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Abstract 

Pollution resulting from rainfall driven processes is known to adversely affect surface water 

quality. It arises from a variety of agricultural and urban point and non-point sources and 

atmospheric deposition. The issue, in addition to ecological impacts, is especially problematic 

in areas where surface water is used for drinking water supply. This study aims to investigate 

and develop tools to understand and manage water quality risks to water abstraction sites. The 

project focuses on risks caused by acute rainfall driven loadings and investigates short-term 

dynamics of water quality parameters. 

First part of the thesis describes the deployment and testing of a commercially available water 

quality probe, interned to provide real time estimations of bacterial water quality in surface 

waters. The probe is evaluated based on direct comparison of E. coli quantified using standard 

techniques collected during wet weather events. It is not recommend as a current robust 

methodology to characterize E. coli loadings or provide early warning to bathing water or water 

abstraction sites.  

Second part of the thesis proposes and tests a new modelling approach to describe the 

temporal dynamics of E. coli in the case study catchment based on Storm overflow asset and 

rainfall data. The developed model enables reasonable approximations of arrival times and 

durations of E. coli at the water abstraction site and is therefore judged to be fit for purpose in 

providing useful information to abstraction operators for decision making purposes. 

The final part of the thesis presents a new methodology to reduce the impact of pesticide runoff 

on water abstraction sites. It is based on an inverse modelling/optimisation approach to identify 

priority areas for catchment mitigation. The methodology developed was found to be effective 

in reducing modelled pesticide levels at the water abstraction site based on the selective 

targeting of mitigation options in the catchment. 
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Chapter 1 – Introduction 

Pollution resulting from rainfall driven processes is known to adversely affect surface water 

quality. It arises from a variety of agricultural and urban point and non-point sources and 

atmospheric deposition. Nutrients, pesticides, faecal bacteria, sediment and other chemicals 

are transported to watercourses when runoff processes driven by rainfall mobilise pollutants 

accumulated in the soils (FAO and IWMI, 2018) or when rainfall causes overloading of urban 

drainage networks which results in spills from combined drainage systems (Giakoumis and 

Voulvoulis, 2023). Sewerage undertakers are required by S.82 of the Environment Act 2021 to 

continuously monitor the quality of the receiving water upstream and downstream of their 

assets. Monitoring for pH and temperature, turbidity, dissolved oxygen, ammonia, and anything 

else specified in regulations made by the Secretary of State must be every hour or every 15 

minutes during high-risk periods (DEFRA, 2023). The issue, in addition to ecological impacts, 

is especially problematic in areas where surface water is used for drinking water supply. Clean 

up of certain pollutants, before the drinking water is ready and suitable for potable supply, is 

expensive and time consuming to carry out. Between 2004-05 and 2008-09, water companies 

in England spent £189 million on nitrate, £92 million on pesticide and additional unquantified 

costs relating to bacterial contamination removal from their water supplies (National Audit 

Office, 2010). Health risks associated with drinking water can be severe, with a large number 

of waterborne pathogens able to cause mild to severe illness and death (Magana-Arachchi and 

Wanigatunge, 2020). In England and Wales, where drinking water treatment practices are well 

established, overloaded water treatment works can still lead to waterborne disease cases, with 

cryptosporidium accounting for majority of outbreaks (Smith et al., 2006; Chalmers et al., 

2019). Pesticide treatment options and their effectiveness for drinking water are limited (Tröger 

et al., 2021; Saleh et al., 2020). Pesticide removal techniques are divided into chemical, 

physical, and biological methods. Chemical wastewater treatment consists of a variety of 

chemical reactions that help in hydrolysing contaminants into safer chemicals. Physical 

treatment techniques include membrane filtration. While biological treatment methods are 

designed to treat pesticide polluted water using microorganisms capable of digesting 

pesticides. Most effective removal techniques for pesticide removal combine these methods 

into hybrid technologies. While health risks posed by chronic exposure to pesticide residue in 

drinking water after treatment are unknown (Damalas and Eleftherohorinos, 2011). The 

indicators used to assess the potential risk of pesticides to human health and the environment 

show reduced certainty, suggesting the need for development of alternative indicators to 

increase the accuracy and reliability of pesticide risk assessment. An improved understanding 

of water quality risks to surface drinking water abstraction and treatment processes could 
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improve the efficiency of treatment processes and reduce both asset operational costs and 

risks to public health.  

Risks to water abstraction systems can arise from ‘acute’ water quality impacts. For example, 

impacts from Combined/Storm Sewer Overflows (SSO) have significant detrimental effects on 

water quality, but can be highly intermittent with durations ranging from minutes to hours. 

Similarly diffuse agricultural runoff loadings can vary significantly at over hourly timescales. 

Short term loadings of highly contaminated water into abstraction sites, can cause specific risks 

to drinking water treatment processes, with potential for poor quality water to enter potable 

water supply systems (Kyritsakas et al., 2023). Effective understanding and management of 

these risks to water supply systems requires a detailed understanding of catchment processes 

at high temporal resolution. Unfortunately, standard regulatory monitoring of water quality 

parameters in surface waters commonly occurs at weekly\monthly timescales, with the purpose 

of understanding the background or overall health of the river network.  

Specific risks to water abstraction systems can come from a variety of sources, these may 

include pesticides (from cultivated land), bacterial loading such as E. coli or cryptosporydium 

from livestock or human waste (1WHO, 2017). Many of these specific parameters are time 

consuming and technologically challenging to monitor (Boxal et al., 2021; Lundqvist et al., 

2019). Datasets describing fluxes of these parameters within surface waters are scarce. Whist 

water quality probes to characterize standard water quality parameters in ‘real time’ (e.g. pH, 

turbidity, DO) are widespread, the effectiveness of using such parameters for understanding 

the behaviour of bacterial or other emerging pollutants of concern is limited (Saalidong et al., 

2022; 2WHO, 2017; Sánchez et al., 2007). Due to a lack of datasets, predictive models for 

forecasting risks to water abstraction points (e.g. Asfaw, 2019; Dorner et al., 2006; Ferguson 

et al., 2006) are also uncommon. With most widely used models calibrated and validated based 

on low resolution datasets (Cho et al, 2016; Quilbé et al., 2006), such models are commonly 

applied to understand trends over long terms timescales, with limited representation of acute 

impacts. 

Currently, the UK water industry utilises catchment management options to reduce diffuse 

water pollution and reduce costs associated with drinking water treatment. Current options, 

such as STW Farm to tap (Cooke et al., 2020) work with farmers to help mitigate the impact 

from pesticides, (specifically metaldehyde) through encouragement to use alternative options 

and reward participants based on water quality results. The scheme is available to anyone 

within priority catchments who meet the criteria of growing winter wheat and/or oil seed rape. 

Within STW the scheme paid out £749,206 in 2016-2018, with average reduction in 

metaldehyde concentrations of 46% at water treatment works (Cooke et al., 2020). However, 
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there is no current methodology for identifying specific areas within the priority catchments for 

targeted intervention. This would reduce the costs associated with this type of blanket 

mitigation measures, and hence allow a greater range of pollutants and/or to be targeted.  

1.1 Project Aim 

This study aims to investigate and develop tools to understand and manage water quality risks 

to water abstraction sites. The project focuses on risks caused by acute rainfall driven loadings 

and investigates short-term dynamics of water quality parameters at a case study water 

abstraction site in response to rainfall. The case study site and several datasets are provided 

by the project industrial sponsor (Severn Trent Water) who have also assisted with the 

collection of further datasets described in this thesis. Within this work, two specific pesticides 

as well as bacterial water quality parameters are considered.  

1.2 Thesis structure  

Chapter 2 provides a literature review concerning water quality risks to water abstraction, water 

quality monitoring and modelling of acute water quality impacts, and the use of catchment 

management approaches.  

Chapter 3 describes the case study catchment used in this work, as well as the deployment 

and testing of a commercially available water quality probe which is interned to provide 

estimations of bacterial water quality (E. coli) in surface waters in real time. The probe is 

evaluated based on direct comparison of E. coli quantified using standard techniques collected 

during wet weather events. 

Chapter 4 proposes and tests a new modelling approach to describe the temporal dynamics of 

E. coli in the case study catchment based on SSO asset and rainfall data. The methodology is 

validated against the datasets collected in Chapter 3. This chapter is written as a stand-alone 

piece of work and has been submitted for publication.  

Chapter 5 describes a new methodology to inform catchment management approaches to 

reduce the impact of pesticide runoff on water abstraction sites. This is based on an inverse 

modelling/optimisation approach to identify priority areas for catchment mitigation. 

Chapter 6 provides an overarching summary and conclusions of the of the work in this thesis.  
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Chapter 2 - Literature review 

The literature review provides a general context of current water management issues, a 

summary of water quality parameters considered in this thesis and well as modelling 

approaches and computational techniques for managing catchments.  

2.1 Current water management issues 

Water resources are under pressure from population growth, pollutant emergence and climate 

change. The Office for National Statistics (2019) predicts that the UK population will increase 

by 3 million (4.5%) by mid-2028. Global population growth rate is projected to be higher with 

global population increasing by 0.8 billion (10%) between 2019 and 2030 (United Nations, 

2019) leading to increased water demand. General climate change trends projected over UK 

land for the 21st century in UK Climate projections (UKCP18) show an increased chance of 

warmer, wetter winters and hotter, drier summers along with an increase in the frequency and 

intensity of extremes (Met Office, 2019). 

UK Governments 25 year environment plan shows commitment to take steps to achieve, 

among other environmental objectives, clean and plentiful water. The EU legislation on water 

quality intended for human consumption will be assimilated into UK law as retained EU law 

with amendments (as stated as an amendment to The Floods and Water Act 2019) and came 

into force on EU exit day. Associated guidance to water companies have been issued by 

Drinking Water Inspectorate (DWI, 2020) on the implementation of The Water Supply (Water 

Quality) Regulations 2016 (as amended) in England and The Water Supply (Water Quality) 

Regulations (Wales) 2018. Under these regulations water suppliers have a statutory duty to 

supply wholesome water. Water intended for human consumption should not contain any 

micro-organism, parasite or substance at a concentration that would constitute a potential 

danger to human health. 

The effects of climate change with more frequent and intense extremes in rainfall and droughts 

will result in increased occurrence of acute pollution events (Graydon et al., 2022). This may 

arise due to both increased pollutant wash off into river systems, and/or increasing periods of 

low river flows with corresponding reduced capacity for dilution of pollutants. The likely 

increased pressure on water treatment facilities will lead to increased costs and higher risks of 

drinking water quality failures, which will in turn heighten risks to human health. Growing risks 

to drinking water resources in both quality and quantity will be capital intensive to counteract. 

https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
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There is therefore a driver to better manage surface water resources through the deployment 

of increased and improved sensing and monitoring, as well as improved modelling and 

forecasting of surface waters, water demand and infrastructure (Yassin et al. 2021). 

2.2 Water quality parameters 

2.2.1 Bacterial water quality 

The effects of microbial waterborne pollution on human health can be acute, with some cases 

resulting in death (1WHO, 2017). Faecal indicator organisms (FIOs) are a group of organisms 

that indicate the presence of faecal contamination, such as the bacterial groups thermotolerant 

coliforms or E. coli. Hence, they only infer that pathogens may be present (WHO, 2001). In the 

UK, drinking water monitoring for microbial pollutants include: Clostridium perfringens, Coliform 

bacteria, Colony counts at 22 C, Enterococci and Escherichia coli (E. coli) DWI (2020). These 

tests are indicators of microbiological water quality. Although Cryptosporidium is not a 

parameter to be monitored under current legislation, it is still monitored due to severe health 

issues it can cause. 

There are two major sources of faecal contamination – human origin and agricultural 

sources(WHO, 2012). Human origin pollution comes from point sources such as SSOs and 

waste water treatment works (WWTWs), that discharge directly into the river. Animal origin 

agricultural source pollution can originate over a widespread area of the catchment from slurry 

spreading on arable land or livestock grazing on grassland. The risk from agricultural sources 

will differ from catchment to catchment as hydrological transfer pathways and phases are 

catchment specific (Murphy et al., 2015). Different stocking densities, type of livestock, land 

use within the catchment all impact the bacterial load in the river and many studies have 

attempted to quantify the risk and implement the mitigation action to combat the said risk of 

bacterial pollution (Kay, 2007; Oliver et al., 2009, Bragina et al., 2017; Dwivedi et al, 2013). 

Due to the difficulty of measurement, regulatory sampling and published datasets are generally 

of coarse resolution Zan et al., 2023. This has implications for water quality modelling as it is 

difficult to directly characterise acute impacts because they are highly intermittent and difficult 

to capture. 

2.2.2 Pesticide pollution in river water 

Pesticides are used to control insects and weeds and rainfall driven runoff transports them into 

surface water bodies. In the United Kingdom water supply regulations set the maximum current 

legal UK limit for drinking water at 0.1 µg/l of one particular pesticide or not more than 0.5µg/l 

of all pesticides present in total. The limits are considerably lower than the concentration level 

at which it is considered to cause any health impacts. There is a large number of pesticides 
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available for use across UK and Europe. In turn a large number of pesticides is found in surface 

waters at a wide range of concentrations (Tröger et al., 2021; Claver, 2006; Masia, 2013). 

Tröger et al. 2021 found the effectiveness of pesticide removal from drinking water varied from 

country to country and a number of pesticides were still present in drinking water after 

treatment.  

Metaldehyde is a soluble molluscicide used in agriculture to control slugs and snails (Li et al., 

2010). Its low sorption coefficient of active ingredient to organic carbon (KOC) value (34 and 

240 L/kg) (Kay and Grayson, 2014) combined with its relatively long half-life in soil (3.17 and 

223 days) allows for it to be readily leached into surface runoff during rainfall events. 

Metaldehyde is typically applied to winter crops such as winter wheat, potatoes and oilseed 

rape, between September and December, when the conditions are most favorable for slugs 

(Asfaw, 2018).  

Metaldehyde has previously been identified to be responsible for majority of all cases of 

pesticide exceedances in drinking water in England and Wales. In 2016 it accounted for 87% 

of all pesticide exceedances recorded that year (DWI, 2017). Severn Trent Water has reported 

exceedances at 17% of water treatment works (WTW) in 2017 and at 8% of WTWs in 2018 

(Cooke, 2020). Although the sale and use of metaldehyde has been banned in the UK since 

2022, the existing metaldehyde model (Asfaw et al., 2018) can be utilized to investigate the 

behavior of other pesticides under different application scenarios and weather conditions at 

catchment scale. 

Propyzamide has also been identified to be of concern to the water industry (Cooke 2020) with 

implementation of some of the catchment management approaches for propyzamide reduction 

in surface waters proving challenging (Stoate et al., 2017).It is a herbicide used to control a 

range of weeds in oilseed rape, field beans and other crops (2Corteva, 2023). The sorption 

coefficient of active ingredient to organic carbon is higher than that of metaldehyde at KoC of 

840 with shorter half-life of active ingredient in soil at 47 days (ADAMA, 2015). However, the 

application rate of propyzamide is over twice the amount at 0.425 g per 5 square meter based 

on typical application of 1.7 litre/ha application using 500 g/litre (43.86% w/w) propyzamide 

suspension concentrate (1Corteva, 2023) compared to 0.19 g per 5 m2 of metaldehyde (Asfaw 

et al., 2018). 

2.3 Modelling of diffuse bacterial pollution and SSOs 

Bacterial surface water pollution can arise from a variety of point and nonpoint sources. It is 

the diffuse, nonpoint sources that are especially challenging, as they are difficult to pinpoint 

and hence mitigate (Hubbart et al., 2022). Examples of diffuse pollutant sources include 
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intensely grazed grasslands where bacteria from livestock will accumulate and be transported 

to watercourses through rainfall-runoff processes. The importance of characterizing water 

quality in rivers during baseflow conditions have been highlighted and well studied (Ferguson 

and Kay, 2012; Cho et al., 2016). However, acute pollution incidents – short-term ‘spikes’ in 

pollution directly following rainfall are of specific concern to water utilities due to the pressures 

it brings to water treatment facilities if this water is abstracted for drinking water supply. High 

resolution hourly/sub-hourly water quality datasets needed to accurately characterise acute 

pollution incidents are scarce. 

2.3.1 Current bacterial models 

Cho et al (2016) has provided a comprehensive review of watershed-scale modeling of 

microbial water quality of surface waters to date. Key processes are summarized below. Figure 

2.1 presents a diagram from the same paper demonstrating summary of pathways involved in 

the modelling of bacteria transport into river systems.  

Most current the models lack high resolution input data and forecasting that is necessary for 

successful identification of acute pollution events and therefore are of limited use to utilization 

in abstraction management systems. Although a model proposed by Wilkinson et al. (2011) 

did use short time steps (1/4 to 1 hour), it simplified catchment delivery processes, loads and 

the accumulation and flushing of land-based faecal reservoirs. The simplified approach is 

suitable for modelling microbial pollution of large catchments. However, accounting for spatial 

rainfall and pollution source distribution is desirable in smaller catchments where it has greater 

impact on resulting water pollution. 

 

Figure 2.1 Pathway of faecal microorganisms including surface runoff from soil to survival in 
surface water bodies; green lines represent the pathway of faecal microorganism release and 
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transport and black lines point to specific fate-related process that need to be modelled from 
(Cho et al., 2016) 

Both bacteria survival in manure and animal waste, and survival in soil are commonly modelled 

with the use the first order kinetics equation known as Chick’s law to find the rate of overall 

bacteria die-off (Sadeghi and Arnold, 2002; Collins and Rutherford, 2004; Dorner et al., 2006; 

Ferguson et al., 2007; Walker and Stedinger,1999; Whelan et al., 2014; Haydon and Deletic, 

2006; Wilkinson et al., 2011; Schijven et al.,2015; Sterk et al., 2016). Alternately some models 

(Ferguson et al., 2007; Brannan et al., 2002) use daily removal rate for modelling bacterial 

survival in soil. Only a third of the reviewed models in Cho et al. (2016) chose to simulate 

transport in the soil column. In models that did account for this process it was estimated as a 

loss from the soil mixing layer proportional to bacteria concentration and infiltration with 

exception of WHATFLOOD (Dorner et al., 2006) which included it as mass balance in 

unsaturated zone. Release from animal waste and manure reservoirs is summarised in figure 

2.2. Release from the soil reservoir is mostly modelled as fraction of microbial reservoirs 

proportional to bacteria number and runoff depth in soil solution or bound to sediment.  

All microbial release and delivery to streams via overland transport is mostly assumed to 

happen on the same time step. As for most models operating time step is daily or more, 

transport is assumed to be faster than this time step. Some models apply partitioning for part 

of pollutants to be delivered on the day of release with the rest stored for future delivery. WAM 

model (Collins and Rutherford, 2004) has taken the most elaborate approach where it is 

determined by slope, proximity to stream and flow accumulation. Fate within the in stream 

water column is determined by the first-order kinetic with convective in-stream microbial 

transport in majority of the models. Only a few models account for microbial fate in sediment, 

exchange between sediment and water column or transport via groundwater. 

 

Figure 2.2 Pathways of microorganism release and removal; ① and ② - above ground and 
belowground (soil) reservoir, respectively.; a e release in suspension to soil, b e release in 
suspension to runoff, c e release in suspension from soil to runoff, d e release absorbed 
microorganisms with soil particles to runoff, e e infiltration with runoff suspension, f e settling 
with sediment particles, g - overall removal (or export) from the application site from (Cho et 
al., 2016). 
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Sylvestre et al. (2021) fitted parametric distribution to routine monitoring data to predict daily 

mean  protozoan pathogen concentrations following hydrometeorological events. Cyterski et 

al. (2022) utilised least-angle regression modelling using a number of environmental covariates 

(such as rainfall, turbidity, pH, etc.) to forecast bacteria. The mobile-immobile model proposed 

by Drummond et al. (2022) incorporates transport, immobilisation, that increases during 

baseflow, and vastly increased remobilisation of bacteria and fine particles during stormflow.  

The existing models for bacterial pollution forecasting operate on either long time steps or 

coarse spatial resolution on large catchments. They lack the fine temporal and spatial detail 

acute diffuse pollution events in smaller catchments need. For forecasting arrival times of acute 

impacts at abstraction points, a bacterial model working on a fine spatial and temporal 

(hourly/sub-hourly) scale is needed that accounts for spatial rainfall and land use variability. 

2.3.2 Bacterial loadings from agricultural sources 

Agricultural bacterial loadings can stem from either direct deposition by livestock during grazing 

period or slurry/manure spreading of the stores accumulated when livestock is removed from 

the fields. The bacterial loading through grazing is quantified by the number and type of 

livestock present, the associated livestock specific faecal excretion rates and E. coli shedding 

potential (Coffey et al., 2016). 

Oliver et al. (2017) have developed and evaluated (Oliver et al., 2018) a catchment-scale model 

of E. coli burden to map spatial patterns of E. coli accumulation on land based on a cross-

disciplinary toolkit for assessing farm scale contributions to E. coli risk (Olliver et al., 2009). 

The empirical model reported in Oliver et al. (2009), estimates E. coli loadings on fields based 

on ‘a worst case scenario’ which represented a realistic upper level of stocking densities in the 

UK.  

2.3.3 Bacterial loadings from urban sources 

Discharges from urban wastewater sources represent a potentially significant source of 

pollutants to surface waters (Shepherd et al., 2023). Much effort has been put into modelling 

of impacts from SSOs through major research and development programme that resulted in 

publication of Urban Pollution Manual (UPM) by Foundation for Water Research (FWR,2019). 

The manual and the associated standards have been adopted by the regulators as guidance 

and best practice for planning the improvements of SSOs to reduce impacts on water quality.  

Water utilities can be manage compliance risks by investing in new infrastructure and/or 

applying new system management strategies. These decisions are based on the assessment 

of proposed and alternative schemes tested using hydrodynamic network models to simulate 
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the hydraulic performance (Delelegn et al., 2011). However, hydrodynamic network models 

can contain considerable uncertainty (Vezzaro et al., 2013; Thorndahl and Willems 2008). 

Srivastava et al. (2018) describes an objective uncertainty quantification process in simulation 

of sewer overflow volume to enable water utilities to evaluate and report the uncertainty in their 

modelling predictions. 

2.4 Modelling of pesticide impacts 

An array of models have been developed to forecast pesticide impacts on surface waters and 

inform water quality management decisions. These water quality models are capable of 

operating at different spatial and time scales. A model running at a fine spatial and temporal 

resolution is required for accurate prediction of the arrival of short-term peak pesticide 

concentrations at catchment outlets following rainfall events to inform water abstraction 

decisions. MACRO (Larsbo and Jarvis, 2003) is an example of a detailed water quality model, 

however its large data requirements can be computationally intensive. It is therefore typically 

applied at small spatial scale but run at larger time-steps. Large spatial scale models such as 

the FOCUS (2000) and FOCUS (2001) are not suitable to operate at the finer catchment scale 

as FOCUS does not mimic specific fields and should be viewed as representing major 

agricultural areas. Catchment scale water quality models include the Soil and Water 

Assessment Tool (SWAT) (Neitsch et al,. 2002; Abbasi et al, 2019; Dogan and Karpuzcu, 2023; 

Cambienet al., 2020; Zhang et al., 2020; Janney & Jenkins, 2022), Hydrological Simulation 

Program Fortran (HSPF) (Donigian et al., 1995), AnnAGNPS (Bingner & Theurer 2005),  

Integrated Model for Pesticide Transport (IMPT) (Pullan et al., 2016), diffusion–advection 

process models (Cardenas et al., 2023; Márquez-Romance et al., 2022), and accumulation–

utilization model (Cárdenas-Izaguirre, 2022). However, most of these models predict long-term 

trends of diffuse pollution and thus forecast concentrations at large time scales. While SWAT 

provides an option to run with small time-steps it would require large amounts of data and a 

large number of parameters would need to be calibrated (Benaman et al. 2005). The Dynamic 

Watershed Simulation Model (DWSM) (Borah et al., 2002), the Agricultural Nonpoint-Source 

Pollution Model (AGNPS) (Young et al., 1989) and MIKE SHE (Refshaard et al. 1995) are 

capable of predicting pollutant loadings and transport from single rainfall events run at small 

time-steps are interest for informing short-term water quality management. 

Asfaw et al. (2018) has presented a new validated, travel time based, physically distributed 

model used to predict metaldehyde levels after a rainfall event accounting for variations in 

rainfall and distribution of land use. It is comprised of surface runoff generation, surface runoff 

routing and pollutant build-up/wash-off components. Many of the processes could be simplified 
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because metaldehyde is quite stable compound and high resolution calibration data was 

available.  

The surface runoff component calculates the cumulative excess rainfall depth It (mm) at each 

timestep t based on the differential form of the Soil Conservation Service (SCS) curve number 

(CN) method (Mancini and Rosso, 1989). Initial CN values are determined based on hydrologic 

soil group (HSG), land use and hydrologic conditions data (Mishra and Singh, 1999). The effect 

of soil moisture on runoff generation is incorporated by adjusting CN values based on 

antecedent moisture condition (AMC) categories. The surface runoff routing component uses 

a spatially distributed time variant direct runoff travel time technique to account for spatial and 

temporal variability of runoff generation and flow routing through overland flows and stream 

networks (Melesse and Graham,2004; Duetal.,2009). The pollutant build-up/wash-off 

component estimates metaldehyde build-up through pesticide applications on identified high 

risk areas. Metaldehyde wash-off was based on the ‘‘simplified formula for indirect loadings 

caused by runoff’’ (SFIL) (Berenzen et al. 2005; Reus et al. 1999) used to calculate percentage 

loss from high risk areas at each timestep.  

The model operates at 1 h time step, input spatial rainfall data at 1 km2 and calculates runoff 

at 5m2 resolution. Model validation (Figure 2.3) has returned an average coefficient of 

determination of 0.75 and model efficiency of 0.46. It is currently used in drinking water 

abstraction management at STW to suspend abstraction from surface water when a peak in 

metaldehyde concentrations is forecasted. It would be useful to develop an approach where 
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this model is used to facilitate identification of priority catchment areas to inform catchment 

management.  

 

Figure 2.3 Calibration (B1) and validation (B2-B4) events for the Metaldehyde model (Asfaw et 
al., 2018) 

2.5 Land use optimization 

Land use pattern optimization is a useful method to inform catchment management for non-

point pollution. It involves simulation of different land use scenarios and evaluation of the 

resulting pollutant loads. Such that catchment management resources can be targeted to 

specific areas which are most effective in reducing pollutant impacts. 

A number of optimization methods have been created for agricultural best management 

practices (BMPs) (Liu et al., 2019; Geng and Sharpley, 2019; Aslani et al., 2023; Yousefi and 

Moridi, 2022). Nie et al. (2019) and Li et al. (2020) concentrated on optimizing land use in terms 

of tradeoffs between crop productivity and resources used (such as water and energy). Other 

optimization methodologies looked into addressing non-point pollution from specific 

contaminants such as nitrogen and phosphate (Milne et al., 2020; Ouyang et al., 2020; Zhang 

et al., 2021). Zhang et al. (2011) carried out land use optimization by coupling the CLUE-S (the 

Conversion of Land Use and its Effect at Small regional extent) and SWAT(Soil and Water 
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Assessment Tool) models to produce and evaluate two land use scenarios. A ‘business as 

usual’ land use case and a changed forecast based on agricultural non-point source pollution 

control. SWAT model was calibrated and validated at daily time step for water quality, thus 

forecasting long-term trends and missing out on short-term events that can peak within hours 

but result in high levels of pollution. While the pollution control scenario has resulted in 

significant decrease in pollutant loads, the method does not conduct a search for the areas 

that pose highest risk and should be concentrated on when designing the mitigation measures. 

Zhu et al. (2020) also set two scenarios, which correspond to the adjustments of transforming 

the farmland with the distances of 50 and 100 m from water bodies, respectively, to forest land 

to analyse the changes of risk levels. Aerts et al. (2002), Sadeghi et al. (2009), Li et al. (2019) 

and Cui et al. (2019) used linear programming for land use allocation optimization. While linear 

programming guarantees an optimal solution it comes with a high computational time costs 

and is therefore less suitable for large search spaces. Srivastava et al. (2002) used an 

optimization algorithm for the selection of best management practices (BMP) on a field-by-field 

basis for the entire catchment. The AnnAGNPS model which simulates long-term runoff, 

sediment, nutrient, and pesticide transport from agricultural catchments is coupled with genetic 

algorithm to find a number of near optimal solutions that maximize pollutant reduction while 

minimizing implementation costs/maximizing net return. However, the long-term simulation 

nature of the AnnAGNPS model does not consider the acute impacts driven by individual 

rainfall events. Pollutant reduction for the use in objective function was quantified as pollutant 

load of BMP scheme normalized with respect to the load for the baseline case where the 

percent changes in various pollutants were treated equally. This approach however, does not 

indicate to the objective function which individual pollutant is reduced or how useful the 

reduction of that pollutant is in relation to water quality guidelines. 

Srivastava et al. (2002) used a genetic algorithm (GA) with a continuous simulation, watershed-

scale, Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) to optimize the 

selection of best management practices (BMPs) (e.g. corn-corn-soybeans-alfalfa crop rotation, 

permanent alfalfa, etc.) on a field-by-field basis for an entire watershed. The goal was to 

minimize long-term water quality degradation and maximise net farm return on an annual basis. 

Arabi et al., 2006 also used genetic algorithm in combination with a watershed model (SWAT) 

to optimize the selection of best management practices on a field-by-field basis. The BMPs in 

this case are field border, parallel terrace, grassed waterway and grade stabilization structure 

and the optimization goal was to select witch BMPs should be allocated where to minimize 

sediment and nutrient loads, and implementation costs.  
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A land use optimization approach could be adapted to integrate pollutant models and genetic 

algorithm to identify high risk areas within the catchment under current land use and investigate 

how removal of these areas (classing them as a non-contributing area) affect pollutant loads 

at the abstraction site. This would allow better targeting of available resources. A land use 

optimization approach could be adapted to integrate pollutant models and genetic algorithm to 

identify high risk areas within the catchment under current land use and investigate how 

removal of these areas (classing them as a non-contributing area) affect pollutant loads at the 

abstraction site. This would allow better targeting of available resources. Genetic Algorithm is 

a search algorithm based on natural selection. It works with parameter sets of a model while 

checking the outcome of the model as its objective function. The parameter values that produce 

the most optimal model outcome are then selected to produce next set of parameters 

(‘offspring’) through crossover and mutation. It is therefore especially suited as an inverse 

modelling method. Because it searches from populations rather than a single point, it can 

provide more than one solution. In practical applications, there is a need to have a number of 

near optimal solutions as alternatives because not all solutions can be implemented due to 

practical reasons, specific to the catchment in question. Therefore, GA is especially suited to 

mitigation measure allocation searches (Srivastava et al., 2003; Srivastava et al., 2002; Arabi 

et al., 2006; Perez-Pedini et al., 2005). A summary of Genetic Algorithms and their applications 

is detailed in Tang et al. (1996). All the solutions are saved for later reference to enable the 

analysis of near optimal solutions and thus be of more use for the catchment management as 

a tool. 

2.6 Summary of Knowledge Gaps 

Based on the literature review, key knowledge gaps and associated research objectives can 

be summarized as follows. 

1. There is a general paucity of high-resolution water quality datasets capturing acute 

impacts from diffuse of intermittent rainfall driven events in surface waters (section 2.2). 

This is especially relevant for water quality parameters which are difficult to characterize 

in ‘real time’ such as FIOs, pesticides and emerging contaminants. This limits 

understanding of key transport mechanisms and water quality processes relevant to 

applications relevant to the short term management of surface water abstraction 

systems. The work in this thesis will focus on the most common FIO used in the UK 

water industry (E. coli) as well as two specific pesticides. Further, whilst sensing 

technologies are continuously under development, there is a lack of robust testing of 

new sensors in live drinking water catchments. 



15 
 

Objective 1: Sample river water at high-resolution to obtain 4 sampling events that 

encapsulate bacterial pollution following a rainfall event. Use the data obtained to 

calibrate and test a water quality probe. 

2. Existing surface water quality models are most commonly focused on the 

characterization of long term, or representative conditions in surface waters (sections 

2.3 and 2.4). Commonly operating at daily temporal scales or above, they frequently 

neglect or heavily simplify explicit representation of time varying SSO impacts of diffuse 

runoff. This focus is linked to the paucity of high resolution datasets for model calibration 

and validation. Current modelling tools to characterize impacts of SSOs at high 

resolution are based on detailed hydrodynamic modeling of the urban drainage network. 

Such models are time consuming to run, have high data requirements as well as high 

levels of predictive uncertainty. This limits the application of current modelling tools to 

the direct management of water abstraction systems, which cannot be normally closed 

for longer than a few hours in periods of water stress.   

Objective 2: Develop a novel, practically applicable process-based forecasting approach 

to characterize short term bacterial dynamics in catchment scale river networks, 

considering both inputs from SSO discharges and diffuse agricultural runoff at an hourly 

resolution.  

3. Land use optimization techniques have previously been developed to target catchment 

interventions to reduce pollutant impacts (section 2.5). However similarly to above, most 

approaches are based on the optimization of representative, long term water quality 

parameters. The effectiveness of these approaches to short term, acute impacts 

characterized by spatially and temporally variable sources has not yet been considered 

in detail. 

Objective 3: Build a land-use optimisation framework based on short term acute impacts 

to aid catchment mitigation of rainfall driven non-point pollution impacts.  
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Chapter 3 –– On site evaluation of real-time sensing 

technologies for characterisation of acute bacterial loads in river 

systems 

Chapter 3 focuses on the testing of a commercial real-time E. coli sensor in a UK catchment 

for the purpose of informing drinking water abstraction management. Further, the chapter also 

describes the case study catchment, fieldwork and water quality datasets obtained for the 

subsequent chapters in this thesis. Methods of data collection to achieve the aims as stated in 

the introduction chapter are outlined. Results are presented and discussed, and the chapter 

ends with a conclusion section describing future recommendations. 

3.1 Introduction 

Bacterial water quality is of concern where surface water is abstracted for drinking water supply 

and/or where the water body is used as a bathing site by the general public (National Audit 

Office, 2010; Collier et al., 2021). When the drinking water is abstracted, it needs to undergo 

an extensive cleansing process before it is supplied to the public. Acute pollution events are of 

concern due to the possibility of treatment not being sufficient and contamination passing 

through to the end user. Bathing water quality is important from both the aesthetic and health 

points of view as swimming in heavily polluted rivers poses health risks (WHO, 2012). 

Therefore, it is desirable to monitor the levels of bacterial pollutants in surface waters to comply 

with regulations and manage risk associated with acute impacts.  

E. coli is a commonly used faecal indicator organism (1WHO, 2017) for bacterial water quality, 

to identify the levels of faecal contamination of surface water and thus infection risk to humans 

when assessing water quality. The indicator organisms are used for regulatory purposes to 

comply with the needs of monitoring drinking and bathing water quality. Culture based bacterial 

analysis of river water is labour and resources intensive, with a delay of at least 24 hours before 

the results can be retrieved.  Total coliforms and E. coli Isolation and Enumeration from Water 

by Membrane Filtration method is industry standard and is carried out as stated in The Standing 

Committee of Analysts (2016) based on Sartory and Howard (1992). As such, these culture-

based approaches cannot provide real-time warning of adverse water quality impacts. They 

are also labour and time intensive, which makes it logistically difficult to understand short-term 

temporal water quality dynamics using these techniques.  

Sensing technology has advanced such that monitoring systems are commercially available to 

quantify many water quality parameters (ammonia, turbidity, optical brighteners, Biochemical 

Oxygen Demand (BOD), Coloured Dissolved Organic Matter (CDOM), etc). However, the 

monitoring of bacterial pollution in real time is not routinely undertaken as the technology is 
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unproven in commercial applications. Attempts to use more easily measurable surrogate 

parameters (such as turbidity) to inform bacterial water quality had limited success (Vincent et 

al., 2022; Herrig et al 2019). High frequency in-situ monitoring of bacterial water quality has the 

potential to facilitate the understanding of acute short-term rainfall driven bacterial peaks in the 

river water and enable a more dynamic control of water resource assets (Yassin et al. 2021). 

Deployment of a real-time water quality sensor could allow continuous observation of water 

quality over a full range of antecedent conditions and diurnal as well as seasonal variations. 

Potential real-time bacterial water quality monitoring technologies can be divided into 3 groups: 

Indirect (e.g. Adenosine triphosphate assays, Tryptophan-Like Fluorescence), direct (e.g. 

Optical Imaging, Flow Cytometry) and molecular(e.g. DNA, Immuno- Recognition). The DNA 

and Immuno- Recognition within the molecular monitoring methods group are not suitable for 

the continuous real-time monitoring use due to the technology being not yet developed for 

continuous high frequency monitoring (Boxall et al, 2021). While the Optical Imaging and Flow 

Cytometry in direct monitoring methods group are unsuitable due to the nature of raw river 

water receiving high particle loads as it can clog fluidics (Safford and Bischel, 2019). 

Indirect monitoring technologies such as Adenosine triphosphate (ATP) assays, Enzyme 

based assays and Tryptophan-Like Fluorescence (TLF) measure substances associated with 

bacteria to quantify the relative number of bacteria in question are potentially more suitable 

due to lower costs and higher practicality. The basis of ATP assay technology existed since 

1987 (Stanfield and Jago, 1987), an enzyme uses ATP to fuel a chemical reaction and produce 

light where the amount of light produced is proportional to the amount of ATP in a sample. 

Laboratory-based trials have been carried out for applications of ATP quantification for 

bacterial quality monitoring in drinking water (Standield & Jago, 1987; Delahaye et al., 2003). 

A variety of commercially available kits in drinking water samples, have been used to compare 

total plate counts and ATP assays, reporting low correlation of the average ATP measurements 

to cell counts (Hammes, 2010, van der Kooij 2017; de Vera & Wert 2019). Enzyme assays 

detects enzymes expressed by a microbe in the environment, producing a signal that is 

representative of a population. The method is based on the addition of a tag to the substrate 

that, when cleaved of its tag will release fluorescent, luminescent, or spectrophotometric 

endpoint signal and be detected quantitatively. These devices however, claim a range of 

management needs, including maintenance and regular refills for reagents depending on 

frequency of sampling and disposal of waste. The detection takes from minutes to hours with 

sensitivity from 1 organism per sample volume (Stadler et al., 2016). Testing of the real-time 

monitors in surface waters (Stadler et al., 2017) has shown significant differences between 
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culture and enzymatic assays. It was also suggested that the source type and age of 

contamination affect the underlying correlation.  

Tryptophan is an amino acid present in organisms that, when excited with a wavelength of 

~280 nm, fluoresces at ~340nm (Reynolds, 2003; Hudson et al., 2008). The detection of 

tryptophan-like fluorescence has been shown to be an indication of an active community 

degrading organic matter, similar to BOD measurements, and so analysis of drinking water 

sources using fluorimeters at these wavelengths shows that a higher TLF is reported when 

contaminated with faecal coliforms or farm waste (Cammack et al., 2004; Hudson et al., 2008; 

Sorensen et al., 2018; Henderson, et al., 2009). Tryptophan-Like Fluorescence (TLF) sensors 

are relatively cheap, require no reagents (and hence produce no waste) and involve relatively 

little maintenance/labour. Previous testing of TLF sensors has been conducted in a limited 

range of environments. Khamis et al. (2015), Khamis et al. (2016) and Khamis et al. (2021) 

considered performance of a TLF sensor against lab analysed samples of Tryptopan-like 

fluorescence, Dissolved Organic Matter DOM and Biochemical Oxygen demand BOD 

respectively. Baker et al. (2015), Mendoza et al. (2020) and Fox et al. (2022) investigated other 

tryptophan-like fluorescence sensors to evaluate the performance on measuring bacterial 

pollution. Mendoza et al. (2020) looked sensor performance measuring untreated wastewater 

added to natural creek water in a laboratory sewage spill simulation and in a natural setting 

during a single storm event. The sensor was deployed in a small river catchment, 

representative of urban Mediterranean systems, with no WWTW inputs but 11 different sanitary 

sewer overflow events in the two years prior to the study period. TLF and E. coli levels were 

found to be significantly correlated for both laboratory simulated sewage spill simulations and 

the deployment in the river during a single storm event. Fox et al., (2022) deployed sensor and 

collected single samples from a number of locations along an urban, highly polluted river. 

Strong significant correlations were found between TLF and bacterial enumeration. Baker et 

al. (2015) sampled a number of locations within two poor water quality river catchments and 

found that a TLF sensor performed better in less polluted conditions, accuracy falling with the 

increasing range and variability in E. coli and complexity of pollutant sources. They have 

highlighted the possibility of optical interferences, such as pH, thermal quenching, and 

scattering of emitted fluorescence in turbid samples, to have an effect on the E. coli–

fluorescence intensity relationship. However, Baker et al. (2015) data has also suggested the 

optical interferences to likely be catchment specific, such as microbial activity that increases 

fluorescence intensity without the presence of E. coli and pollution sources unrelated to faecal 

pollution, which emit fluorescence in the region of interest.  
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During this study, a newly commercial TLF sensor Proteus Instruments Ltd (2021), supplied by 

R.S. instruments was acquired by the project sponsor with a view to potential use in real time 

water resource applications. To date, the performance of such sensors has not been 

independently verified in live drinking water catchment and on-site validation of this technique 

has been not previously been made available. This study provides a detailed testing of the 

Proteus sensors ability to derive E. coli levels from real-time measurements of TLF. The sensor 

is evaluated via direct comparison of E. coli concentrations evaluated using traditional, culture 

based methods based on samples from the river system collected both during dry weather as 

well as following a number of rainfall events over a range of seasonal conditions.  

As initially recommended by the manufacturer, one calibration event across the entire 

measurement range of the conditions expected is supplied to calibrate the algorithms used to 

derive the E. coli data and another three rainfall events covering a range of flow and seasonal 

conditions to validate sensor performance under acute impacts. Current high resolution (sub-

daily) E. coli datasets from surface water catchments are scarce, hence the collection of such 

samples during wet weather events is in itself a valuable resource.  

3.1.1 Study area 

The River Leam is a 300 km2 sub-catchment of River Severn with elevation ranging from 46m 

to 232 m above sea level. River flow at the abstraction site is monitored using a EA flow gauging 

site with data available every 15 mins. The normal flow depth of the River Leam at the gauging 

station ranges between 0.24 m and 1.16 m with an average flow of 1.55 m3/s and mean annual 

catchment rainfall of 649 mm. A surface water abstraction site is maintained by the utility 

operator for potable water supply (figure 4.1, chapter 4), situated at the catchment outlet. Based 

on long term routine monitoring at the abstraction site, the utility operator has identified large 

short-term increases in bacterial pollution after rainfall events as a further water quality 

concern. 

Severn Trent water conduct routine monitoring of E. coli levels in the raw water supply to the 

WTW. Historical data of E. coli obtained through the Severn Trent monitoring programme 

(figure 3.1) shows the pattern of short term E. coli peaks to be coinciding with large cold 

autumn\winter rainfall events. Large rainfall events may wash-off E. coli from the agricultural 

fields and result in SSO spills as the sewer network struggle to cope with addition of rainwater 

to the system. However, some warm weather rainfall events, which do not coincide with 

significant increases in flow do still display peaks in E. coli levels. A small and/or localised 

rainfall event coinciding with recent slurry spreading on agricultural fields close to the water 

body may result in wash-off of E. coli into the river while not resulting in significant increase in 
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river flow. A localised rainfall event over SSO catchment may also result in a SSO spill without 

largely affecting river flow. These patterns should be interpreted with caution due to a large 

variation in schedule and number of samples taken, ranging from 1 to 24 samples per month. 

Within the catchment there is a significant proportion of grazing land and a number of SSOs 

which may contribute to short term increases in E. coli following rainfall events due to diffuse 

runoff as well as SSO spill events. These sources will be discussed and explored further in 

chapter 4. The regular occurrence of these events provides evidence that this is a feasible site 

for the testing of a real time sensor for the characterisation of short-term acute impacts within 

surface waters. 

 

Figure 3.1 Catchment average rainfall and river flow together with historical E. coli data from 
a nearby WTW intake provided by Severn Trent Water. 

3.2 Proteus Water quality probe 

The Proteus is a multi-parameter water quality probe (figure 3.2) procured by the Severn Trent 

Water and deployed in the Leam catchment within the river system, directly next to the drinking 

water abstraction intake (figure 4.1, chapter 4). The probe was installed to evaluate the 

opportunity to provide real time warning of high bacterial loads /poor water quality to the WTW. 

The initial installation of the probe was carried out in April 2021.  

The sensor utilises a fluorometer to measure tryptophan-like fluorescence in-situ to derive the 

Total Coliforms/E. coli levels, using a relationship/correlation derived through calibration. Other 

parameters include Turbidity and Temperature both of which are used for Tryptophan 
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compensation. Optical Brighteners are of interest for SSO spill identification as it is added to 

laundry detergent and can therefore be used to track wastewater spills from urbanized areas 

(Lockmiller et al., 2019). The manufacturers recommended calibration protocol for accurate 

and repeatable measurement of the derived parameters was followed to attain a site-specific 

calibration. An initial test was carried out in dry weather flow conditions, where the probe 

readings were compared to reference values obtained from repeated sampling at the 

abstraction site, analysed utilising standard methods with the STW laboratory (see section 

4.3.4 for further details). Following this initial test, sampling during a rainfall runoff event was 

carried out at the same location as the Proteus sensor, to cover bacterial loading across the 

entire measurement range of the conditions expected. Manufacturers guidelines required a 

minimum of 15 paired samples to be analysed at an accredited laboratory of users choice. In 

this case, river water samples were analysed for presence of Total Coliforms and E. coli at a 

main Severn Trent microbiology laboratory (see section 4.3.4). An event is triggered by the 

presence of rainfall anywhere in the catchment, while aiming to start sampling a few hours 

before the onset of rainfall. This encapsulated taking samples every 2 hours from just before 

the start of rainfall and for the duration of the high-flow event following a rainfall event. Following 

calibration, 3 further events were collected for the purposes of sensor evaluation/testing. These 

were collected under a range of different rainfall events under different seasonal conditions. 

Table 3.1 provides the characteristics of each testing event. 
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Figure 3.2 Top left - Installation of the sensor(April 2021); top right – installation of mesh to 
stop reed entanglement (June 2022); Bottom left – autosampler intake set up(July, 2021); 
bottom right sensors and wiper head (Jan 2022). 

Live data from the probe is provided by telemetry and hosted online. This project had access 

to the post-processed data. Specific calibration relationships are currently commercially 

sensitive and are the property of RS instruments. Hence all calibration and quality assurance 

was undertaken by RS instruments staff, with limited input by the project team. 

3.3 Test Events 

During this project an additional monitoring campaign was conducted to characterise acute 

bacterial (E. coli) loading during rainfall runoff events, as well as one baseline testing to 

characterise levels during dry weather flow. These events coincided with the deployment of the 
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Proteus probe. The data was therefore used to both test the performance of the probe in 

characterising acute bacterial peaks, and for further model development work undertaken in 

this thesis (see chapter 4).  

The first sampling event was made up of hourly samples over a 24 hour period of low flow, 

warm weather conditions (E0). This was used as baseline testing to identify the bacterial levels 

to be expected when acute impacts should not be present. It was followed by collection of one 

high flow/rainfall event for site-specific calibration (E1) with 3 further high flow events to validate 

the calibrated sensor data (table 3.1). The wet weather events were timed to coincide with 

incidents of high rainfall over the catchment, as anticipated using STWs in house rainfall 

forecasting system (WeatherQuest, 2023). Wet weather event samples were collected every 

1-2 hours for 3-5 days to encapsulate the event from start of rainfall to when the flow 

hydrograph has approximately returned to low flow conditions. 

Table 3.1 E. coli sampling event dates, durations and sampling frequencies. Rainfall duration 
is based on analysis of radar rainfall data from the UK MET office (see chapter 4 for further 
details) 

Event 
No.  

Start date 
Sampling 
duration 

(h) 

Sampling 
frequency 

(h) 

Rainfall 
event  
duration 
(h) 

River Flow (m3/s)  

Max  Min 

E0 19.09.2021 24h 1 0 0.240 0.226 

E1 03.12.2021 82h 2 8 5.850 0.369 

E2 05.02.2022 114h 2 32 2.530 0.575 

E3 16.08.2022 46h 2 9 0.389 0.225 

E4 12.03.2023 68h 1 41 31.800 0.272 
 

3.4 Sample collection 

An autosampler was used to collect all water samples for subsequent culture analysis and its 

intake was set up as close to the location of the sensors as possible without obstructing the 

flow of water to and from the sensors (figure 3.2). As the autosampler bottles were made of 

plastic and could not be autoclaved for sterilisation, it was deemed that thorough rinsing with 

tap water should be sufficient in the light of the initial low flow sample collected in a sterile bottle 

having high numbers of E. coli. The autosampler automatically purged the internal piping 

before each sample was taken. Ice was used to keep samples cool while in the autosampler 

and a refrigerated cool box with ice was used during the 1 hour, twice a day, transportation of 

samples for analysis to the STW laboratory at Church Wilne (figure 3.3).  
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Figure 3.3 Route and duration of transporting the water samples to the lab (image from 
Google maps, 2023) 

3.5 Sample analysis 

The samples were analysed using membrane filtration method as stated in The Standing 

Committee of Analysts (2016) based on Sartory and Howard (1992). Raw river water at the 

study site is very high concentrations of bacteria and particulates, as demonstrated by a grab 

sample analysed to assess the range of dilutions needed, prior to the main sampling event. 

Therefore, it was judged necessary to analyse sample volumes ranging from 10ml down to 

0.01 ml. For serial dilutions of 0.1 and 0.01 ml a portion of the sample is added to a Maximum 

Recovery Solution (MRD) to prepare a serial 10 fold dilution series.  

The water sample is then filtered through a sterile, white gridded 47 mm diameter cellulose 

acetate membrane filter, 0.45 μm pore size upon which bacteria are entrapped. The filter is 
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then placed on a Membrane Lactose Glucuronide Agar selective growth medium and incubated 

at 30 ºC ± 1.0 ºC for 4 ± 0.25 hours followed by 37 ºC± 1.0 ºC for 17 ± 3 hours. After incubation 

is complete the colonies, which are characteristic of Coliforms, and Escherichia coli are 

counted. The total yellow blue and green colony count is the presumptive total coliform count, 

while the green colony count alone is the presumptive E. coli count.  

3.6 Results and discussion 

3.6.1 Calibration 

Calibration result, as undertaken by RS instruments staff, for high flow event E1,supplied for 

sensor calibration can be seen in figure 3.4. The plot displays sensor data plotted against lab 

data with resulting R-Squared of 0.932 showing a good fit of calibrated sensor data to the lab 

data. The time series plots of lab analysed E. coli and calibrated sensor data for the calibration 

event and the subsequent validation events can be seen in section 3.5.2.  

 

Figure 3.4 Calibration result plot for E1 as supplied by Proteus Instruments 

3.6.1 Baseline testing 

Event E0 (figure 3.5), was used to identify baseline bacterial levels to be expected, when acute 

impacts arising after a rainfall event should not be present. Hourly samples were taken mid-

September 2021 for 24 hours.   
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Figure 3.5 Low flow warm weather 24h event (E0). Calibrated sensor and lab analysed E. coli 
(CFU/100ml) data – top graph ; turbidity (NTU) and optical brighteners(ppb) - middle; 
tryptophan (ppb) and coloured dissolved organic matter (CDOM) ( μg L−1) – bottom.  
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The retrospectively calibrated sensor data (figure 3.5) displays large offset during baseline 

conditions. This could be a result of the models used to derive the calibrated data being trained 

using an event where E. coli peak levels are acute (figure 3.6). Thus the calibration model 

might not be able to represent baseline conditions. As expected, there is no real trend due to 

lack of rainfall inputs into the river. The lab analysed E. coli falls between 330 and 700 

CFU/100ml which places the water quality at baseline conditions between excellent and good 

classification for inland bathing waters. 

3.6.2 Rainfall Runoff Events 

Figure 3.6 shows the event (E1) provided to the supplier of the sensor to use for the calibration 

of the models used to derive E. coli data. Lab analysis data shows the event start with E. coli 

levels as low as 130 CFU/100ml peaking at 12000 CFU/100ml and 6800 CFU/100ml during 

the second peak. The calibrated data seem to mainly follow the trend displayed by the turbidity. 

As turbidity and E. coli peaks, the other parameters plummet, rising again as E. coli peaks for 

the second time. E1 and the subsequent high-flow/rainfall sampling events (figure 3.7 and 3.8) 

have displayed dual peaks suggesting possibility of more than one source of E. coli in this 

catchment. 

Calibrated sensor data did not successfully identify the large magnitude of the peaks present 

in lab analysed results of the validation events (figures 3.7, 3.8 and 3.9). Only a slight elevation 

is visible in event E2 and E3 sensor E. coli data, thus pointing to the probe derived data to be 

more suitable for identifying the periods of high risk rather than being used to indicate the 

precise magnitude of the pollution event. 

Event 2 lab analysed data record the event starting with lows of 2100 CFU/100ml peaking at 

43000 CFU/100ml followed by the second peak of 17000 CFU/100ml. Turbidity for event 2 

follows the trend of elevated E. coli levels fairly well. Tryptophan has fallen throughout the 

event, rising back up again as the event nears its end.  
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Figure 3.6 E1 rainfall event. Calibrated sensor and lab analysed E. coli (CFU/100ml) data – 
top graph ; turbidity (NTU) and optical brighteners (ppb) - middle; tryptophan (ppb) and 
coloured dissolved organic matter (CDOM) ( μg L−1) – bottom  



29 
 

 

Figure 3.7 E2 rainfall event. Calibrated sensor and lab analysed E. coli (CFU/100ml) data – 
top graph ; turbidity (NTU) and optical brighteners(ppb) - middle; tryptophan (ppb) and 
coloured dissolved organic matter (CDOM) ( μg L−1) – bottom.  
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Event 3 has again produced two E. coli peaks. Initial E. coli concentrations were low at 200 

CFU/100ml but quickly escalated to 17000 CFU/100ml during the first peak and 5800 

CFU/100ml during the second peak. While the turbidity has followed the trend of first E. coli 

peak it did not show the matching rise for the second peak. The optical brighteners, tryptophan 

and CDOM have all displayed clear increases in timing with the two peaks. 

Event 4 lab analysed E. coli has shown the event to be complex with high levels of E. coli and 

more than the previously evidenced two peaks. The event had lows of 3800 CFU/100ml and 

highs of 42000 CFU/100ml. The calibrated sensor data misses the first half of the elevated E. 

coli levels as the turbidity only increases during the second half of the event. However, the 

optical brighteners, tryptophan and CDOM shows a large increase in first half and a decrease 

in the second half.  

The contrast in the ability of sensor to derive E. coli data from surrogate parameters between 

events E1-E2 and E3-E4 could point to the difficulty of the sensor to perform under conditions 

where the supply sources are complex and highly variable. Therefore, deriving a set 

relationship between E. coli levels and the surrogate parameters from just a single calibration 

event may be insufficient. While the probe manufacturer recommended one calibration event 

only, the data analysis suggests possible need for more regular or seasonal site specific 

calibrations. 
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Figure 3.88 E3 rainfall event. Calibrated sensor and lab analysed E. coli (CFU/100ml) data – 
top graph ; turbidity (NTU) and optical brighteners (ppb) - middle; tryptophan (ppb) and 
coloured dissolved organic matter (CDOM) ( μg L−1) – bottom.  
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Figure 3.9 E4 rainfall event. Calibrated sensor and lab analysed E. coli (CFU/100ml) data – 
top graph ; turbidity (NTU) and optical brighteners (ppb) - middle; tryptophan (ppb) and 
coloured dissolved organic matter (CDOM) ( μg L−1) – bottom.  
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The data from all the sampled events was combined into a single database. A log\log plot 

(figure 3.10) was then produced of laboratory E. coli data versus sensor derived data. The 

flatness of the trend data displays and its distribution that is not uniform points towards a 

systematic error of Proteus E.coli data. Results of stepwise regression analysis used to study 

correlations between parameters measured by the sensor and lab analysed E. coli data are 

shown in Table 3.2. Turbidity (NTU), CDOM (ppb) and optical brighteners (ppb) were the 

parameters selected for the model while tryptophan (ppb) and temperature (C°) were 

rejected. R2 of the model indicate that 39.7% of the variation in lab measured E.coli is 

explained by the model, turbidity (NTU) on its own accounted for 34.1%.  

 

Figure 3.10 Proteus vs lab analysed E. coli log/log plot 

Table 3.2 Stepwise regression model summary for laboratory E. coli data 

Model Summary 

Model Variables Entered R2 

1 Turbidity (NTU) 0.341 

2 CDOM (ppb) 0.370 

3 Optical Brighteners (ppb) 0.397 
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3.7 Conclusion 

High frequency sampling of E. coli levels in river water following a rainfall event has shown 

acute rises in E. coli levels. Surface water quality is significantly affected by intense rainfall 

events in the catchment. Standard water quality monitoring would not have necessarily given 

indication of these impacts as it would have unlikely captured the very acute but brief peaks of 

E. coli. This reinforces the need of high-resolution sampling to capture the impact of acute 

events.  

Overall, the probe performance is varied, with some events identified better than others. It’s 

use for real time warning would therefore be limited. The sensor calibration for acute pollution 

events with complex sources needs improvement. Given that probe does not perform well this 

gives more weight to developing the modelling approach. 

The implementation of continuous water quality monitoring of sewerage undertaker assets is 

a legal requirement for water companies with minimum guidelines outlined in Continuous Water 

Quality Monitoring Programme Provisional technical guidance for sewerage undertakers on 

implementing s.82 of the Environment Act 2021 (DEFRA, 2023). Minimum monitoring 

parameters detailed in this guide are levels of dissolved oxygen, temperature, pH values, 

turbidity and levels of ammonia. The findings of the study in this chapter shows that at least 

the parameters measured by the water quality probe in this case do not accurately represent 

E.coli pollution in surface water. Bacterial pollution in surface water may therefore not be 

accurately represented by the minimum parameters listed in the DEFRA guide thus failing to 

identify the periods of high risk.  
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Chapter 4 - Forecasting acute rainfall driven E. coli impacts in 

inland rivers based on sewer monitoring and rainfall runoff 

.4.1 Introduction 

Developing understanding of the fate, transport and survival of faecally derived 

microorganisms in river systems is a requirement for improving the effective and safe 

management of water resources (DWI, 2020; Dienus et al., 2016, Graydon et al 2022), and for 

health risk assessments associated with recreational activities undertaken in water bodies 

(Bathing Water Regulations 2013; Marsalek and Rochfort, 2004, Boehm and Soller, 2020). In 

many countries, the quality of surface water bodies has come under increasing recent focus 

due to increased spill frequency monitoring of storm sewer overflows (SSOs) and public 

demand for designated bathing water sites (Zan et al. 2023). For example, in the UK the 

Environment Act (2021) has recently increased requirements for the direct monitoring of water 

quality impacts of SSOs. Whilst the robust direct real time measurement of microbial water 

quality remains unproven (Demeter et al. 2020; Burnet, J-B., 2021), modelling tools can 

potentially consider and provide warning of periods of elevated risk to surface water sources 

and public health. However, the development of widely applicable, generalized tools to 

understand faecal pollution and associated risks in surface waters remains challenging, 

especially those caused by acute impacts with high temporal variability (Taghipour et al. 2019, 

Kammouna at al., 2023). A number of studies have conducted detailed monitoring and/or small 

scale modelling to understand spatial and temporal dynamics of E. coli at individual river 

reaches, or in small agricultural sub catchments (e.g. Hellweger and Masopust, 2008; Sokolova 

et al. 2013; Gao et al. 2015; Neill et al. 2020). However, there is a current lack of well validated 

modelling methodologies for acute impacts that can be applied in mixed use (i.e. urban and 

rural) catchments, without extensive characterisation of sources and the use of detailed 2D/3D 

hydrodynamic modelling (and associated topographic surveys). Further, forecasting models for 

early warning applications (such as water abstraction management or bathing water alerts) 

require input datasets which characterise source loadings that can be collected and 

communicated remotely and be available in near real time (Seis et al. 2018, Yassin et al. 2021).  

Many studies utilize E. coli counts as an indicator of faecal contamination in waterbodies 

(Madoux-Humery et al. 2013). However, the conventional microbial analysis of water quality 

samples is relatively time/resource intensive. For example, the membrane filtration method 

(standard used by the UK water industry), involves dilution (if needed), filtration and incubation 

of the sample for a minimum of 18 hours (The Standing Committee of Analysts, 2016). The 

characterization of the microbial quality of surface waters is therefore commonly based on 

sampling and analysis conducted at relativity coarse resolution in relation to the temporal 
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dynamics of potential rainfall driven sources, and hence can neglect the full influence of SSOs 

which may only discharge for a few hours (Seis et al., 2018; Madoux-Humery et al. 2016; 

Jalliffier-Verne et al., 2017, Shepherd et al. 2023). Further, a number of previous studies have 

shown that a significant source of faecal contamination in rivers within mixed catchments is 

diffuse, rainfall-driven runoff, with risks particularly high during elevated flow events due to 

contaminated runoff from pastoral farmland which also commonly exhibits high temporal 

variability at sub hourly timescales (Oliver et al, 2009; Ghimire and Deng, 2013; McKergow 

and Davies-Colley, 2010; Jovanovic et al. 2017, Buckerfield et al. 2019, Hubbart et al., 2022). 

The mismatch in monitoring practice and timescales of key water quality processes mean that 

significance of many accumulation and transport processes is currently poorly understood, 

particularly those which may dominate acute impacts over shorter timescales, such as mixing 

and dispersion processes in river and streams (Camacho Suarez et al., 2019), spatially 

variable rainfall runoff and associated processes (Jovanovic at al., 2017) and volumes and 

loadings from individual highly intermittent SSOs (Madoux-Humery et al, 2015, Owolabi et al. 

2022). Many existing approaches widely applied to predict diffuse pollution exposure in surface 

water bodies are developed with a view to analysing long-term effects of catchment 

management practices and are often calibrated and validated with relatively coarse datasets 

(daily and above). (Sadeghi and Arnold, 2002; Collins and Rutherford, 2004; Dorner et al., 

2006; Ferguson et al., 2007; Walker and Stedinger,1999; Whelan et al., 2014; Haydon and 

Deletic, 2006; Schijven et al.2015; Sterk et al., 2016; Brannan et al., 2002). As a result, many 

existing catchment scale water quality models lack detailed representation of spatio-temporally 

distributed surface runoff generation from source areas, intermittent point loadings (e.g. from 

SSOs) and transport processes and hydrological pathways throughout the catchment, which 

are likely to be required for accurate prediction of the arrival of temporally variable short-term 

(sub daily) peak concentrations of pollutants following rainfall events (Asfaw et al, 2018, 

Buckerfield et al. 2019). This limits such process based models applicability and viability for 

forecasting applications such as active water abstraction management (Yassin et al., 2021) or 

real time bathing water condition modelling/early warning (Seis et al. 2018). There is therefore 

a need to develop and validate new, practically applicable forecasting tools for feacal 

contamination that can be applied at catchment scales and consider acute inputs from both 

agricultural and urban sources. In addition to a lack of water quality data at appropriate 

resolution for calibration and validation, further challenges associated with the modelling of 

faecal contamination include high inherent parametric and structural uncertainties associated 

with modelling loadings from inputs such as SSOs and diffuse agricultural runoff (Srivastava 

et al., 2018, Tscheikner-Gratl et al., 2019). 
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The lack of integrated monitoring and modelling capabilities of acute impacts across the urban 

drainage and catchment domains, means that quantifying the relative scale and nature of risks 

to water resource systems from different potential sources (e.g. SSOs vs rural diffuse runoff) 

is also practically difficult (Camacho Suarez et al., 2019, Derx et al. 2023). The recent use of 

microbial source tracking techniques has been shown to successfully elucidate potential 

sources (Joseph et al. 2021, Wiesner-Fridman et al. 2022, Zan et al. 2023). However, the 

present cost and complexity of such techniques means that they are generally only applied to 

a limited number of samples, which may not provide a representative apportionment of source 

loadings over longer timescales. 

Despite challenges, in recent years the quality and quantity of spatially distributed 

environmental datasets of concern to water applications has increased, including radar rainfall 

data, remote sensing of soil condition and land use, and in some cases such as in the U.K., 

datasets concerning timing of SSO discharges for urban drainage networks. Further to this, the 

use of automated sampling techniques has simplified the logistics concerning the collection of 

higher resolution water quality samples. The potential for real time sensing/monitoring of feacal 

pollution is also a subject of current research, for example based on fluorescence-based 

detection of the enzymatic activity (Demeter et al. 2020, Burnet et al. 2021), however the 

reported performance of such techniques for E. coli measurement is variable across different 

waterbody types. Whilst these tools provide potential to improve understanding of short-term 

dynamics in surface runoff-based generation and transport, many of approaches/datasets have 

yet to be integrated into river impact models or fully deployed to characterise and assess the 

significance of acute loadings of Faecal Indicator Organisms (FIOs) into receiving waters. For 

example, to the authors knowledge the use of directly monitored SSO water levels as an 

alternative to hydrodynamic and water quality modelling of an urban drainage network to 

estimate SSO impacts in near real time has not been previously attempted. 

The aim of this work is to develop a novel, practically applicable process-based forecasting 

approach to characterize short term E. coli dynamics in catchment scale river networks, 

considering both inputs from SSO discharges and diffuse agricultural runoff. The model 

application is focused on providing advanced warning of water quality issues at a water 

abstraction site, although a similar model structure may be considered for forecasting the 

quality of recreational waters. As such, understanding the arrival time and duration of elevated 

loadings within the river network following commonly occurring rainfall events is the primary 

objective of the model. The approach is based on the temporal routing of individual source 

areas (based on land use) within the catchment through the river network, considering spatially 

variable rainfall runoff processes (for agricultural areas), and the novel use of hydraulic 
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monitoring data from individual SSO sites provided by the water infrastructure operator. The 

model is calibrated and validated against new hourly/bi-hourly datasets of E. coli 

concentrations in a UK case study catchment featuring both agricultural and SSO inputs, 

collected during and after rainfall events over a range of seasonal conditions. The model 

outputs are used to consider the relative significance of urban and rural sources in the 

catchment area. 

4.2 Methodology 

This section describes the case study catchment area, sampling and microbial water quality 

analysis procedure as well as the development of a modelling approach to describe short-term 

fluxes of E. coli in response to individual rainfall runoff and SSO discharge events.  

4.2.1 Study area 

The River Leam is a 300km2 sub catchment of River Severn with elevation ranging from 46m 

to 232m above sea level. A surface water abstraction site is maintained by the utility operator 

for potable water supply (figure 4.1), situated at the catchment outlet. Agriculture is the 

dominant catchment land use with predominantly clayey and loamy soils. Several urban, 

suburban and rural developments are also present in the catchment, totalling 12.83 km2 of 

built-up area (Ordnance Survey, 2023), with predominantly combined urban drainage systems 

also maintained by the utility operator alongside a number of associated SSO outfalls. A UK 

Environment Agency flow gauging station is situated at the outlet of the catchment to monitor 

abstraction license restrictions. The normal flow depth of the River Leam at the gauging station 

ranges between 0.24 m and 1.16 m with an average flow of 1.55 m3/s (Q70; 0.319 m3/s, Q50; 

0.441 m3/s, Q10; 3.573 m3/s) and mean annual catchment rainfall of 649mm (NRFA, 2023). 

The catchment has previously been used to develop a rainfall runoff model to forecast the 

arrival of pesticides at the abstraction point caused by field runoff (Asfaw et al. 2018).  Based 

on long term routine monitoring at the abstraction site, the utility operator has identified acute 

faecal pollution after rainfall events as a further water quality concern. 
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Figure 4.1 Study catchment map showing elevation (meters above sea level) the locations of 
SSO’s, build up areas and grassland for livestock grazing. 

4.2.2 Development of E. coli modelling approach 

Based on the available catchment information, the major sources of acute rainfall driven FIOs 

in the catchment are assumed to be field runoff from pastoral agricultural land, and SSO spills. 

The proposed model therefore accounts for SSO loadings and agricultural runoff sources for 

given rainfall events as identified by catchment land use and asset data. During rainfall events 

travel times from sources to a monitoring point at the catchment outlet are based on a travel 

time approach utilizing an existing surface runoff model of the catchment presented in Asfaw 

et al (2018). Surface runoff is calculated based on overland flow generated from 5 m2 grid cells 

in the catchment utilizing radar rainfall data. The travel time based surface runoff routing 
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method estimates storm runoff transport from catchment grid cells to the outlet of the catchment 

based on a Geographic Information System (GIS) method. The spatially distributed time variant 

direct runoff travel time technique employed in the model accounts for spatial and temporal 

variability of runoff generation and flow routing through overland flows and stream networks 

(Melesse and Graham, 2004, Du et al., 2009) following rainfall events at a 1 hr resolution.  

Diffuse E. coli loadings are estimated based on build-up functions associated with grazing 

animals in high risk areas (grasslands) and its wash-off to water courses during surface runoff 

processes (Oliver et al. 2009). SSO impacts are based on level data from Storm Overflow 

monitors collected at 15 min resolution and used to estimate volumes and loadings entering 

the surface waters at each timestep from SSO sites. Loadings from significant SSOs and 

grassland areas are then routed to the catchment outlet. Diffuse and SSO impacts are 

integrated and combined model to enable rainfall event based prediction of E. coli 

concentrations at the catchment outlet after rainfall events.  

The underlying surface runoff, diffuse pollution and SSO modeling approaches are described 

in further detail in the following sections. 

4.2.3 Surface Runoff Modelling  

A hydrological model based on the differential form of the Soil Conservation Service (SCS) 

curve number (CN) method (Mancini and Rosso (1989) has been previously developed and 

tested within the same catchment (Asfaw et al. 2018), and hence is not reproduced here in 

detail. Runoff routing is performed using a time varying travel time computation technique, 

based on flow pathways defined via a GIS flow direction tool based on the catchment digital 

elevation model (DEM). Output surface flow hydrographs at the catchment outlet are based on 

cumulative excess rainfall travel times from each grid cell, based on kinematic wave theory 

Wong (2003). Further details of the model setup and initial validation can be found in Asfaw et 

al. (2018). To ensure robustness of the approach for this study, the model was evaluated during 

three further wet weather events, during which the model was compared against monitored EA 

gauging station data (see section 4.4.1.). Based on this testing, model antecedent moisture 

conditions were modified to be evaluated based on the preceding 25 days of cumulative rainfall 

data.  

4.2.4 Diffuse Faecal Pollution Loading and Routing  

The diffuse modelling component estimates the build-up of E. coli loading on grazing land 

within the catchment, and subsequent wash-off during surface runoff events following each 

rainfall event rainfall. Grassland/grazing areas were derived from satellite imagery, acquired 
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from the Centre of Ecology and Hydrology (CEH, 2023) for the period covered in this work 

(2021-2023). The methodology is based on the approach of Oliver et al. (2009), who developed 

a method to estimate E. coli loadings on fields based on ‘a worst case scenario’ which 

represented a realistic upper level of stocking densities in the UK. The concentration of E. coli 

(CFU/m2) on grassland for a given Julian day (Ex) is calculated as the sum of the daily fresh 

input of E. coli (Einx) by grazing livestock and the previous E. coli burden, which estimated as 

a declining due of first-order die-off relationship (see Table 1): 

𝐸𝑥 = 𝐸𝑖𝑛𝑥 + 𝐸𝑥−1 ∗ 𝑒−𝑏                (Equation 1) 

Where Einx (Colony Forming Units, CFU) are fresh E coli deposits, Ex-1 (CFU) is the E. coli 

store from the previous day, and b is the appropriate seasonal exponential die-off constant. 

The ovine and bovine die-off constants (Table 4.1) are higher for the summer (Avery et al., 

2004) and lower for the winter months (Oliver et al., 2009). 

Table 4.1 Bovine and ovine die-off constants (b) for different seasons, from Avery et al., 
(2004) and Oliver et al., (2009). 

Season Bovine die-off constant (day-1) Ovine die-off constant (day-1) 

Autumn/winter 0.0606 0.0640 

Spring/summer 0.0909 0.0920 

 

E. coli deposits are estimated using livestock numbers supplied by DEFRA at UK county level 

(DEFRA, 2022), multiplied by daily load of E. coli excreted by each livestock type during the 

assumed grazing period (based on the method of Oliver et al., 2009, see table 4.2). The 

number and type of animals is assumed to be equally distributed over the entire grassland area 

of the catchment. The daily E. coli burden in each 5m2 cell is summed up for each livestock 

type present and used to calculate daily fresh deposit totals for livestock present during its 

grazing period (Table 4.2).  
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Table 4.2 Catchment livestock densities and total grassland area derived from DEFRA 
County level data, utilizing deposit data from Oliver et al., 2009 and assumed grazing periods 
in the catchment (Oliver et al., 2018) 

Livestock 
type 

Livestock 
Count – 
County level 

E. coli (CFU) 
contribution 
per livestock 

Einx (CFU) per 
5 m2 of 
grassland 

Grazing 
period 

Dairy cow 9681.50 8.99x108 85195.24 1 Apr–31 Oct 

Beef cow 17359.50 2.54x109 431602.31 1 Apr–31 Oct 

Calves 23644.00 2.10x1010 4662237.30 1 Apr–31 Oct 

Sheep 151061.14 7.74x108 968451.65 1 Jan–14 Apra; 
1 May–31 Dec 

Lambs 127827.44 1.01x1010 14934373.36 1 May–1 Nov 

 

Grassland 
total (ha) 

51080.73 

a removed for lambing. 

In addition to direct deposits, key risk times for slurry spreading in the catchment are in the 

autumn and spring. To account for slurry spreading contribution to E. coli store in this 

catchment, E. coli store on grassland between 31 January and 1 April is assumed to be 2.1x108 

CFU per m2, based on the findings of McGechan and Vinten, (2003). 

E. coli detachment or washout rate from each cell at each timestep (t) during rainfall events is 

estimated based on the method of Collins and Rutherford (2004), applied here at hourly 

resolution.  

𝑍, 𝑡 = 𝐶𝑝
𝑂,𝑡

𝐾
  (𝑤ℎ𝑒𝑛  𝑂, 𝑡 < 𝐾)               (Equation 2) 

𝑍, 𝑡 =  𝐶𝑝, (𝑤ℎ𝑒𝑛 𝑂, 𝑡 ≥ 𝐾)                (Equation 3) 

Where Z,t is the E. coli detachment or washout rate (E. coli/hr) during the timestep, O,t is the 

cell surface runoff rate (mm/h) during the timestep (from the surface runoff model) and K is 

threshold a runoff coefficient, taken as 1.04 mm/hour (Collins and Rutherford, 2004). Cp is the 

available E. coli store (Ex), modified by a calibration constant (K1), discussed further in section 

3.5. 

𝐶𝑝 = 𝐸𝑥 ∗ 𝐾1                  (Equation 4) 

The calculated travel time from each high-risk cell is calculated based on the surface runoff 

model for each model time step. This is then used to route E. coli load at each hourly timestep 

from each cell (Z,t) to the outlet of the catchment. Time series of river flow based on the 

hydrological model (Q,t, m3/s) and total E. coli load in surface runoff (E. coli/m3) can then be 
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used to determine concentrations water arriving at the outlet of the catchment from field 

sources. Thus, the concentration of E. coli from diffuse runoff field sources at each model time 

step (E. coliF, t), can be expressed as:  

𝐸. 𝑐𝑜𝑙𝑖𝐹 , 𝑡 =
∑(𝑍,𝑡)

(𝑄,𝑡)
                    (Equation 5) 

4.2.5 SSO Spill Volumes, Loading and Routing  

SSO monitoring equipment has recently been installed within the catchment as part of the 

current commitment to provide event duration monitoring data of all operational SSOs to the 

UK public (DEFRA, 2023). In the study catchment, spill event durations are currently estimated 

based on monitored level data within chambers connected to outflow pipes (discharging to 

surface waters), with start and stop times logged as when water level exceeds the outflow weir 

crest/pipe invert level. Although monitoring systems are not designed to estimate volumes or 

pollutant loadings to receiving waters, a simple approach is proposed here to make estimates 

of flow rate and loadings based on sensor information.  

Raw water level data (collected via ultrasonic probes) at 15 min resolution data is provided at 

each of the 20 SSO sites within the catchment (figure 4.1). Based on asset data (weir/pipe 

dimensions) and monitored level information for the analysis period, SSO spill volumes at each 

site are calculated every 15 mins where the water level exceeds the outflow weir crest or pipe 

invert level based on standard equations for hydraulic structures and pipe flows. A similar 

approach has been used by Fachs et al. (2008) to estimate flow rates from urban drainage 

systems overflows.  

At sites where the outflow is controlled by a weir, the SSO spill flowrate (Qspill,x m3/s),  is 

calculated every 15 minutes as: 

𝑄𝑠𝑝𝑖𝑙𝑙,𝑥 =
2

3
𝐶𝑑𝑤𝐿√2𝑔ℎ

3

2                  (Equation 6) 

Where Cdw is the coefficient of discharge for a weir, taken at 0.6. L is the effective length of 

weir (m), g acceleration due to gravity (m/s2) and h is the height of water surface above weir 

crest (m). For sites where the outflow is controlled by a pipe, two states are simulated to 

consider when the pipe is surcharged or flowing with a free surface, defined at each time step 

by the by the monitored water level relative to the pipe soffit level. When the pipe is in 

surcharged condition, the spill flowrate is calculated based on an orifice condition: 

𝑄𝑠𝑝𝑖𝑙𝑙,𝑥 = 𝐶𝑑𝑜𝑎𝑜√2𝑔ℎ                (Equation 7) 
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Where ao (m2) is the area of the orifice and h (m) is the height of water surface above the outlet. 

Where Cdo is the coefficient of discharge of the orifice, taken at 0.57. When the flow in the pipe 

has a free surface, the flow rate is based on Manning’s equation: 

𝑄𝑠𝑝𝑖𝑙𝑙,𝑥 =
1

𝑛

𝐴
5
3

𝑃
2
3

𝑆𝑜

1

2                 (Equation 8) 

Where A is the cross-sectional area of the portion of the channel occupied by the flow (m2), n 

is the Gauckler–Manning coefficient (s/[m1/3]), taken as 0.014 for vitrified clay, P is the wetted 

perimeter of the channel occupied by the flow (m), S is the stream slope (based on asset data). 

Equation 6 assumes that the flow in the pipe is uniform, whilst unlikely to be the case the short 

duration of free surface pipe flow conditions in most cases means that the uncertainty arising 

from this assumption is unlikely to be significant. The total spill volume per hourly timestep 

(Vspill,x t) at each SSO is calculated by the integration of the calculated flowrates. Currently 

there is no sampling of E. coli of storm overflow sites to estimate loadings within SSO spill 

volumes. Therefore for the purposes of this model E. coli concentrations of 40000 E. 

coli/(CFU)\100ml have been utilized based on the previous observations found in literature 

(Ellis and Yu, 1995, García-García at al., 2021; Hamel et al., 2016; USEPA, 2008) to calculate 

the E. coli load from each SSO (SSOx,t). The implications of this assumption are discussed 

further in section 4.4.  

As point source discharges, loadings from SSOs are subject to considerable dispersion effects 

within the receiving water (Rutherford, 1994). To account for this, SSO loadings from each site 

at each timestep are routed to the catchment outlet using an Aggregated Dead Zone (ADZ) 

transport and mixing model (Beer and Young, 1984, Wallis et al 1989). The ADZ is a simple 

two parameter routing approach which accounts for mixing processes within surface waters. 

Unlike the (more commonly used) Advection Diffusion Equation the ADZ accounts for skewed 

distributions commonly observed during mixing studies conducted in surface waters 

(Rutherford, 1994). The ADZ model provides loadings at the downstream catchment outlet 

from each individual SSO site (SSODx,t) as: 

𝑆𝑆𝑂𝐷𝑥, 𝑡 = −𝛼(𝑆𝑆𝑂𝐷𝑥, 𝑡 − 1) + (1 + 𝛼)(𝑆𝑆𝑂𝑥, 𝑡 − 𝛿)            (Equation 9) 

Where 𝛼 =  −𝑒
(

−𝛥𝑡

𝑡̅−𝜏
)
   and  𝛿 =  

𝜏

𝛥𝑡
   . The parameter 𝑡̅  is mean traveltime over the reach (s) and τ 

is an initial reach time delay (s). The two ADZ parameters (𝑡̅ , τ) can be expressed as the 

dispersive fraction Df, as defined by Young and Wallis (1986), and used to scale the mixing 

effects within a reach. 

𝐷𝑓  =  (t̅  –  τ)/t̅                   (Equation 10) 



45 
 

To deploy the ADZ model to each SSO spill, the mean reach travel time (𝑡̅ ) is estimated based 

on the surface runoff model described in section 4.2.3. By applying a series of uniform rainfall 

events (from 0.08 to 1mm/hr) over the catchment, travel time against catchment outlet river 

flow relationships for each SSO were extracted from the hydrological model. In each case a 

uniform rainfall intensity was applied to the catchment until the modelled river flow at the outlet 

stabilized. This allowed representative mean travel times (𝑡̅ ) from each SSO to be determined 

over a range of measurable catchment flow conditions (from 6.21 - 79.57 m3/s), based on the 

coordinates of each SSO as identified based on asset records. As the time delay parameter 

(τ) cannot be directly established by the hydrological model, τ is calculated for each timestep 

and SSO based on the traveltime (from above), according to equation 10. In this case a fixed 

value of Df of 0.2 is taken in all cases, based on the database values of dispersive fractions 

from UK rivers found in Guymer (2002). Given the uncertainty induced by the use of a single 

representative Df value, a sensitivity analysis of this parameter on SSO predictions was also 

carried out (see section 4.4.3). Routed E. coli loadings from each SSO are summed for each 

model timestep and diluted by the calculated river flow volume at the catchment outlet to 

determine the SSO E. coli component (𝐸. 𝑐𝑜𝑙𝑖𝑆, 𝑡) of the model (equation 11). Similarly to the 

diffuse component, a calibration parameter (K2) is also applied, discussed further in section 

4.3.5.  

𝐸. 𝑐𝑜𝑙𝑖𝑆, 𝑡 = 𝐾2 
∑ (𝑆𝑆𝑂𝐷𝑥,𝑡)𝑥=20

𝑥=1

(𝑄,𝑡)
               (Equation 11)  

4.3 Model Input Data, Water Quality Sampling and Calibration 

4.3.1 Rainfall and river flow 

Radar rainfall at 1km2 spatial resolution, 15min temporal resolution, used as field runoff model 

input, was acquired from the UK met-office’s NIMROD system. Rainfall was aggregated into 

hourly intervals to be used with the runoff generation and pollutant wash-off components of the 

model. A set of rainfall events was selected for validation of the hydrological component of the 

field runoff model (table 4.4). Summary of the statistics for the four events used for the diffuse 

component of the E. coli model (calibration and validation) are provided in table 4.6. 

River flow (m3/s) data from a flow gauging station situated at the outlet of the study catchment 

was obtained from the UK Environment Agency. It was used as initial baseflow input for field 

runoff model and for the validation of the hydrological model.  

4.3.2. Land use  

UKCEH Land Cover® plus: Crop maps were used to create an E. coli high-risk area map. In 

this case, grasslands were selected due to livestock grazing throughout most of the year, 
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creating E. coli stores that replenish and die off with time (as described in section 4.2.4). Figure 

4.1 shows the distribution of grasslands in the catchment during the study period.  

4.3.3 Storm Sewer Overflow Data 

Monitored Storm Sewer Overflow Data (water level time series from 20 catchment SSO’s) and 

asset location data was obtained from the local water utilities Event Duration Monitoring (EDM) 

analytics platform. An initial screening of the calculated volume from each SSO site (based on 

equations 6-8) was performed. This showed that 5 out of the 20 SSOs contributed 

approximately 90% of the total spill volume/load over the 24 month study period (April 2021 – 

March 2023). Therefore, to simplify the model and further analysis, calculated catchment SSO 

loadings included only these 5 SSOs. Information on each of these SSO’s is included in table 

4.3, alongside published EDM return data from Environment Agency (2023). Calculation of 

traveltimes to the abstraction site is based on the application of the hydrological model and 

SSO location (river distance to sampling site)  

Table 4.3 Characteristics of Leam catchment SSOs included in E. coli model, based on 
monitored period between April 2021 - March 2023 and EDM data is a sum of annual return 
data from 2021 and 2022. 

Name River 
distance to 
sampling 
site (km) 

Modelled 
traveltime 
under 
1mm/hr 
unform 
rainfall (h)  

% of total 
spill 
volume in 
catchment 

EDM -Total 
Duration 
(hrs) 

Outflow 
type 

SSO1 4.40 7 65.67 2857.66 Pipe 

SSO8 15.45 21 5.02 37.52 Pipe 

SSO12 21.24 29 6.01 782.13 Weir 

SSO19.1 29.14 35 9.66 3086.83 Pipe 

SSO19.2 29.14 35 3.51 371.60 Pipe 

 

4.3.4 Water Sampling (E. coli data) 

Water samples were taken from the River Leam at the water abstraction site using 

autosamplers during and shortly after four monitored rainfall events in the catchment. This 

enabled the continuous collection of hourly/bihourly water samples during storm runoff events, 

which successfully captured the short-term fluctuations of E. coli concentrations at the 

abstraction site. The auto-samplers were manually triggered before the arrival of forecasted 

rainfall events. For each event sampling was carried out for a period of 1–5 days, which 

enabled the acquisition of water samples during the full surface runoff period following the 

rainfall events. During the sampling campaign a range of seasonal conditions and rainfall 

events of varying intensity and duration were captured over the period September 2021- 

February 2023 (table 4.6).  



47 
 

During each event, designated compartments within the autosamplers were filled with ice to 

keep the adjacently stored collected sample temperature low and stable. Samples were placed 

in a controlled environment (3-5C°) within 12 hours and analysed within 24 hours of collection. 

The samples were analysed using Total coliforms and E. coli- Isolation and Enumeration from 

Water by Membrane Filtration method as stated in The Standing Committee of Analysts (2016) 

based on Sartory and Howard (1992). The water sample is filtered through a cellulose acetate 

membrane filter upon which bacteria are entrapped. The filter is then placed on a selective 

growth medium and incubated at 30ºC ± 1.0ºC for 4 ± 0.25 hours followed by 37ºC± 1.0ºC for 

17 ± 3 hours. After incubation is complete the colonies, which are characteristic of Coliforms, 

and Escherichia coli are counted. 

4.3.5 Model Calibration  

Understanding E. coli loadings within surface waters is subject to considerable uncertainty. 

Whilst information concerning the arrival and duration of microbiological loadings into river 

systems can be directly characterized using monitoring or input data from rainfall radar or SSO 

sensors, due to a lack of direct monitoring of loadings within field runoff and storm overflows, 

the model utilizes literature values. However, it is known that these values can be highly 

variable between sites and with time (Madoux-Humery et al., 2015). Further to this, to maintain 

a simple model structure, processes such as E. coli decay/dies off in the river network are 

neglected. To mitigate this, two calibration parameters (K1, K2) are introduced to scale 

loadings from field runoff and SSOs respectively. It should be noted that these parameters are 

used to adjust magnitude of E. coli loadings and do not affect the arrival times and durations 

of E. coli events (i.e. the primary model application). Calibration of the model is based on initial 

monitored event (E1), and then validated on the remaining 3 events (E2-4). The sampling 

events are distributed over the year to cover a range of seasonal and hydrological conditions 

(winter and summer, with initial to peak river flows ranging well over the Q70 - Q10 range for 

the 4 events), with rainfall durations ranging from 8 to 41hrs. This provides some indication of 

the scale of uncertainties to be expected if the processes approximated by the calibration 

parameters are assumed to be constant throughout the year. 

4.4 Results and Discussion 

4.4.1 Surface runoff model 

A set of events chosen for the validation of the hydrological component of field runoff model 

are listed in table 4.4. The events were selected to cover a range of Initial and peak flow 

conditions. Event A3 is also used to calibrate the E. coli model (E1). Spatial distribution of 
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temporally averaged rainfall for events A1 and A2 can be seen in figure 4.2, event A3’s rainfall 

can be seen in figure 4.4 under event E1. 

Table 4.4 Summary of rainfall events used to re-evaluate the surface runoff model. Quoted 
durations are based on presence of rainfall at any position in the catchment. Intensities are 
based on temporal and spatial averaged values. Initial and peak flow rates during each event 
based on EA gauging station data. 

Event No.  Start date Duration 

Rainfall intensity 
(mm/hr) 

River flow data 

Averag
e 

Peak 
Initial 
flow 
(m3/s) 

Peak 
flow 
(m3/s) 

A1  03.12.2021 8h 1.10 2.10 5.45 19.2 

A2 03.03.2021 15h 0.72 2.33 2.02 7.72 

A3 (= E1) 04.12.2020 16h 0.71 1.48 0.43 5.85 
 

The results of hydrological model calibration and validation can be seen in figure 4.3 with the 

performance statistics listed in table 4.5. The performance of the surface runoff model was 

evaluated using, R-Squared (R2) volume conservation index (VCI), calculated using equation 

12, model efficiency coefficient (E) as shown in equation 13 and prediction error of time to peak 

(ΔT). 

𝑉𝐶𝐼 =  ∑ 𝑄𝑚
𝑡 / ∑ 𝑄𝑜

𝑡𝑇
𝑡=1

𝑇
𝑡=1               Equation (12) 

𝐸 = 1 −
∑ (𝑄𝑚

𝑡 −𝑇
𝑡=1 𝑄𝑜

𝑡 )2

∑ (𝑄𝑜
𝑡 −𝑇

𝑡=1 𝑄̅𝑜)2                Equation (13) 

Table 4.5 Flow simulation model error statistics 

Event R2 E VCI ∆T(h) 

A1 0.90 0.88 1.06 1 

A2 0.80 0.79 0.94 2 

A3 0.68 0.63 0.84 3 
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Figure 4.2 Spatial distribution of temporally averaged rainfall (mm) for the events used in 

hydrological model validation. 

          

Figure 4.3. Field Runoff hydrological model validation (modelled and predicted flow, spatially 
averaged catchment rainfall) 
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In Asfaw et al. (2018), VCI ranged from 0.82 to 0.99 compared to 0.84-1.06 here and ∆T(h) 

range of 1-5 hours was slightly reduced to 1-3 hours during this validation. While the efficiency 

coefficient has seen a reduction from 0.83-0.91 to 0.63-0.88, the error statistics show the 

hydrological model to still be valid and suitable to use as a basis for travel time estimation of 

the water quality model. 

4.4.2 Measured E. coli Dynamics and Model Performance 

The integrated SSO-Field runoff model was calibrated and validated using a set of rainfall 

events and related statistics are listed in table 4.6. For each event, the estimated rainfall depth 

for a 1 year return period (R.P.) storm has been calculated using the UKCEH recent FEH 22 

model (UKCEH, 2023; Vesuviano, 2022). The events used for model validation and calibration 

are well within the 1 year return period, and are therefore reasonably typical in terms of overall 

magnitude. Event E1 was used for calibration of parameters K1 and K2 with the remaining 3 

events utilized for validation. Following calibration, a value of 0.4 was used for both K1 and K2. 

Figure 4.4 displays the spatial distribution of temporally averaged rainfall for each event. Figure 

4.5 presents the measured E. coli for each event, spatially averaged rainfall within the 

catchment, and the outputs of the E. coli model. The SSO, field and combined (i.e., summation 

of SSO and Diffuse components) model outputs are presented. Initial base and peak river flow 

measured at the gauging station are also provided for each event.  

The data from all the sampled events was combined into a single database. A log\log plot 

(figure 4.6) was then produced of laboratory E. coli data versus model forecasted data. The 

data distribution shows as many under predictions as over predictions. This points to error 

being present but not systematic. As the model aim is to be used as a tool to identify periods 

of high risk rather than exact magnitudes forecasted E.coli levels should be sufficient to fulfil 

this purpose.  
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Figure 4.4 Spatial distribution of temporally averaged rainfall (mm) for the events used in E. 

coli model calibration (E1) and validation (E2-4). Note E4 is plotted using an altered scale. 
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Figure 4.5 Results of combined model and measured (LAB) E. coli data showing the 
contribution from the field runoff and SSO models and spatially averaged rainfall (K1=0.4, 
K2=0.4). 
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Figure 4.6 Forecasted vs lab analysed E. coli log/log plot 

Table 4.6 E. coli sampling event dates, durations, sampling frequencies, and associated 
catchment rainfall statistics. Estimated 1 year R.P. rainfall depths for each event duration are 
also provided based on the UKCEH web service. Initial and peak flow rates during each 
event based on EA gauging station data. 

Event 
No. 

Start 
date 

Sampling 
duration 
and 
frequencya 
(hrs) 

Catchment Averaged Rainfall 
Statistics 

River Flow Data 

Duration 
(hrs) 

Depth 
(mm) 

Peak 
intensity 
(mm/hr) 

1 year 
R.P. 
depth 
(mm) 

Initial 
Flow 
(m3/s) 

Peak 
Flow 
(m3/s 

E1(A3) 03.12.21 82(2) 8 7.26 1.85 21.82 0.43 5.85 

E2 05.02.22 114(2) 32 10.68 1.32 31.55 0.72 2.53 

E3 16.08.22 46(2) 9 9.15 2.53 22.63 0.25 0.39 

E4 12.03.23 68(1) 41 11.51 1.51 33.62 0.29 2.30 
a in brackets 

Table 4.7 presents goodness of fit statistics for the combined E. coli forecasting model for 

each event. ∆A(h) –prediction error of arrival time, ∆D(h) - prediction error of event duration, 

∆T(h) - prediction error of time to peak. 

Table 4.7 Combined model error statistics 

Event ∆A(h) ∆D(h) ∆T(h) 

E1 2 2 7 

E2 11 19 9 

E3 1 1 4 

E4 24 45 6 
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Table 4.8 presents the calculated total E.coli load at the Leam abstraction point over each 

event from field, SSO and combined sources.  

Table 4.8 Total calculated E.coli loads (CFU) over each event. 

Event SSO CFU Field CFU Total CFU 

E1 1.07x1013 2.75x1013 3.82x1013 

E2 6.61x1012 7.58x1013 8.24x1013 

E3 2.51x1012 4.20x1011 2.93x1012 

E4 3.34x1013 1.20x1014 1.53x1014 

 

For all events, observed and modeled E. coli exhibit large rises in the sampling period following 

rainfall. Although the forecasted peak durations are over predicted at times, these over 

predictions are on the order of a few hours and a small fraction of storm durations. The model 

suggests that event E1 is characterized by significant contributions from both SSO and diffuse 

runoff sources. The SSO being responsible for the initial spike (due to the SSO spill from SSO1 

relatively close by the abstraction site), and the tail (from 20-60 hours after sampling 

commenced) being due to the slower diffuse runoff. The preceding rainfall event is moderate 

and of 8 hrs duration, and sufficient to cause approximately equivalent loadings from both SSO 

and field runoff sources. Whilst this this event is used for calibration, the model structure 

correctly predicts the arrival time and duration of the event. 

The model prediction for event E2 significantly underestimates the arrival time of the E. coli 

peak concentrations; however, the end of the event is predicted reasonably well. In this case, 

the event is of lower intensity, but of longer duration, with a relatively high initial river flow. 

Hence, in this case predicted SSO volumes and loadings are significantly lower and the 

predicted E. coli contributions are mainly from diffuse runoff. The spatial distribution of rainfall 

intensity suggests a lower rainfall closer to the catchment outlet, and in this case, the model 

may be over predicting wash off from these areas leading to higher E. coli loadings at the start 

of the event than is observed.  

Event E3 is an example of a high intensity, shorter duration event typical of summer rainfall 

with a low initial and peak river flow. In this case the model predicts that the runoff and loadings 

from field areas and corresponding diffuse pollution impacts are relatively minor, with the main 

source of pollution from SSOs which are more likely to overflow during the sudden inundation 

from such rainfall events. In this case the model gives a generally good estimation of the arrival 

time and overall duration of the observed E. coli concentrations. Two peaks are observed in 

both measured and modeled E. coli values, which are a result of inputs from SSOs at different 

locations in the catchment. The model predicts a longer duration initial peak than is observed 

and the arrival times for the second peak are overestimated by approximately 5 - 6 hrs. This 
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discrepancy may be caused by residual errors within the hydrological model when predicting 

a short, flashy event, a lack of calibration of the mixing parameters within the routing 

methodology, or sensing errors within the SSOs themselves.  

Event E4 is a prolonged and complex rainfall event resulting in multiple E. coli peaks. With 

significantly larger river flow rates then E1-3. Some SSO loading is present throughout the 

event but the majority of E. coli load supplied via diffuse sources from agricultural runoff. 

Despite the complexity of the event, the model gives a reasonable approximation of the arrival 

time of elevated E .coli levels commencing shortly after the initiation of sampling. Due to the 

length of the event, it is unlikely the sampling period covered the end of the event in this case.  

The overall results suggest that the sampling campaign has captured events with a diverse 

range and a variation of sources (SSOs and field runoff). Despite the logistical challenges in 

measuring E. coli at high resolution, this demonstrates that value of measuring events over a 

range of seasonal conditions, such that relatively short summer rainfall events, as well as 

longer rainfall events in winter are captured. Further, sampling over winter and summer 

provides evidence that the model is fit for purpose over a good range of hydrological conditions, 

which is significant due to the influence of river travel time calculations on the model output. 

4.4.3 Sensitivity Analysis 

Mixing and dispersion processes in rivers can have significant effects on arrival times and 

duration that pollutants remain over given thresholds (Camacho Suarez et al., 2019). Given 

that the application of the model is to forecast arrival times and duration of E. coli peaks it is 

important to understand the uncertainty introduced into model outputs due to the lack of direct 

quantification of mixing processes, and associated use of standard literature values of mixing 

parameters. Based on the survey of UK rivers (Guymer, 2002), dispersive fraction commonly 

falls within the range 0.05 < Df < 0.4. Figure 4.7 shows results of a sensitivity analysis carried 

out on the SSO E. coli model for event E3 based on these values as upper and lower bounds. 

At this site, the analysis shows a relatively small change in arrival and peak timings over this 

range of Df, with a more significant effect on peak concentrations (table 4.9). Given this result, 

it is likely that some improvements in model performance could be achieved in this case by 

calibration of dispersive fraction, with higher Df values leading to earlier arrival times which may 

positively affect performance of events 1 and 3. However at this site the use of a representative 

Df  value provides an acceptable level of model performance. In this case it is noted the most 

significant SSO (SSO1) is relatively close to the catchment outlet (see table 4.3), which may 

reduce the significance of the mixing processes. In other catchments, with more spatially 

disrupted SSO loadings results are likely to be more sensitive to the Df parameter, and hence 
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direct calibration may be required. Further understanding of mixing processes at sensitive sites 

may also be improved by undertaking simple solute tracing experiments. 

 

Figure 4.7 Sensitivity of SSO model to dispersion fraction (Df) parameter for event E3. 

Table 4.9 Difference in arrival and peak times and concentrations in relation to dispersive 

fraction value of 0.2, as used in the model. 

Dispersive fraction 
value 

Difference in 
arrival time (h) 

Difference in 
peaks (h) 

Difference in peak E. 
coli concentrations 
(CFU/100ml) 

0.05 1 0 3700 

0.1 0 1 2800 

0.15 0 0 1500 

0.2 0 0 0 

0.25 -1 0 -1300 

0.3 -1 0 -2300 

0.4 -2 0 -4100 
 

4.4.4 Annual Simulation of E. coli over Jan - Dec 2022 

Whilst the primary objective of the work is to validate an event-based forecasting methodology 

for E.coli peaks under common rainfall events, it is also informative to consider the results from 

a yearly simulation of rainfall driven acute impacts and consider the relative modelled loading 

from different sources in the catchment. The full yearly record of spatially distributed rainfall as 

well as SSO water level data over the 2022 calendar year was therefore taken as model input 

with resulting time series outputs of modeled E.coli used to derive percentile values and relative 

loadings. It is important to note that the proposed approach does not model E.coli during dry 
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weather/base flow conditions. Hence, for the purposes of this simulation E.coli concentrations 

in the absence of modelled loadings are taken as the mean of sampled measurements taken 

in dry weather flow conditions (395 CFU/100ml based on 36 measurements). 

Table 10 presents 90th percentile E.coli values resulting from the simulation, which may be 

considered in the context of current UK/EU bathing water standards (90th percentile of 900 

CFU/100ml for the minimum ‘sufficient’ classification. EU, 2006). However, it should be noted 

that such assessments are based on a low number of sampled measurements (commonly 12-

16 per year) conducted within the bathing water season only. To show relative contributions, 

results are presented in terms of the total E.coli as well as results from the separate field runoff 

and SSO E.coli sub models. 

Table 4.10. Forecasted 90th percentiles for a full year (2022) from the full and sub-models. 

Total (CFU/100ml) Field Only (CFU/100ml) SSOs Only (CFU/100ml) 

7725.99 3678.92 3242.36 

 

Results from the simulation show that the modelled water quality falls short of current bathing 

water standard classifications. Considering the full calendar year contributions from both field 

and SSO sources are significant (with field runoff being marginally higher), and contributions 

from either source independently are sufficient to exceed the minimum bathing water threshold. 

It is notable that current official assessments based on infrequent measurements are unlikely 

to provide comparable results to a model considering short term dynamics in which 

runoff/SSOs causes E.coli to rise significantly after rainfall events.  

Table 4.11 presents calculated total and apportioned E.coli loadings (CFU) over different 

seasons throughout 2022. To consider potential SSO mitigation (i.e. via the installation 

increased sewer storage or surface runoff mitigation), a simulation in which the contribution 

from SSO1 (i.e. the most significant point source) is removed is also considered.  

Table 4.11. Forecasted total loads over 2022 and catchment averaged rainfall depth.  

 

Rainfall 
depth 
(mm) 

Total Load 
(CFU) 

SSO Load 
(CFU) 

Field Load 
(CFU) 

Total 
without 
SSO1 
(CFU) 

Jan-Mar 2022 130.02 2.05x1015 1.73x1014 1.87x1015 1.94 x1015 

Apr-Jun 2022 115.95 5.03x1013 1.76x1013 3.27x1013 4.29 x1013 

Jul-Sept 2022 82.99 2.70x1013 1.37x1013 1.32x1013 2.12 x1013 

Oct-Dec 2022 219.47 2.68x1014 1.65x1014 1.04x1014 1.46 x1014 

Full year 2022 548.43 2.39x1015 3.69x1014 2.02x1015 2.15 x1015 
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Table 4.11 shows that overall modelled field loadings are larger than SSO loadings in this 

catchment, although the relative significance changes over the year. Winter/spring seasons 

are dominated by larger and longer rainfall events causing significant field runoff volumes, 

increasing the relative loadings from diffuse sources above those from SSO's. This also 

corresponds to the period in which field loadings are assumed to be higher due to increased 

grazing. In Summer/Autumn, rainfall volumes are lower with reduced field runoff volumes. 

However, the increased occurrence of low-duration high intensity rainfall events in summer 

(e.g. E3) increases the relative significance of SSO loadings in the catchment, as these events 

are still likely to cause SSO spills (Srivastava et al. 2018).  

The removal of SSO1 contribution from the simulation has resulted in reduction of total bacterial 

loads throughout the year. Notably, the largest reduction was forecasted between the months 

of October to December. Therefore, the significance of this SSO as E. coli source in the 

catchment is further reiterated by the results of the annual simulation.  

4.5. Discussion  

Similar to past studies of which collected high resolution measurements of FIOs in surface 

waters following precipitation (e.g. Hellweger et al., 2008, Oliver et al. 2015), all four events 

monitored in this work exhibit significant (order of magnitude) increases in observed E. coli 

after moderate (< 1 year return period) rainfall events. This supports past work which has called 

for enhanced monitoring and/or modeling of microbial water quality for regulatory classification 

of waterbodies and/or health risk assessment (Zan et al., 2023). Current characterization of 

waterbodies for EU/UK bathing water assessments can be based on as few 12 samples per 

year (EU, 2006), such sampling is highly unlikely to effectively characterize the effects of rainfall 

driven impacts which can vary significantly at sub daily timescales.  

Whilst increases in faecal pollution after rainfall events are expected, this study has also 

considered how the duration and distribution of elevated periods of E. coli can be better 

understood by the characterization of sources, hydrological pathways and travel times 

facilitated by the use of spatially distributed rainfall, land use and distributed monitoring at 

SSOs. For example, where field runoff combines with significant SSO spill contributions (as 

suggested during event E1) multiple distinct peaks are observed. This supports previous 

evidence that at this spatial scale the characterization of the spatio-temporal hydrological 

response of the catchment and the associated pollutant sources, pathways and dilution 

potential is significant when aiming to model acute impacts (Asfaw et al., 2018, Neill et al. 

2020). I.e., rainfall events with similar return periods, but with varying spatial and temporal 

distributions may result in significant different pollutant responses due to the distribution and 
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characteristics of source areas across the catchment and associated travel times, hydrological 

pathways as well as the assimilative capacity of the receiving water (dilution). For E. coli, this 

includes consideration of both the distribution and density of livestock (Oliver et al. 2018, Neill 

et al. 2020), but also the variations in condition and performance of sewer networks (and 

associated SSO’s) which may be affected by localized factors such as network blockages and 

sewer maintenance (Shepherd et al., 2023). In general, shorter more intense events (e.g. such 

as in E3) may tend to have higher contributions from SSOs as the intense localized rainfall can 

overwhelm the urban drainage network. Longer, less intense events (e.g. E4) see higher 

contributions from field runoff sources. Considering the variation in the relative contributions of 

different sources over the duration of a rainfall runoff event may also be significant for when 

designing future studies considering microbial source tracking techniques for source 

identification (e.g. Wiesner-Friedman et al. 2022).  

The proposed model developed in this work is developed with the intention of describing acute, 

rainfall driven events for forecasting applications such as short-term water resource 

management (Yassin et al., 2021) or bathing water alerts (Seis et al. 2018). To enhance 

practical application, it is also desirable to minimize required data collection beyond existing 

datasets which are available to water infrastructure operators via remote and/or distributed 

sensing. As such the model neglects several processes more relevant to understanding longer 

term/background pollution levels such as groundwater flow, sediment/water interactions and in 

stream microbial processes (e.g. Afolabi et al., 2023, Jiang, et al., 2023) and utilizes literature 

values to characterize sources (which are effectively modified during model calibration). A key 

innovation of this work is the characterization of SSO impacts utilizing spatially distributed 

water level monitoring. Whilst traditional integrated catchment models characterize sewer 

impacts using complex sewer network models, these require extensive sewer asset records, 

detailed calibration and frequently suffer from high levels of predictive uncertainties in the 

prediction of spill volumes (Srivastava et al. 2018) and pollutant loads (Moreno-Rodenas et al. 

2019). It is important to recognize the quantification of loadings by such means is subject to 

measurement errors (as well as further uncertainties associated with the calculation of flow 

rate, Leonhardt et al. 2014). Further work is required to better quantify such uncertainties as 

the direct monitoring of catchments is likely to increase in the future, with further potential to 

integrate modelling tools and data collection to overcome traditional challenges associated with 

modelling water quality in complex catchments. 

Despite simplifications, results from the validation events suggest that expected peak E. coli 

magnitudes are predicted reasonably well by the proposed modelling approach. The calibrated 

model parameters K1 and K2 are both lower than unity, suggesting that initial source loading 
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values used in this work may overestimate the E. coli burden in this catchment from both field 

and SSO sources. It is noted that the use of constant calibration parameters is a relatively 

simplified approach to account for uncertainties associated with source loadings and the 

omission of a number of complex microbiological processes from the model structure (e.g. in 

stream E. coli die-off). However, in this 300km2 mixed use catchment, the model accuracy is 

adequate to provide useful information to the utility operator regarding likely peaks and 

durations of acute E. coli impacts arriving at the water abstraction site. As expected, some 

residual errors are present in the predictions, and overall there is a tenancy to overestimate 

the duration of E. coli peaks. As the model outputs are sensitive to travel time predictions, 

further refinement of the underlying hydrological model has the potential to improve 

performance (specifically calculated arrival time and peak durations), and further enhancement 

to the SSO model make be achieved by a direct calibration of the dispersive fraction parameter. 

However, given typical uncertainties in the measurement of E. coli itself (Harmel et al., 2016), 

as well the limited number of measured events, it was considered preferable to avoid risks 

associated with over parameterizing or over-calibrating the model (e.g. see Beven, 2006). 

Analysis of model outputs over the 2022 calendar year has demonstrated the relative 

contribution of field and SSO sources, with both having significant contributions in this mixed-

use catchment. It is notable that relative contributions change over the seasons due to the 

nature of the rainfall events and the changes in field source loading due to grazing. There is 

therefore potential further use of the model to explore potential mitigation options (i.e. 

simulating the effects of reducing field runoff, or reducing SSO spill volumes). However, it is 

recommended that further validation of the model is undertaken over a greater range 

(magnitude) of storm events to provide increased confidence that the size as well as duration 

of peaks can be predicted during more significant events (i.e. for 1 year return period). 

For transfer to larger, more complex catchments (e.g. for those with longer timescales, or with 

significant WWTW impacts), the model may require further development to account for these 

processes and additional calibration. However, in smaller catchments a relatively simple model 

structure appears sufficient given the model application. This reduces calibration requirements 

and hence costs for model setup, which can be a significant burden for water quality models 

(Tscheikner-Gratl at al., 2019). In more complex catchments, a potential option is to integrate 

travel time-based modelling approaches and high resolution measurements with microbial 

source tracking techniques (e.g. Zan et al. 2023), to provide enhanced identifiability and 

validation of travel times from the variety of source areas. 
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4.6. Conclusions 

This paper presents a novel approach to forecasting E. coli dynamics in surface waters under 

commonly occurring, acute rainfall events. To the best of the authors knowledge, no other 

validated methodologies are currently available in the scientific literature for the description of 

short term E. coli dynamics in mixed catchments (featuring significant diffuse and urban point 

sources) at comparable scales, utilizing equivalent input datasets. The methodology is based 

on the determination of travel times from source areas based on hydrological routing, radar 

rainfall and the novel use of distributed SSO water level monitoring and as such does not 

require the setup and calibration of a detailed high order hydrodynamic model of the river 

system or sewer networks. As the primary application is the forecasting of arrival times and 

durations of periods of elevated E. coli levels, understanding travel/arrival times is of primary 

importance, with factors that control the overall magnitude of E. coli peaks of secondary 

importance. As such, in the absence of monitoring data characterizing catchment source 

loadings, the methodology is based on assumed concentrations which are calibrated based on 

model outputs. Despite simplifications, the model provides a reasonably good representation 

of E. coli dynamics in most cases, with calibration parameters not varying significantly over the 

study period. This suggests the value in accounting for the temporal and spatial variability of 

sources (diffuse and SSO) when accounting for E. coli dynamics, particularly over short time 

periods in the order of hours. Further, the work provides a new demonstration of how distributed 

sewer monitoring and rainfall data can be utilized for water resource and surface water 

management. As the approach is not dependent on complex integrated hydrodynamic 

modeling and/or direct measurement of source loadings, it has potential to be deployed to 

water resource management applications such as water abstraction management and bathing 

water quality forecasting in real time.  

The results from the monitoring campaign show significant differences in E. coli dynamics 

between the four monitored events as a function of spatial and temporal rainfall variability 

causing mobilization of different sources. This finding demonstrates the value of source 

characterization using remote sensing and spatially disturbed sensors and the significance of 

spatially distributed runoff. The proposed modelling approach can also be used as a source 

apportionment tool as it allows the effects of different sources to be disaggregated. Further 

work may consider identifying the significance of individual SSOs or field areas on high E. coli 

periods over longer timescales. 

There is significant scope for development to identify and reduce modelling uncertainties, in 

particular, in larger more complex catchments it is likely that the model complexity will need to 

be increased to account for additional processes which are less significant in this case (e.g. E. 
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coli die off). However, this effort would likely increase the number of datasets required for 

robust model calibration to overcome parameter identifiability issues. In this initial application, 

a simple model structure is preferred given the purpose of the model.  
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Chapter 5 - Genetic algorithm based land use optimisation for 

the mitigation of pesticide risk to potable water supply 

This chapter presents the development of land-use optimisation method to aid catchment 

mitigation of rainfall driven non-point pollution impacts. The optimisation is applied separately 

to consider two different pesticides to compare the performance of the approach under different 

application scenarios. A novel methodology to characterise rainfall inputs for optimisation-

based approaches is developed for this purpose. The effectiveness of the methodology in 

finding land-use patterns which minimize the time concentration of pesticide is above a given 

threshold at the abstraction site is evaluated under historic rainfall events. 

5.1 Introduction 

Land use pattern optimization is a useful method to inform catchment management for the 

mitigation of non-point pollution (Srivastava et al., 2002; Arabi et al., 2006). It involves 

simulation of different land use scenarios and evaluation of the resulting pollutant loads as a 

function of the spatial characteristics of pollutant sources. This allows catchment management 

resources to be targeted to specific areas/sites which are expected to be most effective in 

reducing pollutant impacts. For example, the efficient targeting of farmer subsidies for the 

encouragement of alternate, less damaging pesticides or herbicides (Cooke et al., 2020). 

As discussed in chapter 2, a number of land use optimization techniques have been proposed 

for catchment management (e.g. Zhang et al. (2011); Sadeghi et al. (2009)). However, such 

techniques have commonly been applied to consider long term, or averaged, or ‘characteristic’ 

water quality indicators, rather than for the specific mitigation of acute impacts caused by 

surface runoff, which feature significant short term dynamics at hourly timescales.  

This chapter develops and proposes a land use optimization approach which can be adapted 

to the mitigation of acute pollutant pesticide loadings from rainfall driven field runoff. The 

methodology can be used to prioritize the mitigation of high-risk areas within the catchment, 

and further investigates how removal of these areas (classing them as a non-contributing area) 

affects acute pollutant loads in river systems.  

Land use targeting based methodologies are normally based on inverse modelling. This 

involves an optimisation-based framework in which an objective function (defined based on 

some aspect of a water quality model output), is minimized as a function of the spatial 

properties of the pollutant sources in the catchment. An important aspect is the selection of 

model inputs for the optimization routine which enable the model to produce a sample ‘output' 

of the system dynamics that suitably represents the application under investigation (Arabi et 

al., 2006; Perez-Pedini et al., 2005).  
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In the case of developing an optimization approach for acute rainfall driven pollution sources 

this presents a specific challenge. Past work has shown that temporal dynamics are sensitive 

to the spatial and temporal distribution of rainfall over the catchment (Asfaw et al. 2018). The 

rainfall input used within the optimization routine should therefore account for these variations. 

Whilst using a long term historical time series of measured rainfall within the catchment would 

successfully account for these dynamics, this approach would be infeasible for reasons of 

practical computational resource. This chapter therefore proposes an approach to develop a 

representative rainfall event to account for these processes which is feasible for use in an 

optimization framework.  

The work in this chapter is based datasets and models collected and developed in the same 

Leam case study catchment as described in chapter 3. In this case the pollutants under 

investigation are two specific pesticides of concern to Severn Trent Water in terms of risks to 

raw drinking water supply (Metaldehyde and Propyzamide, described further in chapter 2).  

Previous work has developed a validated model to describe acute metaldehyde dynamics in 

the catchment, and this chapter describes how this model can be coupled to a Genetic 

algorithm-based optimization technique for land use planning and mitigation targeting. Here a 

tool is developed to prioritize which existing high risk fields in the catchment should be 

considered for runoff mitigation, based on an objective function defined as hours the pesticide 

remains above a given threshold at the water abstraction site. Following optimization, the 

performance of the approach is evaluated based on a time series of historical rainfall and the 

proposed land use patterns. In the case of propyzamide, the procedure is similar, however 

prior to optimization the existing metaldehyde model is adapted and tested on new high 

resolution propyzamide datasets collected in the catchment following rainfall events. 

5.2 Development of the Propyzamide Model 

In order to apply the optimisation approach to the distribution of propyzamide, a model must 

be developed, calibrated and validated that can represent the dynamics of acute propyzamide 

loadings at the case study catchment outlet. Based on the literature, no currently available 

models were found to describe surface runoff driven propyzamide dynamics, hence the 

proposed propyzamide model used here has been adapted from the existing metaldehyde 

model (Asfaw et al, 2018). This was achieved by amending the necessary variables in the 

pollutant wash-off component of the model based on the ‘‘simplified formula for indirect 

loadings caused by runoff’’ (SFIL) (Berenzen et al. 2005; Reus et al. 1999), and revising the 

high risk field distribution in view of the likely sources of the specific pesticide in the catchment.  

The specific parameters changed where the sorption coefficient of active ingredient to organic 

carbon (taken as 840), half-life of active ingredient in soil (47 days) (ADAMA, 2015) and build-
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up on soil surface through applications (taken as 0.425 g per 5 square meter based on typical 

application of 1.7 litre/ha application using 500 g/litre (43.86% w/w) propyzamide suspension 

concentrate (2Corteva, 2023). The high-risk areas where propyzamide is applied (oilseed rape 

and field beans (1Corteva, 2023), figure 5.1) were derived from satellite imagery, acquired from 

the Centre of Ecology and Hydrology (CEH, 2023). The herbicide can also be used on other 

crops, ranging from sugar beet and clover seed crops to fruit and forestry crops (2Corteva, 

2023). Most of these crops would potentially be grouped under ‘other crops’ within the satellite 

imagery derived crop land use maps. The model was then recalibrated and validated against 

hourly propyzamide sampling results collected by the STW. catchment team following 

monitored rainfall events (table 5.1) in the Leam case study catchment. Rainfall statistics are 

derived based on rainfall radar data using the same methodology as presented in chapter 4.  

 

Figure 5.1 Distribution of propyzamide high risk fields identified for 2021 
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Table 5.1 Propyzamide sampling event dates, durations and sampling frequencies, and 
associated rainfall statistics. Quoted durations are based on presence of rainfall at any 
position in the catchment. Intensities are based on temporal and spatial averaged values. 

Event No.  Start date 
Sampling 

duration (h) 
Rainfall 
duration (h) 

Rainfall intensity 
(mm/hr) 

Average Peak 

P1 04.12.2020 120h 19 0.61 4.10 

P2 31.10.2021 41h 18 0.57 3.57 

P3 26.11.2021 42h 8 0.35 2.33 
 

5.2.1 Calibration/Validation of propyzamide model 

Event P1 was used to calibrate the Propyzamide model, using the same procedure as the 

original metaldehyde model. The calibration parameter is applied to the propyzamide load 

calculations (equation 14) 

 

𝑃𝑡 = 𝐾𝐿𝑡𝐵                  (Equation 14) 

 

Where Pt – propyzamide load (g) in surface runoff at timestep t, K = Co*Kb, where Co is 

propyzamide concentration in the river prior to each rainfall event (μg/l), Kb is a calibration 

parameter (l/μg), B – propyzamide build-up on soil surface through applications (taken as 0.425 

g per 5 m2). Figure 5.2 shows the results of the model using different of Kb values against 

measured propyzamide levels in the river for event P1. The arrival time of propyzamide was 

calibrated to fit reasonably well, while the end of the first peak is over predicted and second 

peak is missed. Kb value of 3.5 produces best fit to the magnitude of the peaks. High Kb value 

combined with missing second peak suggests the number and location of fields propyzamide 

was identified to be used on to be underestimated, thus indicating a need for additional 

investigation into the sources of propyzamide.  
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Figure 5.2 Calibration results for propyzamide model against measured propyzamide data 

Following calibration a Kb value of 3.5 was applied and the model applied to the two 

remaining monitored events (figure 5.3). Error statistics for all events are presented in table 

5.2. 

 

Figure 5.3 Validation results for propyzamide model against measured propyzamide data 

Table 5.2 Propyzamide model error statistics 

Event R2 E VCI ∆T(h) 

P1 0.07 -0.32 0.95 4 
P2 0.01 -0.06 0.88 -4 
P3 0.17 -0.78 0.67 -4 
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Following calibration and validation of propyzamide model, the model shows forecasted peak 

magnitudes and event start time to match well, however the length of the event is under 

predicted. The second peak within the calibration event is also missed. Event P2 start time and 

peak magnitude are both under predicted. Event P3 forecasted first arrival times and peak 

magnitude well. However, the peak timing of P3 event was under predicted. Overall, the and 

the performance of the model is inferior to the original model for metaldehyde. Hence this 

indicates that some significant, time varying processes which are specific to this pesticide are 

being neglected by this reasonably simple modelling approach. However, it was judged that 

for the purposed of this application it was suitable to describe approximate arrival times and 

event durations and therefore identify time periods of high risk for propyzamide pollution in the 

river.  

5.3 Development of Inverse Modelling method for Designing Catchment 

Management Options 

An inverse modelling methodology was developed and applied to the case study catchment. It 

aims to determine which spatial areas have most influence on peak pesticide (metaldehyde 

and propyzamide) concentrations at the abstraction location.  

The inverse modelling approach searches for model input, in this case a distribution of 

catchment land use/high-risk fields, that result in desired model output (pesticide levels in river 

water). The goal is to minimise the objective function, which is set to be the number of predicted 

hours that pesticide levels exceed the specified EU and UK threshold of 0.1 μg L−1 for 

pesticides in drinking water. It keeps all the other variables (Rainfall, AMC initial pesticide 

concentrations, approximate total area of pesticide application) fixed and only amends the high 

risk land use distribution within the catchment. By iteratively running the appropriate pesticide 

model the land use distribution with that minimised the objective function is sought. There are 

vast amounts of possible land use patterns and so a guided search algorithm is needed. In this 

case, Genetic algorithm (GA) was used to carry out land use optimisation (see section 2.5). 

GA is widely used to solve optimization problems in water resources planning and 

management (Nicklow et al., 2010, Eulogi et al., 2022). 

Within the case study catchment, metaldehyde was applied to 1114 fields in 2018, while 

propyzamide to only 336 fields. The large difference in fields available for selection between 

the two pesticides enables evaluation of optimisation method performance when the pool of 

possible solutions is large vs small. While GA python code was adapted from an existing script, 

all of the associated processes (zero-one integer programming, checking the solutions total 

field area, creating high risk shapefiles and checking of the objective function) were written 

original scripts, see code flow diagram in figure 5.4. 
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A significant complicating factor is that the spatial and temporal variations in rainfall have a 

significant effect on the dynamics of pesticide concentrations at the abstraction site (Asfaw et 

al 2018). Therefore, an appropriate model rainfall input for the inverse modelling approach 

needs to be carefully considered. Utilising long-term rainfall datasets within the optimisation 

would potentially give a valid approach, as this would inherently capture the variations of 

temporal and spatial rainfall over the catchment area. However, this is infeasible in practice 

due to the time consuming nature of the optimisation routine. Hence, to account for the 

influence of spatial variability of rainfall patterns and intensities, a shorter ‘compilation’ of 

rainfall events representative of the historic catchment rainfall was compiled. This rainfall event 

‘mashup’ contain historical rainfall events representative of catchment rainfall spanning a 

number of years (2015-2019). This is further explained in section 5.3.2.  
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Figure 5.4 Flow chart of the GA method. The initial solution represents the current distribution 
of high risk land use. Checking the objective function runs the model with the new high risk 
shapefile and checks the resulting forecasted total hours pesticide levels are above 
threshold, and redefines objective function. 

5.3.1 Zero-one integer programming 

Combinatorial genetic algorithm problem requires an input as a list of values that can be 

presented in different combinations which genetic algorithm can optimise. Zero-one integer 

programming is used to represent fields within the catchment as present (1) or not present (0). 

The technique has been used in solving allocation problems where the method (or land use) 

is either implemented (1) or not implemented (0) (Aerts et al., 2002), (Wang et al., 2019). 

To start running GA, an initial solution is created. In this case, it is a list the length of the number 

of fields present in the high-risk shapefile filled with 1’s, with each index of the list corresponding 
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to a particular field in the shapefile. The model is first run with current land use shapefile (initial 

solution) and the outcome forms the initial objective function that GA uses to compare to its 

subsequent objective functions.  

Since fields have a non-uniform area, maintaining the exact land use area for each iteration is 

not possible in this case. Therefore, GA intends to find a combination of high risk fields, which 

constitute a maximum of 5% removal of initial/original high risk shapefile area, that minimises 

the number of hours forecasted total pesticide levels exceed the threshold of 0.1 μg L−1. Hence, 

every new solution created in GA is at least 95% of total original high-risk area. In essence this 

simulates a ‘targeted’ mitigation approach in which up to 5% of the land area can be 

considered.  

All the new solutions are a list of same length as the initial solution but where fields are selected 

to be removed, the 1s are replaced with 0s. When GA creates a new solution through crossover 

and mutation, it checks if the area selected for removal does not exceed or is bellow 5% of the 

current high risk area. A new high risk shapefile is then created. To check if the solution GA 

created has performed better or worse than the last one, it needs to check its objective function. 

First, it externally runs the model with rainfall events, associated variables and the newly 

created shapefiles as inputs. Once the model completes the run, it reads the total pesticide 

output file and counts how many hours the pesticide levels have exceeded the threshold of 0.1 

μg L−1.  

5.3.2 Rainfall event mashup 

Ideally a number of years worth of spatial rainfall radar data needs to be input into the model 

when running GA to represent the overall rainfall patterns and intensities of the catchment, and 

therefore find the optimal land use distribution based on a pattern of rainfall that may be 

typically be expected over a pesticide application season. However, this method would be 

extremely time consuming due to the model operating at hourly resolution, and hence become 

infeasible for optimisation purposes. Therefore, a shorter dataset needs to be compiled by 

analysing full rainfall record, identifying and removing any gaps in rainfall and refining rainfall 

events to a limited number representative of the study catchment. Automation of rainfall event 

recognition and selection is needed. Hence a shorter, representative mashup of rainfall events 

must be created that will allow the identification of targeted land use interventions that are not 

specific to a single given rainfall event. Such an approach has been used previously for 

optimisation based approaches which are sensitive to temporal variation in rainfall inputs 

(Mounce et al. 2020). In this case, due to the nature of the rainfall runoff, it is important to retain 

elements that capture both the temporal and spatial distribution of rainfall within the catchment.  
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To achieve this, the statistical characteristics (temporal and spatial variability) of the historic 

catchment rainfall patterns were analysed and ‘recreated’ in the mashup event.  

Python code was written to analyse the 1 km2 spatial and 5 min temporal resolution spatial 

rainfall radar data from the Met Office Nimrod System (Met Office, 2003). First, every 5-minute 

time step data was catchment averaged to produce a single value. This produced a time series 

of 5-minute catchment averaged values for several years (2015-2019). As the metaldehyde 

and propyzamide models are mostly used for September-December months, yearly data for 

these months only was analysed (figure 5.5). For every 5-minute time step spatial standard 

deviation, defined as standard deviation of all the values within the spatial rainfall file for that 5 

minute time step, was calculated to see how even/uneven spatial rainfall distribution for that 

time step was. It was used when considering which events to include in rainfall mashup as it 

provides a measure of spatial rainfall distribution which is a key process in determining pollutant 

concentrations in river water.  
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Figure 5.5 Temporally averaged rainfall (mm) form September-December 2015-2019 

Code was then written to loop through the resulting time series to automate the recognition of 

storm events (figure 5.6). The code identifies a gap in rainfall, takes it as a start of a storm 

event, loops through rainfall and the next gap in rainfall is recorded as the end of a storm event. 

It then skips through the no rain gap to find next rainfall, when it does this is marked as the 

start of the next event. It assigns a storm ID to the event, records its start and end date/time, 

calculates its length (time in hours), total event rainfall, average spatial standard deviation, and 

antecedent moisture condition for 15 days prior to the start of the rainfall event (AMC15). The 

identified events were further refined so that each event was at least 1 hour long and have 

produced any increase in pesticide. Over the full time series (months September to December 

in the years 2015-2019) this resulted in 188 refined storm events in the catchment.  
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Figure 5.6 Method of rainfall event mash-up production 

A multivariate stratified sampling method (Speight et al., 2004) was then used to select a subset 

of these events which characterised the overall temporal and spatial variability of rainfall events 

in the catchment. The rainfall events were assigned into strata by spatial standard deviation, 

each strata was then stratified by temporal standard deviation. At sub-strata level, random 

numbers were assigned to elements and sorted largest to smallest. Single element at the top 

of each sorted sub-strata was then selected. Based on this analysis sixteen events were 

selected as the mashup subset.  

A two-sample Kolmogorov-Smirnov test was used to check if the full rainfall dataset and rainfall 

mashup dataset obtained through multivariate stratified sampling have the same distribution of 
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temporal and spatial standard deviation. If the Kolmogorov–Smirnov test statistic exceeds 

critical D (Dα, equation 15) the null hypothesis of both samples come from a population with 

the same distribution can be rejected. 

𝐷𝛼 = 𝑐(𝛼)√
𝑚+𝑛

𝑚𝑛
                 (Equation 15) 

Where c(α) is the inverse of the Kolmogorov distribution at significance level α, m is the first 

sample size and n is the second sample size. As test statistic was lower than critical D at α = 

0.05, the null hypothesis cannot be rejected. Therefore the two datasets can be assumed to 

be from the same distribution when checked both by spatial and temporal standard deviation 

distributions. The histograms below show the distributions for spatial standard deviation (figure 

5.7) and temporal standard deviation (figure 5.8).  

 

Figure 5.7 Histograms of rainfall event spatial standard deviation for full original and sampled 
‘mashup' datasets. 
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Figure 5.8 Histograms of rainfall event temporal standard deviation for full original and 
sampled ‘mashup' datasets. 

5.4 Results and discussion 

5.4.1 Land-use optimisation 

The optimisation algorithm for metaldehyde land use was evaluated to have reached the best 

solution after 3023 runs (reduction of 39 hours), propyzamide land use optimisation did so after 

2887 runs (reduction of 32 hours). Each ‘run’ involves running the algorithm with the mashup 

event selected with the multivariate stratified sampling method (figure 5.9 and 5.10). Most of 

the objective function results for metaldehyde fall between 307 and 322 hours. For 

propyzamide majority of objective function results fall between 146 and 174 hours. 

Propyzamide exhibits much wider variation in objective function result, which may be due to it 

being applied to the field at much higher concentrations. Variation in the location of the high-

risk fields within the catchment and temporal variation in rainfall would therefore impact the 

propyzamide levels in river water more than it would for metaldehyde. 
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Figure 5.9 Plot of all the objective function results for metaldehyde field distribution 

 
Figure 5.10 Plot of all the objective function results for propyzamide field distribution 

Fields removed for initial solution as well as fields removed for the best solution for 

metaldehyde and propyzamide are plotted in figures 5.11 and 5.12 respectively. There is no 

discernible clustering or other clear pattern in the removed fields of best solutions for either 

metaldehyde or propyzamide. The GA may not have had sufficient time to reach a solution that 

would show a pattern related to variables such as rainfall patterns, distance to watercourse, 

etc. The lack of apparent pattern in the removed fields may prove the implementation of 

mitigation measures more difficult to carry out as the number of stakeholders increases. Future 

work should consider either extending the time GA runs by altering stopping criteria or 

introduce additional conditions to the algorithm such as clustering of the fields. 
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Figure 5.11 Fields removed as initial solution and resulting best genetic algorithm solution for 
Metaldehyde Model 

 



79 
 

 
Figure 5.12 Fields removed as initial solution and resulting best genetic algorithm solution for 
Propyzamide Model 

5.4.2 Validation under historical rainfall.  

To validate the performance of the optimisation approach the best land use solutions for both 

pesticides were validated by running the model with all the 188 rainfall events identified for 

September-December 2015-2019. This was then compared to a simulation under the original 

land use i.e. no fields removed (Full HR) and a removal of 5% of fields by area (m2) with based 

on the shortest traveltime (identified after running the hydrological model with 1mm uniform 

rainfall for 1 hour). The total time that pesticides remained over threshold for each of these 

scenarios is presented in table 5.3.  
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Table 5.3 Validation of optimization methodology under full dataset 

 

The original land use for metaldehyde has produced more than twice the amount of hours 

spend above threshold compared to propyzamide. The GA solution has reduced metaldehyde 

time above threshold by 251 hours or 7.7%, however propyzamide has outperformed this at 

11.8%. Best solutions for both pesticides performed much better than removing an equivalent 

area of high-risk fields closest to the abstraction point. This indicates variables other than 

traveltime being of importance when trying to identify the areas for implementation of mitigation 

measures to reduce pesticide concentrations in river water. The GA solution has consistently 

reduced peak concentrations for both pesticides (figures 5.13 and 5.14). This shows the ability 

of the optimisation approach to reduce pesticide concentrations in river water when the impact 

is most severe and pesticide pollution poses highest risk to water abstracted for drinking water 

supply. 

  

Shapefile used 
to run all 
events 

Metaldehyde 
hours-above-
threshold all 
events 

Reduction from 
Full HR 

Propyzamide 
hours-above-
threshold all 
events 

Reduction 
from Full HR 

Full HR 3248 N/A 1523 N/A 

5% random HR 
fields removed 3157 91 1444 79 

5% removed 
best GA 
solution 2997 251 1344 179 

5% shortest 
traveltime HR 
fields removed 3169 79 1486 37 
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Figure 5.13 Metaldehyde model time series of all 188 events run with Full HR shapefile and 
5% removed best GA solution. 

 

Figure 5.14 Propyzamide model time series of all 188 events run with Full HR shapefile and 
5% removed best GA solution. 

5.5 Conclusion 

This chapter has developed a new methodology for targeting catchment mitigation options for 

the reduction of impacts from acute rainfall events on water abstraction systems. This is based 

on the simulation of two distinct pesticides of concern to STW. Whilst the metaldehyde model 

as already been developed and validated by previous work, there is no current equivalent 

model to forecast acute impacts from propyzamide. Hence the initial challenge was to develop 

and validate a propyzamide model. Because similar rainfall driven runoff processes were 

expected to be significant, the Metaldehyde existing model was therefore adapted with 
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adjustments to relevant application and runoff characteristics. This therefore preserved the 

ability of the model to account for temporal and spatial variations in rainfall over the catchment. 

Testing was conducted on high resolution datasets collected and analysed by the STW 

catchment team. In this case it is noted that the performance of the model was found to be 

generally inferior to the equivalent model for Metaldehyde. It is noted that this pesticide is 

applied over smaller areas at higher concentrations then Metaldehyde, which therefore makes 

the model highly sensitive to the accurate identification of application areas. Further to this 

there is some uncertainty as to the identification of application areas using high risk maps (as 

propyzamide can be applied to a wide variety of crop types). Therefore, one option to improve 

the model is to undertake more extensive ground or camera-based investigation of application 

areas. Further potential sources of error include the simplification of transport processes 

associated with propyzamide which are less significant to metaldehyde. 

The main contribution of this chapter is the development of a land use optimisation approach 

for acute impacts. Whilst land use optimisation to address water quality problems is a common 

topic in the literature, to date such methods have focused on an evaluation of long term water 

quality trends, ‘averaged’ or representative conditions. When considering the mitigation of 

acute impacts a key challenge is the representation of the effects of spatial and temporal 

variations in rainfall within the optimisation framework. This work has proposed the selection 

of a subset of rainfall events based on statistical interrogation of the historic rainfall record 

(based on statistical properties related to the spatial and temporal variability of rainfall events). 

The use of this mashup within a GA optimisation algorithm was able to identify priority areas 

for catchment intervention which resulted in a significant reduction in pesticide risk to the water 

abstraction site. The approach also is feasible to be applied on a desktop computer. Further 

work may consider the application of different statistical rainfall characteristics for the selection 

of the mashup event.  

The application of this approach to the full rainfall record demonstrated a significant 

improvement when compared to a simple selection/prioritisation of fields closed to the 

abstraction site. Further work may interrogate properties of the selected fields themselves to 

explore links such as proximity to water courses or land slope. Application of the technique to 

propyzamide also resulted in larger reduction in the objective function. As previously 

mentioned, due to the smaller number of fields under propyzamide application, the temporal 

dynamics within the watercourse are highly sensitive to land use distribution. 

This study shows the importance of accurate identification of source areas when modelling for 

pesticide pollution, especially so when the importance of individual fields is exaggerated by the 

high application concentration. The method of optimisation can be transferred to other 
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catchments by using existing catchment specific models and for a range of pollutants. The 

water companies may use catchment interventions such as subsidies to use alternative 

pesticides, cultural controls, different drainage systems, etc. The use of optimization method 

can help obtain the most return for the money invested by replacing blanket mitigation 

measures with a targeted approach.  
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Chapter 6 – Summary and Conclusions 

The overall contribution of this thesis can be summarized as follows  

6.1 Real-time sensing technologies 

The thesis collected and presented new high resolution datasets concerning E coli dynamics 

in UK catchment following wet weather events. The four events were collected over a range of 

seasonal conditions including short intense rainfall events as well as high volume longer 

duration flow events. The work includes the first independent testing and validation of a 

commercial probe for providing warning of bacterial contamination in surface waters based on 

the continuous monitoring of TLF. Current results suggest that the probe has a high degree of 

uncertainty when compared to conventional sampling and analysis. Maintenance and 

calibration requirements are extensive, and results should be interpreted with care. Whilst this 

technology is continually under development the author would not recommend it as a current 

robust methodology to characterize E coli loadings or provide early warning to bathing water 

or water abstraction sites. To improve Proteus water quality probe performance more regular 

calibrations may be needed as well as more validation and testing in river networks and non-

potable water systems to see if different inferences can be corrected. 

6.2 Forecasting E. coli impacts  

The thesis presents a new approach to modelling acute E coli impacts in drinking water 

catchments. The method further developed from the initial approach of Asfaw et al. (2018) for 

pesticide modelling, which accounts for the spatial and temporal variation in rainfall over the 

catchment and the distribution of pollutant sources. In this work, the model structure is 

significantly further developed to be applicable to E. coli by modelling diffuse runoff and 

loadings from farmland (based on livestock data) as well as including contributions from SSO. 

Uniquely, the approach does not utilize hydrodynamics modelling of sewer networks to 

understand SSO timings and loadings, instead making use of newly installed spatially disturbed 

SSO depth sensors. This significantly simplifies the modelling approach. Despite inherent 

uncertainties associated with bacterial modelling, the model provided reasonable 

approximations of arrival times and durations of E. coli at the water abstraction site following 

acute catchment loadings, and is therefore judged to be fit for purpose in providing useful 

information to abstraction operators for decision making purposes. A relatively simple two 

parameter calibration of the model was also found to be sufficient in this case. The model can 

be used by water companies to inform when to change the amount/timing of abstraction or 

when to change the water treatment processes. It may also be a useful tool as a warning 

system in bathing waters for general public. 
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6.3 Land use optimization 

Finally, the thesis has developed an inverse modelling approach for targeting catchment 

intervention. In this case the methodology was applied to the targeting of two distinct pesticides. 

Whilst further work and development of the model for propyzamide is recommended before 

future use, the optimization methodology developed in this thesis was found to be effective in 

reducing modelled pesticide levels at the water abstraction site based on the selective targeting 

of mitigation options in the catchment. Unlike previous land use optimization based 

approaches, this methodology is specifically applicable to consider acute impacts. To enable 

a feasible optimization approach and novel analysis for historical rainfall was conducted to 

identify a shorter but representative rainfall sample. The optimization method developed here 

could be applied to a range of pollutant types, for example application in conjunction with the 

E coli model (from chapter 4) would enable targeting of both land areas for runoff mitigation, 

as well as problematic SSO sites. 

6.4 Limitations and future work 

Overall, this thesis has produced several district contributions concerning the development of 

new approaches to water abstraction management. It is anticipated that these methods will 

enable operators to better understand and mitigate water quality-based risk to drinking water 

supplies. Limitations of the work should however be acknowledged. Firstly, for reasons of time 

and resource only a limited number of water quality events were collected in this work. Ideally 

tools and methods would be developed using a greater number of events, the inherent logistical 

difficultly of sample collection and analysis mean that this is a common issue with bacterial 

water quality studies or those considering ‘non-standard’ water quality parameters. Further 

chapter 3 and 4 have (as is common) taken E coli as an indicator of bacterial water quality. It 

should be acknowledged that there are a number of different bacterial parameters which can 

cause water quality concerns (e.g. cyptosporidium), however due to time and cost reasons it 

would be unfeasible to consider the full range. More significantly, is the limitation concerning 

the testing catchment. The model testing and validation would benefit from application and 

testing on a wider range of catchments with different land types, sizes and pollutant 

characteristics. 

It is noted that the work in this thesis concerns a number of applications of sensor technology 

and novel data sources (i.e. SSO level data, satellite land use). As such it is likely that future 

improved sensing and monitoring technology will make possible the deployment and use of 

increasingly novel methodologies and technologies. There is significant future potential to link 



86 
 

water quality based concerns to water resource management tools and datasets such as water 

storage levels, predicted demand use and datasets from water distribution networks.  
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