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Abstract 

The environmental concerns related to the production of cement in terms of the 

energy consumption and the emission of CO2 lead to the search for more 
environmentally viable alternatives to cement. One of those alternative materials is 

alkali-activated slag (AAS) where ground granulated blast furnace slag is used not as 
a partial replacement to cement but as the sole binder in the production of concrete. 
The performance of alkali-activated slag concrete with sodium silicate (water glass) as 

an activator was studied. 

The scope of the work covered seven mixes: a normal strength OPC control mix, a 
blended OPC/Slag mix of similar compressive strength but of lower water to binder 

ratio, a second OPC control mix of a water to binder ratio similar to that of the 

OPC/Slag mix, and four alkali-activated slag mixes of the same binder content and 

the same water to binder ratio as those of the second OPC mix. The AAS mixes were 

prepared with slag as the sole binder, activated with water glass at two dosages, 4% 

and 6% Na2O (by weight of slag). Two types of water glass were used, one in a 

solution form and the other in a solid granules form. The two forms of the activator 

used were also of different silicate modulus (Ms); 1.65 for the solution form and 1.0 

for the granule form. Different curing regimes were used including normal water 

curing, air dry curing and accelerated autoclave heat curing. 

The fresh concrete properties studied were setting time, workability and air content. 
The engineering properties studied were compressive strength, splitting tensile 

strength, flexural strength, dynamic modulus of elasticity and ultrasonic pulse velocity 

and drying shrinkage. The durability potential of alkali-activated stag concrete was 
investigated by testing for oxygen permeability, chloride penetration resistance, 

porosity, carbonation, and alkali-silica reaction. The hydration of alkali-activated slag 

was studied using x-ray diffraction and thermogravimetry techniques. 

Alkali-activated slag concrete was found to achieve good workability which was, 

comparable to that of OPC and OPCfslag concrete. The increase of the Na2O dosage 

resulted in a lower workability and the activator with higher silicate modulus 
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exhibited lower workability. AAS concrete however, sets rapidly if not controlled by 

the addition of lime. 

The main hydration products in the AAS systems were C-S-H (I) and hydrotalcite as 
observed in the XRD patterns with autoclaving resulting in the formation of a more 
crystalline C-S-H gel and the possible fonnation of xonotlite. 

The mechanical properties of AAS concrete are highly influenced by the activator's 

silicate modulus and the Na2O dosage where strength was found to be higher with the 
higher modulus and dosage. The AAS concrete is very sensitive to curing and dry 

curing resulted in a reduction in strength for AAS concrete much more than that for 

OPC concrete. Accelerated curing (autoclave) increased the initial gain of strength in 

AAS concrete but eventually gave results close to those of water curing. Using a 

waterglass activator with Ms = 1.65 and 6% Na2O resulted in the highest drying 

shrinkage where as it is lower when the dosage is less and the modulus is lower. 

Autoclave curing of AAS concrete reduces the drying shrinkage as it causes the 

formation of more crystalline products of hydration. 

The increase of the Na2O dosage in AAS concrete, where the activator has an M. = 

1.0, results in a decrease in porosity, but in the case of the AAS concrete, with the 

activator having Ms = 1.65, the porosity increases with the increase of the Na20 

dosage. Dry curing increases the porosity of all the concrete mixes. The porosity test 

results are influenced by the sample preconditioning prior to testing. 

The alkali-silica test results show that replacing 60% OPC by slag reduces the 

expansion of concrete prisms containing reactive aggregates. They also indicate that 

AAS concrete has low susceptibility to ASR expansion because of stronger binding of 

alkalis in the hydration products. The carbonation test results show that OPCIslag 

concrete undergoes higher carbonation than OPC concrete with the same w/c ratio. 

AAS concrete with low compressive strength around 40 MPa has higher carbonation 

compared to OPC concrete of the same grade while the carbonation is lower with 

higher strength. 
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Chapter I Introduction 

1. INTRODUCTION 

1.1 Introduction 

Although the greenhouse effect is a natural phenomenon, where the gases in 

the atmosphere trap the earth's radiation maintaining an average temperature of 15 °C, 

the additional greenhouse effect due to human activity is the big concern because it 

leads, according to environmental scientists, to global warming where the increase in 

the earth's temperature might lead to flooding and other climatic changes. The 

concentration of "greenhouse gases" has been increasing continuously for the last 

three decades; Among these gases is carbon dioxide CO2. Representatives from more 

than 160 governments met in Kyoto, Japan,. in December 1997 to draft the Kyoto 

Protocol that called for developed countries to reduce emissions of greenhouse gases 

on average by 5.2% below 1990 levels by the years 2008-2012 (Malin, 1998). 

Portland cement clinker is made from calcination of limestone (calcium carbonate) 

and siliceous material where de-carbonation occurs according to the reaction: 

CaCO3 = CaO + cot 

The total emission of C02 per kg of cement clinker produced is 0.53 kg from the de- 

carbonation of calcite, plus 0.33 kg from the burning process plus 0.12 kg from the 

generation of electrical power required, making a total of 0.98 kg. Therefore, for 

every ton of cement clinker produced, an approximately equal amount of carbon 
dioxide is released into the atmosphere (Davidovits, 1991). The world cement 

industry contributes some 7% to the total man-made CO2 emission (Malhotra, 1999). 

The cement manufacturing industry consumes a vast amount of energy. A 

closer look at the economics of the production of Portland cement shows that energy 
inputs account for 58% of the total cost of production (28% for power, 30% for fuel) 

(Lang,! 993). 
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Chapter I Intralirction 

Cement with lower energy consumption and lower CO2 emission can he produced by 

modifying the composition of the Portland cement to achieve calcination at lower 

temperatures and hence saving energy. This can also be done through the use of 
blended cements having, in addition to Portland cement, other pozzolans such as slag 

or fly ash to obtain the required properties at lower energy consumption. 

The environmental concerns related to the production of cement in terms of 

energy consumption and the emission of CO2 lead to the search for more 

environmentally viable alternatives to cement. One of those alternative materials is 

alkali-activated slag (AAS) where ground granulated blast furnace slag is used not as 

a partial replacement to cement but as a binder by itself in the production of concrete. 
This project studies the performance of alkali-activated slag concrete using sodium 

silicate (water glass) as an activator in different dosages (4 and 6% Na20). Tests were 

carried out on properties of fresh and hardened concrete to asses its mechanical 

properties and its durability. Among the concerns relating to the durability of AAS 

concrete is the possibility of alkali-aggregate reaction, where the introduction of 

alkalis to the concrete presents a potential risk. The hydration products of AAS 

concrete will be investigated. 

1.2 Objectives and Scope of Work 

Alkali-activated slag is not a widely known and used construction material. 
Most of the research done has been at the material development stage dealing with 

paste and mortar specimens to study the material's chemistry and microstructure. 
Information pertaining to the concrete engineering properties and durability of AAS 

concrete is limited. Therefore this study is an attempt to add to the knowledge at this 

level. 

The scope of the work covers a normal strength OPC control mix, a blended 

OPC/Slag mix having similar strength as OPC but with a lower water demand, a 

second OPC control mix having the same w/c ratio as the OPC/Slag mix, and several 

alkali-activated slag mixes with the same binder content as the second control mix and 

the same w/c ratio. These comprise four mixes with slag as the sole binder activated 
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Chapter I Introduction 

with two forms of water glass each with a dosage of (4,6% Na20). The two types of 

water glass consist of one in a solution form and the other in solid granules form. 

Different curing regimes were used including normal water curing, air dry curing and 

accelerated autoclave heat curing. 

The overall aim of the project was to investigate the potential of alkali-activated slag 

as the sole binder in structural grade concrete by studying its main properties and 

performance in comparison with portland cement and portland cement/ slag concrete. 

The following objectives are set for the work: 

1. Study the properties of alkali-activated slag concrete using sodium silicate 

(water glass) as an activator including the fresh concrete properties (setting 

time, workability and air content) and engineering properties (compressive 

strength, splitting tensile strength, flexural strength, none-destructive tests 

which include dynamic modulus of elasticity and ultrasonic pulse 

velocity). 

2. Drying shrinkage of AAS concrete will be investigated and factors 

affecting it will be studied. 

3. Study the durability of alkali-activated slag concrete including gas 

permeability, chloride penetration resistance, porosity, and carbonation 

and alkali-silica reaction. 

4. Monitor the hydration of alkali-activated slag mortars and pastes using 
XRD and TGA and study the hydration products. 

1.3 Thesis Outline 

The research work is reported in this thesis in 9 chapters. Following this 

introductory chapter, the other chapters are organized as follows: 

3 



Chapter ! Introduction 

Chapter -2 presents a review of the literature available on the subject of 
Alkali-Activated Slag Concrete including definition of the materials and the 

properties of the concrete. 

Chapter -3 presents the materials and experimental design and covers the mix 
proportions, and research methodology employed. 

Chapter -4 covers properties of fresh concrete such as workability aspects 
represented by slump, air content, and setting time. 

Chapter -5 is dedicated to microstructural properties of the concrete with the 

pore size distribution studied through MIP, and the hydration products examined 

through X-ray diffraction (XRD) and thermogravimetry (TG). 

Chapter -6 is dedicated to the engineering properties of concrete including 

compressive strength, splitting tensile strength, flexural strength, none destructive 

tests which include dynamic modulus of elasticity and ultrasonic pulse velocity and 

the drying shrinkage behavior of the different mixes and factors affecting it. 

Chapter -7 deals with the permeation related properties of the concrete 
including porosity, oxygen permeability and rapid chloride permeability. 

Chapter -8 covers the study of carbonation of concrete and the alkali silica 

reaction with the use of reactive aggregates. 

Chapter -9 presents the main conclusions and recommendations for future 

research. The list of references is presented at the end of the thesis. 
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Chapter2 Review of Lftemiure 

2. REVIEW OF LITERATURE 

2.1 Introduction 

The purpose of this chapter is to review and discuss the available literature on 

alkali-activated slag concrete, studying the research done on the different variables 

related to its application and the constraints to its use. The area of further research is to be 

looked into to open new avenues to enhance the knowledge on this new construction 

material. 

2.2 Slag 

Slags are by-products of the metallurgical industry. They are normally composed 

of calcium-magnesium aluminosilicate glass. Although the oxides of calcium, 

magnesium, aluminum and silicon often make up to 95% of slag composition, the precise 

composition of slag varies according to the raw materials and the industrial process. The 

cooling process and chemical composition are the two factors that significantly influence 

the structure and properties of slag. Blastfurnace slag refers in particular to the slag 

produced from the manufacture of pig iron. If the molten slag is quenched sufficiently 

rapidly it forms a glassy material called "granulated blastfumace slag"or ggbs for short. 

Slag has latent hydraulic properties. If ggbs is placed in water alone, it dissolves to a 

small extent, but a protective film deficient in Ca2+ is quickly formed, which inhibits 

further reaction. Reaction continues if the pH is kept sufficiently high. The pore solution 

of a Portland cement, which is essentially one of alkali hydroxides, is a suitable medium. 

The supply of K+ and Na+ ions is limited, but these ions are only partially taken up by the 

hydration products, and the presence of solid calcium hydroxide ensures that the supply 

of OH- is maintained. The slag can be similarly activated by OH- ions supplied in other 
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Chapter2 Review of Literature 

ways, such as the addition of sodium hydroxide or silicate (Taylor, 1997). This shows 

that slag can be activated by OPC, which is most common, and also by chemical alkalis 
introducing the concept of alkali-activated slag (AAS). AAS cement is composed of 

ground slag and an alkali component. The slag may be granulated blastfumace slag, 

electrothennal furnace phosphorus slag and steel slag. Granulated blastfurnace slag is the 

most common type of slag used. The alkali can be alkali hydroxide (MOH), non silicic 

salts of weak acids (M2CO3, M2S, MF), and silicic salts of M20. (n)SiO2 type as well as 

combinations of these, where M stands for an alkali metal such as Na, K, Li. Of these 

alkalis, sodium silicate (Na2SiO3) is the most effective activator (Wang ei a!., 1995). 

Alkali-activated slag cements using granulated blastfurnace slags were invented 

by Glukhovsky and patented in 1958. A review given by Glukfiovsky (1980) commented 

that alkali-activated slag cements had been introduced into construction practice in the 

USSR in 1960 and in Poland in 1972. Alkali-activated slags have been employed on a 
limited scale as oilwell cements and as a roof support system in mine applications in 

South Africa and Canada. Industrial experience of precast products utilizing these 

cements is widespread in Eastern Europe, Finland and France (Tailing and Brandsteir, 

1989). Research in China has confirmed the high strength of these systems (Wang, 1991). 

2.3 Factors affecting Slag Activation 

The factors affecting slag activation can be summarized as: 

1. Type of slag 

2. Fineness of slag 

3. Type of Activator 

4. Method of Adding Activator 
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5. Dosage 

6.. Modulus of Waterglass 

7. Influence of curing 

These are discussed in the following sections. 

2.3.1 Type of slag 

The chemical composition of the slag plays a major role in its hydraulic activity 

and consequently the microstructure and properties of the hardened concrete produced. 
Neutral or alkaline (basic) are much preferred over acidic slags. The high alumina content 

results in high early strength where a greater amount of slag is reacted and quick setting 

occurs. Therefore the A1203/SiO2 ratio is considered to be a quality modulus and slags 

with 12 to 15% of A1203 are preferred. Minor constituents in slag, such as P, F, S, Mn and 
Ti, often have significant influence on slag quality. The increasing content of Fe203 

decreases the reactivity of the slag (Tailing and Brandstetr, 1989; Wang et al., 1994). As 

to mineralogical composition the crystalline compounds found in the slag, and how 

amorphous it is, play an important role in its reactivity. This differs with the slag sources 

and means of cooling or quenching. The crystalline forms of the slag can be determined 

by X-ray diffraction techniques (Tailing, 1989). 

23.2 Fineness of slag 

The reactivity of ground slag depends on the fineness of grinding and more precisely on 

the particle size distribution and the specific surface area (Tailing and Brandrtetr, 1989). 

It is known that increasing the fineness of ggbs improves the strength and decreases the 

setting time of slag mixes. Wang suggests values of slag fineness for alkali-activated slag 
in the range of 400-550 m2/kg (Blaine) (Wang et al., 1994). 
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2.3.3 Type of Activator 

The activators used include OPC, NaOH, Na2SO4, Na2CO3, and Na2SiO3 (water 

glass), which is according to several researchers the best activator (Glukhovsky, 1980; 

Wang et al., 1994; Malolepszy and Petri, 1986; Douglas et al., 1991). 

23.4 Method of Adding Activator 

The alkali activator is added to the slag in three ways: in solution, in the solid 

state ground together with slag, and in the solid state where the alkali activator is added 

separately as one of the mix constituents. The addition of alkali in the solid state not only 

results in much lower strengths than the solution form, but also produces much 
fluctuation in the test results which can be attributed to lower solubility in the mix and 

availability of alkali for reaction. The solid alkali might absorb moisture during storage, 

which will inhibit its activating action. Using hydrous waterglass/sodium metasilicate 
(containing chemically bound water) in the solid form produces very low or even zero 

strength under normal curing conditions, but, when the same alkali is added in solution, 

similar levels of activation can be achieved as in the water glass solution. When Na2CO3 

is used some results show that grinding Na2CO3 together with slag gives high strengths 

similar to the addition in solution form. When steam/autoclave curing is used the 

variation in strength with the method of adding the alkali is somewhat reduced. NaOH as 

an activator works in both ways, solution and solid due to its high solubility (Wang et al., 
1994). It can be said in general that adding the alkali in solution is better from the 

strength point of view but other criteria such as setting time and workability must be 

considered, as discussed in detail later. 
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23.5 Dosage 

Different researchers attempted to arrive at an optimum dosage of alkali but the 

results are inconsistent. Isozaki et al. (1986) reported an NaOH dosage in the range of 1- 

10% (by slag weight) while Parameswaran and Chatterji (1986) arrived at a dosage of 2- 

5%. All agree that the higher the dosage the better the strength, although Metso and 

Kajaus (1983) showed that the variation of NaOH dosage in the range of 3-11 % has little 

effect on strength. Another way of expressing the dosage of the alkali is the Na2O content 

with respect to slag. The more Na20 used the higher the strength. However, when Na20% 

reaches a certain value (depending on slag, activator and curing condition), the strength 

no longer increases with higher dosages, but some detrimental properties such as 

efflorescence and brittleness are increased because of the presence of more free alkali. 
Wang et al. (1994) recommended a dosage of 3.0 - 5.5% Na2O with waterglass as an 

activator, whereas Gifond and Gillot (1996) have used 6.1%Na2O. 

2.3.6 Modulus of Waterglass solution 

The modulus of the waterglass solution refers to the molecular ratio SiO2: Na2O 

known as the silica modulus (MS) where these main components are responsible for the 

extent of hydration and the strength gain. The alkali activates the slag where the silica 
SiO2 forms the silica gel. This means that for a fixed Na2O content the more silica, the 

higher the strength. This means the higher modulus gives higher strength, but there are 
limiting factors where the solid content in the solution has a limit according to the 

solubility. Therefore for a high modulus more solid is required to achieve a higher dosage 

of Na20. Also waterglass with higher modulus gives rapid setting in alkali activated slag 

concrete. An optimum modulus is needed. Tailing andBrandstetr (1989) state that better 

results for AAS concrete mixes are achieved using waterglass with M within the range 

from 1 to 2, while Wang et al. (1994) recommended an M5 in the range from 1 to 1.5. 
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2.3.7 Influence of curing 

Wang et al. (1994) state that the hydration of slag in AAS cement systems is 

sensitive to curing temperature, where high temperature leads to the formation of some 

crystalline products, whereas the hydration products of AAS at normal temperature are 

generally amorphous. In their study they compared accelerated curing of AAS cement 

with normal cured OPC and concluded the following points: 

a) The effectiveness of accelerated curing is more pronounced with acid and 

neutral slags or weaker alkaline activators. For example, an AAS cement 
based on phosphorus slag (neutral or acid in nature) and waterglass having a 

strength of 30 MPa under normal curing can reach 62 MPa after steam curing 

and 71-76 MPa after autoclave curing, whereas an AAS cement based on 

granulated blastfurnace slag (ggbs) (basic in nature) and waterglass solution 

whose strength is 80 MPa under normal curing can only go up to 85-95 MPa 

after steam or autoclave curing. 

b) Using finely ground slag or a strong activator such as NaOH reduces the 

effectiveness of accelerated curing. 

c) Accelerated curing can greatly improve the durability, quality fluctuation and 

the occurrence of efflorescence of the products. 

Kuli et al. (1982) used autoclave curing with NaOH activated slag mortars and found an 

increase in compressive strength compared to normal water cured mortars. 
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2.4 Properties of Alkali Activated Slag Concrete 

2.4.1 Fresh concrete properties 

2.4.1.1 Setting time: 

Various reviewed literature presented rapid setting as a practical problem 

associated with AAS concrete. The retarders, known to be effective with Portland 

cement, have no effect with alkali-activated slag due to the different chemical 

composition of the slag cements. Bakharev et al. (2000) noted in their work that using a 

superplasticiser caused a quick set in the concrete. The reason for this, according to the 

authors, is the polar molecule of the superplasticiser that can be adsorbed rapidly on 

charged particles. This increases the zeta-potential of the hydrating particles and 

promotes a quick set. 

Wang (1991) stated that alkali activated slag cements will start to set in 15 

minutes when producing concrete of > 70 MPa compressive strength without using 

admixtures. The author cited different sources in the former USSR being unable to solve 

the problem of too rapid setting for more than 30 years. He also reported that attempts 

were made in China to retard the setting time of alkali-activated slag cement using 

surface active agents, dispersants, and water reducers often used in Portland cement but 

these attempts were not successful. 

Tailing et al. (1989) recommended slaked (hydrated) lime as the most convenient 

retarding agent, with the recommended amount of 2-5% Ca(OH)2 of the ground slag in 

suspension together with the alkali solution. They also pointed out that an increase in 

water to binder ratio would obviously have a retarding effect. 

Quing-Hua and Sarkar (1994) tested waterglass alkali-activated slag pastes and 

concluded that adding hydrated lime can increase the setting time where the setting time 
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is less for higher Na2O dosage . Other researchers (Douglas et al., 1991; Gifford and 
Gillot, 1996; Collins and Sanjayan, 1999) have also used hydrated lime successfully to 

control the setting time. Brough et al. (2000) used malic acid in their work with AAS 

mortars as a retarder. 

2.4.1.2 Workability: 

Since rapid setting is a problem faced with use of AAS concrete, workability will 

suffer also. The slump decreases with the increase in the dosage of activator or with the 

use of higher modulus in the case of water glass activated concrete. It can be noted that 

initial slump might be acceptable due to the mixing action but a quick loss of slump will 

occur (Tailing and Brandstetr, 1989). The use of hydrated lime to control setting as 

explained earlier helps to provide acceptable workability in terms of slump (Douglas et 

al., 1991, Gifford and Gillot, 1996; Collins and Sanjayan, 1999). Collins and Sanjayan 

(1999) reported that using solid sodium silicate powder provides better workability and 

minimal slump compared to liquid sodium silicate solution. 

2.4.2 Hydration of Alkali -Activated Slag 

The hydration products in the alkali-slag system are known to be C-S-H gel with a 

low Ca/Si ratio, zeolite type minerals and silica gel (Xu et al., 1993). Wang and Scrivener 

(1995) also reported in their study on the hydration of alkali-activated slag pastes that a 

poorly crystalline C-S-H(I) gel is present and they stated that Al can be incorporated into 

C-S-H solid solution. They observed that silica gel is formed in the initial stages of 

hydration of slag activated with waterglass solution. This gel was considered one of the 

major factors contributing to the rapid setting of the paste of slag activated with 

waterglass solution. They found that no zeolite phases and no other Na-containing 

crystalline phases fomed. Tailing and Brandstetr (1989) commented that it is 

advantageous in the structure of hardened concretes and mortars to have a certain part of 

the components in the crystalline structure preferably in the form of needle shaped stable 
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crystals, acting as micro reinforcement. The prevailing amorphous C-S-H gel structure in 

AAS systems converts with age into microcrystalline formations, which lead to an 
increase in compressive strength. Tailing and Brandctetr (1989) considered this 

amorphous gel structure as a disadvantage in comparison with Portland cement concretes 

and they recommend some additives (Portland cement, feldspar, crystalline high-lime 

slag, etc. ) to improve it. 

The microstructure of the alkali-activated slag concrete matrices is highly 

influenced by the type of slag, type of activator, curing regime and temperature. 

The heat output of AAS cement is about one third to half that of OPC and is lower 

than that of low-heat Portland cements. This is due to the overall hydration products 
having a lower Ca/Si ratio, thus smaller hydration energy than those in OPC (Wang et al., 
1994). 

2.4.3 Engineering Properties 

2.4.3.1 Strength of Alkali-Activated Slag Concrete 

High compressive strength can be achieved with AAS concrete using optimum 

conditions in terms of activator dosages and quality control. Strengths of AAS concrete 
from 60 MPa to 150 MPa can be achieved without chemical additives. High early 

strength can be achieved with AAS systems (Wang et al. , 1994). The effect of curing on 

strength development was discussed earlier. Collins and Sanjayan (1999) reported 

achieving higher compressive strength with AAS concrete than OPC concrete for the 

same water/binder ratio and the same binder content and also higher flexural strengths. 
Douglas et al. (1991) reported a high one day compressive strength, for example 39 MPa 

after one day reaching 63 MPa in 28 days. 
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Strength development of AAS concrete is difficult to control compared to OPC 

concrete. Strength variations occur due to the sensitivity of this type of concrete to 

different variables that make the control of mix quality difficult and no standard or 

empirical method of design has been agreed as yet. 

2.4.3.2 Drying Shrinkage 

Andersson and Gram (1987) noticed that a large number of micro cracks 
developed in the material and the shrinkage was larger in AAS mortar than for ordinary 
Portland cement mortar. Douglas et al (1992) reported AAS concrete with waterglass 

activator exhibits shrinkage similar or greater in extent to OPC and can be controlled by 

curing and controlling mix design. Wang et al. (1994) stated that AAS concretes based on 
NaOH and Na2CO3 may exhibit the same amount of shrinkage as OPC concrete, but 

those based on waterglass solution often undergo greater drying shrinkage due to the 

formation of silica or silica -rich gel during hydration. This silica-rich gel has a high 

water content and may dry with water loss. Collins and Sanjayan (1999) reported similar 

results with AAS concrete having higher drying shrinkage than OPC concrete. They also 

showed the effect of curing on drying shrinkage where sealed samples gave the lowest 

shrinkage followed by the bath curing for seven days, and the highest shrinkage was 

associated with the samples left to dry at low humidity from the first day. 

Kutti et al. (1992) found that AAS concrete activated by sodium silicate exhibited 
2.3 times the drying shrinkage found in OPC concrete at RH > 50%, but they noted that 

for RH>70% the drying shrinkage of AAS concrete was similar to that of OPC concrete. 

2.4.4 Durability ofAAS Concrete 

Wang (1991) cited some research carried out in China showing AAS mortars to be 

very impermeable. They also state that the pores in hardened AAS concrete are distinctly 
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smaller than those in OPC concrete. Alkali-activation ensures long-term alkalinity of 
AAS concrete, which prevents corrosion. 

Deja and Malotepzy (1989) carried out tests on AAS mortars and reported high 

resistance to sulfates and chlorides. Roy et al. (2000) reported very low chloride diffusion 

in alkali-activated cement pastes. 

Researchers Glukhovsky (1981) and Pu et at. (1991) and Wu et a!. (1993) showed 

that the strength of AAS mortars increased after 1 year in 1% - 2% MgSO4 solution and 

stayed constant for 2 years in dilute acids, HCl and H2SO4 , while OPC samples 
deteriorated in six months. Byfores (1989) used an activator (called F-activator) 

composed of 2.75% NaOH plus 1.0% Na2CO3 and reported that for the same w/b ratio 
AAS concrete showed more carbonation than OPC. They attributed this to the small 

content of hydrated CaO, which may react with incoming CO2 and also to the 

microcracking in their F-concrete. Neville (1995) stated that blended cement with high 

replacement levels of slag exhibits high carbonation rate. But since carbonation and pore 

structure are interrelated, good curing, which resulted in a more compact structure, helped 

to reduce carbonation. This also means the higher the strength, the lower the carbonation. 

Douglas et al. (1992) reported AAS concrete having good resistance to chloride ion 

penetration with ion penetration ranging from 1311 to 2547 coulombs for 28 days curing 

and from 676 to 1831 coulombs at 91 days. 

Shi (1996) presented rapid chloride permeability test (RCPT) results for AAS mortars 

using water-glass as an activator. These results were very high for the early ages 20000 

coulombs at 3 days reducing to 12000 coulombs at 7 days and further to a value around 
5000 coulombs at 28 and 90 days. 

Wang et al. (1994) reported that AAS concrete performs better under freeze-thaw 

cycles than OPC concrete. 
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Heavy efflorescence might occur in AAS concrete, where alkali salts are 
deposited on the surface of concrete when dry after being wet. This depends on the type 

of activator used and its solubility. Moist cured concrete suffers less efflorescence (Wang 

et al. , 1994). 

Although the hydration of OPC/ slag blended and AAS in concrete produces low 

Ca(OH)2, which is responsible for carbonation in OPC concrete, some researchers had 

reported higher carbonation with AAS concrete especially with low grade concretes in 

comparison with OPC concrete. This might be due to carbonation of the C-S-H. (Wang, et 

al. 1994 ; Bakarev, 2001) 

Alkali-Aggregate reaction (AAR) 

The guidlines given in the BRE digest (1988) to control AAR recommend keeping 

the level of equivalent Na2O below 0.6% and a total alkali level in the concrete less than 

3.0 kg/m3 . It recommends using slag as a cement replacement to reduce the alkali level. 

Hobbs (1982) also attributes the effect of slag to the dilution of alkali but suggested 
lowering the 3.0 kg/m3 limit to 2.5 kg/m3 for high binder content. The formation of 

expansive gel in AAR takes place only in the presence of Ca' ions (Neville, 1995). 

Therefore the absence of Ca(OH)2 is desirable to inhibit the alkali-aggregate reaction 

(AAR). Slag having less Ca(OH)2 explains fu ther its role against AAR in addition to 

reducing alkali concentration. Thomas and Innis (1998) observed a big reduction in 

expansion due to Alkali-Aggregate reaction when OPC is partially replaced by slag (25- 

65%) while maintaining Na20 at 1.25%. The effect in controlling expansion increases 

with increasing the amount of slag. 

Na2O is usually below 0.8% in OPC while it is typically 3% or more in alkali- 

activated slag systems. This presents a risk of alkali-aggregate reaction if reactive 

aggregates are used. 
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Some researchers report studies made on alkali-aggregate in AAS concrete and 

observed only slight expansion in the first period and no expansion after 28 days. Wang 

et al. (1994) cited Krivenko (1992) stating that AAS concrete suffers no AAR because 

hydration products bind 80% of the alkali at one year. Metso and Kajaus (1983) carried 

out an AAR study of AAS sand mortar by the measurement of expansion rate and found a 

maximum expansion for about 8% opal content (reactive aggregate) by total aggregate 

weight. A similar study reported by Wang (8) indicated that if the content of reactive 

silica (granulated silica glass in this case) in aggregate is higher than 3% - 4% there is a 

possibility of alkali-aggregate reaction. 

Gifford and Gillot (1996) reported results on alkali-silica reaction (ASR) and 

alkali-carbonate reaction (ACR) in alkali activated slag concrete. They observed lower 

ASR induced expansion with AAS concrete compared to OPC while the ACR induced 

expansion was higher in AAS concrete than OPC where the increased alkalinity lead to 

increased reaction and expansion which involves dedolomitization. 

Bakharev et al. (2001) found evidence of AAR in alkali-activated slag concrete 

confirmed through SEM images and expansion test for 22 months. The AAS concrete is 

more susceptible to AAR than OPC concrete of the same grade. 

2.5 Conclusions 

The following conclusions can be summerised from the literature: 

1. The AAS concrete has many advantages in its beneficial use in terms of saving 

energy and as an environmentally viable alternative to OPC concrete. 

2. The best alkali activator is waterglass (Na2SiO3) with Ms between 1 and 2 and Na2O 

dosage between 3- 6%. 
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3. The reviewed literature indicates in general that good strength and durability can be 

achieved with AAS concrete but the accomplishment of this is affected by different 

factors. The present work was an attempts to investigate some of those important 

factors in depth. 

4. The literature gives some contradictory results in tens of the alkali aggregate 

reaction with AAS concrete and this needs to be further investigated. Also the method 

of adding the activator is argued upon where the solid form provides better 

workability and the solution form provides higher strength. Some problems may be 

associated with the use of the solid form in terms of fluctuation and storage life. 

These factors were taken in consideration with the present investigation 

5. Drying shrinkage is higher for AAS concrete compared to OPC but its mechanism is 

not clear. Some literature associated high drying shrinkage mainly with waterglass 

activated-slag concretes. 
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3. MATERIALS AND EXPERIMENTAL DESIGN 

3.1 Introduction 

This chapter describes the materials used and the experimental work carried out to 

study the performance of alkali-activated slag concrete mixes with variable Na2O 

dosages, in comparison with control OPC concrete and OPC/slag blended concrete. 

The properties of materials used in this investigation to produce the different mixes 

are presented in detail, followed by the mix design, which includes the selection of 

concrete making ingredients and blending proportions. The mixing procedure and 

curing regimes used are also presented. The overall experimental programme, which 

was implemented in the investigation, is given. The specifics of the tests carried out 

for each property studied are presented in their respective chapters. Finally a 

description of the means to study the interrelationships between the different variables 

in the investigation is presented. 

3.2 Materials 

The same types of ordinary Portland cement, ground granulated blast-furnace slag, 

lime, alkali activators, fine and coarse aggregates have been used throughout the 

investigation with one exception when a special reactive fine aggregate was used for 

the alkali-aggregate reaction test. Details of each material used are given below. 

3.2.1 Cement 

Ordinary Portland cement, manufactured by Blue Circle Industries PLC (Hope 

Works), conforming to the requirements of BS 12: 1996 class 42.5 N, was used in this 

investigation. The chemical and physical properties of the cement, as provided by the 

manufacturer, are given in Table 3.1. 
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3.2.2 Slag 

The ground granulated blast-furnace slag (ggbs) used was obtained from the Appleby 

Group, Scunthorpe, UK. It complied with BS 6699: 1992. Typical chemical and 

physical properties provided by the manufacturer are shown in Table 3.2. 

3.2.3 Lime 

Hydrated lime of commercial grade was used in the alkali-activated slag 

mixtures to control the setting. The lime was added in a slurry form of equal parts (by 

weight) of lime and water. 

3.2.4 Sodium Silicate (Water-glass) 

The alkali activator used was a sodium silicate (water-glass). Two forms of 

the activator were used: 

a) A sodium silicate solution was obtained from Ellis and Everard, UK. It has a 

molecular ratio Si02: Na2O (Mg) = 1.65 with 31.8% SiO2 and 20.2% Na2O by 

weight 

b) A sodium metasilicate Metso520 solid granules from Ellis and Everard, UK, 

with a molecular ratio SiO2: Na2O (M$) = 1.00. 

The two activators are shown in Figure 3.1. 

Precaution should be taken when storing of the solid activator. It must be kept away 
from moisture since it is hygroscopic or it will be coalesced in lumps as shown in 

Figure 3.2. 

3.2.5 Aggregates 

Medium graded sand and 20-mm uncrushed gravel complying with BS 

882: 1992 were used in this investigation. The sieve analysis results for the fine and 
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coarse aggregates are shown in Figure 3.3. The relative density of the aggregates is 

shown in Table 3.5. 

3.2.6 Water 

Yorkshire water, potable tap water available at the laboratory was used 

throughout the investigation. 

3.3 Mix Design Procedure 

The proportioning of a concrete mixture is based on determining the quantities of the 

ingredients which, when mixed together and cured properly will produce reasonably 

workable concrete that has a good finish and achieves the desired strength when 

hardened. This involves different variables in terms of water to cement ratio, the 

desired workability measured by slump and cement content and aggregate 

proportions. 

3.3.1 Designing the Control Mixes 

The work started by designing the OPC control mix. This was done using the BRE 

method targeting a 40 MPa 28 day compressive strength and a slump of 60 mm. 

Using the values obtained from this method several trial batches were carried out to 

achieve the target strength with a cohesive workable mix. The w/c ratio for that mix 

was 0.55. The OPC/Slag blended mix was arrived at in a similar manner with 

different trials of 50,60,80 % cement replacement levels of slag. Since slag has less 

water requirement than OPC, to obtain a cohesive workable mix less water is used. 

The mix that satisfied the requirements was an OPC/SIag slag with 60% replacement 
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level and a w/c ratio of 0.48. To compare the mixes on equal w/c ratio a second OPC 

control mix was used with the same binder content and same w/c ratio. 

3.3.2 Alkali-Activated Slag Mixes 

The alkali-activated slag mixes based on the second OPC control mix having the w/c 

ratio of 0.48. The activator dosages chosen in the recommended Na2O range were 4% 

and 6%. The mixture calculations were made to calculate the required amount of 

activator by weight, which will provide the chosen dosages. The weight of the solids 

is considered as part of the binder content and the water in the activator is also taken 

as part of the total mix water. The same approach was followed in the case of the 

added lime slurry. 

3.3.3 Mix Proportions and Mix Notations 

Based on the considerations discussed above the details of the different mixes are 

presented in Table 3.6. The mortar and paste mixtures are designed to have the same 

mortar or paste fractions of the concrete mixes. 

The notation for the mixes is as follows: 

CM1: PC control mix with w/c = 0.55 

CM2: PC control mix with w/c = 0.48 

SLG60: 60% ggbs + 40% OPC mixture with w/c = 0.48 

SS4: Sodium silicate alkali-activated slag mixture with Na2O content of 4% with w/c 
= 0.48 

SS6: Sodium silicate alkali-activated slag mixture with Na2O content of 6% with w/c 
= 0.48 

MET4: Sodium metasilicate alkali-activated slag mixture with Na2O content of 4% 

with w/c=0.48 
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METE: Sodium metasilicate alkali-activated slag mixture with Na2O content of 6% 
with w/c = 0.48 

3.4 Mixing Procedure 

The fine and coarse aggregates were spread out to dry before the mixing day and 

stored in plastic containers ready for use. The mixing procedure was performed 

according to the guidelines set out in BS 1881: Part125: 1986. 

3.4.1 Paste Mixtures: 

The mixing was done in a Hobart mixer having 2-litre capacity. 

i. Dry mixing of OPC and slag for 30 seconds. 

ii. Half of the mixing water, with the activator dissolved in it, was added during 

the next 30 seconds. 

iii. The lime slurry was added during the next 30 seconds of mixing. 
iv. The remainder of the mixing water was added and all the above procedure is 

carried out at the medium speed of the mixer. 

v. Mixing was continued for further 90 seconds at the medium speed. 

vi. The mixer was then stopped and the mixture scraped off the sides of the bowl 

and hand mixed before mixing for additional 2 minutes at high speed setting. 

vii. The total mixing time was 5 minutes. 

3.4.2 Mortar and Concrete Mixtures: 

The mortar was mixed in a horizontal pan mixer having 20-litre capacity. Two 

horizontal pan mixers of capacities 50 litre and 170 litres were used according to the 

batch size. The mixing was done as follows: 

i. Dry mixing of the material in the order of coarse aggregate (not used with 

mortar), OPC and or slag, sand for 30 seconds. 
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ii. Half of the mixing water, with the activator dissolved in it, was added during 

the next 30 seconds. 

iii. The lime slurry was added during the next 30 seconds of mixing. 

iv. The remainder of the mixing water was added and the mixing was continued 

for further 90 seconds. 

v. The mixer was then stopped and the mixture scraped off the sides of the pan 

and hand mixed before mixing for another 2 minutes. 

The total mixing time was 5 minutes. 

3.5 Casting and Curing 

The concrete is cast in pre-oiled moulds in different sizes as required by the tests . It 

was noticed that alkali-activated slag concrete sticks hard to the moulds (see Figure 

3.4). Therefore oiling of the moulds is very important and a proper release agent must 

be used. 

Three curing regimes were used: 

1) Curing in water (WC): The moulds were covered after casting with wet burlap and 

a polyethylene sheet until demoulding the next day. The specimens were stored in 

water kept at 20 ±2 °C. 

2) Dry curing (DC): The specimens were kept in the moulds and sealed in 

polyethylene bags for three days before demoulding. The specimens were then 

stored in a controlled room kept at 20 ±2 °C and 50% RH. 

3) Autoclave curing (AUT): This is a form of accelerated heat curing. The moulds 

were covered after casting with wet burlap and a polyethylene sheet until 

demoulding the next day. The specimens were then placed on a steel grid at the 

bottom of the autoclave, which contained water to a level below the specimens 

and then was sealed. The heating cycle was started to elevate the temperature from 
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room temperature of 20 ±2 °C up to 150 °C at a rate of 30 °C per hour and then 

maintained at that temperature for 10 hours and then heating was stopped and the 

temperature was allowed to drop back to room temperature. The autoclave was 

then opened and the specimens moved to the water-curing tank at a temperature 

20 ±2 °C and kept until the time of testing at the different ages prescribed by the 

test procedure. 

3.6 Research Programme and Techniques used 

The research programme has been divided into six phases each phase presents a set of 

investigations carried out on the properties of concrete. 

Phase I 

A pilot study was carried on sets of trial mixes of concrete and mortars to 

study the following: 

a) An OPC control mix designed to get a 28 day compressive strength of 40 

MPa. 

b) Different trials on OPC/Slag blends at 50,60,80 % replacement levels to study 

the strength development up to 28 days. 

c) Different mortar mixes with OPC, OPC/Slag, and alkali-activated slag to study 

the setting time and means to control it and also to study the compressive 

strength development up to 28 days. 

Phase II 

The fresh concrete properties were studied so that alkali-activated slag 

concrete could be compared to OPC and OPCIslag. This included: 

a) Measuring the slump and air content in accordance with BS 1881. 

b) Studying workability using the two-point test developed by Tattersall (1991). 
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c) Measuring the setting time in accordance with BS 5075: Part 3. 

Phase III 

Studying the engineering and durability related properties of alkali activated slag 

concrete under different curing regimes at various ages. This included the following: 

a) Assessing the development of compressive strength of the concrete in 

accordance with BS 1881. 

b) Measuring indirect tensile (splitting cylinder) strength, flexural strength, and 
dynamic modulus of elasticity and ultrasonic pulse velocity of concrete in 

accordance with BS 1881. 

c) Investigating the absorption/porosity of the concrete in accordance with 
RILEM CPC-1 1.3 (1984). 

d) Investigating the oxygen permeability using a permeameter developed by 

Cabrera and Lynsdale (1988). 

e) Assessing the rapid chloride permeability of concrete, in accordance with 
AASHTO T 227 (also adopted as ASTM C 1202 (1991)). 

Phase IV 

Assessing the durability related properties of alkali activated slag concrete, which 

included: 

a) Investigating the potential for alkali-aggregate reaction by using reactive 

aggregates. The test is done in accordance with BSI Draft DD218: 1995. 

b) Investigating the carbonation depth after I year. 
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Phase V 

Studying the hydration of alkali-activated slag concrete which included 

a) Studying the hydration products using X-ray diffraction XRD. 

b) Monitoring the extent of hydration using thermogravimetric analysis (TGA) at 

various ages. 

Phase VI 

The last phase of the work included: 

a) Analysis of the data and studying the correlations between the properties 
investigated using the experimental results obtained from the different tests 

carried out on this research study. 

b) Thesis write-up, and arriving at the conclusions and recommendations for 

further research. 

3.7 Analytical Method 

The analysis of the data involved the correlation between the various investigated 

properties. Regression analysis of the data has been carried out to investigate the 

relation between different variables affecting a specific property under study. 
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Table 3.1 Chemical and Physical Properties of Cement * 

Oxide Percent Physical Properties 

SiO2 20.7 Specific Surface: 331 m2/kg 

A1203 5.7 Average particle size: 10µm 

Fe203 2.3 Coarse particles (>45 µm): 11.2% 

CaO 64.8 Specific gravity: 3.14 

MgO 1.1 Loss on ignition: 0.92% 

SO3 3.21 Colour: Steel grey 

Na2O 0.19 

K20 0.6 

* Provided by the mmufacturer 

Table 3.2 Chemical and Physical Properties of ggbs 

Oxide Percent Physical Properties 

Si02 35.84 Specific Surface: 401 m2/kg 

A1203 13 Specific gravity: 2.91 

Fe203 0.55 Colour: White 

CaO 39.53 

MgO 8.28 

SO3 0.1 

N20 0.35 

K20 0.5 

* Provided by the manufacturer 
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Table 3.3 The properties of aggregates 

Properties Sand Gravel Thames Valley 
Sand 

Relative Density 

- Oven dried 2.59 2.58 2.60 

- Saturated and Surface dried (SSD) 2.62 2.61 2.63 

- Apparent 2.66 2.65 2.66 
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Figure 3.1 The waterglass activators 

Figure 3.2 Effect of moisture on the solid granules waterglass activator 
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Figure 3.4 Difficulty in demoulding of AAS concrete 
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Chapter 4 Properties of Fresh Concrete 

4. PROPERTIES OF THE FRESH CONCRETE 

4.1 Introduction 

The use of alternative cementitious materials, such as granulated blastfurnace slag, 

whether in partial replacement of cement or as the sole binder as in the case of alkali- 

activated slag, will greatly influence the rheological properties of concrete. The aim of 

this part of the investigation was to study the fresh concrete properties influenced by 

the incorporation of slag and the addition of the alkali activators. 

This chapter reports on the workability of the concrete mixes based on their slump 

and slump loss with time and workability measure by two point test. Initial and final 

, setting times of standard mortars have been,. determined to present the different 

attempts made to control the setting time for alkali-activated. slag mortars. Then the 

setting time results for the concrete mixtures are presented, followed by the air 

content of the concrete. The chapter concludes with the main points summarizing this 

investigation. 

4.2 Workability 

The workability of concrete is one of the most important properties of fresh concrete. 

It describes the homogeneity and the ease of mixing, handling, placing, compacting 

and f nishing of the concrete (or mortar). The term that has traditionally been used in 

concrete technology to embrace all these necessary qualities is the workability or 

rheology of fresh concrete. 

According to Tattersall (1991), the fresh concrete must be of a suitable composition 

in terms. of quality and quantity of cement,. aggregate_and admixtures and must also be- 

capable of- 
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a) Being mixed satisfactorily and transported by one or more of a variety of 

methods including dumper truck, mixer truck, conveyer belt, and pumping. 

b) Flowing into - all, corners - of the mould or. formwork to - fill it completely, a 

process that might-be-difficult with the-presence-of odd shaped or complex 
sections or areas of congested reinforcement. 

c) Being compacted to expel as much entrapped air as possible, with or without 
the use of machine methods including extrusion; vibration and pressure. 

d). Providing- a- good surface finish-from-the formwork, without honeycombing, 

being finished easily by trowelling or other means of finishing. 

A. 2.1 Workability tests 

There are different tests for the workability of concrete that are adopted in concrete 

practice. The use of any test is chosen based on the following inter-dependent factors: 

" The concrete type; its properties and the desired level of workability, wlc ratio, 

and use of admixtures. 

r The application: whether used in floors or slabs or columns and the formwork 

used: 

" The location of the casting; which affect the means of delivering of concrete 

whether there is a need for pumping for high altitudes or different equipment. 

34 



Chapter 4Properties of Fresh Concrete 

The tests most commonly used are: 

" Slump 

" Compacting factor 

" Vebe time 

" Flow table 

" Two-point test 

4.2.2 Slump Test 

Slump was measured-for all concrete mixes in accordance with BS 1881: Part102 
(1983). 

4.2.2.1 Results and Discussion 

The. results. of. the slump , testsare, presented, in Table. A. 1. The slump loss with time 

was-also measured for. some mixes and-presented also in Table 4.1. The results show 

acceptably workable concrete with the CM2 having the lower slump than CMI which 

has a higher wlc ratio. SLG60 had a slump higher than CM2 having the same wIc 

ratio- The AAS concrete. with high Na2O dosages starts with a high slump and loses 

the slump more quickly. The phenomenon of thixotropy is clear with AAS concrete, 

which makes bonds that are breakable by remixing. 

4.2.3 Two-point Test 

The two-point workability test was- carried out on all concrete mixes made with w/c 

ratio- of 0.48- using a MK II apparatus (available in the laboratory) as prescribed by 
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Tattersall (1991). The experimental set-up is shown in Figure 4.1. The concrete test 

sample was kept in a cylindrical bowl and was sheared by a suitable impeller, which 

was driven by an electrical motor operating through an infinitely variable hydraulic 

transmission and a reduction gear. The pressure developed in the oil in the hydraulic 

transmission was measured by Budenburg pressure gauge. The pressure produced by 

concrete shearing was obtained from the total pressure by subtracting the pressure 

produced by machine idling. The net value may be converted into impeller torque 

after calibration. The impeller torque T and speed N are found to be related by the 

linear equation: 

T-g+hN 

When T- is torquc (Nm) 

N- isspccd(rpm) 

g- is intcrccpt ofthc torque axis 

it - is reciprocal of the slope of the line. 

By measuring the torque produced on an impeller rotating in fresh concrete at various 

speed settings, the values of g and h can be determined, which therefore define the 

workability of a particular concrete mix. Different concrete mixes at different 

workability produce different values of g and h. The resemblance of the equation to 

the theological equation of Bingham flow is often noted. The theoretical justification 

that fresh concrete approximates to the Bingham model and that the two constants g 
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and h are directly proportional to the Bingham constants To and µ has been provided 

by Tattersall and Banfill (1983), 

The rheological properties (g and h) relate to the flowability of the concrete. The 

lesser value of g. indicates more flowability of the concrete under its own weight and 

lower value. of h depicts less viscosity of the concrete and thus the fast velocity of the 

flow. 

4.23.1 Results and discussion 

The. results of the two point workability test for the OPC, OPC/slag, and AAS mixes 

were plotted in accordance with the test procedure and presented in Figure 4.2. The 

values for g and h for the different mixes are presented in Table 4.2. 

Comparing the g values for the mixes indicate that the (CM2) mix has the lowest 

workability and the less flowable, The OPC/slag mix (SLG60) is more flowable 

compared to CM2, followed by SS6 and the SS4 and MET4 and MET6 have similar 

workability. 

4.3 Setting Time 

The setting of cement paste or concrete refers to the change from a fluid to a rigid 

state. After adding water to cement and mixing them, the workability of cement paste 

remains unchanged, and this period of time is referred to as the ̀ dormant period'. At a 

certain stage, the paste gradually starts to stiffen and becomes solid. The time taken 

for cement paste or concrete to stiffen is known as setting time. The setting time is 

classified into two arbitrary stages: initial and final setting times. The cause of setting 

is due to selective hydration of the anhydrous cement phases. During setting, the 

temperature of the cement paste changes. The initial set is accompanied by a rapid rise 

in temperature and the final set corresponds to the peak temperature. The initial 

setting time represents the length of time in which cement paste or concrete remains 

plastic and workable. The final setting time corresponds to the time required for the 
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matrix to reach the stage where it may be regarded as a rigid solid and starts to gain 

mechanical strength. During the time between the initial set and final set, the concrete 

is stiff and cannot be re-shaped. 

4.3.1 Test Procedure 

The setting times were determined using a hand held penetrometer, manufactured by 

ELE International. The apparatus consists of a penetration plunger that is supported 

by a spring and has a tip area of 32.26 mm2. The plunger is steadily pushed into the 

sample to a depth of 25.4 mm, and the penetration resistance can be noted from a 

scale attached to the shaft of the penetrometer. 

Determination of the initial setting and final setting time was carried out for mortar 

mixtures prepared to overcome the quick set of alkali-activated slag systems. They 

were eventually carried out on mortar sieved from the concrete mixes. 

The initial and final setting time reported correspond to 500 kPa and 3500 kPa 

respectively, in accordance with BS 5075: Part 1 (1985). The penetration resistance 

was determined in 30 minute intervals after casting until the final setting time was 

reached. In order to prevent moisture loss the specimens were covered with 

polyethylene sheets during the test. 

4.3.2 Results and Discussion 

4.3.2.1 Controlling the setting time 

An initial study was carried out on standard mortars of ratio cement: sand 1: 3 to 

evaluate the means of controlling the quick setting time of alkali activated slag 

concrete. Conventional retarding agents were tested without any success. 
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The effect of hydrated lime in controlling the setting time is reported and adopted by 

several researchers reported earlier in the literature review. Hydrated lime was used to 

retard the setting or extend the setting time. The relation between the mortars setting 

time and the % lime for the two activators is shown in Figure 4.3. Figure 4.3 (a) 

shows the effect of adding lime on the setting time using a sodium silicate solution 

activator at a w/b ratio of 0.48. Without lime both for 4% Na20 and 6% Na2O mortar 

set very quickly. The addition of lime at 4% of slag weight increased the setting time 

for the 4% Na2O mortar to over 4 hours while it did not affect the mortar with 6% 

Na2O. Increasing lime to 6% raised the setting time for the 6% Na2O to almost 3 

hours while it decreased it for the 4% Na20 mortar. It is therefore not useful to 

increase the lime in this latter case. A similar trend is observed for the mortar with a 

higher w/b ratio with slightly higher setting time without the addition of lime (Figure 

4.3 (b)). 

Figure 4.3 (c) shows that there is no need to add lime for metasilicate activated slag 

mortars with Na2O content of 4%, while 4% lime addition is adequate to increase the 

setting time for the 6%Na2O mortars. 

4.3.2.2 Results for the concrete mixes 

After deciding on the best dosage of lime needed, this finding was utilised in the 

concrete mixes. The initial and final setting results for the concrete mixes are 

presented in Figures 4.4 and 4.5. The results show that the OPC mix with higher w/c 

ratio had longer setting time compared to the other OPC control mix. Among the 

mixes of the similar w/e ratio and binder content the addition of slag prolongs the 

setting time. Alkali-ctivated slag mixes had acceptable setting times through the use 

of hydrated lime with the mortars having higher the Na2O dosage which has shorter 

setting time otherwise. The silicate modulus of the activator is also a factor. The 

sodium silicate activator (iv. =1.65) in the mixes SS4 and SS6 gave shorter setting 

times than those for the Metasilicate activator (M., 1) in the mixes MET4 and MET6. 
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4.4 Air Content 

The air content of concrete has great importance since the presence of voids in 

concrete greatly reduces its strength: 5% of voids can lower strength by as much as 

30%, and even 2% voids can result in a drop of strength of more than 10% (Neville 

1995). Nevertheless it might be required in severe environmental conditions with the 

risk of freezing to have a higher volume of voids to allow water more space to expand 

without causing damage. In the present investigation air entraining agents were not 

used. 

4.4.1 Test Procedure 

The air content was determined in accordance with BS 1881: Part 106 (method B). 

The test was carried out 30 minutes after mixing, according to the time interval 

specified in BS 5075: Part3 (1986). The results reported the volume of air as a 

percentage of the volume of concrete. 

4.4.2 Results and Discussion 

The air content values are shown in Figure 4.6. The result show values of air content 

of alkali-activated slag concrete comparable to the control mixes. Since air- 

entrainment is not required, the air content values measured were acceptable and 

within the range for normal concrete . 
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4.5 Conclusions 

The main conclusions drawn from the present investigation are summarised as 

follows: 

1) Stag requires less water for the same workability level. Therefore the stag 

replacement mix SLG60 had higher slump compared with CM2, where both 

mixes have the same w/c ratio and same binder content. 

2) Alkali activated slag concrete has good workability comparable with OPC and 

OPC/slag concrete. 

3) AAS concrete sets rapidly if not controlled by for example adding lime. 

4) The higher the dosage of Na20, the lower the slump. 

5) The higher the silicate modulus of the activator the less workable is the 

concrete in terms of its slump, and also the setting time is shorter. 

6) The air content of all the mixes was acceptable. 

41 



Chapter 4 Properties of Fresh Concrete 

Table 4.1 Slump Results for Different Mixes 

Slump for the different mixes (mm. ) 

Time (min). CMI SLG60 CM2 SS4 SS6 MET4 METE 

5 130 145 80 Collapse 120 Collapse 130 

30 60 140 110 140 120 

60 40 120 70 125 60 

75 - 110 40 115 40 

90 25 - 15 90 20 

105 40 

120 15 10 15 

Table 4.2 Two-point workability test results 

CM2 SLG60 SS4 SS6 MET4 MET6 

g 3.1 2.36 0.6 2 0.7 0.7 

h 1.94 2.33 3.4 2.34 3.9 3.0 
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Figure 4.1 The two-point workability test equipment 
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Chapter 5 Hydration Process 

5. HYDRATION PROCESS 

5.1 Introduction 

When water is added to a cementitious material, the hydration reaction starts forming 

hydration products that fill the voids in the paste volume. The hydration process in 

cement paste can be studied by several tests among which are X-ray diffraction 

(XRD), and thermogravimetry (TG). This is a very specialised field that cement 

chemists deal with more than civil engineers. Nevertheless, these tests are very useful 

tools in understanding the behaviour of concrete under different conditions. In this 

chapter, the results of XRD and TG carried out on AAS pastes are presented and 

discussed. 

5.2 Hydration Products 

The hydration process results in several hydration products depending on the type of 

cementitious material and the curing condition at which those products form. X-ray 

diffraction is a very useful technique for phase analysis of materials. Their 

characteristic peaks can identify crystalline phases present in a material because each 

crystalline phase with a specific structure has its own `finger print" characteristic 

pattern of X-ray diffraction peaks. In this investigation XRD has been used to identify 

the hydration products formed in OPC, OPC/slag and Alkali-activated slag pastes 

representative of the concrete mixes studied. 

5.2.1 Test Procedure 

Paste specimens were cast representative of the concrete mixes studied in this 

investigation (CM2, SLG60, SS4, SS6, MET4, and MET6). The specimens were 

cured in water and in addition to that autoclave curing was used for AAS mixtures. At 
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the testing age specimens were broken to small pieces and kept submerged in acetone. 

Prior to testing the specimens were crushed to a fine powder (<75pm) and examined 

using Cu Ka monochromatic radiation on a Philips PW1050 diffractometer (Figure 

5.1) in conjunction with Sietronics SIE 122D and Traces Software. The range from 5 

to 75° 20 was scanned at a scanning speed of 2°0 per minute. The computer plots the 

intensity of the diffracted beam (20). The d-spacings are calculated to allow 

identification of the phases and this is done by utilising Bragg's Law, which is: 

X= 2d sin 0 (5.1) 

Where: ). = wavelength of copper Ka (1.541838 A) 

d= d-spacing 

0= diffraction angle 

Abbreviations have been used to label the X-ray diffraction traces and the following 

key gives an explanation of those abbreviations. 

Key to XRD traces: 

CH = Calcium hydroxide (Ca(OH)2) 

CC = Calcium carbonate (CaCO3) 

E= Ettringite (Ca6AI2(OH)12(SO4)3.26H2O) 

C3S = Tricalcium silicate (Ca3SiO5) 

G= Gehlenite (Ca2Al2SiO7) 

T= Tetracalcium aluminate 13 hydrate (C4AH13) = Ca3AI2O6. Ca(OH)2012H20 

CSH(I) = Calcium silicate hydrate ((CaO)o. 8_i. 5SiO2(H2O), ) 

HT = Hydrotalcite (Mg6Al2(CO3)(OH)16.4H20) 

X= Xonotlite =5 calcium 5 silicate monohydrate (Ca6(Si60l7)(OH)2.0.20H20) 
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5.2.2 Results and Discussion 

5.2.2.1 OPC pastes 

Figure 5.2 shows the XRD traces for OPC paste mixture (CM2) after 28 and 90 days 

hydration under water curing. The standard OPC hydration products observed were 

calcium hydroxide (CH), calcium carbonate (CC) and ettringite (E). There was some 

trace from unhydrated cement indicated by the presence of diffraction peaks from 

tricalcium silicate (C3S). Although the XRD test was not used as a quantitative 

measure for hydration progress it can be noticed by comparing the intensity of the 

peaks that CH had slightly decreased as CC increased because of carbonation. C3S 

decreases with time as expected. 

5.2.2.2 OPC/slag pastes 

Figure 5.3 shows the XRD traces for OPC/slag paste mixture (SLG6O) for 28 and 90 

days hydration under water curing. The main phases were: gehlenite (G), calcium 

carbonate (CC), calcium hydroxide (CH) and ettringite (E). Gehlenite is associated 

with anhydrous slag. There are some peaks that possibly indicate the presence of 

tetracalcium aluminate 13 hydrate (C4AH13) with possibility of carbonated phases. No 

clear variation can be detected in the intensities with time. 

5.2.2.3 AAS pastes 

5.2.2.3.1 Normal water curing 

It was found that the XRD traces were very similar for all AAS mixes and no 

clear distinction could be seen with varying the Na20 dosages or the Ms of the 

activators. Therefore typical XRD traces for the AAS are shown in Figure 5.4. Peaks 

indicating poorly crystalline calcium silicate hydrate C-S-H (1) were observed around 

3.03 A, 2.85 A, and 2.70 A. Some broad peaks observed around 7.70 A and 1.90 A 

probably indicate the presence of hydrotalcite, which is a magnesium aluminium 

carbonate hydroxide hydrate. This is due to the high magnesium content of the slag 
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used, which is around 12%. This observation is in agreement with Wang and 

Scrivener (1995). It is also reported that the hydration products in the alkali-slag 

system are known to be C-S-H gel with low Ca/Si ratio, zeolite-type minerals and 

silica gel (Xu et al., 1993). Other researchers reported presence of C-S-H and possibly 

zeolite phases (Qing-Hua e[ al., 1992) 

5.2.2.3.2 Autoclave curing 

The hydration reaction rate is expected to increase under autoclaving and a more 

crystalline C-S-H is formed (Taylor, 1997). The XRD traces for the AAS pastes 

autoclaved at 150 °C are shown in Figure 5.5. The peaks are similar to the water cured 

specimens with the possible presence of xonotlite. This cannot be absolutely 

confirmed since all calcium silicate hydrate phases including C-S-H (1), tobermorite 

and xonotlite have broad peaks which all have d-spacing very close to each other and 

overlapping. C-S-HQ) has main peaks at 3.07 A, 2.81 A, and 1.83 A, while 

tobermorite(14 A) has peaks around 3.07 A, 2.81 A, and 1.83 A. Xonotlite has peaks 

around 3.07 A, 2.04 A, and 1.95 A. Hence these cannot be clearly distinguished with 

the XRD technique, which has some errors due to shifting in the peaks occurring due 

to sample preparation and orientation. Shi et al. (1991) reported the presence of 

xonotlite peaks in conjunction with C-S-H(I) for activated ggbs pastes activated with 

waterglass and cured at 150 °C. 

5.3 Progress of Hydration 

There are numerous methods of determining the progress of hydration, but all have 

their limitations. These include the measurement of (a) the amount of Ca(OH)2 present 

in the paste; (b) the amount of chemically combined water; (c) the heat evolved by 

hydration; (d) the specific gravity of the paste; (e) the amount of unhydrated cement 

present (using X-ray quantitative analysis QXDA); and (I) indirectly from the strength 

of hydrated paste (Neville (1995). 
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The chemically bound or combined water often referred to as the non-evaporable 

water is usually used to monitor the progress of hydration. Although it is used as an 

indication of the degree of hydration it is not an absolute measure of the degree of 

hydration, because neither the composition of the major hydration product (calcium 

silicate hydrate), nor the stochiometry of the reaction is well defined (Bye, 1983). 

The technique is essentially heating the sample to release the evaporable water first, 

then igniting it to 1000°C until constant weight is reached. The percentage of non- 

evaporable water is then expressed as the ratio of the weight loss to the ignited 

weight. There is, however, some weight loss due to the decomposition of CaCO3 at 

around 600-780°C, therefore the total weight loss should be corrected taking this into 

account (Keattch and Dollimore, 1975), although some workers do not make the 

correction (Nilsson, 1980). Nilsson (1980) selected an ignition temperature of 600°C 

in order to separate the water and the carbon dioxide. However he later found that 

there is about 10% of water released between 600 and 1000°C. Some other workers 

(Fordham and Smally, 1985; Qing-Hua et al., 1992) used the combined water of the 

calcium silicate hydrates only as a measure of hydration- 

In this investigation only the progress of hydration for AAS pastes will be studied at 

different ages using thermogravimetric technique by measuring combined water. The 

OPC and OPC/slag pastes were tested once at an age of 28 days to compare with AAS 

pastes. 

5.3.1 Apparatus and Procedure 

The TG test was carried out on a thermobalance (Pyrisl TGA). The instrument 

consists mainly of an electro-microbalance, a furnace, an operation programmer unit 

and the data acquisition unit (Figure5.6). A platinum crucible was used. The heating 

of the specimens was done at a rate of 30°C /min starting from the ambient room 

temperature up to 1000°C. 

Paste specimens were cast representative of the concrete mixes studied in this 

investigation (CM2, SLG60, SS4, SS6, MET4, and MET6). The specimens were 

cured in water and in addition to that autoclave curing was used for AAS mixtures. At 
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the testing age specimens are broken in small pieces and kept submerged in acetone. 

Prior to testing the specimens were crushed to fine powder and sieved on a 75 µm 

sieve before loading in the thermobalance in order to improve the uniformity of the 

sample. 

5.3.2 Results and Discussion 

Figures 5.7 - 5.9 show typical TG plots for the OPC and OPC/Slag and AAS pastes 

respectively. They show three peaks on the derivative plot indicating the C-S-H and 

hydrates, calcium hydroxide, and calcium carbonate. The peaks give a rough estimate 

of the range of temperature at which each of these products dehydrate and the 

decarbonation in the case of calcium carbonate. Figure 5.7 shows a peak around 

180°C corresponding to C-S-H, another peak around 500°C corresponding to calcium 

hydroxide and the calcium carbonate peak around 770°C. The peaks for SLG60 mix 

presented in Figure 5.8 lie around the same temperatures but the calcium hydroxide 

and calcium carbonate peaks are smaller which indicates that calcium hydroxide is 

less in OPC/slag pastes as it is consumed in the pozzolanic reaction. The hydration 

progress with age was not studied for CM2 and SLG60 pastes. 

A typical TG plot for AAS pastes is shown in Figure 5.9. The first peak represent C- 

S-H and other hydrates including hydrotalcite. The other peaks are for calcium 

hydroxide and calcium carbonate. 

The difference in mass between the temperatures 105-320°C as a percentage of the 

original mass of the specimen was calculated. This percentage mass loss was used as a 

measure of the combined water in the C-S-H and other hydrates. This mass loss was 

calculated for all the AAS mixes as a measure of the progress of hydration at ages 7, 

14,28, and 91 days. The effect of autoclave curing is also investigated. 

The progress of hydration for all AAS pastes under water curing is illustrated in 

Figure 5.10. There is a clear overall trend of increase of hydration with age more clear 

with the 6%Na2O dosage while the progress in the case of 4% Na2O is not very 
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significant. This indicates that the availability of alkalis is a factor in the continuaion 

of hydration for longer periods. The overall amount of combined water ranges from 7 

to 12 %. At 91 days SS4 gives a value of 8.22%. SS6 gives 11.44%, MET4 with 9.20 

and MET6 had 12% combined water. The increase of the Na2O dosage increases the 
hydration while the difference in the activator silica modulus M3 dos not seem to have 

a clear effect on the value of combined water. Some researchers (Qing-Hua et al. 

, 
1992) used thermogravimetry to study AAS paste with waterglass activator having 

Ms=2.85 with Na20 dosage of 4.3 and adding 3.4% lime. They reported 9.7% 

combined water at 28 days. 

The progress of hydration for all AAS autoclaved pastes is shown Figure 5.11. The 

progress with age has similar trend. The overall amount of combined water ranges 
from 6.4 to 9.32 %. At 91 days SS4 gives a value of 7.24%. SS6 gives 9.32%, MET4 

with 7.56 and MET6 had 9.61% combined water. The increase of the Na20 dosage 

increases the hydration while the difference in the activator silica modulus Ms has no 

clear effect in the value of combined water. The heat curing (autoclaving) resulted in 

lower values of combined water compared to water curing. This can be explained by 

the fact that high temperature causes higher rate of hydration at early age forming 

dense crystalline hydration products on the outer surface of the cement or slag 

particles this dense layer with low porosity reduces the amount of water passing 

through and slowing the hydration thereafter. It can be found that the amount of 

unreacted cement is more in the case of heat curing. Yang and Sharp (2000) studied 
the degree of hydration for OPC after heat curing and reported higher degree of 
hydration at early age with curing at 100°C follwed by normal 20°C water curing 

compared to normal 20°C water curing, but eventually almost stopping and the 

hydration at normal temperature curing exceeding the heat cured after 28 days. 

5.4 Conclusions 

The main conclusions on the hydration of AAS pastes are summerised as follows: 

53 



Chapter 5 Hydration Process 

" The main hydration product in AAS systems is C-S-H (1). The hydrotalcite-like 

peaks observed in the XRD patterns, which can be attributed to the high 

magnesium content of the slag. 

" Autoclaving results in formation of a more crystalline C-S-H gel and the 

formation possibly of xonotlite. 

" The TG peaks for C-S-H and other hydrates are around 180°C, 500°C for 

calcium hydroxide and 770°C for calcium carbonate. 

0 The dosage of activator affects the amount of hydration. The higher the dosage 

the higher the hydration. 

" There is a clear overall trend of increase in hydration with age in AAS pastes as 

measured by the amount of combined water, more clear with the 6%Na2O dosage 

while the progress in the case of 4% Na20 is not very significant. This indicates 

that the availability of alkalis is a factor in the continuation of hydration for longer 

periods. 

" Autoclave curing results in lower hydration as measured by the combined 

water in comparison with water curing. 
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Chapter 6 Engineering Properties 

6. ENGINEERING PROPERTIES 

6.1 Introduction 

In the field of concrete design and quality control, strength is a generally specified 

property for the classification of concrete mixtures. Similarly, in construction practice, 

the strength of cement paste and concrete are commonly considered to be the most 

valuable properties. Strength gives an overall indication of the quality because of the 

direct relationship between the structure of the cement paste and the strength. 
Nevertheless, in many practical cases other characteristics such as durability and 

permeability may in fact be more critical in assessing the quality and performance of 

concrete. 

Ambient humidity and temperature greatly influence the development of concrete 

strength from the time it is cast. The knowledge of the effect of environmental 

condition on the mechanical properties of concrete is essential, to be able to ensure 

good strength and durability. 

This chapter reports on the engineering properties of concrete including compressive 

strength, tensile strength, flexural strength, dynamic modulus of elasticity and 

ultrasonic pulse velocity of different concrete mixtures including the control OPC, 

OPC/Slag and AAS mixes with different activators and activator dosages. The 

influence of different material composition and the curing conditions are presented. 

Correlations developed amongst the engineering properties investigated are also 

included. Finally, the main conclusions drawn from this investigation are emphasised. 

6.2 Compressive Strength 

Compressive strength of concrete is the major criterion adopted to evaluate the quality 

of concrete. It is usually the value that the structural design of a concrete is based on. 

This section gives details of the investigation carried out to evaluate the compressive 

strength of OPC, OPC/slag and AAS concrete and the influence of curing on strength 

development. 
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6.2.1 Experimental Programme 

100x100x100 mm3 cubes were prepared to determine the compressive strength 

according to BS 1881: 1983. Details of casting and curing were described in section 
3.5. The compressive strength is determined by following BS 1881: part 116: 1983. 

Cubes from the mixtures listed in Table 3.4 were tested in duplicate sets for 1,3,7, 

28,90,180 and 365 days, and the average results are reported. All the above- 

mentioned specimens were cured under water curing (WC) and dry curing (DC), 

whereas the AAS concrete specimens were cured also by autoclave curing (AUT). 

The compressive strength was calculated from the formula bellow: 

f= P/A (6.1) 

where: 

fo is compressive strength in N/mm2 (MPa) 

P is maximum load applied to the cube in N 

A is the area of concrete surface in mm2 

6.2.2 Results and Discussion 

6.2.2.1 Colour of AAS concrete 
w 

It was noticed that the crushed slag concrete specimens were initially characterised by 

a dark green colour, which gradually faded away after being left in air (see Figure 

6.1). The colour is attributed to the presence of calcium sulphide in the slag and its 

slow disappearance is due to oxidation of sulphides in dry air. Malhotra, (1983) had 

previously reported this observation. 

6.2.2.2 Early age strength gain 

Early strength development is very important in the concrete construction industry. 

The concern with it arises from economical and practical considerations in terms of 
formwork removal and progress of work. The early gain of strength depends upon the 
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concrete temperature, the moisture condition, the mix proportions, and the quality, 
types and sources of material. 

Figure 6.2 and 6.3 show the early strength development under water curing and dry 

curing respectively for the different mixes. The strength development at early ages is 

shown numerically in Table 6.1. Analysis of these results is detailed below. 

6.2.2.2.1 Effect of slag 

It can be noticed from Figure 6.2 that the OPC/ Slag mix SLG60 which incorporates 

ggbs as replacement for OPC by 60% showed lower gain in strength compared to all 

the mixes of the same w/c ratio (0.48) and binder content, and is even lower than the 

OPC mix with the higher w/c ratio (0.55) (CM1). The same can be observed in Figure 

6.3. The results in Table 6.1 show that the gain at 7days as a percentage of the 28 days 

strength as a strength for the SLG60 mix is around 60% while it is 68% for CMI and 
80% for CM2. This slow gain of strength with slag is understandable since slag is a 

latent reactive material. The overall trend shows potential for gain on the long term 

due to pozzolanic reaction. 

6.2.2.2.2 Effect of the activator dosage 

It can be seen in Figure 6.2. that SS6 mix with a dosage of 6% Na2O achieved higher 

gain in compressive strength in comparison with all the other mixes. The 28 day 

compressive strength for SS6 was 79 MPa while it was 51 MPa for CM2 mix and 57.5 

MPa for SS4 mix having the dosage of 4% Na2O. This clearly shows the effect of the 

Na2O dosage on the early compressive strength gain. In a similar manner the MET6 

mix had higher compressive strength gain (61 MPa at 28 days) in comparison to 

MET4 (48 MPa at 28 days) which is lower than the control mix CM2. The results in 

Figure 6.3, representing early strength development under dry curing, show a similar 

trend and indicate that the AAS mixes having 6% Na20 gave higher early strength 

gain than the mixes with 4% Na2O. 

The results in Table 6.1 show the gain in compressive strength at early ages as a 

percentage of the 28 day strength. Taking 7 day strength gain as an example, these 

results show CM2 having a gain of 80%, SS6 with 80%, and SS4 with 76% which 

indicate that the increase in the activator dosage results in an increase in the strength 
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gain. Similarly MET6 shows a gain at 7 days equal to 88% of the 28 day compressive 

strength, while MET4 had a gain of 76%. 

Wang et al. (1994) Worked on mortars and stated that increasing the dosage within a 

range between 2-8 Na2O% increases the strength but they recommended a range of 3- 

5.5 Na2O% based on other factors other than strength. The reviewed literature on 
AAS concrete (Douglas et al. 1991; Gifford and Gillot, 1996; Collins and Sanjayan, 

1999) gave variable results with AAS concrete depending on the concrete 

composition but the compressive strength achieved was comparable to that of OPC 

control mixes. 

6.2.2.2.3 Effect of the activator modulus 

Comparing the results of the AAS concrete mixes on the basis of the difference in the 

silicate modulus of the activator shows that the higher the modulus the higher the 

compressive strength development. This can be clearly seen from both Figures 6.2 

and 6.3. The SS6 achieved higher 28 days strength of 79MPa compared to 61 MPa for 

MET6 under water curing and 53 MPa, 49.3 MPa respectively under dry curing. Also 

SS4 achieved 57.5 MPa while MET4 achieved 48 MPa after 28 days of water curing 

with a similar trend for dry curing. 

Wang (1995) had recommended using a waterglass as an activator with a silica 

modulus M. in the range 1-1.5 to achieve optimum strength. 

The waterglass with low modulus doesn't seem to be widely available which lead 

some researchers (Douglas et al., 1991; Collins and Sanjayan, 1999; Bakharev et al., 
2000) to add NaOH to the activator solution to modify the modulus to a lower value. 

The effect of the silica modulus comes from the contribution to the strength made by 

the silica gel. Hence the more silica content the more silica gel but there is a limit 

dictated by the required alkali content for the activation in relation to the amount of 

solid fraction of the activator. 

6.2.2.3 Long-Term Compressive Strength Development 

The long-term strength development of any concrete depends on the continuing 
presence of moisture for hydration. This is usually achieved by curing to maintain 

enough moisture for the hydration to progress. 
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Figure 6.4 presents the long term strength development for the different mixes under 

water curing conditions which is clearly slower after 28 days. SS6 and MET6 

(Na2O=6%)at later ages achieve the highest strength followed by SS4 and MET4 

(Na20=4%) and then come CM2 then SLG60 and the lowest strength in CMI. It is 

worth noting that MET4 and SLG60 concrete strengths started lower than OPC CM2 

but they caught up and exceeded the control mix strengths after 90 days. This is 

attributed to the continuing pozzolanic reaction in slag concrete. 

Figure 6.5 shows that under the dry curing condition the strength development at later 

age slows down and there is even a reduction in strength with time in the case of SS6 

and MET6, which clearly shows the detrimental effect of drying on those types of 

concrete. This will be discussed below. 

6.2.2.4 Effect of Dry Curing 

It is well known that the lack of curing greatly affects the strength development but 

the extent of the effect differs among different types of concrete and concreting 
materials. 

Figures 6.6-6.11 clearly show the effect of dry curing on the six mixes having the 

same w/c ratio of 0.48 and the same binder content. For the AAS mixes the gap is 

much greater. 

Table 6.2 assists in understanding the effect of dry curing where it shows the loss of 

strength due to dry curing compared to water curing. Taking the l year values as an 

example, it can be seen that while OPC (CM2) and OPC/Slag (SLG60) mixes loose 

23% and 27% respectively, the AAS mixes SS4 and SS6 loose 49% and 62% and 

MET4 and MET6 lose 37%. It seems that the silicate modulus of the sodium silicate 

activator is a factor in the detrimental effect of drying. AAS concrete with an activator 

of Ms value of 1.65 are more sensitive to drying than AAS concrete with an activator 

of Ms value of 1.00. 

6.2.2.5 Effect of Accelerated curing (Autoclave) 

Some literature reviewed in Chapter 2 recommended accelerated curing for AAS 

concrete especially with low reactivity solid or waste alkali activators (Wang, 1995). 
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This effect was studied in this investigation by subjecting the AAS concrete mixes to 

autoclave curing for 16 hours followed by water curing. 

Figures 6.8 - 6.11 show that autoclave curing accelerated the strength gain up to 28 

days in the case of SS4 and SS6 and then the gain was slower giving very close values 
to water curing for SS4 and in the case of SS6 mix significantly lower strength. While 

MET4 and MET6 concrete where the activator used was a dissolved solid with lower 

Ms, continued to gain strength beyond 180 days for MET4 and beyond 90 days for 

MET6 eventually giving compressive strength close to the values obtained for water 

curing. 

6.3 Tensile Strength 

Concrete in general is known to be weak in tension leading to the use of steel 

reinforcement in structural concrete. The tensile strength is determined either by a 

direct tensile test or by indirect tensile tests. The direct tensile strength is difficult to 

obtain. The indirect tensile strength tests, which are most commonly used, are the 

splitting cylinder test and the third-point flexural loading test (Mehta, 1986). The 

splitting tensile test will be discussed in this section whilst the flexural test in Section 

6.4. 

As with compressive strength, the tensile strength of concrete obtained is related to 

the mix material composition and proportion of ingredients. It is greatly affected by 

curing conditions. 

6.3.1 Experimental Programme 

The splitting tensile strength of all mixes was measured using 100 mm cx 200 mm 

long cylinders. The samples were prepared according to BS 1881: part 100: 1983. The 

curing was done under water curing (WC) and dry curing (DC). The splitting tensile 

test was performed as described in BS: 1881: part 117: 1983. The specimens were 

tested in duplicate sets at 7,28,90,180 and 365 days and the average results are 

reported. 

The splitting tensile strength was calculated from the following expression: 
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ft= 2P/7d D (6.2) 

where: 

f, is splitting tensile strength (MPa) 

P is the failure load in (N) 

L is the length of specimen (mm) 

D is the diameter of specimen (mm) 

6.3.2 Results and Discussion 

6.3.2.1 Effect of slag 

The results in Figure 6.12 which represent the tensile strength development for the 

different mixes under the water curing condition, show that the OPC/ Slag mix 

SLG60 which incorporates ggbs as replacement for OPC by 60% showed lower 

tensile strength compared to all the mixes of the same w/c ratio (0.48) and binder 

content, but higher than OPC mix with the higher w/c ratio (0.55) (CM1). This 

indicates that replacing OPC by 60% with ggbs can produce acceptable value for 

tensile strength with lower water requirement for the same workability. 

6.3.2.2 Effect of activator 

The results in Figure 6.12 show that SS6 and MET6 mixes gave the highest values of 

tensile strength followed by SS4 and CM2 and then MET4 followed by SLG60 and 

the lowest was CM!. 

These results show, as it was also seen from the compressive strength results, that the 

increase in the activator dosage and the activator modulus in AAS concrete resulted in 

an increase in tensile strength with continuous water curing. 

Figure 6.13 shows that under the dry curing condition the splitting tensile strength 

development slows and even there is a reduction in strength with time in the case of 

alkali activated slag mixes. That shows the detrimental effect of drying on those types 

of concrete. ' 
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6.3.23 Effect of Dry Curing 

It is well known that -the -lack -of curing . greatly affects the strength development but 

the extent of the effect differs among different types of concrete and concreting 

materials. 

Figures 6.14-6.19 clearly show the effect of dry curing on the six mixes having the 

same w/c ratio of 0.48 and the same binder content. For the AAS mixes the gap is 

much greater, with the strength decreasing with time. 

Table 6.3, which lists all the results, shows the effect of dry curing where it presents 

the loss of tensile strength due to dry curing compared to water curing. Taking the I 

year values as an example, it can be seen that while OPC (CM2) and OPC/Slag 

(SLG60) mixes lose 18% and 13% respectively, on the other hand AAS mixes SS4 

and SS6 lose 46% and 57% and MET4 and MET6 lose 36% and 44%. This indicates 

that slag and alkali-activated slag concrete are more sensitive in terms of tensile 

strength to the type of curing than OPC concrete. 

6.4 Flexural Strength 

This test programme is included to investigate the flexural strength (Modulus of 

Rupture / MOR) for AAS concrete in comparison to OPC and OPC/Slag concrete. 

The effect of curing is also investigated. Details of the test and the results are 

presented and discussed in this section. 

6.4.1 Experimental Programme 

The flexural strength of concrete mixes was measured according to BS 1881: Part 

118: 1983.100 mm x 100 mm x 500 mm prisms were used for determining the 

flexural strength. The prisms that were cast for measuring the dynamic modulus of 

elasticity were eventually tested for flexural strength at the age of 365 days. 

The flexural strength was calculated from the following expression: 

MOR = PJJ(bY) (6.3) 

where: 
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MOR Modulus of rupture (MPa) 

P maximum total load on beam (N) 

L span (mm) 

h width of the beam (mm) 

d depth of the beam 

6.4.2 Results and Discussion 

The results presented in Figure 6.20 show that 365-day flexural strength of AAS 

concrete is comparable to that of OPC concrete. The SS6, MET6 and CM2 give very 

close values followed by SLG60. MET4, SS4 and CM! achieving the lowest. The 

increase in dosage of activator increased the flexural strength this is clear when 

comparing the results of SS4 to SS6 and MET4 to MET6. While the increase in the 

silica modulus of the activator, resulted in a slightly lower flexural strength, MET4 

had higher flexural strength than SS4 and MET6 had higher flexural strength than 

SS6. 

The Effect of curing is also shown clearly in the test results, where dry curing was 

more detrimental for AAS concrete. 

6.5 Dynamic Modulus of Elasticity 

The dynamic modulus of elasticity of concrete is related to the structural stiffness and 
deformation of concrete, and is highly sensitive to cracking. It is related also to the 

compressive strength. The results of this test for all the mixes under the WC and DC 

are presented in this section. 
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6.5.1 Experimental Programme 

The dynamic modulus of elasticity for all mixes was determined according to BS 

1881: part 209: 1990. The test was to conduct excitation in the longitudinal mode of 

vibration on the 100 mm x 100 mm end face of prism with a path length of 500 mm. 
Duplicate sets of samples were tested at curing ages of 28,90 180 and 365 days. 

The dynamic modulus, Ed (in GPa) of all specimens were calculated based on the 

following expression: 

Ed=4712L2p 10-15 (6.4) 

where: 

L is the length of the specimen (mm) 

il is the fundamental frequency in the longitudinal mode of vibration (Hz) 

p is the density of the specimen (kg/m) 

6.5.2 Results and Discussion 

6.5.2.1 Effect of Concrete Type 

Figure 6.21 shows the results for the dynamic modulus test for all the mixes under the 

water curing condition, where it shows that SS6 and MET6 achieved the highest 

values followed by CM2, SLG60, SS4, MET4 and the lowest was for CMI. This 

shows that replacing OPC by ggbs at the same w/c ratio reduced the dynamic modulus 

of concrete while it gives higher dynamic modulus when compared with OPC 

concrete with the same workability level at a higher w/c ratio. The Na2O content 

clearly affects the dynamic modulus of AAS concrete as it increases with the increase 

of the dosage of alkali. The dynamic modulus of all mixes increased with age slightly 

after 28 days. 
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6.5.2.2 Effect of Curing 

Figures 6.22 and 6.23 show clearly the effect of dry curing in reduction of dynamic 

modulus of elasticity, which is greater in the case of AAS concrete. This is in 

agreement with the findings of the strength tests. 

6.6 Ultrasonic Pulse Velocity 

The velocity of ultrasonic pulses travelling in a solid material depends on the density 

and elastic properties of that material. Hence this test is performed as a non- 
destructive test on concrete to study its properties. This test was carried out parallel to 

the dynamic modulus of elasticity test on the same specimens. The results of this test 

for all the mixes under the WC and DC are presented in this section. 

6.6.1 Experimental Programme 

A portable ultrasonic non-destructive indicating test instrument known as PUNDIT 

was used for the measurement of ultrasonic pulse velocity (UPV) in accordance with 
BS 1881: part 203: 1986. the measurement was conducted on the 100 mm x 100 mm 

end face of prism with a length of 500 mm. Duplicate sets of samples were tested at 

28,90 180 and 365 days. 

The time taken by the pulsing wave to travel from one longitudinal end of the prism to 

the other was recorded by means of 54 kHz transducers of 50 mm diameter. The UPV 

was determined by measuring the time taken for longitudinal vibrations of ultrasonic 

frequency to travel a known distance through the material and was calculated by the 

following expression: 

v=IJT (6.5) 

Where: 

V is ultrasonic pulse velocity (km/sec) 

L is distance travelled by pulse (mm) 

T is time taken (psec ). 
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6.6.2 Results and Discussion 

6.6.2.1 Effect of Concrete Type 

Figure 6.24 shows the results for the ultrasonic pulse velocity test for all the mixes 

under water curing condition. The Figure shows that SS6 and MET6 achieved the 

highest values followed by CM2, SLG60, SS4, MET4 and the lowest is CMI, with 

the values increasing with age. This shows that replacing OPC by ggbs at the same 

w/c ratio reduced the UPV of concrete while it gives higher UPV values when 

compared with OPC concrete with the same workability level at a higher w/c ratio. 
Increasing Na20 dosage resulted in an increase in the UPV values. 

6.6.2.2 Effect of Curing 

Figures 6.25 and 6.26 show clearly the effect of dry curing in on UPV results. This is 

due to the presence of more voids in dry cured concrete and probable micro cracking 

due to drying. This test is a good tool to detect cracking and other forms of 

deterioration in concrete. The effect of dry curing is very clear with AAS concrete 

with significant reduction in the UPV values obtained by the test. 

6.7 Drying Shrinkage 

The loss of water from the concrete over time leads to a reduction in volume and is 

referred to as shrinkage. This shrinkage is represented usually by the length change 

expressed in microstrains (x 10-6). Drying shrinkage is affected by several factors, 

among which is the aggregate type and quantity, the w/c ratio, the type of 

cementitious material, and curing condition prior to drying. This section presents the 

test carried out and the results obtained for the AAS concrete mixes in comparison 

with OPC and OPC/Slag mixes. The results are discussed and conclusions derived 

from the results. 
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6.7.1 Experimental Programme 

Two 75x75x280 mm prisms were prepared for each of the AAS mixes and the control 
OPC and OPC/Slag mixes. The prisms were cured for 7 days in water in the case of 

water cured samples. The autoclaved samples were put in water after being removed 
from the autoclave to complete the 7day curing time. The prisms were then left to dry 

in the controlled temperature and humidity room described in Chapter 3. The 

shrinkage was measured using a length comparator in accordance with BS 812: Part 

120: 1989. The comparator and a concrete prism are shown in Figure 6.27. 

6.7.2 Results and Discussion 

The results for drying shrinkage are shown in Figures 6.28 - 6.35. They are presented 

to show the behaviour of the mixes in terms of drying shrinkage and the effect of the 

early curing condition on the behaviour of the AAS mixes. Figure 6.28 shows the 

drying shrinkage cracks in a prism of the SS6 mix that gave the higher drying 

shrinkage. 

6.7.2.1 Drying Shrinkage Development 

The development of drying shrinkage with age for the samples cured in water for 7 

days prior to drying is shown in Figure 6.29. The replacement of OPC by ggbs gave 
higher shrinkage compared to the control mix having the same w/c ratio. SLG60 had a 

shrinkage of 650 microstrain after 182 days compared to 500 micro strain for CM2 

control mix in agreement with previous results (Neville, 1995). For the AAS concrete 

mixes increase in the dosage of activator resulted in an increase in drying shrinkage. 

The SS6 mix exhibited the highest drying shrinkage up to 970 microstrain at 182 days 

followed by the MET6 mix with 700 micro strain at the same age. The SS4 and MET4 

mixes showed the lowest drying shrinkage. The silica modulus for the activator 

played an effective role in increasing the drying shrinkage of the SS6 mix as the high 

modulus (M3 =1.65) contributed in the production of larger amounts of the silica or 

silica rich gel during the hydration process compared to the METE with the same 

Na2O %. 
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High shrinkage with AAS concrete has been reported by several researchers, 
(Anderson, 1987), (Douglas et al., 1992), (Kutti et at, 1992), (Wang et al., 1995), 

(Collins and Sanjayan, 1999). All were using one activator at a time and 

recommended controlling the shrinkage by changes in the mix properties. Looking at 

some the results as an example; Wang, (1991) reported values of shrinkage for AAS 

concrete around 600 microstrains. Douglas e[ al used an activator with an Ms = 1.47 

at 6.8 % Na2O dosage in AAS concrete with w/c = 0.48 and achieved 980 microstrain 

at 224 days. Collins and Sanjayan, (2000) found a shrinkage of 1700 microstrains after 
180 days for AAS concrete using an activator with MS = 0.75 and 5.4 % Na2O but 

they had started drying immediately when demoulded after 24 hours. 

The results presented in this investigation show that drying shrinkage can be reduced 

to a level close to that of OPC with the use of the lower dosage and lower modulus of 

the alkali activator. 

6.7.2.2 Effect of Autoclave Curing 

The use of autoclave accelerated curing reduced the drying shrinkage for the AAS 

mixes. This can be clearly seen in Figures 6.30 and 6.31 especially with the high 

activator dosage in SS6 and MET6 mixes. Figure 6.32 shows the values of drying 

shrinkage for the different mixes at 182 days of exposure where the distinction 

between the several mixes and the effect of curing is shown. The effect of autoclave 

curing in reduction of drying shrinkage with OPC concrete and paste has been 

reported by Soroka. (1979). In the present investigation it is confirmed to be a useful 

tool to overcome the problem of drying shrinkage associated with AAS concrete. The 

effect of autoclave curing on drying shrinkage might be due to the formation of more 

crystalline products of hydration which undergo less shrinkage when losing moisture. 

6.7.2.3 Relation between Drying Shrinkage and Mass Loss 

Figures 6.33-635 show the relation between the mass loss and drying shrinkage. It is 

noted that some loss of moisture happens at the start without causing any shrinkage, 
because the -moisture is lost from the capillary pores first, causing little shrinkage. 

Subsequently when the water starts leaving the gel pores where higher shrinkage 

occurs. Figure 6.33 demonstrate that CM2 and SLG6O behave similarly in that the 

slope of the line is slightly higher in the case of SLG60 where the drying shrinkage is 
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higher. Figure 6.34 indicate that the SS6 mix exhibits higher shrinkage very early and 

the slope is higher compared to the CM2 mix, whereas the SS4 mix starts drying later 

than the CM2 and have a lower slope. Figure 6.35 shows that the MET6 mix shows 
higher shrinkage and the slope is higher compared to CM2 mix, while the MET4 mix 

starts drying later than the CM2 and have a lower slope. 

6.8 Relationship Amongst Engineering Properties 

This section presents an attempt made to link engineering properties with each other. 
The relationships are empirical in nature and have certain limitations because a 

number of factors including binder type, w/c ratio, age and curing affect the 

relationships. However, the relationships do provide some idea of development of the 

properties with age. The detailed descriptions of the relationships developed in this 

investigation are presented below. 

6.8.1 Relationship Between Compressive and Tensile Strength 

Compressive and tensile strengths of concrete are closely related but there is no direct 

proportionality. A number of empirical formulae connecting f and f, have been 

suggested, many of them of the type: 

Jt = k(f, n (6.6) 

Where k and n are coefficients. Values of n between 0.5 and 0.75 (Neville, 1995) 

he regression results are shown in Figures 6.36,6.37. The formulas reached are as 

follows: 

f=0.054 (f )106 (OPC) (6.7) 

R2=0.8761 

f=0.45 (fc )o. si (AAS, (WC)) (6.8) 

R2 = 0.9377 
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f =4.76(fc P3 

R2=0.17 

It is clear from Figure 6.36 that there is a relationship between compressive strength 

and the tensile strength as the tensile strength increases with the increase in strength. 
The relations arrived at are reasonable for water curing but the dry curing causes a lot 

of variation in results and the equation arrived at has a lower correlation factor. 

6.8.2 Relationship Between Compressive Strength and Dynamic 

Modulus of Elasticity 

The modulus of elasticity is dependent on the compressive strength of concrete. It is 

convenient to be able to estimate the dynamic modulus of a particular type of concrete 

from the knowledge of its compressive strength. Two basic forms of equations are 

generally accepted to adequately describe the relationship between dynamic modulus 

of elasticity and compressive strength. 

Ed= k(fc T (6.10) 

Ed=1 i mf (6.11) 

Where k !, n and m are coefficients. 

The dynamic modulus values of concrete mixes have been plotted against their 

respective compressive strength values as shown in Figures 6.38. The regression 

(AAS, (DC)) (6.9) 

equations for these systems are as follows. 

Ed= 5.3(f. )0.54 (OPC) (6.12) 

R2=0.9134 
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Ej= 28.3(1)° 11 (AAS) (6. I3) 

R2 = 0.6071 

The relation between compressive strength and the dynamic modulus of elasticity is 

known, as the strength increases the dynamic modulus increases. The equation show 

reasonably correlation with OPC while it is more variable in case of AAS. 

6.8.3 Relationship Between Compressive Strength and Ultrasonic 

Pulse Velocity 

Generally as the compressive strength of concrete increases the UPV increases. The 

compactness of strong concrete and the lower volume of voids and cracks result in 

higher pulse velocity. In an attempt to formulate an equation describing this relation 

ultrasonic pulse velocity values of concrete plotted against compressive strength 

values at various ages are presented in Figure 6.39. This relation was presented in 

Neville (1995) in a plotting produced based on the work of Sturrup et al. (1984). 

These results were also plotted adjacent to the results of this investigation as a 

comparison. 

The relationship between pulse velocity, V (Km/sec), and compressive strength, ff 

(MPa) fitted expressions as follows: 

V= 2.52(fc )o. u (OPC) (6.14) 

R2 = 0.3 

V=3.8(fc )oÄ054 (AAS (WC)) (6.15) 

R2=0.56 

V =1.076(f, )o. 1335 (AAS (DC)) (6.15) 

R2=0.65 

The equations obtained have good correlation with OPC concrete but the correlation 

coefficient for AAS is lower. The variation between the water cured and dry cured 

82 



Chapter 6 Engineering Properties 

sets of results is probably due to difference in the condition of the prisms at the time 

of testing whether dry or moist in agreement with Sturrup et a!. (1984). 

6.8.4 Relationship between compressive strength and Hydration 

Progress 

The study of the hydration process in chapter 5 presented TGA test results for AAS 

pastes. These results showed an increase in hydration, measured in terms of combined 

water, with age. The results for the AAS mixes were plotted in conjunction with the 

compressive strength. The trends are shown in Figure 6.40. The results show 

comparable trend as the compressive strength increases with age and with the 

progress in hydration. This as discussed earlier was clearer in the case of the pastes 
having an activator dosage of 6% Na2O while the pastes with lower dosage showed 

no significant chang in the amount of combined water in comparison with the increase 

in compressive strength. 

6.9 Conclusions 

The main conclusions drawn from the investigation of engineering properties of AAS 

concrete and OPC and OPC/Slag blended concrete are summarised as follows: 

" AAS concrete can achieve high strength in comparison with OPC concrete. 

" Increasing the Na20 content as a percentage of slag results in an increase in 

strength 

" Using a waterglass with higher silica modulus in AAS concrete increases the 

strength compared with the activator with lower modulus when the Na2O 

dosage is similar. 

" Accelerated curing (autoclave) increases the initial gain of strength in AAS 

concrete but eventually giving results close to water curing with long term. It 

is more effective with the solid activator. 
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9 The AAS concrete results of dynamic modulus of elasticity and ultrasonic 

pulse velocity are comparable to OPC concrete. They demonstrated similar 

patterns to compressive strength and are affected by curing in a similar manner 

" Replacing OPC by ggbs by 60 % can achieve a 40 MPa compressive strength 

with a lower water requirement than the OPC concrete of the same grade. 

" The slag/OPC mix exhibited higher drying shrinkage in comparison with the 

OPC mix having the same w/c. 

" AAS concrete with 6% Na20 exhibited high drying shrinkage compared to the 

OPC concrete and the AAS concrete with 4% Na2O. 

" Using a waterglass activator with Ms = 1.65 and 6% Na2O resulted in the 

highest drying shrinkage because of the larger amount of silica gel formed in 

the hydration process. 

" Autoclave curing of AAS concrete reduces the drying shrinkage as it causes 

the formation of products of hydration which are more crystalline. 
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Table 6.1 Compressive strength development of different mixes at early ages ( water 
cured) 

Concrete Mixes Age Compressive Percentage 
days Strength of 28 day strength 

MPa 
CM1 1 7.40 19.0 

3 17.70 45.40 
7 26.45 67.80 
14 31.40- 80.0 

CM2 1 11.50 22.60 
3 28.70 56.30 
7 40.80 80.0 
14 45.80 90.0 

SLG60 1 4.15 12.0 
3 12.90 34.80 
7 22.45 60.70 
14 30.30 81.90 

SS4 1 6.20 10.80 
3 31.25 54.30 
7 43.30 76.20 
14 51.10 88.80 

SS6 1 15.90 20 
3 49.30 62.50 
7 63.10 80.0 
14. 72.65 92.0 

MET4 1 11.05 23.10 
3 29.40 61.40 
7 36.25 75.70 
14 42.30 88.40 

MET6 1 11.90 19.60 
3 44.50 73.40 
7 53.30 88.0 
14 56.70 93.50 
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Table 6.2 Effect of dry curing on compressive strength development of different 
mixes 

Concrete Mixes Age Compressive Strength Percentage 
days MPa Loss of strength 

WC DC 
CM2 28 50.90 45.30 11.0 

91 52.35 46.0 12.13 
182 54.30 46.40 14.55 
365 57.50 44.0 23.48 

SLG60 28 37.0 30.80 16.76 
91 43.35 32.50 25.03 
182 45.20 33.20 26.55 
365 47.65 34.70 27.18 

SS4 28 57.55 45.55 20.85 
91 71.0 46.20 34.93 
182 70.60 41.05 41.86 
365 69.10 35.25 48.99 

SS6 28 78.90 52.70 33.21 
91 85.10 43.35 49.06 
182 95.0 42.20 55.58 
365 96.0 36.0 62.5 

MET4 28 47.85 41.15 14.0 
91 50.0 41.70 16.60 
182 56.75 42.50 25.11 
365 62.70 39.30 37.32 

MET6 28 60.60 49.30 18.65 
91 79.40 58.60 26.20 
182 82.85 53.65 35.24 
365 89.15 56.20 36.96 
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Table 6.3 Effect of dry curing on tensile strength development of different mixes 

Concrete Mixes Age Splitting Tensile Strength Percentage 
days MPa Loss of strength 

WC DC 
CM2 7 3.25 2.70 16.92 

14 3.44 2.86 16.86 
28 3.69 2.97 19.51 
91 3.80 3.0 21.05 
182 3.88 3.07 20.88 
365 4.01 3.30 17.71 

SLG60 7 2.22 1.99 14.41 
14 2.29 2.10 8.30 
28 2.42 2.11 12.81 
91 2.71 2.23 17.71 
182 2.83 2.10 25.80 
365 3.59 2.70 24.79 

SS4 7 3.10 2.76 10.97 
14 3.57 2.93 17.93 
28 3.90 2.96 24.10 
91 4.13 2.42 41.40 
182 4.14 2.35 43.24 
365 4.10 2.20 46.34 

SS6 7 3.79 3.71 2.11 
14 4.11 2.71 34.06 
28 4.46 2.70 39.46 
91 4.63 2.51 45.79 
182 5.02 2.51 50.0 
365 5.28 2.28 56.82 

MET4 7 2.93 2.70 7.85 
14 3.27 2.86 12.54 
28 3.40 3.02 11.18 
91 3.62 2.89 20.17 
182 3.82 2.83 25.92 
365 3.85 2.45 36.36 

MET6 7 3.62 2.90 19.89 
14 3.72 2.99 19.62 
28 3.74 3.08 17.65 
91 3.97 2.77 30.23 
182 4.44 2.57 42.12 
365 4.66 2.60 44.21 
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Figure 6.1 Colour of AAS Concrete 
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Chapter 7 Permeation Related Properties 

7. PERMEATION RELATED PROPERTIES 

7.1 Introduction 

The durability of concrete is defined by the ability to retain its quality and 

serviceability and its ability to resist deterioration throughout its life. The causes of 

deterioration of concrete vary from those related to external environment and causes 

related to the internal sources. The concrete might suffer from an aggressive chemical 

environment having materials such as chlorides and sulphates that attack the concrete 

causing damage either to concrete or leading to corrosion in reinforcing steel. Another 

form of attack is through gases, an example of which is carbonation, which is 

discussed in the following chapter. The environment might affect concrete in the 

variation of its temperature as in hot climates or freezing temperatures at the other 

extreme. Deterioration can be also caused by internal sources and their interactions, as 

in the presence of contaminants or harmful materials in the concrete ingredients. 

Among the concrete properties that play a major role in the durability are the porosity 

of concrete and the permeability. Porosity of a porous material such as concrete is the 

fraction of the bulk volume of the material occupied by voids. There are three basic 

transport mechanisms, which can operate in concrete (Jackson and Diir, 1996) 

namely absorption, permeation and diffusion. Nevertheless, the commonly accepted 

term `permeability' will be used here for the overall movement of fluids into and 

through concrete. Therefore, permeability of concrete is defined as the ease with 

which external elements such as liquids and gases (fluids) penetrate concrete. 

Concrete with higher permeability allows faster penetration of gases, liquids and other 

aggressive materials such as chlorides and sulphates, resulting in rapid corrosion of 

the reinforcing steel, sulphate attack and other forms of concrete deterioration. 

The permeability of concrete is not a simple function of its porosity, but depends on 

the size, and distribution of the pores (Neville, 1995) as illustrated in Figure 7.1. 
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This chapter presents and discusses the results of porosity, oxygen permeability, and 

chloride permeability tests carried out to study the performance of AAS concrete 

mixes in comparison with control OPC and OPC/Slag mixes. 

7.2 Porosity 

Numerous techniques have been used to study the volume of voids and measure the 

porosity of concrete, namely helium pycnometry, mercury intrusion porosimetry 

(MW) and saturation method. The saturation method can be estimated using methanol 

(Feldman, 1972) or water saturation. The easiest and cheapest technique to measure 

the porosity of concrete is by water absorption. It can be determined by immersing the 

sample in water for prolonged periods or by boiling the sample in water for several 

hours. It is probably the best method of measuring the porosity as it facilitates the real 

situation encountered by concrete structure. However, Neville (1995) reported that it 

is doubtful that these methods achieve total or full saturation due to the presence of 

large number of very fine pores (as compared to rocks) and bottlenecks of some of 

these pores. 

In order to reach full saturation, it is necessary to empty the pores first from air and 

water (by vacuuming) before allowing the water to penetrate them (Lynsdale, 1989). 

RII, F, M CPC-11.3 (1984) also recommended a test method based on evacuation of air 

from the samples then allowing the water to fill in the pores under vacuum to reach 

total saturation. 

This section presents the work carried out to measure the porosity using water 

absorption. 

7.2.1 Apparatus 

The porosity for the concrete specimens investigated was determined using a vacuum 

saturation apparatus (RILEM CPC-11.3,1984), which is shown in Figure 7.2. The 

apparatus consists of the following components: 

1. Vacuum desiccator 
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2. Three-way valve, connected to the desiccator 

3. A 10-liter plastic bottle with tap 

4. Vacuum pump 

5. Vacuum gauge 

6. Tubing 

7.2.2 Sample Preparation 

Two samples of 100 mm -0 x 50 mm cylinders were tested per curing condition at 7, 

28,90 180, and 365 days. Samples were taken out of the curing environment at 

required testing age. The samples were then dried in an oven at the temperature of 

105±5 °C for approximately 24 hours, until constant weight was reached. Prior to 

testing of porosity, the samples were kept in a desiccator for cooling for another 24 

hours. 

7.2.3 Testing Procedure 

The procedure for measuring porosity by using the vacuum saturation apparatus is as 
follows: 

" The previously dried and cooled samples were weighed and their weight recorded 

as (Woven). 

" The samples were placed in a desiccator under vacuum for 24 hours before 

allowing de-ionised de-aired water to fill the desiccator and submerging the 

samples. Vacuuming was carried out for a further 24 hours to fully saturate the 

samples. 

" The specimens were then left to equilibrate in water, under atmospheric pressure, 

for a further 24 hours, before weighing in water (W,, b). They were then wiped 

with paper and weighed in air (W,,, t, saturated surface dry weight in air). 

" The porosity is calculated as = 100 x (Wt, - W. �,, ) / (W. t, - WR�6) 
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7.2.4 Results and discussion 

Results of the porosity test are presented in Figures 7.3 - 7.10. Figure 7.3 shows the 

porosity of the concrete mixes at different ages (7,14,28,90,180 and 365 days) 

under water curing condition. CM2 has the lowest value of porosity for all ages. 

Replacing 60% of the cement by (ggbs) in mix SLG60 resulted in an increase in the 

porosity of concrete compared to the OPC concrete mix (CM2) with the same wie of 

0.48. But when comparing the slag mix with the OPC control mix having w; /, c of 0.55 

the results show the SLG60 having lower porosity. These results are in agreement 

with results presented by Lynsdale and Sit (1992) where they indicated that 70% slag 

replacement of OPC resulted in an increase in porosity in the early age up to 28 days. 

The comparison was done on equal wie ratio but when the comparison was done on 

equal slump the slag concrete eventually had lower porosity after 28 days. 

On the other hand, looking at the results of the AAS concrete mixes it can be noted 

that the increase in the Na20 dosage of the activator from 4 to 6%, that was expected 

to produce lower porosity, did not do so in the case of the SS4 and SS6 mixes, where 

the activator has an Nis =1.65, but did so in the case of MET4 and MET6 mixes, with 

the activator having an M3 = 1.00. This discrepancy could probably be caused by the 

drying of the specimens prior to testing since SS6 showed higher shrinkage in the 

drying shrinkage test as was discussed in Chapter 5. The porosity of concrete is 

generally reduced with age as is clearly shown in the results. 

The porosity of the concrete mixes under the dry curing condition can be seen in 

Figure 7.4. At 7 days the CM2 mix shows the lowest porosity around 12%, the stag 

replacement in mix SLG60 increases the porosity to 14% and the AAS mixes gave a 

porosity around 13% with only minor differences among them. The values of porosity 

changed slightly with age. 

The effect of curing on the OPC control mix CM2 is shown in Figure 7.5. By 

comparing the results for water and dry cured specimens it can be seen that water 

curing reduces porosity with age from 10.5% at 7 days to 8.8% beyond 6 months. 

Porosity in the case of dry cured samples is 12.1% at 7 days which is clearly higher 
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than the water cured samples, but the change in porosity is insignificant for the 

remaining period. 

The OPC-slag (SLG60) mix was affected by curing in a manner demonstrated in 

Figure 7.6. As expected the dry cured specimens have higher porosity than water 

cured specimens. The porosity decreases with time as the hydration progresses. The 

gap between the porosity results for water and dry cured samples increases with age 

and the reduction in porosity is more in the case of water curing which is probably 

due to the continued hydration of slag with age ( or pozzolanic reaction). 

Figure 7.7 illustrates the effect of curing on porosity of the SS4 mix. No major effect 

can be noticed throughout the testing period, an expected higher percentage is shown 

in the 7 days value of porosity for the dry curing sample and stays higher all the time 

with a slight change in the difference between the two results. 

The porosity results for the alkali-activated slag mix SS6 is presented in Figure 7.8 

and shows a reduction in porosity from 12.8% at 7 days to 10.3% after one year under 

water curing. Under dry curing the porosity drops from 13.3% to around 12.0%. The 

effect of curing is not clear in these results, but this can be attributed to drying 

shrinkage cracking, induced by drying prior to the testing which caused the water 

cured specimens to be more porous. 

The effects of curing on the AAS mix (MET4) is clearly emphasized in the difference 

between porosity results under water and dry curing as can be seen in Figure 7.9. For 

7 days the porosity values were 13.2% and 13.0 % under water and dry curing 

respectively. The porosity decreased to 11 % after 6 months in the case of water 

curing while it only reached to 12.6% under dry curing indicting slower hydration. 

The AAS mix (MET6) behaved in terms of its porosity as shown in Figure 7.10. The 

7 day results were 12.4% and 13.2% for water and dry curing respectively. The 

porosity drops to 9.0% after 6 months under water curing and 11.6% under dry curing. 

This shows an increase in the gap between the results for the two curing conditions 

with age. 
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No results of the water saturation porosity test on AAS concrete were available in the 

literature to compare with the results of this investigation. Some studies on 

porosimetry indicate low porosity in the case of AAS mortars compared to OPC 

(Wang et. a1,1995). 

7.3 Oxygen Permeability 

Gas flow rate in concrete is normally very low, resulting in laminar rather than 

turbulent flow. Laminar viscous flow is dependent on the properties of fluid (i. e. 

viscosity and density) as well as characteristic of the porous medium (Dhir et at., 

1989). If the fluid used is non-compressible such as water, D'arcy's law can 

determine the steady state flow of water through concrete as follows: 

R= 
MAP 

r7L 

Where: k= Intrinsic permeability (m2) 

R= Flow rate (m3/sec ) 

rj = Viscosity of the fluid (Ns/m2) 

L= Length of the specimen (m) 

A= Cross sectional area of the specimen (m) 

AP = Fluid pressure head across the specimen (bar) 

( 7.1 ) 

However, when a compressible fluid such as oxygen is used, D'arcy's equation 

should be modified using the expression proposed by Grube and Lawrence (Grube 
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and Lawrence, 1984) which calculates the volume of fluid at the average pressure 
within the specimen (Cabrera and Lynsdale, 1988) as follows: 

2P2RiiL 
k= 

A(1 1s _12) 
(7.2) 

k-4.04RL*10-16 
A(P2 -1) 

(7.3) 

Where: k= Intrinsic oxygen permeability (m) 

P1= Inlet absolute applied (gauge) pressure (bar) 

P2 = Outlet pressure at which the flow rate is measured (usually 1 bar) 

Equation 7.3 was used in this work to measure the oxygen permeability for the 

specimens. 

7.3.1 Apparatus 

Intrinsic Oxygen Permeability test is performed using the permeability cell developed 

by the Cement and (; Concrete Association (C&CA). The permeameters used in this 

investigation are shown in Figure 7.11. 

7.3.2 Preparation of Specimens 

In this investigation, the specimens that were cast were 100 mm 1x 50 mm height. 

They were cured under water curing and dry curing and tested at ages 7,14,28,91, 

and 182 days. Prior to testing the samples were taken out of the curing environment at 

the required testing age. The samples were then dried in an oven at 105±5 °C for 

approximately 24 hours, until constant weight was reached. 
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7.3.3 Procedure 

The rubber inner tube, inflated to a pressure of 5 bars, is used to provide a gas-tight 

seal between the sample that is mounted in a soft rubber collar and the outer steel ring 

of the cell. Oxygen gas, under the required pressure, is applied to one side of the 

specimens through the gas inlet valve and the flow rate at the other side is measured 

using a bubble flow meter. 

Equation 7.3 was used in this work to measure the oxygen permeability for the 

specimens. 

7.3.4 Results and Discussion 

The results of oxygen permeability for the different mixes investigated, having a 

w/c=0.48, are presented in Figures 7.12 and 7.13. 

Figure 7.12 shows the results for the water-cured specimens of the different mixes. 
The CM2 mix had the lowest oxygen permeability results starting from 1x10"'6 m2 at 
7 days decreasing with age to a value around 0.5x10"'6 m2 at 90 days and did not 

change significantly onward. The OPC/Slag mix (SLG60) had oxygen permeability 
higher than CM2 with a value of 2x10-16 m2 at 7 days decreasing with age to 1x10"6 

m2 at 90 days and 0.6x10-16 after 1 year. This can be attributed to the latent hydration 

of slag where it continues through the late ages. 

It is noticed that the results of oxygen permeability for the AAS mixes are much 

higher in comparison with OPC and OPC/Slag mixes. The SS4 mix gave a value of 

67x10"'6 m2 at 7 days then decreasing drastically to 14.6x10& m2 at 90 days and 

maintaining a value of 13.61x10'16 m2 after 6 months. As for the SS6 mix the results 

were 67x10"16 m2 at 7 days decreasing to 8.4Ix10-16 m2 at 90 days reaching 4.90xI0'16 

m2 after 1 year. 
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MET4 mix gave a value of 31.52x10-16 m2 at 7 days then decreasing to 16.57x1046 m2 

at 28 days and maintaining a value around 13x10'16 m2 after 90 days. As for the MET6 

mix the results were 33.7x10"16 m2 at 7 days decreasing to 10xl0.16 m2 at 28 days and 

maintaining a value around 7x10"16 m2 after 90 days. 

The effect of curing on oxygen permeability for the OPC and OPC/Slag mixes are 

shown in Figure 7.13 where it is very clear that the oxygen permeability under dry 

curing was over 10 times higher compared to water curing. The results for the AAS 

mixes under dry curing were not measurable by the test. The rate of flow was very 
high and could not be measured. 

The high permeability results for the AAS mixes bring into question the reliability of 

the test especially with relation to the drying of the specimens prior to testing. This 

technique received a lot of criticism in the literature related to normal concrete. 

The preconditioning treatment carried out in the test has some disadvantages although 
drying is required to remove moisture, which can influence the result. Usually the 

temperature of drying affects the permeability result with higher values in the case of 
higher temperatures (Lynsdale, 1989). The 105 °C was widely used with OPC 

concrete on the thought that it is much representative as all water was assumed to be 

removed. Mills (1985) reports that the differences in permeability due to the type of 

treatment are ascribed to the transformation of the fine-pore structure into a coarser 

one due to tensile stresses. Sanjuan and Munvc Martialay (1996) stated that the 

variation in results of air permeability due to preconditioning temperatures (from 20- 

80 °C) was low in the case of w/c ratios between 0.42 and 0.47 implying that there is 

no effect on the results for such concretes due to variation in preconditioning 

temperature. A RILE/vt committee (1999) issued a paper on the gas permeability test 

recommending setting the preconditioning temperature to 50 °C provided that the 

preconditioning continue until the calculated loss of water (variation in mass) is 

attained within a5 percent level of accuracy. Although the preconditioning at 105 "C 

was acceptable for control mixes, the high results of oxygen permeability for AAS 

concrete were probably due to the effect of drying. This is in agreement with Kumar 

and Roy (1986) who suggested that extreme drying could cause micro cracking and 
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damage in the C-S-H gel. Since the main hydration product for AAS concrete is C-S- 

H this justification is relevant. 

7.4 Chloride Permeability 

7.4.1 Experimental Programme 

This test followed the ASSHTO 7277 or ASTM C 1202, which has been modified so 

that the result can be monitored and stored automatically by a computer (Cabrera and 

Lynsdale, 1988b). Cylinders of 100 mm cx 50 mm long were used to determine the 

rapid chloride permeability. The rapid chloride permeability test procedure was 

applied at 7,14,28,90 and 180 days. To create saturated surface dried condition 
before the sample being tested, they were treated in the same way as the samples for 

porosity as described previously. To reduce the number of samples in this 

investigation, after the measurement had been taken for oxygen permeability and 

porosity, the same samples were tested for rapid chloride permeability. 

The procedure and set-up for for measuring the Rapid Chloride Permeability of 

concrete was described by Lyncdale (1989) and is as follows. The experimental set-up 

used for this investigation is shown in Figure 7.14. The experimental set-up consists 

of 4 perspex cells where 4 samples are housed, a power supply, a digital voltmeter, 

and a computer control data acquisition system. The perspex cell consists of two 

reservoirs each capable of holding 250 ml of chemical solution and a 100 mm 

diameter copper mesh electrode. The sample is covered by an elastic membrane and 

fitted between the two reservoirs and properly sealed and tightened. The solutions 

used were a 3% (by wt. ) sodium chloride solution (used as the anode) in one reservoir, 

the other a 0.3 N sodium hydroxide solution (used as the cathode). The concentrations 

of these two solution were found to provide equal conductivity (Whiling, 1981). Each 

cell was connected to a power supply, Coutant ASD 1000, capable of delivering 60 

Volt dc at 10 Ampere. A digital voltmeter was used for the measurement of potential 

difference across a shunt. A computer interfaced with an intelligent multi-function 

instrument, 
, 

WI 1010 manufactured by CIL UK, for taking the measurements 
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controlled the data collection. The MFI unit took two hundred readings from each 

operational cell every 5 minutes and registered the average as a result. The unit was 

set to monitor changes in potential across four shunts, one for each cell, the rating of 

which was such that reading of 0.001 mV across the shunt represented a current of 0.1 

mA passing through the sample (Cabrera and Lynsdale, 1988b: Lynsdale, 1989). A 

total electric charge passed during 6 hours, in Coulombs, was related to chloride ion 

penetration and expressed as the chloride permeability index (C; p). A ranking of 

chloride permeability based on charge passed, in Coulombs, has been reported 
(Whiting, 1981) as can be seen in Table 7.1. 

7.4.2 Results and Discussion 

The results for rapid chloride permeability test (RCPT) for the OPC, OPC/slag and 

alkali-activated slag concrete with w/c ratio of 0.48 under water and dry curing 

conditions at various ages are illustrated in Figures 7.15 - 7.19. 

7.4.2.1 Effect of slag replacement 

The results shown in Figure 7.15 for the water cured mixes show that CM2 gave 
higher results than SLG60 in all ages. The RCPT values at 7 days are 2490 and 1650 

Coulombs for CM2 and SLG60 respectively, decreasing with age to reach 1811 and 
690 Coulombs at 182 days. These values indicate low chloride ion penetrability for 

CM2 and very low chloride ion penetrability for SLG60 after 28 days according to the 

AASHTO test classification (Table 7.1). 

Similarly the results in Figure 7.16 indicate that SLG60 had lower chloride 

permeability than CM2 under dry curing condition with values of 1864 Coulombs at 7 

days decreasing to 852 Coulombs at 182 days, while the values for CM2 were 2900 at 

7 days and decreasing to a value around 2500 after 182 days. 

This clearly demonstrates that the incorporation of ggbs as a replacement for OPC 

leads to a reduction in RCPT values. 
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7.4.2.2 Effect of Na2O dosage on RCPT results of AAS concrete 

It can be noticed from the results presented in Figure 7.15 that Na20 dosage of the 

activator plays a role influencing RCPT values for AAS concrete mixes. Comparing 

SS4 (with Na20 = 4%) to SS6 (with Na20 = 6%) indicate that from 7 to 90 days SS6 

gave the higher result with the difference between the values decreasing with age until 
SS6 gave the lower result at 182 days. Similarly it can be noted that MET6 (with 

Na20 = 6%) gave results higher than MET4 (with Na2O = 4%) decreasing with age 

until it gave lower results from 90 days onward. 

The AAS concrete gave generally lower RCPT results in comparison with the control 

mix CM2 except for the MET6 mix at the first 28 days. 

The increase in RCPT results with the higher Na2O dosage at the early ages is not an 
indication of the low quality of the concrete, but it directs attention to a shortcoming 

in the test itself. The test measures the current passed and not the actual permeability 

of the concrete. Hence the presence of high concentration of alkalis probably gives 

misleading results. At later ages the alkalis are supposedly bound in the hydration 

products and this leads to reduction in their influence on the results in addition the 

effect of hydration progress on the permeability. 

Studying Figure 7.16 indicates the same problem with the test at a larger scale. Some 

fluctuation in the results was probably due to the availability of unreacted alkalis in 

variable concentration and the cracking due to drying of the specimens. 

7.4.2.3 Effect of Silica Modulus of the activator 

It can be noted from the results of Figure 7.15 that with AAS concrete having the 

same Na2O dosage, the silica modulus Mg has an effect on the chloride permeability. 

The higher the My the lower the RCPT values, thus the SS4 gave lower values than 

the MET4 and the SS6 gave lower values than the MET6 at all ages. 

The results presented in Figure 7.16 which represent the dry cured samples are 

somewhat fluctuating and do not follow a clear trend. This is probably due to the 
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cracking and the availability of free alkalis due to the slow hydration with less amount 

of alkalis bound to the hydration products. 

7.4.2.4 Effect of curing 

The effect of curing on the control OPC and OPC/slag mixes is demonstrated in 

Figure 7.17. The dry curing increases the chloride permeability by approximately 20% 

for CM2 and 34% for SLG60 at 28 days of curing. This shows the higher sensitivity 

to curing in the concrete incorporating slag. 

Figure 7.18 presents the RCPT results for AAS concrete activated with sodium 

silicate solution with an MS = 1.65. It can be noted that curing has a great effect on 

these chloride permeability results. Comparing the 28 days results shows that the dry 

cured SS4 samples gave 3 times higher values than water cured SS4 samples, while 

the dry cured SS6 samples gave values 6 times higher. This, as discussed earlier, is an 

indication of not only a drop-in concrete quality but to a larger extent the abundance 

of alkalis in the concrete matrix. 

The same can be said for the AAS concrete activated by sodium metasilicate (M$ _ 

1.0) where the results in Figure 7.19 show values higher than normal in the early ages 

for water cured samples. Dry cured samples show an increase in values of chloride 

permeability and erratic fluctuation in the results. 

7.4.2.5 Comparison with Literature and test evaluation 

Douglas et Al. (1992) reported RCPT results on AAS concrete mixes with w/c of 

0.48, activated with water-glass having an M, = 1.47, and moist cured. Their results 

indicate good resistance to chloride penetration where RCPT values range from 1311 

to 2547 Coulombs at 28 days and from 676 to 1831 Coulombs at 90 days. They noted 

also that the lower the dosage of activator the lower the RCPT values. They suggested 

that the reason for that is the effect of silicate-slag ratio on the pore size distribution 

and even the microstructure of the hardened concrete, but this comes in contradiction 

with the compressive strength results for the same concretes where the lower dosage 
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gave lower compressive strength but higher chloride penetration resistance, while the 

higher dosage gave higher strength but lower chloride penetration resistance. 
Therefore, the role of alkali in increasing the RCPT values is clear. 

Shi (1996) presented RCPT results for AAS mortars using water-glass as an activator. 

These results were very high for the early ages 20000 Coulombs at 3 days reducing to 

12000 Coulombs at 7 days and further to a value around 5000 Coulombs at 28 and 90 

days. He arrived at a conclusion that the chemistry of the pore solution contributes 

more than the pore structure to the rapid chloride permeability test results. 

RCPT is widely used despite its empirical approach and it is accepted that it is 

somehow related to permeability (Hooton 1989). On the other hand it has been 

criticized by many researchers over the years because of its high variability, difficulty 

in evaluating high-quality concrete due to very low values obtained, difficulty in 

evaluating low-quality concrete due to excessive heat generation, and mainly because 

the test measures electrical conductivity through concrete, which is not directly 

related to diffusion (Buenfeld and Newman 1987; Roy, Malek and Licaslro 1987; 

Hooton 1989; and Zhang and Gjorv 1991). 

Shane et al. (1999) commented that the technique does not distinguish between 

chloride and hydroxyl ions as the charge carriers. Furthermore, the high voltage may 

cause microstructural damage during the test. Shi et al. (1996) concluded that the 

replacement of portland cement with supplementary cementing materials, such as 

silica fume, can reduce the electrical conductivity of concrete more than 90 percent 
due to the change in the chemical composition of the pore solution, which has little to 

do with the transport of chloride ions in concrete. They stated that it is not correct to 

use the passed charge to evaluate the rapid chloride permeability of concrete with 

supplementary cementing materials. Macke clinic and Alexander (2000) have 

supported these criticisms when comparing the RCPT, Nordic chloride permeability 

test and chloride conductivity test. They found that RCPT conducted at early ages 

could not be expected to fully quantify all the influencing factors. 

These criticisms of the test are supported by the results obtained with AAS concrete in 

this investigation and discussed above. Taking the point raised by Mackechnie and 
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Alexander (2000) regarding the age at testing, the results of the investigation support 

the proposition that the RCPT can probably be adopted for later ages when most of 
the alkalis are bound to the hydration products. 

7.5 Relationship between Porosity and Compressive 

Strength 

It is generally accepted that there is a relation between compressive strength and 

porosity. An equation representing that relation was suggested by RZoy and Gouda 

(1973) which is in the following form: 

P- Po exp(- Kf, 

Where: P- is porosity 

Po - is zero-strength porosity 

ff - is compressive strength 

K- is a constant. 

(7.4) 

The results of porosity and compressive strength obtained in this work on the different 

mixes having w/c ratio of 0.48 under water curing are plotted in Figure 7.20. All the 

mixes show the same overall trend resulting in a set of almost parallel straight lines. 

The compressive strength increases rapidly with the decrease in porosity. 
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The equations describing the relation between porosity and compressive strength 

which were arrived at by regression are as follows: 

P= 17.2e°°8" 

R2 = 0.97 (Control mix) (7.5) 

P 16.18e-0-0095f- 

R' = 0.95 (SLG60) (7.6) 

P =19.59e-°°°941" 

R2 = 0.88 (SS4) (7.7) 

P= 20.14e °. °°67' 

R2 = 0.93 (SS6) (7.8) 

P =16.53e-". "`67 

R2 = 0.92 (MET4) (7.9) 

P= 20.52e-0-0094f- 

R2 = 0.88 (MET6) (7.10) 
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The above equations have reasonable correlations; therefore a relationship exists 
between compressive strength and porosity. The trend of all the mixes is similar, as 

the strength increases and porosity reduces as expected. 

7.6 Relationship between Chloride Permeability and 

Compressive Strength 

An attempt has been made to arrive at a possible correlation between compressive 

strength and chloride permeability. The compressive strength results of all concrete 

mixes with w/c ratio of 0.48 under water curing were plotted against their respective 

chloride permeability values for all ages investigated as shown in Figure 7.21. Clear 

bands of results can be distinguished. One presenting the control mix CM2, a second 

presenting the slag mix SLG60, a third presenting SS4 and MET4 mixes, and a fourth 

presenting SS6 and MET6 mixes. 

Generally the trend is that an increase in the compressive strength is accompanied by 

a decrease in the chloride permeability values. But it is not possible to have one 

equation representing all the various concretes. Looking at the results of the MET6 

concrete mix, with 6% Na2O, it is noticed that for a compressive strength of 54 MPa 

the corresponding chloride permeability value is around 4833 Coulombs while for the 

same compressive strength the control mix CM2 gave a chloride permeability value of 
1811 Coulombs. The MET6 mix ends-up giving lower chloride permeability than the 

control mix at later ages. The reasoning for this was discussed in a previous section as 

a misleading result due to the high concentration of alkalis. 

Figures 7.22 and 7.23 show the above-mentioned groups of results in a clearer way 

and the relations arrived at are as follows: 

Co = 7776e x'. 0273! °' 

R2 = 0.83 (Control mix) (7.1) 
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Cip = 3676e-0.0369 

R2 = 0.83 (SLG60 mix) (7.12) 

C, 
p =14330e-0-°4159f'" 

R2 = 0.88 (AAS 4% Na20) (7.13) 

Cfp = 75O92e-0.0535fn, 

R2 = 0.95 (AAS 6% Na20) (7.14) 

7.7 Conclusions: 

The main conclusions drawn from the present investigation are summarised as 
follows: 

1. Replacing 60% of OPC by ggbs results in an increase in porosity compared to 

the OPC mix of the same wie ratio while it results in lower porosity when 

compared to OPC mix with the same workability level. 

2. The increase of the Na2O dosage in AAS concrete, where the activator has an 
N% = 1.0, results in a decrease in porosity. But in the case of the AAS 

concrete, with the activator having M=1.65, the porosity increases with 
increase of the Na2O dosage. 

3. The AAS concrete porosity test results are higher at early ages than the 

control mix due to the drying effect of preconditioning the specimens at 105 

°C. 

4. Dry curing increases the porosity of all the concrete mixes. 
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5. OPC/slag mix with 60% replacement has an oxygen permeability slightly 
higher than that OPC mix having the same w! c ratio at later ages after 365 

days. 

6. Pre-drying the specimens at 105 °C resulted in an increase in oxygen 

permeability of AAS concrete to much higher levels than those of OPC and 
OPC/slag mixes. This is probably due to micro-cracking caused by drying. 

7. Dry curing increases the oxygen permeability. 

8. Incorporating slag as a replacement of OPC by 60% results in lower chloride 
permeability compared to the control OPC concrete. 

9. The RCPT gives misleading high results for chloride permeability of AAS 

mixes especially in the case of high Na2O dosage at the early ages. 

10. Dry curing increases the chloride permeability but the results are very high 

and variable in the AAS concrete probably due to micro-cracking and the 

presence of alkalis. 
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Figure 7-1 Illustration on permeability and porosity (Bakker, 198-5) 

Figure 7.2 Vacuum saturation apparatus used in this investigation 
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Figure 7.3 Porosity of the different mixes at different ages under water curing 
condition 
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Figure 7.6 Effect of curing on porosity of the SLG6O mix 
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Figure 7.11 Oxygen Permeability Test Set-up 
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Figure 7.12 Oxygen Permeability of the different mixes under water curing condition 
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Table 7.1 Chloride inn penetrability in relation to the charge passed (Whiting, 198 1) 

Chloride ion penetrability Charge passed (Coulombs) 

High > 4.. 000 

Moderate 2,000 4,000 

Low 1,000 - 2,000 

Very Low 

Negligible 

100 - 1,000 

< 100 

Figure 7.14 Rapid Chloride Permeability Test Set-up 
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Chapter 8 Alkali-Silica Reaction and Carbonation 

8. ALKALI-SILICA REACTION AND 

CARBONATION 

8.1 Introduction 

Durability of concrete can be affected by a lot of conditions that cause reduction in the 

serviceability of the structures and possible deterioration. Alkali-silica reaction is one 

of the deteriorating reactions that can occur within the concrete due to the interaction 

between the ingredients, namely, the aggregates and the alkali in the cement or from 

other contaminants. It causes expansive stresses within the concrete. AAS concrete 

usually incorporates high alkali content, and hence calls for great attention directed at 

understanding and evaluating the potential for ASR in AAS concrete. Another cause 

for problems is carbonation, which indirectly affects the protection of steel 

reinforcement against corrosion. ASR and carbonation are discussed in detail in this 

chapter and their effect on AAS concrete is investigated compared with OPC and 
OPC/slag concrete. 

8.2 Alkali-Silica Reaction 

Concrete can deteriorate as a result of an interaction between alkaline pore fluids 

(principally originating from the Portland cement and from the activators in AAS 

concrete) and reactive minerals in certain types of aggregates. The mechanism of 

deterioration is known as alkali aggregate reaction (AAR); it can occur in a number of 

forms. Alkali silica reaction (ASR) is the most common form of alkali aggregate 

reaction. It occurs when there is interaction between the alkaline pore fluid and 

siliceous minerals in some aggregates forming a calcium alkali silicate gel. This gel 

takes in water producing a volume expansion, which disrupts the concrete. Other 

alkali aggregate reactions are the alkali carbonate reaction when the attack is on 

certain argillaceous dolomitic limestones and and the alkali silicate reaction in which 

layer silicate minerals are attacked. Alkali carbonate reaction is less common than 
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ASR worldwide and no harmful alkali carbonate reaction has been observed in the 

United Kingdom (BRE Digest, 1988). 

8.2.1 Necessary Factors for ASR 

Three factors are necessary for alkali-silica reactivity to occur: 

1. Presence of Alkalis in sufficient quantity 

2. Reactive silica in the aggregate 

3. Water or sufficient moisture. 

These factors are discussed below in more detail. 

8.2.1.1 Presence of alkalis in sufficient quantity 

Usually alklalis are present in the cement coming from the raw material used in its 

production. In order to assess the total alkalis present in a cement or concrete it has 

become standard practice to express the alkali content in terms of `sodium oxide 

equivalent'. This correlates the sodium and potassum oxides in terms of molecular 

proportions. The calculation of the sodium oxide equivalent is as follows : 

Sodium oxide equivalent = Na2O% + 0.658K20% 

BRE digest (1988) presented limits of the alkali in cement and suggested 3.0 kg of 

Na20 equivalent per cubic metre of concrete. It also stated that a portland cement with 

an alkali level of 1.0% equivalent Na2O can be used with no further protection against 

ASR provided the cement content of the mix does not exceed 300 kg/m3. With an 

alkali level 0.60% Na2O in cement; up to 500 kg/m3 of the cement could be used 

without further consideration of ASR. 

8.2.1.2 Reactive silica in the aggregate 

Some rock materials used as aggregate for concrete contain some form of reactive 

silica, which is an essential component for alkali silica concrete to take place. The 

reactivity of the aggregate depends on the silica crystalline structure and other 

conditions to form the expansive silica gel that causes tensile stresses within the 

concrete matrix. Coull (1981) has listed the minerals and rocks that are potentially 

reactive with high alkali cement, which is shown in Table 8.1. 
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8.2.1.3 Water or sufficient moisture 

The alkali gel may form in dry conditions where concrete still retains pore fluids but it 

will only expand and cause damage when the concrete is subjected to constant or 
intermittent exposure to moisture (i. e. moisture saturated soil or rain). Expansion and 

expansive reaction are negligible when humidity is below 70% RH but above 80% 

RH the expansive effects increase dramatically (Poole, 1990). 

8.2.2 The Pessimum Content 

For reactions to occur which will cause damage by expansion in concrete, alkali, 

reactive silica and water must all be present. With one factor absent, no expansion 

will occur. The alkali reactive silica ratio corresponding with the maximum expansion 
is called the most critical ratio and the reactive silica content producing the maximum 

expansion is called the pessimum content. In order to find the pessimum content of 

any reactive aggregate, and in the absence of any standard method to determine this, 

many parameters must be taken into consideration. Of these parameters, mix 

proportion, water/cement ratio particle size, cement content, concrete alkalinity, 

specimen size, curing and time are all important (Al-Asali, 1987). 

8.2.3 Testing for alkali-silica reactivity of aggregates 

The test methods for alkali-aggregate reactivity can be divided into those that 

determine the potential reactivity of an aggregate (the chemical test and petrographic 

method) and those that measure expansivity of aggregate in concrete (mortar bar 

ASTM C227 (AS1M, 1990), concrete prism (BS - DD 218,1995) and (ASTM C 1293, 

1995 ) (Swamy et. at., 1988). The latter methods are of interest in this investigation 

because the objective is not only to test the aggregates but to study the of ect of high 

alkali concentrations in AAS concrete. The concrete prism method adopted by BS will 

be used in this investigation. Although the BS standard does not specify a limit for 

expansion, the limit adopted in ASTM C 1293-95 was 0.04% at which an aggregate is 

considered deleteriously expansive. 
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8.2.4 Experimental Programme 

A set of three prisms 75x75x280 mm for each mix were prepared and tested 

according to BSI Draft DD218: (1995). 

8.2.4.1 The concrete mixes 

Reactive sand from Greywacke type rock source provided by BRE was used as fine 

aggregate in the concrete mixes for this test. 

Two mixes were designed initially to assess the reactivity of the aggregates. They 

were intended to promote ASR expansion therefore they had high binder content. 

TEST 1: A control mix (CON1) designed exactly according to the standard using 

specified high alkali cement and added alkalis to the required Na20 level of I% of the 

weight of cement by adding potassium sulphate. The Na2O equivalent of the cement 

originally was 0.68%. The purpose of this mix is to cause ASR and accelerate the 

reaction. 

TEST 2: Replacing 60% of the cement in TEST 1 by ggbs and maintaining the alkali 

content of the cement at 1% (SLGCON). 

The mixes used throughout the investigation for OPC, OPC/Slag, and AAS concrete 

are tested replacing the sand by the reactive aggregate and they are the following 

mixes: 

CIM: PC control mix with w/c = 0.48 

SLG60: 60% ggbs + 40% OPC mixture with w/c = 0.48 

SS4: Sodium silicate alkali-activated slag mixture with Na2O content of 4% with w/c 

= 0.48 

SS6: Sodium silicate alkali-activated slag mixture with Na2O content of 6% with w/c 

= 0.48 

MET4: Sodium metasilicate alkali-activated slag mixture with Na2O content of 4% 

with wlc = 0.48 
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METE: Sodium metasilicate alkali-activated slag mixture with Na20 content of 6% 

with w/c = 0.48 

The details of the mixes are presented in Table 8.2 

8.2.4.2 Storage Conditions 

The specimens were treated in accordance with the standard . They were wrapped in a 

cloth and a polyethylene sheet after demoulding after 24 hours. Then they were stored 

in a humid room (20 ± 2°C) for the next 6 days and then stored in a controlled 

temperature tank with water at the bottom not touching the specimens (38 ± 2°C). 

They were not put in separate containers as in the standard specifications of the test 

but the specimens were well wrapped and the moisture maintained at all times at RH 

95% (see Figure 8.1). 

8.2.4.3 Expansion Measurement 

The expansion was measured using a length comparator in accordance with BSI Draft 

DD218: 1995. The comparator is shown in Figure 8.2. The measurement was done in 

the following steps: 

The length of each prism was measured after demoulding from several points and an 

average value recorded. 

The initial reading AO was measured after demoulding. Another reading was 

measured after removal from the mist room. Subsequent reading were measured at the 

end of periods 2, weeks, 4 weeks, 13 weeks, 26 weeks, 39 weeks and one year after 

mixing. 

The expansion h;, is calculated by the equation: 

L'ý=A,, 
A°xloo 

a 

A� is the comparator measurement of the prism at age n; 

A0 is the initial comparator measurement of the prism; 

(8.1) 
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la is the initial length of the prism. 

The average of measurement for the three prisms was calculated. 

8.2.5 Results and discussion 

The results of the alkali-silica reaction expansion test carried out in this investigation 

on the prisms of the concrete mixes cast and treated in accordance with the relevant 

standard detailed in previous sections are presented in Figures 8.3-8.4. The results 
from the prisms are discussed to reach an understanding of the behaviour and 

potential for ASR to occur in AAS concrete. 

8.2.5.1 Reactivity of the Aggregate 

The Thames valley sand used in this investigation was identified by Blackwell et al. 
(1992) being of greywacke source as having deleterious expansion attributed to AAR. 

This finding is confirmed in this investigation. Results shown in Figure 8.3 show that 

the TEST 1 mix exhibited high expansion up to 0.185% after 1 year of exposure. 
Greywacke some times is the only available source for aggregate for construction. 
That is the case with certain areas in the UK. The potential reactivity of such 

aggregates can still be avoided by several means, including controlling the alkali or 

using cement replacing binders such as fly ash or slag. 

8.2.5.2 Effect of Slag on ASR 

The results in Figure 8.3 show that the OPC/Slag mix having high binder content and 
60% cement replacement by ggbs (TEST2) achieved a reduction in the expansion 

reaching only 0.027% after 1 year, which is below the 0.04% limit. This result is in 

agreement with Hobbs (1982) who stated that incorporation of ggbs for 50% of OPC 

in concrete results in a reduction in the expansion of concrete in the presence of 

reactive aggregate. Sims (1983) stated that the addition of slag had a beneficial effect 

in reducing expansion. Also Thomas and Innis (1995) reached similar conclusions to 

the reduction in expansion in mortar bars and concrete prisms made with alkali-silica 

reactive aggregates. It can be noted from Figure 8.4 that the OPC/Slag mix SLG60 

reached a maximum value of expansion 0.02%, which is lower also than the limit and 
lower than the TEST2 mix probably because of the high cementitious content and the 
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alkali content of the latter. The role of slag in reduction of expansion due to ASR in 

OPC and ggbs blends containing at least 50% slag was attributed by the BRE digest 

(1988) to the greatly reduced ability of hydroxyl ions to diffuse within the cement 

paste. Glasser (1990) stated that the products of hydration of blended cements have 

higher binding power for alkalis resulting in less potential for reaction with aggregate. 

8.2.5.3 ASR potential in AAS concrete 

The results in Figure 8.4 show that AAS concrete had overall a low expansion 
indicating less susceptibility to ASR. Comparing the mixes based on the Na20 dosage 

shows that the higher the Na20 content the higher the expansion, as SS6 shows higher 

expansion than SS4, and MET6 shows higher expansion than MET4. On the other 
hand, comparison based on the M. of the activator indicates that the higher the Ms, the 

lower the expansion, when the Na2O is the same since, the SS4 expansion was lower 

than that of MET4, and SS6 expansion was lower than that of MET6. The control 
OPC mix CM2 also showed low values for expansion reaching 0.0165% at 1 year. 
The available literature is contradictory. Some researchers pointed out there is no 

susceptibility for ASR with AAS in agreement with what was found in this 

investigation. Some of those researchers stated that it is not possible for ASR to take 

place in the activated slag mortar because all, or almost all, the alkalis (more than 

80%) are combined in the different hydration products (Tailing and Branctetr, 1989; 

Shi et al., 1992; Krivenko, 1992). Gifford ord and Gillot (1996) proposed that AAS 

concrete is less susceptible to ASR because of the pessimum effect, which results in 

the consumption of the reactive silica during the early period of hardening. On the 

other hand others reported potential for ASR in AAS mortars and concrete. Metso 

(1983) reported expansion in AAS mortars. Wang (1991) reported some work done in 

China that found ASR expansion about 0.1 - 0.15% using 3% granulated silica in 

AAS mortars. Bakharev et al. (2001) tested AAS concrete where slag was activated 

by a mixture of Na2SiO3 and NaOH having an Ms = 0.75. They reported high 

expansion starting from 0.04% at 90 days, increasing to 0.045% after 12 months, 

reaching 0.1% after 22 months. They recommended that ASR testing with AAS 

concrete should continue for over 2 years as they noticed slower expansion at early 

ages where it is mitigated according to the researchers by rapid strength development. 

This suggestion is probably reasonable as the results of this investigation, shown in 
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Figure 8.4, show a trend of probable increase in the future for the AAS mixes having 

6% Na2O although the expansion is still below the 0.04% limit after 1 year. 

Glasser (1990) as mentioned earlier stated that OPC/Slag blends among other blended 

cements have higher binding power for alkalis in their hydration products, which can 

also be true for AAS concrete resulting in less potential for ASR. The results of this 
investigation can be explained following the same logic. The effect of M. of the 

activator on the expansion as it decreases with higher M. can be due to the binding of 

the alkali fraction to the silicate fraction of the activator in forming part of the 

hydration products. SS4, having lower alkali and higher Ms showed the lowest 

expansion. 

8.3 Carbonation 

Carbonation is the process whereby concrete is attacked by atmospheric carbon 

dioxide. More specifically, carbonation is a chemical reaction between one of the 

main hydration products of cement in the concrete, calcium hydroxide (Ca(OH)2), and 

carbon dioxide (C02) from the atmosphere to form calcium carbonate (CaCO3). 

Additionally, carbon dioxide may react with calcium silicate hydrate (C-S-H), 

unhydrated dicalcium silicate (C2S), and tricalcium silicate (C3S) (l no et al., 1994; 

Lea, 1970) and also hydrated alumina (Lea, 1970). 

The known effect of carbonation on cementitious composites is the loss of alkalinity 

that protects the reinforcement against corrosion by passivation. Carbonation of 

concrete, as is widely known, can lead to the gradual deterioration of reinforced 

concrete. In hardened concrete, steel is normally protected from corrosion by a 

passive layer of oxide. However, the steel may become susceptible to corrosion in the 

presence of chloride ions or if it becomes depassified when the alkalinity of the 

concrete at the location of the steel is reduced (pH approx. 8.0) by carbonation. 

Corrosion may occur if moisture and oxygen can penetrate the concrete to reach the 

steel. Consequently, the depth of concrete cover to the steel and the ability of the 

cover to resist the penetration of chloride ions, carbon dioxide, moisture and oxygen 

largely control the durability of reinforced concrete. 
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8.3.1 Process of Carbonation 

The pH of concrete pore fluids is normally in excess 12.5. Once the concrete has 

carbonated, this generally drops to around pH 8 and it is evident at this lcvcl of 

alkalinity that conditions are such that corrosion can occur. Parrot (1987) and 
Richardson (1988), as reported by Byars (1997), suggested that carbonation due to 

atmospheric carbon dioxide might be divided into three stages. 

Step 1, Ingress of carbon dioxide by diffusion 

H2O + CO2 -i HC03 + H+ 

Step 2, Reaction with the concrete pore fluids leading to the formation of carbonic 

acid 

HC03 --º C032-+W 

Step 3, Reaction of the carbonic acid with the alkaline constituents of concrete 

Ca(OH)2 +2 H+ + 0032 --p CaCO3 + 2H20 

It has also been reported, as indicated above, that as the process of carbonation 

proceeds, decomposition of the hydrate structure may occur (Loo et al., 1994), in the 
following reaction: 

3CaO. 2SiO2.3H20 + 3CO2 -* 3CaCO3.2SiO2.3H20 

3CaO. SiO2 + 3CO2 + uHZO -+ SiO2. uH2O + 3CaCO3 

2CaO. SiO2 + 2CO2 + uH2O -* SiO2. uH2O + 2CaCO3 

8.3.2 Factors Influencing the Rate of Carbonation 

83.2.1 Properties of Concrete 

Strength of concrete has been found to influence the carbonation resistance of the 

concrete (Loo ei al., 1994; Watkins and Jones, 1993). However, caution should be 

exercised in using strength as a prediction of carbonation resistance since in particular 

concrete, concrete with similar strength may offer different carbonation resistance 
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(Dhir et al., 1989). Therefore, factors that influence the strength and microstructure of 

the concrete may also affect the carbonation resistance such us w/b ratio, cement 

content, including blended cement, degree of hydration, diffusivity, porosity and 

permeability of the concrete. In addition, it is found that the fundamental factor 

controlling carbonation is the diffusivity of the hardened cement paste (Neville, 1995; 

Jiang el al., 2000). 

8.3.2.2 Environmental Conditions 

The progress of carbonation is greatly influenced by the relative humidity of the 

exposure condition in which the structure is located, the curing history of the concrete, 

and the carbon dioxide concentration (Watkins and Jones, 1993). Apparently, the rate 

of carbonation is slightly sensitive to temperature, in that a small variation in 

temperature has only a little effect on carbonation but a high temperature increases the 

rate of carbonation significantly. Loo et al. (1994) reported that the effect of 

temperature within the range 20 to 40 °C on the rate of carbonation is not significant. 

In the case of carbon dioxide concentration, an increase of CO2 will generally increase 

the rate of carbonation. According to Thomas and Matthews (1992), the reduction in 

the rate of carbonation becomes more marked at relative humidity above 80 %. 

However, the highest rate of carbonation occurs at a relative humidity of between 50 

and 70 % (Neville, 1995). 

8.3.3 Experimental Programme 

Cubes of 100 mm were prepared for the OPC control mix, OPC/slag mix and the AAS 

concrete mixes and cured in water for 28 days then moved into the controlled 

temperature room with temperature 20 °C and 60%RH. The dry cured specimens were 

also examined. Carbonation measurements were carried out for concrete after 

exposure for 1 year. 
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83.3.1 Test Procedure 

Carbonation in concrete results in a drop in pH. A pH indicator can be used to 

determine the pH of a freshly broken section of concrete. Phenolphthalein is the most 

commonly used indicator. When sprayed on the broken face of the concrete section, it 

remains colourless when the pH is below 8.2 but, turns to pink when pH is higher than 

8.2. The procedure is prescribed by RILEM(1988). 

Measurement of the carbonation of concrete specimens was carried out using 

phenolphthalein in ethanol solution. When the indicator was applied to a freshly 

broken surface of concrete. The edges of the sample that remain colourless are to be 

considered carbonated. The depth of carbonation was measured from the edge surface 

to where the indicator coloured the paste pink. The average thickness of this layer 

gives the depth of carbonation. An average of 16 measurements is taken for each 

specimen. A typical set of specimens tested is illustrated in Figure 8.5. 

8.3.4 Results and Discussion 

Results of carbonation depth measurement after 1 year of age are presented in Figure 

8.6. These results show that CMl mix, which is the OPC mix with w/c=0.55, had 

higher depth of carbonation equal to 8 mm compared to CM2, which is the OPC mix 

with w/c 0.48, having a carbonation depth of 4.5 mm. The OPC/slag mix SLG60 had 

carbonation depth of 6 mm depth grater than CM2 which has similar w/c ratio. This is 

in agreement with Neville (1995). Nevertheless SLG60 had less carbonation than 

CMI which has comparable workability and strength. 

The AAS mixes differ in their depth of carbonation, as the lowest depth of 

carbonation was achieved by SS6 with a depth of only 4 mm of carbonation followed 

by MET6 with depth of 7.5 mm then SS4 which had a carbonation depth of9 mm and 

the highest carbonation depth which was with MET4 having 12 mm. 

Although hydrated slag blended and AAS concrete produce low Ca(O14)2 which is 

the main reactant for carbonation in OPC concrete, some researchers have reported 

higher rate of carbonation with AAS concrete especially with low grade, low strength 

concretes. This might be due to carbonation of C-S-H. (Wang, et a1.1995 ; Bakarev, 

2001 ). This investigation arrived at a similar finding. 
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The effect of dry curing in AAS concrete is very drastic. The dry cured specimens 

exhibited higher carbonation than specimens cured in water for 28 days. The SS6 

suffered the most because of the drying shrinkage cracking. 

8.3.5 Relation between Carbonation Depth and Compressive Strength at 28 day 

The values for carbonation depth were plotted against the corresponding 28 day 

compressive strength for the mixes, as illustrated in Figure 8.7. The results show a 

reasonable relationship for all mixes but the relationship for OPC and OPCISlag 

mixes cannot be plotted for 3 points only. It can be noted that AAS concrete had 

greater depth of carbonation compared with the control mix having the same 

compressive strength. 

The relation for AAS concrete arrived at was as follows: 

kd = 68.03e-0.036f° 
(8.2) 

R2 = 0.9952 

8.4 Conclusions: 

The main conclusions drawn from the present investigation are summarised as 

follows: 

1. Replacing 60% OPC by slag reduces the expansion of concrete prisms 

containing reactive aggregates. 

2. AAS concrete has low susceptibility to ASR expansion possibly because of 

stronger binding of alkalis in the hydration products. 

3. S1ag/OPC concrete showed higher depth of carbonation than OPC concrete 

with the same wlc ratio. 

4. AAS concrete with low compressive strength (around 40 MPa) has higher 

carbonation compared to OPC concrete of the same grade. 
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Table 8.1 Minerals, rocks and other substances, which are potentially deleteriously 
reactive with alkalis in cement (Coull. 1981). 

Minerals 

Opal 
Chalcedony 
Tridymite 
Cristobalite 
Cryptocrystalline, microcyrstalline or glassy quartz 
Coarse-grained quartz which is intensely fractured, granulated and strained internally 

or filled with submicroscopic inclusions of which illite is one of the most common 
Vein quartz 

Rocks 
Rock Reactive component 

Igneous rocks 
Granites More than 30 % quartz as characterised by suturing and 
Granodiorites undulatory extinction 
Charnokites 
Pumice 
Rhyolites 
Andesites Silicic to intermediate silica rich volcanic glasses; devitrified 
Dacites glass; tridymite Latites 
Perlites 
Obsidians 
Volcanic tuff 
Basalts Chalcedon ; cristobalite; opal, palagonite; basic volcanic glass 
Metamorphic rocks More than 30% strained quartz as characterised by suturing Gneisses 

and undulatory extinction Schists 
Quartzites Strained quartz as above; 5% or more chert 
Hornfelsen Possibly certain phyllosilicates e. g. vermiculite; strained Phyiiites 

' quartz, cryptocrystalline quartz Ilites Ar 
Sedimentary rocks Strained quartz ; 5% or more chert, opal Sandstones 
Greywackes Possibly certain phyllosilicates e. g. vermiculite; strained 

quartz 
Siltstones Possibly certain phyllosilicates e. g. vermiculite; strained 

quartz; opal 
Shales Possibly certain phyllosilicates e. g. vermiculite; strained 

quartz; opal 
Chert Cryptocrystalline quartz; chalcedony; opal 
Flint 
Diatomite OW; cryptocrystalline quartz 
Carbonates Phyllosilicates exposed by dedolomitization; o; chalcedony. 
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Table 8.2 The concrete mixes tested for ASR 

Mix Slag OPC Na2O (Activator Lime Lime Watrnf Tuta1 Tuta1 Sand } Grave! w; b 
No. keim' kg'm' % kJm' Slurry Slurry kglm' Water Binder { ka/rn' kg/m' 

3 ý' 
. io ksý! rtt; ki hill kp/m; } 

-- 11 
CON 10 690 1 6.20 0 0 228 228 690 429 990 033 

Swc 414 276 F 1; 6.20 0 0 228 228 69/) 423 990 () ii 
ON 

SS4 326 04 64.63 4 30 134 180 375 591 1215 0 48 

SSA ) 305 06 90.70 6 45 114 180 375 591 1215 0.48 

11 

iýMET4 333 0f41 47.94 
i 

4 
1V 

30 144.4 180 375 591 1215 0 48 

32 ! t1 !6 69 3 4 30 5 2 180 375 591 1215 08 
. 23 v1ET6 . 

CM2 01 375 00 0 0 180 180 3 75 -91 }I 215 0.48 

SL 3601 225 lz0 j00 0 0 180 180 375 591 1215 0.48 

Figure 8. ) The prisms stored in a controlled temperature tank (38 ± 2°C) 
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9. Conclusions and Recommendations for Future 

Research 

9.1 Introduction 

The objectives of the work were covered throughout this investigation to study the 

performance of alkali-activated slag concrete in comparison with normal OPC 

concrete and OPGslag concrete in terms of its mechanical behaviour and durability. 

In this last chapter the main conclusions are stated and some recommendations for 
further research are suggested 

9.2 Conclusions 

Overall it can be concluded that AAS concrete has a great potential and presents a 
viable alternative to OPC to help decrease the effect on the environment in terms of 
energy conservation and less CO2 emission. 

Choosing an activator with lower modulus (around 1.0) and a Na2O dosage (around 

4%) is essential to achieve reasonable strength and durability comparable to normal 
OPC concrete or even surpass it. Due to the unavailability of such activators with the 

required properties in terms of the low silica modulus care should be taken when 

choosing the mix proportions to achieve the desired properties. The fresh properties of 
AAS with high alkali Na2O dosages of activators with high silica modulus still present 

some difficulty in terms of shorter setting time and faster loss of workability and they 

should be avoided if possible. 
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There were some practical problems with handling the chemicals, which carry some 

safety risks. In the present work, no attempt was made to change the chemical 

composition of the activator as was reported in the literature by adding sodium 
hydroxide to vary the silica modulus because of the inconvenience of handling highly 

corrosive chemicals and the difficulty to use them in mixing concrete in large batches. 

Field concrete batching should be much simpler and hence the producers of the 

construction materials and admixtures should be producing products incorporating 

alkalis in a solution form that is easily dissolvable and more practical. 

The conclusions related to the properties of alkali-activated slag concrete in 

comparison with OPC, and OPC/ slag concrete are listed below 

Fresh Concrete Properties: 

1. Slag requires less water for the same workability level. Therefore the slag 

replacement mix had higher slump compared with an OPC control of the same w/c 

ratio and same binder content. 

2. Alkali-activated slag concrete has good workability, comparable with OPC and 

OPC/slag concrete. For a given w/c ratio, the higher the dosage of the activator, 

the lower the slump. The higher is the silicate modulus of the activator the less 

workable the concrete is in terms of slump. 

3. AAS concrete sets rapidly with the higher silicate modulus of the activator and the 

higher Na2O dosage resulting in shorter setting time. This rapid setting can be 

controlled by adding hydrated lime to the mix. 

Hydration Process: 

I. The main hydration product in AAS systems is C-S-H (I). The hydrotalcite-like 

peaks observed in the XRD patterns can be attributed to the high magnesium 

content of the slag. 

2. Autoclaving results in formation of a more crystalline C-S-H gel and the 

formation possibly of xonotlite. 
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3. The combined water in the hydration products as measured by TGA, for AAS 

pastes showed an increase with age with the higher Na2O dosage resulting in 

higher hydration while no significant increase was noted with the low Na2O 

dosage. The autoclave curing resulted in a lower amount of combined water 

measured in comparison with water curing. 

Engineering Properties 

I. The choice of the type of activator and dosage is very important in AAS concrete 
with the higher dosage resulting in higher strength and the higher silicate modulus 

of the activator resulting in higher strength. 

2. The concrete incorporating ggbs as a replacement of OPC develops strength at a 

slower rate compared to the OPC and AAS mixes with the same w/c ratio. 

3. Curing is a very important factor in the engineering properties of concrete in 

general, but AAS concrete is much more sensitive to curing where the strength of 

concrete that is dry cured is much lower than that of concrete that is water cured. 

4. Accelerated curing (autoclave) increases the initial gain of strength in AAS 

concrete but eventually gives results close to water curing. It is more effective 

with the activator having lower silicate modulus. 

5. The development of dynamic modulus of elasticity and ultrasonic pulse velocity 
demonstrated similar trends to those of compressive strength. 

6. The slag/OPC mix exhibited higher drying shrinkage in comparison with the OPC 

mix having the same w/c ratio. 

7. AAS concrete with 6% Na20 exhibited high drying shrinkage compared to the 

OPC concrete and the AAS concrete with 4% Na2O. 

8. Using a waterglass activator with Ms = 1.65 and 6% Na2O resulted in the highest 

drying shrinkage probably because of the larger amount of silica gel formed in the 

hydration process. 

9. Autoclave curing of AAS concrete reduces the drying shrinkage as it causes the 

formation of more crystalline products of hydration. 
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Permeation Related Properties 

1. Replacing 60% of OPC by ggbs results in an increase in porosity compared to the 

OPC mix of the same w/c ratio while it results in lower porosity when compared 

to the OPC mix with the same workability level. 

2. The increase of the Na20 dosage in AAS concrete, where the activator has an M. 

= 1.0, results in a decrease in porosity. But in the case of the AAS concrete, with 

the activator having Ms = 1.65, the porosity increases with the increase of the 

Na2O dosage. 

3. The AAS concrete porosity test results are higher at early ages than the control 

mix due to the drying effect of preconditioning the specimens at 105 "C. 

4. Dry curing increases the porosity of all the concrete mixes. 

5. OPC/slag mix with 60% replacement has oxygen permeability slightly higher than 

that of the OPC mix having the same w/c ratio at later ages. 

6. Pre-drying the specimens at 105 "C resulted in an increase in oxygen permeability 

of AAS concrete to much higher levels than those of OPC and OPC/slag mixes. 
This is probably due to micro-cracking caused by drying. Dry curing increased the 

oxygen permeability. 

7. Incorporating slag as a replacement of OPC by 60% results in lower chloride 

permeability compared to the control OPC concrete. 

8. The rapid chloride permeability test gives misleading high results for chloride 

permeability of AAS mixes especially in the case of high Na20 dosage at the early 

ages. 

9. Dry curing increases the chloride permeability but the results are very high and 

fluctuating in the AAS concrete probably due to the micro-cracking and the 

presence of alkalis. 

Alkali Silica Reaction 

1. Replacing 60% of the OPC by slag reduces the alkali-silica reaction expansion of 

concrete prisms containing reactive aggregates. 
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2. AAS concrete has low susceptibility to ASR expansion possibly because of 
binding of alkalis in the hydration products. 

Carbonation: 

1, Slag/OPC concrete undergoes higher carbonation than OPC concrete with the 

same w/c ratio. 

2. AAS concrete with low compressive strength around 40 MPa shows higher 

carbonation depth compared to OPC concrete of the same grade. 

9.3 Recommendations for Future Research 

The suggested recommendations for future research in the field of alkali-activated 

slag concrete are as follows: 

1. Attempts should be made to standardise the mix design methods for AAS 

concrete and specify the activators as a construction material with 

recommended dosages and properties. 

2. There is room for work on finding retarders other than lime for use with AAS 

concrete especially when using high dosages of the activator and higher 

modulus. 

3. investigate possibility of blending AAS with pozzolans such as pfa to improve 

its quality and overcome some of the problems related to workability and 

setting time. 

4. The activation of pozzolans such as pfa can be studied Also other type of 

slags and waste materials with some pozzolanic properties carries a good 

potential to be explored. 

5. There is a potential for using accelerated curing including high temperature 

curing or autoclaving in industrial factory conditions such as precast and 
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prefabricated concrete products. This field can be investigated for the use of 
AAS concrete under good quality control conditions. 

6. Extensive work is needed on the properties of AAS concrete to create a wider 
knowledge in terms of its behaviour in different environmental conditions: 

" Freeze-thaw testing 

" Hot climate conditions 

" Aggressive chemical exposure conditions 
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