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Abstract

Continuous-variable quantum key distribution (CV-QKD) uses amplitude and phase

modulation of light, in order to establish secure communications between two remote

parties. The laws of quantum mechanics ensure the theoretical security of the protocol,

in spite of the noise and losses of the communication channel. In practice, however,

the resulting secret key rate depends not only on these two factors, but also on a series

of data-processing steps, needed for transforming shared correlations into a final secret

binary string.

In this work, we investigate the operation of three Gaussian-modulated coherent-state

(GMCS) CV-QKD protocols: the homodyne detection, heterodyne detection and the

continuous-variable measurement-device-independent (CV-MDI) protocol. We propose

a comprehensive strategy covering their entire course, starting from the preparation and

transmission of quantum states, until the extraction of a shared secret key. We also

provide rigorous security proofs, considering optimal eavesdropper strategies and incor-

porating the composable framework under finite-size effects, which offers the highest

level of security. In addition, we present results, where we explore the performance of

different quantities of interest in the high signal-to-noise regime and identify intervals of

parameters, where communications are regarded as secure. This is achieved under the

assistance of our self-developed open-source Python library, which we use to simulate

the stage of quantum communications and, afterwards, to process the resulting data via

the stages of parameter estimation, information reconciliation and privacy amplification.

Here, short-range communications are of particular interest. To enhance data processing

in this high signal-to-noise ratio setting, we have combined an appropriate data prepro-

cessing scheme with the use of high-rate, non-binary low-density parity-check (LDPC)

codes. This allows us to examine the performance of short-range CV-QKD in practical

implementations and optimize the parameters connected to the aforementioned steps.
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Preface

The world faces a growing threat from quantum computers, which will render current

encryption methods obsolete. In response to this urgent need for security, quantum key

distribution (QKD) has emerged as a promising solution. QKD offers an unbreakable

cryptographic framework, that is immune to attacks from quantum computers. This

is because the security is derived from the principles of quantum mechanics, instead of

relying solely on mathematical complexity. As quantum computing advances, QKD is

poised to play a vital role in ensuring secure communications in a post-quantum era,

ushering the new age of quantum-safe cryptography.

Over the last twenty years, a new family of QKD protocols based on continuous-variable

systems has arisen. Such protocols, named continuous-variable quantum key distribution

protocols (CV-QKD), typically utilize Gaussian modulation and coherent states for the

encoding of information. Security in CV-QKD has been proven in the asymptotic, finite-

size effect and composable regime. Therefore, it has become an appealing competitor

for securing future communications. As this field is relatively new, a great deal of

research has yet to be carried out. The composable framework is particularly interesting,

because it provides maximum security by considering all imperfections of a practical

implementation. For this reason, it is the main focus of this work.

The first four literature chapters make an effort to briefly explain every notion, that

will be subsequently used in the research part. This way, even complete beginners, who

would like to take up the field of QKD, can begin their journey. Some basic knowledge

of quantum mechanics, linear algebra, statistics and probabilities is still required to fully

comprehend the content of the chapters. For the readers already acquainted with the

topic, the data-processing part offers a thorough tour of all stages of CV-QKD, while

the produced results determine its full potential, when higher security thresholds are

considered. The proposed data processing techniques enable interested parties to adopt

similar procedures in their work or to improve the current ones.

Because of the multidisciplinary nature of the subject, the dissertation contains an

unprecedented number of distinct variables. Every effort has been made to meticulously

differentiate all notations. In most cases, the notations follow mathematical conventions.

For example, the matrices (but not the vectors) are represented by boldface, while

xiii
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spaces, fields, sets and distributions are denoted by calligraphic letters. Furthermore,

the quantum mechanical operators bear the hat (̂.) symbol and any estimators or guesses

are presented the wide hat (̂.). However, the large amount of variables also necessitates

a handful of unusual methods for their definition, such as using the ‘blackboard bold’

style for statistical measures. All in all, special attention must be given to the notation

of variables, when reading this work. It is important to note that up to the research

part, all canonical commutation relations and their derivatives are presented in SI units.

Beyond this point, units are given in terms of the shot noise.
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â Annihilation Operator

D̂ Displacement Operator

P̂ P-Quadrature Operator

p̂ Momentum Operator

Q̂ Q-Quadrature Operator

r̂ Canonical Operators
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Chapter 1

Quantum Optics

Before delving into quantum key distribution, it is important to have an overview of

the notions, that compose its physical foundation. Introduced in this chapter are terms,

such as coherent states, quadratures, beam splitters and homodyne detection, which are

paramount for the understanding of future sections.

1.1 Quantization of the Free Electromagnetic Field

During the 1860s, James Clerk Maxwell developed a unified theory for electricity and

magnetism, formerly thought as separate forces. He achieved that by assembling four

laws, which collectively constitute Maxwell’s equations. These equations compose the

foundations of every theory stated in classical electromagnetism and provide a compre-

hensive framework for understanding electromagnetic phenomena. The four laws are:

• Gauss’s Law: Electric charges produce an electric field. The electric flux across

a closed surface is proportional to the enclosed charge.

• Gauss’s Law for magnetism: No single magnetic pole, or monopole, exists

in electric charges. The magnetic field of a material always exists as a pair of

attractive and repulsive poles, called a dipole. The magnetic flux across a closed

surface is zero.

• Faraday’s Law: Magnetic fields produce an electric field. Varying magnetic flux

generates an electromotive force, resulting in the circulation of an electric field

along a closed loop.

• Ampère’s Law: Electric currents produce a magnetic field, whose direction de-

pends on the direction of the current. Maxwell amended this law to add that

time-varying electric fields also produce a magnetic field.

1
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For an electric field E and a magnetic field B in free space, all charges and currents

disappear, because their density is zero. As a result, Maxwell’s equations in a vacuum

are shaped in their differential form as follows:

∇ · E = 0 (1.1)

∇ · B = 0 (1.2)

∇× E = −1

c

∂B

∂t
(1.3)

∇× B =
1

c

∂E

∂t
(1.4)

Here, c is the speed of light. The equations present a symmetry (E,B)→ (B,−E), which
is known as electromagnetic duality.

There exist two theoretical descriptions for the electromagnetic field. The classical point

of view depicts it as a smooth, continuous field, where propagation resembles a wavelike

behavior. Quantum field theory portrays the field as quantized, meaning it consists of

individual particles. Specifically, these particles are photons, which are bosons without

mass, but with a well-defined energy, momentum and spin. Their carried energy is

e = ℏω (1.5)

where ω symbolizes the angular frequency and ℏ denotes the reduced Planck constant.

The physical traits of the particle are embodied into a quantum state |ψ⟩. If a trait

can be measured, it is referred to as an observable. Every observable is associated

with an operator, which is a linear map acting on a Hilbert space H. The act of a

certain measurement assigns the eigenvalues of an operator to the physical properties.

A prominent example is that of the photon number operator n̂, which counts the total

number of photons n in the field.

The total energy of a quantum system can be identified from the eigenvalues of the

Hamiltonian operator. In the context of a quantum harmonic oscillator, the quantum-

mechanical formulation of the Hamiltonian is

Ĥ = T(p̂) + V(x̂) =
p̂2

2m
+

1

2
mω2x̂2 (1.6)

where, in accordance with classical mechanics, the equalities consist of the kinetic energy

T and the potential energy V. The two operators, x̂ and p̂, capture the position and

momentum respectively and are canonical conjugate quantities. Finally, m is the mass.

An energy eigenstate of a photon number operator n̂ is the eigenstate of the Hamiltonian.

Given the Hamiltonian Ĥ and a definite number of photons n ∈ N , the equality

Ĥ |n⟩ = λn |n⟩ (1.7)

holds. Because of the Hamiltonian being Hermitian, the energy is always a real number.
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1.2 Ladder Operators

The quantum counterpart of the harmonic oscillator acts as an approximate solution

to nearly every system with a minimum of potential energy. In order to obtain the

eigenvalues and eigenfunction of the quantum harmonic oscillator, it is necessary to

solve the time-independent Schrödinger equation

eψ(x) = − ℏ2

2m

∂2ψ(x)

∂x2
+ V(x)ψ(x) (1.8)

Here, ψ is the state vector that describes the quantum system. After its solution, the

eigenvalues for the quantum harmonic oscillator are determined by

λn =
2n+ 1

2
ℏω (1.9)

Apart from directly solving Eq. (1.8), there exists an alternative way to obtain the

energy eigenvalues. This technique is commonly referred to as the ladder operator

method. Combining Eq. (1.7) and Eq. (1.8) leads to the derivation of the following

equation for a Hamiltonian operator:

Ĥ = − ℏ2

2m

∂2

∂x2
+

1

2
mω2x2 (1.10)

Let an operator â and its adjoint â†. By factorizing and processing Eq. (1.10), they can

be defined on a Hilbert space H as

â =

√
mω

2ℏ
(x̂+

i

mω
p̂) (1.11)

â† =

√
mω

2ℏ
(x̂− i

mω
p̂) (1.12)

The operator â† raises the eigenvalue of another operator and is consequently called a

creation operator or raising operator. The operator â lowers it, and is therefore referred

to as an annihilation operator or lowering operator. The operators are non-Hermitian.

When the creation operator and the annihilation operator are applied to a state, a

normalization factor must be present, as seen below:

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (1.13)

â |n⟩ =
√
n |n− 1⟩ (1.14)

From the above set of relations, two more properties for the photon number operator n̂

can be extracted, which will prove important:

n̂ = â†â (1.15)

n̂ |n⟩ = n |n⟩ (1.16)
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From the canonical commutation relation, the following commutators can be derived:

[â, â†] = 1 (1.17)

[n̂, â†] = â† (1.18)

[n̂, â] = −â (1.19)

Finally, the Hamiltonian can be rewritten in terms of the ladder operators as follows:

Ĥ = ℏω(â†â+
1

2
) (1.20)

The importance of the ladder operators is derived from their depiction of the state of the

electromagnetic field by measuring quantities such as the amplitude and the intensity.

This representation is mainly achieved in two ways, explained in the following section.

1.3 Fock States and Coherent States

The ladder operators of the quantum field provide the mathematical formulation for

the description of the discrete states called photons. The eigenstates |n⟩ of a photon

number operator n̂ are named Fock states or number states [Fock (1932)]. When the

Hamiltonian of Eq. (1.20) acts on a Fock state, the result is

ĤFock |n⟩ = ℏω(â†â+
1

2
) |n⟩ = en |n⟩ (1.21)

The Fock states form a countable orthonormal basis {|n⟩}∞n=0 for the Hilbert space H,
called the Fock basis. A Fock state |n⟩ is an eigenstate of the photon number operator

n̂, as in Eq. (1.16). Simply put, when a light pulse is in the eigenstate |n⟩, it means that

n photons are present in the pulse. If the eigenstate does not contain any photons, it is

called a vacuum state. Naturally, the eigenvalue of a vacuum state |0⟩ is zero. However,
the lowest amount of energy for such a state is not zero, but is given instead by

e0 =
1

2
ℏω (1.22)

By iteratively applying the creation operator â† on the vacuum state, the Fock state |n⟩
can be generated as

|n⟩ = (â†)n√
n!
|0⟩ (1.23)

The expected value of the photon number in a Fock state is equal to the number of

photons in the state. Consequently, the variance of the states becomes zero:

E(n) = ⟨n| n̂ |n⟩ = n (1.24)

V(n) = 0 (1.25)
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The state of light generated by lasers is called a coherent state or Glauber state |α⟩
and is defined as an eigenstate of the annihilation operator â by the expression [Glauber

(1963)]

â |α⟩ = α |α⟩ (1.26)

The eigenvalue α ∈ C of |α⟩ represents the displacement of the state in phase space and

it can be expressed in terms of its amplitude |α| and phase angle θ as

α = |α|eiθ (1.27)

Coherent states can also be described using the Fock state basis |n⟩ as [Loudon (1983)]

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩ (1.28)

In the context of phase-space representation, coherent states offer a significant advantage

over Fock states. The former have an indefinite number of photons but a well-defined

phase, while the latter have a precisely measurable number of photons and exhibit a com-

pletely randomly distributed phase. This enables coherent states to depict continuous-

variable signals.

The probability of detecting n photons in a coherent state is described by

p(n) = |⟨n|α⟩|2 = e−|α|2 |α|
2n

n!
(1.29)

with an expected value, specifically referred to as the mean photon number, given by

n̄ = E(n) = ⟨α|n̂|α⟩ = |α|2 (1.30)

and a variance of also |α|2. Applying Eq. (1.30) to Eq. (1.29) produces the probability

p(n) =
n̄ne−n̄

n!
(1.31)

which noticeably follows a Poisson distribution.

Coherent states are said to be overcomplete, which is derived from the fact that a pair

of coherent states |α1⟩ and |α2⟩ is non-orthogonal. The consequence of this property

is that it is possible for any coherent state to be expanded in terms of all the other

coherent states. Therefore, coherent states are not linearly independent.

Because of the canonicality between the position and momentum operators, coherent

states are minimum uncertainty states for the conventional Heisenberg uncertainty re-

lation. As a result, for a standard deviation σ, they obey the condition

σx̂σp̂ =
ℏ
2

(1.32)

which leads to the definition of the concept of quadratures in the next section.
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1.4 Quadratures

Consider the electromagnetic field under its classical conceptualization. Herein, elec-

tromagnetic waves are continuous sinusoidal waves, whose characterization depends on

their amplitude, their phase and their angular frequency. The field can be described by

E(t) = E0 cos(ωt+ θ) = E0 cos θ cos(ωt)− E0 sin θ sin(ωt) (1.33)

where E0 is the amplitude of the field and θ its phase angle. The coefficients E0 cos θ

and −E0 sin θ constitute the quadrature components of the field. Given the phasor

representation of the same field and its complex amplitude a, provided by

a(t) = ae−iωt, a = E0e
−iθ (1.34)

the phasor amplitude can be rewritten as the sum of the quadrature components as

a = E0 cos θ − iE0 sin θ (1.35)

The same concept can be extended to the bosonic quantum field. Quadratures are

dimensionless operators, which embody the real and imaginary parts of the amplitude.

Broadly speaking, they correspond to the position and momentum operators of the

quantum harmonic oscillator. The quadratures are described using the ladder operators1

Q̂ =

√
ℏ
2
(â+ â†) (1.36)

P̂ = −i
√

ℏ
2
(â− â†) (1.37)

Hence, the annihilation operator, which corresponds to the complex eigenvalue α of the

coherent state, along with its counterpart, the creation operator, whose action provides

the complex conjugate of α, can be redefined as

â =
1√
2ℏ

(Q̂+ iP̂ ) (1.38)

â† =
1√
2ℏ

(Q̂− iP̂ ) (1.39)

Because they satisfy the uncertainty relation of Eq. (1.32), Q̂ and P̂ are canonically

conjugate. Therefore, they form a set of non-commuting operators, whose commutation

relation in SI units is

[Q̂, P̂ ] = iℏ (1.40)

The quadrature states are the eigenstates of Q̂ and P̂ , expressed as

Q̂ |Q⟩ = Q |Q⟩ (1.41)

P̂ |P ⟩ = P |P ⟩ (1.42)

1It is henceforth assumed that the mass m = 1 and the angular frequency ω = 1, unless otherwise
specified.
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1.5 Phase-Space Operators

Even though the phase has no physical meaning on its own, it plays a vital role in

understanding the behavior of a wave in an electromagnetic field. Defining appropriate

operators enables the movement of coherent states around the optical phase space. Two

such operators are presented below.

The first is the phase-shifting operator, which enables movement around the phase space

by rotating a coherent state by an angle θ. It is defined as

Û(θ) = e−iθn̂ (1.43)

If the phase-shifting operator acts on a coherent state |α⟩, it transforms it as Û(θ) |α⟩,
resulting in a phase shift or rotation of θ as follows:

Û(θ) |α⟩ =
∣∣∣αe−iθ

〉
(1.44)

Another important operator is the displacement operator or Weyl operator D̂, which

converts a coherent state into another coherent state. It is given by

D̂(α) = eαâ
†−α∗â (1.45)

where α, shown in Eq. (1.27), indicates the amount of displacement on the phase space

and α∗ is its complex conjugate. The displacement operator is a unitary map, such that

D̂†(α) = D̂−1(α) = D̂(−α) (1.46)

The most basic application of the displacement operator is the generation of a coherent

state from a displaced vacuum state, expressed by the relation

|α⟩ = D̂(α) |0⟩ (1.47)

A pair of notable relations, which leads to Eq. (1.30), is [Barnett and Radmore (1997)]

D̂†(α)âD̂(α) = â+ α (1.48)

D̂†(α)â†D̂(α) = â† + α∗ (1.49)

In a future chapter, the significance of the displacement operator will be explored by

examining its use in defining the characteristic function of a quantum state.
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1.6 Multi-Mode Fields

All of the systems presented earlier appear in the single-mode electromagnetic field.

In case a system in the quantized field is characterized by multiple canonical bosonic

degrees of freedom, it must be described by multiple harmonic oscillators, which are

referred to as the modes of the field. The system is then called a multi-mode system.

This section contains a handful of important formulas, reformed for the multi-mode case.

Referring to the Hamiltonian of Eq. (1.20) for a single-mode system, the Hamiltonian

of the multi-mode electromagnetic field is written as [Ferraro et al. (2005)]

Ĥ =

ν∑
κ=1

ℏωκ(â
†
κâκ +

1

2
) (1.50)

where κ = 1, . . . , ν symbolizes the field modes. In such a field, each operator âκ and â†κ

operates on its own mode. Collectively, they satisfy the bosonic commutation relations

[âκ, â
†
κ′ ] = δκκ′ (1.51)

[âκ, âκ′ ] = [â†κ, â
†
κ′ ] = 0 (1.52)

where δ denotes the Kronecker delta.

Multi-mode Fock states form a basis {|n1, n2, . . . , nν⟩}∞n=0 for the multi-mode Hilbert

space H⊗ν . In multi-mode Fock space, the radiation field can be decomposed into

distinct radiation modes, each characterized by its wave number vector and polarization.

Here, the photon-number operator n̂ represents the sum of all such operators of each

mode and is defined as the total number operator

n̂tot =
ν∑

κ=1

n̂κ =
ν∑

κ=1

â†κâκ (1.53)

Recalling Eq. (1.16), the multi-mode Fock state is an eigenvector of n̂tot, whose eigenvalue

is the overall count of particles distributed in all modes of the system, as displayed below:

n̂tot |nκ⟩ =
ν∑

κ=1

nκ |nκ⟩ (1.54)

A multi-mode coherent state can be expressed as the tensor product of the individual

states, i.e. |α1, α2, ..., αν⟩ = |α1⟩ ⊗ |α2⟩ ⊗ ... ⊗ |αν⟩. Then, α⃗ = (α1, α2, ..., αν) is the

vector of complex amplitudes, each representing a coherent state in its respective mode

κ. A coherent state for a single mode κ is an eigenstate of the annihilation operator âκ:

âκ |ακ⟩ = ακ |ακ⟩ (1.55)
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Considering Eq. (1.28), every individual mode of a multi-mode coherent state is

|ακ⟩ = e−
|ακ|2

2

∞∑
nκ=0

αnκ
√
nκ!
|nκ⟩ (1.56)

The quadrature phase operators of a multi-mode system for position and momentum,

based on Eq. (1.36) and Eq. (1.37), are displayed below:

Q̂κ =

√
ℏ
2
(âκ + â†κ) (1.57)

P̂κ = −i
√

ℏ
2
(âκ − â†κ) (1.58)

The multi-mode displacement operator is given by

D̂(α⃗) = exp

[
ν∑

κ=1

(ακâ
†
κ − α∗

κâκ)

]
(1.59)

and the corresponding multi-mode coherent state generated by the displacement of the

vacuum state for each κ is given by

|α1, α2, ..., αν⟩ =
ν⊗

κ=1

D̂(ακ) |0⟩ (1.60)

1.7 Beam Splitter and Optical Detection

A beam splitter is an optical component, which allows part of an incident light beam to

traverse it and reflects the remaining part. The device can also be employed to combine

two light beams into a single signal. Some applications, which benefit significantly from

the contribution of the beam splitter, are interferometry, quantum entangling and the

performing of Bell measurements [Wang et al. (2007)].

A beam splitter can be characterized by its transmissivity T , which measures the amount

of light that passes through, and its reflectivity R, which quantifies the reflected amount

of light. Given the angle of incidence θ ∈ [0, π2 ], the pair is defined as

T = cos2 θ (1.61)

R = sin2 θ (1.62)

The combination of the two equations implies that T + R = 1. Note that this relation

holds for a lossless beam splitter. In such a model, a photon must either be transmitted

or reflected. In practice, some absorption and dissipation takes place, which means

that T + R < 1. A beam splitter is called balanced or 50/50, when one half of the

incident light is transmitted and the other half is reflected; this requires an angle θ = π
4 ,

corresponding to equal transmissivity and reflectivity values of T = R = 1
2 .
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Through its two characteristics, the beam splitter transformation can be mathematically

defined. Suppose two input modes, represented by the annihilation operators âin1 and âin2 .

The coupling between the modes yields two output modes âout1 and âout2 as follows:[
âin1
âin2

]
→

[
âout1

âout2

]
=

[
τ ϱ

−ϱ τ

][
âin1
âin2

]
(1.63)

where τ and ϱ are the square roots of transmissivity T and reflectivity R respectively.

The interference of two modes in a beam splitter can be described by a Gaussian unitary

transformation U , which is given by

U(θ) = eiθ(â
†
1â2−â1â

†
2) (1.64)

This evolution preserves the Gaussian character of the state, inducing a symplectic

transformation in the quantum phase space of the composite system. A symplectic

transformation S is a linear transformation that preserves the symplectic structure of

the phase space, maintaining its geometric and dynamical properties. In the context of

the beam splitter, the symplectic transformation is parametrized by the transmissivity

T and characterized by

SBS(T ) =

[ √
T I

√
1− T I

−
√
1− T I

√
T I

]
(1.65)

A prominent application of beam splitters can be found in optical detection systems.

Contemporary photon detectors are unable to perfectly observe the nearly instantaneous

oscillation of the wave of an electric field, in order to measure the phase of the field.

Nevertheless, this can be achieved by two methods, labelled homodyne detection and

heterodyne detection, under which the field quadratures are computed as a substitute

[Li et al. (2015)]. A homodyne measurement estimates either Q̂ or P̂ , while a heterodyne

one measures both quadratures. Their main difference is that the light beams involved

in the former process are in the same frequency, while the beams of the latter method

typically involve multiple frequencies. However, there are ways to achieve heterodyne

detection with beams in the same frequency, even though this is less common. The

dissimilarity in frequency between the two fields is known as the intermediate frequency.

Homodyne and heterodyne detection are performed by interfering the weak input signal

with a strong classical beam, called the local oscillator (LO). The LO acts as the phase

reference for the system, in order to provide indirect access to the phase of the field. It is

assumed to be in a coherent state |αLO⟩ with a large photon number, in order to ensure

a stable and consistent phase reference. The two beams are mixed using a balanced

beam splitter. Both beam splitter outputs are detected with a pair of photodiodes and

subtracted from each other.
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In homodyne detection, the detected quadrature is dependent on the relative phase angle

θ between the squeezed beam and the LO. A random selection of either θ = 0 or θ = π
2

ensures that the photon-number difference ∆n̂ at the output ports of the beam splitter

is directly related to only one of the two field quadratures, as shown by [Laudenbach

et al. (2018)]

∆n̂ = |αLO|(Q̂ cos θ + P̂ sin θ) (1.66)

where αLO is described in Eq. (1.27). In heterodyne detection, the resulting interference

generates an electrical signal at the intermediate frequency, which carries the amplitude

and phase information of the original signal.





Chapter 2

Information Theory

Shannon’s groundbreaking set of papers in 1948 changed the world forever by practically

creating the discipline of information theory [Shannon (1948)]. The virtually unlimited

potential of this field of study can spark an endless discussion around it. Nonetheless,

only notions, which are necessary for the comprehension of this thesis, are explained in

this chapter. The topic is reviewed from both a classical and a quantum standpoint.

2.1 Classical Information Theory

The section initially covers the foundational components of classical information theory,

then proceeds to explain channel transmission and error correction and concludes with

the more advanced concepts of the asymptotic equipartition property and the Slepian-

Wolf bound.

2.1.1 Entropy

The most fundamental measure in information theory is the Shannon entropy. Entropy

quantifies the amount of uncertainty involved in the value of a random variable or the

outcome of a random process. By definition, it is a positive quantity. The most common

unit of measurement of the entropy is the bit. Given a discrete random variable X, the

entropy is computed by

H(X) = −
∑
x∈X

p(x) log2 p(x) (2.1)

where X is the set of all possible outcomes of X. For the special case, where X has only

two possible outcomes and pX(x = 1), the formula reduces to the binary entropy as

H2(X) = −pX log2 pX − (1− pX) log2(1− pX) (2.2)

13
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When a set of variables is involved, the measure of uncertainty is referred to as the joint

entropy. For two random discrete variables X and Y , the joint entropy is calculated as

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y) (2.3)

where p(x, y) is the joint probability distribution, indicating the likelihood of x and y

occurring simultaneously. Also, Y denotes the set of all possible outcomes for Y .

The conditional entropy indicates how much extra information on average needs to be

provided to communicate Y , given that the other party knowsX. The associated formula

is

H(Y |X) = H(Y,X)−H(X) = −
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x)
(2.4)

In other words, the conditional entropy quantifies the remaining uncertainty about the

source X, when Y is known. Zero conditional entropy means that Y is determined

entirely by X.

The min-entropy of a discrete random variable provides a lower bound on the Shannon

entropy, as Hmin(X) ≤ H(X) for any probability distribution of X. It quantifies the

maximum predictability associated with X by highlighting the scenario, where a specific

outcome is significantly more likely than any other. As such, it is used as the most

conservative measure for the unpredictability of a random variable. It is expressed as

Hmin(X) = − log2max
x∈X

p(x) (2.5)

In addition, the concept can be extended to circumstances, where side information is

involved. Then, the quantity of interest becomes the conditional min-entropy, whose

formula is given by [Tomamichel et al. (2011)]

Hmin(X|E) = − log2 pguess(X|E) ≤ H(X|E) (2.6)

where pguess signifies the guessing probability of X under an optimal strategy with access

to E. The optimal strategy is to guess, for each value e of E, the X with the highest

conditional probability pX|E=e

pguess(X|E) =
∑
e

pE(e)max
x

pX|E=e(x) (2.7)

In a distribution with min-entropy at least Hmin, all events take place with a probability

of equal to or less than 2−Hmin . This property creates a necessary condition for a certain

family of functions, called randomness extractors, to extract Hmin random bits from a

biased and correlated sequence. Such functions are able to produce a random, uniform

and seemingly source-independent output. These attributes are extremely desirable in

cryptography applications and particularly secret key distribution.
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2.1.2 Mutual Information

Suppose two discrete random variables X and Y , which are sampled simultaneously.

The quantity that measures the relationship between these variables is called mutual

information. In other words, the mutual information I(X : Y ) stands for the obtainable

number of information bits per symbol of a random variable X by knowing another

random variable Y and vice versa. It is given by

I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) =
∑
y∈Y

∑
x∈X

p(x, y) log2
p(x, y)

p(x)p(y)
(2.8)

A mutual information which equals zero implies that the two random variables are

completely independent from each other.

Basic properties of the mutual information are listed below:

• Non-negativity: Mutual information is always zero or above zero.

• Symmetry: Mutual information is symmetric, i.e. I(X : Y ) = I(Y : X)

• Additivity: Mutual information is additive for independent variables.

Figure 2.1: Venn diagram illustrating the relationships between different infor-
mation measures, which are associated with correlated variables X and Y .

Through the mutual information, multiple theorems can be defined. One of them is the

data processing inequality. In simple terms, it states that the information content of a

signal cannot be increased via a local physical operation [Cover and Thomas (2001)].

Let three random variables X,Y, Z, where Y is a transformation of X and Z is a map

originating from Y , thus forming a sequence of transformations X → Y → Z. The

inequality is then signified by

X → Y → Z ⇒ I(X : Y ) ≥ I(X : Z) (2.9)
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2.1.3 Channels

A communication channel is a physical transmission medium, which imperfectly connects

a transmitter and a receiver. A typical distinction is between wired channels, such

as copper cables or optical fibers and wireless channels, such as Wi-Fi, Bluetooth and

satellite links. A channel has an upper limit of transmittable information, called channel

capacity and measured in bits per channel use. The channel capacity C is defined as

the maximum rate, at which information can be transmitted reliably over a channel. In

terms of the mutual information, it is given by [Cover and Thomas (2001)]

C = max
pX

I(X : Y ) (2.10)

where X is the input variable and Y is the output variable.

In the context of information theory, a channel is regarded as a system, whose output

depends probabilistically on its input. It represents a transformation, that maps input

symbols to output symbols with certain error characteristics. Channels are studied as

noiseless, which are ideal models and noisy, which corrupt the signal. Different models

of noisy channels exist in theory, each serving a particular purpose. The most common

examples are the binary symmetric channel (BSC), which may or may not invert a

transmitted bit with a certain probability, and the additive white Gaussian noise channel

(AWGN), which resembles actual noise sources. The wide use of the latter is also owed

to its simplification of the mathematical analysis.

Shannon’s seminal paper in 1948 resolved two core matters [Shannon (1948)]. The first

was the compression rate of a transmitted message. This is dealt with by the source

coding theorem, or noiseless coding theorem. The theorem states that data may be

encoded in such a way, where the number of bits required to represent the data can be

reduced, but without sacrificing essential information during the process. The measure

of entropy was introduced here as the information content of the source on average.

The second was the reliability of the transmission over a noisy classical channel and it

is described by the channel coding theorem. The channel capacity, also referred to as

Shannon limit or Shannon capacity, was defined in this context, in order to quantify the

maximum errorless transmission rate, when the link is subject to random errors. If the

transmission rate R′ of a channel is smaller than its capacity C, then particular codes,

which detect and correct the errors, can be defined. The reverse is also true; if R′ > C,

the design of suitable codes, able to achieve errorless transmission, is infeasible. The

results of Shannon’s theorem paved the way for the invention of various error-correcting

schemes, which enable reliable communication, regardless of the existence of noise.
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2.1.4 Channel Coding

In practice, all channels are noisy. This means that information conveyed through them

inevitably gets corrupted. The process of detecting and removing the errors, which arise

during transmission, is known as error correction. A code is the scheme, that converts

information to a state, suitable for transmission over a noisy channel. This process

is called encoding, while the retrieval of the original message by the receiver is named

decoding. The elements comprising the codes are known as codewords and are described

by unique linear combinations of basis vectors composed by symbols, named letters, that

belong in a finite field, called alphabet A. The decoding process may involve calculating

the syndrome of the codewords, which is a set of values providing information about the

errors, in order to ensure accurate data recovery.

Named after its creator, the Hamming code is the first and one of the simplest examples

of a linear block code [Hamming (1950)]. The term block implies that the encoding

process takes place in blocks. Multiple classes of codes, such as convolutional codes or

turbo codes, were devised over time. However, linear block codes remain highly relevant,

because of their simple construction and very high efficiency. Every linear block code is

represented by a matrix H, called parity-check matrix. The corresponding parity-check

matrix of the Hamming code is

H =

1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

 (2.11)

Block codes often follow the [n, k, dmin] notation, where every variable signifies:

• the number of columns n, also referred to as codeword length or block length,

• the number of information bits k, also known as message length, and

• the distance dmin, which is the minimum number of positions, in which any two

distinct codewords differ.

As k stands for the useful bits of information, n − k returns the quantity of redundant

bits, which were added as an error-correction measure. The fraction, that measures the

proportion of the useful bits against the parity ones, is known as the code rate Rcode,

demonstrated by

Rcode =
k

n
(2.12)

Note that 0 ≤ Rcode ≤ 1, where the ideal Rcode = 1 implies the lack of redundancy bits.

The difference 1 − Rcode indicates the ratio of redundant information used to reconcile

errors. Considering the above, the Hamming code of Eq. (2.11) is a [7, 4, 3] code with

Rcode ≈ 0.571, as it has n = 7 columns, k = 4 information bits on every row and a

minimum distance of dmin = 3.
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A special category of linear block codes is the low-density parity-check (LDPC) code,

whose parity-check matrix H has a low density of non-zero elements [Gallager (1962)].

LDPC codes are constructed using a sparse Tanner graph, which are bipartite graphs,

specifically employed for code design. Two sets of nodes determine the design of the

code: the check nodes, which represent the set of parity-check equations, and the variable

nodes, which serve as the elements of the codewords. The number of edges of a node is

referred to as its degree. A check node of degree dc is connected to dc variable nodes

and a variable node of degree dv is connected to dv check nodes. A family of LDPC

codes can be characterized by a pair of generating polynomials

λ(x) =

dvmax∑
i=2

Λix
i−1 0 ≤ Λi ≤ 1 (2.13)

ρ(x) =

dcmax∑
j=2

Πjx
j−1 0 ≤ Πj ≤ 1 (2.14)

where Λi and Πj indicate the normalized-to-1 proportion of edges connected to symbol

and check nodes of degree i, respectively. The code rate of the family is then given by

Rcode = 1−
∑dcmax

j=2 Πj/j∑dvmax
i=2 Λi/i

(2.15)

Two important properties of the parity-check matrix are the number of non-zero elements

of every column, or column weight, and the count of units in every row, or row weight.

A code is classified as regular, when both the column and row weights are constant

throughout the entire construction, or irregular, when the weights vary. The rate of a

regular LDPC code can be fully characterized by either the number of rows and columns

l and n or the row and column weights wr and wc of the matrix, as follows:

Rcode = 1− l

n
= 1− wc

wr
(2.16)

High-quality LDPC codes with an adequately large block length have been shown to

approach the Shannon limit [MacKay (1999)]. LDPC codes are typically combined with

iterative belief propagation algorithms, such as the sum-product algorithm or the min-

sum algorithm, decoded in time linear to their block length. It must be noted, that

an LDPC code with a certain code rate is effective only in a particular range of error

[Gallager (1962)]. Consequently, in order to be capable of reconciling in a wide range of

error rates, a collection of codes is required.

A scenario often encountered in the study of coding concerns source coding with side

information, where decoding occurs under the assistance of a separate but correlated

source. For this subdivision of source coding problems, the achievable rate region is

determined by the Slepian-Wolf bound or Slepian-Wolf limit [Slepian and Wolf (1973)].
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A random sequence X can be sufficiently encoded, when the code rate Rcode > H(X).

Suppose that X is correlated to a sequence Y , which is accessible by the decoder. If two

sources X,Y ∼ p(X,Y ) are encoded together, a rate of at least H(X,Y ) is necessary. If

encoded separately, the intuitive assumption would be that the Rcode = H(X) +H(Y ).

Instead, Rcode = H(X,Y ) is sufficient. Combined with Eq. (2.4), the bound states that

Rcode ≥ H(X,Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y ) (2.17)

The Slepian-Wolf bound is invaluable in designing efficient code schemes that approach

the theoretical bounds on achievable compression rates, enabling more effective error

correction and data transmission in scenarios, where correlated sources are involved.

2.1.5 Asymptotic Equipartition Property

The notion of entropy gave birth to multiple new concepts, among which one of the most

important is the asymptotic equipartition property (AEP). In simple terms, it suggests

that a while a random process can generate a variety of results, the actual outcome

originates from a subset of outcomes, known as the typical set [Cover and Thomas

(2001)]. The term typical implies that the set consists of sequences, which occur neither

extremely rarely nor excessively frequently; they represent what is expected within the

given context. Such sets will have properties, that reflect the statistics of the underlying

random variables. As a result, concentrating all focus on the typical set allows for

reliably estimating the behavior of a random process. Calculating the sample entropy of

a typical set, meaning the entropy calculated from a finite number of samples, returns

a value very close to the true entropy. Given independent and i.i.d random variables

X1, X2, . . . Xn, where n tends to infinity, the AEP asserts that

1

n
log2

1

p(X1, X2, . . . , Xn)

n→∞−−−→ H(X) (2.18)

Here, p(X1, X2, . . . , Xn) stands for the probability of observing a specific sequence of

outcomes and is approximated by

p(X1, X2, . . . , Xn) ≈ 2−nH(X) (2.19)

The formula indicates that, as the number of variables becomes extremely large, the joint

distribution of the sequence becomes increasingly concentrated around the typical set.

The probability of observing a sequence of outcomes outside the typical set, known as

the atypical set, decreases exponentially. As the total probability of all typical sequences

converges to 1, the size of typical set becomes approximately 2nH .
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The AEP is the information theoretic analog of the Law of Large Numbers, which states

that, as the number of i.i.d. random variables approaches infinity, the average of these

variables converges towards the expected value of the distribution. The importance of

the AEP originates from its contribution to the proofs of source coding and channel

capacity theorems. In future sections, the AEP will be applied in a cryptographic

environment to quantify errors made by the inclusion of finite-size effects.

2.2 Quantum Information Theory

Quantum Information Theory expands the notions of its classical counterpart by en-

compassing the laws of quantum mechanics. This section briefly introduces the different

states a quantum system can be in, then presents an easy way to describe them and,

finally, explores quantum information-theoretic quantities, such as the von Neumann

entropy and the Holevo bound.

2.2.1 State Description

In quantum mechanics, there exist multiple ways to describe a quantum state. The

standard description is the state vector, denoted by |ψ⟩, which is a column vector in

a Hilbert space H. Other terms for the notation are the Dirac notation, named after

its inventor, and bra-ket notation, as the symbol used in the description is called a

ket [Dirac (1950)]. The notation also includes the bra vector ⟨ψ|, which represents the

conjugate transpose of the ket vector. The bra is typically used in the calculation of the

inner product between two vectors or the outer product of a state vector.

Quantum states can be distinguished based on several characteristics. One of the most

usual distinctions is between a pure and a mixed state. A pure quantum state can be

described by a single wave function. Simply put, the exact state a pure state is in is fully

known. Contrarily, a mixed state is a mixture of the different pure states in the statistical

ensemble. In this case, there is incomplete information about the state of the system and

statistical averages must be performed, in order to describe the quantum observables.

The process of transforming a mixed state into a pure state is called purification. An

entity holding a purification implies having access to the underlying purified version of

the state, which has been obtained by purifying the observed mixed state.

Composite or compound states refer to quantum states, that describe a multipartite

quantum system. Such states are commonly categorized as either separable or entangled.

Quantum states, which can be written as a convex combination of product states, are

called separable states. The quantum state of the entire system can be expressed as a

simple product of individual states for each subsystem. Changes in the behavior of one
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subsystem do not affect any of the other subsystems. Given two subsystems, a pure

state is separable, when it can be written in the form

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ (2.20)

If quantum states cannot be represented in this way, they are called entangled states.

The subsystems of entangled states exhibit correlation, in the sense that the behavior

of each system is intricately linked to the behavior of all other subsystems, regardless of

the distance between them.

An alternate mathematical formulation for the states of a quantum system is given by a

trace-class operator, called the density operator. The density operator ρ̂ is a preferable

choice when describing mixed states, whereas the state vector is better suited for pure

states. The density operator of pure states is simply the outer product of a state vector

|ψ⟩, found by

ρ̂ = |ψ⟩ ⟨ψ| (2.21)

while the same operator requires a pure-state linear combination representation for

mixed states, as follows:

ρ̂ =
∑
i

pi |ψ⟩ ⟨ψ| (2.22)

If there exist probabilities pi and mixed states ρ̂i1 and ρ̂i2, such that the mixed state ρ

can be written as a convex combination

ρ̂ =
∑
i

piρ̂
i
1 ⊗ ρ̂i2 (2.23)

then ρ is a separable state. This formula is also known as the convex decomposition of

a mixed state.

The representation of the density operator is called a density matrix ρ. This is a square

Hermitian matrix, whose size displays the dimension of the Hilbert space of the quantum

system. The diagonal elements of ρ serve as the probabilities of finding the system in

corresponding eigenstates, while the off-diagonal elements express the quantum correla-

tions between the different states. The trace of the square of a density matrix indicates

the purity of a state, which is the measure of how pure the state is. A system in a pure

state has a purity of tr(ρ2) = 1, which is the maximum value the purity can take. The

purity of a system in a mixed state satisfies the condition tr(ρ2) < 1. A purity of zero

indicates a completely mixed state.

Some basic properties of density operators are presented below:

• Idempotency: A density operator describes a pure state, if ρ̂ = ρ̂2.

• Hermiticity: A density operator is Hermitian in the Hilbert space H, because
ρ̂† = ρ̂. As a result, its eigenvalues are real and its eigenvectors orthogonal.
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• Positive Semidefiniteness: ⟨ψ| ρ̂ |ψ⟩ ≥ 0 for every |ψ⟩, as ρ̂ is Hermitian and all

of its eigenvalues are non-negative: λ1, λ2, . . . , λν ≥ 0.

• Normalization: The trace of the density matrix always obeys tr(ρ̂) = 1. Because

the sum of the eigenvalues is equal to the trace, this implies that the obtained set

of eigenvalues λi can be interpreted as the probabilities pi.

2.2.2 Von Neumann Entropy

Analogously to classical version, there exists a measure to quantify the uncertainty about

the mixed state of a quantum system. For such a system that is described by a density

matrix ρ, the von Neumann entropy or quantum entropy S is given by

S(ρ) = −tr(ρ ln ρ) (2.24)

If and only if a quantum system is in a pure state, then the von Neumann entropy of

the system is equal to zero. For mixed states, this amount is always positive.

Alternatively, when a quantum state is written in the form of Eq. (2.22), the von

Neumann entropy of a mixed state can be reformed using the Schmidt decomposition to

S(ρ) = −
∑
i

pi ln pi (2.25)

This form resembles the classical information theory entropy, as stated by Shannon.

Fundamental properties of the von Neumann entropy are displayed below:

• Purity: A pure state ρ has S(ρ) = 0.

• Invariance: The entropy remains the same under a unitary transformation, as in

S(UρU−1) = S(ρ).

• Maximum: The maximum value of the entropy is given by a maximally mixed

state and becomes equal to Smax(ρ) = ln ν, ν being the Hilbert space dimension.

• Concavity: S(ηρ1 + (1− η)ρ2) ≥ ηS(ρ1) + (1− η)S(ρ2), for 0 ≤ η ≤ 1.

• Subadditivity: The entropy of a quantum composite system can be lower than

the entropy of any of its parts, that is S(ρAB) ≤ S(ρA) + S(ρB).

Through the von Neumann entropy, other quantities can be extended to the quantum

realm. One example is the conditional von Neumann entropy, determined as

S(A|B)ρ = S(AB)ρ − S(B)ρ (2.26)
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Unlike the classical conditional entropy, it is possible for the conditional quantum entropy

to be negative, even though the von Neumann entropy of single variable is never negative.

The quantum mutual information is also defined as the measure of relationship between

the subsystems of a state. Given a bipartite state ρAB on the state space HA⊗HB, the

quantum mutual information of two separable quantum systems A and B is defined as

I(A : B) = S(ρA) + S(ρB)− S(ρAB) (2.27)

2.2.3 Holevo Bound

In 1973, Holevo proved that there is an upper bound on the obtainable amount of

classical information from a quantum system [Holevo (1973)]. It is called Holevo bound

and it dictates that it is impossible to extract more than one bit of classical information

from a single qubit. At best, the obtainable bits are equal to the number of qubits,

even though the qubits may hold a higher amount of classical information. This limit,

otherwise known as Holevo information, is given by

χ = S(ρ)−
∑
i

piS(ρi) (2.28)

where ρi is a mixed state drawn from an ensemble {ρ1, ρ2 . . . ρν} with probability pi.

The Holevo bound quantifies the average reduction in the von Neumann entropy of an

ensemble, when the preparation of the states is known.

Given two random variables X and Y , where the former is the source alphabet and the

latter the outcome of a measurement or encoding process applied to X, their mutual

information is always equal or less than the Holevo information:

I(X : Y ) ≤ χ (2.29)

This relationship ensures that the information obtained from measurement or encoding

cannot exceed the total correlation between the source alphabet and the outcome of the

process. Because the mutual information is always non-negative, evidently, the same

applies for the Holevo bound.

The Holevo bound is also closely linked to the definition for the classical capacity a

quantum channel. This capacity, provided by the Holevo-Schumacher-Westmoreland

theorem, is the maximum achievable rate, at which information can be transmitted

reliably over a quantum channel [Schumacher and Westmoreland (1997)]. The theorem

states that if the transmitted states are encoded with an error-correcting code, the

classical capacity of the channel is given by the maximum achievable mutual information

between the input and output ensembles. The maximum mutual information is subject

to the imposed bound.
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The Holevo bound is a quantity of great interest from a quantum communications point

of view, as it represents the upper limit on an eavesdropper’s information. For two

antagonizing entities, say an eavesdropper named Eve and a trusted party called Bob,

the Holevo bound χEB is the difference of the von Neumann entropy of the accessible

state of Eve and the conditional entropy of Eve and Bob of the eavesdropper’s state,

conditioned on Bob’s measurement outcome. Mathematically, this is demonstrated by

χEB = S(E)− S(E|B) (2.30)

In addition, if another trusted party named Alice shares with Bob a purification ρAB,

which is also under the possession of Eve, the entropy of the system and the Holevo

information are retained. This is owed to the invariance property of the von Neumann

entropy.

2.2.4 Trace Distance and Fidelity

Different classical states are completely distinguishable. The same does not apply in

quantum mechanics, where quantum state discrimination is one of the most important

tasks in quantum information theory. Through density operators, various measures for

the distinguishability between two quantum states can be defined. One of the most

prominent metrics is known as trace distance and it is the quantum equivalent of the

Kolmogorov distance between two classical probability distributions. The trace distance

between two quantum states ρ1 and ρ2 is defined as

D(ρ1, ρ2) =
1

2
tr(|ρ1 − ρ2|) (2.31)

An alternative formulation is

D(ρ1, ρ2) =
1

2

∑
|λj | (2.32)

where
∑
|λj | is the sum of the absolute values of the eigenvalues of the matrix ρ1 − ρ2.

An important characteristic of the trace distance is its invariance under unitary maps.

Another similar concept is the quantum fidelity F , which represents a metric of the

closeness between two quantum states ρ1 and ρ2 on the geometry of a finite-dimensional

Hilbert space H. The fidelity is given by

F (ρ1, ρ2) = tr

(√√
ρ1ρ2
√
ρ2

)2

(2.33)

The fidelity is bounded by 0 ≤ F (ρ1, ρ2) ≤ 1. It is equal to unit, if the states are

identical, becomes smaller, as the difference between them grows, and turns into zero,

if the states are orthogonal. The fidelity between a pure and a mixed state is given by

F (|ψ⟩ , ρ) =
√
⟨ψ| ρ |ψ⟩ (2.34)
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The following properties of the fidelity apply to both pure or mixed states: [Jozsa (1994)]

• Symmetry: F (ρ1, ρ2) = F (ρ2, ρ1)

• Invariance: Fidelity remains unchanged under unitary transformations on the

state space, that is, F (Uρ1U
†, Uρ2U

†) = F (ρ1, ρ2).

For two arbitrary density operators, the fidelity and the trace distance are linked by the

Fuchs-van de Graaf inequalities as follows [Fuchs and van de Graaf (1999)]

1− F (ρ1, ρ2) ≤ D(ρ1, ρ2) ≤
√
1− F (ρ1, ρ2)2 (2.35)

The two distinguishability measures have diverse operational implications across various

aspects of quantum communication, such as evaluating the quality of the transferred

states. Regarding security, the proofs often rely on bounding the trace distance between

quantum states. Smaller trace distances between states are generally indicative of higher

security against eavesdropping attacks, when considering real and ideal states.

2.2.5 Smooth Min-Entropy

Smooth entropies serve as a means to quantify the trade-offs between different resources

in information theory. The process of smoothing introduces a positive real parameter εs,

called the smoothing parameter, which defines the maximum distance between an ideal

state and an achievable state. When entropies are employed to characterize operational

tasks, the choice of the smoothing parameter determines the level of precision in the

analysis. Smaller smoothing parameters result in more conservative entropy estimates.

This allows for the consideration of worst-case scenarios. Moreover, smoothing alleviates

the influence of statistical fluctuations and improbable events. Finally, it establishes the

quantum generalization of both the asymptotic equipartition property and the data

processing inequality [Tomamichel et al. (2009)].

The aforementioned concept can now be integrated into the definition of the min entropy.

Let ρAB be a bipartite state on the Hilbert space HA ⊗ HB. The smooth conditional

min-entropy was designed to quantify the maximum amount of uniformly distributed

and independent randomness, that can be extracted from a correlated random variable.

It is defined as the maximum value of the conditional min-entropy Hmin(A|B), evaluated

for all density operators ρ̃, that are εs-close to ρ [Tomamichel et al. (2011)]. It can be

considered a strict generalization of the von Neumann entropy. Formally, the smooth

min-entropy of A, conditioned on B, is defined as

Hεs
min(A|B)ρ = max

ρ̃AB∈Bεs (ρAB)
Hmin(A|B)ρ̃ (2.36)

where B stands for an εs-ball of states around a set S of normalized states, as ρ ∈ S(H).
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The smooth min-entropy is given a direct operational meaning by the quantum leftover

hash lemma, a fundamental cryptographic proposition. Roughly, the lemma states that

a random choice from a secure family F of hash functions produces output, which

is seemingly random and input-independent, even in the presence of partial knowledge

about the input. It is an extension of the classical version, with the purpose of identifying

whether and how much information Z can be obtained from a random variable X, that

is uniform conditioned on some side information E. In this context, side information is

interpreted as a potentially leaked sequence to an eavesdropper, who can utilize it to

gain information on X. Then, on average over the choices of the hash function h ∼ F ,
the output Z resulting from h(X) is ∆-close from uniform conditioned on E, with

∆ =
1

2

√
2ℓ−Hmin(X|E) (2.37)

Here, ℓ symbolizes the maximum number of uniform random bits that can be extracted

from Z. This quantity is upper bounded by Hmin(X|E). In the smooth entropy frame-

work, this bound takes the form H2
√
∆

min (X|E) [Tomamichel et al. (2011)]. In applications

related to cryptography, ℓ represents, in fact, the length of the final shared secret key.



Chapter 3

Continuous-Variable Systems

3.1 Definition

A quantum system is called a discrete-variable (DV) system, when it can be described

by a finite-dimensional Hilbert space. A classic example of this case is the polarization

of a single photon. A system described by observables with continuous eigenspectra

on an infinite-dimensional Hilbert space is labelled a continuous-variable (CV) system

[Weedbrook et al. (2012a)]. A generic continuous-variable system consists of multiple

canonical bosonic modes κ = 1, 2, . . . , ν, which correspond to ν quantum harmonic

oscillators. These modes are associated with a separable, tensor product Hilbert space

H⊗ν =
ν⊗

κ=1

Hκ (3.1)

and an equal number ν of pairs of ladder operators {â, â†}νκ=1.

In continuous-variable systems, the observables are usually represented by operators,

that act on the wave function or state vector of the system. Recalling the relations Eq.

(1.57) and Eq. (1.58) from the description of multi-mode fields, the canonical operators

can be arranged together in a vector of operators r̂, as

r̂ = [Q̂1, P̂1, ..., Q̂ν , P̂ν ]
T (3.2)

These canonical commutation relations can then be condensed into the form

[r̂κ, r̂κ′ ] = iℏΩκκ′ (3.3)

where κ, κ′ = 1, ..., 2ν and the fixed 2ν × 2ν, invertible, skew-symmetric matrix Ω is

given by

Ω =

ν⊗
κ=1

ω, ω =

[
0 1

−1 0

]
(3.4)

27
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The block matrix Ω can find multiple uses in linear algebra. For example, a symplectic

matrix S must obey the equality

Ω = STΩS (3.5)

To better capture states in phase space, the displacement operator can be redefined in

terms of the column vector r̂ as

D̂(ζ) = eiζΩr̂ (3.6)

where ζ = {ζQ, ζP } ∈ R2ν acts as a coordinate, ranging over the conjugate phase space.

The amount of displacement in phase space is then quantified by the displacement vector

r̄ ∈ R2ν , with R denoting the set of real numbers, as

r̄ :=
〈
r̂
〉
= tr(ρr̂) (3.7)

3.2 Phase-Space Representation

The states of a continuous-variable system are the set of mode density operators ρ̂κ

on the infinite-dimensional Hilbert space H⊗ν . This implies that, by means of ρ̂, the

characterization of states can become exceptionally complicated, especially as the num-

ber of modes increases. For this reason, it is reasonable to seek alternative definitions

for the field states. Phase-space representation makes an invaluable contribution to the

provision of a complete description. This section presents two functions, which act on

the phase space and contain all necessary information to completely describe a state.

The first function offering a complete description for a quantum state is the characteristic

function. It a complex-valued function, which stands for the expectation value of the

displacement operator of Eq. (3.6). With respect to an arbitrary quantum state and the

displacement operator, the characteristic function is given by [Weedbrook et al. (2012a)]

φ(ζ) = tr
(
ρ̂D̂(ζ)

)
(3.8)

The density matrix is derivable from the characteristic function as [Wang et al. (2007)]

ρ =
1

(2π)ν

∫
d2νζφ(Ωζ)D̂†(Ωζ) (3.9)

The D̂†(Ωζ) can also be replaced by D̂(−Ωζ), as per Eq. (1.46).

The second function, named the Wigner function, allows for the description of quantum

systems without the need for a density operator or a wave function [Wigner (1932)]. It

is the symplectic Fourier transform of the characteristic function, given by [Weedbrook

et al. (2012a)]

W(r) =

∫
R2ν

d2νζ

(2π)2ν
e−irTΩζφ(ζ) (3.10)

where r ∈ R2ν are the eigenvalues of the quadrature operators of r̂.
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This class of functions is particularly suitable as a phase-space distribution and is capable

of providing a descriptive framework for understanding the behavior of quantum systems

in continuous-variable settings, without the need of the density matrix. The Wigner

function is also known as the Wigner quasiprobability distribution. This is owed to the

fact that, while it may be normalized and bounded, it also is a real-valued function, which

is unorthodox for probability distributions. This non-positivity property is indicative of

the intrinsic quantum nature of the state.

3.3 Covariance Matrix

The covariance matrix (CM) is a mathematical tool, that characterizes the relationships

between pairs of continuous variables, capturing both the correlations and uncertainties

associated with them. Symbolized by Σ, it is a real matrix with an even number of rows

and columns 2ν × 2ν, which satisfies the uncertainty principle as [Simon et al. (1994)]

Σ+ iΩ ≥ 0 (3.11)

Here, Ω is given by Eq. (3.5).

Some useful properties of the covariance matrix are presented below:

• Symmetry: The covariance matrix is symmetric, i.e. Σ = ΣT , as Σij = Σji.

• Hermiticity: The covariance matrix is Hermitian, i.e. Σ = Σ†, because it is

symmetric. The eigenvalues of the covariance matrix are also real.

• Real Non-negative Diagonal: All of the diagonal entries are real and non-

negative, i.e. Σii ∈ R, Σii ≥ 0, ∀i ∈ {1, . . . , 2ν}, because they represent variances.

• Positive Semidefiniteness: The covariance matrix is positive semidefinite, as

ζTΣζ ≥ 0, ∀ζ ∈ R2ν .

• Non-negative Trace: The trace of a covariance matrix is non-negative, because

all diagonal entries are non-negative, i.e. tr(Σ) =
2ν∑
i=1

Σii ≥ 0.

• Non-negative Determinant: The determinant of such a matrix is non-negative,

i.e. det(Σ) =
2ν∏
i=1

λi ≥ 0. If all variables are linearly independent, then det(Σ) > 0.

The elements of the covariance matrix represent the covariances C between specific pairs

of variables. In the context of quantum mechanics, the diagonal entries of the matrix

represent the variances of the quadrature operators as Vii = V(r̂i) and the off-diagonal

elements serve as the mutual covariance functions of the two quadratures. Any arbitrary

element of the matrix can be given by [Walls and Milburn (2008)]

Σij =
1

2
⟨r̂ir̂j + r̂j r̂i⟩ − ⟨r̂i⟩⟨r̂j⟩ (3.12)
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3.4 Gaussian States

A special class of continuous-variable states are the Gaussian states, whose characteristic

function in multi-mode phase space is Gaussian. Their phase-space distribution function

also follows a Gaussian form. All Gaussian states are minimum uncertainty states. A

pure state is Gaussian if and only if its Wigner function is non-negative [Hudson (1974)].

Typically, Gaussian states are mathematically defined using characteristic functions. A

possible representation is the following [Wang et al. (2007)]:

φ(ζ) = exp

(
−1

4
ζTΣζ + ir̄T ζ

)
(3.13)

Here, the displacement vector r̄ and the covariance matrix Σ ∈ R2ν act correspondingly

to the first and second statistical moments of Gaussians. The first moment is given

by Eq. (3.7) and the second one is given by Eq. (3.12). This means that Gaussian

states can be fully described by the mean value and the variance of the operators of r̂,

displayed in Eq. (3.2).

The characteristic function of a Gaussian state is a Gaussian function, formulated as

φ(ζ) = exp

[
−1

4
ζTΩΣΩT ζ − i(Ωr̄)T ζ

]
(3.14)

The same applies to the Wigner function of a Gaussian state. The result of Gaussian

integration is [Wang et al. (2007)]

W(ζ) =
1

πν
√
det(Σ)

exp
[
−(ζ − r̄)TΣ−1(ζ − r̄)

]
(3.15)

The study of the properties of Gaussian states is especially significant from a quantum

optical perspective, because coherent states, squeezed states and thermal states are all

subdivisions of Gaussian states. The characteristic function of a coherent state is given

by [Wang et al. (2007)]

φα(ζQ, ζP ) = exp

[
−1

4
(ζ2Q + ζ2P ) +

iζQ(α+ α∗)√
2

+
iζP (α− α∗)√

2

]
(3.16)

Gaussian states, especially coherent states, are advantageous in practical scenarios and

thus highly relevant in experimental studies, as they are easy to generate with current

optical technologies. It must be noted, that Fock states are non-Gaussian states.

Covariance matrices represent a convenient solution, when it is required to understand

the behavior of multi-mode Gaussian states. An important property of the covariance

matrix V of a Gaussian state is its connection with diagonal matrices. According to

Williamson’s theorem, there exists a symplectic transformation for every positive-definite

real matrix of even dimension, that diagonalizes such a matrix [Williamson (1936)].
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Applying a symplectic map S to a κ-mode covariance matrix V returns the relation

V = SV⊕ST , V⊕ =
ν⊕

κ=1

vκI (3.17)

The S matrix can be computed using [Pereira et al. (2021)]. The covariance matrix of

the multi-mode Gaussian state can be written as [Ferraro et al. (2005)]

V =

[
A C

CT B

]
(3.18)

The case of two bosonic modes is of particular interest. Two-mode Gaussian states can

be represented by a 4× 4 covariance matrix, where A = AT , B = BT and C are 2× 2

matrices, such that A,B,C ∈ R. Williamson’s normal form is given by

V⊕ = (v−I)⊕ (v+I) (3.19)

The eigenvalues v of the symplectic matrix are called symplectic eigenvalues. Through

them, it is possible to determine the degree of squeezing, entanglement and purity of a

Gaussian state. For the v± case of Eq. (3.19), they are given by

v± =

√
Σ±
√
Σ2 − 4 detV

2
(3.20)

where the determinant of V and Σ are global symplectic invariants. Σ is found by

Σ = detA+ detB+ 2detC (3.21)

The uncertainty principle is then satisfied, when [Pirandola et al. (2009)]

• V > 0,

• detV ≥ 1 and

• Σ ≤ 1 + detV.

Two-mode states of Eq. (3.18) can explicitly be described by a covariance matrix in the

so-called standard form

V =

[
aI C

C bI

]
, C =

[
c+ 0

0 c−

]
(3.22)

where a, b, c+, c− ∈ R. This form holds true for any two-mode system up to Gaussian

local operations and classical communication (LOCC). For the case of pure states, which

satisfies c+ = −c− [Serafini et al. (2004)], the symplectic eigenvalues can be found using

the matrix correlations

v± =

√
(a+ b)2 − 4c2 ± (b− a)

2
(3.23)
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One of the most useful bipartite Gaussian states, that can be utilized to demonstrate

the calculations of a covariance matrix, is the two-mode squeezed vacuum (TMSV)

state. Because of entanglement, the properties of one mode are inversely related to the

properties of the other mode. When such a state has zero mean and variance µ, it is

described by the covariance matrix

VTMSV(µ) =

[
µI

√
µ2 − 1Z√

µ2 − 1Z µI

]
(3.24)

where Z is the Pauli z-matrix. The TMSV state will prove instrumental in describing

eavesdropper attacks.

The von Neumann entropy of a multi-mode Gaussian state is described in terms of

the symplectic eigenvalues of its covariance matrix. The spectrum of the symplectic

eigenvalues {v1, . . . , vν} can be instead calculated as the ordinary eigenvalues of the

modulus of the matrix

Ṽ = |iΩV| (3.25)

Note that the matrix Ṽ is Hermitian and can be brought into a diagonal form by a

unitary transformation. The von Neumann entropy is then calculated by

S(ρ) =
ν∑

κ=1

G(vκ) (3.26)

where G stands for the bosonic entropic function

G(v) =
v + 1

2
log2(

v + 1

2
)− v − 1

2
log2(

v − 1

2
) (3.27)

A measurement on a single mode of a κ-mode Gaussian state will modify the Gaussian

state of the remaining modes, depending on their correlations to the measured one.

Consider the scenario, where a measurement is carried out on a mode B, while there

exist κ − 1 other leftover modes A. The correlations between the modes A and B are

captured by the matrix C. The effect of this partial measurement of B on the remaining

modes is determined by the chosen type of detection, i.e. homodyne or heterodyne, as

Vhom
A|B = A−C(ΠQ,PBΠQ,P )

−1CT (3.28)

Vhet
A|B = A−C(B+ I)−1CT (3.29)

Here, the −1 operation symbolizes the pseudo-inverse, because the result of ΠBΠ is

singular [Weedbrook et al. (2012a)]. Considering the instance of homodyne detection,

the measurements of the quadrature components Q and P are respectively given by

ΠQ = diag(1, 0) and ΠP = diag(0, 1).
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Continuous-Variable Quantum

Key Distribution

Having laid the groundwork by demonstrating necessary concepts, it is time to delve into

the topic of quantum key distribution. The chapter starts with a brief historical note and

continues by explaining sigificant notions and properties, which govern this unique type

of key exchange. It also gives an initial description of the processes followed, presents

potential attacks and addresses realistic effects and parameters, which can affect the

quality and security of the communications.

4.1 Introduction

The objective of quantum key distribution (QKD) is to establish a random secret key

between two authenticated parties over a potentially insecure quantum channel [Piran-

dola et al. (2020)]. The security of QKD is derived from two laws of quantum mechanics:

the uncertainty principle and the no-cloning theorem [Wootters and Zurek (1982)]. The

first QKD protocol was introduced by Bennett and Brassard in 1984 and was given the

name BB84 accordingly [Bennett and Brassard (1984)]. In this version, single photons

are successively transmitted through the channel and the information is encoded on the

polarization of a photon, which is a property of discrete-variable systems. The BB84

protocol ushered in the period of discrete-variable quantum key distribution (DV-QKD),

whose security has been since extensively studied [Scarani and Renner (2008), Scarani

et al. (2009), Pirandola et al. (2020), Bunandar et al. (2020)].

Later on, a more modern family of protocols emerged, in which a continuous beam

of light is emitted by the transmitter. The continuous nature of light gave birth to

continuous-variable quantum key distribution (CV-QKD). Here, information is encoded

by modulating the amplitude and phase of the electromagnetic wave in the position and

33
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momentum quadratures of a bosonic mode. The first CV-QKD protocol was introduced

in 1999 [Ralph (1999)]. Shortly after, two more related papers emerged in 2000 [Hillery

(2000), Reid (2000)]. CV-QKD with Gaussian modulation was proposed for the first

time in 2001 [Cerf et al. (2001)]. However, all of these models utilized discrete encod-

ing of squeezed states of light. The first Gaussian-modulated CV-QKD protocol with

coherent states was brought forward in 2002 [Grosshans and Grangier (2002)] and has

become the de facto standard of CV-QKD. This work, named GG02 after its creators,

adopted homodyne detection, as well as the direct reconciliation approach during the

information reconciliation stage. Reverse reconciliation was first implemented in 2003

[Grosshans et al. (2003)], while heterodyne detection, initially called no-switching, was

presented in 2004 [Weedbrook et al. (2004)]. Both protocols were adopted expeditiously

by several works, which provided improved methods and performances [Van Assche et al.

(2004), Lance et al. (2005), Sharma et al. (2006)]. All aforementioned protocols assume

the participation of only one sender in the quantum transmission stage and are hence

categorized as one-way protocols; the first two-way protocol, where transmission be-

tween the legitimate parties is bidirectional, was introduced in 2008 [Pirandola et al.

(2008a)]. At the same time, the suitability of noisy coherent states, i.e. thermal states,

was assessed by [Filip (2008)] and the security of such states was subsequently proven

in realistic circumstances [Usenko and Filip (2010)]. This paved the way for extending

CV-QKD to longer wavelengths, such as the microwave region, which is appropriate for

short-range applications [Papanastasiou et al. (2018)].

Shortly after its conception, CV-QKD achieved secret key generation at the distance of

25km [Lodewyck et al. (2007)]. While the initial results were encouraging, the lack of

reconciliation methods, specializing in low signal-to-noise conditions, limited research at

longer distances. By combining the newfound multidimensional reconciliation technique

[Leverrier et al. (2008)] with cutting-edge LDPC codes [Richardson and Urbanke (2002)],

the secure distance was further extended to 120 km [Jouguet et al. (2011)] and 80 km

[Jouguet et al. (2013)]. Nevertheless, the family of continuous-variable protocols is more

robust in short-range applications, when compared to the family of discrete protocols.

There has also been recent progress in free-space, microwave, Earth-to-satellite and

chip-based QKD applications, both from a theoretical and experimental perspective

[Hosseinidehaj and Malaney (2017), Günthner et al. (2017), Zhang et al. (2019), Zhang

et al. (2021), Li et al. (2023)].

The most important advantages of CV-QKD over DV-QKD are presented below:

• High Secure Key Rate: Situationally higher secret key rates, especially when

deployed in dense wavelength division multiplexing networks [Kumar et al. (2015)].

The performance of CV-QKD is close to the PLOB bound, which the fundamental

limit of point-to-point quantum communications [Pirandola et al. (2017)].

• Efficient and Cost-Effective Detection: Efficient detection using homodyne

receivers instead of single photon counters [Laudenbach et al. (2018)].
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• Compatibility: Compatibility with existing telecommunications equipment, as

the transceivers are similar to those in classical coherent high-speed communication

systems [Orieux and Diamanti (2016), Kikuchi (2016)]. Deployment of dedicated

dark fibres is not required [Laudenbach et al. (2018)].

This research is going to employ coherent states for state preparation. Coherent-state

protocols are generally preferred over squeezed-state protocols, because of the techno-

logical challenges associated with generating squeezed light [Laudenbach et al. (2018)].

Among the Gaussian states, coherent ones are the easiest to produce in a laboratory;

this paved the way for indoor and outdoor experimentation. Besides the foundational

principles of state collapse upon measurement and the no-cloning theorem, which are

integral to all QKD protocols, the provable security of coherent-state protocols stems

from the non-orthogonality of coherent states.

The remainder of the thesis will focus exclusively on Gaussian-modulated coherent-state

one-way protocols under fiber communications.

4.2 Secret Key Rate and Reconciliation

The most desirable attribute in quantum key distribution is the secret key rate, which

is the length of securely shareable key per channel use [Watanabe et al. (2008)]. The

security of any QKD protocol is guaranteed, when a rigorous security analysis certifies

that the protocol produces a positive secret key rate. The simplest way to examine the

behavior of a protocol is assuming the generation of an infinite number of signal states.

In this case, the key rate is the outcome of three quantities:

• the mutual information, which represents the shared amount of information

during the stage of information reconciliation,

• the Holevo bound, which is the upper estimate of the amount of information

gained by the attacker through the interaction with the quantum channel and

• the reconciliation efficiency, which is the efficiency that an error-correcting code

with a given code rate achieves, under a certain value of the mutual information.

The last quantity plays a crucial role during the information reconciliation stage, where

the legitimate parties attempt to make their data similar by removing the corruption

caused by noise and loss. In a CV-QKD protocol, there exist two ways to realize infor-

mation reconciliation: either by direct reconciliation, where Bob corrects the errors in

the key with respect to Alice’s sequence, or reverse reconciliation, where Alice performs

error correction with the assistance of the data in Bob’s possession. Regardless of the
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chosen method, the entity performing error correction receives the necessary data from

the other legitimate entity via the authenticated classical channel. A direct reconcilia-

tion scheme is safe to implement only in short-distance CV-QKD protocols. This is owed

to the fact that the protocol needs to be safe against a beam-splitting attack, where it

has been shown that the upper bound for the transmission losses is 3dB. Considering

that the standard loss in 1550nm optical fibers is 0.2dB/km, the typical length would

be around 10km [Grosshans and Grangier (2002)]. Therefore, error-correction methods

that utilize reverse reconciliation are considerably more widespread in existing literature.

Under both reconciliation types, the reconciliation efficiency β is measured by

β =
Rcode log2 |A|

IAB
, β ∈ [0, 1] (4.1)

where Rcode stands for the error-correction code rate, IAB for the mutual information

between Alice and Bob and |A| for the alphabet size of the code, which typically is an

integer power of 2. The range of β is 0 ⩽ β ⩽ 1, where the minimum value stands for

a lack of extracted information and the maximum value indicates perfect reconciliation

[Weedbrook et al. (2012a)]. Given knowledge of β, the secret key rate in the asymptotic

limit Rasy under direct and reverse reconciliation is respectively calculated as

RDR
asy = βIAB − χAE (4.2)

RRR
asy = βIAB − χBE (4.3)

where χ is the Holevo bound between Eve and either Alice or Bob. The key rate is

measured in either bits per channel use or bits per second. Evidently, to achieve the

maximum possible key rate, the key rate coefficient needs to be maximized. One way

to achieve this is by choosing an appropriate reconciliation scheme, based on the level

of the channel noise and loss.

The asymptotic key rate is a primary quantity of interest, when the performance of

a CV-QKD protocol is examined. However, the secret key rate, which truly defines

and bounds the security of the protocol, depends not only on the noise and loss in

the communication channel, but also on a series of data-processing steps, needed for

transforming the shared correlations into a final string of secret bits. Such a quantity

will be analyzed in detail in a later section.

4.3 Noise and Loss

The performance and security of a CV-QKD system is hindered by several limiting

factors, most of which related to imperfect equipment and channel flaws. The imminent

corruption of the outgoing signal results in the disassociation of the sequences of the

transmitter and receiver. The most important sources of noise and loss, that are linked

with CV-QKD protocols, are catalogued in this section.
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• Transmissivity: Propagation of light requires a quantum channel, which conven-

tionally is an optical fiber. Fibers are characterized by optical attenuation, which

is the result of absorption, scattering and structural flaws. The attenuation of

the fiber is determined by the wavelength. A fiber of length L and attenuation ϑ

generates a channel of transmissivity T , which determines its loss. As the channel

length increases, so does the loss; this causes the performance of the protocol to

severely deteriorate at longer distances. Typically, channel losses are modelled

using a beam splitter.

• Coupling Losses: The channel losses can originate not only from the fiber itself,

but also from a faulty network setup. Misalignment between fibers happens, when

their cores overlap or when there is a gap of nontrivial distance between them.

The losses from such incidents are referred to as coupling losses. For the remainder

of the thesis, the transmissivity and the coupling losses will be merged into the

variable of the former.

• Detection Efficiency: The detection equipment on the receiver side has non-unit

efficiency. Therefore, the imperfect detection adds a diminishing factor η to the

transmission. Detection efficiency is considered a source of trusted noise, because

it can be calibrated before the commencement of the protocol. As a result, the

noise that originates from the detection is not attributed to the eavesdropper.

• Electronic Noise: The electronic noise υel is owed to disturbances, that occur in

electronic components and circuits of the setup. Like the setup efficiency, this type

of noise is regarded as trusted and is unrelated to the presence of an eavesdropper.

• Vacuum Noise: Also known as shot noise, the vacuum noise V is a fundamental

noise, inherent in quantum systems and associated with the uncertainty principle.

In shot-noise units (SNU), the variance of the vacuum noise is equal to 1.

• Excess Noise: The excess noise ξ encompasses various noise sources. One of the

most common sources originates from Alice’s state preparation and modulation

and is called preparation noise. It can emanate from a noisy laser or an imperfect

optical modulator. Other examples include Raman scattering, quantization and

phase fluctuations. Assuming all excess noise sources are stochastically indepen-

dent from one another, they can be summed up, due to the additivity property of

their variances [Laudenbach et al. (2018)].

• Thermal Noise: Environmental thermal effects arise from interactions between a

quantum system and its surroundings at non-zero temperatures. Such interactions

include the thermal motion of particles, which leads to random fluctuations in

the electromagnetic field [Meyers (2002)], or the emitted and absorbed thermal

electromagnetic radiation between the system and the environment [Huang (1987)].

This type of noise is known as thermal noise ω and the decoherence induced by it

can impact both the transmission and detection of quantum signals.
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As in other signal-related topics, the measure of the signal power against the noise

power is commonly given by the signal-to-noise-ratio (SNR). It is a crucial quantity,

used to assess the quality of the exchanged signals. All of the aforementioned noise and

loss sources directly affect the SNR. Therefore, maximizing the SNR can happen by

minimizing the effects of these sources. The higher the SNR is, the better the chances

of the communicating parties establishing a secret key.

4.4 Gaussian-Modulated Coherent-State Protocols

The scenario that is about to be presented is commonly referred to as a prepare-and-

measure setup (P&M). Two legitimate parties are involved, namely Alice and Bob,

whose aim is to establish a secret key by communicating over a potentially insecure

quantum channel. Alice prepares quantum states, on which she encodes information,

and transmits them through a public quantum channel. Bob receives the states and

measures them. This process is repeated several times, until a key is deemed sufficient.

Another party, Eve, is trying to intercept the quantum channel, in order to obtain

information about the secret key. To ensure fidelity and security, Alice and Bob perform

a series of postprocessing stages to compare and refine their results through a public

classical authenticated channel. A summary is provided for every stage of the protocols.

4.4.1 State Preparation, Transmission and Measurement

Alice begins by employing amplitude and phase modulators to displace vacuum states,

preparing a coherent-state sequence |α1⟩ , . . . |αj⟩ , . . . , |αN ⟩ of the form

|αj⟩ = |Qj + iPj⟩ (4.4)

where Qj = |αj | cos θ and Pj = |αj | sin θ. The amount of displacement is determined by

the quadrature components Q and P , which are drawn from two i.i.d. random variables

Q and P. These follow a zero-mean Gaussian distribution G with variance σ2

Q ∼ P ∼ G(0, σ2) (4.5)

With respect to the distributions in the above relation, the mean photon number of the

state ensemble is

n̄ := ⟨n⟩ = ⟨Q2⟩+ ⟨P2⟩ = 2σ2 (4.6)

After preparation, Alice transfers the signal states to Bob through a public insecure

quantum channel, which is generally characterized by two parameters: the transmissivity

T and the excess noise ξ. The signal inevitably gets corrupted during transmission.
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Figure 4.1: Structure of a CV-QKD protocol with (Gaussian-modulated) coher-
ent states, considering a receiver that might have trusted levels of inefficiency
and electronic noise. In the middle, the thermal-loss channel is induced by the
collective Gaussian attack of Eve, who uses a beam splitter with transmissivity
T and a TMSV state with variance ω. Eve stores her outputs in quantum mem-
ories, intending to measure them later. The optimal performance of the mea-
surements is bounded by the Holevo bound. [Mountogiannakis et al. (2022a)]

When the signal reaches Bob, he uses homodyne or heterodyne detection to measure

one or both of the quadratures. The approaches are described in Sec. 1.7. During the

former method, Bob randomly selects with equal probability for every state only one of

the Q and P quadratures. He then classically communicates to Alice the quadrature he

measured, so that the other quadrature is discarded, along with its value. The process

of reconciling the measurement bases is known as key sifting. In the latter detection

method, Alice and Bob utilize both bases. Consequently, the sifting step is skipped.

4.4.2 Parameter Estimation

After the transmission of a series of states is complete, Alice and Bob will reveal and

compare a random subset of their data. Through this comparison, they can estimate the

values of channel parameters, which typically involve the transmissivity T̂ and the excess

noise ξ̂ or its variance Ξ̂, under the maximum-likelihood estimation (MLE) method.

Using these parameters and with the help of the covariance matrix, they are able to

subsequently compute an approximation of their mutual information ÎAB and Eve’s

Holevo bound χ̂. If χ̂ > βÎAB, the presence of an eavesdropper on the channel is strongly

suspected and, consequently, the protocol is aborted. Otherwise, the protocol proceeds

to the information reconciliation stage. The disclosed states used in the parameter

estimation stage do not partake in the computation of the key rate and are discarded.

Depending on the desirable level of security, the parties may also compute lower bounds

for the channel estimators, which are called worst-case estimators. [Leverrier et al.

(2010), Ruppert et al. (2014)]. Via the worst-case estimators, an overestimation of the

Holevo bound χM is identified, which leads to a more conservative approach.
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It is worth mentioning, that there exist instances in literature, where the parameter

estimation stage occurs after information reconciliation [Wang et al. (2019)]. Regardless,

parameter estimation is far more widely implemented before error correction takes place.

4.4.3 Preprocessing

Preprocessing includes every task necessary to bring the resulting data from the quantum

transmission in an appropriate form for information reconciliation. These tasks are

executed in private, meaning that they are not associated with any information leakage

to the eavesdropper. Generally, only the portion of the states, that have survived the

parameter estimation stage, is affected by preprocessing. The methods followed depend

on various factors, such as the chosen protocol or the signal-to-noise ratio.

In CV-QKD, it is requisite to convert a continuous variable into a discrete one, in

order to further process it. Such a technique is referred to as discretization, digitization

or quantization. There are various discretization schemes, which directly affect the

error-correction performance and the key rate. Another typical process of this stage is

the normalization of the data, where the sequences are normalized by a certain factor

[Milisevic (2017), Zhou et al. (2019)].

4.4.4 Information Reconciliation

Having estimated the noise and loss parameters and having appropriately processed

their sequences, Alice and Bob are now in a position, where they have all necessary

components to start forming a secret key. As previously mentioned in Sec. 4.2, the

crucial information reconciliation stage is where they correct the errors caused by the

signal corruption, by means of either direct reconciliation or reverse reconciliation.

During the stage, they need to randomly announce part of the information through the

public channel. It is assumed that Eve observes all classical communication processes.

Therefore, the amount of leaked information leakEC in the error correction process must

be calculated. This amount quantifies part of Eve’s knowledge on the key and will be

eliminated in the final protocol stage.

Each reconciliation technique works best for a certain range of the SNR. For the low

SNR regime, particularly suitable is the multidimensional reconciliation scheme, where

a virtual binary-input additive white Gaussian noise (BIAWGN) channel is constructed

through rotating the Gaussian variables of Alice and Bob [Leverrier et al. (2008), Jouguet

et al. (2013), Wang et al. (2019), Zhang et al. (2020)]. For higher SNR values, the

most commonly implemented scheme is slice reconciliation [Van Assche et al. (2004),

Lodewyck et al. (2007), Jouguet et al. (2014), Wang et al. (2017), Wen et al. (2021)].
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To decode the data, LDPC codes are massively more implemented than any other type

of codes [Xu et al. (2022)]. The SNR is again a predominant factor, when determining

the rate of the code. High losses generally require low code rates, while higher values of

the SNR can manage error correction with higher rates. A family of LDPC codes, which

can provide efficient error correction combined with high reconciliation efficiency even in

the low SNR regime, are multi-edge type (MET) LDPC codes [Richardson and Urbanke

(2002), Jouguet et al. (2011), Milicevic et al. (2018), Wang et al. (2019), Mani et al.

(2021)]. Decoding is typically performed by an iterative belief propagation algorithm,

such as the sum-product algorithm or the min-sum algorithm [Lodewyck et al. (2007),

Milisevic (2017), Gümüs et al. (2021)]. These algorithms are highly effective, when they

are coupled with LDPC codes.

After error correction, the blocks that were not decoded are discarded. The party that

performed the correction hashes every successfully decoded block, using a hash function

h, which is chosen uniformly at random from a family F of universal hash functions

[Tsurumaru and Hayashi (2013)]. The resulting output is transmitted over the classical

channel to the other party, who hashes their own corresponding blocks with the same

hash function family. The digests are then compared, in order to verify their equality.

There are three possible outcomes from this verification process:

• the digests are equal, which means that the corresponding decoded blocks proceed

to next stage,

• the digests are unequal, which results in the blocks being discarded, or

• the digests collide.

A hash collision occurs when two different inputs are hashed with the same hash function

and produce the same hash value. Therefore, Alice and Bob will be tricked into believing,

that their original sequences were identical. The most suitable choice to minimize the

chance of such an event is the class of universal hash functions, because they guarantee

a minimal number of collisions. More specifically, for all possible transformations from

A to B, the probability of a collision is not larger than 1
B [Carter and Wegman (1979)].

4.4.5 Privacy Amplification

After the verification stage, Alice and Bob concatenate their matching hash outputs into

bit strings, which are identical with a very high probability. Nonetheless, Eve still has

partial knowledge of the key. To eliminate Eve’s knowledge, Alice and Bob proceed to

the privacy amplification stage, where, again, a hash function from family of universal

hash functions h ∼ F is usually employed to compress to their shared strings. This way,

they extract a random and secret key Υ, which can be used for secure communications.

Privacy amplification is enabled by the leftover hash lemma, described in Sec. 2.2.5.
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4.5 Measurement-Device-Independent Quantum Key

Distribution

In addition to the Gaussian-modulated coherent-state protocols, another protocol is

presented in this section. While not as widely reviewed in existing literature as the

aforementioned, it exhibits its own distinct advantages, which can be useful under par-

ticular circumstances.

While the homodyne and heterodyne protocols demonstrably provide security, the equip-

ment used in these cases is ideally considered to be absolutely trusted. In reality, they

are still vulnerable to side-channel attacks. Potential side-channel attacks include the

wavelength attack [Huang et al. (2013)], the local oscillator calibration attack [Ma et al.

(2013)] and the detector saturator attack [Qin et al. (2016)]. All of these are associated

with the adversary taking control over the preparation or detection mechanisms.

A more modern form of QKD, named measurement-device-independent (MDI) QKD,

was introduced to mitigate these issues. It was first presented as a general concept in

QKD [Braunstein and Pirandola (2012), Lo et al. (2012)], but was later reformulated

especially for continuous-variable systems [Pirandola et al. (2015)]. It protects against

side-channel attacks by providing an intermediate relay, which performs the detection

and creates the secret correlations, instead of the parties. The relay is factored in the

computations for the channel noise, which means it is regarded as untrusted, potentially

controlled by the adversary. The detection outcomes are classically transmitted to the

users, who follow these correlations to establish a secret key, independently of the device

used for the measurements. The existence of an intermediate relay makes the MDI

configuration the basis for constructing multi-user applications [Papanastasiou et al.

(2018), Ottaviani et al. (2019), Papanastasiou et al. (2023), Appendix VII]. This setup

can potentially be extended to QKD networks [Ghalaii et al. (2022)]. The CV-MDI

protocol has also been implemented experimentally [Pirandola et al. (2015), Wang et al.

(2018), Hajomer et al. (2023)].

4.6 Eavesdropping Attacks

The security of any QKD protocol hinges significantly on the potential technological

capabilities under the possession of the eavesdropper. With regard to these capabilities,

the possible eavesdropping attacks an adversary can perform on a CV-QKD system can

be categorized into three groups: individual attacks, collective attacks and coherent

attacks. For every type of attack, the security of the system should be examined for

both realistic block sizes and at the asymptotic limit. The attacks, as well as references

for their security analysis, are listed below.
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• Individual attack: In an individual attack scenario, Eve executes an i.i.d. attack,

which involves preparing a set of individual and identical quantum systems, every

one of which interacts individually with one signal pulse in the quantum channel.

The state transmitted from Alice to Bob can then be treated as an i.i.d. state, such

as ρANBN = ρ̃⊗
N

AB , where N signifies the number of transmitted signals. Assuming

she possesses a quantum memory, she stores the output ensemble there. After

the end of the sifting step, she performs an individual measurement on all states,

independently from one another. The first proof for individual attacks against

coherent-state protocols was introduced by [Grosshans and Cerf (2004)].

• Collective attack: Similarly to the individual attack, Eve initiates an i.i.d. attack

with separable states. However, in a collective attack, a collective measurement

is performed on the stored states. This measurement takes place only after the

classical postprocessing phase. The maximum amount of information extracted

from a collective attack is determined by the Holevo bound.

Regarding GMCS CV-QKD protocols, it has been proven that the optimal class of

collective attacks are Gaussian attacks, where the operation of the eavesdropper

corresponds to a Gaussian map [Leverrier and Grangier (2010), Pirandola et al.

(2020)]. The security of CV-QKD against collective Gaussian attacks was shown

independently by [Navascués et al. (2006)] and by [Garcia-Patrón and Cerf (2006)].

Collective Gaussian attacks have also been fully characterized by [Pirandola et al.

(2008b)]. The security against such attacks has also been extended to the finite-size

effects regime [Leverrier et al. (2010)]. Security analyses against general collective

attacks have been realized in the composable security framework for the homodyne

and heterodyne protocols [Leverrier (2015), Pirandola (2021a), Pirandola (2022)],

as well as for the CV-MDI protocol [Papanastasiou et al. (2017)]. The most notable

representation of a collective Gaussian attack is the entangling cloner attack, which

is discussed in the next section.

• Coherent attack: As individual and collective attacks somewhat restrict Eve’s

ability, a QKD protocol is considered unconditionally secure, when it is secure

under coherent attacks. This is because such attacks do not limit the ability

of eavesdroppers, thereby being the most general attacks. In a coherent attack,

Eve prepares an optimal global ancillary state, whose modes interact with the

signal pulses in the channel, employing all possible unitary transformations and

measurements. The results are then stored in the quantum memory. Likewise to

a collective attack, the collective measurement is performed after postprocessing.

The first security analysis for coherent attacks was presented by [Garcia-Patrón

and Cerf (2006)]. Soon after, [Renner and Cirac (2009)] provided a proof for

asymptotic-limit coherent attacks by reducing them to collective attacks under

certain circumstances. It was later shown that even finite-size coherent-attack

security, specifically for the heterodyne protocol, is provided by simply establishing

security against collective Gaussian attacks [Leverrier (2017)].
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4.7 The Entangling Cloner Attack

The entangling cloner attack is the modelization of a collective Gaussian attack. In

such an attack, Eve uses an entangling cloner to create two copies of Alice’s quantum

state. In reverse reconciliation, she keeps one for herself and sends the other one to Bob

[Grosshans et al. (2003)]. This way, she avoids adding extra noise on the data. The

analysis of the attack ultimately leads to the derivation of the Holevo bound between

Bob and Eve, which is essential in calculating the key rate. The representation of the

attack primarily from [Laudenbach et al. (2018)] and secondarily from [Weedbrook et al.

(2012b)] is closely followed in this section.

Consider the mutual state ρAB of Alice and Bob. This is a TMSV state with zero mean

and variance µ, described by the covariance matrix VAB of Eq. (3.24). Similarly, Eve

also generates a TMSV state for her modes E1 and E2 with zero mean and variance ω,

whose covariance matrix is given by

VE1E2 =

[
ωI

√
ω2 − 1Z√

ω2 − 1Z ωI

]
(4.7)

The direct sum of the covariance matrices of the two EPR states is calculated, creating

the covariance matrix of the total state

VABE1E2 = VAB ⊕VE1E2 =


µI

√
µ2 − 1Z 0 0√

µ2 − 1Z µI 0 0

0 0 ωI
√
ω2 − 1Z

0 0
√
ω2 − 1Z ωI

 (4.8)

Eve replaces the quantum channel with a noiseless channel, i.e. ω = 1, making it a

pure-loss channel. The new channel is modelled by a beam splitter with transmissivity

T ∈ [0, 1] and excess noise given by

ξ =
1− T
T

(ω − 1) (4.9)

The beam splitter mixes Bob’s mode B with one of Eve’s modes E1. Eve keeps one of

the outputs to herself and passes the other one to Bob. The beam splitter operator from

Eq. (1.65) acts on the modes B and E1 of the state above. It is represented by

SABE1E2 = IA ⊕ SBE1 ⊕ IE2 =


I 0 0 0

0
√
T I

√
1− T I 0

0 −
√
1− T I

√
T I 0

0 0 0 I

 (4.10)
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The beam splitter operator can enact a symplectic transformation on the total state of

Eq. (4.8), producing [Laudenbach et al. (2018)]

V′
ABE1E2

= SABE1E2VABE1E2S
T
ABE1E2

=
µI

√
T (µ2 − 1)Z −

√
1− T

√
(µ2 − 1)Z 0√

T (µ2 − 1)Z (Tµ+ [1− T ]ω)I
√
T (1− T )(ω − µ)I

√
1− T

√
(ω2 − 1)Z

−
√
1− T

√
(µ2 − 1)Z

√
T (1− T )(ω − µ)I ([1− T ]µ+ Tω)I

√
T (ω2 − 1)Z

0
√
1− T

√
(ω2 − 1)Z

√
T (ω2 − 1)Z ωI


(4.11)

Reduction of the above matrix to include only Alice’s and Bob’s mode yields

V′
AB =

[
µI

√
T (µ2 − 1)Z√

T (µ2 − 1)Z (Tµ+ [1− T ]ω)I

]
(4.12)

In case Eve chooses the variance of her TMSV state to be ω, rewriting Eq. (4.9) to solve

for ω returns the covariance matrix

V′
AB =

[
µI

√
T (µ2 − 1)Z√

T (µ2 − 1)Z [T (µ− 1) + 1 + ξ]I

]
(4.13)

which portrays the transmission through a lossy channel under excess noise without Eve’s

interception. To obtain Eve’s information, the symplectic eigenvalues of the covariance

matrix under modes E1 and E2 are required. Removing Alice’s and Bob’s modes from

Eq. (4.11), the matrix is given by

V′
E1E2

=

[
([1− T ]µ+ Tω)I

√
T (ω2 − 1)Z√

T (ω2 − 1)Z ωI

]
(4.14)

This matrix describes a two-mode state, which obeys the structure of Eq. (3.22). This

means that its symplectic eigenvalues v+ and v−, which are used to compute the entropy

SE , can be conveniently calculated using the formula of Eq. (3.23).

Suppose the case of homodyne detection. To calculate the conditional von Neumann

entropy between Bob and Eve SE|B, the symplectic eigenvalues of Eve’s covariance

matrix upon Bob’s measurement are first required to be known. By eliminating only

Alice’s quadratures from Eq. (4.11), the covariance matrix of Bob and Eve becomes

V′
BE1E2

=

 [ω(1− T ) + µT ]I (ω − µ)
√
T (1− T )I

√
(1− T )(ω2 − 1)σz

(ω − µ)
√
T (1− T )I [µ(1− T ) + ωT ]I

√
T (ω2 − 1)σz√

(1− T )(ω2 − 1)σz
√
T (ω2 − 1)σz ωI

 (4.15)
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When Bob’s mode undergoes a homodyne measurement, Eve’s system E = E1E2 is

altered, according to Eq. (3.28):

Vhom
E|B = V′

E1E2
−CE|B(ΠBΠ)−1CT

E|B = V′
E1E2

− 1

µB
CE|BΠCT

E|B (4.16)

Eve’s covariance matrix V′
E1E2

is displayed in Eq. (4.14), while Eq. (4.13) returns

µB = (1− T )ω + Tµ (4.17)

As three modes participate in this transformation, the 4× 2 matrix CE|B of the partial

measurement, which describes the quantum correlations between Eve’s modes and Bob’s

mode, is defined as [Weedbrook et al. (2012b)]

CE|B =

[
−
√
T − (1− T )(µ− ω)I√
(1− T )(ω2 − 1)Z

]
(4.18)

Finally, Π is taken here as diag(1, 0). After a series of cumbersome computations, the

result of Eq. (4.16) resembles a matrix of the form of Eq. (3.18), whose submatrices A,

B and C are given by

A =

 µω

T (µ− ω) + ω
0

0 (1− T )µ+ Tω

 (4.19)

B =

 1− T + Tωµ

Tµ+ ω − Tω
0

0 ω

 (4.20)

C =


√
T (ω2 − 1)µ

Tµ+ ω − Tω
0

0 −
√
T (ω2 − 1)

 (4.21)

All in all, the final matrix is shaped as

Vhom
E|B =



µω

T (µ− ω) + ω
0

√
T (ω2 − 1)µ

Tµ+ ω − Tω
0

0 (1− T )µ+ Tω 0 −
√
T (ω2 − 1)√

T (ω2 − 1)µ

Tµ+ ω − Tω
0

1− T + Tωµ

Tµ+ ω − Tω
0

0 −
√
T (ω2 − 1) 0 ω


(4.22)

The set of symplectic eigenvalues v± of the resulting conditional covariance matrix can

be obtained by either using Eq. (3.20) or by identifying the ordinary eigenvalues of the

matrix, found in Eq. (3.25). The calculation of the conditional von Neumann entropy

based on Bob’s measurement SE|B can now take place. Combining this term with Eve’s

entropy SE gives the Holevo information χBE , as shown in Eq. (2.30). Note that the

derivation for the heterodyne protocol follows the formula of Eq. (3.29).
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4.7.1 Purification Attack

As there is no knowledge of Eve’s attack plan, the worst-case scenario is assumed. In

this, Eve possesses a purification of Alice’s and Bob’s quantum state ρAB. The total

pure state ρABE is then characterized by Eq. (2.21). By removing Eve’s subspace, a

mixed state ρAB, whose von Neumann entropy is given by Eq. (2.25), is produced. This

assumption implies the entropy of Eve is equal to the entropy between Alice and Bob

SE = SAB = −
∑
i

λi lnλi (4.23)

As a result, the calculation of the Holevo bound between Bob and Eve can be simplified

by completely disregarding Eve’s activity, using the following formula [Pirandola (2014)]:

χBE = SE − SE|B = SAB − SA|B (4.24)

The von Neumann entropy SAB can be calculated by Eq. (3.26), using the symplectic

eigenvalues v1 and v2 from matrix Eq. (4.13). The calculation of the conditional entropy

SA|B depends on the type of detection utilized by Bob. Assuming homodyne detection,

the formula is given by Eq. (3.28). Let Eq. (4.13) take the form of Eq. (3.22). For

A = aI, µB = b and C = cσz [Laudenbach et al. (2018)], the result is

VA|B =

[
a 0

0 a

]
− 1

b

[
c2 0

0 0

]
=

a− c2

b
0

0 a

 (4.25)

The symplectic eigenvalues can be calculated as ordinary eigenvalues, as demonstrated

by Eq. (3.25)

ṼA|B = i

[
0 1

−1 0

]a− c2

b
0

0 a

 =

 0 ia

i(−a+ c2

b
) 0

 (4.26)

Computation of the eigenvalue ṽ can be achieved under typical eigenvalue solving of a

matrix

det
(
ṽI− ṼA|B

)
= 0⇔ det

 ṽ −ia

−i(−a+ c2

b
) ṽ

 = 0⇔ ṽ2 + a(−a+ c2

b
) = 0

(4.27)

Ultimately, the eigenvalue ṽ is given by

ṽ =

√
a(a− c2

b
) (4.28)
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4.8 Finite-Size Effects

The above sections provided a foundational overview of the different stages of CV-QKD

protocols and some of the challenges associated with them. In practice, from all of

the data-processing procedures arise imperfections, which must be accounted for, to

accurately estimate the security of the protocol.

So far, the protocols have been examined in the asymptotic limit, which assumes the

generation of an infinite number of states. In practice, this number is always finite.

The selected number of states depends on multiple factors, such as the noise and loss

of the communication channel or the desired key rate. Usually, the total amount of

generated points ranges anywhere from 107 to 1012. However, the execution of error

correction is required to be completed in a timely fashion. As a result, this large sequence

may be broken into nbks smaller sequences, called frames or blocks. Generally, each

block contains N = 105 to N = 107 points [Milisevic (2017), Zhang et al. (2020),

Supplementary Material].

In a practical implementation, a subset n of the total states N proceeds to the error-

correction stage, while another portion m needs to be sacrificed, in order to estimate

the channel parameters T̂ and Ξ̂. Consequently, as only the surviving states n should

participate in the true key rate of the protocol, a diminishing factor of n
N should be

added in the calculation. In addition, there might be significant deviation between the

estimated and actual values. For this reason, it is common that Alice and Bob also

calculate worst-case scenarios Tm and Ξm, which they use to compute an overestimation

of Eve’s Holevo bound χm. The key rate integrating these features is informally referred

to as the parameter-estimation based rate [Pirandola (2021a)] and is calculated by

RM =
n

N

(
βIXY |T̂ ,Ξ̂

− χ|Tm,Ξm

)
1 (4.29)

Another concept, which is infeasible in reality, is perfect reconciliation. Reconciliation is

affected by multiple factors, such as the channel conditions, the preprocessing scheme,

the error-correction algorithm, the design quality, the code rate and the length of the

chosen LDPC code and, finally, the specified correctness error εcor, which is described

in the next section. The factor of the LDPC block length n points to one of the reasons

why long block sizes are preferred, as LDPC codes have been shown to exhibit superior

decoding performance at such block sizes [Luby et al. (2001)]. During the error correc-

tion stage, there is a probability that the decoding process may fail for certain frames.

The rate of failure is measured by the frame error rate FER, while pEC denotes the met-

ric for the probability of successful reconciliation, which includes both error correction

and verification. In addition, because the reconciliation process cannot be perfect, its

underlying quantity β, which captures the effectiveness of the code to operate as close

as possible to the Shannon limit at a particular SNR, can also never be perfect.

1The symbol | denotes the evaluation of a function with respect to a specific set of parameters.
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The quantities β and pEC are inherently connected. Reducing the desired efficiency may

yield higher error correction performances, while a higher efficiency may have an adverse

effect on the success of decoding. Given that some of the key generation states will be

discarded, if not correctly decoded, a finite-size effect key rate can be defined by

REC
M =

npEC
N

(
βIXY |T̂ ,Ξ̂

− χ|Tm,Ξm

)
(4.30)

where β < 1. Maximizing the secret key rate requires that the error-correcting code

must be able to achieve both a high error-correction success rate, ideally 1, and high

reconciliation efficiency, ideally as close to 1 as possible. In any case, achieving pEC > 0 is

mandatory for the protocol to continue. Otherwise, the implication is that no sequences

have been correctly decoded, which means that a secret key cannot be formed.

Finally, another subtle practical effect, which may potentially affect the key rate and

whose importance is not often stressed enough, is the speed, at which error correction

is performed. In this setting, the speed is determined by

• the maximum number of error-correcting iterations itermax,

• the capabilities of the hardware,

• the design of the decoder,

• or some or all of the above combined.

As already mentioned, the computationally complex sum-product algorithm is typically

employed by Alice for the decoding of blocks, in the reverse reconciliation scenario. If

decoding, and by extension key generation, is not quick enough, then the two parties

would have to resort to a lower value for β. Such a compromise would require fewer

itermax rounds, which comes with an increased decoding speed and, potentially, a higher

pEC, but would detrimentally affect the key rate. To clarify, a CV-QKD protocol with

slow error correction will be unsafe in longer distances. For this reason, decoding in

CV-QKD, especially at long distances, is almost exclusively performed with graphics

processing units (GPUs), because the sum-product algorithm is highly parallelizable

by design [Milisevic (2017)]. As GPUs possess a superior number of cores compared to

central processing units (CPUs), far more processes can be simultaneously executed. All

in all, there is an implicit connection between β, pEC and the speed of error correction.

Identifying the optimal trade-off, which maximizes the performance of the protocol, can

pose a considerable challenge.
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4.9 Composable Framework

While the security analysis benefits significantly from the inclusion of finite-size effects,

it is still incomplete. To ensure the security of the protocol, the notion of composability

must be introduced in the context of CV-QKD. The definition of security in a quantum

cryptographic setting from [Renner (2005)] stands out as the most robust and rigorous

in the field. A QKD protocol is said to be ε-secure, if

D(ρABE , σAB ⊗ ρE) ≤ ε (4.31)

Here, D signifies the trace distance of Eq. (2.32), ρABE is the final joint state of Alice,

Bob and Eve and σAB ⊗ ρE is the ideal secret key state. The parameter ε indicates

the probability of Alice and Bob generating a shared key, which is not identical to an

ideal key. Conversely, the key is ideal with a probability of 1 − ε and, therefore, it is

completely disassociated from Eve.

Composability implies defining an ideal protocol, which is perfectly secure by design.

The ideal version is then compared to the practical version. The ideal and practical

versions should be virtually indistinguishable, with Renner’s definition serving as the

benchmark for their comparison. A protocol under the composable framework takes

into account the worst possible outcome for a variety of tasks.

Security proofs, that incorporate composability, have been demonstrated for various

CV-QKD protocols [Leverrier (2015), Leverrier (2017), Pirandola (2021a), Pirandola

(2021b), Papanastasiou and Pirandola (2021), Pirandola (2022)]. These proofs are based

on probabilities, called epsilon parameters or ε-parameters, which are related to various

errors or inaccuracies from processes, that take place during the protocol. In this thesis,

five ε-parameters, each introducing a certain penalty, are identified and discussed:

• Parameter estimation error εPE, which is the probability that the estimated

channel parameters do not belong in the marked out confidence region, laid out

by the worst-case scenario estimators.

• Entropy estimation error εent, which is associated with the impact of finite sam-

ples on the entropy estimation of key generation sequences. When estimating the

entropy of a sequence, the probabilities of each symbol appearing become more

reliable, as the sample size converges towards infinity. Nonetheless, for smaller

samples, the probabilities may not accurately represent the actual underlying dis-

tribution. Instead, the observed frequencies are used as estimates for the proba-

bilities. Therefore, the estimator should be smaller than or equal to the true value

for the entropy. To ensure security, a penalty, related to the probability of the

estimated entropy being larger than the actual one, is introduced.
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• Correctness error εcor, which represents the collision probability of a family

of universal hash functions F , which is used during the verification stage. The

correctness error is an inherent property of the family of a hash function h, as it is

imposed by the specific design and properties of the chosen family. It determines

the length in bits of the hash digests as

t = ⌈− log2 εcor⌉ (4.32)

It is evident that a smaller value for the correctness error will result in a smaller

length for the verification hash output length and, thus, a weaker verification.

Successively, this will negatively affect the success probability of error correction.

• Smoothing parameter εs, discussed in Sec 2.2.5, which quantifies the error

probability of particular information-theoretic tasks, such as failing to accurately

determine the probability distribution of the key.

• Hashing parameter εh, which is a direct result of the leftover hash lemma and

indicates the collision error of the universal hash function used during the privacy

amplification stage.

In analyses of experimental implementations, additional ε-parameters have emerged,

such as the probability of faulty calibration of the transmitter or the receiver, as well as

the probability that the quantum random number generator has induced errors during

discretization [Lupo (2020), Jain et al. (2022)].

The smoothing and hashing parameters constitute another ε-parameter, the secrecy

parameter

εsec = εh + εs (4.33)

which characterizes the privacy amplification stage. It stands for the probability of

failing to prevent Eve from obtaining information about the key. In composable terms,

it bounds the distance between the actual final key and an ideal key, that is, a key about

which Eve possesses zero knowledge.

The ε-parameters contribute in the shaping of extra terms, which, in turn, will define a

new key rate. The first term the relation of the secret key rate with finite-size effects

takes into consideration the fact that the Holevo information function is not working

correctly in a finite-size effects regime. Thus, there is an extra term that accounts for

this correction, which is dependent on the number of signals used for key extraction.

This term is approximated by ∆AEP, which quantifies the error committed bounding the

smooth-min entropy, using the AEP [Tomamichel (2012)]. Another term, denoted by Θ,

is introduced to satisfy the bound originated from the leftover hash lemma [Pirandola

et al. (2020), Appendix G]. The mathematical formulation of these notions is variable

and depends on various factors, including the adopted preprocessing methods and the

considered ε-parameters.
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Taking all the above into consideration, the secret key rate should not only depend on

the noise and losses of the communication channel, but also on a series of data-processing

steps, required for transforming shared correlations into a final string of secret bits. The

secret key rate encompassing both the composable framework and finite-size effects is

called composable key rate and is defined as [Pirandola (2021a), Pirandola (2022)]

R = REC
M − pEC

√
n

N
∆AEP +

pEC
N

Θ (4.34)

A protocol that is ε-secure always produces a positive composable key rate and vice versa.

In other words, ε-security implies that, despite the presence of an eavesdropper, Alice’s

and Bob’s final keys ΥX and ΥY are identical, uniformly distributed, and completely

disassociated from the eavesdropper, except with probability ε. Through a positive

composable key rate, the amount of compression, that must be applied to construct the

final key Υ can be quantified. The secret key length ℓ is generally determined by the

total amount of generated states times the composable key rate.



Chapter 5

Data Processing in

Gaussian-Modulated

Coherent-State CV-QKD

The research part of the thesis fully describes the entire operation of three protocols,

namely the GMCS protocols under homodyne and heterodyne detection, as well as the

CV-MDI protocol. The course of action of the protocols, from state preparation to secret

key generation, will be carefully explained and guided step by step. In order to provide

an accurate depiction of a realistic implementation, the description will incorporate the

composable security framework under finite-size effects. Except when explicitly stated

within the text, differentiation between the protocols will be communicated either by

using different subsections or by means of piecewise functions. In the rest of the cases,

the three protocols follow the same course.

The focus of this thesis is the realization of the protocols under short-distance communi-

cations. Therefore, the resulting SNR will receive values which are considered relatively

high. As a result, the amount of mutual information between Alice and Bob will also be

high. In order to be able to maintain a high value for the reconciliation efficiency, which

is a crucial requirement to achieve a positive composable key rate, the preprocessing and

error correction stages have been adapted to an appropriate scheme for such conditions.

5.1 Protocol Description

Here, the quantum communication stage of the three protocols will be presented. This

includes the preparation, transmission and detection of the coherent states. Moreover,

the method of the eavesdropping attack is captured. Finally, the fundamental quantities

characterizing the protocol are also defined in this section.

53
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5.1.1 Homodyne and Heterodyne Protocol Description

Alice begins by preparing a bosonic mode A in a coherent state |α⟩, whose amplitude is

Gaussian-modulated. In other words, it is appropriate to provide the description1

α =
Q+ iP

2
(5.1)

Besides, x = {Q,P} is the mean value of the generic quadrature operator x̂ = {Q̂, P̂},
which is randomly chosen according to a zero-mean Gaussian distribution G(0, σ2x), whose
probability density function is given by

pG(x) =
1√
2πσx

exp

(
−x2

2σ2x

)
(5.2)

Here, σ2x ≥ 0 stands for the modulation variance, while µ is the total signal variance,

which is given by the sum of the modulation variance and the vacuum noise as

µ = σ2x + V (5.3)

The notation adopted here for ℏ = 2 is

[Q̂, P̂ ] = 2i (5.4)

which originates from [(Weedbrook et al., 2012a, Sec. II)] and follows the representation

in SNU, as the vacuum state has noise variance V = 1. Note that

Q = 2Reα (5.5)

P = 2 Imα (5.6)

The coherent states travel to Bob through an optical fiber with length L and attenuation

ϑ. This is simulated by a thermal-loss channel with transmissivity

T = 10−
ϑL
10 (5.7)

and thermal noise

ω = 2n̄+ 1 (5.8)

where n̄ is the thermal number associated with an environmental mode E [Ottaviani

et al. (2016)]. The process can equivalently be represented by a beam splitter with

transmissivity T mixing Alice’s mode A with mode E, which is in a thermal state with n̄

mean photons. Through purification, the environmental thermal state can be converted

into in a TMSV VeE , with modes e and E, zero mean and CM

VeE(ω) =

[
ωI

√
ω2 − 1Z√

ω2 − 1Z ωI

]
(5.9)

1Recall that Eq.
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Here, I = diag(1, 1) and Z = diag(1,−1). This dilation based on a beam splitter

and a TMSV state is the entangling cloner attack, which represents a realistic collective

Gaussian attack, that is optimal against GMCS CV-QKD protocols. This class of attacks

has been thoroughly described in Sec. 4.7.

At the other end of the channel, Bob measures the incoming states by mixing the

arriving mode B with a vacuum mode, using a balanced beam splitter. The states enter

his detector, which is characterized by setup efficiency η and electronic noise υel. In the

homodyne scenario, the detector is randomly switched between the two quadratures.

Under heterodyne detection, a homodyne measurement is applied to each beam splitter

output, targeting a different conjugate quadrature. Each measurement introduces a

vacuum noise term V , leading to the notation

V ∗ =

1 Homodyne

2 Heterodyne
(5.10)

With ŷ being the generic quadrature of Bob’s mode B, the outcome y of the detector is

described by the input-output formula

y =
√
Tηx+ z (5.11)

where z is a Gaussian noise variable with zero mean and variance

σ2z = υel + Ξ+ V ∗ (5.12)

Here, Ξ is excess noise variance of the channel, defined by

Ξ = ηTξ (5.13)

where ξ represents the actual excess noise, expressed by Eq. (4.9).

It is important to make two considerations. The first concerns the management of Bob’s

detector, accounting for the possible presence of trusted levels of quantum efficiency

and electronic noise. In the worst-case scenario, these levels can be set equal to zero.

It can then be assumed, that these contributions are implicitly part of the channel

transmissivity and excess noise. In other words, a possible map is Tη → T in Eq.

(5.11), while υel can become a part of ξ in Eq. (5.12), so that ξ → ξ+υel/T in Eq. (4.9).

The second point is that Alice and Bob might not be able to control or mitigate other

imperfections in their setups, such as the modulation noise or the phase noise. These

imperfections are automatically included in the channel noise and loss via the general

relations of Eq. (5.11) and Eq. (5.12). Furthermore, the extra noise contributions can

be considered to be Gaussian in the worst-case scenario, resorting to the optimality of

Gaussian attacks against GMCS CV-QKD protocols.
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So far, the description of the protocol can be condensed in the depiction of Fig. 4.1.

Assuming this general scenario, the mutual information between Alice and Bob can be

computed by the following steps. From Eq. (5.11), the variance of y is equal to

σ2y = Tησ2x + σ2z = Tη(µ− 1 + ξ) + V ∗ + υel (5.14)

while the conditional variance is given by

σ2y|x = σ2y(µ = 1) = ηTξ + V ∗ + υel (5.15)

The mutual information associated with the variables x and y is given by the difference

between the differential entropy H(y) of y and the conditional entropy H(y|x) as

I(x : y) = H(x)−H(y|x) = V ∗

2
log2

(
σ2y
σ2y|x

)
=
V ∗

2
log2(1 + SNR) (5.16)

The doubling of the mutual information in the heterodyne case is owed to the two

independent quadratures having the same variance. Note that the mutual information

stays the same, whether the type of reconciliation is direct or reverse. The mutual

information also contains the SNR term, which is written as

SNR =
µ− 1

χ
(5.17)

where the quantity

χ = ξ +
V ∗ + υel
Tη

(5.18)

is known as the equivalent noise. The joint Gaussian distribution of the two variables x

and y has zero mean and CM

Σxy =

[
σ2x ρσxσy

ρσxσy σ2y

]
(5.19)

where

ρ =
E(xy)
σxσy

(5.20)

is a correlation parameter and E stands for the expected value. From the classical

formula [Cover and Thomas (2001)]

I(x : y) = −V
∗

2
log2(1− ρ2) (5.21)

it is evident that the correlation can be expressed in terms of the SNR as

ρ =

√
SNR

1 + SNR
(5.22)
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It is important to stress that, in order to asymptotically achieve the maximum number of

shared bits I(x : y) per channel use in reverse reconciliation, Bob needs to send H(y|x)
bits through the public channel, according to Slepian-Wolf coding. In practice, Alice and

Bob will perform a suboptimal procedure of reconciliation, revealing more information

leakEC ≥ H(y|x). To account for this, it is assumed that only a portion βI(x : y) of the

mutual information can be achieved using the reconciliation parameter β ∈ [0, 1).

Remark 1. From a data processing perspective, Alice generates Nnbks signal states,

leading to a total of 2Nnbks samples. This means there are Nnbks samples for each

quadrature. During the key sifting step of the homodyne protocol, Bob randomly

switches between the Q and P quadratures, keeping only one and discarding the other.

His selections are transferred to Alice, who discards her quadratures correspondingly.

Here, one generated signal state corresponds to one measurement. In the end, the two

parties possess Nnbks samples each, meaning every block 1, 2, . . . , nbks holds N samples.

In the heterodyne version, Alice encodes 2Nnbks samples [x]i, i = 1, . . . , 2N , of the

generic variable x ∼ G(0, µ−1) on the two conjugate quadratures of Nnbks signal states.

Then, she groups them in instances [x]j = ([Qx]j , [Px]j) = ([x]2j−1, [x]2j) for j = 1 . . . N

and encodes them in nbks blocks of coherent states |αj⟩, where αj = ([x]2j−1+ i[x]2j)/2.

Bob’s instances become [y]j = ([Qy]j , [Py]j) = ([y]2j−1, [y]2j) for the jth state encoding

Alice’s instances [x]j . To clarify, odd-indexed samples are encoded in the Q-quadrature,

while even-indexed ones are in the P -quadrature of the Nnbks states. The result is the

concatenation of Q and P , leading to 2Nnbks samples for each party. In practice, this

is only virtually theorized. An analysis of this concept can be found in Appendix C.

5.1.2 CV-MDI Protocol Description

Alice and Bob prepare coherent states |αA⟩ and |αB⟩ with amplitudes

αA =
QA + iPA

2
(5.23)

αB =
QB + iPB

2
(5.24)

carried by modes A and B respectively. In particular, they encode the real vectorial

variables α = (QA, PA) and β = (QB, PB), which follow the Gaussian distributions

G(α) = e[−
1
2
(Q2

A+P 2
A)2/σ2

A]

2πσ2A
G(β) = e[−

1
2
(Q2

B+P 2
B)2/σ2

B ]

2πσ2B
(5.25)

The two bosonic modes travel to an intermediate relay, where a Bell measurement is

applied to the incoming modes. The output of the relay is

γ =
QR + iPR

2
(5.26)

The notation γ = (QR, PR) is also adopted here.
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Eve interacts with the roaming modes via a two-mode attack, which is depicted in

Fig. 5.1. The first mode E1 is mixed with mode A through a beam splitter with

transmissivity TA. Similarly, mode E2 with mode B are interfered using a beam splitter

with transmissivity TB. The two links are characterized by thermal noise, which is

defined in terms of their respective transmissivity and excess noise as

ωA =
TAξA
1− TA

+ 1 (5.27)

ωB =
TBξB
1− TB

+ 1 (5.28)

The covariance matrix of Eve’s modes is given by

VE1E2 =

[
ωAI G

G ωBI

]
, G =

[
g 0

0 g′

]
(5.29)

where g and g′ are correlation parameters, whose bona fide conditions are provided

in [Pirandola et al. (2015)]. Given the correlation parameter description, the most

powerful attacks are executed, when g < 0 and g′ > 0. These are collective two-mode

Gaussian attacks and represent the entangling cloner attack counterpart of a channel

comprised of two links [Pirandola et al. (2008b), Papanastasiou et al. (2021)]. Taking

into consideration this area of values, it is evident that as |g| and |g′| become larger, the

modes become more quickly and more strongly correlated. Then, gmax = max{|g|, |g′|}
can be chosen, assuming the worst-case scenario attack with

Gmax =

[
−gmax 0

0 gmax

]
(5.30)

In such a case, the quadratures can be treated equivalently, as they follow the same

probability distribution.

The outputs QR and PR are dependent on the variables QA, PA and QB, PB respectively,

according to the following equations:

QR =τBQB − τAQA +Qz (5.31)

PR =τBPB + τAPA + Pz (5.32)

where τA and τB are rescaling parameters, connected to the overall attenuation via

τA =

√
ηTA
2

(5.33)

τB =

√
ηTB
2

(5.34)

Here, η is the calibrated detection efficiency.
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Figure 5.1: Representation of the quantum communications stage in CV-MDI.
Alice and Bob send coherent states |α⟩ and |β⟩ with modes A and B to the
intermediate relay. Eve’s modes E1 and E2 interact with the roaming modes
via beam splitters with transmissivities TA and TB respectively. Eve’s two-mode
attack is characterized by thermal noise parameters ω1 and ω2, as in Eq. (5.29).
Eve’s modes are stored in a quantum memory, awaiting the communication
between the parties for an optimal measurement [Papanastasiou et al. (2023)].

The noise variables Qz and Pz have variance σ2z , such that

σ2z = υel + Ξ+ 1 (5.35)

where υel denotes the electronic noise of the detectors and Ξ the excess noise variance,

provided by the formula

Ξ =
η

2
[(1− TA)(ωA − 1) + (1− TB)(ωB − 1)] + ηgmax

√
(1− TA)(1− TB) (5.36)

with

gmax = max{
√

(ωA − 1)(ωB + 1),
√

(ωB − 1)(ωA + 1)} (5.37)

5.2 Asymptotic Key Rate Calculation

This section describes how to calculate the achievable secret key rate for infinite uses

of the quantum communication channel between Alice and Bob. For the homodyne

and heterodyne protocols, the mutual information has already been calculated. Putting

the efficiency aside, the only missing parameter for the calculation of the asymptotic

rate of Eq. (4.3), assuming reverse reconciliation, is the Holevo information between

Eve and Bob. The CV-MDI protocol still requires the computation of both the mutual

information and the Holevo bound. In line with the definition of a collective Gaussian

attack, it is assumed that after a Gaussian interaction with the signal modes, Eve stores

her modes in a quantum memory and measures them optimally, after all communications

between Alice and Bob conclude.
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5.2.1 Homodyne Protocol Asymptotic Rate Calculation

The description follows the entanglement-based representation of the protocol. Herein,

Alice’s input ensemble of coherent states is generated on mode A by heterodyning mode

A′ of a TMSV VA′A with variance µ. Note that this representation is not strictly

necessary in this analysis, as it may be carried out equivalently using a P&M scheme.

However, it is adopted for the sake of completeness, so as to give the total state with all

the correlations between Alice, Bob and Eve.

The output modes A′ and B shared by the parties will be in a zero-mean Gaussian state

ρA′B with CM

VA′B =

[
µI ξZ

ξZ υI

]
(5.38)

where the constituents are given by

ξ =
√
Tη(µ2 − 1) (5.39)

υ = Tη(µ+ ξ) + 1− Tη + υel (5.40)

Then, the global output state ρA′BeE′ of Alice, Bob and Eve is a zero-mean Gaussian

state, whose CM is given by

VA′BeE′ =


µI ξZ O ζZ

ξZ υI πZ θI

O πZ ωI ψZ

ζZ θI ψZ ϕI

 (5.41)

where O is the 2× 2 zero matrix and the rest of the variables are [Pirandola (2022)]

ζ = −
√

(1− T )(µ2 − 1) (5.42)

θ =
√
ηT (1− T )(ω − µ) (5.43)

π =
√
η(1− T )(ω2 − 1) (5.44)

ψ =
√
T (ω2 − 1) (5.45)

ϕ = Tω + (1− T )µ (5.46)

To compute the Holevo bound, the von Neumann entropies S(ρeE′) and S(ρeE′|y) need

to be derived. These can be computed from the symplectic spectra of the reduced CM

VeE′ and the conditional CM VeE′|y. Given the partial homodyne detection formula of

Eq. (3.28), with the correlation matrix written as

C =
[
πZ θI

]
(5.47)
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the pseudo-inverse operation can be used to compute

VeE′|y = VeE′ −CT [Π(υI)Π]−1C (5.48)

= VeE′ − υ−1CTΠC (5.49)

=

[
ωI ψZ

ψZ ϕI

]
− υ−1

[
π2Π πθΠ

πθΠ θ2Π

]
(5.50)

Since both VeE′ and VeE′|y are two-mode CMs, it is straightforward to compute their

symplectic spectra, denoted as {v±} and {ṽ±}, using Eq. (3.23). Their general analytical
expressions are too cumbersome to be presented here, unless the limit µ ≫ 1 is taken.

In this instance, the convergence of the spectra is shown by v+ → (1−T )µ and v− → ω.

Finally, Eq. (4.24) of the Holevo bound can be rewritten as

χ(E : y) = S(ρeE′)− S(ρeE′|y) = G(v+) +G(v−)−G(ṽ+)−G(ṽ−) (5.51)

where G is the bosonic entropic function, given by Eq. (3.27). It is important to stress

that, for any processing y → y′ done by Bob, the inequality χ(E : y′) ≤ χ(E : y) stands.

Therefore, the right-side value can always be taken as an upper bound for the actual

eavesdropping performance.

All components for the calculation of the asymptotic key rate are now in place. Following

Eq. (4.3), which concerns the reverse reconciliation scenario, the key rate is given by

Rasy = βI(x : y)− χ(E : y) (5.52)

Supposing that η and υel are known and the parties have preliminary estimates of T

and ξ, Alice can compute an optimal value µopt for the signal variance µ for a target β.

This can be achieved by testing the asymptotic for a given interval of values for µ > 1.

Then, µ = µopt, when the maximum asymptotic key rate is returned.

5.2.2 Heterodyne Protocol Asymptotic Rate Calculation

Remark 2. Following Remark 1, the complementary notations x and y will henceforth

refer to the concatenated quadratures. The mutual information of Eq. (5.16) will be

denoted as I(x : y) = 2I(x : y) = log2(1 + SNR) for the heterodyne case.

Alice and Bob are able to quantify the maximum possible amount of leaked information

using the Holevo bound. This is computed from the von Neumann entropies S(ρE′e)

and S(ρE′e|y), which are in turn calculated from the joint CM of Bob and Eve, given by

VBeE′ =

υI πZ θI

πZ ωI ψZ

θI ψZ ϕI

 (5.53)
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Here, υ is found in Eq. (5.40), θ in Eq. (5.43), π in Eq. (5.44), ψ in Eq. (5.45) and ϕ

in Eq. (5.46).

By tracing out mode B from Eq. (5.53), the CM VeE′ is obtained. Then, by setting C

as shown in Eq. (5.47) and modifying the formula for the heterodyne measurement of

Eq. (3.29), Eve’s conditional CM is obtained as

VeE′|y = VeE′ − (υ+ 1)−1CTC

[
ωI ψZ

ψZ ϕI

]
− (υ+ 1)−1

[
π2I πθZ

πθZ θ2I

]
(5.54)

Then, the Holevo information can be identified identically to the homodyne protocol by

χ(E : y) = S(ρE′e)− S(ρE′e|y) = G(v+) +G(v−)−G(ṽ+)−G(ṽ−) (5.55)

The entropic functionG has been defined in Eq. (3.27) and {v±}, {ṽ±} are the symplectic

spectra of VeE′ and VeE′|y respectively. They can be derived from either Eq. (3.23) or

Eq. (3.25). Finally, similarly to Eq. (5.52), the asymptotic secret key rate is given by

Rasy = βI(x : y)− χ(E : y) (5.56)

5.2.3 CV-MDI Asymptotic Rate Calculation

In the entanglement-based representation of CV-MDI, additional modes a and b are

introduced, corresponding to modes A and B of the TMSV states, which have variances

µA = σ2A + 1 (5.57)

µB = σ2B + 1 (5.58)

Then, the encoding process is simulated by a heterodyne measurement on modes a and

b, with corresponding measurement outcomes α̃ and β̃. The total state CM is given by

the direct sum of the subsystems as

VaABbE1E2 = VaA ⊕VBb ⊕VE1E2 (5.59)

with VaA(µA) and VBb(µB) being CMs of a TMSV state. The attack corresponds to

applying a beam splitter with transmissivity TA between the modes A and E1 and a beam

splitter of transmissivity TB between modes B and E2. The beam splitter symplectic

operation S with transmissivity T is given by Eq. (1.65).

Afterwards, Alice’s and Bob’s output modes A′ and B′ travel from each beam splitter

to the relay, where they are mixed by a balanced beam splitter. Conjugate homodyne

measurements are applied to the output modes, with outcomes grouped in the variable

γ. Supposing a CM with the general form of Eq. (3.18), a homodyne measurement

applied to mode B with outcome xB will yield the CM, as shown in Eq. (3.28).
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In this description, the CM after the relay measurements is shaped as

Vab|γ =

[
ζI ψZ

ψZ θI

]
(5.60)

where

ζ =1 + σ2A −
τ2Aσ

2
A(σ

2
A + 2)

τ2Bσ
2
B + τ2Aσ

2
A + σ2z

(5.61)

θ =1 + σ2B −
τ2Bσ

2
B(σ

2
B + 2)

τ2Bσ
2
B + τ2Aσ

2
A + σ2z

(5.62)

ψ =
τAτB

√
σ2A(σ

2
A + 2)σ2B(σ

2
B + 2)

τ2Bσ
2
B + τ2Aσ

2
A + σ2z

(5.63)

According to Eq. (3.29), Bob performs a heterodyne measurement on mode b with

outcome β̃, whose conditional CM is given by

Va|β̃γ =

(
ζ− ψ2

θ+ 1

)
I (5.64)

From the matrices

Va|γ = ζI (5.65)

and Va|β̃γ, the mutual information between outcomes α̃ and β̃ can be computed as

I(α̃ : β̃|γ) = 1

2
log2

detVa|γ + trVa|γ + 1

detVa|γβ̃ + trVa|γβ̃ + 1
(5.66)

From the CM in Eq. (5.60), Eve’s Holevo information may also be found by

χ(E : β̃|γ) = S(E|γ)− S(E|β̃γ) (5.67)

=

∫
p(γ)S(ρE|γ) d

2γ−
∫
p(β̃,γ)S(ρE|β̃γ) d

2γ d2β̃ (5.68)

= S(ρab|γ)− S(ρa|β̃γ) (5.69)

which is expressed in terms of conditional von Neumann entropies. Then, assuming that

Eve’s systems E = E′
1E

′
2e purify the whole output state, the von Neumann entropy of

the state ρE|β̃γ equals that of ρab|β̃γ. A similar equivalence holds between ρE|β̃γ and

ρa|β̃γ. These entropies can be expressed in terms of the symplectic eigenspectrum {v±}
of the CM Vab|γ and the symplectic eigenvalue ν̃ of Va|β̃γ, so that

χ(E : β̃|γ) = S(ρab|γ)− S(ρa|β̃γ) = G(v+) +G(v−)−G(ṽ) (5.70)

The eigenvalues can be calculated from Eq. (3.25) and the bosonic entropic function G

is given by Eq. (3.27).
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In terms of mutual information, the measurement variables α̃ and β̃ in the entanglement-

based scheme are equivalent to the rescaled P&M variables α and β. The conditioning

on γ is equivalent to a displacement on the variables α and β. Considering these aspects

in addition with Remark 2, the key extraction variables x = (Qx, Px) and y = (Qy, Py)

need to be suitably constructed. In fact, the parties use the following relations:

Qx = QA − υQxQR (5.71)

Px = PA − υPxPR (5.72)

Qy = QB − υQyQR (5.73)

Py = PB − υPyPR (5.74)

An optimal option for the various υ-parameters is adopted by considering a minimal

correlation between the new variables x and y and the relay outputs. This assumption

implies that Eve has the least possible level of knowledge about x and y by knowing γ.

Therefore, it is imposed that

⟨QyQR⟩ = ⟨QxQR⟩ = 0 (5.75)

⟨PyPR⟩ = ⟨PxPR⟩ = 0 (5.76)

in order to obtain the formulas for the υ-parameters, as follows:

υQx =
⟨QAQR⟩
⟨Q2

R⟩
=

−τAσ2A
τ2Bσ

2
B + τ2Aσ

2
A + σ2z

(5.77)

υPx =
⟨PAPR⟩
⟨P 2

R⟩
= −υQx (5.78)

υQy =
⟨QBQR⟩
⟨Q2

R⟩
=

τBσ
2
B

τ2Bσ
2
B + τ2Aσ

2
A + σ2z

(5.79)

υPy =
⟨PBPR⟩
⟨P 2

R⟩
= υQy (5.80)

These are the regression coefficients. Given a bipartition of a multivariate Gaussian

distribution {x1,x2} with CM Σ, the regression coefficients are given by the matrix

Σ12Σ
−1
22 . One may write that y = x1|x2 = x1 −Σ12Σ

−1
22 x2.

With the assistance of Appendix F, the mutual information can be computed as

I(x : y) = I(α : β|γ) = I(α̃ : β̃|γ) (5.81)

The quantum mutual information between Eve’s system E = E′
1E

′
2e and Bob’s key

extraction variable y, given that Eve has access to the variable γ, is determined by

[(Renner, 2013, Lemma 7.4.4)]

I(Eγ : y) = �����:0
I(y : γ) + I(E : y|γ) = χ(E : y|γ) (5.82)
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This quantity is equal to the Holevo information χ(E : y|γ), because y is a classical

variable. In particular, given γ, there is a function y = f(β) determined by the relations

in Eq. (5.73) and Eq. (5.74), such that β = f−1(y). This allows for the application of

the data processing inequality in both directions, with respect to y and β, yielding

χ(E : y|γ) = χ(E : β|γ) (5.83)

At this point, the asymptotic key rate can be defined as

Rasy = βI(x : y)− χ(E : y|γ) (5.84)

= βI(α : β|γ)− χ(E : β|γ) (5.85)

which is calculated starting from the CM in Eq. (5.60), as in [Pirandola et al. (2015)].

As in the case of the homodyne and heterodyne protocols, the optimal variances µoptA

and µoptB can also be computed here. Note that, given that the optimization has to take

place over two variables, the speed may be considerably slow, depending on the desired

interval of variance values.

5.3 Parameter Estimation

In a practical implementation, the parties use the quantum channel a finite number of

times. One of the consequences of the finite-size scenario is that the parties do not

possess perfect knowledge of the channel parameters T and ξ. Consequently, once the

quantum communications are over, Alice and Bob enter the parameter estimation stage.

In the homodyne and heterodyne protocols, they declare m random instances {xi} and
{yi} of their local variables x and y. In CV-MDI, they announce m instances {qAi},
{pAi} and {qBi}, {pBi} of their local variables, while also making use of the relative

relay output instances {qRi} and {pRi} in their disposal. From these instances, they

build the MLEs T̂ of the transmissivity T and Ξ̂ of the excess noise variance Ξ. They

achieve this by also exploiting their knowledge of the trusted levels of the detector and

setup efficiency η and electronic noise υel.

It must be noted, that the assumption for the channel is that it is stable over a long time,

as it typically is in ground-based fiber implementations. If the channel varies instead

over a timescale, then parameter estimation has to be performed independently for each

block. The consequence of this would be a different key rate for each block and the final

rate would then be given by an average. This is a condition that may occur in free-space

quantum communications [Pirandola (2021a)].



66 Chapter 5 Data Processing in Gaussian-Modulated Coherent-State CV-QKD

5.3.1 Parameter Estimation in Homodyne and Heterodyne Protocols

Following the standard channel estimation method from [Ruppert et al. (2014)],

T̂ =
1

ησ4x

(
Ĉxy

)2
(5.86)

where Ĉxy is the estimator for the covariance between x and y, computed by

Ĉxy =
1

m

m∑
i=1

xiyi (5.87)

while the actual covariance is given by

Cxy =
√
ηTσ2x (5.88)

This covariance is normally distributed with the following mean and variance:

E(Ĉxy) =
√
ηTσ2x = Cxy (5.89)

V(Ĉxy) =
1

m

(
2ηT

(
σ2x
)2

+ σ2xσ
2
z

)
= VCxy (5.90)

Then, T̂ can be expressed as a scaled noncentral chi-squared variable by

T̂ =
VCxy

η (σ2x)
2

(
Ĉxy√
VCxy

)2

(5.91)

since Ĉxy/
√
VCxy follows a standard normal distribution. The mean and variance of T̂

are given by the associated noncentral chi-squared parameters κ = 1 and λchi =
C2
xy

VCxy
as

E(T̂ ) =
VCxy

η (σ2x)
2

(
1 +

C2
xy

VCxy

)
(5.92)

V(T̂ ) =
2V2

Cxy

η2 (σ2x)
4

(
1 + 2

C2
xy

VCxy

)
(5.93)

Using Eq. (5.89) and Eq. (5.90) and keeping only the significant terms with respect to

1/m, the mean and variance become

E(T̂ ) = T (5.94)

V(T̂ ) := σ2T =
4

m
T 2

(
2 +

σ2z
ηTσ2x

)
(5.95)

The estimator for the noise variance σ2z is given by

σ̂2z =
1

m

m∑
i=1

(
yi −

√
ηT̂xi

)2

(5.96)
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Assuming T̂ ≈ T and rescaling the term inside the brackets by 1/σz, a standard normal

distribution for the variable zi/σz is shaped, with

zi = yi −
√
ηTxi (5.97)

Therefore, the estimated noise variance can be rewritten as

σ̂2z =
σ2z
m

m∑
i=1

(
zi
σz

)2

(5.98)

It can be observed, that this is a scaled chi-squared variable. From the associated chi-

squared parameter κ = m, the following mean and variance can be identified:

E(σ̂2z) = σ2z (5.99)

V(σ̂2z) =
2
(
σ2z
)2

m
(5.100)

Then, from the formula of Eq. (5.12), the following relations arise:

Ξ̂ = σ̂2z − υel − V ∗ (5.101)

E(Ξ̂) = Ξ (5.102)

V(Ξ̂) := σ2Ξ =
2
(
σ2z
)2

m
(5.103)

For a sufficiently large m and up to an error probability εPE, the channel parameters

fall in the intervals

T ∈ [T̂ −Wσ
T̂
, T̂ +Wσ

T̂
] (5.104)

Ξ ∈ [Ξ̂−Wσ
Ξ̂
, Ξ̂ +Wσ

Ξ̂
] (5.105)

where σ
T̂
, σ

Ξ̂
are given by the Eq. (5.95) and Eq. (5.103) respectively. The actual values

of T and σ2z are replaced by their corresponding estimators. Note that W is expressed

in terms of εPE via the inverse error function as

W =
√
2 erf−1(1− εPE) (5.106)

The worst-case estimators are given by

Tm = T̂ −Wσ
T̂

(5.107)

Ξm = Ξ̂ +Wσ
Ξ̂

(5.108)

Up to an error probability εPE, these values present a lower bound for the transmissivity

T ≥ Tm and an upper bound for the excess noise variance Ξ ≤ Ξm. The derivation of

Tm, as well as an alternative derivation method, are thoroughly detailed in Appendix E.
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The overall failure probability is

2εPE(1− εPE) + ε2PE ≤ 2εPE (5.109)

In the next step, Alice and Bob compute an overestimation of Eve’s Holevo bound in

terms of Tm and Ξm, so that they may write the rate after parameter estimation as

Rm =

 βI(x : y)− χ(E : y)|Tm,Ξm
Homodyne

βI(x : y)− χ(E : y)|Tm,Ξm
Heterodyne

(5.110)

Accounting for the number of signals sacrificed for PE, the effective rate in terms of bits

per channel use must align with the rate in Eq. (4.29) by the rescaling Rm → n
NRm,

where

n = N −m (5.111)

is the number of key generation instances.

Remark 3. In the heterodyne protocol, under the assumption of concatenating the

quadratures, one could that hypothesize that the instances n represent measurements,

i.e. to every n corresponds either a Q-measurement or a P -measurement. In a data

processing environment, as the session under the heterodyne protocol would have double

the total states, the amount of both sacrificed and key generation points would also be

doubled. In this case, a handful of subsequent notations for n and m would have to

be replaced by 2n and 2m respectively. From a data processing perspective, this would

be a more appropriate notation, as it pinpoints where the doubling of the states should

take place. However, any occurrence of n, m or any of their derivative quantities, always

pertains to signal states in a secret key rate formula. To avoid confusion, the adopted

notation for the aforementioned measures throughout the parameter estimation section

concerns signal states and is thus the same for the homodyne and heterodyne protocols.

Note that, from the estimators T̂ and Ξ̂, the parties may compute an estimator for the

SNR using the formula

ŜNR =
(µ− 1)ηT̂

υel + Ξ̂ + V ∗
(5.112)

By extension, the estimated SNR is used to calculate the estimated mutual information:

I(x : y)|hom
T̂ ,Ξ̂

=
1

2
log2

(
1 + ŜNR

)
I(x : y)|het

T̂ ,Ξ̂
= log2

(
1 + ŜNR

)
(5.113)

Therefore, in a more practical implementation, the rate in Eq. (5.110) is replaced by

Rm =


n

N

(
βI (x : y)|

T̂ ,Ξ̂
− χ(E : y)|Tm,Ξm

)
Homodyne

n

N

(
βI (x : y)|

T̂ ,Ξ̂
− χ(E : y)|Tm,Ξm

)
Heterodyne

(5.114)
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In practice, the data generated for a CV-QKD protocol are sliced in nbks ≫ 1 blocks.

Assuming the channel remains sufficiently stable over time, the statistics, which include

the estimators and the worst-case values, can be computed over

M = mnbks ≫ m (5.115)

random instances. This way, all the estimators, i.e, T̂ , Ξ̂, Tm, and Ξm, are computed

over M points. Making the replacement Rm → RM in Eq. (5.114), the rate is reshaped

under the worst-case estimators TM and ΞM as

RM =


n

N

(
βI (x : y)|

T̂ ,Ξ̂
− χ(E : y)|TM ,ΞM

)
Homodyne

n

N

(
βI (x : y)|

T̂ ,Ξ̂
− χ(E : y)|TM ,ΞM

)
Heterodyne

(5.116)

This also means that an average of

m =
M

nbks
(5.117)

points are revealed for parameter estimation from each block and an average number of

n = N − M

nbks
(5.118)

key generation points from each block are left to be processed during the error correction

step. If N is adequately large, the variations around the averages can be regarded as

negligible, meaning that m and n are assumed to be the actual values for each block.

5.3.2 Parameter Estimation in the CV-MDI Protocol

For CV-MDI, the adopted PE method is derived from [Papanastasiou et al. (2017)]. An

alternative way is described in Appendix E.3, based on extra simplifying assumptions.

Based on m samples [QA]i,[QB]i, [QR]i, for i = 1, . . . ,m, the parties calculate the MLEs

C(QA, QR) = ⟨QAQR⟩ = −τAσ2A (5.119)

C(QB, QR) = ⟨QBQR⟩ = τBσ
2
B (5.120)

of the covariances. These estimators are given by

ĈQAQR
=

1

m

m∑
i=1

[QA]i[QR]i (5.121)

ĈQBQR
=

1

m

m∑
i=1

[QB]i[QR]i (5.122)

ĈPAPR
=

1

m

m∑
i=1

[PA]i[PR]i (5.123)

ĈPBPR
=

1

m

m∑
i=1

[PB]i[PR]i (5.124)
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From these, they define estimators for TA and TB as

T̂A =
2

η(σ
2
A)

2
min{|ĈQAQR

|2, |ĈPAPR
|2} (5.125)

T̂B =
2

η(σ
2
B)

2
min{|ĈQBQR

|2, |ĈPBPR
|2} (5.126)

and an estimator for σ2z as

σ̂2z =max

{
1

m

m∑
i=1

([QR]i + τ̂A[QA]i − τ̂B[QB]i)
2 ,

1

m

m∑
i=1

([PR]i − τ̂A[PA]i − τ̂B[PB]i)
2

}
(5.127)

with

τ̂A =

√
ηT̂A
2

(5.128)

τ̂B =

√
ηT̂B
2

(5.129)

They obtain the associated variances, whose derivation is analyzed in Appendix E.2, as

σ2
T̂A
≃ 4T̂A

m

[
T̂A +

T̂B
2

σ2B
σ2A

](
2 +

2σ̂2z/η

T̂Aσ2A + T̂B
2 σ

2
B

)
(5.130)

σ2
T̂B
≃ 4T̂B

m

[
T̂B +

T̂A
2

σ2A
σ2B

](
2 +

2σ̂2z/η

T̂Bσ2B + T̂A
2 σ

2
A

)
(5.131)

Based on σ̂2z , they find an estimator for Ξ, given by

Ξ̂ = σ̂2z − υel − 1 (5.132)

with variance, which is again examined in Appendix E.2, equal to

σ2
Ξ̂
:= Vz ≃

2(σ̂2z)
2

m
(5.133)

Finally, given the PE error εPE, the worst-case scenario values can be derived by

TMA
= T̂A −Wσ

T̂A
(5.134)

TMB
= T̂B −Wσ

T̂B
(5.135)

ΞM = Ξ̂ +Wσ
Ξ̂

(5.136)

where W is given in Eq. (5.106).
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Using the aforementioned values, the parties can compute a secret key rate under an

overestimated Holevo information as

Rm = βI(x : y)|
T̂A,T̂B ,Ξ̂

− χ(E : y|γ)|
T̃A,T̃B ,Ξ̃

(5.137)

Note here that Remark 3 fully applies in the case of CV-MDI as well. Repeating the

relations for the sake of completeness, the sacrificed instances per block are obtained by

m = N − n (5.138)

where N is the number of signals sent through the channel and n is the number of

signals devoted to secret key extraction for each block. In a practical situation, where

the transmission can be assumed stable over a large number of blocks nbks, m signals

can be used on average from each block, in order to estimate the channel parameters.

Therefore, during the parameter estimation stage, the parties sacrifice a total of

M = mnbks (5.139)

states and the corresponding rate is determined by

Rm → RM =
[
βI(x : y)|

T̂A,T̂B ,Ξ̂
−χ(E : y|γ)|TMA

,TMB
,ΞM

]
m=M

(5.140)

The mutual information and the correlation between the two Gaussian variables x and

y are connected by Eq. (F.2) as follows:

I(x : y) = log2(1 + SNR) = log2
[
(1− ρ2xy)−1

]
(5.141)

The estimator for the correlation between the variables can be derived by setting the

MLEs of the transmissivities and noise into the mutual information as

ρ̂xy =
√

1− 2−I(x:y) (5.142)

To prepare for the data processing stages, Alice and Bob apply the transformations of

Eq. (5.71) - Eq. (5.74), based on the quantities in Eq. (5.77) - Eq. (5.80), calculated

via the MLEs. Following Remark 1, the parties combine their data from the Q and P

quadratures into a single variable. In particular, they apply the following mapping:

[x]2i−1 = [Qx]i (5.143)

[x]2i = [Px]i (5.144)

[y]2i−1 = [Qy]i (5.145)

[y]2i = [Py]i (5.146)

in order to obtain 2n samples from each block. This implies that the principles of

Appendix C are then applied to CV-MDI as well.
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5.4 Preprocessing

After obtaining estimates of the channel parameters, the parties proceed to the key

extraction process. Having sacrificed a total of M states during parameter estimation,

they will now attempt to form correlated sequences using their remaining pairs of key

generation states. From this stage onwards, the three protocols follow a similar path;

any differences between them lie mostly in the formulas.

Remark 4. Because of the assumed quadrature concatenation in the heterodyne and

CV-MDI protocols, the processing of data in numerous steps requires double the amount

of key generation points. To avoid repetition by constantly differentiating between the

protocols, the count of key generation instances for a single block will onward be denoted,

where necessary, by

n∗ =

n Homodyne

2n Heterodyne & CV-MDI
(5.147)

Note that in equations describing key rates, the notation strictly refers to signal states

and is therefore n.

5.4.1 Normalization

In each block of size N , Alice and Bob have n pairs {xi, yi} of their variables x and y,

that are related by Eq. (5.11). This yields a total of

ntot = nbksn
∗ (5.148)

instances, which can be used for key generation.

It is assumed here that the variables x and y have a zero mean value. Alternatively, the

parties subtract the mean value x̄ and ȳ of x and y respectively from their instances to

create updated centered variables x ← x− x̄ and y ← y − ȳ. As a first step, Alice and

Bob concatenate the n samples from each block, in order to estimate the variance of

their sequences as

σ̂2x =
1

ntot

ntot∑
k=1

[x]2k (5.149)

σ̂2y =
1

ntot

ntot∑
i=1

[y]2k (5.150)

Then, using the standard deviations

σ̂x =

√
σ̂2x (5.151)

σ̂y =

√
σ̂2y (5.152)
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they create the normalized samples [x]i → [X]i and [y]i → [Y ]i, as seen below:

X =
x

σ̂x
(5.153)

Y =
y

σ̂y
(5.154)

Variables X and Y follow a standard normal bivariate distribution with correlation ρ,

given by

ρXY = E(XY ) (5.155)

In a practical scenario, neither party can access the other’s variables. Recalling that the

correlation parameter is connected to the SNR by Eq. (5.22), an estimator ρ̂XY for the

correlation can be measured using the estimated SNR, which is approximated by Eq.

(5.112). The variables X and Y now also have the following CM:

ΣXY =

[
1 ρXY

ρXY 1

]
(5.156)

5.4.2 Discretization

Bob discretizes his normalized variable Y in a p-ary variable K, with generic value

k ∈ {0, . . . , 2p − 1} being an element of a Galois field GF(2p). Information on this class

of finite fields can be found in Appendix B.1. This is achieved by partitioning the real

space R into intervals or bins. The approach of [Furrer et al. (2012)] is followed here,

wherein the security proof requires that the range [−α, α) is divided into constant-size

intervals of size δ > 0. Bob sets the cut-off parameter α, such that |Y | ≥ α occurs

with negligible probability. This is approximately true for α ≥ 3. The outcomes that

fall under (−∞,−α] and [α,∞) are allocated to their respective neighboring intervals in

[−α, α). Then, the border points of the bins [J−
k , J

+
k ) are defined as [Pacher et al. (2016)]

J−
k =

−∞ if k = 0

−α+ kδ if k > 0
(5.157)

J+
k =

−α+ (k + 1)δ if k < 2p − 1

∞ if k = 2p − 1
(5.158)

where the one-dimensional lattice step δ is given by

δ =
α

2p−1
(5.159)

Finally, for any value of Y ∈ [J−
k , J

+
k ), Bob takes K equal to k. Thus, for n∗ points, the

normalized string Y n∗
is transformed into a string of discrete values Kn∗

. Note that this

discretization technique is very basic. The performance of the protocol could potentially

improve by employing bins of different sizes, based on the estimated SNR.
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5.4.3 Splitting

Bob sets an integer value for q < p and computes the number of bottom bits d as

d = p− q (5.160)

Then, he splits his discretized variable in two parts K = (K,K), where the top variable

K is q-ary and the bottom variable K is d-ary. Their values are defined by splitting the

generic value k in the following two parts

k =
k − (k mod 2d)

2d
(5.161)

k = k mod 2d (5.162)

Combining the two parts yields

k = k2d + k (5.163)

With the top variable K, Bob creates 2q super bins, each containing 2d bins, associated

with the bottom variable K. This process is clearly illustrated in Fig. 5.2.
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Figure 5.2: Discretization and splitting with α = 3, p = 3 and q = 2. The
variable Y follows a normal distribution Y, so that the probability of |Y | > 3
is assumed to be negligible. Variable Y and the bins defined in Eq. (5.157)
and Eq. (5.158) identify a discrete variable K with values k = 0, . . . , 7 (black
triangles). During the splitting stage, each bin can be described by two numbers:
k = 0 . . . , 3 associated with q = 2, and k = 0, 1 associated with d = p − q = 1.
It can be observed, that 2d bins belong to each super bin k (colored intervals).

Repeating this for n∗ points provides a string of values K
n∗

for the super bins and

another string for the relative bin-positions Kn∗
. The most significant string K

n∗
is

locally processed by an LDPC code, while the least significant string Kn∗
serves as the

side information, which is revealed through the public channel to assist in the decoding.
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5.5 Syndrome Calculation

In a practical scenario, before communications commence, Alice and Bob already share

a multitude of LDPC matrices for the decoding process. Depending on the block length

and the code rate obtained from the data, they opt for a suitable matrix. In this setting,

it is assumed that the parties do not share any matrices beforehand. For the construction

of the parity-check matrix, the code rate needs to be known. The following steps will

handle the computation of the code rate, the creation of the LDPC code and, ultimately,

the calculation of the syndrome.

As a consequence of the classical data processing inequality, Alice and Bob’s mutual

information may decrease with every preprocessing step, as suggested by

I(x : y) ≥ I(X : Y ) ≥ I(X : K) = H(K)−H(K|X) ≥ H(K)− leakEC (5.164)

The same principle applies for the heterodyne and CV-MDI protocols, where I(x : y)→
I(x : y). An analysis about the single-quadrature variable K for the heterodyne and

CV-MDI protocols can be found in Appendix C.2. Here, leakEC ≥ H(K|X) comes from

the Slepian-Wolf bound and H(K) is the Shannon entropy of K, which, under channel

stability conditions, is computed over the entire record of Bob’s key generation points.

A maximum-likelihood entropy estimator Ĥ(K) is empirically calculated by

Ĥ(K) = −
2p−1∑
k=0

fk log2 fk (5.165)

where

fk =
nk
ntot

(5.166)

stands for the frequency of a symbol k, that is, the ratio of the appearance times of k

over the entire amount of key generation states. Performing an estimation of the entropy

is associated with a penalty, as follows [Antos and Kontoyiannis (2001)]:

H(K) ≥ Ĥ(K)− δent (5.167)

with

δent = log2(ntot)

√
2 ln(2/εent)

ntot
(5.168)

It is worth noting that the base of the first log is 2, while the base of the second one is

e. This bound is valid up to an error probability εent, described in Sec. 4.9.

In Eq. (5.164), the leakage leakEC is upper-bounded by the equivalent number of bits

per use, that are broadcast after the application of the LDPC matrix in each block, as

leakEC ≤ d+
lq

n
(5.169)
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Here, l stands for the matrix rows. Evidently, d should be as small as possible, in order

to minimize the leakage, yet not negligible, so that the reconciliation scheme can succeed.

Combining the expressions of Eq. (5.164), Eq. (5.167) and Eq. (5.169) results in

I(x : y) ≥ βI(x : y) = Ĥ(K)− δent +Rcodeq − p (5.170)

Correspondingly, I(x : y)→ I(x : y) for the heterodyne and CV-MDI cases. It must be

noted, that in a practical implementation Alice and Bob do not have access to I(x : y),

but rather I(x : y)|
T̂ ,Ξ̂

from Eq. (5.113). Considering this modification in Eq. (5.170)

and reordering the equation, the practical reconciliation efficiency of the protocol is

β =


Ĥ(K)− δent +Rcodeq − p

I(x : y)|
T̂ ,Ξ̂

Homodyne

2
Ĥ(K)− δent +Rcodeq − p

I(x : y)|
T̂ ,Ξ̂

Heterodyne & CV-MDI

(5.171)

where the term 2 in the second case accounts for the presence of both quadratures.

If β is defined in terms of ŜNR instead of I(x : y)|
T̂ ,Ξ̂

, the two equations are identical.

Subsequently, the code rate for all cases can be identified under the same relation through

ŜNR. From Eq. (5.113) and Eq. (5.171), the LDPC code must be chosen to have rate

Rcode ≃
β
2 log2

(
1 + ŜNR

)
+ p− Ĥ(K) + δent

q
(5.172)

The estimator for the SNR is given in Eq. (5.112). Besides the already known β ≤ 1

and Rcode ≤ 1, two more restrictions have to be enforced: α ≥ 3 and q < p. Once Rcode

is established, the sparse parity-check matrix H of the LDPC code can be constructed.

Alice and Bob may now share a regular l × n∗ low-density parity-check matrix H. The

column weight can be given to the matrix as input. Then, Eq. (2.16) can be rearranged

to solve for the row weight wr, as

wr =
1−Rcode

wc
=

l

n∗wc
(5.173)

Using the guidelines from [(MacKay and Neal, 1996, Construction 1A)], the matrix must:

• have a weight per row wr as uniform as possible

• have a weight per column wc as uniform as possible

• have columns, whose inner product is 1

After construction, the non-zero elements of the matrix are replaced by random q-ary

entries from GF(2q). This replacement can take place in a completely random manner

[(Tomlinson et al., 2017, Chapter 12.1.3)].
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The matrix is then applied to the top string K
n∗

to derive the l-long syndrome

K l
syn = HK

n∗
(5.174)

where the matrix-vector product is defined in GF(2q). The syndrome is sent to Alice

together with the direct communication of the bottom string Kn∗
through the public

classical channel, meaning the bottom sequence is publicly revealed. The maximum

length of the data sent by Bob for reconciliation per channel use is p−Rcodeq bits.

5.6 Decoding

From the knowledge of the syndrome K l
syn, Bob’s bottom string Kn∗

and her local string

Xn∗
, Alice decodes her guess K̂n∗

of Bob’s top string K
n∗
. This is done via a non-binary

sum-product algorithm, where Alice updates a suitable likelihood function during every

iteration [Davey and MacKay (1998)]. Before the algorithm starts, the initial value of

the likelihood function originates from the a priori probabilities [Pacher et al. (2016)]

p(K|X,K) =
p(K,K|X)∑
K p(K,K|X)

(5.175)

where

p(K,K|X) = P (K|X) =
1

2
erf

(
J+
k −Xρ̂√
2(1− ρ̂2)

)
− 1

2
erf

(
J−
k −Xρ̂√
2(1− ρ̂2)

)
(5.176)

is the conditional probability of K, given Alice’s variable X, and erf is the error function.

The interval border points J−
k and J+

k are given in Eq. (5.157) and (5.158) respectively.

During every iteration iter ≤ itermax, Alice finds the argument, that maximizes the

likelihood function. If the syndrome of this argument is equal toK l
syn, then the argument

forms her guess K̂n∗
of Bob’s top string K

n∗
. However, if the syndromes are not equal

within the maximum number of iterations itermax, the block is discarded. The adaptation

of the sum-product algorithm implemented for this step is detailed in Appendix A.

The possibility of failure during syndrome decoding reduces the total number of input

blocks from nbks to

nsynbks = psynnbks (5.177)

where psyn is the probability of successful decoding within the fixed itermax iterations.

If the syndrome of K̂n∗
is equal to K l

syn, then Alice’s guess K̂n∗
of Bob’s top string

K
n∗

is promoted to the next verification step. If syndrome decoding fails for itermax

iterations, the block is discarded and the probability 1− psyn of this event is registered.
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5.7 Verification

The final step of the information reconciliation stage involves the verification of the nsynbks

decoded blocks. The parties possess two n∗-long q-ary strings with identical syndromes,

i.e., Bob’s top string K
n∗

and Alice’s guess K̂n∗
, for each of these blocks. The parties

convert their strings into a binary representation, K
n∗

bin and K̂n∗
bin, so that each of them

is qn∗ bit long. Alice and Bob employ universal hashing to compute t-bit long hashes of

their converted binary strings according to [Thorup (2015)]. The length t is determined

from Eq. (4.32) and is completely dependent on the correctness error εcor. For the

chosen family F of this class of universal hash functions, the correctness error is set to

εcor = 2−32, returning a hash output length of t = 32 bits.

For every block, each pair of promoted strings K
n∗

and K̂n∗
is converted to a binary

representationK
n∗

bin and K̂n∗
bin. The binary strings are segmented into J-bit strings, which

are then converted into J-ary numbers to form the strings K
n′

J and K̂n′
J . Here, n′ must

be an integer. If this is not the case, the strings K
n∗

bin and K̂n∗
bin are padded with σj

zeros, so that n′ becomes an integer, as follows:

n′ =


nq

J
if
nq

J
∈ Z

(n+ σ)j

J
if
nq

J
/∈ Z

, J > j (5.178)

Bob then derives independent uniform random integers ui = 1, . . . , 2J
∗ − 1 ∼ U for

i = 1, . . . , n′, where ui is odd, an integer uext = 0, . . . , 2J
∗ − 1 and J∗ ≤ J + t− 1, with

εcor ≤ 2−t being the target collision probability. After Bob communicates his choice of

families to Alice, they both hash each of the J-ary numbers and combine the results,

according to the function

h
(
x′
)
=

(
n′∑
i=1

uixi

)
+ uext (5.179)

where x′ = K
n′

Q for Bob and x′ = K̂n′
J for Alice. Here, summation and multiplication are

modulo 2J
∗
. In practice, this is done by discarding the overflow, which is the number of

bits over J∗ of h(x′). Finally, they keep only the first t bits, in order to form the hashes.

Eventually, Bob discloses his hash output to Alice, who compares it with hers. If the

outputs are identical, the verification stage is deemed successful. The original strings

K
n∗

bin and K̂n∗
bin are also identical, up to a small error probability 2−t ≤ εcor. In a

successful case, the associated bottom string Kn∗
held by both parties is also converted

into a binary form Kn∗
bin and appended to the respective strings, forming the sequences

SB = K
n∗

binK
n∗
bin ≃ SA = K̂n∗

binK
n∗
bin (5.180)

Every sequence SA and SB progresses to the final stage with a bit length of

ñ = pn∗ (5.181)
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By contrast, if the hashes are different, the two strings are discarded, together with the

public bottom string. Therefore, associated with the hash verification test, there is a

probability of success, denoted by pver, which is implicitly connected with εcor. In fact,

a smaller εcor implies the need for a larger hash verification length, meaning that the

probability of spotting an uncorrected error in the strings also becomes larger. This may

potentially lead to a reduction of the verification success probability pver. Combining

the possible failures in syndrome decoding and hash verification, the total probability

of success for error correction is given by

pEC = psynpver = 1− FER (5.182)

where FER stands for frame error rate.

5.8 Composable Key Rate Calculation

After error correction, Alice and Bob are left with pECnbks successfully corrected binary

strings, each of them being represented by Eq. (5.180) and containing ñ bits. The next

step is to calculate the composable key rate R, which will indicate the possibility of

creating a shared secret key. If R ≤ 0, the protocol is aborted, as communication is not

considered secure. Otherwise, the protocol proceeds to the privacy amplification stage.

Initially, the key rate under all accounted finite-size effects has to be determined. These

include the sacrificed states, the estimated channel parameters and the error correction

success rate. Following Eq. (4.30), the finite-size effects key rate is calculated as

REC
M =



npEC
N

(
βI(x : y)|

T̂ ,Ξ̂
− χ(E : y)|TM ,ΞM

)
Homodyne

npEC
N

(
βI(x : y)|

T̂ ,Ξ̂
− χ(E : y)|TM ,ΞM

)
Heterodyne

npEC
N

(
βI(x : y)|

T̂A,T̂B ,Ξ̂
− χ(E : β|γ)|TMA

,TMB
,ΞM

)
CV-MDI

(5.183)

In case REC
M ≤ 0, Alice and Bob abort the protocol without further consideration.

The composable secret key rate is presented in Eq. (4.34). Here, the term ∆AEP is given

by [Pirandola (2021a), Pirandola (2022)]

∆AEP =


4 log2

(
2p/2 + 2

)√
log2

(
18

p2ECε
4
s

)
Homodyne

4 log2 (2
p + 2)

√
log2

(
18

p2ECε
4
s

)
Heterodyne & CV-MDI

(5.184)

and the Θ term is defined as follows:

Θ = log2[pEC(1−
ε2s
3
)] + 2 log2

√
2εh (5.185)
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Note that in the heterodyne and CV-MDI protocols, the discretization bits p in ∆AEP

provide a total dimension of 22p per symbol. This effect is a consequence of the virtual

concatenation, described in detail in Appendix C.1.

After error correction, Alice Bob and Eve share a classical-classical-quantum (CCQ)

state ρ̃n, which, following Eq. (4.31), is given by

pECD(ρ̃n, ρid) ≤ ε = εsec + εcor (5.186)

where ε is the epsilon security of the protocol, D is the trace distance and ρid is the

output of an ideal protocol, where Eve is completely decoupled from Bob, with Alice’s

and Bob’s keys being exactly the same [Pirandola (2021a)].

The CCQ state ρ̃n can be rewritten as a worst-case scenario state ρ̃nwc, when considering

the estimation of the channel parameters of Eq. (5.107) and Eq. (5.108) and the entropy

estimation of Eq.(5.167) in the calculation of the key rate. However, there is still a small

probability ε′PE, which involves a different state ρbad overstepping the bounds associated

with the worst-case estimators. On average, the state becomes

ρPE = (1− ε′PE)ρ̃nwc + ε′PEρbad (5.187)

Because of the composable distance of Eq. (5.186) and the implication of the previous

equation, D(ρ̃nwc, ρPE) ≤ ε′PE, the triangle inequality provides

pECD(ρPE, ρid) ≤ ε+ pECε
′
PE (5.188)

This means meaning that the imperfect parameter estimation adds an extra term pECε
′
PE

to the epsilon security of the protocol. In other words, the protocol is secure up to

redefining ε→ ε+ pECε
′
PE. Note that

ε′PE = (1− 2εPE)εent + (1− εent)2εPE + 2εPEεent ≃ 2εPE + εent (5.189)

which returns the overall epsilon security ε of the protocol as

ε = εsec + εcor + pECε
′
PE ≃



εs + εh + εcor + pEC(2εPE + εent)

Homodyne & Heterodyne

εs + εh + εcor + pEC(3εPE + εent)

CV-MDI

(5.190)

The term pEC becomes a factor of ε′PE due to the fact that error correction occurs after

parameter estimation. In addition, the factor before εPE is derived from the number of

the different estimated channel parameters. In the homodyne and heterodyne protocols,

these are the transmissivity and the excess noise. In CV-MDI, the transmissivities of

both links, as well as the excess noise, are approximated.
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5.8.1 Theoretical Composable Key Rate

The practical secret key rate in Eq. (4.34) can be compared with a corresponding

rate, which is based on theoretical assumptions rather than observed outcomes of the

parameters. This rate will henceforth be termed the theoretical rate. It is found by

[Mountogiannakis et al. (2022a), Mountogiannakis et al. (2022b), Papanastasiou et al.

(2023)]

Rtheo = R̃EC
M − p̃EC

√
n

N
∆̃AEP +

p̃EC
N

Θ̃ (5.191)

where p̃EC is guessed, with ∆̃AEP and Θ̃ being computed on that guess. The theoretical

finite-size key rate is determined by the formula

R̃EC
M =



np̃EC
N

(
β̃I(x : y)|T,Ξ − χ(E : y)|T ∗

M ,Ξ∗
M

)
Homodyne

np̃EC
N

(
β̃I(x : y)|T,Ξ − χ(E : y)|T ∗

M ,Ξ∗
M

)
Heterodyne

np̃EC
N

(
β̃I(x : y)|TA,TB ,Ξ − χ(E : β|γ)|T ∗

MA
,T ∗

MB
,Ξ∗

M

)
CV-MDI

(5.192)

where β̃ is also guessed. The estimators are approximated by their mean values, so that

T̂ → E(T̂ ) ≃ T (5.193)

Ξ̂→ E(Ξ̂) ≃ Ξ (5.194)

and the formulas for the worst-case scenario estimators become

T ∗
M = T −WσT (5.195)

Ξ∗
M = Ξ+WσΞ (5.196)

with W depending on εPE, as in Eq. (5.106). The standard deviations σT and σΞ can

be calculated by taking the square root of the variances found in Eq. (5.95) and Eq.

(5.103) respectively. For CV-MDI, T ∗
MA

and T ∗
MB

can be calculated in similar fashion.

The variance of the transmissivities can be obtained from Eq. (5.130) and Eq. (5.131),

while the variance associated with the excess noise is shown in Eq. (5.133).

The theoretical rate Rtheo is a valuable tool, when trying to immediately determine the

security and performance of a protocol under certain parameters. The estimation of

this rate is based on computationally trivial calculations, because the state generation

and postprocessing steps are completely skipped. Running the entire protocol using

the same parameters should yield similar results, with some level of deviation from the

theoretical rate. This level may be determined by the number of generated samples used

for the simulation. As more results are generated from simulations, their average value

tends to converge towards the theoretical rate.
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5.9 Privacy Amplification

In the final stage, the aim of Alice and Bob is to eliminate any trace of Eve’s knowledge on

all of the obtained binary strings SA ≃ SB and form a final secret key Υ of length ℓ. For

this purpose, they adopt the following block-by-block privacy amplification approach.

First, they quantify the amount of compression to be applied through the composable

rate. The secret key must have a bit length of

ℓ = NR (5.197)

while every ñ-bit sequence SA and SB is transformed into a shorter sequence of length

ℓ′ = ⌈ ℓ

pECnbks
⌉ (5.198)

For each of their respective sequences SA and SB, Alice and Bob utilize an extractor

function h : {0, 1}ñ → {0, 1}ℓ′ , randomly chosen from a family F of two-universal hash

functions. The most suitable function for this task is the application of the Toeplitz

matrix T. Applying the Toeplitz matrix to every SA and SB produces binary sequences

Υ′
A = Tℓ′,ñSA ≃ Υ′

B = Tℓ′,ñSB (5.199)

The secret key Υ is then constructed by concatenating the results Υ′ of all the blocks

into a long binary string, whose length will be ℓ.

The time complexity of the dot product between a Toeplitz matrix T and a binary

sequence is O(ñ2). When dealing with extremely long sequences, as in this case, such

a complexity can become prohibitive. However, it is possible to reduce it to O(ñ ln ñ)

by utilizing a class of matrices, called circulant matrices, in conjunction with the Fast

Fourier Transform (FFT). A circulant matrix D is a special case of the Toeplitz matrix,

where every row of the matrix is a right cyclic shift of the row above it [Gray (2006)].

The circulant matrix is always square and can be completely defined by its first row D0.

The steps are the following [(Nie et al., 2015, Supplemental Material)]:

• The Toeplitz matrix is reformed into a circulant matrix by merging its first row

and column together. Since the first row has dimensions ñ × ℓ′, where ñ is the

privacy amplification block length and ℓ′ is the resulting length, the length of the

first column becomes ñ+ ℓ′ − 1.

• The long binary sequence S is extended, as ℓ′−1 zeros are padded to its end. The

length of the new sequence S′ is now equal to the length of D0.

• To efficiently calculate the key, an optimized multiplication is carried out as

Υ̃′ = F−1[F (S′) ∗F (D0)] (5.200)
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Here, F represents the FFT and F−1 stands for the inverse FFT. Because of the

convolution theorem, the ∗ operator signifies the Hadamard product and therefore

elementwise multiplication can be performed.

• As the format of the secret key is required to be binary, the result of the inverse

FFT Υ̃′ is taken modulo 2.

• From the bit sequence Υ̃′ of length ñ+ ℓ′ − 1, the first ℓ′ bits are kept to form Υ′.

This technique requires the generation of a random seed s ∈ {0, 1}ñ+ℓ′ , which implies

that the size of family F of Toeplitz matrix hashing is

|FT| = 2ñ+ℓ′ (5.201)

Later on, an improved strategy emerged, whose advantage is that it requires the length

of the seed to be only ñ-bit long [Hayashi (2011)]. This method employs a modified

Toeplitz matrix U, which is formed by concatenating the identity matrix I with the

original Toeplitz matrix T. Then, the size of the family of hash functions under the

modified Toeplitz matrix becomes

|FU| = 2ñ (5.202)

The method is as follows [Tang et al. (2019)]:

• A random seed s ∈ {0, 1}ñ is generated and split into two strings: a string with

length ñ− ℓ′ for the first row of the Toeplitz matrix T and a string of length ℓ′ for

its first column. The first element of the row and the column is the same.

• An identity matrix I of size ℓ′ × ℓ′ is concatenated with the Toeplitz matrix T of

size ℓ′ × ñ− ℓ′, forming the modified Toeplitz matrix U(I|T).

• From the given input sequence S, the first ℓ′ elements will be multiplied by I, while

the remaining ñ− ℓ′ bits will be multiplied by T. The sequence Υ′ will be formed

by the following relation:

Υ′ = US = ISℓ′ ⊕TSñ−ℓ′ (5.203)

• The dot product of I and of the first ℓ′ bits of S is easily calculated. The outcome

is a scalar of ℓ′ bits.

• The product TSñ−ℓ′ can be efficiently calculated by precisely following the steps

from the aforementioned original Toeplitz matrix strategy, starting from the opti-

mized multiplication step and onward.

• Finally, the direct sum of the two resulting components, which is here equivalent

to the XOR operation, is computed to return Υ′.
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Results

After articulating the entire course of action, the outcome of the data processing for

every examined protocol will be demonstrated. First, a thorough description of the

rationale, that was used to obtain the results, will be provided. Then, the results are

documented in different sections, according to the corresponding protocol. Except for

the plots, potential advantages, disadvantages and trade-offs of parameters are discussed.

6.1 Methodology

The objective is to detect ranges for a combination of parameters, where the composable

key rate becomes positive and, thus, communications are considered secure up to an

error ε. The investigation revolves around short-range implementations of CV-QKD,

over distances of around 5 km in standard optical fiber. The rest of the noise variables

are generally adjusted, so that the SNR values spans from around 5 to 12. Identifying

composably secure domains has proven tricky, even at this high asymptotic rate regime.

In all protocols, three factors have been deemed essential in achieving a positive rate R.

The first is a sufficient combination of generated states nbksN . Adopting a sufficiently

large amount of total instances can provide both adequate sacrificed instancesM and key

generation instances ntot. The former not only leads to more accurate channel estimators

T̂ and ξ̂ by examining more statistical samples, but also minimizes the penalty from the

calculation of the variances, which are used in the worst-case scenario estimators TM

and ξM . The latter leads to improved reconciliation efficiency values. The connection

between β and ntot is provided by the presence of the entropy penalty term δent in

Eq. (5.171), which becomes smaller, as the number of key extraction states increases.

However, there is another penalty that has to be addressed, namely the finite-size penalty

of the ∆AEP term in the composable key rate formula of Eq. (4.34). Regardless of the

number of blocks, a block size N of the order of at least 105 is an absolutely necessary

requirement for the composable rate to be positive.

85



86 Chapter 6 Results

Last, but not least, comes the value of the reconciliation efficiency. In the given setting,

β is given as an input to the algorithm. In order to achieve R > 0, values for β must

generally be over 85%. In most instances, the parameters were adjusted to maintain

a good balance between a high reconciliation efficiency and a good error-correcting

performance pEC. Note that the reconciliation efficiency is partially determined by

the code rate, as shown by Eq. (5.171), and the code rate slightly varies from one

simulation to another, depending on the generated data and estimated parameters.

However, the regular LDPC matrices are designed under a fixed code rate. To the

best of efforts, the protocol variables are always adjusted to almost match the LDPC

code rate. Nonetheless, it is impossible to be extremely accurate in this regard. In order

to be exact, a proposed solution is to give an estimate for the reconciliation efficiency

β̂, which is then rescaled, so that the adjusted rate from the data perfectly matches

the LDPC matrix Rcode. In such a scenario, a different β̂ must be reported at the end

of every simulation. The approach followed to derive the results involves providing an

average value for β, gathered over a large sample of different generated data. Therefore,

there is a trivial error between the reported β and the actual one, which should be

below the order of 10−4. This method was preferred over others for the reason that it is

easier for the reader to comprehend the results by having a single point of reference for

a variable. In most of the plots, β occupies the top axis, offering insightful information.

The results were obtained by executing simulations using a Python library, especially

developed for this purpose. The library is open-source and accessible via the URLs:

• Homodyne Protocol: https://github.com/softquanta/homCVQKD

• Heterodyne Protocol: https://github.com/softquanta/hetCVQKD

• CV-MDI Protocol: https://github.com/softquanta/CVMDIQKD

A high-level overview of the modus operandi of the simulations is found in Appendix G.

Particularly, Alg. 2 describes the homodyne protocol, Alg. 3 outlines the heterodyne

protocol and, finally, Alg. 4 reports the CV-MDI procedure. The input parameters

received by the simulations are listed in Table 6.1. These are almost the same between

the protocols. A discrepancy between the GMCS protocols and the CV-MDI protocol

is that in the former, the transmissivity T is expressed in terms of the channel length

and attenuation, while in the latter, the two link transmissivities TA and TB are directly

given as an input. Similarly, the excess noise ξA and ξB of both links has to be provided

as an input in CV-MDI. The column weight of the non-binary LDPC matrices has been

chosen as wc = 2. Such ultra-sparse matrices have the potential to exhibit enhanced

iterative decoding performance [Venkiah et al. (2008), Steiner et al. (2017)]. Concerning

the desired level of security, the ε-parameters are initialized throughout all simulations

with εs = εh = εcor = εPE = εent = 2−32 ≃ 2.3×10−10, so that ε ≲ 4×10−9 for any pEC.

The most important output variables of the simulations are catalogued in Table 6.2.
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The amount of the most important bits remains constant and equal to q = 4 throughout

all simulations, as this value allows for a combination of a reasonable key rate and

error-correction speed. The precomputed matrices for the instance of GF(24) can be

found in Appendix B.2. Under the current version of the sum-product algorithm and

given the large block sizes plus the fact, that the simulations were executed using a

CPU, it is computationally infeasible to achieve decoding with higher values for q in a

reasonable time frame. Doing so would require decoding algorithms with an emphasis

on decreasing the computational complexity or the implementation of the decoder in

another processing unit, such as a GPU or an FPGA. Details on the complexity of the

sum-product algorithm are provided in Appendix H.

Parameter Description

L Channel length (km)
ϑ Attenuation rate (dB/km)
ξ Excess noise
η Detector/Setup efficiency
υel Electronic noise
nbks Number of blocks
N Block size
M Number of PE runs
p Discretization bits
q Most significant (top) bits
α Phase-space cut-off
itermax Max number of EC iterations
εPE, s, h, corr, ent Epsilon parameters
µ Total signal variance
β Reconciliation efficiency

Table 6.1: The main input parameters of the simulations.

Parameter Description

µopt Optimal signal variance
Rasy Asymptotic key rate

T̂ , Ξ̂, TM , ΞM Channel estimators

ŜNR Estimated SNR
ρ̂ Estimated correlation

Ĥ(K) Key entropy estimator
Rcode Code rate
pEC EC success probability
fndrnd EC syndrome matching round
ℓ Final key length
ε ε-security
R Composable key rate
Υ Final key

Table 6.2: The main output parameters from the simulations.
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6.2 Homodyne Protocol Simulations

The parameters chosen for the simulations of the homodyne protocol are displayed in

Table 6.3. The first objective is to identify a sample block size, where the key rate

becomes positive and which can be used to obtain useful results in the next simulations.

Fig. 6.1 depicts the behavior of R, as the block size N increases. Recall that an

increasing N is beneficial for reasons stated in the second paragraph of Sec. 6.1. Here,

Alice’s signal variance µ is adjusted for the setup to achieve a target high value of

SNR = 12. It can be observed, that the key rate grows faster as the block size increases

and the growth steadily slows down. Meanwhile, all of the simulations attained a very

high error correction success rate. The numerical values of the rate can be considered to

be high, since a key rate of 10−1 bits/use corresponds to 500 kbits/sec with a relatively

slow clock of 5 MHz. Fig. 6.2 implies that equally high rates can be achieved even

with fewer total states Nnbks, when a large block size, e.g. N = 250000, is fixed and

the number of blocks nbks varies instead. Note that endpoint of both figures, which

is determined by N = 250000 and nbks = 100, represents the same simulations. As a

result, having an adequately large block size is much more advantageous in obtaining a

positive R than having more blocks of smaller sizes [Mountogiannakis et al. (2022a)].
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Figure 6.1: Composable secret key rate R (bits/use) versus the block size N
for SNR = 12. The rate of Eq. (4.34) from five simulations (green points) and
their average (blue line) is compared with the theoretical rate of Eq. (5.191)
(orange line). The theoretical guesses for β̃ and p̃EC are chosen compatibly
with the simulations. For every simulation, p̃EC = pEC has been set. All
simulations have achieved pEC ≥ 0.95. The step of N is 12500. The values of
the reconciliation efficiency β are shown on the top axis and are chosen, so as
to produce Rcode ≈ 0.875. See Table 6.3 for the list of input parameters used in
the simulations.
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Parameter Value (Fig. 6.1) Value (Fig. 6.2) Value (Fig. 6.3)

L 5 5 variable
ϑ 0.2 0.2 0.2
ξ 0.01 0.01 0.01
η 0.8 0.8 0.8
υel 0.1 0.1 0.1
nbks 100 variable 100
N variable 2.5× 105 2× 105

M 0.1nbksN 0.1nbksN 0.1nbksN
p 7 7 7
q 4 4 4
α 7 7 7

itermax 100 100 150
ε-params 2−32 2−32 2−32

µ ≈ 21.89 ≈ 21.89 20

Parameter Value (Fig. 6.4) Value (Fig. 6.5) Value (Fig. 6.6
& Fig. 6.7)

L 4 5 5
ϑ 0.2 0.2 0.2
ξ variable 0.01 0.01
η 0.85 0.8 0.8
υel 0.05 0.1 0.1
nbks 100 100 100
N 2.5× 105 2× 105 2.5× 105

M 0.1nbksN 0.1nbksN 0.1nbksN
p 7 7 variable
q 4 4 4
α 7 7 7

itermax 200 150 150
ε-params 2−32 2−32 2−32

µ 25 variable variable

Table 6.3: The input parameters for the homodyne protocol simulations.

In Fig. 6.3, the behavior of the composable secret key rate versus the distance L,

expressed in km of standard optical fiber, is studied. Here, the blocks used are of size

N = 2 × 105, while the reconciliation efficiency β takes values from 90.25% to 92.17%.

As seen in the plot, high rates of around 0.5 bits/use can be achieved at very short

distances (L = 1 km), while a distance of L = 7 km can yield a rate of about 0.004

bits/use.

In Fig. 6.4, the robustness of the protocol, with respect to the amount of untrusted excess

noise in the quantum communication channel, is analyzed. Note that this parameter may

also include any other imperfection coming from the experimental setup. As portrayed,

positive key rates are achievable for relatively high values of the excess noise (ξ = 0.08).

The sharper decline of the key rate at the higher excess noise points (ξ = 0.07 and

ξ = 0.08) is partially owed to the deterioration of the error correction success probability.
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SNR βp=7 βp=8 βp=9 Rcode wr

6 0.8588 0.75 8
7 0.8788 0.8775 0.777 9
8 0.8868 0.8865 0.8864 0.8 10
9a 0.89 0.8897 0.8896 0.818 11
9b 0.9265 0.9262 0.9261 0.833 12
10 0.9194 0.9190 0.9189 0.846 13
11a 0.9116 0.9113 0.9113 0.857 14
11b 0.9327 0.9326 0.866 15
12 0.9218 0.9215 0.9214 0.875 16

Table 6.4: The chosen reconciliation efficiency β for each SNR of Fig. 6.6 and
Fig. 6.7, together with its respective code rate Rcode and the row weight wr of
the LDPC code. The cases ‘a’ and ‘b’ refer respectively to the solid and dashed
lines of Fig. 6.6 and Fig. 6.7. A missing value for the reconciliation efficiency
implies that a simulation under the specified values will most likely return a
negative composable key rate. The column weight wc remains constant and
equal to 2 for all simulations.
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Figure 6.2: Composable secret key rate R (bits/use) versus the number of blocks
nbks for SNR = 12. The step of nbks is 10. The individual block size is fixed and
equal to N = 2.5 × 105. Every point represents the average value of R, which
is obtained after 5 simulations. All simulations have achieved pEC ≥ 0.95. The
values of the reconciliation efficiency β are shown on the top axis and are chosen
so as to produce Rcode ≈ 0.875. See Table 6.3 for the list of input parameters
used in the simulations.
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Figure 6.3: Composable secret key rate R (bits/use) versus the channel length L
(km). Here, N = 2×105 is used. Every point represents the average value of R,
which is obtained after 5 simulations. All simulations have achieved pEC ≥ 0.95.
The values of the reconciliation efficiency β are shown on the top axis. Other
parameters are taken as in Table 6.3.
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Figure 6.4: Composable secret key rate R (bits/use) versus the excess noise
ξ. Every point represents the average value of R, which is obtained after 5
simulations. The interval displayed next to each point displays the minimum
and maximum values achieved for pEC. The values of the reconciliation efficiency
β are shown on the top axis and are chosen so as to produce Rcode ≈ 0.913.
Other parameters are taken as in Table 6.3.
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Fig. 6.5, Fig. 6.6 and Fig. 6.7 explore different quantities of interest, such as the frame

error rate FER, the rate and the EC rounds respectively. The quantities are measured

as a function of the SNR and for various choices of the number p of discretization bits.

The parameters used in the simulations are given in Table 6.3, where µ is variable

and adapted to attain the desired SNR. In particular, in Fig 6.6 and Fig. 6.7, the

reconciliation efficiency β, shown in Table 6.4, is chosen according to the following

rationale: (i) because a regular LDPC code only achieves a specific value of Rcode, β is

chosen so that the Rcode from Eq. (5.172) matches the Rcode of a regular LDPC code

with high numerical accuracy; (ii) β is high enough so that a positive key rate can be

achieved for various values of p for the same SNR; and (iii) β is low enough, so that a

limited number of EC rounds exceeds the iteration limit itermax. If β is too high, this

limit is exceeded and FER increases or can even be equal to 1. In this case, none of the

blocks are correctly decoded.
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Figure 6.5: FER versus SNR for p = 7. The FER is compared for the same
simulations, when the maximum number of EC iterations is itermax = 150 (blue
line) and when itermax = 100 (orange line). Every point represents the average
value of FER, which is obtained after 6 simulations. The step of the SNR is
0.025. It is observed, that a slight increase of µ causes the FER to decline
rapidly. The values of the reconciliation efficiency β are chosen so as to produce
Rcode ≈ 0.875. The signal variance µ that was used to achieve the respective
SNR is displayed on the top axis with an accuracy of 3 decimal digits. The
average number of iterations fndrnd needed to decode and verify a block is
displayed for every point next to their respective points. The other parameters
are constant and listed in Table 6.3.

Fig. 6.5 shows the FER for different values of the SNR. As seen, the FER is higher

for lower SNRs and quickly declines, even with a small increase of the SNR. Note that

every simulation, which was executed to produce the particular data, returned a positive
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key rate (the highest FER attained was FER = 0.95 for SNR = 11.725). This result

suggests that, when N is adequately large, a positive R can be achieved even with a

minimal number of correctly decoded and verified blocks. The plot also shows the FER

for the same simulations, if the maximum iteration limit had instead been itermax = 100.

In the case of SNR = 11.725, if itermax = 100 had been set, a positive R would not have

been realized for some simulations.
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Figure 6.6: Composable secret key rate R versus SNR for discretization bits
p = 7, p = 8 and p = 9. For each value of the SNR, the chosen reconciliation
efficiency β is shown in Table 6.6. For SNR = 9 and SNR = 11, the solid lines
follow the values of the entries ‘a’ of Table 6.6, while the dashed lines describe
the ‘b’ cases. It is observed that, for lower values of p (at a fixed q = 4), higher
rates for the corresponding SNR are obtained. The signal variance µ, that was
used to achieve the respective SNR, is displayed on the top axis with an accuracy
of 3 decimal digits. Other parameters are chosen as in Table 6.3.

Fig. 6.6 shows the composable key rate R versus the SNR for different discretization

values p, while keeping the value of q constant and equal to 4. As observed, for fixed

values of SNR and β, the lower the p is, the higher the rate R is. For every SNR and β,

there is a maximum value for p able to achieve a positive R. For example, for SNR = 6

and β ≈ 0.8588 (Rcode ≈ 0.75) a positive R is impossible to achieve with p ≥ 8. For

SNR = 7 and β ≈ 0.8775 (Rcode ≈ 0.777), a positive R is infeasible with p ≥ 9. The

composable key rate improvement is owed to the fact that a smaller amount of bits d

are declared publicly, when a smaller p is chosen. Meanwhile, the protocol maintains a

good EC performance thanks to a sufficiently large number of EC iterations. On the

other hand, by increasing p for a fixed q, the number of the public d-bits, which assist

the LDPC decoding via the sum-product algorithm, is increased as well. This means

that the EC step is successfully terminated in fewer rounds.
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In Fig. 6.7, the average number of EC rounds fndrnd required to decode a block versus

the SNR is plotted for different values of p. For a larger value of p, fewer decoding

rounds are needed. This does not only make the decoding faster, but, depending on the

specified itermax, it also gives the algorithm the ability to achieve a lower FER. Thus,

a higher p can potentially achieve a better pEC, while a smaller p may return a better

R, assuming that itermax is large enough. Therefore, at any fixed SNR and itermax, one

could suitably optimize the protocol over the number of discretization bits p.
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Figure 6.7: Average EC rounds fndrnd needed to decode a frame versus the SNR
for discretization bits p = 7, p = 8 and p = 9. A round is registered only if
the frame passes the verification step. The chosen reconciliation efficiency β
for each value of the SNR is shown in Table 6.6. For SNR = 9 and SNR = 11
specifically, the solid lines respectively follow the values of the entry 9a and 11a
of Table 6.6, while the dashed lines describe the 9b and 11b cases. For the ‘b’
cases, the FER is reported next to the respective values. The signal variance µ
that was used to achieve the respective SNR is displayed on the top axis with
an accuracy of 3 decimal digits. Other parameters are chosen as in Table 6.3.

6.3 Heterodyne Protocol Simulations

The next protocol under examination involves heterodyne measurements. Here, there is

a key difference in the choice of input parameters. Since the Q and P quadratures are

concatenated, the blocks are generally larger, compared to the homodyne ones. For this

reason, the number of blocks has been cut in half in most simulations, i.e. nbks = 50,

so that the error correction is completed in a more timely fashion. Again, the SNR of

interest is relatively high, taking values from almost 6 to 10. The variables used in the

heterodyne simulations are listed in Table 6.5 [Mountogiannakis et al. (2022b)].
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First, a demonstration of sample parameters, that achieve a positive rate R is required.

The behavior of the rate, according to changes in the block size N and number of blocks

nbks, is shown in Fig. 6.8 and Fig. 6.9 respectively. Alice’s signal variance µ is tuned,

so as to produce a rather high signal-to-noise ratio of SNR = 10. It is observed in Fig.

6.8, that a block size of at least 2 × 105 is needed for R > 0. Additionally, Fig. 6.9

shows that it is generally possible to yield higher key rates with fewer total states, if an

adequately large N is specified. The final point of both plots represents the same set

of executed simulations. This set, using a block of N = 3 × 105 states and nbks = 50,

attains on average a relatively high key rate R ≈ 0.24.

Symbol Value (Fig. 6.8) Value (Fig. 6.9) Value (Fig. 6.10)

L 3 3 variable
A 0.2 0.2 0.2
ξ 0.01 0.01 0.01
η 0.85 0.85 0.8
υel 0.1 0.1 0.1
nbks 50 variable 50
N variable 3× 105 3.6× 105

M 0.1nbksN 0.1nbksN 0.1nbksN
p 7 7 6
q 4 4 4
α 7 7 7

itermax 100 100 150
εPE, s, h, corr 2−32 2−32 2−32

µ ≈ 29.46 ≈ 29.46 20

Symbol Value (Fig. 6.11) Value (Fig. 6.12)

L 4 5
A 0.2 0.2
ξ variable 0.01
η 0.85 0.85
υel 0.05 0.1
nbks 50 50
N 4.5× 105 4× 105

M 0.1nbksN 0.1nbksN
p 6 variable
q 4 4
α 7 7

itermax 100 150
εPE, s, h, corr 2−32 2−32

µ 25 variable

Table 6.5: The input parameters for the heterodyne protocol simulations.

Fig. 6.10 portrays the composable rate R versus distance L, expressed in km of stan-

dard optical fiber. Here, the SNR varies from 5.732 to 6.887. For this simulation, the

discretization bits value was set to p = 6, in order to reach farther distances. A higher

value for p would severely limit the protocol’s ability to achieve a positive R at distances

larger than 3 km.
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Figure 6.8: Composable secret key rate R (bits/use) versus the block size N for
SNR = 10. The rate of Eq. (4.34) from five simulations (green points) and their
average (blue solid line) is compared with the theoretical rate Rtheo from Eq.
(5.191) (orange dashed line). The theoretical guesses for β̃ and p̃EC are chosen
compatibly with the simulations. For every simulation, p̃EC = pEC has been set.
All simulations have achieved pEC ≥ 0.9. The step of N is 20000. The values
of the reconciliation efficiency β are shown on the top axis and are chosen so as
to produce Rcode ≈ 0.846. See Table 6.5 for the list of input parameters used in
the simulations.

Fig. 6.11 presents an estimate of the maximum tolerable excess noise ξ. The SNR of this

setting is slightly above 8. While the decrease of the SNR is fairly small as the excess

noise increases, the composable rate declines rapidly. In addition, the reconciliation

efficiencies used here are in the range of 88.23% - 88.71%. Such values provide efficient

error correction in terms of speed and performance, but are not ideal for attaining a

positive rate. Larger values for the reconciliation efficiency would be detrimental to the

efficiency of decoding. All in all, a larger block of size N = 450000 was utilized, in order

to achieve a positive rate at ξ = 0.05, given the specified environment.

Fig. 6.12 describes the behavior of the key rate against different SNR values, when the

noise terms are fixed and the modulation variance is variable. If the same code rate

is used, lower values of p return higher rates for the corresponding SNR, considering a

fixed q = 4. It is possible for a higher p value to yield a better composable rate than a

smaller p, in case a larger code rate, and therefore a larger reconciliation efficiency, is

employed. An example is given by cases ‘a’ and ‘b’ of SNR = 9, whose code rates and

reconciliation efficiencies are shown in Table 6.6. A combination of p = 8 and β = 0.9301

beats the combination of p = 7 and β = 0.894 in terms of the composable rate by a

fairly large margin.
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Figure 6.9: Composable secret key rate R (bits/use) versus the number of blocks
nbks for SNR = 10. The step of nbks is 10. The individual block size is fixed
and equal to N = 3×105. Every point represents the average value of R, which
is obtained after 5 simulations. All simulations have achieved pEC ≥ 0.9. The
values of the reconciliation efficiency β are shown on the top axis and are chosen
so as to produce Rcode ≈ 0.846. See Table 6.5 for the list of input parameters
used in the simulations.
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Figure 6.10: Composable secret key rate R (bits/use) versus the channel length
L (km). Here, N = 3.6 × 105 is used. Every point represents the average
value of R, which is obtained after 5 simulations. All simulations have achieved
pEC ≥ 0.9. The values of the reconciliation efficiency β are shown on the top
axis. Other parameters are taken as in Table 6.5.



98 Chapter 6 Results

0.01 0.02 0.03 0.04 0.05
Excess Noise ξ

10−2

10−1
C
om

po
sa

bl
e 

R
a 

e 
R 

(b
i s

/u
se

)

88.23 88.35 88.47 88.59 88.71
Reconcilia ion Efficiency β (%)

Figure 6.11: Composable secret key rate R (bits/use) versus the excess noise
ξ. Every point represents the average value of R, which is obtained after 5
simulations. Here, N = 4.5 × 105 and nbks = 50 are used. The values of the
reconciliation efficiency β for the heterodyne protocol simulations are chosen so
as to produce Rcode ≈ 0.8. Other parameters are taken as in Table 6.5.

SNR βp=6 βp=7 βp=8 Rcode dc
6 0.8651 0.75 8
7 0.8836 0.777 9
8 0.8924 0.8910 0.8 10
9a 0.8953 0.8940 0.818 11
9b 0.9301 0.833 12
10 0.9244 0.9231 0.9229 0.846 13

Table 6.6: The chosen reconciliation efficiency β for each SNR of Fig. 6.12,
together with its respective code rate Rcode and the row weight dc of the LDPC
code. A missing value for the reconciliation efficiency implies that the returned
composable key rate will most likely be negative under the specified values. The
column weight dv remains constant and equal to 2 for all simulations.

However, there is a trade-off. While the rate produced by the former combination is

higher, the error correction stage requires plenty more iteration rounds, making the

procedure more computationally expensive. It must be noted that, for certain code

rates, a minimum value for p is required. Such an occasion is the ‘b’ case of SNR = 9,

where error correction can only be achieved for p = 8, given a constant q. Smaller values

for p would not be able to achieve error correction and, consequently, a positive rate.

This is owed to the fact, that the number of bottom bits d, which constitute the side

information, is not sufficient.



Chapter 6 Results 99

6 7 8 9 10
SNR

0.03

0.05

0.07

0.09

C
om

po
sa

bl
e 
R
at

e 
R 

(b
its

/u
se

)

p=6
p=7
p=8

19.721 22.842 25.962 29.082 32.202
Modulation Variance μ

fnμrnμ=26.74

fnμrnμ=21.52

fnμrnμ=76.28

Figure 6.12: Composable secret key rate R versus SNR for discretization bits
p = 6 (blue solid line), p = 7 (orange dashed line) and p = 8 (green dotted
line). The chosen reconciliation efficiency β for each value of the SNR is shown
in Table 6.6. Every point represents the average value of R, which is obtained
after 5 simulations. For SNR = 9, the average number of iterations fndrnd
needed to decode and verify a block is displayed for every point next to their
respective points. The signal variance µ that was used to achieve the respective
SNR is displayed on the top axis with an accuracy of 3 decimal digits. Other
parameters are chosen as in Table 6.5.

6.4 CV-MDI Protocol Simulations

The parameters used to execute the simulations are listed in Table 6.7. CV-MDI is a

situational protocol, whose performance has been shown to be inferior in comparison to

the other two GMCS protocols. Therefore, it is tougher to find a signal variance range,

for which the composable rate R becomes positive. To achieve this, the asymptotic rate

Rasy was maximized using a modulation variance optimization function. The provided

µoptA and µoptB enabled the identification of an interval for the variances, which achieves

a positive R [Papanastasiou et al. (2023)]. To begin with, the symmetric version of the

protocol is examined, which means that the signal variance and the channel parameters

will be the same between Alice and Bob, i.e. µA = µB, TA = TB and ξA = ξB. Table

6.8 shows that R > 0 can be achieved, when 45 ≤ µA, µB ≤ 50. Under these conditions,

the SNR spans from approximately 10 to 11.89. As presented in the table, the choice

of the reconciliation efficiency is important, when trying to maximize the value of R.

It is important to note that the neither the asymptotic nor the composable rate will

further grow, as the signal variances increase. This means that, at some point, the rates

saturate and eventually become negative again.
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Parameter Value Value Value Value
(Fig. 6.13) (Fig. 6.14) (Fig. 6.15) (Table 6.8)

TA 0.98 0.98 variable 0.96
TB 0.98 0.98 0.985 0.985
ξA 0.005 variable 0.006 variable
ξB 0.005 variable 0.004 0.004
η 0.98 0.98 0.98 0.98
υel 0.01 0.01 0.01 0.01
nbks 100 100 100 100
N 5× 105 5× 105 5.88× 105 5.88× 105

M 0.1nbksN 0.1nbksN 0.15nbksN 0.15nbksN
p 6 6 7 7
q 4 4 4 4
α 7 7 7 7

itermax 200 200 100 100
ε-params 2−32 2−32 2−32 2−32

µA variable 46 60 60
µB variable 46 50 50

Table 6.7: The input parameters for the CV-MDI protocol simulations.

Knowing the variables, for which the composable rate becomes positive, the maximum

tolerable excess noise in the system can now be identified. For this purpose, µA =

µB = 46 is chosen, in order to produce a high rate, which tolerates more excess noise.

Simultaneously the EC procedure will be faster, when compared to that of µA = µB =

49. Therefore, in Fig. 6.13, the symmetric case of the protocol is considered again, with

µA = µB = 46 and with the excess noise being variable. As observed from the plot, ξ

can take values up to 0.008, before the protocol is deemed unsafe for key extraction.

Next, the asymmetric version of the protocol is investigated. In this scenario, the channel

parameters, as well as the signal variances, may be different between Alice and Bob.

Here, two cases are examined: Fig. 6.14 shows the behavior of Alice’s transmissivity

against the composable key rate and Fig. 6.15 displays the maximum tolerable values for

Alice’s excess noise. Regarding the former case, it is possible for Alice’s channel to reach

transmissivity values of about TA = 0.94, which translates to a fiber length of 1.34km.

The latter case shows that it is feasible to achieve a positive R under relatively high

values for the excess noise, which can be extended to ξA = 0.01. To ensure a positive

composable rate under harsher noise settings, it is possible to employ a larger LDPC

matrix with a block length very close to the order of 106 and Rcode = 0.875 for the task.

Because of the minimization of the entropy penalty, a larger LDPC block size leads to

higher values for the reconciliation efficiency, when all other values remain the same.
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µA, µB β Rcode SNR R

45 90% 0.833 10.019 0.00452259
46 92.15% 0.846 10.252 0.06346475
47 91.35% 0.846 10.485 0.04397952
48 90.62% 0.846 10.718 0.01369927
49 92.35% 0.857 10.951 0.06547397
50 91.64% 0.857 11.189 0.04992091

Table 6.8: Composable secret key rate R (bits/use) versus Alice’s and Bob’s
signal variances µA and µB. The rightmost column displays the average value
for R, which is obtained after 5 simulations. Here, N = 5× 105 and nbks = 100
are used. All simulations have achieved pEC ≥ 0.95. Parameters not listed here
are taken as in Table 6.7.
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Figure 6.13: Composable secret key rate R (bits/use) versus Alice’s and Bob’s
excess noise values ξ = ξA = ξB. Here, N = 5 × 105 and nbks = 100 are
used. Every point represents the average value of R, which is obtained after 5
simulations. All simulations have achieved pEC ≥ 0.95. The signal variances
used by Alice and Bob are constant and equal (µA = µB = 46). The values of
the reconciliation efficiency β are shown on the top axis. Other parameters are
taken as in Table 6.7.
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Figure 6.14: Composable secret key rate R (bits/use) versus Alice’s transmis-
sivity TA. Here, N = 5.88×105 and nbks = 100 are used. Every point represents
the average value of R, which is obtained after 5 simulations. All simulations
have achieved pEC ≥ 0.95. The signal variances used by Alice and Bob are
constant (µA = 60, µB = 50). The values of the reconciliation efficiency β are
shown on the top axis. Other parameters are taken as in Table 6.7.
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Figure 6.15: Composable secret key rate (bits/use) versus Alice’s excess noise
value ξA. Here, N = 5.88×105 and nbks = 100 are used. Every point represents
the average value of R, which is obtained after 5 simulations. All simulations
have achieved pEC ≥ 0.95. The signal variances used by Alice and Bob are
constant (µA = 60, µB = 50). The values of the reconciliation efficiency β are
shown on the top axis. Other parameters are taken as in Table 6.7.



Chapter 7

Conclusion

In this thesis, the exposition of three GMCS CV-QKD protocols, namely the homodyne,

the heterodyne and the CV-MDI protocols, is achieved. This description is accompanied

by a security analysis under the composable finite-size framework. The protocols have

been designed to preferably operate in a high signal-to-noise ratio environment. As a

result, they have been integrated with a suitable preprocessing scheme and non-binary

sum-product decoding. The protocols were modelled using a Python-based library, which

receives input parameters for a certain protocol, simulates the stages of quantum state

preparation, transmission and measurement and performs every postprocessing step.

Ultimately, it creates a shared secret key, assuming a positive composable key rate.

Numerical results were produced, which assessed the behavior and performance of the

protocols against a variety of parameters. These parameters are related to noise mea-

sures, such as the channel length, excess noise and signal-to-noise ratio and finite-size

effects, such as the block size, the number of blocks or the maximum number of error-

correcting iterations. The results enabled the identification of secure domains and max-

imum tolerable noise conditions. Moreover, a variety of useful outcomes was extracted,

which relates to the advantages of preferring some variables over others, as well as the

compromises, which have to be made, when adjusting inherently connected parameters.

7.1 Importance of Research

CV-QKD protocols have been relatively slower in achieving comparable levels of security

to their DV-QKD counterparts, especially in terms of demonstrating composability and

robustness against finite-size effects. The work presented in this thesis attempts to

bridge this gap between CV-QKD and DV-QKD by presenting a complete solution. It

provides an invaluable contribution to existing literature by proving the security of a

practical implementation, up to a small error.
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What is more, the striking majority of CV-QKD research naturally revolves around

extending the maximum transmission length and improving long-range implementations,

meaning there is a shortage of quality results for short-range communications. Especially

when considering the composable framework in an analysis, the collective contribution

of the ε-parameters can have a detrimental effect on the practical rate of a protocol, even

in the high signal-to-noise ratio regime. The results of this work, which were obtained

following a lucid methodology, are the outcome of a multitude of parameters. These

have received realistic values, which would govern a practical CV-QKD implementation.

Authors can directly adopt them in their research or use them to test an experimental

application, knowing that they represent a secure communications domain, even in an

optimal attack scenario.

Last, but not least, the source code of the protocols is openly available. The software can

be readily exploited by any parties, who are interested in the expansion of the protocols,

the generation of correlated sequences or the production of numerical results.

7.2 Outlook

There is a lot of potential in the field of CV-QKD and, by extension, in this specific

project. The work presented in this thesis is inaugural, in terms of a full description of a

protocol, based on the composable finite-size framework and accompanied by a proposed

data-processing strategy and a variety of numerical results.

From a more generic perspective, there are numerous features, that future studies can

incorporate. To begin with, more CV-QKD protocols can be integrated by following the

course of action of this dissertation. Potential ideas include the postselection protocol

[Silberhorn et al. (2002)], the CV-MDI protocol with postselection [Wilkinson et al.

(2020)] or any adaptation from the family of discrete-modulated CV-QKD protocols

[Leverrier and Grangier (2009), Papanastasiou and Pirandola (2021)]. Furthermore,

numerical results for the low signal-to-noise ratio regime can be explored, encompassed

by the composable framework under finite-size effects. Finally, a step in a different

direction would be to include two-way protocols [Pirandola et al. (2008a)] and even

multi-party QKD protocols [Fletcher and Pirandola (2022)].

With respect to the current work, an interesting idea would be to adopt a modern version

of the slice reconciliation technique [Ai and Malaney (2022)]. The data processing and,

if needed, the security proof should be adapted to this scheme and a direct comparison

between the two works can be performed by the means of numerical results. Additionally,

especially when considering experimental implementations, more imperfections from the

various procedures may be identified, leading to the inclusion of more composable terms

[Jain et al. (2022)]. Finally, one may wonder why the construction of the LDPC matrix

in this work is a regular one, when in existing literature other types of optimized irregular
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codes [Xu et al. (2022)] have been shown to achieve better error-correcting performance.

The reason for this is versatility; it is essential for the requirements of this work that

there is a fast, on-demand production of LDPC codes, which vary greatly in block lengths

and code rates. As a result, another suggestion would be to employ LDPC codes, which

have been shown to exhibit superior performance, when compared to random regular

constructions. Potential benefits of this would be yielding better error-correction success

rates and faster convergence to a correct decoding guess, which, in turn, may improve

the values of the reconciliation efficiency. Under both benefits, the key rate increases,

strengthening the performance of the protocol.

As far as the software is concerned, the biggest challenge would be to increase the speed

of error correction. An initial step would be to reduce the complexity by employing

the FFT-based non-binary sum product algorithm [Barnault and Declercq (2003)]. In

case the speed would still not be satisfactory, the project could be upgraded to include

decoding on FPGA-based [Spagnol et al. (2007)] or GPU-based [Andrade et al. (2013)]

systems. The improvement of the error correction process would allow for the use of

larger block sizes, increasing the key rates and the tolerance to noise. In addition, it

would pave the way for the complete optimization of the protocol parameters. The

current implementation accounts for optimization either empirically, e.g. identification

of the optimal p for a certain set of variables from the results, or algorithmically, e.g.

the optimal modulation variance µopt. However, limitations have been imposed on other

parameters, such as the number of the most important bits q. Higher values for q would

signficantly expand the capability of the software to produce better results.





Appendix A

The Non-Binary Sum-Product

Algorithm

A.1 Likelihood Function Updating

Assume a device, whose output is described by the variable X, which is parametrized

by ϑ. The random variable X takes values x according to a family X of probability

distributions. Given the sampled data string Xi, for i = 1, . . . , n from this distribution,

one can build a string of data Xn and define the likelihood L of the parameter ϑ,

describing the associated probability distribution as

L(ϑ|Xn) = p(Xn|ϑ) =
n∏

i=1

p(Xi|ϑ) (A.1)

where p(Xn|ϑ) is the conditional probability for a specific Xn to be the result of the

device, given that its distribution P(X; ϑ) is described by ϑ and the outcome of the

device is i.i.d. Intuitively, a good guess ϑ̂ of the parameter ϑ would be the argument ϑ∗

of the maximization of the likelihood function over ϑ. Using Bayes’ rule, the conditional

probability p(Xn|ϑ) can be written as

p(Xn|ϑ) = p(Xn)

p(ϑ)
p(ϑ|Xn) (A.2)

It can be observed, that p(Xn) is not dependent on ϑ and p(ϑ) is considered uniform and,

thus, independent of ϑ. Therefore, p(ϑ|Xn) can be maximized instead. For simplification

purposes, the previous probability will be expressed as a function, which is dependent

only on the parameter ϑ, as

f(ϑ) = p(ϑ|Xn) (A.3)
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Consider the case, where the distribution pX (X |⃗ϑ) is described by a vector of parameters

ϑ⃗ = (ϑ1, . . . , ϑn). Respectively, the probability

f(ϑ⃗) = f(ϑ1, . . . , ϑn) (A.4)

can be defined, along with its marginals

f(ϑi) =
∑
k ̸=i

f(ϑ1, . . . , ϑk, . . . , ϑn) (A.5)

Suppose that there exist certain constraints, that ϑ⃗ should satisfy. These are summarized

by a system of l linear equations as

Hϑ⃗ = ϵ⃗ (A.6)

where H is an l×n LDPC matrix. In particular, there are l equations that the ϑi should

satisfy in the form of ∑
i

Hjiϑi = ϵj , j = 1, . . . , l (A.7)

For instance, when ϵ⃗ = (3, 1, 2), the matrix in Table A.1 gives the following three

equations, which are only valid in GF(4):

3ϑ3 + ϑ5 =3 (A.8)

2ϑ1 + ϑ4 =1 (A.9)

ϑ2 + 2ϑ4 + 3ϑ5 =2 (A.10)

Then, one needs to pass from the probability distribution of Eq. (A.4) to f̃(ϑ⃗), in order

to calculate its marginals

f̃(ϑi) = f(ϑi|Hϑ⃗ = ϵ⃗) (A.11)

A.2 Sum-Product Algorithm

The sum-product algorithm follows the same path as the analysis of the previous section,

in order to efficiently calculate the marginals of Eq. (A.11) as

f̃(Ki) = f(Ki|HK
n
= K l

syn) (A.12)

for ϑi = Ki, ϑ⃗ = K
n
, ϵ⃗ = K l

syn, and the a priori marginal probabilities of Eq. (5.175) as

f(Ki = k) = P (k|XiKi) (A.13)
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To do so, it associates a Tanner graph to the matrix H and assumes a signal exchange

between its nodes. More specifically, the graph consists of two kinds of nodes: n variable

nodes, symbolizing the parameters Ki, and l check nodes, corresponding to the linear

equations described by Eq. (5.174). Then, for each variable i participating in the jth

equation, there is an edge connecting the relevant nodes. An example of such a Tanner

graph is presented in Fig. A.1(a). The graph is based on the matrix H of Table A.1.

The signal sent from the variable node i to a factor node j is denoted as qjik and it

stands for the probability, that the variable Ki = k and all the linear equations are true,

apart from equation j. The signal sent from the check node j to the variable node i

is labelled as rjik and represents the probability that equation j will be satisfied, given

that Ki = k. Based on these definitions, the marginals of Eq. (A.12) are determined by

f̃(Ki = k) = qjikrjik (A.14)

for any equation j, where the variable i partakes.

In particular, in every iteration, the algorithm updates rjik through the signals of the

neighbor variable nodes, apart from the signal from node i. This is called the horizontal

step of the algorithm. The updating follows a certain rule: given a vector K
n
, whose

ith element is equal to Ki = k, the result is

rjik =
∑
{i}

p[Ksynj |K
n
]
∏

k∈M(j)\i

qjkKk
(A.15)

where p[Ksynj |K
n
] takes the value 1, if the check j is satisfied from K

n
, or 0 if it is not.

Note that the values of qjkKk
are initially updated with the a priori probabilities during

the initialization step, as in line 5 of Algorithm 1, and thatM(j) is the set of neighbors

of the jth check node. An example of such an update is depicted in Fig. A.1(b).

The algorithm takes advantage of the fact that

rjik = p
[
µj(i−1) + νj(i+1) = Ksynj −HjiKi

]
(A.16)

where

µjk =
∑
i:i≤k

HjiKi (A.17)

νjk =
∑
i:i≥k

HjiKi (A.18)

are partial sums with different direction, running over the jth check. Specifically, Eq.

(A.16) can be further simplified into a sum of a product of probabilities from the previous

partial sums, taking specific values by satisfying the jth check, as stated in line 10 of

Algorithm 1. Afterwards, the algorithm updates qjik through the signals coming from

the neighbor check nodes, excluding node j, as illustrated in the example of Fig. A.1(c).
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The rule to do so is given in line 12 of the pseudocode (vertical step). Finally, in

the tentative decoding step, the algorithm takes the product of qjik and rjik and then

calculates and maximizes the marginal of Eq. (A.14) over k. The arguments K̂i of this

maximization of every marginal create a good guess K̂n for K
n
. In the next iteration,

the algorithm follows the same steps, using the preceding qijk to make all the updates.

A.3 Non-Binary Sum-Product Algorithm Pseudocode

Algorithm 1 Non-Binary Sum-Product Algorithm

Input:p(Ki|XiKi),K
l
syn, Output:K̂n, fnd, fndrnd

1: Step 1: Initialization
2: ϵ⃗← K l

syn

3: j, i← j, i : Hji ̸= 0 (Tanner graph creation)

4: fki ← p(Ki = k|Xi,Ki)

5: qjik ← fki
6: for iter = 1, 2, . . . itermax do
7: Step 2: Horizontal Step
8: µji ←

∑
l≤i

HjmK̂l

9: νji ←
∑
l≥i

HjmK̂l

10: rjik ←
∑

s,t:s+t=ϵj−Hjik
p
[
µj(i−1) = s

]
p
[
νj(i+1) = t

]
11: Step 3: Vertical Step

12: qkji ← φjif
k
i

∏
l\j

rmik, φji :
2q−1∑
k=0

qjik = 1

13: Step 4: Tentative Decoding
14: K̂i ← argmax

k

fik
∏
j
rjik

15: if HK̂n = ϵ⃗ then
16: return K̂n, fndrnd, fnd← True
17: end if
18: if iter = itermax then
19: return fnd← False
20: end if
21: end for

H =

 0 0 3 0 1
2 0 0 1 0
0 1 0 2 3


Table A.1: An example for a l × n parity check matrix with values in GF(22)
for l = 3 checks (check nodes) and n = 5 transmitted signals (variable nodes).
For this matrix, the assumptions of a regular code explained in Sec. 5.5 are not
valid and it is used only as a toy model for the convenience of the description
for the sum-product algorithm.
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Figure A.1: a) Tanner graph of the parity-check matrix of Table A.1. The
variable nodes (white disks) are connected with the check nodes (black disks),
when Hji ̸= 0.
b) One instance of the horizontal step (Step 2) of Algorithm 1. Here, the signal
probability r34k is updated for all the k ∈ GF(22) from the contribution (blue
arrows) of the rest of the neighbour variable nodes of check node 3, excluding the
variable node 4 (node in blue). This update will be repeated in the same step
for all the variable nodes, i.e., r32k and r35k will be calculated as well. The same
procedure will be followed for syndrome nodes 1 and 2, before the algorithm
passes to the horizontal step. This description provides the conceptual steps to
derive the desirable result. Practically, the algorithm follows a more complex
path, as, for example, it calculates probabilities of partial sums.
c) An instance of the horizontal step (Step 3) of Algorithm 1. Here, q15k is
updated ∀k ∈ GF(22). It is updated only from the contribution of syndrome
node 3 (green arrow), while node 1 (node in green) is not participating. This
update will happen for all the syndrome nodes, as q35k will be calculated as
well. It will be repeated for all variable nodes, before the tentative decoding
(Step 4) is going to start [Mountogiannakis et al. (2022a)].





Appendix B

Galois Fields

B.1 Definition of Galois Fields

A Galois field is a field with finite number of elements. A common way to construct it is

to take the modulo of the division of the integers over a prime number p. Consider, that

for any field a positive integer i exists, such that i · s = 0, ∀s ∈ R. Then, the least such

positive integer is termed the characteristic of the field [Fraleigh (1982)]. In the case of

Galois fields, the characteristic of the field is p. The order of a field is determined by the

number of its elements. In this case, the cardinality of the alphabet A is the number of

the symbols in the alphabet, given by

|A| = pq (B.1)

with q ∈ N+. All the Galois fields with the same number of elements are isomorphic

and can be identified by GF(|A|).

A special case is the order |A| = 2q. In a field with such an order, each element is

associated with a binary polynomial of degree no more than q − 1. In other words,

the elements can be described as q-bit strings, where each bit of the string corresponds

to the coefficient of the polynomial at the same position. For example, the element 5

of GF(23) can be rewritten as 101 → x2 + 1. Using this mapping, the operations of

addition and multiplication can be defined in the field. For example, the sum of 5 and

6 is computed as follows:

101 + 110→ (x2 + 1) + (x2 + x) =

0︷ ︸︸ ︷
(1 + 1)x2 + x+ 1︸ ︷︷ ︸

011→3

(B.2)
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As the field is finite, addition can be performed using a precomputed matrix. For

instance, the addition matrix N, which includes all outcomes for GF(23), is

N3 =



0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 0 1 6 7 4 5

3 2 1 0 7 6 5 4

4 5 6 7 0 1 2 3

5 4 7 6 1 0 3 2

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 0


(B.3)

Subtraction between two elements of GF(2q) gives the same result as addition, making

the two operations equivalent. Multiplication is more complicated, especially when the

result is a polynomial with a degree larger then q − 1. For instance, in GF(23), 7× 6 is

calculated as

111× 110→ (x2 + x+ 1)× (x2 + x)

=x4 + x3 + x3 + x2 + x2 + x = x4 + x (B.4)

Because this is a degree 4 polynomial, this result needs to be taken modulo an irreducible

polynomial of degree 3, e.g., x3 − x + 1. A polynomial is irreducible in a Galois field,

when it does not have a solution in that field. Thus,

(x4 + x mod x3 − x+ 1) = x2 → 100→ 4 (B.5)

where the operation can be made by adopting a long division with exclusive OR (XOR)

[Mullen and Panario (2013)]. Instead of this cumbersome process, multiplication can

be performed by using a precomputed matrix, likewise to addition. For instance, in

GF(23), the results are specified by the following matrix:

M3 =



0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 2 4 6 3 1 7 5

0 3 6 5 7 4 1 2

0 4 3 7 6 2 5 1

0 5 1 4 2 7 3 6

0 6 7 1 5 3 2 4

0 7 5 2 1 6 4 3


(B.6)

As it can be noticed from the matrices of Eq. (B.3) and Eq. (B.6), the Galois field is

closed and commutative under both addition and multiplication operations. In addition,

the field is always associative and distributive.
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B.2 GF(24) Precomputed Matrices

For the convenience of the reader, the addition and multiplication matrices of GF(24)
used for the syndrome calculation and the non-binary sum-product algorithm decoding

are hereby presented.

N4 =



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



(B.7)

M4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13

0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2

0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9

0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6

0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4

0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11

0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1

0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14

0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12

0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3

0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8

0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7

0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5

0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10



(B.8)





Appendix C

Virtual Concatenation of the

Conjugate Quadrature Variables

C.1 Secret Key Derivation

The current appendix is a review and direct adaptation of the theory developed in

[(Pirandola, 2021a, Appendix G)]. Suppose that the measurement variables of Bob are

y = (Qy, Py). He maps these variables to l = (Ql, Pl)
1. Then, the output classical-

quantum state (CQ) of Alice, Bob and Eve, after the collective attack will be given by

a state in a tensor product form ρ⊗n, where the single copy state will be represented by

ρ =
∑
k,l

p(k, l)|k⟩RA
⟨k| ⊗ |l⟩RB

⟨l| ⊗ ρE(k, l) (C.1)

where RA and RB are Alice’s and Bob’s classical raw-key registers, k = (Qk, Pk) is the

corresponding discretized version of Alice’s encoding variable and p(k, l) is the joint

probability of the discretized variables.

The tensor product state can be then written as

ρ⊗n =
∑
kn,ln

p(kn, ln)kn⟩Rn
A
⟨kn| ⊗ |ln⟩Rn

B
⟨ln| ⊗ ρ⊗n

E (kn, ln)

=
∑

k2n,l2n

p(k2n, l2n)|k2n⟩Rn
A
⟨k2n| ⊗ |l2n⟩Rn

B
⟨l2n| ⊗ ρ⊗n

E (k2n, l2n) (C.2)

The sequence ln is replaced by l2n, so that each element [l]2j−1 corresponds to the element

[Ql]j and each element [l]2j to the element [Pl]j for j = 1 . . . n.

1This variable is denoted as K in the main text.
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In the reverse reconciliation setting, Alice guesses Bob’s sequence l2n with l̃2n, using

her corresponding sequence k2n and leakEC bits of information from Bob. The parties

publicly compare the two hashes, each of length t as shown in Eq. (4.32), derived from

k̃2n and l2n respectively. If they are equal, the parties continue with the protocol with

probability pEC; otherwise they abort.

This procedure is associated with a residual failure probability εcor, which bounds the

probability of the two sequences being different, even if their hashes coincide, as

pECProb(̃l
2n ̸= l2n) ≤ pEC2−⌈1−log2 εcor⌉ ≤ εcor (C.3)

In turn, EC can be simulated by a projection ΠS of Alice’s and Bob’s classical registers

Rn
A and Rn

B onto a “good” set S of sequences. With success probability

pEC = tr(ΠSρ
⊗n) (C.4)

this quantum operation generates a CQ state

ρ̃n =
ΠSρ

⊗nΠS

pEC
(C.5)

which is restricted to those sequences {k2n, l2n} that can be corrected, i.e., mapped to a

successful pair {̃l2n, l2n}.

The parties continue with the PA step with probability pEC and apply a two-universal

hash function over ρ̃n, which outputs the PA state ρ̄n approximating the ideal state ρid

pECD(ρ̄n, ρid) ≤ εsec (C.6)

In fact, Alice and Bob perform EC and PA over the state ρ⊗n, in order to approximate

the ℓ-bit ideal CQ state

ρid = 2−sn

2sn−1∑
z=0

|z⟩Rn
A
⟨z| ⊗ |z⟩Rn

B
⟨z| ⊗ ρEn (C.7)

with Alice’s and Bob’s classical registers entirely decoupled from Eve and containing the

same completely random sequence z with length ℓ. Using the triangle inequality from

[(Portmann and Renner, 2014, Theorem 4.1)], the bound

pECD(ρ̃n, ρid) ≤ ε = εcor + εsec (C.8)

is formed. The state ρ̄n will contain ℓ bits of shared uniform randomness, satisfying the

direct leftover hash bound as

ℓ ≥ Hεs
min(l

2n|En)ρ̃n + 2 log2
√
2εh − leakEC (C.9)
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Here, Hεs
min(l

2n|En)ρ̃n is the smooth min-entropy of Bob’s sequence l2n conditioned on

Eve’s system En after EC, and the smoothing εs and hashing εh parameters satisfy Eq.

(4.33). The inequality explicitly accounts for the bits, that are leaked to Eve during EC.

In fact, it can be rewritten as

sn ≥ Hεs
min(l

2n|EnR)ρ̃n + 2 log2
√
2εh (C.10)

where R is a register of dimension 2leakEC , while En are the systems used by Eve during

the quantum communication. Then, the chain rule for the smooth-min entropy leads to

Hεs
min(l

2n|EnR)ρ̃n ≥ Hεs
min(l

2n|En)ρ̃n − log2 2
leakEC (C.11)

As seen earlier in the proposed EC procedure, Bob sends to Alice at most p − Rcodeq

bits for each of the quadratures in a signal state. This allows for the bounding of the

leakage term by

leakEC ≤ 2n(p−Rcodeq) (C.12)

The previous result is connected with the smooth min-entropy of ρ⊗n, which will later

enable the AEP approximation. It is shown, that [(Pirandola et al., 2020, Appendix

G2)]

Hεs
min(l

2n|En)ρ̃n ≥ HpECε
2
s/3

min (l2n|En)ρ⊗n + log2(1−
ε2s
3
) (C.13)

It is theorized, that the parties concatenate their discretized values corresponding to the

two quadrature variables of a single channel use, according to the bidirectional mapping

ϕ = Ql2
p + Pl (C.14)

In that sense, instead of labeling the classical states as in Eq. (C.1) by using the

combination of two labels, each described by p bits, only one label of 2p bits is used.

Therefore, there is a classical mapping from a state ρ⊗n = ρ⊗n
l2n

, described by the sequence

l2n, to the state ρ⊗n
ln ← ρ⊗n

l2n
, described by the sequence ln. Applying Appendix D to Eq.

(C.13), the following relation for the smooth min-entropy of the two states is obtained:

H
pECε

2
s/3

min (l2n|En)ρ⊗n

l2n
≥ HpECε

2
s/3

min (ϕn|En)ρ⊗n
ϕn

(C.15)

Then, from the AEP theorem, one obtains

H
pECε

2
s/3

min (ϕn|En)ρ⊗n
ϕn
≥ nH(ϕ|E)ρ −

√
n∆AEP(pEC

ε2s
3
, |L|) (C.16)

where H(ϕ|E)ρ is the conditional von Neumann entropy computed over the single-copy

state ρ, after applying the mapping of Eq. (C.14), and

∆AEP(εs, |L|) = 4 log2(
√
|L|+ 2)

√
log2

(
2

ε2s

)
(C.17)
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with |L| being the cardinality of the discretized variable ϕ, given by

|L| = 22p (C.18)

By combining Eq. (C.9), Eq. (C.13) and Eq. (C.16), the following lower bound can be

defined:

ℓ ≥ nH(ϕ|E)ρ −
√
n∆AEP(pEC

ε2s
3
, 22p) + log2(1−

ε2s
3
) + 2 log2

√
2εh − leakEC (C.19)

Note that the formula for the conditional entropy is

H(ϕ|E)ρ = H(ϕ)− χ(ϕ : E)ρ (C.20)

where H(l) is the Shannon entropy of ϕ and χ(E : ϕ)ρ is Eve’s Holevo bound with

respect to ϕ. By means of the data processing inequality, the Holevo bound relations

become

χ(E : ϕ)ρ ≤ χ(E : Qy, Py) = χ(E : y) (C.21)

where the latter term is calculated using Eq. (5.67). Therefore,

H(ϕ|E)ρ ≥ H(ϕ)− χ(E : y) (C.22)

Furthermore, the following replacement can also be made:

H(ϕ)− n−1leakEC = βI(x : y) (C.23)

Here, I(x : y) is calculated as shown in Remark 2 for the heterodyne protocol. For the

CV-MDI case, it is found in Eq. (5.81). The reconciliation efficiency β is computed as

β =
H(ϕ)− n−1leakEC

I(x : y)
(C.24)

Replacing Eq. (C.23) and (C.22) in (C.19), the result is

ℓ ≥ nRasy −
√
n∆AEP(pEC

ε2s
3
, 2p) + log2(1−

ε2s
3
) + 2 log2

√
2εh (C.25)

where the asymptotic secret key rate of Eq. (5.52) is integrated. After a successful PE

stage, the parties compute Rasy over a state ρ̃nwc, instead of ρ̃n. This is calculated with

respect to the worst-case parameters, given in Eq. (5.107) and (5.108), along with the

worst-case scenario entropy in Eq. (5.167). Consequently, Eq. (C.8) is replaced by the

following relation:

pECD(ρ̃nwc, ρid) ≤ εcor + εh + εs (C.26)
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However, there is still the probability that the actual state is a bad state ρ̃nbad with

probability ε̃PE = 2εPE + εent. On average, this is given by

ρPE = (1− ε̃PE)ρ̃nwc + ε̃PEρ̃
n
bad (C.27)

whose distance from the assumed worst-case state is

pECD(ρPE, ρ̃
n
wc) ≤ pECε̃PE (C.28)

By using Eq. (C.26) and Eq. (C.28), together with the triangle inequality, the result is

pECD(ρPE, ρid) ≤ εcor + εh + εs + pEC(2εPE + εent) (C.29)

Then, the secret key length can be bounded by

ℓ ≥ nRM −
√
n∆AEP(pEC

ε2s
3
, 2p) + log2(1−

ε2s
3
) + 2 log2

√
2εh (C.30)

where RM has been taken from Eq. (5.116). The analysis of the EC process allows

the connection of RM with the practical rate REC
M through the parameter β̂ in Eq.

(5.171). By replacing the latter in the previous secret key bound and multiplying by

the successful probability of a block pEC over the number of signals per block N , the

composable secret key rate of Eq. (4.34) is obtained.

Note that, although the concatenation of the quadratures may not be applied in practice,

theoretically, it has to be considered for the calculation of the discretization parameter

|L|, which is included in the correction term ∆AEP. In fact, considering the proposed

EC procedure, |L| takes the value 2p instead of p, when compared with the homodyne

case. In turn, this affects the compression needed to extract a secret key with length ℓ.

C.2 Entropic Bounding

Suppose the reverse reconciliation scenario, where Alice estimates Bob’s sequence, which

is described by the continuous variable y. Alice holds a variable x, which is correlated

with y via the quantum channel. Following Remark 2, the boldface notation for x and

y implies the inclusion of both quadratures. Considering Bob’s entropy is H(y), he

needs to send H(y|x) bits of information through a public channel, for Alice’s accessible

information to become equal to the mutual information, as

I(x : y) = 2I(x : y) = H(y)−H(y|x) (C.31)

As can be extracted from Eq. (C.23), the relation bounding the H(y|x) public bits is

leakEC
n

≥ H(y|x) (C.32)
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Assume the variable l2 to be the discretized version of Y , which stands for Bob’s variable

after normalization. After the classical processing, the expression

H(y) = H(Qy, Py) = 2H(y) ≥ 2H(Y ) (C.33)

≥ 2H(l) = H(Ql) +H(Pl) = H(Ql, Pl) = H(ϕ) (C.34)

holds, where the variables Ql and Pl correspond to samples with odd and even indexes

respectively and ϕ is the bidirectional mapping, given in Eq. (C.14).

Note that Eq. (C.33) is valid, because Qy and Py are independent. The same is true

for Ql and Pl, as they comprise different samples of an i.i.d. variable. Suppose a

comparison of the differential entropy H of between two Gaussian variables: the first is

y with variance σ2y and the second is Y with unit variance, because of the normalization.

In this context, the differential entropy is dependent only on the variances of the two

variables [(Cover and Thomas, 2001, Th. 17.2.3)]. Passing from Eq. (C.33) to Eq.

(C.34) can be achieved under the joint entropy of Y and ϕ. Note that for a function f

applied on a random variable X, the following relation is true:

H(X, f(X)) = H(X) +H(f(X)|X)︸ ︷︷ ︸
=0

= H(f(X)) +H(X|f(X)) (C.35)

The uncertainty for f(X) given X is vanishing, leading to the inequality

H(X) ≥ H(f(X)) (C.36)

It can then be observed, that ϕ is a deterministic outcome of Y , while the opposite is

not true. The last equation in Eq. (C.34) holds, because the mapping in Eq. (C.14) is

bidirectional [Cicalese et al. (2017)]. The parties can then estimate H(ϕ) through H(l).

2This variable is denoted as K in the main text.



Appendix D

Classical Data Mapping and

Smooth Min-Entropy

Suppose a bidirectional mappingX ↔ Z = f(X), whereX is a discrete random variable,

taking values x in the alphabet X with probability pX . Then, Z takes values z = f(x) ∈
Z with probability pZ . In fact, the probability function can absorb the action of f , such

that

pZ(z) = pZ(f(x)) = pX(x) (D.1)

Therefore, the probabilities for the letters in Y are the same for the corresponding letter

in X .

The current investigation revolves around what is the effect on Hε
min of such a mapping,

when it is applied to the classical system of the CQ state

ρXE =
∑
x

pX(x)|x⟩X⟨x| ⊗ ρE(x) (D.2)

To do so, the proof of [(Tomamichel, 2016, Prop. 6.20)] is adapted for the state ρE ,

instead of ρAB. Thus the isometry U : UX ⊗ IE is applied, with UX : |x⟩ 7→ |x⟩X′ |f(x)⟩Z
being the Stinespring dilation of f [Stinespring (1955)] and IE the identity. As a result,

the following state is returned:

τX′ZE = UρXEU
† (D.3)

According to the invariance of the smooth min-entropy under isometries [(Tomamichel,

2016, Corollary 6.11)], the following relation is obtained:

Hε
min(X|E)ρ = Hε

min(X
′Z|E)τ (D.4)
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Furthermore, using [(Tomamichel, 2016, Lemma 6.17)] can lead to the bound

Hε
min(X

′Z|E)τ ≥ Hε
min(Z|E)τ (D.5)

for

τZE =
∑
x

pX(x)|f(x)⟩Z⟨f(x)| ⊗ ρE(x) (D.6)

Finally, from Eq. (D.4) and Eq. (D.6), the bound becomes

Hε
min(X|E)ρ ≥ Hε

min(Z|E)τ (D.7)

Note that, in the same way, Eq. (D.7) can be extended to the case of two classical systems

X and Y , considering a Stinespring dilation UXY = UXUY with UX : |x⟩ 7→ |x⟩X′ |f(x)⟩Z
and UY : |y⟩ 7→ |y⟩Y ′ |f(y)⟩Z′ . Combining then Eq. (D.4) and (D.6) for the state

ρXY E =
∑
xy

pXY (xy)|x⟩X⟨x| ⊗ |y⟩Y ⟨y| ⊗ ρE(x, y)

the inequality

Hε
min(XY |E)ρ ≥ Hε

min(ZZ
′|E)τ (D.8)

holds, where

τZZ′E =
∑
xy

pXY (x, y)|f(x)⟩Z⟨f(x)| ⊗ |f(y)⟩Z′⟨f(y)| ⊗ ρE(x, y)
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Channel Parameter Estimation

E.1 Alternative Formulas for Parameter Estimation

The estimator for the square-root transmissivity

τ =
√
ηT (E.1)

can be defined as

τ̂ =

∑m
i=1 xiyi∑m
i=1 x

2
i

≃ 1

mσ2x

m∑
i=1

xiyi (E.2)

Its variance is given by

V(τ̂) =
V (
∑m

i=1 xiyi)

m2(σ2x)
2

=
V(xy)
m(σ2x)

2
=

2

m
τ2 +

σ2z
mσ2x

= σ2τ (E.3)

Thus, the worst-case estimator for the transmissivity T = τ2 will be given by

Tm =
(τ −Wστ )

2

η
=

(√
ηT −W

√
2
mηT + σ2

z
mσ2

x

)2
η

=
ηT − 2W

√
ηT
√

2
mηT + σ2

z
mσ2

x

η
+O(

1

m
) ≃ T

(
1− 2W

√
1

m

√
2 +

σ2z
ηTσ2x

)
(E.4)

This expression is condensed in the main text, as shown by Eq. (5.107).

One may derive a less stringent estimator by assuming the approximation

m∑
i=1

x2i ≃ mσ2x (E.5)

125



126 Appendix E Channel Parameter Estimation

meaning that a sample of size m from the data is sufficient to reproduce the theoretical

variance σ2x. In such a case, one may write

τ̂ ≃ 1

mσ2x

m∑
i=1

xi(τxi + zi) =
1

mσ2x

(
τ

m∑
i=1

x2i +
m∑
i=1

xizi

)

≃ 1

mσ2x

(
τmσ2x +

m∑
i=1

xizi

)
= τ +

∑m
i=1 xizi
mσ2x

(E.6)

Therefore, the variance is now given by

V(τ̂) =
V (
∑m

i=1 xizi)

m2(σ2x)
2

=
V (xz)

m(σ2x)
2
=

σ2z
mσ2x

= (σ′τ )
2 (E.7)

yielding the worst-case parameter

T ′
m =

(τ −Wσ′τ )
2

η
≃ T

1− 2W

√
1

m

√
σ2z
ηTσ2x

 (E.8)

Comparing the two methods, the relation in Eq. (E.4) returns a more pessimistic value

for the worst-case transmissivity. This is owed to an extra term equal to 2 appearing

in the square root term
√

2 + σ2z/ηTσ
2
x, which is absent in Eq. (E.8). The analysis and

the results in the main text consider the most conservative option, corresponding to the

estimator in Eq. (E.4).

E.2 Calculation of MLE Variances in CV-MDI

The variance of the quantity of Eq. (5.121) is [Papanastasiou et al. (2017)]

V(ĈQAQR
) =

1

m2

m∑
i=1

V([QA]i[QR]i) =
1

m

(
τ2B⟨Q2

BQ
2
A⟩+ 2τ2A⟨Q2

A⟩2 + ⟨Q2
zQ

2
A⟩
)

(E.9)

Replacing with Eq. (5.31) and Eq. (5.32), the variance becomes

V(ĈQAQR
) =

(σ2
A)2

m

(
τ2A +

τ2B
2

σ2
B

σ2
A

)
(
2 + σ2

z

τ2Aσ2
A+

τ2
B
2
σ2
B

)−1 = VQAQR
(E.10)

The variances from Eq. (5.122), Eq. (5.123) and Eq. (5.124) are calculated similarly.

Considering Eq. (5.125), in case |ĈQAQR
| < |ĈPAPR

|, Alice’s channel transmissivity

estimator is shaped as

T̂A =
2VQAQR

η(σ2A)
2

(
ĈQAQR√
VQAQR

)2

(E.11)
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Figure E.1: Theoretical composable secret key rate Rtheo (bits/use) versus Bob’s
channel length (km). Here, the formula of Eq. (5.191) is used to generate the
results (black solid line), assuming β̃ = 0.9188 and p̃EC = 0.95. In addition,
p = 6 and N = 5.175 × 105 have been set. The remaining parameters have
been taken from Table 6.7 for the simulations of Fig. 6.14. The theoretical
composable rate is compared with the rate from [Lupo et al. (2018)] for the
same parameters (gray line).

The variable

(
ĈQAQR√
VQAQR

)2

is a chi-squared distributed variable with variance

V = 2

1 + 2

(
CQAQR√
VQAQR

)2
 (E.12)

such that

V(T̂A) =
16VQAQR

C2
QAQR

η2(σ2A)
4

+O

(
1

m2

)
(E.13)

Otherwise, T̂A is expressed by PA and PR and a similar relation for V(T̂A) is returned.
Eq. (5.130) is then obtained, after making all the appropriate replacements. Eq. (5.131)

for T̂B is computed in the same way.

Based on Eq. (5.127) and given that

1

m

m∑
i=1

([qR]i + τ̂A[qA]i − τ̂B[qB]i)2 >
1

m

m∑
i=1

([pR]i − τ̂A[pA]i − τ̂B[pB]i)2 (E.14)

the outcome is

V(σ̂2z) = V

[
1

m

m∑
i=1

([qR]i + τ̂A[qA]i − τ̂B[qB]i)2
]

≃ V

σ2z
m

m∑
i=1

(
[qR]i + τA[qA]i − τB[qB]i√

σ2z

)2


=
(σ2z)

2

m2
2m =

2

m
(σ2z)

2 (E.15)
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It is hypothesized, that the estimators τ̂A and τ̂B have negligible variances and can be

replaced with their true values, so that any uncertainty for σ2z stems purely from the

data. It is then observed, that the sum in the same equation can be considered to be

a chi-squared distributed variable with variance equal to 2m. Finally, Eq. (5.132) is

obtained by solving Eq. (5.35) with respect to the excess noise variance Ξ. Eq. (E.15)

with σ2z is then used, replaced by its estimator. Similar calculations hold for the other

direction of the inequality in Eq. (E.14).

E.3 Simplifying Assumptions for CV-MDI

Alice and Bob declarem instances {qAi}, {pAi} and {qBi}, {pBi} for i = 1, . . . ,m of their

local variables. Using the relative relay output instances {qRi}, {pRi}, they estimate τA,

τB, σ
2
z and σ2z′ . In particular, according to the multiple linear regression model [MIT

Open Courseware (2006)], the following MLEs are obtained:

τ̂Aq =−
∑m

i=1 qAiqRi∑m
i=1 qA

2
i

(E.16)

τ̂Ap =

∑m
i=1 pAipRi∑m
i=1 pA

2
i

(E.17)

τ̂Bq =

∑m
i=1 qBiqRi∑m
i=1 qB

2
i

(E.18)

τ̂Bp =

∑m
i=1 pBipRi∑m
i=1 pB

2
i

(E.19)

σ̂2z =
1

m

m∑
i=1

(qRi − τ̂BqBi − τ̂AqAi)
2 (E.20)

σ̂2z′ =
1

m

m∑
i=1

(pRi − τ̂BpBi − τ̂ApAi)
2 (E.21)

This is true for the MLEs for τA and τB, because the modulation of Alice’s mode takes

place independently from Bob. Then, from the theory of linear multiple regression, this

is true for τAq, τBq and the MLE for σ2z . The same reasoning holds for τ̂Ap, τ̂Bp and σ2z′ .

The previous MLEs are distributed according to

τ̂Aq ∼ G(τA,
σ̂2z
mσ2x

) (E.22)

τ̂Bq ∼ G(τB,
σ̂2z
mσ2x

) (E.23)

τ̂Ap ∼ G(τA,
σ̂2z′

mσ2x
) (E.24)

τ̂Bp ∼ G(τB,
σ̂2z′

mσ2x
) (E.25)

mσ̂2z
σ2z
∼ χ2(m− 2) (E.26)

mσ̂2z′

σ2z′
∼ χ2(m− 2) (E.27)
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It must be noted, that τ̂Aq and τ̂Ap can be calculated by Alice without the exchange of

variables. Their value can then be communicated to Bob. For this reason, Alice can

manipulate all her data to estimate τA. The same is true for Bob, with respect to τB.

In fact, both of them can combine the two estimators from the conjugate quadratures

into a single one through a linear optimization, based on the estimators

τ̂A =κτ̂Aq + (1− κ)τ̂Ap (E.28)

τ̂B =κτ̂Bq + (1− κ)τ̂Bp (E.29)

with

κ =
V(τ̂Ap)

V(τ̂Aq) + V(τ̂Ap)
=

V(τ̂Bp)

V(τ̂Bq) + V(τ̂Bp)
=

σ̂2z′

σ̂2z + σ̂2z′
(E.30)

These new estimators have variance κ σ̂2
z

Nσ2
x
. Therefore, one obtains

T̂A =
2τ̂2A
η

(E.31)

T̂B =
2τ̂2B
η

(E.32)

Ξ̂ = σ̂z − vel − 1 (E.33)

Ξ̂′ = σ̂z′ − vel − 1 (E.34)

For large m, the distribution χ2(m− 2) can be regarded as Gaussian with variance 2m.

Next, based on the previous considerations, the parties derive confidence intervals as

τA, τB ∈ [τ̂A,B −Wτ , τ̂A,B −Wτ ] (E.35)

σ2z,z′ ∈ [σ̂2z,z′ −Wz,z′ , σ̂
2
z,z′ +Wz,z′ ] (E.36)

with

Wτ =W

√
κ
σ̂2z
Nσ2x

(E.37)

Wz,z′ =Wσ̂2z,z′

√
2

m
(E.38)

Finally, Alice and Bob calculate worst-case scenario values for the parameters TA, TB,

Ξ and Ξ′ using the following formulas:

TAm =2
(τ̂A −∆τ )

2

η
(E.39)

TBm =2
(τ̂B −∆τ )

2

η
(E.40)

Ξm =Ξ̂ +∆z (E.41)

Ξ′
m =Ξ̂′ +∆z′ (E.42)





Appendix F

Equivalent Mutual Information

The CM of Alice’s and Bob’s key extraction variables x and y is given by

Σxy =

 σ2xI σxyZ

σxyZ σ2yI

 =


(
σ2A −

τ2A(σ2
A)2

τ2Aσ2
A+τ2Bσ2

B+σ2
z

)
I

τAτBσ2
Aσ2

B

τ2Aσ2
A+τ2Bσ2

B+σ2
z
Z

τAτBσ2
Aσ2

B

τ2Aσ2
A+τ2Bσ2

B+σ2
z
Z

(
σ2B −

τ2B(σ2
B)2

τ2Aσ2
A+τ2Bσ2

B+σ2
z

)
I

 (F.1)

Taking into account Eq. (5.141) and considering the independence of the quadratures,

the formula for the mutual information for bivariate normal distributions from [Cover

and Thomas (2001)] can be applied, as follows:

I(x : y) =

[
1

2
log2

(
1

1− (ρQxy)2

)]
+

[
1

2
log2

(
1

1− (ρPxy)
2

)]
= log2

(
1

1− ρ2xy

)
(F.2)

where

ρxy = ρQxy = −ρPxy =
σxy√
σ2x

√
σ2y

= τAτB

√
σ2Aσ

2
B

(τ2Aσ
2
A + σ2z)(τ

2
Bσ

2
B + σ2z)

(F.3)

It can then be verified that this is equivalent to Eq. (5.66).
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Appendix G

Procedural Pseudocode

The following algorithms provide a high-level overview of the steps followed during the

simulations for each protocol. It must be noted, that the assignment of the constant

parameters, i.e. q, wc, εPE, εent, εcor, εs, εh, is shown explicitly to reflect the path of

the executed simulations of Chapter 6. In practice, these parameters can be initialized

with any value.
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Algorithm 2 Homodyne Protocol

1: L,A, η, ξ, vel, nbks, N,M, β, itermax, p, α← Input Definition()
2: εPE, εent, εcorεs, εh ← 2−32

3: wc ← 2
4: q ← 4
5: Validity Checks()
6: T, σ2z ,Ξ,m, n, t,GF, δ, d← Dependent Values()
7: if is mu optimal then
8: µopt ← Optimal Signal Variance()
9: else

10: µ← user input
11: end if
12: for blk = 1, . . . nbks do
13: x[blk]← State Preparation()
14: y[blk]← State Transmission()
15: y[blk]← State Measurement()
16: x[blk]← Key Sifting()
17: end for
18: Rasy, I(x : y)|T,Ξ , χ(E : y)|T,Ξ ← Rate Calculation()

19: {iu, xiu}Mu=1, {iu, yiu}Mu=1 ←Sacrificed States Selection()

20: T̂ , Ξ̂, TM ,ΞM ← Parameter Estimation()
21: RM , I(x : y)|

T̂ ,Ξ̂
, χ(E : y)|TM ,ΞM

← Rate After PE Calculation()

22: if I(x : y)|
T̂ ,Ξ̂
≤ χ(E : y)|TM ,ΞM

then

23: Abort Protocol()
24: end if
25: X,Y ← Normalization()
26: for blk = 1, . . . nbks do
27: K[blk]← Discretization()
28: K[blk],K[blk]← Splitting()
29: pK|X,K [blk]← A Priori Probabilities Calculation()
30: end for
31: Ĥ(K),Rcode ← Code Rate Calculation()
32: H← LDPC Code Generation()

33: ŜNR, ρ̂← Correlation()
34: for blk = 1, . . . nbks do

35: K
l
sd[blk]← Bob Syndrome Calculation()

36: K̂n[blk], fnd, rndfnd ← Non Binary Decoding()
37: K̂n

bin[blk],K
n
bin[blk],K

n
bin[blk]← Bin Conversion()

38: hash verified[blk]← Verification()
39: if is hash verified[blk] then
40: SA[blk]← Concatenate(K̂n

bin[blk], K
n
bin[blk])

41: SB[blk]← Concatenate(K
n
bin[blk], K

n
bin[blk])

42: end if
43: end for
44: pEC,FER← Frame Error Rate Calculation()
45: REC

M ← Finite Size Rate Calculation()
46: R, r, ñ, ε← Composable Rate Calculation()
47: if R > 0 then
48: for blk = 1, . . . pECnbks do
49: Υ′ ← Privacy Amplification(SA)
50: end for
51: Υ← Concatenate(Υ′)
52: end if
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Algorithm 3 Heterodyne Protocol

1: L,A, η, ξ, vel, nbks, N,M, β, itermax, p, q, α← Input Definition()
2: εPE, εent, εcorεs, εh ← 2−32

3: wc ← 2
4: q ← 4
5: Validity Checks()
6: T, σ2z ,Ξ,m, n, t,GF, δ, d← Dependent Values()
7: if is mu optimal then
8: µopt ← Optimal Signal Variance()
9: else

10: µ← user input
11: end if
12: for blk = 1, . . . nbks do
13: x[blk]← State Preparation()
14: y[blk]← State Transmission()
15: x[blk], y[blk]← Quadrature Concatenation()
16: end for
17: Rasy, I(x : y)|T,Ξ , χ(E : y)|T,Ξ ← Rate Calculation()

18: {iu, xiu}Mu=1, {iu, yiu}Mu=1 ←Sacrificed States Selection()

19: T̂ , Ξ̂, TM ,ΞM ← Parameter Estimation()
20: RM , I(x : y)|

T̂ ,Ξ̂
, χ(E : y)|TM ,ΞM

← Rate After PE Calculation()

21: if I(x : y)|
T̂ ,Ξ̂
≤ χ(E : y)|TM ,ΞM

then

22: Abort Protocol()
23: end if
24: X,Y ← Quadrature Concatenation()
25: X,Y ← Normalization()
26: for blk = 1, . . . nbks do
27: K[blk]← Discretization()
28: K[blk],K[blk]← Splitting()
29: pK|X,K [blk]← A Priori Probabilities Calculation()
30: end for
31: Ĥ(K),Rcode ← Code Rate Calculation()

32: ŜNR, ρ̂← Correlation()
33: H← LDPC Code Generation()
34: for blk = 1, . . . nbks do

35: K
l
sd[blk]← Bob Syndrome Calculation()

36: K̂2n[blk], fnd, rndfnd ← Non Binary Decoding()

37: K̂2n
bin[blk],K

2n
bin[blk],K

2n
bin[blk]← Bin Conversion()

38: hash verified[blk]← Verification()
39: if is hash verified[blk] then
40: Ŝ[blk]← Concatenate(K̂2n

bin[blk], K
2n
bin[blk])

41: S[blk]← Concatenate(K
2n
bin[blk], K

2n
bin[blk])

42: end if
43: end for
44: pEC,FER← Frame Error Rate Calculation()
45: REC

M ← Finite Size Rate Calculation()
46: R, r, ñ, ε← Composable Rate Calculation()
47: if R > 0 then
48: for blk = 1, . . . pECnbks do
49: Υ′ ← Privacy Amplification(SA)
50: end for
51: Υ← Concatenate(Υ′)
52: end if
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Algorithm 4 CV-MDI Protocol

1: TA, TB, η, ξA, ξB, vel, nbks, N,M, β, itermax, p, α← Input Definition()
2: εPE, εent, εcorεs, εh ← 2−32

3: wc ← 2
4: q ← 4
5: Validity Checks()
6: T, σ2z ,m, n, t,GF, δ, d← Dependent Values()
7: if is mu optimal then
8: µoptA , µoptB ← Optimal Signal Variance()
9: else

10: µA, µB ← user input
11: end if
12: Ξ, g, g′ ← Correlation Parameters()
13: for blk = 1, . . . nbks do
14: x[blk]← State Preparation()
15: y[blk]← State Transmission()
16: end for
17: Rasy, I(x : y)|T,Ξ , χ(E : y)|T,Ξ ← Rate Calculation()

18: {iu, xiu}Mu=1, {iu, yiu}Mu=1 ←Sacrificed States Selection()

19: T̂ , Ξ̂, TM ,ΞM ← Parameter Estimation()
20: RM , I(x : y)|

T̂ ,Ξ̂
, χ(E : y)|TM ,ΞM

← Rate After PE Calculation()

21: if I(x : y)|
T̂ ,Ξ̂
≤ χ(E : y)|TM ,ΞM

then

22: Abort Protocol()
23: end if
24: QX , PX , QY , PY ← Key Extraction Variable Formation()
25: X,Y ← Quadrature Concatenation()
26: X,Y ← Normalization()
27: for blk = 1, . . . nbks do
28: K[blk]← Discretization()
29: K[blk],K[blk]← Splitting()
30: pK|X,K [blk]← A Priori Probabilities Calculation()
31: end for
32: Ĥ(K),Rcode ← Code Rate Calculation()

33: ŜNR, ρ̂← Correlation()
34: H← LDPC Code Generation()
35: for blk = 1, . . . nbks do

36: K
l
sd[blk]← Bob Syndrome Calculation()

37: K̂2n[blk], fnd, rndfnd ← Non Binary Decoding()

38: K̂2n
bin[blk],K

2n
bin[blk],K

2n
bin[blk]← Bin Conversion()

39: hash verified[blk]← Verification()
40: if is hash verified[blk] then
41: Ŝ[blk]← Concatenate(K̂2n

bin[blk], K
2n
bin[blk])

42: S[blk]← Concatenate(K
2n
bin[blk], K

2n
bin[blk])

43: end if
44: end for
45: pEC,FER← Frame Error Rate Calculation()
46: REC

M ← Finite Size Rate Calculation()
47: R, r, ñ, ε← Composable Rate Calculation()
48: if R > 0 then
49: for blk = 1, . . . pECnbks do
50: Υ′ ← Privacy Amplification(SA)
51: end for
52: Υ← Concatenate(Υ′)
53: end if
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Software Performance and

Requirements

It can be anticipated, that the simulation and postprocessing of an entire CV-QKD

protocol can be demanding, in terms of computational resources. To provide algorithmic

speedups, various techniques were used, which include, but are not limited to

• the usage of the Numba library,

• the parallelization of most processes,

• the use of dictionary structures, whose lookup time complexity is O(1) and

• precomputed tables for the Galois field computations. These exact tables are

located in Appendix B.2.

The simulations were executed on the Interactive Research Linux Service of the Univer-

sity of York, whose specifications are noted in Table H.1. Despite employing a powerful

workstation for the tasks, the software is able to run on a conventional computer as well.

However, the speed will be significantly diminished. The workstation is recommended

to have any modern processor, at least 16GB of RAM and a Python version of 3.7 and

above.

CPU Model Intel Xeon E5-2680 v4
CPU Clock Speed 2.60 GHz
Number of Cores 56

RAM 512GB
OS Ubuntu 20.04

Python Version 3.8

Table H.1: The specifications of the system, on which the simulations were
executed.
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Benchmarks, which illustrate the performance of the software, in terms of speed and

memory consumption, are presented in [(Mountogiannakis et al., 2022a, Appendix E)].

They are not included in this work, because they do not reflect the current status of

the software. Since the documentation of these benchmarks, the software has been

significantly improved in both performance areas. Note that the error correction stage

still accounts for the overwhelming majority of the entire runtime.

An advantage of the sum-product algorithm is that it is highly parallelizable by design.

Therefore, possessing more processing cores is beneficial in terms of speed. Consequently,

projects with the sum-product algorithm are often carried out in GPUs [Milisevic (2017)]

because of their superior number of cores compared to CPUs. To provide massive com-

patibility, the software is written to target solely CPUs. Future versions of the software

may process the error correction stage on a GPU level. In addition, the non-binary sum-

product method used in this paper is anachronistic, in terms of speed. The complexity

of the implemented version is nwcq
2 per iteration [Davey and MacKay (1998)]. There

exists a newer method, which moves the burdensome computations of the horizontal step

to the frequency domain by utilizing the FFT [Barnault and Declercq (2003), Safarnejad

and Sadeghi (2012)]. The complexity of the process can then be significantly reduced

[Hong and Sun (2011)]. Future improvements on the algorithm could potentially include

this method as well.
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Karen Saucke, F. Heine, S. Seel, P. Greulich, H. Zech, B. Gütlich, S. Philipp-May,

C. Marquardt, and G. Leuchs, “Quantum-limited measurements of optical signals

from a geostationary satellite,” Optica, vol. 4, pp. 611–616, 2017.

G. Zhang, J. Y. Haw, H. Cai, F. Xu, S. M. Assad, J. F. Fitzsimons, X. Zhou, Y. Zhang,

S. Yu, J. Wu, W. Ser, L. C. Kwek, and A. Q. Liu, “An integrated silicon photonic chip

platform for continuous-variable quantum key distribution,” Nat. Photonics, vol. 13,

pp. 839–842, 2019.

M. Zhang, P. Foshat, S. P. Khanjari, M. Imran, M. Weides, and K. Delfanazari, “Quan-

tum Key Distribution on microwave band for superconducting quantum computing,”

in 35th International Symposium on Superconductivity (ISS2022), Nagoya, Japan,

November 2021, pp. 1–6.

L. Li, T. Wang, X. Li, P. Huang, Y. Guo, L. Lu, L. Zhou, and G. Zeng, “Continuous-

variable quantum key distribution with on-chip light sources,” Photonics Res., vol. 11,

pp. 504–516, 2023.
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