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Abstract

An expansion formula for observables, in terms of annihilation and
creation operators has been proved firstly in [1] on the Fock space of a
free Bose field and then in [2] for a Fock space associated to a factorizing
scattering function. We are proving the expansion in a general context,
where both of these results are included. We also prove that the expansion
formula works for other models, too.
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1 Introduction

Relativistic Quantum Field Theory (QFT) is our most successful and well-tested
physical theory describing the fundamental constituents of matter, the fun-
damental particles, and their interactions. However, despite its experimental
successes, from a mathematical viewpoint there are still many open questions
concerning rigorous approaches of QFT. In this thesis, our focus is on certain
operators in QFT known as local observables. These are associated with space-
time points (or bounded regions) and they commute with each other at spacelike
separations. Rigorous mathematical constructions of local observables are no-
toriously difficult to achieve.

The aforementioned local observables play a highly important role in rela-
tivistic quantum field theory. The particular way in which these operators arise
is not going to concern us, however we are interested in getting some more insight
to them, i.e. a certain way of representing them so that essential information
is reflected. This is achieved to some extent via the expansion formula (4.2)
which is proved in a quite general context, for all quadratic forms A acting on a
Fock space, which might be unbounded in high particle numbers or high ener-
gies, but with certain regularity properties which keep them bounded in a way.
The expansion formula is originally traced to Araki [1], who regarded bounded
operators acting on the Fock space associated to a free Bose field. Later, Bostel-
mann and Cadamuro [2] proved it in a quite different way for integrable models
on 1+1-dimensional Minkowski space, in particular models associated to a fac-
torizing scattering function S and they proved existence of the expansion for
unbounded operators that belong to a certain class. Here, we establish the ex-
pansion formula for unbounded operators acting on Fock spaces associated to
other models too, for example integrable models with several particle species
[7]. We are also showing that an operator is homeomorphically associated to its
expansion (statement (ii) of Theorem 4.3).

In order to be more clear, Araki proved in [1] that every bounded operator
acting on a Fock space has the following expansion:

A =
∞∑

m,n=0

1

m!n!
(a†m[A]mna

n) (1.1)

which can also be stated in the form of formal integral kernels as

A =

∞∑
m,n=0

∫
dθdη

m!n!
fm,n(θ, η)a

†(θ1)..a
†(θm)a(η1)..a(ηn)

where the generalized functions fm,n are given by

fm,n(θ, η) = ⟨Ω, [a(θm), ..., [a(θ1), [...[A, a
†(ηn)]..., a

†(η1)]...]Ω⟩

We will mainly work with the expansion (1.1), which holds in the case of a
free Bose field and we will generalize it for integrable models and other cases as
well, using ideas from Araki’s proof. Bostelmann and Cadamuro proved in [2]
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a similar expansion, with the annihilation and creation operators replaced by
”symmetrized” Zamolodchikov operators z†, z and for A being a quadratic form
satisfying some boundedness conditions. They managed to prove the following
expansion for A in this class:

A =

∞∑
m,n=0

∫
dθdη

m!n!
fm,n(θ, η)z

†(θ1)..z
†(θm)z(η1)..z(ηn) (1.2)

In a different notation, this expansion reads:

A =

∞∑
m,n=0

1

m!n!
(z†m[A]mnz

n) (1.3)

Bostelmann and Cadamuro [2] not only proved that each quadratic form in this
class can be expanded as in (1.2) but also that each set of generalized functions
fm,n with certain regularity conditions gives rise to an observable of the class
mentioned before via the expansion in the right hand side of (1.2). We will
also show that this one to one correspondence is homeomorphic, when the two
spaces are given the right topology.

In Section 4, we prove the expansion in the general symmetrized case. In
particular, we introduce our symmetrized Fock space H = ⊕nHn and an asso-
ciated subspace En for each particle number n. These spaces carry a different
topology than the one of the Fock space, satisfying certain properties needed for
existence of the expansion. Then, we distinguish between two important cases:
the first one is when En has the structure of a Hilbert space, which is covered
in Section 6; the second one is when En is a nuclear Fréchet space, a situation
that we are dealing with in Section 8. Most of the applications we have in mind
fit into the Hilbert space case, however an important example, the one where
En is the Schwartz space is covered by the nuclear case.

In Section 5, we study a ”smaller” class of observables, as in [2]. We call
this ”damping in one side”, since our quadratic forms A ”allow” high energy
behavior in one of the two arguments, so that the damping factor e−ω(H/µ) only
needs to be applied in one side. One could start from this case of course, since
both proofs proceed similarly, however we chose to prove the expansion for the
observables that require damping in both sides first, for simplicity reasons.

In Section 4.2, we are trying to outline how the coefficients [A]mn of the ex-
pansion change under symmetry transformations. We only investigate the case
of space-time translations, in which the corresponding change in the associated
coefficients is quite natural.

Finally, in Section 9, we describe several different models within which one
can obtain the expansion. Besides the model used by Bostelmann and Cadamuro
[2] we prove the expansion in the context of Lechner and Schützenhofer [7] for
S being a ”matrix-valued” scattering function, for the model of ordered-Fock
spaces [4] and for T−deformed Fock spaces, as in [3].
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2 Preliminaries

2.1 Hilbert Spaces

An inner product space K is a real- or complex- linear space, equipped with
an inner product, i.e. a function ⟨·, ·⟩ : K × K → F (where F is the underlying
field, i.e. R or C) satisfying the following:

• ⟨x, x⟩ ≥ 0 for each x ∈ K

• ⟨x, y⟩ = ⟨y, x⟩ for each x, y ∈ K

• ⟨·, ·⟩ is anti-linear in the first argument and linear in the second, i.e.

⟨x, λy + µz⟩ = λ⟨x, y⟩+ µ⟨x, z⟩

and
⟨λx+ µy, z⟩ = λ⟨x, z⟩+ µ⟨y, z⟩

for each x, y, z ∈ K, λ, µ ∈ F.

For our purposes, we will only consider complex inner product spaces. For
x ∈ K, we set ∥x∥ := ⟨x, x⟩1/2, and this turns out to be a norm, i.e. satisfying
the following:

• ∥x∥ ≥ 0 for each x ∈ K and ∥x∥ = 0 if and only if x = 0

• ∥λx∥ = |λ|∥x∥ for each x ∈ K, λ ∈ F

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for each x, y ∈ K

The last inequality is referred to as the ”triangle inequality”. The first two
properties are trivial to verify. The last one follows from the Cauchy-Schwarz
inequality, which holds in every inner product space, i.e.

|⟨x, y⟩| ≤ ∥x∥∥y∥

which follows from ⟨x, x⟩ ≥ 0 if we set x − (⟨y, x⟩/∥y∥2)y in place of x. Using
the Cauchy-Schwarz inequality, we see

∥x+y∥2 = ⟨x+y, x+y⟩ = ∥x∥2+∥y∥2+2Re(⟨x, y⟩) ≤ ∥x∥2+∥y∥2+2|⟨x, y⟩|
≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ = (∥x∥+ ∥y∥)2

and therefore ∥x + y∥ ≤ ∥x∥ + ∥y∥. Thus, K becomes a metric space with
distance function d(x, y) = ∥x − y∥. If K is in addition complete with respect
to this metric, it is called a Hilbert space.

Two vectors x, y are called orthogonal if ⟨x, y⟩ = 0. They are called or-
thonormal if in addition ∥x∥ = ∥y∥ = 1. By Zorn’s Lemma, there exist
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maximal sets of pairwise orthonormal vectors and all these sets are called or-
thonormal bases. If {ei : i ∈ I} is such a set, one can show that

x =
∑
i∈I

⟨ei, x⟩ei

where all but countably many coefficients are vanished, and the sum is conver-
gent in K. It can be shown that each orthonormal basis has the same cardinality.
If the cardinality is at most countable, K is called separable. This is equiva-
lent to the classical topological definition of a separable space, i.e. there exists
a countable subset of K whose closure is K itself.

Suppose K1 and K2 are Hilbert spaces and T : K1 → K2 is linear. The
following three conditions are equivalent:

• T is continuous

• T is continuous at 0.

• There exists a constant C > 0 such that ∥Tx∥ ≤ C∥x∥ for each x ∈ K1.

If these hold, T is called a bounded operator. It can be shown that there
exists a minimum constant C ≥ 0 such that ∥Tx∥ ≤ C∥x∥ for all x, and it is
equal to

sup{∥Tx∥ : x ∈ K1, ∥x∥ ≤ 1}

This constant is denoted by ∥T∥. This is actually a norm in the space L (K1,K2)
of all bounded operators from K1 into K2 and this actually turns L (K1,K2)
into a Banach space, i.e. a complete normed space.

We state the following fundamental result in the theory of Hilbert spaces:

Theorem 2.1 (Riesz Representation Theorem). Suppose T is a bounded linear
functional from a Hilbert space K into C (i.e. there exists a constant C ≥ 0
such that |T (x)| ≤ C∥x∥ for each x ∈ K). Then, there exists a unique vector
y ∈ K such that T (x) = ⟨y, x⟩ for all x ∈ K.

Using the previous Theorem, we are going to prove the following:

Theorem 2.2. Suppose K1,K2 are Hilbert spaces and T ∈ L (K1,K2). Then,
there exists a unique operator T ∗ ∈ L (K2,K1) satisfying

⟨Tx, y⟩2 = ⟨x, T ∗y⟩1

for all x ∈ K1, y ∈ K2. Furthermore, we have (T ∗)∗ = T , (λT )∗ = λT ∗,
(T + S)∗ = T ∗ + S∗, (TS)∗ = S∗T ∗ and ∥T ∗∥ = ∥T∥.

Proof. We only prove the first claim, and that ∥T ∗∥ = ∥T∥. The function
x 7→ ⟨Tx, y⟩2 is linear and bounded, thus by Riesz representation Theorem,
there exists a unique vector in K1 (which we denote by T ∗y) that satisfies
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⟨Tx, y⟩2 = ⟨T ∗y, x⟩1 for each x ∈ K1 or ⟨Tx, y⟩2 = ⟨x, T ∗y⟩1 for each x ∈ K1.
For λ, µ ∈ C and x, y ∈ K2, and for z ∈ K1, we have:

⟨z, T ∗(λx+ µy)⟩1 = ⟨Tz, λx+ µy⟩2 = λ⟨Tz, x⟩2 + µ⟨Tz, µy⟩2
= λ⟨z, T ∗x⟩1 + µ⟨z, T ∗y⟩1 = ⟨z, λT ∗x+ µT ∗y⟩1

Therefore, we have

⟨z, T ∗(λx+ µy)− λT ∗x− µT ∗y⟩1 = 0

for each z ∈ K1. Setting z = T ∗(λx+ µy)− λT ∗x− µT ∗y, we get

∥T ∗(λx+ µy)− λT ∗x− µT ∗y∥2 = 0

thus T ∗(λx + µy) = λT ∗x + µT ∗y. This proves that T ∗ is linear. In order to
show ∥T ∗∥ = ∥T∥, we observe that ∥x∥ = sup{|⟨y, x⟩| : ∥y∥ ≤ 1} in every
Hilbert space. Then, we have

∥T ∗y∥ = sup{|⟨x, T ∗y⟩| : ∥x∥ ≤ 1} = sup{|⟨Tx, y⟩| : ∥x∥ ≤ 1}
≤ sup{∥T∥∥x∥∥y∥ : ∥x∥ ≤ 1} = ∥T∥∥y∥

This proves that T ∗ ∈ L (K2,K1) with ∥T ∗∥ ≤ ∥T∥. Finally, since (T ∗)∗ = T ,
∥T∥ = ∥(T ∗)∗∥ ≤ ∥T ∗∥, therefore ∥T∥ = ∥T ∗∥.

The operator T ∗ will be called the adjoint of T . If T ∗ = T , T is called
self-adjoint.

For a subset U of K, we define U⊥ := {y ∈ K : ⟨y, x⟩ = 0 for each x ∈ U}.
It is an easy exercise to verify that U⊥ is a closed subspace of K (even if U is
not a subspace of K). Furthermore, it follows that U⊥⊥ is the smallest closed
subspace that contains U . In particular, U is a closed subspace of K if and only if
U⊥⊥ = U . For each closed subspace U of K we have the following decomposition:

K = U ⊕ U⊥

The proofs of the above facts are contained in [9], Theorem 3.1.7 and Corollary
3.1.8.

Suppose P ∈ L (K) := L (K,K) for some Hilbert space K. K is called
an orthogonal projection or just a projection if P 2 = P and P ∗ = P .
Projections play a very interesting role in the Theory of Hilbert spaces and they
are a quite useful tool in the understanding of the spaces and the linear bounded
operators between them. The following Proposition gives us a clue about that:

Proposition 2.3. Let K be a Hilbert space and P a projection on K. Then,
the image of P is a closed subspace of K. Conversely, for each closed subspace
V of K, there exists a unique projection on K with V = P (K).

The proof of the above Proposition can be found in [9], paragraph 3.2.13.
This allows us to identify projections acting on a Hilbert space K with closed

subspaces of K. For two projections P,Q, we will write P ≤ Q meaning that
P (K) ⊂ Q(K). We have the following Lemma:
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Lemma 2.4. For two projections P,Q acting on a Hilbert space K, P ≤ Q if
and only if PQ = QP = P

Proof. If PQ = QP = P it is clear that P (K) = QP (K) ⊂ Q(K) and therefore
P ≤ Q. For the converse, assume x ∈ K and decompose x as x = y + z with
y ∈ P (K) and z ∈ P (K)⊥. We have Pz = 0 because

∥Pz∥2 = ⟨Pz, Pz⟩ = ⟨P ∗Pz, z⟩ = ⟨Pz, z⟩ = 0

and since y = Py′ for some y′, we have Py = P 2y′ = Py′ = y. Thus Px = y.
Since y ∈ P (K) ⊂ Q(K), we also have Qy = y thus QPx = y = Px. We
have proved QP = P . If we take adjoints, we obtain PQ = P and the proof is
complete.

Suppose that {Kn : n ∈ N} is a given family of Hilbert spaces. We denote
by
∑

n Kn the algebraic direct sum, i.e. the space of all sequences (xn)n∈N such
that xn ∈ Kn for each n and all but finitely many xn are zero. This space has
an obvious structure of a vector space. Furthermore, for (xn)n, (yn)n ∈

∑
n Kn,

we define
⟨(xn)n, (yn)n⟩ :=

∑
n

⟨xn, yn⟩

It is trivial to verify that this is in fact an inner product on the space
∑

n Kn

and the associated norm is

∥(xn)n∥ =

(∑
n

∥xn∥2
)1/2

The Cauchy completion of this space is a Hilbert space, denoted by
⊕

n Kn (for
a precise construction of the Cauchy completion, or just completion of a normed
space, see [9], Proposition 2.1.12. In case of an inner product space, it is easily
verified that the completion is a Hilbert space).

⊕
n Kn has another realization:

it is the space of all sequences (xn)n∈N, where xn ∈ Kn for each n and such that∑
n

∥xn∥2 <∞

and with inner product

⟨(xn)n, (yn)n⟩ =
∑
n

⟨xn, yn⟩

2.2 Tensor Products of Hilbert Spaces

The concept of tensor products is very essential in the study of Hilbert spaces,
and it appears that there is a natural way of defining the tensor product of any
finite number of Hilbert spaces and equip this with an inner product too.
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Let H be a Hilbert space. We denote the algebraic k-fold tensor product of
H with itself by H⊗̃k. For two elements

η =

K∑
j=1

ϕj1 ⊗ ...⊗ ϕjk ∈ H⊗̃k

κ =

L∑
i=1

ψi
1 ⊗ ...⊗ ψi

k ∈ H⊗̃k

we set

⟨η, κ⟩ =
K∑
j=1

L∑
i=1

⟨ϕj1, ψi
1⟩...⟨ϕ

j
k, ψ

i
k⟩

This can be easily seen (by the universal property of tensor products) to be
well-defined. Now, we shall prove that this is an inner product. For an element

η =

L∑
j=1

ϕj1 ⊗ ...⊗ ϕjk

we can pick an orthonormal basis of the finite dimensional space generated by
the vectors ϕji , {eℓ}Mℓ=1. Then, we rewrite

η =
∑

j1,...,jk

aj1..jkej1 ⊗ ...⊗ ejk thus

⟨η, η⟩ =
∑

j1,...,jk

∑
i1,...,ik

aj1..jkai1..ik⟨ej1 , ei1⟩...⟨ejk , eik⟩ =
∑

j1,...,jk

|aj1..jk |2

Now, it’s obvious that ⟨η, η⟩ ≥ 0 with equality if and only if η = 0. The
other properties are immediate.

We define H⊗k as the Cauchy completion of H⊗̃k with respect to this inner
product.

For bounded operators A1, ..., Ak ∈ L (H), we set

A1 ⊗ ...⊗Ak(ϕ1 ⊗ ...⊗ ϕk) = (A1ϕ1)⊗ ...⊗ (Akϕk)

and extend it by linearity to H⊗̃k. We would like to extend it by continuity to
the whole space H⊗k.

In order to do that, it suffices to show that the operator A1 ⊗ ... ⊗ Ak is
bounded in H⊗̃k. Actually, we will show that ∥A1⊗ ...⊗Ak∥ = ∥A1∥...∥Ak∥. It
is clear that (A1 ⊗ ..⊗Ak)(B1 ⊗ ..⊗Bk) = (A1B1)⊗ ..⊗ (AkBk) for operators
A1, .., Ak and B1, .., Bk in L (H). Now, for the ” ≤ ” part, we notice that

A1 ⊗ ...⊗Ak = (A1 ⊗ I ⊗ ...⊗ I)...(I ⊗ I ⊗ ...⊗ I ⊗Ak)
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Therefore, it is sufficient to show that ∥A1⊗I⊗ ...⊗I∥ ≤ ∥A1∥. The general
case ∥I ⊗ ...⊗Ai ⊗ ...⊗ I∥ ≤ ∥Ai∥ is proved the same way. Suppose

η =

L∑
j=1

ϕj1 ⊗ ...⊗ ϕjk

After finding an orthonormal basis {ej} for the finite dimensional space spanned
by the vectors ϕij , we can write

η =
∑

j1,...,jk

aj1..jkej1 ⊗ ...⊗ ejk =
∑

j2,...,jk

∑
j1

aj1..jkej1

⊗ ej2 ⊗ ...⊗ ejk =

=
∑

j2,...,jk

xj2..jk ⊗ ej2 ⊗ ...⊗ ejk

By orthogonality, it follows that

∥η∥2 =
∑

j2,...,jk

∥xj2..jk∥2

Also,

∥(A1 ⊗ I ⊗ ...⊗ I)η∥2 =
∑

j2,...,jk

∥A1xj2..jk∥2 ≤ ∥A1∥2∥xj2..jk∥2 = ∥A1∥2∥η∥2

Which proves indeed that ∥A1⊗I⊗...⊗I∥ ≤ ∥A1∥ and by our earlier observation,
we have that ∥A1 ⊗ ...⊗Ak∥ ≤ ∥A1∥...∥Ak∥.

To show equality, for each ε > 0 we can peak unit vectors e1, ..., ek so that
∥Aiei∥ > ∥Ai∥ − ε. Then,

∥(A1 ⊗ ...⊗Ak)(e1 ⊗ ...⊗ ek)∥ > (∥A1∥ − ε)...(∥Ak∥ − ε)

Thus, A1 ⊗ ...⊗Ak is an operator in L (H⊗k).
Finally, it can be easily verified that for A1, .., Ak ∈ L (H), we have

(A1 ⊗ ..⊗Ak)
∗ = A∗

1 ⊗ ..⊗A∗
k

(it is first shown for the algebraic tensor product H⊗̃k and then it must hold in
the whole space by density).

2.3 L2-space

A particular example of a Hilbert space that we will be dealing a lot with, is
the case of L2(Rn). We equip Rn with the Lebesgue measure (for a detailed
construction of the Lebesgue measure, the reader may see [12], pages 49-54).
For each 1 ≤ p < ∞, we define Lp(Rn) as the set of all measurable functions
f : Rn → C for which ∫

Rn

|f(x)|pdx <∞

13



and equip it with norm

∥f∥p :=

(∫
Rn

|f(x)|pdx
)1/p

This is actually a seminorm, since ∥f∥p = 0 if and only if f = 0 almost ev-
erywhere, i.e. there exists a set S ⊂ Rn of zero Lebesgue-measure such that
f(x) = 0 for each x ∈ Rn \ S. In order to fix this subtlety, we say that two
measurable functions f, g are equivalent if f = g almost everywhere. This is an
equivalence relation in the set of all measurable functions, so that the elements
of Lp(Rn) are in fact equivalence classes of functions (we identify functions
that agree almost everywhere). Then, ∥f∥p actually becomes a norm. Triangle
inequality follows from Minkowski’s inequality ([12] Theorem 3.5). Since this
space is complete, this is actually a Banach space ([12], Theorem 3.11). In the
particular case when p = 2, this is actually a Hilbert space, with inner product

⟨f, g⟩2 :=

∫
Rn

f(x)g(x)dx

The fact that this is actually well-defined when f, g ∈ L2(Rn) can be seen from
Hölder’s inequality ([12] Theorem 3.5). But L2(Rn) has another very interesting
property, which we are proving here:

Proposition 2.5. For each m,n, the spaces L2(Rm)⊗H L
2(Rn) and L2(Rm+n)

are isometrically isomorphic, in the sense that there exists a linear bijective map
between them that is also an isometry (i.e. preserves norms). Here, ⊗H denotes
the Hilbert-space tensor product as we defined it in the previous subsection.

Proof. First, we prove that L2(Rn) is separable. The space Cc(Rn) of all
continuous functions with compact support is dense in L2(Rn) ([12], Theo-
rem 3.14), and it is not hard to show that Cc(Rn) is separable. We define a
map F from the algebraic tensor product L2(Rm) ⊗ L2(Rn) into L2(Rm+n) as
F (f ⊗ g)(θ, η) = f(θ)g(η)). It is clear that this is a well-defined map. We show
now that it is an isometry: For an element Ψ =

∑
i ψi⊗ϕi ∈ L2(Rm)⊗L2(Rn),

we can find a finite orthonormal set {ej} in L2(Rn) that has the same span as the
set {ψi}. Then, we can write Ψ =

∑
j aj⊗ej for certain functions aj ∈ L2(Rm),

and we have

∥Ψ∥ =

∑
j

∥aj∥22

1/2
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We have:

∥F (Ψ)∥22 =

∫
Rm+n

∣∣∣∣∣∣
∑
j

aj(θ)ej(η)

∣∣∣∣∣∣
2

dθdη

=

∫
Rm+n

∑
j

aj(θ)ej(η)
∑
k

ak(θ)ek(η)dθdη

=
∑
j,k

(∫
Rm

aj(θ)ak(θ)dθ

)(∫
Rn

ej(η)ek(η)dη

)
=
∑
j

∫
Rm

|aj(θ)|2dθ

=
∑
j

∥aj∥22 = ∥Ψ∥2

This proves that the map F is an isometry. It suffices then to show that its
image is dense in L2(Rm+n). To this end, since the spaces L2(Rm) and L2(Rn)
are separable, we can find orthonormal bases {ϕj}j∈N, {ψj}j∈N respectively. We
are going to prove that the set {F (ϕj ⊗ ψk)}j,k∈N is an orthonormal basis of
L2(Rm+n). It is clear that it is an orthonormal set. Now, in order to prove it is a
basis, it is sufficient to prove that if f ∈ L2(Rm+n) satisfies ⟨F (ϕj ⊗ψk), f⟩ = 0
for each j, k ∈ N, then f = 0. We have for each j, k that∫

Rm

(∫
Rn

f(θ, η)ψk(η)dη

)
ϕj(θ)dθ = 0

therefore, since {ϕj} is an ON basis, we have∫
Rn

f(θ, η)ψk(η)dη = 0

almost everywhere in Rm, i.e. for each k there exists a set Ek ⊂ Rm of measure 0
such that

∫
Rn f(θ, η)ψk(η)dη = 0 for each θ ∈ Rm\Ek. We set E = ∪kEk. Since

this is a countable union, E also has measure 0 and we have
∫
Rn f(θ, η)ψk(η)dη =

0 for each k ∈ N, and each θ ∈ Rm\E. Therefore, for almost every θ, the function
η 7→ f(θ, η) is almost everywhere zero. This actually means that f is zero almost
everywhere, and this proves that {F (ϕj ⊗ ψk)}j,k∈N is an orthonormal basis of
L2(Rm+n). Since the subspace spanned by an ON basis is dense in a Hilbert
space, the proof is complete.

2.4 Bochner spaces

There is a generalization of the theory of measurable and integrable functions
to functions taking values in Banach spaces (instead of C). Of course the gener-
alization follows in a rather obvious way when we have functions taking values
in a finite-dimensional space, but the situation is quite different when the space
is infinite-dimensional. We are going to state a few fundamental results of this
theory, that will be needed later.
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Suppose that X is a complex Banach space. Its (continuous) dual space X∗

is defined as the space of all linear continuous functionals from X into C, i.e.
L (X,C). We also suppose that (S, µ,M) is a positive measure space. There
are three different concepts of measurability for functions f : S → X. For the
first one, we will need the definition of a simple function:

Definition 2.1. A function f : S → X is called simple if it takes finitely many
values and if f−1({x}) is a measurable set for each x ∈ X, i.e. belongs to M.
The set of all simple functions will be denoted by Σ(S;X).

We observe that except for finitely many x ∈ X, the set f−1({x}) is empty,
so we only have to bother for the x ∈ X that belong to the image of f .

We now state the three notions for measurability:

Definition 2.2. Suppose that f : S → X.

• f is called strongly measurable or Bochner measurable if it is the
pointwise limit of a sequence of simple functions, i.e. there exists a se-
quence (sn) ⊂ Σ(S;X) such that lim sn(t) = f(t) for each t ∈ S.

• f is called measurable if for each Borel subset A ⊂ X, its preimage
f−1(A) is measurable.

• f is called weakly measurable if for each x∗ ∈ X∗, the function x∗ ◦ f :
S → C is measurable (in the usual sense).

In the case X = C, the three definitions are equivalent. In general this is
not true, however this holds in many cases. In general, it can be verified that

f strongly measurable ⇒ f measurable ⇒ f weakly measurable

However, we have the following very important result, whose proof can be found
in [10], Theorem 1.1.20:

Theorem 2.6 (Pettis measurability Theorem). If f : S → is weakly measurable
and separably valued, i.e. f(S) ⊂ X ′ for a subspace X ′ of X that is separable,
then f is strongly measurable.

In particular, if X is separable, the three definitions are equivalent. We shall
only consider cases where X is separable, therefore we are not going to distin-
guish between the three definitions. We are now going to introduce Bochner
spaces, which are the generalization of Lp-spaces. From now on, for this section,
we are assuming that X is separable.

If f : S → X is measurable, then the function ∥f∥ : S → C, where ∥f∥(s) :=
∥f(s)∥ is measurable too, because ∥ · ∥ is continuous, thus measurable. For 1 ≤
p <∞, we define Lp(S;X) as the space of all measurable functions f : S → X,
for which ∫

S

∥f(s)∥pdµ(s) <∞
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i.e. all measurable functions f : S → X for which ∥f∥ ∈ Lp(S) (as before, we
identify functions that agree in almost every point). For p = ∞ we set L∞(S;X)
be the set of all measurable functions f : S → X for which there exists a set
E ⊂ S of measure 0 such that sup{∥f(s)∥ : s ∈ S \ E} < ∞. It is trivial,
using Minkowski’s inequality, to verify that Lp(S;X) is a Banach space for each
1 ≤ p ≤ ∞ with norm

∥f∥p =

(∫
S

∥f(s)∥pdµ(s)
)1/p

in case p <∞ and

∥f∥∞ = ess sup{∥f(s)∥ : s ∈ S}

The proof that these spaces are Banach uses the same arguments as for the
usual case X = C.

An example of particular interest for us is the space L2(S;K) when K is a
Hilbert space. This is itself a Hilbert space, since the norm comes from the
inner product

⟨f, g⟩ =
∫
S

⟨f(s), g(s)⟩dµ(s)

It is easy to see that if f, g are measurable, then s 7→ ⟨f(s), g(s)⟩ is also mea-
surable. The fact that the integral converges absolutely follows from Cauchy-
Schwarz inequality and Hölder’s inequality. It is then trivial to check that this
is in fact an inner product.

We shall now prove a result that we are going to need later, to describe the
model studied by Lechner and Schützenhofer in [7].

Proposition 2.7. Suppose that K is a separable Hilbert space and (S,M, µ) a
positive measure space. Then, the spaces L2(S;K) and L2(S)⊗HK are naturally
isometrically isomorphic, via the map

f ⊗ h 7→ (θ 7→ f(θ)h)

Here, ⊗H denotes the Hilbert space tensor product of the two spaces.

The proof follows easily if we use the following lemma:

Lemma 2.8. Suppose (S,M, µ) is a positive measure space and X is a separable
Banach space. Then, for each p ∈ [1,∞), the space Σ(S;X) ∩ Lp(S;X) of
p−integrable simple functions is ∥ · ∥p-dense in Lp(S;X).

The proof can be found in [5], Lemma 1.2.19.

Proof of Proposition 2.7. We define a map F : L2(S) ⊗ K → L2(S;K) where
L2(S)⊗K denotes the algebraic tensor product of the two spaces as follows:

F (f ⊗ h)(x) = f(x)h
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This is clearly well-defined and extends by linearity to the algebraic tensor
product. To see that this is actually an isometry, for any element Ψ ∈ L2(S)⊗K,
we can write it in the form

Ψ =
∑
j

fj ⊗ ej

where {ej} is an ON set in K. Then, it follows that

∥Ψ∥ =

∑
j

∥fj∥22

1/2

Now, we compute:

∥F (Ψ)∥22 =

∫
S

∥∥∥∥∥∥
∑
j

fj(s)ej

∥∥∥∥∥∥
2

dµ(s)

=

∫
S

∑
j,i

fj(s)fi(s)⟨ej , ei⟩dµ(s) =
∫
S

∑
j

|fj(s)|2dµ(s) =
∑
j

∥fj∥2

= ∥Ψ∥2

Hence, we can extend this map to an isometry from L2(S)⊗H K by density and
continuity. From Lemma 2.8, it follows that (the image of) the algebraic tensor
product L2(S) ⊗ K is dense in L2(S;K), since it contains all simple functions
that are p−integrable. Therefore, the image of the extended map is the whole
space and the proof is complete.

Later, we are going to be dealing with the space L := L2(R;K) for some sepa-
rable Hilbert space K, and the spaces L⊗n. By Proposition 2.7, L ≃ L2(R)⊗HK
and therefore

L⊗n ≃ (L2(R)⊗H K)⊗H ..⊗H (L2(R)⊗H K)

≃ (L2(R)⊗H ..⊗H L2(R))⊗H (K ⊗H ..⊗H K)

≃ L2(Rn)⊗H K⊗n ≃ L2(Rn;K⊗n)

where ≃ means that the spaces are isometrically isomorphic. Of course all these
isomorphisms are natural. Another useful Corollary of Proposition 2.7 is the
following:

Corollary 2.9. The space Cc(Rn;K) of continuous compactly supported func-
tions on Rn with values in K is dense in L2(Rn;K).

Proof. Since Cc(Rn) is dense in L2(Rn), it is a simple exercise to show that the
algebraic tensor product Cc(Rn)⊗K is dense in L2(Rn)⊗K. Since the latter is
dense in L2(Rn) ⊗H K = L2(Rn;K), Cc(Rn) ⊗ K is dense in L2(Rn;K). Since
we clearly have Cc(Rn)⊗K ⊂ Cc(Rn;K), the proof is complete.
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2.5 Symmetric group

In this section, we shall establish a finite presentation of the symmetric group
Gn that will be proven very useful later. By Gn, we mean the set of all bijections
from the set {1, .., n} onto itself. This has the structure of a finite group, with
multiplication given by composition and the identity element being the identity
function. For each k, the element τk = (k k + 1) will denote the permutation
that keeps all numbers besides k and k+ 1 fixed, and sends k to k+ 1 and vice
versa (this is an element of Gn for each n ≥ k + 1). It is trivial to verify the
following relations:

• τ2k = 1 for all k

• τiτj = τjτi for all i, j such that |i− j| ≥ 2

• τkτk+1τk = τk+1τkτk+1 for all k

We are going to prove that these relations are enough to describe the group Gn.
For each n, we define

Gn = ⟨g1, .., gn−1 | g2i = 1, gigi+1gi = gi+1gigi+1, gigj = gjgi for |i− j| ≥ 2⟩

We are going to prove that the groups Gn and Gn are isomorphic for each
n. Since Gn satisfies the above relations, there exists a (unique) well-defined
homorphism from Gn into Gn such that gi 7→ τi for each i. For any transposition
(m n) (with n > m), it is easy to verify that

(m n) = τmτm+1..τn−2τn−1τn−2..τm+1τm

and it is well known that Gn is generated by its transpositions. Therefore, Gn

is generated by the elements τ1, .., τn−1. Hence, the above homomorphism from
Gn into Gn is also surjective. All that remains is to show that it is also injective.
We are going to prove this after proving two Lemmas first and after we observe
that there is a natural homomorphism fn from Gn into Gn+1 that maps gi to
itseld for each i ≤ n− 1.

Lemma 2.10. Each element of Gn can be written as a word in the letters
g1, .., gn−1 with gn−1 appearing at most once.

Proof. We are going to prove it by induction on n. For G1 and G2 it is obvious
(G1 is the trivial group and G2 contains only two elements, 1 and g1). We
let n ≥ 3 and we assume that the claim holds for Gn−1. Since g2i = 1, i.e.
g−1
i = gi, it is clear that every element can be written as a word in the letters
g1, .., gn−1. Suppose g is any word in the letters g1, .., gn−1 and assume gn−1

appears more than once, i.e. g = w1gn−1w2gn−1w3 for words w1, w2, w3. We
can assume that w2 does not contain the letter gn−1. If w2 does not contain the
letter gn−2 either, then it commutes with gn−1, therefore g = w1w2w3 and we
have eliminated the letter gn−1 twice. In case it contains gn−2, since it is in the
image of Gn−1, by the assumption hypothesis we can assume that it contains
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the letter gn−2 only once, i.e. w2 = wgn−2w
′ with w,w′ being words in the

letters g1, .., gn−3. Since w,w
′ commute with gn−1, we get

g = w1gn−1wgn−2w
′gn−1w3 = w1wgn−1gn−2gn−1w

′w3

= w1wgn−2gn−1gn−2w
′w3

Thus we have eliminated the letter gn−1 once. Continuing this way, we can
reduce the number of times it appears to at most 1.

We introduce the following subsets of Gn:

Σ1 = {1, g1}
Σ2 = {1, g2, g2g1}

...

Σn−1 = {1, gn−1, gn−1gn−2, .., gn−1gn−2..g1}

It is clear that the cardinality of Σi, |Σi| is ≤ i+ 1 for each i.

Lemma 2.11. Every element of Gn can be written as a word u1..un−1, where
ui ∈ Σi for each i.

Proof. We prove it again by induction on n. For n = 1 there is nothing to prove
and G2 = Σ1. Now, assume n ≥ 3 and that the claim holds for the group Gn−1.
Let g ∈ Gn. By Lemma 2.10, g can be written in a way that it contains the
letter gn−1 at most once.

If it does not contain the letter gn−1, it is in the image of Gn−1, thus it can
be written as g = u1..un−2 with ui ∈ Σi for each i. Setting un−1 = 1 ∈ Σn−1,
we have written g in the desired way.

Now, assume that g contains the letter gn−1 exactly once, i.e. g = w1gn−1w2

for words w1, w2 which do not include gn−1. Since w2 comes from Gn−1, by the
induction hypothesis it can be written as w2 = u1..un−2 with ui ∈ Σi for each
i. It is clear that gn−1 commutes with u1, .., un−3, thus

g = w1u1u2..un−3gn−1un−2

The word w1u1u2..un−3 also comes from Gn−1, thus it can be written as v1..vn−2

with vi ∈ Σi for each i. Finally, since un−2 ∈ Σn−2, it follows that gn−1un−2 ∈
Σn−1. This completes the proof.

Now, we can finally prove the main result:

Theorem 2.12. The groups Gn and Gn are isomorphic for each n.

Proof. From the discussion above, we have seen that there exists a surjective
homomorphism from Gn onto Gn. Since Gn is finite, in order to show that it is
also injective, it suffices to show |Gn| ≤ |Gn| = n! From Lemma 2.11, the map
(u1, .., un−1) 7→ u1..un−2 from Σ1 × ..× Σn−1 into Gn is surjective, therefore

|Gn| ≤ |Σ1 × ..× Σn−1| =
n−1∏
i=1

|Σi| ≤
n−1∏
i=1

(i+ 1) = n!
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2.6 Topological Vector Spaces

In this section we shall build towards the definition of nuclear spaces and some
properties that we are going to use.

A topological vector space X is a vector space over F (= R or C),
equipped with a Hausdorff topology, such that the maps (x, y) 7→ x + y from
X ×X onto X and (λ, x) 7→ λx from F ×X onto X are both continuous. We
will restrict our attention only in the case F = C. By definition, U is a neigh-
bourhood of 0 if and only if x + U is a neighbourhood of x for each x ∈ X.
Therefore, the topology is described completely by the set of neighbourhoods of
0. We introduce a few definitions that play an important role in the Theory of
topological vector spaces.

A set A ⊂ X is called convex if for every x, y ∈ A and 0 ≤ t ≤ 1,
tx+ (1− t)y ∈ A.

A set A ⊂ X is called balanced if λA ⊂ A for every |λ| ≤ 1.
A set A ⊂ X is called absorbing if for each x ∈ X there exists some t > 0

such that x ∈ tA.
A set A ⊂ X is called bounded if for every neighbourhood U of 0, there

exists some ρ > 0 such that A ⊂ ρU .

2.6.1 Locally convex spaces

In order to define locally convex spaces, we need to fix some terms first. A
neighbourhood of a point x ∈ X is an open set that contains x. A set B of
neighbourhoods of x is called a neighbourhood basis of x if every neighbour-
hood of x contains some element of B.

Definition 2.3. Let X be a topological vector space over C. X is called locally
convex if there exists a neighbourhood basis of 0 consisting only of convex
balanced open sets.

There exists an equivalent characterization of locally convex spaces that is
quite more convenient to work with.

If X is a vector space over F, a seminorm on X is a function p : X → [0,∞)
such that:

• p(λx) = |λ|p(x) for each λ ∈ F and x ∈ X

• p(x+ y) ≤ p(x) + p(y) for each x, y ∈ X

In other words, p is like a norm, with the only difference being that there might
be nonzero elements x with p(x) = 0. Now suppose that there exists a separating
family of seminorms {pi : i ∈ I} on X, i.e. for each x ̸= 0 there exists an i ∈ I
with pi(x) ̸= 0. For each x ∈ X, any finite subset {i1, .., in} of I and ε > 0, we
set

Ux,i1,..,in,ε =

n⋂
k=1

{y ∈ X : pik(x− y) < ε}

It can be seen that these sets form a basis for a certain topology in X. The
equivalent characterization of a locally convex space is the following:
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Theorem 2.13. A topological vector space X over F is locally convex if and
only if its topology is induced by a separating family of seminorms.

Sketch of the proof. In case the topology of X is given by a separating family of
seminorms, it is easy to verify that it is locally convex. For the other direction,
suppose B is a neighbourhood basis of 0 consisting of convex balanced sets. For
every U ∈ B, the Minkowski functional of U is defined as

pU (x) := inf{t > 0 : x ∈ tU}

To see that this is finite, one has to observe that every neighbourhood of 0 is
absorbing. For any x ∈ X, the map λ 7→ λx from F toX is continuous, and since
0 gets mapped to 0, there exists a t > 0 such that the image of (−t, t) is contained
in U , i.e. rx ∈ U for each 0 < r < t. This proves the claim. The fact that U
is balanced and convex can be used to prove that pU is actually a seminorm.
It can also be verified that for each U ∈ B, U = {x ∈ X : pU (x) < 1}. If
pU (x) = 0 for each U ∈ B, then x ∈ U for each U ∈ B which means x = 0,
since X is Hausdorff. Thus the family is also separating. Let B′ be the family
of all sets of the form

n⋂
k=1

{x ∈ X : pUk
(x) < ε}

for U1, .., Un ∈ B. To show that the two topologies coincide, it suffices to show
that for each V ∈ B there exists V ′ ∈ B′ with V ′ ⊂ V and vice versa. One
assertion is trivial, since U = [pU < 1] for each U ∈ B. Now, suppose

V ′ =

n⋂
k=1

[pUk
< ε] ∈ B′

Clearly, εUk = [pUk
< ε], thus V ′ =

⋂
εUk, which is open in the original locally

convex topology, as a finite intersection of open sets, and a neighbourhood of 0.
Therefore, it contains some subset of B.

A locally convex topological vector space that is also metrizable (i.e. its
topology is induced by some metric) is called a Fréchet space. The following
Proposition gives us a good insight into Fréchet spaces:

Proposition 2.14. Suppose X is a locally convex topological vector space. X is
metrizable if and only if its topology is induced by a countable separating family
of seminorms.

Proof. We only prove one direction. The other is Remark 1.38 (c) in [11].
Suppose that X is metrizable and P is the family of seminorms that induces

its topology. Then, for each n ∈ N, since the ball of radius 1/n around 0,
B(0, 1/n) is a neighbourhood of 0, there exist seminorms pn1 , .., p

n
kn

∈ P and a
εn > 0 such that

kn⋂
i=1

[pni < εn] ⊂ B(0, 1/n)
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We then consider the family Q =
⋃∞

n=1{pn1 , .., pnkn
}. Clearly, this is a countable

family, and since {B(0, 1/n) : n ∈ N} is a neighbourhood basis of 0, the
topology is induced by the family Q. It is obvious that this family is also
separating.

2.6.2 Tensor products and bilinear mappings

For a locally convex topological vector space X over F, we denote by X ′ the
topological dual of X, i.e. the set of all continuous linear mappings f : X → F.
There are many different ways to endow X ′ with a topology that makes it a
locally convex space. We are going to focus on the weak dual topology and
the strong dual topology. For each x ∈ X, the function px : X ′ → [0,∞),
px(x

′) = |x′(x)| is clearly a seminorm on X ′ and the family {px : x ∈ X} is
clearly separating. The induced locally convex topology on X ′ is called weak
dual topology or just weak topology. It is clear that a net (x′λ) in X ′

converges to x′ ∈ X ′ if and only if x′λ(x) → x′(x) for every x ∈ X. When X ′ is
endowed with this topology, it will be denoted by X ′

σ.
There exists another topology that we shall introduce. For every bounded

set B ⊂ X, we define the function pB : X ′ → [0,∞), by

pB(x
′) = sup

x∈B
|x′(x)|

Since continuous images of bounded sets are bounded, the former quantity is
finite and it follows trivially that pB is actually a seminorm. It is also clear
that the family {pB : B bounded} is separating. The induced locally convex
topology is called strong dual topology or just strong topology. When X ′

is endowed with it, it is denoted by X ′
b. Observe that in case X is a normed

space, this topology is actually the usual norm topology on X∗.
If E,F,G are topological spaces, a map f : E × F → G is said to be

separately continuous if the maps fx = f(x, ·) : F → G and fy = f(·, y) :
E → G are continuous for each x, y. f is said to be jointly continuous (or
just continuous) if it is continuous when E × F is endowed with the product
topology. It is straightforward to verify that if f is jointly continuous, then
it is separately continuous. The converse is not true in general. If the spaces
E,F,G are topological vector spaces, we denote by B(E,F ;G) the space of all
jointly continuous bilinear forms from E×F to G and by B(E,F ;G) the space
of all separately continuous bilinear forms. The spaces have an obvious linear
structure and B(E,F ;G) is a subspace of B(E,F ;G). In case G = F, we will
denote the spaces by B(E,F ) and B(E,F ). We would like to endow them with
a certain topology.

For every A bounded subset of E, B a bounded subset of F and W a
neighbourhood of 0, we set

U(A,B,W ) := {Φ ∈ B(E,F ;G) : Φ(A,B) ⊂W}

The family of all such subsets can be proved to be a neighbourhood basis of 0 in
B(E,F ;G) for a locally convex topology, compatible with the linear structure of
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B(E,F ;G). This is due to the fact that U(A,B,W ) is absorbing, which follows
from the fact that Φ(A,B) is bounded. The induced topology is often referred
to as topology of bi-bounded convergence. This is no longer true in case
Φ ∈ B(E,F ;G) and one has to be more careful.

We are going to equip the space B(E′
b, F

′
b) with some locally convex topology.

First, we need the following definition:

Definition 2.4. Suppose X is a Hausdorff topological space and Y is a topo-
logical vector space. Suppose that S is a set of continuous functions from X
into Y and x0 ∈ X. We say that the set S is equicontinuous at x0 if for every
neighbourhood V of 0 in Y , there exists a neighbourhood U of x0 such that
f(x)− f(x0) ∈ V for every f ∈ S and every x ∈ U .

We say that S is equicontinuous if it is equicontinuous at each x0 ∈ X.

Then, we have the following result ([15] Proposition 42.1):

Proposition 2.15. Suppose that E,F,G are locally convex spaces and that
E′

b, F
′
b are the strong duals of E and F respectively. Suppose also that Φ ∈

B(E′
b, F

′
b;G) and that A and B are equicontinuous subsets of E′ and F ′ respec-

tively. Then, Φ(A,B) is bounded in G.

Now, the family of the sets

U(A,B,W ) := {Φ ∈ B(E′
b, F

′
b;G) : Φ(A,B) ⊂W}

for A,B equicontinuous subsets of E′ and F ′ respectively and W a neighbour-
hood of 0 in G is actually a neighbourhood basis of 0 for a locally convex
topology on B(E′

b, F
′
b;G) that is compatible with its linear structure.

Since the weak dual topology is clearly weaker than the strong topology, we
have the following inclusions:

B(E′
σ, F

′
σ) ⊂ B(E′

σ, F
′
σ) ⊂ B(E′

b, F
′
b) (2.1)

Now, for E,F locally convex spaces we are finally able to endow their algebraic
tensor product E ⊗ F with a locally convex topology. For x ∈ E, y ∈ F , the
map (x′, y′) 7→ x′(x)y′(y) from E′×F ′ into F, is clearly bilinear and continuous
when E′ and F ′ are equipped with the weak dual topology. This gives us a well
defined map from the algebraic tensor product E ⊗ F into B(E′

σ, F
′
σ). In [15],

Proposition 42.4 it is actually shown that this map is an isomorphism of E ⊗F
onto B(E′

σ, F
′
σ). We call E⊗F equipped with the topology that it induces from

B(E′
b, F

′
b) (see 2.1) injective tensor product of the spaces E and F and we

denote it by E ⊗ε F .

Remark 2.1. We observe that the function (x, y) 7→ x ⊗ y from E × F into
E ⊗ε F is continuous. To see this, suppose that the net (xλ, yλ) converges to
0. Then xλ → 0 and yλ → 0. We need to show that xλ ⊗ yλ, considered as
an element of B(E′

σ, F
′
σ) converges to 0 in the topology of uniform convergence

on equicontinuous subsets. Equivalently, we need to show that for each ϵ > 0
and every equicontinuous subsets A ⊂ E′, B ⊂ F ′, there exists λ0 such that

24



|xλ⊗yλ(A,B)| < ϵ for every λ ≥ λ0. Since A (resp. B) is equicontinuous, there
exists a neighbourhood U (resp. V ) of 0 in E (resp. F ) such that |x′(x)| <

√
ϵ

(resp. |y′(y)| <
√
ϵ) for every x ∈ U and x′ ∈ A (resp. every y ∈ V and y′ ∈ B).

Since we have xλ → 0 and yλ → 0, there exists a λ0 such that xλ ∈ U and
yλ ∈ V for every λ ≥ λ0. Then, for every x

′ ∈ A, y′ ∈ B and λ ≥ λ0, we have

|xλ ⊗ yλ(x
′, y′)| = |x′(xλ)y′(yλ)| < ϵ

which proves our claim.

The injective topology is one of the two main topologies defined on tensor
products of locally convex spaces. The second one is the projective topology.

Definition 2.5. The strongest locally convex topology on E ⊗ F that makes
the map (x, y) 7→ x ⊗ y from E × F into E ⊗ F continuous is called projective
topology. The space E ⊗ F equipped with this topology is denoted by E ⊗π F .

By Remark 2.1, this topology exists and it is stronger than the ε−topology.
There is an explicit description of the family of seminorms that induces the

topology of E ⊗π F , in terms of the seminorms that induce the topologies of E
and F . Suppose that P and Q are the families of seminorms that induce the
topologies of E and F respectively. Then, for each p ∈ P, q ∈ Q and a ∈ E⊗F ,
we define

(p⊗ q)(a) := inf

{∑
i

p(xi)q(yi) : a =
∑
i

xi ⊗ yi

}

It can be shown that this is a seminorm and that the family

{p⊗ q : p ∈ P, q ∈ Q}

induces the topology of E⊗π F . For a detailed proof, see [15], Proposition 43.1.
The projective tensor product is also described by its universal property:

Theorem 2.16. Suppose E, F and G are locally convex topological vector spaces
and f : E × F → G is a continuous bilinear mapping. Then, the induced linear
map f̃ : E ⊗π F → G is continuous with respect to the projective topology.

The correspondence f ↔ f̃ provides an (algebraic) isomorphism between the
spaces B(E,F ;G) and L(E⊗πF ;G), the latter being the space of all continuous
linear maps from E ⊗π F into G. Furthermore, the projective topology is the
only one with this property.

The proof follows easily from the definition of the projective topology. For
a detailed proof, see [15] Proposition 43.4.

We also need to introduce the completion of a topological vector space. It
is a generalization of the completion of a metric space, for topological vector
spaces that might not be metrizable. Suppose E is a topological vector space.
A net {xλ}λ∈Λ of E is called a Cauchy net if for every neighbourhood U of
0, there exists some λ0 ∈ Λ such that xλ1

− xλ2
∈ U for every λ1, λ2 ≥ λ0.
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The space E is called complete if every Cauchy net in E converges to some
point x ∈ E. Now, suppose E is metrizable. By [12], Theorem 1.24, the
metric that induces its topology can be assumed to be translation-invariant, i.e.
d(x+ z, y + z) = d(x, y) for all x, y, z ∈ E. It is not very difficult to show that
if E is metrizable, then E is complete if and only if it is sequentially complete,
i.e. if every Cauchy sequence converges.

We have the following remarkable result, whose proof can be found in [15],
Theorem 5.2:

Theorem 2.17. Let E be a topological vector space. There exists a complete
topological vector space Ê and a linear continuous and a linear embedding (i.e.

a continuous injection that is a homeomorphism onto its image) ι : E → Ê such

that ι(E) is dense in Ê and so that the following holds:
For every complete topological vector space F and any continuous linear

map f : E → F , there exists a unique linear and continuous map f̂ : Ê → F
extending f , i.e. satisfying f̂ ◦ ι = f . Furthermore, for every pair (Ê1, ι1)

consisting of a complete topological vector space Ê1 and a linear dense embedding
ι1 of E into Ê1, there exists a linear homeomorphism j : Ê → Ê1 such that
j ◦ ι = ι1

We call the space Ê of the previous Theorem the Cauchy completion of
E. In case E is metrizable, the Cauchy completion coincides with the usual
completion of a metric space.

Now that we have introduced the Cauchy completion of a topological vector
space, for E,F locally convex spaces, we denote by E⊗̂εF and E⊗̂πF respec-
tively, the Cauchy completions of the spaces E ⊗ε F and E ⊗π F .

Remark 2.2. Since the projective topology on E ⊗ F is finer than the injective
topology, the identity map i : E⊗πF → E⊗εF is continuous. If we denote by ιε
and ιπ the inclusions of E⊗ε F and E⊗π F respectively into their completions,
the map ιε ◦ i is linear and continuous from E⊗π F into E⊗̂εF , so by Theorem
2.17, it extends uniquely to a linear and continuous map ĩ : E⊗̂πF → E⊗̂εF .

2.6.3 Tensor product of Banach spaces

In order to introduce the definition of nuclear spaces, one needs to talk about
projective tensor products of Banach spaces. This is a special case of the projec-
tive tensor product of locally convex spaces, as we will see. If X,Y are Banach
spaces, for each a ∈ X ⊗ Y (the algebraic tensor product), we define

∥a∥π := inf

{∑
i

∥xi∥∥yi∥ : a =
∑
i

xi ⊗ yi

}
In [13] Proposition 2.1 it is shown that this is indeed a norm, that satisfies
∥x ⊗ y∥π = ∥x∥∥y∥. The completion of X ⊗ Y with respect to this norm is
denoted by X⊗̂πY and it is called the projective tensor product of X and
Y . Like the projective tensor product in locally convex spaces, it possesses a
universal property itself.
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For Banach spaces X,Y and Z, it is easy to verify that a bilinear form
F : X×Y → Z is jointly continuous if and only if there exists a constant C > 0
such that ∥F (x, y)∥ ≤ C∥x∥∥y∥ for all x ∈ X, y ∈ Y . Therefore, the space
B(X,Y ;Z) of all jointly continuous bilinear forms can be equipped with the
following norm:

∥F∥ := sup{∥F (x, y)∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1}

With this in mind, we can state the universal property for the projective tensor
product of Banach spaces:

Theorem 2.18. Suppose X,Y, Z are Banach spaces. For every continuous
bilinear map F : X × Y → Z, there exists a unique bounded linear map
F̃ : X⊗̂πY → Z satisfying F̃ (x ⊗ y) = F (x, y) for every x ∈ X, y ∈ Y . Fur-
thermore, ∥F̃∥ = ∥F∥. Therefore, the spaces B(X,Y ;Z) and L (X⊗̂πY,Z) are
isometrically isomorphic.

The proof of the above result can be found in [13], Theorem 2.9. There are
lots of other important results about the projective tensor product of Banach
spaces, but we shall only use its universal property, in order to define nuclear
spaces.

2.6.4 Nuclear mappings and nuclear spaces

Suppose X and Y are Banach spaces. We define a map F : X∗×Y → L (X;Y )
by

F (x∗, y)(x) = x∗(x)y

It is clear that this is a well-defined, bilinear map. Furthermore, we have

∥F (x∗, y)(x)∥ = ∥x∗(x)y∥ = |x∗(x)|∥y∥ ≤ ∥x∗∥∥x∥∥y∥

This proves that ∥F (x∗, y)∥ ≤ ∥x∗∥∥y∥, hence F ∈ B(X∗, Y ;L (X,Y )) with
∥F∥ ≤ 1. By Theorem 2.18, there is an induced bounded linear map F̃ :
X∗⊗̂πY → L (X,Y ) with F̃ (x∗ ⊗ y) = F (x∗, y) for each x∗ ∈ X∗ and y ∈ Y ,
and furthermore, ∥F̃∥ = ∥F∥ ≤ 1.

Definition 2.6. The image of X∗⊗̂πY under F̃ into L (X,Y ) is denoted by
L 1(X,Y ). The elements of L 1(X,Y ) are called the nuclear mappings of X
into Y .

Now, suppose that E is a locally convex topological vector space. Pick any
continuous seminorm p on E (the topology of E does not change if we add p to
the family of seminorms that induces its topology). The set

ker p := {x ∈ E : p(x) = 0}

is a closed linear subspace of E. Therefore, E/ ker p has a natural linear struc-

ture, and p is a norm on that space. We denote by Êp the completion of that
normed space. Observe that for any pair of continuous seminorms p, q such
that p ≤ q, we have a well-defined map fqp : Êq → Êp (since x ∈ ker q implies
x ∈ ker p), which is also a contraction (i.e. ∥fqp∥ ≤ 1).
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Definition 2.7. Suppose E is a locally convex space. E is called nuclear if
for every pair of continuous seminorms p, q on E, such that p ≤ q, the induced
map fqp : Êq → Êp is a nuclear mapping.

Although the definition is not very intuitive of what nuclear spaces actually
are, they possess many interesting properties, a lot of which are associated to
tensor products. A few of them, that we shall use later, are stated in the
following Proposition:

Proposition 2.19. (i) The space E is nuclear if and only if for every locally
convex space F the canonical map ĩ : E⊗̂πF → E⊗̂εF of Remark 2.2 is
an (onto) homeomorphism.

(ii) If E is a Fréchet space, E is nuclear if and only if its strong dual E′
b is

nuclear

(iii) If E and F are nuclear spaces, then E⊗̂F is also nuclear.

For detailed proofs, the reader can see [15], Theorem 50.1 and Propositions
50.1, 50.6. Observe that the fact that ĩ is a homeomorphism implies that the
identity map id: E ⊗π F → E ⊗ε F is also a homeomorphism, therefore the
spaces E ⊗π F and E ⊗ε F carry the same topology.

2.6.5 Schwartz space

A famous example of a nuclear Fréchet space, which we are going to deal with
later, is the space S(Rn) of Schwartz functions on Rn. This space consists of
all smooth functions f : Rn → C, such that

∥f∥α,β := sup
x∈Rn

|xαDβf(x)| <∞

for all multi-indices α = (α1, .., αn), β = (β1, .., βn), where xα = xα1
1 ..xαn

n ,
Dβf = ∂β1 ..∂βnf . We equip S(Rn) with the locally convex topology induced
by this family of seminorms. Since this is a countable family of seminorms, this
is a Fréchet space. The proof that S(Rn) is nuclear for each n is quite involved
and we are not going to show this here. For a proof, the reader is referred to
[15], Corollary of Theorem 51.5.

It is easy to see that S(Rn) is complete. Suppose (fm)m∈N is a Cauchy
sequence in S(Rn). First, it is clear that (fm) is uniformly Cauchy, as a function
from Rn → C, since for every ε > 0, U = {f ∈ S(Rn) : ∥f∥∞ < ε} is a
neighbourhood of 0, hence there exists M such that fk − fm ∈ U for every
k,m > M or equivalently ∥fk − fm∥∞ < ε for all k,m > M . We know by
Mathematical Analysis that in that case, the sequence (fm) converges uniformly
to some function f and since (fm) is clearly uniformly bounded, ∥f∥∞ < ∞.
Repeating the same argument for all derivatives Dβfm, for every multi-index β,
the sequence (Dβfm)m∈N is uniformly Cauchy, therefore it converges uniformly
to some function fβ , with ∥fβ∥∞ < ∞. Again, by undergraduate Analysis,
we know this means that the derivative Dβf exists and Dβf = fβ . Thus, f
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is smooth. Again, if we repeat the argument for any multi-index α, we get
that (xαDβfm) converges uniformly to some function fαβ with ∥fαβ∥∞ < ∞.
Since clearly xαDβfm → xαDβf pointwise, we must have fαβ = xαDβf . Thus,
f ∈ S(Rn) and since ∥fm−f∥α,β → 0 for every multi-indices α, β, fm converges
to f in S(Rn).

It is easy to see that if f ∈ S(Rn), g ∈ S(Rm), then the function f ⊗ g is in
S(Rm+n) (we identify f ⊗g with the function (θ, η) 7→ f(θ)g(η)). Therefore, we
get a bilinear map from S(Rn)×S(Rm) into S(Rm+n). The map is also contin-
uous, therefore it induces a continuous map from S(Rn)⊗S(Rm) into S(Rn+m)
(continuous with respect to both tensor products, thanks to nuclearity), which
is clearly injective. In [15], Theorem 51.6 it is shown that the map is actually
an embedding, with a dense image inside S(Rn+m), therefore, by the universal
property in Theorem 2.17, the spaces S(Rn)⊗̂S(Rm) and S(Rn+m) are actually
homeomorphic.
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3 Fock Space Structure and Unsymmetrized Ex-
pansion

In this section, we are going to introduce the unsymmetrized Fock space model
that we are going to work with, and introduce the class of observables that we
are going to expand, in terms of annihilation and creation operators.

We assume that L is a given complex Hilbert space, with inner product
denoted by ⟨·, ·⟩ and induced norm ∥ · ∥. The unsymmetrized Fock space is the
Hilbert space direct sum

L⊕ :=

∞⊕
n=0

L⊗n

where L⊗n is the usual Hilbert space tensor product of n copies of L (we set
L⊗0 := C).

We define the annihilation and creation operators (a, a†) as (unbounded)
operators acting on the Fock space in the following way:
For f ∈ L,Φ = (Φn)n ∈ L⊕,

(a†(f)Φ)n =
√
nf ⊗ Φn−1 (3.1)

a(f) = (a†(f))∗ (3.2)

In particular, if ϕ = ϕ1 ⊗ ...⊗ ϕn, we have

a(f)ϕ =
√
n⟨f, ϕ1⟩ϕ2 ⊗ ...⊗ ϕn

In order to define the class of quadratic forms we are interested in, we assume
that each space L⊗n contains a subspace En, equipped with a topology τn and
such that

(1) En ⊗ Em is a dense subspace of Em+n (in the topology of the latter).

(2) τn is finer than the inner product topology induced by L⊗n

For each m,n let Qmn denote the space of all (jointly) continuous quadratic
(i.e. sesquilinear) forms A : Em × En → C, where Em × En is equipped with the
product topology of the topologies τn and τm. As usual, we are assuming that
A is antilinear in the first argument and linear in the second. Note that A may
not be continuous with respect to the Hilbert space topology that En and Em
inherit from L⊗n and L⊗m respectively.

Furthermore, we assume that each Qmn is equipped with some locally convex
topology and that for each m,n, t there exists a linear and continuous map

πmnt : Qmn → Qm+t,n+t

A 7→ A⊗ 1t

such that:
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(i) ⟨a ⊗ b, (A ⊗ 1t)(c ⊗ d)⟩ = ⟨a,Ac⟩⟨b, d⟩ for each a ∈ Em, c ∈ En, b, d ∈ Et,
A ∈ Qmn, where ⟨b, d⟩ denotes the inner product in L⊗t

(ii) (A⊗ 1t)⊗ 1s = A⊗ 1t+s for each A ∈ Qmn and each t, s ∈ N.

Remark 3.1. If we further assume that for any fixed b ∈ Ek′ the map a 7→ a⊗ b
from Ek into Ek+k′ is continuous (with respect to the τk, τk+k′−topologies) for
each k, k′, (ii) actually follows from (i). It is easy to see that by the first
requirement,

⟨Ψ, ((A⊗ 1t)⊗ 1s)Φ⟩ = ⟨Ψ, (A⊗ 1t+s)Φ⟩ (3.3)

whenever Ψ ∈ Em ⊗ Et ⊗ Es and Φ ∈ En ⊗ Et ⊗ Es. For Ψ = Ψ1 ⊗ Ψ2, where
Ψ1 ∈ Em and Ψ2 ∈ Et+s, we can find a net (Ψλ) ⊂ Et ⊗ Es converging to Ψ2, so
Ψ1⊗Ψλ converges to Ψ1⊗Ψ2. Since Ψλ⊗Ψ2 ∈ Em⊗Et⊗Es, for Φ ∈ En⊗Et⊗Es,
we have

⟨Ψ1 ⊗Ψλ, ((A⊗ 1t)⊗ 1s)Φ⟩ = ⟨Ψ1 ⊗Ψλ, (A⊗ 1t+s)Φ⟩

and by continuity, if we take limits on both sides we have

⟨Ψ1 ⊗Ψ2, ((A⊗ 1t)⊗ 1s)Φ⟩ = ⟨Ψ1 ⊗Ψ2, (A⊗ 1t+s)Φ⟩

Repeating the same argument for Φ, we can conclude that 3.3 holds for each
Ψ ∈ Em ⊗ Et+s and Φ ∈ En ⊗ Et+s. Thus, by the same density argument,
we get 3.3 for all Ψ ∈ Em+t+s, Φ ∈ En+t+s, and therefore condition (ii) holds
automatically.

We define Ef as the algebraic direct sum of all spaces En,
∑∞

n=0 En (for n = 0,
we set E0 := C) and define Qf as

Qf :=
∏
m,n

Qmn

equipped with the product topology. We note that each form in Qf gives rise
to a quadratic form from Ef × Ef into C, which however is not necessarily
continuous if we equip Ef with the product topology it inherits from

∏
n En.

However, if we restrict to
∏n

k=1 Ek ×
∏m

k=1 Ek, for any fixed n,m, the induced
form is continuous.

Now, for D ∈ Qmn, Ψ ∈ Eℓ,Φ ∈ Ek with ℓ = k − n+m and k ≥ n.

⟨Ψ, (a†mDan)Φ⟩ :=
√
k!ℓ!

(k − n)!
⟨Ψ, (D ⊗ 1k−n)Φ⟩

and in any other case for Ψ,Φ, it is equal to 0. Observe that this is a generalized
form of the annihilation and creation operators as we defined them in 3.1 (resp.
3.2), in case m = 1, n = 0 (resp. m = 0, n = 1) and for A : E1 × C → C (resp.
A : C × E1 → C) being of the form ⟨ψ,Az⟩ = z⟨ψ, f⟩ (resp. ⟨z,Aψ⟩ = z⟨f, ψ⟩)
for some f ∈ L. It is clear that (a†mDan) ∈ Qf .
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Finally, for A ∈ Qf and m,n any pair of naturals, we define

[A]mn :=

min(m,n)∑
t=0

a(m,n; t)(Am−t,n−t ⊗ 1t)

where:
a(m,n; t) := Ctm!n!((m− t)!(n− t)!)−1/2 for

C0 := 1 and

Ct :=

t∑
n=1

(−1)n
∑

(t1,..,tn)
t1+..+tn=t

ti≥1

(t1!..tn!)
−1 for t ≥ 1

Lemma 3.1.
L∑

t=0

1

(L− t)!
Ct =

{
1 L = 0

0 L ≥ 1

Proof. For L = 0 or L = 1, it can be directly verified. Suppose that L ≥ 2. We
compute:

L∑
t=0

1

(L− t)!
Ct =

1

L!
+ CL +

L−1∑
t=1

t∑
n=1

(−1)n

(L− t)!

∑
(t1,..,tn)

t1+..+tn=t

(t1!..tn!)
−1

=
1

L!
+ CL +

L−1∑
n=1

(−1)n
L−1∑
t=n

1

(L− t)!

∑
(t1,..,tn)

t1+..+tn=t

(t1!..tn!)
−1

=
1

L!
+ CL +

L−1∑
n=1

(−1)n
L−n∑
t=1

1

t!

∑
(t1,..,tn)

t1+..+tn=L−t

(t1!..tn!)
−1 (3.4)

Now, we observe that the sum

L−n∑
t=1

1

t!

∑
(t1,..,tn)

t1+..+tn=L−t

(t1!..tn!)
−1

can also be written as ∑
(t1,..,tn,tn+1)

t1+..+tn+tn+1=L

(t1!..tn!tn+1!)
−1

32



Therefore, we continue our calculations in 3.4 as follows:

1

L!
+ CL +

L−1∑
n=1

(−1)n
L−n∑
t=1

1

t!

∑
(t1,..,tn)

t1+..+tn=L−t

(t1!..tn!)
−1

=
1

L!
+ CL +

L−1∑
n=1

(−1)n
∑

(t1,..,tn,tn+1)
t1+..+tn+tn+1=L

(t1!..tn!tn+1!)
−1

=

L∑
n=2

(−1)n
∑

(t1,..,tn)
t1+..+tn=L

(t1!..tn!)
−1 +

L∑
n=2

(−1)n−1
∑

(t1,..,tn)
t1+..+tn=L

(t1!..tn!)
−1

= 0

Theorem 3.2. Suppose Dmn ∈ Qm,n for each m,n ≥ 0. Then, the formula

A =

∞∑
m,n=0

1

m!n!
(a†mDmna

n)

defines a form in Qf such that [A]mn = Dmn.

Proof. Using the fact that ⊗ is associative and without loss of generality m ≤ n
we compute:

[A]mn =

m∑
t=0

a(m,n; t)(Am−t,n−t ⊗ 1t)

=

m∑
t=0

a(m,n; t)

m−t∑
k=0

√
(n− t)!(m− t)!

(m− t− k)!k!(k −m+ n)!
((Dk,k−m+n ⊗ 1m−k−t)⊗ 1t)

=

m∑
t=0

a(m,n; t)

m−t∑
k=0

√
(n− t)!(m− t)!

(m− t− k)!k!(k −m+ n)!
(Dk,k−m+n ⊗ 1m−k)

=

m∑
k=0

1

k!(k −m+ n)!

(
m−k∑
t=0

a(m,n; t)

√
(n− t)!(m− t)!

(m− t− k)!

)
(Dk,k−m+n ⊗ 1m−k)

=

m∑
k=0

m!n!

k!(k −m+ n)!

(
m−k∑
t=0

1

(m− k − t)!
Ct

)
(Dk,k−m+n ⊗ 1m−k)

By Lemma 3.1, the latter is equal to Dmn and the proof is complete.

Theorem 3.3. Suppose A ∈ Qf . We have the following:

33



(i)

A =

∞∑
m,n=0

1

m!n!
(a†m[A]mna

n) (3.5)

(ii) The map A 7→ ([A]mn)m,n is a homeomorphism from Qf onto itself, with
its inverse given by (Dmn) 7→

∑∞
m,n=0

1
m!n! (a

†mDmna
n)

Proof. Without loss of generality, let m ≤ n, let D denote the RHS of 3.5 and
ℓ = k −m+ n. We compute:

Dmn =

m∑
k=0

1

k!ℓ!
(a†k[A]kℓa

ℓ) =

m∑
k=0

√
m!n!

k!ℓ!(m− k)!
([A]kℓ ⊗ 1m−k)

=

m∑
k=0

√
m!n!

k!ℓ!(m− k)!

k∑
t=0

a(k, ℓ; t)((Ak−t,ℓ−t ⊗ 1t)⊗ 1m−k)

=

m∑
k=0

√
m!n!

k!ℓ!(m− k)!

k∑
t=0

a(k, ℓ; t)(Ak−t,ℓ−t ⊗ 1m−k+t)

=

m∑
k=0

√
m!n!

(m− k)!(n− k)!k!

m−k∑
t=0

a(m− k, n− k; t)(Am−k−t,n−k−t ⊗ 1k+t)

=

m∑
L=0

L∑
k=0

√
m!n!

(m− k)!(n− k)!k!
a(m− k, n− k;L− k)(Am−L,n−L ⊗ 1L)

=

m∑
L=0

√
m!n!√

(m− L)!(n− L)!

(
L∑

k=0

1

k!
CL−k

)
(Am−L,n−L ⊗ 1L) = Amn

which proves that

A =

∞∑
m,n=0

1

m!n!
(a†m[A]mna

n)

Now, we are going to prove (ii). It is clear by the previous Theorems that
this map is bijective and its inverse is given by

(Dmn)m,n 7→
∑
m,n

1

m!n!
(a†mDmna

n)

Continuity of the map is equivalent to continuity of the map A 7→ [A]mn for
each m,n. Since

[A]mn =

min(m,n)∑
t=0

a(m,n; t)(Am−t,n−t ⊗ 1t)

it is sufficient to show that the map A 7→ Amn⊗1t is continuous for each m,n, t.
This is the composition of the projection map A 7→ Amn, which is continuous
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since Qf is given the product topology, and the map S 7→ S ⊗ 1t, which is
continuous by our assumptions.

Now, we will show that the inverse map (Dmn)m,n 7→
∑

m,n
1

m!n! (a
†mDmna

n)
is also continuous. If we identify Qf with

∏
m,nQmn, after a direct computation,

one sees that the (k, ℓ)-coordinate of
∑

m,n
1

m!n! (a
†mDmna

n) is

∑ 1

n!m!
(a†mDmna

n) for m = n− k + ℓ

where the sum runs through n = 0, .., k in case ℓ ≥ k and through m = 0, .., ℓ in
case k ≥ ℓ. Hence, it is sufficient to show that for all m,n, the map (Dkℓ)k,ℓ 7→
(a†mDmna

n) is continuous. Since this map is the composition of the continuous
projection map (Dkℓ)k,ℓ 7→ Dmn with D 7→ (a†mDan), it suffices to show that
the latter is continuous. This follows from the fact that for each k, ℓ such that
ℓ = k − n+m, k ≥ n, the map

D 7→
√
k!ℓ!

(k − n)!
D ⊗ 1k−n

is continuous.
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4 Symmetrized Fock space

4.1 Expansion formula

In order to define the symmetrized Fock space, we assume the existence of a
sequence of orthogonal projections Pn : L⊗n → L⊗n, such that:

(1) Pn+m ≤ Pn ⊗ 1m for each n,m.

(2) Pn(En) ⊂ En and Pn|En
: En → En is τn-continuous for each n.

(3) Pn ⊗ 1m : En+m → En+m is τn+m- continuous for each n,m.

(4) The map A 7→ PmAPn from Qmn into Qmn is continuous.

By Lemma 2.4, (1) is equivalent to

(Pn ⊗ 1m)Pn+m = Pn+m(Pn ⊗ 1m) = Pn+m for each n,m ≥ 0 (4.1)

The associated symmetrized Fock space is

L⊕
P =

∞⊕
n=0

Pn(L⊗n)

In this section, we are going to prove a symmetrized analogue of the expan-
sion formula in Theorem 3.3. For A ∈ Qmn, we define the sesquilinear form
PmAPn as

⟨Ψ, (PmAPn)Φ⟩ := ⟨PmΨ, APnΦ⟩

It is clear that PmAPn ∈ Qmn. For A =
∏

m,nAmn ∈ Qf , we set PAP :=∏
m,n PmAmnPn, which is also in Qf . Then, we have the following:

Proposition 4.1. For A ∈ Qmn,

P (a†m(PmAPn)a
n)P = P (a†mAan)P

Proof. First, we will show that (PmAPn)⊗ 1t = (Pm ⊗ 1t)(Amn ⊗ 1t)(Pn ⊗ 1t),
where the RHS form is defined the obvious way, and it is a form in Qm+t,n+t,
thanks to continuity of Pn ⊗ 1t (condition (3)). Let a ∈ Em, b ∈ En, x, y ∈ Et.
We compute:

⟨a⊗ x, ((PmAPn)⊗ 1t)(b⊗ y)⟩ = ⟨Pma,APnb⟩⟨x, y⟩
= ⟨(Pma⊗x), (A⊗1t)(Pnb⊗y)⟩ = ⟨(Pm⊗1t)(a⊗x), (A⊗1t)(Pn⊗1t)(b⊗y)⟩

Thus, by linearity we have (PmAPn) ⊗ 1t = (Pm ⊗ 1t)(Amn ⊗ 1t)(Pn ⊗ 1t) on
(Em ⊗ Et) × (En ⊗ Et). By continuity of the two forms and since Em ⊗ Et and
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En ⊗ Et are dense in Em+t and En+t respectively, the claim follows. Now, let
Ψ ∈ Eℓ,Φ ∈ Ek, for ℓ = k − n+m, k ≥ n. We compute:

⟨Ψ, P (a†m(PmAPn)a
n)PΦ⟩ = ⟨PℓΨ, (a

†m(PmAPn)a
n)PkΦ⟩

=

√
k!ℓ!

(k − n)!
⟨PℓΨ, ((PmAPn)⊗ 1k−n)PkΦ⟩

=

√
k!ℓ!

(k − n)!
⟨PℓΨ, (Pm ⊗ 1k−n)(A⊗ 1k−n)(Pn ⊗ 1k−n)PkΦ⟩

=

√
k!ℓ!

(k − n)!
⟨PℓΨ, (A⊗1k−n)PkΦ⟩ = ⟨PℓΨ, (a

†mAan)PkΦ⟩ = ⟨Ψ, P (a†mAan)PΦ⟩

where we have used 4.1.

Motivated by Proposition 4.1, we are going to define the symmetrized anni-
hilation and creation operators as

(z†mAzn) := P (a†mAan)P

which are forms in Qf when A ∈ Qmn.
We also set for A ∈ Qf

[A]Pmn := Pm[A]mnPn ∈ Qmn

We can prove now the main Theorems of this section:

Theorem 4.2. Suppose Dmn ∈ Qmn for each m,n ≥ 0. Then, the formula

A =

∞∑
m,n=0

1

m!n!
(z†mDmnz

n)

defines a form in Qf such that [A]Pmn = PmDmnPn

Proof. We will prove it form ≤ n and the other case follows similarly. Through-
out the proof, we set ℓ = k −m + n. The fact that A ∈ Qf is clear. Now, one
can compute that

Amn =

m∑
k=0

√
m!n!

k!ℓ!(m− k)!
Pm(Dk,k−m+n ⊗ 1m−k)Pn

Therefore, we have that

[A]Pmn =

m∑
t=0

a(m,n; t)Pm(Am−t,n−t ⊗ 1t)Pn

=

m∑
t=0

a(m,n; t)

m−t∑
k=0

√
(m− t)!(n− t)!

k!ℓ!(m− k − t)!
Pm((Pm−t(Dkℓ⊗1m−k−t)Pn−t)⊗1t)Pn
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Now, using the same arguments as in the proof of Proposition 4.1, we have that

Pm((Pm−t(Dkℓ ⊗ 1m−k−t)Pn−t)⊗ 1t)Pn

= Pm(Pm−t ⊗ 1t)((Dkℓ ⊗ 1m−k−t)⊗ 1t)(Pn−t ⊗ 1t)Pn

= Pm(Dkℓ ⊗ 1m−k)Pn

where we have used 4.1 and associativity of ⊗. The rest of the proof is identical
to the proof of Theorem 3.2

Theorem 4.3. Suppose A ∈ PQfP =
∏

m,n PmQmnPn. We have the following:

(i)

A =

∞∑
m,n=0

1

m!n!
(z†m[A]Pmnz

n) (4.2)

(ii) The map A 7→ ([A]Pmn)m,n is a homeomorphism from PQfP onto itself,
with its inverse given by (Dmn) 7→

∑∞
m,n=0

1
m!n! (z

†mDmnz
n). Here, the

space PQfP is given the subspace topology, considered as a subspace of
Qf .

Proof. First, we prove (i). Let D =
∑∞

m,n=0
1

m!n! (z
†m[A]Pmnz

n). By Proposition

4.1, we have that D =
∑∞

m,n=0
1

m!n! (z
†m[A]mnz

n). For m ≤ n without loss of
generality, and ℓ = k −m+ n we compute:

Dmn =

m∑
k=0

√
m!n!

k!ℓ!(m− k)!
Pm([A]kℓ ⊗ 1m−k)Pn

=

m∑
k=0

√
m!n!

k!ℓ!(m− k)!

k∑
t=0

a(k, ℓ; t)Pm((Ak−t,ℓ−t ⊗ 1t)⊗ 1m−k)Pn

=

m∑
k=0

√
m!n!

k!ℓ!(m− k)!

k∑
t=0

a(k, ℓ; t)Pm(Ak−t,ℓ−t ⊗ 1m−k+t)Pn

and then after identical computations as in the proof of Theorem 3.3 (i), the
latter equals PmAmnPn which is equal to Amn.

Now, we will prove (ii). Continuity of the map A 7→ ([A]Pmn)m,n is equivalent
to continuity of the map A 7→ [A]Pmn = Pm[A]mnPn for each m,n. In Theorem
3.3 (ii), we proved that the map A 7→ [A]mn is continuous (as a map from Qf ),
therefore its restriction to PQfP is also continuous. This fact combined with
property (4) shows that A 7→ [A]Pmn is continuous.

To show that the inverse is continuous, it suffices to show that the inverse
composed with the (m,n)-projection (with m ≤ n without loss of generality and
ℓ = k −m+ n), i.e. the map

(Dmn)m,n 7→
m∑

k=0

√
m!n!

k!ℓ!(m− k)!
Pm(Dkℓ ⊗ 1m−k)Pn
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is continuous for eachm,n. To this end, it is sufficient to show that (Dmn)m,n 7→
Pm(Dkℓ⊗1m−k)Pn is continuous for everym,n and k ≤ m, ℓ = k−m+n. Again
by property (4), it is sufficient to show that the map (Dmn)m,n 7→ Dkℓ ⊗ 1m−k

is continuous and we argued for this in the proof of Theorem 3.3 (ii), when
(Dmn) ∈ Qf . Therefore the restriction to PQfP is also continuous and this
fact completes the proof.

4.2 Symmetry transformation

We are going to generalize Proposition 3.9 in [2], regarding the way the coef-
ficients [A]Pmn change in case a space-time translation acts on the Fock space.
This will reveal how the expansion changes too.

Suppose that U ∈ L (L) is a unitary operator acting on L. We set Un :=
U ⊗ .. ⊗ U ∈ L (L⊗n). It is clear that Un is also unitary for each n. We also
assume that Un(En) ⊂ En with Un|En being continuous and that UnPn = PnUn

for each n. Then, for any A ∈ Qf , we define the form UAU∗ =
∏

m,n UmAmnU
∗
n,

where
⟨Ψ, (UmAmnU

∗
n)Φ⟩ := ⟨U∗

mΨ, AmnU
∗
nΦ⟩

for every Ψ ∈ Em,Φ ∈ En. It is clear that UAU∗ ∈ Qf . We compute:

[UAU∗]Pmn = Pm

min(m,n)∑
t=0

a(m,n; t)((UAU∗)m−t,n−t ⊗ 1t)

Pn

= Pm

min(m,n)∑
t=0

a(m,n; t)((Um−tAm−t,n−tU
∗
n−t)⊗ 1t)

Pn

Let Ψ = Ψ1⊗Ψ2 and Φ = Φ1⊗Φ2, where Ψ1 ∈ Em−t,Φ1 ∈ En−t and Ψ2,Φ2 ∈ Et.
Using that Uk ⊗ Uℓ = Uk+ℓ for each k, ℓ and the fact that Uk (as well as U∗

k ) is
unitary for each k, we compute:

⟨Ψ1 ⊗Ψ2, ((Um−tAm−t,n−tU
∗
n−t)⊗ 1t)(Φ1 ⊗ Φ2)⟩

= ⟨U∗
m−tΨ1, Am−t,n−tU

∗
n−tΦ1⟩⟨Ψ2,Φ2⟩

= ⟨U∗
m−tΨ1, Am−t,n−tU

∗
n−tΦ1⟩⟨U∗

t Ψ2, U
∗
t Φ2⟩

= ⟨(U∗
m−t ⊗ U∗

t )(Ψ1 ⊗Ψ2), (Am−t,n−t ⊗ 1t)(U
∗
n−t ⊗ U∗

t )(Φ1 ⊗ Φ2)⟩
= ⟨U∗

m(Ψ1 ⊗Ψ2), (Am−t,n−t ⊗ 1t)U
∗
n(Φ1 ⊗ Φ2)⟩

This proves that (Um−tAm−t,n−tU
∗
n−t)⊗ 1t and Um(Am−t,n−t ⊗ 1t)U

∗
n agree on

(Em−t ⊗ Et) × (En−t ⊗ Et). By a density argument, we conclude that the two
forms are equal. Using that Uk commutes with Pk for each k, we derive that

[UAU∗]Pmn = Pm

min(m,n)∑
t=0

a(m,n; t)(Um(Am−t,n−t ⊗ 1t)U
∗
n)

Pn

= Um[A]PmnU
∗
n
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5 Damping in one side

In this section, we are going to work on a similar expansion, where the ”damping
factor” is only used in one side. To be more precise, whereas in the previous
sections the space Qmn included quadratic forms from Em × En, here we are
considering forms where one of the two sides can also take values from L⊗k. To
be more precise, we define for each m,n:

Cmn := (Em × L⊗n) ∪ (L⊗m × En)

For each function A : Cmn → C, we set Aℓ and Ar be the restrictions of A to
Em × L⊗n and L⊗m × En respectively. We set

Qmn := {A : Cmn → C : Aℓ, Ar are sesquilinear and continuous}

where Em × L⊗n is equipped with the product topology of τm and the Hilbert
space topology of L⊗n and similarly for L⊗m×En. It is clear that Qmn is a linear
space, and we assume that it is equipped with some locally convex topology. We
also assume for any integers m,n, t the existence of a linear and continuous map

πmnt : Qmn → Qm+t,n+t

A 7→ A⊗ 1t

such that

• ⟨a ⊗ b, (A ⊗ 1t)(c ⊗ d)⟩ = ⟨a,Ac⟩⟨b, d⟩ whenever a ∈ L⊗m, b ∈ L⊗t, c ∈
En, d ∈ Et or a ∈ Em, b ∈ Et, c ∈ L⊗m, d ∈ L⊗t

• (A⊗ 1t)⊗ 1s = A⊗ 1t+s

Remark 5.1. As in Remark 3.1, the second requirement follows from the first, if
we also assume that for fixed b ∈ En, c ∈ Em, the maps a 7→ a⊗ b and d 7→ c⊗ d
are continuous as maps from Em (resp. En) into Em+n for each m,n. It is easy
to see using the first property that

⟨Ψ, ((A⊗ 1t)⊗ 1s)Φ⟩ = ⟨Ψ, (A⊗ 1t+s)Φ⟩ (5.1)

whenever Ψ ∈ Em ⊗ Et ⊗ Es and Φ ∈ L⊗n ⊗ L⊗t ⊗ L⊗s. We know that
L⊗n ⊗ L⊗t ⊗ L⊗s is dense in L⊗(n+t+s) with respect to the original topology,
therefore by continuity with respect to this topology, we get 5.1 for all Φ ∈
L⊗(n+t+s). Now, for Ψ1 ∈ Em, Ψ2 ∈ Et+s, there is a net (Ψλ) ⊂ Et ⊗ Es
converging to Ψ2 in the τt+s-topology. By continuity, Ψ1 ⊗ Ψλ converges to
Ψ1 ⊗ Ψ2 in the τm+t+s-topology. Since 5.1 holds for Ψ = Ψ1 ⊗ Ψλ, we get 5.1
for all Ψ ∈ Em ⊗ Et+s. Again, using density of Em ⊗ Et+s in Em+t+s, 5.1 holds
for all Ψ ∈ Em+t+s, ϕ ∈ L⊗(n+t+s). We can do the exact same procedure for
Ψ ∈ L⊗(m+t+s),Φ ∈ En+t+s, and then the claim is proved.

The rest of the definitions (Qf , (a
†mAan) and [A]mn) are defined as in Section

3, with the new notion of the tensor product of sesquilinear forms. The reader
can verify that the proofs proceed exactly like before, so Theorems 3.2 and 3.3
hold for the case of one-side damping too. One can also check that the results
of Section 4 apply to this case too, with small modifications to the proofs, using
the same arguments.
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6 Expansion in Hilbertizable Spaces

Throughout this Section, we assume that the spaces En are hilbertizable spaces,
in the sense that their topology τn comes from an inner product, denoted by
⟨·, ·⟩ω,n and that they are complete with respect to the corresponding norm
∥ · ∥ω,n. We note that continuity of the inclusion map ι : (En, τn) ↪−→ L⊗n means
that there exists a constant Cn such that ∥x∥ ≤ Cn∥x∥ω,n for each x ∈ En.
Furthermore, we assume that the natural inclusions Em⊗En ↪−→ Em⊗H L⊗n and
Em ⊗ En ↪−→ L⊗m ⊗H En are continuous, where ⊗H denotes the Hilbert space
tensor product and Em+n is equipped with the ⟨·, ·⟩ω,m+n-topology. Note, that
since Em ⊗ En is dense in Em+n, the maps ι1 : Em ⊗ En ↪−→ Em ⊗H L⊗n and
ι2 : Em ⊗ En ↪−→ L⊗m ⊗H En can be extended to continuous maps
ι̃1 : Em+n ↪−→ Em ⊗H L⊗n and ι̃2 : Em+n ↪−→ L⊗m ⊗H En.

We also assume that the natural inclusion Em ⊗En ↪−→ Em+n, where Em ⊗En
is equipped with the Hilbert space-tensor product topology, is continuous, and
thus can be extended to a continuous function from Em ⊗H En into Em+n.

Since we are dealing with Hilbert spaces, we can equip Qmn with a natural
topology, namely the norm topology coming from

∥A∥mn := sup{|⟨Ψ, AΦ⟩| : ∥Ψ∥ω,m ≤ 1, ∥Φ∥ω,n ≤ 1}

Now, we are going to define A ⊗ 1t for A ∈ Qmn. For A ∈ Qmn, by Riesz
representation Theorem (2.1), there exists a linear and bounded operator
TA : En → Em, with ∥TA∥ ≤ ∥A∥mn such that

⟨Ψ, TA(Φ)⟩ω,m = ⟨Ψ, AΦ⟩ for each Ψ ∈ Em,Φ ∈ En
We obtain the operator TA⊗1t : En⊗HL⊗t → Em⊗HL⊗t, where 1t is the identity
map of L⊗t. Since we have the continuous inclusions ι̃n+t : En+t ↪−→ En ⊗H L⊗t

and ι̃m+t : Em+t ↪−→ Em ⊗H L⊗t, we define

A⊗ 1t := ⟨ι̃m+t(·), (TA ⊗ 1t)ι̃n+t(·)⟩⊗H

We have

|⟨Ψ, (A⊗ 1t)Φ⟩| ≤ ∥TA ⊗ 1t∥∥ι̃m+t(Ψ)∥⊗H∥ι̃n+t(Φ)∥⊗H

≤ ∥TA∥∥ι̃m+t∥∥ι̃n+t∥∥Ψ∥ω,m∥∥Φ∥ω,n ≤ Cmnt∥A∥mn∥Ψ∥ω,m∥∥Φ∥ω,n

for some constant Cmnt depending only on m,n, t, therefore A⊗ 1t ∈ Qm+t,n+t

and ∥A⊗ 1t∥m+t,n+t ≤ Cmnt∥A∥mn which proves that the map A 7→ A⊗ 1t is
also continuous. Now, for a ∈ Em, c ∈ En, b, d ∈ Et, we compute:

⟨a⊗ b, (A⊗ 1t)(c⊗ d)⟩ = ⟨ι̃m+t(a⊗ b), (TA ⊗ 1t)ι̃n+t(c⊗ d)⟩⊗H

= ⟨a⊗ b, TA(c)⊗ d⟩⊗H = ⟨a, TA(c)⟩ω,m⟨b, d⟩ = ⟨a,Ac⟩⟨b, d⟩

For fixed b ∈ En, the map a 7→ a ⊗ b from Em into Em+n is continuous, which
follows from continuity of the inclusion Em ⊗H En ↪−→ Em+n. By Remark 3.1, we
deduce that (A ⊗ 1t) ⊗ 1s = A ⊗ 1t+s. Therefore, since all required properties
hold, the Expansion Theorem 3.3 applies.
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7 One-side damping in Hilbertizable Spaces

In this section, we make the same assumptions as in the previous one. For
Cmn = (Em × L⊗n) ∪ (L⊗m × En) and

Qmn = {A : Cmn → C : Ar, Aℓ sesquilinear, continuous}

we equip Qmn with the following norm:

∥A∥mn :=
1

2
sup{|⟨Ψ, AℓΦ⟩| : Ψ ∈ Em,Φ ∈ L⊗n, ∥Ψ∥ω,m ≤ 1, ∥Φ∥ ≤ 1}

+
1

2
sup{|⟨Ψ, ArΦ⟩| : Ψ ∈ L⊗m,Φ ∈ En, ∥Ψ∥ ≤ 1, ∥Φ∥ω,n ≤ 1}

Suppose that A ∈ Qmn and let Ar, Aℓ be the restrictions of A to L⊗m ×En and
Em × L⊗n respectively. By Riesz representation Theorem (2.1), by continuity
of the forms Ar, Aℓ, there exist maps T r

A ∈ L (En,L⊗m) and T ℓ
A ∈ L (Em,L⊗n)

such that

⟨Ψ, T r
A(Φ)⟩ = ⟨Ψ, ArΦ⟩ for every Ψ ∈ L⊗m, Φ ∈ En

⟨Ψ, AℓΦ⟩ = ⟨T ℓ
A(Ψ),Φ⟩ for every Ψ ∈ Em,Φ ∈ L⊗n

with ∥T r
A∥, ∥T ℓ

A∥ ≤ 2∥A∥mn. Then, after tensoring with the identity map 1t of
L⊗t, we get the operators T r

A ⊗ 1t : En ⊗H L⊗t → L⊗(m+t) and
T ℓ
A⊗1t : Em⊗H L⊗t → L⊗(n+t), with ∥T r

A⊗1t∥ = ∥T r
A∥ and ∥T ℓ

A⊗1t∥ = ∥T ℓ
A∥.

Now, let ι̃m+t and ι̃n+t denote the continuous inclusions Em+t ↪−→ Em ⊗H L⊗t

and En+t ↪−→ En⊗HL⊗t respectively. We define the sesquilinear forms (A⊗1t)
r :

L⊗(m+t) × En+t → C and (A⊗ 1t)
ℓ : Em+t × L⊗(n+t) → C as

(A⊗ 1t)
r = ⟨·, (T r

A ⊗ 1t)ι̃n+t(·)⟩

(A⊗ 1t)
ℓ = ⟨(T ℓ

A ⊗ 1t)ι̃m+t(·), ·⟩

with the notation ⟨·, ·⟩ denoting the tensor product in L⊗(m+t) in the first case
and in L⊗(n+t) in the second case. For Ψ ∈ L⊗(m+t) and Φ ∈ En+t,

|⟨Ψ, (A⊗ 1t)
rΦ⟩| = |⟨Ψ, (T r

A ⊗ 1t)ι̃n+t(Φ)⟩| ≤ ∥Ψ∥∥(T r
A ⊗ 1t)ι̃n+t(Φ)∥

≤ ∥T r
A∥∥ι̃n+t(Φ)∥∥Ψ∥ ≤ Cnt∥A∥mn∥Φ∥ω,n+t∥Ψ∥

thus (A⊗ 1t)
r is a continuous sesquilinear form and similarly (A⊗ 1t)

ℓ is too.
A straightforward computation shows that

⟨Ψ, (A⊗ 1t)
rΦ⟩ = ⟨Ψ, (A⊗ 1t)

ℓΦ⟩ (7.1)

for all Ψ ∈ Em⊗Et, Φ ∈ En⊗Et. If Ψ ∈ Em+t, we can find a net (Ψλ) ⊂ Em⊗Et
converging to Ψ in the τm+t-topology. By τm+t-left continuity of (A⊗ 1t)

ℓ, we
have

lim
λ
⟨Ψλ, (A⊗ 1t)

ℓΦ⟩ = ⟨Ψ, (A⊗ 1t)
ℓΦ⟩
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Since τm+t is finer than the original topology in L⊗(m+t), we also have that Ψλ

converges to Ψ in this topology. By L⊗(m+t)-left continuity of (A ⊗ 1t)
r, we

have
lim
λ
⟨Ψλ, (A⊗ 1t)

rΦ⟩ = ⟨Ψ, (A⊗ 1t)
rΦ⟩

We can then use the same argument for Ψ, and we get that 7.1 holds for all
Ψ ∈ Em+t,Φ ∈ En+t. Since (A ⊗ 1t)

r and (A ⊗ 1t)
ℓ agree on Em+t × En+t, we

can define A⊗ 1t as a form in Qm+t,n+t, whose restrictions in Em+t × L⊗(n+t)

and L⊗(m+t) × En+t are (A⊗ 1t)
ℓ and (A⊗ 1t)

r respectively.
It is also straightforward to verify that

⟨a⊗ b, (A⊗ 1t)(c⊗ d)⟩ = ⟨a,Ac⟩⟨b, d⟩

whenever (a, b, c, d) ∈ Em×Et×L⊗n×L⊗t or (a, b, c, d) ∈ L⊗m×L⊗t×En×Et.
Finally, as we verified in the previous section, the map a 7→ a⊗b is continuous

as a map from Ek into Ek+k′ for each b ∈ Ek′ , therefore, by Remark 5.1

(A⊗ 1t)⊗ 1s = A⊗ 1t+s

for every t, s and A ∈ Qmn.
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8 Expansion in Nuclear Spaces

The second case is somewhat more complicated. We suppose that the spaces
En are complete nuclear Fréchet spaces, with the topology τn that they carry.
We also assume that for each n,m, the projective (and also injective) tensor
topology of Em ⊗ En is the same as the topology it inherits from Em+n, i.e.
τm+n. Therefore the spaces Em⊗̂En (where ⊗̂ denotes the Cauchy completion
of the tensor product) and Em+n are homeomorphic. In this case, for each
m,n,m′, n′, we are going to construct a continuous bilinear map

πmnm′n′ : Qmn ×Qm′n′ → Qm+m′,n+n′

(S, T ) 7→ S ⊗ T

satisfying ⟨a⊗ b, (S ⊗ T )(c⊗ d)⟩ = ⟨a, Sc⟩⟨b, Td⟩.
We are going to denote the conjugate linear space of En by En, that is the

set {v : v ∈ En} (where the notation v is formal), equipped with addition

v1 + v2 := v1 + v2 and multiplication λv := λv. Then the space Qmn is the
space B(Em, En) of all continuous bilinear forms from Em × En → into C. The
space B(Em, En) can be equipped with the topology of bi-bounded convergence
(see Section 2.6.2) and by the identification with Qmn, we have the desired
topology.

For E,F being nuclear Fréchet spaces, we have the following:

• The canonical map from (E⊗̂F )′ into B(E,F ),

x′ 7→ ((a, b) 7→ x′(a⊗ b))

is a homeomorphism onto B(E,F ) in case B(E,F ) is equipped with the
topology of bi-bounded convergence and (E⊗̂F )′ is equipped with the
strong dual topology.

• The canonical map from E′
b ⊗ F ′

b into (E⊗̂F )′b,

x′ ⊗ y′ 7→ (x⊗ y 7→ x′(x)y′(y))

is continuous and it extends to a homeomorphism of E′
b⊗̂F ′

b onto (E⊗̂F )′b.

For detailed proofs of the above facts, the reader is referred to [14] Sections 9.8,
9.9. We note that by Proposition 2.19, the spaces E′

b and F
′
b are nuclear, there-

fore the notation E′
b⊗̂F ′

b makes perfect sense. We also see that since B(E,F )
is identified with (E⊗̂F )′ and the latter is nuclear, again by Proposition 2.19,
B(E,F ) is also nuclear.

Using these facts, we have the following identifications:

B(Em, En)⊗̂B(Em′ , En′) ∼= (Em⊗̂En)′⊗̂(Em′⊗̂En′)′ ∼= (Em
′⊗̂E ′

n)⊗̂(Em′
′⊗̂E ′

n′)

∼= (Em
′⊗̂Em′

′
)⊗̂(E ′

n⊗̂E ′
n′) ∼= (Em⊗̂Em′)′⊗̂(En⊗̂En′)′ ∼= Em+m′

′⊗̂E ′
n+n′

∼= (Em+m′⊗̂En+n′)′ ∼= B(Em+m′ , En+n′) (8.1)
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The canonical map χ : B(Em, En) × B(Em′ , En′) → B(Em, En)⊗̂B(Em′ , En′),
χ(C,D) = C ⊗ D is continuous, by definition of the tensor product topology,
thus using the identification in 8.1, we obtain the desired map πmnm′n′ . We
need to see that ⟨a⊗ b, (S ⊗ T )(c⊗ d)⟩ = ⟨a, Sc⟩⟨b, Td⟩ (recall that we use the
notation S ⊗ T for πmnm′n′(S, T )).

Since we can identify the spaces B(Em, En) and B(Em′ , En′) with Em
′⊗̂E ′

n and

Em′
′⊗̂E ′

n′ , we first assume that S = S1 ⊗ S2, T = T1 ⊗ T2, where S1, S2, T1, T2
are in Em

′
, E ′

n, Em′
′
, E ′

n′ respectively. Then, through the chain of maps in 8.1,

S ⊗ T is first mapped to (S1 ⊗ T1)⊗ (S2 ⊗ T2) ∈ (Em
′⊗̂Em′

′
)⊗̂(E ′

n⊗̂E ′
n′). Then,

if a ∈ Em, b ∈ Em′ , c ∈ En and d ∈ En′ ,

⟨a⊗ b, (S ⊗ T )(c⊗ d)⟩ =

((S1 ⊗ T1)⊗ (S2 ⊗ T2))(a⊗ b, c⊗ d) = (S1 ⊗ T1)(a⊗ b)(S2 ⊗ T2)(c⊗ d)

= S1(a)T1(b)S2(c)T2(d) = S(a, c)T (b, d) = ⟨a, Sc⟩⟨b, Td⟩

Therefore, we have ⟨a ⊗ b, πmnm′n′(S, T )(c ⊗ d)⟩ = ⟨a, Sc⟩⟨b, Td⟩ as desired.

The identity follows by linearity for S ∈ Em
′ ⊗ E ′

n, T ∈ Em′
′ ⊗ E ′

n′ . Now, if

S ∈ Em
′⊗̂E ′

n, T ∈ Em′
′ ⊗ E ′

n′ , we can find a net (Sλ) ⊂ Em
′ ⊗ E ′

n such that
Sλ → S in the topology of bi-bounded convergence of B(Em, En). By definition
of the topology, for any bounded subsets X ⊂ Em and Y ⊂ En, we have

lim
λ

sup
a∈X,b∈Y

|⟨a, (Sλ − S)b⟩| = 0

In particular, for any a ∈ Em, b ∈ En, ⟨a, Sλb⟩ → ⟨a, Sb⟩. By continuity of the
map πmnm′n′ , we have that

πmnm′n′(Sλ, T ) → πmnm′n′(S, T )

in the topology of bi-bounded convergence of B(Em+m′ , En+n′), and in particular

⟨Ψ, πmnm′n′(Sλ, T )Φ⟩ → ⟨Ψ, πmnm′n′(S, T )Φ⟩

for each Ψ ∈ Em+m′ ,Φ ∈ En+n′ . For a, b, c, d in Em, En, Em′ , En′ respectively,
combining everything so far, we have:

⟨a⊗ b, πmnm′n′(S, T )(c⊗ d)⟩ = lim
λ
⟨a⊗ b, πmnm′n′(Sλ, T )(c⊗ d)⟩

= lim
λ
⟨a, Sλc⟩⟨b, Td⟩ = ⟨a, Sc⟩⟨b, Td⟩

Since we have established the property for S ∈ Em
′⊗̂E ′

n, T ∈ Em′
′ ⊗E ′

n′ , we can

use the same argument, this time with a net (Tµ) ⊂ Em′
′ ⊗ E ′

n′ converging to a

T ∈ Em′
′⊗̂E ′

n′ and we have proved our claim.
If we denote by 1t the bilinear form (a, b) 7→ ⟨a, b⟩, which is clearly in Qtt

since τt is stronger than the L⊗t-topology, we get that the map

πmnt := πmntt(·, 1t) : Qmn → Qm+t,n+t
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is continuous and satisfies ⟨a⊗ b, (A⊗ 1t)(c⊗ d)⟩ = ⟨a,Ac⟩⟨b, d⟩ for all a ∈ Em,
c ∈ Em, b, d ∈ Et. Since the tensor topology of Ek ⊗ Ek′ is the same as the one
it inherits from Ek+k′ , it is immediate that the map a 7→ (a⊗ b) is continuous,
therefore by Remark 3.1, the map πmnt is also associative, i.e. (A⊗ 1t)⊗ 1s =
A⊗ 1t+s.
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9 Applications

9.1 Scalar Integrable Models of QFT

9.1.1 Symmetrized expansion

In the model described by Bostelmann and Cadamuro [2] the S-symmetrized
Fock space is formed with respect to a factorizing scattering function S. The
assumptions made on S are that it is a smooth function S : R → C, with values
in the complex unit circle, satisfying

S(θ) = S(θ)−1 = S(−θ) for each θ ∈ R (9.1)

Suppose L = L2(R), so that L⊗n = L2(Rn) for each n. For a smooth,
increasing, sublinear function ω : [0,+∞) → [0,+∞) called the indicatrix and
the energy function E(θ) =

∑n
j=1 cosh θj , we introduce the space

En := {f ∈ L⊗n | ∥eω(E(·))f∥2 <∞}

The fact that this is a dense subspace of L⊗n is obvious, because it contains the
space Cc(Rn) of all compactly supported continuous functions and we know that
the latter is dense in L2(Rn). It is also clear that this space can be equipped
with an inner product, namely

⟨f, g⟩ω,n :=

∫
Rn

e2ω(E(θ))f(θ)g(θ)dθ

This is well-defined when f, g lie in En, because∫
Rn

∣∣∣e2ω(E(θ))f(θ)g(θ)
∣∣∣ dθ ≤ ∥eω(E(·))f∥2∥eω(E(·))g∥2

due to Hölder’s inequality. Another useful characterization of En is that it is
isometrically isomorphic to L⊗n via the unitary map

eω(H/µ) : En → L2(Rn)

f 7→ eω(E(·))f

It follows automatically that En is complete, thus a Hilbert space.
The ∥·∥ω-topology is finer than the ∥·∥2-topology. This is immediate,

due to the (obvious) fact that ∥ · ∥2 ≤ ∥ · ∥ω.
The space Em⊗En is ∥·∥ω-dense in Em+n. It is clear that Em⊗En consists

of all finite linear combinations of functions of the form e−ω(E(θ))−ω(E(η))f(θ)g(η),
where θ = (θ1, .., θm), η = (η1, .., ηn) and f ∈ L2(Rm), g ∈ L2(Rn). Thus, its
image in L2(Rm+n) via eω(H/µ) consists of finite linear combinations of functions
of the form

eω(E(θ,η))−ω(E(θ))−ω(E(η))f(θ)g(η)
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Let h ∈ L2(Rm+n). We know there exists a sequence (hn) ⊂ L2(Rm)⊗ L2(Rn)
∥ · ∥2-converging to h. By Hölder, using the fact that

|eω(E(θ,η))−ω(E(θ))−ω(E(η))| ≤ 1

we get that

eω(E(θ,η))−ω(E(θ))−ω(E(η))hn
∥·∥2−−→ eω(E(θ,η))−ω(E(θ))−ω(E(η))h

Therefore, eω(H/µ)(Em⊗En) is ∥·∥2-dense in eω(E(θ,η))−ω(E(θ))−ω(E(η))L2(Rm+n).
However, the latter contains Cc(Rm+n), which is dense in L2(Rm+n), thus
eω(H/µ)(Em ⊗En) is dense in L2(Rm+n). Using that eω(H/µ) is an isometric iso-
morphism, we conclude that Em⊗En is ∥·∥ω,m+n-dense in (eω(H/µ))−1(L2(Rm+n))
i.e. in Em+n.

The natural inclusion Em ⊗ En ↪−→ Em ⊗H L⊗n is continuous, with
respect to the ∥ · ∥ω-norm on the domain and the Hilbert space tensor
norm on Em ⊗ L⊗n. To see this, suppose Ψ =

∑
j ψj ⊗ ϕj ∈ Em ⊗ En. We

compute:

∥Ψ∥2⊗H = ⟨Ψ,Ψ⟩⊗H =
∑
i,j

⟨ψi, ψj⟩ω,m⟨ϕi, ϕj⟩

=
∑
i,j

∫
Rm

e2ω(E(θ))ψi(θ)ψj(θ)dθ

∫
Rn

ϕi(η)ϕj(η)dη

=

∫
Rm+n

e2ω(E(θ))Ψ(θ, η)Ψ(θ, η)dθdη ≤
∫
Rm+n

e2ω(E(θ,η)) |Ψ(θ, η)|2 dθdη

= ∥Ψ∥2ω,m+n

where, in the inequality, we have used that ω is increasing.
The natural inclusion Em⊗En ↪−→ Em+n where the domain is equipped

with the Hilbert space tensor product topology, is continuous. To see
this, suppose Ψ =

∑
j ψj ⊗ ϕj ∈ Em ⊗ En like before. If we denote the Hilbert

space tensor product of the spaces Em and En by ⟨·, ·⟩⊗ω We compute:

∥Ψ∥2⊗ω = ⟨Ψ,Ψ⟩⊗ω =
∑
i,j

⟨ψi, ψj⟩ω,m⟨ϕi, ϕj⟩ω,n

=
∑
i,j

∫
Rm

e2ω(E(θ))ψi(θ)ψj(θ)dθ

∫
Rn

e2ω(E(η))ϕi(η)ϕj(η)dη

=

∫
Rm+n

e2ω(E(θ))+2ω(E(η))Ψ(θ, η)Ψ(θ, η)dθdη

≥
∫
Rm+n

e2ω(E(θ,η)) |Ψ(θ, η)|2 dθdη = ∥Ψ∥2ω,m+n

where, in the inequality, we have used that ω is sublinear.
Since all conditions are satisfied, one obtains the unsymmetrized expansion

for Hilbert spaces. Now, we are going to define the projections Pn associated
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to the scattering function S, in order to obtain the symmetrized expansion for
sesquilinear forms.

We define an action Dn of the group Gn of permutations of n elements on
L⊗n as follows: for τk = (k k + 1) being an adjacent transposition, we set

Dn(τk)(Φ)(θ1, ..., θn) = S(θk+1 − θk)Φ(θ1, ..., θk+1, θk, ..., θn)

Since the permutation group Gn can be described as

Gn = ⟨τ1, .., τn−1 | τ2j = 1, τiτj = τjτi for |i− j| > 1, τjτj+1τj = τj+1τjτj+1⟩

(see Section 2.5 for details), in order to extend the action to all permutations,
it suffices to verify that:

(i) Dn(τj)
2 = I for each 1 ≤ j ≤ n− 1

(ii) Dn(τi)Dn(τj) = Dn(τj)Dn(τi) for all i, j ∈ {1, .., n−1} such that |i−j| > 1

(iii) Dn(τj)Dn(τj+1)Dn(τj) = Dn(τj+1)Dn(τj)Dn(τj+1) for each 1 ≤ j ≤ n−2

These can be verified by direct computations, using (9.1) for (i), and just the
definition of Dn(τk) for (ii) and (iii). Since we also have Dn(τj)

∗ = Dn(τ
−1
j ) =

Dn(τj) for all j, it follows that the action is unitary.
The associated projections are defined as:

Pn :=
1

n!

∑
σ∈Gn

Dn(σ)

It can be easily seen that it is an orthogonal projection. We have to verify that
it satisfies conditions (1)-(4) in Section 4.

First of all, one can easily verify that for each n, k with 1 ≤ k ≤ n − 1,
Dn(τk) ⊗ 1m = Dn+m(τk) (τk can also be considered as an element in Gn+m).
Then, for each τ ∈ Gn, we can express τ as a product of adjacent transpositions,
say τ = τi1 ..τiN , and then we have

Dn(τ)⊗ 1m = (Dn(τi1)..Dn(τiN ))⊗ 1m = (Dn(τi1)⊗ 1m)..(Dn(τiN )⊗ 1m)

= Dn+m(τi1)..Dn+m(τiN ) = Dn+m(τ)

Now, using this, as well as that Gn ⊂ Gn+m, we compute:

Pn+m(Pn ⊗ 1m) =
1

(n+m)!n!

∑
σ∈Gn+m

Dn+m(σ)
∑
τ∈Gn

Dn+m(τ)

=
1

(n+m)!n!

∑
τ∈Gn

∑
σ∈Gn+m

Dn+m(σ ◦ τ) = 1

(n+m)!n!

∑
τ∈Gn

∑
σ∈Gn+m

Dn+m(σ)

=
1

(n+m)!

∑
σ∈Gn+m

Dn+m(σ) = Pn+m
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and this proves that Pn+m ≤ Pn ⊗ 1m for each n,m.
Next, we need to show Pn(En) ⊂ En and Pn|En : En → En is continuous. To

this end, let f ∈ L2(Rn) and 1 ≤ k ≤ n− 1. Then,

Dn(τk)(e
−ω(H/µ)f)(θ)

= S(θk+1 − θk)e
−ω(E(θ1,..,θk+1,θk,..,θn))f(θ1, .., θk+1, θk, .., θn)

= S(θk+1 − θk)e
−ω(E(θ))f(θ1, .., θk+1, θk, .., θn) = e−ω(E(θ))Dn(τk)f(θ)

Therefore,
Dn(τk)e

−ω(H/µ) = e−ω(H/µ)Dn(τk)

which proves that
Dn(τ)e

−ω(H/µ) = e−ω(H/µ)Dn(τ)

for each τ ∈ Gn and therefore

Pne
−ω(H/µ) = e−ω(H/µ)Pn

Since En = e−ω(H/µ)(L2(Rn)), the first part is proved. The second part follows
too, since

∥Pn(e
−ω(H/µ)f)∥ω,n = ∥e−ω(H/µ)(Pnf)∥ω,n = ∥Pnf∥ ≤ ∥f∥ = ∥e−ω(H/µ)f∥ω,n

for each f ∈ L2(Rn). Although we do not need it, one can also prove that Pn is
a projection of En, too.

We shall also show that Pn ⊗ 1m is ∥ · ∥ω,n+m-continuous. We have already
proved that

Pn ⊗ 1m =
1

n!

∑
σ∈Gn

Dn+m(σ)

hence it is sufficient to show that Dn+m(σ) is ∥ · ∥ω,n+m-continuous for each
σ ∈ Gn. For each f ∈ L2(Rn+m), we have

∥Dn+m(σ)(e−ω(H/µ)f)∥ω,n+m = ∥e−ω(H/µ)Dn+m(σ)f∥ω,n+m

= ∥Dn+m(σ)f∥ = ∥f∥ = ∥e−ω(H/µ)f∥ω,n+m

which proves our claim.
The final assertion that the map A 7→ PmAPn from Qmn into itself is con-

tinuous, is trivial, and we actually have ∥PmAPn∥mn ≤ ∥A∥mn. These facts
imply the existence of the symmetrized expansion of any form in Qmn.

9.1.2 Symmetry transformation under space-time translations

Space-time translations act on a vector ψ ∈ L⊗n = L2(Rn) as

(Un(x)ψ)(θ) = eip(θ)·xψ(θ)
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where θ = (θ1, .., θn) ∈ Rn, x ∈ R2 and

p(θ) =

n∑
k=1

µ

(
cosh θk
sinh θk

)
and µ > 0 is the mass of a scalar particle. It is straightforward to verify that
Un(x) is unitary, with Un(x)

∗ = Un(x)
−1 = Un(−x). If we set U := U1, it is

also easy to verify that Un = U⊗n. The verifications that Un(En) ⊂ En, that
Un|En is continuous and UnDn(τk) = Dn(τk)Un for each n, k are trivial. From
the latter, it follows that PnUn = UnPn. By what we have shown in 4.2, for
each A ∈ Qf , [UAU

∗]Pmn = Um[A]PmnU
∗
n and the expansion changes analogously.

9.2 Integrable Models of QFT with Several
Particle Species

In this section, we are going to prove the expansion for the model studied by
Lechner, Schützenhofer [7], which is a generalization of the previous case. For
a separable Hilbert space K, we set L := L2(R;K) which can be identified with
L2(R) ⊗H K. As we saw in Section 2.4, the n−particle space L⊗n is naturally
isomorphic to L2(Rn;K⊗n) In particular, the inner product in L⊗n is

⟨f, g⟩ =
∫
Rn

⟨f(θ), g(θ)⟩dθ

where the inner product inside the integral is the one of K⊗n. We will denote
the corresponding norm as ∥ · ∥2

Let ω : [0,+∞) → [0,+∞) be as in 9.1, as well as the energy function E.
We set

En :=

{
f ∈ L2(Rn;K⊗n) :

∫
Rn

∥eω(E(θ))f(θ)∥2dθ <∞
}

where the norm inside the integral is the one of K⊗n and we equip it with the
following inner product:

⟨f, g⟩ω,n = ⟨eω(E(·))f, eω(E(·))g⟩

Again, using the fact that the space Cc(Rn;K⊗n) of all compactly supported
continuous functions from Rn into K⊗n is dense in L2(Rn;K⊗n), one can show
that the space En satisfies all necessary conditions for the expansion studied in
Section 3, using the exact same arguments as in 9.1.

Now we shall work towards establishing the symmetrized expansion for pro-
jections Pn associated to an S-matrix. An S-matrix [7] is defined as a continuous
function S : R → L (K ⊗K), which satisfies for each θ :

S(θ)∗ = S(θ)−1 = S(−θ) (9.2)
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and the Yang-Baxter equation:

(S(θ)⊗ 11)(11 ⊗S(θ+ θ′))(S(θ′)⊗ 11) = (11 ⊗S(θ′))(S(θ+ θ′)⊗ 11)(11 ⊗S(θ))
(9.3)

for all θ, θ′ ∈ R. Although there are more assumptions made in [7], we do not
need more assumptions for our purposes.

For an operator T ∈ L (K ⊗K) and 1 ≤ k ≤ n− 1, we set

Tn,k := 1k−1 ⊗ T ⊗ 1n−k−1 ∈ L (K⊗n)

Now, we define an action Dn of Gn on L⊗n by setting

Dn(τk)(Ψ)(θ1, .., θn) := S(θk+1 − θk)n,k(Ψ(θ1, .., θk+1, θk, .., θn))

for each adjacent transposition τk = (k k + 1) ∈ Gn. As in 9.1, in order to
extend this to an action of Gn, the following identities must be true:

• Dn(τj)
2 = I

• Dn(τi)Dn(τj) = Dn(τj)Dn(τj) for |i− j| > 1

• Dn(τj)Dn(τj+1)Dn(τj) = Dn(τj+1)Dn(τj)Dn(τj+1)

After direct but long computations, one can verify that the three identities hold,
the first one thanks to 9.2, the second one by definition, and the third one thanks
to the Yang-Baxter equation (9.3).

This extends to a well defined action Dn : Gn → L (L⊗n), thanks to (9.2)
and (9.3) which is actually a unitary representation, sinceDn(τk)

∗ = Dn(τ
−1
k ) =

Dn(τk) for each 1 ≤ k ≤ n− 1, after a straightforward verification.
Now, we define the projections Pn : L⊗n → L⊗n as

Pn :=
1

n!

∑
σ∈Gn

Dn(σ)

First, we are going to show that Pn+m ≤ Pn ⊗ 1m. Let Ψ = Ψ1 ⊗ Ψ2 with
Ψ1 ∈ L⊗n, Ψ2 ∈ L⊗m and 1 ≤ k ≤ n− 1. We compute:

(Dn(τk)⊗ 1m)(Ψ)(θ, η) = Dn(τk)(Ψ1)(θ)⊗Ψ2(η)

= S(θk+1 − θk)n,k(Ψ1(θ1, .., θk+1, θk, .., θn))⊗Ψ2(η)

= (1k−1 ⊗ S(θk+1 − θk)⊗ 1n−k−1)(Ψ1(θ1, .., θk+1, θk, .., θn))⊗Ψ2(η)

= (1k−1 ⊗ S(θk+1 − θk)⊗ 1n+m−k−1)(Ψ1(θ1, .., θk+1, θk, .., θn)⊗Ψ2(η))

= S(θk+1 − θk)n+m,k(Ψ(θ1, .., θk+1, θk, .., θn, η)) = Dn+m(τk)(Ψ)(θ, η)

Where in the last expression, we consider τk as an element of Gn+m in the
obvious way. It follows that

Dn(τk)⊗ 1m = Dn+m(τk)
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and therefore, for each τ ∈ Gn we have

Dn(τ)⊗ 1m = Dn+m(τ)

Then, the same computation as in the previous subsection shows that

Pn+m ≤ Pn ⊗ 1m

The proofs of the rest of the required properties of the projections Pn proceed
exactly as in Section 9.1.

9.3 Rapidity-Ordered Spaces

In this case, we are following the model used by Duell [4]. Suppose we are given
a Hilbert space L and a partial order ≺ on it. We let the spaces En be the same
as L⊗n, and one can easily be convinced that all conditions hold. For each n,
we define Wn ⊂ L⊗n to be the closed linear span of the following set:

{Φ1 ⊗ ...⊗ Φn | Φ1 ≺ ... ≺ Φn}

and we define Pn as the projection onto the subspace Wn. In order to see that
Pn+m ≤ Pn ⊗ 1m, we first observe that if Φ1 ≺ ... ≺ Φn ≺ Φn+1 ≺ ... ≺ Φn+m

then

(Pn ⊗ 1m)(Φ1 ⊗ ..⊗ Φn+m) = Pn(Φ1 ⊗ ...⊗ Φn)⊗ Φn+1 ⊗ ...⊗ Φn+m

= Φ1 ⊗ ...⊗ Φn+m

Hence, we have Φ1 ⊗ ... ⊗ Φn+m ∈ Ran(Pn ⊗ 1m) for Φ1 ≺ ... ≺ Φn+m, and
therefore Wn+m =Ran(Pn+m) ⊂ Ran(Pn ⊗ 1m), hence

Pn+m ≤ Pn ⊗ 1m

9.4 T-deformed Spaces

Finally, we have the case of [3], where the authors considered a general Hilbert
space L and an operator T ∈ L (L⊗L) which is unitary, self-adjoint and which
satisfies the Yang-Baxter equation:

(T ⊗ I1)(I1 ⊗ T )(T ⊗ I1) = (I1 ⊗ T )(T ⊗ I1)(I1 ⊗ T )

Then, they define Ti ∈ L (L⊗n) as

Ti := Ii−1 ⊗ T ⊗ In−i−1

and for τk = (k k+ 1), Dn(τk) := Tk It follows directly that this action can be
extended to the whole space Gn thanks to the properties of T . Then, they set

Pn :=
1

n!

∑
σ∈Gn

Dn(σ)

The reader might easily check that Dn(τ)⊗ 1m = Dn+m(τ) and it follows that
Pn+m ≤ Pn ⊗ 1m. For any sequence of subspaces En satisfying the necessary
properties, we get a symmetrized expansion with respect to the family (Pn). In
particular, it holds for En := L⊗n equipped with the original topology.
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9.5 Schwartz functions

For this example, we set L := L2(R), i.e. L⊗n = L2(Rn). For each n, let S(Rn)
be the space of all Schwartz functions (see section 2.6.5). We will prove that
S(Rn) ⊂ L2(Rn). Since the space of all compactly supported smooth functions
C∞

c (Rn) is dense in L2(Rn) (for a detailed proof, see [8] Theorem 2.16 and
Lemma 2.19) and it is clearly contained in S(Rn), it follows that S(Rn) is dense
in L2(Rn). For f ∈ S(Rn), we have:

∥f∥22 =

∫
Rn

|f(x)|2dx =

∫
Rn

1

1 + |x|2
(1 + |x|2)|f(x)|2dx

≤ C sup
x∈Rn

{(1 + |x|2)|f(x)|2} ≤ C∥f∥∞(∥f∥∞ + ∥f∥α1,0 + ..+ ∥f∥αn,0)

where αk is the multi-index consisting of 2 in the k-place and 0’s everywhere
else, and

C =

∫
Rn

1

1 + |x|2
dx <∞

This proves that S(Rn) ⊂ L2(Rn) and that the Schwartz topology is finer than
the L2 topology. By the discussion in Section 2.6.5, it follows that S(Rn) satisfies
all necessary conditions of Section 8 regarding the expansion in nuclear spaces.

For the symmetrized expansion, we are going to use the family (Pn) of the
projections that we defined in 9.1, however we need to pose stronger conditions
on the scattering function S. In particular, we need that all derivatives of the
scattering function S are bounded (not necessarily uniformly bounded).

Lechner [6] defines scattering functions as functions S : S(0, π) → C, where
S(0, π) := {z ∈ C : 0 < Imz < π}, which are analytic in the interior of the strip
and bounded and continuous in the closure S(0, π), and with the assumptions
that

S(θ) = S(θ)−1 = S(θ + iπ) = S(−θ)

for all θ ∈ R. So far we have not needed more than the properties of the
restriction of S to the real line. In [6] Definition 3.3, Lechner defines regular
scattering functions as the ones who have a bounded and analytic continuation
to a strip S(−κ, π + κ) for some κ > 0. With this assumption, for every θ ∈ R,
the closed ball of radius κ/2 around θ is contained in S(−κ, π+κ), therefore by
Cauchy’s integral formula, we have for each n:

S(n)(θ) =
n!

2πi

∮
γ

S(z)

(z − θ)n+1
dz

for γ being the boundary of the above ball. We conclude that

|S(n)(θ)| ≤ n!∥S∥∞
(κ/2)n

which proves that the derivatives of S are all bounded in R. So from now on,
we assume that S is a regular scattering function.
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We have to show that Pn(S(Rn)) ⊂ S(Rn) for each n and it is continuous
with respect to the Schwartz topology, and that Pn ⊗ 1m is also continuous as
a map from S(Rn+m) into itself. Since we have

Pn =
1

n!

∑
σ∈Gn

Dn(σ) and

Pn ⊗ 1m =
1

n!

∑
σ∈Gn

Dn+m(σ)

and furthermore Gn is generated by adjacent transpositions, it is sufficient to
show for each n and 1 ≤ k ≤ n − 1 that Dn(τk)(S(Rn)) ⊂ S(Rn) and that
Dn(τk) is continuous as a function from S(Rn) into itself. We recall that

Dn(τk)(f)(θ) = S(θk+1 − θk)f(θ1, .., θk+1, θk, .., θn)

Since all derivatives of S are bounded, one can easily see that for any multi-
indices α, β,

∥Dn(τk)(f)∥α,β ≤ C|α|,|β|
∑

|β′|≤|β|

∥f∥α′,β′

Where |β′| ≤ |β| means that every index of β′ is less or equal than the corre-
sponding index of β and α′ denotes α with the indices k and k+1 interchanged.
Then our claim is proved, and the symmetrized expansion holds for all quadratic
forms.
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10 Summary and Discussion

In this thesis, we established the existence of a certain way of expanding any
quadratic form A (which we call an observable) acting on a Fock space, satisfying
certain boundedness conditions, with main applications the cases of integrable
models with an associated factorizing scattering function (or scattering matrix).
The expansion reads

A =

∞∑
m,n=0

1

m!n!
(z†m[A]mnz

n)

where z† and z are Zamolodchikov operators. The terms of the expansion and
the forms [A]mn can be studied in order to collect useful information on the
observable A.

In Sections 3 and 4, we proved the existence of the expansion formula and
the homeomorphic nature of the correspondence it has with the observable. We
tried to pose as few conditions as possible in order for the proof to work in a
general context.

In Sections 6 and 8, we saw two general cases, quite different from each other,
in which the conditions are met and all specific examples we have in mind (all
included in Section 9) fit into one of the two cases.

The large class of examples we provided indicates how important it is to
pose as general conditions as possible. Also, we believe that the proof was much
simpler than the proof of the expansion in [2], however we have not generalized
all results of [2] to our context. One can imagine how terribly complicated it
would be to prove an expansion formula for S-matrices, for the model [7], using
a method similar to [2].

We did not discuss about what happens in the level of distributions and
integral kernels. We did not manage to look into this problem yet, although it
would be of great importance to have insight into the associated kernels, since
they can probably provide us with more information on the observables. We
hope to deal with this problem later, or that someone else does.

Finally, we saw how the expansion changes in case a unitary operator of
a specific kind acts on the observable, motivated by [2], where the authors
considered space-time translations and boosts. Although we tried to consider
doing the same for antiunitary operators, generalizing space-time reflections, we
were not able to come up with a satisfying answer. However, we did not spend
much time on this problem, so there might be something interesting in case it
is further investigated.
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