Reducing System 

Interdependencies 

The original DES model had an interdependency value of 1124, slightly lower than that of 

the original RF model, which had a value of 1137. These high values, in comparison to the 

optimised models (NSGAII), indicate that when in their original states the system parameters 

have complex interactions that can make optimisation challenging without unintended 

consequences. However, when the multi-objective algorithm (NSGA-II) was applied, both the 

DES and RF models showed significant decreases in their interdependency values – DES 

decreasing to 1029 and RF decreasing to 1044, suggesting that these optimised parameters 

resulted in less complex interactions between variables.  
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This reduction in interdependencies was promising, as it indicates that managing and 

optimising the system became easier with these new parameters. By decreasing 

interdependencies, it can be better-predict how changes in one variable will affect others, 

allowing for more effective and targeted optimisation strategies. In this research, this decrease 

coincided with notable reductions in production cost and number of faults, demonstrating the 

effectiveness of the multi-objective optimisation approach. This observation provides robust 

evidence that carefully managing system interdependencies is a critical factor in improving 

efficiency and cost effectiveness in linear winding processes. 

Results showed that by applying the NSGA-II multi-objective algorithm to both the DES 

and RF models, remarkable improvements were achieved in terms of reduced interdependency 

values, costs, and fault occurrences. This clearly demonstrated that adopting a multi-objective 

approach was highly effective in optimising the linear winding process by significantly 

minimising production costs and virtually eradicating faults.
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6.8 Summary 

This section presented the results from a framework that was developed for multi-objective 

optimisation in an electrical manufacturing process focusing on linear winding. The main goal 

of this framework was to reduce costs and minimise faults simultaneously during the linear coil 

winding process in electrical machine manufacturing, while considering the interdependencies 

between these objectives. By implementing this framework, it was possible to improve cost 

effectiveness and decrease fault rates in winding operations. A key aspect of achieving these 

optimisation goals was understanding the connections between objectives, particularly the 

relationship between production costs and geometrical faults. To gain this understanding a 

correlation analysis was conducted that provided insights into how these objectives interacted 

with each other. The selection of variables such as rotational speed and wire gauge played a 

vital role in achieving a balanced equilibrium and overall operational efficiency. This delicate 

balance was achieved through the analysis and application of optimisation techniques such as 

the NSGA-II algorithm. 

Among the solutions generated by the NSGA-II algorithm, one particular solution stood as 

particularly noteworthy. This solution effectively balanced 8 geometrical faults per layer while 

keeping production costs at its lowest (£20) by adjusting input parameters, like speed, wire 

gauge and bobbin shape. Implementing the optimised parameters obtained through the 

algorithmic approach in both the DES and Hybrid models led to reduced production costs and 

a minimisation of the occurrence frequency of faults. To understand how standard process 

parameters influenced each other, a correlation analysis was conducted, providing insights into 

the interplay of multiple variables in linear winding. Additionally, creating correlation matrices 

from the optimised models made it possible to assess how input parameters were related to 

resulting faults. This analysis revealed a decrease in interdependency value when comparing 

the models – the optimised ones indicating reduced system complexity and improved 

optimisation capabilities. 

The sensitivity analysis results highlighted how optimisation approaches impacted 

interdependency values within these models. Both the NSGA-II (DES) and NSGA-II (RF) 

models successfully reduced the interdependency value, enhancing the effectiveness of system 

management and optimisation. The NSGA-II (RF) model, in particular, demonstrated high 

speed response, making it well suited for real-time applications or time-sensitive decision-
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making scenarios. Upon analysing the cost comparison, it became evident that the optimised 

models were cost effective. Notably both NSGA-II (DES) and NSGA-II (RF) achieved 

reductions, underscoring how multi-objective optimisation can minimise costs in the linear 

winding process.  

Research findings revealed that the original DES and RF models exhibited interactions that 

posed challenges to optimisation. However, implementing the NSGA-II algorithm resulted in 

decreases in interdependency values indicating improved efficiency and targeted strategies for 

optimisation. Concurrently, there was a decrease in production costs and the occurrences of 

faults, further validating the effectiveness of the multi-objective optimisation approach. These 

findings give decision-makers the ability to make choices that take into account both flaws and 

production expenses, all while following input criteria.  
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CHAPTER VII: DISCUSSION AND CONCLUSION 

7.1 Research findings and contributions 

The research results were summarised in the following sections, which were organised based 

on research objectives and chapters. This aided understanding of how the findings align with 

the objectives of the research and with the corresponding chapters.  

7.1.1 Identification and application of techniques for detecting interdependencies that 

lead to defects downstream in electrical machines.  

Chapters III & IV focussed on achieving the first objective: ‘Identify and apply techniques 

that determine the key process characteristics in an EM during an error-prone manufacturing 

process, detecting interdependencies that lead to defects downstream’. 

This research focused on a gap (section 2.6) in the current literature [11] by identifying and 

implementing techniques to uncover important process characteristics and connections that 

contribute to defects in a vulnerable manufacturing process. Unlike other research attempts 

[2][83], what sets this research apart was its identification of process characteristics and 

establishment of causal links providing a novel approach on how defects are anticipated and 

resolved. This research deepens the understanding of the interrelationships between process 

variables and defects, enabling a proactive prevention of defects.  

To accomplish the first objective, it was required to understand aspects of the manufacturing 

process for EMs by identifying connections between different factors and the creation of 

defects [5][11]. The first step involved conducting a review of existing literature as presented 

in [4] to build a diverse knowledge base that combined techniques for condition monitoring, 

fault detection, and modelling of EM and interdependencies. By using techniques such as 

precedence graphs and graph network diagrams in a systematic characterisation process, it was 

determined which specific process variables had a significant impact on the quality of EMs. 

Four process variables stood out as having a vital impact: the rotational speed, the tension 

applied to the copper wire, the size of the wire used, and the shape of the bobbin. These factors 

all play a role in shaping the complex dynamics of the manufacturing process and ultimately 

determine the overall quality and dependability of the EM. 

This research is a step forward in understanding complex manufacturing procedures 

specifically in the EM production. Its main achievement lies in presenting a robust framework 
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aimed at improving the comprehension of these processes. This framework reveals previous 

connections between process variables and defects, shedding light on cause-and-effect 

relationships that were not explored before [3][123]. This scientific contribution should expand 

the area of process interdependencies and fault detection by providing a framework for 

identifying crucial process characteristics and evaluating their impact on product quality. By 

identifying key characteristics of the manufacturing process, and understanding how they 

interact with each other, it can effectively reduce defects and improve the reliability and 

performance of their products.  

This provided the opportunity (objective 2) to later-employed modelling techniques to 

uncover complex relationships between these variables and downstream defects. This initial 

step established the foundation for later stages focused on predicting defects, optimising 

processes and implementing practical improvements. Ultimately, these efforts were aimed at 

enhancing both the quality and reliability of EM manufacturing significantly.  

7.1.2 Creation and implementation of a DES model for modelling interdependencies.  

Chapter IV “Modelling framework for interdependencies” focussed on achieving the second 

objective: ‘Develop a framework by using modelling techniques to understand how a 

combination of process variables influences the creation of defects’. 

When regarding the literature [3][148], there is no research focused on modelling techniques 

that accurately capture the complex relationships among various parameters in the 

manufacturing process of EMs. While existing studies offer an overview of EM manufacturing 

[2][9], there is still a lack of exploration into specific modelling methods that can 

comprehensively understand and analyse the interdependencies between process variables. 

This research gap highlighted the potential for innovative insights and advancements that could 

improve the quality and performance of EM manufacturing. Addressing this gap held promise 

for streamlining processes, preventing defects, and making valuable contributions to the 

broader fields of manufacturing and process control. 

To achieve the aim of the second objective, it was necessary to address the existing gap of 

modelling techniques that could accurately capture the relationships between various 

parameters in the manufacturing process of EMs. These techniques would need to provide real-

time predictions about the likelihood of electrical and geometrical defects occurring. While 

previous efforts had been made in modelling how rigid materials behaved (and interconnected) 
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during manufacturing [32][86][163], they often focussed on specific manufacturing steps 

rather than taking a holistic approach to analyse the entire sequential process and uncover 

comprehensive relationships [164]. The objective was to bridge this gap by creating a 

predictive modelling approach that improved the understanding of how parameters interacted 

and impacted upon defect occurrence throughout the EM manufacturing journey.  

To overcome this limitation a solution was proposed by creating an artificial dataset using 

simulation techniques. An environment that accurately replicated actual manufacturing 

processes was carefully designed, drawing on knowledge of manufacturing science and 

engineering principles obtained from previous literature [3][5]. Although this simulation model 

required calibration and validation, the simulated dataset would help fill the information gap 

and allow investigation into the factors and relationships that contribute to defects.  

As a contribution, a new framework was developed to study the relationships in 

manufacturing processes involving materials that would be considered deformable. This 

framework used a DES model to analyse the process of making noncircular orthocyclic coils 

in a linear way. The created DES model had an advantage over other models– it could detect 

faults and pinpoint areas where electrical resistance was high, which were often referred to as 

"hotspots". To make sure this DES model was accurate and reliable it underwent experimental 

testing using a specialised linear coil winding machine. While the DES approach was great for 

capturing interconnections and identifying important issues, there were also potential 

downsides. These included the need for setup and parameterisation for an accurate simulation 

as well as representing dynamic real-world conditions fully.  

While simulations are valuable for studying manufacturing processes [83][165], they have 

limitations when it comes to accurately replicating actual conditions. Prajapat et al. [165] 

discusses that these limitations stem from assumptions and simplifications made in the 

simulation models, which may not fully capture the complexities and variations found in 

manufacturing environments. To tackle this issue, as previously discuss, this research 

emphasises the importance of conducting experiments to validate the results. This step bridges 

the gap between simulations and real world manufacturing settings by enabling how to assess 

effectively and accurately the proposed framework. This approach would help in verifying 

whether the insights and predictions generated through simulations hold true when 

implemented in an actual manufacturing environment. However, the benefits of greater 
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understanding, and predictive capability, make this DES model an important contribution to 

the field [4][6]. It provided insights into preventing defects and optimising manufacturing 

processes that involve materials that can change shape. 

7.1.3 Creation and implementation of a hybrid model for enhanced interdependency 

modelling. 

Chapter V “Hybrid computational framework” focussed on achieving the third objective: 

‘Integrate the established framework with a supervised learning algorithm to enhance the 

efficiency and reliability of quality control tests by predicting component states and accounting 

for interdependencies in the process’. 

The existing research has shown a gap in the integration of a DES model with a supervised 

learning algorithm through KD [53]. This combination has the potential to greatly improve the 

efficiency and reliability of quality control tests in manufacturing processes. While there have 

been studies on DES models [166], supervised learning algorithms [90], and KD 

techniques[72], their integration for enhancing quality control testing has not been extensively 

explored. Bringing together a DES model and a supervised learning algorithm using KD 

represents an area with significant possibilities. This merging created a framework that not only 

predicts component states, but also takes into account the complex interdependencies inherent 

in manufacturing processes. This innovative approach aims to streamline quality control tests, 

reducing time and costs while simultaneously strengthening manufacturing reliability and 

efficiency [152]. 

To achieve the aim of the third objective it was required to explore the integration and 

enhancement of the developed framework. In the manufacturing industry, it is common practice 

to conduct multiple quality tests after each production step to identify faults or defects [11]. 

However, although these methods are effective, this approach proved to be time consuming 

and resource intensive [44]. This integration aimed to predict the states of components and 

improve quality control tests by reducing testing time while thoroughly analysing how different 

process factors interact with each other.  

Therefore, this research contributes by introducing an innovative hybrid model that 

implements a KD approach. This unique combination addresses the challenges of the DES 

model by incorporating architecture search and data augmentation techniques to improve the 
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generalisation capacity of the student model (SML) algorithm [152]. By utilising the DES 

model to generate training data for the SML algorithm, advancements can be made in fault 

detection and prediction in machine manufacturing processes such as knowing the location, 

time frame and the severity of a fault created by interdependencies in an electrical component. 

The advantages of this new hybrid model are numerous. First, by combining the DES and 

SML it reduced the simulation time in a 99% reduction from 2 minutes to less than 1 second, 

leading to faster production timelines. Additionally, the model’s ability to enhance stator 

quality contributes to improved reliability and safety of the final product. However, as with any 

pioneering approach, there are considerations associated with this hybrid model. It is worth 

considering that the performance of the model heavily depends on the quality and 

representativeness of the training data generated by the DES model. Inaccuracies in this data 

could compromise fault detection and prediction accuracy. Finally, maintaining and adapting 

the architecture of the hybrid model might pose challenges when new data becomes available 

or manufacturing processes change. Updating and fine tuning the model could be more difficult 

compared to using standalone techniques resulting in potentially slowing down its 

responsiveness to changes. 

7.1.4 Creation and implementation of a multi-objective optimisation model for 

interdependencies. 

Chapter VI “Multi-Objective Optimisation for Interdependencies” focussed on achieving 

the last objective: ‘Establish a model-based framework for Integrated Fault Detection and 

Parameter Optimisation in production processes’. 

The aim of the fourth objective in this research was to fill the last gap (section 2.6) by 

creating and implementing a multi-objective optimisation framework. This framework would 

seamlessly integrate fault detection and parameter optimisation with a focus on the 

interdependencies that exist in production processes. Bridging this gap was crucial as it has 

greatly improve the efficiency and effectiveness of manufacturing operations by reducing 

quality faults and cost in EMs where deformable material is a vital part. While methods like 

evolutionary learning, parallel and distributed algorithms, and the island model genetic 

algorithm have provided solutions for problems at various levels [103][108][137], their 

application has mostly been centred around design optimisation rather than process 

optimisation. To address this, a multi-objective framework that combines fault detection and 
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parameter optimisation, while carefully considering interdependencies, was developed and 

implemented.  

This research contributed to the field of multi-objective optimisation by leveraging 

evolutionary algorithms. These algorithms have proven to be effective in solving multi-

objective problems while maintaining a level of independence between different solutions 

spaces [62]. In the context of optimising manufacturing processes, the NSGA-II algorithm was 

proposed as a technique that excelled in addressing multiple objectives such as reducing costs 

and enhancing quality. What made this approach innovative was its adoption of a multi-

objective strategy to determine and increase the level of control in interdependencies by 

optimising the linear winding process using parameter optimisation.  

By generating correlation matrices from optimised models, this framework uncovered 

insights into interactions allowing an assessment of how optimised input parameters were 

correlated with system faults. By minimising interdependencies within the system thanks to 

the use of the NSGA-II algorithm, it enhanced not only manageability and optimisation, but 

also holds potential for cost reduction and fault mitigation. However, it is important to consider 

the drawbacks associated with this approach. The computational complexity involved in 

algorithms, especially when working with multiple objectives, may require significant 

resources. Furthermore, finding the perfect equilibrium between goals and their optimisation 

might pose challenges, especially when there are trade-offs to consider [108].  

7.2 Limitations of Research 

While the previous sections have shown contributions and advancements, it is crucial to 

recognise and thoroughly assess limitations that are inherent in the proposed methodologies 

and approaches. 

7.2.1 Limitation of the DES model 

Firstly, it is important to recognise that the DES model was primarily focused on the linear 

winding technique used in electrical machine manufacturing. However, this narrow focus 

ignores the range of winding techniques commonly employed in the industry such as the flyer, 

needle and toroidal winding [5]. Consequently, the insights and recommendations provided by 

the model may not be universally applicable since it might have overlooked aspects of 

manufacturing processes associated with other winding methods. Additionally, the DES model 
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was developed using a set of input parameters that included speed, tension, wire size and 

bobbin shape. However, the DES model was designed to be flexible and adaptable allowing 

for the inclusion of parameters and improvements as necessary to improve its precision and 

practicality. 

While these parameters are undoubtedly relevant, this reductionist approach may not capture 

all the variables that influence the manufacturing process. Neglecting other important input 

factors could limit the accuracy of the model in representing the interplay of variables 

encountered in real-world manufacturing scenarios. Furthermore, when examining outputs, the 

DES model only considered two aspects: variation in electrical resistance, and a limited subset 

of geometrical faults consisting of only six types. This narrow focus may not encompass all the 

output variables required to assess the quality and reliability of the manufacturing process. 

Lastly, the DES model only focuses on the orthocyclic scheme, which may restrict its 

practicality. In electrical machine manufacturing there are various winding schemes such as 

wild and helical [5], and solely focusing on one might limit the model’s relevance and 

effectiveness in situations that use different winding techniques. Additionally, the simulation 

was limited to a maximum of five layers of winding. While this limitation may be sufficient 

for certain scenarios, it might not accurately represent complex manufacturing processes that 

involve a greater number of winding layers. This constraint could potentially make it 

challenging for the model to accurately replicate the intricacies of real-world manufacturing. 

7.2.2 Limitation  of the hybrid model 

The hybrid model, although it has potential for innovation, it does have some limitations 

that need to be considered when interpreting its results. Firstly, one notable limitation was the 

comparison of SML algorithms. While this research evaluated six popular algorithms from the 

literature [115][137], there are actually many more SML algorithms available. This comparison 

might not fully capture the range of possibilities and could potentially exclude algorithms that 

might perform better for specific tasks. The choice of algorithms being compared could impact 

the effectiveness and applicability of the model raising questions about its broader usefulness. 

Additionally, focusing solely on tuning an SML algorithm, the Neural Network in this case, 

presents further limitations. Although Neural Networks are known for their versatility and 

effectiveness [44][68], concentrating exclusively on this algorithm may overlook insights from 

other algorithms. By tuning only the Neural Network, nuances and variations in prediction 
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accuracy that could arise from other tuned SML algorithms might be missed out on, which 

limits the overall comprehensiveness of the model. 

Another limitation stems from the size of the database used in this research, which was 

limited to a total of 40,000 instances. While this dataset forms a foundation for analysis, its size 

could impose constraints on how the model can generalise to broader manufacturing scenarios. 

Bigger sets of data might be able to provide more dependable results – capturing the 

complexities and variations found in actual manufacturing processes. Aside from these factors, 

it was also important to explore limitations such as biases within the dataset. These biases could 

unintentionally affect the predictions of the model.  

7.2.3 Limitation  of the multi-objective optimisation 

While the multi-objective approach discussed in this research showed promise, it is 

important to acknowledge and critically evaluate limitations that could affect its practicality 

and interpretation. Firstly, one significant constraint arises from only considering two 

objectives in the objective approach. Manufacturing processes often involve competing 

objectives, such as: reducing costs, enhancing quality, improving energy efficiency, and 

promoting sustainability [62][108]. By focusing on only two objectives, the approach may not 

fully capture the range of objectives that manufacturers typically strive to optimise. This 

limitation could lead to a representation of the trade-offs and complexities involved in 

manufacturing decision-making.  

Another noteworthy limitation stems from using the NSGA-II algorithm as the genetic 

algorithm employed. Although NSGA-II is well regarded and has proven effective in solving 

objective optimisation problems [108], solely relying on this algorithm might overlook other 

potentially superior alternatives. The performance of algorithms can vary depending on 

problem characteristics. Exclusively utilising NSGA-II may neglect other algorithms that offer 

better convergence rates or solutions.  

Moreover, the performance of the NSGA-II algorithm depends on its parameter settings. 

Without parameter settings, tuning the algorithm may not achieve its optimal performance 

potential, reducing its effectiveness in generating high-quality solutions for objective 

optimisation problems. Finally, using correlation matrices to understand how input parameters 

interact also has a limitation. These matrices are created based on the input parameters, and 

while they provide valuable insights, they might not include other parameters that could affect 
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the manufacturing process. Ignoring these parameters could compromise the accuracy and 

depth of our understanding gained from the correlation matrices. 

7.3 Proposed Future Work 

In this section, future directions that can build upon the findings of this research and tackle 

the limitations that have been identified were discussed. 

7.3.1 Proposed work for the DES model. 

Moving forward, there are ways to enhance the capabilities of the DES model. One possible 

approach is to broaden the scope by incorporating a range of winding techniques into machine 

manufacturing. As a result, this expansion would provide additional insights into the 

interconnections between manufacturing processes. For this research it would be beneficial to 

consider more input parameters such as friction, and not just be limited to speed, tension, wire 

size and bobbin shape. By considering a far larger range of input variables, the model would 

improve its understanding of the aspects of manufacturing and their impact on product quality. 

Additionally, exploring output variables that go beyond electrical resistance variation and 

geometrical faults could enhance the capabilities of the DES model. This exploration could 

reveal insights about the manufacturing process, ultimately leading to quality control and more 

accurate defect prediction. 

7.3.2 Proposed work for the Hybrid model. 

To further enhance the capabilities of the hybrid model, there are potential future avenues 

that can be explored. These include: improving the algorithm comparison process, tuning 

algorithms to analyse how their performance improves, and considering a far larger range of 

datasets. By expanding the comparison of SML algorithms beyond the six evaluated, it could 

be possible to gain a more comprehensive understanding of which approach is most suitable 

for specific manufacturing contexts. A broader comparison implementing algorithms such as 

Gradient Boosting, XGBoost and LightGBM would help uncover nuances that may not be 

apparent in the evaluation. Additionally, conducting parameter-tuning exercises like Random 

search or Bayesian optimisation for SML algorithms is another important area to focus on as 

future work. This would enable the identification of configurations that maximise prediction 

accuracy and enhance performance of the hybrid model. It is crucial to ensure that the selected 

algorithm truly aligns with the requirements of each manufacturing application. Lastly, 
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obtaining a more diverse dataset for training and validation purposes is an aspect to consider 

for future improvements. An extensive dataset would provide a better representation of real-

world manufacturing scenarios’ variability and complexity, resulting in more accurate and 

reliable predictions from the hybrid model. 

7.3.3 Proposed work for the multi-objective optimisation process. 

In the field of multi-objective optimisation, several potential areas can be explored in order 

to enhance the comprehensiveness and effectiveness of this approach. One possible approach 

involves going beyond simply reducing costs and improving quality. By incorporating 

objectives related to energy efficiency, resource utilisation, and environmental impact, it could 

be possible to create an optimisation framework that aligns with sustainability goals. Another 

promising direction is to further explore the use of other evolutionary algorithms apart from 

NSGA-II, like SPEA2 or MOEA/D. The performance of algorithms can be compared to 

determine which one is best suited for a specific optimisation problem. This analysis would 

provide insights into convergence properties, exploration capabilities, and solution quality. 

Furthermore, it would be beneficial to conduct parameter tuning and sensitivity analyses for 

the chosen algorithm. This would help in understanding how different parameter settings affect 

the outcomes of optimisation. To further advance this understanding, expanding the set of input 

parameters in the correlation analysis should be considered. Additionally, including more 

variables can lead to more insightful correlation matrices and optimised manufacturing 

solutions. Finally, it is crucial to validate the viability and effectiveness of the multi-objective 

optimisation approach through real-world manufacturing scenarios and case studies across 

industries. This validation process would offer evidence of its applicability in manufacturing 

operations while guiding its implementation effectively. 

7.4 Conclusions 

The increasing global focus on sustainable and eco-friendly technologies, such as electric 

vehicles, has created a higher demand for electrical products [24]. As a result, there is a pressing 

need for improvements in the manufacturing process of EM. Therefore, it becomes crucial to 

meet the growing demand [4][43] while ensuring high quality standards, reducing the time 

required for end-of-line testing, and supporting the expansion of the friendly green industrial 

revolution.  
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Previous research has emphasised the importance of comprehending parameter 

interdependence to achieve optimised results [6]. However, there is a lack of established 

approaches that investigate how interdependencies in deformable materials affect EM faults. 

This research aims to bridge this gap by introducing a framework that enhances the EM 

manufacturing processes. It considers the influence of deformable materials, such as copper 

wire, on the creation of faults and optimises the overall production process. 

The main focus of this PhD research was to detect and tackle the interconnections between 

components that involve deformable materials during the manufacturing of EM. Unlike 

existing literature, this research by providing a new perspective to defect analysis in the 

manufacturing of EM. Instead of focusing on individual components this research took a more 

comprehensive approach. It carefully examined how electrical components made with flexible 

materials such as copper wire interacted throughout the entire manufacturing process. This 

unique holistic approach provided insights and understanding on the influence that 

interdependencies have on the creation and severity of faults. Traditionally, defects in EM were 

often addressed later in the production or during EoL testing (winding resistance test), 

increasing costs [11]. In contrast, this research placed emphasis on early fault detection by 

understanding how various input parameters (i.e., winding speed and tension) influenced the 

final production quality of a stator. 

By embracing this viewpoint, defects (electrical and geometrical) were detected earlier in 

the production process (winding process), but their underlying causes were also identified. This 

proactive approach allowed for solutions to be developed to minimise defects and optimise the 

manufacturing process. To accomplish this, four main objectives were defined: identifying 

characteristics of the process, creating a model-based framework that explains how various 

variables contribute to defects, integrating this framework with a machine learning algorithm 

for quality control purposes and, finally, establishing a model-based approach for parameter 

optimisation. 

Advanced techniques such, as precedence graphs and graph networks were initially 

incorporated to detect and examine these interdependencies comprehensively. While 

precedence graphs and graph networks are useful, for modelling and analysing connections 

there might be some limitations that it should be consider:  
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• These techniques rely on data, which could overlook any dynamic variations and 

necessitate the use of high-quality data to achieve accuracy. 

• To gain a comprehension of manufacturing processes it may be beneficial to adopt a 

multifaceted strategy that integrates both modelling and empirical data along with real time 

monitoring. 

To overcome these limitations, it could be advantageous to complement these techniques 

with methods or techniques such as digital twins that are capable of anticipating and addressing 

defects by analysing real time data utilising machine learning algorithms or incorporating 

simulations, thereby making important contributions to the field of manufacturing science and 

engineering practices. Through the use of digital twins, this framework has the potential to 

analyse real time data and offer insights, into possible problems.  

This research contributed with three innovative frameworks: 

The first framework allowed the thorough investigation into how the interaction of input 

parameters directly affects the occurrence of flaws during the linear winding process. By 

focusing on this aspect, the research deepens our comprehension of how defects are formed, 

which opens up opportunities for better strategies in preventing defects and improving overall 

quality in manufacturing industries. Therefore, a framework was developed by implementing a 

DES method to examine the interactions between processes involving deformable materials 

with a specific focus, on noncircular orthocyclic coils. This DES model is capable of detecting 

faults and areas of increased resistance, which are commonly referred to as "hotspots".  

In addition, with the DES model it is now possible to thoroughly analyse manufacturing 

processes that involve materials that can change shape and accurately evaluate how 

interconnected factors contribute to the occurrence of faults. This framework provided the 

creation of a dataset that enables the examination of how different input parameters interact and 

lead to defects giving insights, into the manufacturing process. These insights helped identify 

the process step and approach to implement corrective measures ultimately minimising and 

eliminating faults to improve the overall quality of products. 

The second framework combined the previously developed DES model with an SML 

algorithm via KD. This combination has led to the development of a framework that predicts 

component states while taking into account complex process interdependencies [152]. This 

approach tackles the challenges that the DES model has, by conducting architecture searches 
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and employing data augmentation to enhance the student model’s ability to generalise. By 

utilising a DES model to generate training data it enhances the detection of faults in machine 

manufacturing which could result in a shorter manufacturing time, better stator quality, 

increased reliability, and greater safety. 

The third framework improved the area of parameter optimisation by using an evolutionary 

algorithm, which has a proven track record in solving problems, with multiple objectives 

independently [108]. It introduced the NSGA-II algorithm, showing innovation by applying a 

multi-objective approach to linear winding processes. This approach focuses on identifying 

connections and interdependencies between input parameters and system faults, which can lead 

to management optimisation, decreased costs and effective fault handling. 
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