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Abstract 

ABSTRACT 

This thesis describes a combined analytical and experimental investigation into the influence of 
human occupants on the dynamic properties of civil engineering structures. This is an increasingly 
important issue in the design of assembly structures against human-induced vibrations. 

An analytical parametric study demonstrated that a damped single degree of freedom (SDOF) 

model of one or more human occupants can explain (1) natural frequency increases and decreases, 
(2) additional natural frequencies, and (3) response reductions, reported in the literature. 

Experimental investigations employed a lightly damped simply supported prestressed concrete 
beam spanning 11 m and weighing 15 tonnes. The influence of up to five stationary humans on the 
modal properties of this laboratory based, but realistic, full-scale test structure was quantified. For 
this purpose, natural frequencies, damping ratios, mode shapes, and modal masses were estimated 
by curve-fitting of measured frequency response functions. It was shown that the occupants affected 
the three investigated vertical bending modes of the test structure (at about 4.5 Hz, 17 Hz, and 
38 Hz). The occupants most significantly increased damping and it was established that the location, 
the posture and the number of occupants were important. Within the range of low-level vibrations 
studied, the level of vibration of the structure had only little effect. 

The combined analytical studies and experiments demonstrated that the presence of groups of 
stationary humans can be modelled by a damped 'human' SDOF system attached to the'structural' 
SDOF system representing a well separated mode of an empty assembly structure. Based on the 

obtained experimental data, the mass, frequency and damping properties (mH, f� and ýH) of a 
damped SDOF model of groups of sitting occupants were derived. It was established that these 
properties varied with the natural frequency of the structural system. It was found that mH 
decreases while fH and ýH increase with increasing natural frequency of the empty structural 

system. Based on these findings, mH should be assumed to be greater than 60% of the total mass 
of occupants, fH smaller than approximately 9 Hz and ýH less than 40% in the case of empty 
structures with natural frequencies below about 17 Hz. 

The derived damped SDOF human model was used to quantify the influence of occupants on the 
dynamic response of a range of structures modelled as SDOF systems. These data are provided in 
the form of design charts. They can, until further information becomes available, be used to estimate 
dynamic responses of civil engineering structures occupied by sitting humans to sinusoidal 
excitations. 
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Chapter 1 Introduction 

1. INTRODUCTION 

Live entertainment is a very popular pastime. It attracts large crowds to civil engineering structures 
such as concert halls and stadia. Often, the spectators are actively involved and their motion induces 

significant dynamic forces into the occupied structure. These dynamic forces result in human- 

induced vibrations that are an issue of increasing concern (Thorburn 1999). 

It is important to realise that large groups of human occupants do not only induce significant dynamic 
forces but also change the dynamic properties of the structure they occupy. Although the former 
issue is much more researched, its latter counterpart is equally important for design against human- 

induced vibrations. Therefore, this thesis concentrates on the influence of human occupants on the 

dynamic properties of structures. Human-induced forces are not investigated here. Nevertheless, 

publications relevant to this topic are included in the bibliography. 

According to Littler (1998, p. 124), the influence of human occupants on civil engineering structures 
"is extremely difficult if not impossible to predict". This is because spectators should be modelled as 
dynamic system and not as simple mass (Ellis and Ji 1997) as previously assumed. This fact is not 
widely appreciated in the civil engineering community in the UK and elsewhere. Therefore, this thesis 

summarises the existing knowledge and extends it to enhance the understanding of the influence of 
humans on slender structures they occupy. 

The research presented in this thesis investigated the influence of human occupants on dynamic 

properties of civil engineering structures by adopting a dual analytical and experimental approach. 
The thesis is presented in eight chapters. The introduction, the literature review, and the theoretical 
background presented in the first three chapters are the basis for all further investigations (Figure 
1.1). The main body of this work is the analysis of human-structure systems from an analytical 
(chapter 4) and an experimental point (chapter 5) of view. Based on the experimental data, a 
dynamic human occupant model was derived (chapter 6). Also in chapter 6, the human occupant 
model is verified. Furthermore, it is used to provide some preliminary guidelines to assess the 
influence of human occupants on slender civil engineering structures. Finally, chapters 7 and 8 

present conclusions and recommendations for further work. 
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Chapter 1 Introduction 

Background 
(Chapters 1,2, and 3) 

Analytical parametric study 
of human-structure models 

(Chapter 4) 

10 
Discussion 
(Chapter 6) 

IF 
Experimental quantification 

of the influence of human occupants 
(Chapter 5) 

Damped SDOF model 
of sitting human occupants 

(Chapter 6) 

Conclusions & Recommendations 
(Ghapter5 7 and 8) 

Figure 1.1: Research flowchart. 

To aid the reader, references to books or other voluminous publications often include the relevant 

page number. If the information cannot only be found on this but also on the following or several 
following pages, this is indicated by 'f or 'ff' after the page number respectively. 
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Chapter 2 Werature Review 

2. LITERATURE REVIEW 

In civil engineering dynamics, human-induced vibrations are an increasingly important serviceability 

and safety issue. This fact is reflected in an increasing number of reported problems related to 

human-induced vibrations of floors, footbridges, assembly structures and stairs. 

A significant aspect of human-induced vibrations is the interaction of human occupants and the 

structure that they occupy. This human-structure interaction is a complex and little researched issue. 
Nevertheless, it has to be well understood to enable a successful design against human-induced 

vibrations. 

2.1 HUMAN-STRUCTURE INTERACTION IN CIVIL ENGINEERING 

In this section, it is first outlined how human-structure interaction can influence forces induced by 
human occupants. Next, the possible effects of human occupants on dynamic properties of civil 
engineering structures are presented and their modelling is discussed. 

Ultimately, both effects should be linked and related to psychological effects. Only then can a 
complete picture of human-structure interaction be obtained. 

2.1.1 EFFECTS OF HUMAN-STRUCTURE INTERACTION ON HUMAN-INDUCED FORCES 

Human occupants can induce dynamic forces on civil engineering structures by various activities 
such as walking, jumping, dancing, or hand clapping. Research into quantifying such human- 
induced forces has been ongoing for many decades (Tilden 1913; ASA 1932; Galbraith and Barton 
1970; Nilsson 1976; Wyatt 1985). 

Since about 1980, experimentally estimated human-induced force time histories have usually been 
approximated by Fourier series. Thereby, the common key assumption is that the human-induced 
forces are perfectly periodic. The factors corresponding to each sinusoidal component of this Fourier 

series are named dynamic load factors (DLFs) and are reported in a number of publications (Pemica 

Pepe 3 



Chapter 2 Uerature Review 

1990; Bachmann et al. 1995; Kerr 1998). An alternative approach is to define human-induced forces 

as auto-spectral density (ASD) functions (McConnell 1995) in the frequency domain (Ohlsson 1982; 

Tuan and Saul 1985; Mouring and Ellingwood 1994; Eriksson 1994). 

Dynamic forces induced by crowds are an issue of great concern (Kasperski 2001), as can be seen 
in an increasing number of publications dealing with crowd-induced vibrations. Nevertheless, the 

quantification of crowd-induced forces still needs additional research. In particular, the dependency 

of the nature and level of induced forces on the number of test subjects is currently not clear. 

Although, it has been found that dynamic loads induced by groups of people are higher than those 

induced by individuals, the human-induced forces do not increase linearly with the number of actors. 
This is so even if people are synchronised by a prompt (Ebrahimpour and Sack 1992; Kasperski and 
Niemann 1993) that can be provided by music, movements of other people, or perceptible 

movements of the occupied structure (van Staalduinen and Courage 1994; Fujino et al. 1993). 

Interestingly, visual and audio contact between people influences the synchronisation of individuals 

(Hamam 1994; Ebrahimpour and Fitts 1996). 

Generally, the synchronisation of people on civil engineering structures can be deliberate or 

unintentional. Deliberate synchronisation, as in aerobic classes or cases of vandal loading, and thus 

amplification of vibrations is unquestionably an important issue (Stevenson 1821; Quast 1993; 

Kasperski 1996). However, the unintentional synchronisation of human occupants is similarly 
important. It too can lead to structural vibrations strong enough to disturb people in their movement 
(Dallard et al. 2000) and, therefore, structures can become unserviceable or even unsafe due to 

panic. 

The unintentional synchronisation of pedestrians to structural movements (and therefore to each 
other) has been observed on several footbridges as reported by Petersen (1972), Bachmann 
(1992), Fujino et at. (1993), Dallard et at. (2000), Anonymous (2001), Curtis (2001), and Sample 
(2001). Acknowledging the potential problem posed by this phenomenon, it was included into design 

proposals by Schulze (1980), Vogel (1983), Slavik (1985), Grundmann and Schneider (1990), and 
Grundmann et at. (1993). 

Research into the reasons and the extend of synchronisation between pedestrians and footbridges 
has been performed by Schneider (1991) and Fujino et al. (1993). Recently, new research into this 
known but little understood phenomenon was prompted by strong pedestrian-structure 
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synchronisation during the opening of the Millennium Bridge in London in June 2000 (Parker 2000; 

Fitzpatrick 2001). 

It should be realised that human-structure synchronisation is only one aspect of human-structure 

interaction influencing human-induced forces. In fact, human-induced forces may depend on the 

stiffness of the surface on which people perform (Pimentel 1997, p. 182). Indeed, Baumann and 
Bachmann (1988, p. 46) found DLFs of walking to be up to 10% higher if estimated on stiff ground 

and not on a flexible 19 m long prestressed beam. This matter is currently being jointly investigated 

at the Universities of Manchester and Sheffield under a major research project (Pavic et al. 1999) 

funded by the Engineering and Physical Sciences Research Council (EPSRC). 

In designing against human-induced vibrations, human-induced forces should always be considered 

in connection with the modal properties (natural frequencies, damping ratios, mode shapes, and 

modal masses) of the structure they are applied to. These dynamic properties could be, similarly to 

the human-induced forces, affected by human-structure interaction. 

2.1.2 EFFECTS OF HUMAN-STRUCTURE INTERACTION ON MODAL PROPERTIES 

Human occupants present on civil engineering structures have the ability both to excite and alter the 
dynamic system. Therefore, strictly speaking, modal properties of the joint human-structure system 

should be considered in a design against human-induced vibrations. However, due to the lack of 

reliable information on the properties of occupied structures, the majority of civil engineering design 

procedures neglect the influence of human occupants on the dynamics of the vibrating system. 
Those which do not so, do so in different and often inconsistent ways. 

The intuitive way to model human occupants of civil engineering structures is to model them as 
additional mass to the structure. This mass-only model has been widely accepted for a long time 
(Walley 1959; Allen and Rainer 1975; Ohlsson 1982, p. 6.10; Ebrahimpour et al. 1989). Naturally, 

such a model leads to a frequency decrease, as observed by Lenzen (1966) for a group of people 
occupying a floor. 

However, Lenzen (1966) also reported, similarly to Polensek (1975) and Rainer and Pemica (1981), 

a significant increase in damping. Based on these and more similar investigations (such as Eyre and 
Cullington 1985; Manheim and Honeck 1987; Ebrahimpour et al. 1989; Bishop et al. 1993; Quast 
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1993; Pimentel and Waldron 1996; Brownjohn 1999), it is nowadays widely accepted that human 

occupants add damping to structures they occupy. Based on this notion, the National Building Code 

of Canada (NBC), published by the National Research Council of Canada (NRCC), specifies that 

damping ratios should be doubled (to values from 4% to 12%) when designing heavily populated 

structures (NRCC 1985; NRCC 1995). 

The observed increases in damping due to human occupation cannot be explained by human 

occupants modelled as an additional mass only. Nevertheless, this mass-only model is used in the 

NBC guideline on human-induced vibrations of floors and footbridges (NRCC 1995), in the 'Green 

Guide' (Department of National Heritage, Scottish Office 1997), and by Allen et al. (1999). It is also 

still employed in the design of structures such as balconies (Gerasch 1990; Setareh and Hanson 

1992), stadia (Eibi and Rösch 1990; Harte and Meskouris 1991; Batista and Magluta 1993; van 

Staalduinen and Courage 1994; Bennett and Swensson 1997; Reid et al. 1997), and footbridges 

(Beyer et al. 1995; Luza 1997, p. 55; Hothan 1999, p. 25). 

To address this inconsistency, Ohlsson (1982, p. 2.11f) and Rainer and Pemica (1985, p. 7) 

indicated that damped dynamic models of human occupants could be employed. In 1987, Foschi 

and Gupta adopted this approach because damped dynamic models of human occupants can, 

contrary to the mass model, explain increased damping due to human occupation. However, 

generally, it was assumed that the mass-only occupant model can accurately predict frequency 

changes imposed by human occupants of civil engineering structures (Ohlsson 1982; Ebrahimpour 

et al. 1989). 

In 1988, experiments by Lenzing showed that the mass-only model does not always predict the 

natural frequencies of human-occupied structures appropriately. Contrary to his expectations, the 

fundamental frequency of a small wooden plate (74 Hz) did not reduce significantly if a person more 
than twice as heavy as the structure (32 kg) was on it. Instead, the natural frequency of the structure 
increased slightly (Lenzing 1988, p. 47). This phenomenon was readily explained by the human 

occupant being a dynamic system with mass, stiffness, and damping properties (Lenzing 1988, 

p. 48). 

Three years later, in 1991, response measurements at Twickenham stadium (Ellis and Ji 1997) also 
indicated that human occupants of a real-life civil engineering structure had been acting more as 
dynamic mass-spring-damper systems than as additional mass. In particular, if occupied by 
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spectators, the tested assembly structure clearly showed an additional mode (Figure 2.1). It was 
hypothesised that this additional mode was caused by human occupants adding a degree of 
freedom (DOF) to the structure (Ellis and Ji 1997). 

a) b) 

ii 
N` N\ 

00 

05 10 15 20 05 10 15 20 
Frequency [Hz] Frequency [Hz] 

Figure 2.1: ASDs of responses of Twickenham stadium a) if the stadium is empty and b) if it is 
occupied by a crowd (after Ellis and Ji 1997, figure 2). 

Ellis and Ji (1997) presented ASDs of the response of Twickenham stadium (Figure 2.1) without 
indicating the magnitude of the response. Therefore, levels of vibration of the empty and the 

occupied structure cannot be compared. They used the response ASDs of three different trusses of 
Twickenham stadium to estimate natural frequencies (Table 2.1). Natural frequencies of the empty 

structure were obtained by SDOF curve-fitting. In case of the human-occupied structure, curve-fitting 

was based on 2-DOF models. This procedure led to the identification of a fundamental frequency 

between 7.24 Hz and 8.55 Hz (Table 2.1). Under human occupation, two modes with natural 
frequencies ranging from 5.13 to 5.44 Hz and from 7.89 to 8.72 Hz, respectively, were identified 

(Table 2.1). 

Interestingly, Ellis and Ji (1997) reported, based on peaks of response ASDs, a similar reduction of 
the fundamental frequency of an assembly structure to about 5 Hz, referring to a temporary 

grandstand with a fundamental frequency of the empty structure of 16 Hz. 
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Table 2.1: Natural frequencies at Twickenham stadium (Ellis and Ji 1997, table 1). 
Empty structure Human-occupied structure 

Truss 5 8.55 Hz 5.44 Hz and 8.72 Hz 

Truss 9 7.32 Hz 5.41 Hz and 7.91 Hz 

Truss 11 7.24 Hz 5.13 Hz and 7.89 Hz 

However, structures with vertical modes with natural frequencies below 6 Hz are generally required 
to be designed against human-induced vibrations (Department of National Heritage, Scottish Office 

1997; Institution of Structural Engineers (IStructE) 2001), where the limit of 6 Hz applies to natural 
frequencies of the empty structure. However, measurements by Ellis and Ji (1997) demonstrate that 
human occupants can reduce fundamental frequencies of empty structures as high as 16 Hz to 

below 6 Hz. Therefore, a limit of 6 Hz of vertical modes of empty structures might not be suitable for 

the design of assembly structures against human-induced vibrations. 

Measurements on other assembly structures (Littler 1998; 2000) emphasised the need to model 
human occupants as a dynamic system and to identify reliable human occupant models. In 

particular, Littler estimated natural frequencies of a retractable grandstand with 99 seats (Littler 

1998) by peak-picking of ASDs of responses to a small impact (Littler 2000). Based on the resulting 
data (Table 2.2), Littler concluded that the modes of the structure were affected differently by 

standing or sitting human occupants. 

Table 2.2: Natural frequencies of a retractable grandstand (Littler 2000, table 2). 
Front to back mode Sway mode Vertical mode 

Empty stand 3.05 Hz 3.66 Hz 13.6 Hz 

Standing occupants 3.30 Hz 3.54 Hz 9.16 Hz 

Sitting occupants 1.71 Hz 1.83 Hz 9.03 Hz 

Interestingly, sitting or standing human occupants led to increase and decreases of natural 
frequencies of horizontal modes respectively (Table 2.2). This indicates that not only vertical, but 

also horizontal modes could be influenced by human occupants as additional dynamic systems. 
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In summary, human occupation of civil engineering structures can lead to increased damping, a 
change of natural frequencies, and also to additional natural frequencies, meaning additional modes 
of vibration. Only if appropriate dynamic models of human occupants were known, would it be 

possible to predict the dynamic properties of the human-occupied structures. These should be used 
in conjunction with human-induced loading in order to predict dynamic responses of such structures 
as required in their design and/or assessment. 

Modelling human occupants is particularly important in the design of slender assembly structures. 
Such structures can be subjected to high levels of human-induced forces and their dynamic 

properties can be changed significantly (Figure 2.1). 

To model human occupants appropriately, dynamic models of one or more human bodies 

corresponding to vertical, fore and aft, and lateral vibrations need to be identified (Ji 2000). 
Furthermore, it is necessary to analyse different postures of human occupants, as demonstrated in 
Table 2.2 for sitting and standing spectators. 

Development of appropriate dynamic models of a human body or of a crowd is clearly the way 
forward. However, although a number of such models has been developed in biomechanics (mainly 
to be used in mechanical and aerospace engineering) their application to civil engineering problems 
may be limited due to substantially different design conditions. A review of this important and 
sometimes confusing area is clearly warranted as demonstrated in the next sections. 
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2.2 BIOMECHANIC MODELS OF THE HUMAN BODY 

There are a number of biomechanic models of humans (Griffin 1990). Some of them model the 

whole body and others only parts such as hands or arms to analyse health related issues. These 

models are not of interest here because this research is concerned with models of the whole human 

body developed to predict, say, dynamic properties of human-structure systems such as occupied 

vehicle seats (Suggs et al. 1969; Wei and Griffin 1995; Boileau and Rakheja 1998). This problem is 

similar to the influence of human occupants on civil engineering structures. Therefore, dynamic 

whole-body models developed in this context are evaluated in this review. 

2.2.1 WHOLE-BODY BIOMECHANIC MODELS 

Biomechanic researchers usually obtain dynamic characteristics of the whole human body 

experimentally by placing a person on a shaking table in laboratory conditions. Thereby, the applied 
force and the response of the human-structure system at the driving point are measured. These 

data are used to calculate driving-point frequency response functions (FRFs). These FRFs generally 

relate an acceleration or velocity response to a sinusoidal base excitation and are, therefore, 

provided as apparent mass M(f) or mechanical impedance 1(f). By curve-fitting such experimental 

FRFs, dynamic properties of biodynamic human models are identified (Wei and Griffin 1998). 

The simplest biodynamic model of the human body is a damped single degree of freedom (SDOF) 

system (Figure 2.2a). This type of model can lead to good approximations of experimental and 

analytical driving-point FRFs. 

However, two peaks were often visible in the apparent mass M(f) of sitting individuals (Wei and 

Griffin 1998; Mansfield and Griffin 2000) and generally in the apparent mass of standing people 
(Matsumoto 1996). Therefore, the damped SDOF model (having only one peak in the FRF) has 

been extended into a two DOF model, which enabled fitting of two peaks in experimental driving- 

point FRFs. The additional DOF was either attached to the first DOF (Allen 1978) as shown in 

Figure 2.3a or, more often, completely independent of the first DOF (Suggs et al. 1969; Wei and 
Griffin 1998) as indicated in Figure 2.3b. 
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Figure 2.2: SDOF human whole-body models a) without and b) with non-vibrating mass. 
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Figure 2.3: Human whole-body models using a) a 2-DOF system, b) a 2-SDOF system, and c) a 2- 
SDOF system with a non-vibrating mass. 
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Further research showed that adding a non-vibrating mass MHO to a SDOF model (Figure 2.2b) or a 

2-SDOF model (Figure 2.3c) led to better fits of experimental FRFs. Wei and Griffin (1998, p. 870) 

justified this non-vibrating mass MHO as presenting "the effect of other modes that are above the 

frequency range of interest". 

Finally, it is emphasised that models of the human body solely derived from driving-point FRFs 

should not be used to predict movements of particular parts of the human body (Intemational 

Organization for Standardization (ISO) 1981). For this purpose, separately derived and more 

complex models of the human body are available (Nigam and Malik 1987; ISO 1987; Qassem et al. 
1994; Boileau et al. 1996). However, these models are often unsuitable for describing driving-point 

FRFs (Boileau and Rakheja 1998). 

2.2.2 PROPERTIES OF THE HUMAN BODY 

Most biomechanic research determining whole-body vibrations concentrated on vertical vibrations of 

sitting (often male) people. Fewer investigations involved standing humans (Coermann 1962; 

Matsumoto 1996; Matsumoto and Griffin 1998; Matsumoto and Griffin 2000) or looked at horizontal 

vibrations (Fairley and Griffin 1990; Holmlund and Lundström 1998; Mansfield and Lundström 

1999a; Mansfield and Lundström 1999b). 

Many publications present experimental driving-point FRFs. However, only a few biodynamic models 

were fit into the experimental data (Wei and Griffin 1998). Four of these whole-body models related 
to vertical vibrations of a sitting person are presented in Table 2.3. 

Each of these models is characterised by its lumped properties of mass (m,, ), stiffness (k,, ), and 

viscous damping( CH). They define the modal properties natural frequency f and damping ratio 
(Table 2.3). It is noteworthy that all four models feature a heavily damped mode with natural 
frequencies f, ranging from 4.5 to 5.0 Hz and damping ratios ý, ranging from about 20% to about 

50% (Table 2.3). 
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Table 2.3: Characteristics of biomechanic models of a sitting human subjected to vertical vibrations. 
Model Spatial properties Modal Properties 

mH = 86.2 kg (86200 dyne s2/cm) 
Coermann (1962) ýý: f, = 5.0 Hz 

kH = 85.25 kN/m (85.25 dyne/cm) 
Damped SDOF model 32% 

CH =1.72 kNs/m (1.72.106 dyne s/cm) 

mH, = 36.3 kg (80 lb) 
f, =4.5Hz 

k", = 28.45 kN/m (1952 lb/ft) 
23% 

Suggs et al. (1969) 2): c", = 474 Ns/m (32.5 lb s/ft) 

2-SDOF model mH2 = 12.5 kg (27.6 lb) 
f2= 5.5 Hz 

kH2 =15.03 kN/m (1030 lb/ft) 
ý2= 31% 

cH2 = 271 Ns/m (18.6 lb s/ft) 

m, O=4.1kg Wei and Griffin (1998) 3): 
m", = 46.7 kg 

SDOF model f, = 4.9 Hz 

with non-vibrating mass 
k HI 44.115 kN/m "' ý, = 53% 
CHI =1.522 kNs/m 

MHO =5.6 kg 

m", =36.2kg 
f, = 4.9 Hz 

Wei and Griffin (1998) 3): k", = 35.007 kN/m 
36% 

2-SDOF model CHI= 815 Ns/m 

with non-vibrating mass mH2 = 8.9 kg 
f2 = 9.7 Hz 

kH2 = 33.254 kN/m 
ý, 

Z= 44% 
CH2 = 484 Ns/m 

Imperial units were converted into metric units employing Beranek (1988, appendix B3). 
1) Based on the mechanical impedances 1(f) of eight men. 
2) Based on the mechanical impedances 1(f) of 11 men. 
3) Based on the apparent masses M(f) of 60 people. 

The 2-SDOF models by Suggs et al. (1969) and Wei and Griffin (1998) have an additional DOF and, 
therefore, a second mode. This second mode accounts for a second broad peak in the frequency 

range from 8 Hz to 15 Hz often apparent in driving-point FRFs (Fairley and Griffin 1989; Matsumoto 
1996; Matsumoto and Griffin 1998; Mansfield and Lundström 1999b; Holmlund et al. 2000; 
Mansfield and Griffin 2000). However, the influence of the second mode on the apparent mass 
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M(f) is rather small. For instance, the apparent masses M(f) of the SDOF and the 2-SDOF model 

(both featuring a non-vibrating mass) based on the same experimental data by Wei and Griffin 

(1998) match closely, as indicated by the green lines in Figure 2.4. 

200 

SDOF model 

1ý 2-S )OF model 2) 

SDOF model with non-vibrating ma553) 

------ 2-SPOF model with non-vibrating maoo 
100 

Coermann (1962) 
z) Suggs et al. (1969) 

50 
3) Wei and Griffin (1998) 

0 
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-1800 
0 5 10 15 Frequency [Hz] 20 

Figure 2.4: Apparent masses M(f) of dynamic models of sitting people (Table 2.3). 

In contrast to models based on the same research (Wei and Griffin 1998), apparent masses M(f) of 

models based on different research (represented by different colours) deviate significantly (Figure 

2.4). In general, driving-point FRFs presented in different publications often deviate significantly. 
This scatter is mainly due to employing different individuals (Hinz and Seidel 1987; Fairley and 
Griffin 1989; Mansfield 1996; Matsumoto 1996; Wei and Griffin 1998). Additional variability is 

introduced by varying test conditions (Boileau et al. 1998; Holmlund et al. 2000). 

A major factor influencing the estimated driving-point FRFs is the excitation. Biomechanics usually 

employ sinusoidal, sine sweep, or random excitation with frequencies from below 1 Hz up to about 
20 Hz. The vibration levels range from 0.1 to 2.5 m/s2 root-mean-square (r. m. s. ) accelerations, 

which correspond to vibration levels common in vehicles (Mansfield and Griffin 2000). 

Research has shown that the frequencies corresponding to the peaks of driving-point FRFs increase 

with decreasing vibration levels (Hinz and Seidel 1987; Fairley and Griffin 1989; Matsumoto and 
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Griffin 1998; Mansfield and Griffin 2000). For example, decreasing r. m. s. accelerations eight times, 
from 2 to 0.25 m/s2, increased the frequency of the first peak of M(f) of vertical vibrations of sitting 

people by 50%, from 4 to 6 Hz (Fairley and Griffin 1989). Similarly, Matsumoto and Griffin (1998) 

found the frequency of the first peak of M(f) increased from 5 to 7 Hz if standing people were 

subjected to r. m. s. accelerations of 2 and 0.125 m/s2 respectively. 

The amplitude dependency of driving-point FRFs corresponding to horizontal vibrations is less clear. 
Generally, natural frequencies tend to increase with decreasing vibration level. However, some of 
the modes in the frequency range below 10 Hz were not affected (Fairley and Griffin 1990; Holmlund 

and Lundström 1998; Mansfield and Lundström 1999a). 

The previously mentioned research data indicate that driving-point FRFs depend not only on 

vibration levels but also the posture of the person and the direction of the vibrations considered. The 
differences between postures prompted the guideline ISO 5982 (ISO 1981) to distinguish between 

vertical driving-point mechanical impedances I(f) of a person sitting, standing, or in a supine 

position. In this context, ISO 5982 defined 2-SDOF (Figure 2.3) models of seated or standing 
individuals (Table 2.4). 

Both models have similar properties particularly in the fundamental mode (Table 2.4). The apparent 

masses M(f) of both models (Figure 2.5) fit well within the apparent masses M(f) of sitting people 

defined in Table 2.3 (Figure 2.4). 

Nevertheless, ISO 5982 was heavily criticised because of its limited and inconsistent experimental 
background (Griffin 1990, p. 370f; Holmlund et al. 1995; Matsumoto 1996; Boileau et al. 1998). 

Recently, a revision of ISO 5982 has been published (ISO 2001). The revised standard includes a 

single more complex model of a human body. This model aims to represent not only the driving- 

point FRFs, but also the transmission of vibrations to the head of a seated person (ISO 2001). So 
far, the transmission of vibrations to the head of a sitting or standing person could be evaluated 
using the 4-DOF model in ISO 7962 (ISO 1987), which was replaced by ISO 5982 (ISO 2001). 
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Table 2.4: Characteristics of human models specified in ISO 5982 (ISO 1981). 
Model Spatial properties Modal Properties 

m", = 69 kg 
f, =5.0Hz 

k", = 68 kN/m 
ISO 5982 (ISO 1981): 36% 

c", =1.54 kNs/m 
2-SDOF model 

mH2_ 6 kg 
of the seated human body f2= 10.1 Hz 

cH2=0.19kNs/m 

mH, = 62 kg 
f, = 5.0 Hz 

kH, = 62 kN/m 
ISO 5982 (ISO 1981): 37% 

cH, =1.46 kNs/m 
2-SDOF model 

of the standing human body 
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Figure 2.5: Apparent masses M(f) of sitting and standing people according to I5u 5V01- 
(Table 2.4). 
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In summary, when utilising the results of biomechanic research of whole-body dynamic models in 

civil engineering, several important issues must be borne in mind. Firstly, the human body is a very 

complex non-linear dynamic system that has properties that differ between different people (inter- 

subject variability) and between individuals themselves (intra-subject variability) (ISO 1981; Griffin 

1990). Secondly, vertical vibrations of the whole-body of sitting or standing people are dominated by 

a heavily damped mode. This mode has a natural frequency between 4 and 6 Hz and its damping 

ratio is quoted with values ranging from 20% up to 50%. 

Thirdly, and most importantly, the properties of the human body strongly depend on the magnitude 

of vibration. However, vibration levels usually encountered in civil engineering are considerably 

smaller than those employed by biomechanics to derive dynamic human models (Griffin 1990, 

p. 39). Therefore, it is essential to verify and, possibly, update biomechanic models before they are 

adopted to model human occupants of civil engineering structures. Furthermore, all biomechanical 

models known to the writer represent single individuals only. However, modelling groups of 
occupants is essential in modelling the dynamic behaviour of assembly structures. 
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2.3 DYNAMIC MODELS OF HUMANS IN CIVIL ENGINEERING 

Current design guidelines assess the vibration serviceability of civil engineering structures based on 
their vibration response (ISO 1989; British Standard Institution (BSI) 1992; ISO 1992). However, as 

previously mentioned, correct prediction of structural responses to human-induced vibrations 

requires detailed knowledge of the dynamic properties of the joint human-structure system. With this 

in mind, civil engineers increasingly attempt to model human occupants as dynamic systems (Ji 

1995; Falati 1999; Williams et al. 1999). Such research should lead to dynamic models of human 

occupants appropriate for use in civil engineering and will be reviewed in sections 2.4 and 2.5. 

In this section, dynamic human models related to human impact and the energy absorbed by the 

human body are reviewed. Thereby, only models developed or presented by civil engineers are 
included. 

2.3.1 MODELLING HUMAN IMPACTORS ON FLEXIBLE STRUCTURES 

More than 20 years ago, civil engineers started to employ dynamic models of the human body to 

tackle safety and serviceability issues. In 1976, Struck developed dynamic models of humans to 

analyse people impacting on non-structural elements such as partition walls. 

Simple mass-spring systems (Figure 2.2a with cH = 0) are used to assess the impact of people on 

flexible structures (Struck 1976; Mann 1979; Struck and Limberger 1981; Canisius 2000). 

Struck (1976) used this dynamic human model to describe people hitting partition walls with their 

shoulder. He estimated the mass mH as ranging from 15 to 30 kg and stiffnesses kH as ranging 

from about 10 to 50 kN/m (Struck 1976, p. 18). 

Moreover, Mann (1979), Struck and Limberger (1981), and Canisius (2000) investigated the impact 

of a person landing on his/her feet. In doing so, they assumed that the total mass mt of a human 

landing on their feet is the same as the lumped mass m,, of a spring-mass model of the human 

body. 
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Mann (1979) analysed soft landing of (probably three different) individuals from heights of 20 cm to 

90 cm. He concluded that the stiffness kH is at least 3 kN/m for soft landing. In case of hard landing, 

he specified an upper value of the stiffness kH depending on the drop height h [m]: 

k� =20kN/m-h"13kN/m2. (2.1) 

Significantly higher stiffnesses kH of 65 kN/m and 130 kN/m were estimated by Struck and 

Limberger (1981) for landing on one foot or both feet, respectively. However, these data correspond 
to the extreme case of a person hanging on a bar with his/her feet up to 24 cm above the ground 
dropping with straight knees. 

Finally, recent work by Canisius et al. (1998) analysed people dropping from heights of 25 to 75 cm 

onto scaffold boards. This work is thought to have led to stiffnesses kH ranging from 1 to 30 kN/m. It 

should be said that these values are the writer's interpretation of data presented by Canisius (2000, 

figure 6). 

2.3.2 ENERGY ABSORBED BY HUMAN OCCUPANTS 

In 1977, Farah was prompted by prior biomechanical research (Pradko and Lee 1966; Pradko et al. 
1967; Lee and Pradko 1968) to assess the serviceability of civil engineering structures using 
dynamic human models. Farah used the energy absorbed by the human body as a measure of 

vibration serviceability, whereby more energy absorbed by the human occupant corresponded to 

less comfort. He re-evaluated data of several biomechanic publications presenting dynamic human 

models and decided to employ a 2-DOF model of the human body (Figure 2.3a). Parameters of this 

model (Table 2.5) are based on the re-evaluation of the modulus of the mechanical impedance 1(f) 

of one standing person reported by Coermann (1962, figure 6). 

Since the work of Farah (1977), the energy absorbed by the human body has been an issue that 

was neglected in both biomechanics and civil engineering. However, since 1995, there has been an 
increase in the research into the energy absorbed by the human body (Lundström et al. 1995; 

Lundström and Holmlund 1998; Lundström et al. 1998; Mansfield and Griffin 1998; Holmlund 1999; 

Mansfield et al. 2000). 
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Table 2.5: Characteristics of a damped 2-DOF human whole-body model. 
Human Model Spatial properties Modal Properties 

mH, = 74.4 kg (5.1 slugs) 

mH2 = 7.3 kg (0.5 slugs) f, = 6.9 Hz 

Farah (1977): kH, = 149.2 kN/m (10224 lb/ft) i, = 25% 

2-DOF model kH2 =15.4 kN/m (1052 lb/ft) f2 = 7.6 Hz 

CH, = 2.85 kNs/m (195.0 lb s/ft) ý2 = 31% 

0H2 = 0.086 kNs/m (5.9 lb s/ft) 
Units were converted into metric units employing Beranek (1988, appendix B3). 

As for civil engineering applications, Brownjohn (1999; 2001) quantified the energies absorbed by a 
standing human occupant and the occupied prestressed concrete structure weighing 1200 kg 

simultaneously. This research highlights once again the potentially beneficial effect of including 

stationary human occupants into the dynamic modelling of occupied civil engineering structures. 
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2.4 EXPERIMENTAL INVESTIGATIONS 

The influence of human occupants on civil engineering structures is a complex issue and the current 

state-of-the-art is such that this influence cannot be, according to Littler (1998), mathematically 

predicted. However, the 1990s saw several attempts to quantify the influence of one or two 

stationary occupants on dynamic behaviour of well-defined structures under laboratory conditions. 

2.4.1 EXPERIMENTS BY ELLIS AND JI 

Inspired by the results of the already mentioned measurements on assembly structures (section 

2.1.2), Ellis and Ji performed laboratory experiments on a simple concrete beam (Figure 2.6). This 

particular research was published widely (Ellis et al. 1994a; Ellis et al. 1994b; Ji and Ellis 1994; Ji 

1995; Ji and Ellis 1995; Ellis and Ji 1997; Ji and Ellis 1997; Ji and Ellis 1999). The most informative 

papers are Ji (1995), Ellis and Ji (1997), and Ji and Ellis (1999). 

Ellis and Ji quantified the influence of four different individuals (a, b, c, and d) on a high-frequency 

(18.68 Hz) structure (Table 2.6) from response ASDs of the structure to impact by a hammer. The 
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laboratory experiments demonstrated that a human occupant can increase the natural frequency 

and damping of a high-frequency (18.68 Hz) structure (Figure 2.7). Additionally, the research 
indicated that the influence of a human occupant depends on the individual and its posture (Table 

2.6). This fits well with the biomechanic observations reported by Griffin (1990) and underpins the 

already reported findings by Littler (2000) (Table 2.2). 

Table 2.6: Influence of a single human occupant on natural frequencies of a beam (Ji 1995; Ji and 
Ellis 1999). 

Configuration Natural frequency 

empty beam 18.68 Hz 

one sitting human occupant (a) 19.04 Hz 

one standing human occupant (a) 20.02 Hz 

one standing human occupant (b) 20.51 Hz 

one standing human occupant (c) 20.51 Hz 

one standing human occupant (d) 21.00 Hz 

mass of 45 kg (100 lb) on the beam 15.75 Hz 

mass of 91 kg (200 lb) on the beam 13.92 Hz 

a) b) 

NN 
2 

ö9 
4-1 

QQ 

5 10 15 20 25 30 5 10 15 20 25 30 

Frequency [Hz] Frequency [Hz] 

rigure z. t': Abus of responses of a) a beam and b) the same structure occupied ay a stanaing 
person (after Ji and Ellis 1995, figure 2). 
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Unfortunately, Ellis and Ji did not estimate damping and the ASDs given in Figure 2.7 were reported 

without quantifying the response magnitude. Therefore, the effect of an occupant on the response of 

the light beam structure employed cannot be evaluated. 

Finally, Ellis and Ji (1997) claimed that moving people are a dynamic load only because neither a 
jumping nor an occupant walking on the spot changed the estimated natural frequency of the beam 

(Figure 2.6). This statement contradicts the finding of Pimentel (1997, p. 201) that the natural 
frequencies of the structure during walking remained somewhere between those obtained from 

pedestrians standing still (after jumping tests) and without pedestrians (following walking tests)". 

Pimentel (1997, p. 139) came to his conclusion observing the reduction of natural frequencies of 
2.3 Hz, 3.6 Hz, and 4.7 Hz of a footbridge. Instead of such a real-life structure, Ellis and Ji (1997) 

employed a small beam (Figure 2.6) with a high natural frequency of 18.68 Hz, whose fundamental 

frequency was increased by a stationary human occupant (Table 2.6). These differences might have 

led to the apparently contradictory findings and further experimental investigations are obviously 

required. They should quantify the effect of moving occupants not only on natural frequencies but 

also on damping of the occupied structure. Such an analysis might reveal structures occupied by 

moving (walking or jumping) occupants could be modelled as time dependent non-linear systems, 

as proposed by Ebrahimpour and Sack (1992). 

2.4.2 EXPERIMENTS BY HOTHAN (1999) 

Hothan (1999) analysed the influence of a static mass or a standing person on two similar steel 

structures (Figure 2.8). The first structure was 5m long and weighted 236 kg. It was set up with 

seven different spans ranging from 4.8 to 2 m. The second structure was 4m long and had a mass 

of 226 kg. It was employed with six spans ranging from 3.9 to 2 m. 
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Figure 2.8: Test structure (after Hothan 1999). 

Reducing the span of the first and second test structure led to 13 structural set-ups (Table 2.7). For 

each of them, three configurations were analysed. Firstly, the structure was empty. Secondly, a 

person was standing on it, and, thirdly, the structure was loaded with a static mass that equalled the 

total mass of the human occupant (80 kg). In this research, such a static load is going to be termed 

'equivalent mass', following the suggestion of Falati (1999, p. 169). 

Estimated natural frequencies and damping ratios are listed in Table 2.7. These data were 
determined from vibration responses of force transducers at each of the three supports (Figure 2.8) 

after the structure was swung by hand or impacted with a hammer. In several tests, modal 

properties were not determined (Table 2.7). 

The failure to determine damping was most likely caused by several modes contributing to vibration 

responses. In such cases, decaying response time histories require sophisticated analysis for the 

estimation of damping. Nevertheless, damping was estimated in experiment 6 if a person was on the 

structure (Table 2.7), although at least two modes contributed to the vibration response (Hothan 

1999, p. 15). Therefore, generally little confidence is placed into the estimated damping. 
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Table 2.7: Influence of a single human occupant or an equivalent mass on natural frequencies f, 
and damping ratios i;, 1) of steel structures (Hothan 1999, appendix 3). 

Experiment 
No. 

Empty structure 
f, 

Human occupant 
f, 

Equivalent mass 
f, 

1 1.98 Hz 0.4% 1.51 Hz 1.0% 1.53 Hz 0.5% 

2 2.27 Hz 0.3% 1.71 Hz 0.8% 1.72 Hz 0.3% 

3 2.82 Hz 0.2% 2.05 Hz 1.0% 2.08 Hz 0.3% 

4 3.49 Hz 0.1% 2.47 Hz 1.5% 2.55 Hz 0.2% 

5 4.06 Hz N/A 2.98 Hz N/A 3.10 Hz 0.1% 

6 4.12 Hz N/A 3.31 Hz 2.5% 3.43 Hz N/A 
7 3.63 Hz N/A 3.39 Hz N/A 3.43 Hz N/A 

8 4.62 Hz 0.1% 3.36 Hz 2.2% 3.51 Hz 0.1% 

9 5.75 Hz 0.1% 3.91 Hz N/A 4.27 Hz 0.1% 
10 6.36 Hz 0.1% 4.23 Hz N/A 4.68 Hz 0.1% 
11 8.00 Hz 0.2% 4.72 Hz 7.2% 5.80 Hz 0.1% 
12 9.78 Hz 0.03% 4.73 Hz 13.6% 7.46 Hz 0.1% 

13 9.84 Hz 0.03% N/A N/A 8.39 Hz 0.03% 
1) Hothan (1999) provided logarithmic damping decrements 8 that were evaluated and converted 
into damping ratios ý, using ý- 8/2-7c (Chopra 1995, p. 49). 

Nevertheless, it is noteworthy that damping ratios ý, for the empty and the mass loaded structure 

matched closely (Table 2.7). In contrast, a human occupant at least doubled the damping ratio ý, of 

the empty structure (Table 2.7). Generally, the damping ratio r;, of the human-occupied structure 

increased with the fundamental frequency f, of the empty structure (Table 2.7). 

Hothan (1999) determined natural frequencies from peaks of response spectra, calculated by 

applying the Fast Fourier transformation (FFT) to the response signals. This methodology failed to 

determine a frequency of the human-occupied test structure in experiment 13. However, the 
influence of a human occupant on a structure is the aim of this research. Therefore, experiment 13 
is excluded from the following discussion of natural frequencies f, (Figure 2.9). 
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Figure 2.9: The influence of a standing human occupant and an equivalent mass on fundamental 
natural frequencies (after Hothan 1999). 

Interestingly, the difference between natural frequencies f, of the structure loaded by a static mass 

or occupied by a person generally increases with increasing frequency of the empty structure 
(Table 2.7). This phenomenon is particularly pronounced for structures with fundamental 

frequencies above 6 Hz (Figure 2.9). It peaks with a difference of 2.7 Hz in experiment 12, where 

the empty structure had a natural frequency of 9.78 Hz (Table 2.7). 

Hence, modelling the human occupant as a mass only would significantly overestimate the 

fundamental frequency f, . 
This conclusion is in line with observations by Eibl and Rösch (1990) 

made on a full-scale stadium. The two authors analytically computed a frequency reduction of a 
beam-like structure from 3.9 Hz to 3.44 Hz due to the presence of 28 human occupants. However, 

the experimentally estimated fundamental frequency was 2.91 Hz, noticeably lower than the 

predicted 3.44 Hz. 

Figure 2.9 shows that a human occupant can reduce the fundamental natural frequency of a three 

times heavier structure from above 9 Hz to below 6 Hz. In fact, the human occupant reduced natural 
frequencies from above 6 Hz to between 4 and 5 Hz (experiments 10,11, and 12 in Table 2.7 and 
Figure 2.9). This phenomenon corresponds to measurements by Ellis and Ji (1997) on Twickenham 

stadium (Table 2.1) and another grandstand with a fundamental frequency of 16 Hz (section 2.1.2). 
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Similar to measurements at Twickenham stadium (Figure 2.1), Hothan identified additional modes in 

the response spectra of the human-occupied structure. In particular, he noted second heavily 

damped modes with natural frequencies of 6.6 Hz or 7.6 Hz in experiments 6 and 9 respectively 
(Hothan 1999, p. 15 and p. 17). 

2.4.3 EXPERIMENTS BY BROWNJOHN (1999 

Brownjohn (1999) investigated the influence of different postures of the same human occupant on 
FRFs of a prestressed concrete plank having a mass of 1200 kg and a span of 6m (Figure 2.10). 

Figure 2.10: Test structure and human occupant (after Brownjohn 1999). 

The collected experimental data (Table 2.8 and Figure 2.11) confirm that the posture of a human 

occupant determines his influence on the occupied structure (Tables 2.2 and 2.6). 

Remarkably, an occupant standing with bent or very bent knees (blue lines) increased damping so 
significantly (Figure 2.11) that the peak of the FRFs corresponding to the fundamental mode of the 
test structure practically disappeared. 
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Table 2.8: Influence of a single human occupant (80 kg) or an equivalent mass on the natural 
frequency and damping ratio of a beam-like structure (Brownjohn 1999). 

Configuration Natural frequency Damping ratio 

empty beam 3.16 Hz 0.8% 

erect standing occupant 2.87 Hz 2.0% 

occupant standing with bent knees 2.86 Hz 6.0% 

occupant standing with very bent knees 3.10 Hz 9.2% 

sitting occupant 2.82 Hz 2.8% 

equivalent mass 2.95 Hz 1.1% 

z 80 

empty structure 

occupant standing erect 
E 60 

occupant with bent knees 

..... -- occupant with very bent kneee 

occupant Citting 40 
-Z equivalent maaa 0 

20 

0 

180° 

0° 

-180° 

2.5 3.0 3.5 Frequency [Hz] 4.0 

Figure 2.11: FRFs resulting from chirp excitation (Brownjohn 1999). (The presented data were 
provided by Brownjohn to the writer in August 2001). 

2.4.4 EXPERIMENTS BY FALATI (1999) 

Falati (1999) performed investigations on a post-tensioned concrete structure having a mass of 

about 16,000 kg. He quantified the influence of up to two standing occupants and equivalent 

masses on the structure. Thereby, the structure had two different configurations: with and without 

Page 28 



Chapter 2 Literature Review 

two screed layers. Discussing the influence of human occupants, Falati provided natural frequencies 

and damping ratios for eight configurations as listed in Table 2.9. 

Table 2.9: Influence of human occupation or a mass on the natural frequency and damping ratio of 
a slab (Falati 1999, p. 170). 

Configuration Natural frequency Damping ratio 

empty structure (without two screed layers) 8.02 Hz 1.10% 

one human occupant (75 kg) 7.76 Hz1) 3.84% 

equivalent mass of one man (75 kg) 7.68 Hz 1.45% 

empty structure with two screed layers 10.15 Hz 1.25% 

one human occupant 9.96 Hz 3.11% 

two human occupants 9.96 Hz 3.46% 

equivalent mass of one occupant 9.93 Hz 1.28% 

equivalent mass of two occupants 9.81 Hz 1.28% 

') This value was mistyped by Falati and should read 7.79 Hz 

Falati estimated natural frequencies and damping ratios in the time domain and in the frequency 

domain. In the time domain, the free vibration decay was utilised. In the frequency domain, Falati 

employed peak-picking and the half-power bandwidth method (Ewins 2000, p. 306ff). The 

identification in the time and the frequency domain were applied to data corresponding to up to 39 

points on the structure. The resulting natural frequencies and damping ratios were averaged for both 

techniques separately (Falati 1999, appendix A). 

In several cases, Falati analysed the same set-up using different levels of excitation and frequency 

resolutions. For each of these tests, the above outlined procedure was employed and the results 
were averaged for each estimation technique (time or frequency domain) separately. Finally, these 

averaged results corresponding to the same set-up and the time or the frequency domain analysis 
were averaged once more to provide the data summarised in Table 2.9. 

The crude estimation technique and the wide scatter of estimates determined by Falati (1999, 

appendix A) do not justify an accuracy of two decimal points as giving in Table 2.9. 

Nevertheless, Table 2.9 demonstrates again that one or two human occupants significantly 
increased the damping ratio of the test structure. Additionally, it shows that human occupation 
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reduced the fundamental natural frequency of the structure in both its configurations. Such a 
frequency reduction is consistent with observations by Hothan (1999) and Brownjohn (1999) on 
structures having relatively low natural frequencies. However, it is opposite to the frequency 

increases observed by Lenzing (1988) and Ji (1995) on structures with high fundamental 

frequencies (74 Hz and 18.68 Hz). This fact can be explained by the humans as additional dynamic 

system (Falati 1999, p. 170) and will be discussed in detail in course of this research. 

Finally, it is noted that Falati (1999) reported larger frequency decreases for a static mass than for 

occupant(s) on the structure (Table 2.9). This is inconsistent with experiments by Hothan (1999) and 
Brownjohn (1999) (sections 2.4.2 and 2.4.3). However, this discrepancy might be explained by the 

smaller mass of occupants to the mass of the structure in experiments by Falati (1999). 
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2.5 HUMAN DYNAMIC MODELS OF STATIONARY HUMAN OCCUPANTS 

In order to predict mathematically the influence of human occupants on civil engineering structures, 

a limited number of dynamic models of human occupants are available. These can be divided into 

damped and undamped models. The undamped models can further be separated into discrete and 

continuous models. Models corresponding to each of the three groups (undamped discrete, 

undamped continuous, and damped) are reviewed here. 

2.5.1 UNDAMPED DISCRETE MODELS 

Three undamped SDOF models of human occupants were found in the literature (Table 2.10). All 

three models of standing occupants are characterised by a mass mH assumed to be equal to the 

total mass of the person mT. However, the models have different stiffnesses k� and, therefore, 

different natural frequencies fH . 

Table 2.10: Characteristics of undamped SDOF models of a standing human occupant (Lenzing 
1988; Hothan 1999; Williams et al. 1999). 

Human Model Spatial properties Modal Properties 

m� = mr (76 kg) 
Lenzing (1988) fM = 4.1 Hz 

kH = 50 kN/m 

Hothan (1999) 
mH = mr (80 kg) 

f� =6 Hz 
kH 113.7 kN/m 

m� = mr (75 kg) 
Williams et al. (1999) 

kH = 66 kN/m 
fH = 4.7 Hz 

Lenzing (1988; p. 47f) defined the stiffness k,, by 50 kN/m probably based on research of Struck 

and Limberger (1981) into human impact (see section 2.3.1). 

Hothan (1999, p. 19) (section 2.4.2) specified the SDOF human model by a natural frequency f,, of 
6 Hz because this value was quoted by Schneider (1991, p. 25) as possibly corresponding to an 
upper body movement. By employing the resulting undamped SDOF model (Table 2.10), he 
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computed natural frequencies of a finite element (FE) human-structure model. The fundamental 

frequencies of this human-structure model match his experimental data closely (Figure 2.12). 
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Figure 2.12: Experimental and analytical fundamental natural frequencies of human-occupied 
structures (after Hothan 1999). 

The third undamped SDOF model of a standing occupant listed in Table 2.10 was presented by 

Williams et al. (1999). The numerical background of this model is not clear. 

Moreover, Williams et al. (1999) extended this undamped SDOF model (Table 2.10) to an 

undamped 13-DOF model, which was probably based on a model proposed by Nigam and Malik 

(1987). The motivation for deriving a complex multi degree of freedom (MDOF) model of the human 

body to model human occupants of civil engineering structures is not clear to the writer. It is also not 

clear from the article how this was done or what the parameters of the MDOF model are. 

2.5.2 UNDAMPED CONTINUOUS MODELS 

As previously mentioned, the undamped SDOF models (Figure 2.13a) presented by Lenzing (1988), 

Hothan (1999), and Williams et al. (1999) (Table 2.10) all have a lumped mass mH assumed to be 

equal to the total mass mT of the human occupant. Although this might be a valid simplification, the 
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mass of a SDOF model (Figures 2.2 a and 2.13a) of a continuous structure such as the human body 
is "different from the total mass of the structure" (Ji 2000, p. 185). Therefore, Ji (1995) and Falati 
(1999) developed and analysed continuous models of the standing human body to estimate the 

mass m� of SDOF models of standing people. 

a) b) c) 

3 mT h 

kH2 2 

mh 7 
mH amt 

h 
kH kH, 2 

Figure 2.13: Undamped human models using a) an undamped SDOF system, b) a two-part 
continuous model (after Ji 1995), and c) a uniform continuous model (after Falati 1999). 

Ji (1995) employed a continuous bar with two segments of different masses and stiffnesses (Figure 
2.13b). He assumed that the stiffness kH ranges from 0.5 kHI to 2 kH, . Based on this assumption, 
he concluded that the mass mH (Figure 2.13a) of an undamped SDOF system representing one of 
the first four modes of a standing human ranges from 1/2 mT to 2/3 mr . 

A significantly lower value mH = mT /3 was derived by Falati (1999, p. 177) by employing a uniform 
continuous model of a standing man (Figure 2.13c). 

Both Ji (1995) and Falati (1999, p. 175Q then used the theoretically derived lumped mass mH to 

estimate the stiffness kH of an undamped SDOF human model (Figure 2.13a). Thereby, both 

researchers simplified both the human occupant and the occupied structure as undamped SDOF 

systems. Thus, the human-structure system is an undamped 2-DOF system, whereby the human 
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DOF is connected to the grounded structural DOF. This undamped human-structure model can be 

defined uniquely by: 

(1) the natural frequency of the empty structure (f5 ), 

(2) one of the two natural frequencies of the undamped 2-DOF human-structure system 
(f (pm) or f, (ß")), and 

(3) the lumped masses of the structure (mg) and the human occupant (mH). 

Knowing these parameters, the natural frequency of the DOF representing the human occupant (f,, ) 

can be estimated (Ji 1995; Randall and Peng 1995), by rearranging equation (3.83) given in section 
3.1.2.3. 

Applying this theory, Ji (1995) concluded that the natural frequency of a standing person ranges 
from 10 to 12 Hz. Falati (1999, p. 177) computed a similar frequency of 10.43 Hz. However, this 

value was miscalculated, as Falati employed the mistyped natural frequency of the occupied 

structure of 7.76 Hz and not the estimated value of 7.79 Hz (Table 2.9). 

It is noted that the same procedure of assuming an undamped 2-DOF human-structure system was 
employed by Randall et al. (1997), who used a structure with a fundamental frequency of about 
40 Hz. However, in contrast to Ji (1995) and Falati (1999), Randall et al. (1997) probably assumed 
the total mass of the human occupant mH = mT . They determined the natural frequencies fH of 113 

individual standing occupants to range from 9 to 16 Hz. 

To summarise, Ji (1995), Randall et al. (1997), and Falati (1999) identified similar natural 
frequencies f� of undamped SDOF models of standing people. Interestingly, the identified 

frequency range (9 to 16 Hz) corresponds to a range (8 to 15 Hz) usually associated with a second 
resonance of the (sitting or standing) human body (ISO 1981). 

2.5.3 DAMPED MODELS 

Biomechanical research established that the human body is heavily damped. This was recognised 
by civil engineers and led to the development and use of some damped SDOF models of human 

occupants (Figure 2.2a). 
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To the best of the writer's knowledge, Foschi and Gupta (1987) were the first to use a damped 

dynamic human model. This was done to predict the vibration response of wooden floors to heel- 

drops. It should be mentioned that heel-drop excitation is defined by "a man weighing about 170 lb 

(77 kg) rocking up on the balls of his feet, lifting his heels about 2.5 in. (6.4 cm) off the floor, then 

relaxing, allowing his heels to impact the floor (Allen 1974). 

Foschi and Gupta (1987), and also Foschi et al. (1995) and Al-Foqhaha'a (1997), modelled standing 
human occupants as damped SDOF systems (Figure 2.2a). They assumed the mass mH = mT . 

In particular, Foschi and Gupta (1987) employed a person having a mass mH of 91 kg (200 Ib). 

They assumed the viscous damping c,, of a SDOF dynamic human model to be 1 kNs/m to equal 

the damping, probably of the fundamental mode, of the floor. However, neither the natural frequency 

fH nor the stiffness kH of this damped SDOF human model was provided. 

Next, Folz and Foschi (1991) performed analytical research comparing response time histories of 
two human-occupied structures. They modelled a standing human occupant by either the 2-SDOF 

model of ISO 5982 (Table 2.4) or by an 11-DOF model. Folz and Foschi (1991) preferred the 

simpler 2-SDOF model to the 11-DOF model. The two authors concluded that even a simpler SDOF 

occupant model could be capable to sufficiently accurately predict floor responses to heel impact. 

To determine the properties of a damped SDOF human model, Foschi et al. (1995) computed 
displacement responses of a human-structure model, using the SDOF human model, impacting the 

floor with a certain velocity. These responses were compared with experimental response time 
histories to heel-drop. Foschi et al. (1995) concluded that a SDOF human model with a stiffness kH 

of 40 kN/m and viscous damping c,, between 1.25 and 1.50 kNslm led to best approximations of 

the analytical and experimental response time histories. Employing the lower damping value they 
defined a damped SDOF human model of a man with a mass of 91 kg (Table 2.11). 

The mass mH and the stiffness kH of the SDOF model proposed by Foschi et al. (1995) led to a 

natural frequency fH of only 3.3 Hz (Table 2.11). This frequency is significantly lower than 

fundamental frequencies of all previously discussed biomechanic human models (Tables 2.3 and 
2.4). However, the damping ratio of this model (33%) corresponds closely to the damping values 

reported in other models. 
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The human model proposed by Foschi et al. (1995) was adopted by Al-Foqhaha'a (1997). However, 
he employed two people with different total masses mr than Foschi et al. (1995). Therefore, Al- 

Foqhaha'a (1997) obtained two damped SDOF human models (models 1 and 2) with slightly higher 

natural frequencies fH and damping ratios c� than the SDOF model of Foschi et al. (1995) (Table 

2.11). 

Table 2.11: Characteristics of damped SDOF models of a standing human occupant (after Foschi et 
al. 1995; Al-Foqaha'a 1997; Brownjohn 1999; Falati 1999). 

Human Model Spatial properties Modal Properties 

mH = mr (91 kg) 
fH = 3.3 Hz 

Foschi et al. (1995) kH = 40 kN/m 
ýH= 33% 

CH =1.25 kNs/m 

mH = mT (83 kg) 
Al-Foqaha'a (1997) 

kH = 40 kN/m 
fH = 3.5 Hz 

(model 1) ° ýH= 34/o 
CH =1.25 kNs/m 

mH = mr (75 kg) 
AI-Fogaha'a (1997) 

kH = 40 kN/m 
fH = 3.7 Hz 

(model 2) ýH= 36% 
CH =1.25 kNs/m 

mH = mr (80 kg) 
fH = 4.9 Hz 

Brownjohn (1999) kH = 82 kN/m 
ýH= 37% 

CH =1.946 kNs/m 

mH = mT 13 (25 kg) 
fH= 10.43 Hz 

Falati (1999) kH =107 kN/m 
ýH=50% 

cH =1.636 kNs/m 

Brownjohn (1999) employed a damped human model to predict the influence of a standing human 

occupant on his test structure. For this purpose, he defined a damped SDOF model (Table 2.11). 
Similar to other assumptions, this model is characterised by a mass mH equal to the total mass mr 
of the human occupant (Table 2.11). Brownjohn (1999) chose the stiffness k� and the viscous 
damping c� to lead to a natural frequency fH and a damping ratio ýH corresponding to the 

fundamental mode of a 4-DOF human model given by ISO 7962 (ISO 1987). This ISO 7962 model 
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serves only for estimating the transmission of vibrations to the head of sitting or standing people. It 

is, in contrast to the 2-DOF models of ISO 5982 (see section 2.2.2), not aimed at modelling the 
influence of human occupants on the dynamic behaviour of occupied structures. 

Brownjohn (1999) computed the natural frequencies and damping ratios of the human-structure 

system modelled as a damped 2-DOF system. He found the fundamental mode to have a frequency 

of 2.93 Hz and a damping ratio of 2.0%. These values correspond to the experimentally determined 

properties of the beam-like test structure occupied by an erect standing or a seated person (Table 

2.8). 

The last damped SDOF model (Figure 2.2a) of a standing person (Table 2.11) was developed by 
Falati (1999). He determined the mass m,, of this model as a third of the total mass mr of an 

occupant from a continuous model of the standing human body. Using this value, Falati then 

estimated the natural frequency f� (and consequently kH) assuming an undamped 2-DOF human- 

structure system as shown in section 2.5.2. 

In a next step, Falati (1999, p. 152) determined the damping ratio ýH of the damped SDOF human 

model. For this purpose, he computed responses of the structural DOF of damped 2-DOF human- 

structure models and compared them to experimental time histories. For this purpose, Falati 

probably used decaying vibrations caused by a heel-drop. He identified the damping ratio ýH to be 

within a range from 45% to 55% (Falati 1999, p. 180) and employed the median value of 50% to 

define a model of a standing person (Table 2.11). 
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2.6 SUMMARY AND SCOPE OF RESEARCH 

Human-structure interaction is an important aspect of human-induced vibrations. Nevertheless, its 

multiple effects are little researched and widely unknown. This research focuses on one aspect of 
human-structure interaction: the influence of human occupants on the dynamic properties of the 

structure they occupy. This issue has to be well understood to design structures, particularly 
assembly structures, successfully against human-induced vibrations. 

To predict the influence of human occupants, a dynamic human occupant model is required. So far, 

several SDOF models of single people standing on civil engineering structures were proposed. 
However, all these SDOF occupant models were based on unwarranted assumptions in respect to 
damping and/or the lumped mass of the occupant model (Ji 1995; Falati 1999). Furthermore, 

experimental data used to derive the properties of such human models were usually incomplete and 
unreliable (Ji 1995; Foschi et al. 1995; Falati 1999). 

The influence of human occupants was, in general, quantified using only crude estimation 
techniques, such as peak-picking of ASDs of response only measurements (Hothan 1999; Littler 
2000). The more reliable technique of curve-fitting FRFs was used only by Brownjohn (1999). 
However, Brownjohn's investigations were limited to the influence of a single occupant on a rather 
light structure of only 1200 kg. Furthermore, only one location of the occupant and only one mode of 
the structure were analysed. 

All of these issues will be addressed in the experimental part of this research. In fact, not only one 
but groups of up to five human occupants are employed. Additionally, occupant(s) will be placed at 
different locations on a test structure weighing about 15,000 kg. Their influence on several modes of 
the structure will be analysed simultaneously. 

Furthermore, the influence of the level of vibration on the influence of human occupants will be 
investigated experimentally. The latter issue is addressed because biomechanical research 
identified the properties of the human body as dependent on the level of vibration. 

To provide reliable and high-quality experimental data, FRFs will be estimated and modal properties 
will be identified by global MDOF curve-fitting. Moreover, nominally identical measurements will be 
repeated five times to provide increased statistical reliability of the identified modal properties. 

Finally, the properties of a damped SDOF occupant model will be derived from experimental data. 
This human model shall represent not only single but also small groups of human occupants. 
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3. THEORETICAL BACKGROUND 

This chapter outlines the theory employed in the experimental and analytical parts of this research. 
Aspects of analytical and experimental modal analysis are presented. Finally, it is outlined how 

analytical and experimental data are correlated in this research. 

3.1 ANALYTICAL MODAL ANALYSIS 

Analytical modal analysis is used to estimate response levels from response models that are derived 
from the spatial model of a structure, defined by mass, damping, and stiffness distributions (Ewins 
2000, p. 26). In the following sections, response models of viscously damped, linear, and time- 
invariant systems are derived. 

First, looking at the fundamentals of analytical modal analysis, responses of MDOF systems to 

arbitrary excitation are established in the time domain. Secondly, modal properties (natural 
frequencies, damping ratios, and mode shapes) of systems of particular interest in this research are 
derived from spatial properties. Thirdly, frequency domain response models of some dynamic 

systems are derived. 

3.1.1 FUNDAMENTALS 

The characteristics of a viscously damped SDOF system are firstly established. Then, the equation 
of motion of a MDOF system is used to estimate modal properties, which are used to derive 

response models in the time domain. These response models are established for proportionally 
damped systems and by employing state-space analysis for systems with general viscous damping. 

The theory presented here is mainly based on Clough and Penzien (1993), Maia et al. (1997) and 
Ewins (2000). Also, presentations by Argyris and Mlejnek (1991), James et al. (1999), and Ginsberg 
(2001) were found useful. 
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3.1.1.1 DAMPED SDOF SYSTEM 

A damped SDOF system (Figure 3.1) with a mass m, viscous damping c, and spring stiffness k is 

characterised by its circular natural frequency car (3.1), its natural frequency fr (3.2), and its 

damping ratio ýr (3.3). 

w ý= 
(3.1) 

F 

fr = 
(0' 1"f (3.2) 
2"n 2"n 

_c (3.3) r- 2"I? 1 " i1Jr 

F(t) 
X(t) m lumped mass 

mc viscous damping 
k stiffness 

k 
F(t) excitation force 

x(t) displacement 

Figure 3.1: Viscously damped SDOF system. 

In this research, only underdamped systems (ý, < 1) are considered. Such damped SDOF systems 

can also be characterised by the natural frequency coca of the damped system: 

i Curd = 0r 
, (3.4) 
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In this research, natural frequencies fý of the undamped system (3.2) are used to specify damped 

and undamped SDOF systems. 

The equation of motion of a viscously damped SDOF system (Figure 3.1) to an arbitrary excitation 
F(t) is provided in equation (3.5). 

m" x(t) +c" A(t) +k" x(t) = F(t) (3.5) 

The displacement response x(t) of such a SDOF system can be calculated analytically from its 

transient response x(t)u, �, and its forced response x(t)f, : 

X(t) = X(ti)trans + x(t/f,, . (3.6) 

In particular, the transient response x(t),., �, 
is defined by the homogeneous solution (3.7) (Clough 

and Penzien 1993, p. 27) of the second order differential equation of motion (3.5) and the forced 

response x(t)f, is specified by the particular solution (3.8) (Clough and Penzien 1993, p. 89). 

Xlr')trene - X(O) " C05(COrd ' "ri)+ 
X(O)+ X(O) " 

ýr 
" wr 

' Sln(CVrd ")" C-{'"w'"L 
(3.7) 

wrd 

urd J 5in(COrd " (t - ti)) " C- `ý (`-z) 
' F(ti) dti (3.8) X(t)�, =m1 

The calculation of responses of a SDOF system (Figure 3.1) to an arbitrary excitation will be 

extended to calculate responses of MDOF systems. 

3.1.1.2 EQUATION OF MOTION OF MDOF SYSTEMS 

Equation (3.5) established the equation of motion of a SDOF system. This equation is now 
expanded to the equation of motion of a viscously damped N-DOF system with spatial properties 
defined by the mass matrix [M], the viscous damping matrix [C], and the stiffness matrix [K] (3.9). 

[M] " {X(t)l+ [C] " {k(t)}+ [K] " {x(t)} = {F(t)} (3.9) 

The response x(t) of each DOF to an arbitrary force {F(t)} can be calculated either directly from 

(3.9) in the time domain or indirectly using the frequency domain as will be shown below. 
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The mode shapes {yr}, of an undamped MDOF system can be calculated from the equation of 

motion (3.10) that defines its free vibrations: 

[M] " {{(t)}+ [K] " {x(t)} = {D}. (3.10) 

Assuming vibrations of a general form (3.11), a second order eigenproblem defined in equation 
(3.12) emerges from equation (3.10). 

{x(t)} _ {yl} " e"*` (3.11) 

(X2 
"[M]+[K])"{W}={o} (3.12) 

Solving this eigenproblem using equation (3.13) leads to N pairs of complex conjugate eigenvalues 
Xr" 

detkA, ' "[M]+[K])=0 (3.13) 

Substituting these eigenvalues into equation (3.12) leads to the corresponding mode shapes {y},. 

The mode shapes (eigenvectors) of undamped MDOF systems are real-valued. Thus, eigenvector 
elements are either in phase (same sign) or 1800 out of phase (different sign). 

The mode shapes {yr}r of undamped MDOF systems satisfy equations (3.14) to (3.17) (Maia et al. 
1997, p. 531). These orthogonality conditions are very useful for the calculation of MDOF systems 
because they can be used to decouple equations as outlined in sections 3.1.1.3 and 3.1.1.4. 

{yr}JT " [M]. {fir}, =0 (j #k) (3.14) 

{yr}jT " [K] " {yr}k =0 (j * k) (3.15) 

1,, }, r (j=k=r) (3.16) 

{ }- [] {`YJr kr (j=k-r) (3.17) 

In real life, structures are damped. If a MDOF system is viscously damped, the free vibrations of the 

system can be described by equation (3.18). 

[M] " {X(t)}+ [C] " {ic(t)}+ [K] " {x(t)} = {0} (3.18) 
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Analogous to eigenvalues and mode shapes of undamped systems, the eigenvalues A, and the 

mode shapes {yr}r of damped MDOF systems can be calculated by solving the eigenproblem 

(3.19) and the characteristic equation (3.20). 

((, Z " [M] +%" [C] + [K]) " {yr} = {0} 

det(A, 2 "[M]+X"[C]+[K])=0 

(3.19) 

(3.20) 

However, the mode shapes {yr}, of generally viscously damped MDOF systems are complex. In 

other words, not all phases are 0° or 180°. This means that the DOFs of such a system in free 

vibration do not reach their maximum values at the same instant of time. Such complex mode 

shapes do not satisfy equations (3.14) to (3.17). 

However, mode shapes of viscously damped MDOF systems are real if the viscous damping matrix 
[C] is a linear combination of the mass matrix [M] and the stiffness matrix [K] (3.21) (Ewins 2000, 

p. 115). In this case, the MDOF system is called proportionally damped (Mafia et al. 1997, p. 57; 

Ginsberg 2001, p. 270f). 

[C]=v"[M]+E-[K] (3.21) 

The real-valued mode shapes of a proportionally damped system satisfy equation (3.14) to (3.17). 

Additionally, they satisfy: 

I`Y}JT 
. 

[C]. {iv},, 
= ii}}T . 

(v-[M]+e. [K]). 
L'1'Jk =0 (3.22) 

and 

{'v} 
"[C] "{NJIr =Gr" (3.23) 

These properties enable decoupling of the equation of motion (3.9). Therefore, responses 
associated with each mode of vibration can be calculated by solving a single and not a system of 
differential equations. The total response is then obtained by summing the individually calculated 
modal contributions as shown in section 3.1.1.3. 

Generally non-proportionally damped systems do not decouple the equation of motion, which makes 
the computation of responses more expensive (Argyris and Mlejnek 1991). Therefore, responses of 
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generally damped MDOF systems are usually computed using another procedure, state-space 

analysis. The state-space description of MDOF systems is also often used in the identification of 
MDOF systems from experimental data (Ewins 2000, p. 287). 

State-space analysis can handle general non-proportionally damped systems efficiently. This is 

achieved by simplifying the second order eigenproblem (3.12) to a first order eigenproblem that can 

more easily be solved numerically. This procedure is outlined in section 3.1.1.4. 

3.1.1.3 RESPONSES OF PROPORTIONALLY DAMPED SYSTEMS 

To compute responses of proportionally damped systems, the equation of motion (3.9) is decoupled. 

For this purpose, it is transferred from the physical into modal space by substituting displacements 
{x(t)} by the modal matrix [E)]: 

[o] _ [{, v}1... {ßv}N (3.24) 

that summarises the mode shapes {yr}, of the undamped MDOF system and the modal responses 

{ (t)} : 

{x(t)} = [o] " {p(t)}. 

to: 

(3.25) 

[M] " [O] "{ (t)}+ [C] " [O] "{ 5(t)}+ [K] " [O] " {p(t)} = {F(t)}. (3.26) 

Pre-multiplying the resulting equation (3.26) with the transpose of the modal matrix [0]T leads to 

the equation of motion as presented in equation (3.27) (Argyris and Mlejnek 1991, p. 317). 

[O]r " [M] " [O] " 
{p(t)}+ [O]T " [C] " [O] " 

{p(t)}+ [O]t " [K] " [O] " 
{p(t)} _ [O]r " {F(t)} (3.27) 

The term on the right hand side of equation (3.27) specifies the modal force {g(t)}: 

{g(t)} = [O]r " {F(t)}. (3.28) 

Hence, forces {F(t)} weighted by the mode shape {V}, contribute to the modal force ge (t) , 
defined not as a vector but as a single function of time (3.29). 
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9ý (t) = {W}T - {F(t)} (3.29) 

The equation of motion (3.27) is decoupled because, in the case of proportionally damped systems, 

off-diagonal elements are zero (see equations (3.14), (3.15) and (3.22)). The terms on the diagonals 

are the modal mass mit , modal damping cr , and modal stiffness k, specified in equations (3.16), 

(3.17), and (3.23). Using these terms, the decoupled equation (3.27) can be rewritten as N 

(r =1,2,3, ... N) independent second order differential equations: 

mr*pr(t')+Cr' 
r(t)+kr*fr(t)-9r(t)' (3.30) 

Modal responses p, (t) (of each of the N independent equations describing the proportionally 

damped MDOF system) to the modal forces gr(t) can be computed with equations (3.6), (3.7), and 

(3.8). These modal responses pr (t) can then be used to calculate the overall physical responses 

{x(t)} of an arbitrarily excited MDOF system by adding participations from individual modes r. This 

becomes obvious if equation (3.25) is rewritten as (3.31), which clearly defines the physical 

response x, (t) at DOF j as sum of the modal responses p, (t) weighted by the mode 

shapes {yr}r. 

N 

XJ (t) - 1IIJr pr (t) 

r=t 

(3.31) 

Finally, it is pointed out that the physical response xj (t) is independent of mode shape scaling. 

This is shown by replacing the mode shape {yr}, by {yr}, =a" {yr}r. In this case, a different modal 

mass mý = a2 " mr , different modal damping cr = a2 " Cr , and different modal stiffness kr = a2 " kr 

are obtained (equations (3.56), (3.57), and (3.58)). Furthermore, modal forces change to 
gr (t) =a" gr (t) (see equation (3.29)). Using these parameters in equation (3.30), the modal 

response p, (t) = a-' " p, (t). At last, the modal response p, (t) and the corresponding mode 

shape {'}r are substituted into equation (3.31), which leads to the same physical responses xj(t) 

as if pr (t) and {'V}r were employed. 

Often, mode shapes are mass-normalised (Maia et al. 1997, p. 55; Ewins 2000, p. 53). However, in 

this research, amplitude normalisation is preferred. Therefore, the mode shape element of each 

mode shape with the largest translation is set to unity and its phase to zero. 
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3.1.1.4 STATE-SPACE ANALYSIS OF NON-PROPORTIONALLY DAMPED SYSTEMS 

As outlined above, decoupling the equation of motion (3.9) and estimating the responses {x(t)} of 

a proportionally damped system is straightforward. Therefore, damping is often modelled as, or 

approximated with, proportional damping (Clough and Penzien 1993, p. 234ff, Ginsberg 2001, 

p. 2710, although this simplification can lead to significant deviations in calculated time domain 

responses (Argyris and Mlejnek 1991, p. 325). 

Responses of non-proportionally damped MDOF systems to arbitrary excitation can be computed 

using an expensive procedure similar to that outlined for proportionally damped systems (Argyris 

and Mlejnek 1991). However, here, the more commonly used state-space method is introduced. 

The state-space method decouples the equation of motion for generally (non-proportionally and 
proportionally) damped systems. For this purpose, orthogonality conditions of the mode shapes are 
employed. However, generally damped MDOF systems usually do not have real mode shapes. 
Therefore, they do not satisfy the orthogonality conditions (3.14), (3.15), and (3.22). However, they 

satisfy the orthogonality conditions (3.32) and (3.33) (Maia et al. 1997, p. 60; Ewins 2000, p. 75f). 

x, " lk " {iv}; " [M], {w}k - {vw}; " [K] " {vV}k =0 (j # k) (3.32) 

(Xi+a, 
k)"{yr}; "[M]"{yr}k+{w}; "[C]"{v}k =0 (j#k) (3.33) 

To decouple the equation of motion using these two orthogonality conditions, the equation of motion 
(3.9) is, for instance, expanded to equation (3.34) (Maia et al. 1997, p. 58; Ewins 2000, p. 771). 

1ICI [M] {k(t)} [K] [0] {x(t)} {F(t)} 
[M] [0] {X(t)1 + [0] [- M] {X(t)} {0} (3.34) 

This equation (3.34) can be written as an equation of motion in the state-space (3.35) by defining 
the state-space variable Ju(t)} (3.36) and the state-space force {Q(t)} (3.37). 

[A] " {ü(t)}+ [B] " {u(t)} _ {Q(t)} (3.35) 

{u(t)} . 
{X(t)} 

(3.36) {()} 
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111(011 (3.37) 

Decoupling the state-space equation of motion (3.35) requires the modal properties of the MDOF 

system to be known. These modal properties can be obtained by solving the eigenproblem stated in 

equation (3.38) which is analogous to that provided in equation (3.12). 

(l'" [A]+[ß])" {V}- {o} (3.38) 

The resulting 2"N eigenvalues X' and the mode shapes correspond to the eigensolutions of 

the system if analysed using equation (3.12). However, the state-space vector {u(t)} has twice as 

many elements as the vector {x(t)} (3.36). Hence, the state-space mode shapes {yr }r have twice 

as many elements as the mode shapes Mr calculated from the eigenproblem (3.12). However, 

summarising the state-space mode shapes into the modal matrix [O'], a relation to the mode 

shapes {w}r of equation (3.24) can be established as: 

lei1 
{w} {yr}N {yr}; IV ION 

(3.39) 2Nx2N - ý1 {Yt... ý'N VN V1 {W}i 
... 

xN'{�I}N . 

Similarly to the modal force {g(t)} and the modal response {p(t)} in the physical space (equations 

(3.28) and (3.25)), the modal force {g'(t)} (3.40), and the modal response {p'(t)} (3.41) are 

defined in the state-space. 

{g'(t)} = [O']T " {Q(t)} (3.40) 

{u(t)} = [O'] " {p'(t)} (3.41) 

Following the same procedure as for proportionally damped systems, that is substituting {u(t)} with 
its state-space presentation {p'(t)} and pre-multiplying with the transposed modal matrix [O']r, 

equation (3.35) transforms into the modal state-space equation (3.42). 

[G']" " [A] " [O'] " {5'(t)}+ [O']t " [ß]. [O'] "{ '(t)} = {0'(t)1 (3.42) 
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The equation of motion in the state-space (3.42) is decoupled because of the orthogonality 

conditions (3.32) and (3.33). In order to express this set of equations, equations (3.43) and (3.44) 

express the orthogonality conditions (equations (3.32) and (3.33)) for the case of j=k=r. 

V" {`Y}r " LMl " 
{'t'}r 

- 
{W}T 

" 
[K]" {XV}r = br 

2'ýr'{WIr '[M] 'LWJr+li}r '[C]'LNIr -ar 

(3.43) 

(3.44) 

Employing equations (3.43) and (3.44) that define the complex terms ar and b,., equation (3.42) 

can be expressed as a set of 2"N (r = 1,2,3,... 2 " N) first order ordinary differential equations: 

aý " pý fit) + br " p' (t) = 9r (t) " (3.45) 

The equation of motion (3.45) can also be defined by equation (3.46) excluding the term br. 

ar "p. (t)-X'r 'ar'p'r (t)=9'r (t) (3.46) 

This is possible because the eigenproblem (3.38) can be expressed by 2. N equations (3.47), 

which lead to the eigenvalues %' as defined by equation (3.48) (Mafia et al. 1997, p. 68). 

(A, '. a,. +b, )"{W'}' e" ={o} (3.47) 

%I =-b, (3.48) 
är 

Knowing the decoupled equations of motion of a generally viscously damped MDOF system to an 

arbitrary excitation in the state-space (3.46), it is possible to calculate the physical responses {x(t)} 

from the state-space responses Ju(t)} (3.36). 

The state-space response uj (t) of any DOF j can be calculated from the modal matrix [O'] and 

the modal state-space response {p'(t)} (3.41) by superposing the responses of 2. N modes: 

2"N 

uJJk . pk\t/" 

k=1 
(3.49) 
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It remains to estimate the state-space modal responses pk (t) . If the modal force Qk (t) and the 

initial conditions pk (D) are known, the state-space modal responses pk (t) can be calculated: 

t 

fklfi'/-rk(0)ýP'-ýti+ ßk 0 

(3.50) 

Equation (3.50) was derived from James et al. (1999, p. 511) by considering equation (3.48). It 

shows that the response pk (t) is determined by a transient and a forced part, similarly to the 

response of damped SDOF systems (see equations (3.6), (3.7), and (3.8) in section 3.1.1.1). 

3.1.1.5 MODAL PROPERTIES 

In the previous section, it was outlined how responses of damped MDOF systems can be calculated. 
For this purpose, eigenvalues X, were employed. Also, in the case of proportionally damped 

systems, modal masses mr , modal damping c,, and modal stiffnesses k,. were used. Properties of 

these characteristic values and their relationships are now analysed. 

The eigenvalues Xr of undamped MDOF systems correspond to the modal stiffness kr and the 

modal mass mr: 

mr 
(3.51) 

Thus, the eigenvalues %,. specify the circular natural frequency (3.52) and the natural frequency 

(3.53), which is analogous to that of a SDOF system (section 3.1.1.1), of mode r. 

Or = I%r 1 (3.52) 

fr =2" 1XI I (3.53) 

If a damped MDOF system is underdamped (c,. < 1), its eigenvalues Xr are in the form of: 

/Ir=-0)r "ýrtT"iAr" -? 
(3.54) 
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Damping ratios Cr of each mode of vibration r of such an underdamped MDOF system can be 

calculated from the eigenvalues X, using: 

IXE (3.55) 

The circular natural frequencies co, and the natural frequencies f, of mode r can be calculated 

using equations (3.52) and (3.53). Thereby, it is important to note that the natural frequencies fr are 
different for differently damped or undamped MDOF systems. 

Eigenvalues %,. are not always complex numbers. They can also be real. This is the case if the 

system is overdamped and no oscillations take place. Moreover, the characteristic polynomial (3.20) 

can also lead to repeated eigenvalues ?r, which can result from symmetry of the structure (Ewins 
2000, p. 57). However, such solutions are not of concern in this research. 

Modal masses mr (3.16), modal stiffnesses kr (3.17) and modal dampings Cr (3.23), of modes r 
of proportionally damped (or undamped) systems are real-valued. They specify the circular natural 
frequencies co, and damping ratios i;, of SDOF systems (equations (3.1) and (3.3)) as also 

specified by the eigenvalue Xr (equations (3.52) and (3.55)). 

Modal masses Mr I modal stiffnesses kr and modal dampings Cr of non-proportionally damped 

systems computed by equations (3.16), (3.17), and (3.23) are complex numbers, which are not 
particularly meaningful. Nevertheless, if equations (3.56) to (3.58) are used (Maia et al. 1997, p. 61; 
Argyris and Mlejnek 1991, p. 317), modal masses m, modal dampings Cr and modal stiffnesses 
kr are real-valued. 

{j}r " EM] " {w}r = Mr (3.56) 

{w}ý " [C] " {V}, = cr (3.57) 

{yr}, - [K] " {yr}; = kr (3.58) 

Moreover, these real-valued modal properties define the circular natural frequency co, (3.1) and the 

damping ratio ý, (3.3) of mode r of generally damped MDOF systems as specified by the 

eigenvalue X, (Maia et al. 1997, p. 61). 
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However, the modal properties defined in equations (3.56) to (3.58) do generally not decouple the 

equation of motion. They only decouple the equation of motion (as in (3.30) if the system is 

undamped or proportionally damped. In this case, mode shapes are real-valued and, therefore, 

equations (3.56) to (3.58) lead to the same modal mass mr , modal damping Cr and modal stiffness 

kr as equations (3.16), (3.23) and (3.17). 

Finally, it should be noted that real-valued modal masses m, as defined in equation (3.56) are used 

in this research to represent modal masses of non-proportionally damped systems. 

3.1.2 MODAL PROPERTIES OF SDOF AND 2-DOF SYSTEMS 

In the previous section, modal properties and response models of arbitrarily excited viscously 
damped MDOF systems were derived. Now, focus is put on the modal properties of SDOF and 2- 

DOF systems that are of particular interest in this research (Figure 3.2). 

a) b) 

mH 
JtXHFH 

kH CH 

ms 
2 x, FS 

m5 
= x51 F5 

k c5 
s 

t-igure 3.2: uynamic models of a viscously damped a) structural SDOF system (ms , cg, k5) and b) 
2-DOF structure (ms , c, k5) and human (m., c,,, k,, ) system. 

The damped SDOF system (Figure 3.2a) is used as a simple model of a structure having lumped 

properties (m5 , cs, and k5). Similarly, human occupants are modelled as a damped SDOF system 
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with the properties m,,, c,,, and kH . Combining the SDOF structure and the SDOF occupant 

models, the human-occupied structure is modelled as damped 2-DOF system (Figure 3.2b). This 

model will be used in chapters 4 and 6. 

Analytical expressions for the modal properties of both systems (Figures 3.2a and 3.2b) are 
developed. Furthermore, the damped 2-DOF system (Figure 3.2b) is simplified to an undamped 2- 

DOF system, whose modal properties are derived. The undamped 2-DOF system is included here 

because some authors (Ellis and Ji 1997) proposed such an model of a human-occupied structure. 
The damped and the undamped 2-DOF human-structure system are included into an analytical 
parametric study of human-structure models presented in chapter 4. 

3.1.2.1 DAMPED SDOF SYSTEM 

A SDOF system (Figure 3.2a) has only one mode of vibration with natural frequency and modal 
damping as already defined in equations (3.2) and (3.3). Similarly, the natural frequency fg and the 

modal damping ratio ý5 of the SDOF model presented in Figure 3.2a can be defined as 

1 iic: f y= (3.59) 
2"ý m5 

and 

c5 ms (3.60) 5 2' ms ks 

The mode shape of this SDOF system has only one element. Therefore, the amplitude normalised 

mode shape {Ar}, is given by equation (3.61). 

{w}1 
='Y51-1 (3.61) 

In this research, SDOF systems as presented in Figure 3.2a are used to represent the empty test 
structure. However, SDOF systems are also used to model human occupants. In this case, the 
mass, viscous damping, and stiffness properties of the SDOF system are defined as mH, CH, and 
kH . This simple SDOF model will represent not only single but also groups of human occupants. 
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To enable such a simplification, it is assumed that each occupant can be modelled by a damped 

SDOF system with a lumped mass mH , which is a certain proportion of the total mass mt of the 

individual human occupant. Furthermore, it is assumed that such a SDOF system representing any 

occupant has the same natural frequency fH and the same damping ratio ýH . In this case, it is 

possible to lump several SDOF human occupant models into one. 

For instance, two SDOF systems (1 and 2) be characterised by m,, c,, k, and m2, c2, k2 

respectively. They have identical natural frequencies fH and damping ratios 1;,,. Both SDOF 

systems can be summarised into a SDOF system defined by 

m3 = m, +m2, (3.62) 

c3 =Cl +02, (3.63) 

and 

k3 = k, + k2 . (3.64) 

This SDOF system has also the natural frequency fH and the damping ratio CH. This can be shown 

using the fact that 

k,. 
= 

k2 
(3.65) 

MI m2 

and 

Cl. 
_c2 (3.66) 

m, m2 

for two SDOF systems with the same natural frequency and damping ratio (see equations (3.59) and 
(3.60)). 

Equation (3.65) can be rewritten as 

k, " m2 = k2 " m, . (3.67) 

Eliminating m2 and k2 from this expression by using equations (3.62) and (3.64), it becomes: 
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k, "(m3-m, )=(k3-k, )"m,. (3.60) 

This equation (3.70) equals 

k, " M3=k3 " m, (3.69) 

and, therefore, 

k,. 
= 

k3 (3.70) 
MI m3 

This last equation (3.70) is similar to equation (3.65). It confirms that summing mass and stiffness of 
two SDOF systems with the same natural frequency leads to a SDOF system that also has this 

natural frequency. 

Following a similar procedure, but starting with equation (3.66) instead of (3.67), it can be shown 
that 

Cl 
= 

C2 
= 

C3 

m, m2 m3. 
(3.71) 

This demonstrates that the damping ratio of the two SDOF systems (1 and 2) equals the damping 

ratio of SDOF system 3 (equation (3.60)). Thus, one SDOF model can represent an arbitrary 

number of SDOF human occupant models defined by a natural frequency fH and the damping ratio 

tH. Thereby, it is only the mass mH that changes depending on the number of human occupants. 

3.1.2.2 DAMPED 2-DOF SYSTEM 

The damped 2-DOF model (PM) presented in Figure 3.2b is used in this research as a key model 
for the human-structure system. Its modal properties can be calculated from its equation of 
motion (3.72). 

m5 0 xy(t) 
+ 

c5 +cH -cH ic5(t) 
+ 

k5 +kH -kH x5(t) 
_ 

F5(t) 
0 mH RH 

\t) - CH CH xH (t) 
- kH kH xH lß'1 

FH (t) 

(3.72) 
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Its natural frequencies fr, $'M), 
modal damping ratios fir, and mode shapes {yº}r are obtained from 

solving the eigenproblem: 

%t2 " 
m5 0 

+% 
C5 +CH -CH ]+[ks +kH -kH `I 7- 

0. fI, 
MH r- CH CH - 

kH kH ]JlWHjt0 (3.73) 

which is a special case of equation (3.19). Its eigenvalues Xr can be calculated by solving: 

det 
m5 .? +(G5 +cH). A +k5 +kH -cH 

lr 
-kH 

=0. 
(3.74) 

-GH 
Xr-kH mH "X2+GH "Xr+kH 

Equation (3.74) can be rewritten as equation (3.75) and explicitly as fourth order polynomial (3.76). 

0 =(ni . 
X2+(CS+CH)"Xr+kS+kH)"(mH"9Z+CH 

"ý., +kH)-(-CH"Ir -kH)2 (3.75) 

0=m5 "mH "'r 

+(mH'CS+mH'CH+m5'CH)'Vr 

+ (mH 
'kS +mH ' kH +m9 ' kH +CH ' c5). Vr (3.76) 

+(CH 'k5 +C5 'kH/'? r 

+k5 "kH 

The eigenvalues %,. (equation (3.54)) of this fourth order polynomial (3.76) can be calculated 

analytically (Weisstein (1999) and see Appendix A) or solved numerically by employing appropriate 

software. In any case, if the two eigenvalues X, and X. are known, the natural frequencies (f, (") 

and f2(°"')) and the damping ratios (ý, and ý2) can be calculated (equations (3.53) and (3.55)). 

The eigenvectors {yr}, of a damped 2-DOF system (Figure 3.2b) corresponding to the eigenvalues 
X, are specified by equation (3.73). Based on this equation, the ratio of mode shape elements WH, 
to xV,,, can be described by equation (3.77) or by equation (3.78) (Timoshenko et al. 1974, p. 267). 

ý2 
' 

____ 
r" 

(CC, 
+CH)+kr, +_H 

_ 
I'Hr (3.77) 

Xr 
- CH+kH Ver 

- 
Xr 

* r'H - kH 

__ 
WHr 

(3.78) 
2 )r 

-MH +Xr *CH +kH ,1 
`Yr 5r 
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Summarising the two mode shapes {yr}, and {w}2 
, the modal matrix [0] of a damped 2-DOF 

system (Figure 3.2b) is defined by equation (3.79). 

[eý _ 
yr" W52 (3.79) 
WH1 WH2 

The mode shapes {yr}, and {yr}2 are generally complex and, therefore, there is a phase shift 

between the two DOFs. (Mode shapes are real if damping is proportional, meaning that the damping 

matrix is a linear combination of the mass and stiffness matrices. ) 

3.1.2.3 UNDAMPED 2-DOF SYSTEM 

Following a detailed presentation of the theory of the damped 2-DOF system (Figure 3.2b), the 

modal properties of the undamped 2-DOF system are estimated. 

The equation of motion and the eigenproblem of an undamped 2-DOF system can easily be derived 

from equations (3.72) and (3.73) defining the damped 2-DOF system by setting c5 = cH = 0. Thus, 

equations (3.75) and (3.76) lead to the polynomials (3.80) and (3.81) defining the eigenvalues X, of 

the undamped 2-DOF system. 

0=(mr, -V, +k5+kH)"(mH" Ar+kH)-(-kH)2 (3.80) 

O=ms'mH' , +(mM'ks+mr, 'kH+ms'kH)'Vr+ks'kH (3.81) 

The eigenvalues X, (3.54) of undamped systems (ý, = 0) contain only information on the circular 

natural frequency cur : 

%1r =f1"Q)r" (3.82) 

Similarly to the eigenvalues of a damped 2-DOF system (Appendix A), the eigenvalues Xr of an 

undamped 2-DOF model (UM) can be calculated analytically. This fact can be used to define the 

natural frequencies f, ") and f2(um) (3.83) of the undamped 2-DOF system by the modal masses 
(my and m,, ) and the natural frequencies (f9 and fH) of the two DOFs (Randall and Peng 1995) 

as derived in Appendix B. 
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f1.2ýM) (fH + f5 + 
mH 

" fH ýfH 
- f5 ý2 + 

mH 
" frei (3.83) 

2 rr15 2 m5 

Finally, the mode shapes {yr}, and {yr}2 of the undamped 2-DOF system are described by: 

w? "mg +kg +kH 
- 

WHr 

- 
(3.84) 

kH Wßr 

or 

-kH _ 
WHr (3.85) 

0)ý . mH +kH 'VSG 

simplifications of equations (3.77) and (3.78) defining the mode shapes of damped 2-DOF systems. 

It is noteworthy that the mode shapes {y}, and {yr}2 of undamped 2-DOF systems are real 

valued. Therefore, the two DOFs of undamped 2-DOF systems move in phase and 180° out of 

phase, respectively, in both modes. 

3.1.3 FREQUENCY DOMAIN RESPONSE MODELS 

In the previous section, modal properties of SDOF and two 2-DOF models were calculated from 

spatial properties. In this section, spatial and modal properties of the dynamic systems presented in 

Figures 3.2 and 3.3 will be used to define frequency domain response models analytically. 

3.1.3.1 DEFINITION OF FRF AND INVERSE FRF 

The frequency response function (FRF) and its inverse are frequency domain response models 
(Mafia et al. 1997, p. 38; Ewins 2000, p. 36). An FRF Hak (w) defines the response vj (w) 

(displacement, velocity, or acceleration) at DOF j to a sinusoidal excitation Fk (co) at DOF k: 

Hak (w) _ 
vi () 
Tk\o) (3.86) 

An inverse FRF Z (co) (3.87) is defined as the reciprocal of a FRF Hik (co) (Ewins 2000, p. 36). 
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1_ Fk (Co) 
Z_ (w) 

H, k 
(w) V, (Co) 

(3.87) 

The equation of motion of MDOF systems (see equation (3.9) in section 3.1.1.2) can be used to 

derive analytical descriptions of FRFs. This is done by substituting a sinusoidal excitation {F(t)} 

{F(t)} = {F((w)} " e''`at (3.88) 

and a sinusoidal displacement response {x(t)} (3.89) (or its derivatives {k(t)} (3.90) or {X(t)} 

(3.91)) into the equation of motion (3.9). 

{x(t)} = {x(w)} " e'*wti (3.89) 

{k(t)} =i" Co " {x(t)} (3.90) 

{x(t)j= (i " (0)2 " {x(t)} = -o " {x(t)} (3.91) 

Thereby, the equation of motion (3.9) simplifies to equation (3.92). 

(- w2 " [M] +1" Co " [C] + [K]) " IX(C0)1 = {F(w)} (3.92) 

Summarising the left hand term of equation (3.92), the receptance FRFs ajk(o) of MDOF systems 

may be presented in the matrix form [a(cs)] based on equation (3.93). 

[a(w)]-' " {X(w)} = {F(w)} (3.93) 

The receptance FRFs ask (co) are defined by the spatial properties ([M], [C], and [K]) of the 

MDOF system: 

[a(w)] =( w2 , [M] + 1, w, [C] + [K]1-, (3.94) 

However, FRFs can also be defined by the modal properties of the dynamic system. Such a 
description is based on state-space analysis (see section 3.1.1.4). It is particularly valuable in the 
identification of modal properties from experimental FRFs (Ewins 2000, p. 287). 

In particular, for the sinusoidal vibrations (equation (3.88) and (3.89)) described by FRFs, the state- 
space equation (3.46) can be simplified to equation (3.95). 

Page 58 



Chapter 3 Theoretical Background 

ar'\1' w-xr/' 
1fr(t)l=10r\t/J 

(3.95) 

The modal responses in the state-space {p'(t)} are based on the state-space variable {u(t)}, 

which is defined by the displacement responses {x(t)} (see section 3.1.1.4). In case of steady-state 

sinusoidal vibrations, the displacement responses {x(t)} occur at a certain frequency only (3.89). It 

is therefore possible to extract the frequency dependent displacements {X(0 )} from the state-space 

equation (3.95) (Maia et al. 1997, p. 69). 

The receptance FRFs ask (CO) can then be defined in the partial series form by equations (3.96) and 

(3.97), whereby r Alk (3.98) is a complex number called the modal constant or residue (Maia et al. 

1997, p. 70; Ewins 2000, p. 60). 

`Y Jr " `I' kr `I' Jr " Vkr 

aJk «0) 
. 

(' +--ý (3.96) 
r=l 

ar "i» -Ir är I"iý-ýr 

NA A' 
a jk(w) = (3.97) 

(1 "w-2, r)+ i"w-ýý rmi 

A= Wir " Wkr (3.98) r ýk 
ar 

The previous paragraphs established descriptions of receptance FRFs from the displacement 

response xj (t) to a sinusoidal excitation Fk (t) . Measurements often identify response velocities 

icy (t) or accelerations 5 (t) that are related to mobility FRFs Y (w) or to accelerance FRFs 

Ask (w) . In both cases, the analytical description of the FRFs Yak (w) and Ask (w) can be derived 

from the receptance FRF xJk (CO) (equations (3.99) and (3.100)). 

Yak (w) _" Co " ask (Co) (3.99) 

Ask (w) = -co' " ask (Co) (3.100) 

Note, multiplying by i" co or - w2 corresponds to using the first or second derivative (icj (t) in 

equation (3.90) or xj (t) in equation (3.91)) of the *displacement xj(t) . 

Pepe 59 



Chapter 3 Theoretical Background 

In this research, SDOF systems (Figure 3.2a) and 2-DOF systems (Figure 3.2b) are used to model 
structures and corresponding human-structure systems. The accelerance FRFs Ask (co) of these 

dynamic systems will be used in an analytical parametric study (chapter 4). They will be established 
in sections 3.1.3.2 and 3.1.3.3. 

This research also looks at inverse FRFs. In particular, the apparent mass Mjk (co) (the reciprocal of 

the accelerance Ask (CO) ): 

1 Mjk (w) =Ask (w) 
(3.101) 

and the mechanical impedance Irk (CO) (the reciprocal of the mobilityYak W): 

ýjk (Co) = (3.102) 
Yak (w) 

are introduced. 

The FRFs I Jk (w) and Mjk (w) are traditionally used in biomechanical engineering to describe 

dynamic properties of the human body and simple biomechanical models of the whole human body 
(section 2.2). 

Based on recommendations by Griffin (1990, p. 360) and Wu et al. (1999), the apparent mass 
Mjk (CO) is preferred to the mechanical impedance 'jk (w) . The apparent mass Mjk (CO) of the two 

biomechanic models presented in Figures 2.2b and 2.3c (and thus indirectly of the models of 
Figures 2.2a and 2.3b) will be derived in sections 3.1.3.4 and 3.1.3.5. 

3.1.3.2 ACCELERANCE OF A SDOF SYSTEM 

In this research, the damped SDOF system (Figure 3.2a) is used to model a structure. This SDOF 
system is described by one point-accelerance FRF. In the following analysis, this point-accelerance 
will be compared to the point-accelerance A,,,, (ca) of the 2-DOF human-structure model (Figure 
3.2b, section 3.1.3.3). Both accelerances define the response of the structure to an excitation at the 
DOF modelling the structure (j =k= 5). Therefore, in this research, both accelerances are named 
'structural FRFs'. However, it is necessary to distinguish between the structural FRF of the SDOF 
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model representing an empty structure (Figure 3.2a) and the structural FRF of the 2-DOF human- 

structure model (Figure 3.2b). Therefore, the structural FRF of the SDOF system is defined as 
A5 (w) in contrast to the structural FRF of the 2-DOF human-structure system A55 (ca). 

Based on the already outlined theory (equations (3.94) and (3.96) in section 3.1.3.1), the structural 
FRF A, (co) of a SDOF system (Figure 3.2a) can be defined by modal properties in the partial 

series form: 

A5 (co) =- 
w2 (3.103) 

m5 -0 "co-k). i"(A-%ý 

and by spatial properties in the partial fraction form: 

_z A(w) 
k5 _m5 . w2 +i. Co. c5 

(3.104) 

In further analysis, the magnitudes of the structural FRFs of the SDOF structure model and of the 2- 

DOF human-structure system will be compared (see section 4.6 and chapter 6). In this comparison, 
the amplitude a5 (3.105) of the structural FRF A. (w) at the natural frequency wg is going to be 

used. 

a5 =IAS(co (3.105) 

The amplitude as can be derived from equations (3.103) or (3.104) and equation (3.105) and is 

defined by equation (3.106). Equation (3.106) demonstrates that the magnitude of the FRF A. (oh ) 

is limited only by viscous damping c5, which is specified by the modal mass ms and the modal 
damping ratio t5 (see equation (3.3) in section 3.1.1.1). 

w5 
_1 a5 =Y 

c5 2"t ms 
(3.106) 
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3.1.3.3 ACCELERANCES OF A 2-DOF SYSTEM 

The SDOF structure model (Figure 3.2a) is characterised by one accelerance A. (co). However, the 

2-DOF human-structure model (Figure 3.2b) is characterised by four FRFs Ajk(w) (3.107), relating 

excitations and responses at the two DOFs. 

Ass(w) AsH(w) 
(3.107) [A(w)] = LAo[(co) AHH (w) 

Using the theory outlined in section 3.1.3.1, the accelerances A (co) of the damped 2-DOF 

human-structure model can be defined by the contributions of two modes of vibration: 

2A A" 
Ask((0) _ -wZ " (J, k = 5, H) (3.108) 

r=1 
ýI"iý-ýr) I"ilý-ýr 

or as function of spatial properties by: 

-(1)2 -mH"C02+1"w"CH+kH i"CH+kH 
[A(w)] _ (3.109) 

d i"uu"CH+kH -ms "co2+i'Co "(cg+cH)+kS+kH 

where 

d=(k5+kH-m5 "io2+i. o . \C5+CH //. 
(kH-mH. 

C02+j. Co . CH 
)-(-i. 

w"cH-kH/2. 

In this research, emphasis is put on the structural FRF A55 (co). It is therefore extracted from 

equations (3.109) and (3.110) and stated explicitly with equation (3.111) where d as in (3.110). 

A55\ýý- _i»2(_M' "(o +I"Ü)"CH +kH) 

d (3.111) 

Finally, it should be mentioned that attaching a SDOF system with certain properties to a structure 
has the potential to reduce the vibration response of a structure. Such additional SDOF systems are 
dynamic vibration absorbers, also called tuned mass-spring systems (Inman 2001, p. 377), and 
vibration dampers, which can be damped mass-spring systems or dampers only (Inman 2001, p. 
384). They can be used in design as outlined in appropriate textbooks such as Hunt (1979) and 
Korenev and Reznikov (1993). 
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3.1.3.4 APPARENT MASS OF A SDOF SYSTEM 

Biomechanics use the inverse FRF apparent mass M(co) (3.112) to describe the influence of an 

occupant on the sinusoidal base acceleration Xo (t) of a supporting structure (Griffin 1990, p. 260). 

Hence, the apparent mass M(w) of a SDOF system (as defined in biomechanics) is the inverse of 

the point-accelerance A00 (w) (Figure 3.3a). 

M(w) _ 
Zo (0) 

"xo(o) 
(3.112) 

aý M, x, 

mo xo' Fo 

t 
Y, m' m2 X2 

m0 xo'Fo 

Figure 3.3: Base excited a) SDOF and b) 2-SDOF human whole-body model. 

The apparent mass M(w) can be derived from the spatial and modal properties as outlined in 

section 3.1.3.1. However, biomechanics usually approach the issue by combining the apparent 
mass (Griffin 1990, p. 378f) associated to each spatial element of a human body model 
(Griffin 1990, p. 361). In this research, another method, also used by biomechanical engineers, is 

preferred. This approach is based on the equation of motion and, therefore, is more similar to 
considerations common in modal analysis. 
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The biomechanical engineers Wei and Griffin (1998) outline that the apparent mass M(w) of a base 

excited SDOF system (Figure 3.3a) can be calculated from the equations of motion (3.113) and 

(3.114), whereby Fo (t) is a sinusoidal force on the base. 

F0(t)=m0 . S0(t)+m1 . (t) (3.113) 

m, "X, (t)+c, +, (t)-ko(t))+k, "(x, (t)-xo(t))=D (3.114) 

Employing a sinusoidal base excitation xo (t) : 

xo(t)=Xo(w). ewt (3.115) 

and a response x, (t) : 

xý(t). Xý(w). ewt (3.116) 

equations (3.113) and (3.114) can be transferred into the frequency domain, as shown by equations 

(3.117) and (3.118). 

Fo (co) _ 0) 2" (- m0 . X0 (w) - m, . X, (w)) (3.117) 

m,. w2+i"w"c, +k, )"X, (w)-(i"w"c, +k, )"X0(w)=0 (3.118) 

Substituting the force FO (co) (3.117) into equation (3.112) defining the apparent mass M(w), 

equation (3.119) can be derived. 

M(w) = mo + m, " 
X' (wý (3.119) 

o( 

In this definition (3.119), the masses (mo and m, ) and the displacement x0 (w) are known. The 

unknown displacement X, ((o) results from the base displacement Xo (w) . Therefore, X, (w) can be 

defined by equation (3.120), which is obtained by rearranging equation (3.118). 

i"(j)"c, +k, 
"X0(w) k, -m, "cw 

2 +i"w"c, 
(3.120) 
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Substituting equation (3.120) into equation (3.119), the apparent mass M(w) of a damped SDOF 

system (Figure 3.3a) can be defined by its spatial properties: 

M(w) = mo + Z' 
+k' 

" m, . (3.121) 
k, - 

i"m, (ý"u"wc 
+i"w"cl 

3.1.3.5 APPARENT MASS OF A 2-SDOF SYSTEM 

This research focuses on simple biomechanic human body models. Therefore, the apparent mass 
M(w) of just one further dynamic model of the human body is derived. This model is the 2-SDOF 

system with non-vibrating mass as presented in Figures 2.3b and 3.3b. 

The equations of motion of this damped 2-SDOF system (Figure 3.3b) are given by equations 
(3.122), (3.123), and (3.124). 

F0(t)=mo "xo(t)+m, "x, (t)+m2 "x2(t) (3.122) 

m, "x, (t)+c, "(ic1(t)-XO(t))+k, "(x, (t)-x�(t))=0 (3.123) 

m2 " x2 (t) + c2 " 
(ic2 (t) 

- ic0 (t)) + k2 " 
(x2 (t) 

- x0 (t)) 
=0 (3.124) 

Following a similar procedure as outlined above, the apparent mass M(w) of a damped 2-SDOF 

system can be obtained as defined by equation (3.125) (Wei and Griffin 1998). 

i"w"c +k l +k M(w) = mo + 2, 
,"m, +Z2. m2 (3.125) k, 

-m, "w .( . c, k2-m2"w +i"(3)"c2 
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3.2 EXPERIMENTAL MODAL ANALYSIS 

In analytical modal analysis, modal properties are calculated from assumed mass, stiffness, and 
damping distributions. In contrast, in experimental modal analysis, modal properties are estimated 
from measured responses (Ewins 2000, p. 26). This section outlines the fundamentals of forced 

vibration testing, data acquisition and processing, and the identification of modal properties from 

experimental data. The presented material is based mainly on standard modal testing textbooks by 

Newland (1993), McConnell (1995), Maia et al. (1997), and Ewins (2000). 

3.2.1 FUNDAMENTALS 

In this research, frequency domain parameter estimation techniques based on FRFs are used to 

estimate experimental modal properties. The estimation of FRFs from experimental response data 

requires the analysis of periodic, transient, or random signals (McConnell 1995, p. 12ff; Randall 

1987, p. 42ff). As is usual in vibration analysis, random signals are assumed stationary ergodic. A 

random signal is stationary, if its statistical properties (mean, mean square, variance, and standard 
deviation) are independent of time. If any sample of length T represents these properties, a 

stationary signal is ergodic (Newland 1993, p. 20). 

3.2.1.1 PERIODIC AND CONTINUOUS FOURIER TRANSFORMATION 

If a continuous signal v(t) is periodic, it lasts forever and can be presented by harmonic 

components at multiples n of the fundamental circular frequency coo. The frequency domain 

presentation of such a Fourier series: 

v(t) = 
iv(nwoý, 

eýý (3.126) 

is a discrete frequency spectrum having values at discrete circular frequencies co =n" co, . This 

spectrum is defined by discrete Fourier coefficients V(n " coo) (McConnell 1995, p. 24) and given by: 

1 1/2 
V(n"moo)_- Jv(t)"e-ý"`"'°`dt. 

T 
-rig 

(3.127) 

Page 66 



Chapter 3 Theoretical Background 

If a signal v(t) is transient, it is zero after a limited amount of time. Therefore, it cannot be 

described by a Fourier series. Hence, the periodic Fourier transformation (FT) pair (equations 

(3.116) and (3.127)) is not applicable. However, a transient signal v(t) satisfies the Dirichlet 

condition: 

Jlv(t)I 
tit < 00 . (3.128) 

Therefore, it can be understood as periodic but with a period T of infinity (T -- oo ). In this case, the 

fundamental circular frequency co, becomes infinitesimal (Maia et al. 1997, p. 89Q and the sum of 

equation (3.116) becomes an integral (3.129). 

_ fýýwý, eýti dw V(t) (3.129) 

A signal v(t) that satisfies the Dirichlet condition (3.128) can be transferred into a continuous 

frequency spectrum V(() by the continuous FT: 

V(w) " 
jv(t) 

" e-`*° cit. 2"ný, 
(3.130) 

Equations (3.129) and (3.130) constitute the continuous FT pair (Newland 1993, p. 39; Ewins 2000, 

p. 139). The continuous FT pair can equally be defined by equations (3.131) and (3.132) (McConnell 

1995, p. 32; Maia et al. 1997, p. 90; James et al. 1999, p. 368). 

v(t)=2ýý" fV(w)"e''`ýti dw (3.131) 

V(w) = Jv(t) , e-". 0)", at (3.132) 

It is also possible to split the factor 1/(2. it) between both equations (Newland 1993, p. 39; James 

et al. 1999, p. 368). 

Here, the definition of the continuous FT pair defined by equations (3.131) and (3.132) is used. In 

this form, usually as function of the frequency f (Maia et al. 1997, p. 14): 
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v(t) =f V(f) " et2"rz"f"t df (3.133) 

and 

V(f) = jv(t) 
" e42"t"f"` dt, (3.134) 

it is commonly implemented into modern spectrum analysers (McConnell 1995, p. 50). 

A random signal v(t), similar to its periodic counterpart, does not satisfy the Dirichlet condition 

(3.128). Therefore, another approach is required to present random signals in the frequency domain. 

This approach is based on the statistical properties of signals (Argyris and Mlejnek 1991; Clough 

and Penzien 1993; McConnell 1995). It employs auto- and cross-correlation functions and auto- and 

cross-spectral densities. 

3.2.1.2 CORRELATION FUNCTIONS AND SPECTRAL DENSITIES 

The cross-correlation function Rte, (ti) of two random signals v(t) and w(t) is defined by (3.135). 

1 1/2 

R , (ti)=Iim fv(t)"W(t+ti)dt 
r-. - 

T 
-T/2 

(3.135) 

This cross-correlation function Kw (ti) and its counterpart Rr (t) preserve information on the 

identical frequency content of both random signals v(t) and w(t). Therefore, if a signal v(t) has 

periodic components, information about the frequencies and amplitudes is preserved in its auto- 

correlation function Rw (t) (Figure 3.4). 
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Figure 3.4: Two random signals v(t) and w(t) with strong periodic components of 0.5 Hz a) in the 
time domain and b) characterised by auto- and cross-correlation functions. 

In practical random vibration analysis, random signals do not contain periodic components. In this 

case, auto- and cross-correlation functions RV, (i) are transient in the shift domain i (Newland 

1993, p. 31 and p. 41). In this case, they satisfy the Dirichlet condition (3.128) and, therefore, the 

continuous FT can be applied (Newland 1993, p. 36; McConnell 1995, p. 48). The resulting random 

signal cross-spectral density 5 (w) : 

5' (w) =f Rr (ti) " e-i Wt n (3.136) 

describes the properties of the correlation function K, (ti) (and thus that of the random signals 

v(t) and w(t)) in the frequency domain (McConnell 1995, p. 54). 

Spectral densities are usually employed to compute experimental FRFs as will be outlined later. This 

is because auto- and cross-correlation functions and thus auto- and cross-spectra can be defined for 

periodic or transient signals as well. Therefore, it is possible to employ the same algorithm for the 

computation of FRFs based on digitised random, transient, or periodic vibrations. This procedure 
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and its background are outlined following a definition of correlation functions and auto- and cross- 

spectral densities of transient and auto- and cross-spectra of periodic signals. 

The correlation function Rr� (i) of random signals has already been defined in equation (3.135). 

The cross-correlation function R., (ti) of two transient signals v(t) and w(t) is defined as 

(McConnell 1995, p. 44): 

F, ' (i) =f v(t) " w(t +, r) it. (3.137) 

In case of periodic signals, the cross-correlation function K' , 
(ti) is (McConnell 1995, p. 38): 

T/2 

f v(t) - w(t +, r) dt . (3.138) 
-1/2 

It is important to note the differences in the integration interval and averaging of the correlation 
functions Rte, (ti) , IzF� (r), and R' (i) (equations (3.135), (3.137), and (3.138)). They lead to 

different units (Table 3.1) and require separate definitions of auto- and cross-spectra 5,, (w) 

related to each of the three signal types. 

Table 3.1: Units of R. (i) for different types of signals. 
Type of signals Unit of R. (ti) 

Periodic (unit of v(t)) -(unit of w(t) ) 
Transient (unit of v(t)) " (unit of w(t))/Hz 
Random (unit of v(t)) - (unit of w(t) ) 

The continuous cross-spectral density 5" (co) of random signals was defined by equation (3.136). 

Similarly, the cross-spectral density 5' (co) of transient signals is defined as a continuous function 
(McConnell 1995, p. 45): 

5 (w)= f Rt 
v�ýý). &'° di. (3.139) 
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In contrast, the cross-spectrum S �, (n "o) of periodic signals v(t) and w(t) is a discrete function 

(McConnell 1995, p. 41): 

s+1 
5m in " wo) =Tf Rp,, (ti) " di . (3.140) 

ti 

Finally, it is pointed out that the different definitions lead to different units of auto- and cross-spectra 
5, � 

(co) (and 5. (f)) for all three signal types (Table 3.2). 

Table 3.2: Units of 5. (co) and S�,, (f) for different types of signals. 
Type of signals Unit of Ste, (co) Unit of Ste, (f) 

Periodic (unit of v(t)) . (unit of w(t)) (unit of v(t)) " (unit of w(t) ) 

Transient (unit of v(t)) " (unit of w(t))/(rad/s )2 (unit of v(t)) " (unit of w(t))/Hz2 

Random (unit of v(t)) " (unit of w(t))I(rad/s) (unit of v(t)) " (unit of w(t))/Hz 

3.2.1.3 DISCRETE CORRELATION FUNCTIONS AND DISCRETE SPECTRAL DENSITIES 

Spectral densities of periodic, transient, and random vibrations were defined in equations (3.136), 

(3.139), and (3.140). These definitions are based on continuous time histories and continuous 

correlation functions. In practice, time domain signals v(t) are usually available in discrete form. 

Separated by the time interval At, they are defined by L samples over an acquisition time T 
(3.141) and annotated as v(k) with k=0.1.2, ... L -1. 

T= L" At (3.141) 

Based on discrete time signals v(k) and w(k), discrete correlation functions R. (r) and discrete 

spectral densities 5. (j) can be defined. This is done using the discrete sample shift r 
(r = 0,1,2, ... L -1) and discrete frequency values j (J = 0,1,2, ... L -1). 

In case of periodic signals v(t) and w(t), the continuous cross-correlation function RP, (ti) (3.138) 

and the discrete cross-spectra s �, (n " coo) (3.140) become (Newland 1993, p. 1211): 
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L-1 L-1 
RP (r) =" v(k) " w(k + r) " Ot =" v(k) " w(k + r) (3.142) 

T k=0 
L 

k=0 

and 

5(1)=-"ýR(r)"e-4-jr2iy` "0t-"1: K?,, (r)"e-ýýý2'y` " 
(3.143) 

T 
r-O 

L 
r-O 

The continuous correlation function Rom� (ti) (3.137) and the spectral density 5�, (co) (3.139) of two 

transient signals v(t) and w(t) give: 

L-1 L-1 

R, (r) =Z v(k) " w(k + r) " At =T"Z v(k) " w(k + r) (3.144) 
k=O 

L 
k=O 

and 

t I: ' U) =T"R (r) " e-4-j-r-2-X/L " At = 
TZ 

"R (r) " e-ý ý. `. Z ýy` " (3.145) 5 
r=O 

L 
-o 

Similarly, the discrete forms of the continuous functions R" (ti) (3.135) and 5�ß (w) (3.136) are: 

L-1 L-1 
R,, (r)= - 

. I: v(k)"w(k+r). t= 
- 

. I: v(k)"w(k+r) (3.146) 
k=0 

L 
k=0 

and 

L-1 L-1 
rr I" r"2" 

Tr 
-I" r 2" 

5, 
w 1) _ R, 

ý 
(r) "-i. At = Rvw (r) "eJ 'ýL . (3.147) 

r-O 

In practice, only a limited number of data points L can be acquired. These data have to include a 

whole cycle (or its integer multiple) of a periodic signal. In case of transient signals, the acquired 
number of time samples L has to include the complete transient signal. 

Random signals theoretically require the acquisition of an unlimited number of data points. This is 

not possible. However, it is possible to acquire several data blocks and average the frequency 

spectra of the blocks. This is permissible because only stationary ergodic random signals are 

considered and, therefore, "both ensemble (averaging across many time history records at a given 
instant in time) and temporal (averaging over time using one time history) calculations give the same 
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mean, mean square and statistical distributions" (McConnell 1995, p. 48). The more data blocks are 
employed, the closer the results of the analysis are to the assumption of infinite data acquisition 
time. 

In general, the procedure of averaging is also used for periodic and transient signals. This is done 
because averaging reduces the influence of uncorrelated noise that is superimposed on and always 
present in real-life digitised signals (Maia et al. 1997, p. 90; Ewins 2000, p. 226). 

3.2.1.4 DISCRETE FOURIER TRANSFORMATION 

The only difference between the discrete formulations of P,,, (, r) and 5. (co) for periodic, transient, 

or random signals v(t) and w(t) is a constant factor (equations (3.142) to (3.147)). This similarity 

enables the computation of discrete versions of auto- and cross-spectra 5, (CO) and S. (w) (and 

finally FRFs), of all three types of time signals with the same algorithm. This algorithm employs the 
discrete Fourier transformation (DFT). 

The DFT uses discrete time domain signals v(k) (k = 0,1,2, ... L -1). The length of the signal, the 

data acquisition time, is T (3.141). The sampling frequency fb, mp, of such a signal is defined by the 

time steps At between the L samples: 

_1 _L feamp. -itT (3.148) 

The discrete time history v(k) is assumed to be periodic with the period T. It can then be described 

by a Fourier series (3.116) with a fundamental circular frequency: 

2"n 
wo =T (3.149) 

The corresponding discrete spectrum V(j) (3.127) has a frequency resolution: 

Of = 
22= 1_1= fsamp. 

" (3.150) 2"n T L"At L 
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Employing the parameters L, At, and wo , equations (3.116) and (3.127) of the periodic Fourier 

transformation can be transferred into a discrete FT pair (3.151) and (3.152) (Ewins 2000, p. 542f; 

Randall 1987, p. 28; James et al. 1999, p. 407). 

L-1 

v(k) = 1: v(j). e`r0)°*'At (3.151) 
J-0 

V '-L_1 vk" ek °t " At =! " 
L_ý 

v(k) " e-' J w° -k°` (3.152) 

The discrete spectrum V(j) is defined for j=0,1.2, ... L -1 at circular frequencies o=j" wo 

(and frequencies f=j" Of ). It contains redundant information in a way that: 

v(L - j) = v(, j)' (3.153) 

for j =1,2,3, ... L -1 (Ewins 2000, p. 543). 

This feature corresponds to the characteristic: 

V(cu) = v(- (0)' (3.154) 

of frequency spectra defined by the periodic or the continuous FT (equations (3.127) and (3.132)). 

Finally, it is remarked that the DFT pair is sometimes defined with the factor 1/L associated to the 

inverse DFT (3.151) and not to the DFT (3.152). In this case, the DFT pair corresponds more closely 
to the continuous FT pair of equations (3.132) and (3.131) than to the discrete Fourier series as 
defined in equations (3.116) and (3.127). This definition is used in the software MATLAB (1999) for 

example. However, in this research, the DFT is used as defined by equations (3.151) and (3.152) 

because it is implemented in this form by the spectrum analyser employed. 

3.2.1.5 DATA PROCESSING 

Stationary random signals v(t) and w(t) can only be described in the frequency domain by 

spectral densities 5. (co) . Therefore, an algorithm analysing periodic, transient, and stationary 

random vibrations has to compute cross-spectra 5. (co) for all three types of signal. 
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If the discrete time signals v(k) and w(k) are periodic, their discrete cross-spectra 5.0) can be 

computed from the discrete spectra v(J) and W(j) (McConnell 1995, p. 344): 

5. (J) = v(i)' " W(. 1) (3.155) 

Equation (3.155) can be obtained by substituting the correlation function P (r) (3.142) into the 

cross-spectrum 5. P(j) defined by equation (3.143) (Newland 1993, p. 1220: 

1 L-1 L-1 

S' (j) =2" v(k) " w(k + r) " ý' j-r-2-'r/` (3.156) ý- 
r=O k=O 

Rewriting the last factor of this equation (3.156): 

e i"J"r"WO"et =eI. J. (r+k-k). coo"At = e-I"J"(r+k)"WO"At , Cl. J k"wo"nt (3.157) 

the cross-spectrum 5. P (j) of periodic signals v(k) and w(k) becomes: 

S, °w Ü) ="Z v(k) " e-4. j . ý. et w(k + r) " e-ý. ý. (r+k}ý. et (3.158) 
L 

k=o r-0 

Considering equation (3.152), equation (3.158) is the same as equation (3.155). 

Equation (3.155) is usually implemented in commercial software. It is true if the signals v(k) and 

w(k) are periodic and, therefore, the DFT can be applied. Assuming that transient or random 

signals are also periodic, the same algorithm defining SP, (j) can still be used to compute 5N� (j) 

and S, �, 
(j) of transient and random signals. However, in addition to the calculation of equation 

(3.155), a factor has to be applied: 

5 ý1) = TZ " 5P� Ü) =TZ "J)* ' W( 1) (3.159) 

and 

5' (j) =T"5, °ý (j) =T" VÜ)' " W(j). (3.160) 

because of the slightly different definitions of the correlation functions and the auto- and cross- 
spectra. 
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Finally, it should be stressed that the units of the correlation functions R. (ti) and the auto- and 

cross-spectra 5. (co) depend on the type of signal (Tables 3.1 and 3.2). Similarly, the units of 

spectra V(w) or V(f) of a signal v(t) depend on the signal type (Table 3.3). 

Table 3.3: Units of V(w) and V(f) for different types of signals. 
Type of signals Unit of V(w) Unit of V(f) 

Periodic unit of v(t) unit of v(t) 

Transient (unit of v(t))I(radls) (unit of v(t))/Hz 

Random (unit of v(t)) / (rad/s) (unit of v(t)) / Hz 

3.2.1.6 CALCULATION OF FRFs 

Employing auto- and cross-spectra (51 
, 
(co), 5�ý (co) or 5r�, (co) ), FRFs can be computed from 

periodic, transient, and random excitations F(t) and the corresponding responses v(t). 

Analytical descriptions of FRFs H,, (w) relating the response at DOF j to a steady-state sinusoidal 

excitation at DOF k were derived in section 3.1.3. Experimentally, FRFs H, (w) can be estimated 

as (Ewins 2000, p. 237; McConnell 1995, p. 337): 

SFB(w) 
5FF (w) 

(3.161) 

or 

5w (w) 

S, (o) . (3.162) 

In principle, the two FRF estimators H, (o) and H. (w) should result in the same function. However, 

H, (co) and H. (w) are affected differently by instrumentation noise (McConnell 1995, p. 345ff; Maia 

et al. 1997, p. 10ff), which is always present in measurements. Additionally, it is important to note 
that extraneous excitation (McConnell 1995, p. 352ff), which can (involuntarily) be induced by 

people on a structure, always affects H2 (co). This is because this unmeasured additional excitation 
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influences the response and thus the response auto-spectrum 5�, ((0) that is used to calculate 

H2 (w) (equation (3.162)). However, if the unmeasured additional excitation is uncorrelated to the 

measured excitation, it has no effect on the FRF estimator H, (co) (3.161) because it does not affect 

the cross-spectrum 5, (co). Therefore, the FRF estimator H, (co) is used throughout this research 

to define FRFs. 

To assess the deviation of the two FRF estimators H, (co) and H. (ca), the coherence y2 (co) is 

generally computed: 

Y2 (ý) = 
5Fv (w) " 5, F 

(Co) 
SFF (Co) 

' 5vv (Co) (3.163) 

The coherence y2 (w) can have values ranging from zero to unity. Unity coherence indicates that 

the FRF estimator H, (co) equals H2 (w) because: 

'y2 (w) = 
H' (Co) 

(3.164) 
i( 

) 

considering equation (3.163) in conjunction with (3.161) and (3.162). 

Coherence values lower than unity indicate the influence of instrumentation noise, structural non- 
linearities, extraneous excitation, and leakage (McConnell 1995, p. 341; Maia et al. 1997, p. 103; 

Ewins 2000, p. 241 and p. 238). The issue of leakage is introduced in section 3.2.3, which considers 
issues of signal processing. 

3.2.2 DATA ACQUISITION 

Forced vibrations investigated in this research are described by excitations and responses. 
Employing transducers, these excitations and responses can be measured and represented as 
analogue electrical signals. In order to be processed digitally, the analogue electrical signals are 
quantized and sampled in the time domain by a digital signal analyser. Issues of quantisation and 
sampling are outlined below. 
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3.2.2.1 PARAMETERS OF DIGITISATION 

The quantisation capabilities of a digital signal analyser are specified by its dynamic range. The 

signal analyser used in this research (SignalCalc430) has a dynamic range of 108 dB. This dynamic 

range is a consequence of the 18-bit resolution of the input converter (3.165), which can quantize an 

analogue signal by 2t8 (262,144) numbers (Mafia et al. 1997, p. 94). 

20"Ioolo(2t')=108c (3.165) 

The time sampling of an analogue signal is specified by the sampling frequency fe+mp . The signal 

analyser SignalCalc430 can sample in time intervals At ranging from 0.012 ms to 49.152 ms and 
has sampling frequencies ranging from 20 Hz to 83 kHz (Data Physics 1998, p. 140). 

Most spectrum analysers are limited to L of about 2000 samples limiting the computational effort in 
the DFT. Therefore, choosing a high sampling frequency f,,, �p 

(small time steps At) restricts the 

data acquisition time T (3.141) and the frequency resolution if (3.150). Hence, an optimal choice 
of the sampling parameters has to be made. Additionally, it has to be noted that the quantisation 
and sampling of analogue signals can introduce significant errors (Maia et al. 1997, p. 950. 

3.2.2.2 QUANTISATION AND SAMPLING ERRORS 

Common signal quantisation errors are overranging (overloading, clipping) and underranging (Maia 

et al. 1997, p. 96). Overranging occurs if the analogue signal exceeds the voltage range of the 

signal analyser. On the other hand, underranging results from using only a small fraction of the 
dynamic range. Both errors can be avoided by carefully selecting the voltage range. 

Another serious error is aliasing. It is introduced if the sampling is too slow. It results in analogue 
signals containing high frequency components that cannot be separated from lower frequency 
components. 

Aliasing occurs if the analogue signal has components above half the sampling frequency 
(McConnell 1995, p. 271; Wright 1995, p. 275; Maia et al. 1997 p. 94; Ewins 2000, p. 213). To make 
sure that no such higher components exist, commercial signal analysers apply a low-pass anti- 
aliasing filter before sampling the analogue signal (McConnell 1995, p. 269). However, filtering also 
modifies the signal in the passing frequency range (McConnell 1995, p. 269f; Wright 1995, p. 292). 

Page 78 



Chapter 3 Theoretical Background 

Therefore, the signal analyser SignalCalc430 used here has, for example, a useful frequency range 
f, �ax of only 24% of the sampling frequency f. amp. 

(Data Physics 1998, p. 140). 

3.2.3 SIGNAL PROCESSING BY A SPECTRUM ANALYSER 

Sampled signals are usually processed by a spectrum analyser that is combined with a signal 
analyser digitising the data in one unit. Digitisation and sources of error were outlined in the previous 
section 3.2.2. In this section, the process of estimating FRFs and coherences from digitised 

excitations F(t) and corresponding digitised responses v(t) is outlined. 

A spectrum analyser uses the same algorithm to process data of periodic, transient, or random time 
histories (Randall 1987, p. 227; McConnell 1995, p. 344). This process can be divided into four 

steps (Figure 3.5). Step 1 is windowing (McConnell 1995, p. 288ff; Maia et al. 1997, p. 91ff; Ewins 
2000, p. 216ff) of time histories (F(t) and v(t)) and transforming them into the frequency domain 
(F(f) and V(f)). Step 2 is the computation of auto-spectra and cross-spectra G(f). Step 3 is 

averaging of these spectra to G(f), and, finally, Step 4 is the calculation of the FRF estimator 

H, (f) and the coherence y2 (f) . 

GFA GFFM 

F(t) F(ý 
Gý(f) 

H, ýfl 
-º GF(f) 

v(t) - 30 VM 
G,, F(f) "-ý Gw(f) 

GWG km LM 

Step 1 Step 2 Step 3 Step 4 

rigure ; j. o: rnncipie of data processing by a dual spectrum analyser. 
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Following, each step is outlined in more detail and their implementation by the spectrum analyser 
DP430 (Data Physics 1998; Data Physics 1999) is outlined. This is important because formulae and 

parameters employed by this spectrum analyser are incompletely and contradictorily presented in 

the manual. 

3.2.3.1 STEP 

In experimental modal analysis, discrete time domain signals are acquired in data blocks, each 
limited to a duration T. These data blocks are transferred into the frequency domain using the DFT 
(section 3.2.1.4). The DFT is usually implemented by the fast Fourier transform (FFT) algorithm, 
which significantly reduces the computational effort (Maia et al. 1997, p. 97ff). 

Using the DFT requires the signals to be periodic within the data acquisition time T. However, that 
is generally not the case and results in a resolution error called leakage (McConnell 1995, p. 73ff; 
Maia et al. 1997, p. 91; Ewins 2000, p. 215ff). In order to reduce leakage, time domain signals are 
forced to be periodic by multiplication with a window function. Several window functions are used in 

experimental modal analysis (McConnell 1995,302ff; Maia et al. 1997, p. 92f; Ewins 2000, p. 216ff). 
In this research, the Hanning window (Mafia et al. 1997, p. 92; Ewins 2000, p. 218) and the 

exponential window (Taber et al. 1985) are employed. 

The Hanning window wH (t) (3.166) forces the signal to zero at the beginning and the end of the 

data acquisition time T. It is often used in connection with continuous random vibrations. 

WH(t)=0.5.1-COE(2. T"t I (OStST) (3.166) 

This research employs random and more often transient signals. Transient signals contain relevant 
information especially at the beginning of the data acquisition time T. Therefore, an exponential 
window wE (t) (equations (3.167) and (3.168)) is used for transient signals instead of the Hanning 

window w�(t). 

s 

WE(t)=C (05t_T) (3.167) 

g 
(3.168) RC=- 

loT I' 
e 
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Assuming, that the transient signal is zero at the beginning of the data acquisition time T, an 

exponential window makes the signal periodic artificially. This is done by reducing the already 
transient signal to smaller values towards the end of the data acquisition time T. In particular, the 

time constant RC (3.168) specifies to which percentage P the original signal is reduced to at the 

end of the data acquisition time T (Dynamic Testing Agency (DTA) 1993, Module 10, p. 19). 

The spectrum analyser DP 430 used in this research specifies the exponential window via the 

parameter (- loo, (P))-. Other spectrum analysers are likely to use a different definition such as 

-log. (P) for instance. 

Using digitised and windowed time histories of F(t) and v(t), the discrete spectra F(j) and VO) 

can be computed (equation (3.152) in section 3.2.1.4). The spectrum analyser used in this research 

presents the spectra F(j) and vo) as function of the frequency f and not of the circular 

frequency co. 

In equation (3.152) in section 3.2.1.4, discrete spectra v(j) were defined at L discrete frequencies 

(f =j" Of ). Half the values of v(j) (j = 0,1,2, ... L) determine the spectrum uniquely (equation 

(3.153)). In practice, less values of the spectra are available because of the anti-aliasing filter 

(section 3.2.2). That is, the discrete frequency spectrum V(j) covers frequencies from zero to f.. 

(f, 
�, x < L/2-Ef) only. 

Such discrete spectra VU) (f = O, Af, 2. are provided by the spectrum analyser DP 430 

as single-sided spectra V" (f) .A discrete single-sided spectrum V"F (f) (f,,,. < 0.5 " (L -1) " Af ) 

can be computed from a discrete (double-sided) spectrum V(f) (0 5fS (L -1) " if) as outlined in 

equations (3.169) and (3.170) (McConnell 1995, p. 284). 

V°P (0) = V(O) (3.169) 

V"F(f)=2"V(f) (f= 0f, 2. Of) (3.170) 

Internally, the spectrum analyser DP 430 denotes the spectrum of the windowed signal v(t) 
acquired at channel 1 as 51. 
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3.2.3.2 STEP 2 

Assuming signals always to be periodic, the spectrum analyser DP 430 computes cross-spectra 

GF, (f) in a way analogous to equation (3.155). However, equation (3.155) employs double-sided 

spectra VO) and WO) to define double-sided auto- or cross-spectra 50). In contrast, DP 430 

computes single-sided cross-spectra GFr (f) from single-sided spectra FOr(f) and VOr(f) of the 

windowed excitation and response respectively. Therefore, equation (3.155) changes to: 

Go (f)_ 1 
-(FDP(f))" yPP(f). (3.171) 

The spectrum analyser DP 430 denotes a single-sided cross-spectrum GFF (f) of two signals 

acquired at channels 1 (F(t)) and 2 (v(t)) as 512. 

Unexpectedly, DP 430 does not employ equation (3.171) to compute auto-spectra GFF (f) or 

GW"(f). In contrast, equation (3.172) is employed. 

GDP (f) 
_ 

rVDP 
f)ýý , 

vDP ýf) . 
(3.172) 

Consequently, cross-spectra of periodic signals Gw (f) can be taken directly from the spectrum 

analyser (3.173). In contrast, auto-spectra GFF (f) and Gw (f) have to be corrected (3.174). 

Gw (f) = GFG (f) (3.173) 

Gw (f) =Z (G°, " (f))2 (3.174) 

As outlined in section 3.2.1.5, auto- and cross-spectra of transient, random, and periodic signals 
differ by a factor (equations (3.159) and (3.160)). Therefore, auto- or cross-spectral densities of 

transient Gt (f) or random G' (f) signals can only be obtained by further manipulation of the auto- 

or cross-spectra GP (f) (equations (3.175) and (3.176)). 

G2 = T2 " Gp (f) (3.175) 

G'(f)=T. GP(f) (3.176) 
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3.2.3.3 STEP 3 

FRFs are generally computed from averaged auto- or cross-spectra to reduce the influence of 

random noise (Clough and Penzien 1993, p. 485; Maia et al. 1997, p. 90; Ewins 2000, p. 226). 

Averaged single-sided auto- or cross-spectra G. (f) are obtained by acquiring a number k of data 

blocks and averaging of the corresponding k single-sided auto- or cross-spectra Gw� (f) (3.177). 

G"(f) =kG. (f) (3.177) 

Thereby, the spectrum analyser DP 430 employs G°ý (f) and G�, "(f) as defined in equations 

(3.171) and (3.172). The resulting averaged auto- and cross-spectra GW'(f) and G '(f) are 

annotated by DP 430 with the letter G in contrast to S defining single-sided auto- and cross- 

spectra GW"(f) and G F(f). 

It is noted that averaging can increase the overall data acquisition time significantly. This can be 

counteracted to some extend by overlapping of data blocks. A detailed account of this issue is 

provided by McConnell (1995, p. 304ff). 

3.2.3.4 STEP 4 

In the last step of data processing performed by a spectrum analyser, the FRF estimator H, (f) is 

computed from averaged single-sided spectra GFG (f) and GFF (f) (McConnell 1995, p. 336): 

H1 ( f) _ 
GFV ( f) 

FFl 
) (3.178) 

If the auto- and cross-spectra GFF (f) and GF" (f) of the spectrum analyzer DP 430 are employed 
to compute the FRF estimator H, (f), equation (3.178) transforms into: 

H, (f)= 2. '(f) 
-Dr 

\GFF (f))Z 

(3.179) 

Spectrum analysers generally also provide the coherence y2(f). It can, analogous to equation 
(3.163), be estimated using single-sided spectra (McConnell 1995, p. 338): 
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y2(f) = 
GFV(f)" GVF(f) 
OFF (f) " GW (f) 

(3.180) 

The computation of the coherence y2(f) from auto- and cross-spectra provided by DP 430 (3.181) 

requires adaptation because of the definition of auto-spectra G ,' (f) and G, °P (f) (equation 

(3.171)). Additionally, DP 430 computes only G, (f) and not G, (f), which is employed in 

equation (3.180). However, G�f(f) equals the complex conjugate of G, (f) (McConnell 1995, 

p. 41). Consequently, equation (3.179) can be expressed as equation (3.181). 

Y2(f)_ 
4-GFP(f) (GFvP(f))* 

P(f))2 2 OFF 

. 
(GD 01, My 

(3.181) 

FRFs resulting from the analysis of experimental data by a spectrum analyzer can be curve-fitted to 

extract the modal properties of the system under investigation. This issue is outlined briefly in the 

next section. 

3.2.4 MODAL PARAMETER EXTRACTION 

This section outlines some relevant issues related to the identification of modal parameters. 

3.2.4.1 METHODS 

This research concentrates on the estimation of modal properties from experimentally estimated 
FRFs. Several frequency domain curve-fitting procedures are available for this type of analysis 
(Maia et al. 1997; Ewins 2000). 

Of particular interest are indirect methods (Maia et al. 1997, p. 188) that estimate modal properties 
(in contrast to direct methods that estimate spatial properties). Indirect methods can be grouped in 

two different ways. On one hand, they are divided according to the number of modes present in the 

experimental data into single-mode (SDOF) and multi-mode (MDOF) methods. On the other hand, 

they are distinguished by the number of simultaneous input and output signals into single-input 

single-output (SISO), single-input multi-output (SIMO), and multi-input multi-output (MIMO) methods 
(Mafia et al. 1997, p. 218). 
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In this research, SIMO measurements were made. Hence, SDOF and MDOF SISO and SIMO 

procedures can be used to determine modal properties. In particular, the SISO FRF curve-fitting 

procedures such as circle-fit (Maia et al. 1997, p. 219ff; Ewins 2000, p. 309ff; ICATS 2000b, p. 190 

and line-fit (Mafia et al. 1997 p. 227ff; Ewins 2000, p. 318ff; ICATS 2000b, p. 210 were used in 

preliminary investigations. Final estimates were made with the MDOF SIMO non-linear least squares 

algorithms NLLS1 and NLLS2 (ICATS 2000b, p. 27ff). They were based on prior estimates obtained 
by the MDOF SISO method MDOF Ident (ICATS 2000b, p. 250. 

3.2.4.2 CORRECTION OF ESTIMATED MODAL PROPERTIES 

Modal properties estimated with any curve-fitting procedure have to be used carefully considering 
the parameters of data acquisition. This is because applying a window function to the experimental 
time histories to reduce leakage distorts the time histories. Therefore, the window influences 

estimated FRFs and thus the modal properties identified from these FRFs. 

The effect of a Hanning window cannot be removed from the modal properties and it is necessary to 

use FRF estimates that are more or less distorted. However, the effect of an exponential window 

can be removed. This is because the exponential window applies a factor in the time domain that 
leads to specific changes in the frequency domain. This effect on the eigenvalue (that is the natural 
frequency and the damping ratio) can be removed (Fladung and Rost 1997). 

In particular, the correct circular natural frequency co, (3.182) and the damping ratio ý, (3.183) can 
be calculated using the time constant RC of the exponential window, the circular natural 
frequency coax, and the damping ratio ý,, estimated by curve-fitting of the 'windowed' FRF 

(Fladung and Rost 1997). 

wý= wexýä+C)2 (3.182) 

(3.183) 
wr RC " wr 

It should also be mentioned that the effect of the exponential window on the natural frequency is 

often ignored. That is, it is assumed that co, - co..,. In this case, the correct damping ratio ý, is 

(Clark et al. 1989; Fladung and Rost 1997): 
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(3.184) 7r -Ter 
RC ýeý 

In this research, both methods lead to practically identical frequencies and damping ratios. 
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3.3 ANALYSIS OF EXPERIMENTAL AND ANALYTICAL DATA 

The theory of analytical and experimental modal analysis was outlined in the previous sections. In 

this section, some additional theoretical background is provided. It is used particularly in the 
identification and verification of a dynamic model of human occupants. 

3.3.1 STATISTICS 

Introducing some fundamental statistics, the sample mean value X: 

n 

x=-"EXJ (3.185) 
J_, 

and the standard deviation 5.: 

F-, 
5x = (3.186) 

of n samples xj of the value x are defined (Dally 1993, p. 1033). Additionally, a confidence interval 

is defined. 

A confidence interval specifies the range of the true mean value R of the analysed value x with a 

particular confidence (Rees 1995, p. 93ff). Assuming that the samples xj follow a normal 

(Gaussian) distribution, the confidence interval is defined by the n samples of x and the chosen 
confidence level. In case of a small number of samples n (less than 20), the confidence interval is 
(Dally 1993, p. 1034ff): 

(x - S) <µ< (X + S) (3.187) 

with 

t(a'v) 5="5 (3.188) 
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The term t(a, v) (Student's t) is specified by the ascertained confidence level and the degrees of 
freedom v (v =n -1) (Daily 1993, p. 1041). 

In civil engineering, a confidence level (confidence coefficient) of 95% (a= 0.05) is usually applied. 
Using this value and setting the number of samples n to 5, the value of t (a = 0.05, v= 4) is 2.776 
(Montgomery and Runger 1999, p. A-6). Thus, equation (3.187) becomes equation (3.189), which 
defines the 95%-confidence interval of five samples of x. 

(x-1.24.5x)< t<(x+1.24.5x) (3.189) 

This confidence interval will be used in chapter 6 to characterise the parameters of a damped SDOF 

model of human occupants. 

Finally, it is noted that in this research, the confidence interval has an upper and a lower limit. 
Therefore, t((x /2, v) has to be used in a table specifying t(a, v) of a confidence interval with 

either an upper or a lower limit. 

3.3.2 COMPATIBILITY OF MODAL MASSES 

The modal masses Mr of generally damped MDOF systems were defined in equation (3.56) in 

section 3.1.1.5 by the mass matrix [M] and the mode shapes {yr}r. The mass matrix is defined by 

spatial properties. However, the mode shapes can be scaled arbitrarily (see section 3.1.1.3). 
Therefore, the value of modal mass m,. depends on the scaling of the mode shape IV},. In chapter 
4 and 5 of this research, modal masses are calculated from mode shapes normalised to unity. That 
is, the complex mode shape element with the maximum amplitude (the antinode of the mode) is 

unity. 

In case of modal masses mr estimated from the (complex) mass-normalised mode shapes {yr}r 

estimated by the modal analysis software ICATS (2000b, appendix Fl), this means: 

Mr 
W. -r ' `Y 

nr (3.190) 

Thereby, point n is the antinode of mode r, thus, it corresponds to TP 5 or 7 (chapter 5, Figure 
5.5). 
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In chapter 6, experimental and analytical data shall be correlated. This requires the normalisation of 

mode shapes to a common reference. This reference point is TP 5 or TP 7, which corresponds to 

the structural DOF of damped 2-DOF human-structure models (Figure 3.2b). 

3.3.3 CALCULATING RESPONSE TIME HISTORIES USING IMPULSE RESPONSE FUNCTIONS 

In chapter 6, the quality of the identified human-structure systems is evaluated using response time 

histories. This can be done by using the theory outlined in section 3.1.1.4. However, it is possible to 

use a simpler approach because the system is excited at only one DOF. This approach employs the 

inverse FT of the FRF, the impulse response function (IRF), and convolution as outlined next (Ewins 

2000, p. 135ff). 

The IRFs hak (t) of aN -DOF system (3.191) relate the response xj (t) at point j to an impulse 

Fk (t = 0) at point k (Ewins 2000, p. 137). 

N 

hjk Aj " e-ýý't+ A"ý e4 t) k -1j rkrk 
r=1 

(3.191) 

This form of expressing the IRF (3.191) corresponds to the presentation of the FRF Hak (t) as given 

by equation (3.97) in section 3.1.3.1. 

Using the IRF, the response of a system can be estimated not only to an impulse at Fk (t = 0) but 

to a continuous excitation Fk (t) . This is done by splitting the continuous excitation Fk (t) into a 

series of impulses Fk (t = i) . The responses x, (t > ti) to each of these impulses are added up to 

the overall response xj (t) : 

xj(t)= jFk(ti)'hak(t-ti)dti. (3.192) 

This equation (3.192) is called time domain convolution or Duhamel integral. It is often expressed in 
form of equation (3.193) (McConnell 1995, p. 94; Inman 2001, p. 118). 

xj(t) = Fk (t) * hak (t) (3.193) 
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In this research, response time histories are calculated using the convolution function provided in 

MATLAB (1999). 

3.3.4 REMOVING THE EFFECT OF AN EXPONENTIAL WINDOW FROM FRFS 

Finally, it has to be analysed how an exponential window wE (t) (which is applied to reduce 

leakage) affects an entire FRF and not only extracted modal properties (section 3.2.4.2). This issue 

is addressed in updating of damped SDOF human models (chapter 6). 

The effect of an exponential window WE (t) on any FRF HJk (o) can be removed. This is done by 

applying an exponential window wE+(t) (3.194). 

s 

WE+(t)=e+RC 05tST (3.194) 

This window wE+(t) cancels the effect of the exponential window WE (t) (equation (3.164) in 

section 3.2.3). It has to be applied in the time domain. Therefore, the IRF hak (t) of the FRF Hak (t) 

has to be computed using the inverse FT (see section 3.2.1). Then, the window wE+(t) can be 

applied in the time domain to the IRF hjk(t) and leads to the corrected IRF h`k'(t): 

hj°k" (t) = wE+(t)' hak (t) (3.195) 

Transferring the corrected IRF hjck'' (t) back into the frequency domain leads to an FRF Hr (w) 

that is not distorted by the exponential window. 

It is important to note that the IRF hj`k''(t) is characterised by a high amplification of small (noise) 

values as t approaches T. That results in large values and the IRF is not transient (and thus 

periodic with an infinite period T) anymore. This effect can deny a successful application of the 
discrete FT. 
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4. ANALYTICAL PARAMETRIC STUDY 

This parametric study discusses the possible influence of human occupants on the modal properties 

of lightly damped and slender civil engineering structures from a theoretical point of view. 

4.1 INTRODUCTION 

The dynamic influence of human occupants on modal properties of a structure is a very complex 
and not well-understood issue (IStructE 2001, p. 8). To obtain insight into this phenomenon, an 
analytical parametric study of the human-structure dynamic system is performed. 

4.1.1 MODELLING THE HUMAN-STRUCTURE SYSTEM 

The human-structure system is difficult to comprehend if the distribution of people over the structure, 
individual dynamic properties of each person, and the movement of people have to be included. 

Therefore, some simplifications are made in this parametric study. In particular, the human-structure 

system is simplified by assuming: 

(1) The modal properties of the human and structure are linear and time-invariant. 

(2) An arbitrary number of occupants can be modelled with a single human model. 

(3) Occupants are stationary and in continuous contact with the structure. 

(4) The structure itself can be modelled as a SDOF system. 

Assumption (1) is an essential simplification that enables the use of linear modal analysis. Linearity 

and time-invariance of civil engineering structures can often be assumed. Linearity and time- 
invariance of the modal properties of humans are justified by the small degree of non-linearity 
observed in biomechanic research (Griffin 1990), which considers significantly higher levels of 

vibration than commonly encountered in civil engineering. Furthermore, probable changes of modal 
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properties of individual bodies are likely to be insignificant compared to differences between people 
(G(ffin 1990). 

Assumptions (2), (3), and (4) are used to simplify the human-structure system considered. 
Assumption (2) is made to enable easy handling of crowds. The simplification of assumption (3) is 

valid if occupants are sitting or standing. These are activities performed most of the time by 

occupants on assembly structures, such as floors and stadia. However, occupants of gymnasia and 
footbridges are more likely to jump or walk and are not in continuous contact with the structure. In 

this case, assumption (3) is not satisfied. Assumption (4) is satisfied if the modes of the empty 
structure are not closely spaced. That is often, but not always, the case. 

Based on these limits set by assumptions (2), (3) and (4), further parametric studies into human- 

structure systems without these simplifications should be performed in the future. 

4.1.1.1 HUMAN-STRUCTURE MODELS 

Employing the four assumptions outlined above, three human-structure models are used. In all three 

cases, the structure is modelled as a SDOF system (assumption (4)). Stationary human occupants 
are in the civil engineering commonly modelled as an additional mass to the structure (section 
2.1.2). Taking this mass-only model of human occupants, the human-structure system is a damped 
SDOF system (Figure 4.1 a). 

Nevertheless, a need has emerged to model human occupants not just as mass but as a complete 
SDOF dynamic system (chapter 2). Prompted by this insight, Ellis and Ji (1997) proposed to model 
the human-structure system as an undamped 2-DOF system (Figure 4.1b). 

However, this undamped model ignores the high damping of the human body (Tables 2.3 and 2.4), 

which may affect the damping of the joint 2-DOF human-structure dynamic system. Therefore, a 
third human-structure model has been developed (Figure 4.1c). This damped 2-DOF model includes 
the damping capabilities of both the empty structure and the human occupants. 
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a) b) ý) 

mH mH 
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Figure 4.1: Models of human occupied structures using a) the mass-only model, b) the undamped 2- 
DOF model, and c) the damped 2-DOF model. 

More complex human body models than the damped SDOF are nowadays used in biomechanics 

and have also been applied by civil engineers (chapter 2). However, vibrations of the whole human 

body are dominated by its fundamental mode. Therefore, it is unlikely that more than one mode of 

the human body is needed to model the influence of human occupants on the modal properties of 

structures with sufficient accuracy. Hence, such models are excluded from this study. 

4.1.1.2 PARAMETERS 

Six parameters are needed to describe the three human-structure models in Figure 4.1 completely. 
These parameters are the lumped masses (m5 and mH), the modal stiffnesses (k5 and kH), and 

the viscous damping (c5 and c�) of the structure and the human occupant(s), respectively. In order 

to simplify the analysis and presentation of the human-structure systems, the number of parameters 
is reduced to four. 

First, the masses of the occupant mH and the structure mg are combined to a single parameter, the 

mass ratio a (Ellis and Ji 1997). 
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m" (4.1) 
m5 

In this parametric study, the mass ratio a is set to ratios 1%, 10%, 50%, and 100%. Therefore, 

occupation ranging from sparsely populated office floors to densely populated assembly structures 
is covered. 

Secondly, the relation of the natural frequency of the human SDOF fH to that of the structural SDOF 

f5 is expressed as frequency ratio 0 (Ellis and Ji 1997): 

f5 (4.2) 

Structures with low natural frequencies fy are likely to have problems with human-induced 

vibrations. This is because they can easily be excited by walking, jumping etc. (IStructE 2001, p. 9). 

Therefore, structures with frequencies fs up to 8 Hz are of primary interest in this study. 

Natural frequencies of the human body fH have been reported in the literature as ranging from 3 Hz 

to 16 Hz (chapter 2). Employing this frequency range and taking 1 Hz as the lower limit of the 

fundamental frequency of a structure fg, frequency ratios ß ranging from 0.4 to 16 can be 

expected. Having these boundaries in mind, the presentation focuses on frequency ratios ß from 0 

to 15. 

Finally, the viscous damping (c5 and cH) has to be specified. This is done using the damping ratios 
ý, and ýH of the structural and the human DOF (Figure 4.1c). The damping ratio of the structural 
DOF is set to a realistic value of t5 =1 %. The damping ratio of the SDOF model of the human 

body ý,, has been set to two values: ýH = 30% and i; H = 50%. These high damping values are 
based on biomechanic research (ISO 1981). 

4.1.2 OUTLINE OF THE PARAMETRIC STUDY 

This parametric study covers the three human-structure models presented in Figure 4.1 using the 

parameters defined in the previous paragraph. Each of these three simple human-structure models 
is characterised by natural frequencies, damping ratios, mode shapes and modal masses. However, 
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only natural frequencies are presented and discussed for all three models. Nevertheless, mode 

shapes, modal masses, and damping ratios of the most realistic damped 2-DOF human-structure 

model (Figure 4.1c) are presented. This damped model is also used to analyse the influence of 

occupants on structural FRFs. (The structural FRFs A, (f) and A55 (f) are defined in sections 

3.1.3.2 and 3.1.3.3 by excitation and response at the SDOF modelling the structure. ) 
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4.2 NATURAL FREQUENCIES OF DYNAMIC HUMAN-STRUCTURE SYSTEMS 

In this chapter, natural frequencies of human-structure dynamic systems are investigated. This is 

done for three models of the human-structure system: the mass-only model (Figure 4.1 a), the 

undamped 2-DOF model (Figure 4.1b) and the damped 2-DOF model (Figure 4.1c). 

4.2.1 NATURAL FREQUENCIES OF THE MASS-ONLY MODEL 

The natural frequency f(") of the human-structure system modelled with the mass-only model 
(Figure 4.1 a) is defined by equation (4.3). This natural frequency f(") can also be expressed in 
terms of the mass ratio a (4.1) and the frequency of the structure fg only (4.4). 

f(MM) F5 (4.3) 
2" YI15 +mH 

f(MM) __ 
i, 

f (4.4) 

The dependence of the natural frequency f(""), on the mass ratio a and the frequency ratio ß is 

shown in Figure 4.2. In particular, the natural frequency f(mm) is presented as a function of the 

frequency ratio ß for mass ratios a of 1%, 10%, 50%, and 100%. These natural frequencies f(mm) 

are related to the frequency of the structure fg plotted on the vertical axis (Figure 4.2). 

Figure 4.2 shows that the frequency f(MM) does not depend on the frequency ratio ß 

(equation (4.4)). Nevertheless, this presentation is chosen for consistency with the following 

presentation of natural frequencies of undamped and damped 2-DOF human-structure systems. 

Figure 4.2 also demonstrates that the ratio of the frequency of the human-structure system and the 
frequency of the empty structure (f(mm) / f5) is a constant having ordinates defined by the mass 

ratio a. This can be confirmed by equation (4.4), which states that the natural frequency f(mm) 
decreases with increasing mass of occupants. Hence, the ratio f("'"') / fg decreases with increasing 

mass ratio a (Figure 4.2). 
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4.2.2 NATURAL FREQUENCIES OF THE UNDAMPED 2-DOF MODEL 

The second human-structure model considered in this research is the undamped 2-DOF model 

(Figure 4.1b). It serves mainly as a prerequisite for a better understanding of the damped 2-DOF 

human-structure model. 

4.2.2.1 CALCULATION OF NATURAL FREQUENCIES 

The natural frequencies of the undamped 2-DOF human-structure system f, ") and f2"M) can be 

expressed as a function of mass and frequency ratio a and ß (equations (4.1) and (4.2)), and the 

natural frequency of the empty structure f5, as specified by equations (4.5) and (4.6) (see also 

section 3.1.2.3 and Appendix B). 

fl(UM) = 
(j(p 

+ ly +a. ß2 - (ß-1)Z +a ß2) 2 (4.5) 

f2(UM) 
_ 

(, [p 
+ ly +a ß2 + (ß-1)Z 

+a ßZ) f5 (4.6) 
2 

Page 97 

II UIC 1. c. IvaLUICI ncyuciiý, 1ý, Q vi IlUill"ll . JLIL4. JLt4- .., -ý ý� ........,...,.... 1.11 . I1., II11.,,,, -11y "IIW%l%#I. 



Chapter 4 Analytical Parametric Study 

The dependency of the natural frequencies f, luM) and f2(um) on the mass ratio and frequency ratios 

a and 3 is presented graphically in Figures 4.3,4.4, and 4.5. To achieve a good presentation, 

natural frequencies of the first mode (r = 1) and of the second mode (r = 2) are normalised to the 

natural frequency of the structure f5 and plotted as solid and dashed lines respectively. 

4.2.2.2 NATURAL FREQUENCIES AS A FUNCTION OF THE MASS RATIO 

Figure 4.3 shows that the first natural frequency f, "" decreases while f2 M) increases with 

increasing mass ratio o t. Also, the separation between the frequencies of the undamped 2-DOF 

system f2(") -f (UM) generally increases with increasing frequency ratio ß (Figure 4.3). 

2.5 

4 2.0 

1.5 
------ .. - .-- . -. -. 

f5 
1.0 

fýýuM) 

0.5- 

0.0 

O% 25% 50% 75% 100% 
Mass ratio a 

Frequency ratio 0.5 =1) 1.0 (r -1) 1.5 (r =1) 
....... 0.5(r=2) ------ 1.0(r=2) _---"- 1.5(r=2) 

rigure 4. i: Natural trequencies f, "-' and f2l"' as function of the mass ratio a. 

The frequency separation f2 M) -f , 
(um) is a particularly important aspect of the human-structure 

dynamic system behaviour, as will be shown later. It is smallest for a human-structure system with a 
certain frequency ratio ß if the mass ratio a is zero (see equations (4.5) and (4.6)). In this case, 

the natural frequencies of the undamped human-structure system fl(um) and f2(M) are equal to the 

frequencies of human fH and structure f5 . 
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Based on these observations, it is concluded that: 

(1) the first frequency f, (uM) of the undamped 2-DOF system is always smaller than both of 

the natural frequencies of the structure and human SDOF subsystems (fH and f5) and 

(2) the second frequency f2luM) is always higher than the natural frequencies of the 

subsystems (fH and f5 ). 

These significant features of undamped 2-DOF systems, summarised in equation (4.7), were proven 
by Ellis and Ji (1997). 

f, (UM) 
< 

(15' 
IH) < fz(UM) 

A more detailed account of this issue is presented in the next sections. 

4.2.2.3 NATURAL FREQUENCIES AS A FUNCTION OF THE FREQUENCY RATIO 

The dependency of the natural frequencies flu"' and f2") of the undamped 2-DOF human- 

structure system on the frequency ratio ß (0 <ß <_ 15) is shown in Figure 4.4. The natural 

(4.7) 

frequencies flu"" and f(ß"') are presented for four different mass ratios a: a=1% (blue lines), 

a= 10% (black lines), a= 50% (green lines), and a= 100% (red lines). It can be seen that 

changes of f, (uM) and f2(uM) are approximately linear if the frequency ratio ß>1.5 (Figure 4.4). 

Focusing on the more interesting part (ß <_ 1.5), Figure 4.5 presents an enlarged portion of Figure 

4.4. 
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Figure 4.4: Natural frequencies f, "') and f, '"" as function of the frequency ratio ß. 
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Figure 4.5: Natural frequencies f1W M) and f2(u') as function of the frequency ratio ß (ß 51.5). 
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In addition to the information provided in Figure 4.4, Figure 4.5 contains two grey lines. The 

horizontal grey line indicates frequencies equal to the frequency of the structure fg . The diagonal 

grey line indicates frequencies equal to the frequency of the human f, Figure 4.5 demonstrates 

that calculated frequencies f, (uM) or f2("M) are not in between these grey lines, although they are 

closer to the frequencies of human fH and structure f5 when the mass ratio a is smaller. This 

observation confirms the statement of equation (4.7). 

Extending this analysis, f, (um) and f2('M) are considered next at extreme values of the frequency 

ratio ß: 0 -ý 0 and 0 -> -. 

If the frequency ratio 0 approaches zero, the first frequency of the 2-DOF system f, (uM) 

approaches the diagonal grey line from below (equation (4.8) and Figure 4.5). 

mf, ýýM) = fH (4.8) 

In contrast to f, (") , the second natural frequency f2(1M) has no upper limit (Figure 4.4). However, 

f2(") has a lower limit equal to the frequency of the structure fß: 

ßi f 2(U") = f5 . (4.9) 

If the frequency ratio 0 increases, the first frequency of the 2-DOF system f, (u") asymptotically 

approaches an upper limit (Figures 4.4 and 4.5). This boundary is smaller than the frequency of the 

structure fs and that of the human fH : 

f=f (mm) lim f (UM) 
(mm)' 1+a 5 (4.10) 

It equals the natural frequency of the human-structure system modelled with the human as rigid 
mass f(''11) (equations (4.10) and (4.4)). This is a sensible conclusion because the human DOF 
becomes stiffer in relation to the structural DOF with increasing frequency ratio 0. Therefore, the 
human DOF increasingly acts as an additional mass to the structure, as assumed using the mass- 
only model. 
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4.2.2.4 MINIMUM FREQUENCY SEPARATION 

It will be shown later that the minimum frequency separation between the frequencies of the damped 

2-DOF system are of particular interest. For comparison, the minimum frequency separation of the 

frequencies of the undamped 2-DOF human-structure system f2(UM) - f, (UM) is analysed here. 

The frequency separation f, (") - f, (UM) is specified by the second term of equation (4.5) and of 

equation (4.6). It is a function f(a, ß) of the mass ratio a and the frequency ratio ß (4.11). 

f(a" R) =f (UM) -f 
(UM) = ((3 -1)2 +a. ß2 . f5 (4.11) 

This function f(a, ß) and its derivative af((x, ß)/aß (4.12) can be used to estimate the frequency 

ratio ß at which the frequency separation f2(u"") - f, (uM) is minimal. 

af(a. ß) (ß-1)+a"ß 
-f 

aß (ß1)2+a"ß2 
(4.12) 

In particular, f(a, 0) has a minimum if the first derivative af(a, ß)/aß = 0. This is the case, if the 

mass and frequency ratios a and ß satisfy equation (4.13). 

1+a 
(4.13) 

Hence, the frequency separation f2(uM) - f, (") is minimal at certain frequency ratios 0 51 as 

shown in Figure 4.6. The frequency ratio ß of minimal frequency separation f2(ß") - f, (u"") 

decreases with increasing mass ratio a (Figure 4.6). That means that the frequency fg of a 
human-structure system at which the frequency separation is minimal increases with the number of 
occupants. 
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4.2.2.5 SUMMARY 

The most important findings of the analysis of the natural frequencies of the undamped 2-DOF 

system are that the frequencies f, luM) and f2(uM) are: 

(1) always higher and lower, respectively, than the frequencies of the subsystems (4.7), and 

(2) least separated if the mass ratio a and the frequency ratio 0 satisfy equation (4.13). 

4.2.3 NATURAL FREQUENCIES OF THE DAMPED HUMAN-STRUCTURE SYSTEM 

In this section, the natural frequencies f, (M) and f2(DM) of the damped 2-DOF human-structure 

system (Figure 4.1c) are analysed. 
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4.2.3.1 CALCULATION OF NATURAL FREQUENCIES 

Estimating the frequencies of the damped 2-DOF human-structure system f, ("A') and f2( M) is not 

as straight forward as the calculation of the natural frequencies of the undamped 2-DOF system 

f, (uM) and f, (Im) (equations (4.5) and (4.6)). Instead, it is necessary to extract the natural 

frequencies from the complex solutions of a fourth order polynomial (see section 3.1.2.2): 

x4+I. X3+b. X2+c"x+d=0 (4.14) 

with 

a=`ý n'((1+a)'ß'ýH+W"f . 
(4.15) 

b=4"n2 "(1+4"ß" H "ýS +(1+a)"ß2)"f5 I 
(4.16) 

C=16. n3'(ýH+ýS*P)*ß*f51 (4.17) 

and 
d=16"n4 "ß2 . f5 

Appendix A outlines how this equation (4.14) can be solved analytically. However, it can also be 

solved numerically by software capable of eigenanalysis such as MATLAB (1999). 

4.2.3.2 NATURAL FREQUENCIES AS A FUNCTION OF a, ß AND 

In contrast to the calculation of natural frequencies of the undamped 2-DOF human-structure system 
(Figure 4.1 b), the analysis of natural frequencies of the damped 2-DOF system requires the 

specification of damping. In this parametric study, the damping ratio of the structure tg is set to a 

realistic value of 1 %. Reported viscous damping ratios ýH of the human spread widely (chapter 2). 

Therefore, two reasonable values i;,, = 30% and i;,, = 50% are used. 

Analysing the natural frequencies f, (DM) and f2(DM) of the damped 2-DOF human-structure system, 

their dependency on the mass and frequency ratios a and ß is visualised in Figures 4.7 and 4.8 

for ý,, = 30% and ý,, = 50%. These figures are similar to Figure 4.4, as frequency ratios ß range 
from 0 to 15 and mass ratios a of 1%, 10%, 50%, and 100% are used. 
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Figure 4.7: Natural frequencies f, (°'I and f2(°M) of a damped 2-DOF human-structure model 
(ý5=1%and cH =30%). 
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Figure 4.8: Natural frequencies f, "') and f2l") of damped 2-DOF human-structure models 
(c5=1% and ý� = 50%). 
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Comparing Figures 4.7 and 4.8, it can be seen that the frequencies f, """ I and f, "' are very 

similar for human damping ratios X, of 30% and 50%. Similar to Figure 4.5 that is an enlargement 

of Figure 4.4, Figures 4.9 and 4.10 present enlarged portions of Figures 4.7 and 4.8 for ß <_ 1.5. 

Looking closely at frequencies of the human-structure system with mass ratios of oc = 10% (black 

lines) in Figures 4.9 and 4.10, it can be identified that f2(DM) < f5 and fl(DM) > fH for certain 

frequency ratios P. This observation contradicts the major feature of the undamped 2-DOF human- 

structure system: fH > f, (uM) and f2(uM)> fy (see section 4.2.2.2 and equation (4.7) in particular). 

2.5 
14- 

VL 

2.0 f2(I)M) < f5 

LL 
fr("M) = f5 = 

1.0 

0.5 
fr( M)fH 

0.0 
0.00 0.25 0.50 0.75 1.00 1.25 1.50 

Mass ratio (x Frequency ratio ß 

1% r1) 10% r=1) 50% r=1) 100% r=1) 
------ 1%(r=2) -----"" 10% r=2) ------ 50% 

(r=2) 
100%(r=2) 

Figure 4.9: Natural frequencies f, (D" I and f2 )M' of damped 2-DOF human-structure models 
(t 

5 =1 % and ýF, = 30%, ß 51.5). 
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Figure 4.10: Natural frequencies f, (°M) and f2(DM) of damped 2-DOF human-structure models 
(c5= 1% and c, 

H = 50%, ß <_ 1.5). 

The phenomenon is investigated in more detail. This is done by concentrating on mass ratios 

(x= 1% and a= 10% and plotting natural frequencies f1 M) and f2()M) of damped 2-DOF systems 

with frequency ratios ß ranging from 0.8 to 1.1 in Figures 4.11 and 4.12. Figure 4.11 demonstrates 

that natural frequencies f, (°') and f2()M) can be within the range bound by the natural frequencies 

of the subsystems f� and f5 . The effect is more pronounced for smaller frequency ratios a 

(a = 1%) and higher human damping ýH (Figures 4.11 and 4.12). It is also remarkable that the 

frequencies f1 M) and f2l°"') can even be nearly identical as indicated in Figure 4.12. 
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4.2.3.3 MINIMUM FREQUENCY SEPARATION 

Now, a closer look is taken at the separation of the first and second natural frequency f2(M) - f, (DM) 

of the damped 2-DOF human-structure system. The separation of the frequencies f, (DM) and f2(DM) 

is presented in Figure 4.13 for i;,, = 30% and in Figure 4.14 for i; H = 50%. For convenience and 

consistency, the frequency separation f2(°M) - f, (DM) is normalised to the frequency of the structure 

f5. Therefore, the normalised difference of frequencies plotted on the vertical axis becomes 

(f2(DM) 
- f, (°M) I/ f5 . 

Figures 4.13 and 4.14 show that the frequency separations f2(DM) - f, (DM) depend on the human 

damping ý,,. They also demonstrate that the minimum frequency separation is generally smaller for 

higher human damping (ý� = 30% in Figure 4.13 and ý,, = 50% in Figure 4.14). In both cases of 

human damping, frequency separations f2(°M) - f, ("m) are minimal at frequency ratios ß<1 

(Figures 4.13 and 4.14). This is also true for f2(uM) - f, (uM) of the corresponding undamped 2-DOF 

human-structure systems (Figure 4.6). 

For comparison, the frequency ratios ß of minimum frequency separations f2(UM) - f, (uM) (equation 

(4.13)) are marked in Figures 4.13 and 4.14 as vertical dashed lines in colours corresponding to the 

used mass ratio (x. Based on this information, it can be concluded that the frequencies of damped 

or undamped human-structure systems are least separated at different frequency ratios P. The 

deviation of these frequency ratios ß increases with the mass of human occupants (Figure 4.14). 

Finally, it should be noted that the separation of frequencies f, (DM) and f2(DM) of damped 2-DOF 

systems can be less than 0.05 f5 if the mass ratio aS 30% and the human damping ratio 
ýH = 50%a (Figure 4.14). This corresponds to values less than 0.4 Hz assuming fg 58 Hz. Hence, 

modes of the damped human-structure system can be closely spaced. 
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4.2.3.4 SUMMARY 

The most important finding of the analysis of the natural frequencies of the damped 2-DOF human- 

structure system is that conclusions made for the undamped system are not entirely applicable to 

the damped system. 

In particular, the frequencies f, "D"I and f2"DM) can be between the frequencies of the subsystems 

f5 and f� . 
Furthermore, the frequency separation f2"D""l - f, (1'M) is minimal at a frequency ratio 0 

not exactly as specified by equation (4.13) for undamped 2-DOF systems. 

The differences between frequencies of the damped and the undamped 2-DOF system are analysed 

and discussed in more detail in the next section. 

4.2.4 COMPARISON OF NATURAL FREQUENCIES OF HUMAN-STRUCTURE MODELS 

In this section, the natural frequencies of all three human-structure models (Figure 4.1) are 

compared. 

4.2.4.1 MASS-ONLY MODEL AND 2-DOF HUMAN-STRUCTURE MODELS 

The major difference between frequencies of human-structure systems calculated with the mass- 

only model and the 2-DOF models (Figure 4.1) is the number of natural frequencies. In particular, 

the mass-only model gives only one frequency f ("), whereas the 2-DOF models lead to two 

natural frequencies. 

The natural frequency f(") of the mass-only model (Figure 4.1a) is always smaller than the 
frequency of the structure f5 (Figure 4.2): 

f5 > f(MM) (4.19) 

The fundamental natural frequencies f, (") and f, (°"') are always smaller than this frequency f(MM) 

However, f, '"" and f, (D"') generally approach f("') for ß approaching infinity. This is shown 

explicitly in equation (4.10) for f, (uM) of the undamped 2-DOF human-structure model. 
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The fact that f, ('" of a human-structure system is smaller than f("") is supported by the research 

of Eibl and Rösch (1990) and Hothan (1999) (section 2.4.2). 

In general ((x < 100%), the difference between the natural frequencies f(MM) and fl(um) is less than 

0.04 f5 if the frequency ratio ß>1.5 (Figure 4.15). In other words, assuming the natural frequency 

of the human DOF fH as ranging from 4 to 6 Hz, the difference between f(mm) and f, (uM) is less 

than 0.2 Hz for f5 smaller than 2.7 Hz or 4.0 Hz respectively. 

1.5 

U 

L 
LL 

1.0 

0.5 

0.0 

H 
" f2(0M)/f5 
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------------------------------------------------------------ 

f, 
f IM ý/f. 

0.00 0.25 0.50 0.75 1.00 1.50 Frequency ratio ß 

Figure 4.15: Natural frequencies of human-occupied structures (ý5= 1% and (x= 50%) estimated 
with the mass-only model, the undamped and the damped 2-DOF model (i ,= 50%). 

However, if the frequency ratio ß <_ 1.5 (and thus in this example f5 is higher than 4 Hz), the 

natural frequency f(mm) is significantly higher than fl(um) and f1 M) of the 2-DOF human-structure 

models (Figure 4.15). This is particularly important considering structures that have fundamental 

frequencies above 6 Hz, which are usually assumed to perform satisfactory under human-induced 

vibrations (IStructE 2001, p. 9). 
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4.2.4.2 UNDAMPED AND DAMPED 2-DOF HUMAN-STRUCTURE MODEL 

Generally, the natural frequencies of the damped and the undamped 2-DOF human-structure 

system are relatively close (Figures 4.5 and 4.9). Analysing this issue in more detail, the difference 

f, (u"') - fr(°") between frequencies of the undamped (Figure 4.4) and the damped 2-DOF system 

(Figure 4.8) is calculated. It is normalised to f5 and presented in Figure 4.16. 
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1% (r2) 

SCI+t 10/a (r = 1) 
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-0.1 1007o (r = 1) 

----- 100%(r=2) 

-0.2- 
05 10 15 

Frequency ratio (3 

Figure 4.16: Difference between natural frequencies of the undamped and the damped 2- 
DUI-human-structure model (c5 =1 % and ý, 

1= 50%). 

Dashed lines in Figure 4.16 reveal that the difference f2("4) - f2( M) is positive. Hence, the second 

frequency of the undamped 2-DOF model is higher than that of the damped model: 

f (UM) 
>f 

(DM) 
22 (4.20) 

In contrast, fundamental frequencies of the undamped 2-DOF model are smaller than those of the 

damped 2-DOF human-structure system (Figure 4.16): 

f1(UM) < f1(DM) (4.21) 

Using previously gained knowledge, this equation (4.21) can be extended (Figure 4.15) to: 
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f5 > f(MM) > f1(DM) > f1(UM) (4.22) 

The difference between frequencies of the undamped and the damped 2-DOF model are highest for 

frequency ratios ß around unity (Figure 4.16). 

To provide better insight into this issue, a part of Figure 4.16 is enlarged by limiting the frequency 

ratio to ß <_ 1.5. The resulting Figure 4.17 does not reveal a simple pattern. Nevertheless, it shows 

that the difference between frequencies of the damped and the undamped 2-DOF human-structure 

model can be up to 0.25 f5 (Figure 4.17). That means that, if f5 is in the likely range between 3 Hz 

and 6 Hz, natural frequencies of the undamped system can differ by about 1 Hz from their 

counterparts of the damped 2-DOF system. 
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Figure 4.17: Difference between natural frequencies of the undamped and the damped 2-DOF 
human-structure model (i; 5 =1% and ßf1= 50%, ß <_ 1.5). 

Finally, it is noted that f2 M) and f2(") of 2-DOF human-structure systems are close to the 

frequency of the structure fy if the frequency ratio ß<0.2 (Figure 4.15). This range corresponds to 

structures with natural frequencies of at least 20 Hz (assuming f,, above 4 Hz), which are usually 

not of concern (IStructE 2001). 
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4.2.4.3 SUMMARY 

The main conclusions drawn from the comparison of frequencies estimated with the three human- 

structure models are: 

(1) that the fundamental frequencies of all three human-structure models f(mm), f, (u""), and 

are similar, if the frequency ratio 0>1.5 (Figure 4.15), 

(2) summarised in equations (4.20) and (4.22), and 

(3) the natural frequencies of the undamped f, (uM) and the damped f, (") 2-DOF human- 

structure system deviate by up to 0.25 f5 (Figures 4.16 and 4.17). 
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4.3 MODE SHAPE 

In the previous section, natural frequencies of the human-structure system modelled with three 

different human models (Figure 4.1) were analysed. In this chapter, the amplitude normalised mode 

shapes {yr}, of the damped 2-DOF human-structure system (Figure 4.1c) are investigated. 

Damping of such viscously damped 2-DOF human-structure systems is generally non-proportional. 
Therefore, the mode shapes {yr}, are complex. To account for this complexity, mode shape 

magnitudes{yrý and phases arg{yr} are analysed separately. Thereby, it is concentrated on 

human-structure systems with damping ratios ýg =1 % and ý,, = 30%. 

In the following sections, it is first analysed which DOF (human or structure) dominates each 

mode r. Secondly, it is investigated how mass and frequency ratios a and ß influence the mode 

shape amplitude and phase differences between the first and second mode. Finally, mode 

complexity is discussed. 

4.3.1 DOMINANT DOF 

A DOF n dominates a mode r (r =1 or 2) if the magnitude l y, I of the amplitude normalised 

mode shape {yr}, is unity. Investigating the dominance of the first (n = 5) and the second DOF 

(n = H) of the damped 2-DOF human-structure system (Figure 4.1c), the dominant DOF of both 

modes is calculated. It is evaluated for several mass ratios a ((X =1 1%, 10%and every 10% up to 
100%) and frequency ratios ß (from 0 to 5). The results are visualised in Figures 4.18 and 4.19, 

which use the mass and frequency ratios a and ß as coordinate system. 
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Figure 4.18 clearly demonstrates that the human DOF dominates the first mode (symbolised by blue 

crosses), regardless of mass and frequency ratios a and P. Therefore, it can be concluded that 

equation (4.23) is true, at least within the scope of this study. 

I`Y51 
< 

I`YH1 (4.23) 

In contrast to the first mode, mass and frequency ratios a and ß define the DOF dominating the 

second mode (Figure 4.19). In particular, the structure dominates the second mode if the mass ratio 

a< 70% and the frequency ratio ß<0.8 to 1 (assuming ý5 =1% and ý, = 30%). The structural 

DOF also dominates damped 2-DOF systems with mass ratio a> 70% if the frequency ratio ß>1 

(Figure 4.19). 

It is concluded that the human DOF dominates most modes of the 2-DOF human-structure systems 

considered here. That means that the human DOF experiences stronger movements in the modal 

space than the structure at most combinations of mass and frequency ratios cx and P. Therefore, 

including the movements of the human body (the recipient of vibrations) might be a significant step 
forward in analysing vibration serviceability of civil engineering structures. 

4.3.2 MODE SHAPE OF THE FIRST MODE 

In this section, a detailed look is taken at the complex mode shapes of the first mode {yr},. 

Mode shape amplitudes of the first mode I{yr}, I of the structural DOF (n = S) and the human DOF 

(n = H) are visualised in Figure 4.20. The corresponding absolute phase differences between the 

first and the second DOF argyrH, -argyl51 are presented in Figure 4.21. (This presentation of 

phase differences as phase indicator is preferred to a more complex presentation of the phases 

argyr51 and arg'rH, that would contain the same information. ) 
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Figure 4.20: Mode shape amplitudes of the first mode (ý5 =1% and cH = 30%). 
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It was outlined previously that the human DOF dominates the first mode regardless of mass and 
frequency ratios a and ß (equation (4.23)). This observation can also be made in Figure 4.20, 

where 14VH, I of the amplitude normalised mode shape {iyi}, is unity for all mass ratios a: 

1 VH, I=1 (4.24) 

Figure 4.20 also reveals that the mode shape amplitudes of the structural DOF are less than unity 

(14f,, I < 1). Furthermore, the mode shape amplitude of the structural DOF JAV511 < 0.5 (which 

corresponds to Jyr 
y, 

I<0.5 IWH, I) if the frequency ratio ß<0.75. Additionally, Figure 4.20 

demonstrates that the mode shape amplitude of the structural DOF Iyi51I approaches zero, if the 

frequency ratio ß approaches zero: 

lim1well =0 0-40 
(4.25) 

In other words, increasing the frequency ratio ß increases the participation of the structure in the 

first mode. In the cases considered here, the mode shape amplitude jyrs, j increases steadily with 

increasing frequency ratio ß if az 10%. However, if a= 1%, mode shape amplitudes 1W., 1 

increase rapidly from (yr51ý 0.05 to Iyr511 - 0.5 at a frequency ratio ß slightly smaller than unity 

(Figure 4.20). For ß increasing to 15 and further, mode shape amplitudes (xvs, l approach unity 

regardless of the mass ratio a: 

l im lyr51 =1. (4.26) 

Phase differences Iarg VH, -argyrg, I of the first mode shape {yr}, of the generally viscously 

damped 2-DOF human-structure system are presented in Figure 4.21. This figure reveals that the 

phase difference IargylH, -argtV51j < 900 in most cases considered here ((x z 10%). This limit 

of 90° is only exceeded if a =1 % and ß=0.9 to 1. Furthermore, Figure 4.21 shows that the phase 
difference decreases for ß>1 and leads to: 

ßm ýarg\ 
1-argl4Js, 

ý=0. (4.27) 
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The characteristics summarised in equations (4.24) to (4.27) will later be used to discuss mode 

complexity and to calculate modal masses and modal damping ratios. 

4.3.3 MODE SHAPE OF THE SECOND MODE 

The mode shape amplitude I{Nr}2 and absolute phase difference Iargylh12 - argyf52I of the 

second mode are presented in Figures 4.22 and 4.23. 

Similarly to Figure 4.19, Figure 4.22 reveals that the mode shape of the second mode {W}2 can be 

dominated by the structural or the human DOF, that is yr521 > WH21 or 1W. 
21"' yr�2I . It also 

indicates that the mode shape amplitudes I{w}2I depend more strongly on mass and frequency 

ratios a and ß (Figure 4.22) than the mode shape amplitudes of the first mode I{yr}, I 

(Figure 4.20). 
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Figure 4.23: Phase shift of mode shape elements in the second mode (ý5 =1% and ý� = 30%). 

Similar to the first mode, the mode shape amplitudes of the second mode 11Y}, I approach zero 

with ß approaching zero for one DOF. However, this is the human DOF I IJH2I (Figure 4.22): 

äim IYH21=0 (4.28) 

In contrast to the first mode, where the structural DOF approaches zero (equation (4.25) and Figure 

4.20) if the amplitude I VH21 of the unity normalised mode shape approaches zero, Iyr52 has to 

approach unity (4.29), as confirmed in Figure 4.22. 

ßö I1s21=1 (4.29) 

Equations (4.20) and (4.29) show that the second mode is dominated by the structural DOF for ß 

approaching zero, as already demonstrated in Figure 4.19. 

With an increasing frequency ratio 0, the participation of the human DOF in the mode increases 

(Figure 4.22). That results in Iyr�Z approaching unity for increasing 0: 
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ßm IWH2I=1. (4.30) 

Hence, the human DOF dominates the mode for frequency ratios 0=0.7 to I and mass ratios 

a=1%, 10%, and 50%, which was shown previously with Figures 4.19 and 4.22. 

Further features of mode shapes {fir},, which will be used later, correspond to frequency ratios ß 

approaching infinity. In this case, the mode shape amplitude of the structure ýw I approaches the 

mass ratio a (Figure 4.22): 

'im lW521= a. (4.31) 

The phase shift between the first and second DOF approaches 1800 (Figure 4.23): 

"M I4'r9VH2 - ar9vs21=180° . 
(4.32) 

It should be noted that the phase shift jargyIH2 -argyt52l > 900 in most cases, except if a=1% 

and simultaneously ß=0.8 to I (Figure 4.23). 

Finally, it has to be mentioned that the absolute phase difference reduces to 90° if the frequency 

ratio ß approaches zero (Figure 4.23): 

ýilar9WHZ-ar9Vfszl =90°. 

4.3.4 MODE COMPLEXITY 

(4.33) 

Based on the discussion of mode shape amplitudes and phase differences, the complexity of the 

mode shapes is discussed briefly. This discussion is only qualitative because there is no agreed 

quantification of mode complexity (Ewins 2000, p. 113). 

Mode shapes of proportionally damped systems are real valued and not complex. That is, their 

mode shape elements are in phase (phase shift of 0°) or out of phase (phase shift of 180°). Hence, 

the complexity is high if the phase shift is close to 90°. However, complexity is, regardless of phase 

shifts, considered small if mode shape amplitudes are small. 
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In the first mode, phase shifts of the heavily damped 2-DOF human-structure system are largest for 

frequency ratios p -1 and small mass ratios, for instance a =1% (Figures 4.20 and 4.21). 

Simultaneously, mode shape amplitudes of the structural DOF I'qi < 0.5 (Figure 4.20). Hence, the 

complexity of the first mode is generally small. 

Similarly, the second mode is most complex at frequency ratios ß around unity (Figures 4.22 and 
4.23). This is because at higher or smaller frequency ratios ß either one mode shape amplitude is 

small compared to the other < 0.3 ýyr521 for ß<0.4) or the phase shift between them is close 

to 180° (ß > 1.2). 

4.3.5 SUMMARY 

Three main conclusions can be drawn from the analysis of the mode shapes IV}, and {yr}2 of the 

damped 2-DOF human-structure system: 

(1) Movement of the human DOF dominates the mode shape of the first mode {w}, (Figure 

4.18). 

(2) The phase shift between the first and second DOF is usually smaller than 90° in the first 

mode (Figure 4.21) and usually higher than 900 in the second mode (Figure 4.23). 

(3) The mode complexity of the two modes of human-structure systems is highest at 
frequency ratios ß-1. 
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4.4 MODAL MASS 

Modal masses mr are an essential tool in response calculations (see section 3.1). In this section, 

modal masses are calculated parametrically from amplitude normalised (that is unity scaled) mode 

shapes {yr}r. The modal masses m, and m2 are analysed for 2-DOF human-structure systems 

with damping ratios ý5 = 1% and ýH = 30% and mass ratios a= 1%, 10%, 50%, and 100%. They 

are presented in Figure 4.24 as solid lines (modal masses m, ) and as dashed lines (m2) in colours 

corresponding to the four mass ratios o t. 
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Figure 4.24: Modal mass (ýy =1 % and cH = 30%). 

4.4.1 MODAL MASS OF THE FIRST MODE 

Figure 4.24 reveals that the unity scaled modal mass m, is always larger than the lumped mass of 

the human DOF m� : 

m, > m� . (4.34) 
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This phenomenon is due to the dominance of the human DOF in the first mode (section 4.3.1), 

which results in m, comprising the whole of mH plus a mode shape dependent contribution of m5 . 
However, the participation of the structure approaches zero with decreasing ß (equation (4.25)). 

Therefore, the modal mass m, approaches its lower limit mH for the frequency ratio ß approaching 

zero (Figure 4.24): 

"M ml = mH =a" m5 . p-4o 
(4.35) 

With increasing frequency ratio P, the participation of the structural DOF in the first mode increases 

(Figure 4.20), so, the modal mass m, increases (Figure 4.24). However, Figure 4.24 shows that 

there is a slight discontinuity for a= 1% at 1, which corresponds to a high complexity of the first 

mode (Figures 4.20 and 4.21). 

At higher frequency ratios 0, the modal mass m, reaches a maximum (Figure 4.24). This maximum 

corresponds to the human and structure moving in phase (Figure 4.21). In this case, the mode 

shape amplitude Iii,, is unity and yr51 approaches unity (equations (4.24) and (4.26)). Therefore, 

m, approaches its maximum value that is a simple sum of ms and m,,: 

lim m, =mH+m, =(1+a)"m5. (4.36) 

4.4.2 MODAL MASS OF THE SECOND MODE 

The modal mass of the second mode m2 (Figure 4.24) shows a more complicated dependence on 

mass and frequency ratios a and ß than that of the first mode. First, the two extreme cases of the 

frequency ratio ß are considered. Next, modal masses m2 at frequency ratios ß around unity are 

examined. 

If the frequency ratio ß approaches zero, the participation of the human DOF tends to zero and the 

structural DOF dominates the second mode (equations (4.28) and (4.29) in section 4.3.3). 

Therefore, m2 approaches its lower limit: the lumped mass of the structure m5 (4.37). 

lim m2 = m5 (4.37) 
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If the frequency ratio ß approaches 15, both DOFs of the damped 2-DOF human-structure system 

participate in the second mode (Figures 4.23 and 4.23). With the mode shape {V}2 defined by 

equations (4.30), (4.31), and (4.32), the modal mass m2 can be estimated for ß approaching 

infinity to: 

lim m2 =m�+a2 "m5 =a"(1+(X)"m5 (4.38) 

Beside modal masses at extreme frequency ratios P, particular attention has to be paid to m2 at 

frequency ratios ß about unity, which is a more realistic case. This range cannot clearly be seen in 

Figure 4.24. Therefore, a closer look is taken at Figure 4.24 by limiting the frequency ratio to ß <_ 5 

and normalising the vertical axis to the sum of m5 and 1H . This procedure leads to Figure 4.25. 

= mS+mH 
1.0 ---........ 

N ........ 

0.5 .. -------- 
-Its 

0.0 - ----- --------- ---- -- 

012345 

Mass ratio (X 
Frequency ratio 

1% (r = 1) 10% (r = 1) 50% (r = 1) 100% (r = 1) 
1%(r=2) ...... ". 10%(r=2) 50%(r=2) 1007, (r=2) 

Figure 4.25: Normalised modal mass (ýy =1% and c� = 30%). 

Figure 4.25 demonstrates that (for mass ratios a <_ 50%) the modal mass m2 increases from the 

value m5 to the sum of rn and m,, before dropping to the value specified by equation (4.38). With 

increasing mass ratio o c, the local peak of m2 widens and shifts to higher frequency ratios ß (to ß 

= 1.25 for (x = 80% for example). In case of the highest investigated mass ratio a= 100%, the 
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modal mass m2 of a damped 2-DOF system increases continually with the frequency ratio ß and no 

local peak can be identified (Figure 4.25). 

4.4.3 SUMMARY 

It can be concluded that the modal masses m, and mZ strongly depend on the mass and frequency 

ratios a and 0, especially for frequency ratios ß=0.5 to 3. Also, the modal mass of each mode 

(m, and m2) of the damped 2-DOF human-structure system is smaller than the sum of the masses 

of human mH and structure m5 . 
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4.5 DAMPING RATIO 

The modal damping ratios ý, and ý2 are defined by the mode shapes and the damping matrix of 

the damped 2-DOF human-structure system (equation (3.57) in section 3.1.1.5). They are studied 

parametrically in this section for damped 2-DOF human-structure systems with assumed ý5 = 1%. 

This was done by employing a range of frequency ratios ß=0 to 15 and four mass ratios: a =1 %, 

10%, 50%, and 100%. The damping ratios of the human DOF cH were set to 30% and 50%. 

The analysis led to damping ratios presented in Figures 4.26 and 4.27 (c� = 30% and c� = 50%). 

These figures indicate that the damping ratios ý, and ý2 strongly depend on the frequency ratio ß 

if ß<1.5. Such frequency relations are very realistic in practical situations of crowd-occupied 

structures. Therefore, this frequency range was focused upon. Using Figures 4.28 and 4.29 

presenting this range, the modal damping ratios r;, and ý2 are now discussed in detail. 
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Figure 4.26: Damping ratios of the first and second mode (i; 5 = 1% and cH = 30%, 0! 5 15). 
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Figure 4.29: Damping ratios of the first and second mode (ý5 =1% and ý� = 50%, P<_ 1.5). 

4.5.1 DAMPING RATIOS OF THE FIRST MODE 

The damping ratios ý, are first investigated for frequency ratios ß approaching zero (Figures 4.28 

and 4.29). In this case, the damping ratios ý, approach the damping ratio of the human cl: 

P --+o 
ý, - ýH (4.39) 

This is because in this particular case only the human DOF is engaged in the first mode as indicated 

by the mode shape amplitudes IV,,, I and Iiyfs, I (equations (4.24) and (4.25)). 

Increasing the frequency ratio P, the damping ratio ý, decreases (Figures 4.28 and 4.29). This 

decrease is gradual for a? 10% if the human damping ratio cH = 30% (as in Figure 4.28) and for 

a >_ 50% if ýH = 50% (Figure 4.29). As long as the frequency ratio ß is slightly smaller than unity, 

smaller mass ratios a lead to a smaller gradual decrease in ý, 
. At a certain frequency ratio ß, the 

damping ratio ý, does not decrease further gradually but rapidly (Figures 4.28 and 4.29). 
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For instance, if the human damping ratio ýH = 30% and the mass ratio a= 1%, the damping ratio of 

the first mode ý, decreases from 30% to about 29% at ß=0.99 with increasing frequency ratio 

Increasing it above unity, ý, jumps to 2%, from where it decreases further (Figure 4.28). This 

sudden change of modal damping is based on an abrupt change in the mode shape {y}, as 

presented in Figures 4.20 and 4.21. 

However, increasing the frequency ratio ß towards infinity, the damping ratio ý, approaches a 

constant value depending on the mass ratio a (Figure 4.26). This limit (4.40) can be calculated 

using the modal mass m, (where m, = my + mH O he viscous damping c, (c, = c5 ), and the 

modal stiffness k, (k, = k5 ). 

yr prr! bi =1 
1+OC. bs (4.40) 

Equation (4.40) is particularly important because it demonstrates that damping of the first mode of 
the damped 2-DOF human-structure system can actually be smaller than damping of the empty 

structure ý5 
. 
(This situation may occur in the case of structures having very low frequencies. ) 

To emphasise and support this somewhat surprising conclusion visually, the presentation of i;, 

shown in Figures 4.26 and 4.27 is enlarged for low frequency ratios ß <_ 10 and redrawn in Figures 

4.30 and 4.31. It can now be seen that for ß higher than about 3, i;, is smaller than damping of the 

empty structure ý5 
, which was assumed to be I%. The effect is more pronounced in the case of 

large mass ratios (x. 
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4.5.2 DAMPING RATIOS OF THE SECOND MODE 

Similarly to the damping ratios of the first mode ý,, the damping ratios of the second mode ý2 

have upper and lower limits (Figures 4.26 and 4.27). Of particular interest in analysing the influence 

of occupants on modal properties of slender structures is the lower limit of 1; 2 that corresponds to 

strong movements of the structure in this mode. 

The lower limit of the damping ratio C2 is reached if the frequency ratio ß approaches zero 

(Figures 4.28 and 4.29). In this case, the modal mass m, (m, = ms ), the viscous damping c, 
(c, = c5 +cH), and the modal stiffness k, (k, = ks +kH) can be used to estimate the modal 
damping ratio ýZ as equal to ý5: 

'In' = um 
95+a"R"ýH 

=b 
>O 

2 ßýO j+ 
a" R2 s (4.41) 

Similarly to the lower limit (4.41), an upper limit of the damping ratio ý2 can be estimated. For the 

sake of completeness, this limit is provided in equation (4,42). 

tim ý2 = Iim a, ý9+0*ýH'(1+a)2 

a" (1 + a) + (1 + a)3 -V 

However, such highly damped modes, even exceeding the damping ratio t (Figures 4.26 

and 4.27), are probably not relevant in human-induced vibrations. 

4.5.3 CONDITIONS FOR OBTAINING SIMILAR DAMPING RATIOS 

It was previously mentioned that damping ratios t, and ý2 have upper and lower limits 

(4.42) 

(equations (4.39) to (4.42)). Another particularly interesting aspect is that the damping ratios i, and 
t can be close or even equal (Figures 4.28 and 4.29). In particular, damping ratios of both modes 

of the damped 2-DOF human-structure can exceed 0.5 ýH . This is the case for mass ratios 

az 50% if i ,, = 30% or 50% (Figures 4.28 and 4.29) and, additionally, for mass ratio a =10%, if 

ýH = 30% (Figure 4.29). Such high damping ratios C, and ý2 occur in a small range of frequency 
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ratios ß around ß= 
1+a 

(Figure 4.28). This range of frequency ratios ß corresponds to close 

natural frequencies of the first and second mode (Figure 4.13). 

Finally, it is emphasised that a considerable number of damped 2-DOF human-structure systems 

considered here have damping ratios C, and i; 2 both exceeding the damping ratio tg ten times 

(Figure 4.28). Such a significant damping increase due to human occupation can be expected 

particularly for structures with frequencies f5 similar and slightly higher than that of occupants (that 

is fy above 4 Hz). 

4.5.4 SUMMARY 

Three significant conclusions can be drawn from the analytical parametric study of the damping 

ratios ý, and ý2 of damped 2-DOF human-structure systems (Figure 4.1c): 

(1) The damping ratio ý, can be lower than the damping ratio t of the structural DOF 

(Figures 4.30 and 4.31). 

(2) The damping ratio ý2 can be higher than the damping ratio ýH of the human DOF 

(Figures 4.26 and 4.27). 

(3) Damping ratios t, and ý2 can both exceed 10% simultaneously (Figures 4.28 and 4.29). 

However, responses of a structure are not only specified by damping (ý, and ý2 ). They have to be 

calculated considering modal masses and mode superposition. These issues are combined in the 

discussion of FRFs presented in the following section. 
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4.6 STRUCTURAL FRFS 

In this final section of the analytical parametric study, the influence of human occupants on the 

structural FRF A, (f) of a SDOF structure system (Figure 3.1) is discussed. For this purpose, six 

damped 2-DOF human-structure systems (Figure 4.1 c) were considered. 

In all six cases, the structural SDOF was defined by ýg=1% and m, = 10,000kg. Human 

occupants were consistently modelled as damped SDOF system with fH = 6.0 Hz and r; H = 30%. 

Different human-structure systems were obtained by setting mass and frequency ratios a and ß 

differently (Table 4.1). Knowing all these parameters(, mg , fH , 
ýH 

, a, and ß ), mH and fg 

were calculated (equations (4.1) and (4.2)). A following eigenanalysis led to the modal properties 

fI(DM), f2( DM) 
I 

ýj' and i; 2 of these human-structure models (Table 4.1). 

Table 4.1: Parameters of six damped 2-DOF human-structure models. 
Mass ratio Frequency ratio Frequency fs First mode Second mode 

Case 1 cc= 10% 0.75" 8.0 Hz f1l") = 5.9 Hz f') = 8.1 Hz 
ý, =25.2% ý2=7.0% 

Case2 a=10% 0.91' 6.6 Hz fý(") °6.0Hz f2ý"') =6.6Hz 
ýI=15.6% ý2=16.8% 

Case3 a=50% 0.75" 8.0 Hz f1(")=5.2Hz f2(')=9.3Hz 
ýI=14.2% ý2=22.1% 

Case 4a= 50% ß=0.67' 9.0 Hz 
fl ") 

= 5.4 Hz f (") =10.0 Hz 
ýI=17.7% ý2=18.4% 

Case 5 (X= 10% ß 1.54j 4.0 Hz fýýýMý ° 3.7 Hz f2°A"ý = 6.4 Hz 
2.1% ý2=30.2% 

Case 
""') = 7.7 Hz 6a= 50% 1.5' 4.0 Hz f, ('M) = 3.1 Hz f2 

ýý=2.5% ý2=34.4% 

ß< 1+a 
ß 

1+1 a 
1 <ß<1 1+a 
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4' ' <ß 1+a 

The structural accelerance FRFs A55 (f) of the damped 2-DOF human-structure systems (Table 

4.1) are shown in Figures 4.32 to 4.37. In these figures, lilac and blue lines present the contributions 

of the first and the second mode to A55(f), which is outlined as thick black line. Additionally, the 

frequencies f5 and fH of the subsystems and f, (D"') and f2°"') of the human-structure system are 

presented (Figures 4.32 to 4.37). 

The structural accelerance FRFs A55(f) are also shown as Nyquist plots (Figure 4.38). This 

presentation in real and imaginary parts is rather uncommon in civil engineering. However, it 

enables the presence of a second mode to be observed more easily than using the conventional 

modulus and phase presentation (Table 4.2). 

Table 4.2: The visibility of modes in the structural FRFs A59 (f) of the six damped 2-DOF human- 
structure systems defined in Table 4.1. 

Modulus of A5g (f) Nyquist plot of A55 (f) 

Case I Second mode (Figure 4.32) Second mode (Figure 4.38) 

Case 2 One model) (Figure 4.33) Two modes (Figure 4.38) 

Case 3 Two modes (Figure 4.34) Clearly two modes (Figure 4.38) 

Case 4 Second mode (Figure 4.35) Clearly two modes (Figure 4.38) 

Case 5 First mode (Figure 4.36) First mode (Figure 4.38) 

Case 6 First mode (Figure 4.37) Clearly two modes (Figure 4.38) 
1) Both modes of the damped 2-DOF human-structure system superpose and appear as one mode 

Next, each of the structural FRFs A,, (f) is discussed and related to the structural FRFs A. (f) of 

the corresponding empty structures. A visual comparison is omitted. Instead, the natural frequency 

f5 of the empty structure and the magnitude ag (see section 3.1.3) are used. The natural 
frequencies fg are listed in Table 4.1 for each of the six human-structure systems. The magnitude 

a5 is 5.0 (mm/s2)/N for all empty structures considered (equation (3.106) in section 3.1.3). 
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4.6.1 CASES 1 AND 2 

Case I defines a damped 2-DOF human-structure system with a mass ratio a =10% and a 

frequency ratio ß=0.75 (Table 4.1). In this case, the second natural frequency (f2("") = 8.1 Hz) is 

slightly higher than the natural frequency of the empty structure (fg = 8.0 Hz). This second mode of 

the 2-DOF human-structure system is the only mode visible in the structural FRF A., (f) 

(Table 4.2, Figures 4.32 and 4.38). Thus, in this case, human occupation leads neither to a strong 
frequency change nor to a significant additional mode in the structural FRF. 

Nevertheless, comparing the peak magnitudes of the structural FRFs A. (f) and A58 (f), the 

influence of human occupants is very clear. In Case 1, the peak magnitude of the structural FRF is 

reduced from 5.0 (mm/s2)/N for the empty structure to about 0.7 (mm/s2)/N for the human-structure 

system (Figure 4.32). The reduction is even stronger in Case 2 (Figure 4.33). 

The human-structure dynamic system of Case 2 is characterised by two heavily damped closely 

spaced modes (Table 4.1). These modes superpose and, therefore, only one peak slightly below the 

natural frequencies fg and f2'M) (both 6.6 Hz) is visible in the modulus of the structural FRF 

A8 (f) (Figure 4.33). It is likely that only one heavily damped mode would be identified by a less 

sophisticated experimental modal analysis. However, the Nyquist plot of A59(f) shows the 

contribution of both modes (Figure 4.38). 
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Figure 4.32: Structural accelerance A, 5 (f) corresponding to Case 1. 
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Figure 4.33: Structural accelerance A., (f) corresponding to Case 2. 
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4.6.2 CASES3AND4 

Cases 1 and 2 considered human-structure systems with mass ratios a= 10% (Table 4.1). In 

contrast, higher mass ratios a= 50% specify the human-structure systems of Cases 3 and 4 (Table 

4.1). 

In Case 3, the natural frequencies f, (PM) and f2('" of the human-structure system are separated by 

about 4 Hz (Table 4.1). This frequency spacing and the similar contribution of both modes to the 

movement of the structure (Figures 4.34 and 4.38) lead to two visible peaks in the modulus of the 

FRF A55 (f) . The peaks occur at frequencies lower and higher respectively than the natural 

frequencies fH and f5 (Figure 4.34). 

Interestingly, the second peak (at a frequency about 1.5 Hz above f5) is slightly higher than the first 

peak (Figure 4.34). This is despite damping of the second mode (ý2 = 18.4%) being higher than 

damping of the first mode (ý, = 17.7%) (Table 4.1). This phenomenon emphasises the need to 

consider contributions of both modes of such heavily coupled human-structure systems. 

In Case 4, f5 and fH are separated by 5 Hz in contrast to 4 Hz in Case 3 (Table 4.1). Nevertheless, 

the human-structure system of Case 4 is characterised by natural frequencies f, "M) and f2°M) 

similar to that of Case 3 (Table 4.1). In both cases, the two modes of the human-structure system 

are heavily damped modes (Table 4.1). This leads in both cases to a significant reduction in the 

peak amplitude of the structural FRF to less than a tenth of the empty structure. 

Finally, it is noted that the modulus and phase presentation of the structural FRF A, (f) of Case 4 

does not obviously indicate two modes (Figure 4.35). Nevertheless, the Nyquist plot indicates that 

there are two modes (Figure 4.38). 
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4.6.3 C SES5AND6 

Analytical Parametric Study 

Finally, Cases 5 and 6 define human-structure systems with a realistic frequency of the empty 

structure f5 of 4.0 Hz. 

In both cases, the fundamental mode of the human-structure system dominates the structural FRFs 

A, (f) with a single sharp peak (Figures 4.36 and 4.37). It is important to note that this peak is at a 

frequency about 0.3 Hz and 0.9 Hz below the frequency of the empty structure f5 (Cases 5 and 6 in 

Table 4.1). This can be a significant design issue because a lower natural frequency makes a 

structure generally more responsive to human-induced forces. 

Principally, the mass-only model (Figure 4.1a) also predicts a frequency reduction. However, it 

underestimates the frequency change (see section 4.2.4). For instance, the mass-only model leads 

to natural frequencies f("'"') = 3.81 Hz and 3.27 Hz in contrast to f, ()M) = 3.73 Hz and 3.10 Hz in 

Cases 5 and 6. 

A further drawback of the mass-only model is the slight reduction of the peak amplitude. In Cases 5 

and 6, the mass-only model of human occupants accounts for a reduction of the peak amplitude 
from 5.0 (mm/s2)IN to 4.5 or 3.3 (mm/s2)IN. Using the damped 2-DOF human-structure model, it is 

benefited from significantly higher reductions to 2.0 and 1.1 (mmis2)/N respectively (Figures 4.36 

and 4.37). 
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Figure 4.36: Structural accelerance A55(f) corresponding to Case 5. 
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4.6.4 DIscusstON 

As demonstrated in the literature review, human occupants add a DOF to the structure they occupy. 
This phenomenon results in an additional mode in the joint human-structure dynamic system 

compared to the structure itself. This additional mode is visible in the modulus of structural FRFs 

under the following two conditions: 

(1) the additional mode sufficiently contributes to the movement of the structure and 

(2) the natural frequencies of the modes are well separated (see example in Figure 4.34). 

Both conditions have to be satisfied simultaneously. If only condition (1) is satisfied, only one peak 
might be visible in the modulus of the structural FRF. However, it could be spotted in the Nyquist 

plot (Case 2 in Figures 4.33 and 4.38). If only condition (2) is satisfied, as in Cases 1 and 5, only 

one mode can be identified (Figures 4.32,4.36, and 4.38) 

If the frequencies of the human and structure are well separated (condition 1), human occupants 
shift the peak of the structural FRF of the empty structure noticeably. This shift is positive (to higher 

frequencies) if fg > f,, (Figure 4.35). It is negative (to lower frequencies) if fg < fH (Figure 4.37). 

Therefore, the presence of human occupants can be beneficial (fs > fH) or adverse (f$ < f� ) 

regarding human-induced forces. 

In all human-structure systems considered here, human occupants reduce the peak amplitude of the 

structural FRF. This is also the case if neither condition (1) nor (2) is satisfied (Case 1, Table 4.2). 
The phenomenon leads to lower structural responses of the occupied structure than the empty 
structure to the same excitation. This can be particularly useful in designing assembly structures. 

The influence of human occupants on the structural FRF using the damped 2-DOF human-structure 

model cannot easily be quantified using close form solutions. Therefore, a numerical solution based 

on a specially developed MATLAB script is provided in Appendix C. It enables the reader to analyse 
the influence of occupants on the structural FRF A5, (f) of other damped 2-DOF human-structure 

systems. 

In particular, the program plots the modulus and phase of the structural FRF A. (f) of an empty 

structure overlaid with the structural FRF Ass (f) of any damped 2-DOF human-structure system. 
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The user has to define the structural and the human DOF via the natural frequencies fs and fH, 

modal masses m5 and mH, and damping ratios tg and ýH. The program outputs natural 

frequencies and damping ratios of the human-structure system and quantifies the frequency at 

which the structural FRF A55(f) has its peak modulus. 

4.6.5 SUMMARY 

The analytical parametric study of the damped 2-DOF human-structure model (Figure 4.1c) can 

explain (1) a frequency increase or decrease, (2) an additional frequency, and (3) a response 

reduction as observed on real-life structures due to human occupation (Ellis and Ji 1997; Littler 

1998). This conclusion is important because it is impossible to explain all these observations using 
the simpler mass-only model or the undamped 2-DOF human-structure model (Figures 4.1 a 

and 4.1 b). 

Nevertheless, the mass-only model (Figure 4.1a) can be used to estimate the fundamental 

frequency of the human-structure system if fs < fH 15 (ß > 5). Furthermore, both natural 

frequencies of the damped 2-DOF human-structure system can be calculated with sufficient 

accuracy using the undamped 2-DOF human-structure model (Figure 4.1 b) if fg < 213 f� (ß > 1.5). 

However, in most cases of concern, the frequency of the structure is smaller than that of the human 

(fg < f, ß< 1). Therefore, an analysis of the damped human-structure system is required. Such 

an analysis is likely to result in reductions in the fundamental frequency and the peak modulus of the 

structural FRF. 
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5. EXPERIMENTAL WORK 

The experimental part of this research quantified the influence of occupants (and a static mass) on 
the modal properties of a slender structure. The following sections describe the methodology and 
the experimental schedule. Additionally, they report on the performance of the experiments and 

present relevant experimental data. Finally, estimated mode shapes, natural frequencies, damping 

ratios and modal masses are presented and discussed. 

5.1 METHODOLOGY OF MODAL TESTING 

In this research, forced vibration testing was used. Here, the test equipment and its arrangement are 

presented together with information about the data acquisition and processing procedure. 

5.1.1 EXPERIMENTAL SET-UP 

A prestressed concrete slab of about 15,000 kg was employed as the test structure (Figure 5.1). The 

2m wide beam-like structure spanned 10.8 m between a pair of 'knife-edges' near its ends. 

A key aim of this research was to obtain best quality experimental data. Therefore, FRFs were 
estimated to obtain modal properties. The FRFs were determined by measuring responses of the 

structure to excitation by an electrodynamic shaker APS Dynamics Model 113 (APS Dynamics 

1996b), as shown in Figure 5.2a. This shaker was placed in a pit underneath the test structure 
(Figure 5.1) and attached to it by a stinger (Figure 5.2b). 

Vibration responses of the test structure were measured by piezoelectric accelerometers ISOTRON 
Model 7754-1000 and 7754A-1000 manufactured by Endevco (Figure 5.3). These transducers were 
placed at nine test points (TPs) along the middle axis of the test structure (Figure 5.4). 
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--- - ----------------- 
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Figure 5.2: Electrodynamic shaker (a) and its attachment to the test structure (b). 
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Figure 5.4: Measurement grid. 
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5.1.2 INSTRUMENTATION AND DATA ACQUISITION 

Modal testing was performed using the instrumentation shown in Figure 5.5. The corresponding 

measurement chain and the procedure of data acquisition are presented in Figure 5.6 schematically. 

The first item in the measurement chain was a signal generator (1 in Figure 5.6), which provided a 

signal for the electrodynamic shaker. In this research, the excitation signal was a voltage signal 

given by the Data Physics MOBILYZER SignalCalc430 (Data Physics 1998) from a 16-bit output 

channel. 

The excitation signal was passed to the shaker amplifier and then to the shaker (2 and 3 in Figure 

5.6) that excited the structure. The shaker amplifier (model APS 114 EP) was operated in current 

mode to minimise internal damping of the shaker (APS Dynamics 1996a, p. 7). 

Vibration responses of the structure were measured simultaneously by nine accelerometers (4 in 

Figure 5.6) with nominal sensitivities of 1 V/g (Figure 5.3). The accelerometers were connected to a 

signal conditioner (5 in Figure 5.6) that amplified the measured signals. The signal conditioner 

employed was a 16-channel ISOTRON Signal Conditioner Model 2793 manufactured by Endevco 

(Endevco 1996). 
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Figure 5.6: Flow chart of instrumentation. 

All acceleration response signals and the excitation signal (outputs of 5 and 2 in Figure 5.6) were 

stored on magnetic tape (6 in Figure 5.6). The storing of analogue data on a tape recorder, a 

RACAL Storeplus VL 16-Channel analogue tape recorder, served as backup. It also enabled 

application of different digital data processing (sampling and windowing) to the same experimental 

data. However, processing of data by replaying a tape introduces additional noise (Morehead 1991) 

and immediate data processing is always preferable to monitor the quality of data during testing. 

Therefore, all experimental data were recorded on tape and most of them were also processed 
directly during testing. 

Processing involved digitising and analysing the analogue data using a spectrum analyser and a 

notebook PC (7 and 8 in Figure 5.6). The spectrum analyser was a 18-bit Data Physics MOBILYZER 
SignalcCalc430 (Data Physics 1998). This system could process only seven channels at a time. 
Therefore, the excitation and responses at TPs 1,3,5,7, and 9 only (Figure 5.4) were processed 
directly. Data corresponding to the remaining TPs 2,4,6, and 8 were obtained by replaying 

analogue data from magnetic tape. 
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Following the outlined procedure of data acquisition (Figure 5.6), the spectrum analyser provided 
time histories, spectra, spectral densities, FRFs, and coherence functions (see section 3.2.3). These 

data were exported in different file formats such as ASCII (file extension TXT), Universal File Format 

(file extension UFF), and MATLAB (file extension MAT) for further processing. 

To enable easy identification and convenient handling, exported files were renamed according to the 
file naming convention of the modal analysis software ICATS (ICATS 2000a and b). This convention 

was employed throughout this research to describe the experimental data. 

The ICATS naming convention is similar to the Universal File Format convention generally used in 

the modal testing community. It also employs eight digits to identify a file by a letter (or a numeral) 
and to indicate the excitation and response points and directions. For example, the ICATS file 
descriptor A_305107 defines data corresponding to an experiment A that employed a translatory 

excitation in z-direction (3) at TP 5 (05) and a translatory response in x-direction (1) at TP 7 (07). 

Significantly more important than the renaming of files is the scaling and converting of data from 

voltages into physical units. Although this transformation can be done by specifying scaling factors 
in the spectrum analyser, it was performed during the post-processing stage at the same time as the 

renaming of files. 
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5.2 CONSIDERATIONS ON THE PERFORMANCE OF EXPERIMENTS 

The main aim of the experimental part of this research was to gather high quality FRFs that quantify 
the influence of human occupants on a slender test structure. The analysis of such experimental 
data was based on the theory of linear modal analysis presented in chapter 3. Applying this theory 

requires the system under investigation to (1) be linear, (2) satisfy reciprocity, and (3) be time 

invariant (Maia et al. 1997, p. 2). 

However, slight non-linearities can be accepted (Ewins 2000, p. 270f) and are to be expected in the 

case of human occupation (Griffin 1990). To reduce the effect of such non-linearities, random 

excitation was used (Ewins 2000, p. 266). Nevertheless, reciprocity, homogeneity, and repeatability 

checks of the empty and the human-occupied structure were performed and will be presented. 

Reciprocity was investigated by exciting the test structure at TP 5 and measuring the response at 
TP 7 (Figure 5.4) and vice versa. Homogeneity was analysed by applying three different levels of 
excitation to the structure. To determine repeatability, each experiment (except the reciprocity 

checks) was repeated five times under nominally identical test conditions. 

Considering the novelty of the experimental investigations, modal properties of experimental data 

were estimated during the progress of modal testing. This approach was adopted to improve the test 

schedule if possible and to use limited testing resources such as time and personnel efficiently. It led 

to refinements of the test plan. The groups of tests finally performed are summarised in Figure 5.7. 
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Figure 5.7: Overview of the experimental test schedule. 

Modal tests of the empty test structure were performed (Test A in Figure 5.7). Also, modal tests of 

the structure occupied by stationary or moving occupants took place (Tests P, R, C, B, D, E, and F 

in Figure 5.7). Additionally, the influence of a static load with a mass equivalent to the mass of 
human occupants was investigated (Test G). 

The data acquisition parameters listed in Table 5.1 characterise all data gathered in these 

experiments (A to G, P and R). 

Table 5.1: Parameters of data acquisition (Data Physics 1998). 
Parameter Item Setting 

Data acquisition time T 25.2 s 
Sampling parameters Time step At 

Sampling frequency feAmP 

Number of samples L 
Frequency domain Frequency range 

3.072 ms 

325 Hz 

8192 

0.0 Hz to 78.125 Hz 

Frequency resolution Mf 0.0397 Hz 

TertR 
Repeatability 

ý' 4 
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Furthermore, all modal tests (except those of Test D) used 

(1) a burst random excitation for 20% of the data acquisition time T leading to an excitation 
lasting about 5 seconds, 

(2) an exponential window specified by -In(P)''= 0.25, which means a time constant RC of 

6.3 s and a reduction to P =1.83% (Step 1 in section 3.2.3), and 

(3) ten data blocks to average out noise and obtain stable FRF estimates (Step 3 in section 

3.2.3). 

Test D analysed the influence of a walking occupant. In this case, the set-up of excitation and data 

processing was somewhat different because a walking occupant continuously induces forces and, 

therefore, provides a significant contribution to the excitation of the structure. Having this feature in 

mind, random shaker excitation was applied continuously for 20 minutes and a Hanning window was 

employed. Additionally, many more averages were used in an attempt to remove the effects of the 

extraneous excitation caused by the walker. 

Details on the configuration of all individual experiments can be found in Appendix D. Additional and 

more general information is provided in the next section. 
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5.3 EXECUTION OF MODAL TESTS 

All experiments were performed within a 30 day period (Table D. 1 in Appendix D). This was possible 

even though work in a neighbouring laboratory imposed time restrictions because it generated 

vibration and noise levels that prevented successful vibration measurements. 

5.3.1 TESTA: EMPTY TEST STRUCTURE 

The first modal tests analysed the homogeneity of the empty test structure and served for testing the 

new equipment acquired in course of this particular research. In these tests, the structure was 
excited at TP 5 (Figure 5.4) by the shaker in a pit below the structure (AO1- A05, A06 - A09, Al 1, 

and A12 - A16 in Table D. 2 in Appendix D). 

Next, the shaker was relocated from the pit below TP 5 to a pit below TP 7 (Figure 5.1) to 
investigate the reciprocity linearity condition (A17 - A21). Exciting the structure at TP 7 enabled, in 

contrast to excitation at TP 5, the excitation of the second mode of the structure because TP 5 but 

not TP 7 is a nodal point of the second mode (Figure 5.34b in section 5.5). Including the second 

mode into investigations, an excitation at TP 7 was therefore used in all further experiments with the 

exception of the reciprocity checks B26 and C26 of the human-occupied structure (Appendix D). 

Modal tests of the empty test structure with shaker excitation at TP 7 (A17 - A21) were repeated at a 
later date (A22 - A26) to investigate long-term repeatability (Tables D. 1 and D. 2). These 

measurements indicated slight changes in the modal properties of the empty test structure over 
time. Therefore, similar experiments of the empty structure (P05, P10, P15, P20, and P25) were 
performed after a further lapse of time (see section 5.3.6). 

5.3.2 TESTS B, C, AND R: ONE SITTING OR STANDING OCCUPANT 

Tests B, C, and R followed tests A17 - A21 (Appendix D). They investigated the influence of a single 
occupant sitting or standing (Figures 5.8a and 5.8b) on the test structure. 
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Figure 5.8: An occupant a) sitting and b) standing on the test structure. 

The first of these experiments was Test B. It analysed the influence of a sitting occupant, test 

subject (TS) A in Table 5.2, on the modal properties of the test structure. Test B covered 

experiments with the same occupant at different locations on the test structure (Table D. 3 in 

Appendix D). Additionally, three different levels of vibration were employed. 

Table 5.2: Weight and height of the five males employed as TSs. 
Test subject ABCDE 

Weight 59 kg 93 kg 75 kg 85 kg 90 kg 

Height 1.68 m 1.72 m 1.82 m 1.80 m 1.74 m 

Test B was planned to serve for comparison with similar experiments involving the same occupant 

standing (Test C), walking (Test D), or other individuals sitting on the test structure (Test E) as 

shown in Figure 5.7. 

Test B was followed by Test C (Table D. 4). The analysis of both tests indicated that the properties of 
the empty test structure changed slightly (see section 5.6.1). Therefore, additional modal tests of the 

empty test structure were performed (section 5.3.1). Tests B and C also revealed that damping 

ratios of the structure occupied by the same TS varied strongly for nominally identical and 
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consecutive modal tests (see section 5.6.2.2). Therefore, Test R (Table D. 8) was added to the initial 

test schedule to investigate the long-term repeatability of tests with a single TS sitting on the 

structure. 

5.3.3 TEST D: SINGLE WALKING OCCUPANT 

Following Tests B, C, and R, the influence of a walking occupant on the modal properties of the test 

structure was investigated in Test D (Figure 5.7). Test D contained only three experiments: one 

modal test of the empty test structure and two experiments with TS A walking on the test structure 
(Table D. 9 in Appendix D). 

The walking pace of the TS was controlled by a metronome beeping at a frequency of 1.5 or 1.8 Hz. 

The frequency of 1.5 Hz is at the lower end of possible walking frequencies. The second walking 
frequency of 1.8 Hz was employed because the TS preferred it to a frequency of 2.0 Hz usually 

quoted in the literature as normal walking frequency. 

While acquiring the data, it became obvious that FRFs did not stabilise after 50 averages if a person 

was walking on the test structure. This was clearly due to the high extraneous excitation induced by 

the walker. Additionally, it was noted that the spectrum analyser did not perform the requested 

overlap analysis. Only two months later, this unexpected software problem was fixed by the 

spectrum analyser manufacturer. 

However, processing the data with more than 50 averages (by replaying analogue data from tape 

and increasing the overlap of data blocks) did not lead to stable estimates (see FRFs and 

coherences in section 5.4.2.3). Therefore, further experiments involving walking at other frequencies 

were abandoned. Nevertheless, similar modal testing might be successful if the occupant is walking 

naturally (without the prompt of a metronome) and higher magnitude shaker excitation is employed. 

5.3.4 TESTS E AND F: DIFFERENT INDIVIDUALS AND GROUPS OF SITTING OCCUPANTS 

Tests E investigated the structure occupied by different individuals and Test F examined crowds of 
two to five people sitting on the test structure (Tables D. 5 and D. 6 in Appendix D). Both tests were 

performed within two consecutive days and accompanied by a retest of the empty test structure 
(A22 - A26 in Table D. 2). 
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In Test E, one of the five TSs (A, B, C, D, and E in Table 5.2) sat at TP 5 (Figure 5.4), whereas only 
TS A was used in the previous Tests B, C, R, and D. In Test F, two to five TSs were arranged on the 

structure. The occupants were close to TP 5 in experiments F01 to F20 and close to TPs 3 and 7 in 

experiments F21 - F25 (Figure 5.9). 
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Figure 5.9: Distribution of sitting human occupants A, B, C, D, and E in Test F. 

5.3.5 TEST G: EQUIVALENT MASS 

Test G (Figure 5.7) investigated the influence of a static load on the test structure (Table D. 7 in 

Appendix D). This load was applied using a stack of false floor panels (Figure 5.10). It had a mass 
equivalent to the overall mass of about 400 kg of the five TSs A, B, C, D, and E. Similarly to the 
distribution of human occupants in these tests (F16 - F20 and F21 - F25 in Figure 5.9), the 

equivalent mass was applied at TP 5 or distributed to TPs 3 and 7 (Table D. 7). 
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5.3.6 TEST P: DIFFERENT POSTURES OF A SINGLE OCCUPANT 

After a detailed analysis of all previous experiments, it was decided to perform additional tests 

investigating the influence of the posture of a human occupant. These experiments (Test P) included 

a retest of the empty test structure (Table D. 10 in Appendix D) to enable an analysis independent of 

possible changes of the empty test structure. 

In Test P, TS A was standing with bent knees, standing normally, sitting, and standing with locked 

knees at TP 5 on the test structure. For convenience of the TS, the different postures were 

requested in turn and a break was given to the TS while retests of the empty structure were 

performed (Table D. 10). 

However, while acquiring modal test data with TS A standing on the structure with bent knees, it 

soon became clear that the occupant was not able to maintain a stable posture for the data 

acquisition time of 25 seconds. Instead, he was bouncing slightly and thus inducing forces. This 

additional excitation was (similarly to the walking excitation) not averaged out and led to unreliable 
damping estimates. Therefore, the analysis of these tests was abandoned and no further data on 

this particular test will be presented. 
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5.4 ANALYSIS OF EXPERIMENTAL DATA 

This research concentrated on the influence of occupants on the modal properties of the structure. 
Nevertheless, time domain data and corresponding spectra are provided as background information. 

5.4.1 EXCITATION AND RESPONSE IN THE TIME AND FREQUENCY DOMAIN 

Burst random and continuous random shaker excitation were applied in different modal tests. Time 

histories and auto-spectral densities to these two types of testing are presented. Additionally, the 
low levels of vibration employed in this experimental research are quantified to account for the 

potentially non-linear properties of human occupants. 

5.4.1.1 MODAL TESTS WITH BURST RANDOM SHAKER EXCITATION 

Three different levels of burst random excitation were employed in this research (Figures 5.11 and 
5.12). The lowest and highest excitation levels (1 and 3) were only used in homogeneity checks 
(Tables D. 2 to D. 4 in Appendix D). Usually, excitation at level 2 was employed. Sample responses to 

such a burst random excitation are presented in Figure 5.13. 
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excitation for the excitation levels 1,2, and 3 (A12, A06, and A01). 

a) 8o 

ýo 

E 

60 

05 10 15 20 Time [5] 25 
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-50 
05 10 15 20 Time [e] 25 

Figure 5.13: Response of the empty test structure a) at TP 5 and b) at TP 7 to burst random 
excitation at TP 7 (A17). 
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Figure 5.14 presents spectral densities of responses of the empty and the occupied structure at TP 

7 to a burst random excitation at the same point. It indicates three potential modes of vibration at 
frequencies of about 4.5 Hz (f, ), 17 Hz (f2 ), and 38 Hz (f3) in the frequency range from 0 to 80 Hz. 

Furthermore, zooming into the frequency range from 0 up to 20 Hz (Figure 5.15) shows that human 

occupation led to a shift and a decrease of the first peak of the auto-spectral densities G;, (f) . 
This 

may indicate a reduction of the natural frequency and an increase in modal damping of the first 

mode of vibration. 
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Figure 5.15: Response spectra G;, (f) to burst random excitation (f < 20 Hz). 

5.4.1.2 MODAL TESTS WITH CONTINUOUS RANDOM SHAKER EXCITATION 

A continuous random excitation of about 20 minutes duration was employed instead of a burst 

random excitation in Test D, which investigated the influence of a walking occupant (section 5.3.3). 

Such a continuous random excitation led to peak acceleration responses (Figure 5.16a) similar to 

that of burst random excitation (Figure 5.13b). However, responses of the structure to shaker 

excitation only were lower than in tests involving walking occupants (Figure 5.16). For instance, 

walking at 1.5 Hz led to responses about twice as high as the response to the shaker excitation 

alone (Figures 5.16a and 5.16b). 

Page 164 



Chapter 5 Experimental Work 

200 

r-, 
0 

-200 
05 10 15 20 Time [5] 25 

200 

O 

F_ -200 
05 10 15 20 Time [5] 25 

200 
N 

0 

F 
-200- 

05 10 15 20 Time [5] 25 

Figure 5.16: Responses at TP 7 to a) continuous random excitation at TP 7 (D03) and additional 
excitation by an occupant walking at b) 1.5 Hz (D01) or c) 1.8 Hz (D02). 

The contribution of a walking person to the overall response of the structure is evident in the 

response spectra presented in Figure 5.17. Zooming into the frequency range from 0 to 20 Hz, 

Figure 5.18 reveals significant responses to walking at harmonics and sub-harmonics of the walking 
frequencies. In fact, force components up to the eighth harmonic at 12 Hz are apparent for walking 

at 1.5 Hz (blue line in Figure 5.18). Similarly, controlled walking at 1.8 Hz resulted in strong 

responses of the structure up to the sixth harmonic at 11 Hz and also at sub-harmonics such as at 
2.7 Hz, 4.5 Hz, and 6.3 Hz (red line in Figure 5.18). 

Page 165 



Chapter 5 Experimental Work 

N 1. E+00 

in (Ic9io) .-0.120 
(m/5` )/Hz. 

ý I+ 1. E-02 x. 013 (m/5` )/I li. 

Iv 

Hý 0.001 (m/52)/Hz 

1. E-04 

1. E-06 

1. E-08 
walker at 1.5 Hz (001) 

walker at 1.8 Hz (002) 
empty structure (P03) 

1 E-10 . 
0 5 10 15 Frequency [Hz] 20 

Figure 5.18: Response spectra G;, (f) in Test D (f S 20 Hz). 
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5.4.1.3 LEVELS OF VIBRATION 

For the evaluation of the serviceability of building vibrations, BS 6472: 1992 (BSI 1992) and 
ISO 10137 (ISO 1992) recommend frequency weighted root-mean-square accelerations ar. m,, and 

vibration dose values VDV. Here, both characteristics were calculated from typical response time 
histories to enable a comparison with other experimental research. 

For this purpose, experimental acceleration time histories were first frequency weighted using the 

weighting curve Wb of BS 6841: 1987 (BSI 1987) implemented in the signal processing software 
DAIS for Windows (Prosig 1998). Then, the vibration response levels ar, �,,. and VDV were 

computed from these frequency weighted accelerations X., (t) . This was done using equations 
(5.1) and (5.2) with T= 25.2 s that were implemented in a MATLAB (1999) routine. 

ýR2w\t'Idt 
(5.1) 

to 

T 

VDV = 4\/W(t)it (5.2) 
ti. 0 

This procedure led to the typical response levels arm,,,. and VDV provided in Tables 5.3 for modal 
tests analysing the influence of a walking occupant (Test D). Common response levels in 

experiments involving stationary human occupant(s) are listed in Table 5.4, whereby response levels 

were similar for one or several occupants. 

Table 5.3: Response levels at TP 7 to continuous random excitation at TP 7 (Table D. 9). 
[mm/s21 VDV [mm/sl. 75] 

One person walking at 1.5 Hz (D01) 80 200 
One person walking at 1.8 Hz (D02) 30 90 

Empty test structure (D03) 20 60 
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Table 5.4: Response levels at TP 5 to burst random excitation at TP 7. 
[mm/s2] VPV [mm/si"75] 

Stationary occupant at TP 5 (excitation level 1) 3 10 

Stationary occupant(s) at TP 5 (excitation level 2) 4 15 

Stationary occupant at TP 5 (excitation level 3) 6 21 

Empty test structure (excitation level 2) 5 16 

5.4.2 QUALITY OF FRF ESTIMATES 

High quality FRF estimates were required for a reliable quantification of the influence of human 

occupants on modal properties. To demonstrate the quality of the modal tests performed, some 

representative FRFs and coherences are presented. 

5.4.2.1 EMPTY TEST STRUCTURE 

Figure 5.19 demonstrates that ten averages led to stable FRFs of the empty structure. The 

coherences y2 (f) of such FRFs were satisfactory because they were close to unity at resonances 

of the structure (f,, f2 , and f3) and low only at anti-resonances (Figure 5.20). This was not only the 

case for directly acquired data but also if signals were replayed from magnetic tape (Figure 5.20). 
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Figure 5.20: Coherences yz (f) of the FRF A� (f) for the empty test structure (R_307307). 
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5.4.2.2 STATIONARY HUMAN OCCUPANT(S) ON THE TEST STRUCTURE 

Overall, human occupants reduced the quality of estimated FRFs. In fact, FRFs settled slower if the 

structure was occupied (Figure 5.21) than if it was empty (Figure 5.19). Nevertheless, ten averages 

were sufficient to obtain stable FRF estimates. However, FRFs and coherences of the human- 

occupied structure (Figures 5.21 and 5.22) were noisier and lower respectively than those of the 

empty structure, especially at frequencies below 10 Hz. 
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Figure 5.21: Improvement of A .7 (f) of the human-occupied test structure by averaging (F21). 
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Figure 5.22: Coherences y2 (f) of A5, (f) and A� (f) of the human-occupied test structure. 

5.4.2.3 WALKING HUMAN OCCUPANT ON THE TEST STRUCTURE 

In contrast to FRFs estimated for the test structure occupied by stationary (standing or sitting) 

occupants, FRFs resulting from modal tests of the structure excited continuously by a shaker and 

additionally by a walking occupant were of very poor quality. Increasing the number of averages to 

as much as 200 did not resolve the problem (Figure 5.23). 

This instability was based on the strong influence of the high extraneous walking excitation (Figure 

5.18) as confirmed by the coherences 72 (f) presented in Figure 5.24. In fact, coherences were poor 

if a walking occupant was on the structure (DO1 and D02) but high for modal tests of the empty 

structure (D03). As consequence of this finding, further investigations of Test D were abandoned 

and the influence of a walking occupant on the modal properties of the test structure was not 

analysed. 
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Figure 5.24: Coherences y2 (f) of FRFs A� (f) of the empty test structure and the test structure 
occupied by a walker. 
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5.4.3 LINEARITY CHECKS 

Homogeneity, reciprocity, and repeatability linearity checks of the empty and the human-occupied 

structure were performed (Tables D. 2, D. 3, and D. 4 in Appendix D). 

5.4.3.1 HOMOGENEITY AND RECIPROCITY CHECKS OF THE EMPTY TEST STRUCTURE 

Homogeneity and reciprocity checks of the empty structure are presented in Figures 5.25 and 5.26 

respectively. They show that the checks were satisfactory. Nevertheless, it is obvious that FRFs of 

tests A01 and A06 are noisier than FRFs of test A12 and A17. This phenomenon was most likely 

caused by new but faulty micro-coaxial cables connecting accelerometers and the signal conditioner 
(4 and 5 in Figure 5.6). In fact, the spectrum analyser repeatedly indicated clipping (overranging) in 

experiments A01 - A16. This error message could not be avoided by increasing the dynamic range 

within reasonable limits. An examination then identified several coaxial cables as faulty, which were 

replaced before resuming experiments. 
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f-figure 5.25: Homogeneity check of the empty test structure. 

Page 173 



Chapter 5 Experimental Work 

z 1. E-02 

(login) A06 (F305307) 

A17 (R 307305) 
1. E-03 

° 
12 1. E-04 1 

1. E-05 

1. E-06 

180° 

0° 
lL 

-160° 
0 20 40 60 Frequency [Hz]60 

Figure 5.26: Reciprocity check of the empty test structure. 

5.4.3.2 HOMOGENEITY AND RECIPROCITY CHECKS OF THE OCCUPIED TEST STRUCTURE 

Homogeneity checks (Figures 5.27 and 5.28) of the structure occupied by a single sitting or standing 

occupant do not indicate obvious non-linearities. Similarly, reciprocity checks of the transfer 

accelerances A5., (f) and A75(f) are satisfactory (Figures 5.29 and 5.30). Nevertheless, the 

coincidence of FRFs decreases above 50 Hz, which was also the case for the test empty structure 
(Figure 5.26). 
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Figure 5.27: Homogeneity check of the test structure occupied by one TS sitting at TP 5. 
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Figure 5.28: Homogeneity check of the test structure occupied by one TS standing at TP 5. 
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Figure 5.29: Reciprocity check of the test structure occupied by one TS sitting at TP 5. 
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Figure 5.30: Reciprocity check of the test structure occupied by one TS standing at TP b. 
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5.4.3.3 REPEATABILITY CHECKS 

Immediate and long-term repeatability of the empty test structure (Figures 5.31 and 5.32) were also 

satisfactory. However, the FRFs A, 7(f) changed within the weeks elapsed between tests 

particularly at frequencies between about 25 Hz and 35 Hz (Figure 5.32). This feature is probably 

based on the influence of two torsional modes (of which one is non-linear) within this frequency 

range (Reynolds 2000, p. 147). It is acknowledged in the analysis of the influence of human 

occupants on the properties of the empty structure presented in section 5.6. 
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Figure 5.31: Immediate repeatability check of the empty test structure. 
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Figure 5.32: Long-term repeatability check of the empty test structure. 

FRFs showing immediate or long-term repeatability of modal tests of the human-occupied structure 

are not shown here. The repeatability of such experiments is discussed in section 5.6 in terms of 

modal properties. However, the interested reader can find FRFs of the human-occupied structure, 

which were acquired immediately after each other, in section 6.1.4. 

5.4.4 DETERMINATION OF MODAL PROPERTIES 

It was mentioned before that the acquisition of reliable FRFs was not successful if the structure was 

occupied by a walking person (Test D) or by an occupant standing with bent knees (PO1, P06, P11, 

P16, P21, and P26). Therefore, a modal analysis of these tests was not performed. However, modal 

properties of all other experiments were estimated by curve-fitting of FRFs using the modal analysis 

software ICATS (section 3.2.4). Indicating the high quality of estimated modal properties, Figure 

5.33 presents two experimental FRFs and their regenerated counterparts exemplarily. 
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Figure 5.33: Nyquist plot of experimental and regenerated point-accelerances [(mis2)/N] of a) the 
empty (A23) and b) the occupied (F25) test structure. 

Three modes of vibration at frequencies of about 4.5,17, and 38 Hz were identified within the 

frequency range from 0 to 80 Hz for the empty and the human-occupied structure. Their mode 

shapes are discussed briefly in the next section. Estimated natural frequencies (f, 
, f2, and f3 ), 

damping ratios (i;, , 
ý2 

, and and modal masses (m, 
, m2 , and m3) are summarised in 

Appendix E. Additionally, they are discussed in sections 5.6 and 5.7. 
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5.5 MODE SHAPES 

The mode shapes of the empty test structure are presented in Figure 5.34. All three have only small 

imaginary components (Figure 5.34) and are, therefore, only slightly complex. 

a) 

123456789 

b) 

12345 \ý 7 ý/ 9 

i c) 

Mode shape components: -0 real -0- imaginary 

Figure 5.34: Amplitude normalised mode shapes of the a) first, b) second, and c) third mode of th 
empty test structure (A17). 

Under different types of human occupation or mass loading, the mode shapes remained basically 

unchanged. To support this observation, Figure 5.35 presents mode shapes of the test structure 

occupied by five TS. 
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Figure 5.35: Amplitude normalised mode shapes of the a) first, b) second, and c) third mode of t 
test structure occupied by five TSs sitting at TPs 3 and 7 (F21). 
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5.6 NATURAL FREQUENCIES AND DAMPING RATIOS 

Next, natural frequencies and damping ratios of: 

(1) the empty test structure, 

(2) the structure occupied by a single TS, 

(3) the structure occupied by several occupants, and 

(4) the structure occupied by an equivalent mass 

are presented and discussed. 

5.6.1 EMPTY TEST STRUCTURE 

Natural frequencies of the three modes of the empty test structure were identified as approximately 
4.5 Hz, 16.9 Hz and 37.7 Hz (Table E. 1 in Appendix E). They corresponded to damping ratios of 
0.3% to 0.4% for the first and second mode and about I% for the third mode of vibration (Table E. 2). 

Homogeneity of the first and the third modes of vibration of the empty structure was checked using 
A01- A05, A06 - A09, Al 1, and Al2 - Alb (section 5.3.1). As already indicated by Figure 5.25, the 

natural frequencies and damping ratios of these two modes of the empty test structure satisfied the 

homogeneity linearity condition for the three excitation levels employed here (Tables E. 1 and E. 2). 
Similarly, the estimated modal properties were consistent for tests performed immediately after each 
other, as already indicated by Figure 5.31. 

However, Figure 5.32 showed a lack of long-term repeatability. This was confirmed by a slight 
change of natural frequencies and damping ratios of the empty structure within the 30 days of 
testing (Tables E. 1, E. 2 and D. 1). Most significantly, the fundamental frequency f, decreased from 

4.54 Hz to 4.50 Hz (Table E. 1). This phenomenon posed a potential problem for the analysis of the 
influence of human occupants (or a static load) on the test structure. In fact, it denied the 

comparison of some modal tests as shown later. 
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5.6.2 TEST STRUCTURE OCCUPIED BY A SINGLE STATIONARY HUMAN OCCUPANT 

Several scenarios of single human occupants on the test structure were investigated in Tests B, C, 

E, R, and P (Tables D. 3, D. 4, D. 5, D. 8 and NO in Appendix D). The natural frequencies and 
damping ratios determined from these modal tests (see Appendix E) enabled discussing the 
influence of: 

(1) various human occupants, 

(2) the long-term repeatability of tests employing the same TS, 

(3) different postures of the same occupant, 

(4) three different levels of vibration, and 

(5) various locations of a TS on the test structure. 

5.6.2.1 DIFFERENT SITTING OCCUPANTS 

In Test E, several TSs (one at a time) were sitting at TP 5 (Tables D. 5). The influence of each TS on 
the natural frequency and damping ratio of the first, second, and third mode of the test structure was 
analysed. The findings are now presented. 

Figure 5.36 shows natural frequencies f, and damping ratios ý, of the empty test structure and the 

structure occupied by a single IS. In this figure, black lines indicate the mean natural frequency f, 

and the mean damping ratio i;, of (five) nominally identical tests of the empty test structure (A22 - 
A26 in Tables E. 1 and E. 2). Dots, each labelled with its test identificators (ID), indicate the 

properties determined from individual modal tests of the occupied structure. Finally, red and blue 

lines (Figures 5.36a and 5.36b) represent mean natural frequencies f, and damping ratios 1;,, each 

corresponding to a group of five nominally identical tests of the structure occupied by the same TS 

(Tables E. 10 and E. 1 1). This layout was principally adopted throughout the remaining part of 

chapter 5. 
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Figure 5.36: The influence of five different TSs sitting at TP 5 on a) natural frequencies and 
b) damping ratios of the fundamental mode of the test structure. 

Figure 5.36a demonstrates that each of the five occupants reduced the fundamental natural 

frequency f, = 4.51 Hz of the test structure slightly. The strength of this reduction was consistent 

but different for each individual. In fact, f, was reduced by 0.03 Hz by TS A and as much as 0.05 Hz 

by TS E (E01 - E05 and E21 - E25 in Table E. 10). Thereby, the standard deviations of frequencies 

f, of nominally identical tests (employing the same occupant) reached only 0.01 Hz (Table E. 10). 

The influence of sitting TSs on the damping ratio ý, of the empty test structure was significantly 

more pronounced than their influence on the natural frequency fl. In fact, TS A even doubled the 

damping ratio ý, of the empty structure from 0.32% (A22 - A26 in Table E. 1) to 0.64% (E01 - E05 in 

Table E. 10). 

Remarkably, damping values ý, estimated from nominally identical tests varied significantly (Figure 

5.36b). For example, they reached the extreme values of 0.40% (E04) to 0.80% (E01) if TS A sat on 

the structure. In this case, the standard deviation of ý, reached 0.16% (E01 - E05 in Table E. 11), 

the maximum in Test E. 
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Interestingly, mean damping ratios i, differed by a maximum of 0.10% between modal tests 

involving different TSs (E01 - E05 and E16 - E20 in Table E. 11). Thus, although the scatter of 

estimates was significant between different measurements, the different individuals influenced of 

the empty structure only slightly differently. 

In contrast to the first mode, the natural frequency f2 and the damping ratio ý2 were practically 

identical if the structure was empty or a single TS was sitting at TP 5. In fact, the frequency f2 of the 

empty test structure (16.95 Hz) changed by a maximum of 0.01 Hz and the damping ratio ý2 (of 

0.35%) by a maximum of 0.01 % (A22 - A26 in Tables E. 1 and E. 2 compared to Tables E. 10 and 

E. 11). This negligible influence was different to the noticeable frequency increase and the significant 
damping increase observed by Ji (1995) for a mode with a similar natural frequency of 18.68 Hz 

(section 2.4.1). However, in Test E discussed here, the TS was at a nodal point of the second mode 

(TP 5 in Figures 5.34b and 5.35b) and had, therefore, little effect. The influence of TSs at other TPs 

than a node of the second mode is outlined in sections 5.6.2.5 and 5.6.3. 

TP 5 was an antinode of the third mode of vibration of the empty test structure (Figure 5.34). 

Nevertheless, a single TS sitting at this point did not affect the natural frequency f3 or the damping 

ratio c3 significantly (A22 - A26 in Tables E. 1 and E. 2, Test E in Tables E. 10 ad E. 11). In fact, an 

occupant increased (in opposite to a decrease of f, ) the natural frequency f3 (37.73 Hz) by a 

maximum of 0.05 Hz and the damping ratio ý3 (0.94%) by less than 0.10%. 

In conclusion, an analysis of the influence of five different individuals on natural frequencies and 
damping ratios of the test structure revealed that: 

(1) The fundamental frequency f, of the empty test structure (4.51 Hz) was reduced by a 

single human occupant sitting at the antinode of this mode by values ranging from 0.03 Hz 

to 0.05 Hz. 

(2) A single TS sitting at TP 5 approximately doubled the damping ratio ý, of the empty test 

structure from about 0.3% to about 0.6%. Remarkably, the standard deviation of damping 

ratios ý, reached up to 0.16% for five individual values i;, estimated in nominally identical 

tests involving the same occupant. 

Pege 185 



Chapter 5 Experimental Work 

(3) The natural frequency f2 and the damping ratio ý2 of the empty test structure (about 

17 Hz and 0.35%) were not influenced by a single human occupant at TP 5, a node of the 

second mode. 

(4) A single occupant practically did not alter the natural frequency f3 of the empty test 

structure (about 38 Hz) if he sat at the antinode of the third mode (TP 5). However, he 

increased the damping ratio ý3 of the empty structure. 

5.6.2.2 LONG-TERM REPEATABILITY 

The data presented in Figure 5.36 showed a relatively high scatter between estimates of individual 

and nominally identical modal tests involving the same TS. This was the case, even though modal 

tests were generally performed during the same day (Test E in Appendix D). Therefore, the long- 

term repeatability of such nominally identical tests was investigated. For this purpose, experiments 

of Tests B, R, E, and P were employed. All these tests involved the same TS sitting at TP 5. They 

were performed with time gaps of 18,5, and 9 days between them (Appendix D). 

Figure 5.37 illustrates the natural frequencies f, and damping ratios ý, estimated from these modal 

tests of the occupied structure. As already mentioned, the properties of the empty test structure 

changed with time (section 5.6.1). Therefore, Figures 5.37 includes different mean natural 
frequencies f, and damping ratios ý, of the empty test structure (Tables E. 1 and E. 2) that were 

employed in the discussion. Actually, only experiments A17 - A21 and Test P took place at the same 
day as modal tests of the occupied structure. Experiments A22 - A26 were performed seven days 

and one day before R01 - R06 and E01 - E05 respectively (Appendix D). 
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Figure 5.37: Long-term repeatability of a) natural frequencies f, and b) damping ratios ý, of the 
test structure occupied by TS A sitting at TP 5. 

Figure 5.37a demonstrates that TS A consistently reduced the natural frequency f, of the empty 

test structure (about 4.5 Hz) by values ranging from 0.02 Hz to 0.03 Hz. Hence, the influence of TS 

A on the fundamental frequency of the empty test structure remained constant during the whole 

period of testing. It was independent of the slight changes of the fundamental frequency of the 

empty test structure. 

Similarly, the influence of TS A on the damping ratio ý, of the empty test structure did not change 

with time (Figure 5.37b). Consistently, the occupant led to widely scattering damping ratios c, that, 

overall, approximately doubled the damping ratio ý, of the empty structure (Tables E. 2, E. 5, E. 1 1, 

and E. 14). 

As noted above, TS A sitting at TP 5 influenced the natural frequencies or damping ratios of the 

second and third mode of the test structure only marginally (section 5.6.2.1). This did not change 

with time (Tables E. 1, E. 2, E. 4, E. 5, E. 10, E. 11, E. 13, and E. 14). Therefore, it is concluded that a 
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lapse of a month did not change the potential of the same human occupant to affect the test 

structure. 

5.6.2.3 INFLUENCE OF POSTURE 

In experiments by Ji (1995), Brownjohn (1999), and Littler (2000b), the posture of human occupants 

determined their influence on the analysed structures (chapter 2). Therefore, it was suspected that 

slight changes in the posture of a TS could have caused the variability (particularly of ý, ) previously 

observed between nominally identical modal tests (section 5.6.2.1). To investigate this issue, natural 

frequencies f, and damping ratios ý, were compared for three cases in which TS A assumed three 

different postures (Figure 38). 
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Figure 5.38: The influence of the posture of TS A at TP 5 on a) natural frequencies f, and 
b) damping ratios ý,. 

Figure 5.38a demonstrates that the posture of a single human occupant had no significant effect on 

the fundamental frequency f, of the test structure (Tables E. 1 and E. 13 in Appendix E). 

Nevertheless, apparently, the damping ratio i;, depended on the posture of the occupant (Figure 
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5.38b). However, in some cases, C, was very similar if the TS was sitting or standing normally (P08 

and P02), sitting or standing with locked knees (P13 and P24), and standing normally or with locked 

knees (P07 and P09). Therefore, an analysis of only a single measurement for each posture might 

have led to different conclusions than given below. 

In the experiments presented here, the mean damping ratio i;, was highest (about 0.7%) if TS A 

was standing normally on the test structure (P02, P07, P12, P17, and P22 in Table E. 14). It was 

lowest (about 0.5%) if he was standing with locked knees (P04, P09, P14, P19, and P24). A 

somehow medium damping ratio ý, of about 0.6% was caused by the TS sitting on the structure 

(P03, P08, P13, P18, and P23). 

In conclusion: 

(1) The posture of a single occupant did not influence the fundamental frequency f, 

(approximately 4.5 Hz) of the test structure significantly. 

(2) The damping ratio ý, of the test structure depended on the posture of a single TS at the 

antinode of the first mode of the test structure. In particular, i;, increased from 0.37% for 

the empty structure to about 0.5% if an occupant was standing with locked knees, to about 
0.6% if the TS was sitting, or to approximately 0.7% if he was standing normally. 

5.6.2.4 HOMOGENEITY CHECK 

Tests B and C analysed the homogeneity of the test structure if it was occupied by a single sitting or 

standing occupant at TP 5 (Tables D. 3 and D. 4 in Appendix D). Individual natural frequencies f, 

resulting from these tests are presented in Figure 5.39. Additionally, short red lines indicate the 

mean frequencies of nominally identical modal tests that are also stated in the figure (Tables E. 4 

and E. 7). These mean frequencies f, were 4.49 Hz or 4.50 Hz for all three levels of excitation and 

both postures of the TS (Figures 5.39a and 5.39b). Therefore, an analysis of these frequencies 

required particular attention to the small changes of properties of the empty structure over time (as 

noted in section 5.6.1). 

Modal tests employing the highest and the lowest level of excitation (levels 1 and 3) were performed 
immediately after each other on the 26 October (B06 - B10 and 1311 - B15) and on the 2 November 
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2000 (C16 - C20 and C21 - C25) respectively. Therefore, data resulting from tests using the extreme 

vibration levels (1 and 3) could be compared for a sitting TS or a standing TS separately. In doing 

so, it was concluded that the natural frequency f, was independent of the low levels of vibration 

employed here if it a single occupant was sitting or standing on the test structure. 
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Figure 5.39: Natural frequencies f, of the test structure occupied by TS A a) sitting or b) standing at 
TP 5 and excited in one of three excitation levels. 

Similarly to natural frequencies f, , 
damping ratios ý, of the human-occupied test structure were 

compared for the two extreme levels of excitation (levels 1 and 3). This analysis was supported by 

Figure 5.40, an analogue to Figure 5.39. 

Figure 5.40a shows that the mean damping ratio ý, was smallest (0.47%) for the lowest level of 

excitation if the TS was sitting (B11 - B15 in Figure 5.40a). Contrary, Figure 5.40b demonstrates that 

ý, was lowest (0.45%) for the highest excitation level 3 if the occupant was standing (C16 - C20). 

Furthermore, if the TS was sitting, the estimated damping ratios i;, scattered more widely for the 

higher than for lower excitation level (levels 3 and 1 in Figure 5.40a). However, if the TS was 
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1505 

standing (Figure 5.40b), damping ratios c, scattered more widely for the lowest level of excitation 

(C21 - C25). 
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Figure 5.40: Damping ratios ý, of the test structure occupied by TS A a) sitting or b) standing at TP 
5 and excited in excitation levels 1,2, or 3. 

Summarising, the excitation level affected the mean values and the scatter of damping ratios i;, 

opposite for the sitting and standing TS. This difference could be attributed to differences between 

the two postures. However, it could have simply been caused by the variability between individual 

experiments. Therefore, it was concluded that the influence of a single sitting or standing TS at TP 5 

on the natural frequency f, and the damping ratio ý, of the empty test structure was independent 

of the low levels of vibration employed here. 

5.6.2.5 LOCATION OF AN OCCUPANT 

Previously, the influence of TS A at TP 5 was analysed (sections 5.6.2.1 to 5.6.2.4). Now, this 

influence is compared with the influence of the same TS at two other locations (TPs 7 and 9) on the 
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test structure (Figure 5.4). For this purpose, natural frequencies (f, 
, f2 , and f3) and damping ratios 

(ý,, c2 , and ý3) are employed. 

First, it has to be noted that TS A apparently reduced the fundamental frequency f, of the empty 

test structure (A17 - A21 in Table E. 1) from 4.53 Hz to 4.52 Hz if he was sitting or standing at TP 9 

(B21 - B25 and C11 - C15 in Tables E. 4 and E. 7). This was surprising because TP 9 was at a 

support and nodal point of the fundamental mode of the test structure (Figures 5.4 and 5.34a) and, 

therefore, no changes were expected. 

The additional modal tests initiated by this observation (section 5.3.1) confirmed, as mentioned 
before, a slight change particularly of the fundamental frequency of the empty test structure (Table 

E. 1). Such a change, and not the human occupant, probably caused the unexpected reduction of 

the natural frequency f, . 

In this context, it has to be mentioned that the modal tests A17 - A21 of the empty structure were 

performed on the same day as B01 - B05 and B16 - B20, which investigated the influence of TS A at 
TPs 5 and 7 (Figure 5.41 a). However, six days passed between these experiments and B21 - B25 

that employed a single TS standing at TP 9 and indicated a change of the properties of the empty 

structure. A further three weeks passed before next modal test of the empty test structure (A22 - 
A26). Therefore, modal properties corresponding to B21 - B25 and Test C that followed B21 - B25 

within a week, were not compared with properties of the empty test structure (Figures 5.41 a and 

5.41b). Nevertheless, C01 - C05, C06 - C10, and C11 - C15 took place on two consecutive days 

and, therefore, were comparable. 

Considering all these aspects, the influence of TS A on the natural frequency f, (Figure 5.41) and 

the damping ratio ý, (Figure 5.42) of the first mode of the empty test structure was investigated. It 

showed that an occupant at TP 5 had a higher influence on the frequency f, and the damping ratio 
ý, than the same TS at TP 7 or TP 9 (Figures 5.41 and 5.42). In fact, f, and ý, of the empty 

structure did not only change stronger but the scatter of estimates was higher the closer the TS to 

midspan (Figure 5.8). In other words, the influence of an occupant on the first mode increased with 
the mode shape amplitude at the location of the TS (Figure 5.34). 
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Figure 5.41: Natural frequencies f, of the test structure occupied by an occupant a) sitting or 
b) standing at various locations. 
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Figure 5.42: Damping ratios ý, of the test structure occupied by an occupant a) sitting or 
b) standing at various locations. 
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In case of the second mode, the location of the TS had only a marginal influence on the natural 

frequency f2 (Figure 5.43). Nevertheless, the damping ratio ý2 depended strongly on the location 

of the TS (Figure 5.44). In fact, an occupant at TP 7, the antinode of the second mode, increased 

the damping ratio ý2 of the empty test structure (0.35%) by 0.1 % to 0.2% (Table E. 2,616 - B20 in 

Table E. 5, and C11 - C15 in Table E. 8). However, if a TS was at TP 5 or 9, the damping ratio ý2 

was practically identical to that of the empty test structure (Figure 5.44). This was expected because 

TPs 5 and 9 were nodes of the second mode of vibration (Figure 5.34). 
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Figure 5.43: Natural frequencies f2 of the test structure occupied by a person a) sitting or 
b) standing at various locations. 
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Figure 5.44: Damping ratios ý2 of the test structure occupied by a person a) sitting or b) standing at 
various locations. 

Finally, it is briefly reflected on the influence of the location of a TS on the third mode of the test 

structure. The previous analysis demonstrated that a single occupant did not affect the natural 
frequency f3 (about 38 Hz) and the damping ratio ý3 (about 1 %) significantly (section 5.6.2.1), 

even if he was at TP 5, an antinode of the third mode (Figure 5.34c). Therefore, as expected, a 

single occupant at TP 7 (B16 - B20 and C06 - C10) or TP 9 (B21 - B25 and C11 - C15) had an even 

smaller, in fact negligible, influence on f3 and ý3 (Appendix E). 

In conclusion: 

(1) The location of a human occupant affected the properties of the test structure. The 

influence of the occupant increased with the mode shape amplitude at the TS's location. 

(2) A single TS at the antinode of the second mode (TP 7) did not affect significantly the 

natural frequency f2 (approximately 17 Hz) but he did affect significantly the damping ratio 

ý2 
. In fact, a sitting or standing TS increased ý2 of the empty test structure (0.35%) by 

about 0.1 % to 0.2%. 
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5.6.3 TEST STRUCTURE OCCUPIED BY Two TO FIVE SITTING OCCUPANTS 

So far, the influence of single TSs on the empty test structure was investigated. Now, it is 

concentrated on the influence of groups of two to five occupants (Figure 5.9) on natural frequencies 

and damping ratios of the first, second, and third mode of the test structure. 

5.6.3.1 FERST MODE 

The natural frequency f, of the test structure (4.51 Hz) decreased with an increasing number of 

human occupants (Figure 5.45a and Table E. 16). The decrease was gradual and reached 0.17 Hz if 

five occupants were sitting at TP 5 (A22 - A26 in Table E. 1 and F16 - F20 in Table E. 16). 

a) 
4.52 ------------------- ------------------- ------------------ -------------------- 

A22 - A26 f, [Hz] 
F01 F04 

4.45 
"' 

03 F07 F06 
F05 "' F12 F14F15 

F02 F06 F09 4.38 F10 F18 F20 
' F13 F16 

F11 
" F17 " F19 : 4.31 ----------------"-- ---_-. -_----------- ----------_. ------ ------------------- 

Two TS5 Three TS5 Four TS5 Five TSs 

3.00% ----------------- ------------------- ------------------- ---------------- 
F20 

2.00% F14 

F12 " F18 
F07 F09 

"" F16 "' 
1.00% -FOB FO4055 - -" F-11 F13 F15 J17 -- " 

F01 F03 " F06 F08 F10 A22 - A26 
0.00% ---ýý----_--_ -- ý__ -, ___ __--- --_ - --- 

Figure 5.45: Natural trequencies f, (a) and damping ratios C, (b) of the test structure occupied by 
groups of people sitting at TP 5. 

The influence of human occupants on the damping ratio c, also increased with the number of TSs 

(Figure 5.45b). Thus, a maximum mean damping ratio ý, reached 1.69% if five TSs were on the 

structure. In this case, the damping ratio i;, was about five times that of the empty test structure 

(F16 - F20 in Table E. 17 and A22 - A26 in Table E. 2). Generally, the damping ratio ý, of the empty 

Page 196 



Chapter 5 Experimental Work 

test structure increased by about 0.3% per occupant at TP 5, the antinode of the first mode (A22 - 
A26 in Table E. 2 and F01 to F20 in Table E. 17). 

Additionally to modal tests with groups of two to five TSs sitting at TP 5, modal tests with five TSs at 

TPs 3 and 7 were performed (F21 - F25). The mode shape of the first mode of vibration has lower 

mode shape amplitudes at these TPs 3 and 7 than at TP 5 (Figure 5.34). Therefore, as expected, 

the same number of occupants at TPs 3 and 7 had a smaller effect on the natural frequency f, and 

the damping ratio i;, (F16 - 20 and F21 - F25 in Tables E. 16 and E. 17). Interestingly, five occupants 

at TPs 3 and 7 influenced the natural frequency f, as little as two people at TP 5 (FO1 - F05) and 

the damping ratio ý, similarly to four occupants at TP 5 (F11 - F15). 

Generally, the more TSs were on the test structure, the less consistent were estimates of the natural 
frequency f, and the damping ratio ý, (Figure 5.45). Hence, the higher the influence of the human 

occupants, the higher the variation of estimated modal properties (Tables E. 16 and E. 17). This was 

also noted before in an analysis of the influence of different locations of a TS (section 5.6.2.5). 

5.6.3.2 SECOND MODE 

As outlined in section 5.6.2.1, a single TS at a node of the second mode (TP 5) did not affect the 

natural frequency f2 and the damping ratio ý2. Similarly, up to five TSs at this location had 

practically no influence on the natural frequency f2 (A22 - A26 in Table E. 1 in comparison with 

Table E. 16). However, four or five TSs at TP 5 increased the damping ratio ý2 from 0.35% by 

0.03% and by 0.05% respectively (A22 - A26 in Table E. 2 in comparison with F11 - F15 and F16 - 
F20 in Table E. 17). This, initially surprising, influence on ý2 was most likely caused by the fact that 

the four or five TSs were not exactly aligned at TP 5 or the nodal line of the second mode of 
vibration (Figure 5.9). 

A single occupant sitting at TP 7 (an antinode of the second mode) practically did not alter the 

natural frequency f2 of the empty structure as demonstrated by B16 - B20 in Figure 5.43. Similarly, 

five TSs at TPs 3 and 7 changed the natural frequency f2 only marginally by increasing it from 

16.95 Hz to 16.98 Hz (A22 - A26 in Table E. 1 and F21 - F25 in Table E. 16). However, they 
increased the damping ratio ý2 significantly. In fact, they quadrupled it from 0.35% for the empty 
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structure to 1.40% (A22 - A26 in Table E. 2 and F21 - F25 in Table E. 17). Thus, ýz increased by 

approximately 0.2% per occupant at an antinode of the second mode of the test structure. Thus, 

human occupants were able to increase ý, more (by about 0.3% per TS) than the damping ratio 

c2 (by 0.2% per TS). 

5.6.3.3 THIRD MODE 

Previously analysed experiments indicated that a single human occupant changed the natural 

frequency f3 and increased the damping ratio ý3 of the empty test structure only marginally 

(section 5.6.2.1). Similarly, up to five TSs did practically not affect the natural frequency f3 (Tables 

E. 1 and E. 16) but increased the damping ratio ý3 (Tables E. 2 and E. 17). The strongest increase of 

the damping ratio ý3 occurred if five TSs were sitting at TP 5, the antinode of the third mode. In this 

case, i; 3 increased by about a third from 0.94% to 1.24% (Table E. 2 and F16 - F20 in Table E. 17). 

Hence, the occupants increased not only the damping ratios of the first and second but also that of 

the third mode of the test structure. 

Overall, the analysis showed that the influence of human occupants on f, , 
ý, 

1 
ý2 

, and ý, of the 

test structure increased with their number. 

5.6.4 TEST STRUCTURE LOADED WITH AN EQUIVALENT MASS 

Previously, it was outlined how five human occupants influenced natural frequencies and damping 

ratios of the empty test structure (section 5.6.3). These results are now compared with the effect of a 

static load (Tables E. 19 and E. 20 in Appendix E) with a mass equivalent to the overall mass of the 

five TSs. 

5.6.4.1 FERST MODE 

Data in the right and left half of Figure 5.46 demonstrate that the static load influenced the natural 
frequency f, and the damping ratio ý, of the empty structure (A22 - A26) more if it was at TP 5 

(G01 - G05) than if it was distributed to TPs 3 and 7 (G06 - G10). In both cases, the equivalent mass 
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decreased the natural frequency f, of the empty structure and did practically not modify the 

damping ratio ý, (Tests A and G in Figure 5.46). 

a) 
A C71a ------------------------------------------------ 

f, [Hz] A22 - A26 

4.46-- 

4.42-- G02 G04 
F18 F20 

4.36 
F17 . G01 G03 G05 

4.30 F16 
------ 

F19-------------------. 

b) 
TP 5 Ti'S 3 and 7 

3.00% --------------; ----------------------------------------------------...... 
F20 

2.00% F21 

" F19 F22 F23 F24 

1.00% 
F16 F17F1& """. 

A22 A26 G01 G03 G05 A22 - A26 
F25 

G06 G08 G10 

0.00% G02 G04 G07 G09 

Figure 5.46: Modal properties a) f, and b) ý, of the test structure occupied by five TSs (Test F) or 
an equivalent mass (Test G) at TP 3 or distributed to TPs 3 and 7. 

Figures 5.46a and 5.46b demonstrate that the influence of five human occupants on f, and ý, was 

higher than that of an equivalent mass. This was particularly pronounced for the damping ratio ý, 

(Figure 5.46b). However, in this context, the reduction of the fundamental frequency f, by human 

occupants is also noteworthy (Figure 5.46a). For instance, as already noted in section 5.6.3.1, five 

human occupants at TP 5 (F16 - F20) reduced the fundamental frequency f, of the test structure 
(4.51 Hz) by 0.17 Hz. In contrast, the equivalent mass reduced the natural frequency by only 
0.12 Hz (G01 - G05 in Table E. 19 in comparison with A22 - A26 in Table E. 1). 

--------------------------- A22 - A26 

G06 G06 G10 
F21 F23 F25 "".,.; 

G07 G09 
F22 F24 
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5.6.4.2 SECOND MODE 

Experimental Work 

Human occupants or an equivalent mass at a node of the second mode (TP 5) had only a marginal 

effect on the natural frequency f2 and the damping ratio ý2 (F16 - F20 and GO1 - G05 on the left 

hand side of Figures 5.47a and 5.47b). 

a) 
17.10 ------------------------------------------------- 

f2 [Hz' A22 - A26 G02 G04 F21 F23 F25 

F16 F18 F20 001 G03 G05 
F22 F24 

F17 F19 
16.70 

16.30 ------------------------------------------------------ 

b) 
1.80% 

TP 5 

G07 G09 
G06 G06 G10: 

TP53and7 

Y F21 F24 F25 
ßj2 .. 

------------------------------ 
" 

1.2O% ---- F22F23- ----- 

F16 F18 F20 G07 G09 

0.60% F17 F19 G01 G03 G05- ------ G06 G08 - -G1O -: 

A22 - A26 G02 G04 A22 - A26 
0.00% ------_----------- -------------------------------------------------- -----. 

Figure 5.47: Natural frequencies fz (a) and damping ratios ý2 (b) of the test structure occupied by 
five TSs (Test F) or an equivalent mass (Test G). 

However, if the static load was applied at the antinodes of the second mode (TPs 3 and 7), the 

natural frequency f2 decreased noticeably from 16.95 Hz to 16.34 Hz (A22 - A26 and G06 - G10 in 

Figure 5.47a). In contrast, human occupation did not lead to a frequency reduction (F21 - F25). In 

fact, it led to a slight increase of f2 . This observation is consistent with the frequency increase 

observed by Ji (1995) (section 2.4.1). It emphasises the lack of accuracy of the mass-only model of 

occupants for modes with higher natural frequencies. 

Remarkably, Figure 5.47b shows a strong difference between the damping ratio C2 of the test 

structure occupied by humans or loaded with an equivalent static mass at TPs 3 and 7. However, as 

A22 - A26 
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noted above, ý2 remained practically at the low value of the empty structure (about 0.3%) if 

occupants were at TP 5 or if an equivalent mass was at TP 5 or TPs 3 and 7. 

5.6.4.3 THIRD MODE 

Finally, it is looked at natural frequencies f3 and damping ratios ý3 as presented in Tables E. 19 

and E. 20 (Appendix E). It was previously noted that human occupation did not lead to significant 

changes in the natural frequency f3 (section 5.6.3). This was also true for the equivalent mass (A22 

- A26 in Table 5.4 and Table E. 19). However, the equivalent mass of floor panels doubled the 

damping ratio ý3 from about 0.9% for the empty structure to about 1.8% (A22 - A26 in Table E. 1 

and Table E. 20). This increase in damping is noticeably higher than the slight increase to about 
1.2% observed for human occupation (F16 - F20 in Table E. 17). However, this difference was 

probably based on additional damping between the floor panels used as equivalent mass (Figure 

5.10) and not on a change of the structure by the load. 

Summarising, modal tests confirmed that the influence of an equivalent mass on the modal 

properties of a test structure was different to that of human occupants. Most importantly, human 

occupants changed the fundamental frequency f, and the damping ratios t, and ýZ of the empty 

test structure more than an equivalent mass. 

Page 201 



Chapter 5 Experimental Work 

5.7 MODAL MASSES 

Modal masses m, , m2 , and m3 of the empty, human-occupied, and mass loaded test structure 

were calculated (see section 3.3.2) and summarised in Appendix E. Now, these data are discussed 

briefly. 

The modal mass m, of the first mode of vibration of the 15,000 kg structure (mode shapes in Figure 

5.34) was about 7,000 kg (Table E. 3 in Appendix E). The modal masses m2 of the second and m3 

of the third mode were slightly higher at 7,400 and 7,800 kg (Table E. 3). The estimated values were 

consistent for all modal tests of the empty structure. In fact, standard deviations of m,, m2, and m3 

were less than 5% (up to 350 kg) of the mean values determined from groups of five tests (Table 

E. 3). 

The modal masses m,, m2, and m3 of the human-occupied structure (Tables E. 6, E. 9, E. 12, E. 15, 

and E. 18) were generally similar to estimates of the empty structure (Table E. 3). However, human 

occupation led to a significantly higher scatter in estimated modal masses m, . For instance, the 

standard deviation of m, reached 1100 kg (14 %) for nominally identical tests involving five sitting 

TSs (F16 - F20 in Table E. 18). Hence, it was about three-fold the maximal standard deviation of the 

modal mass m, of the empty test structure (350 kg in P05, P10, P15, P20, and P25 in Table E. 3). 

A static mass placed on the test structure caused noticeable changes in modal masses (Tables E. 3 

and E. 21). Thereby, contrary to the case of human occupation, mean values changed without 
increasing standard deviations. Actually, standard deviations of modal masses of the mass-loaded 
structure reached only 260 kg (3%). Thus, they were significantly smaller than that of the human- 

occupied structure (14%). 

In summary, human occupant(s) increased the scatter of the estimated modal mass m, of the test 

structure. This was not the case for a static mass. 
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5.8 SUMMARY 

In the experimental part of this research, forced vibration testing led to FRFs of the empty, the mass 
loaded, and human-occupied test structure. Curve-fitting of these FRFs, the influence of human 

occupants and an equivalent mass on modal properties of a prestressed concrete structure was 

quantified. This procedure was successful if one to five human occupants were sitting or standing on 
the structure. However, an estimation of modal properties was not possible if a human occupant was 
inducing forces into the structure, as was the case for walking and standing with bent knees. 

The empty structure had three lightly damped vertical bending modes at approximately 4.5 Hz, 

17 Hz, and 38 Hz. Up to five stationary human occupants on the structure did not lead to the 

identification of an additional mode. Moreover, neither human occupation nor a static mass changed 
the mode shapes of the test structure. Additionally, the following observations were made: 

(1) Experimentally estimated natural frequencies, damping ratios, and modal masses were 
less consistent if human occupants were on the structure than if the structure was empty. 
This was an issue of immediate repeatability and not of long-term repeatability. 

(2) Human occupants influenced primarily the fundamental natural frequency f, and the 

damping ratios t, and C2 of the test structure. They reduced f, and increased the 

damping ratios significantly. 

(3) Five sitting human occupants reduced the fundamental frequency of the test structure 
(about 4.5 Hz) stronger than an equivalent mass. 

(4) The influence of human occupants depended on their number and location. 

(5) The posture of a single occupant had only a small influence on the fundamental natural 
frequency f, of the test structure but it affected the damping ratio ý, strongly. 

(6) The individual properties of a single human occupant had little effect. 

(7) The employed low levels of vibration did not seem to have an effect on the influence of a 
single human occupant. 
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6. HUMAN-STRUCTURE SYSTEMS: MODELLING AND DISCUSSION 

It is widely agreed that a stationary human occupant, who is in continuous contact with a structure, 

can be modelled as a damped SDOF system, whose properties are more or less known (chapter 2). 

However, there is still a need for properties of a similar SDOF model representing crowds occupying 

civil engineering structures. Therefore, the experimental data of this research were used to identify a 
damped SDOF model of a group of human occupants. This model was used to provide preliminary 

guidance to analytically quantify the influence of human occupants on slender civil engineering 

structures. 

The identification process is presented in section 6.1. A verification and discussion of the model are 
presented in section 6.2. Finally, section 6.3 provides further guidance on assessing the influence of 
human occupants on civil engineering structures. 

6.1 DERIVATION OF A DYNAMIC HUMAN MODEL 

Firstly, properties of a SDOF occupant model are identified in this section using a 2-DOF human- 

structure model. Next, the methodology employed in this process, its implementation and results are 
presented. Finally, the quality of the identified SDOF occupant model is demonstrated. 

6.1.1 METHODOLOGY 

Several model updating techniques (Friswell and Motthershead 1995) can principally be used to 
identify the properties of a damped SDOF human occupant model. In this research, the updating 
was based on the correlation of FRFs. The methodology employed is outlined in detail. 

6.1.1.1 UPDATING BASED ON FRFS 

Experimentally estimated FRFs E"H(f) and analytical FRFs ANH(f) were employed in the 

procedure of identifying the properties of a SDOF occupant model. In particular, a 2-DOF human- 
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structure model (Figure 3.2b) was searched for whose analytical FRFs ANH(f) (section 3.1.3.3) best 

approximated experimental FRFs EX H(f) . The matching of the two FRFs AN H(f) and Ex H(f) was 

evaluated by differences 0 (6.1). Thereby, the smallest difference indicated the best fit of analytical 

and experimental FRF data within a frequency range f, to fk . 

fk 
IANH(fEXH(f 

f=f, 
(6.1) 

It is important to note that an exponential window (section 3.2.3.1) was used in the acquisition of 
FRFs. This exponential window distorts time histories and, consequently, FRFs (Figure 6.1). 

Therefore, experimental FRFs EXH(f) should only be related to their analytical counterparts ""H(f) 

if the effects of the window were removed. This adjustment can be achieved by altering the 

experimental or the analytical FRFs. 

1. E-01 

(login) 

1. E-02 
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M 
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without exponential window 

1. E-06 
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rigure o.. cxpenmentai acceierance rKr A� (t) with and without exponential window. 

Section 3.3.4 already outlined how the effect of an exponential window can be removed from an 

experimental FRF Ex H(f) . However, the IRF Ex hcorr (t) (equation (3.195) in section 3.3.4) 

computed here from EX H(f) and required in this process was not transient. However, it was possible 
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to limit the experimental IRF E` h°°"r (t) to the initial two-thirds of its original length T, where it 

decayed continuously. Using such an IRF, the effect of an exponential window was removed 

successfully from experimental FRF E` H(f) . However, the premature cut-off of the IRF increased 

the frequency step Af of the resulting experimental accelerance E` A`°" (f) from 0.04 to 0.07 Hz 

(equation (3.150) in section 3.2.1.4). Thus, removing the effect of the exponential window from 

experimental FRFs ExH(f) reduced the resolution of the experimental FRF data significantly. 

Therefore, this approach was dismissed and, instead of altering the experimental FRFs E`H(f), the 

analytical FRFs AN H(f) were computed so they included the effect of an exponential window. This 

was done by computing analytical IRFs ANh(t) (see section 3.3.3) of interest and multiplying them 

with an exponential window wE (t) as used in experiments. The resulting function was, contrary to 

E" h°°" (t) , transient in the time domain. Therefore, the inverse FT was performed successfully and 

it led to analytical FRFs ANH(f) that included the effect of the exponential window wE(t). These 

FRFs were then used in equation (6.1) together with their experimental counterparts E` H(f) . 

6.1.1.2 MODELLING OF HUMAN OCCUPANTS AND THE HUMAN-STRUCTURE SYSTEM 

As it would be expected from a simply supported beam, the three identified vertical bending modes 
of the test structure were well separated (chapter 5) and, therefore, acted as three separate SDOF 

systems. This was the case for both the empty and the human-occupied structure (Figure 5.14). 
Therefore, it was possible to model the structure by three different SDOF systems and consider the 
influence of human occupants on each mode separately. 

In this research, one or more human occupants were represented by a damped SDOF system 
(Figure 2.2a). This model was characterised by a natural frequency f", a damping ratio ý, and a 
lumped mass mH (see section 3.1.2.1). Thereby, the lumped mass mH was defined as a certain 

proportion of the total mass mT of human occupants. 

Combining a SDOF human occupant model and a SDOF structure model (Figure 3.2a), the human- 
occupied test structure was modelled as damped 2-DOF system (Figure 3.2b). The first (so called 
'structural') DOF of a 2-DOF human-structure model represented the empty test structure. Its 

properties depended on the mode and test point considered. The second DOF models an arbitrary 
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number of human occupants. Its properties (fH, t� , and mH as proportion of mT) were identified 

by updating (sections 6.1.2 and 6.1.3). 

6.1.1.3 CORRELATION OF EXPERIMENTAL DATA WITH ANALYTICAL MODELS 

In this research, experimental FRFs of the structure and the human-occupied structure were 

estimated at TPs of the structure only. Vibrations of the body of human occupants were not 

measured. Therefore, when modelling the human-occupied structure as 2-DOF system, 

experimental FRFs could be related to analytical structural FRFs Ay (f) or A,,, (f only. Thereby, 

the FRF A5 (f) is the point-accelerance of the damped SDOF model of the empty test structure 

(section 3.1.3.2) whereas the FRF Ayy(f) relates to the structural point-accelerance of the damped 

2-DOF human-structure model (section 3.1.3.3). 

Experimental point-accelerances of the test structure with a single TS sitting at TP 7 (B16 - B20) or 
of five occupants at TPs 3 and 7 (F21- F25) could have been used to estimate a SDOF human 

occupant model. However, the influence of five TSs was significantly higher than that of a single 

person. Moreover, this research aimed at modelling several occupants simultaneously. Therefore, 

the properties of the SDOF occupant model were derived from experiments that quantified the 
influence of five human occupants (F21 - F25). Nevertheless, experiments involving one to four TSs 

were employed in the verification of the human model (section 6.2.3). 

In experiments F21 - F25, two of the five TSs were sitting at TP 3 and the other three people were 
sitting at TP 7 (Figure 5.9). In this case, mode shape amplitudes of the empty and the occupied test 

structure were similar at the locations of the TSs for all three modes investigated (TPs 3 and 7 in 

Figures 5.33 and 5.34). Using this feature and one SDOF human occupant model (section 3.1.2.1), 
the five TSs were represented by one SDOF system attached to the structure at TP 7. 

Modelling human occupants and the empty test structure both as SDOF systems, the occupied 
structure was simplified as a 2-DOF system. The analytical accelerance A55(f) of this model 

corresponded to experimental point-accelerances A� (f) 
. Both FRFs were correlated using 

equation (6.1) to identify the properties of a SDOF human model. 

The three structural SDOF models of the empty structure (Table 6.1) were defined by the modal 

properties obtained by global FRF curve-fitting (A22 - A26 in Tables E. 1 to E. 3 in Appendix E). This 
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procedure was quicker and more straightforward than an identification based on updating. 
Nevertheless, it led to very close fits between experimental FRFs A� (f) of the empty test structure 

and its analytical SDOF equivalents A5 (f) . 

Table 6.1: Parameters of damped SDOF models of the three modes of the empty test structure. 
Natural frequency f5 Damping ratio ý5 Mass mg 1) 

First mode 4.51 Hz 0.32% 13910 kg 

Second mode 16.95 Hz 0.35% 7370 kg 
Third mode 37.73 Hz 0.94% 15980 kg 

Modal masses were computed from mode shapes unity-normalised (see section 3.3.2) to TP 7. 

6.1.2 UPDATING PROCEDURE 

Sets of parameters fH, ýh,, and mH of SDOF human models (Figure 2.2a) were identified using 

specially written MATLAB (1999) routines. For this purpose, differences A (equation (6.1)) were 

computed between the analytical FRF A55(f) of human-structure models and each of the five 

experimental FRFs A77(f) of the human-occupied structure (F21 - F25) within selected frequency 

ranges (fj to fk ). 

The frequency ranges (fj to fk) and relevant ranges of the three updating parameters f., ý� , and 

mH were specified after some preliminary investigations. These preliminary investigations employed 

various frequency ranges and updating parameters to identify parameters leading to stable updating 
results. 

This exploratory analysis was very helpful. In particular, it improved updating related to the first 

mode of the test structure. Interestingly, in this case, the frequency range (fj to fk) used in updating 
had to include frequencies corresponding to both the first and second mode of the 2-DOF human- 
structure model (see section 4.6). Moreover, the preliminary investigations showed that updating 
using the third mode of the test structure did not lead to reliable results. Consequently, identifying a 
human model from the influence of human occupants on the third mode of the test structure was 
abandoned. 
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Updating of 2-DOF human-structure systems corresponding to the first and second modes of the 

empty test structure was more successful. It led to the identification of two sets of properties of a 

damped SDOF human model. These are termed Human Models A and B and they were identified 

by incrementally varying the parameters f, ýH 
, and mH within the ranges given in Table 6.2. 

Table 6.2: Parameter ranges used in updatinq of Human Models A and B. 
Human Model A Human Model B 

fi to fk about 4.0 to 7.0 Hz, Af = 0.0397 Hz about 15.0 to 19.0 Hz, if = 0.0397 Hz 

fH 5.00 to 6.50 Hz, OfH = 0.02 Hz 6.00 to 9.00 Hz, Af. = 0.02 Hz 

ýH 20% to 60%, OgH=1% 30% to 45%, AýH=1% 

mH 0.80 mr to 1.00mr, OmH = 0.01 mr 0.70 mr to 1.00mT, OmH= 0.01 mr 

6.1.3 UPDATED HUMAN MODEL 

The updated parameters fH , i;., and m,, (as a proportion of mT) characterise the damped SDOF 

model of sitting human occupants by two sets of properties: Human Model A and Human Model B. 

Human Model A represents the influence of sitting human occupants on the first mode of the test 

structure (4.51 Hz). Its properties were identified for each of the five experiments F21 - F25 as listed 
in Table 6.3. 

The mean values and standard deviations of the parameters fH, ýH, and m,, determined for each 

measurement (Table 6.3) define Human Model A. Alternatively, Human Model A is characterised by 

the 95% confidence intervals (section 3.3.1) of the parameters fH, ýH 
, and mH . 
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Table 6.3: Properties of Human Model A, a damped SDOF system modelling the influence of sitting 
human occupants on the fundamental mode (4.51 Hz) of the test structure. 

Experiment Natural frequency fH Damping ratio Lumped mass mH 

F21 5.38 Hz 34% 0.92 MT 

F22 5.78 Hz 27% 0.84 mt 

F23 6.08 Hz 36% 0.97 mr 

F24 6.12 Hz 31% 0.97 mr 

F25 6.00 Hz 35% 0.93 MT 

Mean value and 
standard deviation 5.87 Hz ± 0.30 Hz 33% ± 4% 0.93 mr ± 0.05 mt 

95% confidence 
interval 5.49 Hz ... 6.25 Hz 28% ... 37% 0.86 mr ... 0.99 mr 

Human Model B quantifies the influence of human occupants on the second mode (16.95 Hz) of the 

empty test structure. Its parameters (EH , ý, and m,, ) are listed in Table 6.4 for updated 2-DOF 

human-structure models corresponding to each of the five experimental FRFs A� (f) . Additionally, 

Table 6.4 provides the mean values and standard deviations as well as 95% confidence intervals of 
the parameters fH, ýH , and mH that define Human Model B. 

Table 6.4: Properties of Human Model B, a damped SDOF system modelling the influence of five 
sitting human occupants on the second mode (16.95 Hz) of the test structure. 

Experiment Natural frequency fH Damping ratio r; H Lumped mass mH 

F21 7.46 Hz 35% 1.00 Mr 
F22 8.50 Hz 34% 0.73 mr 
F23 8.04 Hz 36% 0.80 mr 
F24 8.56 Hz 37% 0.76 mT 
F25 8.98 Hz 33% 0.75 mr 

Mean value and 
standard deviation 8.31 Hz ± 0.58 Hz 35%± 2% 0.81 Mr ± 0.11 mr 

95% confidence 
interval 7.59 Hz ... 9.03 Hz 33% ... 37% 0.67 mr ... 0.94 mt 
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Interestingly, the parameters fH and mH are systematically different for Human Models A and B 

(Tables 6.3 and 6.4). This means that the properties of the identified damped SDOF human 

occupant model depend on the frequency of the mode they are related to. This feature will be 

analysed in the verification of the models (section 6.2) and will be included in the design 

considerations presented in section 6.3. It demonstrates that humans are actually not SDOF but 

more complex MDOF systems (Griffin 1990). 

6.1.4 QUALITY OF UPDATED HUMAN-STRUCTURE SYSTEMS 

The fit of experimental and analytical FRFs of the human-occupied structure was used to evaluate 
the identification of human models. For this purpose, two damped SDOF human models were used. 
These models were denoted as Human Models A* and B* (Table 6.5) and defined by the mean 

values of the parameters fH ,iH, and mH of Human Models A or B (Tables 6.3 and 6.4). 

Table 6.5: Properties of the damped SDOF Human Models A* and B*. 
Human Model A* Human Model B* 

Natural frequency fH 5.9 Hz 8.3 Hz 

Damping ratio ýH 33% 35% 

Lumped mass mH 0.9 mr 0.8 mt 

Combining Human Model A* or Human Model B* with a SDOF model of the first or second mode of 
the empty test structure (Table 6.1), four 2-DOF human-structure models were obtained. The 

structural FRFs A,, (f) of these four models were compared visually with the experimental FRFs 

A� (f) of the human-occupied structure (Figures 6.2 and 6.3). (Note: the analytical and 

experimental FRFs A55 (f) and A� (f) both included the effect of an exponential window. ) 

Figures 6.2 and 6.3 show that the analytical FRFs A55(f) fit generally well to the experimental 
FRFs A� (f) . Nevertheless, Human Model A* clearly led to a closer match of FRFs around the 

natural frequency of the first mode than Model B* (Figure 6.2). This is reasonable because Human 
Model A*, and not Human Model B*, was obtained by updating the frequency range from 4 to 7 Hz 
(Table 6.2). However, similarly, a human-structure model employing Human Model B* fits closer to 

experimental FRFs within the frequency range from 15 to 19 Hz (Figure 6.3). 

Page 211 



Chapter 6 Human-Structure System: Modelling and Discussion 

r-, 4.0 

measured 
E 

3. o modelled (Human Model A*) 

modelled (Human Model B*) 

ö 2.0 

1.0 

0.0 

180° 
cß 

s 
0° 

-180° 
4.0 4.5 5.0 5.5 6.0 Frequency [Hz] 7.0 

Figure 6.2: Experimental FRFs A� (f) (F21 - F25) and analytical FRFs A55 (f) of damped 2-DOl 
human-structure systems in the frequency range from 4 to 7 Hz. 
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Figure 6.3: Experimental FRFs A�(f) (F21 - F25) and analytical FRFs A., (f) of damped 2-DO 
human-structure systems in the frequency range from 15 to 19 Hz. 
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In summary, two sets of properties of a damped SDOF model of sitting human occupants were 
identified by updating based on the fit of FRFs. The two sets represent the influence of sifting 

human occupants on a structural SDOF system with a natural frequency of 4.51 Hz or 16.95 Hz. 
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6.2 VERIFICATION 

In the previous section, two sets of properties of a damped SDOF model of sitting human occupants 

were identified (Human Models A and B in Tables 6.3 and 6.4). These properties are now verified 

and discussed by: 

(1) relating characteristics of the SDOF human model to biomechanical research, 

(2) analysing the dependency of the parameters of the SDOF human model on the frequency 

of the related mode of the empty structure, 

(3) correlating FRFs and modal properties of 2-DOF human-structure models with that of the 

human-occupied test structure, and 

(4) comparing response time histories of the human-occupied test structure with those of 
corresponding human-structure models. 

6.2.1 BIOMECHANIC RESEARCH 

The identified properties of the SDOF Human Models A and B (Tables 6.3 and 6.4) may be 

explained rationally having in mind the published results of biomechanic research (section 2.2.2). 
This conclusion was drawn from the analysis of natural frequencies, damping ratios, lumped 

masses, and apparent masses of human models outlined below. 

The fundamental natural frequencies f, of biomechanical models of sitting people range from 4.5 to 

5.0 Hz (Tables 2.3 and 2.4). The natural frequencies fH of the Human Models A and B range from 

5.4 to 9.0 Hz (Tables 6.3 and 6.4). In other words, the natural frequencies fH of the SDOF human 

occupant models are higher than that of biomechanic models. However, this difference can be 
explained by the different levels of vibration employed in the estimation of the human models. 

In the experiments performed here, vibration levels lower than those usually employed in 
biomechanics (about 2 m/s2) were purposely employed to create a situation realistic for civil 
engineering applications. In fact, the properties of Human Models A and B were determined using 
random vibrations with r. m. s. accelerations below 0.1 m/s2 (section 5.4.3). Such small levels of 

vibration are expected to increase natural frequencies of the human body (section 2.2.2), which is 
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essentially an amplitude-dependent non-linear system. Fairley and Griffin (1989), for example, found 

the natural frequency of sitting people to be 6 Hz when using random excitation with r. m. s. 

accelerations of 0.25 m/s2. This natural frequency is higher than the frequencies f, of human 

models (maximum of 5.0 Hz in Tables 2.3 and 2.4). However, the frequency of 6 Hz corresponds 

more closely to the frequencies fH (5.4 to 9.0 Hz) identified here (Tables 6.3 and 6.4) using a 

completely different methodology. Therefore, the systematically higher natural frequencies of 
Human Models A and B are to be expected. 

The identified SDOF human occupant model is characterised not only by its natural frequency fH 

but also by the damping ratio i; H and the mass mH . The damping ratios ý,, range from about 30% 

to about 40% (Tables 6.3 and 6.4). These values correspond well to the damping ratios t;, of 

biomechanical models of sitting people (32% to 53% in Table 2.3). 

The lumped mass mH of Human Models A and B is more than about 70% of the total mass mt of 
the modelled occupant(s) (Tables 6.3 and 6.4). On the other hand, biomechanic SDOF human 

models often use a mass mH equal the total mass m? of a person (Coermann 1962; Wei and Griffin 

1998a). To some extent, this assumption confirms that m� is a relatively high percentage of the total 

mass m1 (which is clearly not 100%) as found in this research. 

Finally, apparent masses M(f) of Human Models A* and B* (Tables 6.5) and human models of ISO 

5982 were compared (Figure 6.4). It was shown that apparent masses M(f) fit relatively closely, 

which is a result of the similar properties of biomechanic human models and Human Models A and 
B. 
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Figure 6.4: Apparent masses M(f) of damped SDOF models of a human occupant with a total 
mass mT of 80 kg. 

6.2.2 FREQUENCY DEPENDENCY OF THE PROPERTIES OF THE SDOF HUMAN MODEL 

A significant feature of the identified SDOF human occupant model is the dependency of its 

properties on the natural frequency of the considered mode of the empty structure (section 6.1.3). 

This point was confirmed using measurements performed independently by Brownjohn (1999). 

Brownjohn (1999) analysed the influence of a single person on the dynamic properties of a beam- 

like structure with a fundamental natural frequency of 3.16 Hz (section 2.4.3). This fundamental 

frequency was significantly lower than the natural frequencies of 4.51 Hz and 16.95 Hz of the 

structural modes used to identify Human Models A and B. 

Brownjohn's (1999) experimental data (auto and cross-spectral densities) were made available to 

the writer. FRFs computed from these data were used to identify another set of properties of the 

SDOF model: Human Model C. This identification principally followed the procedure of fitting FRFs 

(section 6.1.1) used to estimate Human Models A and B. However, using Brownjohn's FRFs, it was 

not necessary to remove or artificially apply a window because no window had been used in the 

data acquisition. 
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In contrast to five nominally identical tests performed in this research, Brownjohn (1999) performed 

measurements for each configuration only once. Therefore, only one (and not five) experimental 

point-accelerances of the human-occupied structure were available. Furthermore, Brownjohn 

employed chirp excitation that can emphasise the effects of non-linearities. Also, the human 

occupant was not sitting exactly at the point of excitation and response measurements (Figure 2.10). 

Therefore, the experimental point-accelerance of the human-occupied structure used in the updating 

process did not exactly correspond to the structural FRF A55(f) of a 2-DOF human-structure 

model. 

To identify Human Model C, the smallest difference 0 of experimental and analytical FRFs 

(equation (6.1) in section 6.1.1) was used to estimate the properties of a SDOF system representing 

the empty structure and those of the SDOF human model (see Figure 2.11). The properties of a 

SDOF system representing the empty structure were identified to f5 = 3.16 Hz, ý, = 0.8%, and 

m5 = 920 kg. Using these properties and experimental FRFs of the human-occupied structure, the 

properties of Human Model C were estimated to fH = 3.8 Hz, cH, = 10%, and mH = MT . 

Remarkably, the parameters fH , 
cH and m� of the three identified sets of Human Models A, B, and 

C follow the same trend. That is, lowering the natural frequency f5 of the structural SDOF of the 

human-structure system leads to: 

(1) lower natural frequency f,,, 

(2) lower damping ratio ý� , and 

(3) higher mass m, i 

of the SDOF human occupant model. Considering the properties of Human Models C, A*and B* 
(Tables 6.3 and 6.4), it is therefore concluded that f� <9 Hz, cH < 40% and mH > 0.6 mT if the 

natural frequency of the empty structure f5 does not exceed 16.95 Hz, the highest natural 
frequency f5 considered in these investigations. 

Finally, computed FRFs A,, (f) of 2-DOF human-structure models were compared with 

experimentally estimated FRFs (Figure 6.5). As expected, FRFs A,, (f) of a 2-DOF human- 

structure model that uses Human Model C approximates Brownjohn's (1999) experimental data 
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better than a 2-DOF model based on Human Model A* or B*. Interestingly, using Human Model A* 

leads to a better fit than using Human Model B* (Figure 6.5). This observation further confirms the 

frequency dependency of the properties of the 2-DOF human occupant model. 
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Figure 6.5: Experimental point-accelerance FRFs (Brownjohn 1999) overlaid with the analytical FRF 
A55(f) of 2-DOF human-structure models. 

6.2.3 FRFS AND MODAL PROPERTIES OF THE HUMAN-OCCUPIED TEST STRUCTURE 

Next, various experimentally estimated properties of the human-occupied test structure (which were 
measured but not used in developing the human model) are correlated with the analytically 
calculated structural FRFs and modal properties of 2-DOF human-structure models. This analysis 
will verify the damped SDOF occupant model and its properties further. 

For this purpose, the investigation employed experimental data of tests B16 - B20, Test E, and F01 
to F20 (Appendix D) that were not used in the derivation of the damped SDOF human occupant 
model. The analysis is presented separately for human-structure models corresponding to the first, 

second, and third mode of the test structure. 
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6.2.3.1 FIRST MODE 

To verify the properties of Human Model A (Table 6.3), the influence of one to five TSs on the 

fundamental mode of the test structure was investigated. In doing so, FRFs and modal properties of 
2-DOF human-structure models were related to previously not used experimental data. 

The 2-DOF human-structure models were characterised by a SDOF model of the empty structure 

and human occupants modelled by Human Model A* (Table 6.5). The properties of the SDOF 

representing the empty structure corresponded to the mean modal properties of A22 - A26 as listed 

in Tables E. 1 to E. 3. The experimental data of the human-occupied structure used for comparison 

with properties of 2-DOF human-structure models were defined by nine different configurations. 
They involved five different TSs and groups of two to five TSs sitting at midspan (Test E and F01 to 
F20 in Tables D. 5 and D. 6). 

Table 6.6 exemplarily presents the properties of two 2-DOF human-structure models. These 
Examples 1 and 2 correspond to experiments involving the lightest TS (EO1- E05) and all five TSs 
(F16 - F20) employed in this research. Therefore, they correspond to the lowest (0.8%) and the 
highest (5.1 %) mass ratios a investigated here. It should be noted that the mass ratio a had a 

somewhat medium value of 2.6% in experiments F21 - F25 that were used to identify the properties 
of Human Model A. 
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Table 6.6: Human-structure models defined by a SDOF structure model (fg = 4.51 Hz, ýg = 0.32%, 
and m5 = 7,040 kg) and Human Model A* (f,, = 5.9 Hz, i; H = 33%, and mH = 0.9 mt ). 

Example 1: One occupant Example 2: Five occupants 

Human occupant(s) mH = 53 kg (mT = 59 kg) mH = 362 kg (mr = 402 kg) 

Mass ratio a= 0.8% a= 5.1% 

Frequency ratio 0 =1.26 p =1.26 

2-DOF f("') = 4.48 Hz f; °") = 4.33 Hz 

human- First mode ý, = 0.57% ý, =1.68% 

structure m, = 7,200 kg m, = 8,080 kg 

system f)=5.94 Hz f2 'M) = 6.14 Hz 

Second mode ý2 = 32.87% ý2 = 32.40% 

m2 = 401,890 kg 1) m2 = 66,460 kg 1) 
1) Mode shapes were normalised to unity at the structural DOF of the 2-DOF human-structure model. 
This resulted in such large modal masses m2. 

The structural accelerances A. (f) and A55(f) (sections 3.1.3.2 and 3.1.3.3) of Examples 1 and 2 

(Table 6.6) are presented in Figures 6.6 and 6.7. In both figures (and in the remainder of this thesis) 

FRFs are presented without the effect of any window. Therefore, these FRFs should not be 

compared with FRFs presented in the experimental chapter 5 or section 6.1. 

Both FRFs Ays (f) presented in Figures 6.6 and 6.7 are dominated by a lightly damped 

fundamental mode (ý, < 2% in Table 6.6). In both cases, the heavily damped second mode of both 

human-structure models K2 > 32%) has only a marginal influence on the structural FRF A5g(f). 

Therefore, as in Case 5 presented in Figures 4.36 and 4.38 in section 4.6, only one mode can be 
identified from the FRF A55 (f) . Actually, in case of the SDOF structure model employed here, the 

mass ratio a would have had to exceed about 20% to enable the identification of two modes. 
However, in the experiments performed, the mass ratio a reached only 5.1 %. This explains why the 

additional mode was not identified from experimental FRFs. 
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Figure 6.6: Calculated structural FRFs A. (f) and A55(f) of Example 1 (Table 6.6). 
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rigure 6.1: Calculated structural FRFs A, (f) and A55(f) of Example 2 (Table 6.6). 
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However, experiments identified a reduction of the fundamental frequency f, of the test structure 

and an increase in the damping ratio ý, due to human occupation (section 5.6). Both conclusions 

can also be drawn from a visual comparison of the analytical FRFs A. (f) and A5, (f) of the 

SDOF structure and the 2-DOF human-structure models (Figures 6.6 and 6.7). 

Figures 6.6 and 6.7 also confirm the experimental observation that a higher number of human 

occupants led to greater changes of FRFs and, consequently, modal properties (section 5.6.3). 

Moreover, the natural frequencies and damping ratios (fl("") and ý, ) of human-structure models 

correspond closely to the experimentally identified properties f, and ý, (Figure 6.8). 
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faýQ 
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Mý 
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Mass ratio a 

f experimental A 2-POF human-structure model 

rigure b. d: Natural trequencies (a) and damping ratios (b) of the occupied test structure (Test E and 
F01 to F20 in Tables E. 10, E. 11, E. 16, and E. 17) and corresponding human-structure models. 

In summary, Human Model A (represented by Human Model A*) reproduced the influence of human 

occupants on the fundamental mode of the test structure well. This was the case for mass ratios a 
as little as approximately a third (0.8%) and as much as about double (5.1%) the mass ratio 
a=2.6% used in the derivation of the properties of Human Model A. 
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6.2.3.2 SECOND MODE 

The influence of five human occupants on the second mode of the test structure (f2 = 16.95 Hz) was 

used to identify Human Model B (Table 6.4). This Human Model B is now verified using Human 

Model B* (Table 6.5) as its 'average' version to predict the effect of a single occupant on the second 

mode of the test structure. For this purpose, experiments B16 - B20 were employed. They involved 

TS A sitting at an antinode of the second mode of the test structure (Table D. 3 in Appendix D). 

The modal properties of a corresponding 2-DOF human-structure model (Example 3) were 

estimated (Table 6.7). In doing so, a SDOF model defined by the mean modal properties of the 

second mode identified in experiments A17 - A21 (Tables E. 1 to E. 3) represented the empty test 

structure. 

Table 6.7: Human-structure model defined by a SDOF structure model (f5 = 16.93 Hz, i; y = 0.35%, 
and m5= 7420 kg) and Human Model B* (f�= 8.3 Hz, cH = 35%, and m� =0.8 m, ). 

Example 3: One occupant 

Human occupant 

Mass ratio 
Frequency ratio 

2-DOF human- First mode 

m1H =47 kg (mT=59 kg) 

a=0.6% 
ß=0.49 

= 8.30 Hz 

ý, =34.91% 

structure system m, 13,986,000 kg 11 

f2°"'ý = 16.94 Hz 

Second mode c2=0.51% 

m2 = 7,430 kg 
1) Mode shapes were normalised to unity at the structural DOF of the 2-DOF human-structure model. 
This resulted in the large modal mass m, . 

Example 3 has, contrary to Examples 1 and 2 (Table 6.6), a lightly damped second mode (Table 
6.7) that dominates the FRF A55(f) (Figure 6.9). In contrast to the second mode, the fundamental 

mode of Example 3 is heavily damped (Table 6.7). This mode is, as in Case 1 of the parametric 

study (Table 4.1 and Figures 4.32 and 4.38 in section 4.6), not visible in the analytical FRF A55(f) 

of the human-structure model (Figure 6.9). This explains why only modal properties corresponding 
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to the dominant second mode of the 2-DOF human-structure model (Figure 6.9) could be identified 

from experimental FRFs of the human-occupied structure. 
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Figure 6.9: Calculated structural FRFs A, (f) and A., (f) of Example 3 (Table 6.7). 

Actually, the modal properties of this lightly damped second mode (f, (") = 16.94 Hz, i; 2 = 0.51 %, 

and m2 = 7430 kg in Table 6.7) match those of the human-occupied test structure (f2= 16.94 Hz, 

ý2 =0.47%, and m2 = 7420 kg from B16 -B20 in Tables E. 4 to E. 6) closely. Moreover, the human- 

structure model accurately reproduces a small frequency increase (from 16.93 to 16.94 Hz). It also 
indicates a damping increase (from 0.35% to 0.47%) similar to the analytically estimated increase to 

0.51%. 

6.2.3.3 THIRD MODE 

The properties of a damped SDOF human model corresponding to the third mode of the test 

structure (f3 about 38 Hz) were not identified by updating (section 6.1.2). Therefore, appropriate 2- 

DOF human-structure models cannot be presented. Nevertheless, the influence of human 

occupants (modelled as damped SDOF system) on the third mode of the test structure were 
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discussed in general. For this purpose, appropriate mass and frequency ratios a and ß had to be 

specified. 

It is known that the lumped mass mH cannot exceed the total mass m7 of the SDOF human 

occupant model. In the experiments performed, the total mass of human occupants did not exceed 

402 kg. Therefore, mH has a maximum of 402 kg. Hence, the mass ratio a of a human-structure 

system based on the third mode of the empty test structure (m3 of about 7800 kg, see Table E. 3) 

can here be limited to 6%. 

Although the natural frequency fH, of the SDOF human occupant model was identified to increase 

with the natural frequency f5 (section 6.2.2), it seems reasonable to assume that f1H < 20 Hz for f5 

about 38 Hz. Therefore, the maximum frequency ratio ß was set to 0.5. 

A 2-DOF human-structure system defined by a maximal mass ratio a= 6% and a frequency ratio 
ß=0.5 corresponds, in essence, to Example 3 (Table 6.7). Therefore, similarly to the influence of 

human occupants on the second mode, a slight frequency increase and an increase in damping can 

be expected. 

Both phenomena were found to be true for five occupants sitting at the antinode of the third mode of 
the test structure. In fact, the natural frequency f3 increased slightly from 37.73 Hz to 37.83 Hz 

(A22 - A26 in Table E. 1 and F16 - F20 in Table E. 16). More clearly, the damping ratio ý3 increased 

from 0.94% to 1.24% (A22 - A26 in Table E. 2 and F16 - F20 in Table E. 17). Hence, the identified 

SDOF human occupant model also explains, at least qualitatively, the influence of human occupants 

on the third mode of the test structure. 

6.2.4 RESPONSE TIME HISTORIES 

Finally, response time histories of the human-occupied structure and corresponding 2-DOF human- 

structure models were compared. For this purpose, responses of the test structure occupied by TS 

A sitting at TP 7 were used (B16 - B20). In particular, accelerations of the occupied structure at TP 7 

to a burst random excitation at TP 7 were employed. 
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The measured accelerations contained contributions of several modes of vibration of the test 

structure. However, Human Models A and B, that shall here be verified further, correspond to the 

first or the second mode of the test structure only. Therefore, responses at frequencies around the 

first or second mode of the test structure were extracted by filtering using MATLAB (1999) routines. 

Responses of the corresponding 2-DOF human-structure models were computed to the same 

excitation. For this purpose, the empty test structure was represented by a SDOF model defined by 

the mean modal properties identified in experiments A17 - A21 (Tables E. 1 to E. 4). 

Figures 6.10 and 6.11 demonstrate that the filtered experimental and computed response time 

histories are similar. Most importantly, the peak responses of experimentally and analytically 

estimated responses are very similar. This observation further confirms the validity of the identified 

SDOF human occupant model to represent not only groups of five but also single human occupants. 
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rigure b. 1U: Kesponses of a) the human-occupied test structure and b) a 2-DOF human-structure 
model based on the first mode of the empty test structure and Human Model A*. 
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r-igure b. 11: Responses of a) the human-occupied test structure and b) a 2-DOF human-structure 
model based on the second mode of the empty test structure and Human Model B*. 
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6.3 QUANTIFYING THE INFLUENCE OF HUMAN OCCUPANTS 

Previously, the properties of a damped SDOF model of human occupants were derived and verified. 

Using this SDOF model, a procedure was developed to predict the influence of human occupants on 

FRFs. This simple procedure enables the estimation of acceleration responses of some human- 

occupied structures to certain excitation frequencies f, For this purpose, Peak Amplitude 

Reduction Factors (PARFs) presented in Appendix F are proposed. 

6.3.1 PROPOSED METHOD 

For simplification, the proposed method provides preliminary guidance only for civil engineering 

structures that can be modelled as damped SDOF systems (those with well separated modes). 
Furthermore, it is assumed that the distribution of occupants across the structure has no effect (see 

section 5.6.2.5). To represent the human occupants, Human Models A*, B*, and C (Table F. 1 in 

Appendix F) are employed. Human Models A* and B* previously represented Human Models A and 
B for illustration purposes only. However, PARFs (used in the proposed design procedure) 

computed using different sets of properties of Human Models A and B (Tables 6.3 and 6.4) are very 

similar across various sets of properties for Human Models A and B. Therefore, using only Human 

Models A* and B* is justified. 

All these simplifications allow the human-occupied structure to be modelled as damped 2-DOF 

human-structure system (Figure 3.2b). The structural FRFs A55 (f) of this model and A. (f) of the 

SDOF structure model (sections 3.1.3.2 and 3.1.3.3) are employed to quantify the influence of 
human occupants. More specifically, the effect of human occupants on the magnitudes of the FRFs 

only is considered. For this purpose, the PARF (Peak Amplitude Reduction Factor) has been 
introduced and defined. 

The PARF relates the magnitude IA55 (fEX )I of a 2-DOF model of the human-occupied structure to 

the magnitude IA5 (f5 )I of a SDOF model of the empty structure: 

PA(ZF - 
IA55(fEx)I 

_ 

IA55(fEx)I 

IA5(f5)I a5 
(6.2) 
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PARFs depend on the properties of the SDOF structure model. Furthermore, they are affected by 

the mass of human occupants in relation to the mass of the structure ((x). Additionally, the 

properties of the human occupant model play a significant role. Appendix F presents PARFs 

corresponding to 36 different configurations. Half of these cases correspond to SDOF models of an 

empty structure with realistic damping ratios ý5 = 1% and the other half to ý5 = 2%. 

An example will be presented here illustrating the identification of PARF. Figure 6.12 presents 

PARFs for cases of human occupation in which human occupants have only a small influence on 

the structure ((x = 1%). Therefore, in this case, PARFs are close to unity (red) if the excitation 
frequency fEX and the natural frequency f5 of the empty structure are similiar (Figure 6.12). 

Importantly, small (blue) PARFs indicate pairs of frequencies (fEx , f5) for which the response of the 

occupied structure at frequencies fEX is lower than the response of the empty structure at its natural 

frequency f5. 
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Appendix F contains figures similar to Figure 6.13, which presents the same data as Figure 6.12, but 

only in the (fEX, f5) plane. To illustrate the proposed procedure, Figure 6.13 is used to extract a 
PARF. As an example, it was assumed that the empty structure has a natural frequency f5 of about 
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3.5 Hz and excitation frequencies fEx range from 2.0 to 2.5 Hz. In this case, PARFs range from 0.05 

to slightly above 0.1 (Figure 6.13). 
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Figure 6.13: PARFs of Figure 6.12 in a two-dimensional presentation. 

If the PARF and the magnitude IA5 (f5 )I of the SDOF structure model (as in equations (3.105) and 

(3.106) in section 3.1.3.2) are known, the magnitude IA55(fEx)I of a human-structure model can be 

calculated: 

lAas (fEx )l = a5 " f'ARF. (6.3) 

Responses like IA5, (fEX )I can then be used to estimate the serviceability and/or safety of a 

structure (BSI 1992; ISO 1992). 

6.3.2 IMPLEMENTATION AND APPLICATION 

In Appendix F, different numbers of human occupants are studied. In particular m5 : m7 ratios 

ranging from 1: 1 to 100: 1 were employed. The m5 : mT ratio relates the modal mass of the empty 

structure (m5) to the total mass of the modelled occupants (m1). In the experiments with five TSs 
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or one TS (at an antinode of the first, second, or third mode of the test structure) performed here, 

m5 : MT ratios ranged from about 20: 1 to 120: 1. Thus, the range employed in Appendix F (1: 1 to 

100: 1) seems appropriate. Furthermore, it is noted that this range m5 : MT = 1: 1 to 100: 1 

corresponds to mass ratios a= 100% to 0.8%. Thus, a range similar to that analysed in the 

analytical parametric study (chapter 4) is covered. 

In addition to specifying ý5 and m5 : MT , the user has to decide whether human occupants will be 

modelled by Human Model A*, B*, or C. Human Model C was derived from one measurement 

involving one human occupant only and, additionally, a modelling error was introduced (section 

6.2.2). Therefore, this model inspires less confidence. Nevertheless, for the sake of completeness, 

PARFs corresponding to human-structure models based on Human Model C are included in 

Appendix F. 

Human Models A* and B* should only be used for structures with natural frequencies f5 = 4.51 Hz 

or f5 = 16.95 Hz respectively. However, properties of a damped SDOF human occupant model 

corresponding to a wider range of natural frequencies f5 are currently not available. Therefore, until 

more information becomes available, Human Model A* should be used for civil engineering 

structures with natural frequencies f5 up to 10 Hz. If the natural frequency f5 is between 8 and 

10 Hz, it is recommended to use PARFs based on both Human Models A* and B* and investigate 

the possible differences produced by the application of the two occupant models. If the natural 
frequency f5 exceeds 10 Hz, only PARFs corresponding to Human Model B* should be used. 

Although structures with such high fundamental natural frequencies are unlikely to have relevant 

vibrations resulting from human-induced forces, human occupants can lead to a potentially 

significant lower 'additional' mode (Figure 2.1 and section 6.4). Therefore, Appendix F presents 
PARFs for structures with natural frequencies f5 as high as 20 Hz. 

6.3.3 DIscussION 

In this section, the effects of (1) the natural frequency f5 of the SDOF model of the empty structure, 
(2) the properties of the human occupant model, and (3) the amount of human occupants on PARFs 

(and responses of the human-occupied structure) are discussed. For this purpose, Figure 6.14 is 

used. 
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Figure 6.14: PARFs corresponding to ý5= 5%, m5 : mT =1.5: 1, and a) Human Model A' 
(maximum PARF = 0.77) orb) Human Model B* (maximum PARF = 0.79). Legend as in Figure 6.12. 
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Figures 6.14a and 6.14b present PARFs corresponding to 2-DOF human-structures models based 

on Human Model A* or B*. It can be seen that, in general, Human Model A* leads to lower PARFs 

than Human Model B* for f5 < 10 Hz (Figure 6.14). However, for higher natural frequencies f5 of 

the SDOF structure model, Human Model B* leads to lower PARFs. In other words, each of the two 

occupant models leads to smaller responses of the human-occupied structure for frequencies f5 

close to those used in their identification (vertical red lines in Figure 6.14). 

Nevertheless, both figures show similar patterns of PARFs for f5 lower or higher than f� of Human 

Model A* or B* (green vertical lines). Using this feature, the influence of the natural frequency f5 of 

the empty structure on PARFs for both Human Models is now discussed simultaneously. 

If f5 < fH , human occupants generally lead to a frequency reduction. This frequency reduction is 

likely to be higher than a reduction caused by an equivalent mass, as indicated by experiments of 
Hothan (1999), Brownjohn (1999) and the writer (sections 2.4.2,2.4.3 and 5.6.4). Caused by this 

frequency reduction, maximum responses of the human-occupied structure can be expected at 

excitation frequencies fEx < f5 . 
For example, in Figure 6.14a, the PARF is highest for fEX of only 

about 3 Hz if the natural frequency of the empty structure f5 =4 Hz. However, Figure 6.13 already 

demonstrated that PARFs (and thus responses of the human-occupied structure) can also be 

highest for fEx approximately f5 . 
(PARFs in Figure 6.13 are defined by configurations equal, except 

m5 : MT = 100: 1, to those of Figure 6.14a). 

Figures 6.14a and 6.14b demonstrate that, if f5 is up to 4 Hz higher than f,, PARFs are relatively 

small for all excitation frequencies fEx. This is because, under this condition, both modes of the 2- 

DOF human-structure model are heavily damped. For structures with natural frequencies f5 

considerably higher than fH , the PARFs increase particularly for fEX > f5 (Figure 6.14a). This 

feature corresponds to increased natural frequencies identified experimentally by Lenzing (1988) 

and Ji (1995) (chapter 2) as well as the writer (subsection 5.6.3.3). 

Interestingly, neither Figure 6.14a nor Figure 6.14b indicate a strong contribution of the lower 

`additional' mode (section 4.6). Nevertheless, this mode should be considered, as illustrated by 

Figure 6.15, which relates FRF magnitudes of the empty IA5(fE, )I and the human-occupied 

structure jA55(fEx )I for the same frequency fx . 
Figure 6.15 demonstrates that, for a structure with 
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a natural frequency f5 = 10 Hz, the magnitude of the human occupied structure IA55(4 Hz)I is 1.2 

times the magnitude of the empty structure A5(4 Hz)I at the same frequency. This increase of the 

magnitude of the FRF due to human occupation corresponds to research by Folz and Foschi (1991), 

Ellis and Ji (1997), and Hothan (1999), who found that the lower 'additional' mode of the human- 

structure system can determine the response of the structure. Moreover, Figure 6.15, which 

corresponds to PARFs presented in Figure 6.14a, emphasises that human occupation can increase 

the response of a structure for frequencies fEX below the natural frequency of the structure f5 . 

20 Hz - 
Excitation 

frequency 

16 Hz 
fEx 

12 Hz 

a Hz 

L 

0.5 Hz 
0.5 Hz 

L_ 

Figure 6.15: Increase of the FRF magnitude due to human occupation (IA55(fEX)I /IA5(fEx )I ). 

6.3.4 REMARKS 

Current design guidelines request a dynamic analysis only if a structure has a natural frequency 

below 6 Hz (Department of National Heritage, Scottish Office 1997; IStructE 2001) or 8.4 Hz (BSI 

1996). These values were defined by the ability of humans to excite structures with such low natural 
frequencies to vibrations that are serviceability or even safety issues. 
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In this context, it should be noted that, according to Kasperski (1996, p. 457), Nan economic design 

in accordance to EC 1 will lead to natural frequencies between 2.5 to 3 Hz. " If this is the case, newly 
built structures are likely to experience strong human-induced vibrations. 

Finally, it has to be noted that there is a wide range of possible influence factors on the effect of 
human occupants. The posture of human occupants, for instance, can be a significant factor. Here, 

only properties of SDOF models of sitting human occupants were employed. However, if human 

occupants are standing, PARFs are likely to be higher as indicated by measurements of Brownjohn 

(1999) (section 2.4.3) and the writer (section 5.6.2.3). Furthermore, sitting human occupants 

consistently led to lower natural frequencies than standing human occupants (Tables 2.2,2.6, and 
2.8) if many human occupants (Littler 2000) or very light structures (Ji 1999; Brownjohn 1999) were 
employed. 
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7. CONCLUSIONS 

This section presents conclusions drawn from the experimental research. It also informs about a 
derived human model and the influence of human occupants on civil engineering structures in 

general. It concludes with an approach proposed to account for the influence of human occupants in 

the design of human-occupied civil engineering structures. 

7.1 EXPERIMENTAL RESEARCH 

The influence of one to five human occupants on three vertical bending modes (4.5 Hz, 17 Hz, and 
38 Hz) of a lightly damped test structure weighing 15 tonnes was estimated. For this purpose, nine 
FRFs of the empty and the human-occupied structure were acquired five times in nominally identical 
tests. 

Modal properties (mode shapes, natural frequencies, damping ratios, and modal masses) were 
extracted from the FRFs by curve-fitting. This analysis revealed that mode shapes were almost real 
and identical for the empty and the human-occupied structure. However, human occupants 
noticeably affected modal masses, damping ratios, and natural frequencies. In general, the variability 
of these properties was higher for the human-occupied than for the empty test structure. This was 
most significant for damping ratios. 

The experimental data demonstrated that the influence of human occupants increased with their 

number. It is also important to note that the influence of human occupants decreased with increasing 

natural frequency of the structure. Furthermore, it was found that the influence of human occupants 
increased with the mode shape amplitude at their location on the structure. 

The influence of different postures (sitting and standing) of a human occupant on the modal 
properties of the human-occupied test structure were investigated. Although there seemed to be a 
systematic difference (indicated by damping ratios of the human-occupied structure), the 
experiments performed here did not confirm the significant effect of postures on natural frequencies 
of the occupied structure found by Littler (2000). Additionally, an effect of the studied small levels of 
vibration, as found in biomechanical research for higher levels of vibration, was not identified. 
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7.2 MODELLING HUMAN OCCUPANTS 

Based on the experimental data, the properties of a damped SDOF model of sitting human 

occupants were identified. This SDOF model of an arbitrary number of occupants is characterised by 

a lumped mass mH (as proportion of the total mass mT of human occupants), a natural frequency 

fH , and a damping ratio ýH 
. Importantly, these three parameters depend on the frequency fg of the 

structural mode (4.51 or 16.95 Hz) the occupant model was related to. It was found that the mass 

mH decreases with increasing frequency f5. Also, the natural frequency fH and the damping ratio 

ýH increase with increasing f5. However, for natural frequencies fg 516.95 Hz, the approximate 

bands for the three key human modelling parameters are mH > 0.6 mT , fH <9 Hz and I; H < 40%, 

approximately. 

7.3 INFLUENCE OF HUMAN OCCUPANTS 

Modelling the human-occupied structure as a damped 2-DOF human-structure system explained the 
influence of human occupants on natural frequencies, damping ratios and FRFs, and the responses 
of the human-occupied structure observed in this and all other research known to the writer. 

In general, if only a few people occupy a civil engineering structure, they have little effect on natural 
frequencies of the structure but can increase damping significantly. Therefore, including their 
influence leads to a more realistic and economic design. However, although increasing damping, 

crowds can reduce fundamental frequencies significantly which could make structures more 
responsive to human-induced vibrations. Therefore, the influence of crowds on slender structures 
should be included into the design against human-induced vibrations. This might be necessary for 

structures with natural frequencies as high as 20 Hz if lively crowds are involved. 

7.4 PRELIMINARY DESIGN GUIDELINE 

An analytical parametric study demonstrated that FRFs provide better information of the influence of 
human occupants on the structure than modal properties. This feature was employed to propose a 
procedure to quantify the influence of human occupants. The proposed procedure is limited to point- 
accelerances of structures with well-separated modes. Despite this and other limitations, the 
procedure is a valuable and relatively simple method for assessing the possible influence of human 

occupants particularly on assembly structures. 
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8. RECOMMENDATIONS FOR FUTURE WORK 

It is recognised that the whole area of human-induced vibrations requires further research to enable 
a better understanding and more realistic and economical design. Concentrating on the influence of 
human occupants on civil engineering structure as one aspect of human-structure interaction, four 

major areas requiring further research are highlighted: 

(1) Well documented high-quality investigations of the dynamic behaviour of real-life civil 
engineering structures, particularly assembly structures, are required. Such investigations 

should include high- and low-frequency assembly structures alike. Thereby, the influence 

of human occupants should be quantified and attention should be paid not only to vertical 
but also to horizontal modes. Furthermore, the day-to-day performance of human-occupied 

structures under human-induced vibrations should be monitored and evaluated. This 

procedure will help to identify actually occurring issues. 

(2) The human body is a complex heavily damped dynamic system. Establishing the relevance 
of factors influencing the properties of human occupants for practical civil engineering 
applications requires further research. In particular, differences between a wider range of 
individuals should be evaluated and the effect of posture should be investigated further. 
Furthermore, the influence of the type, duration, and level of vibration require further 
investigation. 

(3) In this research, the properties of a damped SDOF model of sitting human occupants 
corresponding to vertical structural modes with natural frequencies of about 4.5 Hz and 
17 Hz was identified. However, a significantly wider range of experiments on structures 
with other natural frequencies is required to confirm and identify further properties of the 
damped SDOF occupant model and, possibly, extend it into a more realistic MDOF model. 

(4) Combining experimental and analytical research, the use of SDOF occupant models in 
context with complex FE-models and detailed dynamic design of civil engineering 
structures should be explored. 
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APPENDIX A 

The eigenproblem of the damped 2-DOF system (Figure 3.2) is a fourth order polynomial (see 

equation (3.81) in section 3.1.2.3). Solving such a fourth order polynomial (A. 1) analytically was first 

presented by Geronimo Cardano (1501 - 1576) in the "Ars Magna". This procedure is outlined here 

based on a presentation by Bronstein et al. (1996, p. 648ff): 

x4 +a"x3 +b-X' +c"x+d=0, (A. 1) 

whereby the real terms a, b, c, and cl are defined by the properties of the damped 2-DOF system 
(equations (A. 2), (A. 3), (A. 4), and (A. 5)). 

MS 'CH+mH'CH+mH 'C5 

Ms ' mH (A. 2) 

m5 " kH +C9 " cH +mH " 
kH +mH " 

kg 

Ms ' mH (A. 3) 

c_c 
"kH+CH'kS 

Me - mH (A. 4) 

ks-kH 

Ms " mH (A. 5) 

Solving equation (A. 1) for x involves transferring the fourth order polynomial into a third order 
(cubic) polynomial, whose solutions n,, n2, and n3 specify the solutions of the fourth order 

polynomial. 

First, the unknown x in the fourth order polynomial (A. 1) is substituted according to equation (A. 6). 

a 
y=x+4 

(A. 6) 

This substitution transforms (A. 1) into a polynomial with no cubic term (A. 7) defined by terms p, q, 

and r specified in equations (A. 8), (A. 9), and (A. 10). 

y4+p"y2+q"y+r=0 (A. 7) 
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p=b. 
5. a2 

8 (A. 8) 

a3 a"b 
82 (A. 9) 

r= a2 b-3a4 
-a-c+c 16 256 4 (A. 10) 

The solutions y of the polynomial (A. 7) can be calculated from the three solutions z,, z2 , and z3 

of a third order polynomial (A. 11) using equations (A. 12), (A. 13), (A. 14), and (A. 15). 

z3 +2"p. z2 +(p2 -4"r). z-cq2 =0 (A. 11) 

Y1-2. ( Z, + Z2- Z3) A. 12 () 

Y2=2"( Z, - Z2+ Z3) 

(A. 13) 

Y3 =, *(Z, + Z2 + Z3 
) 

(A. 14) 

Y4 - ,L .( ZI - Z2 - Z3 
) 

(A. 15) 

These solutions y, , Y21 y., and Y4 can be re-substituted into equation (A. 6) and lead to the 

solutions x, , x2 , x3 , and x4 of the initial problem (A. 1). 

It remains to solve equation (A. 1 1). This is done by transforming equation (A. 1 1) into a form without 
a square term by substituting z with n according to equation (A. 16). 

n=z+2 
p 

3 (A. 16) 

This substitution transfers equation (A. 1 1) into (A. 17) with parameters k and m defined by 
equations (A. 18) and (A. 19). 

n3 +3"m"n+2"k=0 (A. 17) 

k=-p3 +4"r 
p_0ý2 

27 32 (A. 18) 
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p2 4"r 
93 (A. 19) 

Equation (A. 17) has three solutions n,, n2, and n3 given by equations (A. 20), (A. 21), and (A. 22). 

n, =3 m3+k2 -k+f-, 
r. 3 +k? -k (A. 20) 

n2 =2"ý 1+i"ýý"3 m3+k2 -k+2"( 1-I"ý)"3- m3+k2 -k (A. 21) 

n3 =2"ý 1-i"ýý 3 m3+k2 -k+2"ý 1+i"ýý"3 - m3+k2 -k 
(A. 22) 

The solutions n,, n2, and n3 can be (Bronstein et al. 1996, p. 648): 

(1) one real (n, ) and two complex conjugate (n2 and n3) values, 

(2) three real numbers (n,, n2, and n3 ), 

(3) two real values with one repeated (n, and n2 = n3), or 

(4) three repeated real values (n, = n2 = n3 ). 

Based on the three solutions n,, n2, and n3, the three solutions z,, z2, and z3 can be found 

(A. 16). They specify the four solutions y, , Y2# y3 , and y4 of equation (A. 7) and thus the solutions 

x, , x2 , x3 , and x4 of the fourth order polynomial (A. 1). 
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APPENDIX B 

Estimating the natural frequencies f, (uM) and f, (u') of an undamped 2-DOF human-structure system 

(Figure 4.1b) is straightforward (equation (3.83) in section 3.1.2.3). Here, this equation (3.83) is 

derived from the eigenproblem (equation (3.81)): 

0=ms'mH'14r +(mH"k5+mH'kH+m5'kH), Mr+kg"kH. (B. 1) 

Rewriting equation (B. 1) as: 

O=%, ý+k9"m" "%Zk""m" "%, 2+m5 k" 
"%2+ 

k5"k" 
(B. 2) 

m5"mH m5"mH m9"mH m3"mH 

and introducing the circular natural frequencies of the undamped SDOF systems of the human ((aH) 

and the structure (oh) leads to equation (6.3). 

0=%1'. + W5+ "WH+WH 'i12+WH"W5 
(B. 3) 22 

f? 15 

Equation (B. 3) is a fourth order polynomial in' 
, 

but also a second order polynomial in V, 

Therefore, the pair of solutions ? can be calculated from: 

2 

z 

. 
TH 22z 

. 
TH 2z2z 

--2" wy +" wH + wH 2" Ctý +' (ýu + (ruH (ý " cýH (B. 4) 
59 

Using the fact that the complex eigenvalues' , specify the circular natural frequencies or (equation 

(3.82) in section 3.1.2.3), the two circular natural frequencies co, and w2 of an undamped 2-DOF 

system can be expressed as in equation (B. 5): 

2 

2-1 
0) 2+ m" 

" w2 + (j)2 
1 

w2 + . 
TH 

" i»2 + G)2 - w2 " Cot 1,2 - 2" 5HH25mHH5H 
55 

or, after taking a square root, by: 

(B. 5) 

1 mH ii) :F w,. 
2 =" 

(0)2 

5 
+. 

5" 

wH + wH i1)5+mH (02 

2 

-(Og'O)H . 
ß 

(B. 6) 
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Equation (B. 6) is unnecessary complex and a more convenient definition of the frequencies co, and 

co, can be derived. The first step in this approach is rewriting equation (B. 5) as: 

w2 
, 

w2 + . 
TH 

" w2 + w2 
1 

w2 + 
mH 

" w2 + w2 

2 

-4 " w2 w2 1,2 -2" H 
my 

H5 'ý'2 H 
m5 

H5H y' (B. 7) 

The next step is rewriting the term under the root in (B. 7). To simplify, this term is defined as a (B. 8). 
It is rearranged as shown in equations (6.9) to (B. 15) into the form presented in (B. 16). 

2 

a- wH+mH 
"WH+(Ay -4"ioH"C09 

ms 

) 

2 

a= (()H+2"m" 
"(ýH+2"(JyCOH+ 

m" 
"UJH-F2"m "UJH"Co 

+Co 
r2 5 m5 m5 m5 

-4"C02 . co 2 

a- wH +" 
mH 

-co -Z. wS 

my 

m (OH + 
mH 

2" 

iýH 'i' 2""" w2 " coH i' iýg 

my my 

(B. 8) 

(B. 9) 

(B. 10) 

a 
(CO 

-2. (05 . (0H + (05 
) 

2 

'ý 2"m" iýa H +(2, 
m. 

(o4 + 

(MH 

ý wH 4) 

m5 my m5 

a 
(i')H-2- 

i1ý5. iýH+ýs). 
(CVH+2-(05*wH+wsý 

[MH 

wH . 
(2. 

o +2"i0H/ + 
mH 

ýýH 
IT15 (? 15 

a= (wn + w5 )2 " (wH - w5 )2 

+ 
mH 

0)H " 
(o 

+2.05 . 0H+(OH)" 
`w5 _2-w5 (»H +ýH 

t? 15 

2 

} 
mH 

"()2 
M5 H 

(B. 11) 

(8.12) 

(B. 13) 
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a=(co. + (w y 
)2 "(co. -( or ,), 

+ (OH 
)2 + (OH 

JZ J+m 
. (02 

LH 
' wH 

((Ws 
2 

m5 ms 

a= (WH + Co� )2 " (Co. - wy )2 
2 

m 
+ ((A)y + (OH 

)2 
' 

mH 
' WH 2+ mH 

(OH 0) 
)2 +H wH 

my my 

(n15 

ä. 

«COH+(As)Z+m" 

"C0H 

«COH-Co)2-f 
mHýH 

my ms 

(B. 14) 

(B. 15) 

(B. 16) 

Employing the expression provided in (B. 16), equation (B. 7) can be rewritten as equation (B. 17). 

2z m" zi 

5 (B. 17) 

" 

((COH+wyýZ+m" 

"wH 

((COH-GJ5ý2+H_. 

w" 
2 

M. ms 

Rearranging of this equation (B. 17) leads to equation (B. 18) and further to equation (B. 19). 

(1)ß =1" (1) 
2H + 

mH 
" (j)2H + (»2 

4 m5 
FCO 

lm2 (CVH + (V5 
)2 +mH' COH /2 

+" wH 

5 
m5 

+4" (OH + mH " lýH + (05 

5 

12 
Co 

1.2 
=2 

[(oH 

+ wS 
)2 

+H ýH T2 \wH - »/2 +mH CliH (B. 19) 

5S 

Finally, taking the root of the binomial presented in equation (B. 19), the circular natural frequencies 

co, and w2 of the undamped 2-DOF human-structure system (Figure 4.1 b) are presented in the 

form of equation (B. 20). 

2 :F X1.2 =2 \wH + w5 + 
EH 

2 \wH - w5 /2 
+ mH wH 

55 (B. 20) 
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Replacing the circular natural frequencies w, i, wy , co, and w2 by the natural frequencies fg, fM, 

and f, (") results in: 

f, (p "') m 

_ (fH + f5 )2 + 
m" 

" fH 
-ý 

" 
(fH 

- 
f5 )2 +"" fH (B. 2ý 

2 n1y 2 my 

This equation (B. 21) is stated by Randall and Peng (1995) and presented as equation (3.83) in 
section 3.1.2.3. 
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APPENDIX C 

A MATLAB script is listed in this appendix. This routine calculates the natural frequencies and 
damping ratios of a damped 2-DOF human structure system based on the natural frequency, the 

mass, and the damping ratio of the two DOFs representing the structure and the human DOF. 
Additionally, it plots the structural accelerance FRFs Ay (f) of the empty structure and the FRFs 

A55(f) of the human-structure system (Figure C. 1). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Estimation of structural accelerance FRFs As and Ass % 
% of damped 2-DOF human-structure systems % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear; 

% ask for parameters of human-structure system 
fs = input('\n\n Please inputln\n Frequency of the structure [Hz] '); 
ms = input('In Modal mass of the structure [kg] '); 
zs = input('1n Damping ratio of the structure [%]'); 
fh = input('1n Frequency of the human [Hz] '); 
mh = input('1n Modal mass of the human [kg] '); 
zh = input('1n Damping ratio of the human [%] '); 

calculate stiffness 
ks = ms*(2*pi*fs)^2; 
kh = mh*(2*pi*fh)A2; 

calculate viscous damping 
cs = 2*zs1100*sgrt(ks*ms); 
ch = 2*zh/100*sqrt(kh*mh); 

% define mass matrix, damping matrix, and stiffness matrix 
M=[msO; 0 mh]; 
C=[ cs+ch -ch; -ch ch]; 
K=[ ks+kh -kh; -kh kh ]; 

% eigen analysis 
[evector, evalue] = polyeig(K, C, M); 
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% calculate modal parameters 
f1= abs(min(evalue))/2/pi; 
f2 = abs(max(evalue))/2/pi; 
z1= -real(min(evalue))labs(min(evalue)); 
z2 = -real(max(evalue))/abs(max(evalue)); 

% calculate FRF 
% specify frequency range of FRF 
w= 2*pi*linspace(1 e-3, f2*2,10000); 

% calculate the FRF of empty structure 
SDOF = -w A2. l(ks-w A2 *ms+i*w *cs); 

% calculate structural FRF of the 2-DOF human-structure system 
nominator = (kh -w ̂ 2*mh + i*w. *ch); 
denominator = ((ks+kh-w ^2. *ms+i*w. *(cs+ch)) *(kh-w ̂2. *mh+i*w. *ch)-(-kh-i*w. *ch) "2); 
Ass = -w A2 .* nominator J denominator; 

% peak amplitude of the structural FRF of the 2-DOF human-structure system 
[aDM fp_index] = max(abs(Ass)); 
aS =112/msl(zs1100); 

plot FRFs 
figure(1); set(gcf; Name'; Structural accelerances'); 

subplot(2,1,1) 
plot(w/2Ipi, abs(SDOF); k', w/21pi, abs(Ass), 'b-'); 
axis([O f2*2 01.1 *aS]); 
xlabel('Frequency [Hz]'); ylabel('Modulus [(m/s2)/N]'); 
legend ('empty structure'. occupied structure') 

subplot(2,1,2) 
plot(w/2/pi, angle(SDOF)*1801pi, 'k-', w/2/pi, angle(Ass)*180/pi; b=); 
axis([O f2*2 -200 200]); 
xlabel('Frequency [Hz]'); ylabel('Phase [degree]'); 

% characteristics of the human-structure system 

fprintf('1n\n\tProperties of the human structure system\n') 

L text = fprintf('1n\tNatural frequencies: %. 1f Hz and %. 1f Hz', f1, f2); 
z_text = fprintf(1n\tDamping ratios: %. 1f%% and %. 1f%%, z1*100, z2*100); 
fp text = fprintf('1nltPeak amplitude of the occupied structure at %. 1 f Hz. ', w(fp index)/2/pi); 
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EDLý 

Figure C. 1: Screenshot running MATLAB script EstimateFRFs (parameters of Case 1 in section 4.6). 
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APPENDIX D 

This appendix informs about the time schedule of all experiments (Figure 5.7) in Table D. 1. It also 

contains detailed information on the configuration and naming of single experiments summarised in 

Tables D. 2 to D. 10. 

It is mentioned that a burst random excitation with level 2 (see Figures 5.11 and 5.12 in section 
5.4.1.1) is used in all experiments, if not stated otherwise. Mass and height of the human occupants 

can be taken from Table 5.2. 

Table D. 1: Time schedule of experiments. 
Date Experiment No. 

16 October 2000 1 -15 
20 October 2000 16 - 30 

26 October 2000 31 - 52 

1 November 2000 53 - 62 
2 November 2000 63 - 72 

8 November 2000 73 - 82 

10 November 2000 79 - 81 

14 November 2000 82 -110 
15 November 2000 111 -141 
16 November 2000 142 -146 
24 November 2000 147 -172 
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Table D. 2: Layout of experiments involving the empty structure. 
Test ID File Group Test Condition Experiment No. 

A01 A shaker at TP 5 2) 1 
A02 B shaker at TP 5 2) 2 
A03 C shaker at TP 5 2) 3 
A04 D shaker at TP 5 2) 4 

A05 E shaker at TP 5 2) 5 

A06 F shaker at TP 5 6 

A07 G shaker at TP 5 7 

A08 H shaker at TP 58 

A09 I shaker at TP 59 

All L shaker at TP 5 10 

A12 M shaker at TP 51) 11 
A13 N shaker at TP 5 1) 12 
A14 0 shaker at TP 51) 13 
A15 P shaker at TP 51) 14 
A16 Q shaker at TP 51) 15 
A17 R shaker at TP 7 16 
A18 S shaker at TP 7 17 
A19 T shaker at TP 7 18 
A20 U shaker at TP 7 19 
A21 V shaker at TP 7 20 
A22 w shaker at TP 7 111 
A23 x shaker at TP 7 112 
A24 Y shaker at TP 7 113 
A25 z shaker at TP 7 114 
A26 J shaker at TP 7 115 

1) Excitation level 1 (see Figure 5.12 in section 5.4.1.1) 
2) Excitation level 3 (see Figure 5.12 in section 5.4.1.1) 
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Table D. 3: Layout of experiments involving one sitting occupant. 
Test ID File Group Test Condition Experiment No. 

B01 A shaker at TP 7; person A sitting at TP 5 21 
B02 B shaker at TP 7; person A sitting at TP 5 22 
B03 C shaker at TP 7; person A sitting at TP 5 23 
B04 D shaker at TP 7; person A sitting at TP 5 24 
B05 E shaker at TP 7; person A sitting at TP 5 25 

B06 Z shaker at TP 7 2); person A sitting at TP 5 36 
B07 V shaker at TP 7 2); person A sitting at TP 5 37 
B08 W shaker at TP 7 2); person A sitting at TP 5 38 
B09 X shaker at TP 7 2); person A sitting at TP 5 39 
B10 Y shaker at TP 7 2); person A sitting at TP 5 40 
B11 Q shaker at TP 71); person A sitting at TP 5 41 
B12 R shaker at TP 71); person A sitting at TP 5 42 
B13 S shaker at TP 71); person A sitting at TP 5 43 
B14 T shaker at TP 71); person A sitting at TP 5 44 
B15 U shaker at TP 71); person A sitting at TP 5 45 
B16 F shaker at TP 7; person A sitting at TP 7 26 
B17 G shaker at TP 7; person A sitting at TP 7 27 
B18 H shaker at TP 7; person A sitting at TP 7 28 
B19 I shaker at TP 7; person A sitting at TP 7 29 
B20 K shaker at TP 7; person A sitting at TP 7 30 
B21 L shaker at TP 7; person A sitting at TP 9 31 
622 M shaker at TP 7; person A sitting at TP 9 32 
B23 N shaker at TP 7; person A sitting at TP 9 33 
B24 0 shaker at TP 7; person A sitting at TP 9 34 
B25 P shaker at TP 7; person A sitting at TP 9 35 
B26 J shaker at TP 5; person A sitting at TP 5 46' 

1) Excitation level 1 (see Figure 5.12 in section 5.4.1.1) 
2) Excitation level 3 (see Figure 5.12 in section 5.4.1.1) 
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Table D. 4: Layout of experiments involving one standing occupant. 
Test ID File Group Test Condition Experiment No. 

C01 A shaker at TP 7; person A standing at TP 5 48 
C02 B shaker at TP 7; person A standing at TP 5 49 
C03 C shaker at TP 7; person A standing at TP 5 50 
C04 D shaker at TP 7; person A standing at TP 5 51 
C05 E shaker at TP 7; person A standing at TP 5 52 
C06 F shaker at TP 7; person A standing at TP 7 53 
C07 G shaker at TP 7; person A standing at TP 7 54 
C08 H shaker at TP 7; person A standing at TP 7 55 
C09 I shaker at TP 7; person A standing at TP 7 56 
C10 K shaker at TP 7; person A standing at TP 7 57 
C11 L shaker at TP 7; person A standing at TP 9 58 
C12 M shaker at TP 7; person A standing at TP 9 59 
C13 N shaker at TP 7; person A standing at TP 9 60 
C14 0 shaker at TP 7; person A standing at TP 9 61 
C15 P shaker at TP 7; person A standing at TP 9 62 
C16 Q shaker at TP 72); person A standing at TP 5 63 
C17 R shaker at TP 7 2); person A standing at TP 5 64 
C18 S shaker at TP 72); person A standing at TP 5 65 
C19 T shaker at TP 7 2); person A standing at TP 5 66 
C20 U shaker at TP 72); person A standing at TP 5 67 
C21 V shaker at TP 71); person A standing at TP 5 68 
C22 W shaker at TP 71); person A standing at TP 5 69 
C23 X shaker at TP 71); person A standing at TP 5 70 
C24 Y shaker at TP 71); person A standing at TP 5 71 
C25 Z shaker at TP 71); person A standing at TP 5 72 
C26 J shaker at TP 5; person A standing at TP 5 47 

Excitation 
2) Excitation 

level 1 
level 3 

(see Figure 5.12 in section 5.4.1.1) 
(see Figure 5.12 in section 5.4.1.1) 
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Table D. 5: Lavout of experiments involving five individuals. 
Test ID File Group Test Condition Experiment No. 

E01 A shaker at TP 7; person A sitting at TP 5 82 

E02 B shaker at TP 7; person A sitting at TP 5 83 

E03 C shaker at TP 7; person A sitting at TP 5 84 

E04 D shaker at TP 7; person A sitting at TP 5 85 

E05 E shaker at TP 7; person A sitting at TP 5 86 

E06 F shaker at TP 7; person B sitting at TP 5 87 

E07 G shaker at TP 7; person B sitting at TP 5 88 

E08 H shaker at TP 7; person B sitting at TP 5 89 

E09 I shaker at TP 7; person B sitting at TP 5 90 

E10 J shaker at TP 7; person B sitting at TP 5 91 

El 1 K shaker at TP 7; person C sitting at TP 5 92 
E12 L shaker at TP 7; person C sitting at TP 5 93 

E13 M shaker at TP 7; person C sitting at TP 5 94 

E14 N shaker at TP 7; person C sitting at TP 5 95 

E15 0 shaker at TP 7; person C sitting at TP 5 133 

E16 P shaker at TP 7; person D sitting at TP 5 106 

E17 Q shaker at TP 7; person D sitting at TP 5 107 

E18 R shaker at TP 7; person D sitting at TP 5 108 

E19 S shaker at TP 7; person D sitting at TP 5 109 

E20 T shaker at TP 7; person D sitting at TP 5 110 

E21 U shaker at TP 7; person E sitting at TP 5 121 
E22 V shaker at TP 7; person E sitting at TP 5 122 
E23 W shaker at TP 7; person E sitting at TP 5 134 
E24 X shaker at TP 7; person E sitting at TP 5 135 

E25 Y shaker at TP 7; person E sitting at TP 5 136 
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Table D. 6: Lavout of experiments involving groups of up to five occupants. 
Test ID File Group Test Condition Experiment No. 

F01 A shaker at TP 7; person A and B sitting at TP 5 116 
F02 B shaker at TP 7; person A and B sitting at TP 5 117 
F03 C shaker at TP 7; person A and B sitting at TP 5 118 
F04 D shaker at TP 7; person A and B sitting at TP 5 119 
F05 E shaker at TP 7; person A and B sitting at TP 5 120 

F06 F shaker at TP 7; person A, B, and C sitting at TP 5 96 
F07 G shaker at TP 7; person A, B, and C sitting at TP 5 97 
F08 H shaker at TP 7; person A, B, and C sitting at TP 5 98 
F09 I shaker at TP 7; person A, B, and C sitting at TP 5 99 
F10 J shaker at TP 7; person A, B, and C sitting at TP 5 100 
F11 K shaker at TP 7; person A, B, C, and D sitting at TP 5 101 
F12 L shaker at TP 7; person A, B, C, and D sitting at TP 5 102 
F13 M shaker at TP 7; person A, B, C, and D sitting at TP 5 103 
F14 N shaker at TP 7; person A, B, C, and D sitting at TP 5 104 
F15 0 shaker at TP 7; person A, B, C, and D sitting at TP 5 105 
F16 P shaker at TP 7; person A, B, C, D, and E sitting at TP 5 123 
F17 Q shaker at TP 7; person A, B, C, D, and E sitting at TP 5 124 
F18 R shaker at TP 7; person A, B, C, D, and E sitting at TP 5 125 
F19 S shaker at TP 7; person A, B, C, D, and E sitting at TP 5 126 
F20 T shaker at TP 7; person A, B, C, D, and E sitting at TP 5 127 
F21 U shaker at TP 7; person C and E sitting at TP 3; 

person A, B, and D sitting at TP 7 
128 

F22 V shaker at TP 7; person C and E sitting at TP 3; 
person A, B, and D sitting at TP 7 

129 

F23 W shaker at TP 7; person C and E sitting at TP 3; 
person A, B, and D sitting at TP 7 

130 

F24 X shaker at TP 7; person C and E sitting at TP 3; 
person A, B, and D sitting at TP 7 

131 

F25 Y shaker at TP 7; person C and E sitting at TP 3; 
person A, B, and D sitting at TP 7 

132 
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Table D. 7: Layout of experiments analysing the influence of a static load. 
Test ID File Group Test Condition Experiment No. 

G01 A shaker at TP 7; mass of 408 kg at TP 5 137 

G02 B shaker at TP 7; mass of 408 kg at TP 5 138 

G03 C shaker at TP 7; mass of 408 kg at TP 5 139 

G04 D shaker at TP 7; mass of 408 kg at TP 5 140 

G05 E shaker at TP 7; mass of 408 kg at TP 5 141 

shaker at TP 7; 142 G06 F 
mass of 168 kg at TP 3 and mass of 240 kg at TP 7 

shaker at TP 7; 143 G07 G 
mass of 168 kg at TP 3 and mass of 240 kg at TP 7 

shaker at TP 7; 
G08 H 

mass of 168 kg at TP 3 and mass of 240 kg at TP 7 
144 

shaker at TP 7; 145 G09 I 
mass of 168 kg at TP 3 and mass of 240 kg at TP 7 

shaker at TP 7; 
G10 

mass of 168 kg at TP 3 and mass of 240 kg at TP 7 
146 

Table D. 8: Layout of experiments investigating repeatability. 
Test ID File Group Test Condition Experiment No. 

R01 A shaker at TP 7; person A sitting at TP 5 73 

R02 B shaker at TP 7; person A sitting at TP 5 74 

R03 C shaker at TP 7; person A sitting at TP 5 75 

R04 D shaker at TP 7; person A sitting at TP 5 76 

R06 F shaker at TP 7; person A sitting at TP 5 77 

Table D. 9: Layout of experiments investigating the influence of a walking occupant. 
Test ID File Group Test Condition Experiment No. 

D01 A shaker at TP 7; continuous random excitation; 79 
person A walking at 1.5 Hz 

D02 B shaker at TP 7; continuous random excitation; 80 
person A walking at 1.8 Hz 

D03 C shaker at TP 7; continuous random excitation 81 
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Table D. 10: Layout of experiments investioatina the influence of the posture of a single occupant. 
Test ID File Group Test Condition Experiment No. 

P01 P shaker at TP 7; person A standing at TP 5 with bent knees 147 
P02 V shaker at TP 7; person A standing normally at TP 5 148 
P03 F shaker at TP 7; person A sitting at TP 5 149 
P04 K shaker at TP 7; person A standing at TP 5 with locked knees 150 
P05 A shaker at TP 7 151 
P06 Q shaker at TP 7; person A standing at TP 5 with bent knees 152 
P07 W shaker at TP 7; person A standing normally at TP 5 153 
P08 G shaker at TP 7; person A sitting at TP 5 154 
P09 L shaker at TP 7; person A standing at TP 5 with locked knees 155 
P10 B shaker at TP 7 156 
P11 R shaker at TP 7; person A standing at TP 5 with bent knees 157 
P12 X shaker at TP 7; person A standing normally at TP 5 158 
P13 H shaker at TP 7; person A sitting at TP 5 159 
P14 M shaker at TP 7; person A standing at TP 5 with locked knees 160 
P15 C shaker at TP 7 161 
P16 S shaker at TP 7; person A standing at TP 5 with bent knees 162 
P17 Y shaker at TP 7; person A standing normally at TP 5 163 
P18 I shaker at TP 7; person A sitting at TP 5 164 
P19 N shaker at TP 7; person A standing at TP 5 with locked knees 165 
P20 D shaker at TP 7 166 
P21 T shaker at TP 7; person A standing at TP 5 with bent knees 167 
P22 Z shaker at TP 7; person A standing normally at TP 5 168 
P23 J shaker at TP 7; person A sitting at TP 5 169 
P24 0 shaker at TP 7; person A standing at TP 5 with locked knees 170 
P25 E shaker at TP 7 171 
P26 U shaker at TP 7; person A standing at TP 5 with bent knees 172 
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APPENDIX E 

A wide range of experiments was performed to analyse the influence of human occupant on a test 

structure (Appendix D). Natural frequencies, damping ratios and modal masses determined from 

these modal tests by curve-fitting of FRFs are summarised here. They are provided by mean values 
and standard deviations of (always five) nominally identical tests. 

E. 1 EMPTY TEST STRUCTURE 

Modal properties of the empty test structure are listed in Tables E. 1 to E. 3. Note that properties of 
the second mode of vibration are not provided for experiments A01- A05, A06 - A09, Al 1, A12 - 
A16. In these cases, the excitation was applied at TP 5 (Table D. 2 in Appendix D), a nodal point of 
the second mode (Figure 5.34a), and, therefore, properties of the second mode could not be 
identified. 

Table E. 1: Natural frequencies f,, f2 , and f3 of the empty test structure. 
Test ID (No. ) f, [Hz] f2 [Hz] f, [Hz] 

A01- A05 (1- 5) 4.54 ± 0.00 - 37.86 ± 0.02 
A06 - A09, All (6 - 10) 4.54 ± 0.00 - 37.85 ± 0.01 

A12-A16(11-15) 4.54 ± 0.00 - 37.88 ± 0.02 
A17 - A21 (16 - 20) 4.53±0.00 16.93±0.00 37.84±0.00 

A22 - A26 (111 - 115) 4.51 ± 0.00 16.95 ± 0.00 37.73 ± 0.00 
P05, P10, P15, P20, and P25 
(151,156,166,168, and 171) 4.50 ± 0.00 16.98 ± 0.00 37.59 ± 0.01 
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Table E. 2: Damping ratios i;,, ý2 , and ý3 of the empty test structure. 
Test ID (No. ) ý2 [%] [%] 

A01- A05 (1- 5) 0.32 ± 0.00 - 0.93 ± 0.02 
A06-A09, A11(6-10) 0.34±0.00 - 0.95±0.04 

A12-A16(11-15) 0.34 ± 0.01 - 0.92±0.04 
A17 - A21 (16 - 20) 0.35 ± 0.00 0.35 ± 0.00 0.93 ± 0.01 

A22 - A26 (111-115) 0.32 ± 0.01 0.35 ± 0.00 0.94 ± 0.01 
P05, P10, P15, P20, and P25 
(151,156,166,168, and 171) 0.37 ± 0.02 0.34 ± 0.00 1.00 ± 0.02 

Table E. 3: Modal masses m, , m2 , and m3 of the empty test structure. 

Test ID (No. ) m, [k9] m2 [k9) m3 (kg) 

A01- A05 (1- 5) 7260 190 - 7760 ± 330 
A06 - A09, Al 1(6 - 10) 7030 t 50 - 7660 ± 410 

A12 - A16 (11-15) 6970 t 110 - 7670 ± 160 
A17-A21(16-20) 7010±60 7420±90 7760±60 

A22 - A26 (111-115) 7040 t 160 7370 ± 30 7880 t 110 
P05, P10, P15, P20, P25 
(151,156,166,168,171) 

7090 ± 350 7340 ± 120 7980 ± 170 
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Table E. 6: Modal masses m, , m2 , and m3 of the test structure occupied by TS A sitting at different 
locations, subjected to different excitation levels, and at different days. 

Test ID (No. ) m, [kg] m2 [kg] m3 [kg] 

B01- B05 (21- 25) 6880 ± 220 7400 ± 60 7710 ±130 
B06 - B10 (36 - 40) 7250 ±350 7380 ± 30 7760 ±130 
B11- B15 (41- 45) 7910 ± 620 7370 ± 20 7770 t 100 
B16 - B20 (26 - 30) 6950 ± 200 7420 ± 20 7790 t 90 
B21- B25 (31- 35) 6950 ± 30 7430 ± 80 7750 t 110 

R01- R04, R06 (73 - 77) 7070 ± 300 7380 ± 60 7730 t 60 

Table E. 7: Natural frequencies f,, f2 , and f3 of the test structure occupied by TS A standing at 
various aoints and under varvina levels of excitation. 

Test ID (No. ) f, [Hz] f2 [Hz] f3 [Hz] 

C01-C05 (45-52) 4.50±0.00 16.95±0.00 37.78±0.00 
C06 - C10 (53 - 57) 4.51 ± 0.00 16.96 ± 0.00 37.74±0.00 
C11-C15(58-62) 4.52±0.00 16.95±0.00 37.74±0.00 
C 16 - C20 (63 -67) 4.49 ± 0.00 16.95 ± 0.00 37.77 ± 0.00 
C21 - C25 (68 -72) 4.50 ± 0.00 16.96 ± 0.00 37.78 ± 0.00 

Table E. 8: Damping ratios ý,, i72 , and ý3 of the test structure occupied by TS A standing at 
various points and under varvina levels of excitation. 

Test ID (No. ) ý, [70] ý2 [%] 
3 [7e] 

C01- C05 (45 - 52) 0.54 ± 0.06 0.35 ± 0.01 0.98 ± 0.01 
C06-C10(53-57) 0.42±0.03 0.56±0.00 1.00±0.01 
C11-C15(58-62) 0.34±0.02 0.34±0.01 1.00±0.01 
C16 - C20 (63 -67) 0.45 ± 0.02 0.34 ± 0.00 1.00 ± 0.01 
C21 - C25 (68 -72) 0.52±0.13 0.34±0.01 1.00±0.02 
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E. 2 ONE STATIONARY OCCUPANT 

The influence of a single human occupant on the modal properties of the test structure was 
determined in Tests B, C, E, R, and P (Tables D. 3 to D. 5, D. 8, and D. 10). The resulting natural 
frequencies, damping ratios, and modal masses are listed in Tables E. 4 to E. 15. 

Table E. 4: Natural frequencies f,, f2 , and f3 of the test structure occupied by TS A sitting at 
different locations, subjected to different excitation levels, and at different days. 

Test ID (No. ) f, [Hz] f2 [Hz] f3 [Hz] 

B01- B05 (21- 25) 4.50 ± 0.00 16.93 ± 0.00 37.86 ± 0.00 
B06-B10(36-40) 4.49 ± 0.00 16.95 ± 0.00 37.77 ± 0.01 
B11-B15(41-45) 4.49±0.00 16.95±0.00 37.78±0.02 
B16 - B20 (26 - 30) 4.52 ± 0.00 16.94 ± 0.00 37.85±0.01 
B21 - B25 (31- 35) 4.52 ± 0.00 16.96 ± 0.00 37.77 ± 0.00 

R01- R04, R06 (73 - 77) 4.49 ± 0.00 16.96 ± 0.00 37.74 ± 0.01 

Table E. 5: Damping ratios i;,, ý2, and ý3 of the test structure occupied by TS A sitting at different 
locations, subjected to different excitation levels, and at different days. 

Test ID (No. ) ý, L%] ý2 (0/. ] ;a [%] 

B01- B05 (21 - 25) 0.55 ± 0.06 0.36 ± 0.01 0.98 ± 0.01 
B06-B10(36-40) 0.51±0.09 0.35±0.00 1.01±0.02 
B11-B15(41-45) 0.47±0.02 0.35±0.01 1.00±0.05 
B16 - B20 (26 - 30) 0.43 ± 0.03 0.47 ± 0.05 0.94 ± 0.00 
B21 - B25 (31 - 35) 0.35 ± 0.01 0.35 ± 0.00 0.97 ± 0.01 

R01- R04, R06 (73 - 77) 0.57 ± 0.14 0.35 ± 0.00 1.06 ± 0.01 
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Table E. 9: Modal masses m,, m2, and m3 of the test structure occupied by TS A standing at 
various points and under varvin4 levels of excitation. 

Test ID (No. ) m, [k0] m2 [k9] m, [kg] 

C01- C05 (45 - 52) 6900 ± 290 7330 ± 80 7830 t 130 
C06 - C10 (53 - 57) 7260± 230 7370 ± 60 7760 t 90 
C11- C15 (58 - 62) 7000 t 80 7410 t 170 7670 t 70 

C16 - C20 (63 -67) 7360 t 310 7410 t 80 7730 t 120 

C21 - C25 (68 -72) 7180 t 312 7390 ±150 7730 t 210 

Table E. 10: Natural frequencies f, , f2, and f3 of the test structure occupied by TS A, B, C, D, or E. 
Test ID (No. ) f, [Hz] f2 [Hz] f, [Hz] 

E01- E05 (82 - 86) 4.48 ± 0.01 16.96 ± 0.00 37.76 ± 0.00 
E06 - E10 (87 - 91) 4.46 ± 0.00 16.95 ± 0.00 37.78 ± 0.00 

El 1- E15 (92 - 95,133) 4.47±0.00 16.95±0.00 37.76±0.02 
E16 - E20 (106 -110) 4.47 ± 0.01 16.95 ± 0.00 37.75 ± 0.01 

E21 - E25 (121,122,134 -136) 4.46 ± 0.00 16.95 ± 0.00 37.73 ± 0.00 

Table E. 11: Damping ratios ý, , ý2 , and ý3 of the test structure occupied by TS A, B, C, D, or E 
Test ID (No. ) ýz L%] ý, ['/"] 

E01-E05(82-86) 0.64 ± 0.16 0.34 ± 0.01 0.97 ± 0.01 
E06 - E10 (87 - 91) 0.60 ± 0.05 0.35 ± 0.00 0.99 ± 0.01 

Ell -E15(92-95,133) 0.61 ± 0.08 0.35±0.01 1.00±0.02 
E16-E20(106-110) 0.54±0.13 0.36±0.01 1.01±0.01 

E21 - E25 (121,122,134 - 136) 0.58 ± 0.09 0.36 ± 0.00 1.03 ± 0.01 
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Table E. 12: Damping ratios ý,, t, and ý3 of the test structure occupied by TS A, B, C. D, or E. 

Test ID (No. ) ý, [%] ý2 L%] x, 17. ] 

E01- E05 (82 - 86) 0.64 ± 0.16 0.34 ± 0.01 0.97 ± 0.01 

E06-E10(87-91) 0.60 ± 0.05 0.35 ± 0.00 0.99 ± 0.01 

El1 -E15(92-95,133) 0.61 ± 0.08 0.35 ± 0.01 1.00±0.02 

E16-E20(106-110) 0.54 ± 0.13 0.36 ± 0.01 1.01 ± 0.01 

E21- E25 (121,122,134 - 136) 0.58 ± 0.09 0.36 ± 0.00 1.03 ± 0.01 

Table E. 13: Natural frequencies f,, f2 , and f3 of the test structure occupied by TS A in different 
postures. 

Test ID (No. ) f, [Hz] f2 [Hz] f3 [Hz] 

P03, P08, P13, P18, and P231) 4.47 ± 0.00 16.98 ± 0.00 37.62 ±0 01 (149,154,159,164,169) . 
P02, P07, P12, P17, and P222) 4.48 ± 0.00 16.98 ± 0.00 37.62 ± 0.01 (148,153,158,163,168) 
P04, P09, P14, P19, and P24 3) 

4.47 ± 0.00 16.98 ± 0.00 37.63 ± 0.01 
(150,155,160,165,170) 

1) Sitting at TP 5. 
2) Standing with locked knees at TP 5 
3) Standing normally at TP 5. 

Table E. 14: Damping ratios ý2 , and ý3 of the test structure occupied by TS A In different 
postures. 

Test ID (No. ) ý2 ['/o] ý, [x] 

P03, P08, P13, P18, and P23 0.57 ± 0.09 0.35 ± 0.00 1 04 ±0 01 (149,154,159,164,169) . . 
P02, P07, P12, P17, and P22 0.69 ± 0.07 0.35 ± 0.01 1 04 ±0 02 (148,153,158,163,168) . . 
P04, P09, P14, P19, and P24 

(150,155,160,165,170) 0.51 ± 0.05 0.35 ± 0.01 1.03 ± 0.01 
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Table E. 15: Modal masses m,, m2, and m3 of the test structure occupied by TS A in different 
postures. 

Test ID (No. ) m, [kg] m2 [kg] m3 [kg] 

P03, P08, P13, P18, and P23 7120 1220 7290 ± 50 7860 ± 80 (149,154,159,164,169) 
P02, P07, P12, P17, and P22 7210 ± 280 7330 ± 70 7870 ± 60 (148,153,158,163,168) 
P04, P09, P14, P19, and P24 

7130 ± 670 7350 ± 110 7830 ± 70 (150,155,160,165,170) 
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E. 3 GROUPS OF SITTING OCCUPANTS 

Tables E. 16 to E. 18 list the natural frequencies, damping ratios, and modal masses determined for 

the test structure occupied by two (FO1- F05), three (F06 - F10), four (F11- F15), or five people 
(F16 - F20 and F21 - F25) as outlined in Table D. 6. The test subjects (Table 5.2) were usually sitting 

close to TP 5 and only in tests F21 - F25 at TPs 3 and 7 (Figure 5.9). 

Table E. 16: Natural frequencies f,, f2 , and f3 of the test structure occupied by a group of sitting 
DeoDle. 

Test ID (No. ) f, [Hz] f2 [Hz] f, [Hz] 

F01-F05(116-120) 4.43 ± 0.00 16.95 ± 0.00 37.76 ± 0.01 
F06-F10(96-100) 4.41 ± 0.01 16.95 ± 0.00 37.81 ± 0.01 
F11-F15(101-105) 4.38 ± 0.01 16.95 ± 0.00 37.84 ± 0.01 
F16-F20(123-127) 4.34 ± 0.02 16.94 ± 0.00 37.83±0.01 
F21 - F25 (128 - 132) 4.42 ± 0.01 16.98 ± 0.01 37.78±0.00 

Table E. 17: Damping ratios ý,, 2, and t3 of the test structure occupied by a group of sitting 
people. 

Test ID (No. ) ý, ['/"] ý2 C/"] ýs ['/"] 

F01- F05 (116 - 120) 0.74 ± 0.09 0.36 ± 0.00 1.09 ± 0.03 
F06 - F10 (96 - 100) 0.88 ± 0.07 0.36 ± 0.00 1.09 ± 0.02 
F11-F15(101-105) 1.32 ± 0.20 0.38 ± 0.00 1.14 ± 0.01 
F 16 - F20 (123 - 127) 1.69 ± 0.67 0.41 ± 0.01 1.24 ± 0.01 
F21 - F25 (128 - 132) 1.20 ± 0.27 1.40±0.04 1.10±0.01 

Table E. 18: Modal masses m,, m2 , and m3 of the test structure occupied by a group of sitting 
people. 

Test ID (No. ) m, [kg] m2 [kg] m3 [kg] 

F01- F05 (116 -120) 7470 ±980 7440 ± 80 7720± 200 

F06 - F10 (96 - 100) 7930 ± 1090 7430 t 140 7980 t 120 
F11-F15(101-105) 7900±540 7400±90 7950±90 
F16 - F20 (123 -127) 7940 ±1100 7420 t 110 7720 t 90 
F21- F25 (128 -132) 7260± 560 7450 t 40 7840 t 110 
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E. 4 EQUIVALENT MASS 

Natural frequencies, damping ratios, and modal masses of the test structure loaded with a mass 

equivalent to the overall mass of the five TSs are provided in Tables E. 19 to E. 21. The equivalent 

mass was applied at TP 5 in G01- G05 or distributed to TPs 3 and 7 in G06 - G10. 

Table E. 19: Natural frequencies f,, f2 , and f3 of the test structure loaded with an equivalent mass. 
Test ID (No. ) f, [Hz] f2 [Hz] f3 [Hz] 

G01 - G05 (137 - 141) 4.39 ± 0.00 16.93 ± 0.00 38.45 ± 0.05 
G06-G10(142-146) 4.44 ± 0.00 16.34 ± 0.00 37.84±0.01 

Table E. 20: Damping ratios and ý3 of the test structure loaded with an equivalent mass. 
Test ID (No. ) ý2 

s ['/"] 

G01-G05(137-141) 0.33±0.01 0.40 10.01 1.92 10.12 
G06 - G1 0 (142 - 146) 0.34 10.00 0.47 ± 0.01 1.76±0.02 

Table E. 21: Modal masses m, , m2 , and m3 of the test structure loaded with an equivalent mass. 
Test ID (No. ) m, [kg] m2 [kg] m, [kg] 

G01- G05 (137 -141) 7410 t 160 7530 t 180 8580 ± 260 
G06 - G10 (142 -146) 71190 t 50 8020 t 40 7870 ± 70 
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APPENDIX F 

This appendix provides Peak Amplitude Reduction Factors (PARFs) for a range of 2-DOF human- 

structure models. As outlined in section 6.3, these values can be used to quantify the influence of 
human occupants on SDOF structure models. 

The presented PARFs correspond to damped SDOF structure models with natural frequencies fb 

between 0.5 and 20.0 Hz and damping ratios ýy of 1% or 2%. Human occupants are represented 
by the damped SDOF human occupant model A*, B*1 or C (Table F. 1). They cover excitation 
frequencies f=0.5 to 10.0 Hz and m5 : mT ratios of 1: 1,1.5: 1,3: 1,10: 1,50: 1, and 100: 1. 

Table F. 1: Properties of Human Models A*, B*, and C corresponding to SDOF structure models with 
natural frequencies of 4.51 Hz, 16.95 Hz, and 3.16 Hz respectively. 

Natural frequency f� Damping ratio ýH Mass mH 
Human Model A* 5.9 Hz 33% 0.9 mr 
Human Model B* 8.3 Hz 35% 0.8 m1 
Human Model C 3.8 Hz 10% 1.0 MT 
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Figure F. 1: PARF for m, -: m. = 1: 1. Human Model A*, and a) Ca=1% (maximum PARF = 0.81 or 
b) ý5= 2% (maximum PARF = 0.8). 
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Figure F. 2: PARF form,: mt =11, Human Model B*, and a) ýg=1% (maximum PARF = 0.1) or 
b) i; 5 = 2% (maximum PARF = 0.2). 
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Figure F. 3: PARF for m5 : m? = 1: 1, Human Model C, and a) 1% (maximum PARF = 0.7) or 
ýy= 2% (maximum PARF = 0.7). 

Pap. 299 



Appwdbc F 

a) 
10 Hz 

Excitation 
frequency f 

8 Hz 

6 Hz 

4 Hz 

2 Hz 

I Hz 

b) 

. .................................. ............................ ...... y .......... ............................................ ................. 

...:.. .... . ........ ..... ...... .... . ...... ..... ....., 

, 025 

0 

....... .... ... ... ...... ........... ......... . i............. ... ...... , ... ....... ....... .... 
" 

ýy 
A, L . 025 

. 
04 

....... ............. ........ ... p6 ............... . 

' . 
00 

. 
001 

.. 0003 

Hz 2 Hz 4 Hz 6 Hz 8 Hz 10 Hz 
Frequency of the structure fb 

10 Hz 

Excitation 
frequency f 

8 Hz 

6 Hz 

4 Hz 

2 Hz 

1 Hz 

. p6 

.................... ....... .......... ... ........... ..,... ........,. ... ,..... .., 
0p' 

.................. . .................. 
' 

..... . ...,.... ..., .... . ........... .. 
o ý ý Al 

tý ......... ........ ....... .... ....... i .... ...... ......... . .,...... .. 

. 001 

Hz 2 Hz 4 Hz 6 Hz 8 Hz 10 Hz 
Frequency of the structure f, 

Figure F. 4: PARF for m5 : mj =1.5: 1, Human Model A`, and a) cg=17o (maximum PARF = 0.8) of 
b) ýy= 2% (maximum PARF = 0.8). 
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Fiaure F. 5: PARF for m- : m. =1.5: 1. Human Model B*. and a) C. =1 % (maximum PARF = 0.11 or 
b) ýy= 2% (maximum PARF = 0.2). 
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Figure F. 6: PARF for m5 : mT =1.5: 1, Human Model C, and a) r; 9=1% (maximum PARF = 0.8) or 
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Figure F. 3: PARF tor m5 : MT = 3: 1, Human Model b', and a) =1°ßo (maximum PARF = 0.1) or 
b) ý5 = 2% (maximum PARF = 0.2). 
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rlgure r-. V: VAM- Tor my : mr = 3: 1, Human Model c, and a);, = 17o (maximum DARF = 0.9) orb) 
ý5 = 2% (maximum PARF = 0.9). 
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Figure F. 10: PARF for m5 : mT =10: 1, Human Model A", and a);, = 1% (maximum PARF =1.0, 
or b) t5 = 2% (maximum PARF = 1.0). 
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Figure F. 11: PARF for mg : mT =10: 1, Human Model B', and a) ý8=1% (maximum PARF = 0.2 
orb) i; 5= 2% (maximum PARF = 0.3). 
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Figure F. 12: PARF for ms : mr =10: 1, Human Model(;, and a);, = 1% (maximum PARF =1.0) of 
b) i; 5= 2% (maximum PARF =1.0). 
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t-igure i-. 13: F'AKr for m5 : MT = 5U: 1, Human Model A', and a) cg=1% (maximum PARF = 1.0 
or b) ý5 = 2% (maximum PARF =1.0). 
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Figure F. 14: PARF for m5 : mT = 50: 1, Human Model B*, and a) ýg=1% (maximum PARF = 0.5) 
orb) i; 5 = 2% (maximum PARF = 0.7). 
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rigure r. io: -AKI- Tor mg : MT = ou: 1, human moaei L, ana a) Sg= iw/o (maximum PARF = 1.0) or 
b) ý5 = 2% (maximum PARF =1.0). 
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Figure F. 16: PARF for m.: mr =100: 1, Human Model A*, and a) C. = 1% (ma)imum PARF =1.01 
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Figure F. 17: PARF for ms : mr = 100: 1, Human Model B', and a) r =1% (maximum PARF = 0.7) 
or b) ty= 2% (maximum PARF = 0.8). 
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Figure F. 18: PARF for m5 : mT =100: 1, Human Model C, and a) r; g=1% (maximum PARF =1.0) 
orb) ý5= 2% (maximum PARF =1.0). 
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