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Abstract 

The assessment of Parkinson’s disease is based upon clinician visual judgement.  At the centre 

of this is a characteristic visible impairment of movement – bradykinesia – with often another 

visible sign, tremor.  My thesis is that computer interpretation of video can provide clinically 

meaningful measures of finger tapping bradykinesia, and hand tremor, in Parkinson’s disease. 

A scoping literature review of technologies to automate the finger tapping test for 

bradykinesia in Parkinson’s (to 2021) identified 54 studies.  Published methods include 

surface contact, infrared, gyroscope, accelerometer.  There is a wide variation in strength and 

significance of correlations with clinical ratings, classification accuracies and group mean 

differences. 

Interrater reliability for judging finger tapping bradykinesia was investigated for 21 

neurologists using 137 videos rated by the Movement Disorder Society revision of the Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS).  There was only moderate agreement, 

intraclass correlation coefficient 0.53 (standard linear model) and 0.65 (cumulative linked 

mixed model).  24% of control videos were judged as bradykinesia.  70% of videos were 

correctly identified as Parkinson’s/control. 

A computer vision optical flow method was applied to 70 finger tapping videos, with 

dimensionality reduction using principal component analysis before input to classification 

models.  Test accuracy was 0.8 for mild/moderate/severe bradykinesia and 0.67 for the 

presence of Parkinson’s disease.  The computer vision pose estimation technique DeepLabCut 

was applied to 133 finger tapping videos.  Resultant measures correlated well with clinical 

ratings of bradykinesia (Spearman coefficients): −0.74 speed, 0.66 amplitude, −0.65 rhythm 

for Modified Bradykinesia Rating Scale; −0.56 speed, 0.61 amplitude, −0.50 rhythm, −0.69 

combined for MDS-UPDRS. All p < .001.  

Eulerian video magnification was applied to 48 videos of atremulous hands.  The proportion 

of hands correctly classified as parkinsonian/control by clinicians was higher after Eulerian 

magnification (OR = 2.67; CI = [1.39, 5.17]; p < 0.003).  Optical flow with Fourier transform 

was applied to 40 videos of tremulous hands.  Bland-Altman analysis of dominant tremor 
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frequency from video compared with accelerometer showed excellent agreement: 95% limits 

of agreement −0.38 Hz to +0.35 Hz. 

These results suggest that standard smartphone video can be used to derive measures of 

bradykinesia and tremor, and could form the basis of a tool to augment clinical assessment. 
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Chapter 1, Introduction 

In the practice of clinical medicine, visual observation plays a fundamental role, and many of 

the signs of disease are visible on clinical examination [1].  An experienced clinician can 

recognise visual patterns that are indicative of the presence or severity of a particular disease.  

This is particularly true for neurology, because many important neurological diseases affect 

human movement in a characteristic way, either reducing movement, changing movement, 

or adding new movement [2, 3].  Most neurological diseases do not have simple laboratory 

or radiological tests, so that clinician assessment, including clinician visual assessment, is 

often at the centre of diagnosis and the grading of severity [4-10].  An archetypal example of 

this is the neurodegenerative movement disorder Parkinson’s disease.  It was first described 

in largely visual terms [11], and the modern criteria for diagnosis [7] and severity rating [8] 

both rely on the clinician’s visual judgement during clinical examination. 

A reliance on clinician visual judgement places limits on clinical assessment, because human 

visual judgement is inherently limited in its accuracy for detecting and measuring subtle 

differences in movement.  In recognition of this, there has been a long history of published 

reports of technology to assess movement in neurological disease [12-47].  However, these 

have involved either a requirement for new hardware or a requirement for patients to engage 

in a new behaviour by using a smartphone app or website.  No such technology has entered 

routine clinical practice.  In contrast, computer interpretation of video – a form of computer 

vision – could in principle provide automated or objective assessment of the visual signs of 

neurological disease.  That would not require new equipment or new patient behaviour, since 

clinicians already observe patient movement during examination, and digital cameras are 

ubiquitous.  Two of the cardinal clinical signs of Parkinson’s disease can be observed in the 

hands: bradykinesia and tremor.  My thesis applies computer vision to smartphone video of 

the hands of people with Parkinson’s disease. 
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Parkinson’s disease 

Parkinson’s disease is a progressive, neurodegenerative condition.  The ultimate ‘gold 

standard’ for the presence of the disease is brain pathology found at postmortem [48].  In the 

early 20th century, the pathological hallmark of the disease, intraneuronal inclusions termed 

Lewy bodies, were recognised, including within substantia nigra neurons in the midbrain [49].  

Lewy bodies contain aggregates of the protein alpha-synuclein, and current understanding of 

pathophysiology is that there is a complex interplay between alpha-synuclein aggregation, 

inflammation, and cell storage and transport, that results in accelerated neuronal death of 

primarily dopaminergic neurons but also multiple other neuronal pathways [49, 50].  This is 

thought to lead to an imbalance between basal ganglia pathways in the brain that inhibit 

versus facilitate movement [51-53].  The ‘Braak hypothesis’, based on postmortem work, 

suggests that Parkinson’s pathology begins in the gut and ascends rostrally over time, through 

the brainstem, then the basal ganglia (causing movement symptoms) and finally affecting the 

cortex (associated with cognitive impairment) [54]. 

The pathological changes in the brain in Parkinson’s can only be tested for after death, in the 

minority of people who undergo postmortem.  As such, in life, the diagnosis of Parkinson’s 

disease is made by clinical assessment.  The current clinical definition of the condition is 

contained in the 2015 Movement Disorder Society diagnostic criteria [7].  Within this, the 

fundamental requirement is the presence of ‘parkinsonism’ on examination.  At the core of 

parkinsonism is a movement abnormality termed bradykinesia, because parkinsonism is 

defined as limb bradykinesia, plus one or both of resting tremor or rigidity [7].  Bradykinesia 

is defined as:  

“slowness of movement AND decrement in amplitude or speed (or progressive 

hesitations/halts) as movements are continued” [7]. 

Bradykinesia is detected by observation of specific repetitive limb movements, which the 

diagnostic criteria state “can be” finger tapping, hand open and close movements, upper limb 

pronation-supination movements, toe tapping, and foot tapping [7].  If parkinsonism is 

established, then Parkinson’s disease is diagnosed when that parkinsonism is combined with 
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the presence of supportive criteria, such as response to dopaminergic medication, as well as 

the absence of exclusion criteria, such as cerebellar abnormalities, and balanced against any 

‘red flags’, such as rapid gait impairment [7]. 

Once Parkinson’s is diagnosed, then at each clinical review the clinician must judge the 

severity of the condition.  Research trials also require assessment of disease severity, both for 

participant selection and outcome measures.  The current standard research rating scale for 

the severity of Parkinson’s is the Movement Disorder Society sponsored revision of the 

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [8].  This has four parts: Part I (non-

motor experiences of daily living), Part II (motor experiences of daily living), Part III (motor 

examination) and Part IV (motor complications).  Part III, the motor examination, is almost 

entirely based on visual observations, each of which the clinical examiner scores on a scale 

from 0 (normal) to 4 (severe impairment) [8].  It includes limb bradykinesia items, such as 

repetitive finger-thumb tapping and hand pronation-supination.   

In busy clinical practice, there is not enough time to apply the full MDS-UPDRS (described as 

“a vast instrument” [55]).  Nevertheless, the shorter, more focused examination in routine 

care is based on the same principles as the MDS-UPDRS.  Since bradykinesia is at the centre 

of the clinical concept of Parkinson’s, a clinical assessment almost always involves a 

judgement of bradykinesia severity.  One of the most common methods to ascertain the 

presence and severity of bradykinesia is finger tapping, whereby the neurologist observes the 

patient repeatedly tapping their index finger against thumb “as quickly and as big as possible” 

[8].  This is item 3.4 in the motor examination section of the MDS-UPDRS.  In that scale, three 

elements of finger tapping bradykinesia - speed, amplitude and rhythm - are assessed into a 

composite score between 0 and 4, Table 1.1. An MDS-UPDRS finger tapping score above 0 

does not necessarily mean bradykinesia is present, since any single element of bradykinesia 

in isolation will raise the MDS-UPDRS score above 0, without meeting the definition of 

bradykinesia.  The MDS-UPDRS finger tapping score thus measures severity, but not 

necessarily presence, of bradykinesia.  In contrast, a more recent rating scale, the Modified 

Bradykinesia Rating Scale (MBRS), rates each bradykinesia component separately, and 

includes a finger tapping item, Table 1.2 [27, 56].  Subscores from that scale can thus also 

indicate the presence of bradykinesia, in addition to the severity. 
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Score Criteria 

0: Normal No problems 

1: Slight Any of the following: a) the regular rhythm is broken with one or two 

interruptions or hesitations of the tapping movement; b) slight slowing; c) the 

amplitude decrements near the end of the 10 taps. 

2: Mild Any of the following: a) 3 to 5 interruptions during tapping; b) mild slowing; c) 

the amplitude decrements midway in the 10-tap sequence. 

3: Moderate Any of the following: a) more than 5 interruptions during tapping or at least 

one longer arrest (freeze) in ongoing movement; b) moderate slowing; c) the 

amplitude decrements starting after the 1st tap. 

4: Severe Cannot or can only barely perform the task because of slowing, interruptions 

or decrements. 

 

Table 1.1.  Item 3.4, finger tapping, from the MDS-UPDRS (Movement Disorders Society sponsored 
revision of the Universal Parkinson’s Disease Rating Scale).  Each hand is tested separately.  The 

patient is instructed to tap the index finger on the thumb 10 times “as quickly AND as big as possible” 

[8]. 
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Score Speed Amplitude Rhythm 

0 Normal Normal 
Regular, no arrests or pauses 

in ongoing movement 

1 Mild slowing 

Mild reduction in amplitude in 

later performance, most 

movements close to normal 

Mild impairment, up to two 

brief arrests / 10 seconds, 

none lasting > 1 second 

2 Moderate slowing 

Moderate reduction in 

amplitude visible early in 

performance but continues to 

maintain 50% amplitude 

through most of the task 

Moderate, 3 to 4 arrests / 10 

seconds; or 1 or 2 lasting > 1 

second 

3 Severe slowing 

Severe, less than 50% 

amplitude through most of 

the task 

Severe, 5 or more arrests / 10 

seconds; or more than 2 

lasting > 1 second 

4 
Can barely perform 

the task 
Can barely perform the task Can barely perform the task 

 

Table 1.2.  The Modified Bradykinesia Rating Scale.  Each hand is tested separately.  The patient is 

instructed to tap the index finger on the thumb “as quickly AND as big as possible” for 10 seconds 

[27]. 

 

The motor examination section of the MDS-UPDRS also includes other visible impairments of 

movement such as reduced (“masked”) facial expression (hypomimia) and impaired gait 

(including impairments in stride amplitude, stride speed, arm swing).  Furthermore, it is 

important to note that the overall MDS-UPDRS is not entirely based on visible movement 

problems.  Part 1 of the MDS-UPDRS (non-motor experiences of daily living) recognises that 

Parkinson’s also causes a variety of non-motor symptoms, that can sometimes cause more 

suffering than the motor symptoms.  These include sleep-wake dysregulation, mood 

disturbance, cognitive dysfunction, urinary symptoms, and constipation. 
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There is considerable individual variation in both the clinical features of idiopathic Parkinson’s 

and also the prognosis [57].  It is likely that idiopathic Parkinson’s represents several subtypes 

of disease and there is some evidence for division into ‘akinetic-rigid’ versus ‘tremor-

predominant’ subtypes, the latter with a slower progression [58].  There appears to be a very 

long prodromal phase of Parkinson’s disease that begins many years prior to the onset of 

motor symptoms, perhaps even 20 years before [59-61].  Symptoms such as REM-sleep 

behaviour disorder, anosmia, constipation and depression can precede the development of 

parkinsonism by many years.  Such factors have varying sensitivity and specificity for the 

future development of Parkinson’s, and are strongest predictors in combination.   

Parkinson’s disease is most commonly idiopathic (sporadic).  In 2016, there were 6.1 million 

people worldwide with the disease [62]. Some lifestyle or environmental factors are 

associated with increased risk of idiopathic Parkinson’s, such as pesticide exposure, 

consumption of dairy products, and head injury [63].  There are also factors that are 

associated with lower risk such as physical exercise, smoking and coffee consumption [63].  

However, none are strong associations and causality has not been demonstrated.  Genetic 

variants play a role in idiopathic Parkinson’s but there are multiple loci, together explaining 

only a minority of the risk [64, 65].  Monogenetic Parkinson’s disease exists but is rare (e.g. 

PARK mutations) [65].  In contrast to idiopathic Parkinson’s disease, parkinsonism can also be 

drug-induced (most commonly antipsychotic, dopamine blocking drugs), secondary to 

vascular disease, or due to sporadic ‘Parkinson’s plus’ neurodegenerative conditions that are 

rarer than idiopathic Parkinson’s and have distinct clinical features, such as autonomic failure 

in the condition multiple system atrophy [57]. 

 

The historical development of the concept of Parkinson’s disease 

This current clinical conception of Parkinson’s disease is one that has developed and evolved 

over time.  Although there are apparent descriptions of parkinsonism in earlier literature [66, 

67], the beginning of the modern idea of the disease is James Parkinson’s 1817 ‘Essay on the 

Shaking Palsy’ [11].  In this descriptive study of six people, Parkinson did not use the term 
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bradykinesia, or describe the specific elements in the modern definition of bradykinesia.  

Instead, he referred to a “lessened muscular power” (“palsy”) [11].  However, he also 

described a range of other clinical features, all of which relate to those that we know today.  

This includes tremor, festinant (shuffling) gait, speech disturbance, and non-motor symptoms 

such as sleep disruption and constipation.  In addition, he recognised the progressive, 

degenerative nature of the condition. 

In the 1870s, Jean-Martin Charcot first named the disease after Parkinson, and noted 

muscular rigidity (a non-visual sign of the disease).  He crucially made the observation that 

the sufferers were not paralysed, and that “the muscular power is retained, to a great degree” 

[68].  Rather, he observed “in the execution of movements, a notable want of ease”, and 

that “their problem relates more to slowness in execution of movement rather than to real 

weakness” [68].  This is different from the modern concept of bradykinesia, with its specific, 

multifaceted definition.  Charcot did not specify a combination of slowness with decrement 

or progressive hesitations and halts, during repetitive movements. 

The term bradykinesia appears in literature from 1907, but was considered descriptive of a 

number of different diseases, not just Parkinson’s [69].  It was used to describe a combination 

of features of which slowness was one, without other elements of the modern definition.  

From the 1920s onwards the terms bradykinesia, hypokinesia and akinesia appeared in 

textbooks in relation to Parkinson’s [69].  The Greek translations are slow (brady-), decreased 

or smaller (hypo-), no (a-), and movement (-kinesis).  However, those terms have since been 

used to describe broader ranges of movement abnormalities than their literal translations, 

and used inconsistently and interchangeably [69].  So, it is notable that the current concept 

of bradykinesia – at the centre of the current clinical definition of Parkinson’s – does not have 

a long and stable history. 

In the 1960s there was a gradual discovery that replacement of dopamine, in the form of oral 

levodopa, could significantly ameliorate many of the symptoms of Parkinson’s disease, 

including motor symptoms [67, 70]. Dopaminergic therapy remains the mainstay of 

Parkinson’s treatment today  [57].  Although dopamine-based treatment (and sometimes 

deep brain surgery) can greatly ameliorate symptoms, there are as yet no known agents to 

slow progression of the underlying neurodegeneration [57]. 
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The advent of therapy led to a requirement to formulate specific research criteria for 

diagnosis (trial inclusion) and scales for severity (trial outcome) [69].  The first diagnostic 

criteria were introduced in 1988 (‘UK brain bank criteria’), in which the term bradykinesia was 

used, to specify slowness of movement plus progressive reduction in speed and amplitude of 

repetitive actions [71].  This became the closely related current definition in the 2015 

diagnostic criteria.  To gauge the severity of Parkinson’s, the Unified Parkinson’s Disease 

Rating Scale (UPDRS) was introduced in 1987 [72],  revised in 2008 (MDS-UPDRS) [8], and has 

remained the standard research rating scale.  

 

Tremor 

In parkinsonism, and so Parkinson’s disease, there are three core clinical signs.  Bradykinesia 

– a visual sign – is at the centre of these.  However, of the other two signs, rigidity and tremor, 

it is notable that tremor is also a visible sign.  Tremor can be defined as an involuntary, 

rhythmic, oscillatory movement of a body part [73].   In routine clinical practice, the presence, 

pattern and severity of tremor is judged by the eye of the examining clinician. 

Most, though not all, people with Parkinson’s have a tremor, but there are many other 

conditions that can cause tremor.  The International Movement Disorder Society Consensus 

Statement on the Classification of Tremors uses two axes.  Axis 1 classifies according to clinical 

features, Figure 1.1. Axis 2 classifies the aetiology of the tremor (genetic, acquired or 

idiopathic). Combinations of Axis 1 clinical features correspond to specific syndromes 

(diagnoses), shown in Figure 1.2. Identification of a specific syndrome can aid the 

identification of aetiology (Axis 2), but classification can change over time as a disease 

progresses, and just as a clinical syndrome can have multiple aetiologies, a single aetiology 

can produce more than one syndrome. 
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Figure 1.1. Axis 1: Clinical Features, from the Movement Disorders Society consensus statement on 

the classification of tremors [73] 

 

 
Figure 1.2. Tremor syndromes that represent particular combinations of Axis 1 clinical features, from 

the  Movement Disorders Society consensus statement on the classification of tremors  [73] 
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Several of the features within Axis 1 are visual signs, detected by clinician observation during 

examination [74].  This includes body distribution and activation conditions, such as changes 

in tremor severity with rest, posture or movement of the affected body part, as well as tremor 

alteration during examination routines such as contralateral hand tapping.  Additional 

neurological signs are also frequently visual, such as the presence of bradykinesia in 

Parkinson’s tremor.  In addition, tremor frequency is often mentioned within descriptions of 

the clinical examination features for a particular tremor syndrome, implying that a clinician 

might attempt to estimate the approximate frequency of the tremor during visual assessment 

[74, 75]. 

The classic tremor of idiopathic Parkinson’s disease is described as occurring at rest, at a 

frequency of 4 to 7 Hz, often asymmetrically and mainly involving the distal limbs (as well as 

sometimes jaw or tongue) [73, 75, 76].  A pill-rolling tremor is sometimes seen, involving 

thumb flexion from a neutral position, which is considered specific to Parkinson’s and some 

forms of parkinsonism [75].  However, in addition to the classic description, other forms of 

tremor also occur in Parkinson’s. In particular, a ‘reemergent’ postural hand tremor is 

common, which is viewed as a resting tremor that re-emerges after stable posturing (i.e. 

hands outstretched), suggesting that Parkinson’s tremor is a ‘tremor of stability’ [76, 77].  

Furthermore, a different postural tremor is also found in some Parkinson’s patients, which 

has a higher frequency and begins immediately (without reemergence) [76].  It should also be 

noted that tremor is not universal in Parkinson’s, such that some patients never develop it 

[58, 78]. 

The most common tremor disorder is not Parkinson’s disease, it is a condition termed 

Essential Tremor (ET) [79].  Essential tremor is frequently on the differential diagnosis list for 

early Parkinson’s tremor [74, 80-82].  Essential Tremor is defined as an isolated syndrome of 

bilateral upper limb action tremor, for at least 3 years duration, with or without tremor in 

other locations, and in the absence of other neurological signs [73].  However, Essential 

Tremor Plus is also recognised, in which there are “additional neurological signs of uncertain 

significance”, including impaired tandem gait and memory impairment [73].  This ‘plus’ 

concept is controversial, and it is not based on any clear difference in pathology or prognosis 

[83, 84].  The frequency of Essential Tremor is often described as 4-12 Hz, a broad range, but 
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the frequency shows an inverse correlation with age [85, 86].  Although Essential tremor is 

defined as a postural tremor, it can occur at rest in advanced disease [85] and rest-tremor is 

included among ET-plus features [73]. 

Other common tremor syndromes include functional (psychogenic) tremor, “characterised by 

distractibility, frequency entrainment or antagonistic muscle coactivation”, and dystonic 

tremor, in which tremor and dystonia (sustained involuntary contractions of agonist and 

antagonist muscles) are combined as the main neurological signs [73]. 

The pathophysiological mechanisms of tremor disorders are not well understood. The 

‘dimmer-switch’ model of Parkinson’s tremor suggests that the basal ganglia activate tremor 

(operating as a ‘light switch’), while a cerebello-thalamo-cortical circuit modulates tremor 

amplitude (analogous to a ‘light dimmer’). In Essential Tremor, there is increased activity in a 

cortico-olivo-cerebello-thalamic circuit that is coherent with tremor oscillation of muscle 

activity, but the driver of this circuit is unclear, possibly related to degeneration in the 

cerebellum [87]. 

Electrophysiological measurement can complement the examination and history in the 

clinical assessment of tremor.  Both accelerometer and gyroscope devices have been used to 

measure the movement of tremor, commonly attached to the dorsum of the hand [86, 88]. 

Movement in space has 6 degrees of freedom (3 translational, 3 rotational). Although most 

tremors involve primarily rotatory movement about a joint, until recently gyroscopes were 

too large and heavy for tremor measurement [88] and so accelerometers have been more 

widely used [86, 88].  An accelerometer produces a time series of linear acceleration in units 

of cm/s2 or g, which can then be converted into the frequency domain by Fast Fourier 

Transform, allowing determination of dominant tremor frequency. A single (one) axis 

accelerometer is more affordable in clinical settings, and produces a single time series rather 

than six: a simpler signal for clinician analysis [86].  The accelerometer is attached to the 

patient in such a way that the single axis is aligned with the main the main axis of the tremor 

movement.  An accelerometer measurement of tremor frequency can be combined with 

electromyography (EMG) to record the contraction of individual agonist and antagonist 

muscles participating in the movement [86]. 
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Tremor electrophysiology can assist tremor classification, for example by demonstrating the 

variable frequency over time that is characteristic of the diagnosis of Functional Tremor [1].  

However, such techniques represent a limited and time-consuming resource, usually reserved 

for a small subset of patients in specialist hospital settings.  Furthermore, accelerometers are 

subject to gravitational artefact [88].  Whilst smartphone accelerometers can measure the 

dominant frequency of hand tremor, the patient must hold the phone or have it strapped in 

place [89]; and this will potentially alter tremor characteristics, for example ‘weight loading’ 

can alter tremor characteristics  [86]. 

 

The visual judgement of Parkinson’s and tremor conditions is 

difficult 

A reliance on clinician judgement by eye for diagnosis and assessment has two problems.  The 

first is that it requires an experienced clinician (a limited resource).  The second is that humans 

cannot accurately measure movement by eye, or easily detect small, subtle changes.  That is 

perhaps particularly true for Parkinson’s and related conditions, because the current 

definition of bradykinesia describes a complex and heterogenous phenomenon.  

Furthermore, like those for Parkinson’s, the diagnostic criteria for Essential tremor have 

varied substantially in the past, suggesting that the most common clinical tremor syndrome 

contains significant ambiguity [90].  This is likely to fundamentally limit accuracy of clinical 

decisions, both for diagnosis and monitoring, and research outcomes.   

Consistent with this, a study reviewing 71 consecutive patients with a pre-evaluation 

diagnosis of essential tremor found that 37% were misdiagnosed, with the most common true 

diagnosis being Parkinson’s disease [91].  Furthermore, when shown video recordings of the 

neurological examination for patients with a variety of tremor disorders, two movement 

disorder specialist neurologists showed high false positive (17.4-26.1%) and negative (6.7-

20%) rates for the diagnosis of Parkinson’s [92].  Pathology studies suggest the validity of 

diagnosis of Parkinson’s disease in life is far from perfect.  One study reported sensitivity of 
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88%, specificity of 66% [93],  and a meta-analysis gave diagnostic accuracy figures of 73.8% 

for non-experts and 79.6% for movement disorder specialists [94]. 

Severity rating scales (based on visual judgement) are also limited in their accuracy.  In one 

study, 226 raters were tested in their UPDRS motor (examination) scores for 4 people with 

Parkinson’s disease using video recordings [95].  A ‘pass’ in this test was defined as a score 

within the 95% confidence interval of 3 “international Parkinson’s disease experts” for each 

case.  Only 54.6% of raters ‘passed’ the 4 cases.  In another study, three trained nurses and 

one movement disorder specialist rated older people with no clinical Parkinson’s, according 

to a modified UPDRS motor score [96].  They gave 74 out of 75 participants a score greater 

than 0 (mean score 13.4 out of 127). 

 

Computer vision 

Given the limitations of human judgement for Parkinson’s and tremor disorders, there have 

been many published attempts to use technology to automate measurement of the clinical 

signs of Parkinson’s, including bradykinesia and tremor [12-47, 80, 97].  One approach is to 

use specific equipment (often ‘wearable’) that can measure movement.  For bradykinesia, 

examples include devices based on accelerometers, gyroscopes, and infrared cameras 

(usually with active or passive markers attached to the body) [12-47].  For tremor, 

measurement in a laboratory setting uses accelerometer and electromyography [86, 98], and 

portable accelerometer devices can record tremor in non-controlled environments such as a 

standard clinic room [88]. 

The other main approach has been to use smartphones to record limb bradykinesia or tremor.  

For bradykinesia, this most commonly involves a person with Parkinson’s tapping the phone 

screen, or sometimes strapping the phone to the distal portion of a limb [22, 46, 99, 100].  For 

limb tremor, studies have used the smartphone’s inbuilt accelerometer, with the patient 

holding the phone in their hand or strapping it in place [80, 97]. 
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None of these methods have entered routine clinical practice for the assessment of patients.  

The specialist ‘wearable’ or hardware approach is limited by a requirement for large scale 

purchase and maintenance of specific devices.  The smartphone screen tapping or 

smartphone accelerometer method is limited in the data that can be acquired.  Tapping a 

screen cannot measure movement amplitude – a fundamental part of the concept of 

bradykinesia [7].  Holding a phone adds weight to a limb, which alters tremor characteristics, 

a phenomenon known as ‘weight-loading’ [86].  Most importantly, these smartphone 

methods require patient motivation to use and interact with a specific app, potentially on 

more than one occasion, a change in behaviour that is perhaps unlikely to become 

widespread. 

There is a potential alternative to these previous approaches.  That is to use two ubiquitous 

items of equipment – the camera and the computer – to capture and assess the information 

that is seen by clinicians during the neurological examinations that they already perform.  

Computer vision can be defined as the ability of a computer to make “useful decisions about 

real physical objects and scenes based on sensed images” [101].  ‘Sensed images’ most 

commonly refers to input from standard monocular cameras or video cameras [102].  

Computer vision of video has developed to a high level of accuracy in non-medical 

applications.  For example, autonomous steering and lane detection in cars [103, 104], traffic 

monitoring [105], crowd analysis [106], facial recognition [107].  Computer vision does not 

require special equipment or patient motivation, and is contactless (relevant in the light of 

COVID-19). 

Computer vision is potentially well-suited to detecting and measuring the visual signs of 

neurological disease.  There are many published algorithms that can, in general, recognise 

and track objects, people and movement in video.  These are broad enough in their 

mechanisms that in principle they could be applied to video of the neurological examination.  

Three techniques that can be applied to human movement in video are optical flow, pose 

estimation and Eulerian magnification.   
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Optical flow 
 

Optical flow can be defined as “the distribution of apparent velocities of movement of 

brightness patterns in an image” [108].  It arises from the relative motion of objects and the 

viewer.   If a camera is static, then movement of an object (such as a person or a body part) 

within the camera frame creates a moving brightness pattern.  Computer vision algorithms 

can detect and measure optical flow in video, and this provides a method to record 

movement.  Most commonly, video involves opaque objects of finite size undergoing rigid 

motion or deformation.  This means neighbouring points on an object have similar velocities, 

so that the velocity of brightness patterns in the image varies smoothly almost everywhere. 

Optical flow algorithms relate the change in image brightness at a point to the motion of the 

brightness pattern.  These techniques convert video frames into an optical flow field [108].  

In such a field, each position corresponds to the vector pixel movement of a point object 

between two sequential video frames. The magnitude of the vector represents the 

instantaneous speed of a point (in pixels/frame).  Optical flow vectors can be divided into bins 

corresponding to movement direction, which can then be used to produce histograms of 

optical flow, showing the pattern of movement direction across pairs of video frame. 

Figure 1.3 shows an illustration of optical flow vectors derived from video of a walking 

sequence, taken from reference [109].  Figure 1.4 shows illustrates the technique of dividing 

optical flow vectors into bins corresponding to movement direction, while Figure 1.5 shows 

the resultant histograms of optical flow after dividing the walking sequence into direction 

bins. 

 

 
Figure 1.3. Optical flow patterns for a simple walking sequence. The blue arrows show the directions 

and magnitude of pixel movement for the corresponding video frames. Taken from reference [109] 
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Figure 1.4. An illustration of the Histogram of Optical Flow (HOOF) method whereby pixel optical flow 

vectors are divided into 8 bins of movement direction (boxes 1 to 8).  Taken from reference [110] 

 

 
Figure 1.5. An example of optical flow patterns (second row of images) converted into Histograms of 

Optical Flow (third row of images) for a simple walking sequence. Taken from reference [109] 

 

 

Pose estimation 
 

‘Pose estimation’ refers to computer vision algorithms that estimate the location of human 

body parts and how they are connected in an image [111].  Most commonly, this relates to 

video from a standard monocular camera.  There are multiple applications, for situations in 

which the automatic tracking of human movement and action in video might provide useful 

information.  Pose estimation has traditionally involved two phases.  The first is to detect 

body parts or estimate their position [112].  The second is an inference step that combines 
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local observations of body parts with spatial constraints.  Originally, part detectors used a 

variety of different machine learning classification techniques, but the most modern and most 

effective pose estimation algorithms all use deep learning techniques to detect body parts.  

Deep learning does not require explicit features specified by researchers, and instead learns 

the most predictive features of a particular category directly from images, given a large data 

set of labelled examples.  Deep learning involves a process termed back-propagation that 

indicates how the algorithm should change its internal parameters to best predict the desired 

output of an image [113, 114].  Current pose-estimation algorithms are trained on large image 

datasets, such as ImageNet [115].  As deep learning detection of body part positions has 

improved, the need for an inference step with spatial constraints (i.e. rules to connect the 

body parts) has lessened [112]. 

DeepLabCut is a pose estimation algorithm that can track the body parts of animals in video 

without the need for a large labelled dataset [116, 117].  It was devised for laboratory 

experiments involving animal behaviour models.  DeepLabCut does not require a large 

labelled dataset of the specific video that it is applied to, because it uses transfer learning.  

Transfer learning is the ability to take a network that was trained on a task with a large 

supervised data set, and utilise it for another task with a small supervised data set.  

DeepLabCut uses the feature detector from a pose estimation algorithm named DeeperCut 

[112], that has been pre-trained on ImageNet [115], a massive object recognition dataset. 

 

Eulerian magnification 

There is a third computer vision technique that has potential relevance to video of Parkinson’s 

and other tremor conditions.  It is termed Eulerian video magnification.  This is a method that 

is applied to standard video, to produce a new video in which the size (amplitude) of 

movement has been increased [118].  This means that very low amplitude movement, which 

was difficult or impossible to see by eye in the original video, becomes visible in the video 

after Eulerian magnification.  Thus, it can reveal low amplitude movement in video, that was 

otherwise unseen.  Eulerian magnification exaggerates motion by amplifying temporal colour 

changes at fixed positions.  The variation of pixel values over time is amplified in a spatial 
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multiscale manner.  The technique first decomposes the video into different spatial frequency 

bands, and then performs temporal processing on each spatial band.  A bandpass filter is used 

to isolate a temporal frequency band of interest, so that the technique amplifies select 

temporal frequencies of movement. 

 

Techniques to analyse computer vision data 

Optical flow and pose estimation process video so that human movement is converted to 

video pixel coordinate changes over time.  That is time series data: a graph of time on the x 

axis and a measure of change in video pixel coordinates on the y axis. To obtain meaningful 

summary measures of neurological examination signs, such as tremor or bradykinesia, further 

processing of that time series data is required. 

The movement of the finger tapping test for bradykinesia can potentially be tracked in video 

by optical flow or pose estimation techniques.  A number of different measurements from 

this data could be used to produce a time series.  One possibility is that pose estimation could 

track the relative position of finger and thumb tip, and relative distance between them, over 

time.  From this raw time series, features can be chosen, that are judged to reflect the clinical 

construct of bradykinesia.  The selection of features in this way has previously been applied 

to time series data derived from gyroscope (non-video) recordings of finger tapping, with 

gyroscope attached to finger tip.  For example, angular velocity has been used as a measure 

of tapping speed, while coefficient of variation of the sliding window of the excursion angle 

was used as a measure of tapping rhythm [27].  Each of these measures can be correlated 

with clinician measures of bradykinesia as a way of testing convergent validity. 

In addition to deriving single measurements from a time series, it is also possible to combine 

multiple individual features from a time series using the technique of principal component 

analysis (PCA).  This reduces the dimensionality of a dataset whilst preserving as much of the 

variance in the data as possible [119].  PCA achieves this by finding new variables that are 

linear functions of those in the original dataset, which successively maximise variance (the 

principal components).  It is a way to find patterns in data that has many dimensions (features) 
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[120, 121], because high dimensional data cannot be graphically represented to find patterns 

(for example, an 8-dimensional graph cannot be plotted). 

Once principal components have been derived from features of a finger tapping time series, 

it is possible to apply machine learning classification techniques.  Machine learning models 

can ‘learn’ (or be ‘trained’) to classify data into categories.  For example, machine learning 

methods could be applied to principal component data to distinguish Parkinson’s tapping 

from control tapping, in other words how well finger tapping data can be used to classify 

tapping as Parkinson’s or not.  There are several methods for this type of classification task.  

Logistic regression finds a classification boundary that provides the best linear separation 

between two categories [122].  A Naïve Bayes classifier calculates the probability of a given 

classification, using Bayes theorem (with the assumption that all attributes of a data point are 

independent of each other) [123].  A Support Vector Machine is a classification algorithm that 

predicts an optimal hyperplane between two categories in n-dimensional space, with a 

maximal margin between the classified data points (created by data points closer to the 

hyperplane: support vectors) [122]. 

Tremor is an oscillatory movement, and the frequency or frequencies of a tremor can help to 

characterise different underlying neurological conditions.  Tremor frequency is part of ‘Axis 

1’ of the Movement Disorders Society consensus statement on the classification of tremor, 

Figure 1.1 [73].  A method to summarise the frequency of a time series signal is the Fourier 

transform [124], which converts a signal in the time domain to a signal in the frequency 

domain.  In his 1822 work The Analytical Theory of Heat, Fourier demonstrated that arbitrary 

functions could be written as a summation of sines and cosines [125].  The Fourier transform 

converts a time series signal into a series of sine waves, each with its own amplitude and 

frequency.  This allows determination of the relative contributions of different frequencies to 

a given time signal.  This is a method by which dominant tremor frequency could be 

determined from a measure of oscillatory movement in video.  Fourier transform to detect 

tremor frequency has previously been applied to (non-video) accelerometer data [126].  

Figure 1.6 illustrates the way in which a complex signal is the sum of individual sine waves.  

Figure 1.7 illustrates the way in which the Fourier transform converts a complex time signal 

into the frequency domain. 
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Figure 1.6,  A complex time signal is the sum of individual sine waves.  Taken from reference [127]. 

 

 

 
Figure 1.7.  A graphical illustration of the principle by which the Fourier transform can convert a signal 

from the time domain to the frequency domain.  Taken from reference [127]. 

 

In comparing two measurement techniques for the same measure, such as video versus 

accelerometer for tremor frequency, a Bland-Altman analysis is more appropriate than 

correlation.  Correlation is not a measure of agreement; it measures the strength of 

relationship between two variables (which can be strongly related but not in agreement).  

Bland-Altman calculates the bias (mean difference) between two measurement methods, d;  

the standard deviation of the differences, s; and the 95% confidence intervals for the mean 

difference, which are referred to as ‘limits of agreement’ [128-130]. 
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Applying computer vision to video of bradykinesia and tremor 

My thesis is that techniques for computer interpretation of video can provide clinically 

meaningful measures of finger tapping bradykinesia, and hand tremor, in Parkinson’s disease.  

Chapter 2 describes the literature on existing technological methods to measure finger 

tapping bradykinesia.  Chapter 3 investigates the current ‘gold standard’ for bradykinesia 

assessment, namely clinician visual judgement.  The study reports the intraclass correlation 

coefficient for judgement of finger tapping bradykinesia severity, in a large group of expert 

clinicians.  It also reports the rates of apparent bradykinesia presence in Parkinson’s and 

healthy controls, as well as the accuracy of clinicians’ blinded judgement of hands as 

parkinsonian or not.  Chapter 4 reports two new computer vision methods to measure finger 

tapping bradykinesia in video.  It describes a measure of hand movement during finger 

tapping that is derived from optical flow.  Features from this are combined with machine 

learning techniques to discriminate low from high bradykinesia, and Parkinson’s from 

controls.  It also describes a method using DeepLabCut to track the distance from finger tip to 

thumb tip during finger tapping, and test the correlation between measures derived from that 

and clinician ratings of bradykinesia severity.  Chapter 5 reports two applications of computer 

vision of video to hand tremor.  The first is the application of Eulerian video magnification to 

videos of hands that show no visible tremor, in both people with Parkinson’s and healthy 

controls.  The ability of clinicians to correctly identify hands as parkinsonian or not is tested 

before and after Eulerian magnification.  The second uses an optical flow method to record 

the oscillatory movement of visible hand tremor in video, and derive the dominant frequency 

of the tremor by Fourier transform.  This frequency is compared with that obtained by 

accelerometer for the same hands, and agreement between video and accelerometer 

methods are tested by a Bland-Altman comparison.  Chapter 6 presents an overall discussion 

and conclusions. 
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Chapter 2, A review of technology to measure finger 

tapping bradykinesia in Parkinson’s 

Introduction 

The current understanding of Parkinson’s disease places one clinical feature above all others: 

the abnormality of movement known as bradykinesia.  The 2015 International Movement 

Disorder Society definition of bradykinesia is: 

“slowness of movement AND decrement in amplitude or speed (or progressive 

hesitations/halts) as movements are continued” [7]. 

In order to diagnose Parkinson’s disease, ‘parkinsonism’ must be present, which refers to 

bradykinesia plus rest tremor or rigidity [7].  Furthermore, at subsequent clinical reviews over 

the course of the disease, the clinician will invariably examine for the severity of bradykinesia, 

to assess progression and treatment response.  As described in Chapter 1, the modern 

concept of bradykinesia is a relatively recent development, largely dating from the 1980s, and 

driven by a need to definite clinical features of Parkinson’s in the era of drug trials [69]. 

The detection and assessment of bradykinesia are clinical tasks, in which a clinician makes a 

visual judgement of the patient’s movement [7, 8].  In current practice (and diagnostic 

guidelines or severity scales), the patient is asked to make one or more of the following 

repetitive limb movements: finger tapping, hand opening and closing, forearm pronation-

supination, toe tapping, or foot tapping.  These five movements are specified within the 

standard research tool for grading the severity of Parkinson’s: the Unified Parkinson’s Disease 

Rating Scale (UPDRS) [72], and its 2008 Movement Disorder Society sponsored revision (MDS-

UPDRS) [8].  The clinical rater is asked to score the severity of bradykinesia from 0 to 4, Table 

1.1. 

The MDS-UPDRS bradykinesia rating combines deficits in movement speed, amplitude and 

rhythm into a single composite score.  This means that the same score can result from more 



 
 

30 

than one pattern of impairment, so that some individual differences in movement impairment 

are lost as they are grouped into the same score. In recognition of this, a newer bradykinesia 

rating scale was published in 2007, the Modified Bradykinesia Rating Scale (MBRS) [27, 56]. 

This requires the rater to separately grade movement speed, amplitude and rhythm, Table 

1.2. 

In busy clinical practice, there is rarely time to examine the five different repetitive 

movements used to assess bradykinesia (finger tapping, hand open/close, forearm 

pronation/supination, toe tapping, and foot tapping).  In the clinical experience of this author, 

the most common single examination for bradykinesia is the finger tapping test, carried out 

in nearly every clinical assessment of a person with Parkinson’s.  The finger tapping test is 

thus a fundamental part of Parkinson’s assessment: an almost universally applied test for the 

most fundamental clinical feature of the condition.  

A reliance on the visual judgement of human experts for the detection and assessment of 

Parkinson’s is problematic.  Human vision cannot make precise measurements of speed and 

distance [95].  This is likely to limit the accuracy of assessment, particularly for subtle changes 

present in the earliest stages of disease.   In support of this, there is evidence of considerable 

inter-rater variability for the UPDRS scoring of bradykinesia, e.g. kappa of 0.44 (<0 = no 

agreement, 1 = perfect agreement) [131].  At a broader level, several studies suggest that 

human experts also see visual signs of Parkinson’s in people without the condition, and when 

asked to judge video of visual examination signs will frequently misdiagnose tremor 

conditions, for example confusing Parkinson’s with essential tremor or vice versa [91, 92, 96, 

132]. 

In recognition of the limitations of using human expert judgement to assess bradykinesia, the 

last 25 years have seen a large number of publications reporting the application of technology 

to record the finger tapping test for bradykinesia.  The authors of such studies commonly 

describe them as “objective” [12-14, 17, 32, 40, 44, 133] and as “quantifying” [17, 21, 26, 31, 

32, 43, 134-136] bradykinesia, implying that their technological measurement has overcome 

the limitations of subjective human assessment.  Studies using technology sometimes 

measure other aspects of examination, such as tremor, and sometimes other bradykinesia 

examination items, such as upper limb pronation-supination [16, 135].  However, as with 
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clinical practice, so in technology studies, a test of finger tapping is almost always included, 

and in some cases finger tapping is the only measured test for bradykinesia. 

The assumption that technology quantifies bradykinesia may not be correct.  Firstly, the initial 

recording of human movement, or the measurements derived from it, may not always be 

accurate. For example, accelerometers can show poor accuracy in quantifying human 

movement [137] and are subject to gravitational artefact [86].  One commercial infrared 

camera shows poor accuracy below movement of 2cm amplitude [138, 139].  Secondly, 

measurement in three dimensions is usually summarised into a one-dimensional number (e.g. 

angular velocity), so some of the original signal is lost.  Thirdly, bradykinesia is a concept that 

derives from expert consensus of what is visible when people with Parkinson’s undertake 

repetitive movements.  Human visual judgements and visual perception are inherently 

imprecise.  Thus, it is possible that the actual movement of people with Parkinson’s and those 

without the condition might not correspond very well with the current definition of 

Parkinson’s bradykinesia.  If the phenomenon exists to some extent in the minds of expert 

observers rather than in the movement of those they observe, it becomes difficult to quantify 

by recording movement.  Human perception (including visual perception) is prone to biases 

and inaccuracies, with schemata and heuristics frequently applied [140] and sometimes 

‘gestalt’ perception [141-143] that cannot be easily expressed as a simple sum-of-parts rule. 

This chapter is a scoping review of published technologies that attempt to automate the 

finger tapping test for bradykinesia in Parkinson’s.  The topic is an example of attempts to 

objectively measure an examination sign for a common neurological condition, and so it has 

a wider relevance beyond Parkinson’s.  I will describe the different types of technology used 

to record finger tapping, the measures derived from those recordings, and the main tests 

applied to those measures, with a focus on the clinical definition of bradykinesia.  I will 

summarise findings relating to measures of tapping speed, amplitude, rhythm and 

decrement, for group mean differences and correlation with UPDRS (and MBRS).  I will also 

describe attempts to use novel measures that are not simple surrogates for speed, amplitude 

or rhythm, and the use of machine learning for classification into UPDRS categories or 

Parkinson’s / control. 
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Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 2.1.  Keywords and phrases used in database search 
 
 
1. Finger-tap*  (this includes results for ‘finger tap’ without a hyphen) 
2. Parkinson* 
3. Bradykine* 
4. Akine* 
5. Technolog* 
6. Quantif* 
7. Measure* 
8. (#1 AND #2 AND #3) OR (#1 AND #2 AND #4) OR (#1 AND #2 AND #5) OR (#1 AND #2 
AND #6) OR (#1 AND #2 AND #7) 
 
 
*:wildcard indicator 
Limited to English language.  Excluding reviews and conference abstracts 
  

 
Box 2.2.  Selection of studies for review. 

Database searches 
 
Database  Dates    Articles retrieved 
 
EMBASE  1947 to Dec 01, 2021  370 
Medscape  1946 to Dec 01, 2021  202 

397 articles identified (duplicates removed) 

51 articles included for full review 

45 full text articles 
retrieved after evaluation 
of abstracts and titles 

6 articles identified from 
reviewing reference lists 
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Search strategy and study selection 

I performed a literature search for original research studies, using a combination of keywords 

(Box 2.1) across a range of databases (Box 2.2), from database inception to August 2021. Only 

studies published in English were included.  Conference abstracts and review articles were 

excluded. 

The titles and abstracts were reviewed from the initial searches. Articles included were those 

that involved quantification or measurement of finger tapping according to standard 

instructions (‘as fast and big as possible’) in people with Parkinson’s by technological means, 

and a comparison of these measurements with either diagnosis category (Parkinson’s vs 

control) or clinician rating of bradykinesia.  The testing of finger tapping measurements 

against diagnosis or clinical rating did not have to be the main focus of the paper for inclusion. 

Studies that purely measured usability or compliance were excluded, as were studies that 

used technology to measure finger tapping purely as an outcome (e.g. of an exercise 

programme) without any comparison of the results with diagnosis status or clinical rating  

[144].  Studies using aggregate measures across several clinical tests, without specifying the 

specific results for finger tapping in isolation were also excluded [99].  Pure comparisons of 

‘on’ and ‘off’ medication conditions were not included [134].  Two journal articles from 2020 

were my own, published forms of the work described Chapter 4 of this thesis [145, 146].  

These were excluded from the review, given that they are described fully in Chapter 4. 

 

Data extraction 

Data were extracted using the following questions. 

1. What is the method used to record finger tap movement ? 

2. For each of tapping speed, amplitude and rhythm, what is: 

(a) the measurement derived from the recording ? 

(a) the comparison of patient and control means ? 
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(b) the correlation with clinical ratings ? 

(c) the classification into patients and controls ? 

3. What approaches have been used to combine multiple aspects of tapping into a single 

measure, and what results have been reported with these ? 

 

Results 

A total of 397 articles were found, and after evaluation of abstracts, 45 full text articles were 

included for review, in addition to 6 further articles identified from abstracts, to make a 

total of 51 articles reviewed. 

 

Recording the movement: devices to record finger tapping movement 

Over the last 25 years, a number of publications have described a range of technological 

devices to record movement during the finger tapping test.  The different approaches include: 

surface contact, gyroscope/accelerometer (often combined in one device), infrared camera, 

electromagnetic sensors, and (more recently) computer vision applied to standard video. 

Surface contact methods involve participants tapping one or two fingers on a surface (index 

+/- finger), which produces a binary (on/off) signal based on the presence / absence of the 

fingertip on the surface over time.  Devices have included computer keyboards [12, 13], 

pressure sensors including musical equipment [14, 147], and more recently smartphone 

screens [18, 20, 46].  Figure 1 shows two examples of surface contact approaches. 
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Figure 2.1.  Two surface contact methods to record finger tapping.  The left side of the figure shows 

smartphone screen targets [20], the right side shows equipment that includes a touch recording plate 

(the white circle) [17]. 

 

Repetitive surface tapping differs from the standard finger tapping test, in which finger and 

thumb tip are tapped against each other.  It is possible that the absence of thumb involvement 

might subtly change the resulting performance of the task, and it is known that changes in 

various external cues (including a fixed target) can alter Parkinson’s movement [148].  More 

importantly, surface contact has only a limited potential to record the basic movement of the 

clinical finger tapping test.  It cannot record the amplitude of the tapping movement, which 

is one element of bradykinesia.  This in turn means that it cannot necessarily record the speed 

of tapping because velocity of finger movement (distance/time) cannot be determined.  

Tapping frequency is recorded (number of taps/time), but any given frequency could be due 

to fast, larger amplitude movements or slower but smaller amplitude movements.  Thus, 

frequency of tapping is limited as a proxy measure of the “speed” of movement. 

Gyroscope methods are often combined with accelerometer in one movement-sensing 

device.  A common recording made from such equipment is angular velocity of the finger tip, 

or finger tip and thumb tip, with the three dimensions of gyroscope movement summed [27]. 

Infrared devices use two or three cameras that detect infrared light, together with markers 

attached to the hand (the finger, thumb and sometimes additional locations).  The markers 
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are either active, meaning they emit infrared light (connected to a power source), or passive, 

which means they reflect infrared provided by a separate light source (often integrated into 

the infrared camera device).  Multiple cameras in the device allow determination of the three-

dimensional spatial coordinates of the markers.  From this, the most common measurement 

derived is the (Euclidean) finger-to-thumb distance over time [36, 38, 39]. 

Electromagnetic devices involve an attachment on the finger-tip and thumb-tip.  The 

equipment produces a magnetic field that is detected by the finger-tip sensor, the strength 

of field depends on the distance from the field source to the sensor.  This allows the distance 

between thumb and finger to be calculated over time [44] 

Figure 2.2 shows examples of these three types of ‘wearable’ device 

(gyroscope/accelerometer, infrared cameras, electromagnetic sensors).  A fundamental 

limitation of all of them is the requirement for specialised equipment.  Clinical assessment of 

bradykinesia is common and widespread, so a large financial cost would be involved in making 

these devices part of routine clinical practice (an investment that has yet to occur).  They are 

likely to remain restricted to research settings.  Another problem with these devices is that 

the weight/size or movement restriction involved in attaching equipment to the digits could 

potentially subtly alter movement. 

 

 

 
 

Figure 2.2.  Wearable devices to record finger tapping.  Left to right: systems based on gyroscopes 

[27], infrared cameras [37], and electromagnetic sensors [44]. 

 

 



 
 

37 

In the period covered by the literature search, two research groups have used computer 

processing of standard video to record finger tapping movement.  This is a form of computer 

vision.  It requires no special equipment, because it uses only a standard video camera.  It is 

based on computing algorithms that can track moving objects in video.  In one publication, a 

region of the video frame containing the tapping hand is first isolated by using previously 

developed algorithms that detect the human face [149].  The participants positioned their 

tapping hands either side of their face, such that face detection enabled isolation of the 

adjacent tapping hand regions, and the amplitude of tapping could be normalised to face size.  

Algorithms that detect pixel movement magnitude and direction were then applied to that 

isolated region, to derive a measure of relative finger-tip movement [149].  The other 

published video report uses the computer vision technique ‘pose estimation’ [135].  In this, 

as outlined in Chapter 1, algorithms are applied that recognise and track the position of body 

parts across video frames (in this case hand, fingers and thumb).  The recognition is based on 

applying previously developed convolutional neural network algorithms that have been 

trained on large datasets of images. 

Although video does not require special equipment, there are several potential disadvantages 

as a method to record finger tapping.  Firstly, it only records movement in two dimensions, 

so that movement involving a component perpendicular to the camera view will be 

underestimated.  Secondly, there is no absolute measure of distance.  This means that 

amplitude and velocity have to be calculated in relative terms, as a proportion of maximum 

amplitude [135].  Alternatively, a distance marker needs to be taped to the wall and filmed in 

the video frame (introducing an element of equipment and calibration that could limit 

widespread use in clinical settings) [150].  However, in practice, relative amplitude may be 

enough information to recognise movement abnormalities (which are specified in relative 

terms in international criteria, not in absolute cm or cm/s).  Thirdly, in order to track finger 

tapping movement, the methods require manual (human) labelling of the points to be tracked 

(e.g. finger-tip, thumb-tip, and other landmarks) in a series of video frames from the set to be 

analysed.  Currently, this involves manual labelling of a minimum of hundreds of video frames, 

and does not generalise to a new set of videos (the labelling has to be done for each set of 

videos to be analysed).  Thus, at present it is highly labour-intensive.  In the future, this step 

is could potentially become fully automated, though this has not yet been achieved.  
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The signal processing: measures derived from finger tapping recordings 

Many of the devices employed to record finger tapping capture movement in multiple 

dimensions, and often movement of more than one part of the hand.  For example, gyroscope 

devices usually record movement in six degrees of freedom, and infrared cameras can 

measure movement in three dimensions, often with markers on multiple locations on the 

hand.  However, all of the finger tapping studies published to date involve an initial step that 

reduces the recording to a one-dimensional signal or a small set of one-dimensional signals 

(e.g. [32, 37, 40]).  In other words, they begin by reducing the recording to a time-series, in 

which the x-axis is time and the y-axis is a single variable, such as finger-to-thumb distance.  

As such, much of the recorded movement information is discarded at the outset. 

The basic time-series is often similar in different studies.  The initial measure in surface 

tapping studies is whether the finger-tip is on or off the surface at each time point.  Gyroscope 

studies start with finger-tip angular velocity over time, either in one plane or in three planes 

summed together [151].  Electromagnetic studies measure finger-tip to thumb-tip distance 

over time [44].  Video studies have also measured finger-tip to thumb-tip distance over time 

but as a proportion of maximum distance (i.e. relative distance) [135]. 

From these one-dimensional time series, researchers then derive a number of features that 

they judge to reflect the elements of bradykinesia.  Certain features are commonly used 

across many studies.  In surface tapping studies tapping frequency (taps per unit of time) is 

used as a measure of speed [19].  With other devices, velocity of finger or finger-to-thumb 

movement is the speed measure [47].  To measure tapping amplitude, it is excursion angle 

using gyroscopes [27] and finger to thumb distance with electromagnetic and video studies 

[149]. 

Across all devices, rhythm is often measured by calculating standard deviation or coefficient 

of variation (standard deviation divided by the mean) of the mean tap interval (e.g. [39]).  

More unusual measures of rhythm have also been derived.  An accelerometer and gyroscope 

study derived a ‘smoothness index’ of tapping, from the spectral arch length of the movement 

speed profile [34].  The MDS-UPDRS specifies impairment in rhythm as “interruptions” and 

“hesitations” [8].  In contrast to other studies, Bank et al devised measures of rhythm 
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impairment in infrared recordings that were closer to that UPDRS wording [40].  They used a 

peak detection algorithm to identify individual tapping cycles, and defined ‘hesitations’ as the 

number of zero velocity crossings minus the 2 reversals per cycle.  ‘Halts’ were defined as 

periods longer than the average duration of 2 cycles in which all data points were within 

1.5cm.  In one of the earliest video studies, Khan et al derived a measure of tapping rhythm 

termed ‘cross-correlation of the normalised peaks’ [149].  This involved splitting the recording 

into two time slots, 2s to 5s and 6s to 9s, then constructing a ‘peak signal’ by joining the 

tapping peaks in each time slot (i.e. a line joining neighbouring peaks).  Cross-correlation was 

then applied to measure the similarity between the peak signals of the two time slots (i.e. 

how regular the tapping rhythm was) [149]. 

The MDS definition of bradykinesia refers to “decrement in amplitude or speed” [7].  Thus, 

the current concept of bradykinesia specifies progressively smaller movements or 

progressively slower movements, as movement continues.  This is distinct from movement 

that is slow or small from the outset but remains stable over the period of tapping.  Similarly, 

the MDS-UPDRS finger tapping subscore wording also specifies abnormal amplitude with the 

words “amplitude decrement”, and the earlier in the 10 taps that the amplitude decrement 

occurs, the higher the MDS-UPDRS grade [8].  In this context, it could be seen as inappropriate 

that the measures described so far reflect overall mean or maximum speed and amplitude, 

rather than measures of decrement.  However, a minority of studies have, perhaps more 

appropriately, attempted to derive a decrement measure from finger tapping recordings.  The 

most common method to look for decrement is to calculate the slope of a linear regression 

line fitted to the time series of tapping speed or tapping amplitude [40].  Other methods 

compare early and late sections of the tapping recording [35, 45]. 

In more recent studies, tapping features are combined into a new composite measure, that is 

not a simple direct measure of one aspect of the tapping recording.  This approach usually 

involves the application of machine learning techniques [28, 42, 43]. 
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Group mean differences – speed, amplitude and rhythm 

A number of technology studies have taken variables derived from finger tapping and 

compared the group means of those variables for people with Parkinson’s (PwP) versus 

controls. 

There have been 10 studies that reported group mean tapping frequency (number of taps / 

time) to be lower in PwP compared with controls (7 surface contact, 1 gyroscope, 2 infrared 

camera) [12-14, 17, 20, 21, 35, 40, 46, 151].  However, 5 studies found no significant group 

difference, i.e. p>0.05 (2 surface contact, 1 gyroscope, 2 infrared camera) [18, 23, 38, 47].  In 

a strain-gauge goniometer experiment and one gyroscope study, there was only a group 

difference when recordings were made ‘off’ participants usual Parkinson’s medication [34, 

45].  The mean tapping frequency of participant groups in different studies varies widely, and 

comparing across studies control group means can be slower than PwP group means, 

suggesting there is no neat cut off for what can be considered an ’abnormal’ tapping 

frequency, Figure 2.3.  This is not easily explained by protocol differences in the total duration 

of tapping, Figure 2.4, but likely reflects tapping frequency as a poor measure of speed, 

because tapping frequency cannot distinguish high frequency secondary to small amplitude 

taps from that secondary to high velocity of finger movement.  

 
Figure 2.3.  The group means for tapping frequency vary widely across studies, for both Parkinson’s 

group means and control group means, and many control means are slower than Parkinson’s means.  

Dots show published group means for tapping frequency (standardised to taps/10s) in PwP on usual 
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medication, ‘on’ (green), with medication withheld, ‘off’ (red), and controls (blue) [12-14, 17, 20, 21, 25, 

34, 35, 38, 40, 45-47, 151]. 

 

 

 

Figure 2.4.  Variation in group mean tapping frequency across studies is not explained by variation in 

protocols for total tapping duration.  Dots show published group means for tapping frequency 

(standardised to taps/10s) in PwP (orange) and controls (blue), according to the total duration of tapping 

recorded in the study protocol.  Note PwP means are often faster than controls and vice versa, and this 

holds across different total tapping durations [14, 17, 20, 21, 25, 34, 35, 38, 40, 45-47, 151]. 

 

 

Group mean tapping velocity (distance / time) was slower in PwP compared with controls in 

1 gyroscope study and 4 infrared camera studies [38-40, 47, 151], although recordings were 

made ‘off’ Parkinson’s medication in one of the infrared protocols [47].  It was calculated as 

either the overall velocity or the maximum opening velocity. 

Group mean tapping amplitude (degrees or cm) was significantly lower in PwP compared with 

controls in 1 gyroscope study and 2 infrared camera studies [35, 40, 151].  No significant 

difference was found in a third infrared study [47]. 

Impairment of finger tapping rhythm, measured as the standard deviation of either tap 

interval or tap rate, was higher (more irregular rhythm) at the group mean level for PwP 

compared with controls in 3 surface contact studies, but not in a fourth [12, 13, 17, 152].  The 
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coefficient of variation of tapping interval (standard deviation divided by the mean) showed 

a higher group mean (more irregular rhythm) in PwP compared with controls in one 

accelerometer study and one gyroscope study [25, 151].  An infrared study only found such a 

difference from controls in a participant group with advanced stage Parkinson’s but not in 

one with early-stage Parkinson’s [39].  Coefficient of variation can also be applied to tapping 

velocity.  It was higher in PwP in one gyroscope study and one infrared study, but the latter 

used recordings made with participants ‘off’ their usual Parkinson’s medication [47, 151]. 

Spectral arch length of movement speed profile (a rhythm measure) was significantly 

different between controls and PwP groups, using gyroscope/accelerometer, but only when 

Parkinson’s medication was with-held (‘off’ condition) [34].  An infrared study found that 

group mean tapping hesitations were higher in the PwP group (0.8 per cycle) vs the control 

group (0.4 per cycle) [40].  They also reported both controls and PwP to have a mean ‘halt’ 

value of 0, though the interquartile range was 0-0 in controls, and 0-21.6 in PwP [40].  That 

suggests the data was not normally distributed, so the mean would be an inappropriate 

measure. 

 

Correlation with UPDRS – speed, amplitude and rhythm 

Many studies that have used technology to record finger tapping have tested correlation 

between the measurements they obtain and clinician ratings according to the Unified 

Parkinson’s Disease Rating Scale (UPDRS).  Two parts of the UPDRS are most commonly 

tested.  One is finger tapping item (3.4), UPDRS-FT, which is scored from 0-4, Table 1.1. The 

other is the motor examination (‘Part 3’) subsection score, UPDRS-ME, which is the total of 

18 motor examination items, each with a 0-4 score.  There is a wide variation in the reported 

correlation strengths, Table 2.1. 
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Authors, year, 
participants Method Element of tapping Clinical 

rating Correlation Caveats / notes 

Giovanonni et al 
1999 

 

s 
 

Frequency UPDRS-ME r -0.69 
Recorded ‘off’ 

medication 
Rhythm UPDRS-ME r 0.41 

Homann et al 
2000 s Frequency UPDRS-ME r -0.60 Recorded ‘off’ 

medication 

Tavares et al 
2005 

 
s 

Frequency UPDRS-ME r 0.50 

Recorded ‘off’ 
medication Frequency UPDRS-B r 0.67 

Rhythm UPDRS-ME r 0.56 

Papapetropoulos 
et al 
2010 

 

s 
 

Frequency UPDRS-FT r NS 
 

Frequency UPDRS-B r NS 

Maetzler et al 
2015 

 
s 

Frequency UPDRS-ME r NS 

More than half the 
patients recorded ‘off’ 

medication 

Frequency UPDRS-FT r NS 

Rhythm UPDRS-FT r 0.13 

Rhythm UPDRS-ME r 0.15 

Lee CY et al 
2016 

 

s 
 

Frequency UPDRS-ME r -0.37 
 

 
Frequency UPDRS-B r -0.75 

 
Kassavetis et al 

2016 
 

s Frequency UPDRS-FT r -0.75 All patients ‘off’ 
medication 

Mitsi et al 
2017 

 
s Frequency UPDRS-ME r NS  

Roalf et al. 
2018 

 
s Frequency UPDRS-ME r NS 

  

Yokoe et al. 
2009 

 
a Velocity UPDRS-FT r -0.59 

 
Controls assumed to 
be UPDRS-FT grade 0 

Costa et al. 
2010 

 

a 
 

Frequency UPDRS-FT r NS 
 First 2 seconds of 

tapping omitted 
Amplitude UPDRS-FT r NS 

 
Kim et al. 

2011 
 

g 
 Frequency UPDRS-FT 

r -0.72, -
0.74 

 

Some control means 
worse (slower) than 

patients 
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Authors, year, 
participants Method Element of tapping Clinical 

rating Correlation Caveats / notes 

Velocity UPDRS-FT r -0.66,  
r -0.70 

Heldman et al. 
2011 

 

g 
 

Velocity MBRS Speed r -0.79 
 

Half recordings ‘off’ 
medication 

 
Inappropriate 

correlation method 
(Pearson) 

Amplitude MBRS 
Amplitude r -0.81 

Rhythm MBRS 
Rhythm r 0.65 

Lee et al. 
2015 

 

g 
 

Frequency UPDRS-FT r2 0.74 

Early stage disease Velocity 
decrement UPDRS-FT r2 NS 

Rhythm UPDRS-FT r2 0.47 

Ling et al. 
2012 

 
i 

Velocity UPDRS-ME r -0.68 

Half recordings ‘off’ 
medication. 

 
Amplitude worse 

(smaller) in healthy 
controls than PD off 

medication. 

Velocity decrement UPDRS-ME r NS 

Amplitude UPDRS-ME r -0.79 

Amplitude 
decrement UPDRS-ME r NS 

Rhythm UPDRS-ME r 0.75 

Ruzicka et al. 
2016 

 

i 
 

Frequency UPDRS-FT r NS 2 rater cohen k = 0.59 
 

UPDRS-FT median HC 
1.0 and PD 1.5 

 

Velocity UPDRS-FT r 0.48 

Amplitude 
decrement UPDRS-FT r NS 

Bologna et al. 
2016 

I 
 

Velocity UPDRS-ME r NS 
 

Late stage PD 
subgroup were 
recorded ‘off’ 

medication 
 

Only 1 clinical rater 
 

Velocity decrement UPDRS-ME r NS 

Amplitude UPDRS-ME r NS 

Amplitude 
decrement UPDRS-ME r NS 

Rhythm UPDRS-ME r NS 

Bank et al. 
2017 

 

I 
 

Frequency UPDRS-FT r -0.24 

Low test-retest 
reliability for speed 

Frequency 
decrement UPDRS-FT r NS 

Velocity UPDRS-FT r -0.37 
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Authors, year, 
participants Method Element of tapping Clinical 

rating Correlation Caveats / notes 

Velocity decrement UPDRS-FT r NS 

Amplitude UPDRS-FT r NS 

Amplitude 
decrement UPDRS-FT r NS 

Rhythm UPDRS-FT r 0.31, 
0.27 

Teo et al. 
2013 

 
 

o 
 

Frequency 
decrement UPDRS r 0.81 

Half PD recordings ‘off’ 
medication Amplitude 

decrement UPDRS r 0.76 

Khan et al. 
2014 

 

v 
 

Frequency UPDRS-FT 
Guttman 

-0.54, 
 -0.38 

Grade 4 UPDRS-FT 
excluded. 

 
PD group older than 

controls (50-75 vs 40-
60) 

Frequency 
decrement UPDRS-FT 

Guttman 
0.62, 0.44 

 

Velocity UPDRS-FT 
Guttman 

-0.59,  
-0.38 

Amplitude 
decrement UPDRS-FT 

Guttman 
-0.84,  
-0.41 

 

Rhythm UPDRS-FT 
Guttman 

-0.80,  
-0.40 

Liu et al. 
2019 v 

Frequency UPDRS-FT r 0.912 
Exceptionally strong 
correlations despite 

measures very similar 
to other studies 

 
Pearson correlation 

inappropriate for 
ordinal data 

 
Amplitude UPDRS-FT r -0.935 

Rhythm UPDRS-FT r 0.815 

Amplitude 
variability UPDRS-FT r -0.388 

 
Table 2.1.  Published correlations between technology measures of finger tapping bradykinesia 

elements and clinical ratings.  Note the very wide range of correlation strengths. Method column, s: 

surface tapping, g: gyroscope, i: infrared, v: video. r = correlation coefficient.  UPDRS-FT: Unified 

Parkinson’s Disease Rating Scale Finger Tapping Subscore.  MBRS: Modified Bradykinesia Rating 
Scale.  [12, 13, 15, 17-20, 23-27, 38-40, 45-47, 135, 149, 151] 
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There is an enormous variation in the reported strengths of correlation between measures of 

tapping frequency and UPDRS ratings.  Four studies found no significant correlation between 

tapping frequency and UPDRS-FT scores (two surface contact, one accelerometer, one 

infrared) [17, 18, 25, 38].  Another five studies found the following statistically significant but 

wide-ranging correlation strengths between tapping frequency measures and UPDRS-FT: -

0.16 (video), -0.24 (infrared), -0.34 (gyroscope), -0.38 (video), -0.74 (gyroscope), -0.75 

(surface contact), -0.91 (video) [19, 34, 40, 149, 153].  There are similarly varied findings for 

the correlation between tap frequency and UPDRS-ME.  Three surface tapping studies 

reported no significant correlation [18, 20, 23], while another four surface tapping studies 

reported significant correlations ranging in strength from -0.37 to -0.69 [12, 13, 46, 147]. 

In terms of measures of tapping velocity (distance over time), the following correlations with 

UPDRS-FT ratings have been reported: -0.37 (infrared), -0.38 (video), -0.48 (infrared), -0.59 

(accelerometer), -0.59 (video), -0.68 (infrared), -0.72 (gyroscope), -0.74 (gyroscope) [24, 26, 

38, 40, 47, 149].  Only one study has tested UPDRS-ME correlation with tapping velocity, and 

found no significant correlation [39]. 

Mean tapping amplitude showed no significant correlation with UPDRS-FT in one infrared 

study [40], but in three other studies there were significant correlations: -0.66 (gyroscope), -

0.70 (gyroscope), -0.935 (video) [26, 153].  On testing correlation with UPDRS-ME, one 

infrared study found no correlation [39] but another reported -0.79 correlation [47]. 

Measures of tapping rhythm have been tested for correlation with UPDRS items.  Standard 

deviation of intertap interval has been reported to correlate with UPDRS-FT 0.13 in a surface 

contact study, and 0.82 in a video study [18, 153].  Standard deviation and UPDRS-ME showed 

no significant correlation in one study and 0.15 correlation in another (both surface contact) 

[17, 18].  Another surface contact study reports “variance of the time interval between key 

strokes”, which is presumably standard deviation, to correlate 0.41 with UPDRS-ME [12].  

Coefficient of variation (standard deviation divided by the mean) of intertap interval showed 

no significant correlation with UPDRS-FT in an accelerometer study [25], and no significant 

correlation with UPDRS-ME in an infrared study [39].  However, in a surface contact study, 

coefficient of variation of tap interval correlated 0.56 with UPDRS-ME.  Coefficient of variation 

of key strike duration has been reported to correlate 0.67 with the three UPDRS bradykinesia 
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items [147].  Coefficient of variation of tapping velocity (rather than intertap interval) 

correlated 0.75 with UPDRS-ME in a report using infrared camera [47]. 

In a gyroscope/accelerometer study, the spectral arch length of movement speed profile (a 

rhythm measure) correlated significantly with UPDRS, with r2 of 0.47 (r is not given) [34].  In 

a video study that used the cross-correlation of the normalised peaks as a measure of rhythm, 

the average (across several tapping trials) showed a Guttman correlation of 0.80 with UPDRS-

FT for one rater, but only 0.40 for a second rater [149].  In infrared recordings the number of 

tapping hesitations correlated 0.31 with UPDRS-FT, while the percentage of time in ‘halts’ 

correlated 0.27 with UPDRS-FT [40]. 

Very few studies have compared finger tapping recordings with the modified bradykinesia 

rating scale (MBRS), a scale that asks the human rater to separately grade tapping speed, 

amplitude and rhythm, producing three separate scores, each between 0 and 4, Table 1.2.  

Heldman et al used a gyroscope method to measure tapping angular velocity, excursion angle 

and coefficient of variation, reporting correlations of -0.79, -0.81 and 0.65 with MBRS speed, 

amplitude and rhythm ratings respectively [27].  However, they converted ordinal ratings into 

continuous numbers (e.g. “MBRS speed 2.7”) and calculated means and Pearson correlations, 

all inappropriate methods for analysing ordinal data.  Half their recordings were in the ‘off’ 

medication state.   

Measures of decrement 

Fitting a linear regression line to tapping frequency has been used as a measure of speed 

decrement, by comparing the slope of the line in participant groups.  However, by this 

method, neither gyroscope nor infrared methods found a significant difference between PwP 

and control groups in the slope of the line.  For a regression line to measure velocity 

decrement, one gyroscope study found a significantly steeper, negative line (suggesting 

greater decrement) in PwP compared with controls [151].  However, one gyroscope study and 

three infrared studies found no group mean difference in the slope of the regression line for 

velocity, comparing PwP with controls [34, 39, 47].  For tap amplitude, two studies (gyroscope 

and infrared) found a greater (more negative) mean slope of the linear fitted line in PwP 

compared with controls [47, 151], but two infrared studies did not [36, 47].  A fifth study, 
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using infrared, reported that the “decrease in maximal opening distance” was significantly 

greater in PwP than in controls, but the details of this measure are not described [38].  Finally, 

another infrared study found the group mean slope of the regression line was significantly 

more negative than controls in early-stage Parkinson’s, but not in advanced Parkinson’s [39]. 

An infrared study used a different method, comparing the duration and amplitude of the final 

three taps with that of the first three taps.  The authors found a significantly longer duration 

and significantly smaller amplitude of the final three taps in PwP but not in controls [35]. 

Researchers have also tested for correlation between decrement measures and UPDRS 

ratings.  In most studies, the slope of a regression line is used.  For tapping velocity, one 

infrared method reported no significant correlation between regression line slope and 

UPDRS-ME [47].  A report using gyroscopes reported that velocity decrement correlated 0.49 

with UPDRS, but only when tested with usual Parkinson’s medication withheld.  Tested ‘on’ 

medication, no significant correlation was found [34].  For regression lines testing amplitude 

decrement, two infrared studies reported no correlation with UPDRS-ME [39, 47] and one 

infrared study found no correlation with UPDRS-FT [40].  A different approach to amplitude 

decrement has been to measure the decrease from maximum opening distance in the initial 

5 taps, using infrared recordings.  No correlation was found between this measure and 

UPDRS-ME [38].  In stark contrast to the lack of correlation in other publications, Teo et al 

reported that amplitude decrement measured by strain gauge goniometer correlated 0.74 

with UPDRS scores, though they used Pearson correlation, which is inappropriate for ordinal 

(UPDRS) data.  Their method divided 20 seconds of tapping into 2 second epochs and then 

compared amplitude in the first and last epochs [45]. Recordings were made with 11 

participants, all ‘off’ their usual Parkinson’s medication. 

Novel single measures 

Several studies have derived other measurements from recordings of finger tapping, which 

are not simple surrogates for tapping speed, amplitude, decrement, or rhythm.   

Prince et al undertook a large study of smartphone screen tapping, with 312 PwP and 236 

healthy controls, who each completed 20 separate repeated trials of tapping.  They found 

that PwP showed more longitudinal variability and a greater number of test instances to reach 
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steady state [22].  As with other measures, these are group mean differences, not absolute 

differences.  In another surface contact study, Roalf et al found that the control group showed 

a lower mean intra-individual variability across trials, compared with PWP [23].  Costa et al’s 

accelerometer study derived a new measure from finger tapping: ‘beat decay of the auto 

mutual information value’.  This estimates signal predictability by measuring loss of signal 

over a timescale.  Mean values were significantly higher in PwP compared with controls, and 

the measure showed a correlation of 0.45 with UPDRS-FT scores [25].  They found even higher 

mean values for essential tremor patients (i.e. PwP mean scores were between those for 

controls and essential tremor), suggesting the measure by itself is not specific to Parkinson’s 

bradykinesia. 

Two studies derived power measurements from a tapping velocity signal, after a Fourier 

transformation to convert the signal’s time domain to the frequency domain.  This can be 

seen as measuring the intensity of movement.  Kim et al’s gyroscope study found that peak 

power correlated -0.80 with UPDRS-FT, while total power correlated -0.78 [26].  However, Di 

Biase et al also used a gyroscope and found no significant difference in total power between 

controls and PwP taking their usual medication, only finding a significant difference when PwP 

were ‘off’ usual medication.  They quote an R2 correlation of 0.57 with UPDRS-FT scores, but 

this is PwP ‘off’ medication [34]. 

Logistic regression and area under the receiver operating characteristic curve 

Another approach to the data recorded from finger tapping is to perform a logistic regression: 

a logistic function to model a binary dependent variable, in this case whether the tapping is 

performed by a PwP or control.  The result can be represented as a receiver operating 

characteristic (ROC) curve.  This is a plot of the true positive rate against the false positive 

rate.  The area under the curve (AUC) for the ROC is the probability that the logistic regression 

model will rank a randomly chosen positive instance (PwP) higher than a randomly chosen 

negative instance (control).  The maximum value for AUC is 1 (or 100%), which would indicate 

a perfect test for PwP vs control in that group of participants (100% sensitive and 100% 

specific).  An AUC of 0.5 (50%) would suggest that the model for classification as PwP or 

control performs no better than chance.  Several studies have reported AUC for measures 
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taken from finger tapping recordings, and also for models that combine multiple measures of 

different aspects of the tapping signal. 

Mitsi et al.’s smartphone screen tapping study performed logistic regression on each of a 

variety of tapping measurements.  Their highest AUC figure was 90% for reaction time.  They 

reported an AUC of 83% for two-target interval, a measure of tap frequency [20].  The same 

study also reported a combined model of several tapping features (two-target total taps, 

reaction time, two-target total accuracy) that produced maximum discriminatory 

performance between PwP and controls, with an overall AUC of 0.98 (sensitivity 94%, 

specificity 93% [20].  In another smartphone study, tapping frequency showed AUC of 0.59 

for PwP/control discrimination, while intra-individual variability across trials showed AUC of 

of 0.89 [23].  Using an accelerometer, the measures of frequency produced an AUC of 66.9 % 

for PwP/control [25]. 

Using infrared cameras, Krupicka et al. reported discrimination of PwP from controls with 

AUCs of 0.77 for opening velocity (speed) and 0.87 for decrease in maximal opening distance 

(amplitude decrement).  When combining these two measures into a multivariate logistic 

regression they found AUC 0.94 [37].  Half the recordings were made with PwP ‘off’ 

medication.  In a second study from the same group, the same two measures (opening 

velocity and decrease in maximum opening distance) showed similar AUCs of 0.81 and 0.87 

[38]. 

Yokoe et al. performed logistic regression for tapping variables measured by accelerometer, 

but reported Akaike Information Criterion and misclassification rate, rather than AUC.  They 

report misclassification rates of 15.6%, 18.8% and 32.3% for measures of speed (maximum 

opening velocity), amplitude (total distance of finger movement) and rhythm (standard 

deviation tap interval) respectively  [24]. 

Machine learning for classification 

Machine learning can be defined as “a subfield of computer science that is concerned with 

building algorithms which, to be useful, rely on a collection of examples of some 

phenomenon” [154].  Several studies have applied machine learning techniques to 

measurements derived from recording finger tapping, most commonly with the aim of a 
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method that will discriminate PwP from controls, or discriminate different levels of 

bradykinesia. 

Yokoe et al. derived 14 parameters of finger tapping in 16 PwP and 32 controls by recording 

with an accelerometer and touch sensor.  They plotted these as radar charts, showing 

different patterns of mean values.  They also applied principal component analysis to the 14 

parameters.  As described in Chapter 1, this is a technique that reduces the dimensionality of 

the data, aiming to derive new meaningful variables for FT performance (the principal 

components).  They found that the first three principal components together accounted for 

80% of the variance of the original data.  The first component was largely composed of mean 

and standard deviation of amplitude and velocity, the second component number of taps and 

inter-tap interval, and the third component standard deviation of finger tapping intervals  

[24].  It is unclear what practical implication these results have.  The top three principal 

components involve speed, amplitude and rhythm, as would be expected, and they did not 

report a logistic regression result for the principal components. 

Stamatakis et al. used an accelerometer to record finger tapping in 36 PwP and 10 control 

participants.  They epoched the raw signal to isolate successive finger tapping movements, 

and then selected 18 movement features from the resultant data (e.g. mean opening angle, 

mean maximum opening acceleration etc).  A ‘greedy backward selection algorithm’ was used 

with ordinal logistic regression to select the most relevant features in the prediction of MDS-

UPDRS FT scores made by 3 clinical raters [28].  They report a Goodman-Kruskal Gamma Index 

of 0.961 between the UPDRS-FT scores predicted by the logistic regression model and the 

mean rater scores (rounded to the nearest integer).  Goodman-Kruskal is a test of rank 

correlation.  They obtained similarly very high Goodman-Kruskal gamma index scores for the 

rank correlations between the human clinical raters (0.87 to 0.97), despite previously 

published measures of interrater agreement for UPDRS-FT suggesting only moderate to good 

agreement (e.g. intraclass correlation of 0.58 [32]).  This perhaps suggests a tendency for 

Goodman-Kruskal to produce higher results per se with UPDRS-FT.  They also reported AUC 

for binary UPDRS-FT classifications as follows: 0 vs 123 of 0.945, 01 vs 23 of 0.919, 012 vs 3 of 

0.970.  The authors excluded the six UPDRS-FT grade 4 scores in their study, “as by definition 
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they were not able to perform the task”, meaning that the classification task was only for 4 

categories, not 5 as per standard UPDRS-FT. 

Kim et al. derived 14 variables from finger tapping measured by gyroscope in 40 PwP.  They 

performed stepwise multiple linear regression using these tapping features for each of two 

clinical raters.  The ability of each regression model to discriminate different clinical scores 

was evaluated by ANOVA and post-hoc analysis.  In the post-hoc comparisons, regression 

models could discriminate all pairs of UPDRS-FT scores, with one exception.  In contrast, single 

tapping features (e.g. coefficient of variation of angular velocity) could not distinguish most 

neighbouring pairs of UPDRS-FT scores, and many non-neighbouring pairs [31]. 

Martinez-Manzanera et al. took 21 features of finger tapping measured with a 9 degrees of 

freedom sensor (accelerometer, gyroscope and magnetometer) and performed backward 

linear regression.  This obtained a model for performance using averaged UPDRS-FT scores 

from four clinical raters, although the method inappropriately converted ordinal rating data 

to continuous data.  Leave-one-out cross validation was employed to estimate the model’s 

performance.  The model accounted for 79% of the total variance in the data.  Their model 

showed a cross validation of “0.38” (the units being UPDRS-FT) which was “0.19 less than the 

average difference in scores across all pairs of investigators” [32].  UPDRS-FT is an ordinal 

scale, not an interval scale, and thus splitting it into fractions such as 0.39 and 0.19 is difficult 

to justify and interpret.  For example, the difference between UPDRS 0 and 1 is not necessarily 

the same size as that between UPDRS 2 and 3, the severity of bradykinesia does not 

necessarily progress smoothly and continuously between each UPDRS grade. 

Lainscsek et al. recorded finger tapping with an infrared camera system in 13 PwP ‘off’ their 

usual medication and 13 controls.  They used a genetic algorithm to select a nonlinear delay 

differential equation and then fitted this to each time series so that its coefficients were used 

as a six-dimensional numerical descriptor.  Differential delay equation (DDE) scores showed a 

95% confidence interval of 1.05 when plotted as Bland-Altman comparison against mean 

UPDRS.  Again, this is an inappropriate use of mean as a measure for ordinal UPDRS data.  The 

DDE scores correlated 0.785 with ‘mean UPDRS-FT’ [36]. 
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Sano et al. recorded finger tapping with an electromagnetic system in 31 PwP and 360 healthy 

controls.  They extracted 21 characteristics from the resultant waveforms and normalised 

these by age, using regression lines.  Principal component analysis was applied to the 

waveform characteristics in the 31 PwP.  The first two principal components reflected motion 

wideness (amplitude) and variation of wideness and frequency (rhythm).  Multiple linear 

regression with stepwise variable selection was undertaken with the principal component 

scores and UPDRS-FT, to produce an equation for calculating a finger tapping severity score.  

Using the leave one out method, this score showed a mean square error of “0.45” UPDRS-FT 

– the mean value of squared errors between the score and UPDRS-FT [43]. 

Gao et al. applied an evolutionary algorithm to finger tapping data collected, using 

electromagnetic sensors, from 107 PwP, 47 people with essential tremor, and 49 control 

participants, to produce a score from -1 to +1 for finger tapping bradykinesia. They report a 

correlation with UPDRS-FT of 0.819 for the right hand and 0.783 for the left hand.  For the 

classification of tapping as PwP or control, the algorithm gave an AUC of 0.899 [44]. 

Khan et al. derived 11 tapping features from video tracking of finger tapping.  13 PwP and 6 

controls performed repeated trials over several days, to make a total of 387 PwP videos and 

84 control videos.  They used a support vector machine technique to create decision 

boundaries between three levels of UPDRS-FT: 0, 1 and a merged category of 2 and 3 (there 

was no grade 4).  Ten-fold cross validation showed a classification accuracy of 88% (quoted in 

the paper’s abstract) for one rater, and 76% (not quoted in the abstract) for a second rater, 

Using the same support vector machine decision boundary technique, they reported an 

accuracy of 95.8% for classification between PwP and control tapping videos, although there 

were 14 false positive samples in the (84 video) control group [149]. 

In another video study, Liu et al. applied a support vector machine decision boundary 

technique to four features of finger tapping: mean tap interval, mean tap amplitude, and their 

respective standard deviations.  This involved 60 PwP (no controls), 360 video clips and 2 

clinical raters.  They report ‘precision accuracy’ (analogous to specificity) of 73% for UPDRS-

FT grade, and ‘recall accuracy’ (analogous to sensitivity) of 95% [135]. 
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Discussion 

In summary, a number of methods have been used to record movement during the finger 

tapping test in people with Parkinson’s (PwP), including surface contact devices, 

gyroscope/accelerometer, electromagnetic devices, infrared cameras and standard video.  

Across all of these, there is an initial step of signal processing in which three-dimensional 

movement is reduced to a one-dimensional time series, for example, finger to thumb distance 

(y axis) over time (x axis).  From the resultant one-dimensional time series, a number of 

further calculations are performed, to produce measures that usually have a theoretical basis 

in the current definition of bradykinesia and its subcomponents (tapping speed, amplitude, 

decrement, rhythm).  These measures are then used to test for group mean differences, 

correlation with clinician rating by UPDRS, classification by logistic regression or classification 

by more complex machine learning techniques. 

It could be argued, as their authors do, that these studies demonstrate “objective 

measurement” or “quantification” of bradykinesia, at least to some extent.  Multiple papers 

report that tapping measures show statistically significant mean differences between PwP 

and controls, as well as significant correlations with UPDRS (sometimes of moderate or high 

strength, though interpretation of correlation strength involves inherently arbitrary 

thresholds).   Furthermore, classification of PwP/control, or classification into UPDRS score 

bands, by logistic regression or more complicated machine learning techniques, has produced 

some accuracy results that are high or appear high enough to be clinically useful.  However, 

all of the studies that attempt to use technology to measure finger tap bradykinesia have 

fundamental limitations, that bring into question the idea that objective quantification has 

been demonstrated.   

Group mean differences in finger tapping measures do not demonstrate that a technology 

quantifies bradykinesia.  In all measures of finger tapping, the PwP and control group results 

overlap considerably.  There is no absolute difference between normal and pathological.  

Some controls can show slower, smaller or more irregular tapping than some PwP.  An 

analogy is group mean height for men versus women.  The group mean height for men is 

significantly higher than that for women, but height is not a good measure of whether an 



 
 

55 

individual is male or female, and nor does height quantify the phenomenon of being male.  

Rather than the mean differences, perhaps the most important result from group comparison 

is that performance on specific finger tapping measures always overlaps considerably 

between PwP and controls, suggesting that individual elements of bradykinesia are strikingly 

non-specific. 

For correlation of technology measures with UPDRS ratings, it is difficult to draw conclusions.  

A common justification for technology to measure finger tapping is that human judgement is 

subjective, and yet a common method to demonstrate objective technology measurement is 

to test how well it correlates with (subjective) human ratings.  It is hard to understand an 

approach that attempts to demonstrate objective measurement by its strength of correlation 

with subjective measurement.  Several studies suggest considerable inter-rater variation in 

human ratings of bradykinesia (a topic investigated in Chapter 3).  Having said this, a different 

approach does support a degree of objective quantification with technology.  Adjusting the 

strength of deep brain stimulation provides a way to improve Parkinson’s movement 

impairment in a stepwise fashion.  Heldman et al. reported higher test-retest reliability 

(intraclass correlation coefficient) and sensitivity (minimal detectable change) with a 

gyroscope measure versus clinician ratings [29]. 

Correlation studies have additional limitations.  Most compare technology measures against 

clinical ratings made by a small number of people, usually one, two or three raters.  It is 

unlikely that such a low number of raters will adequately capture the median of the range of 

scores across raters in general.  In addition, many studies only feature PwP, and not control 

participants.  This would be expected to remove subtle judgements at the lower end of the 

scale, between normal and mild abnormality, presumably artificially strengthening 

correlation.  In addition, many studies take place with Parkinson’s medication with-held at 

the time of recording (‘off’ state).  This would be expected to artificially exaggerate 

bradykinesia, likely also exaggerating abnormalities and making correlation stronger.  

Confidence in any conclusions is undermined further by widespread use of incorrect statistical 

methods.  It is common for the ordinal of UPDRS-FT (or MBRS) to be converted into a 

continuous scale (e.g. scores of “2.6”), followed by calculation of mean values and Pearson 

correlation coefficient, all of which is fundamentally incorrect for ordinal data.   
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Related to the points above is one striking feature of the results taken as a whole: there is a 

wide variability of the results across studies.  For any given mean difference or correlation, 

some studies show statistically significant results, others do not, some show large mean 

differences, others small mean differences, some studies show strong corelations, others 

show much weaker correlations.  Although attempts could be made to partly explain this 

variation by differences in participants and protocols, it seems surprising that detection of 

elements of bradykinesia should be such a fragile process.  If these are studies showing 

objective measurement of the core motor feature of Parkinson’s, then the results would be 

expected to be fairly robust to differences in participants and protocol.  If the findings are not 

robust to slight differences across studies, it seems unlikely they would generalise to clinical 

practice, in which there is natural variation in the clinical features of PwP, and the clinician 

approach to assessment. 

Perhaps one of the reasons that results are not robust across studies, is that they relate to 

measures based on elements of bradykinesia, rather that the specific combination of 

measures in the bradykinesia definition.  Abnormalities of speed alone or amplitude alone are 

not enough to reach the clinical definition of bradykinesia and yet it is these measures in 

isolation that are tested for group mean differences or tested for correlation with UPRDS-FT.  

This is partly because, in current definitions, the presence of bradykinesia requires a specific 

combination of deficits, but the severity of bradykinesia can be scored with only single 

deficits.  It is difficult to understand the rationale for this discrepancy between chosen 

technology measures versus clinical definitions.   

Bradykinesia is a complex, multifaceted phenomenon, based on a definition that includes 

nested ‘and/or’ statements.  The current definition of bradykinesia is a formula, yet no studies 

recreate this formula with objective measures.  It would be straightforward to report the 

combination of a speed measure plus an amplitude decrement measures and/or a measure 

of progressive hesitations/halts.  It is unclear why this has never been pursued. 

Machine learning studies tend to report high accuracy figures for classification into 

PwP/control or bands of UPDRS-FT scores, but they share one major limitation.  This is the 

likelihood that the classification boundaries are based on a degree of ‘over-fitting’ to the 

specific data used in the study, and would not show the same performance figures if applied 
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to PwP in general.  Indeed, machine learning studies almost all test their classification 

algorithms against the same data that was used to train the algorithm, using methods such as 

‘leave one out’ cross validation.  In the absence of a very large number of participants, and 

testing of the algorithms on a completely new set of participants, the accuracy figures are 

likely to be artificially high due to overfitting. 

There is also potentially a basic conceptual flaw in attempts to objectively quantify 

bradykinesia.  That is that the idea of bradykinesia is a construction derived from expert 

consensus and clinician experience.  It does not have its origins in empirical data.  It has its 

origins in experienced clinicians attempting to describe what they have seen in the movement 

of PwP during clinical practice.  As such, it is possible that bradykinesia as currently defined 

does not actually exist, at least in the exact form of its definition.  That is not to deny that PwP 

have characteristic abnormalities of movement, visible to experienced clinicians, but just that 

those abnormalities may not exactly fit the current consensus definition of bradykinesia.  The 

order of events is the opposite of many scientific definitions – for bradykinesia, the concept 

was invented many years before attempts at empirical measurement.  In support of this, the 

definition itself has changed over time and across authors (as described in Chapter 1), 

suggesting it is not a fundamental natural phenomenon. 

In conclusion, a large number of studies have used technology to measure movement during 

the finger tapping test in people with Parkinson’s.  The reported results vary considerably in 

significance, strength of correlation, and degree of accuracy.  It is unclear whether these 

reports really demonstrate objective measurement or quantification of bradykinesia, partly 

because of methodological problems, and partly because the concept of bradykinesia itself is 

an invention of clinicians rather than something that exists exactly as defined. 
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Chapter 3, Parkinsonian hand or clinician’s eye? Finger 

tap bradykinesia interrater reliability for 21 expert 

neurologists 

Introduction  

As described in Chapter 1, Parkinson’s disease (PD) is a clinical diagnosis, and at the centre of 

this is the presence of bradykinesia: “slowness of movement AND decrement in amplitude or 

speed (or progressive hesitations/halts) as movements are continued” [7].  The gold standard 

test for bradykinesia presence and severity is a visual judgement made through the eye of an 

expert clinician, which almost always includes the finger tapping test, whereby an expert 

observes the patient repeatedly tapping their index finger against thumb “as quickly and as 

big as possible” [7, 8].  The finger tapping test is part of two standardised research rating 

scales: the Movement Disorder Society revision of the Unified Parkinson’s Disease Rating 

Scale, MDS-UPDRS [8], Table 1.1, and the Modified Bradykinesia Rating Scale, MBRS [27], 

Table 1.2.  In those scales, and in clinical practice, the observer judges three elements of finger 

tapping bradykinesia - speed, amplitude and rhythm.  They are aggregated into a composite 

score in the MDS-UPDRS, but three separate scores in the MBRS. 

Visual judgement as the gold standard evaluation for bradykinesia is problematic. Human 

assessment of movement is imprecise, with frequent disagreement amongst observers [95].  

Bradykinesia is a complex, heterogeneous clinical sign that may be difficult to gauge 

accurately.  That inaccuracy would mean that subtle changes of parkinsonism are difficult to 

measure, blunting the accuracy of clinical decisions, both for diagnosis and monitoring, and 

research outcomes.  

It is noteworthy that a robust estimate of interrater reliability for finger tapping bradykinesia 

has not been published. There are several reasons for this.  First, almost all studies have used 

very few (between 2 and 5) raters [27, 56, 96, 131, 155, 156], which is likely to be too few to 

assess the range of variability in clinician judgements.  Second, most studies involved clinical 

raters applying the entire UPDRS motor examination to each participant [55, 96, 131, 155-



 
 

59 

157], thus providing additional clinical information that influences the rater’s judgement for 

any specific aspect of the examination.  Henderson et al. [55] previously demonstrated this 

effect, showing that there was greater variation in rater scores when finger tapping was 

assessed in isolation (Kendall’s W 0.5-0.6), rather than alongside other clinical assessments 

(Kendall’s W >0.8).  Third, most studies involved only people with PD, without any healthy 

control participants [27, 55, 56, 155-158].  This artificially avoids the difficult but important 

distinction between subtle bradykinesia and normal older age movement.  Fourth, in some 

studies, Parkinson’s medications are withheld prior to rating, thus exaggerating bradykinesia 

and making differences larger and therefore easier to detect [27, 55, 56, 156].  Fifth, only one 

[158] interrater reliability study has used the current MDS-UPDRS and only two have used 

MBRS [27, 56].  All other previous studies of interrater reliability for bradykinesia have used 

the older (now obsolete) version of UPDRS [55, 56, 96, 131, 155-157, 159], which has 

substantial differences in how the grades of bradykinesia severity are defined. 

These methodological problems mean that we still do not know how well neurologists agree 

on such a central clinical sign, and the published figures for interrater reliability can vary 

widely for finger tapping bradykinesia.  Cohen’s κ of -0.07 (poor agreement or no agreement) 

[131, 160],  κ of 0.47 (fair agreement) [155, 160], and Kendall’s W of 0.87 (almost perfect 

agreement) [157, 160]  have all been reported. We aim to address this by comparing 21 expert 

neurologists’ bradykinesia ratings for finger tapping when no other information is given, in 

people with Parkinson’s and also in people without a neurological diagnosis, with a statistical 

method appropriate for ordinal rating data. 

Materials and Methods  

The study was approved by the North of Scotland Research Ethics Committee, United 

Kingdom Health Research Authority (IRAS project ID 256116). Informed, written consent was 

obtained from all study participants. 

Finger tapping video 

39 people with idiopathic Parkinson’s disease (PD) and 30 controls without a neurological 

diagnosis provided written consent. All PD participants had previously been diagnosed by a 
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movement disorder specialist neurologist at Leeds Teaching Hospitals NHS Trust, United 

Kingdom, according to Movement Disorder Society clinical diagnostic criteria [7].  PD 

participants were subjectively and objectively in the ‘on’ state at the time of participation (no 

medications were withheld). One investigator, SW, graded Hoehn and Yahr stage for each 

participant, and also later scored the presence / absence of visible tremor in each video (but 

did not score any video for bradykinesia). Healthy controls were recruited from the 

companions of patients and hospital/university staff. They had no history of Parkinson’s or 

other neurological diagnosis, and were not taking any medication that could induce 

parkinsonism.  

Participants rested their elbow on a chair arm with the forearm lifted at 45°. In accordance 

with MDS-UPDRS instructions, each participant was instructed to tap their index finger and 

thumb together “as quickly and as big as possible” with each hand examined separately. The 

participants tapped for just over 10 seconds, because the MDS-UPDRS specifies 10 taps while 

the MBRS specifies 10 seconds [8, 27]. 

We recorded videos of each hand during the task using a standard smartphone (iPhone SE) 

placed on a tripod (60 frames per second, 1920x1080 px) under ambient lighting. Only the 

hand and part of the forearm were within the video frame. The distance from camera to hand 

was approximately 1m and digits 1 and 2 were closest to the camera. 

One video was discarded because the hand moved outside the video frame, making 137 

videos: 77 Parkinson’s hands and 60 control hands. Each video was edited to contain 1 second 

prior to tapping onset and 10 seconds of finger tapping. 

Clinical rating 

We invited 21 consultant neurologists that specialise in movement disorders, from a range of 

clinics in the United Kingdom, to each rate 30 videos of finger tapping.  Python [161] was used 

to select 30 random videos for each neurologist from the total set of 137 videos – for each 

clinician the list of all videos was shuffled randomly and the first 30 used. Each video was 

rated according to the MDS-UPDRS Item 3.4 Finger Tapping [8] (first ten taps) and the MBRS 

[27] (the full 10 seconds of tapping), Table 1.1 and Table 1.2. The neurologists undertook the 
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task independently, at separate locations, on their own computer screen, and were blinded 

to both PD / control status and to each other’s scores. 

Inspired by informal comments made by the first two raters, we added an additional question 

for the subsequent 19 neurologists - asking them to judge whether the hand was most likely 

to be from a control or PD participant.  This was in recognition that an experienced clinician 

may form an overall, subjective impression about whether the tapping appears Parkinsonian 

or not, that is not necessarily strictly based on bradykinesia criteria. 

Outcomes 

The primary outcome is the interrater reliability for MDS-UPDRS finger tapping scores, 

reported as the intraclass correlation coefficient (ICC), which was the basis of the statistical 

power calculations. The secondary outcomes are: correlation coefficients describing the 

relationship between MDS-UPDRS score and each of the three MBRS score components, the 

proportions of healthy controls rated as bradykinesia by MBRS sub-score combination, and 

the accuracy of clinicians in judging PD from controls. 

Statistical analysis 

Interrater reliability reflects the variation between more than one rater measuring the same 

group of participants [162].  We report ICCs for both absolute agreement and consistency. 

Absolute agreement concerns the degree to which one rater’s score (x) is exactly equal to 

another’s (y), whereas consistency concerns the degree to which x can be related to y plus a 

systematic error (x + c).  

For each ICC, we calculate scores using a standard linear model, which assumes the underlying 

normal distribution of MDS-UPDRS scores, and also a more sophisticated novel approached 

based upon cumulative linked mixed models (CLMMs), which is more appropriate for dealing 

with ordinal data.  The normal distribution assumption of the first model is clearly incorrect, 

but allows direct comparison to previous research. Both approaches are two-way random 

effects models, where each item is assessed by the same set of raters randomly selected from 

a larger population of raters.  Note that, typically, a two-way random effects model would 

have all raters viewing all videos, which is impractical for our scenario. Our approach is 
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equivalent to taking a random sample of this “ideal” complete dataset, which gives unbiased 

estimates but enlarged confidence intervals. 

The random effects models consist of a random effect for video number (capturing the 

tendency of a video to be scored higher or lower than expected), a random effect for rater 

number (to capture the tendency of a rater to under-/over-rate videos), a fixed effect for 

whether the video is of a patient or control participant to give a baseline score in each case, 

and an intercept term. If 𝜎!" denotes the variance of the random effect for video number, 𝜎#" 

is the variance of the random effect for rater, and 𝜎$" is the variance of the residual error then 

the agreement ICC is calculated as follows. 

𝜎!"

𝜎!" +	𝜎#" +	𝜎$"
 

Meanwhile the consistency ICC is calculated as follows. 

𝜎!"

𝜎!" +	𝜎$"
 

We fit two models to the data for calculating the ICC. The first uses a normal approximation 

to the ordinal score as in previous work. Our second model keeps the dependent variable 

ordinal using a cumulative linked mixed model (CLMM) – essentially fitting a latent normal 

model with the addition of “cut-points” which split the latent normal distribution into 

segments corresponding to the dependent ordinal variable [163]. 

Whilst this latter CLMM readily gives the variance of the random effects for video numbers 

and raters, it is not initially clear how to define the residuals, which are required to calculate 

the ICC. In effect we need to define the “optimal” value in the latent space for each level that 

the ordinal variable can take. We took the following approach: after fitting the latent normal 

distribution and cut-points the optimal points were defined as the median of each segment 

of the normal distribution (calculated using Monte Carlo). With these points defined, the 

residual can be calculated using the latent value of the fitted model on each data point and 

the corresponding optimal values. 
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The study power calculation was done via simulation using the normal approximation to the 

ordinal variable, based on pilot data with two raters.  Based on recruiting 20 raters and 

covering a variety of different strength ICC values, we determined that giving 30 random 

videos to each rater allows us to calculate the ICC to within 0.05 in 95% of trials and to within 

0.03 in 80% of trials.  Models were fitted using the R libraries ‘glmer’ and ‘clmm’, whilst power 

calculations were done using the Python library ‘statsmodels’ [161]. 

Secondary analysis consisted of calculating the three Spearman correlation coefficients of the 

relationship between the median MDS-UPDRS score across all raters, with the each of the 

median MBRS speed score, amplitude score, and rhythm scores. 

 

Results 

Expert neurologists’ rating of finger tap bradykinesia in people with Parkinson’s and controls 

The age, gender and Hoehn and Yahr scores for the participants are given in Table 3.1. The 

median number of raters per video was 5 (range 1 to 12, interquartile range 3 to 7). In the 

random selection of 30 videos per rater, 4 videos from the total of 137 were not allocated to 

any rater, so that the total number of unique hand videos rated was 133.  A total of 630 video 

ratings were made (21 raters, 30 videos each): 325 of these were ratings of PD videos, and 

305 ratings of healthy control videos.   

The distribution of MDS-UPDRS finger tapping scores for PD and control videos are shown in 

Figure 3.1.  53% of control participant videos were given an MDS-UPDRS finger tapping score 

greater than 0.  The distribution of MBRS scores for finger tapping speed, amplitude and 

rhythm are shown in Figure 3.2.  Across both rating scales, scores of grade 1 (‘slight’ 

impairment by MDS-UPDRS, ‘mild’ impairment by MBRS) were similarly common in both 

control videos and PD videos.  The proportion of videos scored grade 1 by MDS-UPDRS was 

26% in PD and 34% in healthy controls, while the proportions of videos scored grade 1 for 

MBRS speed, amplitude and rhythm were 40%, 22%, 31% respectively in PD, compared with 

31%, 21%, 27% respectively in controls. 
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Table 3.1.  Participant (hand video) characteristics, and proportion of finger tapping videos 
rated as bradykinesia and its components by MBRS subscores.  Hand video characteristics are 
split by Parkinson's hands (n = 73) and control hands (n = 60).  H&Y: modified Hoehn and Yahr scale 

[164].  IQR: Interquartile Range. 

 

 People with 
Parkinson’s 

Healthy control 
participants 

Age (Std. Dev.) yrs 68 (9.6) 59 (19.4) 

Male/Female 47/26 22/38 

Median years since diagnosis 4 n/a 

Median H&Y [IQR] 2 [1,3] n/a 

H&Y = 1 32  

H&Y = 1.5 2  

H&Y = 2 12  

H&Y = 2.5 4  

H&Y = 3 19  

H&Y = 4 4  

H&Y = 5 0  

 People with 
Parkinson’s 

Healthy control 
participants 

Impaired speed 77% 43% 

Impaired rhythm 72% 35% 

Impaired amplitude 70% 30% 

Impaired speed and rhythm 62% 19% 

Impaired speed and amplitude 61% 19% 

Bradykinesia (Impaired speed + impaired 
rhythm and/or impaired amplitude) 64% 24% 
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Figure 3.1.  Histogram showing the distribution of MDS-UPDRS finger tapping scores for all ratings of 

the hands of people with Parkinson’s (orange bars) and control participants (blue bars). 

 

 

 
Figure 3.2.  Histograms showing the distribution of MBRS finger tapping scores for all ratings of the 

hands of people with Parkinson’s (orange bars) and control participants (blue bars). 
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Bradykinesia is defined as slowness of movement AND decrement in amplitude or speed (or 

progressive hesitations/halts) as movements are continued [7].  Therefore, the MBRS 

subscores for finger tapping can be used to classify tapping as bradykinesia if a rater scores a 

video >0 for speed and also >0 for amplitude and/or rhythm.  Table 3.1 shows the proportions 

of videos in PD and controls (respectively) with impaired speed, rhythm, and amplitude, as 

well as combinations of those deficits, and the specific combination that meets the definition 

of bradykinesia.  Among PD videos, 77% were rated as slow, and 64% were rated as 

bradykinesia by MBRS (>0 for speed and >0 for one or more of amplitude or rhythm).  Among 

videos of control participants, 43% were rated as slow, and 24% were rated as bradykinesia 

by MBRS (>0 for speed and >0 for one or more of amplitude or rhythm).  Thus, one in four 

control participant hand videos were rated as bradykinesia by MBRS. 

 

Interrater reliability for finger tapping bradykinesia 

The intraclass correlation coefficient (ICC) for MDS-UPDRS rating of finger tapping 

bradykinesia for exact agreement was 0.53 using the normal model (‘fair’ [165]  or ‘moderate’ 

[162]) and 0.65 using the cumulative linked mixed model (‘good’ [165] or ‘moderate' [162]). 

The ICC for consistency (ratings related to each other with a systematic error) was 0.58 using 

the normal model (‘fair’ [165] or ‘moderate’ [162]), and 0.78 using the cumulative linked 

mixed model (‘good’ [165] or ‘moderate' [162]). 

To assess model discrimination for the CLMM, we investigated the predicted values with the 

original ratings. The CLMM predicts the correct MDS-UPDRS score with 70% accuracy and is 

accurate to within one point on the five-point MDS-UPDRS finger tapping scale 98% of the 

time. 

Figure 3.3 shows the variation in clinical ratings. Each point is an individual clinical rating of a 

video: the x-axis orders the videos by CLMM random effect size, and the y-axis is the clinical 

MDS-UPDRS rating. The values are jittered in the y-axis for visual clarity. It demonstrates the 

considerable variation in movement disorder specialist judgement of individual videos, with 

disagreement common. 
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Figure 3.3.  Distribution of movement disorder specialist MDS-UPDRS ratings for finger tapping 

videos.  Each circle represents a video rating (jitter applied to aid visualisation).  Orange circles: 

people with Parkinson’s.  Blue circles: healthy control participants.  Videos are ordered on the x-axis 

by the video random effect size according to cumulative linked mixed model, CLMM (i.e. by severity of 

bradykinesia).  It can be seen that there is considerable variation in clinician ratings. 

 
 
Correlations between finger tapping MDS-UPDRS and individual MBRS elements 

The Spearman correlation coefficients for MDS-UPDRS finger tapping scores and each of the 

MBRS subcomponent scores were R=0.77 for speed, R=0.78 for amplitude, and R=0.68 for 

rhythm, Figure 3.4. 
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Figure 3.4.  Correlation between MDS-UPDRS scores and MBRS subscores (speed, amplitude, 

rhythm). Each blue circle is one rater and one video. Jitter added to aid visualization. Correlation 
strengths are similar, suggesting raters do not prioritise any particular bradykinesia subcomponent in 

assigning an overall MDS-UPDRS score. 

 

 

Neurologists’ judgement of whether finger tapping video shows a person with Parkinson’s or 

control 

The movement disorder specialists correctly judged PD or control status in 70% (400 of 570) 

videos. The median number of correct judgements was 20/30 (67%), with a range from 17/30 

to 27/30, interquartile range 18.75 to 23.5 (out of 30). 

Of those videos judged to show a PD hand, 77% were formally rated as showing bradykinesia 

by the relevant MBRS subscore combination.  Of the correctly identified PD videos, 84% were 

scored as bradykinesia.  In other words, the movement disorders specialists’ overall 

perception of PD or control was not strictly related to the presence or absence of bradykinesia 

by MBRS subscore combination.  Nor was it simply explained by visible tremor.  Of 36 PD video 

ratings not rated as bradykinesia but judged to show a PD hand, only 8 had visible tremor in 

the video (while 9/69 PD videos rated no bradykinesia and judged to show a control had 

visible tremor).  Among videos correctly judged to show a control hand, 5% were formally 

judged as showing bradykinesia.  Of the correct control judgements 3% were scored as 

bradykinesia. 



 
 

69 

Discussion 

Our results demonstrate that even expert neurologists frequently disagree about the level of 

bradykinesia on finger tapping, despite clinical examination representing the gold standard 

for determining the presence and degree of bradykinesia [7, 8].  The 21 movement disorder 

specialists showed only ‘moderate’ agreement [162] for MDS-UPDRS finger tapping ratings 

(ICC=0.53, CLMM-ICC=0.65).  Furthermore, the same movement disorder specialists classified 

one in four healthy control participants as showing bradykinesia on finger tapping (using 

MBRS sub-scores to match the definition of bradykinesia), and the proportions of participants 

showing slight or mild abnormalities on MDS-UPDRS and MBRS was similar in PD and control 

videos.  This suggests that finger-tapping bradykinesia is a non-specific sign and overlaps with 

changes in movement associated with normal ageing, at least when mild.  It is perhaps 

unsurprising that bradykinesia is difficult to judge.  It is a heterogeneous clinical sign, and 

human vision cannot accurately measure and compare movement speed, amplitude and 

rhythm in isolation, much less in simultaneous combination. 

Our findings are particularly robust because they are based on a larger number of raters (21) 

and unique videos (137) than previous studies.  Each neurologist rated 30 videos and the 

median number of raters per video was 5, but these numbers were based on statistical power 

calculations, and the random distribution of videos to raters mean that variation among the 

whole group is well characterised.  Another strength of this study is the use of a cumulative 

linked mixed model, respecting the ordinal nature of MDS-UPDRS scores, a consideration that 

has been neglected in previous research. Furthermore, we not only reported MDS-UPDRS 

finger tap ratings, but also MBRS ratings, which separately score each of tap speed, amplitude 

and rhythm.  In contrast to a 2011 study, which found that clinicians weighted amplitude and 

rhythm more than speed in UPDRS bradykinesia scores [27], we found strong correlations for 

all MBRS subscores with MDS-UPDRS (0.68-0.78), with rhythm the weakest of the three, 

suggesting that clinicians do not favour any particular subcomponent of bradykinesia in finger 

tapping judgements.  We also reported consistency ICCs, which were a little higher than 

agreement results (ICC=0.58, CLMM-ICC=0.73), but in a five-point scale, consistent inter-rater 

variation (a consistent difference between raters) is of little clinical relevance compared with 

absolute rater agreement.   For example, two raters who disagreed by 2 or 3 points on every 
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video would nevertheless show very high consistency ICC if that 2 or 3 point difference in 

ratings was consistently present (and in the same direction) across all the videos. 

A previous study of a UPDRS ‘teaching tape’ supports the idea that finger tapping bradykinesia 

is difficult to judge [95].  226 raters were tested in their UPDRS motor scores for 4 people with 

PD (using video recordings).  A ‘pass’ in this test was defined as a score within the 95% 

confidence interval of 3 international Parkinson’s disease experts for each case.  Only 54.6% 

of raters ‘passed’ the 4 cases, and of those that ‘failed’ first time, 70.6% failed finger tapping 

rating. 

Previous studies of finger tapping interrater reliability by UPDRS grading have reported 

Kendall’s W 0.84 and 0.87 [157], weighted κ of 0.53 to 0.71 [96], 0.72 to 0.86 [156], κ of 0.47, 

0.44, -0.07 [131, 155], and Kendall’s t of 0.88 and 0.84 [158], while MBRS raters showed 

Pearson correlations of 0.51, 0.77 and 0.69 respectively [27].  It is difficult to draw conclusions 

from those results because of methodological limitations that include low numbers of raters 

and/or people with PD [27, 56, 96, 131, 155, 156, 158] (including non-overlapping subsets of 

raters [157]),  the absence of ‘healthy control’ participants [27, 55, 56, 155-158], participants 

‘off’ their usual medication [27, 55, 56, 156, 158], statistical methods inappropriate for ordinal 

data [27], measures of simple correlation rather than agreement [158], and raters gaining 

additional information from the entire UPDRS or UPDRS motor exam [55, 96, 131, 155-157]. 

It could perhaps be argued that the influence of a broader UPDRS assessment upon finger 

tapping scores is appropriate, reflecting clinical practice, in which finger tapping would never 

be tested in isolation.  However, busy routine clinics do not involve enough time for the 

complete UPDRS (a “vast instrument” [55]).  Furthermore, limb bradykinesia must be 

documented to establish a PD diagnosis, although bradykinesia also occurs in the face, voice, 

and axial/gait domains [7].  In addition, UPDRS bradykinesia items are commonly analysed as 

a standalone ‘bradykinesia’ endpoint in trials [27], or used as a gold standard for 

demonstrating that technological devices ‘quantify’ bradykinesia [12-47].  Most 

fundamentally, finger tapping bradykinesia is presented in the literature as a measure of a 

specific phenomenon with a specific definition.  It is not defined as a surrogate for an overall 

impression.  If the latter is to some extent true, then it becomes less clear exactly what 
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bradykinesia actually is [69], and less clear that movement disorder specialists are able to 

define and measure this “cardinal manifestation” [7] of PD. 

In our results, one in four control videos were rated as showing finger tapping bradykinesia 

(using MBRS subscores).  This is consistent with a previous study in which three trained nurses 

and one movement disorder specialist rated older people with no clinical Parkinson’s 

according to a modified UPDRS motor score [96].  They gave 74 out of 75 participants a score 

greater than 0  (mean score 13.4 out of 127).  Of course, the MDS diagnostic criteria for PD 

are not based on bradykinesia alone, and instead require a combination of clinical features to 

be present or absent to diagnose PD [7].  However, to some extent this only amplifies the 

challenge for clinician reliability, because other clinical features such as tremor are also non-

specific, and there is considerable evidence that the overall diagnostic assessment of PD is 

difficult, with less-than-ideal sensitivity and specificity.  This includes misdiagnosis rates of PD 

versus Essential tremor of one in three [91], as well high false positive (17.4-26.1%) and false 

negative (6.7-20%) rates for the diagnosis of PD based on video examinations of people with 

tremor [92].  One postmortem study showed misdiagnosis of PD in 24 out of 100 cases [132]. 

We asked the clinicians to judge whether the hand in the video was most likely to be that of 

a person with PD or a control.  Of those videos guessed to show the tapping of a person with 

PD, only 77% were judged to show bradykinesia by the appropriate combination of MBRS 

subscores.  This suggests the possibility that clinicians are forming an overall impression of 

finger tapping that does not purely follow the formal definition of bradykinesia: a gestalt 

perception or intuitive pattern recognition of finger tapping normality / abnormality beyond 

the presence or absence of bradykinesia as defined by formal criteria [140-142].  In support 

of this idea, a clinicopathological study found that experienced movement disorder specialists 

showed a higher accuracy than claimed for most clinical diagnostic criteria, for the diagnostic 

distinction of different forms of parkinsonism.  The authors state that these experts, “may be 

using a method of pattern recognition for diagnosis that goes beyond any formal set of 

diagnostic criteria” [166]. 

In conclusion, a classic sign of a cardinal clinical feature of a common neurological disease - 

finger tapping bradykinesia - is not easy to reliably see, even for expert eyes.  Our findings 
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suggest that bradykinesia is to some extent a phenomenon present in the eye of the clinician 

rather than simply in the hand of the person with Parkinson’s disease. 
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Chapter 4, Computer vision to measure finger tapping 

bradykinesia in video 

Introduction 

The phenomenon of bradykinesia is considered fundamental to Parkinson’s diagnosis and 

assessment, but relies on the subjective visual judgement of a small group of experts.  As 

Chapter 3 showed, the human judgement of bradykinesia is difficult, with only moderate 

agreement between experts, and also a significant proportion of control videos judged to 

show bradykinesia.  Previous attempts to use technology to automate bradykinesia 

assessment have frequently relied on specific hardware or patient interaction with a specific 

app, as described in Chapter 2. 

The primary aim of the work in this chapter is to provide proof-of-concept that the assessment 

of bradykinesia can be automated using simple camera input, negating the impact of inter-

rater variability and providing easily accessible clinical decision support. I describe two 

computer-vision based approaches to this, using video of hands performing the finger tapping 

test for bradykinesia.   

The first approach – Study 1 – derives a measure of whole-hand movement over time from 

the video, and derives several pertinent features from this time series, chosen to reflect the 

subcomponents of bradykinesia.  These features are used with machine learning techniques 

to classify tapping videos into two levels of bradykinesia: (a) no or slight bradykinesia, versus 

(b) mild to severe bradykinesia, and also to classify videos as Parkinson’s versus control.   

The second approach – Study 2 – uses a deep learning method to track the positions of key 

landmarks on the hand, allowing the relative distance between finger and thumb to be 

measured over time.  From that time series, several features reflecting bradykinesia 

subcomponents are again derived.  Each of these features is correlated against a large group 

of clinical ratings for the tapping videos 
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Methods 

Ethical review 

The work was approved by the North of Scotland Research Ethics Committee, United Kingdom 

Health Research Authority (IRAS project ID 256116).  All participants gave written, informed 

consent. 

Participants and video recording  

Two groups of participants were recruited: people with idiopathic Parkinson’s disease and 

control participants who did not have any neurological diagnosis (or medication) with the 

potential to affect movement. 

Participants with idiopathic Parkinson’s disease had been previously diagnosed by a 

movement disorder specialist neurologist at Leeds Teaching Hospitals NHS Trust, United 

Kingdom, according to Movement Disorder Society clinical diagnostic criteria [7].  They were 

subjectively and objectively in the ‘on’ state at the time of video recording (no medication 

was withheld prior to recording).  Recruitment did not exclude patients with postural hand 

tremor or dystonia.  The control participants were recruited from the companions of patients, 

or hospital/university staff. 

Video recordings were made of participants’ hands performing the finger tapping test for 

bradykinesia.  Each hand (left, right) was filmed individually.  In study 1, 70 finger tapping 

videos were used, from 20 participants with Parkinson’s (40 hands) and 15 control 

participants (30 hands).  In study 2, 137 videos were used, as the original participant group 

was extended to 39 Parkinson’s participants (77 hands) and 30 controls (60 hands).  The 

Parkinson’s group in study 2 was 77 hands not 78, because in one video the hand moved out 

of the video frame, and the video was discarded. 

Participants rested their elbow on a chair arm with the forearm lifted to a 45 degree angle. 

The hand was free to move as per the protocol of the Movement Disorder Society revision of 

the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Item 3.4 Finger Tapping [8].  Only 

the hand/forearm was within the video frame. The distance from camera to hand was 

approximately 1m, but not tightly defined. Digits 1 and 2 were closest to the camera. No 
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specific instructions were given for the position of digits 3 to 5, and participants were free to 

position these digits as they preferred, although the researcher gave a brief demonstration in 

which digits 3 to 5 were extended. 

A smartphone, placed on a tripod, was used to record standard video (60 frames per second, 

1920x1080 pixel resolution), with only ambient lighting. Participants were instructed to tap 

their index finger and thumb together “as quickly and as big as possible” for 15s [8]. 

 

 

Methods: Study 1 

The degree of bradykinesia in each video was independently rated by two consultant 

neurologists with a special interest in Parkinson’s, according to the section 3.4 of the MDS-

UPDRS scale (UPDRS-FT), Table 1.1 [8].  The raters were blinded to patient/control group. 

For both groups, the correlation between UPDRS-FT scores from the right and left hand for 

an individual participant was very low (Patients k = 0.17, 95% CI: − 0.18 to 0.47, Controls k = 

0.18, 95%, CI: − 0.07 to 0.41). Consequently, we treated videos from each hand as 

independent samples.  

 

Data processing  

A schematic of the data processing framework is presented in Figure 4.1.  
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Figure 4.1.  Illustration of the data processing in which raw video is converted to an anonymous 1D 

time series. Raw video is first segmented using a convolutional neural network. The segmentation is 

refined using the grabcut method. Frame-by-frame movement of the hand is extracted using optical 

flow. The optical flow field is then reduced so that the magnitude of movement between two frames is 
summarised by a single value. 

 

Initially, the video frames were segmented to the pixels corresponding to a participant’s hand.  

Traditional skin colour methods were unsuitable, given the uncontrolled lighting conditions 

used.  Instead, the hand regions of interest were first detected using a convolutional neural 

network, originally proposed by Bambach et al.  [167].  The detector is based on a MobileNet-

V2 mode architecture and the single shot multi-box approach using the TensorFlow Object 

Detection API [168, 169].  This architecture uses depth-wise separable convolutions that 

reduce the computing overhead, so that it can be used in mobile devices.  We trained our 

model using manual annotation of the hand region in 500 randomly selected frames from our 

dataset. 

The output of the model was refined using a secondary pixel-level segmentation to remove 

erroneous background pixels. We used the ‘GrabCut’ method [170], which iteratively updates 

two Gaussian Mixture Models representing the background and foreground.  We set two 

mixture components to model the foreground colours and 3 mixture components for the 

background colours.  

The segmented frames were then converted into an optical flow field [108].  In such a field, 

each position corresponds to the vector pixel movement of a point object between two 

sequential frames. The magnitude of the vector thus represents the instantaneous speed of 
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a point (in pixels/frame). We sum the magnitude at each point in the region of interest to 

obtain a metric of overall hand movement.  

Optical flow magnitude is affected by camera distance and hand size (as well as actual 

movement), so to convert optical flow magnitude into true hand velocity, we scale the 

magnitude by the number of pixels in the hand region of interest, such that our metric Mt is:  

 

where H and W are the height and width of the optical flow field, u and v are the horizontal 

and vertical components of the flow, and b is the pixel mask obtained from the image 

segmentation. By evaluating Mt over a sequence of video frames we produce a 1D signal over 

time. Examples of the signal are shown in Figure 4.2.  

 

Artificial Intelligence In Medicine 110 (2020) 101966

3

no. 224848). Patients with Parkinson’s disease, previously diagnosed by 
a consultant neurologist at Leeds Teaching Hospitals NHS Trust, were 
invited to attend a research clinic appointment. All patients were in the 
‘on’ motor state, by which we mean that: (i) patients reported that they 
felt ‘on’ – a widely accepted and understood term that patient’s use to 
describe an overall sense that they feel their medications are working 
and they have reduced symptoms of Parkinson’s [2], (ii) the neurologist 
reported the patient looked ‘on’ – a clinically accepted term for recog-
nising a response to medications, and (iii) no medication had been 
withheld prior to recording. 

Control participants were invited from the companions of partici-
pants, or from hospital staff. Control participants did not have any 
neurological diagnosis or take any medication that could cause Parkin-
sonism, tremor, bradykinesia or other movement impairment. 

Each hand was filmed tapping forefinger and thumb ‘as quick and as 
big as possible’ for 15 s. This convenience sample comprised 40 patient 
hands and 30 controls hands (20 patient participants and 15 control 
participants). 

The recordings were made using an integrated smartphone camera 
(iPhone SE), set to 60 frames per second, 1920 × 1080 pixels, and placed 
on a tripod, with only ambient lighting. Participants were asked to rest 
their elbow on a chair arm during the finger tapping and only the hand/ 
forearm was filmed (no identifiable patient details were filmed). The 
distance from camera to hand was not tightly defined; in practice the 
camera was positioned at approximately 1m from the participant. The 
lateral (thumb) surface of the hand faced the camera. There were no 
specific instructions for the position of digits 3–5. 

The degree of bradykinesia in each video was independently rated by 
two consultant neurologists with a special interest in Parkinson’s, ac-
cording to the section 3.4 of the UPDRS scale (UPDRS-FT) (Table 1) 
[11]. The raters were blinded to patient/control group. 

For both groups, the correlation between UPDRS-FT scores from the 
right and left hand for an individual participant was very low (Patients 
k = 0.17, 95%CI: − 0.18 to 0.47, Controls k = 0.18, 95%CI: − 0.07 to 
0.41). Consequently, we treated videos from each hand as independent 
samples. 

3.2. Data analysis 

3.2.1. Data processing 
A schematic of the data processing framework is presented in Fig. 1. 
Initially, the video frames were segmented to pixels corresponding to 

a participant’s hand. Traditional skin color methods were unsuitable, 
given the uncontrolled lighting conditions used. Instead, the hand re-
gions of interest were first detected using a convolutional neural 
network, originally proposed by Bambach et al. [29]. The detector is 
based on a MobileNet-V2 mode architecture and the single shot 
multi-box approach using the TensorFlow Object Detection API [30,31]. 
This architecture uses depth-wise separable convolutions to reduce 

computer overhead for mobile devices. We trained our model using 
manual annotation of 500 randomly selected frames from our dataset. 

The output of the model was refined using a secondary pixel-level 
segmentation to remove erroneous background pixels. We used the 
grabcut method [32], which iteratively updates two Gaussian Mixture 
Models representing the background and foreground. We set two 
mixture components to model the foreground colors and 3 mixture 
components for the background colors. 

The segmented frames were then converted into an optical flow field 
[33]. In such a field, each position corresponds to the vector pixel 
movement of a point object between two sequential frames. The 
magnitude of the vector thus represents the instantaneous speed of a 
point (in pixels/frame). We sum the magnitude at each point in the re-
gion of interest to obtain a metric of overall hand movement. 

Optical flow magnitude is affected by camera distance and hand size 
(as well as actual movement), so to convert optical flow magnitude into 
true hand velocity, we scale the magnitude by the number of pixels in 
the hand region of interest, such that our metric Mt is: 

Mt =

∑H
j
∑W

i bij
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

ij + v2
ij

√

∑H
j
∑W

i bij
, (1)  

where H and W are the height and width of the optical flow field, u and v 
are the horizontal and vertical components of the flow, and b is the pixel 
mask obtained from the image segmentation. By evaluating Mt over a 
sequence of video frames we produce a 1D signal over time. Examples of 
the signal are shown in Fig. 2. 

3.2.2. Feature extraction 
Candidate features were derived from the 1D signal via clinical 

knowledge and visual inspection. In particular, we derived a set of 
features that described the frequency, amplitude, and tap-to-tap vari-
ability, to reflect the UPDRS assessment criteria as follows. 

Frequency: Tapping frequency was estimated as the frequency cor-
responding to the maximal amplitude peak in the fast Fourier transform 
(FFT) spectrum. This assumes that the finger tapping motion corre-
sponds to the greatest movement (and thus energy) between frames and 
that other movements, such as finger tremor, have smaller magnitude. 

Amplitude: Energy spectral density was calculated as the squared 
integral of the FFT spectrum, a measure that would be expected to in-
crease with the amplitude of tapping. In addition, we assumed that 
bradykinesia movement is distinctive in some frequency bands. There-
fore the energy spectral density is separated into six non-overlapping 
equal frequency bands ranging from 0 to 18.36 Hz with bandwidth in-
terval 3.06 Hz. The upper frequency threshold was selected heuristically 
to avoid having multiple uninformative zero-energy frequency bins. The 
threshold represents the frequency up to which, on average, 99% of the 
signal energy is contained. 

Variability: Two variability features were derived using the peaks of 

Fig. 1. Illustration of the data processing in which raw video is converted to an anonymous 1D time series. Raw video is first segmented using a convolutional neural 
network. The segmentation is refined using the grabcut method. Frame-by-frame movement of the hand is extracted using optical flow. The optical flow field is then 
reduced so that the magnitude of movement between two frames is summarised by a single value. 

S. Williams et al.                                                                                                                                                                                                                                
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Figure 4.2.  Examples of the optical flow magnitude time series, plots (c)-(f) are discussed in the 
section headed ‘misclassified UPDRS-FT categories’. (a) – no bradykinesia (UPDRS-FT = 0). (b) – 

severe bradykinesia (UPDRS-FT = 4). (c) – UPDRS-FT = 0–1 misclassified as UPDRS- FT=2–4, 

close to decision boundary. (d) – UPDRS-FT = 2–4 misclassified as UPDRS- FT=0–1, close to 

decision boundary. (e) – UPDRS-FT = 0–1 misclassified as UPDRS- FT=2–4, far from decision 

boundary. (f) – UPDRS-FT = 2–4 misclassified as UPDRS- FT = 0–1, far from decision boundary. 
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Feature extraction  

Candidate features were derived from the 1D signal via clinical knowledge and visual 

inspection. In particular, we derived a set of features that described the frequency, amplitude, 

and tap-to-tap variability, to reflect the MDS-UPDRS finger tapping assessment criteria, as 

follows.  

Frequency: Tapping frequency was estimated as the frequency corresponding to the maximal 

amplitude peak in the fast Fourier transform (FFT) spectrum. This assumes that the finger 

tapping motion corresponds to the greatest movement (and thus energy) between frames 

and that other movements, such as tremor, have smaller magnitude.  

Amplitude: Energy spectral density was calculated as the squared integral of the FFT 

spectrum, a measure that would be expected to increase with the amplitude of tapping. In 

addition, we assumed that bradykinesia movement is distinctive in some frequency bands. 

Therefore, the energy spectral density is separated into six non-overlapping equal frequency 

bands ranging from 0 to 18.36 Hz with bandwidth interval 3.06 Hz. The upper frequency 

threshold was selected heuristically to avoid having multiple uninformative zero-energy 

frequency bins. The threshold represents the frequency up to which, on average, 99% of the 

signal energy is contained.  

Variability: Two variability features were derived using the peaks of the optical flow 

waveform. Peaks were calculated via the MATLAB function findpeaks with zero minimum 

peak prominence [171].  Peaks were then classified as maxima or minima by fitting a 1D 

Gaussian mixture model with two clusters to the peak amplitude values. We then defined:  

Jitter: We hypothesise that there are differences between the hand closing and hand opening 

motions.  From visual inspection, we observed differences in higher frequency movement 

between the signal maxima and minima – troughs in the signal appeared more jittery than 

the peaks.  To quantify the jitter we include the ratio of number of maxima to number of 

minima over the entire time series as a predictor.  

Peak-to-peak variability: was calculated as the standard deviation of the time between 

maxima peaks.  This feature models variation in tapping frequency across the time series and 
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may be considered analogous to the standard deviation of RR intervals (SDRR) for ECG signals 

[172]. 

 
Classification  

We performed binary classification using Nai ̈ve Bayes (NB), logistic regression (LR), and both 

linear and RBF-based support vector machines (SVM-L and SVM-R, respectively) [173] to 

predict two outcomes: (1) a UPDRS-FT score > 1, and (2) clinical diagnosis of Parkinson’s 

disease (previous clinical diagnosis by a consultant neurologist).  Where there was 

disagreement in rater UPDRS-FT scores, the higher score was selected for training of the 

models. 

Given the relatively small number of samples in the dataset we began by reducing the feature 

space into two dimensions using principal component analysis.  Indeed, preliminary work 

fitting models with all 10 features led to significant overfitting.  We then explore the effect of 

analysing up to 5 principal components, to look for any additional gain in accuracy.  

The NB model was chosen as a simple baseline classifier providing a sensible lower bound for 

performance.  

LR provides a linear separation of the data points and this simplicity may lead to lower 

generalisation error. We incorporated ridge (L2) regularisation with strength determined via 

a grid search of 100 log- spaced values in the interval [1e − 4, 1e+4] to minimise 10-fold cross- 

validation accuracy loss. 

The SVM-L model optimises a different cost function than the LR model and therefore gives a 

different linear separation of the classes. Meanwhile, the SVM-R model has the ability to 

model nonlinear decision boundaries. The slack and (for SVM-R) kernel scaling hyper- 

parameters were again estimated using a grid search to minimise 10-fold cross-validation 

accuracy loss. The grid search consisted of 100 log-spaced values in the intervals [1e+0, 1e+3] 

and [1e+0, 1e+5], respectively. 

We report the training accuracy and AUC score for each model with two principal 

components, and for 3–5 components. We used permutation tests (α = 0.05) on the variant 
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obtaining highest accuracy to assess whether classifiers had meaningful predictive ability 

[174]. 

Due to the relatively small size of our pilot data we estimate the out-of-sample test accuracy, 

sensitivity, and specificity of each model by reporting the mean value of leave-one-out cross-

validation (LOO-CV). Hyperparameters were preset according to outputs of the 10-fold cross- 

validation procedure described above.  

We also investigate the contribution of each feature to the principal component analysis, to 

investigate the most discriminative features of the timeseries and compare with other 

research on this topic.  

Finally, a visual inspection of the raw videos underlying the timeseries that were misclassified 

by the model with highest LOOCV accuracy was performed by two neurology clinicians. 

Analyses were performed using MATLAB 2017b and the scikit-learn and TensorFlow packages 

for Python 3 [171, 175]. 

 

Methods: Study 2 

Clinical rating 

22 consultant neurologists specialising in movement disorders (United Kingdom) were asked 

to rate 30 tapping videos each, selected at random from the set of 137 videos. The median 

number of raters per video was 5 (range 1 to 12, interquartile range 3 to 7). The raters were 

blinded to patient / healthy control status and each other’s scores. Each video was rated 

according to both the MDS-UPDRS Item 3.4 Finger Tapping [8],  and the Modified Bradykinesia 

Rating Scale (MBRS) [27, 56].  The MDS-UPDRS requires the rater to amalgamate judgments 

of finger tapping speed, amplitude, and rhythm into a single composite score (Table 1.1).  In 

contrast, the MBRS is comprised of three separate scores for speed, amplitude, and rhythm 

(Table 1.2).  The modal clinician rating for each video was used for correlation with computer 

measures (see below).  The inter-rater reliability for this group of raters and videos is 

described in Chapter 3. 
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DeepLabCut video tracking 

DeepLabCut tracks the geometrical configuration of multiple body parts in video, without a 

requirement to wear markers [116, 117].  It uses transfer learning, with feature detectors 

based on deep neural networks that have been pretrained on ImageNet, a massive object 

recognition dataset. This means that DeepLabCut is able to accurately recognise and track 

body parts with minimal training data [117]. 

The set of 137 finger tapping videos was processed by DeepLabCut.  We localised (labelled) 

six distinct points on the tapping hand in 20 frames selected by k-means clustering from each 

660 frame video: thumb tip; index finger tip; thumb metacarpophalangeal (MCP) joint; index 

finger MCP joint; middle finger tip; dorsal wrist/proximal dorsal hand.  The deep neural 

network architecture of DeepLabCut was then trained using these points to predict their 

localisation in the remaining 97% of (unlabelled) video frames (1030000 training iterations, 

ResNet 50).  This created video pixel coordinates for finger tip and thumb tip throughout each 

video. 

The accuracy of DeepLabCut to track the hand localisation points (including finger tip and 

thumb tip) was assessed using the ‘evaluate network’ function within DeepLabCut.  This 

function computes the Euclidean error between the manual labels and the ones predicted by 

DeepLabCut averaged over the hand locations and test images (mean absolute error, 

proportional to the average root mean square error) [116]. 

 

Signal processing 

Video pixel coordinates for the labels produced by DeepLabCut were used to calculate the 

pixel distance between index finger tip and thumb tip.  A Savitzky-Golay filter was applied to 

the resulting time series, which removed large, sudden transient label ‘jumps’ caused by 

DeepLabCut mislabelling (i.e. large-distance, physiologically impossible label movement 

across one pair of video frames).  The pixel number distances were standardised across all 

videos, by using the maximum opening distance between finger and thumb tip and 
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normalising this to a value of 1 (all values were divided by the maximal value in the 

corresponding time series). 

Three features of the resulting finger tip to thumb tip distance time series were calculated to 

reflect the clinical features of finger tapping speed, amplitude and rhythm, Figure 4.3.  A 

measure of speed was calculated as the mean rate of change of the normalised distance 

between finger and thumb tip over time.  A measure of amplitude variability was calculated 

by dividing each time series into one-second windows, with maximal overlap, and then 

calculating the coefficient of variation of the mean difference between the maximum and 

minimum amplitudes in each window.  A measure of rhythm regularity was calculated by 

undertaking Fast Fourier Transform to find the distribution of frequencies within each finger 

tap time series, and then measuring the power of the dominant frequency peak added to the 

power of the frequencies 0.2 Hz either side of it.  A more regular tapping rhythm concentrates 

power in a narrow frequency band, increasing the power of the dominant frequency peak 

(and its immediate neighbours), whereas a more irregular tapping rhythm leads to a more 

widely spread distribution of frequency bands, reducing the power of the dominant frequency 

peak (and its immediate neighbours). 

Spearman correlation coefficients were calculated for the each of the three DeepLabCut 

measures vs the modal MBRS and MDS-UPDRS clinician ratings. In addition, we calculated the 

Spearman correlation coefficient of the three computer scores combined (the normalised 

arithmetic mean of the computer speed score, amplitude variability score and rhythm 

regularity score) with the MDS-UPDRS rating. 
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Figure 4.3.  Illustration of the three parameters derived from the DeepLabCut finger tip and thumb tip 

coordinates to measure finger tapping speed, amplitude and rhythm. 

 

Results: Study 1 

Characteristics of the participants are presented in Table 4.1. MDS-UPDRS-FT scores from 0 

to 4 were assigned by two expert clinicians and then categorised into our binary outcome: 

UPDRS-FT≤1 (no/slight bradykinesia) and UPDRS-FT>1 (mild/moderate/severe 

bradykinesia). Their assessment matched in 73% of cases (κ = 0.46).  Figure 4.2 shows an 

example of UPDRS-FT = 0 and UPDRS-FT = 4 for comparison.  

 



 
 

85 

 Patients Controls 

Age (Std. Dev.) yrs 67 (10.1) 66 (12.2) 

Male/female 26 / 14 12 / 18 

Median years since diagnosis 4 - 

   

Median H&Y [IQR] 2 [1, 2.5] - 

H&Y = 1 9 - 

H&Y = 1.5 0 - 

H&Y = 2 5 - 

H&Y = 2.5 1 - 

H&Y = 3 4 - 

H&Y = 4 1 - 

H&Y = 5 0 - 

   

Median UPDRS-FT [IQR] 2 [1, 3] 1 [0, 1] 

UPDRS-FT = 0 2 8 

UPDRS-FT = 1 11 13 

UPDRS-FT = 2 17 7 

UPDRS-FT = 3 7 2 

UPDRS-FT = 4 3 0 

Table 4.1.  Study 1 participant characteristics, split by Parkinson’s patients and control hands. The 

modified Hoehn and Yahr (H&Y) is a brief overall clinical rating to describe the stage of symptom 

progression in Parkinson’s (higher number represents more advanced disease) [164]. UPDRS-FT 
refers to the Unified Parkinson’s Disease Rating Scale Item 3.4 (Finger Tapping) [8]. Where raters 

disagreed the highest of the two UPDRS-FT scores was used. IQR: Interquartile Range. 

 

Two principal components  

The performance of each model for the prediction of UPDRS-FT category is shown in Table 

4.2. The SVM-R model achieved the highest scores in all of our metrics. The other three 

models perform quite similarly, reflecting the fact that their decision boundaries are close to 

one another (see Figure 3). The test accuracy (estimated using LOO-CV) drops to 0.8 for the 

SVM-R model, with the other models similarly dropping a few points of accuracy.  
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Method Accuracy AUC Test Acc Test Sens Test Spec 
NB 0.74 0.74 0.70 0.67 0.70 
LR 0.73 0.73 0.69 0.72 0.65 
SVM-L 0.71 0.71 0.71 0.72 0.71 
SVM-R 0.84 0.84 0.80 0.86 0.74 

Table 4.2.  Results for each model when predicting whether UPDRS-FT>1 using two principal 

components. Accuracy and AUC are estimated from the training 10-fold cross validation and may be 

considered as upper-bounds. The test accuracy, sensitivity and specificity are estimated using LOO-

CV. The emboldened values are the best result for each metric. 

 

In Figure 4.4 we show each time series plotted in feature-space after dimensionality 

reduction, marked according to category. We also show the decision boundaries of each 

method: an unbroken line for NB, dashed for SVM-R, dash-dotted for SVM-L, and dotted for 

LR.  
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Figure 4.4. Decision boundaries for prediction of UPDRS-FT > 1 using two principal components. The 

unbroken line is for NB, dashed for SVM-R, dash-dotted for SVM-L, and dotted for LR. 

 

Our second task was the prediction of Parkinson’s disease diagnosis itself based upon these 

features.  The performance of each model for this task is shown in Table 4.3.  Both the NB 

and SVM-R methods had very similar performance in terms of accuracy and AUC – with NB 

having better specificity but SVM-R having better sensitivity. Neither LR or SVM-L were 

competitive for this task unless high sensitivity is desired. A plot of the time series in feature-

space, coloured by category, and the decision boundary of each method is displayed in Figure 

4.5.  
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Method Accuracy AUC Test Acc Test Sens Test Spec 
NB 0.69 0.70 0.64 0.58 0.73 
LR 0.61 0.59 0.61 0.78 0.40 
SVM-L 0.63 0.60 0.60 0.78 0.40 
SVM-R 0.69 0.68 0.63 0.68 0.57 

Table 4.3.  Results for each model when predicting Parkinson’s diagnosis using two principal 

components. Accuracy and AUC are estimated from the training 10-fold cross validation may be 

considered as upper-bounds. The test accuracy, sensitivity and specificity are estimated using LOO-

CV. The emboldened values highlight the best result for each metric. 

 

Figure 4.5. Decision boundaries for prediction of Parkinson’s diagnosis using two principal 

components. The unbroken line is for NB, dashed for SVM-R, dash-dotted for SVM-L, and dotted for 
LR. 
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Additional principal components 

In addition, we experimented with adding additional principal components into the models, 

training them using the same cross-validation procedure as above.  

Tables 4.4 and 4.5 show the resulting accuracy and AUC scores when additional principal 

components are added, with the test accuracy estimated using LOO-CV.  

 

Method PCA-2 PCA-3 PCA-4 PCA-5 Test Acc. P 
NB 0.74 0.76 0.79 0.81 0.73 0.02 
LR 0.73 0.74 0.76 0.74 0.73 0.01 
SVM-L 0.71 0.79 0.76 0.79 0.71 0.01 
SVM-R 0.84 0.84 0.83 0.81 0.8 0.01 

Table 4.4.  Resulting accuracy when predicting UPDRS-FT > 1 using 2–5 principal components. The 

emboldened values highlight the model with highest accuracy in each case The best performing number of 

principal components was used to estimate the test accuracy with LOO-CV and the permutation test P-value. 

 

Method PCA-2 PCA-3 PCA-4 PCA-5 
NB 0.74 0.76 0.79 0.81 
LR 0.73 0.74 0.76 0.74 
SVM-L 0.71 0.79 0.76 0.79 
SVM-R 0.84 0.84 0.83 0.81 

Table 4.5.  Resulting AUC when predicting UPDRS-FT > 1 using 2–5 principal components. The emboldened 

values highlight the model with highest AUC in each case. 

 

The NB model shows improvement in both accuracy and AUC as more components are 

included. This did not translate into improved test accuracy, probably indicating model 

overfitting. The LR and SVM-L models showed minor improvements which again fail to 

translate into improved test accuracy. The non-monotonic gains in accuracy may be due to 

the effect of the bias-variance trade-off in this dataset. Overall, the SVM-R model with two 

principal components had the highest metrics; additional components degrade its accuracy 

due to the bias-variance trade-off.  
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The resulting accuracy and AUC when predicting a Parkinson’s diagnosis with additional 

principal components is shown in Table 4.6 and Table 4.7. 

 

Method PCA-2 PCA-3 PCA-4 PCA-5 Test Acc. P 
NB 0.69 0.63 0.67 0.74 0.67 0.46 
LR 0.61 0.57 0.6 0.57 0.57 0.57 
SVM-L 0.63 0.66 0.67 0.7 0.63 0.97 
SVM-R 0.69 0.8 0.8 0.76 0.66 0.49 

Table 4.6.  Resulting accuracy when predicting Parkinson’s diagnosis using 2–5 principal 

components. The emboldened values highlight the model with highest accuracy in each case. The 
best performing number of principal components was used to estimate the test accuracy with LOO-

CV and the permutation test P-value. 

 

Method PCA-2 PCA-3 PCA-4 PCA-5 
NB 0.69 0.64 0.69 0.74 
LR 0.59 0.5 0.57 0.57 
SVM-L 0.6 0.65 0.67 0.68 
SVM-R 0.68 0.81 0.79 0.75 

Table 4.7.  Resulting AUC when predicting Parkinson’s diagnosis using 2–5 principal components. 

The emboldened values highlight the model with highest AUC in each case. 

 

All models except for LR benefited from additional components in terms of in-sample 

performance but none of these gains translate into improvements in estimated test accuracy. 

Non-monotonicity in performance as the number of components grows implies there may be 

some effect from the bias-variance trade-off.  

 

Feature contribution to PCA  

Table 4.8 lists the percentage contribution of all of derived features to the first 5 principal 

components, along with the variance explained by each component.  
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Feature SV-1 SV-2 SV-3 SV-4 SV-5 
Max peak (Hz) 9.5 14.8 1.3 12.1 9.7 
Total ESD 3 16.5 4.5 18.7 19.6 
ESD (0-3.06 Hz) 8.3 10.7 23.2 6 4 
ESD (3.06-6.12 Hz) 8.3 4 27.8 1.8 8.9 
ESD (6.12-9.18 Hz) 12.7 10.8 11.3 8.6 4.6 
ESD (9.18-12.24 Hz) 13.2 8 7 10.3 2.9 
ESD (12.24-15.3 Hz) 11.8 10.5 4.7 4.1 12.2 
ESD (15.3-18.36 Hz) 12 11.6 9.8 9.6 5.9 
Maxima-minima ratio 6.4 13 8.6 20.9 20.2 
Peak-to-peak std. dev. 14.9 0.1 1.8 8 12.1 
      
Variance explained 37.5 24.1 15.3 7.6 5.5 
Cumulative variance 37.5 61.6 76.9 84.5 90 

Table 4.8.  Contribution of each feature to the first 5 principal components in percentages. The 

column names SV-n denote contributions to the nth singular vector. ESD is short-hand for Energy 
Spectral Density. 

 

Our first component explaining 37.5% of the overall variance is comprised primarily of the 

peak-to-peak standard deviation – measuring variability in rhythm throughout the time series 

– and the energy spectral density (ESD) in higher frequency bands, which measure jittery 

movement. 

The second component included strong influence from the frequency of the maximal peak 

(measuring rhythm), the total power in the signal (corresponding to average amplitude across 

the time series), and the maxima-minima ratio (corresponding to jitter in hand motions).  

 

Misclassified UPDRS-FT categories 

We investigated the misclassified examples when predicting UPDRS- FT category using our 

the SVM-R with two principal components model, to glean insight into where our models may 

be improved.  

This model misclassified 11 examples. 7 were misclassified as mild/moderate/severe 

bradykinesia (UPDRS-FT > 1) (5 controls, 2 patients). Meanwhile, 4 were misclassified as 
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no/slight bradykinesia (UPDRS-FT 0–1) (1 control, 3 patients). The misclassified examples 

were close to the decision boundary in 4 cases; for these cases there was expert rater 

disagreement. All misclassified videos had a UPDRS-FT grade of either 1 or 2, i.e. no large 

misclassifications occurred.  

The time series of two of the examples closest to the decision boundary (one patient and 

control) are shown in Figure 4.2. The two misclassified cases furthest from the decision 

boundary (one patient and control) are also shown in Figure 4.2.  

Re-examination of the original videos and optical flow timeseries by two neurologists (SW, 

JA) identified several potential contributors to this misclassification. First, several videos 

showed overall hand movement while fingers were held closed between taps, usually a 

swinging wrist movement preparing for the next tap (and in one case tremor). This created 

additional small peaks and a more irregular timeseries in videos that showed otherwise 

regular, smooth finger tapping. Conversely, moving all the fingers ‘en masse’ tended to create 

large smooth peaks of optical flow, that reduced the optical flow effect of underlying 

irregularities in the tapping itself.  

Second, a large difference between the speed of finger opening (slower) and closing (quicker) 

created two distinct optical flow peak sizes/shapes, and a less uniform timeseries, even 

though the actual tapping was not clearly bradykinetic by UPDRS-FT. Third, our timeseries 

have a 15s duration, similar to several other objective measures, e.g. [39] but the UPDRS-FT 

asks raters to judge only the first 10 finger taps. When tapping rate is fast, only a small initial 

section of the time series is judged by raters, while later tapping changes contribute to the 

optical flow timeseries.  

Finally, a previous study suggested that raters prioritise amplitude and rhythm when judging 

finger tapping, but pay less attention to speed [27].  With this is mind, we noted that slow but 

large amplitude movements tended to be classified as UPDRS-FT 0–1 by raters, but UPDRS-FT 

> 1 by SVM-R, whereas fast but smaller amplitude movements tended to be classified as 

UPDRS-FT > 1 by raters, but UPDRS-FT 0–1 by SVM-R.  
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Results: Study 2 

The participant and hand video characteristics are given in Table 4.9. 

 

 Patients Controls 

Age (Std. Dev.) yrs 68 (9.6)  59 (19.4)  

Male/female 47/26 22/38  

Median years since diagnosis 4 - 

   

Median H&Y [IQR] 2 [1,3]  - 

H&Y = 1 32 - 

H&Y = 1.5 2 - 

H&Y = 2 12 - 

H&Y = 2.5 4 - 

H&Y = 3 19 - 

H&Y = 4 4 - 

H&Y = 5 0 - 

   

Median MDS-UPDRS-FT [IQR] 2 [1,3]  1 [0,1]  

UPDRS-FT = 0 9 23 

UPDRS-FT = 1 20  23 

UPDRS-FT = 2 19  12 

UPDRS-FT = 3 20  2 

UPDRS-FT = 4 5  0 

Visible tremor in video 11  0 

Visible dystonia in video 2 0 
 

Table 4.9.  Study 2 participant (hand video) characteristics.  Data is split by Parkinson's hands (n = 

73) and control hands (n = 60). H&Y: modified Hoehn and Yahr scale [164]. MDS-UPDRS: Movement 

Disorder Society revision of the Unified Parkinson's Disease Rating Scale, Item 3.4 (Finger Tapping) 

[8]. IQR: Interquartile Range. 
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Tracking accuracy 
 

DeepLabCut reliably tracked the finger tapping movements across 133 videoed clinical 

examinations.  Figure 4.6 shows example frames from a video labelled by DeepLabCut. The 

mean absolute error of DeepLabCut labelling was 8.39 pixels, i.e. the average distance 

between manual (human) labels and those predicted by DeepLabCut was 8.39 pixels within a 

1920x1080 pixel video frame.   Supplementary Video 4.1 shows examples of four videos 

labelled by DeepLabCut, including particularly challenging cases with tremor and dystonia 

also present. 

 

 

Figure 4.6.  Example video frames taken from smartphone video labelled by DeepLabCut, showing 

the six localization (labelling) points: thumb tip (dark blue), thumb metacarpophalangeal (MCP) joint 

(light blue), index finger tip (cyan), index finger MCP joint (yellow), middle finger tip (orange), dorsal 

wrist (red). 

 

 

Correlation with clinical bradykinesia ratings 
 

The quantitative scores derived from DeepLabCut measurements correlated well with the 

group neurologists’ modal ratings of bradykinesia, Figure 4.7. The computer vision measures 

of tapping speed, amplitude variability and rhythm regularity had good correlations with the 

respective MBRS clinical ratings for speed (-0.70, p < 0.001), amplitude (0.65, p < 0.001) and 

rhythm (-0.61, p < 0.001). There were also good correlations between the computer measures 

of tapping speed (-0.66, p < 0.001), amplitude variability (0.56, p < 0.001) and rhythm 

regularity (-0.50, p < 0.001) and the MDS-UPDRS clinical rating. The MDS-UPDRS is a 

composite clinical rating, combining the separate components of bradykinesia, and the three 

computer measures combined also correlated with MDS-UPDRS (-0.69, p < 0.001). 
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Figure 4.7.  Computer measures of finger tapping speed, amplitude variation and rhythm, derived 

from coordinates produced by DeepLabCut smartphone video tracking, correlate with clinician mode 

ratings for the same videos. Spearman correlation coefficients shown. MBRS: Modified Bradykinesia 

Rating Scale. MDS-UPDRS: Movement Disorder Society revision of the Unified Parkinson's Disease 

Rating Scale. 
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Discussion 

This chapter has described two methods that apply computer vision techniques to 

smartphone video of the finger tapping test for bradykinesia, to derive time-series 

measurements from the movement of tapping.  In both studies, several ‘hand-picked’ 

features of the time series are used as measures of the theoretical subcomponents of 

bradykinesia (speed, amplitude, rhythm).  These measures are then compared with clinical 

bradykinesia ratings, and diagnosis.  In Study 1, the technique of pixel optical flow was used 

to measure overall hand movement.  Features derived from the resultant time series were 

combined using principal component analysis and four machine learning techniques were 

used to classify videos into (a) no or slight bradykinesia versus mild to severe bradykinesia, 

and (b) participants with Parkinson’s versus control participants.  In Study 2, the DeepLabCut 

neural network was trained to track landmarks on the tapping hand, and these were used to 

measure relative finger to thumb distance over time.  Features derived from this time series 

were correlated with clinical ratings of bradykinesia. 

In Study 1, using 70 videos of finger tapping, the method showed reasonable predictive 

performance for the presence of mild/moderate/severe bradykinesia (UPDRS-FT > 1). The 

estimated test accuracy of 0.8 (using an RBF-based support vector machine) is promising in 

light of the level of agreement between two clinical raters for the same binary judement (κ = 

0.46). The method was less successful at predicting the presence of Parkinson’s diagnosis: 

Nai ̈ve Bayes classification obtained an estimated test accuracy of 0.67 using 5 principal 

components.  

In Study 2, using 133 videos of finger tapping, computer vision measures of tapping speed, 

amplitude variability and rhythm regularity had good correlations with the respective MBRS 

clinical ratings for speed (-0.70, p < 0.001), amplitude (0.65, p < 0.001) and rhythm (-0.61, p < 

0.001). There were also good correlations between the MDS-UPDRS clinical rating and 

computer measures of tapping speed (-0.66, p < 0.001), amplitude variability (0.56, p < 0.001) 

and rhythm regularity (-0.50, p < 0.001).   
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These results support the idea that computer vision can measure finger tapping bradykinesia 

from standard smartphone video, and that the measures have convergent validity with 

conventional clinical ratings.   

It should be noted that disagreement between these automated methods and clinical experts 

may be caused when either (i) the clinician is correct and the automated test is wrong, or (ii) 

the clinician is incorrect and the automated test is right. The results described in Chapter 3 

cast doubt on the ability of human experts to accurately evaluate bradykinesia, so (ii) is highly 

feasible; such that the reported accuracy may underestimate how well we truly classify or 

measure bradykinesia. Further improvements in accuracy and generalisability could 

potentially be achieved in future by using classification algorithms that account for uncertain 

labels, such as probabilistic SVM [176]. 

With the worldwide ownership of smartphones so high (e.g. 82% in the UK, 77% in the US) 

[177] there are no hardware barriers to further use of a computer vision approach.  Thus, a 

major strength of the work is that it has the potential to provide widely available, low-cost 

bradykinesia detection and / or measurement; without the requirement for new hardware or 

for patients to directly interact with smartphone apps or computer programs. This is a 

fundamental difference from most previously published methods that have focussed on 

wearable sensors measuring finger tapping [27, 38, 44, 47, 178].  In addition, the necessity for 

sensors to stay fixed on a specific body part has often required the exclusion of tremulous 

and dyskinetic patients [27, 38, 47, 56, 178].  An automated method broadens access to the 

measurement of bradykinesia (currently the preserve of a small group of clinicians, principally 

neurologists). For example, allowing family doctors and nurse practitioners to screen for and 

monitor the phenomenon has potential resource benefits. 

Two particular strengths of Study 2 are the collection of clinical ratings from a large group of 

movement disorder neurologists, and the use of two rating scales: the MBRS and MDS-UPDRS, 

such that the clinical ratings were representative and reliable. Clinical rating scales are 

vulnerable to inter-rater variability but using modal values derived from a large number of 

blinded clinical raters, and two different gold-standard rating scales, provided a more robust 

‘ground truth’ of clinical bradykinesia to evaluate the new test against. As such we were able 

to demonstrate that clinician and DeepLabCut measures correlate for both individual 
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components of bradykinesia (MBRS) and an overall combination of those components (MDS-

UPRDS). 

Another advantage of the DeepLabCut approach in Study 2 is that can in principle be applied 

to any moving body part, in any form of human movement.  This means it could be applied to 

detect and measure other motor features of Parkinson’s in a contactless manner such as 

tremor, gait, or posture.  Computer vision in general has potential for application to these 

signs [179, 180], where wearable methods are limited to one or a few specific clinical signs. 

In addition, the ‘real life’ versatility of a computer vision method in ordinary clinical settings 

was evaluated in this study because no special efforts were made to optimize participant 

positioning or filming conditions. The DeepLabCut tracking and measures were robust despite 

variations in smartphone camera distance, positioning of the hand, skin colour, flexion / 

extension postures of digits 3 to 5, ambient lighting conditions, and inclusion of a small 

number of patients with tremor or dystonia during tapping. Supplementary Video 4.1 

illustrates this, with accurate labelling of finger and thumb tip despite superimposed tremor 

or dystonia. This is particularly encouraging for the relevance of DeepLabCut aiding 

assessment of Parkinson’s in conventional clinical settings. 

The studies in this chapter cannot be easily compared with previous literature.  Previous 

studies differ from Study 1 because they have used clinically recognisable features (e.g. tap 

distance) rather than the overall measure of hand movement that optical flow provides.  In 

contrast, Study 2 used measures with similarity to those in previous studies of ‘wearable’ 

devices [27, 38, 44, 47, 178].  However, the results of those previous studies vary widely in 

terms of strength of correlation or accuracy of discrimination, despite apparently similar 

methods [26, 40, 181, 182], as described in Chapter 2.  

At the time of this work, only two previous studies have objectively measured finger tapping 

using contactless, standard video analysis. One method extracted finger tapping information 

from only 13 Parkinson's patients, all with advanced disease [149], but it required inclusion 

of the patient's face in the video, limiting the practical utility.  We note that their most 

predictive feature for UPDRS-FT was a measure of tapping rhythm. This corresponds to Study 

1 results, in which the first principal component feature was primarily composed of a rhythm 
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measure (peak to peak variation). Other studies also suggest rhythm measures may be 

particularly important [27, 43]. 

A second study involved 60 Parkinson’s patients but no controls.  It found exceptionally strong 

correlations between MDS-UPRDS finger tap rating and video measures of tap interval 

(frequency) (r=0.91), frequency variation (r=0.82) and amplitude (r=-0.94) but not amplitude 

variation (r=0.39) [135].  The ‘ground truth’ of the clinical comparison was less robust, based 

on just two clinical raters, and there were no MBRS ratings; furthermore, some images were 

blurred in the 24 frame per second videos. A major advantage of our method in comparison 

is that DeepLabCut is open source software, that can be downloaded and used without the 

need to write computer code, meaning it is freely available to neurologists with only limited 

computing knowledge. 

A well-studied, non-camera method to measure finger tap bradykinesia is the ‘Bradykinesia-

Akinesia Incoordination (BRAIN) Test’, which involves participants tapping a standard 

computer keyboard for 30 seconds [12, 183].  This shares advantages with our method in that 

it involves no special equipment, and could be employed without clinician-patient contact. 

However, it requires patient motivation to engage with a keyboard tapping task, rather than 

a simple recording of existing standard clinical examination (and similar requirements for 

patient motivation apply to patient smartphone apps [46]).  Furthermore, ‘BRAIN’ 

correlations with MDS-UPDRS finger tapping ratings of 0.44, 0.20, 0.33, 0.03 [183] are weaker 

than those we report (0.66, 0.56, 0.50, 0.69).  One reason for this may be that a computer 

keyboard cannot record any measure of tap amplitude, and the speed measure is limited to 

tap frequency, so that some core aspects of bradykinesia cannot be captured by ‘BRAIN’. 

The relatively poor performance in Study 1 for diagnostic classification of Parkinson’s versus 

controls is to be expected.  Indeed, we did not even attempt to discriminate patients from 

controls in Study 2.  In Chapter 3 we showed that bradykinesia was detected in 24% of control 

hands when clinical raters are blinded to diagnosis status.  When asked to judge 

patient/control status from the finger tapping video alone, clinician accuracy was 70%, which 

is very similar to our classification accuracy of 0.67 in Study 1.  While bradykinesia is a 

necessary component of the Parkinson’s diagnostic criteria, it is not sufficient in isolation [7].  

Clinical Parkinson’s diagnosis is by definition a broader assessment than isolated finger 
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tapping performance [7].  In practice, finger tapping bradykinesia is only one of a more 

comprehensive set of clinical assessments used to diagnose Parkinson’s.  Consistent for this, 

in Study 1, for all classifiers for diagnosis, the p-values from the permutation test indicate that 

similar accuracies may be obtained by chance.  While this does not invalidate the result, a 

much larger training sample would be required to determine whether the classifiers are 

learning true structure in the data. 

The work presented in this chapter has limitations.  Clinician MDS-UPDRS ratings are based 

on 10 finger taps, yet the computer vision time series duration was 15s in Study 1 and 10s in 

Study 2, similar to some previous technology studies [39].  Some misclassification may have 

resulted from this difference in assessment time period.  Future work could isolate individual 

tapping epochs [28].  The MBRS ratings are based on 10s of tapping, so they matched time 

series duration in Study 2. 

Like human vision, a simple camera lacks an absolute measure of distance, and our methods 

cannot capture 3D movement.  Rotation of the thumb and finger into a horizontal plane would 

falsely alter amplitude measurement. However, in practice such movement is rare during 

tapping, and in Study 2 our normalized measure of finger-thumb distance based on 2D 

maximum opening distance appeared to capture amplitude, speed and rhythm abnormalities 

well, given the good correlations with clinical ratings.  

Furthermore, even starting with a 2D signal, our  approach then discards further spatial and 

angular information at each frame to produce 1D time series.  This has the advantage of 

reducing the dimensionality of the signal so that real-time processing, even on modest 

hardware, is practicable.  In addition to this, the hand-selection of candidate features was 

entirely subjective and may have missed important characteristics in the time series. 

Additional data would allow more sophisticated approaches to automatically learn pertinent 

features [184]. 

We have measured amplitude variation in Study 2, but not amplitude decrement (the 

sequence effect).  Previous approaches have measured decrement as a straight line linear 

regression [47], but decrement would also proportionately affect a measure of amplitude 

variation, such that the variations in decrement should be captured within our measure. 
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Furthermore, there are several other previous reports of good correlation between non-

decrement amplitude measures using sensors and clinician ratings of finger tap bradykinesia 

[27]. 

The continuum of finger tapping performance means that in reality there is a soft boundary 

between grades, but the use of a binary classifier in Study 1 (e.g. SVM) creates a harder 

boundary between these classifications, contributing to errors. In future work, we can 

investigate ‘fuzzy’ or multi-class neural networks to address this.  

Relatively few videos were rated as grade 3 or 4 bradykinesia, and it is possible that a greater 

number of higher grade videos might change the strength of correlations or classification 

accuracy.  Even with accurate tracking, all forms of rating or measuring bradykinesia (including 

clinician) may potentially be confounded by comorbidities such as joint deformities, pain, 

dystonia etc. However, with a larger dataset, machine learning techniques are well-suited to 

separate such additional contributions from underlying bradykinesia.   

These studies were exploratory, aimed at proof of concept that bradykinesia related 

measures could be derived from smartphone video.  The protocols were thus relatively 

simple.  The test-retest reliability of this technique has not been addressed in the study but 

we hope to do so in future.  Similarly, we did not measure ‘off’ and ‘on’ medication states 

(sensitivity to change).  Our small sample sizes meant there was insufficient data to test on 

an independent subset of data.  A larger study would allow additional validation tests and 

greater confidence in the results of machine learning methods. 
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Chapter 5, Tremor amplification, tremor frequency 

Introduction 

Tremor can be defined as an involuntary, rhythmic, oscillatory movement of a body part [73].  

The Movement Disorder Society (MDS) consensus statement on the classification of tremor 

uses two main axes [73]. 

Axis 1 of the MDS classification (Figure 1.1) reflects the fact that in most cases, the diagnosis 

of a tremor disorders remains largely clinical, determined by experienced clinician 

assessment, rather than a specific investigation. However, clinician diagnosis of tremor is 

difficult, and several studies show high rates of error.  One report asked two movement 

disorder specialists to distinguish tremor dominant Parkinson’s disease from other tremulous 

movement disorders (atypical tremor and dystonic tremor) using video of clinical 

examination.  There were high false positive (17.4-26.1%) and false negative (6.7-10%) rates 

for the diagnosis of Parkinson’s [92].  Another study reviewed 71 patients previously 

diagnosed with Essential Tremor, and found that 37% had been misdiagnosed (with the most 

common true diagnosis being Parkinson’s disease) [91]. 

The application of computer vision techniques to standard video has the potential to augment 

clinician assessment of tremor in a way that uses widely available hardware, and is 

contactless, leaving tremor characteristics unaltered by the recording process.  This chapter 

investigates two methods for augmentation of tremor assessment using computer vision 

applied to video.  The first investigates whether amplification of tiny amplitude movement in 

video might reveal subclinical Parkinson’s hand tremor that was not visible in the original 

video.  The second investigates whether the dominant tremor frequency can be measured by 

tracking the movement of pixels in video of visible hand tremor.   
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Methods 

Video recording 

The studies were approved by the London-Fulham Research Ethics Committee of the United 

Kingdom Health Research Authority, IRAS no. 224848. 

Clinical diagnoses had previously been made in routine clinical practice by movement disorder 

specialist neurologists, according to Movement Disorder Society guidelines [7, 73].  

Participants were recruited in order of recent clinic attendance (i.e. there were no special 

selection criteria). All patients gave written, informed consent for participation.   

The participants were seated, and each hand was individually filmed. A smartphone, placed 

on a tripod, recorded an approximately 60 second video, at 60 frames per second, 1920 x 

1080 pixel resolution (standard ‘full high definition’ smartphone video). Distance from camera 

to hand was not tightly controlled, but in practice was around 1m, with only the hand and 

forearm visible within the video frame.  A resting tremor recording was made with the 

forearm on the chair arm and the hand suspended over the end, camera facing the dorsum 

of the hand, Figure 5.1.  A postural tremor recording was made with hand and arm extended 

horizontally forwards from the shoulder, with the camera in a lateral position, Figure 5.2.  

Patients with Parkinson’s disease were subjectively and objectively in the ‘on’ state at the 

time of video recording. 

 

Figure 5.1.  An example video frame from a resting tremor recording. 
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Figure 5.2.  An example video frame from a postural tremor recording. 

 

 

Methods: Study 1 (Eulerian Magnification of hand tremor) 

Videos of 48 hands were selected showing hands in a resting position (as described above), 

in which no tremor was seen at the time of recording.  22 hands were from 11 healthy control 

participants (no neurological diagnoses or other diagnoses that might cause tremor, no 

medication likely to cause tremor). 26 hands were from 17 participants with idiopathic 

Parkinson’s disease. The total number of Parkinson’s hands was not 34 because 8 participants 

had obvious visible tremor in one hand, and those hands were excluded from the sample. 

Each video was 15 seconds duration. 

The videos were processed by computer using an Eulerian video magnification algorithm 

(freely available online) [118],  running within MATLAB [171].  This approach can reveal low 

amplitude movement in video that is difficult or impossible to see with the naked eye.  It 

exaggerates motion by amplifying temporal colour changes at fixed positions.  The variation 

of pixel values over time is amplified in a spatial multiscale manner.  The technique first 

decomposes the video into different spatial frequency bands, and then performs temporal 

processing on each spatial band.  A bandpass filter is used to isolate a temporal frequency 
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band of interest, which we set to between 3 and 7 Hz, to capture the most common frequency 

range of Parkinson’s tremor [73, 75, 76].  The band passed signal is multiplied by a 

magnification factor, a, which we set to 20.  In a final step, the magnified signal is added back 

to the original to produce a video sequence in which amplified movement is visible. 

The authors of the Eulerian magnification technique illustrate the method by using the simple 

case of a 1D signal, as follows.  I(x,t) denotes the image intensity at position x and time t.  A 

video image undergoes translational motion, so that the observed intensities can be 

expressed with respect to a displacement function d(t), so that I(x,t) = f(x + d(t)).  Motion 

magnification aims to synthesise a signal for an amplification factor a. 

𝐼%	(𝑥, 𝑡) = 𝑓	(	𝑥 + (1 + 𝛼)	𝛿(𝑡)	) 

The image at time t, f (x +d(t)) can be written in a first-order Taylor expansion about x, and 

then let B(x,t) be the result of apply a broadband temporal bandpass filter applied to I(x,t) at 

every position x: 

𝛪	(𝑥, 𝑡) ≈ 𝑓	(𝑥) + 	𝛿(𝑡)
𝜕𝑓(𝑥)
𝜕𝑥  

and 

𝐵(𝑥, 𝑡) = 𝛿(𝑡)
𝜕𝑓(𝑥)
𝜕𝑥  

In the Eulerian magnification process, the bandpass signal is amplified by ��and added back 

to I(x,t), resulting in the processed signal: 

𝐼4	(𝑥, 𝑡) = 𝐼	(𝑥, 𝑡) + 𝛼𝛽(𝑥, 𝑡) 

When the three equations above are combined, the amplification of the temporally 

bandpassed signal can be related to motion magnification: 

𝐼4	(𝑥, 𝑡) ≈ 𝑓	(𝑥) + (1 + 𝛼)𝛿(𝑡)
𝜕𝑓(𝑥)
𝜕𝑥  

and 
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𝐼4	(𝑥, 𝑡) ≈ 𝑓	(𝑥 + (1 + 𝛼)𝛿(𝑡)) 

The final equation shows that the processing magnifies motions, because the spatial 

displacement d(t) of the local image f (x) at time t, has been amplified to a magnitude of (1 + 

a). 

The original videos, and the videos after Eulerian magnification, were rated by three 

independent UPDRS-certified movement disorder specialist neurologists (clinical raters), in 

randomised order, with raters blinded to patient / control status.  The raters were asked, 

“does the hand in the video have the appearance of a Parkinsonian tremor ?  (yes/no)”. 

We analysed the proportion of hands correctly classified as Parkinsonian or not before and 

after amplification by McNemar’s test for each rater [185].  McNemar’s assesses the 

dependence of categorical data that are matched or paired.  It can be used to test for a change 

in proportions on a dichotomous trait at two time points in the same participants.  On the 

assumption that an appearance of Parkinsonian tremor is a correct classification for patients 

but not controls, we assessed correct vs incorrect classification of hand appearance by the 

rater before and after Eulerian magnification.  Table 5.1 shows the format of McNemar’s table 

for an individual rater. 

 

 
Before Amplification 

Correct classification Incorrect classification 

After amplification 
Correct classification a b 

Incorrect classification c d 

 

Table 5.1.  McNemar table for an individual rater asked, ‘does the hand in the video have the 

appearance of a Parkinsonian tremor ? (yes/no)’.  Correct classification is defined as Parkinsonian 

tremor for Parkinson’s participant hands and no Parkinsonian tremor for control participant hands. 
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Chi-square for the proportion of hands correctly and incorrectly classified is given by: 

𝜒%&'" =
(|𝑏 − 𝑐| − 1)"

𝑏 + 𝑐  

The p value is the probability of being wrong if we conclude that Eulerian magnification is 

associated with a correct classification of hands. 

The data from all three clinical raters can be combined and McNemar’s test can then be 

applied as a mixed effects logistic regression model.  Our model used correct classification as 

the outcome, with fixed effects for pre/post-amplification and rater identity, plus a random 

effect for video number. The fixed effect for amplification provides an odds ratio for the 

impact amplification has on correct classification estimated over all collected data. The 

random effect for video number takes into account the range of difficulty in rating (some 

videos will be easier or more straightforward for the clinician to judge). 
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Results: Study 1 (Eulerian Magnification of tremor) 
 

Participant details are given in Table 5.2. 

 

 Parkinson’s Controls 

Number of participants 17 11 

Hands (no obvious tremor at time of recording) 
[left:right] 26  [12:14] 22  [11:11] 

Mean age [SD], years 69 [11.3] 51 [22.8] 

Male:Female 18:8 8:14 

Median years since diagnosis 3.8 N/A 

No history of previous tremor in filmed hand 8 22 

History of previous intermittent tremor in filmed hand 18 0 

‘Internal tremor’ sensation in filmed hand 4 0 

Mean age for hands rated ‘Parkinsonian tremor’ after 
Eulerian magnification 66 57 

 

Table 5.2.  Participant (hand) characteristics.  Parkinson’s: idiopathic Parkinson’s disease.  ‘No 

obvious tremor at time of recording’ refers to hands in which the investigator (SW) did not see tremor 

during video recording.  SD = standard deviation.  ‘No history of previous tremor’ and ‘History of 

previous intermittent tremor’ refer to patient reported symptoms (disease history). 

 

Prior to Eulerian magnification, the original videos were judged to show Parkinsonian tremor 

in the following number of Parkinson’s participant hands: 0/26 (rater 1); 1/26 (rater 2); 0/26 

(rater 3), and the following number of control participant hands: 0/22 (rater 1); 1/22 (rater 

2); 1/22 (rater 3).  The single control hand rated as tremulous by rater 2 was also the single 

hand rated as tremulous by rater 3. 
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After Eulerian magnification, the following number of Parkinson’s hands were judged to show 

Parkinsonian tremor: 14/26 (rater 1), 6/26 (rater 2), 7/26 (rater 3), and the following number 

of control participant hands were judged to show Parkinsonian tremor: 7/22 (rater 1); 4/22 

(rater 2); 3/22 (rater 3).  Supplementary Video 5.1 shows an example of a Parkinson’s 

participant hand and a control participant hand before and after Eulerian magnification.  Each 

participant hand appears atremulous in the original video, but only the Parkinson’s 

participant hand appears to have a typical Parkinsonian tremor after movement 

amplification. 

The group mixed effects model combining scores for all three raters showed a significantly 

higher proportion of correctly classified hands after Eulerian magnification, (OR = 2.67; CI = 

[1.39, 5.17]; p < 0.003), Figure 5.3. For each of the three individual raters, the proportion of 

correctly classified hands increased after Eulerian magnification, although did not reach 

significance when analysed in isolation (p = 0.08, 0.36, 0.09). 

 

 

Figure 5.3.  Eulerian video magnification improves clinician classification of hands as Parkinsonian or 

control. The overall proportion of correctly classified hand videos is increased after Eulerian 

magnification, p<0.003 (McNemar test mixed effects logistic regression model). Correct classification 

is defined as Parkinsonian tremor in Parkinson’s hands and no Parkinsonian tremor in control hands 
(raters blinded to diagnosis). Note that some control hands were incorrectly classified after 

amplification (lower blue bars on right side of graph), but all Parkinson’s hands except one (for one 

rater) were incorrectly classified prior to amplification (lack of orange bars on left side of figure). 
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Methods: Study 2 (Tremor Frequency) 

A convenience sample of 16 patients from Leeds Teaching Hospitals NHS Trust (United 

Kingdom) participated in the study, with the following established diagnoses: 5 essential 

tremor, 2 functional tremor, 9 Parkinson’s disease.  

Only those videos with visible tremor were used, making a total of 40 videos.  

In accordance with standard methods of tremor accelerometry [86],  a single axis 

accelerometer (‘Natus neurology tremor sensor’) was attached to the dorsum of each 

participant’s hand, aligned with the long axis of the hand. Acceleration was recorded 

contemporaneously with the video (without an exact time-lock mechanism), at a sample rate 

of 3.84 kHz. 

The first 2 seconds of the video and accelerometer recordings were removed to reduce any 

voluntary movement artefacts as the patient settled into position. The endings of both 

recordings were cropped at 60 seconds. 

The videos were processed with custom-written MATLAB code [171]  

[https://github.com/DrStefanWilliams/tremor-optical-flow].  It allows a bounding box to be 

manually drawn around the hand region for one frame of each video, together with a line to 

mark the long axis of the hand, a process that takes approximately 15 seconds for the user to 

complete. 

Within the bounding box drawn on the video, hand movement was quantified using an optical 

flow method. Optical flow can be defined as “the distribution of apparent velocities of 

movement of brightness patterns in an image” [108].  Relative motion of objects and the 

viewer creates optical flow, as outlined in Chapter 1. In the hand tremor videos, the camera 

is static, and so the participant’s tremulous hand creates a moving brightness pattern. Optical 

flow algorithms relate the change in image brightness at a point to the motion of the 

brightness pattern. Horn and Schunck’s 1981 method [108] is based on the following 
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constraints.  If brightness at a point (x, y) at time t is denoted by E(x, y, t), then the unknown 

optical flow velocity can be represented as u and v: 

𝑢 =
d𝑥
d𝑡 				and				𝑣 =

d𝑦
d𝑡  

The brightness can be related to u and v: 

𝐸(𝑢 + 𝐸)𝑣 + 𝐸* = 0 

Which can be written as: 

C𝐸( , 𝐸)D ∙ (𝑢, 𝑣) = −𝐸* 

So that the component of movement in the direction of the brightness gradient equals: 

𝐸*
F𝐸(" + 𝐸)"

 

Most commonly, video involves opaque objects of finite size undergoing rigid motion or 

deformation (which is the case for a tremulous hand).  This means neighbouring points on an 

object have similar velocities, so that the velocity of brightness patterns in the image varies 

smoothly almost everywhere.  An additional smoothness constraint can be introduced, that 

minimises the square of the magnitude of the gradient of the optical flow velocity: 

G
𝜕𝑢
𝜕𝑥H

"

+	G
𝜕𝑢
𝜕𝑦H

"

				and				 G
𝜕𝑣
𝜕𝑥H

"

+	G
𝜕𝑣
𝜕𝑦H

"

				 

To create a one-dimensional time series from the optical flow results, we used a Histograms 

of Optical Flow method [109].  In this technique, once optical flow is computed for every 

frame of the video, each flow vector is binned according to its primary angle from the 

horizontal axis and weighted according to its magnitude, Figures 1.3 and 1.4.  All optical flow 

vectors v = [x,y]T, with direction 

𝜃 = tan+% K)
(
L 
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in the range 

−
𝜋
2 + 𝜋

𝑏 − 1
𝐵 ≤ 𝜃 < −

𝜋
2 + 𝜋

𝑏
𝐵 

will contribute by 

F𝑥" + 𝑦" 

to sum in bin b, 1 < b < B, out of total of B bins [109].   

We defined two bins in our histogram of optical flow for the tremor videos, with one bin on 

either side of a line marking the long axis of the hand.  This provided a time series for hand 

movement in two directions, perpendicular to the long axis of the hand.  We converted this 

into a one-dimensional time series by subtracting the movement in one direction from that 

in the opposite direction, for each video frame (Figure 5.4(B), left hand graph). 

The resultant accelerometer and video time series were converted into the frequency domain 

using a Fast Fourier Transform (FFT)[4]The Discrete Fourier Transform (DFT) is given by the 

following equation: 

𝑆𝑥(𝑓) = R 𝑥(𝑡)𝑒+,"-'*𝑑𝑡
./

+/

 

S_x(f) is the output of the Fourier Transform in the frequency domain 

x(t) is the input time domain function 

2πf is the frequency in radians per second 

The Fast Fourier Transform calculates the DFT in a more computationally efficient way.  

Where the DFT takes O(n2) time, the FFT takes O(𝑛log𝑛) steps. An FFT re-expresses the DFT 

of an arbitrary composite size N = N1N2 in terms of N1 smaller DFTs of sizes N2, recursively.  

The Cooley-Tukey FFT algorithm divides the DFT into two smaller parts as follows: 
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𝑋0 = W 𝑥1

2+%

134

∙ 𝑒+5	"-	0	1 2⁄  

= ∑ 𝑥"8
2/"+%
834 ∙ 𝑒+5	"-	0	("8) 2⁄  + ∑ 𝑥"8.%

2/"+%
834 ∙ 𝑒+5	"-	0	("8.%) 2⁄  

= ∑ 𝑥"8
2/"+%
834 ∙ 𝑒+5	"-	0	8	 (2 "⁄ )⁄  + 𝑒+5	"-	0 2⁄ ∑ 𝑥"8.%

2/"+%
834 ∙ 𝑒+5	"-	0	8 (2 "⁄ )⁄  

Python (‘scipy.fftpack’) [161] was used to perform the Fast Fourier Transform (FFT) for 

accelerometer and video time series.  We then removed frequencies below 2 Hz (low-

frequency drifting movements) and above 14 Hz (higher than hand tremor) from the analysis. 

Examples of accelerometer and video signal time series and their FFT are shown in Figure 5.4. 

 

 

Figure 5.4. Examples of time series and frequency domain after fast Fourier transform, for (A) 
accelerometer (dominant frequency 4.79 Hz) and (B) video (dominant frequency 4.80 Hz). (Video 

signal derived from pixel movement via Histograms of Optical Flow method.) 

 

The recordings from one patient with functional tremor showed widely dispersed frequency 

distributions (on both accelerometer and video derived FFT) for the 60 second recording, 

without any obvious dominant peaks. This is consistent with the known clinical variability of 
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functional tremor over time (i.e. the frequency can vary greatly over 60 seconds, so that there 

is no single, consistent, dominant frequency). These 3 recordings were removed from the final 

analysis. 

For the remaining 37 videos, the dominant frequency derived from video was compared with 

the dominant frequency derived from the accelerometer. The mean absolute error was 

calculated (i.e. the mean absolute difference between video and accelerometer frequencies, 

without the direction of individual differences).  We then undertook a Bland-Altman analysis 

[130].  The Bland-Altman method was originally developed because of the recognition that a 

correlation coefficient is not a measure of agreement (correlation measures the strength of 

relationship between two variables, but not the agreement between them).  Measurements 

from two different devices can be perfectly correlated, without the measurements agreeing.  

Furthermore, correlation strength increases if the range of samples is broader (without any 

increase in agreement) [130]. 

The Bland-Altman plot is derived from the following calculations: the bias (mean difference) 

between video and accelerometer, d;  the standard deviation of the differences, s; and the 

95% confidence intervals for the mean difference, which are referred to as ‘limits of 

agreement’, and calculated as d -1.96s for the lower limit of agreement and d +1.96s for the 

upper limit of agreement.  In addition, the 95% confidence intervals (CI) for each of the limits 

of agreement can be calculated as follows [128]: 

CI for mean – 2SD = (𝑑 − 2SD) ± 𝑡 × (F3SD" 𝑛⁄  

CI for mean + 2SD = (𝑑 + 2SD) ± 𝑡 × (F3SD" 𝑛⁄  

In a Bland-Altman analysis, it is considered ideal to decide a clinically acceptable size range 

for the 95% limits of agreement, prior to the analysis, i.e. how far apart measurements can 

be without causing significant clinical difficulties [128].  We considered ±0.5 Hz to represent 

a priori clinically acceptable 95% limits of agreement for tremor.   

A minority of recordings showed two distinct and prominent frequency peaks. We considered 

a frequency spectrum to have two peaks if a secondary peak was at least 70% of the dominant 

peak amplitude, and if the frequency of the secondary peak was at least 0.5 Hz from the 
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primary peak, see example in Figure 5.5. Given that clinical assessment of tremor assumes 

only one dominant frequency, we selected the peak with highest frequency in these 

scenarios. 

 

Figure 5.5. Example of frequency distributions (Fast Fourier Transform) with two peaks.  The two 

peaks show the same frequencies in accelerometer and video, but each has a slightly higher power 

than the other in the alternative methods of measurement.  (A) Accelerometer shows a first dominant 
peak of 4.47 Hz and a second dominant peak of 5.51 Hz; (B) video shows a first dominant peak of 

5.53 Hz and a second dominant peak of 4.49 Hz.  The distributions and dominant frequencies are 

very similar. Where a second dominant peak was >70% the size of the first dominant peak (and 

separated by >0.5 Hz), we compared the highest frequency peak of the two in both methods of 

measurement (in this case 5.51 Hz and 5.53 Hz). 

 

 

To test for an inverse correlation between tremor amplitude and the accuracy of tremor 

frequency derived from video, we undertook two approximate measures of tremor 

amplitude. The first calculated an approximate measure of movement amplitude from the 

accelerometer signal. After converting the units from microvolt to cm/s2, we used Python 

[161] to scale the accelerometer data to have a mean of 0, and then used the midpoint rule 

to estimate the first integral (velocity), followed by eliminating drift by subtracting the line of 

best fit (using the ordinary least squares method). We then used the midpoint rule again to 

estimate the second integral, followed by calculating the standard deviation of mean 

displacement from the baseline. As a second measure of tremor amplitude, two neurologists 

(SW, JA) clinically rated postural and rest tremor amplitude from the videos, according to 

MDS-UPDRS items 3.15 and 3.17 respectively (grade 0 = no tremor, grade 1 = <1cm amplitude, 

grade 2 = 1-3cm amplitude, grade 3 = 3-10cm amplitude, grade 4 = >10cm amplitude). The 
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median amplitude rating was MDS-UPDRS grade 2 (interquartile range 1-3). Spearman’s 

correlation coefficient was calculated to test for relationships between these amplitude 

measures and video accuracy (absolute error, Hz). 

 

Results: Study 2 (Tremor Frequency) 
 

Participant and video details are given in Table 5.3. 

 

 

 Essential 
tremor 

Parkinson’s 
disease 

Functional 
tremor 

Number of participants 5 9 1 

Age (Std. Dev.) years 63 (10) 66 (12) 41 

M:F 1:4 7:2 0:1 

Resting tremor hand recordings 9 14 2 

Postural tremor hand recordings 7 5 0 

Median dominant accelerometer 
frequency (IQR), Hz 5.5 (5.1-5.9) 5.4 (4.1-5.9) 8.0 

 

Table 3. Summary of Participant Characteristics (IQR = Interquartile Range) 

 

The dominant tremor frequencies from video (pixel optical flow) showed a mean absolute 

error of 0.10 Hz (standard deviation ±0.16 Hz) compared with the accelerometer frequencies. 

In 36 out of 37 videos (97%) there was less than 0.5 Hz difference between the computer 

vision and accelerometer frequency measurements. Bland-Altman analysis of the dominant 

frequencies from video vs accelerometer showed a mean difference (bias) of -0.01 Hz, Figure 

5.6. with 95% limits of agreement -0.38 Hz to 0.35 Hz.  The 95% confidence intervals for the 

limits of agreement were -0.48 Hz to -0.31 Hz for the lower limit and 0.28 Hz to 0.46 Hz for 

the upper limit. 
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Figure 5.6. Bland-Altman Plot showing the agreement between tremor measurements derived from 

video (pixel optical flow) and accelerometer. Dashed horizontal lines show mean difference (bias) and 

the 95% limits of agreement. Grey bands show the 95% confidence intervals for the limits of 

agreement. The relative outlier (0.89 Hz difference) was a Parkinson’s hand at rest. 

 

15 of the 37 videos were rated as <1cm amplitude by both clinician raters (i.e. MDS-UPDRS 

grade 1 or 0). No significant inverse correlation was found between the absolute error of 

video tremor frequency (Hz) and tremor amplitude, either measured by clinician amplitude 

rating (Rater 1: Spearman’s rho -0.07, p=0.70; Rater 2: Spearman’s rho -0.15, p=0.37) or 

accelerometer displacement (Spearman’s rho 0.25, p=0.14), Figure 5.7.  Supplementary 

Video 5.2 shows an example of two tremors with low amplitude (UPDRS grade 1) in which 

there was excellent agreement between the video and accelerometer frequencies (6.41 vs 

6.39 Hz for the first hand shown in the video, and 5.60 vs 5.62 for the second hand shown in 

the video). 
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Figure 5.7. No significant inverse correlations were found between the absolute error of video tremor 

frequency and measures of tremor amplitude. Y axes show absolute error of video tremor frequency 

(the difference between video and accelerometer tremor frequency, Hz).  X axes on graphs (A) and 

(B) show the grade of tremor amplitude rated by two neurologists (‘rater 1’ and ‘rater 2’), using MDS-
UPDRS items 3.15 for postural tremor and 3.17 for rest tremor (grade 0 = no tremor, grade 1 = <1cm 

amplitude, grade 2 = 1-3cm amplitude, grade 3 = 3-10cm amplitude, grade 4 = >10cm amplitude).  

The x axis on graph (C) shows the standard deviation of mean accelerometer displacement from 

baseline.  Spearman’s rho and p values for each graph: (A) rho -0.07, p=0.70; (B) rho -0.15, p=0.37; 

(C) rho 0.25, p=0.14. 
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Discussion 

This chapter describes two main findings. The first is that amplification of video pixel 

movement (Eulerian magnification) reveals apparent subclinical tremor of both Parkinson’s 

hands and control hands that appear still in the original (pre-amplification) video.  However, 

a greater number of Parkinson’s hands appear tremulous after amplification, and the 

proportion of hands that clinicians correctly classify as Parkinsonian is increased after 

amplification (p<0.003, McNemar mixed effects logistic regression model). The second finding 

is that the movement of pixels in video, determined by an optical flow algorithm, can be used 

to measure the dominant frequency of hand tremor, and this shows excellent agreement with 

a gold standard measure of tremor frequency, accelerometery (95% limits of agreement -0.38 

Hz to +0.35 Hz). 

 

Eulerian Magnification Study 

Tremor can be defined as an involuntary, rhythmic, oscillatory movement of a body part [73].  

Several mechanisms can underlie such movement, either at a subclinical amplitude that is too 

small to be seen, or a larger, visible clinical amplitude [86, 186].  Firstly, all objects, including 

hands, will oscillate at a particular frequency when receiving energy and not restrained.  This 

is natural or resonant frequency, and ‘mechanical’ tremor. In pure form, it is subclinical and 

invisible. The specific frequency depends on the object’s inertia and stiffness, whilst the 

energy that drives it in hands is derived from the ballistic cardiac impulse and irregularities in 

the firing rate of motor units [86, 186].  Secondly, factors that increase the gain of the 

monosynaptic stretch reflex (e.g. fatigue, stress, adrenergic medication) can create an 

exaggerated reflex response that is both triggered by mechanical tremor and in turn 

exacerbates mechanical tremor. This can create a clinical, visible tremor, termed the 

‘mechanical-reflex’ component [86].  Thirdly, structures in the central nervous system can 

undergo abnormal oscillatory activity that is transmitted along the motor system, creating a 

tremor of ‘central’ origin [86, 187]. 
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Physiological tremor usually has only a mechanical component, and in the hand the frequency 

typically ranges between 6 and 12 Hz. Enhanced physiological tremor can contain mechanical, 

mechanical-reflex and central components with a broad range of frequencies. Parkinson’s 

tremor is mainly central, with a frequency often quoted as 4 to 7 Hz.   

The results of Eulerian magnification applied to video of resting hands can be interpreted in 

terms of these different tremor mechanisms. All hands undergo a degree of subclinical, low-

amplitude mechanical tremor, and there is no reason to expect a systematic difference in this 

between Parkinson’s and control hands.  Since the frequency amplified was 3 to 7 Hz, and 

mechanical tremor is described as 6 to 12 Hz, then one explanation for the apparent revealed 

tremor in both patient and control hands is that subclinical physiological (mechanical) tremor 

is being amplified in both groups. The clinicians viewing the videos saw ‘parkinsonian’ tremor 

because the hands were resting and the band of amplification was chosen at the typical 

frequency range of a Parkinsonian tremor. However, the amplification of mechanical tremor 

does not explain why post-amplification Parkinsonian tremor was seen in a greater number 

of Parkinson’s than control hands, and an increased proportion of hands were correctly 

classified as Parkinsonian. One possible explanation for this is that some of the Parkinson’s 

hands had an additional subclinical central (Parkinson’s) tremor component, that was also 

amplified. Thus, an interpretation of the findings is that Eulerian magnification reveals 

physiological tremor in control hands but reveals both physiological and subclinical 

Parkinson’s tremor in Parkinson’s hands. This would suggest that subclinical pathological 

tremor is detected at a group level.  As such, Eulerian magnification may represent a first step 

towards contactless visualisation of subclinical pathological tremor. 

There are significant limitations to the results of Eulerian magnification.  Firstly, even if the 

results reflect the detection of subclinical pathological tremor in Parkinson’s hands at a group 

level, there is no obvious clinical utility to detecting this group difference.  In its current form, 

Eulerian magnification is not a diagnostic test or biomarker (it lacks specificity and sensitivity).  

The study tested ‘classification’ of Parkinson’s and control hands, but the implications of 

misclassification are not the same for control and Parkinson’s hands.  Erroneously classifying 

healthy control hands as Parkinsonian runs the risk of considerable psychological distress, so 

that any future development of Eulerian magnification would require better separation of 
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signal from ‘noise’, to reduce false positive appearances.  Secondly, the Parkinson’s patient 

group was heterogenous, e.g. the presence/absence of ‘internal tremor’ sensation, or visible 

tremor in the contralateral hand, and it may be that more uniform subgroups could identify 

a stronger or more specific effect of Eulerian magnification.  Related to this, some idiopathic 

Parkinson’s patients never develop clinical tremor, and there is a recognised distinction 

between the predominant resting tremor subtype and the postural instability gait subtype of 

the disease [78].  Thus, the assumption that parkinsonian tremor after Eulerian magnification 

is the correct classification for Parkinson’s hands may not be an appropriate one for all 

patients.  The algorithm cannot be expected to reveal subclinical movement that was never 

there and may never be so. 

Thirdly, we did not record accelerometer or EMG as a ‘gold standard’ comparator.  However, 

previous work on subclinical pathological tremor has not used these methods, so their 

usefulness or ‘gold standard’ status in this regard is unclear. Accelerometer has been used to 

study subclinical postural hand tremor in normal (control) participants.  The findings showed 

that the frequency spectrum patterns of the tremor varied greatly among the participants, 

with some showing single finely tuned peaks, and others showing multiple broad peaks, with 

two thirds showing complex patterns [188].  Upper and lower limits of the tremor frequency 

power also varied greatly.  This suggests that the Eulerian magnification of control hand 

videos would be expected to produce varied results within the group, complicating any 

attempt to separate control signal from pathological Parkinson’s signal.  It is consistent with 

the fact that apparent parkinsonian tremor was seen in some but not all controls after 

amplification in our study.  Furthermore, the peak tremor frequency among normal 

participants had a mean around 7 Hz below age 70 and 6 Hz above age 70.  These are within 

the typical Parkinson’s range of tremor and within the band of tremor amplified in our study 

(3-7 Hz). Indeed, the range of Parkinson’s rest tremor frequency has a broad and relatively 

vague definition, variously quoted at 3-6 Hz, 4-6 Hz, and 4-7 Hz [73, 75, 76].  A technique that 

selects a frequency band will inevitably amplify both subclinical physiological tremor as well 

as any subclinical Parkinson’s tremor. 

Subclinical tremor in Parkinson’s has been studied with a displacement laser transducer, 

attached to the tip of the index finger, and compared with recordings from matched control 
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participants [189].  A series of characteristics were measured from the raw displacement data 

and an analysis of variance (ANOVA) was conducted to test for significant patient vs control 

group differences.  Subclinical resting tremor in Parkinson’s was found to differ from control 

physiological tremor in terms of amplitude fluctuation, frequency dispersion, harmonic index, 

and proportional power in 4 to 6 Hz [189].  However, these are group differences, further 

reinforcing our findings that suggest it is difficult to separate pathological from physiological 

tremor at an individual level.  Furthermore, it differs from the work in this chapter because it 

does not involve signal amplification. It would be more analogous to looking for numerical 

differences in the original pixel movement rather than amplifying the movement for clinician 

visual judgement.  This leads to a potential fundamental problem with Eulerian magnification, 

which is that it may simply be mainly amplifying ‘noise’. The frequency distributions of visible 

tremor in the second half of this chapter show some signal at most frequencies: the baseline 

is rarely zero, e.g. Figure 5.4, Figure 5.5.  This ‘noisy’ baseline is also seen in the frequency 

distribution of physiological tremor [188].  We amplified movement by a factor of 20 within a 

frequency band, and it is possible that the resulting video appearances could be largely due 

to baseline noise dominating the visible movement when it is amplified to that degree.  

The mechanical and central components of postural hand tremor can be separated by weight-

loading, whereby the attachment of weight to the hand decreases the frequency of the 

mechanical component of a tremor, but not the central component [86].  A future protocol 

could involve amplification of hands in the postural position and comparing the appearance 

with and without weight loading to try to separate out central from mechanical components 

within the amplified signal. 

Finally, the rate of correct ‘classification’ by clinicians as parkinsonian or not is affected by the 

relative number of Parkinson’s and control participants.  Prior to amplification, all Parkinson’s 

patients will be classified incorrectly and all controls correctly, so that any improvement with 

amplification will depend on the relative proportions of Parkinson/control hands at baseline 

(more controls sets a higher baseline accuracy of classification from which to improve).  There 

were slightly fewer control hands in our study.  However, in practice this is unlikely to have 

played a major role, as the numbers were almost equal and the proportional increase in 

parkinsonian tremor appearance was greater within the Parkinson’s group for all raters. 
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Tremor Frequency Study 

 

The second study in this chapter demonstrated that visible hand tremor frequency can be 

measured from video with good agreement between video and the gold standard measure of 

accelerometer.  Frequency is one of the clinical features within Axis 1 of the Movement 

Disorder Society consensus statement on the classification of tremor, Figure 1.1 [73], and 

measurement of frequency can aid the diagnosis of tremor disorder [86].  However, it is not 

possible to accurately estimate tremor frequency by eye during clinical examination.  Unlike 

accelerometers (clinical or within smartphones), our video method is contactless, does not 

involve specialist equipment or patient interaction with an app, and simply visually records 

what the clinician sees during a standard neurological examination.  The hardware required 

already exists in the pocket of most clinicians, so that our approach is an equitable one, that 

bypasses many of the usual cost and geographical barriers. In essence, our method is largely 

automated, without a need to tightly control camera distance, lighting or background. There 

are only three manual procedures that are currently inherent to our method: (1) setting the 

smartphone camera to record video, (2) drawing one bounding box around the hand, and (3) 

drawing one line for the long axis of the hand. Steps (2) and (3) involve drawing just two items 

(one box and one line) for a single frame of the video, and even this process could be 

automated in future work. We would expect our method to detect any oscillatory movement 

that is visible in the video, regardless of distance of the camera from the body part, because 

the technique is a measure of pixel movement. Purposefully, we did not tightly constrain the 

distance between the hand and camera as we recognised that flexibility in this parameter 

would be important in a clinical setting. If hand pixels are moving in an oscillatory manner, 

the pixel movement will be detected and the frequency of that oscillation measured. 

Contactless tremor measurement using optical flow has recently been described using the 

(markerless) Microsoft Kinect 3D camera system [190].  However, this method is limited by 

the need for specialist costly hardware, and inaccuracy in tracking smaller movements, such 

that tremor smaller than 2cm cannot be reliably detected [190]. 

Three previous studies reported computer processing of standard video to measure tremor. 

In 2013, Hemm-Ode et al applied an optical flow algorithm to videos of two patients with 
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hand tremor during Deep Brain Stimulation (DBS) and found “similar trends” in optical flow 

and accelerometer [191].  However, the authors did not report any quantitative (Hz) 

measurement of tremor frequency and no summary statistics were provided.  A second study 

measured change in one-dimension, by sampling pixel colour oscillation at static points to 

give tremor frequency, and showed results comparable with ours (<0.5 Hz difference in 94% 

of samples) [192]. The advantage of our technique that tracks pixel movement in two 

dimensions is that it allows potential future measurement of direction, magnitude change, 

and movement beyond simple tremor.  The third previous publication in this area described 

measurement of tremor during superimposed large amplitude movement [180].  However, it 

used a more complex technique than ours that required human video labelling of multiple 

frames to train the computer to reliably detect hands, and agreement with accelerometer 

was considerably lower than our results (mean absolute error of 1.066 Hz for postural tremor 

and 1.253 Hz for rest tremor).  

The tremor frequency study reported in this chapter has several limitations. Although 37 

distinct videos were used (varying by participant, hand, rest/posture), the participant group 

was small, so we cannot yet be sure that the findings would generalise to a wider population. 

Although no significant inverse correlation was found between error and amplitude, we 

cannot rule out the possibility that a significant correlation might emerge in a larger or more 

diverse sample. Measurement of tremor frequency is most useful when paired with 

electromyography [85, 88], and camera-based computer vision cannot yet measure muscle 

contraction.  Indeed, determination of tremor frequency alone is of limited clinical value, 

because the typical frequency ranges of most different tremor types overlap [73, 86]. 

However, the change in tremor frequency with activation procedures such as weight loading 

can be more useful to diagnose tremor, which could be added to our protocol without a need 

for new computing techniques. In addition, there are some situations where measurement of 

tremor frequency can be useful in itself, e.g. by demonstrating variation of tremor frequency 

over time in functional tremor [86], a potential future application of our technique (combined 

with Short-time Fourier Transform) [193].  A camera measurement is two dimensional and, 

similar to single axis (one dimensional) clinical accelerometer, movements exactly 

perpendicular to the camera angle potentially may not be recorded, but this could be rectified 

by moving the camera to a different angle [86]. Two-dimensional video cannot measure 
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absolute tremor amplitude but in principle the relative amplitude (e.g. in relation to finger 

width), or change in amplitude over time, could be derived from pixel movement in future 

work.  We have not quantified the lower limits of amplitude for detection of tremor frequency 

using our method, but optical flow is known to be sensitive to small amplitude movement in 

standard video (provided there is not additional movement ‘noise’ in the background of the 

video frame), e.g. [194]. It is notable that 15 of 37 videos were rated as <1cm amplitude, and 

we did not find any significant relationship between tremor amplitude and video measure 

accuracy in our current sample. Finally, a tripod is not available in ordinary clinical settings, 

but smartphone cameras use image stabilisation software and in the future our method could 

include labelling of a static background reference point, or combination with hand tracking 

algorithms [195].  

For several recordings, the frequency distribution showed two distinct peaks of similar height 

(power), with each being slightly higher than the other in video vs accelerometer measures.  

This is consistent with the recognition that tremor can have more than one contributing 

component with distinct frequencies [86].  However, to allow simple comparison of single 

number results, we selected the highest frequency peak in these situations.  A future 

approach could perhaps provide a two frequency result to provide more detailed clinical 

information  

 

Summary 

In summary, hands that appear still in the original video show an appearance of parkinsonian 

tremor after Eulerian magnification for some videos in both Parkinson’s patients and controls.  

At the group level there is more tremor seen in the Parkinson’s patients, and clinician 

classification of hands as Parkinsonian or control is improved after amplification.  This group-

level effect does not have a direct clinical use, and may largely represent the amplification of 

‘noise’ or physiological tremor in both groups, but it suggests a subclinical Parkinson’s tremor 

component is present within the amplified signal. 
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For the measurement of tremor frequency, we have described a simple method to measure 

hand tremor frequency from a 60 second smartphone video that shows good agreement with 

accelerometer measurements and has the potential to provide a ‘point and press’ contactless 

measure of tremor frequency within standard clinical settings. 
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Chapter 6, Discussion 

This thesis has demonstrated that computer vision applied to smartphone video can derive 

meaningful clinical measures of finger tapping bradykinesia and hand tremor.   

In Chapter 2, I summarised previous publications reporting technological methods to record 

the movements of the finger tapping test for bradykinesia.  Almost all of the approaches are 

limited by a requirement for hardware or a requirement for patients to interact with a 

smartphone app.  They are also notable for highly variable results across studies, whether 

comparing group means, classifying results into Parkinson’s and control, or testing correlation 

with clinical ratings.  In Chapter 3, movement disorder experts showed considerable 

disagreement when judging one of the most common clinical tests for bradykinesia, the finger 

tapping test.  Intraclass correlation coefficients were moderate, and around a quarter of 

control hand videos were judged as showing bradykinesia.  Chapter 4 described two different 

methods to record the movement of the finger tapping test for bradykinesia in video.  Using 

overall hand movement measured by pixel optical flow, the classification of low versus high 

bradykinesia showed test accuracy of 0.8, and the classification into Parkinson’s and control 

hands showed test accuracy of 0.67.  Using the DeepLabDut pose estimation algorithm, there 

were good correlations between computer vision video measures of bradykinesia and clinical 

ratings (-0.70, 0.65, -0.61, -0.66, 0.56, -0.50, all p<0.001)).  Chapter 5 applied computer vision 

to hand tremor.  A technique to amplify small movement in video revealed apparent 

subclinical tremor in ostensibly non-tremulous hands from both Parkinson’s and control 

participants, but a significantly higher proportion of Parkinson’s hands were correctly 

classified by clinicians as ‘parkinsonian’ after movement amplification.  Chapter 5 also 

described a technique to measure the dominant frequency of hand tremor from video using 

optical flow, showing agreement to within 0.5 Hz compared with a ‘gold standard’ 

accelerometer recording.   

The importance of these results is that they provide proof of concept for a clinical tool that 

could be used to augment or to automate the clinical judgement of the signs of neurological 

disease.  In contrast to other approaches, such a tool would not require special hardware or 

patient engagement with a new behaviour.  Cameras and computers are ubiquitous, available 
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in almost all clinical encounters.  The only patient engagement required is that which already 

occurs, namely participation in the neurological examination, for example tapping finger and 

thumb together, or permitting observation of tremulous hands in several positions. 

There are specific limitations to the work in each chapter and these have been described in 

those chapters.  However, there are also some overall limitations that run through the thesis.   

A single monocular camera cannot measure distance or depth.  Since human movement takes 

place in three dimensions, that leaves some movement unrecorded.  Furthermore, 

measurements of movement that rely on distance, such as amplitude and speed, can only be 

relative rather than absolute.  This is likely to be a fairly minor issue in relation to finger 

tapping, because the movement occurs largely in two dimensions and distance can be 

normalised to maximum finger thumb amplitude.  The results of Chapter 4 suggest that a 

monocular camera captures most of the useful finger tapping information in two dimensions, 

with results comparable with devices that measure three-dimensional movement.  However, 

for tremor, the standard clinical rating scales, used as research outcome measures, are 

clinician grading of tremor amplitude (in centimetres), not measures of tremor frequency.  

That is true for both Parkinson’s [8] and Essential Tremor [196].  This clinical information 

cannot be captured by monocular camera computer vision.  While the results of Chapter 5 

show that monocular video can record tremor frequency, the most common tremor 

conditions overlap in their frequency ranges, so frequency in isolation has limited clinical uses 

(e.g., a change in frequency over time can help to diagnose functional tremor [197]).  There 

are potential solutions for this without special equipment.  One would be to derive a relative 

measure of distance for tremor, similar to using maximum finger-thumb opening for finger 

tapping.  For example, distance could be normalised to index finger width.  Another is to use 

two monocular cameras, e.g., two smartphones, because pose estimation algorithms can 

then construct 3D coordinates, with one network trained on multiple views, provided the 

relative camera positions are calibrated [116].  That would not be easy to implement: 

coordinated, calibrated, and linked use of two smartphones is not an everyday practice.  An 

alternative possibility would be to use data collected by the smartphone depth sensing 

camera.  Most current smartphone models now have infrared array ‘LiDAR’ (light detection 

and ranging) infrared scanners linked to their front facing camera that can measure depth 
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[198].  These are used as the biometric facial recognition system to unlock the iPhone [199, 

200].  In theory, these depth sensors that are already integrated with standard smartphone 

cameras could be used to measure tremor amplitude during video in a contactless manner, 

without special equipment. 

In clinical practice, individual neurological examination signs are not considered in isolation.  

They form part of an overall judgement, both in diagnosis and also in assessment of 

progression or response to treatment.  This overall judgement includes multiple examination 

signs, but also the history of the patient’s symptoms.  There is a medical aphorism that a 

careful history of symptoms “will lead to the diagnosis 80% of the time” [201].  This is based 

upon a 1975 study that asked clinicians to give differential diagnoses at three different points 

in the assessment process [202], a finding broadly replicated in subsequent studies [201, 203].  

As such, an automated, objective measure of bradykinesia or tremor is limited in the clinical 

information it can provide, and limited in the degree to which it can augment clinician 

judgement.  A large number of examination signs are visual, so that it would be possible to 

apply computer vision to a much broader neurological examination, then combine this with 

automated measurement of symptoms (in other words collect data from specific questions 

about symptoms).  It would then be theoretically possible to aim to automate diagnosis or 

overall assessment, potentially with an accuracy that approaches that of expert clinicians, or 

perhaps exceeds their accuracy, when compared against some ultimate gold standard, such 

as post-mortem studies.  However, when machine learning techniques are applied to multiple 

features in a classification task, there is a high risk of ‘overfitting’ to the data.  In other words, 

classification is based upon variation in the specific dataset, but does not generalise well to 

data in general.  To minimise that would require a very large set of data (patient videos), 

difficult to obtain in practice.  An alternative is to give a priori weighting or rules for different 

symptoms and signs according to clinical knowledge, for example, the symptom of rest tremor 

is more common in Parkinson’s, while kinetic tremor is more common in Essential Tremor.  

This would be the application of a Bayesian statistical approach [141, 204].  However, the 

exact relative weighting to give such clinical details would inevitably be fairly arbitrary, 

running the risk of replicating existing clinician bias or error. 
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Another limitation of computer vision for neurological examination is the lack of a reliable 

‘ground truth’ or benchmark for many clinical signs.  Chapter 3 demonstrated that expert 

clinicians show only moderate intraclass correlation for the judgement of bradykinesia 

severity.  To some extent this can be mitigated by using a large number of raters, as with 

bradykinesia correlations in Chapter 4.  However, as described in Chapter 1 the modern 

concept of bradykinesia only dates from the 1980s [72].  It is a much more recent idea than 

the more general one of Parkinson’s itself [67].  Clinician disagreement might occur because 

bradykinesia partly exists in the mind of the clinician rather than the movement of the patient.  

If a clinical sign is to some extent an artificial construct, then to that extent it cannot be 

objectively measured.  Correlation with clinical ratings is not necessarily a good test of 

technology measures. 

In addition to the lack of reliable ground truth for the presence or severity of clinical signs, 

there is a similar problem in relation to overall diagnosis based on a broader assessment.  

Tremor frequency can be objectively measured beyond clinician judgement, and that is also 

theoretically possible for tremor amplitude.  However, interpretation of those patterns of 

frequency and relative amplitude to make a diagnosis involves an element of clinician 

judgement.  This is because there are no entirely sensitive and specific patterns for different 

diagnoses or prognoses [86, 98, 205, 206].  For example, entrainment of tremor frequency to 

contralateral limb tapping frequency is typical of the diagnosis functional tremor [197] but it 

is not always seen in that condition, and can occur in other diagnoses [206]. 

A possible solution to unreliable clinician ground truths is to assess computer vision measures 

against gold standards that are not based on clinician judgement.  This is really only possible 

for diagnosis rather than severity.  For example, a dopamine transporter (‘DaT’) scan 

measures loss of dopaminergic neurons in the striatum, and can distinguish 

neurodegenerative parkinsonian syndromes from other causes of parkinsonism or tremor, 

such as drug-induced parkinsonism, essential tremor, dystonic tremor.  The ultimate gold 

standard for Parkinson’s diagnosis is post-mortem.  Any study involving such gold standards 

can only involve low numbers of patients (DaT scans involve ionising radiation and cost, while 

only a small minority of patients undergo post-mortem).  This is not compatible with the need 
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for large datasets in machine learning studies that involve multiple features (multiple 

examination signs and patient reported symptoms). 

One potential diagnostic tool that is universally present is the passage of time.  The accuracy 

of diagnosis is lower early in the course of a disease, but improves later, as existing clinical 

features either progress and become more pronounced, or do not, and as new clinical 

features develop, or do not.  Similarly, judgement of change over time is easier as more time 

passes and repeated assessments take place, making trends clearer.  One possible future 

approach to testing computer vision measures is to compare them against future clinical 

assessments (diagnosis), for example two years after the computer vision measures were 

recorded.  An example is distinguishing the signs of essential tremor from early Parkinson’s 

disease.  At follow-up assessments, the diagnosis often becomes clearer for a clinician, and 

could be used as a benchmark against which to test computer vision measures taken at the 

original presentation. 

When testing technology to recognise a ‘diagnosis’, for example Parkinson’s disease, it is 

common to test the categorisation of disease versus control (no disease).  However, in reality, 

neurologists must distinguish between different disease diagnoses rather than disease versus 

no disease.  A patient is referred to the outpatient clinic with symptoms, and the neurologist 

tasked with diagnosing them.  Technology to augment or automate clinician diagnosis should 

be tested for the ability to distinguish common differential diagnoses for a given symptom, 

e.g. causes of tremor or causes of gait impairment. 

Another possible approach for computer vision to assess neurological signs would be to apply 

a deep learning convolutional neural network directly to video, to learn movement patterns 

that discriminate Parkinson’s from control, or different grades of severity, without predefined 

rules.  This would be a three-dimensional convolutional neural network (two dimensions of 

pixels and one dimension of time).  It is possible that there are movement patterns present 

during finger tapping in Parkinson’s that are outside the current definition of bradykinesia.  

Such patterns could be invisible to clinicians, or only recognisable to clinicians in an automatic, 

unconscious way.  Deep learning using neural networks is a machine learning technique that 

does not require human-defined features, such as finger to thumb distance or opening 

velocity; instead, it can learn the features most predictive of a given category, without 
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predefined rules. This provides a way to look for patterns that are characteristic of Parkinson’s 

in video, or characteristic of different grades of bradykinesia, without restricting patterns to 

one-dimensional, human-defined measures, such as opening velocity.  That may find new, 

additional, or better features to discriminate and measure Parkinson’s. 

The requirement for clinician labelling to provide the ground truth for the severity of clinical 

signs (e.g. bradykinesia grading) makes it difficult to obtain a large dataset to allow machine 

learning techniques.  It would not be easy to obtain thousands of clinician ratings of videos.  

In theory, a possible solution for this is the technique of ‘self-supervised learning’, in which a 

deep neural network is asked “to predict one part of the input data – or a label pragmatically 

derivable thereof – given another part of the input” [207].  The technique removes the 

requirement for large annotated datasets. 

 

Conclusion 

There is a history over many years of publications reporting technology to measure 

bradykinesia and tremor.  This technology has been limited by a requirement for either special 

equipment or patient engagement with a smartphone app, and results of the application of 

such technology to bradykinesia are variable and inconsistent.  This thesis has demonstrated 

that expert rating of finger tapping bradykinesia shows only moderate interrater agreement, 

suggesting the clinical sign exists to some extent in the eye of the clinician rather than purely 

the hand of the patient.  The results presented in this thesis demonstrate that standard 

monocular smartphone video can be used to derive measures of finger tapping bradykinesia 

and tremor frequency that correlate well with clinical ratings and accelerometer 

measurement respectively.  The findings suggest that the smartphone camera could be used 

to augment clinical assessment. 
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