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Abstract

The Reservoir Computing (RC) paradigm is a supervised machine learning
scheme using the natural computational ability of dynamical systems. Such
dynamical systems incorporate time delays showcasing intricate dynamics.
This richness in dynamics, particularly the system’s transient response to ex-
ternal stimuli makes them suitable for RC. A subset of RCs, Delay-Feedback
Reservoir Computing (DFRC), is distinguished by its unique features: a sys-
tem that consists of a single nonlinear node and a delay-line, with ‘virtual’
nodes defined along the delay-line by time-multiplexing procedure of the in-
put. These characteristics render DFRC particularly useful for hardware
integration. In this thesis, the aim is to break the implicit assumptions made
in the design of physical DFRC based on Mackey-Glass dynamical system.

The first assumption we address is the performance of DFRC is not af-
fected by the attenuation in physcial delay-line as the nodes defined along it
are ‘virtual’. However, our experimental results contradict this. To mitigate
the impact of losses along the delay line, we propose a methodology ‘Devir-
tualisation’, which describes the procedure of directly tapping into the delay
lines at the position of a ‘virtual’ node, rather than at the delay line’s end. It
trade-offs the DFRC system’s read-out frequency and the quantity of output
lines. Masking plays a crucial role in DFRC, as it defines ‘virtual’ nodes
along the delay-line. The second assumption is that the mask used should
randomly generated numbers uniformly distributed between [−u, u]. We ex-
perimentally compare Binary Weight Mask (BWM) vs. Random Weight
Mask (RWM) under different scenarios; and investigate the randomness of
BWM signal distribution’s impact. The third implicit assumption is that,
DFRC is designed to solve time series prediction tasks involving a single in-
put and output with no external feedback. To break this assumption, we
propose two approaches to mix multi-input signals into DFRC; to validate
these approaches, a novel task for DFRC that inherently necessitates multiple
inputs: the control of a forced Van der Pol oscillator system, is proposed.
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1
Introduction

We are living in an information-driven era where innovative information pro-

cessing techniques are in high demand. It is becoming increasingly appar-

ent that “smart” hardware is on the rise, with even phones being capable

of comprehending people’s language and responding appropriately to given

commands, e.g., small-sized machines can detect if people are wearing masks

properly during the COVID-19 pandemic.

In 1965, Gordon Moore, the co-founder of Intel, predicted that the number

of transistors on a microchip would double approximately every 18 months [5,

6]. Shortly after the term ‘Moore’s Law’ was brought up by Carver Mead from

Caltech [7,8], it was eventually adopted as a benchmark for the semiconductor

industry, and it has been used by competitive semiconductor manufacturers

as a driving force to increase processing power until today.

Over the past half-century, we have realised that the electronics industry

has undergone remarkable expansion, and it has been a crucial contributor

to the worldwide technological revolution. According to Moor’s Law, the

semiconductor industry has prioritised shrinking transistor sizes to reduce

power and cost per device. Computing capability of microprocessors has sig-

nificantly increased with the increase in transistor density, leading to several

new application areas, from embedded low-power to machine learning.
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Figure 1.1: Moore’s law: The number of transistors on microchips doubles every
18 months [1].

As the clock ticks away, time has swiftly moved to the year 2023, and

we are witnessing an increase in the number of Artificial Intelligence (AI )

techniques such as ChatGPT and MidJourney. It is reasonable to anticipate

that the scaling of transistors will continue to enhance the development of

emerging AI applications.

However, recent research suggests that Moore’s law may have reached its

end due to physical limits: simply reducing the gate length of a transistor to

the point where the gate dielectric length is only a few atomic spacings or

the silicon lattice constant (0.54 nm) [9–11] can lead to a significant increase

in leakage current, and there is a risk of the chip short-circuiting.

Therefore, increasing the quantity of transistors has the potential to limit

the development of computationally-intensive AI applications in the future.
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This may necessitate a shift in focus towards alternative materials and device

architectures, such as quantum computing or optoelectronic devices, to con-

tinue the pace of computational improvement. On the other hand, reaching

the physical limits of miniaturisation could also trigger a paradigm shift in

how we approach energy efficiency and data processing, possibly leading to

more distributed, specialized hardware solutions, or a move towards more

energy-efficient algorithms and software-level optimisations.

1.1 Unconventional Computing

Traditional Von Neumann computer architectures and Turing techniques [12]

based on semiconductor devices are effective at executing simple mathemat-

ical instructions, but they struggle with highly complicated computational

tasks, such as speech recognition and facial recognition, particularly in terms

of efficiency and energy consumption. In an effort to overcome the limi-

tations, unconventional computing endeavors to offer alternative archi-

tectures and systems that leverage the underlying physics, chemistry and

multi-scale interactions of the real world.

Our brain appears to be optimally adapted for various kinds of tasks

and performs differently compared to the “binary machines”. As we walk

on a city street, we are continually bombarded with sensory inputs. All of

these exterior stimuli cause rapid neuronal activity in the brain, allowing us

to detect, e.g., a passing vehicle, professor who taught us FPGA, squirrels

arguing, and the aroma of freshly baked croissants, among other things.

Moreover, it can be stated that all the information perceived by our brains

is in the form of analog signals.
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The field of unconventional computing aims to mimic the information

processing methods and capabilities of the brain, which is different from cur-

rent computer architecture (see Figure. 1.2). For example, in Figure. 1.2a, a

Von Neumann architecture is depicted. After digitizing an analog input from

the external environment, a pre-programmed computational unit processes

it based on predefined instructions in a program, typically using a combi-

nation of logical blocks. After the processing, the output digital signal is

converted back into an analog signal. Unconventional computing architec-

ture, depicted in Figure. 1.2b, on the other hand, involves the use of novel

and non-standard computing methods to process information. These meth-

ods are often inspired by biological or physical systems, such as the human

brain [13], quantum mechanics [14], or even the behavior of slime molds [15].

Unconventional computing relies on the dynamics of the substrates, instead

of converting between analog and digits. It uses analog input and output sig-

nals to process information. Unconventional computing can be implemented

in various ways, including optical, chemical, biological, or mechanical sys-

tems.

1.2 Research Hypothesis and Objectives

The Reservoir Computing (RC ) paradigm is an unconventional computing

scheme using natural computational ability of dynamical systems. Delayed

chaotic systems provide rich dynamics for information processing by using

the system’s transient response to an external input, so have been identi-

fied as suitable systems for reservoir computing. Delay-feedback reservoir

computing (DFRC ) with a feedback loop avoid the problem of massive in-
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terconnections and efficiently saves area, thus can be more hardware friendly.

These properties of DFRC in the context of physical substrates leads to

the formulation of the hypothesis of this thesis:

Hypothesis: By exploring the implicit assumptions currently made in

the design of dynamical system based physical delay-feedback reservoir com-

puting (DFRC ), it is possible to achieve better computational performance

and efficiency without increasing manufacturing complexity.

In this thesis, three specific assumptions made are investigaed and for-

mulated as three sub-hypothesises.

Assumption 1: The nodes defined along the delay-line in DFRC are

considered ‘virtual’, meaning that the performance of reservoir computing

isn’t affected by physical effects, e.g., the attenuation, that usually happen

in physical delay-lines.

Assumption 2: Time-multiplexing plays an important role in DFRC

as it defines the virtual nodes along the delay-line. The mask used should

be comprised of randomly generated numbers uniformly distributed between

[−u, u].

Assumption 3: DFRC is typically used to solve time series prediction

tasks involving a single input and output with no external feedback, i.e.,

different from internal delay-line of DFRC.

To test these hypotheses, the following objectives will be accomplished:

Objective 1: Demonstrate the feasibility of ‘Devirtualisation’ approach

and investigate the performance implications and trade-offs of this approach

on physical delay-lines.

Objective 2: Investigate various masking techniques such as random
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mask and binary mask, with multiple configurations of uniform/non-uniform

number distributions between [−u, u], [0, 2u], [u, 3u] in relation to the per-

formance of the delay-feedback reservoir computing system.

Objective 3: Develop a novel task, e.g. control task, that necessitates

multiple inputs to operate the DFRC system and feedback to self-modulation,

in order to evaluate the feasibility of using DFRC system as a controller.

1.3 Contributions

Throughout the process of this work, several contributions have been made

to the academic discipline of physical Delay-Feedback Reservoir Computing

(DFRC ):

• Amethodology of architecting a computational framework within Simulink,

which serves as an intermediary stage transitioning from mathemati-

cal models based on delay differential equations (DDEs) to the actual

construction of a physical electronic circuit.

• A methodology referred to as ‘Devirtualisation’ which trades-off the

DFRC system’s read-out frequency and the quantity of output lines,

aiming to mitigate the impact of attenuation within the physical delay-

line.

• The knowledge of impact on the performance of DFRC resulting from

the utilisation of diverse masking techniques featuring multiple con-

figurations of uniform/non-uniform distributions across different input

ranges.
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• The creation of two effective methodologies facilitating the combina-

tion of multiple inputs in the time domain: Interleave and Sequential,

designed to enhance the input masking process used in DFRC.

• The creation of a novel benchmark task in the field of DFRC: control

of Forced Van der Pol oscillator system which requires multi-input to

DFRC. This task bridges the gap between theoretical research and

practical application, ensuring that developments of DFRC system are

aligned with genuine needs.

• An innovative application of using trained multi-input DFRC as a sys-

tem controller, which demonstrate the ability of DFRC beyond pre-

dicting time domain data.

• The creation of a MATLAB/SIMULINK model: Mackey-Glass based

DFRC system. Github: https://github.com/Tian21/MG-DFRC-model.

1.4 Thesis Outline

The structure of this thesis is outlined as follows, spanning across seven

chapters:

• Chapter 2 provides a background review of Machine Learning, Neural

Networks, and recent developments in Reservoir Computing, as well as

Chaotic Dynamical Systems used in this work.

• Chapter 3 presents the concept of Delay-feedback Reservoir Computing

(DFRC) and the methodology followed for the experimental work in

this thesis, which include the modelling frameworks and the parameter

https://github.com/Tian21/MG-DFRC-model
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configurations. The benchmark tasks used to evaluate the performance

of DFRC are introduced in this chapter.

• Chapter 4 demonstrates an approach called Devirtualisation. This

approach navigates a trade-off between read-out frequency and the

number of output lines to mitigate the effects of attenuation in the

physical delay-line, thereby achieving improved performance on DFRC.

• Chapter 5, an investigation on masking, a crucial procedure of DFRC is

presented. Two types of masking signals are experimentally compared:

Binary Weight Mask and Random Weight Mask, which are selected

implicitly in previous studies. Bias in the randomness of distribution

of Binary Weight Mask is explored.

• Chapter 6 presents a novel task in the field of DFRC: control of Forced

Van der Pol oscillator system. This task requires multiple inputs to

train the DFRC, therefore, two effective methodologies: Interleave and

Sequential are designed to facilitate the combination of multiple inputs

in the time domain of DFRC.

• Chapter 7 concludes the thesis and discusses directions for future work.
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Background

2.1 Machine Learning

Machine learning is a sub-field of artificial intelligence that focuses on cre-

ating algorithms and models that enable computers to learn from data and

improve their performance on a specific task without being explicitly pro-

grammed [16]. The goal of machine learning is to develop algorithms that

can automatically identify patterns and make predictions or decisions based

on data [17].

Machine learning involves different types of techniques, including super-

vised learning, unsupervised learning, and reinforcement learning [18]. It is

used in a wide range of applications, such as image recognition [19], natural

language processing [20], recommendation systems [21], fraud detection [22],

and many more.

For instance, a machine learning algorithm can be trained to recognize al-

phabetic handwritten characters by providing the computer with some hand-

written samples during a training process [23]. The machine will learn the

patterns and can then recognize unseen samples of handwritten characters

during a testing process. The algorithm must be able to generalize to samples

that were not present during the training process in order to be useful [24].
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Machine learning algorithms are also used in data mining, such as in

medical records, to detect trends and improve medical practice [25]. They

are commonly used in online transactions to detect fraud and make product

recommendations based on user preferences [26]. The core of machine learn-

ing is concerned with the representation of data samples and generalization

to new, unseen data [27]. The sub-field of computational learning theory

studies the conditions under which generalization can be guaranteed [28].

Overall, machine learning is a rapidly growing field with many potential

applications in various industries. As more data becomes available, ma-

chine learning algorithms are becoming increasingly sophisticated and pow-

erful [29]. However, the success of machine learning relies on the availability

of high-quality data and optimised algorithms that are suited for the specific

task at hand [30].

In addition, machine learning algorithms must be carefully evaluated to

ensure that they are accurate, reliable, and do not exhibit bias or discrimina-

tion [28]. This is particularly important in fields such as healthcare, finance

and autonomous vehicles, where decisions based on machine learning can

have significant real-world consequences [30].

Despite these challenges, machine learning has the potential to revolu-

tionize many aspects of our lives and drive significant progress in fields such

as healthcare, transportation, and energy [31]. A brief literature of some typ-

ical branches of Machine Learning: Bayesian Statistics, Supervised Learning,

Unsupervised Learning and Online Learning is given in the following sections.
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2.1.1 Supervised Learning

Supervised learning is a fundamental machine learning approach where a

model is trained on labeled data, consisting of input-output pairs, to learn

the underlying relationship between inputs and outputs [27]. The primary

objective of supervised learning is to build a model that can generalize well

to unseen data, making accurate predictions on new inputs. The process in-

volves minimizing a loss function that quantifies the discrepancy between the

model’s predictions and the actual outputs. Supervised learning has been ex-

tensively studied and applied in various domains, including computer vision,

natural language processing, speech recognition, and medical diagnosis.

One of the core techniques in supervised learning is linear regression,

which seeks to model the relationship between input features and a contin-

uous output variable using a linear combination of the input features [32].

Linear regression models are simple, interpretable, and computationally ef-

ficient, but they may not capture complex relationships in the data. To ad-

dress this limitation, researchers have developed more flexible models, such

as polynomial regression and basis function expansions, which can model

non-linear relationships between inputs and outputs.

Classification is another central problem in supervised learning, where the

goal is to assign input data to one of several discrete classes [33]. Many clas-

sification algorithms have been proposed, including logistic regression, sup-

port vector machines (SVM), and decision trees. Logistic regression models

the probability of class membership using a logistic function and is particu-

larly useful for binary classification tasks [34]. Support vector machines aim

to find the optimal decision boundary that maximizes the margin between
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classes, providing robust classification even when classes are not linearly sep-

arable [35]. Decision trees recursively partition the input space based on

feature values, leading to a hierarchical structure that is easy to interpret

and can handle both categorical and continuous inputs [36].

In recent years, deep learning has emerged as a dominant technique in su-

pervised learning, particularly for high-dimensional and complex data, such

as images, text, and speech [37]. Deep learning methods, like convolutional

neural networks (CNNs) and recurrent neural networks (RNNs), leverage the

hierarchical representation of data to learn abstract and meaningful features

automatically. CNNs have been particularly successful in computer vision

tasks, such as image classification, object detection, and semantic segmen-

tation [19, 38, 39]. RNNs, on the other hand, excel at processing sequential

data and have been widely applied in natural language processing and speech

recognition [40,41], which is discussed in detail in Section 2.2.

Ensemble methods have gained popularity in supervised learning due to

their ability to improve the performance of individual models by combining

their predictions [42]. Techniques like bagging, boosting, and stacking can be

employed to construct diverse ensembles of models, often leading to better

generalization and more accurate predictions. Random forests, an extension

of decision trees, use bagging to construct an ensemble of trees and aggregate

their predictions through majority voting [43].

Feature selection and dimensionality reduction play crucial roles in super-

vised learning, as they help to identify relevant features and reduce compu-

tational complexity [44]. Techniques such as filter methods, wrapper meth-

ods, and embedded methods can be used to select a subset of features that
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contribute most to the model’s performance. Filter methods evaluate fea-

ture importance using measures like information gain, correlation, or mutual

information, and select a subset of features independently of the learning

algorithm [45]. Embedded methods integrate feature selection within the

learning algorithm, as seen in LASSO and decision trees, where feature se-

lection occurs during model training [46,47].

Evaluating the performance of supervised learning models is essential for

understanding their effectiveness and comparing different algorithms [48].

Cross-validation, a common evaluation technique, involves partitioning the

dataset into multiple subsets and training the model on different combina-

tions of these subsets while testing on the remaining data. This approach

helps to obtain a more reliable estimate of the model’s generalization per-

formance. Common performance metrics include accuracy, precision, recall,

and F1-score for classification tasks, and mean squared error (MSE), mean

absolute error (MAE), and R-squared for regression tasks.

2.1.2 Unsupervised Learning

Unsupervised learning is a machine learning paradigm that aims to learn

from data without explicit labels or targets, often revealing complex struc-

tures and relationships within datasets [49]. The field has rapidly evolved,

with various techniques and methods proposed in the literature. This subsec-

tion provides an overview of the core concepts, techniques, and applications

of unsupervised learning, along with the challenges and potential future di-

rections in the field.

A range of techniques and methods have been proposed for unsupervised
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learning, with clustering and dimensionality reduction being the most promi-

nent. Clustering algorithms, such as K-means [50], DBSCAN [51], and hier-

archical clustering [52], are used to group similar data points based on their

features. Dimensionality reduction techniques, including Principal Compo-

nent Analysis [53], t-Distributed Stochastic Neighbor Embedding (t-SNE) [54],

and autoencoders [55], aim to reduce the number of features while preserving

the structure of the data. Recent developments in generative models, such

as Variational Autoencoders (VAEs) [56] and Generative Adversarial Net-

works (GANs) [18], have also contributed significantly to the advancement

of unsupervised learning.

Unsupervised learning has found applications across various domains, in-

cluding anomaly detection [57], recommender systems [58], and natural lan-

guage processing (NLP) [59]. unsupervised learning’s ability to identify un-

usual patterns in data has been instrumental in detecting fraud, network

intrusions, and other anomalies. In recommender systems, unsupervised

learning techniques are employed to group similar users or items and make

personalised recommendations. Additionally, unsupervised learning has im-

proved various NLP tasks, such as topic modeling [60], sentiment analysis [61]

and word embeddings [59].

Despite its progress, unsupervised learning faces several challenges. Eval-

uating unsupervised learning models can be difficult due to the absence of

ground truth labels, making the development of appropriate evaluation met-

rics a crucial area of research [62]. Scalability remains an ongoing challenge,

with recent research focusing on parallelization and distributed computing

techniques to handle large datasets [63]. Furthermore, understanding the
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inner workings of unsupervised learning models, particularly those based on

deep learning, is essential for ensuring trust and adoption in various applica-

tions [64].

2.2 Artificial Neural Networks

In recent years, artificial neural networks (ANNs) have seen tremendous de-

velopment, propelling progress in disciplines such as computer vision, natural

language processing, and reinforcement learning. Inspired by the biological

neural networks present in the human brain, ANNs are designed to learn

patterns from huge volumes of data via nodes called neurons that are in-

terconnected [18]. Recent advancements in deep learning techniques, which

include stacking many layers of neurons, have enhanced the ability of ANNs

to learn complicated patterns and representations [37]. GPT-4, a recent ex-

ample, displays the capability of large-scale language models to generate text

that resembles human language [65].

In spite of their achievements, ANNs continue to confront obstacles, in-

cluding as interpretability, resource constraints, and robustness. Researchers

are currently pursuing solutions, such as explainable AI (XAI) approaches, to

increase the transparency of these models’ decision-making [66]. As the field

of ANNs advances, it will undoubtedly play a significant role in moulding

the future of artificial intelligence and its applications.
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Hidden LayerInput Layer Output Layer

Figure 2.1: Feed-forward Neural Network

2.2.1 Spiking Neural Network

Spiking Neural Networks (SNNs) [67], influenced by the structure of brain cir-

cuits, form a group of models designed for neuromorphic computing. Within

an SNN model, individual neurons adjust their membrane potential using

remembered states and current inputs. These neurons emit spikes upon the

membrane potential surpassing a certain threshold. Unlike Artificial Neu-

ral Networks (ANNs) with continuous input signals, communication between

spiking neurons occurs through binary spike sequences. As a result, SNN

models preserve both spatial and temporal information.

2.2.2 Feed-forward Neural Network

ANNs can be structured as feed-forward networks, which do not contain any

internal loops that allow signals to pass through the same neuron multiple

times. Instead, signals only travel forward through the network, passing
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through separate layers of neurons at discrete time steps [18], as shown in

Figure 2.1. The basic building block of this type of network is the artificial

neuron, which receives input, performs a computation on that input, and

produces an output. These neurons are arranged in layers, with the input

layer at the front, one or more hidden layers in the middle, and the output

layer at the back. The first and last layers of the network are responsible for

interacting with the outside world, while the layers in between are known as

hidden layers. Feed-forward networks can be trained using linear algorithms

like back-propagation [68] until the input examples are correctly classified

or a stopping criterion is met. However, because they do not process tem-

poral information, feed-forward networks are only capable of interpreting

information from a single moment in the input history and were originally

designed to process static spatial patterns of inputs [69]. The connections

between the neurons are represented by weights, which are adjusted during

training to minimize the error between the network’s output and the desired

output [70].

2.2.3 Recurrent Neural Network

Recurrent Neural Networks (RNNs), on the other hand, are a type of artificial

neural network that are well-suited to processing sequential data, such as

time series, speech, and text [71]. They have been widely studied in the

literature [18] and have been applied to a wide range of tasks, including

speech recognition [41], natural language processing [40] and time series

prediction [72].

One of the key features of RNNs is their ability to maintain internal
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Hidden LayerInput Layer Output Layer

Figure 2.2: Recurrent Neural Network

states, which allows them to process input sequences of varying lengths and to

capture temporal dependencies in the data. This is achieved by introducing

feedback connections between the neurons, which allow information to flow

through the network across multiple time steps [73].

There are several types of RNNs, including the basic RNN, the Long

Short-Term Memory (LSTM) network [73], and the Gated Recurrent Unit

(GRU) network [74]. Each of these architectures has its own strengths and

weaknesses, and the choice of architecture will depend on the specific task

and the nature of the data.

In recent years, there has been a growing interest in using RNNs for

natural language processing tasks, such as machine translation [75], text

generation [76], and sentiment analysis [77]. These tasks involve processing

sequential data with complex structures, such as sentences and paragraphs,

and RNNs have been shown to be particularly effective for these types of
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tasks.

There have also been many studies on the use of RNNs in time series

prediction, such as stock market prediction [78], weather forecasting [79],

and traffic prediction [80]. RNNs have shown to be effective in these types

of tasks, as they can capture temporal dependencies in the data and make

predictions based on historical patterns.

In general, RNNs are a powerful tool for processing sequential data, and

their ability to capture temporal dependencies in the data makes them well-

suited to a wide range of tasks. However, training RNNs can be challenging

due to the presence of gradients with long-term dependencies, which can

make the optimization process difficult [81].

2.3 Neuroscience

The rapid progress in both neuroscience and computer technology highlights

the remarkable computational power of the human brain. With its excep-

tional cognitive capabilities and energy efficiency, the brain consists of ap-

proximately 1011 neurons and 1015 synapses, forming a highly intricate and

not yet fully understood network [82–84].

Reservoir computing, an approach to machine learning, takes inspiration

from the brain’s information processing methods. This concept posits that

neurons form a complex network influenced by external stimuli, generat-

ing persistent network activity that enables information processing based on

prior stimuli. This network activity is then transmitted to other brain regions

responsible for interpreting or classifying outputs. Consequently, reservoir

computing aims to mimic the brain’s information processing strategies by
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using complex neural networks.

The idea that a simple linear classifier can decipher elaborate computa-

tions from distributed neural activity is undoubtedly relevant to the brain’s

physical processes. The brain consists of a sophisticated network of spe-

cialised structures, each carrying out unique functions. As a result, it is worth

considering whether reservoir computing serves as a fitting analogy for brain-

inspired computing or if it simply provides an alternative approach to using

neural networks and improving their trainability. Additionally, when view-

ing the brain’s regions as reservoirs from an evolutionary standpoint, how do

these specialised areas evolve if their development does not exclusively rely

on learning?

The bio-inspired foundation of reservoir computing encourages the devel-

opment of concepts like the echo state network and liquid state machine, the

original ideas in the field [85,86]. This perspective also implies that advance-

ments in reservoir computing may foster progress in neuroscience by offering

novel ways to model the brain’s information processing mechanisms. Thus,

the relationship between neuroscience and reservoir computing is mutually

beneficial, as each domain has the potential to inform and advance the other.

2.4 Reservoir Computing

Reservoir computing (RC) is a machine learning approach that was developed

based on the functioning of the human brain. It originated about 20 years

ago and was introduced through the Echo State Network (ESN) by Jaeger

in 2001 [85] and the Liquid State Machine (LSM) by Maass in 2002 [87].

Later, similarities between ESN and LSM were demonstrated by Verstraeten
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and his team, bringing the two under the RC framework [88]. RC uses

randomly connected and recurrent nonlinear nodes in the reservoir layer to

make Recurrent Neural Networks (RNNs) more efficient and cost-effective to

implement [89].

The reservoir layer creates complex dynamics that map input data into

higher-dimensional spatiotemporal patterns, making it easier to differentiate

state vectors for different classes. RC excels at handling input data that

changes over time, due to the recurrent connections that establish links be-

tween current and past neuron dynamics, also known as short-term or fading

memory.

An RC substrate may be a physical device or material, a simulated net-

work, or a set of equations. The characteristics of a reservoir computer rely

on the underlying dynamics of the substrate a reservoir system is created

with [90,91]. The essential characteristics that physical reservoirs must pos-

sess in order to correctly perform various functions are:

1. High-dimensionality and non-linearity. This is depending on the quan-

tity of distinct signals retrieved from the reservoir. If the reservoir

includes a significant number of nonlinear nodes, the projection of the

input data onto the reservoir is functionally equal to a mapping into

a high-dimensional space. Hence, the nonlinear mapping transforms

non-separable inputs into separable ones.

2. Fading memory. This attribute is critical for processing sequential

data, since the state of a reservoir is reliant on the recent past signal

but independent of the distant past, i.e. its response is dependent on

relevant input, but does not become noise over time [92].
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Figure 2.3: Classic Reservoir Computing Schematic.

A classic RC network (see Figure.2.3) consists of an input layer, a reser-

voir, and an output layer. In a network with d − dimensional input, l −

dimensional output, andN neurons, only the coefficients between the output

and the reservoir (Wout ∈ Rl×N) need to be trained through linear regression.

Conversely, the input coefficients (Win ∈ RN×d) and reservoir coefficients

(Wres ∈ RN×N) are generated randomly. The reservoir’s complex dynam-

ics and nonlinear transformations map input data into higher-dimensional

spaces for classification or prediction purposes, and internal feedback retains

past neuron states in fading memory, influencing computations at the current

state [93, 94].

2.4.1 Echo State Network

Echo State Networks (ESNs) are a type of recurrent neural network (RNN)

that has gained significant attention in recent years due to their promising

capabilities in handling complex time-series data and their efficient learn-
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ing process. As a subset of reservoir computing, ESNs are characterised by

their random, fixed recurrent connections, and the training of only output

weights [85]. The ESN model has been successfully applied to a variety of

tasks, such as speech recognition, time-series prediction, and control tasks,

showcasing its potential for solving real-world problems [95–97].

The formulation of ESN model is originally given in [85], without leakiness

term and output feedback, can be described as follow:

x(t) = f(Wuu(t) +Wxx(t− 1)) (2.1)

v(t) = Wvx(t) (2.2)

where the state of the reservoir at time t is denoted as x(t), and the reservoir

weight matrix is denoted as W . The input at time t is denoted as u(t), and

the input weight matrix is denoted as Wu. The activation function used in

ESNs is typically a nonlinear function such as the hyperbolic tangent (tanh)

function, denoted as f(). The output of the ESN at time t is denoted as v(t),

and the output weight matrix is denoted as Wv.

From real-time systems view, Stepney in paper [98] demonstrates the

‘Physical’ equation of Echo State Network:

x(t+ 1) = f(Wxx(t) +Wuu(t)) (2.3)

v(t+ 1) = Wvx(t) (2.4)

The input u and the state x in a reservoir computing system are sampled at

different times within a time unit. Specifically, the input is sampled at the
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beginning of the time unit, while the state is sampled at the end of the time

unit. The state update equation (Eq. 2.1) reflects this, as it states that the

state at the end of time unit t, x(t), is a function of the state at the end of

time unit t − 1, x(t − 1), as well as the effect of the input at the beginning

of time unit t, u(t). However, the actual time when u and x are sampled

to calculate the update is the same, because the end of time unit t − 1 is

equivalent to the beginning of time unit t [98].

ESN architecture typically comprises an input layer, a reservoir (or hid-

den) layer, and an output layer. The reservoir is composed of recurrently

connected neurons, forming a dynamic system with a rich temporal con-

text [85, 88]. During training, the input and reservoir weights are initialised

randomly, and only the output weights are adjusted. This makes the learn-

ing process more efficient as it avoids the need for computationally expensive

algorithms such as backpropagation through time (BPTT) or real-time recur-

rent learning (RTRL) [99,100].

ESNs have been employed in various applications, including time-series

prediction, speech recognition, and robot control, demonstrating their versa-

tility and effectiveness [95–97]. For instance, ESNs have shown great promise

in nonlinear system identification and chaotic time-series prediction, outper-

forming other methods like support vector machines and feed-forward neural

networks [95]. In speech recognition tasks, ESNs have successfully modeled

the temporal structure of speech signals, achieving competitive results com-

pared to other machine learning techniques [96].

Recent advancements in ESN research have led to the development of

various modifications and extensions of the original model. Deep ESNs, for
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example, incorporate multiple reservoir layers to capture hierarchical repre-

sentations of the input data, resulting in improved performance in complex

tasks [101]. Other variations include the Leaky Integrator ESN, which intro-

duces a leakage term to the neuron activation function, enabling the network

to better adapt to different time scales [102]. The neurons have a decay

parameter α, also known as a leaking rate, that can regulate the rate at

which the reservoir’s update dynamics occur. The state update equation for

leaky-integrator neurons with real-time interpretation [98] is expressed as:

x(n+ 1) = (1− α)x(n) + αf(Winu(n) +Wx(n)) (2.5)

Furthermore, researchers have explored the use of different types of reservoirs,

such as those based on spiking neural networks, to expand ESN’s applicability

in diverse domains [103].

Furthermore, the study of ESNs’ inherent properties, such as stability, ro-

bustness, and generalization capabilities, is crucial for a better understanding

of their strengths and limitations, ultimately leading to more refined mod-

els and applications [102, 104]. Finally, as the demand for energy-efficient

and low-latency machine learning solutions increases, researchers should ex-

plore hardware implementations of ESNs and other reservoir computing ap-

proaches, leveraging emerging technologies like neuromorphic computing and

memristive devices [105,106].

Echo State Networks have emerged as a powerful and efficient approach

for handling time-series data and other dynamic processes [107]. Their unique

architecture, characterised by random fixed recurrent connections and train-

able output weights, has led to their successful application in various do-
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mains, such as time-series prediction [100], speech recognition [108], and

robot control [96]. Recent advancements have focused on optimizing reservoir

properties, exploring different types of reservoirs, and developing variations

of the original model to further improve ESN performance. Future research

directions include the investigation of new training algorithms, the develop-

ment of more biologically plausible reservoirs, and the exploration of ESNs

for the exploration of ESNs for novel applications and domains [108–110].

2.4.2 Liquid State Machine

The Liquid State Machine (LSM) referenced in [87] is a form of reservoir

computing implemented with a spiking neural network (detail of SNN refer

Section 2.2.1). LSM consists a vast array of units, often referred to as nodes or

neurons. Every node in this system not only receives fluctuating inputs from

external entities but also from fellow nodes. The connections between these

nodes are random. Their inherent ability to capture spatiotemporal patterns

in data has led to their successful application in various domains, including

speech recognition, pattern classification, and neuroprosthetics [88,107,111].

One notable aspect of LSMs is their adaptability to different network

architectures and neuron models [112]. Researchers have explored differ-

ent types of spiking neurons, such as the Leaky Integrate-and-Fire (LIF)

and the Hodgkin-Huxley (HH) models, to create more biologically inspired

LSMs [113, 114]. Moreover, recent advancements in neuromorphic hardware

have facilitated the implementation of LSMs in more energy-efficient and

real-time processing systems, enhancing their suitability for edge computing

and other resource-constrained environments [115,116].



2.4 Reservoir Computing 29

The potential of LSMs for large-scale networks and their compatibility

with emerging neuromorphic technologies has opened new avenues for re-

search and development. Recent work has focused on improving the perfor-

mance, robustness, and efficiency of LSMs, as well as exploring novel learning

algorithms for spiking neural networks [117, 118]. As our understanding of

biological neural networks continues to deepen, LSMs are expected to play a

crucial role in advancing both the fields of reservoir computing and compu-

tational neuroscience.

2.4.3 Reservoir Training

Typically, two techniques are employed for the training of reservoir outputs,

referred to as linear readouts. The first technique is termed “off-line” train-

ing, wherein the reservoir states are assembled into a matrix X over a du-

ration of T for training purposes, and simple linear or ridge regression tech-

niques are used for a single training iteration. The second approach, termed

“on-line” training, typically uses a gradient descent-based algorithm such as

Recursive Least Squares (RLS) or Adaptive Moment Estimation (Adam).

Off-line Training

Off-line training, also known as batch-mode training, is a method employed in

reservoir computing for training the output weights of the reservoir. This ap-

proach involves driving the reservoir with the input signal, u(t), and record-

ing the corresponding reservoir states, x(t), during a training phase. The

reservoir states are collected into a matrix X, with each column representing

the reservoir state at a specific time step for the entire training length, T .
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Simultaneously, the desired output signal, ytarget(t), is collected into a vector

Y for the same training length, T .

Mathematically, the matrices can be represented as:

X = [x(1), x(2), . . . , x(T )] (2.6)

Y = [ytarget(1), ytarget(2), . . . , ytarget(T )] (2.7)

Once the reservoir states matrix X and the desired output vector Y have

been collected, the readout weights, Wout, we can find the optimal weights

that minimise the error between y(n) and ytarget by solving the overdeter-

mined system:

Ytarget = WoutX (2.8)

where Wout can be trained using linear regression or ridge regression tech-

niques. Linear regression aims to minimize the mean squared error (MSE)

between the predicted output, y(n), and the desired output, ytarget(n):

E(Y, Ytarget) =

√√√√ 1

T

T∑
t=1

(Y (n)− Ytarget(n))2

σ2(Ytarget(n))
(2.9)

In matrix form, Eq. 2.8 can be solved by the linear regression using Or-

dinary Least Square, which can be written as:

Wout = YtargetX
T(XXT)−1 (2.10)

However, this methods typically encounters problems related to stability

when inverting the matrix (XXT).
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According to Lukŏsev̆icius [119], it is recommended to use either ridge

regression, which involves Tikhonov regularization with a parameter β (as

shown in Eq. 2.11), or the Moore-Penrose pseudo-inverse (as shown in Eq. 2.12).

Ridge regression is generally preferred as it provides a stable and effective

solution. The regularization parameter helps to address the issue of pro-

ducing excessively large output weights, which can indicate unstable and

overly sensitive solutions. The expression for ridge regression with Tikhonov

regularization is presented below.

Wout = YtargetX
T(XXT + λI)−1 (2.11)

Where λ is a regularization parameter (set to zero for simple linear regression)

and I is the identity matrix. Ridge regression is employed when the system

is ill-conditioned or to prevent overfitting by introducing the regularization

term λ.

In some cases, the pseudo-inverse method is used for training due to

its ease of implementation in certain programming environments, such as

MATLAB. However, the computational cost of the pseudo-inverse method

increases for large matrices of X and is typically used when the system is

overdetermined. In the case of reservoir computing, the networks are gener-

ally comprised of relatively small matrices and overfitting is dependent on the

complexity of the task at hand. The training equation for the pseudo-inverse

method is provided below.

Wout = YtargetX
+ (2.12)



32 Background

where + indicates the pseudo-inverse function in MATLAB.

Off-line training in reservoir computing is advantageous due to its sim-

plicity and efficiency in readout weight optimization, as it does not require

iterative updates during the training process. After obtaining the readout

weights, Wout, the reservoir model can be used to predict the output for new

input signals.

Pros:

• Stability: Offline training methods can be more stable because they

learn from an entire batch of data at once, reducing the influence of

individual outliers or noisy data points.

• Faster Convergence: They often converge faster than online methods

as they get a “broader view” of the data.

• Better Performance: Since offline training uses the whole dataset, it

can often lead to a more accurate and reliable model, assuming that

the training dataset is representative of the overall population.

Cons:

• Memory Intensive: Batch methods can be memory-intensive as they

require the entire dataset to be loaded into memory.

• Lack of Real-time Adaptability: Offline training methods might not be

suitable for applications where the model needs to continuously adapt

to new data.

• Computational Expense: Training on large batches or the entire dataset

can be computationally expensive and time-consuming.
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On-line Training

On-line training in reservoir computing is a dynamic method for training

the output weights of a reservoir model. Unlike off-line training, which uses

batch-mode processing to compute the optimal output weights after collect-

ing all reservoir states, on-line training employs iterative algorithms, such as

Recursive Least Squares (RLS) or Adaptive Moment Estimation (Adam), to

update the readout weights during the training phase [120]. This approach

enables the reservoir model to adapt to changes in the input signal and to re-

fine its predictions in real time, which is particularly beneficial in the context

of time-varying or non-stationary input signals.

Adam is a popular optimization algorithm in online learning that has

gained considerable attention due to its ability to adaptively update learn-

ing rates for individual parameters [121]. By combining the advantages of

momentum-based optimization and adaptive learning rates, Adam achieves

faster convergence and improved performance on various machine learning

tasks. In online learning scenarios, Adam demonstrates robustness in han-

dling noisy and sparse gradients, making it a preferred choice for large-scale

and real-time applications. While Adam has proven to be effective, it also

faces challenges, such as its sensitivity to hyper-parameters and the need for

further improvements in convergence guarantees.

Similar to “off-line” training, the RLS algorithm is normally used to min-

imize the MSE between the predicted output, y(t), and the desired output,

ytarget(t) (See Eq. 2.9). At each time step, the RLS algorithm updates the

readout weights, Wout, based on the current reservoir state, x(t), and the de-

sired output, ytarget(t). The algorithm uses a forgetting factor, λ, to give more
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importance to recent observations and an inverse correlation matrix, P (t), to

track the information from previous time steps. According to [85,89,120,122],

the on-line training method with derived RLS update equations are described

as follows:

1. Initialization: Before starting the online training process, initialize

the output weight matrix Wout with random or zero values. Also, initialize

the inverse correlation matrix P (t), typically with an identity matrix scaled

by a large value (e.g., P (0) = δI, where δ is a large scalar). Set an appropriate

forgetting factor λ, typically close to 1 (e.g., 0.99), which determines how fast

the model forgets past data.

2. Input processing: For each incoming input data point u(t), calculate

the corresponding reservoir state x(t) using the reservoir dynamics.

3. Output prediction: Compute the predicted output y(t) using the

current output weight matrix Wout and the reservoir state x(t) as follows:

y(t) = Woutx(t).

5. RLS update: Update the output weight matrix Wout using the RLS

algorithm. First, compute the Kalman gain vector.

k(t) =
ρ(t− 1) ∗ x(t)

λ+ x(t)′ρ(t− 1) ∗ x(t)
(2.13)

Then, update the output weight matrix:

Wout(t) = Wout(t− 1) + k(t) ∗ (ytarget(t)− y(t)) (2.14)
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Finally, update the inverse correlation matrix:

ρ(t) =
1

λ
∗ (ρ(t− 1)− k(t) ∗ x(t)′ρ(t− 1)) (2.15)

This process continues iteratively throughout the entire training length,

T , allowing the reservoir model to adapt to changes in the input signal and

refine its predictions during the training phase.

On-line training in reservoir computing offers several advantages over off-

line training methods. The ability to adapt to time-varying or non-stationary

input signals makes on-line training particularly well-suited for applications

where real-time learning is critical. Additionally, the RLS algorithm can

provide faster convergence and better tracking of time-varying systems com-

pared to batch-mode linear regression techniques.

Pros:

• Adaptability: Online training allows the model to learn and adapt

continuously as new data comes in, which is a great advantage when

dealing with time-series or non-stationary data.

• Memory Efficiency: Since online learning involves training on one data

point at a time, it can be more memory-efficient than batch learning.

This is important when dealing with large datasets that may not fit

into memory.

• Real-Time Updates: This method is especially suitable for real-time

applications where you want the model to instantly react to new data.

Cons:
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• Noise Sensitivity: Online learning can be more sensitive to noise and

outliers in the data, as each data point can significantly sway the model.

• Difficulty in Convergence: Online training methods may converge slower

than their batch counterparts as they try to learn from every single data

point.

• Overfitting Risk: Due to the nature of learning from every data point,

there’s a risk of overfitting, particularly with noisy data.

2.4.4 Reservoir Metrics

Reservoir Computing are normally evaluated with a various of computational

benchmark tasks, and each could yield significantly different result. While

these benchmarks are beneficial in assessing the capability of a reservoir

to solve a specific task, they provide a little understanding of the reservoir’s

dynamic behaviors. To enable a more precise evaluation and characterisation

of a reservoir computing, a set of task-independent metrics can be computed

for a specific system.

Linear Memory Capacity

Linear Memory Capacity (LMC) was first outlined in [86] to quantify the

echo property of reservoirs. It is a measure of how well a reservoir can

recall the past inputs. For the echo state property to be maintained, it’s

necessary that the dynamics of the input-driven reservoir eventually eliminate

any information derived from initial conditions. This property suggests the

existence of a fading memory, which is defined by the LMC. The process
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of determining the LMC of a reservoir involves feeding a random uniform

distribution of numbers into the reservoir.

The equation of calculating Linear Memory Capacity can be expressed

as:

MC =
2N∑
i=1

cov2(u(k − i), y(k))

σ2(u(k))σ2(y(k))
(2.16)

The output is trained to retrieve the prior inputs, denoted as u(k− i), where

i ranges from 1 to 2N . N indicates the total number of nodes within the

reservoir. This procedure resulting in the generation of i outputs. Jaeger [86]

demonstrates that the maximum memory capacity of a system is MC ≤ N.

Kernel Quality and Generalisation Rank

Kernel Quality (KQ) was first introduced by Legenstein and Maass [123]. It is

a measure of the reservoir’s ability to produce a rich nonlinear representation

of input u and its history u(t − 1), u(t − 2),.... This can be viewed as the

system’s dimensionality or its ability to effectively distinguish unique input

patterns.

As outlined in [124], the evaluation of KR involves a process where the

rank r of a matrix M (with dimensions n×m) is determined. The matrix M

is constructed using multiple distinct input streams ui through um, leading to

the collection of reservoir states xui
. These states are organized into columns

within matrixM , and this entire procedure is repeatedm times. By means of

Singular Value Decomposition (SVD), the rank r of matrix M is calculated,

which corresponds to the number of non-zero diagonal entries present in the

unitary matrix.

Generalisation Rank (GR) in Reservoir Computing refers to its ability
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to generalise similar input streams. The calculation of GR is using the

same ranking measure as the evaluation of KQ. However, each input stream

ui+1, . . . , um constitutes a noisy variant of the original ui. A balance between

rich dynamics and stability determines the generalisation capability of RC

system [123].

In general, it is believed that a good reservoir comes with a high KQ rank

and a low GR [123]. However, the optimal equilibrium might differ based

on the specific task that the reservoir is handling. While these two metrics

hold significance, each of themselves does not encompass enough amount of

information regarding the dynamic properties of the reservoir [125].

2.4.5 Reservoir with Physical Devices and Systems

In the last decade, there has been a growing interest in exploring the potential

of RC for creating more efficient information processing by using physical

dynamics as computational resources. In software-based RC, the reservoir

layer is used to nonlinearly map the current input and a bit of past inputs

into a high-dimensional space. This process is being replicated in the field of

physical RC, where researchers are seeking physical objects or systems that

can perform a similar high-dimensional mapping, making it a significant area

of study in neuromorphic computing [126–129]. Various substrates proposed

for physical RC implementation (Fig. 2.4).

One of the key areas of interest in physical RC is the use of nanomagnetic

ring arrays, in which, the Artificial Spin Ice (ASI) demonstrates as a promis-

ing substrate as RC due to its rich dynamics under considerable control and

fesibility [130,131].
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Figure 2.4: Reservoir Computing with physical substrates.
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Optical and optoelectronic devices have emerged as potential substrates

for physical RC, offering unique advantages such as high-speed parallel pro-

cessing and low power consumption [132, 133]. These systems leverage the

natural properties of light transmission in optical fibers, enabling efficient

mapping of input data to high-dimensional spaces for classification and pre-

diction tasks [134].

Traditional electronics [92,135], memristive devices [136–138], and Micro-

Electromechanical Systems (MEMS) [139] have also become popular in this

field. The unconventional substrates have been suggested, e.g., swarm sys-

tems [140] and soft robotics [141]. The material substrates should be able to

perform nonlinear transformations and integrations concurrently.

2.5 Delay-line Reservoir Computing

The concept of delay lines was initially integrated into the RC algorithm to

represent state updates. In 2011, a pioneering study by Appeltant et al. [92]

proposed a delay-based reservoir with virtual nodes in a physical implemen-

tation of a computational reservoir, referred to as Delay-feedback Reservoir

Computing (DFRC). This innovative work thoroughly investigated the role

of dynamic neurons in physical RC, inspiring alternative approaches and

positioning DFRC as a promising candidate in unconventional computing.

DFRC simplifies hardware implementation by significantly reducing the

number of nonlinear neurons to a single one, employing physical delay lines

and time-multiplexing operations. This is particularly advantageous when

combined with analog and optical components for high-speed, low-power

computing. Adjusting the ratio between the substrate’s time constant and
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the time-multiplexing intervals and create better virtual nodes [142]. These

nodes, similar to classic reservoirs, generate complex reservoir dynamics by

mapping input data to higher-dimensional spaces for classification.

The delayed feedback loop is critical for retaining previous information

within the network, contributing to its Memory Capacity (MC). Conse-

quently, DFRC is especially appealing when integrated with optical or opto-

electronic devices, as the delay line can be directly implemented using a long

optical fiber, subject to the transmission speed of light.

This approach reveals the computational capability inherent in basic delay

dynamical systems while also simplifying the experimental development of

artificial neural networks for computing applications. Injecting an input into

the reservoir layer requires a pre-processing step called ‘masking’ before the

input can pass through the nonlinear node at the beginning of the delay line.

The Masking procedure is detailed in section 3.1.1.

Mask multiplexing implies that the input (through the mask) and output

signals occur at a frequency N times higher than what would be required in a

standard reservoir withN nodes andN output lines. This process specifically

trades off the number of output lines for an increased output frequency.

Illustrated in figure. 2.5, within a delay period of time τ , the signal passes

through the nonlinear node and N equally spaced Virtual Nodes along the

delay line. The time interval between these nodes is defined as θ = τ/N .

After traversing the delay line for the time interval τ , the signal is re-injected

into the loop, forming a delay-feedback reservoir. The system’s state matrix

is observed and read-out at the end of each virtual node for each loop of

delay, i.e., at every time period of θ. The state at time t relies on the output
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Figure 2.5: A three-layer topology is used in Delay-feedback Reservoir Comput-
ing, consisting of an Input layer, a Delay-line Reservoir layer, and an Output layer.
Before being sent to the reservoir delay line through a single nonlinear node, the
input signal undergoes a pre-processing step called ”masking.” The state matrix
is monitored and read-out at the end of each virtual node, i.e., after a period of
θ, to adjust the weights of connections between the reservoir and output layer
for optimization purposes.

of the nonlinear node during the continuous time period [t− τ, t) [143].

Delay systems are particularly attractive for hardware implementation,

as they require only a few components, such as a nonlinear node and a delay

line [133,134,144–147]. More details on DFRC are given in section 3.1 in the

next chapter.

2.6 Chaotic Dynamical Systems

Chaotic dynamical systems are characterised by their sensitivity to initial

conditions, deterministic nature, and the absence of periodicity. Over the

years, various mathematical models and concepts have been developed to

better understand the behaviour of chaotic systems, such as the Mackey–

Glass system [148], Lorenz attractor [2], and the Rössler system [3], which

are all discussed below.
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One of the key methodologies employed in the study of chaotic systems

is nonlinear time series analysis, which aims to uncover the underlying struc-

ture and dynamics of the system from observed data. Techniques such as

phase space reconstruction, Lyapunov exponents, and correlation dimension

have been developed to quantify and analyse the chaotic properties of these

systems, enabling a deeper understanding of their behaviour.

2.6.1 Mackey–Glass System

The Mackey–Glass dynamic equation has become a prominent subject of

study in the fields of mathematics, mathematical biology, and nonlinear dy-

namics since its introduction to describe the blood cell population by Michael

Mackey and Leon Glass in the late 1970s [148]. The original equation, which

is a form of delay differential equation, has been widely recognised for its

ability to capture both healthy and pathological behaviours in various bio-

logical contexts, depending on the values of its parameters. It is defined as

follows:

Ṗ =
βθnPτ

θn + P n
τ

− γPt, Pτ ≡ P (t− τ) (2.17)

where the state variable Pt is the homogeneous density of a population of

mature blood cells at time t ; τ is the time lag between initiating blood cell

production and the mature blood cells being released; parameters β, θ, and

n are related to the production rate; γ determines the decay rate of the

cells. The parameters provided for the Mackey–Glass equation have been

simplified to a version that is commonly used in many references. This set of

parameters produces a chaotic system that is often of interest for studying
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Figure 2.6: Mackey–Glass chaotic system with colour changing over time. β =
0.2, γ = 0.1, n = 10, and τ = 25, are parameters commonly used in literature.

the system’s dynamics. Figure. 2.6 shows the phase plot of Eq. 2.18:

˙x(t) =
βxτ

1 + xn
τ

− γxt, xτ ≡ x(t− τ) (2.18)

One of the primary applications of the Mackey–Glass equation has been

in the modelling of hematopoiesis - the process of blood cell production and

regulation in the body [148]. The equation has demonstrated its effectiveness

in capturing the complex, nonlinear dynamics of hematopoietic systems, pro-

viding insights into the mechanisms underlying the regulation of blood cell

populations and their responses to disturbances such as diseases or medical

treatments.
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The study of the Mackey–Glass equation has also contributed signifi-

cantly to the broader field of nonlinear dynamics and chaos theory. The

equation exhibits a rich variety of dynamic behaviours, including periodic,

quasi-periodic, and chaotic solutions, depending on the choice of parame-

ters [149]. These properties have made the Mackey–Glass equation not only

to be considered as a substrate for reservoir computing but also as an impor-

tant benchmark problem for the analysis and control of chaos in nonlinear

systems.

2.6.2 Lorenz System

The Lorenz system, first introduced by Edward Lorenz in 1963, is a set

of three ordinary differential equations that have played a significant role

in the study of nonlinear dynamics, chaos theory, and the broader field of

mathematical modeling [2]. The system was initially developed as a simpli-

fied model of atmospheric convection, and its discovery of chaotic behavior

marked a turning point in the understanding of the unpredictability and

complexity inherent in many natural systems.

The Lorenz system is defined by three coupled nonlinear differential equa-

tions:
dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.

(2.19)

Here, x, y, and z represent the state variables of the system, while σ, ρ, and

β are the system’s parameters. These equations exhibit a range of dynamic

behaviours, including stable and unstable fixed points, limit cycles, and,
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Figure 2.7: Lorenz Attractor with colour changing over time. σ = 10, ρ = 8/3,
and β = 28, parameters taken from [2].
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most notably, chaotic trajectories, depending on the values of the system’s

parameters. Figure. 2.7 shows the phase plot of Lorenz attractor with 3

dimensions.

One of the key features of the Lorenz system is the presence of the so-

called Lorenz attractor which is characterised by its butterfly-like shape, that

has become a symbol of chaotic behaviour in dynamical systems. The Lorenz

attractor represents the long-term behaviour of the system, illustrating the

sensitivity to initial conditions that is a hallmark of chaotic dynamics. This

sensitivity is often referred to as the “butterfly effect”, the idea that small

perturbations in a system’s initial state can lead to vastly different outcomes

over time [2].

2.6.3 Rössler System

The Rössler system, introduced by Otto E. Rössler in 1976 [3], is a set of

three coupled first-order nonlinear ordinary differential equations:

dx

dt
= −y − z,

dy

dt
= x+ ay,

dz

dt
= b+ z(x− c),

(2.20)

which have played an influential role in the study of dynamical systems and

chaos theory. The system was initially proposed as a simpler alternative

to the Lorenz system, designed to produce chaotic behavior with a more

straightforward mathematical structure.

This simplicity has made the Rössler system a widely used model in the

investigation of the properties and mechanisms underlying chaotic dynamics
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Figure 2.8: Rössler Attractor with color changing over time. a = 0.2, b = 0.2,
and c = 5.7, parameters taken from [3].
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in various fields, including physics, engineering, and biology.

The Rössler system has been employed as a model system in various ap-

plications, such as the study of synchronization in coupled chaotic oscillators,

the control of chaos, secure communication using chaotic signals, and pattern

formation in chemical reactions [150–152]. Moreover, it has been used as a

benchmark system for the development of numerical methods, time series

analysis techniques, and algorithms for the detection and characterization

of chaos in experimental data [153, 154]. As research in nonlinear dynamics

and chaos theory continues to evolve, the Rössler system remains a valuable

tool for understanding the fundamental principles and applications of chaotic

systems.

2.6.4 Summary of Chaotic Systems

Each of the chaotic systems discussed in this section has demonstrated rich

dynamical behaviour, which make them suitable to be implemented either as

a substrate of Reservoir Computing, or the benchmark tasks to evaluate the

performance of RC.

To demonstrate our concepts, in this work, the well-studied Mackey-Glass

oscillator is implemented as the substrate of Delay-Feedback Reservoir Com-

puting Our selection is rooted in the ease with which this nonlinearity can

be tuned using the exponential term. Additionally, it offers the flexibility to

adjust the input scale and feedback strength, facilitating the exploration of

ideal configurations for specific tasks.
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3
Methodology

This chapter introduces the concept of Delay-feedback Reservoir Computing

(DFRC) and the methodology followed for the experimental work in this

thesis.

First, we go into detail on the principle of DFRC formed of three layers:

• Input layer: basic setups and pre-processing of input signal.

• Reservoir layer: dynamics of reservoir and its interconnection structure.

• Output layer: state matrix read-out and the training strategies.

Second, the nonlinear dynamical system used throughout the work, its

modelling frameworks and the parameter configurations are presented.

Finally, a full description of benchmark tasks which give an indication on

the computational performance of reservoir is outlined.
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Nonlinear Node Virtual Nodes

Delay-feedback Reservoir

Figure 3.1: Topology of Delay-feedback Reservoir Computing with three lay-
ers: Input, Delay-line Reservoir and Output. The input signal undergoes a pre-
procedure called ‘masking’ and transmitted to the reservoir delay line through a
single nonlinear node. The state matrix is observed and read-out at the end of
delay-line, i.e. after period of τ , in order to optimise the weights of connections
between the reservoir and output layer.

3.1 Reservoir Computing based on delayed

dynamical systems

In 2011, Appeltant et al [92] successfully demonstrates that a single nonlinear

node with delayed feedback loop may replace an entire network of connected

nonlinear nodes and effectively process information.

Figure 2.5 shows a schematic of delay-feedback reservoir as the equivalent

to the classic RC implementation presented in Figure 2.3. This approach re-

veals the computational capability latent in basic delay dynamical systems

while also simplifying the experimental development of artificial neural net-

works for computing applications.

When injecting an input into the reservoir layer, one must go through a

pre-processing called ‘masking’ and then pass via the nonlinear node at the

beginning of delay line. The detail of this Masking procedure is explained in
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section 3.1.1. Within a delay period of time τ , the signal passes the nonlinear

node and N equally spaced positions, the Virtual Nodes along the delay line.

The time between the virtual nodes is defined by θ = τ/N . After the signal

travels along the delay line for time interval τ , it is then re-injected into the

loop, so forming a delay-feedback reservoir. For each loop of delay, the state

matrix of the system is observed and read-out at the end of each virtual

node, i.e. every time period of θ.

In this work, we demonstrate the idea of ‘devirtualisation’ by sub-sampling

the state space; the detail is given in Chapter 4.

By introducing the characteristic of delay-feedback, dynamical systems

which contain one-dimension non-linear node can be augmented with N vir-

tual nodes to achieve an N -dimensional reservoir state space. This is due

to the fact that its state at time t is dependent on the output of the non-

linear node during the continuous time period [t− τ, t) [155]. The dynamics

of the delay system remains finite-dimensional in practice, but shows high

dimensionality and short-term memory, which are necessary for reservoir

computing [143]. Delay systems are particularly desirable from a hardware

implementation standpoint since they require only a few components, such

as a nonlinear node and a delay line [133,134,144–147].

3.1.1 Masking : pre-processing of input signal

In delay-feedback reservoir computing, the masking procedure plays an es-

sential role as it defines the virtual nodes along the delay line. The time

delay between each of the virtual nodes is θ = τ/N , which is mainly defined

by the procedure. Masking mixes the input signal with several sets of scaling
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Figure 3.2: Masking procedure. Top left: the discrete inputs of the delayed feed-
back reservoir model. Bottom left: physical continuous inputs. Middle: 1Sample
and Hold’ discretising the physical inputs. Right: two masking procedures Real
Weight Mask or a Binary Weight Mask applied to the discretised inputs.

factors to elicit a dynamically rich response from the reservoir. The masking

procedure transforms the state multiplexing of N actual nodes in a reservoir

to time-multiplexing, resulting in analog dynamics, with the mask being di-

vided into N parts. The model’s input stream comprises values indicative of

discrete time readings.

A physical reservoir operates in continuous real time. Its input signals

are injected into the reservoir layer after pre-processing by Sample and Hold

(to discretise the input) and the mask-multiplexing procedure (to determine

the virtual nodes). As shown in Fig.3.2, the discrete input stream u(k) is

interpreted as continuous time input u(t), and converted into a piece-wise

signal function I0(t) for τk ≤ t < τ(k + 1), which is constant during one

delay period τ . A mask M(t) is applied to I(t) at each time interval, to

provide the input to the reservoir. The masking M(t) consists of a sequence
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of N randomly generated values; the same mask is used for each interval τ .

Kuriki et al [132] investigates the influence of different input masking

strategies on photonic reservoir computing using semiconductor lasers, using

the Santa Fe time-series prediction problem as a benchmark. The effective-

ness of masking may vary between different tasks. Typically, the masking

method uses either a Real Weight Mask (RWM) or a Binary Weight Mask

(BWM). the RWM is a sequence of random values drawn from the uniform

distribution over [−1, 1]; The BWM is a random sequence of −1 and +1

values.

Due to the randomness of the masks, the results of many realisations may

vary, even for the same type of mask. Investigation on the effectiveness of

these two input mask types under different scenarios for benchmark tasks,

as well as the randomness of masking, are discussed in Chapter 5.

3.1.2 Dynamics of the Reservoir layer

The reservoir consists of a nonlinear node with delayed feedback. The dy-

namics of the node can be represented by delay-differential equations (DDEs)

as [156]:

ẋt = −xt + F (xτ , It,N), τ = t− τ, x ∈ R (3.1)

where xt is the value of dynamical variable at time t; xτ is the delayed term

at a certain point in the past (at time t − τ); F is the transfer function of

the node. It,N is the input to be processed by the nonlinear node; N is the

number of virtual nodes. Each element of It,N creates a transient response

in the nonlinear node of the system. Concatenating the responses of the

nonlinear node to each input It,N becomes the state matrix S of the system.
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As the phenomenon of time delay occurs naturally in a variety of physical

systems and the hardware implementation of delay-based reservoir comput-

ing requires only a single nonlinear node and a delayed feedback loop, this has

resulted in numerous implementations in electronics, optoelectronics, and op-

tics. Previous research indicates that delay differential equations are helpful

for effective reservoir computation [92,133,134,144,157].

3.1.3 The output layer

One of the primary advantages of reservoir computing is its ability to confine

the training process exclusively to the output layer. This unique characteris-

tic results in a significant reduction in training overhead. During the training

phase, the state matrix of the reservoir is consistently collected and read at

intervals of τ [92]. Concurrently, the training algorithm designates an output

weight to each virtual node present along the delay line. The objective is

to compute a weighted sum of these states, aiming to align it as closely as

possible with the expected output.

A more detailed expression of this assignment of output weights to the

virtual nodes is captured by:

ŷ =
N∑
i=1

wi · x
(
τ − τ

N
(N − i)

)
(3.2)

In this equation, wi denotes the weight given to the state of the ith virtual

node, x represents the output from the nonlinear node, and ŷ is the computed

approximation of the target output.

A linear training procedure is used to find the values of wi. Following
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the conventional approach for reservoir computing [85, 158], the readout is

trained. The testing phase is then conducted with new input data of the

same kind as those used for training.

Determination of Weights

The process of determining appropriate weight values, known as training,

may be accomplished in one-shot (offline) learning or by progressively ad-

justing the weights (online learning). In our work, the former strategy has

been used. For N nodes and L time steps, the result is an [N × L] dimen-

sional state matrix, We refer this [N×L] dimensional state matrix as S. The

target output y is used to produce an [M × L] dimensional target matrix,

where M is the dimension of the target output y; here M = 1.

To calculate the optimal output weightsW , the mean square error ∥WS−

Y ∥2 should be minimised. Ridge regression is applied to avoid problems with

ill-conditioned matrices through the following formula:

Wopt = Y ST (SST − λI)−1 (3.3)

where T is transpose operation, λ is the regression parameter, I is the N×N

identity matrix. This result can also be obtained by using the Moore–Penrose

pseudo-inverse: Wopt = Y S+, where ‘+’ indicates the pseudo-inverse function

[158], but can have instability problems resulting in large weight values. The

system trained output ŷ(t) is given by:

ŷ(t) = Woptx(t) (3.4)
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After training, the computational performance of the system is evaluated by

injecting the test set of input signals to the reservoir, and the error calculation

strategies (details in Section 3.3.1 and 3.3.2) is obtained using the trained

output weights.

3.2 Reservoir Dynamical System: Mackey–

Glass Model

The Mackey–Glass model [148] was introduced in the context of respiratory

and hematopoietic diseases in which time delay plays a significant role [159–

161]. The model is a first-order nonlinear delay differential equation

Ṗ =
βθnPτ

θn + P n
τ

− γPt, Pτ ≡ P (t− τ) (3.5)

where the state variable Pt is the homogeneous density of a population of

mature blood cells at time t ; τ is the time lag between initiating blood cell

production and the mature blood cells being released; parameters β, θ, and

n are related to the production rate; γ determines the decay rate of the

cells [148].

Depending on parameter values, the equation displays a range of ape-

riodic and chaotic dynamics (see Fig. 3.3). The model is suitable for use

in delay-line reservoir computing, due to its rich dynamics and ability to

be realised in hardware [125, 159, 162]. Appeltant et al. [92] investigate the

time-normalised equation with state variable xt in the context of delay line

reservoir computing, by adding an external input It to the delayed feedback

value, xτ → xτ + δIt, where δ is an input scaling parameter.



3.2 Reservoir Dynamical System: Mackey–Glass Model 59

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(
t-

)

(a) n = 3, τ = 1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(
t-

)

(b) n = 3, τ = 3.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(
t-

)

(c) n = 6, τ = 1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(
t-

)

(d) n = 6, τ = 3.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(
t-

)

(e) n = 12, τ = 1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x(
t-

)

(f) n = 12, τ = 3.2

Figure 3.3: Mackey-Glass mathematics model phase plots with different nonlinear
values n and delay period τ given by Eq.3.6, and γ = 1, β = 2.5.
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Here, we follow [92] in introducing inputs, but we do not normalise the

time, as we wish to use physical time units. We rename and scale the state

variable (xt = Pt/θ) in Equation 2.17 to obtain an equation that is suited for

physical system implementation based on voltage changes:

ẋt =
β(xτ + δIt)

1 + (xτ + δIt)n
− γxt, xτ ≡ x(t− τ) (3.6)

Here, xt is the normalised voltage at physical time t; τ is the physical time de-

lay in the feedback loop; the parameters β, n and γ denotes feedback strength,

nonlinearity and decay rate, respectively.

3.2.1 Framework and Simulation

For numerically simulating the performance evaluation of delayed feedback

reservoirs, we seperate them into two key steps.

As the MATLAB tool Simulink provides a versatile simulation environ-

ment including physical time, we start by implementing a circuit-like first-

order differential equation as our dynamical model, i.e. the substrate of

reservoir, with this tool [163].

The simulation algorithm pre-processes the input and simulates the reser-

voir states. When the reservoir states are generated, they are transferred to

the second section, which is training. All of the training approaches and

processes we use are independent of the design of the reservoir and rely only

on the discrete time reservoir states in MATLAB [164].

As a first step towards the physical implementation of Mackey–Glass

delay-dynamical system (Eq. 3.6), here we define the reservoir using Simulink

(10.1/2020b Models). This circuit-like model, shown in Fig.3.4, is an inter-
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Figure 3.4: Simulink circuit schematic of ideal Mackey–Glass delay-feedback
system.

mediate step from the mathematical DDE model to a physical electronic

circuit.

Model blocks are selected for implementation according to the variables

in Eq.3.6, and are connected to implement the various terms. The block

labelled 1/s is the integrator. The delay line of virtual nodes and time delay

τ is modelled with the ‘tapped delay’ block; this allows direct access to

the information from virtual nodes for the devirtualisation experiments. The

input signal is generated in Matlab, and injected into the system. via a ‘From

Workspace’ model named ‘system inputSequence’ in the figure. The state

matrix of virtual nodes is collected from a sub-system ‘Read-out block’ (not

part of the mathematical model, but needed in the Simulink implementation),

where a ‘To Workspace’ model is used inside the block, sending information

to Matlab for training and evaluation processes.



62 Methodology

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x(

t)

Figure 3.5: Orbit diagram of Mackey-Glass mathematical model.

3.2.2 Parameter Configuration

Feedback Strength : β

The chaotic regime of nonlinear function generates a rich and diverse set of

temporal patterns that can be used to train the reservoir. These patterns can

then be used to make predictions or perform other machine learning tasks.

Figure 3.5 shows the bifurcation diagram of Equation 3.6 where we can

see a fix-point dynamics for 0 < β < 1.58, this fix point is zero for β < 1.

Beyond the fix-point dynamics, limit cycles develop a deterministic chaotic

dynamics.

In a chaotic regime, the Mackey-Glass equation 3.6 produces highly non-

linear and dynamic temporal patterns that are difficult to predict. By using

a chaotic regime of the Mackey-Glass equation as the substrate for the reser-

voir, it is then able to create a high-dimensional, nonlinear mapping of the
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Figure 3.6: Input traces for different θ and their corresponding signals.

input signal, which can be used to perform various benchmark tasks.

On the other hand, using a stable regime of the Mackey-Glass equation

as the substrate for the reservoir may not be as effective, as it produces less

complex and less dynamic temporal patterns.

Distance between Virtual Nodes : θ

There are three crucial time scales in Delay-Feedback Reservoir Computing:

the distance between virtual nodes θ, the delay time τ and the timescale of

nonlinear node T . Previous work by McDonnell et al. [165] found that, the

relation between timescale and θ has a significant effect on computational
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performance of DFRC – good performance obtained when the time scales

are related by θ ≤ T .

In our work, the timescale of the nonlinear node is set to 100ms (real time)

in Simulink model 3.4, where the results of different θ and their corresponding

signals are shown in Figure. 3.6. When θ = 200ms and greater than timescale

T , the system rapidly reaches a steady-state that is independent of previous

inputs. Empirically we found for 64 nodes, the θ = 50ms is the best choice,

where we use θ = 25ms as comparison (determined using NARMA and Santa

Fe task in Chapter 4).

Nonlinear Value n

The transfer function of Mackey-Glass equation is

Xout =
β ·Xin

1 + (δ ·Xin)n
(3.7)

where the input and feedback term from Equation 3.6 is removed. This

allows to change the operational point as the reservoir changes from strongly

nonlinear to a weak nonlinear. The shape of the nonlinearity is illustrated in

Figure 3.7. The nonlinear values n chosen between 1 and 12 are presented.

In [4], the nonlinear parameter n is chosen to be 9.65 to provide chaotic

behaviour. In that model, state values are always positive (they represent

blood cell concentrations). Here state values are voltages, and are modulated

by inputs; with some masking procedures the state value plus input term

xτ+δIt can become negative. In order to avoid problems with raising negative

values to fractional powers, we restrict n to integer values. These values

straddle the chaotic Mackey-Glass value, and provide both an odd power
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Figure 3.7: Mackey-Glass mathematics model transfer function with different
nonlinear values n, given by Eq.3.7, and β = 2, δ = 0.5.

(so negative values stay negative) and an even power (so negative values are

transformed to positive values). In this thesis, our primary focus is not on

achieving cutting-edge outcomes but rather on showcasing the techniques

involved in designing delay-line reservoirs. Therefore, we predominantly use

a mild n value (6 or 7) throughout our research.

3.3 Benchmark Task Definition

In this section we illustrate the benchmark tasks used in this work (Chap-

ter 4 and Chapter 5). We have chosen two different tasks to evaluating the

performance of our delay-feedback reservoir:

• An imitation task, in which the system mapps the input sequence to
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an output sequence based on a specific relationship between the inputs

and outputs.

• A time series prediction task, where the reservoir uses its own memory

to prediction one-step data in the future.

3.3.1 Dynamical System : NARMA

We use the discrete-time n-th order NARMA benchmarks to analyse the

computational abilities of the delay-based reservoir in various scenarios [166].

‘NARMA’ is an acronym for Non-Linear Auto-Regressive Moving Average

and it is one of the most widely used benchmark in reservoir computing.

In the literature, two instances of the NARMA model occur frequently:

NARMA-10 and NARMA-30, where the number at the end represents the

order of the model. The NARMA-10 model is given by:

yk+1 = 0.3yk + 0.05yk

(
9∑

i=0

yk−i

)
+ 1.5ukuk−9 + 0.1 (3.8)

The NARMA-30 model is defined as:

yk+1 = 0.2yk + 0.004yk

(
29∑
i=0

yk−i

)
+ 1.5ukuk−29 + 0.001 (3.9)

where k is the time-step, and uk is an input stream randomly gener-

ated from a uniform distribution over the interval [0, 0.5]. The parameters

of NARMA-10 and NARMA-30 comes from [166]. An example of input se-

quence and target output for NARMA-10 is given in Fig.3.8, where the first

10 time steps of the target sequence are empty. The calculation of state k+1
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Figure 3.8: NARMA-10 input and target sequences. 3.8a) Discrete points drawn
from a uniform distribution within the interval [0, 0.5]. 3.8b) Target points calcu-
lated from input points using NARMA-10 equation (3.8), with the first 10 steps
of the target equal to 0.

involves yk−i, uk−i, and nonlinear terms, indicating n-th NARMA benchmark

requires both memory and non-linear processing.

The task is to train the reservoir to reproduce the NARMA-10 / NARMA-

30 dynamics as closely as possible when driven with the same input stream.

The process is presented in Fig. 3.9. The reservoir input signal It is obtained

from uk according to the procedure defined in (Masking section).

We use normalised root mean square error (NRMSE) to quantify and

compare the performance of approaches between different experiments:

NRMSE =

√
1

m

∑m
k=1(ŷk − yk)2

σ2(yk)
(3.10)

where y is the NARMA target function, ŷ is the reservoir output, m is the

number of data samples in the run, and σ is the standard deviation. An

NRMSE of 0 indicates perfect agreement between system output and target
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Figure 3.9: NARMA benchmark task process flow diagram.

output; an NRMSE of 1 can be achieved by setting the system output equal

to the mean target output.

3.3.2 Time-Series Prediction : Santa Fe Laser Task

The Santa Fe laser benchmark task is a commonly used benchmark for evalu-

ating the performance of reservoir computing algorithms. This task involves

the prediction of the chaotic behavior of a laser system that using a LeCroy

oscilloscope, measurements were taken on an 81.5-micron 14NH3cw(FIR)

laser. The setup is described in [167].

In this task, the laser system is modeled as a set of coupled nonlinear

differential equations, and the goal is to predict its future behavior based on

a time series of its past states (Figure 3.10). The error between the target

output y and reservoir output ŷ is represented as a Normalised Mean Square

Error, which is defined as follows:

NMSE =
1

m

∑m
k=1(ŷk − yk)

2

σ2(yk)
(3.11)

Since the Santa Fe Laser Task is a time-series prediction problem, and in
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such problems, larger errors can have a greater effect on the accuracy of

predictions. NMSE emphasises greater mistakes more so than other measures

since it squares the discrepancies between projected and actual values. This

makes it a suitable metric for measuring the performance of models on this

task, where it is essential to minimise larger errors. The choice of NMSE

for the Santa Fe Laser Task is also influenced by consistency with existing

literature and research.

3.4 Summary

This chapter presents a detailed explaination of Delay-feedback Reservoir

Computing (DFRC), outlines the experimental methodology employed and

the benchmark tasks used in this thesis.

Section 3.1 delves into the fundamental principles of DFRC, focusing on

three crucial layers and the training procedures. The first layer discussed

is the input driving layer, which encompasses the basic setups and the pre-

processing procedure “Masking” applied to the input signal. The second layer

is about the dynamics of the reservoir and its interconnection structure. Un-

derstanding the behavior and architecture of the reservoir is highlighted as

crucial in the overall computation process. The third layer is the output

layer, which encompasses the state matrix read-out and the employed train-

ing strategies. This section highlights the methods used to extract valuable

information from the reservoir and effectively train the system.

Following the detailed exploration of the three layers, Section 3.2 presents

the nonlinear dynamical system used in the experimental work. Various

modeling frameworks and parameter configurations are outlined, providing
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a comprehensive understanding of the investigated system.

Finally, this chapter presents a comprehensive description of the bench-

mark tasks used to evaluate the computational performance of the reservoir.

These carefully selected tasks offer meaningful insights into the reservoir’s

capabilities and performance in different scenarios.
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4
Devirtualisation

In this chapter, we introduce an approach termed Devirtualisation. De-

virtualisation describes the procedure of directly tapping into the delay line

at the position of a ‘virtual’ node, rather than at the delay line’s end. This

approach allows for a trade-off between the read-out frequency and the num-

ber of output lines. It’s noteworthy to mention that physical delay lines are

subject to attenuation, which diminishes the signal strength. Consequently,

we explore how devirtualisation, by harnessing a less-attenuated output, may

mitigate the impacts of attenuation in the physical delay line.

Section 4.1 introduces the concept and rationale behind ‘Devirtualisa-

tion’. This chapter uses both ideal and attenuation delay-line environments,

with four distinct configurations, by varying the length of the entire delay-

line and time lag between each virtual node. The experimental setups for

these configurations are detailed in Section 4.2. The first experiment, pre-

sented in Section 4.3, uses an ideal delay-line to test the proper functioning

of each block and demonstrate the feasibility of ‘devirtualisation’ without the

influence of other factors. In Section 4.4, the second experiment compares

the ideal delay-line and damping delay-line with fully virtualised systems,

meaning that only one output line is used. Lastly, in Section 4.5, we inves-

tigate the devirtualisation approach in a damping environment, focusing on
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two distinct scenarios: a) Constant damping rate over the delay-line and b)

Constant damping rate per ’length’.

The benchmark tasks including NARMA-10, NARMA-30 and Santa Fe

Laser Task are used to demonstrate the effectiveness of this approach under

different configurations in all experiments.
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4.1 ‘Devirtualised’ Systems

In recent years, there has been a significant growth in the use of pho-

tonic/optical fibre for physical delay-line reservoir computing [168–172]. This

paradigm shift is driven by the numerous advantages offered by these optical

computing systems, including their ultrafast processing speeds, high band-

width capacities, and low energy consumption.

However, in the real world, several practical challenges can significantly

impact the performance of physical systems employed for delay-line reservoir

computing, including attenuation (damping) and dispersion. The at-

tenuation or damping in a photonic system could occur when some portion

of the signal is absorbed or scattered, so the signal’s amplitude is gradu-

ally decreased as propagates through the system. This can result in weaker

signals and a reduced signal-to-noise ratio (SNR), making it harder for the

delay-line reservoir to process and interpret the input signals accurately.

Our concept of ‘devirtualisation’ offers a way to trade-off the number of

output lines and the real-time readout frequencies in physical delay-feedback

reservoir systems. This approach is aimed at addressing practical challenges

that affect the system along the delay-line from data-processing aspect (see

Section. 2.5).

Figure 4.1 shows the illustration of ‘devirtualisation’ strategy. If we set

the sampling time equal to τ , which is the delay time along the physical

tapped delay, we need to use N output lines to collect data simultaneously

from each of the N ‘devirtualised nodes’. We have increased the number of

outputs to N , and reduced the output frequency by N (from 1/θ to 1/τ). If

we sub-sample the system with time τ/2, only half of the virtual nodes are
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Figure 4.1: ‘Devirtualisation’ example with N = 6 nodes. Each coloured square
block represents one output signal from one virtual node. Ni indicates the num-
ber of connected nodes (output lines). Tsample is the sampling time, i.e, every
connected output line collects data simultaneously at each Tsample time. When
Ni = N , every virtual node N1..N6 has an output line, and the output is sam-
pled every τ . Here, Ni = 1 where Tsample = τ is the base case. When Ni = N/2,
nodes N1..N3 have output lines: at τ/2 they output the first three blocks, at
time τ they output the last three blocks. Similarly, when Ni = N/3, nodes
N1..N2 have output lines, outputting each τ/3.
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required to output data simultaneously.

No data is lost in this devirtualisation process: the same data is sampled

in each case. Before the standard procedure of training or testing is applied,

the read-out matrix from the devirtualised nodes is reshaped appropriately

to the dimension of [N × k].

4.2 Experimental setups

4.2.1 Physical implementation

The experimental simulation framework, presented in Section 3.2.1, is carried

out using MATLAB and SIMULINK as the primary tools. In this section,

we simulate information loss in an optical fiber, which is widely used as the

delay line in delay-feedback reservoir computing.

Typically, the information loss in an optical fiber is characterised by its

attenuation, which is the reduction in the optical power of the signal as

it travels through the fiber. Attenuation is usually expressed in decibels

per kilometer (dB/km) and is dependent on the wavelength of light used.

For a 10-kilometer-long optical fiber, the information loss can be calculated

by multiplying the attenuation by the cable length. For example, if the

attenuation is 0.3 dB/km, the power loss in a 10-kilometer-long optical fiber

would be approximately 3 dB, or 50%. The ideal delay line is modified with

the ‘Gain’ blocks, used to model the damping in the reservoir’s delay line by

setting the gain value of the blocks to the damping coefficient of the physical

system. The output lines are simulated with the implementation of Mackey–

Glass system in Simulink (Figure 3.4 for ideal delay-line and Figure 4.2 for
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Figure 4.2: Simulink circuit schematic of Mackey–Glass delay-feedback system
with damping property. 4.2b) ‘Gain’ blocks are used to model the damping
property by modifying the gain value of the block in order to set the damping
coefficient of the system.
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damping delay-line).

4.2.2 Parameter settings

In this chapter’s experiments, we employ the Real Weight Mask as the time-

multiplexing function (refer to Section 3.1.1). For each of the 30 runs in a

single sampling scheme, we use different random seeds to regulate both the

mask and input sequence. Moreover, we maintain the same random seeds

across all sampling schemes for the given configurations.

NARMA-10 and NARMA-30. The NARMA-10 and NARMA-30 equa-

tions are presented in Section 3.3.1, with Eq.3.8 corresponding to NARMA-10

and Eq.3.9 representing NARMA-30. The input sequence length generated

by NARMA is L = 3000. This sequence is divided into training and test-

ing datasets, with Ltrain = 1700 and Ltest = 1200 respectively. The initial

Lwashout = 100 results from each set are disregarded. Each experiment con-

sists of 30 runs.

The performance of the reservoir is evaluated using the normalised root

mean square error (NRMSE), which compares the predicted values against

those obtained from the NARMAmodel (details of NRMSE are given in 3.3.1).

Santa Fe laser task. The Santa Fe laser data prediction task serves as

an instance of one-step time series forecasting. The dataset used in this case

comprises 4000 data points, which are split into four distinct samples, each

containing 1000 points. As the normalised mean square error (NMSE) is the

standard metric used in the literature to evaluate performance on this task,

we employ NMSE to compare predicted values with their actual value in our
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parameter value description

β 0.8 coupling factor
γ 1 decay rate
τ See Figure 4.4 delay in feedback loop

n (NARMA) 6 nonlinearity
n (Santa Fe laser) 2 nonlinearity

δ 0.5 input weighting
N 32 and 64 number of virtual nodes

Figure 4.3: Parameter values for the Mackey–Glass delay-line reservoir devirtu-
alisation experiments. The Mackey–Glass system parameter values are from [4].

experiments. The definition of NMSE is given in Section 3.11.

The experimental parameter settings can be found in Figure 4.3. The

majority of these parameters are cited from [4], with the selection of nonlin-

ear value, delay time, and the number of virtual nodes configurations being

determined based on the objectives of this chapter.

Figure 4.4 illustrates four delay-lines under investigation in this section,

each with varying lengths or a different quantity of virtual nodes in the

system.

• Delay-lineA has 32 virtual nodes defined along it, with time lag of 25ms

between each consecutive virtual node, total delay time τ in feedback

loop is 0.8s.

• Delay-lineB has 32 virtual nodes defined along it, with time lag of 50ms

between each consecutive virtual node, total delay time τ in feedback

loop is 1.6s.

• Delay-lineC has 64 virtual nodes defined along it, with time lag of 25ms
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A
Ntotal = 32, θ = 25 ms

τ = 0.8 s

B
Ntotal = 32, θ = 50 ms

τ = 1.6 s

C
Ntotal = 64, θ = 25 ms

τ = 1.6 s

D
Ntotal = 64, θ = 50 ms

τ = 3.2 s

Length of damped delay-line

Lθ

Lθ

Lθ

Lθ

Configuration

Figure 4.4: The length of damped delay-line of 4 different configurations, A:
Ntotal=32, θ=25ms, τ=0.8s; B: Ntotal=32, θ=50ms, τ=1.6s; C: Ntotal=64,
θ=25ms, τ=1.6s; D: Ntotal =64, θ=50ms, τ=3.2s.

between each consecutive virtual node, total delay time τ in feedback

loop is 1.6s.

• Delay-lineD has 64 virtual nodes defined along it, with time lag of 50ms

between each consecutive virtual node, total delay time τ in feedback

loop is 3.2s.

The setups illustrated in Figure 4.4 play a crucial role in examining the

impact of various configurations that use damping in delay-line reservoir

computing.

With four distinct configurations under ideal and attenuation environ-

ments, we explore the effectiveness of θ (time between each virtual node)

and the length of delay-line. Moreover, we investigate this sub-sampling de-
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virtualisation approach, that allows this tradeoff to be altered: reducing the

readout frequency by using multiple output lines while the number of virtual

nodes in the reservoir layer is constant.

4.3 Devirtualisation with ideal delay-line

In this section, the results from ideal environment simulations are presented,

demonstrating the proper functioning of each block shown in Figure 3.4.

This experiment investigates the tradeoffs between node number, and dis-

tance between nodes, in terms of Mackey-Glass timescales. The NARMA-

10, NARMA-30, and Santa FE laser tasks are used as benchmark tasks for

experimental purposes (refer Section 3.3 for details of benchmark tasks).

4.3.1 NARMA

Figure 4.5 shows the results of NARMA-10 (Eq. 3.8) and NARMA-30 (Eq. 3.9)

benchmark tasks with four configurations mentioned in the last section. In

the NARMA-10 and NARMA-30 tasks, delay-line A, with 32 virtual nodes

and a 25ms time delay between each node, exhibits the poorest performance;

NRMSE = 0.285 for NARMA-10, NRMSE = 0.4923 for NARMA-30. In

contrast, delay-line D, consisting of 64 virtual nodes and a 50ms time delay,

demonstrates the most favorable results; NRMSE = 0.1242 for NARMA-10,

NRMSE = 0.321 for NARMA-30.

Devirtualisation in ideal environment. In the NARMA-10 and NARMA-

30 tasks, when comparing varying numbers of output from the delay-line

within the same configuration, the results are the same for the lossless SIMULINK
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Figure 4.5: (a) NARMA-10 and (b) NARMA-30 experimental results for de-
virtualised Mackey-Glass system with ideal environment. The x–axis ‘Number
of Outputs(s)’ indicates the actual output lines connected to the delay-line.
A: Ntotal=32, θ=25ms; B: Ntotal=32, θ=50ms; C: Ntotal=64, θ=25ms; D:
Ntotal =64, θ=50ms.
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implementation employed in this case. While this may appear somewhat

simplistic, it aligns with our expectations and would not typically occur in a

real-world system with attenuation.

Varying time delay θ. When comparing delay-line A with delay-line B,

or delay-line C with delay-line D as shown in Figure 4.5a and Figure 4.5b,

it becomes clear that the latter in each pair yields better results. Although

they all share the same number of virtual nodes (A and B possess 32 virtual

nodes, while C and D have 64), the enhancement in performance can be

linked to the distinct spacing between virtual nodes (for further details, see

Section 3.2.2).

Varying number of virtual nodes. Conversely, when comparing pairs

with the same time delay θ but varying numbers of virtual nodes (A and

C or B and D), it becomes apparent that configurations with more virtual

nodes possess greater computational capacity and more trainable read-outs,

leading to improved performance.

Same length of delay-line. In the NARMA-10 and NARMA-30 exper-

iments, delay-line B and delay-line C have the same length, with signals

taking 1.6 seconds to travel through the delay-line. Despite this, delay-line

B has twice the spacing between nodes and half the number of virtual nodes

compared to delay-line C, resulting in differing outcomes for NARMA-10

and NARMA-30. For NARMA-10, delay-line B performs better, while for

NARMA-30, delay-line C shows superior performance. This can be explained

by the fact that delay-line B, with only 32 nodes, may lack the memory ca-
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pacity needed to handle NARMA-30 as effectively as a system with 64 nodes.

Comparable findings are observed in the damping delay-line environment and

is further analysed.

4.3.2 Santa Fe Laser Task

We now showcase the simulation results for the Santa Fe laser task, as intro-

duced earlier in Section 3.3.2. In Figure 4.6, NMSE values are displayed in

boxplots. Here, similar to NARMA benchmark results, delay-line A exhibits

the weakest performance (NMSE = 0.0025), while delay-line D achieves the

most remarkable results (NMSE = 0.0012).

Similar to NARMA results, for the Santa Fe laser task, when comparing

different numbers of outputs within the same delay-line configuration, the

results remain consistent in the ideal environment implementation used in

this study.

It is again demonstrated that for systems with an equal number of virtual

nodes but different time intervals between nodes, the one with larger spacing

achieves superior performance (refer to Figure 4.6 for delay-lines A and B

or delay-lines C and D). Additionally, when systems have the same spacing

between virtual nodes but vary in the number of nodes, the one with more

nodes attains better results (as seen in Figure 4.6).

4.3.3 Summary

The findings presented in this section underscore the importance of consid-

ering multiple aspect at one and the same time when designing physical

Delay-Feedback Reservoir Computing (DFRC) systems. It becomes evident
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Figure 4.6: Santa Fe Laser task results for devirtualised Mackey-Glass system
with ideal environment. The x–axis ‘Number of Outputs(s)’ indicates the actual
output lines connected to the delay-line. A: Ntotal=32, θ=25ms; B: Ntotal=32,
θ=50ms; C: Ntotal=64, θ=25ms; D: Ntotal =64, θ=50ms.

that various elements, such as the length of the delay-line, the count of

virtual nodes along the delay-line, and the timescales [165] discussed in Sec-

tion 3.2.2, are not isolated factors, even in the absence of damping. Instead,

they are interdependent and influence one another. This interconnectedness

is particularly crucial given that the non-linear Mackey–Glass node inher-

ently possesses its own timing characteristics.

4.4 Ideal vs Physical implementation

In this section, the simulation platform of Mackey–Glass delay-feedback

reservoir computing, incorporating a damping delay-line as detailed in Sec-

tion 4.2, is used and compared with an ideal delay-line for each benchmark
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task. The objective of this comparison is to highlight the differences between

the ideal and damping delay-line implementations. The results of NARMA

and Santa Fe laser task are presented and discussed accordingly.

4.4.1 Results

Figure 4.7 and Figure 4.8 display the experimental results for the NARMA

and Santa Fe laser benchmarks, respectively, using both an ideal delay-line

(represented in blue and marked as ‘idl’) and a damping delay-line (shown

in orange and denoted as ‘dp’). The displayed results represent the ‘fully

virtualised’ scenario, in which only one single output line is needed, and the

sampling rate is set to θ.

NARMA. The trends observed in the NARMA-10 (Figure 4.7a) and NARMA-

30 (Figure 4.7b) tasks resemble those of the ideal delay-line (see Section 4.3).

When comparing pairs with different numbers of virtual nodes but the same

spacing between them, the delay-line with more nodes achieves superior re-

sults. Additionally, when comparing pairs with the same number of virtual

nodes but varying spacing, the delay-line with a greater distance between

virtual nodes exhibits improved performance.

Santa Fe laser task. The experimental results for the Santa Fe laser task

can be found in Figure 4.8. It is important to observe that the overall perfor-

mance of the damping delay-line exhibits similarities across the various cases.

However, distinctions in the results among different damping delay-lines are

evident in the third quartile and whiskers of each boxplot.
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Figure 4.7: Experimental results to compare the ideal environment (‘idl’ in blue)
and damping delay-line (‘dp’ in orange) with (a) NARMA-10 and (b) NARMA-
30.
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Figure 4.8: Experimental results to compare the ideal environment (‘idl’)and
damping delay-line (‘dp’) with Santa Fe laser task. Other parameters are de-
scribed in
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Summary. For all the benchmark tasks, it is evident that the performance

with an ideal delay-line surpasses that of a damping delay-line. This can be

attributed to the fact that when signals travel through the damping delay-

line, their amplitude diminishes, resulting in a loss of information.

4.5 Devirtualisation with Damping Delay-line

The previous sections have shown the fesibility of devirtualisation in both

ideal and damping delay-line environments. In this section, we will delve

deeper into various configurations of damping delay-lines to gain a more

comprehensive understanding of devirtualisation approach.

As depicted in Figure 4.4, our experiment uses four damping delay-lines

that vary either in the number of virtual nodes or in the length of the line.

To explore the performance of the devirtualisation approach in various sit-

uations, we assess the effectiveness of the four delay-lines in two distinct

scenarios: a) Constant damping rate over delay-line and b) Constant damp-

ing rate per ‘length’ with NARMA-10 and NARMA-30 tasks. The results

for Santa Fe laser task are shown in Appendix.

Constant damping rate over delay-line. In this scenario, we keep the

damping rate consistent across all four delay-lines by modifying the ’Gain’

values in the simulation platform. Preserving a constant damping rate en-

ables more accurate comparisons between different delay-line configurations.

This leads to a better understanding of how varying lengths and virtual

nodes influence the system’s performance. Furthermore, sustaining a con-

stant damping rate ensures that the system’s stability is not compromised



4.5 Devirtualisation with Damping Delay-line 91

Delay-line Nv θ (ms) τ (ms) Alow(%) Amid(%) Ahigh(%)

A 32 25 800 0.4 2 8
B 32 50 1600 0.4 2 8
C 64 25 1600 0.2 1 4
D 64 50 3200 0.2 1 4

Figure 4.9: Parameter values of four delay-lines for the scenario of ‘Constant
damping rate over delay-line’ experiments. Nv: Number of virtual nodes; θ:
time delay between each virtual node; τ : time delay over the delay-line; Alow(%),
Amid(%) and Ahigh(%) here indicates the parameter settings for ‘Gain’ block in
the simulation (see Section 4.2 for details). ‘Low’, ‘Mid’ and ‘High’ here indicates
the overall damping level of delay-line, where the value approximately equals to
10%, 50% and 90% respectively.

by alterations in delay-line length, which is essential when investigating the

effects of various configurations on system performance.

The parameters depicted in Figure 4.9 include:

• Nv: The number of virtual nodes within a delay-line.

• θ: The time delay occurring between each successive virtual node.

• τ : The total time delay experienced across the entire delay-line.

• Glow(%), Gmid(%), andGhigh(%): These values represent the parameter

settings for the ’Gain’ block in our simulation. For more information

on these settings, refer to Section 4.2.

The terms ‘Low’, ‘Mid’, and ‘High’ correspond to the overall damping

level of a given delay-line. These levels are approximately equal to 10%,

50%, and 90% damping, respectively.
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Delay-line Nv θ (ms) τ (ms) Glow(%) Gmid(%) Ghigh(%)

A 32 25 800 0.5 1 2
B 32 50 1600 1 2 4
C 64 25 1600 0.5 1 2
D 64 50 3200 1 2 4

Figure 4.10: Parameter values of four delay-lines for the scenario of ‘Constant
damping rate per length’ experiments. Nv: Number of virtual nodes; θ: time
delay between each virtual node; τ : time delay over the delay-line; Glow(%),
Gmid(%) and Ghigh(%) here indicates the parameter settings for ‘Gain’ block in
the simulation (see Section 4.2 for details). ‘Low’, ‘Mid’ and ‘High’ here indicates
the damping rate of 1%, 2% and 4% per ‘Length’ (see text for definition of
‘Length’).

Constant damping rate per ‘length’. In this scenario, we maintain a

consistent damping rate for every unit ‘length’ across the four delay-lines.

In our experiment, the term ‘length’ denotes the distance between virtual

nodes, which corresponds to the spatial extent covered by the signal as it

travels for 50ms to reach the adjacent virtual node.

Figure 4.10 depicted the details of delay-lines A–D, where delay-lines B

and D represent the idea of standard unit ‘length’. For each unit ‘length’,

we investigate damping rates labeled as ‘low’, ‘mid’, and ‘high’, which corre-

spond to 1%, 2%, and 4% damping, respectively.

This scenario aims to explore the impact of overall damping on the idea

of the devirtualisation approach and provide insights into choosing the ap-

propriate length for the physical delay-line.
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4.5.1 Results

In this paragraph, we investigate the devirtualisation approach for both ‘con-

stant damping rate over delay-line’ and ‘constant damping rate per unit

length’ scenarios using the NARMA-10 and NARMA-30 benchmarks. The

10th– and 30th–order NARMA equations can be found in Section 3.3.1, while

additional information on implementing the experiments is provided in Sec-

tion 4.2.2.

Constant damping rate over Delay-line

By maintaining a consistent damping rate across all delay-lines, we obtain

the experimental results for NARMA-10 and NARMA-30, as shown in Fig-

ure 4.11 and Figure 4.12, respectively. The parameters of system such as

nonlinearity, feedback strength and input scaling are presented in Figure 4.3.

When comparing the results for one delay-line under various damping

rates, such as delay-line A in Figure 4.11b or delay-line D in Figure 4.12c,

it becomes clear that the system’s performance improves with more out-

put lines, albeit at different levels of enhancement. Optimal performance

is consistently attained when the number of output lines equals the num-

ber of virtual nodes in the system. This observation is consistent for both

NARMA-10 and NARMA-30 tasks, which strengthens our confidence that

the performance of physical delay-feedback reservoir computing can benefit

from the devirtualisation approach along the damping delay-line.

The impact of varying levels of enhancement becomes more apparent

when comparing results across different damping rates. The trend in perfor-

mance results becomes steeper when transitioning from a ‘low’ damping rate
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scenario to a ‘high’ damping rate scenario.

When comparing the results from the same delay-line under different

damping rates, such as delay-line B in the ‘Low’, ‘Mid’, and ‘High’ cases, it

is apparent that the overall performance is influenced by the damping rate

level. The results tend to deteriorate when the delay-line exhibits a higher

damping rate. For instance, the NARMA-10 results as shown in Figure 4.11,

when delay-line A is fully devirtualised, the NRMSE values are as follows:

0.3231 in the ‘low’ damping case, 0.4198 in the ‘mid’ damping case, and

0.5503 in the ’high’ damping case. When the delay-line exhibits a low damp-

ing rate, the results more closely align with those of an ideal delay-line, as

shown in Figure 4.5a and Figure 4.5b for NARMA-10 and NARMA-30 tasks,

respectively.

The reason for the above observation is that, higher damping rates can

be interpreted as causing more signal attenuation, i.e., a greater reduction in

the signal’s amplitude as it travels along the delay-line. This may impact the

readout from virtual nodes located near the end of the delay-line and lead to

the consequence of poor performance.
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Figure 4.11: NARMA-10 results for constant damping rate over delay-line. The
x–axis ‘Number of Outputs(s)’ indicates the actual output lines connected to the
delay-line.
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Figure 4.12: NARMA-30 results for constant damping rate over delay-line.
A: Ntotal=32, θ=25ms; B: Ntotal=32, θ=50ms; C: Ntotal=64, θ=25ms; D:
Ntotal =64, θ=50ms.
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Delay-line Overalllow(%) Overallmid(%) Overallhigh(%)

A 14.8 27.5 47.6
B 27.5 47.6 72.9
C 27.5 47.6 72.9
D 47.6 72.9 92.7

Figure 4.13: Overall damping of delay-lines based on different damping rate per
length. The values are calculated based on Eq. 4.1.

Constant damping rate per Length

In this experiment, we maintain a constant damping rate per unit length of

the delay-line, which means that the overall damping for each delay-line may

differ. This leads to difference in overall damping of each delay-line as shown

in Figure 4.13. The values are calculated based on Eq.4.1, where G stands

for gains of damping blocks (see Figure 4.10).

Each value within the table are calculated based on the damping rate in

Figure 4.10 as:

Overalllow/mid/high = 1− (1−Glow/mid/high)
Nv (4.1)

To facilitate easier comparison and analysis of the results, the overall damp-

ing values are provided in Figure 4.13.

Figure 4.14 and Figure 4.15 show the experimental results of NARMA-10

and NARMA-30 tasks respectively. The results in each box of both fig-

ures show a trend of performance improvement with an increasing number

of output lines, further validating the effectiveness of the devirtualisation

approach.

The variations in the trend of performance observed in this scenario high-
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light the dependence on the overall damping of the delay-line. For example,

delay-line A and delay-line D in Figure 4.14a exhibit differing trends, as

delay-line A has an overall damping of 14.8%, while delay-line D has an

overall damping of 47.6%.

Differ from the previous experiment in Section 4.5.1, when comparing the

results horizontally in Figure 4.14 and Figure 4.15, with constant damping

per unit length, the results are roughly within the same range. In other

words, the performance difference between each delay-line under the same

per unit length damping rate is not as significant as in last experiment. This

is because the overall damping rates of each delay-line are now different,

resulting in delay-line A, with a lower overall damping rate, achieving per-

formance that compensates for its limited number of virtual nodes and time

lag. On the other hand, delay-line D, with a higher overall damping rate,

exhibits worse performance compared to the results of the experiment with

constant damping rate over the delay-line.

4.5.2 Discussion

In this section, we discuss the results obtained from our investigation of the

devirtualisation approach for both ‘constant damping rate over delay-line’

and ‘constant damping rate per unit length’ scenarios using the NARMA-10

and NARMA-30 benchmarks. The main goal is to assess the effectiveness of

the devirtualisation approach in physical delay-feedback reservoir computing

when considering damping delay-lines.

For the ‘constant damping rate over delay-line’ scenario, the results clearly

show that the system’s performance improves with an increasing number of
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Figure 4.14: NARMA-10 results for constant damping rate per length. A:
Ntotal=32, θ=25ms; B: Ntotal=32, θ=50ms; C: Ntotal=64, θ=25ms; D:
Ntotal =64, θ=50ms.
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Figure 4.15: NARMA-30 results for constant damping rate per length. A:
Ntotal=32, θ=25ms; B: Ntotal=32, θ=50ms; C: Ntotal=64, θ=25ms; D:
Ntotal =64, θ=50ms.
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output lines. Optimal performance is consistently achieved when the number

of output lines equals the number of virtual nodes in the system, which sug-

gests that the devirtualisation approach can indeed benefit the performance

of physical delay-feedback reservoir computing.

However, the level of enhancement differs across various damping rates.

When comparing results across different damping rates, the trend in perfor-

mance becomes steeper when transitioning from a ‘low’ damping rate scenario

to a ‘high’ damping rate scenario. This observation can be attributed to the

higher damping rates causing more signal attenuation, impacting the readout

from virtual nodes located near the end of the delay-line, which in turn leads

to poorer performance.

For the ‘constant damping rate per unit length’ scenario, the results con-

tinue to show a trend of performance improvement with an increasing number

of output lines, further validating the effectiveness of the devirtualisation ap-

proach. However, the performance difference between each delay-line under

the same per unit length damping rate is not as significant as in the previ-

ous experiment. This is because the overall damping rates of each delay-line

are now different, resulting in varying performance levels depending on the

specific delay-line.

In summary, the devirtualisation approach proves to be effective in im-

proving the performance of physical delay-feedback reservoir computing, par-

ticularly for the NARMA-10 and NARMA-30 tasks. The results highlight

the importance of considering the damping rates, both over the entire delay-

line and per unit length, when optimizing system performance. By carefully

selecting the appropriate damping rates and number of output lines, it is
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possible to achieve optimal performance in physical delay-feedback reservoir

computing systems.

4.6 Summary

In this chapter, we presented a comprehensive investigation of the devirtu-

alisation approach in physical delay-feedback reservoir computing systems,

mainly focusing on the impact of damping delay-lines. We aimed to un-

derstand how different damping rates and number of output lines affect the

system’s performance with the approach. We assessed the performance of

these systems using the NARMA-10, NARMA-30 and Santa Fe laser bench-

marks.

We began by introducing the concept of ‘devirtualisation’. Physical delay-

feedback reservoir computing systems use a single nonlinear node and a delay-

line to emulate a high-dimensional reservoir of virtual nodes. We then dis-

cussed the challenges and potential limitations of using delay-lines, including

the impact of signal damping on system performance.

We proceeded to contrast the findings derived from both the ideal delay-

line and the damping delay-line. Subsequently, we introduced the fully

damped delay-line in two distinct scenarios: ‘constant damping rate over

delay-line’ and ‘constant damping rate per unit length.’

The results demonstrated that the devirtualisation approach effectively

improved the performance of physical delay-feedback reservoir computing

systems. For both damping scenarios, the performance consistently improved

with an increasing number of output lines, reaching optimal performance

when the number of output lines equaled the number of virtual nodes. How-
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ever, the extent of the enhancement differed across various damping rates,

with the performance becoming steeper when transitioning from a low to a

high damping rate.

In conclusion, our study highlights the importance of carefully considering

damping rates and the number of output lines to achieve optimal performance

in physical delay-feedback reservoir computing systems. The devirtualisation

approach can significantly enhance the performance of these systems, par-

ticularly for tasks such as NARMA-10 and NARMA-30. Further research

may explore the impact of other system parameters and benchmark tasks to

broaden our understanding of the devirtualisation approach’s potential.
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5
Masking

In this chapter, we explore the assumptions regarding input masking, a cru-

cial procedure of delay-feedback reservoir computing. The function of mask-

ing is to define virtual nodes along the delay-line, rendering it an integral

element in this computational paradigm. The quality of virtual nodes is

contingent upon the process of masking.

This chapter discusses two aspects of the masking procedure:

1. We conduct a rigorous experimental comparison between two types of

masking signals, Binary Weight Mask (BWM) and Random Weight

Mask (RWM), which are predominantly referenced in scholarly liter-

ature. The performance of these masking signals is evaluated using

benchmark tasks NARMA-10, NARMA-30, and the Santa Fe laser

task. Owing to the ubiquitous application of these tasks in relevant

studies, we anticipate that our findings will present a universal under-

standing of the performance of the different masking signals.

2. We experimentally investigate how the distribution (randomness) of

Binary Weight Mask signal impacts the performance of Delay-Feedback

Reservoir Computing, under two circumstances of No-offset and Offset.

The principles of masking and virtual nodes are introduced in Section 5.1.
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In Section 5.2, a comprehensive account of the experimental configurations

employed in both the simulation environment and benchmark tasks for each

experiment is provided. Section 5.3 provides a comparative analysis of the

experimental outcomes between Binary Weight Mask and Random Weight

Mask, using benchmarks NARMA-10, NARMA-30, and the Santa Fe laser

task. The findings from the second experiment, which probes into the mask-

ing distribution of randomness, are given in Section 5.4. Concluding the

chapter, Section 5.5 offers a discussion of the topics covered throughout.
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5.1 Concept

In delay-feedback reservoir computing, “masking” refers to a technique used

to transform the input data before it is fed into the system, which is analogue

to the input weight matrix in a standard reservoir. This transformation is

typically done by multiplying the input data by a certain mask, which can

be a binary or random sequence. The purpose of this process is to increase

the dimensionality and complexity of the input data, which can help improve

the performance of the reservoir computing system.

The concept of “virtual nodes” is closely related to masking in this con-

text. In a delay-feedback reservoir, the “reservoir” is essentially a single

nonlinear node with a delayed feedback loop. The delay line can be thought

of as being divided into several segments or “virtual nodes”, each of which

represents the state of the system at a different point in time. The input data,

after being transformed by the mask, is added to the state of the system at

each of these virtual nodes.

The model’s input stream is composed of values signifying discrete time

measurements. In contrast, a physical reservoir operates in continuous real

time. The input signals undergo a pre-processing phase, involving a Sample

and Hold operation for input discretisation and a mask-multiplexing proce-

dure to define the virtual nodes, before being fed into the reservoir layer.

As depicted in Fig.5.1, the discrete input stream, denoted as u(k), is

treated as a continuous time input u(t). This is then transformed into a

piece-wise signal function I0(t) for τk ≤ t < τ(k+1), which remains constant

throughout one delay period τ .

M(t) here represents the masking, which is applied to I(t) at each time
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Figure 5.1: Time-multiplexing procedure. Top left: the discrete inputs of the de-
layed feedback reservoir model. Bottom left: physical continuous inputs. Middle:
Sample and Hold discretising the physical inputs. Right: four masking proce-
dures applied to the discretised inputs.
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interval τ , thereby supplying the input to the reservoir. The mask M(t)

comprises a sequence of N randomly generated values, each of time period

θ, with the same mask being used for each interval τ , i.e., τ = θ ∗N .

5.2 Experiment Setups

The quality and type of the mask can have a significant impact on the per-

formance of the system. Different tasks may require different types of masks,

and part of the challenge in this field is finding the most effective mask for a

given task.

5.2.1 Experimental scenarios

In this section, different tasks and experimental scenarios for Experiment A:

Comparison between BWM and RWM and Experiment B: Distribution of

“Randomness” are addressed, to demonstrate a universal results for masking.

The value of u is chosen at 0.5 in the following sections and experiment.

Experiment A: Comparison between BWM and RWM

For the first experiment, we evaluate the computational performances of

Delay-Feedback Reservoir Computing between Binary Weight Mask (BWM)

and Random Weight Mask (RWM); among different masking procedures

under three experimental configurations for benchmark tasks NARMA-10,

NARMA-30 and Santa Fe laser task:

1) Mask-multiplexing with No-offset :

I(t) = I0(t)M(t) (5.1)
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2) Mask-multiplexing with offset by u:

I(t) = I0(t)(M(t) + 1) (5.2)

3) Mask-multiplexing with offset by 2u:

I(t) = I0(t)(M(t) + 2) (5.3)

where the original input values I0(t) are drawn from the interval [0, u], the

ranges of the masked input signal I(t) are [−u, u], [0, 2u] and [u, 3u] for the

offsets of Eq.5.1, Eq.5.2 and Eq.5.3 respectively.

Experiment B: Distribution of “Randomness”

In this experiment, we investigate the affect of No-offset and Offset, and the

distribution of “randomness” when generate the masking signals. NARMA-

10 as a baseline benchmark is used in this experiment to demonstrate the

performance of Delay-Feedback Reservoir Computing (DFRC) with offset

varying between [−u, u] or [0, 2u] (Eq.5.1 and Eq.5.2, respectively) for Binary

Weight Mask. The choice of scenarios/values in this experiment is affected

by the results of experiment A.

5.2.2 Simulation Environment

Both experiments A and B are implemented with MATLAB/SIMULINK

model of Mackey–Glass equation (Eq. 3.6 with an ideal delay-line (Fig-

ure. 3.4). The parameter configurations used in our experimental setup are

given in Figure 5.2.
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In Glass et al. [4], the nonlinear parameter n was given a value of 9.65,

to induce chaos in the system. In that model the state value corresponds

to blood cell concentration, and so is always positive. Here, the state value

represents voltage, and is combined with various inputs and subjected to

masking procedures, resulting in the possibility for the term xτ + δIt – the

sum of the state value and input – to be negative.

To avoid the complications associated with raising negative numbers to

fractional powers, we restrict the value of n to be an integer. For our in-

vestigations, we consider n = 6 and n = 7 for NARMA task; these values

span the appropriate region determined by the Mackey–Glass mathematical

model (Eq. 3.6) and present a study of the system’s behaviour when raising

to an odd power – where negative values remain negative; and to an even

power – where negative values become positive. For the Santa Fe laser task,

we selected values of n to be 2 and 4. This choice is informed by prelimi-

nary experiment. When n is set to 3, with the specified parameters for the

Mackey-Glass model (see Table. 5.2), the No-offset scenario yields NaN val-

ues. This suggests that they have reached the error bar’s limits. The plot is

shown in Appendix. In earlier research by Appeltant et al. [173], n is set to

1 with different parameter configurations. However, as shown in Figure.3.7,

the nonlinear curve for n = 1 differs from what we use in this thesis.

5.2.3 Tasks

NARMA

For the NARMA experiments, the input sequence length generated by NARMA-

10 and NARMA-30 (see Eq. 3.8 and Eq. 3.9, respectively) is L = 3000. This



112 Masking

sequence is divided into separate datasets for training and testing purposes,

with Ltrain = 1700 and Ltest = 1200. The initial Lwashout = 100 results of

each sequence are discarded.

Each experiment is repeated 30 times to ensure reliability and robust-

ness of results. We use three different configurations to investigate whether

the randomness of input signals or of the masking is dominating the com-

putational performance of the system: i) SIDM has the same random input

sequence but different random masks for each run; ii) DISM has different

random input sequences but the same random masks for each run; iii) DIDM

has different input sequences and different masks for each run.

Santa Fe Laser task

The Santa Fe laser data prediction task is employed as an illustrative exam-

ple of one-step time series forecasting. The dataset used for this task consists

of 4000 data points, which are divided into four separate samples, with each

sample containing 1000 data points. In accordance with the existing litera-

ture, the normalised mean square error (NMSE) is employed as the standard

metric for evaluating performance on this task. In our experiments, we use

the NMSE to compare the predicted values with their corresponding actual

values. The detailed definition of NMSE can be found in Section 3.11.

Based on the objectives elucidated in this chapter, the nonlinear value,

delay time, and the configurations of the virtual nodes were selected. These

parameters are primarily derived from the study by [4]. Further details of

the experimental parameter settings can be consulted in Figure 5.2.
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parameter value description

β 0.8 coupling factor
γ 1 decay rate

τ (NARMA) 3.2 (sec) delay in feedback loop
τ (Santa Fe) 0.64 (sec) delay in feedback loop
n (NARMA) 6 and 7 nonlinearity

n (Santa Fe laser) 2 and 4 nonlinearity
δ 0.1 input scaling
N 64 number of virtual nodes

Figure 5.2: Parameter values for the Mackey–Glass delay-line reservoir experi-
ment. The Mackey–Glass system parameter values are from [4]; n is required to
be an integer (see text for details).

5.3 Experiment A: Comparison between BWM

and RWM

In this section, we experimentally compare the most commonly used masking

types: Binary Weight Mask and Random Weight Mask. The experimental

results for benchmarks NARMA-10, NARMA-30 and Santa Fe Laser task

are shown in Figure. 5.3, Figure. 5.4 and Figure 5.5respectively.

We use Matlab’s non-parametric statistical ranksum test to calculate the

p value (probability that the effect appears by chance) and Vargha–Delaney’s

A [174] to calculate the effect size (calculated only when p < 0.05, a sta-

tistically significant difference at the 95% confidence level). An effect size

A > 0.64 is a medium effect; A > 0.71 is a large effect.
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Figure 5.3: Simulation results for NARMA-10 benchmark task with two nonlin-
earity parameters: n = 6 (fig.5.3a, fig.5.3c and fig.5.3e), n = 7 (fig.5.3b, fig.5.3d
and fig.5.3f) base on different time-multiplexing functions: Eq.5.1, Eq.5.2 and
Eq.5.3. Each experiment is based on 30 runs.
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Figure 5.4: Simulation results for NARMA-30 benchmark task with two nonlin-
earity parameters: n = 6 (fig.5.4a, fig.5.4c and fig.5.4e), n = 7 (fig.5.4b, fig.5.4d
and fig.5.4f) base on different time-multiplexing functions. Each experiment is
based on 30 runs.
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Figure 5.5: Simulation results for Santa Fe Laser Task with No-offset, offset by
u and 2u scenarios.
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5.3.1 The need for Mask

The Sample and Hold procedure has a constant input over the whole period

τ (effectively, an N = 1 reservoir). Therefore, for SIDM, where we feed in the

same input sequence for each run, the NRMSE error is constant. For DISM

and DIDM we have the same sequence of random data, and (implicitly)

the same mask, so these scenarios have identical NMRSE distributions. This

control experiment also demonstrates that Sample and Hold does not provide

enough complexity of the input data stream, and that masking is necessary

to provide sufficient performance.

5.3.2 Binary Weight Mask vs Random Weight Mask

First, we compare the performance of Binary Weight Mask and Random

Weight Mask.

NARMA

The experimental results for NARMA-10 and NARMA-30 are depicted in

box-plots in Figures 5.3 and 5.4, with a summary of the NRMSE values

in DIDM configuration (the right column of charts) provided in Tables 5.1

and 5.2, respectively.

The Binary Weight Mask exhibits the lowest median NRMSE values,

which in No-offset, offset by u and 2u arrangements are 0.082, 0.132, and

0.114 (n = 6), 0.129, 0.221, and 0.172 (n = 7) in NARMA-10 result; 0.481,

0.522 and 0.497 (n = 6) and 0.524, 0.558 and 0.538 (n = 7) in NARMA-30,

respectively.

Under the scenario of n = 6 with DIDM setting in NARMA-10, the null
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hypothesis that there is no difference between BWM and RWM in the No-

offset case has p < 0.001, A = 0.67 (medium effect); in the offset by u case

has p < 0.001, A = 0.81 (large effect); and in the offset by 2u case has

p < 0.001, A = 0.63 (medium effect). In NARMA-30, with the scenario of

n = 7 with DIDM setting, the null hypothesis that there is no difference

between BWM and RWM in the No-offset case has p < 0.001, A = 0.79

(large effect); in the offset by u case has p < 0.001, A = 0.91 (large effect);

and in the offset by 2u case has p < 0.001, A = 0.63 (Medium effect).

Table 5.1: NARMA-10 experimental results (DIDM column NRMSE Values) for
Binary Weight Mask (BWM) and Random Weight Mask (RWM). Hypothesis
testing results p-value and A-value are used for data analysis between BWM and
RWM.

n Scenario BWM RWM p-value A-value Effect Size

6 No-offset 0.082 0.118 < 0.001 0.67 Medium
6 Offset by u 0.132 0.220 < 0.001 0.81 Large
6 Offset by 2u 0.114 0.131 < 0.001 0.62 Medium
7 No-offset 0.129 0.162 < 0.001 0.79 Large
7 Offset by u 0.221 0.341 < 0.001 0.91 Large
7 Offset by 2u 0.172 0.186 < 0.001 0.63 Medium

Table 5.2: NARMA-30 experimental results (DIDM column NRMSE Values) for
Binary Weight Mask (BWM) and Random Weight Mask (RWM). Hypothesis
testing results p-value and A-value are used for data analysis between BWM and
RWM.

n Scenario BWM RWM p-value A-value Effect Size

6 No-offset 0.481 0.525 < 0.001 0.67 Medium
6 Offset by u 0.522 0.583 < 0.001 0.81 Large
6 Offset by 2u 0.497 0.546 < 0.001 0.63 Medium
7 No-offset 0.524 0.553 < 0.001 0.79 Large
7 Offset by u 0.558 0.642 < 0.001 0.91 Large
7 Offset by 2u 0.538 0.569 < 0.001 0.78 Large
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Santa Fe Laser Task

The experimental results in Figure. 5.5 demonstrate the Binary Weight Mask

displays better performance of all the masking types, among all three ar-

rangements, with the lowest median NMSEs of 0.054, 0.082 and 0.056 (n =

2), 0.102, 0.175 and 0.109 (n = 4) respectively. The summary of the lowest

median NMSE values provided in Tables 5.3.

The null hypothesis states that there is no distinction between BWM and

RWM in the No-offset case. The statistical analysis yields a significance level

of p < 0.001 for this hypothesis, indicating strong evidence to reject it. The

effect size for this comparison is A = 0.65, which falls within the range of a

medium effect. Similarly, in the case of an offset by u, the null hypothesis

is also rejected with a significance level of p < 0.001. The effect size for this

comparison is A = 0.66, which again represents a medium effect. Likewise, in

the case of an offset by 2u, the null hypothesis is rejected with a significance

level of p < 0.001. The effect size for this comparison is A = 0.67, indicating

a medium effect size.

Table 5.3: Santa Fe laser task experimental results (DIDM column NMSE Values)
for Binary Weight Mask (BWM) and Random Weight Mask (RWM). Hypothesis
testing results p-value and A-value are used for data analysis between BWM and
RWM.

n Scenario BWM RWM p-value A-value Effect Size

2 No-offset 0.054 0.086 < 0.001 0.65 Medium
2 Offset by u 0.082 0.129 < 0.001 0.66 Medium
2 Offset by 2u 0.056 0.097 < 0.001 0.67 Medium
4 No-offset 0.102 0.152 < 0.001 0.79 Large
4 Offset by u 0.175 0.201 < 0.001 0.91 Large
4 Offset by 2u 0.109 0.187 < 0.001 0.78 Large
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Summary. Overall, these results evaluated by effect size suggest that the

Binary Weight Mask is statistically significantly better than the Random

Weight Mask in all three arrangements (No-offset, offset by u and 2u) in

both NARMA and Santa Fe Laser benchmark tasks.

5.3.3 Offset vs No-offset masking

In this section, the results of comparing the performance of Offset and No-

offset masks are presented.

NARMA

For the NARMA-10 and NARMA-30 tasks, Table 5.4 presents a summary

of experimental outcomes across configurations: No-offset, Offset by u, and

Offset by 2u. These results, derived from masking types BWM and RWM,

are consolidated from DIDM configuration, the right column of the central

charts of Figures 5.3 and 5.4. It is evident that with all types of masking,

No-Offset scenario obtain the best performance.

For instance, the NARMA-30 experimental results show that, with n

= 7, Random Weight Mask with DIDM configuration (the right column of

the right chars of Figures. 5.4b, 5.4d and 5.4f), the median of box plots in

NRMSE values are 0.553, 0.642 and 0.569 for No-offset ([−u, u]), offset by u

([0, 2u]) and offset by 2u ([u, 3u]), respectively.

Santa Fe Laser

The experimental results for the Santa Fe Laser task is illustrated in Fig-

ure. 5.5 and summarised in Table. 5.5. For both n = 2 and 4, the results
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Table 5.4: NARMA task experimental results (DIDM column NRMSE Values)
for No-offset, offset by u and offset by 2u.

n Task Masking Type No-offset Offset by U Offset by 2u

6 NARMA-10 BWM 0.082 0.132 0.114
6 NARMA-10 RWM 0.118 0.220 0.131
6 NARMA-30 BWM 0.481 0.522 0.497
6 NARMA-30 RWM 0.525 0.583 0.546
7 NARMA-10 BWM 0.129 0.221 0.172
7 NARMA-10 RWM 0.162 0.341 0.186
7 NARMA-30 BWM 0.524 0.558 0.538
7 NARMA-30 RWM 0.553 0.642 0.569

derived from the Random Weight Mask (displayed in the right column of all

figures) confirm that the best performance is achieved with no-offset, while

the poorest performance is observed when offset by u. However, for this

specific task, when a Binary Weight Mask is applied, there is no significant

difference between no-offset and offset by 2u.

Table 5.5: Santa Fe laser task experimental results (DIDM column NMSE Values)
for No-offset, offset by u and offset by 2u.

n Masking Type No-offset Offset by U Offset by 2u

2 BWM 0.054 0.082 0.056
2 RWM 0.086 0.129 0.097
4 BWM 0.102 0.175 0.109
4 RWM 0.152 0.201 0.187

Summary. Both no-offset (Eq. 5.1) and offset by 2u (Eq. 5.3) cases have

better results than the offset by u mask function (Eq. 5.2). This is due to

the input signal I(t) in the range over the interval [0, 2u], which is the case of

BWM means approximately half the input values are masked to 0, resulting

in information loss, compared to the no offset (interval [−u, u]) and offset by
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2u (interval [u, 3u]) cases, where no such zero values are formed.

5.3.4 Random masks vs random input

There are two sources of randomness: the mask, and the input stream. In

the NARMA-10 Random Weight Mask / no-offset experiments (Figure. 5.3a

and Figure. 5.3b, center), comparing SIDM and DISM has p = 0.272 and p =

0.325, respectively, so there is no statistically significant difference between

the randomness from the mask and from the input.

5.4 Experiment B: Random Bias of BWM

Sequence

Prior studies in the area of Delay-feedback Reservoir Computing consistently

mention the creation of virtual nodes along the delay-line, often involving a

term like “randomly generating a mask within the interval [−u, u]”. However,

there is insufficient exploration of how the “randomness” of this distribution

might affect the performance of the Delay-feedback Reservoir Computing.

In this section, we describe an experiment to ascertain the influence of

the Binary Weight Mask signal’s distribution (randomness) on the perfor-

mance of Delay-Feedback Reservoir Computing, under two conditions: No-

offset and Offset. This experiment provides an empirical “recipe” illustrat-

ing the randomness distribution in the generation of the mask signal. The

term ‘Uppers’ defines the number of high values in the BWM. In a standard

random case, there are on average typically 32 Uppers out of a total of 64

virtual nodes. However, random effects might cause slight deviations from
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this 50/50 split, particularly as we are dealing with small numbers. In this

experiment, we systematically select (parameter sweep) different numbers of

Uppers, ensuring the bias of randomness is fully explored.

The experimental performances are presented by using the benchmark

tasks NARMA-10 and NARMA-30. The parameters of Delay-Feedback Reser-

voir Computing based on Mackey–Glass system are defined in Table. 5.2.

5.4.1 No-Offset

The experimental results of NARMA-10 and NARMA-30 benchmark tasks

under No-Offset (Eq. 5.1) scenario with nonlinearities of n = 6 and n = 7

are plotted in Figure. 5.6. The ‘Uppers’ noted in the figures refers to the

number of positive u values in [−u, u]. In No-Offset scenario here, u = 0.5.

The highest value for ‘Uppers’ is 64, as that is the number of virtual nodes

we set along the delay-line in this study.

The experimental results for nonlinearity n = 6 in NARMA-10 and

NARMA-30, depicted in Figures 5.6a and 5.6c respectively, both demonstrate

a “symmetrical-like” trend centered around the midpoint of the x-axis, i.e.,

where the count of ‘Uppers’ is 32. The lowest NRMSE values are achieved

at ‘Uppers’ = 27 (NRMSE = 0.077) and ‘Uppers’ = 37 (NRMSE = 0.078).

When the system has all virtual nodes that generate from all masking values

equal −u or u in the system, i.e., ‘Uppers’ = 0 and ‘Uppers’ = 64 respec-

tively, the system has the worst performance. However, the interquartile

range (IQR) of the boxplots in Figures 5.6a and 5.6c show a relatively stable

behaviour of the system with varying input sequences.

Figures 5.6b and 5.6d display the results of experiments carried out
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Figure 5.6: Experimental results for investigating the ‘Randomness’ of distribu-
tion of Binary Weight Mask. No-offset [−u, u] masking scenario is used. (a)
and (b) show the NARMA-10 results for nonlineaities n = 6 and n = 7; (c) and
(d) show the NARMA-30 results for nonlineaities n = 6 and n = 7 respectively.
‘Uppers’ stands for the number of positive u values in [−u, u].
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on NARMA-10 and NARMA-30 respectively, using a nonlinearity factor of

n = 7. It is noteworthy that the first twelve ‘Uppers’ values on the x-axis

(ranging from ‘Uppers’ = 1 to ‘Uppers’ = 11) correspond to NaN (Not a

Number) values, which indicates that the Mackey-Glass DFRC system en-

countered errors/warnings while generating these test results. Furthermore,

the interquartile range (IQR) of the boxplot results for ‘Uppers’ values from

12 to 31 appears considerably wider compared to the IQR for ‘Uppers’ values

ranging from 32 to 64.

These results reveal that, careful consideration must be given when se-

lecting the nonlinearity value in the Mackey-Glass model outlined in Eq. 3.6,

whether it is an odd or even number under the No-Offset masking scenario.

This is particularly crucial because the exponential term, which represents

nonlinearity in the denominator, impacts the stability of the system. This

effect is especially pronounced when the majority of mask values are negative.

5.4.2 Offset

Figure. 5.7 presents the experimental results of the NARMA-10 and NARMA-

30 benchmark tasks, performed under the ‘Offset’ scenario (defined in Eq. 5.2),

using nonlinearity parameters of n = 6 and n = 7. In this case, ‘Uppers’ as

x-axis label in the figures, stands for the number of 2u values in [0, 2u], i.e.,

[0, 1] in this experiment as u = 0.5.

The figures indicate that the performance of the Mackey–Glass DFRC

deteriorates as the system receives an increased number of ‘Uppers’ as input

masking signals. However, it is observed that the points at which the trends

begin to escalate exponentially vary across different figures. In Figures. 5.7a
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Figure 5.7: Experimental results for investigating the ‘Randomness’ of distribu-
tion of Binary Weight Mask. Offset [0, 2u] masking scenario is used. (a) and (b)
show the NARMA-10 results for nonlineaities n = 6 and n = 7; (c) and (d) show
the NARMA-30 results for nonlineaities n = 6 and n = 7 respectively.‘Uppers’
stands for the number of 2u values in [0, 2u].
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and 5.7b, the system’s performance remains fairly stable until the mask con-

tains more than 15 ‘Uppers’ signals. Conversely, in Figures. 5.7c and 5.7d,

the performance stability is maintained until the mask includes more than

40 ‘Uppers’.

The findings presented in Figure. 5.7 indicate that, under the Offset sce-

nario ([0, 2u]), the system does not gain any advantages from increasing the

amount of 2u values in the masking; however, it might gain by decreasing

them from 32 2u values.

5.5 Conclusion

In this chapter is undertaken a detailed exploration of the assumptions sur-

rounding masking, an integral procedure within the framework of delay-

feedback reservoir computing.

The examination of the masking procedure was approached from two

distinct perspectives:

Firstly, an experimental comparison is made between Binary Weight

Mask (BWM) and Random Weight Mask (RWM) using three benchmark

tasks - NARMA-10, NARMA-30, and Santa Fe Laser task. The bench-

marks use non-parametric statistical ranksum tests to calculate p-values and

Vargha-Delaney’s A to calculate the effect size, testing the masks’ perfor-

mance with different nonlinearity parameters, and offset and no-offset con-

figurations.

The results consistently indicate BWM performs statistically significantly

better than RWM across all scenarios. In terms of offset vs. no-offset mask-

ing, the results suggest that no-offset masking generally provides better per-
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formance. Given the widespread use of these tasks in related research, we

believe our results will facilitate a broader comprehension of how these dif-

ferent masking signals perform.

Secondly, the impact of the randomness of Binary Weight Mask (BWM)

signal distribution on the performance of Delay-feedback Reservoir Comput-

ing was explored. The study assesses two conditions: No-offset and Offset,

under which the BWM’s randomness is investigated. Experiments are con-

ducted using the NARMA-10 and NARMA-30 benchmark tasks, employing

the Mackey-Glass model as the system’s base. In the No-offset scenario, best

performances occur at moderate “randomness”, with worst results at the ex-

tremes. The Offset scenario, however, shows a decline in system performance

with an increasing number of higher mask values. The section emphasizes

the requirement to carefully select nonlinearity values according to different

tasks, including controlling random bias when generating masks, particularly

in the No-offset scenario.
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DFRC with external Feedback

A distinctive feature of Delay-Feedback Reservoir Computing (DFRC) sys-

tem is their single-input/single-output structure, which makes them efficient

for physical implementation. However, this also presents a significant limi-

tation to multi-input tasks, as how to multiplex the inputs in the already-

time-multiplexed input stream is not obvious.

To investigate this, in this chapter, a novel task for DFRC is proposed,

which intrinsically requires multiple inputs: the control of a forced Van der

Pol oscillator system. Here, the trained reservoir serves as a controller, mod-

ulating the nonlinear dynamics of the Van der Pol system by constraining

its trajectory to a circle. During this procedure, the DFRC is integrated

into a closed system, where the Delay-Feedback RC operates with external

feedback.

We introduce an enhanced input masking process to inject multiple in-

puts in the time domain, thereby expanding the application range of DFRCs.

Two methodologies, ‘Interleaved’ and ‘Sequential’, are investigated for inte-

grating multi-input signals into a delay-line reservoir, without necessitating

a modification of its topology.

The chapter is structured as follows: Section 6.1 introduces the back-

ground of the Van der Pol oscillation system. Section 6.2 dives deeper into



130 DFRC with external Feedback

our multi-input injection methodologies and provides a comprehensive expla-

nation of the proposed task. The outcomes of the experimental application of

the proposed task are explored in Section 6.3. Finally, Section 6.4 culminates

with the conclusion of the chapter.
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6.1 The Van der Pol Oscillator System

The Van der Pol oscillator was first described by the Dutch physicist Baltha-

zar Van der Pol in the 1920s [175] and later employed to model the oscillations

of the heart [176]. It is particularly useful for modeling systems that exhibit

non-linear behavior, such as relaxation oscillations and self-sustained oscil-

lations. Within the context of machine learning, the Van der Pol oscillator

is commonly used to test the effectiveness of neural networks [177, 178]. In

a recent study, Shougat et al. applied the Van der Pol oscillator as the sub-

strate of physical reservoir computing [179]. Here, we use Delay-Feedback

Reservoir Computing as the controller to constrain the trajectory of Van der

Pol oscillator.

The Van der Pol oscillator is characterised by a nonlinear damping term.

The forced Van der Pol, expressed as a nonlinear differential equation, is

described as follow:

d2x

dt2
− µ(1− x2)

dx

dt
+ x = F (t) (6.1)

where x is the state variable, t is time, and µ is a scalar parameter that dic-

tates the nonlinearity and the strength of the damping. F (t) is the external

force applied to the VdP system.

When the external forcing term F (t) = 0, this is the Van der Pol oscillator

(depicted in Figure. 6.1). The equation demonstrates oscillatory activity, but

its amplitude is not constant; it represents an invariant set known as a ‘limit

cycle’ attractor. Regardless of the initial conditions, all system trajectories

converge to this attractor.
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Figure 6.1: Phase plane of Van der Pol oscillator in Equation 6.1 with F(t) = 0
(no external force applied). Parameter settings: µ = 1.5, the initial condition of
each plot is listed.

We seek to control the VdP system so that it produces a fixed-amplitude

oscillation by defining a suitable control function for the external force F (t)

in Eq. 6.1. We use a PID (proportional integral derivative) controller config-

ured to optimise the performance under a commanded trajectory to realize

a controlled circular trajectory. The PID controller equation is given as:

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

d

dt
e(t) (6.2)

where u(t) is the controller output; Kp is the proportional gain; Ki is the

integral gain; Kd is the derivative gain; e(t) is the error signal, which is the

difference between the desired set-point and the actual output. Cooper et

al. highlights the challenges involved in regulating the nonlinear dynamics

of the VdP Oscillator using a PID controller [180]. However, our aim in this

work is not to find an optimal controller for the Van der Pol Oscillator but

rather to illustrate the application of DFRC. And for this reason, we have
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selected PID parameters that provide sufficiently good performance here.

6.2 Control of Van der Pol task

In this section, a novel multiple inputs task for Delay-Feedback Reservoir

Computing is proposed: Control of a Forced Van der Pol Oscillator System.

The task involves two steps:

1. Imitation of PID controller behaviour. The reservoir is trained to imi-

tate the output control signal of the PID controller as closely as possible

using the same inputs.

2. Reservoir control Van der Pol Oscillator. Replace the PID and drive

the forced Van der Pol system with the trained reservoir as the con-

troller.

The methodologies of injecting multiple inputs to DFRC and experimen-

tal setups used in this task are explained in the following sections.

6.2.1 Multiple inputs

To effectively regulate the Van der Pol oscillator, the PID controller needs to

know the oscillator’s current state, including its position x(t) and its velocity

ẋ(t).

The initial phase of the task involves training the reservoir to imitate

the output control signal of the PID by injecting the same inputs of cur-

rent position x(t) and velocity ẋ(t). However, there is inherent limitation

when dealing with multi-input tasks with DFRCs due to their single input
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Figure 6.2: (a) Interleave and (b) Sequential masking methods.

stream structure in the time domain. To address this, we introduce the mask-

ing approaches of injecting multiple inputs in the time domain of delay-line

reservoir: Interleave and Sequential.

Interleave

The interleave technique schematic, shown in Figure. 6.2a, is a method that

places masked dual- or multi-inputs in an alternating manner. For example,

when two input streams undergo time-multiplexing procedure, they are com-

pletely mixed before injecting into the system, i.e. ‘x1,ẋ1,x2,ẋ2,. . . ’ shown

in the illustration with inputs being ‘x and ẋ’.

Sequential

In contrast, the sequential approach leaves the inputs in sequence and con-

catenates them before undergoing the masking procedure (shown in Fig-
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ure. 6.2b), i.e. ‘x1,x2,x3,. . . , ẋ1,ẋ2,ẋ3,. . . ’. The length of each input value’s

concatenation depends on the number of virtual nodes along the delay line.

In this instance, each input value is concatenated to length of N/2, as N

virtual nodes are defined in the reservoir.

6.2.2 Training and Implementing

There are two phases involved in this task: a) Imitation of PID controller

and b) Using trained DFRC to drive the Van der Pol oscillator. We refer to

the initial phase as ‘Training’, as it involves training the DFRC to imitate the

PID controller. The subsequent phase, ‘Implementing’, assesses the trained

DFRC to determine if it has effectively gained control over the Van der Pol

oscillator. The detail of each phase is given in the following sections.

Training

Figure. 6.3 demonstrates the training procedure of the task – training DFRC

to imitate the PID behaviour. The input sequences, which comprise of the

error between the desired position and the current position (∆x), and the

error between the desired velocity and current velocity (∆ẋ), along with the

output control signals, are collected from the PID controller as depicted in

Figure.6.3a. The Van der Pol oscillator is run to produce a sequence length of

L, which is subsequently split into training and testing datasets, Ltrain, Ltest,

Lunseen and a washout of Lwashout with the first Lwashout samples discarded.

The input sequences (∆x and ∆ẋ) in train dataset are combined using

the proposed approaches: Interleave or Sequential to feed into the DFRC.

The output control signal serves as the target output for DFRC. The output
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Figure 6.3: Training step of Forced Van der Pol task.

weight matrix W is trained using ridge regression (see Section 3.1.3 for detail

on Determination of Weights). Normalised root mean square error (NRMSE)

in Equation 3.10 is used to assess and compare the performance of different

experimental techniques. Detail of NRMSE is given in Section 3.3.1.

Implementation

Figure. 6.4 depicts the implementing phase of Forced Van der Pol task by

applying the trained DFRC as controller for Van der Pol oscillator. The

Lunseen dataset from the training phase is interleaved/sequenced and used to

evaluate DFRC as a controller. The weight matrix W used in this context

are the sequences that have been optimized during the training phase.
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Figure 6.4: Testing phase of Forced Van der Pol ask. The DFRC with optimised
weights W is used as controller to drive Van der Pol oscillator.

6.2.3 Experimental methods

Masking. Masking plays a crucial role in delay-feedback reservoir comput-

ing since it defines the virtual nodes along the delay line. In this task, we

use Binary Weight Mask (a random sequence of −1 and +1 values) with

no-offset and offset by u configurations in Equations 5.1 and 5.2 respectively.

Experimental environment. Van der Pol oscillator driven by PID con-

troller is simulated in SIMULINK (Fig. 6.5), in which the nonlinear Van der

Pol equation is propagated forward in time with different initial conditions.

With the ‘Feedback on/off Switch’ set to ‘OFF setting’, the Van der Pol dy-

namic system exists on its own, without any external driving force, according

to Eq. 6.1, and as shown in Fig. 6.6a. The single PID controller initial set-

tings are: kp0 = 1; kd0 = 50kp0; ki0 = kp0 ∗ 0.1, which is optimized for an

amplitude of 2. To compare the forced trajectory with this target trajectory,

the phase plots are shown in Fig. 6.6. Note that here, the reservoir is trained

using a PID controller tuned for a radius of 2 in all three cases. Since we

are not seeking perfection but rather intend to demonstrate and compare

the sensitivity of the PID and reservoir controller, optimised for radius 2
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Figure 6.5: The block diagram of the Van der Pol Oscillator driven by PID
controller. The single PID controller initial settings are: kp0 = 1; kd0 = 50kp0;
ki0 = 0.1kp0.

respectively, when applied to larger or smaller radii.

The Mackey-Glass model depicted in Figure. 3.4 is used as DFRC in this

experiment. Detail of the framework and implementation is presented in

Section 3.2.1.

6.2.4 Parameter Setting

The experimental parameter settings of Mackey-Glass based DFRC are shown

in Table 6.7. The Van der Pol oscillator is run to produce a sequence length

of L = 5000, which is subsequently split into training and testing datasets,

Ltrain = 2280, Ltest = 1140, Lunseen = 380, and a washout of Lwashout = 1200

with the first Lwashout samples discarded.
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Figure 6.6: Forced VdP oscillator trajectories (blue solid line) and forced target
trajectories (red dashed line) are shown. (a) Initial baseline trajectory without
PID controller (unforced Van der Pol trajectory). (b–f) Comparisons between
desired forced trajectory and actual trajectory with amplitudes of 1–5 respectively.
The single PID controller is optimized for an amplitude of 2 (kp0 = 1; kd0 =
50kp0; kio = 0.1kp0).

parameter value description

β 2 coupling factor
γ 1 decay rate
τ 1.8 (sec) delay in feedback loop
n 1, 2, . . . , 9 nonlinearity
δ 0.25 input weighting
N 30 number of virtual nodes

Figure 6.7: Parameter values for the Mackey–Glass delay-line reservoir experi-
ment. The Mackey–Glass system parameter values are from [4]; n is required to
be an integer.
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6.3 Experimental Results

6.3.1 Imitation of PID Control Behaviour

We systematically compare the computational performance of two multi-

input techniques: ‘Interleave’ and ‘Sequential’, with no-offset (Eq. 5.1) and

offset (Eq. 5.2) under different nonlinearity parameters: n = 1 to n = 9. In

this experiment, the PID controller is optimized for a radius of 2 and these

settings stay the same for all target radii used here, ranging from 1 to 5.

Note that, therefore, the target sequences generated by the PID controller

for radii of 1, 3, 4, 5 are not optimal control solutions. This is deliberate, so

that the capability to generalise over a range of radii ̸= 2 can be evaluated

independently for PID and reservoir controller.

Fig. 6.8 shows the results of these different experimental settings.

1. Interleave v Sequential. The Sequential technique displays better per-

formance than Interleave, in the no-offset and offset arrangements, with

lowest NRMSE of 0.090 and 0.069 (n = 3, targetradius = 4).

2. No-offset v Offset. In this task, offset mask gives better results. Since

we are using Mackey-Glass equation (Eq. 3.6) as the non-linear compo-

nent of the reservoir, the negative input value may cause the denomina-

tor term crushed with worse NRMSE results = 1.000 (indicated yellow

in Fig. 6.8a and Fig. 6.8c).

6.3.2 Trained DFRC controls Van der Pol Oscillator

Since the ultimate goal of this benchmark task is to use a reservoir as a

controller to drive the trajectory of a Van der Pol system (see Figure 6.3b), we
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(b) Interleave with offset masking.
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(c) Sequential with no-offset masking.
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(d) Sequential with offset masking.

Figure 6.8: Simulation results in NRMSE for controlling benchmark task with
two multi-input methodologies: Interleave (fig.6.8a and fig.6.8b) and Sequential
(fig.6.8c and fig.6.8d) based on different masking schemes (Eq. 5.2 and Eq. 5.1).
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Figure 6.9: Simulation results for Van der Pol nonlinear system driven by the
trained reservoir. Comparisons between target circle (red dashed line), trajectory
commanded by PID controller (orange dotted line), and trajectory controlled by
reservoir computing (blue solid line).

use the weight matrix of best trained reservoir from the previous experiment,

with n = 2, to drive the Van der Pol Oscillator.

Fig. 6.9 shows the comparison between the target circular trajectory

(dashed line) representing the baseline, the trajectory commanded by the

PID controller optimised for radius 2 (dotted line), and the trajectory con-

trolled by the reservoir trained on the PID output from radius 2 (solid line).

6.4 Conclusion

In this chapter, a novel task for DFRC is proposed, that inherently necessi-

tates multiple inputs: the control of a forced Van der Pol oscillator system.

This task integrates the DFRC, which is trained on multiple-inputs (the os-

cillator’s position and velocity), into a closed-loop system, i.e., with external

feedback serves as a controller to modulate the Van der Pol Oscillator’s non-

linear dynamics, constraining its trajectory to a circular path.

To facilitate multiple inputs, two masking approaches: ‘Interleave’ and
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‘Sequential’ are investigated. Experimental results from comparing the two

multi-input techniques showed that the ‘Sequential’ technique obtains better

performance in both no-offset and offset arrangements, with the offset mask

providing the best results.

The proposed task, divided into two stages – (i) DFRC imitating the

PID controller, which showcases the adaptability of the DFRC in handling

multiple inputs with proposed approaches; and (ii) implementing the trained

DFRC as the controller – demonstrate the feasibility of DFRC controlling

Van der Pol oscillators.
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7
Conclusion and Future Work

7.1 Conclusion

This thesis begins with a simple question: is it possible to improve the

computational performance of physical Delay-Feedback Reservoir Comput-

ing (DFRC) system by exploring its implicit assumptions? To answer this,

we first list three implicit assumptions currently made about physical DFRC

system:

1. The performance of DFRC is not affected by the attenuation that hap-

pens in physical delay-line since the nodes defined along it are ‘virtual’

2. To define virtual nodes along the delay-line in DFRC, the mask used

should comprise randomly generated numbers uniformly distributed

between [−u, u]

3. DFRC is typically used to solve time series prediction tasks involving

a single input and output with no external feedback

To investigate these assumptions, a simulation framework of DFRC based on

a delay differential equation – the Mackey–Glass mathematical model – has

been developed. The experimental results and discussions of assumptions 1,
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2 and 3 are given in Chapter 4, 5 and 6 respectively, which are summarised

in the following section.

7.1.1 Thesis Chapter Summary

This section contains overviews of each experimental chapter along with the

technical details, which provides a reference to significant findings and out-

comes presented in this thesis.

Regarding to the implicit assumption 1 on the read-out phase of physical

DFRC, the experiments in Chapter 4 show that the computation perfor-

mance of DFRC is affected by the attenuation along the delay-line. To miti-

gate this impact, we propose a methodology referred to as ‘Devirtualisation’

which trades-off the DFRC system’s read-out frequency and the number of

output lines.

• Simulation environments: Mackey–Glass system with: a) ideal delay-

line; b) damped delay-line

• Four configurations of delay-line: A: Ntotal=32, θ=25ms; B: Ntotal=32,

θ=50ms; C: Ntotal=64, θ=25ms; D: Ntotal =64, θ=50ms.

• Benchmark tasks: NARMA-10, NARMA-30 and Santa Fe laser task.

• Concept of Devirtualisation: the procedure of directly tapping into the

delay line at the position of a ‘virtual’ node, rather than at the delay

line’s end.

• The initial experiment uses an ideal delay-line to test the proper func-

tioning of each block and demonstrate the feasibility of ‘Devirtualisa-

tion’ without the influence of other factors.
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• The second experiment compares the ideal delay-line and damping

delay-line with fully virtualised systems (only one output line is used),

the result demonstrates the fact that the computation performance of

DFRC is affected by the attenuation along the delay-line.

• In the third experiment, the fully damped delay-line is investigated

in two distinct scenarios: ‘constant damping rate over delay-line’ and

‘constant damping rate per unit length.’ The results under both sce-

nario show that the devirtualisation approach significantly enhances

physical DFRC performance, consistently improving with more output

lines and reaching peak effectiveness when equalling the virtual node

count.

In Chapter 5, the assumptions about two perspectives of masking pro-

cedure in DFRC are explored: Comparison of Binary Weight Mask (BWM)

vs. Random Weight Mask (RWM); The bias in randomness of Binary Weight

Mask (BWM) signal distribution’s impact due to small numbers/sequences

of masks.

• Simulation environment: Mackey–Glass model with ideal delay.

• Benchmark tasks: NARMA-10, NARMA-30 and Santa Fe laser task.

• Assessed masks’ performance:

– With odd/even nonlinearity parameters.

– Under different scenarios: No-offset ([−u, u]), Offset by u ([0, 2u])

and Offset by 2u ([u, 3u]) configurations.
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• Experiment 1 – Comparison of Binary Weight Mask (BWM) vs. Ran-

dom Weight Mask (RWM):

– BWM is statistically superior to RWM across all scenarios.

– No-offset masking generally yields better results.

• Experiment 2 – Randomness of Binary Weight Mask (BWM) signal

distribution’s impact:

– Findings in No-offset: 1) Best performances are seen at moderate

quantity of bias in randomness; poor results at extreme bias. 2)

Importance of careful nonlinearity values selection, especially in

No-offset scenario.

– Findings in Offset: decline in system performance with an increas-

ing number of high mask values.

In Chapter 6, a novel task for DFRC that inherently necessitates multi-

ple inputs: the control of a forced Van der Pol oscillator system is proposed.

• Simulation environment: Mackey–Glass model with ideal delay-line.

• Two masking approaches to facilitate multiple inputs: Interleave and

Sequential.

• Experimental finding: ‘Sequential’ outperforms ‘Interleave’ under the

scenarios of No-offset and Offset by u.

• The control of a Forced Van der Pol Oscillator task: employ the trained

DFRC as a controller, modulating the nonlinear dynamics of the Van

der Pol oscillating system by constraining its trajectory to a circle.
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• Two stages of proposed task:

– DFRC imitates the PID controller: demonstrates DFRC’s adapt-

ability in handling multiple inputs using the proposed approaches.

– Implementing the trained DFRC as the actual controller: validates

the application of DFRC in controlling the Van der Pol oscillator.

7.2 Future Work

While the outcomes of this thesis break the implicit assumptions of physi-

cal DFRC and thereby enhance its performance, they also raise new open

research questions that remain to be explored. Future work associated with

specific parts of this thesis are as follow:

7.2.1 Topology of DFRC

As addressed in Chapter 6, a distinct characteristic of Delay-Feedback Reser-

voir Computing (DFRC) is its single-input configuration, which renders it ef-

ficient for physical deployments. Yet, this feature poses a notable constraint

for tasks with multiple inputs, given that the order of information in the

time-multiplexed input stream is not readily apparent.

In this thesis we propose masking procedures (Interleave and Sequential)

to address this limitation, enabling multiple inputs to be channeled into a sin-

gle nonlinear node. Here, the inherent topology of DFRC remains unchanged.

Investigating the DFRC topology that incorporates multiple delay lines to

improve its versatility for multi-input tasks, particularly those demanding

varied input sample rates, could be advantageous, possibly expanding its
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range of application.

7.2.2 Hyper-parameter Optimisation Framework

In Chapter 3, Section 3.2.2, we conducted a series of experiments to deter-

mine reasonable values for (we believe are) crucial parameters within the dy-

namical system being used, aiming to establish a relatively suitable regime

for DFRC. When designing a physical DFRC, optimising each system pa-

rameter can be time-consuming. This is because the performance of DFRC

is highly dependent on the choice of hyper-parameters, such as delay time

and feedback strength, as well as other parameters that might not be im-

mediately recognized as significant. Extensive tuning might be necessary to

optimise the system for a specific problem. Therefore, for future advance-

ments, developing a comprehensive framework to optimize hyperparameters

of the dynamical system based on specific tasks could be highly beneficial for

the design of physical DFRC.

7.2.3 Practical Real-World Applications

DFRC is primarily designed for time series prediction tasks. Previous work [181]

uses DFRC successfully detect the VEB (Ventricular Ectopic Beat) in the

continuous ECG (electrocardiogram) stream after fully optimizing the pa-

rameters.

For future work, another medical application for physical DFRC is de-

tecting and intervening of Parkinson’s disease. Parkinson’s disease detection

often involves analysing biomedical data, such as voice recordings, gait analy-

sis, or even brain signals. These biomedical data present time-series patterns
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or temporal dependencies that are indicative of the disease’s progression or

symptoms, then DFRC, with its temporal processing capability, could be a

potential tool for this purpose. In this thesis, we demonstrate the capability

of DFRC to function as a controller. While DFRC cannot directly provide

a cure, it might aid in optimising therapeutic interventions. For example,

Deep Brain Stimulation (DBS) is a procedure sometimes used for Parkin-

son’s. DFRC could potentially be used to optimise the parameters of DBS

based on real-time feedback from the patient and alleviate the symptoms of

Parkinson’s disease to improve the quality of life for patients.
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In this appendix, the experiment results of Santa Fe laser task in Chap-

ter 4 and Chapter 5 are given.

This experiment explores the performance of the devirtualisation ap-

proach in various situations, we assess the effectiveness of the four delay-

lines in two distinct scenarios: a) Constant damping rate over delay-line and

b) Constant damping rate per ‘length’. This experiment uses four damping

delay-lines that vary either in the number of virtual nodes or in the length

of the line.
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Figure 1: Santa Fe laser task results for constant damping rate over delay-
line. A: Ntotal=32, θ=25ms; B: Ntotal=32, θ=50ms; C: Ntotal=64, θ=25ms; D:
Ntotal =64, θ=50ms.
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Figure 2: Santa Fe laser task results for constant damping rate per length.
A: Ntotal=32, θ=25ms; B: Ntotal=32, θ=50ms; C: Ntotal=64, θ=25ms; D:
Ntotal =64, θ=50ms.
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Figure 3: Santa Fe laser task results in NMSE values for n = 3 under No-Offset
scenario. ‘SH’: Sample and Hold; ‘BWM’: Binary Weight Mask; ‘RWM’: Random
Weight Mask.

This plot demonstrates the finding of Santa Fe laser task under nonlinear-

ity of Mackey-Glass system equals to 3 under the configuration of No-Offset

masking type. The parameters of experimental settings is listed in Table. 5.2.
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delay-based photonic reservoir computing,” Optical Materials Express,

vol. 12, no. 3, pp. 1214–1231, 2022.

[143] M. Le Berre, E. Ressayre, A. Tallet, H. Gibbs, D. Kaplan, and M. Rose,

“Conjecture on the dimensions of chaotic attractors of delayed-feedback

dynamical systems,” Physical Review A, vol. 35, no. 9, p. 4020, 1987.

[144] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Hael-

terman, and S. Massar, “Optoelectronic reservoir computing,” Scien-

tific Reports, vol. 2, no. 1, pp. 287–287, 2012.

[145] F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar,

“All-optical reservoir computing,” Optics express, vol. 20, no. 20, pp.

22 783–22 795, 2012.

[146] D. Brunner, B. Penkovsky, B. A. Marquez, M. Jacquot, I. Fischer,

and L. Larger, “Tutorial: Photonic neural networks in delay systems,”

Journal of Applied Physics, vol. 124, no. 15, p. 152004, 2018.

[147] K. Hicke, M. A. Escalona-Morán, D. Brunner, M. C. Soriano, I. Fischer,

and C. R. Mirasso, “Information processing using transient dynamics

of semiconductor lasers subject to delayed feedback,” IEEE Journal of

Selected Topics in Quantum Electronics, vol. 19, no. 4, pp. 1 501 610–

1 501 610, 2013.

[148] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological

control systems,” Science, vol. 197, no. 4300, pp. 287–289, 1977.



BIBLIOGRAPHY 179

[149] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, and

B. Sautois, “New features of the software matcont for bifurcation anal-

ysis of dynamical systems,” Mathematical and Computer Modelling of

Dynamical Systems, vol. 14, no. 2, pp. 147–175, 2008.

[150] S. Boccaletti, J. Kurths, G. V. Osipov, D. L. Valladares, and C. Zhou,

Synchronization of chaotic systems. Wiley Online Library, 2000.

[151] T. Kapitaniak, Controlling chaos. Academic Press, 1996.

[152] Y. Kuramoto and I. Nishikawa, “Statistical macrodynamics of large dy-

namical systems. case of a phase transition in oscillator communities,”

Journal of the Physical Society of Japan, vol. 49, no. 7, pp. 2355–2360,

1987.

[153] R. Hegger, H. Kantz, and T. Schreiber, “Computation of lyapunov

exponents from time series: Efficiency vs. accuracy,” CHAOS, vol. 9,

no. 3, pp. 636–643, 1999.

[154] J. C. Sprott, Chaos and Time-Series Analysis. Oxford University

Press, 2003.

[155] T. Erneux, Applied delay differential equations. Springer Science &

Business Media, 2009, vol. 3.

[156] J. Schumacher, H. Toutounji, and G. Pipa, “An introduction to delay-

coupled reservoir computing,” in Artificial Neural Networks: Methods

and Applications in Bio-/Neuroinformatics. Springer, 2015, pp. 63–90.

[157] P. Antonik, F. Duport, M. Hermans, A. Smerieri, M. Haelterman, and

S. Massar, “Online training of an opto-electronic reservoir computer ap-



180 BIBLIOGRAPHY

plied to real-time channel equalization,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 28, no. 11, pp. 2686–2698, 2016.

[158] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic

systems and saving energy in wireless communication,” Science, vol.

304, no. 5667, pp. 78–80, 2004.

[159] L. Junges and J. A. Gallas, “Intricate routes to chaos in the mackey–

glass delayed feedback system,” Physics Letters A, vol. 376, no. 30-31,

pp. 2109–2116, 2012.

[160] E. Shahverdiev, R. Nuriev, R. Hashimov, and K. Shore, “Chaos syn-

chronization between the mackey–glass systems with multiple time de-

lays,” Chaos, Solitons and Fractals, vol. 29, no. 4, pp. 854–861, 2006.

[161] S. Sano, A. Uchida, S. Yoshimori, and R. Roy, “Dual synchronization of

chaos in mackey-glass electronic circuits with time-delayed feedback,”

Physical Review E, vol. 75, no. 1, p. 016207, 2007.

[162] L. Berezansky and E. Braverman, “Mackey-glass equation with vari-

able coefficients,” Computers & Mathematics with Applications, vol. 51,

no. 1, pp. 1–16, 2006.

[163] S. Documentation, “Simulation and model-based design,” 2020.

[Online]. Available: https://www.mathworks.com/products/simulink.

html

[164] MATLAB version 9.10.0.1613233 (R2021a), The Mathworks, Inc.,

Natick, Massachusetts, 2021.

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html


BIBLIOGRAPHY 181

[165] A. C. McDonnell and M. A. Trefzer, “The effect of system timescale

on virtual node connectivity within delay-feedback reservoirs,” in 2023

International Joint Conference on Neural Networks (IJCNN). IEEE,

2023, pp. 1–8.

[166] A. F. Atiya and A. G. Parlos, “New results on recurrent network

training: unifying the algorithms and accelerating convergence,” IEEE

Transactions on Neural Networks, vol. 11, no. 3, pp. 697–709, 2000.
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